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ABSTRACT 

The collection and subsequent manipulation of gravity and 

magnetic data in applied geophysics can be conveniently described 

in terms of the sampling and f1ltering of continuous, two-dimen­

sional wavefo~s. Viewed in this manner, most of the potential 

field operators in common use fall far short of their expecta­

tions. 

The use of fil ter theory and modern processing techniques 

allows a more general approach to the problems of operator design, 

and a more accurate approximation of potential field operations. 

The inverse Hankel transfor.m and a proposed wavelength filter 

have been used in this thesis for the derivation of zero-phase, 

t~-d1mens1onal potential f1eld opera tors. 

The concepts of frequency analysis and information theory 

adopted in this filtering approach lend new insight and under­

standing to the problems and methods of gravit y and magnetic 

1nterpretat1on. 



The title to appear on spine of bound copies: 

THE DESIGN OF TWO-DIMENSIONAL POTENTIAL FIELD FILTERS 

by 

H. P. Parsneau 



THE DEVELOPMERT OF fVQ-DIMENSIOBAL DIGITAL OPERATORS 

FOR THE FILTERIRG OF POfElfTIAL FIELD DATA 

H. P. Parsneau, B. Eng. 

A thes1s subB1tted to the Faculty of 
Graduate Studies and Research in partial 
fulf1llDent of' the requirements for the 
Degree of' Haster of Engineering (Geopqvsics). 

Department of Mining EDgineering 
and Applled Geop~s1cs, 
MeGi11 university, Jme 15, 1970. 
Montreal. 

", . 

li.? :?arsneau 1971 



TABLE OF CONTENTS 

List of Illustrations ••••••••••••••••••••••••••••••••• Page 1 

List of Tables ••••••••••••••••••••••••••••.•••••••••••• 4 

Acknowledgement ••••••••••••••••••••••••••••••••••••••• 5 

Introduction •••••••••••••••••••••••••••••••••••••••••• 6 

Chapter 1: Potential Fields and Filter Theory ••••••• 9 

1-1 Potential Field Surveys and Related 
Theo-ry- ••••••••••••••••••••••••••••••••••• 9 

Gravit y and Magnetic Surveys ••••••• 9 

Potential Field Equations •••••••••• Il 

The Equivalent Stratum ••••••••••••• 16 

Continuation of Potentia1 Fields ••• 19 

1-2 Fundamentals of Frequency Analysis ••••••• 21 

The Fourier Transform •••••••••••••• 21 

The Convolution Integral 
and Filtering •••••••••••••••••••••• 25 

Discrete Sampling of Continuous 
Waveforms •••••••••••••••••••••••••• 30 

1-3 Frequency Analysis of Potential Field 

Chapter 2: 

Data •••••.••.•••••••••.•••••••••••..•.•.. 35 

Spectral Form of the Inverse 
Potential Problsm •••••••••••••••••• 36 

Potential Field Filtering •••••••••• 37 

Description and Design of Two-dimensional 
Potential Field Filters •••••••••••••••••• 41 



TABLE OF CONTENTS (cont'd) 

2-1 Cbaracteristics of Some Potential 
Field Operators •••••••••••••••••••••••••• Page 41 

Wavelength or Boxcar Filter •••••••• 41 

The Second Vertical Derivative ••••• 44 

Continuation Operators ••••••••••••• 46 

2-2 Filter Representation and Design ••••••••• 50 

Operators for Discrete Data •••••••• 50 

Analytical Design Methods •••••••••• 54 

Transform Design Methods ••••••••••• 66 

Practical Refinements in Operator 
Design •••••••••••••••••••.••••••••• 73 

2-3 Description and Assessment of Some 
Proposed Operators ••••••••••••••••••••••• 76 

Wavelength Filters ••••••••••••••••• 78 

The Second Vertical Derivative ••••• 86 

Continuation Operators ••••••••••••• 90 

Chapter 3: Application of Filters to Potential 
Field Data ••••••••••••••••••••••••••••••• 101 

3-1 Investigation of the Roger's Far.m 
Sulphide Zone - St. Stephen, 
New Bruns~ck •••••••••••••••••••••••••••• 101 

Local Geology •••••••••••••••••••••• 102 

Geopqyslcal Surveys •••••••••••••••• 103 



3-2 

Chapter 4: 

TABLE OF CONTENTS (cont'd) 

Filtering the Roger's Farm Potentia1 
Field Data and Discussion of Results • • • • • Page 105 

Gravity Maps ••••••••••••••••••••••• 105 

Magnetic Maps •••••••••••••••••••••• 108 

Discussion and Conclusions ••••••••••••••• 120 

Appendix • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 123 

Bibliograp~ •••••••••••••••••••••••••••••••••••••••••• 128 



Figure 

1-1 

1-2 

1-3 

1-4 

1-5 

2-1 

2-2 

2-4 

2-5 

2-6 

2-7 

1 

LIST OF ILLUSTRATIONS 

Specifying an Element of Mass Distribution ••••• 

The Equivalent Stratum ••••••••••••••••••••••••• 

The Convolution Process •••••••••••••••••••••••• 

The Discrete Samp1ing of a Band-1imited 
.Fu.n.ction •••••••.••••••••••••••••••••••••••••••• 

Truncation and Sampling of a Semi-infinite 
Waveform ••••••••••••••••••••••••••••••••••••••• 

Ideal Wavelength Filters ••••••••••••••••••••••• 

Theoretical Frequency Response of the 
Second Vertical Derivative ••••••••••••••••••••• 

Theoretica1 Frequency Response of 
Upward Continuation •••••••••••••••••••••••••••• 

Theoretical Frequency Response of 
Dow.nward Continuation •••••••••••••••••••••••••• 

Inversion of Wavelength Filter ••••••••••••••••• 

Second Vertical Derivative Operator by the 
Hankel Transform Method •••••••••••••••••••••••• 

Center Point, Single Ring Residual Operator • • • • 

2-8 Wave1ength Filter - 0.4 Cycle / D.I. 

Page 

13 

17 

27 

31 

34 

42 

42 

48 

49 

56 

68 

77 

Low-pass •••.•.•••••.•.•••..••••••.•••.••••••••• 79 

2-9 Wave1ength Fi1ter - 0.2 Cycle / D.I. 
Low-pass ••••••••••••••••••••••••••••••••••••••• 80 

2-10 WavelengthFilter - 0.075 Cycle / D.I. 
LOll-pass ••••••••••••••••••••••••••••••••••••••• 81 

2-11 Radial Response of Wave1ength Fi1ters 

2-12 Radial Response of Inverse Wave1ength 
F11ters and Center Point, Single Ring 

• • • • • • • • • • 82 

Operator ••••••••••••••••••••••••••••••••••••••• 82 

. 2-13 Inverse Wavelength Fi1ter - 0.20 Cycle / D.I • 
High-pass .•...•..••...•..........•••..••.••.... 



• 

2 

LIST OF ILLUSTRATIONS (conttd) 

Figure Page 

2-14 Inverse Wavelength Filter - 0.075 Cycle / D.I. 
85 

87 

High-pass •••..•.••..••••.....•..•.•...........• 

2-15 Derived Second Vertical Derivative Operator • • • • 

2-16 Radial Response of the Derived Second 
Vertical Derivative Operator ••••••••••••••••••• 88 

2-17 Amplitude Response of Henderson and 
Zietzt (1949) Second Vertical Derivative 
Operator ••••••••••••••••••••••••••••••••••••••• 89 

2-18 Amplitude Response of Rosenbach's (1953) 
Second Vertical Deri vati ve Operator •••••••••••• 91 

2-19 Derived Upward Continuation Operator 
for a Height of One Grid Unit •••••••••••••••••• 92 

2-20 Derived Upward Continuation Operator 
93 for a Height of Two Grid Units ••••••••••••••••• 

2-21 Amplitude Response of Peters' (1949) 

2-22 

2-23 

2-24 

3-1 

3-2 

~-3 .' 

3-4 

Upward Continuation Operator for a 
Height of One Grid Unit •••••••••••••••••••••••• 95 

Derived Downward Continuation Operator 
for a Depth of One Grid Unit ••••••••••••••••••• 97 

Amplitude Response of Henderson's (1960) 
Downward Continuation Operator for a 
Depth of One Grid Unit ••••••••••••••••••••••••• 98 

Amplitude Response of Grant and West's (1967) 
Downward Continuation Operator for a Depth 
of One Grid Unit ••••••••••••••••••••••••••••••• 99 

The Roger's Farm Sulphide Zone ••••••••••••••••• 109 

Bouguer Gravit y Contours - Roger's 
Farm Zone •.•••••••••••••••••••..•..••••.••.•••• 110 

Second Vertical Derivative Map -
Roger's Farm Gravit y Data •••••••••••••••••••••• 111 

Residual Map (0.075 Cycle / D.I. Cut-off) -
Roger's Farm Gravit y Data •••••••••••••••••••••• 112 



e 

Figure 

3-5 

3-6 

3 

LIST OF ILLUSTRATIONS (cont l d) 

Dow.n~rd Continuation Map for a Depth 
of 100 Feet - Roger l s Farm Gravit y Data •••••••• 

Magnetic Contours - Roger's Farm Zone • • • • • • • • • • 

Page 

113 

114 

3-7 Noise Filtered Magnetic Data (0.4 
Cycle / D.I. Cut-off) - Roger's 
Fax-m.. Zone •••••••••••••••••••••••••••••••••••••• 115 

3-8 Upward Continuation Map for a Height 
of 100 Feet - Roger's Farm Magnetic Data • • • • • • • 116 

Upward Continuation Map for a Height 
of 200 Feet - Roger's Farm Magnetic Data 

3-9 
• • • • • • • 117 

.' 



e 

4 

LIST OF TABLES 

Table 

1 Space and Spectral Properties of Some 
Potential Field Operators •••••••••••••••••••••• 

Appendix 

A-l Peters" (1949) Upward Continuation 
Coefficients for a Height of One 

Page 

51 

Grld Uni t ....••...•........•...•............... 125 

A-2 Peters' (1949) Downward Continuation 
Coefficients for a Distance of One 
Grld Unit...................................... 125 

A-3 Trejo's (1953) Downward Continuation 
Coefficients for a Distance of One 
Grid Uni t ...................................... 126 

A-4 Henderson's (1960) Downward Continuation 
Coefficients for a Distance of One Grid Unit ••• 126 

A-5 Grant and West's (1967) Downward 
Continuation Coefficients for a 
Distance of One Grid Unit •••••••••••••••••••••• 127 

A-6 Henderson and Zietz' (1949) Second 
Vertical Deri vati ve Coefficients ••••••••••••••• 127 

A-7 Rosenbach's (1953) Second Vertical 
Derivative Coefficients •••••••••••••••••••••••• 127 



5 

ACKNOWJ~EDGEMENT 

l vould like to express my appreciation to Professor 

W.M. Telford of the Department of Mining Engineering and 

Applied Geophysics, McGtll University, for his encouragement 

and guidance throughout the progress of this work. As thesis 

supervisor, Dr. Telford made many helpful suggestions regard­

lng the form and content of the thesis, and provided geolog­

lcal and geophysical data over the Atlantic Nickel Property 

near St. Stephen, New Brunswick. 

The author has spent the past two summers in Calgary, 

Alberta, where he was employed as a summer student by Chevron 

Standard Limited. During this association the author was 

accorded every opportunity to learn from the experience of 

company geophysicists. l would like to extend my thanks to 

these geophysicists, particularly to Mr. R.R. Clawson who 

originally suggested the topic of potential field filtering. 

l am very grateful, also, to Professor c.e. Ku whose 

informative discussions on topics of frequency analysis and 

sampling theory helped to clarify several important concepts. 



6 

INTRODUCTION 

The gravit y and magnetic methods of applied geophysics 

involve the mapping and subsequent Interpretation of potential 

field variations over the earth's surface. These variations 

or anomalies of the earth's main potential fields are due to 

local changes in density and magnetic properties within the 

earth's upper crust, and May reflect a wide va ri et y of .geolog­

ical features. The sampling and analysis of potential field 

anomalies are of particular interest ln exploration geophysics, 

since mineraI deposits and related geological trends are often 

assoclated with denslty or magnetic susceptibility contrasts. 

Although a particular gravit y or magnetic anomaly can­

not be traced back to_ a unique source, its amplitude, shape 

and areal extent help to 11mlt the range of possibilities. 

Large-scale structural or lithological changes occurring in 

the deep geological section are usually accompanied by rather 

significant density and magnetic susceptlbllity contrasts. The 

resulting anomalous expressions are characterized by relatively 

large amplitude, low frequency variations of the surface field 

intensities. Because the effects of these deep features may 

extend over a considerable surface area they are referred to 

as regional components of the anomalous field. The anomalies 

of shallower sources, on the other hand, tend to be of low to 

moderate amplitude, and more locallzed in extent. They are 

referred to as the higher frequency or residual components of 

the field distortion. The anomalous gravlty and magnetic fields 



7 

observe,d at the surface of the earth can therefore be describ­

ed as a superposition of field effects originating from a sub­

surface distribution of sources. In interpreting potential 

field data, the geophysicist attempts to separate and explain 

the various components of the observed field and reconstruct 

geologically significant features. Separating the components 

of the anomalous field is an important part of the interpreta­

tion and will be a factor in the ultimate success of the survey. 

The problem of anomaly discrimination can be convenient­

ly approached from the point of view of frequency analysis. 

The variation of a potential field over the surface of the 

earth shows phase and amplitude properties analogous to those 

of electrical waveforms. The anomalous surface variation of the 

gravit y and magnetic fields May therefore be interpreted as.a 

two-dimensional waveform arising from the superposition of 

various wavelength components. Each subsurface source contrib­

utes its own spectrum of frequencies to the overall frequency 

spectrum. Consistent with this outlook, interpretational aids 

such as regional-residual separation, vertical derivative and 

continuation methods can be viewed as filtering operations. 

The adaptation of frequency analysis and information theory 

to the design of potential field operators provides several 

processing advantages as well as valuable insight into the 

problems of interpretation. 

The primary purpose of this thesis is to present methods 

for the derivation and evaluation of two-dimensional potential 

field filters. Emphasis will be placed on the waveform char-
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acteristics of potential field data, and ample background will 

be provided in the concepts of frequency analysis and sampling 

theory. Several operators have been derived to supplement the 

discussion, and some of these ~ll be applied ta actual grav­

ity and magnetic data. 

The thesis has been divided into four chapters. In the 

first chapter, relevant topics in potential field theory, 

frequency analysis, and discrete sampling will be covered, 

with particular reference to gravit y and magnetic surveys. 

Chapter two will be concerned with the derivation and assess­

ment of digital operators used as two-dimensional potential 

field filters. New operators will be derived and compared with 

those of previous authors. The third chapter will show how 

operators are applied to gravit y and magnetic data in an attempt 

to enhance or subdue certain anomalous features of a potential 

field wavefor.m. A number of operators derived in this thesis 

will be applied to gravit y and magnetic data obtained over the 

Roger's Farm sulphide zone near St. Stephen, New Brunswick. 

In the final chapter, the role of operators in gravit y and mag­

netic interpretation will be discussed and a number of conclu­

sions dra'WIl. 
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Cbapter 1: 

POTENTIAL FIELDS AND FILTER THEORY 

1-1 Potential Field Surveys and Related Theory 

Gravit y and Magnetic Surveys 

The earth, like aIl concentrations of mass, bas a gravita­

tional field which attracts other bodies. The force of attrac­

tion per unit mass particle is proportional to the earth's own 

mass, and inversely proportional to the square of the distance 

between the mass centers of the earth and unit particle. The 

gravitational acceleration at the earth's surface varies from 

about 978.0 cm/secz at the equator to 983.3 cm/secz at the 

poles. This latitudinal variation is caused by two partially 

offsetting effects directly related to the earth's rotation: 

the decrease in the vertical component of centrifugaI force 

toward the poles, and the concentration of terrestrial mass 

about the equator. The gravit y field is also disturbed locally 

by density changes within the earth's crust. Geological informa­

tion contained in these localized, high frequency fluctuations 

can be extracted from the observed gravit y field variation 

over the earth's surface. 

A gravit y measurement taken at a particular surface 

point samples the change in total gravitational field with 

respect to a survey base station. The standard unit of meas­

urement is the milligal, equivalent to a gravitational accelera­

tion of 1 X 10-' cm/ secz • Gravi ty anomali es of interest in 
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geophysical exploration can be as small as 0.1 milligal and 

seldom attain magnitudes in excess of 5.0 milligals. Gravi­

meters employed in geophysical surveys can detect differences 

in gravitational acceleration of the order of one part in 108 

(i. e. ± 0.01 milligal). 

Before the data can yield intelligible geological informa­

tion, a number of corrections must be applied in order to 

el1minate latitude, elevation, terrain,tidal,and instrument 

drift effects; since these also cause variations in the apparent 

gravi ty field. 

The earth's natural magnetic field is the other predom­

inant potential field of interest in geophysics. It can be 

approximated by a magnetic dipo1e inclined about 11 degrees 

to the earth's rotational axis and slightly offset from the 

earth's center. The orientation and magnitude of the total 

field vector varies from horizontal at 0.35 oersteds in the 

equatorial regions, to vertical at 0.65 oersteds near the 

geomagnetic ~oles. 

Most rock types in the crust show some degree of mag­

netic susceptibility due to the presence of magnetic minerals, 

and will reinforce the earth's main field by induction. Various 

forms of remanent magnetization May accompany the normally 

induced component. These intrinsic or locked-in fields result 

from environmental conditions at the time of Mineral crystal­

lization, or else have been induced by lightning discharges. 

The widespread and often erratic distribution of magnetic min­

erals in crustal rocks contributes large amplitude, high fre-
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quency fluctuations to the earth's main magnetic field. Geolog­

ical information concerning composition, structure, and origin 

of crustal rocks is contained in such anomalous expressions. 

However, the presence of unknown remanent components, and the 

varying inclination of the earth's main field vector make 

geological Interpretation somewhat difficult • 

. Measurement of the magnetic field variation over the 

earth's surface is accomplished ~th the aid of a magnetometer. 

Surface surveys usually select the vertical direction as ref­

ence, and measure the variation in vertical intensity over the 

ground. Aeromagnetic surveys, on the other band, generally 

measure the total magnetic field. The unit of measurement in 

magnetic surveys is the gamma ( 10-7 oersteds ). Instrument 

sensitivity is in the neighborhood of±5 gammas. The majority 

of magnetic anomalies lie in the range of 0.1 to 10.0 percent 

of the earth's field, but values over 100 percent have been 

observed. 

Potentlal Field Equa:tlC>.:rl~ __ . __ ._. _________________ _ 

The interaction of gravitational mass, expressed by 

Newton's Law of Gravitation, is one example of a force field 

obeying the inverse square law. Similar relationships hold 

for electric and magnetic force fields, and the terms "elec-

trical mass" and "magnetic massIf can be used to describe the 

appropriate source type. The general inverse square law takes 

the form: 

F 
( 1-} ) 
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where F is the force of interaction between two mass particles, 

»7, and "?t, separated by a distance f', and j2is a constant deter­

mined by the type of source and the units employed. The force 

;-acts along the line joining the two particles. 

Given a particular density distribution of source mater­

ial, the resulting gravitational force of attraction per unit 

mass, at a point of observation p{x,y,z), may be expressed as 

a volume integral: 

(1-2) 

"'There G is the gravi tational constant, ,Pt~fJ f) is the densi ty 

function of the mass distribution, and V its volume; and where 

the position vectors r and ~ locate the mass element dm and the 

point of observation, respectively (see Figure l-la, pg 13). 

The potential field associated with aIl such distribu­

tions of mass bears the following relationship to the force 

field: 

Ftr) = -V U (r) (i-J) 

JI GfD(f;,) dl/' where ut;-) = - r 
v 11--10/ 

is, in this case, 

the gravitational potential. A potential field is a single-

valued, scalar function of position, continuous everywhere 

outside the volume of source distribution. 

The forces associated with the interaction of gravita­

tional mass are attractive and are taken in the positive sense. 
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Electric and magnetic mass distributions, on the other band, 

contain both attracting and repe11ing elements so that negative 

and positive partic1es must be defined. The term "particles" 

used here is generally replaced by "charges" when dealing with 

electric fields and "poles" when concerned w1 th magnetic fields. 

In the discussion to follow, only magnetic and gravit y fields 

will be deal t w1 th since they are of primary concern in this 

thesis. 

In presenting the magnetic field equivalents of equations 

1-2 and 1-3, the doublet or dipolar characteristic of magnetic 

mass must be introduced. The single magnetic pole is a mathemat­

ical abstraction and does not exist in nature. An element of 

magnetic mass can be visualized as a dipole of pole separation 

dl and strength j,i (as represented in Figure l-lb). The magnetic 

field intensity at a point P, due to a dipole a distance r 

away, can be approximated by: 

.->. 

1-1 ( ;.. ) = 2?7( cos e ~ -1-
-"" 

?'? S /N e f) 

11-/4- /f-/~ 

where the dipole length dl is very much smaller than the dis­

tance ft , 7rz = pdj is the dipole moment, t is the vector from 

the center of the dipole to the point P, B is the angle between 
~ ~ 

the dipole axis and the vector r , and e is the unit vector 

measured in the direction of increasing e . The magnetic force 

field about the dipole May also be written in terms of a poten­

tial field: 

Ho-) = -VAO-) ( 1-5) 
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where the magnetostatic potential is given b,y: 

A (r) = -??? . V ( ~ ) 
Returning again to Figure l-la, page 13, we can imagine 

each element of mass d'nt to be in the form of a magnetic dipole. 

If it is assumed that the magnetic mass contained within the 

volume V has a continuously distributed magnetic moment per 

unit volume, ft/fh), the total potential at P can be expressed 

as a volume Integral: 

A (J-) = -JM(J-o). V 1 dv 
Ir-h/ 

(/-6) 

y 

Substituting this expression into equation 1-5, and assuming 

a constant direction of magnetization« , the resul tant magnetic 

field strength at point P becomes: 

H - V J J 1 d1f' 
(1-) - dCK 14(;..) If--Iol ( /-7) 

v 
which is the magnetic equivalent of equation 1-2. 

The partial differential equations summarizing the prop-

erties of potential fields can be derived by applying the 

Divergence theorem to the system in Figure 1-1a. If' is the 

potential function resulting from the distribution of mass in 

the volume V , we may write, according to the Divergence the-

orem: 

( /-8) 

where V, is the volume bounded by the surfaces Sand S; in 

Figure l-la. Since the volmne ~ is devoid of source material, 
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the surface integrals on the right si de of equation 1-8 are, 

by Gauss' theorem, equal in magnitude but of opposite sign. 

Equation 1-8 therefore reduces to Laplace's equation: 

Vz~ = 0 ( 1 - 9) 

At points exter~~l to the source distribution, gravit y and 

magnetic potential fields obey Laplacefs equation and are 

termed harmonic. Within the volume of mass distribution the 

potential functions satisfy Poisson's equations: 

V 2 UOo) = 4TTG,P(t-ô) 

for the gravit y field, and 

V 2 A(I-;,) = 47TV·Mth) 

(1-IOa) 

(1-IOb) 

for the magnetostatic. potential, where ;>(10) and MIlO) are the 

density function and magnetic moment, respectively, at the 

particular point of observation. Equations 1-9 and 1-10 are 

referred to as the field equations of potential theory and 

are fundamental to the development of related topics. 

The Equivalent Stratum 

The equivalent stratum concept involves the replacement 

of a three-dimensional source distribution by a density coat­

ing over a level surface. The derivation given by Grant and 

West (1965, article 8-3) is summarized here for convenience. 

In Figure 1-2, page 17, a horizontal surface, z=O, of density 

distribution 6fr,fj), subtends a point of observation p(O,O,-z). 

The gravitational potential at point P, due to the density 

layer May be written as: 
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FIG.1-2: THE EQUIVALENT STRATUM 

œ 2'" 
Up = - Gjr ( 6(1;&) J-dOdl­

) (f:/' + ;:.2) '/2. o 0 P 

and using equation 1-3, page 12, the corresponding gravitational 

force at point Pis: 

(/-11) 

The above equation is valid at aIl points above the plane z = o. 
As z approaches zero, however, the gravit y effect near Q becomes 

singular. The singularity can be isolated by surrounding Q with 

a small circle of radius t 1 and rewriting equation 1-11 in the 

form: 
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( /-/2) 

The second integral on the right is entirely free from singular­

i ti'ès and vanishes in the limi t. The remaining integral can be 

evaluated, assuming tbat t is small enough to justify using 

a constant density function ~thin the singularity circle. Then 

equation 1-12 becomes: 

iJ. Sa = 21TG 6(~) 

If the position of Q in the plane, z = 0, bas not been restricted, 

a more general form May be written: 

(/-/3) 

To an observer making a gravit y measurement on or above the 

plane z =0, the unkno-wn distribution of mass giving rise to 

the gravi ty effect, A grx,!lJ, bas been replaced by an equi valent 

stratum of densi ty function ô(x,yJ. , 
The equivalent stratum of magnetic mass is associated, 

not ~th the force field, but ~th the magnetic potential: 

A (Xl !/) = 2 rr.J.. IIi!; h (-x, yJ 
where 1 is the magnetic susceptibility of a homogeneous, mag-

netic surface, h(;(I!/) is the topographical variation of this 

surface over the plane z = 0, and Hx is the vertical component 

of the main field vector. 

The equivalent stratum concept is a useful means of vis­

ualizing density distributions below the surface plane of a 
• 

two-dimensional potential field survey. This is especially true 
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when Interpretation methods involve the surface integration of 

the observed data. 

Continuation of Potential Fields 

Potential field data obtained on a plane z = 0, above a 

three-dimentional mass distribution, can be extrapolated or 

continued upward to any des1red height, provided that the 

region of continuation is harmonie. The vertical direction 

implied in the process is in keeping with the reference direc­

tion usually chosen in such surveys, and in this respect, it is 

the variation of the vertical component of the field which is 

involved in continuation. 

In the diagram below, the underlying distribution has 

---
J K 

============~==========~I~ 
~~ 

been replaced by an equivalent stratum on the plane z = O. The 

gravit y effect at the point p{x,y,-z) due to the surface density 

variation 6(E,1() 15: 

trJ 

A jp == G1l-6~'t dN'l 
-Cl) 



20 

where 

According to equation 1-13, the density variation of the equiv­

alent stratum is: 
6" (t; 7() = LJ ~ (t; n) 

211B 
therefore, the total gravit y effect at P becomes: 

(/-/4,) 

where L1f1(t;n.) is the sampled gravitational field on the plane 

z=O. Equation 1-14 represents the up'W'ard continuation of the 

gravi tational field from the plane z = 0 to the point P. The 

equivalent expression for the upward continuation of magnetic 

fields is: 

( I-/f) 

where the symbol ~prefers to the vertical component of the 

magnetic field intensity. Alternate and more rigorous deriva­

tions of the continuation integral are given by Grant and West 

(1965, chap. 8) and Kellogg (1929, chap. 5). 

DO'Wrlward continuation of the field below the plane z = 0 

is also possible, provided the region of continuation is harmon­

ie. Where this process involves projection of the observed 

field belo'W' the surface of the ground, the harmonie restric­

tion becomes difficult to ensure. In practice, the effect of 

intervening mass distributions must be eliminated, or at least 

attenuated, before realistic results can be obtained. 

The value of continuation methods in the interpretation 
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of potential field data lies in the discrimination afforded 

between shallow and deep anomalous sources. Shallow anomalies, 

responsible for higher frequency variations in the observed 

field, are attenuated ~th respect to deeper sources during 

the process of upward continuation. In downward continuation 

the reverse is true, as higher frequency components become 

more apparent against the lower frequency, deeper effects. The 

connection between the continuation Integral, equation 1-14, 

and frequency analysis of potential field data will be discus­

sed in section 1-3 of this chapter. 

1-2 Fundamentals of Frequency Analysis 

The Fourier Transform 

A periodic function f (tJ, which is sectionally continuous 

vith only a finite number of discontinuities, can be represented 

by an Infinite series of sines and cosines. This Fourier series 

takes the form: 

lC e inwot 
n (/-/6) 

where the constants Grn are given by: 

'h 
a:~ = f! fm e-

inw
•
i 

dl: 

-% 
in which T is the period of f(I:) and Wo = 21r/r is the 

fundamental frequency. 

Very often the functions to be analysed are non-periodic 

and require a more generalized form of the above expression. 
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Substituting for «~ in equation 1-16 and letting the period T 

approach infinity: 

e i.zffwt dw (/-/7) 

where lim Wo = 2 rr dw and /im J1 Cl.Jo = 27rûJ , w1 th w , the 
T-aJ T~()() 

frequency variable, expressed in cycles / unit 'of t . Equation 

1-17 is a statement of Fourier's Integral Theorem, and relates 

either the time domain or the space domain to its frequency 

spectrum. The quantity in brackets is called the Fourier trans­

form of the function J(t), and describes the frequency domain 

of the waveform. The Fourier Integral ls referred to as the 

inverse Fourier transform, being a reciprocal operation of the 

former. The transform pair may be written as: 

Fourier 
transform: 

inverse Fourier 
transform: 

()() 

F(w) =jj(t)e-iûrw-édi (1-/8) 

-00 

fP 

f (1:) = J Frw) e i .:z
1fwt dw ( /-/9) 

-(1) 

where Ffw) is the Fourier transform of the waveform Irt). 
Unless f (t) is an even flIDction, the Fourier transform will 

consist of both real and imaginary components: 

F(w) = R(w) + jX(w) = Arw) e jpf(w) 

where A (w) is the amplitude spectrum of Irt) , and }b(w) is 

the phase spectrum. These transforms are a well-known and 

convenient means of analyzing aperiodic waveforms in electrical 
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engineering. The only serious restrictions on ;fIt) are that 

i ts integral from t = - 00 to (JO exists, and that any discontinu­

ities in the function are fini te. 

Fourier transform techniques are also used in geophysical 

interpretation, particularly in the analysis of sei smic data, 

and to a lesser extent, in the treatment of potential field 

data. When an acoustic energy pulse is directed into the earth 

during a seismic survey, a portion of the energy is reflected 

back to the surface as a result of density and velocity changes 

in the geological section. A surface array of geophones ~ll 

detect the arrival of reflected energy and respond by producing 

a set of electrical waveforms. When amplified and directed 

through an approprlate set of filters, each signal or selsmic 

trace ~ll yield geological information assoclated with the 

density and velocity variations. Frequency analysls of seismic 

records, using the Fourier transform, is normally the first 

step in setting design criteria for seis.mic filters. 

The filtering and frequency analysis of two-dimenslonal 

potential field data, the primary concern of this thesis, ~ll 

require a two-dimensional version of the Fourier and inverse 

Fourier transforms: 

00 

F fu, vI = j / !rr,yJ e -iUf (U" r v,Y1 dxd!l 

-Q? 

(l) 

f (r, yi = j / F ru, vI ejZ]ffUx+ v!I) dudv 

-Q? 

(1-20) 

(1 -21) 
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where u and v are the frequenc1es along the x and y cartes1an 

axes. In the event that f ("I!I) 1s circularly symmetric about 

the origin, the above equations become: 
et') 

Fru, vJ '" -IIJ; r;(;,yJ COS(.tlTu"J eosr:Z7TvyJ d"c!y (/-22) 

() 

Q'} 

/ (:t,y) = 4// ~ (u, v) t0.5(':17,.UXJ i!O.5r.z7ïvyJ dudv (1-2)) 

o 

Alternatively, we May introduce polar co-ordinates in equation 

1-20: 

x = ;- cos B , !f = ;- s ,,~{) 

and obtain: 
Of) ;z.1I' 

Fr!,J = 1//(0) e-iZ7TI'I-(coSr9-PI) f- dodl-

() 0 

Using the zero-order Bessel function of first kind in the for.m: 
:L'Ir 

J.
o 

(=) - 1 J -;i!cos,B 
- 2,7r e d,B 

o 

we May wr1te, finally: 
d) 

F r,P) = -Z1T" Jlooi J. (:Zl1jJF-) 1- dl- ( /-24-) 

() 

Similar treatment of equation 1-21 yields: 

(() 

f (I-J =:1.71"' J Fr,P) .;; (.21T,PI-),P d!, 
() 
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where r is the radial distance measured from the origin and f 

is the frequency in that direction. Equations 1-24 and 1-25 

are known as the Hankel and inverse Hankel transforms of zero 

order and exist only if f (",fi) = fO-) is a circularly symmetric 

ftmction. 

The Convolution Integral and Filtering 

The well established concepts of fil ter theory, employed 

in the analysis of electrical waveforms, are directly applic­

able to the filtering of seismic and potential field data. The 

fundamental relation Inherent in all filtering operations is 

the convolution Integral: 
(JO 

1.(1:) =j~f'r) v,j(I:-r) dr ( /-26) 

-aJ 

where i (,) is the input waveform and could represent an elec­

trical signal such as a seis.mic trace, Mlfi) is the weighting 

function or transfer function which operates on the data input, 

and fo (i) is the filter output. 

The significance of the convolution integral will be 

more clearly understood if a transformation is made to the 

frequency domaine Taking the Fourier transform of each side of 

equation 1-26: 
fD 

ffJ'! e-ù,,-wjt 
-dl 

co 

= JI [fi (r) Wrt-rl d~ e-i.z?rwrt-
r

) e-jz?rw-r dt 

-CD 

~ œ 

'" j W (t-7) e - Î21rw ft -7'~ ft- r) fi. (r) e -i.z1r"'dr 
-(1') _ co 
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that is: 
F. (w) = Y(w) • F. (w) 

o J (1 -2 7) 

where !irw), Y(w), and F) fW) are the Fourier transforms of 

the filter output, the weighting function, and the input wave­

form, respectively. Equation 1-27 shows that convolution in the 

time or space domain corresponds to multiplication in the fre­

quency domaine In the same way it may be shown that frequency 

domain convolution represents time or space domain multiplica-

tion. 

The convolution of an input waveform with a filter func­

tion is shown both graphically and schematically in Figure 1-3, 

page 27. The top diagrams (Figures l-3a to l-3c) show the 

actual manipulation involved during convolution. The weighting 

function Wft) ,is reversed and superimposed on the input wave­

form so that its ordinate, or zero point, coincides with a 
1 

particular position (= t '. In this way a correspondence is 

set up between the " 1 axis" of the input waveform and the "t 
axis" of the output. The product of the two functions is then 

integrated over all yalues of T and the resul ting value plot­

ted along the output axis at t ::: i /. This procedure is fol­

lowed for aIl values of t , giving the convolved output of 

Figure l-3c. The frequency domain diagrams, located below the 

corresponding time domain plots, show how the amplitude spec­

trum of the input waveform is modified. The phase spectrum, 

not shown here, bas also been altered. The transfer function 

W(t) is referred to as the impulse response of thefilter, 
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since convolution with a unit impulse as the input waveform 

gives: œ 

f. (f.) = f drr;J Wrf-7) cIr = W fi) 

where cf' ft) :: [ 0

: 

example of Figure 1-3, 

-00 

!;f] 1s the unit impulse. In the 

h/(i) may be considered the transfer 

function of a "smoothing filter", as high frequency components 

of i. (i) have been attenuated. Figure l-3d is a schema tic 

representation of a set of transform operations exactly equiv­

alent to the convolution process. 

In the filtering of electrical waveforms it is useful to 

think of the signal being directed through a stationary filter, 

since the output depends only on past and present values of the 

input. Filtering of space domain data, on the other hand, gen­

erally maltes use of all surrounding information, and a "running 

fil ter" concept, as adopted in the foregoing description, would 

seem to be more appropriate. These two outlooks are exactly 

equivalent mathematically, since convolution is commutative; 

that is: œ ttJ 

jhr-rJ W({;-7) d7 
-(}() 

= jwr1")j rt-7) d7 

_Of) 

or where the asterisk 

denotes convolution. 

The filtering of gridded potential field data, to be dealt 

with at some length in this thesis, will require the use of a 
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two-dimensional form of the convolution Integral: 
ttJ 

f. (x,yl = //.1; (é,,?) W{x-f, :;->() dfd'l 

-œ 

(/-28) 

Autocorrelatlon and cross-correlation are two concepts 

closely related to the convolution Integral and of considerable 

importance in spectral analysis. The autocorrelation functlon: 

d) 

j (i) ::: !/tïJ!(Î-t} dT 
AC 

( /-29) 

-0') 

is similar to the convolution of a function with itself, except 

that there is no reversaI before multiplication. In the time 

and space domains the autocorrelation of a real waveform is an 

even function, with the peak value occurring at the point t= o. 
The frequency response of autocorrelation is the power spectrum 

of the input waveform. The cross-correlation function, glven b,y: 

()') 

/cc ft) = / Ir.,.) J (r- t) dr (/- )0) 

-00 

is used to measure the degree of correlation between two wave-

forms f (t) and gft). If the cross-correlation is characterized 

by a well-defined central peak at t = t /, the two functions 

are said to exhibit a high correlation at the point 1= t/ . 
Autocorrelation and cross-correlation are used extensively in 

the processing of sei smic data, for such purposes as design of 

digital filters, power spectrum analyses, and trace correlation. 

Treatment of these subjects is given b,y Wadsworth, Robinson et 

AI.(1953) and Robinson and Treitel (1967). Cross-correlation 
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techniques have been applied to gravit y and magnetic data to 

help bring out linear trends in geological structure. 

Discrete Sampling of Continuous Waveforms 

Up to this point the discussion has centered around spec­

trum analysis, as related to continuous or partially continuous 

functions. In many instances, observed functions are sampled 

at discrete points so that numerical methods of analysis might 

be employed. The use of digital recording in a wide variety of 

~on1toring systems is a common example of bigh density, discrete 

sampling. Potential field surveys in geophysics are conducted 

by sampling the continuous field at discrete station points. 

Because of the importance of discrete sampling in Many forms of 

analysis, its effects on the original function are of interest. 

If a band-limi ted function 1ft ) is sampled at 11 discrete, 

equally spaced points ln ' the Sampling Theorem states that 

a unique and exact reconstruction of f(t) can be obtained from 

ln ' provided the sample interval is less than or equal to 

1/2 (Je. The symbol Wc denotes the frequency above which the 

amplitude spectrum of the band-limited function is zero. FiSure 

l-4a, page 31, shows a band-limited function and its amplitude 

spectrum. Discrete sampling of a function !(t) is equivalent 

to multiplying the waveform by an infin1te sequence of equally 

spaced unit impulses. The unit impulse sequence, shown in Fig­

ure l-4b is denoted by: 

(/J 

Z 1 (i- n ) 
12 =-tO r 
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and 1s referred to as the Replicating function. Its Fourier 

transform is a multiple of itself and may be written (Bracewell, 

1965): 

Consequently, when 1ft) is sampled, its frequency spectrurn Frw) 

1s convolved with an Infinite sequence of impulses of spacing 

7 , caus1ng replication of F((.Ù) at a period of l/w". The "fold­

ing frequency", Wf , is the highest frequency which can be 

detected wi th a particular sample spacing ÂS , and satisfies 

the following condition: 
j 

2AS 

The folding point wf is also knO'WIl as the Nyquist frequency. 

It can be seen in Figures 1-4c and 1-4d that if Wc, the band 

11mit of the function, is less than or equal to ~f the fre­

quency response of I(t) can be extracted from the periodic 

spectrum. If the sampling density is reduced past this limit, 

as in Figure 1-4e, the periodic reproductions of Frtu} overlap, 

causing distortion in the vicinity of the fol ding frequency. 

This is simply a restatement of the Sampling Theorem, in that 

the original spectrum of a sampled, band-limited function can 

be recovered if the sample density is adequate. The recovery 

process 1s called interpolation and cons1sts of convolving the 

sample sequence in wi th the "sine" function: 

f ( i) =.In ~ SI h. C (Z W:I t) 

where SIne (-x:.) = SIn (7ne) 

7T"X. 
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Discrete sampling of continuous, semi-infinite functions, 

such as in digital wave~ormanalysis or potential field surveys, 

must be restricted to a practical sample size. The abrupt ter.mina­

tion or chopping-off of the function at the samp1e boundaries 

contributes high frequency, low amplitude components to the data. 

The presence of noise also contributes to the upper portion of 

the spectrum. For these reasons, such functions cannot generall7 

be considered "band 11mited" when sampled. Even with relatively 

dense sampling, a substantial portion of high frequency noise 

m~ exist above the folding frequency, and thus, fold back on 

the lover spectrum. This distortion of the Iower spectrum by 

frequency components above the folding point is called a1iasing, 

and can be a serious'problem in the samp1ing of noisy waveforms. 

Selection of the sampling interval or station spacing in 

gravity and magnetic surveys is based largely on the size of 

target anomalies expected. If the frequency content of an anom­

aly is in the vicinity of the Nyquist or folding point, a1iased 

noise could partial1y obscure the target. In such cases it might 

be advisable to increase the sample density. Figure 1-5, page 34, 

shovs the effects of discrete samp1ing and truncation of a semi­

Infinite, continuous waveform. 
-

The discrete samp1ing of two-dimensional waveforms is a 

direct extension of the one-dimensional case. The Rep1icating 

f'unction over the x-y plane may be viewed as a "bed of nai1s", 

sampling over two-dimensional space. 

Additional treatment of discrete samp1ing may be found in 
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texts b.Y Bracewell (1965, chap. 10) and Papoulis (1962, chap. 3). 

1-3 Frequency Analysis of Potential Field Data 

Variation of the earth's gravit,y or magnetic field over 

a horizontal. survey plane has all the features of a continuous 

two-dimensional waveform. The total field can be visualized as 

a superposition of potential effects from individual mass 

elements. Sources Just below the plane cause high frequency, 

local distortion, while deeper mass concentrations contribute 

most of the low frequency variation. Since the purpose of 

gravity and magnetic surveys in applied geop~sics is to extract 

geological information from these potential field variations, 

frequency analysis of the data should prove useful. 

Actually, the adoption of a frequency analysis approach 

to gravit,y and magnetic interpretation has a number of distinct 

advantages: 

1) The size, shape, and location of potential 

field anomalies are waveform properties which can be convenient­

ly represented in terms of spectral amplitude and phase response. 

The variation in anomaly frequency content provides a basis for 

source discrimination. 

2) The weIl established body of Information 

theory, perfected and applied in electrical engineering and 

sei smic processing, can be adapted to two-dimensional potential 

field data. 

3) Frequency response is an exceedingly useful 
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criterion for the design and analysis of two-dimensional grid­

ded operators. 

4) Spectral analysis and filtering of discrete­

ly sampled data are weIl suited to digital processing techniques. 

Large quantities of data can therefore be handled in a relatively 

short time. 

5) Finally, the added ins~ght provided by 

another point of view is of great value in understanding the 

purpose and effects of various methods of data processing and 

interpretation. 

Spectral Form of the Inverse Potential Problem 

Separation of density or magnetic susceptibility varia­

tions on the basis of their potential field frequency expression 

is not a straightforward proposition. The most obvious reason~ 

common to many forms of spectral investigation, is the spectral 

overlap of source disturbances. In dealing with potential fields~ 

there is a more fundamental reason associated with the inverse 

potential problem. About any known distribution of mass there 

exists only one possible potential field. The inverse statement~ 

however, is not true, in that any number of source configura­

tions can be found to explain a certain potential expression. 

This inability to determine a unique source on the basis of 

observed potential field information is amply demonstrated in 

aIl phases of gravity and magnetic interpretation. The inverse 

potent~al problem, when reduced to simplest terms, means that 

effects of density (or magnetic susceptibility), depth and 
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shape of massive bodies cannot be separated simply by observing 

their gravit y (or magnetic) anomalies. A simple illustration 

is sufficient to show how the frequency spectrum is affected. 

Consider two anomalous masses of approximately the same volume 

and density contrast, one a shallow, flat-lying, blanket-like 

body; the other a spherical body of greater depth. The poten­

tial field spectrum of the shallow anomaly would be character­

ized by a considerable portion of low frequency component by 

virtue of its blanket-like shape. The spherical body would 

also contribute significant low frequency response because of 

its greater depth. Thus, even though the two bodies are vastly 

different structurally, their low frequency components may be 

virtually impossible to separate. 

Despite the ambiguity induced by the inverse potential 

problem and normal spectral overlap, a substantial degree of 

source discrimination is possible. High frequency distortion of 

a continuous potential field can result only from the presence 

of nearby sources, and it may be assumed, although with far 

less certainty, that low frequency distortion is more likely 

a result of distant masses. In applying these observations to 

discretely sampled potential field data, we must realize that 

sampling or station 'noise, coupled with the aliasing effect, 

contributes both high and low frequency distortion. 

Potential Field Filtering 

One of the first comments suggesting that certain proces­

sing techniques for gravity and magnetic data Were similar to 
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waveform filtering was made by Nettleton (1954). The paper 

discussed separation of shallow residual anomalies from deep 

regional features. Dean (1958) discussed the advantages of 

exploiting frequency analysis in gravity and magnetic interpreta­

tion and provided theoretical background. A table of possible 

potential field filters is given on page 113 of bis paper. 

Mesko (1965) considered frequency analysis as applied to grav­

ity Interpretation, while Darb,y and Davies (1967) presented 

methods for the analysis and design of two-dimensional filters. 

Examination of the frequency characteristics of previously 

published grid operators, as weIl as the design of new two­

dimensional operators was undertaken py Fuller (1967). 

Manipulation of gravity and magnetic data can take sev­

eral forms, depending on the complexity of the potential field 

waveform, the purpose of the investigation, and the quality of 

the data. Discrimination between relatively high frequency, 

shallow effects (residual), and the more gradational, deeper 

trends (regional) is generally termed regional-residual separa­

tion. This may be accompli shed graphically on contoured data 

or Qy the application of coefficient sets (refer to Nettleton, 

1954). In areas of poor residual definition superimposed over 

a complex or predominant regional, second vertical derivative 

or continuation methods might be used to amplify the higher 

frequency features. Techniques are also available for delinea­

tion of trends in the data which may reflect important geolog­

ical con troIs. These and other interpretational aids can be 
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considered filtering operations. To demonstrate this fact, 

consider the previously derived continuation integral, equa­

tion 1-14, page 20: 

0-/4 ) 

This relation can be expressed in the form of the convolution 

integral, equation 1-28, page 29: 
(l) 

LJg" = J fil:? ({, "1) • W( ~-(, y- '1) d{ d7( 

-œ 

where l1Jp' the upward continued gravi ty effect, is the fil ter 

output, t1gtt;1/) is the observed gravi ty data or input waveform, 

and 

is the fil ter weighting function. If the Fourier transform is 

taken for each side of equation 1-14, we obtain (refer to 

Grant and West, 1965, page 218): 
o:J 

o:J. rr; ( -i.z7rll.l(+ v'!) JI I!. 9" e -/271'1,,>< "'!I} drdy = e -Z7ri"dtJ2+~~) L1 J 1&;'1) e d,d'l. 

-(JJ 

or (/-)/ ) 

where F;p (0 v) and Fo (u;v) are the Fourier transforms of the 

upward continuation output and the input data, respectively, 

and ~ is the height of continuation. If we invert the process 

and seek to obtain the downward continued field IJj(t';"'!), the 
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corresponding transform relation obviously becomes: 

Fo (u~ v) = e 271:i! t' (/% + 1/% • Fup ru) V) ( /- '2) 

Equations 1-31 and 1-32 show that upward and downward 

continuation of potential fields are actually filtering opera­

tions, each exhibiting a definite frequency response: 

upward continuation : 

2.1"= 1'uz +V% 
dO'Wllward continuation: YD (V, V) = e 

( /- }J) 

The design of two-dimensional discrete filters will be 

the subject of Chapter 2. 



DESCRIPTION AND DESIGN OF 

TWO-DIMENSIONAL POTENTIAL FIELD FILTERS 

2-1 Characteristics of Some Potential Field Operators 

The use of potential field operators is not new to grav­

ity and magnetic interpretation. In the past, their derivation 

and application were confined to the space domain and computa­

tions were done b.Y band. Consequently, the filtering aspects of 

potential field modifications were either poorly understood or 

ignored altogether. In recent years, greater access to digital 

computers and increased awareness of the importance of spectral 

analysis in operator design have sUbstantially altered the 

approach. 

In this section, space and spectral properties of several 

important potential field operators will be described, and their 

significance to potential field data discussed. 

Wavelength or Boxcar Filter 

The wavelength filte~ in its various for.ms, may be consid­

ered analogous to standard electrical filters of the high-pass, 

low-pass, and band-pass types. The one-dimensional for.m of the 

continuous wavelength filter is the "sine" or interpolating 

function sho~ in Figure 2-la, page 42. Its amplitude spectrum 

shows a eut-off at 0.5 cycles/unit, where the "unit" is meas­

ured along the space domain axis. The two-dimensional extension 

of the sine function: 

Slnc(%) • slncfyJ = slnfffJC)· SIn (7r.!!) 

7T2 xy 
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does not exhibit circular symmetry in the frequency domain and 

therefore proves Inconvenient as a two-dimensional wavelength 

fi1ter. Zerf1ueh (1967) made use of this'cartesian form and 

found it necessary to app1y trial and error smoothing to approach 

circular symmetry. The author has found that the use of an atten­

uated Bessel tunction of first order and kind is a more useful 

approach, s1nce its Hankel transfor.m, and therefore frequency 

response, is: 
t t:'tJlt ,? L (J.) ~ 'It:LE$ / lIN'IT 

dJ 

27r J [ J2':1-;;' (27r1'1-)r-dr = ~ ;:-tJ~ ~=o5 
Il (2-1) 

0 Fo~ j/7 0.? /1 

1-'=0 

where r- is rad1al distance over t'WO-dimensional space, p 1s 

radial frequency, and ~ and J; represent the zero-order and 

first-order Bessel funGtions of first kind. The proof of rela­

tion 2-1 is given 1n Append1x Al, page /2). Figure 2-lb, page 42, 

shows a radial profile of the two-dimensiona1 wavelength operator 

and its frequency response. 

Because addition in the space domain is equivalent to addi-

tion in the frequency domain, i. e. 

FIJ.+fz} = F; (w) + ;:,; (w) 

where F denotes the Fourier transform, the conversion of the 

fundamental wave1ength or boxcar fil ter to band-pass and high­

pass versions is a simple process. The subtraction of two low­

pass filters of different eut-off frequencies, ~ and;02 , 

resul ts in a band-pass operator of band'W'idth ;;2 -'pl. A high­

pass fil ter can be obta1ned by subtracting the standard wave-



length or low-pass filter from a unit impulse cr , since the 

frequency response of the unit impulse is unity for aIl wave­

lengths. The versatility and design possibilities demonstrated 

by the standard wavelength fil ter will be of considerable value 

in two-dimensional potential field filtering. 

An obvious application of the wavelength fil ter is in 

regional-residual separation of gravit" and magnetic data. 

Its success in tbis role would depend on the degree of discrim­

ination between regional and residual spectrums. Where local 

conditions or sampling errors contribute a high noise level to 

the potential field, the flexibility of the wavelength fil ter 

allows derivation of a convenient smoothing function. Griffin 

(1949), Nettleton (1954), and others bave discussed the use 

of operators for regional removal from gr~vity and magnetic 

data. Except for the operators suggested b,y Zerflueh (1967) 

most are only po or approximations to the wavelength fil ter. 

With the present availability of digital computers, discrete 

versions of the continuous wavelength filter can be convolved 

with potential field data to give a more realistic output. 

The Second Vertical Derivative 

A strong gravity or magnetic regional trend may partially 

conceal or camouflage the high frequency residual information 

of shallower sources. Even though these shallow effects may 

not be obvious on a contoured map, vertical derivatives of the 

observed field will detect and amplify them with respect to the 

deeper features. Vertical derivative methods can therefore be 
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likened to high-gain, high-pass filters. 

The second vertical derivative is generally favored over 

the first and higher vertical derivatives for several reasons. 

It is a more convenient filter both in terms of derivation and 

the Interpretation of its output. Although quantitative evalua­

tion of derivative results is not practical in itself, the 

second vertical derivative output bears a strong resemblance 

to a residual map. A well-designed second derivative operator 

should be capable of amplifying Most of the useful high fre­

quency information without requiring the excessively large 

gains of higher orders. In addition, the amount of noise in­

duced b.1 the calculation process increases with derivative 

order, so that higher derivatives are Just as likely to obscure 

as enhance geological information. Odd order derivatives, like 

the first vertical derivative, bave been used to bring out 

gradient features of the gravity or magnetic field, but their 

results are difficult to Interprete 

If we assume that the gravity or magnetic force field 

f(ê,~), over a horizontal survey plane, is harmonie and there­

fore obeys Laplace's equation: 

then, the second vertical deri·vati ve of the waveform can be 

obtained dlrectly as: 

( 1-2) 



Taking the Fourier transfor.m of both sides of equation 2-2,we 

find: 

(2-;) 

where F{~ v) is the Fourier transfor.m of the potential field 

waveform f(~~). Obtaining the second vertical derivative is 

therefore equivalent to applying a fil ter of frequency response: 

Yru,v) = 4rr2 ru 2 r V
2

) 

Figure 2-2, page 42, shows the theoretical second derivative 

frequency response both in plan and profile. Only the first 

quadrant of the amplitude response is shown since it is cir­

cularly symmetric. 

Peters (1949), Henderson and Zietz (1949), Elkins (1951), 

and Hosenbach (1953) have dealt with the second vertical deriva­

tive as a space domain operator, while Darb,y and Davies (1967) 

have considered both its space and spectral properties. 

Continuation Operators 

The filtering properties of upward and downward continua­

tion were derived in section 1-3 and are summarized in equations 

1-31 to 1-33. The frequency response of upward continuation: 

may be termed high frequency rejection. The downward continua­

tion operator is basically a h1gh frequency amplifier, with 

response: 
27T~ruZrV2 =e 

In both cases, ~ is the distance of continuation and u and v 

are the frequencies in the x and y cartesian directions. 
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Figures 2-3 and 2-4, pages 48 and 49, give plan and profile 

views of these theoretical frequency functions. 

The continuation of potential fields has received a sub­

stantial amount of attention in geophysical literature. Clas­

sical papers by Bullard and Cooper (1948), Peters (1949), and 

Henderson (1960) provide ample background as well as several 

space domain methods of operator design. Dean (1958) and Fuller 

(1967) approach the design prob1em by an alternate route, making 

use of the theoretical frequency responses given above. 

Upward and dow.nward continuation, unIike most other poten~ 

tia1 field operations, bave an Inherent physical significance, 

since they map the field changes involved in movement away from 

or toward source distributions. The main constraint on this 

process is that the region of continuation be harmonie. The 

abilit,y to project the observed. gravit,y or magnetic field above 

or below a survey plane would be a valuable asset to the inter­

preting geophysicist, and this fact probably accounts for the 

popularity of the continuation concept. Although a good approx­

imation to the upward continuation process can be obtained with 

very little difficulty, the inverse operation, that of down­

ward continuation, is greatly affected b,y the noise content in 

data and the presence of unknown density or magnetic susceptibi­

llty changes in the region. These factors, coupled with several 

operator design problems, must be taken into account when deriv­

ing or applying a practical downward continuation operator. The 

assumptlons and procedures involved in the derivation of the 
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continuation Integral bave already been considered in section 

1-1 (pages 19 to 21). 

Before proceeding to design considerations, it might be 

instructive to comment on the circular symmetry exhibited b,y 

the above opera tors, both in the space and frequency domains. 

The phase and d1rectional properties of the potential field 

spectrum define the location and orientation of source anom­

alies, The purpose of the filters described above is to mod1fy 

only the amp11tude spectrum of the gravity and magnetic data, 

leaVing location and trend information undisturbed. The opera­

tors must therefore have a phase response of zero and a cir­

cularly symmetr1c amplitude spectrum. The space domain expres­

sion, or impulse response, of the filter ~ll also exhibit 

circular symmetry under these conditions, as required by the 

inverse Hankel transforme Opera tors capable of phase and trend 

modifications, although not discussed in this thesis, can be 

developed for more specialized interpretational schemes. 

Space and spectral properties of some potential field 

operators are summarized in Table l, page 51. The list is intend­

ed to serve as a guide in the discussions to follow and in no 

way represents an exhaustive documentation of the fil ter pos­

sibilities. 

2-2 Filter Representation and Design 

Operators for Discrete Data 

The mathematical concepts of Information theory must be 
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reduced to numerical for.ms capable of handling digitized data. 

The data itself is assumed to be defined at each grid point of 

a two-dimensional cartesian system. If the potential field has 

not been uniformly sampled, the required grid values can be 

interpolated from a contour map of the original survey. The 

two-dimensional convolution Integral, equation 1-28, page 29, 

may be approximated numerically b,y: 

fol! N 

Jo ("x'J) =?n~"" &_" C'"Wf.7L/; (?nA!') -nA~ )A{A'l (2-4) 

where Cmn.:: W(.l:'-'nAE,Y-?2.d~) is a set of coefficients repre­

senting the filter weighting function at 2MX 2N discrete points, 

±M and ± N representing the survey limi ts. The two-dimensional 

Fourier and inverse Fourier transforms may be represented b,y the 

numerical forms: 

(Z-b) 

The numerical equivalents of the zero-order Hankel and inverse 

Hankel transforms (equations 1-24 and 1-25, page. 24) are: 

Iv! 

Fr;» = 2/T:E !(?nAI-) Jo (.:z.7r,P;n.LJJ-) ~ (AI-) 2-
-nz.=o 

(z- 7) 

f (;-) (2-8) 
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In the above equations .4 x, .t:1 y and J1~ are Increments of dis­

tance botmded by the limi ts ± M and t N. Similarly, t1 u, Â v, 

and LI~ are Increments of frequency, 'Wi thin the lim1 ts ::!: K and + L. 

The operators used in digital convolution are in the 

form of ceofficient sets. Each coefficient C/J defines the 

fllter's welghting function or impulse response at the partic­

ular grid point (j,J). The summatlon of coefficient-data prod­

ucts in equation 2-4, page 52, is a numerical approximation of 

the convolution process. Equation 2-5 can be used to examine 

the two-dimensional frequency response of a certain coefficient 

set, while equations 2-7 and 2-8 will beof value in operator 

design. 

It is probably unnecessary to point out the great impor­

tance numerical analysis assumes in aIl phases of engineering 

and applied m~thematics. Where large amotmts of data must be 

processed on digital computers, or when mathematical operations 

cannot be conveniently handled analytically, numerical methods 

are generally applicable. Care must be taken , however, to 

understand aIl the implications involved in going from the exact 

problem to the numerical approximation. The fol ding frequency 

and aliasing effects, noted previously in the discrete sampling 

of continuous waveforms, are examples of numerically induced 

di sturbanc es. Successful application of numerical methods depends 

on the recognition of certain advantages, and at the same time, 

a thorough tmderstanding of the Inherent lim1 tations. 
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Analytical Design Methods 

If the criteria for operator design are restricted to the 

space domain they will be termed analytic. Although this usage 

might be somewhat ambiguous, it is meant to distinguish between 

direct numerical derivation in the space domain and transform 

methods, whichmake use of spectral properties. 

Regional-residual operators developed and used in the 

past were more empirical than analytical. The simplest consist 

of a single ring, of some preselected radius, around which the 

gravit y or magnetic values are averaged. The average is taken 

as the regional, and when subtracted from the value at the 

center point gives the "residual effect" at that point. It is 

apparent that results will depend largely on the circle radius 

selected and the complexity of the potential field. Further 

information on the center point, single ring operator is given 

by Griffin (1949) and Nettleton (1954). 

The wavelength operator introduced in section 2-1 is well 

suited to the analytical derivation of coefficient sets. Once 

the areal extent of the operator bas been fixed by selecting the 

desired eut-off frequency, the required coefficient set can be 

obtained b.Y simply evaluating the following function at each 

grid point: 

s J, ( :; fm 2 +n2 
) ( z- 9) 

211 'Yn.Jl+ n 2 

where CJ; is the coefficient at grid point (j ,j) and 

.s = D.r.IZ.! is a scale factor, D.I. being the grid spacing 
'Jeo 
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or data interval, and! the eut-off frequency in cycles/D.I. 
Jco 

The symbol ~ ( ) represents the first-order Bessel function of 

first kind. 

In designing high-pass operators the standard wavelength 

fil ter is merely inverted. Figure 2-5b, page 56, shows tbat the 

sine tunction approaches the unit impulse as the distance ~x 

approaches zero. The discrete unit impulse, however, is exaetly 

equivalent to the grid-sampled sine function (see Figure 2-5e), 

and accordingly, like the continuous impulse, exhibits a response 

of unity in the frequency domaine In a similar manner it can 

be shown that the two-dimensional discrete unit impulse, defined 

by the function: 

Sa? (rr')rZ.A;rt;.)· SIn (-u-n 4Y) 

'Ir 2.?n n Ax A!! 

where ~ x = .d Y is usually set equal to 1 uni t, bas a frequency 

response of unit Y over the u-v frequency plane. The inverse or 

high-pass operator, as shown in Figure 2-5e, page 56, is the 

difference between the discrete unit impulse and the correspond­

ing wavelength or low-pass operator. 

Band-pass filters may be obtained b,y subtraeting two wave­

length operators of different frequeney cut-offs. 

Numerical methods proposed for the approximation of deriv­

ative and continuation operations generally fall into one of 

two categories. Direct approximation of the convolution Integral 

might be attempted whenever the two-dimensional expression can 

be conveniently reduced to a one-dimensional forme Another 
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approach wh1ch bas been applied in the derivation of continua­

tion and derivative operators, expands the potential field in 

vertical or horizontal directions according to Taylor's theorem. 

In view of the emphasis given analytical techniques of operator 

design in the literature, a brief description of several methods 

and resulting operators will follow. Although the handcalcula­

tion schemes proposed are, by modern standards, outdated, the 

numerical concepts involved in the development of these "template 

operators" are both interesting and instructive. 

In a well-known paper, Peters (1949) described methods 

for executing continuation and derivative operatio~s as related 

to magnetic Interpretation. Introducing polar co-ordinates and 

averaging the data on circles about the operator origin, the 
. 

continuation Integral assumes a one-dimensional 
Of) 

!(")(,y, -h) = (;0_> hrdr 

:zn ! ( h Z + J- Z) 3/% 

form: 

( Z - /0) 

"here f-;:) =:z'r,:. jJrf)f)) de , f (f; a) is the observed potential 
o 

field data expressed in polar co-ordinates, and ;r(X,y,-h) 

represents the upward continued value of the field to a height 

h. With the point (x,y,O) as operator origin, Peters selected 

nine circles varying in radius from r, = l to r; = (125 grid 

units and approximated the Integral of equation 2-10 by the sum: 
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Integrating and collecting terms, the expression reduces to the 

form: 

(,1.-1/) 

where the constants C~ represent the operator coefficients. 

Since the,y were to be band computed, the circle averages jrr) are 

deter.mined on the basis of a limited number of grid points: the 

two inner circles use four points each, while the others use 

eight. Peters t upward continuation operator for h = l grid unit 

appears in digital form in Table A-lof the Appendix (page 12)). 

Each entry in the table represents the weighted coefficient 

value at the indicated grid point. Since the operator is cir­

cularly symmetric only the first quadrant need be defined. 

Grid points which do not enter the calculation have been left 

blank and assigned a coefficient weight of zero. The for.mat 

just described will be used to tabulate coefficient sets studied 

in this thesis, since it provides both a convenient basls for 

comparison as well as the digital form required for frequency 

analysis. 

One weakness of the upward continuation operator of 

Table A-l is the sparse coefficient coverage for larger radii. 

This effect contributes distortion to the frequency response 

and results in a poor approximation of the continuation integral. 

On the other band, increasing the coefficient density would 

not have been an attractive proposition in view of the great 

deal of time required for band calculatlons. Peters points out 

that interpolation formulae may be used to obtaln better approx-
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1mat1ons to the average data function !rrJ. Henderson and 

Zietz (1949 - b) made use of the trapezoidal rule in a slightly 

d1fferent treatment of equation 2-10. 

A similar, but more accurate approach is possible ~th 

the aid of a digital computer. A coefficient may be determined 

at each grid point by evaluating the upward continuation impulse 

response d1rectly (see Fuller, 1967): 

C-mn. = h / :l7r 
( ?1'1-:z. + 7ZJl. +h :Z) 3Jz 

where CJd 1s the weighted value of the operator at the grid 

point ( j , j ). The numerical form of the convolution integral 

(equation 2-4, page 52) can then be used to obtain the upward 

continued field. 

Potent1al field data may be expanded above or below the 

plane of observation according to Taylor's theorem, provided 

the field is harmonie in this region. The expansions above and 

below the plane z = 0 for the continuation distance h may be 

wr1tten as follows: 

upward: 

f h / h~ 1/ (x,y) -h) :::. jr-X:'YJ 0) - _ f (;(, '-1 0) + - 1 (~J ~ 0) 
1/ il} 2/ <1" 

1 4f IV +.!1- (x)!/; 0) - ... 
4/ 

(2.-12) 

downward: 

(Z-Jj) 
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where f (x,y,O) is the observed field intensi ty at the point 

1 (}f(?t~ q.J~) -1. 
of continuation, and '/ \ 1 

f 
d· e-c:c. 

(~)f/Jo):: ;;~ 
~ =0 

Peters was able to solve for the dow.nward continued field 

;r (x,y,h) b,y adding equations 2-12 and 2-13 and app1ying 

Laplace's equation to the remain1ng even derivatives. In order 

to make use of the circle averaging pattern developed for the 

upward continuation process, it was necessary to convert to 

polar co-ordinates and approximate the average data function 

b,y the expansion: 

(2 -/4) 

The resulting expression for dow.nward continuation becomes: 

The constants bD , Dz and /;", were obtained by a least squares 

treatment of equation 2-14 using the center point and nine 

circle averages. The last ter.m on the right side of equation 

2-15 is the upward continued field derived earlier on the basis 

of the same clrcle averages. The dlgitlzed downward continua­

tion operator for h = l grid unit is given in Table A-2 of the 

Appendix (page /2 f). 

Trejo (1953) pointed out that the fourth degree parabola 

approximation to jCrr) in equation 2-14 was locally valid near 

the operator origin, but could not be used for the larger radii. 

The constants he , h~ and b-l , determined on the basis of aIl 

the circle averages, distort the parabola by including the 
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sparsely sampled outer averages and results in a corresponding 

distortion of the operator. 

Trejo proposed a method of finite differences in combina­

tion ~th Peters' upward continuation coefficients. Adding the 

expansions expressed in equations 2~12 and 2-13, page 59, and 

ignoring derivatives higher than the second, the downward 

continued field is approximated by: 

I(o} o~h) == f (0,0, -h) +2. [i(O~o) 0) + A-~ '(0,0-,0)] 
--. :z/-

(2-16 ) 

where no loss of generality is involved in choosing the origin 

at the point of continuation. Laplace's equation and the applica­

tion of finite differences to the four grid points nearest the 

origin transform the second vertical derivative term to: 

- 12-2. (;2z + 0
1
% )f(~'fI'O) == 4j(0)0)0) -f(~oJo) -fl-h}oJo) 

2/ x dy %.=1=0 _ j(o" 1" 0) _ f(o) -hJ 0) 

thus equation ~-16 becomes: 

The first five field values on the right are those obtained at 

the origin and the four nearest grid points. The upward continued 

field ;f(O,O,-h) may be represented by a previously determined 

coefficient set. Trejo used Peters' upward continuation coef­

ficients for the operator shown in Table A-3, page /26. 

Henderson's approach to the downward continuation problem 

(see Henderson, 1960) determines the upward continued values at 

five levels above the survey plane. The Lagrangian interpolation 
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... 
formula is then used to extrapolate the continuation function 

below the datum. The downward continued field takes the form: 

? ?72. f /(0,0,:) == :iE (- t) -= (;!+a.) (;é-f-.:za.) (ii!+3a..)(i!:-+4a.)(~+5a.J· fO,o,-"'h?·Q.) 

7no=O a~(i:+?na.)(?n-f-?)!?"n.! (;z.-17) 

where a is the grid spacing, iè the depth of continuation, and 

f (0,0, -m·a) i s the upward continued fi eld a t a di s tanc e m· a. 

above the survey plane. The ~ward continuation coefficients 

at each level were developed in a manner similar to the method 

used by Peters. Henderson's downward continuation operator for 

t =a is given in Table A-4, page /26. In its original form, ten 

circles, varying in radius from 1 to 25 grid units, were used 

in the averaging process. The large radial extent of the operator 

(25 grid units) causes a serious loss of data around the survey 

margins. Binee the technique was designed for band calculation, 

the digitized operator, like those of Peters, exhibits poor 

coefficient coverage. So far in discussing operator design, we 

have ignored the fact tbat the downward continuation process 

ls very sensitive to high frequency effects from sballow sources. 

Although the initial assumption of a harmonie field is required 

for continuation downward, tbis "ls virtually never the case in 

practical application. To prevent excessive amplification of 

these high frequency noise effects, some form of smoothing must 

be applied to the data or be built into the operator itself. 

Although Peters does not discuss this problem, bis operators 

are of such low gain tbat they do not overamplify high fre­

quencies. Henderson favors adjustment of the interpolated data 

spacing so as to exclude frequencies above some nolse level. 



63 

This approach is generally unsatisfactory because of the aliasing 
, 

ot higher frequencies to the lower end of the spectrum. Also, 

if the interpolation interval is too large, a significant 10ss 

of useful information may result, severely restricting the 

delineation ot target anomalies. 

Another method of dow.nward continuation, first suggested 

by Bullard and Cooper (1949) and later by Grant and West (1965), 

incorporates mathematical smoothing in the design of the op­

erator. The continuation integral (equation 1-14, page 20) is 

inverted by taking the Fourier transform of each side, isolating 

the spectrum of the downward continued field, and then applying 

the inverse transtorm·. Upon conversion to polar co-ordinates 

the downward continuation convolution Integral is obtained: 

I(O,O,é) = z;J}J2 .. {tl'-Y?\1.(27r/,}-)/,Y [tl-,S) f-dSdl- (.2-/8) 

where? is radial frequency, }(08) is the observed data in 

polar co-ordinates, r is the attenuation factor of the fil ter 

response, and the quantity in brackets is the fil ter weighting 

function. A numerical approximation of the weighting function 

around averaging circles was attempted by Grant and West (1965) 

and resulted in the coefficient set of Table A-5, page /27. The 

exponential attenuation of the amplitude spectrum built into 

this operator seems to be a rather severe methad of smoothing, 

and is liable to attenuate low as weIl as high frequency compo­

nents. 
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Analytically derived versions of the second vertical 

derivative operator have been introduced by Henderson and .' 

Zietz (1949 - a), Elkins (1951), and Rosenbach (1953). Henderson 

and Zietz made use of the fact that if a potential field is 

averaged about a vertical axis (the operator axis) the result­

ing even function may be written as a zero-order Bessel function 

solution of Laplace's equation: 
1<. 

L1 T (~~;-) = ~ Ale e -U..f~. Jo (~;.-) 
.It..c/ 

( .z -19) 

where L1 T(~fo) is the averaged variation of the force field at 

a radial distance }-, Â.Jc is a set of constants, Z(~;..) is the 

Bessel function of zero order and first kind (~ being i ts 

positive roots). Taklng the second vertical derivative of equa­

tion 2-19 and setting .z and }- to zero: 

i/l. LiT = 2 t..J2 A ( .:z -..20) 
~ ~ ;t., f; 1 r.A je. 

The constants A~ may be determined b,y circle-averaging the 

survey data about the operator origin and solving a set of 

simultaneous equations based on the relation: 
- )( 

LIT (1-) = ~ A) J;, (uA r) 
Je.:, 1 

where .IJ. TrI-) represents the data averaged over the survey plane. 

One operator designed b,y Henderson and Zietz takes the 

form: 

where !(r) represents the observed gravi ty or magnetic field 

a distance }- from the origin, S 1s the grid interval, and 

~f~) is the sum of observed grid values around a circle of 
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radius S • The digi tized operator is gi ven in Table A-6, 

page /2. 7. 

The work of Elkins (1951) extended from Peters' method 

of representing the data by an even function and differentiating 

tw1ce according to Laplace's equation. A least squares solution 

in terms of circle averages was used to ob tain second vertical 

derivative operators. The amplitude responses of Elkins' opera­

tors exhibit low gain and resemble the response of a simple 

residual pass fil ter. 

One of the most successful attempts at approximating the 

theoretica1 second vertical derivative, both in terms of spectral 

circular symmetry and gain, was made by Rosenbach (1953). Using 

Lap1ace's equation and Tay1or's expansion he was able to obtain 

simultaneous equations for various grid patterns and solve for 

the second vertical derivative. Rosenbach's equation 16, based 

on one of these patterns, takes the form: 

[
i/'jcr)] == _,_ [96f (0) - 18~f(5) - a:E. fM S) + z: f('115 s0 "~:z. 2452. J 

d !--=o 

and is represented digita1ly in Table A-7, page /27. 

The weaknesses associated with Most of the analytical1y 

derived operators in the foregoing descriptions stem from forced 

simplification rather than from the basic design methods them­

selves. Coefficient coverage and, therefore, operator accuracy 

had to be sacrificed for practical hand ca1culation schemes. 

For the same reason, the Most important criterion of operator 

design, that of frequency response, could not be app1ied. With 
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the aid of the Fourier transform and the digital techniques 

now available, the results of analytical design methods can 

be significantly improved. 

Transform Design Methods 

Two methods, referred to here as a) the transform and 

b) the inverse transform methods, make direct use of frequency 

response and allow closer control of operator fil ter character­

istics. They also afford the opportunity to employ techniques of 

fr~queney analysis and digital processing to give a more general 

approach to the design problem. A major portion of the research 

undertaken in connection with this thesis bas been concerned 

with the development of this approach and its adaptation to the 

Hankel and inverse Hankel transforms. 

a) The Transform Method - If the operator response is 

specified at MX N discrete points, the coefficient set Cmn , 

representing the filter weighting function, can be determined 

Oy a simultaneous solution of the discrete Fourier transform 

(equation 2-5, page 52). Since the operators are assumed to 

exhibi t circular symmetry, we will reduce the problem to a 

one-dimensional form by introducing the discrete Hankel trans­

form (equation 2-7, page 52): 
NI 

Frf) = :l1T t~ C~ ;;, (.27rjJJ-AJ-). }-(.11I-) 2 (2-.2/) 

where HjJ) is the known amplitude response and C/ the unknown 

coefficient at the radial distance j • /JI- is an increment of 

distance in the radial direction. If we adopt the least squares 

energy criterion for the simultaneous solution of equation 2-21, 



ct 

67 

the resulting normal equations may be expressed in matrix form: 

where 

8" 8,;.. - .. .. •. . . BI,., C, D, 
82../ 82.2. . . . . . .. • 8.2"" e~ Dz 

..... ' ... '. • ··/3~M 

BjtÎ = J.:;E J; (.27TP./) . Jo (.:z.7T,P,i) , 
/' 

/Ji 

D.,- :: / z: Ç~) J;, (.1.111'/) 
;2.7r (41-):1. j3 

. 

(z-.z:z) 

and Ci is the coefficient at a radial distance J • The deri va-

tion of these normal equations is summarized in article A2 of 

the Appendix, page /21. A computer program was written to solve 

equation 2-22 for the discrete coefficients Cj, with the 

desired operator frequency response as input. Because the gen­

eral term of the summation on the right side of equation 2-21 

is zero at the origin (i.e. at ;'-=0), the coefficient c:, must 

be found Qy some other means. The simultaneous solution or trans­

form approach bas several defects. Because the coefficients are 

derived from a set of equations based on oscillating functions, 

they alternate between positive and negative values. The result­

ing amplitude spectrum exhibits a periodic mismatch which can 

be quite serious, particularly at low frequencies. This effect 

can be reduced to sorne extent Qy smoothing the coefficient set 

and modifying the theoretical amplitude response. Figure 2-6, 

page 68, shows the result of an attempt to obtain a second 
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vertical derivative operator using the Hankel transform proce­

dure. The input amplitude response was attenuated exponentially 

and eut off at the Nyquist frequency (0.5 cycles/D.I.) prior 

to solution. The Nyquist eut-off forces the response of the 

least squares approximation to plunge steeply in the vicinity 

of the folding point. Although this abrupt falling-off at high 

frequencies May be desireable in terms of noise reduction, 

distortion of the low and central band regions will occur if 

the eut-off is too severe. The mismatch at low and intermediate 

frequencies is probably the Most serious problem. The low fre­

quency variations of the gravit y field are generally the high 

amplitude, and thus, high energy components. This is not always 

true of the magnetic field which May have high amplitude compon­

ents over the entire spectrum. Slight low frequency mismatch 

in the spectrum of an applied operator will therefore cause 

substantial low frequency distortion of the field. Dean (1953) 

used the Fourier transform to derive one-dimensional downward 

continuation operators. In addition to the problems mentioned 

above, he round that a large number of coefficients were re­

quired to obtain a reasonable amplitude response. 

The Hankel transform method as described here produces 

a set of discrete radial weights which can not be conveniently 

applied to gridded data. In view of the least squares criterion 

and the simultaneous method of solution, radial interpolation 

of the coefficients' to obtain grid values would probably prove 

unsuccessful. The treatment does serve to demonstrate, however, 
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the "difficulties involved in the transform approach. The applica­

tion of a two-dimensional, cartesian extension of this method 

would require the solution of a very large number of simulta­

neous equations and would still surfer from most of the inher­

ent defects just discussed. 

b) The Inverse Hankel Transform Method - The second 

approach, making use of the inverse transform, is the simplest 

and perhaps the Most useful means of operator design. Darby and 

Davies (1967) and Fuller (1967) used the inverse Fourier trans­

forro in the design of two-dimensional discrete filters. The 

frequency responses of the resulting coefficient sets, although 

showing some deviation from circular symmetry, were generally 

much"superior to the spectral characteristics of previous opera­

tors. 

The inverse Hankel transform of zero order was found to 

provide a more exact, and yet more streamlined means of deriva­

tion. Applying the discrete version of the inverse Hankel trans­

form (equation 2-8, page 52), the coefficient at a radial dis­

tance ;- May be approximated by: 

where F()tJp) is the stipula~ed amplitude response, presumably 

known for aIl frequencies, and ~ the frequency variable. The 

coefficient at any grid point (j,J) is evaluated simply by set­

ting r -::ij2 + J2 and performing the spectral summation indicated 

in equation 2-23. The limit of integration K should be set 
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somewhat higher than the grid fol ding frequency in order to 

prevent a spectral discontinuity at the grid folding point. 

AIso, the frequency Increment A;O must be taken small enough 

to ensure an adequate approximation to the inverse Hankel trans­

forme Any severe discontinuities present in the input amplitude 

response ~(J~P)will cause a corresponding irregularity in the 

derived coefficient set. It is therefore necessary, in the case 

of high-gain, high-pass operators, 'to introduce some form of 

spectrum attenuation in the vicinity of the grid folding point. 

This topic will be discussed further in part 4 of this section 

when several design refinements are considered. 

The size or areal extent of the operator will depend on 

the nature of the filtering operation and the degree of accuracy 

required. Greater operator size is necessary in the approximation 

of continuation operations, for example, than in derivative 

techniques, since continuation weighting functions are greater 

in surface coverage and fundamentally more difficult to repre­

sent by finite coefficient sets. In general, the larger the 

coefficient set, the closer its amplitude response will reflect 

the input response. For each problem, however, there is a point 

of diminishing returns at which the additional accuracy gained 

is not worth the extra coefficients. Another factor of consid­

erable importance is the amount of data lost during the convolu­

tion process as a result of an operator's size. A coefficient 

set extending ten grid units from the origin will require an 

outer margin of data, ten grid units in width, surrounding the 
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designated region of interest. Finally, the practical size of 

the operator, as used in digital convolution, will be limited by 

the digital processing facilities available. The above factors 

should be weighed carefully in any comprehensive design scheme. 

Several operators were derived by the inverse Hankel 

transform method in the preparation of this thesis. All result­

ing coefficient sets exhibit good radial response and excellent 

circular symmetry in the frequency domaine The largest of these 

operators extends a distance of eight grid units from the origin 

in the x and y axial directions. A significant advantage in 

using the inverse Hankel transform approach is that a discrete 

operator can be found for any specified amplitude response. 

Such versatility may prove important for specialized filtering 

applications. 

Because of the Inherent spectral characteristics of poten­

tial field data, frequency response, as obtained from the Fourier 

transform, is probably the single most important criterion of 

operator design. Whether the inverse transform method, some 

analytical approach or a combination of these is adopted in the 

design of a particular operator, facilities should be available 

for evaluating its two-dimensional Fourier transforme A computer 

program based on the discrete Fourier transform (equation 2-5, 

page 52) was written for this purpose. Binee the operators con­

sidered in this thesis are circularly symmetric about the origin, 

the transform reduces to: 
,., /II 

FfU) v) == ~ ~ C?7Ln -Cos (271' pm A;l) -CoS (2..7/'VnA!I) LiX L1j' 
??a:-M '11.=-/1 
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where ~(uJ0is the amplitude response of the derived coef­

ficient set C~n. This relation is easily programed on a digital 

computer, and affords a good approximation of the two-dimensional 

amplitude response of any symmetrical coefficient set. 

Practical Refinements inOperator Design 

In preparing a coefficient set for practical application, 

certain refinements must be included in the basic design methods 

already outlined. When the inverse transform is employed in the 

derivation of high-gain operators, the input frequency response 

will require some form of attenuation. To min1mize distortion of 

the derived operator response the coefficient set must be mult­

iplied b,y a smoothing function and then normalized. These three 

refinements: a) spectrum attenuation, b) coefficient smoothing, 

and c) normalization will be considered in turne 

a) In dealing with high-gain operators such as downward 

continuation and the second vertical derivative, close approx­

imation to the theoretical response is undesirable at the higher 

frequencies. The coefficient response, unlike the ever-increasing 

theoretical response takes a plunge at its folding or Nyquist 

frequency. If this eut-off is too severe the mid-band response 

of the coefficient set May suffer serious distortion. This 

effect can be reduced b,y using an attenuated version of the 

theoretical response in the vicinity of the fol ding frequency. 

The severity of the folding point eut-off can be softened further 

if the limit of Integration for the inverse Hankel transform, 

in equation 2-23, page 70, is set somewhat above the Nyquist 
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frequency. Binee the coefficient determined by the inverse 

Hankel transform approximates a continuous operator at the 

particular radial distance ~ , Integration past the grid fold­

ing point is entirely justified. The radial amplitude response 

of a discrete second vertical derivative operator is shown in 

Figure 2-16, page 88, along wi th the attenuated response used 

as input in deriving the operator. In addition to reducing 

spectral distortion, attenuation of the input response serves 

another purpose. If the response of an applied operator approaches 

some theoretically high gain near the folding point, the high 

frequency noise components in the data will be greatly over­

amplified at the expense of useful information. Attenuation of 

the high-gain response helps to minimize this tendency. In 

contrast, the low and mid-band frequencies are most important 

in defining the observed potential field. The designed operator 

response should, therefore, reflect the theoretical response 

as closely as possible in this range. 

b) The theoretical operators dealt with in this chapter 

are of Infinite extent, but in practical situations a coef­

ficient set must be limited to a finite size. The abrupt term-

··lnation or truncation of the discrete operator at the designated 

boundary will cause serious periodic mismatch in its amplitude 

spectrum. This effect can be eliminated quite successfully by 

multiplying the coefficient set by a smoothing function, such as: 

[ 

( ")(:l. 1-y.2 ) ~ ] 
; / + Cos [7r X 2.+ 0 2 .. , Po~ 

S(~y) (2 -24) 

o ..... ' ................ ' FOA! X ,. 1C 
y"?y 
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where X and Y are the operator boundaries in the x and y 

directions. The smooth1ng process May be v1ewed as frequency 

domain convolution. The periodic mismatch 1s li terally fil tered 

out of the coefficient set amplitude response. 

c) A third refinement, referred to here as coefficient 

normalization, is needed to f1x the zero frequency point of 

the amplitude response. For the wavelength fil ter and contin­

uation operators the zero frequency amplitude response 1s unit y, 

and according to the discrete Fourier transform: 

[Ftu,V) ] u.v'=O = ~ ~ C=~ Ax A!:J = / 

The above condition can be fulfilled by dividing each coef-

ficient by the sum of coefficients, tbat is: 

C N?7't.n 

where C'Nmn. represents the normalized coefficients. The second 

vertical derivative and residual operators show zero amplitude 

response at the zero frequency point, so that: 

[ ] 
..::::::.'" ~ C~- A7f. LJ!I = 0 

F(,-"v) {j=v=o==:;2~ . .,~,~ 

In this case the coefficient at the operator or1gin, C 00 , is 

adjusted to make the sum of the coefficients equal to zero. It 

should be pointed out tbat the grid interval if x = L1 Y 1s taken 

as the unit of distance in all discrete operations. Norma11za­

tion can be thought of as an additional means of compensating 

for the discrepancy between a continuous 1nfinite operator on 

the one band, and its fin1te approximation by a coefficient set 

on the other. 
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2-3 Description and Assessment of Some Proposed Operators 

Several discrete operators have been derived to illustrate 

the basic design concepts involved and to highlight particular 

design problems which may arise. Various wavelength filters, the 

second vertical derivative, and continuation operations are 

represented. For the sake of completeness, severa! well-known 
~ 

coefficient sets will be examined and compared with the newly 

derived operators. The two-dimensional Fourier transform will be 

used as a basis for evaluation and comparison of operators. 

The format adopted in describing the various coefficient 

sets gives a concise, and yet, complete picture of the space 

and frequency domains. Only the first (i.e. north-east) quad­

rant of the coefficient set and its amplitude response need be 

defined, since both the space and frequency expressions exhibit 

circular symmetry. Consider, for example, the center point, 

single ring residual operator proposed by Griffin (1949). If 

wé incorporate the grid points at a distance of 2 and 45 grid 

units from the origin in the circle average, the center point 

assumes a coefficient weight of 1.0 and each of the twelve 

averaging points a weight of 0.083. The first quadrant format 

for the discrete operator and its amplitude response is given 

in Figure 2-7, page 77. The amplitude response bas been termin­

ated at the grid folding frequency (0.5 cycles/Data Interval) 

since it repeats itself past this point. The position vector of 

any particular point in the u-v plane defines the frequency, 

direction, and amplitude of a particular harmonie component. 
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Point P, shown in Figure 2-7, defines a component of frequency 
~ 

IRI cycles/D.I., having an amplitude of 1.3 and whose direction 

coincides with that of the position vector f? • 

Wavelength Filters 

Three low-pass filters with cut-offs of 0.4, 0.2, and 

0.075 cycles/D.I. were derived uSing equation 2-9, page 54. 

After specifying the size and appropriate eut-off of a pro­

posed operator, the attenuated Bessel function in equation 

2-9 was evaluated at each participating grid point. The result­

ing coefficient sets were multiplied b,y the smoothing function 

of equation 2-24, page 74, and then normalized. The operators 

and their amplitude responses are presented in Figures 2-8 to 

2-10, pages 79 to 81. In order to allow a better comparison of 

gain characteristics, the radial response profiles are given in 

Figure 2-11, page 82. The 0.4 cycle/D.I. low-pass operator, 

extending a distance of four grid units from the origin, was 

designed for the purpose of eliminating high frequency noise 

components from the potential field data. The eut-off could be 

made sharper b,y selecting a larger operator size, but in this 

case it seems that very little advantage would be gained b,y 

such a move. An operator size of eight grid units from the 

origin was chosen for the 0.2 and 0.075 cycle/D.I. wavelength 

filters in order to obtain sharper cut-offs. Because the areal 

extent of the wavelength filter increases as the specified 

eut-off frequency decreases, greater coefficient coverage will 

be required for an operator of lower eut-off frequency. 
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The high-pass or residual type operators can be obtained 

b.Y inverting the standard wavelength fil ter, as described in 

section 2-2 and summarized in Figure 2-5, page 56. The 0.2 and 

0.075 cycle/D.I. wavelength operators were each subtracted from 

the discrete unit impulse to yield the corresponding inverse 

operators sbown in Figures 2-13 and 2-14, pages 84 and 85. 

Inverse wavelength operators derived in this manner can be used 

to extract residual features of the potential field from the 

lower frequency regional trends. 

Figure 2-12, page 82, compares the radial amplitude 

responses of the 0.2 and 0.075 cycle/D.I. high-pass operators, 

with the amplitude response of the center point, single ring 

operator of Figure 2-7, page 77. The frequency response of a 

residual fil ter should have a fairly sharp eut-off before level­

ling out to a broad-band amplitude of unit y, as 1s the case for 

the inverse wavelength opera tors. The response of the single 

ring operator, however, bas a more gradual eut-off and tends to 

oscillate at higher frequencies. Perhaps the most serious weak­

ness of the single ring operator is its poor coefficient cover­

age. The effective sampling distance is approximately equal to 

the radius of the averaging ring, and as a result, the effective 

Nyquist or folding frequency is substantially lower than the 

grid folding point. The aliasing effect accompanying this 

inadequate sampling of data can become quite serious for single 

ring operators of large radii. 

Considering the ease of derivation and the excellent fre-
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quency characteristics obtained, the vavelength fil ter provides 

a bighly versatile and convenient approach to the design of 

regional-residual type potential field opera tors. 

The Second Vertical Derivative 

A second vertical derivative operator, developed by the 

inverse Hankel transform method, is presented in Figure 2-15, 

page 87. The attenuated version of the theoretical response 

used as input in the derivation is sbown in Figure 2-16, page 88, 

along with the radial response of the resulting operator. The 

attenuated spectrum was integrated between the frequencies 0.0 

and 1.0 cycle/D.I. in evaluating the inverse transform, and the 

resulting coefficients were smoothed and normalized. The opera­

tor response is a good approximation of the theoretical response 

at low and intermediate frequencies. The levelling-off of the 

gain in the vicinity of the folding point should prevent exces­

sive amplification of bigh frequency noise components present 

in potential field data. It should be noted, also, that the 

second vertical derivative operator requires considerab1y sma1-

1er ares1 coverage than most of the other operators presented 

here. 

The operators of Henderson and Zietz (l949 - a) and 

Rosenbach (1953), tabulated in Tables A-6 and A-7 on page 127, 

have been inc1uded for comparison. The coefficient set 

proposed by Henderson and Zietz has strong directional prop­

erties dramatically evident in the amplitude response (see 

Figure 2-17, page 89). In the 45 degree directions, the ampli-
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tude response approaches that of the theoretical operator, while 

along the u and v axes the gain is relatively moderate. These 

variations in circular symmetry will be transmitted through the 

convolution process and create artificial trends in the data. 

The very large gain in the SV-NE and SE-NW directions will 

inevitably cause over-amplification of any high frequency noise 

effects present along these directions. The response of Rosen­

bachls operator, sbown in Figure 2-18, page 91, exhibits very 

good symmetry and gain characteristics. 

Both the derived operator of Figure 2-15, page 87, and 

Rosenbachls operator will provide a suitable approximation to 

the second vertical derivative operation. In the event that the 

data contains an excessive proportion of high frequency noise 

components, some forro of noise filtering should be attempted 

before applying any high-gain operator. 

Continuation Operators 

The inverse Hankel transform approach was used in the 

derivation of upward continuation operators for heights of one 

and two grid intervals above the data plane. Figures 2-19 and 

2-20, pages 92 and 93, show the operators and their amplitude 

responses. The theoretical responses were inserted into the 

discrete inverse transform without attenuation, and the result­

ing coefficient sets were smoothed and normalized. Except for 

a smaller gradient at very low frequencies, the amplitude 

responses of the derived operators compare quite favorably with 

their theoretical counterparts. The frequency response of Peters' 
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upvard continuation operator, of Table A-l, page /2f, bas been 

included for comparison (see Figure 2-21, page 95). Although a 

good approximation of the theoretical gain at lov frequencies, 

the response does shov undesirable deviations from circular 

symmetry. This defect could probably be corrected by increasing 

the coefficient coverage of the operator. 

Of the various operations discussed in this thesis, the 

dow.nvard continuation process is the most difficult to approx­

imate. No practical coefficient set can hope to approach the 

exceedingly high gains realized by the theoretical dovnvard 

continuation operators. Even if this vere possible, the convola­

tion of such a coefficient set with actual potential field data 

vould cause serious over-amplification of high frequency energy. 

In designing a workable operator, ve want to ensure close 

agreement betveen its lov frequency response and that of the 

theoretical operator, slnce most of the waveform energy of the 

potential field is generally concentrated in the lov frequency 

end of the spectrum. The high ~requency response will be atten­

uated or levelled-off near the foldlng point, Just as vas done 

for the second vertical derivative operator. The inverse Hankel 

transform method may be used in the derivation,but the form of 

response attenuation required for optimum results is not a 

simple matter to decide. For our purpose, a more convenient 

approach vas found b.Y making use of previously derived opera­

tors and Taylor's expansion of the potential field. An approx­

imation to the dovnward continued field based on Taylor's 
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expansions above and below the data plane has already been 

derived in section 2-2 of this chapter: 

jto,o)J,J == -!to)o,-hJ +:l[/to,o)0) -1- h/"fl(()J~()jJ (2'-16) 
2. 

where !(O,O,O) is the field value at the origin or point of 

continuation, f (O,O,-h) and f (0,0,0) represent the upward 

continued field and the second vertical derivative of the field 

at the origin, respectively. In deriving equation 2-16 aIl 

vertical derivatives of order greater than the second have been 

ignored. If Rosenbach's second vertical derivative operator 

(Table A-:7, page 127) and the derived upward continuation opera­

tor of Figure 2-19, page 92, are inserted in the right si de of 

equation 2-16, the downward continuation coefficient set of 

Figure 2-22, page 97, emerges. The low frequency response of 

this operator is seen to be a good approximation to that of 

the theoretical fil ter, and the high frequency response shows 

the required attenuation. 

Again, two well-known operators have been included for 

the sake of comparison. Henderson's dow.nward continuation 

operator of Table A-4, page /26, is a fairly good approximation 

of the theoretical operator at low and intermediate frequencies 

(see Figure 2-23, page 98). The large areal extent of the 

operator and the poor coefficient coverage, however, limit its 

usefulness in practical convolution. The downward continuation 

operator of Table A-5, page 127, derived by Grant and West (1967) 

shows a severely attenuated response (see Figure 2-24, page 99) 

and significant directional properties. The exponential atten-

-
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~uat1on used in the derivation reduces the high frequency gain 

but a1so distorts the mid-band regian. 

Downward continuation ta a depth of two grid units may 

be attempted, but the prob1ems of operator design and h1gh 

frequency instabi1it.y are much more severe. Assuming a reason­

able station spacing, continuation downward to a depth of one 

grid unit should be sufficient for most applications. 
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Chapter 3: 

APPLICATION OF FILTERS TO POTENTIAL FIELD DATA 

The purpose of this chapter is to show how discrete filters 

can be applied to gravit y and magnetic data to separate, enhance 

or subdue various frequency components in the potential field 

spectrum. The data which will be used in the illustration 

represents a portion of the gravity and magnetic surveys con­

ducted over the Atlantic Nickel Property near the town of 

St. Stephen, New Brunswick. A number of filters derived in this 

thesis will be applied to the data in order to demonstrate the 

effectiveness of the filtering approach and to illustrate the 

characteristics of the individual fil ter outputs. A brief 

Interpretation of the results will be presented and related to 

the known geology of the area. 

3-1 Investigation of the Roger's Farm Sulphide Zone -

St. Stephen, New Brunswick 

The Atlantic Nickel Property near St. Stephen, New Bruns­

wick, bas been the subject of intensive, albeit sporadic, geolog­

ical and geophysical investigation since 1942. Although the 

existence of nickel-copper minera1ization in the area was known 

around 1900, it bas only been in the last decade that detailed 

exploration and pre-development work has been carrled out. Over 

this period no less than twenty-four zones of sulphide mineral­

izatlon have been located bygeophysical and drilling programs, 
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and of these perhaps three may be considered of marginal or 

sub-marginal economic importance. The Roger 1 s Farm sulphide zone 

is one of the more promising deposits with an estimated tonnage 

of between 0.5 and 0.8 million tons, averaging about 1.0% nickel 

and 0.5% copper. 

In 1968 the Hanna Mining Company picked up the option on 

the property and conducted extensive geological and geopqysical 

investigations for the purpose of re-evaluating the known sulph­

ide deposits, and to provide information which might be of value 

in assessing other holdings in the area. 

Local Geology 

The predominant geological feature in the area consists 

of a stock-like basic to ultrabasic pluton which has intruded, 

what appears to have been, an anticlinal structure of meta­

morphosed sediments. The sediments are of Ordovician age and 

conslst of dark grey argillite, slate, quartzitic mica schist, 

and gneiss. The main body of sediments underlies the northern 

and eastern margins of the property, strikes roughly north­

east and dips steeply to the north-west. Sediments also 'occur 

as inclusions of up to 500 feet by 2000 feet in size within the 

intrusive rocks of the igneous masse The intrusion is composed 

of gabbro-norite, anorthosite, and peridotite and occupies the 

central and south-western portions of the property. Pyrrhotite 

occurs quite commonly as veinlets and disseminations 'within the 

intrusive rock and is the primary component of the observed 

zones of sulphide mineralization. The mineraIs chalcopyrite 



103 

and pentlandite occur as blebs and veinlets within the pyrrho­

tite. 

The more important zones of mineralization seem te be 

located very close to contacts between the intrusives and alter­

ed sediments. The zones of weakness created by these contacts 

may represent potentially favorable sites for sulphide deposi­

tion. 

Geopnysical Surve,ys 

V.L.F. (EM 16) and horizontal loop electromagnetic surveys 

conducted over the Roger's Far.m zone have traced out the extent 

of the anomalous conductivity associated with the mineralization. 

The relative position of the sulphide zone and related conductor 

is shawn in Figure 3-1, page lO~ The conductor extends along 

the north-south baseline (105E) for about 400 feet. South of 

l60N it seems to divide into two zones: one part swinging out 

to the south-west and the other continuing along the baseline 

for some- distance. Horizontal Loop EM profiles over lines l62N 

and l60N show an abnormally large electromagnetic coupling 

effect due to the shallow depth and high conductivity of the 

mineralized zone. In fact the sulphide zone intersects the 

surface in the vicinity of lines l60N and l5SN and is marked 

by the presence of a gossan outcrop. The postulated northern 

contact between gabbro-norite intrusives and the altered sedi­

ments is also indicated in Figure 3-1. 

A gravit y survey was conducted over part of the property 

in 1955 b,y Radar Exploration Li~ited. Readings were taken at 
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50 foot intervals along lines spaced from 200 to 450 feet apart 

and running approximately east-west. A portion of the resulting 

Bouguer gravit y contour map in the vicinity of the Rogerls Farm 

zone is shown in Figure 3-2, page 110. The gravit y map is char­

acterized by a simple, but predominant, regional trend decreas­

ing in magnitude towards the north. This effect is probably 

due to the thickening of the sediments in this direction and a 

corresponding increase in depth of the ultrabaslc rocks. The 

gabbroic rocks of the intrusion would have a significantly 

greater density tban the sediments and would explain the densit,r 

contrast causing the observed gradient. The regional trend is 

disturbed by a number of residual effects, one of which, located 

at approximately 105E and l60N, corresponds to the positive 

density contrast created by the Rogerls Far.m sulphide body. 

A portion of the magnetic data obtained by the Hanna 

Mining Company in 1968 is contoured in Figure 3-6, page 1/4. 

Readings were taken normally at 50 foot and occasionally at 

25 toot intervals along east-west grid lines spaced 200 feet 

apart. Although the gravit y and magnetic maps cover the same 

surface area, the relationships between their regional and 

residual features are vastly different. The high amplitude, 

and at times, erratic residual components of the magnetic 

field tend to overpower the more subtle regional changes. The 

reVerse is true, of course, for the gravity map wh1ch was seen 

to consist of relatively weak residual anomalies superimposed 

over a very strong regional trend. The regional features of the 
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magnetic data show up as depressions and moderate highs of 

relatively significant areal extent, and May be important in 

understanding the geologlcal environment of the area. The high 

frequency, high amplitude fluctuations of the magnetic map 

arise from two separate sources. The occurrence of massive 

pyrrhotite as the main constituent of the sulphide zones is 

partly respons1ble for associated magnetic anomalies. The other 

source, in the form of localized, high 1ntens1ty d1pole effects 

~th1n the ultrabasic rocks, probably represents abnormally 

high Magnetite concentrations. 

3-2 Filter1ng the Roger's Farm Potent1al Field Data 

and Discussion of Results 

A computer program was written to calculate the discrete 

form of the two-dimensional convolution 1ntegral (equation 2-4, 

page 52) upon given digitized potential field data and a set 

of fil ter coeff1cients. The gravity and magnetic maps of Figures 

3-2 and 3-6 were then dig1tized us1ng a square grid interval of 

100 feet. Consideri~g the erratic nature of the magnetic field, 

sampling and interpolation of the magnet1c data is muchmore 

susceptible to a11as1ng and other sampling effects than is the 

case for the smoother vary1ng grav1ty data. 

Gravit y Maps 

In the Bouguer grav1ty map of Figure 3-2, page 110, the 

residual features are of pr1mary concern and must be separated 
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from the well-defined regional trend. The second vertical 

derivative operator of Figure 2-15, page 87, was convolved 

ld th the data in an attempt to empbasize the b1gher frequency 

effects and, at the same ttme, to reject the regional. The 

resulting output is shown in Figure 3-3, page III • The second 

vertical derivative, in effect, represents the curvature of 

the potential field. Binee a positive gravit y or magnetic 

anomaly will generally show positive curvature at its center 

and negative curvature off its flanks, second vertical deriva­

tive b1ghs will usually be associated with adjacent lowsj a 

fact demonstrated in Figure 3-3. The main zone of the Roger's 

Farm mineralization, located at the center of the map, and its 

offshoot to the south-west are associated with well-defined 

second vertical derivative anomalies. The filter bas also 

clearly emphasized two pod-like disturbances north-east of the 

Roger's Farm zone. These anomalies may be due to the presence 

of small sulphide showings. 

The inverse wavelength fil ter of eut-off 0.075 cycle/D.I. 

(shown in Figure 2-14, page 85) was convolved with the Bouguer 

gravlty data in order to obtain the residual map of Figure 3-4, 

page //2. It can be seen that a well-defined residual anomaly 

with an approximate magnitude of 0.30 mgals. is associated with 

the main Roger's Farm sulphide zone. The smaller anomalies to 

the north-east, noted on the second derivative map, are also 

brought out b.Y the residual fil ter. Two relatively broad highs, 

one going off the map in the north and the other to the south-



107 

east, may result from an upward projection of the gabbroic 

intrusive. 

The residual and second vertical derivative filters seem 

to produce roughly the same results. The low frequency compon­

ents wb1chmake up the regional trend have been rejected and the 

higher frequency residual retained. The greater gain of the 

second verticalderivative at higher frequencies tends to pro­

duce sharper, more localized peaks than the residual fil ter. 

The second derivative also shows cons1derably less low frequency 

definitlon. The residual fil ter output of Figure 3-4 probably 

glves a very good approximation to the anomaly pattern produced 

by near surface density changes, but some low frequency defini­

tion has been lost in the process. In detailed Interpretations 

band profiling methods should be used to separate regional and 

residual features so that the Interpreter can use bis own skill 

and judgement. The value of the second vertical derlv~tive and 

residual operators lies in their abillty to uncover residua1 

anomalies and trends wbich mlght be overlooked otherwise. In 

addition, they provide some idea of anoma1y size and character 

which may assist in the planning of more detailed methods of 

Interpretation. 

The downward continuation operator presented in Figure 

2-22, page 97, was a1so app1ied to the Bouguer gravlty data. 

The northern portion of the Roger's Farm sulphide zone outcrops 

at the surface and raises serious doubts concernlng the validity 

of the downward continuation concept in its viclnity. In derivlng 
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the operator we have assumed that there are no intervening 

masses between the surface and the level of continuation, a 

condition almost never realized in practice. B.y attenuating 

the bigh rrequency response of the operator, however, we had 

boped to red.uce the risk of erratic fluctuations caused by 

near surface sources. Since the gravity data considered here 

probably violates this harmonie field restriction in certain 

places, its continuation downward will serve as a test of 

operator stabilit,y. The continuation of the rield to a depth 

of 100 feet (shown in Figure 3-5, page Il'}) has amplified a 

good deal or bigh frequency noise. There are, however, no 

points or serious distortion and most of the residual features 

bave been brought out. Considering the fact that no smoothing 

of the field was undertaken prior to convolution, the resulting 

output is remarkably good. The example does serve to demonstrate 

the bigh rrequency amplification associated with downward con­

tinuation, and also shows.that the derived operator can be used 

witbout baving to resort to severe smoothing. For more compli­

cated potential field maps, exhibiting high amplitude noise 

components, some for.m of smoothing would be necessary before 

any attempt was made to continue the field downward. 

Kagnetlc Haps 

The magnetic map of Figure 3-6, page 114, is character­

lzed by a nunber of high amplitude, high frequency anomalies, 

the most distinctive of which seens to be very closely related 

to the Roger's Far.m mineraI deposit. The magnetically depressed 
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areas bounded b,y the 800 gamma contours and surrounded b,y 

moderate magnetic highs are probably of greater interest 

because of the structural information they provide. These low 

areas may coincide with Islands or inclusions of metamorphosed 

sediments believed to have been lsolated from the main sediment­

ar,y mass b,y the intrusion of basic material. The "high" areas 

enclosing these depressions may be explained by the greater 

magnetic susceptibilit,y of the surrounding basic rocks. If 

these ~potheses are correct, then the boundaries of the mag­

netieally depressed areas would represent the contact between 

the intrusive and altered sediments and, therefore, potentially 

favorable zones of mineral deposltion. The Roger's Farm sulphide 

mineralization seems to be located along one of these contact 

zones. In an attempt to emphasize the boundarles of the magnet­

lcally low areas with respect to the dominant residual features, 

the noise filter of Figure 2-8 page 79, was applied to the 

magnetic data. Since the higher frequencies have been excluded, 

the resulting output, shown in Figure 3-7, page 115, is less 

erratic than the original map, and the delineation of the mag­

netieal1y depressed areas is somewhat enhanced. 

To afford a more drastic attenuation of the high frequency 

effects, the magnetic map was continued upward to heights of 

100 and 200 feet using the operators of Figures 2~19 and 2-20, 

pages 92 and 93. The continuation upward to 100 feet (shown in 

Figure 3-8, page 116) reduced the amplitudes of the residual 

components considerably, but has not greatly affected the lower 
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frequency components. As a result,the boundaries of the depres­

sed areas stand out clearly and their relationships to the 

residual features of both the gravit y and magnetic fields are 

easily seen. Figure 3-9, page 117, shows the magnetic field 

continued upward a height of 200 feet. Very little additional 

high frequency suppression bas been gained at 200 feet and, 

in fact, the delineation of the boundaries bas decreased some­

what. 

If the various gravit y and magnetic maps are compared and 

the relative positions of the gravit y and magnetic features 

observed, a number of correlations emerge. The gravity and mag­

netic residual anomalies associated with the Roger's Farm sulph­

ide zone occur along the boundary of a magnetically depressed 

area. Residual gravity features to the north-east and south-east 

of the map center also fall on or very close to similar bound­

aries. The magnetically depressed areas seem to coincide with 

lows on the residual gravity map, and magnetic highs of moderate 

amplitude, surrounding the depressed areas, usually coincide 

with moderate gravit y highs. The hfpothesis of sedimentary 

"Islands" surrounded by basic intrusives is compatible with 

these observations. If similar intrusives occur in the region, 

the contacts formed with such sediments May be potential sites 

of mineral depos1tion. 

The foregoing discussion was not intended to be a complete 

Interpretation of the gravit y and magnetic data presented, but 

simply an illustration of a few ways in which potential field 

filters might help the interpreting geophfsicist. 
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Cbapter 4: 

DISCUSSION AND CONCLUSIONS 

Prior to interpreting potential field surve,ys, the geop~­

sicist should familiarize himself with the limitations of the 

data and the conditions under which the.y were obtained. This 

should be done for any method in applied geop~sics but is of 

particular concern in gravity and magnetic surveys. Errors 

introduced b,y inaccurate observation, sampling effects, and 

various correctl~n procedures should be known within certain 

l1m1ts and their influences allowed for. In the case of gravity 

data, the systemmatic application of detailed corrections is a 

critical initial stage of the interpretation, and if not executed 

successfully may render the data unsuitable for subsequent 

Interpretation. The interprete~in addition to assessing the 

suitability of the data, should make every effort possible to 

gather available geologlcal and geopqysical information pertain­

ing to the problem at band. Raving completed these initial 

stages of preparation, the geopqysicist will be in a better 

posi tion to select sui table methods of analysis and interpret. 

the results. 

The application of frequency analysis and information 

theory to the problems of gravity and magnetic interpretation 

provides more than Just a convenient means of operator design 

and data processing. The insight gained b,y another point of 

view helps to clarify the more qualitative aspects of inter-
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pretation confronting the geophysicist. Included in this cat­

egory are the problems of anomaly separation, the elimination 

of noise effects, the detection and correlation of trends in 

the data, and the understanding of sampling processes. In these 

respects" potential field operators are of great assistance to 

the geophysicist as qualitative indicators or sensors of anom­

alous conditions in potential field data. Although the use of 

such operators complements it can never replace the experience 

and judgement of the Interpreter. 

The methods of operator design discussed in Chapter 2 

have been presented in a relatively elastic format in an attempt 

to illustrate the convenience and flexibility of the filtering 

approach. It is hoped that this will encourage improvisation 

and innovation in the design and application of potential field 

operat~rs. The author believes that one of the more important 

benefits to be gained from such a study is an understanding of 

the concepts of frequency analysis and information theory. Binee 

these topics arise in several other areas of geophysical explora­

tion, particularly in sei smic studies" the geophysicist should 

be aware of some of the more basic concepts and have some degree 

of facility in applying them. 

On the basis of the research undertaken in connection with 

th1s thesis a number of conclusions can be drawn: 

1) Many of the methods used in the past for the 

development of potential field operators can be substantially 

improved b.Y the introduction of digital processing techniques. 
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-
!he main weakness of these operators bas been their poor coer-

ficient coverage, a cbaracteristic necessitated b.Y their use 

in band calculation schemes. 

2) The two-dimensional wavelength filter deve10ped 

in this thesis appears to be a very useful means of separating 

the various reg1onal, residual, and noise components of a poten­

tial field wavefor.m. 

3) The inverse Hankel transform method, proposed 

in section 2-2, bas proven to be a highly versatile means of 

deriving two-dimens1onal, clrcularly symmetric operators of 

know.n frequency response. 

4) The dlscrete Fourier transfor.m provides a con­

ven1ent basis for quality control and comparlson of potential 

field operators. 

5) The adaptation of frequency analys1s and 

information theory to the processing and Interpretation of 

gravity and magnetic data adds a new dimension to potential 

field studies in applied geopq,sics. 
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