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ABSTRACT

The collection and subsequent manipulation of gravity and
magnetic data in applied geophysics can be conveniently described
in terms of the sampling and filtering of continuoﬁs, two-dimen-
sional waveforms. Viewed in this manner, most of the potential
field operators in common use fall far short of their expecta-
tions.

The use of filter theory and modern processing techniques
allows a more general approach to the problems of operator design,
and a more accurate approximation of potential field operations.
The inverse Hankel transform and a proposed wavelength filter
have been used in this thesis for the derivation of zero-phase,
two-dimensional potential field operators.

The concepts of frequency analysis and information theory
adopted in this filtering approach lend new insight and under-
standing to the problems and methods of gravity and magnetic

interpretation.
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INTRODUCTION

The gravity and magnetic methods of applied geophysics
involve the mapping and subsequent interpretation of potential
field variations over the earth's surface. These variations
or anomalies of the earth's main potential fields are due to
iocal changes in density and magnetic properties within the
earth!s upper crust, and may reflect a wide variety of geolog-
ical features. The sampling and analysis of potential field
anomalies are of particular interest in exploration geophysics,
since mineral deposits and related geological trends are often
assoclated with density or magnetic susceptibility contrasts.

Although a particular gravity or magnetic anomaly can-
not be traced back ta a unique source, its amplitude, shape
and areal extent help to limit the range of possibilities.
Large-scale structural or lithological changes occurring in
the deep geological section are usually accompanied by rather
significant density and magnetic susceptibility contrasts. The
resulting anomalous expressions are characterized by relatively
large amplitude, low frequency variations of the surface field
intensities, Becaﬁse the effects of these deep features may
extend over a considerable surface area they are referred to
as reglonal components of the anomalous field. The anomalies
of shallower sources, on the other hand, tend to be of low to
moderate amplitude, and more localized in extent. They are
referred to as the higher frequency or residual components of

the field distortion. The anomalous gravity and magnetic fields



observed at the surface of the earth can therefore be describ-
ed as a superposition of field effects originating from a sub-
surface distribution of sources. In interpreting potential
field data, the geophysicist attempts to separate and explain
the various components of the observed field and reconstruct
geologically significant features. Separating the components
of the anomalous field is an important part of the interpreta-
tion and will be a factor in the ultimate success of the survey;

The problem of anomaly discrimination can be convenient-
ly approached from the point of view of frequency analysis.
The variation of a potential field over the surface of the
earth shows phase and amplitude properties analogous to those
of electrical waveforms. The anomalous surface variation of the
gravity and magnetic fields may therefore be interpreted as.a
two-dimensional waveform arising from the superposition of
various wavelength components. Each subsurface source contrib-
utes its own spectrum of frequencies to the overall frequency
spectrum. Consistent with this outlook, interpretational aids
such as regional-residual separation, vertical derivative and
continuation methods can be viewed as filtering operations.
The adaptation of frequency analysis and information theory
to the design of potential field operators provides several
processing advantages as well as valuable insight into the
problems of interpretation.

The primary purpose of this thesis is to present methods
for the derivation and evaluation of two-dimensional potential

field filters. Emphasis will be placed on the waveform char-



acteristics of potential field data, and ample background will
be provided in the concepts of frequency analysis and sampling
theory. Several operators have been derived to supplement the

discussion, and some of these will be applied to actual grav-

ity and magnetic data.

The thesis has been divided into four chapters. In the
first chapter, relevant topics in potential field theory,
frequency analysis, and discrete sampling will be covered,
with particular reference to gravity and magnetic surveys.
Chapter two will be concerned with the derivation and assess-
ment of digital operators used as two-dimensional potential
field filters. New operators will be derived and compared with
those of previous authors. The third chapter will show how
operators are applied to gravity and magnetic data in an attempt
to enhance or subdue certain anomalous features of a potential
field waveform. A number of operators derived in this thesis
will be applied to gravity and magnetic data obtained over the
Roger'!s Farm sulphide zone near St. Stephen, New Brunswick.

In the final chapter, the role of operators in gravity and mag-
netic interpretation will be discussed and a number of conclu-

sions drawn.
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Chapter 1:
POTENTIAL FIELDS AND FILTER THEORY

1-1 Potential Field Surveys and Related Theory

Gravity and Magnetic Surveys

The earth, like all concentrations of mass, has a gravita-
tional field which attracts other bodies. The force of attrac-
tion per unit mass particle is proportional to the earth's own
mass, and inversely proportional to the square of the distance
between the mass centers of the earth and unit particle. The
gravitational acceleration at the earth's surface varies from
about 978.0 cm/sec? at the equator to 983.3 cm/sec® at the
poles., This latitudinal variation is caused by two partially
offsetting effects directly related to the earth's rotation:
the decrease in the vertical component of centrifugal force
toward the poles, and the concentration of terrestrial mass
about the equator. The gravity field is also disturbed locally
by density changes within the earth's crust. Geological informa-
tion contained in these localized, high frequency fluctuations
can be extracted from the observed gravity field variation
over the earth!s surface.

A gravity measurement taken at a particular surface
point samples the change in total gravitational field with
respect to a2 survey base station. The standard unit of meas-
urement is the milligal, equivalent to a gravitational accelera-

tion of 1X’10'3cm/sec2. Gravity anomalies of interest in
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geophysical exploration can be as small as 0.1 milligal and
seldom attain magnitudes in excess of 5.0 milligals. Gravi-
meters employed in geophysical surveys can detect differences
in gravitational acceleration of the order of one part in 108
(1.e.t0.01 milligal).

Before the data can yield intelligible geological informa-
tion, a2 number of corrections must be applied in order to
eliminate latitude, elevation, terrain,tidal,and instrument
drift effects; since these also cause variations in the apparent
gravity field.

The earth's natural magnetic field is the other predom-
inant potential field of interest in geophysics. It can be
approximated by a magnetic dipole inclined about 1l degrees
to the earth's rotational axis and slightly offset from the
earth's center. The orientation and magnitude of the total
field vector varies from horizontal at 0.35 oersteds in the
equatorial regions, to vertical at 0.65 oersteds near the
geomagnetic Qoles.

Most rock types in the crust show some degree of mag-
netic susceptibility due to the presence of magnetic minerals,
and will reinforce the earth's main field by induction. Various
forms of remanent magnetization may accompany the normally
induced component. These intrinsic or locked-in fields result
from environmental conditions at the time of mineral crystal-
lization, or else have been induced by lightning discharges.
The widespread and often erratic distribution of magnetic min-

erals in crustal rocks contributes large amplitude, high fre-
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quency fluctuations to the earth'!s main magnetic field. Geolog-
ical information concerning composition, structure, and origin
of crustal rocks is contained in such anomalous expressions.
However, the presence of unknown remanent components, and the
varying inclination of the earth's main field vector make
geological interpretation somewhat difficult.

Measurement of the magnetic field variation over the
earth's surface is accomplished with the aid of a magnetometer.
Surface surveys usually select the vertical direction as ref-
ence, and measure the variation in vertical intensity over the
ground. Aeromagnetic surveys, on the other hand, generally
measure the total magnetic field. The unit of measurement in
magnetic surveys is the gamma ( 1077 oersteds ). Instrument
sensitivity is in the neighborhood of *5 gammas. The majority
of magnetic anomalies lie in the range of 0.1 to 15.0 percent
of the earth's field, but values over 100 percent have been

observed,

Potential Field Equations

The interaction of gravitational mass, expressed by
Newton's Law of Gravitation, is one example of a force field
obeying the inverse square law. Similar relationships hold
for electric and magnetic force fields, and the terms "elec-
trical mass" and "magnetic mass"™ can be used to describe the
appropriate source type. The general inverse square law takes

the form:

2
F:/é 7, M2
fuzz (7—1 )
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where £ is the force of interaction between two mass particles,
m,and 7,, separated by a distance ¢, anddézis a constant deter-
mined by the type of source and the units employed. The force
f acts along the line joining the two particles.

Given a particular density distribution of source mater-
ial, the resulting gravitational force of attraction per unit
mass, at a point of observation P(x,y,2), may be expressed as

a volume integral:

For) =G [PENS) dr _
V=l (1-2)
4

where ¢ 1s the gravitational constant, p/£7,f) 1s the density
function of the mass distribution, and V its volume; and where
the position vectors /4 and 4 locate the mass element dm and the
point of observation, respectively (see Figure 1l-1a, pg 13).

The potential field associated with all such distribu-
tions of mass bears the following relationship to the force
field:

For) == U (r) (7-3)

(o4
where Uir) = -G éz:l_f?/ is, in this case,
J IF-5)

the gravitational potential. A potential field is a single-
valued, scalar function of position, continuous everywhere
outside the volume of source distribution.

The forces associated with the interaction of gravita-

tional mass are attractive and are taken in the positive sense.
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Electric and magnetic mass distributions, on the other hand,
contain both attracting and repelling elements so that negative
and positive particles must be defined. The term "particles"
used here is generally replaced by "charges"™ when dealing with
electric fields and "poles" when concerned with magnetic fields.
In the discussion to follow, only magnetic and gravity fields
will be dealt with since they are of primary concern in this
thesis.

In presenting the magnetic field equivalents of equations
1-2 and 1-3, the doublet or dipolar characteristic of magnetic
mass must be introduced. The single magnetic pole is a mathemat;
ical abstraction and does not exist in nature. An element of
magnetic mass can be visualized as a dipole of pole separation
aOfand strength/u (as represented in Figure 1-1b). The magnetic
field intensity at a point P, due to a dipole a distance 4

away, can be approximated by:

Her) = 227 cos e 4 77?5//\/95 (/-4)
/1% yE

vhere the dipole length dY'is very much smaller than the dis-

tance 4 , »23/l07'is the dipole moment, /~ is the vector from
the center of the dipole to the point P, # is the angle between
the dipole axis and the vector i? » and 5 is the unit vector
measured in the direction of increasing 6 . The magnetic force
field about the dipole may also be written in terms of a poten-
tial fiela:

Hery = = Ak (/-5)



15

where the magnetostatic potential is given by:
Atr) = =m - V(;’—)

Returning again to Figure 1-la, page 13, we can imagine
each eiement of mass dmto be in the form of a magnetic dipole.
If it is assumed that the magnetic mass contained within the
volume V has a continuously distributed magnetic moment per
unit volume, M(/), the total potential at P can be expressed

as a volume integral:

dv (/1-6)

Acr) = = | Mtr) Vv
v

oy

Substituting this expression into equation 1-5, and assuming
a constant direction of magnetization « , the resultant magnetic

field strength at point P becomes:

- J / dv -
Hr) vc-)-;(/wm,ﬁ_,_o, (1-7)
v

which is the magnetic equivalent of equation 1-2.

The partial differential equations summarizing the prop-
erties of potential fields can be derived by applying the
Divergence theorem to the system in Figure 1-la. If ¢ is the
potential function resulting from the distribution of mass in

the volume V , we may write, according to the Divergence the-

/V~(V¢)0’?f =/(V¢)'d5 +/{V¢)-c/5, (/-8)
S S,

Y

orem:

where \{ is the volume bounded by the surfaces § and §, in

Figure 1-la. Since the volume \4 is devoid of source materisal,
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the surface integrals on the right side of equation 1-8 are;
by Gauss! theorem, equal in magnitude but of opposite sign.
Equation 1-8 therefore reduces to Laplace's equation:
v =o (1-9)
At points external to the source distribution, gravity and
magnetic potential fields obey Laplace!s equation and are
termed harmonic. Within the volume of mass distribution the
potential functions satisfy Poisson's equations:
ViUtk) = 4mepirs) (1-10a)

for the gravity field, and

C wlA(k) = 4TV-Mk)  (1-705)
for the magnetostatic potential, where pr%x)and M¢4) are the
density function and magnetic moment, respectively, at the
particular point of observation. Equations 1-9 and 1-10 are
referred to as the field equations of potentizl theory and

are fundamental to the development of related topics.

The Equivalent Stratum

The equivalent stratum concept involves the replacement
of a three-dimensional source distribution by a density coat-
ing over a level surface. The dérivation given by Grant and
West (1965, article 8-3) is summarized here for convenience.
In Figure 1-2, page 17, a horizontal surface, z=0, of density
distribution & rxy) , subtends a point of observation P(0,0,-2).
The gravitational potential at point P, due to the density

layer may be written as:
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|
P(0,0,-%)
-
g y)
/’5"“ =0
g% x
J
Z
FIG.1-2: THE EQUIVALENT STRATUM

74
U, = -G O(r6) Fdodr
P 2 2V/
o8 (KEPrz2)/2

and using equation 1-3, page 12, the corresponding gravitational

force at point P is:
0 2

ag = g_(_//_,_ = éz//o’//;e)/-ded/- (7-11)
Z

(/7’2 + zz)B/z

o o
The above equation is valid at all points above the plane z=0.
As z approaches zero, however, the gravity effect near Q becomes
singular. The singularity can be isolated by surrounding Q with
a small circle of radius € , and rewriting equation 1-11 in the

form:
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€ 27

lim A4gp = [im 626‘@///’0’90’/' + 5,¥/ (+6) F dodr (/-/2)
Z0 Zz-»0 (F2+2%9) %2 (F2e22)32

The second integral on the right is entirely free from singular-
itiés and vanishes in the limit. The remaining integral can be
evaluated, assuming that ¢ 1is small enough to Jjustify using
a constant density function within the singularity circle. Then
equation 1-12 becomes:
Aga = 27r6 6 (@)
If the position of Q in the plane, z2=0, has not been restricted,
a more general form may be written:
49 x,y) =276 6(%Y) (1-13)

To an observer making a gravity measurement on or above the
plane z =0, the unknown distribution of mass giving rise to
the gravity effect, 4 yKX,y_), has been replaced by an equivalent
stratum of density function o’(x,y).

The equivalent stratum of magnetic mass is associated,
not with the force field, but with the magnetic potential:

/](x)y) =z2mk /‘/Z /z(z,g/)

where £ is the magnetic susceptibility of a homogeneous, mag-
netic surface, A(x,y) is the topographical variation of this
surface over the plane z =0, and Hz is the vertical component
of the main field vector.

The equivalent stratum concept is a useful means of vis-
ualizing density distributions below the surface plane of a
two-dimensional potential field survey. This is.especially true -
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when interpretation methods involve the surface integration of

the observed data.

Continuation of Potential Fields

Potential field data obtained on a plane z=0, above a
three-dimentional mass distribution, can be extrapolated or
continued upward to any desired height, provided that the
region of continuation is harmonic. The vertical direction
implied in the process is in keeping with the reference direc-
tion usually chosen in such surveys, and in this respect, it is
the variation of the vertical component of the field which is

involved in continuation.

In the diagram below, the underlying distribution has

=

been replaced by an equivalent stratum on the plane z=0. The
gravity effect at the point P(x,y,-2z) due to the surface density

variation 6457%) is:
@

49, = ez/ 5(£7) didy
/173
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where R = ﬁx-f)z #ly-p)2 + 22
According to equation 1-13, the density variation of the equiv-

alent stratum is:
6rE7) = Ay/cj'%)
276
therefore, the total gravity effect at P becomes:

/ / dg(&7) . /(’72) dE (1-14)

where 4%7641) is the sampled gravitational field on the plane
z=0. Equation 1-14 represents the upward continuation of the
gravitational field from the plane z=0 to the point P. The

equivalent expression for the upward continuation of magnetic
fields is:

z, = -_, M[/zrhﬂ dfdy (1-15)

PF-1

where the symbol 2, refers to the vertical component of the
magnetic field intensity. Alternate and more rigorous deriva-
tions of the continuation integral are given by Grant and West
(1965, chap. 8) and Kellogg (1929, chap. 5).

Downward continuation of the field below the plane z=0
is also possible, provided the region of continumation is harmon-
ic. Where this process involves projection of the observed
field below the surface of the ground, the harmonic restric-
tion becomes difficult to ensure. In practice, the effect of
intervening mass distributions must be eliminated, or at least
attenuated, before realistic results can be obtained.

The value of continuation methods in the interpretation
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of potential field data lies in the discrimination afforded
between shallow and deep anomalous sources. Shallow anomalies,
responsible for higher frequency variations in the observed
field, are attenuated with respect to deeper sources during
the process of upward contihuation. In downward continuation
the reverse is true, as higher frequency components become
more apparent against the lower frequency, deeper effects. The
connection between the continuatiop integral, equation 1-14,
and frequency analysis of potential field data will be discus-
sed in section 1-3 of this chapter.

1-2 Fundamentals of Frequency Analysis

The Fourier Transform

A periodic function‘fo), which is sectionally continuous

with only a finite number of discontinuities, can be represented

by an infinite series of sines and cosines. This Fourier series

takes the form:
)[({) = 2‘ Ccne/nwoz‘ (/-1¢)

ne-o

where the constants &, are given by:

/ 7 "R wot

- -/ Wy

@, = T///z)e oIt
- 7%

in which 7 is the period of f/z‘) and w, =27/7 is the

fundamental frequency.
Very often the functions toc be analysed are non-periodic

and require a more generalized form of the above expression.
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Substituting for «,, in equation 1-16 and letting the period 7
approach infinity:

o[ o
Fré) = / // o) e T [ et )
- -

where /im w, = 2mdw and /lim 34, = 2770 , With w , the
T T>00

.. frequency variable, expressed in cycles / unit of t . Equation
1-17 is a statement of Fourier'!s Integral Theorem, and relates
either the time domain or the space domain to its frequency

spectrum. The quantity in brackets is called the Fourier trans-
form of the function ](( ), and describes the frequency domain
of the waveform. The Fourier integral is referred to as the

inverse Fourier transform, being a reciprocal operation of the

former. The transform pair may be written as:
@

Fourier Flw) =/f(£)e“"’7"‘”“c/z‘ (/-18)

transform:
- 00

transform:

@
inverse Fourier ][(H =/F(w) e’"z”wfa’w (/-79)
-0

where F(w) is the Fourier transform of the waveform £(¢).
Unless 7((;‘) is an even function, the Fourier transform will
consist of both real and imaginary components:

Frw) = Rlw) + [Xw) = Atw) € /gt
where A(w) is the amplitude spectrum of ][/{} , and Jw) is
the phase spectrum. These transforms are a well-known and

convenient means of analyzing aperiodic waveforms in electrical
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engineering. The only serious restrictions on J//f) are that
its integral from ¢ = - to o exists, and that any discontinu-
ities in the function are finite.

Fourier transform techniques are also used in geophysical
interpretation, particularly in the analysis of seismic data,
and to a lesser extent, in the treatment of potential field
data. When an acoustlc energy pulse is directed into the earth
during a seismic survey, a portion of the energy is reflected
back to the surface as a result of density and velocity changes
in the geological section. A surface array of geophones will
detect the arrival of reflected energy and respond by producing
a set of electrical waveforms. When amplified and directed
through an appropriate set of filters, each signal or seismic
trace will yield geological information associated with the
density and velocity variations. Frequency analysis of seismic
records, using the Fourier transform, is normally the first
step in setting design criteria for seismic filters.

The filtering and frequency analysis of two-dimensional
potential field data, the primary concern of this thesis, will
require a two-dimensional version of the Fourier and inverse

Fourier transforms:

o
£ (u,v) =//f(z,y)e'j27wx+Vy)a’xc/y (/-20)
-

@
f ez, y) ://F(U’V)e}.ZV(Ux+Vy)dua’V (1-21)
lo



24

where u and v are the frequencies along the x and y cartesian
axes. In the event that f (x,4) is circularly symmetric about

the origin, the above equations become:

@
Frlu,v) = 4// (%, y) CoS(2mux) Cos (27 vy) dxag, (/-22)

@
J[(z,y) = 4//Fru,v/ ¢os(amux) cos(2Tvy) dudy  (1-23)

Alternatively, we may introduce polar co-ordinates in equation

1-20: v=p cosg , V :/DSM/¢

X = Fcosg 5 y=FSNE

and obtain:
a ar

£ P =//J[(*)e"”"’fm’m””)» dodr

o o

Using the zero-order Bessel function of first kind in the form:

27
__! -7 CcosB
Sy (2) =5- | e dp
o
we may write, finally:
@
Fip) = 2T Ffer) J, (2mpr) - dr (1-24)

o

Similar treatment of equation 1-21 yields:

@

J[(/a) = 2T /‘—//D) '-]z; f.Z7f/0/‘)/D dP (/—Zj)

4
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where / 1is the radial distance measured from the origin and‘p
is the frequency in that direction. Equations 1-24 and 1-25

are known as the Hankel and inverse Hankel transforms of zero
order and exist only if ]((x,y) =f(/—) is a circularly symmetric

function.,.

The Convolution Integral and Filtering

The well established concepts of filter theory, employed
in the analysis of electrical waveforms, are directly applic-
able to the filtering of seismic and potential field data. The
fundamental relation inherent in all filtering operations is

the convolution integral:
J’;(é) =/J§(r) W(t-7) d7r {(/-26)

where j&f}) is the input waveform and could represent an elec-
trical signal such as a seismic trace, W (%) is the welghting
function or transfer function which operates on the data input,
and jﬁ({) is the filter output.

The significance of the convolution integral will be
more clearly understood if a transformation is made to the
frequency domain. Tsking the Fourier transform of each side of

equation 1-26:
[+2]

a
/f; ('f) e—fzﬂ’wl.;f ://ZZ (7) W/f-?')d?j e-/kvw/f—r)e—;:zifwra/z‘
-

4

2 ao
—f2rw (-1 .
:/W/zl—r)e JRIrw Q(f-r)ﬁ(r) e—fZ?'o)g?’
-0 -
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that is:
£ lw) = Yiw) - F}(w) (/1-27)

where £w) , Y(w), and F;/(w) are the Fourier transforms of
the filter output, the weighting function, and the input wave-
form, respectively. Eqﬁation 1-27 shows that convolution in the
time or space domain corresponds to multiplication in the fre-
quency domain. In the same way it may be shown that frequency
domain convolution represents time or space domain multiplica-
tion.

The convolution of an input waveform with a filter func-
tion is shown both graphically and schematically in Figure 1-3,
page 27. The top diagrams (Figures 1-3a to 1-3c¢) show the
actual manipulation involved during convolution. The weighting
function W/(4).is reversed and superimposed on the input wave-
form so that its ordinate, or zero point, coincides with a
particular position 77 = f(. In this way a correspondence is
set up between the " 77 axis" of the input waveform and the "7
axis" of the output. The product of the two functions is then
integrated over all values of 77 and the resulting value plot-
ted along the output axis at ¢ = ¢7. This procedure is fol-
lowed for all values of ﬁ s giving the convolved output of
Figure 1-3c. The frequency domain diagrams, located below the
corresponding time domain plots, show how the amplitude spec-
trum of the input waveform is modified. The phase spectrunm,
not shown here, has also been altered. The transfer function

VV/f)is referred to as the impulse response of the filter,
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since convolution with a unit impulse as the input waveform

gives:

f (g) =/f(7£) Wwt-7)dr = W (¢)

0 t<o

where f'(¢) = ; 0’ f:g} is the unit impulse. In the

example of Figure 1-3, |/(#) may be considered the transfer
function of a "smoothing filter", as high frequency components
of_f}(71 have been attenuated. Figure 1-3d is a schematic
representation of a set of transform operations exactly equiv-
alent to the convolution process.

In the filtering of electrical waveforms it is useful to
think of the signal being directed through a stationary filter,
since the output depends only on past and present values of the
input. Filtering of space domain data, on the other hand, gen-
erally makes use of all surrounding information, and a "running
filter" concept, as adopted in the foregoing description, would
seem to be more appropriate. These two outlooks are exactly

equivalent mathematically, since convolution is commutative;

that is: @ @
/f,-(?’) Wit-1)dr = /14//7');6 (t-7) d7
-0 %
or )[* W = M/*j[ where the asterisk

denotes convolution.

The filtering of gridded potential field data, to be dealt
with at some length in this thesis, will require the use of a
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two-dimensional form of the convolution integral:

@
jf/x,y) =//]€ (&37) W/x—[,y-?) a’;"o’7 (/-28)

-

Autocorrelation and cross;correlation are two concepts
closely related to the convolution integral and of considerable

importance in spectral analysis. The autdcorrelation function:

D
£ ) ;/fmf(r-f) Jd7 (/-29)

-
is similar to the convolution of a function with itself, except

that there is no reversal before multiplication. In the time
and space domains the autocorrelation of a real waveform is an
even function, with the peak value occurring at the point t=o.
The frequency response of autocorrelation is the power spectrum

of the input waveform. The cross-correlation function, given by:

a?
f“ () =/f(7)y (7-¢) JdT (/-30)

is used to measure the degree of correlation between two wave-
forms £ (%) and‘7/¥). If the cross-correlation is characterized
by a well-defined central peak at 7 = #’, the two functions
are said to exhibit a high correlation at the point 7= ¢’ .
Autocorrelation and cross-correlation are used extensively in
the processing of seismic data, for such purposes as design of
digital filters, power spectrum analyses, and trace correlation.
Treatment of these subjects is given by Wadsworth, Robinson et
A1.(1953) and Robinson and Treitel (1967). Cross-correlation
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teciniques have been applied to gravity and magnetic data to

help bring out linear trends in geological structure.

Discrete Sampling of Continuous Waveforms

Up to this point the discussion has centered around spec-
trum analysls, as related to continuous or partially continuous
functions. In many instances, observed functions are sampled
at dlscrete points so that numerical methods of analysis might
be employed. The use of digital recording in a wide variety of
monitoring systems is a common example of high density, discrete
Sampling. Potential field surveys in geophysics are conducted
by sampling the continuous field at discrete station points.
Because of the importance of discrete sampling in many forms of
analysis, its effects on the original function are of interest.

 If a bend-limited function f() is sampled at n discrete,
equally spaced points f;1 , the Sampling Theorem states that
a unique and exact reconstruction of‘/Yf) can be obtained from
f; , provided the sample interval is less than or equal to
1/2W.. The symbol (. denotes the frequency above which the
amplitude spectrum of the band-limited function is zero. Figure
l-4a, page 31, shows a band-limited function and its amplitude
spectrun. Discrete sampling of a function‘f(f) is equivalent
to multiplying the waveform by an infinite sequence of equally
spaced unit impulses. The unit impulse sequence, shown in Fig-
ure 1l-4b is denoted by:

ZL 14
a7 (=) =n§ma/‘/zi7_:_zz)
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and is referred to as the Replicating function. Its Fourier

transform is a multiple of itself and may be written (Bracewell,

1965):
F/ZZY/%/ = 7 77 (7w)

Consequently, when f£/£) is sampled, its frequency spectrum /Frw)
is convolved with an infinite sequence of impulses of spacing
7, causing replication of F@)at a period of 1/wy. The "fold-
ing frequency", Wy , 1s the highest frequency which can be
detected with a particular sample spacing 45 , and satisfies

the following condition:

_ 7
Wt =57s

The folding point «Jy 1s also known as the Nyquist frequency.
It can be seen in Figures 1-4c and 1-4d that if W, , the band
limit of the function, is less than or equal to &) the fre-
quency response of f ({) can be extracted from the periodic
spectrum. If the sampling density is reduced past this limit,
as in Figure l-4e, the periodic reproductions of /@) overlap,
causing distortion in the vieinity of the folding frequency.
This is simply a restatement of the Sampling Theorem, in that
the original spectrum of a sampled, band-limited function can
be recovered if the sample density is adequate. The recovery
process is called interpolation and consists of convolving the

sample sequence f  with the "sinc" function:

fré) = f, % Sinc(zw )

where Smc(x) = Sin (mx)
Tx
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Discrete sampling of continuous, semi-infinite functions,
such as in digital waveform analysis or potential field surveys,
must be restricted to a practical sample size. The abrupt termina-
tion or chopping-off of the function at the sample boundaries
contributes high frequency, low amplitude components to the data.
The presence of noise also contributes to the upper portion of
the spectrum. For these reasons, such functions cannot generally
be considered "band limited" when sampled. Even with relatively
dense sampling, a substantial portion of high frequency noise
may exist above the folding frequency, and thus, fold back on
the lower spectrum. This distortion of the lower spectrum by
frequency components above the folding point is called aliasing,
and can be a serious ‘problem in the sampling of noisy waveforms.

Selection of the sampling interval or station spacing in
gravity and magnetic surveys is based largely on the size of
target anomalies expected. If the frequency content of an anom-
aly is in the vicinity of the Nyquist or folding point, aliased
noise could partially obscure the target. In such cases it might
be advisable to increase the sample density. Figure 1-5, page 34,
shows the effects of discrete sampling and truncation of a semi-
infinite, continuous waveform.

The discrete sanpling of two-dimensional waveforms is a
direct extension of the one-dimensional case. The Replicating
function over the x-y plane may be viewed as a "bed of nails",
sampling over two-dimensional space.

Additional treatment of discrete sampling may be found in
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texts by Bracewell (1965, chap. 10) and Papoulis (1962, chap. 3).

1-3 Frequency Analysis of Potential Field Data

Variation of the earth's gravity or magnetic field over
a horizontal survey plane has all the features of a continuous
two-dimensional waveform. The total field can be visualized as
a superposition of potential effects from individual mass
elements. Sources Just bélow the plane cause high frequency,
local distortion, while deeper mass concentrations contribute -
moéf of the low frequency variation. Since the purpose of
gravity and magnetic surveys in applied geophlysics is to extract
geological information from these potential field variations,
frequency analysis of the data should prove useful.

Actually, the adoption of a frequency analysis approach
to gravity and magnetic interpretation has a number of distinct
advantages:

1) The size, shape, and location of potential
field anomalies are waveform properties which can be convenient-
ly represented in terms of spectral amplitude and phase response.
The variation in anomaly frequency content provides a basis for
source discrimination.

2) The well established body of Information
theory, perfected and applied in electrical engineering and
seismic processing, can be adapted to two-dimensional potential
field data. |

3) Frequency response is an exceedingly useful
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criterion for the design and analysis of two-dimensional grid-

ded operators.

4) Spectral analysis and filtering of discrete-
ly sampled data are well suited to digital processing techniques.
Large quantities of data can therefore be handled in a relatively
short time.

5) Finally, the added insight provided by -
another point of view is of great value in understanding the
purpose and effects of various methods of data processing and

interpretation.

Spectral Form of the Inverse Potential Problem

Separation of density or magnetic susceptibility varia-
tions on the basis of their potential field frequency expression
is not a straightforward proposition. The most obvious reason,
common to many forms of spectral investigation, is the spectral
overlap of source disturbances. In dealing with potential fields,
there is a more fundamental reason associated with the inverse
potential problem. About any known distribution of mass there
exists only one possible potential field. The inverse statement,
however, is not true, in that any number of source configura-
tions can be found to explain a certain potential expression.
This inability to determine a unique source on the basis of
observed potential field information is amply demonstrated in
all phases of gravity and magnetic interpretation. The inverse
potential problem, when reduced to simplest terms, means that

effects of density (or magnetic susceptibility), depth and
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shape of massive bodies cannot be separated simply by observing
theif gravity (or magnetic) anomalies. A simple illustration
is sufficient to show how the frequency spectrum is affected.
Consider two anomalous masses of approximately the same volume
and density contrast, one a shallow, flat-lying, blanket-like
body; the other a spherical body of greater depth. The poten-
tial field spectrum of the shallow anomaly would be character-
ized by a considerable portion of low frequency component by
virtue of its blanket-like shape. The spherical body would
also contribute significant low frequency response because of
its greater depth. Thus, even though the two bodies are vastly
different structurally, their low frequency components may be
virtually impossible to separate.

Despite the ambiguity induced by the inverse potential
problem and normal spectral overlap, a substantial degree of
source discrimination is possible. High frequency distortion of
a continuous potential field can result only from the presence
of nearby sources, and it may be assumed, although with far
less certainty, that low frequency distortion is more likely
a result of distant masses. In applying these observations to
discretely sampled potential field data, we must realize that
sampling or station noise, coupled with the aliasing effect,
contributes both high and low frequency distortion.

Potential Field Filtering

One of the first comments suggesting that certain proces-

sing techmiques for gravity and magnetic data were similar to
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waveform filtering was made by Nettleton (1954). The paper
discussed separation of shallow residual anomalies from deep
regional features. Dean (1958) discussed the advantages of
exploiting frequeﬁcy analysis in gravity and magnetic interpreta-
tion and provided theoretical background. A table of possible
potential field filters is given on page 113 of his paper.
Mesko (1965) considered frequency analysis as applied to grav-
ity interpretation, while Darby and Davies (1967) presented
methods for the analysis and design of two-dimensional filters.
Examination of the frequency characteristics of previously
published grid operators, as well as the design of new two-
dimensional operators was undertaken by Fuller (1967).
Manipulation of gravity and magnetic data can take sev-
eral forms, depending on the complexity of the potential field
waveform, the purpose of the investigation, and the quality of
the data. Discrimination between relatively high frequency,
shallow effects (residual), and the more gradational, deeper
trends (regional) is generally termed regional-residual separa-
tion. This may be accomplished graphically on contoured data
or by the application of coefficient sets (refer to Nettleton,
1954). In areas of poor residual definition superimposed over
a complex or predominant regional, second vertical derivative
or continuation methods might be used to amplify the higher
frequency features. Techniques are also available for delinea-
tion of trends in the data which may reflect important geolog-

ical controls. These and other interpretational aids can be
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considered filtering operations. To demonstrate this fact,
consider the previously derived continuation integral, equa-
tion 1-14, page 20:

w
-2 49 (&%) ded (1-14)
A9 '277*/ J 57 p 1 3,
. /Ex—é')qu-{y-?;) +zf7

This relation can be expressed in the form of the convolution

integral, equation 1-28, page 29: |
a@
49, =//Ay/;€7z)° W(x-£54-7) U 97
-

where Ajp , the upward continued gravity effect, is the filter
output, A_?@’Z) is the observed gravity data or input waveform,

and = /2 ”

[(2=£)% + ty-2)%+ 2%/ &

W(Z-c";y-?) =

is the filter weighting function. If the Fourier transform is
taken for each side of equation 1-14, we obtain (refer to

Grant and West, 1965, page 218):
-s2mtug+Vy)

@
@ .
//A9F e-fzﬂ'/uxﬂ/y)dzdy - e-zﬂ‘zm//dyfé-?)e o’f’o’{
~-2

-@

—2TENURLVZ

or Foo tuv)= € £, (v, V) (/-31/)

where £

o (uv) and £ (u,v) are the Fourier transforms of the

upvard continuation output and the input data, respectively,
and Z is the height of continuation. If we invert the process

and seek to obtain the downward continued field Ay/égy) , the
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corresponding transform relation obviously becomes:
- /£ 2
Fo luyy) = @ 2IEVURRYE e /= i v) (/-32)

Equations 1-31 and 1-32 show that upward and downward
continuation of potential fields are actually filtering opera-
tions, each exhibiting a definite frequency response:

-2MZYu2+v2
upward continuation : YUP (u,v) = € (/-3 3 )

e 27rZz YUz2+v=a

i

downward continuation: )/D ( U, V)

The design of two-dimensional discrete filters will be

the subject of Chapter 2.
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DESCRIPTION AND DESIGN OF
TWO-DIMENSIONAL POTENTIAL FIELD FILTERS

2-1 Characteristics of Some Potential Field Operators

The use of potential field operators is not new to grav-
ity and magnetic interpretation. In the past, their derivation
and application were confined to the space domain and computa-
tions were done by hand. Consequently, the filtering aspects of
potential field modifications were either poorly understood or
ignored altogether. In recent years, greater access to digital
computers and increased awareness of the importance of spectral
analysis in operator design have substantially altered the
approach.

In this section, space and spectral properties of several
important potential field operators will be described, and their
significance to potential field data discussed.

Wavelength or Boxcar Filter

The wavelength filter, in its various forms, may be consid-
ered analogous to standard electrical filters of the high-pass,
low-pass, and band-pass types. The one-dimensional form of the
continuous wavelength filter is the "sinc" or interpolating
function shown in Figure 2-la, page 42. Its amplitude spectrum
shows a cut-off at 0.5 cycles/unit, where the "unit" is meas-
ured along the space domain axis. The two-dimensional extension
of the sinc function:

Sitnccz) - sinc (y) = SMm(Tx) - SIin /77:7)
w2 xy
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does not exhibit circular symmetry in the frequency domain and
therefore proves inconvenient as a two-dimensional wavelength
filter. Zerflueh (1967) made use of this cartesian form and

found it necessary to apply trial and error smoothing to approach
circular symmetry. The author has found that the use of an atten-
uated Bessel function of first order and kind is a more useful

approach, since its Hankel transform, and therefore frequency

response, 1is:
1 ror pios cveres/owrr

0
0 For /70.; ”

F=o

where / 1is radial distance over two-dimensional space, P is
radial frequency, and QC and aC represent the zero-order and
first-order Bessel functions of first kind. The proof of rela-
tion 2-1 is givéﬁ in Appendix Al, page /23. Figure 2-1b, page 42,
shows a radial profile of the two-dimensional wavelength operator
and its frequency response,

Because addition in the space domain is equivalent to addi-

tion in the frequency domain, i.e.

/ijgé +:%;)Z = Fllw) * fp ()

where £ denotes the Fourier transform, the conversion of the
fundamental wavelength or boxcar filter to band-pass and high-
pass versions is a simple process. The subtraction of two low-
pass fillters of different cut-off frequencies, V< and /5 ’
results in a band-pass operator of bandwidth A, -5 . A high-

pass filter can be obtained by subtracting the standard wave-
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length or low-pass filter from a unit impulse d s Since the
frequency response of the unit impulse is unity for all wave-
lengths. The versatility and design possibilities demonstrated
by the standard wavelength filter will be of considerable value
in two-dimensional potential field filtering.

An obvious application of the wavelength filter is in
regional-residual separation of gravity and magnetic data.
Its success in this role would depend on the degree of discrim-
ination between regional and residual spectrums. Where local
conditions or sampling errors contribute a high noise level to
the potential field, the flexibility of the wavelength filter
allows derivation of a convenient smoothing function. Griffin
(1949), Nettleton (1954), and others have discussed the use
of operators for regional removal from gravity and magnetic
data. Except for the operators suggested by Zerflueh (1967)
most are only poor approximations to the wavelength filter.
With the present availability of digital computers, discrete
versions of the continuous wavelength filter can be convolved

with potential field data to give a more realistic output.

The Second Vertical Derivative

A strong gravity or magnetic regional trend may partially
conceal or camouflage the high frequency residual information
of shallower sources. Even though these shallow effects may
not be obvious on a contoured map, vertical derivatives of the
observed field will detect and amplify them with respect to the

deeper features. Vertical derivative methods can therefore be
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likened to high-gain, high-pass filters.

The second vertical derivative is generally favored over
the first and higher vertical derivatives for several reasons.
It 1s a more convenient filter both in terms of derivation and
the interpretation of its output. Although quantitative evalua-
tion of derivative results is not practical in itself, the
second vertical derivative output bears a strong resemblance
to a residual map. A well-designed second derivative operator
should be capable of amplifying most of the useful high fre-
quency information without requiring the excessively large
galns of higher orders. In addition, the amount of noise in-
duced by the calculation process increases with derivative
order, so that higher derivatives are Just as likely to obscure
as enhance geological information. 0dd order derivatives, like
the first vertical derivative, have been used to bring out
gradient features of the gravity or magnetic field, but their
results are difficult to interpret.

If we assume that the gravity or magnetic force field
fY73Q)’ over a horizontal survey plane, is harmonic and there-
fore obeys Laplace!s equation:

TfEn  Hap | fen _,
=2 df* Ip*
then, the second vertical derivative of the waveform can be
obtained directly as:

YEfl6y) A LA _
= - [ = = £ (2-2)
)27 ('a{z aﬂz) { 577)



46

Taking the Fourier transform of both sides of equation 2-2, we

e
/_-/ ? fi)’zy: 4T3 u2+V2) Fuy) (2-;")
z

find:

o

where F/u,v) is the Fourier transform of the potential field
waveform'féﬂy). Obtaining the second vertical derivative is
therefore equivalent to applying a filter of frequency response:
Yeu,v) = 4% (u2s Vi)

Figure 2-2, page 42, shows the theoretical second derivative
frequency response both in plan and profile. Only the first
quadrant of the amplitude response is shown since it is cir-
cularly symmetric.

Peters (1949), Henderson and Zietz (1949), Elkins (1951),
and Rosenbach (1953) have dealt with the second vertical deriva-
tive as a space domain operator, while Darby and Davies (1967)

have considered both its space and spectral properties.

Continuation Operators

The filtering properties of upward and downward continua-
tion were derived in section 1-3 and are summarized in equatioms
1-31 to 1-33. The frequency response of upward continuation:

) Y _ — 2 ZNUZ #yZ
ve - €
may be termed high frequency rejection. The downward continua-

tion operator is basically a high frequency amplifier, with

r se:
esponse y - e ZFEW
h =

In both cases, Z 1is the distance of continuation and u and v

are the frequencies in the x and y cartesian directions.
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Figures 2-3 and 2-4, pages 48 and 49, give plan and profile
views of these theoretical frequency functions.

The continuation of potential fields has recelved a sub-
stantial amount of attention in geophysical literature. Clas-
sical papers by Bullard and Cooper (1948), Peters (1949), and
Henderson (1960) provide ample background as well as several
space domain methods of‘operator design. Dean (1958) and Fuller
(1967) approach the design problem by an alternate route, making
use of the theoretical frequency responses given above.

Upward and downward continuation, unlike most other poten-
tial field operations, have an inherent physical significance,
since they map the field changes involved in movement away from
or toward source distributions. The main constraint on this
process is that the region of continuation be harmonic. The
ability to projJect the observed gravity or magnetic field above
or below a survey plane would be a valuable asset to the inter-
preting geophysicist, and this fact probably accounts for the
popularity of the continuation concept. Although a good approx-
imation to the upward continuation process can be obtained with
very little difficulty, the inverse operation, that of down-
ward continuation, is greatly affected by the noise content in
data and the presence of unknown density or magnetic susceptibi-
lity changes in the region. These factors, coupled with several
operator deslign problems, must be taken into account when deriv-
ing or applying a practical downward continuation operator. The

assumptions and procedures involved in the derivation of the
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continuation integral have already been considered in section
1-1 (pages 19 to 21).

Before proceeding to design considerations, it might be
instructive to comment on the circular symmetry exhibited by
the above operators, both in the space and frequency domains.
The phase and directional properties of the potential field
spectrum define the location and orientation of source anom-
alies, The purpose of the filters described above is toc modify
only the amplitude spectrum of the gravity and magnetic data,
leaving location and trend information undisturbed. The opera-
tors must therefore have a phase response of zero and a cir-
cularly symmetric amplitude spectrum. The space domain expres-
sion, or impulse response, of the filter will also exhibit
circular symmetry under these conditions, as required by the
inverse Hankel transform. Operators capable of phase and trend
modifications, although not discussed in this thesis, can be
developed for more specialized interpretational schemes.

Space and spectral properties of some potential field
operators are summarized in Table 1, page 51. The list is intend-
ed to serve as a guide in the discussions to follow and in no

way represents an exhaustive documentation of the filter pos-

sibilities.

2-2 Filter Representation and Design

Operators for Discrete Data

The mathematical concepts of Information theory must be
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reduced to numerical forms capable of handling digitized data.
The data itself is assumed to be defined at each grid point of
a two-dimensional cartesian system. If the potential field has
not been uniformly sampled, the required grid values can be
interpolated from a contour map of the original survey. The
two-dimensional convolution integral, equation 1-28, page 29,
may be approximated numerically by:

£ (%, 4) =m=-u é_- C,m,,_]é (mdf, nay)af sy (2-4)
vhere (= W/z-MA/,y—nA?) is a set of coefficients repre-
senting the filter weighting function at 2M X 2N discrete points,
*M and tN representing the survey limits. The two-dimensional

Fourier and inverse Fourier transforms may be represented by the

numerical forms:

2T umAX + V”Ay)

M N
/c—fU,V} =22 )[(mAZ,nAj/) (= AXAy (2.—;)
- =N

S 2mr(xhau+y/av)
VAL =§% F(hau,fay) €T HETIEY 41iay (2-4)

The numerical equivalents of the zero-order Hankel and inverse

Hankel transforms (equations 1-2/ and 1-25, page 24) are:

Fip) = 272 f{mA/-} L (ampmaF) m rar)* (2-7)
K
fer) = z/zg’ Flhap)J, (amdapr) £ (4p)F (2-8)
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In the above equations 4x, 4y and 4/ are increments of dis-
tance bounded by the limits * M and * N. Similarly, 4u, 4 v,
and 4p are increments of frequency. within the limits ¥ K and % L.

The operators used in digital convolution are in the
form of ceofficient sets. Each coefficient Ck/ defines the
filter!s welghting function or impulse response at the partic-
ular grid point (/,/). The summation of coefficient-data prod-
ucts in equation 2-4, page 52, is a numerical approximation of
the convolution process. Equation 2-5 can be used to examine
the two-dimensional frequency response of a certain coefficient
set, while equations 2-7 and 2-8 will be of value in operator
design.

It is probably unnecessary to point out the great impor-
tance numerical analysis assumes in all phases of engineering
and applied mathematics. Where large amounts of data must be
processed on digital computers, or when mathematical operations
cannot be conveniently handled analytically, numerical methods
are generally applicable. Care mﬁst be taken , however, to
undefstand all the implications involved in going from the exact
problem to the numerical approximation. The folding frequency
and aliasing effects, noted previously in the discrete sampling
of continuous waveforms, are examples of numerically induced
disturbances. Successful application of numerical methods depends
on the recognition of certailn advantages, and at the same time,

a thorough understanding of the inherent limitations.
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Analytical Design Methods

If the criteria for operator design are restricted to the
space domain they will be termed analytic. Although this usage
might be somewhat ambiguous, it is meant to distinguish between
direct numerical derivation in the space domain and transform
methods, which make use of spectral properties.

Regional-residual operators developed and used in the
past were more empirical than analytical. The simplest consist
of a single ring,of some preselected radius, around which the
gravity or magnetic values are averaged. The average is taken
as the regional, and when subtracted from the value at the
center point gives the "residual effect™ at that point. It is
apparent that results will depend largely on the circle radius
selected and the complexity of the potential field. Further
information on the center point, single ring operator is given
by Griffin (1949) and Nettleton (1954).

The wavelength operator introduced in section 2-1 is well
suited to the analytical derivation of coefficient sets. Once
the areal extent of the operator has been fixed by selecting the
desired cut-off frequency, the required coefficient set can be
obtained by simply evaluating the following function at each

grid point:

SJ,- (gfymz+n2)
ZYom2ern?

where (';; is the coefficient at grid point (/,/) and

Comn = (2-9)

g = D'I°/%f' is a scale factor, D.I. being the grid spacing
co
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or data interval, and‘ﬁw the cut-off frequency in cycles/D.I.
The symbol JC( ) represents the first-order Bessel function of
first kind.

In designing high-pass operators the standard wavelength
filter is merely inverted. Figure 2-5b, page 56, shows that the
sinc function approaches the unit impulse as the distance 4 x
approaéhes zero. The discrete unit impulse, however, is exactly
equivalent to the grid-sampled sinc function (see Figure 2-5c¢),
and accordingly, like the continuous impulse, exhibits a response
of unity in the frequency domain. In a similar manner it can

be shown that the two-dimensional discrete unit impulse, defined

by the function:
SIn (mdAx) - 5/n (ﬁ-nd‘y)

.[(772,7‘6) = 2
7 '%z7zzingy

where Ax= 4y is usually set equal to 1 unit, has a frequency
response of unity over the u-v frequency plane. The inverse or
high-pass operator, as shown in Figure 2-5e, page 56, is the
difference between the discrete unit impulse and the correspond-
ing wavelength or low-pass operator.

Band-pass filters may be obtained by subtracting two wave-

length operators of different frequency cut-offs.

Numerical methods proposed for the approximation of deriv-
ative and continuation operations generally fall into one of
two categories. Direct approximation of the convolution integral
might be attempted whenever the two-dimensional expression can

be conveniently reduced to a one-dimensional form. Another
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approach which has been applied in the derivation of continua-
tion and derivative operators, expands the potential field in
vertical or horizontal directions according to Taylor's theorem.
In view of the emphasis given analytical techniques of operator
design in the literature, a brief description of several methods
and resulting operators will follow. Although the hand calcula-
tion schemes proposed are, by modern standards, outdated, the
numerical concepts involved in the development of these "template
operators! are both interesting and instructive.

In a well-known paper, Peters (1949) described methods
for executing continuation and derivative operatioxis as related
to magnetic interpretation. Introducing polar co-ordinates and
averaging the data on circles about the operator origin, the

continuation 1n%egra1 assumes a one-dimensional form:

f”;j’:’/') = f;;)/7/~a’/- (2~70)
(/)2+ /,.z) 3/p

27

where T/(;.) =L f{#a) de ’ ]((/-;9) is the observed potential
o

field data expressed in polar co-ordinates, and f (x,y,-h)
represents the upward continued value of the field to a height
h. With the point (x,y,0) as operator origin, Peters selected
nine circles varying in radius from #, =1 to /3::715? grid
units and approximated the integral of equation 2-10 by the sum:

)‘“’;ﬁ; -h) = f(/z) + f(i’) /”.d/‘ +f//-,) +J[(/"z) ﬁ/-a//— £ ...

(/72 /.2)% ( 2 /_-?-}3/2.



58

Integrating and collecting terms, the expression reduces to the
form:

f(z,y,-é) = Co flr) + f,f;;,) £ oo F C,f;-/-}) [2-17)
where the constants C} represent the operator coefficients.
Since they were to be hand computed, the circle averages fﬂ&q are
determined on the basis of a limited number of grid points: the
two inner circles use four points each, while the others use
eight. Peters! upward continuation operator for h=1 grid unit
appears in digital form in Table A-1 of the Appendix (page /25 ).
Each entry in the table represents the weighted coefficient
value at the indicated grid point. Since the operator is cir-
cularly symmetric only the first quadrant need be defined.
Grid points which do not enter the calculation have been left
blank and assigned a coefficient welght of zero. The format
Just described will be used to tabulate coefficient sets studied
in this thesis, since it provides both a convenient basis for
comparison as well as the digital form required for frequency
analysis.

One weakness of the upward continuation operator of

Table A-1 is the sparse coefficient coverage for larger radii.
This effect contributes distortion to the frequency response
and results in a poor approximation of the continuation integral.
On the other hand, increasing the coefficient density would
not have been an attractive proposition in view of the great
deal of time required for hand calculations. Peters points out
that interpolation formulae may be used to obtain better approx-
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imations to the average data function }[—(-;-) . Henderson and
Zietz (1949 - b) made use of the trapezoidal rule in a slightly
different treatment of equation 2-10.

A similar, but more accurate approach is possible with
the aid of a digital computer. A coefficient may be determined
at each grid point by evaluating the upward continuation impulse
r'esponse directly (see Fuller, 1967):

G b [ zm

- (22 +702 _/_/,2)3/.2

where ( s/ 1s the weighted value of the operator at the grid
point ( /,,/ ). The numerical form of the convolution integral
(equation 2-4, page 52) can then be used to obtain the upward
continued field.

Potential field data may be expanded above or below the
plane of observation according to Taylor's theorem, provided
the field i1s harmonic in this region. The expansions above and
below the plane z=0 for the continuation distance h may be
written as follows:

upward:

)l{x,y,—/z) =fx,y,0) -7/"_, f?z,y,a) +Zﬁ?2/ Ifll,‘y,o) -;73/ /”/z,y, 0)

+_,g_4)z/",1,}%0)_... (2-/2)
4/
downward:

(%, ,A): , +A ,(I,, +A.2 " +A3 //I)
f#:4,h)= fex4,0) /_/_/ 4,0) Z/{fz,y,o) 37} 1%,4,0)

+£;4][/Y(X)y)0)+.. . /2"/7—’)
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where j((x,y,o) is the observed field intensity at the point

of continuation, and
’ ‘ _éjffﬂgﬁoig ete.
][ (z)ylo) = Zz
Z=0

Peters was able to solve for the downward continued field
)[(x,y,ho by adding equations 2-12 and 2-13 and applying
Laplace's equation to the remaining even derivatives. In order
to make use of the circle averaging pattern developed for the
upward continuation process, it was necessary to convert to
polar co-ordinates and approximate the average data function
by the expansion:
](;_) = b + AZPZ + b, K* (z-/4)
The resulting expression for downward continuation becomes:
foxyh) = z[bo.—-zbz/;z+}£é4/;f/—/agy,-é) (2-/5)

The constants Zi 5 éz and ZL were obtained by a least squares
treatment of equation 2-14 using the center point and nine
circle averages. The last term on the right side of equation
2-15 is the upward continued field derived earlier on the basis
of the same clrcle avérages. The digitized downward continua-
tion operator for h=1 grid unit is given in Table A-2 of the
Appendix (page /25).

Trejo (1953) pointed out that the fourth degree parabola
_ approximation to )fZ;)in equation 2-14 was locally valid near
the operator origin, but could not be used for the larger radii.
The constants 5, , ﬁk and fg ,» determined on the basis of all

the circle averages, distort the parabola by including the



61

sparsely sampled outer averages and results in a corresponding
distortion of the operator.

Trejo proposed a method of finite differences in combina-
tion with Peters! upward continuation coefficients. Adding the
expansions expressed in equations 2-12 and 2-13, page 59, and
ignoring derivatives higher than the second, the downward
continued field is approximated by: ‘

flo,0,h) 2 £ (0,0,-h) +2 [f0.0,0) +47f To0,0)]  (2-16)

where no loss of generality is involved in choosing the origin
at the point of continuation. Laplace's equation and the applica-
tion of finite differences to the four grid points nearest the
origin transform the second vertical derivative term to:
—_f.ﬁf+2:)fmdm)5{ﬁ@@w7f%qd-fﬂéqd
2/ tox% oy? x=yq=0 —f/o,b,o) - f(0,-4,0)

thus equation 2-16 becomes:

//0,0;6) = 6/{0;0)0) _]{//7:010) -f(’/’)a)o) ")(/0)6;0) -ffol "/';0) -f/0,0,'/))

The first five field values on the right are those obtained at
the origin and the four nearest grid points. The upward continued
field j[(0,0,-h) may be represented by a previously determined
coefficient set. Trejo used Peters! upward continuation coef-
ficients for the operator shown in Table A-3, page /24.
Hendersont!s approach to the downward continuation problem
(see Henderson, 1960) determines the upward continued values at

five levels above the survey plane. The Lagrangian interpolation
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-

formula is then used to extrapolate the continuation fﬁhétion

below the datum. The downward continued field takes the form:

J[(a)a]z) = 2;‘ (_j)mz (Z+a)(Z+22) (= +3a)(z+4a)(Z+5a) .ffa,o,—ma)
m=0 a’ (2 +ma)(m+5) ] m ! : (2-17)

where @ 1s the grid spacing, =2 the depth of continuation, and
# (0,0,-ma) is the upward continued field at a distance m-a
above the survey plane. The Ppward continuation coefficients

at each level were developed in a manner similar to the method
used by Peters. Henderson's downward continuation operator for
Zz=a 1s given in Table A-4, page /26. In its original form, ten
circles, varying in radius from 1 to 25 grid units, were used
in the averaging process. The large radial extent of the operator
(25 grid units) causes a serious loss of data around the survey
margins. Since the technique was designed for hand calculation,
the digitized operator, like those of Peters, exhibits poor
coefficlient coverage. So far in discussing operator design, we
have ignored the fact that the downward continuation process

is very sensitive to high frequency effects from shallow sources.
Although the initial assumption of a harmonic field is required
for continuation downward, this is virtually never the case in
practical application. To prevent excessive amplification of
these high frequency noise effects, some form of smoothing must
be applied to the data or be built into the operator itself.
Although Peters does not discuss this problem, his operators
are of such low gain that they do not overamplify high fre-
quencies. Henderson favors adjustment of the interpolated data

spacing so as to exclude frequenclies above some noise level.
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This approach is generally unsatisfactory because of the aliasing
of higher frequencies to the lower end of the spectrum. Also,
if the interpolation interval is too large, a significant loss
of useful information may result, severely restficting the
delineation of target anomalies.

Another method of downward continuation, first suggested
by Bullard and Cooper (1949) and later by Grant and West (1965) ,
incorporates mathematical smoothing in the design of the op-
erator. The continuation integral (equation 1-14, page 20) is
inverted by taking the Fourier transform of each side, isolating
the spectrum of the downward continued field, and then applying
the inverse transform. Upon conversion to polar co-ordinates

the downward continuation convolution integral is obtained:

fro.0,2) = Z’//w(zﬁ y’,a)](z‘r/o/-)/oaja f//- g) ~dodr (2-/8)

where F is radial frequency, j{/—;g) is the observed data in
polar co-ordinates, y’ is the attenuation factor of the filter
response, and the quantity in brackets is the filter weighting
function. A numerical approximation of the weighting function
around averaging circles was attempted by Grant and West (1965)
and resulted in the coefficient set of Table A-5, page /27. The
exponential attenuation of the amplitude spectrum built into
this operator seems to be a rather severe method of smoothing,
and is liable to attenuate low as well as high frequency compo-

nents.
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Analytically derived versions of the second vertical
derivative operator have been introduced by Henderson and =~
Zietz (1949 - a), Elkins (1951), and Rosenbach (1953). Henderson
and Zietz made use of the fact that if a potential field is
averaged about a vertical axis (the operator axis) the result-
ing even function may be written as a zero-order Bessel function

solution of Laplace'!s equation:

AT (Z,F) =é'l A, e'”“’z.j;/qép) (2-79)
where 47/z,/) is the averaged varlation of the force field at
a radial distance , , 4, is a set of constants, Jfééﬁ)is the
Bessel function of zero order and first kind ( ¢4 being its
positive roots). Taking the second vertical derivative of equa-
tion 2-19 and setting Z and + to zero:

;;;i: = gl Uf Ax (2-20)
The constants 4, may be determined by circle-averaging the
survey data about the operator origin and solving a set of
simultaneous equations based on the relation:
F7er) = 2 A . (war)
where A7+ represents the data averaged over the survey plane.

One operator designed by Henderson and Zietz takes the
form: B%f?k) i |
To7 % 552 |2/flo) - 8Z fls) + 325 f(vz 5) —22)((.7_5)
=0

where 70}9 represents the observed gravity or magnetic field
a distance / from the origin, S 1is the grid interval, and

=, fl5) is the sum of observed grid values around a circle of
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radius S . The digitized operator is given in Table A-6,
page /27.

The work of Elkins (1951) extended from Peters! method
of representing the data by an even function and differentiating
twice according to Laplacel!s equation. A least squares solution
in terms of circle averages was used to obtain second vertical
derivative operators. The amplitude responses of Elkins'! opera-
tors exhibit low gain and resemble the response of a simple
residual pass filter.

One of the most successful attempts at approximating the
theoretical second vertical derivative, both in terms of spectral
circular symmetry and gain, was made by Rosenbach (1953). Using
Laplace's equation and Taylor's expansion he was able to obtain
simultaneous equations for various grid patterns and solve for
the second vertical derivative. Rosenbach's equation 16, based

on one of these patterns, takes the form:

(24 2L [ po oS -2 foo

azz 245%

F=o
and is represented digitally in Table A-7, page /27.

The weaknesses associated with most of the analytically
derived operators in the foregoing descriptions stem from forced
simplification rather than from the basic design methods them-
selves. Coefficient coverage and, therefore, operator accuracy
had to be sacrificed for practical hand calculation schemes.

For the same reason, the most important criterion of operator

design, that of frequency response, could not be applied. With
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the aid of the Fourier transform and the digital techniques
now available, the results of analytical design methods can

be significantly improved.

Transform Design Methods

Two methods, referred to here as a) the transform and
b) the inverse transform methods, make direct use of frequency
response and allow closer control of operator filter character-
istics. They also afford the opportunity to employ techniques of
frequency analysis and digital processing to give a more general
approach to the design problem. A major portion of the research
undertaken in connection with this thesis has been concerned
with the development of this approach and its adaptation to the
Hankel and inverse Hankel transforms.

a) The Transform Method - If the operator response is
specified at MX N discrete points, the coefficient set (,,,,,
representing the filter weighting function, can be determined
by a simultaneous solution of the discrete Fourier transform
(equation 2-5, page 52). Since the operators are assumed to
exhibit circular symmetry, we will reduce the problem to a
one-dimensional form by introducing the discrete Hankel trans-

form (equation 2-7, page 52):
M

where /?p)is the known amplitude response and (, the unknown
coefficient at the radial distance s . 4+ is an increment of
distance in the radial direction., If we adopt the least squares

energy criterion for the simultaneous solution of equation 2-21,
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the resulting normal equations may be expressed in matrix form:

’—Bu B/:L""""’Bl;f_ FCI- F-D/-
BZIBZZ""""-BzM C}z Dz
_ ; ' _ : (z2-22)
Bj.[ sz e eis e e s e .BJ.A] . Cj p— pf
Brts Bz - 5,”1_‘ _(':VJ _ﬂ.,‘,_]
where

B;; = J%{ J, (27pS) - T, (27a/)
/

27 (4F)* % £ (27 7)

and C; is the coefficient at a radial distance /. The deriva-
tion of these normal equations is summarized in article A2 of
the Appendix, page /724. A computer program was written to solve
equation 2-22 for the discrete coefficients (,;, with the
desired operator frequency response as input. Because the gen-
eral term of the summation on the right side of equation 2-21
is zero at the origin (i.e. at ~=0), the coefficient £ must
be found by some other means. The simultaneous solution or trans-
form approach has several defects. Because the coefficients are
derived from a set of equations based on oscillating functions,
they alternate between positive and negative values. The result-
ing amplitude spectrum exhibits a periodic mismatch which can
be quite serious, particularly at low frequencies. This effect
can be reduced to some extent by smoothing the coefficient set
and modifying the theoretical amplitude response. Figure 2-6,

page 68, shows the result of an attempt to obtain a second
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vertical derivative operator using the Hankel transform proce-
dure. The input amplitude response was attenuated exponentially
and cut off at the Nyquist frequency (0.5 cycles/D.I.) prior
to solution. The Nyquist cut-off forces the response of the
least squares approximation to plunge steeply in the vicinity
of the folding point. Although this abrupt falling-off at high
frequencies may be desireable in terms of noise reduction,
distortion of the low and central band regions will occur if
the cut-off is too severe. The mismatch at low and intermediate
frequencies is probably the most serious problem. The low fre-
quency variations of the gravity field are generally the high
amplitude, and thus, high energy components. This is not always
true of the magnetic field which may have high amplitude compon-
ents over the entire spectrum. Slight low frequency mismatch
in the spectrum of an applied operator will therefore cause
substantizl low frequency distortion of the field. Dean (1953)
used the Fourier transform to derive one-dimensional downward
continuation operators. In addition to the problems mentioned
above, he found that a large number of coefficients were re-
quired to obtain a reasonable amplitude response.

The Hankel transform method as described here produces
a set of discrete radial weights which can not be conveniently
applied to gridded data. In view of the least squares criterion
and the simultaneous method of solution, radial interpolation
of the coefficients to obtain grid values would probably prove

unsuccessful. The treatment does serve to demonstrate, however,
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the difficulties involved in the transform approach. The applica-
tion of a two-dimensional, cartesian extension of this method
would require the solution of a very large number of simulta-
neous equations and would still suffer from most of the inher-
ent defects just discussed.

b) The Inverse Hankel Transform Method - The second
approach, making use of the inverse transform, is the simplest
and perhaps the most useful means of operator design. Darby and
Davies (1967) and Fuller (1967) used the inverse Fourier trans-
form in the design of two-dimensional discrete filters. The
frequency responses of the resulting coefficient sets, although
showing some deviation from circular symmetry, were generally
much superior to the spectral characteristics of previous opera-
tors.

The inverse Hankel transform of zero order was found to
provide a more exact, and yet more streamlihed means of deriva-
tion. Applying the discrete version of the inverse Hankel trans-
form (equation 2-8, page 52), the coefficient at a radial dis-

tance / may be approximated by:
K
. 2
Crry = zﬂ'é Flhap) J, (2mbkdpr) £ (4p) (2-23)

vhere /iaay» is the stipulated amplitude response, presumably
known for all frequencies, and Jé the frequency variable. The
coefficient at any grid point (f,J) is evaluated simply by set-
ting f'=W977:73 and performing the spectral summation indicated
in equation 2-23. The limit of integration K should be set
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somewhat higher than the grid folding frequency in order to
prevent a spectral discontinuity at the grid folding point.
Also, the frequency increment Ayo must be taken small enough

to ensure an adequate approximation to the inverse Hankel trans-
form. Any severe discontinuities present in the input amplitude
response /76é40)will cause a corresponding irregularity in the
derived coefficient set. It is therefore necessary, in the case
of high-gain, high-pass operators, to introduce some form of
spectrum attenuation in the vicinity of the grid folding point.
This topic will be discussed further in part 4 of this section
when several design refinements are considered.

The size or areal extent of the operator will depend on
the nature of the filtering operation and the degree of accuracy
required. Greater operator size is necessary in the approximation
of continuation operations, for example, than in derivative
techniques, since continuation weighting functions are greater
in surface coverage and fundamentally more difficult to repre-
sent by finite coefficient sets. In general, the larger the
coefficient set, the closer its amplitude response will reflect
the input response. For each problem, however, there is a point
of diminishing returns at which the additional accuracy gained
is not worth the extra coefficients. Another factor of consid-
erable importance is the amount of data lost during the convolu-
tion process as a result of an operator's size. A coefficient
set extending ten grid units from the origin will require an
outer margin of datz, ten grid units in width, surrounding the
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designated region of interest. Finally, the practical size of
the operator, as used in digital convolution, will be limited by
the digitel processing facilities available. The above factors
should be welghed carefully in any comprehensive design scheme.

Several operators were derived by the inverse Hankel
transform method in the preparation of this thesis. All result-
ing coefficient sets exhibit good radial response and excellent
circular symmetry in the frequency domain. The largest of these
operators extends a distance of eight grid units from the origin
in the x and y axial directions. A significant advantage in
using the inverse Hankel transform approach is that a discrete
operator can be found for any specified amplitude response.

Such versatility may prove important for specialized filtering
applications.

Because of the inherent spectral characteristics of poten-
tial field data, frequency response, as obtained from the Fourier
transform, is probably the single most important criterion of
operator design. Whether the inverse transform method, some
analytical approach or a combination of these is adopted‘in the
design of a particular operator, facilities should be available
for evaluating its two-dimensional Fourier transform. A computer
program based on the discrete Fourier transform (equation 2-5,
page 52) was written for this purpose. Since the operators con-
sidered in this thesis are circularly symmetric about the origin,

the transform reduces to:

M N
Fru,v) 52 2 Cony *COS (27T 11m Ax)-CoS (2T Vvnrdy) AXAj/

MN=eM Mz2=pN
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where £ ruw,v)1is the amplitude response of the derived coef-
ficient set Cznn. This relation is easily programed on a digital
computer, and affords a good approximation of the two-dimensional

amplitude response of any symmetrical coefficient set.

Practical Refinements in Operator Design

In preparing a coefficient set for practical application,
certain refinements must be included in the basic design methods
already outlined. When the inverse transform is employed in the
derivation of high-gain operators, the input frequency response
will require some form of attenuation. To minimize distortion of
the derived operator response the coefficient set must be mult-
iplied by 2 smoothing function and then normalized. These three
refinements: a) spectrum attenuation, b) coefficient smoothing,
and ¢) normalization will be considered in turn.

a) In dealing with high-gain operators such as downward
continuation and the second vertical derivative, close approx-
imation to the theoretical response is undesirable at the higher
frequencies. The coefficient response, unlike the ever-increasing
theoretical response takes a plunge at its folding or Nyquist
frequency. If this cut-off is téo severe the mid-band response
of the coefficient set may suffer serious distortion. This
effect can be reduced by using an attenuated version of the
theoretical response in the vicinity of the folding frequency.
The severity of the folding point cut-off can be softened further
if the limit of integration for the inverse Hankel transform,
in equation 2-23, page 70, is set somewhat above the Nyquist
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frequency. Since the coefficient determined by the inverse
Hankel transform approximates a continuous operator at the
particular radial distance A/ , integration past the grid fold-
ing point is entirely Jjustified. The radial amplitude response
of a discrete second vertical derivative operator is shown in
Figure 2-16, page 88, along with the attenuated response used
as input in deriving the operator. In addition to reducing
spectral distortion, attenuation of the input response serves
another purpose. If the response of an applied operator approaches
some theoretically high gain near the folding point, the high
frequency noise components in the data will be greatly over-
amplified at the expense of useful information. Attenuation of
the high-gain response helps to minimize this tendency. In
contrast, the low and mid-band frequencies are most important
in defining the observed potential field. The designed operator
response should, therefore, reflect the theoretical response

as closely as possible in this range.

b) The theoretical operators dealt with in this chapter
are of infinite extent, but in practical situations a coef-
ficlent set must be limited to a finite size. The abrupt term-
-ination or truncation of the discrete operator at the designated
boundary will cause serious periodic mismatch in its amplitude
spectrum. This effect can be eliminated quite successfully by
multiplying the coefficient set by a smoothing function, such as:

2 2
PE/'{/-/-COS[W'(’;—{&%,;)I/Z]...;—OZ ;23{(

g) = (z-24)
.. For X >X

y>Y
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where X and Y are the operator boundaries in the x and y
directions. The smoothing process may be viewed as frequency
domain convolution. The periodic mismatch is literally filtered
out of the coefficient set amplitude response.

c) A third refinement, referred to here as coefficient
normalization, is needed to fix the zero frequency point of
the amplitude response. For the wavelength filter and contin-
uation operators the zero frequency amplitude response is unity,
and according to the discrete Fourier transform:

Fluv) == = Copn 224y =1 (2-25)

y=Y=0
The above condition can be fulfilled by dividing each coef-

ficient by the sum of coefficients, that is:

= ['mrl
Clomn ™ 25

where (V,,, represents the normalized coefficients. The second

vertical derivative and residual operators show zero amplitude

response at the zero frequency point, so that:

/C-(U,V) =2,§ Kmn A?CAy =0 (Z".Zé}

U:\/=o
In this case the coefficient at the operator origin, O,, , is

adjusted to make the sum of the coefficients equal to zero. It
should be pointed out that the grid interval dx =4y is taken
as the unit of distance in all discrete operations. Normaliza-
tion can be thought of as an additional means of compensating
for the discrepancy between a continuous infinite operator on
the one hand, and its finite approximation by a coefficient set

on the other.,
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2-3 Description and Assessment of Some Proposed Operators

Several discrete operators have been derived to illustrate
the basic design concepts involved and to highlight particular
design problems which may arise. Various wavelength filters, the
second vertical derivative, and continuation operations are
represented. For the sake of completeness, several well-known
coefficient sets will be examined aﬁd compared with the newly
derived operators. The two-dimensional Fourier transform will be
used as a baslis for evaluation and comparison of operators.

The format adopted in describing the various coefficient
sets gives a2 concise, and yet, complete picture of the space

and frequency domains. Only the first (i.e. north-east) quad-
rant of the coefficient set and its amplitude response need be
defined, since both the space and frequency expressions exhibit
circular symmetry. Consider, for example, the center point,
single ring residual operator proposed by Griffin (1949). If
wé incorporate the grid points at a distance of 2 and N5 grid
units from the origin in the circle average, the center point
assumes a coefficient weight of 1.0 and each of the twelve
averaging points a weight of 0.085. The first quadrant format
for the discrete operator and its amplitude response is given
in Figure 2-7, page 77. The amplitude response has been termin-
ated at the grid folding frequency (0.5 cycles/Data Interval)
- since it repeats itself past this point. The position vector of
any particular point in the u-v plane defines the frequency,

direction, and amplitude of a particular harmonic component.
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Point P, shown in Figure 2-7, defines a component of frequency
|JR| ecyeles/D.1., having an amplitude of 1.3 and whose direction
coincides with that of the position vector A .

Wavelength Filters

Three low-pass filters with cut-offs of 0.4, 0.2, and
0.075 cycles/D.I. were derived using equation 2-9, page 54.
After specifying the size and appropriate cut-off of a pro-
posed operator, the attenuated Bessel function in equation
2-9 was evaluated at each participating grid point. The result-
ing coefficlent sets were multiplied by the smoothing function
of equation 2-24, page 74, and then normalized. The operators
and thelr amplitude responses are presented in Figures 2-8 to
2-10, pages 79 to 81. In order to allow a better comparison of
gain characteristics, the radial response profiles are givén in
Figure 2-11, page 82. The 0.4 cycle/D.I. low-pass operator,
extending a distance of four grid units from the origin, was
designed for the purpose of eliminating high frequency noise
components from the potential field data. The cut-off could be
made sharper by selecting a larger operator size, but in this
case 1t seems that very little advantage would be gained by
such a move. An operator size of eight grid units from the
origin was chosen for the 0.2 and 0.075 cycle/D.I. wavelength
filters in order to obtain sharper cut-offs. Because the areal
extent of the wavelength filter increases as the specified
cut-off frequency decreases, greater coefficient coverage will

be required for an operator of lower cut-off frequency.
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The high-pass or residual type operators can be obtained
by inverting the standard wavelength filter, as described in
section 2-2 and summarized in Figure 2-5, page 56. The 0.2 and
0.075 cycle/D.I. wavelength operators were each subtracted from
the discrete unit impulse to yield the corresponding inverse
operators shown in Figures 2-13 and 2-14, pages 84 and 85.
Inverse wavelength operators derived in this manner can be used
to extract residual features of the potential fleld from the
lower frequency regional trends.

Figure 2-12, page 82, compares the radial amplitude
responses of the 0.2 and 0.075 cycle/D.I. high-pass operators,
with the amplitude response of the center point, single ring
operator of Figure 2-7, page 77. The frequency response of a
residual filter should have a fairly sharp cut-off before level-
ling out to a broad-band amplitude of unity, as is the case for
the inverse wavelength operators. The response of the single
ring operator, however, has a more gradual cut-off and tends to
oscillate at higher frequencies. Perhaps the most serious weak-
ness of the single ring operator is its poor coefficient cover-
age. The effective sampling distance is approximately equal to
the radius of the averaging ring, and as a result, the effective
Nyquist or folding frequency is substantially lower than the
grid folding point. The aliasing effect accompanying this
inadequate sampling of data can become quite serious for single
ring operators of large radii.

Considering the ease of derivation and the excellent fre-
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quency characteristics obtained, the wavelength filter provides
a2 highly versatile and convenient approach to the design of
regional-residual type potential field operators.

The Second Vertical Derivative

A second vertical derivative operator, developed by the
inverse Hankel transform method, is presented in Figure 2-15,
page 87. The attenuated version of the theoretical response
used as input in the derivation is shown in Figure 2-16, page 88,
along with the radial response of the resulting operator. The
attenuated spectrum was integrated between the frequencles 0.0
and 1.0 cycle/D.I. in evaluating the inverse transform, and the
resulting coefficients were smoothed and normalized. The opera-
tor response 1s & good approximation of the theoretical response
at low and intermediate frequencies. The ievelling-off of the
géin in the vicinity of the folding point should prevent exces-
sive amplification of high frequency noise components present
in potential field data. It should be noted, also, that the
second vertical derivative operator requires considerably smal-
ler areal coverage thean most of the other operators presented
here.

The operators of Henderson and Zietz (1949 - a) and
Rosenbach (1953), tabulated in Tables A-6 and A-7 on page 127,

' have been included for comparison. The coefficient set
proposed by Henderson and Zietz has strong directional prop-
erties dramatically evident in the amplitude response (see

Figure 2-17, page 89). In the 45 degree directions, the ampli-
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tude response approaches that of the theoretical operator, while
along the u and v axes the gain is relatively moderate. These
variations in circular symmetry will be transmitted through the
convolution process and create artificial trends in the data.
The very large gain in the SW-NE and SE-NVW directions will
inevitably cause over-amplification of any high frequency noise
effects present along these directions. The response of Rosen-
bach's operator, shown in Figure 2-18, page 91, exhibits very
good symmetry and gain characteristics.

Both the derived operator of Figure 2-15, page 87, and
Rosenbach'!s operator will provide a suitable approximation to
the second vertical derivative operation. In the event that the
data contains an excessive proportion of high frequency noise
components, some form of noise filtering should be attempted

before applylng any high-gain operator.

Continuation Operators

The inverse Hankel transform approach was used in the
derivation of upward continuation operators for heights of one
and two grid intervals above the data plane. Figures 2-19 and
2-20, pages 92 and 93, show the operators and their amplitude
responses. The theoretical responses were inserted into the
discrete inverse transform without attenuation, and the result-
ing coefficient sets were smoothed and normalized. Except for
a smaller gradient at very low frequencies, the amplitude
responses of the derived operators compare quite favorably with

thelr theoretical counterparts. The frequency response of Peters!
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upward continuation operator, of Table A-1, page /25, has been
included for comparison (see Figure 2-21, page 95). Although a
good approximation of the theoretical gain at low frequencies,
the response does show undesirable deviations from circular
symmetry. This defect could probably be corrected by increasing
the coefficient coverage of the operator.

Of the various operations discussed in this thesis, the
downward continuation process is the most difficult to approx-
imate. No practical coefficient set can hope to approach the
exceedingly high gains realized by the theoretical downward
continuation operators. Even if this were possible; the convolu-
tion of such a coefficient set with actual potential field data
would cause serious over-amplification of high frequency energy.

In designing a workable operator, we want to ensure close
agreement between its low frequency response and that of the
theoretical operator, since most of the waveform energy of the
potential field 1s generally concentrated in the low frequency
end of the spectrum. The high frequency response will be atfen—
uated or levelled-off near the folding point, Just as was domne
for the second vertical derivative operator. The inverse Hankel
transform method may be used in the derivation,but the form of
response attenuation required for optimum results is not a
simple matter to decide. For our purpose, a more convenient
approach was found by making use of previously derived opera-
tors and Taylor!s expansion of the potential field. An approx-

imation to the downward continued field based on Taylor's
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expansions above and below the data plane has already been

derived in section 2-2 of this chapter:
. 2, _
fro,0h) = —f(o,a,—/;) +z[f/0,o,o) +ZA/ F /o,o,a_)] (2-74)

where :{(0,0,0) is the field value at the origin or point of
continuation, ;{(0,0,—h) and j((0,0,0) represent the upward
continued field and the second vertical derivative of the field
at the origin, respectively. In deriving equation 2-16 all
vertical derivatives of order greater than the second have been
ignored. If Rosenbach'!s second vertical derivative operator
(Table A-7, page /27) and the derived upward continuation opera-
tor of Figure 2-19, page 92, are inserted in the right side of
equation 2-16, the downward continuation coefficient set of
Figure 2-22, page 97, emerges. The low frequency response of
this operator is seen to be a good approximation to that of

the theoretical filter, and the high frequency response shows
the required attenuation.

Agaln, two well-known operators have been included for
the sake of comparison. Henderson's downward continuation
operator of Table A-4, page /24, 1s a fairly good approximation
of the theoretical operator at low and intermediate frequencies
(see Figure 2-23, page 98). The large areal extent of the
operator and the poor coefficient coverage, however, 1limit its
usefulness in practical convolution. The downward continuation
operator of Table A-5, page /27, derived by Grant and West (1967)
shows a severely attenuated response (see Figure 2-24, page 99)

and significant directional properties. The exponential atten-
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ﬂ’ «~——uation used in the derivation reduces the high frequency gain
but also distorts the mid-band region.

Downward continuation to a depth of two grid units may
be attempted, but the problems of operator design and high
frequency instability are much more severe. Assuming a reasén—
able station spacing, continuation downward to a depth of one

grid unit should be sufficient for most applications.
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Chapter 3:
APPLICATION OF FILTERS TO POTENTIAL FIELD DATA

The purpose of this chapter is to show how discrete filters
can be applied to gravity and magnetic data to séparate, enhance
or subdue various frequency components in the potential field
spectrum. The data which will be used in the illustration
represents a portion of the gravity and magnetic surveys con-
ducted over the Atlantic Nickel Property near the town of
St. Stephen, New Brunswick. A number of filters derived in this
thesis will be applied to the data in order to demonstrate the
effectiveness of the filtering approach and to illustrate the
characteristics of the individual filter outputs. A brief
interpretation of the results will be presented and related to
the known geology of the area.

3-1 Investigation of the Roger's Farm Sulphide Zone - .
St. Stephen, New Brunswick

The Atlantic Nickel Property near St. Stephen, New Bruns-
wick, has been the subject of intensive, albeit sporadic, geolog-
ical and geOphysical investigation since 1942. Although the
existence of nickel-copper mineralization in the area was known
around 1900, it has only been in the last decade that detailed
exploration and pre-development work has been carried out. Over
this period no less than twenty-four zones of sulphide mineral-
ization have been located by geophysical and drilling programs,
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and of these perhaps three may be considered of marginal or
sub-marginal economic importance. The Roger's Farm sulphide zone
is one of the more promising deposits with an estimated tonnage
of between 0.5 and 0.8 million tons, averaging about 1.0% nickel
and 0.5% copper.

In 1968 the Hanna Mining Company picked up the option on
the property and conducted extensive geological and geophysical
investigations for the purpose of re-evaluating the known sulph-
ide deposits, and to provide information which might be of value

in assessing other holdings in the area.

Local Geology

The predominant geological feature in the area consists
of a stockélike basic to ultrabasic pluton which has intruded,
wvhat appears to have been, an anticlinal structure of meta-
morphosed sediments. The sediments are of Ordovician age and
consist of dark grey argillite, slate, quartzitic mica schist,
and gneiss. The main body of sediments underlies the northern
and eastern margins of the property, strikes roughly north-
east and dips steeply to the north-west. Sediments also -occur
as inclusions of up to 500 feet by 2000 feet in size within the
intrusive rocks of the igneous mass. The intrusion is composed
of gabbro-norite, anorthosite, and peridotite and occupies the
central and south-western portions of the property. Pyrrhotite
occurs quite commonly as veinlets and disseminations within the
intrusive rock and is the primary component of the observed

zones of sulphide mineralization. The minerals chalcopyrite
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and pentlandite occur as blebs and veinlets within the pyrrho-
tite.

The more important zones of mineralization seem to be
located very close to contacts between the intrusives and alter-
ed sediments. The zones of weakness created by these contacts

may represent potentially favorable sites for sulphide deposi-
tion.

Geophysical Surveys

V.L.F. (EM 16) and horizontal loop electromagnetic surveys
conducted over the Roger's Farm zone have traced out the extent
of the anomalous conductivity associated with the mineralization.
The relative position of the sulphide zone and related conductor
is shown in Figure 3-1, page 109. The conductor extends along
the north-south baseline (105E) for about 400 feet. South of
160N it seems to divide into two zones: one part swinging out
to the south-west and the other continuing along the baseline
for some distance. Horizontal Loop EM profiles over lines 162N
and 160N show an abnormally large electromagnetic coupling
effect due to the shallow depth and high conductivity of the
mineralized zone. In fact the sulphide zone intersects the
surface in the vicinity of lines 160N and 158N and is marked
by the presence of a gossan outcrop. The postulated northern
contact between gabbro-norite intrusives and the altered sedi-
ments is also indicated in Figure 3-1.

A gravity survey was conducted over part of the property

in 1955 by Radar Exploration Lihited. Readings were taken at
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50 foot intervals along lines spaced from 200 to 450 feet apart
and running approximately east-west. A portion of the resulting
Bouguer gravity contour map in the vicinity of the Roger's Farm
zone is shown in Figure 3-2, page //0. The gravity map is char-
acterized by a simple, but predominant, regional trend decreas-
ing in magnitude towards the north. This effect is probably

due to the thickening of the sediments in this direction and a
corresponding increase in depth of the ultrabasic rocks. The
gabbroic rocks of the intrusion would have a significantly
greater density than the sediments and would explain the density
contrast causing the observed gradient. The regional trend is
disturbed by a number of residual effects, one of which, located
at approximately 1l05E and 160N, corresponds to the positive
density contrast created by the Roger's Farm sulphide body.

A portion of the magnetic data obtained by the Hanna
Mining Company in 1968 is contoured in Figure 3-6, page //4.
Readings were taken normally at 50 foot and occasionally at
25 foot intervals along east-west grid lines spaced 200 feet
apart. Although the gravity and magnetic maps cover the same
surface area, the relationships between their regional and
residual features are vastly different. The high amplitude,
and at times, erratic residual components of the magnetic
field tend to overpower the more subtle regional changes. The
reverse is true, of course, for the gravity map which was seen
to consist of relatively weak residual anomalies superimposed

over a very strong reglonal trend. The regional features of the
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magnetic data show up as depressions and moderate highs of
relatively significant areal extent, and may be important in
understanding the geological environment of the area. The high
frequency, high amplitude fluctuations of the magnetic map
arise from two separate sources. The occurrence of massive
pyrrhotite as the main constituent of the sulphide zones is
partly responsible for associated magnetic anomalies. The other
source, in the form of localized, high intensity dipole effects
within the ultrabasic rocks, probably represents abnormally

high magnetite concentrations.

3-2 Filtering the Roger'!s Farm Potential Field Data

and Discussion of Results

A computer program was written to calculate the discrete
form of the two-dimensional convolution integral (equation 2-4,
page 52) upon given digitized potential field data and a set
of filter coefficients. The gravity and magnetic maps of Figures
3-2 and 3-6 were then digitized using a square grid interval of
100 feet. Considering the erratic nature of the magnetic field,
samplihg and interpolation of the magnetic data is much more
susceptible to aliasing and other sampling effects than is the

case for the smoother varying gravity data.

Gravity Maps

In the Bouguer gravity map of Figure 3-2, page //0, the

residual features are of primary concern and must be separated
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from the well-defined regional trend. The second vertical
derivative operator of Figure 2-15, page 87, was convolved
with the data in an attempt to emphasize the higher frequency
effects and, at the same time, to reject the regional. The
resulting output is shown in Figure 3-3, page /// . The second
vertical derivative, in effect, represents the curvature of
the potential field. Since a positive gravity or magnetic
anomaly will generally show positive curvature at its center
and negative curvature off its flanks, second vertical deriva-
"tive highs will usually be associated with adjacent lows; a
fact demonstrated in Figure 3-3. The main zone of the Rogert's
Farm mineralization, located at the center of the map, and its
offshoot to the south-west are associated with well-defined
second vertical derivative anomalies, The filter has also
clearly emphasized two pod-like disturbances north-east of the
Roger!'s Farm zone. These anomalies may be due to the presence
of small sulphide showings.

The inverse wavelength filter of cut-off 0.075 eycle/D.I.
(shovn in Figure 2-14, page 85) was convolved with the Bouguer
gravity data in order to obtain the residual map of Figure 3-4,
page //2. It can be seen that a well-defined residual anomaly
with an approximate magnitude of 0.30 mgals. is associated with
the main Roger's Farm sulphide zone. The smaller anomalies to
the north-east, noted on the second derivative map, are also
brought out by the residual filter. Two relatively broad highs,
one going off the map in the north and the other to the south-
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east, may result from an upward projection of the gabbroic
intrusive. |

The residual and second vertical derivative filters seem
to produce roughly the same results. The low frequency compon-
ents which make up the regional trend have been rejected and the
higher frequency residual retained. The greater gain of the
second vertical derivative at higher frequencies tends to pro-
duce sharper, more localized peaks than the residual filter.
The second derivative also shows considerably less low frequency
definition. The residual filter output of Figure 3-4 probably
gives a very good approximation to the anomaly pattern produced
by near surface density changes, but some low frequency defini-
tion has been lost in the process. In detailed interpretations
hand profiling methods should be used to separate regional and
residual features so that the interpreter can use his own skill
and Judgement. The value of the second vertical derivative and
residual operators lies in their ability to uncover residual
anomalies and trends which might be overlooked otherwise. In
addition, they provide some idea of anomaly size and character
which may assist in the planning of more detailed methods of
interpretation.

The downward continuation operator presented in Figure
2-22, page 97, was also applied to the Bouguer gravity data.
The northern portion of the Roger's Farm sulphide zone outcrops
at the surface and raises serious doubts concerning the validity

of the downward continuation concept in its vicinity. In deriving
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the operator we have assumed that there are no intervening
masses between the surface and the level of continuation, a
condition almost never realized in practice. By attenuating
the high frequency response of the operator, however, we had
hoped to reduce the risk of erratic fluctuations caused by
near surface sources. Since the gravity data considered here
probably violates this harmonic field restriction in certain
places, its continuation downward will serve as a test of
operator stability. The continuation of the field to a depth
of 100 feet (shown in Figure 3-5, page //3) has amplified a
good deal of high frequency noise. There are, however, no
points of serious distortion and most of the residual features
have been brought out. Considering the fact that no smoothing
of the field was undertaken prior to convolution, the resulting
output is remarkably good. The example does serve to demonstrate
the high frequency amplification associated with downward con-
tinuation, and also shows that the derived operator can be used
without having to resort to severe smoothing. For more compli-
cated potential field maps, exhibiting high amplitude noise
components, some form of smoothing would be necessary before

any attempt was made to continue the field downward.

Magnetic Maps

The magnetic map of Figure 3-6, page //#, is character-
ized by a number of high amplitude, high frequency anomalies,
the most distinctive of which seems to be very closely related
to the Roger'!s Farm mineral deposit. The magnetically depressed
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areas bounded by the 800 gamma contours and surrounded by
moderate magnetic highs are probably of greater interest
because of the structural information they provide. These low
areas may coincide with islands or inclusions of metamorphosed
sediments believed to have been isolated from the main sediment-
ary mass by the intrusion of basic material. The "high" areas
enclosing these depressions may be explained by the greater
magnetic susceptibility of the surrounding basic rocks. If
these hypotheses are correct, then the boundaries of thé mag-
netically depressed areas would represent the contact between
the intrusive and altered sediments and, therefore, potentially
favorable zones of mineral deposition. The Roger's Farm sulphide
mineralization seems to be located along one of these contact
zones. In an attempt to emphasize the boundaries of the magnet-
ically low areas with respect to the dominant residual features,
the noise filter of Figure 2-8 page 79, was applied to the
magnetic data. Since the higher frequencies have heen excluded,
the resulting output, shown in Figure 3-7, page 115, is less
erratic than the original map, and the delineation of the mag-
netically depressed areas is somewhat enhanced.

To afford a more drastic attenuation of the high frequency
effects, the magnetic map was continued upward to heights of
100 and 200 feet using the operators of Figures 2-19 and 2-20,
pages 92 and 93. The continuation upward to 100 feet (shown in
Figure 3-8, page 116) reduced the amplitudes of the residual

components considerably, but has not greatly affected the lower
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frequency components. As a result, the boundaries of the depres-
sed areas stand out clearly and their relationships to the
residual features of both the gravity and magnetic fields are
easily seen. Figure 3-9, page 117, shows the magnetic field
continued upward a height of 200 feet. Very little additional
high frequency suppression has been gained at 200 feet and,

in fact, the delineation of the boundaries has decreased some-
what.

If the various gravity and magnetic maps are compared and
the relative positions of the gravity and magnetic features
observed, a number of correlations emerge. The gravity and mag-
netic residual anomalles associated with the Roger!'s Farm sulph-
ide zone occur along the boundary of a magnetically depressed
area. Residual gravity features to the north-east and south-east
of the map center also fall on or very close to similar bound-
aries. The magnetically depressed areas seem to coincide with
lows on the residual gravity map, and magnetic highs of moderate
amplitude, surrounding the depressed areas, usually coincide
with moderate gravity highs. The hypothesis of sedimentary
"islands" surrounded by basic intrusives is compatible with
these observations. If similar intrusives occur in the region,
the contacts formed with such sediments may be potential sites
of mineral deposition.

The foregoing discussion was not intended to be a complete
interpretation of the gravity and magnetic data presented, but
simply an illustration of a few ways in which potential field
filters might help the interpreting geophysicist.
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Chapter 4:
DISCUSSION AND CONCLUSIONS

Prior to interpreting potential field surveys, the geophy-
sicist should familiarize himself with the limitations of the
data and the conditions under which they were obtained, This
should be done for any method in applied geophysics but is of
particular concern in gravity and magnetic surveys. Errors
introduced by inaccurate observation, sampling effects, and
various correction procedures should be known within certain
limits and their influences allowed for, In the case of gravity
data, the systemmatic application of detailed corrections is a
ceritical initial stage of the interpretation, and if not executed
successfully may render the data unsuitable for subsequent
interpretation. The interpreter,in addition to assessing the
suitability of the data, should make every effort possible to
gather available geologlcal and geophysical information pertain-
ing to the problem at hand. Having completed these initial
stages of preparation, the geophysicist will be in a better
position to select suitable methods of analysis and interpret
the results.

The application of frequency analysis and information
theory to the problems of gravity and magnetic interpretation
provides more than Just a convenient means of operator design
and data processing. The insight gained by another point of
view helps to clarify the more qualitative aspects of inter-
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pretation confronting the geophysicist. Included in this cat-
egory are the problems of anomaly separation, the elimination
of noise effects, the detection and correlation of trends in
the data, and the understanding of sampling processes. In these
respects, potential field operators are of great assistance to
the geophysicist as qualitative indicators or sensors of anom-
alous conditions in potential field data. Although the use of
such operators complements it can never replace the experience
and Judgement of the interpreter.

The methods of operator design discussed in Chapter 2
have been presented in a relatively elastic format in an attempt
to illustrate the convenience and flexibility of the filtering
approach. It is hoped that this will encourage improvisation
and innovation in the design and application of potential field
operators. The author believes that one of the more important
benefits to be gained from such a study is an understanding of
the concepts of frequency analysis and information theory. Since
these topics arise in several other areas of geophysical explora-
tion, particularly in seismic studies, the geophysicist should
be aware of some of the more basic concepts and have some degree
of facility in applying them.

On the basis of the research undertaken in connection with
this thesis a number of conclusions can be drawn:

1) Many of the methods used in the past for the

development of potential field operators can be substantially
improved by the introduction of digital processing techniques.
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Phe main weakness of these operators has been their poor coef-
ficient coverage, a characteristic necessitated by their use

in hand calculation schemes.

2) The two-dimensional wavelength filter developed
in this thesis appears to be a very useful means of separating
the vérious regional, residual, and noise components of a poten-
tial field waveforn.

3) The inverse Hankel transform method, proposed
in section 2-2, has proven to be a highly versatile means of
deriving two-dimensional; circularly symmetric operators of
known frequency response.

4) The discrete Fourier transform provides a con-
venient basis for quality control and comparison of potential
field operators.

5) The adaptation of frequency analysis and
information theory to the processing and interpretation of
gravity and magnetic data adds a new dimension to potential
field studies in applied geophysics.
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APPENDIX-A4 L

OFRIVATION OF WAVELENGCTH [FILTER

ADIAL FREQUENCY RESPONSE :
~as 9 4 1, peos evceesfonr

F/ﬁ) = . Yz , pP=05 £Y¢‘£ES/(/A//I' (A-7)

0 » /c > 0.5 dvcz._‘.s/wwr

ACCOROING TO THE [INVERSE HANKEL TRANSFORM OF ZERD ORPER:

a
][(i-) =27 [ Fop S lampr) pap (/-25)
f—’o

WHERE }[ (1) IS THE DESIRED IMPULSE RESPONSE,

SUBSTITUTING RELATION (A-]) INTO EFQUATioNn (/-25).

//ﬁ) = 277/.;]0 (27ph) pap
/:0

Lerring Q= 27F
- 2
7[(/-) = 5—5 ep .Z/a/aj o’/a/o) (A-2)

NOW SinCE C”[?(VL/T/ (;f] = 2V Sy, (x)
d x ’

AND THUS /z”/-,,_, /x} c{x = ZVJV(x) + C
(SEE WVYLIF (/966), 7 345)

THE JNTECRAL OF EQUATION H-2 BECOMES S
| / 2 f/ ) & s 2T+
; = </ Q AnD SivecE @ =
(r) =2 [ ap J, /’j s
: o

)[ ) = «f, (7F) , THE REQUIRED UNIT
ZF

TMPULSE RESPONSE OF THE WAVELENETH FLILTER.
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NORMAL EQUATIONS FOR THE HANKEL TRANSFORM

DESIEN METHOL

WRITIANNG THE OISCREFE HANKEL TRANSFOLr! AS ¢
V24
Fep) A= Co Jolzmpr) - F (A-3)
=0

WHERE /réoj IS THE AMPLITUDE RESPONSE SPECIFIED AT ALL
FREQUENCIES '/ “ , Cr REPEESENTS TuwsE UNKNOWN COEFFIC/ENT SET,
Ao A= azriar)?

SPuARES EFRROR EnERCY [FOK EQUATION A3 Is ¢

2.

Ll
M irl1ZiarE THE ERROR ENERIY FOR THE [ 2 cosrrrcrenT @

5)-(,{ =2= [42’&%(2@0@-1- —Fga//)I/.m;o//%).—.o
. f + ‘

4

THE LELST

oR :
ff/\[/zrrf//-l_é'(; Jp (2TPF) . 1 ’;;1; £ p) Jo (27p1)

THUS THE [P NORMAL EQUATION /S :
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THE NORMAL EQPUATIONS IN MATRIX FORM ArRE
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Y (6RO POWTS)

1% (CR/D PO/ i7S)

APPENDIX - A3

SOME WELL-KNOWN OPERATORS (DICI7/2£0)

TABLE A-/ & PeTeRS’ (1949] UPWARD CONTINUATION
COEFEICIENTS FOR A HEICHT OF I BRIO UNIT.

10|,0026 .09

9

8

7 0043 , 0026

é1.0066

5 0119

+1.0097 . 0064

31.0/08 .0097 L0043

V4 .0/158 |.0/08

/1.0528|.0374|.0158

o |./464]- 0528 .0/08 |.0097 L0066 . 0026
4 7 2 3 + 5 4 7 & g /o

X (6r10 POIn7S)
TABLE A-2 3 PETERS’ (1949) DOWNWARD CONTINYATION
COEFLICIENTS FOR A DISTANCE OF I GRIOD UN/T:

/0|.0/54 - 0/6€

9

8

7 ~0427 .0/54

6\|-0274

’ - 0/64

4|.0044 - 0274

3|.0279 . 0044 0427

2 .0344|.0279

/1.0757|.0839 |.0344

01.3969 |.0757 - .027%|.0044 - 0274 .0/56
0 / z 3 4 5 é 7 8 4 /0

X (6R/0 POINTS)
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APPENDIX - A3 (contd)

TREJOS (/953) DOWNWARD CONTINUATION

TABLE A-3 ¢
COEFFICIENTS FOR A DISTANCE OF I &T/D UNIT:
0,002;7 - 0//82
L7
‘g 8
é 7 = 0043/ - 00257
N ¢ |-00¢59
:f) > -~ 01182
§,4 - 0097/ -~ 00659
2 01078 <0097/ = 00431
2z <0l58/ |=0/078
/ \-1.05283|-03734 |- 01581
0 1685355105283 =0/078 |~ 0097/ =00659 00257
o / 2 3 ¥ 5 é 7 & 9 70

x* (Grio POINTS)

TABLE A~ 2 HENDERSON’S (1960) DOWNWARD CONTINUATION
COEFLICIENTS FOR A DISTANCE OF 1 GRID UNIT.

610 PonT| e |70 Pom |
(0;0) 4.8948 (3,4) —-.0050
(/,0] ~.7528 (0,5) -.0050
(5,0) -.0050 (5,5) -.0044

(25,0) | —.00/5 (10,6) | -.o048
(0,/7) —. 7528 (1,7) —.0044
{1,7) .0022 (15,7) —.0028
(2,1) —-.070/ (24,7) —-.0015
(7,7) ~. 0044 (€, /0) —. 0048
(752) —-.o070/ (7,15) -.0028
(2,2) -.0094 (20,/5) -.00/%
(3,2) -.008¢ (15, 20) —.00/4
(273) ~.0086 (7,24) -.00/5
(4,3) -.0050 (0,25) ~.00/5
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APPENDIX -A3 (cornid)

TABLE A-5 3 GRANT AND WEST’S (/967) DOWNWARD

CONTINUATION COEFFICIENTS FOR A DISTANCE OF
2 BRID UNIT — ATTENUAT 04" £AacToRr (V) = Z/6.

D)
1\; é -.000/
é 5|-.0022 ~. 0030 |-,000/
o ¥ ~. 0041 |- 00/8 |-.0022 -.000/
N
§ 3 -. 0043 |-.004/ -0022 |-.0030
» Z -.0/9/ |-.0/14 | —.004/ |-.00/8 -, 000/
11.3¢53 |-.6505 |-.019/ |-.0043 |~-.004¢/
012.5038 | -3¢653 -~ 0022
7] / 2 3 < 5 4
X (6RID PONTS)

HENDERSON ANO Z15T2’ (1949) SECOND

748LE A-6 =
VERTICAL DERIVATIVE COELF/ICIENTS. — BASED ON THE
EQUATION *
O fxy) _ _.[.2/ " -1 (.zs]
_aézy o - 8{ (s) +3f(vzs 2 f

2|-0.0838
/ |-2.66¢7).2.0000

O \7. 0000 |-72.0667|-0.0838
o 4 2

TABLE A-7: ROSENBACH'S (1953) SE£conD VERTICAL
DERIVATIVE COEFFICIENTS — BASEDL ON THE EQUATION:

o )C-—-Z) E?éffo) -/8][{5) 8/-'(1/‘5) +][/ S)J

J 22

4 0.04/6
/ |-0.7500\- 0.3333| 0. 04/

0 \4£.0000 |-0.7500
o / Z
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