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\ S ~ ABSTRACT L
‘This:thesis presents a study Bf the theory of
conventional "and Fractional Tap Spacing'Bqualizers and
outlines their relative benefits and drawbacks. Two special
cases of Fractional Tap Spacing Equalizer; are emphasized
in this work: the T/2-Tap Spacing équalizer and a new type

L] .
of equalizer, called a Hybrid Transversal Equalizer, in which

Il

the tap spacing is either T or T/2 (where 1/T is the data
source symbo;s rate). A mathematical analysis of these
egu#iizets is carried out and some new results are derived.:
To‘support the mathematical analysis, a computer érogram was

used to compare the performance of these models of equalizers

4 ~a

!

and the results obtained are analifed.
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" SOMMAIRE A -
1 . . . . F

Cette thdse présente une &tude ae la théorﬂ&fdks , »
f 3 r.\
égaliseurs conventionels et ceux de perforations i espagp L

fractionnsl et aussi donne un apergu de leurs béni?&eaﬁ et
inconvénients relatifs. Deux cas spéciaux des égaliséurs del )

‘perforations d espace fractional sont mis en relief dans ce .
\ |
fracgionnel et un nouveau type d'égaliseur, appelé 1'égaliseur,

_travail: 1'6galiseur T/2 - de perforation 4 espace

3 'hybride transversal, dans lequel l;éspace de la perforation

est soit T od T/2 (60 1/T est la vitesse des symboles de la

source de données). Une analyse mathématique de ces &galiseurs

‘ est exécutée et de nouveaux résultats sont dérivés. Pour o ’ ‘
supporter 1%analyse mathématique, un programme d'ordinateur

est éﬁployé pour comparer l'accomplissement de ces quéles

d'égaliseurs et les résultats obtenus sont analysés,.
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.JUseful signalling rate is equal to the system bandwidth.

- 0of Intersymbol Inte}ference is called Equalization. This

i

1. . INTRODUCTION . _ '

1.1 The Backg;ound and Goal of This Thesis . ,

’

In Bandlimited data transmissions systems the maximum
At this fa;e, dégrada;ion in system performance is caused "
by Intersymbol Interference, (ISI), as "tails" of the
channel impulse responsé are superimposed in the receiver,
due to prevﬁoysl? sent symbols.  The ISI makes it more
difficult for the deléction section to decide which symbol
.

was transmitted af each interval.

The technique used to reduce the degrading influence ,

name‘originates from a diEcovery made. by N&quist. Usually

the signal-ié sampled in the receiver. Nyguist showed that

if the Fourigr‘?ransform of the sampled sy;}em impulse response

is a constant, ISI is éliﬁinated. Since the Fourier Tra;sform

of the ;ampled %ystem impulse response is séldom constant, some

sort of eq&alizgtion of this function should be performed. —
| Equalization is achieved by a device usually ; part -

of9theMyeceivér, implemented as a T}ansversal Filter (TF);

The TF is bﬁilt of a ﬁapped delay line and a summer. With

o [N . .
each tap there is associated a.gain. The outputs of the

taps ‘are fed to a summer. The 6utﬁut signal from the TF is

° -
i

b
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the signal at the output of tqusummer. The only parameters

of the TF that can be opt1m1zad are.the Qap gains. Since

the samplxng proceib taking place in the receiver is it the

symbol rate, evgry\T\geconds, this was the tap time sPacing

in early implementations of equalizers.

.

In recent years it

was fagnd out that further 1mprovement of performance can

be obtalned by 1ncreas1ng the system cbmplex1ty and mak1ng

“the time spacing between taps smaller than T. Such equalizers

are referred to as Fractional-Tap-Spacing-Equalizers.

In this thesis a generdlized equalizer model in which

tap spacings are arbitrary, is represented. Then, three

special cases are examined in detail, namely tlie conventional

T-Spaced, the T/Z Spaced and a Hybr1d Transversal Equalizer -

(HTE). The HTE is a new type of equalizer that is be1ng

proposed here. The HTE. comb1nesnteatures of the T—Spaced

and the T/2-Spaced equallzer.

A study of these three 1mportant configurations is

carrled out here as follows. In Cnapter Za baseband data

transmission system is described. The problem of ISI is
13

discussed,

-

and it is shown how equalization can mitigate its
‘ \

effect. Chapter 3 deals with the topic of optimal (minimum

mean square error) equalization. Chapter 4 discusses the

important features of the conventional T-Spaced Equalizer.
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Chapter 5 deals "with theé propert1es of 3.3/2 Spaced’ Bqualizer
v .and compares them to those of the T Spaced Equalizer.

» b , Next, in Chapter 6 the model of a Hybrld Transversal

, ‘ Equal1zer is, presented and analysed. In Chapter 7, a -
computer prngram is used to compare the three types of

.
'/equallzers, and the results obtalned are analysed, It turns

out that the T/2- Spaced Equalizer is better thaB a 'T- -Spaced

—
¥

- Equalizer which spans the same time 1nterva1 However, the
HTE whlch spans th1s time interval but with fewer taps may
have satisfactory performance between that of a ¥/2-Spaced

Equalizer and that of a T-Spaced Equalizer. Moreover, in

s . - cases where a longer time span is desired a Hybrid Type
" (j§ Equalizer is superior to a pure T/2- Spaced Bqualizer w1th‘ '
s i : : the same number’of taps which spans a shorter time interval.

Thé. figure of merit for all comparisons is the minimum mean
o

i

square error. Chapter 8 is a brief study of the subject of
°Partial Response Signalling (PRS) and Fracfional'Tap Spacing

Equalization. The question posed is whether PRS or correlated

levels signalling improves-.the performance of systems which

employ: fractional tap spaciﬁ§<§§5a1izersg, The tonclusion

}s that PRS or correlated 1eve%e signelling do not have such

adesired property. : ~ \.

}

4
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- .1.2 PreV1ous ‘Work oo - ’

. G Exteh51ve material, about T- Space Equalization (theory

hCal ‘ ¥

‘and implgmﬁntayion) is Yound in references [ll,through [7}
[14], 115]

”

ahd in [1i], Selécted maté&iai about T-Spaced

Bquallzers Whlch 1s relevant to the the51s is included in
l Chapterﬁzs . C ‘ ’ . ,

The first paper publxshed about Fractlonal Tap Spacing

' v

Equalizers is [8]. The analy51s carried out in [8] and in this

thesis do not follow.the same mathematical 11nes.

A paper which
Minspired" this work is [9]. "Although wr1tten in a very concise
manner, it is gich in sHbstance.
we bringuthe ﬁaihematical background and derivations omitted

- Mron [9].

[ ~ f
¢
- © 1 * . .
’ )
x -
| . %
-
v
- {
N \
/
* ¢
-
. .
~ -
m’\ Q
.
. - ’
i : * /
- p - \
*
.
i v
- ' .’. . . )
Vg
3
Y i
- R -
P
e n
- s
A P
. * d ‘h_
! 3
» . .
- N °
-
' .~ - P
N : ! \
-
« + Q i
© e o .
. N
. -
- A . N y
» N w

In this work,amongfother thlngs

R
AP

%y
T

5
o Tae.

TIETET
SRR S
b on D ERE

£
-
T




- 2 ’TBASEBégp DATA TRANSMISSION SYSTEM
[ , ) !
2.1° The Structure of a Data Transmission Systen

»

A baseband data transmission systém is shown“in
Figure 2-1. It .consists of three basic subsystems:
th trénémitter, ihe channel 339 the receiver. The
transmitter itself has two parts: the data source that
emits a symbol every T seconds into a bandli%ited filter .

whose impulse response is hi(t). The signal at the output

of the transmitter, given by:

@
7 ST(t) - gaihT(t,-lT)
. _\ . ~
(:) is fed into the channel. The channel is modelled here by a
filter with ﬁmﬁulse rssponse hc{f). At the"output of h_(t),
] ;
*  randomnoise nR(t) is added to the signal. The"signal at the
output of the cﬁgnnel is:
rp(t) = sT(t)*hc(t) + nR(t)

- The third part of the syStem is the receiver. It has three ~
basic components: an input filter hR(t),‘a sampler, and a
decision unit.

The signal at the output of hR(t) is given by »
. x(t) = s(t) +n(t) (2-1)
where: - s(t) —-gaihT(t-1?)'hc(t)*hR(t)
@@?‘ and’ ‘\ t) - t *hc t
P and; n( ) nR( .) R( )
‘ - 5 - 1

i

.
R R A I L e sy e
: 3 4

” e
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» |
- nR(t) .'
, - 1 s.ct) ~ RET I Y
ey | E Y x(t) UNIT
. ) ) - 1
. . _C\
5 \‘ 3 q l . \ '. _ I '\ , [}
- TRANSMITTER CHANNEL . _ RECEIVER :
. _
. ) | _ - A
Fig. 2Z-1: Generalized Baseband Data i
. Transmission Systenm °
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By defining h(t) as the overall impulse response of the .

system one can write the signal before the sampler as:

x(t) = ;aih(t—i'r) + n(t) (2-2)
i
where: h(t) = hT(t)*hc(t)*hR(t) (2-3)

The samples at the input to the decision unit are:
o
X(kT+1) = Eaih(kT-iT+r) + n{kT+1) (2-4)
‘where T is the sampler time offset with respect to the data
source. The decision unit accepts the samples given by
Bq. (2-4), and every T seconds emifs a symbol &, which is

) an edtimate of a,, where both ay and’ai usually belong to

(;) the same alphabet.

‘ For given transmitter and channel one may seek to
oﬁtimize the receiver operation (which is estimating ai).

" Usually the receiver is optimized so as to- improve a system
performance index (such as probability of error, output
signal-to-noise ratio or mean square error). The optimization
itself invqlves the design of hR(t) and the decision unit
in the receiver.

The additive nojse that corrupts the sigﬁal in the
channel can cause'errors in the detection. Another source of

degradation is the intersymbol interference (ISI), Fhe nature

of which is explained in the next section.

/
‘ I
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2.2 Intersymbol Interference

Eq. (2-4) can be written as: . '

)

~

X = Iaghg vy

where: Xy & x(kT+1)
h,_; & h(kT-iT+1)
n, 4 n(kT+1)

If we define the present input symbol to have the subscript

k we can write:

) x, = ah, + £ ah . +n (2-5)
k k0 K ik-1 k .

One notes that in each sample Xy there are three components.

The only desired one is akho; nknis a noisg sample and "the

sum I a.hk . is a disturbance originating from past and
igk 1L .

1 PN
future samples of h(t). This disturbance is referred to as *
intersymbol interference (ISI).

;1\}5 quite easy to derive the Nyquist criterion for

the elimination of ISI. Basically, an overall impulse response

h(t) is desired, such that: | o
o, -{ o 0
o ih0 |
g
%
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If this is true for some h(t), then:

LY

h(t) - iﬁft-iT) - hys(t) ®

where §(*) is a delta function. But I §(t-iT) is a periodic
. i
function, thus it has a Fourier series representation,

i namely:
£6(t-iT) = 1 I
i p i

ej21ti/T

~
2

Using this fact, we can write:

o, . . : :
\ | h(é&?eJZ'tl/T - Tﬁoﬁ(t) R
§ 1

1f we take the Fourier transform of both sides we arrive at:

. SH(E-d) = Toh, ' (2-6)
| i( T) 0

The sunm éH(f-%) is a periodic function of f and its
i :
{ period is %. The first period is called the Nyquist

equivalent of H(f) and is designated as:

Heq(t) & sH(E-p , |£]< A
1

The conclusion drawn from Eq. (2-6) is that for elimination:
of ISI, Heq(f) should be flat.

This is the Nyquist criterion for ISI cdncgllaiion. 1f
h(t) satisfies Eq. (2-6) then at each sampling instant all

h;'s are zero except h, and there is no ISI.

<,
1
'
N (¥
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For a given transmitter and channel there is a ,

result due to Ericson (& which specifies Hp(f) in terms g ‘
of the system parameters. This Hk(t) performs at least
as well as any other filter,
2.3 Ericson's Resuli ‘
Given hT(t), hc(t) and the noise nR(t) power spectrum,
Snp(f). , . ) |
i
G.(£f-7/T) : ‘ o
1f: IS0 for |£| <oy (2-7) . o
; i Snp(£-7/T) ’ J
2 then: - 1GA(£)

x : Hp(f) = gﬁ;{fy'g(f) l (2-8)

where: Gc(f) - HT(f)oHc(f)

gy WITRREL AT

and a(t) is periodic with period 1/T. HR(f) is the recaiver
input filter. This filter performs at least as well as any
other linear filter with respéct to any reasonable criterion.

A reasonable criterion is a criterion according to which the

S

performance index does not improve when signal to noise ratio
‘ - \

’

is decreased.:
ﬁ(f) is a periodic frequency response{ thus, in the
time domain it can be représented by an jnfinite analog

‘

tfansversal filter. (See Figure 2-2).

i

I
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G2 (£)/Snp(£) is the frequency response of a filter
matched to the signal in its input. Figure (2-3) depigés °
the receiver based on Ericson's resul%h
The following, is an interpretai1on of Er1cson [
result; the matched filter maximizes the signal to noise
ratio in the decision instants while &(f), the transversal
filter (fF), minimizes the ISI that still corrupts the signal '
in its input. .
The abofe scheme fﬁi a réceiver is impractical for
two reasons: T
1. The realization generally calls for an infinite TF
which implies an infinite memory. |
The realization of a matched filter is impractical
because the channel is usually unknown or it slowly
e «changes with time. o
The compromise is to realize a simple low~pass filter
followed by a finite TF. A proper designiif the gains of

the taps of the TF will result in a suboptimal realizable

t

receiver: Before we discus's the problem of choosing a
criterion for optimality we note two points: (1) Instead

of using an analog TF we can put the sampler in Pigure (2-3)
after the matched filter and use a digital transversal

LS

filter which can be implemented more easily, (2) The TF

o grmmterteenn e e
. b -

o

e T -
DL T Y T

- - s
. ~
ST o

v
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Fig. 2-3: Optimal Receiver
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can be used to minimize the ISI by forcing the overall .

response H(f) to obey Eq. (2-6), namely, it causes the
Nyquist equivalent channel Heq(f) to be flat. For this

reason the TF is called an equalizer. Fig. (2-4) shows

" the modified ;uboptimal receiQer, realized with a digita}

equalizer.

2.4 A Criterion for Optimal Receiver Design

Let P, be the probability of errsr at the decision
unit output, One would wish to design the receiver so as
to minimize the probability of error, Pe' IfI;e is chosen
as the design optimality criterion the probability density
function of the ISI which Qépends 6; the specific source
and channel must be known. Usually this function is
unknown in the receiver, thus, the use of this criterion is
very often impractical. A criterion which does ﬁo; depend
on a prior knowledge of the statistical nature of the ISI,
but relates easiiy to input signal-to-noise ratio, and takes
into consideration both additive noise and ISI is the mean
square error. Under this criterion the receiver design is

carried out so as to minimize the mean square error between

the receiver and source outputs.
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cases of this generalized model. ° ~
w % Al
(1) N and N, may either be finite or infinite. - >,
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3. OPTIMAL MINIMUM MEAN SQUARE ERROR EQUALIZATION

3.1 The Optimization Problem N

As méntioned in Section 2.4 the ‘equalization is ~

i

achieved by finding a set of gains for the taps of "
5 ¥

the equalizeﬁa These gain - variables can be put in a

>

vector . , )
f ‘ - T ,
_C_- [C_Nl grsey Co ,boo', CNZJ ’
\

. N . , [

where C_N is the gain'of the leftmost (see Figure 3-1) tap
e 1 o _ 1
Co, is the gain of the reference tap and Cﬁ is the gain of
2

" the rightmost tap. The total number of taps is N—N1+N2+1(*).

These gains are chosen' so as to minimize the mean square
error between the output ?f thé data soﬁrcedand output of
the decision unit in the receiver; In the néxt section this
optimizafion.problem is solved for a generalized type of ~
equalizer in which the spacing between thé éaps }s arbitrary,
so that the T-spaced, gnspaced,'and Hybrid Transversal

Equélizers mentioned in the introduction, are just special

) ot
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3.2 The Optimal Generalized Equalizer

In Figure 3-1 a generalized equalizer is ssown, in
whicﬁ the spdcing between the taps is afbitrary. Assume,

. for the sake of mathematical ease, that the equalizer is

a F

.an analog. device (a tapﬁed delay 11ne) and the s1gnal at

i;s 1nput li,a qgntlnuous one given by EBq. (2-2):
A N v
(t) =1 a;h(t-iT) + n(t) “ (3~1)
i N ,
. - . ' . f
1£ #e assume that the spacing between the taps on the delay
line is arbitrary, then, the output of the equalizer is -

4

givenuby}

y(t) = L C. x(t-D.T)
. " ) )

where the Dj is the normalized delay associated with the
s

jth tap on the equalizer's delay 11ne. The kth sample

of y(t) as recelved in the output of the sampler that

~«follows the equalizer (samples at rate of 1/T) is given by:
y(KT+1) = L €y +x(KT-D;T + 1) ]
/ 3

where T is the constant time offset of the saﬁpler with

respect to the data source clock.

In vector notation:

Yk - _C_T°§_ ) (3"2)

where: C is the vector of the taps' gains;

x{ A f....xng-D_lT], x(kT-‘ZT),~x{kT-DlT)....]

yy & y(kT+r)

(™

sorn o i
- v

>
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" Let the desired overdll response of -the system be
f(t). If d(t) is-the des1red output of -the equalizer

and £(t) is the desired response of the system, thén:

d(t) = £(t)* I a;8(t-iT) = I & £(t-iT)
1 . 1

el
The desired outpdt samples'are given by:
N a, & agm - L 8 (kT-iT) Lal g (3-3) °
and £ & (... f[(k-1)T], £(xT), B{(k+1)TD...27
The error is defined as: “D
A
ex = Yk % )
The mean square error is: .
’ek' - (Yk k) (yk'd*) ) ~ (3'4)’

where the expectatlon is over the sampleuspace of X;.
Figure 3-2 shows; a bloci diagram for the generation of €x*

It is shown in Appendix A.I that the vector C which minimizes

Ieklz is given by: -
C NG ‘ ‘ (3-5)
Sopt g - ‘

where: A is an N x N (positive definiti%,channel autocovariance
|

matrix whose elements are g#ven by:

Agy = X7 GI-D THe) x (kT-D; T g (3-6)

v

All signals and parameters of the equalizer are complex ;-
quantltles as QAM modulation technique, often used for
transmission calls for this convention. (See, K [Lyon, 151)

. *«
L
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.
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and g is a vector whose elements are given by:

|

| a3 = df x(KT-D;T+) (3-7)

By substituting the expression for x (kT-DiT+r),
. v Ny,

namely:

X(kT-D.T+t) = I a h(kT-D.T+1-jT) + n(kT-D.T+1)
i ;3 i i

into Eq. (3-6) and Eq; (3~7) we get (see App. A.II)

lli\ Ay = i 6,0 () ﬁ h*[\(n-m-Diﬂ})TJh [(n\-Djh})TJ -
*;;xn[(D;ij)T] 4 | (3-8)
a; = xﬁ ¢aq(m) ::l f*(f)T)-h[(n-m-Di4;f)T] (3-9)
where: . \

¢aa(') is<}he data source autocovariance function
¢nn(°) is the noise autocovariance function
f(+) is the desired overall impulse response.

A

For the conventional case, where Di = i, a white data

source, white noise with powers oi\aﬁd aﬁ respectively, we
- get: ) B
, ' 1
. S
' 2 «, T « . T 2 ;
- Ay = o, L h*[(n-lfT-)TJhﬂl(n 4TI+ 0065 (3-10)
3 } !
©, ey = g L f*(mThl(n-i+3)T] - - (3-11)
et | a . ' T * .
0'!

o "~

s gy ey eyt oy v g ey e
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Eq. (3-10) can be rewritten as:

\

i,j a
nf@

This form emphasizes the fact that, in this case, the A
matrlx 1s a Toeplit:z matr;x (t) (see [Gray, 10] land
[Ganthcher, 13])1 In general when Dy ¢ iA 1s%nit
Tpep}itz. '

A more general case is the one in which D; - %,
namely, the taps are uniformly spaced; n taps on each -
interval of T sec. Such a case of importance to us is the

one in which n = 2, If we use the transform relation

h(t) -/H(f)ejz‘ftdf

to express the samples of h(t) in Eq., (3-8) and Eq. (3-9)
it can be shown th%t Eq. (3-8) can be rewritten as

(see App. A.I11I);

1/2T .
T f  ibace1nda(£)e,, (H3F + ¢ [(0,-D)T)
“1/21, —
where: ¢ (f) 4 z¢(m)e-j21fmT x (3-13)

(+) A Toeplitz matrix is a matrix-in which the a; j
element depends on (i-j) only.

~

Ay ;= o2 I h*[(n+P)TI-hL (n+PT+(i-5)T] + ‘5:2;“15 (3-12)
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and:
. s i 1 ) .
nba(e) & 1 H(grd)e IZIED (DT (3-14)
. 1 .
For, the conventional case discussed earlier:
L LY 29£(1-K) Ty g, 2 (1)
l - -j 9 1'
Av 1 'r/ 9,4 (f) |Heq(£) | %e df+o 6y
-1/2T
4 (3-15)

where Heq(f) is- the Nyquist equivalent channel defined

earlier (for t=0) as: '

i jZITi
Heq(f) = L H(f+y)e T Y,
| i

-

I

\

By using Eq. (3-9) and!the Fourier transform relation of

h(t) and d(t) one can show that for the conven?ional case:
1/2T ~ ’
, s .
o =4 J/r Heq(£)Feq(£) ¢, (£)e I 2TET. I 21EKT e (5.46)
-1/2T A

where Feq(f) is the Nyquist equivalent of the desired

overall response.

(t) &, 4 is the Kroneker delta. function.
?

!
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.For the uniform case in which D{“- % the elements of |

. N
the autocovariance matrix can be written as: :
1/2T yass -
-1 . 2= 12V 3¢, o2
Av1=T ¢,,(£) * [Heq(£) |%e ) dfta, 8y 1
1/2T '
Y 4
_where k and 1 are even. ' {3~17a5
‘ et 20EQKT/2, -, 2
' - 1 [ ] " z -jz‘ L ]
. Ak,l T .}r ¢aa(f) |Heq(f) | 2e - . df+on Gk,l
~1/2T k
L S
where k and 1 are odd. . - (3-17b)
1/2T A
A . - ] -
A= T f ¢, (£) “Heq(H)Heq(£)e I 2TE(1-K)T/ 244
-1/2T
e k is odd and 1 is even. (3-17¢)
Al/2T . L ‘ ‘ ‘
% f o, (£) *Heq(£)Heq(£) e 1 21E (10T 245
-1/2T .
is even and 1 is odd, : (3-174)
and '
, Heq(£) & £ (-1)% n(erd)ed21LT/T
i : . . . .

AN
i

One notices that for this case A is not a Toeplitz matrix,

¥




By using Eq. (3-9) with Di - % and the transform relations

for £(t) apd h(t) it can b; shown that the elements of

°

the g vector are given by:
1/2T

oy = T f/ Heq(£)Feq(£)e,, (£)ed 21T eI 2TKER/ 24,
-1/2T

for k even, . ‘ (3-18)
1/21 | | |
Ox < %’_/ﬂ ﬁ;q(f)Feq(f)¢aé(f)§JZ‘fT,eJZﬂka/zdf
~1/2T
for k odd. 5-19)
In the/next\two chapters the properties of T-spaced and’

T/2-spaced equalizers are discussed in detail.

*
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4, IMPLEMENTATION AND PROPERTIES OF A T-SPACED EQUALIZER

4.1 An Iterative Method for Equalization

In Section 2.4 it was mentioned that equalizers are
implemented at the receiver end as decision g;reéted
adaptive devices. In this section we discusg briefly
the theory of Iterative~Adaptive-Equalization and show
how such an equalizer is implementeq: ‘

In order to equalize a given channél, Eq. (3-5) must
be solved for Copt. The solution of Eq. (3-5) involves \
the inversion of the Nxﬂ A matrix, where N may be quite
large (a typical number may range between 32 to 64).
Fortunately, there is an iterative method to solve Eq. (3-5)

(see [Proakis, 13, [Ungerboeck, 61).

We look for a vector Copt that minimizes |e|?. This

¥
vector can be found iteratively by:

¢*l-ct - plv i fe)? _ (4-1)
N c-c¢
D is a matrix whose elements are given by:
2 2 . )
p, , =3 1€ : (4-2)
1,3 i j

It can be easily verified that (see App. A.I). .

Ve fef? = 2AC - 20 | | RGO

i
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If instead of computing D we take a constant a/2, which is

; called the iteration step, we get a simplified iterative

formula:

it

. ol - anact - o (4-4)

- We shall prove the following theorem:
Theorem: Let A be a positive definite matrix, then it is

possible to choose a so that

limg} - Copt %,
! i + =
b Proof:
>~ 3
K )_ . Recall that for A posiyiye definite, we have ETA5>0
i for any vector u, and the eigenvalues of A are all positive,
. ” If we subttact = Copt from both sides of Eq. (4-4) we get:
- . . .
o ¢t =t - aaact - (1 - an)act (4-5)
.o~ A o . '
Define: B=1 - aA
Note: If a, = bX Ai jbj then by Schwartz's inequality we get:
? Y [y

j
-1 ‘ £ als r A% . gpl
. ; 1

. 4-6
i,j 1,] j 3 ( )

_ On both sides of Eq. (4-6) we identify the following norms:

. lall & s
A 2
Nall & = a2, .
R O I & \
el 2 5 b2 \
i) '
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With these notations at hand we conclude fromléq. (4-5)
that:

i+l i
Hac™™ M <118} [1act]]

(4-7)
This means that in each itération the error vector gets
smaller.

P

Now we make use of another norm definition for
| " B, which is:

ﬁ - max A ArA
113]] o gl

.where: {XB} is the set of eigenvalues of B.

By using the last definition in Eq. (4-7) one gets:

g NS, T

§ 11act* ] < a J1act)]

R

If x <1 the solution of this inequality is

"y .
Hac™™ 11 s at]jac® ||

4

A can be made smaller than 1 by properly choosing the
parameter a,

*
3

It is quite obvious that Ag = l-axA, thus

v

A = max {|l-aX | {1-ax
) {AA} A ’ Amax !
By choosing:a = 3 f >0

_
- S Anax .

we get: “ An - ".A
( ‘ A= |1-a) | = 28X
3

1n f
<1

+3

R Amin Amax A

. o— - J
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Conclusions: >

1. a can be chosen so as to ensure that
lin |lactf| =0
i+ o
2. It can be shown that this choice of a brings
about the tightest bound on copvergeﬁce of
J Qi to Copt (see [Gersho,.14]) and that fastest
convergence ,takes place..

‘ 3. A smaller spread of the eigenvalues results in

faster convergence.

«

The following is a brief description of an equalizer model

in which the iterative solution of Eq. (2-5) is practically

implemented. In Sec. (4-1) we saw that Qé+1=§}'avci|e|2

where: inIeIE -'a(Ag} r a)
o = di-‘xk
T -
A= Xfexy

Thus, by Eq. (4-3),, and by assuming x(t) is real we get:

e

Ve el® =2 [xp - (xp-Ch - 4})]

We note that 5; . gl.is the k'th output of the éystem during
the i'th updating cyclé of the taps, and that dk is the
desiréd output, thus, EE Q} - dk is theEError, and we zan

write: . . -
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where each component of V.i |e|Z can be written as:

2 . s
| g_é:_L_,. 20x[ (k-D;)T]-e})

{

If we could calculate [ei . xquin the receiver it would /

'
1

2 :
yield an optimal value for : L2 Bl Unfortunately the receiver

does not have the knowledge about thq_statistic§ of ei * X, and

it uses an lnbiased estimgzg/pf this mean namely:‘e; © X thus,

in practice the updating-procedure is carried out according to?

i+l _ i i -
C C -a-e X (4-8)

Figure 4-1 shows an automatic adaptive equalizer. Extensive

material about the implementation problems is found in:'the

references. t

In the light of Eq. (4-8) Figure 4-1 is quite clear.
The only part that deserves a few words of explanatidn is

the switch. At the beginning of a transmission, the

probability of error in the receiver is assumed to be high,

!

thus a fixed sequence of symbols, known to the receiver is
used to sound the system after carrier synchronization has

been established. This symbol' sequence is locally generated

in the receiver and used to generate e;. During this period
the switch is on po§ition "a', After a while, probabilit"of

el

error reduces drastically and a decision directed mode is

-

established by changing the position to "b" automatically.

.

-

/ ®
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4.2 On the Eigenvalues of the Autocovariance Matrix
"+ We begin this sectlon by stating and provx?g the |
’ following theorem: ‘ < ' ) H )
' }Theorem: The elgenvalues of the syStem‘.'autocovariance |
Py matrix are bounded By the makimum value (M) and
the minimum value (m) of ]Heq(f)[z;' Cd; =-.1). v
Proof Assume that A is an eigenvaiue df A, and that,
W u is its corresponding pigenvecgor. .
. By definition: A = xp gr
. ‘Note that:’ g?Ag = A gﬁg. () ’ L
- ,Using the definition of A ’
‘e pet: H,.T ., H )
! we get: u xgxgu = AAE,E' -
v ) - ’
‘. Define: : Q= xdu °
o \ k = =k-
. Thus: ‘ ‘|q F -.1 ully (4-9)
| k A= = -
~ . “ o " ' 8
If Q(f)-is the Z-transform of &qk} computed around the unit . A
circle in the Z;plane then: o ‘ "
) - -
CoL : QUE) = U(£)Xeq(£)
: . venren B i.
where as before: Xeq(f) = EX(f+Tﬂ , s
™ — i o, / ;
(1) H superscript means conjugate - transpose operator. - i
o . . ’ L, é/“j
‘ ' 3
' / L
L op ° ;?;ﬁ?g
\ . - ot
K
R 5 aos " - , . i‘%‘}:
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By using Eg. (2-2) and Parseval's theorem in Egq. (4-9), we_get:

. .1 1
p T 2T
lag I* = a2 - / |U(£)Heq(£) | 2df = AA/ [U(£) [2af
: 1. ‘ 1
‘ 2T 2T
But it was given that: m<|Heq (£) | 2<M,

thus; we arrive .at the following result:
> ) s

f
mi}AiM

We may conclude that the larger the spread of the eigenvalues,

the farther the channel's Nyquist equivalent response is from

being flat. As was mentioned in Sec. 4.1 this fact implies

}onger convergence time of the taps in the iterative model
previously discussed..

Next, we find expressions for the eigenvalues and
eigenvectors of the putocovariance matrix of a model
employing an infinite T-spaced equalizer..

We previous%y got that [Eq.(3-15)1]

-

i =t [ nearn e, (e O e 4 oty
7T

- -Ne note again that A is Toeplitz. ~For a general row, s, of

Aq we write: (for‘o;=0)
1 - . Cern
ZA 1°j2“n"’:'}'f lHeq(f”z?aa(f)eJZstTe J2R(£-M) 1Ty
- 1- 1] 1 1 R \
" K
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| | 1 \ . Crerse
G - ,}f |Heq(£) |20, (£)ed21E5Tge"I20(E-A) g
. 1
‘ 1
' T
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\

:ZilsT
= |Heq(A) |20, (A€’

Thus, the vector whose components are {3321f5T} «is an

eigenvector of A and
[ 2 \ P
|Hea(£) |*2,,(£) . (4-10)

is its corresponding eigenvalue!

The above result is somewhat obvious once one regards
an infiniée Toeplitz matrix as a circulant matrix in the
limiting case, and uses the fact that the eigenvalues of a |
circulant matrix are given by the Dierete Fourier Transform
(D.F.T;) of its rews, [Gray? 101, [Noble, 161. |

4.3 The Frequency Response of a T-Spaced Equalizer

In Sec. 3.2 it was shown that the opti?al taps' gains

|
A=Np \
{Ci}i__Nl are given by

Ac = a p

! {
!

Starting from this equation we can write another equation,

~-j29AKkT _ ~j290kT N _
i § Ak,lcle iake (4-11)
By substituting Eq. (3-15) for Ak,l and Eq. (3-16) for Gy
into Eq. (4-11),\one can show that thg first period of the

periodic frequency response, of an infinite T-Spaced

s s 4 o v s o cema v

.
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equalizer is given by
. . . * Lajiift
cet) = ¢,,(£) *Feq(£) -Heq*(f) -e , |f|_<_2;LT (4-12)
“0,,(£) - [Heq(f) |2+ on

In the noiseless case Eq: (4-12), simplifies to

Feq(f) j2ft

..».e
Heq(f)
We see ‘that any zero of Heq(f) within the Nyquist

h C(f) = ,|f|f_z%r (4-13)

ranée is a pole of C(f).

Note that altﬁough H(f) may have no zeroes (or-near-

1
T’

superposition of terms such as H(f+%ae

Heq(f) may have zeroes because of the
j29it/T

zeroes) in |£|<
in Heq(f).
) In case dips arF introduced into Heq(f) by a certain
choice of 1, C(f) tends to be very large and huge values for
Ci's may be required, which are difficult to implement,
Large values for taps' gains ma§ also cause severe noise
enhancemgnt in ceftain fréquencies, inc}easing probability
of error ih the system. ' ‘

’ In order to overcome the probleh of sampling phase |
dependence of. the system's performance there should be some
form of samplfn; phase control which choos?s a gaod sampling
phase in the ﬁ?ceivgr and only heuristic methods are a%ail—

able in practice to do it-[Qureshi, 11].
\

©
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4.4 The Minimum.Mean Square Error of an' Infinite
T-Spaced Equalizer

The minimum mean square error of an equalizer is

defined by Eq.(3-4) and is given in App. A.I., as:

“lelpyy = _;.EE,;-_,EH.QOPt ;;:;';ZJf;fJ - f 0;C; opt. (4-14)
where: G = {Gi,j} and Gi,j - K;fj
The first term can be expressed as
1/2T
3™Gea = T_/ |Feq(£)|%e, (f)df (4-15)
-1/2T ‘
The second term can be expressed as ‘ .
1/2T (4-16)
" geCopt = T / Heq(£)-Feq(H)-e I __(n)c()as
-1/2T

. By Subtractlng Eq. (4-16) from Eq. (4-15) we .arrive at:

[l

/2T | req(£) |20, (£)

l lm1n 17 df (4-17)

1720 [Hea(£) [*0,, () +op
\\‘-\r )
Eq. {4-17) shows that’for a noiseless case an infiniie

optimum equalizer gives zero mean square error.l One can
;lso see that once there is noiée in the channel, its
significance is highly depéndent on T - the sampling phase
which is hidden in ]Heq(f)jz. For some values of T a .
null or near-null may be introduced in Heq(f) withip the

Nyquist range at some frequencies and by Eq. (4-17) this

E
\t . ! !

Py e R RN Lo e G Ll PN AT S
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may cause a larger value for the integrand and thus a larger
‘s . r
minimum mean square error.

4.5 The Analysis of a finite T-Spaced Equallzer with
"~ Periodic Data 'Source

The previous sections dealt with the general base of
an infinite T-Spaced equalizer. We were unable to get a
useful closed form expression for the f}nite equalizer
frequency response. However, it is possible to derive
useful results if the data is assumed to be a periodic

1

sequence with autocorrelation function ¢aa(m) , given by: .

o T for m = kN  k = 0,+1,+2,...
$aq(m) = _ - (4-18)
0 otherwise
|
where NT is the time span of the equalizer.

It would be expected that the results to be derived
here will coincide wifﬁ%those derived for the infinite
equalizer if the period of the data is large. Short
periodic sequences are used for pseudo-random channel
sounding, i,e. periodic sequences are used to sound the
channel frequency response at N dense discrete frequencies
51nce the spectrum of the sequence consists of equally

spaced equal- height spectral lines [Muller, 3].

For such'periodic input it is possible to show

(using Eq. (3-15), Eq. (3-16)) that:
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N ‘ ‘ .
1 \
1 n -j2%n(1-k) /N -
Ay = am T IHealyp) e na-kA (4-19)
I | n- 1 )
Nl :
* -j2 N
0 = Nl,l.ni;{eq( rﬁ" )Feq( »?'r,l e.J fnk/ | ‘(4-20)
1
where' the number of taps is N = 2N1+1', (Ny -Nz) .
e
By constructing the'equation a
NNOOK . N . '
L I A 1'Cl.e--;;Zﬂmk/N - ak-e'Jz'mk/N . (4-21)
k=-N, 1=--N, ™ k--Ni

and substituting equations 'Eq. (4-19) and Eq. (4-20) into

Eq. (4-21) one arrives at the followingiresult, giving the '
Y ) I

N

‘ -N,<m<N;

taps weights:;
* o

Heq(ﬁ%)-Feq(é%)-eJZ‘mT/NT ’

|Heq( g )1 + o2

This result shows that the frequency response of a

(4-22) -

d
Clyp) =

finite equalizer with pe;iodic input is completely determined
by N equally spaced samples of thg response of the infipite
equalizer given by Eq. (4-12).

It can be shown,tféllowing the same development as

in Sec. 4.2 that the N eigenvalues of the system are givén

. [z_
by: (an-OJ-

+ /
- n 2 - -
A IHeq(NT)I » -N;<n<N, (4-23)
) . \ |
. This result shows that the eigenvalues depend on 1

\

o

DT .o i I
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since Heq(f) depends on 1. This t-dependency may cause a
‘ + . large spread in the eigenvalues and as a result a large
convergence time for the adaptive iterative structure

N  discussed in Chapter 2. .
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5. PRéPERTIES bF A T/2~SPACED EQUALIZER

5.1 The Frequency Response of an Infinite T/2-Ednalizer

! T . 1 .
The basic equation that governs the equalizer is

Ac = o where the elements of A and a are given by Eq. (3-17),

Eq. (3-18) and Eq. (3-19).

In order to derive an expression for the frequency
response of an infinite T/2 equalizer, we make the following
definitions: 4 ,/

Let {Ck}:=—w represent the gains of an infinite ///

T-Spaced Equalizer, and let {dk];____°° be the gains of
k#o /
additional taps inserted in between the previous taps as

shown in Fig. 5-1. By definition, the frequency“response of

this equalizer is given by: l

cef) & c(f) + d(f)

A . j29£kT/2

where: c(f) Ic e

k K
w -

and: ace) & za el 29£kT/2

We also write down the following two equations:

¢ e-jZﬂkT/Z d e-jZlAkV?_ZGRG-j21AkT/2 :

x,151 +IEAg g4y X (5-1)

evindu

. |

~j2ﬂkT/2+ =J29XKT/2_
D X Ak,ldle Zake

k1 k117 k1 X
add even ‘ oddodd’ f : odd

~§29AKT/2
(5-2)
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If we insert into these equations the expressions given
by Eq. (3-17), Eq. (3-18) and Eq. (3-19) we arrive at two
equations for c(f) and d(f).

By solving thesé equations and‘forming the sum
c(f) + d(f) we get the following expression for the frequency

response of a T/2-Equalizer:

¢

2+Feq(£) -6, (£) -H(£) -eI2TET
C(f) = x (5-3)
| ¢, ()L |Hea(£) |* + |Heq(£) |1 + oF

The expression Iﬁeq(f)l2 + |Heq(f)|? is equal to the folded
power spectrum of the overall response once the assumption
that H(f) is bandlimited to |f|< %/is made, and we may
wrife: | “

(5-4)
Qaa(f)-Feq(f)

00q (YL [H(ESE) |2+ [H(£) | 2+ [H(E-T) 21402

|£]<1/2T
From Eq. (5-4) it is obvious that the optimal infinite

C(f) = H'(£)-eI2TET,

T/2 equalizer may be viewed as having two parts in cascade:
the first one is a m%tched filter, matched to the overall
frequency response of the s;Etem up to the equalizer. This
part as is well known [Schwartz, 17], maximizes the signal-
to-noise ratio at the sampling instants in the receiver.
The task of the second part is to minimize the mean
square error due to intersymbol interference which still

corrupts the output of the matched filter.




. ~+ We find that in contrast to the situa%ion in the case’

| of a T~Spaced Equalizer no poles (or near-poles) can be
taused by the denominator of C(f) within the Nyquist range
by the sampler timing 1. In fact, the denominator of C(f)
does not depend on T, and can be expressed in terms of the
folded power spectrum of the unequalized channel. Moreover,
one may note an }nteresting result if the data symbols are .
'uncorrelated and the desired response, f(t), is a unit ’
pulse. In this case, once the folded power épect;um is

' constant, the equaliier turns to be a matched filter which
maximizes the signal to noise ratio at sampling instants
and minimizes ISI as well.

(«) 5.2 The Eigenvalues of a T/2 Equalizer

Using the experience gained in deriving Eq. (4-10)
one can -verify that the eigenvectors and eigenvalues of an
L infinite T/2-Equalizer are given by (see: [Qureshi, Forney,

9]) two eigenvectn{iljgxpressed as: *

V) (=L, sfieq@e PYEV2 haq(n, tfieq @ e 2V 2apue qpd T | I (5-5)

i

with corresponding eigenvalues
A; (£)=|Heq (£)|2+| Heq(£) | when (+).sign holds  (5-6)

and

¥4
o w
H

—~

)\z(f) -0 * vwhen (=) sign holds. (5-7) -

':
b
;.
|
e
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As shown before ll(f) can be expressed as the folded
power spectrum when the assumption that H(f) is'band limited

L}

holds. Thus:

NORS: |H(E-3) |2 \ RN
\

——gr

and for f <1/T we have;"

N <

M) = [HE-PIE ¢ O+ HEPE (5-9)

We s;e that a constant folded power spectrum in ‘the
T/2 case has the same effectvas.constant folded spectrum in
the T case: in both cases it is possible, by a judicious
choice of the séep size to have the taps gains reach)their
optimal values in one iteration, |

. One may also note that while in the-T-case the

eigenvalues spread is subject to changes due to the sampling
timing offset,t, in the T/2 case, where Al (f) does not
degend on t, the convergence process does'not depend on the

sampler timing.‘ \ 2

5.3 A Finite T/2-Equalizer with Periodic Data Source

For the case of a channel equalized by a finite T/2-
Equalizer which spans a time interval NT and a periodic data
source with period NT, one can show in a way similar to that

employed in Sec. 5.1 that: .

Tt

PR S e g rat N MY
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2Feq(f) . ¢

LI 1 BGRR[0 2700,
-N/Z<n<N/Z

c@_ﬂ*gﬁ) .eJ2nT/N,

The above. result shows that the périodic frequency
respoﬁse iﬂ this césg is completely determined by N samples

of the infinite T/2-Equdlizer frequency response. ~

5.4 The Eigenvectors and Elgenvalues of a T/2 Equalizer
with Periodic Data Source

For the case of a finite T/2 Equalizer and a periodic
data source the N x N autocorrelation matrix has N independ-
ent elgenvectors and N different elgenvalues whose form is

glven by [91: , /

Ay = TCIHea( Jh)|2+|Heq( })1%)  owmeN-1  (5-11)

L]

H H j2m/2N R j29(2N-1)/2N,\T
m"‘f‘( eq(m') eq(N )-e ’ ) ( ) e " . )

The -other N eigenyalues of A are identically zero. We have

already seen that An is a sample of the folded power
’

. spectrum when H(f) is bandlimited. One can see from Eq.. (5-11)

that in this case, once the eigenvalues' spread is small,
the folded power. spectrum is almost Nyqu1st and the conver-
gence process described 1n Sec. 4.1 is fast. Moreover, the

i

optimal equalizer constitutes a matckhed filter with-respect

_to channel noise. ) .

5.5 The Minimum Mean Square Error of an Infinite T/2 Equalizer

_ By applying very much the same procedure outlined in
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L ’ "Sec. 3.5 one can show that for a T/2 equalizer, the minimum). ,
i : - .
) \ Y
. " mean squgre_g"rror given by:
) ‘ ) ’
* §
lel’mm - aH-G d - aH-Copt Ty » *.
" - Za?a'\G. .-»2 opt-Za,d, opt
-1 95 I S o0 .
" ' can be expressed as: - L,
\ i 2‘ . n I/ZTlFQQ(f)12° (f) /,
e min - - —df (5-13) -
[ . 1 + /
. : & ¢ e1/21 ‘baa(f)[“’le(ltf)l *”IHBQ(f)l ] %, /
o "+ One notes that here |e|?min is not influenced by T. Moreover,
“ " by comparison with the expression derived for the T-case one
_can.see that , ) . . . .
o \ -
\ .o ) le|*ming < |e| *min, . * (5-14)
L. ¢ , * / =. v , B Q’Jz_ ~
. which proves that the T/2 equalizer has better performince
3 which is independent of 1. . In [Ungerboeck, 8] Ungerboeck
. shows by smulat\cn that Eq. (5-14) also holds for a f:uute
% 2
3T/4 equalizer which proves to be free from T changes :mfluence
s over a“lawge time interval. In [9] a similar simulation was -
» g . s - . C
. carried.out for-a T/2 finite equalizer with similar results.
o $
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6. - A HYBRID TRANSVERSAL EQUALIZER (HTE)

6.1 A Hybrid Type Equalizer is a T-spaced équalizer with
.some additional taps inserted around the reference t;p in
between the T-spaced taps. This type is a special case of
the general one presented in Sec. 3.2. Fig. 6-1 shows a
finite length Hybrid-Type Equalizer. Such an equalizer is
expected to have m;ny of the benefits’ of a T/2-equalizer, but

with the same number of taps can be made to span a larger
N Eopn L]
time interval. This enables the equalizer to fake care eof

impulse responses which have significant energy over the whole

time span of the HTE. The more additional taps we insert into

§

a given‘T-spéced equalizer, the more the HTE behaviour will
resemble thgt of a pure T/2-equalizer.

The hope is that the T/2 section of the HTE can avoid

o

creation of nulls, or near nulls in the Nyquist equivalent

spectrumsof the system.

1t has been shown in literature (see: [61,[9))

[
that in the iterative adaptive model discussed®in Chapter 4,

there is an additional noise component,e? , due to the taps

gains fluctuations. This noise power is 1ineaf1y proportional
to N, the RUﬁb?B of taps. In order to reduce this excess

noise it is dgﬁirpbie to reduce the number of taps in the
! ! |

\equalizer.1 The HTE is q;peéted‘to suffer less than a pure

Y
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1 L T/2 equalizer from tap;\fluctuations noise as it has fewer
1 ' taps.
! L In the°following sections the HTE is mathematically ‘
analysed, and some interesting results are presented relating
an HTE to the pure T/2-spaced equalizer, both spanning the
same time interval.
6.2 The -Optimal HTE
) *
In order to analyze the HTE model we refer to Fig. 6-2.
It is obvious that every HTE can be decomposed into sections N
as ,shown in the figure.
’ From Eq. (2-2) we know that: -~ R
- " - ' . 14{
%; x(t) = I aih(t-lT) + n(t) 5
Q@ k, \ 1 ' P \ i
and from the figure \
. I Yx & ykx + Yk, + Yk’ i
where: \ _ : \
"Nl.,-
- o . -A- 'Tc S -
Tk, T B Cit%ked T &K (6-1)
. i=~N
X 0
| 2N2 ) . - . . N
Yo = I | d.-x R | 0 (6-2) -
k2 j=-2Ngt 2 k-d,-i/2 " = Tk-d, '
N, . , ,
. ‘ T s ; «
(. - . ¥ e.*X . wm €@ oX ) -
, Yk, dmbgel 1 kedy=dpmi T2 Ek-dyd, - (6-3)
o ® \ :ﬂf
{ pd -
\ . \' [ ? 0 N f
* . ’ %
' e e e
RN T e TR T T
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where {fk} are samples of a desired overall impulse response.

- §] =~

We have also defined the desired cutput as d

v

The mean square error is:

iek‘ ? - [)’i"_{

H

T .
'_i)'(yk'é.’fk)

€

T
Kk~ 3 g

(6-4)

" By substituting Eq. (6~1), Eq. (6-2), Eq. (6-3) into

Eq. (6-4) and making the following assertioms:

o
A, &

d A
[ —

£
>
>

[~

>

e .

2]
f [~

'

- one gets:

—
Xg Xy

x¥ . !
=k-d; =k-d,

T
Xf-d; & Xk-d, -d.
—

* o -
Xx " Xk-df \

'

T
*
Xx-d, "Xk-d; -4,

x*'xI
~k =k-d;-d2

(6-5)

(6-6)

ok
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I‘elz - S.H.Al.E.+£H.B.é+£ﬂ.w,s.-.c.ﬂ.g.l ‘ (6-7)

+ dlagegrd® BHocadovee-glea,

—

~ b ey ereowtlcretiviig-gfleg,

By differentiating Eq.(6-7)with respect to ¢, e and d
!
we arrive at the following set of linear equations for ¢

| —opt’
Sopt and -qopt: '
Avl B W c ay (6'})
H

B A, V '(_1_'-22 |

WH VH IA; a =

\ SdoptLtl
Our task now is to identify the elements of the

matrices A;, A2, A;, B, V, W, and the vect6rs a,;, @2 and G&j. .

-

One can quite easily verify that the elements of these

matrices are related to the elements of the ‘T/2 Equalizer
autocovariance matrix as follows: -

Ar = {A; s} for: -2N <i,j<-2N; , i,j even

Az = {Ai,j P for: -2ZN, +1<i,j<ZN,-1

Ay = {Ai’-ﬁ} for:  2N,<i,j<INg , i,j even

X
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B = {A; ;) for: -2N <i,j<-2N),i even; -2N;*1<j<ZN,-1,j odd.

1
W = {Ai,j} for: 2N2+15},;52N3§i,j even

V = {Ai,j} for: 2N +1<i<2N,~1,2N,<j<2N,,j even

Also:

[« B

i {ui} =N <iz-N;

i ‘ f . \
ez = {a;} -2N +1<i<2N,-1 ‘

The conclusion from the above s éhat the autocovariance .
matrix for the HTE can be derived from the matrix of the T/2
rcase by deleting those rows and columns which correspond to

in between taps which are not used in the Hybrid version. A

4 s
'similar result holds for the & -vector of the HTE.
6.3 The Frequency Response of an HTE
Assume that the T-spaced sections of the HTE shown in
Fig. 6-2 are infinite. If one denotes the T-spaced taps by
{vi}‘and the in ‘between taps by {wi}, then the frequency
response of the HTE is given by: ~
i , ' s Nl ' : : )
) = & vy el 2VETE, P GJ2TET(iND) - (6-9)
, . . i
1 . i==-N 1 /
In Section 6.2 we described the structure of the i
' ‘ ' \ : _ — )
T I B e T



N

autoéovar;ance matrix for a sfstem equalized by an’HTE, ) T
Having at hand this knowledge, we can follow the procedures
described in Sec. 4.3 and in Sec. 5.1 (for the d€¥4vations

of the fréquency-response of T and T/2 equalizers resp) and

arrive at the following two equations for W(f) and V(f):

) N _ ]
I LA veJ2VT/2 ., ;7o -I2TKAT/2 Lo ~§29AKT/2
x,1V1 k,1%1° k
kK 1 ko .k
o e  EA X
ol (6-10a)
Nt
A . L IR A
I LA 1v1e-32ﬂkT/2+ , I Ay lwle-JZﬂAkTIZ Z a o3 29AKT/2
ke 1 . kA A T v kqmﬁ
od  een ot od
| - | “C6-10b)

. By substituting Eq. (3-17) into Eq. (6-~10) and by

~

* making the following definitions
4 ! N1 . . ‘
w{eJZUflT/Z'

U ALY ‘f/u’:_.« ey

. TGOLER
iz-N, . .
uﬂ b
V(f) L vge JZﬁflT/Z
ot

N : .
1. ‘
gy & g JHIECDT .
i k__Nl \ " ' |

L one arrives at the follow1ng two equat1ons for W(f) and V(f):

IIHeq(f)l‘Qaa(f)+o§]-V(f)+Heq(f)Heq(f)¢aa;f)W(f) - (6-11a)

* 3 “ﬂ‘,
Heq(£)Feq(£) o, (£)el 21T : o
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Q 1/21
- / Heq(A)Heq(A)d’aa(A) V(A) s Y(£-2)dx + (6-11b)
21/2T
1/21
i Jf [Heq(A) |20, (AIW(A) Y(£-A)dA+o2W(£) =
21/2T
& {
/21 '
.)f Heq(A)Feq(A)oaa(A)eJZ“AT-Y(f-x)dl
~  Y1/2T .

qgfortunately,-it is iﬁpossible to continue from this point
.towards solving (6-11) %or V(f) and W(f) without making
additional assumptions. First, we note that each of the
inteérals in'(ﬁ-llb) is a convolutibn in the frequency domain.

6;) Then one can see that when N1+w: Y(f) approaches an impulse
§(f) reducing our HTE case to the '‘infinite T/2-equalization
case, which was treated in Sec. 5.1.

: When N1 is finite the f8nction of f generated by each

of the integrals in (6-11b) is a smeared version of the part
‘of the integrand convolved with Y(f), (see Fig. 6-3) and the

¢
degree of smearing, depends on Nl‘

\

Assuming that Ni,is'not too small we get that Eq. (5-4)

is still a good approximation for C(f) in this case.
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7. COMPARISON BETWEEN FINITE LENGTH T, ‘T/2 AND HYBRID
TYPE EQUALIZERS

7.1 Computer Program for Comparison

A Fortran IV program was used to compare these three
-1 cases, The structure of ;he‘prograﬁ is as follows:
5 Thg prég#am reads in the channel samples, the index

.of ;gference sample, alqng with an indication whether the
' samples are T or T/Z;spaéed. Then, the program reads in
‘ the parame€ters of the equalizer{ i.e., the number of taps,
tﬁe*location qf the reference 'tap and the input signal to
.. noise ratio, The program computes and prints the channel’
';-> autocovariance matrig, the eigenvalues, the resulting equali-,
,\< zer optimgl taps gains, and the minimum mean square error.

- When a T/2 equalizer is run, any HTE's performance can .
) be computed. Moreover, the program is used to find the

optimal location of the in between additional taps for an .

- X

HTE and a given fixed time span equalizer. Also, for a fixed
number of taps, the program finds the optimal time span, and °

thus the number of in between taps. The program is listed

o in Appendix B.

1 In the next sections, the results for two typical

channels are presented. x \ .

-
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7.2 Optimizing a Fixed-Time-Span Equalizer?t

The channel chosen for optimization is the chamnnel used .

in [Ungerboeck, 8]. The channel impulse response is shown
,[“ ‘ ’

t

- (:\ - . .
For this channel the program computed the minimum
mean square error of a 7T-time span equalizer, starting with

a pure T-equalizer. Then, one T/2-tap at a time was inserted

~among the T-taps and all possible T/2-taps positions were

tried. This was done for a high signal to noise ratio in

order to bring out the differences between the possible
L}

- ' . *
In Fig. 7.2 one can see the minimum mean square error

hybrid configurations.

vs the number of additional taps. For each additional tap,
the best ‘and worst HTE configurations are shown. This
yields a "contour" within the limits of which, all possible p
configurations lie. The arrays of ones and zeroes on the
graph represent&&?e related configurations; a "1" stands

for a tap wh;ch is ugéh and '"0" stands for a tap which is not

used in the HTE.

In Table 7-1 we give the improvement in minimum mean

square error, achieved by adding taps, with respect to the

pure T-spaced equalizer perfogmance.

The improvement achieved by optimally ihserging only y

one additional T/2 tap is remarkable.

($lln each of section 7.2 and section 7.3, results obtained for one
tgpical channel response are represented. Similar results were
obtained for other practical channel responses.
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“No. of additional Improvement
taps . min max
Pl
S | 1 3.7 dB | 12.9 dB
I
: 2 : 7.6 dB | 13.6 dB
3 “}11.0 dB | 15.0 dB
L
- / 4 14.3 dB | 17.0 dB
(,) | 5 “ 17,5 de 18.8 dB
\ 6 ‘ 17.7 dB | 19.1 dB
T S S - . | 20.8 a8
Table 7-1
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The difference in improvement between the best location

of the additional tap and the worst location is signifiéant.

7.3 Optimization of a Fixed Number of Taps HTE

The program was used to find thé time span of an Hybrid
Type Equalizer having 10 taps, for which the least minimum
mean square error is obtained. The channel used }n this ﬂ
section is shown in Fig. 7-3. This is an interpolated version
of the sampled impulse response used in [7) and in [9].

In Fig. 7-4 one can see that for a 10-taps equalizer
the optimal time spaﬁ'is 7T. The additional T/2 taps were
inserted in a symmetrical manner around the reference tap which
is located in the middle of the equalizer's delay line. The
ratio between the minimum mean square error of a pure T/2
equalizer with 10 taps and an HTE which spans 7T is about 15.3
in this case. We may coﬁclude that in cases where the
channel impulse fesponse is long, and has significant ehergy
over most of its duration. A longer HTE is to be preferred

over a pure T/2 equalizer with the same number of taps. !

7.4  Sampling Timing Sensitivity

In this section we compare the sampling time offset
\

sensitivity of a T-spaced, T/2-spacéd and a Hybrid Transversal
Equalizer, all having the same time span butlthe complexity

is increasing: the T-spaced equalizer have 7 taps, the hybrid
. . \

equalizer has 10 taps, and the T/2-spaced equalizer has 14

i

taps.
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"Insorder to check the sampling time offset sensitivity,

the channel in Sec. 7.2 was sam;TEd in various phaseg_with
T spaces and with T/2 spaces, For each phase the minimum
mean square error was computed.. The results are shown in
Fig. 7-5. The T/2-spaced equalizer proves to‘be superior to
T-spaced equalizer; one notes the big changes in performan;e
in the T-case, and the modest change§ in the T/2-case with
sampling timing changes over an interval of [-T, +T]. The
fatio between maximum and minimum values.of mean square error
in the T-spaced equalizer is 18 while the same ratio for a
T/2-spaced equalizer that spans the same time interval is
about 2. For a hybrid confiéuration represented by

‘ (10101111111010), (three additional taps. The reference

. tap is in the middle of the equglizer) the sensitivity is
smaller than that of a T-spaced equalizer but worse than that
of the T/2-equalizer as expected. - ’

-

7.5 | Calculation of the Autocovariance Matrix Eigenvalues

) In this section the eigenvalues of the autocovariance
- e

matrix for the channel used in Sec. 7.1 (Fig. 7-1), are
computed. The eigenvalues were calculated for both the
periodic and the white data source cases, for a T-spaced

equalizer, T/2-spac9d equalizer and the hybrid configuration

4

used in Sec. 7.4. By examining the results (summerized in

Table 7-2) the following observations hre.ﬁﬁae:‘

1
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* T-Equalizer-
Periodié¢ -| | White.
s/n\- 54dB s/n = 30dB

0.4789 0.2861
0.4789 0.6155
0.7333 0.7297
0.7333 0.838
0.9881 0.9608
0.9881 1.050
1.228 1.175

Ref. tap: 4.

HTE

T/Z-Equalizer (0101111111010) _

Y Periodic White Periodic . White
s/n=54dB s/n=30dB s/n =54dB -s/n=30dB
0.4x10-5 0.1066x10"2 0.4x10-5 0.1356x10"2

-" . 0.1245x10"2 0.4x10-5 | - 0.1598x10"2
S 0.1536x10"1 0.4x10"5 | 0.5207x10-}
- . 0.2146x10"2 0.3630 0.2931°
-n . 0.6979x10"2 0.4678 0.7176 -
- . 0.2197x10-1 0.5879 0.8727
- 0.2962x10"1 0.6994 1.008
0.8275 0.5382 / 1.191 1.185
0.8275 0.9921 1.592 1.701
1.502 1.502 1.759 2.023
1.502 1.502 ;
1:973 1.973 ;
1.973 1.973 . . '
2.900 2.093 '
Ref. tap: 7 .

[

f

Table 7-2: Eigenvalues Results
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[

For the T-spaced'samp}es of a real input response we get
(a circulant autocovariance matrix. Its eigenvalues are
real and come in equal ﬁa1rs (except for the largest one,
when the matrix dimension is odd). This originates from
the fact that the eigenvalues of a circulaht matrix are
.given by the D.F.T. of its rows [Noble, 16].
For the T/2-spaced equalizer with periodic source, half
the eigenvalues are equal to the noise to signal ratio in.
the channel. The values of these eigenvalues is zero once
there is no noise in the system. This implies that in
this case the system given by Ac=a is overdetermined and
it may have many different solutions for Copt.

The remaining half are in equal pairs. The reason is that
'they are equally spaced samples of the channel folded
péwer spectrum (as proved in Sec. 5.3) which is an even
function. One may notice that the eigenvaiues of the T/2~-
case with white data source split intoktwo groups. The
seven small ones may be interpreted as smeared values
corresponding to the seven small ones computed for the
T/2-case with periodic input. A similar observation can
bé made fdr the HTE case. .

One can see that the eigenvalues spréad for‘all equalizers

is about the same. This implies about equal tap gains

convergence time in the iterative model discussed in

. .
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This idea is supported by simulations results
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8. CORRELATED LEVEL SIGNALLING AND FRACTIONAL TAP
SPACING EQUALIZATION

In previous chapters the data source was assumed to be

either white or periodic. It is interesting to.verify how
correlated. level signalling performs with Fractional Tap-
Spacing-Equalizers.

8.1 Correlated Level or Partial Response Signalling

The usual constraint on sigﬂals chosen for signalling
over a channel is that they do not give'?ise to intersymbol

interference. Sometimes, signal design based on this criterion
is very difficult, if not impossible and may turn the systé%
to be very sensitivé to sampling timing.

A design';hich allows for a certain amount of cgntrolled
intersyﬁbol interference while the transmission bandwidth is
confined to the Nyqqistbandwidthisirefer}ed to as Partial
Response Signalling tPRS) ér, Correlated Level Signalling —
(CLS). The controlled intersymbol interference caA be“
removed fronm Fhe incoming s%gnal in the receiver. On the

other hand, because the number of received levels is larger

for PRS it has a narrower noise margin for a constant signal

‘Eower, ) : .
The first PRS-that was employed is called duobinary and

will be discussed below. An extensive study of PRS is in

[Kabal, Pasupathy,.7].

It is interesting to verify how PRS influences the

. - : ety
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Iﬁerformance of a channel equalized with a T/2 equalizer.

8.2 The Duobinary PRS and T/2-Equalization

In Fig. 8~1 we show~the impulse response and frequency

response of a,channel that' allows duobinary PRS.

+4 h(t)

-1 R
r3) Py

Fig. 8~1: DNuobinary Tmpulse and Frequencvy Response

In [7] it is shown that any PRS sysfem has frequency response
which can be expressed as: H(f) = F(f) G(f) ﬂ
where G(f) obeys Nyquist'; criterion, and F(f) = Ngl fne“jZHan
where {f } are the desired samples of the channel?;Oimpu159

it

response. For duobinary: fo = flzl

- ——

. thus: F(f)=1+e"j”fT ' (8-1)

In order to have a channel with duobinary response the binary
data stream is precodegd by the'filter given by Eq. (8-1).

Moreover the  rest of the channel's response should satisfy

}
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Nyquist's criterion. For the binary input with levels -1

and 1 we may get at F(f) output the levels: -2, 0, 2; three

levels instead of two. This fact increases the probability
of égror in the detection [7]. This is the trade-off between
the narrow transmission bandwidth and performance quality.

Assuming that the original‘data‘source has power

spectrum 0, (f), after precoding it changes to oy (£,

where @, (£) = ¢, (£)+|F(£)]?

By Eq. (8-1), we get

¢pp(£) = @aa(f)-4-coszﬂfT (8-2)
- . ' .
If we substitute ¢bb(f) f?r @aé(f) in Eq. (3-17)

«q
and define:

Heqc(f) & 2+Heq(f) »cos¥£T L

Heqc (£) 4 2-§eq(f)-cosva”

;oo s

we get for the eigenvalues of an infinite T/2 equalizer the

folloying expression:

A(E) = {|Heq(£)|? + |Heq(£)|2}-cos24£T (8-3)

We recall that the expression in bracﬁets is the folded
power spectrum of the channel Cunder the assumptioq that H(f)
is bandlimited). From Ed. (8-3)'on?~may‘conc1ude that duo-
binary precoding tends to incréase thé spread of the e%genvalues

of the system.

\
Larger spread of the eigenvalues results in longer
l 1

»

convergence time in the iterative model discussed in Chapter 4.

.
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9. SUMMARY :
"~ We started by presenting a genéralized data transmission ..

system model and: showed how an optimally designed generalized

equalizer can minimize the mean square error in suéh a system.

Through Chapters 3 to 6 we dealt with three special cases of

L * equaiizers: the T-Spaced Equalizer, the T/2-Spaced Equalizer
and a Hybrid Type Equalizer. We ;iscuqsgd and compared the

/  properties of these three models. The T-spaced equalizer's g
properties are extensively discussed in literature ;nd‘its '

review, brought here, prepares the ground for the discussion

h k of the T/2—spacé& equalizer. The T/2~spaced equalizer is not:

that extensively discussed in literature althoﬁgh it is known

(,)‘ to be superior to T-spaced equalizer in certain features.;

*+  Here we derived closed form expressions characterizing the

T/2-spaced equalizers.' By these expressionslwe could show

¢

. why the T/2Z equalizer is shpgrior to a T-spaped equglizer‘in
s - some respects. ' -
. Next we suggested a new modgl, namely, the HTE, that
,possesses some of the benefits of both the T-spaced and the
,T/Z-gpaced equalizers. The three models were compared by a

! computer program. The results obtained confirmed previous

-

- - 3 - - } . §
derivations and assumptions. The discussion through

v

Chapters 2 to 7 show that a T/2~spaqe&‘equalizer gives a much

smaller minimum mean square error than that given’by a

(:) o T-spaced equalizeﬁfthat spans.the same time interval. The

o
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w " Equ 11zer with the same number’ of taps.

£ . . . . s ~
1mprovemen&%can easily reach 10dB.

s A

to sampling timing in the receiver is much smaller in the
£

. /
Moreover, ‘the sensitivity '

} s g N

T/Z-spaced'equallzer. Conuergence time of taps gains 1n the /

1terat1ve model is dbout the same, as shown by)51mulat&on

results contained in other ] papers and by a similar eigenvalues
. ‘

spréad obtained here,.for these two-cases, The berformanées

i : u . : . %

of the HTE lie between those of the previous two equalizers.
- . ,

Its useﬁcén'%e~impqrtant whén @ compromise has to‘be done - .

ey

betmeen performances and tlmskspan given a constraint on the

number of taps., Larger time span tan be vital for cases in

whlch the channel 1mpulse response is long.
P

the 1onger HTE cag be superlor to anshorter pure, T/Z@ ‘

In such. cases

"The HTE 3 sens;t1vxty

#

‘to fsampling tlmlng is 1ess than thaﬂpzf a pufe T-spaced
equal1zer that spans the same .time ‘interval. Noise enhance\\\
ment "due to éhannel@n01se is the smaller in a T/Z-Equallzer

The HTE has the

-

benefit of a lower tomplexlty relative to a pure T/2- - '

wh1le the HTE is agaln 1n between them.

Equalizer that spaﬁs the same time interval, as complex;ty
is proportldnal to N the toual number of thp&. \
" In Chapter 8 a b;1ef d1scuss1on reveals that PRS’ has

. .
no inherent benefits fandfractxonal tap spac1ng equallzatlon. i
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Al The Derivation of Eq. (3-5) °

.
+

We start from Eq. (3-4) (which is the definition of the

mean .square error):,
g leyl? = (r-dp) rp-d3) . !
2 \

Using the vector notations defined in Sec. 2.2 and in

Sec. 3.2 we get:
¢ . 7

. eyl = (h

Ve

xp-df) (x c-dp) P
IS ! - \

‘By defining the following matrix ahd vector:

- \ )
! ! A
E S

. we can write

\ e
Ieklz - _C_H.A.l_c_-(_‘,T._C_FE'_H.g* + ldl(I2 "
' . c is a complex vector; c = RelcJ+Imlc] . To minimize

. leklz with respect to ¢ we Have to differentiate it with

: ) :
. Tespect to Relc] and Imlc] . However it can be shown that

2 2 . »
ﬁneicslek' + J I I jlekl aslekl 5 T
v
' With this result at hand, we get: -
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A.I1 The Derivati¥on of Eq’. (3-8)

o,

For convenience we start from Eq. (3-1), which is

repeated here: -

T x(t) = a;h(t-iT) + n(t) : (A.1I-1)
: ‘ i ,
By substituting Eq.U(A.II-l)-in Eq. (3-6) we get: <00

e _ . s ~ - 1." . ‘ e .
Ay =L “‘*_.a].Laj h*[ (k=D ~i+ YT)T] h{.%?nl j+ YT)T]

ij k] }

&

!
By defining: Qaa(i-j}lé a;aj , ‘the .last term in

s

&?; £ * N
+ n*[ (k=-Dy+ YT)TIenl (k=D + YT)T] ~ (A.II-2)

o - A ..
Eq. (A.II-2) as ¢nn[(Dkal)tj , m= i-j , and at last, ~

n & k-j , we arrive at: 4
bt

bl

A - ;:l ¥, (m ﬁ h*[ (m-n-Dy+ YT)TI+h[(n-D + ¥T)TI+¢ [ (D, -D,)TI .

_(A.II-S) !

. which is Eq. (3-8).

Eq. (3¢9) is derived in a similar manner starting from

'

Eq. (3-7)- l
“ . f j K

-t



.

.
e
. Bk e "J‘A‘%W RN

L

G et e e e PO

Ao . AL TR

e — TR SIS 1 e e oy n e wmmmme 2T
0
A <

- 80 -

o

A.IlI The Derivation of Eq. (3-13)

Start with the transform definition ’

_— © Yy

h(t) = H(E)e) 218t

¢
o

to substitute in Eq. (A.II-3) . By this substitution and
by carrying out the integrations first and then the -

Y
summation over m and n, we can write:
. S

1

Ay 1"//' HE (D) O+ T oy, (myel AT, 1 I FIAET, (LT,
, .
oo Lo m . 4 -

i

i

. J2UEDKT, -§20NDIT 4, iy 25 ! -
kl, g3l dldf"’?jﬁk,l . <3 (AJII-1)

) , | F A
Define the data source power spectrum as:

8 5 (5) .A;:l $,,(mel 27T

- - 3 )
and note that: Ze J29(£-)Tn % z G(A-f-%o
n i

In light of the above, if the integration in (A.III-1) is
catried out on successive intervals of length % and if some

¢ » .
cateful manipulations are made we arrive at: v

-




— — -
- 81 -
1/2T
1 k e 1
Ag1= T [Hea(£)1 -Heq(£) -0, (f)df
-1/2T

which is Eq. (3-13), where:

.
Heq(f) &
3
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PuLlel T ALt - de 5-2) .
TUTNNTIL N0 U) eul T ) el 09 u)» ST TS HETA(CTI) N0 0)
' LIsINTIGT (S50 )el(H00-M) e K(30)  4H{15030) JALFA(S0)}sP{HM450)
DIFEFLLTOT OCL0eS0) o3l ENeT0)oF { 50)
IN CATS Tl 1t uUY/ s/ R . '
v SLUALL MNOUTL ’ .
"f;\(‘(l: Jeddt ‘)) VA "HeVAT™
0. t="AT(2{ 10 L)) [
L ALTI T eC3008) Lae( 50T el=1415)
‘:’ 2200 SO AAT(TIOZ(3F 1 063)) .
UL RI=1e18 Poor Copy / y
CEAD(TIIN 3 Z1 0L A X(TI)aI=1 LX) COPIE DE QUALITEE INFERIEURE
2100 TOFMAT(I10/(3E1040)) .
FEAD(TI INSSDO0) ISAMPL  NWNTAP L[ DCF - ¢
2200 FCFAATC 11C) ,
1F{ el 0aWl) 3O T ®
12 TTAC(ITI2L10)IND(MD(T) +I=14NTAP)
1179 TCRAT(I110/72011) ,
ND1=NTAP-ND -
9 CLhT'WU”
CAL' TAF(R s LXe FSAMPL oiNsCy NT'\""I T EF + Go .Gy VAFN,VAES ,OMSE » 3, KX szoK
,ALiAoLG.MDQND'NDl' 103 ETA’
IF( k‘.‘)L.L.AJD ’\'3 GT 0’ G’.\ TO 12 |
GL 3 ¢
10 KT=KT+1 .
G0 TZ 13 !
v CONTINUE pooh
STLP '
. END ) . :
- TOSUBTIUTIND GTAP (XL X s ISAMPL NG CoNTAP s IREF 3 GsLGs VARN VAR S , DMSE s K ]
A 9D Ly KT JALFAYOD MDD SNDL WPy QsBETA) :
T THIT SULTLUTINF CALCULATES AND PRINTS OUT THE TAP COEFFICIENTS OF
. C THE TFANSVLFZAL FIL"ER WHICH MINIMIZES THE MEAN SQUARE ERFOR GIVEN |
€ THU CHANNEL PULSE SESPONST AND THE OESIRED CHANNEL~EQUALIZCr» PULSE, -
"C O ORTLELNLTe THD TUANSVERSAL FILTTT™ HAS A TAP SPACING WHICH MAY Atha
C SUEMULTIPLL (F THF SYM30L SFACING. THIS SUBROUTINE ALSO CALCULATCS
C  AND PFINT. THE "CSULTING MEAN SQUARE ERROR. IT ASSUMES THAT THZ -
¢ TNPUT SYMLELS APE UNCIVRELATED W1TH VARIANCE VAFS AND THAT THE NOISE | -
\ C 12 vHITE ' ITH VAFIANCE VAFN,., SUSRNUTINE GFLG IS USED TO SOLVC
v ¢ SIMULTANFCUS FOQUATICNS
ona C
(;) C X - 1L PUT ARTAY CONTAINMING THT CHANNEL PUSE PCSPONSE SAW”LEJ
c (VvITH THE SAMS SAMPLE SPACING AS ThHE EQUALIZER TAP SPACI!.J)
¢ LX - HUMEFS O SAMPLES IN X
C ITAMPL - SULSCT-IPT OF THE PLFERENCE SAMPLE (1 TC LX) .
c = LATIC DOF TAF SYMONL SPACING TD THE TAP SPACING (AN INTEGI®)
Y o - LUTPUT ARRAY 13F TAD COIFFICIENTS
C  NTAFE NUMPER CF TA® COETFICISNTS (MAXIMUM SD)
C I CF -~ DESIFEN POSITION AF REFESENCE TAP *
cC G - AFFRAY CONTAINING THE DESISLD PULSE RESPONSE SAMPLES (WITH .
C SPACING TQUAL TO THE_ SYMBOL INTERVAL)
. , €C LG - = NUNBE™ OF sSAMPLES 1IN’ n -
’ C  VAFN - VAFJANCE OF THT 101SE SAMPLES
. € VARS = VALITANCE OF "THC [NPUT SYMICLS
C UGSt - MCAN SQUARE EroGA AFTER EQUALTIZATICN .
T - WECFF ATFAY WITH NTAPXMTAP Sl FMENTS T
. ¢ .
. IMPLICIT PEALF3(A-H.O-2)
B OCIMINSIUN Z(NTAPGNTAP) yWK(T0) sH(1500)+F(S0)
' DIMINSILM X (LX) C(NT \PQ,Q(SWJ-B(NTAD.NTAP)'NO(SOX.D(NTAD).QLFA(NYA
*P)-Pd(NTAPoNTAﬁ)'EE'A(NDX) PINDL,ND1),Q{ND1,NTAP)
CIMENLIGN MDINTAP)
DATA LETFC/2HC(/,IDUT/C/
. c N
, IT(KT+GTW1) GC TO 21
18=15AMPL +] REF ~
» lSNT:I~fN5N AP
C . T ,
- C FILL IN THE SQUARE ARFAY £3 STARTING WITH TERMS ABUVE THE DIAGUNAL )
, RVNVESVARN/VAPS
02 40 I=1.N7TAP
o C(I)=0.,0D0
i ALFA(I)=C(]) ‘\
2 ‘ , SUM=F VNVS 5 ‘
- P DT 20 J=1.NTAP -
o (:)\ . lPFG‘lb T=I+((J+1-ISNT)/N) %N, . ,
i : ‘ IBEG«57.LX) GU TO 20 N -
e PRV . 1\1 =1-J ’ & b
! T- DO 10 K=IBEGsLXsN . . §
e ) KK=K+INS .
X : : SUM=SUN+X (K) X (KK) !
; 1¢ CUNT INUE ) P
g 20 B{1+J)=5UM . - :
%

|
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dT 1l ' . ..

HUr
Tevee 007 T THY At TAY 3
IF(.J“)’--".I{.I) 30 TOO7d

R [ = .l.'Al’
::'u')=l-] —
L LD JT1 W JEi .
_(i. )—u(f.l) - 4
PACI W)= 0d. ]
590 CLHTIMUL Poor Cory
20 CONTINUT COPIE DE QUALITEE INFERIEURE
. Te 1JdLu=l . L
Tu=INT AP I v \
1Z=N" AP . \
IF{KT«GTeal) GO T 71
TF{ *.t0.1) GO TD 7% :
IF(- NeFQa2) GO TO AH 4
7. WRITOCILUT3100) ((3(T1aJd)oI=IsyNTAP) s U=]1 4NTAP) c
J10) FOE*AT(1H1 10X, 30HCHANLIL AUTICOFRELATION MATRIX/ ‘
210X 15(2H=-=)/(1HO, 7UIXsF10.3)))
6L o 121
of Wi l1TD(ICUTV2110) ((B(I,J)s1=14NTAP),J=1,NTAP)
31Jd0 FCEFITAT (L1, 19%, 30HCHANNEL AurocooRCLA*loN MATRIX/
LIRS LLL2H-=)/(1HO s 14(1XsF 72 3)))
101 wOITS(I0UT2700) N
3200 FOFMAT(1HC, 10X+ 31HTHE SYMBOL-TAP SPACING RATIC ISe2Xs1107
FICA s 20(2H=~]) )
71 CALL VUVTFS(B,HTaAp,18,H) N
CALL EIGRS(I”QNTI\F’.IJDBQDDZ !ZO'VKQIPR)
YEITU (Lt UT33300) (D(I)eI=1,NTAP) f
T3200 FOUFJMAT(IHO, 3X,1CHTHE EIGENVALUES S/ |
P (ElZet)) "
€ FILL I THEZ ©I1GHT HAND SIDE VECTOP C (X' CROSS-COREELATED WITH G)
DL "D J=1,L6G -
15J=15+(J -1)%N .
1BC6=MAX0(1415J-LX) , -
IF(IOFGeGTNTAP) GO TO 100 ' v
IT U= 0(NTAP,ISI~1)
DA—FtT NI =1 3G IEND
KK=T15 Je 1 ’ k
ClI)=CCI)+G(J)2X{KK])
ALFACI)=C (1) -
89 CUNTINUS
oY COMNT INUD
100 CALL GFLG(C Iy NTAP 19l e01-7 » [EQ)
v IF(IER W NELO) “PIT”(f“UT-ﬂOO 0) I1E®
. ODC 110 I=1,MN7AP
110 MUCID)=1=-TFCF . .
LRPITE(ICUTZ2000) (LETRCL,NOCTI)+ClI)y IS14NTAP) h
MCTHE=(IS=-2)/N+1 . , - .
MEND=(LA+RNTAP~IS) /N+MCTR .
SUMIN=0. G -
PU 120 M=1, END ’
AUX=0. 0 “ .
=M-MC TR
ISK=1S+K*N \ .
JHEGS=MAXO (14 1SK-LX) . . ‘
JENI=MINO( MTAP,1S5K-1) B
DU 12¢C J=JHEG, JEND
_ KK=13K-J
AUXZAUXHC (J) ¥X (KK )
120 CUNTINUE
KG=K+1 ; , . ,
IF(KGWaGF e leA™D, KGoeLEWLG = -5 Y ‘
SULS e S Ut paaDsK AUX ) AUX=AUX u(fs) 5
130 CLN 1NUE ‘
(KbouLoLu) on TD 150 )
IFEG KG+1 - |
DU 140 KG=10FEG.LG, - ((
SUMSQ=5UMSQ+5(KG ) %x%x2 '
149 CUNTINUE -
150 FUMC2=0. 0 ‘ .
o0 1u¢ I=1,NTAP - ‘
160  SUMC2=SUMCZ4+C(I)¥%2 v )
lM§§=YAFS*su 1SQ+VARN®SUMC 2
WRITEZ(JOUT s 2000) OMSESNT
IF(NoNE.2) ' 50 ) 2 TNTAR. IREF )
21 11=0
DO711 x=1.u*ap
IFIMD(1)+sE£Q.0) GO TO711
1121141
BCTA(I1)= AuFA(I) 7

\x‘ |




“%

POTED J=1,07AP -
Gllled)=0E(140) a ®
710 CLUTINUE —
711 ccngxmur
257 Pook Copy
DO717 U=1,N"AP | OOR opP
IF(1D(J) o £0e0) GC TOT13 CopPIE DE QUALITEE lNFERlEURE
. Ji=Ji+1
101 =NT AP=ND ‘
NL71Z T=1 401
P11 )=0(1.J) 1
712 CONTINUE -
713 CONTINUE - .
16=ND1
‘ 1Z2=ND1
CALL VOVTFS(PJND1 1D H)
LALL TIGRSIHINDI1J08+DsZ0 129 WK, I1ER) ‘
TE(ICUT,3700) (D(I)sl=1,NDL)
CALL GILGILETAPoNDL o1 9140D~7,13R)
DG 200 I1=1,NTAP /
206 C(1)=0.0D0
J4=0

G0 210 I=1,N"AP
IF(MD(1) oEQal) GO "0 211
G Ty 210
211 J=4+1 ’
CLI)=BETA(J) -
210 CUNTINUD -
VRITLCIGUT 5001 ) (MD{I)sI=1,NTAP)
5001 FUPMAT{1H1,3X,21HHYBRID TYPE EQUALIZER/3X, 17(1u—)/ ;
*IHC-BX,IAHT/’ TAPS USFDI,2012)
. PITECLIOUT,1S00) (LETRC,NO(I), Cl1)sI=1.NTAP) .
1¢0° FORMAT(IHO. 2X s I3HTAR GA!NS OF THE HYBRID EQUALI1ZER/
F(LH0s 46X S(SXA22[343H) =9 1PE11,4)})
MCTR=(IS-2)/N+1 .
MCND=(L X#NTAP=1 S)/N+MCTE .
SUMLU=0,.0 .
DO 13011=1,MEND - .
AUX=0a 0 T~
K=*4=MCTF . -
ISK=1S+KAN N
JEEG=MAXV(1,4I5K-1X) : x
JEND=MING {MTAP, ISK~1)
DO 1201 J=J3EG,JEND
“ Kk=1SK=-J
AUX=AQX+C (JIEX(KK)
1201 CONTINUE
K=K +1 ,
FI(KGeGLel «ANDs KGelFolG) AUX=AUX~G(KG)
SUMSO=5UNSQ+AUXRAUX . . .
é301~\(pu71mu5 . . - .

IF(KG.GELLG) G T2 1501 :
IBEG=KG+1 . ) L.,
MC 1401KG=I0BEGILG ,
SUMSQ=CSUMSE+G(KG ) %*2 \ o
é401 CUNTINUE o

¢ FIND THE SQUAFED DISTOSTION DUE TO NUISE -
1501 SUMC2=0.C ‘ .

0O 16011=1,NTAP .
1601 SUMC2=SUMCI#C{1)%%2 o
c

L “-=VAFSﬂSUMSQ+VA"N*SU“C2

WREITE(ISUT30CQ0) OMSEZ»NOL1IREF
2001 CONTINUE

FETURN

C . ‘ .
2000 FCLRMAT(IHO+45X,33HLEAST MEAN SQUARI FRROR EQUALI ZER/
* 1HM04+ 42X+ 38HTAP GAINS UF THC TRANSVERSAL EQUALIZER/
L1H +4Xe5(5XsA2+13s3H) =AAPC11.4)) )
3000 FLRMAT(lHo.aox.lgnM,AN SQUARE ERRCR =¢1PEll.44

g 1H 140X, 10HNUMBGR OF TAPS =,13+10X+15HREFERENCE TAP =,1
4009 FBPMAT(lHOoZ X+ ISHFREERROR IN GTAP-GELGyY ERROR CODE =13 +3HAt %X
. END' =~ \ . .
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N " 18211775 Pe KADAL
N s
« 1Y SUPUTING COLVIS A SYSTLM OF SIMULTANLCU= EOUATIONS USING ;
( {0 SAULCTAL LLIMTNATION WI™H CAMSLETE M IVOTINGe TH™ INPUT MATRICES AGZ
©LIC LM CCLUP 15T 1M SUCCESSIVE LOCATIONG, )N RCTURN THC SCLUTION IS
C TTU-ED COLLUMRPITE AL 30le THE PIOCEDUTE GIVES PESULTS IF THE NUMJER i
0 LF CQUATIUNS MTS GRTATTP THAN ZERL AND THE PIVDT SLEMENTS AT AlL i
S TLLIIMATION $TrPE AYE DIFFE-ENT FROM ZERO, A WABNING (IFP=K)s IF |
C "5IVLN, MIDICATTS A ®OSSINLE LGSS UF SIGNIFICANCC. IN THE CASE OF A
C  &7LL LCALED MATIIIX A AND AN ARPGOPRIATF TOL-k ANCE EPS, 1ER=K MAY 0T
C 1”'*;rn TEL TO MEAH THAT MATPIX A HAS THE RANK K ,
C 1]
C ot MY - THD M Y N MATRIX CF RIGHT HAND SIDE VECTORS, EACH VECTQP |
C 19 A CULUMN DOF Re. ON RETURN & CONTAINS THT SOLUTION OF THE ;
: C TQUATIENG, ‘
; T A -~ THE I 'Y M CrEFFICIUNT MATRIX (DESTECOYED), \
. c - THZ NUMLCLF OF EQUATIONS IN THC SYSTCMe © X
¢ N - THT LA™ R OF VECTCSS IN F, ,
: c i - Al INPUT PARAMETCR WHICH IS USED A A RELATIVE TOLEPANCE IN|
e < TESTING FCR LOSS OF € I1GNIFICANCE. , ;
: C 1lf - TLSULTING EREAR CODE, f -
; C ITF= 0 NO EPRIF ‘ :
; C [TF=-1 - WO 9CayLY 35CAUSE M IS LSS THAN 1 OR A .PIVOT :
¥ C ELEMENT AT ANY ELIMINATION STEP IS EOUAL 70 0O,
. C ISF= K ~ WARNING OF A POSSIOLE LQSS OF SIGNIFICANCE AT
< ELIMINATICN GTEP K+1 (THE PIVOT FLEMENT WAS LESS
; ¢ THAN OP EQUAL TO THE RELATIVE TCOLERANCE EPS TIMES
: -C THE G2EATEST ELEMENT (ABSCLUTE VALUE) UOF MATRIX A).
: C
! ' ~ INPLICI™ LEAL2B(A=H,D-2Z) . . |
DIMCUSION FCHe ) (s l) .
C
: ¥ IF(4.,1.0.0) S "5 269 :
« 17t =3 \ ! [
1 C i
C FIND " LAFGE-T ELEMENT IN MATRIX A '
- APIV=(.0 ¢ |
o110 1=1,4 ‘ !
D100 J=1 M -, )
' Tl‘-"r'—L\AUS(A( I 'J)) !
IFLATIVLGEL"ENMRPY 40 TO 100 A . e,
APIV=TEMS
x RS - !
. JCuL=J / -
10¢ CLMTINUE ! 1
: 110 COLTINUE » \
C - A .
C  ALIE[.,JCTL) 15 TH’nPé AT SLEMENT . |
. C  APIY CONTAINS THE A3SOLUTE VALUE GF ACIFOW,JCOL) i
TOL=EPSRART Y ‘ !
C .
c ’ - S
C  ILIMINATIOMN L(CP ) i
- | \ i :
* -’g&’ s 1 4
o ; o~
. . f
, 1\
1e \;K .
-y, a
i 3 X
\ ] .
RV ‘ b
r#ﬂ: ) . e
v o ; Poor Copy / 3
. ‘ z COPIE DE QUALITEE INFERIEURE .
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B e s mr ey

L I " N open i oA e
. ! 3 Ly el R g /
\ -~
. .
- i 1 e
’ v ‘
\; N - — " N ¢ ‘
Pl 200 K=194 5,# "
TEST OH SINGULADITY .o -
IFC(APIVeL « Je0) GU TO 2&Q ¢
IF(ITRLEGLC LAND, ARIV,LLL,70L) 17R=K~1 o
PIVI=140/A(I50%,JC0L) , ) ..

"Ry PEJUCTITH ALD 2uw, INTEICHANGT IN THE #1oHT HANSY SIDE MATRIX P 7
07 140 J=1.N ’ <
IP=PIVIST(IROW.J)

C{IRC W) =T({KeJd) .

(Ko J)="Cm | ¢ Fts
1

s )
m

sl M) GO TO 210 . o -
CUL «LEeK) GG®TO 140

[

COLUMN IKTEFCHANGE IN MATRIX A ~ N .
DL 130 I=K," -
TOP=A(LWK) . .
Al s R)=A(T +JC0OL ) xS
A(l ¢ JCCL)Y =MD - R
CONTIMUC LA Ty
Uy IMTESCHANGE AND PIVOT RUW RTDUCTICN IN yﬁTRIx A
NC 130 J=Ke ™ 7
TEAP=PIVI®A(IFOW )
A(IR . WeJ)=A(KeJ) ) -
AlK,2)=TL[ M ,
COhTINUE

SA‘VE\ CCLuUMH IMNTETCHANS INFORMATICN ON THE DI AGONAL OF MATRIX A

AlksK)=gClL | " ‘ ;

CLEMEMN™ FEODUCT ION I: lo‘\if\"'f‘lCCC A AND 2 AND NEXT PIVOT SEARCH,
APIV=(Ce O IS ' 5 .
P =EK+)

no 190 I=KP1,.M
FIVN==A(I 4K)

¥

DO 170 J=KT1 M
ACI o JIZALTLIY+PIVNRAIK,J) ‘ .
*»w~—DAO<(A(1.JL) . -
IF(APIV.GL.,TEMD?) GO TO 170 . ~
AR ITN=TT P . .
IrCw=1] - 2!
JCoL=J . ‘ '
CONT IHUT \ . .
“»
DE 150 J=1leN . . ,
R s I=F (10 d) 4P TVHNRR (K ) .
CUNTINUE ) . : “
RS | .-
Q% - . {
; 4 v % L Y
? . .
ki » *L\
, - '3
z Poor -Copy /. ﬁ .
- . C'OP}E DE QUALITEE !NFERIEURE ‘ ‘
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- amux SUL&T!TUTIUN AN'D JACH EXCHANGE

11=M

‘ DL 240 12244

= 111211

q 11=11-1

SCULEAL TT II)*D.-
DO 230 S=14M
L TEMRER( TN D)

N

DE 220 L=1114M
an TEMP"""EM"'—A(II»L)*W(T_bJ)

Q(IigJ’—*(JCGLoJ)
‘ ; FLJCCL o JI=TEMP
230 ¢ ' CONTINUE X
gao CONTINUE \

250 PCTURN

¢ Emdcr PITUCN
260 - ICR=-1

(a2 JEE & e

N 4N

PETURN
END. T
m e
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