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ABSTRACT 
, 

This ,thesi. presents _ study of the the ory of 

conventional' -and Fractional Tap Spacing Equalizers and 

outlines their relative benefits and drawbacks. Two special 

cases of Praefionai Tap Spacing Equalizers are emphasized 

in this work: the T/2-Tap Spacing Equalizer and a new type 
• l' 

of equalizer, called a Hybrid Transversal Equalizer, in which 

the tap spacin, is ei,ther T or T /2 (where lIT is the data 

source symbols rate).· A mathematic,al analysis 'of these 
/ 

~qu~lizers i5 carried out and sorne new results are ~erived; 

To support the mathematical analysis,' a computer program was 

o . used to çompare the performance of these models of equalizers 

and the results obtained are 
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SOMMAI RB 

~, , If 

Cette th~se pr6sente une etude de la th6ori~ 4., 
o 1 ~,," ':, 

~galiseurl conventionels et ceux de perforations l el,~.g' 
! l '1 ~ 

fractionn,l et aussi ci~nne un ~p~rçu de leurs b6ntlj:ë.,i" et 
p J, l-b I~J 

" 

inconv'nients relatifs. Deux cas sp6ciaux de, 6Ialts~û~s dei 

perforations i espace fractional sont ais en relief dans ce 

travail:, l'.galiseur T/2 -,de perforatio~ 1 espace 1 

\ 

fraC~i..onnel et un nouveau type d' 'gallseur, appe16 l' ',ali,seur, 

1 'hybride transversal, d,ans lequel 1 t'~space de la perfor~tion 

est soit T oà T/2 (6à 1fT est la vitesse ,des symboles de la 

source de donnEes). Une analyse mathematique, de ces 'galiseurs 

est ex6eutêe et de nouveaux rêsultats sont d'riv6s. Pour 

supporter l~analyse mathêmatique, un programme d'ordinateur 

est e'mployê pour comparer l' accompli:ssement de ces Jlod~les 

d'êgaliseurs et les résultats obtenus sont analys6s. 
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1. INTRODUCTION 
, 

·1 .. 1 The Backsround and Goal of This Thesis 

In Btndfimi ted data transmissions systems the maximum 

. \lseful signalling rate is equal to the system'bandwidth. 

At this r'a~e, degradatioQ in system performance is caused 

by Intersymbol Interference,,(ISI), as "tai!s" of the 

channel impulse response are superimposed in the receiver, 

due ta previo~sli sent symbols. ,The ISI makes it more 
\ ' 

di!fic~lt for the detection section to decide which symboi 
. , 

was transmitted at each interval. 

Th~ t~chnique used to reduce the degrading influence 

- of Intersymbol Interference is called Equaliz~tion. This 

nalDe originates from a dfscovery made. by NYquist. Usually . . 

the signal'is sampled in the receiver. Nyquist showed that 
o 

'-

.. 

~f ~he Fouri~r'~ransform of ,the sampled system impulse respon~e 

is a constant, ISI i5 eliminated. Since the Fourier Transform 
o 

of the sampled ~y5tem impulse response is sèldom constant, some 
o 

sort of equalization of this function shouid be performed. 
? 0 ' 

Equalization is achieved by a device usuaIIy a part 

of ~-the,_receiv~r, implemented as a " Transversal Filter (TF). 

The TF is buU t of 'a ~apped de!ay .l·~ne and a summer. With 
~ 

each tap there is associated a~gain. The outputs of the 

tap,s 'ar~ fed ta a summer. The out~ut signal from the TF is 
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the signal at the ,outpuJt o,f 't~ su~er. The on1y para,~eterS" 
of the TF that can be optitJlized .ar..e. tht;, ";tap gai~s... Since ':. . 
the samplïng.proce~ taking place i~ the reçeiver is àt the 

c; -. symb01 rate, eVfry \T~econds, this wa'~ the tap time .. spacing 

in early implementations of equalizers. In recent years it 
. , " .'....) 

was f~nd out that further i~provement of performance can 
,......Jt. ,,1,(1 , 

be obtained; by increasin.g the sys-tem cbmpléxity and making 

'the time spacing between taps smaller'than T. Such equalizers 

are referred to as Fractional-Tap-Spacing-Equalizers. 
.' 

In this thesis'a generalized equalizer model in wnich 

tap spacings are arbitrary, is represented. Then t three 

special cases are examined in detai!, ~amely tHe conventional 

T-Spaced, the T/2-Spaced and a Hyprid Transversal Equalizer' 
j 

(nTE). The HTE is a new type o~ equalizer that is being 

~roposed ~ere. The HTE,combines features of the T-Sp~ced 

and the T/Z-Spaced equalizer. 

A study of these three important configur~tions is 

carried out here as follows. In Cha~ter 2 a baseband data 

transmission system is desèribed. The problem of 151 is 
~ 

discussed, and it is shown how equa~ization can mitigate it5 
, " 

effect. 'chapter 3 desIs wi th the topic of 'opt iomal (minimum 

mean square error) equalization. Chapter 4 di~cu5ses the 

important features of the con~entional T-Spaced Equali zer. 

... , 
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Chapter 5" deals' with thé properties of a \TJ2-~paced a Rqualizer . / 

" 

,and compares the. to those of theT~Spaéed Equalizer • 

Next. in ~hapter 6 the model of a Hybrid Transvérsal 
~ 0 , 

Equalizer i5, presented and analysed. In Chapter 7', a ' 

1: com~ute'r pr.ogr'am is used to compare the tliree types of 
t / 

'j equalizers. and the resul ts obta~ned ~re analysed. 1 t turns 
# ~., • • • "'~ ~ 

out that the T/2-Space~ Equalizer i9 ~~tte~ tha~a'T-s~aced 
• a 

Equ,lizer which, spans, the sable time interval. 'Howeve~, the 
1 

, 1 

HTE which spans this time interval but with fewer taps may 
~ ~ ~ "' ... 

have satisfactor~ perfàrmance b~tween 'that of a i/2-Spaced 
" 

Eq~alizer and that of a T-Spaced Equalizer. Moreov~r, in 
c 

case~ where a longer time s'pan J.~ desired a Hybrid Type 

Equalizer ~ superior to a ~uré T/2-Spaced Bqualizer with 
~ 

the same number'of taps which spans a shorter tirnè interval. 
.J ~ 

Th~ figure of merit for aIl compari~on5 i5 the minimum mean 
" , , ' 

square ~rror~ Chapter'S is a brief study of the subject of 
f. ,. • 

°partial Response Signalling (FRS) and Fract'ional Tap Spacing 
, " 

-

Equalizatlon. The questïon posed is 'whe,ther PRS or correlated 
" 

~, 

levels, signalling irnproves .the performance of systems 'which 
~ 1 ~ 

empJ.oy· f~actional tap spaci~alÙé'rs.~ The cônclusion 
.. 

is that PRS or éorrelated ~eve~s sifnàl1ing do ~ot have such 
\ 

a.desiT~d property. \. ~ 
1 

o 
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-1.2 Prèvious'Work 

. 
" " 

'. 

4 

. . 

, . 
.. -

.. 

w Ext~~~ivê mat~rial\abo~t. T~staèe" E~ualization (theory 

'~~d ~mplE?m~nta~ion.l is 'found i~ references III .thrCfUgh \ [7]- ~ 
". 

and 1 in [li], [141, "IlS]. Se~ècted mate'r!al abouf T-Spaced 
• 

I~ EqualizeTs which i$ relevant to the thesis is inclpded i!l 

Chapter\ "2 .. 

The first paper'published ~bout'Fractionai ,Tap Spacing 
. ' 

Equa'lizers' is Th,e anal)tsis c.aTried out in [8] and in this 

thesîs do npt follow.the same ma~hematiçal lines. A paper which 

'Hînspired" th.is work is {9]. 1( Al t'hough wri tt~n' in a very concise .. 
r \ 

l , 

manner, it is lich in s~bstance. In this work,among 'other things . ' 
", ~ 1) 

, we bring'the mathematical b~ckground and derivations om~tted 

,'" ' , from f9J. 
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2. ',BASEBAND DATA TRANSMISSION SYSTEM 
(!J • 

2.1" 1 The Structure of a Data Transmission System 

A'baseband data transmission system is shoWDAin 

Figure 2-1. It .consists of three,basic 5ubsystems: 

~!.i1:ter. the channel ~'III the receiver. The 

tr~nsmitteT itself has two parts: the data source that 

,emits' a symbol evèry T seconds lnto a bandlimited filter 

~hose .,imJ>ulse response i5 hT (t) .' The signal at the output 

of the transmitter, given by: 

- \ 

sT(t) - ~a.hT(t-iT) 
1 ~ , 

15 fed into the. channFl. The channel is modelled here by a 
\ , 

fi1ter with î'mpulse ~pon5e hc't). At the output of hc(t), 
, 1 

random noise nR(t) is added to the signal. Ther,signal, at the 

output of the channel is: 

The. third part of the system ~s t,he recei ver. It has three 

basic components: an input filter hR(t~J, a sampler, and a 

dec;ision unit" 

The signal at the outpu~ of hR(t) is given by 
" 

whel'e: ' 
" -

x(t) -~ s-(t) + net) 
\ 

\ net) - nR(tJ *hR(t) 

- 5 

(2-1) 



, ,4; "h " il' .... ,.,.., •• __ ~. _~_~ ",._~,:::;:ts~III""l!IIiIlIRl.'4!# (t;tIiK .... ". Il $2 • .... ;a J tA! ~ i OC 44"4 :;aluA J il il ' .. """;:;4 d4.~"~ 4.-&116 #M16') t:tte ., if • 1 d t ~ 

." 

" 

T 

'-

• • 

o 
, 

-

-
. 

SOURCB ... hr(t) 
, (ai} 

, 
0 

. 
- __ o. ___ ..... 

o ,,'_ ! 
TRANSMITtER 

, 
-..,/'" 

1 
'\... -1 

/ 

~,"~1. 1 ~"'!:;t .. :~\)~'t<1' .... ~";;_ ... J!y~:t .. li;.~~ ... :7 

~ 

o.' 

nR(t) 

, 

~II:... 
ST(t) "''''1: ~ .... hc(t) , 

~ ~, - --
hR(t) 

l, 
~ 

~ 

~ 

... 

o 

r­
" 

A 

{iT+T}I - 'l{ai } 
DECISION 

UNIT 

\ ~_ .. ,- __ 1 . \. .. . 1 
CJ\ 

CHANNEL 

Fig. 2-1: Generalized Baseband Data 
Transmission System 

~ 

RECBIVBR 

.." 

~ 

, 

.. 



\ - , 

() 

- 7 -

By defining h(t) as the averall impulse response of the ~ 

system ~ne can write the signal before the 5am~ler as: 
• . 

x(t) 

where: 

- Ea.h(t-iT) + net) 
i 1 

The sa~les at the input to the decisian unit are: 

x(kT+t) - ta.h(kT-iT+t) + n(kT+T) 
. 1 
l 

(2-2) 

(2-3) 

... 
(2-4) 

where T is the sampler tirne offset with respect to the d'llta 
1 

SOUrce. The decision unit accepts the samples given by 

Bq. (2-4), and every T seconds emits a symbol Si,which is 

an estimate of ai' where both ai and'a~ usually belong to 

the same alphabet. 

For given transmitter and channel bné may seek to 

opti.ize the receiver operation (which i5 estimating ai)' 

-Usually the receiver is optimized 50 as to·improve a system 

performance index (such as probability of error, output 

signal-to-noise ratio or me.an square érror). The optirnization 

itself involves the design of hR(t) and the decision unit 

in the receiver. 
" 

The additive noise that corrupts the signal in the 

channel can c,ause errors in the detection. Another source of 

degtadation i5 the intersymbol interference (ISI), fhe nature 

of which is explai~ed in the next section. 

\ ' 

.' 

li· 
, " . ,. ...... .iWoWl............. .. 
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2.2 Intersy!bol Interference 

Eq. (2-4) can be written as: 

where: 

Xt - ;aiht _i + nk 
1 

X)c ~ x(kT+T) 

h
k 

. ~ ~h(kT-iT+T) 
-1 

nk ~ n(kT+T) 

If we de fi ne the present input symbol 'to have the subscript 

k we can write: 

xlc - akhO + E a.h)c . + nk i"'K 1 -1 
(2--5) 

.. 
One notes that in each sample X)c there are three components. 

The anly desired one is akho; nk is a naiset s,ample and" the 

sum E a.h)c . i5 a disturbance originating from past and 
i+k 1 -1 • 

\ 

future samples of h(t). This disturbance is referred to as 

intersymbol Interference (151). 

It is quite easy 'to derive the Nyquist criterion for 
~ , 

1 

the elimination of 151. Basically., an overall impulse response 

h(t) is de5ired, such that: '/ 

l , 

{
hO 

h. -
1 0 

i-O 

, . 
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If this is tr,ue for some h(t), then: 

h(t) • t~(t-iT) - h 06(t) 
i 

. -~--_._------

where ~,.) is a delta function. But 1: ~ (t-iT) is a peri-odic 
i 

function, tbus it has a Fourier series representation, 

namely: 

t6(t-iT) 
i 

_ 1 te j 2fti/T 
T. 

1 / 

Using this fact, we,can write: 

, h(~~ej2'ti/T - Tho6(t) 
S ], 

If we take the Fourier transform of both sides we arrive at: 

~H(f-~) - T-hO 
], 

The sum ~H(f-+) is a periodic functio~ of f and its 
], 

period iS~. Tbe first period is called the Nyquist 

equivalent of H(f) and is designated as: 

Heq(t) Â ~H(f-~) , Ifl< A 
1 

(2-6) 

The conclusion dr~fn from Eq. (2-6) is that for elimination· 

of 151, Heq(f) should be fIat. 
,. 

This is the Nyquist criterion ~or ISI cancellation. If 

h(t) satisfies Bq. (2-6) then at each sampling- instant aIl 

hi'S are zero except hO ,nd there is no ISI. 

~~~, ,-,--~~~-;-r 1 , ~; ~ ~ r~~.~~'--:::--~:~~~T-"~ 
~ • J. • ~ l' , 

-
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For a given transmitter and channel there la a 

re,ult due to Ericson 0.81 ,which ~pecifie5_ HIt(f} in teras 

of the system para.et~r5. This HR(t) pe~foras at least 

as weIl as any other filter. 

2.3 Ericson's Result 

Given ht(t), hc(t) and the noise .nR(t) power spectfulI, 

If: 
1 

f~r I.fl < ft (2-7) 

then: 
(2 .. S) 

where: 

and ~(t) is periodic with period lIT. Ha(f) is the recoiver 

input filter. This fliter performs at least as weIl as any 

other linear fil ter with respect to any rea50nable criterlon. 

A reasonable criterion is a cri ter10n according. t,o which the 
/. 

performance index does not improve wben signal to noise ratio 

i5 decreased." 

~(f) Is a periodic frequeney response~ tbus, in the 

time domain i~ can he reprèsented by an ~~finite ~nalog 

tran~versal filter. (See Figure 2-2) •. 
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G~(f)/SnR{f) i5 the frequency response of a {lIter 

matched to the signal in its input. Figure (2-3) dep'i:~ 

the receiver based on Ericson' s result 
1 

The fOllowing, is an interpreta~ion of E~icson's 
1 

result; the matched fil ter maximizes the signal to noise 
. "" ratio in the decision instants while ~(f), the transversal 

fl1ter (TF), minimizes the ISI that still corrupts the signal 1 

in it5 input. 
/ 

The abo,ve scheme lbr a rtteiver i5 impractical for 

two reasons: 

1. The realization generally çalls for an infini te TF 

which implies an infinite memory. 

2. The realization of a matched fil ter is impractical 

because the channel is usual1y unknown or it slowly 

~hanges wi th time. J 'i 

The compromise is to realize a simple low-pass fil ter 

followed by a finite TF. A proper' design ~f the gains of " ' the taps of the TF will result in a subopti~al realizable 

receiver. Before we discus's the problem of choosing a 

criterion for optimality we note two points: (1) In5tead 

of using an analog TF we can put the 5ampler in Figure (2-3) 

after the matched fil ter and use ~ digital transversal 
. ~ 

fil ter which can be implemented more el5ily. (2) The TF 

\~ . 

l ' 
t 

l' t '. ' 
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can be used to minimize the 151 by forcing the overall 

response H(f) to obey Bq. (2~6), name1y, it causes the 

Nyquist equivalent channel Heq(f) to be fIat. Por this 

reason the TF is called an equalizer. Fig .. (2,-4) shows 
~ 

'" the modified suboptimal receiver, realized vith a digital 

equalizer. 

2.4 ,k Criterion for Optimal Receiver Design 

Let Pe be the prObabili~ of err~r at the ~eci.ion 
unit output. One would wish to design the receiver 50 as 

; 

to minimize the probability of error, Pee If Pe is chosen 

as the design optimality criterion the probability density 
J 

function of the ISI which depends on the specifie source , 

and cha~nel must be known. Usually this function is , 

unknown in the receiver, thus, the use of this criterion is 
, 

very often impractical. A criterion which does no~ depend 

on a prior knowledge of the statistical nature, of the 151, 

but relates easily to input signal-to-noise ratio, and takes 
, 

into consideration both additive noise and ISI is the mean 

square error. Under this cri terion the' receiver design is 

carried out 50 as to minimize the Mean square error between 

the receiver and source outputs. 

1 
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3. OPTIMAL MINIMUM MEAN SgUARE ERIOR EQQALIZATION 

"3,.1 The Optimization Prob1em 

As méntioned in Section Z.4 ,the ~qu8l1zat~on 1s 
, 

achieved by finding a set of gains" for' the taps" of 
\ 

th~ equalizert Thase gain ·yaTiables ca~ be put in a 

vector 

c - [C N 
- 1 

\ 

. . . . , Co , ••• , 

1 .• I, 
wherè C_N is the gain "of ~he leftmost (see .Pigure 3-1) tap 

" " 1 1 

Co i5 "the ,ain of the ref~renc~ 'tap and C' is the gain of 
, HZ 

the rightmost tape The total number of taps is N-Nl +NZ+1(T). 

T!tese gains are .. chosen'so as to minimize the mean square . .. 
error between the output of the data source and output of 

l 

the decision unit in the, receiver. I~ the next section thi! 
, 

optimization,problem is solved fOT a generalized type of / 
1 • T 

equallier in which the spacing between the taps is arbitrary, 

50 that the T-spaced, î-5paced,' and Hybrid TTansveT~a1 
Equalizers mentioned in the introduction, are just, special 

cases of this generalized model. . 1 

(t) NI ana NZ May either be fini te or Infinite •. 
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3.2 The Optimal Generallzed Bqualizer 

In Figure 3-1 'a genera,lized equalizer is s~own, in 

a which the spacing betwéen the tâps is arbitrary. Assume, . 
, for the sake of mathematical ease, that the equalizer is 

1 - , 
-an analog~ device (a tap,ed deIay li~e) and the 'signa~ at 

its input 1s a continuous'one given by Eq. (2-2): " :,-
.\. 

i(t) - E aih(t-~T) + net) 
i ' 

/ 

'If ~e assume tha,!: the spacing between the taps on the de'lay 

line is arbitrary, then, the output of the equalizer is 
" given by: 

where the D. 1S the Rormalized delay associated with the 
J / 

jth tap on the equalizer' s delay line. The kth sample 

of y(~) as received in th~ output--of the sampler that 

',,,follows the equalizer (~ampl~s at rate of lIT) is given by: 

. \; . y(kT+Tl - j Cj .X(kT-D j T • tl _ 

where "[ is the constant time offset of the sampler with 

respect to the data source clock. 

() 

ln vector notation: 

(3-2) , 
1'1 

wlere: C is the vector oi the taps' gains; 

xi ~ i .... X~kT-D_IT}J X(kT-'oT)" x(kT-D1T) •••• 1 

yx-A y(kT+"[l 

.. 
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/ Let the desired overa11 response of-the system be 

f(t-) • If d(t) is· the des'ired output of -the equalizer 
~ 

and f(t) Is the desired response of the sY5tem~'~h€n: 

d(t) - f(t)~ t a.~(t-iT) - t â.f(t-iT) 
. 1 . 1 
1 . 1 

The ,desired output samples are given by: 

.... dt A d(kT) - ~ ai f(kT-l.T) ,4 'a!. ~ 
1 

A T ft - [ .... f[ (k,-l) T] ~ . f(kT) J P[ (k+I)T] ••• ] 
~ 

and 

The error· 1s defined as: 

A 
. ek - Yk-dt 

1 
The mean square Jerror is: 

Jek 1
2 

- (Yk-dk) (Yk-dk)(f) 

'" > where the expectation is over the sample space of xk • 
'. 

(3-3) 

(3-4) 

FiguI-e 3-2 shows! a block diagram for .the generatioll; of ek • 

It is shown in Appendix' A.1 that the vector C which rninirnizes _ f) 

c - A-~.(I 
..:;.opt -

/ 

(3-5) 
, . 

where:. A 1s an N x N ,(posi~ive' definite)j channel autocovariance 

matrix wh~se elements are g~ven by: ~ 

(t) 

A .. - x*(kT-D. t+1:) x (kT-D. T+TJ 
J.] 1 1 ] 

(3-6) 
'v 

. ~ 

* Superscript means complex conjugate. 
AlI signaIs and parameters of the equa~ize~ are complex ~' 
quanti ties as QAM modulation technique, oft~n used· for 
translJl~ssion calls for this convention. 6<{See,,fLyon, 15) " 

~ 

1 
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and \ 
~ is a vector whose elements are given by' 

--------
c. - dk* x(kT-D.T+T) 

1 J . 
\ 

By substitu~ing the expression for x (kT-DiT+T), 
,,,~ 

namely: 

x{kT-DiT+T) - l a.h(kT-D.T+T-jT) + n{kT-DiT+T) 
j J 1 

into Eq. (3-6) and Eq. (3-17) we get (see App. AlI) 

Il 
~ .. -t. (m) l h*[(n-m-n.+rT)TJ h [(n-D.+~)TJ 

1,J m aa n \ 1 J 1 

+. r(J;>-:'-D.)T] nn l, J 

'whe-re: 

+aa(-) i~the data source autocovariance function 

.nn(-) is the noise autocovariance function 

f(.) is the desired overa!l impulse response. 
'" 

(3-7) 

(3-8) 

(3-9) 

For the conve~tional case, where Di - i, a white data 

source, white noïse with powers a!1 a~d a; respectively, we 

. get-: \: 
\ 

• 1 

A;_; - f1a2 t h*[ (n-i+~) TlhC (n-j +TT)Tl+ a2• ~ •. 
-u n ,.1 t n 1J 

1 

• 

(3-10) 

(3-11) 

"""-

, J 



\ 
i 
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. ~ " 

Eq. (3-10) can be rewritten as: 

A. . - 0a
2 l ht/[ (n+fT) T] -h[ (n+fT)T+ (i-j )T] + à!6.. (3-12) 

1, J n ' 1) ... 
This form emphasizes the fact that, in this case, the A 

1. . l ' 

matrix'is a Toeplitz matrix (t) (see [Gray, 10] .nd 

( Gan tm~cheT. 13 ]) • In general when Di f 1, A 1'.1' not 

,.. Toeplitz. 
1 \ 

A more general case is th~ one in which Di - !' 
namely, the taps are uniformly. spaced; n ~aps on each· 

interva,l aÏ T sec. Such a case of importance ta us is the 

one in which n ~ 2. If we use the transform relation . ' 

h(t) - f H(f)ej2tftdf 

-. 
to express the samples of h(t) in Bq. C3-8) and Bq. (3-9) 

it can he shawn that Bq. (3-8) can be rewritten as 

(see App. A.III); 

11ZT ~ 

Ak,l - ~ f' [Hlq(f»)*H~q(ft.aa(f)df 
. -1/2T . 

where: taaCf) A t~(m)e-j2ffmT 
m 

.-

(t) A Toepl~ tz matrix is a matri~ "in which the a. j 
element depends on (i-j) onl,]" l, 

./ 

• 
" f 

-. 

, 

. 
'" , 
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/ 
and:, 

H~q{f) Â t H(f+i)e-j2f(f+~)(Dk-f)T 
i 

(3-14) 

,For, the convent'ional ease discussed earlier: 

1/2T' . 
A' - Tl ! . (f) IHeq(f) 12e-j21lf(1-k)Tdf+a2c5 
k,l aa n k,l 

-1/2T 

(t) 

\,\ (3-15) 
wheré Heq(f) is,the Nyquist equivalent channel defined 

earlier (for t-O) as: 

i . 2fT. 
Heq(f) ~ E H(f+r)eJ-r-1 

i 

\ 

• 
/ 

. () By using Bq. (3-9) andl the FourIer transform relation of 

h(t) and d(t) one c~n show that for the conventiona1 case: 
\J: ':) 

1/2T -
, "k - ~! H:q(f) Feq(f) "'aa (f) e -j 2ftT o.j 2,fkTdf (3-16) 

-1/2T "<t 

/ 

l,-
where Feq(f) is the Nyquist equiva1ent of the desired 

overall response. 

(t) 4k ,1 is thé Kroneker delta,funetion • 

• / 

,. 

1 ~ • 
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/ 

,For the unif~rm case in which Di"'- !. the 'elements of '\ 
t. , '\ 

1 t~~ autocovariance matrix ca~ be written as: 
1 

" 
, 

where k and 1 are even. (3-17a) 

A 1 f1/2T. (f) -IHeq(f) 1 le -j2'f(~~/id~+CJ2 - cS 
k,l - f aa . n k,l 

~l/2T ' 
'. 

/ 

where k and 1 are odd. (3-11b) 

, 
odd and 1 is' even. (3-17c) 

, 1/2T ' 

f • (f).H:q(f)Heq(f)e-j2tftl-k)T/~df 
aa ' 

-1/2T ' , . l, 

is even and 1 is odd, (3 ... 11d) 

and: , 

One notices tha't for this case A is Dot a Toeplitz matrix. . 

" \ 

1 , 
1 

l ' 
.. I~. 

, j , , 

/ 

, 1 
1 

" ,,' 

1 

" 
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Br using E,q. (3-9) vith Di - î and the transform relations 
" 

for f(t) apd h(t) it can be shown that the elements of 

the ~~vector are given by: 
l/zr 

ak - ~ )( H:q(f)Feq(f)faa(f)ejZ1ft.ej2'kf~/~df 
-1/2T 

for, Je even. 
1 

(3-18) 
1 

1/2T 

(Ile - t f ii:q(f)Feq(f)fa'a(f)'ejZtft.ejZ'kfT/2df 
1..1/2T 

for Je odd. (3-19) 

In the next two chapters the properties of T-spaced and 

T/2-spaced equalizers are discussed in detail . 

.. 

• 

l 
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4. IMPLEMENTATION AND PROPERTIBS OP A T-SPACBD EQUALIZER 

4.1 An Iterative Method for Equalization 

ln Section 2.4 it was mentioned tbat equalizers are 

implemented at the receiver end as decision ~irected 

adaptive devices. In this section we discuss briefly 

the theory of Iterativ~-Adaptive-Equalization and show 

how such an equalizer is implemented. 
'" 

In order to equalize a give~ channel, Eq. (3-5) must 

be solved for Copt. The solution of Bq. (3-5) involves 

the inversion of the NxN A matrix, where N May be quite 

large (a typica1 number May range between 32 ta 64). 

Fortunately, there is an iterative method to solve Eq. (3-5) 

(see [proakis'; i], [Ungerboeck, 6]). 

We look fOT a vector Copt thst minimizes lel 2 • This 

vector can be found iteratively by: 

Ci +1 _ Ci - D-1Vci ~ 
C - Ci 

(4-1) 

-, ' 

, 
D i5 a matrix whose e1ements are given by: 

62~ 
Di,j -, &C

i 
6 j (4-2) 

It can be ea5ily verified that (see App. A.I). 

v~ ~-_ ZAf - Zu (4-3) 

1. 
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If instead of computing D we take a constant a/2, which i5 

called the Iteration step, we get a simplified iterative 

formula: 

(4-4) 

We shall prove the following theorem; .. 
Theorem: Let A be a positive definite matrix, then it is 

possible to choo5e a 50 that 

i + OC! 

Proof: 
\, T 

Recall that for A posi\ive definite, we have u Au>O 

for any vector !, and the eige~alues of A are aIl positive. 

If we subttact' fopt from both sides of Eq. (4-4) we get: 

Definè: 

Note: 

A ' B - l - aA 

If a. - E A .. b. th en br Schwartz's inequality \1e get: 
1. j 1 ~ J J, 

E a~ S E 
1
. 1 .. 1,J 

A~ . • ï.b~ 
1, J j J 

(4-6) 

On both sides of Eq. (4-6) we identify the fol1owing norms: 

Il!II A 

IIAII A 

a~ 
i 

1: 
i,j 

l 

... 
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With these no~ations at hand we conclude from/Éq• (4-5) 

that: 

(4-7) 

This means that in each itèration the error vector gets 

smaller. Now we make use of another norm definition fOT 

B, which is: 

.where: {hB} 1s the set of eigenvalues of B. 

By USing the last definition in Eq. (4-7) one gets: 
1 

If ~ < 1 the solution of this inequality is 

~ can be made smaller than 1 by properly choosing the 

parameter a. 

It is quite obvious that ~B - l-a~At thus 

By choosing:a 2 - -r--...,......-- > 0 
').A. +XA mln -llax 

we get: : " 

1: , ' 



l, 

. ' 
r· ' 

Conclusions: 

1. 

2. 

) 

3. 
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a can be chosen 50 as to ensure that 

lim Il àC
i Il - 0 

i + 00 

It can be shown that this choice of a brin~s 

about the tightest bound on co~vergence of 

Ci to Copt (see tGersho".14)) and that f~stest - - -
convergence.takes placer 

A smaller spread of the eigenvalues results in 

faster convergence. 

Tbe fOllowing is a brief description of an equalizer model 

in which the iterative solution of Bq. (2-5) is practically 

implemented". In Sec.. (4-1) we sa~ that Ci +l=e i _av i ~ 
- - c 

where: 

a ... ' 

A -

d'.,xk 

* T !k'!k 

Thus, by Bq. (4-3),) and by assuming x(t) is rea,l 'Ile get: 

'T . 
We note that !k • f~ ois the k'th output of the system during 

the i' th updat,ing cycle of the taps, and that dk 15 the 

desirêa output, thus, !~ fi - dk is the error, and we ~an 

Wrrite: 

., 

~ 

c 
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• 
el] 

.. 
iCi lel 2 

- 2=[x1c • le 

where each component of V Ci 1 el 2 can be written as: 

~ . : ~ . _...: 2{X[(k-Dj)T].e~} 
J .. 1 . 

If"we could calculate (e i 
k = Xk]1 in the receiver it would // 

a lel 2 , yield an ~,timal value for ~. Unfortun,tely the receiver 
~ , J ,. 

does ~ot have the knowledge about th~.statistics of e~ • xk and 

it use~ an hnbiased esti~ this.mean namely: e~ • !k thus,' 
. ' '\ 

in practice the updating'procedure is car~ied Qut according,to: 

Ci +l _ Ci - a • e i . x (4-8) 
- - le-le 

: 

Figure 4-1 shows an automatic adaptive equalizer. Ext~nsive 

materiai about ,the implementation problems '15 found in1the , , 

references. 

In the light of Bq. (4-8) Figure 4-1 is quite clear. 

The only part that deserves a few words of explanati~n, '(s 

the slM·tch.. At the beginning of a tran~mission, the 

probability of error in the receiver is assumed to he high, 

thus a fixéd sequence of symbols, known to the receiver is 

used to sound the system after carrier synchronization has 

been established'. This symbol' sequence is locally generated 

in the receiver and used to generate e .• During this period 
..... 1 

the swi tch is on position lia". After a while, probabili t>f of 
\,3' 

error reduces drastically and a deci5ion directed mode 15 

est'ablished by changing the position to "b" automatical1y. 
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4.2 Ort the Eigenv~lues of the Autocovariance Matrix 

, "1 We begin, this se~tion b;' s~ating and provi~g the 

following theorem: \ 

~ ':Theorem: The eigenvalues of the system l, autocovar~ance 

matrix are bounded by the" mal'timum value (M) and 

the minimum value (m) of !Heq(f) r,2;' (à~ -,1). 
~ .. 

Assume that ÀA Is an eigenvalue df A, and that, Q Proof: 

Il ' ~ is its cotrespo,nding ~igenv~c~or. 

" 
By definition: 

, ·Note that: 

A-x. xT 
- -k -k 

H H) Ct) 
!! A!!, = À AU !!' 

---
. 4 Using the d,efiIl'i ~,ion o~ A 

we' get: uHx*xTu = 
- -k-k-

Define: o qk = 

Thus: 1 Iqkl2 = 
1 

xTu \ 
-k-

H 
ÀAl.! !! ' (4-9) 

If Q(f)'is ~he Z-tiansfprm of \{qk} computed around the ûnit 
, " 

cirçle -ÏIl the Z-plan~ titen: .. 
Q(f) = U(f)Xeq(f) 

where as before: 'x~q (f)' ~ ~X(f+~) 
1. 1 l , , , 

(t) H superscript means conjugate - transpose operator. 
1 

, 
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1 

By using Bq. (2-'?) and Parseval 1 s theorem in 
. . 1 

, 1 ft 
= . a! • IU{f)Heq(f) 12 df 

. l , A 

-ft 
But it was given that: m~IHeq(f) 1 ~<M, 

thus, we arrive.at the following result: 

We May conclude that the larger the spread of the eigenvalues, 

the farther the channeI's Nyquist equivalent response lis from 

being fIat. As was mentioned in Sec. 4.1 this fact implies 

longer convergence time of the taps in the iterative model 

previously discussed., 

Next, we find expressions for the eigenvalues and 

eigenvectors of the ~utocovariahce mat~ix of a model 

e,mploying an infini te T-spaced equalizer. ' 

We previous1y got that [Bq. (3-15)] 
1 o • 

. ft . . 
Ale,l _1 f IHeq(f)1 2 t (f)e-J21rf(1-le)Tdf + a~<5k,l ~ 1 aa 

-ft 
-- ~.We note again that A is Toeplitz. ... For a general row, s, of 

il' 

".-
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1 

;.. }f1.T IHeq(f) 1~.aa(f)ej2HSTîe-j2t(f-A)lTdf 
1 

"'ft \ 

Thus, the vector whose c6mponents are {ej2tfsT} -is an 

eigenvector of A and 

(4-10) 

is its corresponding eigenva1ue~ 

The above resu1t is so~ewhat obvious once one regards 
\ 

an infinite Toeplitz matrix as a circulant matrix in the ., \ 

limlting case, and uses the fact t1'\at the eigenvalues of a 

circulant matrix are given by the Dishrete Fourier Transform 

(D.F.T.) of its rews, [Gray, 10], [Noble, 16]. 

4.3 The Frequency'Response of a T-Spaced Equalizer 
... 

In Sec. 3.2 it was shown that the opt~~al tapsl gains 
1 

Ac - a -
Starting from this equation we can write another equatioD. 

E E A C e-jZt).kT -ta e-jZtXkT 
k i k,l 1 k ~ 

(4-11) 

By substituting Bq. (3-15) for Ak,l and Eq. (3-16) for Gk, 

into Eq. (4-11),\ one can show that the first period of the 

periodic frequ&ncy response, of an infinite T-Spaced 

\ . 

j . 
1 

, , . 
! 

J 

f "'-
1 
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. 
equalizer is given by 

t (f).Peq(f).Heq*(f).ejZtfT Cff) _ ....;a:::;.:a~ _________ _ 
~ t, (f)· 1 Heq (f) 1 2 ,,+ cr 2 àa ,n 

,If 1 < 1 
-ft 

·In the noiseless case Eq. {4-12), simplifies to 

Feq(f) j 2'fT 
Cff) - ... ~ 

Heq (f) . 

We see'that any zero of Heq(f) within the Nyquist 

range is a pole of Cff). 

(4-12) 

(4-13) . 

Note that ~lthough H(f) rnay havé no zeroes (or-near­

zeroes) in Ifl~lT' Heq(f) may have zeroes because of the 

superposition of terms such ~s H(f+f)ej21fit/T in Heq(f). 

In case dips are introduced into Heq(f) by a certain 
\ , 

choice of T, Cef) tends to be very large and huge values for 

C. 's may be required, which are difficult to implement. 
1 ' 

.Large values for taps~ gains May also cause severe noise 

enhancemont in cet;ain fr~quencies, ~nc~easing probability 

of error ih the system. 

In order to overcome the problem of sampling phase 

4ependence o~ the system's performance there shoul~ be some 

fOTm of samp1fng phase control which choos~s a gQ9~ sarnpling 

,phase in the i~ceiv~r and ~nly heuristic methods are a~il­
able in practice t~ ~o it-[Qureshi, Il] • 
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4.4 The Minimum -Mean Square Error of an' Infinite 
T-Spaced EqualizeT 

The m,inimum Mean square errC!.r of an eqùalizer is 

defined by Eq.(3-4) and is given in App. A.l. as: 

where: 

. " 

The first term can be expressed as 
\ 

l/ZT 
!.H1

• G.!. - ~ f IFeq(f) 12t
aa (f)df 

-1/l1 

The second term can Ibe expressed as 

( 4-15) 

1/2T1 (4-16) 
" 1 f * 'l.fT ~'f.0pt - T : Heq(f)'feq(f)'e- J "aa(f)C(f)df 

, -1/21 . 

- By subtracting Eq. (4-16) from Eq. (4-15' we .arrive at: 

-1 12 0
2 f 1/2-T 1 Feq(f) 12 t (f) (4-17) , 

e min - n aa df 
T -1/2T IHeq(f) 12taa (f) + o~ 

'\,--"~ \ 

\ r 

Eq. (4-17) shows that for a noiseless case an infinite 

optimum equalizer gives zero mean square error. One can 

a1so see that once there is noise in the channel, its 

significa~ce is highly dependent on T - th~ sampling phase 

which is hidden in IHeq(f)J2. For some values of T a 

nu11 or near-nul1 may be introduced in, Heq(f) within the 

Nyquist range at some frequencies and by Eq. (4-11) this 
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may cause a larger value for'\he integrand and thus 
,J 

a larger 

minimum mean,square error. ." 

4.5 The Analysis of a finite T-Spaced Equalizer.with 
Periodic Data ~ourc~ 

The previous sections deait with the general case of 

an 'infinite T-Spaced equalizer. We were unable to get a 

useful closed form expression for the fini te equalizer 

frequency response. However, it is po~sible to derive 

useful results if the data is assumed to be a periodic 

sequence wi th autocorrelation function f aa (m), gi ven by: 

T for m - kN k - O,±1,±2, ••• 
(4-18) 

o otherwise 

where NT is tne time span of the equalizer. 

It would be expected th~t the results to be derived 

here will coïncide wi~those derived for the infinite 

equalizer if the period of the data 'is large. Short 

periodic sequences are used for pseudo-random channel 

sounding, i.e. periodic sequences are used ta sound the . 
channel frequency response 8t N dense discrete frequencies 

since the spectrum of the sequence consists of equally 

spaced, equal' height spectral lines (Muller, 3]. 

For s~ch\periodic input 1t is P9ssible ta show 

(using Bq. (~,:"lS), Bq. (3-16))' that: 

. . . 
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Ak -,1 (4-19) 

a.k - ( 4-20) 

• 

the equation 

. (4-21) 

1 

and substituting equations 'Eq. (4-19) and Eq. (4-20) into 

Eq. (4-21) one arrives at the following ll'es\!lt, giving the: 

taps weights:-

m - Heq ( J\. t· Feq ( Ji: )'~ e j 2'mT IN 
C ( rrt) - -~~----=':"::'-_---I-

1 Heq ( Ji. ) 12 + (1~ 

(4-22) . 

This result shows that ~he frequency response of a 

finite equalizer with periodic input is completely determined 

by N equally spaced samples of the response of the infinite 
1 

equalizer given by Bq. (~-12). 

in 

by: 

\ 

Ii can be shawn, fôllowing the same dev-elopment as' 
, 

Sec. 4.2 that the N eigenvalues of the system are given 
1 

(0 1=0) . n 
., 
! f 1 / 

A -n IHeq( rfr ) Il , ... Nl~n!Nl ( 4-23) 

This restl! t shows that the eigenvalues depend on T 

/ 11 
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sinee Heq(f) depends on,.. This ,.-dependency may cause Il 

1 • large, spread in the eigenvalues and as a resul t a large 

.' . 

. 
'1 

convergence time for the adaptive iterative structure 

discussed in ,Chapter 2 ..... 
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S. PROPERTIES OF A T/2-SPACED ÉQUALIZER 

5.1 The Frequency Respon,se of an InfinLte T/2-E'qualizer 

, The b~sic equation ~hat governs the equalizer 1s 

Ac = ~ where the e1emebts of A and ~ are given by Bq. (3-17), 

Eq. (3-18) and Eq: (3-19). 

In order to der ive an expression for the frequency 

response of an infinite T/2 equal~zer. we make the fol1owing 

de.fini tions: 

Let {ck};=_œ represent the gains 
CD 

T-Spaced Equalizer, and let {dk}k~-œ be 
klo 

of an infini te 

the gains of 
/ 

/ 

/ 

additional taps inserted in between the previous ~~ps as 

shown in Fig. 5-1. By definit'ion, the frequency' response of 

this equalizer is given by: 
... 

C(f) 'c(f) + d(f) 

where: c(f) , te e j 2tfkT/2 
k k 

M'I 

and: d(f) , tdke j 2'fkT/2 

~ 
We a1so write down the following two equa t ion,s : 

l t A ç e-j2'~kT/2+ E l A- d e-j2'ÀkT/~_ta e-j2fAkT/2 '. , 
k 1 k, 1 1 k 1_ k, Ille k (5-1) 

eveneen ew:nciM ,eVin 
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If we insert into t-hese équations the expressions given 

by Eq. (3-17), Eq. (3-18) and Eq. (3-19) we arrive at two 

equations for c (f) and d(f). 0 

By solving these equations and forming the su~ 

cCf) + d(f) we get the following expression for the frequency 
1 

response of a T/2-Equalizer: 

C(f) (5-3) 

" The expression IHeq(f) 12 + IHeq(fJ1 2 is equal to the folded 

power spectrum of the overall response once the assumption 

that H(f) is bandlimited to Ifl~ ~'iS made, and we May 

write: 

C(f) 

(5-4) 
* j21lfT 41 aa Cf) -Feq(f) 

- H Cf)-e - . 
41aa Cf) [IHCf+}) )2+ IH(fl/ 2+ IH(f-}) 12 )+ari 

Ifl~l/2T 
From Eq. (5-4) it is obvious that the optimal infini te 

T/2 equalizer May be viewed as having two parts in cascade: 

the first one is a matched filter, matched to the overall ,.. 
~ 

frequency response of the system up to the equalizer. This 

part as is we1l known [Schwartz, 17], maximizes the signal­

to-noise ratio at the sampling instants in the receiver. 
1 

The task of the second part is to minimize ,the Mean 

square error due to inte!symbol interference which still 

corrupts the output of the matched filter. 

, , 

" 
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• 
We find that in contrast to the situation in the case 

of a T-~paced Equal~zer no poles (or near-poles) can be 

caused by the denominator of C(f) within the Nyquist range 

by the sampler timing~. In fact, the denominator of CCf) 

does not depend on T. and can be expressed in terms 'of the 

folded power spectrum of the unequalized channel. Moreover, 

one may note an ,interesting resul t if the data symbols are 

uncorrelated an~ the de5ired response, f(t), is a unit 

pulse. In this case, once the folded power 5pect~urn i5 

constant, the equalizer turns to be a matched fil ter which 

rnaximizes the signal to noise ratio at sampling instants 

and ~inimizes 151 as weIl. 

5.2 The Eigenvalues of a TIZ Equa~izer 

Using the experience gained in deriving Bq. (4-10) 

one can'verify that the eigenvectors ~nd eigenvalues of an 

infinite T/2-Equalizer are give~ by Csee: [Qureshi, Forney, 

9]) two eigenvec~pre5sed as: 

VI 2 (f)-[. •• , ±Û:q(f)ë -12l1fTI2,H:q(;e ,±Û:q (f) e j 2ffT/2,tH:«~2tfT, ••• r (5- 5) 
-' 

with corresponding eigenvalues 

, ,., 
).1 (f)-IHeq(f)1 2 +IHeq(f) Il when (+).sign holds (5-6) 

and 

).2 (f) - 0 , when (-) sign holds. (5-7) 

-

l . 
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As shown before ÀI(f), can be expressed as the ,folded 

power sp~ctrum when: the assumption that H(f) is" band limited 

holds: Thus: 

(5-8) 

and for f < liT we have; , 
, , 

(5-9) 

We see that a constant folded power spectrum in ·,the . 
~ T/Z case has the same effect.&s constant folded spectrum in 

the T case: in both cases it is possible"by a judicious 

~ choice of the step size to have the taps gains reach their 

optimal' values in one iteration. 

_ One may also note that while in the T-case the 

eigenvalues spread ïs. subj ect to changes due ta tp.e sampling 

timing offset,T, in the T/2 case, where Àl (f) does not 
1 

depend on T, the convergence process does not depend on the 
1 

sainpler timing. 

5.3 A Finite T/2-Equa1izer with Periodic Data Source 

For the case ,of a channel equalized by a finite T/2" 

Equalizer which spans a time interval NT and a periodic data 

source with period NT, one can show in a way similar to that 

employed in Sec. 5.1 that: .. 
"e' 

, , 
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The above, result shows that the pêr~odic frequency 
r. " 

response in this câs~' is campletely determined by N samp1es 
1 

of the in'fini te,TIZ~quà1izer frequency response. 

5.4 The Eigenvectors and ~igenva1u8~ of a T/2 Equalizer 
with periodic Data Source 

a 

For the case of a finite TIZ Equa1izer and a periodic 
,,,-

,data sou'rc~ the N x N autocorrelation matrlx has N .independ-

ent eigenvect?rs and N different eigenva1ues whose farm is 

given'by [9]: 

À~ - f( 1 Hefl ( Ji. ) 1 2 + 1 Heq ( tfr ) 1 2) o<m<N-l (5"11) 

The ·~ther N eigenyalues of A are identically zero. We have 
1 

already seen that Àn is a samp1e of the folded power , 
o spectrum when H(f) i5 bandlimited. One can see'from Bq •. (S~11) 

that in this case, once the eigenva1ues' spread is sma1l, 

the folded pow~!r. spectrum is almost Nyquist and the conver- ' 

gence proc~ss de5cribed i~ Sec'. ~.1 i5 fast. Moreover, the . 

optimal equalizer constitut'es a matc:Qed filter with· resp'ect' " 
/' 

to channel noise. 

5.5 The Minimum Mean Square,Error of an Infinite TIZ Equalizer 
... ' a 

By applyjng very. much the same procedure outlined in 

• Il 

' .. 

1 
" 
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. 'Sec. 3,.5 one can show that for a 1'/2 equa1izer, the minimum) . 
\ 

mean square error gîven by: . . . 

- -t E~~a' .. G .. ,-.Ia;&';ckoPt-~dkOPt 
• 'f J 1 1,) 1, , 
1 ) 'At 

can'be e~prèssed as: , . 
" . 

(5-;13) fe'.'llin· - "~f 
t ' .T 

, • "0 '~ ". ( , -1/21 

.' , 

l , 

<1. 

" 

'. 

'1 

c' .. 

'"\ ' 

One notes that here' lel 2min is not influenced by T. More,over, 

b~ comparison ~ith the expression derived for the T-case one 

can"s~ that 
o .. .. 

(5-14) 
( 

l' _ 

which proves that the T/2 equalizer has better performànce .. , 
which is independen.t of 't. , In rUngerboeck, 8] Ungerboeak 

""""""", 
shows by simu1at~ that Eq. (5-14) also holds for a finite 

~T/4 equalizer which proves to be rree from T changes influence 

ove~ alq~ t~m~ ~nterv~l. In [9] a similar si~ulation was 

carried~out for'a T/2 finite equa1izer cwith similar results. 
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6. ' A HYBRID TRANSVERSAL EQUALIZER (HTE) 
\ 

6.1 A Hybrid Type Equalizer is a T-spaced equ~lizer with 
\ 

-some additional taps inserted around the reference tap in 

between' the- T-spaced taps. This type is a special case of 

the general one presented in Sec. 3.2. Fig. 6-1 shows a 

finite length Hybrid-Type Equalizer. Such an equalizer is 

expecte~ to have Many of the benefit~ of a T/2-equalizer, but 

with the same number of taps can'be made to sp~n a larger 
• Jy • 

time interval. This enables the equalizer to take care ef 

impulse responses which have, significant energy over the whole 

time span of the HTE. The more adqitional taps we insert into 
, 

a given,T-spaced equalizer, the more the HTE behaviour will 

resemble thtt of'a pure T/2-equalizer. 

The hope is that the T/2 section of the HTE can avoid 

creation of nulls, or near nulls in the Nyquist equivalent 

spectrum,of the system. 

'It has been shown in literature (see: [6],[9]) 
--\ .' 
that in the Iterative adaptive model disc~ssed~in Chapter 4, 

" 

there is an additional noise component,e~ , due to the taps 

gains fluctuations. This noise pow~r is linea~ly proportional 

" , to N~ the numbe) 0: taps. In order to reduce this excess 

noise it is desirable to reduce the number of taps in the 
-. 1 

1 

equalizer.' 
\ . . ' 

The HTE 

r /J. 
is e~pected to suffer less than a pure 

J 
""1 ( 47 1 

.. 



.-

o 

_ tCt} .. 

-

• 

-

, 

• 

· 

• • 

.,,;: 

.. 
-' 

. 
c_3 

. c_ z 
" 

-

-

o 

DELAY LINE • 

,,-/ -
, -

c_ 1 d_ 1 Co dl el c 2 
~ 

-

2: 

- y(t) 
-

Fig. 6-1: Hybrid Transversal Bqualizer 
N1=N2=3 

1 

~ 

:.-

c _ 

c 
3 

t--

. 

~ 

l' 

,tr 
~ 

-la 
00 

, 1 

~ 

~ 

". 

~:~~~-~~x&11~·.~~::it::~,:;~:',.:·_,~: ,j' .'. ._-) 



~ 'o· ~ 

\ \ 

.'. 

" 

,- 49 

T/2 equalizer from tap~uctuations noise, as it has fewrr 

taps. 
~ 

In the following sections the HTE is mathematically 

analyse4, an~ some interesting results are presente4 relating 

an HTE to the pure T/2-spaced equalizer, both spanning the 

same time interval. 

6.2 The.Optimal HTE 
C In order, to analyze the 8TE model we, refer to Fig. 6-2. 

It is obvious that every HTE can be decomposed into sections 

as ,JShown in the figure. 

From Bq. (2-2) we know that: 

x(t) - l a.h(t-iT) + net) 
• 1 
1 . 

./ 

and from the figure 

where: 

-Nl. .. 

l 
i--N o 

Na 
_ '1' l' eT x >J-

. ~ e1" -xk_d -d -; - - --"'-dl-dl i-N2+ l , 1 2·' 'A 

\ 

, / 

(6-1) 

(6-2) 

(6-3) 
(, 

1_ 



.., J4~.Q:f6!l"i$:.t ~&4 44"'"' f 

o 

• , xçt) T 

-' > ' . t--
-2NO 

, 

------

t 

" ~ 

. . . 

T 
... 

• 

. 

~ 
. 

(d;-+i)T 

T T 
, --

• • • -2N! 
. -

~: 

Ykl 

- -

-
/ 

o 

of A 

. 
TI2 . .. 

. • . x(t- Cd'! +1) T) 
r . 

-
• , 

T/2 dz 
T/2 ~ 

1 -2N1+! 
•• • • •• ZN ~-1 ' J Ir Ir t 

è I= .. 
T .' . 

. 
Yk2 1 1 1 EP ---- ~~- ~ - -1 ..... ·- _~~ ~ .....- _._- --' 

, -
. - -- .... 

. ---- -

j L: \ \. J -
~ 

" Fig. 6-2: HTE Mod~l ) 

'~ 

" 
~:~~~~~~~~~ ~~~~:;~~~T\ .~~o -~~, 
.... _,,J' _ .:if'rI .• !:l .... Jii:I'\.,<;..- -_ .... _ J..~_ ."". "-~ ,"; ,.-... ~t .. 

o 

, 

-
' . 

. , 

2N2 •••• • • • 

'1: 
1Yk3 

" 

, 

\ 

-

U1 
<:> 

ZN" 

l' 

~ . 

~i ' -
." , ~ , 

.. 
;"" 

":--' 

., .. ~ 

~c: 

. f 
L' 

.:)t­
f~i~, 
. ~~:,~~~ , 

,~~~.'-
f.. • 
('~ ',: 
-'" 

,~;{~~~ 
~~:.. 



o 

~ 
V;jJJf 

\ 

'1", ~~~ __________ --t.. __ ,._, __ .. _______ ', _____ _ 

- 51 -

T We have also defined the desired output- as dk - ! .!k 

where {fkJ are saDlples of a desired overall impulse response. 
~ 

The mea~ square error ~s: 

(6-4 ) 

, By substituting Bq. (6-1), Bq. (6-2), Eq. (6-3) into 

'Bq. (6-4) and making the following assertions: 
\ 

\ ' 

.. 

one ge;ts: 

f . 

. . 
• 1 

" 1 

(6-5) 

(6-6) 
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(6-7) 

H .H H H _..11 H + e -A, -e+e -W ·c+e ·r·~-e -CI, - --- -- ---

By differentiating Eq.(6-7)with respect to f.t ! and! 
1 

we arrive at the following set of linear equations for ~ptt 

!cpt and !!op-t: 

Al B W C ~1 (6-J) 

BH 
A2 V d - ~2 

/ 

wH v" A, ! opt a 
...;~ 

-
\ 
Our task now is to identify the elements of the 

matrices Al, A2t A" B, V, W, and the vect6rs ~l, .!2 and .!!.I.' 

one can quite easily verify that the elements of these 

matrices are related to the elements of the ·T/2 Equalizer 

autocovariance matrix as follows: 

Al {A •. } ior: 
1,) 

Az - {A. .}- for: 
1,] 

A, - {A. ' . } for: 
1,) 2N2~i!j~2N3 • i,j even 

( 

f 
~l 

,1 

l 
• 1 

.,' 
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/ 

B -{A. .}" for: 
1 ,J 

W -{Ai,j} for: 

{A. .} for: V - 1,J 

Also: 
, 

al i -{a.} -N <i<:-N 
1. 0- - 1 

a2' - {a. } l- lNl +l~i~~2-1 ',1 1. 

as· - {a.} 2Nl!i~lN3 1. 1. 

The conclusion' from the above ~s ~at the autocovariance , 

matrix for the 'HTE can be derived from the 'matrix of the T/2 

"case by deleting those rows and columns which correspond to 

in betwee~ taps which are not used in the Hybrid version. A 

'similar' resul t holds for the ~ -vector of the HTE. 

6.3 The Frequency Response of an HTE 

Assume that the T-spaced sections o'! the HTE ,shown in 

F'g. 6-2 ate infinite. I~ one denotes the T-spaced taps by 

{vil-and the in °between taps by {Wi }, then the frequency 

response of the HTE i5 given by: 

, C{f) _ E v. ~,ej,2'fTi.+ Nr1 w. ej21rfT(i+l) 
. 1 . n1 

(6-9) 
1 , 1.=-nl 

. 
ln Section 6.2 we described the structure of the 

., 

·1 
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autocovariance matrix for a system equa1ized by an1HTB. 

Having at hand this knowledge, we can follow-the procedures 
"-

described in Sec. 4.3 and in 'Sec. S.l (for the de'Mvations 

of the frequency-response of T and T/2 equalizers re~p.) and 

arrive at the following two equations for W(f) and Y(f): 

E l A v e-j2tkÀT/2 + 
k 1 k,1 1 

am Ml 

~-I 

E 1: 
k=-:m +1 1 

cxl:f 1 Ml 

1 By substituting Eq. (3-17) into Eq. (6-10) and by 

making the following definitions 
N 

W(f) A i w:ej211fiT/21 
. N 1 1=- 1 . 

ai:! 

V(f) Â l v.ej2~fiT/2 
. 1 

~ 
N 

~ Â i e j211f(k+I)! 
; _ k=-N1 > 

( 6-10a) 

one arrives at the following two équations for W(f) and V(f): 

* ,.. 
[IHeq(~) 12t aa (f) +a~] -Y(f) +Heq (f)Heq( f) t aa}f)W(f) .. _ (6-11a) 

H:q(f)Feq(f)faa{f)ej2tfT 

J . 

. \ 

-

.. 

'1' 
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. 
l/2T ' 

)( H:q(~)Heq(~)taa(~) V(À)·Y(f-~)d~ + 

-1/2T 
(6-1lb) 

1/2T 

[/zT 
,. 
IHeq(~)12taa(~)W{~) Y(f-À)dÀ+a~W(f) 

• 1/2T 
)( H:q(~)Feq(~)taa(~)ej2'À~.Y(f-~)dÀ 
··1/2T ' 

. 
Unfortunately,' it is impossible ta continue from this point 

-towards solving (6~ll) for V(i) and Wei) without making 

additional assumptions. First, we note that each of the 

inteirals in CO-lIb) 15 a convoluti~n in the frequency domaine 

Then one can see that when Nl~' Y(f) approaches an impulse 

\Sef) reducing our HTE case to the 'infinite T/2-equalization 

case, which was treated in Sec. 5.1. 

When NI is finite the fftnction of f generated by each 

of the integrals in (6-11b) is a smeared version of the part 

'of the integrand convoIved with Y(f), Csee Fig. 6~3) and the 
( 

degree of smearing, depends on NI. 

Assuming that N~,J is "not too smal1 we get that E". (5-4) 

i5 still a good approximation for C(f) in this case. 

\ 

, J 
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7. 

7.1 

.. 
~ 

COMPARISON BETWEEN FINITE LENGTH T, 'T/2 AND I;iYBRID 
TYPE EQUAL 1 ZERS 

Computer Pro gram for Comparison 

A Fo!tran IV program was used to compare these three 

cases. The structure of ~he'program is as fol1ows: 

The pr~gJam reads in the channel samples, the index 
, 

,of reference sample, along with an indication wkether the 

samp1es are T or T/2-spaced. Then. the program reads in 

the param~ters of the equalizer; i.e., the number of taps, 

the 'location of the reference'tap and the input signal to , , 

noi~e ratio, The program compute$ and prints the channel" 

autocovariance matrix, the eigenvalues, the resulting equali-, 
f' 

ze'F optimal taps gains, and the minimum mean square err.:or. 

, ~hen a T/2 equa1izer is ru~, any HTE's performance can 

be computed. Moreover, the program ~s used to find the 

optimal location of the in between additional taps for an 

HTE. and a gi ven fixed t ime span equalizer. AIso, for a fixed, 

number of taps, the program finds the optimal time span, and 

thus the number of in between taps. The program is listed 

fil Append ix B. 
! 

In the next sections, the results for two typical 
-

channels are presented. 
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.. 

.. 
7.2 Optimizing a,Fixed7Time-Span Egualizer t 

The channel chosen for optimization is th~ charlnel used 

in [Ungerboeck, 8]. The channel impulse response is shawn 
1 

in Fig. 7-1.. 
, 

" For this channel the program computed the minimum 

mean squar~ error' of a 7T-time span equalizer, starting with 

a pure T-equalizer. Then, one T/2-tap at a time was inserted 

,among the, T-taps and aIl possible T/2-tap~ positions were 

tried. This was done for a high signal to,nQise ratio in 

order to brin'g out the differences between the possibl,e 

hybrid configurations. 

In Fig. 7.2 one can see the minimum mean square error 
\ . 

vs the number of additional taps. For each additional tap, 
1 

the best'and worst HTE configurations are shown. This 

-yields a "contour" witllin the limits of which, aIl possible 

configuratiops lie. Th~ arrays of ones and zeroes on the 

graph represent (~e related configurations; a "1" stands 
~ -f 

for a tap which is used and "0" stands for a tap which is not 

used in the HTE. 

In Table 7-1 we give the improvement in minimum mean 

square error, achie~ed by adding taps, with respect to the 

pure T-spaced equalizer perfo~mance. 

The improvement achieved by optimally inserting only 
• 

one additional T/2 tap is remarkable. 

(t),In each of section 7.2 and section 7.3, results obtained for one 
typical cbànnel response are represented. Similar results were 
obtained for 'c)'ther practical channel re,sponses . 
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,\ 

of additional lmprovement , 
taps ; min max 

f/('J 

1 3.7 dB 12.9 

2 1.6 dB 13.6 

3 .11. 0 dB 15.0 , ~ 
li 14.3 dB 11.0 

5 17.5 dB 18.8 . 
" 

6 11.7 dB 19.1 

, 

7 20.8 - C" 

Table 7-1 

HTE Performance Improvement 
vs Number of Additiona1 Taps 

\ 

.) 

dB 

dB 

dB 

dB 

dB 

dB 

dB 
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The difference in improvement between the best location 

of the additional tap and the worst location is significant. 

7.3 Optimizatjon OI a Fixed Number of Taps HTE 

The program was used to find the time span of an Hybrid 

Type Equalizer having 10 taps, for which the least minimum 

mean square error 1s obtained. The channel used in this 

section is shawn in Fig. '7-3~ This is an interpolated version 

of the sampled impulse response used in [7] and in [~]. 
o ~ 

In Fig. 7-4 one can see that for a lO-taps equalizer . 
the 9ptima1 time span is 7T. The additional T/2 taps were 

l 

insert.ed in a symmetrical manner around the reference tap which 

1S located in the Middle o~ the equalizer's delay line. The 

ratio between the 'minimum Mean square error ~f a pure T/2 

equalizer with 10 taps and an ~TE which spans 7T is about 19.3 

in this case. We May conclude that in case~'where the 

channel impuls~ response is long, and has significant energy 
/' 

over most of its duration. A longer HTE is ta be preferre~ 

over a pure T/2 eq~alizer with the same number of taps. 

7.4 Sampling.Timing Sensitivity 

~n this section we compare the sampling time offset 
, 

sensitivity of a T-spaced, T/2-spaced and a Hybrid Transversal 

Equa~izer, aIl having the same time span but the complexity 
\ 

is increasing: the T-spaced equalizer have 7 tàps, the hybrid 
\ 

equalizer has la taps, and the T/2-spaced equalizer has 14 

taps. 1'\ .,' 
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Channel Impulse Respo~se 
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'In~ord~r to check the sampling time offset ,sensitivity, 

the chan~el in Sec. 1.2 vas sam~ in various phases with 
1 

T spaces and vith T/2 spaces. For each phase the minimum 

Mean square error was computed.' The results are shown in 

Fig. 7-5. The T/2-spaced equalizer prDves to be superior to 

T-spaced equalizer; one notes the big changes in performance 

in the T-case, and the,modest changes in the T/2-case with 

sampling timing chang~s over an interva1 of [-T, +TJ. The 

ratio between maximum and minimum values-of mean square error 
;-
in the T-spaced equalize,r is 18 while the 5ame ratio for a 

T/2-5p~ced equalizer that span5 the same time interval i5 

about 2. For a hybrid configuration represented by 

(lOlOllllfll010), (three additiona! taps. The reference 

tap is in the middle' of the equ!llizer) the sen'si ti vi ty i5 

smaller than that of a. T-spa~ed equalizer but worse than that 

of the T/2-equalizer as expected. 

7.5 \ Calculation of the Autocovariance Matrix Eigenvalues , 

In this section the eigenvalues of the autocovariance 
! / 

matrix ior the channel used in Sec. 7.1 (Fig. 7-1), are , 
1 

compùted. Thè eigenvalues were calculated for both the 

periodic and the white data source cases, for a T-spaced 

equalizer, T/2-spaced equalizer and the hybrid éonfiguration , 
used in Sec. 7.4,. By examining the results (summeT.i~d in 4 

T~ble 7-2)' the fol1owing observations 'are ~l'de: 
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- -. , T-Equa1izer-

Periodié ! White - , 

sIn - 54dB is/n -30dB , J 
0.l789 0.2861 1 

0..4189 0.6155 
0.7333 0 .. 7297 
0.733l 0.838 
0.98_81 0.9608 
0.9881 1..050 . , 
1.228 1.175 

Ref. tap: 4" 

c 

.. 

'r 

,-
~~- ':\ 

~ :. -' ..... ~- ~ . ,~,""';: 
~ o 

-

Tl2-Equalizer 

Periodic White 
sIn - S4dB ,sIn -30dB 

O.4:xlO-s 0.1066xlO- 2 
_ fi _ 

0.124Sxl0- 2-, 

- " - 0.1536xlO- 1 

- " - 0.Z146xl0- 2 

- " - O.6979x10- 2 

- " - 0.Z197x10- 1 

- " - 0.2962xl0- 1 

0.8275 0.5382 J 

1 

0.8275 0.9921 
1.502 1. 502 
1.502 1.502 
10973 

'-~--
1.973 

1.973 1.973 • 
2.900 2.093 1 

J 

-; .:: 

o 

HTE 
(0101111111010) 

Periodic - White 
~/n - 54dB - sIn -30dB 

O.4xl0· s 0.13S6xlO- 2 

0.4xl0- 5 , 0.,1598xlO- 2 

0.4x10- s O.S207x10· 1 

0.3630 0.2931°-
0.4678 0.7176 
0.5879 0.8727 
0.6994 1.008 
1.191 1.,185 
1. 592 1.701 
1.759 2.023 

Ref. tap: 7, 

~~ ~ 
f: Table 7~2: Eigenvalues Results 
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1. For the T-spaced samp1es of a real input response we get 
1 

a circulant autocovariance matrix. Its eigenvalues are 

rea1 and come in equal pairs (except for the largest one 7 

when the matrix dimension is odd). This originates from 

the fact that the eigenyalues of a circulant matrix are 
, 

'given by the D.F.T. of its rows [Noble, 16]. 

Z. For the Tt2-spaced equali~er with periodic source, half 

the eigenvalues are equai to the noise to signal ratio in \ 

the chann~l. The values of these eigenvalu~s is zero once 

theTe is no noise in the system. This implies that in 

this case the system given by A~=~ is overdetermined and 

it may have Many different solutions for fopt. 

The remaining half are in equal pairs. The ~eason is that 

they are equally spaced samples of the channel folded 

p~wer spectrum (as proved in Sec. 5.3) which is an even 

function. One May notice that the eigenvalues of the T/2-

case with white data source split into two groups. The 
1 

seven small ones May be interpreted as smeared values 

corresponding to the seven sma11 ones computed for the 

T/2-case with periodic input. A similar observation can 

be made for the HTE case. 

3. One can see that the eigenvalye5 spread ~or aIl equalizers 

i5 about the same. This implies about equal tap gains 

convergence time in the iterative model discussed in 

.1" \ , 

L~ ~---;-~--:7:---~----!; ~rF;~~~,?,:\ l 'TI ~ ~ r ~. - .--; . 
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o 
~hapter' 4. This idea' is suppor'~ed ,by simulations result~ 

" in [Ungerboeek, 8] carried out for a non-periodic case. 
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8. CORRELATED LEVEL SIGNALLING AND FRACTIONAL TAP 

SPACING BQUALIZATION 

In prev-ious chapters the data source was âssumed to be 

either white o~ periodic. It is interesting to.v~rif~ how 

correlated·level signalling performs with Fractional Tap­

Spacing~Equalizers. 

8.1 Correlated Level or Partial Response Sign~lling ~ 
< 

The usual constraint on signaIs chosen for signalling 

over a channel is that they do not give tise to intersymbol 

interference. Sometim~s, signal design based on this criterion 
<il 

is very difficult, if not impossible and may turn the system 

to be very sensitivè to sampling timing. 
_/ ... \:j 

A design which allows for a certain amount of controlled 
, , 

intersymbol interference wh~le the transmission bandwidth is 

confined to the Nyquist barulwidth i5 referred to as Partial 
: 1 

Response Signalling (PRS) or, Cprrelated Level Signalling 
~---

(CLS). The controlled intersymbol interference can be 

removed from ~he incoming s~nal in the receiver. On the 

other hand, because the number of r.eceived levels is larger 

for PRS it has a narrower noise margin for, à constant signal 

power. .. 
The ·fi;r.st PRS- that was employed i5 called duobinary and 

will pe discussed below. An extensive study of PRS i5 in 

[Kabal, Pasupathy,.7J. 

It i5 interesting to verify how PRS influences the 
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performance of I! channel equalized w~t'h a T/2 equalizer. 

8.2 The Duobinary PRS and T/2-Equalization 

In Fig. 8-1 we show,,'the impulse r~sponse and frequency 

tesponse of a channel ~hat'al1ows duobinary PRS. 

~, h(t) 

________ ~ ________ ~ ________ ~ __ ------- f 

- 1 1 
ft fi 

Fig. 8-1: Duobinary Tmpulse and Frequencv Response 

In [7] it'is shown that any PRS system has frequency response ~ 

which can be expres~ed as: H.(f) = FCf)' G(f) 
N-} 

'where G(f) ~beys Nyquist's criterion, and F(f) = 'E f e-j2tfTn 
n=o n 

wh~re {fn} are the desired samples of the channel's impulse 

response. For duobinary~ fo = fl~l 

1 thus: F(f)=1+e-j2tfT (8-1) 

In order to have a ,channel~ with duobinary response the binary 
, ~ 

data stream is preco~ by the/filter gi~en by fq. (8-1). 

Moreover the' rest ôf tpe channel's response should satisfy 

'l' 
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, 
Nyquist's criterion. For the binary input with lev~ls -1 

and 1 we May get at F(f) output the levels: - 2, 0, 2; three 
1 

levels instead of two. This fact increases the probability 

of error ln the detection [7] 0 This is the trade-off between 

the narrow transmission bandwidth and performance quality. 

Assuming that the original-data' source has power 

spectrum ~ aa (f), after prec~ding i t,changes to t bb (f) , 

where ~bb(f) - t aa Cf)·IF{f)1 2 

, 0 

By Eq. (8.1), we get 

. 
tbb(f) - taa(f)o4-cos 2'fT (8-2J 

If we substitute 

and: define: 

Heqc(f) A Z.Heq(f).costfT 

~ A '" 
He~c(f) ... Z.Heq(f) -cos,fT,' 

-
we get fo, the eigenvalue~ of an infinite T/Z equa1izer the 

follo~ing'expression: 

" À(f) - {IHeq(f)1 2 + IHeq(f)12}.cos 2 'fT (8-3) 
, 

We recall that t~e expression in brackets is the folded 

power spec"t,rum of the channel (under the assumption that H(f) 
r 

is bandlimited). From Eq. (8-3)' one may'conclude tQat duo­

binary precoding tends to increase the spreaa of th~ eigenvalues 

of the system. 
\ 

Large~ spread of the eiéenvalues results in longer 
.. \ 1 

convergence time in the iterative model discussed' in Chapter 4. 
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9. SUMMARY 

We started by presenting a genèralized data transmission . 
'system model andl show,ed how an optimally designed generalized 

1 
" , 

equalizer can minimize the mean square error in s~èh a system. 

Through Chàpters 3 t~ 6 we dealt with three special cases of 

equalizers: the T-Spaced Equalizer, the Tj2-Spaced Equalizer 
,j. 

and a Hybrid Type B'qualizer. l'le ~iiscus.s~d and compared the 

propertie-s of these three models. The T-,spaced' equali zeor' s 
\ ' / 

properties are extensively discussed in literature and it5 

review, brought here, prepares the ground for the discussion 

of the T/2-space"d equalizer. The T/2-spaced equalizer is not 
( 

, \ 

that extensively discussed in literature although it is known 
" 

ta be superior ta T-spaced equalizer in certain features. , 

Here we derived closed form expressions characterizing the 

T/2-spaced equalizers. By these expressions we could show 

why the TIZ equalizer is superior to a T-spaced equalizer in , 
l(V. 

sO~,e respects. 

Next we suggested a new mod~l, namely, the HTE, that 
·0 

possesses sorne of the behefits of both the T-spaced and the 

/ T/2-spaced equalizers. The three mo~els were compared by a 

computer pro gram. The r.esul ts obtained confirmed previous 
.. 't,. '1 

derivations and assumptions. 
1 -

The discussion through 

Chapters 2 to 7 show that a T/2-spa~eét equalizer gives a much 

smaller minimum mean square error than that given-by a . . . 
'T":spaced equalize~l tbat spans. the same time interval. T-he 

~ 
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~mprovemên,\~an ea:~ly ,reach ,10d~. 

to sampling timing in the receiver 

Mo'Teover, lthe sensi ti vi ty 
'r' 

is 'much smaller in the 
\ ' 1: 

~ ) ~iJ· J'''' 
T/2-spaced'equalizer4 Con~~rgence ~ime of taps gains in the 

, t .. ;.. 1 

'iterativè model ili ~bout tpé s,ame J as 'showiL by)si~ulatl~n 
t ~ ~ 

results conta~ped in other papers ànd by a similar eigenvalues 
\ . . 

~p~ead obtained here,:for the~e two~a5es. The ~erforman~es 
, , '\ 

of the'HTE lie bet~een those of the previous two equali~ers. 
/II .' 

• .41 ,.,.~ .. 

Its us~. cin be'- i~Plirtant whén '~ comprom~e has to 'be -done 
0' 

bet~een performances and ,time)span, glven a co~straint on the 
, 1 , f 

number of .taps. J' Ultger ,t'ime spanl tan be vitaÎ 'for cases in , . "-
1 ft,. ,'''' 

"which the channel' impulse response is ,'lon'~. In such. cases 
- ù () ( '" 

, the lO~g~x: HTE car be superior ,tô a,,~ s~orter pure, T /2<."e. 

" '-.Eq1.liz~t w~th the :ame number' of taps. The ,HTE' 5 ';enSttiYity 

f 'to sampling timi~3 is less, than tha~of a, pute T-spaced ~ ~ 
equalize~ that ~pa~s ~he same,time 'ihteTval. Noise enhanc;-~, 

, 1 

ment: due to dhanneÛ noise is the smaller in a T /Z-13qllalizer 
il <CI if 

while thé HTE is agaîn in between them. The HTg has8 the . 
" ,/\' 

b~nefit ot a lower t~omplexity relativ~ to a ~u,re ~/2- ,,' 

pqualize-r that spans the same time interval, as ëomplex~ty 
. J '. , [, · 

is.prop'~rtional' to N, th~ total numb~f ~f iap~. \ t. 

,., ~ 0-. ~: 

r I~ Chapter 8 a
o 
brief discussion reveals ~hat PRS~.I1as, 

) . ~ - • Il 
D9 inherent benafits fGtVfractioQal tap spactng equalization. r 
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A.l The Derivation of Bq. (3-5) 

We start from Eq. (3-4) (which is the definition of the 

Mean ..sq'rlare error):. 

, l e k l 2 
- (Yk-dk)(Yk-dk) 

\ 

Usin, the vector notations defined in Sec. 2.2 and in 

Sec. 3.2 we get: 
t" 

, . 

f 

<By defining the follow~ng matrix and vector: 

we can write 

6 T 
A - x··x -k -k 

à 
a. - x -Si· -:- -k k 

\ 

c is a complex Yector; ~ - Re[c]+Im[c] To minimize . 
• 

tekl2 with respect to ~ we Have to differentiate it with 
o 

~ respect to Re[~) and Im[c] However it can be shown that 
,-

With this result at hand, we get: 
, 

., 

\ . 

.. 

t 

\ , 

) 
1 

l' 
1 

... J '. 
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tM~~ or: A·c -a and the minimum mean square error can be written 
" " . 

\ ". " , 
" 1 dk 1

2 _!!H. E,opt ~ 

1 e 1
2 l' as: -r k min 
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A. Il, The Derivati:on' of Bq;. (3-'8) 

for convenience we start from Bq. (3-1), which is 
. " 

, repeated here:' 

x(t) - L aih(t-iT) + net) 
i ...., 

By subs'tituting Bq. (A.II-l) 'in Bq. (3-6) we get: 

~ (i-j)., A ata. : 'the .last term in 
aa . l J 

(A.II-I) 

/ 

(A.II-2) 

By defining: 
\ 

Bq. (A',II-2) a~. 
à 

~nn[(Dk'":Di)1;) J m'" i-j , and at last, 

n A k-j , we arrive at: / 
'l, 

:Ak 1 - L ~aa(m) nE h*[(n-m~Dk+ TfT?T].h[(n-DI + 'rfT)TJ++nn[ (Dk-D1)T] 
J m 

. (A.II-3) 

, which is Bq. (3-8). 

,Bq. ( -9) is derived in a similar manner starting from 

Bq. (3-7). , , • il .0 1 

l 1 ., 
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A.III The Derivation of Eq. (3-13) 

Start with the transfQrm" definition 
, .. - ... '" 

h{tj - f~ H(fje j 2tft~f 
-00 

to substitute in Bq. (A.II-3). By this $ubstitution and 

by carrying out the integrations first and then the . 

" summation over m and n, we can write: 

if Fr 

.f-if b (A.JIl.~l) 

~f 
Define the data source power spectrum as: 

\ . 

~ , 

and note that: ~ -j2t(f-À)Tn 1 ~ i 
t. e =- T ~ 6( ~-f-'f) 
n 1 

, 

In light of the above, if the integration in (A.III~l) is 
< 

carried out on successive' intervals of length ~ and if sorne 
1 ~ 

c~+eful manipulations are made we arrive at: 

\ 

Jt 
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Ak -,1 

1/2T 
1 f k * 1 T [Heq(f)J .Heq(f)·~aa(f)df 

-1/2T 

which is Sq. (3-13), where: 

/ 

" 

H~(f) A 1: H(f+~).e-j2'(f~T:)DIT.ej2'n"r>T 
n 

/ 
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FILL IN t,HE SQU.,\RE A::"i='4.Y tî ~TARTING 1\'1 Hi TERMS ASCVE THE DI"GUNAL 
RVNV~:=VAF->N/VAPS 
C'O ~O l:l,N-"'AP 
C(I)::O.ODO 
I,LI:'A( 1 ):::C( 1 l 

1 S U~'=F VNV~ , 'r 
DC' 3v J=l.NTAP " 

lf1F G= 15NT- 1 +( (.1+1:- 1 S~:T' IN) *1\:, 
IF'18EG~i.LX) GU TO 20 
1 ~1.) =- 1 - J ' l ' 

~n 10 K=IOE~,LX,N 
KK;::K+lr".Y· 
SU~=SUL~+X(K)*X(KK) 

CüNTINUE 

" 

i, 

i \ . 
j 
~ -

\3( 1 • J) =S'JM ____ ..--_1 
-,' " 

J~'? '1'. 



--

", 
" 

J 

.. 111&& 

c 

c, 

, 1 ( l • J J: r ~I\' 
.... U~·:.. ... .Jr~ .... 

1 
i • 

- ~I 

'1 () 
l '_-,;'" l : ,1 J ~ 

C;jr:~l t;~lt 

c. 

r 'lL l'J TI"_ ,r. T ï 
IF- ( • r r· ~, • \ r • 1) i C 
,Il '-) 1:..·. t, ~ AI' 

J :: . Hl '" 1 - 1 
[ '~ !.. ~ J=- 1 • J [i l,) 

_ ( : • J ) = "' ( J • 1 ) 
l<.! ( l • J) "'.! ( J. 1) . 

T IF ,V:' t, y .3 
T (J 70 

/ C Cin 1 ~!LJr. 
<.l.tlTI ~JU~-

l' POOR COpy r 1 
~ COPIE DE QUALITEE INFERIEURE 

7.; IJL.J=l 
! J"-t4T AP 
IZ=-N-AI' 
IF (KT .G~,. 1) GD Tr) 71 . 
If ( ~ J • L~ Q • 1) ,,(1 T Q 7 r., 

-)--~ .. -----

IF', N.f:O.2) GO T;) ~~ ,'i 
7 _ ., ::.: 1 T:::- ( 1 LU'" • 3 1 0 ~) « ,) ( L. J) • l = 1 ivN T A P) • J = 1 • NT A P ) 

':10) r-r\:"4T(lHl.lOX.30HC'iI\NI;=:L AUTOCO;;Qf:LATlOtJ MATf:;U<I 
~, 1 ~ X • 1!J ( :2 1-1- - ) / ( 1 H \). 7 ( 1 X • F 1 0 • 3) ) , 

Gl -~ 1: 1 
0:': i'.tlTC(lCU~,31io) «O(I.J).I=l.NTAP).J=l.NTAP) 

JIJl rCF:'Ai(1111tl')X,30HCHANNEL AtJTOCOt:'RI::LA'!JON MATQIXI 
71 Û X • 1 S ( 2 H- - ) 1 ( 1 HO • 1 t..( 1 X ,r 7. :3) ) ) 

101 \"qT::(lC'Uj.2~do) N 

, . 

3200 rGF,"",\T( IHC.l0X.31HTlŒ SYMBCL-TAP SPACING r<ATIC IS.2XtIlO/ 
*lCÀ.2~(~H--}) 

71 CALt_ VlVTF~(e.tf"'~p.r8.H) 
C.ALL : !G~~(H.NTJ\P.IJ(1[3.D,Z.lZ.t'lK,r:::R) 
\·qTL:(lt U'T.:::;100) (D(l).l=l,"ITAP) 1 

2300 f-Clr.1AT(lHO.3Xt1(..HTHE EIGENVALlJES:/\ 

II 

r .... 
~. ~,( E. 1.~ .... ) ) 

t-1LL J'~ THS" 'IGHT H~ND C;IDE VEC'",oo C (Xl CRQSC;-CORt:I::LATEO wITH G) 

F;O 
90 

100 

1 1 (1 

1;'0 

130 

140 
l!:lO 

1 f. 0 

01.; - ,) J = 1 • L G 
IjJ=!S+(J -1)*N 
leCG:M~XO(l.ISJ-LX) 
)F(I~[G.~T.NTAP) G0 TD 100 
1 !:'Ji.': " HO O:T ,\p. 1 SJ-l ) 

o =J'lCG.IEND 
KK=!::J-: 
C ( l ) = C ('1 ) +G (J ) t-.x (KK) 

AU,\ ( 1) =c. (1 ) 
<..LNTI~;U<: 

c.m. -:- 1 Nur 
CAL L G F l G ( (, • f1, NT A P ,.1 , 1 • 0[1-7 • 1 E:::': ) 
!F( Ii:r..hE.0) I,'rlT:::(Ït:'UT.4QOO) IE"~ 
De 110 I=l.tI-A~ , 
t!U(I)::l-IfTF , 
.l', P 1 T r- ( 1 ( li l , ;:: G 0 0) ( L [' T PC, NO ( 1 ) • c ( 1 ) • 1 = 1 • I\lT A P ) 
""CT~=( IS-::')/tl+l 
~éND=(LÀ+~TAP-IS)/N+MCT~ 

. sur.,.»=.:>. (; 
nu l~O M=l. ~ENO 
AUX=O. () 
K=M- r-1( Tf.' 
lS"=I~t-K~f'J 
JI.EG=t1l\XO( 1. 15K-LX) 
.J~.N:--::::Mlf\:J( "'TAPtISK-l) 
ou 12C J=-J8EG,JEND 
KK=-I3K-J 
AUX=~UY.+(J)*XjKK) 
Cut~T 1 rJUC 
KG=K+l 
IF(KI..>'oGF- .1.I\'m.KG.U:'.LG) AUX=AUX-\i(KG) 
SU:~S(l== ~ U:'S Q+AUX*AUX 
CLJI'l71I'JUE 
!F(K~.~C.Lv) ~~ Ta 150 
IEEG=KG+l 
DG 140 K~=lOEG.L~ 
3U~SQ=5UM~a+~(KG)**2 
CUhTINUE 
~UMC2=v. (I 
0(1 luC 1=!.NTAP 
SUMC2=~UMC2+C(I)~*2 

, 

l MSr-=VAr. S*SU:'SO+VAQN*SU"1C 2 
\'I~lTr.:( IOU~.30'OO) OM5E.\NTAP.lqEF' 
IF(N.r,JE.2) GO\ TO 2001 

2,1 11= 0 
D0711 J = 1 , tJ'" ~P 
IF(M~(l).EO.O) GO "'0711 
11=1-1+1 
tlC'7AC 1 1 )=ALiFA('I) 

" 
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f' l 7 1 J J ~ 1 • r J'" .\ P 
~) ( l 1 • J ) .:;: Il t..; ( 1 • J , 

71 C (L·!JTl NlJE 
'711 CU;T 1 NUr 

J 1: ::; 
r,1J71~ J::"l,N-flP 
IF(MO(J).EO.O) Ge T07~3 

POOR COpy 1 1 

COPIE DE QUALITEE INFERIEURE 
, Jl=Jl+1 

l,tH =tfr ,\P-ND 
nL712 I=l.Nl)l 
P( 1 .JI J=O( 1.J) 

71,2 CeNTI IWE 
71J' <..C.NT!NU~-
. l ü= NDI 

Jl=Nùl 
CALL VCViFSCP.ND1.U .... O 

, 1 

<.. AL L '[ l G f:' ~ , " ... ND 1 • 1 JO fi • f) • Z. 1 t • .w K • J C t~ ) 

II: t" 1 7~:: ( 1 C' U -;- • 3 -: 0 0 ) (0 ( 1 ) • ) ",: l , NÔ 1 ) 
(ALL GCLG'G~TA.P,~~1.1.1.0D-7.I~P) 
Du 209 1': 1 • N"'" ,~p 

20C. ('I)=O.QOO 
J=Q 
(j 0 ;? 1 0 1 = l , N'" A P 

1 f' ( 1-\0 ( l ) • EO • 1) GO ... 0 211 
G:J T'J 210 

211 J=J+l 
C( 1 )=-BETA(J) 

21u tLNTINU:::-
\"P.l n: ( l II U'" • 5 Ù 0 1) P,l D ( 1 1 • 1:: 1 • N ~ A ~ ) 

~ 

5001 rUPMAT'{lHl,3X.21HHYORIO TYPE EQUI\LlZEJ:;,I3X,17(lH-)/ 
*lHC,3X,16HT,I2 TAPS UscD:.20I2) 
wrl>TE(lCUi.1S'O~) (LETCiC,NO(J). Cll)d=l,NTl\P)" 

190' fORMAT(lHO,42x,J3H~An GAINS OF T~~ HVBRID EQUALIZaq,l 

1201 

*(lItO,4X,=(!::XtA2,13,3H) =.lPE11.4'}) 
MCT~'= ( E -2 l/N+l • 
I>'ICND= CL X+NT AP-1 ?.l ,IN+MC" t;' 
SU~·::':'U=O. 0 
Dù 130111=1.,.,E::ND 

AUX=-o. C 
K='~-MC"'r: 
l SK=l ~+K7. N 
JCEG=MAXù(l.~SK-LX) 
JEND=MINO(NT~r.15K-I) 
DO 1201J~JBEG.JŒND 

KK=lSK-J 
AUX=~X+C(J)*X(KK) 

ceNT l NUE 
~\i::K + l 
IF(K<>.GI:.1 .AtJO. KG.U:.LG) AUX=AU'X-GCKG' 
!"UMSQ=sur15(J+A UX*AVX 

1301," (pl~nNUE 
C 

1401 
C 

IF(K~.~E.~G' G~ TJ 1501 
IB[G=KG+l , 
rr 1401KG~lO~G.LG 
5UMsa=SU~~~+~CKG)**2 

c..UNTINU[ 

C FIND HIE !:.QUAPED DIST[10:rIO~ DUE 'j0 
1501 SUMC;:::;O.O 

DC' 1601 1 ;:: l , NT A P 
1601 SUMC2=!UMC~+C(I)**2 
C 

LM~,!:=VA~ S"'~UMSQ+VA ""N*SU~K2 
~RI~E(IJUT.30CO) OMSE.N01.IREF 

,2001 Cl:NTINUr: 
FEl UPN 

NUISE 
./ 

C 
2000 H-~MAT( 1 HO. 45X. 33HL".:'AST M~A N' SQUA':.=: ERROt.< EQUAL r ZER/' 

3000 

4000 

~ IHOi42X,38HTAP G4JNS UF THe TRANSVE~SAL EQuALIZE~,I ,* .(lH .4X.S(GX.A-2.JJ.3H) =ArCll.-4))' 
F~RMAT(lHO,AOX~19aMfAN SOUARE EQROR =~lPEl1.AA * 0 tH .40X.loHNUMBGR OF TAPS =.13.10X.15HQr:r-E~ENCE TAP =,131 
FORMÀTC1HO.2UX.35H*.*ERP.O~ IN GTAP-GELGl ERQO~ CODE =.13.JH.**, 
ENO' ~ 

" 
( 

.. 
";..~" -:; , .. ,.. . 
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c 

,\ 

c 

p 

.1r 

<. , 
'-

( 

c -
'-

c.. 
c 
<... 
c 
c.. 
c 
c 
c 
c 
(. 

c 
c. 
c 
c 
C 
<.. 
( 
".. 
\... 

C 
-c 
c 

C 

c 

tu. lllT It1f ;_~l, ( 11 ,\. ~. r.! • . ,)l , l~;-,) 

'18/11/75 p. KA:U\L 

~,Il: :u\'-rUTIf.: <"['LV:::: .\ SY'::'TE.:·' or ~1"1UL""~Nf~C'U-: f:l)UATIONS U'SlNG 
.>.',U.::l.\ll.Ll·!IN,\T)f~J "i1-H Cf H.1,"":) L!:-T [ rrVCTING. TH:" INt'UT ~1ATPICr.S AC'-:_ 
':'H LI' CCUI',',\ 1::>[ IrJ 5UCCCSSIVr LOCAT1.Jt~!J. I~N "CTUr.N TiiL C:;Cl,..UTJON J~ 
.--;, -E:[I LvLl'Mt,L"I~[ AL3fl. Hft.= r'-;OCEDUrE GIVF.S PI::SULlS IF TliE NUMGER 
L'~ - QUi\TJ.L.N~ r~ ! S G:".)':Aï=-f' "'HAN Z~I;'Ll AN::> TH;: PIVOT ::lEMENTS AT AL.L 
~~Ll: H,,..~l, 1\: ~-·n~~ Ar..jE ~1r-Fr::-,r-:rJ~ FP.OM ZEtRO. 1\ WAP,NING (If:P=K). iF 
',IVlN. I-tJ,IlCA7;-:-; A ~SSIllLF. LCSS 'JF SlGNlrJCArKC. IN TliE CA~E OF A 
:;-LL ~.C.\L':C' i\AT7!IX. A A\\lD AN APPQ,:;r>~lATI=" TOL:I.MKf ï:P5. lE8=-l< MAY \Je 
l:;ï~Îr-r)::::E..U H) '1[-.\H TH~"" M~"'PIX .6, HAS 'l'"HF: RANK K. 

r \~ lli[ ~"' lY tJ ",Art; 1 x CF r, 1 GIfT t-iA,fHl S![lE vrCTOPS. EACH VECTOJ.> 
l~- A C~LUW~ cr p.. ON ~ETlJqN ~ CCNTAIHS THE' SOLUTION OF nIe 
::- QUA "T" ! (' tJ <: • 

~ ·H!: r. t'Y i4 Cr:EFFIClL'NT ~1A,"'r'lX (DESTf:CYEO). 
~ - Tt!::: NU"IGlr OF EI}UAT IONS IN THt: SY9Tnl. ' 

N - TI''" rlu >1l" P OF VC:CTC~!3 IN 1=. 1 

n" - A~~ HJPU'" r::'\;;>A'lET[Q WI-IICH J~ USLD ~c:, A REL.\TIVE TOLf:.PANCE INI 
TC~ïlNG Fe' LCS5 OF ~IGNIFICANCE. 

! ~ F- r [~!jUL Tl tH .. Et.{G 'J~ \..ODE, ! 
I[F= 0 - NO E~RJ~, ' 
l~~~-l - NO nr~ULT a~CAU~~ M 15 L~SS ~HAN l OR A-PIVOT 

ELEMENT AT ANY ELIMINATION STCP IS EOUAL TO O. 
Ier= K - WAnNING OF A P055IO~E LO~S OF SIGNIFICANCE AT 

ELJ.l.UNATIf'N ~T!:P KH (TH&:: ~l"OT F:LE~ENT WAS LES!.) 
THAN OP EOUAL TO rHE r.F.l~TIVE TOLCRÂNCE EPS TIME~ 
THE G~EATEST ELEMENT (ABSOLUTE VALUE) UF MATPIX Al. 

1l1PLICI~ LE \L~IHlI,-H.a-Z) 
::> D'!~: IS 1 ml f(-( '·""0 • ~ ( '.1, 1 ) 

C FI hiC. "T dl L.U GE>,r ELE ME NT 1 N MATr-1 x A 
ArlV=-O.O 
!.; C 1 1 0' 1 = 1 • '-1 

[J r1 1,) 0 J::: 1 • t-1 
i i: r' r.::. [.' f, u ~ ( A ( l • J ) ) 

IF(.H'Jv.GF,.~E:1P) ~(' iCI 100 
.H'1 V::T["4.:'I 
~lF~ \:=1 

lOC 'Cl~I~~~~~ 
llG <..Qt;TUhJE 
C ) 
C A(!lT •• JC~L) r5 THe, PL~"'T ~LEME"n , 
c ArlV (ü~T,\JNS "'HE A,3S"LUTf V~LUE cr- A ( Ir- OW • J C DL ) 

c 
c 

~UL=[p;',·hrl" 

C .: L 1/-11 riA - ! ... 1 t! Ll C ~ 
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f 
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~ 

~ 

t'"- , 

1 -./ , 

..j -1 

. ,,; 

i\ 
,"JI> 

" 
l 

\ 
~ \ .. , 

POOR COpy 1 , 
COPIE DE QUALITEE INFE~IEURE 

u 
... ~---.......---- -----

1 

~J 

,;,' 

J 
1 
1 

;:\ 1 
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_r----

/' 0 ~ 

"'" . ;" 
"' .... _. 
'" 

'<\ 

c 
c 

r 
\ 

TEST (ltJ $INGUL~"'I,Y • -, 
lPCAPIV.L!. ).0) Gr Tel 2,J':.Q C 'J 

lF(I~k.Eü.C .A.ND. Ar:>lV.Ll:;:.~"OL) lr::~=K-l 
" , 

l '1 VI:;;; 1 • 0 / A ( l ::; (") !'; • J C r:'L ) 
c 

c 
c ';;;-'\', rc ..)UCT ft t~ Af~D Où \'1 ' 1 N-:-f:~C HANG~ 

l"i"' 
C 

c 
c 

13C 
C 
ç 

1 r,r 
C 
C 

C 

C'~ 1;':0 J='l.N 
'TC: 1P:;PIVl.;-;r( IRO~.J) 
..: ( l r, C \'/ • ,J) = r ( K • J ) 
, (",. J J =- [' '/ ':l 

(U,r~ 1 Nue 

1 F ( 1\. • \i [" • ,., ) ::; 0 T 0 2 1 0 
IF(JCOL.LE.r<) GOt'lT,O l~O 

UJLÙMr~ If~"'["f-CH~;\,IGE IN 'v\t\Ti='IX A' ./ 
OL' L30 1="-',"" • 

l:':-'·P=ACI.K) 
A ( 1 • 1-.. ) '" A ( 1 • J vOL ) 
A (1 • .JCCL) = -C .. ,P 

c..(lr~T 1!' lie w· 

1"'[ 1::" 0 J =K • ',' 
-r:.'P=PIVl *'\( IFLl'll,J) 
A ( : R." W • ,J) =-A ( t< • J ) 
A(K,,J)=T[,,,,!ë> 

cët,-;II'JUE 

:; ::VE'I CCLU~HI 1 t- ... t:r CH~NûE 
A{I-...K)=,JC[L 

11 

'. 

~ r~ 
, -

HAr~tJ) SIDE MATRI X P ," 

, 
C CL r ME.N- F EDUC -:- ! ON 

.\PIV=-C..O ' 
1 : ~ 0 ~,,, T r:. 1 CE c:: A ~NO ,~ ~ NO NE X. T Pl VOr 5EA~C ~t-

17() 
c: 

1 

~ j 

I,P 1 =K + 1 
::)0 1"'0 ~=KF'l.11 

r;"!VN=-A( 1 .K) 

ü.J 170 J=K r l.M 
, A( i .J)=A( 1.,J)"+P!Vt..I*A{K,J) 
Tt:~1""=DADS (A ( 1, J) ,) . 

IF(APIV.GE.TCMn) GO TO 170 
AP ! \I..=T;""e \~P 
If:'Ow==l 
JCUL=J 

'DC l~>O J;:..l.f~ 
~ II • J') == r: ( 1 • J ) H ~ II V r~ * 1:"' (1<.. ."J ) 

ClNT!NUf_ 

L 

,~ 

~ 
PaOR -COpy 1'" '. ~ . 
Ct>P,l-E DE QUALITEE J.NFERIEURE 

II' _ ,."'" ~ -1 

ID ,', 
Il 



. , 
: \ 

V- •• 

\, '. 
\ 

\ ' 

.. 

~ 

r 
~ 

. \ 

'. 
'; ,.. ~~T • 

" ., .,1 . , 
" " ' 1 ~ , j , . . l, ~ .... 
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~ 1 ... i 
' -. ~ H"_ 
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~b~ .. , 
"'. . . 
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Z~~ 
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y 

1: 

1 .. 

.' 
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, 
/ 

~, .. 

' . 

" , 
LUN'" H'Vt:. 

, , 

~(Jl.J)=~(JCOL.J) 
~-::( JC.CL. Jj ="E,..P ~ 

('.:'NT INUE 
CONïINUf. 

. ~ . 

, 

, ' ... 

" 1 
,,? 

<,j' 

baR COPY' l'; '1 ' 
PIE DE QUALITEE \\INFER,IEURE 
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1 
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1 
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