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*

Mq]ti-]inear}\t‘y/and analyti cj ty of tyo different operator-valued
compositian maps . (f.g) - fog’ Iimply respectively basic results in iinear
perturbation theory for pairs of - 1inear operators (F G) and the existence
of stab]e and uristable manifolds passing through hyperboHc fixed points of
analytic functions.

In a study of toe branching of solut"ions to equations E(,xl,..‘ .xn) =0
involving n Banach space variabtes ’5,1' n-dimensional Newton-Puiseux indicial
sets are introduced in an extenggwon of concepts g or least the tgrminology) \
assﬁociate:ﬂ! with Newton-Puiseux diagrams. These indicial sei:s are employed .
to select a priori representations ?f solution branches. Substitution of
these a priori' representatfons into E(x) = E(xlf m 3%} leads to factorizations.’
The ~Manishing of d ,hon-trivia“l\ y'fat‘:‘t‘.o’rv'in these factorizations’ implicitly
determines the unknown variab1es in the a priori represeotafion and thus
e S , L

" A generalization of Taylor's formula justifies-the above factorizations
for some differentiable functions E(x). One such factorization is utilized
io establishing the existl:encg of the afore-montionnod stable and unstabie

~

manifolds. . : ,
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EN , ‘\Analyse de Quelques Problemes Non-Lingares }
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Les’ propriétés de multilinéaﬁté et d'analycité pour deux operations de-

s t:ompos'ition sur des functions Hnéaires et des fomﬁons analytiques entraTnent
: respectivement des résults él’émentaires sur la theorie des perturbations y

Hneaires pour une paire de fonctions Hnéaires (F ,8) et 1'existence de . ‘.

SN AN
! ' .. variétés stables et instables passant par une point fixe hyperbolique d'une

fonction analytique. = ° , g

o

Se trouve égaie?nent expos;éé‘.‘ une étude sur le's; branches de solution
d'équatior;s"de; la forme E(xl,....xn) = 0 ou'xi...a.rxn ‘p}ennent de vah;uvrs
f . dans des espaf:gff de Banach. Des er;:sembiés d\indices nw-dimenfsiomiels sont !

introduits comme une .exténsion n-dimensionelte ~des diagrammes de Newton-Puiseux,
> ‘a fin de choisir des representations a priori de branches de solutions de '
L 1 équation . E(x) .‘ Le replacement de ces solutions’ representées. dans L

{1'équation initidle entratne des factorisations. L‘annulatiKn d'un facteur

A

non-trivia] dans une telle factorisation, decrit implicitement les inconnues |
7 S

de la representation et détermine de véritables solution de 1‘&quation E(x) = 0. .
Les’ faqtorisations dont i1 a &té& question plus haut, sont justifiée par une ‘“?
, exténsion de la formule de Taylor. Un telle factorisation fut utilisée pour

éstablir 1'éxistence de variétes stables et instables mentionnée au premier

paragraphe. ' R )

. . .
4 , ' - .
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) The three chapters in this dissertation have ar{sen from my attempts /\\,\
| to understand bifurcation theo // They have evolved from a study of three
N papers ( 1) (4) and (5) ‘of .} ii G CRANDALL and P.H. RABINONITZ on Hopf u
,bifurcation, bifurcation due tb simpie eigenvalues and .1inear perturba- | .
tion ‘theory. * For myseif. but riot necessarily for the authors, the\notab'ie»
jfeature of these papers is their empioyment of the impiicit function
theorem in Banach spaces, sometimes in con:]unci:ion wii;h a small ampiitu«fe
or perturbation parameter s ar}d an associated factorization, to derive
1inear and nonlinear pef‘turbation results. Their factorization in-
volves the division of an %quation (or a function) by a pwer of the
perturbation parameter s to obi:ain a new equa (or function) to which
the application of the implicit function theové“ is feasioie at's =10,
A variation of this factorization method of Crandall and Rabinowitz is '
" employed in chapter 3. Other factorization metiiods have been- bréviously
utiiized in, the work of J. DIEUDONNE (8),-R.G. BARTLE t2), L M.
~ GRAVES (12) and- 0. SATHER (22) in their studies of the bnnching of

1

solutions to equations. Ao analysis of suchwfactoritation methods s <.

given in chapter: 2,
The linear perturbation theory in chapterl depends on the Fr!chet

‘ differentiation of the multi- iinear composii:ion maps in-a (npnlin"ear)
identity Foh = Gehec. Here F, 6, h and ¢ _gm boun_ded linear operators.

. - . !
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The perturbation of Fioquet exponents ang F1 oquet representations of dis-

.turbed iinear periodi wsystems ‘of ordinary differential equations is

presented as an examp q and possible motivatvion for this theory: Standard
eigenvalue perturbati n f‘omu.las foHow for single and multiple ejgen-

va]ues from differentiation of the: identity Foh = Gohoc when (h,t) are

_ analytic operotor-valued functions of (F,6). In chapter 3 a simi ar

identity appears in which F,6,h and ¢ are anaiytic rother than llnear maps .

In chamfact?rizations and n-dimensional Newton-Puiseux jndicial -

LY

sets are iatrodiced to seek sufficient conditions for families or curves ,
of solutions x(s) parameterized by a smali parameter s (and ossibly ot‘her
variab'les) to issue Zt s =0 froma branch-point of an eqyotion E(x) = 0.

The 'operator E in this equation is a Fréchet differentiab'ie function of

“n > 2 Banach space /zariabies X = (x wos X ) When n = 2 and x is a

2-dimensional variobie with real or complex components (X, xa), the
classic&l Newton-PMiseux diagrams or polygons are the boundaries of the

convex hulls of v{m above Newton-Puiseux-indicial sets. For anaiytic map

E(x), factorizaifion of t‘ﬁe equation E(x) = 0 after the substitution of/ an

p
apriori representotion x-= (s imposes a su_f,ficien‘ geometyic

j)isjsn

h compatioi'iity condition on the vector p = (pisess p“) formed from the

exponents Py- This condition is the' requirement that the vector p be
a normal vector in R" to 2 supporting hyperplane of the Neuton-Pui BUX-
indicioi set ofE at x = 0, This permits a factorization

. ‘ gi‘i
J . 4?1 ,
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) I .. // Fp'r(s.Z) =8 ’:E(g"‘ZI’oto S nln) - -
i whicﬁ ‘the function F (s.z) s not identically zero for s = 0 is

" the existence of.stable and unstabIe analytic mani.fo'lds passing through

!

anﬂytic. and has the property that arialytic extensions z = (zj(s”kjsn R

" of roots 20 - z(0) qMF (O.z ) =0, bbtained with the 1mp'lic1t function

théorem,yigld v“n; the a'priqr'l representat‘lon analytic branches

x(s) = (sp‘z. (sh... sp“zn(s))

of solutions to E(x) = 0. - These issue at a branch-point at the origin x =0

~ 7

when al)l the exponents Psvee Py are Positive.

For, ciifferentiab'le and not necessarily analytic functions, similar
results follow from a factorization technique based on.an extension of .
Taylor's Formula. In this extension, there is a remainder term containing

‘ i M o
an integrand fnvolving a sum (in miti-index notation) of/Fréchet deriva-
% ' ' .
tives D*E(x) = D D K Dx“E(x) of E; with different orders lal=}:§‘= £ 9y
n s |

The possible novel feature Dof‘chépter 2, in addition to this extension of

Tay'lof‘s formula, is the intm%ction of the termino'logy\‘Newton-Puiseux -

indicm-set to facf 'Htate the description of factorizaﬂm arguments

tlinvolving n-Banach space arguments (In M. M. VAINBERG andy A. TRENOSIN
(2N the{e are similaf arguments involving hyperplanes and ,variab]es

x= (X4 x,) 1n n-dimensional Euclidean sp'iicq.)

Y\

=2 In chapter 3. a variat}on of the afore-mentionned factorization method

of CRANDALL and\QB /oum a cunplex-anqut'lcperturbation theory show

- . ———
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nyperbolic fixed points of real and complex analytic unctions. .The

existence follows from an applioation of the implici function theorem

R
and from the Joint analyticity of certain compositi n maps (f,g) - fog
appearing in a conjugacy relation Fesh = Goshec. lnnthis conjugacy :elotion

s is a small pertunbation parameter and the operators F,G,h and ¢ are —

1

e elements of Banach spaces.of analytic\funceions. The analyticity of the

cqmposition maps in the conjugacy relation permit tm preceding application =

of the implicit function theorem to a factorization of the conjugacy

_relation to yield the existence of solutions (h,c) % {0,0) to this relation
for some s * 0. This in turn for special choices of the functions (F,G)
yields the existence of stable .and unstable manifolds for analytic functions
with hyperbolic fixed points. The complex analyticity of the composition
maps in the above existence argunent follows from uniform estimates provided
by Cauchy's formula for analytic functions. _Further details can be found

" in chapter 3.

h Despite tne 1inks indicated above, each chapter is independent@of'tne
others:.Each chapter has its own introdoctjon which contains ; chapter. sum-' .-
mary and bockdround information The latten‘is intended. to supplement the
results stated in the rest ofiite chapter. Each chapter also has its own
bibliography.' Finelly all the chaptérs are exercises in Calculus for ﬁgnach

‘spaces and chapter 3 in particular employs analytic operators defined on
/ : : AN ' Mg

Banachi(function) spaces, -’ : - v ' \
. P ‘ .
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‘ . . Chapter 1.
- - Some Linear Perturbation Theory

based on the Persistence of Certain Invariant §ubspaces

of pairs of linear operators (F,G), the Implicit Function

Theorem and the, Identity Foh = Gohoc.

1. Introduction. Let X and Y be Banach spaces over a common field —

K=Ror L. 'Basic results in linear perturbation theory for pairs bf
. bounded linear operators F,G : X ~ Y are derived from the analytic
dependence on (F,G) of some solutions, bounded 1inear maps (h,c) of ' r I
the conjugacy re]atjion‘ Feh = Gohoc: In this identity thhmaﬂ circle o
(and in the fo]1owin‘g,jux"caposit%on)indicates the compgsition or multipli- A
;ation %f opera;o‘r:s. 'Hereq h:N->Xand c : N- Nare linear maps whose .
. common domafn N is a' fixed Banach, space over K. A subspéce S of X is an
/ inv;ri'ant subspace of the ordered pair of opérators (F,6) if F(S) c G(S).
Hence with this definition of invariant subspace, the range S of h is an
1nvariap't subspace as F(S) # GOh(c(ﬁ))' c G(S). 'Moreover by definition, i;his
invariant subspace S=h(N) +9 “persistent” 1fhdependsanalytically on (F:G):
Ei\genvalues r of (F,G) are charac;terized by the pres;ence of non-zero ‘
' l solutions x of tii€~eigenvalue problem Fx = rGx. 'Eigenva]ués r of (c,IdN)

similanly défined, are affilfated with eigénva]ués r of (F,G) since by

B
-

Hnearitﬁ\g‘nm;/r{*n {n € N) implies Fx = rGx when x = h(n)_ Hence if N = K
then - (r,ﬁ = (c(i),h(l)) implies by 1inearity .that /gx=‘;~(;x since

- ¢(1) = rl.. Analytic dépengience of (h,c) on (F,G) in thi unei'dimgnsionﬂ el

1] * °

v . ERRI

! S “ , A
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. . 20N
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o . ~
N
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" case %eduvt;es to an eigenval ue-eigenvectc;r ‘ﬁérturba%ion result in

M. . CRANDALL and P. H. RABINOWITZ.(1).

[

In general, dlmension (N) »1,°

and stanc‘fard('firgt-érder single and multi-eigenvalue perturbation formulas

~

valued functions of -(F,G). Such differentiation is fedasible becau;e

compositipp of linear maps is a bounded mu‘lti'-linear:\ operat%\on on operator-
normed vecfor spaces of bounded linear maps.

The discussion of Floquet representations, exponents and multipliers
fo# 1inear periodic systems of ordinary differential equations in ‘sectiqn’Z
provided the initial motivation for this chapter.

In T. KATO (5), Fx = rGx is described as a generalized eige:lval
problem in which usually G : Xﬂ-‘f Y is a bijective operator. I:hi latter

condition permits Fx = rGx to be rewritten as G'loﬁx =rx, Int

theory
below, G is required to be invertible only on the invariant subspace S.
The continuity of the total e1genva1ue proaechons in T. KATO (5) corresponds
here to the persistence of some 1nvariant subspaces S under perturbdtions
of (F,G).

Add1 tional motivatwn and a model for th1s chapter and chapter 3 is
' supplied by the non-d1fferent1able th?ory for the persistence of 1nvar1ant
manifolds i C. HIRSCH, C. PUGH and M. SHUB (4). This "non-differentiable"
theory based direct'ly on certain Hnearizatmns and Lipschitz constants ‘
“contrasts with tKe "differenti“able" theories in this chapter, in chapter 3
and in J. MATHER (6), which depend on the Fr&chet differentiation of compo-

sition maps, the imphcit function theorem and the invergion of 11nearized

follow from Fréchet a'lffereptiat_:ion of Foh = Gohoc when (h.c) are operator- °
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o
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operators of the form (I -'M)-in which the spectral radius of M is less than 1.

The rest of this chapter is composed as«foliows. Properties of‘F]oquet

exponents are indicatedin section 2. In section 3 after the definition in

!

" sub-section 3.A. of simpie and semi-simple eigenvalues of (F,G) aﬁd after

the introduction in sub-section 3.B. of notation for spectral radii and for

Banach spaces of bounded linear operators, two preliminary lemmas 1 and 2

B . .
are given. The second of these lemmas requires one of six alternative, but

not equivalent, hypetheses H1 to H6. The one and only invaria;t—subspace
persistence-perturbati on'result of this chapter is given in theorem 1 in |
section 4. Lemmas 1 and 2 are required in lemmas 3 and 4 to indicate
suificient conditions for the hypotheses of theorem 1 to hoid, but for
the proof of theorem 1 and the perturbation of semi-simple and simple eiéen-
values in theorem 2 of section 5 these'4 lemmas 1,2,3 and 4 are not needed.
In section 6 'these lemmas are employed to show the persistence under per-
turbations of Floquet representations. In the iast section, section 7,
standard first-order perﬁurbatien formilas follow from the Fréchet differen-
tiation of the identity Feh = Gohoc with respect to variations in (F,G) when
the linear maps (h,c) depend analytically on (F,G). ‘ )
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2. Properties of Floguet EXfionents. L g .

! »

The properties of Floquet eiponents and multipliers described below
are intended to partially motivate the derivation of linear perturbation

1

results in this chapter. Q;rhe question of: cont'inuously varymg Floquet
representations for continuously disturbed, period‘lc systems of Hnear
ordinary differential equations is answered in section 6. A reference for
the Floquet theory described in this section is JA. K. HALE‘nS textbook (3).

- Let A(t) be a T-periodic mx m continuous matrix-valued Function of t faR.

Then every fundamental mxim matrix solution Z{t) of the matrix differential

equation S

m Liey = aiz(e) - J

has a non-unique Floquet representation

(2) 2t) = H(t)e™ ;

i which C is an mxm matrix and H(t) is a®hxm matrix-valued T-periodic
differentiable function. Substitution of the Floquet representation (2)
in the differential equation (1) yields

(3) g—%(t) - ACLJH(E) = H(t)E

after eanc lation of the exponential term e'ct. N

From (3) observe whenever n in " is an eigenvector or pseudo-eigenvector
of the mx/m matrix C that H(t":)n is an eigenfunction or psendo-eigenfunction
of the operator ad— A(t) acting on the space of T-per‘lodi‘e differentiable
°functions valued in €. Thus the eigenva]ues of the matrix C are eigenvalues,

or by def'lnit'lon negative F'lﬂquet exponents, of the operatur ' fe - ‘A(t).

with respect to the identityﬂnclusion operator 1 embedd'lng the vector space

| ‘ %%.
o .
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‘f ( ‘ of T-periodic differentiabie functions valued in " into the vector
space of T-periodic continuous functions valued in €, The columns H(t)e
i : ' eof li(t) span an m-dimensional vector space which, because of (3), is mapped
v by the differentiai operator F = R - A(t) into itseif. In the 1anguage

of the introduction G =‘4’1 the identity inc]usion-map. hn. = H(t)n, cn = Cn

g and N=K"= R" or ¢". . : -
f’ ) From the Floquet representation (2) 2(0) ¥(0) and hence
L ‘ '
§ s ' - -
i | T = 2(0)"(m) |
since  Z(T) =H(T)exp(-CT) = Z(0)exp(-CT). Thus (-CT) is the Tog of an ¥

invertible matrix. But the J'magi'nar} part of this log function is multi-

2 e e meme

va]ued. Consequently, the real parts of -CT and hence of C are uniquely .
determined, while the iméginary parts of the eigenva'lues ‘of C associated with

-1 i .
-the invariant subspaces of Z(0) ~Z(T) are determined module —2-%3— The eigen-

vaiues of exp(-CT) are caﬂed Fioquet mu‘ltiphers The importance of the N
! F’loquet representation is that the signs of the real parts of the eigan- “
values of -C (i.e. the Floquet exponents) govern the *a;.»;ymptoti ¢ behaviour of {

the solutions x(t) of the equation B i

, J g—’t‘—(~;\(t)x'='0
as t+ =, There is exp'onentiai decay if these i-?ai parts are all negative.
> . In the above discusston one may have tacitly assumed that T was the
'Ieast period of the function A(t), on that this matrix-valued function was
ot constant. but neither assumption is necessary The Floquet. exponents o
of a—n + A(t).when A(t) is constant are just jhe eigenvalues of-A(0), modulo

; L 2ni . For instance, suppose B(t,u) is an mxm continuous matrix function

( of t which co,nverges‘ uniformly as u+ 0 to A(0), and which has period T

.
. .
\ it ul k
y ! -
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* in which the mxm matrix C(u) and the mx mmatrix-valued differentiable

-6- %

& S

in t. Then LT

(;) the Floquet exponents of the differentiaT operator EldT + B(t.u)h
should approach those of adi-\*A(t) as u = 0;

(ii) there should be a fami ly Zu(t) of fundamentdl solutions of

the differential equations
i) - B(tu)at) =0

with Floquet répresentations
‘ - -C(u)t
- zu(t) Hu(t)e

\

EN

T-periodic function Hu(t) satisfy

Tim C(u) = A(0)

u=+0 .
lim H (t) =1 (uniformly in t.)
u_,o u m .

and
Xm

Here il%}imitin'g Floquet representation

- - . =A(0)t
. Zo(t) Imxme .

is A fundamental matrix for the limit differential equation —
i g% - A(t)x = 00 l %

The continuity propérties (i) and (i1) of the Floquet exponents and

Floquet representations will follow from the more general considerations

(
of section 6. Co- . ! \
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Note if r(L) < 1 then by the root test

1s:an element of the Banach space B(x).‘ .

3,A. Definition of G-Simple and G-semi-simple Eigenvalues of F.
Let F,6 : X Y be a pair of linear operators with domaing ir X. -

The following definition appears in M. G. CRANDALL and P. H. RABINOWITZ (1).

Definition 3.1. G-Eigenvalues of F. A complex number r is a G-eigen-

value of F if there is a non-zero-element x in X with Fx = vGx. Th;
elements of ﬁthe nu]]spag:e of F - rG are the G-eigenvectors of F associated
v}lith r. A G-eibenva]ue r of Fis G-semi-simple if the dimension of this
nullispace is finite and if Fx# rGx impﬁes (F - rG)x ¢ G(kernel(F - rG)).
A G-semi-simple eigenvalue r of F is G-simple if the nulifty of F -rG is 1.
" Note below ’g-eigenvalqes of F,will also be called éigehvalues of (F,G6)

or eigenvalues of F with respect to G. g :

[

3.B. Notation for Spaces of Bounded iinear Operators and for Spectral Radijus.

For any pair X and Y of Banach spaces over K, Jet B(X,Y) denote the
Banach space of linear operators L-: X~ Y with Bounded operator-norm

L = sup nLx it

_ BIX,Y) - xeXdxlysl ¥
If X =Y, let B(X) = B(X,Y). For L in B(X) define the spectral raduis of L

by ' - ]

(L) = Tim sup ( il ) Ij
joe B(X)

) N -1 .00
(-1 w2, J

I NP, ——
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3.C. Two Preliminary Lemmas.

Remark. Lenﬁ\as“'l angl 2'in this sub-séction Qnd lemmas 3 and 4 in section 4
\ 1 a4
are not employed until section 6.

Let N and V be Banach spaces over K. lLet a ¢ B(V) and b e B(N).

| g Jb«, N

ema 1. For d : N>V putWd = adb . Then M: B(N,V) = B(N,V) islineaf.
bounded and has spectr&l‘raqms r(M) < r(a)r(b), so that ’r(a)r(b) <
implies (I - M)"1 £ B(N,V) = B{(N,V) is a bounded linear opeéatqr: Further
(1-M)d = d-ad.

Proof. For 31, Mld = aJdbd, Therefore for ndn =1, Mdu<nadiswdl and |

-

hence ' _
amdn <nady il

) ’ Q.E.D:

ES

a

Lemma 2. If any of the six hypotheses 1isted below hold then the linear map-

¢ |

L : B(N,V) > B(N,V). defined by S
Ld = ad' - db '

for d in B(N,V), has an inverse U in B(B(N,V)). i.e. L is surjective
and bounded below. - ﬂ
thf six hypotheses H1,H2,H3,H4,H5 and HG occur in dual pairs (H1,H),
(H3,H4) and (HS,H§) (see proof' for the effects of this duality.) The !\vpo;
theses H1 and H3 are special instances of H5, and H2 and H4 are special

instances of H6. . \ oo .

\ o
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H1.

Hz .
Ha“

H4.

H5

H6.

/

R

- (1) 2 B(Y), [(b-ryI )07 ea( ) and r(a)r(tlb -, [)QT I <h < 1.

(1) Ta - ryl )R e BN;). b e B(Y) and r(Kta - ryT )R r(b) <h < 1.

| A
2! € B(V), b < B(N) and r(a")F(b) <1.
b™! € B(N), a'e B(V) and r(b"Mr(a) <'1.

N is finite dimensional and it has a Jordan Canonical basis e‘,... e

n
for‘b ¢t N * N. There are n scalars rj in K such thatkb e = r e 2

bey e ney,mye; +ey ;) for 2<j<n, and (a - 1yl v)i eB(V) for
1<j<n. (n>1) \ )

V is finite dimensional and it has a Jordan Canonical basis"el.%.. én-

nn “"ntn>
+ < - 1
aej[e {rjej.rjej ejﬂ} for 2 <j<n; and (b - ry N) ‘ € B(N) for

1<ji<n. (n>1.)

fora :V = V. There.are n scalars rs in K m\uch ‘that a e

V is a direct sum of closed subspaces w M (n>1.) Ther"e are
n scalars rj in X, he (0, 1) € R., and n continuous projectiyh
-+ < .

: v w with (P) j and PjatPm jaP for 1<j,m < n

Py’
such t@\at for 1<j<n at least one of following holds:

1) (- eglPy € B, b7 < B(Y) and Fifa - gl pgir(sd <h<t
' |

N is a direct 'sum of closed su;bspaces LATIRR (n> ]:) There are

w N rFd
n scalars "y in X, h e (0,1) C \i' and n continuous projections -’

QJ TN ZJ wiip:h (Qj)‘ - Qj and

&

(1) a™teB(V), (b - ryl)o e B(z;) and r(a™)r((b - r;Iey) < h<

("r / \

i

aboy = by for 1<y<n T\ |,
. such that. for 1 < j < n -at least one of ’the fo“owing holds: '




J e it on
N i

" Proof of lemma 2. . . e

; . . é . _ .
For (H1), write Ld = a(d - a'ldb) = ald where.by lemma 1, Ld =d - a~tdb

has an inverse. Therefore L'ldﬂ(f)'la'ii is a bounded linear operator on e

B(N,V). ,
For (H2), write Ld= -(d - adb™")b = (-Ld)b Where by lemma 1,Ld =d -adb?

~

-(E)’l(db'i) is a bounded 1inear map on

: ¥
B(N,V). . ‘ i} —_t

For (H3), ad - db ='Ld =c € B(N,V) iff

ce = (ad - dh)el = .(a - r'Iv)del\ :
o .

has an inverse. Therefore L4 =

- and

Y

. (a-r.1,)de
cey = "(ad - db)e‘j = { 5/‘/( J

iff the effect of d on the basis el....

if be'j = rjej,

e, of N is given by

if be:j =-rjej + ej

-1°

, if bej =- jﬁﬁ'
.= + .
, if bej r‘jeJ ej_l_
4
By induction, starting with j = 1, the expressions i_n-(1) recursively f\

P
(a-r v) (ce -de;i 1)

// ’
determine each dej, and hence d : N~ V, as bounded linear functions of c

_ for- which ld=ad ~ db = c.

(For (Ha), tet e',...e" in the dual. space V*.of.V be the dual basis of V*"

to the basis e,... e of V. Then ad - db=1Ld =c € B(N,V).iff for 1<j<n’

e = dad - ab) = eJaa? o1 &) el
since IVEER'ﬂ e e'"( ). ‘Therefore 14 = [ iff for 1<j<n

i e d(r '-' b)
eld =
jd(r IN‘ -b)+é '1d

‘!fj = orif be
,'ifbej

Jr’j-r
Jldi J
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Hence, by -induction on J, sgarting with j = 1, the formulas

Jd-' ed(rIN-b) , if =1 orif tlej’1 313-1'

(e c- d)(r IN - b)'i. if 1<J<n and ae; = ry- 1j .t ~ej
mcursivel& detemines eac e"d. and hence d.'-fz‘f;g.1 em(e d), as bounded
linear ‘functions of c €B(N,V) such that d is the only solution in B(N,V) of
ld = ad - db.=c, ' : . - : .

'3

For (), Ld=ad - db = ¢ ¢ B(N,V) iff for 1 <j<n .
’ N n v
Psc = Py(ad - db) =Py(aZy_ Pd) -iPydd

- (zgﬂ Py(PaPd)) - Pydb = aPyd - Pydb

= (a - rjlv)P d - P d(b‘ - r}lw) ‘ o r~
= n ) = ’ 1
sinceu Ix Z‘F‘ PJ and PjaP 63 L But by the previous arguments\
for (H1) and (H2), the last equality in the above expression uniquely deter-
mines ‘each P d, and hence d = j = (P d), as bounded ‘linear functions: of c,
~fér which ad -db="c has d as its only so'liution in B(N,V).
Finally, for{li&). ad - db = ¢ € BN,V) iff-for 1< j<a

RN
o

since (Qj) = Q‘j and Qiij = ij So again by the arguments for (H1) and
(H2), L B(N.V) + B(N,V) is surjective and it has & bounded inverse.

S *h.\ (b};

N | ) " . Q.E.D.

p
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t+ and let dH(S S) = sup *‘1nf
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4. On The Perswg? nce of Invariant Subsgaces The Identity Foh = Gohwe,

Lét X and Y be vector spaces over K. let F.G be a pair of 'Hnear

operators mapping X into V. -

Definition 4.1. A subspace N of X -is an

Invariant Subspace of (F,G).

invariant subspace of (F,6) if
’ F(N) € 6(N).o
~ Gbserve if the restriction 6, : N =Y of G to N is injective and if

)

)FN denotes the restriction gf F(t[o N, then ’ )
c=GlFy t N>Nandh = Idy: NoX - '
satisfy the identity

(1) - | Foh = Gohoc, L

Conversely, if ¢ : N> Nand h : N~ X {{h,c) arbitrary)satisfy (1) and if
S = r;hgeﬁ (h) = h(N) then F(S). = G(h{c(N)) € &(S) and S is an ifvariant
subspace of (F,G). c )

"~ Now let X be a normed vector space with norm lxl

Let S and Sbe subspaces of X

_Definition, 4.2, A Gap between Subspaces.

s -sts 1 measure-the gdp between the
y s€S § e s
‘ Ist <7 Isl <1 P

uni;; bat'ns of Sband §
4 Noge dﬂ(s S) =0 if the closures \(\:f S and § in x are equal.. Further
if P:S~ S is a projection which is su\ective and bounded below
(with 1Pl < 'l) then for all s in S ’

\




_ depend analytically on (f,q) in W, -gnd wh

inf ' s -slgls-psl (M -PIISL. .
s e, Isl<] . '
and -hence dl;r(s S) <'tI - PI. L “ - .
Theorem 1 and Temma 4 and 5 below contain sufficient conditions for
thv:rs‘lstence of 1nvariant subspacés S of a pair of operators (F,G).

Theorem 1. On the Persistence of Invariant Subspaces. Let X and, Y be the

Banach spaces ovér K. Let X be a direct sum of ciosed cbmp]elilentary sub- . )
spacfe« Nand V. Let Y be a direct sum of closed comp]ementary subspaces

Y. and Y2, Let P : Y = Ya be tht; continuous projectwn of Y onto Y2
éiven by. P(ys+'y.) = yz when ys € Yy, yae Y Let F,G be a pair of
bounded linea;} maps of X i nto Y. Suppose N is an invariant subspace of
(F, G) w1th F(N) C G(N) = V1. let GN N Yi have a bounded inverse.

Assurpe Fy @ N Y‘ is bounded. Set b= GNl Fy N =+ N. Finally assume the

-Tinear map L : B(N,V) = B(N,%) defined for v : N~V 1in B(N,V) by

(m o Ly = P(Fv - Gvb)

I4

1s surJectwe and has a bounded inverse. (Le as. 3 and 4 below, and theorem 2

]

and its corollary in.the hext section indicatq sufficfent conditions forthis.)
Then there is a neighbou‘r“hood W of (F,G n B(X,Y)z and operator-valued

functions h(f,g) a‘r'nd'c(f.g) y'vta1u9;d 1r; B(N ')J'Qaﬁd B(N) respecj;ive!y, which

| satisfy (i) theh‘idemtity

fh(f,g) = gh(f,qg)c(f,q)

in which Juxtapos1t1on 1nd1cates the mu]t1phcation of Tlinear operators;

.

and (ii) the “initial cond1t1ons" ) '
TN . '

{‘/C\ h(FG)— Iy .:N-»x-. J

¢(F.6) %eN s
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Proof of Theorem 1. For (f,g,¢,v) in B(X,Y)* x B(N) x B(N,V),

2

set .
A(f,g, c,v) = f(IN v) - g(I + v)c
Then A is a B(N, Y) valued analytic funct‘ion of its arguments because' it

is the difference of multi-linear bounded opera‘tor—valued functions on )
B(X Y) x B(N)'x B(N,V). Further

. ' . A(Fsagb’O) = FIN - GINb =0 .

sinceb-= 6;'Fy = (61,)(FI,). The partial (c,v)'Fréchet derivative of

A at (F,G,b, \ ) is the B(N,Y) valued linear map
(1) Q(c,v) (Fv - Gvb). - Gc '
. *1\+ ((r - p)(Fv - Gvb) - GNc]
since Ly = P(Fv - Gvb). Thus Q(c,v)\\y\e B(N,¥) impHes
(2) . v=_Llpy - _,,,\\) B ’ | f v
. '1(1 - P)((Fv - Gvb) -yl o
These formulas show-Q: B(N) x B{N,V) = B(N,Y) to be surjective and bounded

below. Hence by the implicit functwn theorem there is a product neigbourhood

WxU o%if:/e v5,0) in B(X,YF" x (B(N) x B(N,V)), in which the solutions
of A(f,g,c,v)=0 form thev ‘graph of analytic op’erqtor;;m ued °ﬁunc;fions
(c(fgg'),v(f,g)) mapping the neiqhbourhaod W of (F,6) ifto the neigﬁbour;
hood U of (b, 0) in B(N) x B(N,V) with ', .~
(c(F48),¥(E,6)) = 1,0 = (E51F0)s -
The conclusions (1) and (ii) are satlsfied by setting,
C (nf.g),clf,g = (1y + Vifag)clfug)).
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Corollary 1.1. (Change of Parameters.) Let ﬂ be a Banach space over K.
L L

qupose there is an isomorphism o:ﬁ = N. Then for (f,g) in W the operators

0

h(f,g) = h(f,g)e : N =X

E(f,g) = ¢°1c(f,g)¢ : NN
satisfy (i) the identity

. fh(f,g) = gh(f,g)c(f,q) :

and (1i) the “initial conditions" * ‘

l;(f,g) = 0. : I‘{ X

E(f,g)'= w"’GI;iFN«’ =olbe NN
Proof:. . This is obvious by substitution. ] '
' AR Q.E.D.

o

L

A A
e
e 1, -
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Lemma 3. Suppose PFv V -+ Y is bounded below and

-1 e T
r((PRYIPGIr(B) <1 (b= Gy'Fy : N=N)
then Lv = P(Fv - Gvb) is surjective and bounded below.
Proof. By femaT, Lv = (PEGNV - (PF,)™"(PGy)vb] is a product Lils of

surjective and bounded below operators defined bj

| L
v € B(N,V) -L»' (PFy IV
v e BINY) ~ v - (PFIPG, b

Thus L is surjective and bounded below since R b el
. y Q.E.D
Lenma 4. Suppose Pév : V7Y, is bounded below and the map of v in
B(N,V) to " : | ’
- _ -1 -1
av - vb —”(PGV) (PFv)v- vGy Fx ‘

A/\ 1 ' P -
in B(N,V) is surjective and bounded below (see the sufficient conditions

in Hypotheses H1 to H6 of lemma 2) then Lv = P(Fv - Gvb) is surjective

and bounded below. ¥

Proof. Again Lv = (PGV)(avA- vb) is a product of invertible maps.

which are bounded below. , © Q.E.D
Note.PG, : V.+ Y, is bounded below iff G : X > Y is bounded below

v
. >
since G can be identified with the triangular matrix in

A
-

(“ ";P)GN*PG H } ((I - P)Gn + pev) <"y \’f L

ot

and §1ncg 2 x 2 triangular matrices are surjective qnd bounded below iff

" .their diagonal elements are surjective and bounded below and their off-

\\/‘;,,_giggQgij elements are bounded,
! » ®

/
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5, Perturbation of Simple and Semi-Simple Eigenvalues. ° e

In theorem 1, if b = (GN);iFN = rIN then r is an eigenvalue of

I(F.G) and kernel(F - rG) = N. Further r is a simple or semi-simple eigen-

_ value if the dimension of N is finite. The general case dimension(N) > 1

-

and the special case dimension(N) =1 are treated in theorem 2 and corollary

2.1. below. - a

_ Theorem 2. Perturbation of Semi-Simple Eigenvalues. Let F,G: X =+ ¥

. be bounded 1inear operators Let r° be a simple or semi-simple G-e1 genva]ue
of F. Suppose N = kerne](F - roG) has a cilé%’@d complement V in X. Further
assume . GN N - Y is bounded below, and Y,:= range(F-- r G) is a c]osed
comp]ement of Y, =G(N) in Y. Then there is a neighbourhood—lkof (F,B) in
B(X.Y) and analytic operator-valuedfincticns 78) ,c(f,g)) defiped on W
and valued in B(N.'X)xB(N) such that )
fi(f,g) = oh(,g)c(f,4)
h(F,6) = I, : N+ X

(for (f,g) in w)l | i

and

: N> N

| c(F,G) = r°IN :

Proof. The operator Lv = (F -r G)v = Fy - Gvb (v € B(N,V)) 1in theorem]

is surgective and bounded below.
., Q.E.D.

[

e e N

(:oroll.;ry 2.1. Perturbatwn of Simple E1genva1ues In theorem 2 if

dimension(N) = 1 then there are analyhc functions (x(f,q),r(f.g)) defined.

- on a neigbourhood W of (F,G) n B(X,Y)' and valued in Xx K such that

£x(£,9) = r(f.9)gx(f.9) (for (£.g) in W),

x(F,G) # 0
and s &
‘r(F,6) = r° '

3
5




s
T

PN S

Y ‘ PRI e b e Mt R
. WA P TRTARNTS PRI - .
*

-18-

. Proof. -Let (h(f,q),c(f,q)) be as in the conclusion of theorem 2. Now -
_identify N with K and put x(f,g) = h(f,g)(1) and r(f,g) = c(f,g)(1).

Q.E.D.

6. Perturbation of Floguet Exponents and Floquet Representations.

6.A. Floguet Theory. Fix T >0. Let K(t) be a continuously differentiable,
m x m matrix-valued function with period T in the real-variaple t and .Co-
efficients in K. Let A(t)’bé a éontinuous.Téperiodic, m X m matrix funétion

of t, again with coefficients in K. Let -

M Fxs Kt - AEdx, G = K(t)x

~# N e

when x = x(t) 1is a continuously differentiable function valued in x4“0m>1.)

Let Z(t) be an m x m fundamental matrix for the diffeﬁenFia] equation Fx = Q.

i.e. Z(t) satisfies the differential equation ' e

(2) FZ(t) = K(t)dZ(t) - A(t)Z(t) =0
. i af. ’ 4
with a non-singular initial valye Z(0). Then Z(t) has a (first) Floquet
representation
Z(t) = H(t)e ¢t (H(t) mxm, C mx m.)

in which- C is defined by exp(XT) = 2(0)‘12(1). Necessarily H(0) = H(T) .
since Z(T) = H(T)Z(O)“iz(T) and since 1(0) = H(0). By induction, it follows

e

that H(t) is a T periodic cont1nuously differentiable function.

Subst1tut1on of the ﬁfi?t Floquet representation into equation (2) yields
(3) . FH(t) = K(t)%li(t) - ACE)H(t) = K(tDH(L)C = G( H(t)C )
. t . .

,
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Simﬂavr:ly Z(t) has a second Floquet representation
(4) Z(t) = ¢ M¥q(t) (Q(t) mxm R mxm)
in which exp(-RT) = Z(T72(0)™ . Hence G(T) = Q(0) and consequently
Q(t) is a T-periodic continuously differentiable function since by the
definition.of R, Z(T) ='e"RTq(T) = (TZ(0)TQ(T) and 2(0)= 4(0).
Here Y(t)l= IC*(t)'lq*(t)'iexp(-(-R*t)) will be the Floquét representation

of a fundamental matrix of an adjoint differential operator F* to F.

é.B Periodic Function Spaces, Adjoint Operators and Fredholm's Alternative.

Let Y be the Banach space of continuous T-periodic functions.y(t) with
bounded sup-norms lylly = max{ 1y(th gm : 0<t <Th. ‘LetX c ¥ be
the Banach space of continuous]y“di%ferentiéb'le functions x,(t).valued in K"

with a finite norm lxlx =leY + l—:%:lY . Define .an inner product on Y

T

andon XCY by
T

.(f.g)T =;:“<1=(1;a),g(1;)>'(m at = 1 f1) glt) .dt. (f,geX or V.)

Note the restrictions of F and G to X are continuous linear operators

!

valued in the Banach space Y.

For the T-period%c,differéntiable functions x(t),y(t)'in X, intégration

_ by parts and the periodicity imply -

PR

- {ysFx)p - (y,_K(t)g% - A(t)xx)«r = (EK*(t)gptL - (g%*(t) + A.*(t))J].x)T

«

= (Fy,x)g , “

if the adjoint operator F* is defined by‘ 5
Fy = =K*(t)dy - (dK*(t) + A*(t))y. -
& & '

o

The same computation indicates (F*)*x = Fx.
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Let Y(t) be a m x m fundamental matrix solp‘t'lon of the adjoint equation
F*y = 0 which satisfies the initial condition Y(0) = Z*(O)'ll(*(o)'i. Then
forall t in R

FHEK(D)2()) - (@ 4 kodlyuz oy &L - 0

but Y*,0)K(0)z(0) = I Therefore ?

mxm’

() ¥ = e

is & fundamental sio]ution of the adjoint equation F*y = 0¥ From the second

Floguet rebresentatien (4) of Z(t), a first Floquet representation of Y(t)is
v(t) = K(£)* (e et = (k(e)»o(e) ) €FE,

Fredholm's Alternative. Variation of Parameters. ,

For the inhomogeneous differential equation

Fx = K(t)dx - A(t)x = g(t) , .
dt

in which é(t) is a continuous function of t, variation of paramet‘@;s yields
x(t) = Z(t)(c, + fotZ(s)'ll((s)"lg'(s)ds)

as the general solution which satisfies the initial condition x(0) = Z(O)co.

Qbéerve frog (5) that the collection of,functions {K(T)*'lz(T)*" 1y°; yoen("‘} is

the solution space of the adjoint equation F*y = 0. For simplicity, suppose

Z(0) =1 the identity matrix. Then for T-periodic functions g(t) in Y

mxm
the peribdic differential equation Fx = g has a periodic solution x(t) in X

iff . Torer=1prey-1
x(0) = Z(T)(x(0) + 5 Z(s) "K(s)™ g(s)ds)

T - amx( = J2(s) k()™ gls)es

iﬁ" for all Yo An kerne¥(1-Z(T))*) =,kernel(K(T)*'i(Z(T)*'i-I)) =
kernel(Y(T) - ¥(0)), ';

. 0= ;'.Ty; 2(s)"k(s)™ ‘?—(‘S-)'JS’ ==f:<Y(s)yo,g(s)>Kmds = (Y(t)y.o(t))y °
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aiff for all y = Y(t).yo in kerne]x(E*) : e
(.Y(t)bg(t))'r =0

Therefore in Y

(6) range(Fx)= {kernel(Fx*)}l ={yeV:xe kerné]x(Fx) implies(y,x) = 0}

" Likewise, in Y’ |
(7)° range(Fx*) = {ker\'nel(r-'x))l

Finally

llity(Z(T) -1 . )

nu'llityx(F) m XM

n

nulTity(Y(T) - Y(0))
Jajco-dimensiony(Fx)‘
- Hence -~
(8) dim kernelx(F ) = co-dimensionY(range(Fx))
and F has Fredholm index zero. Simjlarly

(9) dim kerne]x(F*) = co-dimension(range(Fx))
” \

6.C. Generalized Eigenvalue Problems. Floquet Exponents.

Henceforth restrict the operators F and G so that
' X =!doma1t3(F) é,\domain(G).
By the preceding hr"_gumeﬁt ) each of the operators F-- ré (r in K) has
—Fredhoin indexj;,-ero. Put Gy = K(t)*y. Then the ad;iomt of the
differential ;)perator (F - rd)* (computed a‘s above) is F* - r*G*,
Furthér the Fredl_wlm i‘ndex of these operators on X is zero. Hence for each
b
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eigenvalue r of (F,G) there is an eigenvalue r* of (F*,G*) with the same .
- ~

geometric multiplicity given as (or defined by)
: nullityfF - rG) = nullity(F* - r*G*),
C Tt]\e. -negatives -r of the‘eigenvalues r of (F,G) are called Fl?q\iet exponents.
From the Jordan canonical form of the matrix CV in the first Floquet
representation Z(t) = H(t)e Ct. there are q orthogonal projections (P )
of €™ onto subspaces Ej of €™ such that
C= xg___] (AT + )P

o

for some g nilpotent or zero operators MJ. on I-I‘j and some q < m distinct

eigenvalues AJ.. of C. Here each EJ. is spanned by the eiger\vec'tors and

pseudo-eizenvectors of C associated with the eigénvalue )‘j‘ The dimension

of IEj is the algebraic multiplicity of the eigenvalue )Wj of C.
Note each invariant subspace E of (C,I_, ) 1s a direct sum of 1
/ ns= nulﬁty (F - x; G) invariant subspaces which contam, modulo the complex

numbers only one ewgenvector of (F,G). Let % Qe W= }:j R be
projections onto these invariant subspaces. (ther Floquet represeni:atwns

of Z{t) are given by

. (10) ° Z(t) (H(t)exp(act))e~(C + 800t - »
whenever 4C = £h 3= uui‘iQ for some mtegers aj There cannot be any more

Floquet representah ons (or F]oquet exponents) other than those given in

(10) ‘since the equatidh
K(t)dx - A(t)x =0
dat -
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has at most m linearly independent solutions. In particular modulo

g%iﬁ, each eigenvalue r of (F,6) is equal to one of the eigenvilues

i

: Aj of the operator C.

»

Note some bounded linear perturbations of (F,G) in B(X,Y)2 ;re givea
byrbounded perturbations iﬂ X" and YO respectively of the columns of the
matrices K(t) and ‘A(t). Here the elements of the product Banach spaces
X" and Y™ are being identified withm x m matrix-valued T-periodic
functions of t. “

6.D.1. Perturbation of Simple and Semi$51mp1e Floquet Exponents.

Fix j (1sjsq.) Suppose r = Aj is simplefir semi-simple eigenvalue

of the matrix C. Put N = Nj = H(t)Ej nd let

Vi = {xeX: (x,y)T =0 for all y in N}. |

Then V' is a closed complement of N and for x = n + v in X, with n in N,

viny

Qu: (F - rGNv¢ G(kerne](; - r6)) = G(N)

as otherwise there would be an n in'N = Njuand a v in V such that

xu%%-muv-muw;xuwuﬁ,

The latter contradicts the simplicity or semi-simplicity of the Floquet

exponent r of (F,G) as it implies the existence of a Floglet representation

LIEEN

not of the form given in (10).

]




B T s T ——

e o ot

[P
N

cof

Let
Y, = range(F - rG) = kerne1((F - rG)*)!
be a closed subspace of Y. From nullity((F - vG*) = nullity(F-rG) =
dimensionG(N) and G(N) 0 ¥, = {0}, it follows that Y, = G(N) is a closed
complement of Y, in Y. Thus the hypotheses of theorem 2 are satisfied
if dimension N 2 1 and those of its corollary 2.1. if dimensio\n(N) =1.

6.D.2. General Case. Perturbation of a non-semi-simple ‘Eigenvalue. 1

Again fix j (1sjsq) and‘let r= aj be an eigenvalue of C. Put -

N=N, = H'(t)Ej and ] }93'%

J
V= N‘U(in'x) ={xeX: (x.y)T = 0 for all y in N}.
N and V are then closed complementary subspaces of X. Put Y= (F - vG)(V)

and Yy = G(N). Then r is not an eigenvalue of (FV,GV) Jnd YlnY;i;{O}as other-

wise the dimeqsion of N= Nj would increase. Put
"o ={xeN :4(x,y)T =0 for y in kernel(F - rG)}.
‘Then ) ..
N, + V =(kernel({F - ré))}al . (Lin X)
and ' _

(F - r&) (N, # V) = range(F - rG) =(kernel((F - r‘G)*)‘f't L {+in Y.)

Thus (F - r‘G)N(J is a[fim‘te dimensional complement of Y, = (F - rG)(V) in
. ’ ' L

the c]os&d subspace kernel((F - rG)*)" -of Y. Therefore Y, is closed.

Hence (F rG)v : V=Y, is surjective and bounded below since

kernel(F - rG)v = {0}, Further Y, has"co-—dihension

. aiMe e e A o
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dimension(N,) + nul11ty(F - rG)y)-= dimension(G(N)). . .

But ‘
Y,0Y, = {0},

Hence Y, = G(N) is a closed complement of Y2 with dimension (Y; ) = ¢o-
ch'mensionY(Y, ). Therefore Y, andTY, are\élosed cozmplementary subspaces
of Y. ‘ n

Let P be a continuous projection of Y, = G(N) onto Y, = (F - ;‘G)V.
In theorem 1 for maps v : N~V in B(N,V), ‘

* Lv=P(Fy - Gvb), b = G,}t Fy = rINj+ Mj
3 -~

where MJ. is a nilpotent or zero linear operator. Hence hypothesis (H3)
of lemma 2 is satisfied with ry ='r for lsjsn = dimension(,Ej) and with
a= (PGIV)" (PF,) : V= V. Note r is not an eigenvalue of a : V=V
since av = av (v e V) impfizs ' X

0 = P(F - AG)v = P(F - r6)v + (r - A)PGv

"

#

-(F -rG)v + (r - 1)PGv .

and this implies A = r iaécause r is not an eigenvalue of (FV.GV). Hence

by lemma 4, the persistence theorem 1 is‘applicﬁble. “ |
By corollary 1.1 with ﬁ=\ Ej and the change of parameters o=H(t)Pj:Ej»No

there are operator-valued functions

hj(f$g)(;) : EJ' - x Cj(fog)(’): Ej -> Ej ) - /‘L
which -(1) depend analytically in B(E{,X) and B(E,), respectivelyon pertur-
bations (f,g) in a neigbourhood H:j of (F,G) in B(X{Y-)’ , and {{1) satisfy

(11)  h{F,8) = H(t)Pj : E‘.1 +NcX, ¢(F,8) = Agly + My E"., +E© K

t

and ' . I
(2) - : ] fhj(fsg) glghj(f’g)cj(f’g)’

1
PR P
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6.0.3. Perturbation of Floquet Representations. .

/ For 'I<:\l'<q,, tahe argument in subsection 6.D.2 yields operators

(5 f.g),E (£,9)) in B(EJ;X) x B(E) which depend analytically on (f,g) ina _
neighbourhood, W= n 1ss<q Hs C{f (F,B) in B(X Y)z and v}hich satisfy the last
two equatioaj of subsection 6.D.2. Now recall that Eq_] PJ =1:K"» l("';v

that z‘jL]( I +M)Ps = C : K"+ X"; and that B(X" %) is isomorphic to X",

Therefore - Co.,
| H(f.g) “ef"zg_1 j(f@ﬂ(f.gm) K" X" |
atisfies .

; H(F,6) == Xj_ H(t)P, = H(t) l<’"+x-“

Likewise -
ewise Cf,g)=ﬁ=ﬂz j(f,g)P ii-iiﬁulzq | @GP = €K K,

Therefore

1

fi(f.g) = gH(F.g)C(f.g)
because c (f,g9) : E‘j - 'f:J = range(P ) c kerneI(P ) if\s:\: j. B
Now if (k(t),a(t)) in Y'Y are mam periodic mafrices : such that
g= k(t) X =Y and the differential operator f = k(t)d ta(t) 1 XY
satlsfy (f.g) € W then
; (k(£) + alt) H(F,g) (£).= K(t) H(F,g) (t) C(F ). -

Thus a Floquet representation of a fundamental matrix of the differential

equation k(t)g%x(t) + a(t)x(t) =0’ |
is given by

=
A

26,0)(8) = A(E)E) expl -tE(Fa0)). o .
This represents an analytic con‘t"inuation of the F1oquet représentation
2t) = H(t)e™™C = Z(F,G)(E) of the ﬂfﬁdamentai ‘matrix-solution -Z(t) of
LK(t)ﬁx(t) + AE)x(t) =0 : ( G=K(t) : X~ 1Y) T
since the operators. f = k(t)&-!- a(t) and g=k(t) 1n B(X,Y) qepénd '5 S
Hnearly, and hence analytically on bounded perturbations (k(t),a(s)) of
(K(t),A(t)) in ¥Y'x¥".




7( v+ 4. Derivation of Standard Perturbation Formilas.

Assume the hypotheses of theorem 1. Let /h = fN v, veB(N,V) and
A(f,g,c,v) = - ughc ,

be as in ,ch proof of theorem 1, Let h(f,g) I + v(f,g) : N+ X and
c(f,g) : N> N bg the analytic operator-valued maps appearing in the proof
and conclusion of theorem 1. Linear perturbation formu]aswiﬂ _be obtained
for the first-order changes in (h(f,g),c(f,q)) from Fréchet differentiation
of the equation A(f,g,c V) = O with respect to variations in (f,g) in B(X, YY),

Let L(df dg) denote elements of B(X,Y) . By ‘the,cham-ru]e

0 = DA(F,6,b,0) (df,dg). )

A(f g)(F G, b,0)(df, dg) + A(c v)(F G,b 0)(Dh(F G) ;Dc(F,G) ) (df, dg)

]

: , = (d)Ty - Wdo)b + o(Dh(F,-G)(df.dg),Dc(F,c.)(df.dg)) L

‘ " where Q : B(N,V) xB(N) ~ B(N,Y) is the (c,v
A(f,g C,V) eva1ua\%d at (F,G, b ,0). Put ‘

WART -((dan - (dg)b)

From the mverse of Q ca]cuhted in- the* proof of theorem 1 ,lf Q‘:fl Py then

-partial Fréchet dérivati ve of

' . . | Dh(F,G)(df,dg) -E"1Py v . . \\

Dc(F,6)(df, dg)'=~ (GN)‘“i(x - P)(FV - Gvb - y) =
Therefore (i) if b = 0%or £ BV UF(Y) € Ya= range(P) then

" 'be(F,6)(df,dg) = -Gy1(1~P)(df I, - dgb) : NN

=~ and (ii) if b=0 then- Ly = P(Fv - Gub) implies :
_ {on(F,6)(df,dg) = (PFV)°1P(df ) : N V.

‘ The remainder of the calculations in this section concern the matrix

( y . o ;'epresent;ationvof Dc(F,G)(df,dg) when N is finite dimensional.




paew
.
*

Assume N has a basis LT Then G(N) € Y has a basis G";"" .,Gam
since GN is one-to-one on N. By assumption (I - P) : Y= Y is a continuous
. . {
projection. Therefore there are m linear functionals 25 : Y » K such that

m
- =2 R ‘e
{1 - P)y =1 <23 ,y>GnJ

[

Hence <25 6Ny > = ij. Further . PR
G',i(l - P)(df I, - dgb)n, = 6iz™ <z (df -~ dgb) n, >Gn
N N k N “j=1 %3200 - Ggbin >Ny
{ v _ m
) = zj«'—'l <z ,(df - dgb) >N i

'Therengg if b=0or if-G(V) + F(V) = range(P) then a matrix representation

" of Dc(F‘,G)(df,dg) : N+ N with respect to the above basis of N is given by

Dc(F,6)(df,dg) = -(<zj:(df~- dgb) ne>)ygs kem

{An immediate consequence of this matrix_repre‘?éMaEion is the formula:

trace(Dc(F,6) (df,dg)) = Ty <z;,(df - dgb)n >

for the trace- of the first-order change in c(F*df G+dg). This trace equals

the first—order change in the mean- -value of the ei genvalues of c(f,,g) at’

(F",G). When m= 1 ‘and b = r® the matmx and trace formulas reduce to the

common expressigﬁ and sftar;dard perturbation formula
| pr(F, G)(df dg) = q-<z ,(df - rddg)n> ' '

for a simple eigenvalue r® pof (F,6). Nete the special case rodg = 0.

The perturbatmn formulas derwed in this section for perturbations of

c(E,G), its trace or a simple efgenvalue r°

give-the linear terms in the
Taylor expansions of their extensions e(F+df,G“-l- dg), trace(c(F +df,G +dg))

and r(F +df,G +dg) in the presence of perturbations (df,dg) of (F,G). This

iﬁformation can sometimes be useful in the indication of the linearized

stability of cewjtamr nonlinear problems when Lyapunov's Stability criterion
_holds. )

PR S
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Factor§zations, A priori representations, <«

AN

Newton-Puiseux diagrams and polygons, and

Multi-dimensional Newton-Puiseux Indicial sets.

1. Introduction. Trédiﬁonaﬂy, two dimensional Newton-Puiseux diégrams

and polygons have been employed to determine rational exponents u = p/q

4

o

-in fractional power series gxpansions, valid as x -+ 0 or as x - =, of k ~
solutions : \ ) I ’ h . . }
' ; Ju
(1) . “ y(x)~z:j>0 a;x
L7 i \\ *
to analytic or algebraic equations ) ' ' !

] ) Codkly k ik ‘
(2) 0= EQ(,y) = Ej>02k>0 Ejkx'_y = Ej>ozk>0 1 . DiDyE(O_,O)x y

s

and to.analytic or algebraic differential equations of the form

LK

18]

e . —a—

(3)w D ap Q(xs.Y)g%v'; P(X!Y)- . b . ) ‘ \(

See for instance the books B.A. FUCHS and V.I. LEVIN(1O) (Russian 1949, Co
English translation 1961), E.L. INCE(15) (1925), R.J. WALKER(28) (1943). - |

In the power series expansion (1) the substitution x=3$9 yields a
\ ’ .

parametric representation ‘

ST = ey s

- !
.

¢ , '
of a curve of solutions of equation (2) or (3) which issues at s = 0 from a. ko

branch point at the origin (0,0) or at infinity depehdjng on the signs of -

I

p and q with say q> 0 iff -x 0.
In 0. PERRon(ég) (1961) another application ‘of Newton-Puiseux diagrams

gl
[y
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is given for mth 'order, analytic, scalar, ordinary differential equations

/
- not of the form in equation (3). The role of Newton-Puiseux diagrams in

the analysis of asymptotic behaviour and of branching of solutions to
equations E(x,y) = 0 has been investigated by many, recently including

J. DIEUDONNE(8) (1949), R.G. BARTLE(l) (1953), L.M. GRAVES/Z) (1955),
D. SATHER(22) (1970) and (23) (1973), and M.M. VAINBERG and v A. TRENOGIN
in (27) (1960). In J. DIEUDONNI;(B), E(x,y) is permitted to possess an*®

~ exponential-logarithmic expansion at (x,y) = (0,0) ¢ R®* of a type

defined in G.H. HARDY(13). In R.G. BARTLE(1), L.M. GilAVES(IZ) and

D. SATHER(22),and (23) the variable y in E(>-(,y) - 0 is allowed to be an
m—&imensional element of‘ R" or q:"'. In this multi-dimensional case (m>1)
the coefficients Ejkxj of .yk in the Taylor expansion in equation (2) of
E(x,y) at the ‘origin (0,0) of Rf or C* are k-linear functionals on R™
or Cm, respectively. The article (23) is a survey which compares thes;
real and c/qmp'lexh:ases for the equation E{x,y) = 0. The textbook,review

monograph (27 ) by’'M.M. VAINBERG and V.A. TRENOGIN is oriented towards the

branching of solutiens of nonlinear integral equations depending on one '

paraméter, and it considers after treating Newton-Puiseux diagrams, related

topics in divisibility theory. °
In brief for the Taylor series expansion of E(x,y) in expression (2)

above, the Newton-Puiseux diagram is the boundafy of the convex hull in R

- of the indical setIp={(j,k) : jk #0 }. This boundary is a Newton-

Puiseux polygon when E is a polynomial. The rational slopes of the sides
or-support lines to the Newton-Puiseux diagram or polygon provide

admissible’ values of the negative reciprdcal (=1/u) of the.exponent u

a4
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in the fractional power series expansion (1). For variables (x,y) in R3 .

each continuous curve of so]utions (x,y{x)) of E(x,y) 0 with y(0) =0

is shown in J. DIEUDONNE(B) to sat1sfy
0 = hmx_’0 y(x)x™¥

’
for some exponent u >0 whose.negative reciprocal (-1/u) is the rational

slope to a support line of the Newton-Pmseux diagram, contaming at least

R

two points of the 1nd1c1a1 set IE

In this chapter for equations
= E(x) 5 E(x ,... X))
1

‘involving a Fréchet differentiable function E(x »..: x;) of n-Banach

space variables x = (x, seee xn) in a product Banach space X=n2=] XJ.,
the n-dimensional Newton-Puiseux indicial set of the Taylor expansion of E

at x = 0. is defined as the set I_ of multi-indices ‘a=(u a;) with

E
non-negative integer components, for which ﬁe cor spondmg Fréchet
derivative ‘ g .
D"E(0) = (1} D ‘])E(O) =D ‘g 3, D "e(0)
. xJ X Xq

-~

i . )
. at x =0 -exists 1ndepende~nt1y of the order of differentiation, and

[ 4

ddes ﬁot vanish. ' In brief
Ip = {«>0 : D*E(0) #0 }.

{

This set is finite if E(x) is a polynomial in x = A.(x‘“,.... xn). Normal

. vectors p = (p! ,..\., pn) to supporting hyperplanes in R" of the iﬁdicial

set I, for which-ael; fmplies <a,p> >r for some r in R, provide admis-
/ . .

sible values of e)’iponents p‘1 in a‘p‘&io i representations

tp(5:2) = (872 ool 720) = P2y (052 = (1 pmaz) < 1)

» P
€ v
B
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3

| of solutions to E(x) = 0. The variable s in the 8 priori representation

xp(s,zu) is allowed to assume non-positive values in R (or €) if all the
exponents pj are integers and X is a real (respectively, complex) Banach
‘space. l;or functions E(x) analytic at the origin 0 of X, the idmissible
values of p~ (p‘ yeos pn) permit a factorization

—.r
E(x,(s.2)) =5 fp’,(s,z)
in which 'Fp r,(s,z) is a continogs or differentiable function with '
F {0,z2)=Z 0%E(0)2" (a!=()@!)(a.t) ).
Per <aa'p>20 —(a—g')*) 1 ) 2 ( n ) ) \

RS
This factorization is justified by the local absolute convérgence of the

Taylor expansion Euzd’Du‘E*O)xa, and a subsequent re-arrangement when N

X = xb'(s.z) belongs to domain(E). The most obvious property of this
factorization 1is that Fp r(s,z) =0 implies _E(xp(s,z)) = 0 whenever
r20 or s¥ 0. Hence for a fixed r and p, the satisfaction. of the

F 1 \// i N
hypothesié of ‘an implicit function theorem at a root (0,z°) of-Fp r.(Q,z) =0

~ supplies sufficient conditions for an ;-dependent curve of solutions

(5:2(8)) = (72 (S)rues 8 "2y(s))s 2(0) = 2° o

to issue at s = 0 from a branch point of E(x) = 0. This branch point

is at the origi;lb\ if all the p; are ;lon-hegative with. z;=0 if P; =7,

and it is at "infinity" if for some‘p:j <0, zg #0or

p
Hms_,,0 ks jzj(s)nxj-= o,

Further details and justifications in this analytic situation will be

given in section 2 below.
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For differentiable and not necessarily analytic functions similiar

- results follow in section 3 from a generalization of Taylor's formula

a o
(4) E(x) = (° DEOXY) 4 ry(x)
ae INA a. :
in which the remainder has an integral representation i ‘
lal-1 o a ‘
Re(x)=2 ['¢S._(1-t 0%e(tx)x%dt (dd =20 . a)),
d acd® T TTal-1)" 3513

N

. -~ . "t_{
involving partial Fréchet derivatives of different ordersjﬁhl and constants
Lo L

C; with combinatorial significiance. sIn particular factorization is
‘possible if for some P=(P s s Pp) and some r> 0, iD“E(O) =0
whenael\al and <a,p> > r when a € d. In this case, the firsta summation
in (4) vanishes and the remainder term is 0(s") when x = xp(s,z)

since acal implies D'EEx (5,2))(x,(5,2))% = s“*PDE(eafs,2)# = 0(s").
Derivation of the extension (4) of Taylor's formula is given in section 4.

Here I is a set of multi-indices with certain properties to be specified.

In section 5 an attempt is made to indicate the optimal or desirable

properties of factorizations corresponding to different admissible selections

of the exponents pj.
Finally in section 6 some subjects related to Newton-Puiseux diagrams

"and their associated factorizations are mentioned.

ot




e e

[

- . ~35- °n

2. Factorization of Analytic Functions.

Let K denote either one of the fields of real or complex numbers.
let X = ng,:] )(j be a product of Banach spaces )(‘j over K. Let Y be an-
other Banach space over K.

Suppose E : X+ Y has-a Tayfor series expansion’

¢ _ - a_ a a
(1) E(x) = E(x‘,--- ,xn) ‘%zo EX = Zaao D an x> # 0
AN .

which converges absolutely on an open convex neighbourhood Xo of the origin

" 0in X. Put domain(E) = Xo.

Definition 2.1. The n-dimensional Newton-Puiseux Indical Set ofgche

analytic map. E : X =Y at the origin 0 in X is the set of lattice points )

(multi-indices) with non-negative integer components in R" given by

IE ={a = (al,... ,an)' : D°E(0) # 0 }. '

Observe IE is finite or countable. . It has finite cardinality iff E

is a Y-valued polynomial in x = (xl,... ,xn).

For p=(p,~,p,) in R", let

X if all the pj are non-negative integers, ,
. ‘ _
) \ KMO} if the p; are integers with som!e being negative,
2 S, =1 - . ¢ ﬂ
P R, it the pj are non-negative, but not all integers,

L R0} if none of the above i.e. otherwise.
Then for z = (zi R zn) in X and s in Sp set

P
xp(s,z) = (s ‘zl,... S “Zn) = (s jzj)lsjsn e X.

~ (Note the notation Sp will be employed in the theorems below.)

-~




P e s

Choose a normal vector p = (pl poor ,pn) in R'o a hyperplane <a,p> = r
such that a ¢ IE implies <a,p> 2 r. If equality holds for some a in IE
then <a,p> = v is a supporting hyperplane to IE' Further, if equality
holds in <a,p> 2. for some a in IE and IE is not contained in the supporting ’
!&perp'lane <a,p> = r then, by definition, p is aﬁ 1nward‘pointiﬁg normalI
to I - or rather its convex hul o .
=1 and t 2 0 for all a in I JCR].

{ EaeIE taa.: zaeIE‘ o

R As was previously noted when n = 2, the boundary of this convex hull i s

the Newten-Puiseux diagram or polygono of the Taylor expansion of E at 0.
)’ For the above choice of p = (pl - .pn)', ‘the indicial set IE is a union
of disjoint subsets

’ T;= {aelpica,p>=ry )

corresponding to a finite or countable sequence of real numbers r.2 r.

J i
. Pj : . ‘ /
Hence, for s in Sp and xp(s,z) = (s zj)isjsn in the region Xo of absolute

convergence of the Tm}lor expansion in (1) of E at x = 0,

P p
- 1 n
E(xp(s,z)) E(s 2y oS .zn)

= a.<a,p>
EueIE Euz s
o, <a.P> .
ael E 2% ) ]

-

=2,

- r'
= o J
zjzi(xuelj Eﬁz ) s

= g

Fp’r(s’z)

where ‘, roor)
-r

(3) Fpur(est) = Eppq iy o 1 E2%s T \ N

since ae Ij implies <a,p> » rj. The re-arrangement of the ;E,-Tés in the

!
i

®
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preceeding calculation ;jwizzgified by the absolute convergence of

0 <a,p> .
zuEIE E,2’s . The expresgion in (3) for Fp’r(s,z) also ?onverges

absolutely for z = (zl ,.".zn) in X and s in Sp U {0} with |s| <1, by

. o ' o :
comparison wjth zaquEuz | as L Eaz converges absolutely for z in Xo.

~

The above argument and some of its immediate consequen6e§ are

summarized in the next two theorems.

1

Theorem 1. On Factorization of Analytic Maps. *

- Let E:X=nn; Xfi;Y be analytic at the origin of X. Let I be the Newton-
=1 J o E .

Puiseux Indical Set for the Taylor expansion 2,20 Eax“ of E at 0 (Here

E, = (D“E(Olla!) 20 iff ac IE.) Suppose for p = (pl ,u..pn) in R" and

r inR, ain I implies <a,p> 2 r, Then there. is a function

?

@ F, sa2)e EJQEIE B2’ P 2= (z hwiz)

defined on a neighbourhood of (0,0) in ({0} V Sp) x X for which the
expansion on the right hand side of (4) converges absolutely, and such °

that

) P Pn
(s,xp(s,z)) = (s,(s Z s S zn)) € Sp x Xg

implies a factorization

() E(xy(s,2)) = s'F, (s,2).

b I

The function Fp H0.2) = 1 Eaz“-is not identically zero if
. S ’

aelE,<g,p>?D
there-is an a such that D“E(0)=(a:\£u;* 0 and <a,p>=r. If the exponents

A
: /// . L

{
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py are integers, the map Fp,r \

wise, it is a continuous function of (s,z) in R+ x X,is ana!y%ic’?\ z .
. R .8 / ¢
when s is fixed, is continuously differentiab]e,wilgg respect to z and is @

infinitely Fréchet differentiable with respect to (s,z) when s > 0,

-

-—,  For integer values of the exponents pj in the a priori representation

xp"(s,z) the proof of ther}eom 1 follows from the discussion preceeding it.

For non-integer values of these exponénts, see the following digression
oﬁ"hybrid"Banach spaces, but note on first reading it may be best to

restrict the exponents p, to integer values only. The statement of |

J .
theorem 2 after the digression is a consequence of the analytic factorizat- .
jon result in theorem’1 and the ordinary implicit function theorem for

Banach spaces,in‘ say reference (19) of the biblography, when the pj are

integers.

: K x K=Y is analytic on its domain. Ot}ék >

I
i

}
i

b et o e e e ikl e Bt L
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\
On Hybrid Banach Spaces. (Digression.) o

When K represents the complex numbers and the exponents.p j are not

\a\II integers, cobindtorial problems associated with defining the domains

-

Ps ‘

v ) P
of the functions s-s J in the a priori representation xp(s,z)=(s JzJ)

and of the maps s+ s@“’%”r) and s +s®*P> in the expansions of
E(xp(s,z))‘ and Fp’r(s,z). lare avoided by restrﬂicting the variable s

to positive or non-negative real values. In this'situation th‘ere results
a Hybrid Banach space RxX> ({O}US“)% X in which the fn'-st factom,R
is a real Banach space and the secc\md factor X is a comp?ex Banach. space'
The partial s-Fréchet derivative ok Fp,r(s,z)ns real-linear in As € R,
while the partial z- (or,x-) Fréchet derivative of Fp"r'(‘s.z) is complex-
linear in Az ¢ X. From Cauchy formulas for aﬁalyticvfunctions, Fﬁ,r(s,z)
is infinitely and continuouslay Fréchet &ifferent;iable with respect to z in X
for (s,z) in the interior of its domain inR x X. From these same formulas-?

Fp ‘r(s,z) and its partial derivatives DJF (s z) are infinitely and

continuously differentiable with respect to s when s > 0. The latter

follows from. the ()locally) uniform convergence of the defining expression (4)

for F_ (s,z). The remarks in this digression can be justified by methods

por
found in references (2),(7),(16) and (19). See also Chapter 3.

_
\ -
\ \

. .
The' norm on the Hybrid Banach space RxX is the same as that given to

the producf Banach space RxX when X is trea‘ted a§ a real Banach space

i.e. when scalar multiplication in X is restricted to the real numbers RC K.’

- . e
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“in the direction qf the V-subspace is surjective and bounded below at
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Theorem 2. On the Existence.of Branches of Solutions. - ‘ }_.
, . o_ 4.0

Letc E,X,Y,p,r and Fp,r(s,z) be as in Theorem 1. Suppose z = (zj)lsjsn in X .
is a root of the equation . ' ” v ) '

0=F (0,2) =2 0°£(0)z" B )
-7 A a0, <P >=r a. . 4
Suﬁpose X=U+YV where U and V¥ are subspaces of\X with. v clbsggj and such

Wyt

that the partial v-Fréchet derivative (v eV), denoted by

D F. (0,z) =DF

vip,r > p'r(O',Z)lv : V=Y,

S

2°=4% +v°,  Then

A) There are continuous functions v(s,u), z(s,u) =u + v(s,u) and

, : Py \
x(s;u) = x5(§,u) = (s sz(s’“))isjsn defined on a neighbourhood. A; of

(0,u®) in ({0}x Sp) x U with values ir((\v.‘ X and X, respectively, which
satisfy \
v(o,u%) =0, 2(0,%) =u® +v%=2%, : \ o
! , ‘E“
+ =
ﬁFpor(s’ utv(s,u)) =0 B

and
E(x(‘s,'u)) = Ser r(s, utvis,u)) =0 ' (ifs#0 orr>0)

3

for all (s,u) in the common donain A,
B) x(0,u®) =0 1\;!’ a_H the Py are n9n-negative and zJ.(O,u°) =0

when Ps = 0.

c) If all the p,'s are integers then v(s,u),z(s,u) and x(s,u) are analytic

J
functions of (s,u) in a neighbourhood of (0,u®) in Kx U,with x(s,u)

possessing a pole of order at most sMMP3:1s3s0) ¢ <0 when u is.fixed.

4f- the. P .are -got  all 'integers, these functions are analyi:ic in u-for
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5 -—; 0, and infinitely and/%ﬁ uously differentiable with respect to s>0 - ?

-

‘together with all, their higher order part’ial u-Fréq:het derivatives . o

D)‘_"Ther‘e 15 a neighbourhood A, of (0, u°,v°) in ({0})(5 )xeV such Qit

all solutions (s,u,v) in Ay of F (s,u+v) = 0 must satisfy v = v(s,u) o
for some (s, u) in A. Moreovef‘ 1t follows (from this) that’ every non-zero
solution X of E(x) =0 in the set

xp(Aa) {x (s,u+V) (syu,v) e Ao}

must satisfy x = x(s,u) for some)(s,u) in Ag with s %0.

# Proof: First consider éhe part of the conclusions és tl;éy apply to

" the equation Fp‘;,(s,u4-v) = 0. This part fo]]qws immediately from implicit
function theorems and results on the differentiablity of implicitly defined
functions in references (2),(7),(16) and (lg). From (16), différentiébiﬁty .
properties of the implicitly defined functjon v(s,u) correspond at a point
(;-',Gp in its domain A to those of Fp’r(s.u+v) in a neighbourhood of

(;,G,N(;.u)) in its domain.'The rest of the above assertion shpuld be self-

A~

evident.

Q.E.D. ;
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_ Example 1, Let (_’;‘,ﬂ) be two real or two/cunplex variables, Put .~ - g

o

E(x,y) = x°y +x(y' +y*) +x°(1 Fy 4y 4y5) - x5y,

The Newton-Puiseux polygon for E is indicated in Figure 1.

i
i

o 1

N-J..
w
=
w»

> o
E_igg_e__. Newton-Pu{seux Polygon for E(X; ,X:) = 0.
inward pointing\nom&als\ to the sides a,b,c,d and e are respectively v i
(1,1}, (-3,2), (-1,1), (2,-1) and (1,-1). For sidé a D ”

E(sx,sy) =’ (x> +y*) + 'y + s*(Xy + xy') + ' (x'y’ + 'y*)
Thus \
Fls,xoy) = E(sk,sy) % $= 3 + 38 + 50y + & (9 + xy) + & (Fy +25F)

. For i =0,1,2, (x°y3) = (1, exp (2 * 1}ri) is a root of

. 3 ‘
0 = F{0,x,y) = x* + y°, B K/ P

Fron F,(0,1,3) = 3(y3f# 0, the fmplicit function theoren inplies there are

2 S’ X
analytic functions y,(s) such that F(s,1,y,(s)) =0 and y,(0) "'Vg for .

¢

i
[ !
i

K

t —
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. Figure 2. Generic .Newton-'!?uiseux diagram for E(x.,x;)=x, - x{nh(x:) at (0,0).

A

\\% . . ’ oo
- i . o

N 1or 2. From S ‘ -
- g_ F 0,159 +°)0 1
J (0) _s___g__= - -
the first order expansion of yj(s) is

!

yj(s) =y3 =35 + 0(s?).

Therefore,

(s.8y5(5)) = (5.5 exp(EZLh 100 4 0(e))

is the second order asymptotic._expansion of three complex curves of solutions
corresponding to }j =0, 1and 2, passing/through the origin at s = 0 in €.
Note only the branch given by j = 1 is real when s is restricted to real

values.
-3 - ) ., .
Example 2. * Let f(x) be an analytic function of a variable x in K

th

with an m"" order zero at x =0 in K. Thus f(x) = x"h(x) for some analytic

d

function h with h(0) #0. Put E(x,y) =y - x"h(x). Then
g = ((3.k) ¢ DIDKE(O) # 03 c ((0,1)3 U {(4,0) : § >m ).

A supe{*set of IE and a. support line (side a) to both IE and the superset
are indicateJ in figure 2, below, Genericallyfor analytic functions f 'witnh- /"

{

m-2.m-1 m mi m2 Gg

I AT T ORI T P R e o e

. e —a .
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a

mthorder zeroes at 0, in a normed vector space of maps defined on an open"

ball B in the complex plane with Il =sup8f(x)l : xeBJ, the above superset

of Ig equals IE. In this generic case the vectors (1,m)s (0,1) and (1,0) are

;

normals tothe sides a,bandc, respectively, of the’ Newton-Puiseux diagram

in figure 2 which point into the convex hull of Ié. For the a priori

representation (sx,s"y) corresponding to the vector ('l,m).‘ﬁ

/
~

E(sx,s"y) = s"F(s.x,Y)

— i

where -
tog

F(s,X,y) = y - x"h(sx).

Let xg = exp(2t1j/m), 1< J < m, represent the m mth

lf(o,xJ‘?,h(O)) =0 : L

3

roots of unity. Then

and ~
X
J

Therefore the implicit functio'n theorem implies the existence of m curves
m sn . . . egs s _ 0 y
(sxj(s).s h(0)) satisfying t.he initial conditions xj(ﬂ) X Fanqv_x
E(ij(s),smh(o)) = SmF(S,Xj(S),h(p)) =0

or ,
(0) = (x3())h(xy(s)) = Flxy(s)). i

for 1< j<m. Here in the real case K =R, at most two of the curves

corresponding to j = #m (m even) and j = m (m even or odd) yield real

solutfon branches (.sxj(s),s“‘h(o)).

~
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1

3. Factorization of Differentiable Functions. Extension of Taylor's Fonr"mula.

\

="
. Let X nj=]

XJ. and Y be Banach spaces over K. Let E :"X= Y be

i

a continuous map defined on a convex neighbourimod Xo of the origin.in X.

Definition 3.1. Newton-Puiseux Indical Set for Differentiable Functions.

Let I be a collection of lattice points (multi-indices) « in R,':.for which

0<8 <a’ implies 8 ¢ I whenael, and for which

+

D“E(\x) = (nf,f:] D:‘ij)ﬂx)

exists independently of the order of partial Fréchet differentiation, and

is continuous on the convex neighbourhood X, of the origin O in X. Then the

-

i

n-dimensional Newton-Puiseux Indical Set'in I for E at x =0 is o

| @IE‘-i{ acl : D“E(O.) =01}. e

Remark. The collectioh of functions E :Lx.‘) = Y which satisfy the smoothness
properties indicated /in definition 3.1. form a smoothness class glosed under

scalar multipﬁl";i:ation and point-wise addition:

1

?

e
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_Theorem 3. An Extension of Taylor's Formula. Let X=q

\

Xand‘l .-

J=1
be Banach spaces over K(n>1.) Let p%(pl,..., pn) with positive

th

components pj' Let r>0. Llet. ej be the j~ element of a standard

th

sets of multi-indice

basis of R"with 1 as i S j~ .component and zeroes elsewhere. Define
by '

I= {a20: (<a,p> < r) or 3j(1sjsn) such that a-ej>0and <a—ej,p>z 0}
‘*?I;F {u‘e I1: <ayp>> r},

' Int(‘l) = I\ = {ael :<a,p> < r}.
Suppose E:X=>Y isa function defined:and continuous together with its

Fréchet derivatives D®E(x) when ae I, on a convex neighbourhood xo of the

1Y

origin 0 1in X. Tﬁennfor x in xo

E(x) = (2 ' D'E(0)X") + Rylx)
ae\aI al ¥

¢

where the remainder term

/RaI(x) ol I ¢ g !al’ 1D E(tx)xdt. X
. aedl . - 1! ,

%ite for future convenienégjo
I= {a+B :ae Int(I) andiBl=1} U {0}
and " .
M= {ael: jej with a-ej' e Int(l) }. l ‘
The proof of theorem 3 is-given in section 4, . The following corollaries
of the above extension of faylﬁr's formula provide differentiable analogues

of the analytic factorization result in theorem 1.

» ' B i
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Corollary 3.1. Factorization of Differentiable Functions I. Suppose

« ¢ Int(1) implies D°E(0) = 0. Then
_.r
E(x (s,2)) =s Fp.r(s,z)

i
°

where for x (s z) = (s z:) in Xo and -s in S_U{0}
J 1<j<n P . ,

-

(s,z) =T (¢ (- t!“HD“E(tx (s,z))z“dt)s<°"p>'r .
p o eaI I lal -1 \

(Note: o €al implies <a,p> > r.)

Proof: In theorem 3, only the remainder term appears.and

5 —DfE(‘xp(s,Z)) (x(s,2))* = (D“E(xp(s,z)j" )S%p),

Q.E.D.
In the next corollary 3.2. identify R" with the subspace Rf]x {0}
of R"* Thus in particular “p=(p,,mspn) = (p....,pn.(})" and the
1 1
elements o of 1, Int(I) and al are identified with the corresponding

elements (a,0) in the subsetsIx-£0}, Int(I)x {0} and B x {0} in R,

Corollary 3.2, Factorization of Differentiable Functions II. Let x_an X i
anq Y be Banach spaces. Let E : X +.Y be a function defined and continuous,
together with its Fréchet derivatives D(G’O)E(x) when a €¢I, on a convex '

neighbourhood X  of the origin in X. Further suppose @€ Int(I) implfes-

D(G IO)E(]0

) = 0 for all (O,x '} in X,- Then

*nw nu

B} E(x o (s,z)) = (s,z) .
- | (p,0) (p.O).r

where for x (s,z) ((spj ) ) in X_ a dls in s 3
,Z) = 2 .z i n n =S,
(p.0) =30 T o (p.0) P

< OF (s.2) = = C“I -t DOOE e (s, 2))z Vgt 5° P
(pqo) 2T a €3] (l al -1)! \ \(ptO)
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Proof: For/d\xm1 » apply corollary 3.1. . ) -
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Q.E.D.

[

' Note the differentiability properties of the functions Fp r and
¢ - . ’
F(p 0),r correspond at s = 0 to thoseof the Fréchet derivatives DE(x).
H »

appearing in their definitions in corollaries 3.1. and 3.2. , while for.

s # 0 they correspond to those of E. These d'ifferenhabﬂity properties .

are m part inherited by functions 1mphc1t]y defined by the equations
= Fp.r(s.z)
and

0=F (s,z).
' (P}O)a"’ —

The statement of branch-point results for-“ differentiable functions, analeg-
ous to the branch-point result in theo;em 2 fqr analytic functions, and
based -on the factorizatignstin corollaries 3.1. and 3.2.' » and based on
implicit function theorems will be omitted.

‘In. section 4 bélow, the pﬂroof: of the extension in theoren 3 of Taylor's
formula is given in the fiist subsection 4A In subsection 4.B , there
is a digression on the evaluation of the constants /@i\awi:;i,ng in thearem 3.
The constants C“ depend on p and r. An example in which se constants are
determined is given in subsection 4 \C In subsection 4.D , there is another

digression. This second digression concerns & further generalization of

Taylor's formula. The effect of different choices of p and.r in X (s,z) and

“ in associated factorizations is discussed in section 5.

v
v
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4. A. Proof of Theorem 3.

First suppose D®E(0) = 0 for allain Int(I) =3I, The gener"al éase,
: n
as will be shown below, follows from this special one.

«.“
By induction on m>1, there are integers C'f such -that

(M B = (3, a4 24 ¢ peqr)) O (o812 0B (et

1sasm ld=m Ja-1)! ]
whenever (il~ﬂE XY 1’; a map defined and contimious together with all
its Fréchet derivatives D°E(x) (ae I) on 3 convex neighbourhood X_ of the
origin 0 in X; and (ii) D%E(x) = O for all a in Int(I). The inductive

proof of (m) is as follows.

For m = 1, statement (m) is true with C‘i‘=l since lal=11implies a €1,
and since " e
E(x) = E(0) + £/{8 E(tx))dt = = £ D°E(t)xCdt.
° ‘aceI,lal=l 0

Now as an inductive hypothesis, assume statemént (n{) holds for some
m>1. Fory in Int(I) with IyI'=m, integration by parts fmplies N
1yl oy Yas = (1 fq_s300 ¥ Y
[P O-) T DYE(tx)xTde = (}1 ;c) . d (DYE(tx)xY)dt

tri-1) at .

=1 " n-t)f""?u“s(tx)x“qt.

g=¥*8:|ﬁ|=1 ° (al-1)!
Note ’
{atg: uepfﬂt(n. lal =my, 181l=1}={ael:lad =m}

\=faeal : ld = m}‘U{ae Int(l) lal = m'}
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i

Therefore the second summation in {m) dis . : ‘ e -

Y Y1 ny Y
Zoemt(n) C14 Hyr]\,'f - DTE(tx)xdt }

lyl=m
a r1 '0"1 Q. ”’a "N,
Zy e mt(D)' Fa=yse 1% %ﬁ%"" D E(tx)x*dt )
Iyl=m 181=1 . |
= N a1 gyl papioya
= Cyca Yo myny ) 64, Qstl . DE(tx)xTdt
Wl =md _tel = m (la-1)

where the integer coefﬁcients"(:‘il are inductively defined for lal=m + 1 by

m  cf=c= ] ()
(Y:B): Yﬁlﬂt(l).lﬂl=1. a=y+g,id=m

in terms of coefficients C} affiliated with lower-order multi-indices y ;
with Iyl = m. Substitution of the last expression for the second summation

in (m) back into (m) yields the corresponding formula for m+1 ¥in place

cof m. This substitution completes the inductive step and establishes (m)
* t

for m > 1.

For m > max{lol: ae I} the set { aeInt(I) : lal=m} is void, and
the set {ael: ld=m}Cal. Thus the Theorem holds in the special
case of D*E(0) =0 for all aeInt(I) since for sufficiently large m '1/: the

preceeding inductive arguement,

(2) E) =2 5 O j}"{‘lu-'tr“"l.o"E(tx)x“dt.

For the general case let E satisfy the }»ypotheses of the theorem

without the special restrictions imposed above in the special case, and set

Fx) = E(x) - 2 _joerry (DT
a.

But
0 if ay <8 for some j i.e. o P8,

'S Q. a ’

0P(0E(0)x®) =

G%ﬂ"' D°E(0)x*® if a > 8.

3
t

1




L L L EEE S

ey 4 U

-51-

Therefore D”F(0) = O for all o in Int(I). Further D®F(x)= D®E(x)
for all a in 9 because B¢ Int(l) implies <a,p>>r><B8,p>, so that
for all o in 3 and all B8 in Int(I) %>%fwmﬁmmumw

0*(0PE(0)X®) = 0. The general case now follows from thg/application of

the special case formula (2) to F(x).

Q‘E.Dl
D .

-

w.mmnmmméWQmmmmmmmm&
, i B

[

As can be seen from an induction argbement involving the recursive
formula (1) defining the coefficients C‘; in the above proof of theorem 3,

each coefficient C"Il is equal to the number of ”lattice-pm'nt sequences or

mms(shﬁglmm ogﬁ<s”‘<afw1<3<w,wmmam

Ial

contained in Int(I) except possib'@\for the end-point a=8 For a in

Int(I), 0 < g < o implies g € Int(I), so that the number of the above paths
j 3 3 s e N l
(8 )1sjs!a| is the multi-nomial coefficient | :

' @= [} W, I ,
(3) I ( ) a. . ‘ S f

a

Formula (3) is also valid for those a in 3l for which 0 <8 o implies
8 £ Int(I). . o

This evaluation of i:he C°I‘ ‘agrees with a resulthgjven by Taylor's for;litula

when r = N and all the pj‘= 1. For thgn I = {a20:lal =N} e

={a>0:lel=N} and Int(I)'={a>0 :lai=N}; and further

!
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by Liebnitz's rule, Taylor's formula

E(x) = E 21_5_89,)1 { ) . D Egtx)x dt

1 ol letl-i. ‘a
=z§-'lzlal~a D ESO)X +I zlal— ( )i]a-% — D.E(tx)x d_t .

B D E(O)x R (x) '
= ﬁelnt(r) + '

coincides with the formula in Theorem 3, as expected, because of the

evaluation formula (3).

4.C. An_Example in which the Coefficients C} are_determined.

Let p=(2,1) and_r=4. The elements of I are indicated by the dots in
Figure 3. Here o = {(2,0),(2,1),(1,2),(1,3),(0,4)} and

4 -

i =(2E0)=]’ i = i3] = ™= (oh) =
B cf20) 4 ({1 1)_(2 )+ ‘]2']) =3 and

,c(133)=c(]v2) + c(OLSg= (]’2) ‘033’ =3 + 1 = 4. A\
Thus when DCE(D) =0 for a in Int(I)=I\aI,
3
Ey) L st D E(tx, ty)¢ + 3580 pE(ex, ty)eyt +
° 2. X 3. xy .

1-t) RS 1y
v DO E(tx,ty)x' v + 4t DIDLE(tx, tydx'y
. el e e ,

at (x,y) inR ‘ ‘ \ .

£ - y Q\

-Figure 3. The set I
¥ in Theorem 3 corresponding

to p=(2,1) and . r = 4,

e
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two disjoint subsets Int(I) and A with the properties
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The downward sloping 45° lines in Figure 3 passing through the
points (0,1),(0,2),(0,3) and (0,4) represent the inductive steps -
m=1,2,3 and 4 in the proof of theorem 3. The other ;1ne segment -
is contained in the support line «<a,p>=r of the Newton-Puiseux .
indical set I‘E in1 of "the function E. In corollary 3.1. , only fthe
Fréchet derivatives D®E(0) correspording to the multi-indices «

/

in this 1line segment appear in the jntegral repreﬁentation of l:‘p r(s,z)
¢ . ]

when s = 0. ‘ e N 7

o

4.0, A Further Extension of Taylor's Formula.

Let I be a collection of multi-indices a in R". which is the union of

(i) 0 e Int(I),
(1) oecd iff a-e; Int(I)-for some j (1<j<n),and "
(iii) a e 1 implies there is a path -(BJ)lsjslaF"c" that aJ € Int(I)
and’ 056 s 89" <afor 1<5<Ioland such that ' = .

In this. situation, the copc‘lt\:sions and p'roofsl of theorem 3 and the
coro]'lar‘ies*3.l. and 3.2. remain valid as well as the comments in 4.B.

. \ ¥
concerning the’ evaluation of the coefficients C‘;. Figure 4. indicates

©a nsimple example of a set I with the above properties. The tnes in Fig., 4

form a Newton-Puiseux diagram

., for a function E(x;',x’). inthe

special-case Iy =-q ( §eg the
thedefinition 3.1 of I in'1.).

01234 q

Figure 4. Elements of I are denoted by o . -

~ -
g h
T :
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.satisfies these same conditions {Note however that S_ and S _ need not

and zep(s,u) are the functions appearing in its conclusion for (p,r) and

( , -
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5. Comparison of the a priori representations. . , : i

let I be the Newton-Puiseix Indical Set of a-function E :(n;.;] Xj)-> Y.
Suppose <a,p> > r for all a in Ig with equality for some a i [1g. Assume
a factorization E(x (s,2)) = s'F (s,2) in }which T (s,2) is a N

P pr por

continuous or differentiable function. Observe. T

(A) If the set { aeIE “<a,p> = r } spans R" then the components of

r

p are umquely determmed as rational multlples of r.
(B). If € >0 then <ca.ep> > €r for allain Ié_Further
X s, - oEF «e,
Elxp(s:2)) = R (s%.2)

. € J
since xep(s,z) = (s

j ’ _ € o
zj)'lsjsn“ —xp(s ,uz). Hence

€ =
Fp,r(s,”z) - F (S»Z)

eP,er
whenever both sides are defined. Therefore Fp r(s;z) satisfies the -
. ]

hypotheses of theorem 2 (or an non-ana'lytigc:gnalogue) ats =0 iff Fep Er.(s,z)

, P ep
b?ﬁ?,equal.) If now the hypotheses of theorem 2 are satisfied and z°p(s,l?)

(ep,er) respectively, then .

]

- € .
gtp(s,u) = zp(s .,u) / )

and

X (s,z (S.u)):'-' X (se.z (se.u))n

whenever both sides of these equations are defined From this it follows that

the €p,er) factorization y1e1ds branches obtainable with the (p, r) when the

-

components of epare not all 1ntegers. In particular if the components( pj
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2
E

(? K *+ are rational multiples of r # 0, then there is a unique n > 0 such that
all the compbnents er. of mp .and nr are integers with greatest common
~ divisor 1. For. this n, SnpU {0}=l$ and every branch x@(s;zq’(s,u)) |
of solutions x obtained from a factorization associated with (epser) for
some €> 0, with the aid of theorem 2, can also be pi'oduded in the same

manner from the (np ,he) ‘factorization ‘after a change of parameterization

. " o l e
- s + s( /n) i.e. for all s in Sep, z, (s u) = 2 (s( /“),u) and

" _ o ((Eh) (%) . : :
xsp(s,zep(s.u}) xnp(s ,znp(‘s U,u)). Moreover 1in this circumstance

where all ‘the p; are rational multiples of r,. (np,nr) is the only multiple '
. of (p,r)( such_that the solution branches xnp(s,znp(s,u)) of E(x)
coming from the eduation ' \

» -
v , np nr(s,z) =0

upon the application of an implicit function theorem .duplicate for any €>0

the solution branches x_ (s z, (;,u)) coming from the equation

. vi;: . , ) ’
- . sp er(s,z) =0

L}

in the same manner, after a change of parameterization ; = (e/")
(€)' 1f p < q IR and <a,q> = r defines a supportmg hyperplane
to IE then the existence of a in IE with a; > 0 for some jJand <ayg>=1r

J
C .- implies for such j that q = pJ (else the conti-adiction r==<u,q>>'<u,p> ’r.)

Further the relation - ) T

- q;-P
(s - 33
Xg(s:2) = (s T25) 400 = %(sa(s 7 “2g)y 4. 0)
implies o o

3.
(s‘z) =S E(x (s,z)) = F (s (s zj)'lsjg'i)‘

O Therefore solution branches obtainable from the (q,r) factorization with

3 : - =

. ol . shuedy o L ey e -y ¢ e -
o g Ty et e e o e g TR e = SR Lo d R IR ey e~
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theorem 2 are also obtainable from the (,p,r) factorization. In particular

note the case where (p,r) = (0,0) < (q,r). .
, : > i

6. Related Topics. "

A. A, SESTOKOV in (26) has investigated the role of indical sets and
their supporting hyperplanes <a,p> =r in the solution of singular first-
order systems: of autonomous, analytic, ordinary differential equations.

For further usage of a priori representations in the analysis of
singularities lof differential equations - see the\Frobenius-Fuchs theory
as described in E. L. INCE (15), E. A. CODDINGTON and N. LEVINSON (3),.and
B. A. FUCHS and V. I. LEVIN (10).

There should be a formal analogue of tl;e analytic theory for the
ex1§tence ;qi ’Qranches‘ of formal solutfons to equations E(x‘,...’,xn) =0 in
whi’ch the functipn E has a finite or infinite asymptotic expansion. As ,
rioted in the introduction J. DIEUDONNE in (8) has defined Newton-Puiseux
djagrams for asymptotic expansions other than those given by Ta:ylor series
expansions. ‘ ’

" d. DIEiJDONNE has also shown in the same article (8) that all continuous
branches of solutions to E(x‘,xz) =0 1issuing from a Br#nch point at the
origin of a real-valued analytic function E(xl,x’)‘of two real variables can
be obtained from the.negatively slbp1n§ sides of the Newton-Puiseux diagram
of E at the origin of R({This remark was also noted in the {ntroduction .
and in fact J. DIEUDONNE uniqueness reéult is a little stroﬁger than th“at
indicated !IGFE.) In other situations the.question of detemininé ald

~
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_ solutions in-a neighbourhood of a given branch point appears to requ,r/ire a .

case by case study. In bifurcation due to simple eigenvalues and in Hopf
bifurcation of periodic solutions for ordiﬁary differential equations in
finite dimensions, all solutions sufficiently nqar.the bifurcation point
in these theories 1ie on an initially given branch of solutions or on a
second bifurcating branch of solutions whose existence is demonstrated (see
for example the paper's (4];(5) and (6) ofﬁj. CRANDALL and P.H. RABINOWITZ.)'
In an extension of bifurcation due to simple eigenvalues, a generalized
Morse lemma is employed in L NIRENBERG (19) in a situation where the

range of a ]"i%earized operator has co-dimension 1, to show that all solutions

in a neighbourhood of a given branch point belong ta one of two branches

found with this lemma. The use of this Morse lemma provides a connection

with the analysis of singularities and cusps in algebraic geometry and in
catastrophe theory as tn"say M..GOLUBITSKY and V. GUILLEMIN (11) and
E. C. ZEEMAN (29). '

kel

/
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Chapter 3.
A Complex-Analytic Perturbation Theory for the Existence of

’

Stable and Unstable Manifolds of Analytic Functions.

L Introduction. Passing through a hyperbolic fixed point of a Ck or analytic

'fupction, when T<k< &, there ar; stable and unstable Ck or analyiic manifolds
respectivelx;_wlhe'stab]e manifold is mqpped into itself by the function
while the unstable manifold is mapped onto a superset of itself. The
tangent spaces of these two manifolds are c1oséd complements of each other

at the hyperbolic fixed point. In a neighbourhood of the fixed point the
stable manifold contains, and is characterized as, the set of points whose

RY
images approach the fixed point under forward iterates of the function. If

the fuﬁction is locally invertible at the fixed point, then in another~“
neighbourhood of the fixed point, the unstable manifold contains and is
characterized -as. the set of points.which approach the fixed pdint}gnder
backward iterates of the function. - \
The existence of these’just described invariant manifolds and their
characterization in terms of backward and forward iterates of functions
is well-known. See for instance S. SMALE(21) and I.C. IRWIN(12) and (13)
for general and particular cases of the results asserted above, The
articles (12) and (13) by I1.C. IRWIN establish the existence and charac-
terization of the stable manifold for Lipshit# continuous, Ck and analytic

functions by employing sequence spaces,-a graph transform(11), and the
&

)




vt e oy

G ad o o N RS 1 =

-63-

\
Fréchet differentiability of a composition map. The use of these sequence
spaces is a discrete analogue of the arguements in J. HALE(9) and in
'P. HARTMAN(10) showing the presence of-éfgﬁie and unstable manifolds pass-
ing through saddle points of autonomous -differential equatfons. More

generally, center, center-stable and center-unstable manifolds have been

shown to pass through certain non-hyperbolic fixed points of some functions .-

in 0.E. LANFORD(]S,appqg?ix A) and M. HIRSCH, C. PUGH and M. SHUB(11); and

ek
to pass through generalized saddle-points of differential equations in

R. ABRAHAM and J. ROBBIN(2, appendix C written by AL. KELLEY.)
A demonstration of the existence of the stable and unstable manifolds
for real- and complex-analytic:functions defined on real and compJex

Banach spaces respectively is presented below. The1r existence here~;;\a

- consequence of the ordinary implicit function thereom for Banach spaces in

say L. NIRENBERG(]B), the persisteﬁce under 1inearizatjon of a root of a
Tinearized conjugacy equation’andﬁhecomplex-analyticity of a composition
map (f,g) - fog. The impli;it function thereom is utilized to determine \
an operator-valued mapping. The existence bf the invariant manifolds is
broven first for complex-analytic functions and then by specialization for
real-analytic maps. For convenience, real-analytic functions. defined on
real Banach spaées will be identified below with local extensions defined
on complexifications of the real Banach spaces. Any originality in~this"

chapter stems not from the statement of its results, but from their deriv-

' ation with elementary calculus in Banach spaces.

The two theorems in section 5 below ind1cate an analytic dependence
of the above invariant min1folds on certain perturbatioﬁ%sof functions with

/
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hyperbolic fixed points.

The outline of the remainder of this chapter is as follows. In the
next section there is a definition of hyberbo]ic f%xed point and a state-
ment of the main results in tﬁereoms 1 and 2. Theorem 1 is given a proo
assuming the statement of theorem 2.. Preliminaries for a proof of theorem
2 are presented in sectioq 3. These preliminaries include A) definitfon

¥
of notation for certain Banach function spaces; B) definition and demon-

_ stration of complex-amalyticity of a cohposition map; C) a change of norm

lemma; 'and.D) a d{scussion of rea]-ana]*ticity. In section 4, a proof of
étheorem 2 s divigéd into two parts: the complex-analytic case and the
real-analytic case. The complex-analytic par} does not require part D of
thg pré]imiqaries. Section 5 concerns the afore-mentioned anaﬁytic
dependence of the invariant manifolds on cert;iq perturbations. Finally

in section 6 the technique for constructing the invariant manifolds as ’

suggested by the use of the ordinary implicit function’theorem in the proof

of theorem 2 is compared to other techniques. .

P
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2 pefinition of Hyperbolic Fixed Points and Statement of Main Theorems.

Definition. Hyperbolic Fixed Point. Let W be an open subset -0f a Banach

space X. A fixed point p of a ¢! function f mapﬁing W into X \is hyperbolic

if therd™are closed complementary subspaces X; and X, in X with X;nX,={0}
\and Xy+X,=X such that (1) g '
4 :
\ Df(p)X,C X, and Df(p)X,2 X,

(2) the restriction Df(p)]x of the Fréchet derivative Df(p) :X+X .of f is
3 2' )
. invertible, and (3} the spectral radii of the linear maps
N .
oy . -1,
iDf(p);xl.x1 $X -and (Df(p)ixz) X, > X,

are both strictly léss than 1.

1
!

Condition (3) in the above definition is a spectral separation con-

straint on Df(p) since it requires the spectrum of Df(P)lx to .lie inside

|
a d1sk of radius k < 1 and .the spectrum of Df(p)lx to lie outside of a

dlSk of radius (1/k) in the complex plane for some positive real number k.
The existence of the stable and unstable manifolds passing,through

a hyperbolic fixed point of an analytic function defined on a real or com-

plex Banach Spacé is asserted in theorem 1. This theorem is a special.

case of theorem 2.




" a strict expansion on c (U’ ). )

Theorem 1. On' the Existence of Stable and Unstabie Analytic Manifolds.

) Let W be an open neighbourhood of the origin 0 in a Banach space X.

Suppose 0 is a hyperbolic’ fixed point of an analytic function f mapping W
into X. Let X1 and )(2 be as in the brecedingh definition of hyperb'olvic
fixed point.with p=0.  Then “
A) There is a neighbourhood UI of the origin in x‘ » and analytic maps -

1 1

h-:U+WCX and c: v- U‘CX with c (0)=0,hl(0)=0andDhl(0)= Iy
. Cot \

such that fohl= h‘ocl yi.e. the following diagram commutes °

. U ,
. 1 ,
} 'CIl ° ’ B fl
U — . ’

Moreover, the range Sl‘ of hl is an analytic manifold with f(S‘) c 5l and -

a one chart atlas provided by (h1 ’U; ¥ ando,possibly after a change of

norm on ){l v the map < is a strict contraction on \U‘.

[ '
B) Likewise, there is a neighbourhood U2 of the origin in Xz, and analytic

maps h : U-WcXandc : U= U CXwith ¢c(0)=0,h(0)=0andDh (0)=1y
2 2 2 3 2 , 2 2 2 'y

such that fehec =h i.e. the following diagram commutss

hg‘
u + WCX = u N
- czl n £ ‘
1 h . )
U 1 — YCX

. o 2 °
The range S of h is an analytic manifold with f(Sz) >S  and a one

chart atlas supplied by (h;' ,Uz); and, possibly after a change of norm

on X, themap ¢ is a strict contraction on Ui, and its inverse is

4

e ——

7

o
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( ‘ Note in the above theorem as c, is a strict co_ntractioé;l 'magping .
the range S; of h, is a submaniﬂa)ldﬁof the brevious]y described stable .

manifold of f passing through the hyperbolic fixed point at 0. Since
7 U the tangent space X, of S, at 0 is also the t\a\\ngent space of tl;e stable
manifold at the same Point 0, ilc fq]'lows that S, contains a neighbourhood

'\’\.

of 0 in the stable manifold. Hence bfthe characterization in (12) and (21),

i g

the stable manifold is cont\ained in the set

AR R e T ]
o

o Ixen | ;’j(x) % S, for some integer j > 1 }.
Similarly the set B O ﬁ -
—1 {xe If"j(x € S,for some integer j > 1 }~
| v;onta'ins the unstable manifold basﬁing through che fixed point 0 of f.
Also note X induces topologies on X, and 3(,. Because X; and X; -are
closed cqnplementary subspaces of X, 'the open mapping thereom(20)
allows the topol;)gy onh X io be identified with thé product atopo'lo!m( on .
Xix X If xil; are norms on Xjﬁ»:‘ 1,2) then ‘the product topology.on '

Xix X; % induced by the norm II(;cl X )0 Emax (0 xdy L8 xd,). Therefore

oo g o g it e

replacing given norms on X; and X; by equivalent norms does not affect
their topologies nor the product topology on X.Ix Xs. Fuirther, it induces
‘é replacemenig of the original norm on X by ‘an equivalent norm. rThis is the
type of norm change referred to in theorem 1 above, and also in theorem 2

- below. \ ’ . -
% | ' -




. Theoret 2. An Extension of Theorem 1.

_Let W be an open neighbourhood of

the origin 0_in a Banach space X. Let F,6: WC X~ Y be analytic maps
valued in another Banach space Y. Suppose thg}-é are closed complementary
subspaces N and V 'of X such that .

"N F(0) = 6(0).

B)
c)

D) .
P

h:

Furuther' the range S of h is.an analytic manifold with a
prov1ded by (h,U) whlch satisﬁes F(S) C G(S), and, a

change of normon N or X the function ¢ : U= U is a strixt contraction

mapping. /

are both bounded below.

r are both <k < 1

o

~

: s .
DG(0)V C- DF(0)V and  DF(O)N C DG(OIN., . _ <
DF(O)!,, : V= DF(O)V = ¥, and D6(0)1y = N+ DG(OM 5 Vi~ * '~ .

’
¥

Y and Y, are closed complementary subépaces"of;'«Y. < .
the spectral radii r(a) and r(B) of the linear maps
. v e .
= (DF(0)! )4oe(o)l~ tVY (,
b = (D&(0)! Y‘DG(QNN : N-ngc s . . -

ke
Then there is a neighbourhood'u of the origin 0 in N, and dnalytic nfaps

U+WCX and ¢ : U>UCN which satisfy
/ ’ s . '
Feh = Gehec, h(0) = 0, c(0) = O and Dh(0) = Iy : N~ X.

cﬁyt atlas

r possibly a

—

L]

\




( 1 . Proof of T heorem 1 (assuming theorem 2.) .

¥

} . ‘ -
[N

1

i

»‘(art A of thereom 1 follows from thereom 2 by setting

o Oy S X, (FL,6) = (F, 1), N =X,V = % ahd (hiy ) = (hyc)
P .« for then Foh=Geho¢ and F(S) C G(S) become respectively , p
fohy = hyocy and ‘ . f(8) € &. ( ‘

x} S gimiliarly, part B i/s obtaine;l from 1ettA1’ng B
R Y =X, (F,6) = (Iy,f), N =X, V=X and (hs,cs) = (h,c)

o f @r then Gohec = Foh and G(S) D F(S)<become respectively

' fohsoC, ‘-;hz and- f(S;) D S,.

u " The invertibility of ca : U *U: on a sufficiently small neighbourhoodwu
5 2"

follows from the inverse function theorem sfnce

DF(0) Dha(0) Dex(0) = Dha(0) =

L e S AT I S g .
S

) .. dimplies Dci(0) : % X has a boundendlincver:se (of(onx‘)‘.
; . o,
i ) Note the ¢h ractefization’of the invariant manifolds S, and~ $
; D in terms of the asymptoti é‘_ béhqviour ot;usequences generated by ikzu/tes’
i . of f or 1t;/i:verse s not included in the statemem; of ‘theorem 1.

A proof°of .theorem 2 and preliminaries towards this proof are presented

. in the next two sections.
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3. Preliminaries for a proof of Theorem 2. .«

A. Definition of Function Spaces (“(W,Z), ¢ (¥,M) and Bj(Z;,Z;L

For'any pair (%,Z,) of Banach spaces over R or € and any subset W,of Z;, -

which is the closure of its own interior, let C“Z,Z.) be the complex
' 3
Banach space-of functions f : W, C Z;~+ Z, which are analytic in the interior

-

of W,,continuous on W, and possess finite sup-norms

1f(z )8 iz.

7 , {

\ 1fl =, |f|cw(L ,Z;.) = supz
1 €

Subscripts on norn;s and elements of Banach spaces vgi-'l] be omitted whenever
their affiliations should be se]f—evi&ent from their context.

For W,cC Z,%et C“W,¥,) denote the subset of W-valued maps in C"’(bh,iz).

Elementary properties and equivalent definitions of complex-analytic maps

are given in J. DIQEUDONNE(8,Chapter IX.) a;1d M.S. BERGER(3, pp 84-88.) .

Also, let Bj(Z,,Z,) denote the Banach space of bounded j-linear operators -
L: 2 +12, Finally, let D(s,Z) denote the closed ball of.raduis s> 0

1

in a Banach space Z.

B.1. The Complex-Analyticity of a Compodsi(tion Map.

%
L

Let A(be a set, Let X and Y be complex Banach spaces. Denote
by C(A,X) and C{A,Y) respectively the complex Banach spaces of functions
f: A+ X and f : A+ Y with Finite norms

if lC(A,X) = SUPaEAlf(a)lx and 'flC(A“’Y) = supae‘A lf(d/l ]

H
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(‘ "Lemma 1. Let A be a set. Let X and Y be complex Banach s“paces".
For 0<s <r, the composition map
0 (£,9) € €P(D(r,X),Y) x D(s,C{A,X))+ fog € C(A,Y) .

:’is a complex-analytic operator-valued -function ,whos® Frichet derivative

g

at (f,q) ig given by the linear map
(8F,09) > afog + (Dfeg)(ag)
' when (Af,Ag) € CU(D(r,X),Y) x C(A,X). .
(Here (Dfog)(ag)(x) = Df(g(x))(ag(x)) € Y.)

Proof: Part 1. Derivation of Cauchy Estimates.

Let w and z denote complex numbérs. For (x,t) in D(s,X) x 0(1,X)

and 1zI< (r-s)/s, Cauchy's formula implies
flutz) =5 Hxtted g,
IWl=—
s
Thus _
: 4
1.3%¢ X f(x+tw)
L —SHxttz) =1, _r-s dw.
4azd === (w-z)I* \
’ Therefore Ith=1 and z = (?‘"imp’lé the Cauchy estimate 0
i) ) oy < 2SI s
A c“(D(r,X),Y)
. " .50 that for Pxl s in X T ‘
v odroan o < 2e(inES Y 2
: * el x,y) S0 eUD(r,X),Y)

and hence the restriction of odf to the disk D(s,X) is a bounded Tinear
map of C*(D(r,X),Y) into C°(D(s,X),BI(X.Y)). Lo

-




-
rgn——

.
e e e

[ S

&

lemma 1.,

Part 2. Computation of the Friéchét Derivative.
For (f,g) and (f,g) in ¢“(D(s,X),Y) x D(t,C(A,X))

~ -

fog - fog - ((f - f)eg + (Dfeg)(g - g)) (
fog = fog - {Dfog)(g - g)
£1(DF(g+t(g-9)) - Dfeg)(g - g)dt

R} L]

11[0(5 - f)o(g+t(t;-g)) + (Dfo(g+t(g-g)) - Dfeg)1dt(g - g)

o(1f - fIZr(l (= ) + (2n (2! )2 )3|f||g - gl)ig - gl)

= 0(1f - f|2+lg - g1?)
as (F.;;) + (f,g) becausé of Cauchy estimates and the Mean Value Thereom.
Therefore Afeg+(Dfog)ag represents the Frchet dfrivative of fhe above
compésition map h O

Q.E.D."

Ie

_Lemma 2. Under the hypotheses of lemma 1, the map

(,9) € C4(B(r,X),Y) x D(s,C(A,X)) = D’fcg e ¢(A,BI(x, v)) ¢ aj(c(A X),Y)
is complexfanalytic for j»1.

Proof: By induction, starting with j =1 the map of (f,g) to DJFog N

th

is-the j=' partial g-Frechet derivative of the composition map in

3}

: ' . Q.E.D.

|

"
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B.2. The Complex-Analyticity of an Evaluation Map.

Lemma 3 below, not needed in the proof of theorem 2, is required
in establishing the results in theorem 4. Theorem 4 indicates a
continuous dependenceﬂ of the iﬁvariant manifold S in theorem 2 on

perturbations of ((F,G) .

Lemma 3. Analyticity of an Evaluation Map. For 0 <s < r, the evaluation °

-

~

map -
e(f,x) = f(x) :C(D(r,X),Y) x D(s,X) ~ Y
is complex-analytic when X and Y are complex Banach spaces.

Proof: In lemma 1, take A to be a singleton set. Then there is a norin

\

preservirig correspondence between X and C(A,X), and in particular

between D(s,X) and D(s,C(A,X)). Now the points xa of D(s,X) are identified
with functions g in D(s,C(A,X)), so that Temma 1 applies.
For an alter\'nate and equiva}ent’prdof, repeat the proof of lemma 1
with points x iinstead of functions g. Either way the proof is completed.
Q.E.D.
B\eﬂ‘l(_. In R. ABRAHAM and J. ROBBIN (2) a converse to Taylor's formula
is employed to show the ¢k smoothness of the evaluation map e(f,x) = f(x)

K

when f : X+ Y is a C" map between (real) Banach spaces X and Y, which

is defined on an open domain.

}
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Lemma 4.

C. A Change of Norm.

Let N be a normed vector space with an original norm l‘nl.

Suppose b : N - N is a bounded 1inear operator wi"t_h spectral radius

r(b) = mj_’

Then there is a new

Inl =sap,,q

ibni <rinl.

Lemma 4 and its
is givey in M. HIRS
b:N-+N 1s bound

Proof. Observe q

by the triangle ine
by definition since
Now .

Ibnt =, Sup_ > o

D.1. Real-Analytic

s 1)
NIRRT f /
norm ’ ‘
, ) .
TSN il
(‘o) .
r ) )

- equivalent to the original norm inll m‘tt; the property

/ ‘ N .
proof occur in O0.E. LANFORD (15). A generalization
CH, C.PUGH and M. SHUB (11,p13) for the case where

d below. .

= sup_. 15" s finite because r > r(b). Therefore
=
r

quality Inl is a norm and Inl < ginl. Further Ini<inl

b°n=n"and r®=1. Thus Ink is equivalent tonl.

m+l - m+1 -
1o (bn)t mb" ! - rsup .o L = o< Al e
r r
Q.E.D.

Functions and Their Complexifications.

The preceding‘
when the Banach spa

& .

lemmas 1,2 and 4 are sufficient for a proof of theorem 2

s X and Y in its statement‘ are over the complex numbers.

This complex case is treated in part 1 of the proof below in section 3. The

remaining prelim"inaﬁies are for the demonstratioch oflthe' real case in part 2

of the proof. o

1
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For real Banach spaces X and Y denote by xc =X + iX and Yc - Y + iy,
the complexifications of these respgétive spaces (For complex Banach spaces
X and Y, let Xc =X and Yc/= Y.) In the following let X and<Y be real |
Banach spaces. Then their complexifications can“beﬁ:i“dentifi‘ed respectively

with the real product Banach spaces XxX and YxY. These identifications

~ induce a complex vector space structure on XxX and YxY respectively.

Definition. Real Analytic Functions. Let W be an dpen subsetf,,of X.

%
A function f : W.~ Y is real-analytic if there is an open set U in the-
. .
complexification Xc of X with WC U, and a complex-analytic function

fc : U~ Yc such that the restriction of fc to W is f.

2

Observe the collection of complex-ana]ytic‘ifunctions fc ] »‘Yc whose
restrictions f to W are rea]'»-ana1ytj°c maps of H' into Y constitute a real
subspace, closed under pointwise con\;ergence," in the complex vector ;pace
of Y c—valued canplex7/ana1ytic maps on U C xc‘ In particuTare n if
f:HNCX-=+Y is real-analytic on an open neighbour:hood of the origin W
in X, then\ there is an r > 0 and and e]eylent f?f)bf the real Banach

subspace

Caldlr,X)Y,) =  9eCo(D(r,X ),Y) : p(r,x) ¢ C(D(r.X).Y) 3
of the comp'le,x-Banach‘ space C“'(D(r,xc),YC), such that the restriction of fe

q
to D(r,X) equals f on D(r,X). Here C“‘;(D(r,xc).Yc) is'a space of

"real-analytic" functions on the disk D(r,X) in X,

A\
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D.2. The Reall-Ana'Iyticity of a Composition Map.

/

The above definition of real analytic functions, and lemmas 1 and 2 on

the complex anélyticity of a composition map imply the real-analyticity of

th;a “real-valued" composition operation defined in lemma 5, below. , The
notation used here was introduced in the preceding subsection D.1.
Lenma 5. Let A, X and Y be real Banach spaces. For r> s> 0 and t>0,
tﬁe composi\t“i‘on map ) _ . )
(1) (f.9) € Ca(D(r,X.),Y,) x Ca(D(t,A),D(s,X )= fog e Cz(D(t,Acﬂ),Yc)
is a real-analytic t;perator:valued mapping whose real-/iinea? Fréche®
derivative at (f,g) in its domain is given by
(87,89) + (aF)eg + (Dfeg)(ag) |

when (Af Ag) € “'(ﬁ(r 'X') Y ) X “’(D(t‘xc),xc). Furthermore the maps
(f,g) DJfog are also real- 7nalyt1c

The complex extension of the maps defined in leuma 5 are obtained by \/

removing the subscript & in (1). Th1s completes the prel iminaries
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4. Proof of Theorem 2. : . L

Part 1, The Complex Case. .

(Ehoose a norm #ni on N so’that the operator norm of
N b= (06(0)i \)"L(OF(O)1 ) : N> N
is < k<1. This is Eeasible !;ek:ause of the changéw of-norm lemma 4 and )
the assumption in hypothesis (E) tflat the spectral radius of b is < k < 1.
Let N'| V', X' and Y. be respectively the Banach subspaces of
c“(D(1,N},N), //C”(D(I,N),V), c“(d(1,N),X) a;ld i:“"(D(l,N'),Y) of functions which

- vanish at n=0 together with their first Fréchet derivatives. The linear

. map b : N = N, or rather its restriction bl D'(l N)® belongs to N’ since its
E ]

operator norm is < k < 1 in the N-nori chosen above.
Pick r > 0 so that D(r,X) € W = domain (F) = domain (6) and so that
F,6 are members of C°(D(r,X),Y). Let 0<t<r. For (s,uv)in Rx N xV

satisfying

tst <1, theul <k, M <
® R R K]

and lls(IdN*v)l

t

<t
¢“(p(1,N),X)

put

' Js-{ Fos(ldﬂw) - Gos(Ide)o(bw)ﬂ}‘ ifo<isi<
(” H(S,U,V) = . x
LDF(0)(1dy+v) - DGIO)(Idysv)e(bsu) if 5=0.

Observe \that y=H(s,u,v) assumes values in C“i(n(] ,N),Y); that y(0) = 0
because F(0) = G(0) and by definition DF(0)Idy - DG(0)eIdyeb = 0; and

3

]
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- 4 e

that by the .chain rule y'(0) = Owhen s =0 or 0< s < 1. Therefore
H: RXxN x V' =¥ - \

A second representation of H, | " ;
(2) H(s,u,v) = f°‘ DF(ts(Ide))(Ide) - DG(O)(ts(IdN+v)o(b+u))(Ide)(bm)dt
valid for all is| <1 fd]]ows from Fko) = 'E(O). The Fréchet differenti-
ability and aona'lyticity of H on its open domain are now implied by lemmas
1 and 2 and the chain rule:when they are applied to the second representation'
(2) of H. .

..T\he partie.ﬂ (u,v) Frééhet derivative of H(s,u,v) ?t (0,0,0) is giver; by J
the chain rule as

Q(du,dv) =/DXF(O),‘,1V - DXG(O)(dv)b - DXG(O)du e¥f

for (du,dv) in N' x V*. B

Since by hypothesis (C) Y is the direct sum of the closed complementary

subspaces Y;= DF(0)V and Y,= DG(O)N, there is a continuous projection .
P :Y~+ Y, = DF(O)V with kernel(P) = Y, = DG(0)N. Now given y in Y’ {
Qlu,y) =y :ff " o -
| Py = (OF(OMy>v - (DG(O)1Joveb 'i
and ‘ ) |
(1-P)y = -DG(ONNcu” L . | {
since range(DF(0)ev) C DF(0)V = Y, = range(P), range(DG(0)oveb) C DG(O)V {
C DF(0)V = range(P) and range(DG(0)ou) c DG(O)N =Y, = range(lm- P).
Therefore Q(u,v) = y implies
u = -(D6(0) )7 (1 - Ply. J
To find v note ' ‘ ;|
Py =(0Fi0)lev - aovob). ‘

1
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3

where a°=(DF(0)|v)'1 DG(O)IV A V*\ 1’2 as in hypothesis (E). The map
. \ o

Lv '= aoyob : {' > V!

defined for v in ¥' has spectral raduis r(a)< k <:1 since by induction

I's

v

Ljv = aj »v*b‘j

and since for Ivl = ]

£

vt <pradn) iy b1y < 1291
Hence (I - L)1

exists, is bounded, and

v=(I- L)"(Dr(onv )"1py.

“ The above two formulas for u and v imply the partial (u,v) Fréchet

derivative of H(s,u,v) at (0,0,0) in RxU'xV' has a bounded.inverse

defined on Y':

functioﬁ theorem for Banach spaces in’L.NIRENBERG(18). implies

Therefore, since H(0,0,0) = 0, the ordinary iyﬂicit

here is an

s> 0 and functions (u,v) in U'x V' (uniquely determined by s) such that

0

"

"

\
sH(s,u,v)

Fos(lf}d + v) - Gos(Id + v)o(b + u)

,(Fo(ld" + sw;ldn) - Qo(ld" *\Q""'S'Idnu"(b, + su«»-;—IdN))usIdN

Therefore the functions

satisfy

~gn D(s,N), dnd

_This completes the proof in the complex case.

b

h= (Id + svo-IdN) D(s,N) + X

=(b + suo—IdN) D(s N) + X
Foh = Gohoc
1 ' -

. (9h(0),0c(0)) = (Idy.b).

Ut
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Part 2. The Real Case. ° y
ﬁere X and Y are-real Banach spaces. The maps F and 6 have complex-

analytic extensions defined on’ra neighbourhood of the origin in Xc and
valued in Yc. By abuse of notation,_ these extensions will again be

denoted by F and- G respectively. For these complex extension;, the
complex case in part 1 still holds with (XC,YC) in place of (X,*). Yet )
the same arguments stﬂ\l hold if the complex-Banach spaces in part 1

are all replaced by their real -subspac;s of "real-analytic" functions (see
the discussion in p&t D of the pre]iminaries‘ in sectio;l 3.) This
modification , with lenma 5 instead of lemmas 1 and 2, yields the
real-case since the functions (h,c) satisfying Foh = Gohec will be
extensions of real-analytic functions. '

Q.E.D.

v

s g
It is a corollary of the preceding arguments that the substitution
of formal ?ower series developements of (h,c) in Foh = Gehoc results in
recursively, determined, locally convergent, _power series expansions which

satisfy this identity.

-
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5. Analytic Dependence on Pertutjbatibns- Complex Case.

4

_Theorem 3. Let X-and Y be' complex Banach spaces. For \ r>0, let

= {(F.6) € [C“(D(r.X),Y)> : F(0) =G(0) }. R

”»

Then A, is a complex Banach space. If (Fy,6) in A satisfy thp
d

R
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hypotheses of theoren; 2 then there is a netghbourhood Mr of (F;,G) in Ar
a neighbourhood U of the origin 0 in N,&and a norm fnl on N such that for
each (F,G) in M there is a pair of ana'lytlc, operator-valued, functions
| (h,c) = (h(F, 8)(+),c(F,8)(-) “
valued in  C“(U,X) x C (u U) which satisfy “
s Foh = G°h°c, h(0) = 0, c(0) = 0,
Dah(F1,G)(0) = 1dy = N =+ X ’

1Y

and \
LD c(FLG)0) =b N N

e e

P Fyrther for each (F,G) in M., c(F,B)(-) : U+ U is a strict contractionmap
r with respect to the norm inl; on N and the range $=S(F,6) of h(F, G)(-)

is a sub-manifold of X with a ?ne-chart atlas provided by (h(F, G)( ),U),
which satisfies = F(S) € G(S).

1 "o

Proof. Observe by the‘preUminary lenmas 1 and 2, that 'the map H is.

k defined by Fomulas (1) and (2) which are analytic functions of
(s,u,v,F 6) in RxU'x V'x A.. The hypotheses of the ordmary wmlicit

function for Banach spaces are now satisfied at (s,u,v,F,G) = (0,0,0,F:,6). B
! i \

' boths,!

Q.E.D.- i
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"I with respect to the norm lhllon N; and the range: S = S(F,G) of h(F,G)(-) -

Theorem 4 extends theorem 3 by replacing A by the larger Banach spacc
c“o(r,x), Y)] “ o )

.
~2
Py

[}

/

Theorem 4. Let X and Y be compléx Banach spaces. If (F,G,) in

o

c“(d(r,X),Y)1° satisfy the hypotheses of theorem 2 then there is a

neighbourhood M of (Fi,Gi) in '[C‘f'(D(rJ,X),Y)]"), a neighl\)ourhood U of the

z j}

origin in N} and a norm inl on N, such that for each (F,G) in M there 1s

a pair of anaiytic, operator- va]ued functmns
L - (hhe) = (h(F,6)(-),e(F.6) () -
valued in C“(U,X) x C®(U,U) which satisfy
” " Feh = Gehec, ¢(0) = O, \
D h(F1,6:){0) = Idy : Ni+ X ;

el
L]

Y

and ‘ .

. DnC(Fth)(O) =b : N+ X;

a

is a sub-manifold of X mth a one-chart atlas supphed by (h(F,G) U)
which satisﬁes F(S) c6(s). . - . \ S ‘

P

Summary of Proof The proof beldw f1rst danonstrates that all funcH

(F G) sufficiently near (Fi,G,) in CC(D(r, X) Y)] ‘have pmnts ‘X = x(F G) ]
‘which satisfy F(x) = G(x), depend, ana]ymcl‘y on (F,G) and can be. transl
to the origin of X. The latter trans]atmn permts an application of _ th
3to funétions (F G) in Ai of the form (F (I& +x(F G)), G (Idxf+ x(F,G))s),
the .result that (f,G) 1nher1t“ from (F G) the properhes indicated in th
4, above. - The latter mhemtanceu , gwes;, thg ‘astJ part ‘of the pr&, 3
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. Proof Qf;theorem 4. For (F.G,x) in [C“‘(D(r X), V)7 X, put T .
. a ,

E(F,Gap) = F(x) - G(x).
Then E is complex-ana“!ytic by lemma 3 and by the cont‘lnu‘lty and linearity
of addition in C (D(r,X).Y). Moreover E(F.,G61,0) = F(0) - G(0) = 0.

’ The partial x-Fréchet derivative of E at (F,G,0) is )
D,E(F1,620) = DR(0). - D (D) : X LY. |

Given Y=yit pnin Y, n e Vi, yse ¥, anfl x=n +vinX,n eN,veV /
(m " DE(R,8,0)x =y
iff s
@) yr = (DFi(0) - DGs(0))v = (DF.(O)IV)(Idv - a)v

¥2 = (DF20) - DG2(0))n = (DG(0)4,)(b - Idy)n
when .

i a= (DF,(O)tv)jf(Da',(O)lv) AR
= (06a(0)1,) "X(DF:(0)l) : N = N, _
since Y1 = DR(0)V 2 DG(O)V and Y, = mg(O)N 5 DR (D)N. -But by a/ssumption
E . a:V-=>V and b : N-N are éouncfed Tinear operators with spectral

e radii k<1, From equation (2), equation (1) holds iff
E U o L. v =h('Idv --a)'l(DF;(O)IV)yx
n= (b - Idy) (060Nl )ys
R ~ Hence the partial x-Fréchet derivative of E at (F..G..O) is surjective and N
s bounded below. o ) e
: \“:"ff\ ‘ The implicit function theorem for Banach spaces implies there is 2
neighbourhood M of (Fi,6) in LC(D(r,X) Y02, a t> 0 with t < ¢r and

an analytic map - x(F 6) va'lued in the ball D(t,X) € X such that in this -

2




|
N ‘ ¢ - . “ c@ }‘
C” ° . ball for each (F,G) in M 'the one and only solution of F(x) "G(x) is
x = x(F,6). In particu'qu x(Fu6) = 0. ~ e

For (F,B) 1n M, put ,
J(F,G) = (F G) =/(Fe(x(F, G) + Idx). o(x(F G) + Idx))

Here (F,G) represent the componen}s of J(F;G). The restrictions of

the” functions F and 6 belong to the Banach space Ar defined in theore"m‘ 5.,
E since Ix(F,6)I <& and D(#r,X) + D(#r,X) = D(r,X) = domain(F) = domain(s).
Hence by th/e chain rule J'is a éomp'lex-analytic map of- "M, .C[C“’(D(r.X),Y)Jf
into A v;h'icﬁ fixes (F‘ZG') lsin‘ce x(F;,6,) = 0 and Ah‘ o] Ar‘

ir
Theorem: 3 now applies to the element (F,G;) of A* . Hence there is a
neighbourhood M* of (F1,Gi) in A* in which the conclu,s,ign,g of theorem 3
are valid. Hence fon each (F.G) in the pulled-back neighbourhoodM= 1(M )

in  ¢“(D(r,X),Y) there is a pair of analytic,.operator-valued, functions s

(hyc) = (hIF.E()c(FEN ()
+valued in C°(U,U) xC¥(U,X) for which

r
i

L Fo(x(F,6) + ) = Go(x(F,G) + h)c; o(0) = O
" and '

D, (R e;)m) =Idy : N =X - '
when U, h(F,G)(" ) and c(F,6)(*) are as they appear in theorem 3 with ir -

instead of r > 0. The remainder of theorem 4 follows from an obvious o

oy
k.
J i

] change of notation and the conclusions of theorem 3, o - >
. ) C QED

Similar arguments for real Banach spaces X and ¥ with.the real Banach

_$pace cg’l(D(r.xL),Yc) in place of the-complgx Banach space C*(D{r,X) .\’) \

yield real-analytic analogues of theorems 3 and &

. .
S— - Y
- .
3
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6. Some Brief Compér'isons with other Persjstence Arguments (he'lated Topiés.)

ES K ‘ ’ ¥

The usual proof of the ordinary implicit function theorem for'Banach ° °

el S gt TS

spaces as in say L. NIRENBERG(18) employs a variation of Newton's

. © algorithu! from nunerical analysis and the strict contraction mapping

L]

principle to construct local represent‘a:t'Wes .Gf fmplicitly defined functions.

In the precedi‘ng part of this chaptéﬁ° invariant manifolds S were obiained,
with the aid of this 1mimc1t function gheorem. . The usual proof of this
theorem gives a construction of some invariant manifolds - here the unstable

and stable manifolds b&ssin‘g through a hyperbolic fixed point of an analytic.

ot

function-" which 1s based on the inversion of approximate linearized
problems. Th'i s construction has simﬂarities wfth constructive argunents
appeé'riﬁg i‘n M. HIRSCH, C. PUGH and M. SHUB (11), 0.E. LANFORD (1,5) and

" W.T. KYNER (14) in which the‘hypotfheseﬁ of the ord'lnar_y implicit function

e v theorel for Banach spaces are not satified but in which Lipsmtz ‘conditions,
the strict contraction mapping princi;ﬂe linearization and variations of

. Newton S aIgcﬁnthmcan be apphed direct'ly In J.K, MORER'(-W) tﬁere is a ’

N )
- disgussion of rapidly convergent iterative methods for so]ving some »
; ) . " " conjugacy problems, based on Hnearizat’fon. In J. MATHER (16) the
‘% " application of implicit function theorems from (1) to a conjugacy problem
A , ; -
; is indicated to show the persistence of Anosov-Diffeohgrphisms. ’ °
g N
‘# the chon;d' method, ' . K ) ﬁj

wl™
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