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Abstract 

This dissertation presents a series of studies aimed at applying machine learning 

methods to information derived from magnetic resonance (MR) based examinations in 

order to aid in the pre-surgical evaluation of patients with epilepsy. Two forms of 

epilepsy were studied: non-lesional temporal lobe epilepsy (TLE) and extra-temporal 

lobe epilepsy (ETLE) due to malformations of cortical development (MCD). 

Regarding patients with TLE, our aim was to predict outcome, in terms of 

reduction of seizure frequency, following surgical resection. To this end, we trained a 

Bayesian classifier on results from volumetrie magnetic resonance imaging (MRI) and 

magnetic resonance spectroscopie imaging (MRSI), wmch allow rapid, non-invasive 

measurement of structural and metabolic data, respectively. We demonstrated that the 

pattern of MR markers cau predict whether or not a patient with TLE will benefit from 

surgery. 

In our studies of patients with ETLE, we focused on patients whose epilepsy was 

due to focal cortical dysplasia (FCD), a common form of MCD. In these patients, the 

identification of FCD lesions is critical in helping to direct the site of surgie al resection. 

This is commonly performed by visual analysis of conventional MRI. The MRI 

characteristics ofFCD are weIl known; however, in many patients, lesions ofFCD are 

characterized by minor structural abnormalities that go unrecognized or are too subtle to 
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be detected by standard radiological analysis. Thus, the objective ofthis part of the 

dissertation was to use mathematical models of the MRI characteristics ofFCD as a basis 

for automated detection of FCD lesions. The mathematical models included first-order 

statistical and morphological operators which can help measure visuaUy discernable MRI 

characteristics ofFCD lesions, and second-order texture analysis, which can quantify 

information regarding tissue structure or organization not readily accessible through 

visual analysis. A Bayesian classifier trained on these models demonstrated a 

significantly increased sensitivity in les ion detection compared to standard analysis of 

conventional MRI. 

Both components of this thesis present clinically useful techniques for applying 

machine learning methods to MR data to assist in the pre-surgical evaluation of epilepsy 

patients. These methods are intended to be used in conjunction with conventional 

approaches. 
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Résumé 

L'objectif de cette thèse est d'améliorer l'évaluation préchirurgicale des patients 

avec des épilepsies focales pharmacorésistantes à 1'aide d'une série d'études dediées à 

l'application d'algorithmes de classification automatique de données d'imagerie par 

résonance magnétique (IRM). Nous avons étudié deux formes d'épilepsie: l'épilepsie 

temporale non-lésionnelle et l'épilepsie extra-temporale due à des malformations du 

développement cortical (MDC). 

En ce qui concerne l'épilepsie du lobe temporal, la forme la plus fréquente 

d'épilepsie focale, notre objectif était de prédire, en termes de réduction de nombre de 

crises, le résultat chirurgical. Nous avons utilisé un classificateur Bayésien sur des 

données d'IRM spectroscopique (IRMS) et d'IRM volumétrique qui permettent, 

respectivement, une quantification non-invasive de l'anatomie et du métabolisme 

cérébral. Nous avons demontré que des combinaisons particulières de ces données 

peuvent prédire les patients pour lesquels la chirurgie de l'épilepsie sera efficace. 

Pour l'épilepsie extra-temporale, nous nous sommes concentrés sur l'étude de la 

dysplasie focale corticale (DFC), qui en est souvent la cause. L'identification d'une 

lésion de DFC facilite la localisation du foyer épileptique pouvant être traité 

chirurgicalement. La plupart du temps l'identification de DFC se fait par l'analyse 

visuelle de l'IRM. Bien que les caractéristiques radiologiques des lésions de DFC soient 
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connues, dans beaucoup de cas, ces lésions sont caracterisées par des anomalies 

structurelles mineures, qui peuvent passer inaperçues à l'analyse radiologique standard. 

Notre objectif était d'utiliser des modèles mathématiques des charactéristiques 

IRM de la DFe dans le but de développer une méthode automatique de détection de ces 

lésions. Differents modèles sont utilisés. D'une part, des analyses statistiques de premier 

ordre et des opérateurs morphologiques permettent une mesure quantitative des 

charactéristiques IRM visibles de la DFC. D'autre part, des analyses de texture de 

deuxième ordre permettent la quantification de la structure et l'organisation tissulaire 

inaccessible à l'analyse purement visuelle. L'utilisation d'un classificateur automatique 

basé sur ces modèles nous a permis d'augmenter le nombre de lésions détectées par 

rapport à l'analyse visuelle standard des images IRM. 

Les méthodes pres entées dans cette thèse ont une utilité clinique dans l'évaluation 

précrururgicale de l'épilepsie pharmacorésistante et peuvent être utilisées conj ointement 

avec l'approche conventionnelle. 
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• Introduction 

The use of magnetic resonance (MR) techniques has dramatically transfonned the 

study of epilepsy. By allowing in-vivo, non-invasive analysis of anatomical structure (in 

the case of magnetic resonance imaging, abbreviated as MRI) and metabolic function 

(through the use of magnetic resonance spectroscopie imaging, abbreviated as MRSI), 

MR techniques have provided previously unattainable insights into the disease, both from 

a research and a clinical perspective. 

MR techniques can take on particular importance during pre-surgical 

investigation of epilepsy patients. For surgery to be a viable treatment option, a 

necessary (though not sufficient) step is the detennination of the focus or foci of epileptic 

seizures. MRI and MRSI have provided crucial insight for tms task. 

The overall goal ofthis thesis is to develop computer-based classifiers which use 

patterns ofMR data to assist in pre-surgical evaluation of epilepsy patients. Specifically, 

we examine two types of epilepsy: apparently non-lesional temporal lobe epilepsy (TLE), 

and focal cortical dysplasia (FCD), an extra-temporal epileptic disorder. 

Currently, identification of surgi cal candidates among TLE patients proceeds via 

consensus evaluation of multiple modalities, including electroencephalography (EEG), 

MRI, neuropsychological tests and clinical examinations in order to detennine if seizures 
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are originating predominantly from the left temporal lobe, the right temporal lobe, or 

both. In the case of FCD, identification of surgical candidates is largely dependent on 

the localization of the epileptogenic region or lesion. This task is most often carried out 

via careful visual examination ofMRI as well as EEG evaluation. 

These techniques have been well-developed over the last few years. However, 

10-20% ofTLE patients who undergo surgery after an extensive pre-surgical work-up do 

not experience a worthwhile reduction in seizure frequency following surgery. In FCD, 

up to 40% of lesions can go undeteeted during standard radiological examination, 

reducing the likelihood that surgery ean offer help in these cases. 

It is hypothesized that the application of machine learning techniques to MR data 

may assist in the presurgical evaluation ofthese patients. Thus, the specifie goals of the 

thesis are to: 

i) assist in the identification of surgi cal candidates among TLE patients by 

developing a computer-based classifier to analyze a pattern ofMR markers for a 

given patient and to predict whether the patient will experience a worthwhile 

surgieal outcome (in terms of a reduction in seizure frequeney). 

ii) assist in the detection ofFCD lesions by (a) applying computational models of 

MRI characteristics ofFCD pathology to enhance visual detection ofFCD 

lesions, and (b) by combining the computational models with texture analysis of 

MRI to develop a computer-based classifier to locate FCD lesions. 
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This thesis is organized as foHows. Chapter 2 provides an overview and a review 

of the literature pertaining to the epileptic syndromes studied in this thesis, with particular 

emphasis on the roIe played by MR modalities as part of the pre-surgical evaluation 

process. Chapter 2 aiso provides an overview and literature review of the technical 

methods used in the thesis, including techniques for modeling the MRI characteristics of 

FCn, texture analysis, and Bayesian classification theory. For the latter two techniques, 

emphasis ls placed on their use in medical applications, particularly MRI of the brain. 

Chapter 3 concerns the first goal set out above, concerning the identification of 

surgi cal candidates among TLE patients, and consists of a manuscript which describes 

the study we designed to address this issue. 

Chapter 4 relates to computer-assisted identification oflesions ofFCD, and 

consists ofmanuscripts 2,3, and 4. Taken together, these papers trace the development 

of a technique for enhancing FCD lesion detection from its preliminary form as an aid for 

lesion detection by visual exploration through the construction of a computer-based 

classifier which performs automatic FCD les ion detection. 

Chapter 5 presents a summary and conclusion. 
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• Review of the Literature 

2.1 TEMPORAL LOBE EPILEPSY 

2.1.1 Epidemiology and surgical treatment 

Epilepsy is a relatively common disorder, affecting approximately 1 % of the 

general population?,3 Temporal lobe epilepsy (TLE) is one of the most common forms 

of epilepsy.4 Most cases, approximately 80%, are treated effectively with anti-epileptic 

medications.5 A recent randomized controlled study of surgery for TLE demonstrated the 

increased effectiveness of surgery relative to prolonged medieal therapy.6 N evertheless, 

surgery has been primarily targeted to the 20% of patients who are refractory to 

pharmaeologieal treatment 7. Studies have reported that 60-90% of patients experienee a 

good outeome following surgery, defined as either complete or worthwhile reduction in 

. fr 6-9 selzure equeney . 

The two common surgie al approaches to TLE are an anterior temporallobectomy, 

which, as the name implies, involves the removal of the anterior portion of the temporal 

lobe, and a selective amygdalohippocampectomy, a more conservative resection in which 

aU or part of the amygdala and hlppocampus are removed. Arruda et aL9 found no 

difference in outcome (in terms ofreduction ofseizure frequency) between the two 

procedures. 
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2.1.2 LateraUzation of seizure focus using MR markers 

A prerequisite for surgie al intervention 18 the lateralization of the seizure focus. 

Lateralization is critical for determining on which side the resection will be performed, 

and aiso to determine contralateral abnormalities exist that may contraindicate surgery. 

Lateralization is generally achieved through the consensus of several methodologies, 

including EEG, MRI, MRSI, clinical findings, and neuropsychological testing. Wbile 

EEG is often used as a gold standard for this task, much research has been done on the 

use of MR markers for the same purpose. 

A frequent target of MR study is the hippocampus, because it is thought to play a 

central role in the origin and propagation of seizures10,II. Multiple studies have 

demonstrated that mesial temporal sclerosis or hippocampal atrophy as detected on MRI 

can help lateralize the seizure focus in TLE.9,12-17 

Other structures have been examined with MRI for lateralizing efficacy. 

Bemasconi et al. 18 demon8trated that the volume orthe entorhinal cortex can help 

lateralize the seizure focus, while Cendes et aL 19 found the same for the volume of the 

amygdala. 

Several studies have concluded that MRSI can contribute to the lateralization of 

seizure focus.20-28 These studies focused onlevels ofN-acetyl-aspartate (NAA), a 

marker of neuronal integrity9,30, within the temporal lobe. ConneHy et a1.28 

demonstrated the utility of MRSI in lateralizing the seizure focus in cases where MRI is 

inconclusi ve. 
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Perhaps the benchmark study regarding the use of MR markers to lateralize 

seizure foeus was reported by Cendes et al. 19, in whieh hippoeampal atrophy, amygdaloid 

atrophy, NAA in the mid and posterior temporal lobes were analyzed together to 

correctly lateralize seizure foeus in 98/100 patients. 

2.1.3 MR markers as prognostic indicators of surgical outcome 

Lateralization of the seizure focus 1S in itself an important predictor of surgical 

outcome. The more localized the epileptogenic region, the more likely it is to be 

completely reseeted. Many studies have focused on examining the prognostic value of 

specifie MR markers. Their findings support the intuitive notion that highly localized 

abnormalities are correlated with a positive outcome, while more diffuse abnormalities 

are associated with a poorer outcome. In the review that follows, unilateral will be 

assumed to mean both unilateral and ipsilateral to side of maximum EEG abnormality. 

Multiple studies have demonstrated that unilateral hippocampal atrophy 1S 

associated with a good surgi cal outeome9
,12,31-33. Several studies have demonstrated that 

in cases with bilateral hippocampal atrophy, a greater degree of abnormality within the 

ipsilateral hippocampus correlates with a good outcome, while symmetrical bilateral 

atrophy 1S associated with poorer outcome9
,32. 

Ho et al. 34 found that patients with unilateral ipsHateral abnormalities in both the 

amygdala and the hippocampus fared worse following surgery compared to patient with 

unilateral hippocampal atrophyalone. Similarly, Kuznieckyet a1.35 found that patients 

with bilateral hippocampal atrophy and bilateral amygdaloid atrophy fared worse than 

patient with bilateral hippocampal atrophy alone. 
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Various studies have addressed the prognostic value ofMRSI data. Kuznieckyet 

al. 35 found that higher NAA levels within the contralateral temporal lobe were associated 

with positive outcome. Ende et al.20 noted that an ipsilateral decrease in NAA is 

correlated with a positive outcome. Li et aL36 found that an absence ofNAA reduction 

the contralateral temporal lobe predicted good outcome in patients with bilateral 

hippocampal atrophy. 

2.1.4 Outcome prediction 

The studies just described deal primarily with group differences. What is missing 

is an attempt to apply these findings to individual patients. Several groups have 

developed computer-based classifiers to predict surgical outcome in TLE, relying heavily 

(but not always exclusively) upon MR markers. Ade et al. 37 developed a series ofneurai 

networks trained on combinations ofEEG, MR, neuropsychological and pathological 

data to predict freedom from seizures following surgery. Grigsby et al. 38 developed 

neural network based on EEG and IQ testing to predict seizure freedom. Berg et a1.39 

used multiple logistic regression to predict seizure freedom, using intraoperaitve data as 

input variables rather than MR data. WhiIe these classifiers were generally successful in 

terms of assigning patients to the correct target class, various issues limit their clinical 

utility, discussed in manuscript 1. 

7 



2.2 FOCAL CORTICAL DYSPlASIA 

2.2.1 Etiology and surgieal treatment 

Focal cortical dysplasia (FCD) is one of a variety of malformations of cortical 

development (MCD). It was first reported by Taylor et a1.40 in 1971. FCD is 

characterized by a localized disruption ofthe normal cortical lamination associated with 

an excess of large, aberrant neurons, an increase in cortical thickness, and often, 

abnormal neuroglial elements in the underlying white matter. The dysplastic tissue retains 

sufficient connectivity to produce seizures.41
,42 FCD is the most common form of 

developmental disorder in patients with pharmacologically intractable partial epilepsy 

referred for presurgical evaluation 43. 

Localization of the FCD lesion(s) is necessary if surgi cal resection is to be 

considered. 'Vhether additional tissue needs to be resected is a subject of much debate in 

the literature.44
-
53 A meta-analysis by Sisodiya43 of approximately 60 studies found that 

40% of FCD patients became seizure free after surgery. 

2.2.2 Lesion detection on MRI 

High-resolution MRI of the brain has made it possible to identify FCD in an 

increasing number ofpatients.54 Lee et a1. 55 and Chan et a1.56 described three common 

characteristics exhibited by FCD on MRI: 1) variable degrees of cortical thickening, due 

to a proliferation of neurons in the affected corticallayers; ii) a poorly defined transition 

between gray matter and white matter, reflective of abnormal neuronal proliferation and 

positioning in this area; and iii) a hyperintense signal on Tl-weighted MRI. 
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In many patients, however, lesions ofFCD are characterized by minor structural 

abnormalities or are too subtle to be detected by standard radiological evaluation. Hence, 

visual analysis of conventional MRI may miss a significant proportion of FCD lesions. 

Thus, several techniques have been developed to assist in lesion detection. Chan et aL 

1998 showed that the use of T2-weighted fast multiplanar inversion recovery images can 

assist visualization on conventional MRI. Bastos et al. 57 used curvilinear reconstruction 

(an alternative method ofpresenting of 3D MRI data that can improve the display of 

complex gyral structures of the hemispheres) to help visuaUy identify lesions in 4 of 5 

patients who had been classified as normal based on analysis of conventional MRI. 

Montenegro et al. 58 applied curvilinear reconstruction to improve lesion visualization in 

33% ofsubjects. Woermann et al. 59 and Kassubek et a1.60 used statistical parametric 

mapping, based on voxelwise comparisons of gray level intensity in FCD patients relative 

to healthy controIs, to help locate lesions. 

2.3 Modeling MRI characteristics of Fee 

One hypothesis explored in this thesis lS that lesi.on visualization can be improved 

through the use of computational models of the characteristics ofFCD evident on Tl­

weighted MRI: increased cortical thickness, blurring of the interface between gray matter 

(GM) and white matter (WM), and hyperintense Tl signal. Methods applied to each one 

are described here. 

2.3.1 Measuring Cortical Thickness on MRI 

9 



Accurate measurement of cortical thickness on MID i8 a challenging problem. 

The first step in most studies is to segment the cortex. This can be done to a good first 

approximation using segmentation techniques to separate the brain lnto its GM, WM, and 

cerebrospinal fluid (CSF) (and perhaps partial volume) components. Multi-channel 

approaches require information from two or more MID acquisitions (e.g., Tl, T2, and 

PD). The intensity profile across the different scans at each voxel is used to classify the 

voxel by tissue type. This approach was adopted in several studies.61
-
64 

Single-echo approaches rely on a single (usuaHy Tl weighted) MID acquisition. 

Sorne single-echo approaches rely upon analysis of the gray level intensity histogram. 

Momenan et aL 65 combined information from the histogram with a clustering technique 

to segment the brain into GM, WM, and CSF. Schnack et al. 66 described a simple 

method wherein polynomial curves were fitted to the intensity histogram of a Tl volume 

to determine an intensity threshold separating GM from WM. Other single-echo 

segmentation studies have relied upon the estimation of the statistical distribution of 

intensity for each tissue class: Shattuck et a1.67 developed statistical models ofintensity 

distribution for tissue classes within Tl MRI, enabling tissue classification via a Bayesian 

classifier, while Rajapakse et a1.68 and Ruan et a1.69 combined statistical models of 

intensity distribution for each tissue class on Tl MRI with Markov random field models 

to perform tissue segmentation. 

Isolating GM tissue using methods such as those described above can provide an 

adequate approximation ofthe cortex for sorne applications. However, such techniques 

generally do not address issues such as non-separation of adjacent gyri which can be an 

impediment to more accurate cortical extraction. Thus, more sophisticated, surface-based 
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techniques for cortical extraction have been developed. MacDonald et a1. 70
, Fischl et 

al. 71, and Dale et aL 72 have developed techniques incorporating anatomical constraints to 

achieve more accurate gyral separation. Magnotta et al. 73 approached the problem using 

a technique based on the erosion of cortical GM. Jones et 1 relied upon edge thinning 

and gradient information. 

Once cortical extraction has been accomplished, most methods of measuring 

cortical thickness proceed by selecting a point on either the inner or outer cortical 

surface, using an algorithm to determine a corresponding point on the other surface, and 

then measuring the length of the straight tine connecting the twO.
70

,71,73 One drawback to 

this approach is that thickness is defined only for voxels along the internaI and external 

surfaces of gyri. Further, this approach can lead to solutions that are incongruent with the 

structure and organization of the cortex. For instance, hnes can intersect, or multiple 

hnes can start or end at a particular voxeL To avoid such problems, a recent study by 

Jones et al. l borrows a tool from mathematical physics. The method models the cortex as 

an equipotential surface with boundary conditions set on both surfaces. Laplace's 

equation is then solved over the cortex, creating a series of" equipotential surfaces". 

Thickness at a given voxel is determined by the length of the path that passes through the 

voxe1 and is perpendicular to each equipotential surface. This approach avoids the 

problems described above. Recent studies by Yezzi et a1.74
,75 have expanded on Jones's 

method, using a pair of linear, first-order partial differential equations to compute path 

lengths after solving Laplace's equation. 

2.3.2 GMlWM interface 
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FCD lesions often exhibit a blurred GMIWM interface, reflective of abnormal 

neuronal proliferation and positioning. Extraction of the GM/WM interface on MRI has 

been addressed largely as a by-product of cortical and WM surface extraction. 70
,76 Cook 

et al. 77 applied fractal analysis to MRI and found differences in fractal dimension of the 

GMIWM interface in patients with frontal lobe epilepsy compared to controis. 

2.3.3 Hyperintense Tl signal 

This property is easily quantified through the use of first order statistics. 

Therefore no studies have focused on developing techniques to model this MRI 

characteristic of FCD. 

2.4 TEXTURE ANAL YSIS 

The final hypothesis presented in this thesis is that combining the aforementioned 

computational models ofMRI characteristics ofFCD with texture analysis ofMRI can 

enable automated FeD lesion identification. Texture is an important property of an 

image, yet it has no precise definition. In an intuitive or qualitative sense, texture can be 

taken to represent image properties such as shading variations, coarseness and regularity. 

Texture analysis seeks to quantify these patterns in a systematic way. 

2.4.1 Approaches to texture analysis 

There are several approaches to texture analysis. Statistical methods examine the 

distribution of intensity levels within an image. First order statistical methods involve 

analysis of the gray-level histogram. Second order statistical methods consider the 

spatial distribution of gray level intensities. Julesz carried out much research regarding 
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the discrimination of different textures based on the properties of their spatial statistics.78-

83 The most widely used method of analyzing second-order statistical properties was first 

proposed by Haralick 84. This study described an approach to quantifying image texture 

by i) calculating gray-level co-occurrence matrices (GLCMs), which store information on 

the spatial relationship between gray-level intensity pairs by tallying the occurrences of 

pairs of voxels exhibiting particular intensities and separated by a given distance in a 

given direction, and ii) applying various texture operators to these co-occurrence matrices 

in an attempt to capture different aspects of the information contained therein. In the 

context ofGLCM-based texture analysis, texture operators are mathematical functions 

that are calculated over the GLCM and are designed to quantify a particular aspect of the 

distribution of entries in the GLCM, such as the degree of clustering along the diagonal. 

Unless otherwise noted, in the remainder ofthis work it will be assumed that the term 

texture analysis refers to GLCM-based approach. 

2.4.2 Applications to the medical do main 

Although texture analysis was originally developed for non-medical applications 

such as satellite imagerl4, it has been employed in a variety of medical applications. 

Multiple studies have applied texture analysis to digital mammograms to help detect 

micro calcifications 95-97 or to differentiate between benign and malignant masses.98-104 

Other applications that have been studied are the discrimination ofbenign moles from 

malignant skin cancer 105,106, staging of cervical les ions 107, bone 10ss 108,109, detection of 

myocarditisl 10, Il 
1 
, detection of diseased skeletal muscle1l2

, checking for abnormal 

testicular growthl13
, discrimination of soft-tissue tumors l14

, analysis of colorectal 
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tissue l15
,116, discrimination of cirrhotic livers from normals l17

, detection of prostate 

cancer1l8
, and detection ofabnormalities within chest radiographs 119, 

2.4.2.1 Texture analysis ofbrain MRl 

A collaboration among several research centers Europe (the CO ST Bil 

European Community project) has focused on the application of texture analysis to 

MRII20,121. The major output of this project has been the development of a software 

package (MaZda). Relatively few studies in general have reported on the application of 

texture analysis to brain MRI. The studies that have been published can be divided into 

two groups based on the way in which texture analysis is applied. 

2.4.2.2 Texture analysis ofbrain MRl: single ROI approach 

In this approach, texture analysis is applied to one or more isolated regions of 

interest (ROI) such as a 2D MRI slice or a brain tumor. In most studies ofthis nature, the 

object is to perform differential diagnosis or to characterize disease progression. 

Freeborough & Fox 122 were able to discriminate between brains of Alzheimer's patient 

and normal controis using texture analysis. They also report using texture analysis to 

track the progress of the disease. Mathias et al. 123 could differentiate between spinal 

cord cross-sections of controls and MS patients, as weU as monitor changes associated 

with the course of MS. Yu et al. 124used texture analysis to distinguish between active and 

non-active MS plaques. Schad et al. 12S and Lerski et al. 126 were able to differentiate 

between edema and tumors. Yu et al. 127 revealed abnormalities in apparently normal 

hippocampi contralateral to hippocampal sclerosis. 
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2.4.2.3 Texture analvsis ofbrain MRI: mapping approach 

To perform texture mapping, a smaH region ofinterest (ROI) is centered on each 

voxel within an image. Texture analysis is then performed over each ROI, and 

resulting texture property mapped to the location of the center voxel to create the texture 

map. The few studies applying this technique to MRl have been concemed with lesion or 

tissue segmentation. 

Kjaer et al. l28 achieved success in segmenting brain tumors using texture 

mapping. As weIl, they were able to distinguish between edema and tumours. 

Kovalevl29 used texture mapping based on a six-dimensional co-occurrence matrix to 

distinguish between patients with mild cognitive disturbances and healthy oider control 

subjects. They were aiso successful in segmenting regions exhibiting diffuse white 

matter hypointensities. The six dimensional co-occurrence matrix was arrived at by 

considering the co-occurrences of gradient magnitude and direction for voxel pairs in 

addition to gray level intensity. 

2.5 BA YESIAN CLASSIFICATION 

The two main components of this thesis are computer-assisted prediction of 

surgical outcome in TLE patients and computer-assisted identification ofleslons on Tl­

MRl of FCD patients. Bayesian classifiers trained on MR data were used as tools to 

accomplish these tasks and were not themselves the focus of the research. Further, 

Bayesian theory and classification are well-developed and widely used concepts, and 

current research in this area is outside the scope of this thesis. Thus this section will be 
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limited to the presentation of an overview of Bayesian theory and some examples of its 

application to the medical domain. 

2.5,1 Them"y 

A Bayesian classifier lS a machine leaming technique wmch employs Bayesian 

decision theory to assign a previously unseen instance (e.g., a patient, a voxel, etc.) a 

target category given a training sample. The eponymous Bayesian decision theory was 

developed by the mathematician Thomas Bayes130
. More recent treatments are given by 

Mitchell 131 and Duda et al. 132. Bayesian decision theory rests upon the relationship 

known as Bayes theorem of conditional probability: prA lB) =P(B IA)P(A)/P(B), where 

prA lB) is termed conditional probability, i.e., the probability of observing A given that B 

is true. The basic classification task is to assign an instance into the most likely class 

CiE{C1 ...... cn}, based on a set of data values X; that lS, to find the Ci that maximizes 

P(cd)(). P(ciN lS termed the posterior probability. While the posterior probability is 

generally difficult to determine experimentaHy, the class-conditional probability P(xleJ 

can often be estimated from experimental data. Bayes theory allows the computation of 

the posterior probability based on the.class-conditional probability as foUows: 

P(ei N=P(XI cJP(eJIP(X) 

where P(cJ lS termed the prior probability and represents the likelihood of an instance 

belonging to class Ci given the absence of any other data, i.e. ifs prevalence in nature, 

and P(X) indicates the probability of observing the particular set of data values. Once 

P(Ci IX) lS calculated for aH i, the Bayes decision rule can be used to classify the instance: 

classify as Ci if P(Ci IX) > P(Cj N for an} 7: i. 
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WhenX consists of multiple attribute values [Xl, X2, ..• , Xn] , the covariance amongst 

the various attributes needs to be calculated to detennine P(x1 cJ. For some applications 

such as text processing, this 1S not feasible and necessitates the assumption of conditional 

independence amongst attributes. The re8ult 18 the naïve, or simple, Bayes classifier131
: 

decide Ci if P(cJI1P(xklcJ > P(c)I1P(xklcj) for aU}::f:. i and k=l:n. The assumption of 

conditional independence is not always jU8tified in some applications. However, 

Domingos and Pizzaru 133 have demonstrated that the simple Bayes classifier can perfonn 

al or near optimallevels even if the independence assumption is violated. For 

continuously valued data such those used in this thesis, the covariance between attributes 

is readily calculated, and thus the full Bayesian classifier was used. 

2.5.2 Medical applications 

Medical applications of Bayesian classifiers are numerous and include skin lesion 

detection l34
, identification of patients at risk for femoral neck fractures 135

, prognosis of 

patients with femoral neck fracture J36
, diagnosis of sports injuries J37

, diagnosis of 

hypertension based on heart rate variabilityl38, detection of contraction in the 

gastrointestinal tract139
, detection ofEEG patterns related to noctumal hypoglycemial40

, 

staging of astrocytomas141
, and classification of sleep stage based on EEG142

. 
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• Assistin 

3,,1 Preface 

The inclusion ofMR methods as part of the pre-surgieal evaluation ofTLE has 

lowered the eosts and risks associated with this monitoring by reducing reliance on 

techniques such as video-EEG whieh require prolonged hospitalization in highly 

specialized units. Many studies have demonstrated the role of MR markers in 

lateralizing seizure focus and have examined the relationship ofthese markers to surgie al 

outcome in TLE patients. Most ofthese studies, however, have focused on group 

differences; few have attempted to predict outcome for a particular patient based on MR 

or other data. Further, the outcome-predictor studies published to date present classifiers 

that have been trained to predict freedom from seizures, rather than to identify aH patients 

likely to achieve a worthwhile or better reduction in seizure frequency. 

Given the non-invasiveness and reduced costs associated with MR investigations, 

and the evidence of correlation of MR markers with surgi cal outcome, we undertook the 

following study to train a classifier on MR data to help identify TLE patients likely to 

benefit from surgery. 
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ABSTRACT 

Objective: To develop a classifier which uses magnetic resonance data to prediet 

surgie al outeome in patients with temporal lobe epilepsy (TLE). 

Methods: Eighty-one patients with medically refractory TLE who underwent surgieal 

treatment were studied. Patients underwent comprehensive pre-surgie al investigation, 

including ktal video EEG recording, proton magnetic resonance spectroscopie 

imaging, and volumetrie MRI. Outeome was measured using Engel's classification 

system, eondensed into two outcome groups. Two approaehes were taken. First, 

outcome was defiued as experiencing worthwhile improvement with > 90% reduction 

of seizure frequency (Classes l, II, & III) or not (class IV). A second approach was to 

define outcome as experiencing freedom from seizure following surgery (Class 1) or not 

(Classes II, lU, & IV). For each approach, we constructed a Bayesian classifier to 

predict outcome by calculating the probability of a patient's pattern of results from 

spectroscopie analysis of the temporal lobes and volumetrie analysis of the amygdala 

and hippocampus being associated with the various outcome groups. 

Results: The worthwhile improvement classifier correctly predicted the surgical 

outcomes of 60/65 (92%) of patients who experienced worthwhile improvement, and 

10/16 (63 %) of patients who did not. The seizure-free classifier correctly predieted the 

surgical outcomes of39/52 (75%) of patients who became seizure-free, and 21/29 

(72 %) of patients who did not. 

Conclusions: Magnetic resonance features are important markers of surgical outcome 

in temporal lobe epilepsy patients and can provide assistance in identifying surgical 

candidates. 
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INTRODUCTION 

Surgical treatment ofrefractory temporal lobe epilepsy (TLE) via a selective 

amygdalohippocampectomy or an anterior temporal lobe resection has been shown to be 

an effective means of seizure control for about 70-80% of patients. l Pre-surgi cal 

assessment of prognosis is based on the convergence of results from multiple pre-surgi cal 

investigations, including prolonged video-EEG monitoring, neuroimaging, and 

neuropsychological tests. Video-EEG remains the most widely accepted standard for 

defmition of the epileptogenic area; however, such examination is eostly and 

ineonvenient, requiring prolonged hospitalization in highly speeialized units. Even after 

this extensive examination, a proportion (20-30%) of patients do poorly after surgery.2, 3 

Improved methods for lateralization of TLE and predieting surgi cal outeome could 

greatly faeilitate the selection of patients for surgery. Towards this end, we have 

developed a statistical model to prediet surgi cal outeome, based on data from proton 

magnetie resonance spectroscopie imaging (MRSI) and volumetrie MRI. 

MRSI and MRI allow rapid, non-invasive measurement of structural and 

metabolie data from the brain, in vivo. Studies have demonstrated the utility of MRSI 

and volumetrie MRI in the lateralization of seizure focus.4
-
s {77 lid Kuzniecky, Hugg, et 

al. 1998} Furthermore, results from MRSI and volumetrie MRI have been shown to 

correlate with surgical outcome. In particular, unilateral ipsilateral hippocampal atrophy 

has been eorrelated with good surgical outeome9
-
13

, whereas bilateral hippocampal 

atrophy has been associated with poorer surgical outcome. 11 Hippoeampal atrophy in 

conjunetion with amygdaloid atrophy14, and decreased levels ofN-aeetyl-aspartate 
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(NAA) in the contralateral posterior temporallobe15
, 16 decrease the odds of a good 

surgical outcome. Such results, however, do not provide a quantitative prediction of an 

individual patient's chances for a good outcome from surgical intervention. 

Few studies have attempted to generate predictions for surgical outcomes for 

individual patients based on pre-surgical evaluations. Neural network models have been 

proposed1 7
, 18 which achieve a high rate of success at predicting freedom from seizures 

followmg surgery. However, the clinical utility of neural networks is diminished by the 

difficulty of interpreting the highly complex relationship between the input data and the 

outcome prediction. With this in mind, we have constructed Bayesian classifiers19
, 20 

based on pre-surgical MRI volumetry and MRSI to predict surgi cal outcome in TLE 

patients. A Bayesian classifier produces a quantitative assessment of an individual 

patient's chances of a worthwhile surgical outcome, and is robust to noisy data. The 

relationship between the input data and the outcome prediction 1S straightforward. A set 

of a priori class-conditional probabilities (the probability of observing some input data 

given a particular c1ass) are transformed mto a posteriori probabilities (the probability of 

an instance belonging to a given class given its input data) through the application of 

Bayes 's theorem of conditional probability. The classifiers developed in this paper are 

based on MR data that can be acquired rapidly, non-invasively, and on an outpatient 

basis. 
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METHODS 

Patients 

Subjects for this study were drawn from 318 consecutive patients with 

pharmacologically refractive suspected TLE seen by the epilepsy service at the Montreal 

Neurological Hospital between 1994 and 1998. Ofthese 318 patients, 201 patients were 

not operated, either because they were on a surgical waiting list, or were still undergoing 

investigation, or a consensus assessment (of neurosurgeons, neurologists, and 

neuropsychologists) was not reached during conventional pre-surgical evaluation. Of the 

remaining 117 patients who\ did undergo surgery, 36 were excluded from the study due 

to either extra-temporal involvement (n=9), the presence of a spaee oeeupying lesion 

(e.g., tumor, vascular malformation, n=12), laek ofpre-operative volumetrie MRI or 

MRSI data (n=5), or lack offollow-up data (n=lO). 

Thus, the patient database for this study consisted of 81 individuals (50 women, 

31 men) with "non-lesional" TLE (mean age 35 +/- 11.2 years). AU patients underwent 

surgie al treatment for TLE; 41 patients underwent anterior temporal lobe resection, and 

40 patients underwent a selective amygdalo-hippocampectomy. No significant 

differences were found between these two patient groups on any of the variables utilized 

in tms study. AH patients underwent prolonged video-EEG monitoring, using the 

IntemationallO-20 system including sphenoidal electrodes, and were operated on the 

side of maximum EEG abnormality. The determination of side of maximum EEG 

abnormality refleeted the overall prolonged EEG analysis. For patients in whom 

lateralization by ietai onset was not congruent with lateralization by inter-ietai EEG, or in 

23 



whom a seizure onset on one si de was fol1owed by intra-ictal activity that predominated 

on the opposite side, the ictal findings and the side of initial ictal changes were accorded 

greater influence for the purpose oflateralization. The mean follow-up was 38.1 months 

(range from 9.2 to 78.2 months; 18 patients had less than a 2-year follow up). Surgical 

outcomes were assessed using Engel's modified classification scheme.21 The breakdown 

of the patients' surgical outcomes was as follows: 52 patients with Class 1 outcome (free 

ofseizures or residual auras), 1 with Class n outcome (less than 3 seizures per year), 12 

with Class ru outcome (worthwhile improvement, >90% reduction in seizure frequency), 

and 16 with Class IV outcome (no worthwhile improvement, <90% reduction in seizure 

frequency). 

Due to the small number of patients in Classes H and HI, we grouped patients 

into two consolidated outcome groups for classification purposes. Two approaches were 

used. For the fIfst approach, outcome was defined as experiencing worthwhile 

improvement in terms of seizure frequency (Engel' s Classes l, II, and HI, n=65), or not 

(Engel's Class IV, n=16). This grouping was chosen in order to consider the largest 

possible number of patients who would attaÎn at least sorne benefit from surgery. For the 

second approach, outcome was defined as being free from seizures following surgery 

(Engel's Class l, n=52), or not (Engel's Classes n,III, and IV, n=29). This grouping was 

used because freedom from seizures ls the optimal outcome and therefore the one sought 

by many patients. 

MRI acquisition and volumetrie analysis 

MRI studies were performed using a Philips ACS II or III combined imaging and 

spectroscopy system (1.5 T, Philips Medical Systems, Best, The Netherlands). Because of 
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changes in clinical practice at our institute, two MRI volumetry protocols were used over 

the course ofthis study. Initially, we used 3-mm thick, contiguous coronal slices 

perpendicular to the plane of the Sylvian fissure acquired with a three-dimensional fast-

field echo or inversion recovery sequence (n=20). Subsequently, we used global MR 

images obtained with an interpulse delay (TR) of 18 ms, a gradient-echo refocusing time 

(TE) of 10 ms, a 30° angle, and 1 mm isotropie voxels (n=61). The MRI data were 

exported to a SunSparc workstation and the volumes of the left and right amygdaloid and 

an 

Figure 1. MRI volumetry protocol. Angled coronal MRls of the cerebral hemispheres with 
mesial structures outlined on the left side. a) amygdala (A). b) Posterior portion of the 
amygdala (top) and head of hippocampus (H) (bottom). c) body of hippocampus. d) taU of 
hippocampus. 
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anatomieal protocol (figure 1) described elsewhere.22 AU volumetrie analyses were done 

blind as to the side of the seizure foeus. 

As described previousll, the volumes of the left and right amygdalae and 

hippocampi were obtained. Asymmetry scores for the amygdaloid and hippocampal 

volumes were calculated as (left volume - right volume)/[(left volume + right volume)/2]. 

These six values were transformed into Z-scores by comparison to measurements made 

on a group ofhealthy control subjects using the same two protoeols (n=30 and n=22, 

respectively). Z-scores were subsequently categorized as contralateral or ipsilateral 

relative to side of surgery, rather than left or right. 

MRSI acquisition and data analysis 

MRSI studies were performed using the same scanner. Scout images were 

obtained in the axial and sagittal planes. These were followed by acquisition of a multi­

slice transverse spin-echo MRI using a TR of 2000 ms and a TE of 30 ms. The temporal 

lobe MRSl volume of interest (VOl) included part of the head, the whole body and the 

whole tail of the left and right hippocampi, as weIl as portions of gray and white matter in 

the mid and posterior parts of the temporal lobes (figure 2). The size of this VOl was 

approximately 85-100 mm in the left-right axis, 75-95 mm in the antero-posterior axis, 

and 20 mm in thickness. After post-processing, individual voxels within the VOl 

measured approximately 12 mm x 12 mm x 20 mm. 

A water-suppressed MRSl was acquired from the VOl (TR = 2000 ms, TE = 272 

ms, 250 x 250 mm field ofview (FOV), and 32 x 32 phase-encoding steps), followed by 

a MRSl without water suppression (TR = 850 ms, TE = 272 ms, 250 x 250 mm FOV, and 
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16 x 16 phase-encoding steps). Post-processing included zero-filling the non-water-

suppressed MRSI to obtain 32 x 32 profiles, followed by application of a mild Gaussian 

k-space filter and an inverse 2D Fourier transformation to both water-suppressed and 

non-suppressed MRSI scans. The resulting time domain signal was left-shifted and 

subtracted from itself to improve water suppression.23 

Hippocampus 

Posterior 
emporallobe 

Figure 2. Proton magnetic resonanœ spectroscopie imaging (MRSI) 
volume of interesi (VOl). Positioning of VOl (outer rectangle) was angled 
along the hippocampal axis (dotted line on sagittal slice). The size of VOl 
was ~85-1 00 mm in the left-right axis, 75-95 mm in the antero-posterior 
axis, and 20 mm in thickness. After post-processing, individual voxels 
within the VOl were '" 12mm x 12mm in plane. The medial temporal lobe 
included the head and part of the body of the hippocampus. The posterior 
temporal lobe included the tail and part of the body of the hippocampus, as 
weil as axonal projections. 

MRSI spectra were excluded from the analyses ifthey were artifactuaHy 

broadened (i.e. full width at halfmaximum >10 Hz). For each subject, locally developed 

27 



software was used to calculate the average NAA/Cr values for the mid and posterior 

regions ofinterest (ROI) in left and right medial temporal lobes, as previously described 4. 

The mid temporal ROI induded tissue from the head and body of the hippocampus, 

whereas posterior temporal ROI included tissue from tail of the hippocarnpus. 

Both ROIs also included surrounding portions of gray and white matter. Asyrnmetry 

scores for mid-temporal NAAICr and posterior temporal NAAICr were calculated as (left 

value- right value)/[(left value + right value)/2]. The regional NAAICr levels and 

asymmetry values were transforrned into Z-scores by comparison to measurements made 

on a group of30 healthy control subjects. Z-scores were subsequently categorized as 

contralateral or ipsilateral relative to side of surgery, rather than left or right. An MRSI 

analyses were done blind as to the side of the seizure focus. 

Design of Bayesian classifiers and statistical analysis 

The Bayesian dassifiers were implemented in MATLAB 4.2 (The MathWorks 

Inc., Natick, MA) running on a Red Hat Linux 5.2 platforrn. A Bayesian dassifier 

predicts outcome based on how dos el y a pattern of data for an individual matches those 

of the outcome groups based on conditional probability distributions. The major steps 

involved in constructing our Bayesian classifiers were to i) estimate the probability of a 

patient from each outcome group having a particular pattern of results (dass conditional 

probability); ii) calculate class-conditional covariance matrices for the variables used as 

inputs to the classifier; Hi) use the results of steps i and ii to calculate the distance (in 

feature space) from a particular patient's pattern to that of each of the target classes; iv) 

use the results from steps i-iii to determine the probability of a patient belonging to each 
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outcome group; v) assign the patient to the outcome group associated with the highest 

probability. DetaHed treatment ofBayesian classification methods can be found 

elsewhere. \9,20 Due to the limited sample size, we were unable to use separate training 

and testing sets. Rather, we used the leave-one-out cross-validation technique24
, wherein 

each individual case is withheld and subsequently classified using the remaining N-l 

cases as the training set. 

The volumetrie MRI and MRSI investigations yielded 12 features which could be 

used as inputs to the classifier. These were ipsilateral, contralateral, and asymmetry Z­

scores for each of the following: hippocampal volume, amygdaloid volume, NAAICr in 

the mid-temporal lobe, and NAA/Cr in the posterior temporal lobe. The choice ofwhich 

combination of MR features to feed into the classifier was based on an automated, 

exhaustive feature-space search over these twelve available features?5 For each of the 

twelve attributes, we performed two-tailed t-tests across the two outcome groups. 

RESULTS 

Worthwhile improvement vs. no worthwhile improvement. 

After an exhaustive feature-space search, it was found that the highest classification 

accuracy for predicting whether a patient would experience worthwhile improvement 

following surgery was achleved using the foHowing combination of input variables (in no 

particular order): NAAICr in the ipsilateral mid-temporal region, NAAICr in the 

ipsilateral posterior temporal region, amygdaloid asymmetry, and hippocampal 

asymmetry. Using this combination of features, 60 out of 65 (92%, 95% confidence 

interval = {89.3%-95.3%}) patients who had worthwhile improvement and 10 out of 16 
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(63%,95% confidence interval = {50.4% - 74.6%}) of patients who did not have 

worthwhile improvement were correctly classified, as shown in table 1. Predictive value 

was % for patients who had worthwhile improvement, and 67% for patients who did 

not have worthwhile improvement. 

True WI (11=65) 

True NWI (n=16) 

Predictive Value 

Predicted WI 
60 

6 

91% 

Predicted NWI Accuracy 
5 92% 

10 63% 

67% Overall: 86% 

Table 1. Confusion matnx for Bayesian classifier: predicting worthwhile improvement. 
WI=patients with worthwhile improvement in seizure frequency following surgery 
(Engel's class l,n, & III). NWI=patients with no worthwhile improvement in seizure 
frequency following surgery (Engel's class IV). 

Seizure=free vs. not seizure-free 

After a separate exhaustive feature-space search, it was found that the highest 

classification accuracy for predicting patients to be seizure free following surgery was 

achieved using the following combination of input variables (in no particular order): 

asymmetry ofNAAICr in the mid-temporal region, NAAICr in the contralateral posterior 

temporal region, asymmetry ofNAA/Cr in the posterior temporal region, and 

hippocampal asymmetry. Using this combination offeatures, 39 out of 52 (75%, 95% 

confidence interval = {64%-86%}) patients who were seizure-free, and 21 out of 29 

(72%,95% confidence interval = {56% - 88%}) ofpatients who were not seizure-free 
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were correctly classified, as shown in table 2. Predictive value was 83% for seizure-free 

patients, and 62% for patients who did not become seÎzure-free. 

Figure 3 shows box-and-whisker plots representing the distribution of aH twelve 

features for the two outcome groups. Asymmetry values were significantly more 

accentuated ipsilateraUy for NAAICr in both the mid and posterior temporal lobes, and 

for hippocampal and amygdaloid volumes in patients who had worthwhile improvement 

compared to patients who did not have worthwhile improvement. NAA/Cr in the 

contralateral posterior temporal region and contralateral hippocampal volume were 

significantly lower in patients who did not have worthwhile improvement as compared to 

patients who had worthwhile improvement. 

True SF (n=52) 

True NSF (n=29) 

Predictive Value 

Predicted SF 
39 

8 

83% 

Predicted NSF 
13 

21 

62% 

A ccuracy 
75% 

72% 

Overall: 74% 

~ ~ il! 

Table 2. Confusion matrix for Bayesian classifier: predicting freedom tram seizures. SF=patients 
who became seizure-free following surgery (Engel's Class 1).NSF=patients with did not become 
seizure-free following surgery (Engel's Class Il,111, & IV). 

Figure 4 shows box-and-whisker plots representing the distribution of aH twelve 

features for seizure-free vs. non-seÎzure-free patients. NAA/Cr in the contralateral 

posterior temporal lobe was significantly higher, and asymmetry ofNAAICr in the 

posterior temporal lobe was significantly more accentuated Îpsilaterally for seizure-free 

patients. 
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DISCUSSION 

The Bayesian classifiers developed in this study provide a simple method of 

utilizing MR results to predict surgical outcome in TLE patients. For both classification 

problems, there was considerable overlap between the two outcome groups for aIl twelve 

MR attributes (figures 3 and 4), demonstrating the robustness of the classifiers to such 

data. 

The worthwhile improvement classifier correctly predicted poor outcome for 

more than half of the patients who experienced no worthwrule improvement following 

surgery. Trus is an important result because the conventional pre-surgical evaluation 

proeess identified aU patients in trus study as viable surgie al candidates (indicated by the 

very fact th\at they underwent an operation). 

For the patients included in this study, the overall accuracy of the worthwhile 

improvement classifier (defined as the number of correct predictions across outcome 

group divided by the total number of patients; see table 1) was rugher (70/81, or 86%) 

than eonventional pre-surgical evaluation (65/81, or 80%; aH 81 patients in the study 

were operated upon, indicating an expectation of worthwhile improvement in all cases. 

Trus expectation was correct for the 65 patients who experienced worthwhile 

improvement following surgery). Unfortunately, a full comparison ofthe predictions 

made by trus classifier to the predictions based on conventional pre-surgie al evaluation is 

impossible. Predictions of no worthwhile improvement generated by the classifier can be 

checked against actual surgical outeome because surgery was performed on an patients in 

this study. However, predictions of no worthwrule improvement made by conventional 
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pre-surgical evaluation (Le., a decision to not operate) cannot be tested against aetual 

surgie al outcome, since surgery was not perfonned these cases. For the seizure-free 

classifier, comparison to the results of conventional pre-surgical evaluation is not 

possible, as predictions regarding freedom from seizures were not recorded as part of the 

standard pre-surgie al evaluation, and are not necessarily the basis for a decision to 

operate. 

For both classifiers, it 1S difficult to draw conclusions from the combination of 

features that produced the highest classification accuracy, since our relatively small 

sample size precludes finding significant differences in classification accuracy across 

various feature combinations. A more important point is that MR features can be used to 

predict an individual patient's surgie al outcome with reasonable accuracy. These features 

directly address the neurodegenerative aspects ofTLE. Atrophy of the mesial temporal 

structures results from neuronalloss. Decreases in NAA/Cr levels can indicate either 

neuronalloss or dysfunction.31 Thus, the pattern ofMRI and MRSI markers over the 

various regions and structures of interest can indicate the distribution of structural or 

metabolic changes within the mesial temporal lobes and therefore help define the area(s) 

involved in seizure generation. 

Methods for lateralizing seizure foci in TLE patients using only MRSI and 

volumetrie MRl have been previously estabhshed.4
, 5,15 An MR-based classifier for 

outcome prediction that 1S not dependent on extensive EEG results could eventually lead 

to faster and less invasive techniques for pre-surgie al evaluation. This is not to say that 

eonventional depth-EEG evaluation is unnecessary. Our classifiers were developed and 
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Figure 3. Box-and-whisker plots showing the distribution of the twelve MR features (in Z-scores) for 
patients with worthwhile improvement in seizure frequency following surgery (Engel's Classes 1-111) 
compared to patients with no worthwhile improvement in seizure frequency following surgery (Engel's Class IV). 
The height of each box describes the range within which the central 50% of values fall. The top and bottom 
edges of the box indicate the 75th and 25th percentiles, respectively. The whiskers indicate the range of 
observed values that fall within 1.5*(75th percentile - 25th percentile). The overlaid symmetrical dot density 
plot displays the density of the data points; 0 = worthwhile improvement (n=65), x = no worthwhile 
improvement (n=16). A) NAA/Cr in the mid-temporal region; B) NAA/Cr in the posterior temporal region; 
C) amygdaloid volume; D) hippocampal volume. Ipsi=ipsilateral value; Contra=contralateral value; 
Asym=asymmetry score. Asterisks (*) indicate a significant difference between the two outcome groups; 
bold type indicates features used as inputs to the classifier .. 
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Figure 4. Box-and-whisker plots showing the distribution of the twelve MR features (in Z-scores) for 
patients who became seizure free following surgery (Engel's Class i) compared to those who did not 
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improvement (n=16). A) NAA/Cr in the mid-temporal region; B) NAA/Cr in the posterior temporal region; 
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tested only on patients already diagnosed with TLE. However, the classifiers do offer the 

potential of more efficient pre-surgical evaluation. 

Comparing patients who experienced worthwhile improvement to those who did 

not, aH four asymmetry indices differed significantly across outcome group, with patients 

who had worthwhile improvement having more negative values, indicating a more 

ipsilateraUy-weighted abnormality. These results support previous studies of the 

relationship of amygdaloid26 and hippocampa19
, il asymmetry, and mid and posterior 

temporal lobe NAAICr asymmetry15, 27 to surgical outcome. The value of asymmetry 

scores was highlighted by the finding that while neither ipsilateral nOf contralateral 

amygdaloid volumes differed significantly across outcome group, asymmetry of 

amygdaloid volume was significantly different for patients who had worthwhile 

improvement compared to patients who did not have worthwhile improvement. 

NAAICr in the contralateral posterior temporal lobe was found to be signifieantly 

lower for patients with no worthwhile improvement eompared to patients with 

worthwhile improvement. These findings support previous work in which NAA 

reduction in the contralateral posterior temporal lobe signifieantly increased the chances 

ofpoor surgical outcome in patients with bilateral hippocampal atrophyl5 and in patients 

with normal-appearing hippocampL 16 The results of the present srudy suggest this holds 

regardless ofa patient's volumetrie results and indicate that NAA/Cr in the posterior 

temporal region is an important prognostic marker. 

Contralateral hippocampal atrophy was significantly more pronounced in patients 

who did not have worthwhile improvement. We consider this to be a nove! finding; 

previous srudies have not examined the prognostic value of the contralateral 
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hippocampus independently of the ipsilateral hippocampus, focusing instead on the role 

ofbilateral hippocampal atrophy.ll, 28 Nevertheless, our results are in keeping with 

findings reported in groups with bilateral hippocampal atrophy.ll 

Comparing seizure-free to non-seizure-free patients, NAA/Cr in the contralateral 

posterior temporal lobe was significantly higher, and appropriately lateralized asymmetry 

ofNAA/Cr in the posterior temporal lobe was greater for seizure-free patients. These 

results mirror the pattern of the comparison between patients who experienced 

worthwhile improvement and those who did not, in that contralateral involvement was 

more pronounced in the poorer outcome group, while abnormalities were more 

ipsilaterally accentuated in the favorable outcome group. 

A limitation ofthis study is the relatively small patient sample size. With a larger 

database than is currently available, one single classifier could be constructed to consider 

the four main outcome classes in Engel's system separately. While we used the leave­

one-out cross-validation technique to minimize over-fitting of our data in the current 

study, a larger database would further improve the generalization of the classifiers by 

allowing the use of separate training and test sets. 

Including other MR data such as T2-relaxometry in the classifier may aiso help 

improve the classification accuracy. This would be a worthwhile avenue to pursue in 

future work. Resection size may aiso influence outcome.29,30 The decision to perform a 

temporallobectomy or a selective amygdalohippocampectomy is made pre-operatively, 

although the choice of procedure does not appear to affect outcome. 11 However, 

resection sÎze is not determined pre-surgically, and therefore cannot be included as part of 

a pre-surgical attribute set used to predict outcome. Hypothetically, this obstacle could 
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be overcome, with a much larger patient database, by matching the outcome class with 

the resection size. This approach would create "complex" outcome classes ofworthwhile 

improvement with large resection, worthwhile improvement with smaU resection, no 

worthwhile improvement with large resection, and no worthwhile improvement with 

smaU reseetion, or similar outcome complexes using the seizure-free and not seizure free 

outcome groups. 

We are not suggesting that classifiers such as the one developed in this study can 

make the ultimate decision to operate on a partieular patient. The classifier does not 

make the diagnosis ofTLE, and reduction in seizure frequency is only one aspect of 

surgi cal outcome. For example, the possibility of cognitive deficits after surgery is also 

an important consideration when deeiding whether to operate on a patient. The 

individual cireumstances of patients involved also need to be considered when evaluating 

the surgical option. Nevertheless, our results suggest that the classifier developed in this 

study can provide valuable guidance in identifying surgie al candidates, and that MR 

markers should be used more widely for this purpose. 
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• Assistin visual detection of FCD lesions 

4œ1 Preface 

The results in the previous chapter demonstrated the utility of machine learning 

methods applied to MR data regarding the pre-surgical evaluation of patients with TLE. 

Another common form of epilepsy 1S extra-temporal lobe epilepsy (ETLE). 

Malformation of cortical development (MCD) is a common underlying cause of ETLE. 

Focal cortical dysplasia (FCD) is in turn a common form ofMCD. For patients with 

FCD, lesion detection is a critical component of pre-surgi cal evaluation. Several MRI 

characteristics ofFCD lesions have been identified143
. However, in many patients, 

leslons ofFCD are characterized by minor structural abnormalities that go unrecognized 

or are too subtle to be detected by standard radiological analysis. Thus we hypothesized 

that improved lesion detection could be achieved through the use of mathematical models 

ofthe MRI characteristics ofFCD. 

The papers in this chapter trace the development of a method for assisting the 

visual detection of FCD lesions based on this idea. Our initial approach was to 

implement first-order statistical and morphological operators to measure visually 

discernable MRI characteristics ofFCD lesions. We built upon our initial results by 

including results from second-order texture analysis, a technique which cau quantify 
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information regarding tissue structure or organization not readily accessible through 

visual analysis, and by employing machine leaming techniques to perform automated 

lesion detection. 
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ABSTRACT 

In many patients, focal cortical dysplasia (FCD) is characterized by minor structural 

changes that may go unrecognized by standard radiological analysis. To increase the 

sensitivity ofMRI for detection of subtle lesions ofFCD, we developed voxel-based 

image post-processing methods, including first-order texture analysis and morphological 

processing modeled on known MRI features ofFCD. We se1ected 16 patients with 

histologically proven FCD. Image processing features were calculated over a 

neighborhood for each voxel in the 3D T1-weighted MRI. Three feature maps were 

generated: (i) gray matter thickness map to mode! cortical thickening (il) gradient map to 

mode! blurring of the GM -WM junction, and (iii) relative intensity map to model 

hyperintense signal within the lesion. These feature maps were combined into a single 

"ratio map" to facilitate visual analysis. Two observers detected les ions on conventional 

MRI in 8/16 and on ratio maps in 14/16 patients. Sensitivity was 87.5% (14/16) for the 

ratio maps compared to 50% (8/16) for MRI (p<0.003). Specificity was 95% (19/20) for 

ratio maps and 100% (20120) for MRIs. Cohen's Kappa was 0.53 for MRIs indicating 

moderate agreement and 0.83 for ratio maps indicating strong agreement beyond chance 

between the two observers. The image processing methods developed this study 

improve visual detection ofFCD, even in cases where no les ion is obvious on MRl 

These techniques could increase the number of patients with partial epilepsy who couid 

benefit from surgery. 

INTRODUCTION 
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Focal cortical dysplasia (FCD), a neuronal migration disorder, was originally reported by 

Taylor 1. It corresponds to a localized disruption of the normal cortical lamination 

associated with an excess of large, aberrant neurons, an increase in cortical thickness, and 

often, abnormal neuroglial elements in the underlying white matter (WM). The dysplastic 

tissue retains sufficient connectivity to produce seizures 2,3. Indeed, FCD is the most 

common form of developmental disorder in patients with pharmacologically intractable 

partial epilepsy referred for presurgical evaluation 4. 

On magnetic resonance imaging (MRI), FCD 1S mainly characterized by variable 

degrees of cortical thickening, a poorly defined transition between gray matter (GM) and 

white matter (WM), and hyperintense signal within the dysplastic les ion with respect to 

normal cortex 5. High-resolution MRI of the brain has been proven to be clinically useful 

in the evaluation of patients with partial epilepsy of neocortical origin and has made it 

possible to identify FCD in an increasing number of patients 6,7. However, in many 

patients, leslons ofFCD are characterized by minor structural abnormalities that go 

unrecognized or are too subtle to be detected by standard radiological analysis. 

Morphology and texture are important features for visual assessment of an image. 

The texture of an image can be described by the distribution ofbrightness and darkness 

within that image. Computer-based texture analysis of digital images provides 

quantitative information about spatial gray level variations in pixel neighborhoods 8,9. 

Mathematical texture analytic techniques are objective and more sensitive than the 

human eye. Statistical, or first-order, texture analysis involves the extraction ofvarious 

mathematicaUy defined image texture features, often measured via a histogram, which 

characterizes the gray level distribution within local pixel neighborhoods 10. 
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To improve our ability to detect dysplastic lesions patients intractable 

partial epilepsy, we deve10ped straightforward voxel-based image processing techniques, 

including gray matter thickness, local gradient and pixel intensities with regard to gray 

matter and white matter. These features were chosen to mode1 in vivo the pathological 

characteristics FCD. We hypothesized that such image post-processing could Încrease 

the sensitivity ofMRI for the detection of subtle les ions ofFCD. 

METHODS 

Subjects 

We selected 16 patients who had histologically proven FCD at operation. AU 

patients had focal corticectomies. In eight patients, FCD had been recognized on MRI 

prior to the surgery. In the remaining eight patients, MRI had been reported as normal. 

For patients in whom no lesion was visible on MRI, surgery was based on strong clinical 

and EEG co-10calizing data. Resections were performed in the parietal lobe in 7 patients 

and the frontal lobe in 9 patients. Fourteen patients became seizure free and two had a 

significant reduction in attack frequency and severity (mean follow up 26 months). 

MRI acquisition 

Preoperative MRI volumetrie images were acquired on a 1.5 T Gyroscan (Philips 

Medical System, Best, The Netherlands) using a Tl-fast field echo, TR=18, TE=lO, 1 

acquisition average pulse sequence, flip angle=30°, matrix size=256x256, FOV=256, 

thickness=lmm. Approximately 170 sUces with an isotropie voxel size of 1 mm3 were 

acquired. Proton-density and T2-weighted images (thickness 3.0 - 5.0 mm, gap 0.3, TR 
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2100 ms, 20, 78 ms) were obtained in patients and showed an increase signal 

within the lesion in 9 of them. Fluid atlenuation inversion reeovery images (FLAIR, slice 

thickness 3.0 mm, inter-slice gap 0.3 mm, TR 6000 ms, TE 150 ms, TI 1900 ms, FOV 

230 mm) were obtained 12 patients and showed signal abnonnahty in 5 ofthem. Tl­

weighted MRls were examined by a neuroradiologist on a workstation. Standard T2-

weithed images and FLAIR images were examined on film. 

Image preparation 

Images were analyzed on a Silicon Graphies workstation (Mountain View, 

Califomia, USA, 200 MHz, MIPS R 5000, 56 Mb RAM) using locally developed 

software. AH MRIs were free of visible motion artifacts. Images were automatically 

registered into stereotaxie space to adjust for differences in total brain volume and brain 

orientation II. Each image underwent automated correction for intensity non-unifonnity 

and intensity standardization 12. This correction produces consistent relative gray matter, 

white matter and CSF intensities. Classification ofbrain tissue in GM and WM was do ne 

using a histogram-based method with automated threshold. 

Image processing 

Image processing features were calculated for each individual voxel within the 

Tl-weighted 3D MRI, resulting in a three-dimensional map for each feature. 

To model cortical thickening, a morphological operator was used wherein each 

individual voxe! was used as the starting point for gray matter run-length co ding 13, 

perfonned in each possible point-to-point direction (Figure lA). On the gray matter 
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thickness map, regions of increased intensities correspond to increased gray matter 

thickness. 

To model blurring of the transition between GM and WM, we calculated 

absolute gradient lO of gray level Întensities. This first-order texture feature was calculated 

over a 5x5x5 cube centered on each voxel. In regions of normal transition between GM 

and WM, the gradient was expected to be steep. regions ofGM-WM blurring, the 

gradient was expected to be less steep (Figure 1 B). On the gradient map, low intensity 

corresponds to blurring of the GM-WM transition. 

To model the hyperintense signal within the lesions of focal cortical dysplasia on 

Tl-weighted images, we developed a feature that calculated the absolute difference 

between the intensity of a given voxel and the intensity at the boundary between GM and 

WM (Bg), defined using a histogram, given by the function 

f (i,j,k) = lOO*[Bg- IBg-g(i,j,k) 1 ]/Bg , 

where g(i,j,k) represents the intensity of a given voxel andf(i,j,k) is the value ofthe 

feature for the given voxel (Figure 1 C). Using the relative difference enables the analysis 

ofvoxels located within cortical GM in which the intensity is higher than normal and 

overlaps that of the WM. GM at higher intensity is close to the GM-WM boundary. On 

the relative intensity map, higher intensity corresponds to hyperintense signal within the 

lesion. 

On Tl-weighted MRI, lesions of focal cortical dysplasia are characterized by an 

increase in gray matter thickness and an increase in relative intensity, and a reduction in 

the gradient. Therefore, to maximize visibility ofFCD lesions, a ratio map (GM thickness 

x relative intensity/ gray level intensity gradient) was generated. 
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T1-weighted MRI 
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T1-weighted MRI 

Gray matter thickness map 
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Figure 1. (A) The figure in the center shows a portion of a T1-weighted MRI. On the left, a sm a!! region of 
cortex and adjacent white matter (box) are schematically represented in three dimensions and magnified. 
Each cube represents a voxel. To model cortical thickening, each individual voxel in the T1-weighted MRI 
was used as the starting point for gray matter run-Iength cOding, performed in each possible discrete direction 
(schematically represented by the arrows in the magnified brain region). A gray matter thickness map of a 
healthy control is shawn on the right. (B) Ta model the blurring between gray matter (GM) and white matter (WM), 
the absolute gradient of gray level intensities was calculated in a cube centered on each voxel (dot) in the 
T1-weighted MRI. In regions of normal transition (magnified region on the left) between GM and WM (magnified 
reglon on the left), the gradient was expected ta be steep. In regions of GM-WM blurring (magnified region on the 
right), the gradient was less steep. A gradient map of a healthy control is shawn on the right. C. Ta model the 

hyperintense signal within the lesions of focal cortical dyspiasia on T1-weighted MRI, the absolute difference 
between the intensity of a given voxel g(i,j,k) and the intensity at the GM-WM boundary (Bg), as defined by a 
histogram was calculated. This feature is represented mathematically as the function 
f (i,j,k) = 1 OO*[Bg - IBg -g(i,j,k)! ]/Bg. A relative intensity map of a healthy control is shawn on the right. 



Figure 2. Top panel shows a representative patient with intractable frontal lobe epilepsy, in whom the MRI showed 
a lesion of focal cortical dysplasia in the left frontal lobe. The maps show increased gray matter thickness and 
intensity of the lesion, and a reduction in the gradient. The ratio map (GM thickness x relative intensity/gray level 
intensity gradient) clearly shows the lesion. Bottom panels show MRI and ratio map of (A) a patient with intractable 
frontal lobe epilepsy and (B) a patient with parietal lobe epilepsy. In bath patients, the lesions of focal cortical 
dysplasia demonstrated by the ratio maps were not seen on pre-operative MRI. 



The generation of the different texture maps (gray matter thickness, gradient, relative 

intensity, and ratio maps) for the entire brain volume takes about 20 minutes. Images 

were reviewed using the software package Display developed at the Brain Imaging 

Center of the Montreal Neurological Institute. This software allows simultaneous 

displaying of an MRI volume the transverse, sagittal, and coronal planes. The user can 

move throughout the volumes. 

Assessment of the performance of diagnostic tests and inter-ratel' agreement 

A series of images consisting of MRls and ratio maps for 16 patients and 20 

healthy control subjects were presented on a Silicon Graphies workstation (Mountain 

View, California, USA) in random order to two trained observers who were unaware of 

the final diagnosis. The evaluations were made independently; i.e., one physician did not 

know the results of the other physician's determination. A lesion was considered to have 

been detected only if found independently by both observers. An other cases were 

considered to be non-lesionaL Mean duration for the examination of the ratio maps was 8 

minutes. 

To assess the performance ofMRI and ratio maps as diagnostic tests, we 

calculated: accuracy (percentage of correctly classified cases = [true positives+true 

negatives]/ an cases), sensitivity (the percentage of positives correctly identified = true 

positives/[true positives + false negatives]), specificity (the percentage ofnegatives 

correctly identified = true negatives /[true negatives + faise positives]), reliability of 

positive predictions (reliabihty in the prediction of positives = true positives/[true 
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positives + faise positives D, and reliabihty of negative predictions (re1iabiliry in the 

prediction ofnegatives = true negatives/[true negatives + false negatives]). 

Inter-rater agreement between the two observers was assessed using Cohen's 

kappa coefficient. Values of kappa greater than 0.75 were considered to indicate strong 

agreement, beyond chance, values between 004 and 0.79 to indicate fair to good, and 

values be10w 0040 to indicate poor agreement. 

Statistical analysis was performed using a spreadsheet for calculation of 

comprehensive statistics for the assessment of diagnostic tests and inter-rater 

agreement 14. 

RESULTS 

Table 1 presents the classification results. Overall accuracy (correctly classified/ total 

cases) was 91.7% (33/36) for the ratio maps and 77.8% (28/36) for the MRIs. Sensitivity 

(predicted positivesl total positives) was 87.5% (14/16) for the ratio maps compared to 

50% (8/16) for MRI. This increase in sensitivity was found to be statistically significant 

(p<0.003) using a Pearson's chi-square analysis for frequency tables .. 

Specificity (predicted negatives/total negatives) was 95% (19/20) for ratio maps 

and 100% (20/20) for MRIs. Positive predictive value was 93% (14/15) for ratio maps 

and 100% (8/8) for MRIs this group. Negative predictive value was 90.5% (19/21) for 

ratio maps, compared to 7104% (20/28) for MRIs. 

Cohen's Kappa was 0.53 for MRIs indicating moderate agreement and 0.83 for 

ratio maps indicating strong agreement beyond chance between the two observers. 
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Figure 2 shows a representative example of a patient with an obvious les ion of 

FCD on preoperative MRI, and two examples of a patient in whom the MRI was reported 

as normal, but ratio maps showed a lesion. 

MRI 

Actual positive 

Actual negative 

Ratio Maps 

Actual positive 

Actual negative 

Predicted positive 
FCD 

8 

o 
PPV=8/8 

Predicted positive 
FCD 

Predicted negative 
FCD 

8 

20 

NPV=8/28 

Predicted negative 
FCD 

14 2 

1 19 

PPV=14/15 NPV=19/21 

Sensitivity=8/16 

Specificity=20/20 

Sensitivity= 14/16 

Specificity= 19/20 

___ . ____________ ·.,~IWfflU~'""'~"IQ"~M" .. ,,!f1I_Q·'! l~~",."",.",,,,,,,,,a,, :u,,"'~u~QII<"'I:m 

Table 1. Confusion matrix for performance evaluation of MRI (top) and ratio maps (bottom) for the 
predicted and actual classification of control subjects (n=20) and patients with focal cortical 
dysplasia (n=16). FCD: focal cortical dysplasia; PPV: positive predictive value; NPV: negative 
predictive value 

DISCUSSION 

Using voxel-based image post-processing methods adapted to the pathology ofFCD, we 

were able to detect les ions on MRI that were unrecognized by standard visual 

radiological analysis. By using ratio maps based on GM thickness, blurring ofthe GM-

WMjunction and the hyperintense signal of the lesion, we increased sensitivity oflesion 

detection by 37.5% over conventional MRI analysis while maintaining a high degree of 

reliability. In aH cases the identified lesion overlapped with surgically resected area. 
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Subtle corticallesions are being increasingly recognized in patients with epilepsy 

with the aid ofhigh-resolution MRI and the ability to analyze the brain volume by 

multiplanar 7,15 and curvilinear 16 reformatting. However, our results indicate that 

detection of subtle dysplastic leslons may be further improved by performing 

computerized quantitative analysis of the structural changes that characterize FCD 

pathologically and in vivo on MR images. This approach makes use of the large amount 

of data available in volumetrie MRI scans, much ofwhich may be too subtle to be 

appreciated by visual analysis alone. 

To our knowledge, this lS the first study specifically dedicated to the quantitative 

lesion detection of FCD in patients with intractable partial epilepsy. Previous quantitative 

MRI studies dealt with the regional distribution of gray and white matter volumes 17,18 in 

patients with various types of malformations of cortical development, mainly 

heterotopias, and in idiopathie generalized and juvenile myoclonic epilepsy 19,20. 

Furthermore, unlike previously published data, we were able to confirm histologically the 

identified lesions ofFCD in all patients. 

First order texture analysis 

The calculation of the absolute gradient was one of the voxel-based image post­

processing methods used in this study. Usefulness oftexture analysis has been proven for 

many types of images, ranging from satellite data to biomedical images. In medical 

imaging, this technique has been shown to increase the level of diagnostic information 

extracted from many modalities such as MRI and ultrasound and to characterize 

differences in appearances unrecognizable by visual observation. Reported applications 
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include classification of pathological tissue in liver, thyTOid, breast, kidney, prostate and 

the heart, and characterization ofbrain tumors and human trabecular bone 8,21,22. 

The first-order texture analysis that we used involved the extraction of image 

texture features that characterizes the gray level intensity distribution within local pixel 

neighborhoods. We did not calculate second-order texture features, which result from 

operations performed on co-occurrence matrices and represent the joint gray level 

distributions for pairs of spatially related pixels 10. We did not extend our methods to 

second-order texture analysis as the calculation of co-occurrence matrices on a voxel-by­

voxel basis 1S computationally intensive and not feasible for whole brain volume at 

present. Furthermore, physiological rational es for the discriminatory ability of features 

are more easily generated for simple image processing techniques and first-order features 

compared to second order features. 

Morphological pl'ocessing 

We used run-length co ding to measure gray-matter thickness because ofits 

simplicity. This feature resulted in a consistent high intensity along the midline cortical 

gray matter, particularly the cingulate gyms, in the GM thickness map. This is an artifact 

in that it represents gray matter continuity in the plane of the cortex as opposed to 

orthogonal to it. This type of artifact was largely responsible for the one misclassified 

normal control ratio map. This effect could be overcome by normalizing the feature maps 

of each patient to a set of maps from healthy controls or by a more sophisticated 

implementation that takes orientation of the cortex into account when determining 

thickness. 

57 



In conclusion, simple MR image processing methods used this study, 

including first-order texture and morphological analysis, improves visual detection of 

FCD even in patients where no lesion is obvious on pre-operative MRI. These techniques 

could considerably increase the number of patients with so-called "non-lesional" partial 

epilepsy who could benefit surgery. 
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ABSTRACT 

In many patients, focal cortical dysplasia (FCD) is characterized by minor 

structural changes that may go unrecognized by standard radiological analysis. We 

previously demonstrated that visnal analysis of a composite map based on three simple 

models of MRI features of FCD increased the sensitivity of FCD lesion detection, 

compared to visual analysis of conventional MRI. Here we report on the use of improved 

methods for characterizing FCD which improve contrast in the composite maps: a 

Laplacian-based metric for measuring cortical thickness, a convolutional kernel to model 

blurring of the GMIWM interface, and an operator to measure hyperintense Tl signal. 

To validate these methods, we processed the MRIs of 14 FCD patients with our original 

set of image processing operators and an improved set of image processing operators. 

Comparison of the composite maps associated with the two sets of operators revealed that 

contrast between lesional tissue and non-lesional cortex was significantly increased in the 

composite maps associated with the set of improved operators. Increasing this contrast is 

an important step towards the goal of automated FCD les ion detection. 

INTRODUCTION 

Focal cortical dysplasia (FCD) is a neuronal migration disorder corresponding to 

a localized disruption ofthe normal cortical lamination associated with an excess of 

large, aberrant neurons, an increase in cortical thickness, and often, abnormal neuroglial 

elements in the underlying white matter (WM). FCD is the most common developmental 

disorder in patients with medically refractory partial epilepsy referred for presurgical 

evaluation1
• 
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On Tl-weighted magnetic resonance imaging (MRI), FCD i8 generaUy 

characterized by variable degrees of cortical thickening, a poorly defined transition 

between gray matter (GM) and white matter (WM), and hyperintense signal within the 

dysplastic lesion relative to normal cortex2
. High-resolution MRI of the brain has made it 

possible to identify FCD in an increasing number of patients3A. However, in many 

patients, FCD lesions are characterized by minor structural abnormalities that go 

unrecognized or are too subtle to be detected by standard radiological analysis. 

In a previous preliminary study5, we demonstrated that simple image-processing 

operators modeled on the characteristics ofFCD as seen on Tl-weighted MRI volumes 

significantly improved the sensitivity of FCD lesion detection relative to standard 

evaluation ofthe original MRI itself(95% vs. 50%). that study, three FCD features 

were each modeled with voxelwise image-processing operators, producing a three­

dimensional map for each feature. To overcome the difficulty (for a human observer) of 

reconciling visual information from three separate maps, the feature maps were combined 

into a single composite map for each p8;tient, in which FCD lesions appeared 

hyperintense relative to normal cortex. Lesion detection was performed through visual 

analysls of the composite maps by an expert observer. The task was complicated by the 

presence ofhyperintense regions in presumably non-lesional cortex, associated with 

shortcomings in the selected models. These hyperintense regions served to reduce the 

contrast between lesion and presumably non-lesional cortex. In almost aH cases, the 

expert observer could discriminate FCD lesions on the composite map, based on their 

experience at analyzing composite maps and their sense ofthe respective spatial 

distributions oflesions and other hyperintense regions within the maps. However, to 
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facilitate and eventually automate FCD lesion detection, it is necessary to obtain greater 

contrast between les ions and non-lesional cortex. In this paper, we incorporate more 

sophisticated methods to mode! MRI features useful for detecting FCD and compare 

them with the methods used in our previous study. SpecificaHy, we examine whether the 

improved methods increase contrast benveen lesions and non-lesional cortex. 

METHODS 

Patients and MM acquisition 

Fourteen FCD patients were studied. An patients underwent focal corticectomy, 

and FCD was subsequently proven based on histological examination of the resected 

tissue. Preoperative MRI images were acquired on a 1.5 T Gyroscan (Philips Medical 

System, Best, The Netherlands) using a Tl-fast field echo, TR=18, TE=lO, 1 acquisition 

average pulse sequence, flip angle=30°, matrix size=256x256, FOV=256, 

thickness=lmm. Approximately 170 slices with an isotropie voxel size of 1 mm3 were 

acquired. An MRIs were free of visible motion artifacts. To ensure image quality, the 

signal to noise ratio (SNR) was calculated for each patient (mean=27.86, sd=2.01). 

Image preparation 

Images were analyzed on a Silicon Graphies workstation (Mountain View, 

California, USA) using 10caHy developed software. An preparatory steps were fully 

automated. Each image underwent automated correction for intensity non-unifonnity6. 

This correction produces consistent relative GM, WM, and cerebrospinal fluid (CSF) 

intensities. An effect on pathologically reduced GMfWM contrast resulting from this 
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technique is highly unlikely as it uses a spline-based model of the intensity artifact field. 

The spline has a support of approximately 100 mm, thus it is very unlikely that image 

contrast will be significantly changed over the space of 1 cm. Images were then 

registered lnto stereotaxie space to adjust for differences total brain volume and brain 

orientation 7• N ext, images were intensity normalized using a subj ect -specifie linear 

multiplier based on the median voxelwise intensity ratio of the image to an average 

control brain. Finally, the skull and lipid layers were stripped from each image using the 

Brain Extraction TooI8
, 

Image processing 

Image processing operators were chosen to model three commonly noted 

attributes ofFCD les ions on Tl-weighted MRI: increased cortical tmckness, blurring of 

the gray matter-white matter interface, and hyperintense signal relative to normal cortex. 

Each MRI was processed with the set of operators used in the original study and with the 

set of improved operators described in tms work. AlI operators were voxel-based and 

therefore produced three-dimensional feature maps. For each set of operators, the 

resulting feature maps were combined into a composite map (figure 1). The calculation 

offeature maps and composite maps was fully automated. Total processing time was 

approximately 15 minutes per patient on an SGI workstation running !RIX 6.5. 

Cortical thickness model 

In the set of improved operators, cortical thickness was measured using a recently 

developed procedure9 in wmch the cortex is modeled as an electrostatic field. Borrowing 
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a tool from mathematical physics, Laplace's equation is solved over the cortical volume 

with boundary conditions specified a! the gray-white and gray-CSF interfaces, creating a 

series of streamlines corresponding to "equipotential surfaces". In this sense, the method . 

parallels the anatomical structure of the cortex as a series of sublayers. The cortical 

thickness at a given voxel is defined as the length of the path that connects voxel to 

both the GM-WM and GM-CSF interfaces and is orthogonal to aH intermediary 

streamlines. 

The technique requires segmentation ofthe MRI into GM, WM, and CSF. To 

perform this segmentation, a gaussian curve was fit to each ofthe gray and white matter 

peaks in the histogram. The intensity threshold between gray and white matter was then 

automatically determined by the intersection of the two gaussian curves, eliminating the 

reliance on the local minimum between the gray and white matter peaks, which can be 

influenced by noiselO
• 

This cortical thickness measurement technique overcomes the primary 

disadvantage of the method used in our preliminary work. In that study, cortical 

thickness was estimated by gray-matter run-length coding. Such a method is prone to 

artifacts which arise when portions of the cortex happen to be aligned along a particular 

search direction. In our preliminary study, this type of artifact was often visible along the 

midIine of the brain, particularly within the cingulate gyms. 

Blurred GM-WM interface model 

In the current study, blurring of the GMIWM interface was modeled with a gradient 

magnitude map. This was calculated through convolution of the MRI volume, 
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(accomplished by multiplication in the Fourier domain) with a three-dimensional 

gaussian kemel calculated explicitly over the whole field. The fmal result was obtained 

by inverse Fourier transform. the prehminary study blurring of the GMIWM interface 

was modeled with the gradient magnitude calculated in the spatial domain over a cubic 

neighborhood. 

Hyperintense GM model 

The same model ofhyperintense GM signal within lesional tissue was 

incorporated in both the original and improved feature sets. We developed a feature that 

calculated the difference between the intensity of a given vox el and the boundary 

intensity Bg between gray matter and white matter (defined using the automated 

histogram-based method previously described). Letting g represent the intensity of a 

given voxel, we defmed the relative intensity feature at that voxel as l-IBg-gl / Bg. 

Composite maps and contrast measurement 

On Tl-weighted MRI, lesions ofFCD are characterized by an increase in GM thickness 

and an increase in relative intensity, and a reduction in the gradient. Therefore, as was 

done for the original feature set, a composite feature map was calculated as [cortical 

thickness X relative intensity]/[gradient magnitude]. Because we calculated the gradient 

magnitude, the value of the composite feature map at any voxel was non-negative. For 

the small number ofvoxels with a gradient magnitude of zero, the corresponding value 

within the composite feature map was defined as zero. In order to standardize the 

composite maps, the mean and standard deviation of each composite map were computed 
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Original 
Features 

Improved 
. Features 

Thickness Gradient Relative Intensity Composite Map 

Figure 1. Original and improved feature maps and their associated composite maps. 

Axial slices taken trom 3D feature maps generated by the three operators used to model 
commonly noted attributes of FCD lesions on T1-weighted MRI (increased cortical thickness, 
blurring of gray-matter-white matter interface, and hyperintense signal relative to normal cortex). 
The associated composite map, defined as thickness times gradient divded by relative intensity, 
is also shown. Subject is a normal control. 

Top row: Original feature maps and composite map. Cortical thickness modeled with gray matter 
run-Iength coding, Blurring of GM-WM interface modeled with the gradient magnitude calculated 
over a moving cubic window. Hyperintense signal modeled as 1- 1 Bg-gl / Bg where gis the gray 
level intensity aï a given voxel and Bg is the boundary intensity between GM and WM as determined 
trom histogram analysis. 

Bottom row: Improved feature maps and composite map. Cortical thickness modeled with a metric 
based on the solution of Laplace's equation over the cortical GM. Blurring of GM-WM interface 
modeled with magnitude gradient calculated using a 3mm gaussian kernel caiculated explicitly over 
the whole field in the tourier domain. Hyperintense T1 signal modeled as in the original feature set. 
The improved composite map exhibits a reduction of hyperintense regions within the cortex, 



over aH voxels with non-zero intensities. Since the cortical thickness metric is computed 

only over cortical GM and the portion of the lesion within the GM, WM and CSF were 

zero-valued within the composite maps. This process was performed for both the original 

and new composite maps for each patient. Thus the ooits of the composite maps were Z­

scores, representing the number of standard deviations away from the mean. Contrast, 

defined as the mean Z-score within lesional tissue, was calculated in both the original and 

the new composite map for each patient. Lesional tissue was identified using lesion 

labels that had been previously manually segmented on the MRI by an expert observer. 

Percent change in contrast from the original to the new composite map was then 

calculated. 

Statistical Analysis 

To assess whether contrast between lesional tissue and non-lesional cortex was 

increased in the new set of composite maps, a one-sample t-test was performed to test 

whether any increase in contrast over the patients was significantly different from zero. 

RESULTS 

Contrast between lesional tissue and non-lesional cortex was higher in the 

improved composite maps for 11/14 patients and unchanged for 3/14. The mean percent 

change of contrast was 59.3 % ± 61.6%. A one-sample t-test demonstrated that this 

increase in contrast was significant (p=.002). In a qualitative sense, most hyperintense 

regions within non-lesional cortex were eliminated, resulting in easier visual 

discrimination of lesions. Representative examples are shown in figure 2. In one patient, 
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Figure 2. Five examples of improved contrast. Within each panel, the conventional T1-weighted MRI 
is in the leftmost column, the original composite map set is in the middle column, and the improved 
composite map is in the right column. Lesion locations are indicated on the conventional MRI by 
arrows. Intensity within non-Iesional cortex is reduced in the improved composite map relative to the 
original composite map for ail five examples. 



a lesion wruch was not visible at aH on the original composite map was clearly visible on 

the improved composite map (figure 3). 

Figure 3. MRI and composite maps for a patient whose lesion was not visible on the original 
composite map but was evident on the improved composite map. Lesion is indicated by a rad 
arrow on the conventional T1-weighted MRI (Ieft). The lesion is not visible in the original composite 
map (center). However, generalizad hyperintensities are sean along the midline and within the 
frontal cortex, and in a localized region in the right pre-central area. The improved composite map 
(right) clearly shows the iesion in the left parietal area and a reduction of the intensity elsewhere in 
the cortex. 

DISCUSSION 

We previously used simple image processing models of the pathology ofFCD to 

demonstrate that we could enhance lesion detection through qualitative visual analysis of 

composite feature maps. The present study builds upon our previous work by 

incorporating more soprusticated image processing methods that enabled us to increase 

the contrast oflesions from non-lesional cortex, and thereby enhance lesion visibility. 

Importantly, in one patient, the FCD les ion was visible only on the improved composite 

map. The primary cause of the lower contrast in the original composite maps was greater 
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incidence ofhyperintense regions presumably non-lesional cortex. Most artifacts in the 

original composite map co-localized with artifacts on the original cortical thickness map, 

associated with weaknesses in the original model wruch was based on multidirectional 

GM run-length coding. The reduction of potential faise positives seen in the new 

composite maps was driven by the use of more sophisticated models of the MRI 

characteristics ofFCD, in particular, the cortical thickness mode19
• The results of our 

study provide, for the first time, a dinical validation of tbis cortical thickness metric, 

wbich is based upon solving Laplace's equation over the cortical GM. Identification of 

sorne FCD lesions on visual inspection of conventional MRI is difficult 

due to their subtlety and the complexity ofthe brain's convolution. A primary advantage 

of the method of Jones et aL is that the thickness metric is based upon the calculation of 

the equivalent of isopotential surfaces, which follow the convolution of the cortex. 

While new techniques are being developed to measure cortical thickness 11 and 

perform tissue segmentationIO
,12,13and much research has been done on integrating 

information from multiple attributes, the results of our paper demonstrate that by 

combining stable, simple mathematical models with bigh quality imaging data, we have 

improved upon our previous methods and developed a clinically useful technique. 

For use in the measurement of contrast between lesions and non-lesional cortex, 

manually segmented les ion labels retrospectively painted on pre-operative MRI by an 

expert observer were used to determine lesion extent. This technique was used because a 

fully objective or automated technique for lesion segmentation has not yet been 

developed. To maximize accuracy, the observer relied upon experience as weIl as 
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knowledge of the extent and location of surgical resection. The latter Înfonnation was of 

particular assistance in the demarcation of smaHer lesions. 

Although potential false positives were significantly reduced the improved 

composite maps, they were not completely eliminated. Undoubteilly, most ofthese 

instances can be attributed to overlap of feature values between lesional and non-lesional 

tissue. Yet it is important to consider the possibility that some potential faise positives 

may in faet be tille lesions ofFCn. Histopathological analysis of surgical specimens in 

patients who underwent surgery for medicaHy intractable seizures have shown that Fcn 

may be disseminated rather than confined to a single pateh 14 or even be multifoeal15
. 

However, given the very limited availability of autopsy stuilles in these patients, the 

degree to which the brain as a whole may be affected remains uncertain. Furthennore, 

scalp EEG studies and intraoperative recordings in patients with FCn have demonstrated 

that in many patients epileptic abnonnalities emanate not only from the visible lesion, but 

also from nonnal-appearing brain regions, which were subsequently proven histologically 

to harbor FCnJ6
• It has become clear that the areas of the brain generating these 

abnonnalities have to be surgieally resected in addition to the visible lesion in order to 

obtain a good result. Therefore, our quantitative MRI method, which makes use of the 

large amount of data that may be too subtle to be appreciated by visual analysis, has an 

obvious potential in identifying the true extent of malfonnations of cortical development. 

The challenge is to identify areas of lesser but still significant pathological abnormality 

and to determine if their resection may influence surgie al outcome. 
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In conclusion, the use of the improved models of FCD pathology presented in this 

paper produce feature maps with fewer potential faise positives. This improvement i8 an 

important step toward8 the eventual goal of automated FCD lesion detection. 
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ABSTRACT 

Focal cortical dysplasia (FCD), a malfonnation of cortical development, is a 

frequent cause ofphannacologically intractable epilepsy. FCD is characterized on Tl­

weighted MRI by cortical thickening, blurring of the gray-matter/white-matter interface, 

and gray-level hyperintensity. We have previously used computational models of these 

characteristics to enhance visuallesion detection. In the present study we seek to 

improve our methods by combining these models with features dcrived from texture 

analysis ofMRI, wrnch allows measurement of image propcrties not readily accessible by 

visual analysis. These computational models and texture features were used to develop a 

two-stage Bayesian classifier to perform automated FCD lesion detection. Eighteen 

patients with rnstologically confirmed FCD and 14 nonnal controls were studied. On the 

MRI volumes of the 18 patients, 20 FCD les ions were manually labeled by an expert 

observer. 3D maps of the computational models and texture features were constructed 

for aH subjects. A Bayesian classifier was trained on the computational models to 

classify voxels as cerebrospinal fluid, gray-matter, white-matter, transitional, or lesional. 

Voxels classified as lesional were subsequently re-classified based on the texture 

features. This process produced a 3D lesion map, which was compared to the manual 

lesion labels. The automated classifier identified 17120 manually labeled leslons. No 

lesions were identified in controls. Thus, combining models of the Tl-weighted MRI 

characteristics ofFCD with texture analysis enabled successful construction of a 

classifier. This computer-based, automated method may be useful in the pre-surgical 

evaluation of patients with severe epilepsy related to FCD. 
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INTRODUCTION 

Focal cortical dysplasia (FCD) is a malfonnation of cortical development 

corresponding to a localized disruption of the nonnal cortical lamination associated with 

an excess of large, aberrant neurons, an increase cortical thickness, and often, 

abnonnal neuroglial elements in the underlying white matter (WM). The dysplastic tissue 

retains sufficient connectivity to produce seizures (Palmini et al. 1995; Gambardella et al. 

1996; Avoli et al. 1999). FCD is the most common fonn of developmental disorder in 

patients with pharmacologically intractable partial epilepsy referred for pre-surgical 

evaluation (Sisodiya 2000). 

On Tl-weighted MRI, FCD 1S mainly characterized by variable degrees of 

cortical thickening, a poorly defined transition between gray matter (GM) and WM, and 

hyperintense signal within the dysplastic lesion relative to nonnal cortex (Barkovich & 

Kuzniecky 1996; Lee et al. 1998). High-resolution MRI of the brain has made it possible 

to identify FCD in an increasing number ofpatients (Barkovich & Kuzniecky 1996; 

Grant et al. 1998). However, in many patients, lesions of FCD are characterized by minor 

structural abnonnalities that go unrecognized or are too subtle to be detected by standard 

radiological analysis. Previous attempts in assisting lesion detection included different 

contrast imaging (Chan et al. 1998), multiplanar curvilinear refonnatting of3D MRI 

(Bastos et al. 1999), and statistical parametric mapping (Woennann et al. 1999; Kassubek 

et al. 2002). 

We previously implemented and used for the first time computational models of 

MRI characteristics ofFCD for the purposes oflesion enhancement (Bemasconi et al. 

2001).(Antel et al. 2002) Models were applied on a voxelwise basis, creating 3D maps of 
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cortical thickness, gradient magnitude (modeling the transition between GM and WM), 

and a relative intensity operator (designed to emphasize areas with hyperintense 

signal). Visual analysis of a composite map ofthese features yielded significantly hig.1}er 

sensitivity for lesion detection compared to visual analysis of conventional Tl-weighted 

MRI (Bernasconi et al. 2001). 

While this technique facilitated visuallesion detection, two shortcomings of the 

method were: i) subjectivity, requiring the expertise of a rughly trained observer with 

particular regard to differentiating between FCD lesions and localized hyperintense 

regions in presumably non-lesional cortex; and il) reliance on a composite offeature 

maps, potentially losing information regarding the pattern of feature values witrun lesions 

and non-lesional tissue. 

An automated, computer-based classifier addresses both issues by performing a 

quantitative analysis of the pattern of feature values. The first issue can also be partial1y 

addressed through the use of gray-level co-occurrence matrix (GLCM) based texture 

analysis (Haralick et al. 1973), which quantifies the spatial distribution of gray-level 

intensity pairs. This information may not be readily accessible through visual analysis, 

and thus this technique can provide an additional basis for decision making. GLCM­

based texture analysis has been applied to MRI ofthe brain in several contexts: 

characterization ofbrain tumors (Schad et al. 1993; Lerski et al. 1993), differentiating the 

brains ofpatients with Alzheimer's disease from those ofnormaI controIs (Freeborough 

& Fox 1998), revealing hippocampal abnormalities related to hippocampal sclerosis (Yu 

et al. 2001), and characterization ofbrain and spinal cord pathology in multiple sclerosis 

(Yu et al. 1999; Mathias et al. 1999). The usefulness of applying GLCM-based texture 
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analysis to brain MRI may in part arise from an intuitive paraUd between changes in 

spatial distributions of gray levd intensity patterns and abnormal tissue organization 

(Schad et al. 1993), such as those thought to give rise to FCD. 

Thus, the purpose of this study is to use computation al models of MRI 

characteristics of FCD as well as features derived from GLCM-based texture analysis as 

a basis for a computer-based classifier to perform automated FCD lesion detection. 

METHODS 

Subjects 

Eighteen patients with FCD (mean age = 34 +/- 2.5 yrs; 9 females, 9 males) and 

14 healthy controis (mean age = 32 +/- 4.1 yrs; 8 females, 5 males) were studied. AllI8 

FCD patients underwent surgical resection of the FCD lesion due to pharmacologically 

intractable epilepsy. As part of a standard pre-surgi cal radiological investigation, FCD 

had been prospectively recognized on MRI prior to surgery in Il of the 18 patients. For 

the seven patients whom no lesion was visible, surgery was based on strong clinical 

and EEG co-Iocalizing infonnation. In an 18 patients, FeD was subsequently proven 

based on histological examination of the resected tissue. Lesions weie categorized 

according to a recent classification scheme (Barkovich et al. 2001). AH patients had 

malformations of cortical development due to abnormal glial proliferation or apoptosis, 

namely non-neoplastic abnormal proliferation (cortical dysplasia with balloon ceUs) 

(N= 16), or malformations due to abnormal cortical organization, namely cortical 

dysplasia without balloon cens (N=2). 
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MRI acquisition 

Preoperative MRI images were acquired on a 1.5 T Gyroscan (Philips Medical 

System, Best, The Netherlands) using a Tl-fast field echo sequence (TR=18, TE=10, 1 

acquisition average pulse sequence, flip angle=30°, matrix size=256x256, FOV=256, 

thickness=lmm). Approximately 170 slices with an isotropie voxel size of 1 mm3 were 

acquired. Signal to noise ratio was calculated for each subject to ensure image quality 

(mean=27.86, sd=2.01). 

Image Preparation 

Images were analyzed on a Silicon Graphies workstation (Mountain View, 

Califomia, USA). MRIs were free of visible motion artifacts. Images were 

automatically registered into stereotaxie space to adjust for differences in total brain 

volume and brain orientation (Collins et al. 1994). Each image underwent automated 

correction for intensity non-uniformity and intensity standardization (SIed et al. 1998). 

This correction produces consistent relative GM, WM, and cerebrospinal fluid (CSF) 

intensities. Manuallesion segmentation was performed retrospectively on the corrected 

images by an experienced observer who was aware of findings from EEG data as weIl as 

the area of surgie al resection. Hence this observer was able to identify lesions in aU 18 

patients. Note that this retrospective manuallesion segmentation represents a different 

analysis than the standard pre-surgical MRI evaluation that identified lesions in 11/18 

patients and overlooked lesions in the remaining seven patients. As will be described 

later, these manuallesion labels were used in the training and validation of the classifier. 
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Brain extraction was then performed on MRI using the Brain Extraction Tooi (Smith 

2000). 

Tissue Segmentation 

Segmentation ofMRI volumes into GM, WM, CSF was performed by fitting 

gaussian curves to the peaks within the histogram corresponding to GM and WM (figure 

lA). The intersection ofthese gaussian peaks was taken as the boundary intensity 

between GM and WM. Voxels with intensities of more than 2 SDs below the mean GM 

intensity were segmented as CSF. The resulting segmented map was used as a basis for 

calculating cortical thickness. 

Further segmentation was performed for eventual use in training the classifier by 

defining three additional classes. A GM/WM transition class was defined as follows, 

based on the construction of a 3x3x3 neighborhood around each voxel. A voxel was 

identified as belonging to the GMIWM transition class if at least 30% of neighboring 

voxels were GM and at least 30% of neighboring voxels were WM. An analogous 

procedure was performed to define a GM/CSF transition class. For patients, a lesional 

class was created by incorporating the manuallesion labels. The derivation and a typical 

example of a 6-class segmented map are shown in figures lB and 1 C. 

Calculation of computational models of MRl characteristics of Fcn 

Three common in vivo characteristics ofFCD lesions as seenün Tl-weighted 

MRI were modeled: cortical thickening, blurring of the GMIWM interface, and 

hyperintense Tl signal. The following sections describe these models. 
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Cortical Thickness lvfeasurement 

An approach deve!oped by Jones et al. (Jones et al. 2000) was used to measure 

cortical thickness. This method considers the cortical volume as an electrostatic field, q;, 

with the inner and outer cortical surfaces set to arbitrary (but non-equal) constants. The 

solution of Laplace's equation: 

V2q; = <iq; fax2 + a2q; far + a2q; faz2 = 0 

over the cortical volume yields a series of smoothly varying intermediate "isopotential" 

surfaces between the two boundaries. Upon solving for q;, a unit vector field can be 

computed over the cortex as 

N= -Vq;fll-Vq;11 

such that the field is defined everywhere between the inner and outer cortical surfaces, 

and IS always perpendicular to the adjacent isopotential surface. To determine cortical 

thickness, then, so-called streamlines are computed by starting at any point on one of the 

surfaces, and integrating N. The length of the streamline that passes through a particular 

voxe! is the cortical thickness at that voxel. 

Gradient magnitude 

Gradient magnitude is a standard first-order statistical operator that measures the 

rate ofintensity change over a given domain. To mode! the blurring ofthe GM-WM 

interface, gradient magnitude was calculated through convolution of the MRI volume, 

(accompli shed by multiplication in the Fourier domain) with a three-dimensional 

gaussian kemel (FWHM = 3mm) calculated explicitly over the whole field. The final 

result was obtained by inverse Fourier transform. 
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Figure 1. Segmentation of MR volumes. 

(A). T1-weighted MRI volumes were segmented into gray matter (GM), white matter (WM), and 
cerebro-spinal fluid (CSF) by fitting Gaussian curves to the gray-Ievel histogram (middle), resulting 
in a GMIWM/CSF segmented map (right), used as a basis for measuring cortical thickness. 

(8). The GMIWM/CSF segmented maps were further segmented into more classes for use in 
training the classifiers. GMIWM and GM/CSF transition classes were defined by analyzing the 
local neighborhood surrounding each voxel within the GMIWM/CSF map (schematically 
represented by red box). A voxel (indicated by the red dot) was determined to belong to the 
GMIWM transition class if at least 30% of neighboring voxels were GM and at leas! 30% of 
neighboring voxels were WM. A similar algorithm was used for the GM/CSF transition class. The 
result is a segmented map exhibiting the following classes: CSF, GM, WM, GMIWM transition, and 
GM/CSF transition. 

(C) As an additional step performed for patients, lesions were manually segmented by an expert 
observer (left). Adding these les ion labels to the segmented map generated by the previous step 
(middle) resulted in the 6-class segmented map (right). 
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Relative Intensity 

The relative intensity operator is designed to emphasize hyperintense Tl signal 

GM. It Is defined as 

l-lg-BgIfBg 

where g 18 the inten8ity at a given voxel, and Bg ls the threshold intensity between the 

GM and WM peaks as determined from the grey level mstogram of the MRI volume. 

Figure 2. Representative axial slices trom maps of the three computational models of MRI 
characteristics of FCD pathology in a patient. Clockwise from top left: T1-weighted MRI; cortical 
thickness; gradient magnitude; relative intensity. Lesion can be seen in the right central area 
(indicated by rad arrow on T1-weighted MRI). 

Texture Analysis 

The basic procedure oftexture analysis is to compute a set ofgray-level co-

occurrence matrices (GLCMs) and then run a set ofmathematical texture operators on the 

co-occurrence matrices to pro duce a corresponding set of texture feature values (Haralick 
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et aL 1973). A co-occurrence matrix is calculated over a region of interest by tallying the 

occurrences of aH voxel intensity pairs separated by a given distance a given direction 

(Figure 3). The matrix is then normalized by the total number ofvoxel intensity pairs 

within the region to yield the probability of observing each pair. In order to pro duce 

three-dimensional texture maps, we calculated co-occurrence matrices over a 

neighborhood centered on each voxel within the volume, with the resulting texture 

feature values being mapped to the location of the center voxel. 

There are several parameters that can be manipulated in the calculation of co­

occurrence matrices. Primary among these are neighborhood size, distance (d), and 

direction (8). The number of possible permutations ofthese parameters necessitates that 

onlya subset be chosen for use in analysis. 

In the context of our aim of detecting FCD les ions of variable size, neighborhood 

size must be chosen to be large enough to capture meaningful information, but small 

enough that smaller lesions are not 10st within a large ROI. We chose to use a 3D 

neighborhood, 7 voxels in each dimension. 

Varying the distance parameter allows texture to be measured at different scales. 

Care must be taken not to overstep the size of the lesions. Neighborhood size is also a 

limiting factor in the choice of the distance parameter so as to avoid sparse co-occurrence 

matrices. We set the distance parameter to 3 voxels. As a further precaution against 

sparse co-occurrence matrices and to reduce processing time, the intensity range of the 

MRI volumes was reduced to 32 gray levels. 

When constructing a co-occurrence matrix over a 2D neighborhood, there are 

eight possible discretized values of 8(0°, ±45°, ±90°, ±135°, 180°). A common approach 
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Figure 3. Construction of second-order texture maps. 

(A) To obtain a second-order texture map, a small ROI (schematically represented by the red 
square) was constructed around each voxel in an MR volume. Within this ROI, the number of 
occurrences of the various voxel-intensity pairs, separated by a given distance in a given direction 
(sam pie pairs are indicated by arrows), are tallied to produce a co-occurrence matrix. Second­
order texture feature operators are then fun on the matrix, with the resulting value being mapped 
back to the position of the voxel at the center of the ROI. 

(B) Representative axial sUces trom the three second-order texture maps used to construct a 
Bayesian classifer, with the associated T1-weighted MRI. Lesion is visible in the right central area, 
indicated by the red arrow on the T1-weighted MRI. 
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is to create sylmnetric co-occurrence matrices by considering Band -Btogether. 

We used the same approach in the 3D case, coHapsing the 26 possible discretized 

directions into 13. 

Thus, at each vox el we calculated 13 co-occurrence matrices, one for each value 

of B. The value of d was set to 3 for an matrices. Texture feature operators were then mn 

on each co-occurrence matrix at each voxel to create a three-dimensional texture feature 

map. As there is no expectation of a particular orientation to the texture of FCD lesions 

within Tl volumes, the texture feature value assigned to a voxel was the average of the 

texture feature value calculated over each of the 13 co-occurrence matrices. 

Haralick (Haralick et aL 1973) proposed 14 second order features; we chose to 

calculate those that are among the most commonly used in the literature: angular second 

momentum, contrast, correlation, difference entropy, dissimilarity, entropy, inverse 

difference moment, SUffi entropy, and variance. Appendix A details the mathematical 

operations necessary to derive these second order texture features from a co-occurrence 

matrix. 

Classifier Design 

Automated lesion identification was performed using a sequence of two Bayesian 

classifiers. As a first step, lesion identification was performed using a classifier trained 

on the three computational models (the "computational-model classifier"). Voxels 

classified as lesional were then re-classified by a classifier trained on the second-order 

texture features (the "texture feature classifier"). For the construction of the texture 

feature classifier, Fisher's discriminant ratio (Duda et al. 2001) was èalculated to select 
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three texture features (angular second momentum, difference entropy, contrast) from 

among the 9 that were ca1culated. The two-classifier approach 1S justified since the 

computational models MRI characteristics ofFCD and the texture features extract 

different types of information from the MRI volume. The computational models measure 

first-order statistical or morphometric properties of individual voxels, while texture 

features measure second-order properties of the volume by examining spatial 

relationships between voxels ofvarying intensities. Thus, two classifiers are appropriate 

as they would be highly trained in different regions of feature space (Duda et al. 2001). 

Due to the limited number of patients in the study, both the computational model 

classifier and the texture feature classifier were constrncted using the leave-one-out 

cross-validation technique, in which each member of a set N members is classified based 

on a classifier trained on the remaining N-l members. In this study, we implemented a 

leave-one-out classifier on a subject-wise basis, such that an voxels in a particular 

subject's brain were classified based on voxels within the brains ofthe other subjects. 

Each classifier was trained on the appropriate data (Le., the computational models or 

texture features) for a subset of voxels that had been automatically sampled from each 

subject within the training set. To sample the voxels, the following tissue-specifie (based 

on the 6-class segmented map) samphng frequencies were used: every 45th 

background/CSF voxel, every loth GM voxel, every 10ili WM voxel, every 5th GM/WM 

transition voxel, every 5th GM/CSF transition voxel, and every 2nd lesional voxel. These 

sampling frequencies were chosen to achieve roughly equal numbers ofvoxels in each 

class, and resulted in approximately 3000 sampled voxels per subject. A target label was 

determined for each sampled voxel from the 6-class segmented map. 
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The two classifiers were combined as follows. First, voxels within a test 

subject's brain were classified with the computational mode! classifier. Prior 

probabilities were set so as to bias the computational model classifier toward increasing 

sensitivity regarding lesional voxels at the expense of mis-classifying sorne GM voxels as 

lesional. Next, voxels classified as lesional by the computational mode! classifier were 

re-classified using the texture feature classifier. Primarily due to the use of the cortical 

thickness metric, almost an voxels classified as lesional by the computational model 

classifier belonged to either the true lesional or GM classes. Thus, the texture feature 

classifier was restricted to classifying voxels as either lesional or GM. A 3D lesion map 

was constructed from the voxels classified as lesional by the texture feature classifier. 

Voxels within several anatomical structures (thalamus, basal ganglia, caudate 

nucleus, and cerebellum) were not included when assessing the performance ofthe 

classifier. Most voxels within these structures (consisting mainly of GM) were classified 

as lesional in both patients and normal controIs, primarily due to their high thickness 

relative to the cortex. Further, no biological evidence exists that these structures are 

involved in FCD. 

An additional artifact was the random scattering of small clusters of voxels 

classified as lesional across the classified volumes. Thus, to establish a baseline noise 

level in the classified volumes, a noise threshold was defined as two standard deviations 

above the mean size of the largest lesional cluster in each control subject, such that 

lesional clusters smaller than this threshold were considered to be due to random noise 

and excluded from the lesion map produced by the classifier. This threshold was applied 

to an subjects, both patients and controls. This technique assumes that lesional clusters in 
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the controls are not due to FCD. Even ifthe clusters in control subjects were due to 

something physiologically meaningful, from the point of view of FCD lesion detection 

they would still considered noise, as FCD lesions are unlikely to occur in control 

subjects. 

The Bayesian classifier code was implemented in C running on an SGI platform, 

incorporating a library ofMRI volume handIing routines developed at the McConnell 

Brain Imaging Center of the Montreal Neurological Institute. 

Analysis 

The performance of the classifier was compared to standard neuroradiological 

pre-surgical evaluation ofMRI by calculating subject-wise sensitivity and specificity for 

both methods. Subject-wise sensitivity was defined as the number of patients in whom a 

lesion was identified divided by the total number of patients. Subject-wise specificity 

was defined as the number of control subjects in whom no lesions were identified divided 

by the total number of control subjects. For the classifier, a lesion was considered to be 

identified in a patient if a lesional cluster wholly or partially co-localized with a manual 

lesion label, and in a control subject if any lesional cluster was found. Pearson's chi­

squared test for 2 way tables was to test for significant differences. 

Lesional sensitivity of the classifier was measured by calculating the number of 

lesional clusters identified by the classifier which wholly or partially co-localized with a 

manually-drawn lesion label divided by the total number of manually drawn lesion labels. 

This differs from subject-wise sensitivity due to the presence of multiple manually-drawn 

lesion labels in sorne patients. Lesion specificity was not calculated since the absence of 

95 



a lesion cluster generated by classifier in non-lesional regions ofthe brain (a "true 

negative") is not a quantifiable concept. Therefore, to measure the degree of faIse 

positives with respect to lesional clusters, the number of lesional clusters not co­

localizing with a manuallesion label was determined for each subject. 

To measure the ability of the classifier to identify the full extent and boundaries of 

lesions, voxelwise sensitivity on a patient-wise basis was calculated as the total number 

ofvoxels correctly classified as lesional within a patient divided by the total number of 

voxels within the manuallesion labels for the same subject. An aggregate voxel 

sensitivity was calculated as the total number of voxels correctly classified as lesional 

across an patients divided by the total number of voxels within the manuallesion labels 

across aH patients. 

As a further measure of agreement between the lesional clusters identified by the 

classifier and the manuallesion labels, an agreement index was calculated. Letting Le 

represent the lesional cluster identified by the classifer and Lm representing the 

corresponding manuallesion label, the agreement index was defined as: 

Differences in texture feature values within lesions compared to non-lesional 

cortex was assessed as follows. For each texture feature used in the classifier (angular 

second momentum, contrast, difference entropy), the average value over the manual 

lesion label and the average value over non-lesional GM (as defined in the 6-class 
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segmented map) were calculated for each patient. These results were then averaged 

across patients and two-tailed t-tests were used to check for significant differences. 

RESULTS 

The classifier identified lesions in 15/18 patients, resulting in a subject-wise 

sensitivity of83%. FCD was detected on conventional MRI during standard pre-surgi cal 

evaluation in Il ofthe 18, resulting in a subject-wise sensitivity of61 %. The increased 

sensitivity provided by the classifier was shown to be significant (p<.03). Neither 

standard pre-surgical evaluation nor the classifier identified lesions in any control 

subjects; thus subject-wise specificity was 100% for both techniques. 

Within the 18 patients, 20 lesions were manually labeled. The classifier identified 

wholly or partially co-localizing lesional clusters corresponding to 17 of these manual 

labels, for a lesion sensitivity of 85%. A comparison of manuallesion labels and lesional 

clusters determined by the classifier for seven typical subjects are shown in Figures 4 and 

5. 

While no lesional clusters were identified by the classifer in the control subjects, 

the classifier identified smaH lesional clusters not co-localizing with a manuallesion label 

in 5 out of 18 patients. Retrospective visual review of conventional MRI for these cases 

did not definitively reveallesional tissue these areas. 

Average voxelwise sensitivity across an patients was 13.4% ± 13.3% (range=O% 

to 42.4%). Voxelwise sensitivity collapsed across patients was 18.1 % (26300/145632). 

When considering only patients in whom a les ion was identified by the classifier, these 

results increase to 16.0% ± 13.0% and 20.0% (26300/131217), respectively. The average 
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individual patients' agreement index behveen lesional clusters identified by the 

classifier and the manuallesion labels was 18% with a standard deviation of 20%. 

Within control subjects, the average size of the largest lesional cluster created by 

the classifier was 16.2 +/ - 18.9 (minimum = 0, maximum = 31), and thus the noise 

threshold was set to 54.0. For patients, the average size of the lesions identified by the 

classifer which co-localized with the manuallesion labels was 1364.2, +/- 3352.83 

(minimum = 12, maximum = 14435). 

Angular second momentum was significantly higher in les ions compared to non­

lesional cortex, while contrast and difference entropy were significantly lower in lesions 

compared to non-lesional cortex. These results are summarized in Table 1. 

DISCUSSION 

The classifier presented in this paper is an extension of our previous work, which 

introduced (Bernasconi et al. 2001) and refined (Antel et al. 2002) the use of 

computational models ofFCD to enhance visuallesion detection. The classifier 

improved upon these earlier techniques by providing an automated, objective approach to 

lesion detection, based on information from two sets of features. 

The first set of features, modeled on visually discernable MRI characteristics of 

FCD lesions, enabled prior knowledge of an expert observer to be built into the classifier. 

In lesions, relative to non-lesional cortex, cortical thickness and relative intensity are 

increased, while gradient magnitude is decreased. Increased cortical thickness is due to 

an abnormal accumulation of neurons in the affected corticallayers. A decrease in 

gradient magnitude suggests a more graduaI transition between GM and WM, reflective 
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Figure 4a. Three examples of automated les ion identification. 
Left: T1-weighted MRI. Center: MRI with manuallesion label. 
Right: MRI with les ion identified by classifier. 80th manual and 
classifier-generated labels are shown as white dots on a black 
background. 



Figure 4b. Three more examples of automated lesion identification. 
Left: T1-weighted MRI. Center: MRI with manuallesion label. Right: 
MRI with les ion identified by classifier. Both manual and classifier-generated 
labels are shown as white dots on a black background. The bottom case 
shows an example of proper localization but poor coverage. 



Figure 5. Classification results for a single patient, displayed in the axial, coronal, and 
sagittal planes. Top row: axial view. Middle row: coron al view. Bottom row: sagittal 
view. Left column: T1-weighted MRI. Center column: MRI with manuallesion label. 
Right column: MRI with lesion identified by classifier. Both manual and classifier­
generated labels are shown as white dots on a black background. 



of abnormal neuronal accumulation and positioning in this area. Increased relative 

intensity may reflect demyelination and gliosis. 

The second set of features, based on texture analysis, incorporated information 

regarding tissue structure or organization not readily accessible through visual analysis. 

Our results demonstrated increased angular second momentum in lesions relative to non­

lesional cortex, while contrast and difference entropy were decreased. This pattern 1S 

consistent with results reported in studies of multiple sclerosis lesions relative to normal 

appearing white matter (Mathias et al. 1999). From a mathematical standpoint, angular 

second momentum increases with image homogeneity, contrast increases with local 

variation of pixel intensity and 1S largest for local gray level differences, and difference 

entropy 1S a measure of general image complexity (Haralick et al. 1973; Lerski et al. 

1993). Thus, physiological and mathematical findings indicate that the pattern in texture 

feature values seen in FCD lesions may reflect changes in image complexity, suggestive 

of a breakdown of structural integrity due to the disease process. 

The potential of our approach to FCD lesion detection is demonstrated by the fact 

that the classifier found lesions in 15 out of 18 FCD patients (83%), while the standard 

pre-surgical investigation found lesions in Il (61 %). An advantage of three-dimensional 

texture analysis, as weIl as the cortical thickness and gradient models among the first 

order features, is that they operate in three dimensions. This allows the simultaneous 

consideration of information from consecutive slices of the brain, whereas a human 

observer performing standard visual analysis examines the brain volume a slice at a time, 

and therefore must mentally synthesize information from consecutive slices. 

Furthermore, second-order texture analysis allows the quantification of the spatial 
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relationships between gray level intensity pairs. This infonnation may not always be 

easily appreciated through visual analysis. 

In addition to the high sensitivity oflesion detection, another equally important 

result is that no lesional voxels were identified in any control subject. This finding 1S 

especially relevant in light of the fact that in five patients the classifier identified a 

lesional cluster that did not co-localize with a manuallesion label. Retrospective visual 

analysis of the individual feature maps input revealed that these lesional clusters 

exhibited a pattern of features similar to the known FCD lesions; no individual feature 

unduly influenced the classifier in these cases. However, EEG data from these regions 

did not exhibit patterns found to be associated with FCD (Gambardella et al. 1996)., and 

retrospective visual analysis ofthese regions on conventional MRI was also not 

suggestive ofFCD pathology. No clinical or histopathological characteristics that would 

differentiate these five patients from the remaining 13 were found. Yet the absence of 

any faise positives in control subjects combined with reports of diffuse (Taylor et al. 

1971) or non-focal (Prayson et al. 2002) cortical involvement in FCD suggests that these 

clusters may indeed indicate abnonnal regions that are otherwise undetectable via 

conventional means. 

While the classifier successfully located most ofthe FCD lesions, it tended to 

partially sample their extent. The definition of the true boundaries ofFCD lesions 1S a 

difficult task. In particular, there is the possibility that over-estimation of lesion 

boundaries by the expert observer may account for some of the discrepancy in size 

between the classifier and manuallesion labels. The use of cortical thickness as an input 

feature might also have been a contributing factor. Since cortical thickness within WM is 
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necessarily equal to 0, it 18 unlikely that a WM voxe! will be classified as lesional. 

Hence, portions of the les ions within WM go unrecognized by the classifier. 

An important issue to be addressed in future research is etiological and diagnostic 

specificity. An subjects in this study were known to be either normal controls or patients 

with FCD and no other apparent pathology. However, differential diagnosis between 

FCD and benign tumors (such as dysembryoplastic neuroepithelial tumors), which may 

present similarly both clinically and on MRI, is sometimes required. Specificity of the 

classifier when deahng with a possible differential diagnosis will need to be exarnined in 

future studies. 

In conclusion, we considered two sources of information regarding FCD lesions. 

Visually discernable information was provided by computational models of MRI 

characteristics ofFCD, while texture analysis was used to quantify less-available 

information regarding tissue organization through the quantification of spatial 

relationships of gray-level intensity pairs. The resulting classifier succeeded in locating 

most FCD lesions. 
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APPENDIX A. Calculation of texture features from the co-occurrence matrix 

N N 

CiO == L C(ij) Cii) == L C(i,j) 
j=J i=1 

N N 
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N N 
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1 i:il=k 
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Difference entropy -I: Cxji)log{Cxji)} 
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Inverse difference moment LI: {1+(i-j)2}-lC(ij) 
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• Summar and Conclusions 

5.1 Predieting surgieal outeome in TLE patients based on MR data 

Our frrst study applied a Bayesian classifier to MRI and MRSI data of TLE 

patients to predict surgical outcome. By making predictions of surgi cal outcome for 

individual patients, we expanded on previous studies which demonstrated correlations 

between one or more MR markers and surgical outcome9,12,20,31-36. The few 

previous studies that have utilized automated classifiers to make individual outcome 

predictions37
-
39 have focused on classifying patients into seizure free or non seizure free 

groups following surgery. While seizure free vs. non seizure free is a clinically important 

distinction to consider, it does not fully address the question ofwhether surgery is an 

appropriate option for a patient; surgical resection which fails to completely eliminate 

seizures yet achieves a near-complete or partial reduction in seizure frequency may still 

be an appropriate and beneficial course of action for certain patients. Our study 

addressed this issue by developing two classifiers, one to separate seizure free from non 

seizure free patients, and one to separate patients achieving a worthwhile reduction in 

seizure frequency from patients not achieving a worthwhile reduction in seizure 

frequency. The latter approach makes it possible to identify patients who may not be 

good surgi cal candidates. Indeed, fuis classifier correctl y identified 10/16 patients who 

108 



did not achieve a worthwhile reduetion seizure frequency. This is an important result 

given that an 16 of these patients were operated upon, implying that eonventional pre­

surgie al evaluation had identified them as viable surgi cal candidates. 

Future studies should address classification of patients into the individual 

outeome classes, rather than aggregate groups of seizure free vs. nor seizure free, or 

worthwhile improvement vs. no worthwhile improvement. The key to addressing these 

issues will be the construction of a considerably larger patient database, providing 

sufficient sample sizes for each individual outcome class. Training the classifier on 

additional MR -based infoffilation, such as results from texture methods such as those 

described in other sections of this thesis, may also prove useful for further improving 

classification accuracy. 

5.2 Assisting lesion detection in FeD 

Localizing lesions is an important pre-cursor to surgie al resection for FCD 

patient. Papers 2, 3, and 4 traced the development of an automated method for locating 

FCD lesions on Tl-weighted MRI. Paper 2 originated the idea ofusing of simple image 

processing techniques to model three common characteristics of FCD as seen on Tl 

weighted MRI. These techniques were used to ereate a series of feature maps for eaeh 

patient, which were then combined and presented for visual analysis. The results ofthis 

study represented a significant improvement in the sensitivity of lesion detection 

compared to the standard expert visual analysis of conventional MRI. 

Paper 3 furtber developed the ideas outlined in paper 2. In paper 3, we selected 

more sophisticated techniques for modeling two of the three MRl characteristics ofFCD. 
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This was done in order to improve the visibility of FCD les ions by reducing the presence 

of so-called "potential false positives", small regions within the cortex that appeared 

hyperintense and therefore similar to lesional areas on the composite feature map. 

Our results demonstrated improved contrast between lesions and non-Iesional 

cortex, thereby reducing the subjectivity involved in visuallesion detection. Using the 

techniques outlined in these papers, we increased the sensitivity of lesion detection by 

50% relative to conventional MRI. This compares favorably to increases in sensitivity 

reported in studies employing different approaches, such as curvilinear 

reconstruction57
,58, voxel-based morphometrlO and FLAIR images56

, to aide in lesion 

detection on MRI. 

Papers 2 and 3 were preliminary steps towards the ultimate goal ofthis project, 

automated lesion detection. Advantages of an automated method include i) elimination 

of subjectivity regarding the differentiation of lesions from similar regions in the non­

lesional cortex, and ii) it can be applied equally over the whole brain, potentially 

identifying lesions in regions where human observers may not be inclined to search. 

Paper 4 approached this task by supplementing the models presented in our previous 

studies with texture analysis applied to conventional MRI. A Bayesian classifier trained 

on this data located 17/20 lesions, a sensitivity increase of35% over visual analysis of 

conventional MRI. The classifier did not identify any abnormalities in a set of control 

subjects. This is an important point that differentiates our method from a recently 

described technique employing voxel-based morphometry to perform automated les ion 

detection.60 
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Further studies should address ways to increase the extent of the lesion that is 

identified by the classifier. One approach would be to train the classifier on additional 

MR results, such as T2 relaxometry, or voxel-based morphometry. An interesting future 

avenue of exploration would be to perform texture analysis within the curvilinear 

framework, rather than in the standard 3D orthogonal axes. Application of the statistical, 

morphological, and texture operators described here to the study of other types of 

epilepsy or even other neurological disorders would also be interesting to explore in the 

future. 

5.3 Conclusion 

In conclusion, the papers constituting this thesis present clinically useful 

techniques for applying machine leaming methods to MR data to assist in the pre-surgical 

evaluation of epilepsy patients. These methods are intended to be used in conjunction 

with conventional approaches to improve the identification of lesions and patients who 

will benefit from surgery. 

111 



Bibli 

1. Jones SE, Buchbinder BR, Aharon I. Three-dimensional mapping of cortical 
thickness using Laplace's equation. Hum Brain Mapp 2000; 11(1):12-32. 

2. HauserWA. Epidemiologyofepilepsy. AdvNeurol1978; 19:313-39.:313-339. 

3. Sander JW, Shorvon SD. Epidemiology of the epilepsies. J Neurol Neurosurg 
Psychiatry 1996; 61(5):433-443. 

4. Semah F, Picot MC, Adam C, Broglin D, Arzimanoglou A, Bazin B et al. Is the 
underlying cause of epilepsy a major prognostic factor for recurrence? 
Neurology 1998; 51(5):1256-1262. 

5. Spencer SS, Katz A. Arriving at the surgical options for intractable seizures. 
Semin Neuroll990; 10(4):422-430. 

6. Wiebe S, Blume WT, Girvin JP, Eliasziw M. A randomized, controlled trial of 
surgery for temporal-lobe epilepsy. N Engl J Med 2001; 345(5):311-318. 

7. Dam M. Epilepsy surgery. Acta Neurol Scand 1996; 94(2):81-87. 

8. Engel n. Update on surgical treatment ofthe epilepsies. Neurology 1993; 
43(8): 1612-1617. 

9. Arruda F, Cendes F, Andermann F, Dubeau F, Villemure JG, Jones-Gotman Met 
al. Mesial atrophy and outcome after amygdalohippocampectomy or 
temporal lobe removal. Ann Neuro11996; 40(3):446-450. 

10. Falconer MA, Serafetinides EA, Corsellis JAN. Etiology and pathogenesis of 
temporal lobe epilepsy. Archives ofNeurology 1964; 10:233-248. 

11. Babb T, Brown Wl Pathologieal findings in epilepsy. In: Engel J, Jr., editor. 
Surgieal treatment of the epilepsies. New York: RavenPress, 1987: 511-
540. 

12. Cascino GD, Trenerry MR, Sharbrough FW, So EL, Marsh WR, Strelow DC. 
Depth electrode studies in temporal lobe epilepsy: relation to quantitative 
magnetic resonance imaging and operative outcome. Epilepsia 1995; 
36(3):230-235. 

13. Cook MJ, Fish DR, Shorvon SD, Straughan K, Stevens JM. Hippocampal 
volumetrie and morphometrie studies in frontal and temporal lobe 
epilepsy. Brain 1992; 115(pt 4):1001-1015. 

112 



14. Lencz T, McCarthy G, Bronen RA, Scott TM, Insemi JA, Sass KJ et 
Quantitative magnetic resonance imaging in temporal lobe epilepsy: 
relationship to neuropathology and neuropsychological function. Ann 
Neuro11992; 31(6):629-637. 

15. Cendes F, Andermann F, Gloor P, Evans A, Jones-Gotman M, Watson C et al. 
MRI volumetrie measurement of amygdala and hippocampus in temporal 
lobe epilepsy. Neurology 1993; 43(4):719-725. 

16. Jack CR, Jr., Trenerry MR, Caseino GD, Sharbrough FW, So EL, O'Brien Pc. 
Bilaterally symmetric hippocampi and surgical outcome. Neurology 1995; 
45(7): 1353-1358. 

17. Kuzniecky ru, Burgard S, Bilir E, Morawetz R, Gilliam F, Faught E et al. 
Qualitative MRI segmentation in mesial temporal sclerosis: clinical 
correlations. Epilepsia 1996; 37(5):433-439. 

18. Bemascoru N, Bemasconi A, Andermann F, Dubeau F, Feindel W, Reutens Oc. 
Entorhinal cortex in temporal lobe epilèpsy: a quantitative MRI study. 
Neurology 1999; 52(9): 1870-1876. 

19. Cendes F, Caramanos Z, Andermann F, Dubeau F, Arnold DL. Proton magnetic 
resonance spectroscopic imaging and magnetie resonance imaging 
volumetry in the lateralization of temporal lobe epilepsy: a series of 100 
patients. AunaIs ofNeurology 1997; 42:737-746. 

20. Ende GR, Laxer KD, Knowlton RC, Matson GB, SehuffN, Fein G et al. 
Temporal lobe epilepsy: bilateral hippocampal metabolite changes 
revealed at proton MR spectroscopie imaging. Radiology 1997; 
202(3):809-817. 

21. Cross JH, Connelly A, Jackson GD, Johnson CL, Neville BG, Gadian DG. Proton 
magnetic resonance spectroscopy in children with temporal lobe epilepsy. 
Aun Neurol1996; 39(1):107-113. 

22. Hugg JW, Laxer KD, Matson GB, Maudsley AA, Weiner MW. Neuron 1088 

localizes human temporal lobe epilepsy by in vivo proton magnetic 
resonance spectroscopie imaging. Aun Neuro11993; 34(6):788-794. 

23. Laxer KD. Clinical applications ofmagnetic resonance spectroscopy. Epilepsia 
1997; 38(Suppl. 4):S13-S17. 

24. Vermathen P, Ende G, Laxer KD, Knowlton RC, Matson GB, Weiner MW. 
Hippocampal N-acetylaspartate in neocortical epilepsy and mesial 
temporal lobe epilepsy. Aunais ofNeurology 1997; 42:194-199. 

113 



25. Cendes F, Andennann F, Preul MC, Arnold Lateralization of temporal lobe 
epilepsy based on regional metabolic abnonnalities proton magnetic 
resonance spectroscopie images. Annals ofNeurology 1994; 35:211-216. 

26. ConneUy A, Jackson GD, Duncan JS, King MD, Gadian DG. Magnetic resonance 
speetroscopy temporal lobe epilepsy. Neurology 1994; 44(8):1411-
1417. 

27. Hetherington H, Kuzmecky R, Pan J, Mason G, Morawetz R, Harris C et al. 
Proton nuclear magnetic resonance spectroscopie imaging of human 
temporal lobe epilepsy at 4.1 T. Annais ofNeurology 1995; 38(3):396-
404. 

28. Connelly A, Van Paessehen W, Porter DA, Johnson CL, Duncan JS, Gadian DG. 
Proton magnetic resonance speetroseopy in MRI-negative temporal lobe 
epilepsy. Neurology 1998; 51 :61-66. 

29. Moffett JR, Namboodiri MA, Cangro CB, Neale JH. Immunohistochemical 
loealization of N -acetylaspartate in rat brain. N euroreport 1991; 2(3): 131-
134. 

30. Simmons ML, Frondoza CG, Coyle JT. Immunoeytochemieallocalization ofN­
acetyl-aspartate with monoclonal antibodies. Neuroscience 1991; 
45(1):37-45. 

31. Knowlton RC, Laxer KD, Ende G, Hawkins RA, Wong ST, Matson GB et al. 
Presurgical multimodality neuroimaging in electroencephalographie 
lateralized temporal lobe epilepsy. Ann Neuroll997; 42(6):829-837. 

32. Jack CR, Sharbrough FW, Caseino GD, Hirschom KA, O'Brien PC, Marsh WR. 
Magnetic resonance image-based hippocampal volumetry: correlation with 
outcome after temporallobectomy. Annais ofNeurology 1992; 31: 138-
146. 

33. Radhakrishnan K, So EL, Silbert PL, Jack CR, Jr., CascÏno GD, Sharbrough FW 
et aL Predietors of outcome of anterior temporallobectomy for intractable 
epilepsy: a multivariate study. Neurology 1998; 51(2):465-471. 

34. Ho SS, Consalvo D, Gilliam F, Faught E, Bilir E, Morawetz R et aL Amygdala 
atrophy and seizure outcome after temporal lobe epilepsy surgery. 
Neurology 1998; 51(5):1502-1504. 

35. Kuzmeeky R, Hugg J, Hetherington H, Martin R, Faught E, Morawetz R et aL 
Predictive value of l H MRSI for outcome in temporallobectomy. 
Neurology 1999; 53(4):694-698. 

36. Li LM, Cendes F, Antel SB, Andennann F, Serles W, Dubeau F et aL Prognostic 
value of proton magnetic resonance spectroscopic imaging for surgical 

114 



outcome in patients with intractable temporal lobe epilepsy and bilateral 
hippocampal atrophy. Ann Neuro12000; 47(2):195-200. 

37. Ade JE, Perrine K, Devinsky 0, Doyle WK. Neural network analysis of 
preoperative variables and outcome epilepsy surgery. Journal of 
Neurosurgery 1999; 90:998-1004. 

38. Grigsby J, Kramer RE, Schneiders JL, Gates JR, Brewster SW. Predicting 
outcome of anterior temporallobectomy using simulated neural networks. 
Epilepsia 1998; 39(1):61-66. 

39. Berg AT, Walczak T, Hirsch LJ, Spencer SS. Multivariable prediction ofseizure 
outcome one year after resective epilepsy surgery: development of a 
model with independent validation. Epilepsy Res 1998; 29(3):185-194. 

40. Taylor DC, Falconer MA, Bruton CJ, Corsellis JA. Focal dysplasia of the cerebral 
cortex in epilepsy. J Neurol Neurosurg Psychiatry 1971; 34(4):369-387. 

41. Gambardella A, Palmini A, Andermann F, Dubeau F, da Costa JC, Quesney LF et 
al. Usefulness of focal rhythmic discharges on scalp EEG of patients with 
focal cortical dysplasia and intractable epilepsy. Electroencephalogr Clin 
Neurophysiol1996; 98(4):243-249. 

42. Avoli M, Bernasconi A, Mattia D, Olivier A, Hwa GG. Epileptiform discharges in 
the human dysplastic neocortex: in vitro physiology and pharmacology. 
Ann Neurol1999; 46(6):816-826. 

43. Sisodiya SM. Surgery for malformations of cortical development causing 
epilepsy. Brain 2000; 123(Pt 6):1075-1091. 

44. Hong SC, Kang KS, Seo DW, Hong SB, Lee M, Nam DH et al. Surgical 
treatment of intractable epilepsy accompanying cortical dysplasia. J 
Neurosurg 2000; 93(5):766-773. 

45. Hirabayashi S, Binnie CD, Janota l, Polkey CE. Surgical treatment of epilepsy 
due to cortical dysplasia: clinical and EEG findings. J Neurol Neurosurg 
Psychiatry 1993; 56(7):765-770. 

46. WyHie E. Children with seizures: when can treatment be deferred? J Child Neurol 
1994; 9 Suppl 2:8-13.:8-13. 

47. Keene DL, Jimenez CC, Ventureyra E. Cortical microdysplasia and surgical 
outcome in refractory epilepsy of childhood. Pediatr Neurosurg 1998; 
29(2):69-72. 

48. Kuzniecky R, Morawetz R, Faught E, Black L. Frontal and central lobe focal 
dysplasia: clinical, EEG and imaging features. Dev Med Child Neurol 
1995; 37(2):159-166. 

115 



49. Kuzruecky R, Gil1iam F, Morawetz R, Faught E, Palmer C, Black L. Occipital 
lobe developmental malformations and epilepsy: clinical spectrum, 
treatment, and outcome. Epilepsia 1997; 38(2):175-181. 

50. Mlmari C, Lo RG, Minotti L, Cardinale F, Tassi L, Kahane P et aL Presurgical 
strategies and epilepsy surgery in children: comparison ofliterature and 
personal experiences. Childs Nerv Syst 1999; 15(4):149-157. 

51. Otsubo H, Hwang PA, Jay V, Becker LE, Hoffinan HJ, Gilday D et al. Focal 
cortical dysplasia in children with localization-related epilepsy: EEG, 
MRI, and SPECT findings. PediatrNeurol1993; 9(2):101-107. 

52. Palmini A, Andermann F, Olivier A, Tampieri D, Robitaille Y. Focal neuronal 
migration disorders and intractable partial epilepsy: results of surgi cal 
treatment. Ann Neurol1991; 30(6):750-757. 

53. Palmini A, Gambardella A, Andermann F, Dubeau F, da Costa JC, Olivier A et al. 
Operative strategies for patients with cortical dysplastic lesions and 
intractable epilepsy. Epilepsia 1994; 35 Supp16:S57-71.:S57-S71. 

54. Firlik KS, Spencer DD. Surgery for focal cortical dysplasia. Neurosurg Clin N 
Am 2002; 13(1 ):93-102, ix. 

55. Lee BC, Schmidt RE, Hatfield GA, Bourgeois B, Park TS. MRI of focal cortical 
dysplasia. Neuroradiology 1998; 40(10):675-683. 

56. Chan S, Chin SS, Nordli DR, Goodman RR, DeLaPaz RL, Pedley TA. 
Prospective magnetic resonance imaging identification of focal cortical 
dysplasia, including the non-balloon œU subtype. Ann Neurol1998; 
44(5):749-757. 

57. Bastos AC, Comeau RM, Andermann F, Melanson D, Cendes F, Dubeau F et al. 
Diagnosis of subtle focal dysplastic lesions: curvilinear reformatting from 
three-dimensional magnetic resonance imaging. Ann Neurol1999; 
46(1 ):88-94. 

58. Montenegro MA, Li LM, Guerreiro MM, Guerreiro CA, Cendes F. Focal cortical 
dysplasia: improving diagnosis and localization with magnetic resonance 
imaging multiplanar and curvilinear reconstruction. J Neuroimaging 2002; 
12(3):224-230. 

59. Woermann FG, Free SL, Koepp MJ, Ashbumer J, Duncan JS. Voxel-by-voxel 
comparison of automatically segmented cerebral gray matter--A rater­
independent comparison of structural MRI in patients with epilepsy. 
Neuroimage 1999; 10(4):373-384. 

116 



60. Kassubek J, Huppertz Hl, Spreer J, Schulze-Bonhage Detection and 
localization of focal cortical dysplasia by voxel-based 3-D MRI analysis. 
Epilepsia 2002; 43(6):596-602. 

61. Zavaljevski A, Dhawan AP, Gaskil M, BaU W, Johnson JD. Multi-level adaptive 
segmentation of multi-parameter MR brain images. Comput Med Imaging 
Graph 2000; 24(2):87-98. 

62. Held K, Kops ER, Krause BJ, Wells WM, III, Kikinis R, Muller-Gartner HW. 
Markov random field segmentation ofbrain MR images. IEEE Trans Med 
Imaging 1997; 16(6):878-886. 

63. Gerig G, Martin J, Kikinis R, Kubler 0, Shenton M, Jolesz FA. Dnsupervised 
tissue type segmentation of3D dual-eeho MR head data. Image and 
Vision Computing 1992; 10(6):349-360. 

64. Ozkan M, Dawant BM, Maciunas RJ. Neural-network-based segmentation of 
multi-modal medical images: a comparative and prospective study. IEEE 
Transactions on Medical Imaging 2002; 12:534-544. 

65. Momenan R, Hommer D, Rawlings R, Ruttimann D, Kerich M, RioD. Intensity­
adaptive segmentation ofsingle-echo Tl-weighted magnetic resonance 
images. Human Brain Mapping 1997; 5:194-205. 

66. Schnack HG, HulshoffPol HE, Baare WF, Staal WG, Viergever MA, Kahn RS. 
Automated separation of gray and white matter from MR images of the 
human brain. Neuroimage 2001; 13(1):230-237. 

67. ShaHuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM. 
Magnetic resonance image tissue classification usmg a partial volume 
model. Neuroimage 2001; 13(5):856-876. 

68. Rajapakse JC, Giedd JN, Rapoport JL. Statistical approach to segmentation of 
single-channel cerebral MR images. IEEE Trans Med Imaging 1997; 
16(2): 176-186. 

69. Ruan S, Jaggi C, Xue J, Fadili J, Bloyet D. Brain tissue classification ofmagnetic 
resonance images using partial volume modeling. IEEE Trans Med 
Imaging 2000; 19(12):1179-1187. 

70. MacDonald D, Kabani N, Avis D, Evans AC. Automated 3-D extraction ofinner 
and outer surfaces of cerebral cortex from MRI. N euro image 2000; 
12(3):340-356. 

71. Fisehl B, Dale AM. Measuring the thiekness of the human cerebral cortex from 
magnetic resonanee images. Pree Nad Acad Sei D S A 2000; 
97(20):11050-11055. 

117 



Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation 
and surface reconstruction. Neuroimage 1999; 9(2):179-194. 

73. Magnotta VA, Andreasen NC, Schultz SK, Harris G, Cizadl0 T, Heckel D et al. 
Quantitative vivo measurement of gyrification in the human brain: 
changes associated with aging. Cereb Cortex 1999; 9(2):151-160. 

74. A PDE approach for measuring tissue thickness.: 2001. 

75. Heyden A, editor. A PDE approach for thickness, correspondance, and gridding 
of annular tissues. 02; Berlin: Springer-V erlag, 2002. 

76. Ratnanather JT, Botteron KN, Nishino Massie AB, LaI RM, Patel SG et al. 
Validating cortical surface analysis ofmedial prefrontal cortex. 
Neuroimage 2001; 14(5):1058-1069. 

77. Cook MJ, Free SL, Manford MR, Fish DR, Shorvon SD, Stevens JM. Fractal 
description of cerebral cortical patterns in frontal lobe epilepsy. Eur 
Neurol1995; 35(6):327-335. 

78. Julesz B. Visual pattern discrimination. IRE Transactions on Information Theory 
1962; IT-8:84-92. 

79. Julesz B. A theory ofpreattentive texture discrimination based on first-order 
statistics oftextons. Biological Cybernetics 1981; 41:131-138. 

80. Julesz B. Nonlinear and cooperative processes in texture perception. In: Werner 
TP, Reichardt E, editors. Theoretical Approaches to Neurobiology. 
Cambridge, MA: MIT Press, 1981: 93-108. 

81. Julesz B. Textons, the elements oftexture perception, and their interactions. 
Nature 1981; 290:91-97. 

82. Julesz B. Experiments in the visual perception of texture. Scientific American 
1975; 232:34-43. 

83. Julesz B, Gilbert EN, Shepp LA, Frisch HL. Inability ofhumans to discriminate 
between visual textures that agree in second order statistics-revlsited. 
Perception 1973; 2:391-405. 

84. Haralick RM, Shanmugam K, Dinstein 1. TexturaI features for image 
classification. IEEE Transactions on Systems, Man, and Cybernetics 1973; 
SMC-3(6):610-621. 

85. James D, Clymer BD, Schmalbrock P. Texture detection ofsimulated 
mÎCrocalcification susceptibility effects in magnetic resonance imaging of 
breasts. J Magn Reson Imaging 2001; 13(6):876-881. 

118 



86. Kim JK, Park HW. Statistical texturaI features for detection of microcalcifications 
in digitized mammograms. IEEE Trans Med Imaging 1999; 18(3):231-
238. 

87. Nishikawa RM, Giger ML, Doi K, Vyborny CJ, Schmidt RA. Computer-aided 
detection of clustered microcalcifications on digital mammograms. Med 
Biol Eng Comput 1995; 33(2):174-178. 

88. Mudigonda NR, Rangayyan RM, Desautels JE. Gradient and texture analysis for 
the classification of mammographie masses. IEEE Trans Med Imaging 
2000; 19(10):1032-1043. 

89. Sabiner B, Chan HP, Petrick N, Helvie MA, Goodsitt MM. Computerized 
characterization of masses on mammograms: the rubber band 
straightening transform and texture analysis. Med Phys 1998; 25(4):516-
526. 

90. Wei D, Chan HP, Petrick N, Sahiner B, Helvie MA, Adler DD et al. False­
positive reduction technique for detection of masses on digital 
mammograms: global and local multiresolution texture analysis. Med 
Phys 1997; 24(6):903-914. 

91. Chan HP, Sabiner B, Petrick N, Helvie MA, Lam KL, Adler DD et al. 
Computerized classification of malignant and benign microcalcifications 
on mammograms: texture analysis using an artificial neural network. Phys 
Med Biol 1997; 42(3):549-567. 

92. Thiele DL, Kimme-Smith C, Johnson TD, McCombs M, Bassett LW. Using 
tissue texture surrounding calcification clusters to predict benign vs 
malignant outcomes. Med Phys 1996; 23(4):549-555. 

93. Wei D, Chan HP, Helvie MA, Sahiner B, Petrick N, Adler DD et al. Classification 
of mass and normal breast tissue on digital marnmograms: multiresolution 
texture analysis. Med Phys 1995; 22(9):1501-1513. 

94. Gupta R, Undrill PE. The use of texture analysis to delineate suspicious masses in 
mammography. Phys Med Biol 1995; 40(5):835-855. 

95. Zhang J, Chang CI, Miller SJ, Kang KA. A feasibility study ofmultispectral 
image analysis of skin tumors. Biomed Instrum Techno12000; 34(4):275-
282. 

96. Murali A, Stoecker WV, Moss RH. Detection of solid pigment in dermatoscopy 
images using texture analysis. Skin Res Techno12000; 6(4):193-198. 

97. Ji Q, Engel J, Craine E. Texture analysis for classification of cervix lesions. IEEE 
Trans Med Imaging 2000; 19(11):1144-1149. 

119 



98. Chappard D, Chenllebault A, Moreau M, Legrand B, Audran M, Basle MF. 
Texture analysis ofX-ray radiographs is a more reliable descriptor ofbone 
10ss than mineral content in a rat model oflocalized disuse indueed by the 
Clostridium botuhnum. toxin. Bone 2001; 28(1):72-79. 

99. Cortet B, Bourel P, Dubois P, Boutry N, Cotten A, Marchandise X. CT scan 
texture analysis of the distal radius: influence of age and menopausal 
status. Rev Rhum Bngl Ed 1998; 65(2):109-118. 

100. Ferdeghini BM, Pinamonti B, Picano B, Lattanzi F, Bussani R, Slavich G et al. 
Quantitative texture analysis in echocardiography: application to the 
diagnosis ofmyocarditis. J Clin Ultrasound 1991; 19(5):263-270. 

101. Bae RY, Belohlavek M, Greenleaf JF, Seward JE. Myocardial contrast 
echocardiography: texture analysis for identification of nonperfused 
versus perfused myocarrnurn. Bchocardiography 2001; 18(8):665-672. 

102. Herlidou S, Rolland Y, Bansard JY, Le Rumeur E, de Certaines JD. Comparison 
of automated and visual texture analysis in MRI: characterization of 
normal and diseased skeletal muscle. Magn Reson Imaging 1999; 
17(9): 1393-1397. 

103. Ferdeghini EM, Morelli G, Distante A, Giannotti P, Benassi A. Assessment of 
normal testis growth by quantitative texture analysis of 2-D echo images. 
Med Eng Phys 1995; 17(7):523-528. 

104. Gilles F, Gentile A, Le D, V, Kahn E. Use of texture parameters in the 
classification of soft tissue tumors. Anal Quant Cytol Histoi 1994; 
16(5):315-320. 

105. Atlamazoglou V, Yova D, Kavantzas N, Loukas S. Texture analysis of 
fluorescence microscopie images of colonie tissue sections. Med Biol Eng 
Comput 2001; 39(2):145-151. 

106. Esgiar AN, Naguib RN, Bennett MK, Murray A. Automated feature extraction 
and identification of colon carcinoma. Anal Quant Cytol Histol1998; 
20(4):297-301. 

107. Jirak D, Dezortova M, Taimr P, Hajek M. Texture analysis ofhurnan liver. J 
Magn Reson Imaging 2002; 15(1):68-74. 

108. Basset 0, Sun Z, Mestas JL, Gimenez G. Texture analysis ofultrasonic images of 
the prostate by means of co-occurrence matrices. Ultrason Imaging 1993; 
15(3):218-237. 

109. van GB, Katsuragawa S, ter H, Doi K, Viergever MA. Automatie detection of 
abnormalities in ehest radiographs using local texture analysis. IEEE 
Trans Med Imaging 2002; 21(2):139-149. 

120 



110. COST BIl: Quantification of Magnetic Resonance Image Texture. 2002. 
Ref Type: Internet Communication 

111. Podo F, Orr JS, Bovee WMMJ, de Certaines JD, Leibfritz D. I. Introduction, 
objectives, and activities. Magnetic Resonance Imaging 1993; Il :809-815. 

112. Freeborough PA, Fox Ne. MR image texture analysis applied to the diagnosis and 
tracking of Alzheimer's disease. IEEE Trans Med Imaging 1998; 
17(3):475-479. 

113. Mathias JM, Tofts PS, LosseffNA. Texture analysis of spinal cord pathology in 
multiple sclerosÎs. Magn Reson Med 1999; 42(5):929-935. 

114. Yu 0, Mauss Y, ZoHner G, Namer IJ, Chambron J. Distinct patterns of active and 
non-active plaques using texture analysis on brain NMR images in 
multiple sclerosis patients: preliminary results. Magn Reson Imaging 
1999; 17(9):1261-1267. 

115. Schad LR, Bluml S, Zuna I. MR tissue characterization of intracranial tumors by 
means oftexture analysis. Magn Reson Imaging 1993; 11(6):889-896. 

116. Lerski RA, Straughan K, Schad LR, Boyce D, Bluml S, Zuna I. MR image texture 
analysis--an approach to tissue characterization. Magn Reson Imaging 
1993; 11(6):873-887. 

117. Yu 0, Mauss Y, Namer n, Chambron J. Existence of contralateral abnormalities 
revealed by texture analysis in unilateral intractable hippocampal epilepsy. 
Magn Reson Imaging 2001; 19(10): 1305-1310. 

118. Kjaer L, Ring P, Thomsen C, Henriksen O. Texture analysis in quantitative MR 
imaging. Tissue characterisation of normal brain and intracranial tumours 
at 1.5 T. Acta Radioll995; 36(2):127-135. 

119. Kovalev VA, Kruggel F, Gertz HJ, von Cramon DY. Three-dimensional texture 
analysis of MRI brain datasets. IEEE Trans Med Imaging 2001; 
20(5):424-433. 

120. Bayes T. An essay towards solving a problem in the doctrine of chances. 
Philosophical transactions of the royal society (London) 1763; 53:370-
418. 

121. Mitchell TM. Machine Learning. Boston: WCB McGraw-Hill, 1997. 

122. Duda RO, Hart PE, Stork DG. Pattern Classification. 2nd ed. New York: John 
Wiley & Sons, 2001. 

121 



123. Domingos P, pazzani M. Beyond independence: Conditions for the optimality of 
the simple Bayesian classifier. Proceedings of the 13th International 
Conference on Machine Learning 1996;105-112. 

124. Mehrubeoglu M, Kehtarnavaz N, Marquez G, Duvic M, Wang LV. Skin lesion 
classification using oblique-incidence diffuse reflectance spectroscopie 
imaging. Appl Opt 2002; 41(1):182-192. 

125. Testi D, Cappello A, Chiari L, Viceconti M, Gnudi S. Comparison oflogistic and 
Bayesian classifiers for evaluating the risk of femorai neck fracture in 
osteoporotic patients. Med Biol Eng Comput 2001; 39(6):633-637. 

126. Kukar M, Kononenko l, Silvester T. Machine leaming in prognosis of the femorai 
neck fracture recovery. ArtifIntell Med 1996; 8(5):431-451. 

127. Zelic l, Kononenko l, Lavrac N, Vuga V. Induction of decision trees and 
Bayesian classification applied to diagnosis of sport injuries. J Med Syst 
1997; 21(6):429-444. 

128. Raymond B, Taverner D, Nandagopal D, Mazurndar J. Classification ofheart rate 
variability in patients with mild hypertension. Australas Phys Eng Sci Med 
1997; 20(4):207-213. 

129. Andersen MB, Gregersen H, Rosenfalck A, Stodkilde-Jorgensen H. 
Discrimination between artefacts and contractions in pressure signaIs from 
the gastrointestinal tract by pattern recognition method. Med Biol Eng 
Comput 1996; 34(2):127-132. 

130. Gade J, Rosenfalck A, Bendtson I. Detection ofEEG patterns related to nocturnal 
hypoglycemia. Methods InfMed 1994; 33(1):153-156. 

131. Schmitt HP, Oberwittler C. Computer-aided classification ofmalignancy in 
astrocytomas. n. The value of eategorieaHy evaluated histologie and non­
histologie features for a numerical classifier. Anal CelI Pathol 1992; 
4(6):409-419. 

132. Welch AJ, Richardson PC, Mockford JN. Classification of sleep stage with period 
analysis features derived from the EEG. Aviat Space Environ Med 1978; 
49(2):409-414. 

122 



The undersigned agree to waive the copyright for the following manuscript for the 
purposes of inclusion in the doctoral thesis of Samson Antel, Department of Biomedical 
Engineering: 

Antel SB et al, "Automated detection of focal cortical dysplasia lesÎons using 
computational models oftheir MRI characteristics and texture analysis". 

Authors: 

DL Collins 

N Bernasconi _ 

RE Kearney 

DL Arnold 

A Bemasconi 

/ 



fr@M: 
S~nt: 
T@: 
$ubject: 

Hello, 

LWW JOURNAL EDIT 

Samson Antel [samSOi1@l'flrs.ml'li.mcgiU.ca] 
nn,t~day. February 27, 2003 1 :26 PM 
jcuJmalpermi!'$sion~@IWW'.com 
copyright waiver for fuesis (fwd) 

l am. in the process of submitting my doctoral thesis to the graduate 
faculty of MeGill University. l am incll.ldinç; an article which l have 
authored and published in Neurology ~s part of the thesis. The 
Qniv~r§ity requires a signed copyright w~iver from the publisher as part 
of the submission process. There is no particular form from the 
University to Pif! filled out; a short., signed note sent by fax is 
acc@ptable. r would very much appreciate it if such a note cou.ld be 
faxed to me, Thank Y9U very mu ch in advance. My fax number i8: 

The relevant articl~ is: 

Antel SB, et al. "Predicting surgical Out come in tempor~l lobe epilepsy 
patients using MRI and MRSI". Neurology 2002;58(10) ;1505-1512. 

Thanks again, 
Samson Antel 

Samson Antel 
MR Spectroscopy Unit 
Montreal Neurological Institute 

Phone: 

Permission is granted ta reproduœ the 
l''eQuested material for use in }fOur aœœmk:: 
thesis/dissertation. Permission is granted 
pl'wided a prominent credit Hne is plaœd 
stating the original source and copyright ~4 
@lip~il1cottWimams Il Wilkins . 

. '., r """,, ~: 1 L ~ ~\ u\ ttEt~::; 1 
·~·q\}"'~s· ..• ~~ I:~ ·,tEH!;'i: Ît)r l 

<-1:0.)-_ :..; ~~l~,:' er l:~H\,H!. ;.JUff 

':.I! ~",\ ! ·if .~. " j. f '·;·Td'~i.':f;' Ci 

,~::Hr ~; :1 i:",I '. l'il' ;-1: 30u:~ 

: 'l'''J,'\l ,~ ;" :;I:'·~ll '1" ,~:'~ \ 

. . ,'! 

• 1 • 



HI:03 FAX JOHN WILEY 8:; SONS INC !4J 001 

J~I::IiMISSIONS DEPARTMli-NT 

LE 

Match 13,2003 

Samson .Anwl 
Montn:al Neu:.olDgical Jnstitute 
380 1 Unlversity St, 
Montrea! PQ liA 284 
Canada 
\'lA F ACSWILE: 5143982975 

Dear Samson Antel: 

RE: Vou.. Febnmry 27, 2003 request for pemlÎsslon to repllblish. pages 770-77'5 from Anna1s ofNeumlogy 
(2001) Vol. 49, No.6, This materia.l will apperu- in your fortbcoming dissertation, to be pllblished by Mcüil.l 
University in 2003. 

1. Permission is gran1Ed for this use, except tilat if the material arpean; in our work with credit to lmother 
source, yOll must also obtam permission frOID the original source cÎl.Cu in OUT work. 

') PenllittJed use ls timited to ym.lf editioll descrlbed above, and dues not include the rlght to gmnt ailiers 
pcnnission to photocopy or otherwîse reproduce this materlaI except for versions made for use by 
vismilly or physically handicappcd pcrsons. Up ID live copies of the published thesls may be 
phOlocopicd by a microfilm company, 

3. Appn:rpriate credit to our publication must appear On every copy of yOUT tl1esis, either on the first page 
of the quored lexl, in a. ;;cparatfJ acll10wledgrnent page, or figure legel'l.d. The follow1ng componems 
must be included: TitIe, author(s} and lor ooitor(s), journal tiile (ihpplicable), Copyright © (year and 
owner), Reptinted by permission of John WiJey & Sons, IDe. 

4. This Ucense is nO!1-transrerable. This !iccnse is for non-exclusive English nalll~l.Iage print rights and 
micrùfiJ.m storage .igl1t~ by McGlll University only, rhroughout the world, For f.ran:,.lation rights, 
please reapp~1J fot a lh?(msê' wh,:<YJ J'OU have pians ta rranslare yoùr work Into a .specifie language, 

Sim::erely, 

p iitifètr,,f G\:I; LViC:1l«it 

Senior PenniEiGio!is ASEI!. 

VISIT OUR WEBSITE @ ''HTTP://VV'"W1N,'ilVIUY.OJMjABOUT!PERM.ISSTONS'' FOR f'ERMlSSJONS IN'"FORMATION .!\ND REQUES'.!' FORMS 



8 March2003 Our ref: HW/vm/mar03.j123 

lamson 

~mail: 

)ear Mr Antel 

VEUROIMAGE, Vol 17, 1001, pp 1755-1760, Antel et al: "Computational mode/s of MRl charactenstics offocal cortical 
Yysplasia .•. " 

\s per your lerter dated 27 February 2003, we hereby grant you pemlÏssion to reprint the aforementioned material at no 
:harge in youx thesis subject to the foHowing conditions: 

If any part of the material to be used (for example, figures) has appeared in our publication with credit or 
acknowledgement to another source, permission must also be sought from that source. If such permission is not 
obtained then that material may not be included in your publication/copies. 

, Suitable acknowledgment to the source must be made, either as a footnote or in a reference list at the end of your 
publication, as follows: 

"Reprinted from Publication title, Vol number, Author(s), Title of article, Pages No., Copyright (Year), with 
permission from Elsevier". 

\. Reproduction of this material is confined to the purpose for which permission is hereby given. 

L This permission is granted for non-exclusive world English rights only. For other languages please reapply 
separately for each one required. Permission excludes use in an electronic form. Should you have a specific 
e1ectronic project in mind please reapply for permission. 

). This includes permission for the National Library of Canada to supply single copies, on demand, of the 
complete thesis. Should your thesis be published commercially, please reapply for permission. 

'lours sincere1y 

Helen Wilson 
ltights Manager 

Your future requests will be handled more quicldy if you complete the online form at 
Yf'lY.w.elsevjs;l·com/homeQ.age!.g!:)estbookl?form=Qermi~ 


