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This dissertation presents a series of studies aimed at applying machine learning
methods to information derived from magnetic resonance (MR) based examinations in
order to aid in the pre-surgical evaluation of patients with epilepsy. Two forms of
epilepsy were studied: non-lesional temporal lobe epilepsy (TLE) and extra-temporal
lobe epilepsy (ETLE) due to malformations of cortical development (MCD).

Regarding patients with TLE, our aim was to predict outcome, in terms of
reduction of seizure frequency, following surgical resection. To this end, we trained a
Bayesian classifier on results from volumetric magnetic resonance imaging (MRI) and
magnetic resonance spectroscopic imaging (MRSI), which allow rapid, non-invasive
measurement of structural and metabolic data, respectively. We demonstrated that the
pattern of MR markers can predict whether or not a patient with TLE will benefit from
surgery.

In our studies of patients with ETLE, we focused on patients whose epilepsy was
due to focal cortical dysplasia (FCD), a common form of MCD. In these patients, the
identification of FCD lesions is critical in helping to direct the site of surgical resection.
This is commonly performed by visual analysis of conventional MRL. The MRI
characteristics of FCD are well known; however, in many patients, lesions of FCD are

characterized by minor structural abnormalities that go unrecognized or are too subtle to

it



be detected by standard radiological analysis. Thus, the objective of this part of the
dissertation was to use mathematical models of the MRI characteristics of FCD as a basis
for automated detection of FCD lesions. The mathematical models included first-order
statistical and morphological operators which can help measure visually discernable MRI
characteristics of FCD lesions, and second-order texture analysis, which can quantify
information regarding tissue structure or organization not readily accessible through
visual analysis. A Bayesian classifier trained on these models demonstrated a
significantly increased sensitivity in lesion detectién compared to standard analysis of
conventional MRL

Both components of this thesis present clinically useful techniques for applying
machine learning methods to MR data to assist in the pre-surgical evaluation of epilepsy
patients. These methods are intended to be used in conjunction with conventional

approaches.
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L’objectif de cetie thése est d’améliorer 1’évaluation préchirurgicale des patients
avec des épilepsies focales pharmacorésistantes a I’aide d’une série d’études dedices a
I’application d’algorithmes de classification automatique de données d’ imagerie par
résonance magnétique (IRM). Nous avons étudié deux formes d’épilepsie: I’épilepsie
temporale non-lésionnelle et 1’épilepsie extra-temporale due a des malformations du
développement cortical (MDC).

En ce qui concerne 1’épilepsie du lobe temporal, la forme la plus fréquente
d’épilepsie focale, notre objectif était de prédire, en termes de réduction de nombre de
crises, le résultat chirurgical. Nous avons utilisé un classificateur Bayésien sur des
données d’IRM spectroscopique (IRMS) et d’IRM volumétrique qui permettent,
respectivement, une quantification non-invasive de I’anatomie et du métabolisme
cérébral. Nous avons demontré que des combinaisons particuliéres de ces donnees
peuvent prédire les patients pour lesquels la chirurgie de I’épilepsie sera efficace.

Pour I’épilepsie extra-temporale, nous nous sommes concentrés sur I’étude de la
dysplasie focale corticale (DFC), qui en est souvent la cause. L’identification d’une
1ésion de DFC facilite la localisation du foyer épileptique pouvant €tre traité
chirurgicalement. La plupart du temps I’identification de DFC se fait par 1’analyse

visuelle de ’TRM. Bien que les caractéristiques radiologiques des lésions de DFC soient
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connues, dans beaucoup de cas, ces lésions sont caracterisées par des anomalies
structurelles mineures, qui peuvent passer inapercues 2 I’analyse radiologique standard.

Notre objectif était d’utiliser des modéles mathématiques des charactéristiques
IRM de 1a DFC dans le but de développer une méthode automatique de détection de ces
1ésions. Differents modgles sont utilisés. D’une part, des analyses statistiques de premier
ordre et des opérateurs morphologiques permettent une mesure quantitative des
charactéristiques IRM visibles de la DFC. D’autre part, des analyses de texture de
deuxiéme ordre permettent la quantification de la structure et ’organisation tissulaire
inaccessible a ’analyse purement visuelle. L utilisation d’ un classificateur automatique
basé sur ces modeles nous a permis d’augmenter le nombre de Iésions détectées par
rapport 4 ’analyse visuelle standard des images IRM.

Les méthodes presentées dans cette thése ont une utilité clinique dans I’évaluation
préchirurgicale de 1’épilepsie pharmacorésistante et peuvent étre utilisées conjointement

avec I’approche conventionnelle.
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This thesis contains four manuscripts. Three have already been published in
internationally known, peer-reviewed journals; the fourth has been submitted. The

important and original contributions to scientific knowledge are outlined below.

Manuseript 1: Predicting surgical outcome in temporal lobe epilepsy using MRI and
MRSI. In this study, we applied a Bayesian classifier to pre-operative MR volumetric and
MRSI data and demonstrated that the pattern across these markers can predict surgical
outcome. We were the first to develop a classifier based solely on MR data for the
purpose of identifying all surgical candidates, including patients achieving partial but
worthwhile improvement, rather than just those likely to achieve complete freedom from
seizures.

Manuscript 2: Texture analysis and morphological processing of MR assist detection of
focal cortical dysplasia in extra-temporal partial epilepsy. Lesions of focal cortical
dysplasia can be difficult to detect on MRI, even for experienced observers. However,
the primary MRI characteristics of FCD lesions (cortical thickening, blurred gray
matter/white matter interface, hyperintense T1 signal) are known. Thus, we hypothesized
that the implementation of computational models of these characteristics and the creation

of 3D maps based on these models would assist in lesion detection. This study was the
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first to propose modeling the MRI characteristics of FCD. Using our methods, lesion
sensitivity was increased by 50% relative to visual analysis of conventional MRI. As
lesion localization is often a prerequisite to surgical treatment of epilepsy of exira-
temporal lobe origin, these results suggest that our technique may be valuable for the pre-
surgical evaluation of such patients.

Manuscript 3: Computational models of MRI characteristics of focal cortical dysplasia
improve lesion detection. Based on the success in improving lesion detection in our
previous study, we hypothesized that further improvements could be achieved through
the use of sophisticated techniques to better model the MRI characteristics of FCD
pathology. In particular, this study was the first to apply a recently developed technique
for cortical thickness measurement’ to a clinical problem, thereby providing the first
clinical validation of the technique. The results of this study demonstrated a further
increase in FCD lesion visibility.

Manuseript 4: Automated detection of focal cortical dysplasia lesions using
computational models of their MRI characteristics and texture analysis. Upon
establishing the utility of computational models of MRI characteristics of FCD lesions
with respect to lesion detection, we hypothesized that they, in conjunction with second
order texture analysis, could be used as the basis for an automated classifier to perform
automated lesion detection. This study was the first to apply texture analysis to MRI of
focal cortical dysplasia patients, and the first study to perform automated detection of

FCD lesions.
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The use of magnetic resonance (MR) techniques has dramatically transformed the
study of epilepsy. By allowing in-vivo, non-invasive analysis of anatomical structure (in
the case of magnetic resonance imaging, abbreviated as MRI) and metabolic function
(through the use of magnetic resonance spectroscopic imaging, abbreviated as MRSD),
MR technigues have provided previously unattainable insights into the disease, both from
a research and a clinical perspective.

MR techniques can take on particular importance during pre-surgical
investigation of epilepsy patients. For surgery to be a viable treatment option, a
necessary (though not sufficient) step is the determination of the focus or foci of epileptic
seizures. MRI and MRSI have provided crucial insight for this task.

The overall goal of this thesis is to develop computer-based classifiers which use
patterns of MR data to assist in pre-surgical evaluation of epilepsy patients. Specifically,
we examine two types of epilepsy: apparently non-lesional temporal lobe epilepsy (TLE),
and focal cortical dysplasia (FCD), an extra-temporal epileptic disorder.

Currently, identification of surgical candidates amoﬁg TLE patients proceeds via
consensus evaluation of multiple modalities, including electroencephalography (EEG),

MR, neuropsychological tests and clinical examinations in order to determine if seizures



are originating predominantly from the left temporal lobe, the right temporal lobe, or
both. In the case of FCD, identification of surgical candidates is largely dependent on
the localization of the epileptogenic region or lesion. This task is most often carried out
via careful visual examination of MRI as well as EEG evaluation.

These techniques have been well-developed over the last few years. However,
10-20% of TLE patients who undergo surgery after an extensive pre-surgical work-up do
not experience a worthwhile reduction in seizure frequency following surgery. In FCD,
up to 40% of lesions can go undetected during standard radiclogical examination,
reducing the likelihood that surgery can offer help in these cases.

It is hypothesized that the application of machine learning techniques to MR data
may assist in the presurgical evaluation of these patients. Thus, the specific goals of the
thesis are to:

i) assist in‘the identification of surgical candidates among TLE patients by

developing a computer-based classifier to analyze a pattern of MR markers fora

given patient and to predict whether the patient will experience a worthwhile

surgical outcome (in terms of a reduction in seizure frequency).

ii) assist in the detection of FCD lesions by (a) applying computational models of
MRI characteristics of FCD pathology to enhance visual detection of FCD
lesions, and (b) by combining the computational models with texture analysis of

MRI to develop a computer-based classifier to locate FCD lesions.



This thesis is organized as follows. Chapter 2 provides an overview and a review
of the literature pertaining to the epileptic syndromes studied in this thesis, with particular
emphasis on the role played by MR modalities as part of the pre-surgical evaluation
process. Chapter 2 also provides an overview and literature review of the technical
methods used in the thesis, including techniques for modeling the MRI characteristics of
FCD, texture analysis, and Bayesian classification theory. For the latter two techniques,
emphasis is placed on their use in medical applications, particularly MRI of the brain.

Chapter 3 concerns the first goal set out above, concerning the identification of
surgical candidates among TLE patients, and consists of a manuscript which describes
the study we designed to address this issue.

Chapter 4 relates to computer-assisted identification of lesions of FCD, and
consists of manuscripts 2, 3, and 4. Taken together, these papers trace the development
of a technique for enhancing FCD lesion detection from its preliminary form as an aid for
lesion detection by visual exploration through the construction of a computer-based
classifier which performs automatic FCD lesion detection.

Chapter 5 presents a summary and conclusion.



2.1 TEMPORAL LOBE EPILEPSY

2.1.1 Epidemiology and surgical treatment

Epilepsy is a relatively common disorder, affecting approximately 1% of the
general population.2 3 Temporal lobe epilepsy (TLE) is one of the most common forms
of epilepsy.4 Most cases, approximately 80%, are treated effectively with anti-epileptic
medications.” A recent randomized controlled study of surgery for TLE demonstrated the
increased effectiveness of surgery relative to prolonged medical therapy.® Nevertheless,
surgery has been primarily targeted to the 20% of patients who are refractory to
pharmacological treatment 7. Studies have reported that 60-90% of patients experience a
good outcome following surgery, defined as either complete or worthwhile reduction in
seizure frequency 69

The two common surgical approaches to TLE are an anterior temporal lobectomy,
which, as the name implies, involves the removal of the anterior portion of the temporal
lobe, and a selective amygdalohippocampectomy, a more conservative resection in which
all or part of the amygdala and hippocampus are removed. Arruda et al.? found no
difference in outcome (in terms of reduction of seizure frequency) between the two

procedures.



2.1.2 Lateralization of seizure focus using markers

A prerequisite for surgical intervention is the lateralization of the seizure focus.
Lateralization is critical for determining on which side the resection will be performed,
and also to determine if contralateral abnormalities exist that may contraindicate surgery.
Lateralization is generally achieved through the consensus of several methodologies,
including EEG, MRIL, MRS, clinical findings, and neurcpsychological testing. While
EEG is often used as a gold standard for this task, much research has been done on the
use of MR markers for the same purpose.

A frequent target of MR study is the hippocampus, because it is thought to play a

1041 Multiple studies have

central role in the origin and propagation of seizures
demonstrated that mesial temporal sclerosis or hippocampal atrophy as detected on MRI
can help lateralize the seizure focus in TLE>'*Y

Other structures have been examined with MRI for lateralizing efficacy.
Bernasconi et al.'® demonstrated that the volume of the entorhinal cortex can help
lateralize the seizure focus, while Cendes et al.'? found the same for the volume of the
amygdala.

Several studies have concluded that MRSI can contribute to the lateralization of
seizure focus.”*®  These studies focused on levels of N-acetyi-aspartate (NAA), 2
marker of neuronal integrityzg’w, within the temporal lobe. Connelly et al?®

demonstrated the utility of MRSI in lateralizing the seizure focus in cases where MRI is

inconclusive.



Perhaps the benchmark study regarding the use of MR markers to lateralize

1., in which hippocampal atrophy, amygdaloid

seizure focus was reported by Cendes et a
atrophy, NAA in the mid and posterior temporal lobes were analyzed together to

correctly lateralize seizure focus in 98/100 patients.

2.1.3 MR markers as prognestic indicators of surgical outcome

Lateralization of the seizure focus is in itself an important predictor of surgical
outcome. The rﬁbre localized the epileptogenic region, the more likely it is to be
completely resected. Many studies have focused on examining the prognostic value of
specific MR markers. Their findings support the intuitive notion that highly localized
abnormalities are correlated with a positive outcome, while more diffuse abnormalities
are associated with a poorer outcome. In the review that follows, unilateral will be
assumed to mean both unilateral and ipsilateral to side of maximum EEG abnormality.

Multiple studies have demonstrated that unilateral hippocampal atrophy is

9123133 Several studies have demonstrated that

associated with a good surgical outcome
in cases with bilateral hippocampal atrophy, a greater degree of abnormality within the
ipsilateral hippocampus correlates with a good outcome, while symmetrical bilateral
atrophy is associated with poorer outcome’™”.

Ho et al.>* found that patients with unilateral ipsilateral abnormalities in both the
amygdala and the hippocampus fared worse following surgery compared to patient with
unilateral hippocampal atrophy alone. Similarly, Kuzniecky et al.>® found that patients

with bilateral hippocampal atrophy and bilateral amygdaloid atrophy fared worse than

patient with bilateral hippocampal atrophy alone.

(=3



Various studies have addressed the prognostic value of MRSI data. Kuzniecky et
al.*® found that higher NAA levels within the contralateral temporal lobe were associated

1.%° noted that an ipsilateral decrease in NAA is

with positive outcome. Endeeta
correlated with a positive outcome. Liet al.*® found that an absence of NAA reduction in

the contralateral temporal lobe predicted good outcome in patients with bilateral

hippocampal atrophy.

2.1.4 Qutcome prediction

The studies just described deal primarily with group differences. What is missing
is an attempt to apply these findings to individual patients. Several groups have
developed computer-based classifiers to predict surgical outcome in TLE, relying heavily
(but not always exclusively) upon MR markers. Arle et al.’” developed a series of neural
networks trained on combinations of EEG, MR, neuropsychological and pathological
data to predict freedom from seizures following surgery. Grigsby et al.”® developed
ﬁeural network based on EEG and IQ testing to predict seizure freedom. Berg et al ¥
used multiple logistic regression to predict seizure freedom, using intraoperaitve data as
input variables rather than MR data. While these classifiers were generally successful in

terms of assigning patients to the correct target class, various issues limit their clinical

utility, discussed in manuscript 1.



2.2.1 Etiology and surgical treatment

Focal cortical dysplasia (FCD) is one of a variety of malformations of cortical
development (MCD). It was first reported by Taylor et al*in 1971. FCDis
characterized by a localized disruption of the normal cortical lamination associated with
an excess of large, aberrant neurons, an increase in cortical thickness, and often,
abnormal neuroglial elements in the underlying white matter. The dysplastic tissue retains
sufficient connectivity to produce seizures.** FCD is the most common form of
developmental disorder in patients with pharmacologically intractable partial epilepsy
referred for presurgical evaluation®.

Localization of the FCD lesion(s) is necessary if surgical resection is to be
considered. Whether additional tissue needs to be resected is a subject of much debate in
the literature.**> A meta-analysis by Sisodiya® of approximately 60 studies found that

40% of FCD patients became seizure free after surgery.

2.2.2 Lesion detection on MRI

High-resolution MRI of the brain has made it possible to identify FCD in an
increasing number of patients.”® Lee et al.” and Chan et al.*® described three common
characteristics exhibited by FCD on MRI: ) variable degrees of cortical thickening, due
to 2 proliferation of neurons in the affected cortical layers; ii) a poorly defined transition
between gray matier and white matter, reflective of abnormal neuronal proliferation and

positioning in this area; and iii) a hyperintense signal on T1-weighted MRL



In many patients, however, lesions of FCD are characterized by minor structural
abnormalities or are too subtle to be detected by standard radiological evaluation. Hence,
visual analysis of conventional MRI may miss a significant proportion of FCD lesions.
Thus, several technigues have been developed to assist in lesion detection. Chan et al.
1998 showed that the use of T2-weighted fast multiplanar inversion recovery images can
assist visualization on conventional MRL Bastos et al.”’ used curvilinear reconstruction
(an alternative method of presenting of 3D MRI data that can improve the display of
complex gyral structures of the hemispheres) to help visually identify lesions in 4 of 5
patients who had been classified as normal based on analysis of conventional MRI.
Montenegro et al.*® applied curvilinear reconstruction to improve lesion visualization in
33% of subjects. Woermann et al. 5% and Kassubek et al.%" used statistical parametric
mapping, based on voxelwise comparisons of gray level intensity in FCD patients relative

to healthy controls, to help locate lesions.

2.3 Modeling MRI characteristics of FCD

One hypothesis explored in this thesis is that lesion visualization can be improved
through the use of computational models of the characteristics of FCD evident on T1-
weighted MRI: increased cortical thickness, blurring of the interface between gray matter
(GM) and white matter (WM), and hyperintense T1 signal. Methods applied to each one

are described here.

2.3.1 Measuring Cortical Thickness on MRI



Accurate measurement of cortical thickness on MRI is a challenging problem.
The first step in most studies is to segment the cortex. This can be done to a good first
approximation using segmentation techniques to separate the brain into its GM, WM, and
cerebrospinal fluid (CSF) (and perhaps partial volume) components. Multi-channel
approaches require information from two or more MRI acquisitions (e.g., T1, T2, and
PD). The intensity profile across the different scans at each voxel is used to classify the
voxel by tissue type. This approach was adopted in several studies.® %

Single-echo approaches rely on a single (usually T1 weighted) MRI acquisition.
Some single-echo approaches rely upon analysis of the gray level intensity hjStogram.
Momenan et al.*’ combined information from the histogram with a clustering technique
to segment the brain into GM, WM, and CSF. Schnack et al.% described a simple
method wherein polynomial curves were fitted to the intensity histogram of a T1 volume
to determine an intensity threshold separating GM from WM. Other single-echo
segmentation studies have relied upon the estimation of the statistical distribution of
intensity for each tissue class: Shattuck et al.%” developed statistical models of intensity
distribution for tissue classes within T1 MRI, enabling tissue classification via a Bayesian
classifier, while Rajapakse et a1.% and Ruan et al.* combined statistical models of
intensity distribution for each tissue class on T1 MRI with Markov random field models
to perform tissue segmentation.

Isolating GM tissue using methods such as those described above can provide an
adequate approximation of the cortex for some applications. However, such techniques

generally do not address issues such as non-separation of adjacent gyri which can be an

impediment to more accurate cortical extraction. Thus, more sophisticated, surface-based
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techniques for cortical extraction have been developed. MacDonald et al.”® Fischl et

al.”, and Dale et al.”

have developed techniques incorporating anatomical constraints to
achieve more accurate gyral separation. Magnotta et al.” approached the problem using
a technique based on the erosion of cortical GM. Jones et al.! relied upon edge thinning
and gradient information.

Once cortical extraction has been accomplished, most methods of measuring
cortical thickness proceed by selecting a point on either the inner or outer cortical
surface, using an algorithm to determine a corresponding point on the other surface, and
then measuring the length of the straight line connecting the two.”""" One drawback to
this approach is that thickness is defined only for voxels along the internal and external
surfaces of gyri. Further, this approach can lead to solutions that are incongruent with the
structure and organization of the cortex. For instance, lines can intersect, or multiple
lines can start or end at a particular voxel. To avoid such problems, a recent study by
Jones et al.! borrows a tool from mathematical physics. The method models the cortex as
an equipotential surface with boundary conditions set on both surfaces. Laplace's
equation is then solved over the cortex, creating a series of "equipotential surfaces”.
Thickness at a given voxel is determined by the length of the pa{h that passes through the
voxel and is perpendicular to each equipotential surface. This approach avoids the
problems described above. Recent studies by Yezzi et al.”*)”® have expanded on Jones's

method, using a pair of linear, first-order partial differential equations to compute path

lengths after solving Laplace's equation.

2.3.2 GM/WM interface
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FCD lesions often exhibit a blurred GM/WM interface, reflective of abnormal
neuronal proliferation and positioning. Extraction of the GM/WM interface on MRI has
been addressed largely as a by-product of cortical and WM surface extraction.”®’® Cook
et al.” applied fractal analysis to MRI and found differences in fractal dimension of the

GM/WM interface in patients with frontal lobe epilepsy compared to controls.

2.3.3 Hyperintense T; signal
This property is easily quantified through the use of first order statistics.
Therefore no studies have focused on developing techniques to model this MRI

characteristic of FCD.

2.4 TEXTURE ANALYSIS

The final hypothesis presented in this thesis is that combining the aforementioned
computational models of MRI characteristics of FCD with texture analysis of MRI can
enable automated FCD lesion identification. Texture is an important‘property of an
image, yet it has no precise definition. In an intuitive or qualitative sense, texture can be
taken to represent image properties such as shading variations, coarseness and regularity.

Texture analysis seeks to quantify these patterns in a systematic way.

2.4.1 Approaches to texture analysis

There are several approaches to texture analysis. Statistical methods examine the
distribution of intensity levels within an image. First order statistical methods involve
analysis of the gray-level histogram. Second order statistical methods consider the

spatial distribution of gray level intensities. Julesz carried out much research regarding
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the discrimination of different textures based on the properties of their spatial statistics.”® |
®3 The most widely used method of analyzing second-order statistical properties was first
proposed by Haralick 8 This study described an approach to quantifying image texture
by i) calculating gray-level co-occurrence matrices (GLCMs), which store information on
the spatial relationship between gray-level intensity pairs by tallying the occurrences of
pairs of voxels exhibiting particular intensities and separated by a given distance in a
given direction, and ii) applying various texture operators to these co-occurrence matrices
in an attempt to capture different aspects of the information contained therein. In the
context of GLCM-based texture analysis, texture operators are mathematical functions
that are calculated over the GLCM and are designed to quantify a particular aspect of the
distribution of entries in the GLCM, such as the degree of clustering along the diagonal.
Unless otherwise noted, in the remainder of this work it will be assumed that the term

texture analysis refers to GLCM-based approach.

2.4.2 Applications to the medical domain
Although texture analysis was originally developed for non-medical applications
such as satellite imagery™, it has been employed in a variety of medical applications.

Multiple studies have applied texture analysis to digital mammograms to help detect

95-97 98-104

microcalcifications or to differentiate between benign and malignant masses.

Other applications that have been studied are the discrimination of benign moles from

105,106

malignant skin cancer , staging of cervical lesions 17 bone loss '%!%, detection of

112

myocaurditisl 10,11 1, detection of diseased skeletal muscle ~, checking for abnormal

testicular growth''?, discrimination of soft-tissue tumors' ', analysis of colorectal
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tissue' >''®, discrimination of cirthotic livers from normals''’, detection of prostate

cancer''®, and detection of abnormalities within chest radiographs '°.

2.4.2. 1 Texture analysis of brain MRI

A collaboration among several research centers in Europe (the COST B11
European Community project) has focused on the application of texture analysis to
MRI'?*121 The major output of this project has been the development of a software
package (MaZda). Relatively few studies in general have reported on the application of
texture analysis to brain MRI. The studies that have been published can be divided into

two groups based on the way in which texture analysis is applied.

2.4.2.2 Texture analysis of brain MRI: single ROl approach

In this approach, texture analysis is applied to one or more isolated regions of
interest (ROI) such as a 2D MRI slice or a brain tumor. In most studies of this nature, the
object is to perform differential diagnosis or to characterize disease progression.
Freeborough & Fox 122 were able to discriminate between brains of Alzheimer’s patient

and normal controls using texture analysis. They also report using texture analysis to

1
1 23

track the progress of the disease. Mathiaseta could differentiate between spinal

cord cross-sections of controls and MS patients, as well as monitor changes associated

4
1.12

with the course of MS. Yu et al. “*used texture analysis to distinguish between active and

126

non-active MS plaques. Schad et al.'® and Lerski et al."*® were able to differentiate

127

between edema and tumors. Yu et al.'*’ revealed abnormalities in apparently normal

hippocampi contralateral to hippocampal sclerosis.
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2.4.2.3 Texture analysis of brain MRI: mapping approach

To perform texture mapping, a small region of interest (ROI) is centered on each
voxel within an image. Texture analysis is then performed over each ROI, and the
resulting texture property mapped to the location of the center voxel to create the texture
map. The few studies applying this technique to MRI have been concerned with lesion or
tissue segmentation.

Kjaer et al.’?® achieved success in segmenting brain tumors using texture
mapping. As well, they were able to distinguish between edema and tumours.
Kovalev'? used texture mapping based on a six-dimensional co-occurrence matrix to
distinguish between patif;nts with mild cognitive disturbances and healthy older control
subjects. They were also successful in segmenting regions exhibiting diffuse white
matter hypointensities. The six dimensional co-occurrence matrix was arrived at by
considering the co-occurrences of gradient magnitude and direction for voxel pairs in

addition to gray level intensity.

2.5 BAYESIAN CLASSIFICATION

The two main components of this thesis are computer-assisted prediction of
surgical outcome in TLE patients and computer-assisted identification of lesions on T1-
MRI of FCD patients. Bayesian classifiers trained on MR data were used as tools to
accomplish these tasks and were not themselves the focus of the research. Further,
Bayesian theory and classification are well-developed and widely used concepts, and

current research in this area is outside the scope of this thesis. Thus this section will be



limited to the presentation of an overview of Bayesian theory and some examples of its

application to the medical domain.

2.5.1 Theory

A Bayesian classifier is a machine learning technique which employs Bayesian
decision theory to assign a previously unseen instance (e.g., a patient, a voxel, etc.) into a
target category given a training sample. The eponymous Bayesian decision theory was

130 More recent treatments are given by

developed by the mathematician Thomas Bayes
Mitchell®! and Duda et al."*>. Bayesian decision theory rests upon the relationship
known as Bayes theorem of conditional probability: P(4|B)=P(B|4)P(4)/P(B), where
P(A4|B) is termed conditional probability, i.e., the probability of observing 4 given that B
is true. The basic classification task is to assign an instance into the most likely class
ciefcy...... c»}, based on a set of data values X; that is, to find the ¢; that maximizes
P(cIX). P(c:|X) is termed the posterior probability. While the posterior probability is
generally difficult to determine experimentally, the class-conditional probability P(X]c)
can often be estimated from experimental data. Bayes theory allows the computation of
the posterior probability based on the class-conditional probability as follows:

P(e; X)=P(X| c)P(c)/P(X)
where P(c;) is termed the prior probability and represents the likelihood of an instance
belonging to class ¢; given the absence of any other data, i.¢. it’s prevalence in nature,

and P(X) indicates the probability of observing the particular set of data values. Once

P(c; 1X) is calculated for all 7, the Bayes decision rule can be used to classify the instance:

classify as ¢; if P(c; 1X) > P(c; |X) forallj=#1i.
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When X consists of multiple attribute values [x, x2, ..., x,] , the covariance amongst
the various attributes needs to be calculated to determine P(X| ¢;). For some applications
such as text processing, this is not feasible and necessitates the assumption of conditional

independence amongst attributes. The result is the naive, or simple, Bayes classifier’':

decide ¢; if Plc)I1Ppqlc) > P(c)Ll LP(xiicy) forallj=iand k=1:n. The assumption of

conditional independence is not always justified in some applications. However,
Domingos and Pizzani'* have demonstrated that the simple Bayes classifier can perform
at or near optimal levels even if the independence assumption is violated. For
continuously valued data such those used in this thesis, the covariance between attributes

is readily calculated, and thus the full Bayesian classifier was used.

2.5.2 Medical applications
Medical applications of Bayesian classifiers are numerous and include skin lesion

134 identification of patients at risk for femoral neck fractures'>, prognosis of

detection
patients with femoral neck fracture'*®, diagnosis of sports injuries'’, diagnosis of
hypertension based on heart rate variability'*®, detection of contraction in the

gastrointestinal tract'>, detection of EEG patterns related to nocturnal hypoglycemia'®’,

staging of astroc omasm, and classification of sleep stage based on EEG'*.
ging p stag
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3.1 Preface

The inclusion of MR methods as part of the pre-surgical evaluation of TLE has
lowered the costs and risks associated with this monitoring by reducing reliance on
techniques such as video-EEG which require prolonged hospitalization in highly
specialized units. Many studies have demonstrated the role of MR markers in
lateralizing seizure focus and have examined the relationship of_these markers to surgical
outcome in TLE patients. Most of these studies, however, have focused on group
differences; few have attempted to predict outcome for a particular patient based on MR
or other data. Further, the outcome-predictor studies published to date present classifiers
that have been trained to predict freedom from seizures, rather than to identify all patients
likely to achieve a worthwhile or better reduction in seizure frequency.

Given the non-invasiveness and reduced costs associated with MR investigations,
and the evidence of correlation of MR markers with surgical outcome, we undertook the
following study to train a classifier on MR data to help identify TLE patients likely to

benefit from surgery.
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Objective: To develop a classifier which uses magnetic resonance data to predict
surgical outcome in patients with temporal lobe epilepsy (TLE).

Methods: Eighty-one patients with medically refractory TLE who underwent surgical
treatment were studied. Patients underwent comprehensive pre-surgical investigation,
including ictal video EEG recording, proton magnetic resonance spectroscopic
imaging, and volumetric MRI. Outcome was measured using Engel’s classification
system, condensed into two outcome groups. Two approaches were taken. First,
outcome was defined as experiencing worthwhile improvement with > 90% reduction
of seizure frequency (Classes I, I, & II) or not (class IV). A second approach was to
define outcome as experiencing freedom from seizure following surgery (Class I) or not
(Classes IL, ITI, & IV). For each approach, we constructed a Bayesian classifier to
predict outcome by calculating the probability of a patient's pattern of results from
spectroscopic analysis of the temporal lobes and volumetric analysis of the amygdala
and hippocampus being associated with the various outcome groups.

Results: The worthwhile improvement classifier correctly predicted the surgical
outcomes of 60/65 (92%) of patients who experienced worthwhile improvement, and
10/16 (63%) of patients who did not. The seizure-free classifier correctly predicted the
surgical outcomes of 39/52 (75%) of patients who became seizure-free, and 21/29
(72%) of patients who did not.

Conclusions: Magnetic resonance features are important markers of surgical outcome
in temporal lobe epilepsy patients and can provide assistance in identifying surgical

candidates.
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Surgical treatment of refractory temporal lobe epilepsy (TLE) via a selective
amygdalohippocampectomy or an anterior temporal lobe resection has been shown to be
an effective means of seizure control for about 70-80% of patients.! Pre-surgical
assessment of prognosis is based on the convergence of results from multiple pre-surgical
investigations, including prolonged video-EEG monitoring, neuroimaging, and
neuropsychological tests. Video-EEG remains the most widely accepted standard for
definition of the epileptogenic area; however, such examination is costly and
inconvenient, requiring prolonged hospitalization in highly specialized units. Even after
this extensive examination, a proportion (20-30%) of patients do poorly after surgery.” 3
Improved methods for lateralization of TLE and predicting surgical outcome could
greatly facilitate the selection of patients for surgery. Towards this end, we have
developed a statistical model to predict surgical outcome, based on data from proton
magnetic resonance spectroscopic imaging (MRSI) and volumetric MRL

MRSI and MRI allow rapid, non-invasive measurement of structural and
metabolic data from the brain, in vivo. Studies have demonstrated the utility of MRSI
and volumetric MRI in the lateralization of seizure focus.*® {77 /id Kuzniecky, Hugg, et
al. 1998} Furthermore, results from MRSI and volumetric MRI have been shown to
correlate with surgical outcome. In particular, unilateral ipsilateral hippocampal atrophy
has been correlated with good surgical outcome’ ®, whereas bilateral hippocampal
atrophy has been associated with poorer surgical outcome.!! Hippocampal atrophy in

conjunction with amygdaloid atrophy'*, and decreased levels of N-acetyl-aspartate
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(NAA) in the contralateral posterior temporal lobe'> ¢ decrease the odds of a good
surgical outcome. Such results, however, do not provide a quantitative prediction of an
individual patient’s chances for a good outcome from surgical intervention.

Few studies have attempted to generate predictions for surgical outcomes for
individual patients based on pre-surgical evaluations. Neural network models have been
proposed’” '® which achieve 2 high rate of success at predicting freedom from seizures
following surgery. However, the clinical utility of neural networks is diminished by the
difficulty of interpreting the highly complex relationship between the input data and the
outcome prediction. With this in mind, we have constructed Bayesian classifiers' %
based on pre-surgical MRI volumetry and MRSI to predict surgical outcome in TLE
patients. A Bayesian classifier produces a quantitative assessment of an individual
patient's chances of a worthwhile surgical outcome, and is robust to noisy data. The
relationship between the input data and the outcome prediction is straightforward. A set
of a priori class-conditional probabilities (the probability of observing some input data
given a particular class) are transformed into a posteriori probabilities (the probability of
an instance belonging to a given class given its input data) through the application of
Bayes’s theorem of conditional probability. The classifiers developed in this paper are

based on MR data that can be acquired rapidly, non-invasively, and on an outpatient

basis.
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Patients

Subjects for this study were drawn from 318 consecutive patients with
pharmacologically refractive suspected TLE seen by the epilepsy service at the Montreal
Neurological Hospital between 1994 and 1998. Of these 318 patients, 201 patients were
not operated, either because they were on a surgical waiting list, or were still undergoing
investigation, or a consensus assessment (of neurosurgeons, neurologists, and
neuropsychologists) was not reached during conventional pre-surgical evaluation. Of the
remaining 117 patients who\ did undergo surgery, 36 were excluded from the study due
to either extra-temporal involvement (n=9), the presence of a space occupying lesion
(e.g., tumor, vascular malformation, n=12), lack of pre-operative volumetric MRI or
MRSI data (n=5), or lack of follow-up data (n=10).

Thus, the patient database for this study consisted of 81 individuals (50 women,
31 men) with "non-lesional” TLE (mean age 35 +/- 11.2 years). All patients underwent
surgical treatment for TLE; 41 patients underwent anterior temporal lobe resection, and
40 patients underwent a selective amygdalo-hippocampectomy. No significant
differences were found between these two patient groups on any of the variables utilized
in this study. All patients underwent prolonged video-EEG monitoring, using the
International 10-20 system including sphenoidal electrodes, and were operated on the
side of maximum EEG abnormality. The determination of side of maximum EEG
abnormality reflected the overall prolonged EEG analysis. For patients in whom

lateralization by ictal onset was not congruent with lateralization by inter-ictal EEG, or in
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whom a seizure onset on one side was followed by intra-ictal activity that predominated
on the opposite side, the ictal findings and the side of initial ictal changes were accorded
greater influence for the purpose of lateralization. The mean follow-up was 38.1 months
{(range from 9.2 to 78.2 months; 18 patients had less than a 2-year follow up). Surgical
outcomes were assessed using Engel’s modified classification scheme.”! The breakdown
of the patients’ surgical outcomes was as follows: 52 patients with Class I outcome (free
of seizures or residual auras), 1 with Class II outcome (less than 3 seizures per year), 12
with Class III outcome (worthwhile improvement, >90% reduction in seizure frequency),
and 16 with Class IV outcome (no worthwhile improvement, <90% reduction in seizure
frequency).

Due to the small number of patients in Classes II and III, we grouped patients
into two consolidated outcbme groups for classification purposes. Two approaches were
used. For the first approach, outcome was defined as experiencing worthwhile
improvement in terms of seizure frequency (Engel’s Classes I, II, and III, n=65), or not
(Engel’s Class IV, n=16). This grouping was chosen in order to consider the largest
possible number of patients who would attain at least some benefit from surgery. For the
second approach, outcome was defined as being free from seizures following surgery
(Engel’s Class I, n=52), or not (Engel’s Classes ILIIL and IV, n=29). This grouping was
used because freedom from seizures is the optimal outcome and therefore the one sought

by many patients.

MRI acquisition and volumetric analysis
MRI studies were performed using a Philips ACS II or IIl combined imaging and

spectroscopy system (1.5 T, Philips Medical Systems, Best, The Netherlands). Because of
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changes in clinical practice at our institute, two MRI volumetry protocols were used over
the course of this study. Initially, we used 3-mm thick, contiguous coronal slices
perpendicular to the plane of the Sylvian fissure acquired with a three-dimensional fast-
field echo or inversion recovery sequence (n=20). Subsequently, we used global MR
images obtained with an interpulse delay (TR) of 18 ms, a gradient-echo refocusing time
(TE)of 10ms, 2 30° angle, and 1 mm isotropic voxels (n=61). The MRI data were

exported to a SunSparc workstation and the volumes of the left and right amygdaloid and

Figure 1. MRI volumetry protocol. Angled coronal MRIs of the cerebral hemispheres with
mesial structures outlined on the left side. a) amygdala (A). b) Posterior portion of the
amygdala (top) and head of hippocampus (H) (bottom). ¢) body of hippocampus. d) tail of
hippocampus.
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anatomical protocol (figure 1) described elsewhere.”? All volumetric analyses were done
blind as to the side of the seizure focus.

As described previously4, the volumes of the left and right amygdalae and
hippocampi were obtained. Asymmetry scores for the amygdaloid and hippocampal
volumes were calculated as (left volume - right volume)/[(left volume + right volume)/2].
These six values were transformed into Z-scores by comparison to measurements made
on a group of healthy control subjects using the same two protocols (n=30 and n=22,
respectively). Z-scores were subsequently categorized as contralateral or ipsilateral

relative to side of surgery, rather than left or right.

MRSI acquisition and data analysis

MRSI studies were performed using the same scanner. Scout images were
obtained in the axial and sagittal planes. These were followed by acquisition of a multi-
slice transverse spin-echo MRI using a TR of 2000 ms and a TE of 30 ms. The temporal
lobe MRSI volume of interest (VOI) included part of the head, the whole body and the
whole tail of the left and right hippocampi, as well as portions of gray and white matter in
the mid and posterior parts of the temporal lobes (figure 2). The size of this VOI was
approximately 85-100 mm in the left-right axis, 75-95 mm in the antero-posterior axis,
and 20 mm in thickness. After post-processing, individual voxels within the VOI
measured approximately 12 mm x 12 mm x 20 mm.

A water-suppressed MRSI was acquired from the VOI (TR = 2000 ms, TE =272
ms, 250 x 250 mm field of view (FOV), and 32 x 32 phase-encoding steps), followed by

a MRSI without water suppression (TR = 850 ms, TE = 272 ms, 250 x 250 mm FOV, and
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16 x 16 phase-encoding steps). Post-processing included zero-filling the non-water-
suppressed MRSI to obtain 32 x 32 profiles, followed by application of a mild Gaussian
k-space filter and an inverse 2D Fourier transformation to both water-suppressed and
non-suppressed MRSI scans. The resulting time domain signal was lefi-shifted and

subtracted from itself to improve water suppression.”

Amygdala

, Hippocampus

== Mid-temporal lobe

Posterior
emporal lobe

Figure 2. Proton magnetic resonance spectroscopic imaging (MRSH)
volume of interest (VOI). Positioning of VOI (outer rectangle) was angled
along the hippocampal axis (dotted line on sagitial slice). The size of VOI
was ~85-100 mm in the left-right axis, 75-95 mm in the antero-posterior
axis, and 20 mm in thickness. After post-processing, individual voxels
within the VOI were ~ 12mm x 12mm in plane. The medial temporal lobe
included the head and part of the body of the hippocampus. The posterior
temporal lobe included the tail and part of the body of the hippocampus, as
well as axonal projections.

MRSI spectra were excluded from the analyses if they were artifactually

broadened (i.e. full width at half maximum >10 Hz). For each subject, locally developed
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software was used to calculate the average NAA/Cr values for the mid and posterior
regions of interest (ROI) in left and right medial temporal lobes, as previously described ‘,
The mid temporal ROI included tissue from the head and body of the hippocampus,
whereas the posterior temporal ROI included tissue from the tail of the hippocampus.
Both ROIs also included surrounding portions of gray and white matter. Asymmetry
scores for mid-temporal NAA/Cr and posterior temporal NAA/Cr were calculated as (left
value- right value)/[(left value + right value)/2]. The regional NAA/Cr levels and
asymmetry values were transformed into Z-scores by comparison to measurements made
on a group of 30 healthy control subjects. Z-scores were subsequently categorized as
contralateral or ipsilateral relative to side of surgery, rather than left or right. All MRSI

analyses were done blind as to the side of the seizure focus.

Design of Bayesian classifiers and statistical analysis

The Bayesian classifiers were implemented in MATLAB 4.2 (The MathWorks
Inc., Natick, MA) running on a Red Hat Linux 5.2 platform. A Bayesian classifier
predicts outcome based on how closely a pattern of data for an individual matches those
of the outcome groups based on conditional probability distributions. The major steps
involved in constructing our Bayesian classifiers were to 1) estimate the probability of a
patient from each outcome group having a particular pattern of results (class conditional
probability); i) calculate class-conditional covariance matrices for the variables used as
inputs to the classifier; iii) use the results of steps i and ii to calculate the distance (in
feature space) from a particular patient's pattern to that of each of the target classes; iv)

use the results from steps i-iii to determine the probability of a patient belonging to each
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outcome group; v) assign the patient to the outcome group associated with the highest
probability. Detailed treatment of Bayesian classification methods can be found
elsewhere.'> % Due to the limited sample size, we were unable to use separate iraining
and testing sets. Rather, we used the leave-one-out cross-validation techmqueM, wherein
each individual case is withheld and subsequently classified using the remaining N-1
cases as the training set.

The volumetric MRT and MRSI investigations yielded 12 features which could be
used as inputs to the classifier. These were ipsilateral, contralateral, and asymmetry Z-
scores for each of the following: hippocampal volume, amygdaloid volume, NAA/Cr in
the mid-temporal lobe, and NAA/Cr in the posterior temporal lobe. The choice of which
combination of MR features to feed into the classifier was based on an automated,
exhaustive feature-space search over these twelve available features.”> For each of the

twelve attributes, we performed two-tailed t-tests across the two cutcome groups.

RESULTS
Worthwhile improvement vs. no worthwhile improvement.

After an exhaustive feature-space search, it was found that the highest classification
accuracy for predicting whether a patient would experience worthwhile improvement
following surgery was achieved using the following combination of input variables (in no
particular order): NAA/Cr in the ipsilateral mid-temporal region, NAA/Cr in the
ipsilateral posterior temporal region, amygdaloid asymmetry, and hippocampal
asymmetry. Using this combination of features, 60 out of 65 (92%, 95% confidence

interval = {89.3%-95.3%}) patients who had worthwhile improvement and 10 out of 16
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(63%, 95% confidence interval = {50.4% - 74.6%}) of patients who did not have
worthwhile improvement were correctly classified, as shown in table 1. Predictive value
was 91% for patients who had worthwhile improvement, and 67% for patients who did

not have worthwhile improvement.

Predicted Wi Predicted NWI Accuracy

True WI (n=65) 60 5 92%
True NWI (n=16) 8 10 63%
Predictive Value 91% 67% Overall: 86%

Table 1. Confusion matrix for Bayesian classifier: predicting worthwhile improvement.
Wi=patients with worthwhile improvement in seizure frequency following surgery
(Engel’s class LII, & ITI). NWI=patients with no worthwhile improvement in seizure
frequency following surgery (Engel’s class IV).

Seizure-free vs. not seizure-free

After a separate exhaustive feature-space search, it was found that the highest
classification accuracy for predicting patients to be seizure free following surgery was
achieved using the following combination of input variables (in no particular order):
asymmetry of NAA/Cr in the mid-temporal region, NAA/Cr in the contralateral posterior
temporal region, asymmetry of NAA/Cr in the posterior temporal region, and
hippocampal asymmeitry. Using this combination of features, 39 out of 52 (75%, 95%
confidence interval = {64%-86%}) patients who were seizure-free, and 21 out of 29

(72%, 95% confidence interval = {56% - 88%}) of patients who were not seizure-free
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were correctly classified, as shown in table 2. Predictive value was 83% for seizure-free

patients, and 62% for patients who did not become seizure-free.

Figure 3 shows box-and-whisker plots representing the distribution of all twelve
features for the two outcome groups. Asymmetry values were significanily more
accentuated ipsilaterally for NAA/Cr in both the mid and posterior temporal lobes, and
for hippocampal and amygdaloid volumes in patients who had worthwhile improvement
compared to patients who did not have worthwhile improvement. NAA/Cr in the
contralateral posterior temporal region and contralateral hippocampal volume were
significantly lower in patients who did not have worthwhile improvement as compared to

patients who had worthwhile improvement.

Predicted SF Predicted NSF A ccuracy

True SF (n=52) 39 13 75%
True NSF (n=29) 8 21 72%
Predictive Value 83% 62% Overall: 74%

Table 2. Confusion matrix for Bayesian classifier: predicting freedom from seizures. SF=patients
who became seizure-free following surgery (Engel’s Class |).NSF=patients with did not become
seizure-free following surgery (Engel’s Class ILIHI, & IV).

Figure 4 shows box-and-whisker plots representing the distribution of all twelve
features for seizure-free vs. non-seizure-free patients. NAA/Cr in the contralateral
posterior temporal lobe was significantly higher, and asymmetry of NAA/Cr in the

posterior temporal lobe was significantly more accentuated ipsilaterally for seizure-free

patients.
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The Bayesian classifiers developed in this study provide a simple method of
utilizing MR results to predict surgical outcome in TLE patients. For both classification
problems, there was considerable overlap between the two outcome groups for all twelve
MR attributes (figures 3 and 4), demonstrating the robustness of the classifiers to such
data.

The worthwhile improvement classifier correctly predicted poor outcome for
more than half of the patients who experienced no worthwhile improvement following
surgery. This is an important result because the conventional pre-surgical evaluation
process identified all patients in this study as viable surgical candidates (indicated by the
very fact th\at they underwent an operation).

For the patients included in this study, the overall accuracy of the worthwhile
improvement classifier (defined as the number of correct predictions across outcome
group divided by the total number of patients; see table 1) was higher (70/81, or 86%)
than conventional pre-surgical evaluation (65/81, or 80%; all 81 patients in the study
were operated upon, indicating an expectation of worthwhile improvement in all cases.
This expectation was correct for the 65 patients who experienced worthwhile
improvement following surgery). Unfortunately, a full comparison of the predictions
made by this classifier to the predictions based on conventional pre-surgical evaluation is
impossible. Predictions of no worthwhile improvement generated by the classifier can be
checked against actual surgical outcome because surgery was performed on all patients in

this study. However, predictions of no worthwhile improvement made by conventional
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pre-surgical evaluation (i.e., a decision to not operate) cannot be tested against actual
surgical outcome, since surgery was not performed in these cases. For the seizure-free
classifier, comparison to the results of conventional pre-surgical evaluation is not
possible, as predictions regarding freedom from seizures were not recorded as part of the
standard pre-surgical evaluation, and are not necessarily the basis for a decision to
operate.

For both classifiers, it is difficult to draw conclusions from the combination of
features that produced the highest classification accuracy, since our relatively small
sample size precludes finding significant differences in classification accuracy across
various feature combinations. A more important point is that MR features can be used to
predict an individual patient’s surgical outcome with reasonable accuracy. These features
directly address the neurodegenerative aspects of TLE. Atrophy of the mesial temporalv
structures results from neuronal loss. Decreases in NAA/Cr levels can indicate either
neuronal loss or dysﬁmctxion.3 ! Thus, the pattern of MRI and MRSI markers over the
various regions and structures of interest can indicate the distribution of structural or
metabolic changes within the mesial temporal lobes and therefore help define the area(s)
involved in seizure generation.

Methods for lateralizing seizure foci in TLE patients using only MRSI and
volumetric MRI have been previously established.” > > An MR-based classifier for
outcome prediction that is not dependent on extensive EEG results could eventually lead
to faster and less invasive techniques for pre-surgical evaluation. This is not to say that

conventional depth-EEG evaluation is unnecessary. Our classifiers were developed and
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Z-score

Figure 3. Box-and-whisker plots showing the distribution of the twelve MR features (in Z-scores) for

patients with worthwhile improvement in seizure frequency following surgery (Engel’s Classes i)

compared to patients with no worthwhile improvement in seizure frequency following surgery (Engel’s Class IV).
The height of each box describes the range within which the central 50% of values fall. The top and bottom
edges of the box indicate the 75" and 25" percentiles, respectively. The whiskers indicate the range of
observed values that fall within 1.5*(75™ percentile — 25" percentile). The overlaid symmetrical dot density
plot displays the density of the data points; 0 = worthwhile improvement (n=65), x = no worthwhile

improvement (n=16). A) NAA/Cr in the mid-temporal region; B} NAA/Cr in the posterior temporal region;

C) amygdaloid volume; D) hippocampal volume. Ipsi=ipsilateral value; Contra=contralateral value;
Asym=asymmetry score. Asterisks (*) indicate a significant difference between the two outcome groups;
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Figure 4. Box-and-whisker plots showing the distribution of the twelve MR features (in Z-scores) for

patients who became seizure free following surgery (Engel’'s Class 1} compared to those who did not

(Engel’s Classes li-IV). The height of each box describes the range within which the central 50% of values fall.
The top and bottom edges of the box indicate the 75" and 25" percentiles, respectively. The whiskers indicaie
the range of observed values that fall within 1.5*(75" percentile - 25" percentile). The overlaid symmetrical
dot density plot displays the density of the data points; 0 = worthwhile improvement (n=65), x = no worthwhile
improvement (n=16). A} NAA/Cr in the mid-temporal region; B) NAA/Cr in the posterior temporal region;
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tested only on patients already diagnosed with TLE. However, the classifiers do offer the
potential of more efficient pre-surgical evaluation.

Comparing patients who experienced worthwhile improvement to those who did
not, all four asymmetry indices differed significantly across outcome group, with patients
who had worthwhile improvement having more negative values, indicating a more
ipsilaterally-weighted abnormality. These results support previous studies of the
relationship of amygdaloid®® and hippocampal9’ ' asymmetry, and mid and posterior

1527 o surgical outcome. The value of asymmetry

temporal lobe NAA/Cr asymmetry
scores was highlighted by the finding that while neither ipsilateral nor contralateral
amygdaloid volumes differed significantly across outcome group, asymmetry of
amygdaloid volume was significantly different for patients who had worthwhile
improvement compared to patients who did not have worthwhile improvement.

NAA/Cr in the contralateral posterior temporal lobe was found to be significantly
lower for patients with no worthwhile improvement compared to patients with
worthwhile improvement. These findings support previous work in which NAA
reduction in the contralateral posterior temporal lobe significantly increased the chances
of poor surgical outcome in patients'with bilateral hippocampal atrophy'” and in patients
with normal-appearing lflippocampi.]6 The results of the present study suggest this holds
regardless of a patient’s volumetric results and indicate that NAA/Cr in the posterior
temporal region is an important prognostic marker.

Contralateral hippocampal atrophy was significantly more pronounced in patients

who did not have worthwhile improvement. We consider this to be a novel finding;

previous studies have not examined the prognostic value of the contralateral
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hippocampus independently of the ipsilateral hippocampus, focusing instead on the role
of bilateral hippocampal atrophy.'" 28 Nevertheless, our results are in keeping with
findings reported in groups with bilateral hippocampal atrophy.'!

Comparing seizure-free to non-seizure-free patients, NAA/Cr in the contralateral
posterior temporal lobe was significantly higher, and appropriately lateralized asymmetry
of NAA/Cr in the posterior temporal lobe was greater for seizure-free patients. These
results mirror the pattern of the comparison between patients who experienced
worthwhile improvement and those who did not, in that contralateral involvement was
more pronounced in the poorer outcome group, while abnormalities were more
ipsilaterally accentuated in the favorable outcome group.

A limitation of this study is the relatively small patient sample size. With a larger
database than is currently available, one single classifier could be constructed to consider
the four main outcome classes in Engel’s system separately. While we used the leave-
one-out cross-validation technique to minimize over-fitting of our data in the current
study, a larger database would further improve the generalization of the classifiers by
allowing the use of separate training and test sets.

Including other MR data such as T2-relaxometry in the classifier may also help
improve the classification accuracy. This would be 2 worthwhile avenue to pursue in
future work. Resection size may also influence outcome.?%30 The decision to perform a
temporal lobectomy or a selective amygdalohippocampectomy is made pre-operatively,
although the choice of procedure does not appear to affect outcome.' However,
resection size is not determined pre-surgically, and therefore cannot be included as part of

a pre-surgical attribute set used to predict outcome. Hypothetically, this obstacle could
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be overcome, with a much larger patient database, by maiching the outcome class with
the resection size. This approach would create "complex” outcome classes of worthwhile
improvement with large resection, worthwhile improvement with small resection, no
worthwhile improvement with large resection, and no worthwhile improvement with
small resection, or similar outcome complexes using the seizure-free and not seizure free
outcome groups.

We are not suggesting that classifiers such as the one developed in this study can
make the ultimate decision to operate on a particular patient. The classifier does not
make the diagnosis of TLE, and reduction in seizure frequency is only one aspect of
surgical outcome. For example, the possibility of cognitive deficits after surgery is also
an important consideration when deciding whether to operate on a patient. The
individual circumstances of patients involved also need to be considered when evaluating
the surgical option. Nevertheless, our results suggest that the classifier developed in this
study can provide valuable guidance in identifying surgical candidates, and that MR

markers should be used more widely for this purpose.
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The results in the previous chapter demonstrated the utility of machine learning
methods applied to MR data regarding the pre-surgical evaluation of patients with TLE.
Another common form of epilepsy is extra-temporal lobe epilepsy (ETLE).
Malformation of cortical development (MCD) is a common underlying cause of ETLE.
Focal cortical dysplasia (FCD) is in turn a common form of MCD. For patients with
FCD, lesion detection is a critical component of pre-surgical evaluation. Several MRI
characteristics of FCD lesions have been identified'*’. However, in many patients,
lesions of FCD are characterized by minor structural abnormalities that g0 unrecognized
or are too subtle to be detected by standard radiological analysis. Thus we hypothesized
that improved lésion detection could be achieved through the use of mathematical models
of the MRI characteristics of FCD.

The papers in this chapter trace the development of a method for assisting the
visual detection of FCD lesions based on this idea. Our initial approéch was to
implement first-order statistical and morphological operators to measure visually
discernable MRI characteristics of FCD lesions. We built upon our initial results by

including results from second-order texture analysis, a technique which can quantify
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information regarding tissue structure or organization not readily accessible through
visual analysis, and by employing machine learning technigues to pefferm automated

lesion detection.
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In many patients, focal cortical dysplasia (FCD) is characterized by minor structural
changes that may go unrecognized by standard radiological analysis. To increase the
sensitivity of MRI for the detection of subtle lesions of FCD, we developed voxel-based
image post-processing methods, including first-order texture analysis and morphological
processing modeled on known MRI features of FCD. We selected 16 patients with
histologically proven FCD. Image processing features were calculated over a
neighborhood for each voxel in the 3D T1-weighted MRI Three feature maps were
generated: (i) gray matter thickness map to mode] cortical thickening (ii) gradient map to
model blurring of the GM-WM junction, and (iii} relative intensity map to model
hyperintense signal within the lesion. These feature maps were combined into a single
“ratio map” to facilitate visual analysis. Two observers detected lesions on conventional
MRI in 8/16 and on ratio maps in 14/16 patients. Sensitivity was 87.5% (14/16) for the
ratio maps compared to 50% (8/16) for MRI (p<0.003). Specificity was 95% (19/20) for
ratio maps and 100% (20/20) for MRIs. Cohen’s Kappa was 0.53 for MRIs indicating
moderate agreement and 0.83 for ratio maps indicating strong agreement beyond chance
between the two observers. The image processing methods developed in this study
improve visual detection of FCD, even in cases where no lesion is obvious en MRIL

These techniques could increase the number of patients with partial epilepsy who could

benefit from surgery.
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Focal cortical dysplasia (FCD), a neuronal migration disorder, was originally reported by
Taylor . Tt corresponds to a localized disruption of the normal cortical lamination
associated with an excess of large, aberrant neurons, an increase in cortical thickness, and
often, abnormal neuroglial elements in the underlying white matter (WM). The dysplastic
tissue retains sufficient connectivity to produce seizures 23 Indeed, FCD is the most
common form of developmental disorder in patients with pharmacologically intractable
partial epilepsy referred for presurgical evaluation ‘

On magnetic resonance imaging (MRI), FCD is mainly characterized by variable
degrees of cortical thickening, a poorly defined transition between gray matter (GM) and
white matter (WM), and hyperintense signal within the dysplastic lesion with respect to
normal cortex °. High-resolution MRI of the brain has been proven to be clinically useful
in the evaluation of patients with partial epilepsy of neocortical origin and has made it
possible tb identify FCD in an increasing number of patients 67 However, in many
patients, lesions of FCD are characterized by minor structural abnormalities that go
unrecognized or are too subtle to be detected by standard radiological analysis.

Morphology and texture are important features for visual assessment of an image.
The texture of an image can be described by the distribution of brightness and darkness
within that image. Computer-based texture analysis of digital images provides
quantitative information about spatial gray level variations in pixel neighborhoods 89
Mathematical texture analytic techniques are objective and more sensitive than the
human eye. Statistical, or first-order, texture analysis involves the extraction of various
mathematically defined image texture features, often measured via a histogram, which

characterizes the gray level distribution within local pixel neighborhoods 1
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To improve our ability to detect dysplastic lesions in patients with intractable
partial epilepsy, we developed straightforward voxel-based image processing techniques,
including gray matter thickness, local gradient and pixel intensities with regard to gray
matter and white matter. These features were chosen to model iz vivo the pathological
characteristics of FCD. We hypothesized that such image post-processing could increase

the sensitivity of MRI for the detection of subtle lesions of FCD.

Subjects

We selected 16 patients who had histologically proven FCD at operation. All
patients had focal corticectomies. In eight patients, FCD had been recognized on MRI
prior to the surgery. In the remaining eight patients, MRI had been reported as normal.
For patients in whom no lesion was visible on MRI, surgery was basgd on strong clinical
and EEG co-localizing data. Resections were performed in the parietal lobe in 7 patients
and the frontal lobe in 9 patients. Fourteen patients became seizure free and two had a

significant reduction in attack frequency and severity (mean follow up 26 months).

MRI acquisition
Preoperative MRI volumetric images were acquired on a 1.5 T Gyroscan (Philips
Medical System, Best, The Netherlands) using a T1-fast field echo, TR=18, TE=10, 1
acquisition average pulse sequence, flip angle=30°, matrix size=256x256, FOV=256,
3

thickness=1mm. Approximately 170 slices with an isotropic voxel size of 1 mm” were

acquired. Proton-density and Tr-weighted images (thickness 3.0 — 5.0 mm, gap 0.3, TR
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2100 ms, TE 20, 78 ms) were obtained in all patients and showed an increase in signal
within the lesion in 9 of them. Fluid attenuation inversion recovery images (FLAIR, slice
thickness 3.0 mm, inter-slice gap 0.3 mm, TR 6000 ms, TE 150 ms, TI 1900 ms, FOV
230 mm) were obtained in 12 patients and showed signal abnormality in 5 of them. T1-
weighted MRIs were examined by a neuroradiologist on a workstation. Standard T2-

weithed images and FLAIR images were examined on film.

Image preparation

Images were analyzed on a Silicon Graphics workstation (Mountain View,
California, USA, 200 MHz, MIPS R 5000, 56 Mb RAM) using locally developed
software. All MRIs were free of visible motion artifacts. Images were automatically
registered into stereotaxic space to adjust for differences in total brain volume and brain
orientation !'. Each image underwent automated correction for intensity non-uniformity
and intensity standardization 2. This correction produces consistent relative gray matter,
white matter and CSF intensities. Classification of brain tissue in GM and WM was done

using a histogram-based method with automated threshold.

Image processing

Image processing features were calculated for each individual voxel within the
T1-weighted 3D MRI, resulting in a three-dimensional map for each feature.

To model cortical thickening, a morphological operator was used wherein each
individual voxel was used as the starting point for gray matter run-length coding B

performed in each possible point-to-point direction (Figure 1A). On the gray matter
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thickness map, regions of increased intensities correspond to increased gray matter
thickness.

To model blurring of the transition between GM and WM, we calculated the
absolute gradientm of gray level intensities. This first-order texture feature was calculated
over a 5x5x5 cube centered on each voxel. In regions of normal transition between GM
and WM, the gradient was expected to be steep. In regions of GM-WM blurring, the
gradient was expected to be less steep (Figure 1 B). On the gradient map, lbw intensity
corresponds to blurring of the GM-WM transition.

To model the hyperintense signal within the lesions of focal cortical dysplasia on
T1-weighted images, we developed a feature that calculated the absolute difference
between the intensity of a given voxel and the intensity at the boundary between GM and
WM (B,), defined using a histogram, given by the fuhction

f(ij.}) = 100¥[Bg- [Bg-g(ij k)| 1/Bg ,
where g(i,j,k) represents the intensity of a given voxel and f(i,j, k) is the value of the
feature for the given voxel (Figure 1 C). Using the relative difference enables the analysis
of voxels located within cortical GM in which the intensity is higher than normal and
overlaps that of the WM. GM at higher intensity is close to the GM-WM boundary. On
the relative intensity map, higher intensity corresponds to hyperintense signal within the
lesion.

On T1-weighted MRI, lesions of focal cortical dysplasia are characterized by an
increase in gray matter thickness and an increase in relative intensity, and a reduction in
the gradient. Therefore, to maximize visibility of FCD lesions, a ratio map (GM thickness

x relative intensity/gray level intensity gradient) was generated.
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Figure 1. (A) The figure in the center shows a portion of a T1-weighted MRI. On the left, a small region of

cortex and adjacent white matter (box) are schematically represented in three dimensions and magnified.

Each cube represents a voxel. To model cortical thickening, each individual voxel in the T1-weighted MRI

was used as the starting point for gray matter run-length coding, performed in each possible discrete direction
(schematically represented by the arrows in the magnified brain region). A gray matter thickness map of a
healthy control is shown on the right. (B) To model the blurring between gray matter (GM) and white matter (WM),
the absolute gradient of gray level intensities was calculated in a cube centered on each voxel (dot) in the
T1-weighted MRI. In regions of normal transition (magnified region on the left) between GM and WM (magnified
region on the left), the gradient was expected to be steep. In regions of GM-WM blurring (magnified region on the
right), the gradient was less steep. A gradient map of a healthy conirol is shown on the right. C. To model the
hyperintense signal within the lesions of focal cortical dysplasia on T1-weighted MRI, the absolute difference
between the intensity of a given voxel gfij k) and the intensity at the GM-WM boundary (By), as defined by a
histogram was calculated. This feature is represented mathematically as the function

f (ij.k) = 100°[B- IByg(kj k) VB, A relative intensity map of a healthy control is shown on the right.
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Figure 2. Top panel shows a representative patient with intractable frontal lobe epilepsy, in whom the MRI showed

a lesion of focal cortical dysplasia in the left frontal lobe. The maps show increased gray matter thickness and

intensity of the lesion, and a reduction in the gradient. The ratio map (GM thickness x relative intensity/gray level

intensity gradient) clearly shows the lesion. Bottom panels show MRI and ratio map of (A) a patient with intractable

frontal lobe epilepsy and (B) a patient with parietal lobe epilepsy. In both patients, the lesions of focal cortical
dysplasia demonstrated by the ratio maps were not seen on pre-operative MRI.



The generation of the different texture maps (gray matter thickness, gradient, relative
intensity, and ratio maps) for the entire brain volume takes about 20 minutes. Images
were reviewed using the software package Display developed at the Brain Imaging
Center of the Montreal Neurological Institute. This software allows simultaneous
displaying of an MRI volume in the transverse, sagittal, and coronal planes. The user can

move throughout the volumes.

Assessment of the performance of diagnostic tests and inter-rater agreement

A series of images consisting of MRIs and ratio maps for 16 patients and 20
healthy control subjects were presented on a Silicon Graphics workstation (Mountain
View, California, USA) in random order to two trained observers wﬁo were unaware of
the final diagnosis. The evaluations were made independently; i.e., one physician did not
know the results of the other physician’s determination. A lesion was considered to have
been detected only if found independently by both observers. All other cases were
considered to be non-lesional. Mean duration for the examination of the ratio maps was 8
minutes.

To assess the performance of MRI and ratio maps as diagnostic tests, we
calculated: accuracy (percentage of correctly classified cases = [true positives+irue
negatives]/ all cases), sensitivity (the percentage of positives correctly identified = true
positives/[true positives + false negatives]), specificity (the percentage of negatives
correctly identified = true negatives /[true negatives + false positives]), reliability of

positive predictions (reliability in the prediction of positives = true positives/[true
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positives + false positives]), and reliability of negative predictions (reliability in the
prediction of negatives = true negatives/[true negatives + false negaﬁves}).

Inter-rater agreement between the two observers was assessed using Cohen’s
kappa coefficient. Values of kappa greater than 0.75 were considered to indicate strong
agreement, beyond chance, values between 0.4 and 0.79 to indicate fair to good, and
values below 0.40 to indicate poor agreement.

Statistical analysis was performed using a spreadsheet for calculation of
comprehensive statistics for the assessment of diagnostic tests and inter-rater

agreement 1

RESULTS

Table 1 presents the classification results. Overall accuracy (correctly classified/ total
cases) was 91.7% (33/36) for the ratio maps and 77.8% (28/36) for the MRIs. Sensitivity
(predicted positives/ total positives) was 87.5% (14/16) for the ratio maps compared to
50% (8/16) for MRI. This increase in sensitivity was found to be statistically significant

(p<0.003) using a Pearson’s chi-square analysis for frequency tables.

Specificity (predicted negatives/total negatives) was 95% (19/20) for ratio maps
and 100% (20/20) for MRIs. Positive predictive value was 93% (14/15) for ratio maps
and 100% (8/8) for MRIs in this group. Negative predictive value was 90.5% (19/21) for
ratio maps, compared to 71.4% (20/28) for MRIs. |

Cohen’s Kappa was 0.53 for MRIs indicating moderate agreement and 0.83 for

ratio maps indicating strong agreement beyond chance between the two observers.
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Figure 2 shows a representative example of a patient with an obvious lesion of
FCD on preoperative MR, and two examples of a patient in whom the MRI was reported

as normal, but ratic maps showed a lesion.

MRI Predicted positive Predicted negative
FCD FCD
Actual positive 8 8 Sensitivity=8/16
Actual negative 0 20 Specificity=20/20
PPV=8/8 NPV=8/28
Ratio Maps Predicted positive Predicted negative
FCD FCD
Actual positive 14 : 2 Sensitivity=14/16
Actual negative 1 19 Specificity=19/20
PPV=14/15 NPV=19/21

Table 1. Confusion matrix for performance evaluation of MRI (top) and ratio maps (bottom) for the
predicted and actual classification of control subjects (n=20) and patients with focal cortical
dysplasia (n=16). FCD: focal cortical dysplasia; PPV: positive predictive value; NPV: negative
predictive value

| Using voxel-based image post-processing methods adapted to the pathology of FCD, we
were able to detect lesions on MRI that were unrecognized by standard visual
radiological analysis. By using ratio maps based on GM thickness, blurring of the GM-
WM junction and the hyperintense signal of the lesion, we increased sensitivity of lesion
detection by 37.5% over conventional MRI analysis while maintaining a high degree of

reliability. In all cases the identified lesion overlapped with the surgibaﬂy resected area.
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Subtle cortical lesions are being increasingly recognized in péﬁeﬂts with epilepsy
with the aid of high-resolution MRI and the ability to analyze the brain volume by
multiplanar 15 and curvilinear '® reformatting. However, our results indicate that
detection of subtle dysplastic lesions may be further improved by performing
computerized quantitative analysis of the structural changes fhat characterize FCD
pathologically and in vivo on MR images. This approach makes use of the large amount
of data available in volumetric MRI scans, much of which may be too subtle to be
appreciated by visual analysis alone.

To our knowledge, this is the first study specifically dedicated to the quantitative
lesion detection of FCD in patients with intractable partial epilepsy. Previous quantitative

17,18 -
A8

MRI studies dealt with the regional distribution of gray and white matter volumes n

patients with various types of malformations of cortical development, mainly
heterotopias, and in idiopathic generalized and juvenile myoclonic epilepsy 1920

Furthermore, unlike previously published data, we were able to confirm histologically the

identified lesions of FCD in all patients.

First order texture analysis

The calculation of the absolute gradient was one of the voxel-based image post-
processing methods used in this study. Usefulness of texture analysis has been proven for
many types of images, ranging from satellite data to biomedical images. In medical
imaging, this technique has been shown to increase the level of diagnostic information
extracted from many modalities such as MR1 and ultrasound and to characterize

differences in appearances unrecognizable by visual observation. Reported applications
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include classification of pathological tissue in liver, thyroid, breast, kidney, prostate and
the heart, and characterization of brain tumors and human trabecular bone 82122

The first-order texture analysis that we used involved the extraction of image
texture features that characterizes the gray level intensity distribution within local pixel
neighborhoods. We did not calculate second-order texture features, which result from
operations performed on co-occurrence matrices and represent the joint gray level
distributions for pairs of spatially related pixels 10 We did not extend our methods to
second-order texture analysis as the calculation of co-occurrence matrices on a voxel-by-
voxel basis is computationally intensive and not feasible for whole brain volume at
present. Furthermore, physiological rationales for the discriminatory ability of features

are more easily generated for simple image processing techniques and first-order features

compared to second order features.

Morphological processing

We used run-length coding to measure gray-matter thickness because of its
simplicity. This feature resulted in a consistent high intensity along the midline cortical
gray matter, particularly the cingulate gyrus, in the GM thickness map. This is an artifact
in that it represents gray matter continuity in the plane of the cortex as opposed to
orthogonal to it. This type of artifact was largely responsible for the one misclassified
normal control ratio map. This effect could be overcome by normalizing the feature maps
of each patient to a set of maps from healthy controls or by a more sophisticated
implementation that takes orientation of the cortex into account when determining

thickness.
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In conclusion, the simple MR image processing methods used in this study,
including first-order texture and morphological analysis, improves visual detection of
FCD even in patients where no lesion is obvious on pre-operative MRI. These techniques
could considerably increase the number of patients with so-called “non-lesional” partial

epilepsy who could benefit from surgery.
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In many patients, focal cortical dysplasia (FCD) is characterized by minor
structural changes that may go unrecognized by standard radiological analysis. We
previously demonstrated that visual analysis of a composite map based on three simple
models of MRI features of FCD increased the sensitivity of FCD lesion detection,
compared to visual analysis of conventional MRI. Here we report on the use of improved
methods for characterizing FCD which improve contrast in the composite maps: a
Laplacian-based metric for measuring cortical thickness, a convolutional kernel to model
blurring of the GM/WM interface, and an operator to measure hyperintense T1 signal.
To validate these methods, we processed the MRIs of 14 FCD patients with our original
set of image processing operators and an improved set of image processing operators.
Comparison of the composite maps associated with the two sets of operators revealed that
contrast between lesional tissue and non-lesional cortex was significantly increased in the
composite maps associated with the set of improved operators. Increasing this contrast is

an important step towards the goal of automated FCD lesion detection.

INTRODUCTION

Focal cortical dysplasia (FCD) is a neuronal migration disorder corresponding to
a localized disruption of the normal cortical lamination associated with an excess of
large, aberrant neurons, an increase in cortical thickness, and often, abnormal neuroglial
elements in the underlying white matter (WM). FCD is the most common developmental
disorder in patients with medically refractory partial epilepsy referred for presurgical

evaluation'.
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On T1-weighted magnetic resonance imaging {MRI), FCD is generally
characterized by variable degrees of cortical thickening, a poorly defined transition
between gray matter (GM) and white matter (WM), and hyperintense signal within the
dysplastic lesion relative to normal cortex”. High-resolution MRI of the brain has made it
possible to identify FCD in an increasing number of patients™. However, in many
patients, FCD lesions are characterized by minor structural abnormalities that go
unrecognized or are too subtle to be detected by standard radiological analysis.

In a previous preliminary study’, we demonstrated that simple image-processing
operators modeled on the characteristics of FCD as seen on T1-weighted MRI volumes
significantly improved the sensitivity of FCD lesion detection relative to standard
evaluation of the original MRI itself (95% vs. 50%). In that study, three FCD features
were each modeled with voxelwise image-processing operators, producing a three-
dimensional map for each feature. To overcome the difficulty (for a human observer) of
reconciling visual information from three separate maps, the feature maps were combined
into a single composite map for each patient, in which FCD lesions appeared
hyperintense relative to normal cortex. Lesion detection was performed through visual
analysis of the composite maps by an expert observer. The task was complicated by the
presence of hyperintense regions in presumably non-lesional cortex, associated with
shortcomings in the selected models. These hyperintense regions served to reduce the
contrast between lesion and presumably non-lesional cortex. In almost all cases, the
expert observer could discriminate FCD lesions on the composite map, based on their
experience at analyzing composite maps and their sense of the respective spatial

distributions of lesions and other hyperintense regions within the maps. However, to
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facilitate and eventually automate FCD lesion detection, it is necessary to obtain greater
conirast between lesions and non-lesional cortex. In this paper, we incorporate more
sophisticated methods to model MRI features useful for detecting FCD and compare
them with the methods used in our previous study. Specifically, we examine whether the

improved methods increase contrast between lesions and non-lesional cortex.

AETHOD

S

Patients and MRI acquisition

Fourteen FCD patients were studied. All patients underwent focal corticectomy,
and FCD was subsequently proven based on histological examination of the resected
tissue. Preoperative MRI images were acquired on a 1.5 T Gyroscan (Philips Medical
System, Best, The Netherlands) using a T1-fast field echo, TR=18, TE=10, 1 acquisition
average pulse sequence, flip angle=30°, matrix size=256x256, FOV=256,
thickness=1mm. Approximately 170 slices with an isotropic voxel size of 1 mm® were
acquired. All MRIs were free of visible motion artifacts. To ensure image quality, the

signal to noise ratio (SNR) was calculated for each patient (mean=27.86, sd=2.01).

Image preparation

Images were analyzed on a Silicon Graphics workstation (Mountain View,
California, USA) using locally developed software. All preparatory steps were fully
automated. Each image underwent automated correction for intensity non-uniformity6.
This correction produces consistent relative GM, WM, and cerebrospinal fluid (CSF)

intensities. An effect on pathologically reduced GM/WM contrast resulting from this
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technique is highly unlikely as it uses a spline-based model of the intensity artifact field.
The spline has a support of approximately 100 mm, thus it is very unlikely that image
contrast will be significantly changed over the space of 1 cm. Images were then
registered into stereotaxic space to adjust for differences in total brain volume and brain
orientation’. Next, images were intensity normalized using a subject-specific linear
multiplier based on the median voxelwise intensity ratio of the image to an average
control brain. Finally, the skull and lipid layers were stripped from each image using the

Brain Extraction Tool®.

Image processing

Image processing operators were chosen to model three commonly noted
attributes of FCD lesions on T1-weighted MRI: increased cortical thickness, blurring of
the gray matter-white matter interface, and hyperintense signal relative to normal cortex.
Each MRI was processed with the set of operators used in the original study and with the
set of improved operators described in this work. All operators were voxel-based and
therefore produced three-dimensional feature maps. For each set of operators, the
resulting feature maps were combined into a composite map (figure 1). The calculation
of feature maps and composite maps was fully automated. Total processing time was

approximately 15 minutes per patient on an SGI workstation running IRIX 6.5.

Cortical thickness model

In the set of improved operators, cortical thickness was measured using a recently

developed procedure’ in which the cortex is modeled as an electrostatic field. Borrowing
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a tool from mathematical physics, Laplace’s equation is solved over the cortical volume
with boundary conditions specified at the gray-white and gray-CSF interfaces, creating a
series of streamlines corresponding to “equipotential surfaces”. In this sense, the method
parallels the anatomical structure of the cortex as a series of sublayers. The cortical
thickness at a given voxel is defined as the length of the path that connects the voxel to
both the GM-WM and GM-CSF interfaces and is orthogonal to all intermediary
streamlines.

The technique requires segmentation of the MRI into GM, WM, and CSF. To
perform this segmentation, a gaussian curve was fit to each of the gray and white matter
peaks in the histogram. The intensity threshold between gray and white maiter was then
automatically determined by the intersection of the two gaussian curves, eliminating the
reliance on the local minimum between the gray and white matter peaks, which can be
influenced by noise®.

This cortical thickness measurement technique overcomes the primary
disadvantage of the method used in our preliminary work. In that study, cortical
thickness was estimated by gray-matter run-length coding. Such a method is prone to
artifacts which arise when portions of the cortex happen to be aligned along a particular

search direction. In our preliminary study, this type of artifact was often visible along the

midline of the brain, particularly within the cingulate gyrus.
Blurred GM-WM interface model

In the current study, blurring of the GM/WM interface was modeled with a gradient

magnitude map. This was calculated through convolution of the MRI volume,

67



(accomplished by multiplication in the Fourier domain) with a three-dimensional
gaussian kernel calculated explicitly over the whole field. The final result was obtained
by inverse Fourier transform. In the preliminary study blurring of the GM/WM interface
was modeled with the gradient magnitude calculated in the spaiial domain over a cubic

neighborhood.

Hyperintense GM model

The same model of hyperintense GM signal within lesional tissue was
incorporated in both the original and improved feature sets. We developed a feature that
calculated the difference between the intensity of a given voxel and the boundary
intensity B, between gray matter and white matter (defined using the automated
histogram-based method previously described). Letting g represent the intensity of a

given voxel, we defined the relative intensity feature at that voxel as 1- |Bg-g|/ Bg.

Composite maps and contrast measurement

On T1-weighted MRI, lesions of FCD are characterized by an increase in GM thickness
and an increase in relative intensity, and a reduction in the gradient. Therefore, as was
done for the original feature set, a composite feature map was calculated as [cortical
thickness X relative intensity]/[gradient magnitude]. Because we calculated the gradient
magnitude, the value of the composite feature map at any voxel was non-negative. For
the small number of voxels with a gradient magnitude of zero, the corresponding value
within the composite feature map was defined as zero. In order to standardize the

composite maps, the mean and standard deviation of each composite map were computed
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Original |
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Thickness Gradient Relative Intensity Composite Map

improved
_ Features

Figure 1. Original and improved feature maps and their associated composite maps.

Axial slices taken from 3D feature maps generated by the three operators used to model
commonly noted aftributes of FCD lesions on T1-weighted MRI (increased cortical thickness,
blurring of gray-matter-white matter interfaca, and hyperintense signal relative to normal cortex).
The associated composite map, defined as thickness times gradient divded by relative intensity,
is also shown. Subject is a normal control.

Top row: Original feature maps and composite map. Cortical thickness modeled with gray matter
run-length coding. Blurring of GM-WM interface modeled with the gradient magnitude calculated
over a moving cubic window. Hyperintense T1 signal modeled as 1- 1Bg// By where g is the gray
level intensity at a given voxel and B, is the boundary intensity between GM and WM as determined
from histogram analysis. ‘

Botiom row: Improved feature maps and composite map. Cortical thickness modeled with a metric
based on the solution of Laplace’s equation over the cortical GM . Blurring of GM-WM interface
modeled with magnitude gradient calculated using a 3mm gaussian kernel calculated explicitly over
the whole field in the fourier domain. Hyperintense T1 signal modeled as in the original feature set.
The improved composite map exhibits a reduction of hyperintense regions within the cortex.



over all voxels with non-zero intensities. Since the cortical thickness metric is computed
only over cortical GM and the portion of the lesion within the GM, WM and CSF were
zero-valued within the composite maps. This process was performed for both the original
and new composite maps for each patient. Thus the units of the composite maps were Z-
scores, representing the number of standard deviations away from the mean. Contrast,
defined as the mean Z-score within lesional tissue, was calculated in both the original and
the new composite map for each patient. Lesional tissue was identified using lesion
labels that had been previously manually segmented on the MRI by an expert observer.
Percent change in contrast from the original to the new composite map was then

calculated.

Statistical Analysis
To assess whether contrast between lesional tissue and non-lesional cortex was
increased in the new set of composite maps, a one-sample t-test was performed to test

whether any increase in contrast over the patients was significantly different from zero.

RESULTS

Contrast between lesional tissue and non-lesional cortex was higher in the
improved composite maps for 11/14 patients and unchanged for 3/14. The mean percent
change of contrast was 59.3% + 61.6%. A one-sample t-test demonstrated that this
increase in contrast was significant (p=.002). In a qualitative sense, most hyperintense
regions within non-lesional cortex were eliminated, resulting in easier visual

discrimination of lesions. Representative examples are shown in figure 2. In one patient,
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Figure 2. Five examples of improved contrast. Within each panel, the conventional T1-weighted MRI
is in the leftmost column, the original composite map set is in the middle column, and the improved
composite map is in the right column. Lesion locations are indicated on the conventional MRI by
arrows. Intensity within non-lesional cortex is reduced in the improved composite map relative to the
original composite map for alf five examples.



a lesion which was not visible at all on the original composite map was clearly visible on

the improved composite map (figure 3).

Figure 3. MRI and composite maps for a patient whose lesion was not visible on the original
composite map but was evident on the improved composite map. Lesion is indicated by a red
arrow on the conventional T1-weighted MRI (left). The lesion is not visible in the original composite
map (center). However, generalized hyperintensities are seen along the midline and within the
frontal corex, and in a localized region in the right pre-central area. The improved composite map
(right) clearly shows the lesion in the left parietal area and a reduction of the intensity elsewhere in
the cortex.

DISCUSSION

We previously used simple image processing models of the pathology of FCD to
demonstrate that we could enhance lesion detection through qualitative visual analysis of
composite feature maps. The present study builds upon our previous work by
incorporating more sophisticated image processing methods that enabled us to increase
the contrast of lesions from non-lesional cortex, and thereby enhance lesion visibility.
Importantly, in one patient, the FCD lesion was visible only on the improved composite

map. The primary cause of the lower contrast in the original composite maps was greater
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incidence of hyperintense regions in presumably non-lesional cortex. Most artifacts in the
original composite map co-localized with artifacts on the original cortical thickness map,
associated with weaknesses in the original model which was based on multidirectional
GM run-length coding. The reduction of potential false positives seen in the new
composite maps was driven by the use of more sophisticated models of the MRI
characteristics of FCD, in particular, the cortical thickness model’. The resulis of our
study provide, for the first time, a clinical validation of this cortical thickness metric,
which is based upon solving Laplace’s equation over the cortical GM. Identification of
some FCD lesions on visual inspection of conventional MRI is difficult
due to their subtlety and the complexity of the brain’s convolution. A primary advantage
of the method of Jones et al. is that the thickness metric is based upon the calculation of
the equivalent of isopotential surfaces, which follow the convolution of the cortex.
While new techniques are being developed to measure cortical thickness'' and

10123214 much research has been done on integrating

perform tissue segmentation
information from multiple attributes, the results of our paper demonstrate that by
combining stable, simple mathematical models with high quality imaging data, we have
improved upon our previous methods and developed a clinically useful technique.

For use in the measurement of contrast between lesions and non-lesional cortex,
manually segmented lesion labels retrospectively painted on pre-operative MRI by an
expert observer were used to determine lesion extent. This technique was used because a

fully objective or automated technique for lesion segmentation has not yet been

developed. To maximize accuracy, the observer relied upon experience as well as
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knowledge of the extent and location of surgical resection. The latter information was of
particular assistance in the demarcation of smaller lesions.

Although potential false positives were significantly reduced in the improved
composite maps, they were not completely eliminated. Undoubtedly, most of these
instances can be attributed to overlap of feature values between lesional and non-lesional
tissue. Yet it is important to consider the possibility that some potential false positives
may in fact be true lesions of FCD. Histopathological analysis of surgical specimens in
patients who underwent surgery for medically intractable seizures have shown that FCD
may be disseminated rather than confined to a single patch' or even be multifocal .
However, given the very limited availability of autopsy studies in these patients, the
degree to which the brain as a whole may be affected remains uncertain. Furthermore,
scalp EEG studies and intraoperative recordings in patients with FCD have demonstrated
that in many patients epileptic abnormalities emanate not only from the visible lesion, but
also from normal-appearing brain regions, which were subsequently proven histologically
to harbor FCD'®. It has become clear that the areas of the brain generating these
abnormalities have to be surgically resected in addition to the visible lesion in order to
obtain a good result. Therefore, our quantitative MRI method, which makes use of the
large amount of data that may be too subtle to be appreciated by visual analysis, has an
obvious potential in identifying the true extent of malformations of cortical development.

The challenge is to identify areas of lesser but still significant pathological abnormality

and to determine if their resection may influence surgical outcome.
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In conclusion, the use of the improved models of FCD pathology presented in this
paper produce feature maps with fewer potential false positives. This improvement is an

important step towards the eventual goal of automated FCD lesion detection.
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Focal cortical dysplasia (FCD), a malformation of cortical development, is a
frequent cause of pharmacologically intractable epilepsy. FCD is characterized on T1-
weighted MRI by cortical thickening, blurring of the gray-matter/ white-matter interface,
and gray-level hyperintensity. We have previously used computational models of these
characteristics to enhance visual lesion detection. In the present study we seek to
improve our methods by combining these models with features derived from texture
analysis of MRI, which allows measurement of image properties not readily accessible by
visual analysis. These computational models and texture features Wére used to develop a
two-stage Bayesian classifier to perform automated FCD lesion detection. Eighteen
patients with histologically confirmed FCD and 14 normal controls were studied. On the
MRI volumes of the 18 patients, 20 FCD lesions were manually labeled by an expert
observer. 3D maps of the computational models and texture features were constructed
for all subjects. A Bayesian classifier was trained on the computatic;nal models to
classify voxels as cerebrospinal fluid, gray-matter, white-matter, transitional, or lesional.
Voxels classified as lesional were subsequently re-classified based on the texture
features. This process produced a 3D lesion map, which was compared to the manual
lesion labels. The automated classifier identified 17/20 manually lab’eled lesions. No
lesions were identified in controls. Thus, combining models of the T1-weighted MRI
characteristics of FCD with texture analysis enabled successful construction of a
classifier. This computer-based, automated method may be useful in the pre-surgical

evaluation of patients with severe epilepsy related to FCD.
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Focal cortical dysplasia (FCD) is a malformation of cortical development
corresponding to a localized disruption of the normal cortical lamination associated with
an excess of large, aberrant neurons, an increase in cortical thickness, and ofien,
abnormal neuroglial elements in the underlying white matter (WM). The dysplastic tissue
retains sufficient connectivity to produce seizures (Palmini et al. 1995; Gambardella et al.
1996; Avoli et al. 1999). FCD is the most common form of developmental disorder in
patients with pharmacologically intractable partial epilepsy referred for pre-surgical
evaluation (Sisodiya 2000).

On T1-weighted MRI, FCD is mainly characterized by variable degrees of
cortical thickening, a poorly defined transition between gray matter (GM) and WM, and
hyperintense signal within the dysplastic lesion relative to normal cortex (Barkovich &
Kuzniecky 1996; Lee et al. 1998). High-resolution MRI of the brain has made it possible
to identify FCD in an increasing number of patients (Barkovich & Kuzniecky 1996;
Grant et al. 1998). waever, in many patients, lesions of FCD are characterized by minor
structural abnormalities that go unrecognized or are too subtle to be detected by standard
radiological analysis. Previous attempts in assisting lesion detection included different
contrast imaging (Chan et al. 1998), multiplanar curvilinear reformatting of 3D MRI
{Bastos et al. 1999), and statistical parametric mapping (Woermann et al. 1999; Kassubek
et al. 2002).

We previously implemented and used for the first time computational models of
MRI characteristics of FCD for the purposes of lesion enhancement (Bernasconi et al.

2001).(Antel et al. 2002) Models were applied on a voxelwise basis, creating 3D maps of
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cortical thickness, gradient magnitude (modeling the transition betwéen GM and WM),
and a relative intensity operator (designed to emphasize areas with hyperintense T1
signal). Visual analysis of a composite map of these features yielded significantly higher
sensitivity for lesion detection compared to visual analysis of conventional T1-weighted
MRI (Berasconi et al. 2001).

While this technique facilitated visual lesion detection, two shortcomings of the
method were: 1) subjectivity, requiring the expertise of a highly trained observer with
particular regard to differentiating between FCD lesions and localized hyperintense
regions in presumably non-lesional cortex; and ii) reliance on a composite of feature
maps, potentially losing information regarding the pattern of feature values within lesions
and non-lesional tissue.

An automated, computer-based classifier addresses both issues by performing a
quantitative analysis of the pattern of feature values. The first issue can also be partially
addressed through the use of gray-level co-occurrence matrix (GLCM) based texture
analysis (Haralick et al. 1973), which quantifies the spatial distribution of gray-level
intensity pairs. This information may not be readily accessible through visual analysis,
and thus this technique can provide an additional basis for decision making. GLCM-
based texture analysis has been applied to MRI of the brain in several contexs:
characterization of brain tumors (Schad et al. 1993; Lerski et al. 1993), differentiating the
brains of patients with Alzheimer’s disease from those of normal controls (Freeborough
& Fox 1998), revealing hippocampal abnormalities related to hippocampal sclerosis (Yu
et al. 2001), and characterization of brain and spinal cord pathology in multiple sclerosis

(Yu et al. 1999; Mathias et al. 1999). The usefulness of applying GLCM-based texture
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analysis to brain MRI may in part arise from an intuitive parallel between changes in
spatial distributions of gray level intensity patterns and abnormal ﬁssue organization
(Schad et al. 1993), such as those thought to give rise to FCD.

Thus, the purpose of this study is to use computational models of MRI
characteristics of FCD as well as features derived from GLCM-based texture analysis as

a basis for a computer-based classifier to perform automated FCD lesion detection.

ET

Subjects

Eighteen patients with FCD (mean age = 34 +/- 2.5 yrs; 9 females, 9 males ) and
14 healthy controls (mean age = 32 +/- 4.1 yrs; 8 females, 5 males) were studied. All 18
FCD patients underwent surgical resection of the FCD lesion due to pharmacologically
intractable epilepsy. As part of a standard pre-surgical radiological investigation, FCD
had been prospectively recognized on MRI prior to surgery in 11 of the 18 patients. For
the seven patients in whom no lesion was visible, surgery was based on strong clinical
and EEG co-localizing information. In all 18 patients, FCD was subsequently proven
based on histological examination of the resected tissue. Lesions were categorized
according to a recent classification scheme (Barkovich et al. 2001). All patients had
malformations of cortical development due to abnorma]v glial proliferation or apoptosis,
namely non-neoplastic abnormal proliferation (cortical dysplasia with balloon cells)
(N=16), or malformations due to abnormal cortical organization, namely cortical

dysplasia without balloon cells (N=2).
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RI acquisition
Preoperative MRI images were acquired on a 1.5 T Gyroscan (Philips Medical
System, Best, The Netherlands) using a T1-fast field echo sequence (TR=18, TE=10, 1
acquisition average pulse sequence, flip angle=30°, matrix size=256x256, FOV=256,
thickness=1mm). Approximately 170 slices with an isotropic voxel size of | mm’ were

acquired. Signal to noise ratio was calculated for each subject to ensure image quality

(mean=27.86, sd=2.01).

Image Preparation

Images were analyzed on a Silicon Graphics workstation (Mountain View,
California, USA). All MRIs were free of visible motion artifacts. Images were
automatically registered into stereotaxic space to adjust for differences in total brain
volume and brain orientation (Collins et al. 1994). Each image underwent automated
correction for intensity non-uniformity and intensity standardization (Sled et al. 1998).
This correction produces consistent relative GM, WM, and cerebrospinal fluid (CSF)
intensities. Manual lesion segmentation was performed retrospectively on the corrected
images by an experienced observer who was aware of findings from EEG data as well as
the area of surgical resection. Hence this observer was able to identify lesions in all 18
patients. Note that this retrospective manual lesion segmentation repfesents a different
analysis than the standard pre-surgical MRI evaluation that identified lesions in 11/18
patiepts and overlooked lesions in the remaining seven patients. As will be described

later, these manual lesion labels were used in the training and validation of the classifier.
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Brain extraction was then performed on the MRI using the Brain Extraction Tool (Smith

2000).

Tissue Segmentation

Segmentation of MRI volumes into GM, WM, and CSF was performed by fitting
gaussian curves to the peaks within the histogram COrresponding to GM and WM (figure
1A). The intersection of these gaussian peaks was taken as the boundary intensity
between GM and WM. Voxels with intensities of more than 2 SDs below the mean GM
intensity were segmented as CSF. The resulting segmented map was used as a basis for
calculating cortical thickness.

Further segmentation was performed for eventual use in training the classifier by
defining three additional classes. A GM/WM transition class was defined as follows, |
based on the construction of a 3x3x3 neighborhood around each voxel. A voxel was
identified as belonging to the GM/WM transition class if at least 30% of neighboring
voxels were GM and at least 30% of neighboring voxels were WM. An analogous
procedure was performed to define a GM/CSF transition class. For patients, a lesional
class was created by incorporating the manual lesion labels. The derivation and a typical

example of a 6-class segmented map are shown in figures 1B and 1C.

Calculation of computational models of MRI characteristics of FCD
Three common in vive characteristics of FCD lesions as seen-on T1-weighted
MRI were modeled: cortical thickening, blurring of the GM/WM interface, and

hyperintense T1 signal. The following sections describe these models.
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Cortical Thickness Measurement

An approach developed by Jones et al. (Jones et al. 2000) was used to measure
cortical thickness. This method considers the cortical volume as an electrostatic field, ¥,
with the inner and outer cortical surfaces set to arbitrary (but non-equal) constants. The
solution of Laplace’s equation:

VA = 329/0x% + PW/0y + 0PIz =0
over the cortical volume yields a series of smoothly varying intermediate “isopotential”
surfaces between the two boundaries. Upon solving for ¥, a unit vector field can be
computed over the cortex as
N=-V¥/||-V¥||

such that the field is defined everywhere between the inner and outer cortical surfaces,
and is always perpendicular to the adjacent isopotential surface. To determine cortical
thickness, then, so-called streamlines are computed by starting at any point on one of the
surfaces, and integrating N. The length of the streamline that passes through a particular

voxel is the cortical thickness at that voxel.

Gradient magnitude

Gradient magnitude is a standard first-order statistical operatér that measures the
rate of intensity change over a given domain. To model the blurring of the GM-WM
interface, gradient magnitude was calculated through convolution of the MRI volume,
(accomplished by multiplication in the Fourier domain) with a three-dimensional
gaussian kernel (FWHM = 3mm) calculated explicitly over the whole field. The final

result was obtained by inverse Fourier transform.
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Figure 1. Segmentation of MR volumes.

(A). T1-weighted MRI volumes were segmented into gray matter (GM), white matter (WM), and
cerebro-spinal fluid (CSF) by fitting Gaussian curves to the gray-level histogram (middie), resulting
in a GM/WM/CSF segmented map (right), used as a basis for measuring cortical thickness.

(B). The GM/WM/CSF segmented maps were further segmented into more classes for use in
training the classifiers. GM/WM and GM/CSF transition classes were defined by analyzing the
local neighborhood surrounding each voxel within the GM/WM/CSF map (schematically
represented by red box). A voxel (indicated by the red dot) was determined to belong to the
GM/WM transition class if at least 30% of neighboring voxels were GM and at least 30% of
neighboring voxels were WM. A similar algorithm was used for the GM/CSF transition class. The
result is a segmented map exhibiting the following classes: CSF, GM, WM, GM/WM transition, and
GM/CSF transition.

(C) As an additional step performed for patients, lesions were manually segmented by an expert

observer (left). Adding these lesion labels to the segmented map generated by the previous step
(middle) resulted in the 6-class segmented map (right).
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Relative Intensity
The relative intensity operator is designed to emphasize hyperintense T1 signal
within GM. It is defined as
1-lg-Bgl/Bg
where g is the intensity at a given voxel, and Bg is the threshold intensity between the

GM and WM peaks as determined from the grey level histogram of the MRI volume.

Figure 2. Representative axial slices from maps of the three computational models of MRI
characteristics of FCD pathology in a patient. Clockwise from top left: T1-weighted MRI; cortical
thickness; gradient magnitude; relative intensity. Lesion can be seen in the right central area
{indicated by red arrow on T1-weighted MRI).
Texture Analysis

The basic procedure of texture analysis is to compute a set of gray-level co-

occurrence matrices (GLCMs) and then run a set of mathematical texture operators on the

co-occurrence matrices to produce a corresponding set of texture feature values (Haralick
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et al. 1973). A co-occurrence matrix is calculated over a region of interest by tallying the
occurrences of all voxel intensity pairs separated by a given distance in a given direction
(Figure 3). The matrix is then normalized by the total number of voxel intensity pairs
within the region to yield the probability of observing each pair. In order to produce
three-dimensional texture maps, we calculated co-occurrence matrices over a
neighborhood centered on each voxel within the volume, with the resulting texture
feature values being mapped to the location of the center voxel.

There are several parameters that can be manipulated in the calculation of co-
occurrence matrices. Primary among these are neighborhood size, distance (d), and
direction (6). The number of possible permutations of these parameters necessitates that
only a subset be chosen for use in analysis.

In the context of our aim of detecting FCD lesions of variable size, neighborhood
size must be chosen to be large enough to capture meaningful information, but small
enough that smaller lesions are not lost within a large ROL. We chose to use a 3D
neighborhood, 7 voxels in each dimension.

Varying the distance parameter allows texture to be measured at different scales.
Care must be taken not to overstep the size of the lesions. Neighborhood size is also a
limiting factor in the choice of the distance parameter so as to avoid sparse co-occurrence
matrices. We set the distance parameter to 3 voxels. As a further precaution against
sparse co-occurrence matrices and to reduce processing time, the intensity range of the
MRI volumes was reduced to 32 gray levels.

When constructing a co-occurrence matrix over a 2D neighborhood, there are

eight possible discretized values of 8(0°, £45°, £90°, £135°, 180°). A common approach
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Figure 3. Construction of second-order texture maps.

(A) To obtain a second-order texture map, a small ROI (schematically represented by the red
square) was constructed around each voxel in an MR volume. Within this ROI, the number of
occurrences of the various voxel-intensity pairs, separated by a given distance in a given direction
(sample pairs are indicated by arrows), are tallied to produce a co-occurrence matrix. Second-
order texture feature operators are then run on the matrix, with the resulting value being mapped
back to the position of the voxel at the center of the ROL.

(B} Representative axial slices from the three second-order texture maps used to construct a

Bayesian classifer, with the associated T1-weighted MRI. Lesion is visible in the right central area,
indicated by the red arrow on the T1-weighted MRI.
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is to create symmetric co-occurrence matrices by considering £ and -8 together.
We used the same approach in the 3D case, collapsing the 26 possible discretized
directions into 13.

Thus, at each voxel we calculated 13 co-occurrence matrices, one for each value
of @ The value of d was set to 3 for all matrices. Texture feature operators were then run
on each co-occurrence matrix at each voxel to create a three-dimensional texture feature
map. As there is no expectation of a particular orientation to the texture of FCD lesions
within T1 volumes, the texture feature value assigned to a voxel was the average of the
texture feature value calculated over each of the 13 co-occurrence matrices.

Haralick (Haralick et al. 1973) proposed 14 second order features; we chose to
calculate those that are among the most commonly used in the literature: angular second
momentum, contrast, correlation, difference entropy, dissimilarity, entropy, inverse
difference moment, sum entropy, and variance. Appendix A details the mathematical
operations necessary to derive these second order texture features from a co-occurrence

matrix.

Classifier Design

Automated lesion identification was performed using a sequence of two Bayesian
classifiers. As a first step, lesion idehtiﬁcation was performed using a classifier trained
on the three computational models (the “computational-model classifier”). Voxels
classified as lesional were then re-classified by a classifier trained on the second-order
texture features (the “texture feature classifier”). For the construction of the texture

feature classifier, Fisher’s discriminant ratio (Duda et al. 2001) was calculated to select
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three texture features (angular second momentum, difference en*zmpy, contrast) from
among the 9 that were calculated.  The two-classifier approach is justified since the
computational models of MRI characteristics of FCD and the texture features extract
different types of information from the MRI volume. The computational models measure
first-order statistical or morphometric properties of individual voxels, while the texture
features measure second-order properties of the volume by examining spatial
relationships between voxels of varying intensities. Thus, two classifiers are appropriate
as they would be highly trained in different regions of feature space (Duda et al. 2001).
Due to the limited number of patients in the study, both the computational model
classifier and the texture feature classifier were constructed using the leave-one-out
cross-validation technique, in which each member of a set N members is classified based
on a classifier trained on the remaining N-1 members. In this study, we implemented a
leave-one-out classifier on a subject-wise basis, such that all voxels in a particular
subject’s brain were classified based on voxels within the brains of the other subjects.
Each classifier was trained on the appropriate data (i.e., the computational models or
texture features) for a subset of voxels that had been automatically sampled from each
subject within the training set. To sample the voxels, the following tissue-specific (based
on the 6-class segmented map) sampling frequencies were used: every 45"
background/CSF voxel, every 10® GM voxel, every 10™ WM voxel, every 5™ GM/WM
transition voxel, every 5% GM/CSF transition voxel, and every 2™ lesional voxel. These
sampling frequencies were chosen to achieve roughly equal numbers of voxels in each
class, and resulted in approximately 3000 sampled voxels per subject. A target label was

determined for each sampled voxel from the 6-class segmented map.
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The two classifiers were combined as follows. First, all voxels within a test
subject’s brain were classified with the computational model classifier. Prior
probabilities were set so as to bias the computational model classifier toward increasing
sensitivity regarding lesional voxels at the expense of mis-classifying some GM voxels as
fesional. Next, voxels classified as lesional by the computational model classifier were
re-classified using the texture feature classifier. Primarily due to the use of the cortical
thickness metric, almost all voxels classified as lesional by the computational model
classifier belonged to either the true lesional or GM classes. Thus, the texture feature
classifier was restricted to classifying Voxéls as either lesional or GM. A 3D lesion map
was constructed from the voxels classified as lesional by the texture feature classifier.

Voxels within several anatomical structures (thalamus, basal ganglia, caudate
nucleus, and cerebellum) were not included when assessing the performance of the
classifier. Most voxels within these structures (consisting mainly of GM) were classified
as lesional in both patients and normal controls, primarily due to their high thickness
relative to the cortex. Further, no biological evidence exists that these structures are
involved in FCD.

An additional artifact was the random scattering of small clusters of voxels
classified as lesional across the classified volumes. Thus, to establish a baseline noise
level in the classified volumes, a noise threshold was defined as two standard deviations
above the mean size of the largest lesional cluster in each control subject, such that
lesional clusters smaller than this threshold were considered to be due to random noise
and excluded from the lesion map produced by the classifier. This threshold was applied

to all subjects, both patients and controls. This technique assumes that lesional clusters in
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the controls are not due to FCD. Even if the clusters in control subjects were due to
something physiologically meaningful, from the point of view of FCD lesion detection
they would still be considered noise, as FCD iesicms are unlikely to occur in control
subjects.

The Bayesian classifier code was implemented in C running on an SGI platform,
incorporating a library of MRI volume handling routines developed at the McConnell

Brain Imaging Center of the Montreal Neurological Institute.

Analysis

The performance of the classifier was compared to standard neuroradiological
pre-surgical evaluation of MRI by calculating subject-wise sensitivity and specificity for
both methods. Subject-wise sensitivity was defined as the number of patients in whom a
lesion was identified divided by the total number of patients. Subject-wise specificity
was defined as the number of control subjects in whom no lesions were identified divided
by the total number of control subjects. For the classifier, a lesion was considered to be
identified in a patient if a lesional cluster wholly or partially co-localized with a manual
lesion label, and in a control subject if any lesional cluster was found. Pearson’s chi-
squared test for 2 way tables was to test for significant differences.

Lesional sensitivity of the classifier was measured by calculating the number of
lesional clusters identified by the classifier which wholly or partially co-localized with a
manually-drawn lesion label divided by the total number of manually drawn lesion labels.
This differs from subject-wise sensitivity due to the presence of multiple manually-drawn

lesion labels in some patients. Lesion specificity was not calculated since the absence of
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a lesion cluster generated by the classifier in non-lesional regions of the brain (a “true
negative”) is not a quantifiable concept. Therefore, to measure the degree of false
positives with respect to lesional clusters, the number of lesional clusters not co-
localizing with a manual lesion label was determined for each subject.

To measure the ability of the classifier to identify the full extent and boundaries of
lesions, voxelwise sensitivity on a patient-wise basis was calculated as the total number
of voxels correctly classified as lesional within a patient divided by the total number of
voxels within the manual lesion labels for the same subject. An aggregate voxel
sensitivity was calculated as the total number of voxels correctly classified as lesional
across all patients divided by the total number of voxels within the manual lesion labels
across all patients.

As a further measure of agreement between the lesional clusters identified by the
classifier and the manual lesion labels, an agreement index was calculated. Letting L,
represent the lesional cluster identified by the classifer and L, representing the

corresponding manual lesion label, the agreement index was defined as:

LC M Lm

LewLmy-(Len L)

Differences in texture feature values within lesions compared to non-lesional
cortex was assessed as follows. For each texture feature used in the classifier (angular
second momentum, contrast, difference entropy), the average value over the manual

lesion label and the average value over non-lesional GM (as defined in the 6-class
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segmented map) were calculated for each patient. These results were then averaged

across patients and two-tailed t-tests were used to check for significant differences.

TS

The classifier identified lesions in 15/18 patients, resulting in a subject-wise
sensitivity of 83%. FCD was detected on conventional MRI during standard pre-surgical
evaluation in 11 of the 18, resulting in a subject-wise sensitivity of 61%. The increased
sensitivity provided by the classifier was shown to be significant (p<.03). Neither
standard pre-surgical evaluation nor the classifier identified lesions in any control
subjects; thus subject-wise specificity was 100% for both techniques.

Within the 18 patients, 20 lesions were manually labeled. The classifier identified
wholly or partially co-localizing lesional clusters corresponding to 17 of these manual
labels, for a lesion sensitivity of 85%. A comparison of manual lesion labels and lesional
clusters determined by the classifier for seven typical subjects are shown in Figures 4 and
5.

While no lesional clusters were identified by the classifer in the control subjects,
the classifier identified small lesional clusters not co-localizing with a manual lesion label
in 5 out of 18 patients. Retrospective visual review of conventional MRI for these cases
did not definitively reveal lesional tissue in these areas.

Average voxelwise sensitivity across all patients was 13.4% * 13.3% (range=0%
to 42.4%). Voxelwise sensitivity collapsed across patients was 18.1% (26300/145632).
When considering only patients in whom a lesion was identified by the classifier, these

results increase to 16.0% £ 13.0% and 20.0% (26300/131217), respectively. The average
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of the individual patients’ agreement index between lesional clusters identified by the
classifier and the manual lesion labels was 18% with a standard deviation of 20%.

Within control subjects, the average size of the largest lesional cluster created by
the classifier was 16.2 +/- 18.9 (minimum = 0, maximum = 31), and thus the noise
threshold was set to 54.0. For patients, the average size of the lesions identified by the
classifer which co-localized with the manual lesion labels was 1364.2, +/- 3352.83
(minimum = 12, maximum = 14435).

Angular second momentum was significantly higher in lesions compared to non-
lesional cortex, while contrast and difference entropy were signiﬁcaﬁtly lower in lesions

compared to non-lesional cortex. These results are summarized in Table 1.

DISCUSSION

The classifier presented in this paper is an extension of our previous work, which
introduced (Bernasconi et al. 2001) and refined (Antel et al. 2002) the use of
computational models of FCD to enhance visual lesion detection. The classifier
improved upon these earlier techniques by providing an automated, objective approach to
lesion detection, based on information from two sets of features.

The first set of features, modeled on visually discernable MRI characteristics of
FCD lesions, enabled prior knowledge of an expert observer to be built into the classifier.
In lesions, relative to non-lesional cortex, cortical thickness and relative intensity are
increased, while gradient magnitude is decreased. Increased cortical thickness is due to
an abnormal accumulation of neurons in the affected cortical layers. A decrease in

gradient magnitude suggests a more gradual transition between GM and WM, reflective
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Figure 4a. Three examples of automated lesion identification.
Left: T1-weighted MRI. Center: MRI with manual lesion label.
Right: MRI with lesion identified by classifier. Both manual and
classifier-generated labels are shown as white dots on a black
background.



Figure 4b. Three more examples of automated fesion identification.

Left: T1-weighted MRI. Center: MR! with manual lesion label. Right:

MRI with lesion identified by classifier. Both manual and classifier-generated
labels are shown as white dots on a black background. The botiom case
shows an example of proper localization but poor coverage.



Figure 5. Classification results for a single patient, displayed in the axial, coronal, and
sagittal planes. Top row: axial view. Middle row: coronal view. Bottom row: sagittal
view. Left column: T1-weighted MRI. Center column: MRI with manual lesion label.
Right column: MRI with lesion identified by classifier. Both manual and classifier-
generated labels are shown as white dots on a black background.



of abnormal neuronal accumulation and positioning in this area. Increased relative
intensity may reflect demyelination and gliosis.

The second set of features, based on texture analysis, incorporated information
regarding tissue structure or organization not readily accessible through visual analysis.
Our results demonstrated increased angular second momentum in lesions relative to non-
lesional cortex, while contrast and difference entropy were decreased. This pattern is
consistent with results reported in studies of multiple sclerosis lesions relative to normal
aﬁpearing white matter (Mathias et al. 1999). From a mathematical standpoint, angular
second momentum increases with image homogeneity, contrast increases with local
variation of pixel intensity and is largest for local gray level differences, and difference
entropy is a measure of general image complexity (Haralick et al. 1973; Lerski et al.
1993). Thus, physiological and mathematical findings indicate that the pattern in texture
feature values seen in FCD lesions may reflect changes in image complexity, suggestive
of a breakdown of structural integrity due to the disease process.

The potential of our approach to FCD lesion detection is demonstrated by the fact
that the classifier found lesions in 15 out of 18 FCD patients (83%), while the standard
pre-surgical investigation found lesions in 11 (61%). An advantage of three-dimensional
texture analysis, as well as the cortical thickness and gradient models among the first
order features, is that they operate in three dimensions. This allows the simultaneous
consideration of information from consecutive slices of the brain, whereas a human
observer performing standard visual analysis examines the brain volume a slice at a time,
and therefore must mentally synthesize information from consecutive slices.

Furthermore, second-order texture analysis allows the quantification of the spatial
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relationships between gray level intensity pairs. This information may not always be
easily appreciated through visual analysis. |

In addition to the high sensitivity of lesion detection, another equally important
result is that no lesional voxels were identified in any conirol subject. This finding is
especially relevant in light of the fact that in five patients the classifier identified a
lesional cluster that did not co-localize with a manual lesion label. Retrospective visual
analysis of the individual feature maps input revealed that these lesional clusters
exhibited a pattern of features similar to the known FCD lesions; no individual feature
unduly influenced the classifier in these cases. However, EEG data from these regions
did not exhibit patterns found to be associated with FCD (Gambardella et al. 1996)., and
retrospective visual analysis of these regions on conventional MRI was also not
suggestive of FCD pathology. No clinical or histopathological characteristics that would
differentiate these five patients from the remaining 13 were found. Yet the absence of
any false positives in control subjects combined with reports of diffuse (Taylor et al.
1971) or non-focal (Prayson et al. 2002) cortical involvement in FCD suggests that these
clusters may indeed indicate abnormal regions that are otherwise undetectable via
conventional means.

While the classifier successfully located most of the FCD lesions, it tended to
partially sample their extent. The definition of the true boundaries of FCD lesions is a
difficult task. In particular, there is the possibility that over-estimation of lesion
boundaries by the expert observer may account for some of the discrepancy in size
between the classifier and manual lesion labels. The use of cortical thickness as an input

feature might also have been a contributing factor. Since cortical thickness within WM is
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necessarily equal to 0, it is unlikely that a WM voxel will be classified as lesional.
Hence, portions of the lesions within WM go unrecognized by the classifier.

An important issue to be addressed in future research is etiological and diagnostic
specificity. All subjects in this study were known to be either normai controls or patients
with FCD and no other apparent pathology. However, differential diagnosis between
FCD and benign tumors (such as dysembryoplastic neuroepithelial tumors), which may
present similarly both clinically and on MRI, is sometimes required. Specificity of the
classifier when dealing with a possible differential diagnosis will need to be examined in
future studies.

In conclusion, we considered two sources of information regarding FCD lesions.
Visually discernable information was provided by computational models of MRI
characteristics of FCD, while texture analysis was used to quantify less-available
information regarding tissue organization through the quantification of spatial
relationships of gray-level intensity pairs. The resulting classifier succeeded in locating

most FCD lesions.
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« Calculation of texture features from the co-occurrence matrix
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5.1 Predicting surgical outcome in TLE patients based on MR data

Our first study applied a Bayesian classifier to MRI and MRSI data of TLE
patients to predict surgical outcome. By making predictions of surgical outcome for
individual patients, we expanded on previous studies which demonstrated correlations
between one or more MR markers and surgical outcome” %13 The few
previous studies that have utilized automated classifiers to make individual outcome
predictionsﬂ‘” have focused on classifying patients into seizure free or non seizure free
groups following surgery. While seizure free vs. non seizure free is a clinically important
distinction to consider, it does not fully address the question of whether surgery is an
appropriate option for a patient; surgical resection which fails to completely eliminate
seizures yet achieves a near-complete or partial reduction in seizure frequency may still
be an appropriate and beneficial couﬁse of action for certain patients. Our study
addressed this issue by developing two classifiers, one to separate seizure free from non
seizure free patients, and one to separate patients achieving a worthwhile reduction in
seizure frequency from patients not achieving a worthwhile reduction in seizure
frequency. The latter approach makes it possible to identify patients who may not be

good surgical candidates. Indeed, this classifier correctly identified 10/16 patients who
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did not achieve a worthwhile reduction in seizure frequency. This is an important result
given that all 16 of these patients were operated upon, implying that conventional pre-
surgical evaluation had identified them as viable surgical candidates.

Future studies should address classification of patients into the individual
outcome classes, rather than aggregate groups of seizure free vs. nor seizure free, or
worthwhile improvement vs. no worthwhile improvement. The key to addressing these
issues will be the construction of a considerably larger patient database, providing
sufficient sample sizes for each individual outcome class. Training the classifier on
additional MR-based information, such as results from texture methods such as those
described in other sections of this thesis, may also prove useful for further improving

classification accuracy.

5.2 Assisting lesion detection in FCD

Localizing lesions is an important pre-cursor to surgical resection for FCD
patient. Papers 2, 3, and 4 traced the development of an automated method for locating
FCD lesions on T1-weighted MRI. Paper 2 originated the idea of using of simple image
processing techniques to model three common characteristics of FCD as seenon T1
weighted MRI. These techniques were used to create a series of feature maps for each
patient, which were then combined and presented for visual analysis. The results of this
study represented a significant improvement in the sensitivity of lesion detection
compared to the standard expert visual analysis of conventional MRI.

Paper 3 further developed the ideas outlined in paper 2. In paper 3, we selected

more sophisticated techniques for modeling two of the three MRI characteristics of FCD.
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This was done in order to improve the visibility of FCD lesions by reducing the presence
of so-called “potential false positives”, small regions within the cortex that appeared
hyperintense and therefore similar to lesional areas on the composite feature map.

Our results demonstrated improved contrast between lesions and non-lesional
cortex, thereby reducing the subjectivity involved in visual lesion detection. Using the
techniques outlined in these papers, we increased the sensitivity of lesion detection by
50% relative to conventional MRI. This compares favorably to increases in sensitivity
reported in studies employing different approaches, such as curvilinear

3758 voxel-based morphometry6° and FLAIR images“, to aide in lesion

reconstruction
detection on MRI

Papers 2 and 3 were preliminary steps towards the ultimate goal of this project,
automated lesion detection. Advantages of an automated method include i) elimination
of subjectivity regarding the differentiation of lesions from similar regions in the non-
lesional cortex, and ii) it can be applied equally over the whole brain, potentially
identifying lesions in regions where human observers may not be inclined to search.
Paper 4 approached this task by supplementing the models presented in our previous
studies with texture analysis applied to conventional MRI. A Bayesian classifier trained
on this data located 17/20 lesions, a sensitivity increase of 35% over visual analysis of
conventional MRI. The classifier did not identify any abnormalities in a set of control
subjects. This is an important point that differentiates our method from a recently
described technique employing voxel-based morphometry to perform automated lesion

detection.®
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Further studies should address ways to increase the extent of the lesion that is
identified by the classifier. One approach would be to train the classifier on additional
MR results, such as T2 relaxometry, or voxel-based morphometry. An interesting future
avenue of exploration would be to perform texture analysis within the curvilinear
framework, rather than in the standard 3D orthogonal axes. Application of the statistical,
morphological, and texture operators described here to the study of other types of
epilepsy or even other neurological disorders would also be interesting to explore in the

future.

5.3 Conclusion

In conclusion, the papers constituting this thesis present clinically useful
techniques for applying machine learning methods to MR data to assist in the pre-surgical
evaluation of epilepsy patients. These methods are intended to be used in conjunction
with conventional approaches to improve the identification of lesions and patients who

will benefit from surgery.
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