Performance Analysis of the Incomplete
Cholesky Preconditioned Conjugate
Gradient Method on NVIDIA Graphics
Processing Units with MATLAB

Vivian Yi Fen Yong,
School of Electrical & Computer Engineering
McGill University, Montreal

December 2023

A thesis submitted to McGill University in partial fulfilment of the requirements of the degree of

Masters of Electrical Engineering

©Yong Yi Fen Vivian, 2023

Page |i

Abstract

In an era where solving intricate linear systems is a commonplace task across various domains, the
need for computational efficiency remains paramount. This thesis seeks to bridge the gap between
complex mathematical algorithms and accessibility for engineers, researchers, scientists, and

enthusiasts alike.

At its core, this research delves into the synergies between two contemporary
computational technologies: the Incomplete Cholesky Preconditioned Conjugate Gradient (ICPCG)
method and modern Graphics Processing Units (GPUs), with a particular focus on NVIDIA mobile
graphics chips. The ICPCG method is renowned for its effectiveness in tackling large sparse
systems of linear equations. However, rather than diving into the intricacies of GPU architecture
with the use of an Application Programming Interface (API), such as Compute Unified Device

Architecture (CUDA), we look at higher-level programming that is a more user-friendly avenue.

The ICPCG method is implemented in the MATLAB environment and utilizes the Parallel
Computing Toolbox (PCT) to parallelize the method on modern NVIDIA mobile GPUs. With the
use of PCT, instead of CUDA, it removes the formidable barrier of requiring an in-depth
understanding of GPU hardware, often a daunting obstacle for the uninitiated. By democratizing
GPU parallelization, we empower individuals from various backgrounds to harness the remarkable
computational capabilities of modern GPUs without being burdened by the complexities of CUDA

programming.

Chapters elucidate the ICPCG method, introduce GPU advantages over Central Processing
Units (CPUs), and showcase MATLAB PCT’s accessibility. A detailed methodology for
implementing ICPCG on NVIDIA GPUs is provided, and the experimental results are presented
in a comprehensible manner. In-depth discussions and conclusions bring forth the significance of

this approach in the realm of scientific computing.

As we navigate the nexus of mathematical sophistication and accessibility, this research
illuminates a path for individuals to leverage GPU parallelization effectively, transcending the

boundaries of traditional CPU-based computations. In doing so, it empowers a diverse spectrum

Page |ii

of users to tap into the extraordinary potential of GPU-accelerated computing without the need for
an advanced understanding of GPU hardware intricacies, ultimately democratizing high-
performance scientific computing. Our results have showcased the benefits of parallelizing the
algorithm on NVIDIA mobile GPUs, particularly for single-precision data types, while

acknowledging limitations in the case of double-precision data types.

Page |iii
Abrege

A une époque ou la résolution de systemes lin€aires complexes est une tiche courante dans divers
domaines, le besoin d’efficacité informatique reste primordial. Cette thése cherche a combler le
fossé entre les algorithmes mathématiques complexes et I'accessibilité pour les ingénieurs, les

chercheurs, les scientifiques et les passionnés.

A la base, cette recherche explore les synergies entre deux technologies informatiques
contemporaines: la méthode Incomplete Cholesky Preconditioned Conjugate Gradient (ICPCG) et
les unités de traitement graphique (en anglais, Graphics Processing Units, ou GPUs) modernes,
avec un accent particulier sur les puces graphiques mobiles NVIDIA. La méthode ICPCG est
réputée pour son efficacité dans le traitement de grands systémes clairsemés d'équations linéaires.
Cependant, plutot que de plonger dans les subtilités de I'architecture GPU avec 1'utilisation d'une
interface de programmation d'application (en anglais, Application Programming Interface, ou API),
telle que Compute Unified Device Architecture (CUDA), nous examinons une programmation de

niveau supérieur qui constitue une voie plus conviviale.

La méthode ICPCG est implémentée dans 1'environnement MATLAB et utilise Parallel
Computing Toolbox (PCT) pour paralléliser la méthode sur les GPU NVIDIA modernes. Avec
I’utilisation de PCT, au lieu de CUDA, il supprime la formidable barriére consistant a exiger une
compréhension approfondie du matériel GPU, souvent un obstacle de taille pour les non-initiés.
En démocratisant la parallélisation des GPU, nous permettons a des individus d'horizons divers
d'exploiter les remarquables capacités de calcul des GPU modernes sans étre génés par les

complexités de la programmation CUDA.

Les chapitres expliquent la méthode ICPCG, présentent les avantages du GPU par rapport
aux unités centrales de traitement (en anglais, Central Processing Unit, ou CPU) et présentent
l'accessibilit¢ du MATLAB PCT. Une méthodologie détaillée pour implémenter ICPCG sur les
GPU NVIDIA est fournie et les résultats expérimentaux sont présentés de maniere compréhensible.
Des discussions et des conclusions approfondies font ressortir I’importance de cette approche dans

le domaine du calcul scientifique.

Page |iv

Alors que nous naviguons entre la sophistication mathématique et I’accessibilité, cette
recherche ouvre la voie aux individus pour exploiter efficacement la parallélisation GPU,
transcendant les limites des calculs traditionnels basés sur CPU. Ce faisant, il permet a un large
éventail d’utilisateurs d’exploiter le potentiel extraordinaire du calcul accéléré par GPU sans avoir
besoin d’une compréhension avancée des subtilités du matériel GPU, démocratisant ainsi le calcul
scientifique haute performance. Nos résultats ont montré les avantages de la parallélisation de
l'algorithme sur les GPU mobiles NVIDIA, en particulier pour les types de données simple

précision, tout en reconnaissant les limites dans le cas des types de données double précision.

Page |v
Acknowledgements

Embarking on my master’s degree during the pandemic brought forth a lot of uncertainties and
profound isolation. These trying times, compounded with other challenges, presented a
considerable amount of stress. Nevertheless, I am immensely grateful for the unwavering support
of those who stood by my side, including my little Shih Tzu, Yeti, who has been by my side,

providing emotional comfort throughout this journey.

Foremost, I extend my heartfelt gratitude to my thesis supervisor, Professor Dennis
Giannacopoulos. His invaluable wisdom and knowledge were instrumental in guiding me
throughout this journey. Professor Dennis Giannacopoulos’ patience, kindness, and reassurance

instilled in me the confidence to move on this path, and for that, I am profoundly thankful.

I deeply cherish Miguel for his ceaseless support. As both a schoolmate and a cherished
friend, we have weathered the storms of challenging times together, offering each other

unwavering support and guidance.

Lastly, I can never adequately express my appreciation to my mother, Lisa, for her
unceasing support in every conceivable way. Her unwavering assistance has been nothing short of
invaluable. Equally, I am extremely thankful to Valerie and Vanessa for their unwavering emotional
support, their constant displays of affection, and for standing beside me through all ups and downs.
With them by my side, I found the strength to navigate through the arduous moments and remain

resilient.

Page |vi
Contribution of Authors

This section serves to assert that the work contained within this thesis was conducted and executed
by the author, Yong Yi Fen Vivian. The author has undertaken the task of implementing the ICPCG
method within MATLAB, employing the PCT to facilitate parallelization. Furthermore, it is worth
acknowledging that the foundational code, other than the ICPCG method, has its roots in
MATLAB.

Page |vii

Table of Contents

AADSTIACE ..ottt b e h e bt et e h e bttt e a b e bttt eht e bt e te st e naeente s 1
ADTEZE.... ettt ettt ettt ettt he e bt e tte e be e hteeabeeateeenbe e bteenbeeseeenteenbeeenbeenseann il
ACKNOWIEAZEIMENLS........iieiieiiieiieeie ettt ettt ettt et e siae e bt e sabeesseesaaeetaeesseenseessseenseenssaans v
Contribution Of AUTNOTScocueiiiiiii et Vi
TaDIE O CONENLS ..ottt b et et e sttt set e bt et e e st e steenseseeenbeennes vil
LISE OF FIGUIES ...eieiiiieiee ettt ettt e et e st e e s ste e e s abe e e sbeeensseeensaeesnnneesnseeennnes X
LSt OF TADIES ...ttt ettt ettt ettt sb et e ae e et et et e bt et enteeneenee xii
|] A0 N (047 01 SRR xiii
Chapter 1 INTrOQUCTIONviiiiiieciiee ettt e et e et e et e e e aaeeesaeeenseeesssaeesnsaeennseeennnes 1
1.1 IMIOTIVALIONttt ettt ettt et e s et e bt e sat e e bt e sabeenbeesabeenbeesseeeneeas 1
1.2 TRESIS STIUCLUIE ...uvieiiiieeiee ettt ettt e et e e et e e et e et e e esaaeeeaaeeesseeessaeesnsaeessseeesnseens 4
Chapter 2 Conjugate Gradients...........coeeveriirieniirienieie ettt ettt sre et 5
2.1 The Method of Steepest DESCENLc..coiiriiiiiiiiiiieiiiieeeeeee et 6
2.2 The Method of Conjugate DIT@CLIONScc.eeeueeriieeiieniieeiierie et eriee et eiee e eteeseeenseesaeeens 11
2.3 The Method of Conjugate Gradients............ccceerieeriienieeiiienieeieeiee et eiee e sieeseeesseeeeee e 14
2.4 PreCONAItIONINE ...ccvieeiieiiieeitieeiie et eeite et et e et e e st e eeteesaeesaae e seeesseeseessseenseesnseeseesnsesnseennseans 18
2.4.1 Incomplete Cholesky Factorizationcceecuievuieiiieniieniieeniesie e 20
2.4.2 Incomplete Cholesky Preconditioned Conjugate Gradient.............cceeeuveruierveenieennnnns 21
Chapter 3 Graphics Processing UNILSc.cecieriieiiiiirieniiieiieeieeieeeteeieesveeseeesveeseessneeseeseneens 27
3.1 Graphics Processing Unit vs Central Processing Unit...........cccceevueevciienienieenienieeieeeiens 27
3.2 Graphics Processing Unit ATChItECtUIE........cccuvieeiiieeiiieciie et 28

3.3 MATLAB Parallel Computing TOOIDOX........cccuieiiiiiiiiieciieeieeeiee e 32

Page |viii

Chapter 4 MethOdOLOZYc..coouiiiiiiiiieeee ettt ettt 33
4.1 ICPCG on CPUs and GPUs with Specific Problem Types........cccceceeviervineniicnienenicnene 33
4.1.1 ICPCG on CPUs and GPUs using Parallel Computing Toolbox Commands.............. 34
4.1.2 ICPCG on CPUs using Single Program Multiple Data Statements.............cccccecuenene. 37
4.2 Backslash on CPUS and GPUS..........cooiiiiriiiiiiiieieeeseeeestee et 39
4.2.1 A\b on CPUs and GPUs with Generated MatriCes..........cccceevereerienieneniienieneeeeeene 39
4.2.2 A\b on CPUs and GPUs with Specific Problem Types.........cccceecvievieriiienienieeiienieens 40
4.3 Data Handling Capability of GPUS..........cccieiiiiiiieiieiiecieeeeceeee ettt 45
4.4 Resource Contention on CPUs using Single Program Multiple Data Statements.............. 47
4.5 MATLAB’S GPUBENCK ..ottt e 49
Chapter 5 Results and DiSCUSSION.........iieiiiieeiiiieeiieeeiieeeieeesiee e e erveeerereeeraeeeseeesaaeesseeesseeens 51
5.1 ICPCG on CPUs and GPUs with Specific Problem Types........cccceeevveevieeiiiienieeeeeeee 53
5.1.1 ICPCQG using Parallel Computing Toolbox Commandsc..cccccveeveriineenenicnnenn 53
5.1.2 ICPCQG using Single Program Multiple Data Statementsc.cccoceeverieneenennicnnenne 55
5.2 Backslash on CPUS and GPUS........cc.ooiiiiiiiiiiiieeee ettt 61
5.2.1 A\b on CPUs and GPUs with Generated MatriCes..........ccceveevuerieneenienieneenieeienenne 61
5.2.2 A\b on CPUs and GPUs with Specific Problem Types.........ccccevveviieniiniiienieciieiene 67
5.3 Data Handling Capability Of GPUS..........cccoeiiiiiiiiiiiieiieeieeeeee et 70
5.3.1 Data Transmission and Retrieval Bandwidth.............coccoooiiiiiiniinininiee 70
5.3.2 Read and Write Data Bandwidth............cccoooiiiiiiiiiniieeeeeeee e 72
5.3.3 Calculation Rate of Intensive OPerationsc..ccveeevierueeesieeneeniieereeereeneeeereeneennns 74
5.4 Resource Contention 0N CPUS.......coc.eiiiiiiiiiiiiiieeee ettt 76
5.4.1 Varying NUmDber 0f PTOCESSEScccuiiiiiiiiiieeeiie ettt 76
5.4.2 Varying Data SIZ€ccccviieiiiieiiiieeieeeee et e st steeesteeesaeeesaeeeeaeeesaeeeraeesaaeennnaeas 80

5.5 MATLAB’S GPUBENCHooutiiiiiiiiiiiiicte ettt 83

Chapter 6

Appendix

Conclusion and FULUTE WOTK.....oeuuuueeee ettt eee e e e e e e e e eeaaeeaaaaeaes

BIDLIOGIAPNY ...t ettt e et e et e bt e enbeebeennneensaas

Page |x

List of Figures

Figure 1.1: Comparison of the number of cores on a CPU system and a GPU.cccocene. 2
Figure 2.1: Surface of a quadratic form f(X).cccceeiiiiieiiiieiieeeeee e 7
Figure 2.2: Line search on the quadratic form f{(X)........ccccceeiiiniiiiiini e 8
Figure 2.3: Contours of the quadratic form f(x) with the line search.c..cccccoccevininiinnnnnn. 8
Figure 2.4: Meandering path of the method of steepest descent............ceceeeeevieneriienienceienene. 10
Figure 2.5: Gram-Schmidt conjugation of tWo VECTOTS.cceeeviivieriiiieriieeciee e 12
Figure 2.6: An illustration of the CG method.cocoiiiiiiiiniiiiice e 15
Figure 2.7: Direct path of the method of conjugate gradients.cccoecevevieniieniieniiieieeieeee, 16
Figure 3.1: Grid of Thread BIOCKS.cooiiiiiiieiieieieee e 29
Figure 3.2: Grid of Thread Block CIUSTETS.cccveieiiiieiieeiieee et 30
Figure 3.3: Memory Hierarchy.cocoiiiiiiiiiniiie et 31
Figure 4.1: Flowchart of Data Handling Capability of GPUs.ccccoeviieiiiiiiiiniiiieieieee, 47
Figure 4.2: Flowchart of Resource Contention Evaluation.cc..ccocceeviiiiiiniinniiniciiicnienee. 49
Figure 5.1: Thermal problem pattern (thermall) [40]. ...ccooeeiiieeiiieee e 52
Figure 5.2: Electromagnetics problem pattern (2cubes_sphere) [41]......ccoeveeviieiieniiieieenieenen. 52
Figure 5.3: ICPCG Execution Time vs Number of Parallel Workers (thermall). 57
Figure 5.4: Gigaflops vs Number of Parallel Workers (thermall).........cccccoceviininiiniininiennne. 58
Figure 5.5: ICPCG Execution Time vs Number of Parallel Workers (2cubes_sphere)............... 59
Figure 5.6: Gigaflops vs Number of Parallel Workers (2cubes_sphere).cccceevvveevcveennenns 60
Figure 5.7: Performance of i7-10510U and GTX 1650 with Max-Q on Single-precision.......... 63
Figure 5.8: Performance of i17-4710HQ and GTX 970M on Single-precision.cccceeuveenee. 63
Figure 5.9: Performance of i7-10510U and GTX 1650 with Max-Q on Double-precision. 65
Figure 5.10: Performance of 17-4710HQ and GTX 970M on Double-precision......................... 66
Figure 5.11: Speedup of Backslash on GTX 1650 with Max-Q Compared to 17-10510U.......... 66
Figure 5.12: Speedup of Backslash on GTX 970M Compared to i7-4710HQ.ccccevveruennene. 67
Figure 5.13: Data Transfer Bandwidth between i7-10510U and GTX 1650 with Max-Q. 71
Figure 5.14: Data Transfer Bandwidth between 17-4710HQ and GTX 970M.c.ccccuvveeneenne 71

Figure 5.15: Read-Write Bandwidth on 17-10510U and GTX 1650 with Max-Q.cc..c....... 73

Figure 5.16:
Figure 5.17:

Figure 5.18:
Figure 5.19:
Figure 5.20:
Figure 5.21:
Figure 5.22:
Figure 5.23:
Figure 5.24:

Page |xi

Read-Write Bandwidth on 17-4710HQ and GTX 970M.ccccoeiiiiiiniiiieieenen, 73
Rate of Matrix Multiplication Operation on 17-10510U and GTX 1650 with Max-Q.
.. 75
Rate of Matrix Multiplication Operation on 17-4710HQ and GTX 970M.............. 75
Effect of Concurrent Processes on Resource Contention on Core 17-10510U........ 78
Effect of Concurrent Processes on Resource Contention on Core 17-4710HQ........ 78
Effect of Data Size on Resource Contention on Core 17-10510U...........ccccceeueeneee. 81
Effect of Data Size on Resource Contention on Core 17-4710HQ.cccveeeen. 82
Performance Summary of 17-10510U and GTX 1650 with Max-Q...........ccccu.ee. 85
Performance Summary of 17-4710HQ and GTX 970M........ccccovieviriininniinienene 86

Page |xii

List of Tables

Table 5.1: Time taken and Gigaflops for ICPCG (thermall).cccceeviieniiiiieniiieieeieeieeene 53
Table 5.2: Time taken and Gigaflops for [CPCG (2cubes_Sphere)..........cceeueeveeeieeniiencieenieennnenns 54
Table 5.3: Execution Times for ICPCG (thermall).c.cccocviiiiiiiiiiieiieeeeeeeee e 57
Table 5.4: Gigaflops for ICPCG (thermall)......c..ccccoeiiriiiiiiiniiiieteeeeeeee e 58
Table 5.5: Execution Times for [ICPCG (2cubes_SPhere).cccerverernienieneenienieneeieneceene 59
Table 5.6: Gigaflops for I[CPCG (2cubes_SPhere).cccueeuieriieiiieiiieiieeie et eie et 60
Table 5.7: Gigaflops for A\b on Single-precision MatriX.c.eeeveeviieriienieeneenieerieenveeseeesneens 62
Table 5.8: Gigaflops for A\b on Double-precision MatriX.cccveeeveeerieeerieeeiieeeieeeieeesvee e 65
Table 5.9: Results for Backslash Operator (thermall).coocoiiiiiiiiniiniie e, 69
Table 5.10: Results for Backslash Operator (2cubes_Sphere)..........ccceevveerieiniienieeniienieeiieeiens 69
Table 5.11: Results of Data Handling between CPU and GPUs.ccceovieiiinciieniieniecieeees 76
Table 5.12: Results for Summation Operations on an array of 20482.cccceevvvevvvievcveenceeenns 79
Table 5.13: Results for DFFT Operations on a vector of 20482..........ccccceevieeeiiieeiiieeieeeieeene 79
Table 5.14: Results for Matrix Multiplication Operations of 2048 X 2048.ccceevevvveeneenne 79

Table 5.15:

Time Taken (s) for Various Operations on Varying Data Size with 1 Parallel Worker.

... 82
Table 5.16: Time Taken (s) for Various Operations on Varying Data Size with 4 Parallel Workers.
... 83
Table 5.17: Summary of All Tested CPUs and GPUS.cccoovvieiiiiiiiiiiiciieieceeeeee e 87
Table A.1: Specifications of Tested GPUS.ccccoeviiiiiiiiiiiie et 90
Table A.2: Specifications of Tested CPUS.cccceoiriiriiiiiiiiicieiicneeestee e 91

List of Acronyms

API

CG

CPU

CUDA

DFFT

DRAM

ECC

FFT

FLOPS

GB

GFLOPS

GPGPU

GPU

HTML

IC

ICP

ICPCG

LU

MB

PCG

Application Programming Interface
Conjugate Gradient

Central Processing Unit

Compute Unified Device Architecture
Discrete Fast Fourier Transform
Dynamic Random-Access Memory
Error-Correcting Code

Fast Fourier Transform
Floating-Point Operations Per Second
Gigabytes

Gigaflops

General-Purpose Graphics Processing Unit

Graphics Processing Unit
HyperText Markup Language
Incomplete Cholesky

Incomplete Cholesky Preconditioner

Incomplete Cholesky Preconditioner Conjugate Gradient

Lower-Upper
Megabytes

Preconditioned Conjugate Gradient

Page |xiii

PCI

PCle

PCT

PD

RHS

RO

SIMD

SIMT

SM

SPD

SPMD

SVD

TBC

TDP

TPCG

UPCG

Peripheral Component Interconnect
Peripheral Component Interconnect Express
Parallel Computing Toolbox

Positive Definite

Random-Access Memory

Right-Hand Side

Read-Only

Single Instruction Multiple Data
Single-Instruction, Multiple Thread
Streaming Multiprocessor

Symmetric Positive Definite

Single Program Multiple Data

Singular Value Decomposition

Thread Block Cluster

Thermal Design Power

Transformed Preconditioned Conjugate Gradient

Untransformed Preconditioned Conjugate Gradient

Page |xiv

Page |1

Chapter 1

Introduction

1.1 Motivation

In the realm of scientific and engineering computing, the efficient solution of large sparse linear
systems plays a pivotal role across a multitude of disciplines, from computational physics and
computer graphics to data analysis and machine learning. These systems often underpin complex
simulations, optimizations, and numerical modelling tasks that are essential for advancing our
understanding of engineering design. As the scale and complexity of these problems continue to
grow, so does the demand for innovative solutions and computing platforms that are capable of

meeting these computational challenges.

GPUs, including mobile graphics chips, have emerged as formidable computational
accelerators for a wide range of scientific and numerical applications. Unlike a traditional CPU,
which consists of no more than a handful of cores, a GPU has a massively parallel array of integer,
floating-point processors, and a dedicated high-speed memory. Typically, a GPU contains
hundreds or even thousands of smaller processors. Figure 1.1 shows an example of the number of
cores on a CPU and a GPU [1]. Due to their massively parallel architecture, GPUs, which were
initially designed to accelerate graphics rendering, have been increasingly applied to perform
general-purpose computations. As GPUs excel at parallelism, they make a particularly well-suited
platform for accelerating iterative solvers commonly used to tackle large sparse linear systems [2].
Among these solvers, the preconditioned conjugate gradient (PCG) method stands out as a

powerful iterative algorithm [3].

Page |2

I | o o
Core 1 | | Core 2 I o o
I o o
I | o o
il oo 1
I o o o
I | o o o
) OO0O00OO00O00000O080O000
Cache
Device Memory
System Memory

Figure 1.1: Comparison of the number of cores on a CPU system and a GPU. Left shows a CPU

with multiple cores, and right shows a GPU with hundreds of cores.

Preconditioning techniques, which aim to transform the original linear system into an
equivalent one with improved numerical properties, are often used in conjunction with conjugate
gradient (CG), which results in PCG, to enhance its convergence speed and robustness in a wide
range of applications. Preconditioning can also significantly reduce the number of iterations
required for convergence [4]. In this context, the focus is on the incomplete Cholesky
preconditioner (ICP). The ICP is a fundamental tool in solving large systems of linear equations
as it leverages the inherent sparsity structure of the matrix to approximate the Cholesky

factorization, which effectively mitigates the ill-conditioning of the system.

This thesis explores the synergies between two contemporary computational technologies:
the ICPCG method and modern GPUs, with a specific emphasis on NVIDIA mobile GPUs. The
ICPCG method will be implemented within MATLAB and will utilize PCT for parallelization.
This toolbox does not require the use of an API, such as CUDA for NVIDIA GPUs [5]. Although
CUDA has a generic parallel programming model in a multithreaded environment, it requires
programmers to have a good understanding of the CUDA-supported GPU devices’ hardware to
fully optimize their performance. It also requires a good low-level programming skill. Otherwise,
performance can vary greatly [6]. Programmers who work on languages that are not supported by

CUDA can find it difficult and time-consuming to acquire the skill to implement CUDA correctly.

Page |3

Hence, the primary aim of this study is to evaluate the effectiveness of using MATLAB PCT to

implement ICPCG when executed on state-of-the-art NVDIA mobile GPU. The following key

aspects will be examined during the research:

1.

Performance of GPU Parallelism: GPUs are designed for parallelism, but to harness
their power effectively for iterative solvers requires a profound understanding of their
architecture and programming models. However, with MATLAB PCT, it is possible to
parallelize the ICPCG algorithm without the profound understanding. Hence, this
research investigates strategies to efficiently parallelize the algorithm with PCT, so that

it exploits the full computational capabilities of modern GPUs [5].

ICPCG Method: An in-depth evaluation of incomplete Cholesky (IC) preconditioning
strategies on the CG method tailored for GPU acceleration. This includes an assessment

of the computational cost within the context of ICPCG.

Scalability of Problems: A meticulous analysis of the scalability of ICPCG on GPUs
concerning problem size, sparsity pattern, and GPU hardware configuration. This study
helps to determine the practical limitations and benefits of employing GPUs by using
MATLAB PCT on NVIDIA mobile GPUs for solving large sparse linear systems
effectively.

Real-world Applications: By demonstrating the performance of ICPCG on GPU using
MATLAB PCT in scientific and engineering domains, it will serve as tangible
demonstrations of the method’s potential to expedite simulations and enhance the

efficiency of solving critical, large-scale computational problems.

Software and Tools: Discussion of the software environment, MATLAB, and its
essential toolboxes, including PCT, that facilitate the implementation of ICPCG on
GPUs. This demonstrates how accessible and user-friendly MATLAB PCT is for those
not well-versed in CUDA.

This research endeavours to unlock the potential of combining ICPCG on MATLAB with

modern NVIDIA GPUs, enabling researchers and engineers to efficiently address complex, large-

scale computational problems. The insights gained through this investigation will contribute to the

Page |4

optimization of numerical simulations, ultimately enhancing our ability to tackle increasingly

intricate challenges in science and engineering.

1.2 Thesis Structure

This thesis is organized into six chapters. Chapter 2 delivers an extensive review of the CG method,
including the background knowledge and related work. Chapter 3 presents the key advantages of
GPUs over CPUs, along with an exploration of GPU architecture to achieve these key advantages.
This chapter also presents MATLAB PCT that is used for GPU parallelization. In Chapter 4, we
delve into the methodology applied to implement ICPCG on contemporary NVIDIA mobile GPUs
using MATLAB PCT as well as supplementary implementations. Chapter 5 unveils the
experimental results and findings obtained through the methodology, followed by a thorough
discussion of these outcomes. Chapter 6 encapsulates the conclusion drawn from this study and
outlines prospects for future research. Finally, the appendix furnishes additional information on

the specifications of the GPUs and CPUs subjected to testing.

Page |5

Chapter 2

Conjugate Gradients

The CG method is one of many common iterative methods used for solving large systems of linear

equations that are symmetric, positive definite (SPD). It was developed by E.Stiefel and M.R.

Hestenes [7]. This method is effective in solving a system, Ax = b, of n simultaneous equations

in n unknowns, particularly if n is large. The matrix A is symmetric if A = AT and positive

definite (PD) if xTAx > 0, for all x # 0 [4]. CG is considered to be a machine method as it has the

following properties [7]:

1.

Simplicity and minimal storage: The method is straightforward, consisting of repetitive

elementary operations that demand minimal storage space.

Convergence and finite steps: The method is designed to converge rapidly, and ideally,
it should reach a solution in a finite number of steps, even when infinite steps are
theoretically required. A method that guarantees finite-step solutions, provided no

rounding-off errors occur, is preferred.

. Rounding-off error stability: The method maintains stability with respect to rounding-

off errors. If necessary, it includes subroutines to ensure this stability. Rounding-off
errors can be reduced by repeating the same routine, using the previous results as a

refined estimate of the solution.

Progressive estimation: At each step, the method provides information about the

solution, yielding a more accurate estimate than the previous one.

Utilization and original data: The method makes the most use of the initial data at each
step of the routine. Special properties inherent to the given linear system, such as the
presence of numerous zero coefficients, are preserved. (In contrast, certain methods

like Gauss elimination may inadvertently alter these special properties.)

Page |6

However, to grasp the method of CG, it is essential to have a prior understanding of both

the steepest descent method and the method of conjugate directions.

2.1 The Method of Steepest Descent

In the method of steepest descent, we start at an arbitrary point X, and proceed towards a minimum
value of the function f, defined in Equation 2.1 [8]. We advance through a sequence of steps
X1, X3, ... until we reach the proximity to the solution x. In each step, we choose the direction in
which the function f decreases most rapidly, which is the negative gradient of f, denoted as —f'(x;).

This direction is defined by the equation —f'(x;) = b — Ax; [8].

1
f(x) = EXTAX —bTx+c 2.1

In addition, the error, e; = X; — X, serves as a vector indicating the deviation from the
solution x. Conversely, the residual, r; = b — Ax;, signifies the extent of deviation from the correct
value of b. We can view the residual, r; = —Ae;, as the result of transforming the error e; by the
matrix A, placing it in the same space as b. More importantly, r; corresponds to —f'(x;),

representing the direction of the steepest descent, r; = —f'(x;) [9].
A line search is a process that selects a to minimize the function f along a line. According
to the fundamental of calculus principles, a is chosen to minimize f when the directional derivative,
d . . d d
denoted as af(xl), equals zero. Applying the chain rule, we have af(xl) = f’(xl)Taxl =

f'(x;1)Try. Thus, to find the optimal a, one should ensure that r and f'(x,) are orthogonal by

setting the expression to zero [9, 10].

Page |7

Figure 2.1: Surface of a quadratic form f(x).

In Figure 2.1, we visualize a representation of the surface of a quadratic function f. To
demonstrate the application of a line search method, consider an initial point x, = [—2, —2]T.
Figure 2.2 depicts the intersection of a vertical plane with the paraboloid, while Figure 2.3
illustrates a search line along the contours of f. In Figure 2.2, the line search procedure aims to
locate the point on the intersection of these two surfaces that minimizes the function f. At this
specific point, the magnitude of the gradient vector, denoted as f’, along the search line in Figure

2.3, reaches its maximum [10].

Consequently, the magnitude of the projection of the gradient vector onto the search line is
zero. As we traverse along the search line, the magnitude of the gradient vector decreases, while
the magnitude of the projection increases. This observation implies that at the minimum point on

the search line, the gradient vector exhibits orthogonality with respect to the search line [9].

-6

Figure 2.3: Contours of the quadratic form f(x) with the line search.

x1

-2

x1

Page |8

Page |9

As per the previously mentioned definitions, the derivation of a leads to the formulation of

the steepest descent method, as follows [9, 10]:

ry = b — AXi (22)
o = 'y (2.3)

" rlAr '
Xi+1 = Xj + o4l (2.4)

To optimize the computational efficiency by eliminating one of the two matrix-vector
multiplications per iteration, we can pre-multiply Equation 2.4 by —A and add b, resulting in a

modified equation [9, 10]:

Iiy1 = I} — 04AT; (2.5)
While this modification reduces the number of matrix-vector multiplications per iteration,
it is important to note that the computation of ry, as per Equation 2.2, is still required initially.
Once ry is determined, Equation 2.5 can be applied in subsequent iterations. Furthermore, the

product Ar only needs to be calculated once for both Equations 2.3 and 2.5 [9].

It is worth highlighting that due to the use of ry in Equation 2.5, there is a potential
accumulation of floating-point roundoff errors that might prevent x; from converging to the true
solution x. Therefore, Equation 2.2 can be recomputed periodically, rather than in every iteration,

to ensure the correct residual is obtained [9].

Page |10

Figure 2.4: Meandering path of the method of steepest descent.

Upon applying the method of steepest descent using Algorithm 1 [10] on MATLAB, we
can observe a meandering trajectory, which progressively converges toward the solution X, as
depicted in Figure 2.4. Notably, each gradient vector is orthogonal to the preceding one.

Furthermore, Algorithm 1 encompasses Equations 2.2 to 2.4 within its framework [10].

The convergence behaviour of the steepest descent method is characterized by the

k—1\!

inequality ||e;||s < (K+1) llegll o, wherein k represents the spectral condition number of matrix A

in the linear system Ax = b. The spectral condition number k indicates how sensitive the solution
x is to small changes in the vector b, offering insights into the stability of the solution concerning
perturbations in the right-hand side (RHS) vector [9, 11]. A higher condition number x signifies a
greater degree of ill-conditioning in the matrix. Unfortunately, this approach may lead to recurrent

descent directions, resulting in an inefficient convergence process [8-10].

Page |11

Algorithm 1 Steepest Descent Method

I: Given matrix A

2: Given RHS vector b

3: Initialize initial guess xq

4: Settolerance eandi =0

5: Atiteration i, while ||rj|| > e, do
6: r; = —VI(x;)

7: o; = rir;/r{ Ar; or perform an exact line search
8: Xiy1 = Xj + QI

9: i=i+1

10: if |||l <eorr; =0

11: return [Xi4q,]

12: end if

13: end while

2.2 The Method of Conjugate Directions

The method of conjugate directions refines the steepest descent method by incorporating a series
of orthogonal search directions dg, dy, ..., d,_; to progress towards the minimum point. Within
each of these search directions, the method takes a single step of precisely the correct length to

align perfectly with the solution x. Once n such steps are executed, the solution x is determined

[9].

These search directions exhibit A-orthogonality, meaning that two vectors, d; and d;, are
considered A-orthogonal, or conjugate, if their dot product equals zero, diTAdj = 0. Furthermore,
the current search direction d; is A-orthogonal to the error of the subsequent iteration, labelled as
ej+1. This error is calculated as the difference between the point of the next iteration X;,; and the
true solution X. This orthogonality condition ensures that the method avoids retracing the same
search direction as d;, essentially equivalent to the process of seeking the minimum point along

the search direction d;, akin to the method of steepest descent [9].

Page |12

Using the orthogonality of d; and e;, 1, « is derived as [9]:

o= — dAe, (2.6)
1 dTAd; ’
o = i @.7)

dl Ad;

It is noteworthy that if we consider the search vector in Equation 2.6 as the residual, then

Equation 2.7 would be identical to the formula employed in the steepest descent method [9].

To establish a set of search directions dg, d4, ..., d,,_; that are A-orthogonal, the conjugate
Gram-Schmidt process is used. By using a collection of n linearly independent vectors
Uy, Uy, ..., Uy_1, We can derive d; by subtracting the components in u; that do not align with the A-

orthogonal vectors from the previously determined d vectors [9].

In Figure 2.5(a), it shows that the conjugate Gram-Schmidt process initiated with two
linearly independent vectors ug and u,. Subsequently, in Figure 2.5(b), it designates dg to be u,
and illustrates u; as a composed of two components: u* and u*. Notably, the vector u* is A-
orthogonal, or conjugate, to d,, while u™ is parallel to d,. Following this conjugation process, the
A-orthogonal segment persists, resulting in the subsequent search direction d;, as portrayed in

Figure 2.5(¢c) [9].

Ug dy N
~ u+

Uq e o

(a) (b) (c)

Figure 2.5: Gram-Schmidt conjugation of two vectors.

Page |13

Generally, the process sets dy = ug, and for the subsequent iterations i > 0, the search

directions are [9]:

1-1
di =u; + Z Bikdxk (2.8)
k=0

In Equation 2.8, (3;x are defined for i > k, and using the definition of conjugacy, B;x are
derived as [9]:
uf Ad;

J
- (2.9)
dAd;

Bik =

Nonetheless, the Gram-Schmidt conjugation process within the method of conjugate
directions necessitates the retention of all prior search vectors in memory for generating each new
search vector. This incurs computational costs on the order of O(n®) to produce the complete set
of search vectors [9]. Fortunately, when the search vectors are formulated by conjugating the axial
unit vectors, the conjugate directions method aligns with the Gaussian elimination method. This

equivalence is particularly evident in the method of conjugate gradients, where one concurrently

executes the method of orthogonal directions within a scaled or stretched space [9].

Similar to Equation 2.5 in the method of steepest descent, the number of matrix-vector
multiplications per iteration can be reduced by using a recurrence to find the residual, where e;,; =

e; + a;d; [9]:

liy1 = —Aejp1 = Ij — ;Ad; (2.10)

Page |14

2.3 The Method of Conjugate Gradients

The method of conjugate gradients is essentially an adaptation of the method of conjugate
directions, where the search directions are established by conjugating the residuals, achieved by
setting u; = r;. Many of the properties found in the method of steepest descent and conjugate
directions also apply to the CG method [9]. The motive of the CG method is the same as the
steepest descent method, where the CG method minimizes the function f, as defined in Equation
2.1. In the CG method, the vectors are identified as: (Xq,Xy,...,Xn) = (dg,dq, ..., dp_1) ,
(do,dyq, ..., dy1) = (ro, Ty, ey Tneq1) s (To Ty, e, Tp1) = (b, Ab, ..., A" 1b) [9]. Also, under the
assumption of A being SPD, the A-norm is defined as ||x||5 = VxTAx. Moreover, since the search
vectors are derived from the residuals, the subspace spanned by {ry, ry, ..., i_1 } is identical to D;.
Each residual is orthogonal to the preceding search directions, which also happen to be the prior

residuals: riTr]- =0, fori#j[4,9].

This concept is visually demonstrated in Figure 2.6, where a clear pattern emerges [9].
Each new residual r; maintains orthogonality with respect to all prior residuals and search
directions. Similarly, each new search direction d; is purposefully constructed to be A-orthogonal
to all the preceding residuals and search directions. Furthermore, the endpoints of r, and d, lie on

a plane that runs parallel to the subspace D,, and d, is a linear combination of r, and d; [9].

Referring to Equation 2.10, it becomes apparent that each successive residual r; can be
expressed as a linear combination of the previous residual and Ad;_; [9]. By applying the
definition that d;_; belongs to D;, written as d;_; € D;, it follows that each subsequent subspace
D;,q is constructed by extending the previous subspace D; with the subspace AD;. As a result, the
subspace D; takes the following form [9]:

D; = span{d,, Ady, A%d,, ..., A"1d,}

_ 2.11)
D; = span{rg, Arg, A’ry, ..., Al"1r,}

Page |15

Figure 2.6: An illustration of the CG method.

The subspace, as defined in Equation 2.11, is commonly referred to as a Krylov subspace,
which is a subspace of a vector space generated by iteratively applying a matrix to an initial vector
that is the matrix A to the initial residual vector r, [9]. An essential property of a Krylov subspace
is that the next residual vector r;,; exhibits orthogonality with respect to D;, ;. In practical terms,
this means that r;, ; is already A-orthogonal to D;. This characteristic simplifies the Gram-Schmidt

conjugation process because r;,4 is inherently A-orthogonal to all the preceding search directions

[9].

The Gram-Schmidt conjugation process no longer necessitates the storage of previous
search vectors to maintain the A-orthogonality of new search vectors. For this reason, this leads to
a reduction in both space complexity and time complexity per iteration, from O(n?) to O(m),

where m represents the number of nonzero entries in the matrix A [9].

To summarize the CG method’s workflow [9, 11]:

do = I‘O = b - AXO (212)
_hin (2.13)

%= dTAd, '
Xi+1 = Xj + aidi (214)

liy1 =1 — (XiAdi (215)

Page |16

i T
iy = (2.16)
di1 = Tig1 + Bivadi (2.17)

When we apply the CG method using Algorithm 2 [11] to the same example showcased in
Figure 2.1 to 2.4 within the MATLAB environment, we observe a notably quicker convergence.
This is characterized by the absence of a zigzagging trajectory toward the solution x, as depicted

in Figure 2.7. Additionally, Algorithm 2 incorporates Equations 2.12 to 2.17 [9, 11].

Figure 2.7: Direct path of the method of conjugate gradients.

Page |17

Algorithm 2 Conjugate Gradients Method

I: Given matrix A

2: Given RHS vector b

3: Initialize initial guess xq

4: Set tolerance e and maximum iterations N, .«
5: Computery = b — Ax,

6: Setdy =r,

7. foriterations i = 0: N, .4, do

8: o; = rir;/d] Ad;

9: Xip1 = X; + oyd;

10: iz = I — oAd;

11: Birs = Iffealics/1i 1y

12: di+1 = Tip1 + Bivad

13: if ||rj;1]l < e, then

14: return [X;,q, 1]

15: end if

16: end for

17: Print failure to converge message when iteration i > N .«
18: return [meaX,i = —1]

As previously mentioned, the CG method theoretically converges after n iterations.
However, in practical applications where n is typically large, performing n iterations become
infeasible. In real-world scenarios, accumulating floating-point errors can lead to gradual loss of
accuracy in the residual and a reduction in the A-orthogonality of the search vectors [12]. Thus,

expecting an exact algorithm is not realistic.

When the CG method is applied to an SPD system Ax = b, the A-norms of the errors adhere

1
|||:’||||A <2 (ﬁi) , where k represents the spectral condition number of matrix A.
ollA

This inequality is derived from Chebyshev polynomials [12]. Similar to the method of steepest

to the inequality |

descent, if v/ is relatively small, the CG method converges rapidly, while for a large vk,

convergence is slower. The value of k depends on the spread between the largest and smallest

Page |18

eigenvalues of A. When these eigenvalues are closely clustered, the CG method exhibits good

convergence. Conversely, if the eigenvalues of A are widely separated, convergence is slower [12].

Each iteration of the CG method necessitates O(n?) floating-point operations, so executing
n iterations result in a computational cost of O(n3) operations, which is equivalent to Cholesky
decomposition. In practical implementation, convergence is often achieved in fewer than n
iterations when using floating-point arithmetic. In general, the CG method outperforms the

steepest descent method [12].

While the CG method stands out as a highly efficient iterative approach, dense and poorly
conditioned matrices can be equally effectively solved through direct factorization and backward
substitution [12]. In cases where the matrices are not SPD, the CG method can still be employed
by transforming the original equation from Ax = b to ATAx = ATb [4]. However, it is worth
noting that preconditioning these systems can be challenging. Since this thesis primarily

concentrates on SPD matrices, non-SPD matrices will not be explored in further detail.

2.4 Preconditioning

Preconditioning is a technique implemented to enhance the efficiency and robustness of iterative
methods, such as the CG method. It accomplishes this by improving the condition number of a
matrix [12]. Essentially, it transforms the original linear system Ax = b into an equivalent system
with the same solution that is easier to solve with an iterative solver. This transformation is
achieved by left- or right- multiplying the system with a preconditioning matrix M. The

preconditioner M needs to fulfill several criteria, including [12]:
1. It should be cost-effective to construct.
2. It should have a straightforward and efficient inversion process.

3. It should approximate A in a way that the product of M~1 and A is near to the identity

matrix [and is non-singular.

4. The preconditioned system should be easier to solve with improved accuracy.

Page |19

If the preconditioner M is applied to the left, the resulting system takes the form of
Equation 2.19. Conversely, if M is applied to the right, it yields Equation 2.20. In the latter case,
applying M to the right can be thought of as a change of variables u = Mx, and the system is then
solved with respect to the unknown u [11]. In this thesis, we will focus on the left-multiplying

preconditioner.

M™1Ax = M~1b (2.19)

AM lu=b,x=M1tu (2.20)
When k(M~1A) is significantly smaller than k(A), or when the eigenvalues of M~1A
exhibit better clustering than those of A, the iterative solution of Equation 2.19 can be achieved

more rapidly than solving the original problem. The solution depends on the coefficient matrix

M~1A instead of A [9, 12].

However, it is important to note that M™1A is not inherently symmetric or definite, even if
both M and A possess these properties. This difficulty can be circumvented by recognizing that for
every SPD M, there exists a matrix E that may not be unique with the property where E times its
transpose equal to M, which is EET = M [9]. This matrix E can be obtained through various
methods, including Cholesky factorization. Importantly, the matrices M~*A and E"*AE~T share
the same eigenvalues A, because if v is an eigenvector of M~*A with the eigenvalue A, then ETv is

also an eigenvector of ETYAE™T with the same eigenvalue A [9].

The system Ax = b can be transformed into the problem expressed in Equation 2.21. In
this formulation, R is solved first followed by x. Notably, as E"*AE~T is SPD, the method of
steepest descent or CG can be used to solve for X. The process of using the CG method to solve

this system is also known as the transformed preconditioned conjugate gradient (TPCG) method

[9].

E'AE"T8 = E71b, 8 = ETx (2.21)
Evaluating the TPCG method reveals an undesirable characteristic—namely, the need to
compute E. To address this, E can be eliminated via variable substitution, leading to the

untransformed preconditioned conjugate gradient (UPCG) method [9]:

Page |20

ro =b — Ax, (2.22)
dg =M™ 1r, (2.23)
o; = % (2.24)
d; Ad;
Xiz1 = X; + a;d; (2.25)
iy = I; — o;Ad; (2.26)
T \M-1
Bit1 = ri;i}rl\l\/f[—ll;.ilﬂ (2.27)
digr = M7 i + Biyadi (2.28)

The effectiveness of a preconditioner M is primarily determined by the condition number
of M~1A, and, in some cases, the eigenvalue distribution within this transformed matrix [9]. As

there are many ways to find M, the thesis will mainly focus on IC factorization technique.

2.4.1 Incomplete Cholesky Factorization

The incomplete Cholesky factorization is a fundamental technique in numerical linear algebra.
Generally, the IC factorization is similar to Cholesky factorization, except the former is designed
for sparse matrices. It is a variant that approximates the Cholesky factorization of a sparse matrix
without filling in zero-fill-ins or minimal fill-ins whenever possible, which makes the IC

factorization more memory-efficient as the factorization matrix remains its sparsity [3].

Cholesky factorization is applied to decompose a real SPD matrix A into the structure
shown in Equation 2.29, where L represents a lower triangular matrix. The computation of the
elements within L can be performed column by column, following recursive equations like
Equation 2.30 for diagonal elements and Equation 2.31 for elements below the diagonal [3]. Given
that L is lower triangular, it simplifies the computation of its inverse L™ and the inverse of its
transpose (LT)~1. This enables the solution of the linear system Ax = b, where the process first
computes y through forward elimination and then determines x using backward substitution, as

illustrated in Equation 2.32 [3].

Page |21

A=LLT (2.29)

i-1

Lii = Aii - L%k (230)
k=1
L= Aji — 21 LixLik
N Ly (2.31)
j=@G(+1),0+2),..,n
y=L"1b,x= (LN 1y (2.32)

In terms of computational complexity, the Cholesky factorization has a cost of O(n3) and
involves computing n square roots. Overall, Cholesky factorization tends to be approximately

twice as fast as the lower-upper (LU) decomposition when applied to a PD matrix [12].

2.4.2 Incomplete Cholesky Preconditioned Conjugate Gradient

To implement the ICPCG method, assume the existence of a PD preconditioner M, which can be
decomposed into an IC factorization M = LLT, where L is a lower triangular matrix. This
factorization serves the purpose of preserving symmetry using the split preconditioning approach
and results in an equivalent system AX = b. This system yields the SPD matrix A, as shown in
Equation 2.33 [11, 12], resembling Equation 2.21. Initially, the CG method is applied to solve for

X in AX = b, followed by solving for x in ¥ = LTx [3].

(LA DL'x =L 1b
_ _ (2.33)
A=L1'ALT x=L"x,b=L"

However, the Cholesky factor L in Equation 2.33 is often less sparse than M. Therefore, L
might be constrained to maintain the same pattern of nonzero elements [3]. When an element aj;
off the diagonal of A is zero, the corresponding element I;; is also set to zero. Consequently, L
retains the same distribution of nonzero values as A below the diagonal elements; hence, it is an
incomplete factorization. With this adjustment, M takes the form shown in Equation 2.34, where

E represents a small error matrix containing nonzero entries exclusively in the elements that have

been forced to zero [3, 12].

Page |22

M=LLT+E (2.34)
During the algorithm’s execution, it is critical that all L;; values are greater than zero. If L;;
equals zero, the algorithm will fail. Similarly, if L;; is less than zero, then LLT is not PD, which
implies that the CG method cannot provide an exact solution. A complete Cholesky factorization
will always yield L;; values greater than zero. Additionally, it has been proven that if A is an A-

matrix, i.e., Aj; < 0 if i # j, the IC factorization will consistently yield L;; values greater than zero

[3].

Algorithm 3 Incomplete Cholesky Factorization

I: Given matrix A

2: function L = icholesky(A)

3: for iterations i = 1:n, do

4: temp = Aj; — Yiczy Lik

5: if temp < 0, then

6: Print error messages

7: return

8: end if

9: L = \/temp

10: for iterations j = i + 1:n, do
11: if A;; == 0, then

12: Lj=0

13: else

14: Lii = (Aji — ik LiLi) /L
15: end for

16: end for

17: end function

Page |23

Algorithm 3 represents the IC factorization, which integrates Equations 2.29 to 2.31 [3,
12]. An adjustment is made in Lines 11 to 15, ensuring that when aj; equals zero, the corresponding
element 1j; is forced to zero, ultimately resulting in the Cholesky factor L. Subsequently,
Algorithms 4 and 5 delineate the forward elimination and backward substitution, respectively.
Algorithm 6 combines the functionalities of Algorithms 4 and 5 into a unified function. Finally,
Algorithm 7 encapsulates the ICPCG method, which incorporates Equations 2.22 to 2.28. However,

a successful convergence will depend on how good an approximate inverse (LLT) ™t is [3, 12].

Algorithm 4 Forward Elimination

1: Given lower-triangular matrix L

2: Given RHS vector b

3: function y = forward(L, b)

4: for iterations i = 1:n, do

5: for iterations j = 1:i— 1, do
6: temp = Y21 Ly y;

7: end for

8: yi = (bj — temp)/L;;

9: end for

[
S

end function

Page |24

Algorithm 5 Backward Substitution

1: Given upper-triangular matrix U

2: Given vector y

3: function x = backward(y, U)

4: for iterations i = n: 1, do

5: for iterations j = i+ 1:n, do
6: temp = XLy Uyx;

7: end for

8: xj = (y; — temp)/Uj;

9: end for

_‘
4

end function

Algorithm 6 Solve Cholesky

1: Given lower-triangular matrix L
2 Given RHS vector b

3 function x = cholsolve(L, b)
4. y = forward(L, b)

5 x = backward(y, L")

6

end function

Page |25

Algorithm 7 Incomplete Cholesky Preconditioned Conjugate Gradients Method

1: Given matrix A

2: Given RHS vector b

3: Initialize initial guess X

4: Set tolerance e and maximum iterations N,
5: function pcg(A, b, X, €, Npax)

6: L = icholesky(A)

7: ro =b — Ax,

8: zo = cholsolve(L,y), let z; = (LLT) 'r;
9: dy = z¢

10: for iterations i = 0: Ny,,«, do

11: o = zir;/df

12: Xiz1 = X; + o4d;

13: riz1 = I; — o;Ad;

14: if [|Irj41]| < e, then

15: return [Xjyq, 1]

16: end if

17: Zi+, = cholsolve(L, rj,,)

18: Bir1 = IfvaZis1 /12

19: dit1 = Zj+1 + Bivad

20: end for

21: Print failure to converge message when iteration i > Ny«
22: return [meaX+1,i = —1]

[\
(O8]

end function

Page |26

It has been observed that the IC preconditioning may encounter stability issues, especially
in challenging scenarios where cancellation errors occur. To enhance the algorithm’s reliability,
the drop tolerance-based IC factorization method is adopted [12]. This method retains the off-
diagonal elements computed by the Cholesky algorithm if a specific condition is met, and
otherwise, it preserves the original values, as shown in Equation 2.35. As the drop tolerance
decreases, the IC factor tends to become denser [12].

_ yi-1 1,
- Aji Z{:l Lj;Lix AL > eZA_]-]-bii
A; otherwise

(2.35)

Page |27

Chapter 3

Graphics Processing Units

General-purpose Graphics Processing Units (GPGPUs) are specialized hardware originally
designed for rendering graphics, including computations for both geometry (vertices) and
rasterization (pixels), but have evolved to excel in parallel processing tasks. The idea of using
GPUs for non-graphical computation began to gain traction in the early 2000s [2]. These GPUs
are equipped with thousands of small processing cores optimized for parallelism, making them

suitable for a wide range of computational workloads [2].

3.1 Graphics Processing Unit vs Central Processing Unit

CPUs are characterized as latency-oriented processors designed for task parallelism. They allocate
a substantial number of transistors for caching and employ sophisticated flow control mechanisms.
Modern CPUs can be considered multicore processors as they can achieve their maximum
performance potential with just a few threads [13]. In contrast, GPUs are highly throughput-
oriented processors with a focus on data parallelism. They efficiently manage the relatively
expensive global memory accesses by leveraging a multitude of parallel threads. GPUs are
manycore processors, and they require a large number of threads, often in the thousands, to operate
at their full capacity. This makes GPUs have larger memory bandwidth but higher memory latency,
whereas CPUs have lower latency but lower bandwidth [13].

However, the significant boost in throughput facilitated by a GPU does come with some
trade-offs. One of the primary concerns is the potential bottleneck in memory access during
calculations. Before performing calculations, data must be transferred from the host, CPU, to the
device, GPU, and afterward, it needs to be retrieved. Since a GPU is connected to the CPU through
the Peripheral Component Interconnect Express (PCle) bus, memory access tends to be slower
compared to traditional CPUs. Hence, the overall acceleration in computational speed is

constrained by the amount of data transfer that takes place within the algorithm [1].

Page |28

GPUs are typically employed as coprocessing units alongside CPUs and are particularly
well-suited for tasks that involve high regularity and significant arithmetic intensity. Typically, a
CPU handles the sequential parts of a program, while a GPU takes care of the computationally
intensive portions to accelerate overall processing speed. Moreover, GPUs require explicit parallel
programming using an API, such as NVIDIA CUDA or OpenCL, while CPUs are programmed

using traditional languages, such as C++ [13].

3.2 Graphics Processing Unit Architecture

Contemporary GPUs are composed of various components, and specific GPU models may use
varying nomenclature for these constituents. The key constituents are Streaming Multiprocessors
(SMs), memory hierarchy, Single Instruction Multiple Data (SIMD) stream paradigm, rendering
pipelines, memory controllers, display output capabilities, interconnects, and unified memory [6].
The presence and configuration of these components can differ across GPU models. In the context

of the GPUs examined in this thesis, we will mainly focus on GPUs from NVIDIA.

SMs serve as the CPU of the GPU, responsible for executing the core computation.
NVIDIA GPUs are equipped with NVIDIA CUDA Cores, specifically designed to accelerate
general-purpose computing tasks, including matrix operations [14]. An SM is engineered to
execute hundreds of threads simultaneously. These threads function as parallel processors,
handling floating-point mathematical operations. To efficiently manage this multitude of threads,
it employs a unique architecture known as Single-Instruction, Multiple-Thread (SIMT). This
architecture pipelines instructions, exploiting both instruction-level parallelism within a single
thread and extensive thread-level parallelism through simultaneous hardware multithreading [6].
All data processed by a NVIDIA GPU is channeled through threads, and each thread possesses its

own memory register that is inaccessible to other threads [6].

Furthermore, the concept of a CUDA block, also known as a thread block, entails the
grouping of threads, which are further organized into a grid. A kernel is executed as a grid of blocks
of threads. Thread blocks are required to execute independently in any sequence, either serially or
concurrently. Each thread block is managed by one SM, and an SM can handle multiple concurrent

thread blocks based on the resources needed by those blocks [6]. This logical arrangement

Page |29

enhances the efficiency of data mapping. Importantly, thread blocks share memory on a per-block
basis, implying that every thread within a specific CUDA block can access the same shared

memory. In the current CUDA architecture, each block consists of 1024 threads [6].

Kernel grids play a role in grouping thread blocks under the same kernel. The thread blocks
can be arranged in one-dimensional, two-dimensional, or three-dimensional grids, as shown in
Figure 3.1, facilitating parallel execution, especially for tasks demanding more than 1024 threads.
However, the synchronization that occurs at the block-level does not extend to the grid-level as the
shared memory is inaccessible to different thread blocks [6]. Lastly, there is an optional hierarchy
level known as Thread Block Clusters (TBC), comprising thread blocks. Thread blocks within a
TBC are guaranteed to be scheduled together on a GPU processing cluster, akin to how threads
within a thread block are ensured to be co-schedule on an SM. This hierarchy is illustrated in

Figure 3.2 [6].

GPUs feature diverse memory levels, and memory allocation adheres to a specific
hierarchy within CUDA, as depicted in Figure 3.3 [6]. This hierarchy is managed automatically
by CUDA compiler or can be manually configured by developers to optimize memory utilization.
The memory levels are registers, read-only (RO) memory, L1 cache/shared memory, L2 cache,

and global memory [6].

A
T

Figure 3.1: Grid of Thread Blocks.

Page |30

Grid with Clusters

Thread Block Thread Block Thread Block Thread Block

HEEA MR

Thread Block Thread Block

Hil Il

In broad terms, registers are assigned to threads, and data stored in registers can be

AN AR

Thread Block Thread Block

HAD A

Figure 3.2: Grid of Thread Block Clusters.

processed at an accelerated rate compared to other data storage locations. RO memory spaces, i.e.,
the constant and texture memory spaces, are accessibly by all threads. They are situated on-chip
within SMs and serve specific functions like texture memory [6]. The global, constant, and texture
memory spaces are optimized for different memory usages and are persistent across kernel
launches by the same application. It is more efficient to access data from RO memory than to resort

to global memory [6].

L1 cache/shared memory is on-chip memory that is shared among thread blocks, with its
management being a combined effort between hardware and software. Thread blocks in a TBC can
perform read, write, and atomics operations on each other’s shared memory [6]. Similarly, as it is
on-chip, the L1 cache/shared memory offers faster access speeds compared to L2 cache and global
memory. L2 cache stores both global and local memory and is accessible to all threads across all
thread blocks. Retrieving data from L2 cache is faster than fetching it from global memory [6].
Finally, global memory corresponds to a dynamic random-access memory (DRAM) and is
comparable to random-access memory (RAM) in CPU. All threads have access to the same global

memory, but global memory inherently operates at a slower speed than L2 cache [6].

Modern GPUs predominantly embrace a SIMD stream architecture, characterized by a

single control processor and instruction memory. Within this architecture, a solitary instruction is

Page |31

replicated and executed simultaneously across all threads at any given moment, enabling efficient
data parallelism [6]. In the case of NVIDIA GPUs, they also employ the SIMT model to effectively
manage their extensive thread pool. SIMT is an enhancement of the SIMD model by introducing
multithreading. This addition enhances overall efficiency by reducing the overhead related to
instruction fetching. Consequently, SIMT empowers developers to craft code that exhibits thread-
level parallelism for independent, scalar, threads, as well as data-parallel code for coordinated

threads [6].

Per thread registers
and local memory

Thread Block
Shared Memory <—{ Per block shared memory

il

Thread Block Thread Block Shared memory of all
Shared Memory Shared Memory thread blocks in a cluster

[T ===

Grid with Clusters

Thread Block Thread Block Thread Block Thread Block
Shared Memory Shared Memory | Shared Memory Shared Memory
Global memory shared
ozl Lo between all GPU kernels

Figure 3.3: Memory Hierarchy.

Page |32

3.3 MATLAB Parallel Computing Toolbox

The Parallel Computing Toolbox (PCT), developed by MATLARB, provides a platform for tackling
computationally and data-intensive tasks by harnessing the power of multicore processors, GPUs,
and computer clusters [5, 15]. Unlike some other tools, it does not necessitate the use of APIs like
CUDA to fully utilize the computing potential, whether it is multiple GPUs on a desktop, computer
clusters, or cloud environments. It seamlessly integrates with parallel-enabled functions in

MATLAB and various other toolboxes [5, 15].

In contrast to CUDA, MATLAB PCT simplifies parallelization by abstracting the low-level
coding required. While CUDA often demands developers to write code at a lower level to achieve
parallelism, MATLAB PCT automates the parallelization of the PCG algorithm on the GPU using
parallel-enabled functions found in the toolbox. This enables developers to utilize the GPU’s
parallel processing capabilities without the need for explicit parallelization implementation [5, 15].
However, the effectiveness of GPU acceleration using MATLAB PCT may vary depending on
factors such as the specific problem being solved and the hardware configuration. Its high-level
programming may not always optimize performance as effectively as manually optimized CUDA

code [5, 15].

On the other hand, similar to CUDA, PCT taps into NVIDIA GPUs for both non-graphics
and graphics computations, all within the MATLAB programming language. This eliminates the
need to switch to a different programming language, allowing developers to concentrate on their
applications rather than getting bogged down in performance optimization. Moreover, for those
who prefer CUDA, MATLAB can interface with CUDA code, enabling the execution of CUDA
operations alongside PCT [5]. For these reasons, MATLAB PCT is used in this study to evaluate

the performance of its functions.

Page |33

Chapter 4
Methodology

In this chapter, the methodologies and techniques applied throughout the research are
comprehensively presented. The objective is to provide a clear understanding of the implemented
methods. These methods encompass the implementation of the ICPCG method on different
computing hardware and the exploration of additional methods. The inclusion of other methods
serves to enhance the comprehension of the mobile GPU’s performance. These supplementary
methods involve exploring the performance of the backslash operator on both CPUs and mobile
GPUs, assessing the data handling capabilities of mobile GPUs, and evaluating resource
contention. These methods are tested on generated matrices, which are large and sparse, and
specific types of problem with a distinguished pattern in the matrices, as further elaborated in the
next chapter (Chapter 5). The methodologies discussed are important for assessing the
performance, efficiency, and scalability of these techniques, leading to valuable insights into their

real-world applications.

4.1 ICPCG on CPUs and GPUs with Specific Problem Types

The examination of the ICPCG method encompasses two distinct sub-sections: the ICPCG
methodology on CPUs and ICPCG methodology on GPUs. These sub-sections offer detailed
insights into the benchmarking setups for ICPCG on each platform, leveraging the capabilities
provided by MATLAB PCT [5]. Specifically, the ICPCG method is assessed using specific
problem types characterized by unique matrix patterns. This deliberate choice facilitates a
comprehensive comparison of ICPCG’s performance and scalability across diverse computing

environments, shedding light on its behaviour on both CPU and GPU architecture.

Page |34

4.1.1 ICPCG on CPUs and GPUs using Parallel Computing Toolbox
Commands

The evaluation commences by loading a specific problem type into the workspace of MATLAB.
To scrutinize the ICPCG method’s performance, the GPU undergoes initialization, and its memory
is cleared using the gpuDevice [16] and reset functions, respectively, from MATLAB PCT.
Subsequently, the IC decomposition is applied to the matrix A of the loaded problem, utilizing the
ichol function [17] on the CPU. This function takes matrix A as input and yields L1 as output,

and the time taken for the IC decomposition is recorded.

Once the IC decomposition concludes, the PCG method is employed using the PCG
function [18]. This function incorporates multiple inputs, including matrix A with N-by-N
dimension, RHS column vector b with N-by-1 dimension, tolerance, maximum number of
iterations, preconditioners M1 and M2, and an initial guess x0. In this context, the predefined
values for tolerance, maximum number of iterations, preconditioner, and initial guess are 107>,
105, the output matrix of the IC decomposition L1, and the zero vector, respectively. Matrix A and
vector b are directly sourced from the loaded problem. The PCG method is then executed on the
CPU, followed by a similar execution on the GPU. On the CPU, the PCG method is timed using
tic and toc functions [19, 20].

For the GPU execution, matrix A, vector b, and preconditioner L1 must be transferred from
the host to the GPU using MATLAB PCT’s gpuArray function [21]. Following the memory
allocation, the PCG method is applied on the GPU using the PCG function [18], mirroring the CPU
execution. With the exception that on the GPU, the PCG method is timed using both the
gputimeit function [22], which is from MATLAB PCT, and the tic and toc functions [19, 20].
To utilize gputimeit, a function handle, pcgFcn, must be created first. A function handle is a
data type in MATLAB that stores an association with a function, enabling the passing of a function
to another function [23]. When employing tic and toc to measure execution time on the GPU,
the wait function [24] must be applied to ensure accurate timing. This is necessary because the
program must wait for operations to complete before calling tic and toc. The gputimeit
function, unlike the tic and toc functions, ensures that all GPU operations have completed before

timing and adjusts for any associated overhead. Therefore, when using the tic and toc functions,

Page |35

the wait function must also be employed to ensure that all GPU operations have finished before
recording the time. However, tic and toc do not consider the overhead. The PCG method is

implemented several times to capture the best timing for both CPU and GPU executions [25].

It is crucial to note that the PCG function is fully supported by MATLAB PCT [18], ensuring
smooth execution of the function with the aid of the toolbox without encountering potential errors,
such as running out of memory. However, this support is not extended to the backslash operator, a

point that will be further explained in the subsequent sub-chapter (Chapter 4.2.2).

Utilizing the execution timings of the PCG method on each platform, the floating-point
operations per second (flops) are calculated for the corresponding hardware using the formula
derived from the Linpack TPP benchmark of the HPC Challenge [26], as shown in Equations 4.1
and 4.2 where n represents the size of matrix A, i.e., an n-by-n matrix. The formulas measure the
floating-point rate of execution, commonly known as flops, and incorporate a multiplier to yield
gigaflops, specifically for solving a linear system of equations. The results are then returned as

outputs of the ICPCG function.

2 3
— 203 152 4.1
flops 0 + e 4.1)
gigaflops = flops + execution time <+ 10° (4.2)

Algorithm 8 delineates the assessment process for this section. In Lines 2 and 3, the GPU
is reset. Lines 4 to 6 depict the IC decomposition process, while Lines 8 and 10 showcase the
implementation of PCG on the CPU. Subsequently, Lines 11 to 13 illustrates the data transfer from
the host to the GPU, and Lines 14 to 18 demonstrate the PCG being employed on the GPU using
tic and toc. Furthermore, Lines 19 and 20 present the GPU’s PCG execution using gputimeit,

and Lines 21 and 22 outline the computation of gigaflops.

Page |36

Algorithm 8 ICPCG function on CPUs and GPUs using MATLAB PCT

1:

N S B S AR L e S

[\ I O T NS I O I NS I N e e e e e e e
2R M 22 2 X RN 2

function iccg_pct(A, b)

gpu = gpuDevice

reset(gpu)

tichol = tic

L1 = ichol(A)

tichol = toC

Set tolerance e and maximum number of iterations N .«
tpcepy = tiC

Execute PCG on CPU pcg(A, b, e, Njpax, L1)

tpCGCPU = toc

gpuArray(A)

gpuArray(b)

gpuArray(L1)

Wait for operations before start timing wait(gpu)
tpcGoputictoc = HC

Execute PCG on GPU pcg(A, b, e, Njpjax, L1)
Wait for operations before stop timing wait(gpu)

tl’CGGPUtictoc = toc

pcgFen = @() pcg(A, b, e, Nppax, L1)
trcGoputimeir = SPUtimeit(pcgFen)
Calculate flops for CPU and GPU flops = 2/3 * n3 + 3/2 * n?

Convert to gigaflops for CPU and GPU gflops = flops/t/10°

return [ticholr tpcGepyr TPCGapUtictoe’ tPCGapUtimeir SIOPSCPU) gﬂOPSGPU]

end function

Page |37

4.1.2 ICPCG on CPUs using Single Program Multiple Data
Statements

Similar to the preceding section, the same specific problem type is initially loaded into the
MATLAB’s workspace. To implement the ICPCG method on CPUs utilizing single program
multiple data (SPMD) statements [27], a feature introduced by MATLAB PCT, a parallel pool of
workers or processes within a process-based environment must be established through the
parpool function [28, 29]. If a parallel pool of workers already exists, it needs to be closed before
creating a new one. When this function is utilized, MATLAB establishes a pool on the local
machine, assigning one worker to each physical CPU core. These parallel workers are
subsequently entrusted with computational tasks using the SPMD statements, enabling the
execution of parallelized code on workers within the same multi-core CPU. The SPMD statement
allows operations that are within the SPMD body to be performed on the parallel workers
simultaneously. Each worker can operate on a different data set or different portion of the
distributed data and can communicate with other parallel workers while performing the parallel

computations [27].

After creating the parallel pool of workers, a function handle [23] is generated to pass the
ICPCG function, iccg, to a timing function, timingfcn, where the execution time is recorded.
The iccg function initiates the IC decomposition process followed by the PCG method, utilizing
the ichol and pcg functions [17, 18], respectively, as presented in Algorithm 10. The ichol
function takes matrix A from the loaded problem, producing L1 as the output matrix. The pcg
function takes inputs such as matrix A and vector b from the loaded problem, the preconditioner
L1, and preset values of 107> and 10° for tolerance and the maximum number of iterations,

respectively.

Within the timing function timingfcn, as shown in Algorithm 9, two inputs are taken: an
input function (in this case, iccg) which is passed to another function via the function handle [23],
and the number of parallel workers. While an output array of the best execution times for a given
level of concurrency is returned. Using timingfcn, the input function, iccg, is invoked multiple

times for each number of parallel workers and with each execution timed, all within the SPMD

Page |38

statements [27]. After each parallel execution of the ICPCG method on the CPU, the timings are

compared to record the best execution time for the specified number of parallel workers.

Upon completing the execution of the ICPCG method, the gigaflops are calculated using
the formulas from the Linpack TPP benchmark of the HPC Challenge, outlined in Equations 4.1
and 4.2 [26]. Ultimately, the results are returned as outputs of the ICPCG on parallel workers

function.

Algorithm 9 Timing Function

1: Specify function, f, as iccg and an array of number of parallel workers, Ny orkers
2: function timingFen(f, Ny orkers)

3: Initialize an array for time, t, and number of executions, Ny
4: for iterations i = 1:length(Ny,orkers), do

5: n = Nyorkers (1)

6: spmd(n)

7: Initialize t, = oo

8: for iterations k = 1: Ngye, do

9: labBarrier

10: teurrent = tiC

11: f()

12: teurrent = gop(@max, toc)

13: tn = Min(ty, teurrent)

14: end for

15: end spmd

16 t() =t,

17: clear t,, K teyrrent

18: end for

19: return [t]

20: end function

Page |39

Algorithm 10 ICCG Function

I: Specify tolerance e, maximum number of iterations, N«
2 function iccg(A, b)

3 L1 = ichol(A)

4: pcg(A,b, e, Npax, L1)

5 end function

4.2 Backslash on CPUs and GPUs

In MATLAB, the backslash operator solves a system of linear equations, expressed as x = A\b
[30]. In this phase of performance analysis, we conduct tests using the backslash operator,
assessing its functionality on both CPUs and mobile GPUs. The insights derived from this
evaluation will contribute to our understanding of how the mobile GPUs handle computationally
demanding operations, including the ICPCG method. The evaluation encompasses its application
to both randomly generated matrices and specific problem types characterized by distinctive
patterns in the matrices. The detailed procedures for conducting this analysis are outlined,

highlighting the matrix and vector sizes considered for the testing process.

4.2.1 A\b on CPUs and GPUs with Generated Matrices

To evaluate the backslash operator’s performance [30] on CPUs and GPUs, it is imperative to first
clear the GPU memory to ensure the optimal utilization for this analysis. Additionally, the GPU is
initialized using the gpuDevice function [16], which belongs to the MATLAB PCT. After
determining the available CPU and GPU memory in gigabytes (GB), an array of suitable sizes for
matrix A is computed, considering both single- and double-precision elements with a specified
fixed step size. This precaution prevents potential errors by ensuring that the generated matrices

and vectors of varying dimensions do not exceed the available memory [31].

Page |40

Subsequently, a versatile function is designed to generate matrix A and vector b based on
the arrays of appropriate sizes for both single- and double-precision, applicable to both CPU and
GPU. This function is separate from the test function to ensure that the recorded time excludes the
cost associated with data transfer between CPU and GPU, the duration taken for matrix creation,
or other parameters [31]. Matrix A is constructed with significantly larger diagonal elements than
non-diagonal elements, emulating real-world scenarios. A dedicated test function is also
established to execute x = A\b [30]. In this test function, the backslash operator is invoked
multiple times to capture the optimal execution time for the given size and precision type. The test
function remains mostly consistent for both CPU and GPU, although there is a variation in the
GPU procedure [31]. For the GPU, the data must be transferred from the CPU to the GPU,
facilitated by the function gpuArray from MATLAB PCT [21]. Furthermore, the test function
accommodates the time required to introduce overhead, and this duration is subsequently
subtracted from the execution time. This adjustment ensures that only the actual execution time is
taken into account. Additionally, a wait function is crafted to ensure that the algorithm pauses until

all pending operations are finished when running on the GPU [31].

To quantify the computational performance, the gigaflops are calculated using the best
execution time on both the CPU and GPU and the formulas derived from the Linpack TPP
benchmark of the HPC Challenge [26]. The computation follows the formulas in Equations 4.1

and 4.2. This allows a comparison of performance across various matrix sizes.

4.2.2 A\b on CPUs and GPUs with Specific Problem Types

The examination of the backslash operator [30] on CPUs and GPUs, focusing on specific problem
types characterized by distinct matrix patterns, follows a framework akin to the analysis involving
generated matrices in the preceding section, Chapter 4.2.1 [31]. Therefore, comparable steps are

reiterated, with an emphasis on delineating the differences between the two analyses.

Similarly, any data in the GPU is first cleared and the GPU is initialized with the
gpuDevice function [16], the available memory in the CPU and GPU is then determined in GB
[31]. Rather than generating matrices, data pertinent to a specific problem type is loaded onto
MATLAB. Upon loading, the dimensions of matrix A and vector b are determined, and a

comparison is conducted between the size of matrix A and the available GPU memory, as the

Page |41

former may exceed the latter. In such cases, matrix A and vector b are optimally divided into
several sub-matrices and sub-vectors to fit within the available GPU memory at its largest
dimension. Otherwise, an error may potentially arise if this condition is not met. It is essential to
consider the indices of the elements so that all elements in matrix A and vector b are incorporated
into the sub-matrices and sub-vectors, respectively, and they are computed only once to obtain the
measured time. To ensure the precision of the time taken and facilitate a fair assessment, matrix A

and vector b are also divided into sub-matrices and sub-vectors when running on the CPU.

The division of matrix A and vector b is a deliberate choice due to the limited support for
the backslash operator from MATLAB PCT [30], in contrast to the fully supported pcg function
[18] mentioned in Chapter 4.1.1. Consequently, the backslash operator struggles to handle a large
problem in its entirety, even with MATLAB PCT, potentially facing errors linked to the limited
memory of the mobile GPUs. Additionally, the partitioning of matrix A and vector b is based on
their dimensions without the precision required to solve for the unknown x accurately. This
approach aligns with the primary goal of assessing how the mobile GPUs perform when tasked
with handling all sub-systems combined, as their total size matches that of the loaded problem—a
large and sparse system. Therefore, methods like the block-Jacobi preconditioner [32, 33] are not

employed to accurately partition matrix A and vector b and solve x = A\b.

After configuring the sub-matrices, the test function, named run, is executed in a manner
resembling the analysis of the backslash operator using generated matrices in the previous section
[30, 31], outlined in Algorithm 11. In Algorithm 11, Lines 2 and 3, the functions hpcCPU and
hpcGPU are integrated to calculate gigaflops using the formulas presented in Equations 4.1 and
4.2 [26] when the backslash operator is executed on the CPU and GPU, respectively. Algorithm
12 provides an overview of hpcGPU, demonstrating the key distinction between the two functions:
hpcGPU accounts for the time taken to introduce overhead, which is then deducted from the

execution time, as indicated in Lines 7 to 14 of Algorithm 12.

In the described functions, the backslash operator [30] is invoked multiple times to obtain
the optimal execution time for the entire matrix A, as illustrated in Lines 3 to 6 of Algorithm 12.
The backslash operator is employed when the functions tSolveCPU and tSolveGPU are called
to execute on the CPU and GPU, respectively [31]. The flow of tSolveGPU is outlined in
Algorithm 13.

Page |42

In Algorithm 13, the execution times for each sub-matrix are consolidated, as depicted in
Line 15 of Algorithm 13, yielding the total execution time for the entire matrix A. The tSolve
functions retain a largely consistent structure for both the CPU and GPU, with the exception that
on the GPU, data is transferred from the CPU to the GPU using gpuArray [21], introduced in the
MATLAB PCT, as indicated in Lines 9 and 10 of Algorithm 13. Furthermore, a wait function is
implemented to temporarily halt the program, allowing for the completion of all pending
operations, as seen in Line 12 of Algorithm 13. Additionally, the GPU memory is cleared after
each execution of the backslash between the sub-matrix and sub-vector, as illustrated in Line 14
of Algorithm 13, facilitating the smooth operation of the subsequent backslash operation between

the next sub-matrix and sub-vector on the GPU [31].

Algorithm 11 Test function for A\b on CPUs and GPUs with Specific Problem Types

1: function run(A, b)

[gflopscpy, timecpy] = hpcCPU(A, b)

[gflopsgpy, timegpy] = hpcGPU(A, b, @() waitgpy(gpu))
return [gflopscpy, timecpy, gflopsgpy, timegpy]

end function

Page |43

Algorithm 12 HPC function for A\b on GPUs with Specific Problem Types

1:

A A A R X o

[= T e e S T
D> R 72

function hpcGPU(A, b)

Specify number of tests Niegr and initialize tiege = 00

for iterations i = 0: Nyegt, do

t = tSolveGPU(A, b, waitgpy (gpu))

ttest = min(tr ttest)
end for
Initialize tyyernead =

for iterations i = 0: Nyegt, do

t = tic
waitgpy (gpu)
t = toc

toverhead = min(t, toverhead)

end for

topu = ttest — toverhead
flops = 2/3 *xn3 + 3/2 * n?
gflopsgpy = flops/tgpy/10°

return [gflopsgpu, tepul

end function

Page |44

Algorithm 13 Solve A\b function on GPUs with Specific Problem Types

1:

A A A O

I e N e T e S e S S S
P X 3Ry T2

function tSolveGPU(A, b, wait)
Initialize time tigeq)
Calculate the number of sub-matrices, Ny, Where A needs to be divided
for iterations j = 1: Np,pes
Compute start and end indices for the rows of the sub-matrix, Agyy,
for iterations i = 1: Np,ps
Compute start and end indices for the columns of Agy,
Copy the respective elements from A and b to Ay}, and by,
Agup = gpuArray(A)
bsup, = gpuArray(b)

tsup = tic
wait(gpu)
teup = toc
reset(gpu)
trotal = trotal + tsub
end for
end for

return [ttotal]

end function

Page |45

4.3 Data Handling Capability of GPUs

The evaluation of the GPU’s data processing capability is conducted through three distinct sub-
sections [34]: the transfer speed of data between CPUs and GPUs, read-write speed between CPUs
and GPUs, and rate of computationally intensive operation on GPUs. This approach aims to
quantify GPU performance, recognizing the substantial variations across different GPU devices.
It provides valuable insights into the data or computation requirements for the GPU to outperform
the CPU effectively, extending beyond the execution of the ICPCG method. The overall workflow
is presented in Figure 4.1 [34].

In the first sub-section, the focus is on assessing how swiftly data can be sent to and read
from the GPU. The speed of data transfer is intricately linked to the speed and activity level of the
Peripheral Component Interconnect (PCI) bus, given that GPUs are integrated into the PCI bus.
Additionally, the measurements in this test encompass some overheads, mirroring real-world GPU

applications [34].

The procedure begins by initializing the GPU with gpuDevice [16] and declaring a
double-precision array of data sizes in bytes, ranging from 21* to 218, Two vectors are then
generated, with dimensions corresponding to the array of data sizes, one on the GPU and the other
on the CPU. Subsequently, memory is allocated, and the data on the CPU is transmitted to the GPU
using the gpuArray function [21]. Following this, the data on the GPU is transferred back to the
host memory using the gather function [35]. To accurately measure the time taken during the
data transfer, the gputimeit function [22] is employed instead of the regular timeit function
[36]. gputimeit ensures that all GPU operations are completed before recording the time and
compensates for the overhead time. All the mentioned functions, except timeit, belong to the

MATLAB PCT. Utilizing the timings, the send and gather bandwidths are calculated in GB.

The second sub-section evaluates the read-write speed between CPUs and GPUs by
executing memory-intensive operations. The objective is not to assess computational speed but
rather to evaluate the efficiency of memory read and write operations for each floating-point
operation. Given that many operations involve minimal computation per array element, they are
predominantly influenced by the time required to fetch or write data. To assess this, the plus

function, with straightforward computation, is implemented. This function performs one memory

Page |46

read and one memory write for each floating-point operation, making it a reliable indicator of the

read-write operation speed and it should be limited by memory access speed [34].

Using the double-precision array of data sizes in bytes, vectors with varying dimensions
are generated on both the CPU and GPU. The plus function is then applied to the vectors on the
respective platform. This function has a computational density of 1/2 flops per element. To
measure the time on the GPU, the gputimeit function [22] is employed, whereas the timeit
function [36] is used for the CPU measurements. Once the timings are obtained for each size and

hardware, the read-write bandwidth is computed in GB [34].

In the ultimate sub-section, the focus shifts to testing the rate of operations with high
computational intensity, where the number of floating-point computations executed per element
read from and written to memory is substantial. In such scenarios, the memory speed becomes less
critical, and the limiting factor is the number and speed of floating-point units, given the operations’
high computational density. To examine this, the matrix-matrix multiplication is chosen as a
computationally intensive operation. The total number of floating-point calculations is given by

flops(N) = 2N3 — N2, where N denotes the size of the matrix [34].

The process initiates by expanding the range of the existing double-precision array of data-
sizes in bytes, now spanning from 212 to 22*. Subsequently, two input square matrices, A and B,
are generated for the multiplication operation A * B. This matrix-matrix multiplication is executed
on both the CPU and GPU. Similarly, on the GPU, the gpuArray function [21] is utilized, and the
timeit and gputimeit functions measure the time taken on the CPU and GPU [22, 36],
respectively. The outcome is a matrix written to the corresponding platform. The timing data is
then utilized to calculate the rate of operations in gigaflops. In total, the number of elements read
or written is 3N?, with a computational density of (2N — 1)/3 flops per element, marking a higher

level of computational intensity compared to the previous sub-section [34].

Page |47

Initialize the GPU

Generate a double-precision
array of data sizes

1. Measure the time taken to
transfer data with a varied size
between the GPU and CPU

Compute the send and gather
bandwidth for each data size

2. Measure the time taken to

read and write data with a .| Compute the read and write
varied size on the GPU and | bandwidth for each data size
CPU

A,

3. Measure the time taken for

computationally intensive Compute the rate of operation
operation on data with a varied for each data size
size on the GPU and CPU

Figure 4.1: Flowchart of Data Handling Capability of GPUs.

4.4 Resource Contention on CPUs using Single Program
Multiple Data Statements

This section is dedicated to evaluating resource contention on CPUs, with a specific focus on
understanding how the number of concurrent processes and data size influence the speedup in
various operations, including the execution of the ICPCG method covered in Chapter 4.1.2. In this
sub-chapter, the operations encompass summation, discrete Fast Fourier Transform (DFFT), and
matrix-matrix multiplication, and their examination aids in demonstrating the significance of

resource contention for memory access [37].

To facilitate these assessments on CPUs, the parpool function [28] is employed to create
a parallel pool of workers or processes within a process-based environment [29]. As described in
the earlier methodology on implementing the ICPCG method using SPMD statements (Chapter
4.1.2), parpool would get MATLAB to establish a pool on the local machine, assigning one

Page |48

worker to each physical CPU core. These parallel workers execute computational tasks using
SPMD statements, enabling the parallelized code to run on workers within the same multi-core
CPU. This allows each worker to work on a different data set or portion of the distributed data
while communicating with other parallel workers during parallel computations [27, 28]. Once the
parallel workers are configured, a matrix is generated, providing the foundation for the subsequent

operations [37].

The first part of this evaluation explores the impact of the number of concurrent processes
on the speedup, and this is achieved through the execution of functions that are summation, DFFT,
and matrix-matrix multiplication. These tests employ either a fixed-size vector or a fixed-size
square matrix with the same total elements, and the number of parallel processes varies, ranging
from one to the total count of available parallel processes. Each function is executed multiple times
to obtain an average reading for accurate timings. Additionally, a timing function is created to run
the computation functions numerous times using the SPMD statements, retaining the minimum

execution time observed for each level of concurrency [37].

Conversely, to assess the influence of data size on the speedup, speed tests are conducted
on a vector or a square matrix of various dimensions, where the total number of elements between
a vector and a square matrix remains the same. This part of the evaluation encompasses additional
functions such as LU decomposition, singular value decomposition (SVD), and eigenvalue
computation. These additional functions and varying data size help investigate the effects of
different memory access patterns and the impacts of different data sizes. In this scenario, the tests
are performed using either a single or all available parallel processes. Similarly, a timing function
is used to run the computation functions numerous times with the SPMD statements, storing the
fastest execution time for the given level of concurrency [37]. Figure 4.2 shows the flow of the

resource contention evaluation.

Page |49

Delete any existing parallel pool of
processes and create a new pool

v v

Generate a fixed-sized Generate a varied-sized
vector or matrix vector or matrix
v v
Conduct speed test using from one to all Conduct speed test using one or all processes
processes on the following operations: on the following operations:
Summation on the vector Summation on the vector
DFFT and Matrix-Matrix multiplication on DFFT, Matrix-Matrix multiplication, LU
the matrix decomposition, SVD, Eigenvalue

computation on the matrix

A 4

Show impact of resource contention with a Show impact of resource contention with a
varied number of processes varied data size

Figure 4.2: Flowchart of Resource Contention Evaluation.

4.5 MATLAB’s GPUBench

The final inclusion in the evaluations is GPUBench, developed by the MathWorks PCT Team.
GPUBench is a utility that measures the timing of various MATLAB GPU tasks and provides an
estimate of the GPU’s peak performance in flops. It generates a comprehensive HyperText Markup
Language (HTML) report, illustrating the GPU’s performance relative to the pre-existing
performance data from various other GPUs. It is specifically crafted for comparing GPU hardware
and does not assess GPU performance variations across different MATLAB release. However, it

is also possible to implement the tests on the CPU to evaluate its performance [38].

In GPUBench, the initialization process involves setting up the data object, CPU, and GPU.
Prior to the execution of each task, GPUBench determines the maximum allowable data size in
either single- or double-precision, based on the available memory on the respective platform.
Subsequently, it performs tasks such as matrix-matrix multiplication, the backslash operator, DFFT
using the generated data on both the CPU and GPU, considering both single- and double-precision

data types. To prevent program crashes, a safety factor variable is incorporated, restraining the

Page |50

amount of required memory for the generated data. It is anticipated that matrix-matrix
multiplication and the backslash operator involve regular memory access, while DFFT entails
irregular memory access. Each task is executed for a range of array sizes. The outcomes are then

presented in an HTML report [38].

Page |51

Chapter 5

Results and Discussion

In this chapter, we present the outcomes derived from the comprehensive analyses and evaluations
delineated in the previous chapter. All methodologies expounded upon in Chapter 4 underwent
testing on two sets of CPU and GPU configurations, which are found in mobile devices such as
laptops. The first pair features the 10™ Generation Intel® Core™ i7 processor, i7-10510U, coupled
with the NVIDIA GeForce GTX 1650 with Max-Q Design. The second pair involves the 4™
Generation Intel® Core™ 17 processor, 17-4710HQ, paired with the NVIDIA GeForce GTX 970M.
The Turing architecture is incorporated in the GeForce GTX 1650 with Max-Q Design, whereas
the GeForce GTX 970M is based on the Maxwell 2.0 design [39, 40]. For an in-depth specification
of each CPU and GPU, kindly refer to the Appendix.

As discussed in Chapter 4, additional methods beyond the ICPCG approach are employed
to assess the performance of the mobile GPUs. Consequently, the outcomes derived from these
supplementary methods corroborate the results obtained through the ICPCG method, confirming
the accurate implementation of the ICPCG method and providing insights into how mobile GPUs

operate, particularly in the context of executing iterative solvers.

The specific problem types used for conducting the analyses are thermal and
electromagnetics problems. The thermal problem, thermall, chosen for evaluation exhibits a
distinctive pattern, as depicted in Figure 5.1, with a structural rank of 82,654. It is characterized as
real and SPD [41]. On the other hand, the electromagnetics problem, 2cubes_sphere, presents a
different unique pattern, as illustrated in Figure 5.2, with a structural rank of 101,492. It is also

real and SPD [42].

Page |52

Figure 5.2: Electromagnetics problem pattern (2cubes_sphere) [42].

Page |53

5.1 ICPCG on CPUs and GPUs with Specific Problem Types

In this segment, the assessment of the [CPCG method is carried out on the specified problem types,
namely thermall and 2cubes_sphere [41, 42], utilizing the two designated sets of CPU and GPU
configurations. It is important to reiterate the key distinction between the pcg function and the
backslash operator, as mentioned in Chapter 4.1.1. The pcg function has the full support from
MATLAB PCT, unlike the backslash operator [18, 30]. Hence, there is no need to partition matrix

A of the loaded problem in this part of the evaluation.

5.1.1 ICPCG using Parallel Computing Toolbox Commands

The results presented in Tables 5.1 and 5.2 are derived from the parallel application of the ICPCG
method using MATLAB PCT functions, as outlined in Algorithm 8. The GPU execution timings
are measured through both the tic and toc functions and the gputimeit function [19, 20, 22],

whereas the CPU execution timings are obtained exclusively using the tic and toc functions.

Table 5.1: Time taken and Gigaflops for ICPCG (thermall).

GTX 1650
i7-10510U i7-4710HQ GTX 970M
Max-Q
Time taken for
0.012722 - 0.012761 -
ichol (s)
Time taken for pcg
o 413.928124 860.500157 614.373076 1271.697566
using tic-toc (s)
Time taken for pcg
- 887.115585 - 1269.049949
using gputimeit (s)
Gigaflops from
. o 909.467649 437.483056 612.745338 296.024973
tic-toc timing
Gigaflops from
- 424.357597 - 296.642570
gputimeit timing

Page |54

Table 5.2: Time taken and Gigaflops for ICPCG (2cubes_sphere).

GTX 1650
i7-10510U i7-4710HQ GTX 970M
Max-Q
Time taken for
0.031839 - 0.039136 -
ichol (s)
Time taken for pcg
o 490.549099 2208.567411 775.176322 4088.910038
using tic-toc (s)
Time taken for pcg
- 2212.471140 - 4089.244489
using gputimeit (s)
Gigaflops from
' 1420.794670 315.575400 899.110983 170.453627
tic-toc timing
Gigaflops from
- 315.018593 - 170.439685
gputimeit timing

It is noteworthy that the ichol operation [17], being less computationally intensive,
demonstrates minimal performance variation between different CPU generations, with a marginal
difference of 0.039ms for the smaller problem size, thermall, and a much larger discrepancy of
7.3 ms for the larger data size, 2cubes sphere. Conversely, the pcg operation [18], being
significantly more computationally intensive, exhibits substantial differences across all CPUs and

GPUs.

Upon multiple executions, the GeForce GTX 1650 with Max-Q Design exhibits better
performance using tic and toc (without a function handle) compared to gputimeit (with a
function handle). In contrast, the GeForce GTX 970M demonstrates similar performance using

both methods.

In the initial CPU-GPU configuration (Core i7-10510U and GeForce GTX 1650 with Max-
Q Design), the pcg operation on thermall using the GeForce GTX 1650 with Max-Q Design yields
a speed up of 0.481 compared to the Core 17-10510U, indicating that the GPU is 107.89% slower
than the CPU. For the pcg operation on 2cubes_sphere, the speedup is 0.222, signifying that the
GPU is 350.22% slower than the CPU.

Page |55

In the second CPU-GPU configuration (Core 17-4710HQ and GeForce GTX 970M), the
pcg operation on thermall using the GeForce GTX 970M results in a speedup of 0.483 compared
to the Core 17-4710HQ, indicating that the GPU is 106.99% slower than the CPU. For the pcg

operation on 2cubes_sphere, the speedup is 0.19, signifying that the GPU is 427.48% slower than
the CPU.

In both CPU-GPU configurations, it is observed that the CPUs have surpassed the GPUs
in performance when tackling the specified problem types. This trend becomes particularly
noticeable when GPUs, specifically mobile graphics chips, are tasked with handling double-
precision variables, a pattern consistently seen in the subsequent sub-chapters. Therefore, these
GPUs demonstrate inefficiency in handling intensive computations, such as executing iterative
sparse solvers, primarily attributed to their limited memory bandwidth [43]. Additionally, mobile
devices, including laptops and tablets, have strict power and thermal constraints. Mobile GPUs are

designed to operate within these constraints, which can limit their performance compared to

desktop GPUs [43].

5.1.2 ICPCG using Single Program Multiple Data Statements

In this segment, the ICPCG method is implemented on CPUs utilizing the parallel pool from the
concurrent execution of SPMD statements [27]. Given that both tested CPUs, Core 17-10510U and
Core 17-4710HQ, feature four cores [44, 45], the number of parallel workers ranges from one to
four. Moreover, the outcomes of applying the ICPCG to thermall are detailed in Tables 5.3 and
5.4, while those for 2cubes_sphere are presented in Tables 5.5 and 5.6. These results serve as the
basis for generating Figures 5.3 and 5.4 in the case of thermall, and Figures 5.5 and 5.6 for

2cubes_sphere.

Referring to Figures 5.3 and 5.4, the results indicate that both the Core 17-10510U and the
Core 17-4710HQ exhibit performance degradation with an increasing number of parallel workers.
The Core 17-10510U experiences a total time increase of 76.16% from one to four parallel workers,
averaging a 20% increment for each additional worker. Additionally, the Core 17-4710HQ shows
a total time increase of 50.2% from one to four parallel workers, with an average increment of

14.56% for each additional worker.

Page |56

Furthermore, considering Figures 5.5 and 5.6, the findings reveal that both CPUs manifest
performance degradation with a rising number of parallel workers. The Core 17-10510U registers
a total time increase of 121.94% when employing from one to four parallel workers, averaging a
30.55% increment for each additional worker. Similarly, the Core 17-4710HQ demonstrates a total
time increase of 102.78% from one to four parallel workers, with an average increment of
26.63% for each additional worker. It is apparent that the decline in performance becomes more

pronounced with an increase in problem size.

Upon analyzing the results presented in this section and those in the subsequent sub-chapter
(Chapter 5.4), it is evident that resource contention occurs when implementing the ICPCG method

on the CPUs. This contention becomes more prominent with an expansion in problem size [37].

1000

900

800

700

60

o

50

Time Taken (s)
o

40

o

30

o

20

o

10

o

H Intel® Core™ i7-10510U H Intel® Core™ i7-4710HQ

Page |57

0 II II II I|
1 2 3 4

Number of Parallel Workers

Figure 5.3: ICPCG Execution Time vs Number of Parallel Workers (thermall).

Table 5.3: Execution Times for ICPCG (thermall).

Number of Parallel Core i7-10510U Core i7-4710HQ
Workers Time taken (s) Time taken (s)
1 391.064867 629.175917

2 470.019997 733.507735

3 570.080991 809.8314

4 688.886328 944.9925

Page |58

H Intel® Core™ i7-10510U H Intel® Core™ i7-4710HQ

1200
1000
800
g
= 600
o0
(V)
400
200 I
0
1 2 3 4
Number of Parallel Workers
Figure 5.4: Gigaflops vs Number of Parallel Workers (thermall).
Table 5.4: Gigaflops for ICPCG (thermall).
Number of Parallel Core i7-10510U Core i7-4710HQ
Workers Gigaflops Gigaflops

962.63886 598.329065

800.932386 513.224633

1
2
3 660.352202 464.855077
4 546.467861 398.367435

1600

1400

1200

Time Taken (s)
o

o

o

H Intel® Core™ i7-10510U H Intel® Core™ i7-4710HQ

Number of Parallel Workers

Page |59

1000
800
60
40
20
0
1 2 3 4

Figure 5.5: ICPCG Execution Time vs Number of Parallel Workers (2cubes_sphere).

Table 5.5: Execution Times for ICPCG (2cubes_sphere).

Number of Parallel

Workers

Core i7-10510U

Time taken (s)

Core i7-4710HQ

Time taken (s)

1 497.054921 729.7716
620.072275 939.167759
853.181401 1222.934716

2
3
4

1103.156395

1479.805379

Page |60

H Intel® Core™ i7-10510U H Intel® Core™ i7-4710HQ

1600
1400
1200
,, 1000
g
= 800
a0
(V)
600
400
200
0
1 2 3 4
Number of Parallel Workers
Figure 5.6: Gigaflops vs Number of Parallel Workers (2cubes_sphere).
Table 5.6: Gigaflops for ICPCG (2cubes_sphere).
Number of Parallel Core i7-10510U Core i7-4710HQ
Workers Gigaflops Gigaflops

1402.198259 955.051614

1124.013397 742.114002

1
2
3 816.906632 569.915577
4 631.795771 470.987303

Page |61

5.2 Backslash on CPUs and GPUs

The backslash operator [30] underwent testing on generated matrices [31] and the two specific
problem, thermall and 2cubes_sphere [41, 42], where each specific problem showcasing distinct
patterns illustrated in Figures 5.1 and 5.2, respectively. As highlighted in Chapters 4.1.1 and 5.1,
the backslash operator is not fully supported by MATLAB PCT, unlike the pcg function [18, 30].
Consequently, it may encounter potential errors related to limited memory when operating on the
mobile GPUs. Therefore, the backslash operator is implemented on matrices sized according to
the maximum available memory of the mobile GPUs. The outcomes acquired in this evaluation
phase align with the results derived from the ICPCG method in the preceding sub-chapter (Chapter
5.1).

5.2.1 A\b on CPUs and GPUs with Generated Matrices

The generated matrices encompass two data types: single- and double-precision. In MATLAB,
single-precision variables are stored as 4-byte (32-bit) floating-point values, while double-
precision variables are stored as 8-byte (64-bit) floating-point values [46]. Consequently, the
expected range of the generated matrices for the single-precision data type exceeds that of the

double-precision data type.

In the first CPU-GPU setup featuring the Core 17-10510U and the GeForce GTX 1650 with
Max-Q Design, matrices of the single-precision class cover a range of nine sizes, starting from
1024 x 1024 and extending up to 17408 x 17408 . Conversely, in the second CPU-GPU
configuration with the Core 17-4710HQ and the GeForce GTX 970M, single-precision class
matrices are available in eight different sizes, ranging from 1024 X 1024 to 15360 x 15360.
These ranges are also reflected in Table 5.7. Figures 5.7 and 5.8 are generated based on the

gigaflops data presented in Table 5.7.

In Figure 5.7, the performance of the GeForce GTX 1650 with Max-Q Design significantly
outpaces that of the Core 17-10510U, reaching a peak speedup of 3.374 when comparing the GPU
to the CPU, as illustrated in Figure 5.11. Similarly, Figure 5.8 shows that the performance of the
GeForce GTX 970M surpasses that of the Core 17-4710HQ, achieving a peak speedup of 4.678
when comparing the GPU to the CPU, as depicted in Figure 5.12. However, in cases where the

Page |62

generated matrix size is notably small, both CPUs, Core 17-10510U and Core 17-4710HQ, exhibit
better performance than the GPUs, GeForce GTX 1650 with Max-Q Design and GeForce GTX
970M, respectively. Therefore, at the smallest matrix size of 1024 X 1024, the speedup of the
GeForce GTX 1650 with Max-Q Design compared to the Core i17-10510U is 0.746, as evident in
Figure 5.11. Additionally, the speedup of the GeForce GTX 970M compared to the Core i7-
4710HQ is 0.409, as observed in Figure 5.12.

Table 5.7: Gigaflops for A\b on Single-precision Matrix.

GTX 1650

Matrix Size i7-10510U Max-0 i7-4710HQ GTX 970M

1024 x 1024 86.987189 64.907872 62.81583 25.713381

3072 x 3072 188.748285 363.987757 127.163609 352.235054

5120 x 5120 234.061998 579.233822 155.228283 492.134057

7168 x 7168 262.873849 739.450249 167.426259 627.027793

9216 x 9216 274.043537 831.389600 177.324724 738.218882
11264 x 11264 275.591083 898.258581 177.094533 788.500995
13312 x 13312 282.730587 953.903685 196.568511 919.550602
15360 x 15360 280.948109 917.117924 228.412318 937.243363
17408 x 17408 283.465329 924.551816 - -

Gigaflops

Gigaflops

1000

900

800

700

600

500

400

300

200

100

Page |63

Performance of CPU and GPU on Single-precision
I I

[I I [I
—6&—CPU L
B *— GPU x —
//
4//
L / S B s . B
// 7-(97__7¥_7
B / / »/,,@")__ -]
L1
- o i
1 | | 1 1 | | |
2000 4000 6000 8000 10000 12000 14000 16000 18000
Matrix Size

Figure 5.7: Performance of 17-10510U and GTX 1650 with Max-Q on Single-precision.

1000

900

800

700

600

500

400

300

200

100

Performance of CPU and GPU on Single-precision
I I I

T | |
—<—CPU —
| —<—GPU B _
L B *
B3&
L - 7 _
i ’ o
n — T _
= SR B— - W S
. . o—"F
o
L VA _
97’ -
X | | | I | | |
2000 4000 6000 8000 10000 12000 14000
Matrix Size

Figure 5.8: Performance of i17-4710HQ and GTX 970M on Single-precision.

16000

Page |64

Due to the increased space requirements of double-precision variables, the generated
matrices of the double-precision class exhibit a more limited range. Both CPU-GPU configurations
feature six matrix sizes ranging from 1024 X 1024 to 11264 X 11264, as detailed in Table 5.8.
The gigaflops data presented in Table 5.8 serves as the basis for generating Figures 5.9 and 5.10.

In Figure 5.9, it is apparent that the performance of the GeForce GTX 1650 with Max-Q
Design is inferior to that of the Core 17-10510U across all six matrix sizes, yielding an average

speedup of 0.836 when comparing the GPU to the CPU, as indicated in Figure 5.11.

Meanwhile, Figure 5.10 illustrates that the performance of the GeForce GTX 970M is also
subpar compared to the Core 17-4710HQ for all matrix sizes except the smallest. The GPU’s
performance appears to peak in gigaflops when the matrix size reaches 7168 X 7168. At the
smallest matrix size of 1024 X 1024, the GPU exhibits a positive speedup of 1.102 compared to
the CPU, as highlighted in Figure 5.12. However, as the matrix size increases, the speedup of the
GPU compared to the CPU progressively decreases, reaching its minimum at 0.639 for the largest

matrix size of 11264 X 11264.

Analyzing the outcomes, it is clear that the GPUs outshine the CPUs in performance
particularly with single-precision matrices, which demand lower memory capacity. This
superiority diminishes when dealing with double-precision matrices due to limited memory
bandwidth on the mobile GPUs [43], as observed in the previous sub-chapter (Chapter 5.1.1).
Similarly, the mobile GPUs are expected to operate within the strict power and thermal constraints
[43]. Additionally, the GPUs exhibit a substantial advantage in parallizing the code for large data
sizes, where the benefits of parallelization outweight the associated overhead. However, at smaller
data sizes, the overhead involved in initiating and handling parallel tasks on the GPU becomes
more pronounced, rendering the CPUs to be more efficient. As the data size expands, this overhead

impact diminishes [13].

Table 5.8: Gigaflops for A\b on Double-precision Matrix.

Page |65

GTX 1650
Matrix Size i7-10510U i7-4710HQ GTX 970M
Max-Q
1024 x 1024 39.354915 33.259808 26.556333 29.251576
3072 x 3072 92.573312 81.085831 64.643107 58.813968
5120 X 5120 110.723287 92.779758 83.689847 65.260637
7168 x 7168 119.582394 97.292597 92.279303 68.117172
9216 X 9216 124.249193 100.911928 100.442205 67.929555
11264 x 11264 123.220378 102.693245 105.339049 67.288804
- Performance of CPU and GPU on Double-precision
| w {
&—CPU S ———— 9
120 «— GPU « -
110 |- / -
100 | / —
» 90I Z .
Q.
o
S 80 / n
g) .'"' /
© ot / i
60 | -
50 - i
40t g/ -
30 I I I I |
0 2000 4000 6000 8000 10000 12000

Matrix Size

Figure 5.9: Performance of i7-10510U and GTX 1650 with Max-Q on Double-precision.

Gigaflops

Speedup

Performance of CPU and GPU on Double-precision
I

110

100

90

80

70

60

50

40

30

—S—CPU

«—— GPU

e

20

2000 4000

6000
Matrix Size

8000 10000 12000

Figure 5.10: Performance of 17-4710HQ and GTX 970M on Double-precision.

Speedup of Backslash Computations on GPU Compared to CPU
I I I I I I

3.5

25

15

e

T
O

o

—— Single-precision
»—— Double-precision
I | |

0.5
0

2000 4000 6000

8000
Matrix Size

10000

12000 14000 16000 18000

Figure 5.11: Speedup of Backslash on GTX 1650 with Max-Q Compared to 17-10510U.

Page |67

Speedup of Backslash Computations on GPU Compared to CPU
I I I I I

5 T \

—

05 1 ©&— Single-precision ||
- > Double-precision

0 | | ! | I | I
0 2000 4000 6000 8000 10000 12000 14000 16000

Matrix Size

Figure 5.12: Speedup of Backslash on GTX 970M Compared to 17-4710HQ.

5.2.2 A\b on CPUs and GPUs with Specific Problem Types

Both problem types, thermall and 2cubes_sphere [41, 42], involve a double-precision data type,
where elements are stored as 8-byte (64-bit) floating-point values in MATLAB [46]. To prevent
memory overflow on both CPUs and mobile GPUs, matrix A of the loaded problem must be
partitioned based on the platform’s available memory, as matrix A requires the most extensive

memory capacity.

As detailed in the methodology (Chapter 4.2.2), matrix A of the loaded problem is
partitioned into sub-matrices, while the RHS vector b is divided into sub-vectors with a
comparable dimension. The combined size of the sub-matrices equals that of the loaded problem
as a whole. Given the emphasis on assessing the performance of the mobile GPUs with an
equivalently large and sparse system of linear equations, rather than implementing methods such
as the block-Jacobi preconditioner [32, 33] to precisely partition and solve the system, the

partitioning of the system does not account for the accuracy of solving for the unknown x.

Page |68

The GeForce GTX 1650 with Max-Q Design boasts a maximum available memory of
3306654107 bytes, equivalent to a double-precision matrix size of 20331 x 20331 .
Consequently, the matrices A for thermall and 2cubes sphere surpass the GPU’s maximum
available memory. To circumvent this limitation, matrices A for thermall and 2cubes_sphere are
divided into 25 sub-matrices each. This division facilitates the backslash operation to function on
individual sub-matrices on the GPU without encountering potential errors. On the Core 17-10510U,

matrix A is also partitioned into 25 sub-matrices when executing the backslash operator.

Similarly, the GeForce GTX 970M offers a maximum available memory of 2544900507
bytes, corresponding to a double-precision matrix size of 17836 X 17836. Analogously, matrices
A for thermall and 2cubes_sphere exceed the GPU’s maximum available memory. Leveraging the
available memory of the GeForce GTX 970M, matrix A for thermall is segmented into 25 sub-
matrices, while matrix A for 2cubes sphere is divided into 36 sub-matrices. On the Core i7-
4710HQ, matrix A is also segmented into 25 sub-matrices for thermall and 36 sub-matrices for

2cubes_sphere.

Tables 5.9 and 5.10 show the results for A\b on thermall and 2cubes_sphere, respectively,
on both the CPU-GPU configurations. In the first CPU-GPU configuration (Core 17-10510U and
GeForce GTX 1650 with Max-Q Design), the GPU performs poorly with a gigaflops speedup of
0.005 for thermall and 0.001 for 2cubes_sphere as compared to the CPU. For the second GPU-
CPU configuration (Core 17-4710HQ and GeForce GTX 970M), the GPU also performs poorly
with a gigaflops speedup of 0.002 for thermall and 0.003 for 2cubes_sphere.

The pattern identified in the earlier sub-chapters (Chapters 5.1.1 and 5.2.1) persists,
showcasing the inefficiency of the mobile GPUs in managing demanding computations when
tasked with double-precision data types. This stands in contrast to the commendable performance
when dealing with single-precision data types, as emphasized in Chapter 5.2.1. Therefore, this
consistent trend supports the notion that constraints such as power and thermal limitations, coupled
with limited memory bandwidth, pose challenges for the mobile GPUs to deliver an optimal

performance [43].

Table 5.9: Results for Backslash Operator (thermall).

Page |69

i7-10510U GTX 1650 Max-Q i7-4710HQ GTX 970M
Time taken for

0.575508 121.528429 1.165408 529.508559
A\b (s)
Gigaflops 654124.54916 3097.663991 323023.640654 710.950242

Table 5.10: Results for Backslash Operator (2cubes_sphere).

i7-10510U GTX 1650 Max-Q i7-4710HQ GTX 970M
Time taken for

0.692094 536.209117 1.770188 623.184345
A\b (s)
Gigaflops 1007044.773256 1299.809203 393726.284777 1118.400279

Page |70

5.3 Data Handling Capability of GPUs

The PCI bus governs the data transfer [34], and both the GeForce GTX 1650 with Max-Q Design
and GeForce GTX 970M support PCle 3.0 with 16 lanes [39, 40]. In principle, a GPU adhering to
PCle 3.0 specifications provides a theoretical bandwidth of 1 GB/s per lane in each direction [47].
Consequently, both GPUs collectively offer a theoretical maximum bandwidth of 16 GB/s per
direction. This segment of evaluation has provided three sets of results that are visually presented
in Figures 5.13 to 5.18, with each platform’s peak performance distinctly marked. Furthermore, all

the peak performance data is summarized in Table 5.11 for reference.

5.3.1 Data Transmission and Retrieval Bandwidth

Figures 5.13 and 5.14 depict the data transfer bandwidth between the two CPU-GPU
configurations, highlighting the maximum transfer speeds on each platform with a circle. In Figure
5.13, featuring the Core 17-10510U and GeForce GTX 1650 with Max-Q Design, the data
transmission speed from the CPU to the GPU consistently outpaces the speed of data retrieval from
the GPU to the CPU across various data sizes. However, for notably small data sizes, both
transmission and retrieval speeds remain below 1 GB/s. Yet, once the data size exceeds
approximately 4 megabytes (MB), both transmission and retrieval speeds notably escalate to

around 2.4 GB/s.

Examining Figure 5.14, showcasing the Core 17-4710HQ and GeForce GTX 970M, reveals
a similar trend in data transfer speeds as in the other CPU-GPU configuration, which includes the
Core 17-10510U and GeForce GTX 1650 with Max-Q Design. The speed of data transmission
from the CPU to the GPU generally surpasses the speed of data retrieval from the GPU to the CPU
across all data sizes. For small data sizes, the data transmission speed from the CPU to the GPU
hovers around 1 GB/s and the data retrieval speed from the GPU to the CPU remains below
1 GB/s. However, once the data size exceeds approximately 2 MB, both transmission and retrieval

speeds undergo a significant increase, reaching 3.5 GB/s and 2.8 GB/s, respectively.

Both Figures 5.13 and 5.14 portray a similar pattern, where overheads take precedence
when dealing with small data set sizes, and as the data size increases, the PCI bus becomes the

limiting factor causing the transfer speed to hover around a certain value [34].

Transfer Speed (GB/s)

Transfer Speed (GB/s)

Data Transfer Bandwidth

T LA B B | T T T T LA T T T T T

Send from Host to GPU
Retrieve from GPU to Host

25

N
T

-
n
I

=X
I

05

| L P S S A | H P S S A | L R S S A |

0
10*

10° 10° 10’ 108
Array Size (bytes)

Figure 5.13: Data Transfer Bandwidth between i7-10510U and GTX 1650 with Max-Q.

Data Transfer Bandwidth

4.5

T T T T T T LA B B R T T T T T T T T T T T T T T

Send from Host to GPU
Retrieve from GPU to Host

w
I

g
)
|

N
I

N
13
I

10° 10° 107 108
Array Size (bytes)

Figure 5.14: Data Transfer Bandwidth between 17-4710HQ and GTX 970M.

10°

Page |72

5.3.2 Read and Write Data Bandwidth

The outcomes of the plus function, which involves one read and one write for each floating-point
operation, are presented in Figures 5.15 and 5.16. Figure 5.15 showcases the results of operations
conducted on the Core 17-10510U and GeForce GTX 1650 with Max-Q Design, while Figure 5.16
displays the results of operations on the Core 17-4710HQ and GeForce GTX 970M. The maximum

speed on each platform is marked with a circle.

Upon examining Figure 5.15, the read-write speed on the Core 17-10510U exhibits a
slightly faster average speed than the read-write speed on the GeForce GTX 1650 with Max-Q
Design for small data sizes, reaching a peak speed of 104.7 GB/s. However, as the data size
increases, the read-write speed on the Core 17-10510U falls below that of the GeForce GTX 1650
with Max-Q Design, maintaining around 12 GB/s for a range of large data sizes. In contrast, the
read-write speed on the GeForce GTX 1650 with Max-Q Design continues to steadily increase,

peaking at 94.09 GB/s.

In Figure 5.16, a similar pattern to Figure 5.15 is observed. The read-write speed on the
Core 17-4710HQ also demonstrates a faster average speed than that on the GeForce GTX 970M
for small data sizes, achieving a peak speed of 61.22 GB/s. As the data size increases, the read-
write speed on the Core 17-4710HQ experiences a decline, becoming slower than the read-write
speed on the GeForce GTX 970M and maintaining around 7 GB/s for a range of large data sizes.
Unlike the steady increase seen on the GeForce GTX 1650 with Max-Q Design, the read-write
speed on the GeForce GTX 970M exhibits a slot initial increase followed by a rapid leap from
11.6 GB/s to 93.6 GB/s at a data size of approximately 33 MB. It continues to rise with the data
size, reaching a peak of 101.45 GB/s.

Comparing Figures 5.15 and 5.16 to Figures 5.13 and 5.14 reveals that the mobile GPUs
generally exhibit faster read and write speeds to their memory compared to retrieving data from
the host. Hence, minimizing the number of memory transfers between the host and GPU can save
time and enhance efficiency. Additionally, transferring data to the GPU for computation, allowing
the GPU to perform as much computation as possible before returning the data to the host, proves

to be advantageous [34].

Speed (GB/s)

Speed (GB/s)

Page |73

Read & Write Bandwidth

120

T T T T T T T T T T

GPU
Host I

.

100

(0]
o
T

D
o
I

EN
o
T

20 -

"
1
|

— e —

104

120

10° 108 107 108
Array Size (bytes)

Figure 5.15: Read-Write Bandwidth on i7-10510U and GTX 1650 with Max-Q.

Read & Write Bandwidth

10°

GPU
Host

100 -

(e3]
o
I

[o)]
o
T

i
o
I

20

10° 10° 10’ 108
Array Size (bytes)

Figure 5.16: Read-Write Bandwidth on 17-4710HQ and GTX 970M.

10°

Page |74

5.3.3 Calculation Rate of Intensive Operations

Figure 5.17 illustrates the result of the double-precision matrix-matrix multiplication operation on
the Core 17-10510U and GeForce GTX 1650 with Max-Q Design, while Figure 5.18 displays the
result of the same operation on the Core 17-4710HQ and GeForce GTX 970M. The highest

calculation rate in gigaflops is circled on each platform.

Both Figures 5.17 and 5.18 reveal a consistent pattern where the CPUs outperform the
GPUs for all matrix sizes. When the matrix size is relatively small, both the CPUs and GPUs
exhibit lower calculation rate. As the matrix size increases, the calculation rate on both the CPUs
and GPUs shows an upward trend. In Figure 5.17, the Core 17-10510U achieves a peak calculation
rate of 155.78 GFLOPS, while the GeForce GTX 1650 with Max-Q Design attains a peak
calculation rate of 113.29 GFLOPS. In Figure 5.18, the Core 17-4710HQ records a peak calculation
rate of 130.2 GFLOPS, whereas the GeForce GTX 970M achieves a peak calculation rate of
76.06 GFLOPS.

The findings indicate that the mobile GPUs excel in performing calculations more rapidly
when dealing with sufficiently large data sizes compared to smaller ones. Nevertheless, the overall
performance lags behind that of the CPUs due to the restricted memory bandwidth, power and
thermal constraints of mobile GPUs [43], aligning with a consistent trend observed in previous
sub-chapters (Chapters 5.1.1 and 5.2.1). Despite the performance limitations of mobile GPUs, it
remains noticeable that the GPU achieves higher GFLOPS when operating at higher level of
saturation as the overhead linked to initiating and managing parallel tasks on the GPU decreases

[13].

Calculation Rate in GFLOPS

160

140

120

100

80

60

40

20

0

Double-precision Matrix-Matrix Multiplication

Page |75

e A AN |
GPU j\\

Host N — ™~

| L S | N P s ey

108

10* 10° 108 107
Matrix Size

108

Figure 5.17: Rate of Matrix Multiplication Operation on i7-10510U and GTX 1650 with Max-

Calculation Rate in GFLOPS

140

120

100

80

60

40

20

0

Q.

Double-precision Matrix-Matrix Multiplication

I T

GPU)
Host T

| : FE R S R A L P SR A | s M R R |

108

104 10° 108 107

Matrix Size

108

Figure 5.18: Rate of Matrix Multiplication Operation on 17-4710HQ and GTX 970M.

Page |76

Table 5.11: Results of Data Handling between CPU and GPUs.

GTX 1650
i7-10510U i7-4710HQ GTX 970M
Max-Q

Peak Send Speed from

2.52417 4.10281
Host to GPU (GB/s)
Peak Gather Speed from

2.39407 2.86279
GPU to Host (GB/s)
Peak Read-Write Speed

104.722 94.0939 61.2189 101.449
(GB/s)
Peak Operation Rate
155.8 113.3 130.2 76.1

(GFLOPS)

5.4 Resource Contention on CPUs

The assessment of resource contention on CPUs has provided two sets of results for each CPU and
GPU configuration—one for varying the number of processes and another for varying the data size
[37]. Moreover, the outcomes from this evaluation help to understand the behaviour of the results

obtained in Chapter 5.1.2.

5.4.1 Varying Number of Processes

This phase of the evaluation encompasses three distinct operations: summation, DFFT, and matrix-
matrix multiplication. Figure 5.19 is derived from the test conducted on the Core 17-10510U, while
Figure 5.20 corresponds to the Core 17-4710HQ. Given that both CPUs boast four cores [44, 45],
the range of the parallel workers spans from one to four. The speedup, depicted in Figures 5.19
and 5.20, is calculated using a consistent formula that involves determining the ratio of the time
taken with the minimum number of parallel workers (one) to the time taken with the specified
number of parallel workers (ranging from one to four). This result is then multiplied by the number

of parallel workers employed, which also ranges from one to four, providing a scaled

Page |77

representation on the graph. Additionally, the numerical results necessary for plotting both Figures

5.19 and 5.20 are exhaustively detailed in Tables 5.12 to 5.14.

Upon scrutiny of Figures 5.19 and 5.20, it becomes obvious that summation operations,
being computationally lightweight, exhibit pronounced resource contention, as reflected in the
gradual increase in speedup with an increase in the number of processes, a trend consistent for
both CPUs. In Figure 5.19, the Core 17-10510U achieves a speedup of 1.59 with four parallel
workers, while in Figure 5.20, the Core 17-4710HQ attains a speedup of 1.39 with the same
number of parallel workers. Consequently, executing multiple lightweight operations concurrently

requires more time than a single execution of such an operation on a CPU [37].

On the contrary, DFFT operations, being more computationally intensive than summation
operations, showcase enhanced speedup performance on both CPUs. Figure 5.19 indicates that the
Core 17-10510U achieves a speedup of 1.97 with four parallel workers, while Figure 5.20 shows
that the Core 17-4710HQ attains a speedup of 2.27 under identical conditions. This improved
speedup performance suggests a reduction in resource contention. Thus, DFFT operations do not
display the same performance degradation as summation operations when multiple calls are

concurrently executed [37].

Lastly, matrix-matrix multiplication operations demonstrate the highest speedup
performance as the number of processes increases. Figure 5.19 reveals that the Core 17-10510U
attains a speedup of 3 with four parallel workers, and Figure 5.20 indicates that the Core i7-
4710HQ achieves a speedup of 2.53 under the same conditions. This efficiency is attributed to the
regular memory access in matrix-matrix multiplication, making it highly effective for parallel

execution on a multicore platform [37].

Page |78

Effect of Number of Concurrent Processes on Resource Contention and Speedup

3 T I T |
I Sum of Vector
I FFT of Vector
2 5 | [Matrix Mult -
2 i
15 N
1+ _
05+ .
0

1 2 3 4
Number of Concurrent Processes

Figure 5.19: Effect of Concurrent Processes on Resource Contention on Core i7-10510U.

Effect of Number of Concurrent Processes on Resource Contention and Speedup

3 | T T |
I Sum of Vector
I FFT of Vector
2 5 || Matrix Mult .
2 - -
15 1
1 -
05
0

1 2 3 4
Number of Concurrent Processes

Figure 5.20: Effect of Concurrent Processes on Resource Contention on Core 17-4710HQ.

Page |79

Table 5.12: Results for Summation Operations on an array of 20482,

Number of Parallel

Core i7-10510U

Core i7-4710HQ

Workers Time taken (s) Time taken (s)
1 0.208519 0.253275
2 0.277223 0.366846
3 0.403255 0.521152
4 0.523741 0.728668

Table 5.13: Results for DFFT Operations on a vector of 20482,

Number of Parallel

Workers

Core i7-10510U

Time taken (s)

Core i7-4710HQ

Time taken (s)

1 0.708381 1.025814
2 0.873899 1.223243
3 1.108064 1.491441
4 1.435778 1.805978

Table 5.14: Results for Matrix Multiplication Operations of 2048 x 2048.

Number of Parallel

Workers

Core i7-10510U

Time taken (s)

Core i7-4710HQ

Time taken (s)

1 0.327313 0.401454
2 0.342751 0.436009
3 0.384471 0.509765
4 0.436631 0.634544

Page |80

5.4.2 Varying Data Size

When evaluating resource contention with varying data sizes, additional operations namely LU
decomposition, SVD, and eigenvalue computation, are considered in conjunction with the initial
three operations—summation, DFFT, and matrix-matrix multiplication. Figures 5.21 and 5.22
present the results obtained from the Core 17-10510U and Core 17-4710HQ, respectively. The
speedup, illustrated in both figures, is computed using the same formula that involves getting the
ratio of the time taken with the minimum number of parallel workers (one) to the time taken with
the maximum number of parallel workers (four). The result is then multiplied by the number of
parallel workers employed, which is four in this instance. Both CPUs ideally exhibit a speedup of
4, corresponding to the number of cores each CPU possesses [37]. Furthermore, the numerical
results essential for plotting both Figures 5.21 and 5.22 are exhaustively detailed in Tables 5.15
and 5.16.

In Figure 5.21, showcasing the Core 17-10510U, summation and SVD operations exhibit a
declining trend as the number of elements per parallel worker increases. On the contrary, matrix-
matrix multiplication and LU decomposition operations demonstrate an ascending trend with an
increase in the number of elements per parallel worker. The DFFT operation maintains a consistent
speedup across all number of elements per process. Lastly, the eigenvalue operation displays an
inconsistent trend, initially showing an upward trajectory followed by a subsequent downward

trend.

Similarly, in Figure 5.22, featuring the Core 17-4710HQ, the summation and SVD
operations depict a declining trend with an increase in the number of elements per parallel worker.
In contrast, the matrix-matrix multiplication operation displays an upward trend under the same
conditions. Both the DFFT and LU decomposition operations maintain a constant speedup across
all number of elements per process. The eigenvalue operation, akin to Figure 5.21, exhibits an
inconsistent trend, initially ascending and later descending. In summary, both CPUs exhibit similar
behaviour across all operations, except for the LU decomposition operation, which displays

divergent patterns.

Page |81

Upon examining the outcomes, it becomes evident that for small data sizes, the functions

operate efficiently within the CPU cache, yielding a relatively commendable speedup. Contrarily,

as the data size surpasses the capacity of the CPU cache, a decline in performance attributable to

contention for memory access becomes apparent [37]. This trend of performance degradation due

to an increase in data size is also observable in Chapter 5.1.2 where the loaded problems, thermall

and 2cubes_sphere [41, 42], are considerably larger than the generated matrices.

Effect of Data Size on Resource Contention and Speedup

7 | I I
* —<&— Vector Sum
6 _\\ —H&— Vector FFT i
\ Matrix Mult
) \ —#k— Matrix LU
5L\ &— Matrix SVD | |
\ Matrix Eig
\\ ———— Ideal Speedup
I N N
S 4
B \
g \
0 3F AN =
N\
P— — 77”:':\:» o — - . - — — —F
2f N\
U — T
————
1 - . - - =2
0 ! \ !
1282 2567 5122 10242 20482

Number of Elements Per Process

Figure 5.21: Effect of Data Size on Resource Contention on Core 17-10510U.

4 77
—<4&— Vector Sum
35 —+=— Vector FFT a
’ ! Matrix Mult
—#— Matrix LU
3+ = Matrix SVD —
Matrix Eig
2.5«‘;_,,,\ . — — —— |deal Speedup |
a = -
= e B ~ fﬁ - 1
3 T —_——_ _ e ————
g 2f = _— = 1
(% e ~So— "
D
15 I {
\“(;‘r*'_fi_iiv'_
1 [! -
05 —
0 | | !
1282 2562 5122 10242

Number of Elements Per Process

Figure 5.22: Effect of Data Size on Resource Contention on Core 17-4710HQ.

20482

Table 5.15: Time Taken (s) for Various Operations on Varying Data Size with 1 Parallel Worker.

Data Size 1024 2048
Operation 128 x 128 | 256 x 256 | 512 x 512 « 1024 2048
Sum 0.000417 0.001388 0.005975 0.037754 0.200022
g DFFT 0.001558 0.008644 0.037326 0.198239 0.712986
& | Matrix Mult 0.000089 0.000793 0.005225 0.041985 0.313504
E LU 0.000206 0.000420 0.002965 0.019379 0.137334
§ SVD 0.000735 0.003922 0.023647 0.185570 2.500387
Eig 0.004672 0.021461 0.151504 0.584634 3.304784
Sum 0.000509 0.001979 0.008301 0.054400 0.248218
%’ DFFT 0.003515 0.013114 0.053108 0.274265 0.981628
E Matrix Mult 0.000139 0.000913 0.006842 0.053766 0.404726
_li,': LU 0.000163 0.001130 0.005080 0.029384 0.191172
§ SVD 0.001262 0.007012 0.040569 0.391743 4.187507
Eig 0.007526 0.035603 0.246028 1.069602 5.409669

Page |83

Table 5.16: Time Taken (s) for Various Operations on Varying Data Size with 4 Parallel Workers.

Data Size 1024 2048
Operation 128 x 128 | 256 x 256 | 512 x 512 1024 « 2048
Sum 0.000691 0.002788 0.011428 0.116797 0.521592
g DFFT 0.002003 0.015085 0.071033 0.364284 1.459302
& | Matrix Mult 0.000224 0.001717 0.007689 0.055448 0.439225
.:; LU 0.000127 0.000986 0.006442 0.039014 0.217332
§ SVD 0.001173 0.006619 0.038824 0.833646 9.560515
Eig 0.008513 0.025307 0.188193 1.117153 7.939985
Sum 0.000787 0.004339 0.020244 0.178574 0.705176
%’ DFFT 0.004290 0.022973 0.111446 0.502426 1.840714
E Matrix Mult 0.000364 0.002086 0.014772 0.099395 0.682797
_:; LU 0.000361 0.001853 0.012198 0.051780 0.339684
§ SVD 0.002104 0.012032 0.102208 1.490041 12.745665
Eig 0.014010 0.049717 0.347629 1.999281 10.708117

5.5 MATLAB’s GPUBench

The GPUBench tool automatically generates a report following the execution of matrix-matrix

multiplication, backslash DFFT operations in both single- and double-precision modes [38]. This

report includes a performance comparison of the tested CPUs and GPUs against the performance

of other GPUs. Figure 5.23 summarizes the performance of the first CPU-GPU configuration,
featuring the Core 17-10510U and GeForce GTX 1650 with Max-Q Design, while Figure 5.24

outlines the performance summary of the second CPU-GPU configuration, comprising the Core
17-4710HQ and GeForce GTX 970M. Furthermore, Table 5.17 shows the detailed numerical
results for both CPU-GPU configurations, with the tested CPUs and GPUs highlighted in bold for

easy reference.

Page |84

Examining both Figures 5.23 and 5.24 reveals that GPUs exhibit significantly higher
GFLOPS when handling single-precision variables. However, in the case of double-precision
variables, the GPUs either lag behind in GFLOPS or show comparable performance to the
corresponding CPUs. These findings align with the observation made in the assessment conducted
in Chapter 5.2.1, specifically regarding the backslash operation. Moreover, in the earlier sub-
chapters (Chapters 5.1.1, 5.2.1, and 5.3.3), focusing on double-precision data types, also highlight
that the mobile GPUs do not excel due to similar factors such as limited bandwidth, power

constraints, and thermal limitations [43].

Page |85

Performance Summary

| I I
I Tes!a \/100-PCIE-32GB
I TITAN V
I Tesla P100-PCIE-12GB e
[Tesla K40c
I Tesla K20c
[TITAN Xp
[GeForce RTX 2080 SUPER
[GeForce GTX 1080
[—IYour GPU (NVIDIA GeForce GTX 1650 with Max-Q Design)
[——vourcpu |
[lQuadro K620

MTimes (double)

Backslash (double)

FFT (double)

MTimes (single)

Backslash (single)

FFT (single) &

Il Il 1 Il 1 1
0 2000 4000 6000 8000 10000 12000 14000
GFLOPS
(higher is better)

Figure 5.23: Performance Summary of i7-10510U and GTX 1650 with Max-Q.

Page |86

Performance Summary

T T T
I Tesla \V100-PCIE-32GB
[TITAN V
MTimes (double -Tesla P100-PCIE-12GB u
(double) R Tesia K40
I Tesla K20c
[TITAN Xp
Your CPU
[——1Your GPU (NVIDIA GeForce GTX 970M)
[T Quadro K620
Backslash (double) -
FFT (double) 9
MTimes (single) =
Backslash (single) =1
FFT (single) =
I | | | I |
0 2000 4000 6000 8000 10000 12000 14000

GFLOPS
(higher is better)

Figure 5.24: Performance Summary of 17-4710HQ and GTX 970M.

Table 5.17: Summary of All Tested CPUs and GPUs.

Page |87

Double-precision Results Single-precision Results
(GFLOPS) (GFLOPS)
Matrix Matrix
Backslash | DFFT Backslash DFFT
Multi Multi
Tesla V100-PCIE-
6884.95 563.73 728.71 13727.99 1210.42 1365.11
32GB
TITAN V 6779.73 674.40 534.65 | 13515.42 1336.39 985.36
Tesla P100-PCIE-
4510.03 929.00 357.65 8435.34 1647.83 687.13
12GB
Tesla K40c¢ 1189.54 677.12 135.88 3187.76 1334.17 294.86
Tesla K20c¢ 1004.06 641.42 106.09 2657.01 1230.28 235.20
TITAN Xp 421.00 369.32 209.45 | 10823.05 1272.06 797.17
GeForce RTX 2080
373.37 345.32 164.30 | 10813.12 1330.64 746.20
Super
GeForce GTX 1080 280.84 223.05 137.66 7707.01 399.37 424.60
GeForce GTX 1650
111.41 83.54 3.85 1807.22 371.49 18.53
with Max-Q Design
Core i7-10510U 79.20 67.66 9.95 246.96 135.04 32.53
GeForce GTX
74.97 50.81 38.93 2014.80 369.06 179.78
970M
Core i7-4710HQ 126.50 86.24 9.92 265.75 180.26 29.36
Quadra K620 25.45 22.77 12.75 716.71 350.31 75.00

Page |88

Chapter 6

Conclusion and Future Work

In this thesis, we conducted a comprehensive analysis of GPU parallelization performance,
specifically focusing on NVIDIA mobile graphics chips, utilizing MATLAB with PCT instead of
APIs like CUDA. Our investigation involved the implementation of the ICPCG method and the
backslash operation within mobile devices, such as laptops. Furthermore, we examined the data
handling capabilities of the mobile GPUs, assessed resource contention, and utilized the

GPUBench tool developed by the MathWorks PCT Team.

Our finding suggests that mobile NVIDIA GPUs, particularly those with Turing and
Maxwell 2.0 architectures, do not offer substantial advantages in enhancing the efficiency of the
ICPCG method when employing MATLAB PCT, especially in scenarios involving double-
precision variables. The absence of CUDA may contribute to suboptimal GPU resource utilization
since MATLAB PCT lacks options for developers to explicitly assign tasks to GPUs [5], in contrast
to CUDA. As a result, developers rely on the toolbox for task allocation, limiting the optimization

of code for parallel execution.

Moreover, it is noteworthy that MATLAB currently does not support sparse single-
precision data types [48]. This limitation forces GPUs to handle large sparse data in double-
precision only, contributing to a slower computation rate on mobile GPUs. While the tested mobile
NVIDIA GPUs, including the GeForce GTX 1650 with Max-Q Design and GeForce GTX 970M,
did not outperform the tested Intel® CPUs, featuring Core™ i7-10510U and Core™ 17-4710HQ,
our results shed light on the constraints related to implementing iterative solvers in the MATLAB

environment on mobile GPUs.

Understanding the underlying reasons behind these results, we identify potential directions
for future work. Firstly, enhancing MATLAB to support large sparse single-precision matrices
could significantly improve the efficiency of GPU operations, potentially surpassing CPU
performance. Additionally, exploring advancements in MATLAB toolboxes to enable developers

to explicitly parallelize their code for optimal efficiency is crucial. Furthermore, considering the

Page |89

continuous evolution of GPUs and PCI buses, improvements in memory bandwidth, power
constraints, and thermal limitations are anticipated. These advancements may allow for increased
data storage and processing within GPU memory, alleviating performance bottlenecks. Future
research in these directions holds the promise of overcoming current limitations and unlocking the

full potential of mobile GPU parallelization in MATLAB.

Appendix

Page |90

Table A.1: Specifications of Tested GPUs.

Graphics Processor NVIDIA GeForce GTX 1650 NVIDIA GeForce GTX
with Max-Q Design[40] 970M|[39]
Architecture Turing Maxwell 2.0
GPU Name TUI117 GM204
Process Size 12 nm 28nm
Transistors 4,700 million 5,200 million
Density 23.5 M/ mm? 13.1 M/ mm?
Die Size 200 mm? 398 mm?
Bus Interface PCle 3.0 x16 MXM-B (3.0 x16)
Release Date 23 April 2019 7 October 2014
Memory
Memory Size 4 GB 3GB
Memory Type GDDRS5 GDDRS5
Memory Bus Width 128-bit 192-bit
Memory Bandwidth 112.1 GB/s 120.3 GB/s
Render Config
Cores 1024 1280
TMUs 64 80
ROPs 32 48
SM Count 16 10
L1 Cache 64 KB (per SM) 48 KB (per SM)
L2 Cache 1024 KB 1536 KB
Clock Speeds
Base Clock 1020 MHz 924 MHz
Boost Clock 1245 MHz 1038 MHz

Page |91

Memory Clock 1751 MHz, 7 Gbps effective 1253 MHz, 5 Gbps effective
Graphics Features

DirectX 12 1 12 1

OpenGL 4.6 4.6

OpenCL 3.0 3.0

Vulkan 1.3 1.3

CUDA 7.5 52

Shader Model 6.7 6.7

Power Consumption 35 Watt 81 Watt

Table A.2: Specifications of Tested CPUs.

Central Processor

Intel® Core™ i7-10510U[45]

Intel® Core™ i7-4710HQ[44]

Essentials

Product Collection

10" Generation Intel® Core™ i7

Processors

4 Generation Intel® Core™ i7

Processors

Code Name

Products formerly Comet Lake

Products formerly Haswell

Vertical Segment

Mobile

Mobile

Processor Number 17-10510U 17-4710HQ
Lithography 14 nm 22 nm
Launch Date Q3’19 Q2’14
CPU Specifications
Total Cores 4 4
Total Threads 8 8
Max Turbo Frequency | 4.90 GHz 3.50 GHz
Processor Base

1.80 GHz 2.50 GHz
Frequency
Cache 8 MB Intel® Smart Cache 6 MB Intel® Smart Cache

Bus Speed

4 GT/s

5 GT/s

Page |92

TDP I5W 47 W
Memory

Specifications

Max Memory Size

(dependent on 64 GB 32 GB

memory type)

DDR4-2666, LPDDR3-2133,

Memory Types DDR3L 1333/1600
LPDDR4-2933
Max # of Memo
v 2 2
Channels
Max Memory
45.8 GB/s 25.6 GB/s
Bandwidth
ECC Memory No No
GPU Specifications
. Intel® UHD Graphics for 10™ _
Processor Graphics Intel® HD Graphics 4600
Gen Intel® Processors
Graphics Base
300 MHz 400 MHz
Frequency
Graphics Max
_ 1.15 GHz 1.20 GHz
Dynamic Frequency
Graphics Video Max
32GB 2GB
Memory
Device ID 0x9B41/0x9BCC 0x416
Expansion Options
PCI Express Revision | 3.0 3.0
Max # of PCI Express
16 16

Lanes

Page |93
Bibliography

[1] J.. Reese and S. Zaranek. "GPU Programming in MATLAB."
https://www.mathworks.com/company/newsletters/articles/gpu-programming-in-

matlab.html (accessed 2023-12-03).

[2] J. Peddie, The History of the GPU-New Developments, First ed. Springer Cham, 2023, p.
410.

[3] S. K. David, "The incomplete Cholesky—conjugate gradient method for the iterative
solution of systems of linear equations," Journal of Computational Physics, vol. 26, no. 1,

pp. 43-65, 1978, doi: https://doi.org/10.1016/0021-9991(78)90098-0.

(4] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations (Frontiers in Applied
Mathematics). Society for Industrial and Applied Mathematics, 1995, p. 169.

[5] MathWorks, "Parallel Computing Toolbox User's Guide."

[6] NVIDIA. "CUDA C++ Programming Guide." NVIDIA.
https://docs.nvidia.com/cuda/cuda-c-programming-guide/contents.html (accessed 2023-

11-27).

[7] M. R. Hestenes and E. Stiefel, "Methods of Conjugate Gradients for Solving Linear
Systems," Journal of Research of the National Bureau of Standards, vol. 49, pp. 409-435,
1952.

[8] R. M. Freund, "The Steepest Descent Algorithm for Unconstrained Optimization and a
Bisection Line-search Method," Journal of Massachusetts Institute of Technology. United
States of America, vol. 131, 2004.

[9] J. R. Shewchuk, "An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain," Carnegie Mellon University, 1994. Accessed: 2023-12-13.

[10] R.M. Freund, "The Steepest Descent Algorithm for Unconstrained Optimization," Journal
of Massachusetts Institute of Technology. United States of America, 2014.

https://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
https://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
https://doi.org/10.1016/0021-9991(78)90098-0
https://docs.nvidia.com/cuda/cuda-c-programming-guide/contents.html

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Page |94

Y. Saad, Iterative Methods for Sparse Linear Systems, Second ed. Society for Industrial
and Applied Mathematics, 2003, p. 537.

W. Ford, Numerical Linear Algebra with Applications using MATLAB. 2014.

M. J. Misi¢, B. M. Durdevi¢, and M. V. TomasSevi¢, "Evolution and trends in GPU
computing," in 2012 Proceedings of the 35th International Convention MIPRO, Opatija,
Croatia, 2012: IEEE, pp. 289-294.

NVIDIA. "GPU Performance Background." NVIDIA.
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-

background/index.html#gpu-arch (accessed 2023-11-27).

MathWorks. "Perform parallel computations on multicore computers, GPUs, and computer

clusters." https://www.mathworks.com/help/parallel-computing/ (accessed 2023-12-05).

MathWorks. "Query or select a GPU device." https://www.mathworks.com/help/parallel-

computing/parallel.gpu.gpudevice.html (accessed 2023-12-06).

MathWorks. "Incomplete Cholesky factorization."
https://www.mathworks.com/help/matlab/ref/ichol.html?s_tid=doc_ta (accessed 2023-12-
05).

MathWorks. "Solve system of linear equations — preconditioned conjugate gradient
method." https://www.mathworks.com/help/matlab/ref/pcg.html?s_tid=doc_ta (accessed
2023-12-05).

MathWorks. "Start stopwatch timer."
https://www.mathworks.com/help/matlab/ref/tic.html?s_tid=doc ta (accessed 2023-12-
06).

MathWorks. "Read elapsed time from stopwatch."
https://www.mathworks.com/help/matlab/ref/toc.html (accessed 2023-12-06).

MathWorks. "Array stored on GPU." https://www.mathworks.com/help/parallel-

computing/gpuarray.html (accessed 2023-12-06).

https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html#gpu-arch
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html#gpu-arch
https://www.mathworks.com/help/parallel-computing/
https://www.mathworks.com/help/parallel-computing/parallel.gpu.gpudevice.html
https://www.mathworks.com/help/parallel-computing/parallel.gpu.gpudevice.html
https://www.mathworks.com/help/matlab/ref/ichol.html?s_tid=doc_ta
https://www.mathworks.com/help/matlab/ref/pcg.html?s_tid=doc_ta
https://www.mathworks.com/help/matlab/ref/tic.html?s_tid=doc_ta
https://www.mathworks.com/help/matlab/ref/toc.html
https://www.mathworks.com/help/parallel-computing/gpuarray.html
https://www.mathworks.com/help/parallel-computing/gpuarray.html

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Page |95

MathWorks. "Time required to run function on GPU."
https://www.mathworks.com/help/parallel-computing/gputimeit.html (accessed 2023-12-
06).

MathWorks. "Create Function Handle."
https://www.mathworks.com/help/matlab/matlab_prog/creating-a-function-handle.html

(accessed 2023-12-06).

MathWorks. "Wait for futures to complete."
https://www.mathworks.com/help/matlab/ref/parallel. future.wait.html?s_tid=doc_ta

(accessed 2023-12-06).

MathWorks. "Measure and Improve GPU Performance."
https://www.mathworks.com/help/parallel-computing/measure-and-improve-gpu-

performance.html (accessed 2023-12-04).

A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. "HPL - A Portable Implementation of
the High-Performance Linpack Benchmark for Distributed-Memory Computers."
University of Tennessee Computer Science Department.

https://www.netlib.org/benchmark/hpl/ (accessed 2023-11-27).

MathWorks. "Execute code in parallel on workers of parallel pool."
https://www.mathworks.com/help/parallel-computing/spmd.html?s_tid=doc_ta (accessed

2023-12-06).

MathWorks. "Create parallel pool on cluster." https://www.mathworks.com/help/parallel-

computing/parpool.html (accessed 2023-12-06).

MathWorks. "Run MATLAB on multicore and multiprocessor machines."

https://www.mathworks.com/discovery/matlab-multicore.html (accessed 2023-12-05).

n

MathWorks. "Solve systems of linear equations Ax=B for x.

https://www.mathworks.com/help/matlab/ref/mldivide.html (accessed 2023-12-05).

MathWorks. "Benchmarking A\b on the GPU." https://www.mathworks.com/help/parallel-

computing/benchmarking-a-b-on-the-gpu.html (accessed 2023-12-05).

https://www.mathworks.com/help/parallel-computing/gputimeit.html
https://www.mathworks.com/help/matlab/matlab_prog/creating-a-function-handle.html
https://www.mathworks.com/help/matlab/ref/parallel.future.wait.html?s_tid=doc_ta
https://www.mathworks.com/help/parallel-computing/measure-and-improve-gpu-performance.html
https://www.mathworks.com/help/parallel-computing/measure-and-improve-gpu-performance.html
https://www.netlib.org/benchmark/hpl/
https://www.mathworks.com/help/parallel-computing/spmd.html?s_tid=doc_ta
https://www.mathworks.com/help/parallel-computing/parpool.html
https://www.mathworks.com/help/parallel-computing/parpool.html
https://www.mathworks.com/discovery/matlab-multicore.html
https://www.mathworks.com/help/matlab/ref/mldivide.html
https://www.mathworks.com/help/parallel-computing/benchmarking-a-b-on-the-gpu.html
https://www.mathworks.com/help/parallel-computing/benchmarking-a-b-on-the-gpu.html

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Page |96

H. Anzt, J. Dongarra, G. Flegar, N. J. Higham, and E. S. Quintana-Orti, "Adaptive precision
in block-Jacobi preconditioning for iterative sparse linear system solvers," Concurrency
and Computation: Practice and Experience, vol. 31, no. 6, p. 4460, 2019, doi:
https://doi.org/10.1002/cpe.4460.

H. Markus and E. S. Paul, "Block jacobi preconditioning of the conjugate gradient method
on a vector processor," International Journal of Computer Mathematics, vol. 44, no. 1-4,

pp. 71-89, 1992, doi: https://doi.org/10.1080/00207169208804096.

MathWorks. "Measure GPU Performance." https://www.mathworks.com/help/parallel-

computing/measuring-gpu-performance.html (accessed 2023-12-04).

MathWorks. "Transfer distributed array, Composite object, or gpuArray object to local
workspace." https://www.mathworks.com/help/parallel-computing/gpuarray.gather.html

(accessed 2023-12-06).

MathWorks. "Measure time required to run function."
https://www.mathworks.com/help/matlab/ref/timeit.html?s_tid=doc_ta (accessed 2023-
12-05).

MathWorks. "Resource Contention n Task Parallel Problems."
https://www.mathworks.com/help/parallel-computing/resource-contention-in-task-

parallel-problems.html (accessed 2023-12-05).

M. P. C. T. Team. "Compare GPUs using standard numerical benchmarks in MATLAB."

https://www.mathworks.com/matlabcentral/fileexchange/34080-

gpubench?s_tid=srchtitle support_results 1 gpubench (accessed 2023-12-05).

NVIDIA. "NVIDIA GeForce GTX 970M Specifications." https://www.nvidia.com/en-

us/geforce/gaming-laptops/gtx-970m/specifications/ (accessed 2023-12-13).

NVIDIA. "NVIDIA GeForce GTX 1650 Max-Q." https://www.techpowerup.com/gpu-
specs/geforce-gtx-1650-max-g.c3383 (accessed 2023-12-13).

D. Schmid and T. Davis. Schmid/thermall unstructured FEM, steady state thermal problem.
[Online]. Available: https://sparse.tamu.edu/Schmid/thermal |

https://doi.org/10.1002/cpe.4460
https://doi.org/10.1080/00207169208804096
https://www.mathworks.com/help/parallel-computing/measuring-gpu-performance.html
https://www.mathworks.com/help/parallel-computing/measuring-gpu-performance.html
https://www.mathworks.com/help/parallel-computing/gpuarray.gather.html
https://www.mathworks.com/help/matlab/ref/timeit.html?s_tid=doc_ta
https://www.mathworks.com/help/parallel-computing/resource-contention-in-task-parallel-problems.html
https://www.mathworks.com/help/parallel-computing/resource-contention-in-task-parallel-problems.html
https://www.mathworks.com/matlabcentral/fileexchange/34080-gpubench?s_tid=srchtitle_support_results_1_gpubench
https://www.mathworks.com/matlabcentral/fileexchange/34080-gpubench?s_tid=srchtitle_support_results_1_gpubench
https://www.nvidia.com/en-us/geforce/gaming-laptops/gtx-970m/specifications/
https://www.nvidia.com/en-us/geforce/gaming-laptops/gtx-970m/specifications/
https://www.techpowerup.com/gpu-specs/geforce-gtx-1650-max-q.c3383
https://www.techpowerup.com/gpu-specs/geforce-gtx-1650-max-q.c3383
https://sparse.tamu.edu/Schmid/thermal1

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Page |97

E. Um and T. Davis. Um/2cubes _sphere FEM, electromagnetics, 2 cubes in a sphere.
[Online]. Available: https://sparse.tamu.edu/Um/2cubes_sphere

R. Vuduc, A. Chandramowlishwaran, J. Choi, M. Guney, and A. Shringarpure, "On the
Limits of GPU Acceleration," presented at the Proceedings of the 2nd USENIX Conference
on Hot Topics in Parallelism, 2010.

Intel®. "Intel® Core™ 17-4710HQ Processor."
https://www.intel.com/content/www/us/en/products/sku/78930/intel-core-174710hg-

processor-6m-cache-up-to-3-50-ghz/specifications.html (accessed 2023-12-13).

Intel®. "Intel® Core™ 17-10510U Processor."

https://www.intel.com/content/www/us/en/products/sku/196449/intel-core-i1710510u-

processor-8m-cache-up-to-4-90-ghz/specifications.html (accessed 2023-12-13).

MathWorks. "Floating-Point Numbers."
https://www.mathworks.com/help/matlab/matlab prog/floating-point-numbers.html

(accessed 2023-12-06).

PCI-SIG. "PCI Express® 3.0."
https://web.archive.org/web/20140201172536/http://www.pcisig.com/news_room/fags/pc
1e3.0_fag/#EQ?2 (accessed 2023-12-13).

MathWorks. "Create codistributed sparse matrix."

https://www.mathworks.com/help/parallel-

computing/codistributed.sparse.html?s_tid=doc_ta (accessed 2023-12-06).

https://sparse.tamu.edu/Um/2cubes_sphere
https://www.intel.com/content/www/us/en/products/sku/78930/intel-core-i74710hq-processor-6m-cache-up-to-3-50-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/78930/intel-core-i74710hq-processor-6m-cache-up-to-3-50-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/196449/intel-core-i710510u-processor-8m-cache-up-to-4-90-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/196449/intel-core-i710510u-processor-8m-cache-up-to-4-90-ghz/specifications.html
https://www.mathworks.com/help/matlab/matlab_prog/floating-point-numbers.html
https://web.archive.org/web/20140201172536/http:/www.pcisig.com/news_room/faqs/pcie3.0_faq/#EQ2
https://web.archive.org/web/20140201172536/http:/www.pcisig.com/news_room/faqs/pcie3.0_faq/#EQ2
https://www.mathworks.com/help/parallel-computing/codistributed.sparse.html?s_tid=doc_ta
https://www.mathworks.com/help/parallel-computing/codistributed.sparse.html?s_tid=doc_ta

	Abstract
	Abrégé
	Acknowledgements
	Contribution of Authors
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Thesis Structure

	Chapter 2 Conjugate Gradients
	2.1 The Method of Steepest Descent
	2.2 The Method of Conjugate Directions
	2.3 The Method of Conjugate Gradients
	2.4 Preconditioning
	2.4.1 Incomplete Cholesky Factorization
	2.4.2 Incomplete Cholesky Preconditioned Conjugate Gradient

	Chapter 3 Graphics Processing Units
	3.1 Graphics Processing Unit vs Central Processing Unit
	3.2 Graphics Processing Unit Architecture
	3.3 MATLAB Parallel Computing Toolbox

	Chapter 4 Methodology
	4.1 ICPCG on CPUs and GPUs with Specific Problem Types
	4.1.1 ICPCG on CPUs and GPUs using Parallel Computing Toolbox Commands
	4.1.2 ICPCG on CPUs using Single Program Multiple Data Statements

	4.2 Backslash on CPUs and GPUs
	4.2.1 A\b on CPUs and GPUs with Generated Matrices
	4.2.2 A\b on CPUs and GPUs with Specific Problem Types

	4.3 Data Handling Capability of GPUs
	4.4 Resource Contention on CPUs using Single Program Multiple Data Statements
	4.5 MATLAB’s GPUBench

	Chapter 5 Results and Discussion
	5.1 ICPCG on CPUs and GPUs with Specific Problem Types
	5.1.1 ICPCG using Parallel Computing Toolbox Commands
	5.1.2 ICPCG using Single Program Multiple Data Statements

	5.2 Backslash on CPUs and GPUs
	5.2.1 A\b on CPUs and GPUs with Generated Matrices
	5.2.2 A\b on CPUs and GPUs with Specific Problem Types

	5.3 Data Handling Capability of GPUs
	5.3.1 Data Transmission and Retrieval Bandwidth
	5.3.2 Read and Write Data Bandwidth
	5.3.3 Calculation Rate of Intensive Operations

	5.4 Resource Contention on CPUs
	5.4.1 Varying Number of Processes
	5.4.2 Varying Data Size

	5.5 MATLAB’s GPUBench

	Chapter 6 Conclusion and Future Work
	Appendix
	Bibliography

