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Abstract 

In an era where solving intricate linear systems is a commonplace task across various domains, the 

need for computational efficiency remains paramount. This thesis seeks to bridge the gap between 

complex mathematical algorithms and accessibility for engineers, researchers, scientists, and 

enthusiasts alike. 

At its core, this research delves into the synergies between two contemporary 

computational technologies: the Incomplete Cholesky Preconditioned Conjugate Gradient (ICPCG) 

method and modern Graphics Processing Units (GPUs), with a particular focus on NVIDIA mobile 

graphics chips. The ICPCG method is renowned for its effectiveness in tackling large sparse 

systems of linear equations. However, rather than diving into the intricacies of GPU architecture 

with the use of an Application Programming Interface (API), such as Compute Unified Device 

Architecture (CUDA), we look at higher-level programming that is a more user-friendly avenue. 

The ICPCG method is implemented in the MATLAB environment and utilizes the Parallel 

Computing Toolbox (PCT) to parallelize the method on modern NVIDIA mobile GPUs. With the 

use of PCT, instead of CUDA, it removes the formidable barrier of requiring an in-depth 

understanding of GPU hardware, often a daunting obstacle for the uninitiated. By democratizing 

GPU parallelization, we empower individuals from various backgrounds to harness the remarkable 

computational capabilities of modern GPUs without being burdened by the complexities of CUDA 

programming.  

Chapters elucidate the ICPCG method, introduce GPU advantages over Central Processing 

Units (CPUs), and showcase MATLAB PCT’s accessibility. A detailed methodology for 

implementing ICPCG on NVIDIA GPUs is provided, and the experimental results are presented 

in a comprehensible manner. In-depth discussions and conclusions bring forth the significance of 

this approach in the realm of scientific computing. 

As we navigate the nexus of mathematical sophistication and accessibility, this research 

illuminates a path for individuals to leverage GPU parallelization effectively, transcending the 

boundaries of traditional CPU-based computations. In doing so, it empowers a diverse spectrum 
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of users to tap into the extraordinary potential of GPU-accelerated computing without the need for 

an advanced understanding of GPU hardware intricacies, ultimately democratizing high-

performance scientific computing. Our results have showcased the benefits of parallelizing the 

algorithm on NVIDIA mobile GPUs, particularly for single-precision data types, while 

acknowledging limitations in the case of double-precision data types. 
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Abrégé 

À une époque où la résolution de systèmes linéaires complexes est une tâche courante dans divers 

domaines, le besoin d’efficacité informatique reste primordial. Cette thèse cherche à combler le 

fossé entre les algorithmes mathématiques complexes et l'accessibilité pour les ingénieurs, les 

chercheurs, les scientifiques et les passionnés. 

À la base, cette recherche explore les synergies entre deux technologies informatiques 

contemporaines: la méthode Incomplete Cholesky Preconditioned Conjugate Gradient (ICPCG) et 

les unités de traitement graphique (en anglais, Graphics Processing Units, ou GPUs) modernes, 

avec un accent particulier sur les puces graphiques mobiles NVIDIA. La méthode ICPCG est 

réputée pour son efficacité dans le traitement de grands systèmes clairsemés d'équations linéaires. 

Cependant, plutôt que de plonger dans les subtilités de l'architecture GPU avec l'utilisation d'une 

interface de programmation d'application (en anglais, Application Programming Interface, ou API), 

telle que Compute Unified Device Architecture (CUDA), nous examinons une programmation de 

niveau supérieur qui constitue une voie plus conviviale. 

La méthode ICPCG est implémentée dans l'environnement MATLAB et utilise Parallel 

Computing Toolbox (PCT) pour paralléliser la méthode sur les GPU NVIDIA modernes. Avec 

l’utilisation de PCT, au lieu de CUDA, il supprime la formidable barrière consistant à exiger une 

compréhension approfondie du matériel GPU, souvent un obstacle de taille pour les non-initiés. 

En démocratisant la parallélisation des GPU, nous permettons à des individus d'horizons divers 

d'exploiter les remarquables capacités de calcul des GPU modernes sans être gênés par les 

complexités de la programmation CUDA. 

Les chapitres expliquent la méthode ICPCG, présentent les avantages du GPU par rapport 

aux unités centrales de traitement (en anglais, Central Processing Unit, ou CPU) et présentent 

l'accessibilité du MATLAB PCT. Une méthodologie détaillée pour implémenter ICPCG sur les 

GPU NVIDIA est fournie et les résultats expérimentaux sont présentés de manière compréhensible. 

Des discussions et des conclusions approfondies font ressortir l’importance de cette approche dans 

le domaine du calcul scientifique. 
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Alors que nous naviguons entre la sophistication mathématique et l’accessibilité, cette 

recherche ouvre la voie aux individus pour exploiter efficacement la parallélisation GPU, 

transcendant les limites des calculs traditionnels basés sur CPU. Ce faisant, il permet à un large 

éventail d’utilisateurs d’exploiter le potentiel extraordinaire du calcul accéléré par GPU sans avoir 

besoin d’une compréhension avancée des subtilités du matériel GPU, démocratisant ainsi le calcul 

scientifique haute performance. Nos résultats ont montré les avantages de la parallélisation de 

l'algorithme sur les GPU mobiles NVIDIA, en particulier pour les types de données simple 

précision, tout en reconnaissant les limites dans le cas des types de données double précision. 
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Chapter 1  

Introduction 

1.1 Motivation 

In the realm of scientific and engineering computing, the efficient solution of large sparse linear 

systems plays a pivotal role across a multitude of disciplines, from computational physics and 

computer graphics to data analysis and machine learning. These systems often underpin complex 

simulations, optimizations, and numerical modelling tasks that are essential for advancing our 

understanding of engineering design. As the scale and complexity of these problems continue to 

grow, so does the demand for innovative solutions and computing platforms that are capable of 

meeting these computational challenges. 

GPUs, including mobile graphics chips, have emerged as formidable computational 

accelerators for a wide range of scientific and numerical applications. Unlike a traditional CPU, 

which consists of no more than a handful of cores, a GPU has a massively parallel array of integer, 

floating-point processors, and a dedicated high-speed memory. Typically, a GPU contains 

hundreds or even thousands of smaller processors. Figure 1.1 shows an example of the number of 

cores on a CPU and a GPU [1]. Due to their massively parallel architecture, GPUs, which were 

initially designed to accelerate graphics rendering, have been increasingly applied to perform 

general-purpose computations. As GPUs excel at parallelism, they make a particularly well-suited 

platform for accelerating iterative solvers commonly used to tackle large sparse linear systems [2]. 

Among these solvers, the preconditioned conjugate gradient (PCG) method stands out as a 

powerful iterative algorithm [3]. 
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Figure 1.1: Comparison of the number of cores on a CPU system and a GPU. Left shows a CPU 

with multiple cores, and right shows a GPU with hundreds of cores. 

Preconditioning techniques, which aim to transform the original linear system into an 

equivalent one with improved numerical properties, are often used in conjunction with conjugate 

gradient (CG), which results in PCG, to enhance its convergence speed and robustness in a wide 

range of applications. Preconditioning can also significantly reduce the number of iterations 

required for convergence [4]. In this context, the focus is on the incomplete Cholesky 

preconditioner (ICP). The ICP is a fundamental tool in solving large systems of linear equations 

as it leverages the inherent sparsity structure of the matrix to approximate the Cholesky 

factorization, which effectively mitigates the ill-conditioning of the system. 

This thesis explores the synergies between two contemporary computational technologies: 

the ICPCG method and modern GPUs, with a specific emphasis on NVIDIA mobile GPUs. The 

ICPCG method will be implemented within MATLAB and will utilize PCT for parallelization. 

This toolbox does not require the use of an API, such as CUDA for NVIDIA GPUs [5]. Although 

CUDA has a generic parallel programming model in a multithreaded environment, it requires 

programmers to have a good understanding of the CUDA-supported GPU devices’ hardware to 

fully optimize their performance. It also requires a good low-level programming skill. Otherwise, 

performance can vary greatly [6]. Programmers who work on languages that are not supported by 

CUDA can find it difficult and time-consuming to acquire the skill to implement CUDA correctly. 
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Hence, the primary aim of this study is to evaluate the effectiveness of using MATLAB PCT to 

implement ICPCG when executed on state-of-the-art NVDIA mobile GPU. The following key 

aspects will be examined during the research: 

1. Performance of GPU Parallelism: GPUs are designed for parallelism, but to harness 

their power effectively for iterative solvers requires a profound understanding of their 

architecture and programming models. However, with MATLAB PCT, it is possible to 

parallelize the ICPCG algorithm without the profound understanding. Hence, this 

research investigates strategies to efficiently parallelize the algorithm with PCT, so that 

it exploits the full computational capabilities of modern GPUs [5]. 

2. ICPCG Method: An in-depth evaluation of incomplete Cholesky (IC) preconditioning 

strategies on the CG method tailored for GPU acceleration. This includes an assessment 

of the computational cost within the context of ICPCG. 

3. Scalability of Problems: A meticulous analysis of the scalability of ICPCG on GPUs 

concerning problem size, sparsity pattern, and GPU hardware configuration. This study 

helps to determine the practical limitations and benefits of employing GPUs by using 

MATLAB PCT on NVIDIA mobile GPUs for solving large sparse linear systems 

effectively. 

4. Real-world Applications: By demonstrating the performance of ICPCG on GPU using 

MATLAB PCT in scientific and engineering domains, it will serve as tangible 

demonstrations of the method’s potential to expedite simulations and enhance the 

efficiency of solving critical, large-scale computational problems. 

5. Software and Tools: Discussion of the software environment, MATLAB, and its 

essential toolboxes, including PCT, that facilitate the implementation of ICPCG on 

GPUs. This demonstrates how accessible and user-friendly MATLAB PCT is for those 

not well-versed in CUDA. 

This research endeavours to unlock the potential of combining ICPCG on MATLAB with 

modern NVIDIA GPUs, enabling researchers and engineers to efficiently address complex, large-

scale computational problems. The insights gained through this investigation will contribute to the 
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optimization of numerical simulations, ultimately enhancing our ability to tackle increasingly 

intricate challenges in science and engineering. 

1.2 Thesis Structure 

This thesis is organized into six chapters. Chapter 2 delivers an extensive review of the CG method, 

including the background knowledge and related work. Chapter 3 presents the key advantages of 

GPUs over CPUs, along with an exploration of GPU architecture to achieve these key advantages. 

This chapter also presents MATLAB PCT that is used for GPU parallelization. In Chapter 4, we 

delve into the methodology applied to implement ICPCG on contemporary NVIDIA mobile GPUs 

using MATLAB PCT as well as supplementary implementations. Chapter 5 unveils the 

experimental results and findings obtained through the methodology, followed by a thorough 

discussion of these outcomes. Chapter 6 encapsulates the conclusion drawn from this study and 

outlines prospects for future research. Finally, the appendix furnishes additional information on 

the specifications of the GPUs and CPUs subjected to testing. 
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Chapter 2  

Conjugate Gradients 

The CG method is one of many common iterative methods used for solving large systems of linear 

equations that are symmetric, positive definite (SPD). It was developed by E.Stiefel and M.R. 

Hestenes [7]. This method is effective in solving a system, Ax = b, of n simultaneous equations 

in n  unknowns, particularly if n  is large. The matrix A  is symmetric if A = AT  and positive 

definite (PD) if xTAx > 0, for all x ≠ 0 [4]. CG is considered to be a machine method as it has the 

following properties [7]: 

1. Simplicity and minimal storage: The method is straightforward, consisting of repetitive 

elementary operations that demand minimal storage space. 

2. Convergence and finite steps: The method is designed to converge rapidly, and ideally, 

it should reach a solution in a finite number of steps, even when infinite steps are 

theoretically required. A method that guarantees finite-step solutions, provided no 

rounding-off errors occur, is preferred. 

3. Rounding-off error stability: The method maintains stability with respect to rounding-

off errors. If necessary, it includes subroutines to ensure this stability. Rounding-off 

errors can be reduced by repeating the same routine, using the previous results as a 

refined estimate of the solution. 

4. Progressive estimation: At each step, the method provides information about the 

solution, yielding a more accurate estimate than the previous one. 

5. Utilization and original data: The method makes the most use of the initial data at each 

step of the routine. Special properties inherent to the given linear system, such as the 

presence of numerous zero coefficients, are preserved. (In contrast, certain methods 

like Gauss elimination may inadvertently alter these special properties.) 
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However, to grasp the method of CG, it is essential to have a prior understanding of both 

the steepest descent method and the method of conjugate directions. 

2.1 The Method of Steepest Descent 

In the method of steepest descent, we start at an arbitrary point x0 and proceed towards a minimum 

value of the function f , defined in Equation 2.1 [8]. We advance through a sequence of steps 

x1, x2, … until we reach the proximity to the solution x. In each step, we choose the direction in 

which the function f decreases most rapidly, which is the negative gradient of f, denoted as −f′(xi). 

This direction is defined by the equation −f ′(xi) = b − Axi [8]. 

 f(x) =
1
2

xTAx − bTx + c (2.1) 

In addition, the error, ei = xi − x , serves as a vector indicating the deviation from the 

solution x. Conversely, the residual, ri = b − Axi, signifies the extent of deviation from the correct 

value of b. We can view the residual, ri = −Aei, as the result of transforming the error ei by the 

matrix A , placing it in the same space as b . More importantly, ri  corresponds to −f′(xi) , 

representing the direction of the steepest descent, ri = −f ′(xi) [9]. 

A line search is a process that selects α to minimize the function f along a line. According 

to the fundamental of calculus principles, α is chosen to minimize f when the directional derivative, 

denoted as d
dα

f(x1) , equals zero. Applying the chain rule, we have d
dα

f(x1) = f ′(x1)T d
dα

x1 =

f ′(x1)Tr0 . Thus, to find the optimal α , one should ensure that r0  and f′(x1)  are orthogonal by 

setting the expression to zero [9, 10]. 
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Figure 2.1: Surface of a quadratic form f(x). 

In Figure 2.1, we visualize a representation of the surface of a quadratic function f. To 

demonstrate the application of a line search method, consider an initial point x0 = [−2,−2]T . 

Figure 2.2 depicts the intersection of a vertical plane with the paraboloid, while Figure 2.3 

illustrates a search line along the contours of f. In Figure 2.2, the line search procedure aims to 

locate the point on the intersection of these two surfaces that minimizes the function f. At this 

specific point, the magnitude of the gradient vector, denoted as f ′, along the search line in Figure 

2.3, reaches its maximum [10]. 

Consequently, the magnitude of the projection of the gradient vector onto the search line is 

zero. As we traverse along the search line, the magnitude of the gradient vector decreases, while 

the magnitude of the projection increases. This observation implies that at the minimum point on 

the search line, the gradient vector exhibits orthogonality with respect to the search line [9]. 
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Figure 2.2: Line search on the quadratic form f(x). 

 

 

Figure 2.3: Contours of the quadratic form f(x) with the line search.  
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As per the previously mentioned definitions, the derivation of α leads to the formulation of 

the steepest descent method, as follows [9, 10]:  

 ri = b − Axi (2.2) 

 αi =
riTri

riTAri
 (2.3) 

 xi+1 = xi + αiri (2.4) 

To optimize the computational efficiency by eliminating one of the two matrix-vector 

multiplications per iteration, we can pre-multiply Equation 2.4 by −A and add b, resulting in a 

modified equation [9, 10]: 

 ri+1 = ri − αiAri (2.5) 

While this modification reduces the number of matrix-vector multiplications per iteration, 

it is important to note that the computation of r0, as per Equation 2.2, is still required initially. 

Once r0  is determined, Equation 2.5 can be applied in subsequent iterations. Furthermore, the 

product Ar only needs to be calculated once for both Equations 2.3 and 2.5 [9]. 

It is worth highlighting that due to the use of r0  in Equation 2.5, there is a potential 

accumulation of floating-point roundoff errors that might prevent xi from converging to the true 

solution x. Therefore, Equation 2.2 can be recomputed periodically, rather than in every iteration, 

to ensure the correct residual is obtained [9]. 
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Figure 2.4: Meandering path of the method of steepest descent. 

Upon applying the method of steepest descent using Algorithm 1 [10] on MATLAB, we 

can observe a meandering trajectory, which progressively converges toward the solution x , as 

depicted in Figure 2.4. Notably, each gradient vector is orthogonal to the preceding one. 

Furthermore, Algorithm 1 encompasses Equations 2.2 to 2.4 within its framework [10]. 

The convergence behaviour of the steepest descent method is characterized by the 

inequality ‖ei‖A ≤ �κ−1
κ+1

�
i
‖e0‖A, wherein κ represents the spectral condition number of matrix A 

in the linear system Ax = b. The spectral condition number κ indicates how sensitive the solution 

x is to small changes in the vector b, offering insights into the stability of the solution concerning 

perturbations in the right-hand side (RHS) vector [9, 11]. A higher condition number κ signifies a 

greater degree of ill-conditioning in the matrix. Unfortunately, this approach may lead to recurrent 

descent directions, resulting in an inefficient convergence process [8-10].  
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Algorithm 1 Steepest Descent Method 

1: Given matrix A  

2: Given RHS vector b 

3: Initialize initial guess x0 

4: Set tolerance e and i = 0 

5: At iteration i, while ‖ri‖ > e, do 

6:      ri = −∇f(xi) 

7:      αi = riTri/riTAri or perform an exact line search 

8:      xi+1 = xi + αiri 

9:      i = i + 1 

10:      if ‖ri‖ < e or ri = 0 

11:           return [xi+1, i] 

12:      end if 

13: end while 

  

2.2 The Method of Conjugate Directions 

The method of conjugate directions refines the steepest descent method by incorporating a series 

of orthogonal search directions d0, d1, … , dn−1  to progress towards the minimum point. Within 

each of these search directions, the method takes a single step of precisely the correct length to 

align perfectly with the solution x. Once n such steps are executed, the solution x is determined 

[9]. 

These search directions exhibit A-orthogonality, meaning that two vectors, di and dj, are 

considered A-orthogonal, or conjugate, if their dot product equals zero, diTAdj = 0. Furthermore, 

the current search direction di is A-orthogonal to the error of the subsequent iteration, labelled as 

ei+1. This error is calculated as the difference between the point of the next iteration xi+1 and the 

true solution x. This orthogonality condition ensures that the method avoids retracing the same 

search direction as di, essentially equivalent to the process of seeking the minimum point along 

the search direction di, akin to the method of steepest descent [9].  
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Using the orthogonality of di and ei+1, α is derived as [9]: 

 αi = −
diTAei
diTAdi

 (2.6) 

 αi =
diTri

diTAdi
 (2.7) 

It is noteworthy that if we consider the search vector in Equation 2.6 as the residual, then 

Equation 2.7 would be identical to the formula employed in the steepest descent method [9]. 

To establish a set of search directions d0, d1, … , dn−1 that are A-orthogonal, the conjugate 

Gram-Schmidt process is used. By using a collection of n  linearly independent vectors 

u0, u1, … , un−1, we can derive di by subtracting the components in ui that do not align with the A-

orthogonal vectors from the previously determined d vectors [9]. 

In Figure 2.5(a), it shows that the conjugate Gram-Schmidt process initiated with two 

linearly independent vectors u0 and u1. Subsequently, in Figure 2.5(b), it designates d0 to be u0 

and illustrates u1  as a composed of two components: u+  and u∗ . Notably, the vector u∗  is A-

orthogonal, or conjugate, to d0, while u+ is parallel to d0. Following this conjugation process, the 

A-orthogonal segment persists, resulting in the subsequent search direction d1, as portrayed in 

Figure 2.5(c) [9]. 

 

 

Figure 2.5: Gram-Schmidt conjugation of two vectors.  
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Generally, the process sets d0 = u0 , and for the subsequent iterations i > 0 , the search 

directions are [9]: 

 di = ui + �βikdk

i−1

k=0

 (2.8) 

In Equation 2.8, βik are defined for i > k, and using the definition of conjugacy, βik are 

derived as [9]: 

 βik = −
uiTAdj
djTAdj

 (2.9) 

Nonetheless, the Gram-Schmidt conjugation process within the method of conjugate 

directions necessitates the retention of all prior search vectors in memory for generating each new 

search vector. This incurs computational costs on the order of O(n3) to produce the complete set 

of search vectors [9]. Fortunately, when the search vectors are formulated by conjugating the axial 

unit vectors, the conjugate directions method aligns with the Gaussian elimination method. This 

equivalence is particularly evident in the method of conjugate gradients, where one concurrently 

executes the method of orthogonal directions within a scaled or stretched space [9]. 

Similar to Equation 2.5 in the method of steepest descent, the number of matrix-vector 

multiplications per iteration can be reduced by using a recurrence to find the residual, where ei+1 =

ei + αidi [9]:  

 ri+1 = −Aei+1 = ri − αiAdi (2.10) 
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2.3 The Method of Conjugate Gradients 

The method of conjugate gradients is essentially an adaptation of the method of conjugate 

directions, where the search directions are established by conjugating the residuals, achieved by 

setting ui = ri . Many of the properties found in the method of steepest descent and conjugate 

directions also apply to the CG method [9]. The motive of the CG method is the same as the 

steepest descent method, where the CG method minimizes the function f, as defined in Equation 

2.1. In the CG method, the vectors are identified as: 〈x1, x2, … , xn〉 = 〈d0, d1, … , dn−1〉 , 

〈d0, d1, … , dn−1〉 = 〈r0, r1, … , rn−1〉 , 〈r0, r1, … , rn−1〉 = 〈b, Ab, … , An−1b〉  [9]. Also, under the 

assumption of A being SPD, the A-norm is defined as ‖x‖A = √xTAx. Moreover, since the search 

vectors are derived from the residuals, the subspace spanned by {r0, r1, … , ri−1} is identical to Di. 

Each residual is orthogonal to the preceding search directions, which also happen to be the prior 

residuals: riTrj = 0, for i ≠ j [4, 9]. 

This concept is visually demonstrated in Figure 2.6, where a clear pattern emerges [9]. 

Each new residual ri  maintains orthogonality with respect to all prior residuals and search 

directions. Similarly, each new search direction di is purposefully constructed to be A-orthogonal 

to all the preceding residuals and search directions. Furthermore, the endpoints of r2 and d2 lie on 

a plane that runs parallel to the subspace D2, and d2 is a linear combination of r2 and d1 [9]. 

Referring to Equation 2.10, it becomes apparent that each successive residual ri can be 

expressed as a linear combination of the previous residual and Adi−1  [9]. By applying the 

definition that di−1 belongs to Di, written as di−1 ∈ Di, it follows that each subsequent subspace 

Di+1 is constructed by extending the previous subspace Di with the subspace ADi. As a result, the 

subspace Di takes the following form [9]: 

 
Di = span�d0, Ad0, A2d0, … , Ai−1d0� 

Di = span�r0, Ar0, A2r0, … , Ai−1r0� 
(2.11) 
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Figure 2.6: An illustration of the CG method. 

The subspace, as defined in Equation 2.11, is commonly referred to as a Krylov subspace, 

which is a subspace of a vector space generated by iteratively applying a matrix to an initial vector 

that is the matrix A to the initial residual vector r0 [9]. An essential property of a Krylov subspace 

is that the next residual vector ri+1 exhibits orthogonality with respect to Di+1. In practical terms, 

this means that ri+1 is already A-orthogonal to Di. This characteristic simplifies the Gram-Schmidt 

conjugation process because ri+1 is inherently A-orthogonal to all the preceding search directions 

[9]. 

The Gram-Schmidt conjugation process no longer necessitates the storage of previous 

search vectors to maintain the A-orthogonality of new search vectors. For this reason, this leads to 

a reduction in both space complexity and time complexity per iteration, from O(n2)  to O(m) , 

where m represents the number of nonzero entries in the matrix A [9]. 

To summarize the CG method’s workflow [9, 11]: 

 d0 = r0 = b − Ax0 (2.12) 

 αi =
riTri

diTAdi
 (2.13) 

 xi+1 = xi + αidi (2.14) 

 ri+1 = ri − αiAdi (2.15) 
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 βi+1 =
ri+1T ri+1

riTri
 (2.16) 

  di+1 = ri+1 + βi+1di (2.17) 

When we apply the CG method using Algorithm 2 [11] to the same example showcased in 

Figure 2.1 to 2.4 within the MATLAB environment, we observe a notably quicker convergence. 

This is characterized by the absence of a zigzagging trajectory toward the solution x, as depicted 

in Figure 2.7. Additionally, Algorithm 2 incorporates Equations 2.12 to 2.17 [9, 11]. 

 

 

 

Figure 2.7: Direct path of the method of conjugate gradients. 
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Algorithm 2 Conjugate Gradients Method 

1: Given matrix A 

2: Given RHS vector b 

3: Initialize initial guess x0 

4: Set tolerance e and maximum iterations Nmax 

5: Compute r0 = b − Ax0 

6: Set d0 = r0 

7: for iterations i = 0: Nmax, do 

8:      αi = riTri/diTAdi 

9:      xi+1 = xi + αidi 

10:      ri+1 = ri − αiAdi 

11:      βi+1 = ri+1T ri+1/riTri 

12:      di+1 = ri+1 + βi+1di 

13:      if ‖ri+1‖ < e, then 

14:           return [xi+1, i] 

15:      end if 

16: end for 

17: Print failure to converge message when iteration i > Nmax 

18: return �xNmax, i = −1� 

  
As previously mentioned, the CG method theoretically converges after n  iterations. 

However, in practical applications where n  is typically large, performing n  iterations become 

infeasible. In real-world scenarios, accumulating floating-point errors can lead to gradual loss of 

accuracy in the residual and a reduction in the A-orthogonality of the search vectors [12]. Thus, 

expecting an exact algorithm is not realistic. 

When the CG method is applied to an SPD system Ax = b, the A-norms of the errors adhere 

to the inequality ‖ei‖A
‖e0‖A

≤ 2 �√κ−1
√κ+1

�
i
, where κ represents the spectral condition number of matrix A. 

This inequality is derived from Chebyshev polynomials [12]. Similar to the method of steepest 

descent, if √κ  is relatively small, the CG method converges rapidly, while for a large √κ , 

convergence is slower. The value of κ depends on the spread between the largest and smallest 
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eigenvalues of A. When these eigenvalues are closely clustered, the CG method exhibits good 

convergence. Conversely, if the eigenvalues of A are widely separated, convergence is slower [12]. 

Each iteration of the CG method necessitates O(n2) floating-point operations, so executing 

n iterations result in a computational cost of O(n3) operations, which is equivalent to Cholesky 

decomposition. In practical implementation, convergence is often achieved in fewer than n 

iterations when using floating-point arithmetic. In general, the CG method outperforms the 

steepest descent method [12]. 

While the CG method stands out as a highly efficient iterative approach, dense and poorly 

conditioned matrices can be equally effectively solved through direct factorization and backward 

substitution [12]. In cases where the matrices are not SPD, the CG method can still be employed 

by transforming the original equation from Ax = b  to ATAx = ATb  [4]. However, it is worth 

noting that preconditioning these systems can be challenging. Since this thesis primarily 

concentrates on SPD matrices, non-SPD matrices will not be explored in further detail. 

2.4 Preconditioning 

Preconditioning is a technique implemented to enhance the efficiency and robustness of iterative 

methods, such as the CG method. It accomplishes this by improving the condition number of a 

matrix [12]. Essentially, it transforms the original linear system Ax = b into an equivalent system 

with the same solution that is easier to solve with an iterative solver. This transformation is 

achieved by left- or right- multiplying the system with a preconditioning matrix M . The 

preconditioner M needs to fulfill several criteria, including [12]: 

1. It should be cost-effective to construct. 

2. It should have a straightforward and efficient inversion process. 

3. It should approximate A in a way that the product of M−1 and A is near to the identity 

matrix I and is non-singular. 

4. The preconditioned system should be easier to solve with improved accuracy.  
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If the preconditioner M  is applied to the left, the resulting system takes the form of 

Equation 2.19. Conversely, if M is applied to the right, it yields Equation 2.20. In the latter case, 

applying M to the right can be thought of as a change of variables u = Mx, and the system is then 

solved with respect to the unknown u [11]. In this thesis, we will focus on the left-multiplying 

preconditioner. 

 M−1Ax = M−1b (2.19) 

 AM−1u = b, x ≡ M−1u (2.20) 

When κ(M−1A)  is significantly smaller than κ(A) , or when the eigenvalues of M−1A 

exhibit better clustering than those of A, the iterative solution of Equation 2.19 can be achieved 

more rapidly than solving the original problem. The solution depends on the coefficient matrix 

M−1A instead of A [9, 12]. 

However, it is important to note that M−1A is not inherently symmetric or definite, even if 

both M and A possess these properties. This difficulty can be circumvented by recognizing that for 

every SPD M, there exists a matrix E that may not be unique with the property where E times its 

transpose equal to M , which is EET = M  [9]. This matrix E  can be obtained through various 

methods, including Cholesky factorization. Importantly, the matrices M−1A and E−1AE−T share 

the same eigenvalues λ, because if ν is an eigenvector of M−1A with the eigenvalue λ, then ETν is 

also an eigenvector of E−1AE−T with the same eigenvalue λ [9]. 

The system Ax = b can be transformed into the problem expressed in Equation 2.21. In 

this formulation, x�  is solved first followed by x . Notably, as E−1AE−T  is SPD, the method of 

steepest descent or CG can be used to solve for x�. The process of using the CG method to solve 

this system is also known as the transformed preconditioned conjugate gradient (TPCG) method 

[9]. 

 E−1AE−Tx� = E−1b, x� = ETx (2.21) 

Evaluating the TPCG method reveals an undesirable characteristic—namely, the need to 

compute E . To address this, E  can be eliminated via variable substitution, leading to the 

untransformed preconditioned conjugate gradient (UPCG) method [9]:   
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 r0 = b − Ax0 (2.22) 

 d0 = M−1r0 (2.23) 

 αi =
riTM−1ri

diTAdi
 (2.24) 

 xi+1 = xi + αidi (2.25) 

 ri+1 = ri − αiAdi (2.26) 

 βi+1 =
ri+1T M−1ri+1

riTM−1ri
 (2.27) 

 di+1 = M−1ri+1 + βi+1di (2.28) 

The effectiveness of a preconditioner M is primarily determined by the condition number 

of M−1A, and, in some cases, the eigenvalue distribution within this transformed matrix [9]. As 

there are many ways to find M, the thesis will mainly focus on IC factorization technique. 

2.4.1 Incomplete Cholesky Factorization 

The incomplete Cholesky factorization is a fundamental technique in numerical linear algebra. 

Generally, the IC factorization is similar to Cholesky factorization, except the former is designed 

for sparse matrices. It is a variant that approximates the Cholesky factorization of a sparse matrix 

without filling in zero-fill-ins or minimal fill-ins whenever possible, which makes the IC 

factorization more memory-efficient as the factorization matrix remains its sparsity [3]. 

Cholesky factorization is applied to decompose a real SPD matrix A  into the structure 

shown in Equation 2.29, where L represents a lower triangular matrix. The computation of the 

elements within L  can be performed column by column, following recursive equations like 

Equation 2.30 for diagonal elements and Equation 2.31 for elements below the diagonal [3]. Given 

that L is lower triangular, it simplifies the computation of its inverse L−1 and the inverse of its 

transpose (LT)−1. This enables the solution of the linear system Ax = b, where the process first 

computes y through forward elimination and then determines x using backward substitution, as 

illustrated in Equation 2.32 [3].  
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 A = LLT (2.29) 

 Lii = �Aii −� Lik2
i−1

k=1

 (2.30) 

 
Lji =

Aji − ∑ LjkLiki−1
k=1

Lii
 

j = (i + 1), (i + 2), … , n 
(2.31) 

 y = L−1b, x = (LT)−1y (2.32) 

In terms of computational complexity, the Cholesky factorization has a cost of O(n3) and 

involves computing n  square roots. Overall, Cholesky factorization tends to be approximately 

twice as fast as the lower-upper (LU) decomposition when applied to a PD matrix [12]. 

2.4.2 Incomplete Cholesky Preconditioned Conjugate Gradient 

To implement the ICPCG method, assume the existence of a PD preconditioner M, which can be 

decomposed into an IC factorization M = LLT , where L  is a lower triangular matrix. This 

factorization serves the purpose of preserving symmetry using the split preconditioning approach 

and results in an equivalent system A�x� = b�. This system yields the SPD matrix A�, as shown in 

Equation 2.33 [11, 12], resembling Equation 2.21.  Initially, the CG method is applied to solve for 

x� in A�x� = b�, followed by solving for x in x� = LTx [3] . 

 
(L−1AL−T)LTx = L−1b 

A� = L−1AL−T , x� = LTx , b� = L−1b 
(2.33) 

However, the Cholesky factor L in Equation 2.33 is often less sparse than M. Therefore, L 

might be constrained to maintain the same pattern of nonzero elements [3]. When an element aij 

off the diagonal of A  is zero, the corresponding element lij  is also set to zero. Consequently, L 

retains the same distribution of nonzero values as A below the diagonal elements; hence, it is an 

incomplete factorization. With this adjustment, M takes the form shown in Equation 2.34, where 

E represents a small error matrix containing nonzero entries exclusively in the elements that have 

been forced to zero [3, 12].  
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 M = LLT + E (2.34) 

During the algorithm’s execution, it is critical that all Lii values are greater than zero. If Lii 

equals zero, the algorithm will fail. Similarly, if Lii is less than zero, then LLT is not PD, which 

implies that the CG method cannot provide an exact solution. A complete Cholesky factorization 

will always yield Lii values greater than zero. Additionally, it has been proven that if A is an A-

matrix, i.e., Aij ≤ 0 if i ≠ j, the IC factorization will consistently yield Lii values greater than zero 

[3]. 

 

Algorithm 3 Incomplete Cholesky Factorization 

1: Given matrix A 

2: function L = icholesky(A) 

3:      for iterations i = 1: n, do 

4:           temp = Aii − ∑ Lik2i−1
k=1  

5:           if temp ≤ 0, then 

6:                Print error messages 

7:                return 

8:           end if 

9:           Lii = �temp 

10:           for iterations j = i + 1: n, do 

11:                if Aji == 0, then 

12:                     Lji = 0 

13:                else 

14:                     Lji = �Aji − ∑ LjkLiki−1
k=1 �/Lii  

15:           end for 

16:      end for 

17: end function 
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Algorithm 3 represents the IC factorization, which integrates Equations 2.29 to 2.31 [3, 

12]. An adjustment is made in Lines 11 to 15, ensuring that when aij equals zero, the corresponding 

element lij  is forced to zero, ultimately resulting in the Cholesky factor L . Subsequently, 

Algorithms 4 and 5 delineate the forward elimination and backward substitution, respectively. 

Algorithm 6 combines the functionalities of Algorithms 4 and 5 into a unified function. Finally, 

Algorithm 7 encapsulates the ICPCG method, which incorporates Equations 2.22 to 2.28. However, 

a successful convergence will depend on how good an approximate inverse (LLT)−1 is [3, 12]. 

 

 

 

Algorithm 4 Forward Elimination 

1: Given lower-triangular matrix L 

2: Given RHS vector b 

3: function y = forward(L, b) 

4:      for iterations i = 1: n, do 

5:           for iterations j = 1: i − 1, do 

6:                temp = ∑ Liji−1
j=1 yj 

7:           end for 

8:           yi = (bi − temp)/Lii 

9:      end for 

10: end function 
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Algorithm 5 Backward Substitution 

1: Given upper-triangular matrix U 

2: Given vector y 

3: function x = backward(y, U) 

4:      for iterations i = n: 1, do 

5:           for iterations j = i + 1: n, do 

6:                temp = ∑ Uijxjn
j=i+1  

7:           end for 

8:           xi = (yi − temp)/Uii 

9:      end for 

10: end function 

  
 

 

 

Algorithm 6 Solve Cholesky 

1: Given lower-triangular matrix L 

2: Given RHS vector b 

3: function x = cholsolve(L, b) 

4:      y = forward(L, b) 

5:      x = backward(y, LT) 

6: end function 
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Algorithm 7 Incomplete Cholesky Preconditioned Conjugate Gradients Method 

1: Given matrix A 

2: Given RHS vector b 

3: Initialize initial guess x0 

4: Set tolerance e and maximum iterations Nmax 

5: function pcg(A, b, x0, e, Nmax) 

6:      L = icholesky(A) 

7:      r0 = b − Ax0 

8:      z0 = cholsolve(L, r0), let zi = (LLT)−1ri 

9:      d0 = z0 

10:      for iterations i = 0: Nmax, do 

11:           αi = ziTri/diT 

12:           xi+1 = xi + αidi 

13:           ri+1 = ri − αiAdi 

14:           if ‖ri+1‖ < e, then 

15:                return [xi+1, i] 

16:           end if 

17:           zi+1 = cholsolve(L, ri+1) 

18:           βi+1 = ri+1T zi+1/riTzi 

19:           di+1 = zi+1 + βi+1di 

20:      end for 

21:      Print failure to converge message when iteration i > Nmax 

22:      return �xNmax+1, i = −1� 

23: end function 
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It has been observed that the IC preconditioning may encounter stability issues, especially 

in challenging scenarios where cancellation errors occur. To enhance the algorithm’s reliability, 

the drop tolerance-based IC factorization method is adopted [12]. This method retains the off-

diagonal elements computed by the Cholesky algorithm if a specific condition is met, and 

otherwise, it preserves the original values, as shown in Equation 2.35. As the drop tolerance 

decreases, the IC factor tends to become denser [12]. 

 Lji = �
Aji − ∑ LjiLiki−1

k=1

Lii
Aji

     Aji
2 > e2Ajjbii
otherwise

 (2.35) 
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Chapter 3  

Graphics Processing Units 

General-purpose Graphics Processing Units (GPGPUs) are specialized hardware originally 

designed for rendering graphics, including computations for both geometry (vertices) and 

rasterization (pixels), but have evolved to excel in parallel processing tasks. The idea of using 

GPUs for non-graphical computation began to gain traction in the early 2000s [2]. These GPUs 

are equipped with thousands of small processing cores optimized for parallelism, making them 

suitable for a wide range of computational workloads [2]. 

3.1 Graphics Processing Unit vs Central Processing Unit 

CPUs are characterized as latency-oriented processors designed for task parallelism. They allocate 

a substantial number of transistors for caching and employ sophisticated flow control mechanisms. 

Modern CPUs can be considered multicore processors as they can achieve their maximum 

performance potential with just a few threads [13]. In contrast, GPUs are highly throughput-

oriented processors with a focus on data parallelism. They efficiently manage the relatively 

expensive global memory accesses by leveraging a multitude of parallel threads. GPUs are 

manycore processors, and they require a large number of threads, often in the thousands, to operate 

at their full capacity. This makes GPUs have larger memory bandwidth but higher memory latency, 

whereas CPUs have lower latency but lower bandwidth [13]. 

However, the significant boost in throughput facilitated by a GPU does come with some 

trade-offs. One of the primary concerns is the potential bottleneck in memory access during 

calculations. Before performing calculations, data must be transferred from the host, CPU, to the 

device, GPU, and afterward, it needs to be retrieved. Since a GPU is connected to the CPU through 

the Peripheral Component Interconnect Express (PCIe) bus, memory access tends to be slower 

compared to traditional CPUs. Hence, the overall acceleration in computational speed is 

constrained by the amount of data transfer that takes place within the algorithm [1]. 
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GPUs are typically employed as coprocessing units alongside CPUs and are particularly 

well-suited for tasks that involve high regularity and significant arithmetic intensity. Typically, a 

CPU handles the sequential parts of a program, while a GPU takes care of the computationally 

intensive portions to accelerate overall processing speed. Moreover, GPUs require explicit parallel 

programming using an API, such as NVIDIA CUDA or OpenCL, while CPUs are programmed 

using traditional languages, such as C++ [13]. 

3.2 Graphics Processing Unit Architecture 

Contemporary GPUs are composed of various components, and specific GPU models may use 

varying nomenclature for these constituents. The key constituents are Streaming Multiprocessors 

(SMs), memory hierarchy, Single Instruction Multiple Data (SIMD) stream paradigm, rendering 

pipelines, memory controllers, display output capabilities, interconnects, and unified memory [6]. 

The presence and configuration of these components can differ across GPU models. In the context 

of the GPUs examined in this thesis, we will mainly focus on GPUs from NVIDIA. 

SMs serve as the CPU of the GPU, responsible for executing the core computation. 

NVIDIA GPUs are equipped with NVIDIA CUDA Cores, specifically designed to accelerate 

general-purpose computing tasks, including matrix operations [14]. An SM is engineered to 

execute hundreds of threads simultaneously. These threads function as parallel processors, 

handling floating-point mathematical operations. To efficiently manage this multitude of threads, 

it employs a unique architecture known as Single-Instruction, Multiple-Thread (SIMT). This 

architecture pipelines instructions, exploiting both instruction-level parallelism within a single 

thread and extensive thread-level parallelism through simultaneous hardware multithreading [6]. 

All data processed by a NVIDIA GPU is channeled through threads, and each thread possesses its 

own memory register that is inaccessible to other threads [6]. 

Furthermore, the concept of a CUDA block, also known as a thread block, entails the 

grouping of threads, which are further organized into a grid. A kernel is executed as a grid of blocks 

of threads. Thread blocks are required to execute independently in any sequence, either serially or 

concurrently. Each thread block is managed by one SM, and an SM can handle multiple concurrent 

thread blocks based on the resources needed by those blocks [6]. This logical arrangement 
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enhances the efficiency of data mapping. Importantly, thread blocks share memory on a per-block 

basis, implying that every thread within a specific CUDA block can access the same shared 

memory. In the current CUDA architecture, each block consists of 1024 threads [6]. 

Kernel grids play a role in grouping thread blocks under the same kernel. The thread blocks 

can be arranged in one-dimensional, two-dimensional, or three-dimensional grids, as shown in 

Figure 3.1, facilitating parallel execution, especially for tasks demanding more than 1024 threads. 

However, the synchronization that occurs at the block-level does not extend to the grid-level as the 

shared memory is inaccessible to different thread blocks [6]. Lastly, there is an optional hierarchy 

level known as Thread Block Clusters (TBC), comprising thread blocks. Thread blocks within a 

TBC are guaranteed to be scheduled together on a GPU processing cluster, akin to how threads 

within a thread block are ensured to be co-schedule on an SM. This hierarchy is illustrated in 

Figure 3.2 [6]. 

GPUs feature diverse memory levels, and memory allocation adheres to a specific 

hierarchy within CUDA, as depicted in Figure 3.3 [6]. This hierarchy is managed automatically 

by CUDA compiler or can be manually configured by developers to optimize memory utilization. 

The memory levels are registers, read-only (RO) memory, L1 cache/shared memory, L2 cache, 

and global memory [6]. 

 

 

Figure 3.1: Grid of Thread Blocks. 
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Figure 3.2: Grid of Thread Block Clusters. 

In broad terms, registers are assigned to threads, and data stored in registers can be 

processed at an accelerated rate compared to other data storage locations. RO memory spaces, i.e., 

the constant and texture memory spaces, are accessibly by all threads. They are situated on-chip 

within SMs and serve specific functions like texture memory [6]. The global, constant, and texture 

memory spaces are optimized for different memory usages and are persistent across kernel 

launches by the same application. It is more efficient to access data from RO memory than to resort 

to global memory [6]. 

L1 cache/shared memory is on-chip memory that is shared among thread blocks, with its 

management being a combined effort between hardware and software. Thread blocks in a TBC can 

perform read, write, and atomics operations on each other’s shared memory [6]. Similarly, as it is 

on-chip, the L1 cache/shared memory offers faster access speeds compared to L2 cache and global 

memory. L2 cache stores both global and local memory and is accessible to all threads across all 

thread blocks. Retrieving data from L2 cache is faster than fetching it from global memory [6]. 

Finally, global memory corresponds to a dynamic random-access memory (DRAM) and is 

comparable to random-access memory (RAM) in CPU. All threads have access to the same global 

memory, but global memory inherently operates at a slower speed than L2 cache [6]. 

Modern GPUs predominantly embrace a SIMD stream architecture, characterized by a 

single control processor and instruction memory. Within this architecture, a solitary instruction is 
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replicated and executed simultaneously across all threads at any given moment, enabling efficient 

data parallelism [6]. In the case of NVIDIA GPUs, they also employ the SIMT model to effectively 

manage their extensive thread pool. SIMT is an enhancement of the SIMD model by introducing 

multithreading. This addition enhances overall efficiency by reducing the overhead related to 

instruction fetching. Consequently, SIMT empowers developers to craft code that exhibits thread-

level parallelism for independent, scalar, threads, as well as data-parallel code for coordinated 

threads [6]. 

 

 

 

 

 

 

Figure 3.3: Memory Hierarchy. 
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3.3 MATLAB Parallel Computing Toolbox 

The Parallel Computing Toolbox (PCT), developed by MATLAB, provides a platform for tackling 

computationally and data-intensive tasks by harnessing the power of multicore processors, GPUs, 

and computer clusters [5, 15]. Unlike some other tools, it does not necessitate the use of APIs like 

CUDA to fully utilize the computing potential, whether it is multiple GPUs on a desktop, computer 

clusters, or cloud environments. It seamlessly integrates with parallel-enabled functions in 

MATLAB and various other toolboxes [5, 15]. 

In contrast to CUDA, MATLAB PCT simplifies parallelization by abstracting the low-level 

coding required. While CUDA often demands developers to write code at a lower level to achieve 

parallelism, MATLAB PCT automates the parallelization of the PCG algorithm on the GPU using 

parallel-enabled functions found in the toolbox. This enables developers to utilize the GPU’s 

parallel processing capabilities without the need for explicit parallelization implementation [5, 15]. 

However, the effectiveness of GPU acceleration using MATLAB PCT may vary depending on 

factors such as the specific problem being solved and the hardware configuration. Its high-level 

programming may not always optimize performance as effectively as manually optimized CUDA 

code [5, 15]. 

On the other hand, similar to CUDA, PCT taps into NVIDIA GPUs for both non-graphics 

and graphics computations, all within the MATLAB programming language. This eliminates the 

need to switch to a different programming language, allowing developers to concentrate on their 

applications rather than getting bogged down in performance optimization. Moreover, for those 

who prefer CUDA, MATLAB can interface with CUDA code, enabling the execution of CUDA 

operations alongside PCT [5]. For these reasons, MATLAB PCT is used in this study to evaluate 

the performance of its functions. 
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Chapter 4  

Methodology 

In this chapter, the methodologies and techniques applied throughout the research are 

comprehensively presented. The objective is to provide a clear understanding of the implemented 

methods. These methods encompass the implementation of the ICPCG method on different 

computing hardware and the exploration of additional methods. The inclusion of other methods 

serves to enhance the comprehension of the mobile GPU’s performance. These supplementary 

methods involve exploring the performance of the backslash operator on both CPUs and mobile 

GPUs, assessing the data handling capabilities of mobile GPUs, and evaluating resource 

contention. These methods are tested on generated matrices, which are large and sparse, and 

specific types of problem with a distinguished pattern in the matrices, as further elaborated in the 

next chapter (Chapter 5). The methodologies discussed are important for assessing the 

performance, efficiency, and scalability of these techniques, leading to valuable insights into their 

real-world applications. 

4.1 ICPCG on CPUs and GPUs with Specific Problem Types 

The examination of the ICPCG method encompasses two distinct sub-sections: the ICPCG 

methodology on CPUs and ICPCG methodology on GPUs. These sub-sections offer detailed 

insights into the benchmarking setups for ICPCG on each platform, leveraging the capabilities 

provided by MATLAB PCT [5]. Specifically, the ICPCG method is assessed using specific 

problem types characterized by unique matrix patterns. This deliberate choice facilitates a 

comprehensive comparison of ICPCG’s performance and scalability across diverse computing 

environments, shedding light on its behaviour on both CPU and GPU architecture. 
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4.1.1 ICPCG on CPUs and GPUs using Parallel Computing Toolbox 

Commands 

The evaluation commences by loading a specific problem type into the workspace of MATLAB. 

To scrutinize the ICPCG method’s performance, the GPU undergoes initialization, and its memory 

is cleared using the gpuDevice [16] and reset functions, respectively, from MATLAB PCT. 

Subsequently, the IC decomposition is applied to the matrix A of the loaded problem, utilizing the 

ichol function [17] on the CPU. This function takes matrix A as input and yields L1 as output, 

and the time taken for the IC decomposition is recorded. 

Once the IC decomposition concludes, the PCG method is employed using the PCG 

function [18]. This function incorporates multiple inputs, including matrix A  with N -by- N 

dimension, RHS column vector b  with N -by- 1  dimension, tolerance, maximum number of 

iterations, preconditioners M1  and M2 , and an initial guess x0 . In this context, the predefined 

values for tolerance, maximum number of iterations, preconditioner, and initial guess are 10−5, 

105, the output matrix of the IC decomposition L1, and the zero vector, respectively. Matrix A and 

vector b are directly sourced from the loaded problem. The PCG method is then executed on the 

CPU, followed by a similar execution on the GPU. On the CPU, the PCG method is timed using 

tic and toc functions [19, 20]. 

For the GPU execution, matrix A, vector b, and preconditioner L1 must be transferred from 

the host to the GPU using MATLAB PCT’s gpuArray function [21]. Following the memory 

allocation, the PCG method is applied on the GPU using the PCG function [18], mirroring the CPU 

execution. With the exception that on the GPU, the PCG method is timed using both the 

gputimeit function [22], which is from MATLAB PCT, and the tic and toc functions [19, 20]. 

To utilize gputimeit, a function handle, pcgFcn, must be created first. A function handle is a 

data type in MATLAB that stores an association with a function, enabling the passing of a function 

to another function [23]. When employing tic and toc to measure execution time on the GPU, 

the wait function [24] must be applied to ensure accurate timing. This is necessary because the 

program must wait for operations to complete before calling tic and toc. The gputimeit 

function, unlike the tic and toc functions, ensures that all GPU operations have completed before 

timing and adjusts for any associated overhead. Therefore, when using the tic and toc functions, 
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the wait function must also be employed to ensure that all GPU operations have finished before 

recording the time. However, tic and toc do not consider the overhead. The PCG method is 

implemented several times to capture the best timing for both CPU and GPU executions [25]. 

It is crucial to note that the PCG function is fully supported by MATLAB PCT [18], ensuring 

smooth execution of the function with the aid of the toolbox without encountering potential errors, 

such as running out of memory. However, this support is not extended to the backslash operator, a 

point that will be further explained in the subsequent sub-chapter (Chapter 4.2.2). 

Utilizing the execution timings of the PCG method on each platform, the floating-point 

operations per second (flops) are calculated  for the corresponding hardware using the formula 

derived from the Linpack TPP benchmark of the HPC Challenge [26], as shown in Equations 4.1 

and 4.2 where n represents the size of matrix A, i.e., an n-by-n matrix. The formulas measure the 

floating-point rate of execution, commonly known as flops, and incorporate a multiplier to yield 

gigaflops, specifically for solving a linear system of equations. The results are then returned as 

outputs of the ICPCG function. 

 �lops =
2
3

n3 +
3
2

n2 (4.1) 

 giga�lops = �lops ÷ execution time ÷ 109 (4.2) 

 

Algorithm 8 delineates the assessment process for this section. In Lines 2 and 3, the GPU 

is reset. Lines 4 to 6 depict the IC decomposition process, while Lines 8 and 10 showcase the 

implementation of PCG on the CPU. Subsequently, Lines 11 to 13 illustrates the data transfer from 

the host to the GPU, and Lines 14 to 18 demonstrate the PCG being employed on the GPU using 

tic and toc. Furthermore, Lines 19 and 20 present the GPU’s PCG execution using gputimeit, 

and Lines 21 and 22 outline the computation of gigaflops.  
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Algorithm 8 ICPCG function on CPUs and GPUs using MATLAB PCT 

1: function iccg_pct(A, b) 

2:      gpu = gpuDevice 

3:      reset(gpu) 

4:      tichol = tic 

5:      L1 = ichol(A) 

6:      tichol = toc 

7:      Set tolerance e and maximum number of iterations Nmax 

8:      tPCGCPU = tic 

9:      Execute PCG on CPU pcg(A, b, e, Nmax, L1) 

10:      tPCGCPU = toc 

11:      gpuArray(A) 

12:      gpuArray(b) 

13:      gpuArray(L1) 

14:      Wait for operations before start timing wait(gpu) 

15:      tPCGGPUtictoc = tic 

16:      Execute PCG on GPU pcg(A, b, e, Nmax, L1) 

17:      Wait for operations before stop timing wait(gpu) 

18:      tPCGGPUtictoc = toc 

19:      pcgFcn = @( ) pcg(A, b, e, Nmax, L1) 

20:      tPCGGPUtimeit = gputimeit(pcgFcn) 

21:      Calculate flops for CPU and GPU �lops = 2/3 ∗ n3 + 3/2 ∗ n2 

22:      Convert to gigaflops for CPU and GPU g�lops = �lops/t/109 

23:      return �tichol, tPCGCPU , tPCGGPUtictoc , tPCGGPUtimeit , g�lopsCPU, g�lopsGPU� 

24: end function 
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4.1.2 ICPCG on CPUs using Single Program Multiple Data 

Statements 

Similar to the preceding section, the same specific problem type is initially loaded into the 

MATLAB’s workspace. To implement the ICPCG method on CPUs utilizing single program 

multiple data (SPMD) statements [27], a feature introduced by MATLAB PCT, a parallel pool of 

workers or processes within a process-based environment must be established through the 

parpool function [28, 29]. If a parallel pool of workers already exists, it needs to be closed before 

creating a new one. When this function is utilized, MATLAB establishes a pool on the local 

machine, assigning one worker to each physical CPU core. These parallel workers are 

subsequently entrusted with computational tasks using the SPMD statements, enabling the 

execution of parallelized code on workers within the same multi-core CPU. The SPMD statement 

allows operations that are within the SPMD body to be performed on the parallel workers 

simultaneously. Each worker can operate on a different data set or different portion of the 

distributed data and can communicate with other parallel workers while performing the parallel 

computations [27]. 

After creating the parallel pool of workers, a function handle [23] is generated to pass the 

ICPCG function, iccg, to a timing function, timingfcn, where the execution time is recorded. 

The iccg function initiates the IC decomposition process followed by the PCG method, utilizing 

the ichol and pcg functions [17, 18], respectively, as presented in Algorithm 10. The ichol 

function takes matrix A  from the loaded problem, producing L1  as the output matrix. The pcg 

function takes inputs such as matrix A and vector b from the loaded problem, the preconditioner 

L1 , and preset values of 10−5  and 105  for tolerance and the maximum number of iterations, 

respectively. 

Within the timing function timingfcn, as shown in Algorithm 9, two inputs are taken: an 

input function (in this case, iccg) which is passed to another function via the function handle [23], 

and the number of parallel workers. While an output array of the best execution times for a given 

level of concurrency is returned. Using timingfcn, the input function, iccg, is invoked multiple 

times for each number of parallel workers and with each execution timed, all within the SPMD 
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statements [27]. After each parallel execution of the ICPCG method on the CPU, the timings are 

compared to record the best execution time for the specified number of parallel workers. 

Upon completing the execution of the ICPCG method, the gigaflops are calculated using 

the formulas from the Linpack TPP benchmark of the HPC Challenge, outlined in Equations 4.1 

and 4.2 [26]. Ultimately, the results are returned as outputs of the ICPCG on parallel workers 

function. 

 

Algorithm 9 Timing Function 

1: Specify function, f, as iccg and an array of number of parallel workers, Nworkers 

2: function timingFcn(f, Nworkers) 

3:      Initialize an array for time, t, and number of executions, Nexe 

4:      for iterations i = 1: length(Nworkers), do 

5:           n = Nworkers(i) 

6:           spmd(n) 

7:                Initialize tn = ∞ 

8:                for iterations k = 1: Nexe, do 

9:                     labBarrier 

10:                     tcurrent = tic 

11:                     f( ) 

12:                     tcurrent = gop(@max, toc) 

13:                     tn = min(tn, tcurrent) 

14:                end for 

15:           end spmd 

16           t(i) = tn 

17:           clear tn k tcurrent 

18:      end for 

19:      return [t] 

20: end function 
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Algorithm 10 ICCG Function 

1: Specify tolerance e, maximum number of iterations, Nmax 

2: function iccg(A, b) 

3:      L1 = ichol(A) 

4:      pcg(A, b, e, Nmax, L1) 

5: end function 

  
 

4.2 Backslash on CPUs and GPUs 

In MATLAB, the backslash operator solves a system of linear equations, expressed as x = A\b 

[30]. In this phase of performance analysis, we conduct tests using the backslash operator, 

assessing its functionality on both CPUs and mobile GPUs. The insights derived from this 

evaluation will contribute to our understanding of how the mobile GPUs handle computationally 

demanding operations, including the ICPCG method. The evaluation encompasses its application 

to both randomly generated matrices and specific problem types characterized by distinctive 

patterns in the matrices. The detailed procedures for conducting this analysis are outlined, 

highlighting the matrix and vector sizes considered for the testing process. 

4.2.1 A\b on CPUs and GPUs with Generated Matrices 

To evaluate the backslash operator’s performance [30] on CPUs and GPUs, it is imperative to first 

clear the GPU memory to ensure the optimal utilization for this analysis. Additionally, the GPU is 

initialized using the gpuDevice function [16], which belongs to the MATLAB PCT. After 

determining the available CPU and GPU memory in gigabytes (GB), an array of suitable sizes for 

matrix A is computed, considering both single- and double-precision elements with a specified 

fixed step size. This precaution prevents potential errors by ensuring that the generated matrices 

and vectors of varying dimensions do not exceed the available memory [31]. 
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Subsequently, a versatile function is designed to generate matrix A and vector b based on 

the arrays of appropriate sizes for both single- and double-precision, applicable to both CPU and 

GPU. This function is separate from the test function to ensure that the recorded time excludes the 

cost associated with data transfer between CPU and GPU, the duration taken for matrix creation, 

or other parameters [31]. Matrix A is constructed with significantly larger diagonal elements than 

non-diagonal elements, emulating real-world scenarios. A dedicated test function is also 

established to execute x = A\b  [30]. In this test function, the backslash operator is invoked 

multiple times to capture the optimal execution time for the given size and precision type. The test 

function remains mostly consistent for both CPU and GPU, although there is a variation in the 

GPU procedure [31]. For the GPU, the data must be transferred from the CPU to the GPU, 

facilitated by the function gpuArray from MATLAB PCT [21]. Furthermore, the test function 

accommodates the time required to introduce overhead, and this duration is subsequently 

subtracted from the execution time. This adjustment ensures that only the actual execution time is 

taken into account. Additionally, a wait function is crafted to ensure that the algorithm pauses until 

all pending operations are finished when running on the GPU [31]. 

To quantify the computational performance, the gigaflops are calculated using the best 

execution time on both the CPU and GPU and the formulas derived from the Linpack TPP 

benchmark of the HPC Challenge [26]. The computation follows the formulas in Equations 4.1 

and 4.2. This allows a comparison of performance across various matrix sizes. 

4.2.2 A\b on CPUs and GPUs with Specific Problem Types 

The examination of the backslash operator [30] on CPUs and GPUs, focusing on specific problem 

types characterized by distinct matrix patterns, follows a framework akin to the analysis involving 

generated matrices in the preceding section, Chapter 4.2.1 [31]. Therefore, comparable steps are 

reiterated, with an emphasis on delineating the differences between the two analyses. 

Similarly, any data in the GPU is first cleared and the GPU is initialized with the 

gpuDevice function [16], the available memory in the CPU and GPU is then determined in GB 

[31]. Rather than generating matrices, data pertinent to a specific problem type is loaded onto 

MATLAB. Upon loading, the dimensions of matrix A  and vector b  are determined, and a 

comparison is conducted between the size of matrix A  and the available GPU memory, as the 
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former may exceed the latter. In such cases, matrix A  and vector b  are optimally divided into 

several sub-matrices and sub-vectors to fit within the available GPU memory at its largest 

dimension. Otherwise, an error may potentially arise if this condition is not met. It is essential to 

consider the indices of the elements so that all elements in matrix A and vector b are incorporated 

into the sub-matrices and sub-vectors, respectively, and they are computed only once to obtain the 

measured time. To ensure the precision of the time taken and facilitate a fair assessment, matrix A 

and vector b are also divided into sub-matrices and sub-vectors when running on the CPU. 

The division of matrix A and vector b is a deliberate choice due to the limited support for 

the backslash operator from MATLAB PCT [30], in contrast to the fully supported pcg function 

[18] mentioned in Chapter 4.1.1. Consequently, the backslash operator struggles to handle a large 

problem in its entirety, even with MATLAB PCT, potentially facing errors linked to the limited 

memory of the mobile GPUs. Additionally, the partitioning of matrix A and vector b is based on 

their dimensions without the precision required to solve for the unknown x  accurately. This 

approach aligns with the primary goal of assessing how the mobile GPUs perform when tasked 

with handling all sub-systems combined, as their total size matches that of the loaded problem—a 

large and sparse system. Therefore, methods like the block-Jacobi preconditioner [32, 33] are not 

employed to accurately partition matrix A and vector b and solve x = A\b. 

After configuring the sub-matrices, the test function, named run, is executed in a manner 

resembling the analysis of the backslash operator using generated matrices in the previous section 

[30, 31], outlined in Algorithm 11. In Algorithm 11, Lines 2 and 3, the functions hpcCPU and 

hpcGPU are integrated to calculate gigaflops using the formulas presented in Equations 4.1 and 

4.2 [26] when the backslash operator is executed on the CPU and GPU, respectively. Algorithm 

12 provides an overview of hpcGPU, demonstrating the key distinction between the two functions: 

hpcGPU accounts for the time taken to introduce overhead, which is then deducted from the 

execution time, as indicated in Lines 7 to 14 of Algorithm 12. 

In the described functions, the backslash operator [30] is invoked multiple times to obtain 

the optimal execution time for the entire matrix A, as illustrated in Lines 3 to 6 of Algorithm 12. 

The backslash operator is employed when the functions tSolveCPU and tSolveGPU are called 

to execute on the CPU and GPU, respectively [31]. The flow of tSolveGPU is outlined in 

Algorithm 13. 
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In Algorithm 13, the execution times for each sub-matrix are consolidated, as depicted in 

Line 15 of Algorithm 13, yielding the total execution time for the entire matrix A. The tSolve 

functions retain a largely consistent structure for both the CPU and GPU, with the exception that 

on the GPU, data is transferred from the CPU to the GPU using gpuArray [21], introduced in the 

MATLAB PCT, as indicated in Lines 9 and 10 of Algorithm 13. Furthermore, a wait function is 

implemented to temporarily halt the program, allowing for the completion of all pending 

operations, as seen in Line 12 of Algorithm 13. Additionally, the GPU memory is cleared after 

each execution of the backslash between the sub-matrix and sub-vector, as illustrated in Line 14 

of Algorithm 13, facilitating the smooth operation of the subsequent backslash operation between 

the next sub-matrix and sub-vector on the GPU [31]. 

 

 

 

Algorithm 11 Test function for A\b on CPUs and GPUs with Specific Problem Types 

1: function run(A, b) 

2:      [g�lopsCPU, timeCPU] = hpcCPU(A, b) 

3:      [g�lopsGPU, timeGPU] = hpcGPU(A, b, @( ) waitGPU(gpu)) 

4:      return [g�lopsCPU, timeCPU, g�lopsGPU, timeGPU] 

5: end function 
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Algorithm 12 HPC function for A\b on GPUs with Specific Problem Types 

1: function hpcGPU(A, b) 

2:      Specify number of tests Ntest and initialize ttest = ∞ 

3:      for iterations i = 0: Ntest, do 

4:           t = tSolveGPU(A, b, waitGPU(gpu)) 

5:           ttest = min(t, ttest) 

6:      end for 

7:      Initialize toverhead = ∞ 

8:      for iterations i = 0: Ntest, do 

9:           t = tic  

10:           waitGPU(gpu) 

11:           t = toc 

12:           toverhead = min(t, toverhead) 

13:      end for 

14:      tGPU = ttest − toverhead 

15:      �lops = 2/3 ∗ n3 + 3/2 ∗ n2 

16:      g�lopsGPU = �lops/tGPU/109 

17:      return [g�lopsGPU, tGPU] 

18: end function 
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Algorithm 13 Solve A\b function on GPUs with Specific Problem Types 

1: function tSolveGPU(A, b, wait) 

2:      Initialize time ttotal 

3:      Calculate the number of sub-matrices, Nparts, where A needs to be divided 

4:      for iterations j = 1: Nparts 

5:           Compute start and end indices for the rows of the sub-matrix, Asub 

6:           for iterations i = 1: Nparts 

7:                Compute start and end indices for the columns of Asub 

8:                Copy the respective elements from A and b to Asub and bsub 

9:                Asub = gpuArray(A)  

10:                bsub = gpuArray(b) 

11:                tsub = tic 

12:                wait(gpu) 

13:                tsub = toc 

14:                reset(gpu) 

15:                ttotal = ttotal + tsub 

16:           end for 

17:      end for 

18:      return [ttotal] 

19: end function 
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4.3 Data Handling Capability of GPUs 

The evaluation of the GPU’s data processing capability is conducted through three distinct sub-

sections [34]: the transfer speed of data between CPUs and GPUs, read-write speed between CPUs 

and GPUs, and rate of computationally intensive operation on GPUs. This approach aims to 

quantify GPU performance, recognizing the substantial variations across different GPU devices. 

It provides valuable insights into the data or computation requirements for the GPU to outperform 

the CPU effectively, extending beyond the execution of the ICPCG method. The overall workflow 

is presented in Figure 4.1 [34]. 

In the first sub-section, the focus is on assessing how swiftly data can be sent to and read 

from the GPU. The speed of data transfer is intricately linked to the speed and activity level of the 

Peripheral Component Interconnect (PCI) bus, given that GPUs are integrated into the PCI bus. 

Additionally, the measurements in this test encompass some overheads, mirroring real-world GPU 

applications [34]. 

The procedure begins by initializing the GPU with gpuDevice [16] and declaring a 

double-precision array of data sizes in bytes, ranging from 214  to 218 . Two vectors are then 

generated, with dimensions corresponding to the array of data sizes, one on the GPU and the other 

on the CPU. Subsequently, memory is allocated, and the data on the CPU is transmitted to the GPU 

using the gpuArray function [21]. Following this, the data on the GPU is transferred back to the 

host memory using the gather function [35]. To accurately measure the time taken during the 

data transfer, the gputimeit function [22] is employed instead of the regular timeit function 

[36]. gputimeit ensures that all GPU operations are completed before recording the time and 

compensates for the overhead time. All the mentioned functions, except timeit, belong to the 

MATLAB PCT. Utilizing the timings, the send and gather bandwidths are calculated in GB. 

The second sub-section evaluates the read-write speed between CPUs and GPUs by 

executing memory-intensive operations. The objective is not to assess computational speed but 

rather to evaluate the efficiency of memory read and write operations for each floating-point 

operation. Given that many operations involve minimal computation per array element, they are 

predominantly influenced by the time required to fetch or write data. To assess this, the plus 

function, with straightforward computation, is implemented. This function performs one memory 
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read and one memory write for each floating-point operation, making it a reliable indicator of the 

read-write operation speed and it should be limited by memory access speed [34]. 

Using the double-precision array of data sizes in bytes, vectors with varying dimensions 

are generated on both the CPU and GPU. The plus function is then applied to the vectors on the 

respective platform. This function has a computational density of 1/2  flops per element. To 

measure the time on the GPU, the gputimeit function [22] is employed, whereas the timeit 

function [36] is used for the CPU measurements. Once the timings are obtained for each size and 

hardware, the read-write bandwidth is computed in GB [34]. 

In the ultimate sub-section, the focus shifts to testing the rate of operations with high 

computational intensity, where the number of floating-point computations executed per element 

read from and written to memory is substantial. In such scenarios, the memory speed becomes less 

critical, and the limiting factor is the number and speed of floating-point units, given the operations’ 

high computational density. To examine this, the matrix-matrix multiplication is chosen as a 

computationally intensive operation. The total number of floating-point calculations is given by 

�lops(N) = 2N3 − N2, where N denotes the size of the matrix [34]. 

The process initiates by expanding the range of the existing double-precision array of data-

sizes in bytes, now spanning from 212 to 224. Subsequently, two input square matrices, A and B, 

are generated for the multiplication operation A ∗ B. This matrix-matrix multiplication is executed 

on both the CPU and GPU. Similarly, on the GPU, the gpuArray function [21] is utilized, and the 

timeit and gputimeit functions measure the time taken on the CPU and GPU [22, 36], 

respectively. The outcome is a matrix written to the corresponding platform. The timing data is 

then utilized to calculate the rate of operations in gigaflops. In total, the number of elements read 

or written is 3N2, with a computational density of (2N − 1)/3 flops per element, marking a higher 

level of computational intensity compared to the previous sub-section [34]. 
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Figure 4.1: Flowchart of Data Handling Capability of GPUs. 

4.4 Resource Contention on CPUs using Single Program 

Multiple Data Statements 

This section is dedicated to evaluating resource contention on CPUs, with a specific focus on 

understanding how the number of concurrent processes and data size influence the speedup in 

various operations, including the execution of the ICPCG method covered in Chapter 4.1.2. In this 

sub-chapter, the operations encompass summation, discrete Fast Fourier Transform (DFFT), and 

matrix-matrix multiplication, and their examination aids in demonstrating the significance of 

resource contention for memory access [37]. 

To facilitate these assessments on CPUs, the parpool function [28] is employed to create 

a parallel pool of workers or processes within a process-based environment [29]. As described in 

the earlier methodology on implementing the ICPCG method using SPMD statements (Chapter 

4.1.2), parpool would get MATLAB to establish a pool on the local machine, assigning one 
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worker to each physical CPU core. These parallel workers execute computational tasks using 

SPMD statements, enabling the parallelized code to run on workers within the same multi-core 

CPU. This allows each worker to work on a different data set or portion of the distributed data 

while communicating with other parallel workers during parallel computations [27, 28]. Once the 

parallel workers are configured, a matrix is generated, providing the foundation for the subsequent 

operations [37].  

The first part of this evaluation explores the impact of the number of concurrent processes 

on the speedup, and this is achieved through the execution of functions that are summation, DFFT, 

and matrix-matrix multiplication. These tests employ either a fixed-size vector or a fixed-size 

square matrix with the same total elements, and the number of parallel processes varies, ranging 

from one to the total count of available parallel processes. Each function is executed multiple times 

to obtain an average reading for accurate timings. Additionally, a timing function is created to run 

the computation functions numerous times using the SPMD statements, retaining the minimum 

execution time observed for each level of concurrency [37].  

Conversely, to assess the influence of data size on the speedup, speed tests are conducted 

on a vector or a square matrix of various dimensions, where the total number of elements between 

a vector and a square matrix remains the same. This part of the evaluation encompasses additional 

functions such as LU decomposition, singular value decomposition (SVD), and eigenvalue 

computation. These additional functions and varying data size help investigate the effects of 

different memory access patterns and the impacts of different data sizes. In this scenario, the tests 

are performed using either a single or all available parallel processes. Similarly, a timing function 

is used to run the computation functions numerous times with the SPMD statements, storing the 

fastest execution time for the given level of concurrency [37]. Figure 4.2 shows the flow of the 

resource contention evaluation. 
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Figure 4.2: Flowchart of Resource Contention Evaluation. 

4.5 MATLAB’s GPUBench 

The final inclusion in the evaluations is GPUBench, developed by the MathWorks PCT Team. 

GPUBench is a utility that measures the timing of various MATLAB GPU tasks and provides an 

estimate of the GPU’s peak performance in flops. It generates a comprehensive HyperText Markup 

Language (HTML) report, illustrating the GPU’s performance relative to the pre-existing 

performance data from various other GPUs. It is specifically crafted for comparing GPU hardware 

and does not assess GPU performance variations across different MATLAB release. However, it 

is also possible to implement the tests on the CPU to evaluate its performance [38]. 

In GPUBench, the initialization process involves setting up the data object, CPU, and GPU. 

Prior to the execution of each task, GPUBench determines the maximum allowable data size in 

either single- or double-precision, based on the available memory on the respective platform. 

Subsequently, it performs tasks such as matrix-matrix multiplication, the backslash operator, DFFT 

using the generated data on both the CPU and GPU, considering both single- and double-precision 

data types. To prevent program crashes, a safety factor variable is incorporated, restraining the 
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amount of required memory for the generated data. It is anticipated that matrix-matrix 

multiplication and the backslash operator involve regular memory access, while DFFT entails 

irregular memory access. Each task is executed for a range of array sizes. The outcomes are then 

presented in an HTML report [38]. 
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Chapter 5  

Results and Discussion 

In this chapter, we present the outcomes derived from the comprehensive analyses and evaluations 

delineated in the previous chapter. All methodologies expounded upon in Chapter 4 underwent 

testing on two sets of CPU and GPU configurations, which are found in mobile devices such as 

laptops. The first pair features the 10th Generation Intel® Core™ i7 processor, i7-10510U, coupled 

with the NVIDIA GeForce GTX 1650 with Max-Q Design. The second pair involves the 4th 

Generation Intel® Core™ i7 processor, i7-4710HQ, paired with the NVIDIA GeForce GTX 970M. 

The Turing architecture is incorporated in the GeForce GTX 1650 with Max-Q Design, whereas 

the GeForce GTX 970M is based on the Maxwell 2.0 design [39, 40]. For an in-depth specification 

of each CPU and GPU, kindly refer to the Appendix. 

As discussed in Chapter 4, additional methods beyond the ICPCG approach are employed 

to assess the performance of the mobile GPUs. Consequently, the outcomes derived from these 

supplementary methods corroborate the results obtained through the ICPCG method, confirming 

the accurate implementation of the ICPCG method and providing insights into how mobile GPUs 

operate, particularly in the context of executing iterative solvers. 

The specific problem types used for conducting the analyses are thermal and 

electromagnetics problems. The thermal problem, thermal1, chosen for evaluation exhibits a 

distinctive pattern, as depicted in Figure 5.1, with a structural rank of 82,654. It is characterized as 

real and SPD [41]. On the other hand, the electromagnetics problem, 2cubes_sphere, presents a 

different unique pattern, as illustrated in Figure 5.2, with a structural rank of 101,492. It is also 

real and SPD [42]. 
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Figure 5.1: Thermal problem pattern (thermal1) [41]. 

 

 

Figure 5.2: Electromagnetics problem pattern (2cubes_sphere) [42]. 
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5.1 ICPCG on CPUs and GPUs with Specific Problem Types 

In this segment, the assessment of the ICPCG method is carried out on the specified problem types, 

namely thermal1 and 2cubes_sphere [41, 42], utilizing the two designated sets of CPU and GPU 

configurations. It is important to reiterate the key distinction between the pcg function and the 

backslash operator, as mentioned in Chapter 4.1.1. The pcg function has the full support from 

MATLAB PCT, unlike the backslash operator [18, 30]. Hence, there is no need to partition matrix 

A of the loaded problem in this part of the evaluation. 

5.1.1 ICPCG using Parallel Computing Toolbox Commands 

The results presented in Tables 5.1 and 5.2 are derived from the parallel application of the ICPCG 

method using MATLAB PCT functions, as outlined in Algorithm 8. The GPU execution timings 

are measured through both the tic and toc functions and the gputimeit function [19, 20, 22], 

whereas the CPU execution timings are obtained exclusively using the tic and toc functions. 

 

Table 5.1: Time taken and Gigaflops for ICPCG (thermal1). 

 i7-10510U 
GTX 1650 

Max-Q 
i7-4710HQ GTX 970M 

Time taken for 

ichol (s) 
0.012722 - 0.012761 - 

Time taken for pcg 

using tic-toc (s) 
413.928124 860.500157 614.373076 1271.697566 

Time taken for pcg 

using gputimeit (s) 
- 887.115585 - 1269.049949 

Gigaflops from 

tic-toc timing 
909.467649 437.483056 612.745338 296.024973 

Gigaflops from 

gputimeit timing 
- 424.357597 - 296.642570 
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Table 5.2: Time taken and Gigaflops for ICPCG (2cubes_sphere). 

 i7-10510U 
GTX 1650 

Max-Q 
i7-4710HQ GTX 970M 

Time taken for 

ichol (s) 
0.031839 - 0.039136 - 

Time taken for pcg 

using tic-toc (s) 
490.549099 2208.567411 775.176322 4088.910038 

Time taken for pcg 

using gputimeit (s) 
- 2212.471140 - 4089.244489 

Gigaflops from 

tic-toc timing 
1420.794670 315.575400 899.110983 170.453627 

Gigaflops from 

gputimeit timing 
- 315.018593 - 170.439685 

 

It is noteworthy that the ichol operation [17], being less computationally intensive, 

demonstrates minimal performance variation between different CPU generations, with a marginal 

difference of 0.039ms for the smaller problem size, thermal1, and a much larger discrepancy of 

7.3 ms  for the larger data size, 2cubes_sphere. Conversely, the pcg operation [18], being 

significantly more computationally intensive, exhibits substantial differences across all CPUs and 

GPUs. 

Upon multiple executions, the GeForce GTX 1650 with Max-Q Design exhibits better 

performance using tic and toc (without a function handle) compared to gputimeit (with a 

function handle). In contrast, the GeForce GTX 970M demonstrates similar performance using 

both methods. 

In the initial CPU-GPU configuration (Core i7-10510U and GeForce GTX 1650 with Max-

Q Design), the pcg operation on thermal1 using the GeForce GTX 1650 with Max-Q Design yields 

a speed up of 0.481 compared to the Core i7-10510U, indicating that the GPU is 107.89% slower 

than the CPU. For the pcg operation on 2cubes_sphere, the speedup is 0.222, signifying that the 

GPU is 350.22% slower than the CPU. 
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In the second CPU-GPU configuration (Core i7-4710HQ and GeForce GTX 970M), the 

pcg operation on thermal1 using the GeForce GTX 970M results in a speedup of 0.483 compared 

to the Core i7-4710HQ, indicating that the GPU is 106.99% slower than the CPU. For the pcg 

operation on 2cubes_sphere, the speedup is 0.19, signifying that the GPU is 427.48% slower than 

the CPU. 

In both CPU-GPU configurations, it is observed that the CPUs have surpassed the GPUs 

in performance when tackling the specified problem types. This trend becomes particularly 

noticeable when GPUs, specifically mobile graphics chips, are tasked with handling double-

precision variables, a pattern consistently seen in the subsequent sub-chapters. Therefore, these 

GPUs demonstrate inefficiency in handling intensive computations, such as executing iterative 

sparse solvers, primarily attributed to their limited memory bandwidth [43]. Additionally, mobile 

devices, including laptops and tablets, have strict power and thermal constraints. Mobile GPUs are 

designed to operate within these constraints, which can limit their performance compared to 

desktop GPUs [43]. 

5.1.2 ICPCG using Single Program Multiple Data Statements 

In this segment, the ICPCG method is implemented on CPUs utilizing the parallel pool from the 

concurrent execution of SPMD statements [27]. Given that both tested CPUs, Core i7-10510U and 

Core i7-4710HQ, feature four cores [44, 45], the number of parallel workers ranges from one to 

four. Moreover, the outcomes of applying the ICPCG to thermal1 are detailed in Tables 5.3 and 

5.4, while those for 2cubes_sphere are presented in Tables 5.5 and 5.6. These results serve as the 

basis for generating Figures 5.3 and 5.4 in the case of thermal1, and Figures 5.5 and 5.6 for 

2cubes_sphere. 

Referring to Figures 5.3 and 5.4, the results indicate that both the Core i7-10510U and the 

Core i7-4710HQ exhibit performance degradation with an increasing number of parallel workers. 

The Core i7-10510U experiences a total time increase of 76.16% from one to four parallel workers, 

averaging a 20% increment for each additional worker. Additionally, the Core i7-4710HQ shows 

a total time increase of 50.2% from one to four parallel workers, with an average increment of 

14.56% for each additional worker. 
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Furthermore, considering Figures 5.5 and 5.6, the findings reveal that both CPUs manifest 

performance degradation with a rising number of parallel workers. The Core i7-10510U registers 

a total time increase of 121.94% when employing from one to four parallel workers, averaging a 

30.55% increment for each additional worker. Similarly, the Core i7-4710HQ demonstrates a total 

time increase of 102.78%  from one to four parallel workers, with an average increment of 

26.63% for each additional worker. It is apparent that the decline in performance becomes more 

pronounced with an increase in problem size. 

Upon analyzing the results presented in this section and those in the subsequent sub-chapter 

(Chapter 5.4), it is evident that resource contention occurs when implementing the ICPCG method 

on the CPUs. This contention becomes more prominent with an expansion in problem size [37]. 
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Figure 5.3: ICPCG Execution Time vs Number of Parallel Workers (thermal1). 

 

Table 5.3: Execution Times for ICPCG (thermal1). 

Number of Parallel 

Workers 

Core i7-10510U 

Time taken (s) 

Core i7-4710HQ 

Time taken (s) 

1 391.064867 629.175917 

2 470.019997 733.507735 

3 570.080991 809.8314 

4 688.886328 944.9925 
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Figure 5.4: Gigaflops vs Number of Parallel Workers (thermal1). 

 

Table 5.4: Gigaflops for ICPCG (thermal1). 

Number of Parallel 

Workers 

Core i7-10510U 

Gigaflops 

Core i7-4710HQ 

Gigaflops 

1 962.63886 598.329065 

2 800.932386 513.224633 

3 660.352202 464.855077 

4 546.467861 398.367435 
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Figure 5.5: ICPCG Execution Time vs Number of Parallel Workers (2cubes_sphere). 

 

Table 5.5: Execution Times for ICPCG (2cubes_sphere). 

Number of Parallel 

Workers 

Core i7-10510U 

Time taken (s) 

Core i7-4710HQ 

Time taken (s) 

1 497.054921 729.7716 

2 620.072275 939.167759 

3 853.181401 1222.934716 

4 1103.156395 1479.805379 
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Figure 5.6: Gigaflops vs Number of Parallel Workers (2cubes_sphere). 

 

Table 5.6: Gigaflops for ICPCG (2cubes_sphere). 

Number of Parallel 

Workers 

Core i7-10510U 

Gigaflops 

Core i7-4710HQ 

Gigaflops 

1 1402.198259 955.051614 

2 1124.013397 742.114002 

3 816.906632 569.915577 

4 631.795771 470.987303 
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5.2 Backslash on CPUs and GPUs 

The backslash operator [30] underwent testing on generated matrices [31] and the two specific 

problem, thermal1 and 2cubes_sphere [41, 42], where each specific problem showcasing distinct 

patterns illustrated in Figures 5.1 and 5.2, respectively. As highlighted in Chapters 4.1.1 and 5.1, 

the backslash operator is not fully supported by MATLAB PCT, unlike the pcg function [18, 30]. 

Consequently, it may encounter potential errors related to limited memory when operating on the 

mobile GPUs. Therefore, the backslash operator is implemented on matrices sized according to 

the maximum available memory of the mobile GPUs. The outcomes acquired in this evaluation 

phase align with the results derived from the ICPCG method in the preceding sub-chapter (Chapter 

5.1). 

5.2.1 A\b on CPUs and GPUs with Generated Matrices 

The generated matrices encompass two data types: single- and double-precision. In MATLAB, 

single-precision variables are stored as 4-byte (32-bit) floating-point values, while double-

precision variables are stored as 8-byte (64-bit) floating-point values [46]. Consequently, the 

expected range of the generated matrices for the single-precision data type exceeds that of the 

double-precision data type. 

In the first CPU-GPU setup featuring the Core i7-10510U and the GeForce GTX 1650 with 

Max-Q Design, matrices of the single-precision class cover a range of nine sizes, starting from  

1024 × 1024  and extending up to 17408 × 17408 . Conversely, in the second CPU-GPU 

configuration with the Core i7-4710HQ and the GeForce GTX 970M, single-precision class 

matrices are available in eight different sizes, ranging from 1024 × 1024  to 15360 × 15360 . 

These ranges are also reflected in Table 5.7. Figures 5.7 and 5.8 are generated based on the 

gigaflops data presented in Table 5.7. 

In Figure 5.7, the performance of the GeForce GTX 1650 with Max-Q Design significantly 

outpaces that of the Core i7-10510U, reaching a peak speedup of 3.374 when comparing the GPU 

to the CPU, as illustrated in Figure 5.11. Similarly, Figure 5.8 shows that the performance of the 

GeForce GTX 970M surpasses that of the Core i7-4710HQ, achieving a peak speedup of 4.678 

when comparing the GPU to the CPU, as depicted in Figure 5.12. However, in cases where the 
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generated matrix size is notably small, both CPUs, Core i7-10510U and Core i7-4710HQ, exhibit 

better performance than the GPUs, GeForce GTX 1650 with Max-Q Design and GeForce GTX 

970M, respectively. Therefore, at the smallest matrix size of 1024 × 1024, the speedup of the 

GeForce GTX 1650 with Max-Q Design compared to the Core i7-10510U is 0.746, as evident in 

Figure 5.11. Additionally, the speedup of the GeForce GTX 970M compared to the Core i7-

4710HQ is 0.409, as observed in Figure 5.12. 

 

 

 

Table 5.7: Gigaflops for A\b on Single-precision Matrix. 

Matrix Size i7-10510U 
GTX 1650 

Max-Q 
i7-4710HQ GTX 970M 

1024 × 1024 86.987189 64.907872 62.81583 25.713381 

3072 × 3072 188.748285 363.987757 127.163609 352.235054 

5120 × 5120 234.061998 579.233822 155.228283 492.134057 

7168 × 7168 262.873849 739.450249 167.426259 627.027793 

9216 × 9216 274.043537 831.389600 177.324724 738.218882 

11264 × 11264 275.591083 898.258581 177.094533 788.500995 

13312 × 13312 282.730587 953.903685 196.568511 919.550602 

15360 × 15360 280.948109 917.117924 228.412318 937.243363 

17408 × 17408 283.465329 924.551816 - - 
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Figure 5.7: Performance of i7-10510U and GTX 1650 with Max-Q on Single-precision. 

 

 

Figure 5.8: Performance of i7-4710HQ and GTX 970M on Single-precision. 
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Due to the increased space requirements of double-precision variables, the generated 

matrices of the double-precision class exhibit a more limited range. Both CPU-GPU configurations 

feature six matrix sizes ranging from 1024 × 1024 to 11264 × 11264, as detailed in Table 5.8. 

The gigaflops data presented in Table 5.8 serves as the basis for generating Figures 5.9 and 5.10. 

In Figure 5.9, it is apparent that the performance of the GeForce GTX 1650 with Max-Q 

Design is inferior to that of the Core i7-10510U across all six matrix sizes, yielding an average 

speedup of 0.836 when comparing the GPU to the CPU, as indicated in Figure 5.11. 

Meanwhile, Figure 5.10 illustrates that the performance of the GeForce GTX 970M is also 

subpar compared to the Core i7-4710HQ for all matrix sizes except the smallest. The GPU’s 

performance appears to peak in gigaflops when the matrix size reaches 7168 × 7168 . At the 

smallest matrix size of 1024 × 1024, the GPU exhibits a positive speedup of 1.102 compared to 

the CPU, as highlighted in Figure 5.12. However, as the matrix size increases, the speedup of the 

GPU compared to the CPU progressively decreases, reaching its minimum at 0.639 for the largest 

matrix size of 11264 × 11264. 

Analyzing the outcomes, it is clear that the GPUs outshine the CPUs in performance 

particularly with single-precision matrices, which demand lower memory capacity. This 

superiority diminishes when dealing with double-precision matrices due to limited memory 

bandwidth on the mobile GPUs [43], as observed in the previous sub-chapter (Chapter 5.1.1). 

Similarly, the mobile GPUs are expected to operate within the strict power and thermal constraints 

[43]. Additionally, the GPUs exhibit a substantial advantage in parallizing the code for large data 

sizes, where the benefits of parallelization outweight the associated overhead. However, at smaller 

data sizes, the overhead involved in initiating and handling parallel tasks on the GPU becomes 

more pronounced, rendering the CPUs to be more efficient. As the data size expands, this overhead 

impact diminishes [13]. 
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Table 5.8: Gigaflops for A\b on Double-precision Matrix. 

Matrix Size i7-10510U 
GTX 1650 

Max-Q 
i7-4710HQ GTX 970M 

1024 × 1024 39.354915 33.259808 26.556333 29.251576 

3072 × 3072 92.573312 81.085831 64.643107 58.813968 

5120 × 5120 110.723287 92.779758 83.689847 65.260637 

7168 × 7168 119.582394 97.292597 92.279303 68.117172 

9216 × 9216 124.249193 100.911928 100.442205 67.929555 

11264 × 11264 123.220378 102.693245 105.339049 67.288804 

 

 

 

Figure 5.9: Performance of i7-10510U and GTX 1650 with Max-Q on Double-precision. 
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Figure 5.10: Performance of i7-4710HQ and GTX 970M on Double-precision. 

 

Figure 5.11: Speedup of Backslash on GTX 1650 with Max-Q Compared to i7-10510U. 
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Figure 5.12: Speedup of Backslash on GTX 970M Compared to i7-4710HQ. 

5.2.2 A\b on CPUs and GPUs with Specific Problem Types 

Both problem types, thermal1 and 2cubes_sphere [41, 42], involve a double-precision data type, 

where elements are stored as 8-byte (64-bit) floating-point values in MATLAB [46]. To prevent 

memory overflow on both CPUs and mobile GPUs, matrix A  of the loaded problem must be 

partitioned based on the platform’s available memory, as matrix A  requires the most extensive 

memory capacity. 

As detailed in the methodology (Chapter 4.2.2), matrix A  of the loaded problem is 

partitioned into sub-matrices, while the RHS vector b  is divided into sub-vectors with a 

comparable dimension. The combined size of the sub-matrices equals that of the loaded problem 

as a whole. Given the emphasis on assessing the performance of the mobile GPUs with an 

equivalently large and sparse system of linear equations, rather than implementing methods such 

as the block-Jacobi preconditioner [32, 33] to precisely partition and solve the system, the 

partitioning of the system does not account for the accuracy of solving for the unknown x. 
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The GeForce GTX 1650 with Max-Q Design boasts a maximum available memory of 

3306654107  bytes, equivalent to a double-precision matrix size of 20331 × 20331 . 

Consequently, the matrices A  for thermal1 and 2cubes_sphere surpass the GPU’s maximum 

available memory. To circumvent this limitation, matrices A for thermal1 and 2cubes_sphere are 

divided into 25 sub-matrices each. This division facilitates the backslash operation to function on 

individual sub-matrices on the GPU without encountering potential errors. On the Core i7-10510U, 

matrix A is also partitioned into 25 sub-matrices when executing the backslash operator.  

Similarly, the GeForce GTX 970M offers a maximum available memory of 2544900507 

bytes, corresponding to a double-precision matrix size of 17836 × 17836. Analogously, matrices 

A for thermal1 and 2cubes_sphere exceed the GPU’s maximum available memory. Leveraging the 

available memory of the GeForce GTX 970M, matrix A for thermal1 is segmented into 25 sub-

matrices, while matrix A  for 2cubes_sphere is divided into 36 sub-matrices. On the Core i7-

4710HQ, matrix A is also segmented into 25 sub-matrices for thermal1 and 36 sub-matrices for 

2cubes_sphere. 

Tables 5.9 and 5.10 show the results for A\b on thermal1 and 2cubes_sphere, respectively, 

on both the CPU-GPU configurations. In the first CPU-GPU configuration (Core i7-10510U and 

GeForce GTX 1650 with Max-Q Design), the GPU performs poorly with a gigaflops speedup of 

0.005 for thermal1 and 0.001 for 2cubes_sphere as compared to the CPU. For the second GPU-

CPU configuration (Core i7-4710HQ and GeForce GTX 970M), the GPU also performs poorly 

with a gigaflops speedup of 0.002 for thermal1 and 0.003 for 2cubes_sphere.  

The pattern identified in the earlier sub-chapters (Chapters 5.1.1 and 5.2.1) persists, 

showcasing the inefficiency of the mobile GPUs in managing demanding computations when 

tasked with double-precision data types. This stands in contrast to the commendable performance 

when dealing with single-precision data types, as emphasized in Chapter 5.2.1. Therefore, this 

consistent trend supports the notion that constraints such as power and thermal limitations, coupled 

with limited memory bandwidth, pose challenges for the mobile GPUs to deliver an optimal 

performance [43].  
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Table 5.9: Results for Backslash Operator (thermal1). 

 i7-10510U GTX 1650 Max-Q i7-4710HQ GTX 970M 

Time taken for 

A\b (s) 
0.575508 121.528429 1.165408 529.508559 

Gigaflops 654124.54916 3097.663991 323023.640654 710.950242 

 

 

 

 

Table 5.10: Results for Backslash Operator (2cubes_sphere). 

 i7-10510U GTX 1650 Max-Q i7-4710HQ GTX 970M 

Time taken for 

A\b (s) 
0.692094 536.209117 1.770188 623.184345 

Gigaflops 1007044.773256 1299.809203 393726.284777 1118.400279 
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5.3 Data Handling Capability of GPUs 

The PCI bus governs the data transfer [34], and both the GeForce GTX 1650 with Max-Q Design 

and GeForce GTX 970M support PCIe 3.0 with 16 lanes [39, 40]. In principle, a GPU adhering to 

PCIe 3.0 specifications provides a theoretical bandwidth of 1 GB/s per lane in each direction [47]. 

Consequently, both GPUs collectively offer a theoretical maximum bandwidth of 16 GB/s  per 

direction. This segment of evaluation has provided three sets of results that are visually presented 

in Figures 5.13 to 5.18, with each platform’s peak performance distinctly marked. Furthermore, all 

the peak performance data is summarized in Table 5.11 for reference. 

5.3.1 Data Transmission and Retrieval Bandwidth 

Figures 5.13 and 5.14 depict the data transfer bandwidth between the two CPU-GPU 

configurations, highlighting the maximum transfer speeds on each platform with a circle. In Figure 

5.13, featuring the Core i7-10510U and GeForce GTX 1650 with Max-Q Design, the data 

transmission speed from the CPU to the GPU consistently outpaces the speed of data retrieval from 

the GPU to the CPU across various data sizes. However, for notably small data sizes, both 

transmission and retrieval speeds remain below 1 GB/s . Yet, once the data size exceeds 

approximately 4 megabytes (MB) , both transmission and retrieval speeds notably escalate to 

around 2.4 GB/s. 

Examining Figure 5.14, showcasing the Core i7-4710HQ and GeForce GTX 970M, reveals 

a similar trend in data transfer speeds as in the other CPU-GPU configuration, which includes the 

Core i7-10510U and GeForce GTX 1650 with Max-Q Design. The speed of data transmission 

from the CPU to the GPU generally surpasses the speed of data retrieval from the GPU to the CPU 

across all data sizes. For small data sizes, the data transmission speed from the CPU to the GPU 

hovers around 1 GB/s  and the data retrieval speed from the GPU to the CPU remains below 

1 GB/s. However, once the data size exceeds approximately 2 MB, both transmission and retrieval 

speeds undergo a significant increase, reaching 3.5 GB/s and 2.8 GB/s, respectively. 

Both Figures 5.13 and 5.14 portray a similar pattern, where overheads take precedence 

when dealing with small data set sizes, and as the data size increases, the PCI bus becomes the 

limiting factor causing the transfer speed to hover around a certain value [34]. 
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Figure 5.13: Data Transfer Bandwidth between i7-10510U and GTX 1650 with Max-Q. 

 

Figure 5.14: Data Transfer Bandwidth between i7-4710HQ and GTX 970M. 
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5.3.2 Read and Write Data Bandwidth 

The outcomes of the plus function, which involves one read and one write for each floating-point 

operation, are presented in Figures 5.15 and 5.16. Figure 5.15 showcases the results of operations 

conducted on the Core i7-10510U and GeForce GTX 1650 with Max-Q Design, while Figure 5.16 

displays the results of operations on the Core i7-4710HQ and GeForce GTX 970M. The maximum 

speed on each platform is marked with a circle. 

Upon examining Figure 5.15, the read-write speed on the Core i7-10510U exhibits a 

slightly faster average speed than the read-write speed on the GeForce GTX 1650 with Max-Q 

Design for small data sizes, reaching a peak speed of 104.7 GB/s . However, as the data size 

increases, the read-write speed on the Core i7-10510U falls below that of the GeForce GTX 1650 

with Max-Q Design, maintaining around 12 GB/s for a range of large data sizes. In contrast, the 

read-write speed on the GeForce GTX 1650 with Max-Q Design continues to steadily increase, 

peaking at 94.09 GB/s. 

In Figure 5.16, a similar pattern to Figure 5.15 is observed. The read-write speed on the 

Core i7-4710HQ also demonstrates a faster average speed than that on the GeForce GTX 970M 

for small data sizes, achieving a peak speed of 61.22 GB/s. As the data size increases, the read-

write speed on the Core i7-4710HQ experiences a decline, becoming slower than the read-write 

speed on the GeForce GTX 970M and maintaining around 7 GB/s for a range of large data sizes. 

Unlike the steady increase seen on the GeForce GTX 1650 with Max-Q Design, the read-write 

speed on the GeForce GTX 970M exhibits a slot initial increase followed by a rapid leap from 

11.6 GB/s to 93.6 GB/s at a data size of approximately 33 MB. It continues to rise with the data 

size, reaching a peak of 101.45 GB/s. 

Comparing Figures 5.15 and 5.16 to Figures 5.13 and 5.14 reveals that the mobile GPUs 

generally exhibit faster read and write speeds to their memory compared to retrieving data from 

the host. Hence, minimizing the number of memory transfers between the host and GPU can save 

time and enhance efficiency. Additionally, transferring data to the GPU for computation, allowing 

the GPU to perform as much computation as possible before returning the data to the host, proves 

to be advantageous [34]. 
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Figure 5.15: Read-Write Bandwidth on i7-10510U and GTX 1650 with Max-Q. 

 

Figure 5.16: Read-Write Bandwidth on i7-4710HQ and GTX 970M. 
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5.3.3 Calculation Rate of Intensive Operations 

Figure 5.17 illustrates the result of the double-precision matrix-matrix multiplication operation on 

the Core i7-10510U and GeForce GTX 1650 with Max-Q Design, while Figure 5.18 displays the 

result of the same operation on the Core i7-4710HQ and GeForce GTX 970M. The highest 

calculation rate in gigaflops is circled on each platform. 

Both Figures 5.17 and 5.18 reveal a consistent pattern where the CPUs outperform the 

GPUs for all matrix sizes. When the matrix size is relatively small, both the CPUs and GPUs 

exhibit lower calculation rate. As the matrix size increases, the calculation rate on both the CPUs 

and GPUs shows an upward trend. In Figure 5.17, the Core i7-10510U achieves a peak calculation 

rate of 155.78 GFLOPS , while the GeForce GTX 1650 with Max-Q Design attains a peak 

calculation rate of 113.29 GFLOPS. In Figure 5.18, the Core i7-4710HQ records a peak calculation 

rate of 130.2 GFLOPS , whereas the GeForce GTX 970M achieves a peak calculation rate of 

76.06 GFLOPS. 

The findings indicate that the mobile GPUs excel in performing calculations more rapidly 

when dealing with sufficiently large data sizes compared to smaller ones. Nevertheless, the overall 

performance lags behind that of the CPUs due to the restricted memory bandwidth, power and 

thermal constraints of mobile GPUs [43], aligning with a consistent trend observed in previous 

sub-chapters (Chapters 5.1.1 and 5.2.1). Despite the performance limitations of mobile GPUs, it 

remains noticeable that the GPU achieves higher GFLOPS when operating at higher level of 

saturation as the overhead linked to initiating and managing parallel tasks on the GPU decreases 

[13]. 
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Figure 5.17: Rate of Matrix Multiplication Operation on i7-10510U and GTX 1650 with Max-

Q. 

 

Figure 5.18: Rate of Matrix Multiplication Operation on i7-4710HQ and GTX 970M. 
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Table 5.11: Results of Data Handling between CPU and GPUs. 

 i7-10510U  
GTX 1650  

Max-Q 
i7-4710HQ GTX 970M 

Peak Send Speed from 

Host to GPU (GB/s) 
2.52417 4.10281 

Peak Gather Speed from 

GPU to Host (GB/s) 
2.39407 2.86279 

Peak Read-Write Speed 

(GB/s) 
104.722 94.0939 61.2189 101.449 

Peak Operation Rate 

(GFLOPS) 
155.8 113.3 130.2 76.1 

 

5.4 Resource Contention on CPUs 

The assessment of resource contention on CPUs has provided two sets of results for each CPU and 

GPU configuration—one for varying the number of processes and another for varying the data size 

[37]. Moreover, the outcomes from this evaluation help to understand the behaviour of the results 

obtained in Chapter 5.1.2. 

5.4.1 Varying Number of Processes 

This phase of the evaluation encompasses three distinct operations: summation, DFFT, and matrix-

matrix multiplication. Figure 5.19 is derived from the test conducted on the Core i7-10510U, while 

Figure 5.20 corresponds to the Core i7-4710HQ. Given that both CPUs boast four cores [44, 45], 

the range of the parallel workers spans from one to four. The speedup, depicted in Figures 5.19 

and 5.20, is calculated using a consistent formula that involves determining the ratio of the time 

taken with the minimum number of parallel workers (one) to the time taken with the specified 

number of parallel workers (ranging from one to four). This result is then multiplied by the number 

of parallel workers employed, which also ranges from one to four, providing a scaled 
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representation on the graph. Additionally, the numerical results necessary for plotting both Figures 

5.19 and 5.20 are exhaustively detailed in Tables 5.12 to 5.14. 

Upon scrutiny of Figures 5.19 and 5.20, it becomes obvious that summation operations, 

being computationally lightweight, exhibit pronounced resource contention, as reflected in the 

gradual increase in speedup with an increase in the number of processes, a trend consistent for 

both CPUs. In Figure 5.19, the Core i7-10510U achieves a speedup of 1.59  with four parallel 

workers, while in Figure 5.20, the Core i7-4710HQ attains a speedup of 1.39  with the same 

number of parallel workers. Consequently, executing multiple lightweight operations concurrently 

requires more time than a single execution of such an operation on a CPU [37]. 

On the contrary, DFFT operations, being more computationally intensive than summation 

operations, showcase enhanced speedup performance on both CPUs. Figure 5.19 indicates that the 

Core i7-10510U achieves a speedup of 1.97 with four parallel workers, while Figure 5.20 shows 

that the Core i7-4710HQ attains a speedup of 2.27  under identical conditions. This improved 

speedup performance suggests a reduction in resource contention. Thus, DFFT operations do not 

display the same performance degradation as summation operations when multiple calls are 

concurrently executed [37]. 

Lastly, matrix-matrix multiplication operations demonstrate the highest speedup 

performance as the number of processes increases. Figure 5.19 reveals that the Core i7-10510U 

attains a speedup of 3  with four parallel workers, and Figure 5.20 indicates that the Core i7-

4710HQ achieves a speedup of 2.53 under the same conditions. This efficiency is attributed to the 

regular memory access in matrix-matrix multiplication, making it highly effective for parallel 

execution on a multicore platform [37]. 

  



P a g e  | 78 
 

 

Figure 5.19: Effect of Concurrent Processes on Resource Contention on Core i7-10510U. 

 

Figure 5.20: Effect of Concurrent Processes on Resource Contention on Core i7-4710HQ. 
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Table 5.12: Results for Summation Operations on an array of 20482. 

Number of Parallel 

Workers 

Core i7-10510U 

Time taken (s) 

Core i7-4710HQ 

Time taken (s) 

1 0.208519 0.253275 

2 0.277223 0.366846 

3 0.403255 0.521152 

4 0.523741 0.728668 

 

Table 5.13: Results for DFFT Operations on a vector of 20482. 

Number of Parallel 

Workers 

Core i7-10510U 

Time taken (s) 

Core i7-4710HQ 

Time taken (s) 

1  0.708381 1.025814 

2  0.873899 1.223243 

3  1.108064 1.491441 

4  1.435778 1.805978 

 

Table 5.14: Results for Matrix Multiplication Operations of 2048 × 2048. 

Number of Parallel 

Workers 

Core i7-10510U 

Time taken (s) 

Core i7-4710HQ 

Time taken (s) 

1  0.327313 0.401454 

2  0.342751 0.436009 

3  0.384471 0.509765 

4  0.436631 0.634544 
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5.4.2 Varying Data Size 

When evaluating resource contention with varying data sizes, additional operations namely LU 

decomposition, SVD, and eigenvalue computation, are considered in conjunction with the initial 

three operations—summation, DFFT, and matrix-matrix multiplication. Figures 5.21 and 5.22 

present the results obtained from the Core i7-10510U and Core i7-4710HQ, respectively. The 

speedup, illustrated in both figures, is computed using the same formula that involves getting the 

ratio of the time taken with the minimum number of parallel workers (one) to the time taken with 

the maximum number of parallel workers (four). The result is then multiplied by the number of 

parallel workers employed, which is four in this instance. Both CPUs ideally exhibit a speedup of 

4, corresponding to the number of cores each CPU possesses [37]. Furthermore, the numerical 

results essential for plotting both Figures 5.21 and 5.22 are exhaustively detailed in Tables 5.15 

and 5.16. 

In Figure 5.21, showcasing the Core i7-10510U, summation and SVD operations exhibit a 

declining trend as the number of elements per parallel worker increases. On the contrary, matrix-

matrix multiplication and LU decomposition operations demonstrate an ascending trend with an 

increase in the number of elements per parallel worker. The DFFT operation maintains a consistent 

speedup across all number of elements per process. Lastly, the eigenvalue operation displays an 

inconsistent trend, initially showing an upward trajectory followed by a subsequent downward 

trend. 

Similarly, in Figure 5.22, featuring the Core i7-4710HQ, the summation and SVD 

operations depict a declining trend with an increase in the number of elements per parallel worker. 

In contrast, the matrix-matrix multiplication operation displays an upward trend under the same 

conditions. Both the DFFT and LU decomposition operations maintain a constant speedup across 

all number of elements per process. The eigenvalue operation, akin to Figure 5.21, exhibits an 

inconsistent trend, initially ascending and later descending. In summary, both CPUs exhibit similar 

behaviour across all operations, except for the LU decomposition operation, which displays 

divergent patterns.  
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Upon examining the outcomes, it becomes evident that for small data sizes, the functions 

operate efficiently within the CPU cache, yielding a relatively commendable speedup. Contrarily, 

as the data size surpasses the capacity of the CPU cache, a decline in performance attributable to 

contention for memory access becomes apparent [37]. This trend of performance degradation due 

to an increase in data size is also observable in Chapter 5.1.2 where the loaded problems, thermal1 

and 2cubes_sphere [41, 42], are considerably larger than the generated matrices. 

 

 

 

 

Figure 5.21: Effect of Data Size on Resource Contention on Core i7-10510U. 
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Figure 5.22: Effect of Data Size on Resource Contention on Core i7-4710HQ. 

Table 5.15: Time Taken (s) for Various Operations on Varying Data Size with 1 Parallel Worker. 

 Data Size 

Operation 
128 × 128 256 × 256 512 × 512 

1024

× 1024 

2048

× 2048 

C
or

e 
i7

-1
05

10
U

 

Sum 0.000417 0.001388 0.005975 0.037754 0.200022 

DFFT 0.001558 0.008644 0.037326 0.198239 0.712986 

Matrix Mult 0.000089 0.000793 0.005225 0.041985 0.313504 

LU 0.000206 0.000420 0.002965 0.019379 0.137334 

SVD 0.000735 0.003922 0.023647 0.185570 2.500387 

Eig 0.004672 0.021461 0.151504 0.584634 3.304784 

C
or

e 
i7

-4
71

0H
Q

 

Sum 0.000509 0.001979 0.008301 0.054400 0.248218 

DFFT 0.003515 0.013114 0.053108 0.274265 0.981628 

Matrix Mult 0.000139 0.000913 0.006842 0.053766 0.404726 

LU 0.000163 0.001130 0.005080 0.029384 0.191172 

SVD 0.001262 0.007012 0.040569 0.391743 4.187507 

Eig 0.007526 0.035603 0.246028 1.069602 5.409669 
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Table 5.16: Time Taken (s) for Various Operations on Varying Data Size with 4 Parallel Workers. 

 Data Size 

Operation 
128 × 128 256 × 256 512 × 512 

1024

× 1024 

2048

× 2048 

C
or

e 
i7

-1
05

10
U

 

Sum 0.000691 0.002788 0.011428 0.116797 0.521592 

DFFT 0.002003 0.015085 0.071033 0.364284 1.459302 

Matrix Mult 0.000224 0.001717 0.007689 0.055448 0.439225 

LU 0.000127 0.000986 0.006442 0.039014 0.217332 

SVD 0.001173 0.006619 0.038824 0.833646 9.560515 

Eig 0.008513 0.025307 0.188193 1.117153 7.939985 

C
or

e 
i7

-4
71

0H
Q

 

Sum 0.000787 0.004339 0.020244 0.178574 0.705176 

DFFT 0.004290 0.022973 0.111446 0.502426 1.840714 

Matrix Mult 0.000364 0.002086 0.014772 0.099395 0.682797 

LU 0.000361 0.001853 0.012198 0.051780 0.339684 

SVD 0.002104 0.012032 0.102208 1.490041 12.745665 

Eig 0.014010 0.049717 0.347629 1.999281 10.708117 

 

5.5 MATLAB’s GPUBench 

The GPUBench tool automatically generates a report following the execution of matrix-matrix 

multiplication, backslash DFFT operations in both single- and double-precision modes [38]. This 

report includes a performance comparison of the tested CPUs and GPUs against the performance 

of other GPUs. Figure 5.23 summarizes the performance of the first CPU-GPU configuration, 

featuring the Core i7-10510U and GeForce GTX 1650 with Max-Q Design, while Figure 5.24 

outlines the performance summary of the second CPU-GPU configuration, comprising the Core 

i7-4710HQ and GeForce GTX 970M. Furthermore, Table 5.17 shows the detailed numerical 

results for both CPU-GPU configurations, with the tested CPUs and GPUs highlighted in bold for 

easy reference.  
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Examining both Figures 5.23 and 5.24 reveals that GPUs exhibit significantly higher 

GFLOPS when handling single-precision variables. However, in the case of double-precision 

variables, the GPUs either lag behind in GFLOPS or show comparable performance to the 

corresponding CPUs. These findings align with the observation made in the assessment conducted 

in Chapter 5.2.1, specifically regarding the backslash operation. Moreover, in the earlier sub-

chapters (Chapters 5.1.1, 5.2.1, and 5.3.3), focusing on double-precision data types, also highlight 

that the mobile GPUs do not excel due to similar factors such as limited bandwidth, power 

constraints, and thermal limitations [43]. 
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Figure 5.23: Performance Summary of i7-10510U and GTX 1650 with Max-Q. 
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Figure 5.24: Performance Summary of i7-4710HQ and GTX 970M. 
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Table 5.17: Summary of All Tested CPUs and GPUs. 

 
Double-precision Results 

(GFLOPS) 

Single-precision Results  

(GFLOPS) 

 
Matrix 

Multi 
Backslash DFFT 

Matrix 

Multi 
Backslash DFFT 

Tesla V100-PCIE-

32GB 
6884.95 563.73 728.71 13727.99 1210.42 1365.11 

TITAN V 6779.73 674.40 534.65 13515.42 1336.39 985.36 

Tesla P100-PCIE-

12GB 
4510.03 929.00 357.65 8435.34 1647.83 687.13 

Tesla K40c 1189.54 677.12 135.88 3187.76 1334.17 294.86 

Tesla K20c 1004.06 641.42 106.09 2657.01 1230.28 235.20 

TITAN Xp 421.00 369.32 209.45 10823.05 1272.06 797.17 

GeForce RTX 2080 

Super 
373.37 345.32 164.30 10813.12 1330.64 746.20 

GeForce GTX 1080 280.84 223.05 137.66 7707.01 399.37 424.60 

GeForce GTX 1650 

with Max-Q Design 
111.41 83.54 3.85 1807.22 371.49 18.53 

Core i7-10510U 79.20 67.66 9.95 246.96 135.04 32.53 

GeForce GTX 

970M 
74.97 50.81 38.93 2014.80 369.06 179.78 

Core i7-4710HQ 126.50 86.24 9.92 265.75 180.26 29.36 

Quadra K620 25.45 22.77 12.75 716.71 350.31 75.00 
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Chapter 6  

Conclusion and Future Work 

In this thesis, we conducted a comprehensive analysis of GPU parallelization performance, 

specifically focusing on NVIDIA mobile graphics chips, utilizing MATLAB with PCT instead of 

APIs like CUDA. Our investigation involved the implementation of the ICPCG method and the 

backslash operation within mobile devices, such as laptops. Furthermore, we examined the data 

handling capabilities of the mobile GPUs, assessed resource contention, and utilized the 

GPUBench tool developed by the MathWorks PCT Team. 

Our finding suggests that mobile NVIDIA GPUs, particularly those with Turing and 

Maxwell 2.0 architectures, do not offer substantial advantages in enhancing the efficiency of the 

ICPCG method when employing MATLAB PCT, especially in scenarios involving double-

precision variables. The absence of CUDA may contribute to suboptimal GPU resource utilization 

since MATLAB PCT lacks options for developers to explicitly assign tasks to GPUs [5], in contrast 

to CUDA. As a result, developers rely on the toolbox for task allocation, limiting the optimization 

of code for parallel execution. 

Moreover, it is noteworthy that MATLAB currently does not support sparse single-

precision data types [48]. This limitation forces GPUs to handle large sparse data in double-

precision only, contributing to a slower computation rate on mobile GPUs. While the tested mobile 

NVIDIA GPUs, including the GeForce GTX 1650 with Max-Q Design and GeForce GTX 970M, 

did not outperform the tested Intel® CPUs, featuring Core™ i7-10510U and Core™ i7-4710HQ, 

our results shed light on the constraints related to implementing iterative solvers in the MATLAB 

environment on mobile GPUs. 

Understanding the underlying reasons behind these results, we identify potential directions 

for future work. Firstly, enhancing MATLAB to support large sparse single-precision matrices 

could significantly improve the efficiency of GPU operations, potentially surpassing CPU 

performance. Additionally, exploring advancements in MATLAB toolboxes to enable developers 

to explicitly parallelize their code for optimal efficiency is crucial. Furthermore, considering the 
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continuous evolution of GPUs and PCI buses, improvements in memory bandwidth, power 

constraints, and thermal limitations are anticipated. These advancements may allow for increased 

data storage and processing within GPU memory, alleviating performance bottlenecks. Future 

research in these directions holds the promise of overcoming current limitations and unlocking the 

full potential of mobile GPU parallelization in MATLAB. 
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Appendix 

Table A.1: Specifications of Tested GPUs. 

Graphics Processor 
NVIDIA GeForce GTX 1650 

with Max-Q Design[40] 

NVIDIA GeForce GTX 

970M[39] 

Architecture Turing Maxwell 2.0 

GPU Name TU117 GM204 

Process Size 12 nm 28nm 

Transistors 4,700 million 5,200 million 

Density 23.5 M / mm2 13.1 M / mm2 

Die Size 200 mm2 398 mm2 

Bus Interface PCIe 3.0 x16 MXM-B (3.0 x16) 

Release Date 23 April 2019 7 October 2014 

Memory   

Memory Size 4 GB 3 GB 

Memory Type GDDR5 GDDR5 

Memory Bus Width 128-bit 192-bit 

Memory Bandwidth 112.1 GB/s 120.3 GB/s 

Render Config   

Cores 1024 1280 

TMUs 64 80 

ROPs 32 48 

SM Count 16 10 

L1 Cache 64 KB (per SM) 48 KB (per SM) 

L2 Cache 1024 KB 1536 KB 

Clock Speeds   

Base Clock 1020 MHz 924 MHz 

Boost Clock 1245 MHz 1038 MHz 
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Memory Clock 1751 MHz, 7 Gbps effective 1253 MHz, 5 Gbps effective 

Graphics Features   

DirectX 12_1 12_1 

OpenGL 4.6 4.6 

OpenCL 3.0 3.0 

Vulkan 1.3 1.3 

CUDA 7.5 5.2 

Shader Model 6.7 6.7 

   

Power Consumption 35 Watt 81 Watt 

 

Table A.2: Specifications of Tested CPUs. 

Central Processor Intel® Core™ i7-10510U[45] Intel® Core™ i7-4710HQ[44] 

Essentials   

Product Collection 
10th Generation Intel® Core™ i7 

Processors 

4th Generation Intel® Core™ i7 

Processors 

Code Name Products formerly Comet Lake Products formerly Haswell 

Vertical Segment Mobile Mobile 

Processor Number i7-10510U i7-4710HQ 

Lithography 14 nm 22 nm 

Launch Date Q3’19 Q2’14 

CPU Specifications   

Total Cores 4 4 

Total Threads 8 8 

Max Turbo Frequency 4.90 GHz 3.50 GHz 

Processor Base 

Frequency 
1.80 GHz 2.50 GHz 

Cache 8 MB Intel® Smart Cache 6 MB Intel® Smart Cache 

Bus Speed 4 GT/s 5 GT/s 
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TDP 15 W 47 W 

Memory 

Specifications 
  

Max Memory Size 

(dependent on 

memory type) 

64 GB 32 GB 

Memory Types 
DDR4-2666, LPDDR3-2133, 

LPDDR4-2933 
DDR3L 1333/1600 

Max # of Memory 

Channels 
2 2 

Max Memory 

Bandwidth 
45.8 GB/s 25.6 GB/s 

ECC Memory No No 

GPU Specifications   

Processor Graphics 
Intel® UHD Graphics for 10th 

Gen Intel® Processors 
Intel® HD Graphics 4600 

Graphics Base 

Frequency 
300 MHz 400 MHz 

Graphics Max 

Dynamic Frequency 
1.15 GHz 1.20 GHz 

Graphics Video Max 

Memory 
32 GB 2 GB 

Device ID 0x9B41/0x9BCC 0x416 

Expansion Options   

PCI Express Revision 3.0 3.0 

Max # of PCI Express 

Lanes 
16 16 
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