
Performance Analysis of the Incomplete

Cholesky Preconditioned Conjugate

Gradient Method on NVIDIA Graphics

Processing Units with MATLAB

Vivian Yi Fen Yong,

School of Electrical & Computer Engineering

McGill University, Montreal

December 2023

A thesis submitted to McGill University in partial fulfilment of the requirements of the degree of

Masters of Electrical Engineering

©Yong Yi Fen Vivian, 2023

P a g e | i

Abstract

In an era where solving intricate linear systems is a commonplace task across various domains, the

need for computational efficiency remains paramount. This thesis seeks to bridge the gap between

complex mathematical algorithms and accessibility for engineers, researchers, scientists, and

enthusiasts alike.

At its core, this research delves into the synergies between two contemporary

computational technologies: the Incomplete Cholesky Preconditioned Conjugate Gradient (ICPCG)

method and modern Graphics Processing Units (GPUs), with a particular focus on NVIDIA mobile

graphics chips. The ICPCG method is renowned for its effectiveness in tackling large sparse

systems of linear equations. However, rather than diving into the intricacies of GPU architecture

with the use of an Application Programming Interface (API), such as Compute Unified Device

Architecture (CUDA), we look at higher-level programming that is a more user-friendly avenue.

The ICPCG method is implemented in the MATLAB environment and utilizes the Parallel

Computing Toolbox (PCT) to parallelize the method on modern NVIDIA mobile GPUs. With the

use of PCT, instead of CUDA, it removes the formidable barrier of requiring an in-depth

understanding of GPU hardware, often a daunting obstacle for the uninitiated. By democratizing

GPU parallelization, we empower individuals from various backgrounds to harness the remarkable

computational capabilities of modern GPUs without being burdened by the complexities of CUDA

programming.

Chapters elucidate the ICPCG method, introduce GPU advantages over Central Processing

Units (CPUs), and showcase MATLAB PCT’s accessibility. A detailed methodology for

implementing ICPCG on NVIDIA GPUs is provided, and the experimental results are presented

in a comprehensible manner. In-depth discussions and conclusions bring forth the significance of

this approach in the realm of scientific computing.

As we navigate the nexus of mathematical sophistication and accessibility, this research

illuminates a path for individuals to leverage GPU parallelization effectively, transcending the

boundaries of traditional CPU-based computations. In doing so, it empowers a diverse spectrum

P a g e | ii

of users to tap into the extraordinary potential of GPU-accelerated computing without the need for

an advanced understanding of GPU hardware intricacies, ultimately democratizing high-

performance scientific computing. Our results have showcased the benefits of parallelizing the

algorithm on NVIDIA mobile GPUs, particularly for single-precision data types, while

acknowledging limitations in the case of double-precision data types.

P a g e | iii

Abrégé

À une époque où la résolution de systèmes linéaires complexes est une tâche courante dans divers

domaines, le besoin d’efficacité informatique reste primordial. Cette thèse cherche à combler le

fossé entre les algorithmes mathématiques complexes et l'accessibilité pour les ingénieurs, les

chercheurs, les scientifiques et les passionnés.

À la base, cette recherche explore les synergies entre deux technologies informatiques

contemporaines: la méthode Incomplete Cholesky Preconditioned Conjugate Gradient (ICPCG) et

les unités de traitement graphique (en anglais, Graphics Processing Units, ou GPUs) modernes,

avec un accent particulier sur les puces graphiques mobiles NVIDIA. La méthode ICPCG est

réputée pour son efficacité dans le traitement de grands systèmes clairsemés d'équations linéaires.

Cependant, plutôt que de plonger dans les subtilités de l'architecture GPU avec l'utilisation d'une

interface de programmation d'application (en anglais, Application Programming Interface, ou API),

telle que Compute Unified Device Architecture (CUDA), nous examinons une programmation de

niveau supérieur qui constitue une voie plus conviviale.

La méthode ICPCG est implémentée dans l'environnement MATLAB et utilise Parallel

Computing Toolbox (PCT) pour paralléliser la méthode sur les GPU NVIDIA modernes. Avec

l’utilisation de PCT, au lieu de CUDA, il supprime la formidable barrière consistant à exiger une

compréhension approfondie du matériel GPU, souvent un obstacle de taille pour les non-initiés.

En démocratisant la parallélisation des GPU, nous permettons à des individus d'horizons divers

d'exploiter les remarquables capacités de calcul des GPU modernes sans être gênés par les

complexités de la programmation CUDA.

Les chapitres expliquent la méthode ICPCG, présentent les avantages du GPU par rapport

aux unités centrales de traitement (en anglais, Central Processing Unit, ou CPU) et présentent

l'accessibilité du MATLAB PCT. Une méthodologie détaillée pour implémenter ICPCG sur les

GPU NVIDIA est fournie et les résultats expérimentaux sont présentés de manière compréhensible.

Des discussions et des conclusions approfondies font ressortir l’importance de cette approche dans

le domaine du calcul scientifique.

P a g e | iv

Alors que nous naviguons entre la sophistication mathématique et l’accessibilité, cette

recherche ouvre la voie aux individus pour exploiter efficacement la parallélisation GPU,

transcendant les limites des calculs traditionnels basés sur CPU. Ce faisant, il permet à un large

éventail d’utilisateurs d’exploiter le potentiel extraordinaire du calcul accéléré par GPU sans avoir

besoin d’une compréhension avancée des subtilités du matériel GPU, démocratisant ainsi le calcul

scientifique haute performance. Nos résultats ont montré les avantages de la parallélisation de

l'algorithme sur les GPU mobiles NVIDIA, en particulier pour les types de données simple

précision, tout en reconnaissant les limites dans le cas des types de données double précision.

P a g e | v

Acknowledgements

Embarking on my master’s degree during the pandemic brought forth a lot of uncertainties and

profound isolation. These trying times, compounded with other challenges, presented a

considerable amount of stress. Nevertheless, I am immensely grateful for the unwavering support

of those who stood by my side, including my little Shih Tzu, Yeti, who has been by my side,

providing emotional comfort throughout this journey.

Foremost, I extend my heartfelt gratitude to my thesis supervisor, Professor Dennis

Giannacopoulos. His invaluable wisdom and knowledge were instrumental in guiding me

throughout this journey. Professor Dennis Giannacopoulos’ patience, kindness, and reassurance

instilled in me the confidence to move on this path, and for that, I am profoundly thankful.

I deeply cherish Miguel for his ceaseless support. As both a schoolmate and a cherished

friend, we have weathered the storms of challenging times together, offering each other

unwavering support and guidance.

Lastly, I can never adequately express my appreciation to my mother, Lisa, for her

unceasing support in every conceivable way. Her unwavering assistance has been nothing short of

invaluable. Equally, I am extremely thankful to Valerie and Vanessa for their unwavering emotional

support, their constant displays of affection, and for standing beside me through all ups and downs.

With them by my side, I found the strength to navigate through the arduous moments and remain

resilient.

P a g e | vi

Contribution of Authors

This section serves to assert that the work contained within this thesis was conducted and executed

by the author, Yong Yi Fen Vivian. The author has undertaken the task of implementing the ICPCG

method within MATLAB, employing the PCT to facilitate parallelization. Furthermore, it is worth

acknowledging that the foundational code, other than the ICPCG method, has its roots in

MATLAB.

P a g e | vii

Table of Contents

Abstract .. i

Abrégé .. iii

Acknowledgements ... v

Contribution of Authors ... vi

Table of Contents .. vii

List of Figures ... x

List of Tables ... xii

List of Acronyms .. xiii

Chapter 1 Introduction .. 1

1.1 Motivation ... 1

1.2 Thesis Structure .. 4

Chapter 2 Conjugate Gradients ... 5

2.1 The Method of Steepest Descent .. 6

2.2 The Method of Conjugate Directions ... 11

2.3 The Method of Conjugate Gradients ... 14

2.4 Preconditioning ... 18

2.4.1 Incomplete Cholesky Factorization ... 20

2.4.2 Incomplete Cholesky Preconditioned Conjugate Gradient .. 21

Chapter 3 Graphics Processing Units ... 27

3.1 Graphics Processing Unit vs Central Processing Unit .. 27

3.2 Graphics Processing Unit Architecture ... 28

3.3 MATLAB Parallel Computing Toolbox .. 32

P a g e | viii

Chapter 4 Methodology .. 33

4.1 ICPCG on CPUs and GPUs with Specific Problem Types ... 33

4.1.1 ICPCG on CPUs and GPUs using Parallel Computing Toolbox Commands 34

4.1.2 ICPCG on CPUs using Single Program Multiple Data Statements 37

4.2 Backslash on CPUs and GPUs .. 39

4.2.1 A\b on CPUs and GPUs with Generated Matrices... 39

4.2.2 A\b on CPUs and GPUs with Specific Problem Types .. 40

4.3 Data Handling Capability of GPUs ... 45

4.4 Resource Contention on CPUs using Single Program Multiple Data Statements 47

4.5 MATLAB’s GPUBench .. 49

Chapter 5 Results and Discussion ... 51

5.1 ICPCG on CPUs and GPUs with Specific Problem Types ... 53

5.1.1 ICPCG using Parallel Computing Toolbox Commands .. 53

5.1.2 ICPCG using Single Program Multiple Data Statements .. 55

5.2 Backslash on CPUs and GPUs .. 61

5.2.1 A\b on CPUs and GPUs with Generated Matrices... 61

5.2.2 A\b on CPUs and GPUs with Specific Problem Types .. 67

5.3 Data Handling Capability of GPUs ... 70

5.3.1 Data Transmission and Retrieval Bandwidth ... 70

5.3.2 Read and Write Data Bandwidth .. 72

5.3.3 Calculation Rate of Intensive Operations .. 74

5.4 Resource Contention on CPUs.. 76

5.4.1 Varying Number of Processes .. 76

5.4.2 Varying Data Size .. 80

5.5 MATLAB’s GPUBench .. 83

P a g e | ix

Chapter 6 Conclusion and Future Work .. 88

Appendix ... 90

Bibliography ... 93

P a g e | x

List of Figures

Figure 1.1: Comparison of the number of cores on a CPU system and a GPU. 2

Figure 2.1: Surface of a quadratic form f(x). ... 7

Figure 2.2: Line search on the quadratic form f(x). ... 8

Figure 2.3: Contours of the quadratic form f(x) with the line search. ... 8

Figure 2.4: Meandering path of the method of steepest descent.. 10

Figure 2.5: Gram-Schmidt conjugation of two vectors. .. 12

Figure 2.6: An illustration of the CG method. ... 15

Figure 2.7: Direct path of the method of conjugate gradients. .. 16

Figure 3.1: Grid of Thread Blocks. .. 29

Figure 3.2: Grid of Thread Block Clusters. ... 30

Figure 3.3: Memory Hierarchy. ... 31

Figure 4.1: Flowchart of Data Handling Capability of GPUs. .. 47

Figure 4.2: Flowchart of Resource Contention Evaluation. .. 49

Figure 5.1: Thermal problem pattern (thermal1) [40]. .. 52

Figure 5.2: Electromagnetics problem pattern (2cubes_sphere) [41]. ... 52

Figure 5.3: ICPCG Execution Time vs Number of Parallel Workers (thermal1). 57

Figure 5.4: Gigaflops vs Number of Parallel Workers (thermal1). .. 58

Figure 5.5: ICPCG Execution Time vs Number of Parallel Workers (2cubes_sphere). 59

Figure 5.6: Gigaflops vs Number of Parallel Workers (2cubes_sphere). 60

Figure 5.7: Performance of i7-10510U and GTX 1650 with Max-Q on Single-precision. 63

Figure 5.8: Performance of i7-4710HQ and GTX 970M on Single-precision. 63

Figure 5.9: Performance of i7-10510U and GTX 1650 with Max-Q on Double-precision. 65

Figure 5.10: Performance of i7-4710HQ and GTX 970M on Double-precision. 66

Figure 5.11: Speedup of Backslash on GTX 1650 with Max-Q Compared to i7-10510U. 66

Figure 5.12: Speedup of Backslash on GTX 970M Compared to i7-4710HQ. 67

Figure 5.13: Data Transfer Bandwidth between i7-10510U and GTX 1650 with Max-Q. 71

Figure 5.14: Data Transfer Bandwidth between i7-4710HQ and GTX 970M. 71

Figure 5.15: Read-Write Bandwidth on i7-10510U and GTX 1650 with Max-Q. 73

P a g e | xi

Figure 5.16: Read-Write Bandwidth on i7-4710HQ and GTX 970M. .. 73

Figure 5.17: Rate of Matrix Multiplication Operation on i7-10510U and GTX 1650 with Max-Q.

... 75

Figure 5.18: Rate of Matrix Multiplication Operation on i7-4710HQ and GTX 970M. 75

Figure 5.19: Effect of Concurrent Processes on Resource Contention on Core i7-10510U. 78

Figure 5.20: Effect of Concurrent Processes on Resource Contention on Core i7-4710HQ. 78

Figure 5.21: Effect of Data Size on Resource Contention on Core i7-10510U. 81

Figure 5.22: Effect of Data Size on Resource Contention on Core i7-4710HQ. 82

Figure 5.23: Performance Summary of i7-10510U and GTX 1650 with Max-Q. 85

Figure 5.24: Performance Summary of i7-4710HQ and GTX 970M. ... 86

P a g e | xii

List of Tables

Table 5.1: Time taken and Gigaflops for ICPCG (thermal1). .. 53

Table 5.2: Time taken and Gigaflops for ICPCG (2cubes_sphere). ... 54

Table 5.3: Execution Times for ICPCG (thermal1). .. 57

Table 5.4: Gigaflops for ICPCG (thermal1). .. 58

Table 5.5: Execution Times for ICPCG (2cubes_sphere). ... 59

Table 5.6: Gigaflops for ICPCG (2cubes_sphere). .. 60

Table 5.7: Gigaflops for A\b on Single-precision Matrix. ... 62

Table 5.8: Gigaflops for A\b on Double-precision Matrix. .. 65

Table 5.9: Results for Backslash Operator (thermal1). .. 69

Table 5.10: Results for Backslash Operator (2cubes_sphere). ... 69

Table 5.11: Results of Data Handling between CPU and GPUs. ... 76

Table 5.12: Results for Summation Operations on an array of 20482. 79

Table 5.13: Results for DFFT Operations on a vector of 20482. .. 79

Table 5.14: Results for Matrix Multiplication Operations of 2048 × 2048. 79

Table 5.15: Time Taken (s) for Various Operations on Varying Data Size with 1 Parallel Worker.

... 82

Table 5.16: Time Taken (s) for Various Operations on Varying Data Size with 4 Parallel Workers.

... 83

Table 5.17: Summary of All Tested CPUs and GPUs. ... 87

Table A.1: Specifications of Tested GPUs. .. 90

Table A.2: Specifications of Tested CPUs. .. 91

P a g e | xiii

List of Acronyms

API Application Programming Interface

CG Conjugate Gradient

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DFFT Discrete Fast Fourier Transform

DRAM Dynamic Random-Access Memory

ECC Error-Correcting Code

FFT Fast Fourier Transform

FLOPS Floating-Point Operations Per Second

GB Gigabytes

GFLOPS Gigaflops

GPGPU General-Purpose Graphics Processing Unit

GPU Graphics Processing Unit

HTML HyperText Markup Language

IC Incomplete Cholesky

ICP Incomplete Cholesky Preconditioner

ICPCG Incomplete Cholesky Preconditioner Conjugate Gradient

LU Lower-Upper

MB Megabytes

PCG Preconditioned Conjugate Gradient

P a g e | xiv

PCI Peripheral Component Interconnect

PCIe Peripheral Component Interconnect Express

PCT Parallel Computing Toolbox

PD Positive Definite

RAM Random-Access Memory

RHS Right-Hand Side

RO Read-Only

SIMD Single Instruction Multiple Data

SIMT Single-Instruction, Multiple Thread

SM Streaming Multiprocessor

SPD Symmetric Positive Definite

SPMD Single Program Multiple Data

SVD Singular Value Decomposition

TBC Thread Block Cluster

TDP Thermal Design Power

TPCG Transformed Preconditioned Conjugate Gradient

UPCG Untransformed Preconditioned Conjugate Gradient

P a g e | 1

Chapter 1

Introduction

1.1 Motivation

In the realm of scientific and engineering computing, the efficient solution of large sparse linear

systems plays a pivotal role across a multitude of disciplines, from computational physics and

computer graphics to data analysis and machine learning. These systems often underpin complex

simulations, optimizations, and numerical modelling tasks that are essential for advancing our

understanding of engineering design. As the scale and complexity of these problems continue to

grow, so does the demand for innovative solutions and computing platforms that are capable of

meeting these computational challenges.

GPUs, including mobile graphics chips, have emerged as formidable computational

accelerators for a wide range of scientific and numerical applications. Unlike a traditional CPU,

which consists of no more than a handful of cores, a GPU has a massively parallel array of integer,

floating-point processors, and a dedicated high-speed memory. Typically, a GPU contains

hundreds or even thousands of smaller processors. Figure 1.1 shows an example of the number of

cores on a CPU and a GPU [1]. Due to their massively parallel architecture, GPUs, which were

initially designed to accelerate graphics rendering, have been increasingly applied to perform

general-purpose computations. As GPUs excel at parallelism, they make a particularly well-suited

platform for accelerating iterative solvers commonly used to tackle large sparse linear systems [2].

Among these solvers, the preconditioned conjugate gradient (PCG) method stands out as a

powerful iterative algorithm [3].

P a g e | 2

Figure 1.1: Comparison of the number of cores on a CPU system and a GPU. Left shows a CPU

with multiple cores, and right shows a GPU with hundreds of cores.

Preconditioning techniques, which aim to transform the original linear system into an

equivalent one with improved numerical properties, are often used in conjunction with conjugate

gradient (CG), which results in PCG, to enhance its convergence speed and robustness in a wide

range of applications. Preconditioning can also significantly reduce the number of iterations

required for convergence [4]. In this context, the focus is on the incomplete Cholesky

preconditioner (ICP). The ICP is a fundamental tool in solving large systems of linear equations

as it leverages the inherent sparsity structure of the matrix to approximate the Cholesky

factorization, which effectively mitigates the ill-conditioning of the system.

This thesis explores the synergies between two contemporary computational technologies:

the ICPCG method and modern GPUs, with a specific emphasis on NVIDIA mobile GPUs. The

ICPCG method will be implemented within MATLAB and will utilize PCT for parallelization.

This toolbox does not require the use of an API, such as CUDA for NVIDIA GPUs [5]. Although

CUDA has a generic parallel programming model in a multithreaded environment, it requires

programmers to have a good understanding of the CUDA-supported GPU devices’ hardware to

fully optimize their performance. It also requires a good low-level programming skill. Otherwise,

performance can vary greatly [6]. Programmers who work on languages that are not supported by

CUDA can find it difficult and time-consuming to acquire the skill to implement CUDA correctly.

P a g e | 3

Hence, the primary aim of this study is to evaluate the effectiveness of using MATLAB PCT to

implement ICPCG when executed on state-of-the-art NVDIA mobile GPU. The following key

aspects will be examined during the research:

1. Performance of GPU Parallelism: GPUs are designed for parallelism, but to harness

their power effectively for iterative solvers requires a profound understanding of their

architecture and programming models. However, with MATLAB PCT, it is possible to

parallelize the ICPCG algorithm without the profound understanding. Hence, this

research investigates strategies to efficiently parallelize the algorithm with PCT, so that

it exploits the full computational capabilities of modern GPUs [5].

2. ICPCG Method: An in-depth evaluation of incomplete Cholesky (IC) preconditioning

strategies on the CG method tailored for GPU acceleration. This includes an assessment

of the computational cost within the context of ICPCG.

3. Scalability of Problems: A meticulous analysis of the scalability of ICPCG on GPUs

concerning problem size, sparsity pattern, and GPU hardware configuration. This study

helps to determine the practical limitations and benefits of employing GPUs by using

MATLAB PCT on NVIDIA mobile GPUs for solving large sparse linear systems

effectively.

4. Real-world Applications: By demonstrating the performance of ICPCG on GPU using

MATLAB PCT in scientific and engineering domains, it will serve as tangible

demonstrations of the method’s potential to expedite simulations and enhance the

efficiency of solving critical, large-scale computational problems.

5. Software and Tools: Discussion of the software environment, MATLAB, and its

essential toolboxes, including PCT, that facilitate the implementation of ICPCG on

GPUs. This demonstrates how accessible and user-friendly MATLAB PCT is for those

not well-versed in CUDA.

This research endeavours to unlock the potential of combining ICPCG on MATLAB with

modern NVIDIA GPUs, enabling researchers and engineers to efficiently address complex, large-

scale computational problems. The insights gained through this investigation will contribute to the

P a g e | 4

optimization of numerical simulations, ultimately enhancing our ability to tackle increasingly

intricate challenges in science and engineering.

1.2 Thesis Structure

This thesis is organized into six chapters. Chapter 2 delivers an extensive review of the CG method,

including the background knowledge and related work. Chapter 3 presents the key advantages of

GPUs over CPUs, along with an exploration of GPU architecture to achieve these key advantages.

This chapter also presents MATLAB PCT that is used for GPU parallelization. In Chapter 4, we

delve into the methodology applied to implement ICPCG on contemporary NVIDIA mobile GPUs

using MATLAB PCT as well as supplementary implementations. Chapter 5 unveils the

experimental results and findings obtained through the methodology, followed by a thorough

discussion of these outcomes. Chapter 6 encapsulates the conclusion drawn from this study and

outlines prospects for future research. Finally, the appendix furnishes additional information on

the specifications of the GPUs and CPUs subjected to testing.

P a g e | 5

Chapter 2

Conjugate Gradients

The CG method is one of many common iterative methods used for solving large systems of linear

equations that are symmetric, positive definite (SPD). It was developed by E.Stiefel and M.R.

Hestenes [7]. This method is effective in solving a system, Ax = b, of n simultaneous equations

in n unknowns, particularly if n is large. The matrix A is symmetric if A = AT and positive

definite (PD) if xTAx > 0, for all x ≠ 0 [4]. CG is considered to be a machine method as it has the

following properties [7]:

1. Simplicity and minimal storage: The method is straightforward, consisting of repetitive

elementary operations that demand minimal storage space.

2. Convergence and finite steps: The method is designed to converge rapidly, and ideally,

it should reach a solution in a finite number of steps, even when infinite steps are

theoretically required. A method that guarantees finite-step solutions, provided no

rounding-off errors occur, is preferred.

3. Rounding-off error stability: The method maintains stability with respect to rounding-

off errors. If necessary, it includes subroutines to ensure this stability. Rounding-off

errors can be reduced by repeating the same routine, using the previous results as a

refined estimate of the solution.

4. Progressive estimation: At each step, the method provides information about the

solution, yielding a more accurate estimate than the previous one.

5. Utilization and original data: The method makes the most use of the initial data at each

step of the routine. Special properties inherent to the given linear system, such as the

presence of numerous zero coefficients, are preserved. (In contrast, certain methods

like Gauss elimination may inadvertently alter these special properties.)

P a g e | 6

However, to grasp the method of CG, it is essential to have a prior understanding of both

the steepest descent method and the method of conjugate directions.

2.1 The Method of Steepest Descent

In the method of steepest descent, we start at an arbitrary point x0 and proceed towards a minimum

value of the function f , defined in Equation 2.1 [8]. We advance through a sequence of steps

x1, x2, … until we reach the proximity to the solution x. In each step, we choose the direction in

which the function f decreases most rapidly, which is the negative gradient of f, denoted as −f′(xi).

This direction is defined by the equation −f ′(xi) = b − Axi [8].

 f(x) =
1
2

xTAx − bTx + c (2.1)

In addition, the error, ei = xi − x , serves as a vector indicating the deviation from the

solution x. Conversely, the residual, ri = b − Axi, signifies the extent of deviation from the correct

value of b. We can view the residual, ri = −Aei, as the result of transforming the error ei by the

matrix A , placing it in the same space as b . More importantly, ri corresponds to −f′(xi) ,

representing the direction of the steepest descent, ri = −f ′(xi) [9].

A line search is a process that selects α to minimize the function f along a line. According

to the fundamental of calculus principles, α is chosen to minimize f when the directional derivative,

denoted as d
dα

f(x1) , equals zero. Applying the chain rule, we have d
dα

f(x1) = f ′(x1)T d
dα

x1 =

f ′(x1)Tr0 . Thus, to find the optimal α , one should ensure that r0 and f′(x1) are orthogonal by

setting the expression to zero [9, 10].

P a g e | 7

Figure 2.1: Surface of a quadratic form f(x).

In Figure 2.1, we visualize a representation of the surface of a quadratic function f. To

demonstrate the application of a line search method, consider an initial point x0 = [−2,−2]T .

Figure 2.2 depicts the intersection of a vertical plane with the paraboloid, while Figure 2.3

illustrates a search line along the contours of f. In Figure 2.2, the line search procedure aims to

locate the point on the intersection of these two surfaces that minimizes the function f. At this

specific point, the magnitude of the gradient vector, denoted as f ′, along the search line in Figure

2.3, reaches its maximum [10].

Consequently, the magnitude of the projection of the gradient vector onto the search line is

zero. As we traverse along the search line, the magnitude of the gradient vector decreases, while

the magnitude of the projection increases. This observation implies that at the minimum point on

the search line, the gradient vector exhibits orthogonality with respect to the search line [9].

P a g e | 8

Figure 2.2: Line search on the quadratic form f(x).

Figure 2.3: Contours of the quadratic form f(x) with the line search.

P a g e | 9

As per the previously mentioned definitions, the derivation of α leads to the formulation of

the steepest descent method, as follows [9, 10]:

 ri = b − Axi (2.2)

 αi =
riTri

riTAri
 (2.3)

 xi+1 = xi + αiri (2.4)

To optimize the computational efficiency by eliminating one of the two matrix-vector

multiplications per iteration, we can pre-multiply Equation 2.4 by −A and add b, resulting in a

modified equation [9, 10]:

 ri+1 = ri − αiAri (2.5)

While this modification reduces the number of matrix-vector multiplications per iteration,

it is important to note that the computation of r0, as per Equation 2.2, is still required initially.

Once r0 is determined, Equation 2.5 can be applied in subsequent iterations. Furthermore, the

product Ar only needs to be calculated once for both Equations 2.3 and 2.5 [9].

It is worth highlighting that due to the use of r0 in Equation 2.5, there is a potential

accumulation of floating-point roundoff errors that might prevent xi from converging to the true

solution x. Therefore, Equation 2.2 can be recomputed periodically, rather than in every iteration,

to ensure the correct residual is obtained [9].

P a g e | 10

Figure 2.4: Meandering path of the method of steepest descent.

Upon applying the method of steepest descent using Algorithm 1 [10] on MATLAB, we

can observe a meandering trajectory, which progressively converges toward the solution x , as

depicted in Figure 2.4. Notably, each gradient vector is orthogonal to the preceding one.

Furthermore, Algorithm 1 encompasses Equations 2.2 to 2.4 within its framework [10].

The convergence behaviour of the steepest descent method is characterized by the

inequality ‖ei‖A ≤ �κ−1
κ+1

�
i
‖e0‖A, wherein κ represents the spectral condition number of matrix A

in the linear system Ax = b. The spectral condition number κ indicates how sensitive the solution

x is to small changes in the vector b, offering insights into the stability of the solution concerning

perturbations in the right-hand side (RHS) vector [9, 11]. A higher condition number κ signifies a

greater degree of ill-conditioning in the matrix. Unfortunately, this approach may lead to recurrent

descent directions, resulting in an inefficient convergence process [8-10].

P a g e | 11

Algorithm 1 Steepest Descent Method

1: Given matrix A

2: Given RHS vector b

3: Initialize initial guess x0

4: Set tolerance e and i = 0

5: At iteration i, while ‖ri‖ > e, do

6: ri = −∇f(xi)

7: αi = riTri/riTAri or perform an exact line search

8: xi+1 = xi + αiri

9: i = i + 1

10: if ‖ri‖ < e or ri = 0

11: return [xi+1, i]

12: end if

13: end while

2.2 The Method of Conjugate Directions

The method of conjugate directions refines the steepest descent method by incorporating a series

of orthogonal search directions d0, d1, … , dn−1 to progress towards the minimum point. Within

each of these search directions, the method takes a single step of precisely the correct length to

align perfectly with the solution x. Once n such steps are executed, the solution x is determined

[9].

These search directions exhibit A-orthogonality, meaning that two vectors, di and dj, are

considered A-orthogonal, or conjugate, if their dot product equals zero, diTAdj = 0. Furthermore,

the current search direction di is A-orthogonal to the error of the subsequent iteration, labelled as

ei+1. This error is calculated as the difference between the point of the next iteration xi+1 and the

true solution x. This orthogonality condition ensures that the method avoids retracing the same

search direction as di, essentially equivalent to the process of seeking the minimum point along

the search direction di, akin to the method of steepest descent [9].

P a g e | 12

Using the orthogonality of di and ei+1, α is derived as [9]:

 αi = −
diTAei
diTAdi

 (2.6)

 αi =
diTri

diTAdi
 (2.7)

It is noteworthy that if we consider the search vector in Equation 2.6 as the residual, then

Equation 2.7 would be identical to the formula employed in the steepest descent method [9].

To establish a set of search directions d0, d1, … , dn−1 that are A-orthogonal, the conjugate

Gram-Schmidt process is used. By using a collection of n linearly independent vectors

u0, u1, … , un−1, we can derive di by subtracting the components in ui that do not align with the A-

orthogonal vectors from the previously determined d vectors [9].

In Figure 2.5(a), it shows that the conjugate Gram-Schmidt process initiated with two

linearly independent vectors u0 and u1. Subsequently, in Figure 2.5(b), it designates d0 to be u0

and illustrates u1 as a composed of two components: u+ and u∗ . Notably, the vector u∗ is A-

orthogonal, or conjugate, to d0, while u+ is parallel to d0. Following this conjugation process, the

A-orthogonal segment persists, resulting in the subsequent search direction d1, as portrayed in

Figure 2.5(c) [9].

Figure 2.5: Gram-Schmidt conjugation of two vectors.

P a g e | 13

Generally, the process sets d0 = u0 , and for the subsequent iterations i > 0 , the search

directions are [9]:

 di = ui + �βikdk

i−1

k=0

 (2.8)

In Equation 2.8, βik are defined for i > k, and using the definition of conjugacy, βik are

derived as [9]:

 βik = −
uiTAdj
djTAdj

 (2.9)

Nonetheless, the Gram-Schmidt conjugation process within the method of conjugate

directions necessitates the retention of all prior search vectors in memory for generating each new

search vector. This incurs computational costs on the order of O(n3) to produce the complete set

of search vectors [9]. Fortunately, when the search vectors are formulated by conjugating the axial

unit vectors, the conjugate directions method aligns with the Gaussian elimination method. This

equivalence is particularly evident in the method of conjugate gradients, where one concurrently

executes the method of orthogonal directions within a scaled or stretched space [9].

Similar to Equation 2.5 in the method of steepest descent, the number of matrix-vector

multiplications per iteration can be reduced by using a recurrence to find the residual, where ei+1 =

ei + αidi [9]:

 ri+1 = −Aei+1 = ri − αiAdi (2.10)

P a g e | 14

2.3 The Method of Conjugate Gradients

The method of conjugate gradients is essentially an adaptation of the method of conjugate

directions, where the search directions are established by conjugating the residuals, achieved by

setting ui = ri . Many of the properties found in the method of steepest descent and conjugate

directions also apply to the CG method [9]. The motive of the CG method is the same as the

steepest descent method, where the CG method minimizes the function f, as defined in Equation

2.1. In the CG method, the vectors are identified as: 〈x1, x2, … , xn〉 = 〈d0, d1, … , dn−1〉 ,

〈d0, d1, … , dn−1〉 = 〈r0, r1, … , rn−1〉 , 〈r0, r1, … , rn−1〉 = 〈b, Ab, … , An−1b〉 [9]. Also, under the

assumption of A being SPD, the A-norm is defined as ‖x‖A = √xTAx. Moreover, since the search

vectors are derived from the residuals, the subspace spanned by {r0, r1, … , ri−1} is identical to Di.

Each residual is orthogonal to the preceding search directions, which also happen to be the prior

residuals: riTrj = 0, for i ≠ j [4, 9].

This concept is visually demonstrated in Figure 2.6, where a clear pattern emerges [9].

Each new residual ri maintains orthogonality with respect to all prior residuals and search

directions. Similarly, each new search direction di is purposefully constructed to be A-orthogonal

to all the preceding residuals and search directions. Furthermore, the endpoints of r2 and d2 lie on

a plane that runs parallel to the subspace D2, and d2 is a linear combination of r2 and d1 [9].

Referring to Equation 2.10, it becomes apparent that each successive residual ri can be

expressed as a linear combination of the previous residual and Adi−1 [9]. By applying the

definition that di−1 belongs to Di, written as di−1 ∈ Di, it follows that each subsequent subspace

Di+1 is constructed by extending the previous subspace Di with the subspace ADi. As a result, the

subspace Di takes the following form [9]:

Di = span�d0, Ad0, A2d0, … , Ai−1d0�

Di = span�r0, Ar0, A2r0, … , Ai−1r0�
(2.11)

P a g e | 15

Figure 2.6: An illustration of the CG method.

The subspace, as defined in Equation 2.11, is commonly referred to as a Krylov subspace,

which is a subspace of a vector space generated by iteratively applying a matrix to an initial vector

that is the matrix A to the initial residual vector r0 [9]. An essential property of a Krylov subspace

is that the next residual vector ri+1 exhibits orthogonality with respect to Di+1. In practical terms,

this means that ri+1 is already A-orthogonal to Di. This characteristic simplifies the Gram-Schmidt

conjugation process because ri+1 is inherently A-orthogonal to all the preceding search directions

[9].

The Gram-Schmidt conjugation process no longer necessitates the storage of previous

search vectors to maintain the A-orthogonality of new search vectors. For this reason, this leads to

a reduction in both space complexity and time complexity per iteration, from O(n2) to O(m) ,

where m represents the number of nonzero entries in the matrix A [9].

To summarize the CG method’s workflow [9, 11]:

 d0 = r0 = b − Ax0 (2.12)

 αi =
riTri

diTAdi
 (2.13)

 xi+1 = xi + αidi (2.14)

 ri+1 = ri − αiAdi (2.15)

P a g e | 16

 βi+1 =
ri+1T ri+1

riTri
 (2.16)

 di+1 = ri+1 + βi+1di (2.17)

When we apply the CG method using Algorithm 2 [11] to the same example showcased in

Figure 2.1 to 2.4 within the MATLAB environment, we observe a notably quicker convergence.

This is characterized by the absence of a zigzagging trajectory toward the solution x, as depicted

in Figure 2.7. Additionally, Algorithm 2 incorporates Equations 2.12 to 2.17 [9, 11].

Figure 2.7: Direct path of the method of conjugate gradients.

P a g e | 17

Algorithm 2 Conjugate Gradients Method

1: Given matrix A

2: Given RHS vector b

3: Initialize initial guess x0

4: Set tolerance e and maximum iterations Nmax

5: Compute r0 = b − Ax0

6: Set d0 = r0

7: for iterations i = 0: Nmax, do

8: αi = riTri/diTAdi

9: xi+1 = xi + αidi

10: ri+1 = ri − αiAdi

11: βi+1 = ri+1T ri+1/riTri

12: di+1 = ri+1 + βi+1di

13: if ‖ri+1‖ < e, then

14: return [xi+1, i]

15: end if

16: end for

17: Print failure to converge message when iteration i > Nmax

18: return �xNmax, i = −1�

As previously mentioned, the CG method theoretically converges after n iterations.

However, in practical applications where n is typically large, performing n iterations become

infeasible. In real-world scenarios, accumulating floating-point errors can lead to gradual loss of

accuracy in the residual and a reduction in the A-orthogonality of the search vectors [12]. Thus,

expecting an exact algorithm is not realistic.

When the CG method is applied to an SPD system Ax = b, the A-norms of the errors adhere

to the inequality ‖ei‖A
‖e0‖A

≤ 2 �√κ−1
√κ+1

�
i
, where κ represents the spectral condition number of matrix A.

This inequality is derived from Chebyshev polynomials [12]. Similar to the method of steepest

descent, if √κ is relatively small, the CG method converges rapidly, while for a large √κ ,

convergence is slower. The value of κ depends on the spread between the largest and smallest

P a g e | 18

eigenvalues of A. When these eigenvalues are closely clustered, the CG method exhibits good

convergence. Conversely, if the eigenvalues of A are widely separated, convergence is slower [12].

Each iteration of the CG method necessitates O(n2) floating-point operations, so executing

n iterations result in a computational cost of O(n3) operations, which is equivalent to Cholesky

decomposition. In practical implementation, convergence is often achieved in fewer than n

iterations when using floating-point arithmetic. In general, the CG method outperforms the

steepest descent method [12].

While the CG method stands out as a highly efficient iterative approach, dense and poorly

conditioned matrices can be equally effectively solved through direct factorization and backward

substitution [12]. In cases where the matrices are not SPD, the CG method can still be employed

by transforming the original equation from Ax = b to ATAx = ATb [4]. However, it is worth

noting that preconditioning these systems can be challenging. Since this thesis primarily

concentrates on SPD matrices, non-SPD matrices will not be explored in further detail.

2.4 Preconditioning

Preconditioning is a technique implemented to enhance the efficiency and robustness of iterative

methods, such as the CG method. It accomplishes this by improving the condition number of a

matrix [12]. Essentially, it transforms the original linear system Ax = b into an equivalent system

with the same solution that is easier to solve with an iterative solver. This transformation is

achieved by left- or right- multiplying the system with a preconditioning matrix M . The

preconditioner M needs to fulfill several criteria, including [12]:

1. It should be cost-effective to construct.

2. It should have a straightforward and efficient inversion process.

3. It should approximate A in a way that the product of M−1 and A is near to the identity

matrix I and is non-singular.

4. The preconditioned system should be easier to solve with improved accuracy.

P a g e | 19

If the preconditioner M is applied to the left, the resulting system takes the form of

Equation 2.19. Conversely, if M is applied to the right, it yields Equation 2.20. In the latter case,

applying M to the right can be thought of as a change of variables u = Mx, and the system is then

solved with respect to the unknown u [11]. In this thesis, we will focus on the left-multiplying

preconditioner.

 M−1Ax = M−1b (2.19)

 AM−1u = b, x ≡ M−1u (2.20)

When κ(M−1A) is significantly smaller than κ(A) , or when the eigenvalues of M−1A

exhibit better clustering than those of A, the iterative solution of Equation 2.19 can be achieved

more rapidly than solving the original problem. The solution depends on the coefficient matrix

M−1A instead of A [9, 12].

However, it is important to note that M−1A is not inherently symmetric or definite, even if

both M and A possess these properties. This difficulty can be circumvented by recognizing that for

every SPD M, there exists a matrix E that may not be unique with the property where E times its

transpose equal to M , which is EET = M [9]. This matrix E can be obtained through various

methods, including Cholesky factorization. Importantly, the matrices M−1A and E−1AE−T share

the same eigenvalues λ, because if ν is an eigenvector of M−1A with the eigenvalue λ, then ETν is

also an eigenvector of E−1AE−T with the same eigenvalue λ [9].

The system Ax = b can be transformed into the problem expressed in Equation 2.21. In

this formulation, x� is solved first followed by x . Notably, as E−1AE−T is SPD, the method of

steepest descent or CG can be used to solve for x�. The process of using the CG method to solve

this system is also known as the transformed preconditioned conjugate gradient (TPCG) method

[9].

 E−1AE−Tx� = E−1b, x� = ETx (2.21)

Evaluating the TPCG method reveals an undesirable characteristic—namely, the need to

compute E . To address this, E can be eliminated via variable substitution, leading to the

untransformed preconditioned conjugate gradient (UPCG) method [9]:

P a g e | 20

 r0 = b − Ax0 (2.22)

 d0 = M−1r0 (2.23)

 αi =
riTM−1ri

diTAdi
 (2.24)

 xi+1 = xi + αidi (2.25)

 ri+1 = ri − αiAdi (2.26)

 βi+1 =
ri+1T M−1ri+1

riTM−1ri
 (2.27)

 di+1 = M−1ri+1 + βi+1di (2.28)

The effectiveness of a preconditioner M is primarily determined by the condition number

of M−1A, and, in some cases, the eigenvalue distribution within this transformed matrix [9]. As

there are many ways to find M, the thesis will mainly focus on IC factorization technique.

2.4.1 Incomplete Cholesky Factorization

The incomplete Cholesky factorization is a fundamental technique in numerical linear algebra.

Generally, the IC factorization is similar to Cholesky factorization, except the former is designed

for sparse matrices. It is a variant that approximates the Cholesky factorization of a sparse matrix

without filling in zero-fill-ins or minimal fill-ins whenever possible, which makes the IC

factorization more memory-efficient as the factorization matrix remains its sparsity [3].

Cholesky factorization is applied to decompose a real SPD matrix A into the structure

shown in Equation 2.29, where L represents a lower triangular matrix. The computation of the

elements within L can be performed column by column, following recursive equations like

Equation 2.30 for diagonal elements and Equation 2.31 for elements below the diagonal [3]. Given

that L is lower triangular, it simplifies the computation of its inverse L−1 and the inverse of its

transpose (LT)−1. This enables the solution of the linear system Ax = b, where the process first

computes y through forward elimination and then determines x using backward substitution, as

illustrated in Equation 2.32 [3].

P a g e | 21

 A = LLT (2.29)

 Lii = �Aii −� Lik2
i−1

k=1

 (2.30)

Lji =

Aji − ∑ LjkLiki−1
k=1

Lii

j = (i + 1), (i + 2), … , n
(2.31)

 y = L−1b, x = (LT)−1y (2.32)

In terms of computational complexity, the Cholesky factorization has a cost of O(n3) and

involves computing n square roots. Overall, Cholesky factorization tends to be approximately

twice as fast as the lower-upper (LU) decomposition when applied to a PD matrix [12].

2.4.2 Incomplete Cholesky Preconditioned Conjugate Gradient

To implement the ICPCG method, assume the existence of a PD preconditioner M, which can be

decomposed into an IC factorization M = LLT , where L is a lower triangular matrix. This

factorization serves the purpose of preserving symmetry using the split preconditioning approach

and results in an equivalent system A�x� = b�. This system yields the SPD matrix A�, as shown in

Equation 2.33 [11, 12], resembling Equation 2.21. Initially, the CG method is applied to solve for

x� in A�x� = b�, followed by solving for x in x� = LTx [3] .

(L−1AL−T)LTx = L−1b

A� = L−1AL−T , x� = LTx , b� = L−1b
(2.33)

However, the Cholesky factor L in Equation 2.33 is often less sparse than M. Therefore, L

might be constrained to maintain the same pattern of nonzero elements [3]. When an element aij

off the diagonal of A is zero, the corresponding element lij is also set to zero. Consequently, L

retains the same distribution of nonzero values as A below the diagonal elements; hence, it is an

incomplete factorization. With this adjustment, M takes the form shown in Equation 2.34, where

E represents a small error matrix containing nonzero entries exclusively in the elements that have

been forced to zero [3, 12].

P a g e | 22

 M = LLT + E (2.34)

During the algorithm’s execution, it is critical that all Lii values are greater than zero. If Lii

equals zero, the algorithm will fail. Similarly, if Lii is less than zero, then LLT is not PD, which

implies that the CG method cannot provide an exact solution. A complete Cholesky factorization

will always yield Lii values greater than zero. Additionally, it has been proven that if A is an A-

matrix, i.e., Aij ≤ 0 if i ≠ j, the IC factorization will consistently yield Lii values greater than zero

[3].

Algorithm 3 Incomplete Cholesky Factorization

1: Given matrix A

2: function L = icholesky(A)

3: for iterations i = 1: n, do

4: temp = Aii − ∑ Lik2i−1
k=1

5: if temp ≤ 0, then

6: Print error messages

7: return

8: end if

9: Lii = �temp

10: for iterations j = i + 1: n, do

11: if Aji == 0, then

12: Lji = 0

13: else

14: Lji = �Aji − ∑ LjkLiki−1
k=1 �/Lii

15: end for

16: end for

17: end function

P a g e | 23

Algorithm 3 represents the IC factorization, which integrates Equations 2.29 to 2.31 [3,

12]. An adjustment is made in Lines 11 to 15, ensuring that when aij equals zero, the corresponding

element lij is forced to zero, ultimately resulting in the Cholesky factor L . Subsequently,

Algorithms 4 and 5 delineate the forward elimination and backward substitution, respectively.

Algorithm 6 combines the functionalities of Algorithms 4 and 5 into a unified function. Finally,

Algorithm 7 encapsulates the ICPCG method, which incorporates Equations 2.22 to 2.28. However,

a successful convergence will depend on how good an approximate inverse (LLT)−1 is [3, 12].

Algorithm 4 Forward Elimination

1: Given lower-triangular matrix L

2: Given RHS vector b

3: function y = forward(L, b)

4: for iterations i = 1: n, do

5: for iterations j = 1: i − 1, do

6: temp = ∑ Liji−1
j=1 yj

7: end for

8: yi = (bi − temp)/Lii

9: end for

10: end function

P a g e | 24

Algorithm 5 Backward Substitution

1: Given upper-triangular matrix U

2: Given vector y

3: function x = backward(y, U)

4: for iterations i = n: 1, do

5: for iterations j = i + 1: n, do

6: temp = ∑ Uijxjn
j=i+1

7: end for

8: xi = (yi − temp)/Uii

9: end for

10: end function

Algorithm 6 Solve Cholesky

1: Given lower-triangular matrix L

2: Given RHS vector b

3: function x = cholsolve(L, b)

4: y = forward(L, b)

5: x = backward(y, LT)

6: end function

P a g e | 25

Algorithm 7 Incomplete Cholesky Preconditioned Conjugate Gradients Method

1: Given matrix A

2: Given RHS vector b

3: Initialize initial guess x0

4: Set tolerance e and maximum iterations Nmax

5: function pcg(A, b, x0, e, Nmax)

6: L = icholesky(A)

7: r0 = b − Ax0

8: z0 = cholsolve(L, r0), let zi = (LLT)−1ri

9: d0 = z0

10: for iterations i = 0: Nmax, do

11: αi = ziTri/diT

12: xi+1 = xi + αidi

13: ri+1 = ri − αiAdi

14: if ‖ri+1‖ < e, then

15: return [xi+1, i]

16: end if

17: zi+1 = cholsolve(L, ri+1)

18: βi+1 = ri+1T zi+1/riTzi

19: di+1 = zi+1 + βi+1di

20: end for

21: Print failure to converge message when iteration i > Nmax

22: return �xNmax+1, i = −1�

23: end function

P a g e | 26

It has been observed that the IC preconditioning may encounter stability issues, especially

in challenging scenarios where cancellation errors occur. To enhance the algorithm’s reliability,

the drop tolerance-based IC factorization method is adopted [12]. This method retains the off-

diagonal elements computed by the Cholesky algorithm if a specific condition is met, and

otherwise, it preserves the original values, as shown in Equation 2.35. As the drop tolerance

decreases, the IC factor tends to become denser [12].

 Lji = �
Aji − ∑ LjiLiki−1

k=1

Lii
Aji

 Aji
2 > e2Ajjbii
otherwise

 (2.35)

P a g e | 27

Chapter 3

Graphics Processing Units

General-purpose Graphics Processing Units (GPGPUs) are specialized hardware originally

designed for rendering graphics, including computations for both geometry (vertices) and

rasterization (pixels), but have evolved to excel in parallel processing tasks. The idea of using

GPUs for non-graphical computation began to gain traction in the early 2000s [2]. These GPUs

are equipped with thousands of small processing cores optimized for parallelism, making them

suitable for a wide range of computational workloads [2].

3.1 Graphics Processing Unit vs Central Processing Unit

CPUs are characterized as latency-oriented processors designed for task parallelism. They allocate

a substantial number of transistors for caching and employ sophisticated flow control mechanisms.

Modern CPUs can be considered multicore processors as they can achieve their maximum

performance potential with just a few threads [13]. In contrast, GPUs are highly throughput-

oriented processors with a focus on data parallelism. They efficiently manage the relatively

expensive global memory accesses by leveraging a multitude of parallel threads. GPUs are

manycore processors, and they require a large number of threads, often in the thousands, to operate

at their full capacity. This makes GPUs have larger memory bandwidth but higher memory latency,

whereas CPUs have lower latency but lower bandwidth [13].

However, the significant boost in throughput facilitated by a GPU does come with some

trade-offs. One of the primary concerns is the potential bottleneck in memory access during

calculations. Before performing calculations, data must be transferred from the host, CPU, to the

device, GPU, and afterward, it needs to be retrieved. Since a GPU is connected to the CPU through

the Peripheral Component Interconnect Express (PCIe) bus, memory access tends to be slower

compared to traditional CPUs. Hence, the overall acceleration in computational speed is

constrained by the amount of data transfer that takes place within the algorithm [1].

P a g e | 28

GPUs are typically employed as coprocessing units alongside CPUs and are particularly

well-suited for tasks that involve high regularity and significant arithmetic intensity. Typically, a

CPU handles the sequential parts of a program, while a GPU takes care of the computationally

intensive portions to accelerate overall processing speed. Moreover, GPUs require explicit parallel

programming using an API, such as NVIDIA CUDA or OpenCL, while CPUs are programmed

using traditional languages, such as C++ [13].

3.2 Graphics Processing Unit Architecture

Contemporary GPUs are composed of various components, and specific GPU models may use

varying nomenclature for these constituents. The key constituents are Streaming Multiprocessors

(SMs), memory hierarchy, Single Instruction Multiple Data (SIMD) stream paradigm, rendering

pipelines, memory controllers, display output capabilities, interconnects, and unified memory [6].

The presence and configuration of these components can differ across GPU models. In the context

of the GPUs examined in this thesis, we will mainly focus on GPUs from NVIDIA.

SMs serve as the CPU of the GPU, responsible for executing the core computation.

NVIDIA GPUs are equipped with NVIDIA CUDA Cores, specifically designed to accelerate

general-purpose computing tasks, including matrix operations [14]. An SM is engineered to

execute hundreds of threads simultaneously. These threads function as parallel processors,

handling floating-point mathematical operations. To efficiently manage this multitude of threads,

it employs a unique architecture known as Single-Instruction, Multiple-Thread (SIMT). This

architecture pipelines instructions, exploiting both instruction-level parallelism within a single

thread and extensive thread-level parallelism through simultaneous hardware multithreading [6].

All data processed by a NVIDIA GPU is channeled through threads, and each thread possesses its

own memory register that is inaccessible to other threads [6].

Furthermore, the concept of a CUDA block, also known as a thread block, entails the

grouping of threads, which are further organized into a grid. A kernel is executed as a grid of blocks

of threads. Thread blocks are required to execute independently in any sequence, either serially or

concurrently. Each thread block is managed by one SM, and an SM can handle multiple concurrent

thread blocks based on the resources needed by those blocks [6]. This logical arrangement

P a g e | 29

enhances the efficiency of data mapping. Importantly, thread blocks share memory on a per-block

basis, implying that every thread within a specific CUDA block can access the same shared

memory. In the current CUDA architecture, each block consists of 1024 threads [6].

Kernel grids play a role in grouping thread blocks under the same kernel. The thread blocks

can be arranged in one-dimensional, two-dimensional, or three-dimensional grids, as shown in

Figure 3.1, facilitating parallel execution, especially for tasks demanding more than 1024 threads.

However, the synchronization that occurs at the block-level does not extend to the grid-level as the

shared memory is inaccessible to different thread blocks [6]. Lastly, there is an optional hierarchy

level known as Thread Block Clusters (TBC), comprising thread blocks. Thread blocks within a

TBC are guaranteed to be scheduled together on a GPU processing cluster, akin to how threads

within a thread block are ensured to be co-schedule on an SM. This hierarchy is illustrated in

Figure 3.2 [6].

GPUs feature diverse memory levels, and memory allocation adheres to a specific

hierarchy within CUDA, as depicted in Figure 3.3 [6]. This hierarchy is managed automatically

by CUDA compiler or can be manually configured by developers to optimize memory utilization.

The memory levels are registers, read-only (RO) memory, L1 cache/shared memory, L2 cache,

and global memory [6].

Figure 3.1: Grid of Thread Blocks.

P a g e | 30

Figure 3.2: Grid of Thread Block Clusters.

In broad terms, registers are assigned to threads, and data stored in registers can be

processed at an accelerated rate compared to other data storage locations. RO memory spaces, i.e.,

the constant and texture memory spaces, are accessibly by all threads. They are situated on-chip

within SMs and serve specific functions like texture memory [6]. The global, constant, and texture

memory spaces are optimized for different memory usages and are persistent across kernel

launches by the same application. It is more efficient to access data from RO memory than to resort

to global memory [6].

L1 cache/shared memory is on-chip memory that is shared among thread blocks, with its

management being a combined effort between hardware and software. Thread blocks in a TBC can

perform read, write, and atomics operations on each other’s shared memory [6]. Similarly, as it is

on-chip, the L1 cache/shared memory offers faster access speeds compared to L2 cache and global

memory. L2 cache stores both global and local memory and is accessible to all threads across all

thread blocks. Retrieving data from L2 cache is faster than fetching it from global memory [6].

Finally, global memory corresponds to a dynamic random-access memory (DRAM) and is

comparable to random-access memory (RAM) in CPU. All threads have access to the same global

memory, but global memory inherently operates at a slower speed than L2 cache [6].

Modern GPUs predominantly embrace a SIMD stream architecture, characterized by a

single control processor and instruction memory. Within this architecture, a solitary instruction is

P a g e | 31

replicated and executed simultaneously across all threads at any given moment, enabling efficient

data parallelism [6]. In the case of NVIDIA GPUs, they also employ the SIMT model to effectively

manage their extensive thread pool. SIMT is an enhancement of the SIMD model by introducing

multithreading. This addition enhances overall efficiency by reducing the overhead related to

instruction fetching. Consequently, SIMT empowers developers to craft code that exhibits thread-

level parallelism for independent, scalar, threads, as well as data-parallel code for coordinated

threads [6].

Figure 3.3: Memory Hierarchy.

P a g e | 32

3.3 MATLAB Parallel Computing Toolbox

The Parallel Computing Toolbox (PCT), developed by MATLAB, provides a platform for tackling

computationally and data-intensive tasks by harnessing the power of multicore processors, GPUs,

and computer clusters [5, 15]. Unlike some other tools, it does not necessitate the use of APIs like

CUDA to fully utilize the computing potential, whether it is multiple GPUs on a desktop, computer

clusters, or cloud environments. It seamlessly integrates with parallel-enabled functions in

MATLAB and various other toolboxes [5, 15].

In contrast to CUDA, MATLAB PCT simplifies parallelization by abstracting the low-level

coding required. While CUDA often demands developers to write code at a lower level to achieve

parallelism, MATLAB PCT automates the parallelization of the PCG algorithm on the GPU using

parallel-enabled functions found in the toolbox. This enables developers to utilize the GPU’s

parallel processing capabilities without the need for explicit parallelization implementation [5, 15].

However, the effectiveness of GPU acceleration using MATLAB PCT may vary depending on

factors such as the specific problem being solved and the hardware configuration. Its high-level

programming may not always optimize performance as effectively as manually optimized CUDA

code [5, 15].

On the other hand, similar to CUDA, PCT taps into NVIDIA GPUs for both non-graphics

and graphics computations, all within the MATLAB programming language. This eliminates the

need to switch to a different programming language, allowing developers to concentrate on their

applications rather than getting bogged down in performance optimization. Moreover, for those

who prefer CUDA, MATLAB can interface with CUDA code, enabling the execution of CUDA

operations alongside PCT [5]. For these reasons, MATLAB PCT is used in this study to evaluate

the performance of its functions.

P a g e | 33

Chapter 4

Methodology

In this chapter, the methodologies and techniques applied throughout the research are

comprehensively presented. The objective is to provide a clear understanding of the implemented

methods. These methods encompass the implementation of the ICPCG method on different

computing hardware and the exploration of additional methods. The inclusion of other methods

serves to enhance the comprehension of the mobile GPU’s performance. These supplementary

methods involve exploring the performance of the backslash operator on both CPUs and mobile

GPUs, assessing the data handling capabilities of mobile GPUs, and evaluating resource

contention. These methods are tested on generated matrices, which are large and sparse, and

specific types of problem with a distinguished pattern in the matrices, as further elaborated in the

next chapter (Chapter 5). The methodologies discussed are important for assessing the

performance, efficiency, and scalability of these techniques, leading to valuable insights into their

real-world applications.

4.1 ICPCG on CPUs and GPUs with Specific Problem Types

The examination of the ICPCG method encompasses two distinct sub-sections: the ICPCG

methodology on CPUs and ICPCG methodology on GPUs. These sub-sections offer detailed

insights into the benchmarking setups for ICPCG on each platform, leveraging the capabilities

provided by MATLAB PCT [5]. Specifically, the ICPCG method is assessed using specific

problem types characterized by unique matrix patterns. This deliberate choice facilitates a

comprehensive comparison of ICPCG’s performance and scalability across diverse computing

environments, shedding light on its behaviour on both CPU and GPU architecture.

P a g e | 34

4.1.1 ICPCG on CPUs and GPUs using Parallel Computing Toolbox

Commands

The evaluation commences by loading a specific problem type into the workspace of MATLAB.

To scrutinize the ICPCG method’s performance, the GPU undergoes initialization, and its memory

is cleared using the gpuDevice [16] and reset functions, respectively, from MATLAB PCT.

Subsequently, the IC decomposition is applied to the matrix A of the loaded problem, utilizing the

ichol function [17] on the CPU. This function takes matrix A as input and yields L1 as output,

and the time taken for the IC decomposition is recorded.

Once the IC decomposition concludes, the PCG method is employed using the PCG

function [18]. This function incorporates multiple inputs, including matrix A with N -by- N

dimension, RHS column vector b with N -by- 1 dimension, tolerance, maximum number of

iterations, preconditioners M1 and M2 , and an initial guess x0 . In this context, the predefined

values for tolerance, maximum number of iterations, preconditioner, and initial guess are 10−5,

105, the output matrix of the IC decomposition L1, and the zero vector, respectively. Matrix A and

vector b are directly sourced from the loaded problem. The PCG method is then executed on the

CPU, followed by a similar execution on the GPU. On the CPU, the PCG method is timed using

tic and toc functions [19, 20].

For the GPU execution, matrix A, vector b, and preconditioner L1 must be transferred from

the host to the GPU using MATLAB PCT’s gpuArray function [21]. Following the memory

allocation, the PCG method is applied on the GPU using the PCG function [18], mirroring the CPU

execution. With the exception that on the GPU, the PCG method is timed using both the

gputimeit function [22], which is from MATLAB PCT, and the tic and toc functions [19, 20].

To utilize gputimeit, a function handle, pcgFcn, must be created first. A function handle is a

data type in MATLAB that stores an association with a function, enabling the passing of a function

to another function [23]. When employing tic and toc to measure execution time on the GPU,

the wait function [24] must be applied to ensure accurate timing. This is necessary because the

program must wait for operations to complete before calling tic and toc. The gputimeit

function, unlike the tic and toc functions, ensures that all GPU operations have completed before

timing and adjusts for any associated overhead. Therefore, when using the tic and toc functions,

P a g e | 35

the wait function must also be employed to ensure that all GPU operations have finished before

recording the time. However, tic and toc do not consider the overhead. The PCG method is

implemented several times to capture the best timing for both CPU and GPU executions [25].

It is crucial to note that the PCG function is fully supported by MATLAB PCT [18], ensuring

smooth execution of the function with the aid of the toolbox without encountering potential errors,

such as running out of memory. However, this support is not extended to the backslash operator, a

point that will be further explained in the subsequent sub-chapter (Chapter 4.2.2).

Utilizing the execution timings of the PCG method on each platform, the floating-point

operations per second (flops) are calculated for the corresponding hardware using the formula

derived from the Linpack TPP benchmark of the HPC Challenge [26], as shown in Equations 4.1

and 4.2 where n represents the size of matrix A, i.e., an n-by-n matrix. The formulas measure the

floating-point rate of execution, commonly known as flops, and incorporate a multiplier to yield

gigaflops, specifically for solving a linear system of equations. The results are then returned as

outputs of the ICPCG function.

 �lops =
2
3

n3 +
3
2

n2 (4.1)

 giga�lops = �lops ÷ execution time ÷ 109 (4.2)

Algorithm 8 delineates the assessment process for this section. In Lines 2 and 3, the GPU

is reset. Lines 4 to 6 depict the IC decomposition process, while Lines 8 and 10 showcase the

implementation of PCG on the CPU. Subsequently, Lines 11 to 13 illustrates the data transfer from

the host to the GPU, and Lines 14 to 18 demonstrate the PCG being employed on the GPU using

tic and toc. Furthermore, Lines 19 and 20 present the GPU’s PCG execution using gputimeit,

and Lines 21 and 22 outline the computation of gigaflops.

P a g e | 36

Algorithm 8 ICPCG function on CPUs and GPUs using MATLAB PCT

1: function iccg_pct(A, b)

2: gpu = gpuDevice

3: reset(gpu)

4: tichol = tic

5: L1 = ichol(A)

6: tichol = toc

7: Set tolerance e and maximum number of iterations Nmax

8: tPCGCPU = tic

9: Execute PCG on CPU pcg(A, b, e, Nmax, L1)

10: tPCGCPU = toc

11: gpuArray(A)

12: gpuArray(b)

13: gpuArray(L1)

14: Wait for operations before start timing wait(gpu)

15: tPCGGPUtictoc = tic

16: Execute PCG on GPU pcg(A, b, e, Nmax, L1)

17: Wait for operations before stop timing wait(gpu)

18: tPCGGPUtictoc = toc

19: pcgFcn = @() pcg(A, b, e, Nmax, L1)

20: tPCGGPUtimeit = gputimeit(pcgFcn)

21: Calculate flops for CPU and GPU �lops = 2/3 ∗ n3 + 3/2 ∗ n2

22: Convert to gigaflops for CPU and GPU g�lops = �lops/t/109

23: return �tichol, tPCGCPU , tPCGGPUtictoc , tPCGGPUtimeit , g�lopsCPU, g�lopsGPU�

24: end function

P a g e | 37

4.1.2 ICPCG on CPUs using Single Program Multiple Data

Statements

Similar to the preceding section, the same specific problem type is initially loaded into the

MATLAB’s workspace. To implement the ICPCG method on CPUs utilizing single program

multiple data (SPMD) statements [27], a feature introduced by MATLAB PCT, a parallel pool of

workers or processes within a process-based environment must be established through the

parpool function [28, 29]. If a parallel pool of workers already exists, it needs to be closed before

creating a new one. When this function is utilized, MATLAB establishes a pool on the local

machine, assigning one worker to each physical CPU core. These parallel workers are

subsequently entrusted with computational tasks using the SPMD statements, enabling the

execution of parallelized code on workers within the same multi-core CPU. The SPMD statement

allows operations that are within the SPMD body to be performed on the parallel workers

simultaneously. Each worker can operate on a different data set or different portion of the

distributed data and can communicate with other parallel workers while performing the parallel

computations [27].

After creating the parallel pool of workers, a function handle [23] is generated to pass the

ICPCG function, iccg, to a timing function, timingfcn, where the execution time is recorded.

The iccg function initiates the IC decomposition process followed by the PCG method, utilizing

the ichol and pcg functions [17, 18], respectively, as presented in Algorithm 10. The ichol

function takes matrix A from the loaded problem, producing L1 as the output matrix. The pcg

function takes inputs such as matrix A and vector b from the loaded problem, the preconditioner

L1 , and preset values of 10−5 and 105 for tolerance and the maximum number of iterations,

respectively.

Within the timing function timingfcn, as shown in Algorithm 9, two inputs are taken: an

input function (in this case, iccg) which is passed to another function via the function handle [23],

and the number of parallel workers. While an output array of the best execution times for a given

level of concurrency is returned. Using timingfcn, the input function, iccg, is invoked multiple

times for each number of parallel workers and with each execution timed, all within the SPMD

P a g e | 38

statements [27]. After each parallel execution of the ICPCG method on the CPU, the timings are

compared to record the best execution time for the specified number of parallel workers.

Upon completing the execution of the ICPCG method, the gigaflops are calculated using

the formulas from the Linpack TPP benchmark of the HPC Challenge, outlined in Equations 4.1

and 4.2 [26]. Ultimately, the results are returned as outputs of the ICPCG on parallel workers

function.

Algorithm 9 Timing Function

1: Specify function, f, as iccg and an array of number of parallel workers, Nworkers

2: function timingFcn(f, Nworkers)

3: Initialize an array for time, t, and number of executions, Nexe

4: for iterations i = 1: length(Nworkers), do

5: n = Nworkers(i)

6: spmd(n)

7: Initialize tn = ∞

8: for iterations k = 1: Nexe, do

9: labBarrier

10: tcurrent = tic

11: f()

12: tcurrent = gop(@max, toc)

13: tn = min(tn, tcurrent)

14: end for

15: end spmd

16 t(i) = tn

17: clear tn k tcurrent

18: end for

19: return [t]

20: end function

P a g e | 39

Algorithm 10 ICCG Function

1: Specify tolerance e, maximum number of iterations, Nmax

2: function iccg(A, b)

3: L1 = ichol(A)

4: pcg(A, b, e, Nmax, L1)

5: end function

4.2 Backslash on CPUs and GPUs

In MATLAB, the backslash operator solves a system of linear equations, expressed as x = A\b

[30]. In this phase of performance analysis, we conduct tests using the backslash operator,

assessing its functionality on both CPUs and mobile GPUs. The insights derived from this

evaluation will contribute to our understanding of how the mobile GPUs handle computationally

demanding operations, including the ICPCG method. The evaluation encompasses its application

to both randomly generated matrices and specific problem types characterized by distinctive

patterns in the matrices. The detailed procedures for conducting this analysis are outlined,

highlighting the matrix and vector sizes considered for the testing process.

4.2.1 A\b on CPUs and GPUs with Generated Matrices

To evaluate the backslash operator’s performance [30] on CPUs and GPUs, it is imperative to first

clear the GPU memory to ensure the optimal utilization for this analysis. Additionally, the GPU is

initialized using the gpuDevice function [16], which belongs to the MATLAB PCT. After

determining the available CPU and GPU memory in gigabytes (GB), an array of suitable sizes for

matrix A is computed, considering both single- and double-precision elements with a specified

fixed step size. This precaution prevents potential errors by ensuring that the generated matrices

and vectors of varying dimensions do not exceed the available memory [31].

P a g e | 40

Subsequently, a versatile function is designed to generate matrix A and vector b based on

the arrays of appropriate sizes for both single- and double-precision, applicable to both CPU and

GPU. This function is separate from the test function to ensure that the recorded time excludes the

cost associated with data transfer between CPU and GPU, the duration taken for matrix creation,

or other parameters [31]. Matrix A is constructed with significantly larger diagonal elements than

non-diagonal elements, emulating real-world scenarios. A dedicated test function is also

established to execute x = A\b [30]. In this test function, the backslash operator is invoked

multiple times to capture the optimal execution time for the given size and precision type. The test

function remains mostly consistent for both CPU and GPU, although there is a variation in the

GPU procedure [31]. For the GPU, the data must be transferred from the CPU to the GPU,

facilitated by the function gpuArray from MATLAB PCT [21]. Furthermore, the test function

accommodates the time required to introduce overhead, and this duration is subsequently

subtracted from the execution time. This adjustment ensures that only the actual execution time is

taken into account. Additionally, a wait function is crafted to ensure that the algorithm pauses until

all pending operations are finished when running on the GPU [31].

To quantify the computational performance, the gigaflops are calculated using the best

execution time on both the CPU and GPU and the formulas derived from the Linpack TPP

benchmark of the HPC Challenge [26]. The computation follows the formulas in Equations 4.1

and 4.2. This allows a comparison of performance across various matrix sizes.

4.2.2 A\b on CPUs and GPUs with Specific Problem Types

The examination of the backslash operator [30] on CPUs and GPUs, focusing on specific problem

types characterized by distinct matrix patterns, follows a framework akin to the analysis involving

generated matrices in the preceding section, Chapter 4.2.1 [31]. Therefore, comparable steps are

reiterated, with an emphasis on delineating the differences between the two analyses.

Similarly, any data in the GPU is first cleared and the GPU is initialized with the

gpuDevice function [16], the available memory in the CPU and GPU is then determined in GB

[31]. Rather than generating matrices, data pertinent to a specific problem type is loaded onto

MATLAB. Upon loading, the dimensions of matrix A and vector b are determined, and a

comparison is conducted between the size of matrix A and the available GPU memory, as the

P a g e | 41

former may exceed the latter. In such cases, matrix A and vector b are optimally divided into

several sub-matrices and sub-vectors to fit within the available GPU memory at its largest

dimension. Otherwise, an error may potentially arise if this condition is not met. It is essential to

consider the indices of the elements so that all elements in matrix A and vector b are incorporated

into the sub-matrices and sub-vectors, respectively, and they are computed only once to obtain the

measured time. To ensure the precision of the time taken and facilitate a fair assessment, matrix A

and vector b are also divided into sub-matrices and sub-vectors when running on the CPU.

The division of matrix A and vector b is a deliberate choice due to the limited support for

the backslash operator from MATLAB PCT [30], in contrast to the fully supported pcg function

[18] mentioned in Chapter 4.1.1. Consequently, the backslash operator struggles to handle a large

problem in its entirety, even with MATLAB PCT, potentially facing errors linked to the limited

memory of the mobile GPUs. Additionally, the partitioning of matrix A and vector b is based on

their dimensions without the precision required to solve for the unknown x accurately. This

approach aligns with the primary goal of assessing how the mobile GPUs perform when tasked

with handling all sub-systems combined, as their total size matches that of the loaded problem—a

large and sparse system. Therefore, methods like the block-Jacobi preconditioner [32, 33] are not

employed to accurately partition matrix A and vector b and solve x = A\b.

After configuring the sub-matrices, the test function, named run, is executed in a manner

resembling the analysis of the backslash operator using generated matrices in the previous section

[30, 31], outlined in Algorithm 11. In Algorithm 11, Lines 2 and 3, the functions hpcCPU and

hpcGPU are integrated to calculate gigaflops using the formulas presented in Equations 4.1 and

4.2 [26] when the backslash operator is executed on the CPU and GPU, respectively. Algorithm

12 provides an overview of hpcGPU, demonstrating the key distinction between the two functions:

hpcGPU accounts for the time taken to introduce overhead, which is then deducted from the

execution time, as indicated in Lines 7 to 14 of Algorithm 12.

In the described functions, the backslash operator [30] is invoked multiple times to obtain

the optimal execution time for the entire matrix A, as illustrated in Lines 3 to 6 of Algorithm 12.

The backslash operator is employed when the functions tSolveCPU and tSolveGPU are called

to execute on the CPU and GPU, respectively [31]. The flow of tSolveGPU is outlined in

Algorithm 13.

P a g e | 42

In Algorithm 13, the execution times for each sub-matrix are consolidated, as depicted in

Line 15 of Algorithm 13, yielding the total execution time for the entire matrix A. The tSolve

functions retain a largely consistent structure for both the CPU and GPU, with the exception that

on the GPU, data is transferred from the CPU to the GPU using gpuArray [21], introduced in the

MATLAB PCT, as indicated in Lines 9 and 10 of Algorithm 13. Furthermore, a wait function is

implemented to temporarily halt the program, allowing for the completion of all pending

operations, as seen in Line 12 of Algorithm 13. Additionally, the GPU memory is cleared after

each execution of the backslash between the sub-matrix and sub-vector, as illustrated in Line 14

of Algorithm 13, facilitating the smooth operation of the subsequent backslash operation between

the next sub-matrix and sub-vector on the GPU [31].

Algorithm 11 Test function for A\b on CPUs and GPUs with Specific Problem Types

1: function run(A, b)

2: [g�lopsCPU, timeCPU] = hpcCPU(A, b)

3: [g�lopsGPU, timeGPU] = hpcGPU(A, b, @() waitGPU(gpu))

4: return [g�lopsCPU, timeCPU, g�lopsGPU, timeGPU]

5: end function

P a g e | 43

Algorithm 12 HPC function for A\b on GPUs with Specific Problem Types

1: function hpcGPU(A, b)

2: Specify number of tests Ntest and initialize ttest = ∞

3: for iterations i = 0: Ntest, do

4: t = tSolveGPU(A, b, waitGPU(gpu))

5: ttest = min(t, ttest)

6: end for

7: Initialize toverhead = ∞

8: for iterations i = 0: Ntest, do

9: t = tic

10: waitGPU(gpu)

11: t = toc

12: toverhead = min(t, toverhead)

13: end for

14: tGPU = ttest − toverhead

15: �lops = 2/3 ∗ n3 + 3/2 ∗ n2

16: g�lopsGPU = �lops/tGPU/109

17: return [g�lopsGPU, tGPU]

18: end function

P a g e | 44

Algorithm 13 Solve A\b function on GPUs with Specific Problem Types

1: function tSolveGPU(A, b, wait)

2: Initialize time ttotal

3: Calculate the number of sub-matrices, Nparts, where A needs to be divided

4: for iterations j = 1: Nparts

5: Compute start and end indices for the rows of the sub-matrix, Asub

6: for iterations i = 1: Nparts

7: Compute start and end indices for the columns of Asub

8: Copy the respective elements from A and b to Asub and bsub

9: Asub = gpuArray(A)

10: bsub = gpuArray(b)

11: tsub = tic

12: wait(gpu)

13: tsub = toc

14: reset(gpu)

15: ttotal = ttotal + tsub

16: end for

17: end for

18: return [ttotal]

19: end function

P a g e | 45

4.3 Data Handling Capability of GPUs

The evaluation of the GPU’s data processing capability is conducted through three distinct sub-

sections [34]: the transfer speed of data between CPUs and GPUs, read-write speed between CPUs

and GPUs, and rate of computationally intensive operation on GPUs. This approach aims to

quantify GPU performance, recognizing the substantial variations across different GPU devices.

It provides valuable insights into the data or computation requirements for the GPU to outperform

the CPU effectively, extending beyond the execution of the ICPCG method. The overall workflow

is presented in Figure 4.1 [34].

In the first sub-section, the focus is on assessing how swiftly data can be sent to and read

from the GPU. The speed of data transfer is intricately linked to the speed and activity level of the

Peripheral Component Interconnect (PCI) bus, given that GPUs are integrated into the PCI bus.

Additionally, the measurements in this test encompass some overheads, mirroring real-world GPU

applications [34].

The procedure begins by initializing the GPU with gpuDevice [16] and declaring a

double-precision array of data sizes in bytes, ranging from 214 to 218 . Two vectors are then

generated, with dimensions corresponding to the array of data sizes, one on the GPU and the other

on the CPU. Subsequently, memory is allocated, and the data on the CPU is transmitted to the GPU

using the gpuArray function [21]. Following this, the data on the GPU is transferred back to the

host memory using the gather function [35]. To accurately measure the time taken during the

data transfer, the gputimeit function [22] is employed instead of the regular timeit function

[36]. gputimeit ensures that all GPU operations are completed before recording the time and

compensates for the overhead time. All the mentioned functions, except timeit, belong to the

MATLAB PCT. Utilizing the timings, the send and gather bandwidths are calculated in GB.

The second sub-section evaluates the read-write speed between CPUs and GPUs by

executing memory-intensive operations. The objective is not to assess computational speed but

rather to evaluate the efficiency of memory read and write operations for each floating-point

operation. Given that many operations involve minimal computation per array element, they are

predominantly influenced by the time required to fetch or write data. To assess this, the plus

function, with straightforward computation, is implemented. This function performs one memory

P a g e | 46

read and one memory write for each floating-point operation, making it a reliable indicator of the

read-write operation speed and it should be limited by memory access speed [34].

Using the double-precision array of data sizes in bytes, vectors with varying dimensions

are generated on both the CPU and GPU. The plus function is then applied to the vectors on the

respective platform. This function has a computational density of 1/2 flops per element. To

measure the time on the GPU, the gputimeit function [22] is employed, whereas the timeit

function [36] is used for the CPU measurements. Once the timings are obtained for each size and

hardware, the read-write bandwidth is computed in GB [34].

In the ultimate sub-section, the focus shifts to testing the rate of operations with high

computational intensity, where the number of floating-point computations executed per element

read from and written to memory is substantial. In such scenarios, the memory speed becomes less

critical, and the limiting factor is the number and speed of floating-point units, given the operations’

high computational density. To examine this, the matrix-matrix multiplication is chosen as a

computationally intensive operation. The total number of floating-point calculations is given by

�lops(N) = 2N3 − N2, where N denotes the size of the matrix [34].

The process initiates by expanding the range of the existing double-precision array of data-

sizes in bytes, now spanning from 212 to 224. Subsequently, two input square matrices, A and B,

are generated for the multiplication operation A ∗ B. This matrix-matrix multiplication is executed

on both the CPU and GPU. Similarly, on the GPU, the gpuArray function [21] is utilized, and the

timeit and gputimeit functions measure the time taken on the CPU and GPU [22, 36],

respectively. The outcome is a matrix written to the corresponding platform. The timing data is

then utilized to calculate the rate of operations in gigaflops. In total, the number of elements read

or written is 3N2, with a computational density of (2N − 1)/3 flops per element, marking a higher

level of computational intensity compared to the previous sub-section [34].

P a g e | 47

Figure 4.1: Flowchart of Data Handling Capability of GPUs.

4.4 Resource Contention on CPUs using Single Program

Multiple Data Statements

This section is dedicated to evaluating resource contention on CPUs, with a specific focus on

understanding how the number of concurrent processes and data size influence the speedup in

various operations, including the execution of the ICPCG method covered in Chapter 4.1.2. In this

sub-chapter, the operations encompass summation, discrete Fast Fourier Transform (DFFT), and

matrix-matrix multiplication, and their examination aids in demonstrating the significance of

resource contention for memory access [37].

To facilitate these assessments on CPUs, the parpool function [28] is employed to create

a parallel pool of workers or processes within a process-based environment [29]. As described in

the earlier methodology on implementing the ICPCG method using SPMD statements (Chapter

4.1.2), parpool would get MATLAB to establish a pool on the local machine, assigning one

P a g e | 48

worker to each physical CPU core. These parallel workers execute computational tasks using

SPMD statements, enabling the parallelized code to run on workers within the same multi-core

CPU. This allows each worker to work on a different data set or portion of the distributed data

while communicating with other parallel workers during parallel computations [27, 28]. Once the

parallel workers are configured, a matrix is generated, providing the foundation for the subsequent

operations [37].

The first part of this evaluation explores the impact of the number of concurrent processes

on the speedup, and this is achieved through the execution of functions that are summation, DFFT,

and matrix-matrix multiplication. These tests employ either a fixed-size vector or a fixed-size

square matrix with the same total elements, and the number of parallel processes varies, ranging

from one to the total count of available parallel processes. Each function is executed multiple times

to obtain an average reading for accurate timings. Additionally, a timing function is created to run

the computation functions numerous times using the SPMD statements, retaining the minimum

execution time observed for each level of concurrency [37].

Conversely, to assess the influence of data size on the speedup, speed tests are conducted

on a vector or a square matrix of various dimensions, where the total number of elements between

a vector and a square matrix remains the same. This part of the evaluation encompasses additional

functions such as LU decomposition, singular value decomposition (SVD), and eigenvalue

computation. These additional functions and varying data size help investigate the effects of

different memory access patterns and the impacts of different data sizes. In this scenario, the tests

are performed using either a single or all available parallel processes. Similarly, a timing function

is used to run the computation functions numerous times with the SPMD statements, storing the

fastest execution time for the given level of concurrency [37]. Figure 4.2 shows the flow of the

resource contention evaluation.

P a g e | 49

Figure 4.2: Flowchart of Resource Contention Evaluation.

4.5 MATLAB’s GPUBench

The final inclusion in the evaluations is GPUBench, developed by the MathWorks PCT Team.

GPUBench is a utility that measures the timing of various MATLAB GPU tasks and provides an

estimate of the GPU’s peak performance in flops. It generates a comprehensive HyperText Markup

Language (HTML) report, illustrating the GPU’s performance relative to the pre-existing

performance data from various other GPUs. It is specifically crafted for comparing GPU hardware

and does not assess GPU performance variations across different MATLAB release. However, it

is also possible to implement the tests on the CPU to evaluate its performance [38].

In GPUBench, the initialization process involves setting up the data object, CPU, and GPU.

Prior to the execution of each task, GPUBench determines the maximum allowable data size in

either single- or double-precision, based on the available memory on the respective platform.

Subsequently, it performs tasks such as matrix-matrix multiplication, the backslash operator, DFFT

using the generated data on both the CPU and GPU, considering both single- and double-precision

data types. To prevent program crashes, a safety factor variable is incorporated, restraining the

P a g e | 50

amount of required memory for the generated data. It is anticipated that matrix-matrix

multiplication and the backslash operator involve regular memory access, while DFFT entails

irregular memory access. Each task is executed for a range of array sizes. The outcomes are then

presented in an HTML report [38].

P a g e | 51

Chapter 5

Results and Discussion

In this chapter, we present the outcomes derived from the comprehensive analyses and evaluations

delineated in the previous chapter. All methodologies expounded upon in Chapter 4 underwent

testing on two sets of CPU and GPU configurations, which are found in mobile devices such as

laptops. The first pair features the 10th Generation Intel® Core™ i7 processor, i7-10510U, coupled

with the NVIDIA GeForce GTX 1650 with Max-Q Design. The second pair involves the 4th

Generation Intel® Core™ i7 processor, i7-4710HQ, paired with the NVIDIA GeForce GTX 970M.

The Turing architecture is incorporated in the GeForce GTX 1650 with Max-Q Design, whereas

the GeForce GTX 970M is based on the Maxwell 2.0 design [39, 40]. For an in-depth specification

of each CPU and GPU, kindly refer to the Appendix.

As discussed in Chapter 4, additional methods beyond the ICPCG approach are employed

to assess the performance of the mobile GPUs. Consequently, the outcomes derived from these

supplementary methods corroborate the results obtained through the ICPCG method, confirming

the accurate implementation of the ICPCG method and providing insights into how mobile GPUs

operate, particularly in the context of executing iterative solvers.

The specific problem types used for conducting the analyses are thermal and

electromagnetics problems. The thermal problem, thermal1, chosen for evaluation exhibits a

distinctive pattern, as depicted in Figure 5.1, with a structural rank of 82,654. It is characterized as

real and SPD [41]. On the other hand, the electromagnetics problem, 2cubes_sphere, presents a

different unique pattern, as illustrated in Figure 5.2, with a structural rank of 101,492. It is also

real and SPD [42].

P a g e | 52

Figure 5.1: Thermal problem pattern (thermal1) [41].

Figure 5.2: Electromagnetics problem pattern (2cubes_sphere) [42].

P a g e | 53

5.1 ICPCG on CPUs and GPUs with Specific Problem Types

In this segment, the assessment of the ICPCG method is carried out on the specified problem types,

namely thermal1 and 2cubes_sphere [41, 42], utilizing the two designated sets of CPU and GPU

configurations. It is important to reiterate the key distinction between the pcg function and the

backslash operator, as mentioned in Chapter 4.1.1. The pcg function has the full support from

MATLAB PCT, unlike the backslash operator [18, 30]. Hence, there is no need to partition matrix

A of the loaded problem in this part of the evaluation.

5.1.1 ICPCG using Parallel Computing Toolbox Commands

The results presented in Tables 5.1 and 5.2 are derived from the parallel application of the ICPCG

method using MATLAB PCT functions, as outlined in Algorithm 8. The GPU execution timings

are measured through both the tic and toc functions and the gputimeit function [19, 20, 22],

whereas the CPU execution timings are obtained exclusively using the tic and toc functions.

Table 5.1: Time taken and Gigaflops for ICPCG (thermal1).

 i7-10510U
GTX 1650

Max-Q
i7-4710HQ GTX 970M

Time taken for

ichol (s)
0.012722 - 0.012761 -

Time taken for pcg

using tic-toc (s)
413.928124 860.500157 614.373076 1271.697566

Time taken for pcg

using gputimeit (s)
- 887.115585 - 1269.049949

Gigaflops from

tic-toc timing
909.467649 437.483056 612.745338 296.024973

Gigaflops from

gputimeit timing
- 424.357597 - 296.642570

P a g e | 54

Table 5.2: Time taken and Gigaflops for ICPCG (2cubes_sphere).

 i7-10510U
GTX 1650

Max-Q
i7-4710HQ GTX 970M

Time taken for

ichol (s)
0.031839 - 0.039136 -

Time taken for pcg

using tic-toc (s)
490.549099 2208.567411 775.176322 4088.910038

Time taken for pcg

using gputimeit (s)
- 2212.471140 - 4089.244489

Gigaflops from

tic-toc timing
1420.794670 315.575400 899.110983 170.453627

Gigaflops from

gputimeit timing
- 315.018593 - 170.439685

It is noteworthy that the ichol operation [17], being less computationally intensive,

demonstrates minimal performance variation between different CPU generations, with a marginal

difference of 0.039ms for the smaller problem size, thermal1, and a much larger discrepancy of

7.3 ms for the larger data size, 2cubes_sphere. Conversely, the pcg operation [18], being

significantly more computationally intensive, exhibits substantial differences across all CPUs and

GPUs.

Upon multiple executions, the GeForce GTX 1650 with Max-Q Design exhibits better

performance using tic and toc (without a function handle) compared to gputimeit (with a

function handle). In contrast, the GeForce GTX 970M demonstrates similar performance using

both methods.

In the initial CPU-GPU configuration (Core i7-10510U and GeForce GTX 1650 with Max-

Q Design), the pcg operation on thermal1 using the GeForce GTX 1650 with Max-Q Design yields

a speed up of 0.481 compared to the Core i7-10510U, indicating that the GPU is 107.89% slower

than the CPU. For the pcg operation on 2cubes_sphere, the speedup is 0.222, signifying that the

GPU is 350.22% slower than the CPU.

P a g e | 55

In the second CPU-GPU configuration (Core i7-4710HQ and GeForce GTX 970M), the

pcg operation on thermal1 using the GeForce GTX 970M results in a speedup of 0.483 compared

to the Core i7-4710HQ, indicating that the GPU is 106.99% slower than the CPU. For the pcg

operation on 2cubes_sphere, the speedup is 0.19, signifying that the GPU is 427.48% slower than

the CPU.

In both CPU-GPU configurations, it is observed that the CPUs have surpassed the GPUs

in performance when tackling the specified problem types. This trend becomes particularly

noticeable when GPUs, specifically mobile graphics chips, are tasked with handling double-

precision variables, a pattern consistently seen in the subsequent sub-chapters. Therefore, these

GPUs demonstrate inefficiency in handling intensive computations, such as executing iterative

sparse solvers, primarily attributed to their limited memory bandwidth [43]. Additionally, mobile

devices, including laptops and tablets, have strict power and thermal constraints. Mobile GPUs are

designed to operate within these constraints, which can limit their performance compared to

desktop GPUs [43].

5.1.2 ICPCG using Single Program Multiple Data Statements

In this segment, the ICPCG method is implemented on CPUs utilizing the parallel pool from the

concurrent execution of SPMD statements [27]. Given that both tested CPUs, Core i7-10510U and

Core i7-4710HQ, feature four cores [44, 45], the number of parallel workers ranges from one to

four. Moreover, the outcomes of applying the ICPCG to thermal1 are detailed in Tables 5.3 and

5.4, while those for 2cubes_sphere are presented in Tables 5.5 and 5.6. These results serve as the

basis for generating Figures 5.3 and 5.4 in the case of thermal1, and Figures 5.5 and 5.6 for

2cubes_sphere.

Referring to Figures 5.3 and 5.4, the results indicate that both the Core i7-10510U and the

Core i7-4710HQ exhibit performance degradation with an increasing number of parallel workers.

The Core i7-10510U experiences a total time increase of 76.16% from one to four parallel workers,

averaging a 20% increment for each additional worker. Additionally, the Core i7-4710HQ shows

a total time increase of 50.2% from one to four parallel workers, with an average increment of

14.56% for each additional worker.

P a g e | 56

Furthermore, considering Figures 5.5 and 5.6, the findings reveal that both CPUs manifest

performance degradation with a rising number of parallel workers. The Core i7-10510U registers

a total time increase of 121.94% when employing from one to four parallel workers, averaging a

30.55% increment for each additional worker. Similarly, the Core i7-4710HQ demonstrates a total

time increase of 102.78% from one to four parallel workers, with an average increment of

26.63% for each additional worker. It is apparent that the decline in performance becomes more

pronounced with an increase in problem size.

Upon analyzing the results presented in this section and those in the subsequent sub-chapter

(Chapter 5.4), it is evident that resource contention occurs when implementing the ICPCG method

on the CPUs. This contention becomes more prominent with an expansion in problem size [37].

P a g e | 57

Figure 5.3: ICPCG Execution Time vs Number of Parallel Workers (thermal1).

Table 5.3: Execution Times for ICPCG (thermal1).

Number of Parallel

Workers

Core i7-10510U

Time taken (s)

Core i7-4710HQ

Time taken (s)

1 391.064867 629.175917

2 470.019997 733.507735

3 570.080991 809.8314

4 688.886328 944.9925

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4

Ti
m

e
Ta

ke
n

(s
)

Number of Parallel Workers

Intel® Core i7-10510U Intel® Core i7-4710HQ

P a g e | 58

Figure 5.4: Gigaflops vs Number of Parallel Workers (thermal1).

Table 5.4: Gigaflops for ICPCG (thermal1).

Number of Parallel

Workers

Core i7-10510U

Gigaflops

Core i7-4710HQ

Gigaflops

1 962.63886 598.329065

2 800.932386 513.224633

3 660.352202 464.855077

4 546.467861 398.367435

0

200

400

600

800

1000

1200

1 2 3 4

Gi
ga

flo
ps

Number of Parallel Workers

Intel® Core i7-10510U Intel® Core i7-4710HQ

P a g e | 59

Figure 5.5: ICPCG Execution Time vs Number of Parallel Workers (2cubes_sphere).

Table 5.5: Execution Times for ICPCG (2cubes_sphere).

Number of Parallel

Workers

Core i7-10510U

Time taken (s)

Core i7-4710HQ

Time taken (s)

1 497.054921 729.7716

2 620.072275 939.167759

3 853.181401 1222.934716

4 1103.156395 1479.805379

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4

Ti
m

e
Ta

ke
n

(s
)

Number of Parallel Workers

Intel® Core i7-10510U Intel® Core i7-4710HQ

P a g e | 60

Figure 5.6: Gigaflops vs Number of Parallel Workers (2cubes_sphere).

Table 5.6: Gigaflops for ICPCG (2cubes_sphere).

Number of Parallel

Workers

Core i7-10510U

Gigaflops

Core i7-4710HQ

Gigaflops

1 1402.198259 955.051614

2 1124.013397 742.114002

3 816.906632 569.915577

4 631.795771 470.987303

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4

Gi
ga

flo
ps

Number of Parallel Workers

Intel® Core i7-10510U Intel® Core i7-4710HQ

P a g e | 61

5.2 Backslash on CPUs and GPUs

The backslash operator [30] underwent testing on generated matrices [31] and the two specific

problem, thermal1 and 2cubes_sphere [41, 42], where each specific problem showcasing distinct

patterns illustrated in Figures 5.1 and 5.2, respectively. As highlighted in Chapters 4.1.1 and 5.1,

the backslash operator is not fully supported by MATLAB PCT, unlike the pcg function [18, 30].

Consequently, it may encounter potential errors related to limited memory when operating on the

mobile GPUs. Therefore, the backslash operator is implemented on matrices sized according to

the maximum available memory of the mobile GPUs. The outcomes acquired in this evaluation

phase align with the results derived from the ICPCG method in the preceding sub-chapter (Chapter

5.1).

5.2.1 A\b on CPUs and GPUs with Generated Matrices

The generated matrices encompass two data types: single- and double-precision. In MATLAB,

single-precision variables are stored as 4-byte (32-bit) floating-point values, while double-

precision variables are stored as 8-byte (64-bit) floating-point values [46]. Consequently, the

expected range of the generated matrices for the single-precision data type exceeds that of the

double-precision data type.

In the first CPU-GPU setup featuring the Core i7-10510U and the GeForce GTX 1650 with

Max-Q Design, matrices of the single-precision class cover a range of nine sizes, starting from

1024 × 1024 and extending up to 17408 × 17408 . Conversely, in the second CPU-GPU

configuration with the Core i7-4710HQ and the GeForce GTX 970M, single-precision class

matrices are available in eight different sizes, ranging from 1024 × 1024 to 15360 × 15360 .

These ranges are also reflected in Table 5.7. Figures 5.7 and 5.8 are generated based on the

gigaflops data presented in Table 5.7.

In Figure 5.7, the performance of the GeForce GTX 1650 with Max-Q Design significantly

outpaces that of the Core i7-10510U, reaching a peak speedup of 3.374 when comparing the GPU

to the CPU, as illustrated in Figure 5.11. Similarly, Figure 5.8 shows that the performance of the

GeForce GTX 970M surpasses that of the Core i7-4710HQ, achieving a peak speedup of 4.678

when comparing the GPU to the CPU, as depicted in Figure 5.12. However, in cases where the

P a g e | 62

generated matrix size is notably small, both CPUs, Core i7-10510U and Core i7-4710HQ, exhibit

better performance than the GPUs, GeForce GTX 1650 with Max-Q Design and GeForce GTX

970M, respectively. Therefore, at the smallest matrix size of 1024 × 1024, the speedup of the

GeForce GTX 1650 with Max-Q Design compared to the Core i7-10510U is 0.746, as evident in

Figure 5.11. Additionally, the speedup of the GeForce GTX 970M compared to the Core i7-

4710HQ is 0.409, as observed in Figure 5.12.

Table 5.7: Gigaflops for A\b on Single-precision Matrix.

Matrix Size i7-10510U
GTX 1650

Max-Q
i7-4710HQ GTX 970M

1024 × 1024 86.987189 64.907872 62.81583 25.713381

3072 × 3072 188.748285 363.987757 127.163609 352.235054

5120 × 5120 234.061998 579.233822 155.228283 492.134057

7168 × 7168 262.873849 739.450249 167.426259 627.027793

9216 × 9216 274.043537 831.389600 177.324724 738.218882

11264 × 11264 275.591083 898.258581 177.094533 788.500995

13312 × 13312 282.730587 953.903685 196.568511 919.550602

15360 × 15360 280.948109 917.117924 228.412318 937.243363

17408 × 17408 283.465329 924.551816 - -

P a g e | 63

Figure 5.7: Performance of i7-10510U and GTX 1650 with Max-Q on Single-precision.

Figure 5.8: Performance of i7-4710HQ and GTX 970M on Single-precision.

P a g e | 64

Due to the increased space requirements of double-precision variables, the generated

matrices of the double-precision class exhibit a more limited range. Both CPU-GPU configurations

feature six matrix sizes ranging from 1024 × 1024 to 11264 × 11264, as detailed in Table 5.8.

The gigaflops data presented in Table 5.8 serves as the basis for generating Figures 5.9 and 5.10.

In Figure 5.9, it is apparent that the performance of the GeForce GTX 1650 with Max-Q

Design is inferior to that of the Core i7-10510U across all six matrix sizes, yielding an average

speedup of 0.836 when comparing the GPU to the CPU, as indicated in Figure 5.11.

Meanwhile, Figure 5.10 illustrates that the performance of the GeForce GTX 970M is also

subpar compared to the Core i7-4710HQ for all matrix sizes except the smallest. The GPU’s

performance appears to peak in gigaflops when the matrix size reaches 7168 × 7168 . At the

smallest matrix size of 1024 × 1024, the GPU exhibits a positive speedup of 1.102 compared to

the CPU, as highlighted in Figure 5.12. However, as the matrix size increases, the speedup of the

GPU compared to the CPU progressively decreases, reaching its minimum at 0.639 for the largest

matrix size of 11264 × 11264.

Analyzing the outcomes, it is clear that the GPUs outshine the CPUs in performance

particularly with single-precision matrices, which demand lower memory capacity. This

superiority diminishes when dealing with double-precision matrices due to limited memory

bandwidth on the mobile GPUs [43], as observed in the previous sub-chapter (Chapter 5.1.1).

Similarly, the mobile GPUs are expected to operate within the strict power and thermal constraints

[43]. Additionally, the GPUs exhibit a substantial advantage in parallizing the code for large data

sizes, where the benefits of parallelization outweight the associated overhead. However, at smaller

data sizes, the overhead involved in initiating and handling parallel tasks on the GPU becomes

more pronounced, rendering the CPUs to be more efficient. As the data size expands, this overhead

impact diminishes [13].

P a g e | 65

Table 5.8: Gigaflops for A\b on Double-precision Matrix.

Matrix Size i7-10510U
GTX 1650

Max-Q
i7-4710HQ GTX 970M

1024 × 1024 39.354915 33.259808 26.556333 29.251576

3072 × 3072 92.573312 81.085831 64.643107 58.813968

5120 × 5120 110.723287 92.779758 83.689847 65.260637

7168 × 7168 119.582394 97.292597 92.279303 68.117172

9216 × 9216 124.249193 100.911928 100.442205 67.929555

11264 × 11264 123.220378 102.693245 105.339049 67.288804

Figure 5.9: Performance of i7-10510U and GTX 1650 with Max-Q on Double-precision.

P a g e | 66

Figure 5.10: Performance of i7-4710HQ and GTX 970M on Double-precision.

Figure 5.11: Speedup of Backslash on GTX 1650 with Max-Q Compared to i7-10510U.

P a g e | 67

Figure 5.12: Speedup of Backslash on GTX 970M Compared to i7-4710HQ.

5.2.2 A\b on CPUs and GPUs with Specific Problem Types

Both problem types, thermal1 and 2cubes_sphere [41, 42], involve a double-precision data type,

where elements are stored as 8-byte (64-bit) floating-point values in MATLAB [46]. To prevent

memory overflow on both CPUs and mobile GPUs, matrix A of the loaded problem must be

partitioned based on the platform’s available memory, as matrix A requires the most extensive

memory capacity.

As detailed in the methodology (Chapter 4.2.2), matrix A of the loaded problem is

partitioned into sub-matrices, while the RHS vector b is divided into sub-vectors with a

comparable dimension. The combined size of the sub-matrices equals that of the loaded problem

as a whole. Given the emphasis on assessing the performance of the mobile GPUs with an

equivalently large and sparse system of linear equations, rather than implementing methods such

as the block-Jacobi preconditioner [32, 33] to precisely partition and solve the system, the

partitioning of the system does not account for the accuracy of solving for the unknown x.

P a g e | 68

The GeForce GTX 1650 with Max-Q Design boasts a maximum available memory of

3306654107 bytes, equivalent to a double-precision matrix size of 20331 × 20331 .

Consequently, the matrices A for thermal1 and 2cubes_sphere surpass the GPU’s maximum

available memory. To circumvent this limitation, matrices A for thermal1 and 2cubes_sphere are

divided into 25 sub-matrices each. This division facilitates the backslash operation to function on

individual sub-matrices on the GPU without encountering potential errors. On the Core i7-10510U,

matrix A is also partitioned into 25 sub-matrices when executing the backslash operator.

Similarly, the GeForce GTX 970M offers a maximum available memory of 2544900507

bytes, corresponding to a double-precision matrix size of 17836 × 17836. Analogously, matrices

A for thermal1 and 2cubes_sphere exceed the GPU’s maximum available memory. Leveraging the

available memory of the GeForce GTX 970M, matrix A for thermal1 is segmented into 25 sub-

matrices, while matrix A for 2cubes_sphere is divided into 36 sub-matrices. On the Core i7-

4710HQ, matrix A is also segmented into 25 sub-matrices for thermal1 and 36 sub-matrices for

2cubes_sphere.

Tables 5.9 and 5.10 show the results for A\b on thermal1 and 2cubes_sphere, respectively,

on both the CPU-GPU configurations. In the first CPU-GPU configuration (Core i7-10510U and

GeForce GTX 1650 with Max-Q Design), the GPU performs poorly with a gigaflops speedup of

0.005 for thermal1 and 0.001 for 2cubes_sphere as compared to the CPU. For the second GPU-

CPU configuration (Core i7-4710HQ and GeForce GTX 970M), the GPU also performs poorly

with a gigaflops speedup of 0.002 for thermal1 and 0.003 for 2cubes_sphere.

The pattern identified in the earlier sub-chapters (Chapters 5.1.1 and 5.2.1) persists,

showcasing the inefficiency of the mobile GPUs in managing demanding computations when

tasked with double-precision data types. This stands in contrast to the commendable performance

when dealing with single-precision data types, as emphasized in Chapter 5.2.1. Therefore, this

consistent trend supports the notion that constraints such as power and thermal limitations, coupled

with limited memory bandwidth, pose challenges for the mobile GPUs to deliver an optimal

performance [43].

P a g e | 69

Table 5.9: Results for Backslash Operator (thermal1).

 i7-10510U GTX 1650 Max-Q i7-4710HQ GTX 970M

Time taken for

A\b (s)
0.575508 121.528429 1.165408 529.508559

Gigaflops 654124.54916 3097.663991 323023.640654 710.950242

Table 5.10: Results for Backslash Operator (2cubes_sphere).

 i7-10510U GTX 1650 Max-Q i7-4710HQ GTX 970M

Time taken for

A\b (s)
0.692094 536.209117 1.770188 623.184345

Gigaflops 1007044.773256 1299.809203 393726.284777 1118.400279

P a g e | 70

5.3 Data Handling Capability of GPUs

The PCI bus governs the data transfer [34], and both the GeForce GTX 1650 with Max-Q Design

and GeForce GTX 970M support PCIe 3.0 with 16 lanes [39, 40]. In principle, a GPU adhering to

PCIe 3.0 specifications provides a theoretical bandwidth of 1 GB/s per lane in each direction [47].

Consequently, both GPUs collectively offer a theoretical maximum bandwidth of 16 GB/s per

direction. This segment of evaluation has provided three sets of results that are visually presented

in Figures 5.13 to 5.18, with each platform’s peak performance distinctly marked. Furthermore, all

the peak performance data is summarized in Table 5.11 for reference.

5.3.1 Data Transmission and Retrieval Bandwidth

Figures 5.13 and 5.14 depict the data transfer bandwidth between the two CPU-GPU

configurations, highlighting the maximum transfer speeds on each platform with a circle. In Figure

5.13, featuring the Core i7-10510U and GeForce GTX 1650 with Max-Q Design, the data

transmission speed from the CPU to the GPU consistently outpaces the speed of data retrieval from

the GPU to the CPU across various data sizes. However, for notably small data sizes, both

transmission and retrieval speeds remain below 1 GB/s . Yet, once the data size exceeds

approximately 4 megabytes (MB) , both transmission and retrieval speeds notably escalate to

around 2.4 GB/s.

Examining Figure 5.14, showcasing the Core i7-4710HQ and GeForce GTX 970M, reveals

a similar trend in data transfer speeds as in the other CPU-GPU configuration, which includes the

Core i7-10510U and GeForce GTX 1650 with Max-Q Design. The speed of data transmission

from the CPU to the GPU generally surpasses the speed of data retrieval from the GPU to the CPU

across all data sizes. For small data sizes, the data transmission speed from the CPU to the GPU

hovers around 1 GB/s and the data retrieval speed from the GPU to the CPU remains below

1 GB/s. However, once the data size exceeds approximately 2 MB, both transmission and retrieval

speeds undergo a significant increase, reaching 3.5 GB/s and 2.8 GB/s, respectively.

Both Figures 5.13 and 5.14 portray a similar pattern, where overheads take precedence

when dealing with small data set sizes, and as the data size increases, the PCI bus becomes the

limiting factor causing the transfer speed to hover around a certain value [34].

P a g e | 71

Figure 5.13: Data Transfer Bandwidth between i7-10510U and GTX 1650 with Max-Q.

Figure 5.14: Data Transfer Bandwidth between i7-4710HQ and GTX 970M.

P a g e | 72

5.3.2 Read and Write Data Bandwidth

The outcomes of the plus function, which involves one read and one write for each floating-point

operation, are presented in Figures 5.15 and 5.16. Figure 5.15 showcases the results of operations

conducted on the Core i7-10510U and GeForce GTX 1650 with Max-Q Design, while Figure 5.16

displays the results of operations on the Core i7-4710HQ and GeForce GTX 970M. The maximum

speed on each platform is marked with a circle.

Upon examining Figure 5.15, the read-write speed on the Core i7-10510U exhibits a

slightly faster average speed than the read-write speed on the GeForce GTX 1650 with Max-Q

Design for small data sizes, reaching a peak speed of 104.7 GB/s . However, as the data size

increases, the read-write speed on the Core i7-10510U falls below that of the GeForce GTX 1650

with Max-Q Design, maintaining around 12 GB/s for a range of large data sizes. In contrast, the

read-write speed on the GeForce GTX 1650 with Max-Q Design continues to steadily increase,

peaking at 94.09 GB/s.

In Figure 5.16, a similar pattern to Figure 5.15 is observed. The read-write speed on the

Core i7-4710HQ also demonstrates a faster average speed than that on the GeForce GTX 970M

for small data sizes, achieving a peak speed of 61.22 GB/s. As the data size increases, the read-

write speed on the Core i7-4710HQ experiences a decline, becoming slower than the read-write

speed on the GeForce GTX 970M and maintaining around 7 GB/s for a range of large data sizes.

Unlike the steady increase seen on the GeForce GTX 1650 with Max-Q Design, the read-write

speed on the GeForce GTX 970M exhibits a slot initial increase followed by a rapid leap from

11.6 GB/s to 93.6 GB/s at a data size of approximately 33 MB. It continues to rise with the data

size, reaching a peak of 101.45 GB/s.

Comparing Figures 5.15 and 5.16 to Figures 5.13 and 5.14 reveals that the mobile GPUs

generally exhibit faster read and write speeds to their memory compared to retrieving data from

the host. Hence, minimizing the number of memory transfers between the host and GPU can save

time and enhance efficiency. Additionally, transferring data to the GPU for computation, allowing

the GPU to perform as much computation as possible before returning the data to the host, proves

to be advantageous [34].

P a g e | 73

Figure 5.15: Read-Write Bandwidth on i7-10510U and GTX 1650 with Max-Q.

Figure 5.16: Read-Write Bandwidth on i7-4710HQ and GTX 970M.

P a g e | 74

5.3.3 Calculation Rate of Intensive Operations

Figure 5.17 illustrates the result of the double-precision matrix-matrix multiplication operation on

the Core i7-10510U and GeForce GTX 1650 with Max-Q Design, while Figure 5.18 displays the

result of the same operation on the Core i7-4710HQ and GeForce GTX 970M. The highest

calculation rate in gigaflops is circled on each platform.

Both Figures 5.17 and 5.18 reveal a consistent pattern where the CPUs outperform the

GPUs for all matrix sizes. When the matrix size is relatively small, both the CPUs and GPUs

exhibit lower calculation rate. As the matrix size increases, the calculation rate on both the CPUs

and GPUs shows an upward trend. In Figure 5.17, the Core i7-10510U achieves a peak calculation

rate of 155.78 GFLOPS , while the GeForce GTX 1650 with Max-Q Design attains a peak

calculation rate of 113.29 GFLOPS. In Figure 5.18, the Core i7-4710HQ records a peak calculation

rate of 130.2 GFLOPS , whereas the GeForce GTX 970M achieves a peak calculation rate of

76.06 GFLOPS.

The findings indicate that the mobile GPUs excel in performing calculations more rapidly

when dealing with sufficiently large data sizes compared to smaller ones. Nevertheless, the overall

performance lags behind that of the CPUs due to the restricted memory bandwidth, power and

thermal constraints of mobile GPUs [43], aligning with a consistent trend observed in previous

sub-chapters (Chapters 5.1.1 and 5.2.1). Despite the performance limitations of mobile GPUs, it

remains noticeable that the GPU achieves higher GFLOPS when operating at higher level of

saturation as the overhead linked to initiating and managing parallel tasks on the GPU decreases

[13].

P a g e | 75

Figure 5.17: Rate of Matrix Multiplication Operation on i7-10510U and GTX 1650 with Max-

Q.

Figure 5.18: Rate of Matrix Multiplication Operation on i7-4710HQ and GTX 970M.

P a g e | 76

Table 5.11: Results of Data Handling between CPU and GPUs.

 i7-10510U
GTX 1650

Max-Q
i7-4710HQ GTX 970M

Peak Send Speed from

Host to GPU (GB/s)
2.52417 4.10281

Peak Gather Speed from

GPU to Host (GB/s)
2.39407 2.86279

Peak Read-Write Speed

(GB/s)
104.722 94.0939 61.2189 101.449

Peak Operation Rate

(GFLOPS)
155.8 113.3 130.2 76.1

5.4 Resource Contention on CPUs

The assessment of resource contention on CPUs has provided two sets of results for each CPU and

GPU configuration—one for varying the number of processes and another for varying the data size

[37]. Moreover, the outcomes from this evaluation help to understand the behaviour of the results

obtained in Chapter 5.1.2.

5.4.1 Varying Number of Processes

This phase of the evaluation encompasses three distinct operations: summation, DFFT, and matrix-

matrix multiplication. Figure 5.19 is derived from the test conducted on the Core i7-10510U, while

Figure 5.20 corresponds to the Core i7-4710HQ. Given that both CPUs boast four cores [44, 45],

the range of the parallel workers spans from one to four. The speedup, depicted in Figures 5.19

and 5.20, is calculated using a consistent formula that involves determining the ratio of the time

taken with the minimum number of parallel workers (one) to the time taken with the specified

number of parallel workers (ranging from one to four). This result is then multiplied by the number

of parallel workers employed, which also ranges from one to four, providing a scaled

P a g e | 77

representation on the graph. Additionally, the numerical results necessary for plotting both Figures

5.19 and 5.20 are exhaustively detailed in Tables 5.12 to 5.14.

Upon scrutiny of Figures 5.19 and 5.20, it becomes obvious that summation operations,

being computationally lightweight, exhibit pronounced resource contention, as reflected in the

gradual increase in speedup with an increase in the number of processes, a trend consistent for

both CPUs. In Figure 5.19, the Core i7-10510U achieves a speedup of 1.59 with four parallel

workers, while in Figure 5.20, the Core i7-4710HQ attains a speedup of 1.39 with the same

number of parallel workers. Consequently, executing multiple lightweight operations concurrently

requires more time than a single execution of such an operation on a CPU [37].

On the contrary, DFFT operations, being more computationally intensive than summation

operations, showcase enhanced speedup performance on both CPUs. Figure 5.19 indicates that the

Core i7-10510U achieves a speedup of 1.97 with four parallel workers, while Figure 5.20 shows

that the Core i7-4710HQ attains a speedup of 2.27 under identical conditions. This improved

speedup performance suggests a reduction in resource contention. Thus, DFFT operations do not

display the same performance degradation as summation operations when multiple calls are

concurrently executed [37].

Lastly, matrix-matrix multiplication operations demonstrate the highest speedup

performance as the number of processes increases. Figure 5.19 reveals that the Core i7-10510U

attains a speedup of 3 with four parallel workers, and Figure 5.20 indicates that the Core i7-

4710HQ achieves a speedup of 2.53 under the same conditions. This efficiency is attributed to the

regular memory access in matrix-matrix multiplication, making it highly effective for parallel

execution on a multicore platform [37].

P a g e | 78

Figure 5.19: Effect of Concurrent Processes on Resource Contention on Core i7-10510U.

Figure 5.20: Effect of Concurrent Processes on Resource Contention on Core i7-4710HQ.

P a g e | 79

Table 5.12: Results for Summation Operations on an array of 20482.

Number of Parallel

Workers

Core i7-10510U

Time taken (s)

Core i7-4710HQ

Time taken (s)

1 0.208519 0.253275

2 0.277223 0.366846

3 0.403255 0.521152

4 0.523741 0.728668

Table 5.13: Results for DFFT Operations on a vector of 20482.

Number of Parallel

Workers

Core i7-10510U

Time taken (s)

Core i7-4710HQ

Time taken (s)

1 0.708381 1.025814

2 0.873899 1.223243

3 1.108064 1.491441

4 1.435778 1.805978

Table 5.14: Results for Matrix Multiplication Operations of 2048 × 2048.

Number of Parallel

Workers

Core i7-10510U

Time taken (s)

Core i7-4710HQ

Time taken (s)

1 0.327313 0.401454

2 0.342751 0.436009

3 0.384471 0.509765

4 0.436631 0.634544

P a g e | 80

5.4.2 Varying Data Size

When evaluating resource contention with varying data sizes, additional operations namely LU

decomposition, SVD, and eigenvalue computation, are considered in conjunction with the initial

three operations—summation, DFFT, and matrix-matrix multiplication. Figures 5.21 and 5.22

present the results obtained from the Core i7-10510U and Core i7-4710HQ, respectively. The

speedup, illustrated in both figures, is computed using the same formula that involves getting the

ratio of the time taken with the minimum number of parallel workers (one) to the time taken with

the maximum number of parallel workers (four). The result is then multiplied by the number of

parallel workers employed, which is four in this instance. Both CPUs ideally exhibit a speedup of

4, corresponding to the number of cores each CPU possesses [37]. Furthermore, the numerical

results essential for plotting both Figures 5.21 and 5.22 are exhaustively detailed in Tables 5.15

and 5.16.

In Figure 5.21, showcasing the Core i7-10510U, summation and SVD operations exhibit a

declining trend as the number of elements per parallel worker increases. On the contrary, matrix-

matrix multiplication and LU decomposition operations demonstrate an ascending trend with an

increase in the number of elements per parallel worker. The DFFT operation maintains a consistent

speedup across all number of elements per process. Lastly, the eigenvalue operation displays an

inconsistent trend, initially showing an upward trajectory followed by a subsequent downward

trend.

Similarly, in Figure 5.22, featuring the Core i7-4710HQ, the summation and SVD

operations depict a declining trend with an increase in the number of elements per parallel worker.

In contrast, the matrix-matrix multiplication operation displays an upward trend under the same

conditions. Both the DFFT and LU decomposition operations maintain a constant speedup across

all number of elements per process. The eigenvalue operation, akin to Figure 5.21, exhibits an

inconsistent trend, initially ascending and later descending. In summary, both CPUs exhibit similar

behaviour across all operations, except for the LU decomposition operation, which displays

divergent patterns.

P a g e | 81

Upon examining the outcomes, it becomes evident that for small data sizes, the functions

operate efficiently within the CPU cache, yielding a relatively commendable speedup. Contrarily,

as the data size surpasses the capacity of the CPU cache, a decline in performance attributable to

contention for memory access becomes apparent [37]. This trend of performance degradation due

to an increase in data size is also observable in Chapter 5.1.2 where the loaded problems, thermal1

and 2cubes_sphere [41, 42], are considerably larger than the generated matrices.

Figure 5.21: Effect of Data Size on Resource Contention on Core i7-10510U.

P a g e | 82

Figure 5.22: Effect of Data Size on Resource Contention on Core i7-4710HQ.

Table 5.15: Time Taken (s) for Various Operations on Varying Data Size with 1 Parallel Worker.

 Data Size

Operation
128 × 128 256 × 256 512 × 512

1024

× 1024

2048

× 2048

C
or

e
i7

-1
05

10
U

Sum 0.000417 0.001388 0.005975 0.037754 0.200022

DFFT 0.001558 0.008644 0.037326 0.198239 0.712986

Matrix Mult 0.000089 0.000793 0.005225 0.041985 0.313504

LU 0.000206 0.000420 0.002965 0.019379 0.137334

SVD 0.000735 0.003922 0.023647 0.185570 2.500387

Eig 0.004672 0.021461 0.151504 0.584634 3.304784

C
or

e
i7

-4
71

0H
Q

Sum 0.000509 0.001979 0.008301 0.054400 0.248218

DFFT 0.003515 0.013114 0.053108 0.274265 0.981628

Matrix Mult 0.000139 0.000913 0.006842 0.053766 0.404726

LU 0.000163 0.001130 0.005080 0.029384 0.191172

SVD 0.001262 0.007012 0.040569 0.391743 4.187507

Eig 0.007526 0.035603 0.246028 1.069602 5.409669

P a g e | 83

Table 5.16: Time Taken (s) for Various Operations on Varying Data Size with 4 Parallel Workers.

 Data Size

Operation
128 × 128 256 × 256 512 × 512

1024

× 1024

2048

× 2048

C
or

e
i7

-1
05

10
U

Sum 0.000691 0.002788 0.011428 0.116797 0.521592

DFFT 0.002003 0.015085 0.071033 0.364284 1.459302

Matrix Mult 0.000224 0.001717 0.007689 0.055448 0.439225

LU 0.000127 0.000986 0.006442 0.039014 0.217332

SVD 0.001173 0.006619 0.038824 0.833646 9.560515

Eig 0.008513 0.025307 0.188193 1.117153 7.939985

C
or

e
i7

-4
71

0H
Q

Sum 0.000787 0.004339 0.020244 0.178574 0.705176

DFFT 0.004290 0.022973 0.111446 0.502426 1.840714

Matrix Mult 0.000364 0.002086 0.014772 0.099395 0.682797

LU 0.000361 0.001853 0.012198 0.051780 0.339684

SVD 0.002104 0.012032 0.102208 1.490041 12.745665

Eig 0.014010 0.049717 0.347629 1.999281 10.708117

5.5 MATLAB’s GPUBench

The GPUBench tool automatically generates a report following the execution of matrix-matrix

multiplication, backslash DFFT operations in both single- and double-precision modes [38]. This

report includes a performance comparison of the tested CPUs and GPUs against the performance

of other GPUs. Figure 5.23 summarizes the performance of the first CPU-GPU configuration,

featuring the Core i7-10510U and GeForce GTX 1650 with Max-Q Design, while Figure 5.24

outlines the performance summary of the second CPU-GPU configuration, comprising the Core

i7-4710HQ and GeForce GTX 970M. Furthermore, Table 5.17 shows the detailed numerical

results for both CPU-GPU configurations, with the tested CPUs and GPUs highlighted in bold for

easy reference.

P a g e | 84

Examining both Figures 5.23 and 5.24 reveals that GPUs exhibit significantly higher

GFLOPS when handling single-precision variables. However, in the case of double-precision

variables, the GPUs either lag behind in GFLOPS or show comparable performance to the

corresponding CPUs. These findings align with the observation made in the assessment conducted

in Chapter 5.2.1, specifically regarding the backslash operation. Moreover, in the earlier sub-

chapters (Chapters 5.1.1, 5.2.1, and 5.3.3), focusing on double-precision data types, also highlight

that the mobile GPUs do not excel due to similar factors such as limited bandwidth, power

constraints, and thermal limitations [43].

P a g e | 85

Figure 5.23: Performance Summary of i7-10510U and GTX 1650 with Max-Q.

P a g e | 86

Figure 5.24: Performance Summary of i7-4710HQ and GTX 970M.

P a g e | 87

Table 5.17: Summary of All Tested CPUs and GPUs.

Double-precision Results

(GFLOPS)

Single-precision Results

(GFLOPS)

Matrix

Multi
Backslash DFFT

Matrix

Multi
Backslash DFFT

Tesla V100-PCIE-

32GB
6884.95 563.73 728.71 13727.99 1210.42 1365.11

TITAN V 6779.73 674.40 534.65 13515.42 1336.39 985.36

Tesla P100-PCIE-

12GB
4510.03 929.00 357.65 8435.34 1647.83 687.13

Tesla K40c 1189.54 677.12 135.88 3187.76 1334.17 294.86

Tesla K20c 1004.06 641.42 106.09 2657.01 1230.28 235.20

TITAN Xp 421.00 369.32 209.45 10823.05 1272.06 797.17

GeForce RTX 2080

Super
373.37 345.32 164.30 10813.12 1330.64 746.20

GeForce GTX 1080 280.84 223.05 137.66 7707.01 399.37 424.60

GeForce GTX 1650

with Max-Q Design
111.41 83.54 3.85 1807.22 371.49 18.53

Core i7-10510U 79.20 67.66 9.95 246.96 135.04 32.53

GeForce GTX

970M
74.97 50.81 38.93 2014.80 369.06 179.78

Core i7-4710HQ 126.50 86.24 9.92 265.75 180.26 29.36

Quadra K620 25.45 22.77 12.75 716.71 350.31 75.00

P a g e | 88

Chapter 6

Conclusion and Future Work

In this thesis, we conducted a comprehensive analysis of GPU parallelization performance,

specifically focusing on NVIDIA mobile graphics chips, utilizing MATLAB with PCT instead of

APIs like CUDA. Our investigation involved the implementation of the ICPCG method and the

backslash operation within mobile devices, such as laptops. Furthermore, we examined the data

handling capabilities of the mobile GPUs, assessed resource contention, and utilized the

GPUBench tool developed by the MathWorks PCT Team.

Our finding suggests that mobile NVIDIA GPUs, particularly those with Turing and

Maxwell 2.0 architectures, do not offer substantial advantages in enhancing the efficiency of the

ICPCG method when employing MATLAB PCT, especially in scenarios involving double-

precision variables. The absence of CUDA may contribute to suboptimal GPU resource utilization

since MATLAB PCT lacks options for developers to explicitly assign tasks to GPUs [5], in contrast

to CUDA. As a result, developers rely on the toolbox for task allocation, limiting the optimization

of code for parallel execution.

Moreover, it is noteworthy that MATLAB currently does not support sparse single-

precision data types [48]. This limitation forces GPUs to handle large sparse data in double-

precision only, contributing to a slower computation rate on mobile GPUs. While the tested mobile

NVIDIA GPUs, including the GeForce GTX 1650 with Max-Q Design and GeForce GTX 970M,

did not outperform the tested Intel® CPUs, featuring Core™ i7-10510U and Core™ i7-4710HQ,

our results shed light on the constraints related to implementing iterative solvers in the MATLAB

environment on mobile GPUs.

Understanding the underlying reasons behind these results, we identify potential directions

for future work. Firstly, enhancing MATLAB to support large sparse single-precision matrices

could significantly improve the efficiency of GPU operations, potentially surpassing CPU

performance. Additionally, exploring advancements in MATLAB toolboxes to enable developers

to explicitly parallelize their code for optimal efficiency is crucial. Furthermore, considering the

P a g e | 89

continuous evolution of GPUs and PCI buses, improvements in memory bandwidth, power

constraints, and thermal limitations are anticipated. These advancements may allow for increased

data storage and processing within GPU memory, alleviating performance bottlenecks. Future

research in these directions holds the promise of overcoming current limitations and unlocking the

full potential of mobile GPU parallelization in MATLAB.

P a g e | 90

Appendix

Table A.1: Specifications of Tested GPUs.

Graphics Processor
NVIDIA GeForce GTX 1650

with Max-Q Design[40]

NVIDIA GeForce GTX

970M[39]

Architecture Turing Maxwell 2.0

GPU Name TU117 GM204

Process Size 12 nm 28nm

Transistors 4,700 million 5,200 million

Density 23.5 M / mm2 13.1 M / mm2

Die Size 200 mm2 398 mm2

Bus Interface PCIe 3.0 x16 MXM-B (3.0 x16)

Release Date 23 April 2019 7 October 2014

Memory

Memory Size 4 GB 3 GB

Memory Type GDDR5 GDDR5

Memory Bus Width 128-bit 192-bit

Memory Bandwidth 112.1 GB/s 120.3 GB/s

Render Config

Cores 1024 1280

TMUs 64 80

ROPs 32 48

SM Count 16 10

L1 Cache 64 KB (per SM) 48 KB (per SM)

L2 Cache 1024 KB 1536 KB

Clock Speeds

Base Clock 1020 MHz 924 MHz

Boost Clock 1245 MHz 1038 MHz

P a g e | 91

Memory Clock 1751 MHz, 7 Gbps effective 1253 MHz, 5 Gbps effective

Graphics Features

DirectX 12_1 12_1

OpenGL 4.6 4.6

OpenCL 3.0 3.0

Vulkan 1.3 1.3

CUDA 7.5 5.2

Shader Model 6.7 6.7

Power Consumption 35 Watt 81 Watt

Table A.2: Specifications of Tested CPUs.

Central Processor Intel® Core™ i7-10510U[45] Intel® Core™ i7-4710HQ[44]

Essentials

Product Collection
10th Generation Intel® Core™ i7

Processors

4th Generation Intel® Core™ i7

Processors

Code Name Products formerly Comet Lake Products formerly Haswell

Vertical Segment Mobile Mobile

Processor Number i7-10510U i7-4710HQ

Lithography 14 nm 22 nm

Launch Date Q3’19 Q2’14

CPU Specifications

Total Cores 4 4

Total Threads 8 8

Max Turbo Frequency 4.90 GHz 3.50 GHz

Processor Base

Frequency
1.80 GHz 2.50 GHz

Cache 8 MB Intel® Smart Cache 6 MB Intel® Smart Cache

Bus Speed 4 GT/s 5 GT/s

P a g e | 92

TDP 15 W 47 W

Memory

Specifications

Max Memory Size

(dependent on

memory type)

64 GB 32 GB

Memory Types
DDR4-2666, LPDDR3-2133,

LPDDR4-2933
DDR3L 1333/1600

Max # of Memory

Channels
2 2

Max Memory

Bandwidth
45.8 GB/s 25.6 GB/s

ECC Memory No No

GPU Specifications

Processor Graphics
Intel® UHD Graphics for 10th

Gen Intel® Processors
Intel® HD Graphics 4600

Graphics Base

Frequency
300 MHz 400 MHz

Graphics Max

Dynamic Frequency
1.15 GHz 1.20 GHz

Graphics Video Max

Memory
32 GB 2 GB

Device ID 0x9B41/0x9BCC 0x416

Expansion Options

PCI Express Revision 3.0 3.0

Max # of PCI Express

Lanes
16 16

P a g e | 93

Bibliography

[1] J. Reese and S. Zaranek. "GPU Programming in MATLAB."

https://www.mathworks.com/company/newsletters/articles/gpu-programming-in-

matlab.html (accessed 2023-12-03).

[2] J. Peddie, The History of the GPU-New Developments, First ed. Springer Cham, 2023, p.

410.

[3] S. K. David, "The incomplete Cholesky—conjugate gradient method for the iterative

solution of systems of linear equations," Journal of Computational Physics, vol. 26, no. 1,

pp. 43-65, 1978, doi: https://doi.org/10.1016/0021-9991(78)90098-0.

[4] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations (Frontiers in Applied

Mathematics). Society for Industrial and Applied Mathematics, 1995, p. 169.

[5] MathWorks, "Parallel Computing Toolbox User's Guide."

[6] NVIDIA. "CUDA C++ Programming Guide." NVIDIA.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/contents.html (accessed 2023-

11-27).

[7] M. R. Hestenes and E. Stiefel, "Methods of Conjugate Gradients for Solving Linear

Systems," Journal of Research of the National Bureau of Standards, vol. 49, pp. 409-435,

1952.

[8] R. M. Freund, "The Steepest Descent Algorithm for Unconstrained Optimization and a

Bisection Line-search Method," Journal of Massachusetts Institute of Technology. United

States of America, vol. 131, 2004.

[9] J. R. Shewchuk, "An Introduction to the Conjugate Gradient Method Without the

Agonizing Pain," Carnegie Mellon University, 1994. Accessed: 2023-12-13.

[10] R. M. Freund, "The Steepest Descent Algorithm for Unconstrained Optimization," Journal

of Massachusetts Institute of Technology. United States of America, 2014.

https://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
https://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
https://doi.org/10.1016/0021-9991(78)90098-0
https://docs.nvidia.com/cuda/cuda-c-programming-guide/contents.html

P a g e | 94

[11] Y. Saad, Iterative Methods for Sparse Linear Systems, Second ed. Society for Industrial

and Applied Mathematics, 2003, p. 537.

[12] W. Ford, Numerical Linear Algebra with Applications using MATLAB. 2014.

[13] M. J. Mišić, Đ. M. Đurđević, and M. V. Tomašević, "Evolution and trends in GPU

computing," in 2012 Proceedings of the 35th International Convention MIPRO, Opatija,

Croatia, 2012: IEEE, pp. 289-294.

[14] NVIDIA. "GPU Performance Background." NVIDIA.

https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-

background/index.html#gpu-arch (accessed 2023-11-27).

[15] MathWorks. "Perform parallel computations on multicore computers, GPUs, and computer

clusters." https://www.mathworks.com/help/parallel-computing/ (accessed 2023-12-05).

[16] MathWorks. "Query or select a GPU device." https://www.mathworks.com/help/parallel-

computing/parallel.gpu.gpudevice.html (accessed 2023-12-06).

[17] MathWorks. "Incomplete Cholesky factorization."

https://www.mathworks.com/help/matlab/ref/ichol.html?s_tid=doc_ta (accessed 2023-12-

05).

[18] MathWorks. "Solve system of linear equations — preconditioned conjugate gradient

method." https://www.mathworks.com/help/matlab/ref/pcg.html?s_tid=doc_ta (accessed

2023-12-05).

[19] MathWorks. "Start stopwatch timer."

https://www.mathworks.com/help/matlab/ref/tic.html?s_tid=doc_ta (accessed 2023-12-

06).

[20] MathWorks. "Read elapsed time from stopwatch."

https://www.mathworks.com/help/matlab/ref/toc.html (accessed 2023-12-06).

[21] MathWorks. "Array stored on GPU." https://www.mathworks.com/help/parallel-

computing/gpuarray.html (accessed 2023-12-06).

https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html#gpu-arch
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html#gpu-arch
https://www.mathworks.com/help/parallel-computing/
https://www.mathworks.com/help/parallel-computing/parallel.gpu.gpudevice.html
https://www.mathworks.com/help/parallel-computing/parallel.gpu.gpudevice.html
https://www.mathworks.com/help/matlab/ref/ichol.html?s_tid=doc_ta
https://www.mathworks.com/help/matlab/ref/pcg.html?s_tid=doc_ta
https://www.mathworks.com/help/matlab/ref/tic.html?s_tid=doc_ta
https://www.mathworks.com/help/matlab/ref/toc.html
https://www.mathworks.com/help/parallel-computing/gpuarray.html
https://www.mathworks.com/help/parallel-computing/gpuarray.html

P a g e | 95

[22] MathWorks. "Time required to run function on GPU."

https://www.mathworks.com/help/parallel-computing/gputimeit.html (accessed 2023-12-

06).

[23] MathWorks. "Create Function Handle."

https://www.mathworks.com/help/matlab/matlab_prog/creating-a-function-handle.html

(accessed 2023-12-06).

[24] MathWorks. "Wait for futures to complete."

https://www.mathworks.com/help/matlab/ref/parallel.future.wait.html?s_tid=doc_ta

(accessed 2023-12-06).

[25] MathWorks. "Measure and Improve GPU Performance."

https://www.mathworks.com/help/parallel-computing/measure-and-improve-gpu-

performance.html (accessed 2023-12-04).

[26] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. "HPL - A Portable Implementation of

the High-Performance Linpack Benchmark for Distributed-Memory Computers."

University of Tennessee Computer Science Department.

https://www.netlib.org/benchmark/hpl/ (accessed 2023-11-27).

[27] MathWorks. "Execute code in parallel on workers of parallel pool."

https://www.mathworks.com/help/parallel-computing/spmd.html?s_tid=doc_ta (accessed

2023-12-06).

[28] MathWorks. "Create parallel pool on cluster." https://www.mathworks.com/help/parallel-

computing/parpool.html (accessed 2023-12-06).

[29] MathWorks. "Run MATLAB on multicore and multiprocessor machines."

https://www.mathworks.com/discovery/matlab-multicore.html (accessed 2023-12-05).

[30] MathWorks. "Solve systems of linear equations Ax=B for x."

https://www.mathworks.com/help/matlab/ref/mldivide.html (accessed 2023-12-05).

[31] MathWorks. "Benchmarking A\b on the GPU." https://www.mathworks.com/help/parallel-

computing/benchmarking-a-b-on-the-gpu.html (accessed 2023-12-05).

https://www.mathworks.com/help/parallel-computing/gputimeit.html
https://www.mathworks.com/help/matlab/matlab_prog/creating-a-function-handle.html
https://www.mathworks.com/help/matlab/ref/parallel.future.wait.html?s_tid=doc_ta
https://www.mathworks.com/help/parallel-computing/measure-and-improve-gpu-performance.html
https://www.mathworks.com/help/parallel-computing/measure-and-improve-gpu-performance.html
https://www.netlib.org/benchmark/hpl/
https://www.mathworks.com/help/parallel-computing/spmd.html?s_tid=doc_ta
https://www.mathworks.com/help/parallel-computing/parpool.html
https://www.mathworks.com/help/parallel-computing/parpool.html
https://www.mathworks.com/discovery/matlab-multicore.html
https://www.mathworks.com/help/matlab/ref/mldivide.html
https://www.mathworks.com/help/parallel-computing/benchmarking-a-b-on-the-gpu.html
https://www.mathworks.com/help/parallel-computing/benchmarking-a-b-on-the-gpu.html

P a g e | 96

[32] H. Anzt, J. Dongarra, G. Flegar, N. J. Higham, and E. S. Quintana-Ortí, "Adaptive precision

in block-Jacobi preconditioning for iterative sparse linear system solvers," Concurrency

and Computation: Practice and Experience, vol. 31, no. 6, p. e4460, 2019, doi:

https://doi.org/10.1002/cpe.4460.

[33] H. Markus and E. S. Paul, "Block jacobi preconditioning of the conjugate gradient method

on a vector processor," International Journal of Computer Mathematics, vol. 44, no. 1-4,

pp. 71-89, 1992, doi: https://doi.org/10.1080/00207169208804096.

[34] MathWorks. "Measure GPU Performance." https://www.mathworks.com/help/parallel-

computing/measuring-gpu-performance.html (accessed 2023-12-04).

[35] MathWorks. "Transfer distributed array, Composite object, or gpuArray object to local

workspace." https://www.mathworks.com/help/parallel-computing/gpuarray.gather.html

(accessed 2023-12-06).

[36] MathWorks. "Measure time required to run function."

https://www.mathworks.com/help/matlab/ref/timeit.html?s_tid=doc_ta (accessed 2023-

12-05).

[37] MathWorks. "Resource Contention in Task Parallel Problems."

https://www.mathworks.com/help/parallel-computing/resource-contention-in-task-

parallel-problems.html (accessed 2023-12-05).

[38] M. P. C. T. Team. "Compare GPUs using standard numerical benchmarks in MATLAB."

https://www.mathworks.com/matlabcentral/fileexchange/34080-

gpubench?s_tid=srchtitle_support_results_1_gpubench (accessed 2023-12-05).

[39] NVIDIA. "NVIDIA GeForce GTX 970M Specifications." https://www.nvidia.com/en-

us/geforce/gaming-laptops/gtx-970m/specifications/ (accessed 2023-12-13).

[40] NVIDIA. "NVIDIA GeForce GTX 1650 Max-Q." https://www.techpowerup.com/gpu-

specs/geforce-gtx-1650-max-q.c3383 (accessed 2023-12-13).

[41] D. Schmid and T. Davis. Schmid/thermal1 unstructured FEM, steady state thermal problem.

[Online]. Available: https://sparse.tamu.edu/Schmid/thermal1

https://doi.org/10.1002/cpe.4460
https://doi.org/10.1080/00207169208804096
https://www.mathworks.com/help/parallel-computing/measuring-gpu-performance.html
https://www.mathworks.com/help/parallel-computing/measuring-gpu-performance.html
https://www.mathworks.com/help/parallel-computing/gpuarray.gather.html
https://www.mathworks.com/help/matlab/ref/timeit.html?s_tid=doc_ta
https://www.mathworks.com/help/parallel-computing/resource-contention-in-task-parallel-problems.html
https://www.mathworks.com/help/parallel-computing/resource-contention-in-task-parallel-problems.html
https://www.mathworks.com/matlabcentral/fileexchange/34080-gpubench?s_tid=srchtitle_support_results_1_gpubench
https://www.mathworks.com/matlabcentral/fileexchange/34080-gpubench?s_tid=srchtitle_support_results_1_gpubench
https://www.nvidia.com/en-us/geforce/gaming-laptops/gtx-970m/specifications/
https://www.nvidia.com/en-us/geforce/gaming-laptops/gtx-970m/specifications/
https://www.techpowerup.com/gpu-specs/geforce-gtx-1650-max-q.c3383
https://www.techpowerup.com/gpu-specs/geforce-gtx-1650-max-q.c3383
https://sparse.tamu.edu/Schmid/thermal1

P a g e | 97

[42] E. Um and T. Davis. Um/2cubes_sphere FEM, electromagnetics, 2 cubes in a sphere.

[Online]. Available: https://sparse.tamu.edu/Um/2cubes_sphere

[43] R. Vuduc, A. Chandramowlishwaran, J. Choi, M. Guney, and A. Shringarpure, "On the

Limits of GPU Acceleration," presented at the Proceedings of the 2nd USENIX Conference

on Hot Topics in Parallelism, 2010.

[44] Intel®. "Intel® Core™ i7-4710HQ Processor."

https://www.intel.com/content/www/us/en/products/sku/78930/intel-core-i74710hq-

processor-6m-cache-up-to-3-50-ghz/specifications.html (accessed 2023-12-13).

[45] Intel®. "Intel® Core™ i7-10510U Processor."

https://www.intel.com/content/www/us/en/products/sku/196449/intel-core-i710510u-

processor-8m-cache-up-to-4-90-ghz/specifications.html (accessed 2023-12-13).

[46] MathWorks. "Floating-Point Numbers."

https://www.mathworks.com/help/matlab/matlab_prog/floating-point-numbers.html

(accessed 2023-12-06).

[47] PCI-SIG. "PCI Express® 3.0."

https://web.archive.org/web/20140201172536/http://www.pcisig.com/news_room/faqs/pc

ie3.0_faq/#EQ2 (accessed 2023-12-13).

[48] MathWorks. "Create codistributed sparse matrix."

https://www.mathworks.com/help/parallel-

computing/codistributed.sparse.html?s_tid=doc_ta (accessed 2023-12-06).

https://sparse.tamu.edu/Um/2cubes_sphere
https://www.intel.com/content/www/us/en/products/sku/78930/intel-core-i74710hq-processor-6m-cache-up-to-3-50-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/78930/intel-core-i74710hq-processor-6m-cache-up-to-3-50-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/196449/intel-core-i710510u-processor-8m-cache-up-to-4-90-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/196449/intel-core-i710510u-processor-8m-cache-up-to-4-90-ghz/specifications.html
https://www.mathworks.com/help/matlab/matlab_prog/floating-point-numbers.html
https://web.archive.org/web/20140201172536/http:/www.pcisig.com/news_room/faqs/pcie3.0_faq/#EQ2
https://web.archive.org/web/20140201172536/http:/www.pcisig.com/news_room/faqs/pcie3.0_faq/#EQ2
https://www.mathworks.com/help/parallel-computing/codistributed.sparse.html?s_tid=doc_ta
https://www.mathworks.com/help/parallel-computing/codistributed.sparse.html?s_tid=doc_ta

	Abstract
	Abrégé
	Acknowledgements
	Contribution of Authors
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Thesis Structure

	Chapter 2 Conjugate Gradients
	2.1 The Method of Steepest Descent
	2.2 The Method of Conjugate Directions
	2.3 The Method of Conjugate Gradients
	2.4 Preconditioning
	2.4.1 Incomplete Cholesky Factorization
	2.4.2 Incomplete Cholesky Preconditioned Conjugate Gradient

	Chapter 3 Graphics Processing Units
	3.1 Graphics Processing Unit vs Central Processing Unit
	3.2 Graphics Processing Unit Architecture
	3.3 MATLAB Parallel Computing Toolbox

	Chapter 4 Methodology
	4.1 ICPCG on CPUs and GPUs with Specific Problem Types
	4.1.1 ICPCG on CPUs and GPUs using Parallel Computing Toolbox Commands
	4.1.2 ICPCG on CPUs using Single Program Multiple Data Statements

	4.2 Backslash on CPUs and GPUs
	4.2.1 A\b on CPUs and GPUs with Generated Matrices
	4.2.2 A\b on CPUs and GPUs with Specific Problem Types

	4.3 Data Handling Capability of GPUs
	4.4 Resource Contention on CPUs using Single Program Multiple Data Statements
	4.5 MATLAB’s GPUBench

	Chapter 5 Results and Discussion
	5.1 ICPCG on CPUs and GPUs with Specific Problem Types
	5.1.1 ICPCG using Parallel Computing Toolbox Commands
	5.1.2 ICPCG using Single Program Multiple Data Statements

	5.2 Backslash on CPUs and GPUs
	5.2.1 A\b on CPUs and GPUs with Generated Matrices
	5.2.2 A\b on CPUs and GPUs with Specific Problem Types

	5.3 Data Handling Capability of GPUs
	5.3.1 Data Transmission and Retrieval Bandwidth
	5.3.2 Read and Write Data Bandwidth
	5.3.3 Calculation Rate of Intensive Operations

	5.4 Resource Contention on CPUs
	5.4.1 Varying Number of Processes
	5.4.2 Varying Data Size

	5.5 MATLAB’s GPUBench

	Chapter 6 Conclusion and Future Work
	Appendix
	Bibliography

