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Abstract

The discontinuous Galerkin (DG) method, which has recently gained popularity within the

finite element community, is prone to numerical instabilities for high orders unless furnished

with stabilizers. The goal of this thesis was to improve the numerical stability of DG schemes

without the use of stabilizers. In particular, the nonlinear stability of Burgers’ equation was

studied, and the findings were extended to Euler’s equations of fluid dynamics. It was

demonstrated that by splitting the flux term of the governing equations, nonlinear stability

can be achieved. In the future, this technique can be extended to the Navier-Stokes equations

and the magnetohydrodynamics equations.

Abstrait

La méthode Galerkin discontinue (GD), qui a récemment gagné en popularité au sein de la

communauté des éléments finis, est sujette à des instabilités numériques aux ordres élevés,

sauf si elle est fournie avec des stabilisants. Le but de cette thèse était d’améliorer la

stabilité numérique des schémas GD sans utiliser de stabilisants. En particulier, la sta-

bilité non linéaire de l’équation de Burgers a été étudiée et les résultats ont été étendus

aux équations d’Euler de la dynamique des fluides. Il a été démontré qu’en séparant le

terme de flux des équations de gouvernance, on pouvait obtenir une stabilité non linéaire.

À l’avenir, cette technique pourra être étendue aux équations de Navier-Stokes et de la

magnétohydrodynamique.
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Chapter 1

Introduction

1.1 Motivation

Many equations in physics are highly nonlinear partial differential equations (PDEs). A

prominent example is the governing equations of fluid dynamics. These equations lack closed-

form solutions for many problems of interest. Many techniques exist to find approximate

solutions; an example is perturbation theory, which, given a closed form solution, adds small

(nonlinear) disturbances to the system and examines the change in behaviour [1]. However,

with the current state of computation and rapid advances in high-performance computing,

the most powerful method of solving complex, nonlinear equations is through the use of

numerical methods.

Numerical methods deal with the discretization of the governing equations of the phe-

nomenon of interest, the development of a numerical algorithm, and the establishment of a

numerical code that is to be executed on current high-performance computers. Many prob-

lems exist in numerical methods which do not exist in the physical world. The physical world

is infinite and smooth, and the world of computers is finite and discrete; the transition from

the physical world to the computational world leads to the creation of unwanted effects.

One such effect is numerical instability. In many problems of interest, we are interested
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Improving the Numerical Stability of DG Schemes

in long-term behaviour of the property of the fluid such as pressure or velocity. Thus, we

need to integrate the discretized governing equations in time. It is well known that high-

order methods exhibit instabilities during time integration [2, 3]. In fluid mechanics, this is

especially the case when simulating shock waves or turbulence.

1.1.1 Shock Waves and Turbulence

Two prominent phenomena in fluid mechanics are shock waves and turbulent flow. Shock

waves are present in supersonic flow, and are nature’s method of communicating information

upstream of the flow. Shock waves cause a drastic change in velocity, pressure, and density

over very small distances; thus, they are mathematically modelled as a discontinuity. Oblique

shock waves formed around a supersonic fighter jet are shown in fig. 1.1.

Figure 1.1: Oblique shock waves formed on a supersonic fighter jet. Figure taken from [4].

Turbulent flow presents itself in high Reynolds number regimes [4], with the Reynolds

number given by:

Re =
ρuL

µ
, (1.1)

where ρ is the density, u the velocity, L the characteristic length, and µ the viscosity.

Reynolds number is a comparison of the inertial forces to the viscous forces in a fluid. Low

Reynolds numbers correspond to laminar flow regimes, where the fluid flows in an orderly,

Introduction Abtin Ameri 7
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reversible fashion. As the Reynolds number increases, the flow tends towards the turbulent

regime, characterized by a chaotic and unpredictable behaviour of the fluid. This is shown

in fig. 1.2. In turbulence, there is a large variation of fluid properties, such as velocity,

pressure, and density, over small distances.

Figure 1.2: Laminar versus turbulent flow. Turbulent flow, which occurs at high Reynolds
numbers, is unpredictable and disorderly. Figure taken from [4].

Due to their complex nature, turbulence and shock waves are best studied through nu-

merical methods. However, many challenges arise when simulating these phenomena through

simulations. For instance, high-order numerical methods face instabilities when resolving and

capturing discontinuities such as shock waves because the solution loses smoothness at the

vicinity of the shock and the gradient of the solution diverges. Since computers cannot deal

with infinities, the solutions can become numerically unstable unless stabilizers are explicitly

added to the scheme.

Shocks are best captured using pure upwinding schemes. Such schemes are known as

total variation diminishing (TVD). A key theorem to note is Godunov’s theorem [5], which

states that schemes that preserve the monotonicity and, hence, the TVD property, are at
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most first-order accurate. This indicates that higher-order methods can introduce oscillations

near the shock; and, coupled with their inherent low numerical dissipation at high polynomial

orders, such oscillations can grow unbounded. Techniques to restore stability and ensure the

capture of discontinuities have been an active field of research for the past two decades [6]. For

instance, in order to prevent high frequency oscillations in the vicinity of discontinuities from

growing, one can use a filter [7]. Additional techniques to capture shocks involve using slope

limiters [8], which reduce the scheme to first-order (TVD) at the shock. Furthermore, one

can add artificial viscosity to the equations to dissipate the shocks [9]. The dissipation added

by artificial viscosity allows the shocks to be captured by high-order schemes. In schemes

that involve integration (such as the discontinuous Galerkin method), over-integration of

fluxes is a well-known method of reducing aliasing errors [10]. Finally, refining the grid as

well as the time steps can improve numerical stability. Absences of any of the mentioned

methods results in divergence of the solution, leading to instability for high-order methods.

This is best demonstrated through an example.

1.1.2 An Example – Burgers’ Equation

Consider Burgers’ equation, which is a PDE given as:

∂u

∂t
+ u

∂u

∂x
= 0. (1.2)

Burgers’ equation is of particular interest in the numerical methods community because it

is the simplest nonlinear equation that can be studied. The key property of this equation is

that, given a smooth initial condition, a shock forms in finite time.

A well-known numerical method that is used to discretize Burger’s equation is the dis-

continuous Galerkin (DG) scheme. DG has recently gained popularity in the finite element

community due to its high parallelizability and effectiveness when it comes to solving hy-

perbolic PDEs [11]. If the PDE is discretized using a standard, high-order DG scheme, the

Introduction Abtin Ameri 9
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solution becomes numerically unstable and diverges as soon as a shock forms. Fig. 1.3 veri-

fies this by showing the computed solution of the PDE at various times. It can be seen that

after the shock forms, oscillations appear in the vicinity of the shock and grow in time until

the solution finally becomes unstable. This is due to the fact that the DG scheme does not

satisfy the nonlinear stability requirements, which will be developed in Chapter 3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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-0.5
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0.5

1

1.5

Figure 1.3: Solution of Burgers’ equation given the initial condition u(x, 0) = sin(πx)+0.01.
The method is 8th order accurate in space. After shock formation at t ≈ 0.3s, the standard
DG solution becomes numerically unstable. The simulation cannot be run after t = 0.36s

1.2 Objective

There are various issues with current shock capturing methods. Adding artificial viscosity

involves adding non-physical terms to the governing equations, which means one does not

solve the original equations aimed to be solved; furthermore, it increases the numerical dissi-

pation and consequently it reduces the numerical accuracy. Adding filters and slope-limiters

is computationally expensive as it adds additional steps to calculating the solution. Simi-

larly, over-integration can be very expensive, especially when it comes to higher-dimensional

10 Abtin Ameri Introduction
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problems and fine grids. Ideally, one should find a way of re-writing the governing equations

without changing the actual underlying physics while achieving stability. The objective of

this thesis is to develop a scheme that would improve the numerical stability of high-order

methods without the use of stabilizers, allowing for longer simulation run times and for the

study of long-term behaviour of fluids. Specifically, Burgers’ equation and Euler’s equations

of fluid mechanics are investigated.

The techniques developed in this thesis, although initially focused on shock capture, can

be applied to turbulent flow as well. This is because turbulence and shock waves are similar,

as both involve large variations in fluid properties over small distances. Turbulent flow is

generally studied through large eddy simulations (LES), which solves the filtered Navier-

Stokes equations. An example of LES used to study turbulent combustion flames is shown

in fig. 1.4. High-order LES methods, similar to high order shock capture methods, are

prone to instabilities [12]. Thus, methods that improve the stability of high-order shock

capture schemes can be applied to high-order LES schemes, facilitating the study of long-

term turbulent flow behaviour.

Figure 1.4: An example of LES applicable to study of turbulence in combustion flames.
Figure taken from [13].

Introduction Abtin Ameri 11
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1.3 Outline

This thesis is structured as follows: Chapter 2 describes the DG method, which is the nu-

merical scheme used to discretize Burgers’ equation and Euler’s equations of fluid dynamics.

Chapter 3 delves into the theory of numerical stability and introduces a technique, known as

flux splitting, which can help improve the stability of high-order methods. Burgers’ equation

will initially be considered before analyzing the Euler’s equations due to its simplicity. Fi-

nally, Chapter 4 will discuss the results obtained through numerical simulations. Conclusion

and future work end the chapter.

12 Abtin Ameri Introduction



Chapter 2

The Discontinuous Galerkin Method

2.1 Background

There are various methods of discretizing PDEs. The three primary approaches are finite

difference (FD), finite volume (FV), and finite element (FE). The scheme considered in this

thesis is discontinuous Galerkin (DG), which inherits its properties from both FE and FV.

Each method will be explained briefly below, in addition to its advantages and disadvantages

being assessed, before delving deeper into the theory of DG.

Figure 2.1: Classification of various approaches used to discretize and solve PDEs. The DG
method is a hybridization of FV and FE.

13



Improving the Numerical Stability of DG Schemes

2.1.1 Finite Difference (FD)

FD is a very common discretization which has a much gentler learning curve compared to

the rest of the methods. In FD, one solves for the solution at individual points on the grid.

Operations such as differentiation are done by using the neighbouring points. For instance,

given two points (xi, yi) and (xi+1, yi+1), the first-order first derivative with respect to x is

given by:

dy

dx

∣∣∣∣
x=xi

≈ yi+1 − yi
xi+1 − xi

(2.1)

The advantage of FD is that it is relatively easy to implement, and is usually the first choice

for quickly solving simple problems. Moreover, extensive research has been done in the

field and most of the theory is well-understood [14]. However, a major drawback of FD is

that it becomes increasingly difficult to implement for complex geometries. Furthermore,

it requires solving a global system, which can be computationally expensive for fine grids.

Finally, high-order methods require a large stencil, which increases the communication cost

between processors when the computation domain is parallelized across multiple computing

cores. The increased communication cost degrades the parallel scalability of high-order finite

difference approaches.

Figure 2.2: FD reduces the solution to points in the domain. The derivatives are calculated
with respect to the points.

2.1.2 Finite Volume (FV)

FV is different from FD in the sense that it divides the domain into cells (or elements) as

opposed to reducing the solution to individual points. FV takes the average of the solution

14 Abtin Ameri The Discontinuous Galerkin Method
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over each cell and, thus, assumes the solution to be constant over each element. This means

that the solution has to be discontinuous across boundaries [15].

FV is excellent at dealing with complex geometries as it allows us to divide the grid

into triangular or quadrilateral elements for two-dimensional problems, and tetrahedra or

hexahedra for three-dimensional problems. In addition, because of the boundary discontinu-

ities, the scheme is highly parallelizable. This allows the computational grid to be divided

into sub-grids, which are then fed into different processors of a supercomputer, allowing for

shorter run times. However, higher-order FV methods suffer the same fate where the need

for large stencils leads to a reduction of the parallel efficiency.

Figure 2.3: FV divides the domain into cells and averages the solution over each element,
creating discontinuities across cell boundaries.

2.1.3 Finite Element (FE)

Similar to FV, FE divides the domain into cells, which means it is great at dealing with

complex geometries. However, instead of taking the average of the solution over each cell,

FE approximates the solution as a linear combination of a finite number of basis functions,

and the solution is required to be continuous across the domain. FE has a great advantage

over FD and FV because high-order schemes don’t require a large stencil; we can simply

increase the number of basis functions in the cells without increasing the dependency of the

cells on each other. The disadvantage, however, is that one would be required to solve a

global system since the solution is continuous across cell boundaries. Thus, this method is

computationally expensive for fine grids or high orders.

The Discontinuous Galerkin Method Abtin Ameri 15
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Figure 2.4: FE divides the domain into cells and approximates the solution as a linear
combination of basis functions. This method constrains the solution to be continuous.

2.1.4 Discontinuous Galerkin (DG)

Lastly, DG brings together attractive features of FE and FV: the solution is a linear combi-

nation of basis functions, but it is allowed to be discontinuous at the cell boundaries. Thus,

DG is highly parallelizable and higher-order schemes don’t require a larger stencil. The

disadvantage of DG is that the discontinuity leads to more degrees of freedom compared to

FE, which can be computationally expensive for fine grids. However, this is usually masked

by the high parallelizability of the scheme. For these reasons, DG has gained popularity in

recent years within the finite element community.

Figure 2.5: DG is similar to FE, but allows for discontinuities across cell boundaries.

2.2 Mathematical Formulation of DG in 1D

Let us assume a nonlinear PDE of the form:

∂u(x, t)

∂t
+
∂f(u)

∂x
= 0, (2.2)

16 Abtin Ameri The Discontinuous Galerkin Method
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where u(x, t) is the solution and f(u(x, t)) is the flux [11]. The PDE is solved on the domain

Ω. The first step in the DG approach is to approximate the domain Ω with a computational

domain Ωh, with K non-overlapping elements defined as:

Ω ≈ Ωh =
K⋃
k=1

Dk, where Dk = [xk, xk+1]. (2.3)

One can then approximate the solution and flux in element Dk as a linear combination of p

basis functions {ψn}:

u(x, t) ≈ ukh =

p∑
n=1

unhψn(x), (2.4)

f(u(x, t)) ≈ fk
h =

p∑
n=1

fn
hψn(x), (2.5)

where p is the polynomial approximation order, and the coefficients unh, fn
h are unknowns.

Note, however, that fn
h depends on unh, so essentially unh are the only unknowns. Next, we

multiply (2.2) by a test function φm, and integrate over Dk:

∫
Dk

(
∂ukh
∂t

φm +
∂fk

h

∂x
φm

)
dx = 0. (2.6)

This yields a single equation for p unknown coefficients unh. Hence, we require p test functions

to obtain a solvable system of equations.

The problem with (2.6) is that there is no interaction between cellDk and its neighbouring

cells Dk−1 and Dk+1. In order to couple the flux between the cells and enforce conservation,

we integrate by parts and replace the flux at the boundaries by a numerical flux f ∗, which

takes in values of the solution at both sides of the boundary:

∫
Dk

(
∂ukh
∂t

φm − fk
h

∂φm

∂x

)
dx = −[f ∗φm]x

k+1

xk , (2.7)

giving the weak formulation of DG. A second integration by parts generates the strong

The Discontinuous Galerkin Method Abtin Ameri 17
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formulation: ∫
Dk

(
∂ukh
∂t

φm +
∂fk

h

∂x
φm

)
dx = −[(fk

h − f ∗)φm]x
k+1

xk . (2.8)

The strong form will be the main consideration of this thesis. The choice of numerical flux

is dependent on the physics of the problem as long as it maintains the consistency criterion:

f ∗(u, u) = f(u). (2.9)

We can set the test and basis functions to be the same. A natural choice is Lagrange

polynomials:

φj(x) = ψj(x) = `kj (x) =

p∏
i=0,i 6=j

x− xi
xj − xi

. (2.10)

The Lagrange polynomials interpolate the solution points within the cells. The polynomials

satisfy the following property:

`i(xj) = δij. (2.11)

By collocating both the solution nodes and flux nodes, where the flux is evaluated, a nodal

DG scheme is constructed, where the solution is approximated as:

uh =

p∑
n=1

unh(xn, t)`
k
n(x). (2.12)

Using (2.10), (2.8) can be re-written in operator form:

Mk du
k
h

dt
+ Skfk

h
= (fk

h − f ∗)`k
∣∣∣∣xk+1

xk

, (2.13)

where

ukh =



u1h

u2h
...

uph


, fk

h
=



f 1
h

f 2
h

...

fp
h


, `k(x) =



`k1(x)

`k2(x)

...

`kp(x)


. (2.14)
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Sk and Mk are the element’s stiffness and mass matrices, respectively:

Mk

ij
=

∫
k

`ki (x)`kj (x)dx, Sk

ij
=

∫
k

`ki (x)
d`kj (x)

dx
dx. (2.15)

The two matrices are related by the differentiation matrix Dk:

Sk = Mk Dk. (2.16)

The integrals are calculated using quadrature. We can solve for
duk

h

dt
and integrate in time

using a classic explicit ODE solver, such as explicit Euler or Runge-Kutta. For explicit

schemes, the time step needs to satisfy a Courant-Friedrichs-Lewy (CFL) condition to main-

tain stability [11]. The global solution is the direct sum of the local solutions:

uh(x, t) =
K⊕
k=1

ukh(x, t). (2.17)

The optimal order of convergence of DG schemes is O(∆xp+1), which can be obtained through

a grid convergence study.

2.2.1 Integration and Interpolation

In order to carry out the integrals in DG, one can use quadrature. This would require that

the integral would be approximated using quadrature weights and nodes. For instance, the

mass matrix would be evaluated as follows:

Mk

ij
=

∫
k

`ki (x)`kj (x)dx ≈
N∑

m=1

wm`
k
i (xm)`kj (xm), (2.18)

where wm are the quadrature weights and xm are the quadrature points. These values depend

on the type of quadrature used.

The Discontinuous Galerkin Method Abtin Ameri 19
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2.2.2 Node Placement

The placement of the integration and interpolation nodes plays an important role in the

development of the scheme. For integration, one can use quadratures such as Gauss-Legendre

(better known as Gauss) or Gauss-Lobatto [16]. Gauss-Legendre quadrature can exactly

integrate up to polynomials of order 2n − 1 using n quadrature points. The placement of

the Gauss-Legendre nodes corresponds to the roots of the Legendre polynomials [17].

Gauss-Lobatto quadrature can exactly integrate up to polynomials of order 2n− 3 using

n quadrature points. The endpoints of the interval of integration are always included as

quadrature points. Because the integration power of Gauss-Lobatto is lower than that of

Gauss-Legendre, one might assume that Gauss-Legendre is the optimal choice. However, in

some cases, choosing Gauss-Lobatto nodes is advantageous [11].

As for interpolation, a natural choice would be to use evenly-spaced nodes throughout

the element. However, one can show that the mass matrix obtained from evenly spaced

interpolation nodes is ill-conditioned for higher-order methods, which is not optimal since

the mass matrix needs to be inverted. Choosing a spacing similar to quadratures optimizes

the conditioning of the mass matrix. Gauss-Legendre and Gauss-Lobatto, thus, are very

good choices for interpolation [11]. Gauss-Lobatto is especially a good choice because it

has nodes at the endpoints. This offers an advantage when dealing with surface integrals,

where the solution does not need to be interpolated to the element faces as is required for

Gauss-Legendre [18].

20 Abtin Ameri The Discontinuous Galerkin Method



Chapter 3

Numerical Stability

3.1 Nonlinear Problems

The DG method faces challenges for nonlinear problems, as was alluded to in Chapter 1.

This chapter delves deeper into the underlying theory of nonlinear stability. Gassner [19]

and Ranocha [18] reported that the energy of the system:

1

2
||uh||2 =

1

2

∫
u2hdx =

1

2

∑
i

wi(u
i
h)2, (3.1)

is not formally bounded. Gassner [19] found the rate of change of kinetic energy of the

standard DG scheme to be:

d

dt

(
1

2
||uh||2

)
= −

∮
(f ∗ − 1

3
fh)uhdx+

∫
fh
duh
dx

dx, (3.2)

where the first term is a surface integral (evaluated at the boundaries of the cells), and the

second term is a volume integral. For stability, the following condition is required:

d

dt

(
1

2
||uh||2

)
≤ 0. (3.3)
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The first term in (3.2) can be ensured to be negative by choosing a particular numerical

flux, f ∗. However, it is not possible to control the second term; as the solution becomes

discontinuous, duh

dx
approaches infinity near the discontinuity, which causes the energy of the

system to increase, resulting in nonlinear instability.

Gassner [19] demonstrated that through collocation of the interpolation and integration

nodes and splitting the flux term, stability can be guaranteed. Although Ranocha [18]

extended this to schemes that lack collocation, the schemes used in this thesis are collocated

for simplicity.

3.2 Collocation

Typically, the nodes used for integration are at different positions from the nodes used

for interpolation. This is especially the case when overintegrating the flux for nonlinear

problems. Collocation requires the integration and interpolation nodes to be at the same

location, as shown in fig. 2.5. This simplifies the problem, but, more importantly, allows

one to draw parallels between DG and FD. There has been extensive research conducted on

stability for FD schemes [20], so it would be possible to extend such concepts to DG. One

key result of collocation is the diagonalization of the mass matrix:

Mk

ij
≈

N∑
m=1

wm`
k
i (xm)`kj (xm) =

N∑
m=1

wmδimδjm = wiδij. (3.4)

Because the mass matrix now only contains the quadrature weights, it can be used for

integration. For instance, one can integrate two functions u and v on a domain as follows:

∫
uvdx =

N∑
m=1

wmumvm = uTM u (3.5)

An additional relation involving the mass and differentiation matrices is obtained:
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(M D) + (M D)T = B, (3.6)

where B = diag([−1 0 . . . 0 1]) is the boundary operator. This is essentially the discretized

version of integration by parts, known as summation by parts. In order to see this more

clearly, we can pre- and post-multiply (3.6) by the vectors uT and v:

uT (M D)v + uT (M D)Tv = uTBv (3.7)

uTM (Dv) + (D u)T (M)v = uTBv (3.8)∫
u
dv

dx
dx+

∫
du

dx
vdx = uv

∣∣∣∣xp

x1

(3.9)

These properties can be taken advantage of in order to demonstrate nonlinear stability [19,

Figure 3.1: The nodes at which the solution is interpolated and integrated can be different.
Collocation requires the two nodes to coincide.

21].

3.3 Flux Splitting and Burgers’ Equation

In this subsection, we first present the concept of flux splitting and then address its impor-

tance to the nonlinear stability of a scheme. For Burgers’ equation, flux splitting is done

through the product rule:
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∂(u
2

2
)

∂x
= α

∂(u
2

2
)

∂x
+ (1− α)u

∂u

∂x
. (3.10)

Through the choice of α = 2
3
, nonlinear stability can be demonstrated [19]. We urge the

reader to consult [19] for a detailed proof of nonlinear stability for DG type schemes. The

PDE can then be written as:

∂u

∂t
+

1

3

(
∂u2

∂x
+ u

∂u

∂x

)
= 0. (3.11)

Discretizing (3.11) and writing the terms in operator form gives:

M u̇+
2

3
M D f +

1

3
(U M D u) = −B(f ∗ − f), (3.12)

where U = diag(u). We can now solve for u̇:

u̇ = −2

3
D f − 1

3
(U D u)−M−1 B(f ∗ − f), (3.13)

and integrate the obtained system of ODEs in time using an ODE solver.

Calculating the energy of the new system, one arrives at:

d

dt

(
1

2
||uh||2

)
= −

∮
(f ∗ − 1

3
fh)uhdx. (3.14)

Comparing this with (3.2), we notice that the second term has been eliminated. This means

that one can now choose the numerical flux f ∗ in such a way that the energy of the system

is always bounded. Therefore, nonlinear stability would be achieved. A common numerical

flux which satisfies this criterion is the local Lax-Friedrichs flux:

f ∗LLF =
1

2
(
u2L
2

+
u2R
2

)− 1

2
max(|uL|, |uR|)(uL − uR), (3.15)

where uL, uR are the solution values at the left and right side of the boundary, respectively.
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3.4 Extension to Euler’s Equations
The governing equations of fluid mechanics are the Navier-Stokes equations, which relate

various properties of fluids, such as pressure, velocity, viscosity, and energy, to each other. In

the inviscid limit, the Navier-Stokes equations reduce to Euler’s equations of fluid mechanics:

∂ρ

∂t
+ v · ∇ρ+ ρ∇ · v = 0 (3.16)

∂v

∂t
+ v · ∇v +

∇p
ρ

= 0 (3.17)

∂e

∂t
+ v · ∇e+

p

ρ
∇ · v = 0, (3.18)

where v = (u, v, w) is the velocity vector, ρ the density, p the total gas pressure, and

e = ρũ + 1
2
v2 the energy per unit mass, with ũ being the internal energy. The equation of

state usually used for the gas is p = (γ− 1)ρũ, where γ is the heat capacity ratio. (3.16) can

be rewritten in conservative form:

∂tU +∇ · F = 0, (3.19)

where U and F are the state and flux vectors, respectively:

U =


ρ

ρv

ρe

 , F =


ρv

ρv ⊗ v + p

(ρe+ p)v

 . (3.20)

F is essentially a 5× 3 matrix. One can expand F to examine each matrix entry:

F =

(
Fx Fy Fz

)
=



ρu ρv ρw

ρu2 + p ρuv ρuw

ρuv ρv2 + p ρvw

ρuw + p ρvw ρw2 + p

(ρe+ p)u (ρe+ p)v (ρe+ p)w


. (3.21)
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(3.19) is what will be analyzed throughout this thesis, as it facilitates discretization through

DG. (3.19) is a compaction of 5 coupled, nonlinear PDEs governing the behaviour of 5

unknowns. The equations are, thus, complicated to analyze and even more so to discretize

and simulate numerically.

Standard DG simulations of Euler’s equations can lead to instabilities when there are large

variations in the solution (such as turbulence or shocks), which is similar to the behaviour

encountered when studying Burgers’ equation. Drawing parallels from Burgers’ equation, an

ansatz would be that the kinetic energy of the system is not formally bounded, which results

in nonlinear stability. In the FD community, there is numerous evidence that splitting the

flux terms using the chain rule can increase the nonlinear stability of the schemes [22, 23,

24, 25, 26]. For instance, Kennedy and Gruber [26] showed that splitting double products

in the flux as:

(ab)x =
1

2
((ab)x + axb+ abx) , (3.22)

and triple products as:

(abc)x =
1

4
(abc)x +

1

4
(ax(bc) + bx(ac) + cx(ab)) +

1

4
(a(bc)x + b(ac)x + c(ab)x), (3.23)

improves stability. Applying this to Fx in (3.21) gives:

FKG
x =



1
2 ((ρu)x + ρ(u)x + u(ρ)x)

1
4 ((ρu

2)x + ρ(u2)x + 2u(ρu)x + u2(ρ)x + 2ρu(u)x) + px

1
4 ((ρuv)x + ρ(uv)x + u(ρv)x + v(ρu)x + uv(ρ)x + ρv(u)x + ρu(v)x)

1
4 ((ρuw)x + ρ(uw)x + u(ρw)x + w(ρu)x + uw(ρ)x + ρw(u)x + ρu(w)x)

1
2 ((pu)x + p(u)x + u(p)x) +

1
4 ((ρeu)x + ρ(eu)x + e(ρu)x + u(ρe)x + eu(ρ)x + ρu(e)x + ρe(u)x)


.

(3.24)

Similar formulas can be developed for Fy and Fz. Gassner [27] extended these ideas to DG

by taking advantage of collocation. Before delving deeper, however, the formulation of DG

in three dimensions needs to be discussed.

26 Abtin Ameri Numerical Stability



Improving the Numerical Stability of DG Schemes

3.4.1 DG in Three Dimensions

DG can quite easily be extended to 3 dimensions when dealing with quad and hex elements.

This is because higher dimensions will just be tensor products of the one-dimensional for-

mulation of DG. The DG scheme will be developed for Euler’s equations, where we consider

a collocated scheme in strong form.

Let l ∈ [1, 5] represent the component of the state vector U. The grid is discretized into

K elements, with each element having (p + 1)3 nodes for the solution. Let us consider an

element [−1, 1]3. We represent each component of the solution vector as a linear combination

of Lagrange polynomials in three dimensions. For instance, for the first component, one gets:

U1 = ρ(x, y, z, t) ≈
p∑

i,j,k=0

ρijk(t)`i(x)`j(y)`k(z), (3.25)

where ρijk(t) is the nodal value of the solution at point (xi, yj, zk). Because of the similarity

to the one-dimensional case, (2.8) can be expanded to three dimensions, resulting in the

following:

∂U

∂t
+ F̃x + F̃y + F̃z = 0, (3.26)

where

(F̃x)
l
ijk =

[
(Fx)

∗,l(1, y, z)− (Fx)
l
pjk

]
−
[
(Fx)

∗,l(−1, y, z)− (Fx)
l
0jk

]
+

p∑
m=0

Dim(Fx)
l
mjk, (3.27)

(F̃y)
l
ijk =

[
(Fy)

∗,l(x, 1, z)− (Fy)
l
ipk

]
−
[
(Fy)

∗,l(x,−1, z)− (Fy)
l
i0k

]
+

p∑
m=0

Djm(Fy)
l
imk, (3.28)

(F̃z)
l
ijk =

[
(Fz)

∗,l(x, y, 1)− (Fz)
l
ijp

]
−
[
(Fz)

∗,l(x, y,−1)− (Fz)
l
ij0

]
+

p∑
m=0

Dkm(Fz)
l
ijm. (3.29)

The first two terms correspond to the boundaries and involve the numerical fluxes F ∗,l. The

third term in each equation corresponds to the volume terms. Gassner [27] demonstrated

that, using the formulation of (3.26) with a few modifications, one can achieve stability.
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3.5 Two-Point Flux

The difficulty with the split formulation is the additional terms that need to be discretized.

For instance, the fifth component of FKG
x has 10 terms, all of which involve derivatives.

As equations become more complex, the number of split formulations and the terms in the

formulations increases exponentially. This poses a challenge when it comes to implementing

split formulation schemes in code. Fortunately, Chan [28] found a way to remedy this issue

by introducing a two-point flux. For instance, for Burgers’ equation, one can substitute the

flux f = u2

2
with:

fs(ui, uj) =
1

6
(u2i + uiuj + u2j) (3.30)

Gassner [27] also used this concept to simplify the implementation of the split formulation

of Euler’s equations. In particular, he derived the split formulations of single, double, and

triple products (as given in (3.22) and (3.23)):

2

p∑
m=0

Dim{{a}}im = (D a)i (3.31)

2

p∑
m=0

Dim{{a}}im{{b}}im =
1

2
(D a b+ a D b+ b D a) (3.32)

2

p∑
m=0

Dim{{a}}im{{b}}im{{c}}im =
1

4
(D a b c+ a D b c+ b D a c+ c D a b (3.33)

+ b c D a+ a c D b+ a b D c), (3.34)

where

{{a}}im =
1

2
(ai + am), (3.35)

is the average. Thus, one can use a two-point flux for the three components of F. In this

case, the fluxes in (3.27) become:
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(F̃x)lijk =
[
(Fx)∗,l(1, y, z)− (Fx)lpjk

]
−
[
(Fx)∗,l(−1, y, z)− (Fx)l0jk

]
+

p∑
m=0

Dim(Fx)#,l
mjk(Uijk, Umjk),

(3.36)

(F̃y)
l
ijk =

[
(Fy)

∗,l(x, 1, z)− (Fy)
l
ipk

]
−
[
(Fy)

∗,l(x,−1, z)− (Fy)
l
i0k

]
+

p∑
m=0

Djm(Fy)
#,l
imk(Uijk, Uimk),

(3.37)

(F̃z)
l
ijk =

[
(Fz)

∗,l(x, y, 1)− (Fz)
l
ijp

]
−
[
(Fz)

∗,l(x, y,−1)− (Fz)
l
ij0

]
+

p∑
m=0

Dkm(Fz)
#,l
ijm(Uijk, Uijm),

(3.38)

where F# is a numerical two-point volume flux:

F#
x (Uijk, Umjk) =



{{ρ}}{{u}}

{{ρ}}{{u}}2 + {{p}}

{{ρ}}{{u}}{{v}}

{{ρ}}{{u}}{{w}}

{{ρ}}{{u}}{{e}}+ {{p}}{{u}}


(3.39)

F#
y (Uijk, Uimk) =



{{ρ}}{{v}}

{{ρ}}{{u}}{{v}}

{{ρ}}{{v}}2 + {{p}}

{{ρ}}{{v}}{{w}}

{{ρ}}{{v}}{{e}}+ {{p}}{{v}}


(3.40)

F#
z (Uijk, Uijm) =



{{ρ}}{{w}}

{{ρ}}{{u}}{{w}}

{{ρ}}{{v}}{{w}}

{{ρ}}{{w}}2 + {{p}}

{{ρ}}{{w}}{{e}}+ {{p}}{{w}}


. (3.41)
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This is much simpler to implement numerically, as it allows us to avoid having to deal with

multiple terms that stem from the product rule. The numerical flux F ∗ used is:

F ∗(UL, UR) = F#(UL, UR)− 1

2
λmax[UL − UR], (3.42)

where λmax is an approximation of the maximum of the wave speeds at the interface. (3.42)

is similar to the local Lax-Friedrichs flux, except it uses the two-point volume flux as opposed

to a simple solution average [27].

3.6 Implementation

The DG method was implemented in C++ using dealii [29], a finite element library that

provides the triangulation, basis functions, and other tools necessary to set up a general

finite element problem. The code is referred to as PHiLiP (Parallel High-Order Library for

PDEs) and can be viewed on Github: github.com/dougshidong/PHiLiP. C++ was chosen

due to its low-level nature, which results in faster computational times compared to high-

level languages such as MATLAB and Python. In addition, C++ is object-oriented, which

increases the opportunity of writing compact, easy to understand, yet sophisticated code.

PHiLiP contains the physics required to solve the following PDEs: linear advection,

diffusion, convection-diffusion, Burgers’, and Euler’s. The elements used are lines, quadrilat-

erals, and hexahedra for one, two, and three dimensions, respectively. Furthermore, PHiLiP

is equipped with a message passing interface (MPI) to allow for parallelized computation.

This is a key feature as it allows one to run expensive simulations on supercomputers by

breaking down the problem into smaller bits and feeding them to many processors simulta-

neously. In addition, the code implements DG in both the weak and strong form, though

only the strong form is used in this thesis. Lastly, PHiLiP is equipped with hp adaptivity,

which allows for the modification of the grid or the individual elements’ polynomial approxi-

mation order throughout run-time to ensure that the solution is accurately represented over
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the entire computational domain.

The object-oriented nature of C++ is fully utilized through the usage of class inheritance

and polymorphism. This effective compartmentalization of the code allows for creation

of cleaner software and is advantageous when it comes to debugging. The main classes

in PHiLiP are physics, DG, numerical flux, ode solver, linear solver, parameters,

postprocessor, and testing. The purpose of some of the classes is explained below.

3.6.1 physics

This class contains the physics required to solve the PDEs. There is a base class, which

contains the solution and functions such as convective flux, which is fed to DG. If new

equations need to be added to the code (such as the Navier-Stokes equations), we can simply

create a new class that derives from the base physics class without directly interacting with

the DG class. The derived class would then define the functions in the base class (such as

convective flux).

3.6.2 DG

This class contains the backbone of the DG scheme, and hosts two important functions:

assemble cell terms and assemble face terms. assemble cell terms calculates the vol-

ume integrals in the cells and adds the contributions from the degrees of freedom in the cells

to the right-hand-side of the system. Similarly, assemble face terms computes the surface

integrals. The two functions depend on the formulation of the DG scheme (weak versus

strong).

3.6.3 numerical flux

This class only deals with the numerical flux and is responsible for passing information

regarding the numerical flux to the assemble face terms function in DG. Similar to physics,
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there is a base class which contains the minimal information. If we want to add a new

numerical flux, we can create a new class which derives from the base class and re-defines

the functions.

3.6.4 ode solver

This class works with the output of the DG class. DG assembles a right-hand-side vector for

a system of ODEs. ode solver then integrates the system of ODEs in time. The class

has the flexibility of implicit or explicit integration. The former would be implicit Euler,

and the latter could be RK4 or explicit Euler. The implicit scheme requires the use of the

linear solver because one has to solve a nonlinear system of equations at each time step

using Newton’s method.

3.6.5 parameters

The parameters class contains all the input that will be fed to the program. The parameters

are provided to the code through a .prm file. This file contains information such as the

formulation of the scheme (weak or strong), the time integration method (explicit or implicit)

and the type of PDE to be solved.
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Chapter 4

Results and Conclusion

4.1 Burgers’ Equation

To test the numerical stability of the split form, the following initial condition was used:

u(x, 0) = sin(πx) + 0.01, (4.1)

on the grid [0, 2] with periodic boundary conditions. The solution is initially smooth, but

a shock forms at t ≈ 0.3s. In Chapter 1, it was seen that the standard DG scheme fails

beyond that point. However, the split formulation should maintain stability. The solution

at various times is plotted in fig. 4.1 for p = 7. Comparing this to fig. 1.3, we can see the

improved stability, allowing the simulation to be run for nearly 10 times longer. Although

stability is achieved, parts of the solution are meaningless; oscillations form in the vicinity

of the shock due to the Gibbs phenomenon, and they are an artifact of fitting a high-order

solution through a discontinuity. Furthermore, the energy of the system (1
2
||uh||2) is plotted

in fig. 4.2 as a function of time for p = 3, 5, 7. It can be seen that the energy is non-

increasing at all times, as predicted mathematically. Lastly, the order of convergence of the

scheme was tested. This is important because if a scheme does not provide optimal orders,

there is likely an issue with the implementation that needs to be addressed. The order
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Figure 4.1: Depiction of the solution at various times with p = 7 and 32 elements. At around
t = 0.3s, the shock forms. After that, oscillations form around the shock but the solution
maintains stability as the shock propagates forward.
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Figure 4.2: Energy 1
2
||uh||2 of the system is nonincreasing, as predicted mathematically.

of convergence of DG schemes is O(∆xp+1), which is demonstrated in fig. 4.3 for various

polynomial approximation orders. It is important to note that once the shock forms, the
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order of convergence of the scheme decreases, so it is imperative that the convergence study

is conducted for a smooth solution. Table 4.1 summarizes the convergence test for the three

10
-2

10
-1

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Figure 4.3: Burgers’ equation gives the correct order of accuracy of O(∆xp+1), where p is
the polynomial approximation order.

finest grids and confirms the expected p+ 1 order of accuracy.
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p Cells Degrees of freedom ∆x L2 error Order of accuracy

1 13 26 3.84× 10−2 2.50× 10−3 2.02
1 19 38 2.63× 10−2 1.17× 10−3 2.01
1 28 56 1.78× 10−2 5.35× 10−4 2.01

2 9 27 3.70× 10−2 4.84× 10−5 3.02
2 13 39 2.56× 10−2 1.60× 10−5 3.01
2 19 57 1.75× 10−2 5.11× 10−6 3.01

3 9 36 2.78× 10−2 4.37× 10−7 4.01
3 13 52 1.92× 10−2 9.98× 10−8 4.01
3 19 76 1.31× 10−2 2.18× 10−8 4.01

Table 4.1: Various parameters in the convergence study. The orders of accuracy match the
expected p+ 1 value.

4.2 Euler’s Equations

The test case used was the inviscid Taylor Green Vortex (TGV). The initial condition given

was:

ρ = 1, (4.2)

u = sin(x) cos(y) cos(z), (4.3)

v = − cos(x) sin(y) cos(z), (4.4)

w = 0, (4.5)

p =
100

γ
+

1

16
(cos(2x) cos(2z) + 2 cos(2y) + 2 cos(2x) + cos(2y) cos(2z)), (4.6)

on the domain [0, 2π]3 with periodic boundary conditions. This test case is suitable because

the flow becomes turbulent within the first few seconds of run-time, as shown in fig. 4.4.

This turbulence is artificial since Euler’s equations are inviscid. Furthermore, due to the

periodicity of the domain, the kinetic energy of the system is conserved. This makes the test

case ideal because one can investigate the changes in kinetic energy and attribute the results

to various aspects of the discretization. The kinetic energy is calculated by integrating over
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Figure 4.4: Solution of the TGV test case at various times, showing turbulence development.
Figure taken from [30].

the domain as follows:

K =

∫
1

2
ρ(u2 + v2 + w2)dV =

∫
(ρu)2 + (ρv)2 + (ρw)2

2ρ
dV. (4.7)

Because the TGV test cases for the Euler’s equations were computationally expensive, they

were submitted as MPI jobs on Beluga, which is a supercomputer under Calcul Quebec.

Table 4.2 summarizes the information regarding some test cases that were run. The degrees

of freedom were evenly divided between the processors, and only information about the

solution at the surfaces of the elements needed to be exchanged between the cores to calculate

the numerical fluxes.

Number of Processors Memory/Processor Run Time Grid p Degrees of Freedom
400 1Gb 24 hours 83 2 69120
400 1Gb 24 hours 63 3 69120

Table 4.2: Various parameters used for the jobs submitted to Beluga. The simulations took
24 hours to run.

Figure 4.5 shows the kinetic energy of the system as a function of time for three different

runs. The standard DG scheme, with p = 2 and on an 83 grid, only runs for 1.75s, beyond

which point the simulation crashes. This is because, as predicted, the kinetic energy of

the system is not bounded. However, using the split form on the same grid with the same

polynomial order, the simulation maintains stability and runs for 6.75s. Although the kinetic

energy is theoretically conserved, a decrease is observed in the figure. This is because a coarse

grid is chosen with a low polynomial order, which means that the numerical dissipation
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of the scheme is high. This dissipation can be decreased by increasing the polynomial

approximation order. This is verified by the third curve in the figure, which corresponds to

p = 3 and a 63 grid. The total number of degrees of freedom is maintained to be the same,

but the dissipation is notably reduced by increasing the polynomial order.
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Figure 4.5: Kinetic energy plot of the TGV test case. The standard DG scheme blows up
quickly, while the split form maintains stability and bounds the kinetic energy.

4.3 Conclusion and Future Work

This thesis investigated the nonlinear numerical stability of DG schemes applied to Burgers’

equation and Euler’s equations of fluid dynamics. It is well-known that high-order methods

suffer from instabilities, preventing one from running simulations for the desired duration.

Extensive research has been done on numerical stability in FD schemes. These concepts were

extended to DG through the use of collocation and flux splitting. It was shown mathemat-

ically that flux splitting leads to a formulation for the rate of change of energy of Burgers’

equations that would satisfy nonlinear stability through a particular choice of numerical flux
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f ∗. This concept was extended to Euler’s equations as well.

To verify the mathematical concepts, the schemes were coded in C++ and were compared

against the standard DG scheme. In all cases, the split formulations demonstrated increased

robustness and stability compared to the standard schemes. Although analytically the for-

mulations are exact, splitting the flux using the product rule leads to a scheme that is quite

different numerically.

Future work would involve extending the concept of flux splitting to the Navier-Stokes equa-

tions. The Navier-Stokes equations are used to perform LES and study turbulent flow, and

it is crucial to develop a scheme that is numerically stable and that enables running LES for

long periods. Furthermore, this can be extended to the magnetohydrodynamics equations

of plasma physics, as those equations also suffer from instabilities for high-order methods.
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[18] Hendrik Ranocha, Philipp Öffner, and Thomas Sonar. “Summation-by-parts operators

for correction procedure via reconstruction”. In: Journal of Computational Physics 311

(2016), 299–328. issn: 0021-9991. doi: 10.1016/j.jcp.2016.02.009. url: http:

//dx.doi.org/10.1016/j.jcp.2016.02.009.

[19] Gregor J Gassner. “A skew-symmetric discontinuous Galerkin spectral element dis-

cretization and its relation to SBP-SAT finite difference methods”. In: SIAM Journal

on Scientific Computing 35.3 (2013), A1233–A1253.

[20] Cyril W Hirt. “Heuristic stability theory for finite-difference equations”. In: Journal

of Computational Physics 2.4 (1968), pp. 339–355.

[21] Gregor J Gassner. “A kinetic energy preserving nodal discontinuous Galerkin spec-

tral element method”. In: International Journal for Numerical Methods in Fluids 76.1

(2014), pp. 28–50.

[22] Mark H Carpenter et al. “Entropy Stable Spectral Collocation Schemes for the Navier–

Stokes Equations: Discontinuous Interfaces”. In: SIAM Journal on Scientific Comput-

ing 36.5 (2014), B835–B867.

[23] F Ducros et al. “High-order fluxes for conservative skew-symmetric-like schemes in

structured meshes: application to compressible flows”. In: Journal of Computational

Physics 161.1 (2000), pp. 114–139.

[24] Antony Jameson. “Formulation of kinetic energy preserving conservative schemes for

gas dynamics and direct numerical simulation of one-dimensional viscous compressible

flow in a shock tube using entropy and kinetic energy preserving schemes”. In: Journal

of Scientific Computing 34.2 (2008), pp. 188–208.

[25] Sergio Pirozzoli. “Numerical methods for high-speed flows”. In: Annual review of fluid

mechanics 43 (2011), pp. 163–194.

42 Abtin Ameri Results and Conclusion



Improving the Numerical Stability of DG Schemes

[26] Christopher A. Kennedy and Andrea Gruber. “Reduced aliasing formulations of the

convective terms within the Navier–Stokes equations for a compressible fluid”. In:

Journal of Computational Physics 227.3 (2008), pp. 1676 –1700. issn: 0021-9991.

doi: https : / / doi . org / 10 . 1016 / j . jcp . 2007 . 09 . 020. url: http : / / www .

sciencedirect.com/science/article/pii/S0021999107004251.

[27] Gregor J. Gassner, Andrew R. Winters, and David A. Kopriva. “Split form nodal dis-

continuous Galerkin schemes with summation-by-parts property for the compressible

Euler equations”. In: Journal of Computational Physics 327 (2016), 39–66. issn: 0021-

9991. doi: 10.1016/j.jcp.2016.09.013. url: http://dx.doi.org/10.1016/j.

jcp.2016.09.013.

[28] Jesse Chan. “On discretely entropy conservative and entropy stable discontinuous

Galerkin methods”. In: Journal of Computational Physics 362 (2018), pp. 346–374.

[29] Wolfgang Bangerth, Ralf Hartmann, and Guido Kanschat. “deal. II—a general-purpose

object-oriented finite element library”. In: ACM Transactions on Mathematical Soft-

ware (TOMS) 33.4 (2007), p. 24.

[30] Dimitris Drikakis et al. “Simulation of transition and turbulence decay in the Taylor–

Green vortex”. In: Journal of Turbulence 8 (2007), N20.

Results and Conclusion Abtin Ameri 43


