
MEASURING COOPERATIVE

BEHAVIOR IN CONTEMPORARY

MULTIPLAYER GAMES

Martin Ashton

Master of Science

School of Computer Science

McGill University

Montreal, Quebec

2012-08-12

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science

Copyright c© 2012 Martin Ashton

DEDICATION

This work is dedicated to my friends Pete, Dave, Kevin, Vanessa, Steve, Mike,

Nadina, John, Chris, Max, Dan, Francine, Peter, Daniel, Michael, Dahlia, Sabrina,

Michaela, Katrina, Diana, Stevie, Kathy, Bronson, Jess, Theo, Cynthia, Ben,

Shayne, Paul, Andre, Fred, Justin, J.P., Aly, Carl, Udhay, Phil, Matt, Simon,

Julien, and the rest of the Koalas.

ii

ACKNOWLEDGEMENTS

This work was supported, in part, by the Natural Sciences and Engineering

Council of Canada (NSERC), and Le Fonds de Recherche du Québec - Nature et

Technologies (FQRNT). My particular thanks are extended to Prof. Clark

Verbrugge for giving me the opportunity to research the exciting domain of modern

video games, and to my parents for teaching me the importance of continuously

exceeding my own limits. Lastly, I would like to thank the developers at Bungie,

Blizzard, and Valve for making such excellent games.

iii

ABSTRACT

Social aspects of multiplayer games are well known as contributors to game

success, with online friendships and socialization expected to expand and

strengthen a player-base. Understanding the nature of social behavior and

determining the impact of cooperation on gameplay is thus important to game

design. In this work, we make use of data exposed through in-game and web-based

API’s of two contemporary multiplayer games, World of Warcraft and Halo:

Reach. We use this data to investigate the extent of cooperation among players

and the effect on individual player behavior. We moreover show how the

quantitative assessment of cooperative behavior can be used to isolate potential

problem areas in games which may require additional balancing.

We first monitor group health and position to measure the pacing of a

cooperative scenario in World of Warcraft. We measure a scenario’s pacing

as the temporal progression of its difficulty, which directly reflects the required level

of cohesion and coordination among the players in a group. Our results verify the

informal perception that statically designed content becomes increasingly trivial as

players obtain stronger stats, thus reducing the need for cohesion. Direct

quantification of this behavior, as enabled by designs such as ours, allows for

online, adaptive pacing that should better foster player community by consistently

emphasizing the need for communication.

The benefits of actual group behavior also has a reverse impact on game

design. In our experiment involving Halo: Reach, our results demonstrate that

iv

players who enter as a group into the multiplayer matchmaking system have, on

average, a significantly higher win-to-loss ratio than players who enter the

matchmaking system alone. This gives them an advantage over less social players,

and thus attests to the potential for refinement in group matchmaking techniques.

In addition, our exploratory principal component analysis of individual player

performances reveals a set of novel player types adapted to the multiplayer context

and quite distinct from player types found in other game genres.

From a general standpoint, the data collection techniques outlined in this

thesis reveal the use of publically-accessible game APIs as a relatively unexplored

yet promising source of insight into real-world gameplay behavior. Our results serve

as evidence for two widely-assumed notions of multiplayer game design; the first,

that static game content adversely affects a game’s replayability and ultimately

lessens the need for communication and cohesion among players. The second, that

coordination among players provides a significant advantage over those who choose

to play independently in a team-based setting.

v

ABRÉGÉ

Les interactions sociales entre les utilisateurs de jeux vidéo multijoueurs

contemporains contribuent largement à la propagation et à la longévité de ces

derniers. La compréhension des facteurs qui se lient à la promotion d’interactions

sociales au sein de ces environnements est donc importante à leur développement.

Dans cette thèse, nous recueillons des données à partir d’interfaces de

programmation de deux jeux multijoueurs contemporains: World of Warcraft

et Halo: Reach. Nous analysons ces données afin d’évaluer l’effet global du

comportement coopératif, ainsi que son effet sur le comportement d’individus. De

plus, nous démontrons que la mesure quantitative de comportements coopératifs

peut aider à l’identification de fautes systémiques d’un jeux.

En premier lieu, nous mesurons les points de vie et la position des membres

d’un groupe de joueurs pour évaluer le débit d’un scénario coopératif de World

of Warcraft. Nous définissons ce débit en fonction de la difficulté du scénario

par rapport au temps. L’achèvement d’un scénario à débit intense impose ainsi un

niveau de communication plus élevé entre les membres du groupe. Nos résultats

appuient d’ailleurs la perception informelle que les jeux conçus avec des

environnements et des ennemis non-adaptifs perdent l’intérêt des joueurs lorsque

ceux-ci deviennent trop puissants. De plus, cet accroissement en puissance réduit le

nombre d’interactions sociales en diminuant l’exigence de la communication entre

les joueurs.

vi

En deuxième lieu, nous observons les conséquences de la coopération entre les

joueurs de Halo: Reach. Les données recueillies dans ce contexte suggèrent que

les joueurs qui entrent en groupe d’amis dans le système d’établissement de parties

ont de plus fortes chances d’obtenir une victoire que ceux qui s’y introduisent

individuellement. Nous découvrons ainsi une faute potentielle de ce système

d’établissement de parties qui favorise les joueurs plus sociaux au détriment des

joueurs plus solitaires. De plus, nous appliquons une analyse des composantes

principales (PCA) sur les résultats moyens de chaque joueur, ce qui révèle un

ensemble de descripteurs adaptés au contexte multijoueur, très distinct des

descripteurs attribués aux joueurs d’autres types de jeux.

D’un point de vue global, quoique les interfaces de programmation de jeux

soient relativement inexplorées, notre méthodologie démontre que celles-ci offrent

une panoplie d’informations liées aux comportement de joueurs. Nos résultats

supportent d’autant plus deux notions informelles enracinées dans le design de jeux

multijoueurs – la première dicte que les environnements statiques agissent contre la

rejouabilité d’un jeu, et que ceux-ci réduisent ultimement les besoins de

communication et de cohésion entre joueurs. Dans un contexte d’affrontements

d’équipes, la deuxième notion soutenue par nos données suggère que les joueurs

coordonnés en groupe ont un avantage inné par rapport aux joueurs plutôt

indépendants.

vii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ABRÉGÉ . vi

LIST OF TABLES . x

LIST OF FIGURES . xi

1 Introduction . 1

1.1 Contributions . 4
1.2 Thesis Outline . 4

2 Measuring Cooperative Behavior in World of Warcraft 5

2.1 Background . 6
2.1.1 World of Warcraft . 6
2.1.2 WoW AddOns . 9

2.2 Method . 10
2.2.1 Orunj AddOn . 13
2.2.2 Measuring Player Intensity 14
2.2.3 Minimum Enclosing Circle Progression 15

2.3 Experimental Results . 17
2.3.1 Experimental Context . 17
2.3.2 Intensity Results . 22
2.3.3 Pacing Results . 26

2.4 Discussion . 30

3 Measuring Cooperative Behavior in Halo: Reach 31

3.1 Background . 32

viii

3.1.1 Halo: Reach . 32
3.1.2 Stats API . 35

3.2 Data Collection . 36
3.3 Data Analysis . 39

3.3.1 Player Graph . 39
3.3.2 PCA . 52

3.4 Discussion . 58

4 Related Work . 64

4.1 Metric-Assisted Game Development and Adaptive Gameplay . . . 64
4.2 Measuring Player Behavior and Player Types 67

5 Conclusions and Future Work . 71

5.1 Conclusions . 71
5.2 Future Work . 73

References . 76

ix

LIST OF TABLES
Table page

2–1 MEC Metrics and Intensity. 28

3–1 Rounds of data collection. 40

3–2 Node Degree Distributions. 43

3–3 Round 1: simplified principal components. 59

3–4 Round 2: simplified principal components. 60

3–5 Round 3: simplified principal components. 61

3–6 Round 4: simplified principal components. 62

3–7 Simplified principal components from the merged data set. 63

x

LIST OF FIGURES
Figure page

2–1 Orunj system architecture . 11

2–2 WoW positional data visualization using the Lua-based LOVE frame-
work. 12

2–3 Playable area of the first floor of Utgarde Keep. 19

2–4 Player positional data from the Violet Hold dungeon. 21

2–5 Player position and MEC plot of a sample Utgarde Keep run. 23

2–6 Player intensity plots. 25

2–7 Minimum Enclosing Circle (MEC) heatmaps 27

3–1 Halo: Reach multiplayer data analysis system. 36

3–2 A conceptual simplification of the sampled player graph 41

3–3 Node degree distribution of Rounds 1 through 4 of data collection. . . 42

3–4 Edge weight distributions in Round 1 of the data collection 45

3–5 Edge weight distributions in Round 2 of the data collection 46

3–6 Edge weight distributions in Round 3 of the data collection 47

3–7 Edge weight distributions in Round 4 of the data collection 48

3–8 Average component size versus pruned edge weight, Rounds 1 and 2 . 50

3–9 Average win ratio versus number of friends in a game. 51

3–10 Summed PC weights versus group win ratio (top 10). 56

3–11 Summed PC weights versus group win ratio (bottom 10). 57

xi

CHAPTER 1

Introduction

Multiplayer games benefit from strong social engagement; a large and cohesive

player community is essential for providing players with an abundance of other

players to interact with as team-mates or opponents, and is also seen as mechanism

to encourage player retention. Such player bases can be cultivated by the necessity

to cooperate and communicate in games, which may take several forms depending

on the genre. In the case of a player-versus-environment game, a scenario may be

too difficult to tackle alone, requiring the aid and coordination of additional group

members to fulfill specific roles. From the perspective of a competitive

team-versus-team setting, the goal itself is to coordinate with your teammates to

claim victory over the opposing team. In either case, by inspiring players to

cooperate, game-designers open new channels of communication within the player

base, facilitate different forms of game-play, and improve the game’s overall appeal.

Understanding the nature and impact of player behaviors in multiplayer game

contexts is thus important to game growth as well as how game environments may

be structured or tailored to encourage community.

The most popular and long-lasting multiplayer games have indeed cultivated

their respective communities by continuously ensuring their mechanics and

strategies are balanced with newly introduced content. If a game is too easy or

overwhelmingly difficult, players may quickly lose interest through boredom or

1

frustration. Dominant strategies additionally trivialize the game experience by

reducing the number of interesting decisions the player can make. An appropriately

balanced game therefore benefits the development of its community by fostering

strategic discussion, coordination and by providing an engaging gameplay

experience. Motivated by the importance of community in games (and in general),

this thesis aims to show how the quantitative assessment of cooperative behavior in

games can be used to isolate problem areas which may require additional balancing.

We begin by investigating techniques for measuring the level of difficulty

within a cooperative player-versus-environment multiplayer game. We measure a

game’s “pace” as the temporal progression of its difficulty, which directly reflects

the required level of cohesion and coordination among the players in a group. We

focus on World of Warcraft (WoW) as a contemporary and popular game

where player enjoyment is directly affected by the degree of difficulty experienced.

As a multiplayer Role-Playing Game (RPG) with a relatively large variety of player

statistics, WoW provides a rich context for measuring cooperative player

experience. Player (team) health, level of cooperation and the importance of battle

strategy are all potential measures of difficulty.

Using the WoW plug-in interface, we develop a basic tool for gathering

real-time player data during gameplay. We explore two fundamental metrics, one

inspired by Left 4 Dead using team health [9], and the other a novel measure

that focuses directly on the team experience, measuring cohesiveness of the group

during adventuring. The latter uses a distance-based metric intended to encode the

2

“amount” of strategy employed by the team, and thus the degree to which

cooperation is important to successful gameplay.

In the second major part of this work, we examine the impact of cooperation

among players in a team-based player-versus-player setting and attempt to model

individual player behavior in the context of a contemporary multiplayer first person

shooter (FPS), Halo: Reach. We focus here on measuring the effect of cohesive

teamplay in contrast to playing as a “lone wolf”. Our approach makes use of the

Halo: Reach Stats API, which allows us to crawl a representative subset of the

Halo: Reach player base, as well as collect a wide set of per-player gameplay

metrics such as achievements, rank, total kills, total deaths, wins and score to name

but a few.

We construct a weighted edge list of all the players who have played in the

same game together. The edge weights of the resulting graph provide insight into

the level of coordination among players. We discover that in the average case, the

win-to-loss ratio of players who enter as a cohesive group into the multiplayer

matchmaking system scales in proportion to the size of the group, thus alluding to

the efficacy of coordinated team play in the Halo: Reach matchmaking system.

We furthermore apply an exploratory principal component analysis (PCA) to

the aggregate set of player gameplay performances in an attempt to isolate specific

sets of player behaviors. This step reveals a set of five stable components which can

be used to describe a player’s behavior and skill in relation to various game

mechanics present in Halo: Reach.

3

1.1 Contributions

The specific contributions of this work first include the description and

development of two non-invasive data collection systems which sample real-time

and post-game multiplayer data in World of Warcraft and Halo: Reach

respectively. Secondly, we analyze real-time gameplay data using two interesting

metrics for understanding the extent of difficulty and cooperation in a cooperative

player-versus-environment (PvE) setting; the first related to player health, and the

second related to inter-player distance. We also infer coordination among player

groups by isolating tight-knit components in a sampled player graph. This data

shows the size and extent of player “friendships,” as well as the impact of cohesive

groups on game balance. Lastly, we make use of principal component analysis

(PCA) on FPS multiplayer data in an attempt to categorize individual player

behavior in this genre. Our results reveal interesting and novel player types

strongly related to the game’s mechanics.

1.2 Thesis Outline

This thesis is divided into five chapters, including this introductory chapter.

Chapter 2 describes the collection and analysis of cooperative gameplay metrics in

the player-versus-environment setting of World of Warcraft. Chapter 3

discusses the data collection and analysis of aggregate post-game data stemming

from Halo: Reach’s team-based player-versus-player gameplay. Chapter 4

presents relevant related work in the field of games research, with a particular focus

on game metrics. Chapter 5 concludes with a summary discussion of our results,

and avenues for future work.

4

CHAPTER 2

Measuring Cooperative Behavior in World of Warcraft

In all games, the quality of player experience is directly influenced by the level

of challenge provided by the gameplay. A low level of challenge results in a trivial

and uninteresting game, while a continuous and excessively high level of difficulty

will result in many players abandoning the game as being too difficult. Appropriate

game pace has thus been recognized as an important factor in ensuring players are

continuously engaged without being overwhelmed [30]. Games such as

Left 4 Dead even include an active monitoring component that uses a

combination of player measures to determine difficulty, and thus controls pace in

order to match player ability [9].

In this chapter, we apply a similar pacing metric to World of Warcraft,

specifically to multiple instances of a 5-person cooperative “dungeon”. We show

that a cooperative team that is well-matched to the dungeon level will exhibit clear

differences in comparison to teams whose characters are over-levelled, or too

powerful. In the former case, our metrics show that the difficulty level is conducive

to tight teamwork. However, in the latter, difficulty is notably lower, with player

characters requiring a reduced level of cohesion to complete the same content. Our

results demonstrate that difficulty and pacing are clearly exposed by these basic

measures.

5

2.1 Background

This background section presents an overview of World of Warcraft and

the relevant game mechanics on which we base the analysis of our data. We also

describe the World of Warcraft plugin framework, commonly referred to as

client AddOns, which make use of the Lua-based WoW API.

2.1.1 World of Warcraft

World of Warcraft (WoW) is often described as a modern successor of

the multi-user dungeon genre. It is currently one of the most popular Massively

Multiplayer Online Role Playing Games (MMORPG), having exceeded a user base

of 12 million subscribers in October 2010 [6]. WoW has undergone a drastic

number of changes since its inception in 2004 including three expansions, the latest

of which is World of Warcraft: Cataclysm.

Leveling. The character leveling system in World of Warcraft closely

follows the leveling systems of most RPGs. Characters start at level 1 and increase

in level by gaining experience from completing quests and defeating non-player

characters such as monsters, dragons, wizards, etc. The latest WoW expansion

raised the level cap from 80 to 85. Note that the experiments described in this

chapter were performed in the previous expansion, Wrath of the Lich King,

during which the level cap was set to 80. When a character gains a level, stats are

incremented. Character stats include stamina, dexterity, strength, intellect, etc.

The growth of these stats is prioritized according to the character’s class. During

the leveling process, the character is also attributed talent points, which can be

spent to obtain new spells and abilities.

6

Classes. During the character creation process, the player must select one of

ten classes: Warrior, Druid, Shaman, Hunter, Paladin, Death Knight, Rogue,

Mage, Warlock, and Priest. These classes follow the archetypal descriptions found

in most RPGs - Warriors are melee-centric and heavily armored; Rogues rely on

stealth; Mages cast destructive spells; Priests heal their teammates, etc. The

majority of these classes have a unique mechanic or resource system which

differentiates their gameplay. For example, Warriors use a rage system which

accumulates over the course of a battle, allowing them to perform specific abilities.

By contrast, most spell-casters use mana to cast spells from a distance.

Roles. A character’s talent point distribution dictates his or her optimal role

in a group setting. Each class has three unique talent trees in which talent points

can be spent. Deep talents within these trees are more powerful, but also have a

higher number of prerequisites. Every class has at least one talent tree which

focuses on increasing combat efficiency. Warlocks, Rogues, Mages, and Hunters are

pure damage-dealers. Warriors, Paladins, Death Knights and Druids can invest

points in one of their respective trees to optimize their tanking ability, allowing

them to mitigate incoming damage. Paladins, Druids, Shamans, and Priests each

have at least one healing tree, which allows them to heal group members more

efficiently. As such, a character can fulfill one of three roles in a group setting:

tank, healer, or damage-dealer.

Cooperative gameplay. An in-game matchmaking system facilitates group

formation by combining characters according to their role. Character grouping is

first prioritized according to level, then according to equipment quality. One tank,

7

one healer and three damage-dealers are bound to an instanced dungeon, in which

the group members must cooperate to defeat non-player controlled characters

(NPCs). These player-versus-environment (PvE) scenarios usually take 25 minutes

to complete, after which the group members are rewarded with experience, items

and dungeon points which can be traded with vendors for more valuable equipment.

Dungeons have a minimum level requirement, and can be repeated an arbitrary

number of times. The matchmaking system will ensure that characters are placed

in a suitable dungeon, in which the NPCs are roughly the same level as the group

members. The environmental layout and events do not change between instances of

the same dungeon. In most cases, enemy NPC placement and attributes also remain

the same, although a small handful of dungeons spawn enemies pseudo-randomly.

When a character reaches the level cap, his or her stats can only increase by

obtaining better equipment. As a level-capped character’s stats increase, so does its

ability to fulfill roles in more challenging dungeons, such as the “heroic” versions of

previously visited dungeons. Equipment gathered from these heroic-difficulty

dungeons are then used to participate in longer, more intricate raid instances.

These instances can only be completed by groups of 10 to 25 players. As such, the

5-player dungeons act as stepping stones into more demanding raid environments.

One notable issue which affects the replayability of these “stepping stone”

dungeons is that their content does not scale dynamically with the stats of the

group members. Regardless of the players’ equipment quality and stats, the

strength, health, attack types, layout and number of enemy NPCs remains fixed

according to the original intent of the level designers.

8

To maximize game content replayability, the dungeon point currency system

acts as an incentive for characters with comparatively higher quality equipment to

revisit the 5-person dungeons, and help less advanced characters progress through

the game. However, considering the static difficulty and eventual predictability of

these dungeons, anecdotal player experience suggests that the gameplay becomes

increasingly trivial as the character’s stats grow: player health pools increase, tanks

mitigate more damage, healers heal for higher amounts, and damage-dealers

increase their damage throughput. Eventually, the trivial nature of higher-level

player interaction with the game is perceived as mundane, or a “grind”: a task

whose time investment and stimulation level is unfitting with respect to the

reward’s perceived value.

2.1.2 WoW AddOns

World of Warcraft is based on a client-server architecture, wherein a

game client communicates with a server to update its view of the game world. The

World of Warcraft game client supports the use of AddOns (plug-ins) to

customize the layout and functionality of its graphical user interface (GUI). WoW

AddOns are typically written in the Lua programming language [18, 34].

The World of Warcraft API offers an extensive array of functions ranging

from character inventory management to Mac-exclusive iTunes playback control [8].

Note that there are no functions available to automate character interactions with

the game world. As such, spell-casting and character movement can only be

performed as a result of the player’s direct input via the mouse and keyboard.

9

The game client contains a Lua interpreter which supports a subset of the

language’s libraries. Within this Lua sandbox, there is no way to directly access

the underlying file system, nor is there a way to directly invoke any of the

operating system’s functions. Data can nonetheless be saved and loaded by means

of a designated Lua save file, the name of which can be specified in the AddOn’s

meta-data. AddOn data is saved as Lua code, which can be run in a standalone

Lua interpreter to recreate the serialized data structures outside of the World of

Warcraft client [18].

2.2 Method

In this section, we outline the framework used to perform our experiments, as

well as the metrics applied to our data. Figure 2–1 depicts the architecture of our

framework. The Orunj AddOn, presented in the figure as the “Lua Script”, runs in

the Lua sandbox of the World of Warcraft game client. The AddOn records

gameplay data by polling the game client for information about its view of the

game state. Recorded sessions are automatically serialized by the game client into a

Lua file. Offline scripts are used to analyze this data, namely by computing for

each timestep in a session: (1) the total amount of health lost in the group, and (2)

the minimum enclosing circle around the group. The analyzed data is exported into

flat text files to facilitate plotting. It is also exported into the .love file format so it

can be retroactively visualized through the LÖVE framework [22], a Lua-based 2D

graphics library, as illustrated in Figure 2–2.

10

Figure 2–1: Orunj system architecture. The system we developed is identified by the
blue highlight. Our data collection begins by polling the game client periodically
via an AddOn written in Lua. When a session terminates, the character logs out to
automatically save the data into a Lua file. In typical AddOn usage scenarios, this
automatic saving procedure allows AddOns to save and reload user preferences. By
contrast, we use this automated mechanism to make our data available outside the
game client. We re-format and analyze the raw gameplay data by computing the
health progression and Minimum Enclosing Circle around the group of players at each
time interval. We also export self-contained gnuplot scripts and LOVE-compatible
files to facilitate visualization and validation.

11

Figure 2–2: WoW positional data visualization using the Lua-based LOVE frame-
work. The white circle (MEC) illustrates the group’s position in the environment.
The colored trails identify each player’s trajectory and class - Pink: paladin, tank; Or-
ange: druid, healer; Dark blue: shaman, damage-dealer; Light blue: mage, damage-
dealer; Red: death knight, damage-dealer.

12

2.2.1 Orunj AddOn

The Orunj AddOn begins its data recording procedure by instantiating

required data-structures for the new recording session. An initial snapshot of the

current group members is taken, including their names, their maximum health, and

their maximum power (power here depends on the class’ resource system such as

rage, mana, runic power, energy, or focus). The talent point distribution of each

character is also recorded to infer its role in the group as either a tank, healer, or a

damage-dealer.

The default sampling rate is set to one sample per second to minimize memory

consumption. A sample point contains each group members’ health, power, and

map position as an (x, y) coordinate. The map position is normalized to a unit

square and represents the position of the character with respect to the 2D overhead

map of the environment. Note that full 3D coordinates of the players are not

accessible through the WoW API. In most cases, however, the z-coordinate of

players is not significant to gameplay.

The majority of the WoW API function calls return a small subset of the local

client’s data, as opposed to querying the server directly. An exception to this flow

is the initial character inspection process, which requires that the server be notified

of which character needs inspection in order to push the appropriate data to the

game client. The act of recording character health, power, and map position is thus

non-invasive with respect to the server and other players, and does not perturb

player actions or experience. When a session has been recorded, the player must

13

log out of the game world to ensure that the recorded data is written to the Orunj

AddOn’s designated save file.

The recorded session’s datastructures are loaded outside the WoW game client

by means of an external Lua interpreter. Lua scripts are used to compute metrics

on the collected gameplay data such as overall health loss per unit time, and the

progression of the minimum enclosing circle around the group members based on

their 2D map position.

2.2.2 Measuring Player Intensity

The first metric applied to the recorded data is player intensity, which is

measured in proportion to the amount of health lost per unit time. To succeed in a

dungeon, group members must cooperate to defeat enemy NPCs and avoid being

killed. Similar to the emotional intensity metric used in Left 4 Dead [9], when a

group member is damaged, the player intensity of the group is incremented

proportionally. For each sample in a recorded session, player intensity is computed

by summing the total amount of health lost by each group member, divided by the

total health of the group. This yields a normalized value between 0 and 1 for each

sample, which allows for comparisons of player intensity metrics between groups.

Periods of high intensity correspond to moments in which group members

sustain a large amount of damage (i.e. health loss) per unit time. For a group to

succeed, its players must meet some baseline level of cooperation to survive

moments of high intensity. As intensity increases, so should the level of involvement

required by each player to stay alive.

14

This level of involvement contributes to the gameplay experience by promoting

the player’s focus and motivation. If the amount of intensity is insufficient, the

scenario becomes trivial and the players may lose interest. Of course, continuous

high-intensity scenarios may also prove to be too stressful and too challenging,

hence the importance of appropriate pacing. Such proper pacing is generally

marked by periods of high intensity separated by lulls in the action to ensure the

players are not overwhelmed.

It is worth noting, however, that other game genres such as puzzle games or

social games may benefit from a more relaxed pacing. In such cases, player

intensity may not be an appropriate metric to gauge player involvement.

2.2.3 Minimum Enclosing Circle Progression

The second metric applied to the collected data is the progression of the

minimum enclosing circle (MEC) around the group. The MEC algorithm [28] takes

as input the 2D map position of each character in the group, and returns the (x,y)

coordinates of the MEC’s center, as well as its radius.

To justify the relevance of the MEC metric, we first present a set of key

observations in relation to WoW’s gameplay mechanics:

• Spell-casting relies on the character’s distance and line of sight from its

target. Ranged damage-dealers must generally stay within 35 yards of their

target, while healers can heal from a distance of up to 40 yards. Melee classes

must stay within melee range of their target.

• Most spell-casting requires that the character be stationary. Melee classes

maximize their damage throughput when they are standing behind their

15

target, to reduce the chance of parries or blocks. As such, the tank should

avoid moving the enemy NPC’s unnecessarily.

• Healers and damage-dealers tend to stay behind the tank as it leads the

group through the dungeon; the tank is generally the first group member to

engage in battle.

As team cohesion increases, a smaller MEC radius is maintained with most

players positioned within 35 to 40 yards of one another. This way, the healer can

continuously heal the group members while the damage dealers focus on defeating

the enemies. A much larger MEC radius is expected in cases of low cohesion. It is

often the case that one or more freeloading group members trail behind when the

scenario’s difficulty is made trivial by overpowered players.

To complete a dungeon, the players must defeat groups of enemy NPCs along

a generally linear path towards the dungeon’s final boss. In appropriately

challenging scenarios, each NPC encounter will last long enough to have each group

member participate in the fight, for example by casting spells. As such, a heatmap

of the MECs is expected to display tight overlapping circles for prolonged NPC

battles. The speed and position of the MEC’s center should only change as the

group moves to the next battle. It is therefore expected that an easy scenario

would be characterized by a highly mobile MEC center; the group would spend less

time engaged in battle, and more time moving towards the final boss.

To summarize our metrics, the pacing of a scenario is expected to match

moments of high and low player intensity, as well as the temporal progression of the

MEC’s overlap and radius.

16

2.3 Experimental Results

In this section, we describe the experiments performed in World of

Warcraft’s dungeon matchmaking system. We also analyze our results and

discuss their relevance towards measuring perceived intensity and cooperative

pacing in WoW.

2.3.1 Experimental Context

Three characters were used to perform the experiments reported in this

chapter, namely: (1) “Appuls”, a level 80 Druid with high-quality equipment

obtained from 10 and-25 person raids, (2) “Orunjs”, a level 80 Death Knight (not

to be confused with the name of our Orunj WoW AddOn), with comparatively

lower quality equipment gathered from quests and 5 person heroic dungeons, and

(3) “Aid”, a level 70 Priest equipped with questing items. Appuls and Aid had

their talent point allocation optimized for healing, whereas Orunjs was optimized

for tanking.

Constraints in the data gathering phase required author participation, which

introduces significant potential for bias. This was done to ensure that the character

collecting the data was within range of each other character to consistently record

their health and positional data. In a healing role (playing “Aid” and “Appuls”),

the author had a low influence on player intensity, as there was no way to control

how much damage the other group members would take from enemy NPCs. In a

tanking role (playing “Orunjs”), the player intensity metric is subject to a higher

potential for bias; the tank is partly responsible for ensuring that enemy NPCs do

not hit other group members. Regardless of the character role, the author’s

17

influence on the MEC path is quite low, given the linear environmental layout of

most dungeons. To reduce this potential for bias in future work, a larger number of

data gathering participants can be used to collect and upload their data to a

central repository for later analysis.

We examined the results from the regular and heroic versions of the “Utgarde

Keep” dungeon (see Figure 2–3). Aid was used to collect the results of the regular

version of Utgarde Keep - the regular version of Utgarde Keep is the first Wrath

of the Lich King dungeon available at level 70. Appuls and Orunjs were used to

collect data from the heroic version of Utgarde Keep, accessible at level 80.

In terms of character progression in Wrath of the Lich King, a level 70

character, such as Aid, is normally equipped with items whose “item level” (ilvl) is

valued at 138. The majority of these items are collected from quests in the level 70

questing area. A freshly-attained level 80 character, such as Orunjs, is generally

equipped with items ranging in value from ilvl 160 to ilvl 200. By contrast, a level

80 character who regularly participates in 25-person raids, such as Appuls, is

usually equipped with items ranging in value from ilvl 226 to 264. Item level is

proportional to the amount of allocated stats on an item, thus increasing the

efficiency and power of the character as his/her items increase in ilvl. A mapping of

item level to character progression can be found at [35].

Recall that the dungeon matchmaking system prioritizes group formation

according to level, then equipment quality. Aid’s groups consisted of characters

ranging from level 69 to 72. Appuls’ and Orunjs’ groups consisted of level 80

18

Figure 2–3: Playable area of the first floor of Utgarde Keep. Players enter the dun-
geon on the bottom right, and proceed to the second floor of the dungeon, following
a horseshoe-shaped path.

19

characters, though Appuls’ group members usually had higher stats, imparted by

higher-quality items.

A number of runs were recorded throughout the development process and

testing of our framework. The majority of these runs served to ensure that the data

collection logic could robustly detect and handle map changes, in-instance floor

increments (eg: going up stairs occasionally changes the map), and player

replacements in the group (eg: a player leaving and being replaced by an entirely

different character). We also performed diagnostic runs of several dungeons to

examine the readability of the plotted data on certain maps. Indeed, maps such as

Violet Hold which forced players to move back and forth between NPC spawn

locations were not conducive to producing readable and easily interpretable

positional data (see Figure 2–4).

Obtaining usable data from dungeon runs also proved to be challenging. In

normal play conditions, it was not unusual to have one or several party members

leave the group, either due to a disconnection, frustration, or real-life obligations.

This imposed significant down-time as the remaining party members attempted to

salvage the situation and find replacements. This down-time would later translate

into a disproportionately large overlap in the MEC heatmap, as the players

maintained their position due to their lack of ability to progress in the dungeon

without a full group.

The readability of the MEC plots is furthermore affected when a character dies

during the run. The party must typically wait for him or her to revive him/herself

at the dungeon entrance, and run back (or be summoned) to the group. When a

20

Figure 2–4: Player positional data from the Violet Hold dungeon. This dungeon requires

that the players move back and forth between pseudo-random NPC spawn locations. The

resulting plot of this dungeon is not easily interpreted, and was therefore not selected for

our experiment.

21

character is distant in the environment, the local game client does not consistently

receive position updates since both characters are outside each others’ spheres of

influence. The plot therefore reports the revived character’s movement as a series

of “jumps”. The resulting MEC heatmap moreover suffers from extremely large

overlapping circles which reduce in size as the revived player(s) approach the group

(see Figure 2–5).

To mitigate this, we introduce an arbitrary threshold value in which players

are ignored if they are too distant from the previous timestep’s MEC center. As

their position crosses the threshold value, it is included in the next MEC

calculation, usually resulting in a sudden discontinuous jump in the MEC’s radius.

To remove this artifact in future work, a post-processing data filter may be

implemented to ensure a continuous MEC progression.

2.3.2 Intensity Results

Aid. The regular version of Utgarde Keep was designed and balanced for

characters between levels 69 and 72. The data collected with Aid therefore serves

as a basis of comparison for the intended pace and intensity of this dungeon.

Figure 2–6 (a) illustrates the player intensity for a playthrough of the regular

version of Utgarde Keep. Observe that the player intensity ramps up during each

battle, and then quickly diminishes as the enemy NPCs are defeated.

There are approximately 20 NPC battles in a typical session of Utgarde Keep,

including three boss fights. In Figure 2–6 (a), the first boss fight ends just before

the 400 second mark. The enemy NPC encounters become increasingly challenging,

causing larger spikes in the group intensity. The second boss fight occurs at around

22

Figure 2–5: Player position and MEC plot in a sample Utgarde Keep run. The MEC

heatmap (in orange) suffers in readability from the large overlapping circles as revived

player(s) make their way back to the group. The long straight lines denote the infrequent

position updates of a distant player whose sphere of influence does not intersect that of the

local client. Note that this is a raw representation of the positional data, which is inverted

along the y-axis in comparison to the remaining Utgarde Keep MEC plots in this chapter.

23

800 seconds. The periods of 0 intensity correspond to group movement towards the

next battle. It is worth noting that the intensity peaks at the end of the

playthrough, when the group must defeat the last boss of the dungeon. This

intuitively serves as a culminating point for player intensity, in which the group can

lose upwards of 25% of its maximum health from a single attack.

Orunjs. Like most heroic dungeons in Wrath of the Lich King, the

heroic mode of Utgarde Keep was balanced to challenge characters like Orunjs, who

had just attained level 80 and who were primarily equipped with items obtained by

leveling. Orunjs was often paired with similarly equipped players by the dungeon

matchmaking system. Thus, the player intensity in Figure 2–6 (b) shows that

Orunjs’ session through the heroic version of Utgarde Keep matches the level of

intensity recorded by Aid’s group in Figure 2–6 (a).

Appuls. Figure 2–6 (c) illustrates the intensity of a heroic Utgarde Keep

session recorded by Appuls, a character equipped with raid-quality items. The

player intensity in this session is distinctly lower than that of Figures 2–6 (a) and

2–6 (b), which supports the intensity metric predictions of Section 2.2.2. The

duration of the session was also substantially lower than the previous sessions: 796

seconds compared to 1429 and 1295 seconds for Aid’s and Orunjs’ playthroughs

respectively.

The higher stats of Appuls and his group members, imparted by their

higher-quality raid items, contributed strongly to the reduction in player intensity

in heroic Utgarde Keep. In comparison to Orunjs’ and Aid’s groups, more damage

24

(a) (b) (c)

Figure 2–6: Player intensity in regular Utgarde Keep. Each plot represents one
recorded session. The sequence number along the x-axis represents the elapsed time
in seconds. The player intensity is defined as the cumulative health loss of each
group member divided by the total group’s health at each timestep. (a) Aid, level
70, quest-reward equipment. This intensity plot serves as a point of comparison for
the intended level of difficulty for this dungeon. (b) Orunjs, level 80, dungeon and
quest reward equipment. The intensity pattern is similar to the one recorded by
Aid. The stats and skill of the participants is fitting of the dungeon’s difficulty; the
heroic version of this dungeon was designed for freshly-attained level 80 characters
such as Orunjs, similarly to how the normal version of this dungeon was designed for
freshly-attained level 70 characters such as Aid. (c) Appuls, level 80, end-game raid
equipment. The lack of intensity here suggests that the stats and skill of the group
members far surpasses the dungeon’s difficulty.

25

was mitigated, character health pools were larger, and the damage and healing

throughputs of each player were greater.

The reduction in player intensity for Appuls’ session thus attests to the

relevance of the player intensity metric when attempting to quantify the level of

difficulty to which the player is subjected. To build on this observation, a more

thorough experiment can be constructed whereby the summed or averaged item

level (ilvl) of the group member’s equipment can be correlated with the intensity

distribution throughout various dungeons. Unfortunately, the current data set

collected in this study does not contain each group member’s equipment list, and so

the item levels are inaccessible.

2.3.3 Pacing Results

The MEC metric was used to compare gameplay pacing between the sessions

recorded by Aid and Appuls. For clarity, we report the pacing results of the first

floor of the Utgarde Keep dungeon. Note that the plots in Figures 2–7 (a) and 2–7

(b) correspond to the trajectory suggested by the overhead map of the dungeon in

Figure 2–3.

Figures 2–7 (a) and 2–7 (b) represent the cumulative MEC data of three

sessions collected by Aid and Appuls respectively. Table 2–1 illustrates an

aggregate of the gameplay data used to generate Figure 2–7. These plots can be

viewed as heatmaps of the average amount of time spent by each group in a specific

area of the dungeon. The regions of the plots darkened by the superimposition of

MECs correspond to areas in which the groups spent more time. The lighter

regions of the plots denote areas of group movement towards the next battle.

26

(a) (b)

Figure 2–7: (a) Cumulative MEC data of 3 sessions in regular Utgarde Keep (first
floor) recorded by Aid. Darker regions indicate areas in which groups spent more
time battling enemy NPCs. (b) Cumulative MEC data of 3 sessions in heroic Utgarde
Keep (first floor) recorded by Appuls. The lighter regions of this plot allude to a
much quicker pace.

27

Aggregate Metric Aid Appuls

MEC Speed
Average 0.0025 0.0042
Standard Deviation 0.0037 0.0062

MEC Radius
Average 0.0210 0.0258
Standard Deviation 0.0090 0.0213

Intensity
Average 0.0074 0.0056
Standard Deviation 0.0181 0.0144

MEC Speed vs Intensity
Pearson Correlation -0.1308 -0.0413
p-value 2.4116e-13 0.0953

Table 2–1: MEC Metrics and Intensity. Quantitative metrics presenting the average
MEC speed and radius, and the intensity results for Figure 2–7.

The MEC heatmaps recorded by Aid in Figure 2–7 (a) for regular Utgarde

Keep are noticeably denser than the ones recorded by Appuls in Figure 2–7 (b) for

heroic Utgarde Keep. The “MEC Speed” and “MEC Radius” rows of Table 2–1

attest to this difference in density; the average speed of Aid’s groups is 40% slower

than that of Appuls’ groups, causing more MEC overlaps in the heatmap. The

standard deviation of the MEC radius is also greater in Appuls’ groups, suggesting

there is more variance and therefore less consistent group movement in Appuls’

groups, compared to Aid’s groups.

The intensity metric in Table 2–1 is also worth comparing. The average

intensity in Appuls’ groups is approximately 25% lower than that of Aid’s groups,

while maintaining a similar standard deviation. This alludes to the higher damage

28

mitigation and better items of Appuls’ group members versus Aid’s group

members, relative to the dungeon NPCs’ attack strength.

The correlation between the MEC speed and the group intensity is also

revealing. In the case of Aid’s groups, the Pearson correlation value of -0.1308

indicates that the MEC speed tends to be lower in moments of higher intensity.

The associated p-value of 2.4116e-13 indicates a low probability of an uncorrelated

system producing datasets having a Pearson correlation at least as extreme as the

one computed. By contrast, the Pearson correlation of -0.0413 for Appuls is closer

to 0, and its p-value is much larger, suggesting that in Appuls’ groups, the MEC

speed apparently varies independently from the group intensity. This can be

justified by the group’s high mobility engendered by the lack of a need to stay

stationary against groups of enemy NPCs (the NPCs die too quickly).

The differences mentioned above support the idea that the groups in which

Aid participated spent more time in each battle, and therefore followed a more

progressive pace than Appuls’ groups, whose individual battles were much shorter

in duration. This disparity in pacing can be explained by the static difficulty of the

dungeons in WoW. As characters obtain better equipment from (1) the dungeon

point system, or (2) the 10 and-25 person raids, they become notably more efficient

at completing 5-person dungeons such as heroic Utgarde Keep. The trivialization of

this content may, in the long run, cause players to become apathetic to the

gameplay which would subsequently hinder the game’s replayability.

29

2.4 Discussion

MMORPGs rely on continuing and long-term player participation, typically

fostered by a growth or enhancement system for player avatars. Ensuring the game

remains relevant to players despite their increase in abilities and resources is thus

important to player retention. Unchecked or unmatched by sufficiently abundant

new and higher-level content, however, such “power-creep” has potential to

trivialize game challenges, making the game experience uninteresting. Avatar level

restrictions are often applied to avoid this, but especially in the context of

cooperative multiplayer scenarios, difficulty can be seen as a complex function of

group balance, resources, and relative player skill.

More direct measures of player difficulty can allow for a more straightforward

evaluation of the extent and pacing of challenge, and thus the amount and relative

level of player attention. Our results here demonstrate that easily gathered data

can successfully summarize group experience, illustrating both the degree of

difficulty and the how well it is distributed during actual gameplay. Additional

data collected with these tools can help us further understand cooperative

multiplayer behaviour and reactions to specific game content, as well as in

developing adaptive systems that may dynamically adjust the difficulty to match

the group ability. Such systems would notably increase the need for cohesion and

communication among group members, thus fostering a stronger sense of

community and inter-dependence among the player base.

30

CHAPTER 3

Measuring Cooperative Behavior in Halo: Reach

Our approach in this chapter makes use of the growing trend by game studios

to offer web-portals for users to display and compare personalized gameplay data;

examples of such portals include Battlefield 3’s Battlelog [14], the World of

Warcraft home page [7], the Bungie.net Stats page [11] and the Steam

Community page [33]. Although intended to foster game community [29], these

systems include a wealth of user data, and so provide interesting opportunities to

analyze large volumes of real-world gameplay data [21, 16].

Along this vein, we make use of the Halo: Reach Stats API to crawl data

obtainable via the Bungie.net Stats page. We focus our attention on Halo:

Reach, a first-person shooter (FPS) whose relevance in the genre is reflected by its

classically-rooted game mechanics, and whose popularity is stated by its 1.3 billion

games played within its first four months of release [10, 1].

The methodology and analyses in this chapter differ from the previous

chapter’s; we focus here on the collection of of post-game statistics instead of

polling real-time data. Moreover, our analysis investigates the effect of cooperative

behavior in a player-versus-player environment rather than a

player-versus-environment setting. Lastly, in light of the significantly larger data

set described in this chapter, our results provide a much more global perspective of

cooperative behavior, in lieu of a fine-grained case-study approach.

31

This chapter begins by providing a summary background of Halo: Reach

and its relevant game mechanics. We then describe our data collection process, and

follow with the analysis of the player graph and an exploratory principal

component analysis of the player performance statistics. We conclude this chapter

with a brief discussion of our results.

3.1 Background

This sections provides an overview of Halo: Reach’s gameplay and presents

the basic functioning of the underlying Xbox Live matchmaking system. We also

familiarize the reader with a match’s post-game statistics, to help better

understand our later analysis. Lastly, we describe the technical components of the

Halo: Reach API and its limitations.

3.1.1 Halo: Reach

Halo: Reach is a recent installment of the Halo franchise, which has

established itself as a popular series in the console FPS genre [27]. The game

features a single-player campaign, as well as an array of multiplayer modes

including campaign coop, free-for-all and team games. The measurements

performed in this chapter only pertain to competitive team-based game types; in

this context a match-making system allows players to form teams, with results from

the ensuing gameplay published to the post-game lobby.

Matchmaking. The Halo: Reach matchmaking system allows players to

be matched with one another according to a desired playlist. A playlist in this

matchmaking system can be understood as a set of possible game modes. For

example, the “Team Objective” playlist organizes players into two teams of size 4

32

and places them into an objective-based game type such as capture-the-flag or

king-of-the-hill. Larger team sizes are also permitted in other playlists, such as

“Big Team Battle,” which pits two teams of up to 8 players against each other.

The matchmaking system is provided through the Xbox Live network service

associated with the console. This service allows players to organize and maintain

lists of friends, which can then be used to join the Halo: Reach matchmaking

system as a cohesive group, maximizing the ability of a set of friends to play

together. The service also provides persistent player identities through a unique

gamertag assigned to each service account. It is possible to play with up to three

guests on the same console, in which case these players are identified as guests of

the host gamertag. Guests are restricted to playing in non-competitive playlists,

and as such, our metrics do not encompass guest gameplay data.

Outside of group entry, the matchmaking system uses the Xbox Live

“TrueSkill” ranking system to match players of similar skill together [24]. In

contrast to the well-known ELO rating system used in Chess, the TrueSkill system

makes use of a Bayesian update mechanism to estimate a lower bound on a player’s

skill, iteratively narrowing the associated uncertainty of this skill estimate from

repeated gameplays [17]. The TrueSkill ranking system updates its results based on

the final outcome of the game and operates under the assumption that this

outcome reflects the skill value of each participant. The TrueSkill system then

matches teams according to the summed skill-rating calculated for each team.

Gameplay. The most popular and competitive playlists involve two teams of

four players, for a total of eight players in a game. Each player then begins by

33

selecting a preset loadout, which dictates his or her two starting weapons. Loadouts

also define the player’s special ability such as: invisibility and radar-jamming,

sprinting, jump-jetting, temporary invincibility, and dodging. Loadout presets can

also be changed while the player is respawning.

Highly competitive playlists usually provide players with a default

medium-range rifle capable of precise headshots regardless of the selected loadout.

Players can only carry up to two weapons at a time, which can be swapped for

more powerful weapons found on the game-map, such as sniper rifles and rocket

launchers. Players also have shields which limit damage taken, but must recharge a

few moments after taking damage. If a player’s shields are depleted, damage will be

taken by enemy fire and must be regenerated by consuming medkits found on the

map; shieldless, several weapons also become capable of dispatching him or her

with a single headshot. A player who is killed is temporarily removed from

gameplay, and must wait before respawning. The game ends if a team obtains the

required number of kills, or if the objective has been captured a set amount of

times, or if time runs out.

Post-game lobby. Once a game finishes, the players are placed in the

post-game lobby. A summary of each player’s performance is presented here, which

includes his or her number of kills, deaths, assists, betrayals, headshots, as well as a

detailed account of the player’s earned medals, derived from achieved headshots as

well as many other possible player feats, such as double-kills, assisted kills, and

killing sprees. Medals do not have a direct in-game effect, and are mainly used to

encourage competitive social display and provide players with more difficult and

34

long-term goals. As we will show later, they can also serve as a means of measuring

and understanding behavior. Medals are broken down by the game system into four

basic categories:

• Multi Medals - Awarded for a series of kills within four seconds of each

other.

• Spree Medals - Awarded for a number of kills in a row without dying.

• Style Medals - Awarded for feats, such as headshots, assists, and

assassinations.

• Other Medals - Awarded for additional feats, such as sniper-rifle headshots,

melee kills, or hitting an opponent with a vehicle.

In addition to the Xbox Live friends list, players who enjoyed playing together

can opt to form a party from the post-game lobby. This mechanism allows for new,

online friends to be discovered, and these newly-grouped players can continue

playing on the same team in subsequent matches formed by the matchmaking

system.

3.1.2 Stats API

Individual Halo: Reach game statistics are hosted on the Bungie.net Stats

page. For each game, users can browse the information provided in the post-game

lobby and can view a temporal progression of events on the map.

The majority of this data can also be accessed via calls to the Halo: Reach

Stats API, allowing development-oriented players to aggregate or explore the data.

To use this API, a valid Xbox Live account is required, along with a subscription to

the Bungie Pro service. The main purpose of Bungie Pro is to provide users with

35

the functionality to record, render and download high-quality, in-engine videos.

Bungie Pro also supplies developers with API keys to pipe Halo: Reach game

statistics through their web servers or applications. The endpoints of the Halo:

Reach Stats API are compatible with PHP and .NET. Client applications written

with the .NET framework must reference a Windows Communication Foundation

(WCF) service to obtain the API class definitions; in either case a valid API key

must be included with each method call, and a rate limit of 300 requests per

minute is enforced.

Figure 3–1: Halo: Reach multiplayer data analysis system.

3.2 Data Collection

In this section, we outline the framework we designed and used to gather and

process player data. The overall design of our data gathering framework is

illustrated in Figure 3–1. A program written in C# uses the .NET endpoint of the

36

Halo: Reach Stats API to gather post-game player data, which is then cached

for processing by network and statistical analysis libraries.

Discovering random player names is difficult, and so our approach is based on

crawling through players connected by common gameplay. A round of

data-collection begins from a chosen seed player, whose gamertag is added to a

visited players list. This introduces a potential bias from the choice of seed, which

we address below by evaluating multiple data sets.

We inspect a player’s 75 most recent competitive team games, assigning unique

game-IDs to avoid duplicate game inspection. The choice of 75 games is based on

the number of games returned per API query. A query returns a maximum of 25

games, and so three queries per player provides a reasonably sufficient number of

games for each player. Obtaining all the games ever played for each player may

otherwise cause some players to have a disproportionately large weight in our

analysis, specifically if they play often.

We enqueue newly-encountered gamertags found in each game and update an

undirected, weighted edge list to identify the players who have played together in

the same game. We also inspect each player’s performance per game, defined by a

row vector containing his or her score, team standing, individual standing, kills,

deaths, assists, suicides, betrayals, number of medals earned per category, unique

medals earned per category, average death distance, average kill distance, and

number of headshots.

The next iteration pops a gamertag from the queue and adds it to the list of

visited players. We repeat the process of game inspection, edge-list maintenance

37

and game performance caching for each player added to the visited players list.

Halo: Reach is a popular game, and so continuing this process until a closed set

is found is not feasible, at least not given the rate-limits imposed by the API.

The data-collection program is halted manually after approximately four days

of execution. We do this to ensure that the constructed network is large enough to

be statistically significant, but small enough to have Python’s NetworkX functions

terminate within a reasonable timeframe. For reference, a sample set constructed

from 2 443 visited players and containing 3 812 330 edges (as illustrated in Round 3

of Table 3–1) takes approximately two days to analyze with our various Python

scripts. As we describe later, despite the differences in size between our four rounds

of data collection, the network metrics and principal component analysis reveal

consistent trends throughout these datasets.

The Python NetworkX module is used to construct a player graph from the

weighted edge list [26]. Network metrics are calculated on this graph to plot

node-degree distribution, edge-weight distribution and average component size. We

also aggregate the cached gameplay performances of each player to compute his or

her average performance per game.

We make use of the R programming language, specialized to facilitate

statistical computations, to run a principal component analysis (PCA) on this

data. We ensure the algorithm follows a singular value decomposition on the

centered and uniformly scaled column values [19]. The resulting output is a list of

orthogonal vectors (principal components) whose linear combination can be used to

describe the individual performance of each player according to a new basis. Each

38

principal component accounts for a specific proportion of the variance in the input

data. The use of PCA in this experiment aims at reducing the number of initial

variables used to qualify a player’s performance (score, team standing, individual

standing, kills, etc) into a smaller set of correlated variables.

3.3 Data Analysis

The results analyzed in this section are based on four rounds of data collection,

yielding a total of 6 700 unique visited players and 384 124 uniquely inspected

games. The first three rounds of data collection follow a breadth-first search from

three different seed gamertags. The fourth round of data collection uses the same

seed as the first round of data collection, but a random walk is used instead of a

breadth-first sampling approach. We present the volume of data collected for each

round of data collection in Table 3–1. Our concern is that a breadth-first crawl

would yield a biased set of visited players alike in skill and behavior. However, the

similarities between network topologies and PCA results support the equivalence of

both sampling methods, which is illustrated by the similarities in Figures 3–3, 3–4

through 3–7, and 3–8.

3.3.1 Player Graph

We construct an undirected graph from the player edge list. The set of nodes

in this graph corresponds to the set of all players encountered in the inspected

games. The edges in this graph represent the fact that two players have played in

the same game, with the weight of the edge denoting the number of times a pair of

connected players have played games together.

39

Round Crawl Technique Visited Players Number of Edges Visited Games
1 Breadth First 787 1 596 832 47 687
2 Breadth First 2 156 3 623 027 119 846
3 Breadth First 2 443 3 812 330 140 048
4 Random Walk 1 352 2 750 236 79 069

merged - 6 700 17 457 384 124

Table 3–1: Rounds of data collection. The fourth round of data collection uses a
random walk to crawl the player base using the same seed name as round 1. The
merged data set contains a notably reduced number of edges; we only conserve edges
of weight 8 and over to maximize the speed of the merging process, and to ensure that
the Python NetworkX algorithm used to count components in a graph can terminate
in a timely manner. Observe that the number of Visited Players in the merged data
set (6 700) contains slightly less players than the sum of all Visited Players (6 738),
indicating a small overlap. This overlap originates from the use of the same seed
name for rounds 1 and 4.

Our data crawl is artificially truncated to maintain feasibility of the crawling

process, and so not all players we encounter are fully explored. As illustrated in

Figure 3–2, a node in the graph can thus belong to one of two sets:

1. Visited Players: the set of players whose recent games have been inspected

and used to further crawl the player base.

2. Satellite Players: the set of players who have appeared in at least one

inspected game, but who have not been included in the set of visited players.

Figure 3–3 presents the node degree distribution of the player graphs in our

four rounds of data collection. Table 3–2 provides a quantitative comparison of this

node degree distribution and reveals a similar fit across all four rounds of data

collection. The number of nodes in these graphs far exceeds the number of visited

players. For example, our largest data set, Round 3, encompasses 2 443 visited

players, 411 877 nodes, and 3 812 330 edges. The sharp peak on the left of these

40

Figure 3–2: A conceptual simplification of the sampled player graph; the green nodes
represent the visited players, while the blue nodes represent the satellite players.

41

Round 1 Round 2

Round 3 Round 4

Figure 3–3: Node degree distribution of Rounds 1 through 4 of data collection. The
sharp peak on the left corresponds to the numerous satellite players who are con-
nected to at least one visited player. The green and blue histograms have been
individually normalized, such that the integral over their respective ranges is 1. The
value of each bin is the result of the probability density function at that bin. Note
that the y-axis is presented on a logarithmic scale in these plots.

42

Round Avg. Node Degree Std. Deviation. Avg. Node Degree Std. Deviation.
(visited) (visited) (satellite) (satellite)

1 439.85 192.72 12.27 13.20
2 396.30 157.32 14.33 15.01
3 399.52 147.36 16.24 18.03
4 405.81 168.31 14.72 17.65

Table 3–2: Node Degree Distributions. In the table above, we can observe similar
parameters for the fitted gaussian distributions in both the visited player and satellite
player node degree distributions.

plots corresponds to the node degree of the satellite players, while the hump near

the middle corresponds to the set of visited players. Each visited player is

necessarily connected to each player appearing in his or her inspected games, while

each satellite player is connected to at least one visited player in addition to the

other players appearing in the same inspected game(s). A satellite player can be

connected to more than one visited player, in particular if he or she is friends with

several visited players.

Figures 3–4 through 3–7 present the edge weight distribution of the player

graphs in our four rounds of data collection. As expected throughout these figures,

the mean edge weight for pairs of satellite players is approximately 1, with a

standard deviation between 0.45 and 0.51. By comparison, the mean edge weight

between pairs of satellite players and visited players increases slightly between 1.18

and 1.21, as does its standard deviation bound between 1.24 and 1.61. This larger

standard deviation is caused by a higher number of occurences of larger edge

weights. This fact is important to keep in mind, as later in our analysis we will

43

denote two pairs as “friends” if their edgeweight surpasses a given threshold. Such

friendships can exist between satellite players and visited players, hence why we

must keep the satellite players within our dataset.

The mean edge weight between pairs of visited players is larger, varying

between 2.49 and 3.00, and with a wide-spread standard deviation between and

7.97 and 9.81. This observation is accounted for by how we crawl through the

dataset; the set of one visited player’s games must overlap at least once with

another visited player’s set of games. If these two happen to be friends, the size of

the intersecting sets will naturally increase.

By construction, the player graph is initially defined as one large component.

That is to say, there exists at least one path from one node to every other node in

the graph. To evaluate the impact of cooperation among the players in this data

set, we begin by identifying the groups of players who play together often. We

simplify the terminology by labeling a pair of players as “friends” if the two have

played in at least eight games together. This threshold is justified by an analysis of

component size built by progressively pruning edges of increasing weight. By

pruning edges of increasing weight, we fragment the network into smaller

components composed of what we may assume as individuals who have chosen to

play together; given the size of the Halo: Reach player-base, and the number of

games sampled per player, it is unlikely that two strangers will be placed by the

matchmaking system into the same eight games regardless of their similarity in skill

rating. The results are shown in Figure 3–8, and strongly indicate a component size

stabilizing point of around eight. Since players can opt to continue playing together

44

Figure 3–4: Edge weight distributions in Round 1 of the data collection. We illustrate
the various edge weight distributions between: (green) pairs of satellite players; (red)
pairs of satellite and visited players; (blue) pairs of visited players.

45

Figure 3–5: Edge weight distributions in Round 2 of the data collection. We illustrate
the various edge weight distributions between: (green) pairs of satellite players; (red)
pairs of satellite and visited players; (blue) pairs of visited players.

46

Figure 3–6: Edge weight distributions in Round 3 of the data collection. We illustrate
the various edge weight distributions between: (green) pairs of satellite players; (red)
pairs of satellite and visited players; (blue) pairs of visited players.

47

Figure 3–7: Edge weight distributions in Round 4 of the data collection. We illustrate
the various edge weight distributions between: (green) pairs of satellite players; (red)
pairs of satellite and visited players; (blue) pairs of visited players.

48

by forming a party in the post-game lobby, our use of the word “friend” does not

necessarily denote a friendship in the Xbox Live service. As evidenced by the

capacity to reliably enter the same game, friendship implies a level of coordination

between two players. We assume that such a friendship also implies a willingness to

cooperate.

Our interest in identifying friendship groups is based on a hypothesis that

friendship has an impact on team success in competitive situations. Since

friendships can be formed based on successful, randomly-formed competitions, the

causal direction of such a relation is not trivial to disentangle, but is interesting

from either perspective as a potential factor in game design and balancing. Friends

can enter the matchmaking system as a party of up to eight players, although the

majority of competitive playlists only allow a maximum party-size of four. For each

visited player in our merged data set, we compare his or her wins ratio with respect

to the number of his or her friends in the game. Figure 3–9 shows the increasing

progression of the average win ratio in relation to the number of friends in the

game. In the median case, the win ratio is proportional to the number of friends in

the game.

We posit that the median and lower quartile dip at x = 4 and x = 5 is

explained by the jump from playlists only allowing a maximum of four players per

party, to those accepting a maximum of eight players per party. The hypothesis

would follow that with four or five friends involved, a team must be composed of

eight players, but is not yet fully dominated by friendships, and so still requires

significant and necessarily suboptimal coordination with strangers. Showing this

49

Round 1 Round 2

Round 3 Round 4

Figure 3–8: Average component size versus pruned edge weight, Rounds 1 through
4. The graph begins as one large component. As edges are pruned, the average
component size quickly stabilizes to a value less than 4. Based on these results, we
choose a weight threshold of 8 to qualify player pairs as friends.

50

Figure 3–9: Average Win Ratio Versus Number of Friends In Game. In this box
plot, the x axis identifies the number of friends in the game. The red line represents
the median win ratio associated with the number of friends in the game. The blue
box surrounding the median extends from the lower to the upper quartile of the
win ratio values. The whiskers show the range of the data. The increasing trend of
the upper quartiles as well as the increasing median illustrate the strong benefit of
repeated coordination with friends.

51

would require more data about the maximum party size for each game visited,

which we leave for future work.

3.3.2 PCA

The second part of our experiment pertaining to this chapter aims to isolate

and categorize individual player behaviors found in our sample. Competitive,

team-based play encourages aspects of cooperation, but also provides the potential

for different play styles through the variety of available loadouts and weapons, such

as stealthy guerilla tactics, long-range sniping or close-range assault. It is also

worth noting that the real-time and dynamic nature of multiplayer gameplay does

not necessarily allow players to distinctively exhibit their preferential play styles—a

failed assassination cannot be retried by reverting the game to a previous state, as

is the case with most single player games. Thus, a strict adherence to a specific

play style may be discouraged in favor of coordinated team play.

Our analysis is based on the average performance per game of each visited

player. We considered as much of the individual data available per player as

possible, applying a principal component analysis as detailed in Section 3.2. We

present the simplified PCA results of each round of data collection in Tables 3–3,

3–4, 3–5, and 3–6, as well as the PCA results of the merged data in Table 3–7. In

these tables, we conserve the sign of the coefficients whose absolute value is greater

than half of the absolute value of the largest coefficient. Opposite signs indicate

opposite variable correlation. The percentage beneath each principal component

(PC) represents its proportion of variance. Bracketted signs indicate an

exceptionally large absolute value for a coefficient and thus a dominant behavior.

52

Each round of data collection yielded a set of five or six principal components

whose standard deviation was above 1, the conventional cutoff value [19]. For the

sake of comparison, we only consider the first five principal components across all

the rounds of data collection. Observe that the distribution of the proportions of

variance are similar among these principal components, and that all the data sets

are dominated by a component which describes a player’s aptitude at obtaining

kills and medals. The similarity in the PCA results attests to the equivalence of the

breadth-first versus random-walk sampling methods used in our data collection

phase. A more fine-grained analysis of these PCA results is provided in their

respective captions.

The analysis of the merged data yields a set of five major principal

components whose cumulative proportion of variance is valued at 79%. In other

words, the weighted linear combination of these five vectors accounts for 79% of the

variance among the 6 700 player performances.

Players who have a large PC1 weight show an overall aptitude for obtaining

kills and medals, attesting to their comfort and versatility in varied gameplay

scenarios.

A large negative weight along PC2 corresponds to a player’s ability to perform

headshots. It is worth noting that this variable negatively correlates with assists.

Intuitively, players who achieve many headshots are awarded with the killing blow

and not the assist. The same-sign correlation between headshots and kill/death

distance is explained by the longer effective range of weapons capable of headshots.

53

Players with a positive weight for PC3 are better suited to obtain assists,

while a negative weight along PC4 indicates a disposition towards long-range

engagements. In this later component, the average kill/death distance appears to

be correlated with the spree medals, but oppositely correlated to score. Note that

objective-based games increase a player’s score according to each objective

captured and not according to his or her number of kills. As such, players who are

far removed from the action are also less likely to score objective points.

The Standing metric is a binary ranking (lower values meaning higher ranks),

and indicates whether the player’s team has won (Standing = 0) or lost (Standing

= 1). PC5 is focused on this metric. Thus, a player with a large negative value

along PC5 indicates that the player’s team loses more often (Standing closer to 1).

By contrast, a player with a more positive weight for PC5 indicates that the

player’s Standing is closer to 0, and so implying that his or her team wins more

often. In PC5, Standing is also correlated with Individual Standing, a more

fine-grain ranking value that measures the player’s overall performance in a game

compared to the other player scores, regardless of team. An Individual Standing of

0 indicates the first-place position, while a value of 7 denotes the last place position

in a game of 8 players. Observe that in PC5 these two measures are both

correlated, and so players whose teams lose more often (Standing closer to 1) would

tend to have larger Individual Standings (ie worse, or larger individual rankings).

The correlation of the variables within the principal components reveals that

player types roughly correspond to the use of the available game mechanics of

Halo: Reach. This is in contrast to broader player types found in other game

54

contexts [5, 2, 36], and in partial contradiction to our initial expectations that both

assistive “heart” types and traditional “griefing” or “club” behaviours [5] would be

the most strongly represented. Game types are instead dominated by skill in

general (PC1), followed by those more focused on relatively distinct, but

comparable play styles—headshots (PC2), wounding (PC3, which implies some

amount of cooperation), distance kills and sprees (PC4), and a facility towards

teamplay (PC5).

To evaluate how these principal components are tied to group success, we

sampled our merged dataset for groups of 4 friends who have played more than 30

games together, and ranked these groups according to their overall win ratio. A

total of 28 groups meet this criteria. We then summed the principal component

weights for all the group members to qualify the group’s performance. Figure 3–10

depicts the top 10 groups in descending order: the best-performing group is placed

at the left of the x axis. We observe that the three most successful groups have a

positive summed PC weight for kills, assists and standing, and have a negative

summed PC weight for headshots and kill distance. However, this trend does not

visibly repeat itself for the remaining groups.

In Figure 3–11, we plot the summed PC weights of the bottom 10 groups in

ascending order. Aside from the relatively low standings throughout the groups,

there does not appear to be a discernable pattern to the PC weights which points

to a lack of success. However, attention should be brought to the second-to-last

group’s summed PC weights. In this case, the signs of the principal components are

all reversed with respect to the most successful top-10 group. This group’s lack of

55

Figure 3–10: Summed PC Weights Versus Group Win Ratio (top 10). The merged
dataset was sampled for groups of 4 friends who have played more than 30 games
together. In an attempt to qualify each group’s performance, we sum all the group
member’s PC weights, and plot them versus the group’s win ratio. This plot provides
the summed PC weights of the top 10 groups.

56

Figure 3–11: Summed PC Weights Versus Group Win Ratio (bottom 10). The
merged dataset was sampled for groups of 4 friends who have played more than
30 games together. In an attempt to qualify each group’s performance, we sum all
the group member’s PC weights, and plot them versus the group’s win ratio. This
plot provides the summed PC weights of the bottom 10 groups.

57

wins is likely explained by a low number of kills, very few headshots, a low amount

of assists, a short distance between their opponents, and a low individual standing.

3.4 Discussion

Although not directly aimed at facilitating user analysis, vendor-sponsored

game community sites provide a wealth of user data. Our use of the Halo:

Reach Stats API has allowed us to quantitatively evaluate the cooperative

behavior of FPS players in a competitive, team-based environment. The network

structure of the sampled player set reveals an interesting correlation between

winning and the number of online relations. It is not suprising that friends exhibit

better team coordination, but our findings suggest that multiplayer game balance

could be improved by matching competitive teams based on cohesion or some other

group ranking metric. A further inspection of individual player behaviors in this

multiplayer FPS context has yielded a set of five relatively stable descriptors tied to

the underlying game mechanics of Halo: Reach; the intensely competitive setting

tends to focus player types on success, which can be achieved either in general or

through specializations.

58

Performance Metric PC1 PC2 PC3 PC4 PC5
(37%) (14%) (11%) (9%) (7%)

Games Played
Score - +

Standing - (+)

Individual Standing - +

Kills (+)

Deaths (-) - +

Assists + +

Suicides
Betrayals - -

Multi Medals + -

Other Medals + -

Spree Medals +

Style Medals + -

Total Medals +

Unique Multi Medals + -

Unique Other Medals + (+)

Unique Spree Medals +

Unique Style Medals + -

Total Unique Medals +

Avg Death Distance + (+) +

Avg Kill Distance + + +

Headshots + + -

Table 3–3: Round 1: simplified principal components. The first principal component (PC1)

describes a player’s ability at obtaining kills and medals, and is indicative of overall skill.

PC2 contrasts a player’s tendency to die with his/her capability at obtaining long-range

headshots. For example, if a player has a large negative weight for PC2, this denotes that

he/she is prone to death. Conversely, if the player’s weight is large and positive for PC2,

this denotes that he/she is apt at obtaining long-range headshots. PC3 identifies players

whose deaths occur at a relatively long distance from their attacker’s position. PC4 denotes

a player’s facility at obtaining Other medals, which correlates positively with assists. PC5

reveals how often a player loses; in the post-game results, a Standing value of 0 indicates

a win, and a value greater or equal to 1 indicates a loss. As such, if a player’s average

Standing is a large value, this will be reflected as a large positive weight for PC5.

59

Performance Metric PC1 PC2 PC3 PC4 PC5
(39%) (16%) (10%) (9%) (6%)

Games Played +

Score + - -

Standing - -

Individual Standing -

Kills (+)

Deaths (+) (-)

Assists + -

Suicides
Betrayals + +

Multi Medals + +

Other Medals + +

Spree Medals + +

Style Medals + - -

Total Medals +

Unique Multi Medals + +

Unique Other Medals + -

Unique Spree Medals +

Unique Style Medals + -

Total Unique Medals +

Avg Death Distance - - (+) -

Avg Kill Distance - - + -

Headshots + (-)

Table 3–4: Round 2: simplified principal components. PC1, which accounts for 39% of the

variance in Round 2’s player performance data, describes a player’s ability at obtaining kills

and medals. PC2 contrasts a player’s ability at obtaining head shots versus his/her ability

at obtaining assists; a negative weight along PC2 indicates a player’s penchant towards

accurate headshots, while a positive weight reveals his/her facility at obtaining assists.

This duality is intuitive if we consider that a headshot is only attributed if it kills the

opponent, while assists are only attributed to players who have helped defeat the opponent

without delivering the final blow. Players with large positive weights for PC3 are prone to

dying comparatively more often, while players with large negative weights appear to keep a

larger distance between themselves and their opponents, and thus die less often, given the

negative correlation. PC4 marks players who die at a longer distance from their opponents.

PC5 correlates the average number of deaths per game with a player’s tendency to obtain

a high score. In objective-based games, many players sacrifice themselves in an attempt to

secure the objective and collect more points.
60

Performance Metric PC1 PC2 PC3 PC4 PC5
(40%) (15%) (13%) (7%) (6%)

Games Played
Score + -

Standing +

Individual Standing -

Kills (+)

Deaths + - (+)

Assists - +

Suicides + +

Betrayals (+)

Multi Medals + +

Other Medals + + +

Spree Medals + +

Style Medals + (-)

Total Medals +

Unique Multi Medals + +

Unique Other Medals + - +

Unique Spree Medals + +

Unique Style Medals + -

Total Unique Medals +

Avg Death Distance (+) + +

Avg Kill Distance + +

Headshots + + -

Table 3–5: Round 3: simplified principal components. PC1 identifies players whose ver-

satility allows them to obtain more kills and more medals. PC2 interestingly defines a

player’s likelihood to betray his/her teammates. A plausible explanation is revealed if we

observe that multi medals and unique multi medals correlate positively with betrayals in

this component. Indeed, players who throw many grenades or use explosive weapons have

a higher chance to accidentally kill their teammates in an explosion. These explosions

nonetheless grant multi-medals if they successfully dispatch groups of opponents. As such,

PC2 may allude to a player’s preference at using explosives. PC3 contrasts long-distance

and headshots with assists, similarly to the second principal component in Round 2. PC4

highlights a player’s aptitude at obtaining style Medals, which is correlated with headshots

(a headshot confers a headshot medal, which is categorized as a style medal). The positive

value for assists naturally contrasts the negative value of headshots. Similarly to Round

1, PC5 correlates the average number of deaths and suicides per game with a player’s

likelihood to lose.
61

Performance Metric PC1 PC2 PC3 PC4 PC5
(39%) (16%) (10%) (9%) (6%)

Games Played
Score + + -

Standing (-)

Individual Standing - -

Kills (+)

Deaths -

Assists - -

Suicides
Betrayals (-)

Multi Medals + -

Other Medals + -

Spree Medals +

Style Medals + +

Total Medals +

Unique Multi Medals + -

Unique Other Medals + (-)

Unique Spree Medals + -

Unique Style Medals + -

Total Unique Medals +

Avg Death Distance + (+)

Avg Kill Distance + +

Headshots + + +

Table 3–6: Round 4: simplified principal components. PC1 once again reveals the player’s

versatility at obtaining kills and medals. Players with a large negative weight along PC2

possibly prefer explosive weapons and grenades, similarly to PC2 in Round 3. This prefer-

ence is contrasted with players who prefer long-distance, accurate headshots. PC3 denotes

players who stay at a long distance from their opponents, and contrasts them with those

who obtain many assists. Indeed, long-distance players may not have as many opportuni-

ties to do as much damage as assistive, short-range players. PC3 also contrasts assists with

headshots, although the largest coefficient here pertains to other medals, attributed for

melee kills and vehicle kills. Similarly to the previous PCA results, PC5 identifies players

who are likely to lose more often.

62

Performance Metric PC1 PC2 PC3 PC4 PC5
(38%) (14%) (12%) (9%) (6%)

Games Played
Score + +

Standing (-)

Individual Standing - -

Kills (+)

Deaths + - + -

Assists + (+)

Suicides
Betrayals + -

Multi Medals + -

Other Medals + + -

Spree Medals + -

Style Medals + - +

Total Medals +

Unique Multi Medals + -

Unique Other Medals + + -

Unique Spree Medals + -

Unique Style Medals + + +

Total Unique Medals + +

Avg Death Distance - -

Avg Kill Distance - (-)

Headshots + (-)

Table 3–7: Simplified principal components of the merged data set.

63

CHAPTER 4

Related Work

In this chapter, we present recent studies pertaining to the experiments

described in this thesis. These works span a variety of fields including

human-computer interaction, game studies, and behavioral psychology. Section 4.1

discusses recent efforts to design contemporary games using quantitative

measurements, while Section 4.2 emphasizes works related to player behavior

categorization.

4.1 Metric-Assisted Game Development and Adaptive Gameplay

Tracing its origins from the field of human-computer interaction research, the

analysis of gameplay data has grown to occupy an important place in the game

development industry, particularly within user testing frameworks. Under an

academic light, efforts to explore the domain of game metrics have historically been

restricted due to the propriatery nature of this data. However, only recently have

new avenues been opened to explore parts of these large data sets, either through

in-game or web-based API’s. In this section, we provide a review of works related to

gameplay metrics, and the domain’s impact on game design and adaptive gameplay.

A variety of studies and efforts have been developed that aim to evaluate

player performance, both during game design and as part of post-facto analysis. In

prior work related to human computer interaction, for instance, the authors of [20]

have developed the TRUE (Tracking Real-Time User Experience) system to collect

64

streams of timestamped user initiated events, ranging in context from spreadsheet

applications to video games. The TRUE system was used in the development of

Halo 2 to isolate problem areas of the single-player campaign. A similar

metric-oriented approach has been used in the development of Halo 3, namely to

determine the fairness of multiplayer maps [31]. The TRUE system allows for a

very detailed analysis of player behavior by combining video data, log file parsing,

and user appreciation surveys.

The authors of [13] additionally attest to the benefit of game metrics in

conjunction with the game design of Fragile Alliance, and Kane & Lynch,

two modern first person shooters. The metrics collected during the testing phases

of both these games consisted mainly of monitoring player health and positional

data such as location and speed. In Fragile Alliance, the fairness of multiplayer

maps was tuned by determining the location and cause of abnormal or un-intended

distributions of player deaths on the map. The metrics collected during the testing

phases of Kane & Lynch allowed the level designers to tune the single-player

encounters against the opponent AIs. Specifically, these encounters were balanced

by observing the progression of the player’s health according to his/her position on

the map. The same authors have applied supervised AI learning techniques to

metrics in Tomb Raider Unlimited to predict when a player will quit, or how

long he/she will take to complete the game [23]. Of particular interest in this study

was the observation that players who explored an underwater location at the

beginning of the game were found to complete later puzzles more efficiently, owing

to their exploratory nature.

65

The process of collecting gameplay metrics in order to complement game

design is further illustrated in [12], where the authors describe the use of their own

data collection system, Tracktivity, during the testing phases of the racing game

Split/Second. Events triggered by testers were monitored by Tracktivity to

determine the difficulty of a race-track and to help designers tailor the game’s

overall learning curve. The difficulty of the computer opponents is also adaptively

tuned to ensure the player is consistently challenged, without being overwhelmed.

This tuning relies on the measurement of the player’s post-race performance to

determine an offset for the next race’s AI difficulty value.

The success of adaptive difficulty mechanisms motivated by metric analysis has

also been stated in a cooperative gameplay setting, namely in Left 4 Dead [9].

This FPS features an AI director, which dynamically populates the map with

zombie hordes. As cited in Section 2.2.2, a global emotional intensity metric is

incremented when a player in the group is damaged. Additional arousing events,

such as shooting a zombie at close-range, or being incapacitated, increment this

emotional intensity value. Emotional intensity is decremented periodically when no

arousing events occur. The AI director thus tunes the gameplay to insure an

appropriate distribution of peaks and valleys in the temporal progression of the

emotional intensity. This concept of emotional intensity serves as the basis for the

World of Warcraft experiment presented in Chapter 2, which we supplement

with the analysis of the group’s position to measure the level of cooperation among

its members. Adaptive difficulty in the MMO genre would notably increase player

66

involvement, however the application of such a system in this genre remains to be

implemented and studied.

4.2 Measuring Player Behavior and Player Types

The analysis of players actions within a game naturally leads to the

categorization of observable player behaviors, or enduring player types. In this

section, we present several studies which have attempted to classify player behaviors

into intuitive categories, often tying into the domain of behavioral psychology to

draw parallels between these categories and facets of human personality.

The seminal categorization of player behaviors according to specific types was

first suggested by Bartle in [5]. In this work, the author initially classifies

Multi-User Dungeon (MUD) players according to four basal axes: Achievers

(Diamonds), Explorers (Spades), Socializers (Hearts), and Killers (Clubs).

Achievers are generally motivated to obtain the best items in the game, either for a

calculated advantage in a player-versus-player setting, or for prestige. Explorers

typically seek knowledge of the game’s mechanics, and are often the first to discover

hidden areas, easter eggs, and glitches. Socializers leverage the community-building

infrastructure of a game, for example: being a member of an organized guild, or

focusing on item trading and the in-game economy. These players prefer interacting

as a group, and may use the game to meet new people offline. Finally, Killers

derive the majority of their enjoyment from player-versus-player competitive

interactions and, occasionally, griefing (i.e. abusing game mechanics to prevent a

player from progressing or otherwise playing the game as intended).

67

The MMORPG genre has indeed been a noteworthy vehicle of academic games

research, most recently championed by quantitative assessments of player behavior

in World of Warcraft [3, 21]. Recent work detailed in [37], for example, made

use of survey data and behavioral metrics to identify the expression of

psychology-based personality traits among players in WoW. Participants of this

study completed a questionnaire to determine their alignment along the “Big-5”

personality traits which include Extraversion, Agreeableness, Conscientiousness,

Emotional Stability and Openness to Experience [15]. To measure the behavior of

each participant a web crawler was developed to aggregate per-character

achievement data in the WoW Armory over a period of 4 months. Personality

traits were then shown to have significant correlations with various aspects of

gameplay, suggesting that virtual worlds are an appropriate medium in which to

infer personality traits. The sequential evolution of achievement-data mined from

the WoW Armory has additionally been used to predict player behavior and

character progression in [16].

Real-time player movement in World of Warcraft was investigated in a

player-versus-player setting in [25]. In contrast to our method which polled the

WoW client API for (x,y) player positional data, this study employed network

packet inspection sent from the game server to the client to collect positional data

of players in the environment. The data analyzed in this experiment isolated

several important environmental hotspots which corresponded to gameplay

objectives. Player movement patterns also suggested three distinct types of player

behaviour: wanderers, patrollers and guards. Wanderers were distinguished by

68

their erratic paths between ally and enemy-controlled hotspots, looking for battle.

Patrollers only moved between ally-controlled hotspots, and concentrated on

defending these areas. Guards were marked by minimal movement, and tended to

stay around a hotspot of their choosing.

Relating to the social nature of multiplayer games, chat log analyses have been

used in World of Warcraft to qualitatively survey group cooperation in

5-person instances [4]. The findings of this work coincide closely with the results of

our World of Warcraft gameplay metric analysis. Namely, compelling

dungeons provide a sufficient level of threat to engender social interactions among

the players with the aim to coordinate, strategize, and gain control over the

encounters.

Single-player first-person shooter games have also demonstrated archetypal

player categories. The effect of level design on player behavior is investigated in

[32], in which the authors use game metrics gathered from the stealth shooter

game, Hitman: Blood Money. Measurements including character position,

rotation angle, actions performed and narrative choices are analyzed to qualify a

player’s overarching behavior, or persona. The game can thus label a player as

either a mass murderer, a silent assassin, a mad butcher or the cleaner, depending

on the prevailing nature of his or her actions.

The works cited in this section underline the relevance of studying game

metrics as a vehicle to help develop engaging and balanced games. Previously

bound to repeated testing and artistery, it has been shown that game design can be

complemented by the quantitative analysis of gameplay data. The pertinence of

69

such well-balanced games is evidenced by their longevity and by their large user

bases. The continuous examination of gameplay data after a game is released is

also an important factor in tuning game balance to avoid dominant — and

therefore boring — strategies. These experiments have also illustrated that the

analysis of game metrics is key to understanding player behavior and accordingly

tailoring game content towards a broader audience. Our own work contributes to

the advancement of this domain by extracting group-based metrics to evaluate

cohesion and cooperation among players.

70

CHAPTER 5

Conclusions and Future Work

5.1 Conclusions

The objective of our work is to illustrate the use cooperative gameplay metrics

as a toolset to isolate areas of games which require additional balancing. Proper

balance is vital to the construction of a multiplayer game’s community, as

evidenced by the necessity for players to coordinate among each other to achieve

their goals - be it to defeat an elusive dragon, or to take home the first place prize

in a competitive tournament.

In Chapter 2 of our work, we measure cooperative behavior in a

player-versus-environment setting of World of Warcraft. We make use of the

WoW API to sample real-time gameplay data of several dungeon sessions, each of

which being be matched to a specific bracket of character progression and

equipment quality. Two metrics are employed in this chapter, namely: (1) player

intensity and (2) the minimum enclosing circle. Player intensity measures the

group’s proportion of health lost per unit time, which reflects the difficulty of the

scenario. The minimum enclosing circle determines the level of cohesion of a group;

a tighter circle around a group indicates a heightened level of coordination and

cooperation. Because the difficulty of a dungeon does not scale with respect to the

group’s stats (strength, health, power, etc), there is a notable drop in player

intensity as players become equipped with better items. This is also mirrored by an

71

overall drop in cohesion as illustrated by the larger minimum enclosing circle

around the group; less stringent scenarios intuitively require less player attention

and less coordination. These fine-grained cooperative metrics can therefore be used

to evaluate the difficulty and required level of cohesion of a specific scenario’s

design. Our results here allude to the relevance of adaptively scaling the difficulty

and pacing of a game to maintain player involvement.

By contrast, the procedure outlined in Chapter 3 measures cooperative

gameplay from a different perspective. We focus here on Halo: Reach as a

competitive, team-based, player-versus-player environment. The sheer volume of

data provided by the Halo: Reach Stats API paints a broader picture of

cooperative behavior. By crawling a sample of the total dataset we are able to build

a graph of players who have been observed to play together in at least one game.

We maintain edge weights as the number of times two players have played together

in the same game. By analyzing the resulting network topology, and specifically by

inspecting the progression of the average component size as edges are pruned by

weight, we determine a weight threshold of 8 as the minimum number of times two

players must play together before they can be considered as friends. With the

ability to estimate friendships, we observe that players who play with their friends

have a noticeably higher chance of winning than players who play alone. From one

perspective, this may attest to a lack of balance within the underlying

matchmaking system, and may suggest a benefit to exploring more elaborate group

matching techniques. On the other hand, this result may be construed as a desired

72

property of the matchmaking system, which rewards the formation of close social

groups as a means to promote the game’s popularity and player retention.

In Chapter 3, we also applied an exploratory principal component analysis to

the average player gameplay performances in an attempt to isolate specific player

classes similar to the Bartle types laid out in Section 4.2. Our findings reveal a set

of components whose weighted combination aptly describe a player’s skill in

relation to Halo: Reach’s gameplay mechanics, specifically according to: (1)

overall versatility, (2) ability to perform headshots, (3) ability to obtain assists, (4)

aptitude at long-range combat, and (5) aptitude at cooperating with teammates.

These results match our anecdotal expectation, specifically in light of the

competitive and fast-paced nature of multiplayer first-person shooters. Based on

the data collected, the resulting principal components do not eminently portray

analogous Bartle types, however some rounds of data collection have alluded to the

existence of explosive-weapon favoring players (betrayals, multi-kills), snipers

(long-range, headshots), and close-range assault players (small-range, high assists).

5.2 Future Work

A wealth of future work is proposed in this section to build on the topics laid

out in this thesis. Among the first directions to consider is the use of cooperative

gameplay metrics in the analysis of Team Fortress 2 gameplay data. As a

contemporary, popular, and free-to-play multiplayer first-person shooter, Team

Fortress 2 innovates with a class-based approach to FPS team combat. Metrics

such as team cohesion via the MEC and a time-series analysis of the class

distribution per team would be an interesting mechanism by which to understand

73

the dynamics of this game, and also to identify problem areas in map design and

weapon/item balance. Both real-time data and post-game aggregate data are

currently available for collection and analysis.

Additional cooperative metrics can be founded on a particular set of game

mechanics for a specific game, however metrics based on group health or another

resource system should be investigated in different genres to validate the

generalizability of group intensity in regards to difficulty and pacing. Regardless of

the game genre, an even more global metric to evaluate intensity or competitive

tension would be the recording and analysis of audio communications among

players in a group. In moments of very high intensity, one would expect players to

speak quickly and loudly, while moments of exasperation would be marked by a

dreary tone.

In a practical setting, the metrics developed in our work could serve as a basis

for adaptive difficulty systems in cooperative player-versus-environment games.

Specifically, the real-time computation of the MEC could be applied to different

game contexts in which player proximity plays an important role. This would

notably increase the replayability of otherwise static and predictable scenarios, and

could be complimented by an equally adaptive reward system to benefit players

who collaborate together, and thus reduce the appeal of freeloaders.

Lastly, further work in the domain of group ranking and matchmaking would

hopefully yield more balanced win-to-loss ratios for tight-knit groups. Ideally, such

groups would be matched against each other to ensure that lone-wolf players are

also given the opportunity to play on an equal footing against one another. In such

74

a hypothetically balanced system, community building incentives should

nonetheless be implemented to promote socialization among these lone-wolf players.

75

References

[1] Leigh Alexander. Gamers Hit 1.3 Billion Halo: Reach Matches.
http://www.gamasutra.com/view/news/32111/Gamers_Hit_13_Billion_

Halo_Reach_Matches.php, December 2010.

[2] Avery Alix. Beyond P-1: Who plays online? In Proceedings of DiGRA 2005
Conference: Changing Views–Worlds in Play, 2005.

[3] Martin Ashton and Clark Verbrugge. Measuring cooperative gameplay pacing
in World of Warcraft. In FDG’11: Foundations of Digital Games Proceedings,
FDG ’11, New York, NY, USA, 2011. ACM.

[4] Shaowen Bardzell, Jeffrey Bardzell, Tyler Pace, and Kayce Reed. Blissfully
productive: grouping and cooperation in world of warcraft instance runs. In
Proceedings of the 2008 ACM conference on Computer supported cooperative
work, CSCW ’08, pages 357–360, New York, NY, USA, 2008. ACM.

[5] Richard Bartle. Designing Virtual Worlds. New Riders, 2003.

[6] Blizzard Entertainment. World of Warcraft subscriber base reaches 12 million
worldwide. http:
//us.blizzard.com/en-us/company/press/pressreleases.html?101007,
October 2010.

[7] Blizzard Entertainment. World of Warcraft.
http://us.battle.net/wow/en/, December 2011.

[8] Blizzard Entertainment. World of Warcraft API.
http://www.wowwiki.com/World_of_Warcraft_API, February 2011.

[9] Michael Booth. AI systems of Left 4 Dead. http://www.valvesoftware.com/
publications/2009/ai_systems_of_l4d_mike_booth.pdf, 2009.

[10] Bungie, Inc. bungiestats.jpg.
http://www.bungie.net/images/News/Inline10/121710/bungiestats.jpg,
December 2010.

76

77

[11] Bungie, Inc. Halo Reach Online.
http://www.bungie.net/stats/reach/online.aspx, December 2011.

[12] Eduardo Jimenez Chapresto, Kenny Mitchell, and Francisco Jose Seron.
Capture and Analysis of Racing-Gameplay Metrics. IEE Software, 28(5), 2011.

[13] Anders Drachen and Alessandro Canossa. Towards gameplay analysis via
gameplay metrics. In Proceedings of the 13th International MindTrek
Conference: Everyday Life in the Ubiquitous Era, MindTrek ’09, pages
202–209, New York, NY, USA, 2009. ACM.

[14] Electronic Arts. Battlefield 3 Battlelog.
http://battlelog.battlefield.com/bf3/servers/, December 2011.

[15] L. R. Goldberg. The Structure of Phenotypic Personality Traits. American
Psychologist, 48(1):26–34, 1993.

[16] Brent Harrison and David L. Roberts. Using sequential observations to model
and predict player behavior. In FDG’11: Foundations of Digital Games
Proceedings, FDG ’11, New York, NY, USA, 2011. ACM.

[17] Ralf Herbrich, Tom Minka, and Thore Graepel. Trueskill(tm): A Bayesian
skill rating system. In Advances in Neural Information Processing Systems 20,
pages 569–576. MIT Press, 2007.

[18] Roberto Ierusalimschy. Programming in Lua. Lua.org, 2nd edition, 2006.

[19] I.T. Jolliffe. Principal Component Analysis. Springer-Verlag, 2nd edition, 2002.

[20] Jun H. Kim, Daniel V. Gunn, Eric Schuh, Bruce Phillips, Randy J. Pagulayan,
and Dennis Wixon. Tracking real-time user experience (true): a comprehensive
instrumentation solution for complex systems. In Proceedings of the
twenty-sixth annual SIGCHI conference on Human factors in computing
systems, CHI ’08, pages 443–452, New York, NY, USA, 2008. ACM.

[21] Chris Lewis and Noah Wardrip-Fruin. Mining game statistics from web
services: a World of Warcraft armory case study. In Proceedings of the Fifth
International Conference on the Foundations of Digital Games, FDG ’10,
pages 100–107, New York, NY, USA, 2010. ACM.

[22] LÖVE Development Team. LÖVE 2D. http://love2d.org/.

78

[23] T. Mahlmann, A. Drachen, A. Canossa, J. Togelius, and G. N. Yannakakis.
Predicting player behavior in Tomb Raider: Underworld. Proc. IEEE
Conference on Computational Intelligence and Games (CIG) 2010, August
2010.

[24] Microsoft Research. Trueskill(tm) Ranking System: Details. http:
//research.microsoft.com/en-us/projects/trueskill/details.aspx,
December 2011.

[25] John L. Miller and Jon Crowcroft. Avatar movement in World of Warcraft
battlegrounds. In Proceedings of the 8th Annual Workshop on Network and
Systems Support for Games, NetGames ’09, pages 1:1–1:6, Piscataway, NJ,
USA, 2009. IEEE Press.

[26] NetworkX Developers. NetworkX. http://networkx.lanl.gov/, November
2011.

[27] Christian Nutt. A decade on, Halo charts its course. http://www.gamasutra.
com/view/feature/6365/a_decade_on_halo_charts_its_course.php, May
2011.

[28] Douglas A. Seifert. Minimum enclosing circle in Ruby.
http://www.dseifert.net/code/mec/, February 2008.

[29] Siqi Shen and Alexandru Iosup. The XFire Online Meta-Gaming Network:
Observations and High-Level Analysis. In IEEE HAVE 2011 Proceedings,
HAVE 2011, 2011.

[30] Gillian Smith, Mike Treanor, Jim Whitehead, and Michael Mateas.
Rhythm-based level generation for 2D platformers. In Proceedings of the 4th
International Conference on Foundations of Digital Games, FDG ’09, pages
175–182, New York, NY, USA, 2009. ACM.

[31] Clive Thompson. Halo 3: How Microsoft labs invented a new science of play.
Wired Magazine, 09(15), 2007.

[32] Anders Tychsen and Alessandro Canossa. Defining personas in games using
metrics. In Proceedings of the 2008 Conference on Future Play: Research,
Play, Share, Future Play ’08, pages 73–80, New York, NY, USA, 2008. ACM.

[33] Valve Corporation. Steam Community. https://steamcommunity.com/,
December 2011.

79

[34] James Whitehead and Rick Roe. World of Warcraft Programming: A Guide
and Reference for Creating WoW Addons. Wiley Publishing, 2nd edition, 2010.

[35] WoW Wiki. Item level. http://www.wowwiki.com/Item_level, August 2012.

[36] Nick Yee. Motivations for play in online games. CyberPsychology and
Behavior, (9):772–775, 2007.

[37] Nick Yee, Nicolas Ducheneaut, Les Nelson, and Peter Likarish. Introverted
elves & conscientious gnomes: the expression of personality in World of
Warcraft. In Proceedings of the 2011 annual conference on Human factors in
computing systems, CHI ’11, pages 753–762, New York, NY, USA, 2011. ACM.

