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Abstract 

Background 

Asthma is a chronic inflammatory disease of the airways for which there is no cure. The 

epithelium lines the lumen of airways creating a barrier to inhaled substances and protects the 

underlying tissue. However, it has been revealed over the past decades that the epithelium 

partakes in many features of asthma pathogenesis. Recruited inflammatory leukocytes contribute 

to airway responsiveness by increasing the mass of tissue underlying the epithelium that leads to 

narrowing of the airways, and also can drive airway structural changes over time. Release of pro-

inflammatory cytokines by the epithelium is one way by which these cells are activated to 

translocate to the airways. Lipid mediators may contribute to the release of pro-inflammatory 

cytokines by epithelial cells. Furthermore, the epithelium may release many factors that can 

interact with the underlying smooth muscle; the functional tissue for regulating airway diameter. 

Increased smooth muscle mass is a hallmark feature of the disease and mediators of its 

mitogenesis may be released by epithelial cells. Finally, smooth muscle may be phenotypically 

regulated such that proliferative cells are not contractile. Epithelial derived factors may also 

modulate the contractility of this tissue. 

Methods  

Airway epithelial cells derived from primary donor patients as well as the cell line BEAS-2B 

were utilized. Primary smooth muscle cells were isolated from healthy control donors. BEAS-2B 

cells were stimulated to release the pro-inflammatory cytokine IL-8 with the lipid mediator 

sphingosine 1-phosphate (S1P). Pre-treatment of proteins associated with IL-8 release prior to 

stimulation with S1P were used to determine the cellular signalling events important in 
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mediating this process. Airway smooth muscle cells were co-cultured with or without epithelial 

cells prior to analysis of phenotype. The contractile phenotype was evaluated by examining 

traction force production in these cells, as well as intracellular calcium release to agonist 

stimulation. Pre-treatment with inhibitors of proteins known to mediate contraction were utilized 

to determine how co-culture modulates contractility. The proliferative phenotype was assessed 

by examining the incorporation of the thymidine analogue BrdU. Similarly, inhibitors of specific 

proteins were used to understand which pathways resulted in co-culture induced changes to the 

proliferative phenotype. 

Results 

S1P induced IL-8 release was mediated by S1P Receptor 2 signalling to NF-κB but not AP-1. 

The epidermal growth factor receptor (EGFR) transactivation by the generation of reactive 

oxygen species did not occur in this system. Co-culture with epithelial cells reduced the 

contractile phenotype, and the excitability of these cells was restored by inhibition of 

cyclooxygenase-1. Co-culture with epithelial cells increased the rate of proliferation that was 

also not sensitive to EGFR inhibition. Co-cultured cells expressed mRNA for proteins associated 

with pro-inflammatory cytokines and we observed increased expression of the pro-proliferative 

micro-RNA miR-210. 

Conclusions 

Airway epithelial cells have an increasingly important role in the pathogenesis of asthma. These 

cells release IL-8 after stimulation with S1P by virtue of S1PR2 signalling to Nf-κB. 

Furthermore, epithelial cells can phenotypically modulate airway smooth muscle cells towards a 

more proliferative and less contractile state. 
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Resume 

Contexte 

L'asthme est une maladie inflammatoire chronique des voies aériennes pour laquelle il n'y a pas 

de traitement curatif. L'épithélium du lumen des voies respiratoires créer une barrière aux 

substances inhalées et protège le tissu sous-jacent. Il a cependant été démontré au cours des 

dernières décennies que l’épithélium est impliqué dans l’apparition et le développement de 

l’asthme. Les leucocytes inflammatoires recrutés au niveau de l’épithélium contribuent à la 

réactivité des voies aériennes en augmentant la masse du tissu sous-jacent, conduisant ainsi au 

rétrécissement des voies respiratoires. De plus, leur recrutement peut entraîner des modifications 

structurelles des voies aériennes au cours du temps. La libération de cytokines pro-

inflammatoires par l'épithélium est un moyen par lequel les leucocytes sont activés, pouvant 

ainsi se déplacer dans les voies respiratoires. Certains médiateurs lipidiques peuvent contribuer à 

la libération de cytokines pro-inflammatoires par les cellules épithéliales. En outre, l'épithélium 

peut libérer de nombreux facteurs qui peuvent interagir avec le muscle lisse sous-jacent, soit le 

tissu fonctionnel qui régule le diamètre des voies aériennes. L’augmentation de la masse 

musculaire lisse est une caractéristique importante de la maladie et des médiateurs de la 

mitogenèse des cellules de muscle lisse peuvent être libérés par les cellules épithéliales. En outre, 

le muscle lisse peut être régulé phénotypiquement de façon à ce que les nouvelles cellules qui 

prolifèrent ne soient pas contractiles. Finalement, des facteurs libérés par les cellules épithéliales 

peuvent également moduler la contractilité de ce tissu.  

Méthodes 



 

 v 

Des cellules épithéliales primaires de voie aérienne dérivées de patients donneurs ainsi que la 

lignée de cellules BEAS -2B ont été utilisées. Les cellules musculaires lisses primaires ont été 

isolées à partir de donneurs en bonne santé. Les cellules BEAS-2B ont été stimulées avec les 

médiateurs lipidiques de la sphingosine 1-phosphate (S1P) pour libérer la cytokine pro-

inflammatoire IL-8. Des traitements influençant la relâche d’IL8 ont été effectués afin de 

découvrir les voies de signalisation impliqués dans les évènements médiés par la stimulation 

avec S1P. Les cellules musculaires lisses de voie aérienne ont été cultivées avec ou sans cellules 

épithéliales avant l'analyse du phénotype. Le phénotype contractile a été évalué en examinant la 

production d'une force de traction dans ces cellules, ainsi que la libération du calcium 

intracellulaire à l'agoniste de stimulation. Des inhibiteurs de protéines responsable de la 

contraction ont été utilisées afin de déterminer comment la co-culture module la contractilité. Le 

phénotype de prolifération a été évalué en examinant l'incorporation de BrdU, un analogue de la 

thymidine. En meme temps, des inhibiteurs ont été utilisés dans le modèle de co-culture pour 

comprendre quelles voies de signalisation ont entrainer les changements de phénotype 

prolifératif 

Résultats 

La sécrétion d’IL-8, suite au traitement par S1P, est médiée par le récepteur S1PR2 via 

l’activation de NF-kB, mais non par celle d’AP-1. La transactivation du récepteur du facteur de 

croissance épidermique (EGFR) par la génération d'espèces réactives de l'oxygène ne se produit 

pas dans ce système. La co-culture des cellules de muscle lisse avec des cellules épithéliales a 

réduit le phénotype contractile et l'excitabilité de ces cellules a été normalisée par l'inhibition de 

la cyclooxygénase-1. La co-culture avec des cellules épithéliales augmente le taux de 

prolifération et cette augmentation insensible à l'inhibition de l'EGFR. Les co-cultures cellulaires 
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ont exprimé l'ARNm pour les protéines associées à des cytokines inflammatoires et nous avons 

observé que l'expression du micro-ARN miR-210 pro-prolifératif est augmentée. 

Conclusions 

Les cellules épithéliales des voies aériennes jouent un rôle de plus en plus important dans la 

pathogenèse de l'asthme. Ces cellules libèrent de l’IL-8 après la stimulation du S1PR2 par S1P et 

via la voie de signalisation NF-kB. En outre, les cellules épithéliales peuvent moduler le 

phénotype des cellules musculaires lisses des voies aériennes en augmentant leur état prolifératif 

et en reduisant leur capacité de contraction. 
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1.1 Introduction 

Airway diseases are an increasing burden on healthcare systems. Asthma is one such disease for 

which the pathophysiology remains quite mysterious. Hallmark features of asthma include 

airway hyperresponsiveness to inhaled substances that cause narrowing of the airways as well as 

persistent inflammation of the airway wall. Both of these characteristics increase the work of 

breathing and the sensation of effort to breathe and they contribute to the symptoms experienced 

during an exacerbation. It is estimated that 300 million people worldwide are suffering from 

asthma [1]. Although research over the past several decades has contributed to novel therapies 

for patients suffering with asthma, there is an urgent need for better treatments to improve the 

quality of life of those suffering from the more severe forms of this disease. The work presented 

in this thesis aims to better understand the pathogenesis of asthma, and also to learn more about 

the interaction of structural cells within the airways. This disease is likely driven by the intricate 

communication between both inflammatory and airway structural cells. It is becoming more 

evident that airway wall changes that occur in asthmatic subjects may due to epithelial 

dysfunction [2] and so a better understanding of airway epithelial biology will contribute new 

knowledge on the pathogenesis of this disease. 

1.2 Asthma 

1.2.1 Overview 

Asthma is a chronic inflammatory disease of the airways that affects millions of people 

worldwide. The prevalence of asthma has increased from 7.3% in 2001 to 8.4% in 2010 in the 

United States and thus costs healthcare systems more and more each year [3]. Asthma is 
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characterized by acute obstruction to airflow complemented by chronic inflammation of the 

bronchial tree [4]. In addition to airway inflammation, asthmatics possess a greater mass of 

smooth muscle within the airway walls [5], secrete more mucus into the airway lumen [6], 

deposit new matrix components and have increased airway vascularization [7]. It is apparent that 

diverse mechanisms drive the pathogenesis of this disease and it is becoming increasingly 

evident that patient-specific therapies are the future of clinical treatment. Cytokine production 

from airway structural cells, including epithelial cells, is responsible for the recruitment of 

leukocytes and the conditioning of cells at the interface between innate and adaptive immunity 

such as dendritic cells and innate lymphoid cells. Sustained inflammation likely drives airway 

remodeling [8]. The interaction of lung structural cells, their communication with one another, 

and the interface of immune and mesenchymal derived cells has created a fascinating 

environment to study. These cells and their interactions have driven research to pose intriguing 

questions and establish new concepts in this field. 

1.2.2 Allergic Asthma 

Asthma is a syndrome within which many subsets may be identified. This is evident through the 

descriptions of a variety of clinical phenotypes [9]. Allergic asthmatics are atopic individuals, 

indicating that they are predisposed to be hypersensitive to certain allergen(s) by mechanisms 

that are immunoglobulin E-related (IgE). Patients may present clinically with a wide variety of 

inflammatory markers. However it is quite common for allergic asthmatics to possess hallmark 

eosinophilia within the airway wall and in sputum. Severe asthmatics tend to possess increased 

bronchial infiltration by neutrophils in addition to eosinophilia [10]. The associated inflammation 

likely drives structural changes to the bronchial wall, which later contributes to the increased 

resistance observed in the airways of these patients. It has been evident for many years that there 
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is an association between susceptibility to allergy and the development of asthma with elevated 

serum IgE levels [11]. Furthermore, T-helper 2 (Th2) lymphocytes and their associated cytokines 

are frequently found within the asthmatic lung [12] and these are tightly linked with allergic 

responses. These and other arms of the immune system have been explored and mechanisms by 

which these immune effectors alter the structure of the airway and contribute to obstruction have 

become more evident. 

Allergic asthma, the most prominent subset, involves the activation of Th2 cells, which secrete 

IL-4, IL-5 and IL-13 cytokines to coordinate a variety of events leading to airway 

hyperresponsiveness [13]. Allergic asthma is usually treated with corticosteroids. Corticosteroids 

bind to the glucocorticoid receptor which, when translocated to the nucleus, alter gene 

expression by controlling the rate of mRNA synthesis through effects mediated in the 5’ 

promoter region of the glucocorticoid response element. Corticosteroids have been shown to 

prevent the binding of activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) to their 

respective promoter regions [14]. AP-1 and NF-κB are important transcription factors in 

mediating the production of pro-inflammatory cytokines [15]. Thus, treatment with 

corticosteroids has the ability to reduce infiltration of leukocytes to the airway wall and can 

lower the frequency of exacerbations. Innate lymphoid cells (ILCs) may also play a role in 

allergic asthma. ILCs do not recognize antigen, but are activated by innate cytokines, often 

epithelial-derived, to drive effector responses. There are currently three known members of the 

ILC family, named ILC1-3. It was shown that IL-13 producing ILC2s can infiltrate the airways 

and may drive "allergic" AHR [16]. Continued work in this new field should be conducted to 

better understand allergic asthma. 
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1.2.3 Non-Atopic Asthma 

The immunopathology of non-allergic asthma, sometimes referred to as intrinsic asthma, shares 

many similarities to that of atopic asthma. Biopsies from intrinsic asthmatics demonstrated 

elevated bronchial infiltration by T-cells and macrophages, similar to atopic-asthmatic patients 

[17]. Furthermore, biopsies of non-atopic asthmatics showed increased mRNA and protein of the 

Th2 cytokines IL-4 and IL-5, suggesting the possibility that local IgE production could occur 

[18]. Intrinsic asthmatics do however possess increased numbers of cells positive for granulocyte 

macrophage colony-stimulating factor receptor-α (GM-CSFRα), a marker that is predominantly 

expressed on macrophages [19]. The presence of Th2 cytokines suggests that antigen 

presentation may occur, although the antigens that may be involved in driving Th2 type asthma 

in the absence of sensitization to usual aeroallergens are unknown. Potential candidates for such 

antigens may derive from viral infection or autoantibodies [18]. Alternatively, ILCs may be the 

source of these Th2 cytokines, as a non-atopic model of infection has demonstrated that ILC2s 

can generate IL-13 in a helminth parasite infection [20]. However the lack of robust models of 

non-atopic asthma has hindered the ability of scientists to understand this asthma subset. Recent 

work has given rise to the notion that ILCs can act as an effector cell within this subset of 

asthma. Most work exploring asthma pathogenesis in the context of ILCs has examined the role 

of ILC3s. It was demonstrated in a mouse model of steroid resistant asthma that IL-17 was 

necessary to drive the asthma phenotype [21]. Furthermore, ILC3s secrete IL-17 and have also 

been associated with obesity driven models of asthma through the induction of the 

inflammasome, a pro-inflammatory protein complex [22]. Although this is a poorly understood 

subset, there is new hope in expanding knowledge through continued exploration of ILCs and 

their role in non-allergic asthma. 
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1.3 Asthma Risk Factors 

1.3.1 Hygiene Hypothesis 

An interesting study described that the prevalence of asthma was increasing in developed 

Western nations [23]. Atopy is the predisposition to overreact to allergen exposures and the 

increase in atopy in western nations may be due to the combination of a variety of factors such as 

the fact that children are exposed to less antigenic diversity at a young age, changes in maternal 

diet, less infant infections and increased vaccination rates and antibiotic use [23]. Among the 

mechanisms for the increase in prevalence of asthma that have been postulated the one receiving 

the most attention in recent years is the “hygiene hypothesis”. This hypothesis is based on the 

premise that children growing up in urban areas of developed nations are exposed to a reduced 

burden of potential allergens at a young age, or are exposed to less diverse allergens and are 

therefore more likely to develop allergic diseases such as asthma [24]. The first published 

observation supporting the hygiene hypothesis demonstrated that there was an increased rate of 

allergic rhinitis in children who grew up in homes with fewer siblings [25].  Children with older 

siblings are less likely to be atopic, which may reflect the increased exposure to pathogens due to 

more interaction with other young children [26]. Another study has shown that atopy is more 

prevalent in children that entered day care at an older age [27]. Furthermore, children who grew 

up on farms exhibited a downward trend in the susceptibility to develop asthma and were less 

likely to be atopic [28]. It was also shown that the quantities of endotoxin, a component of the 

bacterial cell wall, were increased in the farming environment [29]. Endotoxin sensing receptors, 

known as Toll-like receptors (TLRs) likely mediate the protective effect of endotoxin exposure 

throughout childhood against atopy [30]. It appears that air pollution such as diesel exhaust 

particles can act as an adjuvant and augment the host responses to allergen sensitization and may 
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further explain the increased rates of asthma [31]. The hygiene hypothesis requires more work to 

describe the physiological role that a lack of allergen exposure has on the development of 

asthma. Whatever the cause, researchers have uncovered a great deal regarding the immuno-

pathology of this disease. It is well accepted that the immune system plays a critical role in 

regulating atopic asthma. 

1.3.2 Genetic Component of Asthma  

Examination of the risk of having asthma if one or both parents are affected by it suggest a 

significant heritable component to the disease [32]. Several genome wide association studies 

(GWAS) have revealed candidate genes that may be implicated in asthma predisposition. The 

fact that these studies have not produced a clear gene or group of genes that are definitively 

associated with asthma likely highlights the fact that there is an important environmental 

component of the disease. In one study exploring 2669 asthmatics and 4528 healthy control 

subjects revealed the interleukin-6 receptor (IL-6R) as an associated gene with atopic-asthma, 

adding interest to IL-6R antagonism as a treatment for allergic asthma [33]. Another GWAS 

identified a single nucleotide polymorphism (SNP) in ORMDL3 linked to childhood asthma [34]. 

This gene was later discovered to be expressed by epithelial cells and to positively regulate 

metalloproteases and pro-inflammatory cytokines such as IL-8 [35]. Interleukin-33, an epithelial 

derived innate cytokine that drives Th2 responses, has been published as a gene with a SNP 

associated with asthma [36]. The receptor of IL-33, the interleukin 1 receptor-like 1 (IL1RL1), 

also contains a SNP that is linked to asthma in 10 different population studies [37]. Although 

these association studies have revealed some interesting genetic information, asthma remains an 

elusive disease with a need for new therapeutic targets. Future GWAS are required to consolidate 
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the data generated thus far in other populations, and some of these identified genes should be 

further explored as to their role in driving asthma pathology. 

1.4 Innate Immunity of Asthma 

1.4.1 Epithelium  

Innate immunity plays an important role in asthma pathogenesis. A variety of asthma "triggers" 

include non-self peptides associated with viral, bacterial or aeroallergen components. The first 

line of defense against such insult is the airway epithelium. The epithelium consists of several 

cell types that collectively regulate airway surface liquid composition, clear mucus through 

coordinated cilia movement and maintain barrier integrity. These cells include the progenitor 

basal cells, ciliated cells, mucus secreting goblet cells, neuroendocrine cells and protective club 

cells. In the alveolar space, alveolar type I cells facilitate gas exchange and alveolar type II cells 

secrete surfactant into the luminal liquid to reduce surface tension.   

Common aeroallergens include components of house dust mite, pollens, grasses, animal dander 

and moulds. When aeroallergens enter the lung, they interact with the airway epithelium. Airway 

epithelial cells express tight junctions that render the epithelium a tight barrier to inhaled 

molecules, preventing access to the underlying tissues. Tight junctions are formed by proteins 

such as occludin, claudin and junctional adhesion molecule between adjacent epithelial cells and 

the scaffold proteins zona-occludin proteins that connect the transmembrane proteins to the actin 

cytoskeleton; these structures define the apical/basolateral boundary [38]. Tight junctions are 

therefore important in the polarization of the epithelium, assisting in the coordination of 

membrane protein trafficking to either the apical or basolateral pole of the cell [39]. Below the 
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tight junction lies the adherens junction, which consists of E-cadherin and β-catenin [40]. The 

adherens junction tethers the two epithelial cells together and regulates the actin cytoskeleton 

[41]. It is appreciated that the epithelium has a myriad of mechanisms to contribute to innate and 

adaptive immune cascades. The epithelium will recognize pathogen associated molecular 

patterns (PAMPs) by virtue of expressing pattern recognition receptors (PRRs) such as TLRs. 

TLR activation by ligand activates two classical immune signalling pathways within the 

epithelial cells, being that of the TIR-domain-containing adapter-inducing interferon-β (TRIF) 

and myeloid differentiation primary response gene 88 (MYD88) pathways. MYD88 signalling 

leads to NF-ĸB activation which drives the transcription of many pro-inflammatory cytokines 

and chemokines [42]. Activation of PRRs on airway epithelial cells can lead to the release of 

chemokines, such as CXCL8 (IL-8) [43], a potent neutrophil chemoattractant [44]. SNPs of 

TLR2, a PRR expressed on airway epithelial cells, were found to be an important predictor of 

asthma in children growing up in rural areas [30]. TRIF effector signalling will activate 

Interferon Regulatory Factor 3 which drives type 1 interferon generation as well as NF-ĸB driven 

pro-inflammatory responses. Furthermore, the epithelium from asthmatic patients has been 

shown to be more permeable than that of controls [45], and this may be explained by the 

observation that epithelial cells derived from asthmatic patients possess less caveolin-1, a 

scaffold protein associated with epithelial barrier integrity [46]. The proteins responsible for 

creating tight junctions and maintaining barrier integrity are disturbed in asthmatic epithelial 

cells placed in culture [47], and this damaged asthmatic epithelium may allow allergens to more 

easily access the underlying antigen processing DCs. The epithelium from asthmatics also 

contains more basal cells, indicating a less-differentiated population that is associated with repair 

processes. These cells also secrete more pro-inflammatory cytokines than those derived from 
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healthy control subjects, upon exposure to both rhinovirus and particulate matter [48]. The 

epithelium can also release periostin in response to the Th2 cytokine IL-13, which stimulates 

fibroblasts to secrete collagen that may contribute to sub-epithelial fibrosis [49] as well as drive 

goblet cell metaplasia within the epithelium itself [50]. Asthmatic airways also possess more 

EGFR [51] and its ligand heparin binding EGF (HB-EGF) [52] likely to aid in the repair of 

barrier integrity. This EGFR ligand could drive proliferation of nearby airway smooth muscle 

(ASM), further contributing to airway remodeling. Activation of airway epithelial cells by S1P 

has been shown to lead to the release of IL-8 [53,54]. Epithelial cell activation by diesel exhaust 

particulate matter releases the dendritic cell maturation factor GM-CSF [55]. Each year, 

increasing evidence is pointing towards this tissue as an important culprit in mediating 

remodeling events within the airway, and for this reason, the majority of the work of this 

dissertation aimed to contribute knowledge in this area or research. 

In chapters two to four of this dissertation, data from experiments examining the role of airway 

epithelial cells on release of pro-inflammatory chemokine and interaction with smooth muscle 

cells will be presented. 

1.4.2 Dendritic Cells 

Dendritic cells (DCs) are antigen-presenting cells (APCs) that survey the airway for the presence 

of potentially pathogenic molecules. DCs recognize antigens by expressing PRRs such as TLRs 

or C-type lectin receptors and upon activation of these receptors, the DC migrates to mediastinal 

lymph nodes where it encounters and activates naïve T-cells [56]. DCs may have the ability to 

extend protrusions through the epithelial barrier in order to sample the airway lumen [57]. 

Furthermore, the epithelial layer may allow small antigens to enter into the lymphatic vessels 
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where they could interact with resident lymphatic DCs such as plasmacytoid DCs [58]. This 

migration occurs through the expression of CCR2-like receptor (CCRL2) [59] and the 

sphingosine-1-phosphate receptor 1 (S1PR1) agonist SEW-2871 can down-regulate this receptor 

[60]. Epithelial derived signalling molecules will cause maturation of the underlying DCs 

through the production of cytokines such as thymic stromal lymphopoietin (TSLP) [61]. The 

release of TSLP can influence the DC to become a Th2 promoting APC via the up-regulation of 

OX40L, a co-stimulatory molecule in T cell activation [62]. As research moves forward, the 

importance of the DC in linking airway epithelial cell innate immune signalling and activation of 

the adaptive immune response in the asthmatic airway is becoming more evident. 

1.4.3 Neutrophils 

Neutrophilia is a prominent feature of severe asthma [10]. Neutrophils are recruited to the 

airways through the local release of chemokines such as IL-8 [63] and the sputum levels of this 

chemokine have been shown to correlate with the severity of asthma [10]. In chapter two of this 

thesis, the release of IL-8 from airway epithelial cells was explored for its potential role in the 

recruitment of this cell type. Neutrophils reside predominantly in the bone marrow [64], 

spending only 6-8 hours as circulating peripheral cells [65]. Neutrophil chemotaxis from the 

blood to the airway occurs upon the release of a variety of chemokines including IL-8, 

chemokine (C-X-C motif) ligand 1(CXCL1/GRO-α), macrophage inflammatory protein 1α, 

chemokine (C-C motif) ligand 5 (CCL-5/RANTES) and chemokine (C-X-C motif) 5 

(CXCL5/ENA-78) [66]. The release of these chemokines can occur when damage-associated 

molecular patterns (DAMPs), which are normally sequestered away from TLRs are released 

upon tissue damage, activating the TLR and inducing neutrophil chemokine production [67]. 

Uric acid is one such agonist that is released from dying cells [68]. In a study examining 
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competitive swimmers, it was demonstrated that chlorine by-products caused epithelial damage, 

increased DAMPs and augmented airway neutrophilia [69]. As discussed previously, TLR 

activation may also occur in the presence of PAMPs, recruiting neutrophils [43]. Neutrophils 

respond to IL-8 when the neutrophil CXCR1/2 receptor is activated at the leading edge of the 

cell, inducing G-protein coupled signalling and the release of intracellular calcium [70]. 

Neutrophil migration is driven by the activation of phosphatidylinositol (3,4,5)-trisphosphate 

kinase (PI3K) that in turn results in actin polymerization at the site of receptor activation [71]. In 

the early 1930’s it was discovered that leukocytes consume more oxygen during phagocytosis 

[72]. For over three decades this “respiratory burst” remained a mystery. Eventually it was 

discovered that this increase in oxygen consumption was a key requirement for phagocytic 

leukocytes to destroy bacteria [73]. Patients with leukocytes lacking this oxidative burst 

capability are prone to infection and the term chronic granulomatous disease has been given to 

describe this pathology [74]. The NADPH oxidase (NOX) enzyme was discovered to be the 

protein complex responsible for the consumption of oxygen and producer of reactive oxygen 

species (ROS). The NOX complex consists of two membrane subunits, collectively termed 

cytochrome b558, and four cytosolic components, p47PHOX, p67PHOX, p40PHOX and Rac. 

The phosphorylation of p47PHOX is a crucial step in the recruitment of the four cytosolic 

subunits to cytochrome b558, and is regarded as a necessary event in the activation of the 

complex [75]. Protein kinase C (PKC) likely phosphorylates serine residues on the p47PHOX 

subunit [76]. Superoxide is generated by NADPH oxidase which can then be converted to 

hydrogen peroxide, another ROS, by superoxide dismutase (SOD). The leukocytes in asthmatics 

have been shown to produce more superoxide than those of healthy controls [77]. Neutrophils 

also secrete the enzyme myeloperoxidase (MPO), which converts hydrogen peroxide to 
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hypochlorous acid (HOCl), a strong oxidant. It is estimated that HOCl levels in the lung can 

reach 8mM [78]. MPO secretion from neutrophils isolated from asthmatic patients is increased 

compared to healthy controls [79]. HOCl can also be produced when chlorine gas is inhaled and 

combines with water in the airways [80]. Children who regularly attend chlorinated pools are 

more likely to develop asthma [81]. Although the role that oxidative stress plays in asthma 

pathogenesis is largely unclear, mechanisms are starting to be postulated.  

Phagocytic leukocytes may produce ROS in the airways that can damage airway structural cells 

and may contribute to the pathophysiology of asthma. ROS may also play a role in activation of 

airway epithelial cells. Asthmatic airways have been shown to possess more ROS [82] but the 

source and significance is still unclear.  

Oxidative stress is an emerging theme in asthma research. The oxidation state of a cell can play a 

critical role in signalling pathways, and asthmatics have been shown to have more 8-isoprostane, 

a marker of oxidative stress, in the breath condensate [83]. Asthmatics also have more hydrogen 

peroxide, a product of neutrophils, in their airways [84]. 

ROS and the Epithelium  

When a cell is exposed to an oxidative environment, lipid peroxidation, DNA damage and 

protein oxidation can occur. Of course, airway epithelial cells express a variety of antioxidants to 

deal with such oxidative insults, including SOD, catalase, glutathione peroxidase and the non-

enzymatic antioxidants such as glutathione, thioredoxin, ascorbic acid and tocopherol. SOD is 

expressed in a variety of isozymes with SOD1 being the most prevalent. SOD1 is expressed 

throughout the nucleus and cytoplasm [85], while SOD2 is expressed in the mitochondria [86], 

and SOD3 is a secreted, soluble form [87]. SOD converts superoxide to hydrogen peroxide, 
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which can then be converted to water by catalase. SOD activity in airway epithelial cells from 

asthmatics not on inhaled corticosteroids is decreased compared to controls or asthmatics 

receiving corticosteroids [88]. Another study has shown that asthmatic respiratory tract lining 

fluid contains less tocopherol and ascorbate, and more oxidized glutathione [89] , further 

evidence that the redox status of the asthmatic lung is unbalanced.  

Airways are constantly exposed to ROS from air pollutants such as ozone and nitrogen oxides. 

During oxidative insult, cells can activate the master anti-oxidant transcription factor nuclear 

factor (erythroid-derived 2)-like 2 (Nrf-2). Nrf-2 is a cap’n collar protein, retained in the 

cytoplasm by Kelch-like ECH associating protein 1 (Keap 1) [90]. Normally Nrf-2 is 

ubiquitinated and targeted for proteosomal degradation [91]. Keap-1 contains a nuclear export 

signal (NES), retaining Nrf-2 in the cytoplasm [92] and Nrf-2 contains a nuclear localization 

signal (NLS) [93]. Keap-1 contains cysteine residues that are oxidized during oxidative stress, a 

critical step in releasing Nrf-2 [94]. Nrf-2 can then translocate to the nucleus where it binds the 

anti-oxidant response element (ARE) [95]. Nrf-2 knockout mice have shown increased 

eosinophilia and IL-4 and IL-13 levels in the bronchoalveolar lavage after sensitization and 

challenge with allergen [96]. It is possible that Nrf-2 deficiencies, leading to anti-oxidant 

deficiency or increased oxidation status of the lung could contribute to the pathogenesis of 

asthma.  

If the exposure to ROS overwhelms the cells' antioxidant capacity, the cells will either undergo 

apoptosis or necrosis. Apoptosis involves the activation of the caspase cascade, and ROS can 

induce caspase activity [97-99]. HOCl produced by MPO has been shown to cause endothelial 

and neuronal necrosis by activation of L-type and T-type calcium channels at the plasma 

membrane with downstream activation of calpain and loss of mitochondrial membrane potential 
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[100,101]. Cell viability after exposure to HOCl appears to be dependent on the cell type, with 

endothelial cells being more susceptible than cultured neurons [100,101]. During an oxidative 

insult, airway epithelial cells can be shed. Brown Norway rats pre-treated systemically with the 

anti-oxidant N-acetyl cysteine showed reduced airway dysfunction having been exposed to 

chlorine gas [102]. In another study, Balb/c mice were treated with the antioxidant 

dimethylthiourea (DMTU), which protected the lungs from lipid peroxidation and decreased 

airway hyperresponsiveness after chlorine gas exposure [103]. Airway epithelial cells have the 

ability to secrete a large amount of glutathione. Asthmatics secrete almost two-fold more 

glutathione into the epithelial lining fluid than healthy controls, which appears to prevent airway 

hyperreactivity to methacholine challenge [104]. Asthmatic airway redox status could play an 

important role in the development of disease. 

ROS as Signalling Molecules    

ROS have become of interest to medical research as their role as signalling molecules has been 

uncovered. ROS appear to mediate events downstream of growth factor receptor and cytokine 

receptor activation [105]. A seminal publication in the early 1990’s showed that rabbit tracheal 

epithelial cells release hydrogen peroxide when activated with PMA [106]. Since, much work 

has been conducted studying ROS production in airway epithelial cells. Production of ROS by 

airway epithelial cells has been implicated in cell signalling, controlling apoptosis [107] and 

mucus secretion [108]. The amino acid cysteine is an oxidation target due to its sulfhydryl side 

chain. Proteins can undergo conformational changes upon cysteine oxidation and thus signalling 

pathways can be affected. Cysteine oxidation of tyrosine phosphatases can render them inactive 

causing proteins to remain phosphorylated. This is the case with the EGFR [109]. Matrix 

metalloproteinases (MMPs) can be activated when intracellular cysteine oxidation causes a 
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conformational change to the extracellular domain, exposing the catalytic site [110,111]. Since 

MMPs have the ability to cleave EGFR ligands from the cell membrane, oxidative activation of 

MMPs and the EGFR represent a potential mechanism by which airway epithelial cells become 

activated to produce pro-inflammatory chemokines such as IL-8, downstream of activation of the 

EGFR [112]. Hydrogen peroxide can cause activation of the transcription factors NF-κB and AP-

1 [113]. Pre-treatment of airway epithelial cells with the anti-oxidant DMTU prevents tumour-

necrosis factor-α (TNF-α) converting enzyme activation after stimulation with cigarette smoke 

extract (CSE) [114]. ROS has also been shown to mediate G-protein coupled receptor (GPCR) 

signalling, including transactivation of the EGFR [115] Endogenous ROS generation may play a 

crucial role in regulating airway epithelial repair after injury. 

The main ROS producing enzyme in airway epithelial cells is the NOX family including NOX1-

5 and the larger dual oxidases DUOX1-2, named for containing both NADPH oxidase and 

peroxidase homology domains [116]. NADPH oxidases produce superoxide by virtue of 

transferring one electron from cellular sources of NADPH across the lipid bilayer. Dual oxidases 

(DUOX) produce hydrogen peroxide. Increases in intracellular calcium have been shown to 

activate DUOX production of hydrogen peroxide by airway epithelial cells [106]. Calcium likely 

regulates DUOX function by binding to intracellular EF-hand domains [117]. EF-hand domains 

are sequences found in calcium binding proteins that possess two alpha helices, the “E” and “F” 

helices, separated by a calcium-binding loop. These domains are sensitive to millimolar calcium, 

and the sites are normally occupied by intracellular magnesium [118].  
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TRPA1, a ROS Sensitive Ion Channel 

Another avenue by which ROS may play a role in asthma pathogenesis is through activation of 

the oxidant sensitive transient receptor potential (TRP) channel TRP ankyrin 1 (TRPA1), named 

for its 18 N-terminal ankyrin repeats. TRP channels are non-selective cation channels, permeable 

to calcium. Increases in intracellular calcium can initiate signalling cascades through proteins 

such as calmodulin [119]. C-fibers that innervate the airways appear to mediate oxidative stress 

induced lung dysfunction in the mouse [120]. Airway C-fiber activation can also induce 

neurogenic inflammation. Neuropeptide released from C-fibers, such as substance P and 

neurokinin A can bind to neurokinin receptors and cause a variety of pro-inflammatory events 

such as increasing lymphocyte proliferation [121] and increased vascular permeability in the 

airways [122]. Oxidative molecules have the ability to gate TRPA1. 4-hydroxynonenal, an 

oxidized lipid metabolite, has been shown to activate TRPA1 in airway sensory neurons, causing 

the release of substance P from these nerve endings and contributing to neurogenic inflammation 

[123]. Recently, TRPA1 was detected on small airway epithelial cells, and it appears to respond 

to oxidative ligands such as cinnamaldehyde, acrolein and CSE. The same study showed that 

acrolein and CSE can evoke the release of IL-8 from cultured human airway epithelial cells in a 

TRPA1-sensitive manner [124]. Since TRPA1 is activated by oxidative molecules such as 

acrolein, it is likely that this channel is gated more frequently in asthmatic lungs and causes 

calcium flux into airway structural cells. 

1.4.4 Macrophages 

The macrophage is a rather diverse cell, both driving inflammation as well as resolving it. 

Macrophages have the ability to engulf foreign pathogens and present antigen to adaptive 
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immune cells. It has long been known in the mouse that macrophages may exist in a classically 

activated (M1) or alternatively activated (M2) phenotype. Depending on the M1/M2 expression, 

macrophages influence adaptive immunity by altering T-cell phenotype [125]. M1 macrophages 

develop in the presence of interferon- γ (IFN- γ) and TNF and release a variety of pro-

inflammatory cytokines [126]. The M2 variety mature in the presence of IL-4 [127] and secrete 

extracellular matrix proteins that may be utilized for tissue repair [128]. These macrophages are 

named for their differential processing of arginine through arginase rather than inducible nitric 

oxide (NO) synthase (iNOS) [129]. iNOS drives the synthesis of NO, a molecule associated with 

viral immune responses [130]. M1 macrophages have been associated with prevention of Th2 

responses in a murine OVA model of asthma [131]. In a murine house dust mite model of 

allergic asthma, it was observed that M1 macrophages were increased in less severe forms of the 

disease whereas M2 was greater in more severe “asthma” [132]. The specific macrophage 

subsets that are expressed across the asthmatic disease severity spectrum are still unclear [133]. 

Due to the increased prevalence of Th2 cytokines IL-4 and IL-13, the induction of M2 cells may 

be expected in asthmatic airways. This may represent a homeostatic mechanism through which 

induced M2 cells by Th2 inflammation inhibit these responses. 

1.5.3 Eosinophils 

Eosinophilia is a common feature of asthma and the extent of eosinophilia correlates with the 

severity of the disease [134]. Th2 derived IL-5 and IL-9 greatly promote the presence of airway 

eosinophils through stimulating their recruitment and aiding in their proliferation [135,136]. IL-

13 also generates eotaxin release from the epithelium that acts as a potent chemoattractant for 

eosinophils [137]. Eosinophil derived major basic protein is elevated in the sputum of asthmatics 

[138] and this molecule can also induce the constriction of airway smooth muscle cells [139]. 
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Major basic protein causes augmented muscle reactivity through binding to inhibitory M2 

muscarinic receptors, preventing the normal regulatory function of this receptor and causing 

augmented acetylcholine release [140]. Eosinophils secrete lipid mediators such as cysteinyl 

leukotrienes [141] which are potent bronchoconstrictive agonists [142]. Eosinophils also secrete 

a variety of cytokines that can sustain airway inflammation such as IL-4 [143], IL-13 [144] and 

eotaxin [145].  

Eosinophil peroxidase-derived HOCl, eosinophil cationic protein and major basic protein can be 

damaging to the epithelium and could represent another deleterious effect of eosinophilia [146]. 

Furthermore, activated eosinophils can release the arachidonic acid metabolite leukotriene C4 

(LTC4) which can cause the constriction of airway smooth muscle cells and microvascular leak 

[147]. Preventing eosinophilia through IL-5 or IL-5 receptor specific antibodies is a strategy that 

has received a fair amount of attention recently. Severe asthmatics that possess a high number of 

airway eosinophils had fewer exacerbations when treated with mepolizumab, an antibody against 

IL-5 [148]..Future work exploring eosinophil-targeting therapies will likely lead to improved 

specific patient prognosis. 

 

1.5 Adaptive Immunity in Asthma 

1.5.1 T Cells 

Adaptive immunity plays a key role in mediating allergic asthma. Inhalation of air-borne 

allergens, known as aeroallergens, causes sensitization of susceptible subjects and subsequent 

exposure initiates an inflammatory allergic reaction in the airways that contributes to airway 
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narrowing and remodeling. APCs such as dendritic cells present the peptide to T cells via the 

MHC class II molecule. Once presented with allergen, T cells with the appropriate antigen 

specific T cell receptor proliferate in local lymph nodes into the Th2 subset. The T cells will then 

recirculate, eventually homing towards the airway along a chemokine gradient of CCL17 and 

CCL22 which are secreted by epithelial cells [149]. An expanded population of allergen specific 

Th2 cells in the lung will secrete IL-4, IL-5 and IL-13. IL-4 also causes the induction of mucus 

secreting goblet cells in the airway epithelium [150]. IL-5 secretion from the Th2 cell causes 

activation [151] and recruitment of eosinophils [152].  

Local T lymphocytes have been shown to be in intimate contact with airway smooth muscle cells 

and, in vitro, trigger proliferation [153]. This property may contribute to airway remodeling in 

asthma. Recruited T cells within the airway wall contribute to the "late" phase of the allergic 

asthmatic reaction and their cytokines orchestrate a variety of remodeling events. The Th2 cell 

will secrete four important asthma-related cytokines, namely IL-4, IL-5, IL-9 and IL-13. IL-4 

and IL-13 can activate the airway epithelium to secrete the potent neutrophil chemoattractant IL-

8 [154]. A recent clinical trial demonstrated that lebrikizumab, an antibody against IL-13, 

reduced the number of exacerbations in patients with moderate and severe asthma [155].  

Asthmatic airways possess more mucus than those of healthy subjects and this secretion 

contributes to airway narrowing resulting in increased airway resistance [156]. Furthermore, 

mucus production by epithelial cells can be driven by the Th2 cytokine IL-13 in asthmatic 

airways [157]. 

Naive T cells may also develop into IL-17 secreting Th17 cells in the presence of naive T cell 

derived IL-23 [158]. This phenotype of T lymphocyte also matures in the presence of TGF-β and 
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IL-6 [159] and contributes to asthma pathology. IL-17A causes lung fibroblasts to secrete the 

pro-inflammatory cytokines IL-6, IL-8, IL-11 and Gro-α [160]. 

An emerging concept in the immuno-pathology of asthma is the role of resolution of 

inflammation. T regulatory cells (Tregs) are Foxp3 expressing cells that produce the immuno-

suppressive cytokine IL-10. In an animal model of allergic asthma, it has been demonstrated that 

the adoptive transfer of Tregs was able to diminish airway hyperresponsiveness and that this 

reduction in the asthma phenotype depended on IL-10 [161]. Future work regarding these Foxp3 

expressing cells may lead to novel mechanisms regarding asthma pathogenesis. 

1.5.2 B Lymphocytes  

B lymphocytes are key cells in humoral immunity as the antibody producing cells of the body. 

Th2 cytokines will influence B cells to class switch towards an IgE producing cell [162,163], 

which likely contributes to the "early" phase of the allergic responses in asthma. IgE binding to 

mast cell Fc receptor induces exocytosis of mediators of the allergic response [164]. Some mast 

cell derived mediators released include histamine, leukotrienes, proteases and cytokines, all of 

which contribute to asthma pathology [165]. Targeted blockade of IgE through the 

administration of an anti-IgE antibody is sometimes used clinically for the management of severe 

asthma [166]. B cells also have a role in antigen presentation to T lymphocytes through 

expression of the MHC class II molecule [167]. 

After the induction of class switching, B cells expressing specific IgE for the antigen may 

become memory B cells ready to respond to generate more robust responses to subsequent 

allergen exposures. Conflicting data exists as to the longevity of memory B cells. Data suggest 

that IgE specific B cells are not long-lived without the presence of continued antigen exposure in 
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the rat [168]. However in another publication, persistent memory cells were observed in the 

spleen and bone marrow 79 days after systemic sensitization of BALB/c mice [169]. There may 

be a discrepancy due to the species examined, although the former article did not explore the 

presence of memory B cells in the bone marrow or the spleen, rather it examined only the 

generation of serum IgE antibody production after allergen challenge.  

B-regulatory cells, similarly to T-regulatory cells, inhibit rather than increase responses of the 

immune system. These cells were first described in the early 2000s as IL-10 expressing B-cells 

[170]. IL-10, as mentioned previously, is a cytokine that is able to suppress both Th1[171] and 

Th2 differentiation and is therefore it can act as a potent repressor of immunity. This cytokine 

can also suppress macrophage release of pro-inflammatory cytokines [172] and in an allergic 

mouse model of asthma, IL-10 was shown to inhibit airway inflammation but not AHR [173]. In 

a similar study, selective inhibition of this B cell subset acted to drive airway inflammation that 

was likely dependent on the loss of CD4+ cell inhibition [174]. Furthermore, regulatory B cells 

may increase the number of T regulatory cells and act together to suppress immunity [175]. 

Recently it has been suggested that B regulatory cells may be further differentiated into IL-10 

secreting Br1 cells [176], transforming growth factor (TGF)-releasing Br3 cells [177], and Foxp3 

expressing Bregs [178]. B lymphocytes have emerged as important cells in mediating the asthma 

pathogenesis, supported by the use of omalizumab to neutralize IgE in human asthma.  
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1.6 Lipid Mediators 

1.6.1 Sphingosine-1-Phosphate 

S1P derives from sphingosine, a prominent sphingolipid found in the plasma membrane of many 

cell types. Likely due to the “enigmatic structure” of these lipids, they are named after the 

Egyptian Sphinx [179]. Sphingolipids derive from ceramide, giving rise to a variety of 

sphingolipids [180]. Ceramide regulation is therefore critical to maintain sphingolipid 

homeostasis. When sphingosine is phosphorylated it becomes a biologically active lipid. 

Sphingosine phosphorylation occurs by one of two enzymes known as sphingosine kinase 

(SPHK) 1 and 2. SPHK1 is normally sequestered in the cytoplasm but will translocate to the 

inner leaflet of the plasma membrane upon binding to calmodulin [181]. Phosphorylation of 

serine 225 by ERK1/2 dependent signalling can induce a 14-fold increase in SPHK1 activity 

[182]. Ceramide and sphingosine signal apoptosis [183] in a variety of cell types, whereas the 

phosphorylated counterparts induce proliferation [184]. These opposing effects of ceramide and 

S1P, first discovered in the late 1990s [185], are now known as the sphingolipid rheostat. The 

phosphate moiety of S1P can be targeted for removal and conversion back into sphingosine by 

sphingosine phosphatase [186]. Furthermore, S1P can be irreversibly degraded by sphingosine 

lyase (Spl) [187]. S1P can pass into the cytoplasm through the cystic fibrosis transmembrane 

conductance regulator (CFTR) [188] and can be actively exported through the ATP-binding 

cassette transporter ABCC1 [189] and through the spinster homolog 2 [190]. Extracellular S1P 

binds to albumin and apolipoprotein M [191] in the high density lipoprotein fraction of the 

plasma [192]. 
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S1P Immunology 

S1P is considered to be bioactive due to five GPCRs that the sphingolipid can activate. S1P 

receptors1-5 (S1PR1-5) can mediate a wide variety of cellular responses and have implications in 

asthma immune-pathology. One such role is the control of the egress of T lymphocytes from the 

local lymph node or thymus that depends on a gradient of S1P between the lymphatic and the 

efferent vessel and the T cell movement from secondary lymphoid organs depends on the 

activation of S1PR1 [193,194]. Indeed, S1P concentrations are higher in the plasma than in the 

lymphatic tissues [195]. Fingolimod (FTY720) is an analogue of sphingosine that is 

phosphorylated by SPHK2 [196]. Phosphorylated fingolimod potently binds to S1PR1 causing 

internalization and down-regulation of this receptor [197]. FTY720 has been shown to reduce the 

emigration of lymphocytes from the lymphatic tissue [198]. B cell N,N-dimethyl sphingosine, is 

an inhibitor of SPHK and is able to reduce eosinophilia and airway hyperresponsiveness (AHR) 

to methacholine in a murine model of allergic asthma [199]. This inhibitory effect was further 

confirmed to be mediated by a reduction in Th2 cytokines [200]. S1P administered 

subcutaneously to mice also caused an increase in AHR upon acetylcholine challenge, and led to 

increased levels of IL-4 and IL-13 [201]. Fingolimod inhalation was able to prevent airway 

allergen challenge induced AHR and inflammation through the inhibition of dendritic cell 

induced T cell polarization [202]. Along these lines, T cells adoptively transferred from mice that 

had been previously treated with S1P had increased AHR to carbachol challenge [203].  

In ASM cells, S1P has the ability to increase proliferation and cause calcium release through the 

activation of S1PR2/3 [204]. Besides driving remodeling, S1P may induce contraction and cause 

the assembly of stress fibers in these cells [205]. More studies regarding the regulation of ASM 

cell phenotype by S1P are necessary to understand the role of this sphingolipid in driving asthma 



 

 25 

pathogenesis. Due to the role of S1P in promoting inflammatory processes, we examined how 

this lipid mediates the release of IL-8 from epithelial cells in chapter two. 

Intracellular Targets of S1P  

Recently, it has been demonstrated that S1P can act intracellularly as well. In the nucleus, S1P 

can bind to histone deacetylase 1 and 2, influencing the regulation of a variety of genes [206]. 

S1P may play a role in mitochondrial biogenesis, as it was discovered to bind to Prohibitin 2 

[207]. The phospholipid also can act as a co-factor for the E3 ubiquitin ligase activity of TNF 

receptor-associated factor 2 and could activate NF-κB through this intracellular target [208]. 

Future work in this emerging field may define novel implications of S1P and its role in disease. 

S1P and Other Diseases 

Due to its role in regulating proliferation and survival, S1P has been associated with a variety of 

cancers. One study demonstrated that the use of neutralizing S1P antibodies is able to inhibit 

tumour growth progression in a variety of murine xenograft and allograft models [209]. Patients 

suffering from ovarian cancer have presented with greater S1P levels in the serum which were 

reduced upon removal of the tumours [210]. Furthermore, mutant SPHK1 lacking serine 225 

fibroblasts showed less Ras-dependent transformation, indicating that membrane trafficking of 

SPHK1 is a requirement in driving tumour generation [211]. In gastric cancer cells, S1P was 

found to transactivate the EGFR through signalling of S1PR2 and metalloproteinase activation 

[212]. Endothelial cell survival was mediated by SPHK1 regulation of B cell lymphoma gene 2 

(Bcl-2) [213], an oncogene commonly associated with a variety cancers [214]. S1P has also been 

shown to activate eicosanoid biosynthesis through the activation of cyclooxygenase 2 (COX2) 

[215], and PGE2 has been associated with prostate cancer [216]. Besides asthma, atherosclerosis 
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is another inflammatory condition with which S1P is associated. S1PR3-/- mice present with less 

macrophage recruitment to the peritoneum [217], a prominent driver of this disease [218]. 

Similarly, another murine model of atherosclerosis showed that S1PR2-/- mice possess less 

recruited monocytes due to reduced NF-κB driven monocyte chemoattractant protein-1 (MCP-1) 

expression [219]. Diabetes has been linked to S1P. In a mouse model of this disease, plasma S1P 

levels were increased [220]. Furthermore, it appears that S1PR2 is involved in the apoptosis of 

pancreatic beta cells [221].  

Clearly, S1P is an important lipid mediator associated with a variety of diseases. Future work 

exploring mechanisms by which this sphingolipid mediates its effects may prove useful in the 

identification of therapeutic targets. 

1.6.2 Arachidonic Acid Metabolites 

Arachidonic acid (AA) is a 20-carbon chain polyunsaturated fatty acid that is produced from 

phospholipid metabolism by phospholipase A2 in cellular membranes. Upon activation of 

cytosolic phospholipase A2 (cPLA2) by increased intracellular calcium levels, the enzyme 

migrates from the cytosol to the plasma membrane, producing AA [222]. Furthermore, ERK 

phosphorylation of cPLA2 mediates the enzyme's activation [223]. Metabolites of AA have been 

implicated in a variety of aspects of airway biology.  

AA may be metabolized via a variety of bioactive products through one of two major pathways 

(Figure 1). These products include cyclooxygenase derived prostanoids or leukotrienes and 

lipoxins produced by 5-lipoxygenase (5-LO). 5-LO, together with an activating enzyme 5-LO 

activating protein (FLAP), 5-hydroperoxyeicosatetraenoic acid (5-HPETE) or 8-HPETE are 

synthesized. 12-lipoxygenase products include lipoxins, which can resolve inflammation in 
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airways [224]. Lipoxin A4 has been shown to be reduced in severe asthmatics, which may 

represent another mechanism by which inflammation persists in the airways [225]. 5-HPETE can 

also be converted into LTA4, which can then give rise to either the cysteinyl leukotrienes (LTC4, 

LTD4, LTE4), or LTB4. LTB4 can act upon the BLT GPCR. BLT receptor expression was found 

to be required for the recruitment of CD8+ T cells in a mouse model of allergic asthma [226]. 

LTB4 can also promote neutrophil adhesion to endothelial cells, increasing their ability to be 

recruited [227]. Several BLTR antagonists have been examined for their therapeutic potential to 

treat asthma [228]. The cysteinyl leukotrienes (CysLTs) also drive airway inflammation and 

exert their biological effects by binding to either the CysLT receptor 1 (CysLTR1) or 2 

(CysLTR2). CysLTs induce both airway smooth muscle proliferation and contraction and thus 

these lipid mediators can induce both airway remodeling and exacerbation [142]. Leukotrienes 

can also promote increases in vascular permeability that likely contributes to increased 

inflammation [229]. Goblet cell hyperplasia is also driven by CysLTs, leading to increased 

mucus production [230]. Aspirin-intolerant asthmatic-derived sputum possesses more CysLTs 

than healthy control subjects [231] and there is increased expression of CysLTR1 in the 

bronchial mucosa of asthmatic subjects that will further augment the effects of this potent 

remodeling factor [232]. Three CysLTR1 antagonists are used clinically for the treatment of 

asthma. 

The other arm of the AA metabolite pathway gives rise to the prostanoids. The constitutively 

expressed COX-1 and the inducible COX-2 (targets of selective non-steroidal anti-inflammatory 

drugs (NSAIDs)) convert AA to prostaglandin endoperoxide H2 (PGH2), which can then be 

further processed by a variety of enzymes to form prostaglandin D2 (PGD2), PGI2, PGE2, or 

thromboxane A2 (TXA2). In some asthmatic patients, the administration of NSAIDs to inhibit 
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cyclooxygenases shunts AA metabolism to the 5-LO pathway, increasing the levels of cysLTs 

and causing exacerbation [233,234]. These aspirin sensitive patients must turn to other anti-

inflammatory drugs in order to prevent worsening symptoms. Prostanoids can elicit a myriad of 

signalling events in cells expressing GPCRs that recognize the ligands. In smooth muscle, PGE2 

can increase cyclic adenosine monophosphate (cAMP) via binding to PGE2 receptors EP2 or EP4, 

where as EP3 activation increases cytosolic calcium. PGI2 can also increase cAMP, whereas 

PGD2 and TXA2 increase calcium levels. The respiratory epithelium can be a significant source 

of PGE2 [235], as can smooth muscle cells [236]. PGE2 can be both pro-inflammatory and anti-

inflammatory, however it seems that it may protect against the asthmatic phenotype. Inhaled 

PGE2 was shown to prevent the fall in forced expiratory volume in one second (FEV1) in 

exercise-induced bronchoconstriction of asthmatic subjects [237], and this bronchodilation is 

mediated by EP2 receptors in the mouse [238]. Alternatively, TXA2 can induce airway 

constriction [239] as can PGF2α that likely does so through the activation of TXA2 receptors 

[240]. In an allergic model of asthma, it was shown that PGI2 reduces bronchial infiltration by 

leukocytes and Th2 cytokine production, pointing towards a protective role of this lipid [241]. 

Novel inhibitors of these pathways are beginning to emerge and may lead to new treatments for 

this disease. In chapter three of this dissertation, we explored the role of COX activity and its 

products on influencing epithelial induced changes to ASM cell phenotype. 
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Figure 1. Overview of arachidonic acid metabolism. cPLA2 converts phospholipids into AA. 

AA is then processed into one of two pathways, the 5-LO/ FLAP to give rise to the leukotrienes 

(right), or through the COX-1/2 pathway synthesizing prostanoids (left) (figure from Korotkova, 

M et al. Nat Rev Rheumatol, 2014 (10)) [242]. 

 

1.8 Airway Smooth Muscle 

Smooth muscle lines the walls of many tubular structures within the body. Smooth muscle 

differs from that of skeletal and cardiac muscle in two important ways. First, smooth muscle can 

undergo phenotypic de-differentiation from a well-differentiated contractile cell to a less 
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differentiated proliferative (synthetic) cell. Second, smooth muscle can maintain force for long 

periods of time with reduced consumption of ATP compared to non-sustained contraction, a 

phenomenon known as the "latch state" [243,244]. These cells are the target of one of the most 

common treatments of asthma. The administration of β-adrenergic agonists is a first-line 

therapeutic class that relaxes the airways to improve symptoms. ASM's main function is to 

control airway tone. Smooth muscle can maintain force for long periods of time by performing 

tonic contractions. It is also capable of performing faster contractions, termed phasic 

contractions. As the muscle contracts the airways narrow, causing increased airway resistance. 

Although there are other determinants of airway diameter, such as the elastic recoil of the lungs 

and the airway surface liquid, smooth muscle is by far the most important term in regards to 

asthma. As the role of ASM cells is to generate force, the molecular motor proteins actin and 

myosin are of crucial importance.  

1.8.1 Contribution to sub-epithelial fibrosis 

Thickening of the sub-epithelial layer through the deposition of extracellular matrix proteins is a 

hallmark feature of asthma and may occur by secretion of extracellular matrix proteins by 

myofibroblasts in the airways of asthmatic patients [245]. Stimulation of ASM cells from 

previously healthy subjects with asthmatic serum induced the secretion of a variety of 

extracellular matrix proteins, indicating a role for this cell type in driving sub-epithelial fibrosis 

[246]. Asthmatic ASM cells produced greater quantities of collagen I and perlecan than did those 

from healthy control subjects, and the extracellular matrix protein profile expressed by the 

asthmatic cells was able to augment the proliferation of both control and asthmatic ASM cells 

[247]. This indicates a potential role for these proteins in driving remodeling of the ASM layer. 

The story is not fully understood, as it has been shown that OVA induced matrix remodeling 
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actual prevented airway hyperresponsiveness in the rat when examining long exposures of the 

allergen, pointing towards a possible protective effect of these secreted proteins [248]. MMP 

modulation of extracellular matrix proteins may also play a role in asthma, and corticosteroid 

treatment was found to diminish collagen deposition in asthmatic airways via the up-regulation 

of MMP-9 and down-regulation of tissue inhibitors of metalloproteinase-1 expression [249]. 

Further work in this area is needed to truly understand the role of extracellular matrix proteins 

and their interaction with ASM cells in the asthmatic airway. 

1.8.2 The Origins of New Airway Smooth Muscle 

Airway smooth muscle is present underneath the basement membrane of the epithelial lining of 

the airways and is arranged in a helical fashion. (Figure 2) 

Figure 2. Airway stained with TRITC-phalloidin to image filamentous actin 

in airway smooth muscle bundles of a healthy control airway (figure from 

Ijpma, G et al. Shortness of Breath, 2013 (3)) [250]. 

 The angle at which the muscle wraps around the airways is likely greater in 

the peripheral airways compared to that of the central ones [251]. It is 

possible that muscle that is oriented more in the longitudinal axis may have 

less impact, when contracted, on the airway diameter. Whether there is a 

difference in orientation of the muscle between asthmatic and control subjects needs to be 

evaluated. It is unclear where the excess smooth muscle mass originates from within the 

asthmatic airway, however several mechanisms have been postulated. New ASM cells could be 

generated from nearby precursors such as myofibroblasts that undergo differentiation in the 

presence of TGF-β [252]. It is also postulated that adjacent epithelial cells may undergo 
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epithelial-mesenchymal transition (EMT) to generate AMS cell progenitor cells [253]. In support 

of this idea, asthmatic cultured bronchial epithelial cells were shown to be more likely to 

undergo EMT when stimulated with TGF-β than those derived from control subjects [254]. 

Another plausible mechanism for the origin of increased ASM mass is through the proliferation 

of the ASM cell itself, representing a popular area of asthma research. Alternatively, less 

apoptosis of existing ASM cells may promote the increase mass found in asthmatics [255]. 

Mesenchymal stem cells may have the potential to generate ASM cells as the number of these 

cells increases in an OVA model of allergic asthma [256]. Fibrocytes derived from peripheral 

blood could also be a source of ASM cells as these cells localize to the airways of asthmatic 

patients [257], although their numerical contribution seems unlikely to be large. 

1.8.3 Phenotype Regulation of ASM 

Cellular phenotype refers to the plasticity of an individual cell, or a subpopulation of cells, that 

can differ from their neighbors with respect to their specific function. Smooth muscle is unique 

from other muscle types in its ability to change phenotype. ASM cells can exist as either a 

proliferative or a contractile phenotype. Phenotype switching provides an explanation for airway 

wall remodeling such that the muscle layer can proliferate to increase in mass before converting 

to the contractile phenotype and contributing to airway narrowing. The term “modulation” is 

used to describe ASM cell phenotype switching [258]. Myogenic phenotype variation was first 

discovered in vascular smooth muscle where subsets of cells with differing potassium channels 

were associated with resistive or conduit arteries [259].  
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Transcriptional Regulation 

ASM cell phenotype is transcriptionally regulated by many proteins and small molecules. The 

transcription factor serum response factor (SRF) can drive the expression of both proliferative 

and contractile genes [260]. To achieve specificity, the cell utilizes co-transcription factors. E26-

like protein 1 (Elk1) and kruppel-like factor 4 (KLF4) bind to SRF to drive the enzymes that 

contribute to cell cycle progression. Phosphorylated Elk1 induces the expression of c-fos [261] 

which is a well described oncogene [262]. JNK and p38 drive Elk1 phosphorylation to respond 

to cytokines and stress [263]. However, in an equine model of asthma, it was shown that ASM 

mass did not correlate with phosphorylation of Elk1[264]. It is possible Elk1 activity was indeed 

present prior to the examination of the equine airways in this study. Myocardin binds SRF to 

induce the expression of genes associated with the contractile apparatus. Furthermore, the 

contractile promoter contains two CArG boxes which respond to simian virus 40 protein 1 (Sp1), 

AP2 and TGF-β [265]. Elk1 over-expression has been shown to prevent the activation of smooth 

muscle specific genes driven by myocardin and is likely due to the competition for binding to 

SRF [266]. The activation of mitogen-activated protein kinase (MAPK) signalling by growth 

factor receptors can lead to the phosphorylation of ELK-1 and binding to SRF, which represses 

SRF:myocardin binding [267], highlighting the pleiotropic role of SRF. In chapters three and 

four of this work, we explored the expression of these co-transcription factors in mediating the 

phenotype switch that occurs in ASM cells after co-culture with the epithelium. 

Micro-RNA 

The regulation of co-transcription factors can occur through the generation of micro-RNA 

(miRNA). miRNAs are small non-coding RNA molecules, 18-22 nucleotides in length [268]. 
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miRNA are generated in the nucleus as primary miRNA which is processed by RNase III Drosha  

forming precursor miRNA [269] and exported from the nucleus via the pore channel exportin-5 

[270]. Once present in the cytoplasm, miRNA is processed further by Dicer, and will be bound 

by proteins such as Argonaute to form the RNA-induced silencing complex (RISC). RISC bound 

to miRNA will cause the reduction of proteins in three ways. miRNA/RISC can bind to the 5’ 

untranslated region of genes and prevent the progression of the translational machinery from 

translating the gene. MiRNA binding also utilizes the RISC complex to enzymatically degrade 

mRNA transcripts, or they can become destabilized through 5’ decapping [271]. miR-143 and 

miR-145 form a complex that has been shown to inhibit the expression of ELK1 and KLF4, thus 

reducing proliferation and allowing the cell to become more contractile (Figure 3) [272]. 

Furthermore, miR-145 was up-regulated in an OVA model of allergic asthma and its antagonism 

reduced airway hyperresponsiveness to methacholine [273]. miR-21, through the repression of 

PTEN [274], and miR-25, through inhibition of KLF-4 [275], allow for a more contractile cell. 

In fact, the most highly expressed miRNA in human ASM cells, miR-10a, regulates proliferation 

by targeting the PI3K pathway [276]. Recent work in asthmatic airway smooth muscle cells has 

shown that asthmatic cells possess more miR-155 than controls after stimulation with a mixture 

of cytokines and that this mi-RNA positively correlated with the amount of COX-2 expression 

[277]. Since the discovery of miRNA 20 years ago, they have been implicated in a great number 

of biological processes and diseases. Further research in the field of airway remodeling may 

uncover novel therapeutic targets. We examined the expression of miRNA constructs in ASM 

cells after co-culture with epithelial cells in chapter four of this thesis. 
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Figure 3. miR143/145 regulate smooth muscle phenotype. The expression of miR-143 

suppresses Elk-1 while the expression of miR-145 reduces Klf4. The removal of these pro-

proliferative co-transcription factors allows for Myocd to bind to SRF, driving the expression of 

smooth muscle specific genes (figure from Cordes, K et al. Nature, 2009 (460)) [272]. 

1.8.4 ASM Proliferation 

Since airway remodeling features increased smooth muscle mass, mechanisms of ASM cell 

proliferation are of great interest. ASM cells, like many other cell types, respond to serum by 

actively proliferating. In asthma, the vascularity of the airways is increased [278]. Furthermore, 

the vascular permeability may be increased in asthmatic subjects, allowing for the possibility of 

greater quantities of serum to stimulate ASM cell growth [279]. ASM cells also respond to an 

inflammatory milieu. CD4+ T cells co-localize with actively proliferating ASM cells [280] and 

these lymphocytes potentially drive the proliferation [153]. Eosinophils have also been shown to 
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induce ASM cell proliferation through production of eosinophil derived cysteinyl leukotrienes 

[281]. 

The molecular mechanisms of ASM cell proliferation complement those of many other cell 

types. Of relevance to airway biology are the epidermal growth factor (EGF) family, insulin 

growth factor, fibroblast growth factor (FGF)-2 and platelet derived growth factor (PDGF). 

These ligands act upon tyrosine kinase receptors and GPCRs to elicit a variety of downstream 

signalling events. Tyrosine kinase receptor activation causes dimerization of the heterodimeric 

receptor, allowing autophosphorylation of specific tyrosine residues on the intracellular domains 

[282]. This phosphorylation event creates a site for effector proteins to dock. Protein tyrosine 

phosphatases such as SHP-1 can de-phosphorylate and negatively regulate EGFR signalling. 

Downstream signalling effectors are quite numerous, however some key pathways involved are 

the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK), and 

PKC/PI3K pathways [283-285]. GPCR signalling involves the activation of 7 transmembrane 

receptors. Upon ligand binding, the GPCR undergoes a conformational change between the third 

and sixth transmembrane domain [286]. Conversion of inactive GDP bound G protein, into 

active GTP bound G protein causes the α-subunit to dissociate from the β and γ subunits. Free 

Gα subunits are able to bind to other signalling proteins and allow for the activation of cascades 

[287]. Depending on the Gα subtype, different signalling cascades will be activated. Gαs 

stimulates the production of cAMP in the ASM cell via the activation of adenylyl cyclase, and 

this is the mechanism of action for β-agonist therapy in asthma. Gαi on the contrary, inhibits the 

generation of cAMP by inhibiting adenylyl cyclase. Gαq activates phospholipase C (PLC) and 

Gα12/13 interacts with Rho guanine exchange factors to regulate cytoskeletal rearrangement and 

proliferation. After activation, the GPCR will be endocytosed to facilitate the removal of the 
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signalling complex, a phenomenon that depends on the binding of arrestin to the GPCR [288]. 

Tyrosine kinase and GPCR downstream effectors can cross-talk and regulate one another. EGFR 

signalling can activate PLC-γ that can stimulate calcium entry, whereas the GPCR can also cause 

calcium influx via a PLC-β mechanism [289]. Both tyrosine kinase and GPCR signalling activate 

p21ras, which, when bound to GTP, recruits Raf-1 [290]. Active Ras can also activate the PI3K 

pathway [291], which can drive the proliferation of ASM cells [292]. ERK signalling is known 

to induce cyclin D1 expression as this cyclin contains ERK dependent transcription factor 

regulatory sites such as Sp1 and AP-1 (Figure 4) [293,294]. Activation of the PI3K pathway can 

activate p70S6 kinase, which drives DNA synthesis and induces ASM proliferation [295]. 

Furthermore, PI3K can induce Rac1 signalling [296], which has been shown to increase cyclin 

D1 expression in ASM cells [297]. The cyclin D1 promoter is also positively regulated by the 

Rho GTPase cdc42 in ASM cells [298]. This cyclin promoter contains binding sites for the 

transcription factors SP-1 and possesses a cAMP responsive element [299]. After cyclin-

dependent kinase activation by cyclins such as cyclin D1, an important event in the proliferative 

cycle of ASM cells occurs. The phosphorylation of retinoblastoma protein occurs, causing the 

release of elongation E2F. The phosphorylation occurs by cyclin-dependent kinases and released 

E2F can go on to activate DNA polymerase [294]. Currently, there are no therapies targeting the 

prevention of smooth muscle proliferation in asthmatics. It has been shown that corticosteroid 

administration inhibits the growth of these cells in vitro, [300] however, in a follow-up study, it 

was shown that collagen prevents this beneficial effect and the extracellular matrix remodeling 

present in asthmatics may impair this therapeutic function [301]. Furthermore, some patients 

with severe asthma are candidates for a relatively new therapy known as bronchial thermoplasty, 

a treatment used to heat smooth muscle, inducing its apoptosis. It is likely however that the 
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prevention of muscle growth in patients with developing asthma would greatly improve future 

pathology and thus more knowledge regarding how these cells are stimulated to proliferate will 

be helpful in creating new therapies for the treatment of asthma. 

 

Figure 4. RTKs, cytokine receptors and GPCRs lead to the activation of ASM cell proliferation 

through the MAPK and PI3K pathways. p21ras plays a central upstream role in the initiation of 

these signalling events. (figure from Ammit, A et al. J Appl Physiol, 2001 (3)) [294]. 

 

Receptor mediated activation of airway smooth muscle proliferation involves receptor tyrosine 

kinase (RTK), cytokine receptor or GPCRs converging on p21ras. Downstream signalling 

through MAPK or the PI3K pathway signals nuclear events that drive cell cycle progression. 

RTK utilizes the effector proteins Shc, growth factor receptor-bound protein and Son of 
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Sevenless to activate downstream p21ras. In chapter four of this dissertation, we explored the 

role of the EGFR in mediating epithelial induced proliferation of ASM cells. 

1.8.5 ASM Contractility 

Halayko et al. revealed that freshly isolated canine trachealis smooth muscle was comprised of 

distinct populations of cells, being either high or low in content of contractile apparatus proteins 

[302]. The same authors first noted that phenotypic changes occur when ASM cells are placed in 

primary culture. Namely, smooth muscle myosin heavy chain, calponin, sm-α-actin, and desmin 

protein all decreased by more than 75% [303]. ASM cell cultures demonstrated increases in 

vimentin, PKC, CD44, caldesmon and non-muscle myosin heavy chain [303]. Another marker of 

contractile ASM cell maturation is the expression of dystrophin-glycoprotein complex, a 

transmembrane protein that anchors the actin cytoskeleton to extracellular laminin [304,305]. 

Recently, caveolin proteins have been demonstrated as markers of contractile ASM cells, as 

muscarinic receptors co-localize with caveolin-1 proteins to mediate calcium mobilization [306]. 

Changes in ASM cell length upon electrical field stimulation revealed that cells isolated from 

more proximal airways were more reactive than those isolated from lower airways [307]. Due to 

the importance of contractility in driving exacerbations in asthma, we were interested in 

exploring the effects of co-culture with epithelial cells on contractile properties and relevant 

signalling pathways. 

Cross Bridge Cycling 

To generate force, the ASM cells employ a variant of the sliding filament theory. Thin filaments 

of actin and thick filaments of myosin interact with each other to shorten the cytoskeleton. Two 

articles published in 1954 demonstrated that muscle bands can re-arrange upon changes in length 
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and that the contractile components actin and myosin generate the differences observed in light 

refraction [308,309]. In the resting state, myosin does not interact with actin. Myosin protein 

contains a "tail" domain that interacts with other myosin tail domains to form an α-helical, thick 

filament. There is also a "head" region for interaction with actin, and a regulatory "neck" region 

connecting the other two domains. It is in the regulatory region where phosphorylation of serine 

19 [310] and threonine 18 [311] occurs, which is considered a key event in the cross-bridge 

cycling theory. Upon phosphorylation of myosin, it binds ATP, releasing the myosin head from 

the actin filament. After release, the ATP is hydrolyzed by the intrinsic ATPase activity of 

myosin causing the head to displace. ADP-bound myosin can again interact with the actin 

filament and move the filament approximately 6nm [312]. This returns the myosin to the 

beginning of the cross-bridge cycle.  

This cycling mechanism relies on the presence of intracellular free calcium. Calcium release 

from the sarcoplasmic reticulum or influx from the extracellular space is considered to be a 

critical step in initiating cross-bridge cycling and ASM cell contraction. Calcium binds to four 

calcium-sensing domains of calmodulin that then activates myosin light chain kinase (MLCK). 

Calmodulin activity is a critical component for the initiation of cross bridge cycling [313].  

Recent work points towards the importance of spontaneous calcium oscillations as the frequency 

of oscillations of cultured ASM cells correlated with asthma disease severity and therefore may 

play a role in AHR [314]. Calcium sensitization can occur such that the muscle will maintain 

contraction after the calcium levels are restored. This can be accomplished by the small GTPase 

protein Rho which phosphorylates CPI-17 and can inactivate myosin light chain phosphatase 

(MLCP), allowing the myosin to remain phosphorylated even with low levels (100nM) of 

calcium [315]. 
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Calcium Release in Smooth Muscle Cells 

An increase in intracellular free calcium is critical for cross-bridge cycling. Calcium can be toxic 

for cells and so its concentration is tightly regulated. At basal levels, the ASM cell maintains free 

calcium at approximately 80-200nM [Ca2+]i [316] by virtue of the actions of several proteins. 

The sarcoplasmic reticular protein (Sarcolemmal-endoplasmic reticular ATPase (SERCA) pump) 

actively transports intracellular calcium across the sarcoplasmic reticulum membrane while 

consuming ATP. On the plasma membrane, calcium/sodium exchangers remove calcium by 

allowing sodium ions to enter. Upon activation, the cells may release calcium from intracellular 

stores or allow entry from the extracellular space and increase levels towards 1µM. The release 

of calcium in ASM cells is biphasic comprising an initial peak followed by a sustained elevation 

above the resting state [317]. The initial peak is likely mediated by release of calcium from SR 

stores[318], whereas the sustained phase appears to be dependent on extracellular calcium influx 

[317]. Release of calcium in ASM cells occurs when extracellular ligands activate intracellular 

PLC signalling. PLC cleaves membrane bound PIP2 to inositol trisphospate (IP3) and diacyl 

glycerol. IP3 then activates IP3 receptors (IP3Rs) expressed on the SR allowing calcium to flow 

down a concentration gradient into the cytosol. Furthermore, CD38 can generate cyclic-ADP-

ribose (cADPR), which can activate the ryanodine receptor on the SR and can allow calcium 

release [319]. CD38 is also associated with store-operated calcium entry (SOCE)[320]. SOCE is 

a mechanism that exists to allow extracellular calcium to enter the cell upon release of calcium 

from intracellular stores [321]. SOCE involves activation of plasma-membrane calcium release-

activated channels (CRAC) [322] by calcium sensing stromal interaction molecules (STIMs) 

[323] expressed on the SR. Upon depletion of SR calcium, STIM proteins oligomerize and re-

locate within areas of proximity to the plasma membrane CRACs [324]. CRACs are made up of 
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olf186-F (Orai) proteins [325] and upon interaction with STIMs, the CRAC is activated, 

allowing calcium entry [326]. Recently it was shown that OVA challenged mice possess more 

ASM STIM1 and Orai1 and that these proteins mediate PDGF induced proliferation [327]. 

Calcium Sensitization 

Due to the toxicity of calcium, after its release and activation of calmodulin, ASM cells actively 

pump the ion back into the SR. In order to maintain force, the smooth muscle actin-myosin 

interaction must continue to occur even without elevated calcium. In order to achieve this, the 

myosin must remain phosphorylated and in smooth muscle cells this sensitization occurs not by 

activation of myosin light-chain kinase but rather through the inhibition of myosin light-chain 

phosphatase [328]. Inhibition of the phosphatase occurs through the activation of the small 

GTPase Rho and Rho associated kinase, which phosphorylates the myosin binding subunit of 

MLCP rendering it unable to bind to and therefore de-phosphorylate myosin [329]. This occurs 

in intact smooth muscle and has been shown to be involved in driving hypertension [330] and in 

an allergic model of asthma [331]. This latter study demonstrates a role of the immune system 

and its ability to influence structural cell excitability and will be described below. 
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Figure 5. Calcium signalling in smooth muscle cells. Agonist stimulation of GPCRs induces the 

activity of PLC, cleaving PIP2 into IP3 and DAG. IP3 acts as a ligand on the SR IP3R releasing 

calcium into the intracellular compartment. This elevated calcium binds to calmodulin, activating 

MLCK, phosphorylating myosin light chain allowing cross bridge cycling to occur. Rho-kinase 

phosphorylation of MLCP inactivates the enzyme, allowing calcium sensitization to occur 

(figure from Webb, C. Adv Physiol Educ, 2003 (27)) [332]. 

Contractility and Asthma 

The contractile status of ASM may play a key role in mediating the constriction of the airways of 

asthmatic patients. Many biochemical pathways have been described to alter ASM contractility. 

Several conflicting studies have demonstrated that ASM is either more contractile in asthmatic 

subjects, or it is the same as that of control subjects. In these studies, the methodologies differ 
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and these differences could explain the discrepancies. One key issue with comparing the studies 

performed is the fact that force generation per cross sectional area is often not considered and 

needs to be due to the expectation that a greater mass of muscle will produce more force [333]. 

One study exploring ASM cells in suspension showed that cells derived from asthmatic subjects 

had increased shortening velocity, however in this study, the cells contracted against no external 

load, and such a situation would not occur in vivo. The cells in this study were freshly isolated 

from human tissues and placed in a Kreb’s solution perfused chamber and then stimulated to 

contract using electric field stimulation and length changes were monitored by microscopy. 

Furthermore, this study was performed at room temperature [334]. Furthermore, two other 

studies demonstrated that ASM cells embedded in collagen gels induced greater deformation of 

the gel upon agonist stimulation [335,336]. The later study also implicated reactive oxygen 

species through the increased expression of NOX4 to mediate this increase in asthmatic ASM 

cell contractility [336]. Another explanation for the increased contractility of asthmatic ASM 

cells may be increased MLCK [337-339]. Along this line of evidence, mast cell–ASM cell co-

culture induced the up-regulation of smooth muscle α-actin in the ASM cell [340]. In a recent 

study examining eight asthmatics and 11 healthy control ASM tissue preparations, it was 

demonstrated that the tissues were not different in terms of contractility as measured through a 

variety of parameters with an array of stimuli [341]. This study was further confirmed in tracheal 

tissue of an equine model of asthma known as heaves, however in this study, the peripheral 

airway tissues of horses with heaves did demonstrate greater maximal shortening velocity [342]. 

This study adds evidence to the heterogeneity observed in airway diseases. More work should be 

conducted in this field to have a better understanding of whether or not asthmatic ASM is 
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different in terms of contractility. Several of these studies suffer from small numbers of subjects 

and the lack of uniform methodology. 

Due to the importance of cytosolic calcium release in the initiation of cross-bridge cycling, 

researchers have explored calcium signalling in ASM cells derived from asthmatic subjects. It 

has been described that, in the presence of inflammatory cytokines, ASM cells up-regulate 

cADPR pathway of calcium release through the induction of the biphasic enzyme, CD38 

[343,344]. It was also shown that there may be less mRNA and protein expression of SERCA, 

which could contribute to an accumulation of cytosolic calcium and contribute to cells being in a 

more excitable state [345]. Calcium sensitization may also be altered in asthmatic subjects’ 

ASM. In hyperresponsive rats, increases in RhoA may contribute to a more contractile smooth 

muscle [331]. Finally, ORMDL3, a gene associated with asthma [34], was shown to inhibit 

SERCA and could lead to an increased cytosolic calcium concentration [346].  Although the 

verdict is not in, what is clear is that asthmatic patients do indeed experience exaggerated airway 

narrowing and that drugs such as β-agonists that relax the smooth muscle aid in reducing asthma 

symptoms.   

1.8.6 ASM Immunologic Properties 

The role of ASM cells is not limited to their structural and mechanical properties. These cells are 

known to synthesize and secrete pro-inflammatory cytokines. Cells synthesizing such cytokines 

do so when they are not in the contractile state, but rather can be secreted from cells that are 

actively proliferating [347]. ASM cells are able to release both Th1 and Th2 cytokines including 

IL-5, GM-CSF, IL-2, IL-12 and IFN-γ and the release of these cytokines increases after exposure 

of the ASM cells to human atopic asthma sensitized serum [348]. Upon stimulation of human 
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ASM cells with the pro-inflammatory cytokine TNF-α, NF-κB is activated and can drive the 

expression of IL-6 and CCL5 [349]. Furthermore, in the presence of the Th2 cytokines IL-4 and 

IL-13, ASM cells release the eosinophil chemoattractant eotaxin [350]. Exposure of ASM cells 

to IFN-γ causes the release of the neutrophil chemoattractant IL-8, which was inhibited in the 

presence of Th2 cytokines [351]. S1P stimulation of ASM cells can also induce the release of IL-

6 from these cells [352]. In a similar fashion to the epithelium, the role of smooth muscle cells in 

promoting airway inflammation is becoming more evident. 

1.9 Airway Smooth Muscle – Epithelial Interaction 

1.9.1 Epithelial Derived Relaxing Factor 

In the early 1980s, it was determined that the vascular endothelium released a relaxing factor that 

reduced tension of the vascular smooth muscle after muscarinic agonist stimulation [353]. Many 

laboratories focused their attention on this field, which eventually led to a 1998 Nobel Prize 

awarded to three investigators for the discovery of the soluble gas, NO, as a critical regulator of 

vascular tone [354,355]. In the mid 1980s, researchers began exploring whether such an 

interaction existed in the airway. It was demonstrated that, indeed, removal of the airway 

epithelium augmented the contractile response to several agonists in the canine airway [356]. 

Another study explored this phenomenon in bovine trachealis preparations, but observed no 

change in the contractility of ASM tissue preparations that were lacking the epithelial layer 

[357]. However, these experiments revealed that the epithelium released measurable quantities of 

both NO and PGE2 upon stimulation with histamine [357]. In rat detrusor smooth muscle, the 

urothelium also has the ability to prevent contractions to carbachol through an NO and COX 

dependent mechanism [358]. Furthermore, in guinea-pig airway preparations, arachidonic acid 
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induced contraction of the smooth muscle in epithelial denuded samples, but caused relaxation in 

those with the epithelium present [359]. Similarly, in guinea-pig airway preparations, histamine 

induced the release of PGE2 in epithelial intact samples and caused a greater contraction in the 

denuded group [360]. Besides agonist-induced release of COX metabolites, mechanical irritation 

of the epithelium may also cause the secretion of PGE2 [361]. Some researchers have postulated 

that the absence of the epithelium may allow for a greater quantity of contractile agonists to 

reach the smooth muscle and this could explain another mechanism by which the epithelium 

causes a less contractile smooth muscle [362]. 

However, this line of research has not produced clear results. One study demonstrated that 

epithelial cells can induce increases on contraction of tracheal rings in the presence of 

eosinophilic derived major basic protein [363]. Another group showed that cultured guinea-pig 

respiratory epithelial cells may cause the constriction of tracheal preparations in vitro [364]. 

Furthermore, tracheal contractions to capsaicin were augmented in guinea-pig preparations that 

contained intact epithelium [365].  

Although the majority of publications point towards consensus that a relaxing factor is indeed 

secreted by the epithelium, the jury is still out with regards to what that factor(s) may be. 

Vanhoutte has extensively reviewed the possibilities [366], and will be briefly described here. 

Besides the role of arachidonic acid metabolites such as PGE2, NO was the first candidate of an 

epithelial derived relaxing factor due to its importance as a relaxant of the vasculature [354]. NO 

can indeed cause relaxation of the airway [367]. Through the use of inhibitors of the NO 

producing enzyme NO synthase, Munakata et al demonstrated that NO was not responsible for 

the relaxing effect of the epithelium [368]. Another study showed that NO was responsible for 
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the ASM cell relaxing properties of brain natriuretic peptide, but that it was not epithelial 

derived, postulating the involvement of an intermediate cell [369]. 

Cytokines may play an important role in modulating the ASM cell tone and many are associated 

with asthma. Pro-inflammatory cytokines may activate COX-2 [370,371] or NOS [372] to 

modulate the smooth muscle contraction. 

Finally, neurotransmitters have been postulated to modulate ASM cell contractility. 

Acetylcholine can be released by airway epithelial cells [373] and can cause bronchial relaxation 

at low doses on isolated bronchi that have been pre-contracted with histamine that is likely due to 

the release of NO from the epithelium [369]. 

1.9.2 Epithelial Induced Proliferation 

The epithelium has the ability to produce a variety of mitogens including EGFR ligands 

amphiregulin, HB-EGF, EGF, transforming growth factor-α (TGF- α), epiregulin, β-cellulin and 

heregulin [374-377]. Furthermore, the airway epithelium has been shown to secrete vascular 

endothelial growth factor (VEGF) [378], PDGF [379], FGF [380] and insulin-like growth factor 

[381]. All of these ligands have the ability to induce proliferative responses of ASM cells and 

may be important drivers of asthma pathogenesis. VEGF expression is augmented in epithelial 

cells derived from asthmatic subjects [382]. In 2009 Malavia et al described the proliferative 

effect of epithelial cells on airway smooth muscle cells in vitro, demonstrating that injured 

bronchial epithelial cells further augment the rate of proliferation of ASM cells. The effect of 

injured epithelial induced ASM cell proliferation was dependent on IL-6, IL-8, MCP-1 and 

MMP-9 whereas uninjured epithelial cell induced proliferation was only sensitive to 10µM 

GM6001 (MMP inhibitor) [383]. However it is important to note that the inhibition constant for 
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GM6001 against MMPs is in the low nanomolar range and that the dose utilized in this study is 

rather high [384]. Furthermore, the authors did not describe how the metalloproteinase caused an 

up-regulation in ASM cell proliferation [383]. Potential mechanisms by which this could occur 

are through the cleavage of growth factors from the plasma membrane by the MMP [385], or by 

direct activation of the protease activated receptor (PAR) [383,386]. It has been shown that 

chitinase-3-like protein 1 can be expressed by epithelial cells, it is increased in a model of airway 

exacerbation [387] and it can induce proliferation of ASM cells that is greater in myocytes 

derived from asthmatic subjects [388]. Another study that explored epithelial and ASM cell co-

cultures showed that if the epithelial cells received house dust mite (HDM) extract induced 

greater induction in ASM cell proliferation after co-culture if they were derived from severe 

asthmatic donors. This study also demonstrated that the evoked response to HDM stimulation 

was mediated by increased activation of the CysLTR1 and the authors reported augmented 

CysLT producing enzyme 5-LO and FLAP in epithelial cells subjected to HDM stimulation 

[389]. To date, the mechanism by which epithelial cells induce ASM cell proliferation is largely 

unknown. Besides the secretion of soluble growth factors by the epithelium, it is possible that 

cargo within microvesicles and exosomes could induce smooth muscle proliferation. For 

example, tissue factor can induce PAR-2 activation and is secreted in exosomes derived from 

epithelial cells [390]. The role of miRNAs in epithelial induced proliferation of ASM cells has 

yet to be explored and represents a line of investigation that motivated experiments discussed 

later in this dissertation. 

1.9.3 Endothelial : Smooth Muscle Interactions 

Parallels can be drawn when comparing the vasculature and the airways. As discussed 

previously, the endothelium regulates vascular smooth muscle cell (VSMC) tone through the 
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release of NO [354]. Upon reacting with VSMCs, NO induced guanylate cyclase generates 

cGMP which is the effector molecule mediating relaxation [355]. cGMP activates protein kinase 

G which phosphorylates Ca2+-activated K+ channels, causing membrane hyperpolarization and 

inactivation of voltage gated Ca2+ channels [391]. Interestingly, this relaxation step involved the 

release of sarcoplasmic reticulum intracellular calcium by ryanodine receptor activation, an event 

thought to trigger contraction in muscle cells. Besides inducing relaxation in VSMCs, NO can 

also reduce proliferation through decreased cyclin A and increased nuclear translocation of the 

cyclin-dependent kinase inhibitors p21 and p27 [392]. PKG can also attenuate proliferation 

through the induction of myocardin expression which may modulate the phenotype of the VSMC 

to be more contractile [393]. Besides NO, endothelin-1 (ET-1) is an important peptide that 

regulates VSMC contractility. VSMCs express both ETA and ETB receptors which are G-protein 

coupled and respond to the agonist by inducing contractions within the cell [394]. After release 

of ET-1, the protein can bind to ETB receptors expressed on the endothelium itself, allowing 

internalization of the receptor representing a mechanism by which homeostasis is maintained 

after a release of ET-1 [395]. Work has been conducted exploring the interaction of NO and ET-

1. In porcine blood vessels, NO induced cGMP reduced the secretion of ET-1 [396] and this 

likely occurs through a reduction in ET-1 mRNA production [397]. 

One important difference between the epithelial:ASM cell and the endothelial:VSMC is the 

anatomical relationship of the cell types. Endothelial cells have the ability to communicate with 

neighbouring VSMCs through myoendothelial junctions (MEJs). MEJs allow for small 

molecules of less than 1kDa to be transmitted from one cell to the other without the need for the 

molecule to be secreted [398]. Interestingly, MEJs have been examined in the context of 

endothelial regulation of VSMC phenotype. One group showed that the co-culture of endothelial 
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cells with pulmonary vascular smooth muscle cells on opposing sides of a Transwell® permeable 

support allowed for the formation of direct contact between the two cell types. Furthermore, the 

cell contacts contained MEJs that were responsible for mediating TGF-β transfer from the 

endothelial cell, which skewed the myocytes towards a more contractile, differentiated cell 

[399]. In a similar study, serotonin was shown to travel through the MEJ, inducing the 

expression of contractile gene expression through TGF-β activity within the myocyte [400]. 

These studies provide insights regarding the importance of direct contact co-culture of the two 

cell types and may represent an important difference when considering culture models of tubular 

structures. In the airway, there is probably no direct contact between ASM cells and epithelial 

cells and so the importance of cellular junctions may not be of importance in this system. 

Finally, endothelial cells have been shown to communicate with VSMCs through the release of 

microvesicular bodies. Exosomes are endocyte-derived vesicles that can carry cargo including 

protein, mRNA and miRNA. VSMCs have been shown to secrete exosomes containing miR-143 

that may drive angiogenesis in a model of pulmonary hypertension [401]. Due to the lack of 

direct contact of airway epithelial cells and ASM cells, the relative importance of exosomal 

communication is possibly greater in the airway structural cell communication. 

1.10 Summary  

Clearly, asthma is a diverse disease with a wide variety of cells and signalling molecules that 

have been implicated. Better understanding of this syndrome will lead to more personalized 

clinical approaches to improve symptoms and prevent exacerbations. Due to the limitations of 

experimentation on human subjects, researchers often turn to cell culture models to uncover 

insights into asthma pathogenesis.  
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In the work of this dissertation, we aimed to better understand airway epithelial cell cultures 

derived from human subjects in regards to how they signal and interact with other cell types. 

More specifically, the first part of the experimental work explores the bioactive signalling lipid 

S1P and how this molecule instructs the epithelium to release the pro-inflammatory cytokine, IL-

8. This was of interest due to the fact that persistent neutrophilia in the airways of severe 

asthmatics likely plays a significant role in driving airway remodeling. This sub-set of asthma is 

poorly treated and can lead to mortality and thus new therapeutic targets are necessary to treat 

such patients. The experiments conducted were to examine the intracellular signalling events that 

occur within epithelial cells upon introduction of S1P, and to understand which receptors and 

downstream signalling targets are involved in releasing the neutrophil chemoattractant, IL-8. 

The second part of this dissertation has a two-fold purpose. We have continued to examine 

airway epithelial cells, but focused on their ability to alter smooth muscle properties. Of interest 

to asthma pathology, ASM is increased in mass and this may be due to proliferation of pre-

existing smooth muscle cells. All mitogens of ASM cells are therefore of great interest to the 

field of asthma research and we have explored how epithelial cells stimulate proliferation within 

these cells. The second aim of this work was to understand how the epithelium modulates 

smooth contractility. Regulating airway tone is the functional property of smooth muscle and in 

asthma it is possible that the contractility of this tissue is modified. We were therefore interested 

in understanding how epithelial cells modulate the force generating ability of these cells and we 

explored the phenotypic regulation after co-culture with epithelial cells. 
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1.11 Hypothesis 

Airway epithelial cells contribute to the release of IL-8 through S1P activation of specific S1PRs 

and downstream signalling. Furthermore, epithelial cells modulate the phenotype of ASM cells 

away from the contractile, and towards the proliferative phenotype. 

Figure 6. Epithelial cells contribute to inflammation and ASM cell structural and molecular 

remodeling. 
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CHAPTER 2: 

Sphingosine 1-Phosphate (S1P) Induced Interleukin-8 (IL- 8) 

Release Is Mediated by S1P Receptor 2 and Nuclear Factor kB in 

BEAS-2B Cells 
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2.1 Prologue 

The purpose of this study was to examine the molecular mechanisms by which S1P induces IL-8 

release from airway epithelial cells. Specifically, we were interested in identifying S1PRs that 

mediate this process to explore the potential for novel antagonists as therapeutic agents for the 

treatment of asthma. We also wished to elucidate the transcription factors involved in this 

process as well as to understand the role of the ROS/MMP/EGFR transactivation signalling 

pathway in mediating this event. To do this, we utilized the bronchial epithelial cell line, BEAS-

2B, and measured protein secretion into the cell culture supernatant as a model of epithelial 

derived cytokine release. 

Hypothesis: S1P-induced IL-8 release involves the activation of specific S1PRs, transactivation 

of the EGFR and is mediated through transcription factor activity in BEAS-2B cells. 
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2.2 Abstract 

The airway epithelium may release pro-inflammatory cytokines and chemokines in the asthmatic 

airway. Sphingosine 1-phosphate (S1P) is a bioactive lipid, increased in the airways of 

asthmatics that may trigger the release of the potent neutrophil chemoattractant Interleukin-8 (IL-

8) by epithelial cells. S1P is a ligand for 5 G protein-coupled receptors, S1PR1-5. We wished to 

explore the mechanisms of S1P induced IL-8 secretion with regard to the receptor(s) and 

downstream signalling events involved. Our results indicate that S1P induced IL-8 release is 

mediated by S1PR2 and the transcription factor NF-κB. Since the Epidermal Growth Factor 

Receptor (EGFR) and reactive oxygen species (ROS) have been implicated in IL-8 release in 

response to activation of other G protein-coupled receptors, we examined their importance in 

S1P induced IL-8 release and established that they are not involved. This study reveals S1PR2 

and NF-κB as potential therapeutic targets in neutrophilic airway diseases such as severe asthma. 
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2.3 Introduction 

S1P is a bioactive lipid important in immune system regulation, angiogenesis, migration and 

proliferation [402-405]. S1P is produced when sphingosine, derived from ceramide, is 

phosphorylated by sphingosine kinase I or II. There are currently five known S1P receptors 

(S1PR1-5) and these are G protein-coupled. S1P binding to these receptors can elicit diverse 

signalling mechanisms owing to the heterogeneity of these receptors and their coupling to 

different G proteins. Synthesis of S1P occurs in many cell types including platelets and mast 

cells [406,407]. S1P has been shown to be increased in the bronchoalveolar lavage of asthmatics 

upon segmental allergen challenge when compared to healthy control subjects [352]. S1P has 

also been shown to induce contraction of airway smooth muscle cells, strengthening its potential 

role as an important lipid mediator in the asthmatic airway [205].  

Neutrophils, among other leukocytes, play an important role in asthma pathogenesis. When 

compared to healthy control subjects, severe asthmatics possess more neutrophils in the induced 

sputum [10]. It is well established that neutrophils undergo chemotaxis towards an increasing 

gradient of the chemokine interleukin 8 (IL-8), as reviewed by Baggiolini et al. [63]. IL-8 release 

from structural cells in the lung is therefore a possible avenue by which neutrophil recruitment 

occurs in the asthmatic airway.  

S1P has previously been shown to induce IL-8 release from airway epithelial cells in a 

phospholipase D dependent manner [53,54]. We wished to explore which S1P receptor(s) are 

involved in S1P induced IL-8 release from airway epithelial cells, as receptor inhibition could 

reveal novel therapeutic targets for the treatment of severe asthma. Transactivation of the EGFR 
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is a requirement for leukotriene D4 (LTD4)-induced release of IL-8 from airway epithelial cells 

[408]. LTD4 also induces transactivation of the EGFR in airway smooth muscle cells and this 

phenomenon is dependent on the generation of ROS [115]. Because LTD4 is an agonist of the 

cysteinyl leukotriene Receptors 1 and 2 (CysLTR1/2) and these receptors are G protein-coupled, 

we hypothesized that S1P may mediate IL-8 release via ROS dependent transactivation of the 

EGFR and explored this hypothesis in the context of the airway epithelium. Finally we examined 

the role of IL-8 transcription factors in the process of S1P induced IL-8 release. 
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2.4 Materials and Methods 

Reagents 

W 123 (10µM), JTE 013 (1-10µM), CAY 10444 (10µM), specific inhibitors of S1PR1, S1PR2, 

S1PR3 respectively, S1P (0.1-10µM), and the EGFR inhibitor tryphostin AG-1478 (0.3-3µM) 

were all obtained from Cayman Chemical (Ann Arbor, MI, USA). Helenalin (1µM), inhibitor of 

NF-κB, pEGFR antibody (p-Tyr-845 SC-23420-R) and total EGFR antibody (SC-03) were 

obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA). SR 11302 (1µM), inhibitor of 

activator protein-1 (AP-1) and SEW 2871 (10µm), agonist of S1PR1 were obtained from Tocris 

Bioscience (Bristol, UK). Dichlorodihydrofluorescein diacetate (DCFH-DA) (10µM) and N-

acetyl cysteine (NAC) (1mM) were obtained from Sigma-Aldrich (St. Louis, MO, USA). 

Luciferase reporter lysis buffer was obtained from Promega (Madison, WI, USA). GM6001 

(25µM), the broad-spectrum hydroxamic acid inhibitor of matrix metalloproteinases (MMPs) and 

TAPI-1 (10µM), inhibitor or MMPs and tumor necrosis factor-α converting enzyme (TACE) 

were obtained from Calbiochem (La Jolla, CA). Fura-2 AM (10µM), and pluronic F127 (0.02%) 

were obtained from Life Technologies (Carlsbad, Ca). 

Cell Culture 

Human BEAS-2B cells  (ATCC, Manassas, VA) were grown in DMEM:F12 10%FBS 100 U/ml 

penicillin, 100µg/ml streptomycin and 2500ng/ml amphotericin B (PSA) (Invitrogen, Carlsbad, 

CA, USA) in 75cm2 tissue culture flasks at 37° C and 5% CO2. Culture medium was changed 

every 2 days and cells were seeded into new flasks when approximately 80% confluent. Cells 

were detached by incubation with 0.25% trypsin (Sigma-Aldrich). For experimentation, cells 

were seeded in 6 well plates at a density of 50 000 cells per well and grown for 3 days in culture 

medium. Cells were serum-starved for 24 hours in DMEM:F12 0.1%BSA (Sigma-Aldrich) with 
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PSA. Starvation medium was changed prior to all experiments and culture supernatant was 

collected at the end of the incubation period.  

For NF-κB luciferase reporter assays, cells were grown in DMEM 10%FBS 100 U/ml penicillin, 

100µg/ml streptomycin and hygromycin B.  Starvation medium (CnT-17 basal medium) 

(CellNTec, Bern, Switzerland) was not changed prior to S1P stimulation. For intracellular 

calcium measurements, primary human airway smooth muscle cells obtained from lung 

transplant donors were cultured in DMEM 10%FBS with PSA and used between passages 3 and 

5. 

Measurement of IL-8 

IL-8 concentration in the culture supernatant was measured after a 4 hour incubation, with or 

without S1P, and respective inhibitors by ELISA using the CXCL8 Duoset (R&D Systems, 

Minneapolis, MN, USA).  

Measurement of ROS 

Cells were seeded in dark-walled 96 well plates at a density of 10 000 cells per well in starvation 

medium for 24 hours. The cells were washed with Hanks balanced salt solution (HBSS) (137mM 

NaCl, 4.2 mM NaHCO3, 10mM glucose, 3 mM Na2HPO4, 5.4 mM KCl, 0.4mM KH2PO4, 

1.3mM CaCl2, 0.5mM MgCl2, 0.8 mM MgSO4, 5mM HEPES) and incubated with fresh HBSS 

containing 10µM 2’,7’-Dichlorofluorescein diacetate (DCFH-DA) (Sigma-Aldrich) for 30 

minutes. Cells were washed with fresh HBSS and the baseline fluorescence intensity was read 

using a fluorescent plate reader (Tecan iControl, Männedorf, Schweiz, Switzerland) (Excitation 

= 485nm, Emission = 530nm). The cells were stimulated with S1P 1µM or vehicle and 

fluorescence intensity was read every 5 minutes for 1 hour. 
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EGFR Knockdown by siRNA Transfection 

BEAS-2B cells were seeded in 6 well plates at a density of 25 000 cells per well in DMEM:F12 

10%FBS (Invitrogen) without antibiotics. 12 hours later the medium was aspirated and 9pmols 

of scrambled (SC-37007) or EGFR specific (SC-29301) siRNA with 2µl of siRNA transfection 

reagent (SC-29528) in 1ml transfection medium (SC-36868) was added to the cells for 5 hours. 

(Santa Cruz Biotechnology, Santa Cruz, CA, USA) 1ml of DMEM:F12 20%FBS with PSA 

(Invitrogen) was added and the cells were incubated for another 18 hours. Medium was changed 

into DMEM:F12 10%FBS with PSA (Invitrogen) for 24 hours and cells were serum starved in 

DMEM:F12 0.1%BSA with PSA (Invitrogen) for 24 hours. Starvation medium was replaced and 

cells were stimulated with 1µM S1P or vehicle for 4 hours. 

Western Blot 

Cells were washed with ice-cold PBS (Invitrogen) following experimentation and lysed with ice-

cold protein extraction buffer containing 50mM TrisHCl (pH 8), 150mM NaCl, 1% NP-40, 0.5% 

sodium deoxycholate, 0.1% SDS. Cell lysates were centrifuged at 13 000 RPM for 3 minutes and 

total protein supernatant was collected for  SDS-PAGE (8%). 20 to 30µg of protein diluted in 

distilled water and loading dye were boiled together for 6 minutes and equal volumes of sample 

were loaded onto the separating gel. After separation, proteins were transferred to a PVDF 

membrane (BioRad, Hercules, CA, USA) for immunoblotting. The membrane was blocked for 1 

hour at room temperature in a 2% BSA in Tris-buffered saline (TBS). Membranes were 

incubated with primary antibody (total-EGFR) diluted 1:2000 in TBS containing Tween-20 

(TBST) overnight at 4ºC. Membranes were incubated with secondary antibody (goat, anti-rabbit-

HRP) diluted 1:5000 in TBST for 1 hour at room temperature. Western blots were quantified 

using the ECL Plus Western blotting detection system (GE Healthcare, Little Chalfont, UK).  
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NF-kB Luciferase reporter assay 

BEAS-2B cells were stably transfected with a plasmid containing a κB (GGGGACTTTCC) 

response element upstream of a hygromycin B resistance gene and a firefly luciferase construct. 

These cells were seeded into 24 well plates at a density of 50 000 cells per well in DMEM 10% 

FBS hygromycin B for 24 hours. Cells were serum starved overnight in CNT-17 basal medium 

(CellNTec) and stimulated with 1µM S1P for 4 hours. Other cells were pretreated for 30 minutes 

with 1µM JTE 013 and then stimulated with 1µM S1P for 4 hours. Reporter lysis buffer 

(Promega, Madison, WI, USA) was used to lyse the cells. Whole cell lysates were collected and 

spun at 13 000 RPM for 3 minutes. 10µl of supernatant was transferred to a 96 well plate for 

reading in the Tecan iControl luciferase system.   

Measurement of Intracellular Calcium 

Human airway smooth muscle cells were seeded onto sterilized glass cover slips at a density of 

25 000 cells per well in 6 well tissue culture plates in DMEM 10% FBS with PSA (Invitrogen). 

After one day, cells were serum deprived in DMEM 0.5% FBS 1%PSA medium for 3 days 

before analysis of intracellular calcium responses to 1µM S1P using 10µM Fura2-AM. To 

mediate loading of the Fura-2 AM, pluronic F127 (0.02%), along with the 10µM Fura-2 AM was 

dissolved in HBSS for 30 minutes at 37oC. Any unloaded Fura-2 AM was washed out with 

HBSS. Cover slips were loaded into a Leiden chamber (Medical Systems, Greenville, NY) and 

an inverted fluorescent microscope with a 40X oil-immersion objective (Olympus, Tokyo, 

Japan) was used to measure signals emitted at 510nm using a CCD camera (CoolSnapPro; Media 

Cybernetics, Bethesda, MD) controlled by Image Master software (Photon Technology 

International, Birmingham, NJ). Data was acquired as previously described [409]. 

Statistical Analysis 
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Statistical analysis was carried out in the GraphPad Prism 5 software (GraphPad Software, Inc., 

San Diego, CA, USA). All data are expressed as means + 1SE, with ≥ 3 independent 

observations per experiment. To test for statistical differences, one-way ANOVA with Tukey’s 

post hoc test was applied to experiments with ≥2 groups. For experiments with only 2 groups, we 

applied Student’s unpaired T-test. For comparison of fluorescence intensity curves, baseline 

values were normalized prior to S1P stimulation and a repeated measures ANOVA was applied. 

P values < 0.05 were considered to be significant.  
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2.5 Results 

S1P induces IL-8 release 

To confirm that S1P induces IL-8 release from BEAS-2B cells, the cells were incubated with 

various concentrations of S1P for 4 hours. ELISA analysis of the culture supernatant showed a 

dose-dependent increase in IL-8 release with S1P stimulation that was significant at a 

concentration of 1µM (Fig. 1). For subsequent experiments, 1µM S1P was used to stimulate IL-8 

release. 

S1P induced IL-8 release is mediated by S1PR2 

To determine if S1P induced IL-8 release from airway epithelial cells is mediated by a specific 

S1P receptor, or group of receptors, BEAS-2B cells were pre-treated with specific S1P receptor 

inhibitors for 30 minutes prior to stimulation with S1P. W123, a competitive antagonist of 

S1PR1 (Ki=0.69µM), JTE 013, a selective antagonist of S1PR2 (IC50=17nM), and CAY10444, a 

selective antagonist of S1PR3 (IC50=4.6µM) were used as inhibitors of their respective receptors. 

Pre-treatment with JTE 013, but not with W123 or CAY10444, significantly inhibited S1P 

induced IL-8 release (Fig. 2 A). To ensure that S1PR1 and S1PR3 were not involved in this 

pathway, we confirmed these results by further experimentation. SEW 2871, a selective agonist 

of S1PR1 (EC50=13nM) failed to elicit an increase in IL-8 release above vehicle treated cells 

(Fig 2 A). To ensure that CAY 10444 was active as a S1PR3 inhibitor at 10µM, we cultured 

human airway smooth muscle cells on glass coverslips and measured their intracellular calcium 

responses to S1P (1µM) stimulation. Pre-treating the cells with CAY 10444 abolished the S1P 

induced calcium responses in these cells, suggesting that the inhibitor was indeed active at these 

concentrations (Fig. 2 E). CAY 10444 treatment appeared to cause an increase in resting 
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intracellular calcium levels in human airway smooth muscle cells, again indicating the biological 

effect of CAY 10444 at a concentration of 10µM (Fig 2 D). 

NF-κB Mediates S1P Induced IL-8 Release 

IL-8 synthesis is driven primarily by the transcription factors NF-κB and AP-1. We wished to 

assess if pharmacological inhibition of these transcription factors affected IL-8 release. BEAS-

2B cells were pre-treated for 30 minutes with Helenalin or SR11302, specific inhibitors of NF-

κB [410] and AP-1 [411] respectively, prior to S1P stimulation for 4 hours. Pre-treatment with 

Helenalin but not with SR11302 inhibited IL-8 release (Fig. 3 A-B). To further confirm that AP-

1 is not involved in S1P induced IL-8 release, we pre-treated cells with a cell permeant peptide 

fragment of the AP-1 monomer c-JUN. The peptide fragment contained amino acids 33-57 of the 

JNK binding domain and disrupts the interaction of JNK and c-JUN, preventing c-JUN 

phosphorylation. The peptide inhibitor did not significantly reduce S1P induced IL-8 release 

(Fig. 3 C). However there was a trend towards a decrease in IL-8 secretion, raising the possibility 

that AP-1 may play a minor role in S1P induced IL-8 release. We conclude from these 

experiments that NF-κB is the dominant transcription factor determining the magnitude of S1P 

induced IL-8 release.  

S1P induced NF-κB activity is dependent on S1PR2 

To further confirm that NF-κB drives S1P induced IL-8 release, we used a BEAS-2B NF-κB 

luciferase reporter cell line. Stimulation of the reporter cells with S1P for 4 hours induced a 

significant increase in luciferase activity (Fig 4). Since S1P induced IL-8 release was dependent 

on S1PR2, we evaluated whether S1P induced NF-κB activation was also dependent on S1PR2. 

Pre-treatment of the BEAS-2B NF-κB luciferase reporter cells with JTE 013 significantly 
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reduced the S1P induced luciferase activity (Fig 4). These results indicate that S1P mediates its 

activation of NF-κB via S1PR2. 

S1P induced IL-8 release is not dependent on the epidermal growth factor receptor 

Since activation of the EGFR can be upstream of IL-8 release [408] we wished to explore if 

EGFR transactivation is induced by S1P stimulation. Pretreatment with EGFR tyrosine kinase 

inhibitor AG1478 for 30 minutes prior to S1P stimulation failed to reduce S1P induced IL-8 

release at reasonable concentrations for EGFR inhibition (Fig 5 A). To confirm these results we 

used siRNA against the EGFR and knocked down 54% of the constitutively expressed protein 

(Fig 5 B). Upon S1P stimulation, there was no difference in IL-8 release between siEGFR and 

scrambled siRNA groups (Fig 5 B). We conclude that the transactivation of the EGFR is not involved 

in mediating S1P induced IL-8 secretion from airway epithelial cells. In support of this conclusion, we 

failed to measure an increase in phosphorylation of tyrosine-845 by western blot after 

stimulation with S1P (data not shown).  

We sought further supportive evidence that EGFR transactivation does not occur in S1P induced 

IL-8 release exists.  Matrix metalloproteinases (MMPs) often play a role in transactivating the 

EGFR by causing the release of pro-forms of EGFR ligands [408,412,413]. GM6001 and TAPI-

1, inhibitors of MMPs did not inhibit S1P induced IL-8 release (Fig 5 D) pointing towards an 

EGFR-independent mechanism. 

S1P induced IL-8 release is not mediated by reactive oxygen species 

To determine if the generation of ROS mediates S1P induced IL-8 release, we measured the 

production of ROS in BEAS-2B cells using the fluorescent ROS probe DCFH, a non-specific 

probe for a variety of oxidants. S1P did not induce significant increases in fluorescence (Fig 6 



 

 67 

A). To further confirm that S1P does not induce IL-8 release through the production of ROS, we 

incubated BEAS-2B cells with the ROS scavenger N-acetyl cysteine for 30 minutes and then 

stimulated with S1P for 4 hours. N-acetyl cysteine can increase the intracellular levels of 

glutathione and thus act as an anti-oxidant [414]. ELISA analysis for IL-8 revealed that 

pretreatment with the antioxidant NAC is unable to decrease S1P induced IL-8 release (Fig 6 B). 

Pretreatment for 30 minutes with the general NADPH oxidase inhibitor DPI was also unable to 

inhibit S1P induced IL-8 release (Fig 6 C). Taken together, these results indicate that S1P 

induced IL-8 release is not dependent on the generation of ROS. 
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Figure 1 

S1P induces IL-8 release in BEAS-2B cells. BEAS-2B cells were stimulated with various 

concentrations of S1P for 4 hours. Culture supernatant was analyzed for concentration of IL-8 by 

ELISA (n=5). Data are representative of means + SE. ANOVA with Tukey post hoc pairwise 

comparisons. *P<0.05 
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Figure 2 

S1P induced IL-8 release is mediated by S1PR2 in BEAS-2B cells. BEAS-2B cells were 

pretreated for 30 minutes with (A) W 123 (n=5), (B) JTE 013 (n=5) or (C) CAY 10444 (n=8), 

specific inhibitors of S1PR1, S1PR2 and S1PR3 respectively and then stimulated with 1µM S1P 

or vehicle for 4 hours. Culture supernatant was analyzed for IL-8 concentration by ELISA. 

Human airway smooth muscle cells were loaded with 10µM Fura 2-AM, then treated with 

CAY10444 or vehicle (n=5) for 30 minutes and intracellular calcium was measured by 

ratiometric fluorescence microscopy (E). Cells were stimulated with S1P (n=5) and increases in 

resting intracellular calcium were recorded (F). Data are representative of means + SE. ANOVA 

with Tukey post hoc pairwise comparisons. **P<0.01, ***P<0.001 

(Figure on subsequent page): 
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Figure 3 

S1P induced IL-8 release is mediated by NF-κB in BEAS-2B cells. BEAS-2B cells were 

pretreated with (A) Helenalin (n=3), (B) SR 11302 (n=3), or c-JUN peptide (n=3) inhibitors of 

NF-κB, AP-1 and AP-1 respectively, for 30 minutes and then stimulated with S1P for 4 hours. 

Culture supernatants were analyzed for IL-8 concentration by ELISA. Data are representative of 

means + SE. ANOVA with Tukey post hoc pairwise comparisons. *P<0.05, ***P<0.001 
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Figure 4 

S1P induced Nf-κB activity is mediated by S1PR2 in BEAS-2B cells. Nf-κB luciferase reporter 

BEAS-2B cells were pretreated with S1PR2 inhibitor JTE 013 for 30 minutes before stimulation 

with S1P for 4 hours (n=3). Cell lysates were analyzed for luciferase activity by Tecan iControl 

plate reader. Data are representative of means + SE. ANOVA with Tukey post hoc pairwise 

comparisons. ***P<0.001 
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Figure 5 

S1P induced IL-8 release is not dependent on the EGFR in BEAS-2B cells. (A) BEAS-2B cells 

were pretreated for 30 minutes with the specific EGFR inhibitor AG 1478 and then stimulated 

with S1P for 4 hours (n=7). Culture medium was assessed for IL-8 concentration by ELISA. (B) 

BEAS-2B cells transfected with control or EGFR specific siRNA were stimulated with S1P for 4 

hours (n=3). Culture medium was assessed for concentrations of IL-8 by ELISA (left). Knock-

down efficacy is shown by western blot for total EGFR (170kDa) with GAPDH loading control 

(37kDa) (right). Quantification of total EGFR bands is shown (n=4) (bottom left). (C) BEAS-2B 

cells were pretreated for 30 minutes with MMP inhibitors GM6001 or TAPI-1 and then 

stimulated with S1P for 4 hours (n=3). Culture medium was assessed for IL-8 concentration by 

ELISA. Data are representative of means + SE. ANOVA with Tukey post hoc pairwise 

comparisons. *P<0.05, **P<0.01, ***P<0.001. 

(Figure on subsequent page): 
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Figure 6 

S1P induced IL-8 release is not dependent on the production of reactive oxygen species in BEAS-

2B cells. (A) BEAS-2B cells were incubated for 30 minutes with 10µM DCFH-DA. Free probe 

was washed with Hank’s buffer and baseline fluorescence was measured at 530nm. Cells were 

then stimulated with S1P or vehicle and fluorescence intensity was measured every 5 minutes for 

one hour (n=3). Analysis using repeated measures ANOVA revealed no difference between the 

two curves. (B) BEAS-2B cells were pretreated for 30 minutes with the general antioxidant N-

acetyl cysteine (NAC) and then stimulated with S1P for 4 hours (n=5). Culture medium was 

assessed for IL-8 concentration by ELISA. (C) BEAS-2B cells were pretreated for 30 minutes 

with the NADPH oxidase inhibitor DPI and then stimulated with S1P for 4 hours (n=5). Culture 

medium was assessed for IL-8 concentration by ELISA. (n=5). Data are representative of means 

+ SE. ANOVA with Tukey post hoc pairwise comparisons *P<0.05, **P<0.01 

(Figure on subsequent page): 
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2.6 Discussion 

The purpose of this study was to evaluate the potential role of various S1P receptors and the 

mechanisms of transduction of the pro-inflammatory response of the airway epithelium to S1P. 

S1P induced IL-8 secretion represents an important avenue for the recruitment of neutrophils to 

the airways, particularly in asthma. Inhibition of this phenomenon could lead to improvement of 

lung function in severe asthmatic patients, and improve their symptoms. We have identified 

S1PR2 as a receptor responsible for transducing the S1P signal from the cell exterior, causing IL-

8 secretion from BEAS-2B cells. 

S1P is an important lipid mediator that has been implicated in a number of biological processes. 

It has been shown to be present in increased concentrations in the airways of asthmatic subjects, 

where it may act on the lining epithelial cells. S1P has been shown previously to trigger IL-8 

secretion by cultured epithelial cells [53,54]. To confirm these previous findings, we stimulated 

BEAS-2B cells with various concentrations of S1P to construct a concentration-response 

relationship. Our results demonstrate that 1µM S1P is sufficient to cause a significant increase in 

IL-8 secretion, consistent with previously published data [53]. 

A study by Milara et al. examined the effect of S1P on IL-8 secretion from another airway 

epithelial cell line, A549. Milara et al. demonstrated that S1P induced the release of IL-8 from 

A549 cells at later time points than we show here in BEAS-2B cells. Also, A549 cells secreted 

much more IL-8 at basal levels than did BEAS-2B cells in this study. The conditioned medium 

from A549 cells recruited neutrophils in a Boyden chamber assay [415]. Milara et al. also 

implicated phospholipase D signalling in S1P induced IL-8 release in A549 cells, which has been 

described in BEAS2-B cells by Wang et al [54]. 
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Following identification of S1PR2 and NF-κB as important mediators of S1P induced IL-8 

release, the question of how this receptor signals to the transcription factor arises. Others have 

described the effect of S1PR2 blockade on various physiological processes; for example 

antagonizing S1PR2 in human bronchial epithelial cells inhibits the extrusion of apoptotic cells 

[416]. S1P receptor G protein coupling is complex, with S1PR2 coupling to a variety of Gα 

subunits including Gαs, Gαi, Gα12/13, Gαq and G0 [417]. Increased cell survival mediated by NF-

κB stimulation by S1P in HeLa cells is transduced through S1PR2 coupling with Gαi [418]. 

Furthermore, evidence exists that S1P induced IL-8 secretion is Gαi and Rho dependent which in 

turn drives phospholipase D activation [53]. Lipopolysaccharide (LPS), a ligand for toll-like 

receptor 4 (TLR4), stimulates RhoA, which then activates NF-κB to release IL-8 in cervical 

stromal cells [419]. In the endothelium, activation of S1PR2 leads to activation of the small 

GTPase Rho [420]. Recently it was shown that LPS and tumor necrosis factor-alpha (TNF-a)-

induced endothelial inflammation is mediated by S1PR2, coupling to the transcription factor NF-

κB [421]. This literature supports the model that S1PR2 activation can drive NF-κB to up-

regulate IL-8 synthesis and secretion in airway epithelial cells. 

S1P administration in vivo to mice has been shown to increase airway reactivity to methacholine 

challenge, increase airway eosinophil recruitment, and increase interleukin (IL)-4, IL-13 and IL-

17 in the BAL. In this study, mice were treated with S1P subcutaneously before analysis of 

airway function [201]. This study did not examine the production of chemokines associated with 

airway neutrophil recruitment, but adds strength to the rationale for studying this molecule in the 

context of lung disease by demonstrating that S1P itself can induce airway hyperresponsiveness. 

Inhibition of mouse lung S1PR2 with JTE 013 inhibited S1P induced pulmonary 

vasoconstriction, another S1PR2/Rho kinase dependent phenomenon [422]. 
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S1P can induce bronchial smooth muscle contraction which has been shown to be dependent on 

S1PR2 and rho kinase [423]. Rho kinase has also been implicated in airway smooth muscle 

contraction from ovalbumin challenged mice, linking rho kinase activity to an allergic model of 

asthma [424]. This literature provides evidence that S1PR2/Rho kinase signalling could drive 

asthma pathogenesis not only by augmenting neutrophilic inflammation, but also by increasing 

airway smooth muscle contractility. Inhibition of S1PR2 in the lung of severe asthmatics could 

therefore cause relaxation of the bronchial smooth muscle and resolve inflammation 

strengthening the rationale for the use of JTE 013 as a pharmacological tool for the treatment of 

non-eosinophilic asthma.   

Oxidative stress is an important mediator of other GPCR pathways [425,426] and is involved in 

asthma pathogenesis [427,428]. The NADPH oxidase enzyme is a large producer of oxidative 

stress in airway epithelial cells. A functional NADPH oxidase has been demonstrated to be 

essential in NF-κB activation in Pseudomonas aeruginosa infected mouse phagocytic leukocytes 

[429]. It has been previously shown that oxidative stress from NADPH oxidase activation can 

transactivate the EGFR [115]. ROS generation within the cell is able to inactivate protein 

tyrosine phosphatases by oxidation of cysteine residues, shifting the EGFR to a more activated 

state [430]. Specific inhibition of the NADPH oxidase, or use of a general anti-oxidant failed to 

inhibit S1P induced IL-8 secretion, nor did we measure any significant increase in cellular 

oxidative stress after S1P administration. In contrast hematopoietic progenitor cells egress the 

bone marrow under the influence of S1P in a ROS dependent manner via signalling through 

S1PR1 [431]. Similarly cardiac fibrosis is mediated by S1PR3 and oxidative stress in 

sphingosine kinase 1 transgenic mice [432]. Since the signal for IL-8 release in our experiments 
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was S1PR2-dependent, it suggests that the role of ROS in S1P receptor signalling may be 

receptor specific. 

We have tested and rejected the hypothesis that EGFR transactivation mediates S1P induced IL-

8 release in BEAS-B cells. Pharmacological inhibition of the EGFR with the tyrosine kinase 

inhibitor AG 1478 failed to inhibit S1P induced IL-8 secretion at concentrations appropriate for 

selective EGFR inhibition. The IC50 of AG1478 for inhibition of the EGFR is 3nM [433] 

Knockdown of the EGFR using small interfering RNA failed inhibit IL-8 release despite a 54% 

reduction in EGFR protein. Other studies have noted that AG 1478 may have non-specific 

effects [434,435]. We also failed to detect any increases in phosphorylation of tyrosine 845 of 

the EGFR after stimulation with S1P, a further indication that transactivation of the EGFR by 

S1P does not occur. This demonstrates that there is not a common mechanism of IL-8 secretion 

induced by either S1P or LTD4 in BEAS-2B cells. 

This study has shown that, in vitro, pharmacological inhibition of S1PR2 decreases S1P induced 

IL-8 release from BEAS-2B cells, and that S1PR2 is upstream of NF-κB in this phenomenon. 

Future translational work in vivo using S1PR2 antagonists in animal models of asthma will be of 

great interest. 
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CHAPTER 3: 

Airway Epithelial Cells Reduce the Contractile Phenotype of 

Airway Smooth Muscle Cells 
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3.1 Prologue 

Upon examining processes by which epithelial cells are stimulated to release pro-inflammatory 

cytokines, we wished to explore the effects that mediators derived from these cells may have on 

airway smooth muscle cell properties relevant to asthma. Muscle cells are important regulators of 

airway diameter and as such their contraction is linked to excessive airway narrowing in asthma 

and for the phenomenon of airway hyperresponsiveness to inhaled methacholine. Since the 

epithelium is the first tissue to experience the effects of inhaled airborne triggers of asthma, it is 

logical to address the interactions that this tissue has with ASM. To further this area of research, 

we turned to co-culture models in which ASM cells were cultured together with both the 

epithelial cell line BEAS-2B as well as with normal human bronchial epithelial cells. Since ASM 

cell force generation is a critical component of airway constriction, we were interested in 

examining the effect of epithelial co-culture on ASM cell contractile properties. 

Hypothesis: ASM cells lose the contractile phenotype when co-cultured with airway epithelial 

cells. 
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3.2 Abstract 

The airway epithelium is thought to participate in airway wall remodelling. Since asthma is 

associated with airway narrowing, the contractile status of airway smooth muscle (ASM) may be 

an important determinant in the susceptibility of exacerbation. ASM is likely phenotypically 

regulated, existing in either a proliferative or a contractile state. Epithelial cells are able to drive 

the proliferation of ASM cells and thus we hypothesized that the epithelium may reduce the 

contractile phenotype of these cells. We utilized in-vitro co-cultures of primary human ASM 

cells with epithelial cells deriving from primary bronchial epithelium or the cell line BEAS-2B. 

After co-culture or incubation with conditioned medium from epithelial cultures, we examined 

three markers of the contractile phenotype. We measured force production by traction 

microscopy, gene and protein expression by qPCR and western blot and calcium release by Fura-

2 ratiometric imaging. After incubation with epithelial derived medium, we observed less force 

production after histamine stimulation than ASM cells that received control medium. There was 

a reduced expression of mRNA of myocardin, the master regulator of contractile apparatus 

proteins. Furthermore, we observed less α-smooth muscle actin mRNA and protein as well as 

reduced calponin mRNA. Finally, there was diminished peak calcium release upon histamine 

regulation that depended on cyclooxygenase-1 (COX-1) activity in ASM cells. Here we 

demonstrate the epithelial cells reduce the contractile phenotype of ASM cells in-vitro. The 

reduced peak calcium release is not transcriptionally regulated by altered calcium handling 

constructs, but rather depends on ASM cell COX-1 products. This demonstrates that epithelial 

derived relaxing factor may, in part, come from autocrine production of AMS cell products. 
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3.3 Introduction 

Asthma is a chronic disease of which airway wall of which airway wall remodeling is a cardinal 

feature [436,437]. Excessive airway narrowing is mediated by airway smooth muscle (ASM) and 

motivates the treatment of asthma with β-adrenergic receptor agonists to relieve the tone 

generated by ASM contraction. A prominent element of the histopathology of asthma is 

increased mass of ASM [438]. How ASM mediates excessive airway narrowing remains 

controversial and consequently, mechanisms regulating ASM cell proliferative and contractile 

status are of great interest. One such mechanism involves the stimulation of proliferation by 

mediators derived from the nearby epithelial tissue [383]. The airway epithelium has been 

implicated as an important driving force of asthma pathogenesis [439] through the secretion of 

many pro-remodelling factors such as chemokines [440] and growth factors [374].  

Maturation of smooth muscle generates cells expressing proteins of the contractile apparatus 

[441]. This differentiation is the result of nuclear translocation of the co-transcription factor 

myocardin, which acts by binding to the transcription factor serum response factor (SRF) 

[442,443]. Myocardin competes for SRF binding with the pro-proliferative co-transcription 

factors Elk-1 and KLF4[267,444]. Smooth muscle cells that are actively proliferating down-

regulate proteins of the contractile apparatus, such as α-smooth muscle actin (αSMA) and 

calponin [445]. ASM cells that are co-cultured with airway epithelial cells were previously 

shown to increase the rate of proliferation of the muscle [383]. Furthermore, in ex-vivo tissue 

assays, it has been demonstrated that the removal of the epithelium increases the responsiveness 

of isolated bronchi [356,446]. We therefore hypothesized that ASM cells lose the contractile 

phenotype when cultured with epithelial cells. 
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Due to the importance of ASM cell force generation in mediating airway narrowing, we set out 

to explore phenotypic regulation in the context of its ability to create tension in-vitro. It is well 

established that calcium ions play a critical role in regulating the initiation of cross bridge 

cycling. Therefore, we explored the role of epithelial co-culture on calcium release within ASM 

cells. To induce calcium transients, the agonist histamine was utilized due to its relevance in 

driving asthma exacerbations [447,448]. Intracellular calcium concentration is tightly regulated 

and the release of this ion upon histamine stimulation can depend on proteins regulating 

histamine receptor signal transduction [318], calcium handling proteins, or other mechanisms 

such as cAMP generation within the cell [449]. PGE2 is known to induce cAMP in ASM cells 

[450]. Here, we examined the effect of epithelial-derived mediators on histamine induced 

calcium release and contraction of ASM cells. We questioned whether or not ASM cells release 

factors associated with relaxation in an autocrine manner after co-culture with epithelial cells. 
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3.4 Materials and Methods 

Reagents 

Histamine dihydrochloride (1µM), Collagenase type IV from Clostridium histolyticum, general 

COX inhibitor indomethacin (3µM) and the COX-2 specific inhibitor celecoxib (100nM) were 

obtained from Sigma-Aldrich (St. Louis, MI, USA). The specific COX-1 inhibitor SC560 

(100nM) was purchased from Cayman Chemical (Ann Arbor, MI, USA). Fura 2-AM (10µM), 

Pluronic F-127 (0.02%) and qPCR primers were obtained from Thermo Fisher Scientific 

(Waltham, MA, USA). 

Cell Culture 

Primary human ASM cells were cultured from transplant grade lungs procured by the 

International Institute for the Advancement of Medicine. Protocols were approved by an 

Institutional Review Board. Dissected ASM tissue was digested overnight in collagenase 

(0.4mg/ml) dissolved in Dulbecco's Modified Eagle's Medium (DMEM) containing 

streptomycin, penicillin and amphotericin B (Anti-Anti) (Thermo Fisher Scientific). The next 

day, the tissue was suspended in the digestion medium by gentle agitation with a serological 

pipette. Cells were maintained in DMEM supplemented with Anti-Anti and 10% fetal bovine 

serum (FBS)(growth medium)(Thermo Fisher Scientific). Medium was replaced every second 

day. For long term storage, cells were cryo-stored in 90% FBS:10% dimethyl sulfoxide (DMSO) 

in liquid nitrogen. Prior to all experiments, medium was changed to DMEM supplemented with 

0.5% FBS containing Anti-Anti overnight prior to epithelial co-culture or stimulation with 

conditioned medium. Cells were studied between passages 2 to 6. 

Normal human bronchial epithelial (NHBE) cells were also obtained from lungs of donors. 

Micro-dissected tissue was digested overnight in Pronase (1.5mg/ml) (Sigma Aldrich) dissolved 
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in DMEM containing Anti-Anti. The following day, tissues were rinsed with Ham's F12 medium 

(Thermo Fisher) supplemented with 20% FBS and Anti-Anti. After 3 washes, undigested tissue 

was discarded. Cell suspensions were pooled, and centrifuged. Resulting cells were cultured in 

Bronchial Epithelial Growth Medium (BEGM) (Lonza, Basel, Switzerland) containing Anti-Anti 

and medium was changed every other day. Cells were cryo-stored in freezing medium and 

studied until passage 5. Prior to co-culture or medium conditioning, cells were deprived of 

growth factors in 50:50 medium containing DMEM 0.5%FBS Anti-Anti with Bronchial 

Epithelial Basal Medium (BEBM) (Lonza) containing Anti-Anti. In other experiments, the 

bronchial epithelial cell line BEAS-2B was utilized as a representative model of primary cells. 

For these experiments, BEAS-2B cells were maintained similarly to ASM cells, and serum 

deprived in DMEM containing 0.5% FBS with Anti-Anti.  

For co-culture experiments, Transwell® permeable supports (Corning, Corning, NY, USA) were 

utilized. Confluent epithelial cultures were serum deprived for 24 hours prior to co-culture with 

ASM cells. For conditioned medium experiments, supernatant from serum deprived confluent 

cultures was collected after 24 hours of conditioning with fresh starvation medium (0.5% FBS, 

Anti-Anti, DMEM), centrifuged at 1500 RPM for 5 mins and stored at -80ºC.  

RT-qPCR 

ASM cells were seeded at a density of 100 000 cells per well in 6 well plates in growth medium. 

The next day, ASM cells were serum deprived for 24 hours in starvation medium after which 

they were placed in co-culture with BEAS-2B cells. After 24 hours of co-culture, ASM cells 

were washed once with PBS (Thermo Fisher Scientific) and mRNA was extracted using an 

RNeasy mini-kit (Qiagen, Valencia, CA, USA). Reverse transcription was performed on 100ng 

of total RNA with AffinityScript qPCR cDNA synthesis kit (Agilent Technologies, Santa Clara, 
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CA, USA). qPCR was performed using iTaq SYBR green supermix  (Bio-Rad Laboratories, 

Hercules, CA, USA). Primer sequences are reported in Table 1. Amplification of cDNA was 

performed using a StepOnePlus realtime PCR system (Applied Biosystems, Foster City, CA, 

USA). Relative mRNA expression was calculated using the ΔΔCt method and all gene 

expression was normalized to S9. 

Gene Array 

mRNA was submitted to Genome Quebec for analysis by Illumina HT-12 Expression BeadChip 

Kit (Illumina, San Diego, CA, USA). Data was analyzed by CyberT followed by Benjamani-

Hochberg false discovery rate P value correction for multiple comparisons. 

PGE2 ELISA 

After co-culture, supernatant was collected and centrifuged at 1500 RPM for 5 minutes at 4oC to 

remove any cell debris. Samples were analyzed using DetectX Prostaglandin E2 Enzyme 

Immunoassay Kit (Arbor Assays, Ann-Arbor, MI, USA). 

cAMP Assay 

After stimulation of ASM cells for 24 hours with BEAS-2B conditioned medium, ASM cells 

were washed with ice-cold PBS, lysed and assayed for intracellular cAMP concentration as per 

manufacturer’s protocol (Cyclic AMP XP Assay Kit, Cell Signaling Technology, Danvers, MA, 

USA). To prevent the degradation of cAMP, cells were incubated with 0.5mM 3-isobutyl-1-

methylxanthine (IBMX) during the 24 hours of conditioned medium stimulation. Lysis buffer 

was also supplemented with 0.5mM IBMX. 

Western Blot 

After co-culture, AMSCs were washed with ice cold PBS, and protein extraction was performed 

using protein lysis buffer containing 50mM TrisHCl (pH 8), 150mM NaCl, 1% NP-40, 0.5% 
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sodium deoxycholate and 0.1% SDS. The lysis buffer was supplemented with protease inhibitor 

cocktail (Sigma-Aldrich). Upon mechanical disruption, cell lysates were centrifuged at 13 000 

RPM for 3 minutes and total protein within the supernatant was measured by Quick Start 

Bradford Protein Assay (Bio-Rad). 20µg of protein diluted in double distilled water was loaded 

per lane into a separating gel. After separation, protein was transferred to a PVDF membrane 

(Bio-Rad). Membranes were blocked with 5% bovine serum albumin (Sigma-Aldrich) for one 

hour at room temperature prior to antibody incubation overnight at 4ºC. Primary antibodies 

included anti αSMA (1A4, Sigma-Aldrich, 1:1000) and anti GAPDH (6C5, EMD Millipore, 

Billerica, MA, USA, 1:3000). Membranes were washed three times in Tris-buffered saline 

solution containing 0.1% TWEEN 20 (TBS-T). Membranes were incubated with secondary anti-

bodies for one hour and room temperature. Membranes were washed 3 more times in TBS-T and 

then once with TBS prior to development with chemiluminescent techniques (ECL, Bio-Rad, 

Hercules, CA, USA) and imaging. 

Measurement of Intracellular Calcium 

Human ASM cells were seeded on #2 glass cover slips and cultured in growth medium for 24 

hours. Medium was changed for starvation medium, after which the cells were co-cultured or 

stimulated with epithelial cells. For COX inhibitor experiments, ASM cells were treated with 

inhibitor during the starvation protocol and for the duration of conditioned medium stimulation. 

ASM cells were washed with Hanks Balanced Salt Solution (HBSS) (Thermo Fisher Scientific), 

and loaded with 10µM Fura 2-AM containing 0.1% Pluronic F-127 (Thermo Fisher Scientific) 

for 30 minutes. Cells were washed twice with fresh HBSS and after 15 minutes, coverslips were 

transferred to a Leiden chamber (Medical Systems, Greenville, NY, USA) and imaged using an 

Olympus IX71 inverted fluorescent microscope equipped with a 40X oil immersion objective 
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(Olympus, Tokyo, Japan). In some experiments, PGE2 or its vehicle (0.1%DMSO) was added to 

the ASM cells during the 15 minute Fura 2-AM washout and to the Leiden chamber during the 

recording. Intracellular calcium concentration was measured as previously described [409]. 

Briefly, cells were illuminated using a DeltaRAM (Horiba Scientific, Kyoto, Japan) stimulating 

with 340nm and 380 nm alternatively. Emission at 510nm was measured through a CCD camera 

(CoolSnapPro, Media Cybernetics, Bethesda, MD) controlled with Image Master software 

(Photon Technology International, Birmingham, NJ, USA). 340/380 fluorescence intensity ratios 

were converted to calcium concentrations as previously describe using Grynkiewicz’ equation 

[451]. 

Traction Microscopy 

Cells were seeded at a density of 8,000 cells per well on collagen coated acrylamide (Young’s 

modulus: 8kPa) gels in 96 well plates as previously described [452]. After 24 hours, ASM cells 

were serum deprived in 50:50 medium for 24 hours. Fresh starvation medium or starvation 

medium that had been incubated with HBE cells was added to the ASM cells for 24 hours after 

which baseline traction was recorded. Medium was replaced with HBSS for 1 hour and then cells 

were stimulated with 1µM histamine for 1 hour prior to measuring traction. Data are presented as 

a fold change in root mean square traction between baseline and post-histamine treatment.. 

Statistical analysis 

Statistical analysis was carried out using GraphPad Prism 5 software (GraphPad Software Inc., 

San Diego, CA, USA). Data are presented as mean +1SE with ≥4 independent experiments. 

Independent experiments were considered ASM cells deriving from different patients, or from 

different passage numbers measured on a different day. In each experiment, a minimum of three 

independent patient’s ASM cells were studied. In experiments where >2 groups were compared, 
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one-way ANOVA with Tukey's post-hoc test was utilized. For experiments where only two 

groups were compared, a paired Student's T-test was employed. P values <0.05 were considered 

to be significant. Calcium data were analyzed for normality by Smirnov-Kolmogorov test and 16 

of 18 groups were non-normally distributed. Calcium data were therefore compared with non-

parametric Mann-Whitney or Kruskal Wallis with Dunn’s post-hoc test as appropriate. Data are 

presented as box plots showing medians and with whiskers showing group maxima and minima.  
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Table 1 

Primer sequences for qPCR ractions: 

Gene Forward Primer Reverse Primer 

S9 CTGCTGACGCTTGATGAGAA CAGCTTCATCTTGCCCTCA 

CNN1 AGCAGGAGCTGAGAGAGTGG AAAGCCAGGAGGGTGGACTG 

ACTA2 TCATGATGCTGTTGTAGGTGGT CTCTTCCAGCCATCCTTCAT 

MYOCD TCAGCAATTTCAGAGGTAACACA TGACTCCGGGTCATTTGC 

MYLK TGGGGCTCTTATGACCTACAGT CCTGAAGTTGCTCTGAACTGC 

ITPR1 CCTTTTCCGTTTCAAGCATC AGGCATTCTTCCTCAAAGTCAG 

H1R AAGTCACCATCCCAAACCCCCAAG TCAGGCCCTGCTCATCTGTCTTGA 

SERCA TCGAACCCTTGCCAGTAAGT CACACAGGGAAGACGTCTCA 

CD38 CAGCAACAACCCTGTTTCAGT CCATTGAGCATCACATGGAC 

PLC-β TCCAAGAAGAAGTGGCCAAG ATGCATCCCTGGACATGTTT 

PTGS2 CTTCACGCATCAGTTTTTC TCACCGTAAATATGATTTAAGTCCAC 

PTGES CGCTGCTGGTCATCAAGA TCCGTGTCTCAGGGATC 
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3.5 Results 

Airway epithelial cells reduce histamine-induced contraction 

To examine the force producing ability of ASM cells in vitro, we stimulated the cells with 1µM 

histamine. AMSCs that had been treated with conditioned medium derived from NHBE cells for 

24 hours demonstrated less force-generation than those that had been incubated with control 

starvation medium (Fig 1). 

Gene expression of contractile apparatus proteins is altered in epithelial co-cultured ASM cells 

To further investigate this force reduction after co-culture with epithelial cells, we explored a 

variety of proteins associated with the contractile phenotype. Myocardin, the master regulator of 

contractile apparatus proteins [453], had reduced transcript expression after co-culture with 

BEAS-2B cells (Fig 2A). We examined downstream targets of myocardin, observing a reduction 

in mRNA of αSMA (Fig 2B), calponin (Fig 2C) and a downward trend of myosin light chain 

kinase (Fig 2D). Primer sequences used to probe gene expression are presented in Table 1. 

Furthermore, αSMA protein was reduced after 96 hours of co-culture with BEAS-2B cells (Fig 

2E). These results further confirm a phenotypic change of ASM cells after epithelial co-culture. 

Co-culture reduces agonist induced calcium release 

Since intracellular calcium release is an important feature of the initiation of cross-bridge cycling 

in ASM cells, we examined the effect of epithelial co-culture on histamine induced calcium 

release. After 24 hours of co-culture with either BEAS-2B (Fig 3A) or NHBE cells (Fig 3B), 

peak calcium responses to stimulation with 1µM histamine were diminished. 

Calcium release is not transcriptionally regulated  

Calcium release may be regulated transcriptionally via calcium handling proteins. We 

hypothesized that ASM cells co-cultured with epithelial cells would have altered transcriptional 
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regulation of the mRNA of these enzymes. However, we observed no reduction in the expression 

of mRNA of the histamine receptor (H1R) (Fig 4A), in the calcium handling proteins 

phospholipase C-β (PLCβ)(Fig 4B), inositol trisphophate receptor (IP3R)(Fig 4C), or an increase 

in the expression of the calcium reducing sarcoplasmic reticulum Ca2+-ATPase pump 

(SERCA)(Fig 4D). There was an increase in cyclic ADP ribose hydrolase (CD38)(Fig 4E) 

mRNA after co-culture, a finding which cannot explain the reduction in intracellular calcium 

release as CD38 is associated with increased activation of the calcium releasing ryanodine 

receptor [319]. These data indicate that the reduction in histamine-stimulated calcium release is 

not transcriptionally regulated by calcium handling proteins.  

Prostaglandin E2 diminishes agonist-induced calcium release in ASM cells 

Since the calcium reduction by co-culture with epithelial cells was not dependent on calcium 

handling proteins, we explored the role of arachidonic acid metabolites. Prostanoids are capable 

of generating cAMP within ASM cells that can be associated with both reduced calcium and 

diminished tone. Gene array data indicated an increase in the PGE2 producing enzymes 

cyclooxygenase-2 (COX-2) (Fig 5A) and membrane-associate prostaglandin E synthase-

1(mPGES-1)(Fig 5B) after co-culture with BEAS-2B cells. To confirm these gene array findings, 

PCR was conducted on ASM cells co-cultured with BEAS-2B cells, which also demonstrated 

increased expression of these arachidonic acid metabolizing enzymes (Fig 5C-D). Analysis of 

secreted PGE2 into the cell culture medium demonstrated that co-cultured ASM cells generate 

more PGE2 than those that were not co-cultured (Fig 5E). The cell culture supernatant from 

BEAS-2B cells alone did not produce detectable quantities of PGE2. Furthermore, incubation of 

ASM cells for 24 hours with BEAS-2B conditioned medium increased the concentration of 

intracellular cAMP within the ASM cells (Fig 5F). To examine the role of PGE2 in regulating 
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ASM cell calcium responses to histamine stimulation, we pre-treated the cells with 10µM PGE2 

prior to stimulation with histamine. Preatment of ASM cells with PGE2 diminished the agonist 

induced peak calcium concentration (Fig 5 G). These data indicate that epithelial cells cause 

ASM cells to up-regulate enzymes associated with PGE2 synthesis as well as release this lipid 

mediator and its downstream effector molecule, cAMP. 

Reduction in calcium release by epithelial cells is dependent on cyclooxygenase-1  

ASM cells were pre-treated for 24 hours with the non-selective COX inhibitor indomethacin. 

COX inhibition restored the reduction in agonist-induced peak calcium release caused by BEAS-

2B cell conditioned medium, indicating the role of a COX metabolite such as PGE2 in reducing 

ASM cell excitability (Fig 6 A). To prevent the inhibition of COX within the epithelium, we 

utilized conditioned medium from epithelial cells rather than co-culture. This allowed the drug 

treatment to inhibit its target within the ASM cell alone. Next, we examined the inducible COX 

isoform, COX-2, by inhibition with the selective COX-2 inhibitor celecoxib. Pre-treatment of 

ASM cells with celecoxib did not restore the excitability after incubation with BEAS-2B 

conditioned medium (Fig 6 B). Since indomethacin restored excitability after incubation with 

conditioned medium, we hypothesized that this effect must be mediated by the non-inducible 

COX isoform, COX-1. Treatment with the COX-1 specific inhibitor SC560 restored ASM cell 

excitability after treatment with conditioned medium of BEAS-2B cells (Fig 6 C). These data 

indicate that airway epithelial cell-dependent reductions in ASM cell calcium release after 

agonist stimulation are mediated by ASM cell specific COX-1 products. 
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Figure 1 

Airway epithelial cells reduce histamine-induced contraction. ASM cells were stimulated to 

ASM cells were stimulated to contract with 1µM histamine or vehicle (HBSS). Control cells 

were incubated for 24 hours with 50:50 medium that had not been conditioned with epithelial 

cells. Conditioned medium (C.M.) of NHBE cells was utilized to deliver epithelial derived 

mediators to the ASM cells. Average contractile forces of confluent ASM cells were measured 

using Traction Microscopy. Relative forces were defined as the fold change between baseline 

and post-histamine treatment. Data are presented as means + SE. ANOVA with Tukey post hoc 

pairwise comparisons were conducted and p values are reported. 
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Figure 2 

Gene expression of contractile apparatus proteins is altered in epithelial co-cultured ASM cells. 

ASM cells were co-cultured with BEAS-2B cells for 24 hours. mRNA was extracted to perform 

RT-qPCR examining myocardin (MYOCD)(A), α-smooth muscle actin (ACTA2)(B), calponin 

(CNN-1)(C) and myosin light chain kinase (MYLK). White bars = control ASM cells, black bars 

= co-cultured ASM cells. Protein lysate was separated in a poly-acrylamide gel before transfer to 

PVDF membrane and blotted for αSMA protein (E). Pixel densitometry (F) of αSMA blotting. 

Data are presented as means + SE. Student’s paried t-test was used to compare samples with p 

values reported above the bars. 
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Figure 3 

Co-culture reduces agonist induced calcium release. ASM cells were cultured with BEAS-2B 

(A) or NHBE (B) cells for 24 hours prior to Fura-2 AM calcium imaging. Peak calcium release 

after 1µM histamine stimulation is reported. Data are presented as medians +/- maxima and 

minima. (A) Control=72 cells across 5 donors Co-Culture=128 cells across 5 donors, (B) 

Control=34 cells across 4 donors, Co-Culture=36 cells across 4 donors. Student’s paried t-test 

was used to compare samples with p values reported above the bars.
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Figure 4 

Calcium release is not transcriptionally regulated. ASM cells were co-cultured with BEAS-2B 

cells for 24 hours. mRNA was extracted to perform RT-qPCR examining histamine receptor 

(H1R)(A),  phospholipase C-β (PLCβ)(B), inositol trisphosphate receptor 1 (ITPR1)(C), 

sarco/endoplasmic reticulum Ca2+-ATPase (SERCA)(D) and cyclic ADP ribose hydrolase 

(CD38)(E). White bars = control ASM cells, black bars = co-cultured ASM cells. Data are 

presented as means +SE. Student’s paired t-test was used to compare samples with p values 

reported above the bars.  
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Figure 5 

Prostaglandin E2 diminishes agonist-induced calcium release in ASM cells. 

ASM cells were co-cultured with BEAS-2B cells for 24 hours. Illumina HT-12 gene array was 

performed and raw signal intensity is plotted for COX-2 (PTGS-2) (A) and mPGES-1 

(PTGES)(B). P values are adjusted for multiple comparisons (number of trancripts = 34 695). 

RT-qPCR was performed on the samples to confirm the increase (C-D). Cell culture supernatant 

was analyzed by enzyme immunoassay for PGE2 concentration from ASM cells alone or those 

that had been co-cultured with BEAS-2B cells for 24 hours (E). ASM cells were treated with 

BEAS-2B conditioned medium for 24 hours prior to measurement of intracellular cAMP (F). 

ASM cells were incubated with 10 µM PGE2 or vehicle (0.1% DMSO) for 15 minutes prior to 

stimulation with 1µM histamine to induce intracellular calcium release (G). Data are presented as 

means +SE. Student’s paired t-test was used to compare samples and p values are reported above 

the bars. Calcium data are presented as medians with whiskers showing group maxima and 

minima and the Mann-Whitney test was utilized. 

(Figure on subsequent page): 
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Figure 6 

Reduction in calcium release by epithelial cells is dependent on ASM cell cyclooxygenase-1. 

ASM cells were pre-treated for 24 hours with vehicle (0.1%DMSO) or inhibitors indomethacin 

(A), Celecoxib  (B) or SC560 (C). Cells were then treated with conditioned medium from BEAS-

2B cells with respective drug or vehicle present for 24 hours. Cells were loaded with 10 µM Fura 

2-AM and peak intracellular calcium release in response to 1µM histamine was measured. Data 

are presented as medians with whiskers showing group maxima and minima and comparisons 

were made with the Kruskall Wallis and Dunn’s post-hoc test with p values reported. Calcium 

was performed on 70-157 cells per group across 4-10 donors. 
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3.6 Discussion 

ASM contraction contributes directly to airway narrowing and therefore mediates exacerbations 

of asthma. The purpose of this study was to examine the role of airway epithelial cells in 

modulating ASM cell phenotype. Due to the importance of ASM in mediating asthmatic 

exacerbations and the putative role of the epithelium in asthma [454], it is important to 

understand mechanisms by which the properties of ASM cells are altered by epithelial mediators. 

Our results demonstrate a potent down-regulation of calcium signals in ASM cells stimulated 

with histamine when co-cultured with epithelium. Furthermore, we identified COX-1 as a 

regulator of the loss of ASM cell excitability after co-culture with epithelial cells. PGE2 

increased in the medium of co-cultured cells and exogenous PGE2 reduced histamine-induced 

calcium transients, suggesting that it may mediate the reduction in calcium signals attributable to 

co-culture of AMSC with epithelium.  

 

 Although asthma is often considered an epithelial disease, rather than augmenting the 

excitability of ASM cells, the epithelium reduced its responses to stimulation. The idea of an 

epithelial derived relaxing factor is not a novel concept. Others have shown that tissue 

preparations contract more when the airway is denuded of its epithelial layers [356]. Much of 

this work followed the discovery of endothelial derived nitric oxide and its role in vascular tone 

[455]. However, in the airway epithelial studies, it is difficult to separate the mechanical 

resistance to airway narrowing that the epithelium creates for smooth muscle force generation. 

The present study confirms that epithelial cells have the ability to reduce the contractile 

phenotype in vitro, and we present data suggesting that smooth muscle is the source of the 

products that exercise this relaxing function. While others have explored the concept of a direct 
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effect of an epithelial-derived relaxing factor on ASM, our data suggest that the epithelium 

secretes factors influencing the contractile phenotype of ASM and that the relaxing factor could 

be ASM-derived and acting in an autocrine fashion.  

 

We explored the effect of epithelial mediators on ASM cell contractions using a traction 

microscopy as previously described [452]. The assay, which is based on measuring the 

displacement of elastic substrates by cellular contractile force, demonstrated a reduction in 

histamine-induced force generation by the ASM cells when treated with medium derived from 

primary NHBE cells. The effect of NHBE conditioned medium on baseline traction was 

negligible in our studies, however it may be of interest to examine the effect that medium 

derived from diseased NHBE cells has on both baseline and stimulated ASM cells.  

 

The expression of contractile apparatus genes was also diminished after co-culture with epithelial 

cells. Myocardin is a previously described co-transcription factor and driver of the contractile 

phenotype in ASM cells [453]. In equine asthma, myocardin nuclear staining in ASM cells was 

associated with the disease [264]. Here we observe decreased expression of this gene, as well as 

myocardin dependent genes αSMA and calponin. Furthermore, αSMA protein content was 

diminished after co-culture with epithelial cells and the reduced expression of these genes may 

play a role in the lack of force production upon histamine stimulation.  

 

We observed also that both BEAS-2B and NHBE cells reduced the excitability of ASM cells, as 

reflected in peak calcium release, when stimulated by histamine. Although the modulation of 

force can be mediated through a variety of pathways [330,456], the concentration of intracellular 
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calcium is considered to be coupled to the magnitude of force production in smooth muscle cells 

[457]. Due to reduced intracellular calcium release by agonist stimulation after co-culture, we 

anticipated a possible reduction in calcium handling proteins, which we hypothesized would 

have mediated this effect. However, we found no transcriptional change in several key enzymes, 

leading us to explore alternative mechanisms of smooth muscle cell relaxation. A transcriptomic 

analysis demonstrated an increase in expression of the eicosanoid producing enzymes COX-2 

and mPGES-1. We therefore focussed on the potential role of eicosanoids as causes of functional 

antagonism of calcium release of ASM cells.  

 

 Human ASM cells have been shown to express EP2-4 [458] and it is established that PGE2 can 

induce relaxation of this tissue [459,460]. Furthermore, EP2 has been demonstrated to mediate 

PGE2 induced relaxation of ASM [461,462]. PGE2 was recently shown to inhibit the transcription 

and protein expression of αSMA during myofibroblast differentiation through a reduction in SRF 

expression [463], which adds further evidence supporting the relaxing effect of this prostanoid. 

PGE2 also increases cAMP production within these cells [464,465], a molecule that has been 

described to target the IP3R in ASM cells thereby causing a reduction in calcium mobilization 

[466]. β-agonist treatment for asthma exacerbation relies on GPCR generation of cAMP induced 

calcium inhibition. cAMP can also activate PKA in these cells, and may further reduce the 

contractile phenotype through calcium sensitization of the contractile apparatus [467]. Roscioni 

and colleagues recently reported that PKA regulates phenotype switching in ASM cells and it 

may play a role in modulating proliferation [468].  
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Besides exploring the molecular physiology of PGE2 mediated effects on ASM cells, there have 

been clinical investigations examining the efficacy of this prostanoid as a therapeutic agent. The 

fall in FEV1 by allergen challenge in asthmatic patients was prevented by inhalation of PGE2 

prior to challenge [469]. Another study demonstrated that inhalation of this prostanoid can cause 

an initial bronchoconstriction, followed by potent dilation in healthy control subjects and the 

authors describe that this effect depends on the initial tone of the tissue, where previously dilated 

airways were less responsive the relaxation phase induced by the prostanoid [470]. In our present 

study, the ASM cells were not previously relaxed and thus the cells should be expected to 

respond to the relaxing effect of PGE2. In the rat, PGE2 has been shown to reduce cysteinyl-

leukotriene production and Th2 activation after allergen challenge, demonstrating a role of this 

molecule as an immunomodulatory agent for the treatment of allergic asthma [471]. It was 

proposed by Delamere et al. that PGE2 produced by bovine ASM cells could act as a regulatory 

mechanism to control airway inflammation [472]. Although the observed increase in PGE2 

release was modest, it is known that the half-life of this prostanoid is on the order of seconds 

[473]. 15-PGDH degrades PGE2 in the airway [474] and we may observe larger increases in 

PGE2 release in cells lacking this enzyme. 

 

Here, we demonstrate that reduced excitability of ASM cells due to treatment with epithelial 

conditioned medium can be restored by inhibition of ASM cell specific COX-1, an enzyme 

known to produce PGE2. More specifically, this constitutively expressed protein has been 

implicated in generating PGE2 in human ASM cells [475]. Recently, it was demonstrated that 

COX-1 products mediate the relaxing effect of glucagon in tracheal tissue preparations [476]. 

Similarly, selective COX-1 inhibition prevented tracheal ring relaxation of murine airways by 
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proteinase-activated receptor-2 agonism [477]. Furthermore, The selective inhibitor of COX-1, 

SC-560 augmented histamine triggered tracheal ring contractions [478]. However, inhibition of 

COX-1 has also been shown to reduce the stretch-induced contraction of ASM [479] and 

therefore the outcome of blockade of this molecule may depend on the stimulus studied. Our data 

provide further evidence that SC-560 increases the responsiveness of ASM to a contractile 

agonist. Although the inducible isoform of COX-2 is often described to modulate inflammatory 

processes, others have provided evidence supporting a role of COX-1 in driving asthmatic 

responses [480]. Future exploration of this enzyme as a therapeutic target will be of great 

interest. 

 

 This study shows that the epithelium modulates ASM cells away from the contractile phenotype, 

a phenomena that likely accompanies the previously described increase in the proliferative 

phenotype [383]. The reduced excitability of these cells is not transcriptionally regulated, but 

rather depends on COX-1 products. We observed a transcriptional diminution in myocardin, the 

master regulator of transcriptional apparatus proteins that further represents a down-regulation of 

the contractile phenotype. We also observed that epithelial cells reduce transcripts of contractile 

apparatus genes as well as reduce α-SMA protein upon four days of co-culture. There are thus 

broad effects of epithelial-derived mediators on ASM phenotypic regulation. The exploration of 

this interaction will be important to extend to the examination of cells derived from asthmatic 

patients as these cells retain significant differences in properties ex vivo. ASM cells are therefore 

capable of producing PGE2, a prostanoid capable of reducing peak calcium responses to 

histamine after co-culture with epithelial cells. This reduced excitability is mirrored by a 
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reduction in gene expression of contractile apparatus transcripts as well as diminished force 

production after agonist stimulation. 
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CHAPTER 4: 

Airway Epithelial Cells Increase Airway Smooth Muscle Cell 

Proliferation 
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4.1 Prologue 

Due to the reduced contractility associated with co-culture of ASM cells with epithelial cells, we 

wished to explore the proliferative phenotype, hypothesizing an increase rate of proliferation in 

co-cultured ASM cells. We continued to utilize the BEAS-2B:ASM cell co-culture model, and 

examined the molecular mechanisms by which ASM cells are stimulated to proliferate by co-

culture. We again probed the importance of the EGFR in mediating this effect and we explored 

the role of miRNA in this process. We examined phenotypic changes to the ASM cells after co-

culture through gene and miRNA arrays and uncovered novel therapeutic targets for the 

inhibition of ASM cell proliferation. 

Hypothesis: Epithelial co-culture induces the proliferative phenotype through EGFR signalling 

and miRNA modulation. 

  



 

 112 

4.2 Abstract 

Increased airway smooth muscle (ASM) mass in the airways of asthmatic patients may 

contribute to the pathobiology of this disease through its role in modulating airway caliber.  The 

airway epithelium has a potential role in ASM remodeling. To investigate mechanisms by which 

airway epithelial cells induce ASM cell proliferation, we have employed a co-culture model, 

exploring markers of ASM proliferative phenotype. ASM incorporated increased quantities of 

the thymidine analogue bromodeoxyuridine (BrdU), indicating augmented proliferation and 

these cells expressed increased mRNA of the pro-proliferative co-transcription factor Elk1. 

Although the mitogen heparin-binding epidermal growth factor (HB-EGF) was augmented in 

ASM cells that had been co-cultured with BEAS-2B cells, the epidermal growth factor receptor 

(EGFR) did not mediate epithelial-induced proliferation. Within this ASM cells, co-culture 

increased the expression of mRNA for the pro-inflammatory cytokines IL-6 and IL-8 as well as 

the pro-proliferative micro-RNA miR-210. The transcriptional repressor Max-binding protein 

(Mnt), a putative target of miR-210, was transcriptionally repressed in co-cultured ASM cells. 

Together, these data indicate that the airway epithelium induced the proliferative phenotype 

within ASM cells is not driven by EGFR signalling, but rather may be dependent on miR210 

targeting of tumor suppressor Mnt. 
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4.3 Introduction 

Asthma is a chronic disease of the airways that is estimated to affect an estimated 300 million 

individuals globally [1]. The pathophysiology of this disease involves airway wall remodeling 

including increased mass of smooth muscle [5,481]. Airway smooth muscle (ASM) is the 

predominant mediator of airway constriction and is, therefore, a key tissue in driving 

exacerbation. Increased ASM mass may be the most important factor contributing to increased 

airway resistance in asthmatic airways [482]. One plausible source of increased ASM in the 

asthmatic airway is through increased proliferation of pre-existing ASM cells [438,481,483].  

ASM cells are phenotypically regulated such that they may either exist in a proliferative state, or 

a contractile state, as serum deprivation induces the contractile phenotype [484,485]. The 

proliferative phenotype of ASM cells can be induced by the transcription factor serum response 

factor (SRF) binding to Elk1 to transcribe c-fos [267]. Furthermore, the interaction of SRF with 

Elk1 displaces SRF binding to myocardin, a smooth muscle specific co-transcription factor 

[267]. Induction of the pro-proliferative phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) 

or mitogen activated protein kinase (MAPK) pathways both drive proliferation in ASM cells and 

their induction represses smooth muscle tissue tension generation by methacholine stimulation 

[486]. Akt signalling has additional effects such as the induction of the expression of the anti-

apoptotic protein B-cell lymphoma 2 (Bcl-2) [487].  

Micro-RNA (miRNA) are small (18-22 nucleotide), non-coding RNA that negatively regulate 

gene expression through binding to mRNA constructs preventing translation, or targeting the 

mRNA for degradation.  Previously it has been shown that miRNA controls smooth muscle 

phenotype; miR-143 and miR-145 repress the expression of both Elk1 and Kruppel-like factor 4 

(KLF4), another pro-proliferative co-transcription factor [272]. Recently, miR-10a was 
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demonstrated to inhibit ASM cell proliferation through targeting the PI3K pathway, and this 

miRNA was shown to be the most abundantly expressed miR in ASM cells [276]. Furthermore, 

miR-138 has been shown to regulate ASM cell proliferation via inhibition of 3’-phophoinositide 

dependent kinase-1 (PDK1), a protein in the of PI3K/Akt signalling cascade [488]. MiR-25 was 

repressed in ASM by inflammatory cytokine stimulation, a miR that normally prevents KLF4 

expression [275].  

Myc is a proto-oncogene transcription factor that, along with its binding partner Max [489], 

drives the expression of genes associated with cell cycle progression. Myc induces proliferation 

in ASM cells [490] and may represent a therapeutic target in asthmatic myocytes. Max binding 

protein (Mnt) also binds to Max and antagonizes the activity of Myc:Max [491], thereby 

inhibiting proliferation.  Finally, in airway derived fibroblast cultures, miR-210 has been shown 

to negatively regulate Mnt, leading to increased rates of proliferation [492].  

Another category of stimuli for proliferation of ASM that is of relevance to asthma pathology is 

the pro-inflammatory cytokines. Tumour necrosis factor (TNF)-α was shown to induce ASM cell 

methyl-[3H]thymidine incorporation in a PI3K/Akt dependent manner [493]. Another study 

demonstrated that ASM cell stimulation with the pro-inflammatory cytokines eotaxin, regulated 

on activation, normal T cell expressed and secreted (RANTES), interleukin (IL)-8, and 

macrophage inflammatory protein (MIP)-1α all increased DNA synthesis [494]. The dual role of 

pro-inflammatory cytokines as effector molecules for recruiting leukocytes and directly driving 

airway remodeling is beginning to emerge. 

It is also becoming increasingly evident that the airway epithelium plays an important role in 

driving airway remodeling in asthma and has been extensively reviewed by Lambrecht et al 

[454]. Airway epithelial cells can release ligands of the epidermal growth factor receptor (EGFR) 



 

 115 

as well as other mitogens, including heparin-binding epidermal growth factor (HB-EGF) 

[374,495] and amphiregulin [496]. EGFR signalling also plays a role in driving the proliferative 

response of ASM in a rodent model of allergic asthma [497]. 

Recently it has been demonstrated that airway epithelial cells in culture can induce proliferation 

of ASM cells [383]. However the mechanism by which this occurs is largely unknown. Increased 

rate of proliferation may be due to secreted growth factors from the epithelium, however the 

possibility that ASM cells are phenotypically modulated and secrete mitogens that act in an 

autocrine manner is possible and un-explored. We wished to elucidate the molecular basis by 

which airway epithelial cells induce ASM cell proliferation in vitro by exploring their interaction 

in a co-culture model. Due to the involvement of growth factor receptor signalling, and the novel 

role of miRNA in governing ASM cell proliferation, we sought to examine the potential role of 

these molecules in epithelial-induced ASM cell growth. 
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4.4 Materials and Methods 

Reagents 

Collagenase type IV from Clostridium histolyticum was obtained from Sigma-Aldrich (St. Louis, 

MI, USA). EGFR inhibitor tryphostin AG1478 (0.3µM) was obtained from Cayman Chemical 

(Ann-Arbor, MI, USA). BrdU flow kit was obtained from BD Biosciences (Franklin Lakes, NJ, 

USA). The EGFR inhibitor afatinib (0.5µM) was obtained from Santa Cruz (Santa Cruz, CA, 

USA). qPCR primers for mRNA targets and lipofectamine 2000 were obtained from Thermo 

Fisher Scientific (Waltham, MA, USA). qPCR primers for miRNA targets and miR-210 mimic 

and inhibitors were obtained from Exiqon (Vedbaek, Denmark). 

Cell Culture 

Primary human airway smooth muscle cells (ASM cells) were obtained from lung transplant 

donors or bronchial biopsies. Protocols were approved by an Institutional Review Board. Micro-

dissected tissue was digested overnight in collagenase (0.4mg/ml) dissolved in Dulbecco's 

Modified Eagle's Medium (DMEM) containing streptomycin, penicillin and amphotericin B 

(Anti-Anti,Thermo Fisher Scientific). The next day, the tissue was suspended in the digestion 

medium by gentle passing through a serological pipette several times. Cells were maintained in 

DMEM supplemented with Anti-Anti and 10% fetal bovine serum (FBS)(Thermo Fisher 

Scientific). Medium was replaced every second day. For long-term storage, cells were cryo-

stored in 90% FBS:10% dimethyl sulfoxide (DMSO) in liquid nitrogen. Prior to all experiments, 

medium was changed to DMEM supplemented with 0.5% FBS containing Anti-Anti overnight 

prior to epithelial co-culture or stimulation with conditioned medium. Cells were studied 

between passage 2 and 6. 
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Bronchial epithelial cell line BEAS-2B cells were maintained similarly to ASM cells, and serum 

deprived in DMEM containing 0.5% FBS with Anti-Anti.  

For co-culture experiments, Transwell ® permeable supports obtained from Corning (Corning, 

NY, USA) were utilized. Confluent epithelial cultures were serum deprived for 24 hours prior to 

co-culture with ASM cells. For conditioned medium experiments, supernatant from serum 

deprived confluent cultures was collected after 24 hours of conditioning with fresh starvation 

medium, centrifuged at 1500 RPM for 5 mins and stored at -80ºC.  

RT-qPCR 

ASM cells were seeded at a density of 100 000 cells per well in 6 well plates in growth medium. 

The next day, ASM cells were serum deprived for 24 hours in starvation medium after which 

they were placed in co-culture with BEAS-2B cells. After 24 hours of co-culture, ASM cells 

were washed once with PBS (Thermo Fisher Scientific) and mRNA was extracted using an 

RNeasy mini-kit (Qiagen, Valencia, CA, USA). Reverse transcription was performed on 100ng 

of total RNA with AffinityScript qPCR cDNA synthesis kit (Agilent Technologies, Santa Clara, 

CA, USA). qPCR was performed using iTaq SYBR green supermix  (Bio-Rad Laboratories, 

Hercules, CA, USA). Primer sequences are reported in Table 1. Amplification of cDNA was 

performed using a StepOnePlus realtime PCR system (Applied Biosystems, Foster City, CA, 

USA). Relative mRNA expression was calculated using the ΔΔCt method and all gene 

expression was normalized to S9. 

For experiments examining miRNA expression, total RNA was extracted using Exiqon’s 

miRCURY RNA Isolation kit – Cell and Plant according to manufacturer’s protocol (Exiqon). 

miRNA cDNA libraries were generated with 20ng RNA using Exiqon’s Universal cDNA 

synthesis kit II and RT-qPCR was performed with miRCURY LNATM Universal RT microRNA 
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PCR kit according to manufacturer’s protocol (Exiqon). Amplification of cDNA was performed 

using a StepOnePlus realtime PCR system (Applied Biosystems, Foster City, CA, USA). 

Relative mRNA expression was calculated using the ΔΔCt method and all miRNA expression 

was normalized to miR-103a-3p. 

mRNA Gene Array 

Co-cultured or control ASM cell derived mRNA was analyzed for gene expression by 

HumanHT-12 Expression BeadChip Kit (Illumina, San Diego, CA, USA). Gene array was 

performed by Genome Quebec (Montreal, QC, Canada) and results were analyzed using 

FlexArray and cyber-T followed by Benjamini-Hochberg false discovery rate p-value correction 

for multiple comparisons.  

miRNA Gene Array 

Co-cultured or control ASM cell derived total RNA was analyzed for miRNA expression by 

miRCURY LNATM Array microRNA 7th generation profiling services (Exiqon). P value 

correction utilizing Benjamini-Hochberg false discovery rate was applied and data analysis was 

conducted by Exiqon. 

Proliferation Assay 

ASM cells were seeded in 6-well plates at a density of 25 000 cells per well in growth medium. 

The following day, medium was changed for starvation medium. 24 hours later, ASM cells were 

either co-cultured with confluent BEAS-2B cultures that had been serum deprived for 24 hours 

or not co-cultured. Six hours after the initiation of co-culture, BrdU was added to the culture 

medium according to manufacturers protocol (BD Biosciences, Franklin Lakes, NJ, USA). 24 

hours after the initiation of co-culture, ASM cells were rinsed with PBS and collected using 
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trypsin to fix and permeabilize for analysis of BrdU incorporation by anti-FITC-BrdU staining 

and flow cytometry according to manufacturer’s protocol (BD Biosciences). As negative 

controls, ASM cells received growth medium to induce proliferation but did not receive BrdU. 

As positive controls, ASM cells received growth medium along with BrdU. Viable smooth 

muscle populations were selected for and gates were established based on negative and positive 

controls.  

MiR-210-3p Mimic 

ASM cells were seeded in 6-well plates at a density of 25 000 cells per well in growth medium. 

The following day, cells were transfected with 50 nM of miR-210-3p mimic (Exiqon), along 

with 2µl of Lipofectamine® 2000 in 1ml Opti-MEM (Thermo Fisher Scientific). As a control 

transfection for miR-210-3p mimic, cel-miR-39-3p (Exiqon) was utilized. After one hour, one ml 

of starvation medium without antibiotics was added to all wells. Six hours later, medium was 

changed for fresh starvation medium containing antibiotics. BrdU assays were performed from 

72 hours post-transfection.  

HB-EGF Enzyme Linked Immunosorbant Assay 

Cell culture supernatant was collected from ASM cells that had either been co-cultured with 

BEAS-2B cells or had not been co-cultured (control). Supernatant was centrifuged at 1500 RPM 

for 5 minutes to remove any potential cells and the culture medium was assayed for the presence 

of HB-EGF with the Human HB-EGF DuoSet ELISA kit (R&D Systems, Minneapolis, MN, 

USA). 

Western Blot 
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After stimulation with epithelial derived conditioned medium, AMS cells were washed with ice 

cold PBS and protein extraction was performed using protein lysis buffer containing 50mM 

TrisHCl (pH 8), 150mM NaCl, 1% NP-40, 0.5% sodium deoxycholate and 0.1% SDS. The lysis 

buffer was supplemented with protease inhibitor cocktail (Sigma-Aldrich). Upon mechanical 

disruption, cell lysates were centrifued at 13 000 RPM for 3 minutes and total protein within the 

supernatant was measured by Quick Start Bradford Protein Assay (Bio-Rad, Hercules, CA, 

USA). 5µg of protein diluted in double distilled water was loaded per lane into a separating gel. 

After separation, protein was transferred to a PVDF membrane (Bio-Rad). Membranes were 

blocked with 5% bovine serum albumin (Sigma-Aldrich) in TBS-T for one hour at room 

temperature prior to antibody incubation overnight at 4ºC. Primary antibody dilutions included: 

pEGFR (12A3, Santa Cruz Biotechnology, 1:3000) and pAKT, (D9E, Cell Signaling 

Technology, 1:2000) in 5%BSA TBS-T overnight at 4oC. Membranes were washed three times 

with TBS-T prior to one-hour incubation with HRP -linked secondary antibody (7074, Cell 

Signaling Technology, 1:1000). Membranes were washed three more times in TBS-T and then 

once with TBS prior to development with chemiluminescent techniqes (ECL, Bio-Rad) and 

imaging. 

Statistical Analysis 

Statistical analysis was carried out using GraphPad Prism 5 software (GraphPad Software Inc., 

San Diego, CA, USA). All data are presented as mean +1SE with ≥4 independent experiments. 

Independent experiments were considered as ASM cells derived from different patients, or from 

different passage numbers measured on a different day. Each experiment included data deriving 

from at least three independent patients' ASM cells. In experiments where >2 groups were 

compared, one way ANOVA with Tukey's post-hoc test was utilized. For experiments where 
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only two groups are compared, a paired Student's T-test was employed. P values <0.05 were 

considered to be significant. 
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4.5 Results 

Co-Culture with epithelial cells induces the proliferative phenotype in airway smooth muscle 

cells 

To determine if BEAS-2B cells increased the proliferation of ASM cells, the two cell types were 

co-cultured for 24 hours prior to assessment of incorporation of the thymidine analogue BrdU. 

After treatment with BEAS-2B cells, ASM cells demonstrated increased rates of proliferation 

(Fig 1A). Due to the role of the pleiotropic transcription factor SRF in regulating ASM 

phenotype, we examined its expression and observed no change after co-culture (Fig 1B). 

However, the pro-proliferative co-transcription factor and binding partner of SRF, Elk1 was 

increased after co-culture (Fig 1C). KLF4 was unchanged (Fig 1D). These results indicate that 

ASM cells are not only stimulated to proliferate by the epithelial co-culture, but also 

differentially express a transcription factor associated with driving this phenotype.  

Co-culture induced proliferation is not mediated by an EGFR ligand  

Due to the importance of mitogen stimulation in ASM cell proliferation, we explored the EGFR 

as a potential target mediating co-culture induced proliferation. Within the ASM cells after co-

culture, we examined the expression of the EGFR ligand HB-EGF, observing increases in this 

construct (Fig 2A). Furthermore, we observed a trend towards an increase in the concentration of 

this EGFR ligand in the supernatant of co-cultured ASM cells (Fig 2B). However, pre-treatment 

with the tyrosine kinase inhibitors tryphostin AG1478 (3µM) (Fig 2C) or afatinib (0.5µM) (Fig 

2D) did not prevent the induction in proliferation by co-culture as assessed by BrdU 

incorporation. Finally, stimulation of ASM cells with conditioned medium derived from BEAS-

2B cells for 15 minutes did not appear to activate phosphorylation of the EGFR at tyrosine 1068 

although this medium did activate AKT (Fig 2E). These data indicate that although the ASM 
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cells express HB-EGF, it does not appear to activate the receptor to drive the increased 

proliferation rate.  

Co-culture induces the expression of inflammatory cytokines 

To have a more complete understanding of how airway epithelial cells may augment ASM cell 

proliferation, we ran a gene array (Illumina HT-12 version 4) exploring the differential 

expression of genes by ASM cells that had either been co-cultured with BEAS-2B cells or had 

not (control). We observed significant increases in the expression of CXCL1, IL-6 and IL-8 (Fig 

3). These results indicate that the phenotypic skewing towards a more proliferative state is also 

accompanied by the expression of pro-inflammatory molecules after co-culture. For a complete 

list of genes that are two-fold differentially expressed after co-culture see supplement S1. 

Co-culture with epithelial cells increases the expression of miR-210-3p 

To assess the expression of miRNAs previously described to regulate ASM cell phenotype, we 

co-cultured ASM cells with BEAS-2B cells and performed RT-qPCR. We observed no change in 

miR-143-3p/145-5p (Fig 4A,B). To further study differential miR expression in co-cultured 

ASM cells, we performed a miRNA microarray (Exiqon). After Benjamini-Hochberg false 

discovery rate p-value correction for multiple comparisons, three candidate miRNAs were close 

to significant up-regulation (Fig 4C). To further examine these miRNAs, we performed RT-

qPCR on co-cultured ASM cells, and observed a significant increases in miR-210-3p (Fig 4D), 

but not in miR-1246 (Fig 4E). MiR-4732-5p primers did not amplify a product (data not shown). 

MiR-210 regulates tumour suppressive Mnt and can drive proliferation in vitro 

Because of miR-210’s role in driving fibroblast proliferation [492], we explored the functional 

role of this miRNA in ASM. In co-cultured ASM cells, expression of miR-210's putative target 
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Max-binding protein (Mnt), a Myc inhibitor, was reduced (Fig 5A). Furthermore, transfection of 

ASM cells with miR-210 mimic increased the rate of proliferation of ASM cells, indicating a 

potential role for this miR in driving airway remodeling (Fig 5B). These results imply, for the 

first time, that miRNA-210 expression can modulate ASM cell proliferation. 
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Figure 1 

Co-culture with epithelial cells induces a proliferative phenotype in airway smooth muscle cells. 

(A) ASM cells were cultured with (co-culture) or without (control) BEAS-2B cells for 24 hours. 

6 hours after the initiation of co-culture, cells were pulsed with BrdU. BrdU incorporation by 

flow cytometry was then performed to mark ASM cells that had entered into S-phase (n=19). 

(B,C,D) RT-qPCR was performed on ASM cells to assess the expression of Elk1 (n=7), KLF4 

(n=6) and SRF (n=4) after 24 hours of co-culture with BEAS-2B cells, or without co-culture 

(control). Data are presented as means +SE. Student’s paired T-test was utilized to compare 

groups. P values are reported, N.D.=not different
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Figure 2 

Co-culture induced proliferation is not mediated by an EGFR ligand. (A) ASM cell expression 

of HB-EGF was examined by RT-qPCR 24 hours after co-culture with or without (control) 

BEAS-2B cells (n=4). (B) HB-EGF protein concentration was assayed for in the cell culture 

supernatant of control or co-cultured ASM cells by ELISA after 24 hours (n=4). (C, D) Pre-

treatment of ASM cells with 0.3µM tryphostin AG1478 (C, n=4) or 0.5µM afatinib (D, n=5) did 

not prevent BEAS-2B induced proliferation of ASM cells. Vehicle utilized was 0.1% DMSO (E) 

Treatment for 15 minutes with conditioned medium (C.M.) of BEAS-2B cells did not induce 

phosphorylation of EGFR tyrosine 1068 however Akt was phosphorylated by C.M. treatment. 

Cells were pre-treated with afatinib or vehicle (DMSO) for 1 hour prior to C.M. stimulation. 

Data are presented as means +SE. ANOVA with Tukey post hoc pairwise comparisons was 

employed for comparisons with more than two groups, otherwise Student’s paired T-test was 

utilized. P values are reported.  

(Figure on subsequent page): 
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Figure 3 

Co-culture induces the expression of inflammatory cytokines. Messenger RNA was extracted 

from co-cultured or not co-cultured (control) ASM cells and gene array analysis was performed 

by Illumina HT-12 version 4 Expression BeadChip (Illumina) (n=6). Gene array analysis was 

performed using FlexArray software and a Cyber-T test followed by a Benjamini-Hochberg p-

value correction for multiple comparisons. Genes that were up or down-regulated two-fold or 

more and possessed corrected P values<0.05 were labelled on the volcano plot. Data are 

presented as mean log fold change. 
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Figure 4 

Co-culture of epithelial cells increases the expression of miR-210-3p without affecting miR-

143/145. Total RNA was extracted from co-cultured or not co-cultured (control) ASM cells and 

RT-qPCR was performed to examine the expression of (A) miR-143 (n=5) (B) miR-145 (n=4). 

MiR-103a-3p was used to normalize the data. MiRNA microarray was performed  by Exiqon 

miRCURY LNATM Array microRNA 7th generation profiling services. (C) Volcano plot analysis 

demonstrates 5 miRNAs that may be differentially expressed (n=6). RT-qPCR was performed 

and expression of (D) miR-210-3p (n=9), (E) miR-1246 (n=9) is presented with P values 

reported. Data are presented as means +SE. For RT-qPCR, Student’s paired T-test was utilized. P 

values are reported. 

(Figure on subsequent page): 
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Figure 5 

MiR-210s role in co-culture induced proliferation. (A) RT-qPCR was performed on mRNA of 

ASM cells that had been co-cultured or not (control) with BEAS-2B cells for 24 hours to assess 

the expression of Max-binding protein (Mnt) (n=9). (B) ASM cells were transfected with a 

mimic of miR-210-3p or cel-miR-39-3p (control) prior to BrdU assay to assess the role of miR-

210-3p in proliferation (n=5). Data are presented as means +SE. ANOVA with Tukey post hoc 

pairwise comparisons was employed for comparisons with more than two groups, otherwise 

Student’s paired T-test was utilized. P values are reported. 
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4.6 Discussion 

The purpose of this study was to examine mechanisms by which airway epithelial cells induce 

the proliferation of ASM. ASM growth may represent an important mechanism by which the 

airway is remodelled in asthma and understanding the mitogenesis of this tissue is an important 

area of research. We have identified that ASM cells undergo increased rates of proliferation after 

culture with epithelial cells.  The proliferation was accompanied by the appearance of a pro-

inflammatory phenotype with expression of several chemokines and cytokines.  The proliferation 

was associated with expression of miR-210, not previously associated with ASM proliferation 

and providing a potential mechanism for this observation.  

Smooth muscle cells differ from other muscle in their ability to de-differentiate towards a less 

contractile, more proliferative state [498]. This ability to revert back into a proliferative cell 

provides a potential explanation for the source of increased mass of muscle surrounding the 

asthmatic airway. The proliferation of ASM cells derived from asthmatic patients is indeed 

increased [438] and the mass of this tissue surrounding the airways is augmented [339,499]. 

Although the presumed functional consequence of asthmatic ASM is increased airway reactivity, 

it has been observed that ASM cells may exist in discrete populations, where there are cells 

actively proliferating at the same time as others that are expressing proteins of the contractile 

apparatus [302]. If the smooth muscle remodeling that occurs in the asthmatic airway does so 

inwards towards the epithelium, the proximity of pro-proliferative factors released by epithelial 

cells may have an impact on driving further remodeling. Janssen proposed that inwardly growing 

muscle would not only contribute to the increased mass observed in asthma, but may also 

contribute to decreased luminal area [500].  However, it is unclear at this time as to which 

direction the muscle grows, or whether there is directionality at all. 
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Due to the potential of airway epithelial cells to secrete EGFR ligands [374,496], we explored 

the possibility that this tyrosine kinase receptor is responsible for mediating co-culture induced 

proliferation. Although there was increased expression of mRNA for HB-EGF in ASM cells after 

co-culture as well as augmented protein in the supernatant, inhibition of the receptor with 

appropriate concentrations of AG1478 and afatinib did not limit the induced proliferation. The 

increase in expression of this EGFR ligand without an obvious functional role may imply that 

HB-EGF could act as a marker of the proliferative phenotype, but does not necessarily drive 

proliferation itself. HB-EGF has been previously proposed as a biomarker of proliferating ASM, 

and the expression of this ligand in the muscle was associated with asthma severity [501].  

 It has been previously demonstrated that co-culture with epithelial cells drives the proliferation 

of ASM [383]. Malavia et al explored the hypothesis that injury to epithelial cells may drive the 

proliferation of ASM cells. Asthmatic airway epithelial cells are likely more fragile than those 

cells derived from healthy controls [502]. Injured epithelial cells induced a further increase in 

ASM cell proliferation than epithelial cells alone, and may depend on matrix metalloproteinases 

[383]. The mechanism by which un-injured epithelial cells drive increased proliferation has 

remained elusive. Although treatment of the co-cultures with the anti-inflammatory steroid 

dexamethasone prevented co-culture induced proliferation of ASM cells, it also significantly 

reduced the rate of proliferation in non co-cultured ASM cells [383]. Furthermore, the possibility 

of ASM cells participating in driving this proliferation in an autocrine manner has not been 

explored and it has been demonstrated that this phenomenon is an important driver of 

proliferation [247,503]. 

Other recent work has indicated a role for miRNA in regulating ASM cell proliferation [276]. 

We observed increased miR-210-3p within ASM cells after co-culture with BEAS-2B cells. 
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Previous work demonstrating a role of miR-210 in driving proliferation of fibroblasts in a Mnt 

specific manner [492] led us to explore this mechanism. Indeed, we observed reduced expression 

of Mnt in co-cultured ASM cells. Furthermore, other miRNAs have been associated with ASM 

cell phenotype regulation. MiR143 and miR145 target the pro-proliferative co-transcription 

factor Elk1 [272] and thus we tested the hypothesis that these miRs were reduced after co-

culture. However we did not observe diminished expression of these two miRs. MiR-25 targets 

KLF4 in ASM cells therefore regulates the proliferative phenotype [275] but was not 

differentially expressed by co-culture, which was consistent with the lack of change in KLF4 

mRNA in co-cultured cells. 

Motivated by previous literature that miR-210 can negatively regulate the tumour suppressive 

Mnt [492], we explored its expression after co-culture of ASM cells with epithelial cells. The 

reduction we observed in ASM cell Mnt mRNA construct is consistent with the notion that this 

tumour-suppressor may regulate proliferation of this cell type. 

Examination of models that drive the growth of ASM may help to uncover therapeutic targets for 

the treatment of this disease. This study has demonstrated that, in-vitro, co-culture with epithelial 

cells increases the rate of proliferation and expression of the pro-proliferative co-transcription 

factor Elk1 in ASM cells. Although this was accompanied with augmented expression of HB-

EGF within the ASM cells, the EGFR did not appear to mediate the induced proliferative 

response. We observed increased expression of the pro-proliferative miRNA-210, and reduction 

of its target tumour suppressive protein Mnt. Furthermore, overexpression of miR-210 in ASM 

cells increased the rate of proliferation, implicating this miRNA as a candidate mediator of 

airway wall remodeling. Others have successfully administered miRNA antagonists to in vivo 

models of allergic asthma, indicating promise for the use of miRNA antagonists for the treatment 
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of asthma [273,504]. Future in-vivo work exploring this miRNA in models of asthma will be 

necessary to further understand the importance of this miR in driving pathogenesis of this 

disease. 
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Supplemental S1 

Upregulated 
 

Downregulated 
 

Gene Fold Change Gene Fold Change 
 

Gene 
Fold 

Change 
IL6 7.49 PTGES 2.37 

 
ADH1A 0.45 

CCL8 5.49 BDKRB1 2.34 
 

EGR1 0.47 
CXCL1 4.61 G0S2 2.33 

 
HMOX1 0.49 

IL8 4.16 C15ORF48 2.33 
 

CTGF 0.49 
CXCL6 4.07 NAMPT 2.27 

   CCL7 3.34 ECGF1 2.26 
   PTGS2 3.23 C1QTNF1 2.25 
   STC1 3.06 SOD2 2.2 
   CXCL5 3.04 TMEM158 2.19 
   ISG15 2.75 MT1G 2.18 
   BNIP3 2.68 NFKBIZ 2.15 
   MTE 2.67 MX2 2.15 
   HSD11B1 2.67 LOC644774 2.14 
   MT1X 2.61 TPI1 2.11 
   CCL2 2.6 OAS3 2.09 
   CXCL2 2.58 MXRA5 2.08 
   SLC39A14 2.53 SLC11A2 2.06 
   IFI44L 2.53 SLC15A3 2.06 
   MX1 2.51 CLDN1 2.05 
   CA12 2.47 CFB 2.05 
   CXCL10 2.46 ISG20 2.04 
   IFITM1 2.45 MMP1 2.04 
   LOC441019 2.45 MT1E 2.02 
   SLC16A3 2.44 MT1A 2.02 
   NFKBIA 2.4 SLC39A8 2 
   TNFAIP6 2.39 EPSTI1 2 
   IFI27 2.37 
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General Discussion and Conclusions 
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5.1 Discussion and Conclusions 

The purpose of this dissertation was to examine the role of the airway epithelial cells in 

coordinating specific aspects of airway remodeling. It has become increasingly evident that 

airway epithelial cells play a critical role in modulating airway inflammation and structural cell 

remodeling. More specifically, the work conducted in this dissertation aimed to understand how 

epithelial cells respond to the lipid mediator S1P, as well as to increase knowledge regarding the 

role of epithelial cells in modulating airway smooth muscle cell phenotype. 

In the first chapter of experimental work presented here, the airway epithelial cell line, BEAS-

2B, was stimulated with the asthma-associated lipid mediator S1P. S1P was of interest due to its 

potent properties as a ligand of GPCRs and its role in innate immunity. We confirmed that 

stimulation of epithelial cells with S1P generates the release of the pro-inflammatory chemokine 

IL-8 in a dose-dependent manner. IL-8 and neutrophils have been extensively associated with 

certain asthma subsets and therefore, this finding represents a potential mechanism in the airway 

for which neutrophils are recruited to the airway. Corticosteroids are used clinically for the 

treatment of asthma, however in some patients, the disease is poorly controlled, and thus novel 

mechanisms to inhibit inflammation may be of great interest in understanding how to treat 

asthma. S1P is bioactive signalling lipid produced by platelets and mast cells [406,407]. S1P has 

a prominent role in regulating vascular permeability [505]. Since we demonstrate a role for S1P 

in driving a pro-inflammatory response from the epithelium, we were interested in potential 

targets of this molecule, and to better understand the molecular pathways by which S1P induces 

IL-8 release. S1Ps previously described role as a regulator of airway inflammation [53,54] and 

its presence in the asthmatic sputum [352] makes it an attractive mediator to study. Since S1P is 

a GPCR ligand, and GPCR inhibition is an avenue that has generated great promise in the 
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treatment of many diseases, we were interested in better understanding which S1P receptor(s) 

mediated this phenomenon. We observed that specific inhibition of S1PR2, but not S1PR1 or 

S1PR3, inhibited IL-8 release by BEAS-2B cells. Furthermore, we confirmed that S1PR3 

antagonist was indeed functionally active by examining the inhibition of calcium responses in 

airway smooth muscle cells after stimulating these cells with S1P. Cells that were pre-treated 

with the same concentration of the inhibitor CAY10444 that was used on the epithelial cells 

released significantly less calcium, indicating that the drug was active. To be sure that the S1PR1 

antagonist W123 was active, we utilized an agonist of this receptor, stimulating the BEAS-2B 

cells with SEW2871. Stimulation with this specific agonist did not induce the release of IL-8, 

indicating no role of this receptor in mediating this process. 

To better understand the transcriptional activation of IL-8 after S1P stimulation, we explored the 

sensitivity of this pathway to pre-treatment with the NF-κB inhibitor helenalin or the AP-1 

inhibitor SR 11302. Inhibition of NF-κB but not AP-1 prevented the release of S1P induced IL-8. 

We therefore examined the translocation of NF-κB to the nucleus through the use of luciferase 

reporter BEAS-2B cells and we observed increased luciferase activity in cells that were 

stimulated with S1P. Furthermore, inhibition of S1PR2 prior to stimulation with S1P prevented 

the translocation of NF-κB, adding more evidence that this receptor does indeed initiate this 

signalling process. 

Examination of transactivation of the EGFR revealed that this receptor was not important in 

mediating S1P induced IL-8 release. Using siRNA against this tyrosine kinase receptor, or 

inhibitors at reasonable concentrations did not prevent IL-8 release. Furthermore, inhibition of 

the metalloproteinases with either GM6001 or TAP-1 also did not prevent IL-8 secretion. Since 

MMPs cleave EGFR ligands, this further indicates no role of the EGFR in mediating this event. 
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Finally, due to the potential of ROS to mediate GPCR signalling, we explored the generation of 

ROS in BEAS-2B cells with the oxidative sensitive dye DCFH-DA and we observed no 

significant increase in the production of such species. We also did not observe the inhibition of 

IL-8 release with pre-treatment of the BEAS-2B cells with the antioxidants N-acetylcysteine or 

DPI.  

With this knowledge, the use of the S1PR2 inhibitor JTE-013 may now be applied to understand 

if there may be a functional role of this receptor in driving neutrophilia in animal models of 

asthma. This will help to elucidate the clinical potential of JTE-013. 

In the next chapter of experimental work, the potential role of the airway epithelium in 

modulating airway smooth muscle phenotype was examined. ASM cells are critical cells in 

regulating the diameter of the airways and are important contributors to airway narrowing in 

asthmatic patients. It is well established that this tissue is remodelled in asthmatic airways and 

thus understanding mitogenic stimuli of these cells is an important task for respiratory 

researchers.  Furthermore, it is known that ASM cells are phenotypically regulated to be either 

contractile or proliferative and so we explored both of these phenotypes. 

On the contractile side, we showed for the first time, that ASM cells placed in co-culture with 

epithelial cells demonstrate a reduced contractile phenotype. We observed less force generation 

of these cells by histamine stimulation after incubation with medium conditioned by primary 

human bronchial epithelial cells as well as less excitability as demonstrated through calcium 

responses to histamine. It is possible that asthmatic epithelial cells reduce the contractile 

phenotype of ASM cells less than that of epithelial cells deriving from healthy control subjects. 

Perhaps the property of the epithelium as a mitogenic source to drive the increase in mass of this 

tissue is the major mechanism by which it induces disease. Alternatively asthmatic epithelium 
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may have different properties and we have explored only epithelium derived from the lungs of 

previously healthy subjects. 

Due to the importance of intracellular calcium release in mediating the initiation of cross bridge 

cycling of the actinomysosin machinery, we hypothesized that proteins related to the handling of 

calcium may be transcriptionally modified after co-culture with epithelial cells. After 

examination of several of these proteins, we concluded that co-culture does not transcriptionally 

regulate calcium handling. 

Prostanoids may also modulate calcium signalling in ASM cells and so we sought to determine 

whether or not these lipid mediators had a role in co-cultured reduced excitability and force 

generating ability after stimulation with histamine. Indeed, we observed augmented PGE2 

producing enzymes COX-2 and mPGES-1. We also observed augmented production of PGE2 in 

the co-cultured supernatant compared to either BEAS-2B cells or ASM cells alone. Pre-treatment 

of the ASM cells with the general COX inhibitor indomethacin prior to incubation with medium 

conditioned by BEAS-2B cells restored the calcium release back to levels similar to cells that 

received no treatment with conditioned medium. COX-1 inhibition with SC-560, but no COX-2 

inhibition with Celecoxib, also restored the release of calcium after stimulation with histamine in 

cells that had been incubated with conditioned medium. This indicates a functional role of COX-

1 in mediating epithelial modulation of ASM cell excitability and points towards ASM cell 

derived PGE2 as the mediator of this phenomenon. This is of interest due to the lack of literature 

examining the constitutively active COX-1 enzyme in mediating biological processes. It is much 

more common that the inducible isoform COX-2 is utilized by cell signalling systems and this 

data builds on a somewhat small body of literature indicating that COX-1 may be of greater 

relevance in such systems than was previously thought.  
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The co-culture system explored in these assays was of great interest to understand airway 

biology. However, it is true that in vivo the smooth muscle tissue always resides nearby the 

epithelium. It is possible in asthma and other lung diseases where the ASM layer is remodelled 

that this remodeling occurs in the direction away from the airway lumen. This could imply that 

any epithelial derived mediators that modulate the phenotype of ASM cells are less active due to 

the greater distance required to diffuse to the added ASM. This is one explanation as to the 

clinical significance of these findings. Another interesting discovery was that COX-1 plays a role 

in ASM cell excitability. Inhibition of COX-1 led to a more contractile cell, and so it may be 

possible that selective activation of this enzyme could lead to a more relaxed tissue and 

represents a possible area for follow up studies to demonstrate clinical potential. This could have 

implications for aspirin-sensitive asthmatics who are intolerant to NSAIDs as the inhibition of 

COX-1 may further augment the excitability of the ASM cells. Indeed, aerosol administration of 

PGE2 to aspirin-sensitive asthmatic patients prevented the reduction in FEV1 after aspirin 

challenge [506].  

On the proliferative side of the second part of this dissertation, we observed augmented 

mitogenesis of ASM cells after co-culture with BEAS-2B cells. This was determined by 

examining DNA synthesis after co-culture and demonstrating that co-cultured ASM cells 

incorporate more BrdU than do those that were not co-cultured. Furthermore, co-cultured ASM 

cells possessed more mRNA for the pro-proliferative co-transcription factor Elk1. We observed 

no change in the expression of the pleiotropic transcription factor SRF, nor KLF4. 

Due to the previously established importance of the EGFR in mediating the mitogenesis of ASM 

cells, we determined the role that this tyrosine kinase receptor had in mediating co-culture 

induced proliferation. Although we observed increased mRNA for HB-EGF within the ASM 
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cells, as well as increased protein in the cell culture supernatant of the co-cultured cells, the 

amount of BrdU incorporation after co-culture was not reduced after pre-treatment with two 

EGFR inhibitors. Furthermore, stimulation of the ASM cells with BEAS-2B conditioned 

medium did not activate phosphorylation of the EGFR, however it did induce AKT 

phosphorylation. AKT phosphorylation was not sensitive to pre-treatment of the ASM cells with 

the EGFR tyrosine kinase inhibitor Afatinib. 

We did observe augmented quantities of mRNA for several pro-inflammatory proteins including 

IL-6 and IL-8 within the ASM cells after co-culture ASM cells have been well described to 

synthesize pro-inflammatory chemokines [507]. Gene array data indicated a pro-inflammatory 

phenotype implying regulation of genes associated with the NF-κB system and other cytokines 

such as CXCL-1, CXCL5, CCL2, and COX-2. Cytokines have the ability to induce proliferation 

of ASM cells and this therefore represents an avenue by which the tissue is remodelled. 

Furthermore, IL-8 secretion from asthmatic ASM cells is increased due to augmented NF-κB 

[508]. The effect of co-culture induced pro-inflammatory chemokine release by asthmatic ASM 

cells remains to be determined. 

The regulation of miRNA in ASM cells has emerged as a novel mechanism by which ASM cell 

phenotype can be modulated. We examined the expression of previously established miRNAs 

that regulate ASM cell phenotype, observing no changes in miR-143/145. We next explored the 

expression of global miRNAs after co-culture with BEAS-2B cells through miRNA array 

analysis and observed near-significant increases in miR-210-3p, miR-1246 and miR-4732-5p. 

However, by qPCR analysis, only miR-210-3p was significantly increased by co-culture. 

One of miR-210’s putative target proteins, Mnt, was reduced after co-culture with BEAS-2B 

cells. miR-210’s inhibition of this protein has been previously described to augment the 
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proliferation of airway fibroblasts. We determined the ability of miR-210 to increase ASM cell 

proliferation by transfection with a mimic of miR-210-3p. Cells given exogenous miR-210 

mimic were indeed more proliferative, demonstrating for the first time that this miRNA may play 

a role in ASM cell remodeling. Future work exploring miR-210 as a target for therapeutic 

efficacy in the treatment of asthma disease will be of great interest. It will also be of interest to 

examine the expression of miR-210 in asthmatic ASM cells as well as in epithelial tissue. It may 

be possible that the miRNA is delivered to ASM cells by the epithelium. This trans-cellular 

delivery, if true, would represent a novel mechanism by which these two cells communicate and 

should be explored in future work. 

Again, the airway epithelium is always present in vivo and so the relative importance of 

epithelial derived proliferative signals may depend on the direction in which airway smooth 

muscle remodeling occurs. For example, if the ASM growth occurs towards the lumen of the 

airway in asthmatic patients, it may be expected that these cells receive greater concentrations of 

epithelial derived mitogenic factors. The directionality of the growth in asthmatic patients has 

not been well characterized but is of great interest.  

In experiments throughout this thesis, BEAS-2B cells were utilized as a model of the airway 

epithelium. BEAS-2B cells are widely used as a representative culture of the airway epithelium. 

These cells possess anti-oxidant capacity similar to that of primary cells [509], and possess many 

of the same surface molecules that are also expressed on primary bronchial epithelial cells [510]. 

In comparison to our quantities of IL-8 released from BEAS-2B cells, it was shown that NHBE 

cells cultured at an air-liquid interface produced between 700-1500 pg/ml IL-8 [511], which is 

similar to what was observed in chapter two. Furthermore, in chapter three, we observed a larger 

reduction in calcium release after histamine stimulation in ASM cells that were co-cultured with 
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NHBE cells compared to BEAS-2B cells.  However, the BEAS-2B model has its limitations. 

BEAS-2B cells do not form the same increase in trans-epithelial electrical resistance when 

compared to primary epithelial cells [512]. As research moves forward, the use of primary 

epithelial cells cultured at an air –liquid interface is becoming more widely utilized. Further 

work examining primary cells cultured at the air-liquid interface and the relationships between 

S1P-induced IL-8 release and epithelial modulation of ASM cell phenotype will be of interest. 

In summary, data presented in this thesis provides support for the growing awareness of the role 

of the airway epithelium in governing airway processes related to the asthmatic phenotype. We 

have observed a molecular target in S1PR2 as a receptor that mediates S1P induced IL-8 release, 

a process that likely occurs in the asthmatic airway. We have also explored the effect of 

epithelial cell co-culture with ASM cells, and observed decreased contractility and increased 

proliferation.  

5.2 Future Directions 

Given the efficacy of S1PR2 antagonism for the prevention of IL-8 release by the epithelium 

after stimulation with S1P, it is of great interest to test the JTE 013 compound in animal models 

of asthma with the aim of preventing neutrophilia. The prevention of the release of this pro-

inflammatory chemokine could have therapeutic benefit given the impact of airway 

inflammation of driving exacerbation. In fact, a recent study has demonstrated that systemic pre-

treatment with JTE 013 in an IgE induced model of allergic lung inflammation reversed serum 

CCL5 concentration and prevented T cell migration [513]. Furthermore, a monoclonal antibody 

diminished mast cell derived IL-6 release after allergen challenge [513]. Alternatively, the 

administration of aerosolized helanalin as an anti-inflammatory agent may prove useful as a drug 
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treatment for these asthmatic patients. However NF-κB, the target of helenalin, is involved in a 

myriad of signalling pathways and it would likely be safer to target more upstream proteins such 

as the S1PR2. To bridge the gap between the findings reported here and the use of JTE 013 in the 

clinic, it would be useful to examine primary airway epithelial cells cultured at an air-liquid 

interface and the role that this drug plays in the prevention of cytokine release. Additionally, 

other cytokines such as IL-6 should be explored to further understand the capabilities of this 

treatment. Neutrophil migration measurements towards the conditioned medium of S1P 

stimulated air-liquid interface primary epithelial cells will uncover more information regarding 

the biological significance of the reduced quantities of IL-8 secretion. Finally, a vehicle to 

specifically deliver JTE 013 to the airway epithelium would be useful due to the variety of cell 

types that express the S1PR2 receptors. Aerosolization may be the most appropriate mechanism 

for such delivery. 

Future work examining the reduction of the contractile phenotype in ASM cells that derive from 

asthmatic donors will be of great interest. It is possible that the relaxing effects of the epithelium 

may be reduced in cells deriving from diseased subjects however this remains to be explored. It 

is also possible that asthmatic derived epithelial cells may be less effective at reducing the 

contractility of the ASM. Further examination of the role of COX-1 in mediating this phenotype 

should be explored in vivo, potentially through the use of an inducible knock-out mouse lacking 

the COX-1 gene specifically in ASM. These animals may be expected to have greater airway 

hyperresponsiveness to challenge with contractile agonists. If this were true, it would be 

anticipated that overexpression of COX-1 may further augment the ability of the epithelium to 

induce a relaxed phenotype of the muscle. Delivery of recombinant COX-1 could also 
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recapitulate these results and may become an attractive area to explore in using next-generation 

gene editing techniques. 

Due to the results indicating that epithelial co-culture stimulates ASM proliferation, future work 

should be conducted examining the quantity of miR-210 as a pro-remodelling molecule. It would 

be interesting to evaluate the ability to suppress this miR through the use of complementary 

RNA in vivo and also to explore the effect of this treatment on the expression of Mnt and rate of 

proliferation. Given the ability to use miRNAs as biomarkers, it may be interesting to examine 

miR-210 expression in a variety of asthmatic endotypes to examine the potential of this small 

non-coding RNA as such an indicator of disease. It would also be useful to explore the role of 

miR-210 in other tissues such as the vasculature or other diseases such as cystic fibrosis to better 

understand the role of this miRNA. Furthermore, if this miRNA is indeed epithelial derived as 

discussed above, it would be of great interest to examine the effect of epithelial injury and repair 

on the release of miR-210, given that the asthmatic epithelium appears to be more fragile. 
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