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Abstract

The Fourier-Mellin transform was implemented on a digital computer and applied towards

the recognition and differentiation of images ofplant leaves regardless of translation,

rotation or scale. Translated, rotated and scaled leaf images from seven species of plants

were compared: avocado (Persea americana), trembling aspen (Popuilis tremu/oides),

lamb's-quarter (Chenopodium album), linden (Ti/ia americana), silver maple (Acer

saccharifnlm), plantain (P/antaga major) and sumac leaflets (Rhus typhina). The rate of

recognition was high among translated and rotated leaf images for all plant species. The

rates of recognition and differentiation were poor, however, among scaled leaf images and

between leaves ofdifferent species. Improvements to increase the effectiveness of the

algorithm are suggested.

Résumé

La forme discrète de la transformé de Fourier-Mellin fut appliquée pour la reconnaissance

et la différenciation d'images de feuilles dont l'orientation, la rotation ou l'échelle étaient

variables. Des images de feuilles de sept espèces de plantes, soit l'avocat (Persea

americana), le tremble (Popu/us tremuloides), le chou gras (Chenopodium album), le

tilleul (Ti/ia americana), l'érable argenté (Acer saccharinum), le plantain (Plantago

major) et des folioles de sumac (Rhus typhina ), sous différentes orientations, rotations et

échelles ont été comparées. Le taux de reconnaissance est élevé entre toute image d'une

espèce ayant subi une rotation et un changement d'orientation. Cependant, le taux de

reconnaissance entre des images de feuilles à plusieurs échelles ainsi que pour la

différenciation entre des images de feuilles de différentes espèces sont peu concluant. Des

modifications sont suggérées dans le but d'augmenter l'efficacité de l'algorithme présenté.
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1. Introduction

Our ability to recognize abjects in an image, regardless ofhow these objects are laid out

before us, is one that we humans take for granted. When we view an image ofa chair, for

example, whether the chair is located in a dentist' s office, barber salon or around the

dinner table, each ofus is still able to perceive that the object in question is a chair. Even

when the chair is rotated upside down, very tiny or large, or moved to the upper left

corner of the image, we are, again, still able to recognize the object as being a chair. For a

machine, however, objects that have been translated to a new position in the image,

rotated or scaled up or dawn represent completely new objects. ln order for a machine to

recognize the two objects as being similar, algorithms need ta be developed that can

successfully provide for abject identification regardless of where they are located in the

image or whether they are scaled or rotated. This thesis examines the use ofsuch an

algorithm, the Fourier-Mellin transform. In this particular application, the Foürier-Mellin

transform is used to help identify the leafof a plant, regardiess of the leaf s scale or

rotation, or location in the image.

It would be foolish at best ta expect one algorithm alone to be successful at recagnizing

any and ail variations of the same object. And it would be doubly foolish to then expect

the same algorithm to be able to differentiate between different objects. This is especially

true when the abjects under consideration are natural (biolagical), rather than man-made,

since: 1) biological objects exist in many shapes, sizes, colours and textures even within a

single species, and 2) many different species resemble one another. It is hoped, then, that

the Fourier-Mellin transfarm can serve as one among many analysis tools ofa generalised

machine vision system in arder to both recognize biological abjects within and outside

their species.
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2. Literature Review

The following assumes familiarity with the Fourier transform as weil as the Fourier-Mellin

transfortn. The reader is referred to section 3 of this thesis which provides the necessary

background to these transforms.

The Fourier-Mellin transform is a variant of the Fourier transform; however, it certainly

does not have as glorious or as predominant a history as the Fourier transform. Indeed,

versions of the Fourier-Mellin transform do not seem to surface until the late 19605.

Among the first investigators to use a version of the Fourier-Mellin transform were

Brousil and Smith [1967]. In retrospect, these investigators rernain pioneers in the use of

the transform. In their paper, "A Threshold Logic Network for Shape Invariance", they

managed to demonstrate how a log-polar coordinate mapping and Fourier transfonn could

he combined to achieve translation, rotation and dilation (TRD) invariance in image

recognition. Though they did not mention it explicitly, the investigators essentially

performed a Fourier-Mellin transform in their attempts at achieving TRD invariance. They

did sa by constructing a very primitive neural network incorporating the operations of the

Fourier-Mellin transform and used binary images of either hand-printed or machine­

generated characters, presented as 12x12 rasters ofX's and O's as the input and output

layers of the system. The network seems to respond weIl with a 70% recognition rate for

the translated, rotated and scaled (dilated) machine-generated charaeters but recognises

ooly 30% of the translated, rotated and scaled hand-printed characters.

The next pioneering attempt at applying the Fourier-Mellin transfonn was instigated by

Rabbins and Huang [1972]. In fact, these investigators are often credited as the first ta use

the discrete Fourier transfonn along with a logarithmic-polar sampling ofan input image

to produce an approximation of the Mellin transform [Schalkoff, 1989], though Brousil

and Smith [1967] had clearly paved the way. Robbins and Huang described an

implementation for the application ofthe Fourier-Mellin transfonn to correct various

2
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optical distortions, including noise, in lenses. Thougb the achievement oftranslation-,

rotation- and dilation-invariance via the Fourier-Mellin transform were implied, they were

not specifically mentioned as goals the authors sougbt to demonstrate. They fust applied

their aIgorithm, in the general case, to the restoration of input images distorted by various

foons oflens aberrations. Later, they implemented the aIgorithm on digital images that had

been blurred as weil as on images to which Gaussian noise was added. The results they

choose ta present, in pictorial fo~ seem convincing enough, though they indicate the

outcome as being poor in images corrupted with noise. SpecificaIly, in comparing the

blurred input images to their outputs, they obtain a per point standard deviation error ofe

= 0.7; whereas they obtain a standard deviation error ofe = 1.77 in the case of images

distorted with Gaussian noise.

In the late 1970s, Casasent and Psaltis [1976, 1977] contributed substantially to the

implementation ofa digital form ofthe Fourier-Mellin transform in applications using

physicallenses. They wished to design an optical matched filter correlator that responded

well to scale changes in the input image. A matched filter correlator is a system in which

an image is formed and correlated against another image. Such a system can be used to

ascertain whether the images are similar, but performs poody when the images differ in

scale or rotation because these changes result in a severe [oss in the signal-to-noise ratio

that affects the correlation significantly. The investigators corrected for the scale

difference in the two images by applying, via a Fourier [ens system, the Fourier-Mellin

transform to each image and correlating their output images. They first demonstrated scale

invariance using [enses by taking simple images each ofa vertical bar, a circ1e and a

square, converting the image to a logarithmic scale in the vertical and horizontal

components, projecting the log-transformed image through a Fourier transform lens that

resulted in a Mellin transfonn of the image. If the input image is then scaled - Casasent

and Psaltis illustrated tbis using an image ofa square scaled to twice its original size - its

Mellin-transformed output is similar to that of its unscaled counterpart. Later the

investigators proposed a schematic for a scale-invariant Fourier-Mellin optical correlator.

3
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They indicated it would be possible, using the aforementioned Fourier-Mellin lens system,

to measure any scale differences in two input images and apply the resulting data to

equalize the scale, enabling one to later correlate and compare the images for similarity.

Finally, Casasent and Psaitis showed, step by step, how to implement the Mellin transform

via the Fourier transform. This particular implementation is now recognized as today's

Fourier-Mellin transform. Unfortunately, the authors continued to rely on a physicallens

implernentation of the Fourier-Mellin transform rather than one implemented by digital

computer. Though the physical lens system more closely approximates the theory behind

the continuous forro of the Mellin transform, it has disadvantages in that one has to

physically move and rotate the system of lenses in order to he able to match patterns.

The Fourier-Mellin transform has also been considered as a basis for two of the five

mammalian senses. The log-polar transformation necessary in the implementation of the

Fourier-Mellin transform and its relation to the sense ofsight is discussed in section 4.5 of

this thesis. It is important to mention here that the Fourier-Mellin transform has been

considered in examining the sense ofhearing. Altes [1978] noted similarities between the

Fourier-Mellin transform and the cochlear transduction of signais in animais. In particular,

he concluded that a biological model of the transfonn might be implemented in sorne bat

species for the purposes of echolocation.

A further development in the use of the Fourier-Mellin transform was its application to the

radar classification ofships. Zwicke and Kiss [1983] wished to use the shift- and scale­

invariance derived from the Fourier-Mellin transform in order to identify ships from radar

range profiles. A problem arises when the radar signal and length of the axis of the ship are

no longer exactly aligned. If the ship is turned slightly, the radar profile dimension

decreases in size and the radar profile must be expanded for the identification of the

vesse!. The investigators proposed that the application of the scale- and rotation-invariant

Founer-Mellin transform would enable the extraction of identifying factors in the radar

signal regardless of the aspect angle of the radar. The authors also offered an alternate

4
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implementation of the Fourier-Mellin transform called the modified direct Mellin transfonn

(MDMT). This new implementation was based on directly expanding the Mellin integral

rather than relying on the more traditional and indirect calculation ofthe Fourier-Mellin

transform, that is, a rectangular to log-polar conversion in combination with the Fourier

transform. The authors maintained the new implementation eliminated any errors

introduced into the approximation of the Mellin transform by the traditional methodology

in that no exponential sampling or interpolation was necessary. Though theoretically this

might be the case, the seant experimental results, the investigators' caveat the MDMT is

computationally more expensive than the traditional Fourier-Mellin implementation and

lack ofevidence in the literature since publication ofthis paper ofMDMT usage, ail

suggest this newer implementation ofthe Fourier-Mellin transform is less than satisfactory.

Sheng et al. [1986, 1994] in the late eighties and early nineties dealt with what the

investigators tenned Fourier-Mellin moments. Essentially Fourier-Mellin moments are

moments calculated from the radial component ofa pseudo-Fourier-Mellin transformed

image. Though the moments lend themselves to providing shift- and rotation-invariant

descriptors of images, scale invariance was not completely achieved. Derrode [1999]

suggested this was due to the fact that the radial base used in the moment calculation did

not correspond to that ofa true Mellin transform, and, as a result, discounted using

moments as a substitute for the traditionaI Fourier-Mellin transforrn.

[n 1995, the use of the Fourier-Mellin transfocm and a neural network was again

combined. Raman and Desai [1995] calculated rotation-, translation- and scale- (RTS-)

invariants - equivalent to TRD invariants - using the magnitude of the Fourier-Mellin

transform. They used a multilayer neural network trained by backpropagation to recognize

RTS-variants of input images. [n total 6 images were used ta train the network and 50

RTS-variants of these six images were presented to the network and were all correctly

recognized as one of the six training set images. Partially occluded images - images in

which a contiguous portion of their shape was removed - were aIso correctly recognized.

5
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It is not clear whether occluded images were used to train the network, and, generaily, the

breadth ofthe experimental study is not great - only 6 images were used both for training

and testing the network.

Recently, the Fourier-Mellin transform has seen a revival with the advent ofwatermarking.

Watermarking is a method of preserving the copyright on a document or image.

Techniques for hiding watermarks are becoming more sophisticated but one aIso wants a

watermark to be able to withstand modifications to the image such as rotation, translation

or scale changes sa that the watermark, ifsearched for in the modified image, can still be

found easily. 6 Ruanaidh and Pun [1997] and Lin et al. [2000] both investigated the use

of the Fourier-Mellin transform in producing an RTS-invariant watermark. 6 Ruanaidh

and Pun considered the phase of the Fourier-Mellin transform in their application so that

they \-vere able ta recover the watermark from an RTSed image, even after lossy JPEG

image compression of75%. Lin et al., on the other hand, studied the use of creating a

unique signature of their watermark that was RTS-resilient. They preferred to use the term

resilient over invariant because they did not believe it ta be necessary to achieve complete

RTS-invariance in arder to detect the watermark. However, they decided to use

correlation in order to search for the watermark signature - which is time consuming -

and must rotate their searching pattern at aIl possible angles in order to find the watermark

- which is also time consuming.

Though there is a fair amount of research on machine vision in agriculture, especially in

the automated inspection of food items [Shatadal et al., 1991], there has been very little

research on frequcncy-domain analysis of leaves and even less research on specific

applications of the Fourier-Mellin transform. Indeed, a search of the literature provided

but one reference for the Fourier-Mellin transform in an agricultural domain. In this one

reference, Franz et al. [1991] attempted to identify plant leaves at various life stages based

on the leaves' shape or contour. The Fourier-Mellin transform was not applied directIy to

leafidentification but, rather, was used ta compensate for occluded portions ofleaves.

6
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The authars extracted the leafedges tram their images - the extraction procedure is not

firmly explained. They then represented the points in the leafedge as a curvature function

used ta describe the leafshape. The curvature function is invariant to abject location and

rotation. Ta compensate for partial occlusion ofa leaf, the authors took the magnitude of

the Fourier-Mellin transform ofthe leafs curvature function, used correlation to compare

the target leafagainst the model and removed peaks that did not match in order ta obtain a

match - this aIso compensated for differences in scale since the Fourier-Mellin transform is

resistant ta scaIe changes. The authors then used a distance measure between the models'

leafshape and the unknown shapes. They generally obtained poor results especially when

leaves \vere occluded or their shapes were similar. Finally, another set of investigators,

Zhang and Chaisattapagon [1995], used the Fourier transform spectra of plants, among

other methods, to differentiate between weeds and wheat species typically found in

Kansas. The researchers were able to use Fourier spectra ta describe the texture

associated with a particular plant species and found that both the fineness and direction of

a plant's texture pattern could be applied successfully ta distinguish wheat from weeds.

No attempts are made, however, to provide for differentiating between wheat and weeds

when the textures of each are rotated and/or scaied.

7



• 3. The Fourier Transform

The Fourier transform is dealt with thoroughly in the literature (see, for instance, Lyons,

1997; Bracewell, 1986 and Brigham, 1988). A general background on the transform,

however, is necessary in order to better appreciate its use in the Fourier-l\'fellin algorithm

presented in this thesis. First, it should be mentioned that despite the Fourier transform's

complex mathematics and conceptual difficulties, the transform is just that, a mathematicaI

transformation. [t transforms a function from its more easily understood time or spatial

domain into a function existing in frequency space. The essence, and beauty, of the

transform is that it demonstrates aImost any function cao be broken up into a sunl of

known periodic sinusoidal functions, each ofwhich is characterized by its amplitude and

frequency. This is more easily explained pictorially using Figure 3-1. Here a step function

- which, incidentally, is a typical representation ofan edge in an image - can be shown to

be reproduced by summing various sine waves ofdifferent frequencies and amplitudes.

Representation of a step function by tbe sum of DtaRY sinusoids

Step fUDctio ....-- ...

•

Figure 3-1: Step function as som of many sinusoids

Equation 3-1 defines the mathematics of the one-dimensional Fourier transform, X(f),

of a function in time, X(/) , for the continuous case [Lyons, 1997]:

CXI

X(f) = f x(t)e-j2nfidl, cq.3-1

8
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where X(f) provides a complete representation of X(l) except that the funetion is now

expressed in terms ofthe amplitudes of frequencies, f , ofsinusoidal waves instead ofas a

function oftime. However, we wish to implement the discrete version of the continuous

Fourier traosform (CFT), that is, on a digital computer. As such, the infinite integral

simply becomes a summation over a finite amount oftime (or space). Equation 3-2

[Lyons, 1997] defines the discrete Fourier transform, X(m) , ofa discrete sequence of

time- or space-domain sampled values, x(n) , which represents the original continuous

function:

N-l

X(m) =l x(n)e-J 2J:nmIN, eq. 3-2
n=O

Here n represents the sample number, spanning the zeroth ta the last sample (0 ta N -1 )

of the discrete function x(n); m, like n , goes from 0 to N - 1and represents each of the

possible frequencies of the function X(m) , which, in turn, defines the amplitude of each

ofthese frequencies. Together ail X(m) represent a function that provides a complete

frequency-domain representation of the original time- or space-domain function. The

discrete Fourier transfonn (DFT) representation of the CFT is still rather complicated

mathematically, especially for individuals not already possessing a graduate degree in

electrical engineering. However, the complex notation of the transform cao be further

reduced to something a little more comprehensible via Eziler 's relationship defined in

Equation 3-3:

e -JO = cos(0) - j sine fJ) eq. 3-3

The transform now reduces to Equation 3-4 [Lyons, 1997]:

N-l

X(m) =L x(n)[cos(2mvn1 N) - jsin(2mvnl N)] eq. 3-4
n=O

The DFT now reveals itselfto be made up explicitly ofa series ofcosine and sine waves

which, when summed, provide a complete representation of the time or spatial domain

9
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function. The equation is still complex; however, its use of the imaginary number, j

equalling~ , though invaluable as it is for the mathematical derivation of the transform,

can be avoided in the discrete, digital computer implementation.

3.1 Calculating the OFf

There are three different ways to calculate the DFT: by simultaneous equations, by

correlation and by the Fast Fourier Transform [Smith, 1997]. The standard way is by

correlation. It is the simplest method and also provides sorne intuitive insight into the

calculation of the DFT. What correlation entails is multiplYing each individual indexed

sample from the time- or space-domain signai for which we wish ta obtain the DFT by its

corresponding indexed sine and cosine frequencies and then adding the result [Lyons,

1997]. The result is then a reflection ofwhether that particular sine or cosine frequency is

contained in the frequency domain of the time- or space-domain function. This is what is

actually occurring when we apply equation 3-4 to obtain the DFT. That is, ifwe use

correlation to find the DFT ofa time- or space-domain function, x(n), made up of

samples indexed from n = 0 to N-l, we will obtain two frequency-domain functions,

terrned the Real part and the Imaginary part of the DFT. Each ofthese parts of the

frequency domain aIso extends from 0 ta N- 1. These are just equation 3-4 divided into

two portions, Equations 3-5 and 3-6 (Lyons, 1997]:

N-l

ReX[m] = L x[n]cos(2mnn / N)eq. 3-5

n=O

N-l

lm X[m] =L x[nlisin(2mnn / N) eq. 3-6

n=O

where Re X(m) refers to the Real component and lm. X(m) refers ta the Imaginary

component; index m again extends from 0 ta N-l .

10



• A particular point, x(n) , from the time or space domain, thus consists of two parts in the

frequency domain: a Real component that represents the amplitude of the cosine wave of

frequency m and an Imaginary component that represents the amplitude of the sine wave

offrequency m. The sum ofall the Real and Imaginary components from 0 to N-l

represent the transformation of the time- or space-domain signal into the frequency

domain.

3.2 Polar Notation

When the results of the Fourier transform ofa signal are reported as the "Real" and

"Imaginary" parts, then these are being reported in rectangular notation. In the digital

signal processing literature, however, frequency-domain results are typically reported in

polar notation, as the Magnitude and Phase ofeach frequency m of the Fourier transform.

Ifwe graph one of the Fourier transformed points, X[m] , in the complex domain, it is

easy to understand the conversion from rectangular to polar notation (see Figure 3-2,

adapted from Lyons [1997]):

Imaginary ois ü)

Xlml - Xlm)Imaginary + XIm1Real
X[m)lmaginary

o

X[ml Pbase

Real axis

Xlml Real

•
Figure 3-2: Determiaing polar notation (adapted from Lyons [1997»

Il



• Using the Imaginary!Real coordinate system ofFigure 3-2 and the Pythagorean theorem,

we see that the Magnitude ofX(m] is defined by Equation 3-7 as:

X mag =1 X[m]1 = JX[m]Real
2 + X[mhm agmary

2
eq. 3-7

and the Phase is defined by Equation 3-8 as:

tan( XIm] ImagmaryJ
Xphtu~ = X;[m] = arc eq.3-8

X[m] Re al

3.3 Properties orthe OFf

Bracewell [1986] and Brigham [1988] provide very detailed accounts of the Discrete

Fourier transform's properties. A summary ofthose properties necessary for the

understanding of the application used this thesis is presented here.

3.3.1 Periodicity

Unlike the CFT, the DFT views both its input (the time or space domain) and its output

(the frequency domain) as being periodic and infinite. For a discrete signal, this means the

DFT views its input as if the signal's beginning and ending were attached together and

repeating from negative to positive infinity. Figure 3-3, adapted trom Smith [1997],

depicts this:

Time Domain Signal How D.FT Views Time Domain Signal

•

~r ri' 1 1 1
o +128 ._- cu -128 0 +128 •••+ f10

Figure 3-3: DIT Periodicity (adapted from Smith [1997])

In other words, the DFT views its time- or space-domain input as consisting ofa single

period ofan infinitely repeating sequence. The same situation applies to the output of the

DFT. This property of the DFT has sorne negative consequences. These are addressed

12
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later under the topic of "Problems with the Discrete Fourier-Mellin Transformation" in

section 5 of tbis thesis.

3.3.2 Scale

[fa time- or space-domain function is scaled by a constant, then its Founer transform will

be inversely scaIed by that same constant [Brigham, 1988].

3.3.3 Rotation

Ifa funetion is defined in a two-dimensional spatial domain (as is, for example, an image)

and is rotated in tbis domain, then its corresponding DFT will aIso be rotated by the same

angle [Castleman, 1996].

3.3.4 Translation

The sbifting theorem of the Fourier transfonn states that ifa time-or space-domain

function is shifted by a constant, then this shift will be expressed as a constant shift only in

the phase of the DFT [Lyons, 1997]. The magnitude of the DFT is not affected by a shift

change; it is shift- or translation-invariant. The DFT magnitude's translation invariance is

the COJ"11erstone of the success of the Fourier-Mellin transform. In the Fourier-Mellin

transform, scaIe and rotation changes are manifested as translations which are then

removed by performing a second DFT and considering only the resultant translation­

invariant magnitude.

3.3.5 Convolution

Though not specifically a Fourier transform property, convolution is often used in

conjunction with frequency domain analysis because of the particularity that convolution

in the time domain is equal to multiplication in the frequency domain and vice versa. In

tbis thesis, convolution is used in filtering and windowing data before it is input to the

DFT. As a result, a general explanation ofconvolution is necessary. According to Brigham

[1988], convolution is defined mathematically by Equation 3-9 as follows:

13
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a:J

y(t) = fx( r)h(t - r)dr = x(t) *h(t) eq. 3-9,

where * denotes convolution. Here, y(t) is said to be the convolution of the functions

x(t) and h(t). Equation 3-9, however, is not easy to visuaiize. The following is what

aetually occurs when two functions are convolved (based on Brigham, 1988): 1) The

mirror image of h(,) is taken. This simply results in h(-r) ; 2) h(-r) is then shifted by an

amount t; 3) the shifted function, h(t - r), is then multiplied by x(,) and, finally, 4) this

results in the area under the graph of the product of the two functions equalling the value

of the convolution at time t (i.e. the integral of the product equals the convolution at time

t ).

3.4 Implementation orthe DFT via the FFr

Though the correlation method ofcalculating the OFT is simple and makes intuitive sense,

it is slow compared to the now famous Fast Fourier Transform (FFT) developed by

Cooley and Tukey in 1965. For a one-dimensional signal of N points, the OFT via

correlation requires N 2 calculations (for a two-dimensional signal, such as a square image,

there are N 2 number of points; thus, it would require N4 calculations). The FFT for a one­

dimensional signal, on the other hand, requires N log2 N calculations, which for a 32-

point signal amounts to ooly 10 times the speed of the OFT via correlation; however, for a

signal above roughly 4,000 points, the FFT is over a thousand times faster than correlation

[Smith, 1997]. In obtaining the DFT of an image, we are often dealing with signais that

are many thousands ofpoints long (a typical256x256 pixel image cantains 65,536 signal

points). Thus, the FFT is the algorithm of choice and has been used in this thesis.

A thorough description of the implementation of the FFT and why it is 50 much faster than

the OFT correlation method is beyond the scope ofthis thesis. Suffice it to say that for an

N -point signal the FFT gains a great speed advantage by performing N DFTs on single-

14
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point signais [Smith, 1997]. A number ofstandard "programming tricks" are also involved

in optimizing the FFT computation [parker, 1997]. The FFT implemented in this thesis is a

radix-2 type FFT that has been adapted from code provided in Smith [1997] (the radix-2

type FFT is so named because the number ofpoints in the input signai must be equal to a

power oftwo). The actual input ta the FFT consists oftwo parts, the Real and Imaginary.

Earlier, in section 3.2, it was mentioned that the Imaginary portion's use of the imaginary

number, j, can be avoided in the implementation of the FFT. In fact, ooly the Real part

hoIds the input data to the FFT. It consists ofan array containing the real-valued sample

points of the signal to be transformed into the frequency domain; the Imaginary portion's

array, on the other hand, is empty, loaded only with zeroes. This is termed the "FFT of

real-valued data" and successfully avoids the use of imaginary numbers in ilS

implementation. It is aIso worthwhile to note that in order to obtain the DFT ofan image

via the FFT, a two-dimensionaI Fourier transform must be performed. Fortunately, the

tw0-ilimensional Fourier transform can be obtained by performing two one-dimensional

transforms (Brigham, 1988]. In the case of the FFT, this is implemented by performing the

following: 1) take the one-dimensional FFT ofeach of the columns ofan image; 2) store

the result; 3) take the one-dimensionaI FFT of each of the rows of the result. The final

output will contain the two-dimensionaI Fourier transformation of the image.

3.5 The Digital Image

This thesis presents the Fourier-Mellin analysis ofdigital images. It is necessary, therefore,

to describe exactly what a digital image is. A natural image or object is viewed by the eye

as a continuous array ofvarious colours [Baxes, 1994]. In order to acquire a digital image

of this continuous array of colours, the natura! image or object is sampled so that each

original colour becomes quantized to an integer value. In this thesis, we deaI only with

greyscale digital images, which are made up solely of256 "colours" or greyscale intensity

values - perhaps the term brightness vaIue is more appropriate since the "colours" range

only between intensity 0 (black) and intensity 255 (white). As such, the sampling and

quantization of the continuous array ofcolours in the natural image or object will convert
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• each original colour to a brightness intensity level between 0 and 255. The two­

dimensional digital image is thus a matrix ofgreyscale values. The position ofeach of

these values in the matrix can be described on a Cartesian grid (x, y) so that we are able

to describe the entire image as a two-dimensional function/(x,y); that is, every point­

every brightness value - in the digital image can be defined by: 1) its location in two­

dimensional space by a coordinate pair (x, y) where x represents the vertical coordinate

(or row), and y represents the horizontal coordinate (or column); and 2) by its intensity

value on the greyscale. Each of these points is termed a pixel, short for "picture element".

Thus, in a 256x256 pixel image there exist 65,536 pixels, each ofwhich is defined by its

greyscale intensity value and location (row, column indices) in the image.

3.6 The Fourier Transformation of Images

Displayed in Figure 3-4 is an original image ofa maple leaf Ca silver maple, Acer

saccharimlm, leat) that was scanned and digitized resulting in a 256x256 pixel image

made up of256 shades ofgrey Ca "greyscale image"). AIso shown are the leafimage's

DFT, represented by the magnitude and phase portions of the transform.

Mapleleaf.bmp Magnitude Pbase

•

Figure 3-4: Fourier-transformed images of a maple leaf

The magnitude and phase images in Figure 3-4 do not seem ta have much in common with

the originalleaf image. Indeed, for MOst images, the magnitude and phase seem ta have no

discernable relationship ta the original image. What sort of information do the magnitude

and phase ofa Fourier-transformed image provide? This question is addressed in the

following sections.
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• 3.6. 1 Magnitude Image

Images cao be defined as changes in brightness in a two-dimensional space. That iS7 as we

move, say, from one side of the image to the other side, we will encounter various

brightness levels a10ng our journey that define the digital image. The rate at which

brightness levels change from light to dark and dark to light equals the spatial frequency of

an image [Baxes, 1994]. When we Fourier-transform an image, we are measuring the

spatial frequencies of the image. In particular7 it is the magnitude rather than the phase of a

Fourier-transformed image that best represents these spatial frequencies. Saxes [1994]

provided examples using very simple, artificially-created images, that ilIustrate how the

magnitude is usefuI in representing the spatial frequency content ofan image. These

examples are depieted in Figures 3-5 and 3-6:

,;.' • ... ,,. __ .. .... .. ... ,l''~ <. <'\.,.

.. ~ . . ~ '.

».... .. --. ~ ...

, .
/ ..". • .-1' ~ t ~
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(" ...... ' ....... ,,,. , ........ .,.

~ .
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Low-frequency image Magnitude of low­
frequency image

•

Figure 3-5: Low-frequency image and its Fourier transform (adapted from Bues (1994))

As we traverse the low-frequency image ofFigure 3-5 from top to bottom, its brightness

values change slowly, a1temating from dark to light regions. The frequency of the

brightness value change is also constant throughout the image, that is, ooly one frequency

is necessary to describe the change from dark to light brightness values in the image. AlI of

these features are easily seen in the magnitude of the low-frequency image's Fourier

transfonn of Figure 3-5. Firstly, note that there are two bright points in the magnitude

image. This results from the property of the Fourier transfonn being periodic. Indeed, the

periodicity provides for the top halfof the magnitude image being a distorted mirror image

of the bottom half (the top right quadrant mirrors the bottom left and the top left quadrant

mirrors the bottom right). Secondly, note that the magnitude image is usually displayed
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• such that the zeroth frequency component of the original image is located in the centre of

the magnitude image and that frequencies increase from the centre in the horizontal and

vertical directions. The amplitude of the frequencies is indicated by the brightness value of

the pixels in the magnitude image. Ifwe now consider just the top half of the magnitude

image, we cao see that our low-frequency image is depieted as being made up of a single

bright spot located fairly near the image centre (low frequency) and on the vertical axis

(representing the vertical direction ofchange in brightness level of the original image). The

brightness value of the pixels representing the bright spot in the magnitude image are a

measure of the amplitude of the frequency change in the original image.

High-frequency
horizontal image

High-frequency
diagonal image

Magnitude of high­
frequency
horizontal image

Magnitude of high­
frequency diagonal
image

•

Figure 3-6: High-frequency images and their Fourier transforms (adapted from Bues [1994D

The images in Figure 3-6 show how direction and frequency ofbrigbtness changes affect

the Fourier-transformed magnitude image. Note the increased distance from the centre at

which the bright spots are located in the magnitude images; the further distance represents

the increase in the frequency of the changes from dark to bright in the original image. Also

note the direction of brightness changes in the original images are retlected in the location

of the bright spots on the horizontal/vertical axes of the magnitude images.
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3.6.2 Phase Image

As was seen in Figure 3-4's phase image of the Fourier-transformed maple leaf, the phase

does not bear much resemblance to the original image. The phase image does, however,

contain much information about the original image. This was observed by Oppenheim and

Lim [1981] who inverse-Fourier transformed images by assigning the magnitude a

constant amplitude for each frequency and leaving the phase unchanged. In sa doing they

were able to observe the separate contributions of the phase and the magnitude in the

original untransformed image. They concluded that much of the intelligibility of the

original image is contained in its Fourier-transformed phase. This is due ta the fact that

typical images contain objects that are defined by their shape. Shape, in tum, is defined by

edges and, in the frequency domain, edges are defined by the rise and fall of sinusoids the

phases ofwhich are coordinated [Smith, 1997].

3.6.3 Magnitude versus Phase ofan Image

Compared to the phase, the magnitude holds less information about the beginning and

ending of shapes in an image; rather, it is more a reflection of the energy content ofan

image [Lim, 1990], that is, compared to the phase which specifies where each sinusoidal

component lies in an image, the magnitude specifies how much ofeach sinusoidal

component is present [Castleman, 1996]. As a result, if image object discrimination is

based solely on the Fourier-transformed images' magnitudes, there is a danger that two

completely unrelated objects may produce the same magnitudes. This would be less likely

to occur if the phases for the image objects alone were compared because the uniqueness

ofthe phase corresponds to the uniqueness of the object' s shape. The magnitude ofan

image, however, unlike its phase, can be manipulated to provide for an image object's

translation-, rotation- and scale-invariance. This has been the overriding reason for the

sole consideration ofan image object's magnitude in the present thesis's application of the

Fourier-Mellin transform. As weIl, this thesis's implementation of the Fourier-Mellin

transform is meant to be considered as one among Many analyses performed on an image

for the purpose of image abject recognition. In cases where dissimilar image abjects share
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similar energy content, it is expected that other image analyses might aid, in addition ta the

present transform, in discriminating between such image abjects.
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4. The Fourier-MeUin Transfonn

The Fourier-Mellin transform is used in this thesis to render descriptions of images that are

translation-, rotation- and scale-invariant. ln other words, ifwe wish to compare two

images - each ofwhich contains the same object - for similarity and one image is a

translated and/or rotated and/or scaled image of the ather, then the magnitudes ofthe

Fourier-Mellin transforms ofboth images should be identical. The development of the

Fourier-Mellin transform and explanation of its translational-, rotational- and scale­

invariance properties will now be presented.

4.1 Mellin Transform

The Fourier-Mellin transform is based on the Mellin transform. A modified form of

Bracewell's [1986] definition of the one-dimensional Mellin transform ofany

function f (x) is gÏven in Equation 4-1 :

c:IO

M(s) = f f(x)xs-1dx eq.4-1

o

We are, however, dealing with images that are functions defined in two dimensions. The

two-dimensional Mellin transfonn ofa function f (x, y) is defined by Casasent and Psaltis

[1977] along the imagÏnary axis by Equation 4-2:

c:IO

M(ju,jv) = f f(x,y)x-Ju-ty-Jv-Idxdy eq.4-2

o

4.2 Scale Invariance of the Mellin Transform

The Mellin transform, unIike the Fourier transform, possesses the property ofbeing scale­

invariant in its magnitude. Casasent and Psaltis [1977] demonstrated this scale invariance

for the two-dimensional case by considering a simple rectangular input function

f(x,y) extending from Xl ta X2 and YI to Y2 , defined in Equation 4..3:
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The magnitude of its Mellin transfonn is described by Equation 4-4:

1M(ju, jv)1 = ~sin( Il ln~)sinev ln ft) eq."-4
uv X2 YI

Equation 4-4 demonstrates the magnitude is only dependent on the ratios X2 1 Xl and

Y2 1YI and is, therefore, invariant to scale changes in its input variables x and y .

4.3 Mellin Transform Derivation from the Fourier Transfonn

In 1976, Casasent and Psaltis demonstrated the Fourier-Mellin transform, showing that a

Mellin transform could be attained via the Fourier transform by a change ofvariable (as

first demonstrated by Brousil [1967]). For simplicity, the one-dimensional case is

presented here. Recall from section 3, Equation 3-1, that the Fourier transfonn ofa

function [(x) (where f(x) DOW represents x(t) from equation 3-1, and OJ, the

natural frequency, DOW represents 2tcf) can be defined by Equation 4-5:

00

X(aJ) = f f(x)e-iCtJXdx eq.4-5

Recall, as weil, the definition of the Mellin transform indicated earlier (Equation 4-1) :

00

M(s) =f[(x)xS-1dx eq 4-1

o
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• Now, if the variable x in the Mellin transform, Equation 4-1, is replaced with eÇ and

s = - jO}, then the Mellin transfonn off(x) on the imaginary axis is the Fourier transfonn

of f(e q), indicated in Equation 4-6:

ca

M(jllJ) = f!(eÇ)e(-JoX;)dç eq.4-6

•

In other words, the Mellin transform can be realized by logarithmicaIly scaIing the

coordinates of the input function and Fourier transforming the resultant scaIed function.

4.4 Achieving Rotational Invariance in the Fourier Transform

The Founer transform ofa two-dimensional function will not normally be rotationally

invariant. In fact, as was indicated earlier in section 3.3.3, a rotation of a function in two

dimensions by an angle (} will also have its Founer transform rotated by the same angle.

RotationaI invariance of the Founer transform may, however, be achieved by converting a

rotation into a shift (or translation) in a single coordinate of the function. This shift can

then be eHminated by considering ooly the magnitude of the Fourier transform which is

shift-invariant.

If a two-dimensional function is expressed on a polar coordinate system, then any rotation

of the image will manifest itself in ooly one of the coordinates of the polar system.

Casasent and Psaltis [1976] demonstrated such a polar coordinate transformation,

showing that a function f (x, y) defined in Cartesian coordinates (x, y) can be equally

expressed in polar coordinates as [(B,r) . In other words, ifan image is considered to be

a matrix of points, each ofwhich is defined by a vertical x component and a horizontal

y component, then the image cao be equally represented by a radial component, r, and an

angular component, (J. Figure 4-1 demonstrates this. Here point P of the car object can

be represented in Cartesian coordinates, (x, y), where x =4 and y = 4, or Point P can be

23



•

•

equally represented in polar coordinates, (fJ,r), where 9 =tan-l(~) =45° and

Figure 4-1: Cartcsian to Polar coordinate
conversion

Thus, if a function f(x, y) is translated to a polar coordinate system as f( B, r) then any

rotation of the function will result in a change in only the angular coordinate f). If the

Fourier transfonn of the polar function is then taken, the rotational change in f) can be

eliminated by considering only the magnitude which is shift (or translation) invariant. As a

result, the magnitude ofa Fourier-transformed image ofsorne object that has been rotated

will be identical to the magnitude ofa Fourier-transformed image - containing the same

object - that remained unrotated.

4.5 Log-Polar Transformation

The log-polar transformation is the means by which we are able to glean both the resultant

scale-invariance of the Mellin transform as weIl as the resultant rotational-invariance

provided by a polar conversion and Fauner transform. This transformation has been

studied extensively by Araujo and Dias [1997], Wilson and Hodgson [1992], and Reitbôck

and Altmann [1984] among others, mostly in an effort to model the human visual system.

The interest stems from the fact that in many primates and, likely, in human primates as
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weil, scenes projected onto the back of the eyeball (i.e. onto the retina) are mapped to the

visual cortex in the brain in a logarithmically-polar fashion. We can describe this

mathematically as an image function [(x, y), appearing on the retina in a Cartesian plane,

being approximately translated to appear at the visual cortex as if it had been sampled at

the intersection of angular and exponentially-increasing radial points (Le. as a function

f«()~expr». This is perhaps easier to understand through illustration. Shown in Figure 4-

2 is a 256x256 pixel bitmapped image of the ever-radiant Lena, titled "Lena.bmp" (an

image that has been used by the image processing and machine vision community sioce the

1960s). AIso shown, in Figure 4-3~ is an image representing how Lena would be re­

sampled 00 a log-polar coordinate system, titled "Lena log-polar sampled". The white

pixels indicate the sampling points which occur at the intersection ofan angJe and an

exponentially increasing radius. Another image, Figure 4-4, adapted from Thornton

[1998]~ shows the log-polar sampling grid with no underlying image~ titled "Log-polar

grid". Again, white pixels represent the points oflog-polar sampling. Finally~ the log-polar

mapped image of Lena.bmp, adapted from Milanese and Cherbuliez [1999], is displayed in

its log-polar coordinate system in Figure 4-5. This image is titled "Log-polar display of

Lena.bmp".

25



N
en

•

Figure 4e2: Lena.bmp Figure 4-3: Lena log-polar sampled

expr

Figure 4-5: Log-polar display of Lena.bmp
(adapted from Milanese and Cherbuliez 119991)

•

Figure 4-4: Log-polar grid (adapted
from Thornton (19981)
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In Figures 4-3 and 4-4, there are 256x256 (65,536) log-polar sampled points. It is difficult

to get an idea ofhow the log-polar sampling is occurring, except that it is obvious

locations near the centre ofthe image are oversampled in comparison with points located

further away on the periphery ofthe image. The grid in Figure 4-6 shows a 16x16 (256

pixel) log-polar sampling.

16­

14­

12

10

8-­

6­

4--

2
0-·.
a 2 4 6 8 10 12 14 16

Figure 4-6: 16xl6 Log-polar sampling grid

In this graphie it is easier to see that radial sampling intervals increase exponentially and

that angular sampling intervals increase linearly by a constant.

The log-polar sampling of the image is the crux of the Fourier-Mellin transform in that this

sampling is responsible for the scale and rotation invariance ofthe resultant Fourier-Mellin

magnitude. To see why this is indeed the case, let's consider an image j(x,y) and

transfonn it onto a log-polar coordinate system. First, we assume the image centre is the

starting point of the transformation. We cao then represent each pixel in the image as

occurring at a distance r from the image centre and at an angle 8 (as represented earlier in

Figure 4-1, the car on the polar coordinate system). Ifwe now rotate the image, onlye

will change, r will remain the same. Now, ifinstead ofrepresenting the second pixel
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• coordinate as a measure of r, we measured it on an exponential scale as logr, then we

can coovert any scale changes in the image ioto shifts. Such wouId be the case ifwe scaled

the image by a scaie factor s. Nowa pixel at Cartesian point P(x, y) in the image, if

scaled, would be represented as P((J, loges· r» . We exploit the faet that the log ofa

multiplication can be expressed as a sum of logarithms in order to convert sCale changes

ioto shifts. Thus, scaled point P, expressed on the log-polar coordinate system as

P«(J,log(s· r», can he equally represented as a shift: P(B,logs+ logr). Figures 4-7 and

4-8, adapted from Thomton [1998], and Araujo and Dias [1997], demonstrate how both

changes in rotation and scale are converted to shifts by the log-polar transformation:

6(0,0).....-----------. (0,0)....----------...

y

Original image Log-polar transform of original image

•

Figure 4-7: Scaled squares and log-polar transformations (adapted from Araujo and Dias (1997) and
Tbomton [1998))

Figure 4-7 shows how a scale change (larger and larger squares) in the original image on

the Cartesian coordinate system, (x, y), results in a vertical shift along the log scale of the

log-polar, «(J, logr), coordinate system ofthe log-polar transformation of the original

image.
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a(0,0)...-----------....x

y

(0,0)..-----------......•

Inoer square rotation of original image Log-polar transformation of ioner square
rotation of original image

Figure 4-8: Scaled - rotated central square - squares and log-polar transformations (adapted from
Araujo and Dias [1997) and Thomton [19981)

Figure 4-8 shows how a change in rotation (the innermost square has been rotated by 45

degrees) in the original image results in a horizontal shift change ofthe angular ( () )

component of the log-polar transformed image.

To summarise, the log-polar transformation permits us to express scale and rotational

changes as shifts (translations). Shifts cao then be removed by considering only the

magnitude of the Fourier transform of the function expressed on a log-polar coordinate

system. This is the basis for the Fourier-Mellin transform.

4.6 Implementation of the Log-Polar Transformation

The present implementation of the log-polar transformation is based on Thomton [1998]

with sorne modifications. For a square image ofsize N x N pixels, we sample by

determining what points in the original image correspond ta each «(J.logr) in the output

•
image. In the output image, for both the angular coordinate, (J, and the radial coordinate,

logr, we cao choose to divide the image into N divisions ofeach coordinate. Thus, () is
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sampled N times from 0 to (21Z'" -1) angular divisions and logr is aIso sampled N times

on an exponential scale from 0 ta the maximum radius of the input image.

If the input image is mapped as a function of pixel locations indicated on a Cartesian grid

(x, y), where x represents the row and y represents the column, the following equations

are used ta determine what points (x, y) from the original image will be used ta provide

for a log-polar sampling that results in a new image having a log-polar coordinate system

(8,logr) :

Let p(row) represent the value of the exponentially increasing radiai component of the

input image. Equation 4-7 cao then be used to determine each p(row) :

[row]

[N] N-l 4-7p(row) = 2 eq., where row = O...N-l

Let 8(col) represent the value of the linearly increasing angular component of the input

image. Equation 4-8 can then be used to determine each B(col) :

8(col) = col( 21Z'" '1 eq. 4-8 , where col = O... N - 1
\.col)

The centre of the input image is located at Cartesian coordinate (N , N) . As a result,
2 2

the x and y coordinates of the input image that correspond to each of the caIculated

8(col) and p(row) are determined using Equations 4-9 and 4-10 as follows:

N
x =- + [p(row )cos(8(col»] eq. 4-9

2
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y = N -[p(row)sin(B(col»] eq.4-10
2

The final output array will be ofsize N x N . It will express (J in linear increments

(O N - l) of its columnar data and an exponentially increasing r in linear increments

(O N -1) ofits row data.
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• 5. Problems with the Discrete Fourier-MeDin transformation

Theoretically, the Fourier-Mellin transform should provide a truly translation-, rotation­

and scale-invariant measure ofan image. In practice, however, this is not the case.

Problems arise in the digital implementation ofthe Fourier-Mellin transform that result in

the discrete version of the transform merely approximating the continuous case [Altmann

and Reitbock, 1984]. Chiefamong the problems leading to the divergence of the discrete

and continuous Fourier-Mellin transforms are the negative effects ofaliasing, leakage and

interpolation, which will be addressed in the following sections.

5.1 Aliasing

In the digital implementation of the Fourier-Mellin transfo~ there is a likelihood of

aliasing occurring whenever the signal is sampled. Aliasing is the process whereby a signal

is converted into another signal - an aliased signal assumes or aliases the identity of the

original signal- due to undersampling. This is demonstrated in Figure 5-1 (adapted from

Smith [1997]):

3-,----------------~

'.

•

·2

~3··--------- __
nmc (or sample numbcr)

Figure 5-1: Aliased sampling (adapted from Smith [1997])

In Figure 5-1, a hypothetical signal (solid line) is being sampled (black squares) at a rate

far less than the actual frequency of the hypothetical signal. The resulting signal is shown
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as a dashed line (joining the sampling black squares); the original signal has become

aliased and will now be falsely represented by the resulting signal due to undersampling.

The Nyquist theorem dictates that aliasing will not occur if the signal is sampled at least

twice the rate of the signal's highest frequency component - termed the Nyquist frequency

[Smith, 1997]. Another interpretation is that the highest frequency permitted in a signal

must be less than or equal to one half the sampling rate. Adequate sampling is

demonstrated in Figure 5-2 (adapted from Smith [1997]):

J~----------------,

2

·2

·3..1- -----J

TUDe (or sample number)
Figure 5-2: Non-aliased sampling (adapted from Smith [1997))

In Figure 5-2, the hypothetical signal is being sampled at over twice its highest frequency

(the Nyquist frequency) component, and we can see that ifwe were to connect the

sampling squares we would obtain the same underlying signal. Note that there is no danger

in oversampling a signal. It simply creates more data. Though this May lead to more

computation time in analysing the signal, no aliasing will occur.

5. 1. 1 Log-Polar Sampling May Result in Aliasing

One problem of the Fourier-Mellin transform is the possibility ofaliasing occurring as a

result ofundersampling during the log-polar transformation. During a typicallog-polar

transformation, an image is sampled such that more samples are taken doser to the centre

of the image than are taken near the periphery. To understand this, consider again Figure

4-6, the sampling grid for a 16x16 pixel image that was presented earlier in section 4.5:
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Figure 4-6: 16xl6 Log·polar sampling grid

From Figure 4-6 we can see that as the radius of the sampling interval increases towards

the periphery, more and more pixels are not sampled in between angular sampling

intervaIs. As a result, pixels close to the centre of the image are oversampled and pixels

near the periphery are undersampled. Though the oversampled pixels do not represent a

problem, the undersampling at the periphery could lead to aIiasing of the underlying image

function.

5.1.2 SpatiaIly-Variant Filter to Remove Possible Aliasing

In 1997, Thomton and Sangwine provided a means of removing the possibility of aliasing

due to the undersarnpling inherent in a typicaI log-polar transformation. Essentially the

implementation prevents aIiasing from occurring in the first instance by sampling the entire

image at or above twice the Nyquist frequency. Whereas in a typicallog-polar

transformation the outermost circumference is the most undersampled, in Thomton and

Sangwine's implementation, the outermost circumference is sampled such that no pixels

are missed. Consequently aIllesser circumferences are oversampled, but, as mentioned

earlier, this oversampling poses no danger of aliasing. In order to accomplish this, the

angular sampling interval is increased approximately threefold such that a 256x256 image

now results in a S05x256 array. The new log-polar sampling grid, adapted from Thornton
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• and Sangwine [1997] is represented in Figure 5-3 (compare this to the 256x256 log-polar

sampling grid shawn earlier in section 4.5 as Figure 4-4):

Figure 5-3: S05x256 log-polar
sampling grid (adapted from
Thomton and Sangwine [1997»

Figure 4-4: Log-polar grid (adapted
(rom Thomton (1998))

•

This array is then filtered to average every two to three adjacent pixels on a circumference

and downsampled back ta the 256x256 image. Averaging the pixels in the oversampled

image enables the downsampled image to be representative of the oversampled and non­

aliased image function. The final result is a spatially-variant filtered image ofthe log-polar

transformed original with any possible aliasing having been removed in the process.

5.2 Leakage

Another problem with the Founer-Mellin transfonn is leakage. Leakage results from

discontinuities in the input function to the DFT. In the application of the Fourier-Mellin

transform in this thesis, there are two forms ofdiscontinuity present in the input to the

DFT: 1) there is discontinuity between the object (the foreground) in the image and its

background, that is, at the object's edges; and 2) there is discontinuity at the borders of

the entire image, that is, at the image's edges. The discontinuity between the image object

(foreground) and background is self-evident; it is simply a sharp increase (if the

background is darker than the foreground) in the pixel intensity at the edge of the object
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• with its background. The discontinuity resulting from the borders of the entire image,

however, is not as obvious. This latter discontinuity results from the periodicity of the

DFT, described in section 3.3.1 and can he explained as follows: the DFT views its input

signal (and output signal) as being periodic and infinite. In the present implementation, the

input happens to he a two-dimensional signal, that ofan image. The consequences are that

the DFT views the image as ifits left and right sides as weil as its bottom and top sides

were joined together. In other words, it views the input image as being attached ta itself

on all sides and repeating infinitely. Figure 5-4, adapted from Baxes [1994], better

illustrates this phenomenon:
•
•
•

• • •

Discontinuities ,/
where images meet

•
•
•

• ••

•

Figure 5-4: Periodicity of OFf input image (adapted from Baxes (19941)

The problem, of course, is that an image is not normally periodic or continuous - it does

not repeat itself and its bottom and top, left and right sides do not normally match each

other. As a result, the borders of an image are viewed by the DFT as discontinuities in the

image function [Baxes, 1994; Pratt, 1991; Lim, 1990]. Both the discontinuities from the

abject edge and those from the image border will corrupt the results of the DFT of the

image and will thus lead to errors when we attempt ta compare otherwise translation-,

rotation- and scale-invariant Fourier-Mellin image transforms [Reitbock and Altmann,

1984].
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• To see how the DFT ofthe image will be affected by these discontinuities and aIso how

we cao decrease their negative effects, we can model the phenomena mathematicaIly. In

essence, the discontinuities can be seen as resulting from the image function being

multiplied by a rectangular function that has a value of 1everywhere the image object and

image exist and zero where they do not. The DFT ofthe rectangular function is the Sinc

function [Smith, 1997]. This funetion has the general forro sin(x )1x and is represented in

Figure 5-5 (adapted from Smith [1997]).

Spatial DOD1a.i:n.

Rec'tangu.lar
fu.n.c1iioD.

f(x) 1

o

Freque:n.cy DOD1a.in.

Sin.c
fu.n.c'tion.

~(X)~
x

•

Figure 5-5: Rectangular and Sine functions (adapted from Smith [1997])

The Sinc function cao be seen as having one large mainlobe and smaller sidelobes. As

pointed out earlier in section 3.3.5, multiplication in the spatial- or time-domain is

equivalent to convolution in the frequency domaine As a result, when we multiply our

image object and image by the rectangular function and take the DFT ofthe result, this is

equivalent to a convolution of the DFT of our image function with the DFT ofthe

rectangular function, which in the frequency domain is the Sinc function. Our image DFT

becomes very corrupted by the Sinc function. Indeed, the frequencies that result from the

DFT ofour image become spread out due ta the convolution with the sidelobes of the

Sine function. This spreading out ofour image frequencies to other image frequencies is

termed leakage, Le. the frequencies from one particular location "leak" into another.

Leakage degrades the results of our Fourier-Mellin transform significantly since we take

notjust one, but two DFTs during the Fourier-Mellin transfo~ making comparisons for

similarity between image frequencies very diflicult. Thus, we must limit the error due to

leakage as much as possible.
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5.2. 1 Reducing Leakage by Windowing

In order to reduee leakage, we need to reduee the sidelobes of the Sinc funetion. One of

the ways we ean do this is to multiply our image function with a windowing or weighting

function, the DFT ofwhich has reduced sidelobes compared to those of the Sine function

[Harris, 1978]. This is the frequency domain solution to the problem. An alternative way

to examine the problem, that is, in the spatial domain, is to find a windowing or weighting

function that - instead of having a sharp eutoff from zero to 1 and then 1 to zero as does

the rectangular function - has a graduai decrease towards a common value.

Multiplyjng such a windowing or weighting function with our image function would: 1)

make the image object function' s foreground graduaIly reach a common value with its

background, eliminating the sharp edge between the object and its background; and

likewise 2) make the image function's border gradually reach a common value with its

opposite side, the side to which the DFT believes it is attached.

Figure 5-6, adapted from Pratt [1991], shows a very popular window, the Hamming

window funetion in the one-dimensional case:

Spatial Domain Frequency Domain

Hamming Window

f(X):[/ '\J .. F(x) ""----- --'

x x

Figure 5-6: One-dimensional Hamming window (adapted from Pratt [(991))

And the following equation, Equation 5-1, modified from Pratt [1991], defines the one-

dimensionaI Hamming window funetion:

J(x) = 0.54- Oo46CO{ ~~\) eq. 5-1, where O:s; x:s; N-\

and x represents the input sample point to be windowed; N is the total number of
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sampling points in the discrete signaI input to the DFT.

Ifwe compare the spatial-domain representation ofthe Hamming window (Figure 5-6) to

the previously illllstrated rectangular window (Figure 5-5), we see that the ends of the

Hamming window gradually taper to a common value near o. If this function is mllitiplied

by the image function at the correct position, then the object edge and borders of the

image will also gradllally taper to a common value near zero. AIso, though it is not

obviaus in Figure 5-6, the Hamming window's frequency domain representation has much

lower sidelobes than does the rectangular window. The tradeoff is that the Hamming

window's mainlobe is broader than the rectangular window's mainlobe. As a result, it

would be more difficult ta distinguish lower frequency components from each other. This

tradeoff is typical ofaIl window functions; that is, a window function with very small

sidelobes, producing little leakage at the higher frequencies, typically bas a broader

mainlobe, resulting in more leakage at the lower frequencies, than the rectangular

function. In fact, windowing or weighting functions are usually rated on the performance

tradeoffs between broad mainlobes and small sidelobes and are, therefore, application

specific; in sorne applications, for instance, an investigator May be exclusively interested in

the higher frequency components of the DFT and would, therefore, choose a windowing

function that had very small sidelobes, llnconcemed about the concomitant broad

mainlobe. Sorne even argue the choice ofa window is unimportant as long as one ofthem

is used, indicating most windows achieve relatively the same results [press et al., 1986].

The Hamming window is a good compromise [Harris, 1978] and has been implemented in

this thesis.

5.2.2 Implementation of the Hamming Window

Unfortunately, we are unable to apply the Hamming windowing function in the tirst case

ofleakage, that resulting from the object edge discontinuity. This is due ta the fact that we

do not know where the image abject begins and ends and, thus, do not know where to

apply the window. As an alternative, we implement the trivial solution of setting the
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background intensity to the average pixel intensity ofthe object. Now the change in pixel

intensity in going from background to object is less severe - producing less leakage ­

though not as gradual a change as could be achieved in the application ofa window. In the

second case of leakage, though, that resulting from the border effect of the image, we are

able to apply the Hamming window function, since we do know where the image itself

begÏns and ends. Note, however, that we need only apply the window to the image after it

has been log-polar transformed and only in the radial component (vertical direction). The

reasons for this are as follows: first1y, the input to the first DFT is a leafimage on a solid

background, that is, the left, right, top and bottom borders ail match with one another;

there are, therefore, no discontinuities at the borders between the DFT-viewed periodic

array of images and windowing becomes unnecessary. Secondly, though it is necessary to

window the log-polar transformed image before inputting it to the second DFT, it is ooly

necessary to window the non-continuous, exponential radial component, r, since the

angular component, () , is indeed continuous [Thomton, 1998]; that is, the angular

component, () , varies on the far Ieft side of the log-polar transfonned image from 0 to the

far right side at 2K-I, which- in the DFT-viewed periodic array of images - again

borders 0, i.e. the image data in the angular component form a continuous, periodic circle,

one end matching the other. This is not the case, however, for the exponential radial

component, r, the beginning and ending ofwhich do not match (the top and bottom

portions of the log-polar transformed image do not match). Thus, windowing becomes

necessary.

Ta summarise, then, in order to reduce the Ieakage in the DFT caused by the

discontinuities at the edges of the abject in the image, the background is set to the average

pixel intensity of the image object. Ta reduce leakage caused by the border effect ofthe

image, we multiply the image input function's log-polar transformed radial component by

the Hamming windowing function defined by Equation 5-1. In both cases, leakage will not

have been completely removed, though it will have been reduced substantially.
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5.3 Interpolation

In the digital implementation ofthe Fourier-Mellin transform, interpolation is required

during the log-polar sampling of the image. The log-polar sampling will result in non­

integer row and column image indices; however, all pixels in the image are located ooly at

integer-valued indices. As a result, sorne fonn ofinterpolation is necessary and this will, of

course, introduce sorne measure oferror into the Fourier-Mellin transform. The simplest

interpolation approach is ta choose the closest integer-valued indices, termed nearest­

neighbour, and assign these as points to be included in the log-polar re-sampled image.

Nearest-neighbour interpolation, however, can result in a spatial offset error by as much as

Ji / 2 pixel units [Pratt 1991]. A better method is to use bilinear interpolation. Bilinear

interpolation provides for linearly interpolating along each row ofan image and then,

using the result, linearly interpolating along each column. The pixel value so found is an

estimate of its four surrounding neighbours.
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6. Implementation of the Fourier-MeUin Transform

Casasent and Psaitis [1977], Altmann and Reitbock [1984], Thornton and Sangwine

[1997], Thornton [1998] and Milanese and Cherbuliez [1999] ail implemented variations

of the Fourier-Mellin transform. Elements ofeach of these implementations have been

used in this thesis in order ta obtain a Fourier-Mellin translation-, rotation- and scale­

invariant descriptor ofan image ofa biological abject. This is performed as follows:

Step 1: We set the background of each image ta the average pixel intensity of the image

object. This reduces leakage attributable ta the image abject edges as described in section

5.2.2. We then take the Fourier transform of the two images that are to be compared and

retain only the magnitude. This step has two beneficial consequences: firstly, it removes

any shift (or translational) differences between the two images. This means that if the two

images contain identical objects but that each abject is located in a different portion of the

image, their Fourier-transform magnitudes will nevertheless be identical due to the shift

invariance ofthe magnitude ofthe Fourier transform. Secondly, the Fourier-transfonned

magnitudes of the two images will now be centered [Thornton, 1998; Altmann and

Reitbock, 1984]. This is beneficial because the magnitude williater undergo a coordinate

change from Cartesian to log-polar that is more easily implemented if it is centered.

Step 2: The magnitudes of the two images are DOW shift- (or translation) invariant. The

magnitude is then nonnalized by dividing each frequency component by its magnitude at

the zeroth frequency. This cancels the multiplicative amplitude differences in pixel

intensity that would have occurred if the image was scaled. [Altmann and Reitbock, 1984].

We now take the first step ta enable rotation- and scale-invariance. To reiterate, we want

any rotation and scaling in the images to be expressed as shifts that can be removed by

taking the Fourier-transform and considering only the magnitude. The Mellin transfonn is

scale-invariant. In order ta obtain the Mellin transform, we can use the Fourier transform

ofa function whose input is expressed on an exponential scale. We also saw that rotation-
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invariance cao be achieved by converting the function coordinate system to a polar

coordinate system and taking the Fourier-transform magnitude ofthat function. Both the

scale-invariance of the Mellin transform and the rotation-invariance ofa polar change and

Fourier transform can be achieved, then, in one step by converting the input image

function from a Cartesian coordinate system to a log-polar coordinate system via the log­

polar transformation described in sections 4.5 and 4.6 and taking its Fourier transform.

Thus, we take the log-polar transform of the image, not forgetting to then apply the

spatially-variant tilter, proposed by Thomton and Sangwine [1997], to reduce any aliasing

due to undersampling as described in section 5.1.2. The result is the non-aliased function

f(O,expr) .

Step 3: We have now converted all rotation and scaIe changes into shifts. As weil, any

translation changes were removed after the first Fourier-transform by considering only the

magnitude. In order to remove the rotation and scale changes that were converted to

shifts, we now, again, take another Fourier transform of the data and conserve the

magnitude, remembering to first window the data in the exp0 nential radial component

with the Harnming window function to reduce the amount of leakage as described in

section 5.2.2. This magnitude should DOW be completely translation-, rotation- and scaIe­

invariant. Assuming the two images of the same abject were different in sorne translation,

rotation or scale, their tinal Fourier-Mellin magnitudes should DOW be identicaI.
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7. Experimental Metbodology

ln the present application, the Fourier-Mellin transfonn has been used to compare images

ofdifferent leaves that have been translated, rotated and scaled. There are three reasons

why leaves were chosen as the abjects used ta demonstrate the effectiveness of the

Fourier-Mellin transform. Firstly, it was desirable ta apply the Fourier-Mellin transform to

an application in agriculture; in this case, the Fourier-Mellin transform is being used as a

machine vision analysis tooi to aid in the identification ofa biological object. Secondly,

leaves are one of the indicators ofplant speciation [Guyer, 1988]; therefore, being able to

recognize a leaf aids us in identifying a plant ofa particular species. Thirdly, Ieaves are

relatively thin and fIat such that two-dimensional images of leaves provide good

representations of the actual object without having to deal with the encumbrances

associated with variations in illumination, e.g. large shadows created by ridges or clefts in

the abject that would introduce additional difficulties into the recognition process.

Seven species of plant leaves were used in the experiment: avocado (Persea americana),

trembling aspen (Populus tremu/oides), lamb's-quarter (Chenopodium alhum), Iinden

(Tilia americana), silver maple (Acer saccharimlm), plantain (Plan/ago major) and sumac

leafIets (Rhus typhina). AlI plant species, other than avocado, are native to the Montreal

region; the specimens used were collected from plants located in Jeanne-Mance Par~

Montreal, Quebec. The avocado Ieaves were collected from an avocado house plant. A

leaf from each of the above-mentioned species, each between 4 and 6 cm in length, was

placed on a fIatbed scanner, scanned and digitized providing digital images ofa resolution

of29 pixels per centimetre. AlI images contained the entire leaf. The final image size was

maintained at 256x256 pixels. The following are examples of leaf images used in the

experiment:
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Figure 7-1:
Aspen

Figure 7-2:
Avocado

Figure 7-3:
Lamb's-quarter

•Figure 7-4:
Linden

Figure 7-5:
Maple

Figure 7-6:
Plantain

Figure 7-7:
Sumac

•

The following translated, rotated and scaied variations of leaves were taken: each leafwas

rotated at approximately 12 degree intervals beginning at 12 degrees and ending at 72

degrees; each rotation was performed at a new location on the scanner. The leaves were

rotated and translated by hand and re-scanned to avoid interpolation errors arising from

attempting to rotate images using software. Leaves were then scaled between 40 percent

of the original leaf size to 160 percent the original leaf size. These scaling limits were

chosen for two reasons: firstlyJ on a practicai note, scaling leaves more than 160 percent

often resuited in the leaf exceeding the 256x256 pixel image size used in the experiments;

and secondly, the literature indicates that the Fourier-Mellin transfonn is effective ooly

when the object scaie is less than 150 percent and greater than 50 percent. [Reddyand

Chatterji, 1996; Raman and Desai, 1995; Chen et al. [1994], and Altmann and Reitbôck,

1984). Software (Jasc Software's Paint Shop Pro, version 5.03) was used to scaie the leaf

images since errors due to interpolation in scaling images are legs severe. The leaf abjects

in the image were then measured for their approximate average pixel intensity. As

described in section 5.2.2, this intensity value was used to produce a unifonn background
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around the leafobject foreground in order to reduce leakage. Leaf images were then input

to the Fourier-Mellin transform. The transform was coded using Microsoft Visual C++

version 6.0. The radix-2 FFT implementation was adapted from code appearing in Smith

[1997]. Salient components of the Fourier-Mellin algorithm's program code are listed in

the appendices ofthis thesis.

In total, 203 leaf image comparisons were made. Each comparison required approximately

10 seconds in the debug software version of the programme, operating on an Intel

Pentiurn l, 200 MHz system with 64 l\1B ofRAM. The comparisons undertaken were as

follows. Each leaf image within a species was compared to:

a) every translated and rotated version of the same leaf;

b) every rotated and scaled version of the same leaf;

c) every other plant species' leafand three additional samples of the same species' plant

leaf.

7. 1 Euclidean Distance Measurement

The Fourier-Mellin transform of an image results in 0 to N -1 image frequencies. For a

256x256 image, N =256 x 256 =65536 ; thus the amplitude of 65,536 frequencies from

each image are available for camparison. A simple and fast method of evaluating

frequency amplitude similarity is ta use the Euclidean distance function [Milanese and

Cherbuliez, 1999]. In our implementation, we define the Euclidean distance as (Equation

7-1):

where lm A and lm B are the two images being campared and f represents the individual

frequency index that runs from 0 to N - 1. In using the Euclidean distance function as a

measure of image similarity, images that are identical will have a Euclidean distance, dE'

ofzero.
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8. Results

The tables (1, 2 and 3) on page 49 of this thesis summarise the experimental results. AlI

tables report measures of image similarity using the Euclidean distance function described

in Equation 7-1. Table 1 reports the results ofcomparisons of original (untranslated,

unrotated and unscaled) leaf images with their rotated and translated counterparts at 12

degree intervals, ranging from 0 degrees' to 72 degrees' rotation. Table 2 reports the

results of comparisons of original (untranslated, unrotated and unscaled) leaf images with

counterpart leaf images that have ail been rotated 48 degrees and scaled between 40

percent and 160 percent oftheir original size. (48 degrees' rotation was chosen to ensure

the whole leafwould still fit within the 256x256 pixel image when scaled maximally).

Table 3 reports the results ofcomparisons of: 1) between-species leaf images, and 2)

samples within the same species (last 3 columns).

From table 1, we observe that untranslated, unrotated and unscaled versions of the leaf

images correspond very weil with their translated and rotated versions. For instance, ifwe

were to set the threshold for recognition at a Euclidean distance of 10, we would observe

that all translated and rotated leaves would be recognized. There do not seem to be any

noticeable trends associated with the extent of rotation, except that the Euclidean distance

is at a minimum in all cases when the degree of rotation is at its minimum of 12 degrees.

From table 2, we see a marked ditference when original images are compared with their

scaled and rotated counterparts. Ideally, we should again set the recognition threshold at a

Euclidean distance of lOin order to include all the previous instances of recognition

among rotated leaves. Ifwe do this, we would find that ooly two out of the seven leaf

species generally showed invariance to both scale and rotation, namely the aspen and

sumac leaves. These two plant species' leaves are recognized at ail scales within 50

percent to 130 percent, with the sumac plant leaves being recognized at a scale as low as

40 percent and as high as 140 percent. The same can not be said for leaves ofother plant
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species, where the rate of recognition is poor. In these cases, recognition is generally not

achieved beyond a scale of 120 percent nor below a scale of 80 percent, and in one case,

that ofthe linden plant, recognition is not achieved in any scaled version of the leaf. Unlike

the observed results for rotation only, however, there does seem to be a trend in the

recognition of scaled and rotated leaves: it is obvious that as the scale is increased or

decreased, the rate of recognition faIls off rapidly; Euclidean distances always increase

with an increase or decrease in scale, reaching maximums at the highest and lowest scaIes.

From table 3, we observe that in most cases ofcomparing leafimages ofone plant species

to another plant species the Fourier-Mellin aIgorithm does not seem to allow us to

differentiate arnong most of the various plants merely by comparing images of their leaves.

The exceptions to this generality are: 1) the linden plant leaf, against which the system is

able ta differentiate aIl other plant species' leaves, and 2) the maple plant leaf, which

records a minimum Euclidean distance difference of20.34 when compared with the

avocado plant' s leaf. This Euclidean distance value is generally above most other

Euclidean distance comparisons. Other between-species' plant leaf comparisons result in

intermediate Euclidean distance values - ail ofwhich are less than 20 - and, as a result,

do not indicate that the system found large differences in the images of the various plant

species' leaves. FinaIly, when we examine the results for the same-species' additionalleaf

sample comparisons ("Within Species Comparison"-last three columns in table 3), it

becomes evident that this thesis's implementation of the Fourier-Mellin algorithm was

unable to recognize leaf images of the same species. This, however, is not surprising

considering the poor results for the rotated and scaled leaf images; we would expect

additionaIleaf samples from the sarne plant species to exhibit variations in scaie and,

therefore, large Euclidean distances are to be expected here among the within-species

comparisons as weil.
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Measures of Image Similarity

Translatcd and Rotatcd

Leaf .0 IZo ~.. o ~6° ~So ~Oo ~Zo

~spen 0.00 4.31 4.92 5.32 4.91 5.16 4.9~

r\vocado 0.00 3.7 5.13 6.22 6.37 6.19 6.m
:..amb's-Quarter 0.00 1.92 2.84 3.16 3.34 3.41 3.3~

...inden 0.00 6.12 9.22 8.1 8.79 9.54 9.1:
\'tapie 0.00 5.66 7.61 8.31 8.42 8.16 8.2~

Plantain 0.00 2.31 3.14 3.68 4.01 2.51 2.82
Sumac 0.00 2.42 2.94 3.13 3.44 3.21 3.2"
Table 1: Original (untranslated, unrotatcd, unscaled) versus translated and rotated leaf images

•

~
\0

Rotated and Scalcd

Leaf iUlo 400/0 18° 50% ISO 600/0 ~So 700/0 ~So SO% ~SD 900/0 ISO 1100/0 ISO lZ00/0 ~So 1300/0 ~So 1400/0 ~So 1500/0 ~So 1600/0
Aspen 10.13 9.26 8.33 6.6 5.74 4.89 5.65 7.24 8.67 11.3 14.26 16.81
t\.vocado 23 20.42 17.09 14.8l 10.86 8.05 7.11 9.74 14.02 17.46 21.86 26.1
Lamb's-quarter 16.4 14.43 12.05 9.8 6.5 4.6 5.8 l 8.22 12.8 16.14 20.49 24.3~

l.-inden 114.3 98.18 78.83 60.2' 40.18 20.57 20.8C 37.64 54.14 67.19 79.5 91.5~

Maple 29.1 23.72 18.05 13.71 10.95 9.12 10.2 13.78 16.97 19.49 21.6 23.4(
Plantain 16J 14.3 11.21 8.13 5.55 2.99 8.14 12.55 15.61 20.57 25.92 31."
Sumac 7.26 6.08 4.91 3.37 2.94 2.67 4.5li 6.5a 7.41 9.42 10.8li 12.5
Table 2: Original (untranslatcd, unrotated and unsealcd) versus rotated and scalcd Icaf images

Between Spccics Comparison Within Specics Comparison

~af ~spcn ~vocado lJamb's- ~inden ~aple Plantain Sumac Sample 2 Sample 3 Sample ..
lIuarter

A.spen 0.00 19.45 12.54 139.19 36.82 13.32 6.34 11.26 29.73 83.61
r\vocado 0.00 9.29 121.89 20.34 8.31 18.14 11.22 43.' 43.62
l,.amb's-quarter 0.00 128.65 26.83 4.77 11.01 38.68 14.51 18.~

~inden 0.00 104.06 127.59 137.55 21.7~ Il.2' 49.3CJ
Maole 0.00 25.35 35.64 20.01 21.73 14.~

Plantain 0.00 12.02 16.78 23.54 23.0~

Sumac 0.00 32.81 47.96 60.2~

Table 3: Comparison of originallcaf images with: a) othcr Sl)ccics leaf images ("Between SI)ccics Comparison"), and
b) additional samples of same SI)ccies' plant leaf images ("Within Species Coml)arison")
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9. Discussion

Overall, the application of the Fourier-Mellin algorithm used to recognize leafimages

among their translated, rotated and scaled counterparts was not very robust. Though

excellent results were reported when the leaf image was merely translated and rotated,

generally poor results arose in the case of rotated and scaled leaf images as weil as in

comparisons with the between- and within-species groups. The system's failure to

recognize scaIed leaf images is particularly acute since this may be the reason why there

was a lack of recognition among additionaI samples ofsame plant species' leaves, leaves

that would not likely have been the same size as the originaIleaf It is difficult to stipulate

exactly why this failure to recognize scaIe differences occurred. One obvious reason is that

the image frequencies may have been corrupted by leakage since, as was indicated in

section 5.2.2, this could ooly be poorly controlled, especiaIly at the object image edges. As

weIl, further reducing object-edge leakage may not be possible. For instance, determining

the image object boundaries to enable application ofa windowing function is a large

problem in its own right. While a trivial solution might entail using edge detection, perhaps

enabling a rough mapping of the object based on the assumption that the object boundary

would equate to the longest edge, even ifwe knew exactly where the object were located

in the image, it would still be necessary to derive a windowing function that could be

applied symmetrically to any and ail variations of image objects such that they could blend

graduaIly into their individual backgrounds - certainly not an easy feat and, more than

Iikely, not possible. A more forgiving solution might be to limit the size of the allowable

scaling of the object and apply various windowing functions according to each image

object's approximate scale. This method, combined with setting the background to the

object image's average pixel intensity, may provide better results than relying solely on the

present implementation for leakage reduction. The results may aIso be further improved by

applying a different windowing function to decrease the border effect leakage, perhaps one

with a narrower mainlobe as most of the magnitude information of an image seems to be

contained in the lower frequencies [Lim, 1990]. Though, as mentioned earlier in section
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5.2. l, the literature indicates there are only smalI differeoces between various windows,

this would indeed be the least difficult change to implement and may, nevertheless, be

worthwhile attempting. Another alternative might even be to apply various windows and

average the results. Doing 50 would reduce the efficiency of the algorithm, doubling the

calculation time with every newly applied window, but the benefits might far outweigh the

speed 1055.

Of course another obvious possibility for the scale recognition failure is that the variation

within each leaf species is simply too great at the whole-Ieaf image level resolutioD. The

algorithm is perhaps unable to capture the light intensity frequency changes that ail whole­

leaf image specimens ofa single species have in commoo. A solution might be to examine

leaf images at a much greater resolution. In other words, an attempt could be made to

digitize leaf images at a much higher scale of magnification. In doing so, we would seek to

classify a common texture or pattern that would be particular to but one species of leaf.

Analysing such a pattern or texture would not, however, be without its own set of

difficulties. For instance, much experimentation would be required to determine the

necessary image magnification that would provide this invariant pattern common to allleaf

variations within a single plant species. Additionally, it is entirely possible, even likely, that

the necessary image magnification would be species dependent and, therefore, would have

to be determined experimentally for each and every plant species' leaf ..but, then, such are

the difficulties involved in machine vision.

Yet another reason for the recognition process's shortcomings might be the method used

for evaluating similarity between the frequency domains of the two images; relying on the

Euclidean distance function to provide an accurate measurement of the differences in

image frequency domains may be tlawed depending on the frequency representation of the

image object we wish to identify. The Euclidean distance measurement is, after all, a

weighted measure: it is very much dependent on ail of the frequencies in the image, not

just those that represent the object (in our case, the leaf). In the present application, it is
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calculated by comparing each of the 65,536 different frequencies and adding any

differences together. Though simple and fast, the Euclidean distance function would prove

to be a poor estimate of image object content if the objects in the images - the leaves ­

were to represent ooly a small portion ofthe total frequency content of the image and their

frequencies happened to be made up of low amplitudes relative to the rest of the image. It

was not possible, however, to determine ifthis was indeed the case. Ideally, we would like

to compare ooly those frequencies associated with the image object. However, at this

point in the evolution ofmachine vision, there does not seem ta be an accurate method of

determining a priori the frequencies responsible for generating the image object alone. An

alternative method ofcomparing images is to use correlation, a variant of convolution

which, in the frequency domain, multiplies the conjugate of one image with the second

image. Correlation is, however, much more complicated to implement, requires much

longer computation and, like the Euclidean distance measure, requires the determination

of a threshold at which abjects are either recognized or not. Nevertheless, it May prove

worthwhile to attempt to use correlation as a method of image frequency comparison.

Finally, as was mentioned in section 3.6.3, a comparison was made between the

information contained in the phase to that contained in the magnitude of an image. In

short, it seems the phase contains much of the spatial information contained in an image,

that is, where edges of abjects begjn and end as weil as where an abject is situated in the

image proper. Thus, phase information could serve us weil in both differentiating between

plant leaves ofdifferent species - based on shape differences - as weil as in recognising

plant leaves witbin the same species - based on shape similarities. The problem, of course,

is that the phase is neither translation-, rotation- nor scale-invariant, unlike the Fourier­

Mellin magnitude. A solution would be to calculate the rotation and scale differences of

one image compared to the other, associate these differences somehow with the phase of

the compared image and then correlate the phases ofboth images. Thomton [1998]

demonstrates just tbis in her thesis on colour object recognition. Though the algorithm is

much more complicated, time consuming and was not applied towards the recognition of
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biological objects, the method may indeed prove more effective in comparing different

species of plants' leaves because it does not discard valuable information contained in the

objects' phase images.
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10. Summary and Conclusion

In this thesis the Fourier-Mellin algorithm was implemented to attempt to recognise plant

leaf images regardless of their translation, rotation or scale. The results indicated it was

possible using the transform to recognise plant leaf images despite changes in translation

and rotation; however, the rate of recognition was poor for scaIed and rotated plant leaf

images as weil as for additional samples of same-species plant leaf images. Differentiation

was aIso inadequate between images ofvarious species of plant leaves.

Future efforts ta improve the success of recognition and differentiation of the present

implementation of the Fourier-Mellin algorithm include: 1) seeking better methods of

reducing leakage resulting from the edges of the object image and the image borders; 2)

applying the transform to leaf images at a magnified resolution in order to better represent

the texture of the leaf; 3) using correlation instead ofEuclidean distance to measure the

similarity between leaf images, and 4) attempting to include the phase of the leaf image

along with the Fourier-Mellin magnitude ta better characterize the leaf image object.

Barring the complete success ofthese measures, it is entirely possible the Fourier-Mellin

tranform can not tolerate the variation found in images of the biologjcal objects - the

leaves - considered in this thesis; no previous implementation of the transfonn found in

the literature, for instance, was ever applied towards the recognition ofbiologjcal objects.

If the biological variation of the leaves was indeed the reason for the transform's failure,

then it is obvious much more research is required to provide for a more robust Fourier­

Mellin implementation. Moreover, though a better implementation of the Fourier-Mellin

aIgorithm may be possible, as mentioned in the introduction of this thesis it would be

foolish to expect a single algorithm to provide for complete recognition of a biological

object. The Fourier-Mellin algorithm should, therefore, be considered as one among many

analysis tools in a general machine vision system used to recognise biological objects.
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12. Appendices: Software Programme Code

Ali of the software was written and compiled using Microsoft Visual C++ version 6.0.

Included here are salient portions ofthe programme code that relate specifically to the:

FFT implementation (appendix A); the log-polar transformation, bilinear interpolation and

application ofthe spatially-variant anti-aliasing tilter (appendix B); the application of the

Hamming window (appendix C), and the sequence ofsteps to perform the Fourier-Mellin

transformation (appendix 0). AIso included in appendix E is a display of the programme

interface.

Appendix A: FIT implementation

I!S~ep l =f FFT: decomposi~ion =f N pcin~ spa~ial domain signal
Il (cepcesented by Real and rmag arcays) in1:o N signaIs in frequency damain
Ileach containing one point. Real and rmag accay elements must be placed in an crder
I/~ha~ =ocresponds ta swapping indices ~ha~ ace bit reversals of each G~her - c~peat for
I/columns

void Fourier::Bit reVeCse cows(unsigned ir.t. l:'Ow)
[ --

IJnsigned int. Bit._ceversed_index;

//loop thccugh each column
foc (unsigned int Ociginal index=O;Ociginal index<widt.h;Original index++)
{ - - -

Bit_cevecsed_index = Revecse_bi~lOriginal_index);

/IOnly swap if indexes are no~ equal and wece not swapped earlier (elements ·...ould
I/have been swapped earlier if the Bit cevecsed index returned wece smallec than
Iithe Real arcay index) -
if (8it_ceversed=index>Ociginal_index)

swap(Real biD base[rcwl [Original index),
Real biD base[rowl [Bi~ reversed index!);

swapllmag biD base!rowj [Original index),
Imag_biD_base[row! [Bit_revecsed_indexl j;

I/Fxn ~o pecform bit reversaI for 2D da~a

IJnsigned in~ Fourier: :Reverse_bitl'lnsigned int arcay_index)
{

unsigned in~ bi~ rev=O, upperlimi~=height-l;

/ /We Wan~ ~o limIt the values from O->si;:e-1 llowet:' bound->'lpper bvLlnd of inpu~ arrayl
//The lower bound -> upper bound must be a power of 2 li.e. 2 4 e 16 32 64 1:8 256)
whileluppeclimitl
(

bit rev = {bit cev « 11 1 (array_index '" ll;
arcay index »; 1;
upperlimit »= 1;

}
return bit_rev;
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I/Step 2 of FFT: synthesis of frequency signaIs: combines sqrt(image_sizel
Ilbit-reversed points into their frequencies
IIOc rows then repeat for coll~ns

void Fcurier: :8utterfly_rows {unsigned int rowl
{

Ilwe do log2(sqrt(image si=e)) number of outer loops==sqrtCimage size) in bits
Ilie. we do number of cycles equai bit number of elements in each row/coi
lJnsigned lnt cycles = (loglO<heightl/loglO(2));

Iideclare indices:
unsigned int x, y, z, y_minus_one, index;

Iideclare local variables:
double Real mult, Imag mult, Real_ofs, Imag_ofs, Real_cos, Imag_sin;
unsigned inc powerbit;-

Illoop from l ta height or width in bits
for(x=l;x<=cycles;x++)
{

powerbit (unsigned intI pow(Z, xl;llvalues trom 2->height oc width
Real cos cos( (double) Pli (doublel (powerbit/21);
Imag:s in -sin ( (double l Pli Cdouble) lpowerbitl 2) ) ;
Real mul t 1. 0;
Imag:mult = 0.0;

forty=1;y<=(pcwerbit/2);y++)lllocp for each sub DFT

y minus one=y-I;
IIIoop for each "butterfly"
for<z=y minus one; z<width; z+=powerbitl
( - -

index = z + (powerbit/2l;
Real ofs = Real blD base[rowl lir.dexl·Real mult ­

Imag biO base[rowl !index)·Imag mult;
Imag ofs-= Rëal biD base[rowl [indexl 9lmag mult +

Imag biO base[rowl [index)9Real muIt; -
Real biD-basë[rowl [index)=Real biO-base[rowl [=)-Real ofs;
Imag-biD-base[rowl [index)=Imag-biD-base[rowl [=I-Imag-ofs;
Real-biD-base[row] [zl Real bio base[rowj [zl + Real-oEs;
Imag:biD:base[row! [zl = Imag:biO:base[rowl [z1 + Imag=ofs;

Real oEs = Real mult;
Real-mult Real oEs 9 Real cos - !mag muit 9 Imag sin;
Imag:mult Real=ofs· Imag=sin + Imag:mult • Real:cos;
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Appendix B: Code for log-polar transformation, bilinear interpolation and
application of anti-aliasing filter

/+runtion to perform:

1) log-polar transformation on rFT magnitude:
Takes fFT amplitude spectrum (magnitude) values from Cartesian coordinate system and
transforms them on to a log-polar coordinate system.
210versampling is performed an each radius by increasing the angular
sampling intervals to SampIingSize (==height or width of image) X PI.
310versampled input is then filtered using moving average fiiter mask
of apprcximately PI width (3) on each radius.
41:ina1 output 13 downsampled back ta SamplingSize X SampIingSize-sized
matrix for another rFT run.

Oversampling is Ilsed t:::l I:"emcve alias that weuld ct.herwise be caused
by I:"egillar LPT sampI ing. 1implemented acccrding ta Thornt.on and Sangwine [199711.

void COpsDoc::rM_Log_Polar_Tl:"ansfal:"mlfloat ++t.empPtr, fleat. ·+rMresult, WORD heightl
{

/IDeclare and assign height, widt.h of image ta height, width variables
WORD Input. ImageHeight, Input ImageWidth;
Input rmagëHeight Input ImageWidth = height;
dOllblë Oversample = PI;lldefine times mare than image height size we wish to sample

IIDeclare, allocate memory for a temp matrix for the Oversampled inp1lt. FIT magnitude
flcat ··FMtempPtr=biD_Matrix_unevenISampleSize, ((inti (SampleSize+Oversamplel));

I+Perform the log-polar transformation.
1. We have a matrix ta hald the log-polar transforrned data, passed ta thi3 fxn
as FM tempPtr. This array has 0 to SampleSize-l n'~er of rows and 0 to SampleSize-l
nUmber of columns.
Z. The log-polar transform samples points from the power spectnlI:I (magnitude lof
the rFT for an image. In sa doing it will sample points at the intersection of:
column numbel:" of 2PI divisions with row number of exponential rFT power spect~um

samplings.
3. Angular division samplings will accur every: 2Pr+colO/column-l, 2PI+coll/column-l,
2PI+~o13/calumn-l..•... 2PI·column-1/column (i.e. G->2PI-ll. As such, th1s is a linear
sampling.
4. Exponential division samplings will occur at exponential radial increments in the
original FFT power spectrum da~a. We de~ermine these divisions as follows:
rc~ an NxN FFT power spectrum dataset, we will sample from O... rha-l.
Max rha = maximum number of radii in the output log-polar transfol:"mation.
rho represents the exponential I:"adial sampling of the original FrT powel:" spectrurn.
If Rht = maximum radius possible in the original rFT power spectrum, then it will
be equal to (N/2)-1 in pixel height.
Ta determine which exponential radius, r, will be Ilsed as a :;ample intersection
point, we have the fcllowing relationship:

rho 1raw) = Rht ., (cow/Max_rho - 1)

where:

rcw varies from O....Max rho -1
Rht = N/2-l
Max rha = maximum numbel:" of radii in output log-polar array

N.B.
1) the centre point is never sampled, but it will contribute ta the sample if values
arecalculated by bilinear interpolation.
2) the first column and row (column 0 and raw 0) are not sampled.
No. 2 oecurs because in arder ta have the centl:"epoint (0 theta, a rho)
at N/2, N/2 he a true centrepoint , we must have a maximum I:"adius of IN/Z)-l and
in an NxN matl:"ix it wO'lld he impossible to have a true centre without eliminating
or adding one row and one column (because otherwlse the centrepoint occurs at
the joi~ing of the four quadrants, which is not a pixel location). We could
have added a row and a colurnn, reproducing data in it from their opposite sides,
but then the matrix size would be larger than the original power of 2 and no
further FFT could be performed without deleting the added row and column •
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The loss of the data from row 0, column 0 is not substantial because row 0
and column a repcesent data of the highest frequencies fram the FIT and are
lJsually sa small in amplit.ude as ta be negligible.

31 Bilinear interpolation is used for indices that occur bet.ween integec indices
Eilinear interpolat.ion formula according to Pcatt [19911.
Bilinear interp. is default unless user changes to neacest neighbour.
-/

//Define variables:
double rho, thet.a;//chc input radius, theta = input angle
double Rh!: = (Input ImageHeight/21-1;/lmaximum radius input in pixels -- regular LPT
do •.lb1e t-tax cho = SarnpleSi::e - 1; 1 /maximum number 0 f radii for:J1ltput (O->SampleSize-l)
int cx,Cy;ïICint x, y input matrix indices
f10at a, b, InterpX, InterpY;llb = decimal portion of x, a = decimal portion of y
int !ntX, IntY;II!ntX, IntY integer poctions of calculated x, y indices

Ilrho holds exponential radius value
I/t.heta holds angle
I/x, y indices te values in FIT power spectrl.lm array

IISample using bilinear interpolation
if(BilinearlnterpolatianFlag)
{

IICalculate indices and perform log-polar sampling
fcrn'lORD 'l = 0; 'l<SampleSize;IH+II/u is the row index and ma(:s te rho

for(~ORD v = Q;v<l (long) (SampleSize·Oversamplei l;v++)/Iv i5 the cclumn index and
/Imaps to theta

rho = pow(Rht, (u/Max rholl;/Ifor exponential sampling of radius
thet.a (2-PI-(doublêlVI/( (longl ISampleSize-Oversample});//calculate theta:

/Iruns from a to {2PI-1 angl.llar divisionl

IINearest.-neighbo'lr interpolation (used w/in Bilinear interpolation formula):

IICalculate rounded-r.o-nearest-integer indices to input FIT power spect.r'lm
Ileint global fxn. (defined in StdAfx.cppl rounds a double to nearest int
Cx Cintlllnput !mageHeight/21 + Irho·cosCthetal ) 1;llround to nearest

- I/integer
Cy Ciot( 1Input._ImageHeight/21 - (rho·sinlthetal );/Iround to nearest

Ilir.teger

IIBilinear interpolation:

IIFi~st get. the actual calculated floating point indices
InterpX (Input ImageHeight/2) + (rho·cos(thetaJ 1;
Inte~pY 1Input:ImageHeight/2) - (rho-sintthetal);

/IGet the int portions of x, y indices
IntX Cint) InterpX;
IntY = (int) Inte~pY;

//Get the decimal portions of the x, y indices
b (InterpX - IntXI;
a = (Ir.terpY - IntYI;

IIBilinea~ Interpolated pixel value of log-polar sampling
IIOnly use inte~polation if indices are valid (i.e. do not attempt
Iito address an index that does not exist in the matrixl
if( (IntY >= 01 && (IntX >= 01 && ({IntY + 11 < Input ImageHeight) &&

((IntX+1) < Input ImageHeightl1 -
FMtempPtr[u) [vJ = ((l-al+((Cl-bl·tempPtr[IntYJ [IntX]) +

(b+tempPtr[IntY] (IntX+1() 1 1 +
(a-{ (ll-bl+tempPtr[IntY+ll [IntXI 1 +

(b+tempPtr[IntY+ll [IntX+l) Il);

Ilif interpolated index lies outside of image realm then lJse eithe~
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//nearest-neighbour index (LPT sampling within image) or
//assign output matrix index a value of zero (LPT sampling outside image
Ilrealm)
else

/IIf sampling outside image realm, assign Q value
iflSampleEntirelmagel FMtempPtr[ul [vi = Q;/Ifor LPT sampling that

//encompasses entire image

/ /Index within image realm (regular LPT sampling)
el se FHtempPtr[l.l! [v! = tempPtr {CY!lCxl;

//Count number of times indices accur <:lutside of image realm
InvalidlndexCounter++;

} ;

I/Sample using nearest neighbo 1.. r interpolation
else
(

/ /Calculate indices and perform log-polar sampling
for(WORD u = 0; u<SampleSize;u++)//u is the raw index and maps ta rhe

for (WORD v = 0; v< ( (long 1 (SampleSize"Ovecsample 1 ) ; -"'H) / /v is the cc1'lmn inde:oe and
//maps to theta

cho = pow(Rht, (u/Max_rho));/Ifor expanential sampling cf radius
theta Z·PI"v/( (long) (SampleSize"Oversamplel );I/calculate theta: runs fccm

1/0 to (2PI-l angular division)

I/Nearest-neighbour interpola~ion:

I/Calculate rounded-to-nearest-integer indices to inp1lt FIT power spectrum
/ICint global fxn. (defined in StdAfx.cppl rounds a double to nearest int
ex Cint((Input ImageHeight/2) + (rho"ccs(thetaJ) );/Iround nearest integer
Cy = Cint(IInput=ImageHeight/ZI - (rho"sin(theta)) );/Iround nearest integer

/1.l1035ign indexed vaIlle from FIT power spectrum to log-polar tcansform array
FMtempPtr[ul [vI = tempPtr [CYl [Cx];

i;

IlE'ïlter r:he oversampled input a10ng each radius
Filtec(FMtempPtc);

IIDown5amp1e matcix bad; to cciginal input matri:oe size
for(WORD row = 0; row<SampleSize;row++)

/ISample evecy PI samples
forlWORD col = 0; col<SampleSize;col++)

FMresult[rowl [coll = FMtempPtr[rowl [l(long) (col"Oversample) l 1;

/IOeallocate memory for temporary over5ample matrix holder
DeAllocatelFMtempPtr,SampleSizel;

/IFxn ta filter the oversampled input in the radial direction
IIAn adaptation of the implementation for a "recursive" moving average filtec according to
//Smith [1997 1

void COpsDoc::F1lr:er(float ....originalPtrl
{

/IFor a size Eilter of n, the mask size 1s (Z"nl+l, so set n
//Mask size should be 3, because you want to average the oversampled pixels
//-- and it Was oversampled approx_ three times -- to produce one outP1lt pixel
WORD n = 1;
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I/Filr:er implemenr:at.ion is in one dimension sa '..re mlJst convert 20 dar:a Co 10 arr'iYs

IICreace a r:emporary 10 inpuC array
Eloat .. inpl.1CPr:r = oneD_float_Matrix(SampleSize • ( long 1 (SampleSi::e" PI) ) 1;

I/Remember che base addre5s of inpuc~t.r

floar: ·remember ~tr = inputPtr;

IICreat.e a ternpcrary 10 output array
float. "outputPtr = oneD_floac_Mat.rix(SarnpleSi::e .. (long) (SarnpleSi::e"PI)));

1 / Load IJp r:he 10 input array with r:he oüginal dar:a
~or(WORD row = O;row<SarnpleSi::e;row++)

for(WORD col = O;col« (long) (SampleSize"PI));col++)
.. inpllr:~tr++=originaIPr:r [rowl (col];

//Restore base address cf lnputPt.r
input.Ptr = rernembec_Pt.c;

I!Define and initialise an ac=urnular:cr
double .D..dd=O;

IIFind t.he firsr: point for the "recursive" filter lmiddle point cf t.he n-point. mask)
1112"nl+1 is t.he total mask si::e
for(DWORD index=O;index«IZ"n)+1),index++)

.n.dd += (double) (inputPtr (indexl ) /1 (2"n) +1);

Il.~sign first. resu1t of "recursive" filter t.o it.s output
out.putPtr[n! = (floac)Add;

IIAssign rest. of point.s based on first. poinc ("recucsive tt fiIt.ering)
Ilstart. at. next. peint and proceed unt.il last point.-rnidpoint of mask
forlindex = n+1;index«(SampleSize"( (long) (SampleSi::e"PI)) )-n);index++)

,....:.:::~- (double) ( (inputPt.r[index+nll-linputPt.r[index-(n+1) J l J/( (2"n)+1));
-:"lt.putPt.r{index] = Ifloat) Add;

IIThe first. and last. n points are missed in t.he irnplernent.aticn
IIAssign these the result from the nth point and the (last point-nI respecr:ively

I/ ... firsl: the beginning points
forlindex=O;index<n;index++1

~ut.pur:Ptr{indexJ = out.putPtr[nJ;

/! ... then t.he last. points
for(index=( (Samp1eSize"«long) (SampleSi::e"PIIIJ-n);
index«SampleSi::e"«longl (Samp1eSi::e"PIl I);index++l

out.putPt.r[index! = cutputPt.c[ «SampleSize"((long) (SampleSize"PIII 1-(n+11)1;

IIRemember the base address of the outputPtr
cemembec Ptr = outputPtc;

/ILoad I.1p the 2D original ar~ay with the out.put dat.a
for(row = O;row<SampleSize;row++)

for(WORD col = O;col«(long) (SampleSize"PIl );col++)
originalPtr[rowl [colJ = ·outputPt.r++;

/IRest.ore t.he base address to t.he output.Ptc
OIJtputPtr = remernber_Pt.r;

/IReturn memory back ta the free store
delete [J OI.1t.put.Ptc;
delete [1 input.Ptr;
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Appendix C: Code to build and apply Hamming window

/ / Fxn ta build 10 Hamming window

void COpsDoc::Bui1d 1DWindow()
{ -

/ /Only build window function if '.lser does NOT select rectangular: window
//(Get Se1ectWindow r:etur:ns NULL if user: selected rectangulac windowl
if (!G~t_SelectWindow{l) return;

/ /Define height 1== width) of matcix '.lsed to calcu1ate ~indcw

WORD height = Get_SampleSi=e{);

I/Bui1d the Window according ~c user's selection:

/ /B'lild indices for Hamming window
if (Get SelectWindow() ==1)
( -

fcr:(WORD index = O;index<height;lndex++)
//Define l. dimensional Hamming Window function
Windowfxn_1D[indexl = O.54-(O.46-(cos( 12-pr-(dcublelindexl/lheight-l) J l);

//éxn to apply 10 Hamming window

void COpsDoc::Window lD(float ·-tempPtrl
{ -

//On1y app1y window functian if user daes NOT select rectanqulac window
//{Get SelectWindow returns NULL if user selected rectangulac windowl
if (!G~t_SelectWindow(l1 return;

J /Otherwise blü id and apply the window
else

!/Allocate the memor:y for the window
Windowfxn_lD = oneO_f1oat_Matrix(Get_SampleSizell);

/ /Build the window indices
Build_lDWindcw( );

/ /Apply the window ta the e:<ponential portion of the log-pelar samp1ing ONLY
for(WORD row=O; row<Get SampleSizel l;row ++)

for(WORD ~ol=O;col<Get SampleSize( );col++1
tempPtr:[cowj [coll ~ ~empPtr[rowJ [colj-Windowfxn_lD[coll;

I/Deallccate the memory frem the free store
DeAllocate(Windowfxn_lD,Get_SampleSize(J l;
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Appendix 0: Code for sequence ofsteps to perform the Fourier-Mellin
transformation

IIFIJnction to perform the Fourier-Mellin transform on an image
IIOnly available when FFT has NOT first performed
IIFourier-Mellin proceeds as follows:
Ill) FIT 2) log-polar transform of FIT magnitude
113) FFT of 2) produces RTS-invariant FIT magnitude

void COpsView: :OnOperationsFouriermellin ( 1

I!Get a pOlnter to the Document
COpsDoc* pOoc = GetDocument();

IICreate holding matrices fer FM magnitudes
pOoc->FM_MatrixCreate(pDoc->Get_SampleSize( 1);

IIAttempt to construct the image-holding matrix and
Ilload up the matrix array with the image bits

IIIf LoadBits fails, clean everything lJp for IJser- ta load a ne·... image
if 1! pDoc->Load8i ts ( 1)
!

pOoc->DeleteCcntents();/lçlean IJp the Document
OnInitialUpdatel);/lclean up the client area
reT:.urn;//e:üt to await new command

IIShow IJser ':his may take sorne time -- display the hourglass C1lrser
CWaitCursor wait;

Il Instantiate a Fourier obj ect te perform FIT
Fourier FFTllpDoc->Get biD Real(),pDoc->Get biD Imag(), pDoc->Get_heightl),

pDoc->Get_widthl), -pDoc->Get_Image_Size() l;-

Il I?erform FIT
FIT1. biO_FIT ( );

IICenvert the real and imaginary portions of FIT to magnitude and phase
FITl.Polar_converttl;

IICentre the zeroth frequency in the matrix
FFT1.CentreZeroFrequencYII;

I/Normalise the data to cancel out scale differences (if argument tr1lel,
Iitransfer magnitude values ta real matrix and zero imaginary matrix
FFTl.Normali::e 1trl.le);

IIOnly scale the FIT and generate mag, phase 8MI?s if user does NOT perform multiple
Il EM-transforms
ifl!pDoc-~Get Automatic())
( -

IIScaie the magnitude and phase 1':0 displayable pixel values
FITi.FIT_Scale();

Il.~sign the magnitude HBITMAP handle the magnitude HBITMAP
Ilreturned after creating the magnitude bitmap if it does not exist
lf(!pDoc->Get_MagBitmapHandle() 1
pDoc->Get_MagBitmapHandlel) = pDoc->MakeBitmaplpDoc->Get_MagDisplay(l J;

IIAssign the phase H8ITMAP handle the phase HBITMAI?
I/returned after creating the phase bitmap if it does not exist
if(!pDoc->Get_~haseBitmapHandle(l)

pDoc->Get_PhaseBitmapHandle()= pDoc->MakeBitmaplpDoc->Get_l?haseDisplay(ll;
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IIRecord ~he Docl~ent has now been modified
pDoc->SetModifiedFlag(~ruel;

liDo a log polar transform on the FFT's magnitude
pDùc->FM Log Polar Transform(pDoc->Get biD Reall), pDoc->Get_FM_Originall),

pDoc->Gët_he1ght ( 1 1; - -

IIWindow the exponentially-sampled component of the log-polar transformed data
IlbeEore applying the FFT: exponentially-sampled ~omponent 1s not ccntinucus so this
Iishould reduce leakage
pDoc->Windcw_lDlpDoc->Get_f:M_Originall} ,;

I/Do the FFT again:

I/Instantiate a second Fourier objec~ ~c perform FFT
=,:urier rFT2 (pDcc->Get EM Original ( l, cDoc->Get FM Imaginary ( 1,pDoc->Get SampleSL:e ( ) ,

j:Doc->Get_SampleSi=e l ï, ((pDoc->Ge~_Samplesize() )" (pDoc->Get_samplesize () 1) );

i / Perfcrm r:r
FFT2 .clD_FFT (J;

/ICcnvert the real and imaginary portions of FFT ta magnitude and phase
FFT2.Polac_convert();

liCentre the ::ercth frequency in the matrix
FFT2.CentreZercFrequency();

/ITransfer mag values ta the real matrix (withcut normalisationl and
Ilzera the imaginary matrix
FFT2.Normalize(falsel;

IIShow user we're finished -- restore the default cursor
·....ai t. Restore ( );

IICompare results frem Fourier-Mellin transform of first image and display to 'lser
pDoc->FM_Comparel);
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Appendix E: Programme Interface
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