INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UMI fiims
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
compulter printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bieedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deietion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

®

UMI

Application of the Fourier-Mellin transform to translation-, rotation-
and scale-invariant plant leaf identification

by

John Graham le Maistre Pratt

A Thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of
Master of Science
in the Department of Agricultural and Biosystems Engineering,

McGill University, Montreal, July 2000

© J. Graham Pratt, 2000

i~

National Lib i tional
of Canada i m" n °
uisitions and Acquisitions et .
Bibliographic Services services bibliographiques
m ON K1 As" x ?:l':ov:{ K1A ON4
Canada Canada
Your fl9 Vote rdidrence
Our e Notre réddrence
The author has granted a non- L’auteur a accordé¢ une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-70746-6

Acknowledgments

[would like to thank my supervisor, Dr. Jacques-André Landry, for providing me with the
opportunity to pursue graduate work in the first instance and also for allowing me the
freedom to study and research the field of machine vision. [would also like to thank

Thomas Bernier, friend, colleague and mentor, without whose selfless help this thesis

would not have been possible.

Abstract

The Fourier-Mellin transform was implemented on a digital computer and applied towards
the recognition and differentiation of images of plant leaves regardless of translation,
rotation or scale. Translated, rotated and scaled leaf images from seven species of plants
were compared: avocado (Persea americana), trembling aspen (Populus tremuloides),
lamb’s-quarter (Chenopodium album), linden (Tilia americana), silver maple (Acer
saccharinum), plantain (Plantago major) and sumac leaflets (Rhus typhina). The rate of
recognition was high among translated and rotated leaf images for all plant species. The
rates of recognition and differentiation were poor, however, among scaled leaf images and
between leaves of different species. Imprcvements to increase the effectiveness of the

algorithm are suggested.

Résumé

La forme discréte de la transformé de Fourier-Mellin fut appliquée pour la reconnaissance
et la différenciation d’images de feuilles dont I’orientation, la rotation ou I’échelle étaient
variables. Des images de feuilles de sept espéces de plantes, soit I’avocat (Persea
americana), le tremble (Populus tremuloides), le chou gras (Chenopodium album), le
tilleul (7ilia americana), |’érable argenté (Acer saccharinum), le plantain (Plantago
major) et des folioles de sumac (Rhus typhina), sous différentes orientations, rotations et
échelles ont été comparées. Le taux de reconnaissance est €élevé entre toute image d’une
espéce ayant subi une rotation et un changement d’orientation. Cependant, le taux de
reconnaissance entre des images de feuilles a plusieurs échelles ainsi que pour la
différenciation entre des images de feuilles de différentes espéces sont peu concluant. Des

modifications sont suggérées dans le but d’augmenter |’ efficacité de I’algorithme présenté.

it

5{3‘3?71’3’)?’
pd g

f(x,)
x(n)
!

n
X(f)

X(m)

row
col

dg(f)
Im A
ImB

List of Symbols

} continuous arbitrary one-dimensional time- or space-domain functions

continuous arbitrary two-dimensional time- or space-domain function
discrete arbitrary one-dimensional time- or space-domain function

time

sampling index

continuous one-dimensional Fourier transform of a function of variable x ;

the original time- or space-domain function is now defined in terms of its
continuous frequency content f

discrete one-dimensional Fourier transform of a function of a variable x ;

the original discretely defined time- or space-domain function is now
defined in terms of its discrete frequency content index m

frequency

frequency index

exponential function, where ¢ =2.71828182.....

natural logarithm of variable x

sine of variable x
cosine of variable x

imaginary portion of complex number; j = J-1

7 =3.14159....

uppermost limit of sampling interval

arbitrary angle in radians; angular component of log-polar transform
real portion of discrete Fourier transform

imaginary portion of discrete Fourier tranform
continuous one-dimensional Mellin transform
continuous two-dimensional Mellin transform along the imaginary axis

natural frequency, @ =271

radial component of log-polar transform
discrete exponential radial component of log-polar coordinate system

row index of image matrix

column index of image matrix
Euclidean distance at frequency f
Image A

Image B

il

List of Equations

Page
Equation 3-1: One-dimensional continuous Fourier transform 8
Equation 3-2: One-dimensional discrete Fourier transform 9
Equation 3-3: Euler’s relationship 9
Equation 3-4: One-dimensional discrete Fourier transform in terms of cosand sin 9
Equation 3-5: Real component of discrete Fourier transform 10
Equation 3-6: Imaginary component of discrete Fourier transform 10
Equation 3-7: Magnitude of discrete Fourier transform 12
Equation 3-8: Phase of discrete Fourier transform 12
Equation 3-9: Convolution integral, 14
Equation 4-1: One-dimensional continuous Mellin transform 21/22
Equation 4-2: Two-dimensional continuous Mellin transform along imaginary axis ... 21
Equation 4-3: Rectangular function 22
Equation 4-4: Magnitude of continuous Mellin transform 22
Equation 4-5: Continuous Fourier transform as a function of naturai frequency @ 22
Equarion 4-6: Continuous Fourier-Mellin transform 23
Equation 4-7: Determining the radial component of discrete log-polar transform 30
Equation 4-8: Determining the angular component of discrete log-polar transform 30
Equation 4-9: Determining the vertical input image coordinates 30
Equation 4-10: Determining the horizontal input image coordinates 31
Equation 5-1: One-dimensional Hamming window 38
Equation 7-1: Euclidean distance measurement 46

v

List of Figures and Tables

Figures Page
Figure 3-1: Step function as sum of many sinusoids 8
Figure 3-2: Determining polar notation 11
Figure 3-3: DFT periodicity 12
Figure 3-4: Fourier-transformed images of amapleleaf 16
Figure 3-5: Fourier-transformed low-frequencyimage 17
Figure 3-6: Fourier-transformed high-frequencyimages 18
Figure 4-1: Cartesian to Polar coordinate conversion 24
Figure 4-2: Lena.bmp 26
Figure 4-3: Lena log-polarsampled 26
Figure 4-4: Log-polargrid 26/35
Figure 4-5: Log-polar display of Lena.bmp 26
Figure 4-6: 16x16 Log-polar samplinggrid 27/34
Figure 4-7: Scaled squares and log-polar transformations 2
Figure 4-8: Scaled - rotated central square — squares and log-polar transformations . . . 29
Figure 5-1: Aliased sampling 32
Figure 5-2: Non-aliased sampling 33
Figure 5-3: 805x256 log-polar sampling grid 35
Figure 5-4: Periodicity of DFT inputimage 36
Figure 5-5: Rectangular and Sinc functions 37
Figure 5-6: One-dimensional Hamming window 38
Figure 7-1: Aspen 45
Figure 7-2: Avocado 45
Figure 7-3: Lamb’s-quarter e 45
Figure 7-4: Linden 45
Figure 7-5: Maple e 45
Figure 7-6: Plantain 45
Figure 7-7: Sumac 45
Tables
Table 1: Original (untranslated, unrotated, unscaled) leaf images

versus rotated leafimages 49
Table 2: Original (untranslated, unrotated, unscaled)

versus rotated and scaled leafimages 49
Table 3: Comparison of original leaf images with:

a) other species leaf images (“Between Species Comparison™), and

b) additional samples of same species’ plant images

(“Within Species Comparison™) 49

Table of Contents Page

Acknowledgments i
Abstract/RESUmeé it
Listof Symbols e it
Listof EQUationsttt e iv
List of Figuresand Tables \
LIntroduction |
2. Literature Review 2
3. The Fourier Transform 8
3.1Calculating the DFT 10
3.2Polar Notation 11

3.3 Propertiesof the DFT iiiiiuiaenn.. 12
33.1Periodicity 12

332S8cale 13
333Rotation 13

334 Translation L. 13
335Convolution 13

3.4 Implementation of the DFTviathe FFT 14
35TheDigital Image 15

3.6 The Fourier Transformation of Images 16

3.6.1 MagnitudeImage 17
362Phaselmagel 19

3.6.3 Magnitude versus Phase of anlmage 19

4. The Fourier-Mellin Transform 21
4. 1Mellin Transform 21

4.2 Scale Invariance of the Mellin Transform 21

4.3 Mellin Transform Derivation from the Fourier Transform 22

4.4 Achieving Rotational Invariance in the Fourier Transform 23

4.5 Log-Polar Transformation 24

4.6 Implementation of the Log-Polar Transformation 29

5. Problems with the Discrete Fourier-Mellin Transformation 32
S.TARASINGo e 32

5.1.1 Log-Polar Sampling May Resultin Aliasing 33

5.1.2 Spatially-Variant Filter to Remove Possible Aliasing 34

S52Leakage 35

5.2.1 Reducing Leakage by Windowing 38

5.2.2 Implementation of the Hamming Window 39

S3Interpolation 41

Table of Contents (continued) Page

6. Implementation of the Fourier-Mellin Transform 42
7. Experimental Methodology 44
7.1 Euclidean Distance Measurement 46
8. ResUlts 47
9.DISCUSSION 50
10. Summary and Conclusions 54
[1. Bibliography and References e 55
12. Appendices: Software Programme Code 59
AppendixX A ... e .. 59
Appendix B 61
Appendix C 65
Appendix D 66

Appendix E 68

1. Introduction

Our ability to recognize objects in an image, regardless of how these objects are laid out
before us, is one that we humans take for granted. When we view an image of a chair, for
example, whether the chair is located in a dentist’s office, barber salon or around the
dinner table, each of us is still able to perceive that the object in question is a chair. Even
when the chair is rotated upside down, very tiny or large, or moved to the upper left
corner of the image, we are, again, still able to recognize the object as being a chair. For a
machine, however, objects that have been translated to a new position in the image,
rotated or scaled up or down represent completely new objects. In order for a machine to
recognize the two objects as being similar, algorithms need to be developed that can
successfully provide for object identification regardless of where they are located in the
image or whether they are scaled or rotated. This thesis examines the use of such an
algorithm, the Fourier-Mellin transform. In this particular application, the Fourier-Mellin
transform is used to help identify the leaf of a plant, regardless of the leaf’s scale or

rotation, or location in the image.

It would be foolish at best to expect one algorithm alone to be successful at recognizing
any and all variations of the same object. And it would be doubly foolish to then expect
the same algorithm to be able to differentiate between different objects. This is especially
true when the objects under consideration are natural (biological), rather than man-made,
since: 1) biological objects exist in many shapes, sizes, colours and textures even within a
single species, and 2) many different species resemble one another. It is hoped, then, that
the Fourier-Mellin transform can serve as one among many analysis tools of a generalised
machine vision system in order to both recognize biological objects within and outside

their species.

2. Literature Review

The following assumes familiarity with the Fourier transform as well as the Fourier-Mellin
transform. The reader is referred to section 3 of this thesis which provides the necessary

background to these transforms.

The Fourier-Mellin transform is a variant of the Fourier transform; however, it certainly
does not have as glorious or as predominant a history as the Fourier transform. Indeed,
versions of the Fourier-Mellin transform do not seem to surface until the late 1960s.
Among the first investigators to use a version of the Fourier-Mellin transform were
Brousil and Smith [1967]. In retrospect, these investigators remain pioneers in the use of
the transform. In their paper, “A Threshold Logic Network for Shape Invariance”, they
managed to demenstrate how a log-polar coordinate mapping and Fourier transform could
be combined to achieve translation, rotation and dilation (TRD) invariance in image
recognition. Though they did not mention it explicitly, the investigators essentially
performed a Fourier-Mellin transform in their attempts at achieving TRD invariance. They
did so by constructing a very primitive neural network incorporating the operations of the
Fourier-Mellin transform and used binary images of either hand-printed or machine-
generated characters, presented as 12x12 rasters of X’s and O’s as the input and output
layers of the system. The network seems to respond well with a 70% recognition rate for
the translated, rotated and scaled (dilated) machine-generated characters but recognises

only 30% of the translated, rotated and scaled hand-printed characters.

The next pioneering attempt at applying the Fourier-Mellin transform was instigated by
Robbins and Huang [1972]. In fact, these investigators are often credited as the first to use
the discrete Fourier transform along with a logarithmic-polar sampling of an input image
to produce an approximation of the Mellin transform {Schalkoff, 1989], though Brousil
and Smith [1967] had clearly paved the way. Robbins and Huang described an

implementation for the application of the Fourier-Mellin transform to correct various

optical distortions, including noise, in lenses. Though the achievement of translation-,
rotation- and dilation-invariance via the Fourier-Mellin transform were implied, they were
not specifically mentioned as goals the authors sought to demonstrate. They first applied
their algorithm, in the general case, to the restoration of input images distorted by various
forms of lens aberrations. Later, they implemented the algorithm on digital images that had
been blurred as well as on images to which Gaussian noise was added. The results they
choose to present, in pictorial form, seem convincing enough, though they indicate the
outcome as being poor in images corrupted with noise. Specifically, in comparing the
blurred input images to their outputs, they obtain a per point standard deviation error of e
= 0.7; whereas they obtain a standard deviation error of e = 1.77 in the case of images

distorted with Gaussian noise.

In the late 1970s, Casasent and Psaltis [1976, 1977] contributed substantially to the
implementation of a digital form of the Fourier-Mellin transform in applications using
physical lenses. They wished to design an optical matched filter correlator that responded
well to scale changes in the input image. A matched filter correlator is a system in which
an image is formed and correlated against another image. Such a system can be used to
ascertain whether the images are similar, but performs poorly when the images differ in
scale or rotation because these changes result in a severe loss in the signal-to-noise ratio
that affects the correlation significantly. The investigators corrected for the scale
difference in the two images by applying, via a Fourier lens system, the Fourier-Mellin
transform tc each image and correlating their output images. They first demonstrated scale
invariance using lenses by taking simple images each of a vertical bar, a circle and a
square, converting the image to a logarithmic scale in the vertical and horizontal
components, projecting the log-transformed image through a Fourier transform lens that
resulted in a Mellin transform of the image. If the input image is then scaled — Casasent
and Psaltis illustrated this using an image of a square scaled to twice its original size — its
Mellin-transformed output is similar to that of its unscaled counterpart. Later the

investigators proposed a schematic for a scale-invariant Fourier-Mellin optical correlator.

They indicated it would be possible, using the aforementioned Fourier-Mellin lens system,
to measure any scale differences in two input images and apply the resulting data to
equalize the scale, enabling one to later correlate and compare the images for similarity.
Finally, Casasent and Psaltis showed, step by step, how to implement the Mellin transform
via the Fourier transform. This particular implementation is now recognized as today’s
Founier-Mellin transform. Unfortunately, the authors continued to rely on a physical lens
implementation of the Fourier-Mellin transform rather than one implemented by digital
computer. Though the physical lens system more closely approximates the theory behind
the continuous form of the Mellin transform, it has disadvantages in that one has to

physically move and rotate the system of lenses in order to be able to match patterns.

The Fourier-Mellin transform has also been considered as a basis for two of the five
mammalian senses. The log-polar transformation necessary in the implementation of the
Fourier-Mellin transform and its relation to the sense of sight is discussed in section 4.5 of
this thesis. It is important to mention here that the Fourier-Mellin transform has been
considered in examining the sense of hearing. Altes [1978] noted similarities between the
Fourier-Mellin transform and the cochlear transduction of signals in animals. In particular,
he concluded that a biological model of the transform might be implemented in some bat

species for the purposes of echolocation.

A further development in the use of the Fourier-Mellin transform was its application to the
radar classification of ships. Zwicke and Kiss [1983] wished to use the shift- and scale-
invariance derived from the Fourier-Mellin transform in order to identify ships from radar
range profiles. A problem arises when the radar signal and length of the axis of the ship are
no longer exactly aligned. If the ship is turned slightly, the radar profile dimension
decreases in size and the radar profile must be expanded for the identification of the
vessel. The investigators proposed that the application of the scale- and rotation-invariant
Fourier-Mellin transform would enable the extraction of identifying factors in the radar

signal regardless of the aspect angle of the radar. The authors also offered an alternate

implementation of the Fourier-Mellin transform called the modified direct Mellin transform
(MDMT). This new implementation was based on directly expanding the Mellin integral
rather than relying on the more traditional and indirect calculation of the Fourier-Mellin
transform, that is, a rectangular to log-polar conversion in combination with the Fourier
transform. The authors maintained the new implementation eliminated any errors
introduced into the approximation of the Mellin transform by the traditional methodology
in that no exponential sampling or interpolation was necessary. Though theoretically this
might be the case, the scant experimental results, the investigators’ caveat the MDMT is
computationally more expensive than the traditional Fourier-Mellin implementation and
lack of evidence in the literature since publication of this paper of MDMT usage, all

suggest this newer implementation of the Fourier-Mellin transform is less than satisfactory.

Sheng ef al. [1986, 1994] in the late eighties and early nineties dealt with what the
investigators termed Fourier-Mellin moments. Essentially Fourier-Mellin moments are
moments calculated from the radial component of a pseudo-Fourier-Mellin transformed
image. Though the moments lend themselves to providing shift- and rotation-invariant
descriptors of images, scale invariance was not completely achieved. Derrode [1999]
suggested this was due to the fact that the radial base used in the moment calculation did
not correspond to that of a true Mellin transform, and, as a result, discounted using

moments as a substitute for the traditional Fourier-Mellin transform.

[n 1995, the use of the Fourier-Mellin transform and a neural network was again
combined. Raman and Desai [1995] calculated rotation-, translation- and scale- (RTS-)
invariants — equivalent to TRD invariants — using the magnitude of the Fourier-Mellin
transform. They used a multilayer neural network trained by backpropagation to recognize
RTS-variants of input images. In total 6 images were used to train the network and 50
RTS-variants of these six images were presented to the network and were all correctly
recognized as one of the six training set images. Partially occluded images — images in

which a contiguous portion of their shape was removed — were also correctly recognized.

It is not clear whether occluded images were used to train the network, and, generally, the
breadth of the experimental study is not great — only 6 images were used both for training

and testing the network.

Recently, the Fourier-Mellin transform has seen a revival with the advent of watermarking.
Watermarking is a method of preserving the copyright on a document or image.
Techniques for hiding watermarks are becoming more sophisticated but one also wants a
watermark to be able to withstand modifications to the image such as rotation, translation
or scale changes so that the watermark, if searched for in the modified image, can still be
found easily. O Ruanaidh and Pun [1997] and Lin et al. [2000] both investigated the use
of the Fourier-Mellin transform in producing an RTS-invariant watermark. O Ruanaidh
and Pun considered the phase of the Fourier-Mellin transform in their application so that
they were able to recover the watermark from an RTSed image, even after lossy JPEG
image compression of 75%. Lin et al., on the other hand, studied the use of creating a
unique signature of their watermark that was RTS-resilient. They preferred to use the term
resilient over invariant because they did not believe it to be necessary to achieve complete
RTS-invariance in order to detect the watermark. However, they decided to use
correlation in order to search for the watermark signature — which is time consuming —
and must rotate their searching pattern at all possible angles in order to find the watermark

— which 1s also time consuming.

Though there is a fair amount of research on machine vision in agriculture, especially in
the automated inspection of food items [Shatadal ez al., 1991], there has been very little
research on frequency-domain analysis of leaves and even less research on specific
applications of the Fourier-Mellin transform. Indeed, a search of the literature provided
but one reference for the Fourier-Mellin transform in an agricultural domain. In this one
reference, Franz ef al. [1991] attempted to identify plant leaves at various life stages based
on the leaves’ shape or contour. The Fourier-Mellin transform was not applied directly to

leaf identification but, rather, was used to compensate for occluded portions of leaves.

The authors extracted the leaf edges from their images — the extraction procedure is not
firmly explained. They then represented the points in the leaf edge as a curvature function
used to describe the leaf shape. The curvature function is invariant to object location and
rotation. To compensate for partial occlusion of a leaf, the authors took the magnitude of
the Fourier-Mellin transform of the leaf’s curvature function, used correlation to compare
the target leaf against the model and removed peaks that did not match in order to obtain a
match — this also compensated for differences in scale since the Fourier-Mellin transform is
resistant to scale changes. The authors then used a distance measure between the models’
leaf shape and the unknown shapes. They generally obtained poor results especially when
leaves were occluded or their shapes were similar. Finally, another set of investigators,
Zhang and Chaisattapagon [1995], used the Fourier transform spectra of plants, among
other methods, to differentiate between weeds and wheat species typically found in
Kansas. The researchers were able to use Fourier spectra to describe the texture
associated with a particular plant species and found that both the fineness and direction of
a plant’s texture pattern could be applied successfully to distinguish wheat from weeds.

No attempts are made, however, to provide for differentiating between wheat and weeds

when the textures of each are rotated and/or scaled.

3. The Fourier Transform

The Fourier transform is dealt with thoroughly in the literature (see, for instance, Lyons,
1997; Bracewell, 1986 and Brigham, 1988). A general background on the transform,
however, is necessary in order to better appreciate its use in the Fourier-Mellin algorithm
presented in this thesis. First, it should be mentioned that despite the Fourier transform’s
complex mathematics and conceptual difficulties, the transform is just that, a mathematical
transformation. [t transforms a function from its more easily understood time or spatial
domain into a function existing in frequency space. The essence, and beauty, of the
transform is that it demonstrates almost any function can be broken up into a sum of
known periodic sinusoidal functions, each of which is characterized by its amplitude and
frequency. This is more easily explained pictorially using Figure 3-1. Here a step function
— which, incidentally, is a typical representation of an edge in an image — can be shown to

be reproduced by summing various sine waves of different frequencies and amplitudes.

Representation of a step function by the sum of many sinusoids

Step function|

Figure 3-1: Step function as sum of many sinusoids

Equation 3-1 defines the mathematics of the one-dimensional Fourier transform, X(f),

of a function in time, x(¢), for the continuous case [Lyons, 1997]:

X(f) = [x@e P dt, eq. 31

~0

where X(f) provides a complete representation of x(r) except that the function is now
expressed in terms of the amplitudes of frequencies, f , of sinusoidal waves instead of as a

function of time. However, we wish to implement the discrete version of the continuous
Fourier transform (CFT), that is, on a digital computer. As such, the infinite integral
simply becomes a summation over a finite amount of time (or space). Equation 3-2

[Lyons, 1997] defines the discrete Fourier transform, X(m), of a discrete sequence of

time- or space-domain sampled values, x(»), which represents the original continuous

function:

N-1
X(m) =Y x(me™ ™™V, eq.3-2

n=0

Here n represents the sample number, spanning the zeroth to the last sample (Oto N —1)

of the discrete function x(#n) ; m, like »n, goes from 0 to N —1 and represents each of the
possible frequencies of the function X(m), which, in turn, defines the amplitude of each
of these frequencies. Together all X'(m) represent a function that provides a complete

frequency-domain representation of the original time- or space-domain function. The
discrete Fourier transform (DFT) representation of the CFT is still rather complicated
mathematically, especially for individuals not already possessing a graduate degree in
electrical engineering. However, the complex notation of the transform can be further
reduced to something a little more comprehensible via Euler's relationship defined in
Equation 3-3:
e™’? = cos(8) — jsin(8) eq. 3-3

The transform now reduces to Equation 3-4 [Lyons, 1997]:

N-1

X(m)= Z x(n)[cos(2mm/ N) — jsin(2amm/ N)] eq. 3-4

m=0

The DFT now reveals itself to be made up explicitly of a series of cosine and sine waves

which, when summed, provide a complete representation of the time or spatial domain

function. The equation is still complex; however, its use of the imaginary number, /

equalling v~ 1, though invaluable as it is for the mathematical derivation of the transform,

can be avoided in the discrete, digital computer implementation.

3.1 Calculating the DFT

There are three different ways to calculate the DFT: by simultaneous equations, by
correlation and by the Fast Fourier Transform [Smith, 1997]. The standard way is by
correlation. It is the simplest method and also provides some intuitive insight into the
calculation of the DFT. What correlation entails is multiplying each individual indexed
sample from the time- or space-domain signal for which we wish to obtain the DFT by its
corresponding indexed sine and cosine frequencies and then adding the result [Lyons,
1997]. The result is then a reflection of whether that particular sine or cosine frequency is
contained in the frequency domain of the time- or space-domain function. This is what is
actually occurring when we apply equation 3-4 to obtain the DFT. That is, if we use
correlation to find the DFT of a time- or space-domain function, x(»), made up of
samples indexed from n =0 to N-1, we will obtain two frequency-domain functions,
termed the Real part and the Imaginary part of the DFT. Each of these parts of the
frequency domain also extends from 0 to N-1. These are just equation 3-4 divided into

two portions, Equations 3-5 and 3-6 [Lyons, 1997]:

N-1

Re X[m] =) xln]cos(2zmn/ N)eq. 3-5
n=0
N-l

Im X[m] =) x[n}jsin(27mmn / N) eq. 3-6
n=0

where Re X(m) refers to the Real component and Im X(m) refers to the Imaginary

component; index m again extends from 0 to N-1.

10

A particular point, x(n) , from the time or space domain, thus consists of two parts in the
frequency domain: a Real component that represents the amplitude of the cosine wave of
frequency m and an Imaginary component that represents the amplitude of the sine wave
of frequency m . The sum of all the Real and Imaginary components from 0 to N-1
represent the transformation of the time- or space-domain signal into the frequency

domain.

3.2 Polar Notation

When the results of the Fourier transform of a signal are reported as the “Real” and
“Imaginary” parts, then these are being reported in rectangular notation. In the digital
signal processing literature, however, frequency-domain results are typically reported in
polar notation, as the Magnitude and Phase of each frequency m of the Fourier transform.

If we graph one of the Fourier transformed points, X[m] , in the complex domain, it is

easy to understand the conversion from rectangular to polar notation (see Figure 3-2,

adapted from Lyons [1997]):

Imaginary axis (j)

X{m| = X[m] Imaginary + X[m| Real

X{m| Imaginary

Y7

X[m| Magnitude

V4

O X[m] Phase

¢ X{m]| Real
Real axis

Figure 3-2: Determining polar notation (adapted from Lyons [1997])

11

Using the Imaginary/Real coordinate system of Figure 3-2 and the Pythagorean theorem,
we see that the Magnitude of X[m)] is defined by Equation 3-7 as:

X’"ﬂg =l X[m]!: JX[m]Rcalz + X[m][magmaryz €q. 3-7

and the Phase is defined by Equation 3-8 as:

X[m]lmagmary
X phase = Xy[m] = arc X[m—]“, eq. 3-8
3.3 Properties of the DFT
Bracewell [1986] and Brigham [1988] provide very detailed accounts of the Discrete

Fourier transform’s properties. A summary of those properties necessary for the

understanding of the application used this thesis is presented here.

3.3.1 Periodicity
Unlike the CFT, the DFT views both its input (the time or space domain) and its output

(the frequency domain) as being periodic and infinite. For a discrete signal, this means the
DFT views its input as if the signal’s beginning and ending were attached together and
repeating from negative to positive infinity. Figure 3-3, adapted from Smith [1997],
depicts this:

Time Domain Signal How DET Views Time Domain Signal

0 +128 soe= 03 -128 0 +128 I
Figure 3-3: DFT Periodicity (adapted from Smith [1997])

In other words, the DFT wviews its time- or space-domain input as consisting of a single
period of an infinitely repeating sequence. The same situation applies to the output of the

DFT. This property of the DFT has some negative consequences. These are addressed

12

later under the topic of “Problems with the Discrete Fourier-Mellin Transformation” in

section S of this thesis.

3.3.2 Scale

If a time- or space-domain function is scaled by a constant, then its Fourier transform will

be inversely scaled by that same constant [Brigham, 1988].

3.3.3 Rotation
If a function is defined in a two-dimensional spatial domain (as is, for example, an image)

and is rotated in this domain, then its corresponding DFT will also be rotated by the same

angle [Castleman, 1996].

3.3.4 Translation

The shifting theorem of the Fourier transform states that if a time-or space-domain
function is shifted by a constant, then this shift will be expressed as a constant shift only in
the phase of the DFT [Lycns, 1997]. The magnitude of the DFT is not affected by a shift
change; it is shift- or translation-invariant. The DFT magnitude’s translation invariance is
the corerstone of the success of the Fourier-Mellin transform. In the Fourier-Mellin
transform, scale and rotation changes are manifested as translations which are then

removed by performing a second DFT and considering only the resultant translation-

invariant magnitude.

3.3.5 Convolution

Though not specifically a Fourier transform property, convolution is often used in
conjunction with frequency domain analysis because of the particularity that convolution
in the time domain is equal to multiplication in the frequency domain and vice versa. In
this thesis, convolution is used in filtering and windowing data before it is input to the
DFT. As a result, a general explanation of convolution is necessary. According to Brigham

[1988], convolution is defined mathematically by Equation 3-9 as follows:

13

y(t) = j X(2)h(t - T)dT = x(£)* h(t) eq. 3-9 ,

-t

where * denotes convolution. Here, y(¢) is said to be the convolution of the functions
x(yand A(r) . Equation 3-9, however, is not easy to visualize. The following is what
actually occurs when two functions are convolved (based on Brigham, 1988): 1) The
mirror image of A(7) is taken. This simply resuits in A(—7) ; 2) h(—7) is then shifted by an
amount ¢ ; 3) the shifted function, A(r — r), is then multiplied by x(z) and, finally, 4) this
results in the area under the graph of the product of the two functions equalling the value

of the convolution at times (i.e. the integral of the product equals the convolution at time

1)

3.4 Implementation of the DFT via the FFT
Though the correlation method of calculating the DFT is simple and makes intuitive sense,
it is slow compared to the now famous Fast Fourier Transform (FFT) developed by

Cooley and Tukey in 1965. For a one-dimensional signal of N points, the DFT via
correlation requires N 2 calculations (for a two-dimensional signal, such as a square image,

there are N2 number of points; thus, it would require N calculations). The FFT for a one-

dimensional signal, on the other hand, requires N log, N calculations, which for a 32-

point signal amounts to only 10 times the speed of the DFT via correlation; however, for a
signal above roughly 4,000 points, the FFT is over a thousand times faster than correlation
[Smith, 1997]. In obtaining the DFT of an image, we are often dealing with signals that
are many thousands of points long (a typical 256x256 pixel image contains 65,536 signal
points). Thus, the FFT is the algorithm of choice and has been used in this thesis.

A thorough description of the implementation of the FFT and why it is so much faster than
the DFT correlation method is beyond the scope of this thesis. Suffice it to say that for an
N -point signal the FFT gains a great speed advantage by performing N DFTs on single-

14

point signals [Smith, 1997]. A number of standard “programming tricks” are also involved
in optimizing the FFT computation [Parker, 1997]. The FFT implemented in this thesis is a
radix-2 type FFT that has been adapted from code provided in Smith [1997] (the radix-2
type FFT is so named because the number of points in the input signal must be equal to a
power of two). The actual input to the FFT consists of two parts, the Real and Imaginary.
Earlier, in section 3.2, it was mentioned that the Imaginary portion’s use of the imaginary

number, j, can be avoided in the implementation of the FFT. In fact, only the Real part

holds the input data to the FFT. It consists of an array containing the real-valued sample
points of the signal to be transformed into the frequency domain; the Imaginary portion’s
array, on the other hand, is empty, loaded only with zeroes. This is termed the “FFT of
real-valued data” and successfully avoids the use of imaginary numbers in its
implementation. It is also worthwhile to note that in order to obtain the DFT of an image
via the FFT, a two-dimensional Fourier transform must be performed. Fortunately, the
twe-imensional Fourier transform can be obtained by performing two one-dimensional
transforms [Brigham, 1988]. In the case of the FFT, this is implemented by performing the
following: 1) take the one-dimensional FFT of each of the columns of an image; 2) store
the result; 3) take the one-dimensional FFT of each of the rows of the result. The final

output will contain the two-dimensional Fourier transformation of the image.

3.5 The Digital Image

This thesis presents the Fourier-Mellin analysis of digital images. It is necessary, therefore,
to describe exactly what a digital image is. A natural image or object is viewed by the eye
as a continuous array of vartous colours [Baxes, 1994]. In order to acquire a digital image
of this continuous array of colours, the natural image or object is sampled so that each
original colour becomes quantized to an integer value. In this thesis, we deal only with
greyscale digital images, which are made up solely of 256 “colours” or greyscale intensity
values — perhaps the term brightness value is more appropriate since the “colours” range
only between intensity 0 (black) and intensity 255 (white). As such, the sampling and

quantization of the continuous array of colours in the natural image or object will convert

15

each original colour to a brightness intensity level between 0 and 255. The two-
dimensional digital image is thus a matrix of greyscale values. The position of each of

these values in the matrix can be described on a Cartesian grid (x, y)so that we are able
to describe the entire image as a two-dimensional function f(x, y); that is, every point —

every brightness value — in the digital image can be defined by: 1) its location in two-

dimensional space by a coordinate pair (x, y) where x represents the vertical coordinate

(or row), and y represents the horizontal coordinate (or column); and 2) by its intensity

72

value on the greyscale. Each of these points is termed a pixel, short for “picture element”.
Thus, in a2 256x256 pixel image there exist 65,536 pixels, each of which is defined by its

greyscale intensity value and location (row, column indices) in the image.

3.6 The Fourier Transformation of Images

Displayed in Figure 3-4 is an original image of a maple leaf (a silver maple, Acer
saccharinum, leaf) that was scanned and digitized resulting in a 256x256 pixel image
made up of 256 shades of grey (a “greyscale image”). Also shown are the leaf image’s
DFT, represented by the magnitude and phase portions of the transform.

3
H

Mapleleaf.bmp Magnitude Phase
Figure 3-4: Fourier-transformed images of a maple leaf
The magnitude and phase images in Figure 3-4 do not seem to have much in common with
the original leaf image. Indeed, for most images, the magnitude and phase seem to have no
discernable relationship to the original image. What sort of information do the magnitude
and phase of a Fourier-transformed image provide? This question is addressed in the

following sections.

16

3.6.1 Magnitude Image
Images can be defined as changes in brightness in a two-dimensional space. That is, as we

move, say, from one side of the image to the other side, we will encounter various
brightness levels along our journey that define the digital image. The rate at which
brightness levels change from light to dark and dark to light equals the spatial frequency of
an image [Baxes, 1994]. When we Fourier-transform an image, we are measuring the
spatial frequencies of the image. In particular, it is the magnitude rather than the phase of a
Fourier-transformed image that best represents these spatial frequencies. Baxes [1994]
provided examples using very simple, artificially-created images, that illustrate how the
magnitude is useful in representing the spatial frequency content of an image. These

examples are depicted in Figures 3-5 and 3-6:

Low-frequency image Magnitude of low-
frequency image

Figure 3-5: Low-frequency image and its Fourier transform (adapted from Baxes [1994])
As we traverse the low-frequency image of Figure 3-5 from top to bottom, its brightness
values change slowly, alternating from dark to light regions. The frequency of the
brightness value change is also constant throughout the image, that is, only one frequency
is necessary to describe the change from dark to light brightness values in the image. All of
these features are easily seen in the magnitude of the low-frequency image’s Fourier
transform of Figure 3-5. Firstly, note that there are two bright points in the magnitude
image. This results from the property of the Fourier transform being periodic. Indeed, the
periodicity provides for the top half of the magnitude image being a distorted mirror image
of the bottom half (the top right quadrant mirrors the bottom left and the top left quadrant
mirrors the bottom right). Secondly, note that the magnitude image is usually displayed

17

such that the zeroth frequency component of the original image is located in the centre of
the magnitude image and that frequencies increase from the centre in the horizontal and
vertical directions. The amplitude of the frequencies is indicated by the brightness value of
the pixels in the magnitude image. If we now consider just the top half of the magnitude
image, we can see that our low-frequency image is depicted as being made up of a single
bright spot located fairly near the image centre (low frequency) and on the vertical axis
(representing the vertical direction of change in brightness level of the original image). The
brightness value of the pixels representing the bright spot in the magnitude image are a

measure of the amplitude of the frequency change in the original image.

Magnitude of high-
frequency

High-frequency hoerizontal image

horizontal image

Magnitude of high-
High-frequency frequency diagonal
diagonal image image

Figure 3-6: High-frequency images and their Fourier transforms (adapted from Baxes [1994])
The images in Figure 3-6 show how direction and frequency of brightness changes affect
the Fourier-transformed magnitude image. Note the increased distance from the centre at
which the bright spots are located in the magnitude images; the further distance represents
the increase in the frequency of the changes from dark to bright in the original image. Also
note the direction of brightness changes in the original images are reflected in the location

of the bright spots on the horizontal/vertical axes of the magnitude images.

18

3.6.2 Phase Image
As was seen in Figure 3-4's phase image of the Fourier-transformed maple leaf, the phase

does not bear much resemblance to the original image. The phase image does, however,
contain much information about the original image. This was observed by Oppenheim and
Lim [1981] who inverse-Fourier transformed images by assigning the magnitude a
constant amplitude for each frequency and leaving the phase unchanged. In so doing they
were able to observe the separate contributions of the phase and the magnitude in the
original untransformed image. They concluded that much of the intelligibility of the
original image is contained in its Fourier-transformed phase. This is due to the fact that
typical images contain objects that are defined by their shape. Shape, in turn, is defined by
edges and, in the frequency domain, edges are defined by the rise and fall of sinusoids the

phases of which are coordinated [Smith, 1997].

3.6.3 Magnitude versus Phase of an Image
Compared to the phase, the magnitude holds less information about the beginning and

ending of shapes in an image; rather, it is more a reflection of the energy content of an
image [Lim, 1990], that is, compared to the phase which specifies where each sinusoidal
component lies in an image, the magnitude specifies how much of each sinusoidal
component is present [Castleman, 1996]. As a result, if image object discrimination is
based solely on the Fourier-transformed images’ magnitudes, there is a danger that two
completely unrelated objects may produce the same magnitudes. This would be less likely
to occur if the phases for the image objects alone were compared because the uniqueness
of the phase corresponds to the uniqueness of the object’s shape. The magnitude of an
image, however, unlike its phase, can be manipulated to provide for an image object’s
translation-, rotation- and scale-invariance. This has been the overriding reason for the
sole consideration of an image object’s magnitude in the present thesis’s application of the
Fourier-Mellin transform. As well, this thesis’s implementation of the Fourier-Mellin
transform is meant to be considered as one among many analyses performed on an image

for the purpose of image object recognition. In cases where dissimilar image objects share

19

. similar energy content, it is expected that other image analyses might aid, in addition to the

present transform, in discriminating between such image objects.

20

4. The Fourier-Mellin Transform

The Fourier-Mellin transform is used in this thesis to render descriptions of images that are
translation-, rotation- and scale-invariant. In other words, if we wish to compare two
images — each of which contains the same object — for similarity and one image is a
translated and/or rotated and/or scaled image of the other, then the magnitudes of the
Fourier-Mellin transforms of both images should be identical. The development of the
Fourier-Mellin transform and explanation of its translational-, rotational- and scale-

invariance properties will now be presented.

4.1 Mellin Transform

The Fourier-Mellin transform is based on the Mellin transform. A modified form of
Bracewell’s [1986] definition of the one-dimensional Mellin transform of any

function f(x)is given in Equation 4-1:

M(s) = I f(x)x*dx eq. 4-1
0

We are, however, dealing with images that are functions defined in two dimensions. The

two-dimensional Mellin transform of a function f(x, y) is defined by Casasent and Psaltis

[1977] along the imaginary axis by Equation 4-2:

M(ju,) = [£(x,)67y dsdy eq. 42
0

4.2 Scale Invariance of the Mellin Transform
The Mellin transform, unlike the Fourier transform, possesses the property of being scale-
invariant in its magnitude. Casasent and Psaltis [1977] demonstrated this scale invariance

for the two-dimensional case by considering a simple rectangular input function

f(x, y) extending from x, to x, and y,to y,, defined in Equation 4-3:

21

x—(x +xz)/z]Rw[y-(yl +}’2)/2] o0 43
*2—X Y2=U

flx,y)= Rect[

The magnitude of its Mellin transform is described by Equation 4-4:

eq. 44

| M(Jju, jv)|= ‘isin(u InXL)sin(vIn 22)
uv X, Y

Equation 4-4 demonstrates the magnitude is only dependent on the ratios x, / x, and

¥, / y, and is, therefore, invariant to scale changes in its input variables x and y .

4.3 Mellin Transform Derivation from the Fourier Transform

In 1976, Casasent and Psaltis demonstrated the Fourier-Mellin transform, showing that a
Mellin transform could be attained via the Fourier transform by a change of variable (as
first demonstrated by Brousil [1967]). For simplicity, the one-dimensional case is
presented here. Recall from section 3, Equation 3-1, that the Fourier transform of a

function f(x) (where f(x) now represents x(¢) from equation 3-1, and w, the

natural frequency, now represents 271) can be defined by Equation 4-5:

X(@)= J’ f(x)e ™ dx eq. 45

Recall, as well, the definition of the Mellin transform indicated earlier (Equation 4-1) :

M(s) = j F(x)x*dx eqat
0

22

Now, if the variable x in the Mellin transform, Equation 4-1, is replaced with e* and

5= —jw, then the Mellin transform of f(x) on the imaginary axis is the Fourier transform

of f(e%), indicated in Equation 4-6:

MUY= [)P s

-0

In other words, the Mellin transform can be realized by logarithmically scaling the

coordinates of the input function and Fourier transforming the resultant scaled function.

4.4 Achieving Rotational Invariance in the Fourier Transform

The Fourier transform of a two-dimensional function will not normally be rotationally
invariant. In fact, as was indicated earlier in section 3.3.3, a rotation of a function in two
dimensions by an angle @ will also have its Fourier transform rotated by the same angle.
Rotational invariance of the Fourier transform may, however, be achieved by converting a
rotation into a shift (or translation) in a single coordinate of the function. This shift can
then be eliminated by considering only the magnitude of the Fourier transform which is

shift-invanant.

If a two-dimensional function is expressed on a polar coordinate system, then any rotation
of the image will manifest itself in only one of the coordinates of the polar system.

Casasent and Psaltis [1976] demonstrated such a polar coordinate transformation,

showing that a function f(x,y) defined in Cartesian coordinates (x, y) can be equally
expressed in polar coordinates as f(&,r) . In other words, if an image is considered to be

a matrix of points, each of which is defined by a vertical x component and a horizontal

y component, then the image can be equally represented by a radial component, », and an

angular component, @ . Figure 4-1 demonstrates this. Here point P of the car object can

be represented in Cartesian coordinates, (x, y), where x =4and y = 4, or Point P can be

23

equally represented in polar coordinates, (6,7), where 6= tan"(%) =45° and

r=vy42 +4% =32

Figure 4-1: Cartesian to Polar coordinate
conversion

Thus, if a function f(x, y) is translated to a polar coordinate system as f(4,r) then any

rotation of the function will result in a change in only the angular coordinate 8 . If the
Fourier transform of the polar function is then taken, the rotational change in 8 can be
eliminated by considering only the magnitude which is shift (or translation) invariant. As a
result, the magnitude of a Fourier-transformed image of some object that has been rotated
will be identical to the magnitude of a Fourier-transformed image - containing the same

object — that remained unrotated.

4.5 Log-Polar Transformation

The log-polar transformation is the means by which we are able to glean both the resultant
scale-invariance of the Mellin transform as well as the resultant rotational-invariance
provided by a polar conversion and Fourier transform. This transformation has been
studied extensively by Araujo and Dias [1997], Wilson and Hodgson [1992], and Reitbock
and Altmann [1984] among others, mostly in an effort to model the human visual system.

The interest stems from the fact that in many primates and, likely, in human primates as

24

well, scenes projected onto the back of the eyeball (i.e. onto the retina) are mapped to the
visual cortex in the brain in a logarithmically-polar fashion. We can describe this

mathematically as an image function f(x, y), appearing on the retina in a Cartesian plane,

being approximately translated to appear at the visual cortex as if it had been sampled at
the intersection of angular and exponentially-increasing radial points (i.e. as a function

f(8,expr)). This is perhaps easier to understand through illustration. Shown in Figure 4-

2 is a 256x256 pixel bitmapped image of the ever-radiant Lena, titled “Lena.bmp” (an
image that has been used by the image processing and machine vision community since the
1960s). Also shown, in Figure 4-3, is an image representing how Lena would be re-
sampled on a log-polar coordinate system, titled “Lena log-polar sampled”. The white
pixels indicate the sampling points which occur at the intersection of an angle and an
exponentially increasing radius. Another image, Figure 4-4, adapted from Thornton
[1998], shows the log-polar sampling grid with no underlying image, titled “Log-polar
grid”. Again, white pixels represent the points of log-polar sampling. Finally, the log-polar
mapped image of Lena.bmp, adapted from Milanese and Cherbuliez [1999], is displayed in
its log-polar coordinate system in Figure 4-5. This image is titled “Log-polar display of

Lena.bmp”.

25

9z

Figure 4-2: Lena,bmp Figure 4-3: Lena log-polar sampled

(0,0) 0

exp r

Figure 4-5: Log-polar display of Lena.bmp
(adapted from Milanese and Cherbuliez |1999])

Figure 4-4: Log-polar grid (adapted
from Thornton [1998])

In Figures 4-3 and 4-4, there are 256x256 (65,536) log-polar sampled points. It is difficult
to get an idea of how the log-polar sampling is occurring, except that it is obvious
locations near the centre of the image are oversampled in comparison with points located
further away on the periphery of the image. The grid in Figure 4-6 shows a 16x16 (256
pixel) log-polar sampling.

16 -

14-

0 2 4 6 8 10 12 14 16
Figure 4-6: 16x16 Log-polar sampling grid
In this graphic it is easier to see that radial sampling intervals increase exponentially and

that angular sampling intervals increase linearly by a constant.

The log-polar sampling of the image is the crux of the Fourier-Mellin transform in that this
sampling is responsible for the scale and rotation invariance of the resultant Fourier-Mellin

magnitude. To see why this is indeed the case, let’s consider an image f(x, y) and

transform it onto a log-polar coordinate system. First, we assume the image centre is the
starting point of the transformation. We can then represent each pixel in the image as
occurring at a distance r from the image centre and at an angle & (as represented earlier in
Figure 4-1, the car on the polar coordinate system). If we now rotate the image, only 8

will change, r will remain the same. Now, if instead of representing the second pixel

27

coordinate as a measure of », we measured it on an exponential scale as logr, then we

can convert any scale changes in the image into shifts. Such would be the case if we scaled

the image by a scale factor s. Now a pixel at Cartesian point P(x, y) in the image, if
scaled, would be represented as P(8,log(s*r)) . We exploit the fact that thelog of a

multiplication can be expressed as a sum of logarithms in order to convert scale changes
into shifts. Thus, scaled point P, expressed on the log-polar coordinate system as

P(6,log(s*r)), can be equally represented as a shift: P(8,logs+ logr) . Figures 4-7 and

4-8, adapted from Thornton [1998], and Araujo and Dias [1997], demonstrate how both

changes in rotation and scale are converted to shifts by the log-polar transformation:

(0,0) x . 0,0)

L

logr

4
Original image Log-polar transform of original image

Figure 4-7: Scaled squares and log-polar transformations (adapted from Araujo and Dias [1997] and
Thornton [1998))

Figure 4-7 shows how a scale change (larger and larger squares) in the original image on

the Cartesian coordinate system, (x, y), results in a vertical shift along the log scale of the

log-polar, (8,logr), coordinate system of the log-polar transformation of the original

image.

28

(0,0) x . (0.0

~

logr

L 4

w

Inner square rotation of original image Log-polar transformation of inner square
rotation of original image

Figure 4-8: Scaled - rotated central square — squares and log-polar transformations (adapted from
Araujo and Dias [1997] and Thornton [1998])

Figure 4-8 shows how a change in rotation (the innermost square has been rotated by 45
degrees) in the original image results in a horizontal shift change of the angular (8)

component of the log-polar transformed image.

To summarise, the log-polar transformation permits us to express scale and rotational
changes as shifts (translations). Shifts can then be removed by considering only the
magnitude of the Fourier transform of the function expressed on a log-polar coordinate

system. This is the basis for the Fourier-Mellin transform.

4.6 Implementation of the Log-Polar Transformation
The present implementation of the log-polar transformation is based on Thornton [1998]
with some modifications. For a square image of size N x N pixels, we sample by

determining what points in the original image correspond to each (6,logr)in the output

image. In the output image, for boili the angular coordinate, @, and the radial coordinate,

logr , we can choose to divide the image into NV divisions of each coordinate. Thus, & is

29

sampled N times from 0 to (27 - 1) angular divisions and log7 is also sampled N times

on an exponential scale from O to the maximum radius of the input image.

If the input image is mapped as a function of pixel locations indicated on a Cartesian grid

(x,y), where x represents the row and y represents the column, the following equations
are used to determine what points (x, y) from the original image will be used to provide

for a log-polar sampling that results in a new image having a log-polar coordinate system

(6,logr):

Let p(row) represent the value of the exponentially increasing radial component of the

input image. Equation 4-7 can then be used to determine each p(row):

row

plrow) = l:%][”-']eq' +7 where row =0...N -1

Let 8(col) represent the value of the linearly increasing angular component of the input

image. Equation 4-8 can then be used to determine each 8(col):

&(col) = col(Z—ZJ eq. 4-8 , where col =0..N -1
\col

The centre of the input image is located at Cartesian coordinate (.%J-) . As a result,

(Y 4

the x and y coordinates of the input image that correspond to each of the calculated

@(col)and p(row) are determined using Equations 4-9 and 4-10 as follows:

x= % +[p(row)cos(6(col))] eq. 4-9

30

y= %ﬁ — [p(row)sin(&(col))] eq. 4-10

The final output array will be of size N x ¥ . It will express @ in linear increments

(0...N -1) of'its columnar data and an exponentially increasing r in linear increments

(0...N -1)of its row data.

31

. 5. Problems with the Discrete Fourier-Mellin transformation

Theoretically, the Fourier-Mellin transform should provide a truly translation-, rotation-
and scale-invariant measure of an image. In practice, however, this is not the case.
Problems arise in the digital implementation of the Fourier-Mellin transform that result in
the discrete version of the transform merely approximating the continuous case [Altmann
and Reitbock, 1984]. Chief among the problems leading to the divergence of the discrete
and continuous Fourier-Mellin transforms are the negative effects of aliasing, leakage and

interpolation, which will be addressed in the following sections.

5.1 Aliasing

In the digital implementation of the Fourier-Mellin transform, there is a likelihood of
aliasing occurring whenever the signal is sampled. Aliasing is the process whereby a signal
is converted into another signal — an aliased signal assumes or aliases the identity of the
original signal — due to undersampling. This is demonstrated in Figure 5-1 (adapted from
Smith [1997]):

Amplitude

Time (or sample number)
Figure 5-1: Aliased sampling (adapted from Smith [1997])

In Figure 5-1, a hypothetical signal (solid line) is being sampled (black squares) at a rate
far less than the actual frequency of the hypothetical signal. The resulting signal is shown

® 52

as a dashed line (joining the sampling black squares); the original signal has become
aliased and will now be falsely represented by the resulting signal due to undersampling.

The Nyquist theorem dictates that aliasing will not occur if the signal is sampled at least
twice the rate of the signal’s highest frequency component — termed the Nyquist frequency
[Smith, 1997]. Another interpretation is that the highest frequency permitted in a signal
must be less than or equal to one half the sampling rate. Adequate sampling is

demonstrated in Figure 5-2 (adapted from Smith [1997]):

Time (or sample number)
Figure 5-2: Non-aliased sampling (adapted from Smith [1997])

In Figure 5-2, the hypothetical signal is being sampled at over twice its highest frequency
(the Nyquist frequency) component, and we can see that if we were to connect the
sampling squares we would obtain the same underlying signal. Note that there is no danger
in oversampling a signal. It simply creates more data. Though this may lead to more

computation time in analysing the signal, no aliasing will occur.

5.1.1 Log-Polar Sampling May Result in Aliasing
One problem of the Fourier-Mellin transform is the possibility of aliasing occurring as a

result of undersampling during the log-polar transformation. During a typical log-polar
transformation, an image is sampled such that more samples are taken closer to the centre
of the image than are taken near the periphery. To understand this, consider again Figure

4-6, the sampling grid for a 16x16 pixel image that was presented earlier in section 4.5:

33

0 2 4 6 8 10 12 14 16

Figure 4-6: 16x16 Log-polar sampling grid
From Figure 4-6 we can see that as the radius of the sampling interval increases towards
the periphery, more and more pixels are not sampled in between angular sampling
intervals. As a result, pixels close to the centre of the image are oversampled and pixels
near the periphery are undersampled. Though the oversampled pixels do not represent a
problem, the undersampling at the periphery could lead to aliasing of the underlying image

function.

5.1.2 Spatially-Variant Filter to Remove Possible Aliasing

In 1997, Thornton and Sangwine provided a means of removing the possibility of aliasing
due to the undersampling inherent in a typical log-polar transformation. Essentially the
implementation prevents aliasing from occurring in the first instance by sampling the entire
image at or above twice the Nyquist frequency. Whereas in a typical log-polar
transformation the outermost circumference is the most undersampled, in Thornton and
Sangwine’s implementation, the outermost circumference is sampled such that no pixels
are missed. Consequently all lesser circumferences are oversampled, but, as mentioned
earlier, this oversampling poses no danger of aliasing. In order to accomplish this, the
angular sampling interval is increased approximately threefold such that a 256x256 image

now results in a 805x256 array. The new log-polar sampling grid, adapted from Thornton

34

and Sangwine [1997] is represented in Figure 5-3 (compare this to the 256x256 log-polar
sampling grid shown earlier in section 4.5 as Figure 4-4):

Figure 5-3: 80556 log-polar Figure 4-4: Log-polar grid (adapted
sampling grid (adapted from from Thornton [1998])
Thornton and Sangwine [1997])

This array is then filtered to average every two to three adjacent pixels on a circumference
and downsampled back to the 256x256 image. Averaging the pixels in the oversampled
image enables the downsampled image to be representative of the oversampled and non-
aliased image function. The final result is a spatially-variant filtered image of the log-polar

transformed original with any possible aliasing having been removed in the process.

5.2 Leakage

Another problem with the Fourier-Mellin transform is leakage. Leakage results from
discontinuities in the input function to the DFT. In the application of the Fourier-Mellin
transform in this thesis, there are two forms of discontinuity present in the input to the
DFT: 1) there is discontinuity between the object (the foreground) in the image and its
background, that is, at the object’s edges; and 2) there is discontinuity at the borders of
the entire image, that is, at the image’s edges. The discontinuity between the image object
(foreground) and background is self-evident; it is simply a sharp increase (if the

background is darker than the foreground) in the pixel intensity at the edge of the object

35

with its background. The discontinuity resulting from the borders of the entire image,
however, is not as obvious. This latter discontinuity results from the periodicity of the
DFT, described in section 3.3.1 and can be explained as follows: the DFT views its input
signal (and output signal) as being periodic and infinite. In the present implementation, the
input happens to be a two-dimensional signal, that of an image. The consequences are that
the DFT views the image as if its left and right sides as well as its bottom and top sides
were joined together. In other words, it views the input image as being attached to itself
on all sides and repeating infinitely. Figure 5-4, adapted from Baxes [1994], better

illustrates this phenomenon:

Figure 5-4: Periodicity of DFT input image (adapted from Baxes [1994])

The problem, of course, is that an image is not normally periodic or continuous — it does
not repeat itself and its bottom and top, left and right sides do not normally match each
other. As a result, the borders of an image are viewed by the DFT as discontinuities in the
image function [Baxes, 1994; Pratt, 1991; Lim, 1990]. Both the discontinuities from the
object edge and those from the image border will corrupt the results of the DFT of the
image and will thus lead to errors when we attempt to compare otherwise translation-,
rotation- and scale-invariant Fourier-Mellin image transforms [Reitbock and Altmann,

1984].

36

To see how the DFT of the image will be affected by these discontinuities and also how
we can decrease their negative effects, we can model the phenomena mathematically. In
essence, the discontinuities can be seen as resulting from the image function being
multiplied by a rectangular function that has a value of |1 everywhere the image object and
image exist and zero where they do not. The DFT of the rectangular function is the Sinc
function {Smith, 1997]. This function has the general form sin(x)/ x and is represented in

Figure 5-5 (adapted from Smith [1997]).

Spatial Domain Frequency Domain
Rectangular Sinc
function function

<>

f [L Fx) |\

x x

Figure 5-5: Rectangular and Sinc functions (adapted from Smith [1997])

The Sinc function can be seen as having one large mainlobe and smaller sidelobes. As
pointed out earlier in section 3.3.5, multiplication in the spatial- or time-domain is
equivalent to convolution in the frequency domain. As a result, when we multiply our
image object and image by the rectangular function and take the DFT of the result, this is
equivalent to a convolution of the DFT of our image function with the DFT of the
rectangular function, which in the frequency domain is the Sinc function. Our image DFT
becomes very corrupted by the Sinc function. Indeed, the frequencies that result from the
DFT of our image become spread out due to the convolution with the sidelobes of the
Sinc function. This spreading out of our image frequencies to other image frequencies is
termed leakage, i.e. the frequencies from one particular location “leak” into another.
Leakage degrades the results of our Fourier-Mellin transform significantly since we take
not just one, but two DFTs during the Fourier-Mellin transform, making comparisons for
similarity between image frequencies very difficult. Thus, we must limit the error due to

leakage as much as possible.

37

5.2.1 Reducing Leakage by Windowin

In order to reduce leakage, we need to reduce the sidelobes of the Sinc function. One of

the ways we can do this is to multiply our image function with a windowing or weighting

function, the DFT of which has reduced sidelobes compared to those of the Sinc function

[Harris, 1978]. This is the frequency domain solution to the problem. An alternative way

to examine the problem, that is, in the spatial domain, is to find a windowing or weighting

function that - instead of having a sharp cutoff from zero to 1 and then 1 to zero as does

the rectangular function - has a gradual decrease towards a common value.

Multiplying such a windowing or weighting function with our image function would: 1)
make the image object function’s foreground gradually reach a common value with its
background, eliminating the sharp edge between the object and its background; and
likewise 2) make the image function’s border gradually reach a common value with its

opposite side, the side to which the DFT believes it is attached.

Figure 5-6, adapted from Pratt [1991], shows a very popular window, the Hamming

window function in the one-dimensional case:

Spatial Domain Frequency Domain
Hamming Window
1
f(x) & F(x)
0
X X

Figure 5-6: One-dimensional Hamming window (adapted from Pratt [1991])
And the following equation, Equation 5-1, modified from Pratt [1991], defines the one-

dimensional Hamming window function:

27x
f(x) =054 - 0.46c05(N l) eq. 5-1, where 0<x < N -1

and x represents the input sample point to be windowed; N is the total number of

38

sampling points in the discrete signal input to the DFT.

If we compare the spatial-domain representation of the Hamming window (Figure 5-6) to
the previously illustrated rectangular window (Figure 5-5), we see that the ends of the
Hamming window gradually taper to a common value near 0. If this function is multiplied
by the image function at the correct position, then the object edge and borders of the
image will also gradually taper to a common value near zero. Also, though it is not
obvious in Figure 5-6, the Hamming window’s frequency domain representation has much
lower sidelobes than does the rectangular window. The tradeoff is that the Hamming
window’s mainlobe is broader than the rectangular window’s mainlobe. As a result, it
would be more difficult to distinguish lower frequency components from each other. This
tradeoff is typical of all window functions; that is, a window function with very small
sidelobes, producing little leakage at the higher frequencies, typically has a broader
mainlobe, resulting in more leakage at the lower frequencies, than the rectangular
function. In fact, windowing or weighting functions are usually rated on the performance
tradeoffs between broad mainlobes and small sidelobes and are, therefore, application
specific; in some applications, for instance, an investigator may be exclusively interested in
the higher frequency components of the DFT and would, therefore, choose a windowing
function that had very small sidelobes, unconcerned about the concomitant broad
mainlobe. Some even argue the choice of a window is unimportant as long as one of them
is used, indicating most windows achieve relatively the same results [Press ef al., 1986].
The Hamming window is a good compromise [Harris, 1978] and has been implemented in

this thesis.

5.2.2 Implementation of the Hamming Window

Unfortunately, we are unable to apply the Hamming windowing function in the first case
of leakage, that resulting from the object edge discontinuity. This is due to the fact that we
do not know where the image object begins and ends and, thus, do not know where to

apply the window. As an alternative, we implement the trivial solution of setting the

39

background intensity to the average pixel intensity of the object. Now the change in pixel
intensity in going from background to object is iess severe — producing less leakage —
though not as gradual a change as could be achieved in the application of a window. In the
second case of leakage, though, that resulting from the border effect of the image, we are
able to apply the Hamming window function, since we do know where the image itself
begins and ends. Note, however, that we need only apply the window to the image after it
has been log-polar transformed and only in the radial component (vertical direction). The
reasons for this are as follows: firstly, the input to the first DFT is a leaf image on a solid
background, that is, the left, right, top and bottom borders all match with one another;
there are, therefore, no discontinuities at the borders between the DFT-viewed periodic
array of images and windowing becomes unnecessary. Secondly, though it is necessary to
window the log-polar transformed image before inputting it to the second DFT, it is only
necessary to window the non-continuous, exponential radial component, r, since the
angular component, 8 , is indeed continuous [Thornton, 1998]; that is, the angular
component, @, varies on the far left side of the log-polar transformed image from 0 to the
far right side at 2z -1, which — in the DFT-viewed periodic array of images — again
borders 0, i.e. the image data in the angular component form a continuous, periodic circle,
one end matching the other. This is not the case, however, for the exponential radial
component, , the beginning and ending of which do not match (the top and bottom
portions of the log-polar transformed image do not match). Thus, windowing becomes

necessary.

To summarise, then, in order to reduce the leakage in the DFT caused by the
discontinuities at the edges of the object in the image, the background is set to the average
pixel intensity of the image object. To reduce leakage caused by the border effect of the
image, we multiply the image input function’s log-polar transformed radial component by
the Hamming windowing function defined by Equation 5-1. In both cases, leakage will not

have been completely removed, though it will have been reduced substantially.

40

5.3 Interpolation

In the digital implementation of the Fourier-Mellin transform, interpolation is required
during the log-polar sampling of the image. The log-polar sampling will result in non-
integer row and column image indices; however, all pixels in the image are located only at
integer-valued indices. As a result, some form of interpolation is necessary and this will, of
course, introduce some measure of error into the Fourier-Mellin transform. The simplest
interpolation approach is to choose the closest integer-valued indices, termed nearest-
neighbour, and assign these as points to be included in the log-polar re-sampled image.

Nearest-neighbour interpolation, however, can result in a spatial offset error by as much as
J272 pixel units [Pratt 1991]. A better method is to use bilinear interpolation. Bilinear

interpolation provides for linearly interpolating along each row of an image and then,
using the result, linearly interpolating along each column. The pixel value so found is an

estimate of its four surrounding neighbours.

41

6. Implementation of the Fourier-Mellin Transform

Casasent and Psaltis [1977], Altmann and Reitbéck [1984], Thornton and Sangwine
[1997], Thomton [1998] and Milanese and Cherbuliez [1999] all implemented variations
of the Fourier-Mellin transform. Elements of each of these implementations have been
used in this thesis in order to obtain a Fourier-Mellin translation-, rotation- and scale-

invariant descriptor of an image of a biological object. This is performed as follows:

Step 1: We set the background of each image to the average pixel intensity of the image
object. This reduces leakage attributable to the image object edges as described in section
5.2.2. We then take the Fourier transform of the two images that are to be compared and
retain only the magnitude. This step has two beneficial consequences: firstly, it removes
any shift (or translational) differences between the two images. This means that if the two
images contain identical objects but that each object is located in a different portion of the
image, their Fourier-transform magnitudes will nevertheless be identical due to the shift
invariance of the magnitude of the Fourier transform. Secondly, the Fourier-transformed
magnitudes of the two images will now be centered [Thornton, 1998; Altmann and
Reitbock, 1984]. This is beneficial because the magnitude will later undergo a coordinate

change from Cartesian to log-polar that is more easily implemented if it is centered.

Step 2: The magnitudes of the two images are now shift- (or translation) invariant. The
magnitude is then normalized by dividing each frequency component by its magnitude at
the zeroth frequency. This cancels the multiplicative amplitude differences in pixel
intensity that would have occurred if the image was scaled. [Altmann and Reitbock, 1984].
We now take the first step to enable rotation- and scale-invariance. To reiterate, we want
any rotation and scaling in the images to be expressed as shifts that can be removed by
taking the Fourier-transform and considering only the magnitude. The Mellin transform is
scale-invariant. In order to obtain the Mellin transform, we can use the Fourier transform

of a function whose input is expressed on an exponential scale. We also saw that rotation-

42

invariance can be achieved by converting the function coordinate system to a polar
coordinate system and taking the Fourier-transform magnitude of that function. Both the
scale-invariance of the Mellin transform and the rotation-invariance of a polar change and
Fourier transform can be achieved, then, in one step by converting the input image
function from a Cartesian coordinate system to a log-polar coordinate system via the log-
polar transformation described in sections 4.5 and 4.6 and taking its Fourier transform.
Thus, we take the log-polar transform of the image, not forgetting to then apply the
spatially-variant filter, proposed by Thornton and Sangwine [1997], to reduce any aliasing

due to undersampling as described in section 5.1.2. The result is the non-aliased function

S(B,expr).

Step 3: We have now converted all rotation and scale changes into shifts. As well, any
translation changes were removed after the first Fourier-transform by considering only the
magnitude. In order to remove the rotation and scale changes that were converted to
shifts, we now, again, take another Fourier transform of the data and conserve the
magnitude, remembering to first window the data in the exponential radial component
with the Hamming window function to reduce the amount of leakage as described in
section 5.2.2. This magnitude should now be completely translation-, rotation- and scale-
invariant. Assuming the two images of the same object were different in some translation,

rotation or scale, their final Fourier-Mellin magnitudes should now be identical.

43

7. Experimental Methodology

In the present application, the Fourier-Mellin transform has been used to compare images
of different leaves that have been translated, rotated and scaled. There are three reasons
why leaves were chosen as the objects used to demonstrate the effectiveness of the
Fourier-Mellin transform. Firstly, it was desirable to apply the Fourier-Mellin transform to
an application in agriculture; in this case, the Fourier-Mellin transform is being used as a
machine vision analysis tool to aid in the identification of a biological object. Secondly,
leaves are one of the indicators of plant speciation [Guyer, 1988]; therefore, being able to
recognize a leaf aids us in identifying a plant of a particular species. Thirdly, leaves are
relatively thin and flat such that two-dimensional images of leaves provide good
representations of the actual object without having to deal with the encumbrances
associated with variations in illumination, e.g. large shadows created by ridges or clefts in

the object that would introduce additional difficulties into the recognition process.

Seven species of plant leaves were used in the experiment: avocado (Persea americana),
trembling aspen (Populus tremuloides), lamb’s-quarter (Chenopodium album), linden
(Tilia americana), silver maple (Acer saccharinum), plantain (Plantago major) and sumac
leaflets (Rhus typhina). All plant species, other than avocado, are native to the Montreal
region; the specimens used were collected from plants located in Jeanne-Mance Park,
Montreal, Quebec. The avocado leaves were collected from an avocado house plant. A
leaf from each of the above-mentioned species, each between 4 and 6 cm in length, was
placed on a flatbed scanner, scanned and digitized providing digital images of a resolution
of 29 pixels per centimetre. All images contained the entire leaf. The final image size was
maintained at 256x256 pixels. The following are examples of leaf images used in the

experiment:

b0e o

Figure 7-1: Figure 7-2: Figure 7-3: Figure 7-$:

Aspen Avocado Lamb’s-quarter Linden
Figure 7-5: Figure 7-6: Figure 7-7:
Maple Plantain Sumac

The following translated, rotated and scaled variations of leaves were taken: each leaf was
rotated at approximately 12 degree intervals beginning at 12 degrees and ending at 72
degrees; each rotation was performed at a new location on the scanner. The leaves were
rotated and translated by hand and re-scanned to avoid interpolation errors arising from
attempting to rotate images using software. Leaves were then scaled between 40 percent
of the original leaf size to 160 percent the original leaf size. These scaling limits were
chosen for two reasons: firstly, on a practical note, scaling leaves more than 160 percent
often resulted in the leaf exceeding the 256x256 pixel image size used in the experiments;
and secondly, the literature indicates that the Fourier-Mellin transform is effective only
when the object scale is less than 150 percent and greater than 50 percent. [Reddy and
Chatterji, 1996; Raman and Desai, 1995; Chen ef al. [1994], and Altmann and Reitbock,
1984]. Software (Jasc Software’s Paint Shop Pro, version 5.03) was used to scale the leaf
images since errors due to interpolation in scaling images are less severe. The leaf objects
in the image were then measured for their approximate average pixel intensity. As

described in section 5.2.2, this intensity value was used to produce a uniform background

45

around the leaf object foreground in order to reduce leakage. Leaf images were then input
to the Fourier-Mellin transform. The transform was coded using Microsoft Visual C++
version 6.0. The radix-2 FFT implementation was adapted from code appearing in Smith
[1997]. Salient components of the Fourier-Mellin algorithm’s program code are listed in

the appendices of this thesis.

In total, 203 leaf image comparisons were made. Each comparison required approximately
10 seconds in the debug software version of the programme, operating on an Intel
Pentium I, 200 MHz system with 64 MB of RAM. The comparisons undertaken were as
follows. Each leaf image within a species was compared to:

a) every translated and rotated version of the same leaf;

b) every rotated and scaled version of the same leaf;

c) every other plant species’ leaf and three additional samples of the same species’ plant

leaf.

7.1 Euclidean Distance Measurement

The Fourier-Mellin transform of an image results in 0to N — 1 image frequencies. For a
256x256 image, N =256 x 256 = 65536 ; thus the amplitude of 65,536 frequencies from
each image are available for comparison. A simple and fast method of evaluating
frequency amplitude similarity is to use the Euclidean distance function [Milanese and
Cherbuliez, 1999]. In our implementation, we define the Euclidean distance as (Equation
7-1):

N-1

Y de(f)= %‘/(Im A) -(m B)? eq. 71
[=0

where Im 4and Im B are the two images being compared and f represents the individual

frequency index that runs from O to N —1. In using the Euclidean distance function as a

measure of image similarity, images that are identical will have a Euclidean distance, dj,

of zero.

46

8. Results

The tables (1, 2 and 3) on page 49 of this thesis summarise the experimental results. Al
tables report measures of image similarity using the Euclidean distance function described
in Equation 7-1. Table 1 reports the results of comparisons of original (untranslated,
unrotated and unscaled) leaf images with their rotated and translated counterparts at 12
degree intervals, ranging from 0 degrees’ to 72 degrees’ rotation. Table 2 reports the
results of comparisons of original (untranslated, unrotated and unscaled) leaf images with
counterpart leaf images that have all been rotated 48 degrees and scaled between 40
percent and 160 percent of their original size. (48 degrees’ rotation was chosen to ensure
the whole leaf would still fit within the 256x256 pixel image when scaled maximally).
Table 3 reports the results of comparisons of: 1) between-species leaf images, and 2)

samples within the same species (last 3 columns).

From table 1, we observe that untranslated, unrotated and unscaled versions of the leaf
images correspond very well with their translated and rotated versions. For instance, if we
were to set the threshold for recognition at a Euclidean distance of 10, we would observe
that all transiated and rotated leaves would be recognized. There do not seem to be any
noticeable trends associated with the extent of rotation, except that the Euclidean distance

is at a minimum in all cases when the degree of rotation is at its minimum of 12 degrees.

From table 2, we see a marked difference when original images are compared with their
scaled and rotated counterparts. Ideally, we should again set the recognition threshold at a
Euclidean distance of 10 in order to include all the previous instances of recognition
among rotated leaves. If we do this, we would find that only two out of the seven leaf
species generally showed invariance to both scale and rotation, namely the aspen and
sumac leaves. These two plant species’ leaves are recognized at all scales within 50
percent to 130 percent, with the sumac plant leaves being recognized at a scale as low as

40 percent and as high as 140 percent. The same can not be said for leaves of other plant

47

R

species, where the rate of recognition is poor. In these cases, recognition is generally not
achieved beyond a scale of 120 percent nor below a scale of 80 percent, and in one case,
that of the linden plant, recognition is not achieved in any scaled version of the leaf. Unlike
the observed results for rotation only, however, there does seem to be a trend in the
recognition of scaled and rotated leaves: it is obvious that as the scale is increased or
decreased, the rate of recognition falls off rapidly; Euclidean distances always increase

with an increase or decrease in scale, reaching maximums at the highest and lowest scales.

From table 3, we observe that in most cases of comparing leaf images of one plant species
to another plant species the Fourier-Mellin algorithm does not seem to allow us to
differentiate among most of the various plants merely by comparing images of their leaves.
The exceptions to this generality are: 1) the linden plant leaf, against which the system is
able to differentiate all other plant species’ leaves, and 2) the maple plant leaf, which
records a minimum Euclidean distance difference of 20.34 when compared with the
avocado plant’s leaf. This Euclidean distance value is generally above most other
Euclidean distance comparisons. Other between-species’ plant leaf comparisons result in
intermediate Euclidean distance values — all of which are less than 20 — and, as a result,
do not indicate that the system found large differences in the images of the various plant
species’ leaves. Finally, when we examine the results for the same-species’ additional leaf
sample comparisons (“Within Species Comparison”- last three columns in table 3), it
becomes evident that this thesis’s implementation of the Fourier-Mellin algorithm was
unable to recognize leaf images of the same species. This, however, is not surprising
considering the poor results for the rotated and scaled leaf images; we would expect
additional leaf samples from the same plant species to exhibit variations in scale and,
therefore, large Euclidean distances are to be expected here among the within-species

comparisons as well.

48

6V

Measures of Image Similarity

I | Translated and Rotated
af p° n2° R4° 36° TH 0° 72°
Aspen 0.00 4.31 4.92 5.32 4.91 5.16 4.99
Avocado 0.00} 3.7 5.13 6,22, 6.37 6.19 6.08
Lamb's-quarter 0.00 1.92 2.8 3.16 3.3 3.41 3.38
Linden 0.00 6.12 9.22 8.1 8.79 9.5 9.12
Maple 0.00 5.66) 7.61 8.31 8.42 8.1 8.25
Plantain 0.00 2,31 3.1 3,68} 4.01 2,51 2.82
Eumac 0.00 240 2.94 3.13 34 3.21 3.27
Table 1: Original (untranslated, unrotated, unscaled) versus translated and rotated leaf images
[Rotated and Scaled
Leaf H8° 40% U8° 50% [8° 60% HB° 70% [8° 80% HB° 90% W8° 110% H8° 120% U8° 130% 8° 140% }8° 150% H8° 160%
Aspen 10.13] 9,26} 8.33 6.67 574 4.89 5.65 7.24] 8.67 11.3 14.26 16.8
Avocado 23| 20.42 17.09 14.89 10.86 8.05 7.11 9.7 14.02/ 17.4 21.86 26.
amb's-quarter 16.4 14.43 12.05 9.87 6.5 4.0} 5.89 8.22 12.8 16.1 20.49 24.3
Linden 1143 98.1 78.83 60.27 40.18] 20.57} 20.89 37.64 54,1 67.19 79.5 91.5
Maple 29.4] 23,712 18.05 13.7 10.95 9.12 10.27 13.78] 16.9 19.49 21.6 23.49
Plantain 16.8] 14.3 11.21 8.13 5.55 2.99 8.14 12.55 15.61 20.57 25.92 314
Bumac 7.26] 6.08 4.91 3.37 2.94 2.67] 4.56) 6.58 7.41 9.42 10.86] 12.5]
Table 2: Original (untranslated, unrotated and unscaled) versus rotated and scaled leaf images
Between Species Comparison Within Species Comparison
Leaf Aspen Avocado [;amb's- Linden rlaple F’lantain Fumac Sample 2 Bample 3 Bample 4
uarter

Aspen 0.00! 19.45 12.54 139.19, 36.82 13.32 6.34 11,26 29.73 83.61
Avocado 0.00, 9.29] 121.89 20.3 8.31 18,14 11.22 43, 43,62
Lamb's-quarter 0.00f 128.65 26.83 4.77 11,01 38.6 14.5 18.9

inden 0.00{ 104.0 127.59] 137.55 21.7 112 49.36

aple 0.00 25.35 35.64 20,01 21.73] 14.3
Plantain 0.00 12,02 16.78 23.54] 23.0
Sumac 0.00 32.81 47.96] 60.2

Table 3;: Comparison of original leaf images with: a) other specices leaf images (“Between Species Comparison™), and
b) additional samples of same species’ plant leaf images (“Within Species Comparison®)

9, Discussion

Overall, the application of the Fourier-Mellin algorithm used to recognize leaf images
among their translated, rotated and scaled counterparts was not very robust. Though
excellent results were reported when the leaf image was merely translated and rotated,
generally poor results arose in the case of rotated and scaled leaf images as well as in
comparisons with the between- and within-species groups. The system’s failure to
recognize scaled leaf images is particularly acute since this may be the reason why there
was a lack of recognition among additional samples of same plant species’ leaves, leaves
that would not likely have been the same size as the original leaf. It is difficult to stipulate
exactly why this failure to recognize scale differences occurred. One obvious reason is that
the image frequencies may have been corrupted by leakage since, as was indicated in
section 5.2.2, this could only be poorly controlled, especially at the object image edges. As
well, further reducing object-edge leakage may not be possible. For instance, determining
the image object boundaries to enable application of a windowing function is a large
problem in its own right. While a trivial solution might entail using edge detection, perhaps
enabling a rough mapping of the object based on the assumption that the object boundary
would equate to the longest edge, even if we knew exactly where the object were located
in the image, it would still be necessary to derive a windowing function that could be
applied symmetrically to any and all variations of image objects such that they could blend
gradually into their individual backgrounds — certainly not an easy feat and, more than
likely, not possible. A more forgiving solution might be to limit the size of the allowable
scaling of the object and apply various windowing functions according to each image
object’s approximate scale. This method, combined with setting the background to the
object image’s average pixel intensity, may provide better results than relying solely on the
present implementation for leakage reduction. The results may also be further improved by
applying a different windowing function to decrease the border effect leakage, perhaps one
with a narrower mainlobe as most of the magnitude information of an image seems to be

contained in the lower frequencies [Lim, 1990]. Though, as mentioned earlier in section

50

5.2.1, the literature indicates there are only small differences between various windows,
this would indeed be the least difficult change to implement and may, nevertheless, be
worthwhile attempting. Another alternative might even be to apply various windows and
average the results. Doing so would reduce the efficiency of the algorithm, doubling the
calculation time with every newly applied window, but the benefits might far outweigh the

speed loss.

Of course another obvious possibility for the scale recognition failure is that the variation
within each leaf species is simply too great at the whole-leaf image level resolution. The
algorithm is perhaps unable to capture the light intensity frequency changes that all whole-
leaf image specimens of a single species have in common. A solution might be to examine
leaf images at a much greater resolution. In other words, an attempt could be made to
digitize leaf images at a much higher scale of magnification. In doing so, we would seek to
classify a common texture or pattern that would be particular to but one species of leaf.
Analysing such a pattern or texture would not, however, be without its own set of
difficulties. For instance, much experimentation would be required to determine the
necessary image magnification that would provide this invariant pattern common to all leaf
variations within a single plant species. Additionally, it is entirely possible, even likely, that
the necessary image magnification would be species dependent and, therefore, would have
to be determined experimentally for each and every plant species’ leaf...but, then, such are

the difficulties involved in machine vision.

Yet another reason for the recognition process’s shortcomings might be the method used
for evaluating similarity between the frequency domains of the two images; relying on the
Euclidean distance function to provide an accurate measurement of the differences in
image frequency domains may be flawed depending on the frequency representation of the
image object we wish to identify. The Euclidean distance measurement is, after all, a
weighted measure: it is very much dependent on all of the frequencies in the image, not

just those that represent the object (in our case, the leaf). In the present application, it is

51

calculated by comparing each of the 65,536 different frequencies and adding any
differences together. Though simple and fast, the Euclidean distance function would prove
to be a poor estimate of image object content if the objects in the images — the leaves —
were to represent only a small portion of the total frequency content of the image and their
frequencies happened to be made up of low amplitudes relative to the rest of the image. It
was not possible, however, to determine if this was indeed the case. Ideally, we would like
to compare only those frequencies associated with the image object. However, at this
point in the evolution of machine vision, there does not seem to be an accurate method of
determining a priori the frequencies responsible for generating the image object alone. An
alternative method of comparing images is to use correlation, a variant of convolution
which, in the frequency domain, multiplies the conjugate of one image with the second
image. Correlation is, however, much more complicated to implement, requires much
longer computation and, like the Euclidean distance measure, requires the determination
of a threshold at which objects are either recognized or not. Nevertheless, it may prove

worthwhile to attempt to use correlation as a method of image frequency comparison.

Finally, as was mentioned in section 3.6.3, a comparison was made between the
information contained in the phase to that contained in the magnitude of an image. In
short, it seems the phase contains much of the spatial information contained in an image,
that is, where edges of objects begin and end as well as where an object is situated in the
image proper. Thus, phase information could serve us well in both differentiating between
plant leaves of different species — based on shape differences — as well as in recognising
plant leaves within the same species — based on shape similarities. The problem, of course,
is that the phase is neither translation-, rotation- nor scale-invariant, unlike the Fourier-
Mellin magnitude. A solution would be to calculate the rotation and scale differences of
one image compared to the other, associate these differences somehow with the phase of
the compared image and then correlate the phases of both images. Thornton [1998]
demonstrates just this in her thesis on colour object recognition. Though the algorithm is

much more complicated, time consuming and was not applied towards the recognition of

52

biological objects, the method may indeed prove more effective in comparing different
species of plants’ leaves because it does not discard valuable information contained in the

objects’ phase images.

53

10. Summary and Conclusion

In this thesis the Fourier-Mellin algorithm was implemented to attempt to recognise plant
leaf images regardless of their translation, rotation or scale. The results indicated it was
possible using the transform to recognise plant leaf images despite changes in transiation
and rotation; however, the rate of recognition was poor for scaled and rotated plant leaf
images as well as for additional samples of same-species plant leaf images. Differentiation

was also inadequate between images of various species of plant leaves.

Future efforts to improve the success of recognition and differentiation of the present
implementation of the Fourier-Mellin algorithm include: 1) seeking better methods of
reducing leakage resulting from the edges of the object image and the image borders; 2)
applying the transform to leaf images at a magnified resolution in order to better represent
the texture of the leaf; 3) using correlation instead of Euclidean distance to measure the
similarity between leaf images, and 4) attempting to include the phase of the leaf image
along with the Fourier-Mellin magnitude to better characterize the leaf image object.
Barring the complete success of these measures, it is entirely possible the Fourier-Mellin
tranform can not tolerate the variation found in images of the biological objects — the
leaves — considered in this thesis; no previous implementation of the transform found in
the literature, for instance, was ever applied towards the recognition of biological objects.
If the biological variation of the leaves was indeed the reason for the transform’s failure,
then it is obvious much more research is required to provide for a more robust Fourier-
Mellin implementation. Moreover, though a better implementation of the Fourier-Mellin
algorithm may be possible, as mentioned in the introduction of this thesis it would be
foolish to expect a single algorithm to provide for complete recognition of a biological
object. The Fourier-Mellin algorithm should, therefore, be considered as one among many

analysis tools in a general machine vision system used to recognise biological objects.

54

11. Bibliography and References

Bibliography

Bracewell, R.N., The Fourier Transform and its Applications, McGraw Hill, New York,
1986.

Brigham, E.O., The Fast Fourier Transform and its Applications, Prentice Hall,
Englewood Cliffs, New Jersey, 1988.

Lyons, R. G., Understanding Digital Signal Processing, Addison Wesley Longman,
Reading, Massachusetts, 1997.

Smith, S. W., The Scientist and Engineer’s Guide to Digital Signal Processing, California
Technical Publishing, San Diego, 1997.

References

Altes, R. A., “The Fourier-Mellin transform and mammalian hearing”, Journal of the
Accoustical Society of America, V. 63, No. 1, January, 1978, 174-183.

Altmann, J., Reitbock, H. J., “A Fast Correlation Method for Scale- and Translation-
[nvariant Pattern Recognition”, /[EEE Transactions on Pattern Analysis and Machine
Intelligence, V. PAMI-6, No. 1, January 1984, 46-57.

Araujo, H., Dias, J. M., “An Introduction to the Log-Polar Mapping”, Proceedings of the
IEEE, 2™ Workshop on Cybernetic Vision 1996, 1997, 139-144.

Baxes, G. A., Digital Image Processing. Principles and Applications, John Wiley & Sons,
New York, 1994, p. 37, p. 99, pp. 105-106.

Bracewell, R.N., The Fourier Transform and its Applications, McGraw Hill, New York,
1986, p. 254.

Brigham, E. O., The Fast Fourier Transform and its Applications, Prentice Hall,
Englewood Cliffs, New Jersey, 1988, p. 32, pp. 50-51, p. 240.

Brousil, J. K., Smith, D. R., “A Threshold Logic Network for Shape Invariance”, /JELE
Transactions on Electronic Computers, V. EC-16, No. 6, December 1967, 818-828.

55

Casasent, D., Psaltis, D., “Scale Invariant Optical Transform”, Optical Engineering, V.
15, No. 3, May-June 1976, 258-261.

Casasent, D., Psaltis, D., “New Optical Transforms for Pattern Recognition”, Proceedings
of the [EEE, V. 65, No. 1, 1977, 77-84.

Castleman, K., Digital Image Processing, Prentice Hall, Upper Saddle River, New Jersey,
1996, p. 197, p. 201.

Chen, Q., Defrise, M. Deconinck, F., “Symmetric Phase-Only Matched Filtering of
Fourier-Mellin Transforms for Image Registration and Recognition”, [EEE Transactions
on Pattern Analysis and Machine Intelligence, V. 16, No. 12, December 1994, 1156-
1168.

Cooley, J., Tukey, J., “An Algorithm for the Machine Calculation of Complex Fourier
Series”, Mathematics of Computation, V. 19, No. 90, 1965, 297-301.

Derrode, S. “Représentation de formes planes a niveaux de gris par différentes
approximations de Fourier-Mellin analytique en vue d’indexation de bases d’images”, PhD
Thesis, Rennes University, December 1999, p. 19.

Franz, E., Gebhardt, M. R., Unklesbay, K. B., “Shape Description of Completely Visible
and Partially Occluded Leaves for Identifying Plants in Digital Images”, Transactions of
the ASAE, V. 34(2), March-April, 1991, 673-681.

Guyer, D. E., “Application of Machine Vision to Human Shape Analysis Techniques in
Leaf and Plant Identification: An Intelligent Vision Structure”, PhD Thesis, Purdue
University, December 1988, p. 21.

Harris, F. J. “On the Use of Windows for Harmonic Analysis with the Discrete Fourier
Transform”, Proceedings of the IEEE, V. 66, No. 1, January 1978, 51-83.

Lim, J. S., Two-Dimensional Signal and Image Processing, Prentice-Hall, Englewood
Cliffs, New Jersey, 1990, pp. 39-40.

Lin, C-Y, Wu, M,, Bloom, J. A, Cox, I. J., Miller, M. L., Lui, Y. M., “Rotation, scale,
and translation resilient public watermarking for images”, Proceedings of SPIE
Conference on Security and Watermarking of Multimedia Contents II, V. 3971, May

2000, 90-98.

Lyons, R. G., Understanding Digital Signal Processing, Addison Wesley Longman,
Reading, Massachusetts, 1997, p. 49, p. 63, p. 68.

56

Milanesse, R., Cherbuliez, M., “A rotation, translation and scale-invariant approach to
content-based image retrieval”, Journal of Visual Communication and Image
Representation, V. 10, No. 2, 1999, 186-196.

Oppenheim, A. V., Lim, J. S., “The Importance of Phase in Signals”, Proceedings of the
IEEE, V. 69, No. S, May 1981, 529-541.

O Ruanaidh, J. J. K., Pun, T., “Rotation, Scale and Translation Invariant Digital Image
Watermarking”, Proceedings of the IEEE International Conference on Image Processing,
V. 1, 1997, 536-539.

Parker, J. R., Algorithms for Image Processing and Computer Vision, John Wiley & Sons,
New York, 1997, p. 226.

Pratt, W. K., Digital Image Processing, 2™ ed., John Wiley & Sons, New York, 1991, p.
199, pp. 441-442.

Press, W. H,, Flannery, B. P., Vetterling, W. T., editors, Numerical Recipes. The Art of
Scientific Computing., Cambridge University Press, Cambridge, 1986, p. 425.

Raman, S. P., Desai, U. B., “2-D Object Recognition using Fourier Mellin Transform and
a MLP Network”, Proceedings of the [EEE International Conference on Neural
Networks, V. 4, 1995, 2154-2156.

Reddy, B. S., Chatterji, B. N., “An FFT-Based Technique for Translation, Rotation, and
Scale-Invariant Image Registration”, /[EEE Transactions on Image Processing, V. 5, No.
8, August 1996, 1266-1271.

Reitbock, H. J., Altmann, J., “A Model for Size- and Rotation-Invariant Pattern
Processing in the Visual System”, Biological Cybernetics, V. 51, 1984, 113-121.

Robbins, G. M., Huang, T. S., “Inverse Filtering for Linear Shift-Variant Imaging
Systems”, Proceedings of the I[EEE, V. 60, No. 7, July 1972, 862-872.

Schalkoff, R. J. Digital Image Processing and Computer Vision, John Wiley & Sons, New
York, 1989, p. 285.

Shatadal, P, Jayas, D. S., Bulley, N, R., “Fourier and Spatial Domain Analysis of Image

Texture” [in: Automated Agriculture for the 21* Century. Proceedings of the 1991
Symposium, American Society of Agricultural Engineers, Michigan, 1991.] 36-41.

57

Sheng, Y., Arsenault, H. “Experiments on pattern recognition using invariant Fourier-
Mellin descriptors”, Journal of the the Optical Society of America A, V. 3, No. 6, June
1986, 771-776.

Sheng, Y, Shen L., “Orthogonal Fourier-Mellin moments for invariant patern
recognition”, Journal of the Optical Society of America A, V. 11, No. 6, June 1994,
1748-1757.

Smith, S. W, The Scientist and Engineer’s Guide to Digital Signal Processing, California
Technical Publishing, San Diego, 1997, p. 42, p. 157, p. 195, p. 237, p. 192, p. 212-213.

Thornton, A.L., “Colour object recognition using a complex colour representation and the
frequency domain”, PhD Thesis, University of Reading, May 1998, pp. 48-49, p. 52, p.
97.

Thomton, A. L., Sangwine, S. J., “Log-Polar Sampling Incorporating a Novel Spatially
Variant Filter to Improve Object Recognition”, /EE Conference on Image Processing and
its Applications, TIPA97, 15-17 July 1997, 776-779.

Wilson, J. C., Hodgson, R. M., “A Pattern Recognition System Based on Models of
Aspects of the Human Visula System”, /EE 4* International Conference on Image
Processing and its Applications, 1992, 282-285.

Zhang, N., Chaisattapagon, C., “Effective Criteria for Weed Identification in Wheat Fields
Using Machine Vision”, Transactions of the ASAE, V. 38, No. 3, 1995, 965-974.

Zwicke, P.E., Kiss, L. Jr., “A New Implementation of the Mellin Transform and its

Application to Radar Classification of Ships”, /[EEE Transactions on Pattern Analysis and
Machine Intelligence, V. PAMI-5, No. 2, March 1983, 191-199.

58

12. Appendices: Software Programme Code

All of the software was written and compiled using Microsoft Visual C++ version 6.0.
Included here are salient portions of the programme code that relate specifically to the:
FFT implementation (appendix A); the log-polar transformation, bilinear interpolation and
application of the spatially-variant anti-aliasing filter (appendix B); the application of the
Hamming window (appendix C), and the sequence of steps to perform the Fourier-Mellin
transformation (appendix D). Also included in appendix E is a display of the programme

interface.

Appendix A: FFT implementation

//Srep 1 cf FET: decomposition cf N peint spatial domain signal

//(cepresented by Real and Imag arrays) into N signals in frequency domain

//each containing one poinft. Real and Imag array elements must be placed in an crder
//rhart corresponds fto swapping indices rthat are bit reversals sf each cther - repeat for
//columns

void Fourier::Bit_reverse_rows{unsigned int row)
{
unsigned inr Bir_reversed_index;

//loop rhreugh each column
for (unsigned int Original_index=0;Original_index<width;Original_index++)
{

Bit_reversed_index = Reverse_bit(Original_index);

//0nly swap if indexes are non equal and were not swapped earlier {(elements wculd
//have been swapped earlier if the Bit_reversed index refturned were smaller than
//the Real array_index)
if (Bit_reversed_index>Original_index)
1
swap(Real piD_base[row] [Original_index],
Real biD _base|row] [Bir_reversed_index|!};
swap(Imag_biD baselrow| [Original_index},
Imag_biD base(row] [Bin_reversed_index]):;

//Fxn to perform bit reversal for 2D data

unsigned int Fourjer::Reverse bit(unsigned int array_index)

{
unsigned inrt bit_rev=0, upperlimit=height-1;
//We want to limit the values from 0->size-l1 (lower bound->upper beound of input array)
//The lower bound =-> upper bound must be a power of 2 (i.e. 2 4 8 16 32 64 128 256)
while(upperlimit)

bit_rev = (bit_rev << 1} | (array_index & 1l};
array_index >>= 1;
upperlimit >>= 1;

}

return bit_rev;

59

//Step 2 of FFT: synthesis of frequency signals: combines sqrt{image_size)
//bit-reversed points into their frequencies
//Dc rows then repeat for columns

void Fecurier::Butterfly rows{unsigned int rcw)

{
//we do log2(sqrt{image_sicze)) number cf outer loops==sqrt(image size) in bir
//ie. we do number of cycles equal bit number of elements in each row/ccl
unsigned int cycles = (loglO{height)/logl0{2));

//declare indices:
unsigned int %, y, 2z, y minus_one, index:

//declare local variables:
double Real mult, Imag_mulw, Real ofs, Imag _ofs, Real_cos, Imag_sin;
unsigned int powerbirn;

//locp from 1 ro height or width in bits
for(x=1;x<=cycles;x++)
{
pcowerbit = (unsigned int) pow(2, x);//values from 2->height or width
Real_cos = cos{(dcuble)PI/ (double) {powerbit/2});
Imag_sin = -sin(({double)PI/(double} (powerbift/2));
Real _muln = 1.0;
Imag_mulrt = 0.0;

for(y=l;y<=(pcwerbit/2);y++)//locp for each sub DET

y_minus_cne=y-1;
//locp for each "butrerfly"
for(z=y_minus_one;z<width;z+=powerbir)
{
index = - + (powerbin/2);
Real ofs = Real_biD base[row]|[index|*Real_mulrt =
Imag_biD _base([row] [index]*Imag_mult;
Imag_ofs = Real_biD base[row| [index]|~*Imag_mult +
Imag_biD base[:owlllndeA]'Real mul®c;
Real le base[rowl[xndex] =Real bLD _base[row] [Z]~Real ofs:
Imag_| “bibD base[rowl[xndex]— mag_| “biD base[row][']—lmag sfs;
Real le base[row][’] = Real_bLD_base{row][WI + Real_ofs.
Imaq_be_base[row][’] = Imag_biD base(row][z] + Imag_ofs;
Real _ofs = Real_mult;
Real mult Real ofs * Real_cos - Imag_mult * Imag_sin;
Imag_mulc Real ofs * Imag_sin + Imag_mult * Real cos;

. Appendix B: Code for log-polar transformation, bilinear interpolation and

application of anti-aliasing filter

/*Funtion ro perform:

s

1)log-peclar transformation on FET magnitude:

Takes FFT amplitude spectrum {(magnitude) values from Cartesian coordinate system and
transforms them on to a leg-polar coordinate system.

2)Oversampling is performed on each radius by increasing rhe angular

sampling inrervals to SamplingSize (==height or width cf image) X PI.

3)Oversampled inpur is then filtered using moving average filter mask

of approximarely PI width {3) on each radius.

4)Final cutput is downsampled back to SamplingSize X SamplingSize-sized

matrix for another FET run.

Oversampling is used tc remcve alias that wculd crherwise be caused
by regular LPT sampling. (implemented accerding nc Thornton and Sangwine [19%7]).

void COpsDoc::FM_Log_Polar Transform(float **tempPtr, flcar *+EMresult, WORD heighr)

{

//Declare and assign height, widrth of image to height, width variakbles

WORD Input_ImageHeight, Inpun_ImageWidrh:

Input_ImageHeight = Inpur_ImageWidth = height:

double Oversample = FI;//define times mcore than image height zize we wish to sample

//Declare, allocate memory for a temp matrix for the Oversampled input FET magnitude
flecat **fMtempPrr=biD Matrix_uneven(SampleSize, ((int){SampleSize~Oversample}));

/*Perform the log-pclar transformation.

1. We have a matrix to hcld the log-polar transformed data, passed no rthis fxn

as FM_tempPtr. This array has 0 to SampleSize-l number of rows and 0 to SampleSize-l
number of columns.

2. The log-polar transform samples points from the power spectrum (magnitude) of

the FFT for an image. In so doing it will sample points at rthe intersection of:
column number of 2PI divisions with row number of exponential FFT power spectrum
samplings.

3. Angular division samplings will occur every: 2PI*colO0/cclumn-1l, 2PI*coll/column-1

’

2PIv*cell3d/column-1......2PTI*column-1/column (i.e. G->2PI-1). As such, this is a linear

sampling.

4. Exponential division samplings will occur at exponential radial increments in the
original FFT power spectrum data. We determine these divisions as follows:

Fcr an NxN FFT power spectrum dataser, we will sample frem O...rho-1.

Max rho = maximum number of radii in the outpur log-polar rtransformation.

rho represents the exponential radial sampling of the criginal FET power spectrum.
If Rht = maximum radius possible in the original FFT power spectrum, then it will

te equal to (N/2)-1 in pixel heighrt.

To determine which exponential radius, r, will ke used as a sample inftersecticn
point, we have the fcllowing relationship:

rho{row) = Rht "~ {row/Max_rho - 1lj
where:
rew varies from 0....Max rho =1
Rht = N/2-1

Max_rho = maximum number ¢f radii in output log-polar array

N.B.

1) the centre point is never sampled, but it will contribute to the sample if values
arecalculated by bilinear interpolation.

2) the first column and row (column O and row 0) are not sampled.

Na. 2 occurs because in order to have the centrepoint (0 theta, 0 rho)

at N/2, N/2 be a true centrepoint , we must have a maximum radius of (N/2})-1 and
in an NxN matrix it wculd be impossible to have a true centre without eliminating
or adding one row and one column (because otherwise the centrepoint occurs at

the joining of the four quadrants, which is not a pixel location). We could

have added a row and a column, reproducing data in it from their opposite sides,
butr. then the matrix size would be larger than the original power of 2 and no
further FEFT could be performed without deleting rhe added row and column.

61

The loss cf the dara from rew 0, column O is not substantial because row 0
and column 0 represent data of the highest frequencies from the FFT and are
usually so small in amplirude as to be negligikle.

3) Bilinear interpolation is used for indices that occur between infeger indices
Bilinear interpolation formula according to Fratt [1591].
Bilinear interp. is default unless user changes to nearest neighbour.

*/

//Define variables:

double rho, theta;//rhc = input radius, theta = input angle

double Rht = (Inpurt_ImageHeight/2)-1;//maximum radius input in pixels -- regular LPT

double Max_rho = SampleSize - l;//maximum number ¢f radii for sunput [(0->SampleSize-1)
int Cx,Cy;//Cint %, y input matrix indices
fleat a, b, InterpX, InterpY:;//b = decimal portion of x, a = decimal porrtion of y

int I

ntX, IntY;//IntX, IntY integer portions of calculated x, y indices

//rhe holds exponential radius value
//rtheta nolds angle

//x%,

¥y indices fo values in FFT power specrtrum array

//Sample using bilinear interpolarion
if(BilinearInterpoclationflag)

{

//Calculate indices and perform log-polar sampling
fcc(WORD u = J; u<SampleSize;u++)//u is the row index and maps %nc rho

3
L

{

2r(WORD v = 2;v<((long){SampleSize*Oversample));v++)//v is the cclumn index and

//maps rto theta
r pow (Rht, (u/Max_rho));//for exponential sampling of radius
r = (2+*PI*(double)v)/({long) (SumpleSize*Oversample});//calculate rthera:
//rtuns from 0 to (2PI-1 angular division)

ho =
heta

//Nearest-neighbcur interpolaticn (used w/in Bilinear interpolaticn formula}:

//Calculate rounded=-rc-nearest-integer indices rto inpur FET power spectrum

//Cint glcbal fxn. (defined in StdAfx.cpp} rounds a double to nearesrt int

Cx = Cint{{Input_ImageHeight/2) + (rho*cecs(theta))};//round to nearest
//integer

Cy = Cint({Input_ImageHeight/2) - (rho*sin(theta}})://round %o nearest
//integer

//Bilinear interpolation:

//First ger the actual calculared flocating point indices
InterpX = (Input_ImageHeight/2} + (rho*cos(thetal);
InterpY = (Input_ImageHeighn/2) - (rhovsinirtheta});

//Ger the int portions of x, y indices
IntX = (int) InrterpX;
IntY = (int) IntergY:;

//Get the decimal peorticns of the X, y indices
b = (InterpX - IntX);
a = (InterpY ~ IntY);

//Bilinear Interpolated pixel value of log-polar sampling

//0nly use interpclation if indices are valid (i.e. do not atfempt

//to address an index that does not exist in the matrix)

1f((IntY >= 0) &6 (IntX >= 0} && ({IntY + 1] < Input_ImageHeight) &&
({IntX+l} < Input_ImageHeight)}

EMtempPrr(u] [v] = ((l-a)*{{(l-b)*tempPrr([IntY]|(IntX]} +
(b*tempPrr[IntY] (IntX+1]}}) +
(a*{((l=-D)*cempPrr[IntY+l] [IntX]) +

{brtempPrr(IntY+i] [IntX+1l]}));

//if interpolated index lies cutside of image realm then use either

62

//nearest.-neighbour index (LPT sampling within image) or

//assign output matrix index a value of zero [LPT sampling cutside image
//realm)

else

:
\

//1f sampling outside image realm, assign 0 value
if(SampleEntirelmage) FMtempPtr{u]{v] = 0;//for LPT sampling that
//encompasses entire image

//Index within image realm (reqular LPT sampling)

else FMtempPrr{u] (v] = tempPtr (Cy][Cxi;

//Counrt number of times indices cccur sutside of image realm
InvalidIndexCounter++;

//Sample using nearest neighbour interpolation
else
{
//Calculate indices and perform log-polar sampling
for(WORD u = 0; u<SampleSize;u++)//u is the row index and maps rno rhe
for(WORD v = 0;v<({long)(SampleSizevOversample));v++)//v i5 the cclumn index and
//maps to theta

‘

{
cho

= pow{Rht, [u/Max_rho});//for expcnential sampling of radius
rhera =

2*fI*v/((long) (SampleSize*Oversample)};//calculate thera: runs frem
//Q to {2PI-1! angular division)

//Nearest.-neighbour interpolation:

//Calculate rounded-to-nearest-integer indices to input FFT power spectrum
//Cinr global fxn. (defined in StdAfx.cpg) rounds a double fo nearest int

Cx = Cint((Input_ImageHeight/2} + (rhovccs(therta)));//round nearest integer
Cy Cint((Input_ImageHeight/2) - (rhovsin(thera)});//round nearest integer

//Assign indexed value from FFT power spectrum to log-polar Zransfcrm array
EMtempPrtr{u] [v] = tempPrr [Cy]([Cx];

lrer rthe oversampled input along each radius
er {EMtempPrr);

//Downsample matrix back to criginal input matrixz size
for (WORD row = 0Q;row<SampleSize;row++)
//Sample every PI samples
for (WORD col = 0; col<SampleSize;col++)
FMresult[row] {col] = FMtempPrtr{row]|[({long) (col*Oversample))];

//Deallocate memory for temporary oversample matrix holder
DeAllocare (EMtempPtr,SampleSize);

//Fxn to filter the oversampled input in the radial direction
//An adaptaricn of the implementaticn for a "recursive" moving average filter according to

//8mith [1997]

void COpsDoc::Filner(float **originalPtr)

{

//For a size filter of n, the mask size is (2*n)+l, so set n
//Mask size should be 3, because you want %o average the oversampled pixels
//-- and it was oversampled approx. three times -- to produce one output pixel

WORD n = 1;

63

//Filrer implemenration is in one dimensicn so we must ccnvert 2D darta tc D arrays

//Create a temporary 1D input array
float vinputPrr = oneD_float Matrix(SampleSize * ((long)(SampleSize*PI)}};

//Remember the base address of inputPrr
floar *remember_Ptr = inputPtr;

//Create a tempcrary 1D output array
floan *outpurPrr = oneD_float Matrix(SampleSize * ((long) (SampleSize~FI))});

//Load up the 1D input array with the original data
for (WORD row = 0;row<SampleSize;rcwtt+)
for (WORD ccl = O;col<((long) (SampleSize*PI));col++)
*inpurPtr++=originalPrr|row| {col];

//Restore base address cf inputPtr
inpurPtr = remember_ Prr;

//Define and inirialise an accumulartcr
double Add=0;

//Find the first point for the "recursive" filrer (middle point ¢f the a-pecint mask)
//(2*n}+1 is rthe total mask sice
for (DWORD index=0; index<((2*n)+1l);index++)

Add += (double) {inputfrriindex})/((2*n)+l};

//Assign first result of "recursive" filter fo its cutput
ourpurPrr(n] = (float)Add;

//Assign rest of points based on first point ("recursive" filtering)
//start at next peint and proceed until last point-midpoint of mask
for(index = n+l;index<({SampleSize~*({long) (SampleSize~*PI)))-n};index++)

\IZ+— (double) {{(inputPtr{index+n])-(inputPtr[index—-(n+l)]))/{(2"n}+1}});
~utputPrriindex] = (floar) Add:
}

//The first and last n points are missed in the implementaticn
//Assign rthese the resulr from the nth pcint and the (last point-n) respecrtively

//...first rthe beginning points
for(index=0; index<n; index++)
outpurPrriindex] = outputfrrinij;

//...then the last pcints
for({index={((SampleSize*((long) (SampleSizevPI})})-n);
index<({SampleSice*((long) (SampleSize*PI)});index++)

outputPrr{indexj = curputPtr(((SampleSize*((long)(SampleSize*PI}))-(n+l)}};

//Remember the base address of the outputPtr
remember Ptr = cutputPtr;

//Load up the 2D original array wirh the output data
for(row = 0;row<SampleSize;row++)
for (WORD col = 0;ccl<((long) (SampleSize*PI));col++)
originalPtr(row] (col] = *outputPrr++;

//Restore the base address to the outputPtr
outpurPrr = remember Ptr;

//Return memory back to the free store
delere [] outputPrr;
delete (] inputPrr;

64

Appendix C: Code to build and apply Hamming window

//Fxn to build 1D Hamming window

void COpsDoc::Build 1DWindow()
(_

//0nly build window function if user does NOT select rectangular window
// (Get_SelectWindow returns NULL if user selected rectangular window)
if (!Ger_SelectWindow{)) return;

//Define height (== width) of marrix used ro calculate window
WORD height = Ger_SampleSize();

//Build rhe Window according =c user's selecrion:

//Build indices for Hamming window
if {Ger_SelectWindow()} ==1}
{
fcr (WORD index = 0;index<height;index++)
//Define | dimensional Hamming Window functicn
Windowfxn_1D[index} = 0.54-{C.4&v(cos((2vFI*(dcukle)index)/(height-1})1];

//Fxn ro apply 1D Hamming window

void COpsDoc::Window_1D(float <*<rempPtr)

{
//0nly apply windew funcrion if user does NOT select recrtangular window
//{Get_SelectWindow returns NULL if user selected rectanqular window}
if (!Get_SelectWindow()) return;

//Otherwise build and apply the window
else
{
//Allocare rhe memory for the window
Windowfxn_1D = oneD_float_Martrix(Get_SampleSize()):

//Build the window indices
Build_1DWindew();

//Ppply the window .o rthe exponential portion of the log-peclar sampling CONLY
for (WORD row=0; row<Ger SampleSize()};row ++)
for (WORD col=0;col<Get SampleSize();col++)
rempPrr(row] [col] = —empPtr[row][coclj*Windowfxn_1D[col];

//Deallccate rhe memory from the free srtore
DeAllocate(Windowfxn_1D,Get_SampleSize(}}:

65

Appendix D: Code for sequence of steps to perform the Fourier-Mellin
transformation

//Function to perform the Fourier-Mellin transform cn an image
//0nly available when FFT has NOT first performed
//Fourier-Mellin proceeds as follows:

//1} FFT 2} log-polar transform cf FEFT magnitude

//3) FFT of 2) produces RTS-invariant £FT magnitude

void COpsView::OnOperationsFouriermellin(}
i
//3er. a pointer no the Document
COpsDoc* pDec = GetDocument();

//Create holding matrices for EM magnirtudes
pDoc->FM_MatrixCreate(pDoc->Get _SampleSize()):

//Atrempt ro construct the image-hclding matrix and
//load up rhe matrix array with the image bits

//If LoadBirs fails, clean everything up for user tno load 2 new image
if(!pDoc->LoadBits(})
I
cDcc->DelereCentents();//clean up the Document
OnIniriazlUpdare();//clean up the client area
return;//exit to await new command

}

//Show user this may take some rime -- display the hourglass curser
CWaitCurscr wait;

//Instantiare a Fourier object ro perform FFT
Fourier FFT1(pDoc->Gen_biD _Real{),pDoc->Get_biD Imag(), pbDoc->Ger_height{),
pDoc->Ger_width(}, pDoc->Get_Image_Size()):

//Perform FFT
FETL.biD _FFET();

//Convert the real and imaginary portions of FFT to magnitude and phase
FFTLl.Polar_convert();

//Centre the zeroth frequency in the matrix
FFTl.Cent.reZeroFrequency!();

//Normalise rthe data to cancel ont scale differences (if argument ftrue},
//transfer magnitude values to real matrix and zero imaginary matrixz
FFTl.Normalize(true);

//Only scale the FET and generate mag, phase BMPs if user dces NOT perform multiple
//fM-rtransforms
i1£(!pDoc->Get_Automatic{))
{
//Scale the magnitude and phase ro displayable pixel values
FFT1.FFT_Scale();

//Assign the magnitude HBITMAP handle the magnitude HBITMAP

//returned after creating the magnitude bitmap if it does not exist
1£(!pDoc->Ger_MagBitmapHandle())

pDoc->Get_MagBitmapHandle() = pDoc->MakeBitmap(pDoc->Get_MagDisplay!()]);

//Assign the phase HBITMAP handle the phase HBITMAP

//returned after creating the phase bitmap if it does not exist
1£(!pDoc->Get_PhaseBitmapHandle(])

pDoc~->Get_PhaseBitmapHandle()= pDoc->MakeBitmap(pDoc~>Get_PhaseDisplayll}};

//Record rhe Document has now been modified
pDoc->SetModifiedFlag(frue);

//De a log polar transform on the FET's magnitude
pDoc->FM_Log_Polar_Transfocrm(pDoc~>Get_biD Real(), pDoc->Get M _Originall),
pDoc->Ger_height()]};

//Window the exponentially-sampled component of the log-polar rtransformed darta
//before applying the FFT: exponentially-sampled component is not centinucus sc¢ this
//should reduce leakage

gDcc->Window_iD(pDoc->Ger_FM Original(});

//Do the FFT again:
//Instantiate a second Fourier object tc perfeorm FET

Fourier FETZ2(pDcc->Gen _FM_Original(), pDoc->Ger_EM_Imaginary!(),pDoc->Get_SampleSizel(]),
FDoc->Ger_SampleSize(), ((pDoc->Ger_SampleSize(})~(pDoc->Ger_SampleSize(]}))s

//2erfcrm FET
FET2.ELD_FET();

//Ccnvert the real and imaginary pcrrtions of FFT rnc magnitude and phase
FFT2.Folar_convert();

//Centre the zercth frequency in the martrix
FET2.CentreZercfrequencyl():

//Transfer mag values to rthe real matrix (withcut normalisaticn) and
//zerc the imaginary matrix
FET2.Ncrmalize(false};

//Show user we're finished -- restore the default curscr
wair.Restorel();

//Compare resulrts from Fourier-Mellin rransform of first image and display fto user
pDoc->EM_Comparef);

67

Appendix E: Programme Interface

68

