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September 2009

A thesis submitted to McGill University

in partial fulfilment of the requirements of the degree of

Doctor of Philosophy

c© HUAN XU, September 2009



ABSTRACT

ABSTRACT

Decision making formulated as finding a strategy that maximizes a utility function de-

pends critically on knowing the problem parameters precisely. The obtained strategy

can be highly sub-optimal and/or infeasible when parameters are subject to uncer-

tainty, a typical situation in practice. Robust optimization, and more generally robust

decision making, addresses this issue by treating uncertain parameters as an arbitrary

element of a pre-defined set and solving solutions based on a worst-case analysis. In

this thesis we contribute to two closely related fields of robust decision making.

First, we address two limitations of robust decision making. Namely, a lack of

theoretical justification and conservatism in sequential decision making. Specifically,

we provide an axiomatic justification of robust optimization based on the MaxMin

Expected Utility framework from decision theory. Furthermore, we propose three less

conservative decision criteria for sequential decision making tasks, which include: (1)

In uncertain Markov decision processes we propose an alternative formulation of the

parameter uncertainty – the nested-set structured parameter uncertainty – and find

the strategy that achieves maxmin expected utility to mitigate the conservatism of

the standard robust Markov decision processes. (2) We investigate uncertain Markov

decision processes where each strategy is evaluated comparatively by its gap to the

optimum value. Two formulations, namely minimax regret and mean-variance trade-

off of the regret, were proposed and their computational cost studied. (3) We propose

a novel Kalman filter design based on trading-off the likely performance and the ro-

bustness under parameter uncertainty.
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Second, we apply robust decision making into machine learning both theoretically

and algorithmically. Specifically, on the theoretical front, we show that the concept of

robustness is essential to “successful” learning. In particular, we prove that both SVM

and Lasso are special cases of robust optimization, and such robustness interpretation

implies consistency and sparsity naturally. We further establish a more general duality

between robustness and generalizability – the former is a necessary and sufficient

condition to the latter for an arbitrary learning algorithm – thus providing an answer

to the fundamental question of what makes a learning algorithm work.

On the algorithmic front, we propose novel robust learning algorithms that in-

clude (1) a robust classifier with controlled conservatism by extending robust SVM to

a soft notion of robustness known as comprehensive robustness; (2) a High-dimensional

Robust Principal Component Analysis (HR-PCA) algorithm for reducing dimension-

ality in the case that outlying observation exists and the dimensionality is comparable

to the number of observations.
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RESUME

RESUME

La prise de décision, formulée comme trouver une stratégie qui maximise une fonction

de l’utilité, dépend de manière critique sur la connaissance précise des paramètres du

problem. La stratégie obtenue peut être très sous-optimale et/ou infeasible quand les

paramètres sont subjets à l’incertitude – une situation typique en pratique. L’optimisation

robuste, et plus genéralement, la prise de décision robuste, vise cette question en trai-

tant le paramètre incertain comme un élement arbitraire d’un ensemble prédéfini et

en trouvant une solution en suivant l’analyse du pire scénario. Dans cette thèse,

nous contribuons envers deux champs intimement reliés et appartenant à la prise de

décision robuste.

En premier lieu, nous considérons deux limites de la prise de décision robuste:

le manque de justification théorique et le conservatism dans la prise de décision

séquentielle. Pour être plus spécifique, nous donnons une justifiquation axiomatique

de l’optimisation robuste basée sur le cadre de l’utilité espérée MaxMin de la théorie de

la prise de décision. De plus, nous proposons trois critères moins conservateurs pour

la prise de décision séquentielle, incluant: (1) dans les processus incertains de décision

de Markov, nous proposons un modèle alternative de l’incertitude de paramètres –

l’incertitude structurée comme des ensembles embôıtées – et trouvons une stratégie

qui obtient une utilité espérée maxmin pour mitiguer le conservatisme des processus

incertains de décision de Markov qui sont de norme. (2) Nous considérons les proces-

sus incertains de décision de Markov où chaque stratégie est évaluée par comparaison

de l’écart avec l’optimum. Deux modèles – le regret minimax et le compromis entre
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l’espérance et la variance du regret – sont présentés et leurs complexités étudiées. (3)

Nous proposons une nouvelle conception de filtre de Kalman basé sur le compromis

entre la performance et la robustesse sujet a l’incertitude de paramètres.

En deuxième lieu, nous appliquons la prise de décision robuste à la théory et aux

algorithmes de l’apprentissage par machine. En particulier, en ce qui se rapporte à la

théorie, nous démontrons que le concepte de robustesse est essentiel à la réussite de

l’apprentissage. Nous prouvons que la machine aux vecteurs de support et le Lasso

sont des cas particuliers de l’optimisation robuste; de plus, cette interprétation im-

plique naturellement la consistence et la creusité. Nous établisson ensuite une dualité

plus génerale entre la robustesse et la possibilité de géneralisation – la robustesse

est une condition nécessaire et suffisante à la possibilité de géneralisation pour un

algorithme d’apprentissage arbitraire – ce qui répond à la question fondamentale du

fonctionement d’un algorithme d’apprentissage.

En ce qui se rapporte aux algorithmes, nous proposons de nouveaux algorithmes

d’apprentissage robustes, incluant: (1) un algorithm de classification robuste avec un

conservatisme controllé obtenu par extension de la version robuste de la machine aux

vecteurs de support vers une notion de robustesse appelée robustesse étendue; (2)

un algorithme robuste d’analyse de la composante principale aux dimensions élevées

pour reduire la dimension dans le cas où des observations éloignées existent et la

dimension est comparable au nombre d’observations.
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CHAPTER 1. INTRODUCTION

CHAPTER 1

Introduction

It is better to be roughly right than precisely wrong.

—John Maynard Keynes

This thesis focuses on a problem that has attracted increasing attention in engi-

neering, computer science, economics and operations research: how should an agent

make his/her decision when the parameters that define a problem are not exactly

known? Substantial research shows that neglecting this uncertainty completely and

using approximated/guessed parameters instead can lead to decisions that result in

dramatic performance degradation under the true parameters, or even being infea-

sible/unstable. These observations motivate the need for methodologies in decision

making models that lead to solutions that are immune to parameter uncertainties.

Robust optimization, and more generally robust decision making, addresses the

issue of parameter uncertainty in a computationally tractable way. This approach

treats the uncertain parameters as an arbitrary element of a pre-defined set and finds

solutions based on a worst-case analysis. This robust framework has experienced

quickly rising popularity since the 1990’s. However, in contrast to its increasingly

broad application, little research regarding its theoretical justification is available in

the literature. Moreover, robust models can lead to conservative solutions, especially

in sequential decision making, where the effects of different uncertain parameters tend

to cancel each other out.
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1.1 ROBUST DECISION MAKING

Of particular interest is the application of such robust framework into machine

learning, both theoretically and algorithmically. Indeed, many machine learning prob-

lems are inherently decision making tasks under parameter uncertainty. For example,

in the binary classification problem, one observes a finite number of labeled samples,

and finds a rule which with high probability will correctly predict the label given a

new unlabeled sample. Such a task essentially requires computing a prediction rule

with a minimal expected error, where the expectation is taken over the unknown

generative distribution that can only be approximated using the observed samples.

It is therefore natural to study the relationship between successful learning and the

robustness of the learning algorithm, and further design novel learning algorithms by

harnessing developments in robust decision making.

In this thesis, we investigate and contribute to two closely related aspects. First,

we address the aforementioned limitations of the robust framework. In particular,

we provide an axiomatic justification of robust optimization and propose new “flex-

ible” robust decision making methodologies which can smoothly adjust the level of

protection toward parameter uncertainty.

Second, we apply the robust framework to machine learning. We show that

successful learning algorithms such as Support Vector Machines (SVM) and Lasso are

special cases of robust optimization, and further prove that robustness is indeed the

necessary and sufficient condition for a general learning algorithm to work. Finally,

we propose new learning algorithms that are robust to parameter perturbation and

outlying observations.

1.1. Robust Decision Making

Decision making tasks are often formulated as maximizing a certain utility func-

tion jointly determined by the strategy chosen by the decision agent and the problem

parameter. That is, the decision agent attempts to solve the following problem:

Maximize:π u(π, ξ). (1.1)
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1.1 ROBUST DECISION MAKING

Here, π is the strategy to take, and ξ is the problem parameter. We note that it

is straightforward to include constrained problems by setting the utility to −∞ for

infeasible strategies.

Problem parameters may be subject to uncertainty in many real-world prob-

lems. This is due to noisy observations, estimating parameters from a finite number

of samples, and over-simplification of the problem formulation. Take supply chain

optimization for example. The actual demand for products, critical to evaluate the

expected income of a decision, is often not precisely known when a decision has to be

made, and thus has to be inferred from previous records.

It has long been known that neglecting parameter uncertainty and instead solving

the decision problem (1.1) with some roughly right parameters often render a com-

puted solution precisely wrong, i.e., highly infeasible, suboptimal or both. We quote

here from the case study by Ben-Tal and Nemirovski [13] on linear optimization

problems with parameter uncertainty:

In real-world applications of Linear Programming, one cannot ig-

nore the possibility that a small uncertainty in the data can make

the usual optimal solution completely meaningless from a practical

viewpoint.

Early efforts of addressing parameter uncertainty include sensitivity analysis and

stochastic programming. Sensitivity analysis (e.g., [24, 113, 33]) quantifies the

change in utility of the computed decision for small perturbations of problem data.

However, this inherently ex post analysis is not particularly helpful for computing so-

lutions that are robust to data changes. Stochastic programming (e.g., [29, 123, 96])

treats uncertain parameters as random variables with a known probabilistic descrip-

tion. The decision that maximizes the expected utility is thus deemed optimal. How-

ever, the assumption that the actual distributions of the uncertain parameters are

available is rarely satisfied in practice. Furthermore, even if we know the distribu-

tions, finding such an optimal strategy is often computationally challenging.
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A more recent approach to decision making under parameter uncertainty is robust

optimization, in which the uncertainty is not stochastic, but rather deterministic and

set-inclusive. Strategies are then ranked by their utility under the (respective) most

adversarial parameter realization. The main advantages of this robust approach are

two-fold. First, the set-inclusive uncertainty model is often more realistic than the

assumption of knowing the distribution of the uncertainty. Second, and perhaps more

importantly in practice, the resulting “robust problems” remain tractable for many

decision making problems.

In the 1970s, Soyster [141] was among the first researchers to investigate ro-

bust optimization explicitly. He considered robust linear optimization where the col-

umn vectors of the constraint matrix were subject to set-inclusive uncertainty. Due

to this column-wise uncertainty formulation, the resulting model produces overly-

conservative solutions (see the comments in [12]).

Robust formulations of mathematical programming have been extensively investi-

gated since the late 1990s following the work of Ben-tal and Nemirovski [11, 12, 13],

El Ghaoui et.al [64, 65] and Bertsimas and Sim [22, 21]. It was shown that for

a large number of optimization problems including Linear Program (LP), Quadratic

Constrained Quadratic Program (QCQP) and Second Order Cone Program (SOCP),

the robust formulations where the uncertainty set is either polyhedral or ellipsoidal

remain polynomial time solvable.

This robust framework has been applied to sequential decision making as well.

For example, in Markov Decision Processes(MDP) [124, 16], similarly as in the case

of mathematical programming, the practical performance of a strategy in MDP can

significantly differ from the model’s prediction due to parameter uncertainty (cf exper-

iments in Mannor et al. [107]). Most attempts to reduce such performance variation

consider the robust MDP formulation (e.g., [116, 5, 161, 91, 67]), i.e., optimizing

the worst-case performance for set-inclusive uncertainties. Such robust formulation is

tractable under the assumption that parameters are state-wise independent and the

uncertainty set is compact and convex. Robust Kalman filtering is another successful
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application of the robust framework [130, 63], where the filtering problem is decom-

posed into a sequence of optimization problems, and each of them is then robustified

using robust optimization.

There are two limitations to the robust approach, which we address in Chapter 2

to Chapter 5 of this thesis. First, in contrast to its increasingly broad applications,

little research has been done on its theoretic justifications. One notable exception is

[17], where the authors justified the Robust Linear Program by showing that a worst-

case linear constraint is equivalent to a coherent risk measure constraint. However,

for general robust decision making, a similar justification from decision theory seems

missing from the literature.

Second, from a practitioner’s perspective, the robust approach can lead to conser-

vative solutions, partly because its set-inclusive formulation makes it hard to incor-

porate the distributional information of the uncertain parameters. For mathematical

programming problems, such conservativeness is mitigated by constructing uncer-

tainty sets that have adjustable probability guarantees [23, 22]. For the special case

of linear optimization, robust-like formulations based on exploiting the risk prefer-

ence of the decision maker are proposed [17, 9], which essentially provide flexible

protection toward parameter uncertainty. However, for general robust decision mak-

ing, in particular sequential decision making problems, the conservativeness of robust

formulation has not been investigated.

1.2. Robustness in Machine Learning

In the last decade, a body of literature has developed to apply robust optimization

into machine learning tasks such as classification (e.g., [101, 26, 27, 137, 150, 79])

and regression [64]. These works consider cases where training samples are subject

to exogenous noise, and propose robustified learning algorithms that are essentially

modified versions of standard learning algorithms to control the adversarial effect of

such noise.
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Apart from these algorithmic contributions, little has been done to relate ro-

bustness as a reason why learning algorithms work, or, more precisely, a reason for

generalizability. Generalizability means that the expected performance should agree

with the empirical error as the number of training samples increases, and is deemed to

be the key requirement of a supervised learning algorithm: an algorithm that learns

a mapping given a set of observed input-output pairs.

There are two classical approaches for examining generalizability in literature.

The first one is based on the uniform convergence of empirical quantities to their mean

(e.g., [157, 155, 158]). This approach provides ways to bound the gap between the

risk on a test set and the empirical risk on a training set in terms of the complexity

of the space of learned mappings. Examples of complexity measures are the Vapnik-

Chervonenkis (VC) dimension (e.g., [155, 70]), the fat-shattering dimension (e.g.,

[1, 6]), and the Rademacher complexity ([8, 7]).

Another well-known approach is based on stability. An algorithm is stable if its

output remains “similar” for different sets of training samples that are identical up

to the removal or change of a single sample. This is in contrast to the complexity-

based approach that focuses on the space that an algorithm searches, as stability

analysis concentrates on how the algorithm searches the space. The first results that

related stability to generalizability track back to [55] and [56]. Later, McDiarmid’s

[110] concentration inequalities facilitated new bounds on generalization error (e.g.,

[52, 32, 100, 122, 112]).

Both aforementioned approaches provide sufficient but not necessary conditions

for generalizability. Indeed, to the best of our knowledge, a necessary and sufficient

condition of generalizability for general learning algorithms has not been suggested

in the literature. A notable exception is the Empirical Risk Minimization (ERM)

algorithm, where it is known that both having a finite VC-dimension [158] and being

CVEEEloo stable [112] are necessary and sufficient conditions for an ERM algorithm

to generalize. However, the class of ERM algorithms is restrictive, and does not
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1.3 STRUCTURE OF THE THESIS

include many algorithms that are successful in practice such as k-NN, Support Vector

Machines (SVM) [133] and Boosting [132, 75].

In this thesis, we show that robustness is a critical property leading to gener-

alizability. We first examine two widely used learning algorithms: Support Vector

Machines (SVM) [159, 157, 31] for classification and Lasso [146, 61] for regression,

and prove that they are indeed a robustified version of empirical risk minimization.

Moreover, we use this robust optimization interpretation to prove the generalizabil-

ity of SVM and Lasso. Thess are indeed special cases that display the relationship

between robustness and generalizability: we prove that robustness is a necessary and

sufficient condition of generalizability, and therefore provide an answer to the follow-

ing fundamental question: “what is the reason for learning algorithms to work?”

1.3. Structure of the Thesis

This thesis is organized as follows:

Chapter 2. Robust Optimization and MaxMin Expected Utility. An

axiomatic justification of robust optimization based on the MaxMin Expected Utility

framework is presented in this chapter, in order to address the lack of theoretical

justification of robust optimization as discussed. Furthermore, a special case in which

multiple parameters all belong to the same space is investigated. The result implies

that one can use robust optimization for decision making problems with distributional

requirements, such as stochastic programming and machine learning. Part of the

material in this chapter appears in [166].

Chapter 3. The MaxMin Expected Utility Approach to Uncertain

Markov Decision Processes. A novel approach to handling uncertain Markov

decision processes is proposed in this chapter to address the conservatism of the

robust approach. In particular, the parameter uncertainty is represented by nested

sets: the parameters are likely to belong to the inner set, and are guaranteed to belong

to the outer set. Such formulation arises naturally from the maxmin expected utility
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framework and can model the case where the decision maker knows a priori both

the likely values and the possible deviation of the parameters. A polynomial time

algorithm that computes the optimal strategy is presented. In a special case where

only the reward parameters are subject to uncertainty, the optimal strategy can be

interpreted as a tradeoff between the likely performance and the downside deviation.

If the uncertainty sets are polyhedral, an algorithm that computes the whole set of

optimal tradeoff strategies in a single run is proposed. This allows the decision maker

to obtain the most desirable tradeoff without committing to a single tradeoff a-priori.

Part of the material in this chapter appears in [171] and [173].

Chapter 4. Parametric Regret in Uncertain Markov Decision Pro-

cesses. In standard Markov decision processes, each strategy is evaluated by its

accumulated reward-to-go. However, there are situations where the decision maker is

concerned about how the performance of a strategy compares with other strategies.

Robust decision making of uncertain Markov decision processes in such a compara-

tive setup is investigated in this chapter. Each strategy is evaluated by its parametric

regret: the gap between the performance of the best strategy and the performance of

the strategy that is chosen before the parameter realization is revealed. Two related

problems – minimax regret and mean-variance tradeoff of the regret – are discussed:

In the minimax regret formulation, the true parameters are regarded as deterministic

but unknown, and the optimal strategy is the one that minimizes the worst-case re-

gret under the most adversarial possible realization. The problem of computing the

minimax regret strategy is shown to be NP-hard in general. Furthermore, algorithms

that efficiently solve minimax regret strategy under favorable conditions are proposed.

The mean-variance tradeoff formulation requires a probabilistic model of the uncer-

tain parameters and looks for a strategy that minimizes a convex combination of the

mean and the variance of the regret. An algorithm is proposed that computes such a

strategy numerically in an efficient way. Part of the material in this chapter appears

in [174].
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Chapter 5. A Kalman Filter Design Based on the Performance/Robustness

Tradeoff. Robust state estimation is investigated in this chapter. Based on the

likely performance/worst-case performance tradeoff concept raised in Chapter 3, a

new Kalman filter that solves a tradeoff problem iteratively is proposed. The pro-

posed filter can be computed efficiently online and is steady-state stable. Simulation

results show that it is less conservative than the robust filter and performs satisfac-

torily under a wide range of scenarios. Part of the material in this chapter appears

in [172] and [170].

Chapter 6. Robustness and Regularization of Support Vector Ma-

chines. From this chapter on, we will concentrate on the application of robust

decision making to machine learning. In this chapter, one of the most widely used

classification algorithms, the Support Vector Machine (SVM in short), is investigated.

In particular, it is shown that the regularized SVM is precisely equivalent to a new

robust optimization formulation. Such an equivalence relationship provides a robust

optimization interpretation for the success of regularized SVMs. A new proof of con-

sistency of (kernelized) SVMs based on this robustness interpretation is given, thus

establishing robustness as the reason regularized SVMs generalize well. Part of the

material of this chapter appears in [168].

Chapter 7. Robust Regression and Lasso. In this chapter, the robust-

ness property of Lasso (i.e., ℓ1 regularized least squares) is investigated. It is shown

that Lasso can be recast as a robust optimization problem. The implications of this

are two-fold: First, robustness provides a connection of the regularizer to a physical

property, namely, protection from noise, which thus allows a principled selection of

the regularizer as well as generalizations of Lasso that also yield convex optimization

problems. Second, robustness can be used as an avenue for exploring different prop-

erties of the solution. In particular, the robustness of Lasso explains why its solution

is sparse. Furthermore, a proof that Lasso is consistent is given using robustness
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directly. Finally, a theorem saying that Lasso is not stable, is presented. Part of the

material in this chapter appears in [165] and [167].

Chapter 8. All Learning is Robust: On the Equivalence of Robust-

ness and Generalizability. In Chapter 6 and Chapter 7, it is shown that some

widely implemented learning algorithms have nice robustness properties that imply

consistency. This chapter generalizes such results. Indeed, it is shown that robustness

is a necessary and sufficient condition for an arbitrary learning algorithm to perform

“well”, more precisely, to generalize. This is the first “if-and-only-if” condition for

the generalizability of learning algorithms other than empirical risk minimization.

Conditions that ensure robustness and hence generalizability for samples that are

independent and identically distributed and for samples that come from a Markov

chain are also presented. This leads to new theorems of generalizability as well as

novel proofs of known results.

Chapter 9. Sparse Algorithms are not Stable: A No-free-lunch

Theorem. This chapter generalizes the theorem that Lasso is not stable which is

presented in Chapter 7 to a more general context. In particular, it is shown that two

widely used notions in machine learning, namely: sparsity and algorithmic stability,

both deemed desirable in designing algorithms, contradict each other. That is, under

mild technical assumptions, a sparse algorithm can not be stable and vice versa. Thus,

one has to tradeoff sparsity and stability in designing a learning algorithm. Examples

of stable (hence non-sparse) algorithms and sparse (hence non-stable) algorithms are

presented to illustrate the implication of this theorem. Part of the material in this

chapter appears in [175] and [176].

Chapter 10. Comprehensive Robust Support Vector Machines and

Convex Risk Measures. In this chapter, a novel support vector machines classi-

fication algorithm based on robust optimization is proposed, one that builds in non-

conservative protection to noise and controls overfitting. The formulation is based on

10
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a softer version of robust optimization called comprehensive robustness. It is shown

that this formulation is equivalent to regularization by any arbitrary convex regular-

izer. The connection of comprehensive robustness to convex risk-measures is explored,

which can be used to design risk-measure constrained classifiers with robustness to

the input distribution. The proposed formulation leads to convex optimization prob-

lems that can be easily solved and achieves promising empirical results. Part of the

material in this chapter appears in [169].

Chapter 11. Robust Dimensionality Reduction for High-Dimension

Data. This chapter investigates the dimensionality-reduction problem for contami-

nated data in the high dimensional regime, where the the number of observations is of

the same order of magnitude as the number of variables of each observation, and the

data set contains some (arbitrarily) corrupted observations. A High-dimensional Ro-

bust Principal Component Analysis (HR-PCA) algorithm is proposed. The HR-PCA

algorithm takes an “actor-critic” form: we apply standard PCA in order to find a set

of candidate directions. These directions are then subjected to a hypothesis test which

determines whether the variance is due to corrupted data, or indeed the “authentic”

points. In the latter case, the algorithm has found a true principal component. In the

former case, a randomized point removal scheme is used that guarantees quick con-

vergence. The HR-PCA algorithm is tractable, robust to contaminated points, and

easily kernelizable. The resulting solution has a bounded deviation from the optimal

one, and unlike PCA, achieves optimality in the limit case where the proportion of

corrupted points goes to zero. Part of the material in this chapter appears in [164].

Chapter 12. Conclusion. This chapter contains some concluding remarks

and discusses open issues and questions raised by this thesis.
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2.1 INTRODUCTION

CHAPTER 2

Robust Optimization and MaxMin

Expected Utility

This Chapter address the first limitation of robust optimization as discussed in Chap-

ter 1: a lack of theoretical justifications. We show that Robust Optimization is a

special case of MaxMin Expected Utility framework, and hence giving an axiomatic

justification of robust optimization from a decision theory perspective. A special case

where multiple parameters all belong to the same space is investigated. Such a result

implies that Robust Optimization can be used to handle decision making problems

where some probabilistic information of unknown parameters is available, particularly

problems which involve using samples to approximate the underlying generative dis-

tribution, such as stochastic programming and machine learning. Part of the material

in this chapter appears in [166].

2.1. Introduction

Robust Optimization (RO), traced back as early as [141], is widely used in oper-

ations research, computer science, engineering, and many other fields (e.g., [12, 13,

22, 64, 63, 137, 101], see [18] for a detailed survey). In contrast to its increas-

ingly broad applications, little research has been done on its theoretical justifications.

One notable exception is [17], where the authors justified Robust Linear Program by

12
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showing that a worst-case linear constraint is equivalent to a coherent risk measure

constraint.

In this chapter, we provide a MaxMin Expected Utility (MMEU) interpretation

for Robust Optimization. We show that RO (not necessarily Linear Program) is

a special case of MMEU decision, i.e., the worst performance under disturbance of

parameters equals to the maximum error w.r.t. a class of probability measures (here-

after referred as the corresponding class). We thus provide an axiomatic justification

to RO from a decision making perspective. Furthermore, this relationship implies

that RO can be a useful tool to deal with decision making problems with distribu-

tional requirements, which include most problems in machine learning and stochastic

programming. This also helps one to determine the uncertainty set by exploring the

distributional requirement of the problem.

We consider a general robust optimization problem, i.e., maximizing an arbitrary

utility. Therefore, we drop constraints by setting the utility of infeasible solutions as

−∞. We further consider a special case where parameters {xi}n
i=1 belong to the same

space Rm, and we are looking for the corresponding set in Rm rather than in Rm×n.

This case is of interest when one is trying to approximate a continuous probability

distribution with a finite number of samples, either because the distribution is not

explicitly known, or the computation involved is untractable.

We use P and Υ in this section to denote the set of probability measures and

the set of σ-finite measures, respectively, both defined on Borel algebra of Rm. Hence

P = {µ ∈ Υ|µ(Rm) = 1}.

2.2. MaxMin Expected Utility

In [77, 98], the authors proposed an axiomatic framework for decision-making

under uncertainty, which is often referred as Maxmini Expected Utility (MMEU). We

here briefly recall their results.

Consider a general decision making problem, where each action a is defined by its

outcomes under different parameter realizations. For example, if there are n possible

13
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parameter realizations, then a can be identified by a vector (a1, · · · , an) ∈ Rn. Let

αe denote an action that achieves a constant outcome α ∈ R under all parameter

realizations. The authors prove the following existence theorem (see Theorem 1 of

[98]).

Theorem 2.1. If a preference relationship among actions has a functional form

V (a), and satisfying the following axioms:

(1) Quasi-Concavity: V is Quasi-Concave.

(2) Certainty Independence: for any action b, and 0 < λ < 1,

V
(

λb+ (1 − λ)αe
)

= λV (b) + (1 − λ)V (αe).

(3) Weak Dominance: V is increasing in all arguments.

Then, there exists a closed convex set C of probability distributions on parameter

realizations, such that V (a) = minp∈C Epa.
1

If the outcome of an action has a functional form, i.e., some u(v,x) denotes the

outcome of a decision variable v under a parameter realization x, then we can rewrite

Theorem 2.1 as

V (a) = V̂ (v) , min
µ∈C

∫

u(v,x)dµ(x),

i.e., each decision is evaluated w.r.t the minimum (among a set of distributions)

expected utility, and the optimal decision is given by v∗ = arg max V̂ (v). This can

also be interpreted as a robust solution w.r.t distributions. It is straightforward to

extend to cost-minimization problem.

2.3. Robustness and MMEU

In this section we investigate the relationship between robustness and MMEU.

Notice that we are interested in finding the equivalence relationship given any fixed

candidate decision. Hence we drop the decision variable in this section. Theorem 2.2

1Here Epa is understood as
∑

i piai, where pi is the probability that ith realization happens assuming
that the parameter follows a probabilistic law p, and ai is the outcome of a under the ith realization.
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investigates the equivalence relationship of a general robust optimization problem.

Theorem 2.3 considers the special case in which multiple parameters are assumed to

belong to a same space.

Theorem 2.2. Given a function f : Rm → R, and a Borel set Z ⊆ Rm, the

following holds:

inf
x′∈Z

f(x′) = inf
µ∈P|µ(Z)=1

∫

Rm

f(x)dµ(x).

Proof. Let x̂ be a ǫ−optimal solution to the left hand side, consider the prob-

ability measure µ′ that puts mass 1 on x̂, and satisfies µ′(Z) = 1. Hence, we have

inf
x′∈Z

f(x′) + ǫ ≥ inf
µ∈P|µ(Z)=1

∫

Rm

f(x)dµ(x),

since ǫ can be arbitrarily small, this leads to

inf
x′∈Z

f(x′) ≥ inf
µ∈P|µ(Z)=1

∫

Rm

f(x)dµ(x). (2.1)

Next construct function f̂ : R
m → R as

f̂(x) ,







f(x̂) x ∈ Z;

f(x) otherwise.

By definition of x̂ we have f(x) ≥ f̂(x)− ǫ for all x ∈ Rm. Hence, for any probability

measure µ such that µ(Z) = 1, the following holds

∫

Rm

f(x)dµ(x) ≥
∫

Rm

f̂(x)dµ(x) − ǫ = f(x̂) − ǫ ≥ inf
x′∈Z

f(x′) − ǫ.

This leads to

inf
µ∈P|µ(Z)=1

∫

Rm

f(x)dµ(x) ≥ inf
x′∈Z

f(x′) − ǫ.

Notice ǫ can be arbitrarily small, we have

inf
µ∈P|µ(Z)=1

∫

Rm

f(x)dµ(x) ≥ inf
x′∈Z

f(x′) (2.2)

Combining (2.1) and (2.2), we prove the theorem. �
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Theorem 2.3. Given a function f : Rm → R and Borel sets Z1, · · · ,Zn ⊆ Rm,

denote

Pn , {µ ∈ P|∀S ⊆ {1, · · · , n} : µ(
⋃

i∈S

Zi) ≥ |S|/n}.

The following holds

1

n

n
∑

i=1

inf
xi∈Zi

f(xi) = inf
µ∈Pn

∫

Rm

f(x)dµ(x).

Notice the sets Z1, · · · ,Zn can overlap with each other or even be identical.

Proof. Let x̂i be an ǫ−optimal solution to infxi∈Zi
f(xi). Observe that the

empirical distribution for (x̂1, · · · , x̂n) belongs to Pn. Since ǫ can be arbitrarily close

to zero, we have
1

n

n
∑

i=1

inf
xi∈Zi

f(xi) ≥ inf
µ∈Pn

∫

Rm

f(x)dµ(x). (2.3)

Without loss of generality, assume

f(x̂1) ≥ f(x̂2) ≥ · · · ≥ f(x̂n). (2.4)

Now construct the following function

f̂(x) ,







maxi|x∈Zi
f(x̂i) x ∈ ⋃n

j=1 Zj ;

f(x) otherwise.

Observe that f(x) ≥ f̂(x) − ǫ for all x.

Furthermore, given µ ∈ Pn, we have
∫

Rm

f(x)dµ(x) + ǫ

≥
∫

Rm

f̂(x)dµ(x)

=

n
∑

k=1

f(x̂k)
[

µ(

k
⋃

i=1

Zi) − µ(

k−1
⋃

i=1

Zi)
]

16
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Denote αk ,

[

µ(
⋃k

i=1 Zi) − µ(
⋃k−1

i=1 Zi)
]

, we have

n
∑

k=1

αk = 1,

t
∑

k=1

αk ≥ t/n.

Hence by Equation (2.4) we have

n
∑

k=1

αkf(x̂k) ≥
1

n

n
∑

k=1

f(x̂k).

Thus we have for any µ ∈ Pn,

∫

Rm

f(x)dµ(x) + ǫ ≥ 1

n

n
∑

k=1

f(x̂k).

Therefore,

inf
µ∈Pn

∫

Rm

f(x)dµ(x) + ǫ ≥ inf
xi∈Zi

1

n

n
∑

k=1

f(xk).

Notice ǫ can be arbitrarily close to 0, we proved the proposition by combining

with (2.3). �

Note that in both Theorem 2.2 and 2.3, the corresponding classes of probability

measures only depend on uncertainty sets. Therefore, the equivalent relationships are

indeed uniform for all utility functions, in particular the set of utility functions fv(·)
indexed with the decision variable v. Thus, the optimal decision to the left-hand-side

and the right-hand-side are the same.

2.4. Discussions

Theorem 2.2 and 2.3 have two-fold significance. On one hand, they provide an

axiomatic justification of the widely-used RO method from a decision-theory perspec-

tive. On the other-hand, they imply a RO-based approach to handle decision making

problems based on distributional requirements. For example, many decision problems

can be written as

maximize:v Ex∼P{fv(x)}, (2.5)
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where P is either unknown (e.g., most machine learning problems where only a set

of samples generated according to P are given) or too complicated to evaluate (e.g.,

most stochastic programming problems with a continuum of scenarios). A sampling

technique is often used instead, i.e., the true distribution P is replaced by µn which

is an empirical distribution of n i.i.d. samples x1, · · · ,xn generated according to P,

and a decision

v∗
n , arg max

v
Ex∼µn{fv(x)} = arg max

v

1

n

n
∑

i=1

fv(xi),

is taken as an approximation of the solution of Problem (2.5). However, it is widely

known that such a sampling technique often yields overly optimistic solution, i.e.,

the empirical utility for v∗
n is a biased estimation of its expected utility. Even worse,

it is often the case that as n ↑ ∞, the sequence {v∗
n} does not converge to the

optimal decision. This is often termed as “over-fitting” in machine learning literature

([158]), and has attracted extensive research. Briefly speaking, this is because the

convergence of Eµnfv(·) to EPfv(·) is not uniform for all v. We propose to solve this

problem by constructing uncertainty sets such that the right-hand-side of the equality

in Theorem 2.3 “approximately” contains the true probability distribution P. To be

more rigorous, this is to say the right-hand-side contains a sequence of distributions

which converges to P uniformly w.r.t. v. One notable example of such sequence is

any kernel density estimator. If in addition, the size of the uncertainty set shrinks to

zero, the sequence of the min-max decisions converges to the optimal solution. This

property is in fact exploited implicitly by many widely used learning algorithms, as

illustrated by the following two examples. See Chapter 6 and Chapter 7 for details.

The following example is in the classical machine learning setup where a decision

maker observes a set of training samples {xi}m
i=1 (each sample is assumed in Rk) and

their labels {yi}m
i=1 (each label is in {−1, 1}).
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Example 2.1. If the training samples {xi, yi}m
i=1 are non-separable, then the reg-

ularized SVM problem

min
w,b

: c‖w‖∗ +

m
∑

i=1

max
[

1 − yi

(

〈w, xi〉 + b
)

, 0
]

,

is equivalent to the robust optimization problems

min
w,b

: max
(δ1,··· ,δm)∈T

m
∑

i=1

max
[

1 − yi

(

〈w, xi − δi〉 + b
)

, 0
]

.

where the uncertainty set is given by

T ,

{

(δ1, · · ·δm)|
m
∑

i=1

‖δi‖ ≤ c;
}

.

The next example considers a regression setup. In this setup we are given m

vector in R
k denoted by {ai}m

i=1 and m associated real values {bi}m
i=1. We are looking

for a k dimensional linear regressor v that satisfies b ≈ Av, where A is a matrix

whose rows are the m vectors. There are many way to solve this regression problem

and we consider a specific popular framework known as Lasso.

Example 2.2. The l1 regularized regression problem (aka Lasso)

min
v

: ‖b− Av‖2 + c‖v‖1,

is equivalent to a robust regression

min
v

: max
∆A∈U

‖b− (A+ ∆A)v‖2,

with the uncertainty set

U ,

{

(δ1, · · · , δm)
∣

∣

∣
‖δi‖2 ≤ c, i = 1, · · · , m

}

.
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2.5 CHAPTER SUMMARY

2.5. Chapter summary

In this chapter, we showed that Robust Optimization has a MaxMin Expected

Utility interpretation, and explicitly found the set of probability measures that cor-

responds to the disturbance. A special case where multiple parameters belong to the

same space is also considered, which is of interest in handling decision problems where

some probabilistic information of unknown parameters is available.

The main thrust of this research is to embed general Robust Optimization into

a well-established axiomatic decision making framework. This not only provides a

more solid justification and motivation of RO, but also suggests a new approach on

choosing the uncertainty set by exploring the distributional requirement. One such

example is to use RO in approximating the generative distribution by finite samples,

a process that has been implicitly used by many standard learning algorithms.
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CHAPTER 3. THE MMEU APPROACH TO UMDP

CHAPTER 3

The MaxMin Expected Utility Approach

to Uncertain Markov Decision Processes

As discussed in Chapter 1, the so-called robust approach of Markov decision processes

can be overly conservative. In this chapter we propose an alternative approach by

modeling the uncertainty in a more flexible way. In particular, we consider Markov

decision processes where there is uncertainty in the values of the parameters. This

uncertainty is represented by nested sets: the parameters are likely to belong to the

inner set, and are guaranteed to belong to the outer set. Our formulation models the

case where the decision maker knows a-priori both the likely values and the possible

deviation of the parameters and arises naturally from the maxmin expected utility

framework. We devise a polynomial time algorithm for computing a strategy that

maximizes the expected utility under the most adversarial distribution. When only

the reward parameters are subject to uncertainty, such strategies have an interpreta-

tion as a tradeoff between the likely performance and the performance under worst

case parameters. If the uncertainty sets are polyhedral, we propose an algorithm

that computes the whole set of optimal tradeoff strategies in a single run without

committing to a single tradeoff a priori. Part of the material in this chapter appears

in [171] and [173].
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3.1. Introduction

Sequential decision making in stochastic dynamic environments is often modeled

using Markov decision processes (e.g., Puterman [124], Bertsekas and Tsitsiklis [16]).

A strategy that achieves maximal expected accumulated reward is considered to be

the optimal solution. However, in many applications, the practical performance of

such a strategy can significantly differ from the model’s prediction due to parameter

uncertainty – the deviation of the modeling parameters from the true ones (cf. exper-

iments in Mannor et al. [107]). Most attempts to reduce such performance variation

consider the robust MDP formulation (e.g., Nilim and El Ghaoui [116], Bagnell et

al. [5], White and El Deib[161], Iyengar [91], Epstein and Schneider[67]). In this

context, it is assumed that the parameters can be any member of a known set (termed

the uncertainty set), and solutions are ranked based on their performance under the

(respective) worst parameter realizations. The optimal solution to a robust MDP is

obtained in polynomial time under the assumption that parameters are state-wise

independent and the uncertainty set is compact and convex.

A major disadvantage of the robust approach is that it often generates overly

conservative strategies tailored to parameters with large perturbations (cf Delage

and Mannor [50]). This is due to the fact that all parameter realizations within the

uncertainty set are treated in the same manner, which leads to an unfavorable bias

to adverse rare disturbances. Indeed, by replacing a convex uncertainty set with its

boundary we obtain the same solution. Therefore, despite having a best downside pro-

tection, the solution of the robust MDP is often inferior under less extreme parameter

realizations. A standard remedy to such conservatism is to shrink the uncertainty set,

i.e., to use a smaller set of parameters. However, since certain parameter realizations

are excluded completely, there is no guaranteed downside protection.

In this chapter, we propose a new formulation for MDPs under parameter un-

certainty that mitigates the conservatism without losing the protection to downside

deviations. In particular, we represent the parameter uncertainty with a nested-set
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structure: the inner set (termed concentration set) stands for the “likely”1 realiza-

tions of the parameters and the outer one (deviation set) is the set of all possible

realizations. Such prior information of the unknown parameters is often available in

practice, and the inner set and the outer set can differ significantly so that neglecting

either one is not desirable.

The proposed formulation is based on the MaxMin Expected Utility (MMEU)

framework that is popular in decision theory (Gilboa and Schemeidler [77]), which

states that for a general decision problem under parameter uncertainty, a decision

maker will maximize his/her expected reward under the worst parameter distribution

if a set of axioms are satisfied. (See Section 2.2 for a detailed discussion.) Therefore,

we treat the unknown parameters as random variables and consider the set of distribu-

tions satisfying: (1) the parameters are state-wise independent; (2) each distribution

is supported by the deviation set; (3) each parameter belongs to the concentration

set with a probability at least λ. Strategies are then ranked based on their expected

performance under the (respective) most adversarial distribution. Observe that the

robust MDP formulation is a special case of the proposed formulation by setting

λ as zero, which stands for the case that the knowledge of how the distribution is

concentrated is lacking.

The nested set formulation is motivated by setups where the parameters are

considered to be random variables – i.e., a Bayesian approach (e.g., Strens [143],

Dearden et al. [49]) is taken – and their distribution is estimated from samples. Such

estimation is often imprecise especially when only a small number of samples are

available. Instead, estimating uncertainty sets with high confidence can be made

more accurate, which provides a lower-bound on the performance under the true

distribution. A generalization to nested structures with more than two uncertainty

sets is straightforward. Thus, the nested set formulation provides a framework that

can model the a priori information in a flexible way. Even when the distribution

of the parameters is known precisely, the nested set formulation can still be used

1We use the word likely in a loose sense here: we do not assume that we are equipped with a precise
probabilistic model for the parameter uncertainty; see the discussion below.
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to approximate a Bayesian setup. Such approximation is particularly useful when

the decision maker is risk-sensitive, because maximizing a risk-sensitive measure in

a Bayesian setup can often be computational difficult. For example, a percentile

objective is known to be NP-hard (Delage and Mannor [50]).

We further discuss in detail an important special case where only the expected

reward parameters are uncertain and the transition probabilities are precisely known.

In this case, the proposed MMEU formulation can be interpreted in an intuitively

appealing way: It finds Pareto efficient solutions of the “likely” performance and the

performance under the worst deviation. This criterion resembles the following decision

rule: “I am willing to compromise certain amount of performance, and I want to gain

maximum protection toward downside deviation due to parameter perturbations”. A

widely known example of this decision rule is insurance policies, where one pays a

small amount of premium to cover a potentially large loss if some rare event happens.

It is of interest to find the whole tradeoff relationship, because a decision maker

often wants to compare different tradeoffs and choose the best one. (Consider an

insurance buyer who selects an insurance policy from multiple proposals.) In general,

we can only approximate this by solving finitely many tradeoffs. If the uncertainty sets

are polyhedral, we propose an algorithm based on Parametric Linear Programming

(PLP) that computes the whole set of Pareto efficient solutions in a single run. This

is beneficial in practice since the decision maker’s preference among different tradeoffs

can be very complicated and not straightforward to incorporate as a single tradeoff

parameter. Instead of arbitrarily claiming that a certain solution is a good tradeoff,

our algorithm computes the whole tradeoff relationship so that the decision maker

can choose the most desirable solution according to her preference. By doing this we

leave the subjective decision of determining the exact tradeoff to the decision maker

and hence avoid tuning of tradeoff parameters.

This chapter is organized as follows. In Section 3.2 we provide some background.

We then formulate and solve the MMEU-based robust MDP for the general case in

Section 3.3. The special case where the transition probabilities are known is discussed
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in Section 3.4, in which we link the proposed strategy with the criterion of achieving

Pareto efficient tradeoffs as well as provide an algorithm that finds the whole set of

solutions. In Section 3.5, we present a computational example. Some concluding

remarks are offered in Section 3.6. Finally, in Section 3.7 we provide the proof to

Theorem 3.1.

Notation. We use capital letters to denote matrices, and bold face letters to

denote column vectors. Row vectors are represented as the transpose of column

vectors. We use 1 to denote the vectors of appropriate length with all elements 1,

and use ei(m) to denote the ith elementary vector of length m. The indicator function

is denoted by I(·), i.e., the output of the function is 1 if the event inside the bracket

is true, and zero otherwise.

3.2. Preliminaries

In this section, we present some background knowledge including uncertainty in

Markov decision processes and parametric linear programming.

3.2.1. Uncertain Markov decision processes. A (finite) Markov Decision

Process (MDP) is defined as a 6-tuple < T, γ, S, As,p, r > where: T is the possibly

infinite decision horizon; γ ∈ (0, 1] is the discount factor; S is the state set; As is the

action set of state s; both S and As are finite sets; p is the transition probability;

and r is the expected reward. That is, for s ∈ S and a ∈ As, r(s, a) is the expected

reward and p(s′|s, a) is the probability to reach state s′. Following the notation of

Puterman [124], we denote the set of all history-dependent randomized strategies by

ΠHR, and the set of all Markovian randomized strategies by ΠMR. We use subscript

s to denote the value associated with state s, e.g., rs denotes the vector form of

rewards associated with state s, and πs is the (randomized) action chosen at state

s for strategy π. The elements in vector ps are listed in the following way: the

transition probabilities of the same action are arranged in the same block, and inside

each block they are listed according to the order of the next state. We use s to denote

the (random) state following s, and ∆(s) to denote the probability simplex on As.
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An Uncertain MDP (UMDP) is defined as an 8-tuple < T, γ, S, As,P ,R,P,R >

where: P and R are the concentration sets: sets that the unknown parameters (tran-

sition probabilities and expected rewards respectively) are “likely” to belong to, while

P and R are the deviation sets: sets that the parameters are guaranteed to belonging

to. For this formulation to make sense, P ⊆ P and R ⊆ R. A special case is when the

concentration set is a singleton, representing the nominal (i.e., most possible) param-

eter realization. We use Ep
π(·) to represent taking expectation where the transition

probability is p, and the strategy to take is π.

We make the following assumption about the uncertainty set, which basically

means that the parameters of different states are independent (we use the term “in-

dependent” but there is no probabilistic interpretation here). Such assumption is

made by all papers investigating UMDPs to date, to the best of our knowledge.

Assumption 3.1. State-wise Cartesian uncertainty sets:

(i) P =
∏

s∈S Ps, R =
∏

s∈S Rs, P =
∏

s∈S Ps, R =
∏

s∈S Rs.

(ii) Ps, Rs, Ps, Rs are nonempty, convex and compact.

Similarly to Nilim and El Ghaoui [116], we assume that when a state is visited for

multiple times, each time it can take a different parameter realization (non-stationary

model), mainly because the stationary model is generally intractable and a lower-

bound on it is given by the non-stationary model. Therefore, multiple visits to a same

state can be treated as visiting different states. By introducing dummy states, for

finite horizon case we can make the following assumptions without loss of generality.

Assumption 3.2. (i) Each state belongs to only one stage.

(ii) The terminal reward equals zero.

(iii) The first stage only contains one state sini.

Using Assumption 3.2 (i), we partition S according to the stage each state belongs

to. That is, we let St be the set of states belong to tth stage. For a strategy π, we

denote the expected (discounted) total-reward under parameters p, r by u(π,p, r),
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i.e.,

u(π,p, r) , E
p
π{

T
∑

i=1

γi−1r(si, ai)}.

3.2.2. Parametric linear programming. We briefly recall Parametric Lin-

ear Programming from linear programming textbooks (e.g., Bertsimas and Tsitsik-

lis [24], Ehrogtt [62], Murty [113]). A Parametric Linear Programming is the follow-

ing set of infinitely many optimization problems:

For allλ ∈ [0, 1] ,

Minimize: λc(1)⊤x + (1 − λ)c(2)⊤x (3.1)

Subject to: Ax = b

x ≥ 0.

We call c(1)⊤x the first objective, and c(2)⊤x the second objective. We assume that

the Linear Program is feasible and bounded for either objective. Although there

are uncountably many possible λ, Problem (3.1) can be solved by a simplex-like

algorithm. Here, “solve” means that for each λ, we find one optimal solution. An

outline of the PLP algorithm is given in Algorithm 3.1 which is a tabular simplex

method where the entering variable is determined in a specific way.

Algorithm 3.1. Parametric Linear Program

(1) Find a basic feasible optimal solution for λ = 0. If multiple solutions exist,

choose one among those with minimal c(1)⊤x.

(2) Record current basic feasible solution. Check the reduced cost of the first

objective c̄
(1)
j for each column. Terminate if all of them are nonnegative.

(3) Among all columns with negative c̄
(1)
j , choose the one with largest ratio

|c̄(1)j /c̄
(2)
j | as the entering variable.

(4) Pivot the base, go to 2.

This algorithm is based on the observation that for any λ, there exists an op-

timal basic feasible solution. Hence, by finding a suitable subset of all vertices of

27



3.3 MMEU BASED UNCERTAIN MDP: GENERAL CASE

the feasible region, we can solve the PLP. Furthermore, we can find this subset by

sequentially pivoting among neighboring extreme points, and choose the one having

the largest ratio between decrease of the first objective and increase of the second.

The Pareto front of the two objectives (i.e., {(c(1)⊤x, c(2)⊤x)|x is Pareto efficient}) is

piecewise linear, and the number of pieces equals to the number of vertices pivoted.

Hence if the problem is non-degenerate, then the algorithm is guaranteed to terminate

within finitely many iterations. In the degenerate case, cycling can be avoided if an

appropriate anti-cycling rule is followed (see [113]). The computational complexity

is exponential in the number of the constraints and variables. That is, the number

of pieces may grow exponentially, although practically this almost never happens.

Such a characteristic is shared by all simplex based algorithms. It is also known that

the optimal value for PLP is a continuous piecewise linear function of λ. See Bert-

simas and Tsitsiklis [24], Ehrogtt [62], Murty [113] and other linear programming

textbooks for detailed discussions.

3.3. MMEU based uncertain MDP: general case

In this section we propose an MMEU based criterion for uncertain MDPs, which

incorporates prior information on how parameters spread and concentrate. We show

in Section 3.3.1 that for finite horizon UMDP, a strategy defined through backward

induction, which we called S-robust strategy is MMEU optimal. In addition, such

strategy is computable in polynomial time under mild technical conditions. We gen-

eralize the notion of S-robust strategy to the infinite horizon case in Section 3.3.2,

and show that it is MMEU optimal.

3.3.1. Finite horizon UMDP. We use the following set of distributions for

our model.

CS(λ) , {µ|µ =
∏

s∈S

µs; µs ∈ Cs(λ), ∀s ∈ S},

where: Cs(λ) , {µs|µs(Ps ×Rs) = 1, µs(Ps ×Rs) ≥ λ}.
(3.2)
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We briefly explain this set: for the unknown parameters of a state s, the condition

µs(Ps ×Rs) = 1 means that the parameters are restricted to the deviation set; while

the condition µs(Ps ×Rs) ≥ λ means that they belong to the concentration set with

a high probability. Note that
∏

s∈S µs stands for the product measure generated by

µs, which indicates that the parameters among different states are independent.

Definition 3.1. An MMEU strategy with respect to CS(λ) is

π∗
M , arg max

π∈ΠHR

{

min
µ∈CS(λ)

∫

u(π,p, r) dµ(p, r)
}

.

At first sight, computing an MMEU strategy w.r.t. CS(λ) seems formidable.

In fact, evaluating the minimal (of all accessible priors) expected utility for a given

strategy π already seems computational challenging, let alone finding an optimal

strategy. Nevertheless, we show in Theorem 3.1 that the following S-robust strategy

defined through a backward induction is the MMEU strategy. The proof is lengthy

and hence deferred to Section 3.7.

Definition 3.2. Given λ ∈ [0, 1] and UMDP < T, γ, S, As,P,R,P,R > with

T <∞ and γ = 1:

(1) For s ∈ ST , the S-robust value ṽλ
T (s) , 0.

(2) For s ∈ St where t < T , the S-robust value ṽλ
t (s) and S-robust action π̃s are

defined as

ṽλ
t (s) , max

πs∈∆(s)

{

λ min
ps∈Ps,rs∈Rs

E
ps
πs

[r(s, a)+ṽλ
t+1(s)]+(1−λ) min

ps∈Ps,rs∈Rs

E
ps
πs

[r(s, a) + ṽλ
t+1(s)]

}

.

π̃s ∈ arg max
πs∈∆(s)

{

λ min
ps∈Ps,rs∈Rs

E
ps
πs

[r(s, a)+ṽλ
t+1(s)]+(1−λ) min

ps∈Ps,rs∈Rs

E
ps

πs
[r(s, a) + ṽλ

t+1(s)]
}

.

(3) A strategy π̃∗ is a S-robust strategy if ∀s ∈ S, π̃∗
s is a S-robust action.

Theorem 3.1. Under Assumptions 3.1 and 3.2, given λ ∈ [0, 1], T < ∞ and

γ = 1, any S-robust strategy is a MMEU strategy w.r.t. CS(λ).

Remark:
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(1) For finite horizon UMDPs, we assume that γ = 1 and that no terminal

reward exists, purely for simplicity of expression. Such assumptions can be

easily relaxed.

(2) A close examination of the proof of Theorem 3.1 shows that it is straightfor-

ward to generalize the S-robust strategy and equivalently the MMEU strat-

egy to the case where the nested structure has more than two uncertainty

sets.

We now investigate the computational aspect of the S-robust action. By backward

induction we thus find the S-robust strategy.

Theorem 3.2. For s ∈ St where t < T , the S-robust action is given by

q∗ = arg max
q∈∆(s)

{

λ
[

min
rs∈Rs

r⊤s q + min
ps∈Ps

p⊤
s Ṽsq

]

+ (1 − λ)
[

min
rs∈Rs

r⊤s q + min
ps∈Ps

p⊤
s Ṽsq

]

}

,

(3.3)

where m = |As|, ṽt+1 is the vector form of ṽt+1(s
′) for all s′ ∈ St+1, and

Ṽs ,











ṽt+1e
⊤
1 (m)

:

ṽt+1e
⊤
m(m)











.

Proof. Notice that for any q ∈ ∆(s), the following holds:

λ min
ps∈Ps,rs∈Rs

E
ps
q [r(s, a) + ṽt+1(s)] + (1 − λ) min

ps∈Ps,rs∈Rs

E
ps

q [r(s, a) + ṽt+1(s)]

= λ min
ps∈Ps

min
rs∈Rs

[

∑

a∈As

q(a)r(s, a) +
∑

a∈As

∑

s′∈St+1

q(a)p(s′|s, a)ṽt+1(s
′)
]

+(1 − λ) min
ps∈Ps

min
rs∈Rs

[

∑

a∈As

q(a)r(s, a) +
∑

a∈As

∑

s′∈St+1

q(a)p(s′|s, a)ṽt+1(s
′)
]

= λ
[

min
rs∈Rs

∑

a∈As

q(a)r(s, a) + min
ps∈Ps

∑

a∈As

∑

s′∈St+1

q(a)p(s′|s, a)ṽt+1(s
′)
]

+(1 − λ)
[

min
rs∈Rs

∑

a∈As

q(a)r(s, a) + min
ps∈Ps

∑

a∈As

∑

s′∈St+1

q(a)p(s′|s, a)ṽt+1(s
′)
]

= λ
[

min
rs∈Rs

r⊤s q + min
ps∈Ps

p⊤
s Ṽsq

]

+ (1 − λ)
[

min
rs∈Rs

r⊤s q + min
ps∈Ps

p⊤
s Ṽsq

]

. (3.4)
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By definition, we have that the S-robust action is

π∗ ∈ arg max
πs∈∆(s)

{

λ min
ps∈Ps,rs∈Rs

E
ps
πs

[r(s, a)+ṽt+1(s)]+(1−λ) min
ps∈Ps,rs∈Rs

E
ps

πs
[r(s, a) + ṽt+1(s)]

}

.

Hence, we establish the theorem by maximizing over q ∈ ∆(s) on both side of Equa-

tion (3.4). �

Theorem 3.2 implies that the computation of the S-robust action at a state s

critically depends on the structure of the sets Ps, Rs, Ps and Rs. In fact, it can be

shown that for “good” uncertainty sets, computing the S-robust action is tractable.

To make this claim precise, we need the following definition.

Definition 3.3. A polynomial separation oracle of a convex set H ⊆ Rn is a

subroutine such that given x ∈ R
n, in polynomial time it decides whether x ∈ H, and

if the answer is negative, it finds a hyperplane that separates x and H.

Corollary 3.3. The S-robust action for state s can be found in polynomial-time,

if each of Ps, Rs, Ps and Rs is convex and has a polynomial separation oracle.

Proof. It suffices to show that in polynomial time, the following optimization

problem can be solved.

Minimize:q λ
[

max
rs∈Rs

(−r⊤s q) + max
ps∈Ps

(−p⊤
s Ṽsq)

]

+ (1 − λ)
[

max
rs∈Rs

(−r⊤s q) + max
ps∈Ps

(−p⊤
s Ṽsq)

]

s.t.: q ∈ ∆(s).

(3.5)

Notice that the objective function to be minimized is the maximum of a class of linear

functions of q, and hence convex. Therefore, if the sub-gradient of the objective func-

tion can be evaluated in polynomial time, the optimization problem (3.5) is solvable

in polynomial time.

Due to the Envelope Theorem (e.g., Rockafellar [126]), it is known that for a

function f(x) = maxy∈C g(x,y), the following holds

∇f(x0) = ∇x g(x0,y
∗), where: y∗ = arg max

y∈C
g(x0,y).
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Notice that for fixed (ps, rs,ps, rs), the objective function is linear. Hence, evaluation

of the gradient is superficial. Thus, we only need to show that arg maxrs∈Rs
(−r⊤s q),

arg maxps∈Ps
(−p⊤

s Ṽsq), arg maxrs∈Rs(−r⊤s q0) and arg maxps∈Ps(−p⊤
s Ṽsq0) can be found

in polynomial time for any given q0. Notice all these problems are maximizing a linear

objective over a compact set. A sufficient condition for polynomial-time solvability

of such problem is that the set is convex and has a polynomial separation oracle

(Grötschel et al. [83]). �

Having a polynomial separation oracle is a rather mild technical condition. In-

deed, any convex set defined by finitely many convex constraints gi(x) ≤ 0 has a

polynomial (w.r.t. the number of constraints) separation oracle if both the value

and the subgradient of gi(·) can be evaluated in polynomial time (e.g., Ben-Tal and

Nemirovski [12], Grötschel et al. [83]).

In practice, especially when the problem size is large, the theoretical guarantee of

polynomial-time solvability may not ensure that the problem can be solved in reason-

ably short time. However, the following equivalence due to the convex duality (e.g.,

Boyd and Vandenberghe [33]) implies that if an uncertainty set is an intersection of

a polytope and an ellipsoid (this includes trivially the case that the uncertainty case

is a polytope or an ellipsoid), then finding the S-robust action is at most a second

order cone programming.

Example 3.1. The following minimization problem

Minimize:x,u h⊤x

Subject to: x = Au + b

‖u‖2 ≤ 1

Cx ≥ d;
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is equivalent to

Maximize:y,z − ‖A⊤y‖2 − b⊤y + d⊤z

Subject to: − y + C⊤z = h

z ≥ 0.

The following example is a special case of Example 3.1 where all uncertainty sets

are polytopes. Many practical setups can be formulated in this way. In particular, the

arguably most “natural” uncertainty set where each parameter belongs to an interval

is a polytope. Even if an uncertainty set is not a polytope, as long as it is convex it

can be approximated by a polytope to arbitrarily precision.

Example 3.2. If Ps, Rs, Ps and Rs are polyhedral sets defined as Ps = {ps|Jps ≥
k}, Rs = {rs|Crs ≥ d}, Ps = {ps|Jps ≥ k} and Rs = {rs|Crs ≥ d}, then the S-

robust action equals the optimal q of the following Linear Program on (q,y, z,y, z).

In addition, the S-robust value equals its optimal value.

Maximize: λ
[

d
⊤
y + k

⊤
z
]

+ (1 − λ)
[

d⊤y + k⊤z
]

Subject to: C⊤y = q;

J⊤z = Ṽsq;

C
⊤
y = q;

J
⊤
z = Ṽsq; (3.6)

1⊤q = 1;

y, z,y, z,q ≥ 0.

3.3.2. Discounted reward infinite horizon UMDP. In this subsection we

consider the MMEU strategy for discounted-reward infinite-horizon UMDPs. Unlike

the finite horizon case, we cannot model the system as having finitely many states,

each visited at most once. In contrast, there are two different approaches to model

such setup. The first approach is to treat the system as having infinite number of
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states, each visited at most once (non-stationary model). Therefore, we use a pair

(s, t) where s ∈ S and t is the stage to define an augmented state. The set of

distributions to be considered is thus

C∞
S (λ) , {µ|µ =

∏

s∈S,t=1,2,···
µ(s,t); µ(s,t) ∈ Cs(λ), ∀s ∈ S, ∀t = 1, 2, · · · }.

An alternative approach is having finitely many states with multiple visits (stationary-

model). This is equivalent to the following set of priors.

CS(λ) , {µ|µ =
∏

s∈S,t=1,2,···
µ(s,t); µ(s,t) = µs;µs ∈ Cs(λ), ∀s ∈ S, ∀t = 1, 2, · · · }.

It turns out that for both models the MMEU strategies are the same, and given by

the S-robust strategy defined as follows.

Definition 3.4. Given λ ∈ [0, 1] and UMDP < T, γ, S, As, r,p,R,P > with

T = ∞ and γ < 1:

(1) The S-robust value ṽ∞(s) is the unique solution to the following set of equa-

tions:

ṽ∞(s) = max
πs∈∆(s)

{

λ min
ps∈Ps,rs∈Rs

E
ps
πs

[r(s, a) + γṽ∞(s)]

+ (1 − λ) min
ps∈Ps,rs∈Rs

E
ps
πs

[r(s, a) + γṽ∞(s)]
}

; ∀s ∈ S.

(2) The S-robust action π̃s is given by

π̃s ∈ arg max
πs∈∆(s)

{

λ min
ps∈Ps,rs∈Rs

E
ps
πs

[r(s, a) + γṽ∞(s)]

+ (1 − λ) min
ps∈Ps,rs∈Rs

E
ps

πs
[r(s, a) + γṽ∞(s)]

}

; ∀s ∈ S.

(3) A strategy π̃∗ is a S-robust strategy if ∀s ∈ S, π̃∗
s is a S-robust action.
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To see that the S-robust strategy is well defined, it suffices to show that the

following operator L : R
|S| → R

|S| is a γ contraction for the ‖ · ‖∞ norm.

{Lv}(s) , max
q∈∆(s)

min
p∈Ps,r∈Rs,p∈Ps,r∈Rs

{Lq
p,r,p,rv}(s);

where: {Lq
p,r,p,rv}(s) , λ

[

∑

a∈As

q(a)r(s, a) + γ
∑

a∈As

∑

s′∈S

q(a)p(s′|s, a)v(s′)
]

+ (1 − λ)
[

∑

a∈As

q(a)r(s, a) + γ
∑

a∈As

∑

s′∈S

q(a)p(s′|s, a)v(s′)
]

.

Lemma 3.4. Under Assumption 3.1, L is a γ contraction for ‖ · ‖∞ norm.

Proof. Observe that Lq
p,r,p,r is a γ contraction for any given (q,p, r,p, r). For

arbitrary v1 and v2, let q1,2, p1,2, r1,2, p1,2, r1,2 be the respective maximizing and

minimizing variables, we have

{Lv1}(s) − {Lv2}(s) = Lq1(s)
p1(s),r1(s),p1(s),r1(s)

v1(s) −Lq2(s)
p2(s),r2(s),p2(s),r2(s)

v2(s)

≤ Lq1(s)
p2(s),r2(s),p2(s),r2(s)v1(s) − Lq1(s)

p2(s),r2(s),p2(s),r2(s)v2(s) ≤ γ‖v1 − v2‖∞;

Similarly, {Lv2}(s) − {Lv1}(s) ≤ γ‖v2 − v1‖∞ = γ‖v1 − v2‖∞. Hence we establish

the lemma. �

Lemma 3.4 indeed implies that by applying L on any initial v ∈ R|S| repeatedly,

we can approximate the S-Robust strategy to arbitrary accuracy.

Theorem 3.5. Under Assumption 3.1, given λ ∈ [0, 1], T = ∞ and γ < 1,

(1) any S-robust strategy is a MMEU strategy w.r.t. C∞
S (λ);

(2) any S-robust strategy is a MMEU strategy w.r.t. CS(λ).

Proof. Non-Stationary Model: We introduce the following T̂ -truncated

problem: with the total reward

uT̂ (π,p, r) , E
p
π{

T̂
∑

i=1

γi−1r(si, ai) + γT̂ ṽ∞(sT̂ )}.

That is, the problem stops at stage T̂ with a termination reward ṽ∞(·). Notice |S| is

finite, and all Rs are bounded. Hence there exists a universal constant c (independent
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of T̂ ) such that for any (π,p, r) where r ∈ R, the following holds:

∣

∣uT̂ (π,p, r) − u(π,p, r)
∣

∣ ≤ γT̂ c.

This implies for any µ ∈ C∞
S (λ),

∣

∣

∫

uT̂ (π,p, r) dµ(p, r)−
∫

u(π,p, r) dµ(p, r)
∣

∣ ≤ γT̂ c, (3.7)

which further leads to

∣

∣ min
µ∈C∞

S (λ)

∫

uT̂ (π,p, r) dµ(p, r)− min
µ′∈C∞

S (λ)

∫

u(π,p, r) dµ′(p, r)
∣

∣ ≤ γT̂ c. (3.8)

By Theorem 3.1, it is easy to see that the S-robust strategy π∗ is an MMEU strategy

of the (finite horizon) T̂ truncated problem. That is,

min
µ∈C∞

S (λ)

∫

uT̂ (π∗,p, r) dµ(p, r) ≥ min
µ′∈C∞

S (λ)

∫

uT̂ (π′,p, r) dµ′(p, r), ∀π′ ∈ ΠHR.

Combining it with Inequality (3.8), we have

min
µ∈C∞

S (λ)

∫

u(π∗,p, r) dµ(p, r) ≥ min
µ′∈C∞

S (λ)

∫

u(π′,p, r) dµ′(p, r) − 2γT̂ c, ∀π′ ∈ ΠHR.

Notice that this holds for arbitrary T̂ , hence we have

π∗ ∈ arg max
π∈ΠHR

min
µ∈C∞

S (λ)

∫

u(π,p, r) dµ(p, r),

which by definition is the MMEU strategy w.r.t. C∞
S (λ) of the infinite horizon UMDP.

Stationary Model: Again consider the T̂ truncated problem. Following the

proof of Theorem 3.1, a Nash equilibrium (π∗, µ∗) exists for

{

∫

uT̂ (π,p, r) dµ(p, r)
}

,

while π∗
(s,t) = q∗

(s,t) is the S-robust strategy, and µ∗
(s,t) is the a probability measure such

that µ∗
(s,t)(p

∗
(s,t), r

∗
(s,t)) = 1 − λ and µ∗

(s,t)(p(s,t), r(s,t)) = λ. Here (π∗
(s,t), (p

∗
(s,t), r

∗
(s,t))) is

a Nash Equilibrium for the one-stage game

{

λE
ps
πs

[r(s, a) + γṽ∞(s)] + (1 − λ)Eps

πs
[r(s, a) + γṽ∞(s)]

}

,
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and hence are stationary (i.e., not dependent on t). Thus, µ∗ is stationary, i.e.,

µ∗ ∈ CS(λ). Hence,

max
π∈ΠHR

min
µ∈CS (λ)

∫

u(π,p, r) dµ(p, r) ≤ max
π∈ΠHR

∫

u(π,p, r) dµ∗(p, r).

Further, the fact that (π∗, µ∗) is a Nash Equilibrium implies

max
π∈ΠHR

∫

uT̂ (π,p, r) dµ∗(p, r) =

∫

uT̂ (π∗,p, r) dµ∗(p, r) = min
µ∈C∞

S (λ)

∫

uT̂ (π∗,p, r) dµ(p, r),

which leads to

max
π∈ΠHR

∫

u(π,p, r) dµ∗(p, r)

≤ min
µ∈C∞

S
(λ)

∫

u(π∗,p, r) dµ(p, r) + 2γT̂ c

≤ min
µ∈CS(λ)

∫

u(π∗,p, r) dµ(p, r) + 2γT̂ c.

The first inequality holds from (3.7). The second inequality holds because CS(λ) ⊆
C∞

S (λ). Since T̂ can be arbitrarily large, we have

max
π∈ΠHR

min
µ∈CS(λ)

∫

u(π,p, r) dµ(p, r) ≤ min
µ∈CS (λ)

∫

u(π∗,p, r) dµ(p, r).

By definition, this shows that the S-robust strategy π∗ is the MMEU w.r.t. CS(λ). �

3.4. MMEU based uncertain MDP: known dynamics

This section is devoted to a special class of UMDPs: only the reward parameters

are subject to uncertainty whereas the transition probabilities are precisely known.

That is, the following assumption holds.

Assumption 3.3. (i) P = P = {p}.

Such a setup can either model or approximate many practical problems. For

instance, a shortest-path problem with uncertain link lengths is an UMDP with known

dynamics (e.g., Puterman [124]). Another example is using state aggregation to solve

large scale MDPs (Singh et al. [138]). In such case, states are grouped to a small
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number of hyper-states and a reduced MDP built on these hyper-states is investigated.

Typically, the transition law between hyper-states is known, but the expected reward

visiting each hyper-state is uncertain due to the transitions inside each hyper-state.

The known-dynamics setup is of special interest for the following two reasons.

First, the S-robust criterion has an appealing interpretation as finding Pareto efficient

tradeoffs of the likely performance and the worst-case performance (L/W tradeoff for

short), which we discuss in Section 3.4.1. Second, if we further assume that the

uncertainty sets Rs are polyhedral, then a single run of an algorithm proposed in

Section 3.4.2 can find the S-robust strategies for all λ ∈ [0, 1]. Consequently, we can

find all efficient tradeoffs. This makes it possible for the decision maker to observe

the whole tradeoff relationship and choose the most desirable solution according to

her (possibly complicated) preference.

3.4.1. Likely/Worst-case tradeoff. Under Assumption 3.3, consider the

following two functions of a (history-dependent) strategy π ∈ ΠHR:

L(π) , min
r∈R

Eπ{
T
∑

i=1

γi−1r(si, ai)}; W (π) , min
r∈R

Eπ{
T
∑

i=1

γi−1r(si, ai)}.

Here, L(·) measures what is the likely performance of a strategy, and W (·) bounds

the downside deviation due to parameters uncertainties.

Further notice that since the transition probability is known, strategy π deter-

mines the state-action frequency vector xπ defined as

xπ(s, a) , Eπ

T
∑

i=1

γi−1I(si = s, ai = a).

For any fixed r ∈ R, the expected total (discounted) reward is a linear function of

xπ. Thus, L(π) and W (π) are concave functions of xπ. It is widely known (e.g.,

Puterman [124]) that the set of xπ for all π ∈ ΠHR is a polytope. That is, we are

maximizing two concave functions in a closed convex set. Therefore, any Pareto effi-

cient strategy for L(·) and W (·) is obtained by maximizing their convex combinations,

and vice versa. Hence we have the following definition.
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Definition 3.5. A Likely/Worst-case tradeoff strategy for λ ∈ [0, 1] is defined

as

π∗
LW ∈ arg max

π∈ΠHR

{

λL(π) + (1 − λ)W (π)
}

.

Indeed, we have the following two theorems showing that the L/W tradeoff crite-

rion coincides with the S-robust (equivalently MMEU) criterion for both finite horizon

UMDPs and discounted-reward infinite horizon UMDPs. This therefore provides an

alternative justification of the MMEU formulation.

Theorem 3.6. Under Assumptions 3.1, 3.2 and 3.3 , when T < ∞ and γ = 1,

any S-robust strategy is a Likely/Worst-case tradeoff strategy.

Proof. We first define the following quantities for t = 1, · · · , T , a length-t his-

tory ht, and λ ∈ [0, 1]:

Lt(π, ht) , min
r∈R

Eπ

{

T
∑

i=t

r(si, ai)|ht

}

; Wt(π, ht) , min
r∈R

Eπ

{

T
∑

i=t

r(si, ai)|ht

}

cλt (ht) , max
π∈ΠHR

{λLt(π, ht) + (1 − λ)Wt(π, ht)} .
(3.9)

Note that LT (·) ≡ WT (·) ≡ cT (·) ≡ 0, L(π) = L1(π, (s
ini)), and W (π) = W1(π, (s

ini)),

because γ = 1, and Assumption 3.2 holds. Thus, by definition, any strategy that

achieves cλ1((s
ini)) is a L/W tradeoff strategy.

Let π∗ be a S-robust strategy. We apply backward induction to prove that the

following holds for any ht and π′ ∈ ΠHR:

λLt(π
′, ht) + (1 − λ)Wt(π

′, ht) ≤ λLt(π
∗, ht) + (1 − λ)Wt(π

∗, ht);

ṽλ
t (s(ht)) = cλt (ht) = λLt(π

∗, ht) + (1 − λ)Wt(π
∗, ht),

(3.10)

here s(ht) stands for the last state of the history ht.
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For t = T , (3.10) holds trivially. Now assume that (3.10) holds for all ht+1, we

show it also hold for an arbitrary length-t history ht. Let s = s(ht). We thus have

λLt(π
′, ht) + (1 − λ)Wt(π

′, ht)

= min
r∈R,r∈R

{

[

λ
∑

a∈As

q′(a)r(s, a) + (1 − λ)
∑

a∈As

q′(a)r(s, a)
]

+
∑

s′∈St+1

∑

a∈As

q′(a)p(s′|s, a)Eπ′
[

λ

T
∑

i=t+1

r(si, ai) + (1 − λ)

T
∑

i=t+1

r(si, ai)
∣

∣(ht, a, s
′)
]

}

= min
rs∈Rs,rs∈Rs

{

λ
∑

a∈As

q′(a)r(s, a) + (1 − λ)
∑

a∈As

q′(a)r(s, a)
}

+
∑

s′∈St+1

∑

a∈As

q′(a)p(s′|s, a)
{

min
r∈R,r∈R

Eπ′
[

λ

T
∑

i=t+1

r(si, ai) + (1 − λ)

T
∑

i=t+1

r(si, ai)
∣

∣(ht, a, s
′)
]

}

≤ min
rs∈Rs,rs∈Rs

{

λ
∑

a∈As

q′(a)r(s, a) + (1 − λ)
∑

a∈As

q′(a)r(s, a)
}

+
∑

s′∈St+1

∑

a∈As

q′(a)p(s′|s, a)cλt+1((ht, a, s
′))

= min
rs∈Rs,rs∈Rs

{

λ
∑

a∈As

q′(a)r(s, a) + (1 − λ)
∑

a∈As

q′(a)r(s, a)
}

+
∑

s′∈St+1

∑

a∈As

q′(a)p(s′|s, a)ṽλ
t+1(s

′)

≤max
q∈∆s

{

min
rs∈Rs,rs∈Rs

[

λ
∑

a∈As

q(a)r(s, a) + (1 − λ)
∑

a∈As

q(a)r(s, a)
]

+
∑

s′∈St+1

∑

a∈As

q(a)p(s′|s, a)ṽλ
t+1(s

′)
}

=ṽλ
t (s).

The second equality holds because R is statewise Cartesian. Note that both inequal-

ities hold with equality for π∗ due to the backward induction assumption and the

definition of a S-robust strategy, respectively. Therefore, (3.10) holds for ht, which

completes the backward induction.

Substituting h1 = (sini) into (3.10) proves the theorem. �
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Theorem 3.7. Under Assumptions 3.1 and 3.3 , when T = ∞ and γ < 1, any

S-robust strategy is a Likely/Worst-case tradeoff strategy.

Proof. Similarly to the proof of Theorem 3.5, we consider a T̂ truncated MDP,

with ṽ∞(s) the terminal reward. Thus, the S-robust strategy maximizes for all finite

T̂ :

ûT̂ (π) , λ min
rs∈Rs

Eπ{
T̂
∑

i=1

γi−1r(si, ai)}+(1−λ) min
r∈R

Eπ{
T̂
∑

i=1

γi−1r(si, ai)}+Eπ(γT̂ ṽ∞(s)).

Further notice that |S| is finite and Rs is bounded. Thus there exists a universal

constant c independent of T̂ such that for all π,

|λL(π) + (1 − λ)W (π) − ûT̂ (π)| ≤ |max
r∈R

E
π

∞
∑

t=T̂

γtr(si, ai)| + |EπγT̂ ṽ∞(s)| ≤ γT̂ c.

Since T̂ is arbitrary, π∗ is hence optimal to λP (π) + (1 − λ)R(π), i.e., it is the L/W

tradeoff strategy for discounted reward infinite horizon UMDP. �

We need to point out that Assumption 3.3 is essential. Indeed, if the system

dynamics are not precisely known, the L/W strategy can be non-Markovian, which

implies possible intractability. We show this with the following example.

Consider a finite horizon MDP shown in the Figure 3.1:

S = {s1, s2, s3, s4, s5, t1, t2, t3, t4, T erminal}; As1 = {a(1, 1)}; As2 = {a(2, 1)};
As3 = {a(3, 1)}; As4 = {a(4, 1)} and As5 = {a(5, 1), a(5, 2)}. Rewards are only

available at the third stage, and are perfectly known. The set P is a singleton:

p (s2|s1, a(1, 1)) = 0.5; p (s4|s2, a(2, 1)) = 1; p (t3|s5, a(5, 2)) = 1.

The set P is such that

p (s2|s1, a(1, 1)) ∈ {0.5}; p (s4|s2, a(2, 1)) ∈ [0, 1]; p (t3|s5, a(5, 2)) ∈ [0, 1].

Observe that the worst parameter realization (for all strategies) is

p(s4|s2, a(2, 1)) = p(t3|s5, a(5, 2)) = 0.
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We consider λ = 0.5. Since multiple actions only exist in state s5, a strategy is

determined by the action chosen on s5. Let the probability of choosing action a(5, 1)

and a(5, 2) be q and 1 − q, respectively.

s2 s4

s5

t1 
r=10

t2
r=5

a(2,1) a(4,1)

a(5,2)

a(5,1)

1 (0)

0 (1) 

t3
r=8

t4
r=4

1 (0)

0 (1)

s1

s3

a(1,1)

0.5 (0.5)

0.5 (0.5)

a(3,1)

Terminal

Figure 3.1. A general UMDP with a non-Markovian L/W strategy

Consider the transition trajectory “s1 → s2”. Under the nominal transition

probability, this trajectory will reach t1 with a reward of 10, regardless of the choice

of q. The worst transition is that action a(2, 1) leads to s5 and action a(5, 2) leads to

t4, where the expected reward is 5q + 4(1− q). Hence the optimal action is choosing

a(5, 1) deterministically.

Consider the transition trajectory “s1 → s3”. In this case, the nominal reward

is 5q+ 8(1− q), and the worst case reward is 5q+ 4(1− q). Thus q = 0 optimizes the

weighted sum, i.e., the optimal strategy is choosing a(5, 2).

Therefore, for this example the (unique) L/W tradeoff strategy is non-Markovian.

This is due to the fact that we are taking expectations over two different probability

measures, hence the smoothing property of conditional expectation cannot be used.

From the computational perspective, this non-Markovian property implies a possibil-

ity that past actions affect the choice of future actions, and hence could render the

problem intractable in general.

3.4.2. Finding S-robust strategies for all λ. In this subsection we make

an additional assumption: the uncertainty sets are polytopes. A notable example

arises when each parameter belongs to an interval.
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Assumption 3.4. For any s ∈ S, there exist Cs, Cs , ds and ds such that

Rs = {rs|Csrs ≥ ds}; Rs = {rs|Csrs ≥ ds}.

We show how to find the whole set of S-robust strategies for all λ. At the mean

time, we also prove by backward induction that ṽλ
t (s) is a continuous and piecewise

linear function of λ. The algorithm is based on Parametric Linear Programming

(PLP), which solves the following set of infinitely many optimization problems over

x:

For allλ ∈ [0, 1] ,

Minimize: λc(1)⊤x + (1 − λ)c(2)⊤x

Subject to: Ax = b

x ≥ 0.

PLP can be solved using Algorithm 3.1, which is provided in Appendix 3.2.2 for

completeness.

Consider the finite horizon case first. Let St+1 = {s1, · · · , sk}. Assume for all

j ∈ {1, · · · , k}, ṽλ
t+1(s

j) are continuous piecewise linear functions. Thus, we can divide

[0, 1] into finite (say n) intervals [0, λ1], · · · [λn−1, 1] such that in each interval, for any

j, ṽ
(·)
t+1(s

j) is a linear function of λ. That is, there exist constants lji and mj
i such that

ṽλ
t+1(s

j) = ljiλ+mj
i , for λ ∈ [λi−1, λi]

2. By Example 3.2, and since P = P = {p}, we

2We let λ0 = 0 and λn = 1 for consistency of notation.

43



3.4 MMEU BASED UNCERTAIN MDP: KNOWN DYNAMICS

have that ṽλ
t (s) equals to the optimal value of the following LP on y, y and q.

Maximize: (1 − λ)d⊤
s y + λd

⊤
s y +

k
∑

j=1

∑

a∈As

p(sj|s, a)q(a)ṽλ
t+1(s

j)

Subject to: C⊤
s y = q,

C
⊤
s y = q,

1⊤q = 1,

q,y ≥ 0.

(3.11)

Observe that the feasible set is the same for all λ. By substituting ṽλ
t+1(s

j) and

rearranging, it follows that for λ ∈ [λi−1, λi] the objective function equals to

(1−λ)
{

∑

a∈As

[

k
∑

j=1

p(sj|s, a)mj
i

]

q(a)+d⊤
s y
}

+λ
{

∑

a∈As

[

k
∑

j=1

p(sj|s, a)(lji +mj
i )
]

q(a)+d
⊤
s y
}

.

(3.12)

Thus, for λ ∈ [λi−1, λi], from the optimal solution for λi−1, we can solve for all λ using

Algorithm 3.1 by converting it to a PLP. Furthermore, we need not re-initiate for each

interval, because the optimal solution for the end of ith interval is optimal for λi, and

hence we can solve for λ ∈ [λi, λi+1] by simply substituting li+1 and mi+1 into the

Equation (3.12) and run Algorithm 3.1 from this solution. Observe that the resulting

ṽλ
t (s) is also continuous, piecewise linear. Thus, since ṽλ

T (·) = 0, the assumption that

the value functions are continuous and piecewise linear holds by backward induction.

Here we outline of the algorithm finding all S-robust actions for a state s. Define

Ui(q,y,y) , −
∑

a∈As

[

k
∑

j=1

p(sj |s, a)(lji +mj
i )
]

q(a) + d
⊤
s y,

Vi(q,y,y) , −
∑

a∈As

[

k
∑

j=1

p(sj|s, a)mj
i

]

q(a) + d⊤
s y,

and let F denote the feasible set of Problem (3.11). For the ith interval, Problem (3.11)

is thus minimizing λUi(q,y,y) + (1 − λ)Vi(q,y,y) in F .

44



3.4 MMEU BASED UNCERTAIN MDP: KNOWN DYNAMICS

Algorithm 3.2.

• Input and Initialization:

(1) Minimize V1(q,y,y) in F , denote the optimal value as V ∗.

(2) Minimize U1(q,y,y) in F with the constraint V1(q,y,y) = V ∗. Set the

optimal basic feasible solution to be (q∗,y∗,y∗). If multiple solutions

exist, arbitrarily choose one.

(3) i := 1 and λ := 0.

• Iteration

(1) Calculate the coefficients of Vi and Ui.

(2) Calculate the reduced costs of the objective function Vi and Ui at

(q,y,y) for all its non-basic variables. If all non-basic variables of

(q,y,y) have nonnegative reduced cost of Ui, go to 5.

(3) Among all non-basic variables with negative reduced cost of Ui, choose

the one with the largest absolute value of the reduced cost of Ui divided

by that of Vi. (We call this value the ratio.) Add this variable into the

base and denote the new basic feasible solution as (qnew,ynew,ynew). If

the ratio is smaller than (1 − λi)/λi, go to 5.

(4) (q,y,y) := (qnew,ynew,ynew), go to 2.

(5) If i = n, terminate. Otherwise i := i+ 1, go to 1.

We briefly explain the iteration of the algorithm. It contains two loops. Steps (2)

to (4) are the operations in one interval, which is a standard PLP algorithm. If the

ratio falls below (1 − λi)/λi or Ui can no longer be decreased, the current interval

ends, and we use the current solution as the start point of the next interval. The

number of iterates equals to the number of pieces of ṽλ
t (s), and hence the algorithm

is guaranteed to terminate in finite steps.

Next we investigate the discounted-reward infinite-horizon case. Algorithm 3.2

essentially performs the L operator. Hence we can approximate the whole set of

S-robust strategies by applying Algorithm 3.2 repeatedly. An alternative way that
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solves the exact S-robust strategy for all λ of an infinite-horizon UMDP is converting

the MDP into its linear programming form and applying PLP.

Theorem 3.8. Suppose Assumptions 3.1, 3.3 and 3.4 hold. Then given initial

distribution α(s), the L/W tradeoff strategy to a γ discounted-reward infinite-horizon

UMDP is the following LP

Maximize:λ
∑

s∈S

[

d
⊤
s ys

]

+ (1 − λ)
∑

s∈S

[

d⊤
s ys

]

Subject to:
∑

a∈As′

x(s′, a) −
∑

s∈S

∑

a∈As

γp(s′|s, a)x(s, a) = α(s′), ∀s′,

C⊤
s ys = xs ∀s,

C
⊤
s ys = xs ∀s,

ys,ys ≥ 0, ∀s,

x(s, a) ≥ 0, ∀s, ∀a,

(3.13)

with the optimal policy at state s given by qs(a) , x(s, a)/
∑

a′∈As
x(s, a′) and the

denominator is guaranteed to be nonzero.

Proof. Fix λ, the maxmin problem of the L/W tradeoff strategy is essentially

a zero-sum game, with the decision maker trying to maximize the weighted sum

and Nature trying to minimize it by selecting r and r adversely. Furthermore, the

dynamics of the game (i.e., the state transition) is determined only by the decision

maker. A well known result in discounted zero-sum stochastic games states that in this

case even if non-stationary policies are admissible, a Nash equilibrium in which both

players choose a stationary policy exists; see Bertsekas and Tsitsiklis [16, Proposition

7.3].

For initial state distribution α(s), recall that there exists a one-to-one correspon-

dence relation between the following polytope X and the state-action frequencies

E
∑∞

i=1 γ
i−1(I(si = s, ai = a)) for stationary strategies; see Puterman [124, Theorem
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6.9.1].

X :
∑

a∈As′

x(s′, a) −
∑

s∈S

∑

a∈As

γp(s′|s, a)x(s, a) = α(s′), ∀s′

x(s, a) ≥ 0, ∀s, ∀a ∈ As. (3.14)

Since it suffices to only consider stationary minimax policies, the L/W tradeoff

(and equivalently S-robust) problem is:

Maximize: inf
r∈R,r∈R

∑

s∈S

∑

a∈As

[λr(s, a)x(s, a) + (1 − λ)r(s, a)x(s, a)]

Subject to: x ∈ X .
(3.15)

By duality of LP, Problem (3.15) is equivalent to Problem (3.13). Refer to Put-

erman [124] for the conversion from x to q and the denominator being nonzero. �

Note that Problem (3.13) is a PLP, which can be solved using Algorithm 3.1 from

Appendix 3.2.2.

3.5. A numerical example

In this section, we apply the algorithm of UMDP with known dynamics to a

T -stage machine maintenance problem, and compare the tradeoff solutions with the

nominal solution and the robust solution. Notice that we abuse notations in this

section.

Let S , {1, · · · , n} denote the state set for each stage, which represents the

condition of a machine. In state h, the decision maker can choose either to replace

the machine which will lead to state 1 deterministically, or to continue running, which

has a probability p leading to state h + 1. If the machine is in state n, the decision

maker has to replace it. The replacing cost is exactly known to be cr. The inner

set of the running cost in state h is a singleton {ch} (thus the likely performance

is indeed the nominal performance), while the deviation set is [ch − σh, ch + σh],

with ch and σh increasing with h. We set T = 20, n = 7. p = 0.9, ch =
√
h − 1

and σh = 2h/n. Figure 3.2 shows the Likely/Worst-case tradeoffs of this UMDP as
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computed by Algorithm 3.2. Note that each dot point is a deterministic L/W tradeoff

strategy.
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Figure 3.2. The Likely/Worst-case tradeoffs of the machine maintenance example.

Next we ran Monte-Carlo simulations to compare the solutions we get. In the

simulation, we used a pre-defined parameter δ to control how adversarial the pa-

rameter realization is. To be more specific, the running cost in state h is generated

according to the following probability distribution

f(x) =































δ

σh

, x ∈ [ch, ch + σh],

1 − δ

σh
, x ∈ [ch − σh, ch),

0, otherwise.

Note that δ determines the probability that the true cost lies in the “bad” half of

the uncertainty set. The value δ = 0.5 means that the nominal parameter is the

true mean value of the cost. And the larger the δ, the more overly-optimistic the

nominal cost is. For δ = 0.5, 0.7, 1.0, we generated 300 parameter realizations each.

For each realization, we ran 300 tests and take their average reward as the cost for

one simulation, to cancel out the internal variance (i.e., the performance variation of

different runs under a same parameter realization due to the stochastic nature of the
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system). We normalized the cost for each simulation, i.e., we divided the cost by the

smallest expected nominal cost.
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Figure 3.3. Simulation results of the machine maintenance problem for
different δ.

The simulation results are shown in Figure 3.3. The nominal solution, i.e., so-

lution at λ = 1 that neglecting the deviation set completely, achieves minimal mean

cost at δ = 0.5. However, it has a wide spread in the scatter plot, a sharp increase

in the standard deviation, and a severe deterioration of the mean performance when

δ increases, all of which show that it is sensitive to parameter uncertainty. On the

other hand, the robust solution is overly conservative, even in the case when δ = 1.

In contrast to these two extreme solutions, the strategies in the middle range of λ
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achieve much better tradeoffs between the nominal performance and worst-case per-

formance. We also observe that by slightly relaxing the performance requirement

(say, take λ = 0.9) we will get much better robustness to parameter uncertainty, with

a marginal decrease in the mean performance.

3.6. Chapter summary

In this chapter we addressed MDPs under parameter uncertainty following the

axiomatic MMEU framework. In particular, we considered the nested-set structured

parameter uncertainty to model the prior information of both the likely value and the

possible deviation of the parameters. We proposed to find a strategy that achieves

maximum expected utility under the worst possible distribution of the parameters.

Such formulation leads to an optimal strategy that is obtained through a Bellman

type backward induction, and can be solved in polynomial time under mild technical

conditions.

We further investigated a special case where the transition probabilities are pre-

cisely known. In such case, the MMEU strategy has an intuitively appealing inter-

pretation as finding the Pareto efficient trade-offs of the “likely” performance and

the downside-deviation protection. If the uncertainty sets are further assumed to be

polyhedral, we provided a PLP based algorithm that finds the whole set of MMEU

strategies. Thus, the decision maker can choose the strategy that achieves the most

desirable tradeoff according to his/her subjective preference, by observing all possible

tradeoffs. This is in contrast to the standard method where the decision maker has

to guess a tradeoff parameter beforehand.

The main thrust of this chapter is to mitigate the conservatism of the robust

MDP framework by incorporating additional prior information regarding the un-

known parameters, and to allow flexible decision making that achieves both good

performance under the normal case and reasonably robustness to possible deviations.

The proposed formulation can be easily generalized to more complicated uncertainty

structures, provided that the parameters of different states are independent.
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3.7. Proof of Theorem 3.1

Proof. We drop the superscript λ in the proof whenever it is clear. Let ht

denote a history up to stage t and s(ht) denote the last state of history ht. We use

πht(a) to represent the probability of choosing an action a at the state s(ht), following

a strategy π and under a history ht. A t+ 1 stage history, with ht followed by action

a and state s′ is written as (ht, a, s
′).

With an abuse of notation, we denote the expected reward-to-go under a history

as:

u(π,p, r, ht) , E
p
π{

T
∑

i=t

r(si, ai)|(s1, a1 · · · , st) = ht}.

For π ∈ ΠHR and µ ∈ CS(λ), define

w(π, µ, ht) , E(p,r)∼µus(π,p, r, h(t)) =

∫

u(π,p, r, h(t))dµ(p, r).

Note that the MMEU strategy is thus

π∗
M = arg max

π∈ΠHR
min

µ∈CS (λ)
w(π, µ, h1); where h1 = (sini).

We first establish the following two lemmas.

Lemma 3.9. The following updating rule holds for any ht where t < T , π ∈ ΠHR

and µ ∈ CS(λ):

w(π, µ, ht) =

∫

∑

a∈As(ht)

πht(a)
[

r
(

s(ht), a
)

+
∑

s′∈S

p
(

s′|s(ht), a
)

w
(

π, µ, (ht, a, s
′)
)

]

dµs(ht)(ps(ht), rs(ht)).

(3.16)

Proof. By definition µ(p, r) ∈ CS(λ) implies µ(p, r) =
∏

s∈S µs(ps, rs) while

µs(ps, rs) ∈ Cs(λ). Since it is clear on what variable the distribution is, we will simply

write µ and µs. Denote µ(t) =
∏

s∈ST
i=t Si

µs, that is, the probability distribution for
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the parameters from stage t on. We thus have:

w(π, µ, ht) = E(p,r)∼µu(π,p, r, ht) =

∫

u(π,p, r, ht)dµ

=

∫

u(π,p, r, ht)dµ(t) =

∫ ∫

u(π,p, r, ht)dµ(t+ 1)dµs(ht),

(3.17)

due to the fact that u
(

π,p, r, h(t)
)

only depends on the parameters from the tth stage

on. Notice that for a fixed parameter realization and a fixed strategy, the Bellman

equation holds. That is,

u(π,p, r, ht) =
∑

a∈As(ht)

πht(a)
(

r
(

s(ht), a
)

+
∑

s′∈St+1

p
(

s′|s(ht), a
)

u
(

π,p, r, (ht, a, s
′)
)

)

.

Thus the right-hand-side of Equation (3.17) equals

∫ ∫

{

∑

a∈As(ht)

πht(a)
[

r
(

s(ht), a
)

+
∑

s′∈St+1

p
(

s′|s(ht), a
)

u
(

π,p, r, (ht, a, s
′)
)

]}

dµ(t+ 1)dµs(ht)

=

∫

∑

a∈As(ht)

πht(a)
[

r
(

s(ht), a
)

+
∑

s′∈St+1

p
(

s′|s(ht), a
)

∫

u
(

π,p, r, (ht, a, s
′)
)

dµ(t+ 1)
]

dµs(ht)

=

∫

∑

a∈As(ht)

πht(a)
(

r
(

s(ht), a
)

+
∑

s′∈S

p
(

s′|s(ht), a
)

w
(

π, µ, (ht, a, s
′)
)

)

dµs(ht),

which proves the lemma. Here the first equality holds because µ(t+ 1) by definition

is the probability distribution of parameters from stage t + 1 on, and s(ht) belongs

to stage t. �

Lemma 3.10. For s ∈ St where t < T , there exists µ∗
s ∈ Cs(λ) such that

(i) max
πs∈∆s

vs(πs, µ
∗
s) = vs(π

∗
s , µ

∗
s) = min

µs∈Cs(λ)
vs(π

∗
s , µs);

(ii) vs(π
∗
s , µ

∗
s) = ṽt(s),

(3.18)
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holds for any S-robust action π∗
s ∈ ∆(s). Here, vs(πs, µs) , E(ps,rs)∼µs

{

Eps
πs

[r(s, a) +

ṽt+1(s)]
}

.

Proof. First consider the following zero-sum game.

Game 1: For s ∈ St, one player chooses qs ∈ ∆(s); the other one chooses

(ps, rs,ps, rs) ∈ Ps ×Rs × Ps ×Rs; the utility function for player one is

v̂s(qs,ps, rs) , λE
ps
πs

[r(s, a) + ṽt+1(s)] + (1 − λ)Eps

πs
[r(s, a) + ṽt+1(s)]

=λ
∑

a∈As

qs(a)
[

r(s, a) +
∑

s′∈St+1

p(s′|s, a)ṽt+1(s
′)
]

+ (1 − λ)
∑

a∈As

qs(a)
[

r(s, a) +
∑

s′∈St+1

p(s′|s, a)ṽt+1(s
′)
]

.

This game has a Nash equilibrium
(

q∗
s, (p

∗
s, r

∗
s,p

∗
s, r

∗
s)
)

, because the strategy domains

for both players are compact and convex, and the utility function is linear to both

players. Observe that q∗
s can be any S-robust action by definition. Now let π∗

s = q∗
s

and µ∗
s be such that µ∗

s(p
∗
s, r

∗
s) = 1− λ and µ∗

s(p
∗
s, r

∗
s) = λ. We have µ∗

s ∈ Cs(λ). It is

easy to check that (π∗
s , µ

∗
s) satisfy Equation (3.18). �

To prove the theorem, it suffices to show that given a S-robust strategy π∗, we have

µ∗ =
∏

s∈S µ
∗
s where µ∗

s is given by Lemma 3.10 such that following three statements

hold ∀ht, t = 1, · · · , T :

(i) w(π∗, µ∗, ht) = ṽt

(

s(ht)
)

;

(ii) w(π∗, µ, ht) ≥ ṽt

(

s(ht)
)

, ∀µ ∈ CS(λ);

(iii) w(π, µ∗, ht) ≤ ṽt

(

s(ht)
)

, ∀π ∈ ΠHR.

(3.19)

We prove this by backward induction. Suppose for all ht+1, (3.19) holds. Now we

show they still hold for any ht.
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Condition (i):

w(π∗, µ∗, ht)

=

∫

∑

a∈As(ht)

π∗
ht

(a)
[

r
(

s(ht), a
)

+
∑

s′∈St+1

p
(

s′|s(ht), a
)

w
(

π∗, µ∗, (ht, a, s
′)
)

]

dµ∗
s(ht)

=

∫

∑

a∈As(ht)

π∗
s(ht)(a)

[

r
(

s(ht), a
)

+
∑

s′∈St+1

p
(

s′|s(ht), a
)

ṽt+1(s
′)
]

dµ∗
s(ht)

=vs(ht)(π
∗
s(ht), µ

∗
s(ht)) = ṽt(s(ht)).

The second equality holds by Condition (i) of the history (ht, a, s
′). The last equality

holds by Lemma 3.10.

Condition (ii):

w(π∗, µ, ht)

=

∫

∑

a∈As(ht)

π∗
ht

(a)
[

r
(

s(ht), a) +
∑

s′∈St+1

p
(

s′|s(ht), a
)

w
(

π∗, µ, (ht, a, s
′)
)

]

dµs(ht)

≥
∫

∑

a∈As(ht)

π∗
s(ht)(a)

[

r
(

s(ht), a
)

+
∑

s′∈S

p
(

s′|s(ht), a
)

ṽt+1(s
′)
)

dµs(ht)

≥ min
µ′∈Cs(ht)

(λ)

∫

∑

a∈As(ht)

π∗
s(ht)(a)

(

r
(

s(ht), a
)

+
∑

s′∈St+1

p
(

s′|s(ht), a
)

ṽt+1(s
′)
)

dµ′

= min
µ′∈Cs(ht)

(λ)
vs(ht)(π

∗
s(ht), µ

′) = ṽt

(

s(ht)
)

.

The first inequality holds by Condition (ii) of the history (ht, a, s). The second in-

equality holds because µ ∈ CS(λ) which leads to µs(ht) ∈ Cs(ht)(λ). The last equality

holds by Lemma 3.10.
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Condition (iii):

w(π, µ∗, ht)

=

∫

∑

a∈As(ht)

πht(a)
(

r
(

s(ht), a
)

+
∑

s′∈St+1

p
(

s′|s(ht), a
)

w
(

π, µ∗, (ht, a, s
′)
)

)

dµ∗
s

≤
∫

∑

a∈As(ht)

πht(a)
(

r
(

s(ht), a
)

+
∑

s′∈St+1

p
(

s′|s(ht), a
)

ṽt+1(s
′)
)

dµ∗
s

≤ max
π′∈∆(s(ht))

∫

∑

a∈As(ht)

π′(a)
(

r
(

s(ht), a
)

+
∑

s′∈St+1

p
(

s′|s(ht), a
)

ṽt+1(s
′)
)

dµ∗
s

= max
π′∈∆(s(ht))

vs(ht)(π
′, µ∗

s(ht)) = ṽt+1

(

s(ht)
)

.

The first inequality holds because of the third condition for the history (ht, a, s). The

second inequality holds because πht ∈ ∆(s(ht)) by definition. The last equality holds

by Lemma 3.10.

Observe that (3.19) holds trivially for t = T . This complete the backward induc-

tion. Substituting h1 = (sini) into (3.19) establishes the theorem. Notice that (3.19)

indeed means that (π∗, µ∗) is a Nash Equilibrium. �
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CHAPTER 4. PARAMETRIC REGRET IN UMDP

CHAPTER 4

Parametric Regret in Uncertain Markov

Decision Processes

In Chapter 3 we discussed uncertain Markov decision processes where each strategy

is evaluated by its performance, i.e., accumulated reward-to-go. In contrast to this

standard setup, there are situations in which a strategy is evaluated comparatively.

That is, the decision maker is concerned about how the performance of a strategy

compares with other strategies. In this chapter, we investigate robust decision making

in such a setup. In particular, we consider uncertain Markov decision processes where

the performance criterion is the gap between the performance of the best strategy

that is chosen after the true parameter realization is revealed and the performance

of the strategy that is chosen before the parameter realization is revealed. We call

this gap the parametric regret. We consider two related problems: minimax regret

and mean-variance tradeoff of the regret. A minimax regret strategy minimizes the

worst-case regret under the most adversarial possible realization. We show that the

problem of computing a minimax regret strategy is NP-hard and propose algorithms

to efficiently finding it under favorable conditions. The mean-variance tradeoff for-

mulation requires a probabilistic model of the uncertain parameters and looks for a

strategy that minimizes a convex combination of the mean and the variance of the
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regret. We prove that computing such a strategy can be done numerically in an

efficient way. Part of the material in this chapter appears in [174].

4.1. Introduction

Sequential decision making in stochastic dynamic environments is often modeled

using Markov Decision Processes (MDP, cf [124, 16]). In the standard setup, each

strategy is evaluated according to its performance, i.e., the expected accumulated

reward. An optimal strategy is one that achieves maximal performance.

In many real applications, the decision maker evaluates strategies in a compar-

ative way. That is, given a strategy, the decision maker is interested in how its

performance competes with other strategies rather than the value of the performance

itself. For example, the objective in financial applications such as portfolio optimiza-

tions is often to “beat the market”, i.e., to perform favorably compared to a strategy

that holds index stocks. The same percentage of growth can be regarded as “incred-

ible success” or ”disastrous failure” purely depending on how others perform in this

same market. A natural measurement of strategies in such setup, which we termed

competitive setup hereafter, is the so-called parametric regret: the gap between the

performance of a strategy and that of the optimal one. 1

When the parameters of a MDP are known, minimizing the regret is equivalent to

maximizing the performance of a strategy, and hence the competitive setup coincides

with the standard setup. However, the formulation of a problem is often subject to

parameter uncertainty – the deviation of the modeling parameters from the unknown

true ones (cf [116, 5, 162, 91]). In this case, both performance and regret of a

strategy are functions of parameter realizations, where in general there is no strategy

that is optimal for all parameter realizations.

In the standard setup, there are two formulations to find the “optimal” strategy

for MDPs with uncertain parameters. The first formulation[116, 5, 162, 91] takes

1We will use “regret” in the following for simplicity of the expression. However, it should be noted
that this is different from the standard notion of regret in online learning - the gap between the
average reward of a learning algorithm and the optimal strategy [86].
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a minimax approach, i.e., the true parameters can be any element of a known set,

and strategies are evaluated based on the performance under the (respectively) worst

possible parameter realization. The second one takes a Bayesian approach (e.g. [50]):

The true parameters are regarded as random variables. Thus, given a strategy, its

performance is a random variable whose probability distribution can be obtained. And

an optimal strategy is one that maximizes certain risk measures such as percentile

loss [50] or mean-variance tradeoff [102].

In this chapter we adapt the aforementioned formulations into the competitive

setup and discuss parametric regret minimizing in uncertain Markov decision pro-

cesses. In particular, our contributions include the following:

• In Section 4.2 we follow the minimax approach and propose the Minimal

Maximum Regret (MMR) decision criterion.

• We show in Section 4.3 that finding the MMR strategy is NP-hard in general.

• We investigate the algorithmic aspect of MMR strategy in Section 4.4. In

particular, we propose in Section 4.4.1 an algorithm based on mixed integer

programming that solves for the MMR strategy, and discuss in the rest

of Section 4.4 two special cases where the MMR strategy can be found in

polynomial time.

• We take the Bayesian approach and propose the Optimal Mean-Variance

Tradeoff of Regret criterion in Section 4.5. We further show that such a

formulation can be converted into a quadratic program on a polytope, and

hence solved efficiently.

We need to point out that in this paper we concentrate on the case where the

system dynamics are known and only reward parameters are subject to uncertainty,

partly due to the prohibitive computational cost. Indeed, as shown in Section 4.3,

even in this seemingly simple case finding the MMR strategy is NP-hard. In addition,

the known-dynamics case can either model or approximate many practical problems.

For instance, a shortest-path problem with uncertain link lengths is an uncertain

MDP with known dynamics (e.g., [124]). Another example is using state aggregation
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to solve large scale MDPs [138]. In such case, states are grouped to a small number of

hyper-states and a reduced MDP built on these hyper-states is investigated. Typically,

the transition law between hyper-states are known, but the expected reward visiting

each hyper-state is uncertain due to the transitions inside each hyper-state.

4.1.1. Preliminaries and notations. Throughout this chapter, boldface

letters are used for column vectors, where its elements are represented using the same

but non-boldfaced letter. For example, the first element of a vector v is denoted as

v1. Given a function f(x) not necessarily differentiable, we use ∇f(x)|x0 to represent

the set of subgradients at point x0.

An uncertain Markov Decision Process (uMDP) is a 6-tuple < T, γ, S, A,p,R >

where:

• T is the (possibly infinite) decision horizon;

• γ ∈ (0, 1] is the discount factor. We allow γ = 1 only when T is finite.

• S is the state set and A is the action set. Both sets are finite. As standard,

in the finite-horizon case, a state that appears in multiple stages is treated

as different states.

• p is the transition probability i.e., p(s′|s, a) is the probability to reach state

s′ from a state s when action a is taken.

• R is the admissible set of reward parameter. To be more specific, the reward

vector r is unknown to the decision maker (this is why it is called “uncer-

tain MDP”). To make such a decision problem meaningful, some a priori

information of r is known: it is an element of R. In the literature of robust

optimization, R is often called the uncertainty set (cf [141, 12, 116]). Since

we mainly consider the planning problem, the decision maker is not allowed

to adapt/learn her strategy according to different parameter realizations.

We assume that the initial state distribution is known to be α. All history-dependent

randomized strategies are admissible, and we denote that set by ΠHR. We use ΠS

and ΠD to denote the set of stationary Markovian random strategies and station-

ary Markovian deterministic strategies, respectively. For π ∈ ΠS, we use π(a|s) to
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4.2 MINIMAX REGRET IN MDPS

represent the probability of choosing a ∈ A at state s following π. Given a strat-

egy π ∈ ΠHR and a parameter realization r ∈ R, its expected performance (i.e.,

accumulated discounted reward) is denoted by P (π, r), that is

P (π, r) , Eπ{
T
∑

i=1

γi−1r(si, ai)}. (4.1)

We focus on the case where the uncertainty set R is a polytope. Polytopes are

probably the most “natural” formulation of an uncertainty set that can model many

widely applicable cases. For example, the interval case, i.e., each reward parameter

r(s, a) belongs to an interval, is a polytope. We also assume that R is bounded, to

avoid technical problems such as infinitely large regret.

4.2. MiniMax regret in MDPs

In this section we propose the MiniMax Regret criterion, i.e., minimizing the

parametric regret under the most adversarial parameter realization.

Definition 4.1. Given a uMDP < T, γ, S, A,p,R > and r0 ∈ R, the parametric

regret of a strategy π w.r.t. r0 is defined as

R̂(π, r0) , max
π′∈ΠHR

{P (π′, r0) − P (π, r0)}.

In words, regret is the performance gap between a strategy and the optimal

strategy. It is thus a natural performance measure in a competitive environment.

Observe that for a fixed r0, the regret is equivalent to the expected reward up to

adding a constant.

Definition 4.2. Given a uMDP < T, γ, S, A,p,R >, the Maximum Regret of a

strategy π is defined as

R(π) , max
r∈R

R̂(π, r) = max
r∈R,π′∈ΠHR

{P (π′, r) − P (π, r)}. (4.2)

The maximum regret is the regret of a strategy under the most adversarial param-

eter realization. It can also be regarded as the performance gap w.r.t. an “all-mighty”
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opponent strategy that can observe the parameter realization and select the respective

optimal solution.

Definition 4.3. Given a uMDP < T, γ, S, A,p,R >, the MiniMax Regret (MMR)

strategy is

π∗ , arg min
π∈ΠHR

R(π). (4.3)

The minimax regret strategy is not the same as the robust MDP (i.e., minimax

performance) strategy in general, as shown in the following example: Consider the

MDP as shown in Figure 4.1, where R = [0, 3] × [1, 2]. Observe that the minimax

performance strategy is selecting a2, whose maximum regret equals 2. On the other

hand, the minimax regret strategy is selecting either action with probability 50%,

whose maximum regret is 1.

Figure 4.1. An example of MMR not equivalent to robust MDP.

4.2.1. Existence of stationary optimal solution. Although the defini-

tion of MMR considers history dependent strategies, in this subsection we show that

without loss of generality we can concentrate on ΠS because there exists a stationary

MMR strategy. We need the following lemma first.

Lemma 4.1. Given π0 ∈ ΠHR, there exists π̂ ∈ ΠS such that R(π̂) = R(π0).
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Proof. It is well known that (e.g., [124]) given π0 ∈ ΠHR, there exists π̂ ∈ ΠS

such that ∀s ∈ S, a ∈ A

Eπ0

∑

i

γi−11(si = s, ai = a) ≡ Eπ̂

∑

i

γi−11(si = s, ai = a).

Note that the following holds for any π ∈ ΠHR,

P (π, r) =
∑

s∈S

∑

a∈A

{r(s, a)Eπ

∑

i

γi−11(si = s, ai = a)}.

Hence,

P (π′, r) − P (π0, r) = P (π′, r) − P (π̂, r), ∀r ∈ R, π′ ∈ ΠHR.

Taking maximization over π′ and r establishes the lemma. �

We now present the main theorem of this subsection: the existence of a stationary

MMR strategy.

Theorem 4.2. There exists π∗ ∈ ΠS such that R(π∗) ≤ R(π), ∀π ∈ ΠHR.

Proof. From Lemma 4.1, it suffices to prove that R(π∗) ≤ R(π), ∀π ∈ ΠS. We

define a metric d(π1, π2) , maxs∈S,a∈A |π1(a|s) − π2(a|s)| on ΠS and note that since

S and A are finite, the set ΠS is compact. Let sequence {πn} ⊆ ΠS be such that

R(πn) → infπ∈ΠHR R(π). Due to compactness of ΠS, taking a convergent subsequence

{πmn} and let π∗ ∈ ΠS be its limiting point. Let

(π̂′, r̂) = arg max
(π′,r)

{P (π′, r) − P (π∗, r)}.

By definition of maximum regret we have

R(πmn) ≥ P (π̂′, r̂) − P (πmn, r̂), ∀n.

Take limits on both sides and note that P (π̂′, r̂)−P (π, r̂) is a continuous function of

π w.r.t. the aforementioned metric, we have

inf
π∈ΠHR

R(π) ≥ R(π∗),
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which establishes the theorem. �

4.3. Computational complexity

This section investigates the computational complexity of MMR strategy. We

show that finding a MMR strategy is in general intractable. In fact, even evaluating

the maximum regret for a given strategy can be NP-hard, as shown in the next

theorem.

Theorem 4.3. Let R be a polytope defined by a set of n linear inequalities. Then

deciding whether the maximum regret of a strategy is at least 1 is NP-complete with

respect to |S|, |A| and n.

Proof. We first show that deciding whether the maximum regret is at least 1 can

not be computationally more difficult than NP. This is due to the fact that evaluating

the regret of a given strategy π̂ can be written as the following optimization problem

on (x′, r):

max:
∑

a∈A

∑

s∈S

{

r(s, a)x′(s, a) − r(s, a)x̂(s, a)
}

s.t. :
∑

a∈A

x′(s′, a) −
∑

s∈S

∑

a∈A

γp(s′|s, a)x′(s, a) = α(s′), ∀s′,

x′(s, a) ≥ 0, ∀s, ∀a,

r ∈ R.

(4.4)

where x̂(s, a) is given by the
∑T

i=1 γ
i−1E(1si=s,ai=a) under π̂. Note that Equation (4.4)

is a (non-convex) quadratic program which is known to be equivalent to NP. Hence,

deciding whether the maximum regret is at least 1 can not be computationally more

difficult than NP.

Next we prove that deciding whether the maximum regret is at least 1 is NP-hard

by showing that the integer feasibility problem, which is known to be NP-hard (e.g.,

[117]), can be reduced to deciding whether the maximum regret is at least 1 for a

given strategy.
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The integer feasibility problem is to tell for H ∈ Rm×n and t ∈ Rm, whether

there exist a vector x ∈ {0, 1}n such that Hx ≤ t. Now consider the following MDP:

Let ra denote the vector form of rai and let R be defined by the following linear

equalities/inequlities:

rai = −1 − rbi, i = 1, · · ·n

−1 ≤ rai ≤ 0, i = 1, · · ·n

r0 = −1,

−Hra ≤ t.

We claim that the integer feasibility problem is equivalent to whether the maximum

regret of action b0 is at least 1. Suppose the maximum regret is at least 1. Note that

all rewards are negative and the performance of b0 does not depend on the reward

realization. Hence there exists (π, r) such that P (π, r) = 0, which means that the

expected reward from si must be zero for all i = 1, · · ·n. Therefore, either rai or rbi

must equal to zero, i.e., −rai ∈ {0, 1}. Thus, let xi = −rai, the integer feasibility

problem has an affirmative answer. Now suppose that the integer feasibility problem

has an affirmative answer, i.e., there exists x satisfying the integer feasibility, let

rai = −xi. Hence either rai or rbi equals to zero, and the maximum expected reward

equals to zero, i.e., the maximum regret of b0 is 1. Therefore, we reduce the integer

feasibility problem to deciding whether the maximum regret is at least 1, and hence

the latter is NP-hard.

Combining the two steps, we conclude that deciding whether the maximum regret

is at least 1 is NP complete. �

4.4. Algorithms for finding the MMR solution

Although the MMR solution is generally intractable, we propose in this section

several ways to find the MMR strategy. In Subsection 4.4.1 we propose a subgradient
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Figure 4.2. Regret evaluation is NP-hard.

method to find MMR, where the subgradient in each step is evaluate by a Mixed Inte-

ger Program (MIP). Due to the NP-hardness of MIP, such an algorithm is inherently

non-polynomial. We further consider two special cases where polynomial algorithms

are possible. (1) In Section 4.4.2 we show that when the number of vertices of R
is small, i.e., R is the convex hull of a small number of parameter realizations, we

can find MMR in polynomial time by solving a linear program. (2) In Section 4.4.3

we show that the MMR has a special property: it is a randomization of “efficient”

(defined subsequently) strategies. Furthermore, the weighting coefficients of this ran-

domization can be obtained by LP. Thus we are able to solve MMR in an efficient

way if the set of “efficient” strategy, which can be found using action elimination

methods, contains a small number of elements.

4.4.1. Subgradient approach. In this subsection, we propose a subgradient

method to find the MMR solution. The subgradient for each step is indeed the reward

parameter that achieves the maximum regret. We further provide an “oracle” based

on mixed integer programming that computes this subgradient. This method is non-

polynomial, due to the inherent NP-hardness of the problem as shown in Section 4.3.
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We first show that minimizing the maximum regret is indeed a convex program

(w.r.t. an equivalent form the the decision variable π). Thus, the global optimum

(i.e., the MMR strategy) can be found with a subgradient descent/projection method.

Recall the well-known equivalence between a strategy of MDP and its expected

state-action frequency (cf [124]). We thus change the decision variable π ∈ ΠHR to its

state-action frequency vector x, i.e., the vector form of x(s, a) = Eπ

∑∞
i=1 γ

i−11(si =

s, ai = a), and recast finding MMR strategy as the following minimization problem

on x.

min
x∈X

G(x). (4.5)

Here, X is the state-action polytope:

X :
∑

a∈As′

x(s′, a) −
∑

s∈S

∑

a∈As

γp(s′|s, a)x(s, a) = α(s′), ∀s′;

x(s, a) ≥ 0, ∀s, ∀a;

and G(·) : X → R is defined by

G(x) , max
r∈R,x′∈X

(r⊤x′ − r⊤x).

Theorem 4.4. (1) Problem (4.5) is a convex program;

(2) Given x0 ∈ X ,

− arg max
r∈R

{

max
x′∈X

(r⊤x′ − r⊤x0)
}

∈ ∇G(x)|x0.

Proof. Observe that X is convex. To see that the objective function (i.e., the

part inside the curled bracket) is convex, we note that for a fixed pair of (r,x′),

function (r⊤x′ − r⊤x) is affine. Therefore the objective function is the maximum

over a class of affine functions and hence convex. The second claim follows from the

Envelope Theorem (e.g.,[126]). �

Therefore, we propose here a subgradient descent/project algorithm.

Algorithm 4.1.

(1) Initialize. n := 1; choose r0 ∈ R, x∗ := arg maxx∈X r⊤0 x.
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(2) Oracle. Solve r∗ := arg maxr∈R
{

maxx′∈X (r⊤x′ − r⊤x∗)
}

.

(3) Descent. x̂ := x∗ + r∗

n
.

(4) Projection. Solve x∗ := arg maxx∈X ‖x − x̂‖.
(5) n := n + 1. Go to Step 2.

Note that the Projection step is a convex quadratic program over a polytope,

which can be solved in polynomial time. In contrast, Step 2 is NP-hard as shown in

Section 4.3. We thus propose a MIP formulation that finds arg maxr∈R
{

maxx′∈X (r⊤x′−
r⊤x∗)

}

.

The formulation is based on a “large M” method.2 Define

rmax , sup
r∈R

max
s∈S,a∈A

r(s, a); M , rmax

(

T
∑

i=1

γi−1
)

.

Note that rmax is finite since R is bounded, and
∑T

i=1 γ
i−1 is finite because γ = 1

only when T is finite. Observe that M is larger than or equal to the reward-to-go for

any s ∈ S, π ∈ ΠHR and r ∈ R.

Theorem 4.5. Given initial state distribution α and x∗, let r∗ be the optimal

solution of the following maximization problem on (z,v,q, r),

max:
∑

s

α(s)v(s) −
∑

s∈S

∑

a∈A

r(s, a)x∗(s, a)

S.T.:
∑

a∈A

zs,a = 1, ∀s ∈ S,

q(s, a) = r(s, a) + γ
∑

s′∈S p(s
′|s, a)v(s′),

v(s) ≥ q(s, a),

v(s) ≤M(1 − zs,a) + q(s, a),

zs,a ∈ {0, 1},



























∀s, a

r ∈ R.

(4.6)

We have r∗ = arg maxr∈R
{

maxx′∈X (r⊤x′ − r⊤x∗)
}

.

2A similar method is independently proposed in [125].
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Proof. We establish the following lemma first.

Lemma 4.6. Fix r. The following set of constraints

v(s) = max
a∈A

q(s, a);

q(s, a) = r(s, a) + γ
∑

s′∈S

p(s′|s, a)v(s′).
(4.7)

is equivalent to

∑

a∈A

zs,a = 1, ∀s ∈ S,

q(s, a) = r(s, a) + γ
∑

s′∈S p(s
′|s, a)v(s′),

v(s) ≥ q(s, a),

v(s) ≤M(1 − zs,a) + q(s, a),

zs,a ∈ {0, 1},



























∀s, a.
(4.8)

Proof. First note that since M is larger than or equal to the reward to go of

any s, π and r, any v,q that satisfy (4.7) also satisfy (4.8). (Let zs,a∗ = 1 when a∗

maximizes q(s, ·). If multiple a∗ exist, arbitrarily pick one.)

Now consider any q,v, z satisfying (4.8). Fix a s. We have v(s) ≤ q(s, a∗) for

some a∗ ∈ A. This is because z(s, a) ∈ {0, 1} and
∑

a z(s, a) = 1 implies the existence

of a∗ such that z(s, a∗) = 1. Thus,

v(s) ≤M(1 − zs,a∗) + q(s, a∗) = q(s, a∗).

Combining this with v(s) ≥ q(s, a) for all a ∈ A implies that v(s) = maxa∈A q(s, a).

Therefore, (q,v) satisfies Equation (4.7). �

We now prove the theorem. Note that for a fixed r, (4.7) uniquely determines

the reward-to-go v (cf [124]). Therefore, the unique solution that of (4.8) is the

reward-to-go and hence
∑

s α(s)v(s) is the expected performance under r. We thus

conclude that r∗ = arg maxr∈R
{

maxx′∈X (r⊤x′ − r⊤x∗)
}

. �
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4.4.2. Vertices approach. We consider a special type of uMDP: the un-

certainty set R has a small number of vertices. That is, there exists r1, · · · , rt such

that

R = conv{r1, · · · , rt} ,

{

t
∑

i=1

ciri|
t
∑

i=1

ci = 1; ci ≥ 0, ∀i
}

.

Theorem 4.7. Given uMDP < T, γ, S, A,p,R >, suppose R = conv{r1, · · · , rt}
and the initial state-distribution is α. Let x̂i(s, a) , Eπ′

i

∑T
i=1 γ

i−11(si = s, ai = a)

where

π′
i = arg max

π′∈ΠD
P (π′, ri);

and h∗, x∗ be an optimal solution of the following LP,

Min: h

S. T.: h ≥
∑

s∈S

∑

a∈A

[

ri(s, a)x̂i(s, a) − ri(s, a)x(s, a)
]

, ∀i,

∑

a∈A

x(s′, a) −
∑

s∈S

∑

a∈A

γp(s′|s, a)x(s, a) = α(s′), ∀s′,

x(s, a) ≥ 0, ∀s, ∀a.

(4.9)

Then the MMR strategy π∗ is such that π∗(a|s) = x(s, a)/
∑

a′∈A x(s, a
′) for all s, a.

Here, the denominator is guaranteed to be nonzero.

Proof. We establish the following lemma first.

Lemma 4.8. For any π ∈ ΠHR the following holds,

R(π) = max
i=1,··· ,t

{

P (π′
i, ri) − P (π, ri)

}

.

Proof. Fix a strategy π ∈ ΠHR. Define the following function ranging over R:

Rπ(r) , max
π′∈ΠHR

{P (π′, r) − P (π, r)}.

It is easy to see that Rπ(·) is convex because P (π′, r) − P (π, r) is a linear function

of r for any π′, and hence Rπ(·) is convex as it is the maximum of a class of linear

functions.
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By convexity of Rπ(·) and definition of π′
i we have

R(π) = max
r∈R

{

max
π′∈ΠR

[

P (π′, ri) − P (π, ri)
]

}

= max
r∈R

Rπ(r) = max
i=1,··· ,t

Rπ(ri)

= max
i=1,··· ,t

{

P (π′
i, ri) − P (π, ri)

}

,

which establishes the lemma. �

Now we prove the theorem. By Lemma 4.8, we have

R(π) = min
h

{

h|h ≥ P (π′
i, ri) − P (π, ri), i = 1, · · · , t

}

.

Taking the minimum over π ∈ ΠS on both sides, the theorem follows immediately by

writing the MDP as its dual LP form, see [124] for the details. �

4.4.3. Efficient-strategy approach.

Definition 4.4. A strategy π ∈ ΠD is called efficient if there is no π′ ∈ ΠHR

such that P (π, r) < P (π′, r) holds for all r ∈ R.

Theorem 4.9. Suppose R = {r|Ar ≤ b} and {π′
1, · · · , π′

t} ⊂ ΠD is a superset

of the set of efficient strategies. Let x̂i(s, a) , Eπ′
i

∑T
i=1 γ

i−11(si = s, ai = a), whose

vector form is denoted by x̂i. Let c∗ be an optimal solution of the following LP on h,

c and z(i),

min : h

S.T.:
⊤
∑

i=1

ci = 1;

c ≥ 0;

h ≥ b⊤z(i);

A⊤z(i) + X̂c = x̂i;

z(i) ≥ 0;



















i = 1, · · · , t,
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where X̂ = (x̂1, · · · , x̂t), then the MMR strategy π∗ is such that

π∗(a|s) =

∑t
i=1 cix̂i(s, a)

∑

a′∈A

∑t
i=1 cix̂i(s, a′)

; ∀s, a.

Here, the denominator is guaranteed to be nonzero.

Proof. We first show that the MMR strategy is a randomization over π′
1, · · · , π′

t,

where “randomization” stands for the following: given a pool of deterministic strate-

gies pick one according to an exogenous stochastic source and then follow it forever.

It is well known that (cf. [124]) for any stationary strategy, there is an equivalent

randomization over all deterministic strategies and vice versa. Hence there is a MMR

that is a randomization due to Theorem 4.2. Further note that the probability of

picking a non-efficient strategy must be zero, or there exists a strategy that per-

forms strictly better for all r which contradicts the MMR condition. Hence the MMR

strategy is a randomization over π′
1, · · · , π′

t.

Observe that if the probability of picking π′
i is ci, then the state-action frequency

equals
∑t

i=1 cix̂i. Thus, the MMR strategy is the following optimization problem:

min
c:

Pt
j=1 cj=1;c≥0

{

max
i∈{1,··· ,t},r∈R

[

r⊤x̂i − r⊤
t
∑

j=1

cjx̂j

]

}

.

This can be rewritten as

min : h

S.T.:

⊤
∑

i=1

ci = 1;

c ≥ 0;

h ≥ max
r∈R

(x̂⊤
i − c⊤X⊤)r, i = 1, · · · , t.

(4.10)
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By duality of LP (cf [113, 24]) and R = {r|Ar ≤ b}, maxr∈R(x̂⊤
i − c⊤X⊤)r equals

to the following LP on z(i):

Min: b⊤z(i);

S.T.: A⊤z(i) + X̂c = x̂i;

z(i) ≥ 0.

Substituting it into (4.10) establishes the theorem. �

Observe that if a strategy maximizes the performance P (·, r0) for some parameter

realization r0 ∈ R, then it is efficient. The following proposition shows that the

reverse also holds.

Proposition 4.10. Suppose R is convex and its relative interior is non-empty3.

If a strategy π ∈ ΠHR is efficient, then there exists r0 ∈ R such that vπ(r0) = v∗(r0).

Proof. We define the following to simplify the expression:

vπ(r) , P (π, r); π ∈ ΠHR.

v∗(r) , max
π∈ΠHR

vπ(r).

Before proving the proposition, we establish the following lemma.

Lemma 4.11. Let R be convex, then

(1) for any π ∈ ΠS, vπ(·) is an affine function;

(2) v∗(·) is a convex, piecewise affine function.

Proof. Note that given strategy π ∈ ΠS, we have

vπ(r) =
∑

s∈S

∑

a∈A

{r(s, a)Eπ

∑

i

γi−11(si = s, ai = a)}.

The right-hand side is affine of r, which implies the first claim.

3See page 23 of [33] for the definition of relative interior. In particular, all polytopes have non-empty
relative interior.
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To prove the second claim, recall that (e.g., [124]) for a fixed r, the optimal

strategy is determined and stationary, i.e.,

v∗(r) = max
π∈ΠHR

P (π, r) = max
π∈ΠD

P (π, r).

Further note that ΠD is a finite set, and vπ(r) is affine. Thus v∗(·) is convex and

piecewise affine, since it is a pointwise maximum over a finite number of affine func-

tions. �

We now prove the proposition by contradiction. Assume there exists an efficient

strategy π∗ which does not maximize the expect reward for any realization. Note

vπ∗
(·) is affine. We construct a function v′(·) such that v′(r) > vπ∗

(r) for all r ∈ R,

and show that there exists a strategy π′ ∈ ΠHR such that vπ′
(r) ≥ v′(r) for all r ∈ R.

Step 1: To construct v′(·), note that by assumption vπ∗
(r) < v∗(r) for all r ∈ R.

Hence let c0 , minr∈R
[

v∗(r)−vπ∗
(r)
]

and r0 ∈ arg minr∈R
[

v∗(r)−vπ∗
(r)
]

. These two

definition is valid since v∗(·) and vπ∗
(·) are continuous functions and R is compact.

Let v′(r) , vπ∗
(r) + c0, observe that vπ∗

(r) < v′(r) ≤ v∗(r) holds for all r ∈ R, and

we also have v′(r0) = v∗(r0). Note that vπ∗
(r) is an affine function, so is v′(r) by

definition, and we can rewrite

v′(r) = g⊤r +
[

v∗(r0) − g⊤r0

]

.

Step 2: To show there exists π′ ∈ ΠHR such that vπ′
(r) ≥ v′(r) for all r ∈ R.

Let R ⊆ Rm and we extend v∗(·) into the whole space, i.e., for r ∈ Rm, define

v∗f(r) , max
π∈ΠD

P (π, r);

v∗o(r) ,







0 if r ∈ R;

+∞ otherwise.

Note that v′(r) ≤ v∗(r) holds for all r ∈ R implies g⊤r+
[

v∗(r0)−g⊤r0

]

≤ v∗f(r)+v
∗
o(r)

holds for all r ∈ R
m. Hence g is a subgradient to convex function v∗f (r) + v∗o(r) at r0,
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denote as g ∈ ∂
[

v∗f (r0) + v∗o(r0)
]

. Hence there exists gf , go such that gf ∈ ∂v∗f (r0),

go ∈ ∂v∗o(r0) and g = gf + go (cf Theorem 23.8 of [126]).

Step 2.1 To prove there exists π′ such that vπ′
(r) = g⊤

f r +
[

v∗(r0) − g⊤
f r0

]

for

all r ∈ R. Let set Π0 , arg maxπ∈ΠD vπ(r0), i.e., the set of strategies that achieves

maximal at r0. Note that Π0 is a finite set since ΠD is a finite set. Hence denote

Π0 = {π1, · · · , πh}. Note that by definition of Π0, v
πi(r0) = v∗(r0). Hence we can

rewrite

vπi(r) = d⊤
i r + [v∗(r0) − d⊤

i r0],

for some di since vπi(·) is a linear function.

Recall gf ∈ ∂v∗f (r0), hence by a standard continuity argument we have in a

sufficiently small open ball around r0, g⊤
f r +

[

v∗(r0)− g⊤
f r0

]

≤ maxπ∈Π0 v
πi(r). Note

that the left-hand side is affine, and the right-hand side is piecewise affine, hence this

inequality holds for all r ∈ Rm. That is

g⊤
f (r − r0) ≤ max

i∈{1,··· ,h}
d⊤

i (r − r0), ∀r ∈ R
m.

This implies there exists no y ∈ Rm+1 such that [g⊤
f , 1]y ≥ maxi∈{1,··· ,h}[d⊤

i , 1]y,

hence no y satisfy the following conditions





gf

1





⊤

y > 0;





di

1





⊤

y ≤ 0; i = 1, · · · , h.

By Farkas Lemma, this means there exists λ1, · · · , λh such that λi ≥ 0 and




gf

1



 =
h
∑

i=1

λi





di

1



 .

This implies
∑h

i=1 λi = 1 and
∑h

i=1 λidi = gf . Now construct a strategy π′ as taking

strategy πi with probability λi, and we have

vπ′
(r) =

h
∑

i=1

λiv
πi(r) =

h
∑

i=1

λi

{

d⊤
i r + [v∗(r0) − d⊤

i r0]
}

= g⊤
f r +

[

v∗(r0) − g⊤
f r0

]

.
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Step 2.2: To show that vπ′
(r) ≥ v′(r) for all r ∈ R. By definition of v∗o(·) and

go ∈ ∂v∗o(r0) we have

g⊤
o r + [v∗o(r0) − g⊤

o r0] ≤ 0, ∀r ∈ R.

Recall r0 ∈ R, which implies v∗o(r0) = 0. Hence substitute this into g = gf +go leads

to

v′(r) =g⊤r + [v∗(r0) − g⊤r0]

=g⊤
o r + [v∗o(r0) − g⊤

o r0] + g⊤
f r + [v∗f(r0) − g⊤

f r0]

≤g⊤
f r + [v∗f (r0) − g⊤

f r0]

=vπ′
(r). ∀r ∈ R.

Hence we proved Step 2. Combining two steps, we establish the proposition. �

We may thus use action elimination [124][103][68] to find a “small” superset of

efficient strategies: if an action at a state can be determined to not belong to optimal

policy for any parameter realization, it can be discarded and disregarded. If only a

small number of strategies remains after action elimination4, then we can solve MMR

in a less computational expensive way.

4.5. Mean variance tradeoff of regret

So far we regarded the true parameters as deterministic but unknown. In this

section we take a Bayesian approach: we treat the true parameters as a random

vector following distribution µ known a-priori. Thus, given a strategy, its regret is a

random variable whose probability distribution can be evaluated. We use the mean-

variance tradeoff criterion to compare such random variables. That is, the strategy

that minimizes the tradeoff (i.e., the convex combination) of the mean and variance

of the regret is considered optimal.

4Of course this is not guaranteed due to the NP-hardness of MMR.
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Definition 4.5. Suppose the true reward parameter rt follows a distribution µ

supported by a compact R. For a strategy π ∈ ΠHR:

(1) the regret mean is

ER(π) , Ert

{

max
π′∈ΠHR

P (π′, rt) − P (π, rt)
}

=

∫

[

max
π′∈ΠHR

P (π′, r) − P (π, r)
]

µ(dr);

(4.11)

(2) the regret variance is

V arR(π) ,Ert

[

max
π′∈ΠHR

P (π′, rt) − P (π, rt)
]2

− (ER(π))2. (4.12)

Definition 4.6. Suppose the true reward parameter rt follows a distribution µ

supported by a compact R. Fix λ ∈ [0, 1], the Optimal Mean-Variance Tradeoff of

Regret (OMVTR) strategy is

πλ , arg min
π∈ΠHR

[

λER(π) + (1 − λ)V arR(π)
]

.

To simplify notations, define function P ∗(·) : R → R as

P ∗(r) , max
π∈ΠHR

P (π, r),

i.e., the optimal reward-to-go given r. Note that P ∗(r) is easy to compute, using for

example dynamic programming.

Theorem 4.12. For λ ∈ [0, 1], let xλ be an optimal solution to the following

convex quadratic program

min: (1 − λ)x⊤
E(rr⊤)x +

{

[(1 − λ)E(P ∗(r)) − λ]E(r) − (1 − λ)E[P ∗(r)r]
}⊤

x

S.T.:
∑

a∈A

x(s′, a) −
∑

s∈S

∑

a∈A

γp(s′|s, a)x(s, a) = α(s′), ∀s′

x(s, a) ≥ 0, ∀s, a.
(4.13)
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The OMVTR strategy πλ is such that πλ(a|s) = xλ(s, a)/
∑

a′∈A xλ(s, a
′) for all s, a.

Here, the denominator is guaranteed to be nonzero.

Proof. We again use the equivalence between ΠHR and state-action frequency

polytope. Let x(π) be the state-action vector of a a strategy π. Observe that

ER(π) = E(P ∗(rt)) − E(rt)⊤x(π);

V arR(π) = E

[

max
π′∈ΠHR

P (π′, rt) − P (π, rt) − ER(π)
]2

= E

[

P ∗(rt) − rt⊤x(π) − E(P ∗(rt)) + E(rt)⊤x(π)
]2

.

Thus algebra yields

λER(π) + (1 − λ)V arR

=λE(P ∗(r)t) − λE(rt)⊤x(π) + (1 − λ)E
{

P ∗(rt)2 − 2P ∗(rt)rt⊤x(π) + (rt⊤x(π))2
}

− (1 − λ)[E(P ∗(rt))]2 + 2(1 − λ)E[P ∗(rt)]E(rt)⊤x(π) − (1 − λ)[E(rt)⊤x(π)]2.

Note that the right-hand-side is equivalent to the minimizing objective in Prob-

lem (4.13) up to adding a constant, which establishes the theorem. �

We denote the objective function of Problem (4.13) by O(x), whose coefficients

can be approximated using Monte Carlo sampling. The following theorem establishes

an error bound of the solution to the approximated problem O(x).

Theorem 4.13. Let π∗ and π be the OMVTR and the solution to the approx-

imated problem using n i.i.d. samples respectively. Denote T̂ ,
∑T

i=1 γ
i−1; V ,

|S| × |A| and R̂ , supr∈R maxs∈S,a∈A |r(s, a)|. Then, the following holds:

Pr
{

λER(π) + (1 − λ)V arR(π) ≥ λER(π∗) + (1 − λ)V arR(π∗) + 2ǫ
}

≤ (2V 2 + 4V + 2) exp

(

−nǫ2
2R̂2(4T̂ 2R̂ + T̂ )2

)

.

Proof. We use overline to represent the empirical average of a quantity from n

iid sampling. Let ǫ0 = ǫ/(4T̂ 2R̂ + T̂ ). Note that each element of the V × V random

matrix r(i)r(i)⊤ belongs to [−R̂2, R̂2]; P ∗(r(i)) ∈ [−T̂ R̂, T̂ R̂]; each element of the V
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dimension random vector r(i) belongs to [−R̂, R̂]; each element of the V dimension

random vector P ∗(r(i))r(i) belongs to [−T̂ R̂2, T̂ R̂2]. By Hoeffding’s inequality, the

followings hold:

Pr
(

∥

∥rr⊤ − E(rr⊤)
∥

∥

max
≥ Rǫ0

)

≤ 2V 2 exp

(

− nǫ20

2R̂2

)

. (4.14)

Pr
(

∣

∣P ∗(r) − E(P ∗(r))
∣

∣ ≥ T̂ ǫ0

)

≤ 2 exp

(

− nǫ20

2R̂2

)

. (4.15)

Pr
(

∥

∥r − E(r)
∥

∥

∞ ≥ ǫ0

)

≤ 2V exp

(

− nǫ20

2R̂2

)

. (4.16)

Pr
(

∥

∥P ∗(r)r− E(P ∗(r)r)
∥

∥

∞ ≥ T̂ R̂ǫ0

)

≤ 2V exp

(

− nǫ20

2R̂2

)

. (4.17)

Here, ‖ · ‖max is the largest absolute value of the elements of a matrix. Now note that

x ∈ X implies ‖x‖∞ ≤ T̂ . Thus algebra manipulations lead for x ∈ X :

O(x) −O(x)

≤(1 − λ)x⊤{rr⊤ − E(rr⊤)
}

x + (1 − λ)
{

P ∗(r)r − E(P ∗(r)r)
}⊤

x

+
{

(1 − λ)P ∗(r) + λ− (1 − λ)E(P ∗(r)) − λ
}

·
∣

∣E(r)⊤x
∣

∣

+
∣

∣(1 − λ)P ∗(r) + λ
∣

∣ ·
∣

∣(r − E(r))⊤x
∣

∣

≤(1 − λ)T̂ 2
∥

∥

∥
rr⊤ − E(rr⊤)

∥

∥

∥

max
+ (1 − λ)T̂

∥

∥

∥
P ∗(r)r− E(P ∗(r)r)

∥

∥

∥

∞

+ (1 − λ)T̂ R̂|P ∗(r) − E(P ∗(r))| + T̂ [(1 − λ)T̂ R̂ + λ]‖r − E(r)‖∞.

Combining this with Inequalities (4.14) to (4.17), we have:

Pr
{

max
x∈X

|O(x) − O(x)| ≥ ǫ
}

≤(2V 2 + 4V + 2) exp

(

−nǫ2
2R̂2(4T̂ 2R̂ + T̂ )2

)

,
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which implies the theorem because
∣

∣

∣
λ
[

ER(π) + (1 − λ)V arR(π)
]

−
[

λER(π∗) + (1 − λ)V arR(π∗)
]

∣

∣

∣

=
∣

∣O(x(π)) − O(x(π∗))
∣

∣

≤
∣

∣O(x(π)) − O(x(π))
∣

∣+
∣

∣O(x(π∗)) − O(x(π∗))
∣

∣

≤2 max
x∈X

|O(x) −O(x)|.

�

4.6. Chapter summary

In this chapter we investigated decision making in a Markovian setup where the

reward parameters are not known in advance. In contrast to the standard setup

where a strategy is evaluated by its accumulated reward-to-go, we focus on the so-

called competitive setup where the criterion is the parametric regret, i.e., the gap

between the performance of the best strategy that is chosen after the true parameter

realization is revealed and the performance of the strategy that is chosen before the

parameter realization is revealed.

We considered two related formulations: minimax regret and mean-variance

tradeoff of the regret. In the minimax regret formulation, the true parameters are

regarded as deterministic but unknown, and the optimal strategy is the one that

minimizes the worst-case regret under the most adversarial possible realization. We

showed that the problem of computing the minimax regret strategy is NP-hard and

propose algorithms to efficiently solve it under favorable conditions. The mean-

variance tradeoff formulation requires a probabilistic model of the uncertain param-

eters and looks for a strategy that minimizes a convex combination of the mean and

the variance of the regret. We proved that computing such a strategy can be done

numerically in an efficient way.

MDPs in a competitive setup can model many real applications. However, unlike

the standard setup, robust decision making in such a setup has not been thoroughly
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investigated. This chapter aims to address this absence by recasting solution concepts

that were successfully implemented for standard setup to the competitive setup and

solve them with a reasonable computation cost.
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CHAPTER 5

A Kalman Filter Design Based on the

Performance/Robustness Tradeoff

This chapter investigates state estimation of a linear system. State estimation can be

regarded as a decision making problem, where the output is the estimated state value.

Therefore, we are interested in applying robust decision making in the optimal filtering

design. In particular, we apply the Likely performance/Worst-case performance (i.e.,

robustness) tradeoff concept proposed in Chapter 3 to the design of Kalman filter:

We consider filter design of a linear system with parameter uncertainty. In contrast

to the robust Kalman filter which focuses on a worst case analysis, we propose a

design methodology based on iteratively solving a tradeoff problem between nominal

performance and robustness to the uncertainty. Our proposed filter can be computed

online efficiently, is steady-state stable, and is less conservative than the robust filter.

Part of the material in this chapter appears in [172] and [170].

5.1. Introduction

The Kalman filter addresses the estimation problem for linear systems, and is

widely used in many fields including control, finance, communication etc (e.g.,[35,

95]). One central assumption of the Kalman filter is that the underlying state-

space model is exactly known. In practice, this assumption is often violated, i.e., the
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parameters we use as the system dynamics (referred as nominal parameters hereafter)

are only guesses of the unknown true parameters. It is reported (e.g.,[76, 140, 82])

that in this case, the performance of the Kalman filter can deteriorate significantly. In

[130], Sayed proposed a filtering framework based on a worst-case analysis (hereafter

referred to as the robust filter), i.e., instead of iteratively minimizing the regularized

residual norm as the standard Kalman filter does, the robust filter minimizes the

worst-possible regularized residual norm over the set of admissible uncertainty.

Empirical studies show that the Kalman filter and the robust filter perform well

in different setups: the performance (measured by the steady-state error variance) of

the robust filter is significantly better than the Kalman filter when the uncertainty

is large; but under small uncertainty, its performance is not satisfactory, indicating

over-conservativeness comparing to the standard Kalman filter. Furthermore, the

robust filter usually has a slower transient response. Therefore, a filter that exhibits

a similar performance to the better filter under all cases is desirable.

In this chapter, we present a new filter design approach to achieve this goal by

interpolating the standard Kalman filter and the robust filter. To be more specific,

in each iteration, the proposed filter finds a Pareto efficient filtered estimation by

minimizing the convex combination of the nominal regularized residue (the criterion

of the Kalman filter) and the worst-case regularized residue (the criterion of the

robust filter). This approach leads to an optimization problem that can be solved

recursively similarly to the Kalman filter and hence can be applied on-line. The

proposed filter is stable and achieves bounded error-variance. Simulation results show

that the proposed filter exhibits a similar performance to the better one between the

Kalman filter and the robust filter. That is, the performance of the proposed filter is

similar to the Kalman filter under small uncertainty, and is comparable to the robust

filter under large uncertainty. Therefore, the proposed filter is suitable for a wider

range of problem setups.
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We need to point out that the proposed filter achieves good tradeoff because it

is the only interpolating method that achieves Pareto efficiency between the nomi-

nal performance given by the nominal residue and the robustness given by the worst

residue. There are several other “robust” filters designs based on H2/H∞ robust

control (e.g., [114, 4, 136, 179, 87, 121]), set-inclusive robust optimization (e.g.,

[15, 63]), and guaranteed error variance minimization (e.g., [121, 120, 163]). The

main difference is that these methods perform de-regularization, and hence need to

check certain existence conditions each iteration. If the existence conditions fail

at some step, the robustness of the filter is not valid anymore. Furthermore, de-

regularization leads to a computationally expensive algorithm, and hence is often

not suitable in on-line application. See [130] for a more detailed comparison among

different robust filter design methodologies.

This chapter is organized as follows. We formulate the filtering design as an

optimization problem in Section 5.2, and show how to solve it in Section 5.3, which

leads to the recursive formula for the proposed filter in Section 5.4. In Section 5.5

and Section 5.6 we investigate the theoretical and empirical behavior of the proposed

filter respectively. Some concluding remarks are given in Section 5.7. Finally, in

Section 5.8 we detail the derivation of the algorithm.

Notations: We use capital letters and boldface letters to denote matrices and

column vectors respectively. Without further explanations, ‖ · ‖ stands for Euclidean

norm for vectors, and largest singular value for matrices. The notation col{a,b}
stands for a column vector with entries a and b, and diag{A,B} denotes a block

diagonal matrix with entries A and B. Given a column vector z and a positive

definite matrix W , ‖z‖2
W stands for z⊤Wz.
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5.2. Filter formulation

We consider the following system:

xi+1 =(Fi +Mi∆iEf,i)xi + (Gi +Mi∆iEg,i)ui,

yi =Hixi + vi, i = 0, 1, · · · .
(5.1)

Here, Fi , Gi, Mi, Ef,i and Eg,i are known matrices and ∆i are unknown matrices with

‖∆i‖ ≤ 1. The variance of the initial state x0 is Π0, and the driving noises ui and vi

are white, zero mean and uncorrelated, with variance Qi and Ri respectively. This

formulation is standard in robust filter design [130, 121]. We denote the estimate

of xi given observation {y0, · · · ,yj} by x̂i|j, and denote its error variance by Pi|j.

Furthermore, x̂i and Pi denote x̂i|i−1 and Pi|i−1 respectively. We assume Pi|i to be

invertible, which can be relaxed because the final recursion form is independent of

P−1
i|i .

Both the Kalman filter and the Robust filter iteratively find the optimal/robust

smoothing estimation and propagate them respectively (e.g., [35, 95, 130]), i.e.,

Kalman Filter:

(x̂i|i+1, ûi|i+1) := arg min
xi,ui

{

‖xi − x̂i|i‖2
P−1

i|i
+ ‖ui‖2

Q−1
i

+ ‖yi+1 −Hi+1xi+1‖2
R−1

i+1

∣

∣∆i = 0
}

,

where: xi+1 = Fixi +Giui;

x̂i+1|i+1 := Fix̂i|i+1 +Giûi|i+1;

Robust Filter:

(x̂i|i+1, ûi|i+1) := arg min
xi,ui

max
‖∆i‖≤1

{

‖xi − x̂i|i‖2
P−1

i|i
+ ‖ui‖2

Q−1
i

+ ‖yi+1 −Hi+1xi+1‖2
R−1

i+1

}

,

where: xi+1 = Fixi +Giui;

x̂i+1|i+1 := Fix̂i|i+1 +Giûi|i+1.

Notice here, the cost function for the Kalman filter is the error variance under the

nominal parameters, whereas the cost function for the robust filter is the worst case

error variance. Hence the former criterion stands for the nominal performance of the
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smoothed estimation, and the latter represents how robust the smoothed estimation

is. Ideally, a good estimation should perform well (in the sense of Pareto efficiency)

for both criteria. This is equivalent to a minimizer of their convex combination, which

leads to the proposed filter:

Proposed Filter: Fix α ∈ (0, 1)

(x̂i|i+1, ûi|i+1) := arg min
xi,ui

{

α
[

‖xi − x̂i|i‖2
P−1

i|i
+ ‖ui‖2

Q−1
i

+ ‖yi+1 −Hi+1xi+1‖2
R−1

i+1

∣

∣∆i = 0
]

+ (1 − α) max
‖∆i‖≤1

[

‖xi − x̂i|i‖2
P−1

i|i
+ ‖ui‖2

Q−1
i

+ ‖yi+1 −Hi+1xi+1‖2
R−1

i+1

]

}

,

where: xi+1 = Fixi +Giui;

x̂i+1|i+1 := Fix̂i|i+1 +Giûi|i+1.

(5.2)

Note that since both criteria are convex functions, not only any minimizer of the

convex combination is Pareto efficient, but any Pareto efficient solution must minimize

the convex combination for some α. Hence, this formulation computes all the solutions

that achieve good tradeoff between the nominal performance and the robustness. This

is different from other interpolation such as shrinking the uncertainty set, where the

Pareto efficiency is not guaranteed.

5.3. Solving the minimization problem

To solve the minimization problem in Formulation (5.2), we denote

z , col{xi − x̂i|i, ui}; b , yi+1 −Hi+1Fix̂i|i; A , Hi+1[Fi, Gi]; T , diag{P−1
i|i , Q

−1
i };

W , R−1
i+1; D , Hi+1Mi; Ea , [Ef,i, Eg,i]; t , −Ef,ix̂i|i; φ(z) , ‖Eaz − t‖.

We can rewrite Problem (5.2) as

arg min
z

: C(z) , z⊤Tz + α(Az− b)⊤W (Az − b) + (1 − α) max
‖y‖≤φ(z)

‖Az − b +Dy‖2
W ,

(5.3)
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Problem (5.3) is a bilevel optimization problem which is generally NP-hard. However,

following a similar argument as [131], we show this special problem can be efficiently

solved by converting into a unimodal scalar optimization problem. Before giving

the main result of this section, we need to define the following functions of λ ∈
[

‖D⊤WD‖,+∞
)

:

W (λ) , W + (1 − α)WD(λI −D⊤WD)†D⊤W,

zo(λ) , arg min
z

{

z⊤Tz + (Az − b)⊤W (λ)(Az − b) + (1 − α)λφ2(z)
}

,

G(λ) , min
z

{

z⊤Tz + (Az − b)⊤W (λ)(Az− b) + (1 − α)λφ2(z)
}

= zo⊤(λ)Tzo(λ) +
(

Azo(λ) − b
)⊤
W (λ)

(

Azo(λ) − b
)

+ (1 − α)λφ2
(

zo(λ)
)

.

Here, (·)† stands for the pseudo inverse of a matrix. Note that T > 0, φ(·) is convex,

and λ ≥ ‖D⊤WD‖ implies W (λ) ≥ 0, hence the definitions of zo(λ) and G(λ) are

valid, because the part in the curled bracket is strictly convex on z. Therefore, for

any given λ we can evaluate zo(λ) and G(λ). The next theorem shows that the

optimal z for Problem (5.3) can be evaluated by minimizing G(λ) using line search

and substituting the minimizer into zo(·).

Theorem 5.1. (1) Let λo , arg minλ≥‖D⊤WD‖G(λ), we have

arg min
z
C(z) = zo(λo); min

z
C(z) = G(λo).

(2) On λ ≥ ‖D⊤WD‖, G(λ) has only one local minimum, which is also its

global minimum.

Proof. Define R(z,y) , (Az − b +Hy)⊤W (Az − b +Hy) and Ŵ (λ) , W +

WD(λI − D⊤WD)†D⊤W , for λ ∈
[

‖D⊤WD‖, +∞
)

. Hence W (λ) = αW + (1 −
α)Ŵ (λ). Lemma 5.2 describes the property of R(z,y); its proof can be found in

[131].

Lemma 5.2. (a) Function max‖y‖≤φ(z)R(z,y) is convex on z.
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(b) For all z,

max
‖y‖≤φ(z)

R(z,y) = min
λ≥‖D⊤WD‖

(Az − b)⊤Ŵ (λ)(Az− b) + λφ2(z).

(c) λo(z) , arg minλ≥‖D⊤WD‖(Az − b)⊤Ŵ (λ)(Az − b) + λφ2(z) is well defined

and continuous.

Therefore, the following holds:

min
z

C(z)

= min
z

{

z⊤Tz + α(Az − b)⊤W (Az − b) + (1 − α) max
‖y‖≤φ(z)

R(z,y)
}

= min
z

{

z⊤Tz + α(Az − b)⊤W (Az − b) + (1 − α)

× min
λ≥‖D⊤WD‖

[

(Az − b)⊤Ŵ (λ)(Az − b) + λφ2(z)
]

}

= min
λ≥‖D⊤WD‖

min
z

{

z⊤Tz + (Az − b)⊤W (λ)(Az − b) + (1 − α)λφ2(z)
}

= min
λ≥‖D⊤WD‖

G(λ).

We now show that G(·) is unimodal. Denote H(z, λ) , z⊤Tz+(Az−b)⊤W (λ)(Az−
b) + (1 − α)λφ2(z). Observe that C(z) = minλ≥‖D⊤WD‖H(z, λ) and

λo(z) = arg min
λ≥‖D⊤WD‖

(Az − b)⊤Ŵ (λ)(Az − b) + λφ2(z)

= arg min
λ≥‖D⊤WD‖

{

z⊤Tz + α(Az − b)⊤W (Az− b)

+ (1 − α)
[

(Az − b)⊤Ŵ (λ)(Az − b) + λφ2(z)
]

}

= arg min
λ≥‖D⊤WD‖

H(z, λ).

Hence G(λ) = minzH(z, λ). Note that C(z) is strictly convex and goes to infinity

whenever ‖z‖ ↑ ∞, which implies C(z) is unimodal and has a unique global minimum.

Also note, H(z, λ) has the following property: fix one variable, then it is a unimodal

function of the other variable and achieves unique minimum on its domain. This,
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combined with the continuity of λo(z), establishes the unimodality ofG(·) by applying

Lemma C.2 in [131]. �

Note that φ(z) = ‖Eaz − t‖ yields a closed form for zo(·):

zo(λ) =
(

T + A⊤W (λ)A+ (1 − α)λE⊤
a Ea

)−1(

A⊤W (λ)b + (1 − α)λE⊤
a t
)

. (5.4)

5.4. Recursive formula of the filter

Substituting Equation (5.4) into Problem (5.2) and with some algebra detailed

in Section 5.8, we obtain the recursion formula of the proposed filter. We present the

prediction form which propagates {x̂i, Pi}, whereas the Measurement-Update form

which propagates {x̂i|i, Pi|i} can be found in Section 5.8. The recursive formula of the

proposed filter is a modified version of the Robust filter, where ∗ are the modifications.

In addition, G(λ) and hence λo are also different.

Algorithm 5.1. Prediction form

(1) Initialize: x̂0 := 0, P0 := Π0, R̂0 := R0.

(2) Given R̂i, Hi, Pi, calculate:

Pi|i := (P−1
i +H⊤

i R̂
−1
i Hi)

−1

= Pi − PiH
⊤
i (R̂i +HiPiH

⊤
i )−1HiPi.

88



5.5 STEADY-STATE ANALYSIS

(3) Recursion: Construct and minimize G(λ) over (‖M⊤
i H

⊤
i+1R

−1
i+1Hi+1Mi‖,+∞).

Let the optimal value be λo
i . Computing the following values:

λ̂i :=(1 − α)λo
i ∗

Ri+1 :=Ri+1 − λo−1Hi+1MiM
⊤
i H

⊤
i+1

R̂−1
i+1 :=αR−1

i+1 + (1 − α)R
−1

i+1 ∗

Q̂−1
i :=Q−1

i + λ̂iE
⊤
g,i

[

I + λ̂iEf,iPi|iE
⊤
f,i

]−1
Eg,i

P̂i|i :=(P−1
i|i + λ̂iE

⊤
f,iEf,i)

−1

=Pi|i − Pi|iE
⊤
f,i(λ̂

−1
i I + Ef,iPi|iE

⊤
f,i)

−1Ef,iPi|i

Ĝi :=Gi − λ̂iFiP̂i|iE
⊤
f,iEg,i

F̂i :=(Fi − λ̂iĜiQ̂iE
⊤
g,iEf,i)(I − λ̂iP̂i|iE

⊤
f,iEf,i)

H
⊤
i :=

[

H⊤
i R̂

−⊤/2
i

√

λ̂i

]

Re,i :=I +HiPiH
⊤
i

Ki :=FiPiH
⊤
i

Pi+1 :=FiPiF
⊤
i −K iR

−1

e,iK
⊤
i + ĜiQ̂iĜ

⊤
i

ei :=yi −Hix̂i

x̂i+1 :=F̂ix̂i + F̂iPi|iH
⊤
i R̂

−1
i ei

=F̂ix̂i + F̂iPiH
⊤
i R

−1
e,i ei.

5.5. Steady-state analysis

In this section we study steady-state characteristics of the proposed filter, namely

closed-loop stability and bounded error-variance. Similarly to [130], we restrict our

discussion to uncertainty models where all parameters are stationary, except ∆i, and

drop the subscript i. Further assume the uncertainty only appears in the F matrix.

Hence, we have Q̂ = Q and Ĝ = G. In addition, we approximate λo by setting
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λo := (1 + β)‖M⊤H⊤R−1HM‖ for some β > 0. The next theorem shows that the

proposed filter converges to a stable steady-state filter.

Theorem 5.3. Assume that {F,H} is detectable and {F,GQ1/2} is stabilizable.

Then, for any initial condition Π0 > 0, the Riccati variable Pi converges to the unique

solution of

P = FPF⊤ − FPH
⊤
(I +HPH

⊤
)−1HPF⊤ +GQG⊤. (5.5)

Furthermore, the solution P is semi-definite positive, and the steady state closed loop

matrix Fp , F̂ [I − PH⊤R−1
e H ] is stable.

Proof. The closed loop formula for x̂ is

x̂i+1 = F̂ix̂i + F̂iPiH
⊤R−1

e,i [yi −Hx̂i]

= F̂i[I − PiH
⊤R−1

e,iH ]x̂i + F̂iPiH
⊤R−1

e,i yi.

Notice that

F
[

I − PiH
⊤
R

−1

e,iH
]

= F
[

Pi − PiH
⊤
(I +HPiH

⊤
)−1HPi

]

P−1
i

= F (P−1
i +H

⊤
H)−1P−1

i .

Now consider the closed loop gain

Fp,i , F̂i[I − PiH
⊤R−1

e,iH ]

=F
[

I − λ̂(P−1
i +H

⊤
H)−1E⊤

f Ef

][

I − PiH
⊤R−1

e,iH
]

=F (P−1
i +H

⊤
H)−1

[

P−1
i +H

⊤
H − λ̂E⊤

f Ef

][

I − PiH
⊤R−1

e,iH
]

=F (P−1
i +H

⊤
H)−1(P−1

i +H⊤R̂−1H)
[

Pi − PiH
⊤R−1

e,iHPi

]

P−1
i

=F (P−1
i +H

⊤
H)−1(P−1

i +H⊤R̂−1H)
[

Pi − PiH
⊤(R̂i +HPiH

⊤)−1HPi

]

P−1
i

=F (P−1
i +H

⊤
H)−1P−1

i = F
[

I − PiH
⊤
R

−1

e,iH
]

.
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The positive definiteness of R̂ guarantees that H is well defined. Hence, detectability

of {F, H} and the stablizability of {F, GQ1/2} guarantee that Pi converges to the

unique positive semi-definite solution P of Equation (5.5), which stabilizes the matrix

F [I−PH⊤
(I+HPH

⊤
)−1H]. The stability follows for this matrix equals to the steady

state closed loop gain Fp. �

Further assume that the system is quadratically stable, i.e, there exists a matrix

V > 0 such that

V − [F +M∆Ef ]⊤V [F +M∆Ef ] > 0, ∀‖∆‖ ≤ 1.

which is equivalent to a stable F and a bounded norm ‖Ef(zI − F )−1M‖∞ < 1.

Denote

F ,





F − FpPH
⊤R̂−1H F − Fp − FpPH

⊤R̂−1H

FpPH
⊤R̂−1H Fp + FpPH

⊤R̂−1H



 ,

G ,





G −FpPH
⊤R̂−1H

0 FpPH
⊤R̂−1H



 .

The following theorem shows that the error-variance is uniformly bounded, which is

equivalent to saying that the extended system is stable and has a H∞ norm less than

1.

Theorem 5.4. Let x̃i be the estimation error. For any P > 0 such that ∀‖∆‖ ≤ 1:

P −







F +





M

0



∆[Ef Ef ]







P







F +





M

0



∆[Ef Ef ]







⊤

− G





Q 0

0 R



G⊤ ≥ 0;

the error variance satisfies limi→∞ Ex̃ix̃
⊤
i ≤ P11, where P11 is the (1, 1) block entries

of P. Furthermore, such a P is guaranteed to exist.

Proof. Define the estimation error x̃i , xi − x̂i, and

δFi ,





M∆iEf M∆iEf

0 0



 .
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Hence the extended state equation holds:




x̃i+1

x̂i+1



 = (F + δFi)





x̃i

x̂i



+ G





ui

vi



 . (5.6)

Introduce a similarity transformation:

T ,





I I

0 I



 , T −1 =





I −I
0 I



 .

We have,

T (F + δFi)T −1 =





F 0

FpPH
⊤R̂−1H Fp



+





M∆iEf 0

0 0



 .

Hence the first part (i.e., the nominal matrix, denote as F̃) is stable since F and Fp

are stable.

Furthermore, the following equality

Ef(zI − F )−1M = [Ef 0](zI − F̃)−1





M

0



 ,

shows that the extended system has the same H∞-norm as the original system. Hence

the extended system is quadratically stable. Thus, there exists a positive definite

matrix V such that

V − (F + δFi)V(F + δFi)
⊤ > 0.

Scaling V by a sufficiently large factor, we can find a positive P such that

P ≥ (F + δFi)P(F + δFi)
⊤ + G





Q 0

0 R



G⊤. (5.7)

Let

Mi , E















x̃i

x̂i









x̃i

x̂i





⊤










.
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Then the following recursion formula holds

Mi+1 = (F + δFi)Mi(F + δFi)
⊤ + G





Q 0

0 R



G⊤. (5.8)

Subtracting Equation (5.8) from Equation (5.7) we get

P −Mi+1 = (F + δFi)(P −Mi)(F + δFi)
⊤ + Qi,

for some Qi ≥ 0. The quadratic stability of F + δFi implies that P −M∞ ≥ 0. �

5.6. Simulation study

In this section, we investigate the empirical performance of the proposed fil-

ter in three parameter setups that differ in the relative magnitude of the uncer-

tainty. The following numerical example is frequently used in robust filtering design

(e.g.,[130],[121]):

xi+1 =





0.9802 0.0196 + 0.099∆i

0 0.9802



xi + ui,

yi = [1 − 1]xi + vi,

where Q =





1.9608 0.0195

0.0195 1.9608



 R = 1, x0 ∼ N(0, I).

We note that the uncertainty only affects the F1,2. and the magnitude of the nominal

parameter and the uncertainty are of the same order. The tradeoff parameter α is

set to 0.8. The error variance is averaged from 500 trajectories.

In Figure 5.1(a), the uncertainty ∆ is generated according to a uniform distribu-

tion in [−1, 1], and is fixed for the whole trajectory. In Figure 5.1(b), the uncertainty

is re-generated in each step. In both cases, the proposed filter exhibits a similar

steady-state performance to the robust filter, and a faster transient response (i.e.,

smaller error in the transient stages). We also observe that for the non-stationary
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Figure 5.1. Error variance curves: (a) fixed uncertainty; (b) time-varying uncertainty.
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Figure 5.2. Error variance curves for large uncertainty: (a) fixed uncer-
tainty; (b) time-varying uncertainty.

case, the robust filter performs worse probably due to the fact that time varying

uncertainties cancel out.

In Figure 5.2, we depict the case with large uncertainty by setting F1,2 = 0.0196+

0.99∆i. In such situation, the performance of the Kalman filter degrades significantly.

In contrast, the steady-state error of the proposed filter is only 1dB worse than the

robust filter in the fixed uncertainty case, and is comparable to the robust filter in

the time-varying case. This shows that the proposed filter achieves a comparable

robustness as the robust filter.

In Figure 5.3, we investigate the small uncertainty case by enlarging nominal pa-

rameters, i.e., F1,2 = 0.3912+0.099∆i. The robust filter achieves a steady-state error
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Figure 5.3. Error variance curves for large nominal value: (a) fixed
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Figure 5.4. Effect of α on steady-state error.

variance around 23dB, while both the Kalman filter and the proposed filter achieve

a steady-state error around 16dB. This shows that the robust filter could be overly

conservative when the uncertainty is comparatively small, whereas the proposed filter

does not suffer from such conservativeness.

We further simulate the steady-state error-variance for different α under different

uncertainty ratio. Here, α = 0 and α = 1 are the robust filter and the Kalman filter,

95



5.7 CHAPTER SUMMARY

respectively; γ = 1 is the original example. We increase the uncertainty when γ > 1,

and increase the nominal parameter when γ < 1. Figure 5.4 shows that when γ

is small, (i.e., uncertainty is relatively small), larger α achieves better performance.

That is, for small uncertainty, focusing on robustness can degrade the performance.

On the other hand, for large uncertainty, the steady-state error for the Kalman filter

is large. In contrast, even for α = 0.99 which means the robust part has a small effect,

the proposed filter achieves a much better performance. The overall most-balanced

filter in this example is achieved by taking α = 0.8, which is also our suggestion for

the tradeoff parameter. The exact value of α is not sensitive, for example, choosing

α = 0.6 instead works well too.

To summarize, the simulation study shows that both the Kalman filter and the

robust filter are sensitive to the relative magnitude of the uncertainty. In contrast, in

all three cases, the proposed filter exhibits a performance comparable to the better

one, and therefore is suitable for a wider range of problems.

5.7. Chapter summary

In this chapter, we presented a new algorithm for state estimation of a linear

system with uncertainty in the parameters. This filter iteratively finds a smoothed

estimation that is Pareto efficient between the nominal performance and the worst

performance. The resulting recursive form has a computational cost comparable to

the standard Kalman filter, hence can be easily implemented on-line. Under certain

technical conditions, the proposed filter converges to a stable steady-state estimator

and achieves bounded error-variance. Simulation studies show that the proposed filter

overcomes both the sensitivity of the Kalman filter and the overly conservativeness

of the robust filter, and hence achieves satisfactory performance under a wider range

of parameters.

The main motivation of the proposed approach is obtaining more flexibility in

filter design while retaining the computational efficiency. As the simulation study

showed, the performance of both the Kalman filter and the robust filter depend on
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the parameter settings. That is, each of the filters can perform rather poorly under

unsuitable parameters. Whether a problem setting is suitable for these filters may

not be known beforehand, except a general guideline that small uncertainty favors

the standard Kalman filter and large uncertainty favors the robust filter. Moreover,

the problem parameters can be time varying. The proposed filter therefore facili-

tates flexibility since the quality of its performance does not vary dramatically if the

magnitude of the uncertainty is not specified perfectly.

5.8. Derivation of the prediction form

In this section we show how to get the prediction form based on solving Prob-

lem (5.2). By Theorem 5.1 and Equation (5.4), we have

col(x̂i|i+1 − x̂i|i, ûi|i+1) = zo(λo)

=
(

T + A⊤W (λo)A+ (1 − α)λoE⊤
a Ea

)−1(

A⊤W (λo)b + (1 − α)λoE⊤
a t
)

,
(5.9)

where λo is the minimizer of function G(λ) over
[

‖D⊤WD‖, +∞
)

. Since we are

using a line search to find out λo, we exclude the boundary point ‖D⊤WD‖. Hence,

λoI −D⊤WD is invertible. Denote

Ri+1 , Ŵ (λo)−1

=
{

W +WD(λoI −D⊤WD)−1D⊤W
}−1

=W−1 − (λo)−1DD⊤ = Ri+1 − (λo)−1Hi+1MiM
⊤
i H

⊤
i+1.

(5.10)

The second equality holds due to the matrix inversion lemma, and the last equality

holds by substituting the definition of D and W . Next, define

R̂i+1 , W (λo)−1 =
[

αW + (1 − α)Ŵ (λo)
]−1

=
[

αR−1
i+1 + (1 − α)R

−1

i+1

]−1
. (5.11)
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Notice this definition makes sense since Ŵ (λ) is positive for λ > ‖D⊤WD‖ and W is

also positive. Let

λ̂i , (1 − α)λo; T̂ ,





P−1
i|i + λ̂iE

⊤
f,iEf,i λ̂iE

⊤
f,iEg,i

λ̂iE
⊤
g,iEf,i Q−1

i + λ̂iE
⊤
g,iEg,i



 .

We then rewrite the first term of Equation (5.9):

T + A⊤W (λo)A+ (1 − α)λoE⊤
a Ea

=





P−1
i|i 0

0 Q−1
i



+ λ̂i[Ef,i, Eg,i]
⊤[Ef,i, Eg,i] + A⊤W (λo)A

=T̂ + A⊤W (λo)A = T̂ + A⊤R̂−1
i+1A.

(5.12)

Notice that the (1, 1) block of T̂ is strictly positive. By block matrix inversion,

we have

T̂−1 =





P̂i|i + P̂i|iλ̂iE
⊤
f,iEg,iQ̂iE

⊤
g,iEf,iλ̂iP̂i|i −P̂i|iλ̂iE

⊤
f,iEg,iQ̂i

−Q̂iE
⊤
g,iEf,iλ̂iP̂i|i Q̂i



 , (5.13)

where P̂i|i ,

(

P−1
i|i + λ̂iE

⊤
f,iEf,i

)−1

is the inverse of the (1, 1) block of the matrix T̂

and Q̂i ,

(

Q−1
i + λ̂iE

⊤
g,iEg,i − λ̂iE

⊤
g,iEf,iP̂i|iE⊤

f,iEg,iλ̂i

)−1

is the inverse of the Schur

complement.
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We next simplify (T̂ + A⊤W (λo)A)−1 by first proving a useful equation:

[Fi, Gi]T̂
−1[Fi, Gi]

⊤

=[Fi, Gi]





P̂i|i + P̂i|iλ̂iE
⊤
f,iEg,iQ̂iE

⊤
g,iEf,iλ̂iP̂i|i −P̂i|iλ̂iE

⊤
f,iEg,iQ̂i

−Q̂iE
⊤
g,iEf,iλ̂iP̂i|i Q̂i



 [Fi, Gi]
⊤

=Fi(P̂i|i + P̂i|iλ̂iE
⊤
f,iEg,iQ̂iE

⊤
g,iEf,iλ̂iP̂i|i)F

⊤
i − Fi(P̂i|iλ̂iE

⊤
f,iEg,iQ̂i)G

⊤
i

−Gi(Q̂iE
⊤
g,iEf,iλ̂iP̂i|i)F

⊤
i +Gi(Q̂i)G

⊤
i

=FiP̂i|iF
⊤
i + FiP̂i|iλ̂iE

⊤
f,iEg,iQ̂iE

⊤
g,iEf,iλ̂iP̂i|iF

⊤
i −GiQ̂iE

⊤
g,iEf,iλ̂iP̂i|iF

⊤
i

− FiP̂i|iλ̂iE
⊤
f,iEg,iQ̂iG

⊤
i +GiQ̂iG

⊤
i

=FiP̂i|iF
⊤
i − (Gi − FiP̂i|iλ̂iE

⊤
f,iEg,i)Q̂iE

⊤
g,iEf,iλ̂iP̂i|iF

⊤
i + (Gi − FiP̂i|iλ̂iE

⊤
f,iEg,i)Q̂iG

⊤
i H

⊤
i+1

=Hi+1FiP̂i|iF
⊤
i + (Gi − λ̂iFiP̂i|iEf,iEg,i)Q̂i(Gi − λ̂iFiP̂i|iEf,iEg,i)

⊤

=FiP̂i|iF
⊤
i + ĜiQ̂iĜ

⊤
i = Pi+1,

(5.14)

where

Ĝi , Gi − λ̂iFiP̂i|iEf,iEg,i; Pi+1 , FiP̂i|iF
⊤
i + ĜiQ̂iĜ

⊤
i . (5.15)

Hence we can simplify AT̂−1A⊤ as

AT̂−1A⊤ = Hi+1[Fi, Gi]T̂
−1[Fi, Gi]

⊤H⊤
i+1

=Hi+1(FiP̂i|iF
⊤
i + ĜiQ̂iĜ

⊤
i )H⊤

i+1 = Hi+1Pi+1H
⊤
i+1.

(5.16)

Define

Re,i+1 , R̂i+1 +Hi+1Pi+1H
⊤
i+1 = R̂i+1 + AT̂−1A⊤. (5.17)
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Hence

(

T + A⊤W (λo)A+ (1 − α)λoE⊤
a Ea

)−1

=(T̂ + A⊤W (λo)A)−1 = (T̂ + A⊤R̂−1
i+1A)−1

=T̂−1 − T̂−1A⊤(R̂i+1 + AT̂−1A⊤)−1AT̂−1

=T̂−1 − T̂−1A⊤R−1
e,i+1AT̂

−1

=T̂−1 − T̂−1[Fi, Gi]
⊤H⊤

i+1R
−1
e,i+1Hi+1[Fi, Gi]T̂

−1

=T̂−1 − T̂−1





F⊤
i H

⊤
i+1R

−1
e,i+1Hi+1Fi F⊤

i H
⊤
i+1R

−1
e,i+1Hi+1Gi

G⊤
i H

⊤
i+1R

−1
e,i+1Hi+1Fi G⊤

i H
⊤
i+1R

−1
e,i+1Hi+1Gi



 T̂−1.

(5.18)

The equations hold from (5.12), (5.11), (5.17), the matrix inversion lemma and the

definition of A respectively.

Now consider the second term of Equation (5.9). By the definition of λ̂i, R̂i+1,

and substituting A, b, Ea and t, we have:

A⊤W (λo)b + (1 − α)λoE⊤
a t = A⊤R̂−1

i+1b + λ̂iE
⊤
a t

=[Fi, Gi]
⊤H⊤

i+1R̂
−1(yi+1 −Hi+1Fix̂i|i) + λ̂i[Ef,i, Eg,i]

⊤(−Ef,ix̂i|i)

=





F⊤
i H

⊤
i+1R̂

−1
i+1

G⊤
i H

⊤
i+1R̂

−1
i+1



yi+1 +





−F⊤
i H

⊤
i+1R̂

−1
i+1Hi+1Fi − λ̂iE

⊤
f,iEf,i

−G⊤
i H

⊤
i+1R̂

−1
i+1Hi+1Fi − λ̂iE

⊤
g,iEf,i



 x̂i|i.

(5.19)

Substitute Equation (5.12), Equation (5.19) into Equation (5.9) yields





x̂i|i+1 − x̂i|i

ûi|i+1





=(T̂ + A⊤R̂−1
i+1A)−1











F⊤
i H

⊤
i+1R̂

−1
i+1

G⊤
i H

⊤
i+1R̂

−1
i+1



yi+1

+





−F⊤
i H

⊤
i+1R̂

−1
i+1Hi+1Fi − λ̂iE

⊤
f,iEf,i

−G⊤
i H

⊤
i+1R̂

−1
i+1Hi+1Fi − λ̂iE

⊤
g,iEf,i



 x̂i|i







,
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which implies




x̂i|i+1

ûi|i+1





=(T̂ + A⊤R̂−1
i+1A)−1











F⊤
i H

⊤
i+1R̂

−1
i+1

G⊤
i H

⊤
i+1R̂

−1
i+1



yi+1

+









−F⊤
i H

⊤
i+1R̂

−1
i+1Hi+1Fi − λ̂iE

⊤
f,iEf,i

−G⊤
i H

⊤
i+1R̂

−1
i+1Hi+1Fi − λ̂iE

⊤
g,iEf,i



+ (T̂ + A⊤R̂−1
i+1A)





1

0







 x̂i|i







.

(5.20)

Note that

(T̂ + A⊤R̂−1
i+1A)





1

0





=











P−1
i|i + λ̂iE

⊤
f,iEf,i λ̂iE

⊤
f,iEg,i

λ̂iE
⊤
g,iEf,i Q−1

i + λ̂iE
⊤
g,iEg,i



+





F⊤
i

G⊤
i



H⊤
i+1R̂

−1
i+1Hi+1[Fi, Gi]











1

0





=





P−1
i|i + λ̂iE

⊤
f,iEf,i + F⊤

i H
⊤
i+1R̂

−1
i+1Hi+1Fi

λ̂iE
⊤
g,iEf,i +G⊤

i H
⊤
i+1R̂

−1
i+1Hi+1Fi



 .

Substituting it back into Equation (5.20) leads to





x̂i|i+1

ûi|i+1



 = (T̂+A⊤R̂−1
i+1A)−1











F⊤
i H

⊤
i+1R̂

−1
i+1

G⊤
i H

⊤
i+1R̂

−1
i+1



yi+1 +





P−1
i|i

0



 x̂i|i







. (5.21)

101



5.8 DERIVATION OF THE PREDICTION FORM

Substituting this into Problem (5.2), we have

x̂i+1|i+1 = Fix̂i|i+1 +Giûi|i+1 = [Fi, Gi]





x̂i|i+1

ûi|i+1





=[Fi, Gi](T̂ + A⊤R̂−1
i+1A)−1











F⊤
i H

⊤
i+1R̂

−1
i+1

G⊤
i H

⊤
i+1R̂

−1
i+1



yi+1 +





P−1
i|i

0



 x̂i|i







=[Fi, Gi](T̂ + A⊤R̂−1
i+1A)−1





F⊤
i H

⊤
i+1R̂

−1
i+1

G⊤
i H

⊤
i+1R̂

−1
i+1



yi+1

+ [Fi, Gi](T̂ + A⊤R̂−1
i+1A)−1





P−1
i|i

0



 x̂i|i

(5.22)

We compute the two term separately, the coefficient of yi+1 can be written as

[Fi, Gi](T̂ + A⊤R̂−1
i+1A)−1





F⊤
i H

⊤
i+1R̂

−1
i+1

G⊤
i H

⊤
i+1R̂

−1
i+1





=[Fi, Gi]
[

T̂−1 − T̂−1[Fi, Gi]
⊤H⊤

i+1R
−1
e,i+1Hi+1[Fi, Gi]T̂

−1
]





F⊤
i

G⊤
i



H⊤
i+1R̂

−1
i+1

=
{

[Fi, Gi]T̂
−1[Fi, Gi]

⊤ − [Fi, Gi]T̂
−1[Fi, Gi]

⊤H⊤
i+1R

−1
e,i+1Hi+1[Fi, Gi]T̂

−1[Fi, Gi]
⊤
}

×H⊤
i+1R̂

−1
i+1

=(Pi+1 − Pi+1H
⊤
i+1R

−1
e,i+1Hi+1Pi+1)H

⊤
i+1R̂

−1
i+1.

(5.23)

The first equality holds from Equation (5.18), and the last equality holds from Equa-

tion (5.14).
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The coefficient of x̂i|i can be written as:

[Fi, Gi](T̂ + A⊤R̂−1
i+1A)−1





P−1
i|i

0





=[Fi, Gi]
[

T̂−1 − T̂−1[Fi, Gi]
⊤H⊤

i+1R
−1
e,i+1Hi+1[Fi, Gi]T̂

−1
]





P−1
i|i

0





=
[

I − [Fi, Gi]T̂
−1[Fi, Gi]

⊤H⊤
i+1R

−1
e,i+1Hi+1

]

[Fi, Gi]T̂
−1





P−1
i|i

0





=
[

I − Pi+1H
⊤
i+1R

−1
e,i+1Hi+1

]

[Fi, Gi]T̂
−1
i





P−1
i|i

0



 .

(5.24)

Notice by Equation (5.13), we have

[Fi, Gi]T̂
−1





P−1
i|i

0





=[Fi, Gi]





P̂i|i + P̂i|iλ̂iE
⊤
f,iEg,iQ̂iE

⊤
g,iEf,iλ̂iP̂i|i −P̂i|iλ̂iE

⊤
f,iEg,iQ̂i

−Q̂iE
⊤
g,iEf,iλ̂iP̂i|i Q̂i









P−1
i|i

0





=
(

FiP̂i|i + FiP̂i|iλ̂iE
⊤
f,iEg,iQ̂iE

⊤
g,iEf,iλ̂iP̂i|i −GiQ̂iE

⊤
g,iEf,iλ̂iP̂i|i

)

P−1
i|i

=
(

Fi − ĜiQ̂iE
⊤
g,iEf,iλ̂i

)

P̂i|iP
−1
i|i = F̃iP̂i|iP

−1
i|i ,

(5.25)

where

F̃i , Fi − λ̂iĜiQ̂iE
⊤
g,iEf,i, (5.26)

and the second last equality holds from Equation (5.15).
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Recall definition of P̂i|i, we have

P̂i|i =
(

P−1
i|i + λ̂iE

⊤
f,iEf,i

)−1

⇒ P−1
i|i = P̂−1

i|i − λ̂iE
⊤
f,iEf,i

⇒ P̂i|iP
−1
i|i = P̂i|i(P̂

−1
i|i − λ̂iE

⊤
f,iEf,i) = I − λ̂iP̂i|iE

⊤
f,iEf,i

⇒ F̂i , (Fi − λ̂iĜiQ̂iE
⊤
g,iEf,i)(I − λ̂iP̂i|iE

⊤
f,iEf,i) = F̃iP̂i|iP

−1
i|i .

(5.27)

Substitute Equation (5.25) and Equation (5.27) into Equation (5.24), we have

[Fi, Gi](T̂ + A⊤R̂−1
i+1A)−1





P−1
i|i

0



 =
[

I − Pi+1H
⊤
i+1R

−1
e,i+1Hi+1

]

F̂i. (5.28)

Now substitute Equation (5.23) and Equation (5.28) into Equation (5.22), and

denote

x̂i+1 , F̂ix̂i|i; ei+1 , yi+1 −Hi+1x̂i+1; Pi+1|i+1 , Pi+1 − Pi+1H
⊤
i+1R

−1
e,i+1Hi+1Pi+1.

(5.29)

We have

x̂i+1|i+1

=(Pi+1 − Pi+1H
⊤
i+1R

−1
e,i+1Hi+1Pi+1)H

⊤
i+1R̂

−1
i+1yi+1 +

[

I − Pi+1H
⊤
i+1R

−1
e,i+1Hi+1

]

F̂ix̂i|i

=(Pi+1 − Pi+1H
⊤
i+1R

−1
e,i+1Hi+1Pi+1)H

⊤
i+1R̂

−1
i+1

(

ei+1 +Hi+1F̂ix̂i|i
)

+
[

I − Pi+1H
⊤
i+1R

−1
e,i+1Hi+1

]

F̂ix̂i|i

=Pi+1|i+1H
⊤
i+1R̂

−1
i+1ei+1 +

[

I − Pi+1H
⊤
i+1R

−1
e,i+1Hi+1

]

[

I + Pi+1H
⊤
i+1R̂

−1
i+1Hi+1

]

F̂ix̂i|i

=Pi+1|i+1H
⊤
i+1R̂

−1
i+1ei+1

+
[

I − Pi+1H
⊤
i+1(R̂i+1 +Hi+1Pi+1H

⊤
i+1)

−1Hi+1

] [

I + Pi+1H
⊤
i+1R̂

−1
i+1Hi+1

]

F̂ix̂i|i

=Pi+1|i+1H
⊤
i+1R̂

−1
i+1ei+1 + F̂ix̂i|i

=Pi+1|i+1H
⊤
i+1R̂

−1
i+1ei+1 + x̂i+1.

(5.30)
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The third equality follows form Equation (5.17), and the fourth equality holds from

matrix inversion lemma.

Combining all the definitions and Equation (5.30), we get the following measurement-

update form.

Algorithm 5.2. Measurement-Update form

(1) Initialize:

P0|0 :=(Π−1
0 +H⊤

0 R
−1
0 H0)

−1

x̂0|0 :=P0|0H
⊤
0 R

−1
0 y0.

(2) Recursion:

Construct and minimize G(λ) over (‖M⊤
i H

⊤
i+1R

−1
i+1Hi+1Mi‖,+∞). Let the

optimal value be λo
i . Compute the following values:

λ̂i :=(1 − α)λo
i

Ri+1 :=Ri+1 − λo−1Hi+1MiM
⊤
i H

⊤
i+1

R̂−1
i+1 :=αR−1

i+1 + (1 − α)R
−1

i+1

Q̂−1
i :=Q−1

i + λ̂iE
⊤
g,i

[

I + λ̂iEf,iPi|iE
⊤
f,i

]−1
Eg,i

P̂i|i :=(P−1
i|i + λ̂iE

⊤
f,iEf,i)

−1 = Pi|i − Pi|iE
⊤
f,i(λ̂

−1
i I + Ef,iPi|iE

⊤
f,i)

−1Ef,iPi|i

Ĝi :=Gi − λ̂iFiP̂i|iE
⊤
f,iEg,i

F̂i :=(Fi − λ̂iĜiQ̂iE
⊤
g,iEf,i)(I − λ̂iP̂i|iE

⊤
f,iEf,i)

Pi+1 :=FiP̂i|iF
⊤
i + ĜiQ̂iĜ

⊤
i

Re,i+1 :=R̂i+1 +Hi+1Pi+1H
⊤
i+1

Pi+1|i+1 :=Pi+1 − Pi+1H
⊤
i+1R

−1
e,i+1Hi+1Pi+1

x̂i+1 :=F̂ix̂i|i

ei+1 :=yi+1 −Hi+1x̂i+1

x̂i+1|i+1 :=x̂i+1 + Pi+1|i+1H
⊤
i+1R̂

−1
i+1ei+1.
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To derive the prediction form from the measurement-update form, we need the

following two lemma.

Lemma 5.5.

Pi+1 = FiPiF
⊤
i −K iR

−1

e,iK
⊤
i + ĜiQ̂iĜ

⊤
i , (5.31)

where

Ki ,FiPiH
⊤
i , Re,i , I +HiPiH

⊤
i , Hi ,







R̂
−1/2
i Hi

√

λ̂iEf,i






.

Proof. First note

P−1
i|i =(Pi − PiH

⊤
i R

−1
e,iHiPi)

−1 =
(

Pi − PiH
⊤
i (R̂i +HiPiH

⊤
i )−1HiPi

)−1

=
(

(P−1
i +H⊤

i R̂
−1
i Hi)

−1
)−1

= P−1
i +H⊤

i R̂
−1
i Hi.

(5.32)

Hence we have

Pi+1 = FiP̂i|iF
⊤
i + ĜiQ̂iĜ

⊤
i = Fi

(

P−1
i|i + λ̂iE

⊤
f,iEf,i

)−1
F⊤

i + ĜiQ̂iĜ
⊤
i

=Fi

(

P−1
i +H⊤

i R̂
−1
i Hi + λ̂iE

⊤
f,iEf,i

)−1
F⊤

i + ĜiQ̂iĜ
⊤
i

=Fi

(

P−1
i +H

⊤
i H i

)−1
F⊤

i + ĜiQ̂iĜi

=FiPiF
⊤
i −K iR

−1

e,iK
⊤
i + ĜiQ̂iĜ

⊤
i .

�

Lemma 5.6.

Pi|iH
⊤
i R̂

−1
i = PiH

⊤
i R

−1
e,i .

Proof. From Equation (5.32) we have

P−1
i|i (PiH

⊤
i R

−1
e,i ) = (P−1

i +H⊤
i R̂

−1
i Hi)(PiH

⊤
i R

−1
e,i ) = H⊤

i (I + R̂−1
i HiPiH

⊤
i )R−1

e,i

=H⊤
i R̂

−1
i (R̂i +HiPiH

⊤
i )R−1

e,i = H⊤
i R̂

−1
i .

By left multiplying Pi|i on both sides, the lemma follows. �
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Substituting these two Lemmas into the Measurement-Update form, we get the

recursive formula of the prediction form.
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CHAPTER 6. ROBUSTNESS & REGULARIZATION OF SVM

CHAPTER 6

Robustness and Regularization of Support

Vector Machines

In Chapters 2- 5 we addressed two limitations of robust decision making, namely lack

of theoretical justification and the conservatism in sequential decision making. From

this chapter on, we will concentrate on exploring the relationship between robust

decision making and machine learning. Note that machine learning tasks such as

classification and regression can be recast as finding an optimal decision boundary

with respect to an unknown probability distribution which can only be approximated

by finitely many samples. Hence, it is natural to investigate how robustness may

help in such decision tasks. Indeed, we will show in the sequel that robustness is the

reason that makes learning algorithms work. We start from one of the most widely

used classification algorithms – the support vector machines – in this chapter. In

particular, we consider regularized support vector machines (SVMs) and show that

they are precisely equivalent to a new robust optimization formulation. We show

that this equivalence of robust optimization and regularization has implications for

both algorithms, and analysis. In terms of algorithms, the equivalence suggests more

general SVM-like algorithms for classification that explicitly build in protection to

noise, and at the same time control overfitting. On the analysis front, the equivalence

of robustness and regularization, provides a robust optimization interpretation for
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the success of regularized SVMs. We use this new robustness interpretation of SVMs

to give a new proof of consistency of (kernelized) SVMs, thus establishing robustness

as the reason regularized SVMs generalize well. Part of the material of this chapter

appears in [168].

6.1. Introduction

Support Vector Machines (SVMs for short) originated in [31] and can be traced

back to as early as [159] and [157]. They continue to be one of the most success-

ful algorithms for classification. SVMs address the classification problem by finding

the hyperplane in the feature space that achieves maximum sample margin when the

training samples are separable, which leads to minimizing the norm of the classifier.

When the samples are not separable, a penalty term that approximates the total

training error is considered [14, 43]. It is well known that minimizing the training

error itself can lead to poor classification performance for new unlabeled data; that

is, such an approach may have poor generalization error because of, essentially, over-

fitting [158]. A variety of modifications have been proposed to combat this problem,

one of the most popular methods being that of minimizing a combination of the

training-error and a regularization term. The latter is typically chosen as a norm

of the classifier. The resulting regularized classifier performs better on new data.

This phenomenon is often interpreted from a statistical learning theory view: the

regularization term restricts the complexity of the classifier, hence the deviation of

the testing error and the training error is controlled (see [139, 70, 8, 99, 7] and

references therein).

In this chapter we consider a different setup, assuming that the training data

are generated by the true underlying distribution, but some non-i.i.d. (potentially

adversarial) disturbance is then added to the samples we observe. We follow a ro-

bust optimization (see [64, 12, 22] and references therein) approach, i.e., minimizing

the worst possible empirical error under such disturbances. The use of robust op-

timization in classification is not new (e.g., [137, 27, 101]). Robust classification
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models studied in the past have considered only box-type uncertainty sets, which

allow the possibility that the data have all been skewed in some non-neutral manner

by a correlated disturbance. This has made it difficult to obtain non-conservative

generalization bounds. Moreover, there has not been an explicit connection to the

regularized classifier, although at a high-level it is known that regularization and ro-

bust optimization are related (e.g., [64, 2]). The main contribution in this chapter is

solving the robust classification problem for a class of non-box-type uncertainty sets,

and providing a linkage between robust classification and the standard regularization

scheme of SVMs. In particular, our contributions include the following:

• We solve the robust SVM formulation for a class of non-box-type uncertainty

sets. This permits finer control of the adversarial disturbance, restricting it

to satisfy aggregate constraints across data points, therefore reducing the

possibility of highly correlated disturbances.

• We show that the standard regularized SVM classifier is a special case of our

robust classification, thus explicitly relating robustness and regularization.

This provides an alternative explanation to the success of regularization,

and also suggests new physically motivated ways to construct regularization

terms.

• We relate our robust formulation to several probabilistic formulations. We

consider a chance-constrained classifier (i.e., a classifier with probabilistic

constraints on misclassification) and show that our robust formulation can

approximate it far less conservatively than previous robust formulations

could possibly do. We also consider a Bayesian setup, and show that this

can be used to provide a principled means of selecting the regularization

coefficient without cross-validation.

• We show that the robustness perspective, stemming from a non-i.i.d. analy-

sis, can be useful in the standard learning (i.i.d.) setup, by using it to prove

consistency for standard SVM classification, without using VC-dimension

or stability arguments. This result implies that generalization ability is a
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direct result of robustness to local disturbances; it therefore suggests a new

justification for good performance, and consequently allows us to construct

learning algorithms that generalize well by robustifying non-consistent algo-

rithms.

Robustness and Regularization. We comment here on the explicit equivalence

of robustness and regularization. We briefly explain how this observation is different

from previous work and why it is interesting. Certain equivalence relationships be-

tween robustness and regularization have been established for problems other than

classification [64, 12, 30], but these results do not directly apply to the classification

problem. Indeed, research on classifier regularization mainly discusses its effect on

bounding the complexity of the function class (e.g., [139, 70, 8, 99, 7]). Mean-

while, research on robust classification has not attempted to relate robustness and

regularization (e.g, [101, 26, 27, 137, 150, 79]), in part due to the robustness

formulations used in those papers. In fact, they all consider robustified versions of

regularized classifiers.1 [25] considers a robust formulation for box-type uncertainty,

and relates this robust formulation with regularized SVM. However, this formulation

involves a non-standard loss function that does not bound the 0 − 1 loss, and hence

its physical interpretation is not clear.

The connection of robustness and regularization in the SVM context is impor-

tant for the following reasons. First, it gives an alternative and potentially powerful

explanation of the generalization ability of the regularization term. In the classical

machine learning literature, the regularization term bounds the complexity of the

class of classifiers. The robust view of regularization regards the testing samples as a

perturbed copy of the training samples. We show that when the total perturbation is

given or bounded, the regularization term bounds the gap between the classification

errors of the SVM on these two sets of samples. In contrast to the standard PAC

approach, this bound depends neither on how rich the class of candidate classifiers

is, nor on an assumption that all samples are picked in an i.i.d. manner. In addition,

1[101] is perhaps the only exception, where a regularization term is added to the covariance estima-
tion rather than to the objective function.
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this suggests novel approaches to designing good classification algorithms, in par-

ticular, designing the regularization term. In the PAC structural-risk minimization

approach, regularization is chosen to minimize a bound on the generalization error

based on the training error and a complexity term. This complexity term typically

leads to overly emphasizing the regularizer, and indeed this approach is known to

often be too pessimistic [97] for problems with more structure. The robust approach

offers another avenue. Since both noise and robustness are physical processes, a close

investigation of the application and noise characteristics at hand, can provide insights

into how to properly robustify, and therefore regularize the classifier. For example,

it is known that normalizing the samples so that the variance among all features

is roughly the same (a process commonly used to eliminate the scaling freedom of

individual features) often leads to good generalization performance. From the ro-

bustness perspective, this simply says that the noise is anisotropic (ellipsoidal) rather

than spherical, and hence an appropriate robustification must be designed to fit this

anisotropy.

We also show that using the robust optimization viewpoint, we obtain some prob-

abilistic results outside the PAC setup. In Section 6.3 we bound the probability that

a noisy training sample is correctly labeled. Such a bound considers the behavior

of corrupted samples and is hence different from the known PAC bounds. This is

helpful when the training samples and the testing samples are drawn from differ-

ent distributions, or some adversary manipulates the samples to prevent them from

being correctly labeled (e.g., spam senders change their patterns from time to time

to avoid being labeled and filtered). Finally, this connection of robustification and

regularization also provides us with new proof techniques as well (see Section 6.5).

We need to point out that there are several different definitions of robustness in

the literature. In this thesis, as well as the aforementioned robust classification papers,

robustness is mainly understood from a Robust Optimization perspective, where a

min-max optimization is performed over all possible disturbances. An alternative

interpretation of robustness stems from the rich literature on Robust Statistics (e.g.,
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[90, 85, 129, 108]), which studies how an estimator or algorithm behaves under

a small perturbation of the statistics model. For example, the Influence Function

approach, proposed in [84] and [85], measures the impact of an infinitesimal amount

of contamination of the original distribution on the quantity of interest. Based on

this notion of robustness, [39] showed that many kernel classification algorithms,

including SVM, are robust in the sense of having a finite Influence Function. A similar

result for regression algorithms is shown in [40] for smooth loss functions, and in [41]

for non-smooth loss functions where a relaxed version of the Influence Function is

applied. In the machine learning literature, another widely used notion closely related

to robustness is the stability, where an algorithm is required to be robust (in the sense

that the output function does not change significantly) under a specific perturbation:

deleting one sample from the training set. It is now well known that a stable algorithm

such as SVM has desirable generalization properties, and is statistically consistent

under mild technical conditions; see for example [32, 100, 122, 112] for details.

One main difference between Robust Optimization and other robustness notions is

that the former is constructive rather than analytical. That is, in contrast to robust

statistics or the stability approach that measures the robustness of a given algorithm,

Robust Optimization can robustify an algorithm: it converts a given algorithm to

a robust one. For example, as we show in this chapter, the RO version of a naive

empirical-error minimization is the well known SVM. As a constructive process, the

RO approach also leads to additional flexibility in algorithm design, especially when

the nature of the perturbation is known or can be well estimated.

This chapter is organized as follows. In Section 6.2 we investigate the correlated

disturbance case, and show the equivalence between robust classification and regular-

ization. We develop the connections to probabilistic formulations in Section 6.3. The

kernelized version is investigated in Section 6.4, based on which a consistency result

following a robustness analysis is developed in Section 6.5. Some concluding remarks

are given in Section 6.6.
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Notation: Capital letters are used to denote matrices, and boldface letters are

used to denote column vectors. For a given norm ‖ · ‖, we use ‖ · ‖∗ to denote its

dual norm, i.e., ‖z‖∗ , sup{z⊤x|‖x‖ ≤ 1}. For a vector x and a positive semi-

definite matrix C of the same dimension, ‖x‖C denotes
√

x⊤Cx. We use δ to denote

disturbance affecting the samples. We use superscript r to denote the true value for

an uncertain variable, so that δr
i is the true (but unknown) noise of the ith sample.

The set of non-negative scalars is denoted by R+. The set of integers from 1 to n is

denoted by [1 : n].

6.2. Robust classification and regularization

We consider the standard binary classification problem, where we are given a

finite number of training samples {xi, yi}m
i=1 ⊆ Rn × {−1,+1}, and must find a

linear classifier, specified by the function hw,b(x) = sgn(〈w, x〉+ b). For the standard

regularized classifier, the parameters (w, b) are obtained by solving the following

convex optimization problem:

min
w,b,ξ

: r(w, b) +
m
∑

i=1

ξi

s.t. : ξi ≥
[

1 − yi(〈w,xi〉 + b)]

ξi ≥ 0,

where r(w, b) is a regularization term. This is equivalent to

min
w,b

{

r(w, b) +
m
∑

i=1

max
[

1 − yi(〈w,xi〉 + b), 0
]

}

.

Previous robust classification work [137, 26, 27, 25, 150] considers the classification

problem where the input are subject to (unknown) disturbances ~δ = (δ1, . . . , δm) and

essentially solves the following min-max problem:

min
w,b

max
~δ∈Nbox

{

r(w, b) +
m
∑

i=1

max
[

1 − yi(〈w, xi − δi〉 + b), 0
]

}

, (6.1)
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for a box-type uncertainty set Nbox. That is, let Ni denote the projection of Nbox onto

the δi component, then Nbox = N1 × · · · × Nm. Effectively, this allows simultaneous

worst-case disturbances across many samples, and leads to overly conservative solu-

tions. The goal of this paper is to obtain a robust formulation where the disturbances

{δi} may be meaningfully taken to be correlated, i.e., to solve for a non-box-type N :

min
w,b

max
~δ∈N

{

r(w, b) +

m
∑

i=1

max
[

1 − yi(〈w,xi − δi〉 + b), 0
]

}

. (6.2)

We briefly explain here the four reasons that motivate this “robust to perturbation”

setup and in particular the min-max form of (6.1) and (6.2). First, it can explicitly

incorporate prior problem knowledge of local invariance (e.g., [145]). For example, in

vision tasks, a desirable classifier should provide a consistent answer if an input image

slightly changes. Second, there are situations where some adversarial opponents (e.g.,

spam senders) will manipulate the testing samples to avoid being correctly classified,

and the robustness toward such manipulation should be taken into consideration in the

training process [79]. Or alternatively, the training samples and the testing samples

can be obtained from different processes and hence the standard i.i.d. assumption is

violated [28]. For example in real-time applications, the newly generated samples are

often less accurate due to time constraints. Finally, formulations based on chance-

constraints [27, 137] are mathematically equivalent to such a min-max formulation.

We define explicitly the correlated disturbance (or uncertainty) which we study

below.

Definition 6.1. A set N0 ⊆ Rn is called an Atomic Uncertainty Set if

(I) 0 ∈ N0;

(II) For any w0 ∈ R
n : sup

δ∈N0

[w⊤
0 δ] = sup

δ′∈N0

[−w⊤
0 δ′] < +∞.

We use “sup” here because the maximal value is not necessary attained since N0

may not be a closed set. The second condition of Atomic Uncertainty set basically

says that the uncertainty set is bounded and symmetric. In particular, all norm balls
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and ellipsoids centered at the origin are atomic uncertainty sets, while an arbitrary

polytope might not be an atomic uncertainty set.

Definition 6.2. Let N0 be an atomic uncertainty set. A set N ⊆ R
n×m is called

a Sublinear Aggregated Uncertainty Set of N0, if

N− ⊆ N ⊆ N+,

where: N− ,

m
⋃

t=1

N−
t ; N−

t , {(δ1, · · · , δm)|δt ∈ N0; δi6=t = 0}.

N+ , {(α1δ1, · · · , αmδm)|
m
∑

i=1

αi = 1; αi ≥ 0, δi ∈ N0, i = 1, · · · , m}.

The Sublinear Aggregated Uncertainty definition models the case where the dis-

turbances on each sample are treated identically, but their aggregate behavior across

multiple samples is controlled. Some interesting examples include

(1) {(δ1, · · · , δm)|
m
∑

i=1

‖δi‖ ≤ c};

(2) {(δ1, · · · , δm)|∃t ∈ [1 : m]; ‖δt‖ ≤ c; δi = 0, ∀i 6= t};

(3) {(δ1, · · · , δm)|
m
∑

i=1

√

c‖δi‖ ≤ c}.

All these examples have the same atomic uncertainty set N0 =
{

δ
∣

∣ ‖δ‖ ≤ c
}

. Fig-

ure 6.1 provides an illustration of a sublinear aggregated uncertainty set for n = 1

and m = 2, i.e., the training set consists of two univariate samples.
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a. N− b. N+ c. N d. Box uncertainty

Figure 6.1. Illustration of a Sublinear Aggregated Uncertainty Set N .
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Theorem 6.1. Assume {xi, yi}m
i=1 are non-separable, r(·) : Rn+1 → R is an

arbitrary function, N is a Sublinear Aggregated Uncertainty set with corresponding

atomic uncertainty set N0. Then the following min-max problem

min
w,b

sup
(δ1,··· ,δm)∈N

{

r(w, b) +
m
∑

i=1

max
[

1 − yi(〈w,xi − δi〉 + b), 0
]

}

(6.3)

is equivalent to the following optimization problem on w, b, ξ:

min : r(w, b) + sup
δ∈N0

(w⊤δ) +

m
∑

i=1

ξi,

s.t. : ξi ≥ 1 − [yi(〈w, xi〉 + b)], i = 1, . . . , m;

ξi ≥ 0, i = 1, . . . , m.

(6.4)

Furthermore, the minimum in Problem (6.4) is attainable when r(·, ·) is lower semi-

continuous.

Proof. Define:

v(w, b) , sup
δ∈N0

(w⊤δ) +

m
∑

i=1

max
[

1 − yi(〈w,xi〉 + b), 0
]

.

Recall that N− ⊆ N ⊆ N+ by definition. Hence, fixing any (ŵ, b̂) ∈ Rn+1, the

following inequalities hold:

sup
(δ1,··· ,δm)∈N−

m
∑

i=1

max
[

1 − yi(〈ŵ,xi − δi〉 + b̂), 0
]

≤ sup
(δ1,··· ,δm)∈N

m
∑

i=1

max
[

1 − yi(〈ŵ,xi − δi〉 + b̂), 0
]

≤ sup
(δ1,··· ,δm)∈N+

m
∑

i=1

max
[

1 − yi(〈ŵ,xi − δi〉 + b̂), 0
]

.

To prove the theorem, we first show that v(ŵ, b̂) is no larger than the leftmost ex-

pression and then show v(ŵ, b̂) is no smaller than the rightmost expression.
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Step 1: We prove that

v(ŵ, b̂) ≤ sup
(δ1,··· ,δm )∈N−

m
∑

i=1

max
[

1 − yi(〈ŵ,xi − δi〉 + b̂), 0
]

. (6.5)

Since the samples {xi, yi}m
i=1 are not separable, there exists t ∈ [1 : m] such that

yt(〈ŵ,xt〉 + b̂) < 0. (6.6)

Hence,

sup
(δ1,··· ,δm )∈N−

t

m
∑

i=1

max
[

1 − yi(〈ŵ,xi − δi〉 + b̂), 0
]

=
∑

i6=t

max
[

1 − yi(〈ŵ,xi〉 + b̂), 0
]

+ sup
δt∈N0

max
[

1 − yt(〈ŵ,xt − δt〉 + b̂), 0
]

=
∑

i6=t

max
[

1 − yi(〈ŵ,xi〉 + b̂), 0
]

+ max
[

1 − yt(〈ŵ,xt〉 + b̂) + sup
δt∈N0

(ytŵ
⊤δt), 0

]

=
∑

i6=t

max
[

1 − yi(〈ŵ,xi〉 + b̂), 0
]

+ max
[

1 − yt(〈ŵ,xt〉 + b̂), 0
]

+ sup
δt∈N0

(ytŵ
⊤δt)

= sup
δ∈N0

(ŵ⊤δ) +
m
∑

i=1

max
[

1 − yi(〈ŵ,xi〉 + b̂), 0
]

= v(ŵ, b̂).

The third equality holds because of Inequality (6.6) and supδt∈N0
(ytŵ

⊤δt) being non-

negative (recall 0 ∈ N0). Since N−
t ⊆ N−, Inequality (6.5) follows.

Step 2: Next we prove that

sup
(δ1,··· ,δm )∈N+

m
∑

i=1

max
[

1 − yi(〈ŵ,xi − δi〉 + b̂), 0
]

≤ v(ŵ, b̂). (6.7)

Notice that by the definition of N+ we have

sup
(δ1,··· ,δm )∈N+

m
∑

i=1

max
[

1 − yi(〈ŵ,xi − δi〉 + b̂), 0
]

= sup
Pm

i=1 αi=1; αi≥0; δ̂i∈N0

m
∑

i=1

max
[

1 − yi(〈ŵ,xi − αiδ̂i〉 + b̂), 0
]

= sup
Pm

i=1 αi=1; αi≥0;

m
∑

i=1

max
[

sup
δ̂i∈N0

(

1 − yi(〈ŵ,xi − αiδ̂i〉 + b̂)
)

, 0
]

.

(6.8)
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Now, for any i ∈ [1 : m], the following holds,

max
[

sup
δ̂i∈N0

(

1 − yi(〈ŵ, xi − αiδ̂i〉 + b̂)
)

, 0
]

= max
[

1 − yi(〈ŵ,xi〉 + b̂) + αi sup
δ̂i∈N0

(ŵ⊤δ̂i), 0
]

≤max
[

1 − yi(〈ŵ,xi〉 + b̂), 0
]

+ αi sup
δ̂i∈N0

(ŵ⊤δ̂i).

Therefore, Equation (6.8) is upper bounded by

m
∑

i=1

max
[

1 − yi(〈ŵ,xi〉 + b̂), 0
]

+ sup
Pm

i=1 αi=1; αi≥0;

m
∑

i=1

αi sup
δ̂i∈N0

(ŵ⊤δ̂i)

= sup
δ∈N0

(ŵ⊤δ) +
m
∑

i=1

max
[

1 − yi(〈ŵ,xi〉 + b̂), 0
]

= v(ŵ, b̂),

hence Inequality (6.7) holds.

Step 3: Combining the two steps and adding r(w, b) on both sides leads to:

∀(w, b) ∈ Rn+1,

sup
(δ1,··· ,δm )∈N

m
∑

i=1

max
[

1 − yi(〈w,xi − δi〉 + b), 0
]

+ r(w, b) = v(w, b) + r(w,b).

Taking the infimum on both sides establishes the equivalence of Problem (6.3) and

Problem (6.4). Observe that supδ∈N0
w⊤δ is a supremum over a class of affine

functions, and hence is lower semi-continuous. Therefore v(·, ·) is also lower semi-

continuous. Thus the minimum can be achieved for Problem (6.4), and Problem (6.3)

by equivalence, when r(·) is lower semi-continuous. �

This theorem reveals the main difference between Formulation (6.1) and our for-

mulation in (6.2). Consider a Sublinear Aggregated Uncertainty set

N = {(δ1, · · · , δm)|
m
∑

i=1

‖δi‖ ≤ c}.
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The smallest box-type uncertainty set containing N includes disturbances with norm

sum up to mc. Therefore, it leads to a regularization coefficient as large as mc that

is linked to the number of training samples, and will therefore be overly conservative.

An immediate corollary is that a special case of our robust formulation is equiv-

alent to the norm-regularized SVM setup:

Corollary 6.2. Let T ,

{

(δ1, · · ·δm)|∑m
i=1 ‖δi‖∗ ≤ c

}

. If the training sample

{xi, yi}m
i=1 are non-separable, then the following two optimization problems on (w, b)

are equivalent2

min : max
(δ1,··· ,δm)∈T

m
∑

i=1

max
[

1 − yi

(

〈w, xi − δi〉 + b
)

, 0
]

, (6.9)

min : c‖w‖ +
m
∑

i=1

max
[

1 − yi

(

〈w, xi〉 + b
)

, 0
]

. (6.10)

Proof. Let N0 be the dual-norm ball {δ|‖δ‖∗ ≤ c} and r(w, b) ≡ 0. Then

sup‖δ‖∗≤c(w
⊤δ) = c‖w‖. The corollary follows from Theorem 6.1. Notice that indeed

the equivalence holds for any w and b. �

This corollary explains the widely known fact that the regularized classifier tends

to be more robust. Specifically, it explains the observation that when the distur-

bance is noise-like and neutral rather than adversarial, a norm-regularized classifier

(without any robustness requirement) has a performance often superior to a box-type

robust classifier [150]. On the other hand, this observation also suggests that the

appropriate way to regularize should come from a disturbance-robustness perspec-

tive. The above equivalence implies that standard regularization essentially assumes

that the disturbance is spherical; if this is not true, robustness may yield a better

regularization-like algorithm. To find a more effective regularization term, a closer

investigation of the data variation is desirable, e.g., by examining the variation of

the data and solving the corresponding robust classification problem. For example,

one way to regularize is by splitting the given training samples into two subsets with

2After a journal version of this chapter [168] is submitted, the author was informed that the opti-
mization equivalence for the linear case was observed independently by [19].
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an equal number of elements, and treating one as a disturbed copy of the other. By

analyzing the direction of the disturbance and the magnitude of the total variation,

one can choose the proper norm to use, and a suitable tradeoff parameter.

6.3. Probabilistic interpretations

Although Problem (6.3) is formulated without any probabilistic assumptions, in

this section, we briefly explain two approaches to construct the uncertainty set and

equivalently tune the regularization parameter c based on probabilistic information.

The first approach is to use Problem (6.3) to approximate an upper bound for

a chance-constrained classifier. Suppose the disturbance (δr
1, · · ·δr

m) follows a joint

probability measure µ. Then the chance-constrained classifier is given by the following

minimization problem given a confidence level η ∈ [0, 1],

min
w,b,l

: l

s.t. : µ
{

m
∑

i=1

max
[

1 − yi(〈w, xi − δr
i 〉 + b), 0

]

≤ l
}

≥ 1 − η. (6.11)

The formulations in [137], [101] and [26] assume uncorrelated noise and require all

constraints to be satisfied with high probability simultaneously. They find a vec-

tor [ξ1, · · · , ξm]⊤ where each ξi is the η-quantile of the hinge-loss for sample xr
i . In

contrast, our formulation above minimizes the η-quantile of the average (or equiva-

lently the sum of) empirical error. When controlling this average quantity is of more

interest, the box-type noise formulation will be overly conservative.

Problem (6.11) is generally intractable. However, we can approximate it as fol-

lows. Let

c∗ , inf{α|µ(
∑

i

‖δi‖∗ ≤ α) ≥ 1 − η}.
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Notice that c∗ is easily calculate using simulation given µ. Then for any (w, b), with

probability no less than 1 − η, the following holds,

m
∑

i=1

max
[

1 − yi(〈w, xi − δr
i 〉 + b), 0

]

≤ max
P

i ‖δi‖∗≤c∗

m
∑

i=1

max
[

1 − yi(〈w, xi − δi〉 + b), 0
]

.

Thus (6.11) is upper bounded by (6.10) with c = c∗. This gives an additional prob-

abilistic robustness property of the standard regularized classifier. Notice that fol-

lowing a similar approach but with the constraint-wise robust setup, i.e., the box

uncertainty set, would lead to considerably more pessimistic approximations of the

chance constraint.

The second approach considers a Bayesian setup. Suppose the total disturbance

cr ,
∑m

i=1 ‖δr
i‖∗ follows a prior distribution ρ(·). This can model for example the case

where the training sample set is a mixture of several data sets where the disturbance

magnitude of each set is known. Such a setup leads to the following classifier which

minimizes the Bayesian (robust) error:

min
w,b

:

∫

{

max
P ‖δi‖∗≤c

m
∑

i=1

max
[

1 − yi

(

〈w, xi − δi〉 + b
)

, 0
]

}

dρ(c). (6.12)

By Corollary 6.2, the Bayesian classifier (6.12) is equivalent to

min
w,b

:

∫

{

c‖w‖ +

m
∑

i=1

max
[

1 − yi

(

〈w, xi〉 + b
)

, 0
]

}

dρ(c),

which can be further simplified as

min
w,b

: c‖w‖ +
m
∑

i=1

max
[

1 − yi

(

〈w, xi〉 + b
)

, 0
]

,

where c ,
∫

c dρ(c). This thus provides a justifiable parameter tuning method dif-

ferent from cross validation: simply using the expected value of cr. We note that

it is the equivalence in Corollary 6.2 that makes this possible, since it is difficult to

imagine a setting where one would have a prior on regularization coefficients.
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6.4. Kernelization

The previous results can be easily generalized to the kernelized setting, which we

discuss in detail in this section. In particular, similar to the linear classification case,

we give a new interpretation of the standard kernelized SVM as the min-max empirical

hinge-loss solution, where the disturbance is assumed to lie in the feature space. We

then relate this to the (more intuitively appealing) setup where the disturbance lies

in the sample space. We use this relationship in Section 6.5 to prove a consistency

result for kernelized SVMs.

The kernelized SVM formulation considers a linear classifier in the feature space

H, a Hilbert space containing the range of some feature mapping Φ(·). The standard

formulation is as follows,

min
w,b

: r(w, b) +
m
∑

i=1

ξi

s.t. : ξi ≥
[

1 − yi(〈w,Φ(xi)〉 + b)],

ξi ≥ 0 .

It has been proved in [133] that if we take f(〈w,w〉) for some increasing function

f(·) as the regularization term r(w, b), then the optimal solution has a representation

w∗ =
∑m

i=1 αiΦ(xi), which can further be found without knowing explicitly the feature

mapping, by evaluating a kernel function k(x,x′) , 〈Φ(x), Φ(x′)〉 only. This is the

well-known “kernel trick”.

The definitions of Atomic Uncertainty Set and Sublinear Aggregated Uncertainty

Set in the feature space are identical to Definition 6.1 and 6.2, with Rn replaced by

H. The following theorem is a feature-space counterpart of Theorem 6.1. The proof

follows from a similar argument to Theorem 6.1, i.e., for any fixed (w, b) the worst-

case empirical error equals the empirical error plus a penalty term supδ∈N0

(

〈w, δ〉
)

,

and hence the details are omitted.

123



6.4 KERNELIZATION

Theorem 6.3. Assume {Φ(xi), yi}m
i=1 are not linearly separable, r(·) : H×R → R

is an arbitrary function, N ⊆ Hm is a Sublinear Aggregated Uncertainty set with

corresponding atomic uncertainty set N0 ⊆ H. Then the following min-max problem

min
w,b

sup
(δ1,··· ,δm )∈N

{

r(w, b) +
m
∑

i=1

max
[

1 − yi(〈w,Φ(xi) − δi〉 + b), 0
]

}

(6.13)

is equivalent to

min : r(w, b) + sup
δ∈N0

(〈w, δ〉) +

m
∑

i=1

ξi,

s.t. : ξi ≥ 1 − yi

(

〈w, Φ(xi)〉 + b
)

, i = 1, · · · , m;

ξi ≥ 0, i = 1, · · · , m.

(6.14)

Furthermore, the minimization of Problem (6.14) is attainable when r(·, ·) is lower

semi-continuous.

For some widely used feature mappings (e.g., RKHS of a Gaussian kernel),

{Φ(xi), yi}m
i=1 are always separable. In this case, the worst-case empirical error may

not be equal to the empirical error plus a penalty term supδ∈N0

(

〈w, δ〉
)

. However,

it is easy to show that for any (w, b), the latter is an upper bound of the former.

The next corollary is the feature-space counterpart of Corollary 6.2, where ‖ · ‖H
stands for the RKHS norm, i.e., for z ∈ H, ‖z‖H =

√

〈z, z〉. Noticing that the RKHS

norm is self dual, we find that the proof is identical to that of Corollary 6.2, and hence

omit it.

Corollary 6.4. Let TH ,

{

(δ1, · · ·δm)|∑m
i=1 ‖δi‖H ≤ c

}

. If {Φ(xi), yi}m
i=1 are

non-separable, then the following two optimization problems on (w, b) are equivalent

min : max
(δ1,··· ,δm)∈TH

m
∑

i=1

max
[

1 − yi

(

〈w, Φ(xi) − δi〉 + b
)

, 0
]

, (6.15)

min : c‖w‖H +

m
∑

i=1

max
[

1 − yi

(

〈w, Φ(xi)〉 + b
)

, 0
]

. (6.16)
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Equation (6.16) is a variant form of the standard SVM, where the latter has a

squared RKHS norm regularization term. And it can be shown that the two for-

mulations are equivalent up to a changing of the tradeoff parameter c, since both

the empirical hinge-loss and the RKHS norm are convex. Therefore, Corollary 6.4

essentially means that the standard kernelized SVM is implicitly a robust classifier

(without regularization) with disturbance in the feature-space, where the sum of the

magnitudes of the disturbance is bounded.

Disturbance in the feature-space is less intuitive than disturbance in the sample

space, and the next lemma relates these two different notions.

Lemma 6.5. Suppose there exists X ⊆ Rn, ρ > 0, and a continuous non-

decreasing function f : R+ → R+ satisfying f(0) = 0, such that

k(x,x) + k(x′,x′) − 2k(x,x′) ≤ f(‖x − x′‖2
2), ∀x,x′ ∈ X , ‖x − x′‖2 ≤ ρ

then

‖Φ(x̂ + δ) − Φ(x̂)‖H ≤
√

f(‖δ‖2
2), ∀‖δ‖2 ≤ ρ, x̂, x̂ + δ ∈ X .

Proof. Expanding the RKHS norm yields

‖Φ(x̂ + δ) − Φ(x̂)‖H

=
√

〈Φ(x̂ + δ) − Φ(x̂), Φ(x̂ + δ) − Φ(x̂)〉

=
√

〈Φ(x̂ + δ), Φ(x̂ + δ)〉 + 〈Φ(x̂), Φ(x̂)〉 − 2〈Φ(x̂ + δ), Φ(x̂)〉

=
√

k
(

x̂ + δ, x̂ + δ
)

+ k
(

x̂, x̂
)

− 2k
(

x̂ + δ, x̂
)

≤
√

f(‖x̂ + δ − x̂‖2
2) =

√

f(‖δ‖2
2),

where the inequality follows from the assumption. �

Lemma 6.5 essentially says that under certain conditions, robustness in the feature

space is a stronger requirement that robustness in the sample space. Therefore, a

classifier that achieves robustness in the feature space (the SVM for example) also

achieves robustness in the sample space. Notice that the condition of Lemma 6.5
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is rather weak. In particular, it holds for any continuous k(·, ·) and bounded X .

Indeed, for RBF kernels, there exists a tighter relationship between disturbances in

the feature space and disturbances in the sample space. Since such a relationship is

not necessary in developing consistency of SVM, we defer it to Section 6.7.

In the next section we consider a more fundamental property of robustness in

the sample space: we show that a classifier that is robust in the sample space is

asymptotically consistent. As a consequence of this result for linear classifiers, this

implies the consistency for a broad class of kernelized SVMs.

6.5. Consistency of regularization

In this section we explore a fundamental connection between learning and robust-

ness, by using robustness properties to re-prove the statistical consistency of the linear

SVM, and then the kernelized SVM. Indeed, our proof mirrors the consistency proof

found in [142], with the key difference that we replace metric entropy, VC-dimension,

and stability conditions used there, with a robustness condition.

Thus far we have considered the setup where the training-samples are corrupted

by certain set-inclusive disturbances. We now turn to the standard statistical learn-

ing setup, by assuming that all training samples and testing samples are generated

i.i.d. according to a (unknown) probability P, i.e., there does not exist an explicit

disturbance.

Let X ⊆ Rn be bounded, and suppose the training samples (xi, yi)
∞
i=1 are gen-

erated i.i.d. according to an unknown distribution P supported by X × {−1, +1}.
The next theorem shows that our robust classifier and equivalently, regularized SVM

asymptotically minimizes an upper-bound of the expected classification error and

hinge loss.

Theorem 6.6. Denote K , maxx∈X ‖x‖2. Then there exists a random sequence

{γm,c} such that:

(1) ∀c > 0, limm→∞ γm,c = 0 almost surely, and the convergence is uniform in

P;
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(2) the following bounds of the Bayes loss and the hinge loss hold uniformly for

all (w, b):

E(x,y)∼P(1y 6=sgn(〈w,x〉+b)) ≤ γm,c + c‖w‖2 +
1

m

m
∑

i=1

max
[

1 − yi(〈w, xi〉 + b), 0
]

;

E(x,y)∼P

(

max(1 − y(〈w, x〉 + b), 0)
)

≤

γm,c(1 +K‖w‖2 + |b|) + c‖w‖2 +
1

m

m
∑

i=1

max
[

1 − yi(〈w, xi〉 + b), 0
]

.

Proof. We briefly explain the basic idea of the proof before going to the technical

details. We consider the testing sample set as a perturbed copy of the training sample

set, and measure the magnitude of the perturbation. For testing samples that have

“small” perturbations, c‖w‖2+
1
m

∑m
i=1 max

[

1−yi(〈w, xi〉+b), 0
]

upper-bounds their

total loss by Corollary 6.2. Therefore, we only need to show that the ratio of testing

samples having “large” perturbations diminishes to prove the theorem.

Now we present the detailed proof. Given a c > 0, we call a testing sample (x′, y′)

and a training sample (x, y) a sample pair if y = y′ and ‖x − x′‖2 ≤ c. We say a set

of training samples and a set of testing samples form l pairings if there exist l sample

pairs with no data reused. Given m training samples and m testing samples, we use

Mm,c to denote the largest number of pairings. To prove this theorem, we need to

establish the following lemma.

Lemma 6.7. Given a c > 0, Mm,c/m → 1 almost surely as m → +∞, uniformly

w.r.t. P.

Proof. We make a partition of X × {−1, +1} =
⋃Tc

t=1 Xt such that Xt either

has the form [α1, α1 + c/
√
n) × [α2, α2 + c/

√
n) · · · × [αn, αn + c/

√
n) × {+1} or

[α1, α1+c/
√
n)×[α2, α2+c/

√
n) · · ·×[αn, αn+c/

√
n)×{−1} (recall n is the dimension

of X ). That is, each partition is the Cartesian product of a rectangular cell in X and

a singleton in {−1, +1}. Notice that if a training sample and a testing sample fall

into Xt, they can form a pairing.
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Let N tr
t and N te

t be the number of training samples and testing samples falling in

the tth set, respectively. Thus, (N tr
1 , · · · , N tr

Tc
) and (N te

1 , · · · , N te
Tc

) are multinomially

distributed random vectors following a same distribution. Notice that for a multino-

mially distributed random vector (N1, · · · , Nk) with parameter m and (p1, · · · , pk),

the following holds (Bretegnolle-Huber-Carol inequality, see for example Proposition

A6.6 of [154]). For any λ > 0,

P

(

k
∑

i=1

∣

∣Ni −mpi

∣

∣) ≥ 2
√
mλ
)

≤ 2k exp(−2λ2).

Hence we have

P

(

Tc
∑

t=1

∣

∣N tr
t −N te

t

∣

∣ ≥ 4
√
mλ
)

≤ 2Tc+1 exp(−2λ2),

=⇒ P

( 1

m

Tc
∑

t=1

∣

∣N tr
t −N te

t

∣

∣ ≥ λ
)

≤ 2Tc+1 exp(
−mλ2

8
),

=⇒ P

(

Mm,c/m ≤ 1 − λ
)

≤ 2Tc+1 exp(
−mλ2

8
), (6.17)

Observe that
∑∞

m=1 2Tc+1 exp(−mλ2

8
) < +∞, hence by the Borel-Cantelli Lemma [60],

with probability one the event {Mm,c/m ≤ 1−λ} only occurs finitely often asm→ ∞.

That is, lim infmMm,c/m ≥ 1 − λ almost surely. Since λ can be arbitrarily close to

zero, Mm,c/m→ 1 almost surely. Observe that this convergence is uniform in P, since

Tc only depends on X . �

Now we proceed to prove the theorem. Given m training samples and m testing

samples with Mm,c sample pairs, we notice that for these paired samples, both the

total testing error and the total testing hinge-loss is upper bounded by

max
(δ1,··· ,δm)∈N0×···×N0

m
∑

i=1

max
[

1 − yi

(

〈w, xi − δi〉 + b
)

, 0
]

≤cm‖w‖2 +
m
∑

i=1

max
[

1 − yi(〈w, xi〉 + b), 0],
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where N0 = {δ | ‖δ‖ ≤ c}. Hence the total classification error of the m testing samples

can be upper bounded by

(m−Mm,c) + cm‖w‖2 +

m
∑

i=1

max
[

1 − yi(〈w, xi〉 + b), 0],

and since

max
x∈X

(1 − y(〈w,x〉)) ≤ max
x∈X

{

1 + |b| +
√

〈x,x〉 · 〈w,w〉
}

= 1 + |b| +K‖w‖2,

the accumulated hinge-loss of the total m testing samples is upper bounded by

(m−Mm,c)(1 +K‖w‖2 + |b|) + cm‖w‖2 +
m
∑

i=1

max
[

1 − yi(〈w, xi〉 + b), 0].

Therefore, the average testing error is upper bounded by

1 −Mm,c/m+ c‖w‖2 +
1

m

n
∑

i=1

max
[

1 − yi(〈w, xi〉 + b), 0], (6.18)

and the average hinge loss is upper bounded by

(1 −Mm,c/m)(1 +K‖w‖2 + |b|) + c‖w‖2 +
1

m

m
∑

i=1

max
[

1 − yi(〈w, xi〉 + b), 0
]

.

Let γm,c = 1 −Mm,c/m. The proof follows since Mm,c/m → 1 almost surely for any

c > 0. Notice by Inequality (6.17) we have

P

(

γm,c ≥ λ
)

≤ exp
(

−mλ2/8 + (Tc + 1) log 2
)

, (6.19)

i.e., the convergence is uniform in P.

We have shown that the average testing error is upper bounded. The final step

is to show that this implies that in fact the random variable given by the conditional

expectation (conditioned on the training sample) of the error is bounded almost surely

as in the statement of the theorem. To make things precise, consider a fixed m, and

let ω1 ∈ Ω1 and ω2 ∈ Ω2 generate the m training samples and m testing samples,

respectively, and for shorthand let T m denote the random variable consisting of the

first m training samples. Let us denote the probability measures for the training by
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ρ1 and the testing samples by ρ2. By independence, the joint measure is given by the

product of these two. We rely on this property in what follows. Now fix a λ and a

c > 0. In our new notation, Equation (6.19) now reads:

∫

Ω1

∫

Ω2

1
{

γm,c(ω1, ω2) ≥ λ
}

dρ2(ω2) dρ1(ω1) = P

(

γm,c(ω1, ω2) ≥ λ
)

≤ exp
(

−mλ2/8 + (Tc + 1) log 2
)

.

We now bound Pω1(Eω2 [γm,c(ω1, ω2) | T m] > λ), and then use Borel-Cantelli to show

that this event can happen only finitely often. We have:

Pω1(Eω2 [γm,c(ω1, ω2) | T m] > λ)

=

∫

Ω1

1
{

∫

Ω2

γm,c(ω1, ω2) dρ2(ω2) > λ
}

dρ1(ω1)

≤
∫

Ω1

1
{

[

∫

Ω2

γm,c(ω1, ω2)1(γm,c(ω1, ω2) ≤ λ) dρ2(ω2) +

∫

Ω2

γm,c(ω1, ω2)1(γm,c(ω1, ω2) > λ) dρ2(ω2)
]

≥ 2λ
}

dρ1(ω1)

≤
∫

Ω1

1
{

[

∫

Ω2

λ1(λ(ω1, ω2) ≤ λ) dρ2(ω2) +

∫

Ω2

1(γm,c(ω1, ω2) > λ) dρ2(ω2)
]

≥ 2λ
}

dρ1(ω1)

≤
∫

Ω1

1
{

[

λ+

∫

Ω2

1(γm,c(ω1, ω2) > λ) dρ2(ω2)
]

≥ 2λ
}

dρ1(ω1)

=

∫

Ω1

1
{

∫

Ω2

1(γm,c(ω1, ω2) > λ) dρ2(ω2) ≥ λ
}

dρ1(ω1).

Here, the first equality holds because training and testing samples are independent,

and hence the joint measure is the product of ρ1 and ρ2. The second inequality holds

because γm,c(ω1, ω2) ≤ 1 everywhere. Further notice that

∫

Ω1

∫

Ω2

1
{

γm,c(ω1, ω2) ≥ λ
}

dρ2(ω2) dρ1(ω1)

≥
∫

Ω1

λ1
{

∫

Ω2

1
(

γm,c(ω1, ω2) ≥ λ
)

dρ(ω2) > λ
}

dρ1(ω1).
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Thus we have

P(Eω2(γm,c(ω1, ω2)) > λ) ≤ P

(

γm,c(ω1, ω2) ≥ λ
)

/λ ≤ exp
(

−mλ2/8+(Tc+1) log 2
)

/λ.

For any λ and c, summing up the right hand side over m = 1 to ∞ is finite, hence

the theorem follows from the Borel-Cantelli lemma. �

Remark 6.1. We note that Mm/m converges to 1 almost surely even if X is not

bounded. Indeed, to see this, fix ǫ > 0, and let X ′ ⊆ X be a bounded set such that

P(X ′) > 1 − ǫ. Then, with probability one,

#(unpaired samples inX ′)/m→ 0,

by Lemma 6.7. In addition,

max
(

#(training samples not in X ′), #(testing samples not in X ′)
)

/m→ ǫ.

Notice that

Mm ≥ m− #(unpaired samples in X ′)

− max
(

#(training samples not in X ′), #(testing samples not in X ′)
)

.

Hence

lim
m→∞

Mm/m ≥ 1 − ǫ,

almost surely. Since ǫ is arbitrary, we have Mm/m→ 1 almost surely.

Next, we prove an analog of Theorem 6.6 for the kernelized case, and then show

that these two imply statistical consistency of linear and kernelized SVMs. Again, let

X ⊆ Rn be bounded, and suppose the training samples (xi, yi)
∞
i=1 are generated i.i.d.

according to an unknown distribution P supported on X × {−1, +1}.

Theorem 6.8. Denote K , maxx∈X k(x,x). Suppose there exists ρ > 0 and a

continuous non-decreasing function f : R+ → R+ satisfying f(0) = 0, such that:

k(x,x) + k(x′,x′) − 2k(x,x′) ≤ f(‖x − x′‖2
2), ∀x,x′ ∈ X , ‖x− x′‖2 ≤ ρ.

131



6.5 CONSISTENCY OF REGULARIZATION

Then there exists a random sequence {γm,c} such that,

(1) ∀c > 0, limm→∞ γm,c = 0 almost surely, and the convergence is uniform in

P;

(2) the following bounds on the Bayes loss and the hinge loss hold uniformly for

all (w, b) ∈ H× R

EP(1y 6=sgn(〈w, Φ(x)〉+b)) ≤ γm,c + c‖w‖H +
1

m

m
∑

i=1

max
[

1 − yi(〈w, Φ(xi)〉 + b), 0
]

,

E(x,y)∼P

(

max(1 − y(〈w, Φ(x)〉 + b), 0)
)

≤

γm,c(1 +K‖w‖H + |b|) + c‖w‖H +
1

m

m
∑

i=1

max
[

1 − yi(〈w, Φ(xi)〉 + b), 0
]

.

Proof. As in the proof of Theorem 6.6, we generate a set of m testing samples

and m training samples, and then lower-bound the number of samples that can form

a sample pair in the feature-space; that is, a pair consisting of a training sample (x, y)

and a testing sample (x′, y′) such that y = y′ and ‖Φ(x) − Φ(x′)‖H ≤ c. In contrast

to the finite-dimensional sample space, the feature space may be infinite dimensional,

and thus our decomposition may have an infinite number of “bricks.” In this case,

our multinomial random variable argument used in the proof of Lemma 6.7 breaks

down. Nevertheless, we are able to lower bound the number of sample pairs in the

feature space by the number of sample pairs in the sample space.

Define f−1(α) , max{β ≥ 0|f(β) ≤ α}. Since f(·) is continuous, f−1(α) > 0

for any α > 0. Now notice that by Lemma 6.5, if a testing sample x and a training

sample x′ belong to a “brick” with length of each side min(ρ/
√
n, f−1(c2)/

√
n) in the

sample space (see the proof of Lemma 6.7), ‖Φ(x)−Φ(x′)‖H ≤ c. Hence the number

of sample pairs in the feature space is lower bounded by the number of pairs of

samples that fall in the same brick in the sample space. We can cover X with finitely

many (denoted as Tc) such bricks since f−1(c2) > 0. Then, a similar argument as in

Lemma 6.7 shows that the ratio of samples that form pairs in a brick converges to 1

as m increases. Further notice that for M paired samples, the total testing error and
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hinge-loss are both upper-bounded by

cM‖w‖H +
M
∑

i=1

max
[

1 − yi(〈w, Φ(xi)〉 + b), 0
]

.

The rest of the proof is identical to Theorem 6.6. In particular, Inequality (6.19) still

holds. �

Notice that the condition in Theorem 6.8 is satisfied by most widely used kernels,

e.g., homogeneous polynominal kernels, and Gaussian RBF. This condition requires

that the feature mapping is “smooth” and hence preserves “locality” of the distur-

bance, i.e., small disturbance in the sample space guarantees the corresponding dis-

turbance in the feature space is also small. It is easy to construct non-smooth kernel

functions which do not generalize well. For example, consider the following kernel:

k(x,x′) =







1 x = x′;

0 x 6= x′.

A standard RKHS regularized SVM using this kernel leads to a decision function

sign(

m
∑

i=1

αik(x,xi) + b),

which equals sign(b) and provides no meaningful prediction if the testing sample x

is not one of the training samples. Hence as m increases, the testing error remains

as large as 50% regardless of the tradeoff parameter used in the algorithm, while the

training error can be made arbitrarily small by fine-tuning the parameter.

Convergence to Bayes Risk. Next we relate the results of Theorem 6.6 and

Theorem 6.8 to the standard consistency notion, i.e., convergence to the Bayes Risk

[142]. The key point of interest in our proof is the use of a robustness condition in

place of a VC-dimension or stability condition used in [142]. The proof in [142] has 4

main steps. They show: (i) there always exists a minimizer to the expected regularized

(kernel) hinge loss; (ii) the expected regularized hinge loss of the minimizer converges

to the expected hinge loss as the regularizer goes to zero; (iii) if a sequence of functions
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asymptotically have optimal expected hinge loss, then they also have optimal expected

loss; and (iv) the expected hinge loss of the minimizer of the regularized training

hinge loss concentrates around the empirical regularized hinge loss. In [142], this

final step, (iv), is accomplished using concentration inequalities derived from VC-

dimension considerations, and stability considerations.

Instead, we use our robustness-based results of Theorem 6.6 and Theorem 6.8 to

replace these approaches (Lemmas 3.21 and 3.22 in [142]) in proving step (iv), and

thus to establish the main result.

Recall that a classifier is a rule that assigns to every training set T = {xi, yi}m
i=1

a measurable function fT . The risk of a measurable function f : X → R is defined as

RP(f) , P({x, y : signf(x) 6= y}).

The smallest achievable risk

RP , inf{RP(f)|f : X → R measurable}

is called the Bayes Risk of P. A classifier is said to be strongly uniformly consistent

if for all distributions P on X × [−1,+1], the following holds almost surely.

lim
m→∞

RP(fT ) = RP.

Without loss of generality, we only consider the kernel version. Recall a definition

from [142].

Definition 6.3. Let C(X ) be the set of all continuous functions defined on X ,

equipped with a metric d(f1, f2) = supx∈X |f1(x) − f2(x)|. Consider the mapping

I : H → C(X ) defined by Iw , 〈w, Φ(·)〉. If I has a dense image, we call the kernel

universal.

Roughly speaking, if a kernel is universal, then the corresponding RKHS is rich

enough to satisfy the condition of step (ii) above.
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Theorem 6.9. If a kernel satisfies the condition of Theorem 6.8, and is universal,

then the Kernel SVM with c ↓ 0 sufficiently slowly is strongly uniformly consistent.

Proof. We first introduce some notation, largely following [142]. For some

probability measure µ and (w, b) ∈ H × R,

RL,µ((w, b)) , E(x,y)∼µ

{

max(0, 1 − y(〈w,Φ(x)〉 + b))
}

,

is the expected hinge-loss under probability µ, and

Rc
L,µ((w, b)) , c‖w‖H + E(x,y)∼µ

{

max(0, 1 − y(〈w,Φ(x)〉 + b))
}

is the regularized expected hinge-loss. Hence RL,P(·) and Rc
L,P(·) are the expected

hinge-loss and regularized expected hinge-loss under the generating probability P. If

µ is the empirical distribution ofm samples, we write RL,m(·) and Rc
L,m(·) respectively.

Notice Rc
L,m(·) is the objective function of the SVM. Denote its solution by fm,c, i.e.,

the classifier we get by running SVM with m samples and parameter c. Further

denote by fP,c ∈ H × R the minimizer of Rc
L,P(·). The existence of such a minimizer

is proved in Lemma 3.1 of [142] (step (i)). Let

RL,P , min
f measurable

Ex,y∼P

{

max
(

1 − yf(x), 0
)

}

,

i.e., the smallest achievable hinge-loss for all measurable functions.

The main content of our proof is to use Theorems 6.6 and 6.8 to prove step (iv)

in [142]. In particular, we show: if c ↓ 0 “slowly”, we have with probability one

lim
m→∞

RL,P(fm,c) = RL,P. (6.20)

To prove Equation (6.20), denote by w(f) and b(f) as the weight part and offset

part of any classifier f . Next, we bound the magnitude of fm,c by using Rc
L,m(fm,c) ≤

Rc
L,m(0, 0) ≤ 1, which leads to

‖w(fm,c)‖H ≤ 1/c
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and

|b(fm,c)| ≤ 2 +K‖w(fm,c)‖H ≤ 2 +K/c.

From Theorem 6.8 (note that the bound holds uniformly for all (w, b)), we have

RL,P(fm,c) ≤ γm,c[1 +K‖w(fm,c)‖H + |b|] +Rc
L,m(fm,c)

≤ γm,c[3 + 2K/c] +Rc
L,m(fm,c)

≤ γm,c[3 + 2K/c] +Rc
L,m(fP,c)

= RL,P + γm,c[3 + 2K/c] +
{

Rc
L,m(fP,c) −Rc

L,P(fP,c)
}

+
{

Rc
L,P(fP,c) −RL,P

}

= RL,P + γm,c[3 + 2K/c] +
{

RL,m(fP,c) −RL,P(fP,c)
}

+
{

Rc
L,P(fP,c) −RL,P

}

.

The last inequality holds because fm,c minimizes Rc
L,m.

It is known (Proposition 3.2 [142]) (step (ii)) that if the kernel used is rich enough,

i.e., universal, then

lim
c→0

Rc
L,P(fP, c) = RL,P.

For fixed c > 0, we have

lim
m→∞

RL,m(fP,c) = RL,P(fP,c),

almost surely due to the strong law of large numbers (notice that fP,c is a fixed

classifier), and γm,c[3 + 2K/c] → 0 almost surely. Notice that neither convergence

rate depends on P. Therefore, if c ↓ 0 sufficiently slowly,3 we have almost surely

lim
m→∞

RL,P(fm,c) ≤ RL,P.

Now, for any m and c, we have RL,P(fm,c) ≥ RL,P by definition. This implies that

Equation (6.20) holds almost surely, thus giving us step (iv).

3For example, we can take {c(m)} be the smallest number satisfying c(m) ≥ m−1/8 and Tc(m) ≤
m1/8/ log 2−1. Inequality (6.19) thus leads to

∑

∞

m=1 P (γm,c(m)/c(m) ≥ m1/4) ≤ +∞ which implies
uniform convergence of γm,c(m)/c(m).
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Finally, Proposition 3.3. of [142] shows step (iii), namely, approximating hinge

loss is sufficient to guarantee approximation of the Bayes loss. Thus Equation (6.20)

implies that the risk of the function fm,c converges to the Bayes risk. �

6.6. Chapter summary

This chapter considers the relationship between robust and regularized SVM clas-

sification. In particular, we prove that the standard norm-regularized SVM classifier

is in fact the solution to a robust classification setup, and thus known results about

regularized classifiers extend to robust classifiers. To the best of our knowledge, this

is the first explicit such link between regularization and robustness in pattern clas-

sification. This link suggests that norm-based regularization essentially builds in a

robustness to sample noise whose probability level sets are symmetric, and more-

over have the structure of the unit ball with respect to the dual of the regularizing

norm. It would be interesting to understand the performance gains possible when

the noise does not have such characteristics, and the robust setup is used in place of

regularization with appropriately defined uncertainty set.

Based on the robustness interpretation of the regularization term, we re-proved

the consistency of SVMs without direct appeal to notions of metric entropy, VC-

dimension, or stability. Our proof suggests that the ability to handle disturbance

is crucial for an algorithm to achieve good generalization ability. In particular, for

“smooth” feature mappings, the robustness to disturbance in the observation space

is guaranteed and hence SVMs achieve consistency. On the other-hand, certain “non-

smooth” feature mappings fail to be consistent simply because for such kernels the

robustness in the feature-space (guaranteed by the regularization process) does not

imply robustness in the observation space.
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6.7. An exact equivalence of robustness in sample space and

feature space

We show in this section that we can relate robustness in the feature space and

robustness in the sample space more directly for RBF kernels.

Theorem 6.10. Suppose the Kernel function has the form k(x,x′) = f(‖x−x′‖),
with f : R+ → R a decreasing function. Denote by H the RKHS space of k(·, ·) and

Φ(·) the corresponding feature mapping. Then we have for any x ∈ R
n, w ∈ H and

c > 0,

sup
‖δ‖≤c

〈w, Φ(x − δ)〉 = sup
‖δφ‖H≤

√
2f(0)−2f(c)

〈w, Φ(x) + δφ〉.

Proof. We show that the left-hand-side is not larger than the right-hand-side,

and vice versa.

First we show

sup
‖δ‖≤c

〈w, Φ(x − δ)〉 ≤ sup
‖δφ‖H≤

√
2f(0)−2f(c)

〈w, Φ(x) − δφ〉. (6.21)

We notice that for any ‖δ‖ ≤ c, we have

〈w, Φ(x − δ)〉

=
〈

w, Φ(x) +
(

Φ(x − δ) − Φ(x)
)

〉

=〈w, Φ(x)〉 + 〈w, Φ(x − δ) − Φ(x)〉

≤〈w, Φ(x)〉 + ‖w‖H · ‖Φ(x − δ) − Φ(x)‖H

≤〈w, Φ(x)〉 + ‖w‖H
√

2f(0) − 2f(c)

= sup
‖δφ‖H≤

√
2f(0)−2f(c)

〈w, Φ(x) − δφ〉.

Taking the supremum over δ establishes Inequality (6.21).
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Next, we show the opposite inequality,

sup
‖δ‖≤c

〈w, Φ(x − δ)〉 ≥ sup
‖δφ‖H≤

√
2f(0)−2f(c)

〈w, Φ(x) − δφ〉. (6.22)

If f(c) = f(0), then Inequality 6.22 holds trivially, hence we only consider the case

that f(c) < f(0). Notice that the inner product is a continuous function in H, hence

for any ǫ > 0, there exists a δ′
φ such that

〈w, Φ(x) − δ′
φ〉 > sup

‖δφ‖H≤
√

2f(0)−2f(c)

〈w, Φ(x) − δφ〉 − ǫ; ‖δ′
φ‖H <

√

2f(0) − 2f(c).

Recall that the RKHS space is the completion of the feature mapping, thus there

exists a sequence of {x′
i} ∈ R

n such that

Φ(x′
i) → Φ(x) − δ′

φ, (6.23)

which is equivalent to
(

Φ(x′
i) − Φ(x)

)

→ −δ′
φ.

This leads to

lim
i→∞

√

2f(0) − 2f(‖x′
i − x‖) = lim

i→∞
‖Φ(x′

i) − Φ(x)‖H

=‖δ′
φ‖H <

√

2f(0) − 2f(c).

Since f is decreasing, we conclude that ‖x′
i −x‖ ≤ c holds except for a finite number

of i. By (6.23) we have

〈w, Φ(x′
i)〉 → 〈w, Φ(x) − δ′

φ〉 > sup
‖δφ‖H≤

√
2f(0)−2f(c)

〈w, Φ(x) − δφ〉 − ǫ,

which means

sup
‖δ‖≤c

〈w, Φ(x − δ)〉 ≥ sup
‖δφ‖H≤

√
2f(0)−2f(c)

〈w, Φ(x) − δφ〉 − ǫ.

Since ǫ is arbitrary, we establish Inequality (6.22).

Combining Inequality (6.21) and Inequality (6.22) proves the theorem. �
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CHAPTER 7

Robust Regression and Lasso

Similarly to Chapter 6, in this chapter we consider the robustness property of another

widely used learning algorithm: Lasso. Part of the material in this chapter appears

in [165] and [167].

Lasso, or ℓ1 regularized least squares, has been explored extensively for its re-

markable sparsity properties. We show in this chapter that the solution to Lasso, in

addition to its sparsity, has robustness properties: it is the solution to a robust opti-

mization problem. This has two important consequences. First, robustness provides

a connection of the regularizer to a physical property, namely, protection from noise.

This allows a principled selection of the regularizer, and in particular, generalizations

of Lasso that also yield convex optimization problems are obtained by considering

different uncertainty sets.

Secondly, robustness can itself be used as an avenue to exploring different proper-

ties of the solution. In particular, it is shown that robustness of the solution explains

why the solution is sparse. The analysis as well as the specific results obtained differ

from standard sparsity results, providing different geometric intuition. Furthermore,

it is shown that the robust optimization formulation is related to kernel density es-

timation, and based on this approach, a proof that Lasso is consistent is given using

robustness directly. Finally, a theorem saying that Lasso is not stable, is presented.
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7.1. Introduction

In this chapter we consider linear regression problems with least-square error. The

problem is to find a vector x so that the ℓ2 norm of the residual b−Ax is minimized, for

a given matrix A ∈ Rn×m and vector b ∈ Rn. From a learning/regression perspective,

each row of A can be regarded as a training sample, and the corresponding element

of b as the target value of this observed sample. Each column of A corresponds to a

feature, and the objective is to find a set of weights so that the weighted sum of the

feature values approximates the target value.

It is well known that minimizing the squared error can lead to sensitive solutions

[66, 81, 88, 72]. Many regularization methods have been proposed to decrease this

sensitivity. Among them, Tikhonov regularization [147] and Lasso [146, 61] are two

widely known and cited algorithms. These methods minimize a weighted sum of the

residual norm and a certain regularization term, ‖x‖2 for Tikhonov regularization

and ‖x‖1 for Lasso. In addition to providing regularity, Lasso is also known for the

tendency to select sparse solutions. Recently this has attracted much attention for

its ability to reconstruct sparse solutions when sampling occurs far below the Nyquist

rate, and also for its ability to recover the sparsity pattern exactly with probability

one, asymptotically as the number of observations increases (there is an extensive

literature on this subject, and we refer the reader to [38, 71, 36, 151, 160] and

references therein).

The first result of this chapter is that the solution to Lasso has robustness proper-

ties: it is the solution to a robust optimization problem. In itself, this interpretation

of Lasso as the solution to a robust least squares problem is a development in line

with the results of [64]. There, the authors propose an alternative approach for re-

ducing sensitivity of linear regression by considering a robust version of the regression

problem, i.e., minimizing the worst-case residual for the observations under some un-

known but bounded disturbance. Most of the research in this area considers either

the case where the disturbance is row-wise uncoupled [137], or the case where the

Frobenius norm of the disturbance matrix is bounded [64].
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None of these robust optimization approaches produces a solution that has spar-

sity properties (in particular, the solution to Lasso does not solve any of these pre-

viously formulated robust optimization problems). In contrast, we investigate the

robust regression problem where the uncertainty set is defined by feature-wise con-

straints. Such a noise model is of interest when the values of the features are obtained

with some noisy pre-processing steps, and the magnitudes of such noises are known

or bounded. Another situation of interest is where the features are meaningfully cou-

pled. We define coupled and uncoupled disturbances and uncertainty sets precisely in

Section 7.2.1 below. Intuitively, a disturbance is feature-wise coupled if the variation

or disturbance across features satisfy joint constraints, and uncoupled otherwise.

Considering the solution to Lasso as the solution of a robust least squares prob-

lem has two important consequences. First, robustness provides a connection of the

regularizer to a physical property, namely, protection from noise. This allows more

principled selection of the regularizer, and in particular, considering different uncer-

tainty sets, we construct generalizations of Lasso that also yield convex optimization

problems.

Secondly, and perhaps most significantly, robustness is a strong property that

can itself be used as an avenue to investigating different properties of the solution.

We show that robustness of the solution can explain why the solution is sparse. The

analysis as well as the specific results we obtain differ from standard sparsity re-

sults, providing different geometric intuition, and extending beyond the least-squares

setting. Sparsity results obtained for Lasso ultimately depend on the fact that in-

troducing additional features incurs larger ℓ1-penalty than the least squares error

reduction. In contrast, we exploit the fact that a robust solution is, by definition, the

optimal solution under a worst-case perturbation. Our results show that, essentially,

a coefficient of the solution is nonzero if the corresponding feature is relevant under

all allowable perturbations. In addition to sparsity, we also use robustness directly

to prove consistency of Lasso.

We briefly list the main contributions as well as the organization of this chapter.
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• In Section 7.2, we formulate the robust regression problem with feature-wise

independent disturbances, and show that this formulation is equivalent to a

least-squares problem with a weighted ℓ1 norm regularization term. Hence,

we provide an interpretation of Lasso from a robustness perspective.

• We generalize the robust regression formulation to loss functions of arbitrary

norm in Section 7.3. We also consider uncertainty sets that require distur-

bances of different features to satisfy joint conditions. This can be used to

mitigate the conservativeness of the robust solution and to obtain solutions

with additional properties. We mention further examples of the flexibility

of the robust formulation, including uncertainty sets with both column-wise

and feature-wise disturbances, as well as a class of cardinality-constrained

robust-regression problems which smoothly interpolate between Lasso and

a ℓ∞-norm regularizer.

• In Section 7.4, we present new sparsity results for the robust regression

problem with feature-wise independent disturbances. This provides a new

robustness-based explanation to the sparsity of Lasso. Our approach gives

new analysis and also geometric intuition, and furthermore allows one to

obtain sparsity results for more general loss functions, beyond the squared

loss.

• Next, we relate Lasso to kernel density estimation in Section 7.5. This

allows us to re-prove consistency in a statistical learning setup, using the

new robustness tools and formulation we introduce. Along with our results

on sparsity, this illustrates the power of robustness in explaining and also

exploring different properties of the solution.

• Finally, we prove in Section 7.6 a “no-free-lunch” theorem, stating that an

algorithm that encourages sparsity cannot be stable.

Notation. We use capital letters to represent matrices, and boldface letters to

represent column vectors. Row vectors are represented as the transpose of column

vectors. For a vector z, zi denotes its ith element. Throughout the chapter, ai and
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r⊤j are used to denote the ith column and the jth row of the observation matrix A,

respectively. We use aij to denote the ij element of A, hence it is the jth element

of ri, and ith element of aj . For a convex function f(·), ∂f(z) represents any of its

sub-gradients evaluated at z. A vector with length n and each element equals 1 is

denoted as 1n.

7.2. Robust regression with feature-wise disturbance

In this section, we show that our robust regression formulation recovers Lasso as

a special case. We also derive probabilistic bounds that guide in the construction of

the uncertainty set.

The regression formulation we consider differs from the standard Lasso formu-

lation, as we minimize the norm of the error, rather than the squared norm. It is

known that these two coincide up to a change of the regularization coefficient. Yet

as we discuss above, our results lead to more flexible and potentially powerful robust

formulations, and give new insight into known results.

7.2.1. Formulation. Robust linear regression considers the case where the

observed matrix is corrupted by some potentially malicious disturbance. The objec-

tive is to find the optimal solution in the worst case sense. This is usually formulated

as the following min-max problem,

Robust Linear Regression:

min
x∈Rm

{

max
∆A∈U

‖b− (A+ ∆A)x‖2

}

,
(7.1)

where U is called the uncertainty set, or the set of admissible disturbances of the

matrix A. In this section, we consider the class of uncertainty sets that bound the

norm of the disturbance to each feature, without placing any joint requirements across

feature disturbances. That is, we consider the class of uncertainty sets:

U ,

{

(δ1, · · · , δm)
∣

∣

∣
‖δi‖2 ≤ ci, i = 1, · · · , m

}

, (7.2)
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for given ci ≥ 0. We call these uncertainty sets feature-wise uncoupled, in contrast to

coupled uncertainty sets that require disturbances of different features to satisfy some

joint constraints (we discuss these extensively below, and their significance). While

the inner maximization problem of (7.1) is nonconvex, we show in the next theorem

that uncoupled norm-bounded uncertainty sets lead to an easily solvable optimization

problem.

Theorem 7.1. The robust regression problem (7.1) with uncertainty set of the

form (7.2) is equivalent to the following ℓ1 regularized regression problem:

min
x∈Rm

{

‖b− Ax‖2 +

m
∑

i=1

ci|xi|
}

. (7.3)

Proof. Fix x∗. We prove that max∆A∈U ‖b − (A + ∆A)x∗‖2 = ‖b − Ax∗‖2 +
∑m

i=1 ci|x∗i |.
The left hand side can be written as

max
∆A∈U

‖b− (A+ ∆A)x∗‖2

= max
(δ1,··· ,δm)|‖δi‖2≤ci

∥

∥

∥b−
(

A + (δ1, · · · , δm)
)

x∗
∥

∥

∥

2

= max
(δ1,··· ,δm)|‖δi‖2≤ci

‖b −Ax∗ −
m
∑

i=1

x∗i δi‖2

≤ max
(δ1,··· ,δm)|‖δi‖2≤ci

∥

∥

∥
b− Ax∗

∥

∥

∥

2
+

m
∑

i=1

‖x∗i δi‖2

≤‖b−Ax∗‖2 +

m
∑

i=1

|x∗i |ci.

(7.4)

Now, let

u ,







b−Ax∗

‖b−Ax∗‖2
if Ax∗ 6= b,

any vector with unit ℓ2 norm otherwise;

and let

δ∗
i , −cisgn(x∗i )u.
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Observe that ‖δ∗
i ‖2 ≤ ci, hence ∆A∗ , (δ∗

1, · · · , δ∗
m) ∈ U . Notice that

max
∆A∈U

‖b− (A+ ∆A)x∗‖2

≥‖b− (A+ ∆A∗)x∗‖2

=
∥

∥

∥
b −

(

A+ (δ∗
1, · · · , δ∗

m)
)

x∗
∥

∥

∥

2

=
∥

∥

∥
(b −Ax∗) −

m
∑

i=1

(

− x∗i cisgn(x∗i )u
)

∥

∥

∥

2

=
∥

∥

∥
(b −Ax∗) + (

m
∑

i=1

ci|x∗i |)u
∥

∥

∥

2

=‖b− Ax∗‖2 +

m
∑

i=1

ci|x∗i |.

(7.5)

The last equation holds from the definition of u.

Combining Inequalities (7.4) and (7.5), establishes the equality max∆A∈U ‖b −
(A + ∆A)x∗‖2 = ‖b − Ax∗‖2 +

∑m
i=1 ci|x∗i | for any x∗. Minimizing over x on both

sides proves the theorem. �

Taking ci = c and normalizing ai for all i, Problem (7.3) recovers the well-known

Lasso [146, 61].

7.2.2. Uncertainty set construction. The selection of an uncertainty set

U in Robust Optimization is of fundamental importance. One way this can be done is

as an approximation of so-called chance constraints, where a deterministic constraint

is replaced by the requirement that a constraint is satisfied with at least some prob-

ability. These can be formulated when we know the distribution exactly, or when

we have only partial information of the uncertainty, such as, e.g., first and second

moments. This chance-constraint formulation is particularly important when the

distribution has large support, rendering the naive robust optimization formulation

overly pessimistic.
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For confidence level η, the chance constraint formulation becomes:

minimize: t

Subject to: Pr(‖b− (A+ ∆A)x‖2 ≤ t) ≥ 1 − η.

Here, x and t are the decision variables.

Constructing the uncertainty set for feature i can be done quickly via line search

and bisection, as long as we can evaluate Pr(‖ai‖2 ≥ c). If we know the distribution

exactly (i.e., if we have complete probabilistic information), this can be quickly done

via sampling. Another setting of interest is when we have access only to some moments

of the distribution of the uncertainty, e.g., the mean and variance. In this setting,

the uncertainty sets are constructed via a bisection procedure which evaluates the

worst-case probability over all distributions with given mean and variance. We do

this using a tight bound on the probability of an event, given the first two moments.

In the scalar case, the Markov Inequality provides such a bound. The next theo-

rem is a generalization of the Markov inequality to Rn, which bounds the probability

where the disturbance on a given feature is more than ci, if only the first and second

moment of the random variable are known. We refer the reader to [20] for similar

results using semi-definite optimization.

Theorem 7.2. Consider a random vector v ∈ Rn, such that E(v) = a, and

E(vv⊤) = Σ, Σ � 0. Then we have

Pr{‖v‖2 ≥ ci} ≤























































minP,q,r,λ Trace(ΣP ) + 2q⊤a + r

subject to:





P q

q⊤ r



 � 0





I(m) 0

0⊤ −c2i



 � λ





P q

q⊤ r − 1





λ ≥ 0.

(7.6)
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Proof. Consider a function f(·) parameterized by P,q, r defined as f(v) =

v⊤Pv + 2q⊤v + r. Notice E
(

f(v)
)

= Trace(ΣP ) + 2q⊤a + r. Now we show that

f(v) ≥ 1‖v‖≥ci
for all P,q, r satisfying the constraints in (7.6).

To show f(v) ≥ 1‖v‖2≥ci
, we need to establish (i) f(v) ≥ 0 for all v, and (ii)

f(v) ≥ 1 when ‖v‖2 ≥ ci. Notice that

f(v) =





v

1





⊤



P q

q⊤ r









v

1



 ,

hence (i) holds because




P q

q⊤ r



 � 0.

To establish condition (ii), it suffices to show v⊤v ≥ c2i implies v⊤Pv+2q⊤v+r ≥
1, which is equivalent to show

{

v
∣

∣v⊤Pv + 2q⊤v + r − 1 ≤ 0
}

⊆
{

v
∣

∣v⊤v ≤ c2i
}

.

Noticing this is an ellipsoid-containment condition, by S-Procedure, we see that is

equivalent to the condition that there exists a λ ≥ 0 such that




I(m) 0

0⊤ −c2i



 � λ





P q

q⊤ r − 1



 .

Hence we have f(v) ≥ 1‖v‖2≥ci
, taking expectation over both side that notice that

the expectation of a indicator function is the probability, we establish the theorem. �

The optimization problem (7.6) is a semi-definite programming, which can be

solved in polynomial time. Furthermore, if we replace E(vv⊤) = Σ by an inequality

E(vv⊤) ≤ Σ, the uniform bound still holds. Thus, even if our estimate of the variance

is not precise, we are still able to bound the probability of having “large” disturbance.

7.3. General uncertainty sets

One reason the robust optimization formulation is powerful, is that having pro-

vided the connection to Lasso, it then allows the opportunity to generalize to efficient

“Lasso-like” regularization algorithms.

148



7.3 GENERAL UNCERTAINTY SETS

In this section, we make several generalizations of the robust formulation (7.1)

and derive counterparts of Theorem 7.1. In Section 7.3.1 we generalize the robust

formulation in two ways: (a) to the case of arbitrary norm; and (b) to the case of

coupled uncertainty sets. In Section 7.3.2 we investigate a class of uncertainty sets

inspired by [22], that control the cardinality of perturbed features. The uncertainty

sets are non-convex, but nevertheless we show that the resulting robust regression

problem is still tractable. In the last subsection, we consider a disturbance model

where both column-wise disturbance and row-wise disturbance exist simultaneously.

7.3.1. Arbitrary norm and coupled disturbance. We first consider the

case of an arbitrary norm ‖ · ‖a of Rn as a cost function rather than the squared loss.

The proof of the next theorem is identical to that of Theorem 7.1, with only the ℓ2

norm changed to ‖ · ‖a.

Theorem 7.3. The robust regression problem

min
x∈Rm

{

max
∆A∈Ua

‖b− (A+ ∆A)x‖a

}

; Ua ,

{

(δ1, · · · , δm)
∣

∣

∣
‖δi‖a ≤ ci, i = 1, · · · , m

}

;

is equivalent to the following regularized regression problem

min
x∈Rm

{

‖b− Ax‖a +
m
∑

i=1

ci|xi|
}

.

We next remove the assumption that the disturbances are feature-wise uncoupled.

Allowing coupled uncertainty sets is useful when we have some additional information

about potential noise in the problem, and we want to limit the conservativeness of

the worst-case formulation. Consider the following uncertainty set:

U ′ ,
{

(δ1, · · · , δm)
∣

∣fj(‖δ1‖a, · · · , ‖δm‖a) ≤ 0; j = 1, · · · , k
}

,

where fj(·) are convex functions. Note that both k and fj can be arbitrary, hence

this is a very general formulation, and provides us with significant flexibility in de-

signing uncertainty sets and equivalently new regression algorithms (see for example
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Corollary 7.5 and 7.6). The following theorem converts this formulation to tractable

optimization problems.

Theorem 7.4. Assume that the set

Z , {z ∈ R
m|fj(z) ≤ 0, j = 1, · · · , k; z ≥ 0}

has non-empty relative interior. Then the robust regression problem

min
x∈Rm

{

max
∆A∈U ′

‖b − (A+ ∆A)x‖a

}

is equivalent to the following regularized regression problem

min
λ∈Rk

+,κ∈Rm
+ ,x∈Rm

{

‖b− Ax‖a + v(λ,κ,x)
}

;

where: v(λ,κ,x) , max
c∈Rm

[

(κ + |x|)⊤c −
k
∑

j=1

λjfj(c)
]

(7.7)

Proof. Fix a solution x∗. Note that

U ′ = {(δ1, · · · , δm)|c ∈ Z; ‖δi‖a ≤ ci, i = 1, · · · , m}.

Hence we have:

max
∆A∈U ′

‖b− (A+ ∆A)x∗‖a

= max
c∈Z

{

max
‖δi‖a≤ci, i=1,··· ,m

‖b−
(

A + (δ1, · · · , δm)
)

x∗‖a

}

= max
c∈Z

{

‖b− Ax∗‖a +
m
∑

i=1

ci|x∗i |
}

=‖b− Ax∗‖a + max
c∈Z

{

|x∗|⊤c
}

.

(7.8)

The second equality follows from Theorem 7.3.

Now we need to evaluate maxc∈Z{|x∗|⊤c}, which equals to −minc∈Z{−|x∗|⊤c}.
Hence we are minimizing a linear function subject to a set of convex constraints.

Furthermore, by assumption the Slater’s condition holds. Hence the duality gap of
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minc∈Z{−|x∗|⊤c} is zero. A standard duality analysis shows that

max
c∈Z

{

|x∗|⊤c
}

= min
λ∈Rk

+,κ∈Rm
+

v(λ,κ,x∗). (7.9)

We establish the theorem by substituting Equation (7.9) back into Equation (7.8)

and taking minimum over x on both sides. �

Remark: Problem (7.7) is efficiently solvable. Denote zc(λ,κ,x) ,

[

(κ +

|x|)⊤c −∑k
j=1 λjfj(c)

]

. This is a convex function of (λ,κ,x), and the sub-gradient

of zc(·) can be computed easily for any c. The function v(λ,κ,x) is the maximum of

a set of convex functions, zc(·) , hence is convex, and satisfies

∂v(λ∗,κ∗,x∗) = ∂zc0(λ∗,κ∗,x∗),

where c0 maximizes
[

(κ∗ + |x|∗)⊤c −∑k
j=1 λ

∗
jfj(c)

]

. We can efficiently evaluate c0

due to convexity of fj(·), and hence we can efficiently evaluate the sub-gradient of

v(·).
The next two corollaries are a direct application of Theorem 7.4.

Corollary 7.5. Suppose U ′ =
{

(δ1, · · · , δm)
∣

∣

∣

∥

∥‖δ1‖a, · · · , ‖δm‖a

∥

∥

s
≤ l;

}

for a

symmetric norm ‖ · ‖s, then the resulting regularized regression problem is

min
x∈Rm

{

‖b− Ax‖a + l‖x‖∗s
}

; where ‖ · ‖∗s is the dual norm of ‖ · ‖s.

This corollary interprets arbitrary norm-based regularizers from a robust regres-

sion perspective. For example, it is straightforward to show that if we take both ‖ ·‖α

and ‖ · ‖s as the Euclidean norm, then U ′ is the set of matrices with their Frobenius

norms bounded, and Corollary 7.5 reduces to the robust formulation introduced by

[64].
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Corollary 7.6. Suppose U ′ =
{

(δ1, · · · , δm)
∣

∣

∣
∃c ≥ 0 : Tc ≤ s; ‖δj‖a ≤ cj ;

}

,

then the resulting regularized regression problem is

Minimize: ‖b −Ax‖a + s⊤λ

Subject to: x ≤ T⊤λ

− x ≤ T⊤λ

λ ≥ 0.

Unlike previous results, this corollary considers general polytope uncertainty sets.

Advantages of such sets include the linearity of the final formulation. Moreover, the

modeling power is considerable, as many interesting disturbances can be modeled in

this way.

7.3.2. A class of non-convex uncertainty sets. Theorem 7.4 deals with

convex uncertainty sets. Next we consider a class of non-convex but still tractable

uncertainty sets, which can be regarded as interpolations between the uncorrelated

case and the fully correlated case. To be specific, we consider the case that no more

than a given number of features are disturbed. This formulation is inspired by [22]

in which a similar uncertainty set for robust LP is considered. Let

Zt , {z ∈ R
m
∣

∣∃S ⊆ {1, · · · , m}, |S| = ⌊t⌋, ∀i ∈ S, 0 ≤ zi ≤ ci;

∃j ∈ {1, · · · , m}\S; 0 ≤ zj ≤ (t− ⌊t⌋)cj ; ∀k 6∈ S ∪ {j}, zk = 0}.

Ut ,
{(

δ1, · · · , δm

)∣

∣∃z ∈ Zt, ‖δi‖a = zi.
}

Here, ⌊t⌋ stands for the largest integer not larger than t. Ut represents an uncertainty

set, such that the deviation of each feature is bounded by ci and only t features are

allowed to deviate. For t being a non-integer, it is interpreted as to allow ⌊t⌋ features

to completely deviate, and one other feature to partially deviate. Neither Zt nor Ut is

a convex set. Nevertheless, the robust regression problem with Ut as the uncertainty

set is still tractable because it is equivalent to a robust regression problem with the
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following polyhedral uncertainty set:

Z̃t ,

{

z ∈ R
m
∣

∣0 ≤ zi ≤ ci;

m
∑

i=1

zi/ci ≤ t

}

;

Ũt ,

{

(

δ1, · · · , δm

)∣

∣∃z ∈ Z̃t, ‖δi‖a = zi.
}

.

Note that Ũt itself has an intuitively appealing interpretation as the set of disturbances

such that besides the norm bound for disturbance on each feature, there exists an

extra constraint which bounds the (weighted) total disturbance.

Proposition 7.7. For any x∗, and 1 ≤ t ≤ m, the following holds

max
∆A∈Ut

‖b− (A+ ∆A)x∗‖a ≡ max
∆A∈Ũt

‖b − (A+ ∆A)x∗‖a

Proof. Observe that Zt ⊆ Z̃t and Ut ⊆ Ũt, hence

max
∆A∈Ut

‖b− (A+ ∆A)x∗‖a ≤ max
∆A∈Ũt

‖b− (A+ ∆A)x∗‖a.

To prove the proposition, it suffices to show that

arg max
∆A∈Ũt

‖b− (A+ ∆A)x∗‖a ∈ Ut,

which is equivalent to show that

arg max
z∈Z̃t

{

|x∗|⊤z
}

∈ Zt.

The left-hand side is the solution for the following linear programming

Maximize: |x∗|⊤z

Subject to: 0 ≤ zi ≤ ci

m
∑

i=1

zi/ci ≤ t.

(7.10)
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Let vi , zi/ci, LP (7.10) is equivalent to

Maximize:
m
∑

i=1

ci|x∗i |vi

Subject to: 0 ≤ vi ≤ 1

m
∑

i=1

vi ≤ t.

Observe for this LP, there is an optimal solution v∗ which set value 1 for ⌊t⌋ variables,

and set t − ⌊t⌋ on another variable. It is easy to check that the corresponding z∗ ∈
Zt. �

Combining Proposition 7.7 and Theorem 7.4 leads to the following corollary.

Corollary 7.8. The robust regression problem

min
x∈Rm

{

max
∆A∈Ut

‖b− (A+ ∆A)x‖a

}

;

is equivalent to the following regularized regression problem

Minimize: ‖b− Ax‖a +
m
∑

i=1

ciλi + tξ

Subject to: xi − λi − ξ/ci ≤ 0, i = 1, · · · , m

− xi − λi − ξ/ci ≤ 0, i = 1, · · · , m

λi ≥ 0, i = 1, · · · , m

ξ ≥ 0.

If all the ci are same, the robust regression with Um (a non-correlated set) is

Lasso, while the robust regression with U1 (a fully correlated set) leads to a ℓ∞ norm

regularization, which is known to be non-sparse. Our empirical results will show that

the number of allowable deviations (i.e., the correlation level of the uncertainty set)

plays an important role in controlling the sparsity level.
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7.3.3. Row and column uncertainty case. Next we consider a case where

we have both row-wise uncertainty and column-wise uncertainty. One motivation

to consider this is the well-known elastic net method ([181]) known to sometimes

outperform Lasso, in addition to possessing other properties of interest.

Combing row-wise and column-wise uncertainty leads to the following robust

optimization problem

min
x

max
∆A1∈U1,∆A2∈U2

‖b− (A+ ∆A1 + ∆A2)x‖2,

where: U1 =
{

(l1, · · · , ln)⊤
∣

∣l⊤j Σ−1
j lj ≤ 1, i = 1, · · · , n

}

;

U2 =
{

(δ1, · · · , δm)
∣

∣

∣
‖δi‖2 ≤ ci, i = 1, · · · , m

}

;

(7.11)

for positive definite matrices Σj and positive scalars ci.

Theorem 7.9. Denote the jth row of A as r⊤j . Then given x, the following holds

max
∆A1∈U1,∆A2∈U2

‖b−(A+∆A1+∆A2)x‖2 =

√

√

√

√

n
∑

j=1

(

|bj − r⊤j x| + ‖Σ1/2
j x‖2

)2

+

m
∑

i=1

ci|xi|,

and moreover, the robust regression problem (7.11) is equivalent to the following Sec-

ond Order Cone Program on (x, z, t, w):

Minimize: w +
m
∑

i=1

cizi

Subject to: x ≤ z;

− x ≤ z

‖Σ1/2
j x‖2 ≤ tj − bj + r⊤j x; j = 1, · · · , n.

‖Σ1/2
j x‖2 ≤ tj + bj − r⊤j x; j = 1, · · · , n.

‖t‖2 ≤ w.
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Proof. To prove the theorem, it suffices to show that for given x, the following

holds

max
∆A1∈U1,∆A2∈U2

‖b−(A+∆A1+∆A2)x‖2 =

√

√

√

√

n
∑

j=1

(

|bj − r⊤j x| + ‖Σ1/2
j x‖2

)2

+
m
∑

i=1

ci|xi|.

Notice that

max
∆A1∈U1,∆A2∈U2

‖b− (A+ ∆A1 + ∆A2)x‖2

= max
∆A1∈U1

{ max
∆A2∈U2

‖b − (A + ∆A1 + ∆A2)x‖2}

= max
∆A1∈U1

{‖b− (A+ ∆A1)x‖2 +

m
∑

i=1

ci|xi|}

= max
∆A1∈U1

(‖b− (A+ ∆A1)x‖2) +
m
∑

i=1

ci|xi|.

Furthermore, the following equation proves the theorem.

max
∆A1∈U1

(‖b− (A + ∆A1)x‖2)

=

√

√

√

√

n
∑

j=1

max
ljΣ

−1
j lj≤1

(bj − r⊤j x − l⊤j x)2

=

√

√

√

√

n
∑

j=1

(

|bj − r⊤j x| + ‖Σ1/2
j x‖2

)2

.

The last equality holds because

min
ljΣ

−1
j lj

l⊤j x = −‖Σ1/2
j x‖2; & max

ljΣ
−1
j lj

l⊤j x = ‖Σ1/2
j x‖2.

�

7.4. Sparsity

In this section, we investigate the sparsity properties of robust regression (7.1),

and equivalently Lasso. Lasso’s ability to recover sparse solutions has been extensively

studied and discussed (cf [38, 71, 36, 151]). There are generally two approaches.
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The first approach investigates the problem from a statistical perspective. That is,

it assumes that the observations are generated by a (sparse) linear combination of

the features, and investigates the asymptotic or probabilistic conditions required for

Lasso to correctly recover the generative model. The second approach treats the

problem from an optimization perspective, and studies under what conditions a pair

(A, b) defines a problem with sparse solutions (e.g., [152]).

We follow the second approach and do not assume a generative model. Instead, we

consider the conditions that lead to a feature receiving zero weight. Our first result

paves the way for the remainder of this section. We show in Theorem 7.10 that,

essentially, a feature receives no weight (namely, x∗i = 0) if there exists an allowable

perturbation of that feature which makes it irrelevant. This result holds for general

norm loss functions, but in the ℓ2 case, we obtain further geometric results. For

instance, using Theorem 7.10, we show, among other results, that “nearly” orthogonal

features get zero weight (Theorem 7.11).

Substantial research regarding sparsity properties of Lasso can be found in the

literature (cf [38, 71, 36, 151, 78, 42, 104, 58] and many others). In particular,

similar results as in point (a), that rely on an incoherence property, have been estab-

lished in, e.g., [152], and are used as standard tools in investigating sparsity of Lasso

from the statistical perspective. However, a proof exploiting robustness and proper-

ties of the uncertainty is novel. Indeed, such a proof shows a fundamental connection

between robustness and sparsity, and implies that robustifying w.r.t. a feature-wise

independent uncertainty set might be a plausible way to achieve sparsity for other

problems.

To state the main theorem of this section, from which the other results derive, we

introduce some notation to facilitate the discussion. Given a feature-wise uncoupled

uncertainty set, U , an index subset I ⊆ {1, . . . , n}, and any ∆A ∈ U , let ∆AI

denote the element of U that equals ∆A on each feature indexed by i ∈ I, and is

zero elsewhere. Then, we can write any element ∆A ∈ U as ∆AI + ∆AIc

(where

Ic = {1, . . . , n} \ I). Then we have the following theorem. We note that the result
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holds for any norm loss function, but we state and prove it for the ℓ2 norm, since the

proof for other norms is identical.

Theorem 7.10. The robust regression problem

min
x∈Rm

{

max
∆A∈U

‖b − (A + ∆A)x‖2

}

,

has a solution supported on an index set I if there exists some perturbation ∆ÃIc ∈ U
of the features in Ic, such that the robust regression problem

min
x∈Rm

{

max
∆ÃI∈UI

‖b− (A + ∆ÃIc

+ ∆ÃI)x‖2

}

,

has a solution supported on the set I.

Thus, a robust regression has an optimal solution supported on a set I, if any

perturbation of the features corresponding to the complement of I makes them irrel-

evant. Theorem 7.10 is a special case of the following theorem with cj = 0 for all

j 6∈ I:

Theorem 7.10’. Let x∗ be an optimal solution of the robust regression problem:

min
x∈Rm

{

max
∆A∈U

‖b − (A + ∆A)x‖2

}

,

and let I ⊆ {1, · · · , m} be such that x∗j = 0 ∀ j 6∈ I. Let

Ũ ,

{

(δ1, · · · , δm)
∣

∣

∣
‖δi‖2 ≤ ci, i ∈ I; ‖δj‖2 ≤ cj + lj, j 6∈ I

}

.

Then, x∗ is an optimal solution of

min
x∈Rm

{

max
∆A∈Ũ

‖b − (Ã + ∆A)x‖2

}

,

for any Ã that satisfies ‖ãj − aj‖ ≤ lj for j 6∈ I, and ãi = ai for i ∈ I.
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Proof. Notice that

max
∆A∈Ũ

∥

∥

∥
b− (A+ ∆A)x∗

∥

∥

∥

2

= max
∆A∈U

∥

∥

∥
b− (A+ ∆A)x∗

∥

∥

∥

2

= max
∆A∈U

∥

∥

∥
b− (Ã+ ∆A)x∗

∥

∥

∥

2
.

These equalities hold because for j 6∈ I, x∗j = 0, hence the jth column of both Ã and

∆A has no effect on the residual.

For an arbitrary x′, we have

max
∆A∈Ũ

∥

∥

∥
b − (A + ∆A)x′

∥

∥

∥

2

≥ max
∆A∈U

∥

∥

∥
b − (Ã + ∆A)x′

∥

∥

∥

2
.

This is because, ‖aj − ãj‖ ≤ lj for j 6∈ I, and ai = ãi for i ∈ I. Hence, we have

{

A+ ∆A
∣

∣∆A ∈ U
}

⊆
{

Ã+ ∆A
∣

∣∆A ∈ Ũ
}

.

Finally, notice that

max
∆A∈U

∥

∥

∥
b− (A+ ∆A)x∗

∥

∥

∥

2
≤ max

∆A∈U

∥

∥

∥
b− (A+ ∆A)x′

∥

∥

∥

2
.

Therefore we have

max
∆A∈Ũ

∥

∥

∥
b− (Ã+ ∆A)x∗

∥

∥

∥

2
≤ max

∆A∈Ũ

∥

∥

∥
b− (Ã+ ∆A)x′

∥

∥

∥

2
.

Since this holds for arbitrary x′, we establish the theorem. �

We can interpret the result of this theorem by considering a generative model1

b =
∑

i∈I wiai + ξ̃ where I ⊆ {1 · · · , m} and ξ̃ is a random variable, i.e., b is generated

by features belonging to I. In this case, for a feature j 6∈ I, Lasso would assign zero

weight as long as there exists a perturbed value of this feature, such that the optimal

regression assigned it zero weight.

1While we are not assuming generative models to establish the results, it is still interesting to see
how these results can help in a generative model setup.
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When we consider ℓ2 loss, we can translate the condition of a feature being

“irrelevant” into a geometric condition, namely, orthogonality. We now use the result

of Theorem 7.10 to show that robust regression has a sparse solution as long as an

incoherence-type property is satisfied. This result is more in line with the traditional

sparsity results, but we note that the geometric reasoning is different, and ours is

based on robustness. Indeed, we show that a feature receives zero weight, if it is

“nearly” (i.e., within an allowable perturbation) orthogonal to the signal, and all

relevant features.

Theorem 7.11. Let ci = c for all i and consider ℓ2 loss. If there exists I ⊂
{1, · · · , m} such that for all v ∈ span

(

{ai, i ∈ I}⋃{b}
)

, ‖v‖ = 1, we have v⊤aj ≤ c,

∀j 6∈ I, then any optimal solution x∗ satisfies x∗j = 0, ∀j 6∈ I.

Proof. For j 6∈ I, let a=
j denote the projection of aj onto the span of {ai, i ∈

I}⋃{b}, and let a+
j , aj − a=

j . Thus, we have ‖a=
j ‖ ≤ c. Let Â be such that

âi =







ai i ∈ I;

a+
i i 6∈ I.

Now let

Û , {(δ1, · · · , δm)|‖δi‖2 ≤ c, i ∈ I; ‖δj‖2 = 0, j 6∈ I}.

Consider the robust regression problem minx̂

{

max∆A∈Û
∥

∥b− (Â+ ∆A)x̂
∥

∥

2

}

, which

is equivalent to minx̂

{

∥

∥b − Âx̂
∥

∥

2
+
∑

i∈I c|x̂i|
}

. Note that the âj are orthogonal to

the span of {âi, i ∈ I}⋃{b}. Hence for any given x̂, by changing x̂j to zero for all

j 6∈ I, the minimizing objective does not increase.

Since ‖â − âj‖ = ‖a=
j ‖ ≤ c ∀j 6∈ I, (and recall that U = {(δ1, · · · , δm)|‖δi‖2 ≤

c, ∀i}) applying Theorem 7.10 concludes the proof. �

7.5. Density estimation and consistency

In this section, we investigate the robust linear regression formulation from a

statistical perspective and rederive using only robustness properties that Lasso is
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asymptotically consistent. The basic idea of the consistency proof is as follows. We

show that the robust optimization formulation can be seen to be the maximum error

w.r.t. a class of probability measures. This class includes a kernel density estimator,

and using this, we show that Lasso is consistent.

7.5.1. Robust optimization, worst-case expected utility and kernel den-

sity estimator. In this subsection, we present some notions and intermediate re-

sults. In particular, we link a robust optimization formulation with a worst expected

utility (w.r.t. a class of probability measures); we then briefly recall the definition of

a kernel density estimator. Such results will be used in establishing the consistency

of Lasso, as well as providing some additional insights on robust optimization.

We recall a result on the equivalence between a robust optimization formulation

and a worst-case expected utility from Chapter 2:

Proposition 7.12. Given a function g : Rm+1 → R and Borel sets Z1, · · · ,Zn ⊆
Rm+1, let

Pn , {µ ∈ P|∀S ⊆ {1, · · · , n} : µ(
⋃

i∈S

Zi) ≥ |S|/n}.

The following holds

1

n

n
∑

i=1

sup
(ri,bi)∈Zi

h(ri, bi) = sup
µ∈Pn

∫

Rm+1

h(r, b)dµ(r, b).

This leads to the following corollary for Lasso, which states that for a given x,

the robust regression loss over the training data is equal to the worst-case expected

generalization error.

Corollary 7.13. Given b ∈ Rn, A ∈ Rn×m, the following equation holds for

any x ∈ Rm,

‖b− Ax‖2 +
√
ncn‖x‖1 +

√
ncn = sup

µ∈P̂(n)

√

n

∫

Rm+1

(b′ − r′⊤x)2dµ(r′, b′). (7.12)
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Here2,

P̂(n) ,
⋃

‖σ‖2≤
√

ncn; ∀i:‖δi‖2≤
√

ncn

Pn(A,∆,b,σ);

Pn(A,∆,b,σ) , {µ ∈ P|Zi = [bi − σi, bi + σi] ×
m
∏

j=1

[aij − δij , aij + δij ];

∀S ⊆ {1, · · · , n} : µ(
⋃

i∈S

Zi) ≥ |S|/n}.

Remark 7.1. Before proving Corollary 7.13, we briefly explain to avoid possible

confusion. Equation (7.12) is a non-probabilistic equality. That is, it holds without

any assumption (e.g., i.i.d. or generated by certain distributions) on b and A. And

it does not involve any probabilistic operation such as taking expectation on the

left-hand-side, instead, it is an equivalence relationship which hold for an arbitrary

set of samples. Note that the right-hand-side also depends on the samples since

P̂(n) is defined through A and b. Indeed, P̂(n) represents the union of classes of

distributions Pn(A,∆,b,σ) such that the norm of each column of ∆ is bounded,

where Pn(A,∆,b,σ) is the set of distributions corresponds to (see Proposition 7.12)

disturbance in hyper-rectangle Borel sets Z1, · · · ,Zn centered at (bi, r
⊤
i ) with lengths

(2σi, 2δi1, · · · , 2δim).

Proof. The right-hand-side of Equation (7.12) equals

sup
‖σ‖2≤

√
ncn; ∀i:‖δi‖2≤

√
ncn

{

sup
µ∈Pn(A,∆,b,σ)

√

n

∫

Rm+1

(b′ − r′⊤x)2dµ(r′, b′)
}

.

2Recall that aij is the jth element of ri
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Notice that by the equivalence to robust formulation, the left-hand-side equals to

max
‖σ‖2≤

√
ncn;∀i:‖δi‖2≤

√
ncn

∥

∥

∥
b + σ −

(

A + [δ1, · · · , δm]
)

x
∥

∥

∥

2

= sup
‖σ‖2≤

√
ncn;∀i:‖δi‖2≤

√
ncn







sup
(b̂i,r̂i)∈[bi−σi,bi+σi]×

Qm
j=1[aij−δij ,aij+δij ]

√

√

√

√

n
∑

i=1

(b̂i − r̂⊤i x)2







= sup
‖σ‖2≤

√
ncn;∀i:‖δi‖2≤

√
ncn

√

√

√

√

n
∑

i=1

sup
(b̂i,r̂i)∈[bi−σi,bi+σi]×

Qm
j=1[aij−δij ,aij+δij ]

(b̂i − r̂⊤i x)2.

Furthermore, applying Proposition 7.12 yields

√

√

√

√

n
∑

i=1

sup
(b̂i,r̂i)∈[bi−σi,bi+σi]×

Qm
j=1[aij−δij ,aij+δij ]

(b̂i − r̂⊤i x)2

=

√

sup
µ∈Pn(A,∆,b,σ)

n

∫

Rm+1

(b′ − r′⊤x)2dµ(r′, b′)

= sup
µ∈Pn(A,∆,b,σ)

√

n

∫

Rm+1

(b′ − r′⊤x)2dµ(r′, b′),

which proves the corollary. �

We will later show that the set P̂n includes a kernel density estimator. Hence we

recall here its definition. The kernel density estimator for a density ĥ in Rd, originally

proposed in [127, 118], is defined by

hn(x) = (ncdn)−1

n
∑

i=1

K

(

x − x̂i

cn

)

,

where {cn} is a sequence of positive numbers, x̂i are i.i.d. samples generated according

to f̂ , and K is a Borel measurable function (kernel) satisfying K ≥ 0,
∫

K = 1. See

[53, 135] and the reference therein for detailed discussions. Figure 7.1 illustrates a

kernel density estimator using Gaussian kernel for a randomly generated sample-set.

A celebrated property of a kernel density estimator is that it converges in L1 to ĥ

when cn ↓ 0 and ncdn ↑ ∞ [53].
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Figure 7.1. Illustration of a Kernel Density Estimator.

7.5.2. Consistency of Lasso. We restrict our discussion to the case where

the magnitude of the allowable uncertainty for all features equals c, (i.e., the standard

Lasso) and establish the statistical consistency of Lasso from a distributional robust-

ness argument. Generalization to the non-uniform case is straightforward. Through-

out, we use cn to represent c where there are n samples (we take cn to zero).

Recall the standard generative model in statistical learning: let P be a probability

measure with bounded support that generates i.i.d samples (bi, ri), and has a density

f ∗(·). Denote the set of the first n samples by Sn. Define

x(cn,Sn) , arg min
x

{

√

√

√

√

1

n

n
∑

i=1

(bi − r⊤i x)2 + cn‖x‖1

}

= arg min
x

{

√
n

n

√

√

√

√

n
∑

i=1

(bi − r⊤i x)2 + cn‖x‖1

}

;

x(P) , arg min
x

{

√

∫

b,r

(b− r⊤x)2dP(b, r)
}

.

In words, x(cn,Sn) is the solution to Lasso with the tradeoff parameter set to cn
√
n,

and x(P) is the “true” optimal solution. We have the following consistency result.

The theorem itself is a well-known result. However, the proof technique is novel. This

technique is of interest because the standard techniques to establish consistency in

statistical learning including Vapnik-Chervonenkis (VC) dimension (e.g., [158]) and
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algorithmic stability (e.g., [32]) often work for a limited range of algorithms, e.g., the

k-Nearest Neighbor is known to have infinite VC dimension, and we show in Section

7.6 that Lasso is not stable. In contrast, a much wider range of algorithms have

robustness interpretations, allowing a unified approach to prove their consistency.

Theorem 7.14. Let {cn} be such that cn ↓ 0 and limn→∞ n(cn)m+1 = ∞. Suppose

there exists a constant H such that ‖x(cn,Sn)‖2 ≤ H. Then,

lim
n→∞

√

∫

b,r

(b− r⊤x(cn,Sn))2dP(b, r) =

√

∫

b,r

(b− r⊤x(P))2dP(b, r),

almost surely.

Proof. Step 1: We show that the right hand side of Equation (7.12) includes a

kernel density estimator for the true (unknown) distribution. Consider the following

kernel estimator given samples Sn = (bi, ri)
n
i=1 and tradeoff parameter cn,

fn(b, r) , (ncm+1
n )−1

n
∑

i=1

K

(

b− bi, r− ri

cn

)

,

where: K(x) , I[−1,+1]m+1(x)/2m+1.

(7.13)

Let µ̂n denote the distribution given by the density function fn(b, r). Easy to

check that µ̂n belongs to Pn(A, (cn1n, · · · , cn1n),b, cn1n) and hence belongs to P̂(n)

by definition.

Step 2: Using the L1 convergence property of the kernel density estimator, we

prove the consistency of robust regression and equivalently Lasso.

First note that ‖x(cn,Sn)‖2 ≤ H and P has a bounded support implies that there

exists a universal constant C such that

max
b,r

(b− r⊤w(cn,Sn))2 ≤ C.
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By Corollary 7.13 and µ̂n ∈ P̂(n) we have

√

∫

b,r

(b− r⊤x(cn,Sn))2dµ̂n(b, r)

≤ sup
µ∈P̂(n)

√

∫

b,r

(b− r⊤x(cn,Sn))2dµ(b, r)

=

√
n

n

√

√

√

√

n
∑

i=1

(bi − r⊤i x(cn,Sn))2 + cn‖x(cn,Sn)‖1 + cn

≤
√
n

n

√

√

√

√

n
∑

i=1

(bi − r⊤i x(P))2 + cn‖x(P)‖1 + cn,

the last inequality holds by definition of x(cn,Sn).

Taking the square of both sides, we have
∫

b,r

(b− r⊤x(cn,Sn))2dµ̂n(b, r)

≤ 1

n

n
∑

i=1

(bi − r⊤i x(P))2 + c2n(1 + ‖x(P)‖1)
2

+ 2cn(1 + ‖x(P)‖1)

√

√

√

√

1

n

n
∑

i=1

(bi − r⊤i x(P))2.

Note that the right-hand side converges to
∫

b,r
(b − r⊤x(P))2dP(b, r) as n ↑ ∞ and

cn ↓ 0 almost surely. Furthermore, we have
∫

b,r

(b− r⊤x(cn,Sn))2dP(b, r)

≤
∫

b,r

(b− r⊤x(cn,Sn))2dµ̂n(b, r)

+
[

max
b,r

(b− r⊤x(cn,Sn))2
]

∫

b,r

|fn(b, r) − f ∗(b, r)|d(b, r)

≤
∫

b,r

(b− r⊤x(cn,Sn))2dµ̂n(b, r) + C

∫

b,r

|fn(b, r) − f ∗(b, r)|d(b, r),
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where the last inequality follows from the definition of C. Notice that
∫

b,r
|fn(b, r) −

f ∗(b, r)|d(b, r) goes to zero almost surely when cn ↓ 0 and ncm+1
n ↑ ∞ since fn(·) is a

kernel density estimation of f ∗(·) (see e.g. Theorem 3.1 of [53]). Hence the theorem

follows. �

We can remove the assumption that ‖x(cn,Sn)‖2 ≤ H , and as in Theorem 7.14,

the proof technique rather than the result itself is of interest.

Theorem 7.15. Let {cn} converge to zero sufficiently slowly. Then

lim
n→∞

√

∫

b,r

(b− r⊤x(cn,Sn))2dP(b, r) =

√

∫

b,r

(b− r⊤x(P))2dP(b, r),

almost surely.

Proof. To prove the theorem, we need to consider a set of distributions belong-

ing to P̂(n). Hence we establish the following lemma first.

Lemma 7.16. Partition the support of P as V1, · · · , VT such the ℓ∞ radius of each

set is less than cn. If a distribution µ satisfies

µ(Vt) =
∣

∣

∣

{

i|(bi, ri) ∈ Vt

}

∣

∣

∣
/n; t = 1, · · · , T, (7.14)

then µ ∈ P̂(n).

Proof. Let Zi = [bi − cn, bi + cn]×∏m
j=1[aij − cn, aij + cn]; recall that aij the jth

element of ri. Notice Vt has ℓ∞ norm less than cn we have

(bi, ri ∈ Vt) ⇒ Vt ⊆ Zi.

Therefore, for any S ⊆ {1, · · · , n}, the following holds

µ(
⋃

i∈S

Zi) ≥ µ(
⋃

Vt|∃i ∈ S : bi, ri ∈ Vt)

=
∑

t|∃i∈S:bi,ri∈Vt

µ(Vt) =
∑

t|∃i∈S:bi,ri∈Vt

#
(

(bi, ri) ∈ Vt

)

/n ≥ |S|/n.

Hence µ ∈ Pn(A,∆, b, cn) where each element of ∆ is cn, which leads to µ ∈ P̂(n). �

167



7.5 DENSITY ESTIMATION AND CONSISTENCY

Now we proceed to prove the theorem. Partition the support of P into T subsets

such that ℓ∞ radius of each one is smaller than cn. Denote P̃(n) as the set of proba-

bility measures satisfying Equation (7.14). Hence P̃(n) ⊆ P̂(n) by Lemma 7.16. Fur-

ther notice that there exists a universal constant K such that ‖x(cn,Sn)‖2 ≤ K/cn

due to the fact that the square loss of the solution x = 0 is bounded by a con-

stant only depends on the support of P. Thus, there exists a constant C such that

maxb,r(b− r⊤x(cn,Sn))2 ≤ C/c2n.

Follow a similar argument as the proof of Theorem 7.14, we have

sup
µn∈P̃(n)

∫

b,r

(b− r⊤x(cn,Sn))2dµn(b, r)

≤ 1

n

n
∑

i=1

(bi − r⊤i x(P))2 + c2n(1 + ‖x(P)‖1)
2

+ 2cn(1 + ‖x(P)‖1)

√

√

√

√

1

n

n
∑

i=1

(bi − r⊤i x(P))2,

(7.15)

and
∫

b,r

(b− r⊤x(cn,Sn))2dP(b, r)

≤ inf
µn∈P̃(n)

{

∫

b,r

(b− r⊤x(cn,Sn))2dµn(b, r)

+ max
b,r

(b− r⊤x(cn,Sn))2

∫

b,r

|fµn(b, r) − f(b, r)|d(b, r)

≤ sup
µn∈P̃(n)

∫

b,r

(b− r⊤x(cn,Sn))2dµn(b, r)

+ 2C/c2n inf
µ′

n∈P̃(n)

{

∫

b,r

|fµ′
n
(b, r) − f(b, r)|d(b, r)

}

,

here fµ stands for the density function of a measure µ. Notice that P̃n is the set of

distributions satisfying Equation (7.14), hence infµ′
n∈P̃(n)

∫

b,r
|fµ′

n
(b, r)− f(b, r)|d(b, r)

is upper-bounded by
∑T

t=1 |P(Vt)−#(bi, ri ∈ Vt)|/n, which goes to zero as n increases
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for any fixed cn (see for example Proposition A6.6 of [154]). Therefore,

2C/c2n inf
µ′

n∈P̃(n)

{

∫

b,r

|fµ′
n
(b, r) − f(b, r)|d(b, r)

}

→ 0,

if cn ↓ 0 sufficiently slow. Combining this with Inequality (7.15) proves the theorem.

�

7.6. Stability

Knowing that the robust regression problem (7.1) and in particular Lasso en-

courage sparsity, it is of interest to investigate another desirable characteristic of a

learning algorithm, namely, stability. Indeed, it can be shown that Lasso is not stable.

This is a special case of a more general result that will be presented in Chapter 9,

and hence to avoid replication we refer the readers to Chapter 9.

7.7. Chapter summary

In this chapter, we considered robust regression with a least-square-error loss.

In contrast to previous work on robust regression, we considered the case where the

perturbations of the observations are in the features. We show that this formulation

is equivalent to a weighted ℓ1 norm regularized regression problem if no correlation of

disturbances among different features is allowed, and hence provide an interpretation

of the widely used Lasso algorithm from a robustness perspective. We also formulated

tractable robust regression problems for disturbance coupled among different features

and hence generalize Lasso to a wider class of regularization schemes.

The sparsity and consistency of Lasso are also investigated based on its robust-

ness interpretation. In particular we present a “no-free-lunch” theorem saying that

sparsity and algorithmic stability contradict each other. This result shows, although

sparsity and algorithmic stability are both regarded as desirable properties of regres-

sion algorithms, it is not possible to achieve them simultaneously, and we have to

tradeoff these two properties in designing a regression algorithm.
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The main thrust of this work is to treat the widely used regularized regression

scheme from a robust optimization perspective, and extend the result of [64] (i.e.,

Tikhonov regularization is equivalent to a robust formulation for Frobenius norm

bounded disturbance set) to a broader range of disturbance set and hence regular-

ization scheme. This provides us not only with new insight of why regularization

schemes work, but also offer solid motivations for selecting regularization parameter

for existing regularization scheme and facilitate designing new regularizing schemes.
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CHAPTER 8

All Learning is Robust: On the

Equivalence of Robustness and

Generalizability

As shown in Chapter 6 and Chapter 7, some successfully implemented learning algo-

rithms have nice robustness properties. In fact, in this chapter we show that such a

relationship is not a coincidence: for an arbitrary learning algorithm, robustness is a

necessary and sufficient condition for it to work. In particular: We consider robust-

ness of learning algorithms and prove that robustness is a necessary and sufficient

condition for learning algorithms to generalize. To the best of our knowledge, this is

the first “if-and-only-if” condition for the generalizability of learning algorithms other

than empirical risk minimization. We provide conditions that ensure robustness and

hence generalizability for samples that are independent and identically distributed

and for samples that come from a Markov chain. Our results lead to new theorems

of generalizability as well as novel proofs of known results.

8.1. Introduction

In supervised learning—the task of learning a mapping given a set of observed

input-output pairs—the key property of a learning algorithm is it generalizability: the

expected performance should agree with the empirical error as the number of training
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samples increases. An algorithm with good generalizability is guaranteed to predict

well if the empirical error is small. In particular, if a learning algorithm achieves

minimal training error asymptotically (e.g., Empirical Risk Minimization (ERM))

and generalizes, then it is consistent: the expected risk on test data converges to the

minimum risk achievable. Roughly speaking, this means that the algorithm recovers

the optimal solution in the long run.

One of the most prominent approaches examining generalizability is based on the

uniform convergence of empirical quantities to their mean (e.g., [157, 155]). This

approach provides ways to bound the gap between the risk on a test set and the

empirical risk on a training set by the complexity of the space of learned mappings.

Examples to complexity measures are the Vapnik-Chervonenkis (VC) dimension (e.g.,

[155, 70]), the fat-shattering dimension (e.g., [1, 6]), and the Rademacher complexity

([8, 7]).

Another well-known approach is based on stability. An algorithm is stable if its

output remains “similar” for different sets of training samples that are identical up to

removal or change of a single sample. In contrast to the complexity-based approach

that focuses on the space that an algorithm searches, stability analysis concentrates

on how the algorithm searches the space. The first results that relate stability to

generalizability track back to [55] and [56] that obtained bounds of generalization

error for “local” algorithms such as k-Nearst Neighbor (k-NN). Later, McDiarmid’s

[110], concentration inequalities facilitated new bounds on generalization error (e.g.,

[52, 32, 100, 122, 112]).

Both aforementioned approaches provide sufficient but not necessary conditions

for generalizability. It is easy to construct generalizable algorithms that have un-

bounded complexity (e.g., k-NN) or are unstable (e.g., it is shown in [100] that all

classification algorithms with good generalizability are not uniformly stable). Indeed,

to the best of our knowledge, a necessary and sufficient condition of generalizability for

general learning algorithms has not been suggested in the literature. A notable excep-

tion is the ERM algorithm, where it is known that both having a finite VC-dimension
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[158] and being CVEEEloo stable [112] are necessary and sufficient conditions for an

ERM algorithm to generalize. However, the class of ERM algorithms is restrictive,

and does not include many algorithms that are successful in practice such as k-NN,

Support Vector Machines (SVM) [133] and Boosting [132, 75].

In this chapter we investigate generalizability based on the robustness of a learning

algorithm. We show that robustness is a necessary and sufficient condition for the

generalizability of a learning algorithm. Roughly speaking, an algorithm is robust if

the solutions it produces achieve “similar” performance on testing samples that are

“close” to the training samples.1 This notion was first introduced to handle exogenous

noise in learning (e.g., [27, 137, 79]). Recently, it was discovered that regularized

algorithms such as support vector machines [168] and Lasso [167] have desirable

robustness properties that further imply statistical consistency. Such an observation

motivated us to explore a more fundamental relationship between robustness and

generalizability. In particular, our main contributions include the following:

• We propose in section 8.2 a notion of robustness for learning algorithms and

show that our notion is a necessary and sufficient condition for generaliz-

ability. Our basic result holds in a very general setup with essentially no

explicit assumptions on the data source.

• We discuss the problem of how to establish that a given learning algorithm

is robust in Section 8.3, under an iid assumption. We consider two different

conditions: (1) the solution produced by an algorithm belongs to a function

class with a finite bracketing number; and (2) the solution is “smooth” in

the training samples; and show that either condition implies robustness of

the algorithm.

• We demonstrate in Section 8.4 the relative simplicity of using robustness to

establish generalizability when the data source is not IID. We do that by

1While stability and robustness are similar on an intuitive level, there is a difference between the
two: stability requires that similar training sets lead to similar prediction rules, whereas robustness
requires that a prediction rule has comparable performance if tested on a sample set close to the
training set.
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investigating the case where data are sampled from a Markov chain. We

show that in that case, the equivalence of robustness and generalizability

still holds and that smoothness directly implies robustness.

8.1.1. Preliminaries and notations. We consider a general supervised

learning setup: a learning algorithm outputs a predictor (classifiers are considered

to be a special case in our analysis) given a set of training samples, and evaluates

the model based on a newly generated testing sample set. To make this precise, we

will use the following terminology: Let X and Y be two sets, a prediction rule O is a

mapping from X to Y . A learning algorithm A is a mapping from
⋃∞

n=1(X × Y)n to

the set of prediction rules, and we use A(S) to represent the prediction rule generated

by A given the sample set S ∈ ⋃∞
n=1(X ×Y)n. A prediction rule O is called admissible

(w.r.t. A) if there exists S ∈ ⋃∞
n=1(X ×Y)n such that O = A(S). We use a subscript

n when the cardinality of the sample set is n, i.e., Sn ∈ (X × Y)n. We alternatively

use {Sn} or {Sn}∞n=1 to represent an increasing sequence of samples, i.e., S1 ∈ X ×Y ,

and for all i ≥ 2, Si = (Si−1, si) where si ∈ X × Y . Given a prediction rule O and a

set of samples T ∈ ⋃∞
n=1(X × Y)n the corresponding loss is denoted by L(O, T ) (we

consider loss functions that depend on the whole sample in a general way). Thus,

L(A(S), T ) is the loss over T for a learning algorithm A trained on S. We use S
and T (sometimes with a subscript n) to denote the testing samples and training

samples, respectively. We denote the probability distribution that generates {Tn}∞n=1

by µ, and use µn to represent the marginal of µ on the first n samples. We say L(·, ·)
is the average loss of l(·, ·) if for all n, admissible O and Tn = (t1, · · · , tn) ∈ (X ×Y)n,

L(O, Tn) =
1

n

n
∑

i=1

l(O, ti).

We ignore the issue of measurability and assume that all functions and sets being

considered are measurable w.r.t. corresponding probability spaces.

Notice that convergence results are not possible for L that are not integrable since

laws of large numbers fail to hold. Thus, certain assumptions on the loss function
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is necessary. In particular, we define the following two conditions, namely uniform

boundedness and uniform envelopedness. Observe that the former implies the latter.

Definition 8.1. Loss function L(·, ·) is called uniformly bounded if it is non-

negative and there exists a constant C such that L(O, Tn) ≤ C for all n, admissible

O and Tn ∈ (X × Y)n.

Definition 8.2. Loss function L(·, ·) is called uniformly enveloped if it is non-

negative and for each n, there exists fn such that L(O, Tn) ≤ fn(Tn) for all admissible

O and Tn ∈ (X × Y)n, and

lim
M→∞

{

lim sup
n

E

{

fn(Tn) · 1
[

fn(Tn) > M
]

}

}

= 0.

Here the expectation is taken over different draws of {Tn}.

In the standard setup where the loss function is the average loss of l(·, ·), it is

often assumed that l(·, ·) is upper bounded by an integrable function f(·), so that the

average loss exists. The uniform envelopedness is an extension of such a condition

when the L is not necessarily an average loss. In particular, the aforementioned

condition is uniform enveloped as we will show in Corollary 8.4.

8.2. Robustness and generalizability

In this section we prove the main result of this paper: generalizability of an

algorithm is equivalent to the robustness of its output prediction rules. To make this

precise, we first define these concepts.

Definition 8.3. Given {Sn}, Algorithm A generalizes w.r.t. {Sn} if

lim sup
n

{

ETn

(

L(A(Sn), Tn)
)

−L(A(Sn),Sn)
}

≤ 0.

Definition 8.4. Given {Sn}, Algorithm A is robust w.r.t. {Sn} if there exists

{Dn(Sn)} such that Dn(Sn) ⊆ (X × Y)n, µn(Dn(Sn)) → 1, and

lim sup
n→∞

{

sup
Ŝn∈Dn(Sn)

L(A(Sn), Ŝn) − L(A(Sn),Sn)
}

≤ 0.

175



8.2 ROBUSTNESS AND GENERALIZABILITY

In both definitions we make no assumptions on the algorithm, the loss function

and the probabilistic process that generates the data. Indeed, the equivalence between

robustness and generalizability holds in a very general setup. As an example to the

generality of the framework, we establish results for Markovian data in Section 8.4

and percentile loss-functions in Corollary 8.5.

The following theorem that establishes the equivalence between robustness and

generalizability is the main result of this section.

Theorem 8.1. Suppose that L(·, ·) is uniformly enveloped, and for any sequence

of admissible prediction rules {On},

L(On, Tn) − EL(On, Tn)
Pr−→ 0. (8.1)

Then algorithm A generalizes w.r.t. {Sn} if and only if it is robust w.r.t. {Sn}.

The theorem is established by combining the following two propositions.

Proposition 8.2. If L(·, ·) is uniformly enveloped, then algorithm A generalizes

w.r.t. {Sn} if it is robust w.r.t. {Sn}.

Proof. Given a M > 0, denote the M-truncation of L(·, ·) as LM(·, ·). That is,

LM(O, Tn) , min (L(O, Tn), M) .

When A is robust w.r.t. {Sn}, by definition there exists {Dn(Sn)} such that µn(Dn(Sn)) →
1 and

lim sup

{

sup
Ŝn∈Dn(Sn)

L(A(Sn), Ŝn) − L(A(Sn),Sn)

}

≤ 0.

Thus, for any δ, ǫ > 0, there exists N(δ, ǫ) such that for all n > N(δ, ǫ), µn(Dn(Sn)) >

1 − δ, and

sup
Ŝn∈Dn(Sn)

L(A(Sn), Ŝn) −L(A(Sn),Sn) < ǫ.

By definition of {µn}, we have µn(H) = Pr(Tn ∈ H) holds for all n ≥ 1 and every

measurable set H ⊆ (X ×Y)n. Thus, for any n > N(δ, ǫ) we have Pr
(

Tn 6∈ Dn(Sn)
)

≤
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δ. Therefore, the following holds for any n > N(δ, ǫ),

E

(

L(A(Sn), Tn)
)

− L(A(Sn),Sn)

≤E

{

fn(Tn) · 1
[

fn(Tn) > M
]

}

+ E

{

LM(A(Sn), Tn)
}

− L(A(Sn),Sn)

≤E

{

fn(Tn) · 1
[

fn(Tn) > M
]

}

+ Pr(Tn 6∈ Dn(Sn))E
(

LM(A(Sn), Tn)|Tn 6∈ Dn(Sn)
)

+ Pr(Tn ∈ Dn(Sn))E
(

L(A(Sn), Tn)|Tn ∈ Dn(Sn)
)

− L(A(Sn),Sn)

≤E

{

fn(Tn) · 1
[

fn(Tn) > M
]

}

+ δM + sup
Ŝn∈Dn(Sn)

L(A(Sn), Ŝn) − L(A(Sn),Sn)

≤E

{

fn(Tn) · 1
[

fn(Tn) > M
]

}

+ δM + ǫ.

Here all expectations are taken over different draws of Tn. By setting M large enough,

the first term of the right-hand-side can be made arbitrarily small for every large

enough n. We thus conclude that

lim sup
n

{

ETn

(

L(A(Sn), Tn)
)

−L(A(Sn),Sn)
}

≤ 0,

i.e., the algorithm A generalizes for {Sn}, because ǫ, δ can be arbitrary. �

Proposition 8.3. Given {Sn}, if algorithm A is not robust w.r.t. {Sn}, then

there exists ǫ∗, δ∗ > 0 such that the following holds for infinitely many n,

Pr
(

L(A(Sn), Tn) ≥ L(A(Sn),Sn) + ǫ∗
)

≥ δ∗. (8.2)

Proof. We prove the proposition by contradiction. Assume that such ǫ∗ and δ∗

do not exist. Let ǫt = δt = 1/t, then there exists {N(t)}∞t=1 such that for all t we have

N(t − 1) ≤ N(t) and n ≥ N(t) implies Pr
(

L(A(Sn), Tn) ≥ L(A(Sn),Sn) + ǫt

)

< δt.

For each n, define the following set:

Dt
n(Sn) , {Ŝn|L(A(Sn), Ŝn) −L(A(Sn),Sn) < ǫt}.

177



8.2 ROBUSTNESS AND GENERALIZABILITY

Thus, for n ≥ N(t) we have

µn(Dt
n(Sn)) = 1 − Pr

(

L(A(Sn), Tn) ≥ L(A(Sn),Sn) + ǫt

)

> 1 − δt.

For n ≥ N(1), define Dn(Sn) as Dn(Sn) , D
t(n)
n (Sn), where: t(n) , max

(

t|N(t) ≤
n; t ≤ n

)

. Thus we have for all n ≥ N(1) we have that µn(Dn(Sn)) > 1 − δt(n)

and supŜn∈Dn(Sn) L(A(Sn), Ŝn) − L(A(Sn),Sn) < ǫt(n). Since t(n) ↑ ∞ it follows that

δt(n) → 0 and ǫt(n) → 0. Therefore, µn(Dn(Sn)) → 1, and

lim sup
n→∞

{

sup
Ŝn∈Dn(Sn)

L(A(Sn), Ŝn) − L(A(Sn),Sn)
}

≤ 0.

That is, A is robust w.r.t. {Sn}, which is a desired contradiction. �

Now we prove Theorem 8.1.

Proof of Theorem 8.1. Sufficiency (robustness leads to generalizability) was

established in Proposition 8.2. Hence we prove necessity. Since algorithm A is not

robust, Proposition 8.3 implies that (8.2) holds for infinite many n. Further note

that under (8.1), when inequality (8.2) holds for infinite many n we have for infinitely

many n,

ETn

[

L(A(Sn), Tn)
]

≥ L(A(Sn),Sn) +
ǫ∗

2
,

which means that A does not generalize. Thus, the necessity is established. �

We apply Theorem 8.1 to specific loss functions under the assumptions that the

testing samples are Independently and Identically Distributed (IID). The first corol-

lary considers the nearly ubiquitous loss function in machine learning: the average

loss.

Corollary 8.4. Suppose L(·, ·) is the average loss of l(·, ·) and testing samples

are IID and independent of training samples. If there exists f(·) : (X ×Y) → R such

that
∫

f(t)µ1(dt) < +∞ and 0 ≤ l(O, t) ≤ f(t) for all admissible O and t ∈ (X×Y),

then algorithm A generalizes w.r.t. {Sn} if and only if it is robust w.r.t. {Sn}.
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Proof. We need to show that L(·, ·) is uniformly enveloped and (8.1) holds for

all admissible {On}.
Step 1: We show that L(·, ·) is uniformly enveloped. Define

fn(Tn) ,
1

n

n
∑

i=1

f(ti),

where Tn = (t1, · · · , tn). Observe that L(O, Tn) ≤ fn(Tn) for all admissible O. Fix a

M > Ef(t). We have

E

{

fn(Tn) · 1[fn(Tn) > M ]
}

=E

{

(fn(Tn) −M) · 1[fn(Tn) > M ]
}

+ E

{

M · 1[fn(Tn) > M ]
}

≤E

{ 1

n

n
∑

i=1

f(ti) − Ef(t)
}

+MPr[
1

n

n
∑

i=1

f(ti) > M ].

As n ↑ ∞ the first term of the right-hand-side converges to 0 and the second term

converges to MPr(E(f(t)) > M), both due to strong law of large numbers. Hence,

lim
M→∞

{

lim sup
n

E

{

fn(Tn) · 1
[

fn(Tn) > M
]

}

}

≤ lim
M→∞

{MPr(E(f(t)) > M)} = 0.

Thus, L(·, ·) is uniformly enveloped (observe that the left-hand-side is non-negative).

Step 2: We show that (8.1) holds for all admissible {On}. To simplify the

representation, we define the following functions for M > 0:

ln(t) , l (On, t) ; l̂Mn (t) , min (ln(t), M) .

179



8.2 ROBUSTNESS AND GENERALIZABILITY

Observe that 0 ≤ lMn (t) ≤ ln(t) ≤ f(t). Hence lMn (·) and ln(·) are integrable. Thus,

with some algebra we have

∣

∣

∣

1

n

n
∑

i=1

ln(ti) − E(ln(t))
∣

∣

∣

≤
{1

n

n
∑

i=1

{

[f(ti) −M ] · 1(f(ti) > M)
}

}

+
{

E
{

[f(t) −M ]1(f(t) > M)
}

}

+
∣

∣

∣

1

n

n
∑

i=1

l̂Mn (ti) − E(l̂Mn (t))
∣

∣

∣
.

Here, the expectation is taken over µ1. We now bound each term separately. Given

ǫ > 0, there exists Mǫ such that the second term is smaller than ǫ/4 due to the

integrability of f(·). Further, for a fixed M the first term is a summation of IID

integrable random variables and hence the strong law of large number holds. Thus,

given Mǫ as defined above and δ > 0, there exists n∗
1 such that for any n > n∗

1, with

probability at least 1 − δ/2,

1

n

n
∑

i=1

{

[f(ti) −Mǫ] · 1(f(ti) > Mǫ)
}

≤E
{

[f(t) −Mǫ] · 1(f(t) > Mǫ)
}

+ ǫ/4 ≤ ǫ/2.

Finally, given Mǫ, the last term can be bounded using Hoeffding’s inequality since

lMn (·) are uniformly bounded. That is, there exists n∗
2 such that for any n > n∗/2,

with probability at least 1 − δ/2,

∣

∣

∣

1

n

n
∑

i=1

l̂Mǫ

n (ti) − E(l̂Mǫ

n (t))
∣

∣

∣
≤ ǫ/4.

Combining all three terms, we conclude that for n > max(n∗
1, n

∗
2), the following holds

with probability at least 1 − δ,

∣

∣

∣

1

n

n
∑

i=1

ln(ti) − E(ln(t))
∣

∣

∣
≤ ǫ.

Observe that ETnL(O, Tn) ≡ E(l(O, t)). Hence, (8.1) holds. The corollary follows by

applying Theorem 8.1. �
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The next corollary considers an interesting while less extensively investigated loss

function: quantile loss.

Corollary 8.5. Suppose the training samples are IID and independent to the

training samples and that the loss function L(·, ·) is the κ-quantile loss of l(·, ·) with

κ ∈ (0, 1). That is

L(O, Tn) = inf
{

c
∣

∣

n
∑

i=1

1(l(O, ti) ≤ c) ≥ κn}.

Assume further that l(·, ·) is non-negative and upper bounded by a constant M and

for any ǫ > 0,

inf
O

{

κ− Pr
[

l(O, t) ≤ ν(O, κ) − ǫ
]

}

> 0;

and: inf
O

{

Pr
[

l(O, t) ≤ ν(O, κ) + ǫ
]

− κ
}

> 0;

where: ν(O, θ) , sup
{

c
∣

∣

∣
Pr
[

l(O, t) ≤ c
]

≤ θ
}

.

Then algorithm A generalizes w.r.t. {Sn} if and only if it is robust w.r.t. {Sn}.

Proof. First notice that by assumption 0 ≤ l(·, ·) ≤ M , which implies that

L(·, ·) is (trivially) uniformly enveloped. Now we show that (8.1) holds for all admis-

sible {On}. Fix ǫ > 0, define cκ > 0 as

cκ , min

{

inf
O

[

κ− Pr
[

l(O, t) ≤ ν(O, κ) − ǫ
]

]

, inf
O

[

Pr
[

l(O, t) ≤ ν(O, κ) + ǫ
]

− κ
]

}

.

Given {On}, define Fn(·) : R → [0, 1] as

Fn(c) , Et

[

1(l(On, t) ≤ c)
]

,

i.e., the cumulative distribution function of l(On, t). Let νn , sup{c|Fn(c) ≤ κ} =

ν(On, κ). Since L(·, ·) is the quantile loss, we have

Pr
(

L(On, Tn) ≤ νn − ǫ) = Pr
(1

n

n
∑

i=1

1(l(On, ti) ≤ νn − ǫ) ≥ κ
)

.
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Notice that 1(l(On, ti) ≤ νκ − ǫ) are IID binomial random variables for i = 1, · · · , n.

Therefore, by Hoeffding’s inequality and the definition of Fn(·) we have

Pr
(1

n

n
∑

i=1

1(lOn, ti) ≤ νn − ǫ) ≥ κ
)

=Pr
{1

n

n
∑

i=1

1
[

l(On, ti) ≤ νn − ǫ
]

≥ Fn(νn − ǫ) + (κ− Fn(νn − ǫ))
}

≤ exp[−2n2(κ− Fn(νn − ǫ))2] ≤ exp[−2n2c2κ].

Similarly,

Pr
(

L(On, Tn) ≥ νn + ǫ) ≤ exp[−2n2c2κ].

Leading to

L(On, Tn) − νn Pr→ 0. (8.3)

Since L(·, ·) is uniformly bounded, (8.3) implies that

E(On, Tn) − νn → 0.

Hence (8.1) holds. The corollary follows from Theorem 8.1. �

8.3. Robustness for algorithms with IID samples

Proving that a learning algorithm is robust has merit beyond the robustness

property itself since it implies generalizability. In this section, we consider the case

where training samples are IID and provide simple conditions for robustness. In

Section 8.3.1 we investigate the case where the set of admissible prediction rules has

a finite bracketing number. In Section 8.3.2 we consider the case where the output

prediction rules are smooth in an appropriately defined way. One example of a setup

with smooth classifiers is large margin classifiers.

8.3.1. Finite bracketing number. In this subsection we investigate the case

where the set of admissible prediction rules has a finite bracketing number. Recall

the following standard definition [154]:
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Definition 8.5. Given two functions l and u, the bracket [l, u] is set of functions

f with l ≤ f ≤ u. An ǫ-bracket is a bracket [l, u] such that ‖l−u‖ ≤ ǫ. The bracketing

number N[]

(

ǫ,F , ‖ · ‖
)

is the minimum number of ǫ-brackets that cover F .

It is well known (e.g.,[154, 2, 54]) that a learning algorithm whose output belongs

to a function class with finite bracketing number generalize well. Here we show that

this can be attributed to the robustness of such algorithms.

Proposition 8.6. Let si, ti be IID draws from µ1 and let L(·, ·) be the average

loss of a non-negative function l(·, ·). Suppose that there exists F such that for all

admissible O, l(O, ·) ∈ F and the bracketing number N[]

(

ǫ,F , L1(µ1)
)

is finite for all

ǫ. Then A is robust w.r.t. almost every {Sn}.

Proof. First observe that a finite bracketing number implies that L(·, ·) is uni-

formly enveloped. Fix ǫ > 0, choose finitely many (say I) ǫ/4-brackets [f−
i , f

+
i ] that

cover F . Thus, given Sn, there is a i∗ such that

f−
i∗ (t) ≤ l(A(Sn), t) ≤ f+

i∗ (t); ∀t ∈ X × Y . (8.4)

For i = 1, · · · , I, define

Di
n(Sn) ,

{

(ŝ1, · · · , ŝn)
∣

∣

1

n

n
∑

j=1

[f+
i (ŝj) − f−

i (ŝj)] ≤ ǫ/2;
1

n

n
∑

j=1

[f−
i (ŝj) − f−

i (sj)] ≤ ǫ/2
}

.

Let Dn(Sn) ,
⋂I

i=1D
i
n(Sn). We have that

sup
Ŝn∈Dn(Sn)

l(A(Sn), Ŝn) − l(A(Sn),Sn)

(a)

≤ sup
Ŝn∈Di∗

n (Sn)

{1

n

n
∑

j=1

f+
i∗ (ŝj) −

1

n

n
∑

j=1

f−
i∗ (ŝj) +

1

n

n
∑

j=1

f−
i∗ (ŝj) −

1

n

n
∑

j=1

f−
i∗ (sj)

}

≤ǫ.

Here, (a) follows from (8.4) and from the fact that Dn(Sn) ⊆ Di∗
n (Sn).

183



8.3 ROBUSTNESS FOR ALGORITHMS WITH IID SAMPLES

Next we show that for almost all {Sn}, PrTn

(

Tn ∈ Dn(Sn)
)

→ 1. It suffices to

show that with probability 1 on {Sn, Tn}∞n=1 the following event

{

Tj 6∈ Dj(Sj)
}

; (8.5)

happens for finite many j. For each i ∈ {1, · · · , I}, by strong law of large numbers

(notice that all functions involved are non-negative and integrable) with probability

1 both of the following events happen for finitely many n:

{1

n

n
∑

j=1

[f+
i (tj) − f−

i (tj)] − Et∼µ1

(

f+
i (t) − f−

i (t)
)

≥ ǫ/4
}

;

{1

n

n
∑

j=1

f−
i (tj) −

1

n

n
∑

j=1

f−
i (sj) ≥ ǫ/2

}

.

Notice Et∼µ1

(

f+
i (t) − f−

i (t)
)

≤ ǫ/4 since [f−
i , f

+
i ] is a ǫ/4-bracket. Thus,

{

Tj 6∈
Di

j(Sj)
}

holds for finite many j. Since I is finite, (8.5) holds for finite many j.

Therefore, A is robust w.r.t almost every {Sn}. �

8.3.2. Smooth solutions. In this subsection, we consider a less extensively

investigated case: the solutions to a learning algorithm are “smooth,” and show that

such property implies robustness and hence generalizability.

Equip the space (X × Y) with a metric ρ. For γ > 0, let K(γ) be the minimal

number of subsets which partitions (X × Y) such that any two points belonging to

one subset has a distance at most γ. Recall the definition of covering number from

[154]:

Definition 8.6. The covering number N(ǫ,Z, ρ) is the minimal number of balls

{g : ρ(g, f) ≤ ǫ} of radius ǫ that covers Z.

It is easy to see that K(γ) ≤ N(γ/2, (X ×Y), ρ). We now define the pair function

between two sets of identical size which denote the maximal fraction of the points

that can be matched (up to γ).
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Definition 8.7. The pairing fraction between Sn and Tn at γ is the function

pair(·) : (X × Y)n × (X × Y)n × R
+ → [0, 1]:

pair(Sn, Tn, γ) , max
π∈Πn

1

n

n
∑

i=1

1(ρ(si, π(Tn)i) ≤ γ),

where Πn is the set of permutations of rank n.

The next lemma shows that the pairing fraction can be bounded using K(γ).

Lemma 8.7. Given γ > 0. If s∗1, · · · , s∗n, t∗1, · · · , t∗n are independent draws from

µ1, then the event {T ∗
n ∈ D̃γ,δ

n (S∗
n)} holds with (joint) probability at least 1 − δ. Here

D̃γ,δ
n (S∗

n) ,

{

(t1, · · · , tn) |pair(S∗
n, Tn, γ) ≥ 1 −

√

8

n
[(K(γ) + 1) ln 2 + ln

1

δ
]

}

.

Proof. We partition (X × Y) into K(γ) subsets H1, · · · , HK(γ) such that the

distance between any two points belonging to one subset is at most γ. For j =

1, · · · , K(γ), let NS
j and NT

j denote the number of points of S∗
n and T ∗

n that fall into

the jth partition. Observe that

1

n

K(γ)
∑

j=1

|NS
j −NT

j | ≤ 1 − pair(S∗
n, T ∗

n , γ).

Notice that (NS
1 , · · · , NS

K(γ)) and (NT
1 , · · · , NT

K(γ)) are IID multinomial random vari-

ables with parameters n and

(µ1(H1), · · · , µ1(HK(γ))). The following holds by the Bretegnolle-Huber-Carol in-

equality

Pr







1

n

K(γ)
∑

j=1

|NS
j −NT

j | ≥ 2λ







≤ 2K(γ)+1 exp(
−nλ2

2
).

Thus

Pr {1 − pair(S∗
n, T ∗

n , γ) ≥ 2λ} ≤ 2K(γ)+1 exp(
−nλ2

2
).

Taking δ equals the right hand side establishes the lemma. �
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Lemma 8.7 holds for a fixed γ that is independent of the samples. However, in

practice we are often interested in data-dependent γ. Thus we make the statement

uniform over all value of γ at the expense of an additional ln(1/δ) factor.

Lemma 8.8. If s∗1, · · · , s∗n, t∗1, · · · , t∗n are independent draws from µ1, then the

event {T ∗
n ∈ ⋂γ∈(0,1]D

γ,δ
n (S∗

n)} holds with (joint) probability at least 1 − δ. Here

Dγ,δ
n (S∗

n) ,

{

(t1, · · · , tn) |pair(S∗
n, Tn, γ) ≥ 1 −

√

8

n
[(K(

γ

2
) + 1) ln 2 + ln

2

δγ
]

}

.

Proof. We recall the following Lemma which is adapted from Lemma 15.5 of [2]:

Lemma 8.9. Let (X,F , P ) be a probability space, and let

{E(α1, α2, δ) : 0 < α1, α2, δ ≤ 1}

be a set of events satisfying the following conditions:

(1) for all 0 ≤ α ≤ 1 and 0 ≤ δ ≤ 1, P (E(α, α, δ)) ≤ δ;

(2) for all 0 ≤ a ≤ 1 and 0 ≤ δ ≤ 1

⋃

α∈(0, 1]

E
(

αa, α, δα(1− a)
)

is measurable.

(3) for all 0 < α1 ≤ α ≤ α2 ≤ 1 and 0 ≤ δ1 ≤ δ < 1

E(α1, α2, δ1) ⊆ E(α, α, δ).

Then, for 0 < a, δ < 1

P





⋃

α∈(0, 1]

E
(

αa, α, δα(1− a)
)



 ≤ δ.

Let E(γ1, γ2, δ) be the set of Sn, Tn such that

pair(Sn, Tn, γ2) ≤ 1 −
√

8

n
[(K(γ1) + 1) ln 2 + ln

1

δ
].

Lemma 8.8 follows by taking a = 1/2 and apply Lemma 8.9. �
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Next we prove the main theorem of this section, which states that if the solution

for a learning algorithm is sufficiently smooth, then it is robust and hence generalizes

well.

Theorem 8.10. Suppose that si, ti are IID draws from µ1 and that L(·, ·) is the

average loss of l(·, ·) and is uniformly enveloped. Given {Sn}, if there exist {gn(·) :

R+ → R+} and {cn > 0} such that

(1) For any n, gn(·) is non-decreasing, and g−1
n (ǫ) defined as g−1

n (ǫ) = sup{c|gn(c) ≤
ǫ} exists for every ǫ > 0; (this include the case that gn(c) ≤ ǫ for all c, where

we denote g−1
n (ǫ) = +∞).

(2) {λn} ↓ 0 where

λn ,
1

n

n
∑

i=1

1
(

sup
y:ρ(y,si)≤cn

|l(A(Sn), si) − l(A(Sn),y)| > gn(ρ(si,y))
)

. (8.6)

(3) For all ǫ > 0

lim
n→∞

K(min(g−1(ǫ),cn)
2

)

n
= 0;

lim sup
n→∞

− ln min(g−1(ǫ), cn)

n
≤ 0.

(8.7)

Then A is robust w.r.t. almost every {Sn}.

The conditions of Theorem 8.10 mean that the output solution A(Sn) is smooth

(i.e., upper bounded by gn(·)) within the neighborhood (i.e., in a ball of radius cn)

of the majority (1 − λn) of training samples. Algorithms that ensure smoothness

include regression with a bounded norm of the output, where gn(·) is a linear function

depending on the norm [167] and large-margin classifiers, where the upper-bound

function gn(·) ≡ 0. Theorem 8.10 provides a new approach for investigating norm-

constrained or margin-based algorithms such as support vector machines [168].

Proof of Theorem 8.10. Assume for now that the loss function is uniformly

bounded by a constant M . Condition (8.7) implies that there exists {ǫ(n)} ↓ 0 such
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that

lim
n→∞

K(min(g−1
n (ǫ(n)),cn)

2
)

n
= 0;

lim sup
n→∞

− ln min(g−1
n (ǫ(n)), cn)

n
≤ 0.

Let γn = min(g−1
n (ǫ(n)), cn), γ̃n = min(γn, 1). Given a permutation π ∈ Πn, suppose

that i satisfies

sup
y:ρ(y,si)≤cn

|l(A(Sn), si) − l(A(Sn),y)| ≤ gn(ρ(si,y));

and ρ(si, π(Tn)i) ≤ γn. Then the following holds

|l(A(Sn), si) − l(A(Sn), π(Tn)i)| ≤ gn(ρ(si, π(Tn)i) ≤ gn(g
−1
n (ǫ(n))) = ǫ(n).

We therefore have

|L(A(Sn), Tn) − L(A(Sn),Sn)|

≤M
[

λ(n) + (1 − pair(Sn, Tn, γn))
]

+ ǫ(n)pair(Sn, Tn, γn),

since the number of unpaired samples is upper bounded by λ(n)+(1−pair(Sn, Tn, γn)).

Let

Dn(Sn) =

{

(t1, · · · , tn) |pair(Sn, Tn, γn) ≥ 1 −
√

8

n
[(K(

γ̃n

2
) + 1) ln 2 + ln

2n2

γ̃n
]

}

.

We have

lim sup
n→∞

{

sup
Ŝn∈Dn(Sn)

l(A(Sn), Ŝn) − l(A(Sn),Sn)
}

≤ lim sup
n→∞

{

M

[

λ(n) +

√

8

n
[(K(

γ̃n

2
) + 1) ln 2 + ln

2n2

γ̃n
]

]

+ ǫ(n)
}

= 0.
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Furthermore,

PrSn,Tn (Tn 6∈ Dn(Sn))

≤PrSn,Tn

(

T ∗
n 6∈

⋂

γ∈(0,1]

Dγ,1/n2

n (S∗
n)
)

≤ 1/n2.

Thus, by Borel-Cantelli lemma, w.p.1 on {Sn, Tn}∞n=1 this happens finitely many times.

This further implies that except for a set of measure zero on {Si}n
i=1, µn(Dn(Sn)) =

PrTn(Tn ∈ Dn(Sn)) → 1. Hence, under the uniform boundedness assumption, A is

robust w.r.t. almost every {Sn}.
We now relax the assumption of uniform boundedness. Let f(·) be the integrable

envelope function of l(·, ·). Fix κ and M > 0. Let lM(O, t) , min(l(O, t),M) and

LM(O, Tn) , 1
n

∑n
i=1 l

M(O, ti). Observe that |lM(O,x) − lM (O,y)| ≤ |l(O,x) −
l(O,y)|, hence (8.6) holds for lM(·, ·). We therefore have the following:

|L(A(Sn), Tn) −L(A(Sn),Sn)|

≤M
[

λ(n) + (1 − pair(Sn, Tn, γn))
]

+ ǫ(n)pair(Sn, Tn, γn)

+
1

n

n
∑

i=1

(f(si) −M)1(f(si) > M) +
1

n

n
∑

i=1

(f(ti) −M)1(f(ti) > M).

(8.8)

Let DM
n (Sn) , Dn(Sn)

⋂

HM
n where

HM
n ,

{

(t1, · · · , tn)| 1
n

n
∑

i=1

(f(ti) −M)1(f(ti) > M) ≤ E[(f(t) −M)1(f(t) > M)] + κ

}

.

Notice that µ(HM
n )

n→ 1 due to law of large numbers. Thus, µ(DM
n (Sn))

n→ 1.

Furthermore, denote the following random variable which is determined by {Sn},

Z(M) , lim sup
n→∞

{

1

n

n
∑

i=1

(f(si) −M)1(f(si) > M)

}

.

Observe that Z(M) is decreasing w.r.t. M . Furthermore, for a fixed M , by the strong

law of large number, with probability 1 we have Z(M) = E{(f(t)−M)1(f(t) > M)}.
Hence take a sequence of countably many M ’s that go to infinity and we easily
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establish that except for a set of {Sn} with measure 0,

lim
M→∞

Z(M) = lim
M→∞

E{(f(t) −M)1(f(t) > M)} = 0.

Thus the following holds

lim sup
n→∞

{

sup
Ŝn∈DM

n (Sn)

l(A(Sn), Ŝn) − l(A(Sn),Sn)
}

(a)

≤ lim sup
n→∞

{

M

[

λ(n) +

√

2

n
[(K(

γ̃n

2
) + 1) ln 2 + ln

2n2

γ̃n

]

]

+ ǫ(n) +
1

n

n
∑

i=1

(f(si) −M)1(f(si) > M) + E[(f(t) −M)1(f(t) > M)] + κ
}

≤Z(M) + E[(f(t) −M)1(f(t) > M)] + κ,

where (a) follows from (8.8). Since limM→∞(Z(M)) = 0, we can make the right hand

side arbitrarily small by taking M sufficiently large. Hence we establish that A is

robust w.r.t. almost every {Sn}. �

The rest of this section considers large-margin classifiers. Theorem 8.10 requires

a metric on the labeled sampling space X × {−1, +1} while the notion of “margin”

is generally defined through a metric on X . We thus introduce the following metric

extension.

Given X with metric ρ̂, we equip space X × {−1, +1} with metric ρ defined as

ρ(u,v) =







ρ̂(u|X ,v|X ) if u|{−1,+1} = v|{−1,+1}

+∞ otherwise.

Here, the subscripts |X and |{−1,+1} stand for the projections onto X and {−1, +1},
respectively.

Similarly to Theorem 8.10, we only require that “most” training samples have a

large margin. We thus define following λ-margin, where λ is the fraction of samples

that are too close to the boundary (i.e., within the margin).
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Definition 8.8. Given λ ∈ [0, 1], Sn ∈ (X × {−1, +1})n, and O : X →
{−1,+1}, the λ-margin of O w.r.t. Sn is

Mλ(O,Sn) , sup
{

c
∣

∣

∣

1

n

n
∑

i=1

1
[

dist((si)|X ,O) ≤ c] ≤ λ
}

;

where : dist(x,O) , inf{ρ̂(x′,x) : x′ ∈ X ,O(x) 6= O(x′)}.

Corollary 8.11. Suppose that si, ti are IID draws from µ1 and let the loss

function be the average classification error:

l(O, t) = 1
[

O(t|X ) 6= t|{−1,+1}
]

.

Suppose further that {Sn} satisfies that for all λ > 0

lim
n→∞

K(Mλ(A(Sn),Sn)
2

)

n
= 0 and

lim sup
n→∞

− lnMλ(A(Sn),Sn)

n
≤ 0.

(8.9)

Then A is robust w.r.t. almost every {Sn}.

Proof. Equation (8.9) is equivalent to: ∃{λ(n)} ↓ 0, such that

lim
n→∞

K(
Mλ(n)(A(Sn),Sn)

2
)

n
= 0;

lim sup
n→∞

− lnMλ(n)(A(Sn),Sn)

n
≤ 0.

The loss function is upper bounded by 1, hence is uniformly enveloped. Let cn =

Mλ(n)(A(Sn), Sn); gn(·) ≡ 0; and λn = λ(n). All the conditions of Theorem 8.10

are satisfied, and hence we establish the corollary. �

8.4. Robustness of algorithms with Markovian samples

The robustness approach is not restricted to the IID setup. In many applications

of interest, such as reinforcement learning and time series forecasting, the IID assump-

tion is violated. In such applications there is a time driven process that generates
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samples that depend on the previous samples (e.g., the observations of trajectory of

a robot). Such a situation can be modeled by stochastic process such as a Markov

processes. In this section we establish similar result to the IID case for samples the

samples are drawn from a Markov chain. The state space can be general, i.e., it is not

necessarily finite or countable. Thus, a certain ergodic structure of the underlying

Markov chain is needed. We focus on chains that converge to equilibrium exponen-

tially fast and uniformly in the initial condition. It is known that this is equivalent

to the class of of Doeblin chains [111]. Recall the following definition (cf. [111][59]):

Definition 8.9. A Markov chain {zi}∞i=1 on a state space Z is a Doeblin chain

(with α and m) if there exists a probability measure ϕ on Z, α > 0, an integer m ≥ 1

such that

Pr(zm ∈ H|z0 = z) ≥ αϕ(H); ∀measurable H ⊆ Z; ∀z ∈ Z.

The class of Doeblin chains is probably the “nicest” class of general state-space

Markov chains. We notice that such assumption is not overly restrictive, since by

requiring that an ergodic theorem holds for all bounded functions uniformly in the

initial distribution itself implies that a chain is Doeblin [111]. In particular, an

ergodic chain defined on a finite state-space is a Doeblin chain.

We first establish the equivalence between generalizability and robustness for

Markovian samples, i.e., a counterpart of Corollary 8.4.

Theorem 8.12. Let L(·, ·) be the average loss of a uniform bounded function

l(·, ·). Suppose that the testing samples are drawn from a Doeblin chain and are

independent of the training samples. Then algorithm A generalizes w.r.t. {Sn} if and

only if it is robust w.r.t. {Sn}.

Proof. The loss L(·, ·) is uniformly enveloped trivially. To apply Theorem 8.1,

we need to show that that (8.1) holds for all admissible {On} where {Tn} is drawn

from a Doeblin chain. Recall the following lemma adapted from Theorem 2 of [80]:
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Lemma 8.13. Let {xi} be a Doeblin chain as in Definition 8.9. Fix a function

f : X → R such that ‖f‖∞ ≤ C. Then for n > 2Cm/ǫα the following holds

Pr

(

n
∑

i=1

f(xi) − E
[

n
∑

i=1

f(xi)
]

≥ nǫ

)

≤ exp

(

−α
2(nǫ− 2Cm/α)2

2nC2m2

)

.

Since the training samples are independent to the testing samples, for a fixed n, we

can treat A(Sn) as a fixed function and apply Lemma 8.13. Thus, the convergence in

probability as stated in (8.1) holds. Applying Theorem 8.1 we complete the proof. �

We now show that similarly to Theorem 8.10, algorithms that generate smooth

solutions are robust, where {Sn} and {Tn} are independent evolving according to the

same Doeblin chain. To this end, we establish following lemmas first.

Lemma 8.14. Fix γ > 0. If {Sn} and {Tn} are independent sequences of a Doeblin

chain (with α and m) on X ×Y, then for n > 2m/α2 the event {T ∗
n ∈ D̃γ,δ

n (S∗
n)} has

a (joint) probability at least 1 − δ. Here

D̃γ,δ
n (S∗

n)

,











(t1, · · · , tn) |pair(S∗
n, Tn, γ) ≥ 1 − 2

√

√

√

√

√

2m2(2(K(γ) + 1) ln 2 + ln(1
δ
))

α2n
+

2m

αn











.

Proof. Similarly to the proof of Lemma 8.7, we bound the term 1
n

∑K(γ)
j=1 |NS

j −
NT

j |. Let π be the invariant measure of the Doeblin chain that generates Sn and Tn.

The invariant measure uniquely exists for all Doeblin chain. We have

Pr(
1

n

K(γ)
∑

j=1

|NS
j −NT

j | ≥ 2λ) ≤ 2Pr(
1

n

K(γ)
∑

j=1

|NS
j − π(Hj)| ≥ λ).

Consider the set of functions H = {1(x ∈ C)|C =
⋃

i∈I Hi; ∀I ⊆ {1, · · · , K(γ)}},
i.e., the set of indicator functions of all combinations of Hi. Then |H| = 2K(γ).
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Furthermore, fix a h0 ∈ H,

Pr(
1

n

K(γ)
∑

j=1

|NS
j − π(Hj)| ≥ λ)

=Pr
{

sup
h∈H

[
1

n

n
∑

i=1

h(si) − Eπh(s)] ≥ λ
}

≤2K(γ)Pr[
1

n

n
∑

i=1

h0(si) − Eπh0(s) ≥ λ].

Since ‖h0‖∞ = 1, we apply Lemma 8.13 to get for n > 2m/λα

Pr[
1

n

n
∑

i=1

h0(si) − Eµh0(s) ≥ λ] ≤ exp

(

−α
2(nλ2 − 2m/α)2

2nm2

)

.

Leting δ = 2K(γ)+1 exp[α2(nλ2 − 2m/α)2/2nm2] establishes the lemma. (Since λ >
√

2m/αn, we have that n > 2m/
√

2m/αnα, which is equivalent to n > 2m/α2,

implying that n > 2m/λα,as required for applying Lemma 8.13.) �

Similarly to the IID case we establish following results. The proofs are similar to

those of Lemma 8.8 and Theorem 8.10 and are hence omitted.

Lemma 8.15. Suppose that {Sn} and {Tn} are independent sequences of a Doeblin

chain (with α and m) on a state space (X × Y). Then for n > 2m/α2 the event

{T ∗
n ∈ ⋂γ∈(0,1] D

γ,δ
n (S∗

n)} holds with (joint) probability at least 1 − δ. Here

D̃γ,δ
n (S∗

n)

,











(t1, · · · , tn) |pair(S∗
n, Tn, γ) ≥ 1 − 2

√

√

√

√

√

2m2(2(K(γ
2
) + 1) ln 2 + ln( 1

γδ
))

α2n
+

2m

αn











.

Theorem 8.16. Suppose that {Sn} and {Tn} are two independent sequences sam-

pled from a Doeblin chain on X × Y and that L(·, ·) is the average loss of l(·, ·) and

is uniformly enveloped. Given {Sn}, if there exist {gn(·) : R+ → R+} and {cn > 0}
such that
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(1) For any n, gn(·) is non-decreasing, and g−1
n (ǫ) defined as g−1

n (ǫ) = sup{c|gn(c) ≤
ǫ} exists for every ǫ > 0; (this include the case that gn(c) ≤ ǫ for all c, where

we denote g−1
n (ǫ) = +∞).

(2) {λn} ↓ 0 where

λn ,
1

n

n
∑

i=1

1
(

sup
y:ρ(y,si)≤cn

|l(A(Sn), si) − l(A(Sn),y)| > gn(ρ(si,y))
)

.

(3) For all ǫ > 0

lim
n→∞

K(min(g−1(ǫ),cn)
2

)

n
= 0;

lim sup
n→∞

− ln min(g−1(ǫ), cn)

n
≤ 0.

Then A is robust w.r.t. almost every {Sn}.

Proof. The proof is identical to that of Theorem 8.10, with the following two

modifications:

(1) Z(M), defined same as in the proof of Theorem 8.10, admits the following

equation:

Z(M) = Eπ{(f(t) −M)1(f(t) > M)},

due to the fact that the strong law of large numbers holds for Doeblin chain.

(2) HM
n is now defined as

HM
n ,

{

(t1, · · · , tn)| 1
n

n
∑

i=1

(f(ti) −M)1(f(ti) > M)

≤ Eπ[(f(t) −M)1(f(t) > M)] + κ
}

.

Notice that law of large numbers holds for Doeblin chain, hence µ(HM
n ) ↑ 1.

Plugging these modifications into the proof of Theorem 8.10, we establish the theorem.

�

Note that the conditions in Theorem 8.16 are identical to these of Theorem 8.10,

except that the samples are drawn from a Doeblin chain.
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8.5 CHAPTER SUMMARY

8.5. Chapter summary

The main message of this chapter is that robustness of learning algorithms is a

necessary and sufficient condition for generalizability. To the best of our knowledge,

this is the first “if and only if” condition for algorithms other than ERM. Examples

of conditions that ensure robustness were investigated, which resulted in novel gener-

alizability results as well as new proofs of known results. In addition to the standard

IID setup, the proposed approach was also applied to the case where the samples are

generated according to a Markov chain.

Both robustness and generalizability of learning algorithms have been extensively

investigated. However, their relationship has not been explored until recently. The

main thrust of this work is to formalize the observation that good learning algorithms

tend to be robust and provide another answer to the following fundamental question:

“what is the reason that makes learning algorithms work?”
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9.1 INTRODUCTION

CHAPTER 9

Sparse Algorithms are not Stable: A

No-free-lunch Theorem

In Chapter 7 we showed that Lasso as a sparse algorithm is not stable. Indeed, such

relationship holds in a more broader context, as we show in this chapter, any sparse

algorithm is non-stable. To be more specified: We consider two widely used notions in

machine learning, namely: sparsity and algorithmic stability. Both notions are deemed

desirable in designing algorithms, and are believed to lead to good generalization

ability. In this paper, we show that these two notions contradict each other. That is,

a sparse algorithm can not be stable and vice versa. Thus, one has to tradeoff sparsity

and stability in designing a learning algorithm. We further present some examples

of stable (hence non-sparse) algorithms and sparse (hence non-stable) algorithms to

illustrate the implication of this theorem. Part of the material in this chapter appears

in [175] and [176].

9.1. Introduction

Regression and classification are important problems with impact in a broad

range of applications. Given data points encoded by the rows of a matrix A, and

observations or labels b, the basic goal is to find a (linear) relationship between A

and b. Various objectives are possible, for example in regression, on may consider
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minimizing the least squared error, ||Aw − b||2, or perhaps in case of a generative

model assumption, minimizing the generalization error, i.e., the expected error of

the regressor x on the next sample generated: E||a⊤w − b||. In addition to such

objectives, one may ask for solutions, w, that have additional structural properties.

In the machine learning literature, much work has focused on obtaining solutions with

special properties.

Two properties of particular interest are sparsity of the solution, and the stability

of the algorithm. Stability in this context, refers to the property that when given

two very similar data sets, an algorithm’s output varies little. More specifically, an

algorithm is stable if its output changes very little when given two data sets differing

on only one sample (this is known as the leave-one-out error). When this difference

decays in the number of samples, that decay rate can be used directly to prove

good generalization ability [32]. This stability property is also used extensively in

the statistical learning community. For example, in [142] the author uses stability

properties of ℓ2-regularized SVM to establish its consistency.

Similarly, numerous algorithms that encourage sparse solutions have been pro-

posed in virtually all fields in machine learning, including Lasso, ℓ1-SVM, Deep Belief

Network, Sparse PCA [146, 180, 89, 46, 105, and many others], mainly because of

the following reasons: (i) a sparse solution is less complicated and hence generalizes

well [78]; (ii) a sparse solution has good interpretability or less cost [42, 104, 36, 58];

and (iii) sparse algorithms may be computationally much easier to implement, store,

compress, etc.

In this chapter, we investigate the mutual relationship of these two concepts. In

particular, we show that sparse algorithms are not stable: if an algorithm “encourages

sparsity” (in a sense defined precisely below) then its sensitivity to small perturbations

of the input data remains bounded away from zero, i.e., it has no uniform stability

properties. We define these notions exactly and precisely in Section 9.2.
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We prove this no-free-lunch theorem by constructing an instance where the leave-

one-out error of the algorithm is bounded away from zero by exploiting the property

that a sparse algorithm can have non-unique optimal solutions.

This chapter is organized as follows. We make necessary definitions in Section 9.2

and provide the no-free-lunch theorem based on these definitions in Section 9.3. Sec-

tions 9.2 and 9.3 are devoted to regression algorithms; in Section 9.4 we generalize

the theorem to arbitrary loss functions. In Section 9.5 we discuss the justification of

the particular notions of stability and sparsity considered in this paper. Concluding

remarks are given in Section 9.6.

9.2. Definitions and Assumptions

The first part of the chapter considers regression algorithms that find a weight

vector, w∗ in the feature space. The goal of any algorithm we consider is to mini-

mize the loss given a new observation (b̂, â). Initially we consider the loss function

l(w∗, (b̂, â)) = |b̂ − â⊤w∗|. Here a is the vector of feature values of the observation.

In the standard regression problem, the learning algorithm L obtains the candidate

solution w∗ by minimizing the empirical loss ||Aw−b||2, or the regularized empirical

loss. For a given objective function, we can compare two solutions w1,w2 by consid-

ering their empirical loss. We adopt a somewhat more general framework, considering

only the partial ordering induced by any learning algorithm L and training set (b, A).

That is, given two candidate solutions, w1,w2, we write

w1 �(b,A) w2,

if on input (b, A), the algorithm L would select w2 before w1. In short, given an

algorithm L, each sample set (b, A) defines an order relationship �(b,A) among all

candidate solutions w. This order relationship defines a family of “best” solutions,

and one of these, w∗ is the output of the algorithm. We denote this by writing

w∗ ∈ L(b,A).
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Thus, by defining a data-dependent partial ordering on the space of solutions, we

can speak more generically of algorithms, their stability, and their sparseness. As we

define below, an algorithm L is sparse if the set L(b,A) of optimal solutions contains a

sparse solution, and an algorithm is stable if the sets L(b,A) and L(b̂,Â) do not contain

solutions that are very far apart, when (b, A) and (b̂, Â) differ on only one point.

We make a few assumptions on the preference ordering, and hence on the algo-

rithms that we consider:

Assumption 9.1. (i) Given j, b, A, w1 and w2, if

w1 �(b,A) w2,

and

w1
j = w2

j = 0,

then for any â,

w1 �(b,Â) w2,

where

Â = (a1, · · · , aj−1, â, aj+1, · · · , am) .

(ii) Given b, A, w1, w2, b′ and z, if

w1 �(b,A) w2,

and

b = z⊤w2,

then

w1 �(b,A) w2,

where

b =





b

b′



 ; A =





A

z⊤



 .
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(iii) Given j, b, A, w1 and w2, if

w1 �(b,A) w2,

then

ŵ1 �(b,Ã) ŵ2,

where

ŵi =





wi

0



 , i = 1, 2; Ã = (A, 0) .

(iv) Given b, A, w1, w2 and P ∈ Rm×m a permutation matrix, if

w1 �(b,A) w2,

then

P⊤w1 �(b,AP ) P
⊤w2.

Part (i) says that the value of a column corresponding to a non-selected feature

has no effect on the ordering; (ii) says that adding a sample that is perfectly predicted

by a particular solution, cannot decrease its place in the partial ordering; (iii) says

the order relationship is preserved when a trivial (all zeros) feature is added; (iv) says

that the partial ordering and hence the algorithm, is feature-wise symmetric. These

assumptions are intuitively appealing and satisfied by most algorithms including, for

instance, standard regression, and regularized regression.

In what follows, we will define precisely what we mean by stability and sparseness.

We recall the definition of uniform (algorithmic) stability first, as given in [32]. We

let Z denote the space of points and labels (typically this will be a compact subset of

Rm+1) so that S ∈ Zn denotes a collection of n labelled training points. For regression

problems, therefore, we have S = (b, A) ∈ Zn. We let L denote a learning algorithm,

and for (b, A) ∈ Zn, we let L(b,A) denote the output of the learning algorithm (i.e.,

the regression function it has learned from the training data). Then given a loss

function l, and a labelled point s = (z, b) ∈ Z, l(L(b,A), s) denotes the loss of the
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algorithm that has been trained on the set (b, A), on the data point s. Thus for

squared loss, we would have l(L(b,A), s) = ‖L(b,A)(z) − b‖2.

Definition 9.1. An algorithm L has uniform stability βn with respect to the loss

function l if the following holds:

∀(b, A) ∈ Zn, ∀i ∈ {1, · · · , n}, ‖l(L(b,A), ·) − l(L(b,A)\i , ·)‖∞ ≤ βn.

Here L(b,A)\i stands for the learned solution with the ith sample removed from (b, A),

i.e., with the ith row of A and the ith element of b removed.

At first glance, this definition may seem too stringent for any reasonable algorithm

to exhibit good stability properties. However, as shown in [32], Tikhonov-regularized

regression has stability that scales as 1/n. Stability can be used to establish strong

PAC bounds. For example, in [32] they show that if we have n samples, βn denotes

the uniform stability, and M a bound on the loss, then

R ≤ Remp + 2βn + (4nβn +M)

√

ln 1/δ

2n
,

where R denotes the Bayes loss, and Remp the empirical loss.

Since Lasso is an example of an algorithm that yields sparse solutions, one impli-

cation of the results of this chapter is that while ℓ2-regularized regression yields sparse

solutions, ℓ1-regularized regression does not. We show that the stability parameter of

Lasso does not decrease in the number of samples (compared to the O(1/n) decay for

ℓ2-regularized regression). In fact, we show that Lasso’s stability is, in the following

sense, as bad as it gets. To this end, we define the notion of the trivial bound, which

is the worst possible error a training algorithm can have for arbitrary training set and

testing sample labelled by zero.

Definition 9.2. Given a subset from which we can draw n labelled points, Z ⊆
Rn×(m+1) and a subset for one unlabelled point, X ⊆ Rn, a trivial bound for a learning
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algorithm L w.r.t. Z and X is

b(L,Z,X ) , max
(b,A)∈Z,z∈X

l
(

L(b,A), (z, 0)
)

.

As above, l(·, ·) is a given loss function.

Notice that the trivial bound does not diminish as the number of samples, n,

increases, since by repeatedly choosing the worst sample, the algorithm will yield the

same solution.

Our next definition makes precise the notion of sparsity of an algorithm which

we use.

Definition 9.3. An algorithm L is said to Identify Redundant Features (I.R.F.

for short) if given (b, A), there exists x∗ ∈ L(b,A) such that if ai = aj, then not both

wi and wj are nonzero. That is,

∀i 6= j, ai = aj ⇒ w∗
iw

∗
j = 0.

I.R.F. means that at least one solution of the algorithm does not select both

features if they are identical. We note that this is a quite weak notion of sparsity. An

algorithm that achieves reasonable sparsity (such as Lasso) should be able to I.R.F.

9.3. Main Theorem

The next theorem is the main contribution of this chapter. It says that if an

algorithm is sparse, in the sense that it identifies redundant features as in the defini-

tion above, then that algorithm is not stable. One notable example that satisfies this

theorem is Lasso.

Theorem 9.1. Let Z ⊆ Rn×(m+1) denote the domain of sample sets of n points

each with m features, and X ⊆ R
m+1 the domain of new observations consisting of

a point in Rm, and its label in R. Similarly, let Ẑ ⊆ Rn×(2m+1) be the domain of

sample sets of n points each with 2m features, and X̂ ⊆ R2m+1 be the domain of new
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observations. Suppose that these sets of samples and observations are such that:

(b, A) ∈ Z =⇒ (b, A, A) ∈ Ẑ

(0, z⊤) ∈ X =⇒ (0, z⊤, z⊤) ∈ X̂ .

If a learning algorithm L satisfies Assumption 9.1 and identifies redundant features,

its uniform stability bound β is lower bounded by b(L,Z,X ), and in particular does

not go to zero with n.

Proof. Let (b, A) and (0, z⊤) be the sample set and the new observation such

that they jointly achieve b(L,Z,X ), i.e., for some w∗ ∈ L(b, A), we have

b(L,Z,X ) = l
(

w∗, (0, z)
)

. (9.1)

Let 0n×m be the n×m 0-matrix, and 0 stand for the zero vector of length m. We

denote

ẑ , (0⊤, z⊤); Â , (A, A);

b̃ ,





b

b′



 ; Ã ,





A, A

0⊤, z⊤



 .

We first show that




0

w∗



 ∈ L(b,Â);





w∗

0



 ∈ L(b̃,Ã). (9.2)

Notice that L is feature-wise symmetric and identifies redundant features, hence there

exists a w′ such that




0

w′



 ∈ L(b,Â).
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Since w∗ ∈ L(b,A), we have

w′ �(b,A) w∗

⇒





0

w′



 �(b,(0n×m,A))





0

w∗





⇒





0

w′



 �(b,Â)





0

w∗





⇒





0

w∗



 ∈ L(b,Â).

The first implication follows from Assumption 9.1(iii), and the second from (i).

Now notice by feature-wise symmetry, we have




w∗

0



 ∈ L(b,Â).

Furthermore,

0 = (0⊤, z⊤)





w∗

0



 ,

and thus by Assumption 9.1(ii) we have





w∗

0



 ∈ L(b̃,Ã).

Hence (9.2) holds. This leads to

l
(

L(b,Â), (0, ẑ)
)

= l(w∗, (0, z)); l
(

L(b̃,Ã), (0, ẑ)
)

= 0.

By definition of the uniform bound, we have

β ≥ l
(

L(b,Â), (0, ẑ)
)

− l
(

L(b̃,Ã), (0, ẑ)
)

.

Hence by (9.1) we have β ≥ b(L,Z,X ), which establishes the theorem. �
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Theorem 9.1 not only means that a sparse algorithm is not stable, it also states

that if an algorithm is stable, there is no hope to achieve satisfactory sparsity, since it

cannot even identify redundant features. Note that indeed, l2 regularized regression

is stable, and does not identify redundant features.

9.4. Generalization to Arbitrary Loss

The results derived so far can easily be generalized to algorithms with arbitrary

loss function l(x∗, (b̂, â)) = fm(b̂, â1w
∗
i , · · · , âmw

∗
m) for some fm. Here, âi and w∗

i

denote the ith component of â ∈ R
m and w∗ ∈ R

m, respectively. We assume that the

function fm(·) satisfies the following conditions

(a) fm(b, v1, · · · , vi, · · · , vj, · · · vm) = fm(b, v1, · · · , vj, · · · , vi, · · · vm); ∀b,v, i, j.

(b) fm(b, v1, · · · , vm) = fm+1(b, v1, · · · , vm, 0); ∀b,v.
(9.3)

We require following modifications of Assumption 9.1(ii) and Definition 9.2.

Assumption 9.2. (ii) Given b, A, w1, w2, b′ and z if

w1 �(b,A) w2, l(w2, (b′, z)) ≤ l(w1, (b′, z))

then

w1 �(b,A) w2, where b =





b

b′



 ; A =





A

z⊤



 .

Definition 9.4. Given Z ⊆ Rn×(m+1) and X ⊆ Rm+1, a trivial bound for a

learning algorithm L w.r.t. Z and X is

b̂(L,Z,X ) , max
(b,A)∈Z,(b,z)∈X

{

l
(

L(b,A), (b, z)
)

− l
(

0, (b, z)
)

}

.

These modifications account for the fact that under an arbitrary loss function,

there may not exist a sample that can be perfectly predicted by the zero vector. With

these modifications, we have the same no-free-lunch theorem.
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Theorem 9.2. As before, let Z ⊆ R
n×(m+1), and Ẑ ⊆ R

n×(2m+1) be the domain

of sample sets, and X ⊆ Rm+1, and X̂ ⊆ R2m+1 be the domain of new observations,

with m and 2m features respectively. Suppose, as before, that these sets satisfy

(b, A) ∈ Z =⇒ (b, A, A) ∈ Ẑ

(b′, z⊤) ∈ X =⇒ (b′, z⊤, z⊤) ∈ X̂ .

If a learning algorithm L satisfies Assumption 9.2 and identifies redundant features,

its uniform stability bound β is lower bounded by b̂(L,Z,X ).

Proof. This proof follows a similar line of reasoning as the proof of Theorem 9.1.

Let (b, A) and (b′, z⊤) be the sample set and the new observation such that they jointly

achieve b̂(L,Z,X ), i.e., let w∗ ∈ L(b, A), and

b̂(L,Z,X ) = l
(

w∗, (b′, z)
)

− l
(

0, (b′, z)
)

= fm(b′, w∗
1z1, · · · , w∗

mzm) − f(b′, 0, · · · , 0).

Let 0n×m be the n×m 0-matrix, and 0 stand for the zero vector of length m. We

denote

ẑ , (0⊤, z⊤); Â , (A, A);

b̃ ,





b

b′



 ; Ã ,





A, A

0⊤, z⊤



 .

To prove the theorem, it suffices show that there exists w1, w2 such that

w1 ∈ L(b,Â); w2 ∈ L(b̃,Ã),

and

l
(

w1, (b′, ẑ)
)

− l
(

w2, (b′, ẑ)
)

≥ b̂(L,Z,X )

where again,

b̂(L,Z,X ) = fm(b′, w∗
1z1, · · · , w∗

mzm) − fm(b′, 0, · · · , 0).
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By an identical argument as that of Proof 9.1, we have




0

w∗



 ∈ L(b,Â).

Hence there exists w1 ∈ L(b,Â) such that

l
(

w1, (b′, ẑ)
)

= l









0

w∗



 , (b′, ẑ)



 (9.4)

= fm(b′, w∗
1z1, · · · , w∗

mzm).

The last equality follows from Equation (9.3) easily.

Now notice that by feature-wise symmetry, we have




w∗

0



 ∈ L(b,Â).

Hence there exists w2 ∈ L(b̃,Ã) such that

l
(

w2, (b′, ẑ)
)

≤ l









w∗

0



 , (b′, ẑ)



 (9.5)

= fm(b′, 0, · · · , 0).

The last equality follows from Equation (9.3). The inequality here holds because by

Assumption 9.2(ii), if there is no w2 ∈ L(b̃,Ã) that satisfies the inequality, then we

have

w2 �(b̃,Ã)





w∗

0





which then implies that

⇒





w∗

0



 ∈ L(b̃,Ã),

which is absurd.

Combining (9.4) and (9.5) proves the theorem. �
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9.5. Discussions

To see that the two notions that we consider are not too restrictive, we list in this

section some algorithms that either admit a diminishing uniform stability bound or

identify redundant features. Thus, by applying Theorem 9.2 we conclude that they

are either non-sparse or non-stable. We also quota some empirical results to show

that algorithms that identify redundant features do achieve sparsity.

9.5.1. Stable algorithms. All algorithms listed in this subsection has a

uniform stability bound that decreases as O( 1
n
), and is hence stable. Example 9.1

to 9.5 and adapted from [32].

Example 9.1 (Bounded SVM regression). Assume k is a bounded kernel, that is

k(x,x) ≤ κ2. Let F denote the RKHS space of k. Consider Y = [0, B] and the loss

function

l(f, (y,x)) = |f(x) − y|ǫ =







0 if |f(x) − y| ≤ ǫ;

|f(x) − y| − ǫ otherwise.

The SVM regression algorithm with kernel k is defined as

LS = arg min
g∈F

{

n
∑

i=1

l(g, (yi,xi)) + λn‖g‖2
κ

}

; here:S = ((y1,x1), · · · , (yn,xn)).

Then, its uniform stability satisfies

βn ≤ κ2

2λn
.

Example 9.2 (Soft-margin SVM classification). Assume k is a bounded kernel,

that is k(x,x) ≤ κ2. Let F denote the RKHS space of k. Consider Y = {0, 1}1 and

the loss function

l(f, (y,x)) = (1 − (2y − 1)f(x))+ =







1 − (2y − 1)f(x) if 1 − (2y − 1)f(x) > 0;

0 otherwise.

1This is slightly different from but equivalent to the standard setup where Y = {−1, 1}.
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The soft-margin SVM classification algorithm with kernel k is defined as

LS = arg min
g∈F

{

n
∑

i=1

l(g, (yi,xi)) + λn‖g‖2
κ

}

; here:S = ((y1,x1), · · · , (yn,xn)).

Then, its uniform stability satisfies

βn ≤ κ2

2λn
.

Example 9.3 (RKHS regularized least square regression). Assume k is a bounded

kernel, that is k(x,x) ≤ κ2. Let F denote the RKHS space of k. Consider Y = [0, B]

and the loss function

l(f, (y,x)) = (f(x) − y)2.

The regularized least square regression algorithm with kernel k is defined as

LS = arg min
g∈F

{

n
∑

i=1

l(g, (yi,xi)) + λn‖g‖2
κ

}

; here:S = ((y1,x1), · · · , (yn,xn)).

Then, its uniform stability satisfies

βn ≤ 2κ2B2

λn
.

Next example is the relative entropy regularization. In this case, we are given a

class of base hypotheses, and the output of the algorithm is a mixture of them, or

more precisely a probability distribution over the class of base hypothese.

Example 9.4 (Relative Entropy Regularization). Let H = {hθ : θ ∈ Θ} be the

class of base hypotheses, where Θ is a measurable space with a reference measure.

Let F denote the set of probability distributions over Θ dominated by the reference

measure. Consider the loss function

l(f, z) =

∫

Θ

r(hθ, z)f(θ)dθ;

where r(·, ·) is a loss function bounded by M . Further let f0 be a fixed element of F
and K(·, ·) denote the Kullback-Leibler divergence. The relative entropy regularized
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algorithm is defined as

LS = arg min
g∈F

{

n
∑

i=1

l(g, zi) + λnK(g, f0)
}

; here:S = (z1, · · · , zn).

Then, its uniform stability satisfies

βn ≤ M2

λn
.

A special case of relative entropy regularization is the following maximum entropy

discrimination proposed in [92].

Example 9.5 (Maximum entropy discrimination). Let H = {hθ,γ : θ ∈ Θ, γ ∈ R}
with hθ,γ = hθ. Consider Y = {0, 1} and the loss function

l(f, z) =

(∫

Θ,R

[γ − (2y − 1)hθ(z)]f(θ)dθ

)

+

;

where [γ − (2y − 1)hθ(z)] is bounded by M . The maximum entropy discrimination is

a real-valued classifier defined as

LS = arg min
g∈F

{

n
∑

i=1

l(g, zi) + λnK(g, f0)
}

; here:S = (z1, · · · , zn).

Then, its uniform stability satisfies

βn ≤ M

λn
.

If an algorithm is not stable, one way to stabilize it is to averaging its solutions

trained on small bootstrap subsets of the training set, a process called subbagging [69],

which we recall in the following example.

Example 9.6. let L be a learning algorithm with a stability βn, and consider the

following algorithm

L̂
k
D(x) , ES (LS(x)) .
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where ES is the expectation of with respect to k points sampled in D uniformly without

replacement. Then L̂
k has a stability β̂n satisfying

β̂n ≤ k

n
βk.

9.5.2. Sparse Algorithms. Next we list some algorithms that identify re-

dundant features.

Example 9.7 (ℓ0 Minimization). Subset selection algorithms based on minimizing

ℓ0 norm identifies redundant features. One example of such algorithm is the canonical

selection procedure [74], which is defined as

w∗ = arg min
w∈Rm

{‖Aw − b‖2 + λ‖w‖0} . (9.6)

Proof. Note that if a solution w∗ achieves minimum and has non-zero weights

on two redundant features i and i′, then by constructing a ŵ such that ŵi = w∗
i +w∗

i′

and ŵi′ = 0 we get a strictly better solution, which is a contradiction. Hence ℓ0

minimizing algorithms IRF. �

It is known that in general finding the minimum of (9.6) is NP-hard [115]. There-

fore, a convex relaxation, the ℓ1 norm, is used instead to find a sparse solution. These

algorithms either minimize the ℓ1 norm of the solution under the constraint of a re-

gression error, or minimize the convex combination of some regression error and the

ℓ1 norm of the solution.

Example 9.8 (ℓ1 Minimization). The following subset selection algorithms based

on minimizing ℓ1 norm identify redundant features. There algorithms include:

(1) Lasso [146] defined as

w∗ = arg min
w∈Rm

{‖Aw − b‖2 + λ‖w‖1} .
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(2) Basis Pursuit [38] defined as the solution of the following optimization prob-

lem on w ∈ R
m:

Minimize: ‖w‖1

Subject to: Aw = b.

(3) Dantzig Selector [37] defined as

Minimize: ‖w‖1

Subject to: ‖A∗(Aw − b)‖∞ ≤ c.

Here, A∗ is the complex conjugate of A, and c is some positive constant.

(4) 1-norm SVM [180, 105] defined as the solution of the following optimization

problem on α, ξ and γ.

Minimize: ‖α‖1 + C

n
∑

i=1

ξi

Subject to: yi

{

n
∑

j=1

αik(xi,xj) + γ

}

≥ 1 − ξi; i = 1, · · · , n;

ξi ≥ 0; i = 1, · · · , n.

(5) ℓ1 norm SVM regression [133] defined as the solution of the following opti-

mization problem on α, ξ and γ:

Minimize: ‖α‖1 + C
n
∑

i=1

ξi

Subject to:

{

n
∑

j=1

αik(xi,xj) + γ

}

− yi ≤ ε+ ξi; i = 1, · · · , n;

yi −
{

n
∑

j=1

αik(xi,xj) + γ

}

≤ ε+ ξi; i = 1, · · · , n

ξi ≥ 0; i = 1, · · · , n,

where ε > 0 is a fixed constant.
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Proof. Given an optimal w∗ we construct a new solution ŵ such that for any

subset of redundant features I,
∑

i∈I 1(ŵi 6= 0) ≤ 1 and
∑

i∈I ŵi =
∑

i∈I w
∗
i . Thus,

ŵ and w∗ are equally good, which implies that any ℓ1 minimizing algorithm has at

leat one optimal solution that I.R.F. Hence such algorithm I.R.F. by definition. �

Empirical results also show that the outputs of algorithms that identify redundant

features are much sparser than algorithms that do not identify redundant features.

In [106], the authors reported the empirical performance (testing error and number

of SV) of three algorithms: soft-margin SVM, 1-norm SVM and ℓ0 minimizing SVM2

on five UCI data sets [3], namely Ionosphere, Pima, Wbc, Bupa and Sona. Their

empirical results clearly show that to achieve a similar testing error, soft-margin

SVM, which does not identify redundant features, requires significantly more support

vectors. We quote their results in Section 9.7 for completeness.

9.6. Chapter summary

In this chapter, we prove a no-free-lunch theorem show that sparsity and stability

are at odds with each other. We show that if an algorithm is sparse, then its uniform

stability is lower bounded by a nonzero constant. This also shows that any stable

algorithm cannot be sparse. Thus we show that these two widely used concepts,

namely sparsity and algorithmic stability conflict with each other. At a high level, this

theorem provides us with additional insight into these concepts and their interrelation,

and it furthermore implies that a tradeoff between these two concepts is unavoidable

in designing learning algorithms. On the other hand, given that both sparsity and

stability are desirable properties, one interesting direction is to understand the full

implications of having one of them. That is, what other properties must a sparse

solution have? Given that sparse algorithms often perform well and have strong

statistical behavior, one may further ask for other significant notions of stability that

are not in conflict with sparsity.

2The ℓ0 minimization is approximated using a Cross Entropy method due its NP-hardness.
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9.7. Empirical results

The following empirical results are adapted from [106].

Table 9.1. The error and SV percentage (in parentheses) with a linear
kernel. The number after ± represents the standard deviation of either the
error or the percentage of SVs.

Data Set soft-margin SVM 1-norm SVM ℓ0-SVM
Ionosphere 14.7 ± 2.0 (36.4 ± 8.9) 13.0 ± 1.8 (15.1 ± 2.5) 14.6 ± 1.8 (7.7 ± 2.6)

Pima 24.3 ± 1.4 (51.2 ± 6.2) 24.6 ± 1.1 (4.9 ± 0.5) 24.8 ± 1.5 (3.9 ± 1.2)
Wbc 5.7 ± 1.2 (10.1 ± 2.5) 5.9 ± 1.4 (4.8 ± 1.1) 5.9 ± 0.8 (3.7 ± 1.4)
Bups 32.6 ± 2.1 (71.9 ± 3.8) 32.5 ± 1.7 (4.0 ± 0.0) 33.4 ± 2.8 (3.1 ± 0.6)
Sona 25.9 ± 3.7 (53.7 ± 7.9) 25.5 ± 4.7 (14.7 ± 2.4) 25.5 ± 4.7 (10.3 ± 1.9)

Table 9.2. The error and SV percentage with a polynomial kernel of
degree 5.

Data Set soft-margin SVM 1-norm SVM ℓ0-SVM
Ionosphere 15.2 ± 2.7 (36.1 ± 3.7) 13.7 ± 2.6 (20.5 ± 8.4) 12.5 ± 1.3 (7.1 ± 1.1)

Pima 33.2 ± 1.5 (48.8 ± 5.2) 30.6 ± 1.8 (29.5 ± 4.6) 30.2 ± 2.4 (11.2 ± 6.6)
Wbc 6.0 ± 2.1 (21.9 ± 2.7) 8.5 ± 2.8 (15.1 ± 3.2) 5.6 ± 1.3 (2.5 ± 0.7)
Bups 33.7 ± 5.2 (58.0 ± 6.0) 36.3 ± 2.2 (33.9 ± 3.5) 37.9 ± 4.4 (14.4 ± 9.9)
Sona 15.9 ± 4.7 (70.3 ± 1.7) 20.3 ± 7.0 (51.1 ± 6.8) 23.3 ± 5.3 (6.9 ± 1.6)

Table 9.3. The error and SV percentage with a Gaussian kernel and C = 1.

Data Set soft-margin SVM 1-norm SVM ℓ0-SVM
Ionosphere 9.8 ± 2.3 (76.3 ± 2.2) 6.2 ± 1.5 (19.3 ± 3.1) 6.6 ± 2.3 (14.1 ± 2.6)

Pima 27.5 ± 1.7 (67.9 ± 5.1) 25.2 ± 3.0 (12.9 ± 4.9) 25.4 ± 3.3 (8.5 ± 1.7)
Wbc 7.5 ± 0.8 (42.4 ± 3.4) 4.6 ± 1.5 (14.4 ± 1.5) 4.7 ± 1.4 (9.7 ± 1.2)
Bups 34.4 ± 3.0 (93.4 ± 1.6) 36.9 ± 3.9 (28.3 ± 25.5) 36.9 ± 4.6 (10.4 ± 4.3)
Sona 46.7 ± 6.3 (100.0 ± 0.0) 24.3 ± 3.5 (41.7 ± 6.2) 24.5 ± 3.7 (22.5 ± 2.5)
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CHAPTER 10

Comprehensive Robust Support Vector

Machines and Convex Risk Measures

In Chapters 6- 8 we showed that robustness played an important role in machine

learning tasks. In fact, we can actively exploit this relationship by designing robust

learning algorithms, which is the main theme of Chapters 10 and 11. In this chapter,

we propose a new classification algorithm in the spirit of support vector machines

based on robust optimization, that builds in non-conservative protection to noise and

controls overfitting. Our formulation is based on a softer version of robust optimiza-

tion called comprehensive robustness. We show that this formulation is equivalent to

regularization by any arbitrary convex regularizer. We explain how the connection of

comprehensive robustness to convex risk-measures can be used to design risk-measure

constrained classifiers with robustness to the input distribution. The proposed for-

mulation leads to convex optimization problems that can be easily solved. Finally,

we provide some empirical results that show the promise of comprehensive robust

classifiers. Part of the material of this chapter appears in [169].

10.1. Introduction

SVMs are among the most successful algorithms for classification (see for example

[2, 156, 133]). The standard SVM setup relies on an iid assumption, that is, all
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training samples and testing samples are assumed to be independently generated

according to an unknown underlying distribution, and finds a hyperplane (in the

Reproducing Kernel Hilbert Space) that minimizes some regularized empirical loss.

In this chapter we follow a different approach, proposed originally by [137, 27,

101]. The training data are assumed to be generated by the true underlying distri-

bution, but some non-iid (potentially adversarial) disturbance is then added to the

samples we observe. Previous works on robust SVMs are all based on a (often too

conservative) worst-case analysis, i.e., the training error under the most adversarial

disturbance realization is considered. This worst-case approach provides a solution

with but one guarantee: feasibility and worst-case performance control for any re-

alization of the disturbance within the bounded uncertainty set. If the disturbance

realization turns out favorable (e.g., close to mean behavior), no improved perfor-

mance is guaranteed, while if the realization occurs outside the assumed uncertainty

set, all bets are off: the error is not controlled. This makes it difficult to address

noise with heavy tails: if one takes a small uncertainty set, there is no guarantee for

potentially high probability events; on the other hand, if one seeks protection over

large uncertainty sets, the robust setting may yield overly pessimistic solutions.

We harness new developments in robust optimization [64, 12, 22], in particu-

lar the softer notion of “comprehensive robustness” [10], and derive a new robust

SVM formulation that addresses this problem explicitly. The key idea to compre-

hensive robustness is to discount lower-probability noise realizations by reducing the

loss incurred. This allows us to construct classifiers with improved empirical perfor-

mance together with probability bounds for all magnitudes of constraint violations.

In particular, our contributions include the following:

• We use comprehensive robustness to construct “soft robust” classifiers with

performance guarantees that depend on the level of disturbance affecting the

training data – that is, the performance guarantee is noise-level-dependent.

This is in contrast to robust classification which provides the same guar-

antees uniformly inside the uncertainty set, and no guarantees outside. We
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show that this richer class of robustness is equivalent to a much broader class

of regularizers, including, e.g., standard norm-based SVM and Kullback-

Leibler divergence based SVM regularizers. Moreover, we provide computa-

tional complexity results for these comprehensive robust classifiers.

• We next show the connection to risk theory [73, 9], at the same time ex-

tending past work on chance constraints, and also opening the door for

constructing classifiers with different risk-based guarantees. Although the

connection seems natural, to the best of our knowledge this is the first at-

tempt to view classification from a risk-hedging perspective.

• Lastly, we illustrate the performance of our new classifiers through simula-

tion. In particular we show that the comprehensive robust classifier, which

can be viewed as a generalization of the standard SVM and the robust SVM,

provides superior empirical results.

Structure of the chapter: This chapter is organized as follows. In Section 10.2

we investigate the comprehensive robust classification framework, particularly a for-

mulation where the loss incurred decreases in an additive way, depending on the

disturbance. We discuss a special class of discounts, namely norm discounts, and de-

rive probability bounds for such discounts in Section 10.3. In Section 10.4 we briefly

investigate the tractability of the multiplicative discount formulation, i.e., the loss

incurred decreases in a multiplicative manner, depending on the disturbance. We

relate comprehensive robust classification with convex risk theory in Section 10.5.

The kernelized version of comprehensive robust classification is given in Section 10.6.

We provide numerical simulation results comparing robust classification and compre-

hensive robust classification in Section 10.7. Some concluding remarks are given in

Section 10.8.

Notation: Capital letters are used to denote matrices, and boldface letters are

used to denote column vectors. For a given norm ‖ · ‖, we use ‖ · ‖∗ to denote its dual

norm. Similarly, for a function f(·) defined on a set H, f ∗(·) denotes its conjugate
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function, i.e., f ∗(y) = supx∈H{y⊤x − f(x)}. For a vector x and a positive semi-

definite matrix C of the same dimension, ‖x‖C denotes
√

x⊤Cx. We use δ to denote

disturbance affecting the samples. We use superscript r to denote the true value for

an uncertain variable, so that δr
i is the true (but unknown) noise of the ith sample.

The set of non-negative scalars is denoted by R
+. The set of integers from 1 to n is

denoted by [1 : n].

10.2. Comprehensive robust classification

We consider the standard binary-class classification setup, where we are given

a finite number of training samples {xi, yi}m
i=1 ⊆ R

n × {−1,+1}, and must find a

linear classifier, specified by the function hw,b(x) = sgn(〈w, x〉 + b). For a standard

regularized classifier, the parameters are obtained by solving the following convex

optimization problem:

min
x,b

{

r(w, b) +

m
∑

i=1

[

1 − yi(〈w, xi〉 + b), 0
]

}

,

where r(w, b) is a regularization term. Notice here, [1 − yi(〈w, xi〉 + b), 0] is the

hinge-loss incurred for the ith sample. The standard robust SVM (e.g., [27, 137])

considers the case where samples are corrupted by some noise ~δ = (δ1, · · · , δm) ∈ N ,

and solve the following mini-max problem

min
w,b

max
(δ1,··· ,δm)∈N

{

r(w, b) +

m
∑

i=1

[

1 − yi(〈w, xi − δi〉 + b), 0
]

}

. (10.1)

The uncertainty set N is called box-typed if N =
∏m

i=1 Ni, where Ni is the projection

of N onto the ith component. This essentially implies that the disturbances for

different observations are uncorrelated, and is an assumption made by virtually all

robust SVM works. For box-typed uncertainty set, the robust classifier (10.1) can be
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rewritten as

min
w,b

: r(w, b) +
m
∑

i=1

ξi

s.t. : ξi ≥
[

1 − yi(〈w,xi − δi〉 + b)], δi ∈ Ni,

ξi ≥ 0.

If we denote the hinge loss of a sample under a certain noise realization as ξi(δi) ,

max
[

1 − yi(〈w, xi − δi〉 + b), 0
]

, the robust classifier (10.1) can be rewritten as:

min
w,b

max
(δ1,··· ,δm)∈N

{

r(w, b) +

m
∑

i=1

ξi(δi)
}

.

There are two potential problems with this robust classifier. First, it treats all distur-

bances belonging to N in exactly the same manner, which can lead to an unfavorable

bias to rare disturbances. In fact, it can be shown that replacing N with its boundary

we obtain the same classifier. Second, it provides no protection against disturbances

outside N , which makes it inappropriate for disturbances with unbounded support,

particularly in the heavy-tailed case.

Instead, we formulate the comprehensive robust classifier by introducing a dis-

counted loss function depending not only on the nominal hinge loss, but also on the

noise realization itself. Let hi(·, ·) : R × Rn → R satisfy 0 ≤ hi(α, β) ≤ hi(α, 0) = α.

We use h to denote our discounted loss function: it discounts the loss depending on

the realized data, yet is always nonnegative, and provides no discount for samples

with zero disturbance. Thus, the comprehensive robust classifier is given by:

min
w,b

sup
(δ1,··· ,δm)∈N

{

r(w, b) +
m
∑

i=1

hi

(

ξi(δi), δi

)

}

. (10.2)

We primarily investigate additive discounts of the form hi(α,β) , max(0, α −
fi(β)) in this chapter, with a short detour to consider multiplicative discounts in

Section 10.4. Additive structure provides a rich class of discount functions, while
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remaining tractable. Moreover, this additive structure provides the link to risk theory

and convex risk measures which we pursue in Section 10.5.

We formulate comprehensive robust classification with an additive discount func-

tion in Section 10.2.1 and establish an equivalence relation between comprehensive

robust classification and a broad class of regularization schemes in Section 10.2.2. In

particular, we show that the standard norm-regularized SVM has a comprehensive

robust representation, and so do many regularized SVMs with non-norm regularizers.

In Section 10.2.3 we investigate the tractability of comprehensive robust classification.

10.2.1. Problem formulation. We consider box uncertainty sets through-

out. Substituting hi(α,β) , max(0, α− fi(β)) and N =
∏

i Ni into Equation (10.2)

and extending fi(·) to take the value +∞ for δi 6∈ Ni, we obtain a formulation of the

comprehensive robust classifier that has uncountably many constraints:

Comprehensive Robust Classifier:

min : r(w, b) +

m
∑

i=1

ξi, (10.3)

s.t. : yi(〈w, xi − δi〉 + b) ≥ 1 − ξi − fi(δi), ∀δi ∈ R
n, i = 1, · · · , m

ξi ≥ 0; i = 1, · · · , m.

This fi(·) (extended real) function controls the disturbance discount, and therefore

must satisfy

inf
β∈Rn

fi(β) = fi(0) = 0. (10.4)

Notice that if we set fi(·) to be the indicator function of a set, we recover the standard

robust classifier formulation. Thus the comprehensive robust classifier is a natural

generalization of the robust classifier with more flexibility on setting fi(·).
The function fi(·) has a physical interpretation as controlling the margin of the

resulting classifier under all disturbances. That is, when ξi = 0, the resulting classifier

guarantees a margin 1/‖w‖ for the observed sample xi (the same as the standard
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classifier), together with a guaranteed margin (1 − fi(δi))/‖w‖ when the sample is

perturbed by δi.

10.2.2. Comprehensive robustness and regularization. In this section

we show that any convex regularization term in the constraint is equivalent to a

comprehensive robust formulation, and vice versa. Moreover, the standard regular-

ized SVM is equivalent to a (non-regularized) comprehensive robust classifier where

fi(δi) = α‖δi‖.
Given a function f(·), let f ∗ denote its Legendre-Fenchel transform or conjugate

function, given by f ∗(s) = supx{〈s, y〉 − f(x)} (see, e.g., [126] for details). Then

we have the following, that shows that if f is a disturbance discount that satisfies

(10.4), then so does its conjugate, and vice versa. We use this below to establish the

equivalence between convex regularization and comprehensive robustness.

Lemma 10.1. (i) If f(·) satisfies (10.4), then so does f ∗(·).
(ii) If g(·) is closed and convex, and g∗(·) satisfies (10.4), then so does g(·).

Proof. (i) By definition we have f ∗(y) ≥ y⊤0− f(0), ∀y ∈ Rn. Hence

infy∈Rn f ∗(y) ≥ 0, since f(0) = 0. Furthermore, f ∗(0) = supx∈Rn(0⊤x −
f(x)) = − infx∈Rn f(x) = 0 completes the proof of the first part.

(ii) For g(·) closed and convex, g(·) = (g(·)∗)∗ [126, 33]. The second part

follows from the first part by setting f(·) = g∗(·). �

Theorem 10.2. The Comprehensive Robust Classifier (10.3) is equivalent to the

following convex program:

min : r(w, b) +
m
∑

i=1

ξi,

s.t. : yi(〈w, xi〉 + b) − f ∗
i (yiw) ≥ 1 − ξi, i = 1, · · · , m,

ξi ≥ 0, i = 1, · · · , m.

(10.5)
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Proof. Simple algebra yields

yi(〈w, xi − δi〉 + b) ≥ 1 − ξi − fi(δi), ∀δi ∈ R
n

⇐⇒ yi(〈w, xi〉 + b) − yiw
⊤δi + fi(δi) ≥ 1 − ξi, ∀δi ∈ R

n

⇐⇒ yi(〈w, xi〉 + b) − sup
δi∈Rn

[

yiw
⊤δi − fi(δi)

]

≥ 1 − ξi

⇐⇒ yi(〈w, xi〉 + b) − f ∗
i (yiw) ≥ 1 − ξi.

Finally, note that the problem convexity follows immediately from the (generic) con-

vexity of the conjugate function. �

Theorem 10.2 has two implications. First, it gives an equivalent and finite rep-

resentation for the infinite program of the Comprehensive robust classifier. Second,

the robustness for a given regularizer f ∗(·) can be obtained by investigating the cor-

responding discount function f(·).
From Lemma 10.1(i),

inf
w∈Rn

f ∗
i (yiw) = f ∗

i (0) = 0,

and therefore f ∗
i (·) “penalizes” yiw and is thus a regularization term. A classifier

that has a convex regularization term g(·) in each constraint is equivalent to a com-

prehensive robust classifier with disturbance discount f(·) = g∗(·) (Lemma 10.1(ii)).

Therefore, the comprehensive robust classifier is equivalent to the constraint-wise

regularized classifier with general convex regularization. This equivalence gives an al-

ternative explanation for the generalization ability of regularization: intuitively, the

set of testing data can be regarded as a “disturbed” copy of the set of training samples

where the penalty on large (or low-probability) disturbance is discounted. Empiri-

cal results show that a classifier that handles noise well has a good performance for

testing samples.
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As an example of this equivalence, set fi(δi) = α‖δi‖ for α > 0 and r(w, b) ≡ 0.

Here,

f ∗
i (yiw) =







0 ‖w‖∗ ≤ α,

+∞ otherwise;

which is the indicator function of the dual-norm ball with radius α. Thus (10.5) is

equivalent to

min :
∑m

i=1 ξi,

s.t. : yi(〈w, xi〉 + b) ≥ 1 − ξi, i = 1, · · · , m,
‖w‖∗ ≤ α,

ξi ≥ 0, i = 1, · · · , m.

(10.6)

We notice that Problem (10.6) is the standard regularized classifier. Hence, the

comprehensive robust classification framework is a general framework which includes

both robust SVMs and regularized SVMs as special cases. Hence, the results obtained

for the comprehensive robust classifier (e.g., the probabilistic bound in Section 10.3)

can be easily applied to robust SVMs and standard SVMs.

10.2.3. Tractability. We now give a sufficient condition on the discount, so

that the resulting comprehensive robust classification problem (10.5) is computation-

ally tractable.

Definition 10.1. A function f(·) : R
n → R is called Efficiently Conjugatable if

there exists a sub-routine such that for arbitrary h ∈ Rn and α ∈ R, in polynomial

time it either reports

sup
x∈Rn

(

h⊤x − f(x)
)

≤ α,

or reports x0 such that

h⊤x0 − f(x0) > α.

Theorem 10.3. Suppose

(1) fi(·) is efficiently conjugatable, ∀i ∈ [1 : m].

(2) Both r(w, b) and ∂r(w, b) can be evaluated in polynomial time ∀(w, b) ∈
Rn+1, where ∂ stands for any sub-gradient.
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Then, Problem (10.5) can be solved in polynomial time.

Proof. Rewrite Problem (10.5) as

min : t

s.t. : r(w, b) +
m
∑

i=1

ξi − t ≤ 0

f ∗
i (yiw) − yi(〈w, xi〉 + b) − ξi + 1 ≤ 0, i = 1, · · · , m,

− ξi ≤ 0, i = 1, · · · , m.

(10.7)

This is a special case of minz∈U c⊤z for a convex U . It is known [83] that for this

problem to be efficiently solvable, it suffices to have a “Separation Oracle” for U ,

i.e., a subroutine which in polynomial time reports either z ∈ U , or a separating

hyperplane of z and U when z 6∈ U for any z.

We can construct a separation oracle for U as long as we can construct a separation

oracle for the feasible set of each individual constraint.

Constraint Type 1: r(w, b) +
∑m

i=1 ξi − t ≤ 0.

For any (w∗, ξ∗, t∗, b∗), since r(w∗, b∗) can be evaluated efficiently, we can report

whether this constraint holds or not in polynomial time. Furthermore, when the con-

straint is violated, any sub-gradient of the left-hand side evaluated at (w∗, ξ∗, t∗, b∗)

is a separating hyperplane. Finding such sub-gradient can also be done efficiently

since ∂r(w∗, b) can be evaluated efficiently.

Constraint Type 2: f ∗
i (yiw) − yi(〈w, xi〉 + b) − ξi + 1 ≤ 0.

For given (w∗, ξ∗, t∗, b∗), let α = yi(〈w∗, xi〉 + b∗) + ξ∗i − 1, and h = yiw
∗. Since

fi(·) is efficiently conjugatable, in polynomial time we can either confirm

sup
c∈Rn

(

h⊤c − f(c)
)

≤ α,

which means the constraint holds, or report a c0 such that

h⊤c0 − f(c0) > α.
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Substituting back α, h and rearranging the terms yields

(yic0 − yixi)
⊤w∗ − yib

∗ − ξ∗i > f(c0) − 1.

Notice that, for any feasible (ŵ, ξ̂, t̂, b̂), the following holds:

f ∗
i (yiŵ) − yi(〈ŵ, xi〉 + b̂) − ξ̂i + 1 ≤ 0

=⇒ sup
c∈Rn

(

yiŵ
⊤c − f(c)

)

− yi(〈ŵ, xi〉 + b̂) − ξ̂i + 1 ≤ 0

=⇒
(

yiŵ
⊤c0 − f(c0)

)

− yi(〈ŵ, xi〉 + b̂) − ξ̂i + 1 ≤ 0

=⇒ (yic0 − yixi)
⊤ŵ − yib̂− ξ̂i ≤ f(c0) − 1.

Hence (yic0 − yixi,−yi,−1) is a separation Oracle.

Constraint Type 3: −ξi ≤ 0.

The separation oracle for this constraint is trivial.

Combining all three steps, we conclude that a separation oracle exists for each

individual constraint, and hence we have a separation Oracle for U . Therefore, Prob-

lem (10.5) can be solved in polynomial time. �

This theorem guarantees polynomial time solvability, but much stronger com-

plexity requirements may be needed for large scale problems. While this is a topic of

future research, in the nest section we provide some discount function examples that

are of practical interest.

10.3. Norm discount

In this section, we discuss a class of discount functions based on certain ellipsoidal

norms of the noise, i.e.,

fi(δi) = ti(‖δ‖V ),

for a nondecreasing ti : R
+ → R

+. Simple algebra yields f ∗
i (y) = t∗i (‖y‖V −1), where

t∗i (y) = supx≥0

[

xy − t(x)
]

, and thus conjugation is easy. This formulation has two

natural probabilistic interpretations: (1) it provides tight bounds on the probability
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of all magnitude of constraint violations when only the first two moments of the dis-

turbance are known (Theorem 10.4); (2) it explicitly computes the probabilities of all

magnitude of constraint violations when the disturbance is Gaussian (Theorem 10.5).

Theorem 10.4. Suppose the random variable δr
i has mean 0 and variance Σ.

Then the constraint

yi(〈w, xi − δi〉 + b) ≥ 1 − ξi − ti(‖δi‖Σ−1), ∀δi ∈ R
n, (10.8)

is equivalent to

inf
δr

i ∼(0,Σ)
Pr
(

yi(〈w, xr
i 〉 + b) − 1 + ξi ≥ −s

)

≥ 1 − 1
(

t−1
i (s)

)2
+ 1

, ∀s ≥ 0.(10.9)

Here, the infimum is taken over all random variables with mean zero and variance Σ,

and t−1
i (s) , sup{r|t(r) ≤ x}.

Proof. [137] studied the robust formulation and showed that for a fixed γ0, the

following three inequalities are equivalent:

◦ inf
δr

i ∼(0,Σ)
Pr
(

yi(〈w, xr
i 〉 + b) − 1 + ξi ≥ 0

)

≥ 1 − 1

γ2
0 + 1

,

◦ yi(〈w, xi〉 + b) − 1 + ξi ≥ γ0‖w‖Σ,

◦ yi(〈w, xi − δi〉 + b) − 1 + ξi ≥ 0, ∀‖δi‖Σ−1 ≤ γ0.

Observe that Equation (10.9) is equivalent to

inf
δr

i∼(0,Σ)
Pr
(

yi(〈w, xr
i 〉 + b) − 1 + ξi ≥ −ti(γ)

)

≥ 1 − 1

γ2 + 1
, ∀γ ≥ 0.

Hence, it is equivalent to:

yi(〈w, xi − δi〉 + b) − 1 + ξi ≥ −ti(γ), ∀‖δi‖Σ−1 ≤ γ, ∀γ ≥ 0.

Since ti(·) is nondecreasing, this is equivalent to (10.8). �

Theorem 10.4 shows that the comprehensive robust formulation bounds the prob-

ability of all magnitudes of constraint violation. It is of interest to compare this bound
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with the bound given by the robust formulation. Indeed,

yi(〈w, xi〉 + b) − 1 + ξi ≥ γ0‖w‖Σ

⇐⇒ yi(〈w, xi〉 + b) − 1 + ξi + s ≥
(

γ0 +
s

‖w‖Σ

)

‖w‖Σ, ∀s ≥ 0

⇐⇒ inf
δr

i∼(0, Σ)
Pr
(

yi(〈w, xr
i 〉 + b) − 1 + ξi ≥ −s

)

≥ 1 − 1

(γ0 + s
‖w‖Σ

)2 + 1
.

Hence the probability of large violation depends on ‖w‖Σ, and is impossible to bound

without knowing ‖w‖Σ a priori.

Remark 10.1. Notice the derived bound for the robust formulation is tight, in

the sense that if

yi(〈w, xi〉 + b) − 1 + ξi < γ0‖w‖Σ,

then there exists a zero-mean random variable δr
i with variance Σ such that

Pr
(

yi(〈w, xr
i 〉 + b) − 1 + ξi ≥ −s

)

< 1 − 1

(γ0 + s
‖w‖Σ

)2 + 1
.

This is because the multivariate Chebyshev inequality [109, 33, 83] states that

sup
z∼(z̄,σ)

Pr{a⊤z ≤ c} = (1 + d2)−1

where d2 = inf
z0|a⊤z0≤c

inf(z0 − z̄)⊤Σ−1(z0 − z̄).

Here z ∼ (z̄, σ) stands for z is a random variable with mean z̄ and variance σ. Letting

a = yiw, z = −δr
i and c = 1 − ξi − s− yi(〈w, xi〉 + b), we have

sup
δr

i∼(0, Σ)

Pr
(

yi(〈w, xr
i 〉 + b) − 1 + ξi ≤ −s

)

= (1 + d2
0)

−1

where: d0 =
yi(〈w, xi〉 + b) − 1 + ξi + s√

w⊤Σw
.
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Hence,

yi(〈w, xi〉 + b) − 1 + ξi < γ0‖w‖Σ

=⇒ d0 < γ0 + s/‖w‖Σ

=⇒ sup
δr

i ∼(0, Σ)

Pr
(

yi(〈w, xr
i 〉 + b) − 1 + ξi ≤ −s

)

>
[

1 + (γ0 + s/‖w‖Σ)2
]−1

,

showing that the bound is tight.

With a similar argument, we can derive probability bounds under a Gaussian

noise assumption.

Theorem 10.5. If δr
i ∼ N (0,Σ), then the constraint

yi(〈w, xi − δi〉 + b) ≥ 1 − ξi − ti(‖δi‖Σ−1), ∀δi ∈ R
n, (10.10)

is equivalent to

Pr
(

yi(〈w, xr
i 〉 + b) − 1 + ξi ≥ −s

)

≥ Φ
(

t−1
i (s)

)

, ∀s ≥ 0. (10.11)

Here, Φ(·) is the cumulative distribution function of N (0, 1).

Proof. For fixed k ≥ 1/2 and constant l, the following constraints are equiva-

lent:

Pr(yiw
⊤δr

i ≥ l) ≥ k

⇐⇒ l ≤ Φ−1(k)
(

w⊤Σw
)1/2

⇐⇒ l ≤ yw⊤δi, ∀‖δi‖Σ−1 ≤ Φ−1(k).

Notice that (10.11) is equivalent to

Pr
(

yi(〈w, xr
i 〉 + b) − 1 + ξi ≥ −ti(γ)

)

≥ Φ(γ), ∀γ ≥ 0,

and hence it is equivalent to: ∀γ ≥ 0,

yi(〈w, xi − δi〉 + b) − 1 + ξi ≥ −ti(γ), ∀‖δi‖Σ−1 ≤ Φ−1
(

Φ(γ)
)

= γ.
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Original Function Conjugate function
Affine Fun. ti(x) = ax+ b t∗i (y) = Iα − b
Indicate Fun. ti(x) = Iα + b. t∗i (y) = ay − b

Power Fun. ti(x) = axn + b t∗i (y) = a
−1

n−1 (n
−1

n−1 − n
−n
n−1 )y

n
n−1 − b

Quadratic Fun. ti(x) = ax2 + b t∗i (y) = 1
4a
y2 − b

Neg. Entropy ti(x) = ax log x+ b t∗i (y) = aey/a−1 − b
Exponential Fun. ti(x) = aex + b t∗i (y) = y log(y/a) − y − b
Point-wise Min. ti(x) = minj=1,··· ,l tij(x) t∗i (x) = maxj=1,··· ,l t∗ij(y)
Non-convex Fun. ti(x) non-convex t∗i (y) =

(

conv(ti(x))
)∗

(y)
Table 10.1. Some functions and their conjugates.

Since ti(·) is nondecreasing, this is equivalent to (10.10). �

We list in Tables 10.1 and 10.2 some examples of ti(·) and their conjugate func-

tions. Notice that both ti(·) and t∗i (·) are defined on R+. Here, Iα : R+ → R+
⋃{+∞}

is the indicator function of set α, and conv(t(·)) , sup{f(·)|f(·) is convex, f(·) ≤
t(·)}. Standard robustness uses an indicator function of a set. Table 10.2 shows sev-

eral different relaxations of this indicator function allowing the increase of f(·) to be

more smooth.

Notice that, all conjugate functions can be written as t∗(x) = max1,2(s1(x), s2(x)),

where si = infλ∈Si
qi(λ, x) for some “simple” functions qi and polytope Si. Here by

“simple” we mean the function is a quadratic function, or a linear function, or an

indicator function. Hence the constraint t∗i (x) ≤ α is equivalent to

q1(x,λ1) ≤ α;

λ1 ∈ S1;

q2(x,λ2) ≤ α;

λ2 ∈ S2.

Since a “simple” function leads to a Second Order Cone constraint, the resulting

classifier is a SOCP. This means that the comprehensive robust classification with the

relaxations listed above has a comparable computational cost to robust classification.
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Original Function Conjugate function

ti(x) =

{

0 x ≤ c,
α(x− c) x > c.

t∗i (y) =

{

cy y ≤ α,
+∞ y > α.

= max(Iα, cy)

ti(x) =

{

αx x ≤ c,
+∞ x > c.

t∗i (y) =

{

0 y ≤ α,
c(y − α) y > α.

= max(0, c(y − α))

ti(x) =







0 x ≤ c1,
α(x− c1) c1 < x ≤ c2,
+∞ x > c2.

t∗i (y) =

{

c1y y ≤ α,
c2(y − α) + αc1 y > α.

= max(c1y, c2y + α(c1 − c2))

ti(x) =

{

0 x ≤ c,
α(x− c)2 x > c.

t∗i (y) = y2/4α + cy.

ti(x) =

{

αx2 x ≤ c,
+∞ x > c.

t∗i (y) =

{

y2/4α y ≤ 2αc,
cy − αc2 y > 2αc.

= infλ≥0

(

(y − λ)2/4α+ cλ
)

ti(x) =







0 x ≤ c1,
α(x− c1)

2 c1 < x ≤ c2,
+∞ x > c2.

t∗i (y) =

{

y2/4α+ yc1 y ≤ 2α(c2 − c1),
c2y − α(c2 − c1)

2 y > 2α(c2 − c1).

= max
(

c1y, infλ1,λ2≥0[
(y+λ1−λ2)2

4α

+c1y + (c2 − c1)λ2]
)

Table 10.2. Piecewise-defined functions and their conjugates.

0 

infinity

0 

(r) (r’)

Figure 10.1. The robust discount function and its conjugate: note that
the discount function provides uniform protection inside the uncertainty set,
and no protection outside.

Figure 10.1 illustrates the discount function for the standard robust formula-

tion, and Figure 10.2 illustrates the respective conjugate functions for the first four

relaxations in Table 10.2.
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0 
0 

infinity

(a) (a’)

0 

infinity

0 

(b) (b’)

0 

infinity

0

(c) (c’)

0  
0

(d) (d’)

Figure 10.2. Piecewise-defined Functions (first four functions in Table
10.2) and their Conjugates: note the flexibility in controlling the discount
given the realization of the disturbance.

10.4. Multiplicative discount

In this section we consider a multiplicative structure for the disturbance discount,

and investigate its tractability. To multiply a random function with certain values

based on the probability of realizations seems to be a very natural way to reduce the

effect of rare event, and indeed it has the following probabilistic interpretation as a

method to bound the expected loss.
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Theorem 10.6. Consider a non-negative function L(·) : Rn → R+, such that

there exists a non-negative function α(·) and constant c satisfying

L(x)α(x) ≤ c ; ∀x ∈ R
n.

Further assume that a random variable x̂ has a density f(·) satisfying α(x) = 0 ⇒
f(x) = 0. Then we have

E
{

L(x̂)
}

≤ c

∫

α(x)6=0

f(x)

α(x)
dx.

Proof. Notice that

E
{

L(x̂)
}

=

∫

f(x)6=0

L(x)f(x)dx

=

∫

α(x)6=0

L(x)α(x)
f(x)

α(x)
dx ≤

∫

α(x)6=0

c
f(x)

α(x)
dx = c

∫

α(x)6=0

f(x)

α(x)
dx.

�

The Comprehensive robust classifier with multiplicative discount has the form:

min
w,b

max
(δ1,···δm)∈N

{

r(w, b) +
m
∑

i=1

ci(δi) max
[

1 − yi(〈w, xi − δi〉 + b), 0
]

}

where c(·) : Rn → R satisfies

0 ≤ ci(δ) ≤ ci(0) = 1; ∀δ ∈ R
n.

By adding slack variables, we get the following optimization problem:

Comprehensive Robust Classifier (Multiplicative):

min : r(w, b) +
∑m

i=1 ξi,

s.t. : ξi ≥ ci(δ)
[

1 − yi(〈w, xi − δi〉 + b)
]

, ∀δi ∈ Rn, i = 1, · · · , m,
ξi ≥ 0, i = 1, · · · , m.

(10.12)

Define

gi(δ) ,







1
ci(δ)

if c(δ) > 0,

+∞ otherwise.
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Problem (10.12) can be rewritten as:

min : r(w, b) +
∑m

i=1 ξi,

s.t. : gi(δi)ξi ≥
[

1 − yi(〈w, xi − δi〉 + b)
]

, ∀δi ∈ Rn, i = 1, · · · , m,
ξi ≥ ǫ, i = 1, · · · , m.

We perturb the constraint ξi ≥ 0 to ξi ≥ ǫ for small ǫ > 0 to avoid the case that both

ξi = 0 and gi(δi) = ∞ hold simultaneously. Under this modification, we have the

following tractability theorem:

Theorem 10.7. Suppose

(1) gi(·) is efficiently conjugatable, ∀i ∈ [1 : m]

(2) Both r(w, b), ∂r(w, b) can be evaluated in polynomial time ∀(w, b) ∈ Rn+1,

where ∂ stands for any sub-gradient.

Then, Problem (10.12) can be solved in polynomial time.

Proof. Rewrite Problem (10.12) as

min : t

s.t. : r(w, b) +
∑m

i=1 ξi − t ≤ 0

1 − yi(〈w, xi〉 + b) + yiw
⊤δi − ξigi(δi) ≤ 0, ∀δi ∈ R

n, i = 1, · · · , m,
−ξi ≤ −ǫ, i = 1, · · · , m.

Following a similar argument as in the proof of Theorem 10.3 we derive a separation

oracle for each constraint. Constraint Type 1 and Type 3 are exactly the same as in

Theorem 10.3, hence we only discuss Constraint Type 2, i.e.,

1 − yi(〈w, xi〉 + b) + yiw
⊤δi − ξigi(δi) ≤ 0, ∀δi.

Now suppose we are given a solution (w∗, ξ∗, t∗, b∗), with ξ∗i ≥ ǫ (otherwise we get

a separation oracle from Type 3). Letting h = yiw
∗/ξ∗i and α = (1 − yi(〈w∗, xi〉 +

b∗))/ξ∗i , the constraint is equivalent to:

sup
δi∈Rn

{

h⊤δi − gi(δi)
}

≤ α.
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Since gi(·) is efficiently conjugatable, then in polynomial time we either conclude the

constraint is satisfied, or find a δ∗ such that h⊤δ∗ − gi(δ
∗) > α, which is equivalent

to

1 − yi(〈w∗, xi〉 + b∗) + yiw
∗⊤δ∗ − ξ∗i gi(δ

∗) > 0

⇐⇒ y(xi − δ∗)⊤w∗ + yib
∗ + gi(δ

∗)ξi < 1.
(10.13)

Hence, (xi − δ∗, yi, gi(δ
∗)) is a separation oracle. �

10.5. Comprehensive robustness and convex risk Measures

In this section we investigate the relationship between comprehensive robustness

and convex risk measures, a notion adapted form decision theory. A risk measure

is a mapping from a random variable to the real numbers, that, at a high level,

captures some valuation of that random variable. Simple examples of risk measures

include expectation, standard deviation, and conditional value-at-risk (CVaR). Risk

measure constraints represent a natural way to express risk aversion, corresponding

to particular risk preferences.

In Section 10.5.1, we briefly recall the notion of a convex risk measure, formulate

classifiers based on risk-measure constraints and show that they are equivalent to

comprehensive robust classifiers. In Section 10.5.2, we give examples of tractable

Risk-measure constrained classifiers.

10.5.1. Convex risk measure and risk-measure constrained classifier.

The theory of (convex) risk1 measures was developed in response to the observation

that the preference of a decision maker among random losses (aka gambles) can be

quite complicated. Still, under mild conditions, it can be proved that for any gamble,

there exists a constant such that the decision maker will feel indifferent between

the gamble and the constant. Therefore, the preference between the random losses

is converted to comparing the respective constants. To be more precise, given a

1This is a term used in decision theory to represent a random loss, which is different from what is
often used in machine learning literature, i.e., a certain loss of the classifier.
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probability space (Ω,F ,P), let X denote the set of random variables on Ω. Each

elements of X represents an uncertain loss. We have the following definition.

Definition 10.2. A risk measure is a function ρ : X → R.

A risk measure essentially defines a preference relationship among random vari-

ables: X1 is preferable over X2 if and only if ρ(X1) ≤ ρ(X2). Alternatively, we can

regard ρ(·) as the measurement of how risky a random variable is: X1 is a less risky

decision than X2 when ρ(X1) ≤ ρ(X2).

Definition 10.3. A risk measure is called convex if it satisfies the following three

conditions:

(1) Convexity: ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y );

(2) Monotonicity: X ≤ Y ⇒ ρ(X) ≤ ρ(Y );

(3) Translation Invariance: ρ(X + a) = ρ(X) + a, ∀a ∈ R.

In words, Convexity means that diversification reduces risk. Monotonicity says

that if one random loss is always less than another, the first is preferable. Translation

invariance says that if a fixed penalty a is going to be paid in addition to X, we are

indifferent to whether we will pay it before or after X is realized. These properties

are intuitively appealing when considering risk-hedging.

A convex risk measure ρ(·) is called normalized if it satisfies ρ(0) = 0 and ∀X ∈
X , ρ(X) ≥ EP(X), which essentially says that the risk measure ρ(·) represents risk

aversion. Many widely used criteria comparing random variables are normalized

convex risk measures, including expected value, Conditional Value at Risk (CVaR),

and the exponential loss function [10, 17].
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Equipped with a normalized convex risk measure ρ(·), we can formulate a classi-

fication problem as follows:

Risk-Measure Constrained Classifier

min : r(w, b) +

m
∑

i=1

ξi,

s.t. : ρi(ξi) ≥ ρi(1 − yi(〈w, xr
i 〉 + b)), i = 1, · · · , m,

ξi ≥ 0, i = 1, · · · , m.

(10.14)

Notice that xr
i is a random variable, hence 1 − yi(〈w, xr

i 〉 + b) is a random loss, and

ξi is the constant “equivalent” to this random loss.

Substituting ρi(0) = 0 and xr
i = xi − δr

i where xi = EP(x
r
i ), the constraint can

be rewritten as

ξi ≥ 1 − yi(〈w, xi〉 + b) + ρi(yiw
⊤δr

i ). (10.15)

This formulation seeks a classifier whose total risk is minimized. When xr
i is precisely

known, this formulation reduces to the standard SVM.

The following theorem states that the risk-constrained classifier and the compre-

hensive robust classifier are equivalent. The proof is postponed to the Appendix.

Theorem 10.8. (1) A Risk-Measure Constrained Classifier with normalized con-

vex risk measures ρi(·) is equivalent to a Comprehensive Robust Classifier where

fi(δ) = inf{α0
i (Q)|EQ(δr

i ) = δ},

α0
i (Q) , sup

X′∈X

(

EQ(X ′) − ρi(X
′)
)

.

(2) A Comprehensive Robust Classifier with convex discount functions fi(·) is equiv-

alent to a Risk-Constrained Classifier where

ρi(X) = inf{m ∈ R|X −m ∈ Ai},

Ai , {X ∈ X |X(ω) ≤ fi

(

δr
i (ω)

)

, ∀ω ∈ Ω},

assuming that δr
i has support Rn.
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Proof. Before proving Theorem 10.8, we establish the following two lemmas.

Lemma 10.9 is adapted from [73], and the reader can find the proof there.

Lemma 10.9. Let X be the set of random variables for (Ω,F ,P), P be the set

of probability measures absolutely continuous with respect to P, and ρ : X → R be a

convex risk measure satisfying Xn ↓ X ⇒ ρ(Xn) → ρ(X), then there exists a convex

function α : P → (−∞,+∞] such that

ρ(X) = sup
Q∈P

(

EQ(X) − α(Q)
)

∀X ∈ X . (10.16)

Furthermore, α0(Q) , supX′∈X
(

EQ(X ′)− ρ(X ′)
)

satisfies (10.16), and it is minimal

in the sense that α0(Q) ≤ α(Q) for all Q ∈ P, if α(·) also satisfies (10.16).

We call α0(·) the minimal representation of a convex risk measure.

Lemma 10.10. For a normalized convex risk measure ρ(·), its minimal represen-

tation satisfies:

0 = α0(P) ≤ α0(Q), ∀Q ≪ P.

Proof. First, since EQ(0) ≡ 0, we have

ρ(0) = 0 → inf
Q∈P

α0(Q) = 0. (10.17)

Next, by definition α0(P) = supX∈X
(

EP(X) − ρ(X)
)

, and EP(X) ≤ ρ(X) by as-

sumption. Hence taking the supremum leads to α0(P) ≤ 0. Combining this with

Equation (10.17) establishes the lemma. �

Now we proceed to prove Theorem 10.8.

(1) By Lemma 10.10, fi(δi) ≥ 0 since α0(Q) ≥ 0, ∀Q ∈ P. In addition, EP(δi) =

0 and α0(P) = 0 together imply fi(0) = 0. Hence fi(·) satisfies (10.4).
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Inequality (10.15) can be rewritten as

ξi + yi(〈w, xi〉 + b) − 1 ≥ sup
Q∈P

(

EQ(yiw
⊤δr

i ) − α(Q)
)

⇐⇒ ξi + yi(〈w, xi〉 + b) − 1 ≥ sup
δi∈Rn

sup
Q∈P|EQ(δr

i )=δi

(

yiw
⊤δi − α(Q)

)

⇐⇒ yi(〈w, xi − δi〉 + b) ≥ 1 − ξi − inf{α(Q)|EQ(δr
i ) = δi}, ∀δi ∈ R

n,

⇐⇒ yi(〈w, xi − δi〉 + b) ≥ 1 − ξi − fi(δi), ∀δi ∈ R
n,

which proves the first part.

(2) First we show ρi(·) is a convex risk measure. Notice fi(0) is finite, hence,

ρi(X) > −∞. Observe that ρi(·) satisfies Translation Invariance. To prove

Monotonicity, suppose X ≤ Y and Y − s ∈ Ai for some s ∈ R, then

X−s ∈ Ai, hence inf{m|X−m ∈ Ai} ≤ s, which implies ρi(X) ≤ ρi(Y ). To

prove Convexity, suppose X−m and Y −n belong to Ai for m,n ∈ R. Given

λ ∈ [0, 1], we have λ(X(ω)−m) + (1− λ)(Y (ω)−n) ≤ fi

(

δr
i (ω)

)

and hence
(

λX+(1−λ)Y
)

− (λm+(1−λ)n) ∈ Ai which implies ρi(λX+(1−λ)Y ) ≤
λm + (1 − λ)n, hence the convexity holds. Therefore ρi(·) is a convex risk

measure.

Inequality (10.15) can be rewritten as

inf{m ∈ R|yiw
⊤δr

i −m ∈ Ai} ≤ ξi + yi(〈w, xi〉 + b) − 1

⇐⇒ yiw
⊤δr

i − ξi − yi(〈w, xi〉 + b) + 1 − ǫ ∈ Ai, ∀ǫ > 0

⇐⇒ yiw
⊤δr

i (ω) − ξi − yi(〈w, xi〉 + b) + 1 − ǫ ≤ fi(δ
r
i (ω)), ∀ω ∈ Ω, ∀ǫ > 0

⇐⇒ yiw
⊤δi − ξi − yi(〈w, xi〉 + b) + 1 − ǫ ≤ fi(δi), ∀δi ∈ R

n.

The last equivalence holds from the assumption that δr
i has support Rn.

�

Note that for the first part of Theorem 10.8, the assumption that ρi(·) is normal-

ized can be relaxed to ρi(0) = 0 and inf{α0
i (Q)|EQ(δr

i ) = 0} = 0.
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10.5.2. Risk-measure constrained classifier and distribution deviation.

Let P be the set of probability measures absolutely continuous w.r.t. P. It is

known [73, 9] that any convex risk measure ρ(·) can be represented as ρ(X) =
∑

Q∈P [EQ(X)−α(Q)] for some convex function α(·); conversely, given any such con-

vex function α, the resulting function ρ(·) is indeed a convex risk measure. Given

α(·), ρ(·) is called the corresponding risk measure. The function α(·) can be thought

of as a penalty function on probability distributions. This gives us a way to directly

investigate classifier robustness with respect to distributional deviation. As an ex-

ample, suppose we want to be robust over distributions that are nowhere more than

a factor of two greater than a nominal distribution, P. This can be captured by the

risk constraint using risk measure ρ(·), where ρ corresponds to the convex function α

given by letting α(·) satisfy α(Q) = 0 for dQ/dP ≤ 2, and α(Q) = +∞ for all other

Q.

A natural notion of distributional divergence is the Kullback-Leibler divergence.

The next result derives the corresponding risk measure when the reference noise, δr
i ,

is Gaussian.

Theorem 10.11. Suppose δr
i ∼ N (0,Σi) and let ρ(·) be the corresponding risk

measure of

α(Q) =







∫

dQ
dP

log dQ
dP
dP Q≪ P,

+∞ otherwise.

Then the Risk-Measure Constrained Classifier is equivalent to

min : r(w, b) +

m
∑

i=1

ξi,

s.t. : yi(〈w, xi〉 + b) −w⊤Σiw/2 ≥ 1 − ξi, i = 1, · · · , m,

ξi ≥ 0, i = 1, · · · , m.

Proof. We first show that for the KL divergence, its corresponding convex risk

measure equals log EP[e
X ] by applying the following theorem adapted from [73].
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Theorem 10.12. Suppose a convex risk measure can be represented as

ρ(X) = inf{m ∈ R|EP[l(X −m)] ≤ x0},

for an increasing convex function l : R → R and scalar x0. Then ρ(·) is the corre-

sponding risk measure of

α0(Q) = inf
λ>0

1

λ

(

x0 + EP

[

l∗(λ
dQ

dP
)
]

)

.

Note that log EP[e
X ] = inf{m ∈ R|EP

[

eX−m
]

≤ 1}, and hence the risk measure

log EP[e
X ] can be represented as in the theorem, with l(x) = ex, and x0 = 1. The

conclusion of the theorem tells us that log EP[e
X ] is the corresponding risk measure

of

α0(Q) = inf
λ>0

1

λ

(

1 + EP

[

λ
dQ

dP
log(λ

dQ

dP
) − λ

dQ

dP

]

)

=EP

[dQ

dP
log

dQ

dP

]

+ inf
λ>0

[1

λ
+ EP(

dQ

dP
)(log λ− 1)

]

=







∫

dQ
dP

log dQ
dP
dP Q≪ P,

+∞ otherwise,

where the last equation holds since EP(dQ/dP) = 1 and infλ>0(1/λ + log λ − 1) =

0. Therefore ρ(X) = log EP[e
X ] is indeed the corresponding risk measure to KL-

divergence. Now we evaluate log EP(e
yiw

⊤δr
i ). Since δr

i ∼ N(0,Σi), yiw
⊤δr

i ∼
N(0,w⊤Σiw), which leads to

EP(e
yiw

⊤δr
i ) =

∫ +∞

−∞

1√
2π

exp
[

− t2/2
√

w⊤Σiw
]

etdt

=

∫ +∞

−∞

1√
2π

exp
{

− (t−
√

w⊤Σiw)2
/

2
√

w⊤Σiw
}

ew
⊤Σiw/2dt

= ew
⊤Σiw/2

∫ +∞

−∞

1√
2π

exp
{

− (t−
√

w⊤Σiw)2
/

2
√

w⊤Σiw
}

dt = ew
⊤Σiw/2.

Thus log EP(eyiw
⊤δr

i )=w⊤Σiw/2, proving the theorem. �
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Observe that here we get a regularizer (in each constraint) that is the square of

an ellipsoidal norm, and hence is different from the norm regularizer obtained from

the robust classification framework. In fact, recalling the result from Section 10.3, we

notice that the new regularizer is the result of a quadratic discount function, instead

of the indicator discount function used by robust classification.

For general δr
i and α(·), it is not always straightforward to find and optimize the

explicit form of the regularization term. Hence we sample, approximating P with

its empirical distribution Pn. This is equivalent to assuming δr
i has finite support

{δ1
i , · · · , δt

i} with probability {p1, · · · , pt}. We note that the distribution of the noise

is often unknown, where only some samples of the noise are given. Therefore, the

finite-support approach is often an appropriate method in practice.

Theorem 10.13. For δr
i with finite support, the risk-measure constrained classi-

fier is equivalent to

min : r(w, b) +
m
∑

i=1

ξi,

s.t. : yi(〈w, xi〉 + b) − α∗(yi∆
⊤
i w + λi1

)

+ λi ≥ 1 − ξi, i = 1, · · · , m;

ξi ≥ 0, i = 1, · · · , m;

where α∗(y) , supx≥0{y⊤x − α(x)} and ∆i , {δ1
i , · · · , δt

i}.

Proof. It suffices to prove that Constraint (10.15) is equivalent to

yi(〈w, xi〉 + b) − α∗(yi∆
⊤
i w + λi1

)

+ λi ≥ 1 − ξi,

which is the same as showing that the conjugate function of

fi(δ) , inf{α(q)|
t
∑

j=1

qjδ
j
i = δ}

evaluated at yiw equals

min
λ

{α∗(yi∆
⊤
i w + λ1

)

− λ}.

242
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By definition, f ∗(yiw) = supδ∈Rn

{

yiw
⊤δ − f(δ)

}

, which equals

maximize on δ,q: yiw
⊤δ − α(q)

subject to: ∆iq − δ = 0,

1⊤q = 1

q ≥ 0.

(10.18)

Notice that (10.18) equals

L(δ,q, c, λ) , max
δ; q≥0

min
c,λ

{

yiw
⊤δ − α(q) + c⊤∆iq − c⊤δ + λ1⊤q − λ

}

.

Since Problem (10.18) is convex and all constraints are linear, Slater’s condition is

satisfied and the duality gap is zero. Hence, we can exchange the order of minimization

and maximization:

L(δ,q, c, λ) = min
c,λ

max
δ,q≥0

{

yiw
⊤δ − α(q) + c⊤∆iq − c⊤δ + λ1⊤q − λ

}

= min
c,λ

{

max
δ

(

yiw
⊤δ − c⊤δ

)

+ max
q≥0

(

c⊤∆iq + λ1⊤q − α(q)
)

− λ
}

= min
λ

{

max
q≥0

(

yiw
⊤∆iq + λ1⊤q − α(q)

)

− λ
}

= min
λ
α∗(yi∆

⊤
i w + λ1

)

− λ.

The third equality holds because c = yiw is the necessary condition to make maxδ

(

yiw
⊤δ−

c⊤δ
)

finite. �

Example. Let α(q) =
∑t

j=1 qj log(qj/pj), the KL divergence for discrete probability

measures. By applying Theorem 10.13, Constraint (10.15) is equivalent to

yi(〈w, xi〉 + b) − log
(

t
∑

j=1

pj exp(yiw
⊤δ

j
i )
)

≥ 1 − ξi,

⇐⇒
t
∑

j=1

pj exp
(

yiw
⊤δ

j
i − yi(〈w, xi〉 + b) + 1 − ξi

)

≤ 1.

This is a geometric program, which is a well-studied class of convex problems with

specialized and efficient algorithms for their solution [33].
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There is substantial research on how a convex risk measure is approximated by

a finite number of samples. For example, [34] proved the following result for CVaR.

Theorem 10.14. Suppose a random variable X satisfies support(X) ⊆ [0, U ].

X1, · · · , XN are independent realizations of X. Denote X as a random variable with

probability 1/N on Xi, and let

CVaRα(X1, · · · , XN) , CVaRα(X),

i.e., the CVaR estimated according to N samples. For α ∈ (0, 1] we have

P
(

CVaRα(X1, · · · , XN) ≥ CVaRα(X) + ǫ
)

≤ exp
(−2Nα2ǫ2

U2

)

;

P
(

CVaRα(X1, · · · , XN) ≤ CVaRα(X) − ǫ
)

≤ 3 exp
(−Nαǫ2

5U2

)

.

10.6. Kernelized comprehensive robust classifier

Much of the previous development can be extended to the kernel space. The

main contributions in this section are (i) in Section 10.6.1 we provide a representer

theorem in the case where we have discount functions in the feature space; and (ii)

in Section 10.6.2 we provide a sufficient condition for approximation in the case that

we have discount functions in the original sample space.

We use k(·, ·) : Rn × Rn → R to represent the kernel function, and K to denote

the Gram matrix with respect to (x1, · · · ,xm). We assume that K is a non-zero

matrix without loss of generality.

10.6.1. Comprehensive robustness in feature space. We first investigate

the case where the noise exists explicitly in the feature space. Let φ(·) be the mapping

from the sample space Rn to the feature space Φ. Let Φ̂ ⊆ Φ be the subspace spanned

by {φ(x1), · · · , φ(xm)}. For a vector z ∈ Φ, denote z= as its projection on Φ̂, and

z⊥ , z−z= as its residual. The following theorem states that we can focus on w ∈ Φ̂

without loss of generality.
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Theorem 10.15. If fi(·) is such that

fi(δ) ≥ fi(δ
=), ∀δ ∈ Φ,

and w ∈ Φ satisfies

y(〈w, φ(xi) − δi〉 + b) ≥ 1 − ξi − fi(δi), ∀δi ∈ Φ, (10.19)

then its projection w= also satisfies (10.19).

Proof. Before proving this theorem, we first establish the following two lemmas.

Lemma 10.16. If w ∈ Φ satisfies

y(〈w, φ(xi) − δi〉 + b) ≥ 1 − ξi − fi(δi), ∀δi ∈ Φ̂, (10.20)

then its projection w= also satisfies (10.20).

Proof. Decompose w = w= + w⊥. By definition, w⊥ is orthogonal to Φ̂. Since

δi ∈ Φ̂ and φ(xi) ∈ Φ̂, we have

〈w⊥, φ(xi) − δi〉 = 0, ∀δi ∈ Φ̂,

which establishes the lemma. �

Lemma 10.17. If fi(·) is such that

fi(δ) ≥ fi(δ
=), ∀δ ∈ Φ,

and w ∈ Φ̂ satisfies

y(〈w, φ(xi) − δ̂i〉 + b) ≥ 1 − ξi − fi(δ̂i), ∀δ̂i ∈ Φ̂, (10.21)

then w satisfies

y(〈w, φ(xi) − δi〉 + b) ≥ 1 − ξi − fi(δi), ∀δi ∈ Φ. (10.22)
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Proof. We prove this lemma by deriving a contradiction. Assume that there

exists δ′ ∈ Φ such that Inequality (10.22) does not hold, i.e.,

y(〈w, φ(xi) − δ′〉 + b) < 1 − ξi − fi(δ
′).

Decompose δ′ = δ′= + δ′⊥. Hence we have fi(δ
′=) ≤ fi(δ

′) by assumption, and

〈w, δ′⊥〉 = 0 since w ∈ Φ̂. This leads to

y(〈w, φ(xi) − δ′=〉 + b) = y(〈w, φ(xi) − δ′〉 + b)

< 1 − ξi − fi(δ
′) ≤ 1 − ξi − fi(δ

′=),

which contradicts (10.21) and hence we prove the lemma. �

Now we proceed to prove Theorem 10.15. Since w satisfies (10.19), then it also

satisfies

y(〈w, φ(xi) − δi〉 + b) ≥ 1 − ξi − fi(δi), ∀δi ∈ Φ̂.

Thus by Lemma 10.16, w= satisfies

y(〈w=, φ(xi) − δi〉 + b) ≥ 1 − ξi − fi(δi), ∀δi ∈ Φ̂.

By Lemma 10.17, this implies that w= satisfies

y(〈w=, φ(xi) − δi〉 + b) ≥ 1 − ξi − fi(δi), ∀δi ∈ Φ,

which establishes the theorem. �
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The kernelized comprehensive robust classifier can be written as:

Kernelized Comprehensive Robust Classifier:

min : r
(

m
∑

j=1

αjφ(xj), b
)

+
m
∑

i=1

ξi,

s.t. : yi(〈
m
∑

j=1

αjφ(xj), φ(xi) −
m
∑

j=1

cjφ(xj)〉 + b) ≥

1 − ξi − fi

(

m
∑

j=1

cjφ(xj)
)

, ∀
(

c1, · · · , cm) ∈ R
m, i = 1, · · · , m,

ξi ≥ 0, i = 1, · · · , m,
(10.23)

Define c , (c1, · · · , cm), gi(c) , fi(
∑m

i=1 ciφ(xi)), and r̃(α, b) , r
(
∑m

j=1 αjφ(xj), b
)

.

Let ei denote the ith basis vector. Then Problem (10.23) can be rewritten as

min : r̃(α, b) +

m
∑

i=1

ξi,

s.t. : yi(e
⊤
i Kα + b) − yiα

⊤Kc ≥ 1 − ξi − gi(c), ∀c ∈ R
m, i = 1, · · · , m,

ξi ≥ 0, i = 1, · · · , m,

where the constraint can be further simplified as

yi(e
⊤
i Kα + b) − g∗i (yiKα) ≥ 1 − ξi, i = 1, · · · , m.

Notice that generally g∗(·) depends on the exact formulation of the feature mapping

φ(·). However, for the following specific class of f(·), we can determine g∗(·) from K

without knowing φ(·).

Theorem 10.18. If there exists hi : R+ → R+ such that

fi(δ) = hi(
√

〈δ, δ〉), ∀δ ∈ Φ,

then

g∗i (yiKα) = h∗i (‖α‖K).
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10.6 KERNELIZED COMPREHENSIVE ROBUST CLASSIFIER

Proof. By definition,

g∗i (yiKα) = sup
c∈Rm

{

yiα
⊤Kc − gi(c)

}

= sup
c∈Rm

{

yiα
⊤Kc − fi

(

m
∑

j=1

cjφ(xj)
)

}

= sup
c∈Rm







yiα
⊤Kc − hi





√

√

√

√〈
m
∑

j=1

cjφ(xj),
m
∑

j=1

cjφ(xj)〉











= sup
c∈Rm

{

yiα
⊤Kc − hi(

√
c⊤Kc)

}

.

Notice the right-hand side can be written as

sup
c∈Rm

{

(yiK
1/2α)⊤(K1/2c) − hi(‖K1/2c‖2)

}

= sup
c∈Rm

{

‖yiK
1/2α‖2‖K1/2c‖2 − hi(‖K1/2c‖2)

}

= sup
s∈R+

{

s‖(K1/2α)‖2 − hi(s)
}

= h∗i (‖α‖K).

Here, the first equality holds since

(yiK
1/2α)⊤(K1/2c) ≤ ‖yiK

1/2α‖2‖K1/2c‖2

by Hölder’s inequality. And the equality can be reached by taking c equal to yiα

multiplied by a constant. The third equality holds because when K is non-zero,

‖K1/2c‖2 ranges over R+. �

Notice that when hi is an increasing function, then fi(δ) ≥ fi(δ
=) is automatically

satisfied ∀δ ∈ Φ.

10.6.2. Comprehensive robustness in sample space. The previous re-

sults hold for the case where we have explicit discount functions in the feature space.

However, in certain cases the discount functions naturally lie in the original sample

space. The next theorem gives a sufficient alternative in this case.

Theorem 10.19. Suppose hi : R+ → R+ satisfies

hi

(
√

k(xi,xi) + k(xi − δ,xi − δ) − 2k(xi,xi − δ)
)

≤ fi(δ), ∀δ ∈ R
n.(10.24)
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Then

yi

(

〈w, φ(xi) − δφ〉 + b
)

≥ 1 − ξi − hi(
√

〈δφ, δφ〉), ∀δφ ∈ Φ, (10.25)

implies

yi

(

〈w, φ(xi − δ)〉 + b
)

≥ 1 − ξi − fi(δ), ∀δ ∈ R
n. (10.26)

Proof. Notice that (10.25) implies that

yi

(

〈

w, φ(xi) −
[

φ(xi) − φ(xi − δ)
]〉

+ b
)

≥ 1 − ξi − hi

(

√

〈

φ(xi) − φ(xi − δ), φ(xi) − φ(xi − δ)
〉)

,

∀δ ∈ Rn. The right-hand side is equal to

1 − ξi − hi

(
√

k(xi, xi) + k(xi − δ,xi − δ) − 2k(xi,xi − δ)
)

≥ 1 − ξi − fi(δ).

Since this holds for all δ ∈ Rn, (10.26) holds for (w, b). �

In fact, when Equation (10.24) holdswith equality, this sufficient condition is also

necessary, as the next theorem states.

Theorem 10.20. Suppose hi : R+ → R+ is upper semi-continuous and satisfies

hi

(
√

k(xi,xi) + k(xi − δ,xi − δ) − 2k(xi,xi − δ)
)

≥ fi(δ), ∀δ ∈ R
n, (10.27)

and Φ is the Reproducing Kernel Hilbert Space. Then Condition (10.26) implies

Condition (10.25).

Proof. Condition (10.26) and Inequality (10.27) implies that

yi

(

〈w, φ(xi)−δφ〉+b
)

≥ 1−ξi−hi(
√

〈δφ, δφ〉), ∀δφ : ∃δ ∈ R
n, δφ = φ(xi)−φ(xi−δ).

Denote z = φ(xi) − δφ, we have

yi

(

〈w, z〉 + b
)

≥ 1 − ξi − hi(
√

〈φ(xi) − z, φ(xi) − z〉), ∀z : ∃x′ ∈ R
n, z = φ(x′).

249



10.6 KERNELIZED COMPREHENSIVE ROBUST CLASSIFIER

Notice that the Reproducing Kernel Hilbert Space is the completing of the image of

the feature mapping, i.e., φ(Rn), hence for any z′ ∈ Φ, there exists a sequence of

zt → z′ where zt = φ(x′
t). By continuity of the dot product, we have

yi

(

〈w, z′〉 + b
)

= lim
t→∞

yi

(

〈w, zt〉 + b
)

≥ lim
t→∞

{

1 − ξi − hi(
√

〈φ(xi) − zt, φ(xi) − zt〉)
}

≥1 − ξi − hi(
√

〈φ(xi) − z′, φ(xi) − z′〉),

(10.28)

where the last inequality follows from the assumption that hi(·) is upper semi-continuous.

Notice Inequality (10.28) holds for arbitrary z′ ∈ Φ, which is equivalent to Condi-

tion (10.25). �

Notice the condition in Theorem 10.19 and Theorem 10.20 only involves the

kernel function k(·, ·) and is independent of the explicit feature mapping. Hence

this theorem applies for abstract mappings, and specifically mappings into infinite-

dimensional spaces.

Theorem 10.21. Equip the sample space with a metric d(·, ·), and suppose there

exist k̂i : R+ → R, and f̂i : R+ → R
⋃{+∞} such that,

k(x,x′) = k̂(d(x,x′)), ∀x,x′ ∈ R
n;

fi(δ) = f̂i(d(xi,xi − δi)), ∀δ ∈ R
n.

(10.29)

Then hi : R+ → R+
⋃{+∞} defined as

hi(x) = inf
y|∃z∈Rn:y=d(xi,z), k̂(y)=k̂(0)−x2/2

f̂i(y) (10.30)

satisfies Equation (10.24), and for any h′(·) that satisfies Equation (10.24), h′(x) ≤
h(x), ∀x ≥ 0 holds. Here, we take infy∈∅ f̂i(y) to be +∞.

Proof. Rewrite Inequality (10.24) as

hi

(

√

k̂(d(xi,xi)) + k̂(d(xi − δ,xi − δ)) − 2k(d(xi,xi − δ))
)

≤ f̂i(d(xi,xi−δ)), ∀δ ∈ R
n,
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which is equivalent to

hi(x) ≤ f̂i(y); ∀x, y, z : x =

√

2k̂(0) − y; y = d(xi, z).

Observe that the function defined by (10.30) is the maximal function that satisfies

this inequality, thus proving the theorem. �

Remark 10.2. In many cases, f̂i is increasing and piecewise continuous, d(·, ·) sat-

isfies that for any y ≥ 0, there exists z ∈ Rn such that d(xi, z) = y. Equation (10.30)

can be simplified to

hi(x) =



















+∞ {y|k̂(y) = k̂(0) − x2/2} is empty

f̂i

(

k̂−1
(

k̂(0) − x2/2
)

)

min{y|k̂(y) = k̂(0) − x2/2} exists

f̂i

(

k̂−1
(

k̂(0) − x2/2
)+
)

otherwise.

Here, k̂−1(x) , inf{y|k̂(y) = x}, and f̂i(c
+) stands for the right limit at c of fi(·).

Consider the Gaussian Kernel k(x,x′) = exp(−‖x − x′‖2/2σ2) as an example.

We have d(x,x′) = ‖x − x′‖ and k̂(x) = exp(−x2/2σ2). Hence k̂−1(y) =
√

−2σ2 ln y

yields

hi(x) =







f̂i

(

√

−2σ2 ln(1 − x2/2)
)

x <
√

2

+∞ otherwise.

Taking f̂i(x) = Ic, the corresponding hi(x) = I√
2−2 exp(−c2/2σ2)

. Taking f̂i(x) = cx2,

the corresponding hi(x) is

hi(x) =







−2cσ2 ln(1 − x2/2) x <
√

2

+∞ otherwise.

It is easy to check that the condition of Theorem 10.20 also holds, hence the corre-

sponding robustness requirement in the feature space is both necessary and sufficient.
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10.7. Numerical simulations

In this section, we use empirical experiments to gain further insight into the

performance of the comprehensive robust classifier. To this end, we compare the per-

formance of three classification algorithms: the standard SVM, the standard robust

SVM with ellipsoidal uncertainty set, and comprehensive robust SVM with ellip-

soidal uncertainty set with linear discount function from the center of the ellipse to

its boundary (see below). The simulation results show that a comprehensive robust

classifier with the discount function appropriately tuned has a performance superior

to both the robust classifier and the standard SVM. The empirical results show that

this soft formulation of robustness builds in protection to noise, without being overly

conservative.

We use the non-kernelized version for both the robust classification and the com-

prehensive robust classification. We use a linear discount function for the compre-

hensive robust classifier. That is, noise is bounded in the same ellipsoidal set as for

the robust SVM, {δ|‖δ‖Σ−1 ≤ 1}, and the discount function is

fi(δ) =







α‖δ‖Σ−1 ‖δ‖Σ−1 ≤ 1,

+∞ otherwise.

The parameter α controls the disturbance discount. As α tends to zero, there is no

discount inside the uncertainty set, and we recover the robust classifier. As α tends

to +∞, the discount increases until effectively the constraint is only imposed at the

center of the ellipse, hence recovering the standard SVM classifier.

We use SeduMi 1.1R3 [144] to solve the resulting convex programs. We first

compare the performance of the three algorithms on the Wisconsin-Breast-Cancer

data set from the UCI repository [3]. In each iteration, we randomly pick 50% of

the samples as training samples and the rest as testing samples. Each sample is

corrupted by i.i.d. noise, which is uniformly distributed in an ellipsoid {δ|‖δ‖Σ−1 ≤
1}. Here, the matrix Σ is diagonal. For the first 40% of features, Σii = 16, and for

the remaining features, Σii = 1. This ellipsoidal uncertainty set captures the setup
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where noise is skewed toward part of the features. We repeat 30 such iterations to get

the average empirical error of the three different algorithms. Figure 10.3 shows that

for appropriately chosen discount parameter α, the comprehensive robust classifier

outperforms both the robust and standard SVM classifiers. As anticipated, when

α is small, comprehensive robust classification has a testing error rate comparable

to robust classification. For large α, the classifier’s performance is similar to that

of the standard SVM. This figure essentially shows that protection against noise is

beneficial as long as it does not become overly conservative, and comprehensive robust

classification provides a more flexible approach to handle the noise.
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Figure 10.3. Empirical error for WBC data.

We run similar simulations on Ionosphere and Sonar data sets from the UCI

repository [3]. To fit the variability of the data, we scale the uncertainty set: for 40%

of the features, Σii equals 0.3 for Ionosphere and 0.01 for Sonar; for the remaining

features, Σii equals 0.0003 for Ionosphere and 0.00001 for Sonar. Figure 10.4 and

Figure 10.5 show the respective simulation results. Similarly to the WBC data set,

comprehensive robust classification achieves its optimal performance for mid-range

α, and is superior to both the standard SVM and the robust SVM.
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Figure 10.4. Empirical error for Ionosphere data.
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Figure 10.5. Empirical error for Sonar data.

The noise resistance ability of the resulting classifiers is also of interest, espe-

cially in the case where the noise is adversarial, or non i.i.d. This is measured using

percentile performance: for each testing sample, we generate 100 independent noise

realization and measure the probability (i.e., confidence) that this testing sample is

correctly classified. The percentage of testing samples that achieves each confidence

threshold is reported in Figure 10.6, Figure 10.7 and Figure 10.8. The standard SVM
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Figure 10.6. Percentile performance for WBC data.
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Figure 10.7. Percentile performance for Ionosphere data.

has a good performance for the 50% threshold, but it degrades significantly as the

threshold increases, indicating a lack of noise-protection. The robust classifier tends

to be overly conservative. The comprehensive robust classifier with α appropriately

tuned performs well at all thresholds, especially in the 60% to 80% range, indicating

good noise resistance without being overly conservative.
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Figure 10.8. Percentile performance for Sonar data.

10.8. Chapter summary

This chapter extends the robust classification to a soft notion of robustness known

as comprehensive robustness, and seeks to develop robust classifiers with controlled

conservatism. The resulting classifier overcomes the conservatism inherent to the

standard robust formulation and provides extra flexibility on handling the observation

noise. We further show that any arbitrary convex constraint regularization, including

the standard regularized SVM, is equivalent to a comprehensive robust classifier. This

leads to a connection to convex risk measures, a notion widely used in decision making

theory, from which we develop risk-constrained classifiers.

At a high level, our contribution is the introduction of a more geometric notion

of hedging and controlling complexity (robust and comprehensive robust classifiers

integrally depend on the uncertainty set and structure of the discount function) and

the link to probabilistic notions of hedging, including chance constraints and convex

risk constraints. We believe that in applications, particularly when distribution-free

PAC-style bounds are pessimistic, the design flexibility of such a framework will

yield superior performance. A central issue on the application front is to understand

how to effectively use the additional degrees of freedom and flexibility since now we
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are designing uncertainty sets and discount functions, rather than simply choosing

regularization parameters that multiply a norm.
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CHAPTER 11

Robust Dimensionality Reduction for

High-Dimension Data

Similarly to Chapter 10 we propose new robust learning algorithm in this chap-

ter. More precisely, we consider the dimensionality-reduction problem (finding a

subspace approximation of observed data) for contaminated data in the high dimen-

sional regime, where the the number of observations is of the same order of magnitude

as the number of variables of each observation, and the data set contains some (ar-

bitrarily) corrupted observations. We propose a High-dimensional Robust Principal

Component Analysis (HR-PCA) algorithm that is tractable, robust to contaminated

points, and easily kernelizable. The resulting subspace has a bounded deviation from

the desired one, and unlike ordinary PCA algorithms, achieves optimality in the limit

case where the proportion of corrupted points goes to zero. Part of the material in

this chapter appears in [164].

11.1. Introduction

The analysis of very high dimensional data – data sets where the dimensionality

of each observation is comparable to or even larger than the number of observations –

has drawn increasing attention in the last few decades [57, 93]. Today, it is common

practice that observations on individual instances are curves, spectra, images or even
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movies, where a single observation has dimensionality ranging from thousands to

billions. Practical high dimensional data examples include DNA Microarray data,

financial data, climate data, web search engine, and consumer data. In addition, the

nowadays standard “Kernel Trick” [133], a pre-processing routine which non-linearly

maps the observations into a (possibly infinite dimensional) Hilbert space, transforms

virtually every data set to a high dimensional one. Efforts of extending traditional

statistical tools (designed for low dimensional case) into this high-dimensional regime

are generally unsuccessful. This fact has stimulated research on formulating fresh

data-analysis techniques able to cope with such a “dimensionality explosion.”

In this chapter, we consider a high-dimensional counterpart of Principal Com-

ponent Analysis (PCA) that is robust to the existence of corrupted or contaminated

data. In our setup, a low dimensional Gaussian signal is mapped to a very high

dimensional space, after which point high-dimensional Gaussian noise is added, to

produce points that no longer lie on a low dimensional subspace. Then, a constant

fraction of the points are arbitrarily corrupted in a perhaps non-probabilistic man-

ner. We refrain from calling these “outliers” to emphasize that their distribution is

entirely arbitrary, rather than from the tails of any particular distribution, e.g., the

noise distribution. We call the remaining points “authentic.”

Work on PCA dates back as early as [119], and has become one of the most

important techniques for data compression and feature extraction. It is widely used

in statistical data analysis, communication theory, pattern recognition, and image

processing [94]. The standard PCA algorithm constructs the optimal (in a least-

square sense) subspace approximation to observations by computing the eigenvectors

or Principal Components (PCs) of the sample covariance or correlation matrix.

It is well known that such analysis is extremely sensitive to outlying, or corrupted,

measurements. Indeed, one aberrant observation is sufficient to cause arbitrarily large

changes in the covariance or correlation matrix, and hence the corresponding PCs.

In the low-dimensional regime where the observations significantly outnumber

the variables of each observation, several robust PCA algorithms have been proposed
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(e.g.,[51, 177, 178, 45, 47, 48, 44]). These algorithms can be roughly divided into

two classes: (i) performing a standard PCA on a robust estimation of the covariance or

correlation matrix; (ii) maximizing (over all unit-norm w) some r(w) that is a robust

estimate of the variance of univariate data obtained by projecting the observations

onto direction w. Both approaches encounter serious difficulties when applied to

high-dimensional data-sets:

• There are not enough observations to robustly estimate the covariance or

correlations matrix. For example, the widely-used MVE estimator [128],

which treats the Minimum Volume Ellipsoid that covers half of the observa-

tions as the covariance estimation, is ill-posed in the high-dimensional case.

Indeed, to the best of our knowledge, the assumption that observations far

outnumber dimensionality seems crucial for those robust variance estimators

to achieve statistical consistency.

• Unlike standard PCA that has a polynomial computation time, the maxi-

mization of r(w) is generally a non-convex problem, and becomes extremely

hard to solve or approximate as the dimensionality of w increases. In fact,

the number of the local maxima grows so fast that it is effectively impossi-

ble to find a sufficiently good solution using gradient-based algorithms with

random re-initialization.

In contrast to these approaches, we propose a High-dimensional Robust PCA

(HR-PCA) algorithm that takes into account the inherent difficulty in analyzing the

high dimensional data. In particular, the algorithm we propose here is tractable,

provably robust to corrupted points, easily kernelizable, and asymptotically optimal.

The proposed algorithm takes an “actor-critic” form: we apply standard PCA in

order to find a set of candidate directions. These directions are then subjected to a

hypothesis test, that uses a computationally efficient one-dimensional robust variance

estimate. This hypothesis test determines if the variance is due to corrupted data,

or indeed the “authentic” points. In case of the latter, the algorithm has found a

true PC. In case of the former, we use a randomized point removal scheme, that
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guarantees quick termination of our algorithm with deviation guarantees on the PCs

it ultimately reports, from the true PCs.

One notable difference between this work and previous robust PCA work is how

we measure the robustness of an algorithm. The traditional robustness measurement

is the so-called “breakdown point” [90], i.e., the percentage of corrupted points that

can make the output of the algorithm arbitrarily bad. This is an indirect measure-

ment: except that the error is not unlimited, there is no guarantee that the output is

good enough, even when the algorithm does not break down. In contrast, we directly

investigate the “robust performance” of the algorithm, i.e., the performance gap be-

tween the output of the algorithm and the optimum, as a function of the fraction of

corrupted points. Therefore, such a direct measurement provides an explicit guar-

antee of the performance of the algorithm, which we regard to be of importance in

practice.

The chapter is organized as follows: In Section 11.2 we present the setup of

the problem, the hypothesis test, and then the HR-PCA algorithm including the

randomized point removal scheme. Based on some technical results established in

Section 11.3, we show the validity of HR-PCA in Section 11.4 by providing a bound

on the probability that our algorithm removes a corrupted point at any given itera-

tion, and then using this to bound the running time of the algorithm, and finally to

give finite sample and asymptotic performance guarantees. Section 11.5 is devoted

to the kernelization of HR-PCA. We provide some numerical experiment results in

Section 11.6.

Notation: Capital letters and boldface letters are used to denote matrices and

vectors, respectively. Φ(·) stands for the cumulative distribution function of N (0, 1)

and we let Φ−1(c) be −∞ and +∞ for c ≤ 0 and c ≥ 1 respectively. Ψ(·) is the

Tracy-Widom distribution of order one (c.f [149, 93]), implemented using a numerical

lookup table. A k × k unit matrix is denoted by Ik. The largest eigenvalue of a

symmetric matrix C is represented as λmax(C). For c ∈ R, [c]+ , max(0, c).
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As this chapter is notationally very heavy, we introduce a number of parameters

to simplify long expressions, in the hopes of highlighting the key elements. While we

introduce the parameters at the appropriate parts of the text, we keep the following

convention, to facilitate the reader’s job. Parameters which have a physical meaning,

such as the largest singular value of a matrix, or the fraction of corrupted points,

etc., all have a ‘¯’. Parameters which are introduced as “slack” factors in order

to deal with finite-sample estimates (and go to zero asymptotically) all have a ‘ˆ’.

Finally, parameters synthesized from the two categories above, and introduced simply

to shorten and simplify expressions, all have a ‘˜’.

11.2. HR-PCA: the algorithm

The algorithm of HR-PCA is presented in this section. We start with the math-

ematical setup of the problem in Section 11.2.1. As discussed in the Introduction,

HR-PCA follows an “actor-critic” approach in which a robust univariate variance

estimator serves as a hypothesis test, to evaluate the robustness of PCs found. We

call this the “Sensitivity Test” and provide its formulation in Section 11.2.2. The

HR-PCA algorithm is then given in Section 11.2.3.

11.2.1. Problem setup. We consider the following problem:

• The “authentic samples” z1, . . . , zt ∈ Rm are generated by zi = Axi + ni,

where xi (the “signal”) and ni (the “noise”) are independent realizations of

random variables x ∼ N (0, Id) and n ∼ N (0, Im) respectively. The matrix

A ∈ Rm×d is unknown.

• The corrupted data are denoted o1, . . . , on−t ∈ Rm and they are arbitrary

(even maliciously chosen).

• We only observe the contaminated data set

Y , {y1 . . . ,yn} = {z1, . . . , zt}
⋃

{o1, . . . , on−t}.

An element of Y is called a “point”.

262



11.2 HR-PCA: THE ALGORITHM

We denote the fraction of corrupted points by η , n− t/n. In this chapter, we

focus on the case where n ∼ m ≫ d and λmax(A
⊤A) ≫ 1. That is, the number and

dimensionality of observations are of the same magnitude, and much larger than the

dimensionality of x; the leading eigenvalue of A⊤A is significantly larger than 1.

For a set of orthogonal vectors v1, . . . ,vd, performance is measured by the Ex-

pressed Variance

E.V. ,

∑d
i=1 v⊤

i AA
⊤vi

∑d
i=1 v∗⊤

i AA⊤v∗
i

,

where {v∗
1, . . . ,v

∗
d} are the largest d eigenvectors of AA⊤ (i.e., the desired PCs).

Notice that the maximum of E.V. equals 1, and is achieved by recovering the span

of the true PCs {v∗
1, . . . ,v

∗
d}. In addition, when d = 1, the Expressed Variance

relates to another natural performance metric — the angle between v1 and v∗
1 —

since E.V.(v1) = cos2(∠(v1, v
∗
1)) (see Figure 11.1). When d > 1, such geometric

interpretation no longer exists since the angle between two subspaces is not well

defined. The Expressed Variance represents the portion of signal Ax being expressed

by v1, . . . ,vd. Equivalently, 1 − E.V. is the reconstruction error of the signal.
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Figure 11.1. Expressed variance vs angle for d=1.

While we give finite-sample results, our main theorem gives the asymptotic perfor-

mance of HR-PCA when the dimension and the number of observations grow together

to infinity. To be more precise, our asymptotic setting is as follows. Suppose there
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exists a sequence of sample sets {Y(j)}j = {Y(1),Y(2), . . .}, where for Y(j), n(j),

m(j), A(j), d(j), etc., denote the corresponding values of the quantities defined above.

Then the following must hold for some positive constants c1, c2:

lim
j→∞

n(j)

m(j)
= c1; d(j) ≤ c2; m(j) ↑ +∞;

λmax(A(j)⊤A(j)) ↑ +∞.

(11.1)

11.2.2. Sensitivity test. We present the formulation of the “Sensitivity

Test” in this subsection. This test is based on evaluating the “θ confidence interval”

of a collection of scalar values, i.e., the shortest interval containing a θ fraction of the

scalars. For unit-norm w ∈ Rm, let

lw , l(0.5 +
η

2
,w⊤y1, . . . ,w

⊤yn),

which is the 0.5 + η/2 confidence interval for the points projected on the direction

w. This confidence interval lw is an estimator of standard deviation robust to the

existence of corrupted points [90]. Once PCA outputs directions of largest variance,

for each direction we use this estimator to determine if the confidence interval is

consistent with the observed variance, and hence if the variance is a phenomenon due

to the authentic points, or due to the corrupted data. We refer to Figure 11.2 for an

illustration. This figure illustrates a sensitivity test used often in practice, whereby

Standard 

Deviation

Confidence 

Interval

Standard 

Deviation

Confidence 

Interval

No Corrupted Data Some Corrupted Data

Figure 11.2. Illustration of the Sensitivity Test
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the variance, σ2, of a corrupted sample set along a direction w is deemed consistent

with the confidence interval or not, according to the rule:






consistent if (1 +
√
η)(1 − η)Hw ≥ σ2

inconsistent if (1 +
√
η)(1 − η)Hw < σ2

,

where Hw ,

(

lw
2Φ-1(0.75)

)2

.

Because we are interested in a sensitivity test at each iteration, when some number

s of the points have been removed in previous iterations, and because we require finite

sample bounds in the sequel, we need a modification of the above sensitivity test

that incorporates some slack factors. We note that asymptotically, our slack factors

disappear, and our sensitivity test corresponds with the one given above. Before

providing the exact form of the Sensitivity Test, we define the following terms to

simplify the expressions. Again we use our convention whereby parameters with a

physical meaning have a ‘¯’, slack parameters which go to zero asymptotically have a

‘ˆ’ and parameters synthesized from the two categories above, and introduced simply

to shorten and simplify expressions, all have a ‘˜’.

In the quantities below, the subscript ‘t’ corresponds to the number of authentic

points, and therefore is a quantity that in the asymptotic analysis will go to infinity.

The subscript ‘δ’ will be a probability parameter we use in the sequel to control the

probability of finite sample deviation results, and therefore will be taken to be a very

small positive number.

σ1 ,
√

λmax(AA⊤);

λt,δ ,
4

1 − η
+

2[Ψ-1(1 − δ)]+
√

(1 − η)t
.

The first quantity above implicitly has a t-index, since the size of the matrix A is

fixed to t. Note further that by assumption, σ1 goes to infinity as t → ∞. The

second quantity above bounds the variance of the noise realizations, as shown in
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Theorem 11.2 below.

ĉt,δ ,

√

6d2

t

(

ln 2d2 + ln
1

δ

)

;

ĥt,δ ,

√

8d+ 8

t
ln

t

d+ 1
+

8

t
ln

8

δ
;

φ̂t,δ , 2Φ-1(0.75) − 2Φ-1(0.75 − ĥt,δ);

ṽt,δ , ĉt,δσ
2
1 + [1 + ĉt,δ/2]

√

λt,δσ1 + λt,δ;

Ow , min
c≥
√

2λt,δ

{ lw + φ̂t,δσ1 + 2c

2Φ-1(0.75 − λt,δ

2c2
)

}

;

Hw , O
2

w + ṽt,δ.

Finally, we can define our sensitivity test.

Definition 11.1. If s points have been removed, and the empirical variance in

a direction w is σ2, then the Sensitivity Test H is defined as

H(w, σ, s) ,







consistent, if (1+
√

η)(1−η)n
n−s

Hw ≥ σ2;

inconsistent, if (1+
√

η)(1−η)n
n−s

Hw < σ2.

Note that O takes the place of the term lw
2Φ-1(0.75)

in the expression given for the

first sensitivity test above.

11.2.3. Main algorithm. The main algorithm of HR-PCA is as given below.

Algorithm 11.1. HR-PCA

Input: Contaminated sample-set Y = {y1, . . . ,yn} ⊂ Rm, η, d, δ, σ1.

Output: v1, . . . ,vd.

Algorithm:

(1) Let ŷi := yi for i = 1, . . . n; s := 0.

(2) Compute the empirical variance matrix

Σ̂ :=
1

n− s

n−s
∑

i=1

ŷiŷ
⊤
i .
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(3) Let σ̂2
1, . . . , σ̂

2
d and v1, . . . ,vd be the d largest eigenvalues and the cor-

responding eigenvectors of Σ̂.

(4) If there is a j ∈ {1, . . . , d} such that Sensitivity Test H(vj , σ̂j , s) fails,

do the following:

• randomly remove a point from {ŷi}n−s
i=1 according to

Pr(ŷi is removed) ∝ (v⊤
j ŷi)

2;

• denote the remaining points by {ŷi}n−s−1
i=1 ;

• s := s+ 1, go to Step 2.

(5) Output v1, . . . ,vd. End.

In each iteration, HR-PCA finds a set of directions maximizing the empirical

variance of the points (i.e., of authentic and corrupted samples). If all directions pass

the Sensitivity Test, then the variances of “authentic samples” projected on them

must be close to being the largest, and hence the chosen directions are close to the

true PCs. If the Sensitivity Test fails, then the corrupted points must have a large

influence on the variance in this direction. In this case, the PC is not selected, and

a point is removed in proportion to its variance. We show that this proportional

removal guarantees a minimum probability that a corrupted point will be removed.

The correctness of HR-PCA is shown in the following sections. We outline here

the main theorem providing an asymptotic lower bound of the performance (illus-

trated in Figure 11.3). This is based on a finite-sample result, which we state and

prove in Section 11.4.3.

Theorem 11.1. If Equation (11.1) holds, and η(j) → η∗, then the following holds

in probability with j ↑ ∞,

∑d
q=1 vq(j)

⊤(A(j)A(j)⊤)vq(j)
∑d

q=1 v∗
q(j)

⊤(A(j)A(j)⊤)v∗
q(j)

≥
∫ ζ̃∗

− ˜̃ζ∗
x2√
2π

exp(−x2

2
)dx

1 +
√
η∗

(

Φ-1(0.75)

Φ-1(0.75 + η∗

2−2η∗ )

)2

,

(11.2)
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where ζ̃∗ , Φ−1
(

1 −
√

η∗

1−√
η∗

)

.
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Figure 11.3. Lower bound of asymptotic performance of HR-PCA.

Remark 11.1. If η(j) ↓ 0 (e.g., there are a fixed number of corrupted points),

then the right-hand-side of Inequality (11.2) equals 1, i.e., HR-PCA is asymptotically

optimal. This is in contrast to PCA, where the existence of even a single corrupted

point is sufficient to bound the output arbitrarily away from the optimum.

11.3. Technical results: uniform convergence

This section is devoted to establishing the uniform (w.r.t. all directions w ∈
Rm) convergence properties of the sample variance and the “confidence interval” for

authentic samples {z1, . . . , zt} (Theorems 11.3 and 11.4 respectively). These results

are used as technical lemmas in proving the validity of HR-PCA in Section 11.4. Due

to space constraints, all proofs in this section are deferred to Section 11.9.
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Consider the following events:

Condition (A): {λmax(1/t

t
∑

i=1

nin
⊤
i ) ≤ λt,δ}

Condition (B):
{

sup
w∈Rd, ‖w‖=1

∣

∣w⊤(
1

t

t
∑

i=1

xix
⊤
i − Id)w

∣

∣ ≤ ĉt,δ

}

;

Condition (C):
{

∀‖w‖2 = 1, ∀θ ∈ [0, 1] : 2Φ−1

(

1 + θ

2
− ĥt,δ

)

≤ l(θ,w⊤x1, . . . ,w
⊤xt) ≤ 2Φ−1

(

1 + θ

2
+ ĥt,δ

)}

.

Theorem 11.2. For sufficiently large t and m:

(a) Condition (A) holds with probability at least 1 − δ;

(b) Condition (B) holds with probability at least 1 − δ;

(c) Condition (C) holds with probability at least 1 − δ.

The validity of Theorem 11.2(a) follows from a lemma in [93]; Theorem 11.2(b)

and Theorem 11.2(c) are finite dimensional uniform convergence results that follow

from VC-dimension style arguments. The detailed proof is deferred to Section 11.9.

The next two theorems give analogs of Condition (B) and Condition (C) but for

the high dimensional points.

Theorem 11.3. Under Conditions (A) and (B), and n ≥ 4, the average variance

along direction w, of the authentic points, has distance from the size of (AA⊤ + I) in

the w direction bounded as follows:

sup
w∈Rm,‖w‖2=1

∣

∣

∣

∣

∣

w⊤
(

1

t

t
∑

i=1

ziz
⊤
i

)

w −w⊤(AA⊤ + Im)w

∣

∣

∣

∣

∣

≤ĉt,δσ2
1 +

[

1 +
ĉt,δ
2

]

√

λt,δσ1 + λt,δ − 1.

(11.3)
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Theorem 11.4. Under Conditions (A) and (C), for any ‖w‖2 = 1 and θ ∈
(0, 1), the θ-confidence interval of all the authentic points projected on direction w is

sandwiched as follows:

sup
c>0

{

2Φ−1(
1 + θ

2
− λt,δ

2c2
)
√

w⊤AA⊤w − (2Φ−1(
1 + θ

2
) − 2Φ−1(

1 + θ

2
− ĥt,δ))σ1 − 2c

}

≤ l(θ,w⊤z1, . . . ,w
⊤zt)

≤ inf
c>0

{

2Φ−1(
1 + θ

2
+
λt,δ

2c2
)
√

w⊤AA⊤w + (2Φ−1(
1 + θ

2
+ ĥt,δ) − 2Φ−1(

1 + θ

2
))σ1 + 2c

}

.

(11.4)

Note that these bounds are, up to addition of appropriate slack factors, the θ-

confidence bounds for the original low-dimensional points {xi} as given in Condition

C, elongated by
√

wAA⊤w.

11.4. Correctness of HR-PCA

Based on the results presented in the previous section, we show in this section

the correctness of HR-PCA, i.e., with a high probability, the subspace spanned by the

output v1, . . . ,vd is a good approximation (in the sense of the Expressed Variance)

of that spanned by v∗
1, . . . ,v

∗
d.

In Section 11.4.1 we lower bound the probability of removing a corrupted point

in each iteration. We then show that the number of iterations is small with high

probability in Section 11.4.2. We complete the argument in Section 11.4.3 by showing

that when HR-PCA stops within a small number of iterations, the PCs found are good

approximations of the desired ones.

Throughout this section, we assume without explicitly stating it in each theorem

that Conditions (A), (B) and (C) hold simultaneously. As shown in Section 11.3, this

occurs with probability is at least 1 − 3δ. We further assume n ≥ 4.

11.4.1. Probability of removing a corrupted point. In this section, we

lower bound the probability of removing a corrupted point in each iteration of HR-

PCA.
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Theorem 11.5. If the Sensitivity Test fails (i.e., it returns “inconsistent”) in the

sth iteration, then

Pr(The next removed point is corrupted) >

√
η

1 +
√
η
.

To prove Theorem 11.5, we need the following lemma.

Lemma 11.6. For all ‖w‖2 = 1, 1
t

∑t
i=1(w

⊤zi)
2 ≤ Hw.

Proof. By definition, an interval with length lw covers (0.5+η/2)n points in Y ,

which implies that it covers at least (0.5−η/2)n = 0.5t authentic samples. Therefore,

l(0.5,w⊤z1, . . . ,w
⊤zt) ≤ lw. (11.5)

Now, from Theorem 11.4, when (B) and (C) hold, we have for all θ and ‖w‖2 = 1,

2Φ−1(
1 + θ

2
− λt,δ

2c2
)
√

w⊤AA⊤w

≤l(θ,w⊤z1, . . . ,w
⊤zt) + (2Φ−1(

1 + θ

2
) − 2Φ−1(

1 + θ

2
− ĥt,δ))σ1 + 2c.

Taking θ = 0.5, by applying (11.5) we get for all c ≥
√

2λt,

√
w⊤AA⊤w ≤ (lw + φ̂t,δσ1 + 2c)/2Φ−1(0.75 − λt,δ

2c2
).

Minimizing over c implies w⊤(AA⊤ + Im)w ≤ O
2

w + 1. Applying Theorem 11.3 com-

pletes the proof. �

Proof of Theorem 11.5. First recall that our point removal strategy implies

Pr(The next removed point is corrupted) =

∑

yi∈Îs
(vq

⊤yi)
2

∑

yi∈Is
(vq

⊤yi)2 +
∑

yi∈Îs
(vq

⊤yi)2
,

where Is and Îs denote the set of remaining authentic samples and remaining cor-

rupted points, respectively. We prove that

√

η
∑

yi∈Is

(vq
⊤yi)

2 <
∑

yi∈Îs

(vq
⊤yi)

2,
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which will conclude the proof.

By definition, if the Sensitivity Test fails it must be that for some q ∈ {1, . . . , d}

(1 +
√

η)(1 − η)nHvq/(n− s) < σ̂2
q . (11.6)

At the sth iteration, there are n − s remaining points. We have |Is| + |Îs| = n − s,

and Is ⊆ {z1, . . . , zt}. Therefore,

∑

yi∈Is

(vq
⊤yi)

2 ≤
t
∑

i=1

(vq
⊤zi)

2 ≤ (1 − η)nHvq , (11.7)

where the last inequality follows from Lemma 11.6. Furthermore,

σ̂2
q =

1

n− s

∑

yi∈Is

S

Îs

(vq
⊤yi)

2

=⇒ (n− s)σ̂2
q =

∑

yi∈Is

(vq
⊤yi)

2 +
∑

yi∈Îs

(vq
⊤yi)

2.
(11.8)

Substituting (11.7) and (11.8) into Inequality (11.6) leads to

(1 +
√

η)
∑

yi∈Is

(vq
⊤yi)

2 <
∑

yi∈Is

(vq
⊤yi)

2 +
∑

yi∈Îs

(vq
⊤yi)

2

⇒
√

η
∑

yi∈Is

(vq
⊤yi)

2 <
∑

yi∈Îs

(vq
⊤yi)

2.

�

Theorem 11.5 implies that if the Sensitivity Tests fails, then there is at least one

corrupted point remaining.

Since the probability of removing a corrupted point at any given iteration of

the algorithm is
√
η/(1 +

√
η), each iteration decreases the “expected number of

corrupted points” by that amount. In the next section, we bound the probability

that the algorithm fails to terminate before some particular iteration. For this we use

twice the number of corrupted points divided by the expected reduction at a given

iteration:

s̄0 , 2

(

1 +
√
η√

η

)

ηn.
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11.4.2. Number of iterations. In this section, we show that with high

probability, HR-PCA terminates quickly: within s0 iterations. The key to the proof

is the previous theorem, that each step removes a corrupted point with probability at

least
√
η/(1 +

√
η). If the event of corrupted point removal at subsequent iterations

were independent, then the expected number of points removed by s iterations would

be s · √η/(1 +
√
η), and since there are only ηn corrupted points in total, the result

would be straightforward. Instead, we must use a Martingale argument to arrive at

the desired result.

By definition, HR-PCA terminates at step s if the Sensitivity Test succeeds after

s − 1 points have been removed. Let random variable V (s) denote the number of

corrupted points removed up to iteration s, inclusive. Define the following stochastic

process:

Xs ,







V (T ) −
√

η(T−1)

1+
√

η
, HR-PCA stoped at T ≤ s;

V (s) −
√

ηs
1+

√
η
, Otherwise.

Let Fs be the filtration generated by the set of events up to iteration s. Hence, Xs is

measurable w.r.t. Fs.

Lemma 11.7. {Xs,Fs, s = 1, . . . , n} is a sub-martingale.

Proof. Observe that Xs ∈ Fs by definition of Fs. We show that E(Xs|Fs−1) ≥
Xs−1 by enumerating the following three cases.

Case 1: the algorithm has not terminated up to step s − 1, and the hypothesis

test of the sth iteration fails. Thus by Theorem 11.5,

E(Xs −Xs−1|Fs−1) = Pr(The next removed point is corrupted) −
√
η

1 +
√
η

≥ 0.

Case 2: the algorithm has not terminated up to step s − 1, and the hypothesis

test of the sth iteration succeeds. Thus, the algorithm terminates at step s, i.e., no

extra point will be removed. Hence V (s) = V (s − 1). By definition of X we have

Xs = Xs−1 in this case.
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Case 3: the algorithm terminates at step T ≤ s− 1. Observe that Xs = Xs−1 in

this case.

Combining all three cases shows that E(Xs|Fs−1) ≥ Xs−1, which proves the

lemma. �

Theorem 11.8. Denote κ =
√
η. For all s ≥ (1 + κ)λn/κ, we have

Pr(the algorithm does not terminate up to step s) ≤ exp
(−(λn− κs

1+κ
)2

8s

)

.

Proof. We prove the theorem by exploiting the deviation bound of a martingale

process. Let ys , Xs − Xs−1, where recall that X0 = 0. Consider the following

sequence:

y′s , ys − E(ys|y1, · · · , ys−1).

Observe that {y′s} is a martingale difference process w.r.t. {Fs}. Since {Xs} is a

sub-martingale, E(ys|y1, · · · , ys−1) ≥ 0 a.s. Therefore, the following holds a.s.,

Xs =
s
∑

i=1

yi =
s
∑

i=1

y′i +
s
∑

i=1

E(yi|y1, · · · , yi−1) ≥
s
∑

i=1

y′i. (11.9)

By definition, |ys| ≤ 1, and hence |y′s| ≤ 2. Now for any θ > 0,

E
{

exp(θ
s
∑

i=1

(−y′i))
}

= E
{

exp(θ

s−1
∑

i=1

(−y′i))
}

E(θ − y′s| − y′1, · · · ,−y′s−1)

≤ E
{

exp(θ

s−1
∑

i=1

(−y′i))
}

exp(θ2| − y′s|2/2)

= E
{

θ exp(
s−1
∑

i=1

(−y′i))
}

exp(2θ2).

The inequality follows from Lemma 8.1 of [54]. By iteration we have

E
{

exp(θ
s
∑

i=1

(−y′i))
}

≤ exp(2sθ2).
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Using the Markov inequality, we have that for any ǫ > 0,

Pr(
s
∑

i=1

(−y′i) ≥ sǫ) ≤ exp(2sθ2 − θsǫ).

Taking the minimum over θ of the right hand side and applying (11.9) leads to

Pr(Xs ≤ −sǫ) ≤ exp(−sǫ2/8).

Now note that if the algorithm does not terminate up to step s, we have Xs ≤ λn−
κs/(1+κ), because there are only λn outliers. Thus we have for all s ≥ (1 + κ)λn/κ,

Pr(the algorithm does not terminate up to step s)

≤Pr
(

Xs ≤ λn− κs

1 + κ

)

≤ exp
(−(λn− κs

1+κ
)2

8s

)

,

which establishes the theorem. �

The probability that the algorithm does not terminate up to s̄0 = 2(1+
√
η)ηn/

√
η

is hence bounded by

e
−

“

n
√

ηη

8(1+
√

η)

”

,

which goes to zero exponentially in n.

11.4.3. Deviation bound of output PCs. In this section, we show that

when HR-PCA terminates, i.e., when all v1, . . . ,vd pass the Sensitivity Test, the

output is close to optimal, in the sense that we bound the distance of
∑d

i=1 v⊤
i AA

⊤vi

to
∑d

i=1 v∗⊤
i AA⊤v∗

i , where recall the {v∗
i } are the true PCs. We state some technical

lemmas, then prove a finite sample result (Theorem 11.12) and finally go on to prove

the asymptotic result stated above in Theorem 11.1. The proofs are omitted due

to space constraints, and deferred to the appendix. To simplify the expressions, we
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define the following terms:

θ̄ ,
1 + η

2 − 2η
;

ψ̂t,δ , 2Φ−1(
1 + θ̄

2
+ ĥt,δ) − 2Φ−1(

1 + θ̄

2
);

ζ̃t,δ , Φ−1

(

1 − s̄0

2t
−
√

1

8t
log

d

δ

)

.

We sometimes drop the subscript of ζ̃t,δ and simply write ζ̃. It should be understood

that ζ̃ depends on t and δ.

Lemma 11.9. For all ‖w‖ ≤ 1, lw ≤ l(θ̄,w⊤z1, . . . ,w
⊤zt).

Proof. This follows from the definition of θ. �

Lemma 11.10. For all unit-norm w, the following holds,

√
w⊤AA⊤w ≥ max

c≥
√

2λt

{

Φ-1(0.75 − λt,δ

2c2
)Ow − 2c− (φ̂t,δ + ψ̂t,δ)

σ1

2

Φ-1(1+θ̄
2

+
λt,δ

2c2
)

}

.

Proof. Let c0 maximize the right-hand-side. From Lemma 11.9 and Theo-

rem 11.4, we have the following inequality under Conditions (B) and (C),

lw ≤ l(θ,w⊤z1, · · · ,w⊤zt) ≤ 2Φ−1(
1 + θ

2
+
λt,δ

2c20
)
√

w⊤AA⊤w + ψ̂t,δσ1 + 2c0.

Rearranging terms leads to

√
w⊤AA⊤w ≥ lw − ψ̂t,δ − 2c0

2Φ−1(1+θ
2

+
λt,δ

2c20
)

=

{

lw+φ̂t,δσ1+2c0

2Φ−1(0.75−λt,δ

2c2
0

)

}

× 2Φ−1(0.75 − λt,δ

2c20
) − φ̂t,δσ1 − 2c0 − ψ̂t,δσ1 − 2c0

2Φ−1(1+θ
2

+
λt,δ

2c20
)

≥
Ow × 2Φ−1(0.75 − λt,δ

2c20
) − φ̂t,δσ1 − 2c0 − ψ̂t,δσ1 − 2c0

2Φ−1(1+θ
2

+
λt,δ

2c20
)

.
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The last inequality holds because by definition of Ow,

Ow ≤
{ lw + φ̂t,δσ1 + 2c0

2Φ−1(0.75 − λt,δ

2c20
)

}

,

and Φ−1(0.75 − λt,δ

2c20
) and Φ−1(1+θ

2
+

λt,δ

2c20
) are non-negative for c0 ≥

√

2λt,δ. �

Lemma 11.11. Let a1, . . . , at be i.i.d. realizations of a scalar random variable

a ∼ N (0, ω2). Then, for any fixed γ ∈ [0, 1), the following holds with probability at

least 1 − 2δ:

min
I⊆{1,...,t}, |I|≥(1−γ)t

1

t

∑

i∈I

a2
i ≥ ω2

{

∫ τ̃

−τ̃

x2

√
2π

exp(
−x2

2
)dx− τ̃ 2

√

1

2t
log

1

δ

}

,

where τ̃ , Φ−1
(

1 − γ
2
−
√

1
8t

log 1
δ

)

.

Proof. Define function f̂(a) , (1|a|≤ωτ )a
2. The following holds for any ǫ > 0 by

Hoeffding’s inequality:

Pr(
1

t

t
∑

i=1

f̂(ai) − Ea∼N (0,ω2)f̂(a) < −ǫω2) ≤ exp(−2tǫ2

τ 4
).

That is, with probability at least 1 − δ, the following holds

1

t

t
∑

i=1

f̂(ai) − Ea∼N (0,ω2)f̂(a) ≥ −τ 2ω2

√

1

2t
log

1

δ

=⇒1

t

t
∑

i=1

f̂(ai) ≥ ω2

∫ τ

−τ

x2

√
2π

exp(
−x2

2
)dx− ω2σ2

√

1

2t
log

1

δ

(11.10)

Next define function ĝ(a) , 1|a|≤ωτ . By Hoeffding’s inequality the following holds,

Pr(
1

t

t
∑

i=1

ĝ(ai) − Ea∼N (0,ω2)ĝ(a) > ǫ) ≤ exp(−2tǫ2).

That is, with probability at least 1 − δ,

1

t

t
∑

i=1

ĝ(ai) − Ea∼N (0,ω2)ĝ(a) ≤
√

1

2t
log

1

δ
.
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Notice that Ea∼N (0,ω2)ĝ(a) = Φ(τ)−Φ(−τ) = 1−γ−
√

1
2t

log 1
δ
. Hence with probability

at least 1 − δ,

1

t

t
∑

i=1

ĝ(ai) ≤ 1 − γ. (11.11)

Notice that when Inequality (11.10) and (11.11) both hold, we have

min
I⊆{1,··· ,t}, |I|≥(1−γ)t

1

t

∑

i∈I

a2
i ≥ ω2

{

∫ τ

−τ

x2

√
2π

exp(
−x2

2
)dx− τ 2

√

1

2t
log

1

δ

}

,

which establishes the lemma. �

We now prove a finite-sample result, which we subsequently use to prove the main

theorem of this chapter.

Theorem 11.12. Under (A), (B) and (C), if Algorithm 11.1 terminates at the

sth iteration, where s ≤ s̄0, and
∫ ζ̃

−ζ̃
x2√
2π

exp(−x2

2
)dx − ζ̃2

√

1
2t

log d
δ
> 0, then with

probability at least 1 − 2δ the following holds

d
∑

q=1

v∗⊤
q (AA⊤ + Im)v∗

q

≤ 1 +
√
η

∫ ζ̃

−ζ̃
x2√
2π

exp(−x2

2
)dx− ζ̃2

√

1
2t

log d
δ

min
c≥
√

2λt,δ







(

Φ-1(1+θ̄
2

+
λt,δ

2c2
)

Φ-1(0.75 − λt,δ

2c2
)

)2

(
d
∑

q=1

v⊤
q AA

⊤vq)

+

√
dΦ-1(1+θ̄

2
+

λt,δ

2c2
)(4c+ φ̂t,δσ1 + ψ̂t,δσ1)

[Φ-1(0.75 − λt,δ

2c2
)]2

√

√

√

√

d
∑

q=1

v⊤
q AA

⊤vq +
(4c+ φ̂t,δσ1 + ψ̂t,δσ1)

2

4[Φ-1(0.75 − λt,δ

2c2
)]2

+ ṽt,δ

}

.

(11.12)

Proof. By definition, if HR-PCA terminates at the sth iteration, then for all

q ∈ {1, . . . , d}
(1 +

√
η)(1 − η)n

n− s
Hvq ≥ σ̂2

q .
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Substituting the definitions of ṽt,δ and Hw into Lemma 11.10, with some algebra we

have

n− s

(1 +
√
η)(1 − η)n

σ̂2
q

≤ min
c≥
√

2λt,δ







(

Φ-1(1+θ̄
2

+
λt,δ

2c2
)

Φ-1(0.75 − λt,δ

2c2
)

)2

v⊤
q AA

⊤vq

+
Φ-1(1+θ̄

2
+

λt,δ

2c2
)(4c+ φ̂t,δσ1 + ψ̂t,δσ1)

[Φ-1(0.75 − λt,δ

2c2
)]2

√

v⊤
q AA

⊤vq +
(4c+ φ̂t,δσ1 + ψ̂t,δσ1)

2

4[Φ-1(0.75 − λt,δ

2c2
)]2

+ ṽt,δ

}

.

Summing up for q = 1, . . . , d, noticing that the minimal value of the sum is no less

than the summation of the minimal value of each term and using the inequality
∑d

i=1 ai ≤
√

d
∑d

i=1 a
2
i for any ai ∈ R, we have

n− s

(1 +
√
η)(1 − η)n

d
∑

q=1

σ̂2
q

≤ min
c≥
√

2λt,δ







(

Φ-1(1+θ̄
2

+
λt,δ

2c2
)

Φ-1(0.75 − λt,δ

2c2
)

)2

(

d
∑

q=1

v⊤
q AA

⊤vq)

+

√
dΦ-1(1+θ̄

2
+

λt,δ

2c2
)(4c+ φ̂t,δσ1 + ψ̂t,δσ1)

[Φ-1(0.75 − λt,δ

2c2
)]2

√

√

√

√

d
∑

q=1

v⊤
q AA

⊤vq

+
(4c+ φ̂t,δσ1 + ψ̂t,δσ1)

2

4[Φ-1(0.75 − λt,δ

2c2
)]2

+ ṽt,δ

}

.

(11.13)

Since vq are the PCs of the remaining points at the sth iteration, then for all or-

thonormal {v̂1, . . . , v̂d},
d
∑

q=1

v̂⊤
q Σ̂v̂q ≤

d
∑

q=1

v⊤
q Σ̂vq =

d
∑

q=1

σ̂2
q ,

where Σ̂ is the covariance matrix of the remain points.

Recall that v∗
1, . . . ,v

∗
d are orthonormal and are independent to Y . Hence for

a fixed q ∈ {1, . . . , d}, the projection of the authentic samples onto v∗
q follows a
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Gaussian distribution with variance v∗⊤
q (AA⊤ + Im)v∗

q . Therefore, by Lemma 11.11

and since s ≤ s̄0, we have with probability 1 − 2δ/d

v∗⊤
q Σ̂v∗

q ≥ 1

n− s
min

I′⊆{1,...,n}, |I′|≥n−s

∑

i∈I′

(v∗⊤
q yi)

2

≥ t

n− s
v∗⊤

q (AA⊤ + Im)v∗
q

{

∫ ζ̃

−ζ̃

x2

√
2π

exp(
−x2

2
)dx− ζ̃2

√

1

2t
log

d

δ

}

.

Summing up over q and substituting it into Inequality (11.13), we establish the the-

orem. �

Notice that Conditions (A), (B) and (C) hold simultaneously with probability

at least 1 − 3δ, and Algorithm 11.1 terminates at s < s̄0 with probability at least

1− exp
(

−n
√

ηη
8(1+

√
η)

)

. Hence, Theorem 11.12 implies that this finite sample bound holds

with probability at least 1 − 5δ − exp
(

−n
√

ηη
8(1+

√
η)

)

.

Finally, we prove Theorem 11.1, which provides bounds on the asymptotic per-

formance of the algorithm. To simplify the expressions, let

θ̄∗ ,
1 + η∗

2 − 2η∗
;

ρ(j) ,

d
∑

q=1

vq(j)
⊤(A(j)A(j)⊤)vq(j);

ρ∗(j) ,

d
∑

q=1

v∗
q(j)

⊤(A(j)A(j)⊤)v∗
q(j).
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Proof of Theorem 11.1. Taking c =
√

σ1(j) and dividing both sides of

Theorem 11.12 by ρ∗(j), we have:

∫ ζ̃(j)

−ζ̃(j)
x2√
2π

exp(−x2

2
)dx− ζ̃(j)2

√

1
2t(j)

log d
δ

1 +
√
η(j)

≤





Φ-1(1+θ̄(j)
2

+
λt(j),δ

2σ1(j)
)

Φ-1(0.75 − λt(j),δ

2σ1(j)
)

√

ρ(j)

ρ∗(j)
+

√
d(4
√

σ1(j) + φ̂t(j),δσ1(j) + ψ̂t(j),δσ1(j))

2
√

ρ∗(j)





2

+
(4
√

σ1(j) + φ̂t(j),δσ1(j) + ψ̂t(j),δσ1(j))
2

4[Φ-1(0.75 − λt(j),δ

2σ1(j)
)]2ρ∗(j)

+
ṽt(j),δ

ρ∗(j)
.

(11.14)

Notice that by definition
√

ρ∗(j) ≥ σ1(j) ↑ +∞. Furthermore, we have

φ̂t(j),δ ↓ 0; ψ̂t(j),δ ↓ 0; ṽt(j),δ ↓ 0; λt(j),δ ↓
4

1 − η
.

Thus the right-hand-side of Inequality (11.14) converges to





Φ-1(1+θ̄(j)
2

+
λt(j),δ

2σ1(j)
)

Φ-1(0.75 − λt(j),δ

2σ1(j)
)

√

ρ(j)

ρ∗(j)





2

, (11.15)

since all other terms go to zero. Notice that (11.15) further converges to

(

Φ-1(1+θ̄∗

2
)

Φ-1(0.75)

√

ρ(j)

ρ∗(j)

)2

,

as σ1(j) increases and η(j) → η∗. On the other hand, noticing that ζ̃(j) → ζ̃∗ and
√
η(j) → √

η
∗
, we have that the left-hand-side of Inequality (11.14) converges to

∫ ζ̃∗

−ζ̃∗
x2√
2π

exp(−x2

2
)dx

1 +
√
η
∗ .

The corollary follows by definition of
√
η
∗

and θ̄∗. �
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11.5. Kernelization

We consider kernelizing HR-PCA in this section: given a feature mapping Υ(·) :

Rm → H equipped with a kernel function k(·, ·), i.e., 〈Υ(a), Υ(b)〉 = k(a,b) holds

for all a,b ∈ Rm, we perform the dimensionality reduction in the feature space H
without knowing the explicit form of Υ(·).

We assume that {Υ(y1), . . . ,Υ(yn)} is centered at origin without loss of general-

ity, since we can center any Υ(·) with the following feature mapping

Υ̂(x) , Υ(x) − 1

n

n
∑

i=1

Υ(yi),

whose kernel function is

k̂(a,b) = k(a,b) − 1

n

n
∑

j=1

k(a,yj)

− 1

n

n
∑

i=1

k(yi,b) +
1

n2

n
∑

i=1

n
∑

j=1

k(yi,yj).

Notice that HR-PCA involves finding a set of PCs {v1, . . . ,vd}, and evaluating

l(·) that is a function of {v⊤
q y1, . . . ,v

⊤
q yn} for q = 1, . . . , d. The former can be

kernelized by applying Kernel PCA introduced by [134], where each of the output

PCs admits a representation

vq =
n−s
∑

i=1

αi(q)Υ(ŷi), q = 1, . . . , d.

Thus, l(·) is easily evaluated by

v⊤
q Υ(yj) =

n−s
∑

i=1

αi(q)k(ŷi,yj).

Therefore, HR-PCA is kernelizable since both steps are easily kernelized, and we have

the following Kernel HR-PCA.

Algorithm 11.2. Kernel HR-PCA

Input: Contaminated sample-set Y = {y1, . . . ,yn} ⊂ Rm, η, d.
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Output: α(1), . . . ,α(d).

Algorithm:

(1) Let
√
η :=

√
η; ŷi := yi for i = 1, . . . n; s := 0.

(2) Compute the Gram matrix of {ŷi}:

Kij := k(ŷi, ŷj); i, j = 1, . . . , n− s.

(3) Let σ̂2
1 , . . . , σ̂

2
d and α̂(1), . . . , α̂(d) be the d largest eigenvalues and the

corresponding eigenvectors of K.

(4) Normalize: α(q) := α̂(q)/σ̂q.

(5) If there is a q ∈ {1, . . . , d} such that Kernel Sensitivity Test Hk(α(q), σ̂q, s)

fails, do the following:

• randomly remove a point from {ŷi}n−s
i=1 according to

Pr(ŷi is removed) ∝ (

n−s
∑

j=1

α(q)jk(ŷj , ŷi))
2;

• denote the remaining points by {ŷi}n−s−1
i=1 ;

• s := s+ 1, go to Step 2.

(6) Output α(1), . . . ,α(d). End.

We next define the Kernel Sensitivity Test. For α ∈ Rn−s,

lα , l
(

0.5 +
η

2
,

n−s
∑

i=1

αik(ŷi,y1), . . . ,

n−s
∑

i=1

αik(ŷi,yn)
)

;

Oα , min
c≥
√

2λt,δ

{ lα + φ̂t,δσ1 + 2c

2Φ−1(0.75 − λt,δ

2c2
)

}

;

Hα , O
2

α + ṽt,δ.

Definition 11.2. Kernel Sensitivity Test Hk is defined as

Hk(α, σ, s) ,







false, if (1+
√

η)(1−η)n
n−s

Hα < σ2;

true, if (1+
√

η)(1−η)n
n−s

Hα ≥ σ2.
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11.6 NUMERICAL ILLUSTRATIONS

11.6. Numerical illustrations

We report in this section some numerical experimental results. We let n = m =

100, i.e., 100 points, each with 100 dimensions. Each element of A is generated

according to a uniform distribution; A is then scaled so that its leading eigenvalue

equals the given σ1. All corrupted points are generated on a randomly selected

direction. We compare the performance of PCA and HR-PCA for different ratios of

corrupted points, magnitudes of corrupted points and σ1. For each set of parameters,

we report the average result of 100 tests.
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Figure 11.4. Performance for different ratios of corrupted points

The performance of PCA and HR-PCA of different η is reported in Figure 11.4,

where both σ1 and the magnitude of the corrupted points are fixed as 50. As one

would expect, HR-PCA outperforms PCA for all η. The performance of HR-PCA

breaks only for η as large as 0.4, i.e., 40% of points are corrupted. We notice that the

empirical performance is much better than predicted by the theoretical lower-bound,

which is to be expected since the lower bound is derived from a very pessimistic

analysis. We also observe that PCA performs much better in the case d = 5 than

for d = 1. This is mainly due to the fact that corrupted points are generated in only

one direction. Thus even though PCA wrongly picks the corrupted point direction

as a PC, for d = 5, the other 4 directions PCA picks are correct, and hence the
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total Expressed Variance seems to be acceptable. Figure 11.5 shows a significant

performance degradation of PCA in the d = 5 case when the corrupted points are

generated in 5 random directions.
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Figure 11.5. Performance for different ratios of corrupted points: cor-
rupted points generated in multiple directions
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Figure 11.6. Performance for different magnitudes of corrupted points

Figure 11.6 shows the performance of HR-PCA and PCA for different magnitudes

of corrupted points, with σ1 = 50 and η = 0.05. One interesting observation is the

performance of HR-PCA seems to be quite consistent for different magnitudes of the

corrupted points. Indeed, when the corrupted points are large, the performance of
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HR-PCA is as good as the no-corruption case, mainly because the corrupted points

become easier to remove.
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Figure 11.7. Performance for different σ1

Figure 11.7 shows that the performance of HR-PCA becomes satisfactory for

reasonably large σ1 (σ1 ≥ 5 for 1-d case and σ1 ≥ 20 for 5-d case).

11.7. Concluding remarks

In this chapter, we investigated the dimensionality-reduction problem in the case

where the number and the dimensionality of samples are of the same magnitude, and

a constant fraction of the points are arbitrarily corrupted (perhaps maliciously so).

We proposed a High-dimensional Robust Principal Component Analysis algorithm

that is tractable, robust to corrupted points, easily kernelizable and asymptotically

optimal. The algorithm takes an “actor-critic” form: iteratively finding a set of PCs

using standard PCA and subsequently validating the robustness of those PCs using

the confidence interval, using a point removal procedure in case of validation failure.

We provided both theoretical guarantees and favorable simulation results about the

performance of the proposed algorithm.

To the best of our knowledge, previous efforts to extend existing robust PCA

algorithms into the high-dimensional case remain unsuccessful. Such algorithms are
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designed for low dimensional data sets where the observations significantly outnumber

the variables of each dimension. When applied to high-dimensional data sets, they

either lose statistical consistency due to lack of sufficient observations, or become

highly intractable. This motivates our work of proposing a new robust PCA algorithm

that takes into account the inherent difficulty in analyzing high-dimensional data.

11.8. The Tracy-Widom distribution

The Tracy-Widom distribution of order 1, denoted Ψ, is defined as

Ψ(w) = exp

{

−1

2

∫ ∞

w

q(x) + (x− w)q2(x)dx

}

, w ∈ R,

where q solves q̈(x) = xq(x) + 2q3(x), q(x) ∼ Ai(x) as x → +∞, and Ai(x) denotes

the Airy function. This distribution was first identified and characterized in [148].

Numerical work (e.g., [149]) shows that the Ψ distribution has mean ≈ −1.21, and

standard deviation ≈ 1.27. The density of Ψ is asymmetric ([93]): its left tail decays

exponentially according to exp(−|w|3/24), while its right tail decays exponentially as

exp(−2
3
w3/2). We quote the following numerical table from ([93]):

w -2.78 -1.91 -1.27 -0.59 0.45 0.98 2.02

Ψ(w) 0.10 0.30 0.50 0.70 0.90 0.95 0.99

11.9. Proofs of technical results

11.9.1. Proof of Theorem 11.2. We prove in this subsection Theorem 11.2.

Theorem 11.2 (a): For sufficiently large t and m, Condition (A) holds with

probability at least 1 − δ.

Proof. To prove the theorem, we need the following lemma, stated and proved

in [93].
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Lemma 11.13. Let n1, · · · ,nt be i.i.d. realizations of n ∼ N (0, Im). Define

ℓ1 , λmax(
t
∑

i=1

nin
⊤
i ), µtm , (

√
t− 1+

√
m)2; σtm , (

√
t− 1+

√
m)(

1√
t− 1

+
1√
m

)1/3.

If t/m→ c ≥ 1, we have
ℓ1 − µtm

σtm

→W1 ∼ Ψ,

and if m/t→ c > 1, we have

ℓ1 − µmt

σmt

→W1 ∼ Ψ,

(where Ψ denotes the Tracy-Widom distribution of order one) i.e., the theorem still

holds by simply reversing t and m.

Now we proceed to prove the theorem. Lemma 11.13 implies that for large m

and t, the following holds with probability at least 1 − δ:

ℓ1 ≤ max
(

µmt + Ψ-1(1 − δ)σmt, µtm + Ψ-1(1 − δ)σtm

)

.

Using this inequality, we obtain the bound that is the statement of the theorem:

λmax

(1

t

t
∑

i=1

nin
⊤
i

)

=
1

t
ℓ1 ≤ max

(µmt + Ψ-1(1 − δ)σmt

t
,
µtm + Ψ-1(1 − δ)σtm

t

)

≤
(
√
n +

√
m)2 + Ψ-1(1 − δ)(

√
n+

√
m)( 1√

m−1
+ 1√

t−1
)1/3

(1 − η)n

≤ 4

1 − η
+

2Ψ-1(1 − δ)

(1 − η)
√
n

≤ 4

1 − η
+

2[Ψ-1(1 − δ)]+

(1 − η)
√
n

= λ̄t,δ.

The third inequality holds when m, t ≥ 5, and by assumption n ≥ m. This concludes

the proof of the theorem. �

Theorem 11.2 (b): For sufficiently large t, Condition (B) holds with probability

at least 1 − δ.
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Proof. Let xij denote the jth element of xi. Recall that these are i.i.d. scalar

random variables, following a standard normal distribution N (0, 1). We prove the

following lemma before proving the main theorem.

Lemma 11.14. For any j, j′ = 1, · · · , d such that j 6= j′, the following holds:

1√
t

t
∑

i=1

(x2
ij − 1) →W2 ∼ N (0, 3);

1√
t

t
∑

i=1

xijxij′ → W3 ∼ N (0, 1).

Proof. Notice that {x2
ij} are i.i.d. random variables because the {xij} are i.i.d.,

and they have mean 1 and variance E(x4
11) = 3. Now, the first convergence result

follows directly from the Central Limit Theorem. For any j 6= j′, the products

{xijxij′} are i.i.d. random variables. Furthermore, E(xijxij′) = Ex1jEx1j′ = 0, and

E((xijxij′)
2) = E(x2

ij)E(x2
ij′) = 1, since the {xij} are i.i.d. From here, the second

equation follows from the Central Limit Theorem. �

Now we prove Theorem 11.2 (b). This is equivalent to showing that for any fixed

ǫ > 0, the following holds:

Pr{ sup
‖w‖=1

∣

∣w⊤(
1

t

∑

xix
⊤
i − Id)w

∣

∣ > ǫ} ≤ 2d2 exp(− ǫ2t

6d2
). (11.16)

Letting wj stand for the jth component of w, we have

Pr

{

sup
‖w‖=1

∣

∣w⊤(
1

t

∑

xix
⊤
i − Id)w

∣

∣ ≥ ǫ

}

=Pr







sup
‖w‖=1

∣

∣

1

t

t
∑

i=1

d
∑

j=1

(wj)
2(x2

ij − 1) +
1

t

t
∑

i=1

∑

j,j′|j 6=j′

wjwj′xijxij′
∣

∣ ≥ ǫ







.
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Notice that ‖w‖ = 1 ⇒∑

j(wj)
2 +

∑

j,j′|j 6=j′ wjwj′ ≤ d, hence

sup
‖w‖=1

∣

∣

1

t

t
∑

i=1

d
∑

j=1

(wj)
2(x2

ij − 1) +
1

t

t
∑

i=1

∑

j,j′|j 6=j′

wjwj′xijxij′
∣

∣

≤dmax

{

max
j

∣

∣

1

t

t
∑

i=1

(x2
ij − 1)

∣

∣, max
j 6=j′

∣

∣

1

t

t
∑

i=1

xijxij′
∣

∣

}

.

Thus we have for sufficiently large t,

Pr







sup
‖w‖=1

∣

∣

1

t

t
∑

i=1

d
∑

j=1

(wj)
2(x2

ij − 1) +
1

t

t
∑

i=1

∑

j,j′|j 6=j′

wjwj′xijxij′
∣

∣ ≥ ǫ







≤Pr

{

max
j

∣

∣

1

t

t
∑

i=1

(x2
ij − 1)

∣

∣ ≥ ǫ

d

}

+ Pr

{

max
j 6=j′

∣

∣

1

t

t
∑

i=1

xijxij′
∣

∣ ≥ ǫ

d

}

≤d× Pr

{

∣

∣

1

t

t
∑

i=1

(x2
i1 − 1)

∣

∣ ≥ ǫ

d

}

+ (d2 − d) × Pr

{

∣

∣

1

t

t
∑

i=1

xi1xi2

∣

∣ ≥ ǫ

d

}

≤2d(1 − Φ(
ǫ
√
t√

3d
)) + 2d(d− 1)(1 − Φ(

ǫ
√
t

d
))

≤2d exp(− ǫ2t

6d2
) + (2d2 − 2d) exp(− ǫ2t

2d2
) ≤ 2d2 exp(− ǫ2t

6d2
).

The third inequality follows from Lemma 11.14, and the fourth inequality follows

from 1 − Φ(u) ≤ exp(−u2/2). �

Theorem 11.2 (c): With probability at least 1 − δ, Condition (C) holds.

Proof. We start from the following lemma.

Lemma 11.15. With probability at least 1 − δ, the following holds

sup
w∈Rd, ‖w‖2=1; b∈R

∣

∣

∣

1

t

t
∑

i=1

1w⊤xi≤b − Φ(b)
∣

∣

∣
≤ ĥt,δ.

Proof. Consider the set of indicator functions of half-spaces of Rd

F , {f(x) : R
d → R|f(x) = 1w⊤x≤b; w ∈ R

d, ‖w‖2 = 1; b ∈ R}.
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It is well known that the VC dimension of F is d+1 (cf [133]). Therefore, a standard

uniform convergence argument shows that for t i.i.d. random variables xi that follow

some law P, then with probability at least 1 − δ we have:

sup
f∈F

|1
t

t
∑

i=1

f(xi) − EPf(x)|

≤
√

8

t

(

VC(F) ln
t

VC(F)
+ ln

8

δ

)

=

√

8d+ 8

t
ln

t

d+ 1
+

8

t
ln

8

δ
= ĥt,δ.

(11.17)

Note that when P is a d-dimensional Normal distribution N (0, Id), for any f ∈ F
defined by ‖w‖2 = 1 and b, we have

EPf(x) = EN (0,Id)(1w⊤x≤b) = Φ(b).

Substituting this into Inequality (11.17) proves the lemma. �

Now we proceed to prove Theorem 11.2 (c). By Lemma 11.15, we have that with

probability at least 1 − δ, the following holds:

Φ(b) − ĥt,δ ≤
1

t

t
∑

i=1

1w⊤xi≤b ≤ Φ(b) + ĥt,δ; ∀‖w‖2 = 1, b ∈ R. (11.18)

Inequality (11.18) implies that ∀‖w‖2 = 1, θ ∈ [0, 1]

1

t

t
∑

i=1

1−Φ−1( 1+θ
2

+ĥt,δ)≤w⊤xi≤Φ−1( 1+θ
2

+ĥt,δ)

≥Φ

(

Φ−1(
1 + θ

2
+ ĥt,δ)

)

− Φ

(

−Φ−1(
1 + θ

2
+ ĥt,δ)

)

− 2ĥt,δ

=Φ

(

Φ−1(
1 + θ

2
+ ĥt,δ)

)

− Φ

(

Φ−1(
1 − θ

2
− ĥt,δ)

)

− 2ĥt,δ = θ.

Hence by definition of l(·), Inequality (11.18) implies

l(θ,w⊤x1, · · · ,w⊤xt) ≤ 2Φ−1(
1 + θ

2
+ ĥt,δ); ∀‖w‖2 = 1, θ ∈ [0, 1].
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Next, notice that Inequality (11.18) also implies

1

t

t
∑

i=1

1b−≤w⊤xi≤b+ ≤ Φ(b+) − Φ(b−) + 2ĥt,δ; ∀‖w‖2 = 1, b− ≤ b+.

Thus, by definition of l(·), Inequality (11.18) implies ∀‖w‖2 = 1, θ ∈ [0, 1],

l(θ,w⊤x1, · · · ,w⊤xt) = min{b+ − b−
∣

∣

1

t

t
∑

i=1

1b−≤w⊤xi≤b+ ≥ θ}

≥min{b+ − b−
∣

∣Φ(b+) − Φ(b−) + 2ĥt,δ ≥ θ} = 2Φ−1

(

1 + θ

2
− ĥt,δ

)

.

Finally, recalling that Inequality (11.18) holds with probability at least 1 − δ, the

proof of the theorem is complete. �

11.9.2. Proof of Theorem 11.3.

Proof. Recall that zi = Axi + ni. Then we have,

sup
w∈Rm,‖w‖2=1

∣

∣1/t

t
∑

i=1

(w⊤zi)
2 − w⊤(AA⊤ + Im)w

∣

∣

= sup
w∈Rm,‖w‖2=1

∣

∣1/t
t
∑

i=1

[w⊤(Axi + ni)]
2 − w⊤(AA⊤ + Im)w

∣

∣

= sup
w∈Rm,‖w‖2=1

∣

∣1/t

t
∑

i=1

{

w⊤Axix
⊤
i A

⊤w + w⊤(Axin
⊤
i + nix

⊤
i A

⊤)w + w⊤nin
⊤
i w
}

−w⊤(AA⊤ + Im)w
∣

∣

≤ sup
w∈Rm,‖w‖2=1

∣

∣1/t
t
∑

i=1

w⊤Axix
⊤
i A

⊤w −w⊤AA⊤w
∣

∣

+ sup
w∈Rm,‖w‖2=1

∣

∣1/t

t
∑

i=1

w⊤nin
⊤
i w −w⊤Imw

∣

∣+ sup
w∈Rm,‖w‖2=1

∣

∣2/t

t
∑

i=1

w⊤Axin
⊤
i w
∣

∣.

Next, we bound each of the three terms in the last expression above.
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Bounding Term 1: When Condition (B) holds, we have

sup
w∈Rm,‖w‖2=1

∣

∣1/t
t
∑

i=1

w⊤Axix
⊤
i A

⊤w − w⊤AA⊤w
∣

∣

= sup
w∈Rm,‖w‖2=1

∣

∣w⊤A(1/t
∑

xix
⊤
i − Id)A

⊤w
∣

∣

≤λmax(AA
⊤) sup

w′∈Rd,‖w′‖2=1

∣

∣w′⊤(1/t
∑

xix
⊤
i − Id)w

′∣
∣ ≤ ĉt,δλmax(AA

⊤).

Here, the first inequality holds due to the fact that

‖A⊤w‖2 ≤ ‖A⊤‖2 = σmax(A) =
√

λmax(AA⊤), ∀w ∈ R
m, ‖w‖2 = 1;

and Condition (B) implies the second inequality.

Bounding Term 2: When Condition (A) holds, we have

sup
w∈Rm,‖w‖2=1

∣

∣1/t
t
∑

i=1

w⊤nin
⊤
i w − w⊤Imw

∣

∣

= sup
w∈Rm,‖w‖2=1

∣

∣1/t

t
∑

i=1

w⊤nin
⊤
i w − 1

∣

∣

=max
[

λmax(
1

t

t
∑

i=1

nin
⊤
i ) − 1, 1

]

≤λt,δ − 1.

Here, the last inequality holds since λt,δ ≥ 4/(1 − η) > 2.
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Bounding Term 3: By Hölder’s inequality, for unit-norm w0 we have,

1/t
t
∑

i=1

|(w⊤
0 Axi)(n

⊤
i w0)| ≤ 1/t

√

√

√

√

t
∑

i=1

|w⊤
0 Axi|2

√

√

√

√

t
∑

i=1

|n⊤
i w0|2

=

√

√

√

√1/t

t
∑

i=1

|w⊤
0 Axi|2

√

√

√

√1/t

t
∑

i=1

|n⊤
i w0|2

≤

√

√

√

√ sup
‖w1‖2=1

(1/t
t
∑

i=1

w⊤
1 Axix⊤

i A
⊤w1)

√

√

√

√ sup
‖w2‖2=1

(1/t
t
∑

i=1

w⊤
2 nin⊤

i w2)

≤

√

√

√

√λmax(AA⊤)λmax(1/t

t
∑

i=1

xix
⊤
i )

√

√

√

√λmax(1/t

t
∑

i=1

nin
⊤
i )

≤
√

λmax(AA⊤)

√

√

√

√1 +

√

6d2

t

(

ln 2d2 + ln
1

δ

)

√

λt,δ

≤
√

λmax(AA⊤)

[

1 +

√

3d2

2t

(

ln 2d2 + ln
1

δ

)

]

[

√

λt,δ

]

=
[

1 +
ĉt,δ
2

]

√

λt,δλmax(AA⊤).

The last two inequalities hold due to the assumption that Conditions (A) and (B)

hold and n ≥ 4.

The theorem follows by summing up all three terms. �

11.9.3. Proof of Theorem 11.4.

Proof. It suffices to show the inequalities hold for any c > 0. We prove the

following lemma before proceeding to prove the theorem.

Lemma 11.16. Given v1, · · · ,vt ∈ Rm, θ ∈ (0, 1), unit-norm w, and c > 0,

Condition (A) implies

l(θ,w⊤(v1 + n1), · · · ,w⊤(vt + nt)) − 2c ≤ l(θ + λt,δ/c
2,w⊤v1, · · · ,w⊤vt);

l(θ,w⊤(v1 − n1), · · · ,w⊤(vt − nt)) − 2c ≤ l(θ + λt,δ/c
2,w⊤v1, · · · ,w⊤vt).

(11.19)
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Proof. Consider the following optimization problem:

minimize: l+ − l−

subject to:

t
∑

i=1

1l−≤w⊤vi≤l+ ≥ (θ + λt,δ/c
2)t.

Let l−0 and l+0 be the optimal solution. By definition of l(·),

l+0 − l−0 = l(θ + λt,δ/c
2,w⊤v1, · · · ,w⊤vt).

Notice that for all i satisfying both l−0 ≤ w⊤vi ≤ l+0 , and |w⊤ni| ≤ c, the following

holds:

l−0 − c ≤ w⊤(vi ± ni) ≤ l+0 + c.

That is,
t
∑

i=1

1l−0 ≤w⊤vi≤l+0 &|w⊤ni|≤c ≤
t
∑

i=1

1l−0 −c≤w⊤(vi±ni)≤l+0 +c,

which implies

t
∑

i=1

1l−0 ≤w⊤vi≤l+0
−

t
∑

i=1

1|w⊤ni|>c ≤
t
∑

i=1

1l−0 −c≤w⊤(vi±ni)≤l+0 +c.

Notice that by definition, for all unit norm w ∈ Rm

λmax(

t
∑

i=1

nin
⊤
i ) ≥

t
∑

i=1

(w⊤ni)
2.

Hence,
t
∑

i=1

1|w⊤ni|≥c ≤ λmax(

t
∑

i=1

nin
⊤
i )/c2.

Thus, Condition (A) implies

t
∑

i=1

1|w⊤ni|≥c ≤ tλt,δ/c
2, =⇒

t
∑

i=1

1l−0 −c≤w⊤(vi±ni)≤l+0 +c ≥ θ.

By definition of l(·), we have

l(θ,w⊤(v1 ± n1), · · · ,w⊤(vt ± nt)) ≤ l+0 + c− (l−0 − c) = v0 + 2c,
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which establishes the lemma. �

Now we proceed to prove the theorem. By a straight-forward application of

Lemma 11.16, we have that Conditions (A) and (C) imply

l(θ − λt,δ/c
2,w⊤Ax1, · · · ,w⊤Axt) − 2c

≤ l(θ,w⊤z1, · · · ,w⊤zt)

≤ l(θ + λt,δ/c
2,w⊤Ax1, · · · ,w⊤Axt) + 2c.

(11.20)

Next, notice that

sup
w∈Rm,‖w‖2=1

{

2Φ−1(
1 + θ

2
− λt,δ

2c2
)‖w⊤A‖2 − l(θ − λt,δ

c2
,w⊤Ax1, · · · ,w⊤Axt)

}

≤ sup
‖w⊤A‖2≤

√
λmax(AA⊤)

{

2Φ−1(
1 + θ

2
− λt,δ

2c2
)‖w⊤A‖2 − l(θ − λt,δ

c2
,w⊤Ax1, · · · ,w⊤Axt)

}

≤
√

λmax(AA⊤) sup
w′∈Rd,‖w′‖2≤1

{

2Φ−1(
1 + θ

2
− λt,δ

2c2
) − l(θ − λt,δ

c2
,w′⊤x1, · · · ,w′⊤xt)

}

,

(11.21)

where the last inequality holds because l(δ, λc1, · · · , λct) = λ(δ, c1, · · · , ct) for any

λ > 0.

Condition (C) implies that for any unit norm w′ ∈ Rd,

2Φ−1(
1 + θ

2
− λt,δ

2c2
− ĥt,δ) ≤ l(θ − λt,δ

c2
,w′⊤x1, · · · ,w′⊤xt).

Substituting it into Equation (11.21) leads to the following inequality

l(θ − λt,δ

c2
,w⊤Ax1, · · · ,w⊤Axt)

≥2Φ−1(
1 + θ

2
− λt,δ

2c2
)‖w⊤A‖2

−
√

λmax(AA⊤)
(

2Φ−1(
1 + θ

2
− λt,δ

2c2
) − 2Φ−1(

1 + θ

2
− λt,δ

2c2
− ht,δ)

)

.

Substituting it into Inequality (11.20) implies the first part of Inequality (11.4). The

proof of the second part is identical and hence omitted. �
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CHAPTER 12

Conclusion

This thesis studies decision making methodologies in the spirit of Robust Optimiza-

tion and investigates both theoretic and algorithmic applications of robust decision

making into machine learning field. Section 1.3 gives a fairly detailed account of the

contribution of this thesis. In this chapter we provide a brief overview of what we

have learnt and what issues are open, and need to be addressed in future research.

12.1. Summary of contributions

In Chapter 2- 5 we addressed two limitations of robust optimization, namely, a

lack of theoretical justification and conservatism in sequential decision making.

We provided an axiomatic justification of robust optimization based on the MaxMin

Expected Utility framework from decision theory. This not only provides a more solid

justification and motivation of robust optimization, but also suggests a new approach

for choosing the uncertainty set by exploring the distributional requirement.

We studied a less conservative decision criterion for uncertain Markov decision

processes. In particular, we considered the nested-set structured parameter uncer-

tainty to model the probabilistic information of the parameters and proposed to

find the strategy that achieves maxmin expected utility. Such formulation leads to
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tractable solutions that have an appealing interpretation as trading-off the likely per-

formance and robustness, hence mitigating the conservatism of the standard robust

Markov decision processes.

We investigated a sequential decision making setup that can be modeled using

Markov decision processes whereas each strategy is evaluated comparatively by its

parameter regret, i.e., the gap between its performance and the optimum. Under

parameter uncertainty, two formulations – minimax regret and mean-variance tradeoff

of the regret – were proposed and their computational cost studied.

We proposed a Kalman filter design based on trading-off the likely performance

and the robustness under parameter uncertainty. The proposed filter can be computed

efficiently online, is steady-state stable, and is less conservative than the robust fil-

ter proposed in [130]. Simulation studies showed that the proposed filter achieves

satisfactory performance under a wider range of parameters than both the standard

Kalman filter and the robust filter.

In Chapter 6- 11 we applied robust decision making into machine learning on

both the theoretic and the algorithmic front.

On the theoretic front, we showed that the concept of robustness is essential to

“successful” learning. In particular, we proved that both SVM and Lasso are special

cases of robust optimization, and such robustness interpretation implies consistency

and sparsity naturally. We further established a more general duality between robust-

ness and generalizability: indeed, the former is a necessary and sufficient condition

to the latter for an arbitrary learning algorithm. Thus, we provided an answer to the

fundamental question of what makes a learning algorithm work.

We proved a theorem saying that two widely used concepts, namely sparsity and

algorithmic stability conflict with each other. This theorem provides us with addi-

tional insight into these concepts and their interrelation, and it furthermore implies

that a tradeoff between these two concepts is unavoidable in designing learning algo-

rithms.
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On the algorithmic front, we designed novel robust learning algorithms. For the

binary classification task, we developed a robust classifier with controlled conservatism

by extending robust SVM [27][137] to a soft notion of robustness known as compre-

hensive robustness. For the dimensionality reduction task, we investigated the case

that outlying observation exists and the dimensionality is comparable to the number

of observations, a case where standard robust PCA algorithms break. We proposed

a HR-PCA algorithm based on an “actor-critic” scheme. The HR-PCA algorithm

is tractable, robust to outlier, easily kernelizable, and has a bounded deviation that

converges to zero in the limit case where the proportion of corrupted points goes to

zero.

12.2. Open problems and future research

The work reported in this thesis has raised many problems to be studied in the

future. We list in this section some of the immediate questions to direct future works

after this thesis.

Parameter regret for MDPs with uncertain transition probabilities. In

Chapter 4 we investigated parametric regret for MDPs where only the reward param-

eters are subject to uncertainty. A more general case where the transition parameters

are uncertain surely merits study. As pointed out in Chapter 4, parameter regret

in the general uncertain MDP incurs significant computational issues. Therefore,

we want to investigate under what conditions the optimal strategy can be found or

approximated in polynomial-time.

Applications of the MMEU-based uMDP and regret-based uMDP. In

Chapter 3 and Chapter 4 we proposed decision criteria for uncertain Markov decision

processes based on MaxMin Expected Utility and parameter regret, respectively. Un-

der favorable conditions, both formulations can be solved in a computational efficient

manner. In this case, the formulations and algorithms would have applications to

handle real-life decision making. One notable example is portfolio optimization in
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finance, where the problem is inherently comparative, and hence particularly suitable

for a regret-based formulation.

Tighter PAC bound using the robust interpretation. In Chapter 6 we

proved that SVM is a special case of robust optimization, and hence provided an

interpretation of regularization schemes from a robustness perspective. We further

showed that such interpretation leads to statistical consistency. Consistency essen-

tially means that the algorithm converges to the optimal solution asymptotically.

An immediate question afterward, is how fast is the convergence, i.e., the rate. In

machine learning, the rate is quantified using the Probably Approximately Correct

(PAC) framework proposed in [153]. For SVM, PAC bounds have been extensively

studied based on approaches such as algorithmic stability and Rademacher complex-

ity (e.g., [8, 7, 32]). It is of significant interest to investigate whether tighter PCA

bound can be obtained through the robustness argument.

General relationship between sparsity and robustness. In Chapter 7 we

established the sparsity of Lasso from its robustness interpretation. The proof is based

on the fact that the uncertainty set of the robust formulation that is equivalent to

Lasso is feature-wise uncoupled. On the other hand, feature-wise coupled uncertainty

set often leads to non-sparse solutions. For example, in [64], it is shown that a similar

robust regression formulation with the uncertainty set constrained by the Frobenius

norm of the perturbation is equivalent to the Tikhonov regularized regression, which is

known to be non-sparse. Therefore, we conjecture that being feature-wise uncoupled

is crucial to achieve sparseness for more general algorithms. In particular, future

research along this line should include both theoretic developments and new sparse

algorithms based on robust optimization w.r.t. feature-wise uncertainty set.

New robust learning algorithms. In Chapter 10 and Chapter 11 we proposed

learning algorithms that are robust to input perturbations and outlying observations

for classification and dimensionality reduction tasks. Indeed, robustness is desirable
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for a number of other machine learning problems including regression, clustering,

rank learning and active learning. Therefore, we are interested in applying robust

decision making to these tasks and designing new learning algorithms that have good

empirical performance and are robust to perturbations and outliers.
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