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Abstract 

Accurate description of within-field crop yield variability is one of the greatest concerns 

in precision agriculture. This study investigated the potential of developing in-season 

crop yield forecasting and mapping systems based on interpretation of airborne 

hyperspectral remote sensing imagery by machine learning algorithms. The data used for 

this study was obtained over a corn (Zea mays L.) field in eastern Canada. 

The experimental plots were set up at the Emile A. Lods Agronomy Research Center, 

Montréal, Québec. Corn was grown under the twelve combinations of three nitrogen 

application rates (60, 120, and 250 kg N /ha), and four weed control strategies (Broad leaf 

weed, Grass weed, Broad leaf and grass weed control, and no weed control). The images 

of the experimental field were taken with a Compact Airborne Spectrographie Imager 

(CASI) at three times (June 30 for early growth stage, August 5 for tassel stage, and Aug 

25 for mature stage) during the year 2000 growing season. 

Two machine learning algorithms, Artificial Neural Networks (ANN) and Decision Tree 

(DT) were evaluated. The performance of ANNs was compared with four conventional 

modeling methods, namely, Normalized Difference Vegetation Index (NDVI), Simple 

Ratio (SR), Photochemical Reflectance Index (PRI), and Stepwise Multiple Linear 

Regression (SMLR) models. Principal Component Analysis (PCA) was also used to 

reduce the dimensionality of the 72-band hyperspectral imagery. The results showed that 

much higher performance was obtained with ANNs than with three VI-based methods, 

although no clear difference was observed between SMLR and ANNs. 

For the DT algorithms, two different aspects, (i) DT as a classification method, and (ii) 

DT as a feature selection tool, were explored in this study. The performance of the 

algorithms was evaluated, as compared with conventional reclassification methods (for 

performance in image classification) and PCA (for performance as a feature selection 

tool). The results demonstrated that the performance of the DT is comparable to that of 

the conventional methods for yield classifications. However, it did not seem to be 
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sufficient for practical purposes. As a feature selection tool, the DT algorithms performed 

better than PCA. However, the fact that the DTs require a large number of training 

samples needs to be addressed before this algorithm can be applied as an operative 

technology. 

II 



Résumé 

La représentation exacte de la variabilité du rendement du maïs dans les champs est l'un 

des problèmes majeurs de l'agriculture de précision. Cette étude s'intéresse au 

développement de méthodes de prévision de rendement et de systèmes de cartographie 

basés sur l'interprétation d'imageries hyperspectrales aériennes, interprétation qui sera 

effectuée par des algorithmes d'apprentissage automatique. Les données utilisées pour 

cette étude ont été obtenues à partir d'un champ de maïs (Zea mays L.) de l'est du Canada. 

Les parcelles employées pour les expérimentations ont été mises en place au Centre de 

Recherche Agronomique Emile A. Lods de Montréal (Québec). Le maïs a été cultivé 

sous diverses conditions: trois taux d'application d'azote (60,120 et 250 kg N/ha) et quatre 

stratégies de contrôle des mauvaises herbes (contrôle des dicotylédones, des graminées, 

contrôle des deux à la fois et aucun contrôle), soit douze environnements différents. Les 

images du champ expérimental ont été prises à l'aide d'un ISCA (Imageur 

Spectrographique Compact Aéroporté) à trois reprises au cours de l'année 2000: le 30 

juin pour le début de la phase de développement, le 5 août pour la floraison et le 25 août à 

maturité. 

Deux algorithmes d'apprentissage automatique, un RNA (Réseau de Neurones Artificiel) 

et un AD (Arbre Décisionnel), ont été évalués. Les performances du RNA ont été 

comparées avec quatre méthodes de modélisation conventionnelles: l'IVDN (Indice de la 

végétation par différence normalisée), le RS (Rapport Simple), l'indice de réflectance 

PRI et l'analyse de régression linéaire par degrés. L'ACP (Analyse en Composante 

Principale) a également été utilisée afin de réduire la dimensionnalité de l'imagerie 

hyperspectrale qui comptait soixante-douze bandes de fréquences. Les résultats ont 

montré que les RNA avaient des performances bien supérieures à celle des trois méthodes 

basées sur les index de végétation. En revanche, aucune différence flagrante n'a été 

observée entre la SMLR et les RNA. 
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Les AD ont été abordés sous deux aspects différents au cours de cette étude: (i) les AD en 

tant que méthode de classification (h) les AD en tant qu'outil de sélection des 

caractéristiques des bandes de fréquences. Les performances des algorithmes ont été 

évaluées en comparaison avec des méthodes conventionnelles de reclassification (pour la 

classification d'images) et l'ACP (pour la sélection des caractéristiques des bandes de 

fréquences). Les résultats ont démontré que les performances des AD sont comparables à 

celles des méthodes conventionnelles pour la classification de rendement. Les AD n'ont 

cependant pas semblé suffisants dans la pratique. En tant qu'outil de sélection des 

caractéristiques des bandes de fréquences, les algorithmes d'AD ont surclassé l'ACP. 

Mais le problème que posent les AD du fait du nombre important d'échantillons 

d'étalonnage qu'ils nécessitent devra être résolu avant que cet algorithme puisse être 

utilisé sur le terrain. 
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Chapter 1 - INTRODUCTION 

1.1 Problem statement 

Description of within-field crop yield variability, or yield mapping, is currently one of the most 

commonly practiced methods in precision agriculture. Indeed, the yield map is not only regarded as 

a simple indicator of the productivity or fertility of a soil, it is also a useful diagnostic tool to 

identify various environmental factors that create the within-field variability (Reitz et al., 1996; 

Stafford et al., 1996). Since crop yield can be regarded to be an effective sensor of field conditions, 

various environmental factors such as water or nutrient deficiency are potentially detectable from 

the yield map. The information obtained from a yield map can be used to guide variable rate 

technologies (VRT) used in site-specific application of fertilizer and pesticide, as weIl as an aid in 

the design of irrigation and drainage systems, and windbreaks (Swinton et al., 1998) 

The usefulness of the yield mapping in precision farming is clearly demonstrated by the increasing 

number of commercial crop yield monitoring systems, while sorne economic risks are also 

indicated due to their high initial cost in purchasing equipments and training the technicians 

(Swinton et al., 1998). According to Swinton et al. (1998), net profitability obtained from the 

introduction of crop yield monitoring systems largely depends on the crop types and the 

environmental conditions. However, effective use of these technologies could produce high profits 

for the high-value crops, such as for potato and sugar beet, and in sorne water-fed environments, 

such as exist in the southwestern United States (Earl et al., 1996; Swinton et al., 1998). 

Use of remote sensing technologies is currently recognized to be the next generation of technical 

innovations that have the potential to refine the quality of within-field yield mapping technologies. 

Above aH, the ability of realizing in-season yield mapping, or yield prediction, is the most 

important advantage (Yang et al., 200, 2001), in contrast to the conventional post-harvest yield 

analysis that apply combine-mounted yield monitoring systems. Sorne of the limitations of post­

harvest analysis, such as difficulty in identifying seasonally changing factors, such as precipitation, 

temperature, and sunshine, could be surmounted using remote sensing technologies on a real-time 

basis (Swinton et al., 1998). 



Although the potential benefits obtained from the real-time yield mapping systems are obviously 

high, commercialization of the concept still requires a lot of technical breakthroughs. One of the 

current problems is the difficulty in identifying the most appropriate vegetation index (VI) in a 

specific environment (Barrett and Curtis, 1999). Although recent scientific researches have 

established sorne basic relationships between various VIs and crop conditions or yield, there is still 

no clear guideline for selecting the best VI in a specific condition, because the spectral signature of 

canopy reflectance is always influenced by environmental conditions such as soil types and weather 

conditions (Rondeaux et al., 1996). Another problem is that the large volume of spectral 

information acquired with the latest sens ors exceeds the capability of conventional VI-based 

methods, because most of the vegetation indices are calculated from simple combinations of several 

spectral wavelengths. New methodologies are currently needed to extract the whole potential of this 

large amount of information (Barrett and Curtis, 1999). 

Recent studies show that coupling mechanistic crop growth models with remotely sensed 

information has the potential to become another effective method for estimating yield since the 

theoretical background of this approach is sometimes advantageous for the application of the 

models to different crop types and environments. However, the need to estimate crop and field 

parameters still prevents the wide application of models to practical situations, especially, when 

spatial v ariab il ity of the field is high. In fact, it is documented that application of this approach to 

large-scale investigations is still unrealistic since it becomes extremely labor-intensive (Guérif and 

Duke, 1998). Complexity of the models is also indicated as another serious problem of this 

approach (Varcoe, 1990). 

Use of machine learning technologies, especially artificial neural networks (ANNs) and decision 

tree (DT) estimation algorithms, could be effective alternatives for the creation of yield maps and 

for the development of yield forecasting system, along with the conventional empirical and 

mechanistic approaches. Above all, one of the most important characteristics of machine learning 

algorithms, "ability to learn" , offers various advantages in the development of flexible and 

adaptable image interpretation systems (Mather, 1999; Kimes et al., 1998; Atkinson and Tatnall, 
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1997). Such algorithms can be used to describe intricate non-linear relationship between spectral 

information and crop yield without human intervention through training. 

Although the ability of currently available machine learning systems is still much lower than the 

ability of human brains in recognizing various features of images efficiently, the goal of making 

"intelligent image recognition systems" is not limited towards the development of a practical image 

analysis tool, but is also a motivating scientific challenge. Evaluating the performance of various 

machine learning algorithms for yield mapping and forecasting is currently an important issue in 

precision agriculture. 

1.2 Objectives 

Although the ultimate goal of this project is the development of in-season crop yield mapping and 

forecasting systems, based on hyperspectral remote sensing, the work involved an assessment of 

the performance of machine learning algorithms in yield estimation based on hyperspectral data 

sets. Two types of algorithm were investigated: Artificial Neural Networks (ANNs) and Decision 

Trees (DT). The hyperspectral data was obtained from an airborne sensor over a corn field in 

eastern Canada. The performance of the machine learning algorithms was assessed, as compared 

with conventional modeling methods, such as multiple linear regression models, and sorne VI­

based models. Principal component analysis (PCA) was also used to reduce the large number of 

spectral bands obtained with the hyperspectral sensor. 

1.3 Scope 

In this study, the experiment was conducted in a corn field, in eastern Canada. The experimental 

plots had different nitrogen application rates and weed control strategies to simulate the various 

crop growth scenarios that occur in practice. However, it should be noted that the field layout was 

only set up for ohe year since this study focused on the performance of machine learning 

algorithms rather than on predictions of seasonal variations in crop yield. Therefore, further study is 
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recommended in different years with various field conditions and crop types to demonstrate the 

generality of the methods. 

1.4 Thesis organization 

This thesis consists of six chapters. The introduction, Chapter 1, introduces the importance, 

objectives, and scope of this study. The literature review, Chapter 2, presents background 

information relevant to this study. Recent research efforts on crop yield estimation, remote sensing, 

and machine learning algorithms, are presented in this chapter. A series of experiments, analyses, 

and results conducted for this thesis work are summarized in Chapters 3 and 4. These two chapters 

are formatted for paper submission. In chapter 3, the study focused on the performance of the ANN 

approach to image analysis, while in chapter 4, the study was focused on the exploration of 

decision tree estimation algorithms. Chapter 5 contains summary and conclusions. Finally, 

guidelines for further research are presented in Chapter 6. 
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Chapter 2 - LITERA TURE REVIEW 

2.1 Introduction 

This literature review presents background information pertaining to crop yield prediction, remote 

sensing, and machine learning methods. The review consists of two main parts: (i) literature review 

on crop yield prediction and remote sensing as applied to yield prediction, and (ii) literature review 

on machine learning algorithms and image interpretation. In the first part, various methodologies 

for yield prediction are introduced. Problems of conventional methodologies and the usefulness of 

remotes sensing systems for yield prediction are discussed. In the second part, basic concepts and 

recent publications of two commonly used machine learning algorithms, ANNs and DT, are 

presented. A simple description of the data mining software used in this study (Clementine Data 

mining systems, SPSS Inc.) is also covered in this part. 

2.2 Spectral signature of vegetation 

A plant leaf does not absorb aIl wavelengths uniformly since it consists of biochemical and 

chemical substances with different absorption peaks. It is documented that various pigments - such 

as chlorophyll-a and b, anthocyanin, a and ~-carotenoids, lutein, violaxanthin - the physical 

structure of leaves and their water content are the main factors determining the spectral signature 

(Zwiggelaar, 1998; Campbell, 2002). 

An interesting point is that these components change during the season, depending on the 

phenophase, species, and nutrient conditions. The spectral signatures of leaves can therefore be 

utilized to monitor various plant conditions, such as nu trient and water deficiency, and to identify 

crop types and weeds. 

At the canopy level, the absorption peaks of the chemical substances generallY become unclear, 

since reflectance from canopy is strongly influenced by leaf size, plant density, number of layers, 

orientation of leaves, and other environmental factors such as soil reflectance and light angle 

7 



(Campbell, 2002). However, sorne of the biochemical properties are still detectable from the 

canopy reflectance. lndeed, the canopy reflectance spectrum has been used to identify crop types 

(Serpico et al., 1996) and weeds (Goel et al., 2002a, 2002b; Lamb et al., 1999; Lamb and Weedon, 

1998; Lass et al., 1996), to detect water and nutrient stress (Goel et al., 2002a, 2002b; Lelong et al., 

1998; Shibayama et. al, 1993; Strachen et. al, 2002), and to estimate crop phenology (Rail yan and 

Korobov, 1993; Boissard et al., 1993), leaf area index (Aparicio et al., 2002; Rastogi et, al., 2000; 

Shibayama and Akiyama, 1989) and plant biomass (Serrano et al., 2000). 

2.3 Crop yield prediction 

Predicting crop yield before the harvest is one of the greatest concerns in agriculture, since 

variations in crop yield from year to year impact international trade, food supply, and market prices 

(Hayes and Decker 1998). Early prediction of crop yield on the global and regional scales offers 

useful information to policy planners. Appropriate recognition of crop pro duc tivit y is essential for 

sound land use planning and economic policy (Hayes and Decker 1996). At the field-scale, crop 

yield information helps farmers to make quick decisions for upcoming situations, such as the 

choice of alternative crops and wh ether to abandon a crop at an early stage of growth. More 

recently, assessment of crop productivity at the within-field level has become an important issue in 

precision farming (Stafford 2000; Yang et al., 2001a). Describing the within-field variability of 

crop yield on a real-time basis offers precious information for VRTs (Stafford, 2000; Yang et al., 

2001a). 

The relationships between various environmental factors - typically meteorological information and 

soil parameters - and crop yield, has been the most common approach to predicting crop yields in 

past years (Varcoe, et al. 1990; Drummond et al., 2003). More recently, relationships between 

chlorophyll content in crop leaves and grain yield have been explored using SPAD chlorophyll 

meters (Daughtry et al., 2000; Costa et al., 2001; Smeal and Zhang, 1994; Blackmer and Schepers, 

1995; Piekielek et al., 1995). Prediction of crop yield based on remotely sensed data has not yet 

become the norm. 

8 



2.3.1 Estimating grain yield from physical environmental factors 

2.3.1.1 Statistical analysis 

Tremendous efforts have been made to establish empirical relationship between crop productivity 

and various environmental factors (Drummond et al., 2003). Many soil properties (cation exchange 

capacity (CEC), pH, organic matter, phosphorous, calcium, magnesium, and potassium), soil 

characteristics (texture, soil types, and top soil depth), and climatic information (rainfaIl, 

temperature, and radiation form the sun) have been explored using linear and non-liner regression 

analysis, and ANNs (Drummond, et al., 2003; Kitchen et al., 1999; Kravchenko and Bullock, 

2000). 

Although these research efforts have established sorne basic relationships between environmental 

factors and soil fertility, the methods are generally regarded to be unrealistic for practical purposes 

since the monitoring of aIl these parameters over the growing seasons in highly variable field 

conditions is too labour-intensive. There also seem to be limitations in describing the complicated 

relationships between these environmental factors and crop yield by using simple empirical 

equations. 

2.3.1.2 Mechanistic crop growth modeling 

From the scientific point of view, elucidating the process of carbon assimilation and grain 

production is a challenge due to its complexity and due to its economic importance (Shibayama et 

al., 1991). Mechanistic crop growth models simulate the process of the carbon assimilation by 

using various environmental factors such as c1imatic information, management practice, and soil 

characteristics. In the mechanistic crop growth models, various empirically and physically based 

relationships between physical environments and crop and soil conditions are integrated to simulate 

crop growth and estimate grain yield (Figure 2.1 and Table 2.1). 
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Although sorne variations exist among crop growths models, mechanistic models usuaIly consist of 

several different modules that simulate water and nitrogen availability in soil, root growth, Leaf 

Area Index (LAI), stem development, biomass, development stage, and nitrogen and water content 

of plants, from which grain yield is estimated. Commonly used inputs are: temperature, rainfall, 

and solar radiation (climatic information); fertilizer application, plant population density, irrigation, 

and tillage (management practices); and, soil types, depth, field capacity, and soil organic matter 

(as soil characteristics). Since coIlecting aIl these field parameters is difficult in man y cases, the 

models normally work with default values. However, calibration of models with aIl of these field 

parameters is necessary to obtain reliable and accurate predictions. 

Over the years, many models have been developed for different crop types and locations. Most of 

the mechanistic models are actually crop-specific: SOYGRO for legumes (Wilkerson et al., 1983), 

CERES-Maize (Ritchie et al., 1989) for corn, and CERES-wheat (Ritchie et al., 1985) for wheat. 

However, sorne models such as SUCROS (Simple and Univers al Crop growth Simulator; Spitters 

et al., 1989) and STICS (Simulateur mulTIdiciplinaire pour les Cultures Standard; Brisson et al., 

1998) are designed for various crop types through optimization. 

Mechanistic crop growth models are advantageous in that interpretability of the models is generally 

high due to the theoretical background. This characteristic is useful for customization and 

localization of the models as weIl as for theoretical studies (Clevers, 1997). It is also advantageous 

that mechanistic crop growth models normally require less data for calibration, compared with the 

statistical approach. However, the number of field parameters required in order to obtain reliable 

and accurate simulations, still seemed to be large, especially in fields with high spatial variability. 

Complexity of the models is another problem because it often requires a certain amount of time for 

training. Indeed, the models often become black-box models for non-specialists due to this 

complexity (Varcoe, 1990). It should be also noted that limitations exist to completely simulate the 

intricate relationships between physical environments and crop growth in a mechanistic way. 
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2.3.2 Use of chlorophyll meters for yield prediction 

Whereas mechanistic models generally use physical environmental factors to simulate crop growth, 

efforts to directly correlate chlorophyll content of leaves and crop productivities by using SPAD 

chlorophyll meters are also found in the recent literature (Blackmer and Schepers, 1995; Costa et 

al., 2001; Smeal et al., 1994). Since chlorophyll is one of the most effective indicators of the 

intensity of photosynthetic activities, this approach can simplify model development. In fact, past 

studies show that quite high correlations (R2=0.8 or higher) exist between SPAD readings and grain 

yields, even though the results largely depend on the plant development stage, genotypes, and field 

conditions (Blackmer and Schepers, 1995; Costa et al., 2001; Smeal et al., 1994). The SPAD 

chlorophyll meter also yields a non-destructive and efficient measure of leaf chlorophyll content, 

and consequently reduces the time-consuming sampling of field and crop parameters and their 

analysis. However, it should be noted that accurate estimation of crop yield at the field scale still 

requires a large number of sample chlorophyll measurements due to the high variation in the plants 

and leaves. As mentioned above, generality of the results is still unc1ear, since the results largely 

depend on the plant species, genotypes, and environmental conditions (Daughtry et al., 2000). 

2.3.3 Conc1uding remarks 

Over the decades, many efforts have been made to develop methods of predicting crop yield. 

Before remote sensing techniques were introduced, crop yield was estimated from soil qualities, 

management practices, crop conditions, and meteorological data. Statistical and mechanistic 

approaches have been used to simulate crop growth and finally estimate grain yield. More recently, 

it is documented that the SPAD chlorophyll meter is an effective tool for the estimation of crop 

yield. 

Although these studies showed that crop yield is somewhat predictable, sorne limitations have also 

been indicated, especially, in terms of labor-intensity of the methods. In man y cases, these 

approaches are not realistic for large agricultural fields, where high spatial variability is expected. 

New methodologies, which effectively collect various field and crop parameters simultaneously at 
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large scale, are currently in demand. Remote sensing is one of the most effective alternatives due to 

the wide field of view (FOV). 

2.4 Use of remote sensing for crop yield estimation 

2.4.1 Sensors and platforms 

The type of sensor and platform used to gather data are primary considerations in the development 

of yield forecasting or mapping systems. Many kinds of sensors and platforms have been explored 

for this purpose. 

ln past years, satellite platforms have been used to gather data for yield forecasting, since image 

acquisition over many years is easier, or less expensive, than airborne platform. In particu1ar, the 

National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution 

Radiometer (A VHRR) images have been intensively explored for global-scale yield forecasting due 

to the short revisit period. Research on maize production in the United States Corn Belt (Hayes and 

Decker, 1996 and 1998), millet and sorghum yie1ds in Niger (Masselli et al., 2000), corn yield 

estimation and drought monitoring in Southern Africa (Unganai and Kogan, 1998), and wheat yie1d 

estimation in India (Manjunath et al., 2002) have been conducted with satellite imagery since the 

1990s. 

ln general, these studies have demonstrated the high potential of satellite imagery in yield 

forecasting. However, application of satellite images for field-scale investigations is still unrealistic 

due to the CUITent limitation of satellite systems: coarse spatial resolution, longer revisit times, and 

strong effect of weather conditions. 

While satellite images have been used mainly for global- or regional-scale yield forecasting, most 

of field-scale studies have been conducted with aerial digital and film photography. In the early 

studies, aerial film photography was the most common method due to the low cost and relatively 

high spatial resolution (Arnold et al., 1985; Brown et al., 1994; CUITan, 1985; Plant et al., 2000). 
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However, more recent work gradually focused on the use of aerial digital imaging systems, such as 

multi- and hyper-spectral scanners and Charged Coupled Device (CCD) cameras (Lamb and 

Weedon, 1998; Lamb et al., 1999; Yang et al., 2000, 2001; Shanahan et al., 2001). 

Many advantages have been indicated for aerial digital imaging systems. However, one of the most 

important advantages is that the tum-around time is much shorter than film photography, since it 

does not require film development. Indeed, this characteristic is quite helpful for the development 

of real-time crop monitoring systems and in-season yield forecasting systems (Yang et al., 2000; 

Chen et al., 2000). Another advantage is that digital imaging systems can directly incorporate the 

images into computer systems without scanning the developed images, which often produced large 

errors due to the differences in scanner settings (Lamb and Brown, 2001; Plant et al., 2000; Yang et 

al., 2000; Chen et al., 2000). 

Although aerial digital imaging systems are still costly for the agricultural purposes, recent 

developments in sensor technology and information systems should result in their eventual 

application. In particular, airbome hyperspectral scanners that pro vide information in tens to 

hundreds of spectral bands simultaneously, may offer new opportunities in the monitoring of crop 

and field conditions. 

2.4.2 Model development based on remotely sensed data 

Many methodologies have been developed to incorporate spectral information into yield estimation 

models. However, these approaches can be generally categorized into two types: (1) methods which 

directly correlate the spectral information to crop yield using regression models and vegetation 

indices; and (2) methods which estimate various crop parameters, such as LAI and biomass, from 

remotely sensed data, which are then used to calibrate the mechanistic crop growth models. 
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2.4.2.1 Regression models and vegetation indices 

The simplest way to estimate crop yield from spectral information is to use linear regression 

models, and to correlate the radiance and/or reflectance of specific wavelengths with crop yield 

(BalI and Frazier, 1993; Tucker, 1979; Yang et al., 2000, 2001b). Since the absorption peaks of 

chlorophyll are in the red and green regions, and since the cuticle on leaf surface strongly reflects in 

the near-infrared region (Campbell, 2002), brightness values of these spectral regions are highly 

correlated with the vigor of crops or strength of photosynthetic activity, and therefore with the crop 

yields. 

However, one problem of this method is that the generality of the models is extremely low, since 

radiation from canopy is a complicated function of various canopy characteristics such as leaf size, 

layout, and soil background (Campbell, 2002). Moreover, brightness values of sorne wavelengths 

are strongly influenced by many other environmental factors such as atmospheric absorption and 

light angle (Lillesand and Kiefer, 2000; Barrett and Curtis, 1999). 

Introduction of vegetation indices (VI) helps to overcome these problems to sorne extent, since the 

ratio or difference of two or more wavebands is taken to calculate these values. However, the 

performance of the methods still depends on the environmental conditions existing at the 

measurement sites. Various factors, such as soil background effect and atmospheric disturbance, 

have been noted to be potential sources of noise (Barrett and Curtis, 1999; Huete, 1988; Rondeaux 

et al., 1996). 

Many vegetation indices, such as the perpendicular vegetation index (PVI), the soil-adjusted 

vegetation index (SA VI), the transformed soil-adjusted vegetation index (TSA VI), and the 

atmospherically resistant vegetation index (ARVI) have been suggested to remove these various 

noise effects (Huete, 1988; Rondeaux et al., 1996; Shanahan et al., 2001; Wiegand et al., 1991). 

Functions of wavebands involving also those in the green region, such as the green normalized 

vegetation index (GNDVI), the greenINIR ratio, and the photochemical reflectance index (PRI) 

have been reported to be effective in the estimation of crop yields as well as in monitoring crop 

conditions (Aparicio et al., 2000; Gitelson et al., 1996; Shanahan et al., 2001; Strachan et al., 2002). 
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However, these indices have not been shown to be applicable to a wide range of crops and 

environmental conditions. 

Sorne studies indicate that the cumulative NDVI or Simple Ratio (SR) index over a growing 

season, can improve the prediction accuracy, since grain yield is normally represented by the 

accumulated photosynthetic activity over the growing season (Hayes and Decker, 1996 and 1998; 

Masseli et al., 2000; Serrano et al., 2000; Wiegand et al., 1991). As a more advanced approach, 

Clevers (1997) reported that the integration of the fraction photosynthetic active radiation (fPAR), 

which is one of the indicators of the intensity of radiation available for photosynthesis, is useful for 

estimating crop yield. However, high sensitivity to environmental factors is still a serious problem 

for aIl of these approaches. 

The equations of commonly used vegetation indices and references are summarized in Table 2.2. 

2.4.2.2 Coupling remotely sensed data with crop growth modeling 

Whereas the previously mentioned approach (use of regression models and VIs) directly correlates 

spectral information and crop yield on the basis of empirical models, integration of remotely sensed 

information and mechanistic crop growth is normally conducted in two steps: (1) estimation of 

sorne crop parameters (mostly LAI) from remotely sensed information, and (2) recalibration of the 

crop growth models with these estimated crop parameters. For the recalibration, within-season 

model calibration is dominant in current research (Moran et al., 1997). 

Clevers et al. (1994) used LAI extracted from remotely-sensed images, to improve the performance 

of the SUCROS crop growth model. The LAI was estimated from the weighted difference 

vegetation index (WDVI) on the basis of two radiative transfer models, SAIL (Scattering by 

Arbitrarily Inclined Leaves) and the PROSPECT leaf optical properties model. This study was 

conducted on a sugar beet field in the Netherlands. 
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Bournan et al. (1999) also improved the performance of SUCROS crop growth model using 

remotely sensed data over sugar beet, potato, and winter wheat fields in the Netherlands. An 

interesting point in this study is that the ERS satellite Synthetic Aperture Radar (SAR) was used in 

model calibration. 

Guérif and Duke (1998) coupled the SUCROS and SAIL models to estimate sugar beet yield in 

Northern France. In this study, new values of field parameters were also estimated from canopy 

reflectance by using inversion techniques. The results showed that the renewed field parameters 

helped improving model performance. 

Matthew et al. (2000) recalibrated the CROPGRO-soybean model in three different soybean fields 

in Iowa, U.S. For the calibration, leaf weights estimated from the NVI (normalized vegetation 

index), were used. Aerial photography was used in this study. 

In aIl of these studies, the performance of crop growth models was generally improved by 

incorporating remotely sensed data. For instance, Matthew et al. (2000) improved the prediction 

accuracies (correlation of determination, R2) from 0.47 to 0.68,0.39 to 0.57, and 0.04 to 0.22, at the 

three different experimental sites. CIe vers et al. (1994) also decreased the prediction errors from 6.6 

tons/ha (8.6%) to 3.0 tons/ha (4.1 %). However, the applicability of the method to large-scale 

investigations is not yet c1ear due to the greater spatial variability (Clevers et al., 1994; Guérif and 

Duke, 1998; Moulin et al., 1998). Another problem is that a greater proportion of prediction error 

results from the process of LAI retrieval from remotely sensed images, rather during than the 

simulation of crop growth itself (Guérif and Duke, 1998,2000). 

2.4.3 Conc1uding remarks 

Two different approaches have been taken to use spectral information to estimate crop yield. In the 

first approach, spectral information is directly correlated with crop yield by using regression 

models and VIs. The advantage of this approach is that the method is quite simple. However, the 

performance largely depends on the experimental conditions due to its high sensitivity to 
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environmental factors which are potential sources of noise (Barrett and Curtis, 1999; Huete, 1988; 

Rondeaux et al., 1996; Aparicio et al., 2000). Due to this high sensitivity, selection of the most 

appropriate VI or wavelengths for model development must always be based on past experience 

and heuristic trial and error, which often becomes time-consuming. It should be noted that model 

development should normally be conducted with large amounts of past data, including man y years 

of yield data and images. 

In the second approach, spectral information is used to estimate crop growth parameters (mainly 

LAI) to recalibrate mechanistic crop growth models. This approach is not only useful for 

theoretical studies, but it is also advantageous for localization or customization of models, since 

optimization of the model is clearer than the first approach. However, applicability of this approach 

to large-scale investigations has not been clearly demonstrated, especially wh en spatial variability 

of the field is high (Clevers et al., 1994; Guérif and Duke, 1998; Moulin et al., 1998). Complexity 

of the models is another disadvantage in cases when non-specialists operate the models, since the 

procedure becomes a black-box methodology (Varcoe, 1990). Finally, it should be noted that major 

improvements in model performance cannot be expected unless the LAI estimation is improved 

(Guérif and Duke, 1998,2000). 

2.5 Machine learning and image interpretation 

Computer-based image interpretation is one of the most intensively explored topics 10 recent 

studies of remote sensing. Although the best method for the analysis and interpretation of remotely 

sensed images is still regarded to be the eyes of trained technicians (Mather, 2000), the 

overwhelming amount of data that can be acquired by the latest remote sensing systems, makes it 

difficult for the skilled technicians to analyze and interpret the images in a short time. According to 

Barrett and Curtis (1999), sorne of the earth resource satellites currently being built would generate 

more than 500 million data bits of information per second, and further increases are expected in the 

near future. 
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The use of machine learning algorithms is currently regarded to be a key issue in the development 

of computer-based image interpretation techniques. The flexibility of these algorithms and their 

ability to incorporate ancillary information into the image classification process with relatively 

simple operations has been noted (Mather, 2000; Atkinson and TatnaIl, 1997). Artificial neural 

networks (ANNs) and decision trees (DT) have received particular attention in recent studies. The 

following two sections will present the basic concept and taxonomies of these two types of 

machine-Iearning tools, as weIl as recent applications of these methods in the remote sensing 

community. 

2.5.1 Artificial neural networks 

An Artificial Neural Network (ANN) is a computational model that mimics the human nervous 

system and decision-making process (Weisse and Kulikowski, 1991). Since the first introduction of 

the perceptron, a simple computational model of the human neuron, by MCuIloch and Pitts in 1943 

(Figure 2.2, Mair et al., 2000), various new architectures (connection patterns of perceptrons) and 

learning algorithms have been developed to achieve more flexible and complicated decision 

making systems (figure 2.3). 

Although there are many ANNs architectures, they can be categorized into two main groups, feed­

forward networks and recurrent networks, based on the connection patterns used (Jain et al., 1996). 

The feed-forward network structure is the most commonly used network architecture due to its 

simplicity and lower requirements in computing power and memory (Atkinson and TatnaIl, 1997; 

Jain et al., 1996). 

As shown in figure 2.3, one of the most important characteristics of the feed-forward network 

architecture is that the connection of the perceptrons is unidirectional, in contrast with the feed­

back connections found in recurrent/feedback networks (Jain et al., 1996; Kime et al., 1998). Since 

no feed-back process exists, this architecture normaUy requires less memory for model 

development, but is less dynamic (Jain et al., 1996). While the most primitive feed-forward 

network architecture, single-layer perceptron with threshold function, can only be applied to 
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linearly discriminative data, the multi-layer perceptron with back-propagation algorithm and 

sigmoid activation function generally makes the decision boundary more complex and smooth 

(Figure 2.4, Jain et al., 1996). Indeed, the recent wide application of ANNs to image interpretation 

was made feasible by the advent of this architecture (Atkinson and Tatnall, 1997; Kimes et al., 

1998). Successful applications of feed-forward networks can be found for classification of land 

uses (Paola and Schowengerdt, 1995; Kanellopoulos and Wilkinson, 1997; Murai and Omatu, 

1997; Atkinson et al., 1997; Bernard et al., 1997) and clouds (Lee et al., 1990). In precision 

agriculture, they have been applied to the classification of crop type (Serpico et al., 1996) and 

nitrogen and weed stress detection (Goel et al., 2003). 

The ANN was mainly thought of as a classification method in the past. However, recent studies 

show that the ANN has the potential to be developed into a prediction tool (Atkinson and Tatnall, 

1997; Kimes et al., 1998), since it can de scribe the non-linear relationships between inputs and 

target attributes. Indeed, successful applications have already been reported for surface water 

quality assessment (Keiner et al., 1998; Gross et al., 1999; Zhang et al., 2002), soil moisture 

retrieval (Chang et al., 2000; Del Frate et al., 2003), biomass retrieval (Jin and Liu, 1997), yield 

prediction (Simpson, 1994), and chlorophyll estimation (Keiner et al., 1998). 

One of the most important characteristics of ANNs is the ability to learn (Mather, 2000). For image 

interpretation, various intricate non-linear relationships between spectral information and target 

attributes can be analyzed without human intervention. ANNs do not normally require assumptions 

regarding sample distribution and data types, since they are based on a non-parametric approach to 

model development (Mather, 2000). Ancillary information from different sources can be 

incorporated into a single ANN model due to this characteristic (Simpson, 1994; Atkinson and 

Tatnall, 1997). However, sorne limitations have been indicated. Among them are: (i) an ANN 

model usually requires high computing power, especially for the training process (Mather, 2000); 

(ii) the developed model is difficult to interpret (Mair et al., 2000); (iii) it usually takes a long time 

todetermine the optimal network structure in terms of number of hidden layers and PEs (Kimes et 

al., 1998); and (iv) compared with parametric methods, a larger numbers of samples is usually 

required for the training stage. 
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Recent advances in computer technology and the development of optimization techniques for 

network architecture (SPSS Inc., 2001; Jiang et al., 1994), have offered solutions to sorne of the 

limitations of ANNs. However, low interpretability of the models and the requirement of large 

numbers of training samples, are, unfortunately, difficult to solve. 

The details of the feed-forward ANN algorithms used in this study are given in Chapter 3. 

2.5.2 Decision tree estimation algorithms 

Rule induction technique, generally known as decision tree, is another type of machine leaming 

method, which is mainly used for medical and business purposes. Although the tree-representation 

of the human decision-making process (figure 2.5) is simple and old, one of the problems was the 

development of algorithms which effectively determine the optimal tree structure (Swain and 

Hauska, 1977). Over the years, various new algorithms have been suggested in the Artificial 

Intelligence (AI) community (Weiss and Kulikowski, 1991; Michalski et al., 1998; Friedl and 

Brodley, 1997). 

As a basic taxon orny , decision tree algorithms can be categorized into two main groups, 

homogeneous and hybrid decision tree algorithms, and further, the homogenous decision tree 

algorithms can be categorized into two subgroups, univariate and multivariate decision tree 

algorithms (Figure 2.6 and 2.7, Brodley and Utgoff, 1995; Friedl and Brodley, 1997; Zhou and 

Chen, 2002). However, the univariate decision tree classifier is currently the most commonly used 

due to its simplicity. 

As shown in figures 2.6 and 2.7, one of the important characteristics of homogenous decision tree 

algorithms (univariate and multivariate decision tree) is that a single algorithm is applied to an the 

nodes in the tree. This is different from the hybrid decision tree classifier, in which different 

algorithms can be applied to the nodes of a single tree (Friedl and Brodley, 1997). The main 

characteristic of univariate decision tree classifiers is that the decision boundary in each node is 
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determined by only one variable, while the multivariate decision tree algorithm can use more than 

one input variables (Figure 2.7, Brodley and Utgoff, 1995; Friedl and Brodley, 1997). 

In general, the decision boundary of the univariate algorithm is not as smooth or flexible as that of 

multivariate or hybrid decision tree algorithms, since the boundary of unvivariate tree is always 

determined by the combinations of smaller rectangular decision boundaries (Figure 2.8, Brodley 

and Utgoff, 1995). However, the simplicity of the algorithms is often advantageous in that the 

algorithm generally requires less computational power and memory, and that the interpretability of 

the developed models is higher than those of the multivariate and hybrid classifiers. The 

Classification and Regression Tree (CRT), ID3, and C4.5 algorithms (SPSS Inc., 2001; Quinlan, 

1993) are univariate algorithms. 

As mentioned above, the main areas of application of decision trees have been medicine and 

business. However, recent studies have shown decision trees can be useful in interpretation of 

remotely sensed images. Indeed, successful applications have already been reported for land use 

classification (Defries et al., 1998 and 2000; Friedl and Brodley, 1997; Friedl et al., 1999; Hansen 

et al, 1996 and 2000; McIver and Friedl, 2002; Swain and Hauska, 1977) and vegetation survey 

(Simard et al., 2000). In the area of precision agriculture, Goel et al. (2003) tested the performance 

of the CRT algorithm in classifying spectral images of nitrogen and weed stress in corn plots. Yang 

et al. (2002, 2003) also applied the CRT algorithm to the classification of different tillage and 

residue management strategies, and to fertilizer application strategies. 

Similar to other machine learning algorithms, one of the most important advantages of decision 

trees is flexibility. The non-parametric approach that may be taken is often advantageous compared 

with the conventional classification methods such as linear discriminants and clustering techniques, 

since it can be used in the classification of samples with non-Gaussian distributions (Hansen et al., 

1996). As is the case with ANNs, decision trees also have the ability to incorporate ancillary 

information, which may also include non-numerical values. This is an important advantage when 

multiple data sources are used in model development. An advantage which is unique to the 

univariate decision tree, is that the interpretability of the developed model is high. Since the 

decision tree model is represented by a set of explicit tree-structured rules, it is easy to identify the 
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importance of each input variables, in contrast to such as the ANN (Mair et al., 2000; Hansen et al., 

1996). The disadvantages of decision trees are: (i) inherent limitations with simple tree 

representation (Weiss and Kulikowski, 1991); (ii) no backtracking process after the tree is 

established (Mair et al., 2000; Weiss and Kulikowski, 1991), and (iii) requirement of large numbers 

of samples for training. 

The details of the mIe induction process for the univariate decision tree algorithm are summarized 

in Chapter 4. 

2.5.3 The Clementine Data Mining System 

The Clementine Data Mining System (SPSS Inc.) is a decision support system in which various 

machine learning algorithms, statistical techniques, and visualization techniques are integrated into 

one user-friendly interface. Although this data miming software system is most commonly used for 

medical and business purposes at the present time (Bose and Mahapatra, 2001; Liu Sheng et al., 

2000), it may prove to be an effective tool when vast amount of spectral information obtained with 

latest sensors is to be analyzed. 

Data mining systems are generally defined as interactive decision support systems, in which users 

and the systems constantly exchange the information (data) to find the best solution for a certain 

problem (SPSS Inc., 2001, Figure 2.9). In this meaning, data mining is not simply a methodology 

for model development or machine learning, but is regarded as an integrated software system for 

the purpose of data analysis. Indeed, data mining systems normally consist of various components, 

such as data loading (input node), record management (sorting, selecting and removing sorne 

specific records), graphical analysis, modeling and statistical analysis, and final presentation 

(output node). 

One of the advantages of data mining systems is that more than one analytical procedure can be 

performed in only one pallet, owing to the integrity of the software. For instance, three different 

procedures, PCA, DT, and ANNs, can easily be combined into one modeling process without 
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performing each separately. Conventionally, several different software packages, such as 

spreadsheet, statistical software package, and machine learning software, must be employed to 

conduct the same analysis. Each time one analysis is finished, records must normally be rearranged 

for the next operation. 

Another advantage of data mining systems is that each component of the system, in particular the 

machine learning algorithms and statistical procedures, is designed for non-expert users, whereas 

conventional machine learning and statistical software packages are rather designed for experts. For 

example, Clementine Data Mining Systems features many new algorithms to automatically find the 

optimum architectures of ANNs, such as number of hidden-layers and PEs (SPSS Inc., 2001). 

These procedures were conventionally conducted based on expert' s experience, and regarded to be 

complicated and time-consuming for non-expert users. 

In this study, all the modeling processes were basically conducted with the Clementine Data 

Mining System. However, it should be noted that sorne other statistical software packages and 

spreadsheet softwares were also used to verify the results and produce graphical analyses and 

presentations, since sorne of the graphical presentations and statistical analyses were not 

sufficiently supported by the Clementine Data Mining Systems. 

2.6 Summary 

Accurate prediction of crop yield before harvest is one of the greatest concerns in agriculture due to 

the economic importance and scientific interest. Conventionally, crop yield prediction was 

conducted without using spectral information. Crop growth was simulated with models 

incorporating physical environmental factors (agro-meteorological information, soil quality and 

management practice) and data from chlorophyll meters. However, these methods were quite labor­

intensive and generally unrealistic for practical purposes. 

Recent studies show that the use of remote sensing systems to arrive at yield estimates has a high 

potential since they are one of the most effective methods of data acquisition in agricultural fields. 
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In general, two different approaches have been taken to use remotely sensed images for crop yield 

estimation. The most common and simplest method is to use regression models and VIs, and 

directly associate the spectral information and crop yield. However, the high sensitivity of VIs to 

environmental factors is a serious constraint in the development of highly generalized models. 

Recent studies also show that coupling mechanistic crop growth models with remote sensing 

systems is an effective alternative for yield estimation. However, the unavailability of field 

parameters often becomes a constraint for accurate prediction, especially when the spatial 

variability of the field is high. The complexity of the models is also a disadvantage when non­

experts operate the models. 

Machine learning algorithms are currently regarded to be key technologies for the development of 

effective image interpretation systems. In particular, artificial neural networks (ANNs) and decision 

trees (DTs) are being intensively explored as methods for classification and prediction in 

agricultural applications due to their flexibility and ability to incorporate a variety of types of 

ancillary information. 

The ANNs and DTs may provide effective alternatives in the development of yield mapping and 

forecasting systems based on the remotely sensed information. 
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Figure 2.1 Schematics of STIes mechanistic crop growth model (Source: Brisson et al., 1998). 
AlI the symbols are summarized in Table 2.1. 
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Figure 2.2 A McCulloch and Pitts model. A weighted sum of inputs is 
transferred by threshold function in perceptron, and Boolean values are returned 
as outputs. The threshold function can be replaced by several different functions, 
such as piecewise linear, sigmoid, and Gaussian functions to make more smooth 
decision boundary. Perceptrons can be connected to each other for developing 
various network architectures (Source: Mair et al., 2000) 
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Figure 2.3 Basic taxonomy of artificial neural network architectures. 
(Source: Jain et al., 1996) 
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Figure 2.4 Relationships between decision boundaries and network structure in feed-forward 
networks. (Source: Jain et al., 1996) 
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Figure 2.5 An example of tree representation for 
the human decision making process. 
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Figure 2.6 An example of a hybrid decision tree classifier. Different 
classifiers such as K-means, CS.O, maximum-likelihood classifier (MLC), 
linear discriminant function (LDF), can be incorporated into single tree. 
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Figure 2.7 An example of univariate and multivariate decision tree classifiers. For 
the multivariate classifier, more than one variables can be used for each node. 
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Figure 2.8 Geometrie interpretation of univariate and multivariate deeision tree 
classifiers. The decision boundary for multivariate classifiers in this example is made 

with: 
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Figure 2.9 A schematic of data mining process. 
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Table 2.1 Symbols used in the schematic (Figure 2.1) for STICS 
(Source:Brisson et al., 1998). 

Symbols Description Units 

IAMF Days of the stage AMF: maximal Days 
acceleration of leaf growth, end of 

juvenile phase 

IDRP: Days of the stage DRP: beginning of Days 
grain filling 

ILAX Days of the stage LAX: maximalleaf Days 
area index 

ILEV Days of the stage LEV: emergence Days 

IMAT Days of the stage MAT: Days 
Physiological maturity 

IREC Days of the stage REC: harvest Days 

ISEN Days of the stage SEN: beginning of Days 
net senescence 

LAI Leaf Area Index [m2leaves m-2soil] 

MAGRAIN Dry matter of grains [gm-2] 

NBJGRAIN Period when to compute NB GRAINS [ number of days before 
IDRP] 

TEAUGRAIN Water content of the grain [g water g fresh grain] 
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Table 2.2 Equations of commonly used vegetation indices and their references. 

VIs Equations references 

NDVI (NIR - RED)/(NIR + RED) 

SR NIR/RED 

PVI ~(RedsOil -Red)2 + (IRsoil - IRveg)2 
Tucker (1979) 

SAVI [(NIR - RED )/(NIR + RED + L)]X (1 + L) Heute (1988) 

TSAVI a(NIR - aRED - b )/lRED + a(NIR - b) + 0.08(1 + a2 )J Rondeaux et al. (1996) 

ARVI (NIR - RB)/(NIR + RB) Rondeaux et al. (1996) 

where RB = RED - y(BLUE - RED) 
GNDVI (NIR - GREEN)j(NIR + GREEN) Shan ahan et al. (2001) 

PRI (RS70 - RS31 )/(RS70 + R531 ) Strachan et al. (2002) 

WDVI NIR-(CxRED) Clevers (1997) 

where C=slope of the (soil-specific) soilline, or ratio between 
NIR and RED reflectance of soil 
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Preface to Chapter 3 

The literature review indicated that crop yield may be approximated from spectral information. 

However, the technical and economicallimitations of the methods, currently in use, do not permit 

their application in precision agriculture. 

Machine learning algorithms can be effective alternatives for the development of yield prediction 

models due to their flexibility and simplicity. In the next chapter (Chapter 3), the potential of 

Artificial Neural Networks (ANNs), one of the most commonly used machine learning methods, 

is explored, and compared with several conventional VI-based methods (NDVI, SR, and PRI) and 

Stepwise Multiple Regression (SMLR) models. 

Successful application of the methodology could contribute to the development of in-season yield 

mapping or forecasting systems in precision agriculture. 

The research paper based on this chapter 

y. Uno, S. O. Prasher, P. K. Goel, Y. Karimi, and A. A. Viau. Artificial neural networks to predict 

corn yield from Compact Airborne Spectrographie imager (CASI) data (Un der preparation) 

45 



Chapter 3 

ARTIFICIAL NEURAL NETWORKS TO PREDICT CORN YIELD FROM 

COMPACT AIRBORNE SPECTROGRAPHIC IMAGER (CASI) DATA 

a Department of BioresourceEngineering, Macdonald Campus of McGill University, 21111 

Lakeshore Rd., Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9, E-mail: 

shiv.prasher@mcgill.ca 

b Faculté de Foresterie et de Géomatique, Pavillion Louis-Jacques-Casault, Université Laval, 

Québec, Canada G 1 K 7P4 

3.1 Abstract 

In the light of recent advances in spectral imaging technology, highly flexible modeling methods 

must be developed to estimate various soil and crop parameters for precision farming from 

airborne hyperspectral imagery. The potential of artificial neural networks (ANNs) for the 

development of in-season yield mapping and forecasting systems was examined. Hyperspectral 

images of corn (Zea mays L.) plots in Eastern Canada, subjected to different fertilization rates and 

various weed management protocols, were acquired by a compact airborne spectral imager (CASI). 

Statistical and ANN approaches were used as weIl as various vegetation indices to develop yield 

prediction models. Principal component analysis (PCA) was used to reduce the number of input 

variables. Greater prediction accuracy (about 20% validation RMSE) was obtained with an ANN 

model than with either of the three conventional empirical models based on normalized difference 

vegetation index (NDVI), simple ratio (SR), or photochemical reflectance index (PRI). No clear 

difference was observed between ANNs and stepwise multiple linear regression model (SMLR). 

Although the high potential usefulness of ANNs was confirmed, particularly in the creation of 

yield maps, further investigations are needed before their application at the field scale can be 
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generalized. 

Keyword. ANNs, Hyperspectral remote sensing, Precision agriculture, Crop yield, Corn, CASI. 

3.2 Introduction 

The creation of accurate yield maps is an essential component of the successful implementation of 

precision farming, as it offers useful information to variable rate technologies (VRTs; Stafford et 

al., 1996 and 2000; Reitz et al., 1996). Although the benefits obtained through yield mappping 

depend largely on the crop and environmental conditions (Earl et al., 1996; Swinton et al., 1998), 

its usefulness has been demonstrated with the recent commercialization of tractor-mounted crop 

yield-monitoring systems, now being used extensively by farmers to achieve uniform yields under 

highly variable field conditions. 

Since remote sensing systems are capable of acquiring information over a large area within a very 

short period of time, these offer great advantages over tractor-mounted yield monitoring units in 

the creation of yield maps. More importantly, airborne digital imaging systems can provide 

real-time information on the condition of the crop and allow estimates of crop yield to be made 

long before the actual harvest. Consequently, such systems show great potential in assessing the 

impact of seasonally changeable factors (e.g., precipitation, temperature, and sunshine) in limiting 

crop growth (Yang et al., 2000 and 2001; Swinton et al., 1998). Moreover, introduction of 

hyperspectral sensors, capable of simultaneously gathering and recording spectral information in 

hundreds of wavebands, has the prospect to further revolutionize the application potential of 

remote sensing. 

Over the years, a number of vegetation indices (VIs) have been developed by combining two or 

more wavebands in ratios and/or differences, to highlight various crop conditions. However, one 

of the problems in applying VIs to crop yield estimation is the difficulty in choosing the most 

appropriate vegetation index in a specifie situation (Barrett and Curtis 1999; Osborne et al. 2002). 
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In fact, various environmental factors, such as background effects and crop canopy conditions, 

have been shown to be potential sources of noise, which affect the spectral reflectance in canopy 

level (Aparicio et al., 2000; Plant et al., 2000; Shanahan et al., 2001; Strachan et al., 2002). 

Ironically, these difficulties, to identify the most useful wavelengths or VIs under specific 

environmental conditions, have been heightened with the recent proliferation of large volume of 

data available from hyperspectral and broadband sensors. Sensitivity of vegetation indices and 

tapping the full potential of large quantities of spectral information acquired with the latest sensors 

are currently the most important impediments to successfully applying remote sensing 

technologies to precision farming. 

Recent studies have shown that multivariate analytical techniquescan prove quite useful in the 

interpretation of various forms of remotely-sensed data. Due to its great adaptability, stepwise 

multiple linear regression (SMLR) is one of the most cornrnonly used methods to develop 

empirical models from large datasets, as has been done for a number of canopy-level crop 

condition parameters (Osborne et al., 2002; Shibayama et al., 1991). However, limitations to this 

technique exists as (i) it is based on the assumption that a linear relationship exists between input 

and target variables (Bethea et al., 1995), (ii) the assumption that samples follow a normal 

distribution (Bethea et al., 1995), and because (iii) in sorne cases model performance tends to be 

low because the method is extremely adaptable. 

Machine learning algorithms, typically artificial neural networks (ANNs), have generated a strong 

interest in their potential effectiveness in estimating various field and crop conditions from 

remotely sensed images. The ability of ANNs to associate complicated spectral information with 

target attributes without any constraints for sample distribution (Mather, 2000), make them ideal 

for describing the intricate and complex non-linear relationships which exist between 

canopy-Ievel spectral signatures and various crop conditions (Kimes et al., 1998; Lillesand and 

Keifer, 2000). Although in early studies ANNs were mostly used to c1assify data, the method has 

also shown a great potential for predicting continuous variables (Atkinson et al., 1997; Kimes et 

al., 1998). In fact, successful applications have already been reported for surface water quality 

assessment (Keiner et al., 1998; Gross et al., 1999; Zhang et al., 2002), soil moisture estimation 
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(Chang et al., 2000; Del Frate et al., 2003), biomass estimation (Jin and Liu, 1997), and yield 

prediction (Simpson, 1994). 

This study sought to assess the potential of ANNs and hyperspectral aerial remote sensing for the 

development of field-scale yield estimation systems for corn. The performance of ANN models 

was evaluated using spectral values obtained from a Compact Airborne Spectral Imager (CASI) 

and compared with various conventional empirical methods, such as normalized difference 

vegetation index (NDVI), simple ratio (SR), photochemical reflectance index (PRI), and multiple 

linear regression (MLR) model. Advantages and disadvantages associated with ANNs models are 

discussed in the context of evaluating the feasibility of developing a yield mapping and forecasting 

system. Principal component analysis (PCA) was also introduced to avoid the risk of overfit, 

which is one of the most serious problems for ANN and SMLR model development. 

3.3 Methodology 

3.3.1 Experimental Design and Image Acquisition 

The experiment was conducted at the Emile A. Lods Agronomy Research Center on the 

Macdonald Campus of McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada. To 

simulate various crop growth scenarios, a corn (Zea mays L. cv. hybrid DK389BTY) crop was 

grown in forty-eight test plots (20 m x 20 m) under various weed management strategies and 

nitrogen fertilization rates. The two-factor experiment was laid out in split-plot design with three 

nitrogen fertilisation treatments (60, 120, 250 kg N/ha) and four weed control strategies, in 

quadruplicate. The weed treatments were: no weed control, control of grasses, control ofbroadleaf, 

and full weed control. Hyperspectral imagery was obtained with a Compact Airborne 

Spectrographic Imager (CASI) in 72 wavebands (spectral range 408 to 947 nm) at a spatial 

resolution of 2 m x 2 m. Images were acquired three times during the 2000 growing season: (i) at 

the early growth stage (30 days after planting, June 30), (ii) at the tasseling stage (66 days after 

planting, August 5), and (iii) at the fully mature stage (86 days after planting, Aug 25). However, 
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only the image obtained from the second flight (August 5) was used in this study, since this study 

was focused on the performance of machine learning techniques rather than on the physiological 

aspect of crop and crop canopy reflectance. An earlier study at this site (Goel et al., 2002, 2003) 

also had shown that the greatest correlation betwen spectral reflectance values and crop yield 

occurred at the tasseling stage. The raw radiance values, measured by the CASI sens or, were 

converted into spectral reflectance values through a series of pre-processing techniques, and 

images were also corrected for geometric distortions (Table 3.1). 

Four different subplots (1 m x 1 m), representative of conditions prevailing in each treatment plot 

(20m x 20m), were selected as the sampling sites for grain yield measurements. Ten cobs were 

coUected from each subplot, oven-dried at 70°C for 48 hours and, based on the crop density, grain 

yield was expressed in kg ha- l
. 

3.3.2 Data Manipulation 

Final corrected images were imported into the ENVI software (ENVI 3.1, Research System, Inc., 

Boulder, Colorado, USA) and reflectance values at four randornly selected points per treatment 

plot, corresponding with the yield sampling sites, were estimated. Spectral reflectance values were 

thus estimated from a total of 192 pixels. Reflectance values for wavelengths, ranging from 408 

nm to 947 nm, were obtained from each pixel. These data were divided into two separate sets, one 

for calibration and another for the validation of models. Sorne 144 samples (75% of the samples) 

were randornly selected for calibration, and the remaining 48 samples (25% of the samples) were 

used for validation. For the performance analysis of ANN models with 71 input variables, a 

ten-fold cross validation procedure was also conducted to obtain more reliable results, since ANN 

are extremely sensitive to overfitting. 

50 



3.3.3 Principal component analysis (PCA) 

One of the problems with ANN, and also with SMLR models, is that the methods are extremely 

adaptable. This means that spectral analysis by ANN must always take into account the potential 

problem of overfitting (SPSS Inc., 2001). The risk of overfitting arises when large numbers of 

independent variables are handled with a small number of samples. One of the solutions is testing 

the reliability or robustness of the developed models by using a validation dataset. However, 

another effective method is to reduce the number of input variables by removing the unnecessary 

or redundant information. This approach is more suitable for hyperspectral image analysis because 

it often contains large amounts of redundant information. In this study, principal component 

analysis (PCA) was used as a data reduction technique. 

PCA is a data reduction, or data compression technique based on linear transformation. In this 

method, a new datas et (principal components) with k-variables is created from the original datas et 

with k-variables. Since these transformed variables (principal components) are ordered in terms of 

variance size, the number of variables can be reduced by removing the lower-Ievel components 

without any remarkable loss of information (Ceballos and Bottino 1997; Manly 1994). A number 

of papers report the use of PCA for spectral analysis, including satellite-based remotely sensed 

images (Ceballos and Botino, 1997; Ricotta et al., 1999; Galvao et al., 2001) and hyperspectral 

aerial imagery (Blackburn and Milton, 1997). 

In this study, factor scores, ca1culated from the top five principal components, were used as the 

input variables for two different modeling methods, ANNs and SMLR. PCA was carried out using 

the default option of the Clementine Data Mining Systems (SPSS Inc.), but this default mode does 

not conduct any factor rotation (SPSS Inc., 2001). The variance of each principal component was 

deterrnined through the expert output options of the software. Results obtained with the reduced 

and non-reduced datasets were compared with each other to assess the performance of PCA. 
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3.3.4 Model development 

Modeling processes were conducted in two main steps, data reduction and modeling (Figure 3.1). 

Three different vegetation indices, NDVI, SR and PRI, and four different combinations of data 

reduction and modeling methods were tested: (i) ANN model with 71 input variables (ANN-1), (ii) 

ANN model with 5 principal components (ANN-2), (iii) SMLR model with 71 input variables 

(SMLR-1), (iv) SMLR model with 5 principal components (SMLR-2) (Figure 1). All the models 

were developed using the Clementine Data Mining Systems (SPSS Inc.), except for the regression 

analysis with the VIs, which was do ne with Microsoft Excel (Microsoft Corp.). 

3.3.5 Vegetation indices (VI) 

Three commonly used vegetation indices, NDVI, SR, and PRI, were examined in this study, before 

ANN and SMLR models were developed. 

ND VI = NIRyoo - R680 

NIR900 + R680 

(1) 

(2) 

(3) 

where G).., NIR).., and R).., are, respectively, the reflectance values in the green, infra-red, red, and 

yellow at the indicated wavelengths À (nm). The spectral reflectance values at the required 

wavelength, centred at À nm, were estimated by averaging spectral values from the two closest 

wavelengths obtained with CASI, assuming that a simple linear relationship existed between these 

two values. 
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3.3.6 Stepwise multiple linear regression (SMLR) models 

As previously mentioned, SMLR is one of the most commonly used multivariate analytical 

techniques in remote sensing due to its flexibility. The process of SMLR consists of two main 

steps, variable selection and modeling. First, the importance of each input variable is evaluated by 

using a coefficient of determination (R2
), and then highly prioritized variables are added 

one-by-one to the multiple linear regression model. Each time one specific variable is added to the 

model, the significance of aIl the other variables is re-tested to evaluate their contribution to the 

model. If sorne variables are no longer significant at this stage, they are removed from the mode!. 

NormaIly, F-values are used to assess the significance of each variable (Bethea, 1995). The linear 

equation can be described as follows: 

(4) 

where Yield is grain yield (kg ha"\ rI, r2, r3 . ..rn are the spectral reflectance values at wavelengths 

1 through n, and al, a2, a3 ... an are regression coefficients. 

Two different input strategies were taken for the development of SMLR models in this study. In 

the first strategy, aIl seventy-one spectral bands were directly incorporated into a SMLR model. In 

the second strategy, factor scores, acquired from five principal components, were used as the input 

variables. The stepwise criteria were of P ~ 0.05 for entry and P > 0.10 for removal. 

3.3.7 Artificial neural networks 

An artificial neural network (ANN) is a computational model which mimics the human nervous 

system and decision-making process (Jain et al., 1996). Although sorne technical difficulties, such 

as the low interpretability of the developed models (Mair et al., 2000), the complexity involved in 

optimizing the model structure (Mair et al., 2000), and the high processing power required for the 

training process, once made the intensive application of this techniques difficult, recent 
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improvements in computing power and learning algorithms has increased the applicability of the 

method in various fields. In fact, ANNs, given their great adaptability, are now regarded as an 

essential tool for image interpretation and development of prediction models from remotely sensed 

data. 

Although ANN algorithms, implemented in Clementine Data Mining System, are based on the 

multi-Iayer feed-forward network architecture (Figure 3.2) with a back-propagation learning 

algorithm, and radial basis function networks, various new features were available to simplify and 

render operations more user-friendly. This software package's ability to automatically adjust the 

optimum number of processing elements (PEs) and network connections is one of its most useful 

characteristics. In the pas t, finding the optimum network structure has been one of the most 

time-consuming processes in the development of ANN models. Indeed, many ANN models 

developed in the past were based on previously obtained heuristic results, in which the optimum 

number of PEs had been determined. Although the Clementine Data Mining System offers four 

different strategies, quick, dynamic, multiple, and prune, to determine the optimal number of PEs, 

the "prune" option was adopted in this analysis since this option normally produces the highest 

performance while training time tends to be longer than other options (Integral solutions Ltd., 

1998; SPSS Inc., 2001). In this option, a large network structure is constructed at the initial stage, 

and then unnecessary network connections are removed one-by-one to find the optimum network 

structure (SPSS Inc., 2001). The number of hidden-Iayers is fixed to one, unless the expert option 

is used (SPSS Inc., 2001). The "prevent overtraining" option was also used to avoid overtraining. 

With this option 50% of samples were randornly selected for training, and the remaining 50 % 

used for testing. 

Two input strategies were employed: (i) using aIl seventy-one spectral bands as input variables, or 

(ii) using factor scores acquired from five principal components as input variables. 
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3.3.8 Performance analysis 

Three statistical parameters were used for the performance analysis: the correlation coefficient (R), 

root mean square error (RMSE), and average difference (A VDIP). Correlation coefficients were 

calculated for three VI-based models and two SMLR models, solely for the calibration, since it 

seemed to be the most commonly reported parameter in previous reports of yield prediction 

(Aparicio et al., 2000; Osborne et al., 2002; Yang et al., 2000, 2001). However, this statistical 

parameter was not applied to the ANN models, as they are not based on the linear regression 

theory (Weiss and Kulikowski, 1991). 

RMSE is one of the most commonly used statistical parameters, which represents the average 

difference between estimated and observed values. In this study, RMSE was calculated both on a 

percentage and Kg ha-1 basis. 

"(Pi -aiy 
RMSE [%] = (100/ a LJ 

n 
(5) 

RMSE [kg/ha 1 = ~ (Pi ~ Oi )' (6) 

where Pi is predicted yield, ai is observed yield, a is mean yield, and then i is the number of the 

yie1d estimate 

A VDIP was used as it can be regarded as a better evaluation method for yield prediction at the 

farm level, whereas RMSE is a better estimator for the yield mapping. A VDIP was only calculated 

for validation. The values were presented with a percentage and kg/ha. 

A VDIP is defined as the following equation: 
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A VD IF [%] = (100/ ° )I.=L,,--( P_i -_O_i) 
n 

I(Pi -~i) 
A VDIF [kg/ha] = =---

n 

(7) 

(8) 

Visual analysis, plots of predicted vs. observed values, were also made to better understand model 

performance. 

Considering the risk of overfit, a ten-fold cross validation procedure was conducted for the ANN 

model with 71 input variables (See 3.3.2). In this procedure, the original dataset (192 samples) was 

first randomly divided into 10 subgroups (i.e. Groups-A to J, 19 or 20 samples par group), and ni ne 

out of ten subgroups (i.e. Groups A-I) were selected for calibration, and the remaining subgroup 

(i.e. Group J) was kept for validation. In the next step, nine subgroups with different combinations 

(i.e. Groups-A to H and J) were selected from the original ten subgroups for calibration, and the 

remaining subgroup (i.e. Group 1) was used for validation. After repeating the same calibration 

and validation processes with ten different combinations, the results (RMSEs and A VDIFs) 

obtained with these ten different validation data sets were summarized by calculating the mean 

value and 95% confidence interval (CI). It should be noted that the calibration and validation 

dataset were independent throughout this procedure. A graphical analysis was also conducted to 

better understand the model performance. 

3.4 Results and Discussion 

Different approaches were adopted to develop corn yield prediction models. Various statistical 

parameters, summarizing the performance of various yield prediction models for calibration and 

validation datasets, are presented in Table 3.2. The lowest RMSE for a calibration dataset was 

obtained with the SMLR-1 model (RMSE= 969.14 kg ha-l, 16.68%), while the lowest RMSE for 

validation dataset was obtained with ANN-1 model (1092.54 kg ha-l, 19.69%). Comparison 
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between observed and predicted yield for different models are also presented in Figures 3.3 and 

3.4. These graphs clearly demonstrate that ANN and SMLR model performed better than all three 

VI-based models. 

Although the difference between ANN-1 and SMLR-1 was generally small, graphical analysis 

(Figures 3.3 and 3.4) showed that the ANN-1 model produced larger prediction errors at high 

observed crop yield levels (>7500 kg ha-1
) than did the SMLR-1 model (Figure 3.3). In fact, 

maximum estimated yield value (7368 kg ha-1
), generated with the ANN -1 model, was much lower 

than the highest observed yield (8664 kg ha-1
) in calibration, whereas this difference was much 

less for theSMLR-l model (Figure 3.3). It is likely that the optimum network structure of the 

ANNs was slightly biased to a specifie yield level (Oi '" 5000 kg ha-1
), because the number of 

training samples in this range was much larger than in other ranges (Oi< 5000 kg ha-1 and 

Oi> 8000 kg ha-1
). 

The results of lü-fold cross validation for the ANN-1 model are summarized in Figure 3.5 and 

Table 3.3. The mean values (19.11 % for RMSE and -0.84% for AVDIF) and 95% confidence 

intervals ofRMSEs and AVDIFs (16.94-21.28% for RMSE and A.28-2.59% for AVDIF) obtained 

from lü different validation datasets, showed that the prediction accuracies acquired with the 

validation dataset of 48 samples, which were already presented above (RMSE=19.69% and 

A VDIF=-1.01 %), were quite reasonable. 

Although the number of input variables (71 variables) used in this study generally seemed to be 

too large for ANN model, as compared to the number of training samples (144 records), these 

results showed that the risk of overfit was quite low in this particular case. This was probably the 

case because hyperspectral imagery normally includes large amounts of redundant information, in 

which most adjacent spectral bands are highly correlated to one another. It is also possible that the 

"pruning" option, which reduced input variables to 20 bands during the training (Table 3.4), might 

have contributed to developing a robust model. The basic structure of the developed ANN models, 

including selected wavelengths, is summarized in Table 3.4. For the ANN-2 model no input 

variables were removed as a result of pruning. 
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The equations of the two SMLR models are presented in Table 3.5. Although five bands were 

selected out of seventy-one input variables for the SMLR-1 model (Table 3.5), no clear trend was 

observed in wavelengths selected by the ANN-1 model (Table 3.4). The fifth principal component 

was rejected as a result of SMLR analysis for SMLR-2 model (Table 3.5), although aIl five 

principal components were used for ANN-2 model (Table 3.4). 

Although the performance of VI-based models was generally lower than that of ANN models or 

SMLR models, a fairly high performance was obtained with the PRI (Table 3.2). In fact, the 

correlation coefficient obtained with PRI for the calibration dataset (R=O.66) was much higher 

than the results obtained with ND VI (R=O.38) or SR (R=O.38). Aparicio et al. (2000), on the other 

hand, found SR and NDVI to outperform PRI in the prediction of durum wheat yield in the 

Mediterranean region, which is not the case in this study. 

One of the interesting points is that correlations obtained with ND VI and SR seemed to be quite 

low compared to previous works (Shanahan et al., 2001; Yang et al., 2001). However, these low 

correlations could possibly be the result of spectral reflectance values used to calculate the NDVI 

and SR being extracted from single pixel data, without standardization process, or by calculating 

mean reflectance values in the region of interest. In fact, a much higher correlation (R=0.75) had 

already been observed between NDVI and grain yield by Goel et al. (2003), using the same image. 

In their study, the mean yields of four subplots and mean spectral reflectance values of the 

corresponding area were computed for the model development. The strong noise from various 

environment factors, such as background soil effects and the existence of gaps in the canopy, cou Id 

have produced these low prediction accuracies. Indeed, it is generally recognized that NDVI is 

quite sensitive to these kinds of environmental factors, so that various standardizing process are 

normally required to achieve the highest performance (Masseli et al., 2000). The positioning errors 

in global positioning system (GPS) could be another factor in this low performance. However, the 

effect ofthese positioning errors seemed to be lirnited, considering the results obtained with ANNs 

and sorne other methods, which showed much higher performance than NDVI- or SR-based 

models. 
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Past research has shown that sorne improvements could be expected by introducing curvilinear 

equations (Yang et al., 2001), taking multiple observations in the growing season (Plant et al., 

2000; Serrano et al., 2000), and using geostatistical standardization to remove various 

environmental effects (Hayes and Decker, 1996, 1998; Masseli et al., 2000). However, it should 

be recognized that this kind of pre-processing normally requires a large amount of time and extra 

cost. It is also important that geostatistical standardization process not only reduces the number of 

samples available for model development, but it also decreases the spatial resolution of the images, 

which is essential for yield mapping. These negative factors could be crucial constraints, when 

application to precision agriculture is considered, since it often requires a high spatial resolution, 

and time critical action. 

A VDIFs obtained for validation showed that the prediction errors at a farm level were quite low 

for all seven modeling strategies (Table 3.2). Indeed, all errors (maximum -3.42% by SMLR-l 

model) generally appeared to be within acceptable levels in terms of agronomical importance. The 

results clearly indicate that the method used in this study could potentially be used to estimate crop 

yield at a field level using remotely sensed observations. However, it should be noted that sorne 

skepticism still exists with NDVI- and SR-based models due to the low correlations in calibration. 

The performance of two PCA-based methods showed that any decrease in prediction accuracies, 

caused by PCA, seemed to be quite low (Table 3.2). In fact, the differences in RMSEs between two 

ANN models (2.26% for calibration and 2.37% for validation) and two SMLR models (1.50% for 

calibration and 0.70% for validation) generally seemed to be acceptable in terms of agronomical 

importance (Table 3.2). Considering the fact that the number of input variables was reduced from 

seventy-one spectral bands into only five principal components, the benefit ofusing PCA appeared 

to be quite large, especially in a situation where the number of samples for the modeling is limited. 

Graphical analysis also showed that the differences of the performance between reduced and 

original dataset were not large (Figures 3.6 and 3.7). 

Eigenvalues of the top five principal components are summarized in Table 3.6. Based on these 
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statistics, 94% of the variance included in the 71 input variables, could be explained by these five 

principal components. 

3.5 Conclusions 

This study explored the potential of aerial hyperspectral spectral measurements to develop 

in-season field-scale yield prediction and mapping systems for corn. To simulate different crop 

growth scenarios, corn was grown under different weed management strategies and nitrogen 

fertilization rates. Statistical as weIl as ANN approaches were adopted to develop yield prediction 

models. PCA was also adopted to reduce the large amount of redundant information in 

hyperspectral imagery, and also tackle the problem of overfit. ANNs were quite efficient in 

capturing the complex relationship between crop yield and spectral reflectance values. Although 

the differences between ANN and SMLR models were not clear in this study, the higher 

performance of ANNs, compared to three VI-based methods, showed that ANNs could be 

effectively used to estimate the crop yield. While ANNs would be particularly useful in creating 

yield maps, no clear differences compared to other methods were observed for yield estimation at 

farm level. The usefulness of ANN s would be greater in a situation where selecting a VI has not 

been done before and could become a time-consuming process. However, it should be noted that 

further improvement is still required if this method is to be applied in a practical situation. In fact, 

the expected prediction errors of approximately 20% (in RMSE for validation) still seemed to be 

too large for the creation of yield map in precision agriculture, although the result of A VDIF 

(-1.01 % for validation) seemed to be in acceptable level for the yield estimation at a farm level. 

Using a low-pass filter as a pre- and post-classification technique, incorporating ancillary data, and 

combining multiple data sources such as broadband sensors and radar images (Moran et al., 1997 

and 2002) could be helpful on increasing the model performance. 

A relatively high performance was observed with the PRI, compared to the NDVI or SR. However, 

the generality ofthis high performance for PRI was not clear, since no previous reports were found 

that PRI has the higher correlation with crop yield than NDVI and SR. More work is required to 
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identify the environmental and bio-physical factors which contribute to these differences. 

This study also demonstrated that PCA was a useful data reduction technique for hyperspectral 

remote sensing. AIthough the performance of the models developed with reduced datasets were 

generally lower than that of models based on the full dataset, the benefits of using PCA were 

obvious, considering that the number of input variables was reduced to only five principal 

components. 
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Figure 3.1: The three major vegetation indices and four different combinations of data reduction 
and modeling techniques were tested in this study. 
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Figure 3.2 The network structure used in this study was based on multi-Iayer feed-forward 
networks with back-propagation leaming algorithm. However, the optimum number of processing 
elements (PEs) and network connections was automatically determined by "prune' option of 
Clementine data mining system, in which network connections are reduced one-by-one from 
relatively large sized network. The number of hidden-Iayers is normally fixed with one in this 
option, unless expert option is used. The ovals represent PEso 
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Figure 3.3 Performance of five different models for calibration dataset. (A) SMLR 
model with 71 input variables (B) ANN model with 71 input variables (C) NDVI 
(D) SR (E) PRI. 
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Figure 3.4 Performance of five different models for validation dataset. (A) SMLR 
model with 71 input variables (B) ANN model with 71 input variables (C) NDVI 
(D) SR (E) PRI. 
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Figure 3.5 Results of ten-fold cross validation obtained with 
ANN model with 71 input variables. 
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Figure 3.6 Difference of model performance between original dataset and reduced 
datas et. (A) ANN model with 71 input variables (B) ANN model with five principal 
components (C) SMLR model with 71 input variables (D) SMLR model with five 
principal components. AlI the figures were obtained with calibration datas et. 
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Table 3.1 CASI specification and data processing (Source: Goel et al., 2002) 

Type of sensor Pushbroom imager 
Field of view 37.8° 
Wavelength range 407 to 949 nm 
Number of wavebands 72 
Sampling rate 405 (spatial direction) 
Spectral resolution 7.5nm 
Spatial resolution 2mx2m 
Noise floor l.4DN 
SIN ratio 420:1 peak 

a. June 30th, 2000 
a. Reading: 150.732 North, Altitude above sea 

level: 1148 m, Time: 18:22, Cloud free 

b. August 5th, 2000 
b. Reading: 150.859 North, Altitude ab ove sea 

level: 1130 m, Time: 15:30, Cloud free 

c. August 25th, 2000 
c. Reading: 331.225 North, Altitude above sea 

level: 1152 m, Time: 14:58, Cloud free 

Data processing 
Data collected from CASI were processed to 
at-sensor radiance using calibration coefficients 
determined in the laboratory by CRESTe ch 
(Center for Research in Earth and Space 
Technology). The CAM5S atmospheric correction 

a. Radiometrie and 
model (O'Neill et al., 1997) was used to transform 

atmospheric corrections 
at-sensor radiance to ground-reflectance. Further, 
spectrally-flat uniform are as in each image 
(asphalt, bare soil and con crete surfaces) were used 
to do flat field adjustments in the spectral regions 
affected, residually by atmospheric absorption 
features for improved reflectance image data 
cubes. 
Images were corrected for the aircraft movements 
(yaw, pitch, and roll) using GPS data onboard the 

b. Geometric corrections, aircraft, then rectified to UTM geographic 
geo-referencing, and coordinates. Further, white targets at the corners of 
image co-registration the field were used for precise correction and error 

assessment. The estimated RMSE (root mean 
square error) was about 0.5 pixel. 
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Table 3.2 Prediction accuracies obtained with seven different modeling strategies. Three 
statistical parameters, correlation coefficient (R), root mean square error (RMSE), and average 
difference (AVDIF) were used. The numbers are presented on kilogram per hectare (kg/ha) and 
percentage. 

Methods 

NDVI 
SR 
PRI 

ANN-l 
SMLR-l 
ANN-2 

SMLR-2 

R 

0.38 
0.38 
0.66 
N.A. 
0.83 
N.A. 
0.79 

Calibration 
RMSE 

(kg/ha) (%) 
1585.69 27.31 
1589.94 27.38 
1287.03 22.16 
981.48 16.90 
969.14 16.68 
1112.88 19.16 
1055.66 18.18 

74 

Validation 
RMSE AVDIF 

(kg/ha) (%) (kg/ha) (%) 
1430.57 25.77 94.76 1.71 
1465.72 26.40 146.94 2.65 
1367.17 24.63 -9.09 -0.16 
1092.54 19.69 -56.32 -1.01 
1129.65 20.35 -189.67 -3.42 
1224.70 22.06 -96.81 -1.74 
1168.60 21.05 -183.87 -3.31 



Table 3.3 Results of ten-fold cross validation for the ANN model with 71 input variables. Average 
value and 95% confidence interval (CI) ofRMSEs and AVDIFs were calculated from ten different 
validation datasets. 

RMSE 
Average 1097.55 kg/ha 

(19.11%) 
95% CI 972.99 - 1222.11 kg/ha 

(16.94 - 21.28%) 

AVDIF 
-48.40 kg/ha 

(-0.84%) 
245.57 - 148.77 kg/ha 

( -4.28% - 2.59%) 

75 



Table 3.4 Structure of the developed ANNs. The selected wavelengths were ordered with the 
relative importance of the each band for the output variables (Yield). This order was observed with 
"sensitivity analysis" option of Clementine data mining system. 

Input 
methods 

71 inputs 

SPCs 

Number of PEs 
Input Hidden Output 
Layer Layer Layer 

#1 
20 2 1 

5 2 1 

Selected inputs 

708.97, 701.36, 572.82, 762.35, 716.58, 655.83, 
430.95, 739.45, 565.35, 475.53, 550.29, 423.53, 
535.29,557.79,460.65, 724.20, 595.39, 633.13, 

670.99, 678.57 (nm) 
PC-l, PC-2, PC-5, PC-3, PC-4 
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Table 3.5 Equations of the developed SMLR models and VI-based linear models. R(a nm) shows 
reflectance value at a nm. (PC n) shows the principal component of nth level. 

Input 
methods 
71 inputs 

5PCs 

NDVI 

SR 

PRI 

Equation 

Yield [kg/ha] = 1371.443688*R(482.98nm) - 4249.325871 *R(602.93nm) + 
3759.589996*R(655.83nm) + 305.581612*R(900.66nm) -
209.21606*R(931.58nm) + 3816.357964 
Yield [kg/ha] = 400.118518*(PC4) + 595.421 *(PC3) - 440.630547*(PC2) -
1088.118413*(PC1) + 5696.886788 
Yield [kg/ha] = 31278* NDVI - 22340 

Yield [kg/ha] = 206.46* SR + 1759.5 

Yield [kg/ha] = -108646* PRI - 5812.5 
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Table 3.6 Eigenvalues of five principal components (PC) used for the model development. The 
variance of each PC and cumulative variance from the top were calculated. 

Component Total Variance (%) Cumulative (%) 
1 32.276 45.459 45.459 
2 23.978 33.772 79.231 
3 7.926 11.164 90.395 
4 1.880 2.648 93.043 
5 .689 .970 94.013 
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Preface to Chapter 4 

Although the previous analysis (Chapter 3) demonstrated that ANN modeling may be an effective 

tool to estimate crop yield, it is one of the several machine learning algorithms that can be used for 

this purpose. Over the years, many different concepts have been suggested to develop effective 

machine learning algorithms in the Artificial Intelligence (AI) community, and most of these 

methods can potentially be applied to image interpretation, and consequently for the development 

of yield prediction models from remotely sensed images. 

Decision tree (DT) estimation algorithm is one of these machine learning methods, which is most 

commonly used in business and medical applications at the present time. Although sorne research 

work has already been done to evaluate the applicability of this algorithm for image interpretation, 

more efforts need to be made in the area of precision agriculture. 

In the next chapter (Chapter 4), the possibility of using decision trees for the creation of field-scale 

yield maps from hyperspectral imagery is explored. The performance of DTs at two tasks is 

evaluated: (1) DT as an image classification tool, or for the classification of crop productivity, and 

(2) DT as a feature band selection tool. 

The research paper based on this chapter 

y. Uno, S. O. Prasher, P. K. Goel, Y. Karirni, and A. A. Viau. Use of classification tree and 

Compact Airborne Spectrographic Imager (CASI) for corn yield estimation (Under preparation) 
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Chapter 4 

USE OF CLASSIFICATION TREE AND COMPACT AIRBORNE SPECTROGRAPHIC 

IMAGER (CASI) FOR CORN YIELD ESTIMATION 

a Department of Agricultural and Biosystems Engineering, Macdonald Campus of Mc Gill University 

Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9, E-mail: shiv.prasher@mcgill.ca 

b Faculté de Foresterie et de Géomatique, Pavillion Louis-Jacques-Casault, Université Laval, Québec, Canada G l K 7P4 

4.1 Abstract 

The creation of yield maps using remotely sensed images is currently one of the challenges in the 

development of precision crop management. This study evaluates the potential of a decision tree 

estimation algorithm to classify hyperspectral images of a corn (Zea mays L.) field, acquired from 

an airborne spectral imager (CASI), into yield categories. The images were acquired over corn 

experimental plots in eastern Canada, where crops were grown in different nitrogen application 

rates and weed control strategies. The results showed that the performance of the algorithm in terms 

of overall classification accuracies was comparable to a conventional classification method, but still 

seemed to be low for practical purposes. The results also demonstrated that the potential of the 

algorithm as a feature band selection tool was high. However, further investigation is still necessary 

to explore the reliability and stability of the developed models. 

Keyword: Yield classification, Corn, Remote sensing, Decision tree, Feature band selection 
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4.2 Introduction 

Describing the within-field variability of crop yield is one of the most important issues in precision 

agriculture, since it offers a variety of useful information for the recently developed variable rate 

technologies (VRT) (Reitz et al., 1996; Stafford, 2000). Recent research has shown that the 

information provided by airborne digital imaging systems can be used to create yield maps based 

on interpretation of crop conditions in real-time (Yang et al., 2001). 

Machine learning algorithms are currently regarded as one of the keys to the successful application 

of remote sensing in precision agriculture, since the complicated and time-consuming process of 

the image interpretation can be do ne automated (Mather, 2000). Indeed, application of such 

algorithms can significantly reduce the time required for analyzing the spectral information and 

developing models, as weIl as reduce the time required to train skilled technicians. Complicated 

spectral information, which used to be difficult to analyze, ev en by highly skilled technicians, can 

now be processed with relatively simple operations. The use of machine learning algorithms for 

image interpretation has recently been increasing in order to handle the much larger data sets 

supplied by the latest hyperspectral and broadband sensors (Goel et al., 2003a). 

The decision tree (DT) estimation algorithm, one of the most commonly used machine learning 

algorithms along with artificial neural networks (ANNs), can be an effective alternative for 

classifying the remotely sensed images to be used in precision agriculture. One of the advantages is 

that this classification tool does not require normally distributed data, contrary to most conventional 

classifiers, such as linear discriminant and maximum likelihood classifiers (Friedl et al., 1997; 

Hansen et al., 1996). Moreover, the expression of the induced explicit rules in the form of a 

classification tree is often helpful in clarifying the model structure and the classification process. 

This is perceived to be an advantage over the "black box" situation of another machine learning 

method, such as ANN (Mair et al., 2000; Debuse and Rayward-Smith, 1997). Indeed, past research 

have shown that the clarity of decision tree models is helpful in identifying the importance of input 

variables on target attributes, and consequently in reducing the dimensionality of remotely sensed 

data, or feature band selection (Hansen et al., 1996; De Fries et al., 1998; Simard et al., 2000) 
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Although there are inherent limitations in attempting to represent the human decision making 

process by simple tree structures (Weiss and Kulikowski, 1991), and due to the absence of 

backtracking processes once the tree is established (Mair et al., 2000; Weiss and Kulikowski, 

1991), recent research has shown that the DT is one of the effective classification methods for 

remotely sensed images. Many successful applications have been reported for land use 

classification using various satellite images (Hansen et al., 1996; Friedl and Brodley, 1997; Defries 

and Chan, 2000; Simard et al., 2000; Rogan et al., 2002). In precision agriculture, Gael et al. 

(2003a) tested the performance of a classification and regression tree (CRT) in classifying plots 

cropped with corn into categories representing the nitrogen and weed stresses that were set up in a 

split-plot experiment. Yang et al. (2002a and 2003) also used CRT algorithm to classify different 

tillage practices and residue management strategies, and fertilizer application strategies. 

The goal of this study was to assess the potential of the decision tree classifier for the development 

of a field-scale yield mapping system based on hyperspectral images of a corn field, acquired with 

a compact airborne spectrographic imager (CASI). The potential of the decision tree classifier to 

reduce the dimensionality of the hyperspectral dataset was also explored by analyzing the structure 

of the developed decision tree model. 

4.3 Methodology 

4.3.1 Image acquisition and data preparation 

Spectral information for the analysis was obtained from a CASI sensor. Images were taken over 

corn (Zea mays L. cv. Hybrid DK398BTY) experimental plots at the Emile A. Lods Agronomy 

Research Center of the Macdonald campus of McGill University, Sainte-Anne-de-Bellevue, 

Quebec, Canada. The experimental site consisted of forty-eight test plots (20 m x 20 m) 

encompassing three nitrogen treatments and four weed control strategies. The CASI image was 

obtained with a spatial resolution of 2m x 2m and a spectral range of 408 to 947 nm. Although the 

image acquisition was made three times during the growing season of year 2000, the image 

obtained on August 5 (66 days after planting, tassel stage) was used in this study since this season 
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had the highest correlation between spectral information and crop yield in the previous studies 

(Goel et al., 2003b; Uno et al., 2003). Spectral reflectance values were extracted from 192 pixels, 

which corresponded to the sampling sites for the grain yield measurements. Although seventy-two 

reflectance values were obtained from each pixel, the spectral band at 949 nm was removed 

because of the high noise level. The complete details of the experimental design and data extraction 

are given in Goel et al. (2002) and Uno et al. (2003). 

4.3.2 Principal component analysis (PCA) 

Machine learning algorithms generally require a large number of training samples for model 

development. The risk of overfitting the data tends to be quite high when there are man y input 

variables. Although most of the recent decision tree estimation algorithms support pruning 

algorithms to reduce the risk of overfit (Mingers, 1989; Quinlan, 1993), caution is still required 

during tree development. In this study, principal component analysis was introduced to reduce the 

number of input variables, since past research has shown that PCA is an effective method for 

reducing the dimensionality of hyperspectral imagery, which includes a significant amount of 

redundant information (Yang et al., 2002b; Uno et al., 2003). 

4.3.3 The C5.0 decision tree estimation algorithm 

The decision tree is a concept of decision-making systems, in which the human decision making 

process is mimicked by a tree-form representation (Figure 4.1). Although the concept of decision 

tree is relatively old, one of the constraints to practical application was the difficulty in developing 

effective algorithms to induce the optimal tree structure (Swain and Hauska, 1977). Indeed, a 

tremendous amount of effort has been made to develop more accurate and effective decision tree 

estimation algorithms in the artificial intelligence (AI) community (Weiss and Kulikowski 1991; 

Michalski et al., 1998; Friedl and Brodley, 1997). The C5.0 decision tree estimation algorithm, a 

commercial successor of the ID3 and C4.5 algorithms (Quinlan, 1993), is one of the most 
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commonly used univariate decision tree algorithms, along with the Classification and Regression 

Tree (C&RT) algorithm (De Fries and Chan, 2000). 

As is the case for many such algorithms, the process of rule induction is conducted with simple 

iterations of partitioning and evaluation of the homogeneity in the partitioned subsets (Figure 4.1). 

First, an original dataset is randomly split into more than two sub-groups. The impurity of the 

subgroups is then measured by one of several mathematical equations, caIled evaluation functions. 

At this stage, aIl possible combinations of splitting are tested to find the combination that 

maximizes the reduction of impurity in the subgroups. Once this original dataset is divided into 

these subgroups, each split subgroup is randomly partitioned into more than two sub-subgroups by 

the same procedure. By repeating these partitioning processes, the original group is finaIly divided 

into completely homogeneous subgroups that consist of only one attribute (Friedl and Brodley, 

1997, Weiss and Kulikowski, 1991). Although man y metrics have been developed to measure the 

impurity of the divided subgroups (Quinlan, 1993; De Fries and Chan, 2000; SAS Institute Inc., 

1998; Weiss and Kulikowski, 1991), the "entropy function" is used in C5.0 algorithm. 

Once the partitioning process is completed, the leaf nodes are usuaIly cut off one by one from the 

lowest hierarchal position, since the tree, established at this stage, occasionaIly becomes over-fitted 

with various noises and errors in the input values. Many algorithms have been suggested to perform 

this pruning process (Mingers, 1989). However, the C5.0 algorithm carries out this pruning process 

based on the comparative error rates of the pruned and unpruned trees (Salzberg, 1994). Details of 

the pruning algorithms are given in Mingers (1989) and Quinlan (1993). 

4.3.4 Crop yield classification 

4.3.4.1 Determination of classification boundaries 

AlI the crop yield data (numerical values in kg/ha) were converted into categorical values (i.e. 

"high" and "low") at the initial stage of the analysis. This procedure was conducted simply because 

the C5.0 algorithm does not aIlow for numerical outputs. However, it should be emphasized that 
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estimation of the yield levels in categorical values still offers a large amount of useful information 

in precision agriculture, although estimating the numerical value would have been ideal. 

One of the problems in classifying a continuous variable, however, is that it is sometimes difficult 

to determine an appropriate classification boundary. In fact, the determination of the boundary 

should always be based on the clear purpose of classification as weIl as on the distribution of 

samples. In this study, two different yield-based classification strategies were used, divided 

according to the agronomic importance (Figure 4.2). 

For the first strategy, the CroP yields were simply categorized into four yield levels with intervals of 

2000 [kg/ha]: (1) Very low: less than 3000 kg/ha; (2) Low: 3000 kg/ha - 5000 kg/ha; (3) High: 

5000 kg/ha - 7000 kg/ha; (4) Very high: greater than 7000 kg/ha. For the second strategy, samples 

were divided into two categories, "low" and "normal", since the distribution of yields was skewed 

(Figure 4.2). Twenty-five percent of the samples had yields less than 4828.58 kg/ha and were 

categorized as "low yield". The remaining 75 % (144 samples) were categorized into "normal". 

This decision boundary was determined on the assumption that crops represented by the lower 25% 

of the samples (Figure 4.2) could be regarded as growing in somewhat poor field conditions while 

the remaining 75% were regarded as growing in normal conditions or good conditions. It should be 

noted that detection of these "low yield levels" would offer useful information to diagnose various 

adverse field conditions, such as water, nitrogen, and weed stresses. 

4.3.4.2 Madel development 

For the model development, two different input strategies were taken, in addition to a conventional 

reclassification method (Figure 4.3). For the first input strategy, aIl seventy-one spectral bands were 

used as input variables. For the second input strategy, factor scores obtained from the top five 

principal components were used as the input variables. The performance of these DT models was 

evaluated by comparing them to the results obtained from an ANN model. This was based on a 

previous study (Uno et al., 2003) that the ANN model achieved much higher performance than 
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other conventional methods, such as NDVI, SR, and PRI based models. The model development in 

this study was aIl conducted with Clementine Data Mining System (SPSS Inc.) 

Although the Clementine data mining system offers many options to implement the optimum 

training process, the defaults were used except "generality" option. Although the exact mechanism 

of this "generality" option was not clearly mentioned, it is reported that it decreases the risk of 

overfit, whereas the "accuracy" option tries to develop the most accurate tree based on the training 

dataset, which usually results in poor performance during the validation step (SPSS Inc., 2001). 

4.3.4.3 Performance analysis 

The performance analysis was done by ten-fold cross validation, since the number of samples used 

in this study (192 records) was small compared to the number of input variables (71 inputs). The 

samples were first divided into ten independent subsets (group A to J, 19 or 20 records for each 

group), and nine out of ten subgroups (ex. Group A to I) were selected for the training and the 

remaining one subset (group J) was kept for the validation. After evaluating the performance of the 

model, nine different subgroups (ex. Group A to H and J) were picked for training, and the one 

unseen subgroup (group I) was later used for the validation. By repeating this process, aIl the ten 

combinations for training and validation were tested one by one. It should be noted that the training 

and validation datasets were always completely independent. Medians and 25% upper- and lower­

quartiles were computed from the classification accuracies obtained with ten independent 

validation datasets. FinaIly, results obtained with aIl ten validation datasets were summarized into 

one confusion matrix. 

4.3.5 Feature band selection 

The following three steps were taken to evaluate the performance of the C5.0 algorithm as a feature 

band selection tool: (i) Identification of the important spectral bands by browsing the developed 

decision tree model, (ii) Development of an ANN model by using the identified spectral bands as 
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input variables, and (iii) Performance analysis of the developed model, as compared to ANN 

models with two different input strategies (Figure 4.4). 

For the identification of the important spectral bands, six wavelengths were selected from the 

higher leaf nodes in the developed tree, since the nodes in the higher hierarchical position usually 

bear more useful information than do the lower nodes. The performance of the ANN model with 

these six inputs was evaluated by comparing it to (i) ANNs with aIl 71 input variables directly 

obtained from the CASI image, and (ii) ANNs whose input variables were obtained from five 

principal components, extracted from the CASI image (Figure 4.4). Further information on these 

two methods is given in Uno et al. (2003). 

Root Mean Square Error (RMSE) was used to evaluate the performance of the ANN models. 

RMSE is one of the common statistical parameter for the analysis of model performance, and it 

represents the expected difference between observed and estimated values (Yang et al., 1997). The 

equation to ca1culate RMSE is: 

"(Pi -Oi)2 
RMSE [%] = (100/ 0 ~ (1) 

n 

Finally, a graphical analysis was conducted to compare these different input strategies in ANN 

models. 

4.4 Results and Discussion 

Overall classification accuracies, obtained with the three yield classification strategies, are 

summarized in Table 4.1. Median values and 25% upper and lower quartiles were ca1culated from 

ten different validations. For the first classification strategy (classification into four yield levels), 

the median value obtained with C5.0 classifiers (52.63% for ANNs with 71 input variables and 

42.11 % for ANNs with five principal components) was lower than ANN reclassification method 
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(57.89%). Graphical analysis (Figures 4.5) also showed that the performance of C5.0 was slightly 

lower than ANN reclassification method. However, the significance of these differences was not 

clear, since the classification accuracies varied widely depending on the selection of calibration and 

validation datasets. For the second classification strategy (classification into two yield levels), 

overall classification accuracy, obtained with the original 71 input variables (89.47%), was even 

higher than ANN reclassification method (87.24%) in terms of median values (table 4.1). Again, 

the significance of the difference was not clear due to the large deviation among the ten validation 

datasets (Figure 4.6). 

One of the interesting points, observed in the first classification strategy, is that most of the 

misclassifications were made between adjacent yield levels (Table 4.2, 4.3, and 4.4). Indeed, more 

than 90% of the misclassifications (approximately 93% for C5.0 classifier with 71 input variables, 

91 % for C5.0 classifier with 5 principal components, and 96% for ANN reclassification method) 

were actually made between adjacent yield levels. One of the most important reasons for this 

seemed to be that samples, with characteristics close to the decision boundaries, are quite difficult 

to be classified into the appropriate category. As a matter of fact, differentiating two samples, 

located on either side of decision boundary, is sometimes a hard task, based on the limited amount 

of information obtained from the spectral signature. 

From practical point of view, these high misclassification rates between adjacent yield levels imply 

that the risk of misclassification was relatively low, as compared to the impression which overall 

accuracies seem to offer. However, it should be noted that the performance still seemed to be 

unsatisfactory for application to precision agriculture. For example, a high misclassification rate 

between "Low" and "High", made by the C5.0 classifier with five principal components (Table 

4.3), would cause crucial mistakes in field operations if the information was used for VRTs, since 

the "Low" yield levels can be generally recognized as stressed areas (Figure 4.2) which require 

special treatment such as additional fertilizer and pesticide applications. 

Confusion matrices obtained with second classification strategy (classification into two yield 

levels) ware presented in Table 4.5. One of the important points was that misclassification rate in 

the low productivity areas (less than 4828.58 kg/ha in observed values) was quite high (36.1 % for 
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C5.0 with 7linput variables, 5l.1 % for C5.0 with 5PCs, and 29.8% for ANN reclassification 

method), compared to the overall accuracies. From the practical point of view, these 

misclassification rates indicate that more than 3 out of 10 stressed areas could be ignored or remain 

undetected if the C5.0 algorithm was used to create a yield map in this specific environment. In 

particular, the misclassification rate, made by the C5.0 classifier with five principal components 

(5l.1 %), was too high for practical purposes. 

Although there are various reasons for a high misclassification rate in the low productivity areas, 

one of the most important reasons seemed to be that the developed models were biased towards 

classification in the high productivity areas, since the number of training samples were largely 

different between these two sub-groups (75% of the samples were categorized into "normal" yield 

level in this study). Indeed, it is reported that classification for the small sub-groups tend to be 

ignored during the optimization process of the C5.0 algorithm, since the algorithm normally tries to 

maximize the classification accuracies based on the overall classification accuracy (Friedl and 

Brodley, 1997; Hansen et al., 2000). Reducing the number of training samples in the larger 

subgroups can be helpful in producing higher classification accuracies in the low productivity 

areas. 

Prediction accuracies of ANN models obtained with three different input strategies, (1) 71 input 

variables (ANNs-7linputs) (2) six bands selected by C5.0 algorithm (C5.0-ANNs), and (3) five 

principal components (PCA-ANNs) are summarized in Table 4.6. Although ANNs with 71 input 

variables exhibited the best performance, the differences among these three input strategies were 

generally small. Graphical analysis (Figure 4.7) also showed sorne minor differences among these 

input strategies. From the practical point of view, however, the loss of information caused by these 

data reduction processes seemed to be small enough, considering the benefit obtained from the 

reduction of dimensionality in spectral information. 

The structure of the developed decision tree is presented in Figure 4.8. Six wavelengths (693.76, 

792.96, 542.79, 453.21, 716.58, and 869.80 nm) were identified as the important wavelengths 

based on this structure. However, it should be noted that generality of the results was not clear, 
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since the structure of the developed tree could change depending on the way the training samples 

are selected. 

4.5 Conclusion 

This study evaluated the potential of the C5.0 decision tree algorithm for detecting within-field 

crop productivity based on hyperspectal imagery. The results showed that the performance of the 

C5.0 classifier was comparable to that of the conventional reclassification method. However, 

further improvements are still required to apply the method to precision agriculture. Further 

research should aim to increase the classification accuracy, reduce the risk of misclassification, and 

find appropriate classification boundaries. This study also demonstrated that the potential of C5.0 

algorithm as a feature subset selection tool is high. The decrease in prediction accuracies with the 

reduced dataset with C5.0 algorithm was small (decrease in RMSE was 0.72% for calibration and 

0.17% for validation), compared to the original dataset. It should also be noted that the prediction 

accuracies obtained with C5.0-ANN model (RMSE=17.62% for calibration and 19.86% for 

validation) were ev en higher than those of the PCA-ANN model (RMSE=19.16% for calibration 

and 22.06% for validation). However, further exploration is still required to evaluate the stability of 

the developed tree structures. This involves: (1) estimating the minimum number of samples to 

obtain a stable decision tree structure, and (2) evaluating the effect of sample quality, typically 

inter-correlation of spectral bands, on the stability of tree structure. 

From a practical point of view, application of the C5.0 algorithms to feature extraction seemed to 

be somehow limited in comparison to PCA, since C5.0 is basically a supervised leaming algorithm 

which requires output variables for training. This means that C5.0 may not be applicable to the 

situation where too few training samples are available. 
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Figure 4.1 An example of tree representation for the human decision making 
process. C5.0 is one of many algorithms, which estimate the optimum tree 

structure from the instances. 
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Figure 4.2 Distribution of yield samples. Two different classification 
strategies were taken based on this distribution in this study. 
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Figure 4.3 Two different classification strategies and performance 
standard made by reclassification process were tested to evaluate the 

performance of C5.0 algorithm in this study. 
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Figure 4.4 Three different input strategies were taken to evaluate the 
performance of C5.0 algorithm as a spectral band selection tool. 
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Figure 4.5 Deviation of the overall classification accuracies (classification into 
four-Ievels) obtained with ten different validation datas et. Vertical axis shows the 

classification accuracy on percentage. 
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Figure 4.6 Deviation of the overall classification accuracies (classification into 
two-Ievels) obtained with ten different validation dataset. Vertical axis shows the 

classification accuracy on percentage. 
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Figure 4.7 Performance of ANN models with three different input strategies. (A) 
ANNs with 71 input variables, (B) ANNs with six spectral bands selected by C5.0 
algorithm (C) ANNs with five principal components. Figures on the left show the 

results for calibration, and figures on the right show the results for validation. 
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Figure 4.8 Structure of a developed classification tree. Six wavelengths were selected from 
the top five nodes, and used as the input variables for ANN model. This tree was constructed 

on the 144 training samples, which were randomly selected from all192 samples. The 
numbers in parenthesis represent the number of cases. 
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High 

High 

Low 

Low 
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Table 4.1 Overall classification accuracies obtained with different classification and input 

strategies. Median values and inter quartile ranges (IQR) were ca1culated from ten different 

validation datasets. 

Input strategy 

4levels 

2levels 

Classification accuracies (%) 

71 input variables 5 principal ANN-Reclassification 

components 

Median IQR Median IQR Median IQR 

52.63 42.11-55.00 42.11 40.00-55.00 57.89 52.63-63.16 

89.47 85.00-89.47 79.48 73.68-89.47 87.24 84.21-89.47 
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Table 4.2 A confusion matrix obtained by C5.0 classifier with 71 input variables. AU the results 

obtained with ten different validation datasets were summarized in this one confusion matrix. 

Estimated yield level 

Very Low Low High Very High 

Observed VeryLow 9 7 1 0 

Yield level Low 11 18 8 0 

High 3 8 59 23 

Very High 0 2 27 16 
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Table 4.3 A confusion matrix obtained by C5.0 classifier with five principal components. AU the 

results obtained with ten different validation datasets were summarized in this one confusion 

matrix. 

Estimated yield level 

Very Low Low High Very High 

Observed Very Low 7 7 3 0 

Yield level Low 7 4 23 3 

High 3 7 69 14 

Very High 0 0 35 10 
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Table 4.4 A confusion matrix obtained with performance standard (reclassification from ANN 

prediction values). AlI the results obtained with ten different validation datasets were summarized 

in this one confusion matrix. 

Estimated yield level 

Very Low Low High Very High 

Observed Very Low 9 8 0 0 

Yield level Low 4 18 13 2 

High 1 12 73 7 

Very High 0 0 33 12 
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Table 4.5 Confusion matrices obtained with the second classification strategy (classification into 

two yield levels). The results obtained with ten different validation datasets were summarized into 

one confusion matrix. 

C5.0 with 71 inputs Estimated yield level 

Normal Low 

Observed Normal 135 10 

Yield Low 17 30 

C5.0 with 5 principal Estimated yield level 

components Normal Low 

Observed Normal 130 15 

Yield Low 24 23 

ANN reclassification Estimated yield level 

Normal Low 

Observed Normal 130 14 

Yield Low 14 34 
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Table 4.6 Performance of the ANN models with three different input strategies (1) ANN s with 

original 71 input variables (ANNs-7linputs), (2) ANNs with 6 spectral bands identified with C5.0 

algorithm (C5.0-ANNs), and (3) ANNs with 5 principal components (PCA-ANNs) were compared 

each other in this study. 

ANNs-7linputs 

C5.0-ANNs 

PCA-ANNs 

Prediction Accuracies (RMSE) 

Calibration (%) Validation (%) 

16.90 

17.62 

19.16 
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Chapter 5 - Summary and Conclusions 

5.1 Summary 

The potential of two machine learning algorithms, ANNs and DT, for the development of yield 

mapping and forecasting systems from airborne hyperspectral imagery was explored in this study. 

The imagery was obtained over experimental plots, cropped with corn at the Emile A. Lods 

Agronomy Research Center on the Macdonald campus of McGill University, Sainte-Anne-de­

Bellevue, Quebec, Canada. The experimental plots were designed to simulate various crop growth 

scenarios, involving combinations of three different nitrogen application rates (60, 120, and 250 kg 

N/ha) and four different weed control strategies (broadleaf, grass, broadleaf and grass, and no weed 

control). 

The hyperspectral images were obtained with a compact airborne spectrographic imager (CAS!) 

having a spatial resolution of 2m x 2m, and a spectral range of 408 to 947 nm. The spectral 

resolutions were approximately 7.5nm. Hyperspectral images were acquired at three times during 

the year 2000 growing season of year: a) June 30 to represent the early growth stage, b) August 5 at 

which the corn had reached the tas sel stage, and c) August 25 at the fully matured stage. However, 

the image acquired on the second flight (August 5) was the only one used, since this study was 

focused on the performance of machine learning algorithms rather than on prediction of the 

seasonal variations of crop yields. 

Although many different algorithms are currently available for ANNs and DT, back-propagation 

neural network architecture and the C5.0 decision tree estimation algorithms were used in this 

study, since they are the most commonly used architectures or algorithms. The model 

developments were aIl conducted with a data mining software package, Clementine Data Mining 

System (SPSS Inc.). To handle the large amount of redundant information included in hyperspectral 

imagery, PCA was also used. 
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In the first set of analyses (Chapter 3), the study evaluated the ANN approach, as compared with 

conventional modeling methods, such as SMLR models and VI-based modeling methods. Three 

different VIs (NDIV, SR, and PRI) were tested as performance controls. 

In the second set of analyses (Chapter 4), the C5.0 DT estimation algorithms was assessed in terms 

of (i) performance as a yield classification method, and (ii) performance as a feature band selection 

tool. For the performance analysis of yield classification, the results were compared with 

conventional reclassification methods using predicted yield values from the ANNs. Evaluation of 

the DT algorithm as a feature band selection tool was based on a comparison of its performance 

with that of PCA. 

5.2 Conclusions 

This study demonstrated that the potential of machine learning algorithms for the development of 

in-season yield mapping and forecasting system is generally high. In particular, high prediction 

accuracies obtained with ANNs demonstrated that ANNs can be an effective alternative to 

conventional VI-based method. Although further improvement is still required for application of 

ANNs to precision farming, they have potential as a tool for the development of in-season yield 

mapping systems from remote sensing imagery. 

This study also showed that the performance of the C5.0 algorithm as a yield classification method 

was comparable with that of conventional reclassification methods. However, the performance still 

seemed to be unsatisfactory for the practical purposes. Further exploration of the algorithms is 

necessary if better classification accuracies is to be achieved. 

The C5.0 algorithm performed better than PCA as a feature band selection tool. However, certain 

limitations must be overcome before putting them to practice, because this type of algorithm 

generally requires a large number of samples for training. It should be noted that data reduction is 

normally useful in a situation where the numbers of samples is too small for training or model 
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development. Further analysis is needed to confirm the stability of the model structure as the 

models were constructed from very limited data. 

In general, the data mining approach appeared to be quite effective as a tool for analysis of spectral 

data. With Clementine Data Mining System, various complicated analytical procedures were 

reduced into relatively simple operations due to the user-friendly interface and highly integrated 

systems. However, the analytical procedures were not always very c1ear. This resulted in a 

limitation to the appropriate understanding and implementation of machine learning algorithms or 

statistical analysis, especially for scientific studies. 
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Chapter 6 - Recommendations for further research 

Although the potential of machine learning algorithms for yield estimation was demonstrated in 

this study, further research work is required to develop an in-season yield mapping system, or crop 

yield forecasting system based on the interpretation of hyperspectral data using machine learning 

methods. 

6.1 Increasing the generality of models 

One of the most crucial steps to be taken is to increase the generality of the models. In particular, 

(i) use of multiple years of yield data and images to predict the seasonal variation of crop yield, (ii) 

testing various different crop types and cultivars in many locations, and (iii) conducting 

experiments under various environmental conditions such as water and nutrient deficit conditions, 

are the essential tasks to develop highly generalized models. 

The unavailability of multiple years of yield data and images at a within-field scale is one of the 

most serious constraints in model development. Indeed, sorne of the past researches with satellite 

imagery infer that large numbers of yield data and images (more than ni ne years) is necessary to 

develop highly reliable prediction models (Hayes and Decker, 1996 and 1998; Maselli et al., 2000). 

These researches also infer that the collection of the images often requires multiple observations 

during the growing season. However, it seems to be unrealistic to obtain these large numbers of 

yield data and images from an aerial platform. 

Sorne of the latest optical satellite systems, such as IKONOS and Quickbird, which offer high 

spatial resolutions (lm and 0.61m for panchromatic, and 4m and 2.44m for multi-spectral) and 

short revisit time (l-5days), can increase the possibility of applying satellite systems to field-scale 

observations. However, limitations still exist such that (i) the number of the spectral bands is still 

limited (they only coyer four bands in the visible and NIR range), (ii) influence of weather is still 

high, (iii) it is difficult to obtain many years of yield data at the within-field level in many locations 

and crops. 
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Several approaches to overcome these technical and economical limitations have been suggested. 

Ancillary data, such as meteorological information and field conditions (Simpson, 1994; Hayes and 

Decker, 1998), may be helpful in reducing the number of images required as well as to increase the 

prediction accuracies. Integration of multiple sensors, including radar and broadband sensor images 

(Moran et al., 1997 and 2002) may also help to increase the performance of the models, and also 

remove the influence of weather conditions. It should be noted that the ability of machine learning 

algorithms, which can easily incorporate the ancillary information, ev en if they are non-numerical 

values, may be helpful in this regard. However, it can not be denied that the development of yield 

forecasting systems still needs long-term contributions, including the collection of within-field 

scale yield information over long periods and establishment of basic infrastructure such as spectral 

and yield databases, which coyer various crop types and environmental condition. 

6.2 Further exploration of image processing techniques and machine learning algorithms 

From the technical aspects of image processing and machine learning algorithms, sorne further 

exploration can be suggested. First, use of sorne pre-processing techniques, typically low-pass 

filters, may be useful in removing noise, and consequently increase the prediction accuracies. 

Exploration of the machine learning algorithms, typically further optimization of network 

architectures and modifying training sample selections, may increase the prediction accuracies to 

sorne extent. For C5.0 algorithms, boosting, debugging, and fixing the misclassification cost values 

can be tested to increase the performance of the models. For PCA, the use of factor rotations and 

different factor loading methods should be explored. It should also be noted that use of man y other 

machine learning algorithms, which are currently being developed in the AI community, will offer 

new opportunities for model development in the near future. 

One of the constraints associated with ANNs and DT is that they normally require a large number 

of training samples to obtain reliable results. However, recent proliferation of tractor-mounted 

yield monitoring system will definitely increase the opportunity to obtain large numbers of yield 
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samples at the within-field scale. Using this large number of yield samples, more reliable and 

accurate ANN s and DT models could be developed. 
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Appendix A: Results of Principal component analysis 
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Extraction Method: Principal Component Analysis. 

a 5 components extracted. 
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Appendix B: Results of SMLR analysis with 71 input variables 

; MOdel-r--variables 
1 Entered 

Variables Entered/Removed(a) 

Variables 
Removed 

Method 

11 !701.36nm_3 Stepwise (Criteria: Probability-of-F-to-enter <= .050, 
. F-to-remove >= .100). 

J;~00.66nm_3 Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-
, 1:-1' F-to-remove >= .100). 

1s1 482.98nm_3 T- pwise (Criteria: Probability-of-F-to-enter <= .050, probability-of-/ 
. j' -remove >= .100). 
i,,6 ~~0-------+s-t-e-p-w-iS-e-(-C-rit-e-ri-a:-p-r-o-ba-b-i-lit-y--o-f--F--t-o--e--n-te-r-<-=-.0-5-0-, -p-ro-b-ability-of-J 
; lov..::.:-1VII.v 1 F-to-remove >= .100). . r;--r . 701.36nm_3 Stepwise (Criteria: Probability-of-F-to-enter <= .050,-p-ro-b-ab-i-lit-y~jf-
, r 1 F-to-remove >= .100). 

i a Dependent Variable: Yield in kg/ha 1 

Model Summary 

1 Model R 1 
R Square Adjusted R Square Std. Error of the Estimate 

1 

1 .7~ .505 .502 1215.5807J 

1 
.759(b) .576 .570 1129.7521 1 

3 .795(c) .632 .624 1056.1883 

14 
! .814(d) .662 .652 1015.2827 

5 .820(e) .672 .660 

6 .826(f) .682 .668 

7 .825(g) .681 .669 

a Predictors: (Constant), 701.36nm_3 

b Predictors: (Constant), 701.36nm_3, 900.66nm_3 

c Predictors: (Constant), 701.36nm_3, 900.66nm_3, 655.83nm_3 

d Predictors: (Constant), 701.36nm_3, 900.66nm_3, 655.83nm_3, 931.58nm_3 

e Dredictors. (Constant), 701.36nm_3, 900.66nm_3, 655.83nm_3, 931.58nm_3, 482.98nm_3 

~s: (Constant), 70t .3Bnrn_3, 900.BBnrn_3, B55.83nrn_3, 931.58nrn_3, 482.98nrn_3, B02.93nrn_3 

g Predictors: (Constant), 900.66nm_3, 655.83nm_3, 931.58nm_3, 482.98nm_3, 602.93nm_3 

ANOVA(h) 

Model Sum of Squares df Mean Square F Sig. 

1 1 Regression 214164318.583 1 214164318.583 144.937 .000(a) 
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~~--~~~------~------~-------------~ 
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h Dependent Variable: Yield in kg/ha.~ 
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Appendix C: Results of SMLR analysis with five principal components 

Variables Entered/Removed(a) J 
~~--~--~I-------------Variables J 
~~-r,~~A;_~D:e7.fa~u:ltl_r---R_em--o_ve_d---t~s=te:p~W:is:e~(C~:rit:e~ria~:~p~ro~b~a~b:ili~ty~-::;~-:~~~=od~-e~n:te~r~<~=~.0~5~0~,~p=ro~b:a-bil-itY--O~J 

3 

3 

$F-PCA-Default-
3 

$F-PCA-uelaun- 1 

2 

R R Square 

.369 

.622 

F-to-remove >= .100). 

1 vl1él[.)VVI:>t:1 1 ..... ·rI·œria: Probability-of-F-to-enter <= .050, Probability-of­
- emove >= .100). 

(Criteria: Probability-of-F-to-enter <= .050, Probability-of-
I-_t ..... _">mr"'o >= .100). 

Model Summary 

Adjusted R Square of the Estimate 

1372.7253 

1233.0257 1 

1148.9596 

1074.4796 

1 a Predictors: (Constant), $F-PCA-Default-1 . 1 

r b Predictors: (Constant), $F-PCA-Default-1 , $F-PCA-Default -3 j 
1 c Predictors: (Constant), $F-PCA-Default-1, $F-PCA-Default-3, $F-PCA-Default-2 
1.:: 
1 d Predictors: (Constant), $F-PCA-Default-1, $F-PCA-Default-3, $F-PCA-Default-2, $F-PCA-Default-4 1 

ANOVA(e) J 
~esSfon 

Sum of Squares : df Mean Square F 1 Sig. 

156407458.068 1 156407458.068 83.002 .000(a) 

'1 'dual 267581228.865 142 1884374.851 1 

1 1 Total 
1 

423988686.933 143 
1 

1 1 Regression 209618997.421 2 104809498.711 1 68.9381 .000(b) 1 

1 

1520352.4081 
1 

2 Residual 214369689.512 141 
1 Total 423988686.933 143 
1 

Regression 239173530.31 6 3 79724510.105 60.392 .000(c) , 
3 idual 184815156.617 140 1320108.262 

1 

1 otal 423988686.933 143 
1 Regression 263512304.181 4 65878076.045 57.062 .000(d) 

4 1 Residual 160476382.752 139 1154506.351 

1 ITc t')')nQQa.Q"l~ 
,-~~ .~ 

x 



$F-PCA-Default-1 

ictors: (Constant), $F-PCA-Default-1, $F-PCA-Default-3 

edictors: (Constant), $F-PCA-Default-1 , $F-PCA-Default-3, $F-PCA-Default-2 

1 d Predictors: (Co;tant), $F-PCA-Default-1, $F-PCA-Default-3, $F-PCA-Default-2, $F-PCA-Default-4 

e Dependent Variable: Yield in kg/ha 

xi 


