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Abstract 

Experimental characterisation of rubber in uniaxial, equi-biaxial and planar tension under 

cyclic quasi-static loading shows strain-induced stress softening, hysteresis and 

unrecoverable strain. The objective of this work is to study the applications and 

limitations involved in predicting the behaviour of rubber with hyperelastic models. To 

assume a preconditioned perfectly elastic material, the data obtained from experiments 

must first be simplified. The data is then fitted to popular hyperelastic models in the 

finite element analysis (FEA) software ANSYSTM. A single hyperelastic model (with 

given coefficients) is shown to only provide a good fit to a single characterisation test and 

level of preconditioning at the time. A two-iteration preconditioning method is 

developed using different hyperelastic models for a given material to approximate the 

softening effect of cyclic loading in a static FEA simulation. A biaxiality test is 

developed, providing information on the dominant mode of simple strain in the elements 

of a FE model. FEA simulations and experimental tests of a cantilevered rubber plate 

subjected to a bending load at its free end as well as a rubber guide lug subjected to a 

transverse deflection are presented and discussed. It is shown that using a single 

hyperelastic model is insufficient to predict the behaviour of these experiments in FEA 

simulations. The preconditioning iteration, when applied to these simulations, shows 

very good agreement with the experiments, both qualitatively and quantitatively. The 

biaxiality test provides insight on which characterisation test is the most appropriate for 

curve fitting hyperelastic models for a given analysis. 
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Sommaire 

La caractérisation mécanique du caoutchouc par des essais quasi-statiques et cycliques 

sous tension uniaxiale, équi-biaxiale et planaire révèle un matériau comportant de 

l'adoucissement de contraintes induit par l'historique des déformations, de l'hystérésis 

ainsi que des déformations résiduelles. L'objectif principal de cette recherche est 

d'étudier les applications et les limitations des modèles hyperélastiques pour prédire le 

comportement du caoutchouc. Afin de réduire le comportement du matériau à un 

phénomène purement élastique, les données expérimentales de caractérisation ont dû 

d'abord être simplifiées. Ces données ont été ensuite soumises à une régression de 

courbe afin de déterminer les coefficients hyperélastiques du matériau pour quelques 

modèles hyperélastiques couramment disponibles dans les logiciels d'analyse par 

éléments finis tel que ANSYSTM. Il est démontré qu'un seul modèle hyperélastique 

propre (avec des coefficients déterminés) ne peut représenter convenablement qu'un seul 

test de caractérisation à un seul niveau de pré conditionnement à la fois. Une itération de 

préconditionnement a été développée permettant de simuler l'adoucissement induit par la 

déformation quasi-statique et cyclique en utilisant plusieurs modèles hyperélastiques dans 

une même analyse par éléments finis. Un test de biaxialité a été également développé 

permettant d'identifier les régions de déformations dominantes dans le modèle 

d'éléments finis. Deux expériences ont été réalisées: la première est une plaque en 

porte-à-faux chargée en flexion, la deuxième porte sur la déflection d'une dent guide 

typique des véhicules à chenilles. Les expériences ont été parallèlement simulées par des 

modèles d'éléments finis. Il est démontré que l'utilisation d'un seul modèle 

hyperélastique est insuffisante pour bien prédire le comportement expérimental du 

matériau. La méthode de préconditionnement, lorsqu'elle est appliquée aux simulations, 

semble grandement améliorer les prédictions numériques, qualitativement et 

quantitativement. Le test de biaxialité pour sa part peut aider à comprendre quel test de 

caractérisation est le plus approprié pour la régression hyperélastique. 
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Chapter 1: Introduction 

1.1. Rubber: historical review 

Natural rubber cornes from wounded tree/vine secretions, milky in appearance, thus the 

origin of the word caoutchouc derived from the Maya Indian words meaning "weeping 

wood" (Treloar, 1975). In their virgin form, these secretions contain mostly hydrocarbon 

(92-98%), known as latex, plus resin, mineraIs, proteins and water. The secretions are 

collected and heated to separate the latex from impurities. Although the most popular 

rubber tree in the industry is the Hevea Braziliensis (originating from South America), 

other flora species found around the world can also produce natural rubber, such as the 

Funtumia Elastica tree as weIl as a vine called the Landolphia, both found in Africa. 

Another tree, the Ficus Elastica, was discovered by British explorers in Southem Asia. 

Although none of these species have any direct botanical relation, they all contain the 

same hydrocarbon composition. 

The Egyptians are said to have been the first to use natural rubber (Bettinali and Dusi, 

2004). African and American tribes used the flexible material to make shoe soles and to 

play sports involving hitting a rubber ball with their knees and shoulders into a vertical 

hole on a waUt . But until the discovery ofvulcanization, independently made in 1839 by 

Charles Goodyear and Thomas Hancock, rubber did not have much industrial potential 

due to its great sensitivity to the environment. Natural rubber becomes soft and sticky 

when slightly heated, then hard and brittle when cooled. Vulcanization modifies the 

physical properties of rubber such that it decreases its solubility in solvents, increases its 

tensile strength and resistance to heat, and maintains its elasticity at lower temperatures. 

It is commonly accepted that, at the molecular level, natural rubber is composed of long­

chain molecules, refer to Fig. l(a) for a schematic representation of one long-chained 

molecule. Vulcanization (a.k.a. cross-linking or curing) is defined as the process of 

t During a recent trip by the author to the ancient Maya ruins of Chichén Itza in the Yucamn peninsula of 
Mexico, a tour guide described a similar sport where the captain ofthe winning team was sacrificed in a 
religious ceremony following the game. Whether the sacrifice was real or symbolic still remains to be 
determined. 
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linking the chains by chemical bonds to give an elastic three-dimensional network 

(Johnson, 2001). A visual interpretation of the cross-linking of a long-chained molecule 

is shown in Fig. 1 (b). A curing agent, such as the sulphur that Goodyear would have 

accidentally dropped into a cooking pot of natural rubber, must be mixed to natural 

rubber for the chemical process to take place. 

(a) (b) 

Fig. 1: Schematic interpretation of the theory of long-chain molecules which compose rubber. (a) A 

long-chained molecule for natural rubber; (b) the reinforcing cross-lin king of the natural rubber 

molecule. 

Zinc oxide was later found (late 19th century) to reinforce rubber, which may explain why 

the entire series of Model T Fordt cars had white tires (see Fig. 2). Carbon black was 

initially only used as pigmentation in small concentrations, but when added in larger 

quantity it was also found to reinforce rubber and is probably today' s most popular filler. 

Rubber compounds are generally composed of a base rubber (e.g. natural rubber), a filler 

(e.g. carbon black) and a curing agent (e.g. sulphur). Additional components may include 

antioxidants, adhesion agents, flame retardant agents and special process-enhancing 

chemical additives. Common physical properties measured in compounds include 

hardness, ultimate tensile strength, ultimate elongation, rebound resilience as weIl as 

aging, tear, weather and fatigue resistance, to name a few. Every ingredient of a rubber 

recipe may affect these physical properties, independently or in concert with each other. 

t In the later years of production of the Model T Ford, black tires became optional and eventually, towards 
the end of the fmal year of production (1927), black tires (carbon black filled) became standard. 
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The mixing and curing process is also critical in determining these properties. Improving 

one compound property always results in changing other properties, for better or for 

worse (Dick, 2004). 

Fig. 2: 1912 Model T Ford. The Model T Ford series were in production from 1908 to 1927 and only 

late in the last year of production did black tires become standard; untH then, white tires were used 

such as those shown above. Image and information taken from the Model T Ford Club of America 

website: www.mtfca.com. 

Ultimately, chemists must trade-off sorne properties for others. For example, increasing 

the concentration of carbon black in a rubber compound will increase the ultimate tensile 

strength, the hardness, the rebound resilience and the tear resistance of the material; in 

exchange, the ultimate elongation of the compound will be reduced (Dick, 2004). 

Coming up with the right recipe and the appropriate process to meet consumer 

specifications can be very expensive. Most rubber manufacturers are very secretive about 

their formulations in order to maintain a competitive advantage (Dick, 2004). 

Apart from evident relevance to the automotive industry, rubber compounds are used 

worldwide in multiple types of applications. They are used, for example, for their low 

electrical and thermal conductivity (e.g. wire coating, electrical component seals and 0-
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rings), for their capacity to absorb sound and vibration (e.g. sei smic isolation bearings for 

buildings [see Bettinali and Dusi, 2004], mounts, bushings and connectors) and also for 

their impermeability (e.g. seals, rain coats and condoms). Rubber compounds would not 

be appropriate for any of the aforementioned applications if it weren't for the material's 

particular toughness and capability to recover from large deformations. In fact, sorne 

rubber compounds can stretch up to 5 or 6 times their originallength. 

Uniquely in terms of elasticity, the nonlinear stress-strain behaviour of rubber-like 

materials is characterised by the softening of the instantaneous modulus of elasticity at 

low and moderate strain, then sudden stiffening near the maximum strain of the material, 

as qualitatively depicted in Fig. 3. The first attempts to represent the elastic behaviour of 

rubber [described by Treloar (1943)] required considering finite deformation theory and 

led to constitutive material laws defined through strain energy functions, commonly 

referred to in this context as hyperelasticity. Treloar's (1943, 1944) pioneering work 

triggered further developments in hyperelastic models that particularly addressed the 

stiffening of rubber-like materials near their elongation limit. A more extensive review 

of existing hyperelastic models will be undertaken in Section 2.3. 

Eng. stress, S 

Eng. strain, B 

Fig. 3: Qualitative representation of the nonlinear stress-strain relationship under simple extension 

observed in a rubber-like material, showing initial softening followed by stiffening near the 

elongation limit of the mate rial. 

With the applications for rubber compounds growing exponentially emerged the desire to 

model and predict the mechanics of this particular material with FEA software packages. 

While hyperelastic models have been implemented in recent years to commercially 
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available FEA software packages, hyperelastic models alone will not always capture the 

complex mechanical behaviour of certain rubber or rubber-like materials, particularly 

carbon-biack-filled compounds. These compounds will often exhibit hysteresis, strain­

induced stress-softening, viscoelasticity and unrecoverable strain. There are therefore a 

certain number of necessary assumptions and limitations involved in using hyperelastic 

models in FEA software packages to predict the behaviour of certain rubbers; these 

assumptions and limitations are not very weIl understood. 

1.2. Thesis outline 

The applications and limitations of modelling the behaviour of carbon black filled rubber 

at moderate strain (0-25% engineering strain) uniquely with constitutive hyperelastic 

laws in commercial finite element analysis (FEA) packages (in this case ANSYSTM) are 

investigated here. 

For the considered hyperelastic models to apply, the material that is characterised must 

adhere to certain assumptions, which are: 

(i) the material is incompressible; 

(ii) deformations are quasi-static (no strain-rate effects); 

(iii) internaI heat generation is negligible (isothermal); 

(iv) the mechanical behaviour of the material is purely elastic. 

A brief examination of the general mechanical behaviour of rubber is first undertaken in 

Chapter 2, followed by a review of the underlying concepts of continuum mechanics for 

large deformations, stress, strain and strain energy density. A chronological glance at the 

development of constitutive hyperelastic materiallaws concludes this chapter. 

Experimental characterisation data is provided from which the elastic behaviour of the 

material is extracted. Chapter 3 presents the data, how it was obtained, how it is used to 

obtain constitutive hyperelastic relations and how it is fitted to hyperelastic models in 

ANSYSTM. 
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Considerations regarding the FEA options chosen for this work are briefly discussed in 

Chapter 4. Two iteration based routines are also described in Chapter 4: one to account 

for the strain-induced stress-softening typically observed in carbon-black-filled rubber. 

The second routine serves to predict the dominant state of strain (uniaxial, planar or equi­

biaxial) of elements under multiaxialloading. 

The simple experiment of bending a cantilevered rubber plate is described in Chapter 5 

and FEA simulations are compared to the experimental measurements. Chapter 6 

describes experiments consisting in deflecting of a rubber guide lug typically used in 

tracked vehicles. FEA simulations of the experimental bench tests were also conducted. 

The comparison of the experimental data with the FEA predictions demonstrates the 

degree of accuracy achieved and exposes the limitations of hyperelastic models fitted to 

the characterisation data of Chapter 3. The preconditioning iteration and the biaxiality 

test are applied to these simulations as well. 

Finally, in Chapter 7, concluding remarks and observations are discussed with respect to 

the assumptions, data manipulations and experimental procedures. Ideas for future work 

are proposed. 

6 
©MWG 



Chapter 2: The Mechanics ofRubber 

The general mechanical behaviour of rubber is presented in Section 2.1 so that the reader 

fully understands the complexity of the material at hand as weIl as the assumptions 

involved in using hyperelastic models. A brief review of fundamental concepts in solid 

mechanics constitutes Section 2.2, namely definitions of nominal versus true stress and 

strain, stretch ratio, strain energy, principal strain and strain invariants. These are 

provided as quick reference for the discussion that follows on the different hyperelastic 

models presented in Section 2.3. Hyperelastic models, where incompressibility IS 

assumed, are presented in historical order and only sorne are discussed in more detail. 

2.1. General mechanics of rubber 

Many observations can be made from the stress-strain behaviour of rubber. These 

observations are discussed in this section in a general manner. First the nonlinear elastic 

behaviour of rubber is described, disregarding any other phenomena. The next section 

discusses hysteresis, the so-called Mullins effect and preconditioning. Finally, 

viscoelasticity and crystallization are discussed before being discarded via the original 

assumptions. 

It is common practice to present the stress-strain data collected from experimental 

characterisation of rubber behaviour in terms of engineering stress and engineering strain 

or extension ratio. Although stress and strain definitions will be discussed in more 

mathematical detail in the subsequent section, it will suffice for now to define the 

engineering stress, S, as the applied load, P, divided by the reference cross-sectional area, 

Ao. The engineering strain, 8, is the change in length, M = L - Lo, divided by the 

reference length, Lo, whereas the extension (a.k.a. stretch) ratio, Â, is defined as the 

current length, L, divided by the reference length, Lo. 

2.1.1. Nonlinear elasticity 

Treloar (1944) performed pioneering work in rubber characterisation by collecting 

experimental data for vulcanized natural rubber with 8% sulphur at large extensions in 
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uniaxial, equi-biaxial and planar tension. A specimen that is stretched equally in two 

orthogonal directions is said to be in equi-biaxial extension. Equi-biaxial extension is 

often assumed to be equivalent to uniaxial compression and can be measured in various 

ways. Treloar (1944) inflated a circular rubber disk clamped around its circumference 

into the shape of a balloon to reproduce the state of equi-biaxial extension. It is noted 

that the "tension" units he uses are not the conventional units of force, in [N], but rather 

in [kg/cm2
], defined from the pressure measurement in mm ofmercury. 

The stress-stretch loading path of the equi-biaxial extension test conducted by Treloar is 

shown in Fig. 4. Although the unloading path is slightly different from the loading path, 

the difference (hysteresis) is considered negligible here (thus not shown) compared to the 

hysteretic behaviour that can be observed for other rubber compounds, particularly 

carbon-filled rubbers. It is clear that there is no linear relationship here between stress 

and strain, thus indicating the nonlinear nature of the elastic behaviour. Typically, the 

nonlinearity is characterised by an initial reduction in stiffness followed by an increase in 

stiffness as the strain approaches the physicallimit (failure) of the material. 

6 

5 

4 

Tension 
[kg/cm2

] 3 

2 

1 

0 

1 1.5 2 2.5 3 3.5 4 

Extension ratio, Â 

Fig. 4: Equi-biaxial extension data from Treloar (1944) showing measured tension (kg/cm2
) with 

respect to extension ratio, ,t 
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2.1.2. Hysteresis, strain induced stress-softening and preconditioning 

Hysteresis occurs when the unloading path of a stress-strain curve is different from the 

loading path. Unfilled rubber shows little hysteretic behaviour, as it usually follows 

practically the same path during loading and unloading, only at lower strains, as shown in 

Fig. 5. Hysteresis becomes more pronounced when approaching ultimate elongations. 

Note that these observations and loading patterns are assumed to be time-independent, or 

quasi-static. For filled rubber, the loading stress-strain path is considerably different 

from the unloading path, as seen in Fig. 6. 

6 

Eng. stress, S 4 
[MPa] 

2 

2 3 4 5 6 
Stretch ratio, Â 

Fig. 5: Stress-stretch curve for an unfilled rubber specimen in uniaxial tension; S is engineering 

stress expressed in MPa and ,t is the stretch ratio. The dotted line, ( ... ), represents the virgin stretch 

to high strain. The specimen is subjected to an incremental cyclic path, represented by the 

continuous Iines (--), where it is first stretched to ,t = 2, unloaded, then stretched to ,t = 3, and so 

on until ,t = 6. ,t represents the stretch ratio, as defined in Section 2.2. The dashed Iines ( --- ) 

represent unrecoverable strain. Figure taken from Muhr (1999). 

The stress-strain path of the first stretch (virgin stretch) of a rubber testpiece is often 

observed to be different than subsequent stretches of the same specimen. This is known 

as strain-induced stress-softening, often called the Mullins effect, named after Mullins' 

(1969) outstanding original contributions to the study of this particular behaviour. 

Unfilled rubber usually only demonstrates noticeable stress-softening at higher strains, as 
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shown in Fig. 5. In contrast, filled rubber shows considerable stress softening even at 

relatively low strain (see Fig. 6). In Figs. 5 and 6, notice how the loading path of 

subsequent cycles is below the virgin stretch path of the testpiece. 

16 

Eng. stress, S 
(MPa) 8 

4 

2 3 4 5 
Stretch ratio, Â 

Fig. 6: Stress-stretch curve for a filled rubber specimen under cyclic uniaxial tension; S is nominal 

stress expressed in MPa and Â. is the stretch ratio. The dotted line, ( •.• ), represents the virgin 

stretch to high strain, the continuous lines (--) represent the cyclic path described in Fig. 5 and the 

dashed lines ( -- ) show unrecoverable strain. Figure taken from Muhr (1999). 

The idealised Mullins effect occurs when the ensuing loading path follows the preceding 

unloading path until it stretches beyond the previously attained maximum strain; the 

stress-strain path then follows the virgin path. Liquid silicone rubber tested by Muhr 

(1999) nearly reproduces this idealised behaviour, as shown in Fig. 7. Note that in Figs. 

5, 6 and 7 there is a certain amount of unrecoverable strain after the testpieces are fully 

unloaded, particularly when the loading stretch approaches the strain limit of the material. 

This can be attributed to the breaking of chemical links at the molecular level in the 

rubber. 
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Eng. stress, S 
(MPa) 
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6 
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Stretch ratio, Â 

Fig. 7: Cyclic loading stress-strain curve for Iiquid silicone rubber under uniaxial tension, the 

behaviour of which approaches the idealised Mullins effect; S is nominal stress expressed in MPa and 

Â is the stretch ratio. The dotted line, (... ), represents the virgin stretch to high strain, the 

continuous lin es (--) represent the cyclic path described in Fig. 5 and the da shed Iines ( --- ) show 

unrecoverable strain. Figure taken from Muhr (1999). 

Preconditioning is defined by loading and unloading a testpiece to the same stretch over 

several cycles, as demonstrated by Dorfmann and Ogden (2003) and shown in Fig. 8 for a 

carbon-filled rubber specimen in uniaxial tension, until the stress-strain path settles to a 

seemingly stable cycle. 

The Mullins effect is actually considered to be temporary and usually the rubber recovers 

with time back to the virgin state. This can take hours, days, weeks or even months, 

depending on the material (Ogden, 2004). 
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Fig. 8: Preconditioning of a carbon-filled rubber specimen in simple tension. Figure taken from 

Dorfmann and Ogden (2003). 

2.1.3. Viscoelasticity (strain rate dependence, creep and relaxation) 

Rubber is also known to dernonstrate viscoelastic rnechanical properties. Viscoelasticity 

rnay be observed in three different forms: creep, relaxation and strain rate dependence, aU 

three described schernaticaUy in Fig. 9. Creep, Fig. 9(a), occurs when strain changes in 

tirne under a fixed load. A rnaterial is said to undergo relaxation, Fig. 9(b), when the load 

dirninishes under a fixed state of strain. FinaUy, rnost rnaterials have been observed to 

bec orne stiffer for higher strain rates, Fig. 9(c). Refer to Mase and Mase (1999) for 

further discussion on viscoelasticity. 

Due to the assumption of quasi-static loading, viscous effects will be neglected in this 

work. 
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(a) (b) (c) 

t t 

Fig. 9: Schematic representation ofviscoelastic behaviour. (a) Creep, a constant load is applied from 1 

= 0 to t = 10 ; when the load is completely removed a certain amount of strain is immediately recovered 

and more strain is recovered over time, without necessarily being a full recovery in this case. (b) 

Relaxation is depicted here; at a fixed amount of strain, the load decreases with time. (c) Strain rate 

effect; most materials become stiffer wh en loaded at higher strain rate. 

2.1.4. Crystallization 

Under quasistatic loading, rubber is assumed not to generate any heat and stretching is 

accordingly generally considered to be isothennal. Müller and Strehlow (2004) described 

a simple experiment where a thin slab of natural rubber is quickly stretched up to 8 times 

its original gauge length. InternaI heat generation brings the temperature of the rubber 

from the ambient 200 e to 4S°C. If released before it has time to cool, the rubber 

specimen will recover its original fonn completely. It is thus said to be adiabatic in that 

there was no gain or loss of heat and no change in entropy. On the other hand, if the 

rubber specimen is held at its 8-fold stretch until it cools down to 200e and then released, 

it remains stretched in a stress-free configuration; this is referred to as crystallization. If 

the stretched, stress-free slab of rubber is heated to 4Soe, it recovers its original shape 

again. It can thereby be compared to a shape-memory alloy to sorne extent. 

In this work, loading is quasi-static, and consequently the effects of internaI heating such 

as crystallization are assumed to be negligible. 
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2.2. Fundamental concepts of continuum mechanics 

A modicum of fundamental concepts in continuum mechanics is provided here, as 

theoretical background for large deformations and hyperelastic constitutive material 

relations. Most of the information provided in this section is extensively discussed in 

numerous publications. The interested reader is referred to Mase and Mase (1999) for a 

quite complete review of continuum mechanics, to Freed (1995) for a thorough synopsis 

of natural (Hencky) strain and strain rate, and finally to Ogden (2004) for a similar 

review of the basic concepts of continuum mechanics used in constitutive laws of 

hyperelasticity. 

2.2.1. Deformation and strain 

The starting point of continuum mechanics is the measurement of displacement and 

deformation in space. A given point, P, in a body is defined as having the reference 

position vector X = Xlê; (refer to Fig. 10). Following a body deformation and/or motion, 

the new position of point P is defined by point P' which has the current position vector 

x = x;ê;. The reference position vector, X, and the current position vector, x, are related 

by the displacement vector, u, such that 

(2.1) 

Note that the italic font style, indicial form of vectors, such as XI, or tensors, such as F ij, is 

simply a different way of expressing their equivalent bold font style, matrix form, X and 

F, respectively. The differential form ofEq.(2.1) can be reduced to 

dx = ex, dX. =FdX., , ex J y J 
J 

(2.2) 

where Fij, here in indicial form, is commonly known as the deformation gradient tensor, 

or simply the deformation gradient, F, in matrix form. 

The right Cauchy-Green tensor, C, is obtained from the deformation gradient, such that 

(2.3) 

or in matrix form, 

(2.4) 

Similarly, the left Cauchy-Green tensor, H, is defined by 
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(2.5) 

or in matrix form, 

(2.6) 

x 

ê2 
~---------------------. 

Fig. 10: Position vectors X and x, defining points P and P', respectively, as weil as displacement 

vector u are given in a Cartesian coordinate system. 

These tensor definitions lead to the first definitions of strain presented here for 

comparative purposes. The right Cauchy-Green tensor, C, is used in obtaining the 

Lagrangian (a.k.a. Green or covariant) finite strain tensor, E, which expresses a form of 

strain with respect to the reference state: 

(2.7) 

where 6;j is the Kronecker delta function (6;; = 1 and Jij = 0 if i *- j). The Eulerian (a.k.a. 

Almansi or contravariant) finite strain tensor, e, which expresses a form of strain with 

respect to the deformed position, is 

(2.8) 

Let us define the stretch ratio, A, for a one-dimensional element of reference length Lo, 

and current length L, such that 

(2.9) 
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The most familiar definition of strain may be the principal engineering (or nominal) 

strain, &;, which can sim ply be expressed as the change in reference length, IV. = L - Lo , 

over the reference length, Lo, and can be obtained directly from the principal stretch 

ratios, as follows: 

(2.10) 

By polar decomposition, the deformation gradient, F, can be decomposed into two 

multiplicative tensors: an orthogonal rotation tensor, R, and a positive definite, 

symmetric, right stretch tensor, U, or left stretch tensor, V, such that 

F=R·U=V·R. (2.11) 

The Hencky (a.k.a. logarithmic or natural) strain tensor, E, can be obtained from the 

right stretch tensor, U, as follows: 

E=lnU. (2.12) 

The right stretch tensor, U, has eigenvalues Ân provided the following can be solved: 

(2.13) 

The choice of symbol for the eigenvalues in Eq.(2.13) is not coincidental; the Ân actually 

happen to be the principal stretch ratios as weIl. The principal Hencky strains, ~, are 

thereby defined by the natural logarithms (hence the altemate name: logarithmic strain) 

of the principal stretches: 

(2.14) 

The eigenvalues, Ân' have principal directions defined by the eigenvectors, e;, where the 

subscript i in this case refers to the vector associated with the principal direction 

concemed. Since the right stretch tensor is a second order tensor, Eq.(2.12), is 

determined through the spectral decomposition of U: 

3 

E = :L{lnÂi (ei ®ei)} , (2.15) 
i=l 

where the operator ® indicates a dyadic product. The Hencky strain can be viewed as 

the instantaneous change in length over the instantaneous gauge length. 
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The engineering strain and the Hencky strain, in the principal directions, are related as 

follows: 

(2.16) 

or 

(2.17) 

The relationship between engineering strain and Hencky strain is necessary in this 

context. Engineering (a.ka. nominal) strain is usually used when collecting experimental 

data for its ease of measurement; it is the case with the characterisation data presented in 

this work Logarithmic (a.ka. natural or Hencky) strain is used in the finite element 

analysis (FEA) software ANSYSTM when large strain simulations are performed. 

An interesting observation to make here is that the eigenvalues of the right Cauchy-Green 

tensor, C, tum out to be Â/ i.e. the square of the principal stretch ratios, since the 

following holds: 

(2.18) 

Furthermore, the eigenvalues of the left Cauchy-Green tensor, from a similar analysis can 

be shown to be equal to Â;-2. Therefore, the principallogarithmic, Lagrangian, Eulerian 

and nominal strain tensors can aIl be defined by the principal stretch ratios, Â;. Inspired 

from a figure given by Freed (1995), Fig. Il shows the strain-stretch relationship of aIl 

four aforementioned strain definitions. 
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Fig. 11: Figure comparing the four finite strain definitions in simple extension, expressed in terms of: 

the stretch, Â; natural strain, "& = ln ( Â ); Lagrangian strain, E = + ( Â 
2 -1); Eulerian strain, 

e = +( 1-Â-2
); and engineering strain, & = Â -1. 

2.2.2. Strain invariants 

From the right Cauchy-Green tensor, C, strain invariants can be defined such that they 

are constant regardless of the coordinate orientation: 

Il = À, 
2 + ..1./ + 2/ = tr( C) , 

12 = À, 
2 ~ 2 + ~ 2 À:J 2 + À:J 2 

À, 
2 

= H 11
2 

- tr( C2 
) ) , 

13 =Â,2~2À:J2 =J2 =det(C). (2.19) 

The third invariant, h is a volumetrie constant equal to 1 initiaIly, since aIl three 

principal stretch ratios are equal to 1 when the strain is zero. In a similar fashion, the 

determinant of the right stretch tensor, U, is equal to J; i.e., 

J = det(U) = Ât~~. (2.20) 
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If the material is incompressible, J will always remain equal to 1, thus providing a use fui 

relation between the principal stretch ratios: 

(2.21) 

Physically, the scalar value of J may be seen as a volumetric parameter defined as the 

infinitesimal volume, dV, divided by the infinitesimal reference volume, dVo, such that 

2.2.3. Stress principles 

J= dV. 
d~ 

(2.22) 

Taking a point P in the plane of an element with normal nj and traction vector t, acting 

on point P, such as sketched in Fig. 12, the Cauchy stress is defined as 

(2.23) 

Due to its definition, the Cauchy stress implies that it represents the state of stress of a 

point in its current deformed state and is thus often referred to as the true stress. The 

FEA software ANSYSTM outputs true stresses when large strain simulations are 

performed. 

Fictitious stresses based on the reference position of the body are often used in practice, 

though they may become quite meaningless to the true state of stress present in a body 

when large deformations are involved. It is often convenient to measure the engineering 

(a.k.a. first Piola-Kirchhoff, Lagrange or nominal) stress, defined in indicial form as 

(2.24) 

where J is the determinant of U, such as defined in Eq.(2.20). In practice, and for simple 

states of stress, engineering stress is a measure of the applied force over the reference 

cross-section. 

In the presence of infinitesimal displacements, the nuance between the Cauchy and 

engineering stress tensors is negligible and a first-order approximation reduces them to 

same expreSSIon. 
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Fig. 12: Traction vector t i acting on point P whose normal is nj' This figure and caption are inspired 

from Mase and Mase (1999). 

2.2.4. Strain-energy function 

A constitutive material law is said to be hyperelastic if it is defined by a strain energy 

function. The strain energy function is originally derived from the 1 st law of 

thermodynamics, expressed as 

D 
-(K+U)=P+Q, 
Dt 

(2.25) 

where K is kinetic energy, U is internaI energy, Pis mechanical power, and Q is the rate 

at which thermal energy is added to the body. From Eq.(2.25), and following appropriate 

assumptions, an expression for the strain energy, W, may be derived. This derivation, 

which closely follows the work of Mase and Mase (1999), is presented in Appendix A. 

Assuming incompressibility, it is shown that the Cauchy stress tensor may be obtained 

from the strain energy via 

-1 aw 
(J"i) =J F;p---pJi} , 

a~p 
(2.26) 

where the scalar p is conveniently chosen to represent the hydrostatic pressure serving as 

the internaI constraint due to the incompressible response of the material. Note that the 

Cauchy stress tensor is symmetric here; thus, (J"i) = (J"ji' Assuming a state of simple strain 

(i.e. with no rotations) and considering only the principal axes, Eq.(2.26) reduces to the 

familiar form found in most literature on hyperelasticity, which is 
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aw 
(J" =ÂS =Â--p. 

1 1 1 '8Â 
1 

(2.27) 

Hyperelastic models are usually expressed as a function of the principal stretch ratios, Âj , 

so that W ( ~, ~, ~ ); or as a function of the strain invariants, 1j , so that W ( I l ,12 ,13 ) • 

And so, using the partial derivative chain rule, Eq.(2.27) may also be writlen as 

(J". = ÂS = Â [aw 811 + 8W a12 ] _ • 

1 1 1 1 aIl aÂ; 81
2 

aÂ; p 
(2.28) 

2.3. Hyperelastic models 

Treloar (1943) provided one of the first sound demonstrations on how to obtain a 

hyperelastic model by combining statistical thermodynamics to a one-dimensional theory 

of long chained molecules. The strain-energy density function he obtained is commonly 

known today as the Neo-Hookean model: 

(2.29) 

where Il is the initial shear modulus, although in the actual statistical mechanics 

derivation (e.g. Sears, 1955), Il = NkT , where N is the number of chains ofmolecules per 

unit volume, k is the Boltzmann constant and T is the absolute temperature. While the 

Neo-Hookean model is acceptable to represent the geometric softening of rubber due to 

large deformations, it does not capture the sudden stiffening this particular material will 

exhibit just before breaking. 

Few others have explored the statistical mechanics approach to modelling the elastic 

behaviour of rubber. Among the few, Arruda and Boyce (1993) derived a hyperelastic 

constitutive relation based on a three-dimensional array of long-chained molecules. Their 

work successfully captured the stiffening of rubber near its elongation limit although the 

model they have proposed is somewhat complicated. 
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Rivlin (1948a) proposed a phenomenologically based strain energy model for 

incompressible materials, commonly referred to (e.g. in ANSYSTM) as the polynomial 

model, which takes the following form: 

'" 
w= ICij(11-3r(12-3Y. (2.30) 

i,j=1 

The Neo-Hookean model can easily be obtained from Rivlin's formulation, such that 

W = CIO (11 - 3) , 

taking CIO =!...JL=!...NkT. Mooney's (1940) earlier work can also be expressed with Eq. 
2 2 

(2.30), resulting in what is generally accepted today as the Mooney-Rivlin model, the 

first two terms of which are 

(2.31) 

Eq. (2.31) represents the first-order Mooney-Rivlin model. Three and five parameter 

Mooney-Rivlin models are defined as 

w = CIO (11 -3) + COI (12 -3) + C\l (11 -3)(12 -3), (2.32) 

W = CIO (11 -3)+Col (12 -3)+CII (11 -3)(12 -3) + C20 (11 _3)2 +C02 (12 _3)2, (2.33) 

respectively. The Mooney-Rivlin model has been proven in literature to be accurate, 

although mostly for unfilled rubber compounds (Yeoh, 1990). 

The next popular hyperelastic model was proposed by Ogden (1972a, b). His work 

includes models for incompressible and slightly compressible materials. Ogden's 

approach is to sorne extent different, for it defines the strain energy directly as a function 

of the principal stretch ratios rather than the strain invariants; it is commonly known 

today as the Ogden hyperelastic model under the following form: 

(2.34) 

where n determines the number of terms in the expression and dk represents a 

compressibility factor. A modified stretch ratio is introduced as well, À;*, defined as 

-.l 
À*=J lÀ 

1 i' 

such that the modified volumetrie ratio, J*, remains incompressible, i.e.: 

©MWG 

(2.35) 
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(2.36) 

As mentioned before, when a material is assumed incompressible, the volumetric 

parameter J is equal to 1 and hence the second summation on the right-hand side of 

Eq.(2.34) becomes zero. Similarly, A;* = A; and Ogden's special formulation for a 

slightly compressible material reduces to a familiar form. The modified stretch ratio, A;* , 

is a linear approximation that only applies if the material is slightly compressible, i.e. 

with a Poisson ratio between 0.49 and 0.5. Modified strain invariants, 1;*, may also be 

defined from the modified stretch ratios and thus aIl the hyperelastic models mentioned in 

this section may be modified to accommodate a slightly compressible material with an 

additional compressibility term similar to the second term on the right hand side of 

Eq.(2.34). 

One may notice that taking n = 1, al = 2, and III = NkT from Eq.(2.34) leads to the Neo­

Hookean model. Furthermore, taking n = 2, al = 2, III = 2CIO, a2 = -2, III = 2COI again 

from Ogden's formulation [and substituting Eq.(2.21) into the first invariant ofEq.(2.19)] 

leads to the first-order Mooney-Rivlin model [Eq.(2.31 )]. 

Yeoh (1990) suggested yet another model, which can be derived from Rivlin's (1948a) 

generic formulation, under the false assumption [later discussed in Yeoh (1996)] that the 

second strain invariant, h is constant with stretch and thus does not contribute to the 

strain energy density: 
N 

W = IC,o(I\ -3)' , (2.37) 
i=\ 

where N determines the order of the model. This model nonetheless successfully handles 

filled rubber to a certain degree of accuracy and is said to only need equi-biaxial 

characterisation data for an acceptable fit. 

The Neo-Hookean model can be presented once again in a different format, as done by 

Gent (1996), namely 

E W=-(I -3) 6 \ , 

©MWG 

(2.38) 
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where E represents the tensile modulus at small strains. Comparing Eq.(2.38) to 

Eq.(2.29) one may notice the linear relationship defined by Hooke's law between tensile 

and shear modulus if the Poisson ratio is taken to be 0.5 (incompressible). Gent (1996) 

also proposes a constitutive formulation for the strain energy density, this time, by 

introducing a constant, Jm, defined as the maximum strain to which a molecular network 

can stretch: 

E (1 -3) W=--J ln 1 __ 1_ . 
6 m J 

m 

(2.39) 

This expression introduces a singularity when Il - 3 = J m' which successfully succeeds in 

representing the stiffening of rubber near ultimate elongation. Gent's formulation may 

also be seen as empirical, since it is assumed to be independent of molecular length. 

The expressions for stress in uniaxial tension as weIl as the initial tensile modulus of 

these hyperelastic models are given in Table 1. 

Table 1: Table showing the expression for engineering stress, Sh as a function of the stretch ratio, Âh 

for the uniaxial tension case (Â1 =Â, Â.z = ÂJ = XlI2
, Ul = 0; U2 = UJ = 0) 

Neo-Hookean 

Mooney-Rivlin 

Ogden 

Yeoh 

Gent 

Engineering stress, SI = 0"1 

~ 

2 (t Il )( ~ - ~ -2 ) 

(2CIO +2COl~-I)(~ _~-2) 

Îlli (~aj-I _ ~ -taj
-
I

) 

1=1 

2(..1, _..1,-2 l[ t C"i(I1 _3)'-1] 

21l(~ _~-2)(Jm -(11 -3)t 

©MWG 
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6 J-I Il m 
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Chapter 3: Material Characterisation 

Standard characterisation tests have been developed to measure the stress-strain response 

of rubber under states of simple stress. It is generally desirable to characterise the 

material in tension, in compression and in shear. Due to the incompressibility of rubber, 

certain states of simple stress are equivalent to each other. For example, a state of 

uniaxial tension is equivalent to a state of equi-biaxial compression. As illustrated in Fig. 

13, the equivalence may be visualised by adding a hydrostatic compression to the state of 

uni axial tension. Note that hydrostatic compression has no effect on the state of strain 

due to the rubber's incompressibility. The traditional dog-boned uniaxial tension test is 

probably the most popular and widely used characterisation test, mainly for its simplicity. 

Xl 

}--X3 
0' X2 -0' 

-0' -0' 
, 

LL / , ~-""7I,' 

+ -0' -0' 

,/'------ V 
-0' -0' 

0' -0' 

Uniaxial 
tension 

Hydrostatic 
compreSSIOn 

Equi-biaxial 
compreSSIOn 

Fig. 13: Schematic representation demonstrating the equivalence between uniaxial tension and equi­
biaxial compression (ÂI =..t, Â.z = Â3 = X I/2

). 

It is possible to characterise rubber in uniaxial compression by squeezing a cylindrical 

specimen between two platens, as described by Lobo and Bethard (2006). In order to 

maintain a state of uniaxial compression, there should be no friction between the platen 

and the rubber specimen; lubricants may be used to reduce this friction effect. Equi­

biaxial extension, under the assumption of incompressibility, is a state of stress 

considered equivalent to uniaxial compression, as illustrated in Fig. 14. Although the 

equi-biaxial tension test is generally more expensive to perform (it requires more 
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equipment), when executed properly, it may be considered more accurate than a uniaxial 

compression test since there is no interference from such effects as friction. 

Equi-biaxial 
tension 

+ 

-(Y 

-(Y 
-(Y 

-(Y 

Hydrostatic 
compreSSIOn 

-(Y 

/: / 

, //------ 7 

-(Y 

Uniaxial 
compreSSIOn 

Fig. 14: Schematic representation demonstrating the equivalence between equi-biaxial extension and 
uniaxial compression (Â.I =~ = Â., Â.3 = X2

). 

Again thanks to incompressibility, it can be shown, as done in Fig. 15, that a state of 

planar tension (Â2 = 1, i.e. no deformations in the X2 direction) may be equivalent to a 

state of pure shear. Rubber can therefore be tested in planar tension in order to obtain its 

behaviour in pure shear. 

Planar 
tension 

-t(Y 

Hydrostatic 
compression 

r=l.(Y 
2 

,~--------~ ~--------~) y 
Pure shear 

Fig. 15: Schematic representation demonstrating the equivalence between a state of planar tension 
test and a state of pure shear (Â.I =Â., ~ = 1, Â.3 = Xl). 
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These states of stress (Figs. 13, 14 and 15) are said to be simple, in view ofthe fact that 

each state has a single independent variable, À. The stretch ratios with respect to À in all 

principal directions can be determined with Eq.(2.21). 

The material used in this thesis, a hard carbon-black-filled rubber, was characterised by 

Axel Products Inc. in uni axial tension, equi-biaxial extension and planar tension. The 

following section provides a description of how the data was obtained and how it is 

manipulated. The data is then fitted to hyperelastic models with curve-fitting tools 

available in ANSYSTM. 

3.1. Experimental procedure 

The general procedure followed by Axel Products Inc. to achieve the three 

aforementioned states of simple stress is fundamentally the same. The testpieces are cut 

out of a 150x 150 mm slab of rubber that is 1-2 mm thick. The loading is performed at a 

quasi-static strain rate of 0.01 S-l; this rate has been chosen to minimize thermal effects 

due to internaI heat generation. Engineering stress is measured by dividing the applied 

load by the cross-section respective to the test being conducted. The strain measured is in 

the direction of the load, also respective to the test being conducted. Each sample is first 

loaded to 5% nominal (engineering) strain, then completely unloaded. This cycle is 

repeated 9 more times in order to precondition the testpiece. By the 10th cycle, the sample 

has stabilised and is considered to be preconditioned for 5% maximum strain. The same 

procedure is repeated on the same specimen for nominal strains of 10%, 15% and 25%. 

Three samples were tested in each state of simple stress. A sample of the collected 

nominal stress-strain data for a testpiece in uniaxial tension is given in Fig. 16. Note how 

this figure reproduces the combined behaviour shown in Figs. 6 and 8 of Section 2.1. 

27 
©MWG 



2 ,-------------------------, 

~ 1.5 

~ 
'-" 

C/:l 
flr 1 fil 

~ 
fil 

cil 
I=l 
~ 0.5 

o ~~~~~--------~------~ 
o 0.1 0.2 0.3 

Eng. strain, & 

Fig. 16: Original data for the uniaxial tension test showing preconditioning at four different levels of 

strain: 5%, 10%, 15% and 25% nominal strain. 

The last cycle for each maximum nominal strain, i.e. the lOth, 20th
, 30th and 40th loading 

cycles, corresponds to a stabilized path for the respective 5%, 10%, 15% and 25% 

maximum nominal strains. These four preconditioned loading curves are clearly shown 

in Fig. 17 for the uni axial tension test, in Fig. 18 for the planar tension test, and finally in 

Fig. 19 for the equi-biaxial extension test. Note in these figures that the stress is plotted 

as a function of the principal stretch measured in the direction of the load applied 

respective to the state of stress. Aiso note that the virgin stretch curve is exact up to 5% 

nominal strain; it is then approximated to the maximum stress-strain data point for each 

subsequent stretch cycles. For the virgin stretch path to be exact, a separate testpiece 

should be stretched up to the desired strain. Based on Figs. 5 and 6, one could expect the 

virgin stretch curve of Figs. 17, 18 and 19 to be slightly above the data for the 10%, 15% 

and 25% nominal strain cycles. 
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Fig. 17: The preconditioned loading cycles (dark continuous lin es) extracted from the original data 

(grey lines) in uniaxial tension. 
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Fig. 18: The preconditioned loading cycles (dark full lin es) extracted from the original data (grey 
lines) in planar tension. 
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Fig. 19: The preconditioned loading cycles (dark continuo us Iines) extracted from the original data 
(grey Iines) in equi-biaxial extension. 

These stabilised loading paths show considerable unrecoverable strain when stress-free. 

Since purely elastic behaviour will be assumed, the preconditioned stress-strain curves 

are manipulated to eliminate the offset strain as follows. The offset strain for each 

preconditioned curve, 6offset. is subtracted and aIl strain values are divided by (60ffset + 1) 

to account for the larger stabilized gauge length. Similarly, aIl the stress values are 

multiplied by (60ffset + 1) to account for the stabilized gauge cross-sectional area. Refer to 

Appendix B for a detailed description of the manipulation of stress and strain data. 

Following this operation, the usually small offset stress value is subtracted from the rest 

of the stress values in order to have zero stress at zero strain. Fig. 20 shows the four 

manipulated stress-strain curves for 5%, 10%, 15% and 25% nominal strain with the 

original virgin stretch of the uniaxial test data. 

FinaIly, the number of data points is evenly reduced in order to provide an easily 

manageable file for the curve-fitting too1. The manipulated stress-strain characterisation 

data points are provided in Appendix C, for uni axial tension, biaxial extension and planar 

tension. 
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Fig. 20: Preconditioned curves, manipulated to eliminate the offset strain, for the uniaxial tension 

test. 

The strain range characterised (0-25% engineering strain) is considered to be moderate 

with respect to the strain capacity of the rubber at hand. The stress-strain relationship of 

the material in uniaxial tension is illustrated in Fig. 21 for strain up to ~ 150%, clearly 

showing that the 0-25% range of strain is relatively small. 
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Fig. 21: Stress-strain response of rubber at hand up to -150% engineering strain (grey line). The 
strain range of interest in this thesis is relatively moderate (black line) 
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3.1.1. Uniaxial tension test 

The rubber specimen used in uniaxial tension is typically a bone-shaped speCImen, 

usually cut out of a thin, 1-2 mm thick, sheet of rubber. The specimen's totallength is 

around 115 mm, while the "test-section" is around 33 mm long. The test-section must 

have a larger length than its width and its thickness so that the deformations along the 

length may be assumed uniform. The "bone ends" of the specimen are about 25 mm 

wide, while the thinner "test-section" is approximately 6 mm wide. These dimensions 

can vary; what is important, though, is that the width and thickness of the specimen must 

thin evenly over the length of the test-section. The wider "bone ends" of the specimen 

are clamped in a stretch machine. Engineering stress is calculated by dividing the 

measured load by the initial gage cross-sectional area. Engineering strain is recorded 

with an optical strain gauge. A photograph of the experimental set-up for uniaxial 

tension is provided in Fig. 22. A quarter of the testpiece geometry from a FEA model is 

shown in Fig. 23 where the contours of the maximum principal strain, &1, indicate 

uniform strain in the test-section. 

Fig. 22: Picture of the uniaxial tension test set-up, eourtesy of Axel Products Ine. 
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Fig. 23: Quarter model of a FEA simulation of the uniaxial tension test showing contours of the 

maximum principal strain, el. 

3.1.2. Equi-biaxial extension test 

A circular disc of 75 mm in diameter is cut out of a thin, 1-2 mm thick, sheet of rubber 

for the equi-biaxial extension test; 16 holes, 5 mm in diameter, are then cut, evenly 

distributed, around the disc, with a distance of27.5 mm from the centre of the small holes 

to the centre of the disco A radial slit is cut from the outside of the disc to each small hole 

such that sixteen tabs are created. These tabs are clamped on a special machine and 

stretched radially. The holes are there to prevent stress concentrations in the testpiece. 

Again, the given dimensional parameters can be varied as long as the thinning of the 

specimen is even over the measured section. The radial load must also be assumed 

evenly distributed around the circumference of the test-section. Radial engineering stress 

and radial engineering strain are measured. A photograph of the experimental set-up for 

equi-biaxial extension is provided in Fig. 24. One sixteenth of the testpiece geometry 

from a FEA model is shown in Fig. 25 where the contours of the maximum principal 

strain, &1, indicate uniform distribution of radial strain, even though the load is applied at 

sixteen locations. 
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Fig. 24: Equal-biaxial tension test, courtesy of Axel Products Inc. 
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Fig. 25: FEA model showing one sixteenth of the equi-biaxial extension testpiece, the contours are of 
the maximum principal strain, el. 

3.1.3. Planar tension test 

A rectangular specimen is cut out of a 1-2 mm thick sheet of rubber. The specimen is 

clamped such that the free length (in the stretching direction) is much smaller than the 

width, so that the thinning occurs only in the thickness direction. A testpiece of 150 mm 

in width and 50 mm in length leaving 20 mm for the test-section (30 mm clamped) would 
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be an appropriate geometry. A picture of the experimental set-up for planar tension is 

provided in Fig. 26, while a quarter model of the FEA simulation is given in Fig. 27 

where the contours of middle principal strain, 82, show no deformation in the width 

direction, other than negligible end effects. It is emphasised that the stretch along the 

width of the test-section must be negligible for the results to be equivalent to pure shear, 

as described in Fig. 15. 

Fig. 26: Planar tension test, courtesy of Axel Products Inc. 
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Fig. 27: Quarter FEA model of the planar tension test showing contours of the middle principal 
strain, ~. 
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3.2. Curve-fitting 

Just like "Young's modulus" in linear elasticity is said to be a material property, the 

coefficients of a given hyperelastic model will also become, in sorne way, the material 

properties defining a rubber-like material. These coefficients are not measured directly 

but rather fitted to experimental characterisation data, such as the data described in 

Section 3.1. The discussion herein revolves around curve-fitting hyperelastic models to 

preconditioned characterisation data. The validity and limitations of doing so must also 

be discussed. 

The procedure for fitting a hyperelastic model to characterisation data is similar in 

ANSYSTM Workbench 10.0 and classical ANSYSTM 10.0 interfaces; while more control 

is given in the classical version, W orkbench is more convenient. One may notice that 

control over convenience is often what differentiates ANSYSTM classic from ANSYSTM 

Workbench. For example, ANSYSTM Workbench provides no control over the number 

of iterations performed or the truncation error during nonlinear curve-fitting, whereas 

ANSYSTM classic does. In either interface, aIl available hyperelastic models can be fitted 

to uniaxial tension data alone, to planar tension data alone§, to equi-biaxial extension data 

alone, any combination of two of these states of stress or to aH three states of stress 

simultaneously. 

In the context of this project, the characterisation data is preconditioned to different levels 

of strain, so it is preferable to remain consistent to one level of preconditioning when 

fitting a hyperelastic model to multiple states of simple stress simultaneously. The 

curve-fitting module generates coefficients for the selected hyperelastic model. 

Graphical tools are available to visually compare the selected hyperelastic model 

predictions in the three states of simple stress to the characterisation data used in the 

curve-fitting. 

§ The Neo-Hookean model cannot be fitted to planar tension data alone (yet the first-order Yeoh model, 
which is exactly equivalent to the Neo-Hookean model, can be fitted to planar tension data). 
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Care must be taken when fitting characterisation data to hyperelastic models. Since the 

coefficients in the strain energy functions may be viewed as material constants, they have 

a certain physical meaning. This physical meaning is not considered by the curve-fitting 

tool which only concentrates on obtaining the best mathematical fit to the given data. 

Certain hyperelastic models such as the Neo-Hookean, the Mooney-Rivlin and the Yeoh 

formulations of strain energy use linear curve-fitting methods, and their coefficients are 

obtained instantly. On the other hand, the Ogden and the Gent models rely on an iterative 

nonlinear curve-fitting method. For this reason and also due to the several coefficients 

involved, the adequate fitting of the Ogden model is highly dependent on the initial 

values proposed before the curve-fitting begins. Both linear and nonlinear curve-fitting 

methods rely on a least-squares minimisation function. 

The (absolute) least squares method consists of fitting an equation to a set of data, such 

that the following least squares residual error function, E, is minimized: 

(3.1) 

where, in the context of this work, Sm is the experimental value of stress at strain 

cm = 1-Âm' S (Âm) is the stress predicted from the fitted hyperelastic model, also at 

strain cm = 1-Âm' and m is the number of data points considered in the curve-fit. This 

method is often preferred over other methods since it gives "[substantial] weight [to a 

data] point that is out of line with the rest of the data but will not allow that point to 

completely dominate the approximation."" For further discussion on the method of least 

squares, refer to Burden and Faires (2001). 

The least squares method can be normalised to obtain the normalised least squares 

residual error function, EN, such that 

(3.2) 

•• Burden and Faires (2001), p.486. 
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In both interfaces (dassic and Workbench), when performing a nonlinear curve-fit it is 

possible to choose between a normalised (EN) or absolute (E) error norm. The normalised 

error norm treats aIl data points equaIly, whereas the absolute error norm gives more 

weight to the higher stress data points. In this work, the normalised error norm will be 

applied for the curve-fitting. 

The normalised root-mean-squared error, ENR, similar to what is known as the root-mean­

squared errortt , may be used to obtain a more physical measure ofmean residual error: 

~EN ENR =--, (3.3) 
V 

where v is the number of data points used, rn, minus the number of coefficients used in 

the hyperelastic model, n, such that 

v = rn-no (3.4) 

The normalised root-mean-squared error, ENR, can be used to evaluate the goodness of fit 

of a hyperelastic model with respect to the data being fitted. It can also be used to 

compare the goodness of fit with respect to other hyperelastic models fitted to other data. 

A value of ENR doser to 0 indicates that the hyperelastic model has a better chance to 

predict the fitted data. 

Please refer to Appendix D for a short demonstration on how to use the curve-fitting tool 

available in ANSYSTM Workbench 10.0. 

3.2.1. General curve-fitting procedure in ANSYSTM 

In the following example, the uniaxial characterisation data preconditioned to 25% 

engineering strain is imported in ANSYSTM Workbench and fitted to a three parameter 

Mooney-Rivlin model. The resulting fit is shown in Fig. 28. It is clear from this figure 

that, although the model prediction in uniaxial tension fits the data quite well, the model 

predictions for planar tension have no physical meaning. Furthermore, knowing the 

~' qualitative behaviour of the rubber in equi-biaxial tension from Section 3.1, it is unlikely 

tt http://www.mathworks.com. June 2006. 
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that this model provides an accurate prediction for the equi-biaxial data either. Note that 

the stresses are shown as a function of the principal strain in the direction of load 

respective to the state of stress. 

The planar and equi-biaxial characterisation data, also preconditioned to 25% are 

imported into ANSYSTM in conjunction with the already imported uniaxial data. The 

three parameter Mooney-Rivlin hyperelastic model is then refitted, but this time to all 

three characterisation curves. The resulting fit is shown in Fig. 29. It is seen in this 

figure that the model no longer offers an accurate prediction for any of the 

characterisation curves. While the loss of physical meaning in this fit is less obvious, it is 

nonetheless clear that the characterisation curve for planar data never crosses the equi­

biaxial data, while these curves do cross according to the model predictions. In either 

case, the Mooney-Rivlin model does not seem to provide physically meaningful fit to the 

hyperelastic data. 

lU ... 
~ 

fi 

1.65 

1.5 

1. 

0.5 

il o. 

-0.5 

-1. 

-1.36 '--________________ ------J 

o. 2.Se-2 5.e-2 7.5e-2 0.1 0.125 0.15 0.181 

8train !ml/mm 

• U niaxial data 

Uniaxial model 
prediction 

Planar model 
prediction 

Biaxial model 
prediction 

Fig. 28: Mooney-Rivlin model with three parameters fitted to the uniaxial tension data 

preconditioned to 25% strain; CIO = -19.969 MPa, COI = 23.257 MPa and Cn = 13.536 MPa. 
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• U niaxial data 

• Planar data 

• Biaxial data 

Uniaxial model 
prediction 

Planar model 
prediction 

Biaxial model 
prediction 

o. 2.50-2 5.0-2 7.50·2 0.1 0.125 0.15 0.182 

Strain mm/mm 

Fig. 29: Mooney-Rivlin model with three parameters fitted to the data preconditioned to 25% strain 

in ail three states of simple stress simultaneously; CIO = 2.2011 MPa, COI = -0.27146 MPa and Cu =-

0.36157 MPa. 

A similar procedure is undertaken here with a third-order Ogden model, first fitted only 

to the uniaxial characterisation data preconditioned to 25%, with the resulting fit shown 

in Fig. 30. Here the lack of control over the nonlinear curve-fitting process in 

Workhench greatly limits the quality of the curve fit; therefore the curve-fitting was done 

in ANSYSTM classic. The chosen initial conditions were: Pl = 100 MPa, al = 1, P2 = 1 

MPa, a2 = 4 , P3 = -1 MPa and a3 = -1. These initial conditions, provided in the 

Advanced Structural Nonlinearities ANSYS training manual (2004), seem to generally 

work very well when curve-fitting the third-order Ogden to a single state of simple strain 

in ANSYSTM classic. Note that if initial conditions are not given when curve-fitting with 

a higher-order (second-order and up) Ogden model, the coefficients generated by the 

software will he equal (al = a2 = ... = a" = a and Pl = P2 = ... = Pn = p), such that the 
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n 

resulting model will be equivalent to a first-order Ogden model (aeqUiV = Lai = na and 
i=1 

n 

Pequiv = L Pi = np ). 
1=1 

The model is then fitted to an three simple states of strain curves preconditioned to 25%, 

with the corresponding fit given in Fig. 31. It is clear from Fig. 30 that while the model 

prediction in uniaxial tension fits the corresponding characterisation curve the model 

predictions in planar and equi-biaxial tension do not (see Fig. 31 for the test data). On the 

other hand, fitting the third-order Ogden model to an three states of simple strain, as 

shown in Fig. 31 may have lost accuracy but remains close to the corresponding 

characterisation data. 
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Fig. 30: Third-order Ogden model fitted to uniaxial tension data preconditioned to 25% strain; 

Pl = 196.78 MPa, al = 3.9680e-2, f.J2 = -0.34627 MPa, a2 = -69.277, f.JJ = -0.35077 MPa and a3 = 34.561. 
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Fig. 31: Third-order Ogden model fitted to data preconditioned to 25% strain in ail three states of 

simple stress simultaneously; Pl = 99.319 MPa, al = -1.2080e-2, Pz = 18.853 MPa, a2 = 7.4442, Pl =-

16.875 MPa and a3= 7.7678. 

The first-order Yeoh hyperelastic model (equivalent to the Neo-Hookean model) is fitted 

to the uni axial tension data, then to the planar tension data and finaIly to the equi-biaxial 

tension data, aIl preconditioned to 25% engineering strain, in Fig. 32(a), Fig. 32(b) and 

Fig. 32(c), respectively. The procedure is repeated for the third-order Yeoh hyperelastic 

model in Fig. 33. Note that the characterisation data for aIl states of stress is shown in aIl 

figures for comparative purposes and that only one state of stress is used in the curve­

fitting per figure. 
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Fig. 32: First-order Yeoh hyperelastic model fitted to characterisation data preconditioned to 25% 

engineering strain in (a) uniaxial tension, (b) planar tension and (c) equi-biaxial extension. The 

coefficients are given in Table 2. 
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Fig. 33: Third-order Yeoh hyperelastic model fitted to characterisation data preconditioned to 25% 

engineering strain in (a) uniaxial tension, (b) planar tension and (c) equi-biaxial extension. The 

coefficients are given in Table 3. 

The coefficients for the first-order Yeoh hyperelastic model fitted to the uniaxial tension 

data, then to the planar tension data and finally to the equi-biaxial tension data, for each 

level of preconditioning, are provided in Table 2 with corresponding normalised root­

mean-squared error, ENR, as defined in Eq.(3.3). Third-order Yeoh coefficients similarly 

obtained are given in Table 3, also with their corresponding normalised root-mean­

squared error, ENR. It can be shown that fitting the first- or third- order Yeoh model to all 

three states of simple strain, or any combination of two of these states of simple strain, at 
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the same time does not improve the fit. Furthermore, fitting a hyperelastic model to a 

single characterisation test may greatly reduce characterisation costs (as opposed to 

fitting a model to the three characterisation tests). 

For these reasons and others discussed in the next section, the first- and third-order Yeoh 

models presented in Table 2 and Table 3 will be those of choice for the FEA simulations 

to come. Note that the normalised root-mean-squared errors given in these tables were 

calculated with respect to the data points used for curve fitting only. For example, the 

error of 2% given in Table 3 for the third order Yeoh hyperelastic model fitted to the 

uni axial characterisation data preconditioned to 25% corresponds to the error between 

predicted and measured data in uniaxial tension only. Thus, the error between the 

predictions and measured data for this model in planar and equi-biaxial tension, shown in 

Fig. 33(a), is not accounted for. The first-order Yeoh hyperelastic model was preferred to 

the Neo-Hookean one in this case, since the curve-fitting tools in ANSYSTM (versions 9.0 

and 10.0) do not allow fitting the Neo-Hookean model to planar tension data only. 

Table 2: First-order Yeoh hyperelastic model coefficients (CIO) fitted to single characterisation curves 

as indicated with corresponding normalised root-mean-squared error, ENR 

Levelof C lO for first -order Yeoh model, W = CIO (Il - 3) , fitted to 

preconditioning 

(engineering strain) 
U niaxial data Planar data Equi-biaxial data 

ClO ENR ClO ENR ClO ENR 

Virgin stretch 6.0* 17% 6.4* 9% 5.0* 8% 

5% 4.4540 5% 5.7862 6% 3.8087 2% 

10% 3.0844 4% 3.5601 3% 2.8071 2% 

15% 2.6408 3% 2.9170 3% 2.2595 3% 

25% 1.9930 3% 2.1417 2% 1.7970 3% 

*Coefficients determined manually 
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Table 3: Third-order Yeoh hyperelastic model coefficients (CIO' Czo and C30) fitted to single 
charaderisation curves as indicated with corresponding normalised root-mean-squared error, ENR 

Level of preconditioning 

(engineering strain) and 

state of strain 

Uniaxial 

Third-order Yeoh coefficients 

CIO 

--------------------------------------------------------------------------------------------------------------------
Virgin stretch 5.8715 -510.34 30206 29% 

5% 6.0170 -1031.2 1.5700e5 2% 

10% 4.2379 -203.38 8223.9 2% 

15% 3.6862 -72.220 1150.1 1% 

25% 2.4501 -11.900 63.999 2% 

Planar CIO C20 C30 ENR 

-------.----------------.---------------._--------------------------------------------------------------------------
Virgin stretch 5.7481 -322.58 13822 15% 

5% 8.4155 -1712.7 2.5912e5 3% 

10% 4.8679 -204.33 7258.6 2% 

15% 4.1748 -76.766 1086.7 2% 

25% 2.6307 -11.037 51.477 2% 

Equi-Biaxial CIO C20 C30 ENR 

-----------------------------------_.-------------------------------------------------------------------------------
Virgin stretch 4.4696 -67.847 953.81 13% 

5% 4.3845 -135.17 6621.9 1% 

10% 3.7282 -44.598 483.00 1% 

15% 3.0045 -16.05 76.383 3% 

25% 2.1445 -3.105 5.4358 2% 
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3.2.2. Limitations of the hyperelastic models 

A compilation, based mainly on the author' s own expenence, of advantages and 

disadvantages ofthe hyperelastic models discussed in this work is presented in Table 4. 

Table 4: Advantages and disadvantages of selected hyperelastic models 

Neo-Hookean 

Advantages 

- Acceptable at low strain for 

unfiUed rubber. 

Mooney-Rivlin - Good fit to a single state of 

simple stress with higher order 

models (5 terms or more) 

Ogden 

Yeoh 

Gent 

- Good fit to a single state of 

simple stress with higher order 

models (3 rd order and higher) 

- Often uniaxial characterisation 

data is sufficient to represent 

behaviour of unfilled rubber in 

other states of strain. 

- Higher order (N) 2) Yeoh 

models capture stiffening well. 

- Captures stiffening well by 

defining an elongation limit with 

Jm. 

Disadvantages 

- Does not capture stiffening near 

elongation limit (higher order 

models are required). 

- Use with caution when fitting; 

possibility of losing physical 

meaning in other states of stress. 

- ComputationaUy more expensive 

(eigenvalues are required). 

- The elongation limit term, Jm, 

introduces a singularity and may 

cause instabilities. 

AU these models share a common flaw: they aU fail to capture large initial softening, 

typical of modem carbon-black-filled rubber, without losing physical meaning at higher 

strain. Most of the scientists and engineers who have proposed these models worked very 
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hard to represent the stiffening ofrubber near its elongation limit. Unfortunately, none of 

these models seem to capture the considerable softening of filled rubber at moderate 

strain, unless they compromise their accuracy elsewhere. Thus, in most cases, the 

coefficients obtained by curve-fitting these models to experimental characterisation data 

fail to either capture the initial modulus or the softening that soon follows at moderate 

strain. In any case, the work done by the hyperelastic model (area below the stress-strain 

curve, i.e. the strain energy) will not match the work done by the actual rubber 

compound. And the models that may capture the full behaviour of rubber in one state of 

simple strain, williose physical meaning in other states of strain. 

One of the problems with the hyperelastic models fitted to the characterisation data at 

hand is that while a relatively acceptable fit may be obtained in one state of strain, the fit 

is not necessarily good in the other states of strain. Taking the models proposed in Fig. 

32 it can be observed that, depending on which state of simple strain the model was 

obtained with, the predictions for the other states of strain are not as good. This issue is 

addressed in the next chapter with the biaxiality test, proposed to assist in determining 

which characterisation data should be prioritised in the curve-fitting for any given 

simulation. 

Another problem arises from the fact that these models are fitted to preconditioned data. 

Choosing which preconditioned curve is best for a given analysis may not necessarily be 

easy, or even possible; different parts of a structure may undergo different levels of 

preconditioning. As seen in Table 2 where the first-order Yeoh coefficient, CiO, is 

proportional to the initial shear modulus of the material (see Table 1), there is a 

distinctive reduction in stiffness as the hyperelastic model is fitted to higher levels of 

preconditioning. In order to simulate the effect of preconditioning in a FE analysis, a 

preconditioning iteration is proposed, the details of which are proposed in the next 

chapter as weIl. 

Third-order hyperelastic models are tricky to use with preconditioned characterisation 

data. The nonlinear behaviour of higher-order models is generally meant to predict the 
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stiffening of rubber often observed near the elongation limit of the material. The 

stiffening observed in the preconditioned curves of the material at hand is due to the 

Mullins effect (a similar effect can be observed in Fig. 7) and is considered a local 

nonlinearity, as opposed to the global stiffening often observed in rubber stretched to its 

elongation limit. When a preconditioned material is stretched beyond the strain level it 

was preconditioned at, another nonlinearity occurs, and the stress-strain behaviour 

suddenly falls back on to the virgin stretch path. Instead of predicting this behaviour, 

currently available hyperelastic models will continue stiffening which results in highly 

inaccurate predictions. When modelling the behaviour of preconditioned rubber with 

hyperelastic models it may be desirable to simply use a first-order model rather than risk 

getting unexpected results as soon as the strains in the FEA exceed the strain level at 

which the characterisation data was preconditioned for. 

For example, take a third-order Ogden model fitted to the uniaxial tension 

characterisation data preconditioned to 15% engineering strain, as shown in Fig. 34 (due 

to the data manipulations, the characterisation data stops at a value just a little above 10% 

engineering strain). The normalised root-mean-squared error for this model with respect 

to the fitted data points (0-10% engineering strain) is ERN = 0.3%, i.e. this is an excellent 

fit. Yet, comparing this model to the data points beyond the level of preconditioning the 

normalised root-mean-squared error (0-15% engineering strain) jumps to 29%. The 

analytical solution for the third-order Ogden model in uniaxial tension to a nominal strain 

of 15%, predicts a nominal stress of S = 5.65 MPa (off the scale of the figure). But 

according to the characterisation data, the rubber would simply fall back on to the virgin 

stretch path with a nominal stress of S = 1.70 MPa. The residual error for this particular 

data point is 233%. 

On the other hand, a simple first-order Yeoh model may not have as good of a fit as the 

third-order Ogden model to the data preconditioned to 15% engineering strain (ERN = 3%) 

yet, if the strain exceeds the level of preconditioning, the model prediction remains an 

acceptable fit with ERN = 6% for the 0-15% engineering strain data points shown in the 

figure. While the first-order Yeoh model may not capture the full local nonlinearity of 
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the preconditioned rubber, for a nominal strain E = 0.15, the nominal stress predicted is 

S = 2.04 MPa, which corresponds to 20% residual error at that specifie data point. Using 

the first-order model allows to overshoot the strain level that the characterisation data was 

preconditioned for without losing too much accuracy. 
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Fig. 34: Uniaxial tension data preconditioned to 15% (thick continuous line) then stretched beyond 

maximum preconditioning strain (dotted line). Ogden model: Pl = 208.41 MPa, al = 0.05305, Pz =-

0.40443 MPa, az = -123.08, f.IJ = -0.4075 MPa and a3 = 61.4723. 18t order Yeoh model: CIO = 2.6408 

MPa. 
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Chapter 4: Hyperelasticity in ANSYSTM 

In the first section ofthis chapter, the general FEA options relative to this work, including 

element types, element technology, element size and nonlinear solution options are 

discussed. 

It has become clear from the previous chapters that hyperelastic models are limited in 

predicting the complex behaviour of rubber. One of these limitations is addressed here 

where an iterative method is proposed to approximate the effect of preconditioning with 

hyperelastic models. This method will be referred to as the preconditioning iteration. 

Furthermore, in order to provide insight on the dominant state of strain in a given 

simulation and hence to assist in selecting the appropriate characterisation data for curve 

fitting, a biaxiality test is proposed. 

The procedure applied when conducting FEA simulations with the preconditioning 

iteration is also described in this chapter. The application of the preconditioning iteration 

and the biaxiality test will become more obvious in Chapters 5 and 6 where they are 

applied to FEA models and compared to experimental results. 

4.1. Selection and validation of finite element analysis options 

It is difficult to establish standardised methods for finite element analysis, although there 

is an independent not-for-profit organisation called the National Agency for Finite 

Element Methods and Standards (NAFEMS) whose purpose is to do just that.H Efforts 

are also apparently being made by the American Society of Mechanical Engineers 

(ASME) to standardise finite element methods [see Schwer (2006)]. While standards do 

exist, each analysis must be treated differently. This section briefly discusses the FEA 

options chosen for this work. 

u http://www.nafems.orgl 
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4.1.1. Element type and technology 

Several types of elements are currently available in ANSYSTM: from one-dimensional 

truss and beam elements, to two-dimensional elements with plane-strain, plane-stress, or 

axisymmetric options, to three-dimensional solid and shell elements; there are often 

several choices of elements for one given type of analysis. All element types (and more) 

are extensively documented in the Release 10.0 Documentation for ANSYS (2005). 

Dufour (2003) also provides an interesting review of the structural element types 

available in the ANSYS™ software. 

Two types of three-dimensional solid elements are used in this work: an 8-node linear 

hexahedral element and a 10-node quadratic tetrahedral element, known as the 

SOLID185 and SOLID187 elements, respectively, in the Release 10.0 Documentation for 

ANSYS (2005). A schematic representation of these two element types is provided in 

Fig. 35. 
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Fig. 35 : (a) 8-node Iinear hexahedral element (SOLID185), (b) lO-node quadratic tetrahedral 
element (SOLID187). 

When meshing geometry, elements must respect certain shapes in order for them to 

provide acceptable results. Fortunately, software packages such as ANSYS™ 

automatically perform shape testing on elements and issue warnings if the default shape 

limits are exceeded. These limits are determined by the software developers and they 
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depend on the element type. Refer to Section 13.7 of the Theory Reference in the 

Release 10.0 Documentation for ANSYS (2005) for details on shape testing. 

The algorithms currently used to automatically mesh geometries with tetrahedral 

elements are very robust; thus these elements are often employed to mesh complicated 

geometries. On the other hand, in certain cases, such as for dynamic impact simulations, 

hexahedral elements are often required. There are now meshing tools that facilitate 

hexahedral meshing of complicated geometry (notably the blocking technique available 

in AI EnvironmentTM software). The quadratic tetrahedral, SOLID187, element type is 

considered reliable enough for the purposes of this work. 

Although it is not the case in this work, it is possible to have models that have quadratic 

tetrahedral SOLID187 elements on one side of a coincident face and linear hexahedral 

SOLID185 elements on the other side. This is made possible with a morphed version of 

the SOLID187 element that has a four sided base at the interface without mid-side nodes 

such that it becomes compatible with the SOLID185 element sharing the same face. 

4.1.2. Element technology and formulation 

While the degrees of freedom in an element are usually calculated at the nodes, the 

strains and stresses are calculated at Gauss points; these are called integration points. The 

number of integration points solved for in an element depends on the element' s 

technology and user-specified options. 

Two technologies related to element integration are considered here: the B method 

(a.k.a. B-bar or selective reduced integration) and the URI method (uniform reduced 

integration). Both methods help prevent shear and/or volumetric locking when a material 

is incompressible or nearly incompressible. Using the URI method on an 8-node 

hexahedral element requires only one integration point and is therefore more efficient 

than the li method. On the other hand, the URI method may cause mechanical (a.k.a. 

hourglass or zero-energy) modes. This happens when an element deforms to a shape that 

requires no work with respect to the integration point(s). Two mechanical modes are 
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shown in Fig. 36 for a two-dimensionallinear element; note that these modes are similar 

for three-dimensional elements. Hourglassing can be controlled by introducing hourglass 

stiffness but it must be monitored. It is important that the artificial energy in an element 

due to hourglass stiffness remains small with respect to the internaI energy of the same 

element. The Release 10.0 Documentation for ANSYS (2005) recommends as a 

guideline that "the hourglassing energy should not exceed 10% of the internaI energy". 

The SOLID185 and SOLID187 elements are an appropriate choice since they are said to 

have "[ ... ] hyperelasticity, [ ... ] large deflection, and large strain capabilities. [They] also 

[have] mixed formulation capability for simulating deformations of nearly incompressible 

elastoplastic materials, and fully incompressible hyperelastic materials."§§ The mixed 

formulation, referred to as the mixed u-P formulation, adds an additional hydrostatic 

pressure degree of freedom and is thus very appropriate for incompressible materials. 

The reader is referred to the Element Reference section in the Release 10.0 

Documentation for ANSYS (2005) for more information on integration methods and 

element technologies. 

(a) (b) 

• • 

Fig. 36 : Hourglassing in two-dimensional linear elements showing: (a) a parallelogram type 

hourglass mode and (h) a trapezoid type hourglass mode. The original element shape is represented 

with a dashed line ( --- ) while the hourglass mode is represented with a continuous line (--), the 

integration point is shown in the middle of each element. 

4.1.3. Element sÏze 

The size of elements used in a FEA differs for every simulation and every load case. In 

order to determine the most appropriate element size for a given analysis, a convergence 

§§ Release 10.0 Documentation for ANSYS (2005) 
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test must be performed where the element size is refined until the difference between the 

results from one analysis to the next is negligible. Refinement is also necessary where 

large deformation gradients are present. Element size convergence tests are conducted on 

both simulations presented in this work, in Chapters 5 and 6. 

4.1.4. Nonlinear solution control 

Nonlinear structural static simulations m ANSYSTM are solved using the Newton­

Raphson iterative method. In this method, a certain number of substeps must be solved in 

order to obtain the final result. Substeps are solved with Newton-Raphson iterations such 

that the substep has converged when the convergence criterion is satisfied. A default 

convergence criterion exists but may be changed if desired. In this work the default 

convergence criterion is used. If a substep does not converge after a certain number of 

Newton-Raphson iterations, the solution will stop. The reader is referred to the Release 

10.0 Documentation for ANSYS (2005) for further information on convergence criteria 

for structural nonlinear static analysis and how to trouble shoot when a simulation is not 

convergmg. 

Substeps are a fraction of the total load; each substep consists of a load increment such 

that, when the final substep is solved, the total load has been applied. The number of 

substeps in an analysis may be controlled by defining the initial number of substeps, the 

minimum number of substeps and the maximum number of substeps. Altematively, 

substeps can be seen as fictitious time increments (fictitious since it is a static analysis 

and thus there are no time-dependent variables such as viscosity and momentum). Thus, 

one can also choose to control the initial time increment, the minimum time increment 

and the maximum time increment of a nonlinear static analysis in ANSYS™. 

4.1.5. Finite element analysis validation with analytical solutions 

In order to ensure that the FEA software used in this work, ANSYS™, provides 

satisfactory results, a single linear hexahedral element is given hyperelastic material 

/" ' properties, stretched in the three states of simple strain, and then compared to the 

analytical solution. A third-order Yeoh model fitted to the uniaxial characterisation data 
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preconditioned to 25% engineering strain is tested. While it is important to do this test, it 

will not be extensively discussed here for the simple reason that, in aU three states of 

simple strain, the ANSYSTM solver predicts the exact analytical solution up to the 

numerical order of precision of the software, which by default in ANSYSTM consists of 

eight significant figures. Double precision could be activated in which case the 

ANSYSTM solver would predict the exact analytical solution up to sixteen significant 

figures. 

4.2. Modelling preconditioning 

In simple loading cases it may be acceptable to assume that aU parts of a structure have 

been preconditioned to the same level of strain, as could be the case for cylindrical rubber 

bearings in seismic isolation systems which are mainly subjected to compressive or 

tensile loads and are not expected to bend. On the other hand, structures are more often 

than not subjected to loads (such as bending loads) that will lead to different levels of 

strain and thus different levels of preconditioning. 

A method is proposed in this section to approximate the effects of strain-induced stress­

softening in a static FEA simulation using hyperelastic models. It is assumed that the 

material is or acts like a carbon-fiUed rubber at moderate strain. In other words, 

deformations are smaU enough that the range of deformation still remains in the softening 

stage of the material (such as in Fig. 21). 

A first analysis of the finite element model to the desired deformation must be performed 

with a hyperelastic model that captures the qualitative behaviour of the rubber; i.e. the 

deformations are acceptable but not necessarily the stresses (or the predicted loads). Due 

to the moderate (see Fig. 21) range of strain (0-25% engineering strain), a first-order 

Yeoh model would be an appropriate hyperelastic mode1 for this purpose. 

The results of the first FEA simulation are then post-processed and the elements are 

classified according to their average maximum principal strain. Next, the elements are 

assigned new material properties; the hyperelastic mode1 of the element is changed such 
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that it is fitted to a level of preconditioning according to the strain range in which it is 

classified, as shown in Table 5. These ranges of strain represent the levels at which the 

characterisation data was preconditioned after it has been manipulated (as described in 

Appendix B) and converted to Hencky strain with the use of Eqs. (2.10) and (2.14). 

Note that the offset strains for the characterisation data preconditioned to 5%, 10%, 15% 

and 25% engineering strain in uniaxial tension will be different from the respective offset 

strains in the biaxial test and again for the planar tension test. Nonetheless, they differ 

very little; so, for the purpose of the preconditioning routine, the preconditioned strain 

values, once manipulated and converted to Hencky strain, in an three states of simple 

strain are assumed to be the same; thus, the data preconditioned to 5% engineering strain 

becomes preconditioned to ~3% Hencky strain. Similarly, the data preconditioned to 

10%, 15% and 25% engineering strain becomes preconditioned to ~6%, ~ 10% and ~ 18% 

Hencky strain, respectively. 

The use of first- and third-order Yeoh hyperelastic models with the preconditioning 

iteration will be discussed in the next two chapters. 

Table 5: Classification of elements according to their maximum principal strain 

Classification 

s; ~ 0.005 

0.01 < S; ~ 0.03 

0.03 < S; ~ 0.06 

0.06 < S; ~ 0.10 

0.10 < S; 

Corresponding 

preconditioned data 

Virgin initial stiffness 

5% 

10% 

15% 

25% 

It could be argued that the material constants for preconditioned strain values could be 

interpolated and that a different hyperelastic model could be assigned to each individual 

element for a more accurate solution. This was not done since, as will be seen in the 
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following chapters, the results are accurate enough that it probably would not be efficient 

to try to improve them by assigning interpolated material properties to all the elements. 

Furthermore this method is merely an artificial way of simulating a material behaviour 

that would probably be much better modelled with a constitutive material law that 

accounted for the Mullins effect. 

4.3. Biaxiality test 

It has been proven difficult to obtain one set of coefficients for a hyperelastic model that 

would fit well in all three simple states of strain. A compromise may be necessary for a 

globally acceptable fit. Otherwise, there is acceptable behaviour in one strain state but 

not in the other two. For simple loading scenarios, it is merely a matter of carefully 

selecting the hyperelastic model that best fits the dominant state of strain. However, in 

the context of FEA models under multi-axialloads, the aforementioned lack of accuracy 

may lead to false results. 

Since the material is assumed incompressible, the deformation of an element of rubber 

has only two independent variables. The maximum principal stretch, Âl, and the 

minimum principal stretch, Â3, will be conveniently chosen as the two independent 

variables in the context of the biaxiality test. 

Let us define the biaxiality ratio, a, as the ratio of the minimum principal stretch, Â3, to 

the maximum principal stretch, Â1: 

a=Â:l 
~' 

(4.1) 

where Âl ~ 1 and Â3 ~ 1 always holds for incompressible materials. The value of a lies 

somewhere between 0 and 1, and will only equal 1 ifthere is no deformation. Note that 

the biaxiality ratio evaluates the state of deformation in an element, irrespectively of the 

state of stress. 

Due to incompressibility, the biaxiality ratio of an element will have an upper boundary 

when in uni axial extension, and a lower limit when in equi-biaxial extension, for which 
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the respective biaxiality ratios are au = ~ -3/2 and aB = ~ -3. Any other state of 

deformation lies somewhere in-between the upper limit, au' and the lower limit, aB' 

including the state of planar deformation, with biaxiality ratio a p = ~ -2, which is 

somewhere in-between. 

The following biaxiality ratios are arbitrarily identified, in this case through a simple 

thirds mIe: 

(4.2) 

(4.3) 

The five newly defined biaxiality ratios are plotted against the maximum principal 

stretch, ,.1,1, in Fig. 37. 

0.8 --e-- au 

0.6 
---+-- a u_p 

Biaxiality ratio, a 

0.4 
~ a p 

---)(- -- a B_p 

0.2 
--Q-- aB 

o +------------,----------~ 
1.5 2 

Max. stretch, Al 

Fig. 37: Defined biaxiality ratios plotted against the maximum principal stretch, ~. It is assumed 

that the biaxiality ratio of any incompressible element will have a value between aB and au' 

Applying the biaxiality test to a FEA simulation requires that a first analysis of the model 

be conducted to the desired deformation. The results are then post-processed and the 

elements are classified into three regions of dominant deformation, as defined in Table 6. 

A region of dominant uniaxial extension between au and a u_p , a region of planar 
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deformation between au_p and a B_p , and a region of equi-biaxial extension between 

a B_p and aB' 

It may be desirable to work with the logarithmic biaxiality ratio, li , which is defined as 

(4.4) 

The logarithmic biaxiality ratio, li, is fundamentally the same as the biaxiality ratio, a, 

but becomes particularly useful when working with software packages such as 

ANSYSTM, since the principallogarithmic strains are readily available. 

Table 6: Classification of elements according to their biaxiality ratio 

Region of dominant strain Biaxiality ratio 

Uniaxial 

Planar 

Equi-biaxial 

The biaxiality ratio will be applied to FEA simulations and discussed in the next two 

chapters. 

4.4. FEA procedure and methodology 

The flow chart shown in Fig. 38 describes the generalised procedure undertaken in this 

thesis to perform FEA simulations with the preconditioning iteration. 

The first step is to build the FEA model and apply the boundary conditions. A 

hyperelastic model is then selected to represent the elastic behaviour of the rubber. As 

will be discussed later, the hyperelastic model coefficients are quite arbitrary. A first 

analysis is then conducted on the FEA model; it is critical that the desired displacement 

be achieved in this step. 
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Branching off to the right, below the first analysis in the flow chart in Fig. 38, the 

preconditioning iteration can begin. The average maximum principal Hencky strains are 

retrieved from the results file of the first analysis. 1t is emphasised that for the 

preconditioning iteration to be accurate, the desired deformation field must be atlained in 

the first analysis while the loads and stresses calculated in the first analysis are irrelevant. 

These results may be at any substep of the analysis provided the appropriate value of 

displacement is achieved. The elements of the analysis can then be classified according 

to their strain range as defined in Table 5. The hyperelastic model atlributed to each 

group of classified elements will depend on the available characterisation data or can also 

be determined from the biaxiality test. 

First analysis with desired displacements 
and one single hyperelastic model 

Biaxiality 
test 

, , , , 

Fig. 38: Flow chart describing the procedure to follow in order to perform a FEA simulation with the 

biaxiality test and preconditioning iteration 

The biaxiality test can be performed following the first analysis of the FEA model (left 

branch below first analysis in the flow chart from Fig. 38). The biaxiality test requires 
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the average maximum and average minimum principal strain in every element from the 

results file of the first analysis. The dominant state of strain for a FEA simulation 

determined by the biaxiality test may assist in selecting the appropriate characterisation 

data (state of simple stress) to be fitted to a hyperelastic model. 
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Chapter 5: Bending of a Cantilevered Plate 

This chapter examines the problem of cantilevered rubber plate under bending. While 

quite simple, bending problems will have different levels of preconditioning and may 

demonstrate different states of biaxiality, making it an ideal candidate for the 

preconditioning iteration and the biaxiality test. 

It is well known that the convex surface of a bending plate is in tension while the concave 

surface is in compression. Larger deformations occur near the surfaces of the plate rather 

than near the neutral axis ***. If subjected to cyclic loading, the properties of the rubber 

plate may change along the thickness, making the bending plate an ideal subject for the 

preconditioning iteration. Furthermore, "end effects" effects are expected along the 

width of the plate with dominantly uniaxial loads (tension or compression) at the 

extremities and dominantly under planar loading at mid-width of the plate, putting the 

biaxiality test to trial. 

An experimental bench-test of a bending cantilevered rubber plate was conducted to 

provide validation data for FEA simulations where the preconditioning iteration and the 

biaxiality ratio are tested. 

5.1. Experimental hench-test 

A description of the experimental set-up used to apply a bending load to a cantilevered 

rubber plate is presented here. The experimental results are then given and briefly 

discussed. 

5.1.1. Experimental set-up and procedure 

A rubber plate made of the characterised material was used for this experiment. The 

plate was clamped horizontally and a steel bar was laid across the free end of the plate 

from which weights were hung; a schematic representation is provided in Fig. 39. The 

••• Note that in the case of a bending plate made of a rubber-like material, the neutral axis is not necessarily 
at mid-thickness. 
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steel bar was rigid and used to evenly distribute the load along the width of the plate. The 

geometry of the plate with respect to the coordinates given in Fig. 39 is given in Table 7, 

along with the position of the displacement gauge and the width of the rigid bar. 

The same weights were used in the same order for each load set. The total load when aIl 

the weights were hung was 92.26 N (corresponding to a mass of 9.4 kg). The plate was 

loaded and unloaded, and then reshaped manually until it was straight again. This 

procedure was repeated several times in order to precondition the material before the 

recorded load sets were conducted. 

1) 2) 

5) 

tmg tmg 

Fig. 39: Schematic representation of the experimental bench test of a cantilevered rubber plate 

subjected to a ben ding load, mg. The labels indicate the 1) rubber plate, 2) ciamped section, 3) 

displacement gauge, 4) free section and 5) rigid steel bar. 

Table 7: Geometrie parameters for the bending cantilevered rubber plate bench test 

Totallength (X-axis) 
Free length (X-axis) 
Width (Z-axis) 
Thickness (Y-axis) 
Position of displacement gauge along length, from free edge 
Width ofrigid bar (X-axis) 

©MWG 

201.5 mm 
125.3 mm 
151.0 mm 
16.25 mm 
25.3 mm 
12.3 mm 
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After each load increment, a 2 minute interval was taken before measurmg the 

displacement to let the viscous (creep) effects take place. Particularly at the beginning of 

the two minute interval, the displacement gauge indicated continuous change in position 

at a relatively high rate (this rate could not be measured with the available equipment). 

The dial of the displacement gauge would then slow down and by the end of the two 

minutes would have stopped or nearly stopped. Since the load was hanging from strings 

at the free end of the plate, care had to be taken to ensure the load would not swing; 

otherwise the swinging would induce jumps in the creeping effect observed on the 

displacement gauge dials. Since the experiments were meant to be quasi-static (and thus 

strain rate and other time dependent effects were undesirable), the swinging of the load 

was avoided during the recorded experiments. 

5.1.2. Results from experimental ben ch-test 

Four load sets were recorded following the preconditioning of the material. The applied 

load and corresponding displacement measured from the displacement gauge for the first 

two load sets are shown in Fig. 40. In the first load set, only the loading (not the 

unloading) was recorded, the plate was then reshaped and the gauge reset for the second 

load set. In the second load set, the loading and unloading process was recorded. Load 

set 3 was conducted immediately after load set 2 without resetting the gauge or reshaping 

the plate, which explains the residual displacement seen in Fig. 41. While the gauge was 

not reset nor was the plate reshaped for load set 4, there was a pause between the end of 

load set 3 and the beginning of load set 4 (approximately one hour). This allowed the 

plate to recover in shape a little more during the pause, explaining why the measurement 

taken at the end of load set 3 (completely unloaded) indicated a greater displacement than 

at the beginning ofload set 4 (still no load). 

The hysteretic behaviour and residual strain observed in Fig. 41, while very interesting, 

are not predictable with currently available hyperelastic models, which only predict 

purely elastic behaviour, and hence only the loading paths of the first two load sets will 

be considered in the FEA simulations presented in Section 5.2. 
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Fig. 40: Loading paths only for load sets 1 and 2 of the bending cantilevered plate experiment. 

100 

~Loadset2 

----A- Load set 3 
80 -e- Load set 4 

-- 60 
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Fig. 41: Loading and unloading paths for load sets 2, 3 and 4 of the bending cantilevered plate 

experiment. The arrows indicate whether it is a loading or unloading path. 
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5.2. Finite Element Simulations 

This section describes the FEA simulations that were performed to predict the results 

obtained in the experiments of the bending cantilevered rubber plate. Sorne predictions 

are presented from simulations using a single hyperelastic model. The biaxiality test is 

conducted on the FEA model and discussed. The preconditioning iteration is then 

applied to the simulation. This second iteration is shown to greatly improve the results 

predicted by FEA. 

5.2.1. Finite element simulation problem definition 

The symmetrical half of the cantilevered plate is modelled In the FEA software 

ANSYSTM, as shown in Fig. 42. The nodes on the symmetry face of the model are given 

"sliding-only" boundary conditions (in this case, only displacements in the Z-direction 

are fixed). The nodes on the top and bottom surface of the section of the plate that is 

clamped, as defined in Table 7, are given a "zero displacement" boundary condition. A 

virtual displacement gauge is set on the top surface of the plate right at the symmetry 

edge (centred along the width); its position along the length is that given in Table 7. The 

gauge is modelled with a free node that has a frictionless and no separation contact with 

the plate. Furthermore, the node is not permitted to move in the Z- and X-directions. 

This way, the gauge node is displaced vertically along a fixed axis while not interfering 

with the plate by sliding along its surface, such as a real displacement gauge would (or at 

least with very little interference). 

A contact region, the size of the steel bar used to load the plate, is created in ANSYSTM. 

The deformations in the steel are neglected and the contact is thus modelled as a rigid 

one. A force load is applied to the rigid bar via a pilot node. The load is applied such 

that the force always acts in the Y-direction such as to simulate the act of gravit y on a 

weight suspended from the rigid bar. 

Given that the analysis type is nonlinear static, each substep solved for by the ANSYSTM 

solver represents a linear increment of the load until the final load is achieved. 

Retrieving the results obtained at all the substeps solved for in the static analysis provides 
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a load-history of the simulation that can be compared to the quasi-static load-history from 

the experiments. 

ELEMENTS 

y 

~Z 
X 

Fixed displacements 
on top and bottom 

surfaces of clamped 
reglOn 

Symmetry plane (fixed 
displacements in Z­

direction only) 

~mg 

Fig. 42: FEA mode) with boundary conditions for the bending cantilevered plate. 

AN''': . -

Since in this analysis linear hexahedral SOLID185 elements were used and that the 

uniform reduced integration method was applied to reduce computation time, an 

hourglass stiffness factor of 50 was used to avoid hourglassing. As discussed in Section 

4.1.2., the hourglass stiffness factor must have a high enough value to avoid the 

propagation of mechanical modes (a.k.a. hourglassing) due to reduced integration, and a 

low enough value such that the artificial energy that it incurs in each element does not 

exceed a fraction of the same element's total internaI energy. Although the ratio of 

artificial energy to internaI energy in certain elements between the clamped surfaces may 

,r-- exceed 5%, this will be considered acceptable since these elements have little influence in 

the results. 
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The element size was determined by solving the FEA model with a coarse mesh then by 

refining the elements until convergence in the results was observed. The convergence 

test shown in Fig. 43 was performed with a first-order Yeoh hyperelastic model fitted to 

the characterization data preconditioned to 10% engineering strain. In this figure the 

final deformation of the displacement gauge is shown with respect to the number of 

elements used along the thickness (curve with circles). The percent change in final 

displacement from one element size to the next is also shown on the same figure using 

the secondary vertical axis on the right-hand si de of the figure (curve with squares). The 

number of elements along the width and the element size along the length were refined at 

the same time as the number of divisions along the thickness. The element size 

convergence obtained with 8 elements along the width (with the corresponding element 

sizes along the length and width) is acceptable for the purpose of this work and will be 

used for aH further simulations of the bending cantilevered plate. This corresponds to a 

total of 3264 8-noded hexahedral elements. 

36.---------------------------------. 8% 

7% 
.--. 
S 34 6% 
S 

'--' .... s:: 
CI) 

S 
CI) 32 u ,g 
0.. 
<Il :.a 

5% CI) 
u s:: 
CI) 

4% 01) 
---4- Displacement 1-< 

CI) 
;> 
~ Convergence 3% 

s:: 
0 u 

ëii s:: 30 
~ 

2% 

1% 

28 +-----~-----,-----,------,-----+ 0% 

o 2 4 6 8 10 

Divisions (number of elements) along thickness 

Fig. 43: Effeet of refining the mesh in the FEA of the bending eantilevered plate modelled here with a 

first-order Yeoh hyperelastie model fitted to the planar eharacterisation data preeonditioned to 10% 

engineering strain. 
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5.2.2. FEA results using a simple hyperelastic model for the rubber 

Several FEA simulations were conducted using different hyperelastic models with 

different coefficients. These coefficients were determined by fitting the hyperelastic 

models to a single characterisation curve at a time. The following results were obtained 

with first- and third-order Yeoh hyperelastic models, the coefficients for which are listed 

in Table 2 and Table 3 of Section 3.2.1. It is recalled that the first-order Yeoh model is 

equivalent to the Neo-Hookean model. 

Figs. 44, 45 and 46 show FEA predictions solved with first-order Yeoh hyperelastic 

models, each respectively fitted to the uniaxial, planar and equi-biaxial tension 

characterisation data preconditioned to 5%, 10% and 15% engineering strain. Keep in 

mind that the points represent experimental data while the continuous lines represent the 

FEA results. 

100 -,--------------------, 

80 

20 A Load set 1 

o Load set 2 
o ------,----,-----,----,---~ 

o 10 20 30 40 50 
Displacement [rrm] 

Fig. 44: FEA predictions with a first-order Yeoh hyperelastic model fitted to the uniaxial tension 

characterisation data preconditioned to (a) 5%, (b) 10% and (c) 15% engineering strain. 
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Fig. 45: FEA predictions with a first-order Yeoh hyperelastic model fitted to the planar tension 

characterisation data preconditioned to (a) 5%, (b) 10% and (c) 15% engineering strain. 
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Fig. 46: FEA predictions with a first-order Yeoh hyperelastic model fitted to the equi-biaxial 

extension characterisation data preconditioned to (a) 5%, (b) 10% and (c) 15% engineering strain. 

AIl the results predicted with the first-order Yeoh hyperelastic model show a relatively 

linear load-displacement response, regardless of the characterisation curve they were 
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fitted to or, mathematically speaking, regardless of the value of the hyperelastic 

coefficient, CIO. Due to the nonlinear nature of the experimental results, the predictions 

obtained with the first-order Yeoh hyperelastic model agree with the experiments only 

over a certain range of load. For example, the FEA prediction with the first-order Yeoh 

fitted to the 5% planar data (Fig. 45) is relatively good for roughly the first third of the 

total load while the 5% uni axial fit (Fig. 44) shows good prediction for roughly the 

second third of the totalload. The last third of the totalload is not predicted by any of the 

simulations, although both the 10% planar fit (Fig. 45) and the 5% equi-biaxial fit (Fig. 

46) come pretty close to the experimentally measured displacement at the final load. 

Unfortunately, none of these observations lead to a preferred characterization test for a 

first-order Yeoh hyperelastic model. 

The FEA results obtained with the third-order Yeoh hyperelastic model clearly show 

nonlinear load-displacement behaviour. Fig. 47 shows two FEA predictions solved with 

a third-order Yeoh hyperelastic models, each respectively fitted to the uniaxial tension 

characterisation data preconditioned to 5% and 10% engineering strain. The predictions 

using a third-order Yeoh model fitted to the uni axial characterisation data preconditioned 

to 5% engineering strain agree very well with the early load-displacement stage of the 

experiment up to a displacement of around 15 mm. At this point the FEA results predict 

sudden stiffening that was not observed in experiment. The load required to bend the 

plate to the final displacement measured in experiment would be several orders of 

magnitude greater than in the experiment. As discussed in Section 3.2.2, this is due to the 

fact that the third-order hyperelastic material fitted to data preconditioned to 5% 

engineering strain behaves as if it had reached its elongation limit. In practice, when 

rubber is stretched beyond its level of preconditioning, the stress-strain behaviour falls 

back on to the virgin stretch path of the material. At low to moderate levels of strain, this 

has a considerable softening effect. 
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Fig. 47: FEA predictions with third-order Yeoh hyperelastic models fitted to the uniaxial tension 

characterisation data preconditioned to (a) 5% and (b) 10% engineering strain, as labelled in the 

figure. 

Fig. 48 shows two FEA predictions solved with a third-order Yeoh hyperelastic models 

each respectively fitted to the planar tension characterisation data preconditioned to 5%, 

10% and 15% engineering strain. In this case, the third-order Yeoh model fitted to the 

data preconditioned to 10% engineering strain show the best agreement with the 

experiments. Fig. 49 shows two FEA predictions solved with a third-order Yeoh 

hyperelastic model, each respectively fitted to the equi-biaxial extension characterisation 

data preconditioned to 5%, 10% and 15% engineering strain. These results show the least 

nonlinearity of aH the results obtained with third-order Yeoh hyperelastic models. 
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Fig. 48: FEA predictions with third-order Yeoh hyperelastic models fitted to the planar tension 

characterisation data preconditioned to (a) 5% and (b) 10% engineering strain, as labelled in the 

figure. 

While sorne of the results obtained with the third-order Yeoh models are arguably in 

good agreement with the experiments, it is still not clear which level of preconditioning, 

the 5% or the 10% one, or which state of simple strain should be used to obtain the 

hyperelastic coefficients. Furthermore, it would not be appropriate to assume that aIl the 

elements in this type of analysis, particularly across the thickness and near the clamped 

edge, undergo the same level of preconditioning. Hence, choosing one level of 

preconditioning over another to curve-fit the hyperelastic model may seem quite 

arbitrary. The preconditioning iteration and the biaxiality test will be applied to the FEA 

models in the following two sections, in an attempt to solve sorne of these issues. 
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Fig. 49: FEA predictions with third-order Yeoh hyperelastic models fitted to the equi-biaxial 

extension characterisation data preconditioned to (a) 5% and (b) 10% engineering strain. 

,~ 5.2.3. Preconditioning iteration applied to the bending cantilevered plate 

As mentioned before, it is weIl known that the material nearest the neutral axis of a 

bending plate will deform very little, whereas the top and bottom surfaces will undergo 

the largest strains. During cyclic loading, the plate will be preconditioned to different 

states of maximum strain, meaning that it will show different stress-strain behaviour 

across its thickness. The preconditioning iteration requires that a previous FEA 

simulation be conducted where the desired maximum deformation has been attained. 

Due to the nature of the boundary conditions (applied load rather than imposed 

displacement), the results from the FEA simulations where the final predicted gauge 

displacement is closest to that measured in the experiments will be used for the 

preconditioning iteration. Three simulations are selected for the purpose of the 

preconditioning iteration; they are listed in Table 8. In order to facilitate reference to the 

hyperelastic models used in these simulations, they are given labels. Accordingly, 

YlST_lOP refers to a first-order Yeoh model (YI) fitted to the uni axial tension, or simple 

~- tension (ST), characterisation data preconditioned to 10% engineering strain (lOP). 

Similarly, YlPT_IOP refers to a first-order Yeoh model (YI) fitted to the planar tension 
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(PT) characterisation data preconditioned to 10% engineering strain (10P) and Y3PT_lOP 

refers to a third-order Yeoh model (Y3) fitted to the planar tension (PT) characterisation 

data preconditioned to 10% engineering strain (1 OP). 

Table 8 also lists the final displacements predicted by the three selected FEA simulations 

associated to the defined labels and compares them to the displacements measured in the 

first and second load sets of the experiment. 

As described in Section 4.2, the elements are classified according to their average 

maximum principal strain which is retrieved from the results of a first FEA simulation. 

The elements are grouped according to their strain range as defined in Table 5. AlI 

elements within the same strain range are given the same hyperelastic model fitted to a 

characterisation curve preconditioned to a level of strain in accordance to Table 5. To 

remain consistent, aIl the hyperelastic models used in a given preconditioning iteration 

are fitted to the data from the same characterisation test. 

Table 8: Hyperelastic models used in the first FEA simulation to be used in the preconditioning 
iteration 

Label Curve-fitting options Final gauge displacement [mm] 

Model State of Preconditioning FEA Load set Load set 

order strain level (eng. strain) prediction 1 2 

YlST lOP First Uniaxial 10% 34.6 30.0 32.6 

YIPT lOP First Planar 10% 30.1 30.0 32.6 

Y3PT lOP Third Planar 10% 29.3 30.0 32.6 

The classification of elements from the FEA results obtained with the hyperelastic 

models YlST_lOP, YIPT_I0P and Y3PT_lOP, from Table 8, is illustrated in Figs.50, 51 

and 52, respectively. Since the final deformations from these results vary slightly, it is 

expected that the distribution of elements in the different strain ranges varies slightly as 
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well. As seen in Fig. 50, where the YlST_lOP hyperelastic model was used in the first 

analysis, the preconditioning iteration classification associates 12 elements to the 

0.06 < e; ~ 0.1 0 strain range, indicating that these elements will be given a hyperelastic 

model fitted to the characterisation curves preconditioned to 15% engineering strain. In 

contrast, the preconditioning iteration classification, illustrated in Figs. 51 and 52, 

indicate that no elements from the FEA results obtained with the YIPT 10P nor the 

Y3PT_lOP hyperelastic models show maximum principal Hencky strains greater than 

e; = 0.06. 

AN 

Fig. 50: Classification of elements according to their level of maximum principal st ra in for a 

simulation solved with the YlST_lOP hyperelastic model. White: 0 < e; ~ 0.005; Iight grey: 

0.005 < e; ~ 0.03 ; dark grey: 0.03 < e; ~ 0.06 ; black: 0.06 < e; ~ 0.10. 
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Fig. 51: Classification of elements according to their level of maximum principal strain for a 

simulation solved with the YIPT_I0P hyperelastic model. White: 0 < S; ~ 0.005; Iight grey: 

0.005 < S; ~ 0.03 ; dark grey: 0.03 < S; ~ 0.06. 

Fig. 52: Classification of elements according to their level of maximum principal strain for the 

simulation solved with the Y3PT_I0P hyperelastic model. White: 0 < S; ~ 0.005; Iight grey: 

0.005 < S; ~ 0.03 ; dark grey: 0.03 < S; ~ 0.06. 

The load-displacement predictions shown III Fig. 53 are obtained from the 

preconditioning iteration with hyperelastic models fitted to the uniaxial tension 

characterisation data. The elements were classified prior to the second iteration 

according to the first FEA simulation solved with the YlST_lOP, the YIPT_lOP and the 

78 
©MWG 



,------. 

Y3PT _1 OP hyperelastic models as indicated in the figure. The preconditioning iteration 

is repeated in a similar fashion with hyperelastic models fitted to the planar tension and 

equi-biaxial extension data in Figs. 54 and 55 respectively. AlI three figures (Figs. 53, 54 

and 55) seem to indicate that the choice of the first analysis (obtained with YI ST _lOP, 

YIPT_I0P or Y3PT_lOP) has little influence on the results of the second iteration. On 

the other hand, the choice of characterisation data for the second iteration seems to play a 

more important role. 
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Fig. 53: Predictions from the preconditioning iteration with first-order Yeoh hyperelastic models 

fitted to the uniaxial characterisation data for the second iteration. The FEA predictions are 

identified according to the hyperelastic model used in the first analysis. 
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Fig. 54: Predictions from the preconditioning iteration with first-order Yeoh hyperelastic models 

fitted to the planar characterisation data for the second iteration. The FEA predictions are identified 

according to the hyperelastic model used in the first analysis. 
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Fig. 55: Predictions from the preconditioning iteration with first-order Yeoh hyperelastic models 

fitted to the equi-biaxial characterisation data for the second iteration. The FEA predictions are 

identified according to the hyperelastic model used in the first analysis. 
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It may be observed that the FEA results predicted from the preconditioning iteration are 

the most accurate when the hyperelastic models used are fitted to the uniaxial 

characterisation data. This observation is evident when comparing the results obtained 

from the preconditioning iteration in the same figure, as done in Fig. 56. For the sake of 

the discussion, the elements in these preconditioning iterations were classified according 

to the results of the first analysis where the YIPT_IOP hyperelastic model is used. The 

preconditioning iteration with hyperelastic models fitted to the planar tension 

characterisation data shows a slightly stiffer response while the results obtained with the 

hyperelastic models fitted to the equi-biaxial characterisation data show a slightly softer 

response with respect to the experimental measurements. This is expected; a quick look 

at the first-order Yeoh coefficients in Table 2 shows stiffer models when fitted to planar 

data and softer models when fitted to equi-biaxial data (since the coefficients are 

proportional to the initial stiffness of the model, refer to Table 1, Section 2.3.). 

100.--------------------------. 

80 

t:. Load set 1 
20 

o Load set 2 

o __ ------,--------r-------.--~ 
o 10 20 30 
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Fig. 56: FEA predictions following the preconditioning iteration where the elements were c1assified 

according to the strains from the first analysis with the YIPT_IOP hyperelastic model. The first­

order Yeoh hyperelastic models used in the preconditioning (second) iteration were fitted to the (a) 

planar tension, (b) uniaxial tension and (c) equi-biaxial extension characterisation data. 

81 
©MWG 



The accuracy of the results obtained with first-order Yeoh models in the preconditioning 

iteration indicates that the third-order Yeoh hyperelastic formulation is not necessary to 

capture the nonlinear response of the system. Simply capturing the softening of the 

material due to preconditioning effects, even if the local nonlinearity at different 

preconditioning levels is not fully captured with a first-order hyperelastic model, proves 

to be enough to predict the nonlinear response of the bending cantilevered plate. 

5.2.4. Biaxiality test applied to the ben ding cantilevered plate 

The biaxiality test is meant to be conducted on the results of a FEA simulation in order to 

provide information on the dominant state(s) of simple strain in the analysis. To remain 

consistent with the previous section (preconditioning iteration), the biaxiality test will be 

performed on the results of the simulations obtained using the YIST_IOP, YIPT_lOP 

and Y3PT_IOP hyperelastic modelsttt. The biaxiality ratio of every element may be 

determined by post-processing the results of the selected simulations. The elements are 

then classified into the three regions of dominant deformation, as defined in Table 6 from 

Section 4.3; a region of dominant uniaxial extension between a u_p and au' a region of 

planar deformation between aB_p and au_p , and a region of equi-biaxial extension 

between aB and a B-P • 

The elements that are between the clamped surfaces barely deform at all during the 

analysis and contribute very little to the results. Furthermore, the biaxiality ratios 

obtained from these elements are likely to be incorrect due to their possibly high ratio 

(>5%) of artificial energy to internaI energy induced by the hourglass stiffness factor, as 

discussed in Section 5.2.1. and even earlier in Section 4.1.2. Therefore, the biaxiality 

ratios of the elements between the clamped surfaces minus the first rowHt, as shown in 

Fig. 57, will be neglected, i.e. 2120 of the 3264 elements are considered for the biaxiality 

test. 

ttt As defined in Table 8. 
m A row of elements between the clamping surfaces, along the width of the plate, is kept in the biaxiality 
test since they are likely to have non-negligible levels of strain. 
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Fig. 57: The elements not between the c1amped surfaces plus the first row under the c1amped 

surfaces (shown in grey) are submitted to the biaxiality test. The elements in white are neglected in 

the biaxiality test. 

The biaxiality test was performed on the FEA results for different loads and thus different 

displacements. The distribution of the elements in the three regions of dominant 

deformation as the gauge displacement increases is shown in Fig. 58. The plate was 

loaded beyond the deformation measured in the experiments, simply to see if and how the 

distribution changed at higher displacement. These results were obtained with a first­

order Yeoh hyperelastic model fitted to the planar characterisation data preconditioned to 

10% engineering strain. Fig. 58 shows very little change in the distribution of elements 

in the three regions of dominant deformation as the plate bends. 
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Fig. 58: Distribution of elements in the three regions of dominant deformation defined in the 

biaxiality test as a function of the predicted gauge displacement. These results were obtained with a 

first-order Yeoh hyperelastic model fitted to the planar characterisation data preconditioned to 10% 

engineering strain. 

The distribution of elements predicted by the biaxiality test in the three reglOns of 

dominant deformation obtained with the three different hyperelastic models used is listed 

in Table 9. It is seen in this table that these distributions change very little from one 

hyperelastic model to the next. 

If the plate was infini tel y wide, aH deformations would be expected to be planar and thus 

the biaxiality ratios of every element would equal to a p. But when considering a plate of 

finite width, regions of dominantly uniaxial (ab ove neutral axis) and dominantly equi­

biaxial (below neutral axis) extension will appear near the ends, as shown in Fig. 59. 
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Table 9: Distribution of elements in the three regions of dominant deformation determined by the 
biaxiality test 

Hyperelastic models FEAgauge Number of elements in regions of 

(labels defined in Table 8) displacement dominant deformation [%] 

[mm] 
Uniaxial Planar Equi-biaxial 

Y1ST lOP 34.6 19 65 16 

YIPT lOP 30.1 19 65 16 

Y3PT 10P 29.3 20 64 16 

2) 

Fig. 59: Distribution of elements in the regions of dominant strain shown on the symmetrical half of 

the cantilevered plate subjected to a bending load at its free end; 1) region of dominantly planar 

deformations, 2) region of dominantly uniaxial deformation and 3) region of dominantly equi-biaxial 

deformation. A first-order Yeoh hyperelastic model was used fitted to the planar characterisation 

data preconditioned to 10% engineering strain. 

The FEA predictions from the preconditioning iteration are aU very close (within 10% of 

the experimental measurements) regardless of the simple state of strain the models are 

fitted to, as seen in Figs. 53, 54 and 55; nonetheless, the predictions with the hyperelastic 

models fitted to uni axial data are perhaps the best in this particular case. 
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While the biaxiality test indicates that the majority of the elements in this analysis are in 

the region of dominant planar deformation, the hyperelastic models obtained with the 

planar tension data are the stiffest (refer to Table 2). No hyperelastic model can precisely 

represent an states of strain simultaneously; for a given level of preconditioning the fit to 

pl anar data is stiffest, the fit to biaxial data is softest, and the fit to uniaxial data is in­

between. U sing the uniaxial data to fit the hyperelastic models for the preconditioning 

iteration in simulations where aH three states of dominant deformation (defined by the 

biaxiality ratio) are present may be the best compromise. Maybe if the plate were made 

much wider (such as to approach a state of plane strain, with negligible side effects) the 

preconditioning iteration fitted to planar data would pro vide a better prediction. 

One may argue that even better agreement may be obtained if each dominant region of 

strain had hyperelastic models fitted to the corresponding characterisation data. In other 

words, the elements in the region of dominant uniaxial deformation would be fitted to the 

uniaxial tension characterisation data, the elements in the region of dominantly planar 

deformation would be fitted to the planar tension characterisation data, and the elements 

in the region of dominantly biaxial deformation would similarly be fitted to the equi­

biaxial extension characterisation data. On the other hand, characterising rubber in three 

states of simple stress can be very expensive. A cost-savings alternative would be to use 

only one characterisation test in a FEA simulation to predict the behaviour of the 

material, in which case the work presented herein provides a reference on how to choose 

the appropriate characterisation test for a given analysis. 
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Chapter 6: Transverse Deflection of a Guide Lug 

This chapter addresses the elastic behaviour of a standard rubber guide lug subjected to a 

transverse load. While the problem of the bending cantilevered plate may be considered 

simple, that of a guide lug subjected to a deflection load is slightly more complex. 

Tension, compression and shear are expected to be present, but it is more difficult to 

anticipate where exactly. Furthermore, the deformation of a guide lug is a problem more 

likely to be encountered in an industrial context. 

Rubber tracks are widely used in the power-sports (e.g. snowmobiles) and agricultural 

(e.g. tracked vehicles made by Caterpillar, John Deer or AGCO) industries; they can also 

be found in municipal (e.g. sidewalk snow removal vehicles namely used in Montreal) 

and alpine (e.g. trail grooming) applications. Tracks are usually sprocket-driven or 

friction-driven. Sprocket-driven tracks are similar to gear mechanisms; a sprocket 

engages rubber drive lugs on the inner side of the track. On the other hand, friction-driven 

tracks rely strictly on the friction between a smooth metal cylinder and the inner surface 

of a rubber track. 

Tracks may be subjected to transverse loads that would potentially cause them to derail 

from the vehicle. While the drive lugs of a sprocket-driven track may also be used to 

prevent derailment, rubber guide lugs on the inner side of friction-driven tracks are often 

present, simply to ensure the track stays in place. 

Experiments were conducted on a rubber guide lug made of the same rubber that was 

characterised previously. FEA simulations of the guide lug were performed and their 

predictions are compared to the experiments. The preconditioning iteration and biaxiality 

test are also applied to this problem. 

Although (drive or guide) lugs are rarely reinforced with other materials, rubber tracks 

~. are often reinforced in the mid-layer, a.k.a. carcass, between the lugs and the treads 

("ribbed" or "toothed" surface that is shaped to grip the ground). Since only the rubber 
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behaviour is of interest in this work, the experiments to be described were conducted on 

guide lugs with no reinforced carcass. 

6.1. Experimental ben ch-test 

A description of the experimental set-up used to apply a transverse deflection load to a 

guide lug is presented herein. The experimental results are then given and briefly 

discussed. 

6.1.1. Experimental set-up 

The test-section comprised the inner side of a track with several guide lugs. A top view 

of the experimental set-up is illustrated in Fig. 60. The specimen was clamped down on 

either side of the tested guide lug by two metal plates. The two metal plates were held 

down by two metal bars. 
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Fig. 60 : Illustration of the experimental set-up for the guide lug deflection test. The dashed lin es 

( ---- ) delimit components that are not directly represented in the FEA model. The continuous Iines 

(--) delimit the geometry that is modelled in the finite element analysis. Note that this illustration 

is not necessarily to scale. 
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The geometry of the guide lug is described in more detail in Fig. 61 and the 

corresponding dimensions are listed in Table 10. The geometry described in Fig. 61 and 

Table 10 also is the geometry used in the FEA model. 
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Fig. 61: Schematic representation of the guide lug and pushing block used to detlect the guide lug 

transversally (X-direction). The labelled dimensions are defined in Table 10. 
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Table 10 : Guide lug dimensions as labelled in Fig. 61 

(i) Clamping width 

(ii) Guide lug length 

(iU) Guide lug width 

(iv) Base thickness 

(v) Base length 

(vi) Base width 

(vii) Guide lug height 

(viii) Deflection bar width 

(ix) Deflection bar height 

Deflection bar angle, e 

50.40 mm 

175.6 mm 

123.3 mm 

23.18 mm 

181.5 mm 

195.9 mm 

88.90 mm 

50.80 mm 

63.50 mm 

The experimental procedure consisted of applying an incremental transverse deflection to 

the guide lug through a dej/ection bar, as shown in Figs. 60 and 61. A load cell allowed 

the reading of the reaction force on the deflection bar. Displacement gauges were used to 

measure the displacement of the deflection bar and of the opposite side of the guide lug, 

as shown in Fig. 62. A few other displacement gauges were positioned around the bench 

test to ensure the assumptions made to simplify the FEA model would hold. 

Here the displacement imposed by the deflection bar was constant and the resulting 

reaction force was measured with the load cell. Therefore, rather than creep effects, 

relaxation effects were observed. In other words, the readings on the displacement 

gauges would remain constant immediately after a displacement increment, white the 

load cell indicated a continuous change in the reading of the reaction force on the 

deflection bar immediately after a displacement was imposed. Two-minute intervals 

were taken between the displacement increments before measuring the corresponding 
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load, in order to let relaxation effects take place. The displacement increments were 

assumed small enough to approximate quasi-static loading. 

Fig. 62: Position of the displacement gauges used in the guide lug deflection experiments. 

Displacement gauge (1) measured the X-direction displacement of the deflection bar while 

displacement gauge (2) measured its displacement in the Y-direction. Displacement gauge (3) 

measured the X-direction displacement of the side of the guide lug opposite to the deflection bar. 

Displacement gauge (3) was centered in Z with respect to the guide lug geometry and positioned at a 

height h = 71 mm from the base of the guide lug. 

6.1.2. Results from experimental tests 

Each "load cycle" consisted of applying incremental displacements to the deflection bar 

until the desired transverse displacement was obtained. The unloading was not recorded 

in these experiments. The relaxation effects were not recorded either, only the reaction 

force value two minutes after each displacement increment was imposed. The 

displacement gauges and load cell were zeroed after each load cycle. Four transverse 

deflection load cycles were performed on the guide lug. The load measured at the load 

cell is plotted against the horizontal displacement of the deflection bar for each cycle in 

Fig. 63. 
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Fig. 63: Experimental results showing the load-displacement pa th of the deflection bar for the .5t, 
2od

, 3rd
, and 4th loading cycles (no unloading recorded). 

It is worth mentioning that the relaxation effects were important; the two-minute interval 

taken following each displacement increment before reading the load cell was determined 

arbitrarily. A compromise had to be made between pressing on with the experiment 

without excessive delay and letting relaxation effects take place. The two-minute interval 

seemed like an appropriate compromise. Immediately following each displacement 

increment, the load cell would show a high rate of change, i.e. a high rate of relaxation, 

making it practically impossible to accurately read a value of load. By the end of the two 

minutes, the relaxation rate had slowed down to the point of being barely perceptible on 

the load cell. 

The vertical displacement of the deflection bar, measured with the second displacement 

gauge, is plotted against its horizontal displacement in Fig. 64. This vertical 

displacement is attributed to the bending of the deflection bar as it is applying load to the 
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guide lug. Load sets 1 and 2 seem to follow the same, nearly linear, vertical versus 

horizontal displacement path, while load sets 3 and 4 have a slightly different, yet still 

nearly linear, path. This difference could be due to rearrangements in the experimental 

set up between load set 2 and 3. 
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Fig. 64: Vertical (gauge 2) vs. horizontal (gauge 1) displacement of the deflection bar. 

The displacement of the opposite end of the guide lug was also monitored with a third 

displacement gauge, the results of which are presented in Fig. 65. These measurements 

are quite linear as well and seem to follow the same path from one load set to the next. 
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Fig. 65: Displacement measured at the third displacement gauge (from Fig. 62) vs. the horizontal 

displacement of the deflection block (second displacement gauge). 

6.2. Finite Element Simulations 

This section describes how the finite element model was built. Results with hyperelastic 

models fitted to a single state of simple strain are presented first. The biaxiality test and 

the preconditioning iteration are then applied to the simulation. The FEA results with and 

without the preconditioning iteration are compared to the experimental results. 

6.2.1. Finite element simulation problem definition 

As mentioned in the previous section, the geometry for the finite element model is based 

on that shown in Fig. 61 with parameter details in Table 10. 

SOLID187 quadratic tetrahedral elements, available in ANSYSTM 8.0 and later versions, 

were used to mesh the guide lug geometry in this FEA model. The symmetrical half of 

the me shed guide lug with its boundary conditions is shown in Fig. 66(a) and Fig. 66(b). 

94 
©MWG 



The nodes on the top surfaces, indicated as fixed supports in the figure, are fixed in aIl 

degrees of freedom to simulate the clamping condition from the experiment. A symmetry 

face is determined in the XY-plane at the centre of the guide lug in the Z-direction. This 

symmetry plane is implemented in the FEA model to reduce computation time. The 

surface of the deflection bar that is in contact with the guide lug is modeIled with a rigid 

contact in ANSYSTM. The displacement of the deflection bar is controIled by a pilot 

node; one single node controls the displacements of aIl the other nodes in the rigid 

contact element. Using a pilot node facilitates the retrieval of reaction forces when post­

processing the results. 

(a) (b) 
AN-

Fixed support 

Symmetry plane 

Fig. 66: Meshed guide lug and boundary conditions applied to designated faces. 

A displacement is applied to the pilot node that controls the position of the rigid contact 

modelling the deflection bar and the corresponding reaction force is calculated. The 

fixed displacement includes a horizontal and vertical components resulting from a linear 

approximation of the measurements shown in Fig. 64. FEA simulations are conducted 

for the second, third and fourth load steps. The first experimental load step is not 

compared to FEA predictions, since in this load set the material still seems to be in the 

process of being preconditioned. 

A contact node is used to simulate displacement gauge 2 (refer to Fig. 62); it is free to 

slide without friction on the surface of the guide lug and free to move in the X-direction 

but its displacement is fixed in the Y- and Z-directions. Its X-displacement is monitored 
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and thus provides a measurement similar to that read by the experimental gauge. It is 

emphasized that it is constrained to move in a single axis while remaining in contact with 

the guide lug, yet it does not interfere with the deflection of the guide lug. 

A global element size of 18 mm was used in the FEA results presented here with a total 

of 4907 10-noded tetrahedral elements. The size of the guide lug elements near the 

contact surface of the displacement block were reduced to one third of the global element 

size for the mode!. The global element size of the model was determined with a 

convergence test similar to the one in the previous chapter. The analysis is run with 

different element sizes and the final predicted loads for the imposed displacement for 

each simulation are compared. Fig. 67 shows the final resulting force in the X-direction 

applied by the displacement block with respect to the element size. This convergence 

test was performed with a first-order Yeoh hyperelastic model fitted to the planar 

characterization data preconditioned to 10% engineering strain. The accuracy of the 

predicted load with respect to the experimental results is not considered here. §§§ It is 

observed that, while the load predicted may not seem to converge as nicely as it did for 

the bending plate analysis, the change in load prediction from one mesh refinement to the 

next always remains small and is therefore acceptable. 

Stress concentrations are expected to occur on the surface of the guide lug in contact with 

the edges of the displacement block. Although refining the mesh often leads to improved 

results in FEA simulations, refining the mesh near areas with stress concentration can 

lead to the opposite effect and may even cause divergence of the solution. It is often 

acceptable to leave a coarser mesh near stress concentrations, particularly if they do not 

affect the results ofinterest in the analysis. A global element size of 18 mm was chosen 

in order to have a mesh that is refined enough while remaining computationally efficient. 

The refinement at the surfaces in contact with the deflection bar was determined also to 

improve the accuracy of the results without encountering divergence issues likely due to 

stress concentrations. 

§§§ The element size convergence depends only a converging load from one element refinement to the next. 
The FEA predictions will be compared to the experimental data in Sections 6.2.2 and 6.2.3. 
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Fig. 67: Effect of refining the mesh in the FEA of the ben ding cantilevered plate modelled here with a 

first-order Yeoh hyperelastic model fitted to the planar characterisation data preconditioned to 10% 

engineering strain. Note that the percent change in load was calculated starting with the results from 

a global element size of 40 mm. 

6.2.2. FEA results using a single hyperelastic model for the rubber 

The displacement of the deflection bar along with its reaction force is retrieved from 

every substep in order to provide a force-displacement path. The substeps are controlled, 

obviously to allow the solution to converge, but also to keep track of the load history of 

the guide lug. 

FEA results obtained using a first-order Yeoh model fitted to uniaxial characterization 

data preconditioned to 5~ engineering strain as well as a third-order Yeoh model fitted to 

planar characterization data preconditioned to 1 O~ engineering strain are shown in Fig. 

68. The FEA prediction with the first-order hyperelastic model shows a response that 

slightly stiffens as the deflection increases. This type of response is expected for any 

analysis performed with a first-order Yeoh hyperelastic model; changing the coefficient 
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would simply change the initial slope of the response curve. The FEA prediction with the 

third-order Yeoh hyperelastic model shows sudden stiffening to excessive loads several 

orders of magnitude greater than the load measured in experiment (not shown in the 

figure for visual scaling purposes). The use of any other third-order Yeoh hyperelastic 

model would have a similar qualitative behaviour. In either case (first- or third-order 

hyperelastic models), there is no qualitative agreement with the experimental 

measurements. 

16000 

14000 Third-order Yeoh 

12000 

,........, 

6. 
10000 

.g 8000 First-order Yeoh 
0 

....:l 6000 

4000 A Load set 2 

2000 

0 

0 5 10 15 20 
Displacement of detlection bar (gauge 1), [nnn] 

Fig. 68: Load-displacement predictions from the FEA model of the deflection of a guide lug 

compared to the experimental measurements. The first-order Yeoh model was fitted to uniaxial 

characterization data preconditioned to 5% engineering strain while the third-order Yeoh model 

fitted to planar characterization data preconditioned to 10% engineering strain. 

6.2.3. Preconditioning macro applied to the ben ding cantilevered plate 

The preconditioning iteration is applied next to the results of selected FEA simulations 

obtained with a single hyperelastic model. The average maximum principal Hencky 

strain of every element is retrieved and the elements are grouped according to the ranges 

defined in Table 5 of Section 4.2. Each group of elements within a given range are 

attributed the same hyperelastic model fitted to a preconditioned curve again as defined in 
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Table 5 of Section 4.2. Distributions of the different strain ranges are provided in Fig. 

69, these are sensibly the same, regardless of the first-order hyperelastic model used in 

the first analysis. 

(a) (b) (c) 

Fig. 69: Classification of elements according to their level of maximum principal st ra in for (a) load 

set 1, (b) load set 2, (c) load set 3. White: 0 < ~ ~ 0.005; Iight grey: 0.005 < ~ ~ 0.03; grey: 

0.03 < ~ ~ 0.06; dark grey: 0.06 < ~ ~ 0.10; black: ~ > 0.10. 

The load-displacement paths obtained with the preconditioning iteration are shown in 

Figs. 70, 71 and 72, for load sets 2, 3 and 4, respectively. The most important 

observation to be made here is the drastic improvement in qualitative and quantitative 

predictions of the preconditioning iteration with respect to the experimental 

measurements, as opposed to the results obtained with a single hyperelastic model. 

Therefore modelling the effect of preconditioning is critical in this particular analysis. 

The preconditioning iteration seems to best predict the experimental measurements of 

load set 2 when the first-order Yeoh hyperelastic model is fitted to the planar 

characterisation data. On the other hand, experimental load sets 3 and 4 are best 

predicted when the first-order Yeoh hyperelastic model is fitted to the uniaxial 

characterisation data. This again, raises unanswered questions with respect to the 

conclusions that can be reached from the biaxiality test. 
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Fig. 70: Load-displacement path for load set 2 from the preconditioning iteration with first-order 

Yeoh models fitted to (a) planar tension data, (b) uniaxial tension data, and (c) equi-biaxial extension 

data, for the second iteration. 
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Fig. 71: Load-displacement path for load set 3 from the preconditioning iteration with first-order 

Yeoh models fitted to (a) planar tension data, (b) uniaxial tension data, and (c) equi-biaxial extension 

data, for the second iteration. 
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Fig. 72: Load-displacement path for load set 4 from the preconditioning iteration with first-order 

Yeoh models fitted to (a) planar tension data, (b) uniaxial tension data, and (c) equi-biaxial extension 

data, for the second iteration. 

6.2.4. Biaxiality test applied to the deflecting guide lug problem 

The biaxiality test is conducted on the results of selected FEA simulations used in Section 

6.2.2. 3810 of the 4907 elements of the guide lug model are considered for the biaxiality 

test, as shown in Fig. 73, in an attempt to capture a more relevant distribution of elements 

in the regions of dominant deformation, since these elements will undergo the most 

strain. 

The fact that displacements are imposed as boundary conditions allows for a more 

thorough comparison of the distribution of elements in the dominant regions of 

deformation defined by the biaxiality test for different hyperelastic models. It was 

observed that the biaxiality test distributes the elements in the exact same way when the 

FEA results are obtained with a first-order Yeoh hyperelastic model, regardless of the 

characterisation data it is fit to, provided the imposed displacement remains consistent. 
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Table Il lists the different distributions of the biaxiality test obtained from FEA 

simulations with first-order Yeoh models for the different load sets from the experiments. 

J\N:; ... 

Fig. 73: 3810 elements (in grey) of the 4907 elements in the model are considered for the biaxiality 
test. 

Table Il: Percentage distribution of elements in the three regions of dominant deformation defined 

by the biaxiality ratio when the FEA simulation is conducted with first-order Yeoh models 

Load set Number of elements in regions of dominant deformation [%] 

Uniaxial Planar Equi-biaxial 

2 17 31 52 

3 16 31 53 

4 16 31 53 

Fig. 74 provides a view of the distribution of the elements in the regions of dominant 

deformation. Visually, there is very little change in the biaxiality test distributions from 

one load set to the next. 
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(a) (b) (c) 

Fig. 74: Distribution of elements in the regions of dominant deformation for (a) load set 1, (b) load set 

2 and (c) load set 3. Black: Region of dominant uniaxial tension; white: Region of dominant planar 

tension; grey: Region of dominant equi-biaxial tension. 

On the other hand, the distribution of elements obtained by applying the biaxiality test to 

the results of FEA simulations with third-order Yeoh hyperelastic models changes, albeit 

very little, when fitted to different characterisation data curves. Sorne of these 

distributions are compared in Table 12. While slightly different from the distributions 

obtained with the first-order Yeoh models, again, there is no major change in regions of 

dominant deformation. 

Fig. 75 provides a visualisation of the evolution, from load set 2 through 4, of the 

distribution of elements in the three regions of dominant deformation defined by the 

biaxiality test, applied here to the FEA results obtained with a third-order Yeoh model 

fitted to planar characterisation data preconditioned to 10% engineering strain. While the 

distribution of elements in the regions of dominant deformation varies little from a first­

order Yeoh model to a third-order Yeoh model, there is a distinctive difference between 

the visual distribution, when comparing Fig. 74 and Fig. 75. The distribution of elements 

in Fig. 75 seems more distinctive as opposed to many scattered elements from different 

regions of dominant deformation in Fig. 74. 
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Table 12: Percentage distribution of elements in the three regions of dominant deformation defined 

by the biaxiality ratio when the FEA simulation is conducted with third-order Yeoh models 

Third-order Yeoh curve-fitting options Applied Dominant regions [%] 

State of strain Preconditioning load set Uniaxial Planar Equi-

level (eng. strain) biaxial 

Planar 10% 2 20 31 49 

Planar 10% 3 29 29 42 

Uniaxial 10% 4 21 27 52 

Planar 10% 4 21 27 52 

Equi-biaxial 10% 4 18 30 52 

Ca) (b) (c) 

Fig. 75: Distribution of elements in the regions of dominant deformation obtained with third-order 

Yeoh hyperelastic models fitted to planar characterisation data preconditioned to 10% for (a) load 

set 1, (b) load set 2 and (c) load set 3. Black: Region of dominant uniaxial tension; white: Region of 

dominant planar tension; grey: Region of dominant equi-biaxial tension. 

While the majority of elements in this analysis (deflection of the guide lug) are in the 

region of dominant equi-biaxial deformation, the other two regions of dominant 

deformation (uniaxial and planar) are definitely present and arguably in regions where 

there is higher strain. It is noted that the region of large st deformation (e; > 0.10) in Fig. 

69 in the previous section, in the area below the contact with the deflection bar, coincides 
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with the region of dominantly uniaxial tension seen in Fig. 74 or Fig. 75. Following a 

similar reasoning as in Section 5.2.4, it is proposed that applying the preconditioning 

iteration with hyperelastic models fitted to the uniaxial tension data would provide the 

best compromise capable of capturing the behaviour of the rubber in an analysis sharing 

aH three regions of dominant deformation. 

With this knowledge now in mind, it would have been possible to save on 

characterisation costs by only testing the rubber in uniaxial tension. On the other hand, 

one could use different hyperelastic models for the different regions of dominant 

deformation such that the hyperelastic models are fitted to the appropriate 

characterisation data. As discussed in Section 5.2.4, while this alternative may deserve 

investigation, the potential gain in numerical agreement with experiment is small 

compared to the increase in characterisation cost. 
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Chapter 7: Conclusion 

A review of the general mechanics of rubber was undertaken in this work which led to a 

better understanding of the assumptions implied in using hyperelastic models to predict 

the behaviour of this particular material. The methods employed to quasi-statically 

characterise a rubber compound in uniaxial, planar and equi-biaxial tension were 

discussed. Limitations of the hyperelastic models with respect to the characterisation 

data were identified while applying the curve-fitting tools available in ANSYSTM. 

The following conclusions were drawn from curve-fitting preconditioned data: 

• Currently available hyperelastic models used on their own fail to accurately 

predict uniaxial, planar and equi-biaxial tension data simultaneously (when 

considering the carbon-biack-filled rubber characterised in this work). 

• While higher-order hyperelastic models (such as third-order Yeoh or third-order 

Ogden models) may provide a better fit to the local nonlinearity ofpreconditioned 

data, they are highly inaccurate at strains that exceed the preconditioned strain 

level data they were fitted to. 

• First-order hyperelastic models (such as the Neo-Hookean or first-order Yeoh) do 

not capture the local nonlinearity of preconditioned data, yet maintain an 

acceptable level of accuracy when at strains that exceed the preconditioned strain 

level data they were fitted to. 

The difficulty in obtaining coefficients for a hyperelastic model that would predict the 

characterisation data accurately in aIl three states of simple stress simultaneously led to 

the development of the biaxiality test. Similarly, the considerable amount of softening of 

the rubber at hand due to preconditioning (the Mullins effect) and the failure of 

hyperelastic models to predict such behaviour led to the development of the 

preconditioning iteration. 

Experimental bench tests were conducted to provide validation data for FEA simulations; 

they consisted of a cantilevered plate subjected to a bending load at its free end as weIl as 
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a rubber guide lug subjected to a transverse deflection. FEA models of the experimental 

bench tests were analysed in ANSYSTM. The preconditioning iteration and biaxiality test 

were applied to these simulations. 

The following conclusions may be drawn from using the preconditioning iteration: 

• The preconditioning iteration provides a successful alternative to predict the effect 

of preconditioning with hyperelastic materials. 

• It is shown that accounting for the global behaviour of rubber which is the effect 

of strain-induced stress-softening with several, relatively linear, hyperelastic 

models (such as the first-order Yeoh model) in the preconditioning iteration is 

more important than using a single hyperelastic model that captures the local 

nonlinearity of a single preconditioned characterisation data curve. 

The following conclusion may be drawn from the biaxiality test: 

• In FEA simulations where the three dominant states of strain are present, fitting 

the hyperelastic models to the uniaxial tension data may be an acceptable 

compromIse. 

In light of these conclusions, potential leads for future work may be identified; they are 

listed as follows: 

• Investigate the validity of the preconditioning iteration at higher strain levels (in 

light of Fig. 21). 

• Account for strain rate effects (viscoelastic behaviour) and unrecoverable strain. 

• Implement Dorfmann and Ogden's (2003) strain-energy-based pseudo-elastic 

theory, or a similar model, in ANSYS™ to predict Mullins effects and 

preconditioning. 

It is clear from the characterisation data that the rubber at hand exhibits behaviour that 

cannot be predicted with hyperelastic models currently available in ANSYS™. One of 

the major issues is the softening behaviour of the material due to the Mullins effect. This 

is addressed with the preconditioning iteration where elements are attributed hyperelastic 
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models according to their maximum principal strain, such that a static FEA simulation 

with common hyperelastic formulations artificially reproduces (without a constitutive 

materiallaw) the effect of preconditioning. Using an appropriate constitutive relation to 

model the unrecoverable strain, the considerable hysteresis as weIl as the strain-induced 

stress-softening seen in the characterisation data would be most desirable. 
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Appendix A: Strain energy derivation 

The following derivation constitutes something of an exercise compiling pleces of 

previously achieved work, a great part of which may be found in Mase and Mase (1999). 

It is nonetheless instructive as it provides the origin of the so-called hyperelastic models. 

The strain energy function is originally derived from the 1 st law of Thermodynamics 

expressed as 

D 
-(K+U)=P+Q, 
Dt 

(Al) 

where K is kinetic energy, U is internaI energy, P is mechanical power and Q is the rate at 

which thermal energy is added to the body. The kinetic energy, internaI energy, 

mechanical power and rate of added thermal energy may be expanded as follows: 

K = ft pVj vjdV , (A2) 
v 

U = JpudV, (A3) 
v 

P = JphjvjdV + JtjvjdS, (A4) 
v s 

and 

Q= JprdV - JqjnjdS, (AS) 
v s 

respectively, where pis density, Vi is velocity defined by exj 
, the overdot indicates ~, u at at 

is internaI energy per unit mass, hi is a body force vector, ti is a traction vector, r is the 

generated heat per unit mass by internaI sources, qi is a heat flux vector (in to the body) 

per unit surface area, and ni is the previously defined unit vector normal to the surface. 

Eq.(Al) may thus be rewritten as 

Jp(Vjl\ +u)dV = JphjvjdV + JtjvjdS+ JprdV - JqjnjdS. (A6) 
v v s v s 

Recall Gauss's theorem for surface integrals 

JAijnjdS = JAij,jdS, (A7) 
s v 
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where the expression Aij,} is in Einstein notation and indicates a partial derivative with 

respect to xl 

aA 
A =-1} 

I},) ax 
) 

(A.8) 

Neglecting thermal effects, substituting the traction vector ti in to Eq.(2.23), applying 

Gauss's theorem and with a little manipulation Eq.(A6) becomes 

J( Œ)i,) + pb, - pV; )v;dV + J( Œ);V;,} -q;,; + pr - pü )dV = O. (A.9) 
v v 

The local equation ofmotion [defined by Mase and Mase (1999)] is identified as 

(AI0) 

reducing Eq.(A9) to 

(AlI) 

since the volume integral is arbitrary. Assuming that the only change in internaI energy 

is caused by strain, and defining the strain energy, W, such that W = Pou, where Po is the 

density at the reference state, Eq.(All) becomes 

. 1 apou 1 aw 1 
U=---=--=-ŒV 

Po at Po at p)1 l,) 

(AI2) 

Applying the principle of conservation of mass and recalling Eq. (2.22), Eq.(A.12) may 

be expressed with the volumetrie parameter, J, via 

aw 
-=JŒ),V,) at ' 

Manipulating the left-hand side of Eq.(AI3), it is shown that 

aw = aw aF;p = aw av; = aw av; 8x) = aw F v 
at aF;p at aF;p axp aF;p 8x) axp aF;p )P l,)' 

Substituting the result of Eq.(A 14) back into Eq.(A13) leads to 

( J-l~jJ aw -Œ};)V;,j = O. 
aF;p 

It is obvious that one possible solution to Eq.(AI5) is the following: 

©MWG 

(A 13) 

(A14) 

(AI5) 
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{Iij = J-IF;p aw . 
a~p 

On the other hand, it can be shown (Mase and Mase, 1999) that 

j 
-=Vii , 
J ' 

(AI6) 

(AI7) 

meaning that, when the material is incompressible, the change in volume, j, is null; thus 

Vi,i = 0, which leads to another possible solution for Eq.(AI5) expressed as follows: 

(AI8) 

and this can be viewed as an internaI constraint on the deformation gradient. Eqs.(AI5) 

and (AI8) may be combined to yield 

or rearranged into 

J-I~p aw -{I)i = p8ij' 

aF;p 

{Iij = J-IF;p aw - p8ij' 

a~p 

(AI9) 

(A20) 

where the scalar p is conveniently chosen to represent the hydrostatic pressure serving as 

the internaI constraint due to the incompressible response of the material. Note that the 

Cauchy stress tensor is symmetric here; thus {I ij = {Iji • 

Assuming a state of simple strain (i.e. with no rotations) and considering only the 

principal axes, Eq.(A20) reduces to 

(A2I) 

or expressing the strain energy as a function of the strain invariants, Ii, thus W (11,12 ,13) , 

obtained from the right Cauchy-Green tensor, Eq.(A.21) may also be written as 

{I. =ÂS =Â[aw aIl + aw aI2 ]_ • 

1 1 1 1 aIl aÂ
i 

aI
2 

aÂ
i 

p 
(A22) 
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Appendix B: Zero shi ft and corrected gauge length 

The following provides details of the mathematical manipulations involved in zeroing the 

stress and strain data with respect to offset values due to unrecoverable strain. First, 

definitions for the original nominal strain, &, the offset strain, &offset, and the zeroed strain, 

& ' , are given. 

The original nominal strain, &, is defined with respect to the original gauge length, Lo, 

such that 

(B.l) 

The offset strain, &offset. is the strain that has not been recovered once the testpiece is load­

free and is also defined with respect to the original gauge length, Lo: 

(B.2) 

The zeroed strain, &', is defined with respect to the offset gauge length, Loffset. such that 

, L- Loffset 
& = . 

Loffset 

(B.3) 

To express &' in terms of & and &offset. using Eqs. (B.1), (B.2) and (B.3), the following 

manipulation may be followed: 

(B.4) 

showing why, in the characterisation data, the offset strain, &offset. for each preconditioned 

curve is subtracted from aH strain values for that curve, then divided by (&offset + 1) to 

account for the larger stabilized gauge length. 
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Similarly, the nominal stress, S, is defined as 

S=~ 
A' 

o 

(B.S) 

where P is the load and Ao is the initial cross sectional area. The zeroed stress, S', is 

then defined by 

S'=~, (B.6) 
Aoffset 

where Aoffset is the offset cross-sectional area. Since the material is assumed to be 

incompressible, the following volumetrie compatibility equation must be satisfied: 

(B.7) 

Expressing S'in terms of S and the offset strain, B"offset, leads to 

(B.8) 

showing that multiplying the stress values by (B"offset + 1) accounts for the stabilized gauge 

cross-sectional area. 
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Appendix C: Characterisation data 

The following tables provide the manipulated characterisation data for the three states of 

simple strain tested as weIl as the four levels of preconditioning. 

Table Cl: Uniaxial tension characterisation data 

Virgin stretch 5% 10% 15% 25% 25% (cont'd) 
& a[MPal & a[MPa] & a[MPa] & a[MPa] & a[MPa] & a[MPa] 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0975 1.0147 
0.0021 0.1893 0.0030 0.1227 0.0024 0.0896 0.0035 0.1024 0.0026 0.0789 0.1003 1.0345 
0.0038 0.2636 0.0061 0.2101 0.0050 0.1595 0.0060 0.1763 0.0047 0.1411 0.1033 1.0538 
0.0062 0.3188 0.0083 0.2809 0.0078 0.2181 0.0094 0.2364 0.0071 0.1930 0.1065 1.0716 
0.0090 0.3683 0.0122 0.3436 0.0112 0.2705 0.0118 0.2881 0.0100 0.2379 0.1096 1.0917 
0.0118 0.4115 0.0140 0.4004 0.0139 0.3195 0.0147 0.3353 0.0131 0.2790 0.1130 1.1100 
0.0146 0.4529 0.0180 0.4530 0.0166 0.3640 0.0180 0.3792 0.0148 0.3183 0.1155 1.1303 
0.0176 0.4903 0.0205 0.5029 0.0197 0.4064 0.0202 0.4180 0.0186 0.3541 0.1186 1.1485 
0.0205 0.5269 0.0229 0.5519 0.0229 0.4462 0.0229 0.4562 0.0217 0.3865 0.1213 1.1671 
0.0228 0.5609 0.0255 0.5999 0.0258 0.4841 0.0257 0.4921 0.0245 0.4192 0.1240 1.1848 
0.0258 0.5939 0.0288 0.6471 0.0288 0.5206 0.0284 0.5258 0.0270 0.4505 0.1264 1.2056 
0.0289 0.6268 0.0312 0.6937 0.0310 0.5574 0.0339 0.5910 0.0302 0.4792 0.1289 1.2261 
0.0306 0.6560 0.0343 0.5926 0.0366 0.6219 0.0327 0.5078 0.1323 1.2447 
0.0338 0.6851 0.0368 0.6278 0.0400 0.6521 0.0350 0.5346 0.1354 1.2639 
0.0366 0.7144 0.0393 0.6608 0.0431 0.6820 0.0387 0.5611 0.1369 1.2842 
0.0398 0.7421 0.0423 0.6946 0.0457 0.7114 0.0406 0.5861 0.1402 1.3036 
0.0427 0.7690 0.0446 0.7274 0.0484 0.7402 0.0437 0.6109 0.1430 1.3241 
0.0449 0.7948 0.0478 0.7615 0.0542 0.7958 0.0462 0.6359 0.1461 1.3431 
0.0483 0.8199 0.0506 0.7952 0.0569 0.8227 0.0500 0.6590 0.1487 1.3646 
0.0999 1.2032 0.0534 0.8295 0.0597 0.8499 0.0528 0.6827 0.1516 1.3857 
0.1500 1.4665 0.0561 0.8633 0.0627 0.8766 0.0558 0.7060 0.1541 1.4070 
0.2475 1.8629 0.0589 0.8980 0.0652 0.9035 0.0585 0.7280 0.1574 1.4293 

0.0616 0.9345 0.0684 0.9302 0.0621 0.7503 0.1594 1.4509 
0.0644 0.9697 0.0735 0.9838 0.0643 0.7722 0.1621 1.4746 

0.0770 1.0096 0.0668 0.7937 0.1640 1.4977 
0.0797 1.0361 0.0701 0.8152 0.1670 1.5219 
0.0825 1.0634 0.0726 0.8359 0.1697 1.5458 
0.0852 1.0903 0.0755 0.8570 0.1721 1.5705 
0.0878 1.1177 0.0774 0.8773 0.1746 1.5981 
0.0906 1.1463 0.0805 0.8967 0.1774 1.6241 
0.0939 1.1750 0.0839 0.9180 0.1806 1.6515 
0.0963 1.2040 0.0857 0.9372 
0.0991 1.2343 0.0890 0.9573 
0.1015 1.2647 0.0913 0.9765 
0.1039 1.2955 0.0949 0.9960 
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Table C2: Planar tension characterisation data 

Virgin stretch 5% 10% 15% 15% (cont'd) 
6 a[MPa 6 a[MPa 6 a[MPa] 6 a[MPa] 6 a[MPa] 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0731 1.3626 
0.0012 0.1308 0.0012 0.1196 0.0014 0.0894 0.0015 0.0989 0.0751 1.3873 
0.0031 0.2158 0.0027 0.2164 0.0028 0.1614 0.0031 0.1764 0.0765 1.4161 
0.0045 0.2855 0.0044 0.2952 0.0051 0.2269 0.0049 0.2417 0.0785 1.4372 
0.0063 0.3416 0.0061 0.3667 0.0066 0.2810 0.0067 0.2931 0.0806 1.4644 
0.0078 0.3997 0.0073 0.4313 0.0087 0.3360 0.0087 0.3464 0.0824 1.4910 
0.0095 0.4500 0.0096 0.4937 0.0104 0.3790 0.0105 0.3920 0.0840 1.5196 
0.0110 0.4974 0.0111 0.5464 0.0123 0.4289 0.0121 0.4367 0.0862 1.5440 
0.0125 0.5423 0.0131 0.6000 0.0140 0.4710 0.0142 0.4725 0.0878 1.5720 
0.0145 0.5861 0.0143 0.6536 0.0155 0.5173 0.0157 0.5121 0.0893 1.5995 
0.0161 0.6268 0.0165 0.7053 0.0174 0.5527 0.0176 0.5485 0.0914 1.6238 
0.0176 0.6726 0.0179 0.7503 0.0191 0.5938 0.0191 0.5834 0.0933 1.6573 
0.0197 0.7052 0.0196 0.8011 0.0208 0.6316 0.0214 0.6126 0.0949 1.6863 
0.0220 0.7440 0.0213 0.8503 0.0227 0.6691 0.0229 0.6512 0.0969 1.7220 
0.0237 0.7778 0.0235 0.8943 0.0243 0.7003 0.0247 0.6812 0.0989 1.7484 
0.0255 0.8142 0.0246 0.9444 0.0264 0.7398 0.0264 0.7141 
0.0272 0.8456 0.0265 0.9936 0.0280 0.7720 0.0292 0.7419 
0.0292 0.8770 0.0281 1.0438 0.0300 0.8077 0.0304 0.7734 
0.0310 0.9068 0.0322 0.8418 0.0321 0.8024 
0.0327 0.9307 0.0338 0.8737 0.0339 0.8314 
0.0349 0.9645 0.0359 0.9056 0.0356 0.8381 
0.0369 0.9908 0.0374 0.9401 0.0375 0.8837 
0.0388 1.0212 0.0392 0.9699 0.0395 0.9102 
0.0410 1.0427 0.0412 1.0020 0.0416 0.9386 
0.0428 1.0712 0.0431 1.0348 0.0431 0.9639 
0.0449 1.0967 0.0443 1.0429 0.0453 0.9896 
0.0465 1.1234 0.0458 1.0968 0.0472 1.0156 
0.0486 1.1408 0.0475 1.1280 0.0489 1.0421 
0.0998 1.6239 0.0497 1.1620 0.0510 1.0652 
0.1478 1.9003 0.0514 1.1933 0.0527 1.0888 
0.2494 2.3635 0.0537 1.2303 0.0545 1.1157 

0.0554 1.2643 0.0562 1.1319 
0.0571 1.3022 0.0585 1.1626 
0.0586 1.3345 0.0600 1.1879 
0.0602 1.3730 0.0620 1.2140 

0.0641 1.2369 
0.0658 1.2644 
0.0676 1.2866 
0.0695 1.3141 
0.0713 1.3381 
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Table C2 (continued): Planar tension characterisation data 

25% 25% (cont'd) 25% (cont'd) 
1> a[MPa] 1> a[MPa] 1> a[MPa] 

0.0000 0.0000 0.0741 1.1522 0.1497 1.8505 
0.0016 0.0893 0.0759 1.1686 0.1519 1.8724 
0.0037 0.1560 0.0779 1.1857 0.1537 1.8849 
0.0052 0.2132 0.0800 1.2039 0.1556 1.9128 
0.0070 0.2623 0.0818 1.2158 0.1572 1.9352 
0.0090 0.3072 0.0836 1.2403 0.1593 1.9584 
0.0111 0.3392 0.0859 1.2557 0.1607 1.9802 
0.0125 0.3840 0.0874 1.2749 0.1626 2.0051 
0.0145 0.4206 0.0895 1.2918 0.1652 2.0297 
0.0164 0.4544 0.0916 1.3102 0.1664 2.0534 
0.0182 0.4849 0.0933 1.3270 0.1683 2.0786 
0.0200 0.5160 0.0951 1.3442 0.1701 2.1026 
0.0218 0.5439 0.0970 1.3605 0.1716 2.1292 
0.0232 0.5728 0.0986 1.3777 0.1735 2.1594 
0.0252 0.6000 0.1005 1.3953 
0.0273 0.6263 0.1023 1.4115 
0.0295 0.6528 0.1044 1.4272 
0.0310 0.6788 0.1064 1.4442 
0.0330 0.7029 0.1086 1.4609 
0.0348 0.7263 0.1102 1.4762 
0.0363 0.7495 0.1124 1.4928 
0.0383 0.7702 0.1139 1.5084 
0.0399 0.7939 0.1161 1.5266 
0.0418 0.8136 0.1180 1.5390 
0.0436 0.8393 0.1194 1.5591 
0.0457 0.8565 0.1217 1.5768 
0.0478 0.8809 0.1239 1.5968 
0.0496 0.9025 0.1259 1.6110 
0.0516 0.9247 0.1272 1.6319 
0.0535 0.9444 0.1290 1.6482 
0.0553 0.9637 0.1309 1.6676 
0.0571 0.9846 0.1333 1.6793 
0.0590 1.0040 0.1349 1.7013 
0.0612 1.0156 0.1371 1.7195 
0.0627 1.0409 0.1386 1.7399 
0.0649 1.0598 0.1406 1.7574 
0.0665 1.0808 0.1425 1.7776 
0.0684 1.0979 0.1441 1.7960 
0.0704 1.1165 0.1460 1.8135 
0.0723 1.1350 0.1479 1.8340 
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Table C3: Equi-biaxial extension characterisation data 

Virgin stretch 5% 10% 10% (cont'd) 15% 15% (cont'd) 

li u[MPa] li u[MPa] li u[MPa] li u[MPa] li u[MPa] li ulMPé!l 
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0606 1.5965 0.0000 0.0000 0.0623 1.3868 
0.0001 0.0163 0.0007 0.0455 0.0006 0.0408 0.0623 1.6386 -0.0004 0.0405 0.0642 1.4107 
0.0004 0.0327 0.0019 0.1047 0.0016 0.0929 0.0638 1.6823 0.0005 0.0858 0.0659 1.4355 
0.0007 0.0569 0.0033 0.1727 0.0031 0.1538 0.0656 1.7292 0.0019 0.1416 0.0678 1.4602 
0.0012 0.0915 0.0050 0.2430 0.0047 0.2164 0.0672 1.7781 0.0036 0.2018 0.0696 1.4840 
0.0019 0.1357 0.0064 0.3100 0.0063 0.2770 0.0052 0.2600 0.0713 1.5087 
0.0027 0.1855 0.0082 0.3748 0.0080 0.3337 0.0070 0.3142 0.0731 1.5344 
0.0037 0.2402 0.0095 0.4366 0.0095 0.3872 0.0084 0.3658 0.0748 1.5591 
0.0048 0.2990 0.0110 0.4949 0.0110 0.4372 0.0098 0.4142 0.0765 1.5848 
0.0065 0.3591 0.0124 0.5517 0.0124 0.4858 0.0112 0.4600 0.0783 1.6114 
0.0082 0.4182 0.0138 0.6068 0.0138 0.5322 0.0127 0.5035 0.0800 1.6373 
0.0098 0.4760 0.0150 0.6598 0.0150 0.5765 0.0142 0.5450 0.0819 1.6644 
0.0114 0.5322 0.0163 0.7112 0.0166 0.6191 0.0156 0.5837 0.0837 1.6918 
0.0131 0.5873 0.0176 0.7627 0.0179 0.6607 0.0171 0.6218 0.0854 1.7185 
0.0147 0.6403 0.0189 0.8118 0.0193 0.6995 0.0188 0.6580 0.0873 1.7495 
0.0165 0.6919 0.0202 0.8618 0.0208 0.7372 0.0203 0.6930 0.0891 1.7800 
0.0179 0.7417 0.0214 0.9107 0.0223 0.7746 0.0221 0.7265 0.0909 1.8110 
0.0193 0.7900 0.0226 0.9615 0.0239 0.8114 0.0238 0.7592 0.0927 1.8440 
0.0208 0.8321 0.0241 1.0102 0.0254 0.8468 0.0254 0.7903 0.0946 1.8777 
0.0223 0.8806 0.0252 1.0616 0.0271 0.8811 0.0271 0.8214 0.0964 1.9138 
0.0237 0.9239 0.0266 1.1130 0.0286 0.9145 0.0288 0.8515 0.0982 1.9506 
0.0253 0.9652 0.0280 1.1692 0.0303 0.9470 0.0303 0.8805 0.1000 1.9890 
0.0268 1.0047 0.0292 1.2276 0.0318 0.9798 0.0319 0.9081 0.1018 2.0319 
0.0282 1.0435 0.0334 1.0113 0.0335 0.9368 0.1036 2.0750 
0.0296 1.0800 0.0349 1.0339 0.0350 0.9639 0.1054 2.1212 
0.0311 1.1160 0.0364 1.0737 0.0366 0.9911 
0.0325 1.1513 0.0380 1.1045 0.0381 1.0173 
0.0338 1.1844 0.0395 1.1349 0.0398 1.0436 
0.0352 1.2180 0.0408 1.1654 0.0414 1.0691 
0.0366 1.2496 0.0424 1.1961 0.0430 1.0946 
0.0380 1.2806 0.0439 1.2269 0.0445 1.1195 
0.0395 1.3104 0.0454 1.2571 0.0461 1.1443 
0.0412 1.3399 0.0469 1.2877 0.0478 1.1699 
0.0427 1.3686 0.0484 1.3185 0.0493 1.1941 
0.0441 1.3954 0.0498 1.3499 0.0509 1.2182 
0.0458 1.4220 0.0513 1.3814 0.0525 1.2421 
0.0475 1.4488 0.0530 1.4141 0.0542 1.2654 
0.0492 1.4743 0.0544 1.4483 0.0557 1.2892 
0.0981 2.0055 0.0561 1.4827 0.0574 1.3133 
0.1498 2.3401 0.0576 1.5187 0.0590 1.3379 
0.2486 2.8646 0.0591 1.5561 0.0608 1.3621 
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Table C3 (continued): Equi-biaxial extension characterisation data 

25% 25% (cont'd) 25% (cont'd) 

6 a[MPa] 6 a [MPa] 6 a lM Pal 
0.0000 0.0000 0.0635 1.2197 0.1411 1.9806 

-0.0005 0.0421 0.0651 1.2367 0.1432 2.0035 
0.0006 0.0868 0.0670 1.2564 0.1453 2.0275 
0.0021 0.1408 0.0688 1.2745 0.1475 2.0513 
0.0037 0.1975 0.0706 1.2925 0.1495 2.0761 
0.0053 0.2515 0.0722 1.3121 0.1517 2.1010 
0.0068 0.3027 0.0740 1.3306 0.1540 2.1255 
0.0081 0.3503 0.0758 1.3486 0.1562 2.1530 
0.0094 0.3949 0.0776 1.3670 0.1584 2.1798 
0.0110 0.4362 0.0794 1.3853 0.1605 2.2078 
0.0127 0.4765 0.0812 1.4037 0.1627 2.2367 
0.0143 0.5142 0.0831 1.4219 0.1648 2.2670 
0.0161 0.5505 0.0850 1.4402 0.1671 2.2995 
0.0178 0.5847 0.0869 1.4582 0.1693 2.3315 
0.0195 0.6172 0.0888 1.4762 0.1713 2.3666 
0.0211 0.6485 0.0908 1.4928 0.1734 2.4034 
0.0229 0.6783 0.0927 1.5112 0.1755 2.4428 
0.0245 0.7066 0.0946 1.5288 0.1774 2.4829 ,------
0.0263 0.7355 0.0963 1.5464 0.1797 2.5262 
0.0280 0.7629 0.0983 1.5655 0.1816 2.5668 
0.0297 0.7893 0.1001 1.5840 
0.0313 0.8156 0.1022 1.6028 
0.0330 0.8405 0.1041 1.6201 
0.0347 0.8644 0.1060 1.6390 
0.0364 0.8879 0.1078 1.6585 
0.0378 0.9108 0.1097 1.6770 
0.0394 0.9339 0.1118 1.6960 
0.0411 0.9567 0.1139 1.7149 
0.0427 0.9786 0.1158 1.7323 
0.0444 0.9996 0.1179 1.7514 
0.0460 1.0209 0.1202 1.7685 
0.0477 1.0420 0.1222 1.7897 
0.0494 1.0632 0.1243 1.8093 
0.0511 1.0840 0.1264 1.8288 
0.0529 1.1045 0.1284 1.8496 
0.0546 1.1239 0.1305 1.8703 
0.0564 1.1438 0.1327 1.8916 
0.0581 1.1627 0.1349 1.9132 
0.0599 1.1822 0.1367 1.9350 
0.0618 1.2007 0.1389 1.9578 
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Appendix D: Curve-fitting demo in Workbench 10.0 

The following is a demo on how to use the curve-fitting tool in Workbench 10.0 for 

hyperelastic materials. It is adapted from a demonstration written by the author of this 

thesis for the ANSYSTM World Cup (2006). 

Steps and points to convey 

Material Property Data (curve­
fitting) 

1) In the top main menu, select the 

Data icon; ~Data . 

2) RMB click on "Materials" ln left 
tree menu and 
select'~ Insert New Material . 

3) Name it (e.g. SEAL_RUBBER) 

4) Select the Add/Remove Properties link 
under the structural properties of 
your new material and add 
Uniaxial, Biaxial and Shear Test 
Data as well as a third-order Yeoh 
hyperelastic model, when you are 
done, select "OK". 
Try using the Filter: first type 
"test" and select the test data for 
curve-fitting, then type "yeoh" and 
select the third-order Yeoh model. 

Picture Guide 

Add or Removc PropNtlcs X 

'IIew: 0~struchn O~Ust 
- -- ---------

--T~ 

Add or Remove Properf1e~ lx 
'IIew: 0Or __ struchn O~Ust 

Fa.,.: yooh 

o vooh Istorcleo-

o vooh 2nd ""je, 

~--
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Input the test data 

5) Open the provided text files 
(test_ST.txt, test EB.txt and 
test_PT.txt) in Excel, TextPad or 
equivalent (must recognize tab 
delimited data). 

6) Back to the Engineering Data tab in 
the W orkbench Environment, select 
[J ln the 
Uniaxial Test Data ISJ 
tab. (Yellow usually indicates 
incomplete data in the Engineering 
Data Tab). 

7) Copy the entire content of 
test_ST.txt (ctrl + C, or RMB click 
-7 Copy) then click in the first cell 
of the strain data and paste (ctrl + P, 
or RMB click -7 Paste) the content 
of the clipboard. The entire data of 
the test_ST.txt file should copy into 
the Stress vs. Strain columns. 

8) Select the "Biaxial Test Data" box 

[J 
Biaxial Test Data 

at the bottom right of the screen, 
and repeat the above operations 
with the test EB.txt file. 

Repeat again for the Pure Shear data in 

the test PT.txt file. 

~ 

SEAL_RUBBER - Uniaxial Test Data 

Stress ys. Strain 
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Curve-fitting 

9) Similarly to the previous steps, 
select the "Yeoh third-order" figure 
at the bottom right of the screen. 
You should see a screen shot 
similar to the one on the right. 

10) Click on Fit to Test Datai and take a 
look at the fitted third-order Yeoh 
curves on the right. 

Il) Under "Property Attributes", 
change the "Error Norm for Fit" to 
"Absolute Error" rather than the 
CUITent "N ormalized Error" 
selection. 

12) Again, click on Fit to Test Datai and 
recheck the fitted curves on the 
right; these coefficients will be 
acceptable for the CUITent analysis. 

13) Select ~close Curve icon along the 
top menu. 

NOTE: Since no volumetric data was 
inputted, the incompressibility 
parameters are set to zero, meaning that 
the material will be assumed to be 
incompressible. 

- Yeoh 3rdorder 

"--ErrorNor",forFt =1_=""";;;----:1:;] 

............ 
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Exporting the materiallibrary 

NOTE: Although you can just use the 
currently defined material in your 
simulation, you might want to use it 
again without having to go through a11 
the steps you just went through. The 
fo11owing allows you to create a 
Material Library in which you can save 
several material models and quickly 
access them in the future when 
performing other simulations. 

14) Select the .!IiIExport... lCon, then 
"Selected Engineering Data to a 
Library". Note that you can also 
save the data in an existing library. 

15) Select a library name general 
enough to encompass other material 
models you expect to save in the 
same library. In this case, we ca11ed 
our library RUBBER _MPL. 

ht!"j'f,n'p'ri"ri','.'9'" 
~ ............ _I Ii ............ _1 , ............. _ '!!!: __ .... I x 

... _ ........ ~·IIiI-·.!iII ...... • ~.' 

• ~_ ~;;;;;:;, I~~~~!},~r 
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