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ABSTRACT 
An efficient algorithm to create discrete element samples with predefined properties incorporating the 
random field theory is introduced in this paper. The algorithm considerably reduces the time needed to 
generate a large scale domain as only a small initial sample with dynamic packing is used. Three-
dimensional anisotropic random fields are generated using the Local Average Subdivision (LAS) 
method accounting for the spatial variability. The random fields are then mapped on the discrete 
element domain and uncertain parameters of each particle are obtained from the corresponding random 
field cell. Triaxial tests are conducted on large soil samples with the dimensions of 1.5m x 3.0m x 
1.5m comprising over 150,000 spherical particles. The microscopic friction angle and stiffnesses of the 
particles are selected as random variables since they have a significant effect on the soil behavior under 
triaxial testing conditions. Monte Carlo simulation is implemented to analyze the probabilistic features 
of the output values.  

KEYWORDS: Discrete element method; Packing algorithm; Random field; Spatial variability 

INTRODUCTION 
Reliability analysis of geotechnical structures has been traditionally performed using the First-Order 

Second Moment method (FOSM), the First-Order Reliability Method (FORM), the Point Estimate 
Method (PEM) and Monte-Carlo simulation (Christian et al., 1994; Christian and Baecher, 1999; Baecher 
and Christian, 2003; Low et al., 2011). While FORM and FOSM are based on approximate assumptions 
related to the derivation of the performance function, these two methods may not be suitable for nonlinear 
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problems. Although the PEM is being widely used in geotechnical engineering, there are some limitations 
regarding its simplicity (Baecher and Christian, 2003). Recent developments in numerical methods have 
made it more feasible to combine reliability analyses with numerical simulations. Schweiger et al. (2001) 
proposed a framework that employs the deterministic finite element method in reliability analyses. In this 
approach, the PEM was used in conjunction with the Finite Element Method to analyze the probabilistic 
behavior of a sheet-pile wall and tunnel excavation process. Although this approach accounts for 
variability of soil properties in the deterministic finite element method, it does not consider the spatial 
variability of soil properties. Schweiger and Peschl (2005) used the Random Set Finite Element Method 
to take into account the spatial correlation in an approximate way. However, spatial variation can be better 
represented by random field theory. The Random Finite Element Method (RFEM) which combines 
random field theory and Monte-Carlo simulation has been successfully used for several geotechnical 
engineering problems such as bearing capacity (Suchomel and Mašin, 2010), settlement (Fenton and 
Griffiths, 2005; Griffiths and Fenton, 2009) , pillar stability (Griffiths et al., 2002), steady seepage 
(Griffiths and Fenton; 1998) and slope stability (Griffiths and Fenton; 2004). 

An alternative numerical method that can be used for geotechnical problems is the Discrete Element 
Method (DEM). The method proposed by Cundall and Strack (1979) has proven to be a versatile 
approach for the simulation of granular materials. A DEM model is usually built using a set of particles 
interacting at contact points, making it possible to describe the behavior of granular soils under large 
deformations. This method has also been implemented to solve geotechnical applications including pile 
driving (Lobo Guerrero and Vallejo, 2005), tunnel excavation (Melis Maynar and Medina Rodriguez, 
2005) and rockfill dam (Deluzarche and Cambou, 2006). 

Suchomel and Mašin (2010) suggested that random field theory can be combined with the DEM. The 
method, however, has hardly been applied in conjunction with reliability analysis partly due to the large 
computational time required and the limitation of computer capacity. Hsu and Nelson (2006) used the 
same approach for the slope stability analysis of weak rock masses. The spatial variability of material 
properties was considered with random field elements embedded in the numerical analyses. The rock 
mass was simulated using two-dimensional (2D) discrete elements with a maximum of 10 different 
material properties available in the UDEC program. This limitation did not allow for a proper 
representation of the spatial variability of material properties.  

There are several issues that have to be considered when implementing reliability analysis with the 
DEM: (1) spatial variability has to be considered in the discrete element model to represent real condition, 
(2) the total computational time required for the packing process of a large-scale model should be 
acceptable, and (3) the random field of material properties has to be mapped onto the discrete element 
domain defined by the packing algorithm. This paper presents an algorithm that satisfies these criteria.  

In this study, the packing algorithm suggested by Dang and Meguid (2010) is adopted since it allows 
for the generation of 3D packing models with pre-defined properties and the time required to create large-
scale domains is reduced considerably. The particle domain obtained with this technique is meshed into a 
user-defined 3D grid to which the anisotropic random fields are assigned using the Local Average 
Subdivision method proposed by Fenton and Vanmarcke (1990). Triaxial test simulations are performed 
to demonstrate the effect of material variability on the behavior of soil samples. 

GENERATION OF THE PARTICLE DOMAIN 

Packing algorithm 
The packing procedure consists of two phases: in phase 1, a relatively small size initial packing is 
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first generated with a predefined grain size distribution and a target porosity. The final packing is then 
generated in phase 2 by assembling the small samples using the “flip technique” to maintain the same 
grain size distribution and porosity (Dang and Meguid, 2010). 

The details of each phase are as follow:  

Phase 1: The dimensions of a box for the initial packing are denoted in the x, y and z directions as (bx 
x by x bz). A number of non-overlapping particles are then generated inside the box with the dimensions of 
(bx x hy x bz) where the height hy of the box is larger than by to ensure that all particles can settle under 
gravity into the box. Additional particles are generated until the target volume of all particles is reached: 

             
zyxs bbbpV ...=  (1)

where Vs is the target volume of particles and p is the target porosity of the packing. 

In order to obtain the initial packing with a predefined particle size distribution, the radius of a 
particle i is randomly generated from the grain size distribution (Fu and Dekelbab, 2003): 

             2/]
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where ri is the radius of particle i, RANi is a uniformly distributed random number generated in the range 
0 ≤ RANi < 1, P1 and P2 are the percentage of grains (%) passing through sieves S1 and S2 such that P1 ≤ 
100.RANi < P2, sieve S1 and S2 are then specified by P1 and P2, D1 and D2 are the diameters of sieves S1 
and S2. After the packing reaches the stability condition, it is still a loose structure. A compaction 
procedure with a combination of shaking and vertical compression is applied in order to obtain the target 
porosity. Phase 1 continues until the initial packing satisfies the stability condition.  

Phase 2: The “flip technique” is implemented in this phase to overcome the large amount of 
computations associated with the dynamic packing method. The technique is a 3D process and is 
illustrated in Fig. 1. 

The final packing space with the dimensions of (px x py x pz) is divided into (nx x ny x nz) domains. An 
initial packing S0 (bx x by x bz) generated using the technique described in phase 1 is cloned repeatedly to 
obtain a final packing with similar properties. All particles which were initially in contact with the walls 
now become in contact with other particles in the final packing.  

The initial packing S0 is first placed into the lower left corner of the domain. Block Syz, obtained by 
flipping S0 around the y-z plane, is placed to the right of sample S0. A second sample S0 is then placed to 
the right of Syz and the process is repeated until the first row is completed. The entire first row is then 
flipped around the x-z plane in a similar process to obtain the second row, and the process is repeated to 
generate the first slice consisting of (nx x ny) small blocks in nx columns and ny rows. The first slice is 
flipped around the x-y plane to generate the second slice, and the final packing is obtained by repeating 
the process. Finally, the final packing is allowed to reach the stability condition. 

In order to identify the position of a particle in the soil sample grid, each particle is marked by the 
block from which it is generated. A block that is of slice k, row j and column i within that row is noted as 
(i, j, k); all spheres of that block are then identified by (i, j, k).  
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             . tan( )s nF F φ≥  (6)

where φ is the internal friction angle. 

The particles are assumed to have properties of granular material with no cohesion. The target porosity of 
the sample is 0.40. The target grain size distribution is given in Table 1 and the material properties of the 
particles during the packing process are given in Table 2. 

Table 1:  Grain size distribution 

Sieve diameter (mm) % passing 

10 0 

20 0 

40 31.47 

100 90.93 

160 99.64 

200 100 

 
 

Table 2:  Material properties for the packing process 

Parameter Value 

Particle density (kg/m3) 2600 

Particle normal stiffness kn (Pa) 9 x 108 

Ratio ks/kn  0.1 

Friction angle φ (radians) 0.6 

Box’s Poisson’s ratio 0.2 

Box’s friction (degrees) 0 

Force damping coefficient 0.2 

Moment damping coefficient 0.2 

RANDOM FIELD GENERATOR 
Soil properties at each location within the soil mass are considered to be random variables and 

typically exhibit considerable variation from point to point. Therefore, it is essential to consider the 
spatial variability of the soil domain. Neglecting the spatial variability may lead to the underestimation or 
overestimation of the probability of unsatisfactory performance (Griffiths and Fenton, 2004). 

Several approaches have been proposed to generate spatially varying random fields including the 
Turning Bands Method, the Cholesky decomposition technique and the Local Average Subdivision 
Method (LAS) (Baecher and Christian, 2003). The LAS method has been chosen in this study as it allows 
for the implementation in numerical methods. In addition, it generates a discrete grid of local averages of 
a standard Gaussian random field and represents a random field accurately even for coarse meshes 
(Matthies et al., 1997). 

In this study, the microscopic friction angle and the stiffnesses of particles are assumed to be random 
variables as they have a great influence on the behavior of soil samples (Belheine et al., 2009). The 
friction angle and stiffness are assumed to be uncorrelated and their spatial variability is examined 
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separately. 

The friction angle φ , which is bounded both above and below, is assumed to follow a bounded 
distribution (Fenton and Griffiths, 2003): 

             
min max min

( )1
( ) ( ) 1 tanh

2 2
i

i

sG x
x φφ φ φ φ

π
  

= + − +  
  


  (7)

where ix is the spatial position, minφ  and maxφ  are the minimum and maximum microscopic friction 

angles, s is a factor determining the variability of the friction angle and iG(x )  is a normally distributed 

random field with zero mean, unit variance and given correlation lengths. It is noted that the bounded 
distribution is symmetric and the mean is the midpoint between minφ  and maxφ .  

The normal and tangential stiffnesses are assumed to follow lognormal distributions. Since the cross 
correlation between kn and ks is usually not well known, the two stiffnesses are assumed to be perfectly 
correlated for the sake of simplicity. This assumption is appropriate for assemblies involving spherical 
particles (Antony et al., 2006). The ratio ks/kn is kept constant for all particles, which means only the 
random field of kn is initially generated by the random field generator and the random field of ks is 
obtained directly from kn.  

The distribution of kn is characterized by the mean
nkμ , the standard deviation 

nkσ and the correlation 

lengths. A log-normally distributed random field of kn is given by: 

             ln ln ln( ) exp{ ( )}
n n nn i k k k ik x G xμ σ= +   (8)

The two parameters 
nlnkμ and 

nlnkσ are obtained from the lognormal distribution transformations: 

             2 2
ln ln(1 )

n nk kCOVσ = + , 2
ln ln

1
ln

2n n nk k kμ μ σ= −    (9a, b)

where 
nkCOV is the coefficient of variation of kn. 

The random field iG(x )
 
is generated using the 3-D Markovian correlation function: 

             
2 2 222 2

exp ( ) ( ) ( )
( ) ( ) ( )

yx z

x y z

ττ τρ
θ θ θ

 
= − + +  

 
 (10)

where xτ , yτ  and zτ  are the three components of the distance between two points in the random field; 

θ(x) , θ(y)  and θ(z)  are the correlation lengths in x, y and z direction. These correlation lengths account 
for the anisotropic character of the random field and represent the distance over which the spatially 
random variables tend to have significant correlation. 

The horizontal correlation length is chosen greater than the vertical due to the fact that soil generated 
from a deposition process has strong variability in the vertical direction. This is referred to as anisotropic 
heterogeneity. It should be noted that the spatial correlation structure of soil domains, especially in the 
horizontal direction is usually not well known and requires a large amount of site exploration which is not 
always feasible. Therefore, the vertical correlation length is varied in this study from 0.01 m (much 
smaller than the soil sample size) to 10.0 m (larger than the soil sample size) and the horizontal 
correlation length is kept 10 times greater than the vertical. A plot of Markovian correlation function 
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which indicates the correlation between two points separated by zyx τττ == is given in Fig. 2. 

 

Figure 2: Markovian correlation function 

In this study, minφ  and maxφ are determined to be 0.3 and 0.9 radians respectively, s is defined a value 

of 2.0, the value of 
nkCOV  is ranged from 0.4 to 2.0 while the mean value is kept constant as shown in 

Table 3. 

In order to assign different realizations of the random field to the discrete element grid, the random 
field grid is made identical to the grid of the soil sample. Each random field is composed of 6 x 12 x 6 
cells in the x, y and z direction, respectively. The dimensions of each cell are 0.25m x 0.25m x 0.25m, 
which are the same size as the initial packing of the sample.  
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Table 3:  Probabilistic description for the random variables 

Description Parameter Value 

Stiffnesses Mean 
nkμ  (Pa) 9 x 108 

 
nkCOV  0.4, 0.8, 1.2, 1.6, 2.0 

 Ratio ks/kn 0.1 

Friction angle
minφ  and maxφ  0.3 and 0.9 

 S 2.0 

Correlation lengths θ(y)  (m)  0.01, 0.1, 0.5, 1.0, 10.0 

 θ(x) θ(z)=   (m)  0.1, 1.0, 5.0, 10.0, 100.0 

NUMERICAL SIMULATION 
Both the packing algorithm and the random field generator were implemented inside the open source 

code YADE (Kozicki and Donze, 2009; Šmilauer et al. 2010) to generate random soil samples. Since the 
random generation of particles is used in the packing procedure, the final assembly is obtained by 
executing the packing procedure only once using deterministic particle values to maintain the structure of 
the final packing. 

 In the first phase of the packing process, an initial packing that consists of 351 particles is generated. 
The expected grain size distribution of the packing is also achieved using Eq. (2). The final packing 
comprises 151,632 particles at the end of the second phase of the packing procedure and the properties of 
the initial packing are preserved through the flipping and cloning process. It can be seen from Fig. 3b that 
the vertical and horizontal stresses in the sample are consistent with the theoretical solutions 
( v gz h gz 0σ =σ , σ =σ .K ). 

Note that the dynamic packing procedure is applied only for the initial sample, and therefore, the total 
simulation time is greatly reduced. The entire packing process which requires nearly 72 hours using a 
personal computer is rather efficient compared to the time that would be required for packing a similar 
sample with over 150,000 particles. 

The random field generator is then activated to generate several hundred sets of random fields for the 
random variables which are mapped on the final sample created by the packing process. Note that each 
sphere in the soil sample is marked by its identification generated from phase 2 of the packing procedure 
and the grid of the random field is identical to the grid of the soil sample, making it possible to connect 
the sphere with its corresponding random cell. Particles that are created in the same block are assigned the 
same values of the friction angle and stiffness. 
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evident: the smaller correlation lengths of the sample in Fig. 4b leads to larger spatial variation of kn 
compared to the sample in Fig. 4a. In both cases, the larger horizontal correlation length results in more 
uniform kn in the horizontal direction compared to the vertical direction. 

 

 

 

 

 

 

 

 

 (a)                                                    (b) 

Figure 4: Example of typical realizations  

(a) 
nkCOV 0.8, θ(x) θ(z) 10.0m, θ(y) 1.0m= = = =

 
(b) 

nkCOV 0.8, θ(x) θ(z) 1.0m, θ(y) 0.1m= = = =   

The effects of the variability of material properties are analyzed using Monte Carlo simulation. 
Numerical triaxial tests are performed on the randomly generated soil samples to analyze the probabilistic 
properties of the response. In each triaxial test, the sample is first compressed isotropically under a 
specified confining pressure. After the stability condition is reached, an additional strain rate of 0.1 is 
applied to the top surface while the pressures on the side walls are kept constant. Two different confining 
stresses of 100 kPa and 200 kPa are used in the analysis. The modulus E50 of the sample is obtained from 
the axial strain - deviator stress relationship at 50% of the maximum deviator stress and the macroscopic 
friction angle ϕ is obtained from the slope of the failure envelope based on Mohr-Coulomb failure 
criterion. Results of a typical test are illustrated in Fig. 5. It can be seen that, since there is no cohesion, 
the macroscopic failure envelope goes through the origin. 
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Figure 5: A typical triaxial test result 
(a) Deviator stress versus axial strain curve.  (b) Mohr circle presentation at peak strength 

For each case of analysis, Monte Carlo simulations were performed for 250 realizations of random 
fields followed by the discrete element analysis of triaxial tests. Note that the number of realizations is 
limited by the execution time required for a single run (a numerical triaxial test requires about 5 hours on 
a personal computer with Core i7 Processor 2.8 GHz).  To examine the stability of the Monte Carlo 
simulation, the mean value and standard deviation of E50 in accordance with the spatial variability of the 
stiffness are shown in Fig. 6 as a function of the cumulative number of simulation runs. The figure shows 
that the mean and standard deviation are quite stable for the sample size of 250. 
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Figure 6: Mean and standard deviation of modulus E50 (case B -
nkCOV 0.8, θ(y) 1.0m= = ) 
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PROBABILISTIC ANALYSES 
Two cases of the spatial variability including the microscopic friction angle and the stiffnesses are 

analyzed. For each case, only the analyzed random variable is varied while other parameters are kept 
constant as deterministic values.   

Case A - Spatial variability of the friction angle  
The histograms of the peak deviator stress fσΔ and macroscopic modulus E50 at a confining stress of 

100 kPa in accordance with the spatial variability of the microscopic friction angle φ  are shown in Fig. 
7a and 7b. The fitting of the lognormal distributions is given in each histogram. It can be seen that 
although the microscopic friction angle follows a symmetric bounded distribution, the histograms of both 
the peak deviator stress and modulus E50 do not show a symmetric distribution. The lognormal 
distribution indicates the best fit with the histograms. The P-P plots for lognormal distribution fitting are 
presented in Fig. 8a and 8b. 

 

 

Figure 7: Histograms of macroscopic parameters (case A -  θ(y) 1.0m= ) 
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Figure 8: P-P plots for lognormal distribution fitting (case A -  θ(y) 1.0m= ) 
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Figure 9: Variation of 
fσμΔ and 

50Eμ  (case A) 

Fig. 9a and 9b show the variation of the mean values of the peak deviator stress (
fσμΔ ) and modulus 

(
50Eμ ) with different correlation lengthsθ(y) . It can be seen that the mean values of fσΔ and E50 are 

smaller than their deterministic values for all considered correlation lengths. For both high and low 
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correlation lengths, the mean values tend to their limits. Both 
fσμΔ and 

50Eμ  have their maximum values 

at a vertical correlation length of about 0.5 m. It can be hypothesized that this correlation length results in 
a "rough" soil domain with high values of  fσΔ  and E50 while larger or smaller correlation lengths lead 

to smaller values. On the other hand, the standard deviations of the peak deviator stress (
50Eσ ) and 

modulus (
fσσ Δ ) indicate an increase with the increase ofθ(y) (see Fig.10a and 10b). Whenθ(y) 0→ , the 

variances of fσΔ  and E50 tend to zero since the local averaging results in a constant value for each 

simulation. No local averaging occurs when θ(y) →∞ which results in high 
50Eσ and

fσσ Δ . 

 

 

Figure 10: Variation of 
50Eσ and 

fσσ Δ  (case A) 
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Case B - Spatial variability of the stiffness 
It is observed that the spatial variability of the microscopic stiffness does not lead to a considerable 

variation of the peak deviator stress and therefore, only the modulus E50 is analyzed for this case. 
Histograms of E50 at two confining stresses are shown in Fig. 11. The shape of the histograms suggests a 

lognormal distribution. The fitted lognormal distribution, with parameters defined by the mean 
50Eμ and 

the standard deviation
50Eσ , is given in each histogram. A statistical analysis indicates a good fit when a 

lognormal distribution is assumed. Both the Chi-Square goodness-of-fit test and the P-P plots demonstrate 
that the lognormal distribution is a good choice for the modulus E50 (Fig. 12). This is to be expected 
since the input random parameters kn and ks are log-normally distributed. 

 

 

Figure 11: Histograms of modulus E50 (case B - 
nkCOV 0.8, θ(y) 1.0m= = ) 
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Figure 12: Probability – Probability (P-P) plots for lognormal distribution fitting (case B -

nkCOV 0.8, θ(y) 1.0m= = ) 

As shown in Fig. 13, the mean of E50 tends to a deterministic value for low values of the coefficient of 
variation

nkCOV . When 
nkCOV tends to zero, E50 tends to the deterministic modulus which is obtained 

using the mean value of kn for all particles in the sample domain. As 
nkCOV increases, it is noted that 

50Eμ decreases for all correlation lengths. This reduction implies that the macroscopic modulus is smaller 

than the deterministic modulus when spatial variability of soil properties is considered.  

Fig. 13 also indicates that for both high and low correlation lengths, the mean value of E50 tends to 

its two limits. The maximum value of 
50Eμ is obtained at an intermediate correlation length θ(y)

 
of about 

0.5 m. This observation is similar to the case of the spatial variability of the friction angle.  
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Fig. 14 illustrates the variation of the standard deviation of E50 as a function of 
nkCOV and θ(y) . It 

can be observed that 
50Eσ increases with the rise of 

nkCOV  and θ(y) , and the largest value is reached 

when θ(y) →∞. Due to the local averaging, 
50Eσ decreases when the correlation lengths are reduced.  

From the spatial variability of the microscopic friction angle and stiffness, it can be seen that the 
mean values of the peak deviator stress and modulus are always smaller than their deterministic values 
while the standard deviations show an increase with the increase of the correlation length. 

 

 

Figure 13: Variation of 
50Eμ  (case B)
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Figure 14: Variation of 
50Eσ  (case B) 

SUMMARY AND CONCLUSIONS 
In this study, a framework to combine random field theories and the discrete element method to 

analyze the behavior of soil structures under spatially varying properties was presented. A triaxial testing 
of spatially varying soil samples was performed. Two confining stresses were used for the analysis and a 
total of 250 realizations were executed for each case of analysis.  Using Monte Carlo simulation, 
probabilistic analyses of output parameters were discussed.  

The spatial variability of the microscopic friction angle and stiffness leads to smaller mean values of 
the peak deviator stress Δσf and modulus E50 compared to their deterministic values. Increasing the 
correlation length leads to the positive behavior of the standard deviations of fσΔ  and E50. The mean 

values of fσΔ  and E50, on the other hand, rise from small values of correlation lengths to their peak 

values at a vertical correlation length θ(y) of about 0.5 m and then falls as θ(y) is greater than 0.5 m. 

The algorithm has some advantages in creating 3D discrete element domains accounting for the 
spatial variability of the properties. The time required to create a 3D soil sample is greatly reduced, 3D 
random fields of soil properties which are anisotropic and spatially varied can be easily mapped on the 
soil domain, and the 3D random field generator is embedded into the discrete element code. The proposed 
algorithm has proved to be efficient and can be implemented to solve other geotechnical problems by 
coupling reliability analysis and the discrete element method.  
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