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SUMMARY: We address estimation of the marginal effect of a time-varying binary treatment on a continuous longitudinal outcome

in the context of observational studies using electronic health records, when the relationship of interest is confounded, mediated

and further distorted by an informative visit process. We allow the longitudinal outcome to be recorded only sporadically and

assume that its monitoring timing is informed by patients’ characteristics. We propose two novel estimators based on linear models

for the mean outcome that incorporate an adjustment for confounding and informative monitoring process through generalized

inverse probability of treatment weights and a proportional intensity model respectively. We allow for a flexible modelling of

the intercept function as a function of time. Our estimators have closed-form solutions, and their asymptotic distributions can be

derived. Extensive simulation studies show that both estimators outperform standard methods such as the ordinary least squares

estimator or estimators that only account for informative monitoring or confounders. We illustrate our methods using data from the

Add Health study, assessing the effect of depressive mood on weight in adolescents.
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1. Introduction

Consider a setting where we are interested in understanding the cross-sectional impact of an

exposure on an outcome, for example a physician is interested in the impact of a current clinical

measurement on the current presence of an illness, and their patients are repeatedly assessed over

time. To learn about such an association, we may turn to electronic health records (EHRs). Lon-

gitudinal outcomes, particularly those drawn from EHR data, may be measured irregularly across

patients. The time points at which they are recorded may depend on patients’ health condition,

which may on its turn be linked with the value of the outcome measured at those visit times,

leading to imbalances in the data similar to those observed in selection bias. Moreover, confounders

and mediating variables (Greenland and Robins, 1986) occur simultaneously with informative

monitoring times in most observational studies, and thus must also be accounted for.

In this work, we focus on making inference on the marginal effect of a binary, time-varying treat-

ment on a continuous outcome, measured repeatedly over time. To model longitudinal outcomes in

contexts where monitoring times are irregular or informative, several methods have been proposed,

but none of them simultaneously considered confounding in a setting with continuous outcomes.

When monitoring times are informative, Robins et al. (1995) proposed a weighted extension of

the generalized estimating equations of Liang and Zeger (1986) to estimate the marginal effect of

intervention on a longitudinal outcome. In their method, inverse probability of response weights

were incorporated into estimating equations to adjust for nonrandom missingness, which addressed

the problem of informative monitoring times but was restricted to the case where there is a common

set of monitoring times for all individuals, which is often not the case in observational studies. In

2001, Lin and Ying (2001) developed a class of closed-form estimators for the marginal effect of

variables on the mean outcome that accounted for informative monitoring times and allowed for

those times to vary across individuals. Several innovations followed, which we detail further in the

following section, many of which are covered in the review of Pullenayegum and Lim (2016).
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We extend the existing literature further and propose two new and flexible estimators for the

marginal effect of a (potentially time-varying) binary treatment on a longitudinal continuous out-

come for settings in which the exposure is not randomized. In our methods, we allow the mediators,

the exposure and other covariates to affect the timing of the outcome monitoring, and both the

confounders and the mediators to vary in time. The first estimator is a semiparametric extension

that builds on the work of Bůžková and Lumley (2009). The second estimator is a weighted least

squares type estimator that incorporates two time-varying weights. This latter flexible estimator

provides a simpler and more intuitive alternative to the first, with comparable performance. Its

asymptotic variance is derived. In simulation studies, we compare both estimators and more stan-

dard ones in different contexts of dependency between covariates and monitoring times.

The remainder of this article is organized as follows: Section 2 introduces the notation, assump-

tions and inference procedure. Section 3 presents the details of the simulation studies and the

results. Section 4 applies the methodology to the analysis of the data from the Add Health study

(Harris et al., 2009a). Finally, we provide some concluding remarks in Section 5.

2. Methods

2.1 Background

Lin and Ying (2001) considered the following marginal model:

E [Yi(t)|Xi(t)] = α(t) + β′Xi(t), (1)

with α(t) an arbitrary function of time t, X(t) a design matrix and Yi(t) a continuous longitudinal

outcome. They assumed a proportional intensity model for the monitoring times of the outcome,

which monitoring times were only allowed to depend on covariates in the outcome model, X(t).

They proposed a semiparametric estimator for β in (1), which does not require estimation of the

intercept α(t). In 2009, Bůžková and Lumley (2009) proposed to incorporate a weight in Lin and

Ying’s estimator that accounts for the dependency between monitoring times and any covariates
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that are not in the design matrix X(t). In particular, their approach allows for any mediators of the

treatment-outcome relationship to affect monitoring times.

Tan et al. (2014) presented a summary of some of the extensions of Lin and Ying’s estimator and

proposed a few developments of existing methods. Other authors have proposed fully parametric

methods to jointly model the visit and outcome processes (Lipsitz et al., 2002; Ryu et al., 2007), or

introduced shared latent effects to link the outcome and the visit processes (e.g., Sun et al., 2012;

Cai et al., 2012). Most recently, Zhu et al. (2017) proposed an estimator for interval-censored

outcomes when confounding and irregular visit times may be present. They were among the first

to consider these two features, however the method is focused on a very particular outcome type.

The problem of accounting for mediators and confounding variables in observational studies

has been addressed via several methods. It is now well-known that mediating variables should

not be included in the design matrix of the outcome model if the estimand is the total effect of

exposure on the outcome (Rosenbaum, 1985). Propensity score methods such as inverse probability

of treatment (IPT) weights are commonly used to adjust for imbalances across treatment groups

due to confounders (Rosenbaum and Rubin, 1983; Robins et al., 2000a). The standard IPT weight

for a binary and time-fixed treatment Ii, baseline confounders Ki and parameters ω is given by

ei(ω) =
1

I(Ii=1)P (Ii = 1|Ki;ω) + I(Ii=0)(1− P (Ii = 1|Ki;ω))
, (2)

where I(Ii=1) is an indicator function for treatment Ii = 1. We typically estimate the parameters ω

by fitting a logistic regression model with dependent variable Ii and predictors Ki.

2.2 Assumptions

Suppose that we have a random sample of n individuals, indexed by i = 1, ..., n. We are in-

terested in the marginal effect of a binary intervention Ii(t) on the longitudinal, continuous out-

come Yi(t), where t represents the time. We use the Neyman-Rubin potential outcome framework

(Neyman, 1923; Rubin, 1974) to express the estimand of interest, which is the causal contrast

E [Yi1(t)− Yi0(t)] where Yi1(t) corresponds to the outcome that would have been observed at
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time t, had individual i been treated by Ii(t) = 1, and Yi0(t), had the individual been treated by

Ii(t) = 0. More specifically, we focus on a time-invariant marginal effect of the exposure on the

outcome recorded at the same monitoring time.

The terms treatment, intervention and exposure are used interchangeably to refer to Ii(t), and

monitoring times and visit times refer to the times when the outcome Yi(t) is observed. We use

bold notation to refer to vectors and matrices. We now detail the assumptions required about the

outcome model (O1-O2), the visit process (V1-V2), the treatment model (P1-P3), and the total

follow-up time (C1); these assumptions are required for consistency of our proposed estimators.

To estimateE [Yi1(t)− Yi0(t)], one can also estimate the contrastE [Yi(t)|Ii(t) = 1]−E [Yi(t)|Ii(t) = 0]

in a pseudo-population where there is no imbalance in covariates between treatment groups due

to confounding and the monitoring process. In a setting with no such imbalance, we assume that

treatment groups are similar in their characteristics and that patient groups are interchangeable

prior to exposure. The following marginal linear model for the mean can be used for estimation:

E[Yi(t)|Ii(t)] = α(t) + βIi(t). (O1)

The parameter β in (O1) is exactly equal to E [Yi(t)|Ii(t) = 1] − E [Yi(t)|Ii(t) = 0] so it might

represent a valid estimate for the causal contrast of interest. However, we are aware in our setting

of an underlying confounding process, and the following conditional model for the mean is a

sensible model to use to estimate the conditional effect of treatment βI :

E[Yi(t)|Ii(t),Ki(t)] = α(t) + βIIi(t) + βK
′Ki(t) (O2)

for Ki(t) the confounders of the relationship (Ii(t), Yi(t)). Depending on the distribution of con-

founders Ki(t) in the sample under study, an estimator of β in the marginal model in (O1) might

be biased for E [Yi1(t)− Yi0(t)], due to imbalances in the confounders between treatment groups.

Moreover, the model in (O2) is marginalized over other covariates not included in Ii(t) or Ki(t)

that may affect both the outcome and the monitoring times. For now, we do not consider explicit

modeling of the covariates affecting monitoring times which could bias an estimate for βI in (O2),
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and focus on the conditional model (O2). We see later how we can obtain an estimate for the

average treatment effect in a pseudo-population where there are no imbalances between treatment

groups with respect to Ki(t), and no imbalances in observed/unobserved outcomes due to an

informative monitoring process.

Let the intercept α(t) remain unspecified in (O2). In addition to confounding, assume that the

relationship between Ii(t) and Yi(t) may be mediated by a vector of (potentially time-varying)

covariates Zi(t) which are in the causal path from the exposure Ii(t) to the outcome Yi(t); see

Bůžková and Lumley (2005) for an asthma-related example.

Assume that the longitudinal outcome Yi(t) is only observed at times Ti1, ..., TiKi
, with Ni(t) =∑Ki

k=1 I(Tik ≤ t). Note that other patient features might be recorded and available in between times

when the outcome is recorded. Ni(t) is used to denote the number of monitoring times by time t,

for individual i. The quantity dNi(t) is equal to 1 if Yi(t) is measured at time t and 0 otherwise,

and τ represents the maximum follow-up time in the cohort under study.

We suppose that the relationship between Ii(t) and Yi(t) may be distorted by an informative

monitoring process, and that monitoring at time t depends on the set of covariates Vi(t) =

{Zi(t), Ii(t)} through a proportional intensity model for the monitoring times:

E[dNi(t)|Vi(t)] = ξi(t) exp (γ ′VVi(t)) dΛ0(t), (V1)

where the function Λ0(·) is arbitrary and nondecreasing, and ξi(t) is the indicator of individual i

still being in the study at time t. We assume that for each time 0 < t < Ci, for a certain time

granularity (e.g. daily), and for each individual i, we have 0 < P [dNi(t)|Vi(t)] < 1. We restrict

the assumption to a particular granularity, as positivity is unlikely to hold when time is continuous.

Suppose that Vi(t) contains all common predictors of the monitoring times and the outcome,

Ni(t) ⊥ Yi(t)|Vi(t). (V2)

In fact, note that Z(t) ⊂ V(t) may contain any mediator of the relationship between Ii(t) and

Yi(t), but also any other variable that is not the intervention but that affects monitoring times.
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Note that the modelling of monitoring times through equation (V1) requires all covariates af-

fecting monitoring times to be available at any time t, 0 ≤ t < Ci, ∀i during follow-up (again,

under a particular time granularity, e.g. daily). We note that administrative databases or EHRs

often contain the information on drugs prescribed or previous diagnostics at any time (even in

between times when the outcome is recorded) and these values can be carried forward in between

monitoring times so as to use as much information as possible. In clinical practice, in the absence

of new measurements, this information may be relied on to make decisions (Cao et al., 2016).

For the exposure, we assume conditional exchangeability, stable-unit treatment value and posi-

tivity of treatment, which respectively correspond to:

Ii(t) ⊥ {Yi0(t), Yi1(t)} |Ki(t) (P1)

{Yi0(t), Yi1(t)} |Ii(t) = {Yi0(t), Yi1(t)} |I ′i(t) if Ii(t) = I ′i(t) (P2)

0 < P (Ii(t) = 1|Ki(t)), P (Ii(t) = 0|Ki(t)) < 1. (P3)

These conditions are necessary to use propensity score methods to adjust for confounding, along

with correct model specifications.

While the maximum follow-up time is τ , it may be that some individuals are not followed after

a certain point. Let Ci denote the end of follow-up (“censoring” time, though we are not working

in a time-to-event context) for individual i; we consider that the end of follow-up is administrative

and non-informative, that is

E [Yi(t)|Ii(t),Ki(t), Ci ≥ t] = E [Yi(t)|Ii(t),Ki(t)] . (C1)

We note that this assumption could be circumvented by using inverse probability of censoring

weights to adjust for informative dropout. See, for instance, Robins et al. (2000a).

The causal diagram in Figure 1, panel A depicts the structure of the data generating mechanism

at time t. Panel B shows the presumed underlying data mechanism for our analysis of the Add

Health study, presented in Section 4. Note in Figure 1 that we assume that the confounders and

the mediators vary in time, which is allowed but is not necessary. Even when these variables vary
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in time, their effects on the monitoring times are assumed constant over time (i.e. we estimate γV

rather than γV (t)). Finally, we note that knowledge about the problem under study should inform

the best choice for the set Ki(t), which may incorporate covariates measured at time t, as well as

at previous time s, for s < t. Settings with time-dependent confounding are allowed, as long as the

set of confounders include all potential confounders of the marginal relationship under study at a

given time and that mediators are not conditioned upon in the outcome model.

[Figure 1 about here.]

Dotted arrows in Figure 1 refer to potential relationships we may want to consider.

2.3 Existing methods

Lin and Ying (2001) proposed a semiparametric estimator for β in the marginal model (O1) without

reference to a particular covariate or intervention of interest. Their method did not account for the

variables that affected the monitoring times whenever those variables were not contained in the

design matrix for the outcome model. Bůžková and Lumley (2009) extended their work to account

for those other variables. They built an estimator for the marginal effect of treatment based on the

stochastic process Mi(t; β,γV ,A ) which, in our case, is defined by

Mi(t; β,γV ,A ) =

∫ t

0

(Yi(s)− βIi(s)) dNi(s)− ξi(s) exp (γV
′Vi(s)) dA (s), (3)

where A (t) =
∫ t
0
α(s)dΛ(s). They defined a weighted versionGi(t; β,γ,A ) of that process, with

Gi(t; β,γ,A ) =

∫ t

0

1

ρi(s;γ)
dMi(s; β,γV ,A ) (4)

with the stabilized rate ratio weight ρi(s;γ), given in our setting by

ρi(s;γ) =
exp (γ1

′Zi(s) + γ2Ii(s))

exp (γIIi(s))
. (5)

Note that γ′1Zi(s) + γ2Ii(s) = γV
′Vi(s). The weight (5) allows their estimator to consider the

dependency between Z(t) and the monitoring times while not adding Z(t) directly into the design

matrix. It also accounts for the dependency between the covariates in the design matrix of the

outcome model (here, Ii(t)) and the monitoring times. The parameters γ1 and γ2 in (5) can be
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estimated by fitting a proportional intensity model for monitoring times with Z(t) and I(t) as

covariates, while γI is estimated using the same type of model with only I(t) as a covariate.

Bůžková and Lumley (2009) show that E [dGi(t; β,γ,A )|Ii(t)] = 0 under assumptions (O1),

(C1), (V1) and (V2). They further build estimating equations for β in (O1). In our setting where

the design matrix is I(t), their procedure yields the following estimator:

β̂BL =

[
n∑
i=1

∫ τ

0

W (t)

ρi(t;γ)

(
Ii(t)− I(t; γI)

)2
dNi(t)

]−1

×
n∑
i=1

∫ τ

0

W (t)

ρi(t;γ)

(
Ii(t)− I(t; γI)

) (
Yi(t)− Y

∗
(t; γI)

)
dNi(t), (6)

which is a least squares type estimator where the design matrix is the vector
(
I(t)− I(t; γI)

)
,

the outcome vector is given by
(
Y(t)−Y

∗
(t; γI)

)
, W (t) is an arbitrary time-dependent weight

that may be used to reduce the variance, and Y
∗
(t; γI) a weighted average of the nearest-neighbor

approximation to Y at time t (which is also used to reduce the variance of the estimator). The

re-centering of Ii(t) by its adjusted mean in (6) eliminates from the estimation the intercept α(t) in

(O1) and avoids having to model the relationship between the mean outcome and time t, hence the

semiparametric and more flexible nature of the estimator. The estimating equations that Bůžková

and Lumley (2009) used are sums of independent zero-mean random vectors, and the variance of

their estimator can be derived using standard asymptotic theory along with Taylor expansions. In

what follows, we use W (t) = 1 ∀t.

In order to estimate the adjusted means, the proportional intensity model (V1) is fitted with only

the predictor Ii(t). The coefficient γ̂I for Ii(t) is used to compute the weighted means. For any

vector R(t) in general, we have:

R(t; γ̂I) =
n∑
i=1

Ri(t)
ξi(t) exp (γ̂IIi(t))∑n
j=1 ξj(t) exp (γ̂IIj(t))

. (7)

The estimator β̂BL is, however, biased for the marginal effect of the intervention Ii(t) in our

setting of interest, because it is limited to randomized controlled settings and does not consider

imbalances between treatment groups which are due to confounders Ki(t). With a conditional ex-
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pectation such as in (O2), the process used to build the estimator (which was based on assumption

(O1)) is no longer zero-mean and the estimator may thus not converge to the true parameter.

2.4 The Inverse Probability of Centered Treatment and Monitoring Estimator β̂IPCTM

Under similar assumptions to Bůžková and Lumley (2009), but now further including covariates

as in (O2), we first develop an estimator for the conditional effect of Ii(t) on Yi(t), as in the setting

depicted in Figure 1(A). Note that this estimator is marginalized over the predictors V(t) of the

monitoring times and, as in Bůžková and Lumley, we use a monitoring weight to account for any

imbalance in those predictors that could bias the effect of I(t) conditional on K(t). We define a

new process Pi(t) = Pi(t;β,γ,A ) as

Pi(t) =

∫ t

0

1

ρi(s;γ)
[(Yi(s)− βIIi(s)− βK

′Ki(s)) dNi(s)− ξi(s) exp (γV
′Vi(s)) dA (s)] ,

with A (t) =
∫ t
0
α(s)dΛ(s). In Web Appendix A, we show that E [dPi(t)|Ii(t),Ki(t)] = 0, and

the derivation of the estimating equations and estimators for the conditional effects. We obtain the

following estimators for the conditional effects of
[
Ii(t) Ki(t)

]′
in (O2):

[β̂I β̂k]′ =

 n∑
i=1

∫ τ

0

W (t)

ρi(t; γ̂)

 Ii(t)− I(t; γ̂I)

Ki(t)−K(t; γ̂I)


⊗2

dNi(t)


−1

×
n∑
i=1

∫ τ

0

W (t)

ρi(t; γ̂)

 Ii(t)− I(t; γ̂I)

Ki(t)−K(t; γ̂I)


′ (
Yi(t)− Y

∗
(t; γ̂I)

)
dNi(t). (8)

Using the estimating equation for conditional effects to estimate the parameters βI and βK in

(O2) corresponds to using a weighted least squares regression with predictors (Ii(t) − I(t; γ̂I))

and (Ki(t)−K(t; γ̂I)), a dependent variable (Yi(t) − Y
∗
(t; γ̂I)) and weights W (t)/ρi(t; γ̂). To

rather estimate the marginal effect of Ii(t) on the mean outcome, we propose to use weights to

create a pseudo-population in which there is no imbalance due to confounders, and so we change

focus to the corresponding estimating equation for the marginal model (O1), and its corresponding

estimator given in (6), when there is no imbalance due to confounders.



10 Biometrics, April 2020

The re-weighting procedure we use is reminiscent of standard inverse probability of treatment

weighting. Our goal is to break any dependency between the columns of the design matrix in (8),

given by Ii(t)−I(t; γ̂I) and Ki(t)−K(t; γ̂I). Note that the quantity
(
Ii(t)− I(t; γ̂I)

)
is typically

not binary so we cannot use a logistic regression to model E
[
Ii(t)− I(t; γ̂I)|Ki(t)−K(t; γ̂I)

]
.

We model the conditional mean using a linear model. Suppose

E
[
Ii(t)− I(t; γ̂I)|Ki(t)−K(t; γ̂I)

]
= ψ0 +ψ1

′(Ki(t)−K(t; γ̂I)). (9)

Estimates forE
[
Ii(t)− I(t; γ̂I)|Ki(t)−K(t; γ̂I)

]
are obtained via the predictions from the linear

regression model (9) with estimated coefficients. To transform these values into pseudo prob-

abilities that lie between 0 and 1 so as to further re-weight the marginal estimating equation

corresponding to the estimator in (6), we use an approach suggested by Robins et al. (2000a). We

then stabilize these pseudo probabilities, using a marginal model for the mean of Ii(t) − I(t; γ̂I)

that is equal to ψm so as to compute a final stabilized generalized weight given by

sgwi(t; ψ̂) = sgwi(t; ψ̂0, ψ̂1, ψ̂m) =
g−1

(
ψ̂0 + ψ̂1

′
(Ki(t)−K(t; γ̂I))

)
g−1

(
ψ̂m

) (10)

for g−1(âi(t)) = 1/
√

2πσ̂2
a exp (−ε̂a,i(t)2/(2σ̂2

a)) the Normal density function evaluated at the

linear regression residuals ε̂a,i(t) =
(
Ii(t)− I(t; γ̂I)− âi(t)

)
, with σ̂2

a the empirical variance

of ε̂a,i(t). Another way of modelling the variable Ii(t) − I(t; γ̂I) would be to categorize it into

quantiles (Naimi et al., 2014). That procedure could work particularly well if the distribution of

Ii(t)−I(t; γ̂I) is not unimodal and is asymmetric. This latter approach was evaluated in sensitivity

analyses.

The weight (10) is incorporated into the estimating equations corresponding to the estimator of

Bůžková and Lumley in (6), and we obtain the new estimating equation

Umar(β, α, γ̂, ψ̂) =
n∑
i=1

∫ τ

0

W (t)

ρi(t; γ̂)

1

sgwi(t; ψ̂)

(
Ii(t)− I(t; γ̂I)

)
×
[
Yi(t)− Y

∗
(t; γ̂I)− β

(
Ii(t)− I(t; γ̂I)

)]
dNi(t). (E2)

Solving equation (E2) for Umar(β, α, γ̂, ψ̂) = 0 leads to the closed-form solution of our proposed
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Inverse Probability of Centered Treatment and Monitoring (IPCTM) estimator, that is given by:

β̂IPCTM =

[
n∑
i=1

∫ τ

0

W (t)

ρi(t; γ̂)

(
Ii(t)− I(t; γ̂I)

)
sgwi(t; ψ̂)

2

dNi(t)

]−1

×
n∑
i=1

∫ τ

0

W (t)

ρi(t; γ̂)

(
Ii(t)− I(t; γ̂I)

)
sgwi(t; ψ̂)

(
Yi(t)− Y

∗
(t; γ̂I)

)
dNi(t) (11)

for the estimand of interest, the marginal effect of Ii(t) on Yi(t).

Note that the intercept function α(t) is left unspecified in (O1) so that one need not assume

any particular form for the dependence of the outcome Y (t) on time t. More details on the un-

biasedness of the IPCTM estimator are presented in Web Appendix B. Similarly to Bůžková and

Lumley (2009), the asymptotic variance of the IPCTM estimator can be developed using standard

asymptotic theory. It is also possible to directly account for the components of variance due to the

weights using theory on two-step estimators (Newey and McFadden, 1994) along with the variance

formula provided by Bůžková and Lumley (2009).

2.5 The Flexible Inverse Probability of Treatment and Monitoring Estimator β̂FIPTM

A second estimator, which is also a weighted least squares type estimator, is proposed to estimate

the marginal effect of treatment on a longitudinal and continuous outcome. It requires slightly

stronger parametric specifications for the intercept α(t) in (O1), which is modelled through cubic

splines. However, it is easier to implement in practice, and as we will demonstrate in Section 3,

it often provides equivalent performance as the IPCTM estimator in simulation studies. Given its

more parametric nature, we also expect it to exhibit smaller variance than the IPCTM estimator.

Let us assume again the conditional mean model (O2) along with assumptions (P1), (P2) and (P3)

and that monitoring times can be modelled through a proportional intensity model as in (V1). We

use a weighted least squares method, and aim to create a pseudo-population in which imbalances

due to confounders and covariate-dependent monitoring times are eliminated through re-weighting.

We first readjust the observations for the monitoring process using an inverse probability of moni-



12 Biometrics, April 2020

toring weight defined by the inverse of ϕi(t;γV ), with

ϕi(t;γV ) = exp
(
γ′
1Zi(t) + γ2Ii(t)

)
. (12)

Again, assuming a proportional intensity model for the monitoring times, one does not need to

estimate the function Λ0(t) in (V1) since this term at time t will cancel out across individuals. The

parameters γ1 and γ2 can be estimated by fitting a proportional intensity model.

We use a standard approach to adjust for imbalances due to confounders, and add an inverse

probability of treatment weight into the weighted least squares regression. That weight is given by:

ei(t;ω) =
1

I(Ii(t)=1)P (Ii(t) = 1|Ki(t);ω) + I(Ii(t)=0)(1− P (Ii(t) = 1|Ki(t);ω))
. (13)

The quantities P (Ii(t) = 1|Ki(t);ω) and P (Ii(t) = 0|Ki(t);ω) in (13) can be estimated via logis-

tic regression with Ki(t) as covariates and Ii(t) as the dependent variable. Once again, knowledge

about the problem under study should inform selection of Ki(t) for inclusion in the treatment

model used to estimate the IPT weights in (13).

The intercept α(t) in (O2) is modelled using cubic splines along with a constant intercept. We

use splines with two knots and choose the tertiles of the distribution of t for the knots. The final

estimator has a closed-form solution given by

β̂FIPTM =

[
n∑
i=1

∫ τ

0

ei(t;ω)

ϕi(t; γ̂V )
Si(t)

⊗2dNi(t)

]−1 n∑
i=1

∫ τ

0

ei(t;ω)

ϕi(t; γ̂V )
Si(t)

′Yi(t)dNi(t) (14)

with S(t) a matrix with s + 2 columns, for s the number of columns in the basis of the cubic

spline. The leading column of S(t) is a vector of 1 for the constant intercept, and the last column

corresponds to the intervention I(t). We are interested in the last coefficient of β̂FIPTM , which

corresponds to the estimator for the marginal effect of treatment, that we further refer to as β̂FIPTM .

The asymptotic variance of β̂FIPTM is computed using standard theory on weighted least

squares estimator, with the components of variance due to the weights incorporated into the sand-

wich estimator using theory on two-step estimators (Newey and McFadden, 1994). For deriva-

tions, see Web Appendix C. A comparison of the empirical, the bootstrapped and the asymptotic
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variances in simulation studies is presented in Web Table 3 of Web Appendix D, along with the

coverage of the FIPTM estimator.

3. Simulation study

Simulation studies were conducted to assess the performance of both estimators β̂IPCTM and

β̂FIPTM for the marginal effect of Ii(t) on the mean of Yi(t), for different levels of dependency

(γV ) between covariates and monitoring times and for different forms of intercept α(t). The data

generating mechanism was similar to the one presented in Figure 1(A) and inspired by Bůžková

and Lumley (2009), but incorporates (possibly time-varying) confounders. In a first study described

below, the intervention and the confounders were kept time fixed. In a second study, they could vary

in time (details are presented in Web Appendix E).

Simulation study 1: Time-fixed confounders and treatment

For all patients i, three baseline confounders {K1i, K2i, K3i}were generated withK1i ∼ N(1, 1), K2i ∼

Bernoulli(0.55), and K3i ∼ N(0, 1). The intervention Ii(t) was binary and time-fixed, and was

simulated as Ii ∼ Bernoulli(pIi) with pIi = expit (0.5 + 0.8K1i + 0.05K2i − 1K3i). One time-

varying mediator Zi(t) was generated, conditional on Ii, as Zi(t)|Ii = 1 ∼ N(2, 1) and Zi(t)|Ii =

0 ∼ N(4, 4). The outcome Yi(t) was simulated as Yi(t) = α(t) + 1Ii + 3 [Zi(t)− E [Zi(t)|Ii]] +

0.4K1i + 0.05K2i − 0.6K3i + εi(t) with εi(t) ∼ N(φi, 0.01) and φi ∼ N(0, 0.04).

The quantities above were first simulated in continuous time, with time discretized over a grid

of 0.01 units, from 0 to τ . Then, monitoring times (i.e. when the outcome was observed) were

simulated according to a nonhomogeneous Poisson process, with intensity at time t equal to

λi(t|Ii, Zi(t)) = ηi exp (γ1Ii + γ2Zi(t)), with ηi a gamma distributed random variable with mean

1 and variance 0.01. Bernoulli draws with probabilities proportional to these intensities could be

used at each time point to assign monitoring times. Monitoring times could be drawn up until the

maximum follow-up time τ ; we fixed τ = 2 and obtained different mean numbers of visits which
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depended on parameters (γ1, γ2). We tested three combinations: (γ1, γ2) = (0, 0), which corre-

sponded to no dependency on covariates; (γ1, γ2) = (−0.3, 0.2); and (γ1, γ2) = (0.6, 0.3). The

follow-up time was further censored at time Ci for each individual, with Ci ∼ Uniform(τ/2, τ).

For α(t), five different functions of time were tested: α(t) = 3; α(t) = 2.5t; α(t) = sin(t);

α(t) = exp(t); and α(t) = exp(2| sin(3t)|). Two sample sizes, respectively n = 250 and n = 500,

were tested. We used a total of 1000 simulations in each study.

The proposed estimators were compared to more standard ones, i.e. an OLS estimator, a visit-

weighted estimator and an IPT-weighted estimator. The OLS estimator β̂OLS was obtained by

fitting a linear regression model with outcome Yi(t), a constant intercept and the independent

variable Ii. The estimator β̂VW was a weighted least squares estimator in which a time-dependent

monitoring weight was incorporated. The monitoring time model was correctly specified and

included Ii and Zi(t) as explanatory variables. The IPT-weighted estimator was a weighted linear

regression estimator in which an inverse probability of treatment weight was incorporated. For the

estimators β̂IPCTM and β̂FIPTM , the treatment and the monitoring models were correctly specified.

In Web Appendix D, we present the results for 9 additional simulation scenarios in which treat-

ment and confounding variables were also time fixed. Scenarios i) and ii) respectively correspond

to the cases where confounder variables {K1i, K2i, K3i} were correlated, or where confounder

variables {K1i, K2i, K3i} affected the monitoring intensity. Scenarios iii) and iv) correspond to the

cases where generalized IPT weights in the IPCTM estimator were computed from a cumulative

logistic regression, with the variable Ii(t)− I(t; γ̂I) binned into 10 quantiles, or with 20 quantiles,

respectively. Sensitivity analyses v), vi), vii) and viii) aim to assess sensitivity to model misspec-

ification via studies where we: v) changed the error distribution for a Log-Normal distribution

centered in 0, in the mean outcome model, rather than the Normal errors we previously simu-

lated; vi) incorporated non-linear functions of the confounder covariates in the generative outcome

model; vii) incorporated non-linear terms of the covariates in the generative proportional intensity
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model for the visits; and viii) drew, for each individual, a different intercept function d∆0(t) from

3 possible functions: d∆0(t) ∈ {1; 1.5t; sin(t)}, with respective probability 1/2, 1/4, 1/4. Finally,

the simulation scenario ix) explored the effect of conditioning on confounders in the outcome mean

model, for all the estimators that were being compared.

Results

Summary statistics (including empirical bias) for each estimator are found in Web Appendix

D. Figure 2 shows absolute biases and empirical mean squared errors (MSE) for each of the five

estimators we compared; each boxplot summarizes the distribution of bias or MSE, over all 15

scenarios of dependency and intercept functions that we considered. We also present results for

one of the scenarios where α0(t) = 3, in Table 1 in this manuscript. The results in Table 1 were

based on a simulation study where exposure and confounders were kept as time-fixed.

[Table 1 about here.]

As we notice in Figure 2, the OLS estimator, which we can see is biased, generally provides

variable MSEs due to the different sets of γV parameters. When adjusting for the monitoring pro-

cess only, we observe that β̂VW varies much less. However, it remains biased due to confounding.

The IPT estimator, on the other hand, is only unbiased when there is no informative visit process.

Most importantly, β̂IPCTM and β̂FIPTM exhibit almost zero bias and a quite narrow distribution

for their absolute bias. As expected, different parameters (γ1, γ2) lead to different mean numbers

of visits. Typically, the greater the mean number of visits, the smaller the bias for the two latter

estimators (see Web Tables 1 and 2 in Web Appendix D). In Table 1 of this manuscript, we find

simular results which are representative of the results from across scenarios. In particular, we find

that the absolute bias of the two proposed estimators β̂IPCTM and β̂FIPTM is near 0, but that

their variance tends to be greater than that of their comparators, as the γV coefficients increase.
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The two proposed estimators dramatically outperform their comparators in terms of bias as those

coefficients increase.

In Figure 2, we also observe that the IPCTM estimator exhibits a greater MSE than the flexible

estimator (β̂FIPTM ) in studies with time-fixed treatment and confounder variables, while it exhibits

a smaller mean squared error than the FIPTM estimator in studies with time-varying treatment and

confounder variables. As expected, the range of MSE narrows as the sample size increases. Given

that both β̂IPCTM and β̂FIPTM exhibit a bias that tends towards 0, and that β̂FIPTM is easier

to implement in practice, we contend that it should be preferred. We present in Web Table 3 of

Web Appendix D a comparison of its bootstrapped, empirical and asymptotic variances, which

were generally very similar. In studies with time-varying treatment and confounding variables, the

IPCTM estimator may be more efficient. Further investigation of whether the centered estimator

may be more competitive in a wider range of scenarios will be an important avenue of future work.

[Figure 2 about here.]

Sensitivity analyses for the first simulation study with time-fixed treatment and confounders

The results (distributions of biases and MSEs) for all 9 sensitivity analyses can be found in

Web Tables 4 (i), 5 (ii), 6 (iii and iv), 7 (v, vi, vii, viii), and 8 (ix) in Web Appendix D. A brief

summary of these results can also be found in Web Appendix F. Overall, our proposed methods

were not too sensitive to misspecification of the different models, except for the sensitivity analysis

where we incorporated non-linear functions of the covariates in the proportional intensity model

for monitoring times. In that latter case, the FIPTM estimator has shown great bias, while the

IPCTM estimator was not as affected by the misspecification of the monitoring model.
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4. Application to the Add Health Study

The proposed estimators were applied to data from the National Longitudinal Study of Adolescents

to Adult Health (Add Health) (Harris et al., 2009a) to assess the marginal effect of depressive

mood on weight in pounds, in adolescents. Our estimators were also compared to more standard

estimators that do not account for informative monitoring process and/or confounding.

Add Health is a four-wave longitudinal study on adolescents who, over the course of the study,

age to become young adults. A pool of participants who were well representative of adolescents in

United States were enrolled during the years 1994-5 while they were in grades 7 to 12, and followed

until 2008 (Wave IV). For each of the four waves, an in-home questionnaire was completed by the

participants. A parent questionnaire was completed by one of the participants’ parents at baseline

only (Wave I). Data collected from in-home interviews are publicly available online for all four

waves (Harris, 2009b). For the purpose of this analysis, we assumed that longitudinal data are

made up of a maximum of four time points where the outcome is potentially recorded. Hence,

time = 1, 2, 3, 4 respectively correspond to all four waves. For simplicity, none of our analyses

considered the sampling weights used in Add Health study.

We first defined the time-varying exposure that consisted of a binary depression score, using

a question from the in-home interview that was related to the current depressive mood of the

participant. For the question How often was the following true during the past week? You felt

depressed., a participant’s score was set to 0 if they answered Never/rarely or Sometimes and to 1

if their answer was contained in A lot of the time or Most/All of the time. The longitudinal outcome

consisted in the weight in pounds, which was recorded at every in-home interview. We assumed that

the relationship between depression status and weight was mediated by smoking, since depressive

mood exacerbates smoking (e.g., Stepankova et al., 2016), which in turn affects weight (e.g.,

Grunberg, 1985). We used as a proxy for smoking the number of cigarettes smoked during the

past 30 days, also recorded at each of the four in-home interviews. A participant who had smoked
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at least one cigarette in the previous 30 days was considered to be a smoker. For confounders of

the relationship between depression and weight, we included age, sex and socioeconomic status

(SES). SES was defined using the two following in-home questions asked to one of the participants’

parents: About how much total income, before taxes did your family receive in 1994? and How far

did you go in school?. The answers were transformed into quintiles and summed up to give a total

score contained between 0 and 10, with 10 corresponding to the highest SES.

A total of 6504 participants were enrolled at Wave I. Data presented missing values due to

patients’ dropout or their refusal to answer questions during the course of the study. We assumed

that monitoring times (i.e. times when weight was recorded) depended on the depression status, the

smoking status, age, sex and SES, which variables were included in a proportional intensity model

for the monitoring times. In the exposure model, we adjusted for the potential confounders age, sex

and SES. If patients had a value at their first interview, this value was used to impute values at other

waves (it remained fixed in time). Recall that variables predicting the visit process are required to

be available at all time. Thus, we employed multiple imputation with M=5 imputations, using

predictive mean matching to impute any remaining missing values in age, sex and SES, as well as

for missing values in exposure and mediator. Following imputation and analysis, the coefficient for

exposure of interest was combined across the imputations (Rubin, 1976). One thousand stratified

bootstrap samples were drawn, with strata taken to be the individual, and they were used to

assess the variance of each of the 5 estimates we compared. Table 2 presents a summary of the

characteristics of the cohort at baseline, stratified by their depressive mood. Table 3 presents

the average rate ratios for the 5 variables that were incorporated into the proportional intensity

model for the visit times, along with confidence intervals computed using Rubin’s rule for multiply

imputed datasets (Rubin, 2004). Table 4 shows all estimated effects of depressive mood on weight

with corresponding 95% Wald-type confidence intervals (CIs) using bootstrap standard errors.

[Table 2 about here.]
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The two exposure groups (depressed/not depressed) presented differences at baseline, with more

smokers, older participants, more females and lower SES on average in the participants with

depressive mood than in those without. Smoking and sex (female) were associated with a higher

probability of the outcome being reported, and age with a lower probability (Table 3).

[Table 3 about here.]

[Table 4 about here.]

An important difference was found between the estimates for the marginal effect of depressive

mood computed using β̂OLS , β̂VW , or β̂IPT , and those obtained with our proposed estimators. The

change in estimate seemed to be due to both confounding and informative monitoring times, with

an important difference between β̂OLS and β̂IPT , and an important remaining difference between

β̂IPT and β̂FIPTM or β̂IPCTM . The methods that did not account for confounding and informative

monitoring times suggest that depressive mood leads to decreases in weight of nearly four pounds.

After adjusting for confounding and informative monitoring times, the estimates were consistent

with those found in the literature. We found a small increase in weight due to depressive mood,

with the lower limit of the confidence interval that corresponded to a weight loss of about half

a pound, and an upper limit that consisted of a weight gain of just over three pounds. Wurtman

(1993) explained the complex relationships leading to weight increase in patients with depression

and the link with smoking. Studies such as Van Strien et al. (2016) found no significant direct effect

of depression on weight gain but only a positive effect through emotional eating as a mediator.

The differences observed and the sign reversal of the estimates after accounting for important

features that may bias the estimates echo the results of Hernán et al. (2000). The fact that we

observed a reversal between the IPT-weighted estimator and the FIPTM and IPCTM estimators

supports the message that informative visit process-induced bias should be accounted for.



20 Biometrics, April 2020

5. Discussion

Electronic health records are increasingly available and a common source of data to study the effect

of treatments on longitudinal outcomes in pharmacoepidemiological studies (Hennessy, 2006).

Given their real-world nature, monitoring times in EHRs are often covariate-dependent and the

outcome recorded may be associated with the same covariates, which introduces selection bias

in the analysis. Most often, that feature is ignored. However, when it is considered, confounding

bias is rarely accounted for, as – until now – no simple method has been described to account

for the two sources of bias simultaneously. In this article, we proposed two novel estimators for

the marginal effect of a treatment on a longitudinal outcome which account for imbalances due to

covariate-dependent monitoring times, confounding and mediation. Neither estimator requires the

longitudinal outcome to be measured at all times in continuous but rather only sporadically. The

asymptotic properties of both estimators can be derived. These estimators are relevant to EHRs and

to studies where irregular monitoring times were planned.

The proposed estimators were compared to more standard ones in simulation studies and both

outperformed the OLS estimator, the weighted least squares estimator with an inverse monitoring

weight and the inverse probability of treatment weighted estimator. Their empirical absolute bias

tended towards 0, and the FIPTM estimator has shown good coverage. Moreover, we provided a

practical framework for analysts, with both estimators being flexible with regards to the modelling

of the intercept function. We recommend the use of the FIPTM estimator, which is easy to imple-

ment in practice and for which we have derived the asymptotic variance. For situations where the

intercept function α(t) is expected to vary extensively in time, or for time-dependent treatment and

confounders settings, the IPCTM estimator could be preferred and has shown to be well-behaved.

The estimators we propose rely on important assumptions. One challenge related to this work is

the need for the treatment model to be correctly specified, and the risk for unmeasured confound-

ing. Unmeasured confounding has been widely discussed, and sensitivity analyses are available
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to evaluate the degree at which it could impact the estimate of interest (Lash and Fink, 2003;

Schneeweiss, 2006; Robins, Rotnitzky, and Scharfstein, 2000b). In the situation where the treat-

ment model is misspecified, the IPT weights may not provide adequate adjustment for confound-

ing. Knowledge about the research problem should inform the set of potential confounders to

incorporate into the treatment model. The use of directed acyclic graphs may help in determining

which predictors should be included in the treatment model (Pearl, 1995; Greenland et al., 1999),

however these encode the analyst’s beliefs and may themselves overlook important variables.

Another challenge is the need for the predictors of the monitoring process to be recorded at

all times. In administrative databases and EHRs, information on drugs prescribed or dispensed,

diagnostics and interventions are often recorded even in between physician visits when the outcome

is monitored. For instance, in a study where the question is whether a particular drug impacts the

outcome of blood pressure, blood pressure might be measured only when a patient’s physician

suspects changes in blood pressure and yet the patient potentially visited the physician at several

other points, with data such as the exposure and comorbidities being recorded. In some obser-

vational studies, however, it will not be possible to assess covariate values in between the times

when the outcome is measured. In that case, our methods could be extended to incorporate only the

covariates measured at monitoring times, and to use them to predict the future monitoring times.
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Bůžková, P., and Lumley, T. (2009). Semiparametric modeling of repeated measurements under

outcome-dependent follow-up. Statistics in Medicine, 28(6), 987–1003.

Cai, N., Lu, W., and Zhang, H. H. (2012). Time-varying latent effect model for longitudinal data

with informative observation times. Biometrics, 68(4), 1093–1102.



Weighted Regression Analysis to Correct for Informative Monitoring Times and Confounders in Longitudinal Studies 23

Cao, H., Li, J., Fine, J. P., et al. (2016). On last observation carried forward and asynchronous

longitudinal regression analysis. Electronic Journal of Statistics, 10(1), 1155–1180.

Greenland, S., and Robins, J. M. (1986). Identifiability, exchangeability, and epidemiological

confounding. International Journal of Epidemiology, 15(3), 413–419.

Greenland, S., Pearl, J., Robins, J. M., et al. (1999). Causal diagrams for epidemiologic research.

Epidemiology, 10, 37–48.

Grunberg, N. E. (1985). Nicotine, cigarette smoking, and body weight. British Journal of Addic-

tion, 80(4), 369–377.

Harris, K. M. (2009). The National Longitudinal Study of Adolescent to Adult Health (Add

Health), Waves I & II, 1994–1996; Wave III, 2001–2002; Wave IV, 2007-2009 [machine-

readable data file and documentation]. Chapel Hill, NC: Carolina Population Center, Univer-

sity of North Carolina at Chapel Hill.

Harris, K. M., Halpern, C. T., et al. (2009). The National Longitudinal Study of Adolescent to Adult

Health: Research Design document The Add Health Study: Design and Accomplishments.

Chapel Hill, NC: Carolina Population Center, University of North Carolina-Chapel Hill.

https://www.cpc.unc.edu/projects/addhealth/documentation/guides/DesignPaperWIIV.pdf

(accessed January 28, 2019).

Harris, K. M., and Udry, J. R. (2018). National Longitudinal Study of Adolescent to Adult

Health (Add Health), 1994-2008 [Public Use]. Carolina Population Center, University of

North Carolina-Chapel Hill [distributor], Inter-university Consortium for Political and Social

Research [distributor]. https://doi.org/10.3886/ICPSR21600.v21 (accessed May 6, 2018).

Hennessy, S. (2006). Use of health care databases in pharmacoepidemiology. Basic & Clinical

Pharmacology & Toxicology, 98(3), 311–313.

Hernán, M. A., Brumback, B., and Robins, J. M. (2000). Marginal structural models to estimate

the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology, 11(5),



24 Biometrics, April 2020

561–570.

Lash, T. L., and Fink, A. K. (2003). Semi-automated sensitivity analysis to assess systematic errors

in observational data. Epidemiology, 14(4), 451–458.

Liang, K.-Y., and Zeger, S. L. (1986). Longitudinal data analysis for discrete and continuous

outcomes. Biometrics, 44(4), 121–130.

Lin, D. Y., and Ying, Z. (2001). Semiparametric and nonparametric regression analysis of longitu-

dinal data. Journal of the American Statistical Association, 96(453), 103–126.

Lipsitz, S. R., Fitzmaurice, G. M., Ibrahim, J. G., et al. (2002). Parameter estimation in longitudinal

studies with outcome-dependent follow-up. Biometrics, 58(3), 621–630.

Naimi, A. I., Moodie, E. EM, Auger, N., et al. (2014). Constructing inverse probability weights for

continuous exposures: a comparison of methods. Epidemiology, 25(2), 292–299.

Newey, W. K., and McFadden, D. (1994). Large sample estimation and hypothesis testing. Hand-

book of Econometrics, 4, 2111–2245.

Neyman, J. S. (1923). On the application of probability theory to agricultural experiments – essay

on principles. Annals of Agricultural Sciences, section 9, 10, 1–51.

Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82(4), 669–688.

Pullenayegum, E. M., and Lim, L. S. H. (2016). Longitudinal data subject to irregular observation:

A review of methods with a focus on visit processes, assumptions, and study design. Statistical

Methods in Medical Research, 25(6), 2992–3014.

Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1995). Analysis of semiparametric regression models

for repeated outcomes in the presence of missing data. Journal of the American Statistical

Association, 90(429), 106–121.

Robins, J. M., Hernán, M. A., and Brumback, B. A. (2000). Marginal structural models and causal

inference in epidemiology. Epidemiology, 11(5), 550–560.

Robins, J. M., Rotnitzky, A., and Scharfstein, D. O. (2000). Sensitivity analysis for selection bias



Weighted Regression Analysis to Correct for Informative Monitoring Times and Confounders in Longitudinal Studies 25

and unmeasured confounding in missing data and causal inference models. Statistical Models

in Epidemiology, the Environment, and Clinical Trials, 116, 1–94.

Rosenbaum, P. R., and Rubin, D. B. (1983). The central role of the propensity score in observa-

tional studies for causal effects. Biometrika, 70(1), 41–55.

Rosenbaum, P. R. (1985). The consequences of adjustment for a concomitant variable that has been

affected by the treatment. Journal of the Royal Statistical Society: Series A, 147(5), 656–666.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized

studies. Journal of Educational Psychology, 66(5), 688–701.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581–592.

Rubin, D. B. (2004). Multiple imputation for nonresponse in surveys. John Wiley & Sons.

Ryu, D., Sinha, D., Mallick, B., et al. (2007). Longitudinal studies with outcome-dependent follow-

up. Journal of the American Statistical Association, 102(479), 952-–961.

Schneeweiss, S. (2006). Sensitivity analysis and external adjustment for unmeasured confounders

in epidemiologic database studies of therapeutics. Pharmacoepidemiology and Drug Safety,

15(5), 291–303.

Stepankova, L., Kralikova, E., Zvolska, K., et al. (2016). Depression and smoking cessation: evi-

dence from a smoking cessation clinic with 1-year follow-up. Annals of Behavioral Medicine,

51(3), 454–463.

Sun, J., Park, D.-H., Sun, L., et al. (2005). Semiparametric regression analysis of longitudinal data

with informative observation times. Journal of the American Statistical Association, 100(471),

882–889.

Sun, L., Song, X., Zhou, J., et al. (2012). Joint analysis of longitudinal data with informative obser-

vation times and a dependent terminal event. Journal of the American Statistical Association,

107(498), 688–700.

Tan, K. S., French, B., and Troxel, A. B. (2014). Regression modeling of longitudinal data with



26 Biometrics, April 2020

outcome-dependent observation times: extensions and comparative evaluation. Statistics in

Medicine, 33(27), 4770–4789.

Van Strien, T., Konttinen, H., Homberg, J. R., et al. (2016). Emotional eating as a mediator between

depression and weight gain. Appetite, 100, 216–224.

Wurtman, J. J. (1993). Depression and weight gain: the serotonin connection. Journal of Affective

Disorders, 29(2-3), 183–192.

Zhu, Y., Lawless, J. F., and Cotton, C. A. (2017). Estimation of parametric failure time distributions

based on interval-censored data with irregular dependent follow-up. Statistics in Medicine,

36(10), 1548–1567.

SUPPORTING INFORMATION

Web Appendices A, B, C, D, E and F referenced in Sections 2 and 3, and the R code to reproduce

the simulations (for time-fixed treatment and confounders scenario) and to compute the proposed

estimators are available with this paper at the Biometrics website on Wiley Online Library.

Received July 2019. Revised March 2020. Accepted April 2020.



Weighted Regression Analysis to Correct for Informative Monitoring Times and Confounders in Longitudinal Studies 27

LIST OF FIGURES

1 Structure of the data generating and monitoring process for (a) a general setting
and (b) the analysis of Add Health data
2 Boxplots of the distribution of absolute bias (top panel) and of MSE (bottom panel)
from all 15 simulation scenarios, for the five estimators: Ordinary least squares, visit
weighted only, inverse probability of treatment weighted estimator, FIPTM and IPCTM
estimator, for time-fixed (left) or time-varying variables (right) and different sample sizes
(τ = 2, 1000 simulations).



28 Biometrics, April 2020

Figure 1: Structure of the data generating and monitoring process for (a) a general setting and (b)
the analysis of Add Health data
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Figure 2: Boxplots of the distribution of absolute bias (top panel) and of MSE (bottom panel)
from all 15 simulation scenarios, for the five estimators: Ordinary least squares, visit weighted
only, inverse probability of treatment weighted estimator, FIPTM and IPCTM estimator, for time-
fixed (left) or time-varying variables (right) and different sample sizes (τ = 2, 1000 simulations).
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Table 1: Simulation study with confounding and covariate-dependent monitoring times (τ = 2,
n = 250, α(t) = 3, time-fixed exposure and confounders)

(γ1,γ2) Median no. Absolute bias (Empirical variance)
visits (IQR) β̂OLS

† β̂VW
‡ β̂IPT

? β̂FIPTM β̂IPCTM
(0, 0) 1 (1-2) 0.72 (0.41) 0.71 (0.30) 0.06 (1.06) 0.09 (0.77) 0.08 (0.99)

(−0.3, 0.2) 2 (1-3) 1.05 (0.19) 0.72 (0.18) 1.77 (0.40) 0.04 (0.39) 0.01 (0.44)
(0.6, 0.3) 5 (4-7) 1.98 (0.12) 0.76 (0.19) 2.65 (0.30) 0.00 (0.38) 0.02 (0.47)

† Ordinary least squares regression with outcome Yi(t) and exposure Ii(t) with a constant intercept
‡ Weighted least squares regression with outcome Yi(t) and exposure Ii(t) with a constant intercept and an inverse probability of monitoring weight computed from a proportional intensity
model with Ii(t) and Zi(t) as predictors
? Weighted least squares regression with outcome Yi(t) and exposure Ii(t) with a constant intercept and one an inverse probability of treatment weight computed from a logistic regression
model with Ki(t) as predictors
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Table 2: Characteristics at baseline of children enrolled in the Add Health study, stratified by
depressive mood

Depressive mood
Variable No Yes
Smoking (N, %) 1367 (23.3) 280 (44.0)
Age (median, IQR) 15 (14-16) 16 (14-17)
Sex=female (N, %) 2914 (49.8) 433 (68.0)
SES (median, IQR) 6 (4-8) 5 (4-7)
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Table 3: Average rate ratios and 95% confidence intervals for variables in the proportional intensity
model for monitoring times

Variable Rate ratio 95 % CI
Depressive mood 0.93 0.84; 1.02
Smoking 1.08 1.03; 1.13
Age 0.94 0.93; 0.94
Sex=female 1.04 1.01; 1.07
SES 1.00 0.99; 1.01
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Table 4: Comparison of the estimates of the marginal effect of depression status on average weight
in pounds

Estimate 95% CI
β̂OLS -3.83 -5.55; -2.11
β̂VW -3.69 -5.44; -1.94
β̂IPT -1.56 -3.45; 0.33
β̂FIPTM 1.43 -0.35; 3.21
β̂IPCTM 1.12 -0.59; 2.83
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