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Abstract

An efficient approach adopting Reproducing Kernel Hilbert Space, RKHS, to
estimate the parameters of Differential Equations from noisy realizations of the sys-
tem’s output is presented in this thesis. Initially, this thesis studies the previous
works on parameter and state estimation using RKHS. This approach estimates
the parameters, order n, the output trajectory and the derivatives of the system
up to n-1, where n is the true order. The presented approach is able to handle
error in the variable using local fitting and regularization. The suggested method
uses Bayesian Information Criterion, BIC, to evaluate possible order for unknown
systems. Lastly, to increase the accuracy and computational speed, the approach
applies hyper-parameter search and cross-validation to tune its cost function’s co-
efficients. The MATLAB software package has been implemented to evaluate the
suggested approach.
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Résumé

Une approche efficace qui adopte la reproduction de l’espace Kernel Hilbert,
RKHS, pour estimer les parametres des équations différentielles des réalisations
bruyantes de la sortie du systéme est présentée dans cette these. Initialement, cette
these étudie les travaux précédents sur le parametre et ’estimation de ’état a ’aide
de RKHS. Cette approche estime les parametres, 'ordre n, la trajectoire de sortie
et les dérivés du systeme jusqu’a n-1, ot n est 'ordre réel. L’approche présentée
est capable de traiter ’erreur dans la variable en utilisant ’ajustement local et la
régularisation. La méthode suggérée utilise le critere d’information bayésien, BIC,
pour évaluer ’ordre possible pour les systemes inconnus. Enfin, pour augmenter la
précision et la vitesse de calcul, ’approche applique la recherche hyper-parametre
et la validation croisée pour régler les coefficients de sa fonction de cotuit. Le logiciel
MATLAB a été mis en ceuvre pour évaluer 'approche suggérée.
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Chapter 1

1 Introduction

The Control theory is a well-studied area with many applications; [63]. Control signals are
predominantly generated in closed-loop[74]. A general control system employing feedback
[41] is represented below[54].

Disturbance

W ¥

Am | ] Control U Y
—\ 1 Ccontroller Process

Measurement [*

Estimator £ (measured Dutput][

XY

Figure 1: Feedback Controller with State Estimator

Figure 1 shows a simple feedback Controller with State Estimator. A simple example of
feedback control is a system that monitor and adjust the temperature inside the living
room. The plant is essentially the system whose output is to be controlled. For an electric
room heating system the plant is the current carrying coils that would emit heat. The
feedback element is a sensor that measures the output parameter that is to be controlled,
in this case it is temperature. The sensor measurement is the feedback to the input and
subtracted from the original signal i.e. the set point. This difference, also known as the
error, is fed to the controller. The controller decides a control action that would reduce
this error and drive the output to the desired set-point value. Choice of controller is
crucial in designing a successful control system. Model based controller design hinges on
the knowledge of the plant itself [74].

To design a model based controller, a parametric mathematical model with finite number
of parameters of the plant is necessary to be known. The system is essentially described
by differential equations. The knowledge of all its coefficients is needed to successfully
design a model based controller. This causes the problem of parameter estimation to be
of equal, if not more important, than state estimation.|[74]

System identification is the process of determining the values of parameters that govern
the output of a dynamical system.

An example of a parameter estimation problem would comprise of the following; consider
a continuous-time (CT) linear time-invariant (LTT) system, whose order n is known, de-
scribed by[12]:
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d™x A1z d™u d™ 1y
ap—— + Gp1——— + -+ agr(t) = byp—— +

R 1
dt. dt at, Omrg +u(?) (1)

A noise corrupted version of z is measured, z(t;) = z(tx) + €(tx), k = 1,2, ..., M where,
e(t),) is Gaussian noise with mean zero and variance o2, M is the number of samples taken.
The goal of identification is to estimate the parameters a,,a,_1, ..., a1, ag, by, b1, ..., b1
from the input-output data i.e., (u(ty), z(tx); k = 1,2, ..., M). [79]

The parameter estimation of a homogeneous system can be viewed as the identification of
a differential invariant Z (Z = 0)under the action of the flow of some closed loop system
(such as its characteristic equation) [28]:

Z(t,y(1),y (), y™ (1) = ™ (@) + anay" V) + o Fagy(t);t >0 (2)

The concept of state estimation is quite crucial in control theory. The figure below shows
a closed loop control system with a state estimator.[12]

AT
(1) System ) v(t)
/ Model [ y
¥ Feedback u(f) @ \ ~ s
g . State: x(f) | " o[+
controller | |Parameter: © | —
R /
B =
"/
Estimator (=
X(1), &) [

Figure 2: A closed loop control system with state estimator [74]

A state vector is a set of vectors that are used to describe the mathematical state of a
dynamical system. The state of a system is a minimal set of variables/vectors (state vari-
ables/vectors) which together with the values of the input signals in the future, completely
determine the future behavior of the system [74].

It can be seen in figure 2 that the states z(t) and system parameters € are required to
produce a system output y(t). For the closed loop feedback system to work, the controller
needs all the states to generate a control action that would drive the output y(t) to its
set - point value y*(t). Also the system is fed with measurement noise v(t) and input
disturbances ((t). Hence, it is expected that the controller has to be less sensitive to
these external signals.[12]
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For a large system, all the state variables cannot be physically measured. So an estimator
needs to be designed which can estimate the states x(t) from the output y(¢) and input
u(t). Hence, extensive research on state observers and filters was conducted with seminal
contributions of Kalman and Lueanberger; [45],[46],[48],[47],[55],[54],[14]

There are many important applications for system identification and filtering; for instance,
[52], [43], [5]. Recursive approaches have been used extensively to estimate the system
parameters. Kalman filter is one of the most famous examples of recursive algorithms, it
is simple and yet has been used since 1960,[81]. Their low computational complexity and
simple nature make them a powerful tool.

Recently, however, there is a growing interest in non-asymptotic estimation methods which
is justified by modern developments in systems with rapidly switching dynamics [3], ad-
vanced nonlinear control methods based on differential flatness [21] and the need for
powerful target tracking algorithms of superior performance in speed and precision [7].
Recently, new non-asymptotic and non-recursive approaches emerged for state and pa-
rameter estimation on finite time intervals[74].

Finite interval (algebraic) estimation relies on algebraic manipulation of output deriva-
tives. Algebraic estimation methods are sensitive to measurement noise. Noise attenua-
tion is attempted by iterated integration and shaping the annihilator functions used to
eliminate the effect of the initial conditions.

The differential-algebraic theory of observability states that a system is algebraically ob-
servable if its states at any time instant can be expressed in terms of the input, the output
and their respective time derivatives of finite order [16], [74].

When a system model, which is the mathematical description of a system, is defined in
terms of variables and parameters, it is known as a parametric model [74]. Parameter
estimation is the process of empirical determination of the parameter values that govern
the behavior of the system from a noise-contaminated output signal [74].

The problem considered here is related to the joint parameter and state estimation over
a finite interval of time. The length of the interval is constrained by the requirement of
the identifiability of the system from a single realization of the stochastic measurement
process. There is no restriction on the number of measured samples. Consider a noisy
measurement signal as shown in Figure 3. This shows the true value of a system versus
the noisy observed value. The behavior of a system is hard to observe, let alone predict.
The problem is to identify an algebraic function that binds the time derivatives along
the presumed trajectory and remains invariant under the dynamical flow of the system,
irrespective of any noise.

Needless to remark that, as first appreciated in the seminal work of Wiener, [82], the above
problem has other countless applications, all of which call for the highest estimation pre-
cision in the shortest possible time, often in the presence of high levels of measurement
noise of unknown characteristics. To mention only the need for non-asymptotic estimation
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methods as justified by modern developments in systems with rapidly switching dynamics,
[2], advanced nonlinear control design based on differential flatness, [20], and the demand
for powerful target tracking algorithms of superior performance in speed and precision, [6].

The idea of constructing kernel representations of differential systems, as first presented
in [32], and continued in [28], [29], [33], [75], [30], initially sprung from an attempt to
improve on the algebraic signal differentiation approach proposed in [23], [74], as the
principal tool required in the implementation of controllers for nonlinear systems that
are differentially flat. The original algebraic differentiator was based on truncated Taylor
series signal approximation. It attributed its properties to the introduction of an algebraic
annihilator of the Taylor series coefficients up to any desired order, [23], [73], [58], and
[13]. After iterated integration, it then delivered the values of the selected coefficients
that escaped annihilation, effectively the values of the desired higher-order derivatives.
The annihilator served yet a different purpose: that of shaping the noise rejection charac-
teristic of the resulting filter, see [59]. As it was admitted, however, the method required
frequent re-initialization when used forward in time, and its noise rejection properties
were characterized as non-standard; see [18]. Despite the power of non-standard analysis
methods, [15], used in [18] as well as the efforts to attenuate measurement noise by de-
signing SNR-maximizing annihilators and pre-filters, it was finally admitted in [74] that
algebraic estimation was still very sensitive to noise. It thus became clear, that any fur-
ther improvements hinged on the application of more rigorous statistical and probabilistic
analysis and framework.

The work of [41] has implemented the two-step Non-asymptotic Parameter and State
Estimation. However, the method used in [41] is slow in computation and with large
noise, it does not produce the correct values of parameters.

The previous works all had several drawbacks:
e The order of system was assumed to be known
e They all failed to handle noise with large SNR (-10dB)

e The processing time and power required was extremely large to the point that makes
them none-practical

1.1 Thesis contributions

Here we build on the work [41] and improve on it. The contribution of this thesis can be
summarized as follows;

e An approach is proposed to estimate the parameters, order n , the output trajectory
and the derivatives of the system up to n — 1, where n is the true order.

e An approach is proposed to handle error in the variable using local fitting, Regu-
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larization, and instrumental variables to handle large noise in observation as well as
over-fitting.

e A modified BIC, Bayesian Information Criterion, is proposed to evaluate possible
order for unknown systems.

e An approach is proposed to increase the accuracy and computational speed using
hyper-parameter search and cross-validation.

e A software package for MATLAB is developed which is more efficient and user-
friendly than the previous works of such [41].

The method can easily be adapted to handle zero-mean coloured noise and applies to
systems with or without input of arbitrary order, with very little a priori information
available.
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1.2

Thesis Objectives and Organization

The objectives of this thesis were stated as follows:

Understand the mathematical background behind algebraic state and parameter
estimation;

Study and understand previous contributions of Professor Michalska on the non-
asymptotic joint state and parameter estimation: [41] [64], [37], [27], [28]. Study
the novel kernel representation of SISO LTI systems;

Study and experiment with diverse statements of the finite interval simultane-
ous state and parameter estimation problem in reproducing kernel Hilbert spaces

(RKHS).

Understand the noise characteristics and methods that can handle large noise in
measurements.

Construct an estimator that is efficient and can handle noise in signal.

Construct an estimator that automatically determines the order of the system.
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The thesis is structured as follows:

Chapter 1 provides a introduction to algebraic state and parameter estimation. It states
the objectives of this thesis.

Chapter 2 studies the works [41],[64], [37], [27] and [28] on derivation of the double sided
kernels for homogeneous SISO LTT systems.

Chapter 3 provides a summery of previous works on parameter estimations. It states some
of shortcomings of methods presented in [41],[64], [37], [27] and [28].

Chapter 4 introduces different methods to handle large noise in observations. It uses local
smoothing as well as incremental variables, which were briefly introduced in [25], to tackle
the error in the observation.

Chapter 5 introduces penalty term to the cost function to handle over-fitting. It uses
hyper-parameter search to tune its cost function.

Chapter 6 introduces a simple, yet effective method to handle order selection. This chapter
details methods to handle large noise, over-fitting, slow computation, and unrealistic
assumption that the order of the system is known.

Chapter 7 presents diverse experiments that examine the proposed method in different
settings and different noise levels.

Chapter 8 provides the conclusions and discusses directions for improvements of the
method.
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Chapter 2

2 A Double Sided Kernel in SISO LTI Representa-
tion

The double sided kernel approach was first developed and discussed in [36]. It employs for-
ward and backward integration and the Cauchy formula for multiple integrals to convert
a high order differential equation, that embodies a system invariant, into an integral form
with no singularities at the boundaries of the observation window. In the approach of [36],
the state equations are replaced with an output reproducing property on an arbitrary time
[ta,tp] which follows directly from the knowledge of the system characteristic equation.
The behavioural model is derived from the differential in-variance which is characteristic
of the system and eliminates the need of initial conditions and is in the form of a homoge-
neous Fredholm integral equation of the second kind with a Hilbert-Schmidt kernel [27].
The mathematical interpretation as a Reproducing Kernel Hilbert Space (RKHS) of the
behavioural model helps us to extract signal and its time derivatives from noisy output
measurements.

2.1 A finite interval estimation problem for an LTI system

Consider a general n-th order, strictly proper and minimal SISO LTT system no input
signal in state space form evolving on a given finite time interval [a,b] C R:

T = Ax
y=0C"x
zeR"” (3)

where the system matrix A is in canonical form,

0 1 0 0 ]
0o 0 1 0
: (4)
0O 0 0 1
| —G0 —a1 —a2 —ap—1 |
and,
C=[100 ..] (5)

with matching dimensions of the system matrices and the characteristic equation,

)\"+an_1)\”_1+---+a1)\+a0 =0 (6)
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The input-output equation for system (3) becomes

Yy () + a1y ) + -+ ayM (@) + agy(t) =0 (7)

2.2 Problem Statement and Assumptions

The estimation problem is stated as follows. Given an arbitrary finite interval of time
[a, b], suppose that:

(1) The dimension of the state vector of the LTI system is not known a priori. However,
a set, of possible dimensions for the system is assumed.

(2) The system input function u(t) is equal to zero (No input).

(3) The output of the system is observed as a single realization of a ‘continuous’ mea-
surement process yas(t) := y(t) + n(t), t € [a,b] in which 1 denotes additive white

Gaussian noise with unknown intensity (variance) o2.

Under the conditions (i)-(iv), it is required that:

i) Identifiability of the system parameters a;,i = 0,--- ,n — 1 from a single realization
y Y g
of the measurement process yu/(t),t € [a, b] be determined for the given observation
horizon [a, b];

(ii) Under identifiability condition, a parameter estimator for a;,i = 0,---,n — 1 be
proposed that is statistically consistent;

(iii) The true system output y(t) and its n — 1 time derivatives y@(¢),i = 1,...,n — 1
be reconstructed from the noisy observation y,,(t) over ¢ € [a, b];

(iv) The reconstruction error in the output function y and its derivatives yD i=1,...,n—
1 converges to zero uniformly as the number of measurement samples of y,; increases
freely.

An implementable version of assumption (iii) simply requires availability of an unrestricted
number of output measurements over the observation horizon [a, b].

For simplicity of exposition, the estimation approach is presented here with respect to
the more interesting case of homogeneous systems in which persistent excitation cannot
be rendered by way of the system input u. Without the loss of generality, the order of
the system considered in an example demonstration of the validity and properties of the
approach is taken to be n = 4.

The strategy to estimate parameters of ODE is a multi-stage method, which in the first
stage estimates the function and its derivatives from noisy observations using data smooth-
ing methods without considering differential equation models, and then in the following
stages estimates of ODE parameters and the order of the system using statistical methods
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such as least squares,[84]. In the works of Liang and Wu ([51]) a two-stage method is de-
veloped for a general first order ODE model, using local polynomial regression in the first
stage, with established asymptotic properties of the estimator. The two-stage methods
are easy to implement, however, they might not be statistically efficient, due to the fact
that derivatives cannot be estimated accurately from noisy data, especially higher order
derivatives.

As mentioned before, a straightforward two-stage strategy, though easy to implement, has
difficulty in estimating derivatives of the dynamic process accurately, leading to biased
estimates of the ODE parameter. The method in this thesis uses multi-stage method that:

First smooth the data using a local (quadratic) regression.

It considers different candidate systems of orders to be (consider different orders to
be fitted the noisy observation.).

Then uses the kernel presented in Chapter 2 and the updated cost function to the
estimate of the parameters for each of those system.

It uses Hyper parameter tuning to choose the penalty term coefficients.

It then estimate the output projection by the using the fundamental solution method
for each candidate system.

It then calculate the Bayesian Information Criterion (BIC) values for each candidate
system.

It selects the candidate system the lowest.

The higher degree derivatives are calculated using kernels defined in Chapter 2

For the simplicity, we assume n = 4, a fourth order system.

10
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2.3 A kernel representation of a system differential invariance

The unknown values of the parameters a;,7 = 0,..,n — 1 need to be identified using
noisy observations of the system’s output y(¢) over a finite, but arbitrary, interval of time
te 0, 7], T >0.

The Kernel representation of the n-order SISO LTI system was introduced in [25]. The
cornerstone of the finite interval estimation approach presented here is the integral repre-
sentation of the controlled differential invariance of the system (7). For the homogeneous
system the latter is given by a mapping J:

J<y7 y(l)v T 7y(n)) = y(n) (t) + an—ly(n_l) (t) +-t aly(1)<t> + aoy(t)
= const. =0; t € [a,b (8)

that remains constant under the action of the flow of the system in the absence of external
forcing. The validity of (8) is seen to deliver additional measurement-noise independent
information about the behaviour of the system beyond mere observation of the noisy yy.
To be useful, however, the ‘zero-input response’ characterization (8) has to be put in a
form, which does not depend on the initial or boundary conditions of the system, and that
does not involve any time derivatives of the output as the last are not available through
direct measurement.[25] Such a representation of (8) has been presented for SISO LTI
systems of arbitrary order in [30]. The full theorems along with their rigorous proofs is
presented at [25] and attached here in appendix.

The following definition was introduced in [25]

Definition 2.1. A pair of smooth (class C*) functions (ag, ap), a5 : [a,b] = R, s = aor b,
is an annihilator of the boundary conditions for system (3) if the functions «; are non-
negative, monotonic, vanish with their derivatives up to order n — 1 at the respective ends
of the interval [a, b]; i.e

aD(s)=0i=0,---,n—1; s=a,b; o =a, 9)
and such that their sum is strictly positive, i.e. that for some constant ¢ > 0

Qap(t) == ag(t) + ap(t) > ¢ ; t € [a, b (10)

A simplest example of such an annihilator for (3) is the pair

ag(t) == (t—a)", ap(t):=(0b—1t)"; t€la,b]
aap(t) == ag(t) + ap(t) > 0; t € [a,b] (11)
ag(s) = (b—a)", s=a,b

agy(b) = (b—a)"” >0

Indeed, it is easy to see that (11) holds for all n > 1 because aab( ) = (b
a+b) € [a,b] at which

and, for n > 2, a4 has a unique stationary point t* = 0.5(

11
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aas(t) = (0.5)" 1 (b — a)".

Employing this particular annihilator the integral representation for system (1) is ren-
dered by the following:

Theorem 2.2. [25] There exist Hilbert-Schmidt kernels Kps,,, Kpsu, such that the input
and output functions u and y of (1) satisfy

y(t) = ay; (t) [/ Kpsy(n,t, T)y(T)dT—i—/ Kpgu(n,t, m)u(t)dr (12)

with
1
(t—a)+ (b—1t)

‘)‘;bl (t) == (13)

Hilbert-Schmidt double-sided kernels of (12) are square integrable functions on L*[a,b] x
L?[a,b] and are expressed in terms of the ‘forward’ and ‘backward’ kernels given below:

KDS,y<n,t,T) é {K

KDS,u<n7 ta T) é {
The kernel functions Kpsy, Kps. are n — 1 times differentiable as functions of t.

The forward and backward kernels of (14) have the following expressions:

Kpy(n,t,7) = Zn:(_1>j+1 (n) nl(t — YL (r — a)n

J (n =) —1)!

n—

4 i g (At =) —a)"
+Y a :0( 1) (j> (n—g)ln—i+j—1)

j=1

[y

Il
o

i J

N\l Ty b — )
KB,y(n>t7T) _Z(j> (n—j)!(j—l)!

J=1

5 a; i (Z> nl(t — )" b — )"

n—j)ln—i+j—1)!
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n—1 i . '(t _ T)nfiJrjfl(,T _ a)n*]'
K " _ b 1 Gl 7\ N
sutntir) = 30 30 () Ry

n—1 i . 1(+ _ —\n—it+j—1(p _ ~\n—j
KB u(n7 ta T) = bz ! n(t 7—) ‘ (b X 7—)
: : par m—Nn—i+j—1)!

The proof is found in [25].

The proof of the representation Theorem 3.2 is essentially conducted by construction,
involving the induction argument only at its final stage. Therefore, the only loss of in-
formation in the passage from the input-output equation of the system to the integral
kernel representation in Theorem 3.2 is that of any pre-existing boundary conditions in
(84) as the latter are annihilated during every integration operation by the presence of
the annihilating factors o, and 4. The following conjecture is then quite obvious.

Corollary 2.3. For any given input function u, the output functiony : [a,b] — R satisfies
the system input-output equation (1) on the interval [a, b] if an only if it satisfies the inte-
gral equation (12) regardless of any boundary conditions that may be imposed. The kernel
representation of the system invariance provides a unique criterion whose reproducing
property unambiguously characterizes all zero input solutions of the SISO LTI system. In
particular all the fundamental solutions of the LTI system share the reproducing property
(12) as they span a subspace of the RKHS of dimension n.

O

Explicit kernel expressions for the derivatives of the output func-
tion
Due to the regularity properties of the kernel functions in Theorem 2.2, it is straightfor-

ward to obtain the corresponding recursive formulae for the time derivatives of the system
output y(i),i =1,--- ,n—1.

Theorem 2.4. [25] There exist Hilbert-Schmidt kernels Kppy, Krku, Kpiy, Kbk,

k=1,---,n—1 such that the derivatives of the output function in (1) can be computed
rercursively as follows:

13
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1 b s (p+i— 1\ nl(t—a)"yki(t)
= X jr1 (P +7-1 n!(t - a)nijy(iijip)(t) t n Ty(7)dr
+ ;aljz()(_l) < J ) (n—j)' +/a' KF,k,y( 7p7t7 )y( )d

J (n—j)!

n—1 i—p : —Jq,i—j— t
: + 5 =1\ nl(t —a)"TulIP)(t
+ E bl E (_1)-7+1 <p j ) ( ) - ( ) + / KF,k,u<n7p7 t7 T)U(T)dT
i=p  j=0 @

Z’“: p+i— 1\ nl(b— ) —iy®=i (¢ "iai p+j—1>n'(b—t)wy<wp><t)
— i (n —1)! '

—~ = J (n—j)!
b e : _ g liiep)
p+j—1\nl(b—t)"u (t)
+ | K n,p,t, 7)Yy b; ( . ) .
/t B,k,y( p ZZ; pars j (n . j)'

b
+/ KB,k,u(napataT)u(T)dT]
t

where p=n-—k

(t — 7)Y —a)P™d
Kyl t,7) = 3 (- “””“( : >"< ilad)

= n—p+j/ (=) -1)
i ! i\ n!(t — )P~ "Y1 —a)"
Z Z <J) (n—lp—i+j—1)
a)n—i+p—j

itiept i nl(t — 7)1 —
*;a";(‘w Moo o

i v ) n\(t — 7)P~ (1 — q)nd
Krgulpt.7) Zb 2 () (= p—i+j—1)

p JHi—p+1 U nl(t — 7)1 — a)"tPd
+;bi;(_l) <i—p+j) (n—i+p—7)I—1!
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[T Y (R L (et Uk

H\n-p+j) (=)0 -D!

P! ! nl(t — 7)P~ =1 (h — 7y
+Za12(3> (n—)p—i+j—1)

P nl(t — 1) Yb — 1)t tPi
+Zazz< p+J) (n—i+p—jj—1)

p—1 i —j
nl(t — 7)P= =N (p — 1)
Kl p:t,7) = Zzsz () (n—jlp—i+j—1)

T)n—i-i—p—j

nl(t — 7)1 (b —
+Z;b Z( p+J) (n—i+p—351—1)

The proof from [25] is found in Appendix.

Remark 1 [62]

It is important to note that for v = 0, the invariance representation (12) is in fact a
continuous evaluation functional for the system output functions and hence induces a
unique reproducing kernel Hilbert space (RKHS) with kernel

Ky(tl,tg) = O./ab /KDSy tl, )KDSy(tQ, )d (15)

t1,t2 € [a,b] where the dependence of the kernels on the system order n has been sup-
pressed for brevity; see [71] for more details. The kernel (15) can in fact be regarded
as a deterministic counterpart of a ‘covariance structure’ of a process whose trend is de-
scribed in terms of the differential invariant. It then also follows that any bounded linear
functional L : y — L(y)(t) on the RKHS space has a representer, which is the kernel
L(K,(t,-)). This kernel trick and other properties of the RKHS have vast implications
for estimation in RKHS, see [65], [66], followed by [42]. The properties of the kernels
established by Theorem 3.2 also imply that approximation of functions in the induced
RKHS (such as those needed in output signal reconstruction) can be carried out in some
countable basis of feature splines:

span{ Kpg,(t;,-); t; € [a,b],7 € I} (16)
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This approach is non-asymptotic in nature and the initial conditions need not be known.
The parameter estimation of a homogeneous system can be viewed as the identification
of a differential invariant Z (Z = 0) which does not change under the action of the system
dynamics

I(t7 y(t)7 y(l)(t)7 T y(n) (t))
=y () + an 1y V() + -+ agy(t) 5 £ >0 (17)

The problem with singularity at ¢ = 0, encountered in [22] in the integral system repre-
sentation is eliminated in [28] using two-sided forward-backward integration which leads
to an alternative integral system representation of (17) in a reproducing kernel Hilbert
space (RKHS).

The knowledge of the system characteristic equation enables one to replace the state
equations with an output reproducing property on an arbitrary time interval [a,b]. The
differential invariance, which is essentially the characteristic equation, is used to derive the
behavioral model of the system[27]. The mathematical interpretation as a Reproducing
Kernel Hilbert Space (RKHS) of the behavioral model allows us to extract signal and its
time derivatives that confirm the system invariance from output measurement subject to
noise[64].

2.4 Explicit kernel expressions for the derivatives of the output
function

he explicit kernel expressions for the derivatives of the output function was derived in
[25]. These are given as follows;

yO(t) = : [Z(—l)"“(p”‘l) = a0

(t—a)"+(b—t)"| = i (n—1)!

n—1 i—

4 ZCL'Z<_1)j+1 p+j -1 n! (t i a)nfj (i*jf@(t) + tK (TL p,t 7-) (T)dT
: 7 s j (TL—])' Yy i Fky\lty Yy by Yy
i=p  j=

p—f—l-l n! —i (k—i
_ ——(b—t)" Tyt
;( i >(n—i)!< AR AL
n—1 i—p . b
p"‘]_l n! n—j,,(t—j—
_ZaiZ( : >( — .),(b—t) Iyl ”)(t)+/ KB,k,y(n,p,t,ﬂy(T)dT]
e j n—j)! t
k=1,...,n—1
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Chapter 3

3 Parameter and State Estimation of LTI SISO Sys-
tems on Finite Interval

3.1 Parameter estimation in the absence of noise

The works done by [28], [29], [33], [75], [30] and [41] show that the least squares method
works well in the absence of noise or small additive noise. Here the properties of [41]’s
method is explored.

3.1.1 Parameter Estimation [62], [41]

Consider a general fourth order system as below:

y () + azy® (1) + axy® (t) + ary () + agy(t) = 0 (18)

The goal is to estimate the parameter vector a = (ag, a1, as, as) of the above system from
the observation y(7) , 7 € [a, b] of the output function y(7);7 € [a, b].

If exact matching is required only at a finite number n of discrete time points t;;j =
1,--- ,n then the problem amounts to finding the optimal solution to the MSE method:

n

min{J(a) = % S (0lt)= < . Kps(ti) > | wat. a R’} (19)

| wr.t. a € R}

=1
1 & b
= mln{% ZZI {y(ti) — /a KDS(ti, T)y(T)dT
A continuous time version of the above becomes

min{% /ab [y(t) — /ab KDS(t,T)y(T)dTrdt | wrt. a € R} (20)
with T := b — a.

The cost function in (20) can be calculated as follows. Kpg(t, ) is expressed as a scalar
product of some partial kernels

Kps(t,7) = K,(t,7) a + ku(t,7) equivalently Kpg(t,7) = a’ K,(t,7) + ko(t,7) (21)

Kv(t,T)T = (ko1 (8, 7), k2 (t, 7), ky3(t, 7)]; a:= [ao,al,aQ,ag]T (22)

17
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Substituting the above into the cost of (20) yields (with T := b — a)

J(a) = /{ /KDStT dT} dt
/KDStT 7)dr + = (/ Kps(t,7) ()d7)2] dt

T
1 b
=7 { / Kps(t,7) y(r)dr + = / Kps(t,T) dT/ Kps(t,s) y(s)dgl dt
- )dt K (t, ) dr dt
- _T I DS T T
///KDStTKDS Yy(s) dr ds dt
Hence

o [0 / / (Kt 7) 0+ k(7)) y(F)y(t) dr dt

b b b
+ %/ / / [aT Ko(t, 7) 4 kus(t, T)][Ky(t, 8) a + kya(t, s)] y(7)y(s) dr ds dt

dt——//K (t, )" deta—%/ab/abkM(t,T)y(T)y(t)det
//UKH } () dr ds a
/// y(s) dr ds dt a
///Ktr A(t,5) ) dr ds dt
/// ) dr ds di

18
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Assembling terms

1
J(a)=d+b"a+ aTCa with

d::{;T/ t“// kua(t,7) y(r)y(t) dr dt
+ﬁ/a / / Fua(t, T)koa(t, 8)] y(T)y(s) dr ds dt}
r={-7 / b / KotV ) dr
/ / / Fua(t,7) + Kot 7) Rua(t, )] y(m)y(s) dr ds dt}
a % { / / { / Ky (t,7)Ky(t,s)" dt} y(T)y(s) dr ds}

The standard quadratic cost yields a minimization problem w.r.t. parameter a that is
solved globally and analytically;[61] :

1
J(a) :=d+b"a+ iaTC'a
min{J(a) | a € R*} is attained globally and uniquely at
1
a=—C"'b; with minimum value J(a) =d — §bTC’_1b (23)

Also, it should be noted that the triple intergrals can be written as alternative integral
products expressions which are easier to handle numerically

2

/ b / ’ / bt Vst 5)] 9(7)(s) dr ds di = / b ( / bt 7) (1) dT) it

/ / / koa(t,7) + Ko(t, 7) kua(t, 8)] y(1)y(s) dr ds dt

:/ (/ Ko(t,)"y(s) dS) </ab kpa(t,7) y(7) dT) dt
/ </ Kot 7)" dT) (/abk’w(ta s) y(s) d8> dt

/ab /ab l/ab Ko (t, m) K (8, 5)" dt} y(T)y(s) dr ds
o] [ o] s

19
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The discrete cost (19) can be computed similarly, as follows:

160) = 53 [vt6) = [ osteo o]
—%Z[ 2yt /KDS o) y(r)dr 4 (/ Kps(t,.7) (r)d¢)2]
:%z[ gt [ Kosttom) vrar + 5 [ Kosttor) yiryir [ Kostios y(s)ds|
—n;ym)"’ - ;ym) [ Kostiom) vtr) dr
Z_ inz [ [ sostt st ) i) dr as

Expanding the kernels yields
J(a) =
1 < , I [
=5 Z y(t:)* -~ Z [t 7 bt )] y(y(e) dr

/ / (0" Kot 7) + Fua(te, DI (83, 8)" a4 Fua(ts, )] y(m)y(s) dr ds
LSS 155 [ Kt i 155 [t v
—HGT; / / Ko(ti, VK (t:,5) y(7)y(s) dr ds a
in i/b /b koa(ti, ) Ko (ti, )" y(T)y(s) dr ds a
T —Z/ / Koy (i, T)koa(tis ) y(T)y(s) dr ds
+—n; / / Rua(tis T)kua(tis 5)] y(r)y(s) dr ds

20
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Assembling terms again delivers a standard quadratic

1
J(a) =d+b"a+ §aTC’a with

n n b
d:= {% Zy(tip _ % Z/ koa(ts, 7) y(T)y(t;) dr
—l—in;/a /a kua(ti, T)koa(ts, )] y(m)y(s) dr ds}

i {_% > [ e ot a

+2n Z/ / o(tiy $) kua(ts, 7) + Ko (ti, 7) T kua(ti, 8)] y(7)y(s) dr ds}

- {%Z/ / K, (t;, ) Ky (ti, 8) y(T)y(s) dr ds}

min{J(a) | a € R®} is attained globally and uniquely at
1
= —C7'b; with minimum value J(a)=d — §bTC’_1b (24)

The double integrals above can again be written in terms of single integrals

/b /b koa(ti, T)kos(ts, 8)] y(T)y(s) dr ds = (/b Ko (ti, 7) y(7) dT)

// ot 8) ko (ti, 7) + Ko(ti, 7) ko (81, 8)] y(

)y(
) (/b Ko (b, 5)7y(s) ds) (/b koa(ti, ™) y(7) dT)

+ (/ab K, (t, ) y(7) dT) </ab ko (ts, 5) y(s) ds)
/ab /ab K, (ti, ) Ko (ti, ) y(1)y(s) dr ds
:{/Ktz,T H/Ktz,s d}

21
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3.2 Output estimation by projection [41]

The system output after estimating the parameters can be reconstructed using

b
gj(t):/ Kps(t;,7)z(T)dr (25)

where z(7) is the measured signal.

However, as a more precise alternative to the above, the system output can be smoothed /re-
constructed from a noisy measurement by direct orthogonal projection onto the subspace
spanned by the fundamental solutions of the characteristic equation (7) of the system.
This is because every solution of the characteristic equation with the already identified
parameter vector a satisfies the reproducing property so, the projection onto the space of
fundamental solutions will be the noise free trajectory of the system. The fundamental
solutions of the characteristic equation are obtained by the direct integration of (7). This
is performed as follows.

We select n independent vectors as initial conditions for the homogeneous LTI system in
(7). These initial conditions can be taken as the vectors of the canonical basis in R" i.e,

er =[1,0,...,0]
ex =10,1,...,0]

(26)
en =[0,0,...,1] (27)

The system equation (7) is then solved for each individual initial condition yielding solu-
tions
vila) = ¢; i=1---,n.

It is an elementary fact from the theory of ordinary differential equations that any solution
of the system (7) with any initial condition is a linear combination of such fundamental
solutions 7;. Hence we search for the coefficients of this linear combination so that the
resulting function is the closest to the output measurement data. Closest solution is found
in terms of an orthogonal projection onto span of S¢.

§¢ = span{y,(-),i = 1,--- ,n}

This is best done by orthonormalizing the set of fundamental solutions.The projection of
a measured noisy signal z(-) € L*[a, b] into S is given as,

ye(-) £ argmin {||z — yl; |y € 5} (28)
. We seek,
y= Z CilYi (29)
i=1
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Y
As ¢ is a linear combination, the optimality conditions in (28) is achieved if and only if,

i=1
which can be written in a matrix form as:
G@e G = mat {(Fl7;),},
vee {(2[;)5 )1, 5 € = vec {&},

G is called the Gram matrix for vectors in span S® and is invertible because it is known
that all fundamental solutions are linearly independent, from the theory of differential
equations.

i (31)

>l

v

6= G (g (32)
g, the estimated output is thus obtained from (29).

3.2.1 Reconstruction of the output derivatives

Once we obtain g, the estimated output, the derivatives can be reconstructed using the
formula[26],

b
g (1) = / Kbg(t,7)(r)dr (33)

where, K}, ¢ are the kernel representation for output derivatives. In this thesis we consider
¢ = 1,2, and 3. The formulae for kernel representation of output derivatives are developed.
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3.2.2 Shortcoming of Simple Least Square Method

However, [28], [29], [33], [75], [30], and [41] fail to work for low signal to noise ratio.
This issue is handled by using more data points. Despite the increase in sample size,
the parameter estimation is not accurate. In the experiment section, it has been shown
that our method is much faster(by the factor of 10) and more accurate in a high noise
environment. Lastly, the assumption that the dimensions of the system are known limits
the usage of the previous works, [28], [29], [33], [75], [30] and [41].
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Chapter 4

4 Parameter Estimation with Error in the Variable

The previous section summarized the parameter estimation carried out in [41]. The algo-
rithm of [41] does not take into account, the error in independent variable when optimizing
the cost function. The method suggested by [41] works well with large Signal to Noise
Ratio, SNR, however, when the noise is large, the algorithm under-performs. The work of
[41] tries to avoid this shortcoming by increasing the number of samples, which in return
makes the estimation method slow. The algorithm of [41] does not consider the noise in
y realization in the optimization method. This section first will try to explore the issue
with the noise in the independent variable in the current kernel system. It hence tries
to explore simple techniques to remove the noise from the independent variable. In the
result section, we have compared our method with [41]’s method in terms of accuracy and
computation speed. In both accuracy and computation speed, the current method which
considers the error in the variable, outperforms the method of [41].

4.1 Identifiability of homogeneous LTI systems from a single
realization of a measured output[25]

Referring to Definition and Theorem from [76], a homogeneous LTI system such as

z(t) = Az(t); (34)

y(t) = Ca(t); (35)
xr €R"”

z(0)=10b (36)

is identifiable from a single noise-free realization of its output trajectory y on the interval
[0, 00) under precisely stated conditions, which are, however, difficult to verify computa-
tionally. The definition of identifiability is stated in a form equivalent to that found in
[76] as the following:

Definition: Model (34) is globally identifiable from b if and only if the functional mapping
A y(+5 A, b) is injective on R™ where b is fized and y(-; A, b) denotes the output orbit of
(34) through b.

Theorem[25] Model (34) is globally identifiable from b if and only if the evolution of the
output orbit of (34) is not confined to a proper subspace of R™.

The above criterion has limited use for two reasons: it assumes to infinite time horizons
[0,00) but, more importantly, it requires the output trajectory to be known exactly.
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At this point the kernel system representation is again found helpful in that theoretical
identifiability criterion from a single noisy realization y,; of the output trajectory on a
finite interval [a, b] can be stated in terms of linear independence of the functions involving
the component kernel expressions in (25), namely functions; see [62]:

b
fi(t) = / Kps@y gt ) ym(r)dr 5 i=1,---|n (37)

Linear independence of the above set can be readily checked by establishing non-singularity
of the Wronskian matrix for (37) at some point in the interval [a, b].
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4.2 Parametric estimation as a least squares problem[25]

It was found in [25] that in the presence of large measurement noise, assumed to be white
Gaussian and additive, the reproducing property of the regression equation (25) fails to
hold along an inexact output trajectory. The work of [25] suggests that it must thus be
suitably replaced leading to a stochastic regression problem. First, [25] assumes that the
stochastic output measurement process on a suitable space such as L*(2, F,P) where 3,
to be adapted to the natural filtration of the Wiener process W on [a, ] is

ym(t,w) = yr(t) +n°(t,w) ; t € la,b (38)

where 77 signifies the white noise with constant variance o and where vy is the true system
output. Without adhering to any particular realization of the measurement process this
yields a random kernel expression presented by equation (25) which is better written using
the proper stochastic nomenclature as shown in [25]:

/ Kpsy(t, 7)ynt (7) dr / Kpsy(t, 7)yr(7) dr + / Kpsy(t,7) dW7(r)  (39)

Here, W7 is the Wiener process with intensity o so that, informally, n7(t)dt = odW (t)
with W as the standard Brownian motion. It follows that the following equality is valid

() = / Kyt 7)yna (7) dr + e(t) (40)

b
with e(t) :=n7(t) —/ Kpgy(t,7) dW (1) (41)

It is noted that the random error variable e is dependent on the unknown system param-
eters a;,1 = 0,--- ,n — 1 while the stochastic regression equation

ym(t) = Z ai/ Kpsiyy(t, 7)yam (7)dr + €(t) (42)

has the random regressor vector

T

b b
[ / Kps)y(t, T)ym(r)dr, -, / Kps(n)y(t )y (7)dr (43)

Thus [25] shows that the assumptions of the Gauss-Markov Theorem are violated in the
linear regression problem (42) because the random regressor is correlated with a regres-
sion error. The above regression is thus a typical ‘error-in-the-variable’ problem. The
Gauss—Markov theorem states that in a linear regression model in which the errors are
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uncorrelated, have equal variances and expectation value of zero, the best linear unbi-
ased estimator of the coefficients is given by the ordinary least squares (OLS) estimator,
provided it exists [68].

As the kernels of Theorem 2.2 are linear in the unknown system coefficients, the repro-
ducing property (for homogeneous systems) is first re-written to bring out this fact while
omitting the obvious dependence of the kernels on n. The term a, (¢) is subsumed in
Kpg for convenience of notation.

y(@::l/"frDsﬂ<u7vy<f>dT (44)

n b
=Y a [ Kosoutt.nlr)dr (45)
=0 a

Where the Kpg)y;i = 0,---,n are ‘component kernels’ of Kpg, that post-multiply the
coefficients a;;7 = 0,--- ,n — 1, with 3, = 1 for convenience of notation. In a noise-
free deterministic setting it can be solved using least squares error minimization provided
adequate identifiability assumptions are met and the output is measured without error.

Recall equation (21), Kernels in Theorem 2.2 can be simplified if we assign ay = 1:

Kps(t,7) = Ky(t,7)"a equivalently Kpg(t,7) = a’ K,(t,7) (46)

Kv<t7 T)T = [kvl (ta T)7 ka(tv T)J kUS(tJ T)v kv4(t7 7—)]’ a = [CL(], a, az, as, ]-]T (47)
Hence, the equation (44) can be rewritten as:
b
olt) = [ Kosy(t.1(r) dr (15)

b
= / Ky(t,7)Ta-y(r) dr (49)

Since the vector a with respect to 7 is constant, it can be taken outside of the integral,
thus the equation (49) is simplified to:

b
y<w::t/°fcxu7va<T>dT-a (50)
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For simplicity let us define

o(t) = / K, (t, 7)y(r)dr (51)

Hence the equation (50) can be rewritten as

y(t) =g(t)-a (52)

However, y(t) is measured with noise, Let yyp; be the measured output trajectory with
noise.

ya(t) = y(t) + €(t) (53)

We assume the errors €(t) is white noise with zero mean and finite variance var(e(t)) = o2.

Then the (52) can be written as:

ynm(t) = g(t) - a+€(t) (54)

In order to consider the noise in measurements, the definition of g(¢) needs to be updated
to:

b
g(t):/ K, (t, 7) yp (7)dr (55)

In the matrix form, equation (54) can be written as
Yu=G-a+Xx (56)

where Y), is the vector of all yy,(t) observation , G is the vector of all ¢g(t), and ¥ is the
vector of all the noise terms €(t), Vt € [a, b] ,

Yy = : and G = : and X = : (57)

Thus the least squares estimates of the coefficients can be found by using:
a=(GTG)*'GTYy, (58)

However, G has been measured with errors, any estimation based on the standard as-
sumption leads to inconsistent estimates. This means that the parameter estimates of a
do not tend to the true values even in very large samples. This leads to an underestimate
of the coefficient, known as the attenuation bias. Attenuation bias is the biasing of the
regression slope towards zero caused by errors in the independent variable. This is clearly
the case in [41] case, as shown in the experiment section here.
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4.3 Error In The Variable

The work of [25] shows that the assumptions for Gauss-Markov theorem are violated.

It is well known that the presence of errors-in-variables induces an asymptotic bias in
least squared regression estimates which is proportional to the signal-to-noise ratio in the
observed regressand. In [25] the suggested method to eliminate estimation bias is to use
Instrumental Variables (IV) (see [86]), in the normal equations that deliver the optimal
estimates. The IV method has multiple applications; refer to [57], [83], [85], [10], [24],
and [11].

However, unlike the work done by [25], we try to find the source of the noise and eliminate
it early in the process. Here, a simple localized non-parametric filtering is applied to the
signal to remove the white noise.

Considering the equation (54); the noise in the g(¢) term is the source of bias in the
estimate. Consider the definition of the g(t)

b
o) = [ Kultsr) el (59)
If the yys is observed with noise then the equation is as follows:

g(t) = / Ko (1) (y(r) + e)dr (60)

One of the most used method to handle the error in variable is to estimate g(t) using local
non-parametric methods. Consider §(¢) to be the estimate of g(¢). To estimate g(t),the
estimate of y, §, has to be estimated and the §(¢) can be calculated as follows.

a(t) = / K, (¢, 7)) dr (61)

To predict y from y,; a non-parametric local regression is considered.
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4.4 Local Regression[39]

Local regression is used to model a relation between a predictor variable and response
variable. Consider the fixed design model. The model has a form:

Yi = fz) + e (62)

where f(z;) is an unknown function and &; is an error term, representing random errors
in the observations or variability from sources not included in the x;.

We assume the errors €; are white noise with mean zero and finite variance var(e;) = 0.

We assume the function f is continuous, every continuous function defined on a closed in-
terval [a, b] can be uniformly approximated as closely as desired by a polynomial function,
according to Taylor’s theorem.

A general ordinary differential equation model can be written as the following. The process
y(t) is usually measured with noise and we observe.

yur(t) = y(t) +€(t) (63)

Where y,,(t) is the measured output while y(t) is the true value of the system at time ¢.
The €(t) represents the white noise of the system at time ¢.

The non-parametric smoothing techniques were applied to observed process to avoid nu-
merically solving the differential equations when estimating the true value of y(¢) from
noisy measurement ().

The goal is to estimate y(¢) from noisy ya(f). By inspecting the equation (63), it is
evident that is it similar to (62). Thus, the estimate of true value of y can be found as
follows:

yar(t) = 9(t) + €(t) (64)
Where ¢ is the smooth value of y.

4.4.1 Locally Estimated Scatter-plot Smoothing(LOESS)[39]

Local polynomial regression is a generalization of moving average and polynomial regres-
sion. Here we consider LOESS method which is one of the most used methods of local
polynomial regression. The advantages of LOESS are:

e It does not require the specification of a function to fit a model to all of the data in
the sample.

e Few hyper parameters are required such as; the degree of the local polynomial.
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e LOESS is very flexible, making it ideal for modeling complex processes for which no
theoretical models exist.

The first step in LOESS is to define a weight function. For computational and theoretical
purposes we will define this weight function so that only values within a smoothing window
[t — d,t + 6], where § is a small real number, will be considered in the estimate of y(t).
The 9, window size, is the hyper parameter which is re-calibrated during the experiments.

This is easily achieved by considering weight functions that are 0 outside of [—1,1].[39]
For example Tukey’s tri-weight function

A= uP)? el <1
W) = { 0 |ul>1.

The weight sequence is then easily defined by

wily(t)) = W <y(tz‘) ; y(to))

Within the smoothing window, y(t) is approximated by a quadratic polynomial.

(0) % o B (oni () — e () + 5 6o (8) — e (1)?

for t; € [t — 6,¢ + 6].
To obtain the local regression estimate f (xg) we simply find the § = (5o, f1, 52)" that
minimizes

b = arg min Z wi(ya(to)) [yar — {50 + Bu(yar(t) — yar(to)) + %/32(yM(t) — yr(to))}*

and define .
9(t) = Bo + Bi(yu(t:) — yu(to)) + 55291\4(752‘) — yun(to))”

We apply this method throughout the observed signal to get §(t) Vt € [a, ]
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Chapter 5

5 Optimization with Penalty

In the previous work done by [41], the parameter are estimated by optimizing the cost
function using Mean Squared Error (MSE). However, in the presence of large noise, or
small signal-to-noise ratio, MSE tends to over-fit the data, given that our model is noisy,
MSE may try to fit to the noise term. To overcome this issue, regularization can be used
to penalty the estimates of the parameters when they tends to over-fit or when the cost
function fitting tries to fit to the noise term.

Consider our developed equation:
yu(t) = g(t) - a+ €(t) (65)

Where
e ~ N(0, 0%) (66)

In order to estimate the values of a, originally the following cost function was studied
by[41],

= argmin |Y — G - al|? (67)

acRP

where Y and G are vectors defined at (57). The |||| refers to the Euclidean norm. Euclidean
norm is strongly related with the Euclidean distance, and equals the square root of the
inner product of a vector with itself. p is the order of the system.

As argued by[34], learning from data can be viewed as a multivariate function approxima-
tion from sparse data. The value of §(¢) is estimated from highly noisy observations. It
is well-known that such a problem is ill-posed as there exists an infinity of functions that
pass perfectly through the data. One way to transform this problem into a well-posed
one is to assume that the functionf presents some smoothness properties and therefor,
the problem becomes a variational problem of finding the function f that minimizes the
equation (68) [78]: Let define f as

ft)=3(t) - a

1
h—

Lifl =3 — > Cly(t) = (1) +AQ[f] (68)
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where A is a positive number, n is the sampling size, C' is a cost function which determines
how differences between f(t) and y(t) should be penalized and Q[f] is a functional which
denotes the prior information on the function f [69].

The hyper-parameter A balances the trade-off between fitness of f to the data and smooth-
ness of f. This regularization principle leads to different approximation schemes depending
on the cost function C.

Using Lasso, Least absolute shrinkage and selection operator [77], The equation (68) leads
to

p
@' = argmin |Y — G- al? + /\Z |a;] (69)
a€RP =1
— argmin ||Y — G - al|? + X |a|: (70)
a€RP N——r e

Loss Penalty

where p is the order of ¢ matrix. and A is the a positive number.

LASSO has been developed as a tool to find sparse solutions of the linear regression
problem. It has been used extensively in an expanding field of applications from statistics
to estimation scenarios with remarkably good results. As a robust approximation of the
well known Maximum Likelihood (ML) estimator, the LASSO can be realized robustly
and efficiently.[40]

Since the regularization term in LASSO regression has absolute value operation, the well
known programming libraries for optimization has a slower processing time. In order to
increase the speed of the optimization step, the regularization term is updated to squared
term so that the derivative of the term exists.

The original equation (68) leads to

p
aridee — argmin ||Y — G - aH% + )\Z(aj)2 (71)
a€RP i
J=1
= argmin |V — G- al§ + X |l (72)
a —— ~
Loss Penalty

This lost function is called ridge Regression. In this work, the ridge Regression is preferred
over LASSO due to the computational advantages it has. The value of X is selected by
K-fold Cross validation.

34



Farhad Rahbarnia

5.1 Cross validation|70]

The parameter A in equation (68) can be seen as a hyper-parameter. Almost every machine
learning algorithm comes with large number of settings that has to be done by researchers
and practitioners. These parameters to tune, the so-called hyper-parameters, control
the behavior of machine learning algorithms when optimizing for performance, finding
the right balance between bias and variance. Hyper-parameter tuning for performance
optimization is an art in itself, and there are no hard-and-fast rules that guarantee best
performance on a given data set. This section focuses on different methods of cross-
validation for model evaluation and model selection. It covers cross-validation techniques
to rank models from several hyper-parameter configurations and estimate how well these
generalize to independent future data points (estimates).

An example of a hyper-parameter is the value of a regularization parameter A such as the
lambda-term in L2-regularized, ridge, regression. Changing the hyper-parameter values
when running a learning algorithm over a training set may result in different models. The
process of finding the best-performing model from a set of models that were produced
by different hyper-parameter settings is called model selection. The process of hyper-
parameter tuning (or hyper-parameter optimization) and model selection can be regarded
as a meta-optimization task. While the learning algorithm optimizes an objective function
on the training set, hyper-parameter optimization is yet another task on top of it; the goal
is to optimize a performance metric such as accuracy. After the tuning stage, selecting a
model based on the test set performance seems to be a reasonable approach. However,
reusing the test set multiple times would introduce a bias in the final performance estimate.
It also results in overly optimistic estimates of the generalization performance. To avoid
this problem, three-way split is used. It first divides the data points into a training,
validation, and test data points. Having a training-validation pair for hyper-parameter
tuning and model selections would make the test set independent for model evaluation.

Throughout the experiments, the MATLAB library for cross validation is used to select
the best value for .
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Chapter 6

6 Order Selection

Unlike the prior works [41] and [27] which include a strong assumption that the order of
the system is known, this work makes no assumptions on the order of the system.

One of the challenges in differential equations estimation is ”guessing” the order of the
system. Not knowing the dimensions of a system, makes the parameter estimation and
forecasting of the system problematic. We investigate the methods to pre-guess the order
of the system from the observed trajectory.

In the context of this thesis, we suggest using different potential kernels with various
dimensions, e.g. kernels with order 4, 5 or 6. Subsequently using them, we estimate the
parameters of same dimensions systems. Lastly, we compare the estimations generated
by each kernels to each other and select the most appropriate estimate. To evaluate
and compare them to each other, we initially considered Sum of Squared Error SSE and
selecting the one with the least SSE. However, the MSE method’s principle invariably leads
to choosing the highest possible dimension. Therefore, it cannot be the right formalization
of the intuitive notion of choosing the right dimension [72]. The higher order estimates
tend to have a smaller SSE, as shown in the experiment. This issue can be handled by
utilizing alternative method for comparing the kernels of different orders. One potential
method of overcoming this problem is to use information criteria.
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6.1 Akaike Information Criterion (AIC) [1] and the corrected
(AICc)

Akaike [1] introduced the first information criterion, which is now known as the Akaike
Information Criterion (AIC). The logic of information criteria is grounded in information
theory. More specifically, AIC was based on Kullback-Leibler (K-L) distance [50], which
connected information theory to random variable distributions. AIC is intended to be
an approximately unbiased estimator of the Kullback-Leibler discrepancy between the
candidate and true models. The AIC equation using residual sum of squares is:

AIC =n-1g(SSE/n) +2 -k (73)

Where n is the number of training cases, k is the number of parameters (weights and
biases), and SSE is the Sum of Squared Errors for the training set. lg refers to binary
logarithms or to base 2. For our problem the SSE is defined as:

b

SSE =Y (y(t) = §(t))’ (74)

t=a

Given a set of models for the data, the preferred model is the one with the minimum AIC
value. Thus, AIC rewards goodness of fit and also includes a penalty that is an increasing
function of the number of estimated parameters. The penalty discourages over-fitting,
because increasing the number of parameters in the model almost always improves the
goodness of the fit. For linear regression, AICc is exactly unbiased, assuming that the
candidate family of models includes the true model. The AICc [38] is used when the
sample size is small. In our case the sample size is large.

AIC is a number that is helpful for comparing models as it includes measures of both how
well the model fits the data and how complex the model is.

We use AIC to select the order of our system. First we have an initial guess for the range
of the order of the system. Thus we apply our three-step parameter estimation for all
of the selected orders. Lastly we decide the order by comparing the AIC values of each
model. We have shown the method in the experiment section.

37



Farhad Rahbarnia

6.2 Bayesian Information Criterion (BIC)

Another method for model (order) selection is the Bayesian information criterion (BIC)
or Schwarz information criterion. In Bayesian model selection, a prior probability is set
for each model, and prior distributions are also set for the nonzero coefficients in each
model. If we assume that one and only one model, along with its associated priors, is
true, we can use Bayes’ Theorem to find the posterior probability of each model given the
data[17].

The BIC equation using residual sum of squares is:
BIC =n-1g(SSE/n)+k -In(n) (75)

Where n is the number of training cases, k is the number of parameters (weights and
biases), and SSE is the Sum of Squared Errors for the training set. lg refers to binary
logarithms or to base 2.

Unlike AIC, BIC is consistent, which means that as the size of the sample increases, the
criteria will select a true model of finite dimension as long as it is included in the set of
candidate models [80]. BIC is sometimes preferred over AIC because BIC is “consistent.”

6.3 Comparing models using information criteria

Once the set of candidate models are defined, model selection using information criteria
is a three-step process. The candidate models here represent the different order of kernels
that was fitted to the data.

The first step is to fit each candidate model to the same data, making sure that any the
transformation to the outcome variable is maintained across all candidate models.

The second step is to obtain the desired information criteria for each model. For our
experiments, BIC formula has been employed. In (75) each candidate model contributes
uniquely to an information criterion value through its estimated log likelihood and the
number of parameters used in the model. The sample size when computing sample size-
dependent information criteria is the same across candidate models.

The third step is to compare the candidate models by ranking them based on the informa-
tion criteria being used. The model with the lowest value is considered to be the “best”
model [80].
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Chapter 7

7 Results and Discussion

We employed our method to various scenarios. To begin, we examine the unstable system
with different noise variances. Next we compare our method to the results of [41].

7.1 Case Study: Unstable System with an unknown order

An unstable 4-th order system is considered

0O 1 0 0

, 0o 0 1 0

T = 0 0 0 1 r 5 Y=o ZL’(O) - [070707 1] (76>
-1 -5 =5 0

with characteristic equation
y () + azy® () + asy® () + a1y (t) + agy(t) = 0 (77)
where the nominal values of parameters are

CL():]_ s CL1:5 s a2:5 s CL3:0 (78)

The measured realization of the output ¥, is obtained by adding white noise to the true
trajectory.

Ym =Yyr + € (79)
where y is the true value of system’s output and € is a white noise,
e~ N(p, 0?) (80)

where ¢ = 0 and the o is a fixed constant. We have tested our MATLAB program for the
following noise’s variances(o):

o | signal-to-noise ratio(dB)
1 |-8.9652

1.5 | -12.5224

2 -15.00821

To begin, we will explore the case for which ¢ = 1 in detail. The results for other cases
are attached.
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7.1.1 Noise 0 =1

Figure 3 shows y,, versus y, where the true y is displayed in red and the noisy y in
blue. The sample size is N = 5000. We assumed the order of the system is between 2
to 6. The results of estimation for each order is shown in the Table 2. Since the ridge
optimization is used, the hyper-parameter tuning for \ is required. We take advantage of
cross-validation function in MATLAB to handle this tuning. The tuning of X\ is done for
all potential models. For each of the expected system order, the parameters are estimated.
Subsequently we use the fundamental solution method to reconstruct the output y. Thus
using our order selection criteria, we then choose the best order, and the derivatives are
then calculated and plotted. The standard Root Mean Square Deviation (RMSD) was
employed to assess proximity of the nominal and estimated /reconstructed trajectories y
and yg. The yg refer to the estimation of y using our estimation method.

’ Order ‘ Values H Qg ‘ ay ‘ as ‘ as ‘ ay ‘ as ‘ RMSD ‘ BIC

| [True [ 1 | 5 [ 5 | 0| - [-] - [ -
2 Estimated 1.315 | -0.32 - - - - 19.63e-2 | -3.0698eH
3 Estimated || 0.113 | 6.104 | -1.003 - - - | 1.3e-3 | -3.09618e5
4 Estimated || 0.892 | 5.120 | 4.987 0 - - | 1.6e-4 | -3.0963e5
5 Estimated || -1.000 0 5.629 | 4.688 | -0.001 | - | 2.3e-4 | -3.0962eH
6 Estimated 0 -39.737 0 0 3.778 | 0 | 3.2e-4 | -3.0961ed

Table 2: Estimated parameter values with noise of 1 SD (SNR -8.9652 dB)

As the Table 2 shows; the smallest value for BIC is associated with the fourth order. It
estimates the order correctly.
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Time t

Figure 3: Noisy yy vs. nominal y for noise of 1 SD (SNR -8.9652 dB)
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Figure 4: Estimate of y using second order vs. nominal y for noise of 1 SD (SNR, -8.9652

dB)
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Figure 5: Cross-validation of MSE and X for ridge regression of second order system for
noise of 1 SD (SNR -8.9652 dB)
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Figure 6: Estimate of y using third order vs. nominal y for noise of 1 SD (SNR -8.9652
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Figure 7: Cross-validation of MSE and A for ridge regression of third order system for
noise of 1 SD (SNR -8.9652 dB)
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Figure 8: Estimate of y using forth order vs. nominal y for noise of 1 SD (SNR -8.9652
dB)
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Figure 9: Cross-validation of MSE and X for ridge regression of fourth order system for
noise of 1 SD (SNR -8.9652 dB)
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Figure 10: Estimate of y using fifth order vs. nominal y for noise of 1 SD (SNR -8.9652

dB)
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Figure 11: Cross-validation of MSE and A for ridge regression of fifth order system for

noise of 1 SD (SNR -8.9652 dB)
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Figure 12: Estimate of y using sixth order vs. nominal y for noise of 1 SD (SNR -8.9652
dB)
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Figure 13: Cross-validation of MSE and A for ridge regression of sixth order system for

noise of 1 SD (SNR -8.9652 dB)
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According to the Table 2, using the BIC values, the estimated order is the fourth order.
As follows, the derivatives reconstructions are based on the fourth order system.

— True Y (")
Estimated Y (!

Value

05 —

-15 7T
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Figure 14: Estimate of 5" vs. true " for noise of 1 SD (SNR -8.9652 dB)
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Figure 15: Estimate of ® vs. true 3 for noise of 1 SD (SNR -8.9652 dB)
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Figure 16: Estimate of y® vs. true 3 for noise of 1 SD (SNR -8.9652 dB)
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7.1.2 Noise 0 =1.5

Figure 17 shows yj; vs. y, where the true y is displayed in red and the noisy y in blue.
The sample size is N = 5000. We assumed the order of the system is between 2 to 6. The
Results of estimation for each order is shown in the 3.

’ Order \ Values H aop \ ay \ as \ as \ a4 \ as \ RMSD \ BIC ‘
| | True | + 1 5 | 5 [ o | - | - | - | - |
2 Estimated 1.256 | -0.331 - - - - 9.60e-2 | -2.83424eb5
3 Estimated 0.119 | 6.194 | -0.999 - - - 1.5e-3 | -2.84631eb
4 Estimated 1.160 | 5.029 4.855 0 - - 2.1e-4 | -2.84636e5
5 Estimated 1.782 | 53.521 | -2.442 | 13.476 0 - 8.4e-4 -2.84617e5
6 Estimated 20.414 | 99.302 | 127.147 0 29.323 | -0.101 | 1.9e-4 | -2.84617eb

Table 3: Estimated parameter values with noise of 1.5 SD (SNR -12.5224 dB)

As the Table 3 shows the least value for BIC is associated with the fourth order. It
estimates the order correctly. In this situation, even though RMSD of the sixth order is
less than fourth order, we will use BIC to decide the order.
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Figure 17: Noisy yys vs. nominal y for noise of 1.5 SD (SNR -12.5224 dB)
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Figure 18: Estimate of y using second order vs. nominal y for noise of 1.5 SD (SNR

-12.5224 dB)
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Figure 19: Cross-validation of MSE and X for ridge regression of second order system for

noise of 1.5 SD (SNR -12.5224 dB)
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Figure 20: Estimate of y using third order vs. nominal y for noise of 1.5 SD (SNR -12.5224

dB)
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Figure 21: Cross-validation of MSE and A for ridge regression of third order system for
noise of 1.5 SD (SNR -12.5224 dB)
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Figure 22: Estimate of y using fourth order vs. nominal y for noise of 1.5 SD (SNR
-12.5224 dB)

61



Farhad Rahbarnia

2.45 T T T T
1 MSE with Error Bars
: O LambdaMinMSE
O  Lambda1SE
24 r .
2.35 .
L 1l
73] | :
= |
2.3 -
Bhess) .
-'“"houi T T Ty (5 --------------------------------------
225 .
2.2 " " " | P T " [ Loy o |
10" 107 107 107
Lambda

Figure 23: Cross-validation of MSE and X for ridge regression of fourth order system for
noise of 1.5 SD (SNR -12.5224 dB)
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Figure 24: Estimate of y using fifth order vs. nominal y for noise of 1.5 SD (SNR -12.5224
dB)
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Figure 25: Cross-validation of MSE and A for ridge regression of fifth order system for
noise of 1.5 SD (SNR -12.5224 dB)
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Figure 26: Estimate of y using sixth order vs. nominal y for noise of 1.5 SD (SNR -12.5224
dB)
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Figure 27: Cross-validation of MSE and A for ridge regression of sixth order system for
noise of 1.5 SD (SNR -12.5224 dB)
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According to the table, using the BIC values, the estimated order is the fourth order order.

— True Y (")

As follows, the derivatives reconstructions are based on the fourth order order system.
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Figure 29: Estimate of y® vs. true y® for noise of 1.5 SD (SNR -12.5224 dB)
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Figure 30: Estimate of y® vs. true y® for noise of 1.5 SD (SNR -12.5224 dB)
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7.1.3 Noise g =2

Figure 31 shows y,; versus y, where the true y is displayed in red and the noisy y in blue.
The sample size is N = 10000. We assumed the order of the system is between 2 to 6.
The results of estimation for each order is shown in the Table 4.

’ Order \ Values H ao \ ay \ a9 \ as \ a4 \ as \ RMSD \ BIC ‘
| | True |+ [ 5 |5 [o ] - | -] - | - |
2 Estimated 1.37 | -0.45 - - - - 8.7e-2 -5.76012e5
3 Estimated 0.23 | 6.24 | -1.02 - - - 1.8e-3 -5.77252¢5
4 Estimated 1.03 | 5.32 | 5.10 0 - - 1.9e-4 | -5.77260e5
5 Estimated 0.24 0 5.31 | 4.81 | -0.0001 - 1.7e-4 -5.77250e5
6 Estimated 2450 | 73.88 | 93.25 | 1.35 | 23.25 | -0.16 5.1le-4 -5.77244e5

Table 4: Estimated parameter values with noise of 2 SD (SNR -15.00821 dB)

As the table shows the smallest value for BIC is associated with the fourth order order. It
estimate the order correctly. Despite the fact that the RSMD of the fifth order is smaller,
BIC for for fourth order order is selected.
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Figure 31: Noisy yy vs. nominal y for noise of 2 SD (SNR -15.00821 dB)
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Figure 32: Estimate of y using second order vs. nominal y for noise of 2 SD (SNR

-15.00821 dB)
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Figure 33: Cross-validation of MSE and X for ridge regression of second order system for
noise of 2 SD (SNR -15.00821 dB)
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Figure 34: Estimate of y using third order vs. nominal y for noise of 2 SD (SNR -15.00821
dB)
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Figure 35: Cross-validation of MSE and A for ridge regression of third order system for
noise of 2 SD (SNR -15.00821 dB)
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Figure 36: Estimate of y using fourth order vs. nominal y for noise of 2 SD (SNR -15.00821
dB)
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Figure 37: Cross-validation of MSE and A for ridge regression of fourth order system for
noise of 2 SD (SNR -15.00821 dB)
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Figure 38: Estimate of y using fifth order vs. nominal y for noise of 2 SD (SNR -15.00821
dB)
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Figure 39: Cross-validation of MSE and A for ridge regression of fifth order system for
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Figure 40: Estimate of y using sixth order vs. nominal y for noise of 2 SD (SNR -15.00821
dB)
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Figure 41: Cross-validation of MSE and A for ridge regression of sixth order system for
noise of 2 SD (SNR -15.00821 dB)

81



Farhad Rahbarnia

According to the table, using the BIC values, the estimated order is the fourth order order.
As follows, the derivatives reconstructions are based on the fourth order order system.
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Figure 42: Estimate of y») vs. true y») for noise of 1 SD (SNR -15.00821 dB)
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Figure 43: Estimate of y® vs. true y® for noise of 1 SD (SNR -15.00821 dB)
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Figure 44: Estimate of y® vs. true y® for noise of 1 SD (SNR -15.00821 dB)
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7.2 Compression with previous works

The method adopted in this thesis is compared with the Recursive Least Square Algorithm
described in [26] and the two step method used by [41]. The system considered is:

0 1 0 0
. 0 0 1 0
=19 o o 1|Tw=a;a0)=LLL]] (81)

—150 —125 —-31 -5
with its corresponding characteristic equation
y () + azy™ (1) + asy® (1) + aryV (1) + agy(t) = 0 (82)

where,
ag = 150,a; = 125,a9 = 31,a3 =5

with white noise of variance of 1 (high noise with SNR of -5.84dB) are added to the
system. Below are the results obtained employing all three methods.

Variance Method ag ay as as
1 True 150 125 30 5
Ghosal et al. 45.376 | 51.867 | 23.366 | 2.218
John [41] 72.322 | 7T1.5791 | 28.3529 | 2.8245
Proposed method | 157 124 30.8 4.99

Table 5: Comparative study with Ghoshal et al. and John

The method adopted in this thesis is proven to be more accurate. The most significant
advantage of the proposed method is the time of computation. The proposed method is
faster than both previous method.

Variance Method Time(sec)
1 Ghosal et al. 18000
John [41] 23040
Proposed method 643

Table 6: Comparison of the computational time with Ghoshal et al. and John

The result of employing our method with noise variance of 1 are represented here
with the number of sample points N = 100000 which were selected to be equidistant in
[0, 5].

Once the parameter estimates are obtained, we reconstruct the output and its derivatives
as mentioned earlier.

1 1 2 —4
MSE = NR,SS = N Z(erue(t) - }/;St(t)) = 2.8e (83)

85



Farhad Rahbarnia

Value

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time t

Figure 45: Noisy yys vs. nominal y for noise of 1 SD (SNR -5.84 dB)
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Figure 46: Estimate of y using fourth order vs. nominal y for noise of 1 SD (SNR -5.84
dB)
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Figure 47: Estimate of y(!) vs. true y(») for noise of 1 SD (SNR -5.84 dB)
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Figure 48: Estimate of y® vs. true y® for noise of 1 SD (SNR -5.84 dB)
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Figure 49: Estimate of y® vs. true y® for noise of 1 SD (SNR -5.84 dB)
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7.3 Discussion
Several conclusions can be drawn from all the results presented.

(1) It is noted that the reconstructed output and derivative trajectories are virtually
indistinguishable from their nominal counterparts for the rather noisy measurement
process realization with large SNR -8.9652 dB, hence confirming the power of the
estimation approach. Even with the measurement noise amounting to SNR -12.4797
dB, the estimates are remarkably close to their true counterparts.

(2) The suggested method of this thesis outperforms the exiting methods presented in
[41] and [28], both in accuracy and computing time.

(3) The order does not need to be known for the system, however the range of possible
orders is required for order estimation procedure to work.

(4) The parameter estimation procedure used here suffers from a clear deficiency. It
makes no attempt to employ the derivative kernels directly in the cost function of
the estimation process. It is rather remarkable that using the reproducing property
as the only relation from which to discern the values of the components of a multi-
dimensional parameter vector can deliver such good results. It is well known that
identification of higher dimensional ARX time-series models must, albeit indirectly,
employ information about the time derivatives of the system output. This fact is
also clear from the algebraic identifiability conditions that explicitly employ output
derivatives.[62]

(5) As the system is differentially flat (see [74]), the state vector zp, for t € [a,b], can
be faithfully recovered from estimated yp and its derivatives.

(6) The estimation method can be immediately improved by considering the application
of some version of Hilbert Kernels penalty term in conjunction with the cost used
here by which the variance of the noise could be considered in one step in the
estimation of parameters.

(7) In closing, it is worth pointing out the obvious: that the accuracy of estimation will
deteriorate as the noise level increases without bound.
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Chapter 8
8 Remarks and Future Work

State estimation, parameter estimation and filtering are important in many applications
and various fields such as engineering, biology, psychology and finance. The body of work
on system identification and filtering is extremely vast; the problem varying from classical
methods [53], [4] and [35] of parameter estimations, methods involving data assimilation
[49], recursive stochastic filtering [46] and [44]. Because of the ease and efficiency of
noise removal, recursive stochastic algorithms are considered to be the best. However as-
sumptions about the initial state and measurement noise characteristics, are the apparent
drawbacks of these methods.

As previously mentioned, algebraic methods can overcome many of the drawbacks of
the classical approach. However, they are computationally heavy, Thus the use of local
smoothing can help with reducing the noise variance.

This thesis extends on the previous work of [41] which was based on algebraic methods of
system identification developed in [19], [22], [74] and [59], and invariant observers [9] and
[56]. The approach presented extends to time-varying systems, linear parameter varying
systems, and multi-variate systems. In some aspects it is competitive with the continuous
time Wiener filter without relying on frequency domain techniques. The method can
easily be adapted to handle zero-mean coloured noise and applies to systems with and
without input of arbitrary order, with very little a priori information available. There
exist many improvements that can be done in future works.

To summarize the advantages of the proposed method:
e The order of the system is not required to be known and can be estimated.

The method can handle large noise ( SNR -12dB).

The knowledge of initial conditions is not required.

It can estimate the parameter of the system with accuracy in a timely manner.

The method can reconstruct the output and derivative trajectories which are virtu-
ally indistinguishable from their nominal counterparts.

Future Work

Some directions for future improvements have already been indicated in our discussion of
results. The system needs many data samples that makes the deployment of it challenging
and not robust. The color noise has not been investigated here and can be possible
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direction. Finally, another topic to investigate is how to consider colored noise in a
nonlinear setting.
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Appendices

A A Kernel representation of the n-order SISO LTI
system

This work is the summary of the work done by [41], [62] and [25].

A.1 Explicit Kernel representation of the n-order SISO LTI sys-
tem

[25] The general characteristic equation of a n-th order system is written as below:

Y () + apay ™) + -+ ayP (E) + agy(t) =0

(84)
Multiplying equation (84) by the term (£ — a)™, yields
(€= a)"y" +ana(§—a)y" 4 a6 —a)y +ap(€ —a)'y =0
(85)
This will be integrated multiple times on the interval [a,a + 7].
Multiplying equation (84) by the term (b — ()™, yields
(b=O"y"™ +apa (b= "y - a(b— )"y +agb— )"y =0
(86)

This will be integrated multiple times on the interval [b — o, b].

To lower the degree of the derivatives, integration by parts is used. The result is then
simplified algebraically.

Integration of the general term (¢ — a)"y™), (where n > m) over the interval [a,a + 7]
yields the following expression:
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(See [31].)
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The kernel derivation for the output function y

An n-time integration of the general term (& — a)"y™ over the interval [a,a + 7] yields
the following expressions:

For n = m,
(n) n ] (4)
_A\n, (m) M. _ _n EERY n n. _\n—j ...
[ earuiie g s 3 V(1) [ arnee e
For n > m,
(n) m | (n—m+j)
_A\n,,(m) ".. _ 1\ m n: _ \n—j ...
[ e e =3 (j)(n_j)!/ (6—ay Iy(€)de ... de

=0

n-times integration of equation (85) on the interval [a,a + 7] gives

i) (n—j)!

>y (M) "l - oy, ag + gaiPym,z‘) =0

J=1

P,(n,i) = i‘(—1)j (Z) n—|)' /(niﬂ)(& — a)"Iy(€)de ... dg"

= 3/ (n=3)

Applying the Cauchy formula for repeated integrals, while setting 7 4+ a = t,

=0y (0 i | (€ (€ TPy ) =0

Py =S () ey [0 e - s

= Jj (n—i+j—1

Swapping [ and ) yields the forward kernel after some algebraic manipulation.
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Forward kernel for output y

v = [ / Kp,ym,m)y(f)m] (57)

where

- i (n n! - nej
Kralt,7) = (=17 (y) GRS A

J=1

n—1 i 1 1 n! it L
+;az;<_1)3 (j) (n—])'(n_z—i_]—l)'(t_T) (T—a)

The backward kernel is obtained similarly.

Backward kernel for output y

y(t) = (b_lt)n [/t KB,y(nvt’T)y(T)dT] (88)
where
" /n n! =1 _ i
Ko7 = 2. (y) oG- e

n—1 i .
/L n! . . )
+ 1 . s - - t _ n—i+j—1 b o n—j

izoa =0 <]) (n—])!(n—z+]_1)[( 7) (b—1)

Adding equations (87) and (88), yields

y(t) = 1 = [/a KD&y(n,t,T)y(T)dT]

(t—a)" +

where
Kpy(n,t,7), form <t

K n,t, 1) =
psa ) {K37y<n,t,7'), for r >t
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A.2 Explicit kernel expressions for the derivatives of the output
function|28]

It is straightforward to obtain the corresponding recursive formulae for the time derivatives
of the system output

yDi=1,---,n—1
There exist Hilbert-Schmidt kernels Kryy, Kpgu, K =1,--- ,n— 1 such that the deriva-

tives of the output function in (3) can be computed rercursively as follows:

To get the expression for the kernel for y*), the number of integrations to be performed
is (n — k) times.

Letting
p=n—k; k>1;p<n

and integrating p times the general term (£ —a)"y™ over the interval [a, a + 7] yields the
following expressions:

For p < m,

(p) m—p .
/ (€ — a)ny(m) (&)de ... e’ = Z(_l)i (p + Z 1) n! ‘ Tn—iy(m—z‘—p)(a +7)

+i(—1)j+m‘p< " )( " )!/(j)(f—a)”—m+p—jy(§)d§,..dg"---

m-—p+j/(n—m+p—7j

For p > m,
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A p-times integration of equation (85) on the interval [a,a + 7] gives

g(—w’ (p T 1) (”—!,T“ywm (a+7)

par i n—1i)!

+ ) -
n—-p+j)®—1J

p
Jj=1
D

Py (Vo [ e arvterie...aer-

=0 7=0 J (n_‘]

+ iai [Z(—l)j <p +]: B 1) n ﬁ!j)!T"_jy(i_j_p)(a +7)

j=o J

+i<—1>]‘ﬂp< i )( . 5/ 76— ap iy . dgn

<—1>J‘+"p( . )”—'), / Y e—apyerie .. aen

t—p+j3)(n—1+p—7

Applying the Cauchy formula for repeated integrals, and setting 7 4+ a = ¢,

Sy N T R el

par i (n—1)!

- j+n—p n n! t evielie " pi
_'_jzl(_l) <n_p_|_j) (p_.])'(]_1>'/a (t 6) (f ) y(&)dﬁ

SRS (1 n! t piti-1 nj
e () o L O e s

+ Z_:ai Z(—l)j (p +; B 1) ﬁ(t — a)n—jy(i—j—p) (t)
w2 ( —;ﬂ') (n—i +pﬁ!]->!<j —1)! / (t=€) 7 (E—a)" P Iy(€)dg | =0

Swapping f and Y, and applying some algebraic manipulation, yields
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Forward kernel for y*)

YO0 = — [Z(—n’“(” ﬂ_l) (n?ili)!(t—a)n_iy(k—i)(t)

(t—a) | = i

n—1 i—p ) P +j —1 n' Lo t
+Z a; Z(_1>j+l ( . > . — (t_a)n—,]y(l—.]_p) (t)+/ KF,k,y(n7p7 t7 T)y(T)dT

i=p  j=0 J (n—j)!
(89)

where

T N e B e s O U

= n—p+3) =G - D!
SRS i n! L
+ a; (—1)]+1() : . : ‘ (t_T)p—H—]—l(T_a)n_j
D B VY e T Eret]
— - 1 n!
+» ay (-1 j+ip+1(, ) | L b il g—ite—i
; j:l( ) L=ptJ (n_l‘i‘p—j)!(j—l)!( Y )

The backward kernel is obtained similarly

Backward kernel for y(k)

yW(t) = (b_lt)n — ; (PJFZ— 1)@”%@)(5_ £yriy k=) (4)
_ g‘“ 3 (P+j - 1> - i!j)!(b — t)"*iy(ifjfp)(t) +/t Kpky(n,p,t, 7)y(r)dr
(90)
where
p " n =1y _ ~\p—J
Kol pt7) = ; (n —p+j) (p—J4)(G—1)! (t—7)"(b—7)
3 Z n! p—i+j—1 n—j
+;a210(]> m—lp—i+tj—1) (t—7) (b—1)
n-1  p n! i R
+;a1]21 ( p+j> (n—z‘+p_j)!(j_1)!(t—7) (b—1)
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Adding equations (89) and (90) produces

0 = [ZH)M i 1) = )

=1

n—1 i—p .
A -1 !
CB B () ey [t
=p 7=0

j (n—j)!

Z (p +i— 1) (anz)l (b — £) iy (1)

=1

n—1 i—p (p—f-j . 1>
i j=0

b
iy =3) () / KB,k,y(n,p,t,T)y(T)dT]
t
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B Reproducing Kernel Hilbert Spaces[60]

B.1 Introduction

Given a set X, if we equip the set of all functions from X to F,F(X,F) with the usual
operations of addition, (f +g)(x) = f(z) + g(), and scalar multiplication, (AAAf)(z) =
MAA(f(z)), then F(X,F) is a vector space over F [67].

Definition 1. A Hilbert Space is an inner product space that is complete and separable
with respect to the norm defined by the inner product.

Examples of Hilbert spaces include:
1. The vector space R™ with (a,b) = a’b, the vector dot product of a and b.
2. The space [, of square summable sequences, with inner product (z,y) = > 2, z;y;

3. The space L2 of square 1ntegrable functions (i.e., f f(z)*dr < oo), with inner
product (f,g) = [, f(z)g(z)dz < c0) [§]

Definition 2. Given a set X, we will say that H is a reproducing kernel Hilbert
space(RKHS) on X over F, provided that:

1. H is a vector subspace of F(X,F)
2. H is endowed with an inner product, (.,.) making it into a Hilbert space,

3. or every y € X, the linear evaluation functional, E, : H — F, defined by E,(f) =
f(y), is bounded [67].

For instance, the L? space is a Hilbert space, but not an RKHS because the delta function
which has the reproducing property:

fa) = / 5(z — u) f(u)du (91)

does not satisfy the square integrable condition, that is,

/5(u)2du £ 00 (92)

s

thus the delta function is not in L? [8].
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B.2 Reproducing Kernels for Modelling of LTI Systems [60]

The class of systems considered here comprises linear time invariant systems described in
terms of their characteristic equations :

D™y(t) = a1 D™ y(t) + apm_o D™ y(t) + ... + a1 D'y(t) + agD (1), (93)
with the usual definition of the differential operators :

d dr
Dy(t) = y(t); D'y(t) = —y(t); Dy(t) = Txy(t)ik =1,...m (94)

that are satisfied by the system ”output functions” y on some interval of time ¢ € [a, b] C
R, where a; € R,i =1,..,m — 1, as real coefficients.

With a change of notation from Kpg to KP°, it will be assumed that a double-sided
kernel KPP : (t,&) — KP5(t,€), (t,€) € [a,b] X [a,b], can be constructed such that every

solution of (93) on an interval [a, b] satisfies

b
y(p) =/ KP%(p,Oy(&)d¢ 5 p € [ab] (95)

Since the output variable y is assumed to be measured, and hence is likely to be corrupted
by noise, it is convenient to regard it as a member of the Hilbert space L?[a,b]. Tt
follows from the construction the double-sided kernel that KP° is also an L? function,
so KP% € L*a,b] x L*a,b]. For brevity it will be convenient to adopt the following
shorthand notation:

DS A DS . DS . DS .
KD%(€) = KP%(p,&);  KJ® € L?[a,b]; ie. KP(p,-) € L*[a,b]; for all p € [a, b]

(96)

allowing to re-write (95) in terms of the scalar product on L?[a, b]:
y(p) = (y. KP%)2, p € [a,b] (97)
ie. y=(y, K"y ; where K" :p— K% € L?[a,b] ; p € [a,b] (98)

where (-, -)5 is the scalar product in L?[a, b]. It should be noted that with these definitions,
the functions KpD S, although considered as members of L?[a, b] are point wise defined. The
reproducing property (97) holds for any functions y satisfying (93) .

Since the reproducing property is linear in the reproduced signal y, the condition (98)
already holds on a linear vector subspace of L?[a,b] comprising all solutions of the char-
acteristic equation on the interval [a, b] (regardless of their initial conditions).
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