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Abstract. The recent claim by Saylie [1992] to have de- 
tected the Slichter modes of the Earth's inner core rests on 
what appears to be a remarkable agreement between the- 
ory emd observation. However the theoretical eigenperiods 
which are used by Smylie conflict significantly with all pre- 
viously published periods for the Slichter modes, both for 
non-rotating and rotating Earth models. A closer exami- 
nation of the theory used in these calculations reveals the 
use of static Love numbers to represent the response of 
the inner core and mantle to dynamics in the liquid core. 
We here show that the use of dynamic Love numbers re- 
stores the eigenperiods to those obtained using standard 
seismological theory and consequently destroys agreement 
between these periods and the claimed observations. 

Introduction 

The Slichter triplet is a curiosity in the family of Earth's 
normal modes. Unlike the rest of the seismic normal modes, 
the restoring force on th • inner core is primarily gravita- 
tional rather than elastic, and the triplet has never been 
observed following an earthquake [l•ydelek and Knopoff, 
1984]. From a classification point of view, it is now gener- 
ally known as •$[' [cf. Crossley, 1975b], denoting the first 
overtone n = 1 of the degree 1 = 1 motions. 

Adopting the conventions u cre i(•t+m+) for the displace- 
ment field u, • positive eastward (with rotation) and using 
positive frequencies co, it is clear that rn - +1 is a west- 
ward wave motion on a sphere, m = 0 is axisymmetric 
and m = -1 is eastward. On a rotating sphere, rn = +1 
is therefore retrograde (against rotation) and has a higher 
frequency (shorter period). The opposite is true for the 
prograde mode rn = -1. Curiously, Smylie [1992] adopts 
the reverse terminology for prograde and retrograde mo- 
tions. To first order in rotation, the frequency of the rn = 0 
wave is unchanged, but second order and higher order per- 
turbation theory also shifts the period of this mode from 
the non-rotating value. 

Because of the high frequency of the elastic normal modes 
compared to the sidereal rotation frequency, first or second 
order perturbation theory is usually considered adequate 
to accurately find the Coriolis splitting of the degenerate 
eigenfrequencies. Due to the relatively weak gravitational 
restoring force on the inner core, perturbation theory is 
less applicable for the long period (several hours) of the 
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Slichter modes [Crossley, 1975b; Smith 1976; Dahlen and 
Sailor, 1979]. 

Love numbers have generally been used to represent the 
elastic response of the Earth to tidal forcing, and as such 
are generally considered to be static, representing the re- 
sponse of the Earth at periods much longer than the elastic 
normal modes. However, as pointed out by Pekeris and Ac- 
cad [1972], the tidal Love numbers do in fact vary with fre- 
quency at long periods (several hours) for an Earth model 
with a stably stratified liquid core, due to resonances at the 
periods of internal gravity waves in the fluid. Considerable 
simplification can be made in the dynamics of the liquid 
core by using load Love numbers to represent the response 
of the inner core and mantle [Smylie, 1988; Rochester and 
Peng, 1990; Crossley et al., 1991]. 

The Love numbers computed for I = 1, particularly those 
for the inner core boundary (ICB), have resonances close to 
those of the Slichter periods for the whole Earth and there- 
fore static values cannot be used to represent the response 
of the inner core and mantle. Indeed on physical grounds it 
should be immediately obvious that, because the Slichter 
modes are primarily motions of the inner core, one can- 
not focus on the dynamic response of the liquid outer core 
and ignore the the inertia term in the computation of the 
ICB Love numbers when these Love numbers explicitly in- 
corporate the inner core oscillation. Unfortunately, Staylie 
[1988] missed this important point when he assumed that 
the inertial terms in the inner core and mantle were in- 

significant, and he took the deformation field therein to be 
static. 

Rochester and Peng [1990] first discussed the calcula- 
tion of the Slichter modes using the variational procedure 
with the subseismic approximation (SSA) and dynamic 
Love numbers for the inner core and mantle. Here we re- 
compute the Slichter periods for a variety of Earth models 
using both direct integration and Love numbers. In or- 
der to reproduce Smylie's periods as closely as possible, 
we also used the subseismic approximation in two related 
forms. SSA-1 refers to the application of the subseismic 
approximation only in the body of the liquid core [Smylie 
and Rochester, 1981] and using the boundary conditions 
that apply for the full system. SSA-2 refers to a further 
stage of approximation, that used by Smylie et al. [1990], 
in which the SSA is applied also to the boundary conditions 
[cf. Crossley and Rochester, 1992]. 

Apzcs and N 2 

We begin by noting the relation between the density 
jump at the ICB (Aptcs) and the non-rotating Slichter 
eigenperiod To. We construct, beginning with PREM [Dzie- 
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wonski and Anderson, 1981], a suite of Earth models with 
liquid cores of different buoyancy periods T•3 = 2•r/N, 
where N is the Brfmt V/4.is/ilg frequency, and different val- 
ues of Apzc• 3. In each model, the seismic velocities are 
unchanged throughout the Earth and for each new T•3 the 
mass of the Earth is also maintained. Then we integrated 
the equations of motion directly and obtained values of To. 
The starting conditions at the Earth's centre have to be 
correctly satisfied to allow displacements of the inner core 
about the fixed centre of mass [Crossley, 1975a]. 

The results (Figure 1) indicate that outer core stability 
plays a significant role only when A,ozc•3 < 0.4 g cm -3 and 
that a strongly stable stratification can provide a gravita- 
tional restoring force even for negative density contrasts. 
For a neutral core, the Slichter period becomes infinite as 
Apzc•3 • O. We show our computed periods for 1066A 
[Gilbert and Dziewonski, 1975], PREM and COREll [Wid- 
met et el., 1988]. Also plotted are the periods for DG579, 
an unlisted model used by Smith [1976], and model 71BG 
of Smylie [1992], using respectively their quoted values of 
Apic•s and To. Smylie's eigenperiods for 71BG, 1066A and 
COILEll are much below the curve along which all other 
results are grouped. 

An Earth model with a period To as short as that quoted 
for 71BG requires Apzc B = 1.26 g cm -a. This value is con- 
sidered seismologically extremely unlikely from an analysis 
of a suite of elastic normal modes studied by Masters and 
Shearer [1990, Figure 1], which fayours 0.475 g cm -3. 

Dynamic Love numbers 

As discussed by Smylie et el. [1990], Crossley et el. 
[1991] and Rochester and Peng [1992], the use of Love 
numbers considerably simplifies core dynamics in the cases 
where the boundaries are elastic and/or the gravity effect 
at the surface (through the mantle eigenfunctions) is re- 
quired. 
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Fig. 1. Non-rotating Slichter eigenperiods for several Earth 
models. The 4 solid curves, from bottom to top, were com- 
puted using modified liquid cores of buoyancy periods 6 hr, 
12hr, 18hr and neutral respectively. The circles and crosses 
are periods computed for seismic Earth models by us and 
by Smylie [1992] respectively. 

Load Love numbers can be regarded as matching con- 
stants connecting the dynamic variables at the !CB and 
core mantle boundary (CMB). The 6th order equations 
are integrated for three trial solutions throughout the in- 
ner core, from the Earth's centre to the ICB. On applying 
the appropriate boundary conditions at the !CB, one ob- 
tains two independent pairs of load Love numbers, from 
which any of the regular variables (radial displacements, 
stresses or gravity variables) can be expressed. These Love 
numbers are then stored for future use. 

The process is repeated for the mantle, integrating from 
the CMB to the Earth's surface where traditional bound- 
ary conditions are applied. Again two more pairs of inde- 
pendent Love numbers are obtained and stored. At this 
point, one goes back and integrates throughout the fluid 
core, with two trial solutions at a trial eigenfrequency for 
the four independent equations in the fluid, using the Love 
numbers where appropriate to construct the discriminant 
(based on continuity of radial displacement and normal 
stress at the CMB) for each trial eigenfrequency. The key 
question is whether or not the load Love numbers need 
be re-computed each time the outer core eigenfrequency 
is re-adjusted (dynamic Love numbers), or whether static 
(zero frequency) Love numbers computed once only are 
sufficient. 

In principle, all Love numbers are dynamic since the 
equations integrated in the solid normally contain the in- 
ertial term conu. Load Love numbers exhibit resonances 

that reflect eigensolutions of the restricted problem being 
addressed. For example, the ICB Love numbers have a res- 
onance wherever there is a true eigensolution of a realistic 
inner core bathed in an infinite fluid of uniform density 
equal to the density on the fluid side of the ICB, since this 
density was embedded in the boundary condition used at 
the ICB to generate the Love numbers. Similarly, a CMB 
Love number shows resonances at the eigensolutions of a 
realistic shell (the mantle) filled inside with a fluid of uni- 
form density equal to that on the fluid side of the CMB. 

It can be seen in Figure 2 that in the neighbourhood 
of an isolated resonance col the Love numbers are of the 

form h(co) = h(0)+ hr.[(1- con/cot. 2) -• - 1] where h(w} 
is the dynamic Love number and h(0) is the static Love 
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Fig. 2. The I = 1 ICB Love number for g in the period 
range 10 sec to 1000 hr. The whole-Earth Slichter eigen- 
period of 4.599 hr (circle) lies almost on top of the large 
inner core resonance a,t 3.995 hr. 
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number. Only if w 2 << wL 2 may we take h(co) • h(0). The 
above expression for the Love number does not have to be 
programmed into the computations, but arises naturally as 
• result of including the inertial term in the equations of 
motion. 

We can now appreciate the significance of using dynamic 
Love numbers whenever the anticipated eigenfrequency of 
the complete system is close to a Love number resonance. 
Since the ICB Love number resonance for 1066A is at TL = 
3.995 hr, it is close to the anticipated period of T = 4.599 
hr (Figure 2). Consequently it is essential to use dynamic 
Love numbers for the Slichter modes. 

Table 1 shows dynamic and static Love numbers for X, 
the reduced potential and dc)/dr, the derivative of the grav- 
ity potential, for 3 Earth models and compares the results 
to those of Smylie [1992]. We note first that the degree 1 
Love numbers are extremely sensitive to the details of the 
numerical methods used in the integration, which is suffi- 
cient to explain the slight discrepancies between the vari- 
ous authors for the same calculation. With this in mind, 
it is quite clear that important conclusions can be drawn. 
First, we have recovered Smylie's static Love numbers for 
1066A and COIl. Ell. This indicates that all authors agree, 
within numerical error, with the method of integrating the 
equations of motion in the limit of zero frequency. 

Second, independent calculations (Crossley, Peng) con- 
firm the Love numbers computed at the periods of the re- 
spective non-rotating Slichter modes and are significantly 
different from the static values, as to be expected from Fig- 
ure 2. This difference explains the bulk of the discrepancy 
between Smylie's computed periods and our new calcula- 
tions which agree with standard seismological theory. 

Coriolis Splitting 

Before we can compare our final results to those of Smylie 
[1992], we have to tackle the question of Coriolis splitting. 
Dahlen and Sailor [1979] elegantly summarized the results 
of second order perturbation theory in their analysis of 
elastic overtones including, fortunately, the Slichter mode. 
Additionally, Crossley [1975b], Smith [1976], Melchior et 
al. 1988] and Rochester and Peng [1992] all gave results 

from a more complete theory that includes higher order 
terms in the expansion of the displacement field, necessary 
for long period oscillations on a rotating Earth. 

Perturbation theory expands the displacement field in 
terms of (f•/w) •, where f• is the sidereal rotation frequency. 
First order theory (k = 1) includes the Coriolis force in the 
basic spheroidal term of the spherical harmonic expansion, 
dubbed 'self-coupling' by Crossley [1975b]. Second order 
(k = 2) includes the next toroidal term T• which is the 
basis of most of the rotating eigenperiods quoted in the 
references above. Recently, using SSA-1, Rochester and 
Peng [1992] have extended the coupling chain to degree 5, 
i.e. the displacement field is represented by harmonics $p 
... Sp. Staylie [1992] uses SSA-2 with an unknown number 
of terms to expand the variable X at the ICB and CMB. 

Our final results for the Slichter eigenperiods are given 
in Table 2. We denote by Tp the prograde (m = -1) 
mode, TR the retrograde (m = +1) mode, and Tc the 
central (m = 0) peak. Our split eigenperiods are computed 
using the second order perturbation formulae of Dahlen 
and Sailor [1979]. 

Notice that for the full equations, direct and Love num- 
ber methods yield identical results, showing correct im- 
plementation of the algorithms. Necessarily, the dynamic 
Love number calculations also agree with previous values, 
allowing for the sensitivity of the Slichter periods to de- 
tails of the integration method. SSA-1 yields little change 
from the full equations, whereas SSA-2 underestimates the 
correct eigenperiod by about 10% due to problems with 
the SSA at the CMB [Crossley and Rochester, 1992]. The 
periods using static Love numbers are 40% too low. 

Results for several Earth models are plotted in Figure 3, 
which is analogous to that shown by Staylie [1992]. Note 
that with dynamic Love numbers, not only would the 'ob- 
served' eigenperiods require an unacceptably high ICB den- 
sity contrast, but also the splitting is greater than that ob- 
tained theoretically and observationally by Smylie [1992, 
equation (1)]. This implies that if the the observational 
triplet identified by him were to be confirmed, the peaks 
are unlikely to be associated with a co-rotating physical 
oscillation of the Earth. 

TABLE ! - Love numbers of degree 1 
model period X dc)/dr Type, 

(hrs) (ICB) (ICB) Author 
1066A 4.59919 -72.9780 5.2429 D,C 

4.60382 -72.8092 5.2294 D,P 
1000.0 -18.0459 1.2882 S,C 

• -17.8629 -1.2755 S,S © 
COREll 5.94692 -101.4316 4.1220 D,C 

1000.0 -28.8533 1.1652 S,C 
• -28.0179 -1.1306 

PREM 5.42063 -83.3317 4.2370 D,C 
5.41190 -82.5272 4.2226 D,P 
1000.0 -23.8203 1.2037 S,C 

(•-T•Yp e D ..... dynamic, S = static 
Author C = Crossley, P = Peng, S = Smylie et al. [1990], 
but note the different values quoted in Staylie et al. [1992] 
(:) The period used by Smylie is not known; his Love num- 
t•ers for dr)/dr are defined with the opposite sign to us. 

TABLE 2 - Slichter mode eigenperiods, model 1066A 

To T,. © Tc (•) Tp (:t) Equations,(*') 
Method, Author 

4.59920 4.12843 4.53384 5.01400 F,D,C 
4.59920 4.12843 4.53384 5.01400 F,LN,C 
4.5984 F,D,MD 
4.59759 4.12759 4.53222 5.01135 SSA-1,D,C 
4.59760 4.12760 4.53222 5.01146 SSA-1,LN,C 
4.49940 4.04970 4.43806 4.89647 SSA-2,LN,C 
2.62518 2.46200 2.61407 2.78137 F,SLN,C 
2.40404 2.23077 2.39882 2.58229 SSA-1,SLN,C 
2.75079 2.58456 2.73665 2.90511 SSA-2,SLN,C 
2.7141 2.6035 2.7023 2.8247 SSA-2,SLN,S 

(x) Periods in hours. Rotating eigenperiods are by 2nd 
order splitting except for Staylie (full rotation). 
(2) Equations F = full, SSA-1, SSA-2; Method D = direct, 
LN = dynamic Love number, SLN = static Love number; 
Author C = Crossley, MD = Masters, Dahlen (independent 
personal communications, May 1992), S = Staylie. 
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Fig. 3. Coriolis splitting of Slichter modes for the prograde 
(m = -1), central (m = O) and retrograde (ra = +1) com- 
ponents at the top, centre and bottom respectively. The 
solid lines join the periods computed using second order 
perturbation theory (at this scale almost identical to cou- 
pling to degree 5 in the fluid) and show models 1066A 
(circles), PREM (triangles) and COR, Ell (crosses). The 
dashed lines show the splitting according to Staylie [1992] 
for 1066A (arrows), COREll (diamonds) and the claimed 
observations (crosses). The squares show a model in which 
we modified COREll to have an ICB density jump of 1.26 
gcm -a, calculated to provide agreement with the period 
of the m = 0 mode for the claimed observations; evidently 
the true splitting (m = 4-1 periods) disagrees with that 
computed by Smylie. 

Summary 

We have verified Smylie's eigenperiods to within 2%, in- 
dicating to our satisfaction that we have correctly under- 
stood his numerical procedures. We have therein demon- 
strated that the use of static rather than dynamic Love 
numbers is the main reason he obtains significantly dif- 
ferent Slichter eigenperiods from published and here re- 
confirmed values. The substantial correction necessary to 
Smylie's eigenperiods leads to complete disagreement with 
the periods he identifies in the data and destroys his claim 
to have detected the Slichter modes. 
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