
PREDICTING THE ONSET OF
ABNORMAL CARDIAC RHYTHMS

THOMAS QUAIL

DOCTOR OF PHILOSOPHY

DEPARTMENT OF PHYSIOLOGY

MCGILL UNIVERSITY

MONTREAL, QUEBEC

JULY 2015

A THESIS SUBMITTED TO MCGILL UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

c© Thomas Quail 2015



DEDICATION

This thesis is dedicated to my parents, Paddy and Rhona, and my sister,

Emma, for their love and support. And to Zoë, my best friend, with whom I
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ABSTRACT

The normal cardiac rhythm can undergo transitions that lead to serious

cardiac arrhythmias. In this thesis, I examine these transitions using simplified

experimental cardiac models and tools from nonlinear dynamics. Treating spon-

taneously beating aggregates of embryonic chick cardiac cells with a potassium

channel blocker can induce a spectrum of complex dynamics, including highly

irregular rhythms. In the first study, I suggest that these irregular rhythms are

chaotic and are initiated through a sequence of period-doubling bifurcations.

Potassium channel blockade can also lead to the onset of proarrhythmic alternating

rhythms through a period-doubling bifurcation. In the second study, I develop a

quantitative early warning signal that provides insight into how far the system is

from the onset of the period-doubling bifurcation. Alternating rhythms precede the

onset of reentrant arrhythmias, which can be driven by spiral waves, self-sustaining

vortices of electrical activity. In the third study, I explore mechanisms of spiral

wave initiation by introducing inexcitable regions into 1-cm-diameter monolayers

composed of embryonic chick cardiac cells, and tracking the dynamics using intra-

cellular calcium imaging. In particular, I find that the location of the inexcitable

region in combination with the side pacemaker frequency determines spiral wave

rotation direction (chirality). In this system, I also find that an instability in the

dynamics of the action potential duration in localized regions of the substrate acts

as a precursor of spiral wave initiation.
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ABRÉGÉ

Un rythme cardiaque normal peut subir des transitions qui mènent à des

arythmies graves. Cette thèse examine ces transitions en utilisant des modèles

cardiaques expérimentaux simplifiés et des méthodes de dynamique non linéaire.

Le traitement d’agrégats de cellules cardiaques embryonnaires de poussin battant

spontanément avec un inhibiteur de potassium peut provoquer une gamme de

dynamiques complexes, y compris des rythmes très irréguliers. Dans la première

étude, je suggère que ces rythmes irréguliers sont chaotiques et sont démarrés au

cours d’une séquence de bifurcations de dédoublement de période. Le blocage des

canaux potassiques peut également entrâıner l’apparition d’alternances proaryth-

miques par une bifurcation de dédoublement de priode. Dans la seconde étude,

je développe un signal quantitatif d’alerte précoce qui permet de mieux compren-

dre l’état du système précédant l’apparition de la bifurcation de dédoublement

de période. L’alternance précède l’apparition d’arythmies réentrantes, qui peu-

vent être entrâınées par des ondes spiralées (des tourbillons d’activité électrique

qui s’auto-entretiennent). Dans la troisième étude, j’explore les mécanismes de

l’initiation d’ondes spiralées en introduisant des régions inexcitables dans des

monocouches de 1cm de diamètre composées de cellules cardiaques embryonnaires

de poussin, et le suivi des dynamiques à l’aide de l’imagerie de calcium intracel-

lulaire. Notamment, je découvre que l’emplacement de la région inexcitable en

combinaison avec la fréquence du stimulateur latérale dtermine le sens de rota-

tion d’ondes spiralées (chiralité). Dans ce systme, je trouve aussi que l’instabilité
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des dynamiques de la durée du potentiel d’action dans des régions localisées du

substrat agit comme un précurseur de l’initiation d’ondes spiralées.
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PREFACE

The heart is remarkably robust. It beats each second, ensuring that oxygen

and nutrients reach every cell in the body. Disruptions to this process have

existential consequences. In this thesis, I examine the dynamics underlying

the onset of abnormal cardiac rhythms associated with life-threatening cardiac

arrhythmias. Tackling this problem necessitates providing insight into the nature

of these transition. Tools from nonlinear dynamics and bifurcation theory applied

to simplified experimental cardiac models has proved fruitful in tackling this

problem, shedding insight into the dynamic mechanism of these transitions. All

three studies in this manuscript-based thesis are grounded in this approach:

developing and analyzing nonlinear models based on experimental data to gain

insight into transitions associated with the onset of abnormal cardiac rhythms.

From this perspective, this thesis makes three original contributions to our

understanding of abnormal cardiac rhythms. First, I show that treating aggregates

of cardiac cells with a potassium channel blocker can induce chaotic dynamics.

Second, I develop a quantitative measure that assesses how far the dynamics of

aggregates of cardiac cells treated with a potassium channel blocker are from the

onset of clinically relevant alternating rhythms. Lastly, I show that the position of

an inexcitable region with respect to a side pacing region can control spiral wave

chirality preference.
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CHAPTER 1
Introduction

Over the course of a lifetime, the heart maintains remarkably stable dynam-

ics within a noisy, nonlinear, spatially-extended environment. Every second, a

depolarizing wave of excitation propagates throughout the four chambers of the

heart, giving rise to a well-coordinated contraction. This process, termed normal

sinus rhythm, represents one of the body’s fundamental physiological rhythms.

Life-threatening cardiac arrhythmias are associated with transitions in the qualita-

tive dynamics of this process. From a mathematical perspective, transitions in the

dynamics of complex systems can be associated with bifurcations in the dynamics

observed in mathematical models, where the value of a control parameter goes

through a critical point leading to the establishment of qualitatively different

dynamics. Mackey and Glass first introduced the idea of dynamical disease, which

linked bifurcations that arise as a consequence of a change in the value of a model

parameter with the onset of human pathology [86, 139]. Since then, this approach

has provided insights into potential mechanisms associated with a number of

human diseases, including epilepsy [146], respiratory arrest [162], Parkinson’s [15],

and cardiac arrhythmias [91].

In this thesis, I focus on the initiation of abnormal cardiac rhythms by

examining the dynamics of these transitions. In recent years, tools from nonlinear

dynamics and dynamical systems have been useful in exploring these problems.
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Here, I show that this approach can provide insight into a clinically relevant

question: can you predict the onset of abnormal cardiac rhythms?

Treating spontaneously beating aggregates of embryonic chick cardiac cells

can induce highly irregular rhythms. In the first study of this dissertation, I show

that these irregular rhythms are chaotic, and are generated through a sequence

of period-doubling bifurcations. Period-doubling bifurcations can also lead to

the onset of proarrhythmic alternating rhythms. In the second study, I develop

early warning signals that predict the onset of alternating rhythms observed in

the beat patterns of aggregates following potassium channel blockade. Alternating

rhythms have been linked to the onset of reentrant arrhythmias that are thought

to be driven by spiral waves. In the third study, I explore spiral wave initiation

by introducing inexcitable obstacles into 1-cm-diameter cardiac monolayers.

Numerically simulating this system shows that the position of the obstacle governs

spiral wave rotation direction (‘chirality’).

1.1 Physiology of the heart

The central function of the heart is to pump blood throughout the body. To

carry this out, there exists an elegantly designed interplay between the heart’s

spatial structure, the conduction properties of cardiac tissue, and the contractile

properties of the organ. In the following section, I will briefly outline how all these

dynamic parts collectively give rise to the proper functioning of the heart.

The heart is divided into four chambers: the right and left atria, which

represent the upper chambers; and the right and left ventricles, which represent

the lower chambers. These chambers contract in a well-coordinated fashion,
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which leads to the ejection of deoxygenated blood to the lungs and oxygenated

blood to the rest of the body. The heart’s electrical conduction system governs

the timing of these contractions. Most cardiac cells have both contractile and

electrical properties. In particular, cardiac cells propagate action potentials—the

fundamental electrical signal of the heart representing the wave of excitation—and,

consequently, the action potential causes these cells to contract.

Approximately every second, specialized pacemaker cells in the sino-atrial

(SA) node—located in the right atrium—depolarize, giving rise to an action

potential. This wave of excitation propagates first throughout the atria, leading

to the atrial contraction. The atrioventricular (AV) node connects the atria and

the ventricles, allowing the wave of excitation to propagate from the heart’s

upper chambers to the lower chambers. The cardiac impulse rapidly exits the

atrioventricular node through the bundle of His, which leads to the right and left

bundle branches of the Purkinje network. Finally, the cardiac impulse propagates

through the Purkinje network, which gives rise to the excitation and subsequent

contraction of the right and left ventricles. The conduction velocity of the wave

of excitation through the cardiac conduction pathways depends on a number

of factors, including location within the heart, direction of propagation, action

potential upstroke velocity, and the coupling between cells via gap functions. The

conduction velocities range from approximately 0.05 m/s in the atrioventricular

node to 2 m/s within the Purkinje network [118]. Additionally, the anistropic

nature of the heart, wherein cells are preferentially oriented along specific fiber
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directions, induces differences between longitudinal and transverse propagation—

0.5 m/s as compared to 0.2 m/s in ventricular muscle [118].

The dynamics of the action potential are governed by the opening and closing

of voltage-sensitive ion channels that mediate the flow of sodium, potassium, and

calcium across the cell membrane. A great deal of work has been conducted on

determining how the interactions between the nonlinear responses of ion channels

and the balance of extra- and intracellular ionic concentrations give rise to action

potentials. This thesis largely focuses on more macroscopic dynamical properties

of cardiac systems, but, that being said, I will provide a brief overview of the

generation of action potentials (for a review see [95]).

At rest, differences in the ionic concentrations across the membrane govern

the membrane potential, which in isolated human cardiac cells is between −80

and −90 mV [134, 57]. Upon activation, sodium channels open, allowing sodium

to flow from outside to inside the cell (along its concentration gradient), giving

rise to the upstroke leading to depolarization of the membrane voltage to approxi-

mately +20 mV [134, 196]. Next, during the plateau phase, depolarizing currents

mediated by calcium-specific channels balance the repolarizing potassium-specific

currents. This plateau phase prolongs the action potential—in human cardiac cells,

the duration of the action potential is roughly 250 msec [149]. In the repolarizing

phase of the action potential, the cell’s membrane voltage is brought back to its

resting membrane potential through the activity of potassium channels.

The heart is made up of cell types with varying functions and electrophys-

iological properties. In general, cardiac cells can be classified as being either a
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pacemaker or an excitable cell. Pacemaker cells in the sinoatrial node discharge

periodically leading to the initiation of the normal sinus rhythm. Rather than

returning to the resting membrane potential following repolarization, pacemaker

cells undergo depolarization as a consequence of a number of ion-channel-mediated

currents, most notably If , a hyperpolarization-activated pacemaker current [200].

Excitable cardiac cells, on the other hand, nonlinearly respond to the wave of

excitation emanating from the pacemaker cells but do not intrinsically generate

action potentials. Hence, during normal sinus rhythm, pacemaker cells ‘entrain’

the dynamics of the heart’s excitable cells, thus governing heart rate.

In this thesis, I examine the dynamics associated with the onset of abnormal

cardiac rhythms. In patients with cardiac arrhythmias, cardiologists examine ECG

recordings to characterize the mechanism underlying the arrhythmia. However, the

human heart is a complex, three-dimensional structure, and ECG recordings often

do not provide the level of detail necessary to resolve these mechanistic properties

associated with the onset cardiac arrhythmias. Consequently, simplified animal

models are used to provide insight into the mechanisms of these processes

1.2 Experimental models of the heart

Simplified experimental models of the heart span all spatial scales. Here, I

provide a survey of the simplified animal models that have been used to provide

insight into the mechanisms of abnormal cardiac rhythms.

(1) Zero-dimensional models: Examining the dynamics of spontaneously beating

aggregates of cardiac cells represents a method of studying beat patterns in

response to various stimuli. In particular, DeHaan developed a method to generate
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spontaneously beating aggregates of embryonic chick cardiac cells [54]. From

a dynamics perspective, aggregates act as pacemakers, and have been used to

examine the response of the cardiac rhythm to single depolarizing pulses [89] and

periodic stimulation [90, 91, 127]. In these studies, the dynamics were tracked

using electrodes that measure intracellular electrical activity. Spontaneously

beating aggregates of cardiac cells have also been used to examine changes in

dynamics following the treatment of drugs that target ion channels, including the

hERG potassium channel [117]. Chapters 2 and 3 are based on a data set first

presented in [117], where aggregates were treated with a hERG potassium channel-

specific drug E4031. Single cells isolated from tissue preparations represents an

experimental model that has also been used to examine cardiac dynamics [55, 77].

(2) One-dimensional cables: Periodic stimulation of a strip of Purkinje fiber

represents a well-studied experimental system that has been used to examine

a number of cardiac rhythms, transitions between rhythms, and additional

properties, including alternating rhythms [39], chaotic dynamics [39], control

of abnormal alternating rhythms [41], and onset of conduction block [74]. To

examine the dynamics of waves propagating around rings of cardiac tissue, the

tissue around the tricuspid valve—the valve linking the right atrium with the right

ventricle—has also been used [75].

(3) Two-dimensional sheets: Optical imaging of cardiac monolayers, two-

dimensional sheets of interconnected cardiac cells, using calcium- and voltage-

sensitive dyes has provided insights into the study of the initiation [22, 24] and

termination [2] mechanisms of spiral waves; the dynamics of spiral waves [27]; the
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effects of geometry on cardiac dynamics [10]; spatial dynamics of early afterdepo-

larizations [32]; and the interactions of multiple pacemakers [21]. In chapter 4, I

use 1-cm-diameter cardiac monolayers composed of 7-8-day-old embryonic chick

cardiac cells to examine how inexcitable regions influence the dynamics of spiral

waves.

(4) Three-dimensional measurements: Examining intramural propagation

in whole hearts represents a technically challenging problem for which data

is scarce [96]. Arrays of microelectrodes that detect electrical activity can be

inserted through the heart’s walls [60]. Optical fibers have also been used to

image transmembrane voltage through the heart’s walls using fluorescence from a

voltage-sensitive dye [120]. Much work remains towards improving the techniques

of imaging wavefront propagation in three dimensions.

1.3 Mathematical models of the heart

Mathematical modelling can propose mechanisms to deepen our understand-

ing of experimental data and make predictions that guide the types of experiments

that are performed. Furthermore, computational models can provide insight into

the types of transitions that take place in the genesis of abnormal cardiac rhythms

in experiments.

In 1928, van der Pol and van der Mark first modelled the electrical activity

of the heart by coupling oscillators representing the sinus, the atria, and the

ventricles together [199]. The model generates stable oscillations and captures a

number of properties associated with cardiac function, including an alternation

between slow build-up phases and rapid release phases, refractory period, and
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all-or-nothing responses to external stimuli. However, at the time, the cellular

mechanism underlying these processes in the heart was unclear.

In 1952, Hodgkin and Huxley published a set of landmark studies showing

that the propagation of a nerve impulse along the squid’s giant axon is mediated

by voltage-dependent ion currents [98, 97, 99, 101, 100]. Hodgkin and Huxley

also quantitatively described the process, modelling the dynamics of the wave

propagation using a set of differential equations which accounted for voltage-

dependent sodium, potassium, and leak currents [100]. Neurons and cardiac cells

share many properties. However, there are differences in the kinetic properties

of the action potential (for example, the duration of the action potential is far

longer in cardiac cells than in neurons), and there are also differences in the

propagation properties of the wave of excitation and network structure (neurons

have axons that are connected by synapses; in contrast, cardiac tissue is composed

of intercalated cardiomyocytes arranged in brick-like geometries). Noble used

Hodgkin and Huxley’s work as a basis to develop an ionic model of the cardiac

action potential observed in Purkinje fibers [153].

Since then, there has been a wellspring of research devoted towards the

development of cardiac models of the action potential based on ionic currents.

These models have exponentially increased in complexity—some models have

upwards of 60 dynamic variables [107]—as additional ion-channel-mediated

currents and features such as intracellular calcium handling are included. Models

have been developed for a number of species; for example, there are models of the

action potential for mouse [20], rat [158], rabbit [140], canine [37], guinea pig [137],
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and human [196, 37]. Ionic models based on currents from the sinoatrial node and

the atria have also been proposed [67]. Analyzing these ever-increasingly complex

models is difficult, which makes it tricky to gain mechanistic insight into the

dynamics. Consequently, the relevance of these models in the context of improving

our understanding of transitions in the normal cardiac rhythm remain to be seen.

1.3.1 Excitable media

Cardiac cells are connected together in a brick-like network through which

the action potential propagates, giving rise to the wave of excitation that entrains

the dynamics of the heart. Given these properties, the heart is a representative

example of excitable media.

In response to small-amplitude perturbations, the dynamics of excitable

systems rapidly return to the system’s stable steady-state value. In response to

high-amplitude perturbations—sufficiently strong to carry the system across a

threshold—a nonlinear all-or-nothing response takes place, where the return to

the system’s steady-state value takes place on a longer time scale. Following the

all-or-nothing response, excitable systems are refractory to additional stimulation

until the system has recovered for a given time window. An excitable medium

is a spatially-extended system that is composed of local units that are excitable

[198]. The interaction of these local units via a diffusive mechanism can give

rise to traveling waves of excitation [198]. Examples abound of excitable media

in biological and chemical systems: forest fires [11], neurons [100], spreading

waves of depression in the cerebral cortex [121], chemical reactions such as the

Belousov-Zhabotinsky reaction [150], and cAMP signalling in slime mould [130].
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Again, the heart is an example of an excitable medium: (1) cardiac cells

generate action potentials, all-or-nothing responses to stimuli; (2) cardiac cells

are refractory during and following the generation of an action potential; and (3)

cardiac cells propagate and sustain wavefronts. Consequently, generic models of

excitable media—often much simpler than Hodgkin-Huxley-style ionic models—can

be used examine the dynamics of the heart. Below, I will discuss the properties of

a generic model that has been used extensively to simulate the heart’s dynamics.

Following the development of the Hodkgin-Huxley model, FitzHugh [73] and

Nagumo [151] sought to reduce the complexity of the Hodgkin-Huxley equations,

while extracting the central mathematical features of wave propagation in the

squid giant axon: excitability, propagation, and refractoriness. Since then, this

model—termed the FitzHugh-Nagumo model—has been used to study myriad

dynamical features of the heart, including the motion of spiral waves through

cardiac tissue [213], the interaction of multiple spiral waves [62], the coexistence of

spiral waves with alternative stable periods [212], unidirectional pulses of activity

around a ring of cardiac tissue [155, 85], the interaction of multiple pacemakers

[21], and the interaction of spiral waves and pacemakers [182]. (This list of

references represents but a few examples of how the FitzHugh-Nagumo model has

been used to model cardiac dynamics.) Because I use the FitzHugh-Nagumo model

to examine the initiation of spiral waves in chapter 4 of the thesis, I will expand on

some of the model’s basic properties. The FitzHugh-Nagumo model simulating the
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generation of action potentials in a single cell is given as follows:

dv

dt
=

1

ε
(v − v3

3
− w) + Ip,

dw

dt
= ε(v + β − γw)

(1.1)

where v represents the activation variable—simulating the transmembrane voltage

in cardiac cells—w represents the tissue’s recovery processes, and ε, β, γ, and

Ip are positive parameters. Because the value of ε is small and positive, changes

in v take place on a faster time scale than changes in w. Given the appropriate

parameter values, there exists a unique fixed point, which can be determined by

computing the intersection of the v and w nullclines. (The v nullcline is the set

of points for which dv/dt = 0, and the w nullcline is the set of points for which

dw/dt = 0.) Plotting the nullclines in the phase plane, w as a function of v, shows

that the fixed point is where the cubic v nullcline intersects with the linear w

nullcline, Fig. 1–1B. For Ip = 0, the fixed point is stable and small perturbations

rapidly return to the fixed point. However, a sufficiently strong perturbation

in voltage (that is, an increase in v) across threshold will lead to a solution

in the phase plane as shown in Fig. 1–1B. (Panel A in Fig. 1–1 represents the

corresponding v time series following the perturbation.) Furthermore, increasing

the value of Ip can induce pacemaker activity, whereby the stable fixed point

destabilizes through a Hopf bifurcation, leading to the generation of stable

oscillations.

In order to simulate wavefront propagation in a two-dimensional sheet of

cardiac tissue, a diffusion term is added to the voltage (v) variable, which gives rise

11



to a set of reaction-diffusion partial differential equations:

∂v

∂t
=

1

ε
(v − v3

3
− w) + Ip +D(

∂2v

∂x2
+
∂2v

∂y2
)

∂w

∂t
= ε(v + β − γw)

(1.2)

where D represents the diffusion coefficient of the system. The local cellular

dynamics (the reaction terms) related to the generation of the action potential

remain the same as in Eq. 1.1, and the intercellular connections are modelled

by assuming that voltage spreads via a diffusion process in both the x and y

directions. The details associated with numerically computing these equations and

some additional features of the model are expanded upon in chapter 4.

Cellular automaton models have also been used to model the dynamics of

wavefront propagation in excitable media. A cellular automaton is represented as

a grid of cells where each cell has a state that depends on a set of rules based on

the states of the surrounding cells. These models are discrete in the sense that at

a given time point, each grid point is either active, refractory, or resting. Based on

these rules, these systems can model the general properties of excitable media such

as excitability and refractoriness. Activity consistent with spiral waves have been

observed in cellular automaton models [148]. Wavefront curvature effects have also

been introduced into cellular automaton models to capture more of the known

properties of wavefront propagation through cardiac tissue [81]. Furthermore,

cellular automaton models have been used to study the propagation of wavefronts

and the initiation of spiral waves in heterogeneous cardiac tissue [22, 24].
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1.4 Cardiac arrhythmias

In general, there are three central mechanisms associated with the onset of

cardiac arrhythmias: automaticity, triggered activity, and reentry [204]. Abnormal

automaticity represents a change in the pacemaking dynamics of the heart,

including a change in the rate of the dominant pacemaker (the sinoatrial node)

or the emergence of a secondary, ectopic pacemaker [7]. Further, abnormal

depolarizations that take place during or following the action potential associated

with normal sinus rhythm represents triggered activity, which can precipitate

tachyarrhythmias [7].

Reentrant arrhythmias represent a class of abnormal cardiac rhythms for

which the dynamics of the heart are not governed by the intrinsic rhythm gen-

erated by the heart’s pacemaker but rather by a circulating pulse that reenters

the same localized tissue region. In order for the reentrant rhythm to entrain the

normal rhythm of the heart, the time it takes for the reentrant rhythm to complete

one loop of the circuit must be less than the intrinsic period of the heart. In gen-

eral, reentrant arrhythmias can be split into two classes: anatomic and functional

reentry [204].

1.4.1 Anatomic reentry

Anatomic reentry represents the unidirectional propagation of a wavefront

around an inexcitable region in the heart. A number of inexcitable regions exist in

the heart, including the tricuspid valve linking the right atrium and right ventricle,

and the four pulmonary veins that deliver oxygenated blood into the left atrium.

Inexcitable obstacles can also be generated pathologically. A block in the coronary
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blood supply—the circulation system that delivers oxygenated blood to cardiac

cells—can lead to ischemia, the reduction of oxygenated blood to regions in the

heart, and, consequently, the generation of scar tissue. The scar tissue, termed a

myocardial infarction, represents an inexcitable region of tissue, and can act as

a substrate for the generation of re-entrant arrhythmias. Myocardial infarctions

greatly increase the risk of sudden cardiac death [165].

Ablation therapy represents a surgery that aims to reduce the incidences

of reentrant activity underlying a number of arrhythmias, including atrial fibril-

lation [29], atrial flutter [29], and ventricular tachycardias. The surgery targets

inexcitable obstacles, and, in patients with myocardial infarctions, it targets the

regions of scar [109]. Understanding the dynamics and the dynamic mechanisms

associated with obstacle-induced rhythms represents an important goal from a

basic science and clinical perspective.

The dynamics of anatomic reentry have been modelled using a circulating

pulse around a one-dimensional ring of cardiac tissue. G.R. Mines first demon-

strated that a ring of cardiac tissue could sustain a circulating pulse of excitation

[147]. The dynamics of a circulating pulse around a one-dimensional ring of car-

diac tissue were examined more carefully by Frame and Simson using tricuspid

rings of canine hearts [75]. They found that oscillations in the action potential du-

ration and conduction time preceded the termination of the reentry. To model the

dynamics of this process, Courtemanche et al. examined the dynamics of a uni-

directional pulse propagating around a one-dimensional ring, and found that the

dynamics destabilize at a critical ring length [44, 45]. In particular, once the length
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of the ring is critically small, the wavefront runs into its own (partially refractory)

wave back, which causes the wavefront to slow down, and, consequently, leads

to the onset of the instability. The effects of single and multiple external stimuli

on a unidirectionally propagating wavefront in one spatial dimension have also

been examined experimentally [93] and theoretically using both partial differential

equations and discrete systems [85, 155, 106].

The circulating pulse around the ring simulates macroscopic reentry within

the heart, which underlies dangerous tachyarrhythmias. Consequently, methods

have been developed to terminate the circulation of the pulse. From a clinical

perspective, rapid pacing can terminate anatomic reentry, a method called

antitachycardia pacing [193]. Implantable cardioverter defribillators often use

antitachycardia-pacing protocols to terminate reentrant arrhythmias detected in

patients’ hearts [193]. The mechanisms underlying how these pacing protocols

terminate reentry are less clear. By stimulating directly on the reentrant circuit,

there exist a range of phases, stimulation frequencies, and number of stimuli for

which termination of the reentrant circuit takes place [155]. Sinha et al. examined

termination of anatomic reentry using stimulation from a site located a specific

distance from the circuit [186], discovering that regions of slow conduction are

critical for the termination of reentry. A considerable amount of work remains on

understanding the details of antitachycardia pacing protocols, and optimizing these

protocols to improve success rates.

A coordinated, high-voltage electric shock across the whole heart (‘cardiover-

sion’) represents another mechanism of terminating reentrant activity [104]. The
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high-energy shock can be painful and potentially damaging to the heart [203].

Recent studies have sought to develop new protocols with multiple low-energy

shocks [71, 138]. To better understand the mechanism of these new low-energy

protocols, modelling studies have used multiple one-dimensional rings to simulate

multiple vortices of activity that drive the abnormal dynamics [156].

1.4.2 Propagation block

The above studies sought to understand the dynamics and termination prop-

erties of a circulating pulse propagating around an inexcitable region. However,

what are the mechanisms underlying the initiation of this process? Unidirectional

block, where a wavefront can propagate in one direction through a localized re-

gion of the tissue but fails to propagate through the same tissue in the opposite

direction, represents the central mechanism underlying reentry (both anatomic and

functional). Unidirectional block arises as a consequence of spatial inhomogene-

ity, including differences in the refractory period in a local region of tissue [4] or

anatomic nonuniformities [28].

Propagation block can be split into two classes: geometric block and func-

tional block [114]. Geometric block represents a condition within the tissue for

which propagation through a region cannot take place. Functional block, in

contrast, takes place due to the dynamic properties of the medium, whereby prop-

agation takes place when the tissue has had enough time to recover, but does not

take place when the tissue has not had enough time to recover.

Geometric block can take place as a consequence of cellular uncoupling or the

introduction of non-conducting heterogeneities into the media [12, 24, 22]. Abrupt
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changes in the geometry of the conducting pathway can also induce geometric

block. In particular, wavefronts are more susceptible to propagation failure if

the conduction pathway suddenly expands in width [28, 23, 64]. A source-sink

mismatch—where the amount of tissue that is currently excited by the wavefront

(the source) is less than the amount of tissue the wavefront is invading (the

sink)—underlies the increased likelihood of propagation failure as a consequence of

channel width expansion [65].

Single or multiple stimuli elicited at or near the refractory period of the

tissue represents the central mechanism underlying functional block [114]. The

heart is composed of tissue with heterogeneous responses to stimuli, including the

duration of the action potential, the refractory period, and the local conduction

velocity [4]. These differences in the properties of the tissue become clinically

relevant as the coupling interval of the stimuli—the time between beats—nears the

refractory period, where propagation block can take place locally, leading to the

onset of reentry. Structural changes to the heart (following a myocardial infarction,

for example) can introduce larger gradients in these properties [129], which can

increase the likelihood of functional block. Experimental and computational

modelling studies have explored how inexcitable barriers and regions of ionic

heterogeneity control these spatial gradients of action potential duration and

refractory period, and, consequently, influence the likelihood of functional block

[129, 172, 43, 38, 125].

Wavefront curvature represents an additional property that influences the

likelihood of functional block. A source-sink mismatch underlies how wavefront
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curvature can affect the likelihood of functional block. A convex-shaped wavefront

has more sink than source, and, hence, convex wavefronts are more likely to give

rise to functional block [65]. Again, structural changes to the tissue structure and

rapid expansions of the cardiac conduction pathway induce changes in wavefront

curvature, which can also lead to functional block [65, 119].

In chapter 4, we found that changing the position of an inexcitable obstacle

in a two-dimensional sheet of cardiac tissue induces changes in the wavefront

curvature, which predisposes particular regions of the substrate to functional block

and the onset of reentry.

1.4.3 Functional reentry

Anatomic reentry represents a wavefront macroscopically propagating around

an inexcitable region in the heart. However, reentry can also take place in a

sheet of cardiac tissue in the absence of an inexcitable obstacle, a process termed

functional reentry. Spiral waves, self-sustaining vortices of electrical activity,

represent the pattern thought to underlie functional reentry. Spiral waves have

been observed in virtually all types of excitable media, including chemical systems

such as the Belousov-Zhabotinsky reaction [210], slime mould [130], and neural

systems [121]. Spiral waves have three fundamental properties: period, the rate of

rotation; tip trajectory, the macroscopic motion of the spiral wave throughout the

media; and chirality, which represents whether the spiral wave rotates clockwise or

counterclockwise.

Theory first predicted the existence of spiral waves in cardiac systems. In

the 1960s, Krinksy proposed that a wavefront propagating through cardiac tissue
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interacting with an inexcitable barrier could give rise to a spiral wave, which he

called a reverberator [124]. Wiener and Rosenbleuth also predicted the existence

of spiral waves propagating about an obstacle [208]. These early studies linked

spiral waves with dangerous cardiac arrhythmias. Early experimental studies of the

dynamics focused on the Belousov-Zhabotinsky reaction, a chemical reaction that

gives rise to spiral waves [210]. In cardiac systems, spiral waves were first observed

experimentally in the 1990s [52, 163, 214].

The spiral tip is the point that connects the wavefront, the leading edge of

the spiral wave, with the waveback, the end of the refractory period. Exploring

the motion of the spiral tip, the tip trajectory, has proved an effective method

of exploring the dynamics of how spiral waves propagate through tissue. In

particular, the tip trajectory has provided insight into two processes: meander and

drift.

Winfree tackled spiral wave meander using the FitzHugh-Nagumo equations

in two spatial dimensions [213]. He observed a spectrum of spiral wave behaviour

depending on the excitability properties of the tissue, including circular, linear,

and outwardly- and inwardly-rotating ‘flower petal’ tip trajectories [213]. These tip

trajectories were also observed in higher-dimensional cardiac ionic models [13], and

many of these patterns have been observed experimentally [116].

The tip can also be a useful tool to understand how spiral waves respond to

external perturbations that induce spiral wave drift, the directed motion of a spiral

wave. Drift can be induced through a number of mechanisms, including resonant

drift, where periodic stimulation at precise phases of the spiral wave oscillation can
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induce motion [16]; inhomogeneity-induced drift [164]; anisotropy-induced drift [1];

and boundary-induced drift [61].

As stated above, chirality represents whether the spiral wave rotates in a

clockwise or counterclockwise direction. Chirality controls the direction of electric-

field-induced spiral wave drift in the Belousov-Zhabotinsky reaction [190] and in

corresponding numerical simulations [35, 133]. Furthermore, chirality is thought to

play a role in the dynamics of atrial flutter, a tachyarrhythmia found in the right

atrium, where the direction of circulation waves is typically classified as clockwise

or counterclockwise [176]. However, many features of spiral wave chirality remain

unexplored. In chapter 4, we find that the position of an inexcitable obstacle with

respect to a side pacemaker region determines spiral wave chirality. In the chapter

we also explore how spiral wave chirality and the frequency of the side pacemaker

are related.

Scroll waves are self-sustaining vortices that propagate in three spatial

dimensions, and represent three-dimensional analogs of spiral waves [115]. The

scroll filament is composed of the set of points for which the three-dimensional

wavefront meets the waveback—tracking the motion of the filament represents a

method to examine scroll wave dynamics [6]. Understanding the dynamics of scroll

waves is of considerable importance due to the three-dimensional nature of the

heart.

Spiral and scroll waves (‘rotors’) underlie a number of cardiac arrhythmias,

including atrial fibrillation, ventricular tachycardia, and ventricular fibrillation.

Atrial fibrillation, an arrhythmia characterized by disorganized electrical activity in
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the atria, remains a major cause of mortality and morbidity [29]. Elegant animal

models first proposed that rotors could sustain atrial fibrillation [142]. However,

recording techniques could not confirm whether these patterns underlied atrial

fibrillation in humans. The CONFIRM study first provided evidence that rotors

sustain atrial fibrillation in humans [152]. In this study, Narayan et al. identified

vortices in patients with atrial fibrillation, and then targeted these rotors for

ablation, significantly reducing the recurrence of atrial fibrillation in those patients

[152].

Spiral and scroll waves have also been linked to polymorphic and monomor-

phic ventricular tachycardia [87]. Polymorphic ventricular tachycardia is diagnosed

when there is an elevated heart rate and there are beat-to-beat changes in the

morphology of the ECG. A rotor undergoing drift through the heart is thought to

underlie polymorphic ventricular tachycardia [87, 51]. On the other hand, a rotor

that has pinned to an inexcitable obstacle, such as in anatomic reentry, is thought

to underlie monomorphic ventricular tachycardia (where the shape of the ECG is

constant and the heart rate is elevated). Ikeda et al. proposed that the mechanism

underlying the transition from polymorphic to monomorphic ventricular tachycar-

dia is potentially related to the pinning of a drifting spiral wave to an inexcitable

obstacle [105]. In patients with a myocardial infarction, the unidirectional propaga-

tion of a wavefront through an isthmus of healthy tissue located between regions of

scar represents an additional mechanism of monomorphic ventricular tachycardia

[192, 191, 109]. Clinicians performing ablation therapy to terminate the onset of

these monomorphic tachycardias target these isthmuses of tissue [192, 191, 109].
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Again, unidirectional block represents the central mechanism that gives rise

to spiral waves. The S1-S2 protocol represents a well-established protocol to

initiate spiral waves in the heart [211, 113, 36, 76]. Consider that a plane wave is

propagating through a sheet of cardiac tissue from the left edge towards the right

edge (the S1 wavefront). A pulse, termed S2, is elicited from a point source in

the wake of the S1 wavefront. If the pulse is given directly after the S1 wavefront

propagates through the area of stimulation, then the S2 pulse cannot be generated

because the tissue is in refractory. In contrast, if the S2 pulse is given a long

time after the S1 wavefront has passed, then the S2 wavefront propagates in all

directions from the point source. However, when the S2 wavefront is elicited during

the vulnerable window, the S2 wavefront is blocked in the rightwards direction,

but can propagate in the leftwards direction because that tissue has had more time

to recover, which leads to the initiation of a pair of counterrotating spiral waves.

The likelihood of reentry also depends on the intensity of the S2 pulse—increased

intensity magnitude prolongs the vulnerable window for which a S2 stimulus will

induce reentry [211, 113].

Rapid pacing through an inexcitable obstacle can also lead to the detachment

of wavefronts from the obstacle leading to the onset of spiral wave activity.

Consider a two-dimensional sheet of cardiac tissue with a side pacemaker region

and an inexcitable obstacle. At low side pacing frequencies, the wavefront collides

with the obstacle, splits into two wavelets, and these wavelets reconnect behind

the obstacle. As the side pacing frequency increases, the wavelets—propagating

on either side of the obstacle—destabilize, and detach from the obstacle, which
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leads to reentry and the onset of spiral wave activity. This process has been

examined in both simplified models of excitation and ionic models of cardiac

tissue [159, 215, 17, 141]. Rapid pacing leads to spiral wave initiation through

a source-sink mismatch introduced by the inexcitable obstacle, which leads to

wavefront-obstacle separation. Starobin and Starmer carefully examined the

source-sink mismatch, deriving requirements for wavefront-obstacle separation

[188, 189]. Coronary blocks can give rise to ischemia in localized regions of the

heart, which can act as triggers for reentry and complex rhythms. Pacing through

these slow-conducting regions influences propagation, conduction block, and the

onset of reentry [14, 8].

The propagation of wavefronts through heterogeneous tissue, with randomly-

distributed non-conducting cells, represents an additional mechanism of spiral

wave initiation. Reducing cell-to-cell coupling can lead to reduced conduction

velocity, an increased likelihood of propagation block, and greater susceptibility to

reentry [24, 25, 181]. As the coupling between cells is reduced, Bub et al. showed

that three types of behaviour are observed as a function of the density of non-

conducting cells: first, plane waves propagate; second, plane waves break up into

spiral waves; and third, plane waves are blocked [24].

In general, sudden cardiac death is caused by ventricular fibrillation, where

the electrical activity of the heart is disorganized, and the ventricles cannot give

rise to coordinated contractions. Spiral and scroll wave breakup represents a

mechanism thought to underlie the transition from tachycardia to fibrillation.

Breakup is characterized by the transition from a single rotor to multiple wavelets.
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Fenton et al. described a number of mechanisms that lead to spiral and scroll wave

breakup, which include steep action potential duration restitution curves in the

tissue, bistability, and super-normal conduction [68].

In chapter 4, we explore the onset of spiral waves using simplified experi-

mental and theoretical models. In particular, I examine how the position of an

inexcitable region in combination with pacemaker frequency determine spiral wave

chirality. Many studies have examined precursors preceding the onset of spiral

wave initiation. Alternating rhythms have been shown to precede the onset of

spiral wave activity [30, 160]. In particular, alternating rhythms increase the likeli-

hood of propagation block, which can lead to the initiation of reentry—I examine

the details associated with the onset of alternating rhythms in the section below.

1.4.4 Alternans

Alternating rhythms, also termed alternans, represent beat-to-beat variations

in the heart’s dynamics. First reported over 100 years ago [80, 147], alternating

rhythms are one of several different precursors that can precede the onset of

dangerous reentrant arrhythmias. Recent clinical studies also suggest a possible

link between alternating rhythms and the likelihood of sudden cardiac death

[187, 171].

Beat-to-beat alternations in the response of the action potential underlie

alternating rhythms. Periodic stimulation can induce alternating rhythms in

cardiac systems. As the pacing frequency nears the refractory period of the tissue,

a transition from a 1:1 rhythm, where for every stimulus there is a single, stable

response, to a 2:2 rhythm, where for every two stimuli, there are two different
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types of responses (i.e. an alternation between long and short action potential

durations), takes place. Nolasco and Dahlen studied alternating rhythms induced

by periodic stimulation of ventricular cardiac tissue from frogs using a graphical

method, where they plotted curves that displayed the duration of the action

potential as a function of the diastolic interval, the amount of time the tissue had

to recover [154]. Using these curves—termed action potential duration restitution

curves—they found that the slope of the curve could predict the onset of the

alternans.

Guevara et al. rediscovered these properties nearly 20 years later, analyzing

the features of the slope prediction using experimental data from the periodic

stimulation of embryonic chick cardiac cells, and the stability of fixed points in

one-dimensional maps [91]. To analyze the stability, standard techniques can be

used, which I describe briefly.

A one-dimensional map represents a dynamical system for which the dynamics

of the system are controlled simply by the functional relationship relating the value

at the following iteration with the value at the current iteration. The stability

analysis of fixed points in one-dimensional maps represents a method of evaluating

the dynamics of these systems. For a one-dimensional map, xn+1 = g(xn), there

exists a fixed point, x∗, where g(xn) intersects with the function xn+1 = xn. In

particular, a fixed point represents a point from the function for which the value at

the following iteration is the same as the value at the current iteration.

A fixed point can be stable or unstable. In the neighbourhood of a stable

fixed point, subsequent iterations will approach the value of the fixed point;
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near an unstable fixed point, subsequent iterations will be repelled by the fixed

point. To analyze the stability of fixed points in nonlinear one-dimensional maps,

linearization techniques are used to evaluate the dynamics.

For nonlinear one-dimensional maps, the curve in the neighbourhood of

the fixed point can be approximated as a straight line. The slope through the

fixed point determines the dynamics of fixed points in linear one-dimensional

maps. This analysis extends to the stability of fixed points in nonlinear systems,

where we designate the slope at the fixed point as α = g′(x∗). If |α| > 1, the

fixed point is unstable; in contrast, if |α| < 1, the fixed point is stable, and, for

initial conditions in the neighbourhood of the fixed point, subsequent iterates will

approach x∗.

Changing the value of a control parameter can change the value of α through

±1. For one-dimensional maps, the system will undergo a saddle-node bifurcation

when α = 1, where the fixed point disappears. Or, in contrast, the system goes

through a period-doubling bifurcation when α = −1, where a transition from a

stable fixed point to a period-2 cycle takes place. More complex bifurcations, such

as torus bifurcations, can take place for higher-dimensional maps.

To understand how one-dimensional maps can be used to understand the

onset of alternating rhythms in the heart, I first assume that the duration of

the next action potential is a function of the amount of time the cell has had to

recover [91]:

An+1 = f(tnr ) (1.3)
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I also assume that the pacing period (the inverse of the pacing frequency) is the

sum of the current action potential duration and the current recovery time:

Tp = An + tnr (1.4)

We can determine the functional relationship, f(tnr ), by changing the pacing

frequency, thereby changing the amount of time the cell has to recover. These

restitution relationships can typically be fitted using an exponential function,

where at long tr, the action potential duration plateaus, and as tr is lowered, the

action potential duration curve decreases. By rearranging Eq. 1.4 and inserting

this relationship into Eq. 1.3, we derive a one-dimensional map as follows:

An+1 = f(Tp − An) (1.5)

where there, in general, exists a unique fixed point. For Eq. 1.5, the slope at the

fixed point is governed by Tp, the pacing period. As Tp decreases, the slope at the

fixed point approaches and goes through −1, which gives rise to a period-doubling

bifurcation, establishing a stable period-2 limit cycle that oscillates between a

longer action potential duration and a shorter action potential duration.

The mechanistic details, however, associated with how alternating rhythms

influence the dynamics of the 3-dimensional heart are less clear. T-wave alternans

represents a cardiac arrhythmia characterized by a beat-to-beat alternation in the

morphology of the ECG, which has been linked to the genesis of fibrillation [160].

Improved signal processing techniques can now detect microvolt alternations in

the T-wave of the ECG, which represents a possible indicator of the risk of sudden
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cardiac death [202, 201]. However, the effectiveness of T-wave alternans as an

indicator remains unclear as there have been studies that have shown that it does

not predict increased likelihood of sudden cardiac death [40].

A beat-to-beat alternation in the ECG could arise through a couple of mech-

anisms. First, an alternation in the duration of the action potential duration—

consistent with dynamic mechanism given above by Guevara et al. [91]—could give

rise to the T-wave alternans [160]. Second, localized conduction block on every

other beat could decrease the amount of tissue contracting, which would also give

rise to T-wave alternans. Gaskell first reported this class of alternans [80], and the

dynamics have been described numerically [8] and experimentally [69].

Periodic stimulation of a sheet of cardiac tissue can lead to the emergence of

different spatial alternating patterns: concordant or discordant alternans. Spatially

concordant alternans take place when the entire tissue is alternating between

long to short beats in phase. In contrast, spatially discordant alternans take

place when localized tissue regions are alternating between long and short beats,

and other regions are alternating between short and long beats. Both spatially

concordant and discordant alternans can be initiated in homogeneous sheets of

tissue [160, 206]. Traditionally, studies showed that a transition from normal

sinus rhythm to concordant alternans to discordant alternans would take place

as a function of increasing pacing frequency. However, Gizzi et al. showed that

more complicated transitions between concordant and discordant alternans can

emerge as a function of pacing period [82]. Recent studies have also explored how
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inexcitable barriers can increase the susceptibility of cardiac tissue to the onset of

alternans [161, 125].

If alternating rhythms represent a precursor to the onset of fibrillatory

activity, what is the mechanism through which this takes place? There is a delicate

interplay between the duration of the action potential, the refractory period,

and the conduction velocity of propagating wavefronts in the heart. However, in

general, wavefronts with short action potential durations are more susceptible to

propagation failure. Pastore et al. proposed a mechanism, using optical mapping

data of rapidly paced guinea pig heart, whereby the wavefront with a short action

potential duration runs into the refractory tail of the wavefront with the longer

action potential duration, which gives rise to local unidirectional block, and, hence,

the initiation of reentrant activity [160].

A steep action potential duration restitution curve, associated with the onset

of alternans, underlies one of the mechanisms of spiral wave breakup leading to

the onset of fibrillatory behaviour [111, 112, 68]. Spiral waves rapidly pace the

tissue, which can give rise to alternans in the duration of the action potential. If

the oscillations in the action potential duration are of sufficiently large amplitude,

the wavefront associated with the short action potential duration can run into the

refractory tail of the longer wavefront, giving rise to local conduction block, which

can lead to the initiation of reentrant activity. As described above, alternans are

associated with steep action potential duration restitution curves. Thus, studies

have sought to flatten the restitution curve of the tissue using pharmacological

means, reducing the susceptibility of the heart to fibrillatory activity [168, 78].
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Alternating rhythms represent precursors to reentrant cardiac rhythms. In

chapter 3, we predict the onset of alternating rhythms through period-doubling

bifurcations using one-dimensional map theory. In chapter 4, we use action

potential duration restitution curves computed throughout the substrate to make

predictions about the pacing frequency at which specific regions of the substrate

will destabilize, giving rise to spiral wave initiation.

1.5 Predicting the onset of abnormal cardiac rhythms

Biological, physical, and social systems often display qualitative changes in

dynamics. Developing early warning signals to predict the onset of transitions in

complex systems remains a challenging problem, and is relevant in diverse contexts

[180], including climate change [50, 131], ecology [143, 31], population dynamics

[47, 46, 48], physiology [145, 123], and finance [144].

Instabilities in the dynamics of cardiac systems can represent precursors

for the onset of potentially dangerous cardiac rhythms. Above, I discuss how

alternating rhythms, which can arise as a consequence of a period-doubling

bifurcation, can precede the onset of abnormal reentrant arrhythmias [160].

Therefore, the development of early warning signals that herald the onset of these

instabilities represents a potentially useful therapeutic goal for the prevention of

cardiac arrhythmias.

Transitions in the dynamics of complex systems can take place through a

number of mechanisms. These transitions can be linked to bifurcations, whereby

a change in the value of a model parameter leads to qualitative differences in

the dynamics of the system. For a number of bifurcations, as a parameter value
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approaches a bifurcation point, there is a slower return to equilibrium following

perturbations, a property called slowing down, which can be targeted to develop

early warning signals of these transitions [180, 126, 31, 47, 50, 49]. Slowing down

takes place in the neighbourhood of period-doubling bifurcations [209, 94], a

property that I use to analyze the period-doubling bifurcations in chapter 3.

A number of studies have focused on developing early warning signals of

saddle-node bifurcations, where, at a critical parameter value, there is a transition

in the value of the system’s steady-state value [180, 49]. These transitions can be

characterized by tipping points, which represent the threshold that the system

crosses leading to the establishment of a new steady-state value [83]. In the 1970s,

May used the saddle-node bifurcation to simulate collapses in models of vegetation

biomass as a function of the number of herbivores [143]. Models developed by

researchers working on catastrophe theory also simulated rapid and abrupt changes

in steady states using saddle-node bifurcations [218].

Contemporary work on abrupt transitions as a consequence of saddle-node

bifurcations (mostly in continuous-time contexts) have focused on two early

warning signals: an amplification of the noise and an increase in the system’s

memory. The eigenvalue associated with the stable steady-state governs how

rapidly equilibrium is reestablished following perturbations. As the system nears

the saddle-node bifurcation, the magnitude of the real part of the eigenvalue

approaches zero, reducing the system’s rate of recovery back to equilibrium.

Consequently, both the noise and memory increase as the system nears the

transition. To quantify changes in the system’s memory, these studies report an
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increase in the autocorrelation in the neighbourhood of the transition [180, 126,

31, 47, 50, 49]. Another phenomenon that can predict the oncoming saddle-node

bifurcation is flickering, where the system flips back and forth between two stable

steady states near a critical parameter value [205].

These early warning signals can predict transitions in systems that undergo

saddle-node bifurcations as a consequence of a slowly-varying parameter. However,

transitions in physical, chemical, and biological systems take place through a

number of bifurcations with varying properties near the onset of these bifurcations.

Predicting the onset of noise-induced transitions is difficult because the underlying

properties of the system have not changed, but rather a chance event (typically a

large excursion from the steady-state value) leads to a transition in the dynamics

[131, 56]. Additionally, transitions in dynamics take place through a number of

bifurcations. Noisy precursors have been reported for other bifurcations, including

pitchfork, hopf, and period-doubling bifurcations, in terms of changes in the power

spectra in the neighbourhood of the transitions [209].

In chapter 3, potassium channel blockade leads to the onset of alternating

rhythms through period-doubling bifurcations in aggregates of spontaneously

beating cardiac cells. The transition takes place over a long time scale—on the

order of tens of minutes. I analyze these bifurcations and develop a quantitative

measure that can predict the onset of the period-doubling bifurcations.

Alternating rhythms can evolve into more complicated rhythms. In fact,

sequences of period-doubling bifurcations are associated with the onset of chaotic

dynamics.
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1.6 Period-doubling route to chaos

Period-doubling bifurcations can underlie the transition from a normal cardiac

rhythm to an alternating rhythm as the value of a control parameter goes through

a critical point [91]. A sequence of period-doubling bifurcations can also lead

to the generation of chaotic dynamics. Chaotic dynamics have been reported

in simplified cardiac systems [88, 79]. Cardiac fibrillation was perhaps thought

to be driven by spatiotemporal chaos, but it does not appear that this dynamic

mechanism underlies fibrillatory behaviour in the heart.

Chaotic dynamics are aperiodic, sensitive to initial conditions, bounded, and

deterministic. A question arises, however: if all biological systems contain noise,

then how can one suggest that a biological system (such as the heart) gives rise to

chaotic dynamics. Glass proposed that chaotic dynamics observed in experimental

systems could be considered ‘chaotic’ if the dynamics of the experimental system

follow bifurcations that are consistent with a transition to chaos observed in

theoretical models [84].

In chapter 2, we find that potassium channel blockade can give rise to highly

irregular rhythms in spontaneously beating aggregates of cardiac cells. Analyzing

these rhythms using low-dimensional maps demonstrates that these rhythms are,

in fact, chaotic and take place through a sequence of period-doubling bifurcations.
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Figure 1–1: Sample solution and phase plane for the FitzHugh-Nagumo
model (A) Representative voltage trace in response to a perturbation. (B)
FitzHugh-Nagumo model phase plane. The v-nullcline is cubic (in blue) and the
w-nullcline is linear (in red). The fixed point of the system is where the nullclines
intersect. The black line represents the trajectory of the system in response to a
perturbation.
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CHAPTER 2
Chaotic cardiac dynamics induced by potassium channel block

2.1 Foreword

Nonlinear systems often show sequences of changes in dynamics as key

parameters continuously change. In one type of transition, termed a period-

doubling bifurcation, the period of an oscillator doubles as a parameter passes

through a critical value. Sequences of period-doubling bifurcations can lead to

the onset of chaotic dynamics. Chaotic rhythms are aperiodic, deterministic,

sensitive to initial conditions, and bounded. Examples of chaotic dynamics have

been observed in a number of biological [88, 3], chemical [185], and physical [135]

systems.

This thesis focuses on instabilities of the cardiac rhythm—both because of

its fundamental importance for human health as well as the clear connections to

nonlinear dynamics. Attention has also focused on the effects of mutations and

drugs on the hERG potassium channel that mediates the delayed potassium IKr

current [174]. Instabilities in cardiac activity associated with the lengthening of

action potential duration as a consequence of mutations or drugs represents an

additional important cause of cardiac arrhythmia [169, 173, 9, 72, 175, 132, 179,

178]. Experimental modification of the IKr is carried out by treatment with E4031,

a drug that specifically blocks the hERG potassium channel [184, 183, 174, 42].

Since ion flow through potassium channels leads to repolarization, blocking IKr
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leads to a prolongation of the action potential duration. In related work, a variety

of complex rhythms have been observed from potassium channel blockade in

experimental and theoretical studies of neural systems [102, 33, 63, 34].

In early unpublished experimental studies carried out in our laboratory, we

observed complicated sequences of interbeat intervals (IBIs) following treatment

of E4031 to spontaneously beating aggregates of embryonic atrial heart cells,

Fig. 2–1. Subsequently, a new set of studies on the effects of E4031 on cardiac cells

was initiated [117]. To carry out recordings over a longer time window, we adopted

optical methods to record the motion of heart cell aggregates. The study reported

complex bursting rhythms, and developed a Hodgkin-Huxley-style ionic model that

was capable of generating similar dynamics to those experimentally observed [117].

Although in our earlier work we noted that chaotic dynamics could be present, we

did not give experimental or theoretical models that displayed chaos.

In this chapter, I focus on the chaotic dynamics observed in embryonic chick

aggregates following E4031 treatment. First, I present the experimental meth-

ods, and then consider two examples of chaotic rhythms from the experimental

data, analyzing the dynamics using one-dimensional maps. I also describe the

dynamics and bifurcations of the Hodgkin-Huxley-style ionic model as a function

of potassium channel blocker concentration.

2.2 Experimental methods

2.2.1 Tissue preparation

Either atrial or ventricular tissue were prepared according to the DeHaan

method [53, 127]. The intracellular recordings performed in the early 1990s were
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conducted with atrial aggregates. The optical recordings were carried out on

ventricular aggregates, including data from 93 aggregates described earlier [117]

and 11 subsequent experiments. The atria or ventricles of seven-day-old White

Leghorn chick embryo hearts were dissected and dissociated into single cells by

trypsinization. The cells were added to an Erlenmeyer flask containing a culture

medium gassed with five per cent CO2, 10 per cent O2, 85 per cent N2 (pH=7.4),

and placed on a gyratory shaker for 24-48 hours at 37◦ C. The aggregates had a

diameter of approximately 100-300 µm. In this environment, the aggregates beat

with an intrinsic frequency in the range of 700-2000 msec. The experiments were

conducted two to six hours after the aggregates were plated on the tissue culture.

The IKr channel blocker E4031 (Alomone Labs, Jerusalem) was added at

various concentrations in the range of 0.5–2.5µM.

2.2.2 Intracellular recordings

Intracellular recordings were carried out as described previously [127] on atrial

preparations. Briefly, electrical activity was recorded using microelectrodes filled

with 3 M KCl solution (typical microelectrode resistance was 40-60 MΩ). Trans-

membrane potential was recorded, using an amplifier with negative capacitance

compensation. The bathing medium was kept at virtual ground by coupling to a

current-to-voltage converter (10-100 mV/nA) through an agar-salt bridge and a

chlorided silver wire.

2.2.3 Optical imaging technique

We used an optical imaging apparatus that monitored the aggregates’ motion.

The device recorded the light-intensity variation of a specific pixel on the edge of
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an aggregate. The edge pixel data was then processed through a bandpass filter

(cutoff frequencies: 0.1Hz—6.5Hz). Using Matlab, we identified the beats and

computed the time interval between consecutive beats. The system employed

phase-contrast imaging sampled at 40 Hz and a CCD camera (RedShirtImaging,

LLC, NeuroCD-SM) at an 80× 80 pixel spatial resolution. Recordings were carried

out at 35− 37◦ C.

2.3 Results

2.3.1 Intracellular recordings

The transmembrane voltage was recorded following the application of E4031.

The complex dynamics observed following E4031 application of atrial aggregates

merely provided motivation for further study. However, since the optical recordings

reflect the motion of the aggregates and the electrical recordings reflect the

transmembrane voltage, the two sets of experiments complement each other.

Figure 2–1 displays two examples of recorded activity. Panel A shows irregular

dynamics in which there are variable IBIs. This type of variability suggests

the possibility of underlying chaotic dynamics. However, the recording was not

sufficiently long to carry out a detailed analysis. (This intracellular recording is

similar to the work that will be presented in Fig. 2–3.) Panel B from Fig. 2–1

shows a transition from a regular rhythm of doublets to a rhythm with bursts

of activity and doublets. This trace is similar to the bursting rhythms described

earlier [117].
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2.3.2 Optical recording examples

The transition times following E4031 application display a great deal of

variability, even for aggregates in the same culture dish subjected to the same

preparation procedure. Following E4031 application, the aggregates’ intrinsic

beat frequency was maintained for variable lengths of time—between 10 and 40

minutes. Following this periodic activity there were qualitative changes in the

dynamics that depended on E4031 concentration. In general, when we applied

between 0.0 to 0.9 µmol E4031 to the dish, the aggregate’s intrinsic frequency

was maintained throughout the experiment. When more than 2.5 µmol was

applied, the IBIs became increasingly shorter, settling at a stable accelerated

rate. Between 1.0 µmol and 2.0 µmol, though, complex dynamics tended to

emerge. An alternation between long and short intervals (doublets) was observed

in 71/104 aggregates. In 21/104 aggregates, there were added beat rhythms with

occasional doublets. Bursting patterns were observed in 45/104 aggregates. In

9/104 aggregates, chaotic dynamics were observed. In this paper we focus on the

dynamics that appear to be chaotic.

Figures 2–2 and 2–3 display examples of highly irregular rhythms. Panel A

of these figures give the IBIs over the course of the experiments, as well as traces

displaying typical time series of activity. Panel B of Figs. 2–2 and 2–3 show return

maps in which each IBI is plotted as a function of the preceding IBI at a few times

throughout the experiments. The data in both figures share the common feature

that the initial regular oscillations undergo bifurcations to more complex rhythms.

A striking feature of the diagrams is that the data in panel A of both Figs. 2–2
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and 2–3 resemble the common bifurcation diagrams showing the iterates of a

function as a parameter is changed. In the current case, the changing parameter

is either associated with changing concentrations of drug as a result of diffusion,

or changing physiology secondary to the presence of the drug. Independent of the

particular mechanism, the changes take place over a time scale of tens of minutes.

The return maps displayed in panels B of Figs. 2–2 and 2–3 share some

common features and also show some striking differences. For both examples,

the dynamics appear to evolve over the course of the experiment. Further, the

irregular activity shown in the time series is consistent with a one-dimensional

map with a single extremal point. However, for the data in Fig. 2–2 the extremal

point is a maximum, whereas in Fig. 2–3 it is a minimum. Data similar to that

displayed in Fig. 2–2 was found in four preparations, whereas data similar to that

displayed in Fig. 2–3 was found in five preparations. Since these one-dimensional

maps are similar to one-dimensional maps with quadratic extrema that display

chaotic dynamics, we attribute the observed complex dynamics to deterministic

chaos. For short, noisy data such as we have here, we believe that well-defined

one-dimensional return maps consistent with chaos provide a better method for

identifying chaos than other criteria such as the Lyapunov exponent [84].

We do not understand the origin of the differences between the two prepa-

rations. Although the concentrations of E4031 were somewhat different, we also

found patterns similar to those in Fig. 2–2 at 1.0 µmol and 1.5 µmol, and similar

to those in Fig. 2–3 at 2.0 µmol. However, the five preparations similar to those

shown in Fig. 2–3 were done by one investigator, whereas the four preparations
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similar to experiments shown in Fig. 2–2 were done by a second investigator about

two years following the initial experiments.

Despite these discrepancies, we believe that it is useful to develop simple

phenomenological models of the data using one-dimensional maps with adjustable

parameters, as well as ionic models.

2.3.3 Phenomenological model

The data presented in Fig. 2–2 appears similar to data that could be gener-

ated using a one-dimensional map with stochastic terms, as a parameter changes

leading to bifurcations. To develop a phenomenological model for the experi-

ments we used an analytic function to fit the final chaotic return map, and then

translated the fitted map to generate bifurcations.

For the first example displayed in Fig. 2–2, we used the following equation:

xn+1 = α(xn − β)e−γ(xn−β) − δ(xn − β) + τ (2.1)

where xn represents the nth IBI, and α, β, γ, δ, and τ are all positive parameters.

We selected the function’s parameters—which are phenomenological in nature—

based on which values could most closely reproduce the experimental data. Panel

B of Fig. 2–2 displays the one-dimensional return maps—which maps the IBI

at time t with the IBI at time t + 1—of the IBIs at four particular time points

throughout the experiment. The value of parameter τ is different for each time

point; τ continuously decreases throughout the course of the experiment, giving

rise to the complex transitions.
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A sequence of period-doubling bifurcations gives rise to the experimentally

observed chaotic dynamics. A transition from period-1 to period-2 takes place

between 10 to 13 minutes following E4031 application, as the upper and the lower

branches of the IBIs split apart. The system oscillates in the period-2 experimental

parameter regime for approximately 10 to 15 minutes before another period-

doubling bifurcation occurs. Following this transition, however, the system’s

intrinsic noise covers the underlying period-4 beat pattern, and it is difficult to

delineate the branches. The onset of chaotic dynamics appears to take place at

around t=37 minutes and lasts until the end of the recording.

We fit the analytic function given by Eq. 2.1 to the experimentally generated

chaotic return map. We constructed the chaotic map with IBIs from t=37 minutes

until the end of the recording. The analytic function displayed the same sequence

of period-doubling bifurcations, providing strong evidence that the seemingly

irregular activity between t=37 minutes and the end of the record is consistent

with deterministic chaos. We decreased the parameter τ , which translated the

function vertically, to display the sequence of transitions (from period-1 to period-2

and so on). Using the listed values of parameters and within the given range of τ ,

Eq. 2.1 has two fixed points: x∗1 and x∗2. x
∗
1 is always unstable because the slope

of the function through the line xn+1 = xn is always much greater than 1. x∗2,

however, gives rise to a set of period-doubling bifurcations as τ is lowered.

For approximately τ > 0.713, x∗2 is stable, destabilizing when τ < 0.713

because the slope of the function through the line xn+1 = xn at the fixed point

goes from greater than −1 to less than −1. (Recall that the criterion for stability
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of a fixed point of a one-dimensional map is given by |dxn+1

dxn
|xn=x∗ < 1, where x∗ is

a fixed point.) Once x∗2 destabilizes, a cycle of period-2 emerges. A cycle of period-

4 emerges as τ is further reduced. Again this is consistent with the experimental

observations’ dynamical structure.

For the second chaotic example, displayed in part A of Fig. 2–3, we used the

following equation:

xn+1 = α(xn − β)eγ(xn−β) + τ (2.2)

where xn represents the IBIs, and α, β, γ, and τ are all positive parameters. Panel

B of Fig. 2–3 displays the associated one-dimensional return maps at three time

points throughout the experiment. For this example, the bifurcation parameter

β, which controls the horizontal position of the fitted return map, is continuously

decreased, horizontally translating the map. A sequence of period-doubling

bifurcations gives rise to the chaotic dynamics, which is qualitatively similar to

the experimental data. Panel A of Fig. 2–4 displays Eq. 2.1’s bifurcation structure

as a function of τ . Likewise, panel B of Fig. 2–4 represents Eq. 2.2’s bifurcation

structure as a function of β. These bifurcation diagrams display in more detail the

cascade of period-doubling bifurcations leading to chaotic dynamics.

2.3.4 Hodgkin-Huxley ionic model

We assembled a single-cell cardiac ionic model to numerically simulate the

effects of adding drug to a spontaneously beating chick cell aggregate. The model

adapts the equations given by Kowtha et al., [122] and has seven discrete ionic

currents and ten dynamic variables. Kim et al. [117] initially presented this model;

however, for this study, we used a different set of parameter values. The differences
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in the parameter values and a full explanation of the model are described in

Appendix A at the end of the thesis.

A forward Euler numerical scheme was employed with a step-size of ∆t =

0.00005 seconds. The model states that V̇ = −Itot(V )/Ci, where V is the

total membrane current, Itot is the total membrane current, and Ci is the input

capacitance. The model also assumed that Itot = INa+IKs+IKr+IK1+ICa+Ib+If ,

where INa is the inward sodium current, IKs is the slowly activating potassium

current, IKr is the rapidly activating delayed rectifier potassium current, IK1

is the inward rectifier potassium channel, ICa is the inward calcium current, Ib

is the time-independent background current, and If is the hyperpolarization-

activated pacemaker current. The specific parameters and equations are included

in Appendix A.

Figure 2–5 displays the ionic model’s numerical results. We studied the effects

of changing IKr conductance, gKr, which represents the number of potassium

channels available to mediate IKr. In an experimental context, gKr decreases as

E4031 concentration increases. The model reproduces dynamics and transitions

similar to those observed experimentally. We observe singlets (single cycle length)

for high gKr values. As gKr decreases, the action potential duration increases as

a consequence of reduced inwardly rectifying current. At a critical gKr value, a

period-doubling bifurcation takes place, giving rise to a doublet pattern. The

bifurcation takes place rapidly in gKr parameter space. Another period-doubling

bifurcation—from period-2 to period-4—takes place as gKr is further decreased.

We observe dynamics consistent with chaos at approximately gKr = 12. Reverse
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period-doubling bifurcations shift the system out of the chaotic regime, establish-

ing another stable, accelerated limit cycle at low gKr values.

The numerically computed chaotic parameter regime was studied in more

detail. We reduced a time series with a gKr = 11.898 to a one-dimensional

return map by computing the IBIs, and plotting each IBI as a function of the

preceding value. The one-dimensional return map displays qualitatively similar

characteristics to the experimental chaotic example shown in Fig. 2–2. For the

simulation in Fig. 2–5C, we estimated the Lyapunov exponent of the IBI return

map by estimating the slope of the fitted map at each point. The Lyapunov

exponent (the logarithm of product of the absolute values of the slopes) was

positive, consistent with chaotic dynamics in the ionic model.

2.4 Discussion

Following the addition of E4031, a drug that blocks potassium channels, a

variety of complex rhythms are observed in spontaneously beating embryonic

chick heart cells, including alternating rhythms, bursting rhythms, and irregular

rhythms. In some preparations, a return map, in which the interbeat interval

(IBI) is plotted as a function of the preceding IBI, falls on a one-dimensional

function that generates chaotic dynamics, lending support to the identification of

chaotic dynamics. Further, we propose an ionic model that reproduces many of

the characteristic dynamical regimes as a function of decreasing potassium channel

conductance: alternans, bursting dynamics, period-doubling bifurcations, chaotic

dynamics, and a stable, accelerated rhythm regime.
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In the past there have been a large number of experimental and theoretical

studies analyzing the effects of ionic channel blockade and modification in nerve

and heart cells. Following pioneering studies on the effects of potassium chan-

nel blockade on a molluscan neuron by Holden et al. [102], Chay and colleagues

demonstrated a variety of complex rhythms in simplified ionic models of nerve

cells as potassium current was reduced [33, 63, 34]. More recently, there have been

extensive studies on the dynamical effects of extracellular calcium on a neural

pacemaker generating chaotic interspike interval return maps that are similar to

Fig. 2–2 [136, 108]. The above papers refer to dynamical systems that are well

described by ordinary differential equations. Extending this work to spatially dis-

tributed cardiac systems that are best described by partial differential equations,

manipulation of ionic channel properties can lead to the induction of complex

reentrant rhythms similar to those believed to underlie serious cardiac arrhythmias

[9, 216, 128, 26]. This body of work makes clear that even though neural and car-

diac oscillations must necessarily be robust to environmental perturbations, there

is nevertheless a delicate interplay of ionic conductances. Disturbing the relative

contributions of different channels can lead to degeneration of dynamics yield-

ing rhythms similar to those generated by well-known bifurcations in nonlinear

dynamics.

Our experimental technique allows for the simultaneous monitoring of multiple

aggregates subject to the same experimental manipulations over long times. We

measured the aggregates’ beat activity by collecting the light intensity from a

pixel on the edge of a particular aggregate and detecting the changes of the light
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intensity—a jump in the light intensity was considered to be a contraction and

a consequence of an action potential. We selected this method over intracellular

measurement or dye application because the drug’s effect over the aggregate’s

dynamics took place over the course of tens of minutes, and other methods

of data collection are difficult to sustain over such long time periods. Since

parameters are continuously changing, this method generates bifurcation diagrams,

e.g. see Figs. 2–2 and 2–3, similar to classic bifurcation diagrams that depict

dynamics in theoretical models as a function of a parameter. Thus, the addition

of drugs to excitable biological systems enables direct experimental observation of

bifurcation diagrams. This procedure could be useful for the screening of drugs for

proarrhythmic effects. From a nonlinear dynamical perspective, the method could

be exploited to analyze questions of robustness of dynamics and bifurcations as a

function of physiological differences between different aggregates.

From a medical perspective, the initiation of complex arrhythmia as a

consequence of modifying ionic channel activity represents a major impediment

and problem for the development of new drugs [72, 175]. The current work points

to the difficult mathematical problems that will need to be solved in order to

understand the complex dynamics induced by drugs that modify potassium

channels conductance in heart cells.

In this chapter, I showed that sequences of period-doubling bifurcations in the

dynamics of aggregates of embryonic chick cardiac cells can lead to the initiation

of chaotic dynamics. Potassium channel blockade can also lead to the onset of

alternating rhythms through a period-doubling bifurcation. Alternating rhythms
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in the spatially-extended context of the heart can precede the onset of serious

reentrant arrhythmias. In chapter 3, I develop early warning signals to predict the

onset of alternating rhythms based on data collected from spontaneously beating

aggregates of cardiac cells following potassium channel block.
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Figure 2–1: Intracellular transmembrane voltage recording of a sponta-
neously beating atrial aggregate following E4031 application. (A) Rep-
resentative chaotic example. (B) Transition from doublet beat pattern to more
complex bursting behavior. The transition takes place at roughly t=25 seconds.
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Figure 2–2: Chaotic dynamics in spontaneously beating aggregate of car-
diac cells following the application of 1.5 µmol E4031. (A) Experimental
observations of the motion of a ventricular aggregate. This experiment was per-
formed by the second investigator in the set of follow-up experiments to the initial
study [117]. The drug is applied at time t=0 minutes. The aggregate maintains
its intrinsic frequency for roughly 15 minutes before the initial bifurcation takes
place as the E4031 diffuses throughout the dish. (a) Aggregate’s intrinsic beat
frequency. (b-d) Doublet pattern generated through a period-doubling bifurcation.
(e-f) Chaotic dynamics. (B) The IBIs are plotted as a function of the preceding
IBI and a phenomenological one-dimensional map is fitted to the beats as the dy-
namics evolve. Equation 2.1 governs the fitted map’s shape. The function has five
parameters: α=35, β=0.42, γ=18, δ=0.2, and τ , which is the bifurcation parame-
ter. τ vertically translates the function, so τ continuously decreases throughout the
course of the experiment.
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Figure 2–3: Chaotic dynamics in cardiac aggregate following the appli-
cation of 2.0 µmol E4031. (A) Experimental observations of the motion of a
ventricular aggregate. The first investigator performed this experiment. The ini-
tial bifurcation takes place at approximately t=40 minutes. (a-b) Singlets. (c-f)
Irregular chaotic dynamics. (B) One-dimensional return maps of the IBIs from
experimental data described in panel A. The function is described by Eq. 2.2. The
function has four parameters: α=23, γ=7, τ=2, and β, which is the bifurcation
parameter. β horizontally translates the function, so β continuously decreases
throughout the course of the experiment.
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Figure 2–4: Bifurcation diagram of the one-dimensional maps that sim-
ulate the drug-induced chaotic cardiac rhythms in Figs. 2–2 and 2–3.
(A) Bifurcation diagram of the one-dimensional return map given by Eq. 2.1 that
describes the IBIs as a function of the bifurcation parameter, τ . The function has
five parameters: α= 35, β=0.42, γ=18 , δ=0.2, and τ , which is the bifurcation
parameter. τ governs the vertical orientation of the function, and, as τ decreases
a sequence of period-doubling bifurcations take place. (B) Bifurcation diagram of
the one-dimensional return map given by Eq. 2.2. The function has four parame-
ters: α=23, γ=7, τ=2, and β, which is the bifurcation parameter. β represents the
horizontal orientation of the map, and, as β decreases, the map shifts towards the
curvilinear portion of the map, generating a cascade of period-doubling bifurca-
tions leading to chaos.
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Figure 2–5: Hodgkin-Huxley-style ionic model captures dynamics con-
sistent with experimental dynamics as a consequence of potassium
channel blockade.(A) Bifurcation diagram that describes the dynamics of the
Hodgkin-Huxley-style model. The asymptotic IBIs of the model are displayed as
a function of the hERG potassium channel conductance, gKr. (Units for gKr are
mS/cm2.) (B) The time series associated with particular values of the bifurcation
diagram. (a) Intrinsic frequency of the single cell. (b) Coupled beats following
a period-doubling bifurcation. (c) Bursting dynamics following another period-
doubling bifurcation. (d) Chaotic dynamics. (e) Sustained accelerated rhythm. (C)
One-dimensional return map of the IBIs within the chaotic regime, gKr=11.898
mS/cm2.
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CHAPTER 3
Predicting the onset of abnormal alternating rhythms

3.1 Foreword

In the human heart, a number of mechanisms underlie the transition from

a normal cardiac rhythm to arrhythmia. The onset of an alternating cardiac

rhythm, where, for example, an alternation in the duration of the action potential

is observed, represents one such mechanism [160, 82]. These alternating rhythms

(alternans) can herald the initiation of arrhythmias, including tachycardia and

fibrillation [206, 177, 82]. Furthermore, T-wave alternans is an arrhythmia for

which an alternation in the T-wave of the electrocardiogram is observed. Clinically,

the manifestation of T-wave alternans increases the patient’s risk for sudden

cardiac death [171, 201].

The mechanism underlying the transition from normal cardiac rhythm to

alternans is linked to a mathematical instability called a period-doubling bifur-

cation, where the period of the system’s oscillation doubles as a consequence of

a change in the value of a model parameter [91, 58, 59]. Examples of parameters

that can induce a period-doubling bifurcation in cardiac systems include pacing

frequency [88], temperature [70], and drugs [110, 167]. Thus, further development

of statistical measures to predict the onset of period-doubling bifurcations is clin-

ically relevant. Theoretical studies have demonstrated that, near the onset of the

transition, period-doubling bifurcations induce dynamical slowing down and noisy
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precursors such as the emergence of an additional peak in the power spectrum

[94, 209]. Recent studies have also examined pre-bifurcation amplification of an

iterated map’s response to alternate pacing protocols [222].

In a previous study from our group and chapter 2 of this thesis, treating

spontaneously beating aggregates of cardiac chick cells with E4031, a hERG

potassium channel blocker, led to a spectrum of complex dynamics [117, 167],

including alternating rhythms, bursting rhythms, accelerated rhythms, and chaotic

dynamics. In this chapter, I develop early warning signals to predict the onset of

alternating rhythms, which take place through period-doubling bifurcations.

By analyzing the inter-beat intervals, I show that, near the onset of the

period-doubling bifurcation, damped oscillations appear in the autocorrelation

function, and the standard deviation of the inter-beat intervals increases. Then

I provide an analytic framework underlying the changes in these statistical

indicators by computing analytic expressions for the autocorrelation function

and the probability density function. Lastly, analysis of return maps of inter-

beat intervals—for which the current inter-beat interval is plotted as a function

of the following inter-beat interval—reveals that the slope of the return map

represents a quantitative measure that can assess how close the system is to a

period-doubling bifurcation. Additionally, I show that the slope measure and the

lag-1 autocorrelation coefficient are equal. This work demonstrates the presence of

early warning signals for transitions in noisy cardiac systems.
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3.2 Results

3.2.1 Onset of alternating rhythms

Between 0.5–2.5 µmol E4031 was applied to spontaneously beating aggregates

of embryonic chick cardiac cells, blocking the human Ether-à-go-go-Related Gene

(hERG) potassium channel [42] (see Methods for details on the experimental

protocols). Following the application of the drug, the aggregates maintain their

intrinsic beat frequency for roughly 10-40 minutes before a qualitative change in

the dynamics took place. These transitions gave rise to a spectrum of complex dy-

namics, including alternating rhythms, bursting oscillations, chaotic dynamics, and

accelerated rhythms. We analyzed the dynamics of the aggregates by computing

the inter-beat intervals, the time between successive beats.

Of the aggregates we analyzed, 43/104 underwent a period-doubling bifurca-

tion. In 71/104 cases, the aggregates exhibited an alternating rhythm. Figure 3–

1A displays the inter-beat intervals from a representative experiment following the

application of 1.5 µmol E4031 at t=0, where a period-doubling bifurcation of the

dynamics takes place at approximately t=50 min. The spaces between the sets of

inter-beat intervals in the panel represent the times when recording was stopped

for data storage purposes (approximately 2-3 mins). The three representative time

series plotted in Fig. 3–1A correspond with the dynamics in the first (i), fourth

(ii), and fifth (iii) sets of inter-beat intervals.

Theory predicts that in the neighbourhood of a period-doubling bifurcation

the system takes longer to recover to equilibrium following a perturbation [94,

209]. If the system is far from a bifurcation, the system rapidly re-establishes its
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steady-state value, so the system has no ‘memory’—consecutive inter-beat intervals

are not correlated. However, close to the period-doubling bifurcation, the system

re-establishes the steady-state value less rapidly—and in an oscillatory fashion—

leading to a negative correlation between successive beats. We observe negative

correlation between successive inter-beat intervals in the neighbourhood of the

bifurcation in Fig. 3–1B—panel B is a zoomed-in plot of the fifth set of inter-beat

intervals from panel A (corresponding with iii).

To quantify how the statistical features of the inter-beat intervals change as

the system approaches the period-doubling bifurcation, we examine the system’s

noise and autocorrelation. In Fig. 3–2A, we plot the return maps for the first (i),

fourth (ii), and fifth (iii) sets of inter-beat intervals from Fig. 3–1A. Based on

the return maps, we observe that as the system approaches the period-doubling

bifurcation, the variation of the inter-beat intervals increases and successive inter-

beat intervals become negatively correlated. In Fig. 3–2B, we plot the histograms

of the detrended inter-beat intervals again for the same sets of inter-beat intervals

examined above in Fig. 3–1A. We show that the distributions of inter-beat

intervals spread out, suggesting an amplification of the noise of the inter-beat

intervals. We compute the standard deviation for each set of detrended inter-beat

intervals and find that the standard deviation of the inter-beat intervals changed

from σ = 0.013 in the first set of inter-beat intervals to σ = 0.14 in the fifth set of

inter-beat intervals given in Fig. 3–1A.

In Fig. 3–2C, we compute the autocorrelation function for a set of detrended

inter-beat intervals (20 beats long) centred at the 150th beat for the same three
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sets of inter-beat intervals we looked at above. Near the beginning of the experi-

ment (t = 0), because the system is far from the bifurcation, successive inter-beat

intervals are uncorrelated, so the lag-1 autocorrelation coefficient is approximately

equal to zero, as shown in the autocorrelation functions computed for i (left panel)

and ii (middle panel) in Fig. 3–2C. However, as the system nears the bifurcation,

damped oscillations emerge in the autocorrelation function, reflecting the effect

of longer recovery times following perturbations in the neighborhood of the bifur-

cation, as shown in the right panel of Fig. 3–2C. We propose that the emergence

of damped oscillations in the autocorrelation function and an amplification of the

system’s noise represent possible early warning signals to anticipate the onset of

period-doubling bifurcations.

3.2.2 Analysis of early warning signals

In chapter 2 of this thesis, we modelled the inter-beat intervals observed in

the experimental data following the treatment with E4031 using an exponential

nonlinear one-dimensional map in the absence of noise. However, the dynamics of

virtually all biological systems are influenced by noise. Therefore, we consider the

following continuously perturbed exponential nonlinear one-dimensional map to

model the inter-beat intervals following the treatment of E4031:

xn+1 = αe(−β(xn−γ)) + δ + σζn (3.1)

where xn represents the nth inter-beat interval, ζn is a random variable drawn

from a normal distribution with a mean equal to zero and a standard deviation

equal to one. σ is a positive parameter, which we assume to be equal to 0.01,
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consistent with the fluctuations observed in the inter-beat intervals when the

system is far from the bifurcation. α, β, γ, and δ are parameters that govern

the shape of the exponential map. To simulate the experiments, we study the

dynamics of the map as we decrease γ. The map has a unique fixed point, which,

at a critical γ, destabilizes, giving rise to a period-doubling bifurcation. (See

Methods for full description of numerical simulations and parameter values.)

To gain mathematical insight into the early warning signals observed in

the experimental data, we set out to derive analytic expressions for both the

probability density function and the autocorrelation function as the system

approaches a period-doubling bifurcation. We approximate the dynamics of Eq.

3.1 using a continuously perturbed linear one-dimensional map with a unique fixed

point at x∗ = 0, examining the dynamical features as the slope at the fixed point

approaches −1, the requirement for the initiation of a period-doubling bifurcation.

We define the noisy linear map as follows:

xn+1 = Axn + σζn (3.2)

where xn represents the deviation of the nth inter-beat interval from the mean, ζn

is a random variable drawn from a normal distribution with a mean of zero and

a standard deviation equal to one. Again, σ = 0.01, which is consistent with the

system-level noise of the experimental data. A represents the slope of the map

at the fixed point, x∗. Following work from [194, 180], we analytically compute

the probability density function. Iterating the map directly leads to the following
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series:

xn =
n∑
i=0

Aiσζn−i (3.3)

We computed the probability density function as n→∞ as follows:

fn(x;A, σ) =

√
1− A2

2πσ2
exp

(
−x2(1− A2)

2σ2

)
(3.4)

The standard deviation of the probability density function is as follows: ς(σ,A) =

σ/
√

1− A2. Assuming σ, the system’s intrinsic noise, remains constant, the

analytic expression shows that as A, the slope through the fixed point, approaches

−1 the standard deviation of the system increases nonlinearly. Figure 3–3A shows

representative return maps for Eq. 3.2 for three values of A: −0.05, −0.65, and

−0.95. In Fig. 3–3B, we superimpose the analytic expressions for the probability

density functions as defined by Eq. 3.4 for the three values of A upon histograms

of data generated by Eq. 3.2—the numerical simulations and the analytical

expression are in close agreement. Consistent with the experimental data, we show

that, as the system approaches the transition point, we observe an increase in the

variation of the system.

To derive the analytic expression of the autocorrelation function for a noisy

linear map, we define the autocorrelation function for a discrete system:

ρ(k) =

∑n−k
t=1 (xt − µ) (xt+k − µ)∑n

t=1 (xt − µ)2
(3.5)

where n is the length of the time series, µ is the mean (µ = 0 for this example),

and ρ(k) represents the autocorrelation function at lag k. Considering that random
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inputs lack correlation, we derive the autocorrelation function:

ρ(k) = Ak (3.6)

Thus, for A < 0, we observe damped oscillations in the autocorrelation function

as a function of the lag coefficients. Additionally, as A approaches −1, the

autocorrelation function decays to zero (no correlation) less rapidly, and the

oscillations in the autocorrelation function grow in amplitude, properties consistent

with experiments. In Fig. 3–3C, we superimpose the analytic expression, Eq.

3.6, over the numerically computed autocorrelation for three values of A. The

numerically computed autocorrelation function and the analytical expression for

the autocorrelation function show close agreement.

We examine how accurately the analytic expressions derived from the noisy

linear map matched the dynamics in the neighborhood of the period-doubling

bifurcation from the noisy nonlinear map, Eq. 3.1. Figure 3–4A shows the return

maps computed from Eq. 3.1 for three values of γ: 3.0, 1.75, and 1.5 for σ =

0.01. Consistent with the return maps displayed in Fig. 3–2A, as γ decreases, the

slope through the fixed point approaches −1, the requirement for the initiation

of a period-doubling bifurcation, and the noise of the system increases. Figure 3–

4B displays the superimposed analytic expressions for the probability density

functions as defined by Eq. 3.4, where A represents the slope of the function at

the fixed point, over the numerically generated data. The analytic expression is

consistent with the numerical simulations. Figure 3–4C shows the numerically

computed autocorrelation function and the fitted analytic expression from Eq. 3.6.
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Again, the analytic expression of the autocorrelation function for the linear case

shows good agreement with the numerically generated autocorrelation function for

the nonlinear map.

3.2.3 Quantitative measure that predicts the onset of alternating
rhythms

Returning to the experimental data, we test a prediction that emerged from

the analysis: that the slope from a linear regression of a return map composed

of a sliding window of detrended inter-beat intervals could provide a quantitative

measure to assess how close the system is to a period-doubling bifurcation. Period-

doubling bifurcations in continuously perturbed discrete systems take place when

the slope through the fixed point goes through −1. Therefore, the distance from

−1 of the slope measure represents a quantitative early warning signal for a

period-doubling bifurcation.

We examine the inter-beat interval dynamics of eight aggregates for which

we observe and capture a period-doubling bifurcation (see Methods for further

details). Figure 3–5 shows that when the slope goes below −0.75 for at least five

consecutive beats, the period-doubling bifurcation takes place between 3 and 232

beats later—approximately 3 to 200 seconds in the future. We consider a period-

doubling bifurcation to have taken place when the slope measure goes below −0.98

for at least five consecutive beats. In Fig. 3–5, the black dashed lines represent the

time at which the system goes through the early warning signal (slope = −0.75)

and the red dashed lines represent the time at which the system goes through

the period-doubling bifurcation (slope = −0.98). The mean number of beats of

advanced warning is 86.6 beats. We consider a false alarm to occur when the slope
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of the system goes below −0.75 for five consecutive beats and the period-doubling

bifurcation does not take place within 300 beats of the early warning signal.

Analyzing the time before the onset of the period-doubling bifurcations (typically

30-50 mins) for all eight aggregates that exhibited the transition, we found exactly

one false alarm for a threshold of −0.75.

Many studies have used an increase in the lag-1 autocorrelation coefficient as

an early warning signal to predict oncoming dynamic transitions [180, 49, 50, 47].

Equation 3.6 represents an analytic expression for the autocorrelation coefficients

as a function of the slope through the fixed point, A, of the nonlinear map. The

analytic expression predicts that the lag-1 autocorrelation coefficient (k = 1)

should be equal to the slope through the fixed point of the map. In Fig. 3–5, we

plot the lag-1 autocorrelation coefficient computed from a sliding window of the

previous 20 detrended inter-beat intervals and show that the prediction from Eq.

3.6 is consistent with the slope of the linear regression for the experimental data.

To examine the slope measure in a theoretical framework, we modeled the

period-doubling bifurcation using Eq. 3.1 by linearly decreasing the value of

γ towards and through the bifurcation point (see Methods for further details

and parameter values). To mimic the experiments, we applied both parametric

noise to γ and system-level noise as given in Eq. 3.1. In Fig. 3–6A, we compute

the slope measure, the lag-1 autocorrelation coefficient, and the value of the

slope at the fixed point given by Eq. 3.1 as a function of γ. Consistent with the

experiments, all three measures approach −1 as the system nears the period-

doubling bifurcation. The black dashed line represents the early warning signal
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and the red dashed line represents the period-doubling bifurcation, with the same

criteria given above—the early warning signal predicts the onset of the bifurcation

69 beats in advance. Figure 3–6B gives the values of x for the system with the

corresponding values of γ given below in Fig. 3–6C.

3.3 Discussion

In order for early warning signals to be practically useful, they should provide

quantitative information to make predictions [19, 49]. We found that when the

slope of the experimental fixed point (also equal to the lag-1 autocorrelation

coefficient) reached −1, the system underwent a period-doubling bifurcation. The

slope and the lag-1 autocorrelation coefficient, therefore, represent quantitative

early warning signals that can predict the onset of period-doubling bifurcations.

This is related to the establishment of a new steady-state through a saddle-node

bifurcation if the slope through the fixed point goes through one [180].

In this study, there is diversity in the behaviour of the aggregates in the

neighborhood of the bifurcation. In particular, as the system nears the bifurcation,

the slope and lag-1 autocorrelation coefficient approach −1 at different rates

and with complex trajectories, Fig. 3–5. What accounts for this diversity? To

address this question, in Fig. 3–6, we model the transition using a one-dimensional

map, where we attempt to include all the features associated with the period-

doubling bifurcation: (i) shifting baseline value of the fixed point, (ii) system-level

noise, (iii) parametric noise, (iv) the nonlinear nature of the one-dimensional

map, and (v) the dynamic influence of slowing down on all of these properties.

Consistent with the experiments, the slope and lag-1 autocorrelation coefficient
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trajectories in the neighborhood of the bifurcation are complicated and somewhat

unpredictable. Thus, even though the type of dynamic transition is known a

priori, the nonlinear interactions between various features of the complex system

present challenges in predicting when exactly a transition will take place. This

diversity in dynamic behaviour in the neighborhood of the bifurcation was only

revealed as a consequence of the large quantities of data we analyzed in this

study. The development of early warning signals is often a data-starved domain.

Thus, we posit that the development of optimal early warning signals for any

dynamic transition requires large amounts of data, owing to the large number of

factors associated with the transition. Future studies of early warnings preceding

bifurcations should track the change of the appropriate parameter (e.g. slope of the

return map) to assess the distance from the transition and the rate at which it is

approached.

To date, the study of early warning signals has focused on the nonlinear

dynamics near the onset of saddle-node bifurcations. While these bifurcations are

relevant in many fields, transitions in dynamical systems can take place through

a number of different bifurcations. The development and experimental validation

of early warning signals for these other bifurcations remains an open research

direction.

Alternating rhythms in the heart can precede propagation block that leads to

the onset of reentrant arrhythmias (‘reentry’). Spiral waves, vortices of electrical

activity, are thought to represent one of the central mechanisms underlying reen-

try. In chapter 4, to examine mechanisms associated with spiral wave initiation,
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I perform intracellular calcium imaging of 1-cm-diameter cardiac monolayers

composed of embryonic chick cardiac cells following the introduction of inexcitable

regions, analyzing this experimental data using numerical simulations.

3.4 Methods

3.4.1 Spontaneously beating aggregates of cardiac cells

The aggregates were prepared according to the method of DeHaan [53]. The

ventricles of seven-day-old White Leghorn chick embryo hearts were dissected

and dissociated into single cells by trypsinization. The cells were added to an

Erlenmeyer flask containing a culture medium gassed with five per cent CO2, 10

per cent O2, 85 per cent N2 (pH = 7.4), and placed on a gyratory shaker for 24–48

h at 37 ◦C. The aggregates had a diameter of approximately 100–200 µm. The

aggregates beat with an intrinsic period of between 0.7–2 s. The experiments were

conducted two to six hours after the aggregates were plated. We used an optical

imaging apparatus that monitored the aggregates’ motion. The device recorded

the light-intensity variation of a specific pixel on the edge of an aggregate. The

edge pixel data was then processed through a bandpass filter (cutoff frequencies:

0.1 Hz—6.5 Hz). Using MATLAB, the beats and the time interval between

consecutive beats, the inter-beat intervals, were calculated. The system employed

phase-contrast imaging sampled at 40 Hz and a CCD camera (RedShirtImaging,

LLC, NeuroCD–SM) at an 80 × 80 pixel spatial resolution. Recordings were

carried out at 35–37 ◦C. The beating patterns of multiple aggregates (between

4-20) were recorded simultaneously.
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3.4.2 Detrending inter-beat intervals

To filter out short-term fluctuations in the inter-beat intervals in the analysis,

we detrend the inter-beat intervals using the detrend function in MATLAB. This

function first performs a least-squares linear regression for a sliding window of

inter-beat intervals. Then the linear regression is subtracted from the raw values

of the inter-beat intervals, which leaves the deviation from the regression. To

compute the histograms of the deviation from the mean in Fig. 3–2B and the

autocorrelation functions in Fig. 3–2C, we use a detrended sliding window com-

posed of 20 beats in all cases. We performed these analyses for larger and smaller

window sizes, and the increase in the standard deviation and the oscillations in the

autocorrelation function were observed robustly.

3.4.3 Numerical simulations of the nonlinear model

We simulate the period-doubling bifurcation that the inter-beat intervals of

the aggregates undergo using a nonlinear one-dimensional exponential map given

by Eq. 3.1, xn+1 = αe(−β(xn−γ)) + δ + σζn, where xn represents the nth inter-beat

interval, ζn is a random variable drawn from a normal distribution with a mean

equal to zero and a standard deviation equal to one with the following parameter

values: α = −0.804, β = −1.115, and δ = 2.423. In Fig. 3–4, we plot the return

map, histogram, and autocorrelation function for three values of γ: 3.0 (left),

1.75 (middle), and 1.5 (right). For the return maps in Fig. 3–4, we simulate Eq.

3.1 starting from a random initial condition for 5000 values of x, and plot the

return map for the last 4000 x values. We also apply normally-distributed system-

level noise with a standard deviation σ = 0.01, consistent with the fluctuations
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associated with the inter-beat intervals when the system is far away from the

bifurcation. For the histograms, we plot the deviation from the mean x value from

the simulations.

3.4.4 Slope and autocorrelation calculated from the inter-beat intervals

The quantitative measure that assesses how far the system is from the

period-doubling bifurcation is given by the slope of a return map—a plot where

the following inter-beat interval is given as a function of the current inter-beat

interval—composed of a detrended sliding window of inter-beat intervals. We

first detrend the raw inter-beat intervals using the method given above. From

the detrended data, we plot return maps composed of a sliding window composed

of the previous 20 beats. Then we compute a linear regression (least-squares)

through each return map, where our slope measure, Fig. 3–5, represents the slope

of the linear regression. We compute the lag-1 autocorrelation coefficient using the

‘autocorr’ function in MATLAB with a sliding window composed of the previous

20 detrended inter-beat intervals.

3.4.5 Slope and autocorrelation calculated from the numerical simula-
tions

We simulate the nonlinear map given above with the following parameter

values α = −0.804, β = −1.115, and δ = 2.423, while linearly decreasing the value

of γ such that we simulate the system approaching the period-doubling bifurcation.

We apply system-level, normally-distributed noise with a standard deviation σ =

0.01, consistent with the fluctuations associated with the inter-beat intervals when

the system is far away from the bifurcation. We linearly decrease the value of γ

along the linear function γ1(t) = 5.01− 0.012 · t for the first 300 beats and then the
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linear function γ2(t) = 2 − 0.002 · t for the remaining 50 beats, where t represents

the beat number from the figure. We apply parametric, normally-distributed noise

with a standard deviation equal to 0.05 to the value of γ, which we calculated by

considering a quasi-stationary sequence of the slope measure from the experimental

data. We compute the slope measure and the lag-1 autocorrelation coefficient with

a sliding window composed of the previous 20 values of x using the same method

as given in the Methods section above.
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Figure 3–1: Period-doubling bifurcation in an aggregate of embry-
onic chick cardiac cells following treatment with a potassium channel
blocker. (a) Inter-beat intervals through time following the application of E4031
at t=0. There are spaces between sections of data for storage reasons. A period-
doubling bifurcation takes place at approximately t=50 min. The traces below the
inter-beat intervals—i, ii, and iii—represent time series corresponding with the
inter-beat intervals in the first, fourth, and fifth sets of inter-beat intervals. (b)
The fifth set of inter-beat intervals (from approximately t=42 min to t=48 min)
corresponding with iii in panel A. This set of data precedes the period-doubling
bifurcation.
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Figure 3–2: Detection of noise amplification and oscillations in the auto-
correlation function of the aggregate’s inter-beat intervals in the neigh-
bourhood of the period-doubling bifurcation following treatment with
potassium channel blocker. (a) Return maps of the inter-beat intervals from
the first (i), fourth (ii), and fifth (iii) sets of inter-beat intervals from Fig. 3–1A.
(b) Histograms of 250 detrended inter-beat intervals (see Methods for details on
detrending) for the three sets of inter-beat intervals (i,ii, and iii) from Fig. 3–1A.
Deviation represents the deviation of each IBI from the mean value computed
through the detrending process. The standard deviation increases as the system
approaches the period-doubling bifurcation, particularly in iii. (c) Autocorrelation
function for a window of 20 detrended beats centred on the 150th beat for three
sets of inter-beat intervals. Damped oscillations emerge in the autocorrelation
function in iii, consistent with the oscillations in the inter-beat intervals observed
in Fig. 3–1B.
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Figure 3–3: Detection of noise amplification and oscillations in the au-
tocorrelation function as the slope at the fixed point of a continuously
perturbed linear map approaches -1. (a): Representative return maps for
three values of A (the slope at the fixed point): −0.05 (left-hand column), −0.65
(middle columns), and −0.95 (right-hand column). For these simulations, we
applied normally-distributed noise with a standard deviation σ = 0.01. (b): His-
tograms of the the deviation from the mean for the last 4000 values of x (as shown
above in the return maps) for the three values of A. The red curves represent the
probability density functions computed using Eq. 4 as given in the paper. (c): Au-
tocorrelation functions for the three above values of A. The blue dots represent the
numerically computed autocorrelation function and the red curve represents the
analytical expression for the autocorrelation function calculated using Eq. 6 in the
paper.
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Figure 3–4: Detection of noise amplification and oscillations in the auto-
correlation function for a model of the data in the neighbourhood of a
period-doubling bifurcation. (a) Return maps computed from Eq. 3.1 for γ =
3.0 (left), 1.75 (middle), and 1.5 (right). (b) Histograms and probability density
functions corresponding to the data that make up the return maps. Deviation
represents the deviation of each x value from the mean value of the sequence of
x values. The red curve represents the analytic expression of the probability den-
sity function computed from the linear approximation, Eq. 3.4. (c) The blue dots
represent the autocorrelation function determined numerically, and the red curve
represents the analytic expression computed from the linear approximation, Eq.
3.6, for all three values of γ.
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Figure 3–5: Slope of a return map of inter-beat intervals and the lag-1
autocorrelation coefficient represent quantitative measures that assess
how far the aggregates’ dynamics are from a period-doubling bifurca-
tion. Each panel represents an aggregate for which we observed and captured a
period-doubling bifurcation in the dynamics of the inter-beat intervals. The slope
(in blue) represents the slope of a linear regression of a sliding window of the pre-
vious 20 detrended inter-beat intervals. The lag-1 autocorrelation coefficient of a
sliding window composed of the previous 20 detrended inter-beat intervals, plot-
ted in red, is consistent with the slope of the linear regression of the return map.
This is predicted by Eq. 3.6 for k = 1, where A represents the slope through the
fixed point (simply the slope of the linear regression here).The black hatched line
represents the beat at which the slope first remains under −0.75 for 5 consecutive
beats, which we consider the early warning signal. The red hatched line represents
the beat at which the slope first remains under −0.98 for at least 5 consecutive
beats, which we consider as when the system goes through the period-doubling
bifurcation.
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Figure 3–6: Slope of a return map and the lag-1 autocorrelation coeffi-
cient represent quantitative measures that assess how far the dynamics
of the mathematical model of the experiments are from the period-
doubling bifurcation. We linearly decreased the value of γ from Eq. 3.1, which
gave rise to a period-doubling bifurcation. (a) The slope of the return map (in
blue) represents the slope of a linear regression through a return map composed
of a sliding window of the previous 20 detrended values of x (as given in panel
b). The lag-1 autocorrelation coefficient of a sliding window composed of the pre-
vious 20 detrended values of x (in red) is consistent with the slope of the linear
regression of the return map. Slope(γ) represents the slope of the fixed point as
calculated using Eq. 3.1 and the current value of γ as given in panel c. The black
dashed line represents the early warning and the red hatched line represents the
period-doubling bifurcation. The signal gives the system 69 beats of advanced
warning. (b)The value of x as numerically generated by Eq. 3.1 as a function of
time. Again the black dashed line represents the early warning and the red dashed
line represents the period-doubling bifurcation. (c) The value of γ as a function of
time.
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CHAPTER 4
Spatial symmetry breaking determines spiral wave chirality

4.1 Foreword

Spiral waves, self-sustaining vortices of activity, have been observed in

diverse biological and chemical contexts [52, 157, 103], and have been linked

to mechanisms underlying various cardiac arrhythmias [152, 105]. Chirality

(‘rotation direction’) represents a fundamental property of spiral waves [217,

220, 219, 190, 1], and has recently been implicated in the dynamics of spiral

wave anchoring to inexcitable obstacles [221]. The key factors regulating spiral

wave chirality, however, remain unclear. A number of mechanisms have been

implicated in spiral wave initiation [52, 159, 215, 24, 207, 5]. Here, we investigate

how inexcitable obstacles can lead to the initiation of spiral waves propagating in

the tissue neighbouring the obstacle [159, 215]. To examine how the position of

an inexcitable obstacle influences the chiral properties of these spiral waves, we

introduced obstacles of varying sizes, approximately 1–8 mm in width, into cardiac

monolayers (two of the preparations had two obstacles introduced).

4.2 Experimental methods

4.2.1 Introducing inexcitable regions into cardiac monolayers

We incubated 30 fertilized white leghorn chick eggs at 37 ◦C for 7-8 days

[53, 21]. We removed the ventricular portions of the embryonic hearts, dissociating

the cells with trypsin. The cells were centrifuged, suspended in 818A medium

76



[53, 21], and plated in 10-mm-diameter circular glass rings on 35-mm-diameter

plastic culture dishes. We incubated the cells for 48 hours at 37 ◦C and 5 per cent

CO2 during which time the monolayers formed—16 monolayers were included

in the study. Thirty minutes prior to imaging, we loaded the cells with Calcium

Green-1, a fluorescent dye that tracks intracellular calcium. The cells were imaged

at between 35 − 37 ◦C using a custom-built macroscope with a 1 cm2 field of

view—we imaged the entire preparation (1-cm diameter). The system excites the

calcium dye at 500 nm and monitors emission at 545 nm. The fluorescence was

sampled at 40 Hz, with a spatial resolution of 80 × 80 pixels (0.15 µm2). The

dish was continuously perfused with fresh Hank’s solution [53]. Side pacemakers

emerged spontaneously with periods of 1–2 s. The wavefront propagation velocity

was approximately 4-5 mm/s. We introduced obstacles into the monolayers by

surgical ablation. In particular, following the dye-loading incubation period, we

made incisions into the monolayer using a fine x-acto blade, representing the

approximate outline of a square, though due to the difficulty of the surgery some

of the incisions were curvilinear. (In the two preparations with two obstacles,

the obstacle shape was more circular.) We then excised the cells from within

the outline of the obstacle. In some of the preparations, cell debris—and the

associated calcium signal—became attached to the bottom of the dish in the

obstacle area. This debris, however, was nonfunctional and did not influence the

monolayer’s dynamics. The approximate centre of the obstacle was selected to be

as close to the middle of the monolayer as possible. The fluorescent images were
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acquired using a Cardio-CCD camera with Cardioplex software (Redshirt Imaging)

approximately 3–5 minutes after the surgical ablation took place.

4.3 Experimental results

4.3.1 Spiral wave diversity in monolayers with inexcitable regions

We observed a spectrum of spiral wave dynamics in the experimental record-

ings, including clockwise-rotating spiral waves (8), counterclockwise-rotating spiral

waves (10), opposite-chirality pairs of spiral waves (4), a same-chirality clockwise-

rotating pair of spiral waves (1), and same-chirality counterclockwise-rotating

pairs of spiral waves (2). We determined the chirality through visual inspection.

Transitions took place between spiral wave chiralities over the course of a single

recording. In Fig. 4–1A, two counterrotating spiral waves govern the dynam-

ics of a monolayer with an obstacle approximately 2 mm wide. In Fig. 4–1B, a

counterclockwise-rotating spiral wave governs the dynamics of a monolayer with an

obstacle approximately 5 mm in diameter. Further, the positions of the obstacles

are different: the approximate centroid of the obstacle in Fig. 4–1A is positioned

down and to the left with respect to the centroid of the obstacle in Fig. 4–1B.

The ubiquity of spiral waves observed in the experimental recordings led

us to consider mechanisms of obstacle-induced spiral waves. Figure 4–2 shows

the initiation of an obstacle-induced spiral wave. We observed this transition

in a five-minute recording in which a counterclockwise-rotating spiral wave on

the left-hand-side of the monolayer with a spiral period of approximately 0.55 s

rapidly paced the tissue, initially generating wavefronts that propagated around

a central obstacle that was positioned closer to the upper boundary, Fig. 4–2A.
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Approximately three and a half minutes later, waves emitted from the spiral wave

detached from the obstacle, leading to the initiation of a counterclockwise-rotating

spiral wave with a period of approximately 0.65 s, Fig. 4–2B.

4.4 Theoretical methods

4.4.1 Rapid pacing leads to the onset of spiral waves

Theoretical studies have demonstrated that rapid side pacing of a sheet of

cardiac tissue with an inexcitable and a partially excitable obstacle can lead to

spiral wave initiation [159, 215, 17, 141]. We investigated how the location of an

obstacle with respect to a side pacemaker influenced the rotation direction of the

initiated spiral waves using a highly simplified model of wave propagation through

cardiac tissue based on the classic FitzHugh-Nagumo equations [92, 21]:

∂v

∂t
=

1

ε
(v − v3

3
− w) + Ip +D(

∂2v

∂x2
+
∂2v

∂y2
)

∂w

∂t
= ε(v + β − γw)g(v)

(4.1)

where ε=0.42, β=0.7, and γ=0.5. v represents the activation variable, the cells’

transmembrane voltage, and w represents the tissue’s recovery processes. We first

tuned the parameters to locate a region in parameter space in which rapid side

pacing would lead to spiral wave initiation. We then explored the range of the

tissue’s excitability parameter, ε, for which we could initiate spiral waves. Because

cardiac monolayers composed of embryonic chick cells are slow conducting,

we selected a larger value for ε. We integrated the equations using an Euler

integration scheme with a dt=0.98 msec (0.025 time units) and dx=dy=0.0083

cm (0.025 space units) on a 1 cm × 1 cm grid. We scaled the arbitrary time
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and space units such that the dimensions of the system and the conduction

velocity of propagating wavefronts were consistent with experiments. The diffusion

coefficient is D=0.0028 cm2s−1. The boundary conditions along the edge of the

square grid are no flux. We set D=0 in the inexcitable obstacle, and in the tissue

between the edge of the square grid and the monolayer’s circular boundary. Ip and

g(v) = (wh − wp) / (1 + e−4v) + wp control the tissue’s pacemaker properties. The

periodic trajectory of the model can be split into four phases: the upstroke, the

plateau, repolarization, and the pacemaker phase. wp simply controls the rate of

trajectory through the pacemaker phase. In the circular-shaped side pacemaker

region (0.83 mm in diameter) located on the left-hand-side of the sheet, Ip=1,

wh=0.6, and wp is varied from between 0.15 to 0.66 to control the frequency.

For the rest of the active cells, Ip=0, wh=0.6, and wp=0.4. The sheet of tissue

is isotropic, consistent with the lack of fiber orientation typically observed in

monolayers. The obstacle is square-shaped (2.5 mm in length) and is located in the

center unless otherwise indicated.

4.5 Theoretical results

4.5.1 Spatial symmetry breaking determines spiral wave chirality

First, we considered the spatially symmetric system shown in Fig. 4–3A.

Figure 4–3A displays the steady-state dynamic following a 19.62-second burst of

rapid pacing at a pacemaker period of Tp = 0.548 s, which gave rise to a pair of

opposite-chirality spiral waves (the ‘time’ given in the figure’s panels is the time

elapsed following the cessation of pacing). We broke the spatial symmetry by
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positioning the obstacle above the central axis of symmetry by 0.75 mm, Fig. 4–

3B, and pacing the tissue at the same period (Tp = 0.548 s), which led to the

initiation of a counterclockwise-rotating spiral wave. Figure 4–4 shows the details

of the initiation of the counterclockwise-rotating spiral wave during rapid pacing.

The chirality of the initiated spiral wave observed numerically is consistent with

the experimental trace in Fig. 4–2, in which an obstacle positioned closer to the

upper boundary led to the initiation of a counterclockwise-rotating spiral wave

following rapid pacing.

4.5.2 Frequency-dependent transition in spiral wave chirality

Since frequency-dependent transitions are ubiquitous in the dynamics of car-

diac systems, we examined how spiral wave dynamics changed as a function of side

pacemaker period (Tp) when the obstacle was positioned above the central axis

of symmetry by 0.75 mm. To mimic the experimental conditions, we introduced

sparse randomly-distributed heterogeneities (‘breaks’) into the medium by selecting

a probability at each grid point of setting the diffusion coefficient equal to zero, mb

= 0.000837 [21].

We generated 20 substrates, simulating each substrate through a range of Tp,

Fig. 4–5. For each Tp value, using visual inspection, we classified the dynamics

(following 100,000 iterations corresponding to approximately one and a half

minutes in the experimental system) into four behaviours: clockwise-rotating

spirals, counterclockwise-rotating spirals, no spiral formation, and others, which

included pairs of spiral waves of the same or opposite chirality, and groups of 3 or

more spiral waves. Then we computed the moving average of the fraction f of the
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experiments (out of 20) that displayed each spiral wave behaviour (Fig. 4–5 shows

the number of clockwise- and counterclockwise-rotating spiral waves and Fig. 4–6

displays all spiral wave behaviour.) We averaged the corresponding f values over

two Tp discretizations (totalling 0.002 s) to smooth out short-term noise-induced

fluctuations.

At Tp values > 0.59 s, spiral waves did not form because the substrate

supported the stable propagation of waves through the system. Second, at *1

in Fig. 4–5, the region above the obstacle destabilized, leading to the initiation

of predominantly clockwise-rotating spiral waves (typically forming above the

obstacle). Third, at *2 in Fig. 4–5, the region below the obstacle destabilized,

leading to the initiation of predominantly counterclockwise-rotating spiral waves.

Lastly, for short Tp values, the pacemaker transitioned from 1:1 propagation (in

which 1 pulse propagates away from the side pacemaker region for every stimulus)

to 3:2 propagation (in which 2 pulses propagate away from the side pacemaker for

every three stimuli) and spiral wave formation was infrequent.

4.5.3 Action potential duration restitution curve analysis

Spiral wave initiation takes place in a region of the substrate following an

instability that leads to propagation block. Action potential duration (APD)

restitution curves predict the onset of instabilities in excitable media [91, 58, 125].

We computed steady-state APD restitution curves at positions both above and

below the obstacle (see Fig. 4–4 for the precise locations) by varying wp, the

parameter controlling the pacemaker period. Both spatial locations are 0.75

mm from the left edge of the obstacle and 0.17 mm above or below the obstacle.
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We considered the duration of the action potential to be the time that v is

greater than −0.5. We fit the steepest portions of the curves only to maximize

the precision of the pacing period at which these maps destabilized. We fit the

following exponential to both of the restitution curves: f(ρ) = αeη(ρ−δ) + Γ where

for the curve computed above the obstacle: α=−0.89, η=−5.32, δ=11.06, and

Γ=3.34—and for the curve computed below the obstacle: α=−0.51, η=−5.74,

δ=10.80, and Γ=3.26. The output from these curves was in time units (t.u.).

To convert to seconds, we applied the time scale factor: 1 t.u. = 0.0392 s. The

morphology of the restitution curves along the top and bottom edges of the

obstacle change due to the interactions of the curved wavefront with the obstacle.

However, given two restitution curves the same distance along both the top and

bottom edge (with the same threshold), the restitution curve along the top of

the obstacle becomes steeper before the restitution curve along the bottom of the

obstacle because the wavefront curvature is greater along the top edge.

We plotted the corresponding APD restitution curves in Fig. 4–7A, where the

blue curve corresponds with the location above the obstacle, and the red curve

corresponds with the location below the obstacle. To compute the Tp at which

these maps destabilized, we assume that:

Tp = A(n) + ρ(n) (4.2)

where the pacemaker period is equal to the duration of the action potential plus

the recovery time. We also assume that A(n + 1) = f(ρ(n))—that is, the duration

of the ‘next’ action potential, A(n + 1), is a function of the amount of time the
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cell has had to recover, ρ(n). By rearranging equation 4.2, we derive the following

one-dimensional map: A(n + 1)=f(Tp − A(n)), which has a unique fixed point

that destabilizes at a particular Tp value, Fig. 4–7B. The map derived from the

dynamics of the region above the obstacle (blue curve) destabilizes at Tp = 0.57

s, which corresponds with *1 in Fig. 4–5, predicting the increase in the clockwise-

rotating spirals. The map derived from the region below the obstacle (red curve)

destabilizes at Tp = 0.55 s, which corresponds with *2 in Fig. 4–5, predicting the

increase in the counterclockwise-rotating spirals. Both Tp values predicted by

the maps computed at these spatial locations are consistent with the pacemaker

periods at which both regions destabilized, and thus are predictive of the increases

in the number of clockwise-rotating and counterclockwise-rotating spiral waves as a

function of Tp.

4.6 Discussion

Here, we discovered that an asymmetry in the position of an obstacle with

respect to a position of a pacing site in combination with the side pacing frequency

determines spiral wave chirality for an isotropic cardiac medium. We used the

slope of a map derived from an action potential duration restitution curve to

provide insight into the transition in spiral wave chirality that we observed as a

function of pacemaker period. The spiral wave forms as a consequence of propa-

gation block (a necessary condition for initiation) taking place locally throughout

the tissue. The value of the slope going below −1 is a correlative measure that

we use to quantitatively describe how obstacle position changes the dynamics in

local regions throughout the substrate. Recently, Gizzi et al. demonstrated that
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the location of the pacing site gave rise to differences in the patterns of alternans

observed in the right ventricles of canines [82]. Gizzi et al. also claimed that the

intrinsic heterogeneities of the right ventricle accounted for the differences [82],

which is consistent with the findings of our study. Studies have also addressed the

role of obstacle shape in the context of electric-field-induced wave source initiation

[66, 166, 18]. However, our study opens up a number of future research directions,

which we outline in chapter 5. Our examination of the symmetry breaking prop-

erties and instabilities of this simplified cardiac system provide another example

in which the geometry of the substrate plays a critical role in the determination of

the system’s asymptotic dynamics.
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Figure 4–1: Spiral wave propagation in cardiac monolayers with inex-
citable obstacles imaged using calcium sensitive dyes in embryonic chick
heart cell monolayers. The red squares represent the position of the obstacles,
the blue coloring represents the spiral wave, and the white coloring represents the
waves emitted from the spiral waves. The diameter of the monolayer is 1 cm. (A)
Two counterrotating spiral waves (at 10 and 6 o’clock) propagating in a cardiac
monolayer with an obstacle width of 2 mm. The frames are separated by 0.25 s.
(B) Counterclockwise-rotating spiral wave (at 1 o’clock) propagating in a cardiac
monolayer with an obstacle width of 5 mm.
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Figure 4–2: Spiral wave initiation induced by rapid side pacing in a car-
diac monolayer. (A) A counterclockwise-rotating spiral wave on the left-hand
side (in blue) emits wavefronts with a period of approximately 0.55 s. Wavefronts
from the spiral wave propagate through the media and around the obstacle. The
red rectangle represents the outline of the obstacle. The obstacle is positioned such
that it is closer to the upper boundary with respect to the spiral wave on the left-
hand side. (B) Three and a half minutes later, waves emitted from the spiral wave
on the left-hand side detach from the obstacle and reenter, leading to the initiation
of a counterclockwise-rotating spiral wave (in blue) on the right-hand side of the
dish. The spiral wave has a period of approximately 0.65 s.
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Figure 4–3: Spiral wave propagation in a mathematical model of the ex-
periments. The red squares represent the position of the obstacles, the blue
coloring represents the spiral waves, and the white coloring represents the waves
emitted from the spiral waves. The white line is the axis of symmetry between the
pacemaker and the obstacle. (A) Two counterrotating spiral waves are initiated
following rapid pacing at Tp = 0.548 s when the obstacle and the side pacemaker
are symmetric. The times given in the top-right of each panel represent the time
following the cessation of rapid pacing. (B) A counterclockwise-rotating spiral
wave is generated following rapid pacing (Tp = 0.548 s) when the obstacle is posi-
tioned upwards by 0.75 mm and pacing the tissue at Tp = 0.548 s.
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Figure 4–4: Spiral wave initiation induced by rapid side pacing in a math-
ematical model. Rapidly pacing the tissue (Tp = 0.548 s) from a pacemaker
on the left-hand side leads to the initiation of a counterclockwise-rotating spiral
wave. The red rectangle represents the location of the obstacle. The obstacle is
positioned 0.75 mm closer to the upper boundary. The blue represents the spi-
ral wave. The time in the bottom-right corner of each panel represents the time
elapsed following the onset of rapid pacing. The blue and red dots above and be-
low the obstacle—as shown in the top-left panel—represent the locations at which
we computed the action potential duration restitution curves.
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Figure 4–5: Spiral wave chirality as a function of the pacemaker period
(Tp). f represents the moving average of the fraction out of 20 from each cate-
gory that was observed at each value of Tp. The obstacle was positioned above
the central axis of symmetry by 0.75 mm. *1 represents the Tp at which the map
derived from the action potential duration (APD) restitution curve above the ob-
stacle destabilized. *2 represents the Tp at which the map from below the obstacle
destabilized.
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Figure 4–6: Spiral wave chirality as a function of pacemaker period (Tp)
for all types of spiral wave behaviour. f represents the moving average of
the fraction (out of 20) that gave rise to the spiral wave dynamic as given in the
legend of each panel. Tp represents the pacemaker period in seconds. (A) This
figure is the same as Fig. 4–5, and is included as a reference. Decreasing Tp leads
to a change from clockwise-rotating spiral waves to counterclockwise-rotating spiral
waves. (B) The moving average of the fraction of substrates that did not give rise
to spiral waves was high at both high and low Tp values. At high values, the sub-
strate, in general, supported the stable propagation of waves through the system.
At low values, the pacing region transitioned from 1:1 propagation to 3:2 propaga-
tion (where, for ever 3 stimuli from the pacemaker, only 2 wavefronts propagated
away from the pacing region and through the media). (C) The moving average of
the fraction of substrates included in the ‘other’ spiral wave dynamic subsection.
Opposite-chirality pairs of spiral waves, same-chirality pairs of spiral waves, and
examples with 3 or more stably-rotating spiral waves were included.
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Figure 4–7: Instabilities in the action potential duration (APD) restitu-
tion curves at different spatial locations are consistent with the change
in spiral wave chirality observed in Fig. 4–5. (A) APD is computed as a
function of recovery time, ρ(n), both above (blue) and below (red) the obstacle.
The dots represent the steady-state APD computed numerically. The lines repre-
sent a nonlinear-least-squares regression fit to an exponential. (B) One-dimensional
maps of APD at Tp = 0.57 s are derived from the restitution curves computed
both above (blue curve) and below (red curve) the obstacle. At Tp = 0.57 s, the
dynamics below the obstacle are stable because the absolute value of the slope
through the fixed point is < 1, and the dynamics above the obstacle are unstable
because the absolute value of the slope through the fixed point is >1.
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CHAPTER 5
Conclusions and Future Directions

This thesis examined the dynamics associated with the onset of abnormal

cardiac rhythms using simplified experimental models and nonlinear dynamics. In

chapter 2, I focused on a set of experiments where treating spontaneously beating

aggregates of cardiac cells with a potassium channel blocker led to the initiation

of a spectrum of complex cardiac dynamics, including highly irregular rhythms.

I examined these highly irregular rhythms, providing evidence that the dynamics

were chaotic. Potassium channel blockade also led to the onset of alternating

rhythms, a dynamic that can precede the onset of reentrant arrhythmias. In

chapter 3, I developed a quantitative measure to anticipate the onset of the

transition from a normal to alternating rhythm. To better understand the onset

of abnormal cardiac rhythms in a spatially extended system, in chapter 4, I

examined mechanisms of spiral wave initiation using calcium imaging of 1-

cm-diameter cardiac monolayers following the introduction of an inexcitable

region and numerical simulations. In particular, I found that the location of the

inexcitable region in combination with side pacemaker frequency governed spiral

wave chirality preference. Furthermore, instabilities in the dynamics of the action

potential duration in localized regions of the substrate preceded the onset of spiral

wave activity. In this chapter, I wish to place the main points of my thesis (given
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above) as well as other important findings from the studies which I believe merit

discussion in a broader scientific context.

In chapter 2, I characterized irregular rhythms following potassium channel

blockade as chaotic. As a consequence of a slowly varying parameter, the dynamics

of a spontaneously beating aggregate composed of embryonic chick cardiac cells

underwent a sequence of period-doubling bifurcations that gave rise to low-

dimensional chaos. Indeed, the presence of irregular rhythms in the heart increases

the likelihood of propagation block, which could lead to the initiation of serious

reentrant cardiac arrhythmias. However, is there a dynamic difference between a

chaotic rhythm or a rhythm driven by a noisy pacemaker? Assessing the functional

relevance of chaotic cardiac rhythms represents a possible future research direction.

In chapter 3, I developed early warning signals based on data that was non-

spatial. The heart’s rhythm is set by the cardiac impulse that propagates in a

nonlinear spatially-extended environment. The development of early warning

signals in spatially-extended experimental cardiac systems, such as cardiac

monolayers, represents an important future research question. Thus, the clinical

relevance of the early warning signals developed here to predict the onset of T-

wave alternans, for example, remains to be seen. That being said, this finding

represents a strong first step towards the development of clinically-relevant early

warning signals to predict the onset of abnormal cardiac rhythms in patients.

The mechanism underlying the increase in noise near the period-doubling

bifurcation from a biological perspective remains unclear. Single ion channels

open and close in a stochastic manner. Perhaps as more potassium channels are
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blocked—as the aggregate’s dynamics approach the period-doubling bifurcation—

the noise associated with the system amplifies. Furthermore, what is the biological

mechanism underlying the alternating pattern? Potassium channel blockade leads

to the prolongation of the action potential, which can lead to early afterdepolar-

izations, depolarizations that take place during the recovery phase of the action

potential [195]. Early afterdepolarizations have been implicated in triggering the

onset of cardiac arrhythmias [195, 216]. Because the beat patterns were collected

using the motion of the aggregates, I could not provide insight into the biological

mechanism. However, intracellular recordings of aggregates undergoing potassium

channel blockade represents a future topic worth exploring.

To what extent is it possible to predict the future accurately? Studies have

claimed that ‘generic’ early warning signals can provide insight into transitions

in the qualitative dynamics of complex systems [180]. However, more recent

work [49] has argued that there are limits on our ability to predict transitions in

dynamics, claiming that it is only possible to predict future transitions if (1) the

transition in dynamics takes place as a consequence of a bifurcation and (2) the

control parameter goes through the bifurcation point on a slow time scale. If these

requirements are met, then it is, in principle, possible to develop early warning

signals. However, transitions in the dynamics of complex systems take place

through a number of mechanisms, including noise-induced transitions, changes to

the spatial structure of the system, and external perturbations leading to a change

in the dynamics.
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In chapter 4, I found that substrate geometry can govern spiral wave chirality

(‘rotation direction’). Chirality is a fundamental property of spiral waves—

alongside period and tip trajectory—and yet our study represents one of the first

forays into developing a broader understanding of spiral wave chirality preference.

In particular, my study opens up many research directions, including how obstacle

size, obstacle shape, model parameters controlling tissue excitability, and fiber

orientation influence spiral wave chirality. To numerically simulate the system

composed of a side pacemaker and an inexcitable region, I used a generic model

of excitable media, the FitzHugh-Nagumo equations. An open question remains:

to what extent do these results related to spiral wave chirality preference extend

to higher-dimensional Hodgkin-Huxley-style ionic models of the cardiac action

potential? Experimental confirmation of the theoretical prediction represents

an important research trajectory as well. From a clinical perspective, spiral

waves propagating in excitable media are believed to play an important role in

the genesis of many serious cardiac arrhythmias, though not much attention

has focused on the chiral nature of spiral waves. However, the chirality of one

arrhythmia, atrial flutter, is clinically relevant, and the direction of circulation of

excitation waves in the right atrium is typically classified as either clockwise or

counterclockwise [176].

The heart has a complicated geometry: wavefronts propagate through het-

erogeneous tissue, colliding with inexcitable barriers in three spatial dimensions.

Recent studies have analyzed the effects of changing the cardiac geometry using

realistic three-dimensional numerical models [170, 197]. The study from chapter
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4 demonstrates a clear example of how the geometry can influence the dynamics.

Furthermore, from a clinical standpoint, changes to the heart’s geometry signif-

icantly influence the dynamics: a myocardial infarction increases the likelihood

of sudden cardiac death. (Myocardial infarctions also give rise to complicated

spatially inhomogeneous effects on the heart’s electrophysiology, which can increase

the likelihood of sudden cardiac death [8].) Other cardiac dynamics studies have

included effects of geometry [44, 38, 159, 189], but much work remains to be done.

Instabilities in the dynamics of cardiac systems can precede propagation

block, which can lead to reentry and the establishment of spiral waves. Increasing

the stimulation frequency can induce alternating rhythms, often associated

with period-doubling bifurcations, which can act as precursors of reentry [160].

Furthermore, experiments of circulating pulses of excitation in rings of cardiac

tissue have demonstrated that instabilities in the beat-to-beat patterns can

precede propagation block [75]. Larger fluctuations in the magnitude of successive

action potential durations increases the likelihood of propagation block, but

many questions related to the mechanism of this process remain. Quantifying

the maximum difference in amplitude of successive alternating action potential

durations that various cardiac systems (with different geometries) can sustain

represents a future research question.

Transitions take place in the dynamics of the heart with serious consequences.

Combining simplified experimental models with tools from nonlinear dynamics

represents a powerful approach to unearth the mechanistic properties of these

97



transitions, and to provide insight that could potentially guide future therapeutic

strategies.
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Appendix A: Ionic model

This appendix describes the equations of the ionic model that were used for

the theoretical computations in chapter 2. This ionic model was initially presented

in Kim et al. [117]; however, the parameter values used in the earlier study did

not give rise to chaotic dynamics. To obtain chaotic dynamics we decreased the

conductances of the slowly activating potassium current and the inward calcium

current. Relatively, the sodium current plays a greater role in the new parameter

regime, and this enabled the model to generate the bursting and chaotic dynamics

when the gKr parameter is decreased. We adapt equations developed by Kowtha et

al. to model the embryonic chick heart cell preparation [122]:

V̇ = −Itot(V )/Ci, (5.1)

where the V is the membrane voltage, Itot is the total current density and Ci is the

capacitance. Itot is a sum of the different ionic component currents so that,

Itot = INa + IKs + IKr + IK1 + ICa + Ib + If (5.2)

where INa is the sodium current, ICa is the calcium current, Ib is the background

current, If is a depolarizing current, and IKs, IKr, and IK1 are three potassium

currents. The magnitude of each of these currents depends on membrane voltage,

ionic concentrations, and time. We describe each current in turn. We use standard

notation in which gw is the conductance of ionic current w, Ew is the equilibrium

potential of ion w. Following the original notation of Hodgkin-Huxley, terms
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entering the time and voltage dependent currents are written in two equivalent

forms. For component x, we have,

ẋ(t) = (x∞(V )− x(t))/τx(V ), or

ẋ(t) = αx(V )− (αx(V ) + βx(V ))x(t)

so that

x∞(V ) =
αx(V )

αx(V ) + βx(V )
, τx(V ) =

1

αx(V ) + βx(V )
(5.3)

Sodium current

INa = gNa m(t)3h(t)j(t)(V − ENa), (5.4)

where,

ṁ(t) = (m∞(V )−m(t))/τm(V ) (5.5)

ḣ(t) = (h∞(V )− h(t))/τh(V ) (5.6)

j̇(t) = (j∞(V )− j(t))/τj(V ) (5.7)
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and

αm =
320 (V + 47.13)

1− exp−0.1(V+47.13)

βm = 80 exp−V/11

αh = 2/3× [135 exp−(V+80)/6.8(1− STEP(V + 40))]

βh = 2/3× [(3560 exp0.079V +3.1× 108 exp0.35V )(1− STEP(V + 40))

+
1

0.00013 (exp−(V+10.66)/11.1 +1)
STEP(V + 40)]

αj = (V + 37.78)× −1.2714× 108 exp0.2444V −3.474× 10−2 exp−0.04391V

1 + exp0.311(V+79.23)

×(1− STEP(V + 40))

βj =
121.1 exp−0.01052V

1 + exp−0.1378(V+40.14)
(1− STEP(V + 40))

+
300 exp−2.535×10

−7V

1 + exp−0.1(V+32)
STEP(V + 40)

Potassium currents

Slow potassium current

IKs = gKs n(t)(V − EKs), (5.8)

where

ṅ(t) = (n∞(V )− n(t))/τn(V ), (5.9)
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and

αn = 2/3× 0.08 (V − 15)

1− exp−0.08(V−15)

βn = 2/3× 0.156 exp−0.055(V−15) .

Rapid potassium current

IKr =
gKrs(t) y

2
0(145PKr − 1.3RKr)

1 + y0 + 52.8y20
(5.10)

where

ṡ(t) = (s∞(V )− s(t))/τs(V ) (5.11)

and

αs = 18.4 exp0.12 (V+12)

βs = 0.0288 exp−0.09 (V+12)

Inward rectifier potassium current

IK1 =
gK11 y

3
1(145PKr − 1.5RKr)

1 + y1 + y21 + 1.5y31
+
gK12 |V + 65|y22(145PKr − 10.7RKr)

1 + y2 + 9y22
(5.12)

where

RKr =
1.0

1 + exp(V/25)
, PKr = 1−RKr

y0 =
1.3RKr

145PKr
, y1 =

1.5RKr

145PKr
, y2 =

10.7RKr

145PKr
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Calcium current

ICa = gCa d(t)f(t)g(t)(V − ECa) (5.13)

where

ḋ(t) = (d∞(V )− d(t))/τd(V ) (5.14)

ḟ(t) = (f∞(V )− f(t))/τf (V ) (5.15)

ġ(t) = (g∞(V )− g(t))/τg(V ) (5.16)

˙[Ca] = −13× 10−6 ICa(V ) + 80(10−7 − [Ca]) (5.17)

and

d∞ =
1

1 + exp−(V+10)/6.24

τd = d∞ ×
1− exp−(V+10)/6.24

35 (V + 10)

f∞ =
1

1 + exp(V+28)/6.9

τf =
1

19.7 exp−(0.0337(V+10))2+20

g∞ =
1

1 + [Ca]/(3.5× 10−7)

τg = 0.002

Pacemaker current

If = gf p(t)(V − Ef ) (5.18)
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where

αp = 0.095 exp−0.075(V+62) (5.19)

βp =
1.05 (V + 62)

1− exp−0.2(V+62)
(5.20)

Background current

Ib = gb (V − Eb) (5.21)

The numerical values of the different parameters are:
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Ci = 1 µF/cm2

gNa = 1500 mS/cm2

gKs = 1.2546 mS/cm2

gb = 0.093 mS/cm2

gK11 = 409.5 mS/cm2

gK12 = 1.476 mS/cm2

gCa = 55.0 mS/cm2

gf = 0.03 mS/cm2

ENa = 40.0 mV

EKs = −100.0 mV

Eb = 40.0 mV

ECa = 40.0 mV

Ef = −30 mV

dt = 50 µs
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