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ABSTRACT

The normal cardiac rhythm can undergo transitions that lead to serious
cardiac arrhythmias. In this thesis, I examine these transitions using simplified
experimental cardiac models and tools from nonlinear dynamics. Treating spon-
taneously beating aggregates of embryonic chick cardiac cells with a potassium
channel blocker can induce a spectrum of complex dynamics, including highly
irregular rhythms. In the first study, I suggest that these irregular rhythms are
chaotic and are initiated through a sequence of period-doubling bifurcations.
Potassium channel blockade can also lead to the onset of proarrhythmic alternating
rhythms through a period-doubling bifurcation. In the second study, I develop a
quantitative early warning signal that provides insight into how far the system is
from the onset of the period-doubling bifurcation. Alternating rhythms precede the
onset of reentrant arrhythmias, which can be driven by spiral waves, self-sustaining
vortices of electrical activity. In the third study, I explore mechanisms of spiral
wave initiation by introducing inexcitable regions into 1-cm-diameter monolayers
composed of embryonic chick cardiac cells, and tracking the dynamics using intra-
cellular calcium imaging. In particular, I find that the location of the inexcitable
region in combination with the side pacemaker frequency determines spiral wave
rotation direction (chirality). In this system, I also find that an instability in the
dynamics of the action potential duration in localized regions of the substrate acts

as a precursor of spiral wave initiation.
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ABREGE

Un rythme cardiaque normal peut subir des transitions qui menent a des
arythmies graves. Cette these examine ces transitions en utilisant des modeles
cardiaques expérimentaux simplifiés et des méthodes de dynamique non linéaire.
Le traitement d’agrégats de cellules cardiaques embryonnaires de poussin battant
spontanément avec un inhibiteur de potassium peut provoquer une gamme de
dynamiques complexes, y compris des rythmes tres irréguliers. Dans la premiere
étude, je suggere que ces rythmes irréguliers sont chaotiques et sont démarrés au
cours d'une séquence de bifurcations de dédoublement de période. Le blocage des
canaux potassiques peut également entrainer ’apparition d’alternances proaryth-
miques par une bifurcation de dédoublement de priode. Dans la seconde étude,
je développe un signal quantitatif d’alerte précoce qui permet de mieux compren-
dre I’état du systeme précédant I’apparition de la bifurcation de dédoublement
de période. L’alternance précede I'apparition d’arythmies réentrantes, qui peu-
vent étre entrainées par des ondes spiralées (des tourbillons d’activité électrique
qui s’auto-entretiennent). Dans la troisieme étude, j’explore les mécanismes de
Iinitiation d’ondes spiralées en introduisant des régions inexcitables dans des
monocouches de lem de diametre composées de cellules cardiaques embryonnaires
de poussin, et le suivi des dynamiques a 'aide de I'imagerie de calcium intracel-
lulaire. Notamment, je découvre que '’emplacement de la région inexcitable en
combinaison avec la fréquence du stimulateur latérale dtermine le sens de rota-

tion d’ondes spiralées (chiralité). Dans ce systme, je trouve aussi que l'instabilité



des dynamiques de la durée du potentiel d’action dans des régions localisées du

substrat agit comme un précurseur de l'initiation d’ondes spiralées.
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PREFACE

The heart is remarkably robust. It beats each second, ensuring that oxygen
and nutrients reach every cell in the body. Disruptions to this process have
existential consequences. In this thesis, I examine the dynamics underlying
the onset of abnormal cardiac rhythms associated with life-threatening cardiac
arrhythmias. Tackling this problem necessitates providing insight into the nature
of these transition. Tools from nonlinear dynamics and bifurcation theory applied
to simplified experimental cardiac models has proved fruitful in tackling this
problem, shedding insight into the dynamic mechanism of these transitions. All
three studies in this manuscript-based thesis are grounded in this approach:
developing and analyzing nonlinear models based on experimental data to gain
insight into transitions associated with the onset of abnormal cardiac rhythms.
From this perspective, this thesis makes three original contributions to our
understanding of abnormal cardiac rhythms. First, I show that treating aggregates
of cardiac cells with a potassium channel blocker can induce chaotic dynamics.
Second, I develop a quantitative measure that assesses how far the dynamics of
aggregates of cardiac cells treated with a potassium channel blocker are from the
onset of clinically relevant alternating rhythms. Lastly, I show that the position of
an inexcitable region with respect to a side pacing region can control spiral wave

chirality preference.
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CHAPTER 1
Introduction

Over the course of a lifetime, the heart maintains remarkably stable dynam-
ics within a noisy, nonlinear, spatially-extended environment. Every second, a
depolarizing wave of excitation propagates throughout the four chambers of the
heart, giving rise to a well-coordinated contraction. This process, termed normal
sinus rhythm, represents one of the body’s fundamental physiological rhythms.
Life-threatening cardiac arrhythmias are associated with transitions in the qualita-
tive dynamics of this process. From a mathematical perspective, transitions in the
dynamics of complex systems can be associated with bifurcations in the dynamics
observed in mathematical models, where the value of a control parameter goes
through a critical point leading to the establishment of qualitatively different
dynamics. Mackey and Glass first introduced the idea of dynamical disease, which
linked bifurcations that arise as a consequence of a change in the value of a model
parameter with the onset of human pathology [86, 139]. Since then, this approach
has provided insights into potential mechanisms associated with a number of
human diseases, including epilepsy [146], respiratory arrest [162], Parkinson’s [15],
and cardiac arrhythmias [91].

In this thesis, I focus on the initiation of abnormal cardiac rhythms by
examining the dynamics of these transitions. In recent years, tools from nonlinear

dynamics and dynamical systems have been useful in exploring these problems.



Here, I show that this approach can provide insight into a clinically relevant
question: can you predict the onset of abnormal cardiac rhythms?

Treating spontaneously beating aggregates of embryonic chick cardiac cells
can induce highly irregular rhythms. In the first study of this dissertation, I show
that these irregular rhythms are chaotic, and are generated through a sequence
of period-doubling bifurcations. Period-doubling bifurcations can also lead to
the onset of proarrhythmic alternating rhythms. In the second study, I develop
early warning signals that predict the onset of alternating rhythms observed in
the beat patterns of aggregates following potassium channel blockade. Alternating
rhythms have been linked to the onset of reentrant arrhythmias that are thought
to be driven by spiral waves. In the third study, I explore spiral wave initiation
by introducing inexcitable obstacles into 1-cm-diameter cardiac monolayers.
Numerically simulating this system shows that the position of the obstacle governs
spiral wave rotation direction (‘chirality’).

1.1 Physiology of the heart

The central function of the heart is to pump blood throughout the body. To
carry this out, there exists an elegantly designed interplay between the heart’s
spatial structure, the conduction properties of cardiac tissue, and the contractile
properties of the organ. In the following section, I will briefly outline how all these
dynamic parts collectively give rise to the proper functioning of the heart.

The heart is divided into four chambers: the right and left atria, which
represent the upper chambers; and the right and left ventricles, which represent

the lower chambers. These chambers contract in a well-coordinated fashion,



which leads to the ejection of deoxygenated blood to the lungs and oxygenated
blood to the rest of the body. The heart’s electrical conduction system governs

the timing of these contractions. Most cardiac cells have both contractile and
electrical properties. In particular, cardiac cells propagate action potentials—the
fundamental electrical signal of the heart representing the wave of excitation—and,
consequently, the action potential causes these cells to contract.

Approximately every second, specialized pacemaker cells in the sino-atrial
(SA) node—located in the right atrium—depolarize, giving rise to an action
potential. This wave of excitation propagates first throughout the atria, leading
to the atrial contraction. The atrioventricular (AV) node connects the atria and
the ventricles, allowing the wave of excitation to propagate from the heart’s
upper chambers to the lower chambers. The cardiac impulse rapidly exits the
atrioventricular node through the bundle of His, which leads to the right and left
bundle branches of the Purkinje network. Finally, the cardiac impulse propagates
through the Purkinje network, which gives rise to the excitation and subsequent
contraction of the right and left ventricles. The conduction velocity of the wave
of excitation through the cardiac conduction pathways depends on a number
of factors, including location within the heart, direction of propagation, action
potential upstroke velocity, and the coupling between cells via gap functions. The
conduction velocities range from approximately 0.05 m/s in the atrioventricular
node to 2 m/s within the Purkinje network [118]. Additionally, the anistropic

nature of the heart, wherein cells are preferentially oriented along specific fiber



directions, induces differences between longitudinal and transverse propagation—
0.5 m/s as compared to 0.2 m/s in ventricular muscle [118].

The dynamics of the action potential are governed by the opening and closing
of voltage-sensitive ion channels that mediate the flow of sodium, potassium, and
calcium across the cell membrane. A great deal of work has been conducted on
determining how the interactions between the nonlinear responses of ion channels
and the balance of extra- and intracellular ionic concentrations give rise to action
potentials. This thesis largely focuses on more macroscopic dynamical properties
of cardiac systems, but, that being said, I will provide a brief overview of the
generation of action potentials (for a review see [95]).

At rest, differences in the ionic concentrations across the membrane govern
the membrane potential, which in isolated human cardiac cells is between —80
and —90 mV [134, 57]. Upon activation, sodium channels open, allowing sodium
to flow from outside to inside the cell (along its concentration gradient), giving
rise to the upstroke leading to depolarization of the membrane voltage to approxi-
mately +20 mV [134, 196]. Next, during the plateau phase, depolarizing currents
mediated by calcium-specific channels balance the repolarizing potassium-specific
currents. This plateau phase prolongs the action potential—in human cardiac cells,
the duration of the action potential is roughly 250 msec [149]. In the repolarizing
phase of the action potential, the cell’s membrane voltage is brought back to its
resting membrane potential through the activity of potassium channels.

The heart is made up of cell types with varying functions and electrophys-

iological properties. In general, cardiac cells can be classified as being either a



pacemaker or an excitable cell. Pacemaker cells in the sinoatrial node discharge
periodically leading to the initiation of the normal sinus rhythm. Rather than
returning to the resting membrane potential following repolarization, pacemaker
cells undergo depolarization as a consequence of a number of ion-channel-mediated
currents, most notably I, a hyperpolarization-activated pacemaker current [200].
Excitable cardiac cells, on the other hand, nonlinearly respond to the wave of
excitation emanating from the pacemaker cells but do not intrinsically generate
action potentials. Hence, during normal sinus rhythm, pacemaker cells ‘entrain’
the dynamics of the heart’s excitable cells, thus governing heart rate.

In this thesis, I examine the dynamics associated with the onset of abnormal
cardiac rhythms. In patients with cardiac arrhythmias, cardiologists examine ECG
recordings to characterize the mechanism underlying the arrhythmia. However, the
human heart is a complex, three-dimensional structure, and ECG recordings often
do not provide the level of detail necessary to resolve these mechanistic properties
associated with the onset cardiac arrhythmias. Consequently, simplified animal
models are used to provide insight into the mechanisms of these processes
1.2 Experimental models of the heart

Simplified experimental models of the heart span all spatial scales. Here, 1
provide a survey of the simplified animal models that have been used to provide
insight into the mechanisms of abnormal cardiac rhythms.

(1) Zero-dimensional models: Examining the dynamics of spontaneously beating
aggregates of cardiac cells represents a method of studying beat patterns in

response to various stimuli. In particular, DeHaan developed a method to generate



spontaneously beating aggregates of embryonic chick cardiac cells [54]. From

a dynamics perspective, aggregates act as pacemakers, and have been used to
examine the response of the cardiac rhythm to single depolarizing pulses [89] and
periodic stimulation [90, 91, 127]. In these studies, the dynamics were tracked
using electrodes that measure intracellular electrical activity. Spontaneously
beating aggregates of cardiac cells have also been used to examine changes in
dynamics following the treatment of drugs that target ion channels, including the
hERG potassium channel [117]. Chapters 2 and 3 are based on a data set first
presented in [117], where aggregates were treated with a hERG potassium channel-
specific drug E4031. Single cells isolated from tissue preparations represents an
experimental model that has also been used to examine cardiac dynamics [55, 77].
(2) One-dimensional cables: Periodic stimulation of a strip of Purkinje fiber
represents a well-studied experimental system that has been used to examine

a number of cardiac rhythms, transitions between rhythms, and additional
properties, including alternating rhythms [39], chaotic dynamics [39], control

of abnormal alternating rhythms [41], and onset of conduction block [74]. To
examine the dynamics of waves propagating around rings of cardiac tissue, the
tissue around the tricuspid valve—the valve linking the right atrium with the right
ventricle—has also been used [75].

(3) Two-dimensional sheets: Optical imaging of cardiac monolayers, two-
dimensional sheets of interconnected cardiac cells, using calcium- and voltage-
sensitive dyes has provided insights into the study of the initiation [22, 24] and

termination [2] mechanisms of spiral waves; the dynamics of spiral waves [27]; the



effects of geometry on cardiac dynamics [10]; spatial dynamics of early afterdepo-
larizations [32]; and the interactions of multiple pacemakers [21]. In chapter 4, I
use l-cm-diameter cardiac monolayers composed of 7-8-day-old embryonic chick
cardiac cells to examine how inexcitable regions influence the dynamics of spiral
waves.

(4) Three-dimensional measurements: Examining intramural propagation
in whole hearts represents a technically challenging problem for which data
is scarce [96]. Arrays of microelectrodes that detect electrical activity can be
inserted through the heart’s walls [60]. Optical fibers have also been used to
image transmembrane voltage through the heart’s walls using fluorescence from a
voltage-sensitive dye [120]. Much work remains towards improving the techniques
of imaging wavefront propagation in three dimensions.

1.3 Mathematical models of the heart

Mathematical modelling can propose mechanisms to deepen our understand-
ing of experimental data and make predictions that guide the types of experiments
that are performed. Furthermore, computational models can provide insight into
the types of transitions that take place in the genesis of abnormal cardiac rhythms
in experiments.

In 1928, van der Pol and van der Mark first modelled the electrical activity
of the heart by coupling oscillators representing the sinus, the atria, and the
ventricles together [199]. The model generates stable oscillations and captures a
number of properties associated with cardiac function, including an alternation

between slow build-up phases and rapid release phases, refractory period, and



all-or-nothing responses to external stimuli. However, at the time, the cellular
mechanism underlying these processes in the heart was unclear.

In 1952, Hodgkin and Huxley published a set of landmark studies showing
that the propagation of a nerve impulse along the squid’s giant axon is mediated
by voltage-dependent ion currents [98, 97, 99, 101, 100]. Hodgkin and Huxley
also quantitatively described the process, modelling the dynamics of the wave
propagation using a set of differential equations which accounted for voltage-
dependent sodium, potassium, and leak currents [100]. Neurons and cardiac cells
share many properties. However, there are differences in the kinetic properties
of the action potential (for example, the duration of the action potential is far
longer in cardiac cells than in neurons), and there are also differences in the
propagation properties of the wave of excitation and network structure (neurons
have axons that are connected by synapses; in contrast, cardiac tissue is composed
of intercalated cardiomyocytes arranged in brick-like geometries). Noble used
Hodgkin and Huxley’s work as a basis to develop an ionic model of the cardiac
action potential observed in Purkinje fibers [153].

Since then, there has been a wellspring of research devoted towards the
development of cardiac models of the action potential based on ionic currents.
These models have exponentially increased in complexity—some models have
upwards of 60 dynamic variables [107]—as additional ion-channel-mediated
currents and features such as intracellular calcium handling are included. Models
have been developed for a number of species; for example, there are models of the

action potential for mouse [20], rat [158], rabbit [140], canine [37], guinea pig [137],



and human [196, 37]. Tonic models based on currents from the sinoatrial node and
the atria have also been proposed [67]. Analyzing these ever-increasingly complex
models is difficult, which makes it tricky to gain mechanistic insight into the
dynamics. Consequently, the relevance of these models in the context of improving
our understanding of transitions in the normal cardiac rhythm remain to be seen.
1.3.1 Excitable media

Cardiac cells are connected together in a brick-like network through which
the action potential propagates, giving rise to the wave of excitation that entrains
the dynamics of the heart. Given these properties, the heart is a representative
example of excitable media.

In response to small-amplitude perturbations, the dynamics of excitable
systems rapidly return to the system’s stable steady-state value. In response to
high-amplitude perturbations—sufficiently strong to carry the system across a
threshold—a nonlinear all-or-nothing response takes place, where the return to
the system’s steady-state value takes place on a longer time scale. Following the
all-or-nothing response, excitable systems are refractory to additional stimulation
until the system has recovered for a given time window. An excitable medium
is a spatially-extended system that is composed of local units that are excitable
[198]. The interaction of these local units via a diffusive mechanism can give
rise to traveling waves of excitation [198]. Examples abound of excitable media
in biological and chemical systems: forest fires [11], neurons [100], spreading
waves of depression in the cerebral cortex [121], chemical reactions such as the

Belousov-Zhabotinsky reaction [150], and cAMP signalling in slime mould [130].



Again, the heart is an example of an excitable medium: (1) cardiac cells
generate action potentials, all-or-nothing responses to stimuli; (2) cardiac cells
are refractory during and following the generation of an action potential; and (3)
cardiac cells propagate and sustain wavefronts. Consequently, generic models of
excitable media—often much simpler than Hodgkin-Huxley-style ionic models—can
be used examine the dynamics of the heart. Below, I will discuss the properties of
a generic model that has been used extensively to simulate the heart’s dynamics.

Following the development of the Hodkgin-Huxley model, FitzHugh [73] and
Nagumo [151] sought to reduce the complexity of the Hodgkin-Huxley equations,
while extracting the central mathematical features of wave propagation in the
squid giant axon: excitability, propagation, and refractoriness. Since then, this
model—termed the FitzHugh-Nagumo model—has been used to study myriad
dynamical features of the heart, including the motion of spiral waves through
cardiac tissue [213], the interaction of multiple spiral waves [62], the coexistence of
spiral waves with alternative stable periods [212], unidirectional pulses of activity
around a ring of cardiac tissue [155, 85], the interaction of multiple pacemakers
[21], and the interaction of spiral waves and pacemakers [182]. (This list of
references represents but a few examples of how the FitzHugh-Nagumo model has
been used to model cardiac dynamics.) Because I use the FitzHugh-Nagumo model
to examine the initiation of spiral waves in chapter 4 of the thesis, I will expand on

some of the model’s basic properties. The FitzHugh-Nagumo model simulating the

10



generation of action potentials in a single cell is given as follows:

d 1 3

do Lo %

dw '
4 = Wt B—w)

where v represents the activation variable—simulating the transmembrane voltage
in cardiac cells—w represents the tissue’s recovery processes, and €, (3, v, and
I,, are positive parameters. Because the value of € is small and positive, changes
in v take place on a faster time scale than changes in w. Given the appropriate
parameter values, there exists a unique fixed point, which can be determined by
computing the intersection of the v and w nullclines. (The v nullcline is the set
of points for which dv/dt = 0, and the w nullcline is the set of points for which
dw/dt = 0.) Plotting the nullclines in the phase plane, w as a function of v, shows
that the fixed point is where the cubic v nullcline intersects with the linear w
nullcline, Fig. 1-1B. For I,, = 0, the fixed point is stable and small perturbations
rapidly return to the fixed point. However, a sufficiently strong perturbation
in voltage (that is, an increase in v) across threshold will lead to a solution
in the phase plane as shown in Fig. 1-1B. (Panel A in Fig. 1-1 represents the
corresponding v time series following the perturbation.) Furthermore, increasing
the value of I,, can induce pacemaker activity, whereby the stable fixed point
destabilizes through a Hopf bifurcation, leading to the generation of stable
oscillations.

In order to simulate wavefront propagation in a two-dimensional sheet of

cardiac tissue, a diffusion term is added to the voltage (v) variable, which gives rise

11



to a set of reaction-diffusion partial differential equations:

ov 1 v3 0*v 0%
W _ o+ 6 - yw) |
ot 7

where D represents the diffusion coefficient of the system. The local cellular
dynamics (the reaction terms) related to the generation of the action potential
remain the same as in Eq. 1.1, and the intercellular connections are modelled

by assuming that voltage spreads via a diffusion process in both the x and y
directions. The details associated with numerically computing these equations and
some additional features of the model are expanded upon in chapter 4.

Cellular automaton models have also been used to model the dynamics of
wavefront propagation in excitable media. A cellular automaton is represented as
a grid of cells where each cell has a state that depends on a set of rules based on
the states of the surrounding cells. These models are discrete in the sense that at
a given time point, each grid point is either active, refractory, or resting. Based on
these rules, these systems can model the general properties of excitable media such
as excitability and refractoriness. Activity consistent with spiral waves have been
observed in cellular automaton models [148]. Wavefront curvature effects have also
been introduced into cellular automaton models to capture more of the known
properties of wavefront propagation through cardiac tissue [81]. Furthermore,
cellular automaton models have been used to study the propagation of wavefronts

and the initiation of spiral waves in heterogeneous cardiac tissue [22, 24].
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1.4 Cardiac arrhythmias

In general, there are three central mechanisms associated with the onset of
cardiac arrhythmias: automaticity, triggered activity, and reentry [204]. Abnormal
automaticity represents a change in the pacemaking dynamics of the heart,
including a change in the rate of the dominant pacemaker (the sinoatrial node)
or the emergence of a secondary, ectopic pacemaker [7]. Further, abnormal
depolarizations that take place during or following the action potential associated
with normal sinus rhythm represents triggered activity, which can precipitate
tachyarrhythmias [7].

Reentrant arrhythmias represent a class of abnormal cardiac rhythms for
which the dynamics of the heart are not governed by the intrinsic rhythm gen-
erated by the heart’s pacemaker but rather by a circulating pulse that reenters
the same localized tissue region. In order for the reentrant rhythm to entrain the
normal rhythm of the heart, the time it takes for the reentrant rhythm to complete
one loop of the circuit must be less than the intrinsic period of the heart. In gen-
eral, reentrant arrhythmias can be split into two classes: anatomic and functional
reentry [204].

1.4.1 Anatomic reentry

Anatomic reentry represents the unidirectional propagation of a wavefront
around an inexcitable region in the heart. A number of inexcitable regions exist in
the heart, including the tricuspid valve linking the right atrium and right ventricle,
and the four pulmonary veins that deliver oxygenated blood into the left atrium.

Inexcitable obstacles can also be generated pathologically. A block in the coronary
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blood supply—the circulation system that delivers oxygenated blood to cardiac
cells—can lead to ischemia, the reduction of oxygenated blood to regions in the
heart, and, consequently, the generation of scar tissue. The scar tissue, termed a
myocardial infarction, represents an inexcitable region of tissue, and can act as
a substrate for the generation of re-entrant arrhythmias. Myocardial infarctions
greatly increase the risk of sudden cardiac death [165].

Ablation therapy represents a surgery that aims to reduce the incidences
of reentrant activity underlying a number of arrhythmias, including atrial fibril-
lation [29], atrial flutter [29], and ventricular tachycardias. The surgery targets
inexcitable obstacles, and, in patients with myocardial infarctions, it targets the
regions of scar [109]. Understanding the dynamics and the dynamic mechanisms
associated with obstacle-induced rhythms represents an important goal from a
basic science and clinical perspective.

The dynamics of anatomic reentry have been modelled using a circulating
pulse around a one-dimensional ring of cardiac tissue. G.R. Mines first demon-
strated that a ring of cardiac tissue could sustain a circulating pulse of excitation
[147]. The dynamics of a circulating pulse around a one-dimensional ring of car-
diac tissue were examined more carefully by Frame and Simson using tricuspid
rings of canine hearts [75]. They found that oscillations in the action potential du-
ration and conduction time preceded the termination of the reentry. To model the
dynamics of this process, Courtemanche et al. examined the dynamics of a uni-
directional pulse propagating around a one-dimensional ring, and found that the

dynamics destabilize at a critical ring length [44, 45]. In particular, once the length
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of the ring is critically small, the wavefront runs into its own (partially refractory)
wave back, which causes the wavefront to slow down, and, consequently, leads

to the onset of the instability. The effects of single and multiple external stimuli
on a unidirectionally propagating wavefront in one spatial dimension have also
been examined experimentally [93] and theoretically using both partial differential
equations and discrete systems [85, 155, 106].

The circulating pulse around the ring simulates macroscopic reentry within
the heart, which underlies dangerous tachyarrhythmias. Consequently, methods
have been developed to terminate the circulation of the pulse. From a clinical
perspective, rapid pacing can terminate anatomic reentry, a method called
antitachycardia pacing [193]. Implantable cardioverter defribillators often use
antitachycardia-pacing protocols to terminate reentrant arrhythmias detected in
patients’ hearts [193]. The mechanisms underlying how these pacing protocols
terminate reentry are less clear. By stimulating directly on the reentrant circuit,
there exist a range of phases, stimulation frequencies, and number of stimuli for
which termination of the reentrant circuit takes place [155]. Sinha et al. examined
termination of anatomic reentry using stimulation from a site located a specific
distance from the circuit [186], discovering that regions of slow conduction are
critical for the termination of reentry. A considerable amount of work remains on
understanding the details of antitachycardia pacing protocols, and optimizing these
protocols to improve success rates.

A coordinated, high-voltage electric shock across the whole heart (‘cardiover-

sion’) represents another mechanism of terminating reentrant activity [104]. The
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high-energy shock can be painful and potentially damaging to the heart [203].
Recent studies have sought to develop new protocols with multiple low-energy
shocks [71, 138]. To better understand the mechanism of these new low-energy
protocols, modelling studies have used multiple one-dimensional rings to simulate
multiple vortices of activity that drive the abnormal dynamics [156].

1.4.2 Propagation block

The above studies sought to understand the dynamics and termination prop-
erties of a circulating pulse propagating around an inexcitable region. However,
what are the mechanisms underlying the initiation of this process? Unidirectional
block, where a wavefront can propagate in one direction through a localized re-
gion of the tissue but fails to propagate through the same tissue in the opposite
direction, represents the central mechanism underlying reentry (both anatomic and
functional). Unidirectional block arises as a consequence of spatial inhomogene-
ity, including differences in the refractory period in a local region of tissue [4] or
anatomic nonuniformities [28].

Propagation block can be split into two classes: geometric block and func-
tional block [114]. Geometric block represents a condition within the tissue for
which propagation through a region cannot take place. Functional block, in
contrast, takes place due to the dynamic properties of the medium, whereby prop-
agation takes place when the tissue has had enough time to recover, but does not
take place when the tissue has not had enough time to recover.

Geometric block can take place as a consequence of cellular uncoupling or the

introduction of non-conducting heterogeneities into the media [12, 24, 22]. Abrupt
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changes in the geometry of the conducting pathway can also induce geometric
block. In particular, wavefronts are more susceptible to propagation failure if
the conduction pathway suddenly expands in width [28, 23, 64]. A source-sink
mismatch—where the amount of tissue that is currently excited by the wavefront
(the source) is less than the amount of tissue the wavefront is invading (the
sink)—underlies the increased likelihood of propagation failure as a consequence of
channel width expansion [65].

Single or multiple stimuli elicited at or near the refractory period of the
tissue represents the central mechanism underlying functional block [114]. The
heart is composed of tissue with heterogeneous responses to stimuli, including the
duration of the action potential, the refractory period, and the local conduction
velocity [4]. These differences in the properties of the tissue become clinically
relevant as the coupling interval of the stimuli—the time between beats—mnears the
refractory period, where propagation block can take place locally, leading to the
onset of reentry. Structural changes to the heart (following a myocardial infarction,
for example) can introduce larger gradients in these properties [129], which can
increase the likelihood of functional block. Experimental and computational
modelling studies have explored how inexcitable barriers and regions of ionic
heterogeneity control these spatial gradients of action potential duration and
refractory period, and, consequently, influence the likelihood of functional block
[129, 172, 43, 38, 125].

Wavefront curvature represents an additional property that influences the

likelihood of functional block. A source-sink mismatch underlies how wavefront
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curvature can affect the likelihood of functional block. A convex-shaped wavefront
has more sink than source, and, hence, convex wavefronts are more likely to give
rise to functional block [65]. Again, structural changes to the tissue structure and
rapid expansions of the cardiac conduction pathway induce changes in wavefront
curvature, which can also lead to functional block [65, 119].

In chapter 4, we found that changing the position of an inexcitable obstacle
in a two-dimensional sheet of cardiac tissue induces changes in the wavefront
curvature, which predisposes particular regions of the substrate to functional block
and the onset of reentry.

1.4.3 Functional reentry

Anatomic reentry represents a wavefront macroscopically propagating around
an inexcitable region in the heart. However, reentry can also take place in a
sheet of cardiac tissue in the absence of an inexcitable obstacle, a process termed
functional reentry. Spiral waves, self-sustaining vortices of electrical activity,
represent the pattern thought to underlie functional reentry. Spiral waves have
been observed in virtually all types of excitable media, including chemical systems
such as the Belousov-Zhabotinsky reaction [210], slime mould [130], and neural
systems [121]. Spiral waves have three fundamental properties: period, the rate of
rotation; tip trajectory, the macroscopic motion of the spiral wave throughout the
media; and chirality, which represents whether the spiral wave rotates clockwise or
counterclockwise.

Theory first predicted the existence of spiral waves in cardiac systems. In

the 1960s, Krinksy proposed that a wavefront propagating through cardiac tissue
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interacting with an inexcitable barrier could give rise to a spiral wave, which he
called a reverberator [124]. Wiener and Rosenbleuth also predicted the existence

of spiral waves propagating about an obstacle [208]. These early studies linked
spiral waves with dangerous cardiac arrhythmias. Early experimental studies of the
dynamics focused on the Belousov-Zhabotinsky reaction, a chemical reaction that
gives rise to spiral waves [210]. In cardiac systems, spiral waves were first observed
experimentally in the 1990s [52, 163, 214].

The spiral tip is the point that connects the wavefront, the leading edge of
the spiral wave, with the waveback, the end of the refractory period. Exploring
the motion of the spiral tip, the tip trajectory, has proved an effective method
of exploring the dynamics of how spiral waves propagate through tissue. In
particular, the tip trajectory has provided insight into two processes: meander and
drift.

Winfree tackled spiral wave meander using the FitzHugh-Nagumo equations
in two spatial dimensions [213]. He observed a spectrum of spiral wave behaviour
depending on the excitability properties of the tissue, including circular, linear,
and outwardly- and inwardly-rotating ‘flower petal’ tip trajectories [213]. These tip
trajectories were also observed in higher-dimensional cardiac ionic models [13], and
many of these patterns have been observed experimentally [116].

The tip can also be a useful tool to understand how spiral waves respond to
external perturbations that induce spiral wave drift, the directed motion of a spiral
wave. Drift can be induced through a number of mechanisms, including resonant

drift, where periodic stimulation at precise phases of the spiral wave oscillation can
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induce motion [16]; inhomogeneity-induced drift [164]; anisotropy-induced drift [1];
and boundary-induced drift [61].

As stated above, chirality represents whether the spiral wave rotates in a
clockwise or counterclockwise direction. Chirality controls the direction of electric-
field-induced spiral wave drift in the Belousov-Zhabotinsky reaction [190] and in
corresponding numerical simulations [35, 133]. Furthermore, chirality is thought to
play a role in the dynamics of atrial flutter, a tachyarrhythmia found in the right
atrium, where the direction of circulation waves is typically classified as clockwise
or counterclockwise [176]. However, many features of spiral wave chirality remain
unexplored. In chapter 4, we find that the position of an inexcitable obstacle with
respect to a side pacemaker region determines spiral wave chirality. In the chapter
we also explore how spiral wave chirality and the frequency of the side pacemaker
are related.

Scroll waves are self-sustaining vortices that propagate in three spatial
dimensions, and represent three-dimensional analogs of spiral waves [115]. The
scroll filament is composed of the set of points for which the three-dimensional
wavefront meets the waveback—tracking the motion of the filament represents a
method to examine scroll wave dynamics [6]. Understanding the dynamics of scroll
waves is of considerable importance due to the three-dimensional nature of the
heart.

Spiral and scroll waves (‘rotors’) underlie a number of cardiac arrhythmias,
including atrial fibrillation, ventricular tachycardia, and ventricular fibrillation.

Atrial fibrillation, an arrhythmia characterized by disorganized electrical activity in
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the atria, remains a major cause of mortality and morbidity [29]. Elegant animal
models first proposed that rotors could sustain atrial fibrillation [142]. However,
recording techniques could not confirm whether these patterns underlied atrial
fibrillation in humans. The CONFIRM study first provided evidence that rotors
sustain atrial fibrillation in humans [152]. In this study, Narayan et al. identified
vortices in patients with atrial fibrillation, and then targeted these rotors for
ablation, significantly reducing the recurrence of atrial fibrillation in those patients
[152].

Spiral and scroll waves have also been linked to polymorphic and monomor-
phic ventricular tachycardia [87]. Polymorphic ventricular tachycardia is diagnosed
when there is an elevated heart rate and there are beat-to-beat changes in the
morphology of the ECG. A rotor undergoing drift through the heart is thought to
underlie polymorphic ventricular tachycardia [87, 51]. On the other hand, a rotor
that has pinned to an inexcitable obstacle, such as in anatomic reentry, is thought
to underlie monomorphic ventricular tachycardia (where the shape of the ECG is
constant and the heart rate is elevated). Ikeda et al. proposed that the mechanism
underlying the transition from polymorphic to monomorphic ventricular tachycar-
dia is potentially related to the pinning of a drifting spiral wave to an inexcitable
obstacle [105]. In patients with a myocardial infarction, the unidirectional propaga-
tion of a wavefront through an isthmus of healthy tissue located between regions of
scar represents an additional mechanism of monomorphic ventricular tachycardia
[192, 191, 109]. Clinicians performing ablation therapy to terminate the onset of

these monomorphic tachycardias target these isthmuses of tissue [192, 191, 109].
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Again, unidirectional block represents the central mechanism that gives rise
to spiral waves. The S1-S2 protocol represents a well-established protocol to
initiate spiral waves in the heart [211, 113, 36, 76]. Consider that a plane wave is
propagating through a sheet of cardiac tissue from the left edge towards the right
edge (the S1 wavefront). A pulse, termed S2, is elicited from a point source in
the wake of the S1 wavefront. If the pulse is given directly after the S1 wavefront
propagates through the area of stimulation, then the S2 pulse cannot be generated
because the tissue is in refractory. In contrast, if the S2 pulse is given a long
time after the S1 wavefront has passed, then the S2 wavefront propagates in all
directions from the point source. However, when the S2 wavefront is elicited during
the vulnerable window, the S2 wavefront is blocked in the rightwards direction,
but can propagate in the leftwards direction because that tissue has had more time
to recover, which leads to the initiation of a pair of counterrotating spiral waves.
The likelihood of reentry also depends on the intensity of the S2 pulse—increased
intensity magnitude prolongs the vulnerable window for which a S2 stimulus will
induce reentry [211, 113].

Rapid pacing through an inexcitable obstacle can also lead to the detachment
of wavefronts from the obstacle leading to the onset of spiral wave activity.
Consider a two-dimensional sheet of cardiac tissue with a side pacemaker region
and an inexcitable obstacle. At low side pacing frequencies, the wavefront collides
with the obstacle, splits into two wavelets, and these wavelets reconnect behind
the obstacle. As the side pacing frequency increases, the wavelets—propagating

on either side of the obstacle—destabilize, and detach from the obstacle, which
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leads to reentry and the onset of spiral wave activity. This process has been
examined in both simplified models of excitation and ionic models of cardiac
tissue [159, 215, 17, 141]. Rapid pacing leads to spiral wave initiation through

a source-sink mismatch introduced by the inexcitable obstacle, which leads to
wavefront-obstacle separation. Starobin and Starmer carefully examined the
source-sink mismatch, deriving requirements for wavefront-obstacle separation
[188, 189]. Coronary blocks can give rise to ischemia in localized regions of the
heart, which can act as triggers for reentry and complex rhythms. Pacing through
these slow-conducting regions influences propagation, conduction block, and the
onset of reentry [14, §].

The propagation of wavefronts through heterogeneous tissue, with randomly-
distributed non-conducting cells, represents an additional mechanism of spiral
wave initiation. Reducing cell-to-cell coupling can lead to reduced conduction
velocity, an increased likelihood of propagation block, and greater susceptibility to
reentry [24, 25, 181]. As the coupling between cells is reduced, Bub et al. showed
that three types of behaviour are observed as a function of the density of non-
conducting cells: first, plane waves propagate; second, plane waves break up into
spiral waves; and third, plane waves are blocked [24].

In general, sudden cardiac death is caused by ventricular fibrillation, where
the electrical activity of the heart is disorganized, and the ventricles cannot give
rise to coordinated contractions. Spiral and scroll wave breakup represents a
mechanism thought to underlie the transition from tachycardia to fibrillation.

Breakup is characterized by the transition from a single rotor to multiple wavelets.
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Fenton et al. described a number of mechanisms that lead to spiral and scroll wave
breakup, which include steep action potential duration restitution curves in the
tissue, bistability, and super-normal conduction [68].

In chapter 4, we explore the onset of spiral waves using simplified experi-
mental and theoretical models. In particular, I examine how the position of an
inexcitable region in combination with pacemaker frequency determine spiral wave
chirality. Many studies have examined precursors preceding the onset of spiral
wave initiation. Alternating rhythms have been shown to precede the onset of
spiral wave activity [30, 160]. In particular, alternating rhythms increase the likeli-
hood of propagation block, which can lead to the initiation of reentry—I examine
the details associated with the onset of alternating rhythms in the section below.
1.4.4 Alternans

Alternating rhythms, also termed alternans, represent beat-to-beat variations
in the heart’s dynamics. First reported over 100 years ago [80, 147], alternating
rhythms are one of several different precursors that can precede the onset of
dangerous reentrant arrhythmias. Recent clinical studies also suggest a possible
link between alternating rhythms and the likelihood of sudden cardiac death
(187, 171].

Beat-to-beat alternations in the response of the action potential underlie
alternating rhythms. Periodic stimulation can induce alternating rhythms in
cardiac systems. As the pacing frequency nears the refractory period of the tissue,
a transition from a 1:1 rhythm, where for every stimulus there is a single, stable

response, to a 2:2 rhythm, where for every two stimuli, there are two different
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types of responses (i.e. an alternation between long and short action potential
durations), takes place. Nolasco and Dahlen studied alternating rhythms induced
by periodic stimulation of ventricular cardiac tissue from frogs using a graphical
method, where they plotted curves that displayed the duration of the action
potential as a function of the diastolic interval, the amount of time the tissue had
to recover [154]. Using these curves—termed action potential duration restitution
curves—they found that the slope of the curve could predict the onset of the
alternans.

Guevara et al. rediscovered these properties nearly 20 years later, analyzing
the features of the slope prediction using experimental data from the periodic
stimulation of embryonic chick cardiac cells, and the stability of fixed points in
one-dimensional maps [91]. To analyze the stability, standard techniques can be
used, which I describe briefly.

A one-dimensional map represents a dynamical system for which the dynamics
of the system are controlled simply by the functional relationship relating the value
at the following iteration with the value at the current iteration. The stability
analysis of fixed points in one-dimensional maps represents a method of evaluating
the dynamics of these systems. For a one-dimensional map, z,11 = g(z,), there
exists a fixed point, z*, where g(z,) intersects with the function z,,; = z,. In
particular, a fixed point represents a point from the function for which the value at
the following iteration is the same as the value at the current iteration.

A fixed point can be stable or unstable. In the neighbourhood of a stable

fixed point, subsequent iterations will approach the value of the fixed point;
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near an unstable fixed point, subsequent iterations will be repelled by the fixed
point. To analyze the stability of fixed points in nonlinear one-dimensional maps,
linearization techniques are used to evaluate the dynamics.

For nonlinear one-dimensional maps, the curve in the neighbourhood of
the fixed point can be approximated as a straight line. The slope through the
fixed point determines the dynamics of fixed points in linear one-dimensional
maps. This analysis extends to the stability of fixed points in nonlinear systems,
where we designate the slope at the fixed point as o = ¢'(z*). If || > 1, the
fixed point is unstable; in contrast, if |a| < 1, the fixed point is stable, and, for
initial conditions in the neighbourhood of the fixed point, subsequent iterates will
approach z*.

Changing the value of a control parameter can change the value of @ through
+1. For one-dimensional maps, the system will undergo a saddle-node bifurcation
when o = 1, where the fixed point disappears. Or, in contrast, the system goes
through a period-doubling bifurcation when @ = —1, where a transition from a
stable fixed point to a period-2 cycle takes place. More complex bifurcations, such
as torus bifurcations, can take place for higher-dimensional maps.

To understand how one-dimensional maps can be used to understand the
onset of alternating rhythms in the heart, I first assume that the duration of
the next action potential is a function of the amount of time the cell has had to
recover [91]:

AT = f(t7) (1.3)
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I also assume that the pacing period (the inverse of the pacing frequency) is the

sum of the current action potential duration and the current recovery time:
T,=A"+1t (1.4)

We can determine the functional relationship, f(¢), by changing the pacing
frequency, thereby changing the amount of time the cell has to recover. These
restitution relationships can typically be fitted using an exponential function,
where at long ¢,., the action potential duration plateaus, and as ¢, is lowered, the
action potential duration curve decreases. By rearranging Eq. 1.4 and inserting

this relationship into Eq. 1.3, we derive a one-dimensional map as follows:
A = (T, — A" (1.5)

where there, in general, exists a unique fixed point. For Eq. 1.5, the slope at the
fixed point is governed by 7}, the pacing period. As T}, decreases, the slope at the
fixed point approaches and goes through —1, which gives rise to a period-doubling
bifurcation, establishing a stable period-2 limit cycle that oscillates between a
longer action potential duration and a shorter action potential duration.

The mechanistic details, however, associated with how alternating rhythms
influence the dynamics of the 3-dimensional heart are less clear. T-wave alternans
represents a cardiac arrhythmia characterized by a beat-to-beat alternation in the
morphology of the ECG, which has been linked to the genesis of fibrillation [160].
Improved signal processing techniques can now detect microvolt alternations in

the T-wave of the ECG, which represents a possible indicator of the risk of sudden
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cardiac death [202, 201]. However, the effectiveness of T-wave alternans as an
indicator remains unclear as there have been studies that have shown that it does
not predict increased likelihood of sudden cardiac death [40].

A beat-to-beat alternation in the ECG could arise through a couple of mech-
anisms. First, an alternation in the duration of the action potential duration—
consistent with dynamic mechanism given above by Guevara et al. [91]—could give
rise to the T-wave alternans [160]. Second, localized conduction block on every
other beat could decrease the amount of tissue contracting, which would also give
rise to T-wave alternans. Gaskell first reported this class of alternans [80], and the
dynamics have been described numerically [8] and experimentally [69].

Periodic stimulation of a sheet of cardiac tissue can lead to the emergence of
different spatial alternating patterns: concordant or discordant alternans. Spatially
concordant alternans take place when the entire tissue is alternating between
long to short beats in phase. In contrast, spatially discordant alternans take
place when localized tissue regions are alternating between long and short beats,
and other regions are alternating between short and long beats. Both spatially
concordant and discordant alternans can be initiated in homogeneous sheets of
tissue [160, 206]. Traditionally, studies showed that a transition from normal
sinus rhythm to concordant alternans to discordant alternans would take place
as a function of increasing pacing frequency. However, Gizzi et al. showed that
more complicated transitions between concordant and discordant alternans can

emerge as a function of pacing period [82]. Recent studies have also explored how

28



inexcitable barriers can increase the susceptibility of cardiac tissue to the onset of
alternans [161, 125].

If alternating rhythms represent a precursor to the onset of fibrillatory
activity, what is the mechanism through which this takes place? There is a delicate
interplay between the duration of the action potential, the refractory period,
and the conduction velocity of propagating wavefronts in the heart. However, in
general, wavefronts with short action potential durations are more susceptible to
propagation failure. Pastore et al. proposed a mechanism, using optical mapping
data of rapidly paced guinea pig heart, whereby the wavefront with a short action
potential duration runs into the refractory tail of the wavefront with the longer
action potential duration, which gives rise to local unidirectional block, and, hence,
the initiation of reentrant activity [160].

A steep action potential duration restitution curve, associated with the onset
of alternans, underlies one of the mechanisms of spiral wave breakup leading to
the onset of fibrillatory behaviour [111, 112, 68]. Spiral waves rapidly pace the
tissue, which can give rise to alternans in the duration of the action potential. If
the oscillations in the action potential duration are of sufficiently large amplitude,
the wavefront associated with the short action potential duration can run into the
refractory tail of the longer wavefront, giving rise to local conduction block, which
can lead to the initiation of reentrant activity. As described above, alternans are
associated with steep action potential duration restitution curves. Thus, studies
have sought to flatten the restitution curve of the tissue using pharmacological

means, reducing the susceptibility of the heart to fibrillatory activity [168, 78].
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Alternating rhythms represent precursors to reentrant cardiac rhythms. In
chapter 3, we predict the onset of alternating rhythms through period-doubling
bifurcations using one-dimensional map theory. In chapter 4, we use action
potential duration restitution curves computed throughout the substrate to make
predictions about the pacing frequency at which specific regions of the substrate
will destabilize, giving rise to spiral wave initiation.

1.5 Predicting the onset of abnormal cardiac rhythms

Biological, physical, and social systems often display qualitative changes in
dynamics. Developing early warning signals to predict the onset of transitions in
complex systems remains a challenging problem, and is relevant in diverse contexts
[180], including climate change [50, 131], ecology [143, 31|, population dynamics
[47, 46, 48], physiology [145, 123], and finance [144].

Instabilities in the dynamics of cardiac systems can represent precursors
for the onset of potentially dangerous cardiac rhythms. Above, I discuss how
alternating rhythms, which can arise as a consequence of a period-doubling
bifurcation, can precede the onset of abnormal reentrant arrhythmias [160].
Therefore, the development of early warning signals that herald the onset of these
instabilities represents a potentially useful therapeutic goal for the prevention of
cardiac arrhythmias.

Transitions in the dynamics of complex systems can take place through a
number of mechanisms. These transitions can be linked to bifurcations, whereby
a change in the value of a model parameter leads to qualitative differences in

the dynamics of the system. For a number of bifurcations, as a parameter value
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approaches a bifurcation point, there is a slower return to equilibrium following
perturbations, a property called slowing down, which can be targeted to develop
early warning signals of these transitions [180, 126, 31, 47, 50, 49]. Slowing down
takes place in the neighbourhood of period-doubling bifurcations [209, 94], a
property that I use to analyze the period-doubling bifurcations in chapter 3.

A number of studies have focused on developing early warning signals of
saddle-node bifurcations, where, at a critical parameter value, there is a transition
in the value of the system’s steady-state value [180, 49]. These transitions can be
characterized by tipping points, which represent the threshold that the system
crosses leading to the establishment of a new steady-state value [83]. In the 1970s,
May used the saddle-node bifurcation to simulate collapses in models of vegetation
biomass as a function of the number of herbivores [143]. Models developed by
researchers working on catastrophe theory also simulated rapid and abrupt changes
in steady states using saddle-node bifurcations [218].

Contemporary work on abrupt transitions as a consequence of saddle-node
bifurcations (mostly in continuous-time contexts) have focused on two early
warning signals: an amplification of the noise and an increase in the system’s
memory. The eigenvalue associated with the stable steady-state governs how
rapidly equilibrium is reestablished following perturbations. As the system nears
the saddle-node bifurcation, the magnitude of the real part of the eigenvalue
approaches zero, reducing the system’s rate of recovery back to equilibrium.
Consequently, both the noise and memory increase as the system nears the

transition. To quantify changes in the system’s memory, these studies report an
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increase in the autocorrelation in the neighbourhood of the transition [180, 126,
31, 47, 50, 49]. Another phenomenon that can predict the oncoming saddle-node
bifurcation is flickering, where the system flips back and forth between two stable
steady states near a critical parameter value [205].

These early warning signals can predict transitions in systems that undergo
saddle-node bifurcations as a consequence of a slowly-varying parameter. However,
transitions in physical, chemical, and biological systems take place through a
number of bifurcations with varying properties near the onset of these bifurcations.
Predicting the onset of noise-induced transitions is difficult because the underlying
properties of the system have not changed, but rather a chance event (typically a
large excursion from the steady-state value) leads to a transition in the dynamics
[131, 56]. Additionally, transitions in dynamics take place through a number of
bifurcations. Noisy precursors have been reported for other bifurcations, including
pitchfork, hopf, and period-doubling bifurcations, in terms of changes in the power
spectra in the neighbourhood of the transitions [209].

In chapter 3, potassium channel blockade leads to the onset of alternating
rhythms through period-doubling bifurcations in aggregates of spontaneously
beating cardiac cells. The transition takes place over a long time scale—on the
order of tens of minutes. I analyze these bifurcations and develop a quantitative
measure that can predict the onset of the period-doubling bifurcations.

Alternating rhythms can evolve into more complicated rhythms. In fact,
sequences of period-doubling bifurcations are associated with the onset of chaotic

dynamics.
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1.6 Period-doubling route to chaos

Period-doubling bifurcations can underlie the transition from a normal cardiac
rhythm to an alternating rhythm as the value of a control parameter goes through
a critical point [91]. A sequence of period-doubling bifurcations can also lead
to the generation of chaotic dynamics. Chaotic dynamics have been reported
in simplified cardiac systems [88, 79]. Cardiac fibrillation was perhaps thought
to be driven by spatiotemporal chaos, but it does not appear that this dynamic
mechanism underlies fibrillatory behaviour in the heart.

Chaotic dynamics are aperiodic, sensitive to initial conditions, bounded, and
deterministic. A question arises, however: if all biological systems contain noise,
then how can one suggest that a biological system (such as the heart) gives rise to
chaotic dynamics. Glass proposed that chaotic dynamics observed in experimental
systems could be considered ‘chaotic’ if the dynamics of the experimental system
follow bifurcations that are consistent with a transition to chaos observed in
theoretical models [84].

In chapter 2, we find that potassium channel blockade can give rise to highly
irregular rhythms in spontaneously beating aggregates of cardiac cells. Analyzing
these rhythms using low-dimensional maps demonstrates that these rhythms are,

in fact, chaotic and take place through a sequence of period-doubling bifurcations.
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Figure 1-1: Sample solution and phase plane for the FitzHugh-Nagumo
model (A) Representative voltage trace in response to a perturbation. (B)
FitzZHugh-Nagumo model phase plane. The v-nullcline is cubic (in blue) and the
w-nullcline is linear (in red). The fixed point of the system is where the nullclines
intersect. The black line represents the trajectory of the system in response to a
perturbation.
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CHAPTER 2
Chaotic cardiac dynamics induced by potassium channel block

2.1 Foreword

Nonlinear systems often show sequences of changes in dynamics as key
parameters continuously change. In one type of transition, termed a period-
doubling bifurcation, the period of an oscillator doubles as a parameter passes
through a critical value. Sequences of period-doubling bifurcations can lead to
the onset of chaotic dynamics. Chaotic rhythms are aperiodic, deterministic,
sensitive to initial conditions, and bounded. Examples of chaotic dynamics have
been observed in a number of biological [88, 3|, chemical [185], and physical [135]
systems.

This thesis focuses on instabilities of the cardiac rhythm—both because of
its fundamental importance for human health as well as the clear connections to
nonlinear dynamics. Attention has also focused on the effects of mutations and
drugs on the hERG potassium channel that mediates the delayed potassium I,
current [174]. Instabilities in cardiac activity associated with the lengthening of
action potential duration as a consequence of mutations or drugs represents an
additional important cause of cardiac arrhythmia [169, 173, 9, 72, 175, 132, 179,
178]. Experimental modification of the I, is carried out by treatment with E4031,
a drug that specifically blocks the hERG potassium channel [184, 183, 174, 42].

Since ion flow through potassium channels leads to repolarization, blocking I,
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leads to a prolongation of the action potential duration. In related work, a variety
of complex rhythms have been observed from potassium channel blockade in
experimental and theoretical studies of neural systems [102, 33, 63, 34].

In early unpublished experimental studies carried out in our laboratory, we
observed complicated sequences of interbeat intervals (IBIs) following treatment
of E4031 to spontaneously beating aggregates of embryonic atrial heart cells,
Fig. 2-1. Subsequently, a new set of studies on the effects of E4031 on cardiac cells
was initiated [117]. To carry out recordings over a longer time window, we adopted
optical methods to record the motion of heart cell aggregates. The study reported
complex bursting rhythms, and developed a Hodgkin-Huxley-style ionic model that
was capable of generating similar dynamics to those experimentally observed [117].
Although in our earlier work we noted that chaotic dynamics could be present, we
did not give experimental or theoretical models that displayed chaos.

In this chapter, I focus on the chaotic dynamics observed in embryonic chick
aggregates following E4031 treatment. First, I present the experimental meth-
ods, and then consider two examples of chaotic rhythms from the experimental
data, analyzing the dynamics using one-dimensional maps. I also describe the
dynamics and bifurcations of the Hodgkin-Huxley-style ionic model as a function
of potassium channel blocker concentration.
2.2 Experimental methods
2.2.1 Tissue preparation

Either atrial or ventricular tissue were prepared according to the DeHaan

method [53, 127]. The intracellular recordings performed in the early 1990s were
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conducted with atrial aggregates. The optical recordings were carried out on
ventricular aggregates, including data from 93 aggregates described earlier [117]
and 11 subsequent experiments. The atria or ventricles of seven-day-old White
Leghorn chick embryo hearts were dissected and dissociated into single cells by
trypsinization. The cells were added to an Erlenmeyer flask containing a culture
medium gassed with five per cent COsq, 10 per cent Og, 85 per cent Ny (pH=7.4),
and placed on a gyratory shaker for 24-48 hours at 37° C. The aggregates had a
diameter of approximately 100-300 ym. In this environment, the aggregates beat
with an intrinsic frequency in the range of 700-2000 msec. The experiments were
conducted two to six hours after the aggregates were plated on the tissue culture.

The Ik, channel blocker E4031 (Alomone Labs, Jerusalem) was added at
various concentrations in the range of 0.5-2.5uM.
2.2.2 Intracellular recordings

Intracellular recordings were carried out as described previously [127] on atrial
preparations. Briefly, electrical activity was recorded using microelectrodes filled
with 3 M KCI solution (typical microelectrode resistance was 40-60 M€2). Trans-
membrane potential was recorded, using an amplifier with negative capacitance
compensation. The bathing medium was kept at virtual ground by coupling to a
current-to-voltage converter (10-100 mV/nA) through an agar-salt bridge and a
chlorided silver wire.
2.2.3 Optical imaging technique

We used an optical imaging apparatus that monitored the aggregates’ motion.

The device recorded the light-intensity variation of a specific pixel on the edge of

37



an aggregate. The edge pixel data was then processed through a bandpass filter
(cutoff frequencies: 0.1Hz—6.5Hz). Using Matlab, we identified the beats and
computed the time interval between consecutive beats. The system employed
phase-contrast imaging sampled at 40 Hz and a CCD camera (RedShirtImaging,
LLC, NeuroCD-SM) at an 80 x 80 pixel spatial resolution. Recordings were carried
out at 35 — 37° C.
2.3 Results
2.3.1 Intracellular recordings

The transmembrane voltage was recorded following the application of E4031.
The complex dynamics observed following E4031 application of atrial aggregates
merely provided motivation for further study. However, since the optical recordings
reflect the motion of the aggregates and the electrical recordings reflect the
transmembrane voltage, the two sets of experiments complement each other.

Figure 2-1 displays two examples of recorded activity. Panel A shows irregular
dynamics in which there are variable IBIs. This type of variability suggests
the possibility of underlying chaotic dynamics. However, the recording was not
sufficiently long to carry out a detailed analysis. (This intracellular recording is
similar to the work that will be presented in Fig. 2-3.) Panel B from Fig. 2-1
shows a transition from a regular rhythm of doublets to a rhythm with bursts
of activity and doublets. This trace is similar to the bursting rhythms described

earlier [117].
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2.3.2 Optical recording examples

The transition times following E4031 application display a great deal of
variability, even for aggregates in the same culture dish subjected to the same
preparation procedure. Following E4031 application, the aggregates’ intrinsic
beat frequency was maintained for variable lengths of time—between 10 and 40
minutes. Following this periodic activity there were qualitative changes in the
dynamics that depended on E4031 concentration. In general, when we applied
between 0.0 to 0.9 pmol E4031 to the dish, the aggregate’s intrinsic frequency
was maintained throughout the experiment. When more than 2.5 pmol was
applied, the IBIs became increasingly shorter, settling at a stable accelerated
rate. Between 1.0 pmol and 2.0 pgmol, though, complex dynamics tended to
emerge. An alternation between long and short intervals (doublets) was observed
in 71/104 aggregates. In 21/104 aggregates, there were added beat rhythms with
occasional doublets. Bursting patterns were observed in 45/104 aggregates. In
9/104 aggregates, chaotic dynamics were observed. In this paper we focus on the
dynamics that appear to be chaotic.

Figures 2-2 and 2-3 display examples of highly irregular rhythms. Panel A
of these figures give the IBIs over the course of the experiments, as well as traces
displaying typical time series of activity. Panel B of Figs. 2-2 and 2-3 show return
maps in which each IBI is plotted as a function of the preceding IBI at a few times
throughout the experiments. The data in both figures share the common feature
that the initial regular oscillations undergo bifurcations to more complex rhythms.

A striking feature of the diagrams is that the data in panel A of both Figs. 2-2
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and 2-3 resemble the common bifurcation diagrams showing the iterates of a
function as a parameter is changed. In the current case, the changing parameter
is either associated with changing concentrations of drug as a result of diffusion,
or changing physiology secondary to the presence of the drug. Independent of the
particular mechanism, the changes take place over a time scale of tens of minutes.

The return maps displayed in panels B of Figs. 2-2 and 2-3 share some
common features and also show some striking differences. For both examples,
the dynamics appear to evolve over the course of the experiment. Further, the
irregular activity shown in the time series is consistent with a one-dimensional
map with a single extremal point. However, for the data in Fig. 2-2 the extremal
point is a maximum, whereas in Fig. 2-3 it is a minimum. Data similar to that
displayed in Fig. 2-2 was found in four preparations, whereas data similar to that
displayed in Fig. 2-3 was found in five preparations. Since these one-dimensional
maps are similar to one-dimensional maps with quadratic extrema that display
chaotic dynamics, we attribute the observed complex dynamics to deterministic
chaos. For short, noisy data such as we have here, we believe that well-defined
one-dimensional return maps consistent with chaos provide a better method for
identifying chaos than other criteria such as the Lyapunov exponent [84].

We do not understand the origin of the differences between the two prepa-
rations. Although the concentrations of E4031 were somewhat different, we also
found patterns similar to those in Fig. 2-2 at 1.0 pmol and 1.5 pumol, and similar
to those in Fig. 2-3 at 2.0 umol. However, the five preparations similar to those

shown in Fig. 2-3 were done by one investigator, whereas the four preparations
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similar to experiments shown in Fig. 2-2 were done by a second investigator about
two years following the initial experiments.

Despite these discrepancies, we believe that it is useful to develop simple
phenomenological models of the data using one-dimensional maps with adjustable
parameters, as well as ionic models.

2.3.3 Phenomenological model

The data presented in Fig. 2-2 appears similar to data that could be gener-
ated using a one-dimensional map with stochastic terms, as a parameter changes
leading to bifurcations. To develop a phenomenological model for the experi-
ments we used an analytic function to fit the final chaotic return map, and then
translated the fitted map to generate bifurcations.

For the first example displayed in Fig. 2-2, we used the following equation:

Tnpr = a(z, — B)e V@A) _§(x, — B) + 71 (2.1)

where x,, represents the nth IBI, and «, 3,7, 6, and 7 are all positive parameters.
We selected the function’s parameters—which are phenomenological in nature—
based on which values could most closely reproduce the experimental data. Panel
B of Fig. 2-2 displays the one-dimensional return maps—which maps the IBI

at time ¢ with the IBI at time ¢t + 1-—of the IBIs at four particular time points
throughout the experiment. The value of parameter 7 is different for each time
point; 7 continuously decreases throughout the course of the experiment, giving

rise to the complex transitions.
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A sequence of period-doubling bifurcations gives rise to the experimentally
observed chaotic dynamics. A transition from period-1 to period-2 takes place
between 10 to 13 minutes following E4031 application, as the upper and the lower
branches of the IBIs split apart. The system oscillates in the period-2 experimental
parameter regime for approximately 10 to 15 minutes before another period-
doubling bifurcation occurs. Following this transition, however, the system’s
intrinsic noise covers the underlying period-4 beat pattern, and it is difficult to
delineate the branches. The onset of chaotic dynamics appears to take place at
around t=37 minutes and lasts until the end of the recording.

We fit the analytic function given by Eq. 2.1 to the experimentally generated
chaotic return map. We constructed the chaotic map with IBIs from t=37 minutes
until the end of the recording. The analytic function displayed the same sequence
of period-doubling bifurcations, providing strong evidence that the seemingly
irregular activity between t=37 minutes and the end of the record is consistent
with deterministic chaos. We decreased the parameter 7, which translated the
function vertically, to display the sequence of transitions (from period-1 to period-2
and so on). Using the listed values of parameters and within the given range of 7,
Eq. 2.1 has two fixed points: x] and x3. 7 is always unstable because the slope
of the function through the line z,,1 = =z, is always much greater than 1. z3,
however, gives rise to a set of period-doubling bifurcations as 7 is lowered.

For approximately 7 > 0.713, x5 is stable, destabilizing when 7 < 0.713
because the slope of the function through the line x,,,; = =, at the fixed point

goes from greater than —1 to less than —1. (Recall that the criterion for stability

42



d:cn+1

Ll =+ < 1, where 2* is
Tn

of a fixed point of a one-dimensional map is given by |
a fixed point.) Once z} destabilizes, a cycle of period-2 emerges. A cycle of period-
4 emerges as 7 is further reduced. Again this is consistent with the experimental
observations’ dynamical structure.

For the second chaotic example, displayed in part A of Fig. 2-3, we used the

following equation:

Tnp1 = alz, — B)e P 41 (22)

where x,, represents the IBIs, and «, 3,~, and 7 are all positive parameters. Panel
B of Fig. 2-3 displays the associated one-dimensional return maps at three time
points throughout the experiment. For this example, the bifurcation parameter
B, which controls the horizontal position of the fitted return map, is continuously
decreased, horizontally translating the map. A sequence of period-doubling
bifurcations gives rise to the chaotic dynamics, which is qualitatively similar to
the experimental data. Panel A of Fig. 2—4 displays Eq. 2.1’s bifurcation structure
as a function of 7. Likewise, panel B of Fig. 2-4 represents Eq. 2.2’s bifurcation
structure as a function of 5. These bifurcation diagrams display in more detail the
cascade of period-doubling bifurcations leading to chaotic dynamics.
2.3.4 Hodgkin-Huxley ionic model

We assembled a single-cell cardiac ionic model to numerically simulate the
effects of adding drug to a spontaneously beating chick cell aggregate. The model
adapts the equations given by Kowtha et al., [122] and has seven discrete ionic
currents and ten dynamic variables. Kim et al. [117] initially presented this model;

however, for this study, we used a different set of parameter values. The differences
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in the parameter values and a full explanation of the model are described in
Appendix A at the end of the thesis.

A forward Euler numerical scheme was employed with a step-size of At =
0.00005 seconds. The model states that V' = —1I,,,(V)/C;, where V is the
total membrane current, I;, is the total membrane current, and Cj is the input
capacitance. The model also assumed that I = Ing+Ixs+ 1y + 11+ 1cq+ 1+ 15,
where [y, is the inward sodium current, [ is the slowly activating potassium
current, Ix, is the rapidly activating delayed rectifier potassium current, [
is the inward rectifier potassium channel, I, is the inward calcium current, I,
is the time-independent background current, and Iy is the hyperpolarization-
activated pacemaker current. The specific parameters and equations are included
in Appendix A.

Figure 2-5 displays the ionic model’s numerical results. We studied the effects
of changing I, conductance, gg,, which represents the number of potassium
channels available to mediate /g,. In an experimental context, gk, decreases as
E4031 concentration increases. The model reproduces dynamics and transitions
similar to those observed experimentally. We observe singlets (single cycle length)
for high gk, values. As gk, decreases, the action potential duration increases as
a consequence of reduced inwardly rectifying current. At a critical g, value, a
period-doubling bifurcation takes place, giving rise to a doublet pattern. The
bifurcation takes place rapidly in gg, parameter space. Another period-doubling
bifurcation—from period-2 to period-4—takes place as gk, is further decreased.

We observe dynamics consistent with chaos at approximately g, = 12. Reverse
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period-doubling bifurcations shift the system out of the chaotic regime, establish-
ing another stable, accelerated limit cycle at low gg, values.

The numerically computed chaotic parameter regime was studied in more
detail. We reduced a time series with a gx, = 11.898 to a one-dimensional
return map by computing the IBIs, and plotting each IBI as a function of the
preceding value. The one-dimensional return map displays qualitatively similar
characteristics to the experimental chaotic example shown in Fig. 2-2. For the
simulation in Fig. 2-5C, we estimated the Lyapunov exponent of the IBI return
map by estimating the slope of the fitted map at each point. The Lyapunov
exponent (the logarithm of product of the absolute values of the slopes) was
positive, consistent with chaotic dynamics in the ionic model.

2.4 Discussion

Following the addition of E4031, a drug that blocks potassium channels, a
variety of complex rhythms are observed in spontaneously beating embryonic
chick heart cells, including alternating rhythms, bursting rhythms, and irregular
rhythms. In some preparations, a return map, in which the interbeat interval
(IBI) is plotted as a function of the preceding IBI, falls on a one-dimensional
function that generates chaotic dynamics, lending support to the identification of
chaotic dynamics. Further, we propose an ionic model that reproduces many of
the characteristic dynamical regimes as a function of decreasing potassium channel
conductance: alternans, bursting dynamics, period-doubling bifurcations, chaotic

dynamics, and a stable, accelerated rhythm regime.
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In the past there have been a large number of experimental and theoretical
studies analyzing the effects of ionic channel blockade and modification in nerve
and heart cells. Following pioneering studies on the effects of potassium chan-
nel blockade on a molluscan neuron by Holden et al. [102], Chay and colleagues
demonstrated a variety of complex rhythms in simplified ionic models of nerve
cells as potassium current was reduced [33, 63, 34]. More recently, there have been
extensive studies on the dynamical effects of extracellular calcium on a neural
pacemaker generating chaotic interspike interval return maps that are similar to
Fig. 2-2 [136, 108]. The above papers refer to dynamical systems that are well
described by ordinary differential equations. Extending this work to spatially dis-
tributed cardiac systems that are best described by partial differential equations,
manipulation of ionic channel properties can lead to the induction of complex
reentrant rhythms similar to those believed to underlie serious cardiac arrhythmias
[9, 216, 128, 26]. This body of work makes clear that even though neural and car-
diac oscillations must necessarily be robust to environmental perturbations, there
is nevertheless a delicate interplay of ionic conductances. Disturbing the relative
contributions of different channels can lead to degeneration of dynamics yield-
ing rhythms similar to those generated by well-known bifurcations in nonlinear
dynamics.

Our experimental technique allows for the simultaneous monitoring of multiple
aggregates subject to the same experimental manipulations over long times. We
measured the aggregates’ beat activity by collecting the light intensity from a

pixel on the edge of a particular aggregate and detecting the changes of the light
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intensity—a jump in the light intensity was considered to be a contraction and

a consequence of an action potential. We selected this method over intracellular
measurement or dye application because the drug’s effect over the aggregate’s
dynamics took place over the course of tens of minutes, and other methods

of data collection are difficult to sustain over such long time periods. Since
parameters are continuously changing, this method generates bifurcation diagrams,
e.g. see Figs. 2-2 and 2-3, similar to classic bifurcation diagrams that depict
dynamics in theoretical models as a function of a parameter. Thus, the addition
of drugs to excitable biological systems enables direct experimental observation of
bifurcation diagrams. This procedure could be useful for the screening of drugs for
proarrhythmic effects. From a nonlinear dynamical perspective, the method could
be exploited to analyze questions of robustness of dynamics and bifurcations as a
function of physiological differences between different aggregates.

From a medical perspective, the initiation of complex arrhythmia as a
consequence of modifying ionic channel activity represents a major impediment
and problem for the development of new drugs [72, 175]. The current work points
to the difficult mathematical problems that will need to be solved in order to
understand the complex dynamics induced by drugs that modify potassium
channels conductance in heart cells.

In this chapter, I showed that sequences of period-doubling bifurcations in the
dynamics of aggregates of embryonic chick cardiac cells can lead to the initiation
of chaotic dynamics. Potassium channel blockade can also lead to the onset of

alternating rhythms through a period-doubling bifurcation. Alternating rhythms
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in the spatially-extended context of the heart can precede the onset of serious
reentrant arrhythmias. In chapter 3, I develop early warning signals to predict the
onset of alternating rhythms based on data collected from spontaneously beating

aggregates of cardiac cells following potassium channel block.
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Figure 2—-1: Intracellular transmembrane voltage recording of a sponta-
neously beating atrial aggregate following E4031 application. (A) Rep-
resentative chaotic example. (B) Transition from doublet beat pattern to more

complex bursting behavior. The transition takes place at roughly t=25 seconds.
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Figure 2-2: Chaotic dynamics in spontaneously beating aggregate of car-
diac cells following the application of 1.5 ymol E4031. (A) Experimental
observations of the motion of a ventricular aggregate. This experiment was per-
formed by the second investigator in the set of follow-up experiments to the initial
study [117]. The drug is applied at time t=0 minutes. The aggregate maintains
its intrinsic frequency for roughly 15 minutes before the initial bifurcation takes
place as the E4031 diffuses throughout the dish. (a) Aggregate’s intrinsic beat
frequency. (b-d) Doublet pattern generated through a period-doubling bifurcation.
(e-f) Chaotic dynamics. (B) The IBIs are plotted as a function of the preceding
IBI and a phenomenological one-dimensional map is fitted to the beats as the dy-
namics evolve. Equation 2.1 governs the fitted map’s shape. The function has five
parameters: a=35, $=0.42, v=18, 6=0.2, and 7, which is the bifurcation parame-
ter. 7 vertically translates the function, so 7 continuously decreases throughout the
course of the experiment.
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Figure 2-3: Chaotic dynamics in cardiac aggregate following the appli-
cation of 2.0 pymol E4031. (A) Experimental observations of the motion of a
ventricular aggregate. The first investigator performed this experiment. The ini-
tial bifurcation takes place at approximately t=40 minutes. (a-b) Singlets. (c-f)
Irregular chaotic dynamics. (B) One-dimensional return maps of the IBIs from
experimental data described in panel A. The function is described by Eq. 2.2. The
function has four parameters: a=23, v=7, 7=2, and [, which is the bifurcation
parameter.  horizontally translates the function, so 8 continuously decreases
throughout the course of the experiment.
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Figure 2—4: Bifurcation diagram of the one-dimensional maps that sim-
ulate the drug-induced chaotic cardiac rhythms in Figs. 2-2 and 2-3.
(A) Bifurcation diagram of the one-dimensional return map given by Eq. 2.1 that
describes the IBIs as a function of the bifurcation parameter, 7. The function has
five parameters: a= 35, =0.42, yv=18 , §=0.2, and 7, which is the bifurcation
parameter. 7 governs the vertical orientation of the function, and, as 7 decreases
a sequence of period-doubling bifurcations take place. (B) Bifurcation diagram of
the one-dimensional return map given by Eq. 2.2. The function has four parame-
ters: a=23, y=7, 7=2, and 3, which is the bifurcation parameter. 3 represents the
horizontal orientation of the map, and, as 3 decreases, the map shifts towards the
curvilinear portion of the map, generating a cascade of period-doubling bifurca-
tions leading to chaos.
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Figure 2-5: Hodgkin-Huxley-style ionic model captures dynamics con-
sistent with experimental dynamics as a consequence of potassium
channel blockade.(A) Bifurcation diagram that describes the dynamics of the
Hodgkin-Huxley-style model. The asymptotic IBIs of the model are displayed as
a function of the hERG potassium channel conductance, gg,. (Units for gk, are
mS/cm®.) (B) The time series associated with particular values of the bifurcation
diagram. (a) Intrinsic frequency of the single cell. (b) Coupled beats following

a period-doubling bifurcation. (c¢) Bursting dynamics following another period-
doubling bifurcation. (d) Chaotic dynamics. (e) Sustained accelerated rhythm. (C)
One—dirglensional return map of the IBIs within the chaotic regime, gx,=11.898
mS/cm”.
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CHAPTER 3
Predicting the onset of abnormal alternating rhythms

3.1 Foreword

In the human heart, a number of mechanisms underlie the transition from
a normal cardiac rhythm to arrhythmia. The onset of an alternating cardiac
rhythm, where, for example, an alternation in the duration of the action potential
is observed, represents one such mechanism [160, 82]. These alternating rhythms
(alternans) can herald the initiation of arrhythmias, including tachycardia and
fibrillation [206, 177, 82]. Furthermore, T-wave alternans is an arrhythmia for
which an alternation in the T-wave of the electrocardiogram is observed. Clinically,
the manifestation of T-wave alternans increases the patient’s risk for sudden
cardiac death [171, 201].

The mechanism underlying the transition from normal cardiac rhythm to
alternans is linked to a mathematical instability called a period-doubling bifur-
cation, where the period of the system’s oscillation doubles as a consequence of
a change in the value of a model parameter [91, 58, 59]. Examples of parameters
that can induce a period-doubling bifurcation in cardiac systems include pacing
frequency [88], temperature [70], and drugs [110, 167]. Thus, further development
of statistical measures to predict the onset of period-doubling bifurcations is clin-
ically relevant. Theoretical studies have demonstrated that, near the onset of the

transition, period-doubling bifurcations induce dynamical slowing down and noisy

o4



precursors such as the emergence of an additional peak in the power spectrum
[94, 209]. Recent studies have also examined pre-bifurcation amplification of an
iterated map’s response to alternate pacing protocols [222].

In a previous study from our group and chapter 2 of this thesis, treating
spontaneously beating aggregates of cardiac chick cells with E4031, a hERG
potassium channel blocker, led to a spectrum of complex dynamics [117, 167],
including alternating rhythms, bursting rhythms, accelerated rhythms, and chaotic
dynamics. In this chapter, I develop early warning signals to predict the onset of
alternating rhythms, which take place through period-doubling bifurcations.

By analyzing the inter-beat intervals, I show that, near the onset of the
period-doubling bifurcation, damped oscillations appear in the autocorrelation
function, and the standard deviation of the inter-beat intervals increases. Then
I provide an analytic framework underlying the changes in these statistical
indicators by computing analytic expressions for the autocorrelation function
and the probability density function. Lastly, analysis of return maps of inter-
beat intervals—for which the current inter-beat interval is plotted as a function
of the following inter-beat interval—reveals that the slope of the return map
represents a quantitative measure that can assess how close the system is to a
period-doubling bifurcation. Additionally, I show that the slope measure and the
lag-1 autocorrelation coefficient are equal. This work demonstrates the presence of

early warning signals for transitions in noisy cardiac systems.
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3.2 Results
3.2.1 Onset of alternating rhythms

Between 0.5-2.5 pmol E4031 was applied to spontaneously beating aggregates
of embryonic chick cardiac cells, blocking the human Ether-a-go-go-Related Gene
(hERG) potassium channel [42] (see Methods for details on the experimental
protocols). Following the application of the drug, the aggregates maintain their
intrinsic beat frequency for roughly 10-40 minutes before a qualitative change in
the dynamics took place. These transitions gave rise to a spectrum of complex dy-
namics, including alternating rhythms, bursting oscillations, chaotic dynamics, and
accelerated rhythms. We analyzed the dynamics of the aggregates by computing
the inter-beat intervals, the time between successive beats.

Of the aggregates we analyzed, 43/104 underwent a period-doubling bifurca-
tion. In 71/104 cases, the aggregates exhibited an alternating rhythm. Figure 3—
1A displays the inter-beat intervals from a representative experiment following the
application of 1.5 pymol E4031 at t=0, where a period-doubling bifurcation of the
dynamics takes place at approximately t=50 min. The spaces between the sets of
inter-beat intervals in the panel represent the times when recording was stopped
for data storage purposes (approximately 2-3 mins). The three representative time
series plotted in Fig. 3-1A correspond with the dynamics in the first (i), fourth
(ii), and fifth (iii) sets of inter-beat intervals.

Theory predicts that in the neighbourhood of a period-doubling bifurcation
the system takes longer to recover to equilibrium following a perturbation [94,

209]. If the system is far from a bifurcation, the system rapidly re-establishes its
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steady-state value, so the system has no ‘memory’—consecutive inter-beat intervals
are not correlated. However, close to the period-doubling bifurcation, the system
re-establishes the steady-state value less rapidly—and in an oscillatory fashion—
leading to a negative correlation between successive beats. We observe negative
correlation between successive inter-beat intervals in the neighbourhood of the
bifurcation in Fig. 3-1B—panel B is a zoomed-in plot of the fifth set of inter-beat
intervals from panel A (corresponding with iii).

To quantify how the statistical features of the inter-beat intervals change as
the system approaches the period-doubling bifurcation, we examine the system’s
noise and autocorrelation. In Fig. 3-2A, we plot the return maps for the first (i),
fourth (ii), and fifth (iii) sets of inter-beat intervals from Fig. 3-1A. Based on
the return maps, we observe that as the system approaches the period-doubling
bifurcation, the variation of the inter-beat intervals increases and successive inter-
beat intervals become negatively correlated. In Fig. 3-2B, we plot the histograms
of the detrended inter-beat intervals again for the same sets of inter-beat intervals
examined above in Fig. 3-1A. We show that the distributions of inter-beat
intervals spread out, suggesting an amplification of the noise of the inter-beat
intervals. We compute the standard deviation for each set of detrended inter-beat
intervals and find that the standard deviation of the inter-beat intervals changed
from o = 0.013 in the first set of inter-beat intervals to ¢ = 0.14 in the fifth set of
inter-beat intervals given in Fig. 3-1A.

In Fig. 3-2C, we compute the autocorrelation function for a set of detrended

inter-beat intervals (20 beats long) centred at the 150th beat for the same three
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sets of inter-beat intervals we looked at above. Near the beginning of the experi-
ment (f = 0), because the system is far from the bifurcation, successive inter-beat
intervals are uncorrelated, so the lag-1 autocorrelation coefficient is approximately
equal to zero, as shown in the autocorrelation functions computed for i (left panel)
and ii (middle panel) in Fig. 3-2C. However, as the system nears the bifurcation,
damped oscillations emerge in the autocorrelation function, reflecting the effect
of longer recovery times following perturbations in the neighborhood of the bifur-
cation, as shown in the right panel of Fig. 3-2C. We propose that the emergence
of damped oscillations in the autocorrelation function and an amplification of the
system’s noise represent possible early warning signals to anticipate the onset of
period-doubling bifurcations.
3.2.2 Analysis of early warning signals

In chapter 2 of this thesis, we modelled the inter-beat intervals observed in
the experimental data following the treatment with E4031 using an exponential
nonlinear one-dimensional map in the absence of noise. However, the dynamics of
virtually all biological systems are influenced by noise. Therefore, we consider the
following continuously perturbed exponential nonlinear one-dimensional map to

model the inter-beat intervals following the treatment of E4031:

Tpi1 = e PE) 4§ 46, (3.1)

where x,, represents the nth inter-beat interval, (,, is a random variable drawn
from a normal distribution with a mean equal to zero and a standard deviation

equal to one. o is a positive parameter, which we assume to be equal to 0.01,
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consistent with the fluctuations observed in the inter-beat intervals when the
system is far from the bifurcation. «, 3,~, and § are parameters that govern
the shape of the exponential map. To simulate the experiments, we study the
dynamics of the map as we decrease v. The map has a unique fixed point, which,
at a critical «y, destabilizes, giving rise to a period-doubling bifurcation. (See
Methods for full description of numerical simulations and parameter values.)

To gain mathematical insight into the early warning signals observed in
the experimental data, we set out to derive analytic expressions for both the
probability density function and the autocorrelation function as the system
approaches a period-doubling bifurcation. We approximate the dynamics of Eq.
3.1 using a continuously perturbed linear one-dimensional map with a unique fixed
point at z* = 0, examining the dynamical features as the slope at the fixed point
approaches —1, the requirement for the initiation of a period-doubling bifurcation.

We define the noisy linear map as follows:

Tpi1 = Ay + 0(, (3.2)

where x,, represents the deviation of the nth inter-beat interval from the mean, (,
is a random variable drawn from a normal distribution with a mean of zero and

a standard deviation equal to one. Again, o = 0.01, which is consistent with the
system-level noise of the experimental data. A represents the slope of the map

at the fixed point, z*. Following work from [194, 180], we analytically compute

the probability density function. Iterating the map directly leads to the following
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series:

Tn= Y Ao (3.3)
i=0
We computed the probability density function as n — oo as follows:
1— A2 —2?(1 — A?)
; = _ 4
folz; A 0) 53 CXP ( 52 ) (3.4)

The standard deviation of the probability density function is as follows: ¢(o, A) =
o/ V1 — A%, Assuming o, the system’s intrinsic noise, remains constant, the
analytic expression shows that as A, the slope through the fixed point, approaches
—1 the standard deviation of the system increases nonlinearly. Figure 3-3A shows
representative return maps for Eq. 3.2 for three values of A: —0.05, —0.65, and
—0.95. In Fig. 3-3B, we superimpose the analytic expressions for the probability
density functions as defined by Eq. 3.4 for the three values of A upon histograms
of data generated by Eq. 3.2—the numerical simulations and the analytical
expression are in close agreement. Consistent with the experimental data, we show
that, as the system approaches the transition point, we observe an increase in the
variation of the system.

To derive the analytic expression of the autocorrelation function for a noisy

linear map, we define the autocorrelation function for a discrete system:

Z?:l (21 — N)Q

where n is the length of the time series, p is the mean (p = 0 for this example),

and p(k) represents the autocorrelation function at lag k. Considering that random
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inputs lack correlation, we derive the autocorrelation function:
p(k) = A* (3.6)

Thus, for A < 0, we observe damped oscillations in the autocorrelation function

as a function of the lag coefficients. Additionally, as A approaches —1, the
autocorrelation function decays to zero (no correlation) less rapidly, and the
oscillations in the autocorrelation function grow in amplitude, properties consistent
with experiments. In Fig. 3-3C, we superimpose the analytic expression, Eq.

3.6, over the numerically computed autocorrelation for three values of A. The
numerically computed autocorrelation function and the analytical expression for
the autocorrelation function show close agreement.

We examine how accurately the analytic expressions derived from the noisy
linear map matched the dynamics in the neighborhood of the period-doubling
bifurcation from the noisy nonlinear map, Eq. 3.1. Figure 3—4A shows the return
maps computed from Eq. 3.1 for three values of v: 3.0, 1.75, and 1.5 for o =
0.01. Consistent with the return maps displayed in Fig. 3-2A, as « decreases, the
slope through the fixed point approaches —1, the requirement for the initiation
of a period-doubling bifurcation, and the noise of the system increases. Figure 3—
4B displays the superimposed analytic expressions for the probability density
functions as defined by Eq. 3.4, where A represents the slope of the function at
the fixed point, over the numerically generated data. The analytic expression is
consistent with the numerical simulations. Figure 3-4C shows the numerically

computed autocorrelation function and the fitted analytic expression from Eq. 3.6.
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Again, the analytic expression of the autocorrelation function for the linear case
shows good agreement with the numerically generated autocorrelation function for
the nonlinear map.

3.2.3 Quantitative measure that predicts the onset of alternating
rhythms

Returning to the experimental data, we test a prediction that emerged from
the analysis: that the slope from a linear regression of a return map composed
of a sliding window of detrended inter-beat intervals could provide a quantitative
measure to assess how close the system is to a period-doubling bifurcation. Period-
doubling bifurcations in continuously perturbed discrete systems take place when
the slope through the fixed point goes through —1. Therefore, the distance from
—1 of the slope measure represents a quantitative early warning signal for a
period-doubling bifurcation.

We examine the inter-beat interval dynamics of eight aggregates for which
we observe and capture a period-doubling bifurcation (see Methods for further
details). Figure 35 shows that when the slope goes below —0.75 for at least five
consecutive beats, the period-doubling bifurcation takes place between 3 and 232
beats later—approximately 3 to 200 seconds in the future. We consider a period-
doubling bifurcation to have taken place when the slope measure goes below —0.98
for at least five consecutive beats. In Fig. 3-5, the black dashed lines represent the
time at which the system goes through the early warning signal (slope = —0.75)
and the red dashed lines represent the time at which the system goes through
the period-doubling bifurcation (slope = —0.98). The mean number of beats of

advanced warning is 86.6 beats. We consider a false alarm to occur when the slope
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of the system goes below —0.75 for five consecutive beats and the period-doubling
bifurcation does not take place within 300 beats of the early warning signal.
Analyzing the time before the onset of the period-doubling bifurcations (typically
30-50 mins) for all eight aggregates that exhibited the transition, we found exactly
one false alarm for a threshold of —0.75.

Many studies have used an increase in the lag-1 autocorrelation coefficient as
an early warning signal to predict oncoming dynamic transitions [180, 49, 50, 47].
Equation 3.6 represents an analytic expression for the autocorrelation coefficients
as a function of the slope through the fixed point, A, of the nonlinear map. The
analytic expression predicts that the lag-1 autocorrelation coefficient (k = 1)
should be equal to the slope through the fixed point of the map. In Fig. 3-5, we
plot the lag-1 autocorrelation coefficient computed from a sliding window of the
previous 20 detrended inter-beat intervals and show that the prediction from Eq.
3.6 is consistent with the slope of the linear regression for the experimental data.

To examine the slope measure in a theoretical framework, we modeled the
period-doubling bifurcation using Eq. 3.1 by linearly decreasing the value of
~ towards and through the bifurcation point (see Methods for further details
and parameter values). To mimic the experiments, we applied both parametric
noise to v and system-level noise as given in Eq. 3.1. In Fig. 3-6A, we compute
the slope measure, the lag-1 autocorrelation coefficient, and the value of the
slope at the fixed point given by Eq. 3.1 as a function of 7. Consistent with the
experiments, all three measures approach —1 as the system nears the period-

doubling bifurcation. The black dashed line represents the early warning signal
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and the red dashed line represents the period-doubling bifurcation, with the same
criteria given above—the early warning signal predicts the onset of the bifurcation
69 beats in advance. Figure 3-6B gives the values of x for the system with the
corresponding values of v given below in Fig. 3-6C.

3.3 Discussion

In order for early warning signals to be practically useful, they should provide
quantitative information to make predictions [19, 49]. We found that when the
slope of the experimental fixed point (also equal to the lag-1 autocorrelation
coefficient) reached —1, the system underwent a period-doubling bifurcation. The
slope and the lag-1 autocorrelation coefficient, therefore, represent quantitative
early warning signals that can predict the onset of period-doubling bifurcations.
This is related to the establishment of a new steady-state through a saddle-node
bifurcation if the slope through the fixed point goes through one [180].

In this study, there is diversity in the behaviour of the aggregates in the
neighborhood of the bifurcation. In particular, as the system nears the bifurcation,
the slope and lag-1 autocorrelation coefficient approach —1 at different rates
and with complex trajectories, Fig. 3-5. What accounts for this diversity? To
address this question, in Fig. 3-6, we model the transition using a one-dimensional
map, where we attempt to include all the features associated with the period-
doubling bifurcation: (i) shifting baseline value of the fixed point, (ii) system-level
noise, (iii) parametric noise, (iv) the nonlinear nature of the one-dimensional
map, and (v) the dynamic influence of slowing down on all of these properties.

Consistent with the experiments, the slope and lag-1 autocorrelation coefficient
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trajectories in the neighborhood of the bifurcation are complicated and somewhat
unpredictable. Thus, even though the type of dynamic transition is known a
priori, the nonlinear interactions between various features of the complex system
present challenges in predicting when exactly a transition will take place. This
diversity in dynamic behaviour in the neighborhood of the bifurcation was only
revealed as a consequence of the large quantities of data we analyzed in this
study. The development of early warning signals is often a data-starved domain.
Thus, we posit that the development of optimal early warning signals for any
dynamic transition requires large amounts of data, owing to the large number of
factors associated with the transition. Future studies of early warnings preceding
bifurcations should track the change of the appropriate parameter (e.g. slope of the
return map) to assess the distance from the transition and the rate at which it is
approached.

To date, the study of early warning signals has focused on the nonlinear
dynamics near the onset of saddle-node bifurcations. While these bifurcations are
relevant in many fields, transitions in dynamical systems can take place through
a number of different bifurcations. The development and experimental validation
of early warning signals for these other bifurcations remains an open research
direction.

Alternating rhythms in the heart can precede propagation block that leads to
the onset of reentrant arrhythmias (‘reentry’). Spiral waves, vortices of electrical
activity, are thought to represent one of the central mechanisms underlying reen-

try. In chapter 4, to examine mechanisms associated with spiral wave initiation,
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I perform intracellular calcium imaging of 1-cm-diameter cardiac monolayers
composed of embryonic chick cardiac cells following the introduction of inexcitable
regions, analyzing this experimental data using numerical simulations.
3.4 Methods
3.4.1 Spontaneously beating aggregates of cardiac cells

The aggregates were prepared according to the method of DeHaan [53]. The
ventricles of seven-day-old White Leghorn chick embryo hearts were dissected
and dissociated into single cells by trypsinization. The cells were added to an
Erlenmeyer flask containing a culture medium gassed with five per cent CO,, 10
per cent Og, 85 per cent Ny (pH = 7.4), and placed on a gyratory shaker for 24-48
h at 37°C. The aggregates had a diameter of approximately 100-200 pym. The
aggregates beat with an intrinsic period of between 0.7-2 s. The experiments were
conducted two to six hours after the aggregates were plated. We used an optical
imaging apparatus that monitored the aggregates’” motion. The device recorded
the light-intensity variation of a specific pixel on the edge of an aggregate. The
edge pixel data was then processed through a bandpass filter (cutoff frequencies:
0.1 Hz—6.5 Hz). Using MATLAB, the beats and the time interval between
consecutive beats, the inter-beat intervals, were calculated. The system employed
phase-contrast imaging sampled at 40 Hz and a CCD camera (RedShirtImaging,
LLC, NeuroCD-SM) at an 80 x 80 pixel spatial resolution. Recordings were
carried out at 35-37°C. The beating patterns of multiple aggregates (between

4-20) were recorded simultaneously.
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3.4.2 Detrending inter-beat intervals

To filter out short-term fluctuations in the inter-beat intervals in the analysis,
we detrend the inter-beat intervals using the detrend function in MATLAB. This
function first performs a least-squares linear regression for a sliding window of
inter-beat intervals. Then the linear regression is subtracted from the raw values
of the inter-beat intervals, which leaves the deviation from the regression. To
compute the histograms of the deviation from the mean in Fig. 3-2B and the
autocorrelation functions in Fig. 3-2C, we use a detrended sliding window com-
posed of 20 beats in all cases. We performed these analyses for larger and smaller
window sizes, and the increase in the standard deviation and the oscillations in the
autocorrelation function were observed robustly.
3.4.3 Numerical simulations of the nonlinear model

We simulate the period-doubling bifurcation that the inter-beat intervals of
the aggregates undergo using a nonlinear one-dimensional exponential map given
by Eq. 3.1, 2,41 = ae=@n=) 1 § 4 5(¢,, where x,, represents the nth inter-beat
interval, (,, is a random variable drawn from a normal distribution with a mean
equal to zero and a standard deviation equal to one with the following parameter
values: a = —0.804, f§ = —1.115, and 6 = 2.423. In Fig. 34, we plot the return
map, histogram, and autocorrelation function for three values of v: 3.0 (left),
1.75 (middle), and 1.5 (right). For the return maps in Fig. 3-4, we simulate Eq.
3.1 starting from a random initial condition for 5000 values of x, and plot the
return map for the last 4000 x values. We also apply normally-distributed system-

level noise with a standard deviation ¢ = 0.01, consistent with the fluctuations
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associated with the inter-beat intervals when the system is far away from the
bifurcation. For the histograms, we plot the deviation from the mean = value from
the simulations.
3.4.4 Slope and autocorrelation calculated from the inter-beat intervals
The quantitative measure that assesses how far the system is from the
period-doubling bifurcation is given by the slope of a return map—a plot where
the following inter-beat interval is given as a function of the current inter-beat
interval-—composed of a detrended sliding window of inter-beat intervals. We
first detrend the raw inter-beat intervals using the method given above. From
the detrended data, we plot return maps composed of a sliding window composed
of the previous 20 beats. Then we compute a linear regression (least-squares)
through each return map, where our slope measure, Fig. 3-5, represents the slope
of the linear regression. We compute the lag-1 autocorrelation coefficient using the
‘autocorr’ function in MATLAB with a sliding window composed of the previous
20 detrended inter-beat intervals.

3.4.5 Slope and autocorrelation calculated from the numerical simula-
tions

We simulate the nonlinear map given above with the following parameter
values @ = —0.804, f = —1.115, and 0 = 2.423, while linearly decreasing the value
of v such that we simulate the system approaching the period-doubling bifurcation.
We apply system-level, normally-distributed noise with a standard deviation o =
0.01, consistent with the fluctuations associated with the inter-beat intervals when
the system is far away from the bifurcation. We linearly decrease the value of v

along the linear function v;(¢) = 5.01 — 0.012 - ¢ for the first 300 beats and then the
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linear function 5(¢) = 2 — 0.002 - ¢ for the remaining 50 beats, where ¢ represents
the beat number from the figure. We apply parametric, normally-distributed noise
with a standard deviation equal to 0.05 to the value of v, which we calculated by
considering a quasi-stationary sequence of the slope measure from the experimental
data. We compute the slope measure and the lag-1 autocorrelation coefficient with
a sliding window composed of the previous 20 values of z using the same method

as given in the Methods section above.
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Figure 3-1: Period-doubling bifurcation in an aggregate of embry-

onic chick cardiac cells following treatment with a potassium channel
blocker. (a) Inter-beat intervals through time following the application of E4031
at t=0. There are spaces between sections of data for storage reasons. A period-
doubling bifurcation takes place at approximately t=50 min. The traces below the
inter-beat intervals—i, ii, and iii—represent time series corresponding with the
inter-beat intervals in the first, fourth, and fifth sets of inter-beat intervals. (b)
The fifth set of inter-beat intervals (from approximately t=42 min to t=48 min)
corresponding with iii in panel A. This set of data precedes the period-doubling
bifurcation.
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Figure 3-2: Detection of noise amplification and oscillations in the auto-
correlation function of the aggregate’s inter-beat intervals in the neigh-
bourhood of the period-doubling bifurcation following treatment with
potassium channel blocker. (a) Return maps of the inter-beat intervals from
the first (i), fourth (ii), and fifth (iii) sets of inter-beat intervals from Fig. 3-1A.
(b) Histograms of 250 detrended inter-beat intervals (see Methods for details on
detrending) for the three sets of inter-beat intervals (i,ii, and iii) from Fig. 3—1A.
Deviation represents the deviation of each IBI from the mean value computed
through the detrending process. The standard deviation increases as the system
approaches the period-doubling bifurcation, particularly in iii. (¢) Autocorrelation
function for a window of 20 detrended beats centred on the 150th beat for three
sets of inter-beat intervals. Damped oscillations emerge in the autocorrelation
function in iii, consistent with the oscillations in the inter-beat intervals observed
in Fig. 3-1B.
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Figure 3-3: Detection of noise amplification and oscillations in the au-
tocorrelation function as the slope at the fixed point of a continuously
perturbed linear map approaches -1. (a): Representative return maps for
three values of A (the slope at the fixed point): —0.05 (left-hand column), —0.65
(middle columns), and —0.95 (right-hand column). For these simulations, we
applied normally-distributed noise with a standard deviation ¢ = 0.01. (b): His-
tograms of the the deviation from the mean for the last 4000 values of = (as shown
above in the return maps) for the three values of A. The red curves represent the
probability density functions computed using Eq. 4 as given in the paper. (c): Au-
tocorrelation functions for the three above values of A. The blue dots represent the
numerically computed autocorrelation function and the red curve represents the
analytical expression for the autocorrelation function calculated using Eq. 6 in the
paper.
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Figure 3-4: Detection of noise amplification and oscillations in the auto-
correlation function for a model of the data in the neighbourhood of a
period-doubling bifurcation. (a) Return maps computed from Eq. 3.1 for v =
3.0 (left), 1.75 (middle), and 1.5 (right). (b) Histograms and probability density
functions corresponding to the data that make up the return maps. Deviation
represents the deviation of each x value from the mean value of the sequence of
x values. The red curve represents the analytic expression of the probability den-
sity function computed from the linear approximation, Eq. 3.4. (c) The blue dots
represent the autocorrelation function determined numerically, and the red curve
represents the analytic expression computed from the linear approximation, Eq.
3.6, for all three values of ~.
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Figure 3-5: Slope of a return map of inter-beat intervals and the lag-1
autocorrelation coefficient represent quantitative measures that assess
how far the aggregates’ dynamics are from a period-doubling bifurca-
tion. Each panel represents an aggregate for which we observed and captured a
period-doubling bifurcation in the dynamics of the inter-beat intervals. The slope
(in blue) represents the slope of a linear regression of a sliding window of the pre-
vious 20 detrended inter-beat intervals. The lag-1 autocorrelation coefficient of a
sliding window composed of the previous 20 detrended inter-beat intervals, plot-
ted in red, is consistent with the slope of the linear regression of the return map.
This is predicted by Eq. 3.6 for k = 1, where A represents the slope through the
fixed point (simply the slope of the linear regression here).The black hatched line
represents the beat at which the slope first remains under —0.75 for 5 consecutive
beats, which we consider the early warning signal. The red hatched line represents
the beat at which the slope first remains under —0.98 for at least 5 consecutive
beats, which we consider as when the system goes through the period-doubling
bifurcation.
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Figure 3-6: Slope of a return map and the lag-1 autocorrelation coeffi-
cient represent quantitative measures that assess how far the dynamics
of the mathematical model of the experiments are from the period-
doubling bifurcation. We linearly decreased the value of v from Eq. 3.1, which
gave rise to a period-doubling bifurcation. (a) The slope of the return map (in
blue) represents the slope of a linear regression through a return map composed
of a sliding window of the previous 20 detrended values of = (as given in panel

b). The lag-1 autocorrelation coefficient of a sliding window composed of the pre-
vious 20 detrended values of x (in red) is consistent with the slope of the linear
regression of the return map. Slope(7y) represents the slope of the fixed point as
calculated using Eq. 3.1 and the current value of v as given in panel c. The black
dashed line represents the early warning and the red hatched line represents the
period-doubling bifurcation. The signal gives the system 69 beats of advanced
warning. (b)The value of x as numerically generated by Eq. 3.1 as a function of
time. Again the black dashed line represents the early warning and the red dashed
line represents the period-doubling bifurcation. (c¢) The value of 7 as a function of
time.
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CHAPTER 4
Spatial symmetry breaking determines spiral wave chirality

4.1 Foreword

Spiral waves, self-sustaining vortices of activity, have been observed in
diverse biological and chemical contexts [52, 157, 103], and have been linked
to mechanisms underlying various cardiac arrhythmias [152, 105]. Chirality
(‘rotation direction’) represents a fundamental property of spiral waves [217,
220, 219, 190, 1], and has recently been implicated in the dynamics of spiral
wave anchoring to inexcitable obstacles [221]. The key factors regulating spiral
wave chirality, however, remain unclear. A number of mechanisms have been
implicated in spiral wave initiation [52, 159, 215, 24, 207, 5]. Here, we investigate
how inexcitable obstacles can lead to the initiation of spiral waves propagating in
the tissue neighbouring the obstacle [159, 215]. To examine how the position of
an inexcitable obstacle influences the chiral properties of these spiral waves, we
introduced obstacles of varying sizes, approximately 1-8 mm in width, into cardiac
monolayers (two of the preparations had two obstacles introduced).
4.2 Experimental methods
4.2.1 Introducing inexcitable regions into cardiac monolayers

We incubated 30 fertilized white leghorn chick eggs at 37°C for 7-8 days
[53, 21]. We removed the ventricular portions of the embryonic hearts, dissociating

the cells with trypsin. The cells were centrifuged, suspended in 818A medium
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[53, 21], and plated in 10-mm-diameter circular glass rings on 35-mm-diameter
plastic culture dishes. We incubated the cells for 48 hours at 37°C and 5 per cent
COy during which time the monolayers formed—16 monolayers were included

in the study. Thirty minutes prior to imaging, we loaded the cells with Calcium
Green-1, a fluorescent dye that tracks intracellular calcium. The cells were imaged
at between 35 — 37°C using a custom-built macroscope with a 1 cm? field of
view—we imaged the entire preparation (1-cm diameter). The system excites the
calcium dye at 500 nm and monitors emission at 545 nm. The fluorescence was
sampled at 40 Hz, with a spatial resolution of 80 x 80 pixels (0.15 um?). The
dish was continuously perfused with fresh Hank’s solution [53]. Side pacemakers
emerged spontaneously with periods of 1-2 s. The wavefront propagation velocity
was approximately 4-5 mm/s. We introduced obstacles into the monolayers by
surgical ablation. In particular, following the dye-loading incubation period, we
made incisions into the monolayer using a fine x-acto blade, representing the
approximate outline of a square, though due to the difficulty of the surgery some
of the incisions were curvilinear. (In the two preparations with two obstacles,

the obstacle shape was more circular.) We then excised the cells from within

the outline of the obstacle. In some of the preparations, cell debris—and the
associated calcium signal—became attached to the bottom of the dish in the
obstacle area. This debris, however, was nonfunctional and did not influence the
monolayer’s dynamics. The approximate centre of the obstacle was selected to be

as close to the middle of the monolayer as possible. The fluorescent images were
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acquired using a Cardio-CCD camera with Cardioplex software (Redshirt Imaging)
approximately 3-5 minutes after the surgical ablation took place.
4.3 Experimental results
4.3.1 Spiral wave diversity in monolayers with inexcitable regions
We observed a spectrum of spiral wave dynamics in the experimental record-
ings, including clockwise-rotating spiral waves (8), counterclockwise-rotating spiral
waves (10), opposite-chirality pairs of spiral waves (4), a same-chirality clockwise-
rotating pair of spiral waves (1), and same-chirality counterclockwise-rotating
pairs of spiral waves (2). We determined the chirality through visual inspection.
Transitions took place between spiral wave chiralities over the course of a single
recording. In Fig. 4-1A, two counterrotating spiral waves govern the dynam-
ics of a monolayer with an obstacle approximately 2 mm wide. In Fig. 4-1B, a
counterclockwise-rotating spiral wave governs the dynamics of a monolayer with an
obstacle approximately 5 mm in diameter. Further, the positions of the obstacles
are different: the approximate centroid of the obstacle in Fig. 4-1A is positioned
down and to the left with respect to the centroid of the obstacle in Fig. 4-1B.
The ubiquity of spiral waves observed in the experimental recordings led
us to consider mechanisms of obstacle-induced spiral waves. Figure 4-2 shows
the initiation of an obstacle-induced spiral wave. We observed this transition
in a five-minute recording in which a counterclockwise-rotating spiral wave on
the left-hand-side of the monolayer with a spiral period of approximately 0.55 s
rapidly paced the tissue, initially generating wavefronts that propagated around

a central obstacle that was positioned closer to the upper boundary, Fig. 4-2A.
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Approximately three and a half minutes later, waves emitted from the spiral wave
detached from the obstacle, leading to the initiation of a counterclockwise-rotating
spiral wave with a period of approximately 0.65 s, Fig. 4-2B.
4.4 Theoretical methods
4.4.1 Rapid pacing leads to the onset of spiral waves

Theoretical studies have demonstrated that rapid side pacing of a sheet of
cardiac tissue with an inexcitable and a partially excitable obstacle can lead to
spiral wave initiation [159, 215, 17, 141]. We investigated how the location of an
obstacle with respect to a side pacemaker influenced the rotation direction of the
initiated spiral waves using a highly simplified model of wave propagation through

cardiac tissue based on the classic FitzHugh-Nagumo equations [92, 21]:

ov 1 V3 *v 0%
D O I oD 2"
ot e<v 3 w)+ 1, + (8x2+8y2)
(4.1)
ow

2 = v+ 8~ qw)g(v)

where €=0.42, f=0.7, and v=0.5. v represents the activation variable, the cells’
transmembrane voltage, and w represents the tissue’s recovery processes. We first
tuned the parameters to locate a region in parameter space in which rapid side
pacing would lead to spiral wave initiation. We then explored the range of the
tissue’s excitability parameter, €, for which we could initiate spiral waves. Because
cardiac monolayers composed of embryonic chick cells are slow conducting,

we selected a larger value for e. We integrated the equations using an Euler

integration scheme with a dt=0.98 msec (0.025 time units) and drx=dy=0.0083

cm (0.025 space units) on a 1 cm x 1 cm grid. We scaled the arbitrary time
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and space units such that the dimensions of the system and the conduction
velocity of propagating wavefronts were consistent with experiments. The diffusion
coefficient is D=0.0028 cm?s~!. The boundary conditions along the edge of the
square grid are no flux. We set D=0 in the inexcitable obstacle, and in the tissue
between the edge of the square grid and the monolayer’s circular boundary. I, and
g(v) = (wp, —w,) / (1 +e*) + w, control the tissue’s pacemaker properties. The
periodic trajectory of the model can be split into four phases: the upstroke, the
plateau, repolarization, and the pacemaker phase. w, simply controls the rate of
trajectory through the pacemaker phase. In the circular-shaped side pacemaker
region (0.83 mm in diameter) located on the left-hand-side of the sheet, I,=1,
wy,=0.6, and wy, is varied from between 0.15 to 0.66 to control the frequency.
For the rest of the active cells, I,=0, w,=0.6, and w,=0.4. The sheet of tissue
is isotropic, consistent with the lack of fiber orientation typically observed in
monolayers. The obstacle is square-shaped (2.5 mm in length) and is located in the
center unless otherwise indicated.
4.5 Theoretical results
4.5.1 Spatial symmetry breaking determines spiral wave chirality

First, we considered the spatially symmetric system shown in Fig. 4-3A.
Figure 4-3A displays the steady-state dynamic following a 19.62-second burst of
rapid pacing at a pacemaker period of T}, = 0.548 s, which gave rise to a pair of
opposite-chirality spiral waves (the ‘time’ given in the figure’s panels is the time

elapsed following the cessation of pacing). We broke the spatial symmetry by
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positioning the obstacle above the central axis of symmetry by 0.75 mm, Fig. 4
3B, and pacing the tissue at the same period (7, = 0.548 s), which led to the
initiation of a counterclockwise-rotating spiral wave. Figure 4—4 shows the details
of the initiation of the counterclockwise-rotating spiral wave during rapid pacing.
The chirality of the initiated spiral wave observed numerically is consistent with
the experimental trace in Fig. 4-2, in which an obstacle positioned closer to the
upper boundary led to the initiation of a counterclockwise-rotating spiral wave
following rapid pacing.
4.5.2 Frequency-dependent transition in spiral wave chirality

Since frequency-dependent transitions are ubiquitous in the dynamics of car-
diac systems, we examined how spiral wave dynamics changed as a function of side
pacemaker period (7,) when the obstacle was positioned above the central axis
of symmetry by 0.75 mm. To mimic the experimental conditions, we introduced
sparse randomly-distributed heterogeneities (‘breaks’) into the medium by selecting
a probability at each grid point of setting the diffusion coefficient equal to zero, m,
= 0.000837 [21].

We generated 20 substrates, simulating each substrate through a range of 7,
Fig. 4-5. For each T, value, using visual inspection, we classified the dynamics
(following 100,000 iterations corresponding to approximately one and a half
minutes in the experimental system) into four behaviours: clockwise-rotating
spirals, counterclockwise-rotating spirals, no spiral formation, and others, which
included pairs of spiral waves of the same or opposite chirality, and groups of 3 or

more spiral waves. Then we computed the moving average of the fraction f of the
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experiments (out of 20) that displayed each spiral wave behaviour (Fig. 4-5 shows
the number of clockwise- and counterclockwise-rotating spiral waves and Fig. 4-6
displays all spiral wave behaviour.) We averaged the corresponding f values over
two T, discretizations (totalling 0.002 s) to smooth out short-term noise-induced
fluctuations.

At T, values > 0.59 s, spiral waves did not form because the substrate
supported the stable propagation of waves through the system. Second, at *1
in Fig. 4-5, the region above the obstacle destabilized, leading to the initiation
of predominantly clockwise-rotating spiral waves (typically forming above the
obstacle). Third, at *2 in Fig. 4-5, the region below the obstacle destabilized,
leading to the initiation of predominantly counterclockwise-rotating spiral waves.
Lastly, for short T, values, the pacemaker transitioned from 1:1 propagation (in
which 1 pulse propagates away from the side pacemaker region for every stimulus)
to 3:2 propagation (in which 2 pulses propagate away from the side pacemaker for
every three stimuli) and spiral wave formation was infrequent.
4.5.3 Action potential duration restitution curve analysis

Spiral wave initiation takes place in a region of the substrate following an
instability that leads to propagation block. Action potential duration (APD)
restitution curves predict the onset of instabilities in excitable media [91, 58, 125].
We computed steady-state APD restitution curves at positions both above and
below the obstacle (see Fig. 4-4 for the precise locations) by varying w,, the
parameter controlling the pacemaker period. Both spatial locations are 0.75

mm from the left edge of the obstacle and 0.17 mm above or below the obstacle.
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We considered the duration of the action potential to be the time that v is
greater than —0.5. We fit the steepest portions of the curves only to maximize
the precision of the pacing period at which these maps destabilized. We fit the
following exponential to both of the restitution curves: f(p) = ae””=9 +T' where
for the curve computed above the obstacle: a=—0.89, n=—>5.32, 6=11.06, and
['=3.34—and for the curve computed below the obstacle: a=—0.51, n=—5.74,
0=10.80, and I'=3.26. The output from these curves was in time units (t.u.).
To convert to seconds, we applied the time scale factor: 1 t.u. = 0.0392 s. The
morphology of the restitution curves along the top and bottom edges of the
obstacle change due to the interactions of the curved wavefront with the obstacle.
However, given two restitution curves the same distance along both the top and
bottom edge (with the same threshold), the restitution curve along the top of
the obstacle becomes steeper before the restitution curve along the bottom of the
obstacle because the wavefront curvature is greater along the top edge.

We plotted the corresponding APD restitution curves in Fig. 4-7TA, where the
blue curve corresponds with the location above the obstacle, and the red curve
corresponds with the location below the obstacle. To compute the 7, at which

these maps destabilized, we assume that:
T, = A(n) + p(n) (4.2)

where the pacemaker period is equal to the duration of the action potential plus
the recovery time. We also assume that A(n + 1) = f(p(n))—that is, the duration

of the ‘next’ action potential, A(n + 1), is a function of the amount of time the
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cell has had to recover, p(n). By rearranging equation 4.2, we derive the following
one-dimensional map: A(n + 1)=f(7, — A(n)), which has a unique fixed point
that destabilizes at a particular 7, value, Fig. 4-7B. The map derived from the
dynamics of the region above the obstacle (blue curve) destabilizes at T, = 0.57
s, which corresponds with *1 in Fig. 4-5, predicting the increase in the clockwise-
rotating spirals. The map derived from the region below the obstacle (red curve)
destabilizes at T, = 0.55 s, which corresponds with *2 in Fig. 4-5, predicting the
increase in the counterclockwise-rotating spirals. Both 7}, values predicted by
the maps computed at these spatial locations are consistent with the pacemaker
periods at which both regions destabilized, and thus are predictive of the increases
in the number of clockwise-rotating and counterclockwise-rotating spiral waves as a
function of T},.
4.6 Discussion

Here, we discovered that an asymmetry in the position of an obstacle with
respect to a position of a pacing site in combination with the side pacing frequency
determines spiral wave chirality for an isotropic cardiac medium. We used the
slope of a map derived from an action potential duration restitution curve to
provide insight into the transition in spiral wave chirality that we observed as a
function of pacemaker period. The spiral wave forms as a consequence of propa-
gation block (a necessary condition for initiation) taking place locally throughout
the tissue. The value of the slope going below —1 is a correlative measure that
we use to quantitatively describe how obstacle position changes the dynamics in

local regions throughout the substrate. Recently, Gizzi et al. demonstrated that
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the location of the pacing site gave rise to differences in the patterns of alternans
observed in the right ventricles of canines [82]. Gizzi et al. also claimed that the
intrinsic heterogeneities of the right ventricle accounted for the differences [82],
which is consistent with the findings of our study. Studies have also addressed the
role of obstacle shape in the context of electric-field-induced wave source initiation
[66, 166, 18]. However, our study opens up a number of future research directions,
which we outline in chapter 5. Our examination of the symmetry breaking prop-
erties and instabilities of this simplified cardiac system provide another example
in which the geometry of the substrate plays a critical role in the determination of

the system’s asymptotic dynamics.
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Figure 4-1: Spiral wave propagation in cardiac monolayers with inex-
citable obstacles imaged using calcium sensitive dyes in embryonic chick
heart cell monolayers. The red squares represent the position of the obstacles,
the blue coloring represents the spiral wave, and the white coloring represents the
waves emitted from the spiral waves. The diameter of the monolayer is 1 cm. (A)
Two counterrotating spiral waves (at 10 and 6 o’clock) propagating in a cardiac
monolayer with an obstacle width of 2 mm. The frames are separated by 0.25 s.
(B) Counterclockwise-rotating spiral wave (at 1 o’clock) propagating in a cardiac
monolayer with an obstacle width of 5 mm.
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Figure 4-2: Spiral wave initiation induced by rapid side pacing in a car-
diac monolayer. (A) A counterclockwise-rotating spiral wave on the left-hand
side (in blue) emits wavefronts with a period of approximately 0.55 s. Wavefronts
from the spiral wave propagate through the media and around the obstacle. The
red rectangle represents the outline of the obstacle. The obstacle is positioned such
that it is closer to the upper boundary with respect to the spiral wave on the left-
hand side. (B) Three and a half minutes later, waves emitted from the spiral wave
on the left-hand side detach from the obstacle and reenter, leading to the initiation
of a counterclockwise-rotating spiral wave (in blue) on the right-hand side of the
dish. The spiral wave has a period of approximately 0.65 s.
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Figure 4-3: Spiral wave propagation in a mathematical model of the ex-
periments. The red squares represent the position of the obstacles, the blue
coloring represents the spiral waves, and the white coloring represents the waves
emitted from the spiral waves. The white line is the axis of symmetry between the
pacemaker and the obstacle. (A) Two counterrotating spiral waves are initiated
following rapid pacing at 7T, = 0.548 s when the obstacle and the side pacemaker
are symmetric. The times given in the top-right of each panel represent the time
following the cessation of rapid pacing. (B) A counterclockwise-rotating spiral
wave is generated following rapid pacing (7, = 0.548 s) when the obstacle is posi-
tioned upwards by 0.75 mm and pacing the tissue at T}, = 0.548 s.
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Figure 4-4: Spiral wave initiation induced by rapid side pacing in a math-
ematical model. Rapidly pacing the tissue (7, = 0.548 s) from a pacemaker

on the left-hand side leads to the initiation of a counterclockwise-rotating spiral
wave. The red rectangle represents the location of the obstacle. The obstacle is
positioned 0.75 mm closer to the upper boundary. The blue represents the spi-

ral wave. The time in the bottom-right corner of each panel represents the time
elapsed following the onset of rapid pacing. The blue and red dots above and be-
low the obstacle—as shown in the top-left panel—represent the locations at which
we computed the action potential duration restitution curves.
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Figure 4-5: Spiral wave chirality as a function of the pacemaker period
(7},). f represents the moving average of the fraction out of 20 from each cate-
gory that was observed at each value of 7T,,. The obstacle was positioned above
the central axis of symmetry by 0.75 mm. *1 represents the 7T}, at which the map
derived from the action potential duration (APD) restitution curve above the ob-
stacle destabilized. *2 represents the T, at which the map from below the obstacle
destabilized.
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Figure 4-6: Spiral wave chirality as a function of pacemaker period (7))
for all types of spiral wave behaviour. f represents the moving average of
the fraction (out of 20) that gave rise to the spiral wave dynamic as given in the
legend of each panel. T}, represents the pacemaker period in seconds. (A) This
figure is the same as Fig. 4-5, and is included as a reference. Decreasing 7, leads
to a change from clockwise-rotating spiral waves to counterclockwise-rotating spiral
waves. (B) The moving average of the fraction of substrates that did not give rise
to spiral waves was high at both high and low 7T}, values. At high values, the sub-
strate, in general, supported the stable propagation of waves through the system.
At low values, the pacing region transitioned from 1:1 propagation to 3:2 propaga-
tion (where, for ever 3 stimuli from the pacemaker, only 2 wavefronts propagated
away from the pacing region and through the media). (C) The moving average of
the fraction of substrates included in the ‘other’ spiral wave dynamic subsection.
Opposite-chirality pairs of spiral waves, same-chirality pairs of spiral waves, and
examples with 3 or more stably-rotating spiral waves were included.
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Figure 4-7: Instabilities in the action potential duration (APD) restitu-
tion curves at different spatial locations are consistent with the change
in spiral wave chirality observed in Fig. 4-5. (A) APD is computed as a
function of recovery time, p(n), both above (blue) and below (red) the obstacle.
The dots represent the steady-state APD computed numerically. The lines repre-
sent a nonlinear-least-squares regression fit to an exponential. (B) One-dimensional
maps of APD at T}, = 0.57 s are derived from the restitution curves computed
both above (blue curve) and below (red curve) the obstacle. At T, = 0.57 s, the
dynamics below the obstacle are stable because the absolute value of the slope
through the fixed point is < 1, and the dynamics above the obstacle are unstable
because the absolute value of the slope through the fixed point is >1.
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CHAPTER 5
Conclusions and Future Directions

This thesis examined the dynamics associated with the onset of abnormal
cardiac rhythms using simplified experimental models and nonlinear dynamics. In
chapter 2, I focused on a set of experiments where treating spontaneously beating
aggregates of cardiac cells with a potassium channel blocker led to the initiation
of a spectrum of complex cardiac dynamics, including highly irregular rhythms.

I examined these highly irregular rhythms, providing evidence that the dynamics
were chaotic. Potassium channel blockade also led to the onset of alternating
rhythms, a dynamic that can precede the onset of reentrant arrhythmias. In
chapter 3, I developed a quantitative measure to anticipate the onset of the
transition from a normal to alternating rhythm. To better understand the onset
of abnormal cardiac rhythms in a spatially extended system, in chapter 4, I
examined mechanisms of spiral wave initiation using calcium imaging of 1-
cm-diameter cardiac monolayers following the introduction of an inexcitable
region and numerical simulations. In particular, I found that the location of the
inexcitable region in combination with side pacemaker frequency governed spiral
wave chirality preference. Furthermore, instabilities in the dynamics of the action
potential duration in localized regions of the substrate preceded the onset of spiral

wave activity. In this chapter, I wish to place the main points of my thesis (given

93



above) as well as other important findings from the studies which I believe merit
discussion in a broader scientific context.

In chapter 2, I characterized irregular rhythms following potassium channel
blockade as chaotic. As a consequence of a slowly varying parameter, the dynamics
of a spontaneously beating aggregate composed of embryonic chick cardiac cells
underwent a sequence of period-doubling bifurcations that gave rise to low-
dimensional chaos. Indeed, the presence of irregular rhythms in the heart increases
the likelihood of propagation block, which could lead to the initiation of serious
reentrant cardiac arrhythmias. However, is there a dynamic difference between a
chaotic rhythm or a rhythm driven by a noisy pacemaker? Assessing the functional
relevance of chaotic cardiac rhythms represents a possible future research direction.

In chapter 3, I developed early warning signals based on data that was non-
spatial. The heart’s rhythm is set by the cardiac impulse that propagates in a
nonlinear spatially-extended environment. The development of early warning
signals in spatially-extended experimental cardiac systems, such as cardiac
monolayers, represents an important future research question. Thus, the clinical
relevance of the early warning signals developed here to predict the onset of T-
wave alternans, for example, remains to be seen. That being said, this finding
represents a strong first step towards the development of clinically-relevant early
warning signals to predict the onset of abnormal cardiac rhythms in patients.

The mechanism underlying the increase in noise near the period-doubling
bifurcation from a biological perspective remains unclear. Single ion channels

open and close in a stochastic manner. Perhaps as more potassium channels are

94



blocked—as the aggregate’s dynamics approach the period-doubling bifurcation—
the noise associated with the system amplifies. Furthermore, what is the biological
mechanism underlying the alternating pattern? Potassium channel blockade leads
to the prolongation of the action potential, which can lead to early afterdepolar-
izations, depolarizations that take place during the recovery phase of the action
potential [195]. Early afterdepolarizations have been implicated in triggering the
onset of cardiac arrhythmias [195, 216]. Because the beat patterns were collected
using the motion of the aggregates, I could not provide insight into the biological
mechanism. However, intracellular recordings of aggregates undergoing potassium
channel blockade represents a future topic worth exploring.

To what extent is it possible to predict the future accurately? Studies have
claimed that ‘generic’ early warning signals can provide insight into transitions
in the qualitative dynamics of complex systems [180]. However, more recent
work [49] has argued that there are limits on our ability to predict transitions in
dynamics, claiming that it is only possible to predict future transitions if (1) the
transition in dynamics takes place as a consequence of a bifurcation and (2) the
control parameter goes through the bifurcation point on a slow time scale. If these
requirements are met, then it is, in principle, possible to develop early warning
signals. However, transitions in the dynamics of complex systems take place
through a number of mechanisms, including noise-induced transitions, changes to
the spatial structure of the system, and external perturbations leading to a change

in the dynamics.
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In chapter 4, I found that substrate geometry can govern spiral wave chirality
(‘rotation direction’). Chirality is a fundamental property of spiral waves—
alongside period and tip trajectory—and yet our study represents one of the first
forays into developing a broader understanding of spiral wave chirality preference.
In particular, my study opens up many research directions, including how obstacle
size, obstacle shape, model parameters controlling tissue excitability, and fiber
orientation influence spiral wave chirality. To numerically simulate the system
composed of a side pacemaker and an inexcitable region, I used a generic model
of excitable media, the FitzHugh-Nagumo equations. An open question remains:
to what extent do these results related to spiral wave chirality preference extend
to higher-dimensional Hodgkin-Huxley-style ionic models of the cardiac action
potential? Experimental confirmation of the theoretical prediction represents
an important research trajectory as well. From a clinical perspective, spiral
waves propagating in excitable media are believed to play an important role in
the genesis of many serious cardiac arrhythmias, though not much attention
has focused on the chiral nature of spiral waves. However, the chirality of one
arrhythmia, atrial flutter, is clinically relevant, and the direction of circulation of
excitation waves in the right atrium is typically classified as either clockwise or
counterclockwise [176].

The heart has a complicated geometry: wavefronts propagate through het-
erogeneous tissue, colliding with inexcitable barriers in three spatial dimensions.
Recent studies have analyzed the effects of changing the cardiac geometry using

realistic three-dimensional numerical models [170, 197]. The study from chapter

96



4 demonstrates a clear example of how the geometry can influence the dynamics.
Furthermore, from a clinical standpoint, changes to the heart’s geometry signif-
icantly influence the dynamics: a myocardial infarction increases the likelihood
of sudden cardiac death. (Myocardial infarctions also give rise to complicated
spatially inhomogeneous effects on the heart’s electrophysiology, which can increase
the likelihood of sudden cardiac death [8].) Other cardiac dynamics studies have
included effects of geometry [44, 38, 159, 189], but much work remains to be done.
Instabilities in the dynamics of cardiac systems can precede propagation
block, which can lead to reentry and the establishment of spiral waves. Increasing
the stimulation frequency can induce alternating rhythms, often associated
with period-doubling bifurcations, which can act as precursors of reentry [160].
Furthermore, experiments of circulating pulses of excitation in rings of cardiac
tissue have demonstrated that instabilities in the beat-to-beat patterns can
precede propagation block [75]. Larger fluctuations in the magnitude of successive
action potential durations increases the likelihood of propagation block, but
many questions related to the mechanism of this process remain. Quantifying
the maximum difference in amplitude of successive alternating action potential
durations that various cardiac systems (with different geometries) can sustain
represents a future research question.
Transitions take place in the dynamics of the heart with serious consequences.
Combining simplified experimental models with tools from nonlinear dynamics

represents a powerful approach to unearth the mechanistic properties of these
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transitions, and to provide insight that could potentially guide future therapeutic

strategies.
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Appendix A: Ionic model

This appendix describes the equations of the ionic model that were used for
the theoretical computations in chapter 2. This ionic model was initially presented
in Kim et al. [117]; however, the parameter values used in the earlier study did
not give rise to chaotic dynamics. To obtain chaotic dynamics we decreased the
conductances of the slowly activating potassium current and the inward calcium
current. Relatively, the sodium current plays a greater role in the new parameter
regime, and this enabled the model to generate the bursting and chaotic dynamics
when the gk, parameter is decreased. We adapt equations developed by Kowtha et

al. to model the embryonic chick heart cell preparation [122]:

V=—Lu(V)/C; (5.1)

where the V' is the membrane voltage, I;,; is the total current density and Cj is the

capacitance. [;, is a sum of the different ionic component currents so that,
[tot:[Na+[Ks+[KT+[K1+ICa+[b+[f (52)

where [y, is the sodium current, I, is the calcium current, I, is the background
current, Iy is a depolarizing current, and Ik, Ik,, and Ik, are three potassium
currents. The magnitude of each of these currents depends on membrane voltage,
ionic concentrations, and time. We describe each current in turn. We use standard
notation in which g, is the conductance of ionic current w, FE,, is the equilibrium

potential of ion w. Following the original notation of Hodgkin-Huxley, terms
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entering the time and voltage dependent currents are written in two equivalent

forms. For component x, we have,

so that

Sodium current

where,

H) = (@alV) = 2(0)/(V), or
H) = @u(V) = (@(V) + B(V)(t)
(V)= — 2V o]

T a, (V) + B.(V)

(V) + B:(V)

Ing = gNa m(t)3h(t)j(t)(V — Ena),
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and

B

ap

Bn

B

where

320 (V + 47.13)
1 — exp 0-1(V+47.13)

80 exp~ /!

2/3 x [135 exp” (V8I/68(1 — STEP(V + 40))]

2/3 % [(3560 exp™™™" +3.1 x 10° exp®®")(1 — STEP(V + 40))
+ 1
0.00013 (exp—(V+10-66)/11.1 4 1)

—1.2714 x 108 exp®2*4V —3.474 x 1072 exp 0089V
1 + exp0-311(V+79.23)

STEP(V + 40))]

(V + 37.78) x

x(1— STEP(V + 40))

121.1 eXp—0.01052V
1 + exp—0.1378(V+40.14)

300 exp—2.535x10*7v

(1— STEP(V + 40))

1 T oxp-01V+32) STEP(V + 40)
Potassium currents
Slow potassium current
IKS = 0JKs n(t)(v - EKS)? (58)
n(t) = (neo(V) — n(t))/ma(V), (5.9)
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and

ﬁn:

Rapid potassium current

_ grres(t) y§(145 Pk, — 1.3Rg,)

0.08 (V —15)
1 — exp—008(V—15)

2/3 x 0.156 exp *0%(V-15)

2/3 x

Ty, 5.10
K 1+ yo + 52.812 (5.10)
where
5(t) = (s0o(V) = s())/7s(V) (5.11)
and
as = 184 eXp0.12 (V+12)
65 = (0.0288 eXp—D.09 (V+12)
Inward rectifier potassium current
i L+y1 +y? + L5y} L+ y, + 93 |
where
1.0
R r = ) P Fr=1- R r
K 1+ exp(V/25) K K
~ 1.3Rg, _ L5Rg, ~ 10.7Rg,
YT 5P, T 5P, T 145P,
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Calcium current

lea = gca dO)f(1)g()(V = Eca)

where
d(t) = (deo(V) = d(1))/7a(V)
F&) = (V) = F(1)/74(V)
9(t) = (9(V) = g(1))/74(V)
[Ca] = =13 x 107 Ic(V) +80(10~7 — [Cal)
and
J B 1
© T 1 fexp-(VH10)/6:24
1 — exp—(V+10)/6.24
7d “ T35 (V 1 10)
B 1
Jooo = 1+exp(V+28)/6.9
1
r = 19.7 exp—(0-0337(V+10))2+20
1
I = T10Cd)/(35 x 10-7)
7, = 0.002

Pacemaker current

Iy = g; p(t)(V — Ef)
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where

a, = 0.095 exp 00T(1V+62) (5.19)

1.05 (V + 62)

B = 1 — exp—0-2(V+62) (5.20)

Background current

Iy=g, (V- Ep) (5.21)

The numerical values of the different parameters are:
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9Na
9Ks
b
gK11
9K12
gca

gr

ENa

1 puF/cm®
1500 mS/cm”
1.2546 mS/cm”
0.093 mS/cm”
409.5 mS/cm”
1.476 mS/cm®
55.0 mS/cm®
0.03 mS/cm?
40.0 mV
—100.0 mV
40.0 mV

40.0 mV

—30 mV

50 us
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