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ABSTRACT

Social networks are essential tools for modeling social dynamics. Their structure
affects and is affected by the behavior of individuals that constitute them. Many studies
have related the structure of social networks to various social and individual outcomes.
In many studies, the first step towards network analysis is to observe the network. If
the full network is infeasible to acquire, network sampling methods are employed. Sam-
pling offline social networks involves interviewing people. Since respondent fatigue is a
pressing problem, standard practice is to ask each respondent only a limited number
of names. This throws away much information about the network structure. In this
thesis, we focus on the problem of estimating the structural properties of the original
social network from such survey data. We provide reliable estimators that incorporate
link heterogeneity.

We then focus on applications where knowledge over the global structure of the
social network is unfeasible, and efficient methods are needed to identify nodes with
certain properties without having to sample the network. We focus on a method called
Alter Sampling, which was originally introduced in network epidemiology. We demon-
strate its effectiveness in various social networks with different structural properties.
Then we highlight insights that this ubiquitous effectiveness provides about how social
networks are organized. We discuss the relations to the so-called Friendship Paradox
and its generalized version, and provide metrics to quantify how local structural and
non-structural properties of nodes compare with their neighbors.
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ABREGE

La modélisation des dynamiques sociales dépend étroitement sur la structure des
réseaux sociaux qui influe sur et est également influencée par le comportement des
individus qui composent le réseau. De nombreuses études constatent qu’il existe des
liens serrés entre les réseaux sociaux et divers résultats sur non seulement le plan indi-
viduel, mais aussi le plan social. En générale, 'observation du réseau est la premiére
étape de son analyse. Par la suite, si la consitution du réseau complet est impossible
a déterminer, les méthodes d’échantillonage en réseaux sont souvent employées. Pour
réaliser un échantillonge des réseaux sociaux hors lignes et pour réduire l'effet de la
fatigue sur les personnes interrogées, des entretiens sont effectuées desquelles la pra-
tique habituelle est de demander un nombre limité de noms, ce qui gache une bonne
partie de 'information sur la structure sous-jacente du réseau. Dans cette thése, nous
nous concentrons sur comment estimer les caractéristiques structurelles du réseau social
original a partir de telles données. Ainsi, nous fournissons des estimateurs fiables qui
intégrent 1’hétérogénéité des liens.

Motivés par le besoin de développer des méthodes efficaces pour identifier des
noeuds ayant certaines caractéristiques sans devoir échantilloner le réseau au complet,
nous nous avons ensuite tournés vers les réseaux sociaux pour lesquels il est impos-
sible de cerner leur structure globale. Nous nous sommes penchés sur la méthode
«d’échantillonage altérée» (ou Alter Sampling en anglais), qui a d’abord été introduit
dans le domaine de I’épidémiologie des réseaux, et nous montrons son efficacité dans
divers réseaux dont les caractéristiques structurales sont toutes différentes. Finale-
ment, nous soulignons comment ’efficacité de I’échantillonage altérée nous informe sur
I'organisation sociale de ces mémes réseaux. Nous élaborons sur les relations entre
le Paradoxe de I'amitié¢ et sa généralisation, et nous proposons des indicateurs pour
quantifier les caractéristiques (non-)structurales locales par rapport a leurs voisins.
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CHAPTER 1

Introduction

1.1 Network Perspective

Network science is the field of studying interacting systems via the mathematical
analysis of their network representations. The system can be any in which individual
parts can be characterized as units that are linked to one another. Units can be, for
example, computers connected, cell phones communicating via a cellular network, neu-
rons connected via synapses, humans having social interaction (face-to-face or on social
media), banks with transaction flows between them, scientific papers citing one another,
airports exchanging travel flows, or web pages connected via hyperlinks. Traditionally,
each discipline has studied (1) how these individual units work, and (2) how these units
interact. The network framework offers new insights obtained by looking at the pat-
terns of connections. For example, since the early 1900s, neurology and neurobiology
have made a remarkable progress in studying the nervous system of various species and
finding out (1) how neurons work (e.g., their anatomy, polarity, and function), and (2)
how neurons interact (for example, what chemicals are used in chemical synopsis or
how voltage patterns change in neurons’ gap junction during electrical synopsis). The
network approach (with a rich literature in neuroscience) looks at how the patterns of
structural and functional connection (i.e., the structure of the neural network) affect

the collective behavior of the system. For example, it has been found that on average,
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there are more supra-tentorial inter-hemisphere connections in the female brain than
the male brain, and more intra-hemisphere connections in the male brain than the fe-
male brain [ISP*14]. This gives on average a stronger ability to the female brains for
communication between analytical and intuitive processing, and on average a stronger
ability to the male brain to coordinate perception with action [ISPT14]. So, with iden-
tical units (neurons), different patterns of connection can lead to different collective
outcomes.

Another example can be found in daily life. There is a vast literature of psy-
chology on (1) the internal mechanisms behind human behavior and emotions, and
on (2) how people perceive each other’s actions and how they judge and react. The
network approach offers insight on how the patterns of connections between humans
affect collective outcomes. Strictly-hierarchical chain-of-command organizations have
completely different outcomes than more flat and fluid organizational structures that
are becoming more prevalent in modern management [Benll|. In society, life in dense
tightly-knit communities is a completely different experience than in communities that
are more open and homogeneously linked. The former is a patchy-looking society with
strong social control and group conformity within clusters [Col88] but low collective
cooperation and general trust [Put95, FukO01].

It is clear that the effect of patterns of connections on system outcomes is not
limited to these two examples, and is in fact prevalent in many networked systems. A
nice illustrative analogy is given in [Chrl10|: organizing carbon atoms in different ways
can give us graphite (pencil) or diamond. In both cases, the units are the same atoms,
but it is the way they are structured that gives rise to significantly different properties.

Since social networks are important tools for studying various human-related phe-
nomena, in many studies we need methods to observe and measure them, so that we can
incorporate them in analyses. The more thoroughly we know the network structure, the
more accurate the consequent analysis and predictions would be. In principle, we first
transform the links from abstract mathematical entities to measurable quantities. The
‘relations’ that the links model should be defined quantitatively. For example, in the
case of friendship, we need to first quantitatively define what we mean by friendship,
so that we can design a procedure to survey friendships to build a network. Defining
relations is relatively straightforward in most studies, because each field has developed

1ts conventions.
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The crucial step however, is to actually observe these relations to build the net-
works. In an ideal case, after defining the relations, we would take all the nodes and
observe all the links, giving us complete knowledge over the network. This rarely hap-
pens in practice. For most real networks, that would be highly impractical. Thus we
have to devise economical methods to ‘infer’ the needed structural parameters from a
limited set of observations. This is the task of the field of network sampling. Network
sampling is an integral part of many social network studies. Sometimes we perform
sampling to estimate the network structure, and sometimes to find nodes with certain
properties. This thesis focuses on these two distinct cases separately, in that order.

In the remainder of this chapter, we provide a brief overview of example applica-
tions of the network framework in different disciplines. We discuss why networks are
valuable tools to analyze such systems. We emphasize more on social networks. Before

all of this, we introduce notation and terminology.

1.2 Notation and Terminology

The network framework models a system of units as a graph. Each unit is modeled
as a dot, which is called a vertex, or a node. Two units are connected via a line if they
are related, where the definition of what it means to be related depends on the context
of the study. These lines are called edges, links, or ties. These links can have directions
or can be undirected. In a directed graph, node y is called the out-neighbor of node x
if there exists a link that goes from node = to node y. In that case, node z is called
an in-neighbor of node y. In an undirected graph, if there is a link between nodes =
and y, then they are said to be neighbors of each other, also sometimes said to adjacent
to each other. The links can have numbers assigned to them, which characterize some
quality of the relation between nodes, depending on the context. These are called
weights, and such a network is called a weighted network. Otherwise the network is
called unweighted.

In the specific case of social networks (to be discussed in Section 1.4), each node
is called an ego, the neighbors of the ego are called its alters (the word ego in Latin
means ‘I’ and the word alter means ‘other’). In social networks, a link is called a tie.

In directed networks, the number of in-neighbors a node has is called its in-degree,

and similarly, the number of its out-neighbors is called its out-degree. In undirected
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networks, the number of neighbors of a node is called the degree of that node. For
weighted networks, the sum of of weights attached links belonging to a node is called
the strength of the node. We can use the degrees of all nodes to construct the degree
distribution of the network, p(k). So p(k) is the fraction of nodes in the network who
have degree k, and ), p(k) = 1. The first moment of the degree distribution is called
the average degree, which we denote by k. We denote the number of nodes in the
network by N and the number of links by L.

The connections among nodes are characterized by the adjacency matriz A. 1If
we label the nodes 1,2,..., N, then the entry A;; is equal to the weight of the link
that connects node i to node j. So for undirected networks, A is a symmetric matrix.
For unweighted networks, A is a binary matrix: A;; is equal to 1 if nodes ¢ and j are
connected, and is 0 otherwise.

The density of a network is the ratio of the number of links to the number of all
possible links. The latter is equal to (];) So network density p is equal to L/ (ZQV)

The local clustering coefficient of node x is defined as the ratio of the number of
links between neighbors of x to the number of all possible links between neighbors of x.
Denoting the degree of node x by k., then if there are a, links that connect a neighbor
of x to another neighbor of x, then the clustering coefficient of node z is defined as
am/(k;). In other words, clustering coefficient of node x is the number of triangles that
pass through this node, relative to the maximum number of possible triangles that could
pass through the node. It is more conventional to use the clustering coefficient as a
network measure rather than a property of individual nodes. The clustering coefficient
of a network is defined as 3Na/ )", (k;), where N denotes number of triangles in the
graph and the denominator is the maximum number of possible triangles. Figure 1-
1 illustrates an example graph with average clustering coefficient of 3/8. Clustering
coefficient is a measure of transitivity, that is, to what extent the friends of an individual
are friends with one another.

A walk is a sequence of adjacent nodes. The sequence starts from a node and from
the second node on, each node in the sequence is a neighbor of the previous node. For
directed graphs, each node is the out-neighbor is the previous one. A path is a walk
without repetition. There can be more than one paths that begin from node x and end
at node y. The graph distance between nodes z and y is the length of the shortest path

between them. If we take all the (];]) possible pairs in the network and take the average



5 1.3. Historical Background on Network Science
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Figure 1-1: Example graph to illustrate how clustering coefficient is calculated.

of their graph distance, the result is called the average path length of the network. It is
also sometimes called the characteristic path length. The diameter of a network is the
length of the maximum graph distance between any pair of nodes.

The term ‘network’ was increasingly used throughout the second half of the 20th
century, sometimes interchangeably with graphs. The distinction between graphs and
networks is semantic and not very consequential. But just for the sake of clarity,
we briefly remark on it. Graphs are mathematical representations of networks. A
triangle graph, for example, can represent two distinct networks with unrelated origins:
a network of three neurons forming a circle and a friendship network of three people

who are friends with one another.

1.3 Historical Background on Network Science

Graph theory was first invented by Leonard Euler in his famous ‘Konigsberg Bridge
Problem”. Two islands were connected to each other and to the banks of a river. The
problem was to find a walk that begins at land, passes through each bridge once,
and return to the initial point. He proved this walk does not exist by mapping the
lands to nodes and the bridges to links. So he invented graphs as a tool. Later,
graphs were independently discovered several times. For example, Kirchhoff discovered
properties of tree graphs during his work on electric circuits, Cayley worked on trees
as part of enumerating organic chemical isomers, and Hamilton introduced his ‘Icosian
game’ which led to the introduction of Hamilton Cycles. Graphs are versatile tools
for modeling many systems, and here we briefly review how graph theory led to the
development of modern network science and social network analysis.

The first formal network modeling of social dynamics dates back to the 1930s in

the work of Jacob Moreno [Morb3|. He worked in the tradition of ‘gestalt’ psychology,
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which is based on the idea of emergent properties irreducible to individual elements
(the famous sentence ‘the whole is other than the sum of its parts’, sometimes wrongly
translated as ‘the whole is greater than the sum of its parts, is a quote from gestalt psy-
chologist Kurt Koffka [Heil3]). Moreno studied how group interaction patterns limit
and drive individual behavior. His primary motivation was to study how ‘social ag-
gregates’ (e.g., groups, communities, cities, countries) and their ‘social configurations’
affect the psychology of the individual. He founded ‘sociometric analysis’, and founded
the journal ‘sociometry’. Most importantly, he was the first to draw a ‘sociogram’,
in which individuals were connected by lines representing their relations. Although
network thinking did exist as a concept in sociology (such as Simmel’s ‘webs of affilia-
tion’ [Sim55]), it was Moreno who initiated network thinking in its modern form.

Soon after Moreno, Fritz Heider was the next prominent figure to use sociometric
tools to analyze group dynamics [Heil3]. He was interested in ‘social balance’, that is,
how personal positive and negative attitudes translates into stable or unstable group
structures. His depictions are what we now call ‘signed graphs’; they consist of indi-
viduals with positive or negative links between them. These works inspired the first
connection between mathematical graph theory and sociology. The first formal con-
nection to mathematical graph theory was made by Cartwright and Harary [CH56].
Frank Harary was a mathematician who also worked on sociological problems at the
time, and he made significant contributions to the development of modern graph theory.
Anatol Rapoport extended the mathematical formulation to random graphs, stressing
that for many biological and social systems a random-graph treatment would be more
suitable [SR51, Rap57, RH61|. Around the same time, Erd6s and Rényi introduced a
pioneering model of random graphs. By the 1960s, graph theory had “become fashion-
able to mention that there are applications of graph theory to some areas of physics,
chemistry, communication science, computer technology, electrical and civil engineering,
architecture, operational research, genetics, psychology, sociology, economics, anthro-
pology, and linguistics” [Har].

Stanley Milgram’s famous ‘small world’ experiment [TM69] introduced the ‘six
degrees of separation’ phenomenon, which brought the network conception of social
relations into the popular culture. He was inspired by an idea of de Sola Pool and
Kochen [dSPKT78| and designed an experiment to test it. He sent a number of subjects
in Omaha (Nebraska) and Wichita (Kansas) letters with instructions. Each packet had
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the name of a ‘target’ individual in Boston. The instructions were recursively defined: If
the recipients knew the target individual personally, they were to send the letter directly
to the target. Otherwise, they were asked to send it to a friend or acquaintance who
they thought would be more likely to know the target individual personally. Although
most packets were not delivered to the targets (due to subject opt-out), using those
that did, Milgram calculated the average length of chains of correspondence, which was
close to 6. Although he did not use the term, ‘six degrees of separation’ became a pop
culture term.

The sudden expansion of network science was initiated in 1998 by the pioneering
work of Watts and Strogatz on the small-world model [WS98|. Inspired by Milgram’s
observations, they sought a model that would exhibit low average path length between
the nodes (observed in the Milgram experiment). They proposed a model to “interpolate
between regular and random networks” [WS98]. They reported that the neural network
of the worm Caenorhabditis elegans, the power grid of the western United States,
and the co-starring network between film actors, all have the small-world property.
Mathematically, they call a network a small world if its average path length is the same
order of magnitude as an Erdés-Rényi network with equal size and average degree, but
at the same time it produces high clustering (which is also widely observed in empirical
networks and the Erdgs-Rényi model could not capture). Since these three networks
are from completely different origins, this paper led to a great momentum of follow-
ups from various fields. According to Google Scholar, since the publication of their
paper, the term ‘small-world network’ was used in over 16000 scientific papers. This is

a remarkable impact of a network model, or any model.

1.4 Social Networks and Social Outcomes

In this thesis, we focus on a specific category of networks: social networks. The
term ‘social network’ is sometimes used in daily conversations to refer to online social
media such as Facebook. In this thesis, we use the term to refer to any network of human
relations, online or offline. Examples are friendship networks, kinship, collaboration, or
connection on social media.

The field of social network analysis received a large momentum from the rapid ex-

pansion of network science mentioned above. Figure 1-2 is taken from Google NGram
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Figure 1-2: The growth in the relative occurrence of the term ‘Social Network Analysis’
in the corpus of the literature that Google NGram Viewer has indexed. The third word
is intentionally added, because only using ‘social network’ would also return result that
might have been related to online social media, instead of the theoretical field of research
which is our purpose. Note that in the past 40 years, the relative occurrence has grown
over 50 times.

viewer which searches for phrases in a large corpus of books, and returns the normal-
ized frequency counts of their occurrences (they are normalized for each year, so an
increasing trend would imply increase in the attention received in books). As can be
seen, social network analysis is gathering increasing attention. Note that a factor that
contributes to this growth in volume of research is the increase in data availability
due to advances in technology (such as mobile phone data sets and data on online
interpersonal communications).

The conceptual study of social networks and how their structure affects social out-
comes is over a century old [Simb5|. Sociologists have studied how social ties that
are long and weak can be conducive of novel information (because those that your
strong ties provide, you probably already know) and can speed up the spread of in-
formation |Gra73| (for example, news about a job opening), how network closure and
locally-dense networks can promote trust (e.g., when you have, say, 8 common friends
with a person, trusting that person is less risky than if you had, say, one common
friend) [Col88|, and how being the only node (the structural hole) that connects two
separate groups or communities can be advantageous in many ways [Bur09]. Social
network studies have since broadened and increasingly relied on empirical data to in-

vestigate the effects of networks on social outcomes. Here we provide a few examples.
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The structure of social networks also has a central role in determining public health
outcomes in case of spreading diseases. Studying the effects of network topology on
the spread of the disease is less than two decades old [PSVO1b, PSV0la, MPSV02],
and by now has been extensively studied [PSCVMV15|. Network epidemiology of-
fers valuable insights about how the spreading behavior of a disease can be radi-
cally different for different structures of the web of contacts [LHNB15, LMVADW11,
PSCVMV15, GMTO05]. Another important problem is the disease-awareness inter-
play [WAWT15, GGA13, FCF17] (when the prevalence of a disease increases, infor-
mation and awareness spreads over the social network and people begin taking safety
measures, which reduces the prevalence of the disease, which in turn lowers the panic
and the safety measures, and facilitates subsequent spread of the disease). Other
disease-behavior interactions, such as vaccination decisions, have also been studied in
network epidemiology [NMLB*12, Bau05, BE0O4|. Other examples of important prob-
lems analyzed in the domain of network epidemiology include identifying the source
of an epidemic (the patient-zero problem) [AFLST15, ABD*14], the possible effect of
infections on the topology of the underlying social network [MNHD"10], and as we
will discuss below, devising optimal vaccination strategies to minimize the spread of a
network [PSV02, PSV05, SMC*13, CHBA03, MKC*04].

The insight that studying the structure of social networks offers into the diffusion of
information and behavior creates strong motivations for practical purposes. Identifying
nodes that are more influential in the diffusion of ideas and adoptions is important
in marketing [GHLHO09, DJBJ10, BCZ10]. Some studies focus on the micro dynamics
of how people communicate and recommend new innovations to their alters [LAHO7,
GGLNTO04, RD02|, and some studies propose methods and algorithms for finding the
initial set of adopters who would maximize the diffusion (e.g., spread of adoption of a
new product) over the network [KKT03, CWY09, DRO1].

1.5 Thesis Outline

In Chapter 2, we present an overview of various sampling mechanisms that exist
in the literature for different applications. Then we focus on sampling social networks
and discuss its particular challenges and problems. We introduce a conventional social

network sampling method, called the Fixed-choice Design. We argue that although it
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has been used widely in various sampling designs, there is a paucity of literature on
inferring the network structure from sampled data, and that most studies use the crude
version of the network. In Chapter 3, we take a step towards filling this methodological
gap by proposing a statistical inference framework and estimators for several network
statistics.

In Chapter 5, we introduce applications where it is impractical to know the global
network structure. The aim is to devise efficient sampling strategies to find influential
nodes the presence of time and resource constraints. We highlight a very simple yet
highly effective method that is proposed originally in the network epidemiology litera-
ture but also successfully adopted in other fields. We call it alter sampling. 1t exhibits
good performance without requiring the knowledge of global network structure. Alter
sampling only uses local structural information. We provide an overview of empirical
studies that have successfully implemented this method in practical applications. In
Chapter 6 we demonstrate that this method is highly effective across a wide array of
social networks with diverse properties.

In Chapter 7, we discuss why alter sampling works so effectively. We argue that
social networks must be organized and structured in certain ways in order for these
local methods to work. We also highlight a related phenomenon that is observed in
social networks, called the Friendship Paradox. It states that on average, people have
fewer friends than their friends do. We point out that the study of the friendship
paradox and its causes and consequences can help us devise effective local strategies
for using structural information. Moreover, it can shed light on the global structure of
social networks. We also consider the extension of the friendship paradox to personal
attributes. For example, in the case of scientific collaboration networks, scholars on
average have smaller H-index than their collaborators do.

In Chapter 8, we study the prevalence of the Friendship Paradox and its gener-
alized version on online social networks. We argue that the friendship paradox and
its generalizations can also be utilized to gain insight into the network structure. The
results of the analysis uncovers a hierarchical nature for the connections in online social
networks. We find that social networks are organized in certain hierarchical ways that
in both structural and personal attributes, most people are connected to others who are
on average superior. We discuss that our approach can capture structural properties

that the conventional measures of correlation (such as the assortativity coefficient) fail
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to grasp. We highlight the previous explanations proposed in the literature to justify
this prevalence, and demonstrate that they are incomplete. That is, we show that the
proposed conditions are sufficient but not necessary.

In Chapter 9, we propose a mechanistic network growth model that exhibits both
the friendship paradox and its generalized version with high prevalence. We find exact
mathematical expressions for how the degrees and attributes of nodes compare with
those of their neighbors, which helps characterize the local inequalities.

In Chapter 10, we introduce measures to quantify the friendship paradox and the
structural inequalities it relates to in the netwroks built by the proposed model in Chap-
ter 9. These measures help characterize a network in terms of structural inequalities,
so that if we have two networks, we can compare them in this term.

Finally, in Chapter 11, we discuss the consequences of the presented findings to
existing results in the social networks literature, and highlight potential directions of

improvement and future work.
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CHAPTER 2

Network Sampling

2.1 Chapter Outline

In this chapter we focus on network sampling, which is the first step towards any
practical study on social networks. We first provide an overview of different sampling
methods that are suitable in different contexts (technological networks, biological net-
works, online networks, etc.), and then turn our attention to the particular case of
social networks. We discuss the challenges specific to sampling social networks, and
introduce a conventional method called the Fixed-choice Design. We then highlight a
methodological need in the literature regarding network data gathered via this sampling

scheme.

2.2 Introduction

In many of the applications mentioned in Chapter 1, we need information about
the global structure of the network. Basically, in any prediction task, we need to know
certain measures of the global network structure. For example, consider the case of
epidemic disease spreading over the network. Any theoretical prediction about the
speed of contagion, prevalence as a function of time, final outbreak size, and other

properties of the epidemic process during its course, depend on the structural features

13
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of the network [PSCVMV15|. The mean and variance of the degrees, and clustering
coefficient, are examples of these structural measures. In this section, we discuss the
practical methods to observe the network structure and to obtain the said structural
measures, discuss the limitations of these methods, and propose solutions.

The field of network sampling focuses on inferring global structural parameters
from limited observed samples. There are various sampling techniques applicable to
different contexts. With the rapid expansion of the Internet and other communication
technologies, networked data is being produced at an increasing rate. Also, more and
more massive networked data sets are being made available to researchers in various do-
mains. Examples that have some relation to social interactions would be mobile phone
data [OSHT07], online social networks [KLPM10, KNT10, WBS*09], and networks of
interactions and communications on online games [ST10).

There are various sampling methods in the literature. They have been analyzed
mathematically in different contexts. Here we mention a few of them. Induced subgraph
sampling consists of selecting a random set of nodes, and collecting all the links that
exist between these nodes [Kol09]. That is, a link is collected if and only if both of
its incident nodes are sampled. Incident subgraph sampling is the converse. It first
selects a set of links randomly, and then collects all the nodes that are incident to
those links |Fra88, CTS13|. Unlabeled Star Sampling consists of first selecting a set of
nodes randomly, and then collecting all the links that are adjacent to those nodes. An
extension of this would be Labeled Star Sampling, which first takes a random sample of
nodes, then collects all the adjacent links, and then collects all the nodes at the other
ends of the collected links [Kol09|. Traceroute sampling [ACKMO09, CMO05|, used in
Internet applications, works as follows. A set of source nodes and a set of target nodes
are selected randomly. Then, for each node in the source set, all the shortest paths to all
the target nodes are specified. The sampled network consists of all the nodes and links
that exist on these paths. Finally, Snowball Sampling [Kol09] is an iterated version
of the labeled star sampling. We first observe an initial random set of nodes (the first
wave), and observe all their links. We then collect all the nodes incident to these links
(second wave), as well as all the new links incident to these nodes. Repeating the step
k times would result in a k-wave snowball sampling.

In practice, most of these methods are not applicable for studying offline social

networks. In the next section, we discuss limitations that are specific to offline social
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networks, and the methods that are most widely used. We also highlight the severe

limitations of these methods, and their consequences.

2.3 Challenges of Sampling Offline Social Networks

In sampling an offline social network, we would ideally like to sample a large number
of people, and ask them to mention the name of all their friends. Then, we would find
those friends, and ask them to name their friends, and so on. A sampling design in
which only the first step is taken is called an egocentric design [Marll, Mar90, PSC15].
One in which the latter step is also taken is called a sociocentric design [SCF14, PSC15].
Sociocentric design is highly time-consuming and economically prohibitive in practice.
It would be possible only in very small villages (an example is [KHS*15]). Even in
the rare cases that it is implemented, it has several shortcomings. Finding named
alters is challenging, and sometimes impossible (for example, the named alter might
have emigrated). Thus, in practice, only a small fraction of the named alters can be
subsequently found and interviewed. Moreover, to increase the feasibility of finding the
named alters, one will need to restrict the number of alters each respondent mentions
to very few (typically one or two). This seriously reduces the breadth of the collected
data.

Most social network designs are egocentric [Marll, Mar90, MH07, PSC15]. A
random sample of individuals are selected and interviewed. The respondents are asked
with whom they interact. For example, they are asked with whom they have spoken
in the past week, or to name their family members, or coworkers, etc. These questions
are called name generators, because the answers to them are lists of names. Name
generators specify a certain type of relationship, and ask the respondent to name alters
with whom it has that type of relationship. Typically, the next step is to characterize the
intensity of the relationship with each named alter. This step also involves acquiring
further information about each named alter. To these ends, about each alter that
the respondent mentions, a number of follow-up questions are asked. These probing
questions are called name interpreters.

There are many practical issues in social network sampling [VT98, Mar03, PS09,
KFH*"10, Marll, CL91]. Self-reported data are noisy due to significant recollection

imperfections. Interview effects such as question order and satisficing are also common
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practical problems. Perhaps the biggest practical problem in social network design
is respondent fatigue [PS09, Joh14, Rob15|. Interviews should not be long. In long
interviews, the above practical issues (recollection problems, etc.) intensify in time.
Thus, the quality of the gathered data decreases in time in each interview. In the next
section, we introduce the conventional way of dealing with respondent fatigue, discuss

its limitations and the problems it creates.

2.4 Fixed-choice Designs

The conventional way of dealing with respondent fatigue is putting limits on the
number of alters that the respondent can mention, or asking for a fixed number of
alters. That is, for each name generator, the interviewer asks for a fixed number of
alters, which is typically less than 10. This is widely done in practice. Here we give a
few classical and a few recent examples.

For the network questions of the General Social Survey, the maximum allowable
number of alters was 5 [Bur84]. A well-known classical study is by Coleman et al. on
the diffusion of innovations among physicians in a small town [CKM57|. Each respon-
dent was asked to name 3 physician friends with whom they most frequently interacted.
Another pioneering study was conducted by Wellman et al. on social networks of resi-
dents of East York, Toronto. They limited the number of alters to 6 [Wel79, WCW*73].
Another famous classical social network study is on the communities in Northern Cal-
ifornia |[Fis82|, which limited the number of alters to 4 to 10, for different name gen-
erators. The last example is [Lau73| on friendship networks in Detroit, for which the
number of allowable alters is limited to 3.

In more recent social network designs, this practice is still common. In [BKWO02,
BVAO05, MKAT01], the number of alters are restricted to 4. In [HK07, HKCT09], the
limit is 5. The studies by Christakis and Fowler on the spread of obesity [CF07|, smok-
ing [CF08], happiness [FC*08], alcohol consumption [RMFC10], loneliness [CFCO09],
depression [RFC11], all use the same networked data set which “captured up to two
close friends" [FF'SC11]. Furthermore, their study of the contagion of sleep loss on
social networks among adolescents limits the mentioned friends to 5 males and 5 fe-

males [MCF10]. There are many other studies that put a limit on the number of
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alters [Val03, AJC64, Shu76, McC03, RSE12, CNGP07, STRM97, PSS06, BHH9G6,
IVdBV11, VM04, BFB91, FBMG™07, Nir05, AKM*07, FMGC*07, Rei99].

A design that limits the number of alters that each respondent can name is called
a Fized Choice Design |WF94, Newl10, RH61|. It is clear that such a limit imposes
an artificial cutoff on the number of personal ties and distorts the picture of the social
network. Limitations of such method are pointed out by some authors [New10, WF94,
SSP10], but such limitations are not mathematically discussed. Surprisingly, most
studies cited above which employ the network structure for a subsequent analysis, use
the crude sampled network without inference. Furthermore, no quantitative attempt
for inference of the network structure from fixed-choice data exists in the literature
(which might be the reason why the sampled networks are used without inference being
conducted). In Chapter 3, we focus on this sampling design. We illustrate that although
such a limit is imposed on the number of alters, reliable estimates on various structural
quantities can be found. We theoretically find estimators for various network quantities,
and verify their accuracy via numerous simulations on different topologies. The setup

and results are discussed in more detail in the next chapter.

2.5 Chapter Summary

Network sampling is a necessary step for incorporating networks into any analysis.
We showed that sampling offline social networks is particularly costly due to practical
considerations, and it is standard to only sample a limited number of alters for each ego.
For the fixed-choice design, which is a conventional method, no statistical framework
for the estimation of network properties has been proposed. Chapter 3 presents our

contribution to fill this gap.



CHAPTER 3

Paper: Statistical Inference for
Fixed-choice Design Incorporating
Strong and Weak Ties

The material presented in this chapter has been accepted in IEEE Transactions
on Signal and Information Processing over Networks (the online version is available via
doi: 10.1109/TSIPN.2017.2731053).

A summary of the findings is published in the following proceedings:

N. Momeni, M. Rabbat, “Inferring network properties from fixed-choice
design with strong and weak ties", IEEE Statistical Signal Processing Work-
shop (SSP), 2016.

Please note that the references of the manuscript are listed at the end of this

chapter, not at the end of the dissertation.
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Inferring Structural Characteristics of
Networks with Strong and Weak Ties from

Fixed-Choice Surveys

Naghmeh Momeni and Michael G. Rabbat

Abstract

Knowing the structure of an offline social network facilitates a variety of analyses, including
studying the rate at which infectious diseases may spread and identifying a subset of actors to
immunize in order to reduce, as much as possible, the rate of spread. Offline social network
topologies are typically estimated by surveying actors and asking them to list their neighbours.
While identifying close friends and family (i.e., strong ties) can typically be done reliably, listing
all of one’s acquaintances (i.e., weak ties) is subject to error due to respondent fatigue. This issue is
commonly circumvented through the use of so-called “fixed choice” surveys where respondents are
asked to name a fixed, small number of their weak ties (e.g., two or ten). Of course, the resulting
crude observed network will omit many ties, and using this crude network to infer properties of
the network, such as its degree distribution or clustering coefficient, will lead to biased estimates.
This paper develops estimators, based on the method of moments, for a number of network
characteristics including those related to the first and second moments of the degree distribution
as well as the network size, using fixed-choice survey data. Experiments with simulated data
illustrate that the proposed estimators perform well across a variety of network topologies and
measurement scenarios, and the resulting estimates are significantly more accurate than those
obtained directly using the crude observed network, which are commonly used in the literature.
We also describe a variation of the Jackknife procedure that can be used to obtain an estimates

of the estimator variance.

Index Terms

Network sampling, social networks, statistical inference.
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I. INTRODUCTION
A. Network Sampling

Network science has quickly spread into diverse disciplines because it offers versatile and
powerful tools to quantify the structure of interactions and connections. For social networks,
for instance, the diffusion of information [1]-[3] and infectious disease [4], awareness [5],
and health behaviors [6], [7] are studied. The structural properties of the underlying social
networks are central in these studies. Thus we need to observe and measure these properties.
Like most large-scale systems, for practical considerations we need to find efficient ways
of inferring these properties from a limited set of observations. This task is the focus of
the network inference literature. Different sampling methods in the literature are suited
for different practical requirements [8]. Examples include: traceroute sampling [9]-[11],
which is typically used for sampling the Internet; respondent-driven sampling methods [12],
which are typically used for sampling social networks connecting hidden populations that
are difficult to find and interview; crawling methods, other random-walk methods [13], and
forest fire sampling [14], which are typically used for the web and online social networks;
and random node and link sampling [15], [16].

In this paper we focus on sampling offline social networks. We consider two features
that are specific to social network research and that demand special consideration for
network sampling. The first one involves degree truncation introduced in the measurement
process, which we discuss more in Section I-B. The second one involves heterogeneity of
link weights, which we discuss more in Section I-C. After introducing these two features
and pointing out the absence of theoretical results on inference methods for offline social
networks, we focus on incorporating them into the mathematical treatment of the sampling
procedure. We introduce a setup to incorporate both of these features. We then focus on

the problem of inference, which is the main contribution of this paper.

B. Fixed Choice Design

Most of the sampling methods for social networks can be mathematically formulated as

variants of snowball sampling. Snowball sampling consists of sampling an initial set of
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nodes and their incident links, then sampling their neighbors and their incident links, and
so on. It is equivalent to running a breadth first search from the initial set of nodes, and is
typically stopped at a given depth, so that not all links are traversed. Ideally, the sampling
would proceed until new nodes and links are no longer encountered, so the entire network
is sampled. This is impractical in most settings, and as we will discuss, even more so in
offline social networks.

In practice, information about offline social networks are typically obtained through
personal interviews and surveys. In this context, each person is referred to as an ego,
and their 1-hop neighbors in the graph are called alters. A zero-wave snowball sample
would consist of simply selecting a set of interviewees and asking them to list their alters.
This is called an ego-centric design. For practical considerations of time and cost, the
majority of social network data is ego-centric [17]-[19]. Even this simple and economical
design introduces challenges, such as imperfect recollections and other memory issues.
A serious practical problem is respondent fatigue, which imposes limits on the interview
time and the amount of information expected from respondents. The conventional way of
approaching this problem is to employ the so-called fixed-choice design, which amounts
to imposing limits on the number of alters that each respondent is asked to list. There are
numerous examples of classic and recent social networks studies that employ a fixed-choice
design [20]-[25].

Interestingly, the social network studies that focus on diffusion of information, awareness,
innovation and health behaviors directly use the crude, degree-truncated version of the
network as the topology on which the diffusion processes take place. As pointed out recently
in [26], the behavior of diffusion processes on the original networks and their degree-
truncated variants can differ significantly. Thus, inferring the properties of the original
network form the sampled data constitutes a significant step towards improving the results
in the social network literature. The only prior works in the literature on inference of
network properties from fixed-choice survey data do not differentiate between different

types of social ties [27], [28].
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C. Strong and Weak Ties

The second property of social networks that a sampling procedure should take into
account is the heterogeneity of link weights. In social network studies, a conventional
simplification is to divide social ties into strong and weak, and different questions in
a survey specifically aim to elucidate different types of ties. For example, some survey
questions target within-household and intimate relationships (such as secret sharing and
intimate advice seeking), and others questions target between-household and weaker rela-
tions (conversations, interactions, etc.) [19], [29]. Or in the context of student friendship
networks, some ties pertain to within-school friendship bonds and some pertain to between-
school ties [30]. Dividing the ties into two distinct categories is a first step towards a closer
correspondence to actual survey data.

Strong and weak ties have different levels of impact in different phenomena, such as
diffusion of information, providing social support, adopting health behaviors, and cooper-
ation and trust [31]-[34]. The distinct role of strong and weak social ties has been also
studied in online social networks [35].

The recent study [27] discusses modeling and inference for fixed-choice designs in the
simplified scenario where there is only one type of tie. In actual studies, the nature of links
are heterogeneous and the first approximation would be to dichotomize them. Moreover,
typical surveys used to infer structural properties of offline social networks incorporate
multiple questions, while the method of [27] effectively assumes that only one fixed-choice
question has been posed. While accounting for different types of ties (e.g., strong and weak)
is a significant step towards making the approach more useful to sociologists, it also gives
rise to a number of challenges. In particular, the model with strong and weak ties has more
parameters to be estimated and requires carefully accounting for the interactions (e.g.,
correlations) between these parameters. Developing an inference methodology to address
these challenges constitutes one of the main contributions of this manuscript, as discussed

next.
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D. Contribution and Paper Organization

In this paper, we study the problem of inferring network characteristics from surveys
employing fixed-choice design questions. We focus on the case of networks with two
distinct types of links (strong and weak). We propose an inference method to estimate
network properties based on observing the sampled version of it, and we also describe a
method to estimate the variance of the proposed estimators.

The rest of this manuscript is structured as follows. Section II presents the sampling set-
ting, taking into account both features discussed above. Section III formulates the inference
problem and presents methods for estimating structural properties of the network from fixed-
choice survey data. Then Section IV illustrates the performance of the proposed inference
methodology via simulations, and compares the results with those of the crude version of

the network (without accounting for the bias introduced by fixed-choice observations).

II. PROBLEM FORMULATION

Consider the following sampling setup. The original network, whose properties we want
to estimate, is denoted by G. This original network has N nodes, where N is an unknown
parameter to be estimated. The network is undirected, and links are of one or two types:
weak and strong. Thus, for each node in G we can define two distinct degrees, pertaining
to the number of its strong links and weak links.

The sampling process starts with selecting a set of respondents (referred to as seeds)
denoted by Sy with cardinality |Sy| = no. Each seed is asked to name all of its strong
neighbors and also B of its weak neighbors, where B is a given positive integer (see,
e.g., [19]). That is, we assume that the problem of imperfect recollections can be neglected
for the case of strong ties. Moreover, since the number of weak ties is typically large, we
assume that the imposed limit is applied only to weak ties. We also assume that 5 is much
smaller than the smallest weak degree in the network, so that every node has at least B
weak ties to name. This is reasonable since typical fixed-choice designs use values for B

that are less than ten [20]-[25].
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Fig. 1: A schematic illustration of the sampling setup. The upper layer represents the strong ties and the
lower one represents the weak ties. The set of nodes in two layers are the same and the links in two layers
are exclusive. The seeds are depicted in red. In this example B = 2. Gray links and hollow nodes exist in G
but are not observed in G*. The observables shown in the legend are equal to the number of corresponding

nodes/links (as intorduced in Section III).

The alters that each seed names might themselves belong to Sy. Let S§ and S} denote
the sets of non-seed strong and weak alters named by any seed, respectively. Note that .S,

i, and S7¥ are not disjoint, and it is possible that some node may appear in all three sets;
that is, a node may be a seed, it may be named as a strong tie of another seed, and it may
be named as a weak tie of yet another seed. We denote the cardinality of S§ by n] and the
cardinality of S}’ by n}’. We refer to the subgraph of G constructed from the seeds and the
responses as the sampled network, and we denote this sampled network by G*.

Figure 1 shows a schematic illustrating the sampling process. As can be seen, some of
the sampled links connect two seeds, and others connect a seed to a non-seed. We denote
the number of strong and weak links with both ends in Sy by m{ and my, respectively. We
denote the number of links between Sy and S7 by mj and, similarly, the number of links
between Sy and S}’ by m}’. Table I provides a summary of the notation used throughout
paper.

Our objective is to infer properties of G given the observed subgraph G*. We model the

heterogeneity of links in the original graph with a two-layer network with the same set of
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TABLE I: Notation used for statistics of the original (unknown) and sampled (observed) networks.

Original network (unknown) Sampled Network (observed)

Variable  Definition Variable  Definition

g Original graph g* Sampled graph (observed)
N Number of nodes no number of seeds
q Sampling probablity ni number of non-seed strong alters named by seeds
K Average strong degree ny number of non-seed weak alters named by seeds
Ky Average weak degree my number of strong links between seeds
K Second moment of strong degrees mj number of strong links between seeds and non-seeds
Kuw Second moment of weak degrees mgy number of weak links between seeds
Kow Cross-production moment of degrees my number of weak links between seeds and non-seeds
Tys Number of triangles with three strong links ) Number of observed triangles with three strong links
Ty2y Number of triangles with two strong and one weak links T, Number of observed triangles with two strong and one weak links
Tow2 Number of triangles with one strong and two weak links T2 Number of observed triangles with one strong and two weak links
T3 Number of triangles with three weak links Tys Number of observed triangles with three weak links
Tss Number of total triads with two strong links Als Number of observed open triads with two strong links
Tsw Number of total triads with one strong and one weak link | A%, Number of observed open triads with one strong and one weak link
Tww Number of total triads with two weak links Avow Number of observed open triads with two weak links
Ass Number of open triads with two strong links
Asw Number of open triads with one strong and one weak link

ww Number of open triads with two weak links
cc Clustering coefficient

nodes and two binary-valued adjacency matrices A® = [aj;] and A" = [a}}] representing
strong and weak links, respectively. We denote the strong degree of node i by £} = Zjvzl a;;
and its weak degree by k¥ = Zjvzl ag.

Specifically, the parameters to be estimated are the number of nodes in the original
network N, the average strong and weak degrees K, = %Zf\; ki and K, = %21]\;1 kY,
the second moments of the degrees (or equivalently, the variance of the degree distribu-
tions and the correlation between strong and weak degrees) K, = %ZiNzl(ka)z, Ky =

1 S (k)2 Ko = 1 SV kfkY, as well as the number of triads and triangles of different

types (see Sec. III-B), and the clustering coefficient [36].

III. INFERENCE METHODOLOGY

We use the method of moments to perform inference. We need a generative model for

the observables so that their expected values can be written as a function of the desired
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variables. Then the method of moments proceeds by finding the least squares fit between
the observables and their expected values.

We model the selection of seeds as an i.i.d. Bernoulli process, in which each node in the
network is chosen as a seed independently with probability ¢, which is unknown. Since we
seek a non-parametric framework, we also assume that the weak neighbors named by each
seed are chosen uniformly at random from all of the weak neighbors of the seed. Let X;
be a Bernoulli random variable with probability ¢ associated with each node : = 1,..., N.
If node 7 is a seed (i.e., © € Sy is surveyed) then X; = 1, and otherwise X; = 0.

Extensions to the more general case where weak neighbors are not chosen uniformly at
random, but rather are chosen according to some other distribution (e.g., proportional to the
neighbor’s degree) may be of interest, but we leave this to future work. Likewise, it may be
of interest to relax the assumption that seeds accurately report all of their strong ties (e.g.,
to account for forgetting one or two). Indeed, if strong ties are inadvertently omitted, then
the estimates produced by the procedure described below will be biased, since they don’t
account for this source of error. In practice, it would be impractical to assume statistics
about the number of strong ties omitted, and it would also need to be estimated. We also
leave this extension to future work.

With this model and notation, our next step is to find expressions for the expected values
of observed statistics ng, my, mj, nj, mg, m{’, n’. Our approach to inferring the desired
parameters will proceed in two stages, which we describe below. The first stage only
involves estimating the first moments of the node degrees, and the second stage involves

estimating the second moments.

A. First Moments

The number of nodes that are seeds can be written as ny = Zf\il X, and therefore we
have

E[ng] = Ng. (1)
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Similarly, mg and mj] can be written as mg = 5 ZZ L ZJ  XiXjaj; and my = 3 Zf\il Zjvzl X;(1—

X;)a$;, respectively. Therefore we have

15
1
E[my] = =¢* Y ki = 5¢’NK, )

and

N
Em{] =q(1—q) > k5 =q(1—q)NK,, 3)

where K, = + 37 Zjvzl aj; is the (unknown) average strong degree.
Let M; be a binary variable equal to 1 if and only if node 7 is named as a strong neighbor
by at least one seed. The total number of nodes in S is equal to S (1 — X;)M?. By

approximating the strong degree Z of node 7 by K, we have

_]11]
N

E[n] =) (1-q)(1—(1-q)")~N1-q)(1-(1-q"). )

i=1
We discuss when this assumption is reasonable and investigate its consequences further in
Section III-D below.

Note that if two seeds are connected with a strong link, each of them names the other
one as an alter. If they are connected with a weak link, the two events corresponding to
each one naming the other are assumed to be independent. We model the event that node
© names node j as a weak neighbor as a Bernoulli variable WW;; that is equal to 1 with
probability % and O otherwise. So the total number of weak links connecting any two
seeds is equal to 2 3" Zjvzl X Xjai(Wij + Wi — WizWy;), and its expected valued can

be approximated by

N
o1 B B B
Elm§] =52 qz(k;erk:w_kwkw)
; ; 7 L)

J

1, B
~-¢*BN (2 - —
54 < K)’ (%)
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where N denotes the set of weak neighbors of node 7. Similarly, m} = Zfil Zjvzl X;(1—
Xj)a};. VVij and
E[my] = q(1 - ¢)NB. (6)

If we write down the expected value of nf’, the second moment of the degrees in the
weak layer (K ,,,) appears. As we will discuss below, K, can be estimated along with
the other second moments by studying the number of triangles and triads in the observed
graph. Therefore, at this step of inference it is reasonable to disregard n}” from the analysis.

We have six non-linear equations and four unknowns, N, q, K, K. There are different
possible ways to approach solving this system of equations. One is using the generalized
method of moments which minimizes the weighted squared errors of all six equations. This
is infeasible because the three equations, (1), (5), and (6), admit a closed-form solution;
the errors of these equations become zero, leading to the divergence of their corresponding
weights. To avoid such divergence, we proceed as follows. First, using Equations (1), (5),

and (6), we solve directly for N , ¢, and [?w:

~ Bn?
N=——__~0 7
Bng —mYy M
. Bng—mYy
- -0 "1 8
q B (®)

~ 2Bng —2mY¥ —my’
Then, we substitute the estimated values into (2), (3), and (4) and estimate K by solving

the least squares problem,

min | (s — Bfmd])? + (i — Elmi)* + (n5 — E[ni)* | (10)

where the three expectations are replaced with the expressions from (2), (3), and (4).

B. Second Moments

Next we proceed to estimate the second moments of the degrees. Note that the existence
of the moments of the degree distribution is not an issue here. Networks of interest in

this work have finite degree moments. Diverging moments occur in heavy-tailed degree
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(a) () ©)

Fig. 2: Different compositions of open triads. Solid lines denote strong ties, and dashed lines denote weak

ties.

distributions (e.g., power-law) only for infinite network size. Moreover, as mentioned above,
degree distributions of offline social networks are generally much less skewed than online
social networks (see [37], for example), since humans typically have limited time and
capacity to maintain strong and weak ties. Thus, for the networks of interest in this work
we can safely assume that the degree moments exist and are finite.

In the following, we use the term triad to refer to a three-node motif consisting of one
node (the ego) and two of its neighbors. The neighbors can be connected (a closed triad)
or not (an open triad). For example, a triangle in the original network G comprises three
closed triads since any of the three nodes can be selected as the ego.

To employ the method of moments for estimating K, K, and K, and the clustering
coefficient, we should again find variables that can be written as a function of the desired
quantities (here, the second moments). The variables in G that can be written as a function
of second moments are the number of different types of triads (closed and open). Due to
link heterogeneity, we can have triads with different compositions, as illustrated in Figure 2.

Let Ty, Tsw, and 7, denote the total number of triads in the original network, G, similar
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to the ones in Figures 2a, 2b, and 2c , respectively. Then

Yk 1

Tes = Z <2> ~ SN(Kys — K,) (11)
N kSN [k

Tow =Y <1> < | ) ~ N(K) (12)

N w
Tuow =Y (k ) ~ lN(wa — Ky,). (13)

Note that these triads can be closed or open; the link (present or absent) between the two
non-ego nodes is not accounted for here.

There are four compositions of triangles, as illustrated in Figure 3, based on the type
of each link. The number of each of these triangles in G is denoted by Tis, T 2,,, Ti.2,and
T.3. Recall that each triangle comprises three closed triads. For instance, a triangle with
three strong edges gets counted as three ss triads, and a triangle with one strong edge and
two weak edges corresponds to one ww triad and two sw triads.

The total number of possible triads in G can be written as a function of the number of

open triads and the number of triangles in the network:

Tes = Ags + 3T g3 + T2y, (14)
Tsw = >\sw + 2T32w + 2Tsw2 (15)
Tww = Mww + 3Ly + Ty, (16)

where A, Agp, and A\, denote the number of different open triads (Figure 2) in G.

So based on Equations (14), (15), and (16), in order to estimate the total number of
triads in G, we need to separately estimate the number of triangles, as well as the number
of open triads. To this end, we need to find the expected values of the number of triangles
and open triads in G* as a function of these values in G and the estimated variables in the
first step of inference (that is, NV, q, K, K,).

Let us consider two illustrative examples. Consider the triangle shown in Figure 4a.

Depending on whether each of the three nodes are selected as seeds, and if so whether
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(@) (b) © (d)

Fig. 3: Different compositions of triangles. Solid links denote strong ties, and dashed links denote weak ties.

they name the other nodes, this triangle may or may not appear in G*. One possible scenario
in which the triangle can be observed in G* is illustrated in Figure 4c. This event happens
if:

1) Only nodes 1 and 2 are selected as seeds;

2) Node 1 names node 2 (and not the reverse); and

3) Node 2 names node 3 (the reverse cannot occur since node 3 is not a seed).
The probability of this event (all three points above occurring simultaneously) is ¢*(1 —
q)b11bo1, where by, denotes the probability that a seed (here, node 1) names one strong
link and one weak link and similarly, by; denotes the probability that a seed (here, node
2) names no strong link and one weak link in the triad. These probabilities depend on the

degrees of the seed. However, we approximate them for an arbitrary node x by

(370)  B(k*-B)  B(K,—B)

and (kw_l)
b=y T YK (18)
B T w

Similarly, we can define bgyg, b1g, bag, and bge. Their approximated expressions are shown
in Table II in the Appendix. There are 42 possible ways that a triangle in G can be observed
in G*, and these factors can be used as building blocks for calculating the probabilities
pertaining to all 42 possible ways. We denote the probability of observing triangles in
G* by {pj;j = 1,2,...,42}. All of the triangles and corresponding expressions for p; are
presented in Figure 12 and Table III in the Appendix.
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0 ® ®
<\ ¥y ¥y
>0 O 6 0-+0 0 ©

(a) Triangle in G (b) Open triad in G (c) Triangle in G* (d) Open triad in G*

Fig. 4: Example of a triangle and an open triad in G being observed in G*. The hollow nodes are chosen
as respondents, and the solid node is not chosen. Solid lines represent strong links. Dashed lines represent

weak links. Arrows indicate mentioning the adjacent node in the interview.

The same triangle in Figure 4a can be observed as an open triad in G*. One possible
scenario is illustrated in Figure 4d. The probability of this event is equal to ¢*(1 — q)by1bgo.
There are 31 possible ways an open triad can be observed in G* (see Figure 13). We denote
the probability of observing triangles in G as open triads in G* by {m;;i = 1,2,...,31}
(Table IV).

Open triads in G* are not observed whenever at least one link in a triangle in G is
absent (not named). They can be observed if an open triad with the same composition is
preserved during the sampling process. Consider again the open triad in Figure 4d. It can
originate from the triangle in Figure 4a or from the open triad in Figure 4b. Note that in
the latter case, node 2 in not connected to node 3 in G. So the absence of this link in G*
is not the result of node 2 not naming node 3 (unlike the case of triangle to triad). We
can write the probability of observing this triad originating from the triad in Figure 4b as
q*(1—q)bi1agy, wWhere agg corresponds to node 2 not naming any strong or weak link while

it is connected to only one of them. For an arbitrary node x, ayy can be approximated by

_ (%) _mw-B . B
Qoo = ("“é”) = e _l—K—w. (19)

Similarly, we can define ag; and a;9. The approximation of these quantities are presented
in Table II in the Appendix. We denote the probability of observing open triads in G as
open triads in G* by {¢;;i = 1,2,...,31} (Table V).

Let us denote the expected number of different types of triangles and open triads in

G* with the same notation introduced for the original network with the addition of %
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superscrtipts. For the triangles we have

2
Th=Te XY pi (20)
=1
7
Thy = Tow X ) _pi 1)
=3
17
s*w2 = Tu2 X Z Pi (22)
1=8
26
vs =Tus X Y pi. (23)
=18

For example, Equation (21) states that the s*w triangles in G can be observed in G* under
5 different events, depicted in Figure 12, whose probabilities are listed in Table III. A
similar explanation and reasoning follows for the other triangular configurations. Also, the

expected number of open triads in G* can be written as

4 4
Xy =3To X T3+ Ty X Y Tt Ass X Y _ i (24)
=1 =1
13 13
Ao = 2T 2y X g 4 2T g2 X Z i + Ass X Z i (25)
i=5 i=5
24 24
Now = Tow2 X T4 + 3T X Z T + Aww X Z ;. (26)
=14 =14

Note that the coefficients a; ; and b; ; in Table II are all functions of B and K. Similarly,
the coefficients p;, m;, and ¢; only depend on the values from Table II and ¢q. Since the
parameter B is assumed to be known, given estimates of ¢ and K, we can approximate all
of these coefficients. Then we can use the estimated values in conjunction with Equations
(20)—(26) to estimate the number of triangles and triads. Note that, given the coefficients,
these are all linear equations in the unknown parameters, so estimation reduces to solving
a system of linear equations. Finally, we use the estimated numbers of triangles and triads
to estimate the degree correlations, K, K, and K, via Equations (11), (12), and (13),

which are also linear equations in the unknowns.
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C. Summary of the Inference Method

The following steps summarize the entire proposed inference method.

1) Estimate N ,q, and I?w (Equations (1), (2), and (3)).

2) Estimate the strong degree IA(S (10).

3) Plug in the estimated weak degree K » and sampling probability g to estimate values
for {p;;7=1,2,...,26} and {(m;, ¢;);1 = 1,2,...,24} (Tables IIL, IV, V).

4) Count the number of observed triangles (175, 7%, , 17 » = Tgy2, and 1775 = T}3) and
triads (A%, A%, and A} ) in G*.

5) Estimate the number of different triangles in G (Equations (20), (21), (22), (23)).

6) Estimate number of different open triads in G (Equations (24), (25), and (26)).

7) Estimate the total number of all triads in G (Equations (14), (15), and (16)).

8) Estimate K., Ky, and K, (Equations (11), (12), and (13)).

The computational complexity of this method is dominated by step 4, which involves
counting all triangles and triads in the observed network. Typical studies of offline social
networks focus on villages populations smaller than 10*. For observed networks of this
size, running the entire inference procedure takes about one second on a contemporary

laptop computer.

D. The Average Degree Approximation

Many steps of the development above involve approximating the individual node degrees
k; and k" with the average values K, and K,. Let us briefly describe why this is
both practically and theoretically reasonable. First note that the less skewed the degree
distribution is, the better the said approximation performs. Although there is no social
network study in which a full real-world offline social network has been observed, there
are studies which provide the degree distribution. For example, see Figure 1 in [37]. Offline
social networks exhibit reasonably concentrated degree distributions, not heavy tailed. So

it is expected that the adopted approximation is not a significant source of error.
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Let us also estimate the error theoretically. Consider a network whose weak and strong
degree distributions are both Poisson; i.e., suppose k7, « = 1,..., N are i.i.d. Poisson
random variables with mean K. It is straightforward to show that

E[) (1—q)¥] = Ne . (27)
i
Evaluating the Taylor expansion of this expression at ¢ = 0, we find that the relative error

is

ER-(1-a | K K | KK +2)q"
N(1—q)% 2 3 8

+ O(q°).

Thus, the leading term in the error is proportional to ¢*, which is reasonably small (note
that in typical offline social networks, Ky may be a few 10’s while ¢ is significantly smaller
than one).

For Equation (5), theoretical calculation cannot be performed in closed form even for
Poisson networks. Thus, to verify its applicability, we tested it on a variety of network
models with different properties. Figure 5 presents the distributions of %, where Y is
the sum >, > . A W, approximated in Equation (5) by the expression ¥ = Kiw In
the simulation we employ four distinct families of networks with different properties to
investigate the robustness of the approximation. The four synthetic network models are:
Small-world (SW) [38], Barabasi-Albert (BA) [39], Random Recursive Trees (RRT) [40],
and the high-clustering scale-free model of Holme and Kim (HK) [41]. The difference
between BA and RRT is that in the BA model incoming nodes choose their neighbors
preferentially (i.e., with degree-proportional probabilities), whereas in the RRT model they
choose them uniformly at random. The BA and RRT models generate networks with
unrealistically high-skewed degree distributions for offline social networks; we present them
here as extreme worst-case scenarios.

We generate 1000 random networks from each family, with parameters randomly gener-
ated, and with sizes fixed at NV = 1000. The distribution of relative errors is presented in

Figure 5. It can be observed that the relative error for these networks is less than 6%. For

the HK and SW models, which may be considered more realistic models of offline social
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Fig. 5: The distribution of relative error due to the approximation made in Equation (5) for the SW, RRT, BA,
and HK families of networks. For each family we generated 1000 networks of size 1000, with parameters
randomly generated. As mentioned in the text, BA and RRT are worst-case scenarios due to their extreme
skew, yet the relative error is reasonably small for them. For the more realistic models of SW and HK, the

error is considerably smaller.

networks, the relative error is about 1%. This demonstrates the reasonable accuracy of the

approximations.

IV. RESULTS AND DISCUSSIONS
A. Performance of the Proposed Estimators

To verify the accuracy of the estimators, the ideal scenario would be to have data from
real-world offline social networks that have been fully observed (i.e., ground truth), along
with their sampled versions. We found no fully-observed real-world offline social network
dataset available in the literature. Full observation is almost impossible due to practical and
privacy considerations. Thus we use synthetic networks for evaluation.

We verify the accuracy of the proposed estimators via Monte Carlo simulations over 500
synthetic networks. In each MC trial, we build a synthetic two-layer network. The set of

nodes in the two layers is the same. One layer represents the strong links and the other
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represents weak links. All the synthetic networks are generated according to a modified
Watts-Strogatz model, with the difference being that edges are randomly added instead
of being randomly rewired [38]. We randomly sample model parameters such that the
average degree of the weak layer falls between 100 and 200 and the average degree of the
strong layer is between 10 and 20. These values are justified by the substantial literature in
evolutionary psychology and neuroscience [42]-[48] which suggests that the human brain
has evolved to maintain approximately 150 active social ties, with an ‘inner circle’ of up
to 20 members. The results are not sensitive to these precise values; increasing the average
degree in the weak layer does not substantially change the results.

We apply the sampling process on this network. Then, we infer the desired variables and
compare them to the true values. The number of weak links named by seeds is B = 10. We
first keep ¢ = 0.1 constant and increase /N to confirm that the performance improves as the
network size increases. We then fix N = 4000 and vary ¢ to study the effect of sampling
proportion. The same simulations are repeated with B = 2. Finally, we fix N = 4000 and
¢ = 0.1 and vary B.

Figure 6 shows the empirical distribution of the ratio of the estimated values to the true
values for N, ¢, K, and K, (all for B = 10). In all cases, the estimator does exhibit
some bias for smaller sizes of networks, N, and samples, q. As the number of nodes or
the sample size increases the variability of the estimates decreases, as does the bias. The
results when B = 2 are similar to the case of B = 10 (see the supplementary material);
only the variability of the estimates is greater, but not significantly so.

Figure 7 presents the results for K,,, K, and K,,,. For these estimators, the results
depend on the value of B. The results for K, and K, resemble those of K, so we
omitted multiple figures. For B = 10, the estimates are not biased for different sizes
of network and samples and their variability consistently decreases as the size increases
(Figures 7a and 7c). However, the behaviour of the estimators is different when B = 2. In
Figure 7b, the estimator has a bias for smaller values of /N and the bias decreases as NV
increases. In Figure 7d, the estimator shows a significant bias for ¢ = 0.05. As ¢ increases,

first the bias and then the variability of the estimator are improved. Figures 7e and 7f
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illustrate the dependence of the performance of the estimators on B. It can be seen that the
bias is negligible for values of B as small as 4. If we further increase B, the variability of
estimates decreases.

To test the robustness of the results on moderate levels of skew that might be observed
in offline social networks, we also tested the results on the high-clustering scale-free model
of Holme and Kim [41], and the observed results are reasonably accurate. Since the results

are similar to those presented, we omit them for space limitations.

B. Comparing with SFC Estimators

Next, we compare the performance of the method proposed in this paper to the one
proposed in [27], which we refer to as the single fixed choice (SFC) method, since it draws
inferences about network structure based on the responses to a single fixed-choice survey
question without differentiating between weak and strong ties. In order to facilitate this
comparison, we use the same synthetic networks as described above. We first apply the
proposed sampling and inference method. Then we collapse the two-layer network into
a single network and apply the SFC sampling and inference scheme. We compare the
performance of the two methods in terms of their estimate of the average degree, we take
the estimates for K; and K, produced by the proposed method and compare the K + K,
with the estimate of K produced by SFC. Figures 8a and 8b show the performance of
estimators of number of nodes and the average degrees. Although the estimates of the
network size are comparable, the estimates of average degree are slightly better for the
proposed approach, with it having a smaller inter-quartile range. This is not surprising,
since the proposed method produces a better estimate of the average strong degree, thereby

providing a more reliable estimate of the total degree.

C. Comparing Results with the Crude Version

As discussed in Section I, many social network studies of contagion use the sampled
network without any inference [20]-[25]. To compare our estimators with the crude values

of the sampled network, we need to choose a network statistic. The effect of degree
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our estimates. (Best viewed in color.)

truncation in moments of the degree distribution is trivial, and it is clear that the crude
values will be heavily biased, in comparison to the values produced by our estimators which
appear to exhibit good performance in the experiments reported above.

Instead, we consider estimating the clustering coefficient, a dimensionless quantity which
is one of the most important network statistics in social network studies [49]. It is also
desirable because it embodies all the other estimators and approximations. Since we have
different types of triads and triangles, we first collapse the network into one layer (with
homogeneous links) and then calculate its clustering coefficient. Figures 9a and 9b illustrate
the performance of our method in estimating the clustering coefficient. Figures 9¢ and 9d
depict the clustering coefficient calculated directly from the crude sampled network. It is
evident that our approach outperforms the crude estimate by a large margin, and using the

crude estimates results in underestimating the clustering coefficient of the network.
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D. Performance of Estimators on Real-world Datasets

The Villages dataset [29] consists of surveys made in 77 villages in India. The question-

naire includes several questions used to build the social networks. To apply our method to

the networks in this data set, we form the strong layer of each network based on responses

to a question about relationships involving the borrowing of money, and we build the weak

layer by connecting two nodes with a weak tie if they are not relatives and accompany
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Fig. 10: Performance on the Villages dataset. Red boxes correspond to the proposed estimator, blue boxes
correspond to the SFC estimator, and the grey box corresponds to the crude estimate of the clustering

coefficient.

each other when going to temple. We remove the nodes whose weak degree was less than
3 and then applied the sampling method with B = 3. The distribution of the estimates for
N, q, K, K, and the clustering coefficient (for the collapsed network) using the proposed
method are presented in Fig 10 in red. To compare our estimates to the SFC model,
we collapse the two layers into one and estimate N, ¢, K, and clustering coefficient
using SFC. The distribution of these estimates are shown in Fig 10 in blue. Also, we
have included the crude estimates of the clustering coefficient (calculated as explained in
Section IV-C) in gray. As with the simulated dataset, the clustering coefficient estimate
obtained using the proposed method is significantly better than that obtained using the
crude network. Moreover, the accuracy of the proposed approach in estimating a variety
of network parameters provides some validation that the modeling assumptions on which

this approach is based are reasonable.
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V. ESTIMATING THE VARIANCE OF THE ESTIMATORS

To estimate the variance of the estimators, we propose a variation of the Jackknife
resampling method [50], [51]. In each resampling, we leave out one of the respondents
and remove all the links of that respondent in the sampled network. Then, we apply our
method to estimate the desired variables in the resampled network. Variances are estimated
from the distribution that is obtained by repeating this procedure for all respondents. Note
that this estimated variance is different from the variance of all estimates from subsamples.
The estimated variance of an estimator for parameter / in this method is equal to

Cnp— 1

Var(h) = > (hi — h)?, (28)

No

n=1
where E is the estimated value of A when node i is removed from the seeds and A is the
average of all values of E Figure 11 presents the results of Jackknife resampling for two
of the estimators for different values of sampling probability (N = 5000 and B = 10 are
fixed). It can be seen that as the sample size increases, the estimated standard deviations of
both estimators decrease. Moreover, for all values of ¢ we see that the true value (dashed

line) falls within one standard deviation of the jackknife-estimated mean.

VI. CONCLUSION AND FUTURE WORK

This paper described a method for estimating characteristics of a social network topology
(the network size, average number of strong and weak ties, as well as second moments of
the strong and week degree distributions) from fixed choice survey data. In particular, we
assumed that every respondent provides all of their strong ties and a fixed number of their
weak ties. The proposed estimation methodology is based on the method of moments, under
a model where respondents are sampled according to a Bernoulli process over vertices (with
unknown sampling rate) and the subset of reported weak ties is sampled uniformly from
all of the respondents weak ties.

A natural extension of the work proposed is to consider surveys with a soft fixed choice
design; instead of reporting exactly B weak ties, each respondent may report up to B weak

ties. One approach to this may be to assume that each respondent x samples a number
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values.

B, < B of weak ties to report with B, being independently and identically distributed
with an unknown mass function over the integers from 0 to B. In this case, in the context
of the model developed in this paper, it turns out that it is sufficient to estimate the mean
E[B]. We are currently exploring such an estimator, as well as theoretical guarantees for
the proposed inference procedure. Another possibility is to make parametric assumptions
about the recollection process and to modify the assumption of seeds choosing weak ties
uniformly at random.

In social health-related applications, it is commonly of interest to identify a subset of the
population to be immunized, with the intention of most efficiently preventing the spread
of infectious diseases, subject to a constraint on the number of individuals that can be
immunized. For this reason, it would also be of interest to extend the results of this paper
to estimate quantities such as the betweenness centrality (or another centrality) measure of

each node, since these typically correlate highly with individuals that are well-placed (i.e.,
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TABLE II: Approximate probabilities corresponding to the outcome of the sampling process for seeds which

are part of triangles and open triads

~ (waB)(waBfl) ~ B(waB) ~ B
boo = R T bor = R, 1) b= xy
bogﬁ% blll"KiBw b20:1
aoozﬁl—% 0,012% aw:l

hubs) in the network.
APPENDIX

Here we present additional figures and tables of expressions used in the estimator
calculations described in Section III. Table II summarizes the expressions for the coefficients
a;; and b;;, 1,75 € {0,1}, used for calculating estimates of the second moments.

Figure 12 shows all of the 42 possible ways that a triangle in G can be observed in G*.
Table III shows the corresponding expressions p; for each j = 1,...,26 corresponding to
each example shown in Figure 12.

Figure 13 shows the 31 possible ways that an open triad in G can be observed in G*,
and Table IV provides expressions for the probability m;, « = 1,...,31 of observing each
one. Table V provides expressions for the probability ¢;, © = 1,...,31, of observing each

open triad as as an open triad in G*.
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CHAPTER 4

Additional Simulation Results for
Network Sampling

4.1 Chapter Outline

In this chapter we present additional simulation results for the sampling setup of
the previous chapter. The results presented in this chapter were not included in the
published paper, but we add them here for the sake of completeness and to further

investigate the performance of the estimators.

4.2 Introduction

Since the inference framework presented in the previous chapter was the first one
to accommodate the properties of fixed choice surveys, we made certain simplifying
approximations to enable us to calculate the results analytically. In this chapter, we
focus on one of them whose effect we did not investigate in the paper. Namely, we focus
our attention to the assumption of uniform response. We had assumed that when a
seed node is asked to nominate B alters in the weak layer, the seed node chooses the B

alters uniformly at random. In the following sections, we briefly investigate the effect

o2
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of three distinct mechanisms that can make the response process deviate from uniform

selection.

4.3 Transitivity

In actual social networks, there are certain mechanisms that influence the connec-
tions. Transitivity is one of the most prominent factors: people tend to befriend the
friends of their friends [Gra73]. This produces triangles and is the major cause of high
clustering that is prevalent in actual social networks [WS98|. This transitivity tendency
has already made its effect on the structure of the network, and our sampling scheme
is taking place on the fixed structure in which the effect of transitivity is already incor-
porated. Inspired by this phenomenon, we consider one possible pathway of deviation
from uniform response: transitivity of response.

Suppose individual X is friends with persons A and B, who are themselves friends
with one another. Since human memory is associative [AB14], maybe if seed X remem-
bers its friend A and mentions A, it is more likely to also subsequently remember B,
as compared to some random neighbor. To incorporate this possibility, we consider the
following basic scenario: the probability that seed X mentions node A is proportional
to the number of mutual friends X has with A. Since this would assign zero chance for
neighbors with whom X has no mutual friends, we use the idea of Laplace smoothing in
machine learning [MRS08] and to construct the nomination probabilities, we add unity
to the number of mutual friends.

Figure 4-1 shows the results for the performance of the estimators where the actual
survey takes place with the above procedure, but the estimators employ the assumption
of uniform response. It is visible from the figure that, as expected, the transitivity of

response can cause bias in the results, but the accuracy is still within reasonable values.

4.4 Community Structure

Group identity is a strong and prevalent factor in social life, and group dynamics
is a prominent topic that has always attracted much research in sociology and psychol-
ogy [AM89, Taj81]. People universally exhibit ingroup favoratism. Various mechanisms,

including peer pressure, social visibility and norm enforcement, norms of reciprocity and
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trust, and conformity, drive individuals to bias their interactions towards the ingroup
members as compared to outgroup members [Taj81, Grel4].

The group nature of social life can act as a pathway of deviation from uniform
response. If seed X is connected to two neighbors A and B, where A belongs to the
same social group as X (e.g., workplace, club, church, or neighborhood) and B does
not, then X might be more likely to mention A as compared to B.

To model this community-driven response bias, we first need to generate a network
which exhibits group structure. Group structure is often modeled in network science by
employing modular networks constructed by stochastic blockmodels [KN11]. As a basic
model, we used a stochastic blockmodel with two identical groups, where intergroup
links are formed with a higher probability that intragroup links. Similar to Chapter 3,
we imposed the constraint of realistic average degree.

We consider a basic setup in which ingroup neighbors have chance 0.7 and outgroup
neighbors have chance 0.3. Figure 4-2 presents the results for the performance of the
estimators. Again it can be seen that community-driven response introduces bias into

the results, but in most cases the accuracy is within an acceptable range.

4.5 Popularity Bias

Social status is an important factor that drives interpersonal dynamics and inter-
actions in humans and other social animals [CTSMMO02]|. Individuals carefully take
into account their own and others’ social status and plan their interactions accord-
ingly [MSL87, MSLCO01|. This is notable in every social group setting, both in adults
and children [SS76]. There is also evidence that in surveys, there is a bias towards
claiming to be friends with the popular individuals, creating a disproportionately many
unreciprocated friendship claims towards these individuals [BN13].

We consider this phenomenon as a possible deviation pathways from uniform re-
sponse. As a simple mode, we assume that each seed node chooses from its neighbors
with probabilities proportional to their degrees. So a neighbor with a higher degree has
a higher chance of getting mentioned by the seed node. Figure 4-3 presented the results
for the performance of the proposed estimators. It can be seen that the resulting bias in
this case is less than the two previous scenarios, and the estimators perform reasonably

well.
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4.6 Chapter Summary

In this section, we saw that accommodating three possible deviation pathways from
uniform response can introduce bias into the results, but in most cases the errors within
reasonable limits. The resulting bias is the smallest for popularity-driven response, and
is largest for transitivity-driven response. A possible extension to our paper can be in-
corporating these realistic response procedures in the sampling model and investigating

the effects of their magnitude on the accuracy of the estimators.



CHAPTER 5

Introduction to Alter Sampling

5.1 Chapter Outline

In this chapter we introduce the concept of alter sampling. We first discuss some
practical limitations in ascertaining the structure of offline social networks which would
call for methods to utilize the structural features without having to observe the network.
We then present examples of studies that have used alter sampling in practical settings

with remarkable results.

5.2 Introduction

Not all network applications require knowledge of the global network structure. In
some practical tasks, the highest priority might not be acquiring global knowledge to
run subsequent analyses. Rather, we might need methods that can economically and
quickly detect regions of the network with certain properties, or to target individuals
with certain characteristics. For example, consider a village in which an epidemic
outbreak is imminent, and vaccine resources are limited. Ideally, we would sample the
whole network and use it in epidemic simulations to find the most efficacious set of nodes
to be immunized. As we mentioned before, sampling the whole network is prohibitively

costly. Even sampling will be too costly due to time limitations, because social network

29
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studies often involve interviews and many survey questions. So we would need an
efficient method to target well-connected individuals without having information about
the global structure of the social network. As we discuss in Section 5.3.1, this is an
example where alter sampling performs remarkable well.

Alter sampling is an efficient method for applications where acquiring global knowl-
edge of the network structure is unfeasible, and we need to work with only local struc-
tural information. Below we discuss the theoretical study that first introduced this
method in the context of network epidemiology. We then present a few recent studies
that have succeeded in using this method in practical applications. In Chapter 6, we
will demonstrate the effectiveness of this method across a wide range of social networks
with diverse structural properties. Then in Chapter 7, we connect alter sampling to a
social phenomenon that relates the popularity of individuals to those of their friends,
and in Chapter 8 we use these information to shed light on the underlying organization

of social networks and their structural inequalities.

5.3 Applications of Alter Sampling

In this section we discuss the practical applications of alter sampling. The study
that introduced the technique is a theoretical one, and comes from the field of network
epidemiology. Then we present four practical studies that have utilized alter sampling.
The first one applies it to the friendship network in a dorm for early detection of
flu outbreaks. The second study applies it to the Twitter for early detection of viral
content. The third study applied it to Twitter for early forecasting Hurricane Sandy.
The forth study utilizes alter sampling for health intervention in a public health program

in Honduras.
5.3.1 Acquaintance Vaccination

As we mentioned above, there are practical settings where network sampling and
inference might be infeasible. There might be situations where, due to time or budget
constraints, or other practical concerns such as privacy issues or geographic dispersion,
we cannot fully perform a sampling scheme that would give us multiple properties of

the structure of the network. In this section, we illustrate this point with an example.
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Consider the problem of vaccinating the individuals against some disease in a vil-
lage, where the vaccine resources are limited and we have to choose a small fraction
of the population for immunization. Naturally, we would require to choose the targets
in a way that vaccinating them would give the highest herd immunity to the whole
population. If we had complete knowledge of the structure of the underlying social
network, we could run extensive simulations to help us devise optimal targets. Incor-
porating the specific features of the disease (transmissibility, recovery rate, immunity
development, etc.), we could simulate the spread of the disease for all possible sets of
vaccination targets and all possible initial sets of infected individuals, and choose the
target set which has the minimum average outbreak size. Since complete knowledge of
network structure is impractical, we could devise efficient sampling schemes to infer the
structure. We would need to survey a fraction of the population, ask them to list their
ties. Depending on the sampling scheme, we might also ask them to give further quan-
titative data for each tie, or we might ask them multiple follow-up questions about each
alter they have named. There are many practical challenges to overcome in sampling
social networks, and they are usually slow procedures by nature, because of the time
that interviewers would require to spend with each respondent. Considerable time and
resources would be needed for reliable sampling. Hence, we need to devise a strategy to
choose the targets that is efficient, without requiring knowledge of the social structure.
The fewer questions the strategy prompts us to ask the respondents, the better.

The naive vaccination strategy would be to randomly choose people and vaccinate
the randomly-selected individuals. This would require little time, and would require
asking no questions from selected individuals. However, that turns out not to be very
effective in providing the most herd immunity possible. Intuitively, we need to find an
efficient way to find the most well-connected individuals in the society. They interact
with many people and if they get infected, they will transmit the disease to many
people. Vaccinating them will be highly influential towards containing possible epidemic
outbreaks. Random sampling does not necessarily capture these individuals, since it
does not systematically target them. We cannot simply choose individuals with highest
degree, nor can we choose them based on any other trait (e.g., how central they are in
the network, etc.), because we do not know the structure of the network, thus we do not
know structural traits of the individuals. We need a strategy that targets influential

nodes without requiring knowledge of network structure.
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In a theoretical study [CHBAO3]|, using multiple classes of synthetic networks that
emulate properties of real social networks, it is shown that a very effective strategy
is randomly selecting individuals, asking them to name someone they know, and then
vaccinating those that are mentioned. This scheme is called acquaintance immuniza-
tion [CHBA03, MKC*04, GLAT07], and simulations show that despite their remarkably
simple procedure, they are highly effective. The promising feature of acquaintance im-
munization is that it targets influential nodes with almost no knowledge of the structure
of the underlying social structure.

This was the first time the idea of alter sampling was introduced. It is simple
and yet highly effective. Below we move to studies that have successfully utilized this

technique in practical settings.
5.3.2 Health Monitoring

Christakis and Fowler [CF10] conducted an empirical study using the idea of al-
ter sampling. The study focuses on the problem of efficiently monitoring the spread
of the HIN1 flu. The authors hypothesize that neighbors of randomly-selected nodes
get infected on average earlier than the whole population. To test this hypothesis, the
authors monitored the spread of flu in Harvard College for 4 months. They compared
two distinct groups of students, one acquired through random sampling from students,
and the other consisting of those who were named by others as friends. In the termi-
nology we used for acquaintance optimization, the first group are the result of random
sampling and the second are the result of alter sampling. The authors observe that
the prevalence curve (number of flu cases as a function of time) for the latter group
is shifted 13.9 days forwards in time as compared to the former group. The authors
highlight that this can be utilized for the detection of outbreaks in the early stages of
an epidemic. Interestingly, the authors show that if instead of being nominated as a
friend by some other individual, we use the subjects’ self-reported claims of popularity,
no significant shift is detectable. This suggests that claiming to be well-connected does
not necessarily indicate that this is actually true. We will return to this disparity later
in Chapter 7.
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5.3.3 Information Diffusion on Social Media

The idea of using alter sampling for the early detection of outbreaks can be ex-
tended beyond infectious diseases, and can also be applied to information contagion.
In [GHMC™"14], the global diffusion of viral online content on Twitter is studied. In
Twitter, each piece of information that a user posts is called a tweet (if the user gen-
erates it) or retweet (if the user shares a post someone else has generated), and topics
can be marked by hashtags (so that one can search for a hashtag and get the pertinent
tweets).

The typical size of data extracted from online social networks is orders of magnitude
greater than offline social networks. In [GHMC"14], for example, the social network
that is used contains 1.5 billion ties and half a billion messages during the period of the
study. The hypothesis is that small samples of users obtained by alter sampling (these
users are refered to as sensors) receive the viral hashtags quicker than samples obtained
by random sampling (similar to the flu case, where the outbreak peaked earlier for the
former group). In [GHMC'14], the authors compared many samples obtained from
either sampling method, and confirm that alter sampling gives samples that lead in
the access to viral hashtags. One possible issue remains, as the authors of [GHMC*14]
point out and then control for: perhaps it is not network position that determines
access to viral content, but the converse is true. That is, perhaps it is not the case
that sensors get access to viral content because they are somehow central, but instead,
perhaps they are central because they always produce interesting or important content
that goes viral frequently, so they attract many followers and become central as a
consequence. This is ruled out by accounting for the generation of the content, and
the authors show that the amount of viral content generation of these nodes is not
significantly higher than average. Moreover, the authors of [GHMC™14| point out that
there is a positive association between centrality and number of tweets. The authors
rule out a second confounding possibility: perhaps merely because these people tweet
more often, the viral tweets happen to show up in their tweets more often than other
users. The authors rule out this possibility by a shuffling test: they fix the number of
tweets, and randomly redistribute all the tweets among users. If we still observe a lead
in the access time, this is the sole effect of excess tweets. The authors observe a small

lead after the shuffling test, and argue that the difference between this observed lead
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and the one originally observed is the effect that pertains to genuinely-quicker access
of these users to viral content. These users, because of their position in the network,
have an earlier exposure on average to viral content. The authors contend that this can
be used for early detection of viral online content. The authors remark that the early
detection of global mood and taste patterns have potential applications in marketing

and policy making.
5.3.4 Early Detection of Natural Disasters

An information-diffusion approach was taken in [KCM™15| for the early detection
of natural disasters. In [KCM™15|, the authors have a random sample of Twitter users
as the control group, and one acquired via alter sampling as the sensor group. The
authors are interested in the lead-time of awareness in the sensors as compared to the
control group. The authors also use the geo-locations of tweets and geographic data
from the National Hurricane Center. They show that the hurricane-related content
(blackout, weather change, etc.) appears in the tweets of the sensor group on average
11 hours earlier than the control group. Furthermore, the authors show that if the sensor
data is combined with geo-location data, the lead time increases to 26 hours. This is
clearly a considerable opportunity for practical purposes. Such temporal lead can help
individuals for quicker preparation against an incoming hurricane and to swiftly learn
about possible consequences (such as blackouts or property damages) from those who

have experienced it earlier and take necessary safety measures.
5.3.5 Health Intervention

The health-intervention applications of alter sampling are not limited to vaccina-
tion or early detection of epidemics. It can be used to promote the spread of infor-
mation and awareness in social networks. In a recent study published in The Lancet,
this method is used for improving the impact of health intervention in 32 villages in
Honduras [KHST15]. Two distinct health interventions (one nutritional and the other
pertaining to water purification) were made. In villages, the products and instructions
were given to 5% of the population which were randomly selected. In some other vil-

lages, the targets were chosen via alter sampling. The final prevalence of the adoption
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of the health behaviors were greater where alter sampling was used (about 12%). Also,
the general level of knowledge about the health behaviors was higher at the end of the

study period in those villages.

5.4 Chapter Summary

In this chapter we introduced the idea of alter sampling and the situations in
which alter sampling would be considerably helpful. We discussed its origins in the
network epidemiology literature and its subsequent adoptions in practical studies for
early detection of epidemic outbreaks, information diffusion in online social media,

natural disasters, and promoting public health intervention policies.
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Paper: Effectiveness of Alter Sampling
in Various Social Networks

The material presented in this chapter is submitted to Scientific Reports.
Please note that the references of the manuscript are listed at the end of this

chapter.
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Robustness of Alter Sampling in Social

Networks

Naghmeh Momeni and Michael G. Rabbat

Abstract

Social networks have a key role in studying various individual and social behaviors. To
use social networks in a study, their structural properties must be measured. For offline so-
cial networks, the conventional procedure is surveying/interviewing a set of randomly-selected
respondents. In many practical applications, inferring the network structure via sampling is
too prohibitively costly. There are also applications in which it simply fails. For example, for
optimal vaccination or employing influential spreaders for public health interventions, we need to
efficiently and quickly target well-connected individuals, which random sampling does not do. In
a few studies, an alternative sampling scheme (which we dub ‘alter sampling”) has proven useful.
This method simply targets randomly-chosen neighbors of the randomly-selected respondents. A
natural question that arises is how generalizable this method is. Is the method suitable for every
social network or only the very few ones considered so far? In this paper, we demonstrate the
robustness of this method across a wide range of networks with diverse structural properties.
The method outperforms random sampling by a large margin for a vast majority of nodes in all
the networks. We then propose an estimator to assess the gain of choosing alter sampling over
random sampling in practical scenarios, and demonstrate its accuracy via Monte Carlo simulations

on diverse synthetic networks.

INTRODUCTION

Social networks are mathematical tools for modeling social relations and interactions,
and for studying the interplay between structure and agency. They are employed in studying
various social phenomena, such as contagion of health behaviors and the adoption of new

ideas and behaviors [1]-[3], the spread of infectious disease [4], [5], the diffusion of
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information [6], [7], and the effect of network position and connections on individuals’
power [8], [9], job opportunities [10], cooperation [11], mental health [12], longevity [13],
behavioral and ideological influence [14]—[16], and migration decisions [17], [18].

Descriptive studies of social networks relate the observed behavior of a social dynamical
process or individual trait to the structural properties of the social networks. Recent studies
also seek to leverage the theory of social networks for practical applications, such as
‘seeding’ strategies and finding influential spreaders [15], public-health interventions [19],
and for early detection of epidemic outbreaks [20]. This paper focuses on a specific practical
method, which we call ‘alter sampling’, that economically targets influential nodes while
remaining agnostic of the network structure. We first briefly review a few successful
applications. We then provide a case study on using alter sampling on various social
networks with different structural properties, and show that it performs remarkably well
in all of them. Finally, we propose estimators for the gain in using alter sampling over
random sampling. We conclude by discussing the implications of the effectiveness of alter
sampling on how social networks are organized.

In social network studies, descriptive or practical, analysis is carried out in terms of
standard ‘network statistics’, i.e., quantities that pertain to the structural properties of
the social networks (e.g., degree, measures of centrality, clustering, homophily). These
properties need to be observed and measured first. Unlike some networks with non-social
origins (e.g., the Internet and the World Wide Web), measurements in offline social networks
are costly and challenging. Efficient sampling and inference methods are needed to meet
the specific challenges of social networks.

In practice, there are situations where, due to time or budget constraints, or other
practical concerns, a sampling procedure would be unfeasible. As an illustrative example,
consider the problem of vaccinating individuals against some disease in a village, where the
vaccine resources are limited and we have to choose a small fraction of the population for
immunization. It would be ideal to have complete knowledge over the network structure
to identify the targets optimally. Considerable time and resources would be needed for

acquiring such complete knowledge of the network structure. It is practically implausible.
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So we need to devise an efficient strategy to identify the targets without requiring knowledge
of the social structure. The fewer questions the strategy required us to ask the respondents,
the better.

The cost-effective, but naive vaccination strategy would be to randomly choose individ-
uals for vaccination. Intuitively, we need to find an efficient way to find and vaccinate the
well-connected individuals, because if they get infected, they will transmit the disease to
many people. Random sampling does not necessarily capture these individuals because it
does not systematically target them. It is shown that a very effective strategy is randomly
selecting individuals, asking them to name someone they know, and then vaccinating
those that are mentioned. This scheme is called acquaintance immunization [22]-[24],
and simulations show that despite its remarkably simple procedure, it is highly effective.
In this paper, to use a more broader term that is also applicable to non-epidemics contexts,
we use the term alter sampling to refer to the method of random selection of neighbors of
a random sample.

The promising feature of alter sampling is that it targets influential nodes with almost no
knowledge of the structure of the underlying social structure. Christakis and Fowler [20]
describe an empirical study using the idea of alter sampling to monitor the spread of the
HINTI flu. Comparing two samples of students, one obtained via random sampling and one
via alter sampling, they showed that the prevalence curve for the latter sample is shifted
13.9 days forwards in time as compared to the former. This indicates that alter sampling
can be utilized for the detection of outbreaks in the early stages of an epidemic.

The idea of using alter sampling for the early detection of outbreaks can be extended
beyond infectious diseases, and can also be applied to information contagion. The diffusion
of viral online content on Twitter is an example, where it is shown that samples of users
obtained by alter sampling (refered to as sensors) receive viral hashtags earlier than samples
obtained by random sampling. The difference still remains after controlling for possible
reverse causality (that sharing viral content is is not the result, but the cause of network
position) by showing that virality of posts and network position are not significantly

correlated [21].
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Alter sampling can also be used to promote the spread of information and awareness in
social networks. In a very recent study, this method was used for improving the impact of
health intervention in 32 villages in Honduras [19]. Two distinct health interventions (one
nutritional and the other pertaining to water purification) were made. The products and
instructions were given to 5% of the population (reached via random sampling in some
villages and via alter sampling in others). The final prevalence of the adoption and the
general knowledge of the health behaviors were greater in villages where alter sampling
was used (about 12%).

The above empirical observations suggest that alter sampling is a potent and efficient
practical method for finding influential nodes. To be able to confidently use it in practice,
we need to verify that the success of the method was not due to peculiarities of the above
(very few) cases, and to ascertain its robustness across a wide range of networks with social
origin. This is the first focal task of the present paper. We demonstrate that alter sampling
is robust in a range of networks with social origins with diverse structural properties (we
consider positively, negatively, and neutrally assortative networks, high and low degree
variance, different levels of clustering and density). We demonstrate that alter sampling
performs well across all of them, and performs remarkably similarly. This sheds light on
micro mechanisms that are present in networks with social origin that do not depend on
the specific properties of the context.

A major practical issue to consider when employing alter sampling is how advantageous
it is. That is, we need to quantify the benefit of using alter sampling as compared to
random sampling. Since we are considering scenarios in which the structure of the social
network is unknown, we cannot use any structural information to estimate the benefit of
using alter sampling, either a-priori or retrospectively. For example, after using interview
data to vaccinate the alters that respondents nominate, how can we assess the gain of this
method over the random method? Answering this question is the second focal task of the
present paper. We propose estimators that use interview data to quantify the ‘gain’ of alter

sampling.
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RESULTS

We can quantify the performance of alter sampling in various ways. The most basic
individual attribute that characterizes the influence of a node on dynamical processes on
networks is the degree. Thus we take the expected value of the degrees of the nodes reached
via a sampling scheme as its merit, and the gain of choosing one sampling scheme over
another is quantified as how this merit changes. With the few recent exceptions of employing
alter sampling in practical settings, most studies have employed random sampling. In the
present paper, we seek to quantify how much loss is associated with such a decision.
For undirected networks, we compare the degree of node = with the mean degree of its
neighbors. The ratio of these two quantities is the local gain of choosing alter sampling
over random sampling. For node x, we denote this ratio by G,. The average value of
this ratio over all nodes, which we denote by G, gives the expected gain. Choosing alter
sampling is justified if G > 1. In directed networks, if node y follows node x (that is, there
is a link from node y to node z), then y is called the in-neighbor of x, and z is called
an out-neighbor of node y. The number of in-neighbors and out-neighbors of a node are
called its in-degree and out-degree, respectively. For directed networks, we only consider
in-degrees, because social influence operates in the direction of links. That is, for a given
node z, it is the in-neighbors of z that are influenced by z, and not the out-neighbors.
Otherwise, the methodology is similar to the case of undirected networks.

The descriptions of the data sets used are provided in the Methods section. their summary
statistics are presented in Table I (for directed networks) and Table II (for undirected
networks).

There are various ways we can quantify how useful alter sampling is, that is, for what
proportion of the population it would be better to reach their neighbors via alter sampling
as compared to reaching themselves via random sampling. In Figure 1 and Figure 2, we
depict the proportion of nodes in each degree-percentile for whom G, > 1 in directed and
undirected networks, respectively. It can be observed that for all networks, a vast majority
of nodes do meet this criterion. For all directed networks under consideration, over 85%

of the population have G > 1. For undirected networks, this number is even higher (near
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95%). Note that this phenomenon holds whether we compare the degree of each node with
the mean or with the median degree of the neighbors, which highlights the robustness of
the observed phenomenon against possible outliers.

So far we demonstrated that the observed seemingly-universal gain of alter sampling in
social networks is not attributable merely to hubs. The above measures for prevalence of
G > 1 indicate that for a high proportion of the population, alter sampling is superior to
random sampling, but these measures do not quantify to what extent that is so. To investigate
this, we plotted the histogram of G across all nodes for different networks in Figure 3. It
can be seen that across all these networks, the distribution of G is highly skewed, that is,
there exist nodes for which the gain of using alter sampling is overwhelmingly large, and
for the majority of nodes this gain is still considerably large (that is, O(10') gain for alter
sampling). As before, the gain is robust against outliers, as using median instead of the
mean to define the gain does not alter the results significantly.

Furthermore, in Figure 4, we plotted the average G, value of nodes as a function of their
degree percentile. It can be seen that in all networks, the gain is considerably high for a vast
majority of nodes. Note that the behavior of the gain function is similar across all networks,
whereas their structural properties (such as assortative mixing, clustering, density, average
degree, and degree variance) are widely different, as reported in Table I and Table II. This
suggests that alter sampling is considerably robust against variation of network structure.
This endows alter sampling with a notable versatility, thus it can be reliably used in practice
for cases where it is not feasible to obtain the structure of the underlying social network
through standard methods of social network studies, such as interviewing and surveying
the population.

Now we attend to an important practical question, that is, to estimate the gain of
choosing alter sampling over random sampling from empirical data. We provide two distinct
estimators for the gain in choosing alter sampling over random sampling. In practice, an
offline social network study (such as those that would be needed for optimal vaccination)
involves interviewing people and asking them to nominate alters. Suppose that we also ask

people to report the number of people they know [27]. We aim to estimate the gain of alter
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GitHub Pokec Twitter
N 46423 531478 5489933
E 156280 30622564 193245641
k 3.366 18.754 35.2
kin 1 8 4
Oin 20.25 32.140 989.01

TABLE I: Directed networks: N and £ are number of nodes and number of edges,
respectively. &, ks, and o, denote average in-degree (which is equal to average out-degree),

median of in-degrees and standard deviation of in-degrees, respectively.
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Fig. 1: Empirical distribution of nodes with G, > 1 as a function of in-degree percentile

rank for directed networks.

sampling from the sequence of degrees that the respondents provide. Note that we cannot
ask a respondent about the degree of the alter, because although people generally have a
good knowledge of their own social ties, they might not be necessarily good at providing
reliable estimates for the number of ties of one of their friends. Suppose that the underlying
network has degree distribution p(k). This means that a randomly-chosen respondent has
degree p(k). Suppose that a node with degree ¢ is mentioned as an alter. There are Np(¢)
nodes of degree /¢ in the network, where N is the network size. Each of these nodes have ¢
neighbors that could be the initial respondent. Thus, there are on average N/¢p(¢) nodes that
could have mentioned a degree-¢ node. Denoting the mean degree of the network by 1y, the

probability that a mentioned alter has degree / is given by N¢p(¢)/ >, Nlp(£) = £p(€)/ 1.
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Actors

Collaboration

LiveJournal

Friendster Orkut
N 894615 69032 3997962 22493449 3072441
E 57060378 450622 34681189 180606713 11785083
k 127.5 13.05 17.40 16.058 76.28
k 41 5 6 3 45
Ok 317.5 27.97 42.95 53.29 154.78
Thi! 0.20 0.6018 0.045 -0.1816 0.0158
C 0.4724 0.5977 0.2842 0.0734 0.1666

TABLE II: Undirected networks: N and E are number of nodes and number of edges,

respectively. k, k and o}, denote average degree, median of degrees and standard deviation

of degrees, respectively. Degree assortativity and average clustering coefficient of the graph

are denoted by 7,y and C, respectively.
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Fig. 2: Empirical distribution of nodes with G > 1 as a function of degree percentile rank

for undirected networks. In (a), gain is defined using the mean, and in (b), using the median,

as discussed in the text.

We use these conditional probabilities to obtain the expected degree of a named alter, which

is Y, p(€)/p1 = po/p1, where po is the second moment of the degree distribution. For
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Fig . 3: The distribution of G for different networks. The top row pertains to the directed networks and the bottom row
pertains to the undirected networks. In the left column, the gain for each node is defined as the average degree of its

neighbors to its own degree. In the right column, the median degree of the neighbors is used instead of the mean.

node z, the gain of alter sampling is simply the ratio of the expected alter degree to that
of node z. Thus the expected gain is given by (1/N)>_ [(12/p1)(1/ks)]. Let us denote
the harmonic mean of the degrees by . That is, we have u, = >, k~'p(k). Thus, the
expected gain is given by G = popy /1. Denoting the set of respondents by R, the total
number of respondents by r, and the reported degree of respondent i by k;, we arrive at

the following estimator for the gain of choosing alter sampling:
~ 1
k? -
g — (2 (2 ) (1)

T’ZI:ZI

1I€ER

To assess the performance of the estimators, we would technically need an empirical
sampled networked data set via the above mechanism for which the real underlying network

is also known. Every existing offline social network data set in the literature is already the
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Fig. 4: The gain of performing alter sampling as a function of the degree percentile of the
target node. In (a), the average degree of neighbors is compared to the degree of each node

to define the gain, and in (b), the median is used.

sampled version, and for none of them the true underlying web of interactions between
people is known. Noting that this caveat prevents testing the estimators on real networks, we
use synthetic networks. We choose network models that are proposed in order to emulate the
properties of real social networks. One such model is the small-world network model [28].
This model was proposed in order to capture two important structural features observed
widely in real social networks: high clustering, and small average path length. The former
captures the high transitivity that is typical in networks of social origin (that is, friends
of a person tend to become friends with high probability), and the latter pertains to the
well-known six-degrees-of-separation phenomenon (that every two persons in society are
connected via a very short chain of acquaintances). We synthesized 10000 networks (see
Methods for details of the generation process of all network models considered) and for
each case we estimated the gain from the above estimators and calculated its ratio to the true
value. The closer this ratio is to unity, the better the estimators are performing. Figure Sa
presents the results. It can be observed that the estimators are performing with acceptable

accuracy, with errors mostly less than 10%.
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The second conventional network generation model is the preferential attachment model.
Proposed in [33] and later in [34], this model emulates the empirically-observed heavy-
tailed nature of the degree distributions in diverse networks (such as the network of scientific
citations, scientific collaborations, and the worldwide web). The results for this model are
presented in Figure 5b.

The third generative network model that we use is the one proposed in [35]. The model
combines the preferential attachment model of network growth with high clustering. We
refer to this model as the HK model. The HK model adds a triad-formation step to
the conventional preferential attachment model, and makes it more suitable to modeling
networks of social origin than the basic preferential attachment model (which has vanishing
clustering coefficient for large networks). The results for the HK model are presented in
Figure Sc. It can be observed that the variance of the estimator is slightly higher than it
was for small-world networks, but it is slowly decreasing with network size.

The fourth model, proposed in [37] (which we refer to as the KE model), in addition to
high clustering and skewed degree distribution, yields small average path length. Similar
to the previous models, the estimator has an error of less than 10% in the majority of the
simulation trials. The results for the KE model are presented in Figure 5d.

In all the simulation trials, the fraction of randomly-chosen respondents (whose random
neighbors then constitute the alter set) are chosen uniformly at random between 0.1 and
0.2. So, equivalently, the value of r in Equation (1) is randomly selected between 10% and

20% of the total population.

DISCUSSION

The presented results suggest that alter sampling is a strong and economical method
for targeting well-connected nodes in the network when standard sampling procedures are
costly and infeasible. The results demonstrate a remarkable versatility and robustness of
this method. We considered many network data sets with large size and diverse structural
properties (positive, negative, and neutral assortative mixing, high and low clustering and

density, high and low variance of degrees and average degree), and in all cases, alter
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Fig. 5: The performance of the first proposed estimator for the gain of alter sampling for

different families of networks.

sampling is advantageous over random sampling for a vast majority of nodes. This holds
even if we consider the median of the degrees of neighbors instead of the mean in order
to define the gain of choosing alter sampling over random sampling. Hence, although in
the literature this phenomenon has been linked to the presence of hubs, our results indicate
that a more prevalent structural feature must exist in all these networks to give rise to this

behavior. Our results suggest that a continuous hierarchical structure must be present in all
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these networks of social origin. In this hierarchy of degrees, every node either connects
up or across, and nodes seldom connect down. This means that, nodes with very few links
connect to both medium-connected and well connected nodes, as well as other weakly-
connected nodes similar to themselves. Nodes with medium degrees connect to nodes
with high degrees as well as other nodes with medium degrees. Nodes with high degrees
only connect to other nodes with high degrees. This extends to the most highly-connected
nodes in the entire network. This pattern exists in both directed and undirected networks
considered. This suggests that networks with social origin might exhibit features that are
macro outcomes of micro mechanisms which might be universal characteristics of human
social behavior.

We also proposed an estimator to assess the gain of choosing alter sampling over random
sampling in practical scenarios and investigated its performance on synthetic networks
generated via four distinct conventional network generation models. We observed that the
proposed estimator performs remarkably well across a diverse range of structural parameters
of the synthetic networks.

The immediate extensions of the problem setup to more practical scenarios would be
to consider imperfect response (due to, for example, forgetting or fatigue). Also, in some
cases it might not be feasible to ask respondents to count the number of their friends. It
is time-consuming and there might be situations in which there is only time to ask a few
alter names. In this case, we will have to estimate o, pt1, and p;, from the response data.
Usually, there is a cutoff on the number of alters each respondent must mention, which is
typically less than 10. In this case, the above moments of the degree distribution must be
estimated from a dataset in which for each node only about 10% of the links are known.
This is an interesting problem of statistical inference with immediate practical importance.
We hope the results presented in this paper will invite closer investigations of alter sampling
and its robustness and limitations, as well as the associated network sampling problems

that will be practically imperative.
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METHODS
Network Models

Small-world: We use a variant [29] in which the network is built as follows: we
begin with a 2b-regular lattice (a ring in which each node is connected to b immediate
neighbors from each side), and we create each non-existing link with constant probability
p, independently. Since it has been consistently shown in the literature that cognitive
constraints limit the effective number of social ties a human can actively maintain to about
150 [27], [30]-[32] (also called the Dunbar number), we restrict the space of parameters to
a domain for which the average degree is about 150. The value of b was randomly chosen
between 5 and 10, and the value of p was chosen in a way to yield the average degree no
greater than 200.

Preferential Attachment: In this model, nodes are added to the network sequentially,
and each incoming node attaches to m existing nodes that are selected with degree-
proportional probabilities. We selected m randomly between 50 and 75, generating networks
with average degree between 100 and 150. We considered sizes from 5000 to 9000. We
synthesized 1000 networks for each size.

HK: The parameters of the model are the initial number of links that each incoming node
creates when it is being added to the network, and the triad formation probability. In the
ensemble of networks that we generated, we randomized the first parameter between 50 and
100, and the triad formation probability was randomly generated in the interval [0, 0.5], and
a network was only accepted if the mean degree was less than 150. For each network size,
we generated 1000 synthetic networks and implemented the sampling procedure described
above with G randomly chosen between 5 and 10, because values of G more than 10 are
rare in real social network studies [36].

KE: In this model, at each timestep these are m active nodes and as a new node is added,
it creates m links. Each link, with probability ;4 connects to a random node chosen with
degree-proportional probabilities according to the basic preferential attachment scheme,

and with probability 1 — p attaches to one of the active nodes. The new node becomes
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active and one of the previously-active nodes becomes inactive with probabilities inversely
proportional to degrees. This procedure is then repeated. We have randomized the parameter
space with the restriction that the generated networks have mean degree between 100 and

200.

Data

To ascertain the versatility of alter sampling, we considered five undirected and three
directed networked data sets. A quantitative summary of their properties is presented in
Table (I) and Table II, for directed and undirected networks, respectively. Below we provide
a qualitative description of the data sets:

Film Actor Network: We use a network derived from the IMDB movie/actor network
available in the University of Florida Sparse Matrix Collection [43]. This bipartite network
consists of 428,440 movies and 896,308 actors and stores the movies in which each actor
has appeared. Based on this graph, we can build the co-starring network. In this network
each node represents an actor and an edge connecting two nodes indicates that those nodes
have co-appeared in at least one movie. Note that we do not consider weights for the
edges.

Scientific Collaboration Networks We use the collaboration network available at [38].
The dataset is extracted from the e-print arXiv and covers scientific collaborations between
authors papers in five categories in the period from January 1993 to April 2003. If an
author x co-authored a paper with author y, the graph contains a undirected edge from x
to y.

LiveJournal LiveJournal is a social networking service where users can keep a blog, journal
or diary and also can declare friendship with each other. The network that we use here is
available at [39], [40] and consists of about four million users.

Friendster Friendster is an on-line gaming network. Before re-launching as a game website,
it was a social networking site. The network that we use in this paper is a subset of the
graph available at [41] consisting of more than 22 million nodes.

Orkut Orkut is a free on-line social network. The network used in this paper is available
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at [41] and consists of more than three million users.

Twitter For the network of Twitter users, we use the dataset collected by Kwak et al. [42].
This dataset describes the connectivity among users who joined Twitter prior to August
2009. The subgraph that we use has 5.8 million users and more than 193 million edges.
GitHub The site github.com offers free code repository hosting for public projects and paid
code repository hosting for private projects. Individuals can follow one another, like users
of Twitter, in order to stay aware of each other’s activities. In [44] the GitHub Archive
site! was used to download past compressed archives of hourly activities over a one-year
period. The collected and processed data are used to create multiple graphs including the
followership graph which is used in this paper. In this graph there is an edge from node x
to node y, if user = follows user y.

Pokec Pokec is the most popular on-line social network in Slovakia. The dataset is available

at [45] and consists of more than 1.6 million nodes and more than 30 million edges.
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CHAPTER 7

Alter Sampling and the Friendship
Paradox

7.1 Chapter Outline

In this chapter we address the question: Why does alter sampling work? We
introduce the notion of the Friendship Paradox and its interesting social consequences.
We show its connection to the effectiveness of alter sampling. We then introduce the
Generalized Friendship Paradox and its instances in different contexts and discuss their

implications.

7.2 Introduction

The studies discussed in the previous chapters highlight the effectiveness of alter
sampling in using local information of the network structure for the efficient identifica-
tion of influential nodes, to promote or detect diffusion of information or disease. After
observing these practical applications, we can ask why alter sampling works. The fact
that alter sampling works across diverse social networks points towards some structural
property of social networks that enable this. Social networks must be organized in

certain ways that directs alter sampling towards central nodes. This motivates us to
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study the structure of the social networks with particular focus on the local inequalities.
How do the structural properties of the ego (e.g., its centrality) relate to its network
position, and to the properties of the alters? What information can we obtain from
a local observation (e.g., one’s degree) about the local and global organization of the

network? In this chapter and the following one, we address these questions.

7.3 The Friendship Paradox

In this section we introduce the Friendship Paradox. We present its history, then we
present what has been proposed in the literature as the cause of this phenomenon, and
point out that those propositions are incomplete and cannot explain the observations
convincingly.

Sociologist Scott Feld was first to point out (in 1991) that in friendship net-
works [Fel91]|, people have on average fewer friends than their friends do. His analysis
is based on two distinct empirical friendship networks. In our terminology, Feld’s ar-
gument is that if we take a sample via alter sampling and another sample via random
sampling, the average degree of the former is greater.

Later, Feld’s arguments were connected by Zuckerman and Jost to a widely-
observed phenomenon in social psychology [ZJ01]. The phenomenon is sometimes called
the “The Lake Wobegon effect’, or ‘illusory superiority’. It states that most people think
their abilities are higher than average. This is true even for many people who are be-
low average [AKB'95]. This self-promoting bias is observed in different contexts. For
example, people overestimate the popularity of their choices and opinions [MACT85],
think they have better memory than others [SBD99|, wrongly think they perform bet-
ter at tasks [KD99]. See [Ho093| for a review. Zuckerman and Jost demonstrated that
people’s perception of their popularity and their standing in social networks is also sub-
ject to this self-elevating bias [ZJ01]. They gave the name Friendship Paradoz (FP) to
Feld’s observations. It is a ‘paradox’ because most people think they are more popular
than their friends, but it is not actually true.

Feld’s original explanation is that the FP is merely a mathematical fluke. He
argues that the FP is similar to the “class size paradox” [FG77]. Suppose a school
has four classes, three of them with capacity 10 and one of them with capacity 70.

3x1047
4

The average class size is = 25. But suppose to calculate average class size, we
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ask every student in the school to report their class size, and then take the average of

the reported values. We will get 70 students reporting 70, and 3 x 10 = 30 students

70x70430x10 __
70+3x10 o 52’

which is larger than the actual value. Feld argued that the FP is essentially the same

reporting 10. If we take the average of these reported values, we obtain

phenomenon. Let us denote the degree of individual x by k., the average degree of the
network by k, the average degree of friends by kg, and the number of individuals by N.
Feld argues that k; is calculated as follows: survey all individuals and ask them about
the degree of their friends. Individual x reports k, entries, each being the degree of a
friend. So the number of total entries we collect is > k,. We denote the frequency of
entry x by w,, which means w, people mentioned degree of individual x. The average

of the entries is

S Woky _ 3, wiks _ (3, weka) /N (7.1)

It is easy to calculate w,. In this list of entries, individual = appears k, times, being

mentioned by each of its friends once. So w, = k, If we take the average of these

entries, the result is k; = w but we have

= (SLR/N  var(k)+ B var(k) | -

ke = = = = ——+k, 7.2
' : - 2 (7.2)
so we have

- k

fe—F = Va%( ) (7.3)

From this Feld concluded that k¢ is trivially greater than k, and that it is just an effect
of binning.

In Chapter 8 we show that this can not explain the phenomenon fully. Because,
as we showed in Chapter 6, the vast majority of nodes in social networks have degrees
smaller than the mean and the median of their neighbors. While the above mathemat-
ical explanation would necessary hold for any network, the median version of the FP
would not. A network must be organized in certain ways so that the median FP would
also occur. We demonstrate in Chapter 8 that this sheds light on an interesting and
important feature how social networks are organized. Note that the FP can also be

viewed as a local inequality: ego being less central than the alters. How can we measure
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and quantify the FP? Do all the nodes in the network experience the FP? What are
the consequences of high or low prevalence of the FP on the organization of the social
network? Chapter 7, presents our contribution which addresses these questions. We
classify the FP into different types, introduce measures for quantifying it, study its
prevalence on an online social network, and discuss its implications about the way the
network are organized.

It is by now clear why alter sampling and the FP are closely related concepts. Alter
sampling works because alters are more well-connected than the ego, which is what the
FP states. If social networks were organized differently, alter sampling would not prove
very effective. For example, consider an Erdds-Rényi random network with size N and
link probability p. Define a random variable L; for link j, which is 1 if the link exists
and is 0 otherwise. It is a Bernouli random variable with probability p, by definition.
The average degree of the network is twice the number of links divided by N, that is,
twice the sum over all L; values (sum over links), divided by N. There are N(]gfl)

N(N-1)

links. The expected value of the sum of Bernouli random variables is ———p. Thus

the expected average degree is k = (N —1)p. Now we find k; using Equation (7.2). The
degree distribution of an Erd¢s-Rényi random network is p(k) = (V1) p*gV 7%, where

q defy _ p. To obtain the variance, we have

var(k) = [;/&p(m] - 1>pr - [Zk (¥ ] - - 1>pr.

(7.4)

First we perform the following summation for arbitrary x and y and integer M:

M u M v
F(w,y,M):Zk‘Q(k)xkyM_k:Z[k(k—1)+k]<k)xkyM_k
k=0 k=0
- M M
_ (MY kv MY b vk
= k(k 1)(k)$y 1—1—{2]5(16)353/
- k=0 k=0
[, 8 = (M 0 o (M
_ |29 k, M—k v k, M—k
ot () fm ()]
[, 02 0 ,
_ |29 M o M
= _x axZ(x—l—y) }%— [xax(xjty) ]

P2M(M — 1) (x+ )" 2 + oMz +y)M L (7.5)
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Using this result, from (7.4) we have

_ﬂnl—nN—Dl—FN—Dﬁz

var(k)
k (N =1)p
- 2
PN = DO =240V = 1) = [ - 1y
= — . 76
(N —=1)p (76)
Inserting this into (7.2), we get
—  var(k) —
ke = T +k=p(N=2)+1—-p(N—1)+p(N—-1)=(N-1p+(1—-p) (7.7)
This means that the expected gain of alter sampling is
k. 1-—
2o+ Lo (7.8)
k k

Our empirical observations in Chapter 6 showed that the disparity is much greater,
sometimes even up to two orders of magnitudes. So alter sampling does not necessarily
provide a large gain for every network structure. Social networks must have special
organizations to enable its large gain.

In the above discussions, the definition of the FP was based on the degrees of nodes.
That is, the property of the individuals that is being compared to their neighbors was
their degrees. We now expand this notion and show that a similar phenomenon exists
for personal attributes, that is, non-network characteristics of individuals. To that aim,

we first highlight why such non-network properties matter in research on networks at
all.

7.4 Introducing the Generalized Friendship Paradox

The units of social networks are people. They have properties beyond network
statistics; individuals have personal attributes as well. These attributes can interact
with the structure. We briefly discuss how personal attributes and network position mu-
tually interact. That is, why should a network researcher care about personal attributes

of nodes.



91 7.4. Introducing the Generalized Friendship Paradox

The position of the ego in the social network affects its social life. It determines
the information and resources the ego has access to. It also determines with whom
the ego can interact and share. These availabilities can affect the social attributes
and attitudes of the ego, e.g., how social or isolated the ego is. But the relation
is bidirectional. The position of the ego in the social network is itself affected by
the attributes and attitudes of the ego. Attributes and attitudes are simultaneously
products and determinants of network position. For instance, in friendship networks,
people are not equally social and outgoing. This affects their social network, which
in turn affects their opportunities for association. In scientific collaboration networks,
scholars have different levels of productivity and activity. These traits affect their
attractiveness to peers for collaborations, and shape their collaboration network. This
structure in turn influences their chances of future collaborations. In online social
networks, users have heterogeneous levels of content generation and sharing. Some users
generate more interesting or important content, or are quicker than others in detecting
and spreading such content. These traits affect one’s network (e.g., how many followers
one gets on Twitter, and who those followers are). The structure of this network will
in turn affect the content users receive and the chances they have in spreading their
posts. In all these cases, we see that the personal attributes of individuals can interact
with their position in the network.

Furthermore, some attributes are personal (such as being funny in social interac-
tions, or creativity and activity in content generation in social networks). These at-
tributes pertain to ego’s influence on its own behavior (which may or may not influence
others’ behavior via interaction). On the other hand, some attributes are interpersonal
(such as peer influence and charisma). Their definition is based on the influence of
the ego over the behavior of alters. This further emphasizes the importance of per-
sonal attributes on the structure of the social network. This is interesting because by
looking at the structure of a network, which is just a structure of the social group, we
can say things about the personal traits, and conversely, we can look at the effects of
network structure on the individual. For example, economic experiments have shown
that people who are more cooperative tend to receive more links from others because
others would like to increase their chances of constructive mutually-beneficial relation-

ship [RAC11]. Conversely, sociological studies have shown that dense high-clustering
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social structure provides high social support, and at the same time, high social control
and norm enforcement [Col88].

In short, an interesting feature of the field of social networks is that it relates
individual properties to structural properties and the converse. So similar to studying
the effects of structure on the individual, the converse effects are also important to
study.

If we can study the structural inequalities of social networks by comparing the
degrees of nodes to those of their neighbors, we can also do this for non-network indi-
vidual attributes. That is, we can study the relation between the personal attributes
of the neighbors in the network. Similar to the case of degrees, one can study the local
inequalities for nodal attributes. So the notion of the FP can be extended to attributes.
This results in the Generalized Friendship Paradox (GFP). For example, it has been
shown that in scientific collaboration networks, scholars on average have fewer citations
than their collaborators [EJ14]. Same is true for the H-index [BLA15]" .

One might assume the following explanation for this phenomenon: degree (in this
case, number of collaborators) and personal attributes (e.g., the H-index) are positively
correlated, and this means that whenever the FP exists, GFP would also exist [EJ14].
In Chapter 8, we show that this intuitive explanation is incomplete. We present a
case study on a large network data set, we measure several nodal attributes that have
social impacts, study their interrelation with network structure, and study the local
inequalities with regard to these nodal attributes. We show that the GFP is highly

prevalent even for attributes who do not have a significant correlation with degree.

7.5 Chapter Summary

We began with highlighting the effectiveness of alter sampling across diverse social
networks and related it to the Friendship Paradox, which is a property that results from
how social networks are locally organized. The FP is an interesting phenomenon relating

to local structural inequalities of social networks. We then argued that individual

I The H-index of a scholar is defined as the minimum k& such that the scholar has no
less than k papers with no less than £ citations.
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attributes are also important and can affect the structure of social networks just as the
converse is true. This highlights importance of local inequalities in attributes, which is

the focus of the paper presented in the next chapter.



CHAPTER 8

Paper: Friendship Paradox and the
Inequalities in Social Networks

The material presented in this chapter was published in the following journal:

N. Momeni, M. Rabbat, “Qualities and Inequalities in Online Social
Networks through the Lens of the Generalized Friendship Paradox", PloS
one 11.2 (2016): e0143633.

Please note that the references of the manuscript are listed at the end of this

chapter.
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Qualities and Inequalities in Online Social
Networks through the Lens of the

Generalized Friendship Paradox

Naghmeh Momeni and Michael G. Rabbat

Abstract

The friendship paradox is the phenomenon that in social networks, people on average have
fewer friends than their friends do. The generalized friendship paradox is an extension to attributes
other than the number of friends. The friendship paradox and its generalized version have gathered
recent attention due to the information they provide about network structure and local inequalities.
In this paper, we propose several measures of nodal qualities which capture different aspects
of their activities and influence in online social networks. Using these measures we analyze
the prevalence of the generalized friendship paradox over Twitter and we report high levels of
prevalence (up to over 90% of nodes). We contend that this prevalence of the friendship paradox
and its generalized version arise because of the hierarchical nature of the connections in the
network. This hierarchy is nested as opposed to being star-like. We conclude that these paradoxes
are collective phenomena not created merely by a minority of well-connected or high-attribute
nodes. Previous papers had argued that positive correlation between degrees and attributes results
in the generalized friendship paradox. Our results show that although such a positive correlation

is sufficient for the generalized friendship paradox, it is not necessary.

INTRODUCTION

The friendship paradox (FP), first introduced by Feld [1], is a phenomenon stemming
from the structural properties of social networks. It indicates that although most people
think that they are more popular than their friends, in actuality the converse is true: on

average, each person has fewer friends than his/her friends do. This observation sheds light
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on the local inequalities of social networks, how people organize their social ties, and how
these inequalities extend to macro structures of social networks. This paradox has also
been observed in online settings as well [2], [3]. It has been contended that this paradox
can be exploited for early detection of flu outbreaks [4], [5], and more generally, finding
well-connected nodes in large networks [6]—[8].

The generalized version of the friendship paradox is an extension to attributes other than
number of social ties. It was introduced in [6], where it is shown that in scientific col-
laboration networks, each scholar has on average fewer citations than his/her collaborators
do. The generalized friendship paradox (GFP) has been studied analytically in [9], [10].
The GFP links intra-personal attributes to inter-personal ties, and thus sheds light on the
interplay between nodal characteristics and network structure. It also takes a notable step
towards characterizing the local inequalities of networks regarding non-structural nodal
properties. In this paper, we study the GFP in the context of online social networks, and
we consider nodal attributes that corresponds to influence. We study how the structure of
connections between nodes is related to the influence they have upon others.

Finding highly-influential nodes in social networks is useful for a variety of tasks such as
understanding diffusion of information [11]-[13] and misinformation [14], [15], promoting
cooperation [16], [17], optimal product placement for marketing purposes [18], [19], optimal
immunization and vaccination strategies [20], and studying the diffusion of innovation [21].

Characterizing influence is not straightforward. Being highly connected does not nec-
essarily mean being influential. For example, in online social media, it has been found
that highly-connected individuals are overwhelmed by information flows and sometimes
cannot detect viral content effectively [22]. Thus, purely-structural measures alone (such as
degree) cannot capture nodal influence. Furthermore, there are different types of influence,
and nodes with different patterns of activities and impacts can be deemed influential.
Most of the online social networks include initiation and adoption processes. Each user
can generate contents visible to other users who can re-post them. We need measures of
influence that enable us to compare, for example, highly-active nodes with average clout

with occasionally-active nodes with great clout.
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This paper proposes measures that capture multiple aspects of node activity and influence
in online social networks. Two of these measures quantify nodal activity, and four of them
quantify inter-nodal influence. We compute and analyse these measures on Twitter (the
micro-blogging platform), but the measures are general and as we contend, they can be
applied to any network setting with initiation and adoption mechanisms. We study the
distributions and statistical properties of these measures.

In this paper, we study the GFP (on the individual level, in the terminology of [6],
[9]) through the lens of the measures of activity and influence that we introduce. We
also introduce new measures for quantifying the GFP. Our measures assess to what extent
nodes of a network experience the GFP. Throughout the paper, we use the term ‘Neighbor
Superiority’ [23] to refer to this phenomenon, because we found no evidence in the literature
that, for example, most scholars think that they are more cited than their collaborators
(which would contradict reality and create a ‘paradox’). Hence, the word paradox is not
appropriate for contexts other than friendship. Furthermore, in online social media, evidence
point towards the opposite direction [24], and most users assess their neighbors more highly
than themselves.

We find high prevalence of neighbor superiority both in terms of connectivity and quality.
For each of these nodal attributes, a vast majority of the nodes, even those who rank very
highly in the population (for example, among the top 0.5% in terms of tweeting activity,
or in terms of popularity), experience neighbor superiority. We analyse the distributions
of the measures and their prevalences more closely and uncover a hierarchical nature in
the connectivity of the Twitter graph. We contend that neighbor superiority, and its special
case, the friendship paradox, are not mere mathematical artifacts that result from a star-like
structure—a simplistic picture in which almost all nodes are connected to a few hubs, and
these hubs make them experience neighbor superiority [1]. Instead, we show that there is
a hierarchical nature in the pattern of connections in the network. Moreover, similar to the
friendship paradox that enables biased sampling and detection of popular nodes [5], [6],
our results indicate that the same scheme can be applied in terms of non-structural nodal

attributes (i.e., qualities), to detect high-quality nodes.
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The rest of this paper is organized as follows. We first introduce the terminology used
throughout the paper. After describing the data set, we introduce measures of nodal quality
(activity and influence), as well as measures to quantify neighbor superiority. We then
present the distribution of nodal qualities and connectivity. We discuss results on neighbor

superiority and focus on their implications for the underlying structure of the Twitter graph.

TERMINOLOGY

On Twitter, users can post short texts that should not exceed 140 characters. These posts
are called rweets. User can post original tweets, or can repost another user’s tweet, which
is called retweeting. Each user can follow other users. When user A follows user B, we
say that A is a follower of B and B is a followee of A. When A follows B, A subscribes to
the tweets posted by B. Each user can see the tweets of his/her followees on his/her home
Twitter feed.

The underlying web of connectivities between users can be modelled as a graph. Users
are mapped onto nodes, and their connections onto links. Note that on Twitter, B can follow
A back or not. Mathematically, this means that the Twitter graph is directed. There are two
types of adjacency relationships that can be defined on the Twitter graph—follower and
followee. We use the term neighbor to refer to both of these types of connection. So for
each user, an neighbor can be either a follower or a followee. The number of followers
and the number of followees of a user are called the in-degree and out-degree of that user,
respectively.

When user A posts a tweet, the followers of A can see it. When one of its followers, say
B, retweets it, the followers of B can also see the tweet. With each retweet, the number
of users who are exposed to the tweet increases. This is called a cascade of the original
tweet which was posted by A. The total number of retweets that a tweet by A receives
is called the cascade size of that tweet. Note that this retweet can be done either by A’s
own followers, or the followers of A’s followers, and so on. After user B retweets one
of A’s tweets, then if a user C, which is a follower of B retweets that tweet, this retweet

is counted only for the original tweet, and only for A. In other words, any cascade only



99 Qualities and inequalities in online social networks

has one root tweet and one initiating user. All the retweets are counted for that tweet and
that user. This mechanism is internal to Twitter and we follow the same convention in this
paper.

There are two categories of attributes that we consider in this paper. The first category
consists of the in-degree and out-degree, which are structural attributes. The second cate-
gory assesses tweeting activities of a node. We denote the attributes that belong to the latter
category by quality (Note that by quality we mean an intrinsic fitness value that drives the
connection and following patterns. It does not signify any quality of the content of the

tweets). We define 6 different qualities in the section .

DATA

We use two datasets in this paper. The first one is presented by Yang and Leskovec [25]
and contains over 470 million tweets by over 18 million users, which capture over 20%
of all tweets posted over a 7-month period, starting from June 2009. For the network
of connectivity of Twitter users, we use the dataset collected by Kwak et al. [26]. This
dataset comprises all the links between users who joined Twitter prior to August 2009. We
only consider users that are present in both data sets. The subgraph of connectivity has
5.8 million users and over 193 million links. The subset of all tweets that is considered

includes over 200 million tweets.

METHODS

We discard repeated tweets for each user and count only the number of distinct tweets.
Following the convention mentioned above, we count unique retweets only for the root
user of a cascade, not for other users who retweet the message (who consequently received
further retweets for their retweet). So the retweets for each user can be from those who

directly follow the user, or the followers of the followers of the user, and so on.

Node Attributes as Quality

Minding the specificities of the data set at hand, we considered six possible candidates as

measures for node qualities. Two of these measures quantify the activity of nodes, and four
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of them quantify their influence on others. Combining these six measures with in-degree
and out-degree, we construct an 8-dimensional feature vector that characterizes each node.
The six quality features are the following:

1) The number of tweets (NT) is the total number of posts of the user, which includes
original tweets and retweets.

2) The number of original tweets (NOT) is the number of tweets that the user has
initiated.

3) The total times retweeted (TTR) is the number of times that the posts initiated by
the user got retweeted by other users. It is the gross number of retweets that the user
has received.

4) The number of tweets retweeted (NTR) is the number of tweets initiated by the user
that received at least one retweet from other users. In other words, the NTR is the
number of times that the user has created a cascade.

5) The retweets per tweet (RPT) is the average number of retweets received by a tweet
initiated by the user. In other words, the RPT of a user is the expected cascade size
that the user engenders.

6) The fraction of tweets retweeted (FTR) is the normalized version of NTR, that is,
it is equal to the fraction of tweets initiated by the user that received at least one
retweet from other users. This characterizes the clout of the user by assessing the
likelihood that a tweet initiated by the user will engender a cascade.

As mentioned above, there are two categories: activity and influence. NT and NOT are
measures of activity: NT is a measure of fotal activity; it measures how much a user posts
tweets (that can be created by him/her or his/her peers). NOT is a measure of total novel
activity.

The next four measures (TTR, NTR, RPT, and FTR) are measures of influence: TTR
measures the total influence of a node over followers. NTR is a measure of fotal success; it
measures the number of successful initiations. RPT is a measure of efficiency; it measures
the expected influence per initiation. FTR is a measure of consistency, which measures the

likelihood of generating cascade of any size per initiation.
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Note that these measures are general, and need not be confined to Twitter. NT and NOT
can be used for any social network in which a specific action can be defined as ‘activity’
(e.g., posting content on Google+, Pinterst, Instagram, Tumblr, etc.). TTR, NTR, RPT
and FTR can be used in any network context in which there is a mechanism for sharing,
reposting, or adoption. For example, on Pinterest, users can pin items on their boards,
and their followers can re-pin them (equivalent of retweeting). On Facebook, posts can be
shared and on Tumblr, users can re-blog the posts by other users.

Through a hypothetical example, we shed light on the nuances of these measures and
the different aspects of the users they capture. Let us consider three users: user 1 has made
100 original tweets, one of them has received 1000 retweets and the rest have received
none. User 2 has posted 100 original tweets; each of them have received 10 retweets. So
in total, user 2 has received 1000 retweets. User 3 has made only 10 tweets;, each of them
have received 50 retweets. So user 3 has received 500 retweets in total.

Users 1 and 2 have equal TTR values of 1000, which exceeds that of user 3 (which is
500). Note that TTR cannot distinguish between the first two users, while their patterns of
influence are clearly different. We can distinguish between user 1 and 2 using FTR, because
the FTR of user 1 is 0.01, whereas the FTR of user 2 is equal to 1. In this example user
I has had a moment in the sun, and does not have a steady influence over other users,
whereas user 2 consistently creates cascades (of smaller size as compared to that of user
1). In other words, user 2 is more reliable to engender cascades than user 1, but the cascade
is not as large.

Now let us consider users 2 and 3. For both of them, the FTR is 1, which means that
for both users, every tweet has has been retweeted at least once. However, the RPT of user
3 is 50, and the RPT of user 2 is 10. This means that although user 3 is not as active as
user 2, the cascades created by user 3 are on average five times larger.

We now turn our attention to the distribution of these different measures of quality in
the network. In addition to the inequalities of the degrees, we investigate the inequalities

between node qualities that exist in the network.
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Measures of Neighbor Superiority

In this section we introduce measures to quantify neighbor superiority, which is the
essence of the friendship paradox and its generalized version. These measures are gen-
eralizations of the measures we introduced in [27], which pertain to undirected networks
only.

In the present paper, the network under consideration is directed. However, to develop
intuition about the measures that we are going to introduce, first let us consider a simple
undirected network. So there is no follower/followee distinction; rather, each node simply
has neighbors. In this case, we can compare the degree of each node with, say, the average
of the degrees of its neighbors. If the degree of the node is smaller than the average of
its neighbors’ degree, we say that the node is experiencing mean neighbor superiority.
Throughout the network, different nodes with different degrees can be experiencing mean
neighbor superiority. A question we can ask about the network under study is that, how large
should the degree of a node be so that it will not experience mean neighbor superiority?
To address this question, we introduce the notion of critical degree for the mean, which is
defined to be the maximum of the degrees of all the nodes in the network that experience
mean neighbor superiority. In other words, no node in the network with degree greater
than the critical degree experiences mean neighbor superiority. Let us denote the set of
neighbors of node x by N,, and let us denote the degree of node = by k,. The critical

degree for the mean can be expressed as follows:

ky <

)

~ k
K:max{k‘x @}

| Ve |

A drawback of using the mean neighbor degree is that a node might be experiencing
neighbor superiority only because one of its many neighbors had a very large degree, hence
making the mean neighbor degree large. We can also compare the degree of each node
with the median neighbor degree, which alleviates the problem of outliers (see [27], [28]).
A node is said to be experiencing median neighbor superiority if more than half of its

neighbors have higher degrees than it does. Let us denote the median by M (-). Similar to
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the mean, we can also define the critical degree for the median as follows:

K = max {kw

ky < M (kyly € N,) } )

Note that any nodal attribute can be compared to the mean or median of the neighbors
in order to define neighbor superiority. It need not be degree. It can be age, for example.
In addition to critical values, another way of quantifying neighbor superiority in the
network would be to measure the prevalence of neighbor superiority, that is the fraction of
nodes who experience a given type of neighbor superiority. For example, we can ask what
fraction of nodes experience median neighbor superiority or mean neighbor superiority.
Now let us extend these definitions to the case of a directed network. In this case, each
node has two distinct sets of neighbors: followers and followees. Thus, we can compare
each attribute of a node to its followers and its followees. The results of these comparisons
need not be the same (in fact, as we will demonstrate, they are not). This proliferates the
number of ways we can compare a node to its neighbors. For example, we can compare
the in-degree of a node (i.e., number of followers) with the in-degree of its followers, or
the in-degree of its followees. We can also use measures of quality, as introduced above.
For the same reasoning as mentioned for the undirected case, we can use both the mean
and the median for comparison. This engenders several possible ways of defining neighbor
superiority, as well as corresponding critical values (both for the mean and median versions).
In total, there are 32 different critical values that can be defined: median/mean fol-
lower/followee superiority for 8 different possible attributes. Corresponding to these 32
different types of superiorities, we can also measure 32 fractions that reflect what fraction

of nodes in the network experience a given type of superiority.

RESULTS AND DISCUSSION
Distribution of Quality and Degree

We computed the 6 measures of quality, as well as in-degree and out-degree, for all
the nodes in the Twitter network. The distribution of all the 8 nodal attributes are highly

skewed. Table I presents the summary statistics of the distributions. The percentage headers
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indicate percentiles: e.g., the first row of the 90% column is 41, which means that 90%
of the users have in-degree less than or equal to 41. It is of note that the four zeros at
the bottom of the third column indicate that over 75% of the users never got retweeted,
which implies a high skew in the distribution. In other words, on Twitter, most people only

observe. They read, but seldom retweet.

Mean Median (50%) 75% 90% 95% 9%  Max (100%)

In-Degree 35.2 4 13 41 92 459 625520

Out-Degree ~ 35.2 10 22 57 115 539 86800
NT 37.3 5 22 79 157 526 85316
NOT 35.1 4 20 74 148 499 85234
TTR 2.40 0 0 2 6 35 82036
NTR 0.83 0 0 1 3 13 4803
RPT 0.167 0 0 0.056 0.167 1.224 12567.0
FTR 0.02 0 0 0.036 0.100 0.500 1.0

TABLE I: Summary statistics of nodal attributes.

The distribution of the 8 nodal attributes is depicted in Figure 1. For each attribute, we
divide the interval between the minimum and maximum values of the attribute into 100 bins.
The bin sizes increase logarithmically and the distributions are plotted on a log-log scale.
Note that for each bin the logarithm of the endpoint is evaluated. All nodal attributes exhibit
a heavy-tailed distribution. Figures 1g and 1h exhibit interesting behavior: the majority of
the nodes (over 80%) have zero RPT and zero FTR. Setting these users aside, the rest of
the population exhibit distributions for RPT and FTR that, unlike other 6 nodal attributes,
are not monotonically decreasing.

Table II presents the correlation coefficients between the six measures of influence,
as well as in-degree and out-degree (28 pairs in total). It can be observed that the the
magnitude of correlation between 21 pairs are below 0.15, and only one is above 0.5.
This confirms that these measures capture distinct components of nodal attributes. Also
note that in-degree and out-degree are not highly correlated with measures of influence.

This is a notable observation, and further confirms that measures of connectivity are not
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Figure 1. Distributions of different nodal attributes.
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In Out NT NOT TTR NTR RPT FTR

In 1 0.271 | 0.041 0.040 | 0.067 | 0.112 | 0.002 | 0.002
Out | 0.271 1 0.128 | 0.121 | 0.042 | 0.156 | 0.002 | 0.053
NT | 0.041 | 0.128 1 0.993 | 0.108 | 0.486 | -0.001 | 0.013
NOT | 0.040 | 0.121 | 0.993 1 0.086 | 0.419 | -0.002 | -0.002
TTR | 0.067 | 0.042 | 0.108 | 0.086 1 0.231 | 0.356 | 0.054
NTR | 0.112 | 0.156 | 0.486 | 0.419 | 0.231 1 0.003 | 0.112
RPT | 0.002 | 0.002 | -0.001 | -0.002 | 0.356 | 0.003 1 0.075
FTR | 0.002 | 0.053 | 0.013 | 0.002 | 0.054 | 0.112 | 0.075 1

TABLE II: Correlation coefficients between nodal attributes

necessarily correlated with influence. Had the correlation coefficient between degrees and
nodal attributes been large, then the GFP would become an artifact of the FP. However,
this is not the case, and they cannot be ascribed to a common cause. Finally, note that NT
and NOT are highly correlated, which is expected. We have included both because in the

calculation of other quantities NOT was employed.

Results on Neighbor Superiority

The fraction of nodes in the network that experience the corresponding types of neighbor
superiority are presented in Table III. The critical values pertaining to each type of neighbor
superiority is presented in Table IV.

A hierarchy of connections can be discerned from Table III. For any given type of
neighbor superiority, either in the mean or the median version, we observe that the fraction
of nodes experiencing followee superiority exceeds the fraction of nodes experiencing
follower superiority (which is true in 15 out of all 16 possible cases). This suggests the
existence of a hierarchy of attachment, which is a result of the tendency of users to follow
those who have higher attributes than them, both in terms of degree (in/out) and quality.

For all types of mean and median followee superiority the fractions of nodes experiencing
the corresponding neighbor superiority are above 80% and 66%, respectively. Table III

shows that the fraction of nodes experiencing 12 out of 16 types of median superiority
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Fraction of nodes experiencing neighbor superiority (%)

Mean Median

Follower Followee Follower Followee
Structural In-degree 85.5 93.7 79.7 90.2
Out-degree 86.1 92.5 82.0 80.7
Quality: NT 71.4 87.2 58.4 79.3
Activity NOT 71.2 87.2 57.8 79.4
TTR 65.9 83.3 33.0 67.8
Quality: NTR 65.2 83.1 32.5 67.2
Influence RPT 64.4 81.9 34.2 66.9
FTR 63.0 80.4 34.0 66.5

TABLE III: Fraction of nodes experiencing different types of neighbor superiority.

Critical Values

Mean Median
Follower Followee Follower Followee
Structural In-degree 2890 155657 1894 114629

Out-degree 2887 2887 2108 1997

Quality: NT 3305 5009 1837 5009
Activity NOT 2853 5009 1827 5009
TTR 540 2590 628 1962

Quality: NTR 219 301 141 286
Influence RPT 54.1 64.5 40.0 19.0
FTR 0.975 0.911 0.975 0.896

TABLE 1V: Critical values for different types of neighbor superiority.
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is higher than 57%. This means that for these users, more than half of the users they are
connected to have higher attributes than them. This challenges the simplistic picture that
reduces neighbor superiority to a mere statistical artifact. This simplistic picture contends
that neighbor superiority merely results from the existence of a few well-connected nodes
with high attributes that make their neighbors experience mean neighbor superiority by
lifting their neighbor-averaged attributes. We observe that for most of the nodes, it is not
a single dominant neighbor that makes them experience neighbor superiority; rather, it is
more than half of their neighbors that do this collectively.

The values of bottom half of the column pertaining to median follower superiority are
smaller, as compared to other figures in Table III. Note that these four correspond to the
four zeros in the 75% percentile column of Table I. We can explain this observation saying
that for a large majority of the network (over 75%), the values of TTR, NTR, RPT and
FTR are equal to zero. It is plausible to deduce that these values are also zero for the
majority of the followers of each of these users. This renders the median value of their
followers equal to zero, which makes them not experience follower superiority. However,
since even one nonzero follower suffices to lift the mean above zero, the fraction of nodes
experiencing mean follower superiority is much larger than those experiencing median
follower superiority (the range of fractions for the mean version is between 63% and 66%,
whereas for the median version, the range is between 32% and 34%). Comparing these
fractions with the corresponding figures on the rightmost column of Table III provides
further evidence for the existence of a following hierarchy. In short, users rarely follow
down, they mostly tend to follow up or across.

The critical values also provide insight into the hierarchical structure of the connectivity
of the Twitter network. For example, for the mean followee superiority in in-degree, the
critical value of 155657. This means that even a user who has 155657 followers follows
users who on average have more followers than him/her. Noting that only 1% of the users
have more than 460 followers (Table I), the user with 155657 ranks very highly in terms
of number of followers (99.99 percentile), and even this user is following those who on

average have more followers. Similarly, for the median followee superiority in in-degree,
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the critical value is 114629. This means that even for a user with this many followers, the
majority of his/her followees have more followers than s/he does.

In addition to degrees, similar observations can be made on nodal qualities. Consider
TTR as an example. For the mean followee superiority in TTR, the critical value is 2590.
Note that, as Table I presents, more than 75% of all the users never get retweeted, that
is, they have TTR of zero. Even a user with such a high value of TTR experiences mean
followee superiority. Similarly, for RPT, Table I tells us that 95% of all the users have
RPT values below 0.16. From Table IV we observe that the critical values for the mean
followee superiority in RPT is 64.5. Even a user with RPT as large as 64.5 follows users
that are on average more influential in terms of cascade size. These provide evidence for the
hierarchical nature of the connections of the Twitter network both in terms of connectivity
and in terms of nodal qualities.

Figure 2 illustrates the empirical distribution of experiencing superiority pertaining to
different attributes. The horizontal axis is log-scaled for better visibility. We construct 50
bins in each case, and for all the users who fall in each bin, we calculated the fraction of
them who experience the given type of superiority.

The intuitive expectation for any type of superiority might be that the higher the attribute
of a node is, the less likely it would be for that node to experience neighbor superiority. In
other words, one might expect to observe a uniformly decreasing likelihood of experiencing
neighbor superiority as a function of any nodal attribute, which is maximized when the
value of the attribute takes its minimum values. However, in Figure 2, only two subfigures
resemble this scheme, which are Figures 2e and 2f. All other subfigures present either curves
with plateaus, or unimodal ones. This is a crucial observation with interesting consequences,
as we shall discuss in detail next. Note that the point where the curves hit the x-axis are
pertained to the corresponding critical values.

Let us consider Figure 2a as an example, and let us first focus on the solid red curve.
For the minimum degree, we observe that that proportion of experiencing mean followee
superiority is 0.8, which means that 20% of the users with minimum in-degree do not

experience mean followee superiority. The proportion increases to above 0.95 when the
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degree is 5, then follows a wide plateau up to degree of 1000, and then decreases. The
proportion of experiencing followee superiority is 0.3 for an in-degree as high as 20000: of
the users with around 20000 followers, 30% follow users with, on average, more followers.
So critical values do not pertain to outliers. In other words, a high critical value cannot be
construed as “maybe this is the only node among all nodes with high values of that attribute
that experiences neighbor superiority”. Rather, a high critical value suggests a continuous
decline in the proportion of experiencing neighbor superiority. A high critical value does
suggest that in the network under consideration, even the nodes with high values of the
attribute experience neighbor superiority.

Note that Figure 2a is consistent with Figure 3c in [9], where an analytical approach is
undertaken and the proportion of the FP is depicted as a function of degree for synthetic
networks.

Now let us focus on the solid black curve in Figure 2a which pertains to mean follower
superiority. This proportion also increases initially, followed by a plateau that lasts up to
degrees around 100, and then decreases. The decline is steeper than the case of mean
followee superiority.

For the next example, we consider Figure 2h. The solid red curve starts at 0.3. It
increases up to 0.9, with a plateau that lasts up to an FTR of around 0.04, then decreases
monotonically. For example, a user with an FTR of 0.01 has a higher proportion of
experiencing mean followee superiority in FTR (proportion is around 0.9) than a user
with an FTR of 0.001 (for whom the proportion is 0.7).

The presence of positive slopes and/or plateaus is visible in most of the curves presented
in Figure 2. Such a behavior is in stark contrast with one might intuitively expect to observe
(a monotonically decreasing curve, as mentioned above). In Figures 2a, 2b, 2g, and 2h, the
initial increase in the proportion of experiencing neighbor superiority indicates that those
with minimum (and close to minimum) values of attributes establish links both amongst
themselves and those with higher values of attributes. However, those with intermediate
levels of the attributes tend to establish links only towards those who have higher attributes

than them. In the hierarchical representation of the system, we can say that nodes with
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close-to-minimum attributes connect both up and across, and nodes with higher levels of
attributes only connect up. We will get back to this point below when we discuss Figure 3.

In Figures 2c¢,2d, 2e, and 2f, the curves do not exhibit a steep positive slope. Rather,
they begin with plateaus, followed by steep decrease. This pattern suggests that nodes with
close-to-minimum levels of these attributes follow those with higher attributes than them.
The hierarchies that pertain to these attributes are more upwardly-oriented; most nodes tend
to connect up, rather than across.

In all the figures, for the same type of superiority, the median curve falls below the mean
curve. This implies that for any type of superiority, the proportion of experiencing median
superiority is smaller than the proportion of experiencing mean superiority.

In Figure 2, different numbers of nodes fall into different bins. This is true for all nodal
attributes. This is caused by the high skew in the distributions of the nodal attributes. This
results in loss of valuable information. For example, we know from Figure 2e that a user
whose TTR equals 10 experiences mean followee superiority with proportion of almost 0.9,
that is, almost 90% of the users whose TTR is 10 experience mean followee superiority.
However, this figure does not tell us where such users fall in the ranking of the TTR values.

In Figure 3, we plot the proportion of experiencing different types of neighbor superiority
as a function of the nodes’ percentile rank for different attributes. The horizontal axes
represent the percentile ranks. For example, in the case of NOT which is depicted in
Figure 3d, a percentile rank of 0.6 for a node means that 60% of the nodes have NOT
values smaller than or equal to the NOT of that node. In other words, the horizontal axes
of Figure 3 results from a nonlinear rescaling of the horizontal axes of Figure 2. We have
divided the interval between the minimum value and the maximum values for percentile
ranks into 500 bins, and for nodes falling into the same bin, we calculated the fraction who
experience the types of neighbor superiority corresponding to that attribute. The curves
in Figure 3 are more telling: we readily observe that in all the figures, there is a very
wide plateau that stretches up to the very close proximity of percentile rank of 1. This
strengthens the assertions made above about the hierarchical nature of connections: most

users—even those with very high ranking of any attribute—are connected to those with
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higher attributes than them. Note that in some figures, the last bin does not have zero
proportion of experiencing neighbor superiority. This is because the last bin stores the top
0.2% of the population, and the proportion associated with this bin is averaged among the
top 0.2%. Since many of these users experience neighbor superiority, despite their very
high ranking in the corresponding attributes, the average is not zero.

Figure 4 reaffirms the hierarchical nature of the connections. The figure is depicted
as follows. We first divide the range of in-degrees into 25 logarithmic bins and group the
population accordingly. We then construct matrix A whose (i,j) element denotes the number
of links that are from a node in bin j to a node in bin i. We then normalize the matrix A
column-wise, so that each column sums up to unity. Let us denote the resulting matrix by
B. Matrix B is depicted in Figure 4. Column c represents the distribution of the destination
of links whose starting points are nodes in bin c. The values on the bottom and left axes are
the starting points of the bins. The values on the top and right axes are the corresponding
percentile ranks of the starting points of the bins.

The matrix can be divided into four regions. For the nodes with in-degrees in the first
five bins, the majority of outgoing links land on the nodes with highest in-degrees. For the
nodes in the next nine bins the majority of the outgoing links point towards the nodes within
the same bins. However, the fraction of links pointing to the nodes with larger in-degrees
is higher than those pointing to nodes with smaller or equal in-degrees. The nodes in these
two regions are likely to experience both the mean and median followee superiority. The
nodes in the third region are mostly following the nodes with relatively high in-degrees (in
the 98th and 99th percentiles), but not the highest bins. Finally, the nodes in the last four
bins tend to follow nodes in the first seven bins.

Note that nodes in the second region experience the followee superiority because of
following nodes within the same region but with higher in-degrees; not for following the
hubs. Moreover, if the structure of the graph was star-like, we would expect to see two
dense regions in the top left and bottom right of the matrix. This would disregard the role

of the nodes in the middle bins.
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right axes are the corresponding percentile ranks of the starting points of the bins. Each

column is normalized.

CONCLUSION

In this paper we introduced six new measures to quantify different aspects of user activity
and influence on social networks, and we computed them on a dataset of over 200 million
tweets. We demonstrated that the distributions of all of these attributes are heavy-tailed.
Two of these attributes (NT and NOT) are measures of activity, and four of them (TTR,
NTR, RPT and FTR) pertain to received retweets, and are measures of influence. The

measures of influence are zero for more than 75% of users, suggesting that the majority
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of Twitter users are observers of the content produced by a minority.

We also introduced measures of neighbor superiority to quantify the local inequalities in
different nodal attributes. We observed that the prevalence of mean neighbor superiorities of
all types are above 63%. The prevalence of median neighbor superiorities of different types
are also high; in 12 out of 16 types of median neighbor superiority, the prevalence is over
57%. We discussed that the high prevalence of median versions of neighbor superiority
challenges the simplistic picture that neighbor superiority is a mere consequence of the
existence of a few hubs in the network that put every peripheral node into experiencing
neighbor superiority by elevating the average.

By inspecting different types of neighbor superiority, we uncovered the hierarchical
nature of the connections in the Twitter graph both in terms of connectivity and in terms of
nodal qualities. We observed that the fraction of nodes experiencing followee superiority
exceeds the fraction of nodes experiencing follower superiority, and this is true for 15 out of
16 types of superiority introduced. This indicates the tendency of most users to follow other
users who have higher attributes. It is of note that when we speak of hierarchical structures,
there are distinct hierarchies for different attributes. That is, for example, if we once sort
the node in terms of TTR, and then sort them in terms of in-degree, the hierarchies differ.
Because the intra-node correlation between attributes are small (as presented in Table II)
and therefore, a node that stands on the top of the hierarchy for TTR might be elsewhere
for in-degree. Let us point out that there are two distinct patterns of correlations: inter-
node correlations for a given attribute, and intra-node correlation of different attributes.
Our results indicate that hierarchies stem from high inter-node correlations of each given
attribute. In [9], it is shown that intra-node correlation between degree and attributes is
sufficient for observing the GFP, and our result is that it is not necessary.

By close inspection of measures of neighbor superiority and the dependence of the
likelihood of experiencing neighbor superiority on different attributes, we deduced that
most users rarely follow down, rather, they tend to follow up or across, that is, they tend
to follow other users with similar or higher attributes. This is true for almost every user,

which makes even those in the top 0.5% of the population experience neighbor superiority
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of different types. This means that Twitter does not possess a simple star-like structure, but
is decentralized and inequalities exist locally for almost all nodes.

A counter-intuitive finding is that the proportion of experiencing neighbor superiority is
not a monotonically-decreasing function of nodal attributes, or their ranks in those attributes.
For example, it is not the case that the more re-tweets one receives, one’s likelihood of
experiencing neighbor superiority decreases. Rather, this likelihood is roughly constant up to
the top percentile of the population in terms of retweets received. The trend is even reversed
in the case of in-degree. For example, the proportion of experiencing neighbor superiority
can even increase as in-degree increases. To ensure low likelihood of experiencing neighbor
superiority, it does not suffice to increase one’s attribute; one needs to stand in a very high

percentile of the population.
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Generalized Friendship Paradox:

An Analytical Approach

Babak Fotouhi, Naghmeh Momeni, and Michael G. Rabbat

Abstract

The friendship paradox refers to the sociological observation that, while the people’s as-
sessment of their own popularity is typically self-aggrandizing, in reality they are less popular
than their friends. The generalized friendship paradox is the average alter superiority observed
empirically in social settings, scientific collaboration networks, as well as online social media. We
posit a quality-based network growth model in which the chance for a node to receive new links
depends both on its degree and a quality parameter. Nodes are assigned qualities the first time they
join the network, and these do not change over time. We analyse the model theoretically, finding
expressions for the joint degree-quality distribution and nearest-neighbor distribution. We then
demonstrate that this model exhibits both the friendship paradox and the generalized friendship
paradox at the network level, regardless of the distribution of qualities. We also show that, in the
proposed model, the degree and quality of each node are positively correlated regardless of how

node qualities are distributed.

I. INTRODUCTION

The friendship paradox is a phenomenon observed in various social networks. The term
was coined by Feld [1]. It has been empirically observed that people’s perception of their
own popularity is self-aggrandizing; most people believe that they are more popular than
their friends on average [2]. However, Feld observed that in reality, most people have fewer
friends than their friends do. In [3], this phenomena is used for the early detection of flu
outbreaks among college students. In [4], it is utilized to efficiently sample early-warning

sensors during catastrophic events such as hurricanes.
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In addition to degree, the same paradox has been observed about other individual at-
tributes (called the generalized friendship paradox [5], or GFP). For example, in [6] it has
been observed that on Twitter, for most people, their friends share, on average, more viral
content and also tweet more. In [5], it has been observed that in scientific collaboration
networks, one’s co-authors have, on average, more citations, more publications and more
co-authors.

In this paper, we consider a network growth model which is a generalization of the
preferential attachment scheme [7]. In our model, nodes are endowed with ‘qualities’
(ak.a. ‘fitness’ or ‘attractiveness’ in the literature [8]—[11]). Qualities are discrete positive
numbers drawn from a given distribution p(f) and assigned to a node upon its birth
(remaining the same thenafter). We assume that the probability that node = with degree £,
and quality 6, receives a link from subsequent nodes is proportional to &, + 6,.! We obtain
two statistical measures of this model: one is the degree-quality joint distribution, which
is the fraction of nodes that have degree k£ and quality 6 in the steady state. The second
quantity is the nearest-neighbor distribution of quality and degree: it gives the fraction of
nodes with degree ¢ and quality ¢ that are connected to a node with degree k£ and quality 6.
Equipped with these distributions, we can quantify the paradox and study how it depends
on the underlying quality distribution p(#). To our knowledge, no similar theoretical result
is available in the literature for any network growth model (either purely preferential [7],
or fitness-based [9]-[11]).

We show that employing the above scheme as the attachment mechanism renders the
occurrence of the GFP contingent upon the underlying distribution of node qualities. We
then employ measures defined in the literature for assessing the GFP on the network level,
and we investigate the dependence of these measures on the model parameters and the
quality distribution. We demonstrate that, in the proposed model, the network exhibits a

quality paradox at the network level for any quality distribution. We contend that this

'Note that for example in [8], the attachment probability is proportional to the product of degree and quality. This
model however, has not be solved in closed form. Also, it assigns zero link reception probability to nodes with degree
Zero.
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is indicative of a positive correlation between degree and quality; i.e., those with higher

qualities are more likely to have higher degrees, and vice versa.

II. MODEL, NOTATION AND TERMINOLOGY

In the growth model considered in this paper, nodes are added successively to the
network. The initial network has N (0) nodes and L(0) links. At each time step, one new
node is added to the network. We assume that each node has an intrinsic quality, which is
drawn from a given distribution p(f). The quality is assigned to each new incoming node
upon birth, and will remain the same thenafter. The mean of the distribution p(6) is denoted
by u. A node of degree k and quality @ is also referred to as a (k, @) node throughout.

Each new incoming node attaches to § < N(0) existing nodes in the network. We
consider the simplest additive model that incorporates both degree (popularity) and quality
in the dynamics of connection formation: the probability that an existing node with degree
k and quality 6 receives a link from the new node is proportional to k£ + 6. This means
that, for example, a paper that is new and has very few citations can compensate for its
small degree with having a high quality. Or in the social context, a newcomer who does
not have many friends in the new social milieu but is gregarious and sociable can elevate
the chances of making new friends. The new node is called the child of the existing nodes
that it connects to, and they are called its parents. By a (¢, ¢)-(k,0) child-parent pair, we
mean a node with degree ¢ and quality ¢ that is connected to a parent node of degree k
and quality 6.

The probability that an existing node x receives a new link is %, where the normal-
ization factor A is given by > (k, + 6,). The sum over all node degrees at time ¢, which
equals twice the number of links at time ¢, is equal to 2[L(0) -+ §t]. For long times, the sum
over the quality values of all the nodes will converge to the mean of the quality distribution

times the number of nodes, that is, we can replace ) 6, by [IN(0)+t]u. So at time ¢, the

ky 40

probability that node x receives a link equals L) TN () )i

Throughout the present paper, the steady-state joint distribution of quality and degree is
denoted by P(k,0). The expected number of nodes with degree k£ and quality 6 at time
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t is denoted by N;(k, ). We denote by N,(k,0, ¢, ¢) the expected number of (¢, ¢)-(k,0)

child-parent pairs.

III. DEGREE-QUALITY JOINT DISTRIBUTION

We seek the steady-state fraction of nodes who have degree k and quality 6. In Ap-

pendix A we derive the following expression for this quantity:

1
F(k+9)r(ﬁ+9+2+ B)
F<B+9)F<k+0+3+ ﬁ)

g

Note that in the special case of a single permitted value for the quality (that is, when

Pk, 0) = p(6) (2 n H) u(k — B). 1)

B

p(0) = &[0 — b)) this model reduces to the shifted-linear preferential attachment model

analyzed, for example, in [12]. The solution in this special case simplifies to

2)

90> T(k+00) T(B+2+ 60+ %)

P(k) = (2+g D(B+00) T(k+3+6+%)

This coincides with the degree distribution of shifted-linear kernels given in [13] and [12,
Equation D.9]. Furthermore, when p(0) = 1, all nodes will have zero quality and attach-
ments will be purely degree-proportional, synonymous with the conventional preferential-
attachment model proposed initially in [7]. For the special case of § = u = 0 we obtain

26(6+1)

Prak) = k(k+ 1)(k+2)

3)

This is equal to the degree distribution of the conventional BA network (see, e.g., [13],
[14]).

Let us also examine the behavior of (1) in the limit of large £. In this regime, we can use
the asymptotic approximation that for large values of z, the function I'(x) ~ T2 exp(—x).

Then we replace i L(k+6)

. _3_ B, ..
() with £~ 7" 5, independent of . Therefore, the steady-state joint

degree-quality distribution P(k,6) is proportional to k35, Marginalizing out 6 to recover

the degree distribution, we obtain the well-known power law, P(k) = k> 5.
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IV. NEAREST-NEIGHBOR QUALITY-DEGREE DISTRIBUTION

To quantify how qualities and degrees of adjacent nodes correlate, we need to go beyond
the quality-degree distribution obtained in the previous section. The closed-form expression
for the nearest-neigbor correlations under the preferential attachment model is derived in
[12]; that work only considers degrees and does not address qualities. We would like to
quantify the conditional distribution P(¢, ¢|k,0), the fraction of neighbours of a given
node with degree k£ and quality 6 that have degree ¢ and quality ¢. We refer to this as the
nearest-neighbor quality-degree distribution (NNQDD).

In Appendix A we study the rate equation describing how the distribution P(¢, ¢|k,0)
evolves as nodes are added to the network. This gives rise to a system of difference equations

which we solve to obtain that, in the steady-state,

F(k+9+3+ ﬂ)
_ p(9) 5 <£_1+¢>!F(ﬁ+2+¢+ﬁ)x

P, ¢|k,0)
k F<k+6+3+g+£+¢>(5_1+¢>! B
. Jz k—j+t-=p0 4 © l—j+k-p
ir(;+0+2+ﬁ+ﬁ+¢)( yay )+ ir(;+9+2+ﬁ+6+¢>< oy )
pred F<j+9+2+%>F</3+2+</5+%> parys F(j+¢+2+%>F</3+2+9+%)

“4)

In order to obtain the nearest-neighbor quality distribution P(¢|@), one needs to perform
the calculations P(¢|0) = >_,> ", P(k)P((, ¢|k, ), which requires knowledge of P(k). In
turn we have P(k) = ), P(k, ), which according to (1), yields different sums for different
quality distributions p(#).

V. QUANTIFYING THE FRIENDSHIP AND GENERALIZED FRIENDSHIP PARADOXES

As discussed in Section I, GFP refers to an average alter superiority in arbitrary aspects
(e.g., number of citations, exposure to viral online content). In this paper, we use the
‘quality’ dimension that is incorporated in the model as the subject of the GFP. Our objective
is to compare the degrees and qualities of nodes with their neighbors. We say that a node

experiences the friendship paradox if the degree of that node is less than the average of
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the degrees of its neighbors. Similarly, we say that a node experiences the quality paradox
if the quality of the node is less than the average of the qualities of its neighbors.

The above-mentioned definitions characterize individual-level paradoxes. Our primary
interest is to what fraction of nodes experience the friendship and quality paradoxes. To this
end, we compare the average degree of the nodes with the average degree of the neighbors
of all nodes (and similarly for quality). Comparing these two average values yields a macro
measure for the system, indicating whether it exhibits paradoxes on average. We call these
as the network-level friendship paradox and network-level quality paradox.

Our measure of the network-level quality paradox is defined as NQP = 2ikii ~ > 0.

The summations are performed over all nodes in the network. Note that the numerator of

the first sum is actually the sum of the qualities of the neighbors of all nodes. Node :
is repeated k; times in this sum, once for each of its neighbors. Focusing on the limit as

t — oo, we can use the law of large numbers and express the NQP as follows

>0 KOP (K, 0)
NQP = & — p. 5
° S0 kPO )

The greater NQP becomes, the more strongly the paradox holds. Negative NQP is indicative

of the absence of a quality paradox at the network level.
Undertaking similar steps to above, we can measure the network-level friendship paradox
via
(k*) (k?) — (k)*
NFP = —* — (k) = ——-—~—"—.
(k) (k)

Note that the numerator is the variance of the degree distribution, so it is positive. The

(6)

denominator is the average degree and is also positive. So the NFP is always positive, which
means that by this definition: any network exhibits the friendship paradox at the network
level. So the task of the present paper with regard to the NFP is to investigate its magnitude,
1.e., to measure how strongly the paradox holds. For example, in the conventional Barabasi-
Albert scale-free model, where the degree variance diverges, the NFP also diverges, which

is a result of the presence of macro hubs.
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(a) Bernoulli distribution with p = 0,0.3,0.7,0.1. (b) Exponential distribution for decay factor
The cases of p = 0 and p = 1 correspond to conven- q =0.1,0.5,1,1.5. The special case of ¢ =1 cor-
tional Barabasi-Albert and shifted-linear preferential  responds to a uniform distribution supported in the
attachment networks, respectively. interval 0 < 6 < O ax.

Fig. 1: Examples of the quality distributions used in this paper with 6,,,, = 8. Four instances
of each type is depicted.

VI. RESULTS AND DISCUSSION

To study the NFP and the NQP in concrete settings, we confine ourselves to two quality
distributions p(6) for illustrative purposes. We consider a finite support for €, so that
0 < 0 < Ohax. For each distribution, we are going to consider four different values 3, and
four different values of 0,,..

The first distribution we consider is the Bernoulli case, where nodes can either have
quality zero or quality 6,.c. The probability of quality zero is p and the probability
of quality 6. is 1 —p, where 0 < p < 1. The second distribution we consider is the
discrete exponential distribution with decay factor ¢q. The probability that the quality is
is proportional to ¢°. Note that in the case of ¢ = 1, one recovers a uniform distribution
as a special case. We consider both ¢ < 1 and ¢ > 1, yielding decreasing and increasing
distributions in 6, respectively. These distributions are depicted in Figure 1.

The results for the Bernoulli quality distribution are depicted in Figure 2. As depicted
in Figure 2a, for a fixed 0., the NQP decreases as [ (the initial degree of nodes)
increases. Also, it is observable that the sensitivity of the NQP to the variations of the
quality distribution diminishes for larger values of /3.

As illustrated in Figure 2b, the NFP increases as 3 (the initial degree of nodes) increases.
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Fig. 2: Network level friendship and quality paradox for Bernoulli quality distribution. The
markers in Figures (a) and (b) represent simulation results, and the solid curves are the
theoretical expression. The depicted results are averaged over 100 Monte Carlo trials.

Hence, according to (6) the variance of the degree distribution grows faster than the
mean degree, as [ increases. On the other hand, for a given [, increasing 6., (which
is tantamount to increasing p), increases the NQP. This means that according to (5) as
Omax increases, the mean of the qualities of the neighbors increases faster than the mean
of the qualities of the nodes.

Figure 2c pertains to this case. Observe that as 6,,,x increases, the NQP becomes more
sensitive to the distribution of qualities. Finally, Figure 2d represents the NFP for a fixed
[ and different values of 6,,,,. From Figures 2a, 2b, 2c and 2d, a general observable
pattern is that as p increases, the NFP increases (monotonically for almost all values of p),
whereas the NQP is concave and unimodal (it increases at first, achieves maximum, and

then decreases).
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Now we focus on the exponential quality distribution with the decay factor denoted by
q. As depicted in Figure 3a, for a given 6,.x, the NQP decreases as [ increases. Also,
it is observed that as [ increases, the sensitivity of the NQP to the quality distribution
diminishes. These are both similar to the results of the Bernoulli distribution. As can be
seen in Figure 3b, the NFP increases as ( increases. So similar to the Bernoulli case, the
variance of the degree distribution grows faster than the mean degree, as [ increases.

From Figure 3c we observe that for a fixed (3, increasing 6, increases the NQP. We
observe that as 6,,,x increases, NQP becomes more sensitive to the changes in the decay
factor. Finally, Figure 3d represents the NFP for a fixed 8 and different values of 6,,x. We
observe that increasing 6., increases the NFP for positive decays. Also, for very small
decay factors (which generate right-skewed distributions that are highly unequal), changing
Omax has scant effect on the NFP. This is reasonable because when the decay factor is
small, all large values of ¢ have small chances of occurrence. Consequently, changing 6.«
minimally changes the shape of the distribution for small decay factors.

A trend is discernible from Figures 3a, 3b, 3c and 3d: as ¢ increases, the NFP decreases
(monotonically for all values of g), whereas NQP is concave and increases up to a point
around ¢ = 1, and then decreases. Since ¢ = 1 yields a uniform distribution, we can
qualitatively conclude that the probability of the network-level quality paradox is higher
when qualities are heterogeneous, as compared to when qualities are similar.

Finally, to verify our results, we run Monte Carlo simulations to synthesize networks
that grow under the prescribed quality-based preferential attachment mechanism, and then
calculate the desired quantities by averaging over nodes in the synthesized network. Due to
computational limitations, we restrict this validation to the case where = 2 and 0,,x = 8
for the Bernoulli quality distribution and the case where § = 2 and 6,,,, = 16 for the
exponential quality distribution. These results are shown in Figures 2a , 2b, 3a and 3b. The
markers show the results of simulations, averaging over 100 Monte Carlo trials, and the
solid curves correspond to our theoretical expressions.

We have tested the results on various other quality distributions and observed similar

results; these additional simulations not reported here due to space limitations. In general,
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Fig. 3: Network level friendship and quality paradox for exponential quality distribution.
The markers in Figures (a) and (b) represent simulation results and the solid curves are
from the theoretical expressions. The depicted results are averaged over 100 Monte Carlo
trials.

we observe that for a fixed 6., increasing [ increases the NFP and decreases the NQP
regardless of the quality distribution. Also, for a fixed /3, increasing 6y, increases the NQP
and decreases the NFP.

Note that in all cases the NQP is nonnegative. This has roots in the correlation between
degree and quality of single nodes (intra-node correlation, rather than inter-node correla-
tion). Let us denote the correlation between degree and quality for a node by pyg, which is

the Pearson correlation coefficient obtained from the joint distribution P(k, ). From (5),
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we have:

Zkﬁ kOP(k,0) o Zk,a kOP(k,0) _MZk,e kP(k,0)
S kP60 1T S kP(k,0)

_ Zk,@ kOP(k,0) — (k) _ Pro%k00

(k) (k)

This implies that the sign of NQP is the same as the sign of pyg (since oy, 0y and (k)

NQP =

(7

are nonnegative). The observation that NQP is always nonegative indicates that pyy is also
always nonegative. We conclude that the quality-dependent preferential attachment model
generates networks in which degree and quality of a node are always positively correlated.
This is what we intuitively expect the model to exhibit; increasing quality increases degree.
For example, in citation networks, papers with higher qualities receive more citations.
Conversely, a paper with many citations is more likely to have a high quality. In the case
of friendship networks, a person that is more sociable ends up with more friends than an
anti-social person, and conversely, a popular person is more likely to be friendly than an
isolated person.

We also observe that in all cases, y (equivalently, 6,,.x) and S have opposite effects on
both the NFP and the NQP. That is, the effect of increasing /3 is akin to that of decreasing
1, and vice versa. We observed similar trends for other quality distributions; these results
are omitted here due to space limitations. What causes this disparity is the following: as
can be seen in (1) and (22), p only appears in the distributions in the form of % Thus
increasing p and decreasing /3 have the same effect on this variable, and consequently, on

the distribution.

VII. SUMMARY AND FUTURE WORK

The aim of the present paper was to put in crisp theoretical focus the seemingly prevalent
phenomena of the friendship paradox and the generalized friendship paradox. We proposed
a network growth model that incorporates quality. In this model, the probability that a
node receives a link increases with both its degree and quality. We analysed the model

theoretically in the steady-state (large size limit), and found two theoretical quantities that
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characterize the interrelation between quality and degree. The first quantity is P(k,0),
which is the joint degree-quality distribution, and equals the fraction of nodes who have
degree k and quality 6. The second quantity characterizes nearest-neighbor correlations,
and is the nearest-neighbor quality-degree distribution, denoted by P(¢, ¢|k,0).

We then defined two network-level measures for the quality and friendship paradoxes
and computed them for two particular examples of quality distributions. We observed that
for a fixed 6., increasing [ increases the NFP and decreases the NQP regardless of the
quality distribution. We also observed that for a fixed f3, increasing 6.« increases the NQP
and decreases the NFP. We also observed that ;2 and 3 have opposite effects on the NFP
and also on the NQP. We also tested these results on various other quality distributions,
and they proved robust; the effects of 5 and i on paradoxes are opposite regardless of the
quality distribution.

There are many interesting extensions of this work to pursue. In addition to the network-
level paradox, we can also study the individual-level paradox, which would require the
utilization of the NNQDD to compare the degrees and qualities of nodes with those of
their neighbors. The individual-level paradox has empirical implications which enable us

to assess the quality distribution of real networks.
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APPENDIX

We seek the fraction of nodes who have degree & and have quality 6. We begin by writing
the rate equation which quantifies the temporal evolution of N;(k,6). Suppose that a node
with quality ¢ and degree k — 1 at time ¢ — 1, receives a link from the new incoming node.
Consequently, its degree will become & and N,(k, 6) increments. Conversely, if a node with
quality 6 and degree k at time ¢ — 1, receives a link from the new incoming node, N;(k, 0)
decrements. Finally, each new incoming node increments N, (/3,0) with probability p(0).
The rate equation thus reads
Bk —1+ 0)Ny(k—1,0)
2L(0) + N(0) + (28 + p)t

Bk + O)Ni(k, 0)

")+ N + i E gt O @)

Replacing N,(k, 0) by [N(0) + t|P.(k,0), this can be expressed in terms of P.(k,0) as

Nt-l—l(kve) - Nt(k70) =

follows:

[N(O) + ﬂ [PtJrl(k? 0) - Pt(ka 6)} + PtJrl(ka 9) =
Blk—1+ O[NO) +tP(k—1,0) B(k+ 0)[N(0)+tP(k,0)
2L(0) + N(0) + (28 + p)t 2L(0) + N(0) + (28 + p)t

+ p(0)ks- (9

In the limit as ¢ — oo, the transients vanish. So, we drop the ¢ in the arguments and

rewrite (9) as:

B(k—1+ 0)P(k—1,0) B(k+ 0)P(k.0)

P(k,0) = 0)0k. 5. 10

(k,0) W+ 2B+ p(0)rp (10)
This can be rearranged and expressed equivalently as follows:
(k—14 0)P(k—1,6) 2+ 5

P(k,0) = 0)dk 11

(k,) 2+ L+ k+0 2+ +6+0M) (1)

Multiplying both sides by 23 + p and rearranging the terms, this can be recast as follows

(k—1+ 0)P(k—1,0) 2+ 5

P(k,0) =
(k. 5) 2+5+k+0 2+H+6+0p

()6 5. (12)
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22

2+5+0+0
on the right hand side vanishes, and this equation reduces to a straightforward recursion
(k—1+06)
Pk,0) = ———
(. 9) 2+5+k+0

Setting k = £, this yields P(f,6) (6). For all k > j3, the second term

P(k —1,0), whose solution is

P(k‘,@):P<ﬁ,9)H ( (k;lJre) )
(24 B pkto
B

L
(k—l+9)!r(3+ B+B+9>

(6_1+m!FC%kH+5+0)

:P(ﬂa9>

B
r 246 ﬁ)
_ <e><2+ﬂ) Fr <6+ A (13)
’ ) T(B+0) ( M)'
r k’—|—3+9+B

We begin by writing the rate equation to quantify the evolution of Ny(k, 6, ¢, ¢), which
is the number of nodes with degree ¢ and quality ¢ who are connected to a parent node
of degree k and quality 6. Upon introduction of a new node, regardless of its quality,
the following is true: if it attaches to a node of degree ¢ and quality ¢ who is the child
of a parent of degree k and quality 6, then the degree of the receiving node increments
and consequently N;(k, 0, ¢, ¢) decrements. Also, Ny(k, 0, (, ) decrements if the new node
attaches to the parent node in such a pair of nodes. Another way that N,(k,0,(, ¢) can
increment is if either there is a child-parent pair of (k,0,¢ —1,¢) or (k—1,0,¢,¢). If the
new node attaches to the child node in the former case or to the parent node in the latter
case, then N(k,0, ¢, ) increments. Finally, with probability p(¢), the new node will have
quality ¢, and if the new node attaches to an existing node of degree k£ — 1 and quality 6,

then N;(k, 6, ¢, ¢) increments. The rate equation reads

(k1+®kaLa&¢)(k+®Nxh&&@}+pww Blk—1+0)Ni(k —1,6)
2L(0) + N(0) + (28 + p)t “P2L(0) + N(0) + (28 + p)t
(14)

+6

Undertaking the same steps that let us transform (8) into (9), and denoting the frac-

N(k,0,¢,0)
N(0)+t

tion by ny(k,0,¢,¢), this can be re-written in terms of n,(k,0,(, ¢) instead of
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Ni(k,0,¢,¢). In the limit as ¢ — oo, we can drop the t subscript and obtain:
(—14+¢)n(k,0,0—1,¢) (k—1+0)n(k—1,0,¢,9)
24 E+k+l+0+0¢ 24 5+k+l+0+0

(k—1+60)P(k—1,0)
(@) 2+ Lkt l+0+0

n(k,0,0,¢) =

15)

®
Let us define the new sequence m(k,6,¢,¢) = F(I(:jfr;r;&ﬁiz;) n(k,0,¢,¢). Using this

substitution and applying the properties of the Gamma function as well as the delta function,

we can rewrite (15) equivalently as

m(k,0,¢,¢) =m(k, 0, —1,¢) +m(k —1,0,(,¢)

D(2+5+k+5+0+0)
(= 1+ 03— 1+ )

T p(0)des(k — 1+ 0)P(k—1,6).  (16)

Using the expression in (1) to rewrite the last term on the right hand side of this equation,

we can express it equivalently as follows
m(k,0,¢,¢) =m(k, 0,0 —1,¢0) +m(k—1,0,(,¢)

F(2+%+k+5+0+¢)r<5+2+9+ %)

(B=1+05—1+0) F<k+2+9+%)'

Now define the generating function v¢(z,0,y,¢) = >, m(k,0, ¢, ¢)z"*y~*. Multiplying

+p(0)p(0)ds (2+ ) a7

both sides of (16) by z~*y~¢, summing over all values of %, ¢ and rearranging the terms,

we arrive at

2(6)p(0) (2+g>r(5+2+9+ %)
(B 1+ 03— 1+0)
= T(244+j+8+0+0) Ly

1 — 21 g1
et F(j+2+9+%) ° Y

¢(z> 07 y7 (b) =

X (18)
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(The lower bound of the sum is S+ 1 because P(k—1, 0) is zero for k < $+1.) The inverse

transform of the factor %in the summand can be taken through the following steps:
Iy _ h=j=1yt=B-1
—dzd
l—z—l—y—l (2mi)? f%l—z—l =
T 5
j{ f i dzdy
(27i)? z— L T y—1
k—j
1
f ]{ =5 dzdy
2m — 1 y—1
1

k—j+0—p
= 19
y=1 < f - B ) ( )

— k+4—pB—j
(k—j)! dy’“‘ﬂ

So we can invert (18) term by term. We get

p@M@)@+%>F(ﬁ+2+9+%)
(B=1+0)B-1+9)!

o0 F(2+%+k+ﬁ+9+¢) k—j+0—p

2 Ao (7)o

j=p F<k+2+9+5>

From this, we readily obtain

m(k,0.,¢) =

Ju!
F(ﬁ+2+0+ 5) (k=140 —1+¢)!
F(3+%+k+£+6+¢) (B=1+0)(B—1+¢)!

F D24+ 5+7+B8+0+09 iy
><(2+—H> S ( s )(% J+t 5). Q1)

bl iz F(j+2+0+%> t=5

The last step is to abridge this quantity and the desired NNQDD distribution, that is,
P(¢, ¢|k,0). Remember that the NNQDD is the fraction of (¢, ¢) nodes among the neighbors

n(k,0,¢,¢) = p(¢)p(0)

of a (k, 0) node. To obtain this fraction, we first need to obtain the total number of neighbors
of (k,0) nodes, then find the number of (¢, ¢) nodes among these nodes, and divide the

latter by the former. The total number of neighbors of (k, ) nodes is simply kNn(k,0).
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The number of (¢, ¢) nodes among them equals [n(k, 0,0,0)+n(l, ¢k, 0)} N, because the

(¢, ¢) node can both be the parent or the child of the a (k,6) node to be connected to it.

So

we have P({, |k, 6) = "(k’e’gl’j;&”éf"é’k’e). Inserting the results of (21) and (1) into this

expression and simplifying the results, we obtain

P, o[k, 0)

j=

(1]
(2]

(3]

(4]

(3]

(6]

(7]

8]

(9]

(10]

(11]

[12]

K
o P(k+9+3+5> (6—1+¢)!F(ﬁ+2+¢+ﬂ)x
2 r<k+9+3+g+g+¢>(ﬂ—1+¢)! 3

k F<J'+9+2+ﬁ+ﬂ+¢) (kfj#éfﬁ) ¢ F(j+0+2+ ﬁ+,6+¢> <€7‘7‘+k75)
+

B (—p B k—p
A1 F<j+9+2+ %>F<B+2+¢+ %) pree F(j+¢+2+ %>F<ﬁ+2+«9+ %)
(22)
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Measuring the Generalized Friendship
Paradox in Networks with Quality-dependent

Connectivity

Naghmeh Momeni and Michael G. Rabbat

Abstract

The friendship paradox is a sociological phenomenon stating that most people have fewer
friends than their friends do. The generalized friendship paradox refers to the same observation
for attributes other than degree, and it has been observed in Twitter and scientific collaboration
networks. This paper takes an analytical approach to model this phenomenon. We consider a
preferential attachment-like network growth mechanism governed by both node degrees and
‘qualities’. We introduce measures to quantify paradoxes, and contrast the results obtained in
our model to those obtained for an uncorrelated network, where the degrees and qualities of
adjacent nodes are uncorrelated. We shed light on the effect of the distribution of node qualities
on the friendship paradox. We consider both the mean and the median to measure paradoxes, and

compare the results obtained by using these two statistics.

I. INTRODUCTION

The friendship paradox, introduced by Feld [1], is a sociological observation that says
most people are less popular than their friends on average. It is called a ‘paradox’ because,
while most people believe that they are more popular than their friends [2], Feld observed
that the converse is actually true. There are more recent observations agreeing with Felds’,
that study online environments. For example on Twitter, people you follow and also your
followers have, on average, more followers than you do. They also follow more people than

you do [3]. On Facebook, your friends have, on average, more friends than you do [4].
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The friendship paradox is about the inter-nodal inequality of the degrees. What happens if
we consider other attributes? This is the focus of the ‘Generalized Friendship Paradox’ [5],
[6]. For example on Twitter, your friends on average tweet more and also share more viral
content than you [3], [7]. In the scientific collaboration networks your collaborators have
on average more publications, more citations and more collaborators than you do [5].

The friendship paradox has applications in spotting influential nodes. In [8], it is used for
finding high-degree nodes for efficient vaccination. In order to sample a node with above
average degree, a node is chosen uniformly at random and one of their neighbours will be
sampled. In [9], the friendship paradox is used for the early detection of flu outbreaks among
college students. In [10], it is utilized to derive early-warning sensors during catastrophic
events such as hurricanes.

In this paper, first we explain a quality-dependent preferential attachment scheme intro-
duced in [11]. Then, we introduce measures to quantify the mean and the median paradoxes.
In Section 4 these measures are computed numerically on the networks generated with the
quality-dependent model and also uncorrelated networks. We compare the results obtained
in these networks using both the mean and the median statistics. Furthermore, we study

the effect of node quality distribution on the quality and friendship paradoxes.

II. MODEL, NOTATION AND TERMINOLOGY

We consider a quality-based preferential attachment (QPA) model, identical to the model
proposed and analysed in [11]. It is similar to the Barabasi-Albert model [12], but incor-
porates node qualities. Each incoming node has [ links, and a discrete quality # drawn
from a distribution p(@) that is assigned to it upon birth. The probability of an existing
node = with degree k, and quality 6, (at the instant) receiving a new link is proportional
to k, + 0,.

Once assigned, the quality of a node does not change. We denote the mean of the quality

distribution by p. Following [11], as the number of nodes tends to infinity, P(k,6), the
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fraction of nodes with degree & and quality € is given by:

r(B+6+2+ L
Pwﬁy:mm@+lfr%+9)( 3

5)F(5+9)F(k+9+3+ %)

In [11] the nearest-neighbor distribution, i.e., the fraction of neighbors of a node with

u(k — B). ey

degree k£ and quality & who has degree ¢ and quality ¢ is given by:
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III. MEASURES OF FRIENDSHIP AND QUALITY PARADOXES

By marginalizing the joint distribution P(k,f) we can find the degree distribution,
denoted by P(k). Also, from the nearest-neighbor distribution (2), we can find the expected
value of the qualities of neighbors of a node with quality # and also the expected value of
the degrees of neighbors of a node with degree k. This allows us to investigate when the
quality paradox (hereinafter QP) and the friendship paradox (hereinafter FP) are in force,
and which nodes in the network exhibit the paradox.

Let us also define the ‘median’ version of the paradoxes, following [7]. In the median
version, instead of the average values of quality or degree of neighbors, we use the median
values. A node experiences the median QP (FP), if its quality (degree) is less than the
quality (degree) of at least half of its neighbors.

Throughout the paper, the superscript NN denotes Nearest-Neighbor. Let us denote the
median operator by M{-}. For example, M{¢""|0} denotes the median value of ¢ under
the distribution P(¢|@), and is a function of . Also note that every measure we introduce
here is by nature a function of the parameters of the quality distribution. For example, if
the exponential decay quality distribution is considered, the measures will depend on the

decay factor. We denote the parameter of the quality distribution by z. Using this notation,
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we define the critical values for the mean and the median paradoxes as follows:

0.(z) & max {9‘0 < E{¢>NN|0}} 0.(z) & max 9‘9 < M{¢NN|9}}
, median:

3)

mean:

ko(x) & max {k‘k < E{ENN|k}} ie() = max k‘k < ]W{ZNNM}}

In other words, 5C(x) is the highest quality that a node can have, given that its quality
is lower than the average quality of its neighbors. Similarly, Ec(x) is the highest degree
that a node can have, given that it exhibits the mean FP. For the median version of the
paradox, we have 6,(z) and k.(z). So 0.(z) is the highest quality that a node exhibiting
the median QP can have. Let us also emphasize that we use the following convention
with regards to the median throughout the paper: the median of the probability distribution
g(z) (with CDF G(z)) is the minimum value of z for which G(z) > 1. For example, for
g(z) = 36[z] + £6[x — 5], the median is z = 0.

We now define similar quantities for an ‘uncorrelated network’. In this network the
qualities are assigned to nodes in an identical way to the QPA model, but the attachment
of new nodes to existing nodes depends on neither the degrees nor the qualities of the
existing nodes. In this network the properties of a node are uncorrelated with the prop-
erties of its neighbors. We denote this case by superscript u. For this network we have

P (L, ¢|k,0) = P({,¢) and P“(¢|0) = p(¢). For the critical values of the mean and the

median paradoxes, we have:

(G () d:efmaX{Q‘Q < E{¢NN|0}} — max {9‘9 < gﬁ} = u(z) — 1

0 (=) d:efmax{e‘e < M{¢NN|9}} = max{@‘e < w} = f(z) — 1 - @

\ pu—

Similarly, for degrees we have: k%(z) = k(z) — 1 and k*(z) = k(z) — 1.

e

We are also interested in the fraction of all nodes that experience each type of paradoxes.

This is equal to the fraction of nodes with their attribute below the corresponding critical
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value. We denote these quantities by:

mean: § 0<0c(x) , median: R 0<0c(x) ) &)
Fe(z)= > P(k) Fu(z)= > P(k)

IV. RESULTS AND DISCUSSION

In this paper we consider two quality distributions for expository purposes. The first one
is the Bernoulli distribution, where nodes have quality O (with probability p) or quality 6,,.x
(with probability 1 — p). The other one is the discrete exponential distribution, with decay
factor ¢. The probability of quality 6 is proportional to ¢’, and the maximum value of 6 is
denoted by 6,,.,. Figure 1 depicts these quality distributions for four example values of p
and ¢. Note that for ¢ < 1, the exponential distribution is a decreasing function of quality
and p > 0, and for q > 1, the distribution is increasing function of quality and p < 4. Also
for the Bernoulli distribution note that, with the convention we use for the median, the
value of the median is zero if p > %, and the median is equal to O, if p < % For each
distribution, we have numerically computed all the introduced measures for four different
values of § and four different values of Op,y.

Critical values obtained for two distributions are presented in Figure 2. These values are
computed using the closed form expressions mentioned in Section 2. From Figure 2a we
can learn about the differences between the networks that the QPA model generates and an
uncorrelated network. In an uncorrelated network the probabilities of a random node being
connected to a neighbor with quality 0 and 6, are equal to p and 1 — p, respectively
(regardless of the quality of the node). If the majority of the neighbors have quality zero
(p > 0.5), the median is zero. Similarly, if the majority have quality ., (p < 0.5), the
median is 6,,,. So if p < 0.5, nodes with qualities up to 6,,.,x — 1 experience the median
QP and ég = Omax — 1. Conversely, if p > 0.5, ég = 0. This explains the abrupt drop in
ég in Figure 2a. On the other hand, in the QPA model, this transition takes place at a p
greater than 0.5. This means that upto some point beyond p = 0.5, although the probability
of & = 0 is higher than that of § = 0,,,x, the majority of the friends of each node have
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(a) Bernoulli distribution with p = 0,0.3,0.7,0.1. The (b) Exponential distribution for decay factor
cases of p =0 and p = 1 correspond to conventional ¢ =0.1,0.5,1,1.5. The special case of ¢=1
Barabasi-Albert and shifted-linear preferential attach- corresponds to a uniform distribution supported in

ment networks, respectively. the interval 0 < 6 < Opax.

Fig. 1: Examples of the quality distributions used in this paper with 6,,,, = 8. Four instances

of each type is depicted.

quality 6,,«. There is a region for p > 0.5, where the majority of the network have quality
zero, but the majority of the neighbors of most nodes have quality 6,,.. This indicates
quality disassortativity, since low quality nodes are mostly connected to nodes with high
qualities.

For the mean version of the QP, we consider the example case of p = 0.2 for discussion.
In an uncorrelated network, each node (with any quality) is connected to neighbors with
quality 0 and 6,,,x with probabilities 0.2 and 0.8, respectively. So the average of the qualities
of its neighbors is 0.8 f,,.x. So nodes with quality less than 0.8 6,,,x experience the mean
QP. On the other hand, in the QPA model ac < 5}; at p = 0.2. This means that nodes
whose qualities are between 50 and 5}}, do not experience the mean QP in the QPA model
(while they do experience this paradox in the uncorrelated case). We deduce that these
nodes are connected to quality zero nodes with a higher probability than 0.2. This reduces
the average quality of their niehgbors. Now consider the example case of p = 0.8. In
this case, 53 < 50. This means that nodes with quality between 50 and 53 experience

the mean QP in the proposed model, while they do not experience it in the uncorrelated
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case. In an uncorrelated network these nodes would be connected to zero and 6, quality
nodes probabilities 0.8 and 0.2, respectively. However, in the QPA model, these nodes are
connected to nodes with quality 6,,,x with a probability higher than 0.2, and this increases
the average quality of their neighbors, making them subject to the mean QP.

Comparing Figure 2b with 2a we observe the curves are similar, but the difference
between the QPA model and the uncorrelated case is smaller in Figure 2b. For example,
the drop in the 6, curve is closer to the drop in éC“ for the uncorrelated case. We conclude
that increasing [ decreases the difference between the QPA model and the uncorrelated
case.

In Figure 2c, critical degrees are depicted. It can be observed that as p increases, %C
increases. Comparing Figures 2c and 2d, we observe that all the critical degrees are greater
in the case of J = 8 than 8 = 4. Also the range of node degrees experiencing any type of
paradoxes is wider in the § = 8 case.

From Figure 2e, we observe that for fixed decay factor, 6, > 53 and 0, > éé‘. This
means that there exist values of ¢ that in the uncorrelated network experience QP, but in
the proposed model they do not. So the range of possible values of quality that experience
the QP is wider in the QPA model than in uncorrelated networks. This argument holds for
both mean and median paradoxes.

We also observe from Figure 2e that for ¢ < 1, gc > éc and 5}; > é}j Both of these
inequalities flip in the case of ¢ > 1. The main cause of this change of regime is the
difference between the shape of the quality distribution for ¢ > 1 and ¢ < 1. When ¢ < 1,
the median paradox is stronger (using the terminology of [7]), that is, the median paradox
applies to a smaller range of qualities than the mean paradox (for both the uncorrelated
network and the QPA model). However, when ¢ > 1, the median of the distribution is
greater than the mean. As it can be observed in Figure 2e, there are values of ¢ that are
subject to the median version of the paradox, but not to the mean version. This means
that the term ‘strong paradox’ introduced in [7] is not applicable to this case, because the
mean version provides a tighter range of qualities in paradox, as compared to the median

version.
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Another observable trend in Figure 2e is that the critical values of quality are a non-
decreasing functions of ¢. This can be intuitively explained as follows. When ¢ is low, the
majority of the network is constituted by low quality nodes. The majority of the neighbors
of a low quality node will also have low quality. So the node does not experience the
paradox with high probability. When ¢ increases, the number of nodes with higher quality
increases, and a low quality node has a higher probability of being connected to those high
quality nodes, which gives it a higher probability of experiencing paradox. Comparing
Figure 2f with Figure 2e, we observe that as 3 varies 53 and éfj do not change, while the
critical values of the QPA model get closer to those of the uncorrelated case. These figures
only depict the results for two values of 3, due to space limitations. The trend holds for
the omitted figures. We conclude that as [ gets larger, the correlation of the quality of a
node with the quality of its neighbors diminishes.

In Figure 2g, the critical degrees (as defined in (3) and (4)) are depicted. It can be
observed that as ¢ increases, %c decreases. Comparing Figures 2g and 2h, we observe that
all the critical degrees are greater in the case of 5 = 8 than 5 = 2. Also the range of the
degrees who experience paradox (of any type) is wider when 3 = 8. In both figures, we
observe that the mean FP is more sensitive to changes in the quality distribution than the
median FP.

Figure 3 depicts the fraction of nodes in the quality and friendship paradoxes (as defined
in (5)) when quality distribution is exponential. From Figure 3a we observe that, as ¢
increases in the vicinity of zero, [y, the fraction of nodes experiencing the mean QP (with
qualities lower than 56) decreases, because increasing ¢ increases the fraction of nodes
with high qualities. The fraction F} has discontinuities at the values of ¢ at which 56 is
incremented by one. So all the nodes whose qualities where equal to the new 56 are taken
into account as those who experience the mean QP, hence the abrupt jump.

The fraction of nodes in the median QP is depicted in Figure 3b. It can be seen that E,
has a similar behavior to that of F}. Each discontinuity pertains to a value of ¢ at which 6,
increments. The main difference between Figures 3a and 3b is the behavior near ¢ = 0. In

the mean QP, when almost all nodes have quality zero, even one non-zero quality neighbor
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Fig. 3: The fraction of nodes in the quality and friendship paradoxes when the quality

distribution p(6) is exponential.

elevates the average above zero, so all those

zero-quality nodes experience the mean QP.

However, in the median version, at least half of the friends of a zero-quality node must

have non-zero quality. Also observe that for

q < 1, we have ﬁg > Fg, i.e, the fraction of

nodes in the mean QP is higher than the fraction of nodes in the median QP. But, for ¢ > 1
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the inequality changes sides.

In Figures 3c and 3d, it can be observed that for all values of § and 0., the majority
of the nodes (over 80%) experience the mean FP. Also, as ¢ increases, ﬁk decreases. It
means that the quality distribution affects the FP that depends solely on degrees. Through
the quality-dependant network growth mechanism, the degree distribution, and hence the
conditions under which a node experiences the FP, depend on the quality distribution.
Also, it is observed in Figure 3c that as [ increases, the sensitivity of ]?k to variations
of ¢ decreases. This means that as the initial degree of nodes increases, the effect of the
quality distribution on the FP diminishes. Because as [ increases the final degrees of nodes
increase, and for larger degrees k + 6 is dominated by k; varying 6 has less of an effect.

Conversely, in Figure 3d, as 6,,,, increases, the sensitivity of F}, to variations of ¢ increases.
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As the range of possible qualities becomes wider, the probability of having high values of
6 that have significant roles in k& + 6 increases.

In Figures 3e and 3f, we observe that as ¢ increases, 13} (the fraction of nodes experi-
encing the median FP) decreases. This is similar to the trend observed for F, in Figures 3c
and 3d. From Figure 3e we observe that [, increases as 3 increases. From Figure 3f we
observe that for a range of decay factors (up to around ¢ = 0.7), Opn. does not have
a significant effect on Fk, but beyond that point, Fk decreases as 0,,.x increases. Also,
comparing Figures 3e and 3f with Figures 3¢ and 3d, we assert that F, < fk In other
words, the median FP is always stronger than the mean FP, regardless of the quality
distribution.

The fraction of nodes experiencing the FP when the quality distribution is Bernoulli
are depicted in Figure 4. From Figures 4a and 4b we observe that as p increases, ﬁk (the
fraction of nodes experiencing the mean FP) increases. From Figure 4a we deduce that
as [ increases, the sensitivity of fk to variations of p decreases. Also, in Figure 4b it is
observed that as 6, increases, the sensitivity of fk to variations of p increases (similar
to Figures 3¢ and 3d).

From Figure 4c we observe that as [ increases, F}, (the fraction of nodes experiencing the
median FP) increases. From Figure 4d we observe that as 6,,,, increases, the sensitivity of
F}, to the variations of p increases. Comparing Figures 4a and 4b with Figures 4c and 4d we
deduce that for each value of p, we have Fk < ﬁk i.e., the fraction of nodes experiencing

the mean FP is higher than nodes in the median FP regardless of the quality distribution.

V. SUMMARY AND FUTURE WORK

In this paper we studied the friendship and the generalized friendship paradoxes on
networks grown under a quality-based preferential attachment scheme. To this end, we
introduced measures, such as quality and degree critical values, and fraction of nodes
that experience each paradox. In each case, we considered the mean and the median to
characterize the paradox. We compared the results to the uncorrelated network where

the qualities and degrees of neighbors are uncorrelated. We considered Bernoulli and
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exponential distributions for qualities.

For the exponential quality distribution, the critical quality of the uncorrelated case is
always smaller than that of the QPA model. This means that the range of possible values of
the quality that experience paradox is wider in the QPA model than in the uncorrelated case.
We also observed that as [ increases, the nearest-neighbor quality correlation decreases. In
other words, the critical values of the proposed model converge to those of the uncorrelated
case. For the exponential quality distribution we also observe that when ¢ < 1 (which makes
the median smaller than the mean), the median QP is stronger than the mean QP for both
the QPA model and the uncorrelated case. The converse is true for ¢ > 1. For all values
of 3, Onax,» over 80% of nodes experience the mean FP. We observed that changing the
distribution of qualities affects the FP (in addition to the QP). This effect is strengthened
when [ decreases or when 0, increases. Also, it was observed that regardless of the
quality distribution, the median FP is always stronger than the mean FP.

Plausible extensions of the present contribution are as follows. We can apply the measures
introduced here to real networks, and compare the results, and also compare them with
networks synthesized with arbitrary quality distributions. This enables us to investigate

what type of quality distribution best characterizes a given network.
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CHAPTER 11

Future Work

11.1 Multiplex Data

In many social network studies, multiple name generators are used and each re-
spondent gives several distinct alter lists corresponding to different questions [PSC15|.
Instead of a simple network, we can picture the system as a multi-layer network, where
the same set of nodes have distinct sets of links between them. We saw a simplified
case in Chapter 3, where the response mechanisms for the two layers were different (full
response for the strong layer and FCD for the weak layer). In many contexts, FCD is
employed on every layer. What would be needed in those settings is an inference frame-
work for given M number of layers and B ..., By, cutoffs. Like the case considered
in Chapter 3, the information on each layer will play a role in the estimations of other

layers.

11.2 Additional Socio-centric Data

The sampling model considered in this thesis is designed to emulate the convention:
in most cases, we interview a number of respondents and the survey process ends there.
But in rare cases, investigators succeed at tracking the mentioned alters and interview

them. This sociocentric approach obviously provides richer data. Incorporating the
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second-wave data into the estimation is an open problem. We can use the additional
information to improve the estimates, as well as providing estimates for new parameters
that one-wave data is unable to capture (such as neighbor average degree, average
path length, and higher degree moments). Moreover, we can assess the quality of the
first-wave responses by looking at the rate of reciprocated ties. That is, a fraction
of alters who were mentioned by first-wave egos will not mention those egos as their
own friends [BN13]. This can be helpful for studying and characterizing patterns of

reciprocity, and iteratively, we can use it to reduce the error in the second-wave data.

11.3 Heterogeneous Tie Strength

In Chapter 3, we assumed for simplicity that strong and weak ties were treated via
distinct survey questions, and that they could be distinguished in the data. There is ev-
idence in evolutionary psychology and neuroscience that the brain of Sapiens is evolved
to retain social connections with certain capacities. Our social ties are characterized by
distinct layers of intimacy [ZSHD05, HBD08, SDBA12, Dunl14|. The innermost layer of
our personal social network comprises on average five members, and consists of people
we would seek personal advice from, share secrets with, and seek help from in times of
serious emotional distress or financial trouble. The next layer has on average close to
15 members. It is called the sympathy group, and consists of people we regularly see.
This group provides instrumental support and coalitions. The next layer has on average
around 150 members. It comprises people with whom we have a bilateral relationship
and is governed by norms of reciprocity. The next layer has on average around 500
members, and include people we count as our ‘acquaintances’. The last layer has on
average around 1500 members and includes people whose faces we can identify and we
know by name.

Interestingly, repeating the analyses of these layers for online social networks, re-
searchers found one primary layer with on average 1.5 members (the authors of [DACP15]
speculate that it might be because, as for example is observed in [SLLT14], for most
men this layer comprises a partner, and for most women it includes their partner and
a closest friend). These discrete layers of tie intensity (as opposed to continuous) with
constant ratio can be used to model strength of social ties more realistically, and using

a parametric model, we can use maximum likelihood methods to obtain estimates for
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the ratio. This ultimately provides a weighted network, but once the parameters of
the intensity distribution is estimated, many other properties can be derived from this

distribution.

11.4 Effect of Inequalities in Social Networks on Subjective
Well-being

Inequality is the most central question in sociology and one of the most central
questions in economics. In this thesis, we showed that persistent patters of local inequal-
ities can exist across the network both in terms of both structural and non-structural
properties. There is overwhelming evidence in research on happiness in psychology and
economics that points to the ‘comparative’ nature of happiness. That is, an important
component that drives personal happiness is comparing own standing relative to oth-
ers in society and our social group [Eas01, BC80, Vee91, CO96, DL00, FiC05, Lut05,
GF06, KK07, BGOQO8, HH08, CWNK09, BBM10, AKGK12, KPMD"12, KBRN14]
. Our findings in this thesis can have significant impact on the theory of happiness.
Consistent local inequalities might be a consequence of the network nature of social
life. That is, the vast majority of people might be locally worse off when they compare
themselves to their network neighbors, and this can have a share in the unhappiness
of almost everyone. We do not mean that this makes everybody unhappy. Personal-
ities differ and the effect of relative comparisons differ in different people. We mean
that this network-inequality component exists for almost everybody. Its strength might

differ from person to person. This would be a new insight in happiness research.

11.5 Interplay between Structural and Non-structural Inequal-
ity

A much-studied topic in sociology is that how the rich also have access to bet-
ter social capital. That is, being rich does not only mean having more wealth, but
is also usually associated with having ties to more influential people in different con-
texts [Lin00, Boull, Nar02, Woo01, Ros00, Cle05, HDT*07]. On the other hand,
economic experiments have shown that network structure plays a key role in deter-
mining collective cooperative outcomes [RAC11, RNFC14, NSRC15| (‘cooperation’ in
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these experiments is usually studied in game-theoretical settings, such as the Prisoner’s
Dilemma or the Public Goods Game). Experiments have also shown that visibility
of wealth decreases levels of cooperation, and also intensifies inequality. What has not
been investigated, though, is the direct effect of structural inequalities on non-structural
inequalities. That is, for example, in the same setup as in [NSRC15], instead of initially-
unequal endowments, have equal endowments, and investigate how the accumulation of
wealth relates to the network position of individuals. In socially-unrealistic settings such
as that of [NSRC15|, the underlying network is considered to be Erdds-Rényi. From
previous discussions we know that these networks have low structural inequalities, un-
like real social networks. We propose employing highly-unequal network structures,
and then studying how the widespread structural inequalities translate into differences
in wealth as time passes. This would shed new light and provide invaluable insight into

the origins of social inequalities.
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