OPTIMIZATION OF CONCRETE BEAMS

WITH RELIABILITY CONSTRAINTS



OPTIMIZATION OF CONCRETE BEAMS WITH

RELIABILITY CONSTRAINTS

By
FRANKLYN HARVEY

B.Sc; UNIVERS{TY OF LONDON, 1964

Submitted in partial fulfillment of the requirements for the

degree of Master of Science in Civil Engineering

JULY, 1968

FACULTY OF ENGINEERING
McCGILL UNIVERSITY

MONTREAL, CANADA

(© Franklyn Harvey 1969



ABSTRACT

OPTIMIZATION OF CONCRETE BEAMS
WITH RELIABILITY CONSTRAINTS

by
FRANKLYN HARVEY
Submitted to the Depariment of Civil Engineering, McGill
University, on August 5th, 1968, in partial fulfillment of the
requirements for the degree of Master of Civil Engineering.
This thesis attempis to investigate the relationship between safety and
optimum cost of reinforced concrete beams as related to simple-span highway

bridges based on probability.

There have been several proposals for a realistic evaluation of safety

based on probabiliiy studies as the traditional approach to safety does not ensure

uniform safety levels. In general, probabilistic approaches to safety are based on
statistical distributions of design variables and the operational characteristics of
a structural mechanism,

The optimization problem is solved by an iterative~search method.
Failure probabilities and the statistical parameters of certain design variables
constitute the input variables whose values determin? the opﬁn;um configuration
of the beam characteristics.

As a result of this study, it may be concluded that the cost-safety
relationship is linear, or nearly linear, but practical application of probabilistic
formulations are limited because of a lack of knowledge of several components

of design.
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NOTATIONS

The following notations are used in this study:

R~ == Resistance

S = Load

R = Mean of Resis’tcnce

S = Mean of Load -

UR = Standard Deviation of Resistance

,0'5 = Standard Deviation of Load

VR = Coefficient of Variation of Resistance
Vg = Coefficient of Variation of Load

n = Safety Parameter (R/S)

r = Safety Parameter (R-5)

Pe = Probability of Failure

M = Live Load Moment

Mp = Dead Load Moment

My = Actual Moment Capacity of Beam

Mg = Total Applied Moment (M| + Mp)

m = MD/ML = dead load/live load ratio,
B = Ratio of Effective Depth to Width of Beam

All other notations used in this study are either slight modifications of the above or
‘ are the standard notations used in A.C.1. Code (A.C.1, 318-63). In cases where

the notations are none of the above, they are defined as it becomes necessary,
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INTRODUCTION

A fundamental concern of all structural designers and their clients is this:
that structures be both safe and economical in the sense that they fulfill their
funcfional_ purposes without being a hazard to society, and the cost must be the
minimpm that can be possibly achieved consistent with safety.

With the development of new methods in mathematics, the compilation of
new data and the increasing application pf modern techniques to engineering de-
sign and construction, it is obvious that the classical maxim: maximum safety at
minimum cost, is contradictory.

Basically, the major variables under the control of the structural Hesigner
are form, detailed geometry, materials and p;roporﬁons. A designer may use
structural steel, reinforced concrete or pre-stressed concrete, Each structural
member, say, a reinforced concrete beam, consists of a number of design variables
such as beam shape and sizé, percentage of steel, strengths of concrete c'md steel, .
etc. The arrangement of fHe structural members, the materials used and the
values and proportions of the design variables determine the overall operation of
the structural mechanism,

Also, the level of structural operation depends on the applied forces.

Thus the design variables and the applied forces are not independent. On

the one hand, the combination of design variables depends on the




applied forces; and on the other, the arrangement of the structural members is
limited by the purposes or goals of the structure, and also influences the intensity’
and distribution of the applied forces. The general design process, therefore, must

be considered as a totality taking all the important parameters into consideration,

1.1  Safety Factor in Design.

The concept of "factor of safety" or "safety factor" forms a fundamental
premise on ;/;hich the design of siruciures is based, but the basis of this concept has
only been invesﬁ.gcred‘wi’rhin recent years.

47

Pugsley, in 1951, placed both the design process and the concept of

“safety factor” in historical perspective, That is, he showed how the design process
~evolved and how the "safety factor" became a fundamental part of the design pro-
cess.

"It was early apparent to reinforced concrete engineers \;haf,

- - -, as soon as the external loads beceme such that

yielding of the steel reinforcing-rods occurred, then large

cracks and some breakdown of adhesion between concrete and

steel arose. It was thus essential to secure that such condi-

tions did not arise under working loads; and to do this, it

became customary to adopt limiting working stress in the

steel that was only half tbe estimated yield sfress."df7

Pugsley further showed "how one ad hoF: case after another has been dealt

with until an engineering fradition has been set up."

N



Thus, the "factor of safety” is an qrbi;rari!y chosen figuré based on stress-
strain relation of the materials and fitted into the design process in an attempt to
brevent the collapse c;r failure of the structure. The adoption of this method of
using only "half the estimated yield stress" reveals on the part of the engineer the
subjective striving for "an adequate measure of safety as well as a consciousness
. of the limitations of his knowledge and the arbitrariness of his ussump’rions."24 |
Since the c.oncel.of of "safety factor" in the- design process has been disgussed o
in great depth by Pugsley47, Baker7' 8 ' Freudenfhalzs'z‘t Turks’rraélcnd otheré,é_'34'55'68
it is not nec‘essary. to dwell on it in this study. However, an exposition of the |
unrealistic basis of this concept in the face of new data und4 accumulated k.néwléc.]ge
of $’rructuro| Behcviour will be given. |

There a.re three main stagés at which the "safety factor" enters the design
process.

(1) The choise of the strength of materials,

- In choosing the strength of materials to be used, the " permissible sfress'.f allowed by
the Code? is only a fraction of the strength of the materials, be it steel or concrete.
And this "permissible stress” is arbitrarily chosen.24 |

(2) The choice of the design loads.

~ The lack of an objective basis for; the determination of design loads is clearly shown in
the vdriefy of loadings now used in design.7 Actual loading conditions are appréx'imcfed’
by "sfondard loads" which at critical points in the operation of a structure undefes’rimcte

sometimes the actual loading conditions and at other times overestimate the actual load-

ing condifions to such an extent that the loads used result in a very conservative design.



~ (3) The determination of design bend}ng mome;ﬂ and she:cr.

Finally, the "safety factor” used in the operational characteristics (bending,
shear, torsion, etc.) ;/ary from one characteristic o another. For example, the
"saf.ety factor" used in the computaﬁdn of flexural resistance is different fo that used
for shear?. In fact ; the "safety factor" can vary from 1.0 to 10.0 for structural membggs
ond even one. particular design, possesses more than one "safety factor."7+8.

The fact that conventionally designed structures almost always appear safe. does
not necessarily show the volidify of the present concept of "safepfy factor" and the
reliability of the design process, k.auf more often indicates the ca'utio.n and. conserva~-
tism exercised by convenﬁonai designers and‘ expressed in the code.52

In actual practice, the variables in a design can bé shifted around to obtain a
safe design oﬁ the b.csis of experience without hd\;ing any comprehensive knowledge
of the factors influencing the operation of the structure, so mugh so that the structure
may collapse due to conditions not considered or known.®1 Thus the "safety factor"
as presenfl‘y used compensates for the designer's ignorance and uncertainty. It is only
by a re-examination of the concept of safety can structural design be founded on a

more realistic basis.

1.2 The Concept o'f Safety.

' The first real insight into the concept of scfe’ryb was given by Freudenthal23s 24
in his cnolysfs of the present design process and the con’remporéry basis of the "sofé’f.y
factor". Since then, many engineers have attempied to formuio’re this concept, both
6,12,31,60 14,44,61

philosophically and mathematically.

The safety of a structure involves two basic parameters:



(1) Load
(2) Resistance
Thus, any concept of ;afefy must be based on the interrelationship of these two para-
meters; any mathematical formulation of safety m‘usf be a formulation involving these
two basic parameters; any problems encountered in the determination of a value of
safety must be problems resulting from the characteristics of load and resistance and
the relationship existing between them in the operation of a structure,

Due to the goals of structural design, many writers have dealt with safety as
a two concept fo;'mulaﬁon. Freudénfha|24, for example, says that the safety of a
structure involves two aspects -~ serviceability and failure,

In ﬂ%e progress report of the A,S.C, E: Committee on safety factors, Julion34
puts forward the following concept of safety:
. (1) "Minimum Required Factor of Safety to assume fha.f a given prob-
ability of failure Pg of the structure is not exceeded, is defined as the
ratio (greater than unity) of R, the mean (arithmetic average) estimated
resistance to collapse during the anticipated life of a large number of
structures meant fo be identical with the subject structure, and W,
the mean load effect for which the subject structure is designed.”
(2) "Minimum Required Factor of Servfcecbility to assume that a given
probabiliiy of the structure becoming unserviceable, for the purpose
and during the anticipated life for which it is designed, is not exceeded,

is defined as a similar ratio but with respect to serviceability rather than

n34

collapse.
The use of these two criteria for determining the safety of structures can be

quite misleading and confusing when taken without question. 1t may apply to some



structures and not fo others, depending on the operation of the structure and the
purposes for which it is used. In some cases, both concepts wiil be one and the same
thing; that is, there will be no distinction Eetween them, In others, they will have to
be‘;:onsidered sep'orcfely as two criteria. By examining the nature of the load and
resistance parameters, a better understanding of the concept of safety and the
safety criteria can be obtained.

Both load and resistance are in themselves very complex parameters, for in
attempting t;> find their "true" character, other variables have to be considered. In
a mathematical analysis of load and resistance, all the variables which influence these
two. parameters cannot be taken into account, Firstly, if all the variables are con-
sidered, the analysis would become quite complex, and, secondly, there is always
" an "unknown" in structural design. If the exact value of each variable was known
before the construction §f, say, a beam, then the precise value of safety could be
easily computed. However, this is'nof .fhe case, There is always some variation in
the values of variables which Freudenfha124 atiributes to:

(1) the imperfections of human observations and actions (uncertainty),

(2) the imperfections of intellectual concepts devised to reproduce

physical phenomenon (ignorance).

The causes of the factor of ignorance can be said to be atiributable causes, while the
causes of the factor of uncertainty can be called chance causes.

These two factors influence the design variables in both the load and resist-
ance parameters, |t is as a consequence of this that the load applied o and the
resistance of a structural mechanism can only be realistically expressed in a probabilistic

framework, The method of evaluating the safety of a structure, therefore, must



~

involve "pred.icﬁon within limits" by using the accumulated wealth of data available
and predicfiﬁg the way in ;rvhich a certain structural phenorﬁenon may be expected to
vary. As Freuden’rhctl.23 says: "Prediction within limits means that one can state the
probability that dn individual value .will fall witkin given limits." Thus, safety

cannot be predicted with éértoinfy but only with a high degree of probability.

1.3  Safety and Failure Probability.

Low;s of the operation of structural systems can be considered as a combination
of functional and statisiical relationships; functional in the sense of the theory of
structural behaviour and statistical in the sense that real physical properties cp;;ear
only as variables in the functional relationships. Further, most functional relation-
ships in structural design are by their very nature and deriva’rign statistic, It is logi~
cal, therefore, that frequency distributions form an integrol part of the information
required and relationships to be determined in the evaluation of safety in a probabi-
‘listic manner.

A strectural mechanism is considered safe when its resistance is greater than
the load applied, But implicit in this definition of safety is its opposite, that is,Athe
failure of the structure, The one implies the other, As Aspl-.md6 poinféd out: "the
fundamental phenomenon connected wfth what is called safety is not safety at all
but lack of safety and failure." Whatever terms. might be coined to express structural
safety ~ "lack of safety", "failure", "risk of failure", etc., the fundamental point is
“that the safety of structures can only be truly formulated as a statistical relationship
between load and resistance, for both are rcmdonj varicbles, This statistical relation-

ship can only be realistically expressed by the probability of failure or probability of



survival of the structural mechanism,
1.4 Econ.omy

“Within the présenf design procedure, any structure, from the just strong enough
to the infinitely ;strong , is considered adequate or sai"'e, and economy is based purely
on cosf.

Contemporary designers, no doubt, consider economy a major factor in design,
But on what basis? How should a designer compare the costs of alternative designs in
order to mai<e a choice? Can a less costly structure serve the required purposes as well
as the more costly? These questions, present design methods cannot answer.

If one structure functioned better than another but cost more , then there is an
obvious conflict between performance and cost. In fact,'designers iuggle with section
properties to achieve economy relative to fixed code requiremenfs.,v But there is no
guarantee that the code requirements give designs that are e;qually safe,

In order to make a realistic choice from @ number of alternative designs,
economy must be considered in the light of the relation between cost and safety and, on

this basis, an optimum balance can be achieved,

1.5  Object and Scope.

The original purpose of this thésis was to obtain the optimum cost of simple~span
bridges and to relate this cost fo the safety of the bridge structure. However, neither
cost nor safety is absolute; for the designer's control is severely limited due to uncer-

- tainties inherent in the problem of design. And, further, such an analysis would be

very complex and exhaustive.

The object of this present study, therefore, is to determine the optimum combina-



tion of design variables, based on cost criteria, of a simple~span reinforced concrete

bridge to satisfy certain safety requirements éxpressed in a probabilistic manner.

Even with such an objective, there are certain natural limitations to the range

of the analysis, There are a number of geomeiric arrangements, shapes of structural

. elements and almost an infinite combination of design variables that can be used,

Conseqﬁenfly, only a beam and slab bridge will be considered; the beam beihg of
réctangular cross-section. Also, the analysis will be limited to a consideration of the
beam cross-séction at mid-span, and a specified set of alternative combinations of
certain design variables will be considered. The above-described bridge layout is
chosen as it is perhaps the simplest and most popular pattern encountered in actual
design problems,

The cost of a bridge structure consists of hoth initial and long-term costs.
This study will be Iiﬁ\iféd to an investigation based on initial cost, the récsons for
which will become obvious in Chapter Three. However, the initial cost of a bridge
structure depends to a great extent on the cost of materials, formwork, falsework and

erection. The other determinants in the initial cost function, such as cost of design,

can be considered constant regardless of beam depth, percentage reinforcement, etc,

Herein, only materials cost will be considered. The inclusion of formwork, falsework
and erection costs will not only make the problem much more complex, but these
costs vary significantly with methods used. And the revolution in formwork, false-
work and erection methods is proceeding at such a rapid pace that what was con-
sidered standard yesterday is today obsolete. A clearer insight into the complex

relationship between cost and safety might therefore be obtained by considering only

materials cost at this stage.
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A bridge beam can fail in a number of modes - flexure, s_i1ear, torsion and
fatigue. In this study, only flexural failure will be considered. -
Although shear failure is important in bridge structures, the mechanism of shear
5

failure remains a riddle to engineers. Many studies 121,50,65,66 have been carried |

out fo investigate the phenomena of shear failure, .but no satisfactory theoretical

. model has been formulated. This is clearly shown by the number of studies that have

411,85,37,38,63.

recently been done and the wide variation in the results obtaine
_The formula most widely used.at present is exiremely conservative and shows no definite
correlation with test resulis (Fig.1 -1)3. It gives only a lower limit.

Failure due to thd, torsion and faﬁgué is not considered. | Torsion is unim-
portant in bridge structures as a result of the monolithic cor;stkucfion of beams and
slab. Unfortunately, no practically applicable and satisfactory theoretical model
has been formulated to represent ﬁ:llfigue failure as shown by the A.A.S.H.O..

1

tests', and with the development qf deformed bars, methods of detailing, etc., bond
failure has been shown to occur only after the tension steel has )ilielded.

It is not the ;;urpose of this study to yield results directly applicable to actual -
design problems but by analysing a reinforced concrete bridge cross-section in as
detailed a manner as possible, a method is developed which relcfes cost to safety

on a realistic and prqcfi.cql basis and which gives some insight into the properties

and applicofion of the cost-safety relationship.
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. LOAD AND RESISTANCE PARAMETERS

Recent writers have dealt with load and resistance in a generalised manner
when discussing and evaluating the safety parameter or the probability of failure,
but such generalisations can only indicate a Brocd application of the concept of
safety to structural design., However, in actual practice, the problems encountered
in the computation of the safety parameier varies for different classes of structures,
Therefore each particular class of structures must be investigated from basic principles,
examining the nature and complexity of the problem and developing a procedure that

is directly applicable to that specific class of structures. In this chapter, therefore,

the factors that influence the load and resistance parometers and, os a result, the

frequency distributions of these parameters, will be investigated.

2,1 Loading Conditions.,

It is not possible to take into consideration all the factors influencing the
frequency distribution or statistical variation of the load parameter, Also, seme of
the focfo'rs which influence the load parameter are only veguely known and understood.
In general, the conditions of loading and the factors influencing these conditions
are perhaps the least known variables in fHe design process.

The basic classes of loads to which a structure is subjected during its opera-

tional life are:
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(1) Dead Loads.
(2) Live Loads.
2.1.1 Dead Loads, |

The dead load can be categorised as the weights of the materials which make
up the permanent features of the structure; such as concrete, steel, timber, railings,
fittings, etc, These loads can be considered as fixed in intensity and location; that is,
they are not movable except when alterations are made to the structure. The factors
which influ;ence the variation of dead loads are mainly the dimensions of members
and the specific weights of materials,

Although in the design process both the specific weights of the materials and
the dimensions of members are fixed, yet in the construction process one can never
* obtain the precise design values.

The specific weights of the materials are often 'differer.lf from the designed
values as a result of ebrrors in workx;nanship, quality of materials, proportioning of
materials, etc. There are variations in the specific weights even within one parti-
cular member of the structure. On the other hand, the variations in the dimension
of members are mainly due to errors in workmanship.

With the development of modern methods, the influence of these factors can be
greatly reduced. As a result, the dead load of a structure is presently considered fixed;

that is, as a non-statistic.

2.1.2. Live loads
Live loads, unlike dead loads, consist of movable loads, or loads which are
not a permanent feature of the structure. Such loads, for example, are chairs, desks,

and people in an office building, or cars, buses and trucks on a highway bridge. These



14

loads, in genéral, vary in a statistical manner, éxcepf in the case of maximum load
intensity of relatively high frequency of occurrence, where the load can be specified
ina non—sfoﬁsﬁcél manner (e.g. wqreEouses, storage tanks, h‘dil.’l loads, efc.) The
main factors which influence live load effects, particularly those on highway bridges, are:

(1) Intensity and variation of intensity of loads. |

(2) Duration of loads.

(3) Frequency and sequence of load applications.

(4) Mechanical properties of the structure.

The influence of these factors on load effects would vary for different classes
of structures. The evaluation of all these variables would require a very complex
analysis, but for a particular class of structures sorﬁe variables have negligiBle effect

and can be eliminated.

2.1.3. Bridge Loads.

Perhaps the most complicated analysis of live loads and their effects is that
required for highway Bridges. Stephenson and Jokkule® have carried out a compre-
hensive analysis of vehicle loads and their effects on bridge structures. As a resullf
they have formulated a method which converts heavy véhicle loads in terms of
"standardised equivalent loads" and they show how the frequency distributions of
various intensities of these equivalent loads provide qsimplé, precise and yet rational
means for measuring the level or levels of heavy motor vehicle operation corresponding
to various traffic conditions and their effects on the operational characteristics of
highway bridges; However, Stephenson's results are old and as such are only used as

a guide,



According to Stephenson, * the criticul operational characteristics produced
in bridges by heavy vehicle loads are influenced by no less thcm.six variables:
(1) Spon lengfh‘of bridge. .
(2) Gross weight of vehicle.
(3) Wheei base length of vehiéle.
(4) Number of axles.
(5) Spacing of oxles.
(6) Di;fribuﬁon of gross weight of vehicles,

It can thus be seen how complex is the analysis of vehicle loads on highway
bridges. By converting all heavy vehicle loéds into "standard loads" and by using
various types of standard loads, Stephenson was able to simplify the problem, to a
certain extent, so that the frequency distributions of these loads could be determined
and the operaﬁondl characteristics computed. "‘l'his aspect of the analysis will be
dealt with in greater detail in section 2.3.5 of this chapter.

The problem of the evaluation of loading conditions and their effects on
structural operation is not an easy one. Although many studies have been made on
the factors influencing the loads applied to structures, knowledge is still Iacking.o.s to

the nature of load applications and more data is required for accurate analysis of load

distribution.

2.2 Resistance Parameter,
There are many factors which influence the resistance of a structure such as
strengths of materials, dimensions and spacing of members, percentage of steel in

reinforced concrete members, etc. However, the influence of these design variables

15



16

is expressed in the more general operational characteristics of flexure, shear, bond

and torsion. In this analysis only flexure will be considered. Finally, the effects of
these operational characteristics are all combined in what may be fermed the: overall

behaviour of the structural mechanism. .

2.2.1 Overall Structural Behaviour.

Although there have been mony'experin.wenfal studies on small concrete beams
to examine their structural béh;xviour, very féw prototype expel;iments have been
carried out on bridge response to vehicle loads. .Perhqps the most comprehensive
experimental aﬁolysis on the structural behaviour of prototype bridges has been that
undertaken by the American Association of State Highway Officials (A.A.S. H.0.)L

The object of that study was to determine the behaviour of celgtain 'simple—qun
highway bridges to the repeated application of vehicle loads and to test the reliability
of the ultimate strength theory for predicting the capacity of bridge structures. The
important results of the A,A.S.H.O. tesis relevqnf to this present study can be
summarised as follows: |

(1) Concrete bridge structures subjected to vehicle loads do not collapse,

or fall apart suddenly, but gradually approach total collapse after
extensive cracking of the beams accompanied by increasing pérmanenf
_deformoﬁon and crushing of the compression conc‘re’re.

(2) In the case of equally reinforced bridge becm;, the whole bridge

behaves as one beam for all practical purposes and the loads were
equally distributed to the beams. (That is, for one lane bridges.)

(3) The ultimate strength formula shows good correlation with experi-
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mental results.
(4) The dynamic response of highway bridges to moving loads is a
complex éhenomenon and depends on the approach profile and
surface conditions of the bridge deck, the variation of pressure
in the tyres of vehicles, the suspension system of the vehicle,
the frequency of vibration of the vehicle and of the bridge,
the weight on the axles of the vehicle, etc. In fact, no
definite correlation was obtained ‘.between the experimental
results and theoretical models.
The A.A.S.H.O. experimental studies, fhe;'efore, indicated the behaviour
of a bridge structure 4as a whole under increasing vehicle loads. However, the beorﬁs

failed in flexure, more particularly in one mode of flexuralfailure - tension.

2.2.2 Fl.exurcnl Failure.

Flexural failure of beams consists, basically, in the crﬁshing of concrete in
the compression zone., However, this may be a primary or secondary compression
failure.

Firstly, the refnforcing steel in the tensile zone may yield and CGL.JSG extensive
tensile cracking. This tensile yielding of the steel will continue and a redistribution
of stresses will .take place until the ultimate capacity of the concrete in the compression
zone is reached. This mode of failure was clearly shown in the A.A.S. HO tests! .
On the other hand, the conditions might be the reverse. That is, failure could

be caused by the crushing of the concrete compression zone while the stress  of the

tensile steel is still below the yield point; the yield point being finally reached aofter



* increasing permanent deformation and extensive cracking of the beams. The former

is secondary compression failure and the latter primary compression failure.
There are, fh;arefore, two modes of flexural failure:
(1) Yielding of tensile steel accompanied by exfensi‘ve crpcking
of concrete followed by secondary failure of the concrete
compression zone,
(2) Crushing of the concrete compression zone followed by

extensive tensile cracking and yielding of the tensile steel.

Most present day designers attempt to avoid the occurrence of the second mode -

as there is no previous warning of failure; the concrete crushing suddenly.

" 2.2.3 Ultimate Copdciiy

The formula which best predicts flexurcl capacity of reinforced concrete beams
is the ultimate strength formula de;/eloped by C.S. Whitney64. Since Whitney's
pioneering work, this theory has been refined and developed by many writers2? 30,41,
It is not necessary to discuss the basic assumptions and formulation of the ultimate
strength theory as it is well known and used in everyday design‘problems.

The basic formulas used in ultimate strength design are:

My

Asfyd (1-0.59q) = - =~ = = - - 2.1)

where g Pfy/flc

for failure in tension; and for failure in compression, when compression steel is used,
Mo = (A-Aly) fy (d-0/2) + Als £l (d-d1)  (2.2)

where a = (As-Al) fy/0.85 fl b,

18
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When there is no steel in the compression zone of the concrete, Whi’rney64 showed that
the ultimate capacity in compressién depeﬁds only on the sfreﬁgfh of concrete and the
dimension of the beam. Thus, as long as there is sufficient tensile steel to develop the
full capacity of the compression concrete , excess steel in the tensile zon.e does not
contribute to the flexural capacity of the beam. By carrying out a lest squares analysis
of the results for compression failure, Whitney obtained the formuld:-

M, = flg bd? /3 --- @3
for f1_® 2000 psi. Results obtained by Cox 16 and Evans1? confirmed Whitney's com-

pression.theory. Fig.2.1 shows the correlation between formula (2.3) and test results

obtained by Evans, The results of 364 beam tests?! for tension failure are shown in Fig.2.2A.

Fig. 2-2B shows the relationship between @ = My/ M, and q, where My, is an empirical
formula representing the mean of the test results for tension failure, It is clearly seen
from the figure that Equation (2.1) is biased with q. Thus for the purpose of probabilistic

studies a statistical analysis of test results is undertaken in the next section,

. 2,3  Statistical Analysis.

Repeated measurements of deﬁign variables seldom give identical values and, in
fact, samples taken, say, from a particular mix éf concrete or grade of steel, would give
values that vary within a certain range, This situation makes exact prediction impossible,
but by repeated measurements, an estimate can be made of the relative frequencies of
the possible values of the design variables,

On the other hand, safety, or lack of safety, can only be expressed as a relation-

ship between load and resistance which ore, in themselves, variables, Thus, not only
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the material strengths, but the other design variables, the operai‘ional characteristics

and the loads must be analysed in .c:-sfaﬁs’rical framework and the resulfiﬁg frequency
c-listribuﬁons combinea in the safety parameter to obtain the probability of failure
‘or survival,

In this section, then, the statistical analysis of load and resisfdnce, and the

_design varidbles influencing these parameters, is undertaken,

2.3.1 Distribution Functions.

| In the value measurements of certain material phenomena, the plotied points
show a great scatter about what may be cqllled an "average". Theoretical frequency
distributions, as all other intellectual concepts, are only iaeal formulations devised

. to represent the shape of and irend in the observed data. Basically, a distribution

fuﬁcfion'is only an expression, represented by a curve which describes in a compact
and simplified way the experimental scatter of a maf;ricl phenc;menon. As such,
there are probably several alternative distribution functions that can fit an experimental
scatter equally well,

In any one experiment, the number of measurements that can be made is limited
and, therefore, a good estimate of the frequency distribution of the experimental data
is difficult to obtain, If a particular distribution fits the data, then it is accepted and
u.séd. Moreover, the tail of the distribution curve is usually not known as data in that
range is difficult to obtain by experiment., Thus it cannot be known how well a
particular distribution fits a material phenomenon outside the range of experimental
measure., This has led to considerable uncertainty as fothe form of distribution that

should be used for certain experimental data, In some cases, writerszd"25’34’58
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have used two and sometimes four distribution functions to repres.eniL the same data,

One of the methods of reducing the extent of this problem is the use of confi-
dence intervals or cor;nﬁdence limits. 1t can be assumed that a particular frequency
distribution, say'o normal distribution, fits ’fhé data. A range of values of the normal
distribution can be obtained and tested with the experimental data for "fitness". On
the basis of the "fitness test", the theoretical distribution can be accepféd or rejected.
However, this "fitness test" does not solve the problem encountered when considering
the tail of t.he curve and no specific frequency interpretation can be given to confi-
dence intervals, They only indicate the degree of confidence one can have in pre-
dicting the frequency of values related to the material phenomenon within a specific
range by using the theoretical function,

One of the problems which causes a great deal of confusion among research
engineers is that of an upper and a lower bound on distributions, Take, for example,
the measurement of concrete cylinder strené'fhs. Everyone agrees that the compressive
strength of concrete cannot be infinite. Further, engineers would be startled if a
sample of concrete mix designed for 3000 psi, specified strength and under controlled
conditions were to show a strength of 10,000 psi. Yet, engineers would just not agree
on what the upper or lower bound should be. Instead, the distribution curve is used
over the whole range from 0 to +oo,

The condition that the curve extends over an infinite range limits the number
of alternative distributions that can be used. There are, however, many distributions
that can represent the experimental data equally well. In fact, it is unlikely that

there will be any uniquely determined distribution function for a particular set of

experimental data.



24

2.3.2 Distribution of Concrete Strength.

- The variation in strer;gth of a particular concrete mix depends on the degree
of conirol exercised |n the mixing and placing of the concrete. The degree of control
depends on the lével of supervision exercised during the mixing and placing stages
and on the choice of the qbcnlify of materials used and their quantitative ratios. Depending
on the degree .of control exercised, the frequency distribution of concrete strengths can
follow a symmetrical or skewed curve.

Fretjdenfha|24 has fitted a log-normal disfribl;ﬁon to data obtained from 673 tests
for concrete under good control (Ref.No.1 Table 22) For concrete under poor control
he fitted an extremal distribution to the results of 296 tests (Ref. No.4 Table 2.2).

From the results, he concluded that inadequate or poor conirol increases the range of

" variation of the values and the number of low test results while it sharply reduces the

number of high values.

On the other hand, Juliané"j‘ showed that a normal distribution fits the test
results of concrete under good control equally well (Fig.2.3) by analysing the results
of 861 tests at 28 days (Ref.No.2, Table 2.2). In the case of poor control, he showed
that the results followed a skewed distribution (Fi§.2.4). From Freudenthal's and
Julian's analysis, it can be concluded that both @ normal and log-normal distribution
caen be employed to represent the variation in the compress.ive strength of concrete, manufacture
under good confrol,

Fig.2.5 shows a histogram of 164 field tests taken by a commercial testing
laboratory for concrete supplied by o ready-mixed concrete company from January 1958
through January 19592, The mix was standard commercial concrete proportioned for

3,000 psi. specified strength at 28 days, using 1-inch maximum size aggregates. The



TABLE 2-1-

COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES

Obser- Devia= Theor-
Coded ved tion of % Area ef.ical
Cell Mid- | Frequ~ Class Devia~ | between | % Area | Frequ- X2
Boundaries | Cell ency Limit tion Class in Class ency £ f
X Limit Interval _ - |(Fo-Fi)
VA fo Zfo 72 fo | from Mean x/d & Mean fi (fo = £,) | (- f)2 F;
2700-2899 14 1 14 196 | -1138 -2.55 49,46 1.25 1 ;
2900-3099 15 6 90 1350 | - 938 -2.10 - 48.21 3.16:] 18.0 | -1.0 . 1.0 | .056
3100-3299 16 10 160 2560 | - 738 -1.65 - 45,05 6.56
3300-3499 17 19 | 323 5491 | - 538 -1.20 - 38.49. 11.15: ] 18.3 .| 0.7:}| 0.49: | .027
3500-3699 | 18 30 540 9720 | - 338 -0.75 . 27.34: 13.66 | 22.4: 7.6 .| 58.0 :]12.59
: : -t =138 -0.35 - 13.68: : : 1 :
3700-3899 | 19 27 513 | 9747 | + 61 +0.14 - 5.57: 19.25: | 31.6 | 4.6 :]21.1 - | .668
3900-4099 | 20 26 520 | 10400 261 0.58 : 21.90; 16.33: | 26.8 : | -0.7 ;] 0.49: | .0i8
4100-4299 | 21 19 399 8379. 461 1.03° 34.85: 12.95: | 21.2 .| 2.2 | 4.85 | .228
4300-4499 | 22 17 374 8228 661 1.48 43.06: 8.21: ] 13.5 ] 3.5:112.3 .| .910
4500-4699 | 23 5 115 2645 861 1.93- 47.32: 4,26 : :
4700-4899 | 24 2 48 1152 1067 2.38 49.13; 1.81; : ; ' .
4900-5099 | 25 1 25 625 1261 2.82 49.76 0.63.§ 11.4 | -2.4:}| 5.75:] .505
5100-5299 | 26 1 26 676 | - 1461 3.27 49.94 0.18: Lo .
5300-5499 | 27 0 0 0| 1661 | 3.72 49.99 - 0.05
164 | 3147 | 61169 163.2 . 5.002
Tl =3.84 6, =045 Vo=0.116 Y2, =5002 Y5 =1.145

G¢




TABLE 2-2

STATISTICAL DATA FOR CONCRETE

Ref.” |  Noof - 1 :
No Tests | Tlc 0. | Ve | flo | HVM | MAV.
] 73 | 5.3 S < lses | na | 1
2 861 | 5.18 | 0.54 | 104 [3.830 | 1.35 | 1.36
3 164 | 3.84 | 0.45 .Héf 3,000 |  1.35 1.33
4 296 | 5.85 | 1.54 | 263 [4.300 | 155 | 3.9
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sstrengths are based on an average of three specimens, The chi-squared test is used to

compare the observed test data to a normal frequency distribution in Table 2.1 and
indicates a very gooci fit.

A 5umma’ry of the statistical data for concrete sirengths is given in Table 2.2,
Ref.Nos. 1, 2 and 3 are for good control and Ref.No. 4 is for poor control. From the
table, it can be seen that the highest value/mean and the mean/lowest value, given °
in the last two columns, are almost constant and equal for concrete under good control;
whereas for‘ concrete under poor control, the frequency curve can be seen from the table
to be skewed towards the low values. The variance ratio or the coefficient of varia- . '

tion for concrete under good control is about 0,12,

=

.2.3.3. Distribution of Steel Strengths.

Steel, unlike concrete, is subjected to rigid control as it is manufactured under

factory conditions, As such, the frequency distribution of the yield points of reinforc-

ing bars are all mostly similar in shape, varying only in magnitude of the statistical
parameters,

Although steel is manufactured under factory conditions, not very many studies
have been done on the distribution of steel strengths. As a result, the volume of test
data required for a good estimate of the frequency distribution is not readil); available,
However, from analysis carried out so far, it can be .concluded that the distribution
follows a skewed pattern.

Freudenthal24 has fitted a log-normal curve to the results of 121 tests of eye bars,
The results of 171 fésfs of new billet steel reinforcing bars varying in diameter from
3/8-inch to 1-1/4-inches have been plotted by Julian34 in the form of a frequency

distribution curve as shown in Fig.2.6. There is no doubt that the distribution is



skewed towards the higher values. Using data obtained by Rice4? as a guide, the

statistical parameters employed in this study are T), =50.0 and V), =.09, 0.12,

2.3.4, Analysis of Flexural Resistance

In Section 2,2.3 it was shown that the contemporary ultimate strength equa-
tion is biased with q. Therefore, a series of test results obtained by various research
engineers was analysed by the following method:

(1) .The results of 152 tests from eight research experiments representing a
cross-section of the tesis carried out on the flexural capacity of R.C..
beams failing in tension were collected and the dimensionless para-
meters, Mu/bdzi’]c and Pfy/f]c, in the ultimate sirength theory were
computed. .

(2) A least squﬁres analysis was then carried out to determine the average
curve passing through the results (Fig.2.7). The curve was assumed to
be a second degree parabola of the form

y = Ao + Apx A2x2
From the analysis, the following va.lues of the unknown parameters
were obtained:

Ao = 0,011, Ay} = 1.114, Ap = -0.90
Thus, giving the least squares equation:

My =0.011+1.114q - 0.902 - - - -(2.4)
B2

The analysis was only done for beams failing in tension. It was
not necessary to do the analysis for beams failing in compression

as will be shown in the next chapter.
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: (3) Finally, it was assumed that the test Moment capacity, Miests is of the

form

Miest = g Mu ‘ === (2.5)
. where @ is a random variable. [If Equations (2.4) and (2.5) are

acceptable assumptions, the distribution of @f does not depend on q.

Test values of §f are plotted in Fig.2-8 together with calculated confi-

dence intervals F T 2 o’¢ . THeorefically, for 95% donfidence, a

maximum of 8 points out of 152 tests are allowed to fall outside the

limits. From Fig. 2.8 only five points fall outside the limits,

A brief discussion of the various test series from which the results were obtained

is given hereunder: N

COLUMBIA UNIVERSITY (1935 and '4])32 -~ The tests were carried out

for low percentages of steel, Basically, two grades of steel of nominal strength, 36

and 56 kips s.i. were used, For one set of beams, the concrete mix was designed to be

of specified strength 3,000 psi; The actual concrete strengths psed in fhe.calculoﬁons
was the average of three specimens taken from each batch of concrete used in any one
beam, For the rest of the beams, the concrete strengths were 3550 and 3510 psi. It
appears that half the number of beams tested in this set were cast from one batch of con~-
crete and the other half from another batch. Thus samples were taken from two batches
instead of the specified batch used in each beam,

LASH AND BRISON (]949-50)39 -~ These tests were carried out for a variety of.
concrete and steel strengths and perceni‘cge; of tensile reinforcement. The concrete varied
from 2000 to 5000 psi. nominal strength, Two grades of steel of nominal strenghts, 40 and

65 kips s.i., were used. The concrete strength was taken as the average of three specimens.,
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The reinforcing steel cons.is’red4 of plain bars rusted to provide_qd.equafe bond resistance.
The percentage of steel varied between 0,5 and 4,7 percent,

A few of .’rhe :resul’rs showed either very high Mu/bdzf]é values or very low
ones in comparis;on to the average value obtained from the least squares equation, On
c_:lose examination, it was found that the high—valuea results were produced in beams with
a high fy/i"'c ratio, with steel of low yield point strength and with a high concrete
strength, | |

‘ HUMPHREY AND LOSSE (1912) - Very litile can be said on these tests as the
resulis have been taken from JensenS2, However, these tests give relatively low flexu=~
ral capacity compared to the least squares curve, One point that should be mentioned
is that the tests were done with lean concrete mixes, that is, with concrete of relatively
|O.W compressi\}e strength - as low as 1500 psi, As for the tests by Lash and Brison, the
low results were observed only for concrete of very high sirengths and beams of a low
fy/f].c ratio. In this case, the nominal steel strength was 40 kips s.i.

RICHART AND JENSEN (1931)51 = In these tests, the beam size, steel ratio
and steel strength were all consiant while the actual concrete sfrengfh.‘s varied from
3000 psi. to 4800 psi. No explanation wus given for the fixed steel strength used in
the calculation, |

COX (1941)]5 - Most of the beams of intermediate strength concrete were
tested in triplicate, whereas others were tested singly. Why? Cox does not say.
However, some uncertainty exists with respect to concrete and steel strengths which
were not reported for the individual beams, but for each class of concrete and grade
of steel. There were four classes of concrete, varying from 1700 psi. to 5800 psi.

compressive strength, Similarly, the sirengths given for the steel were: 48,1 and

53.4 kips s.i.
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The results as shown in Fig. 2.8 indicate a consistently low flexural capacity
relative to equation 2.4, Perhaps fhé explanation of this phenomenon is to be found
in the steel and concrete strengths used by Cox in the computation of the dimensionless
parameters ¢ aricll M,_,/bd2f]c. |

EVANS (1943~ )]9 ~- Evans fested samples of concrete used in each beam for
I;ofh cube and cylinder strength. For each beam, four cubes and one cyli;'lder were
tested. He established a relationship between the cylinder and cube strength and
showed that for high concrete strength, the cube and cylinder strengths are almost equal.
However, in the computation of flexural capacity he used the cylinder sfreng*h.

Here, again, the low resulis observed’around q = 0.06andq = 0.13, on
examinaﬁc;n', reveal that in the particular b;ams a high corlncrefe strength and relatively

low steel strength giving a low fy/f]c ratio was evident,

JOHNSON AND COX (1939)33 —- In these tests, four grades of steel and

‘one mix of concrete were used. The reinforcing steel consisted of nickel, hard grade,

square twisted, and cold twisted and stretched bars. The yield point was measured for
each type or grade of steel; the number of samples tested for any one grade varying from
2 to 18,

For the concrete, samples were taken from two batches. Ten control specimens
were made for each pair of beams cast from the first bof;:h, and five specimens for each
beam from the second batch, The average of all the specimens from the first batch was 3190
psi. and from the second batch 3220 psi. The value of the concrete sirength used for all
beams was 3200 psi., the average of 31.90 psi. and 3220 psi. This method of obtaining -
the concrete strength is highly questionable, With such a large number of samples tested,

the actual strength of concrete in the beam can be far different to the average value used.
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LYSE AND WERNISCH (1937)32 - The concrete strengths used in these tests

were generally low; about 2500 psi. For such low strengths, the fy/f]c rafio was very

high resulting in high values of My/bd2fl ¢ for smdll q. This is clearly shown in

Fig. 2-8.

Three gr.a.des of steel vcu.'ying from 48,0 to 93.0 kipss.i. nominal st;eﬁgfh were
used. The concrete strength token was the average of three specimens for each beam,

From the foregoing discussion, it can be concluded that the ultimate strength
equation d;aveloped within a sfuﬁs’ri.cal frcmev;/ork fits the test dataquitewell. However,
like all other theories, there are limitations to its use. One of the important points
observed in the analysis is that scatter of the data points seems to depend upon the
ratio of .f),/f]c. For high f),/f] c rotios( the least sciuare; eq‘.;aﬁon underestimates the
flexural capacity, whérecs for low fy/;f] ¢ ratios, it overestimates the capacity of the
beam, It seems that a moderate f'),/f]c ratio gives least scatter and allows prediction

to be made with greater confidence,

2,3.5. Distribution of Vehicle Loads.

As with live loads in general, the nature of vehicle Ioading.s and their effects
on highway bridges have only recently been subjected to a comprehensive investigation.
57,58

Stephenson was perhaps the first fo carry out a systematic and methodical analysis

of the nature of vehicle loadings and to relate this to the operational characteristics
of highway bridges. 1t is not possible to discuss his approach in detail, but a brief
summary of his method and results are necessary.

By collating and analysing the results of the 1942 loadometer survey, Stephenson
was able to show that only the heavy vehicles have any significant influence on the opera-

tional characteristics and, as a result, the design of highway bridge structures. The



heavy vehicles are defined as "those with one or more axles weighing 18,000 Ibs. or

more; " or,"Eased on gross weight, all simple-unit frucks weighing 26 kips. or more,

~and all other combino;ions weighting 34 kips. or more, "8

The method of finding the nature of vehicle operation is as follows:

(1) Firstly, the hedvy vehicle loadings were converted into equivalent
H, H-S and concentrated loads. 'These ‘equivalent loads can be |
defined as the loads which will produce in a bridge of given span
the same stress as ’rha’r'produced by the heavy vehicle frorﬁ which
the equivalent load was obtained.

(2) Once all the heavy vehicles reported by the loadometer survey
were converted into equivalent loads for a given span, the relative
frequencies of various inten;ities of these loading equivalents were
then obtained by arranging them into groups or c.ells of increasing
magnitude and computing the percentages of vehicles thus found
in each cell respectively. The observed frequency of equivalent
concentrated load (E. C. L.) on various span-lengths, as computed
by Stephenson5§ are given in Table 2.3A. These frequencies
relate to the bending moment produced by the E.C. L. on various
spans. The constant K is -Poisson's coefficient.

The resulis of Stephenson's analysis were based on the 1942 traffic
survey which was taken in the summer of 1942, As such, the survey

cannot be considered asa yearly survey for 1942, Stephenson pointed -

out, however, that heavy vehicular traffic occurs mostly during the

summer, In this study, Stephenson's results are only used as a guide
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and the statistical characteristics chosen for the Ioad'para-
meter are considered to be bas.e.d. on yearly traffic data, -

(3) Alfhoggh ﬁny one of several frequency distribution functions
mighf give comparable results for the observed data, Stephen-
son found that the Poisson distribution formula represented
the observed data reasonably well (Table 2.3B) anof, at the

" same ﬁme., provided "the most satisfactory procedure for
solving such traffic problems, mainly because it is perhaps
the simplest té apply in practice when the sample size is large."

By developing this method of analysis, Stephenson laid the basis of a new

. and realistic approach to the evaluation of vehicle operation and loadings on highway

bridges. Thus, with a sufficient backlog of observed heavy vehicle frequency data

in a given geographical area, the engineer is provided with a rational procedure for

.esﬁmaﬁng the level of heavy vehicle operation that would likely obtain at a new

location within the area.

Although the analysisv was also carried out for both equivalent H and H-S loadings,
the equivalent concentrated loading has the greatest potential for practical application,
First of all, the maximum moment produced by a single concentrated load on a simple
span bridge can be expressed by a very simpie equation; namely,

M = PL/4
in which M is the maximum moment, P the concentrated load and L the span length,
Secondly, it will be noted that this equation allows the moment M for any given load P
to be expressed as a continuous function which varies directly with the span length.
This is not possible with the H and H-S loadings. Thus the equivalent concenirated loadings

provide both an absolute basis for comparing the operaticnal characteristics produced by
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A COMPARISON OF OBSERVED WITH THEORETICAL FREQUENCIES OF
EQUIVALENT CONCENTRATED LOADS FOR ALL TYPE HEAVY VEHICLES
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effects from one span to another,
However, from Fig. 2,9, it can be seen that the Poisson distribution fits

the observed data for the lower spans (10" to 50') reasoncbly well. But for the higher

.span lengths, the fit is disappointing.

Freudenthal24, on the other hand, has fitted a log-normal distribution to
all equivalent H truck loading for spans of 50" and 100" and to the gross weight of
vehicles. He showed, by plotting the cumulative distribution function, that the
poisson forrr;ula givés disappointing agreement with the observed data for high-load
values, whereas the log-normal disfribuﬁon gave a "good" fit for all load-values.
The explanaﬁon' given was that the definition of heavy trucks was not narrow enough
to justify analysis by the rare-event approach; that is, by the poisson law.

34

Julian¥” plotted the distribution of all equivalent H truck loadings and showed
that the frequency curve is skewed towards the high~load values (Fig.2.10).

THese studies have only sho.wn that al! loads on highway bridges have a
statistical distribution. Precisely what distribution should be used is not yef certain,
Moreover the distributions relative to fatigue loadings and dynamic effects have not
yet been fully investigated. [t may be a long time before sufficient data can be
accumulated to make a comprehensive analysis of vehicle load distributions and their
application to bridge design. At the present time, the data obtained and studies
carried out so far can only act as a guide. |n this study, values of ML between 50 and
90 in increments of 10 and values of V| =0.15, 0.20 will be used.

2.3.6. Anélysis of other Varidbles.

Besides the parameters discussed above, there are other variables in the design

process which vary in a statistical manner. Those most relevant to this study are the

dimensions of structural members and the dead load of the structure.



in the design of a rectangular R.C. Beam, the degigner obtains certain
specific valﬁes for the effective depth and the widih of the beams. Howéver, fhesé
values are not necessériiy realised in the construction process, because of errors of
workmanship.

Although the dimensions (or size) of the beams do vary, yet, with the develop-
ment of modern techniques, this variation is very small and, as such, the dimensions
can be considered constant, The effective depth, on the other hand, can vary tre-
mendously due fo errors in the pla'cing of the steel, It is therefore necessary to take
accoun; of this variation. Data on the variation of effecﬁve depth, however, is not
availoble and in the absence of such data, a designer can only choose statistical para-
meters on a subjective basis,

As a result of variations, however small, in the dimension of beams, and, also,

- variation in the specific weights of materials, the dead load of a structure varies in a

statistical manner. Here, again, no data are available and the designer will have to
use his subjective judgment. From preliminary investigations, values of Vg4 and Vp

of .05 and .10 were found to be realistic. These values imply a 95% confidence within

- 20% of the mean.
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FAl LURE PROBABILITY AND COST FUNCTION

The safety of a structure can only bel réalisﬁcally expres.sed in a probabilistic
sense. That is, by formulating the problem of safety in terms of the probability of
failure or survival. In ordér to evaluate the probability of failure the distributions
of the design variables involved in the load and resistance parometers must be
convoluted, -

Economy iﬁ structural design cannot be considered on a cost basis, for cost is
not absolute, but relative to the level of safety adopted. As such, economy can only
be expressed as a relationship between cost and safety and on this basis an economic
choice is made by finding the optimum balance between cost and safety for the
_particular design problem.

In this chapter, therefore, the mathematical formulation of the probability of
failure in terms of the distribution of the design variables, and the relationship befw.een

cost and failure probability will be presented.

3.1  Formulation of the Probability Problem.
In the actual process of bridge operation, circumstances surrounding human needs
and necessities choose one value of the load and nature, partially controlled by human

skill, chooses one value of the resistance from the respective distributions of possible

values,
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If R is the resistance of the bridge structure, and S is the load, then the
reldﬁc;nship between load and resistance can be expressed by the safety parame;fer
r=R-S
or ' | e - -~ (3.1)
n=R/S |

These two forms are not independent, but, on the conirary, they are interrelated.

For, from (3.1)

R =nS
and

'r = nS-S = S(n-1)
or

S=R/n
and

r=R-R/mn =R(n-1)/n
Since failure occurs when resistance is less than load, then, in terms of the

safety parameters, the bridge structure has failed when r is less than zero or when
n is less than one. The prébability of foilure,. therefore, is the probability of r being
less than zero, or the probability of n being less than one. That is,

PE = Prob. (r<0) = Prob. (nel)
Either one of the two forms of expressing the safety parameter can be used in deter-
mihing the probability of failure. The problem, then, is to obtain the distribution of

the safety parameter by formulating it mathematically in terms of the load and resistance

distribution.




3.2 The General Expres;sion.

Freu.den’rhcll24 in 1956 developed a geometric method of finding the
probability of failure:or survival., He obtained a three dimensional geometric
figure on which he superimposed lines of -constant Pp and from which he developed
surfaces of survival. Howeéver, his analysis, besides being only on the macro
level, involved a rather complex formulation,

Lawrence40 and Corso!7 in a discussion of the Freudenthal method showed that
the probabi.lity of failure can be aefermined by‘a ver‘y simple computation for relatively
simple ;:!isfribufion_ functions,

In the general case, the probability of failure can be formulated as follows:

If Pj(R) is the frequency function of R and Po(S) is the frequency function of S,
such that the areas under the distribution curves are each unity, then the probability
of obtaining a value S of the load within the interval ds is P}z(S) dS, and the prob-
ability thatR < S'is |

PR=S) = ;P](R) dR
- .
The probability of both events occuring simultaneously is the P (S=S)and PR £ S).
That is, PFg = P (S=S)and P (R # S)

S
Px(S) € / PyR) dR ) dS

Thus, for Pp_over all values of S, we obtain the double integral

S +o S
P = / / Py(S) PyR)dRdS - - - -~ - (3.2)
-0 -

.Freuden’rholzs in 1961 formulated Pp in relation to the safety parometer n. If

n =R/S and the distribution function of n is P(n), then R = n$S and by the probability

law of quotients,



beams

P(n) = f P,(nS) P(S) Js

thus,

—r

pF. = f /O‘o P1(nS) Py(S) SdSdn = - - (3.3)

Both (3.2) and (3.3) are the same, for by.o suitable transformation (3.2) can be

reduced to 3.3).

Freudenthal22126 and others!461 have formulated the failure probability on

the macro level for the different and varied aspects of structural design such as repeated

loading, static loading, multiple member structures, etc. In this present formulation,

however, only the initial probability of failure will be discussed.

3.3 [Initial Probability oi" Flexural Failure.
fhe determination of the probability of failure can only be based on the
criteria of failure adopted in a particular situation,
The bridge structure is considered to have fai'led , when either
(1) The tensile steel yields; that is, the load is greater than the
flexural capacity in tension,
or ~ (2) The concrete in the compression zone is crushed; that is, the load
greater than the resistance, the flexural capacity, in compression,
Thus, . the ft;ilun;e of the bridge is related only to its flexural capacity. Also, only the
bridge beams are considered. This is a rational criferic;n atthis stage of the analysis as
the capacity of R.C. bridges is mostly dependent on the flexural resistance of the
1. Shear is not considered for the purpose of simp.ici’ry in the cnﬁlysis and,

also, because of the lack of understanding of shear failure.
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In evaluating the probability of failure related to flexural failure, only tension

failure is considered. Compression failure is not taken into account, There are two

“reasons for this. Firstly, compression failure occurs suddenly and without previous

warning. As such, designers attempt to avoid compression failures by designing beams
for low v.alues of - q. Consequently, the probability of compression failure is very |
low compared to that of tension failure. Secondly, the cost of 6 beam increases
rapidly as q increases above the optimum as is shown in Chapter 1V,

The. probability of failure is given by Equation (3.92)where P1(R) is the frequency-
function of the beam moment capacity and Py(S) is the frequency function of applied
moment,

Theoretically, the frequency function of the true beam capacity Mp can be

" determined by combining Equations (2.4) and (2.5) to obtain

Ma =8 bd21c (oo + o1 PRy/Me +agP2iy/Me?) - - - - (3.4
While the only random variable in.experimenfol work is @, in design the variables d,
flc and fy are also random Qariables.

Thus, if My is the ocfuail flexural resistance of the béqm and Mg is the applied

moment, then

PE = P(Ma = Mg)

+00 Mg
=_00/ _/ P2 (Mg) Py (M) d MA Mg
L (85)
e 0]
or P = j Po(Mg) Py (Mg) d (Mg)
(o]

The incomplete knowledge of the frequency functions of all these variables and
the complexity of Equation (3.4) prohibit computation of the frequency function of M s

and, therefore, of the failure probability given by Equation (3.5). However, by making



certain statistical assumptions and approximations, Pp can be evaluated in a relatively

simple manner.

3.4 Approximéfe Method - Cornell's Approximation,

lThe preceding deveiopments suggest that meaningful frequency distributions of
the random variables involved in safety analysis of moment capacity are not reasonably
obfcined. At best, one can hope to establish the means and variances of the random
variables in\./olved and only a quaiifc’sive estimate of the shape of frequency functions.

A number of expressions for failure probability involving onfy the means and
variances of design vdriables have been developea based on Tchebycheff's inequalities.
These simple expressions yield very conservative estimates of failure probability.

An alternative approach proposed by Cornell seems o provide a reasonable
measure of likelihood of failure although the results are»necessdrily approximate,

For any structural mechanism,

PF=P(R«S) =PR/S=I)

P((log R/S) < 0))

Assuming that R/S is log-normally distributed, then the standardized variate can be

expressed as

X = log (R/5) - TogR7S)
Glog R/S

in which Tog (R/S) is the mean and 0'|°g R/S is the standard deviation of the natural

logarithm of the ratio R/S. Then,

log R/S) = XU]og R/S + Tog R/S) - - - - (3.9)

and Pe = P(X < ’%"lig(RR;;’S)' )y --- 3.7
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That is,

————7-)' . --- @)
PF = FX « - ‘Iog (R S »
' log R/S

where Fy is the cumulative distribution function. In general, by a law of prob-

ability, if z = xy, then

Z =% = xy + covix,y)

When x and y are independent, cov (x, y) is zero. However, when x and y are not

“independent, but cov (x, y) is small and Xy is large, the opbroximation

I
can be madé. The smaller the covariance, the better the approximation. Exfending'
this approximation principle to statistical functions, it can be said that the mean of a
function is approximately the function of the means, and the variance of a function can

be approximated]5'36 -by the formula

0'_22 = -x-2 0’)/2 + ;2 6x2
Thus, )
o TS = kg ®/9)
ond 0 logR/S = O (logg - logg) = VZ + V2
Therefore: Tog R/S - -log R/ S)
Tlog r/s VT # VZ

assuming that the lower tail of the cumulative distribution function of X can be approxi-~

mated by an exponentional of the form 14

FX) = X

-- - (3.8)
Tog R/S .
thus, PE = Fyx (- % log R/S ) - - - - (3.9)
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1
kexp ( - b'log R/S)

- W VRZ + Vg2

- li"'/.\/ VRZ + V52 (CornellM)

) --- (3.9

= k R/5)
and log Pp = logk = b'logR/S)
' » - -- (3.10)
'\/VR2 + st '
from which, _
g ®% = ~VRZ+ V&  (logk - logPp)
. b’
and E
2 2
R/S = antilog (VYR + VS (1ogk - log Pr) ) - - - (3.11)

bl

-For equations (3.10) and(3.11) to be suitable for application to practical probiems,

k and b must be determined, By p'lofﬁng FX(-X)' versus =X, values of log k =7.5 and

b'= 4.5 were obtained!4, for R/S log normally distributed.

In the development of this approximate method, Cornell recognised that the

_ assumptions and approximations made could and should be improved and extended by

further investigations, The validity of the approximate analysis depends mainly on the
reliability of the assumption that R/S is log-normally dis’rribui‘ed. Firstly, it must be
noted that the "true" distribution is not critical, It is the distribution of the values in

the range of the tail of the frequency distribution that is of irﬁporfonce in evalucf'ing

the probability of sﬁucfural failure. Although a large number of " common™ distribu-

tions can be approximated by the exponential form for a wide range of values in the region
of the tail of the fre.quency distribution, this fact does‘nof make the use of the approxi-

mation valid for the "true" distribution is not known, Since only direct measurement



along the tail of the distribution can determine the "true" distribution function, it

is quite impossible at this stage to prove the validity of using one distribution function

~above another. It is only by investigating the sensitivily of the total cost to changes

in Ppandn can the reliability of the assumption be tested, This aspect of the

problem is discussed in Section 3.6.2 of this chapter.

3.5  Application of Approximate Method.
If M is the actual capacity of a bridge beam, My, the capacity given by the
theoretical formula, and Mg the total load acting on the beam, then formula (3.11)

can be rewritten by substituting for R and S.

3

let n = MA / l\7\s

Where n is the central safety factor, then from (3.11)

_ 2 2
n = antilog ((‘v/ VMA + VMs (7.5 -logPg) ) - - - 3.12)
4.5

To obtain a relationship between n"and log P, the problem is resolved to the deter-

mination of VMA and VMS . With the evaluation of VMA and VMS, n can be

obtained for various values of PE.

- 3.5.1 Evaluation ofVMA_.

Writing Equation (3.4) in the form
Ma = IMy

Then, by the same approximation methods of Section 3.4,



<
>

1S
=
B
—

®

and . 2 2 2 ' _ 9 -2
GMA = 0 GMT + MT dg

therefore, :
2 , 2
Va . PO+ M Oy
72 M2
_ 2 , 2 : '
= WMy t Vg - - - (3.13)

Using the foimula obtained by the least squares analysis for the theoretical moment
copacit)'l,

- Mt

l

ba2fle (oo + arPly/fle + apP? (iy/f0)? )
= bdzfl_coo + d Asfy a + A52 fy2 ay
bfl,
Assuming that b and A; have no distribution function; that is, they are fixed or can

be found from other design variables, then

Mp = bdflias + dfy Acoy + fy2 A2 a

fle b

and

aM7 = 2bdflcao + As fy o

od

M7 = dAga + 2 A fy

L bilc

OMT = bd2 do - A52 fy2 an

a*:.IC bf]c

2 M 2 2
Cam _ MT)2 02 + QM1 )2 ¢ % 4 (aMr 6 .1
TG b %o Tl fe

Cc

Evaluating the partial derivatives at @, Ty and T, we obtain

(&)
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- 2
G.MTZ = 2bdfla, + ATy 01)2 0y

+ (d Aoy + 2 AZ Ty ap)? p 2

Pa - A2TPa )2 2

+ (bdca, - AZTy ap ) df]c
bTl 2

By puf’ringa = A Ty ;
2R

2 . -\2,,2 - 2 2.2
VMp = Qa0+ a1 TP Ve + (@ T+2a 37 Vy2 + (a0 - a3 3 V2
(0o + a]'e—| + 02'c_|2 )2

-

fy [

where Vd = %‘i , Vy=o‘fy , Ve = (Yf]c

Thus:

. - 2 ) _ _ _
VM® = 200+ a1 ) Va' o+ (@1 + 203 VP + (0o - a2 V? + Vg

(0 + a9+ as 62)2

- - - (3.15)

Once the statistical parameters of d, fy, flc and @ are determined, values

2

of VMA can be obtained for various values of -cT

3.5.2, - Evaluation of VMS..

Let M| and Mp be the live and dead load respectively.

Then, )
MS = ML + MD -- - - (3.]6)



®

L D
and
2 = 2 2
6MS GML + GMD
thus, -
2 _ 2 2 2
VMg = Oms = GML '*GMD - - - (3.18)
Mg (ML + Mp)

Puttingm = Mp /ML , VL = 6M|_ andVp = 6MD / Mp
we have,
VMZ = V2 + m2vp?

- - -(3.17)
(1 + m)?

. V| is obtained from the distribution of vehicle loads. With an estimate of Vb and an

initial value for m , VMS can be evaluated.

3.6  Cost.
Cost is undoubtedly one of the main factors in the economic considerations of
bridge design;and construction.

Wifh the development of the computer and the evolution of new methods and
techniques, there are three main reasons for placing economy on a tfulyreclisﬁc basis:
(1) 1t is as easy to optimise cost based on sound engineering principles

as it is to approximate,
(2) From a national and international point of view, the resourcés
of the construction industry must be deployed to the maximum advan~

tage in the face of increasing human needs, and
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~ (3) Since design for certain purposeg. is being stcndardis;ed, -
indusfridl blocks and of.fices", apartment buildings, highway
bridges, efcv.,- considerable attention should be paid in the
design stage to economy,.wifh which structurai engineers are
already preoccupied.
3.6.1 General Cost Function,

The cost of a structure depends on many factors fh;:t can vary from country
to country .and e\l/en within one coun-trys2 ~ The éverqll cost of a structure can be-
cotegorised' as follows:

Cost of (0) design
(b) materials .
(c) construction
(d) maintenance
(e) unserviceability or failure
(f) demolition

For a particular class of structure, however, some of these cost factors are
constant, such as cost of maintenance and demolition. The cost of design, construc-
tion and materials can be considered as the initial cost of fhé structure and cost (e)
is the cost associated with failure. Thus, the two basic cost factors which are of
p.orﬁ.cular importance to structural designers are initial cost and failure cost.

Many research engineers'z'zd"z‘r"6.I have attempted to incorporate these
two cost factors into an expression for the total cost of a structure. The genero“y
accepted expression for the total cost function is:

T = |+ PFCE - - - (3.18)



in which T is the total cost; I, the initial cost and Cf, the cos’rvdssociat_ed with

failure. Engineers have attempted to include in Cg, not only interest rates, cost
of material loss, cost of repair or reconstruction, but also the cost due to loss of
life. The inclusion of the latter cost, however, is questionable as life cannot be

measured in dollars and cents or in gold.

3.6.2 Cost and Failure Probability.

Oné of the main problems encountered in obtaining a good estimate of the
total cost of a sf.r.ucture is the evaluation of the cost of failure, PECp. Since Pg
has to be approximated as discussed in Se_cﬁon‘3.4, it is necessary to investigate
the sensiﬁ\./ify of the total cost and the centrc:l safety factor (central safety factor
n depends on Pf ) to changes in order of magnitude in Pg.

The basic form of the total cost function or total  utility losses®? is

T =1+ PeCp - - - (3.18)
The initial cost, |, is a function of the sfréng’rh; that is, it is dependent upon the
central safety factor and can be expressed as
| = f(n)
The precise relationship between | and 0 is not known, but in view of the small
range of strengths and form in a basic structure, a nearly linear | =1 relationship

is expec'red.62 Paez and Toroga (Turkstraéz' 62

) have studied the relationship for
simple bridge struciures and found the linear relationship
|=C]F+CO --- (8.19)

where Cy and Cj are constants, One of the aspects of this present study is to

investigate the | - n relationship for a bridge beam.
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Since the constant Cq has no effect on the minimization of the total cost

expression, formula 3.18 can be rewritten in the form
T=Cn + PECp

Equation 3.9 for Pg can be rewritten as

wheren = R/S andV = Vg2 + Vg2 .

Substituting in 3.20 for Pg, the e;xpression for T becomes

. _ ;_"b/V
T=Cin + Ckn
R RO
=Cin (1 + Gk n )

Differentiating and solving for Fopi-. ,

) . -(b'+ VNV
T =C - Gkb &
TG
v Y,
nopt- = (G )V+D %QVTF
' 1

Substituting F‘_opf. for n in 3.22,

Topf. = C]F;Opto (] + \é)

Considering values of n near the optimum and putting —opf.
n = n*(1 + D)

represents a divergence of n from opt.

is small compared to one. Then,

- - = (3.20)

- - = (3.21)

- - - (3.22)

- - - (3.23)

- - - (3.24)

= n*, the expression

- - - (3.25)

in the vicinity of the optimum; where' D
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(V)N ~(o+V)V

T=C +D)(1+k G a+D) . )
o
| h -(b+V)
= Cyn* (l'+D)((l+\é(l+D) Vo) ---- (3.20)

= Cyn* (1 +D) C(1+v (.l ~DB )
: b. \

SinceV ¢ < b , by ‘simpl.ificaﬁon
T=Cin*(1+V) + VD Cyn*
P B . - - - - (3.27)

= Topr, + VD Cp ¥
Toepte TR T

Since V/b < < 1 it can be seen that the total cost is relatively insensitive to

changes in n near the optimum,

By substituting the value for n* in the equafion for Pg.,

=V (V Ci )V/b'

P
Fopt. ~ | Tk BKCF - - -~ (3.28)

Also, substituting the value for n near the optimum given by equation 3.21 in the

formula for Pg,
-b/N
knt (1 +D)

- b/
0-8D - - - - 3.29)
\'

]

PF

= PFopf.

Since b/V > > 1, it can be concluded that 0 is relatively insensitive to changes in

Pp around the optimum point.
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: Paaz and Toroja (Turksfraél) has shown that there is @ wide range of strength
within which the computed value of the total cost shows little variaﬁon‘, Computations
done by Turkstra hdvé given similar results. The general conclusions that can be drawn
froﬁ this fheore’rfccl analysis .are:

(1) The total cost is relatively insensitive to changes in n near the optimum,

(2) There is a range of Pg's that can be used with only small variations in n
near the optimum. On the other hand, Pf is extremely sensitive to small
changes in n,

(3) As aresult of (T)and (2), if can be concluded that approximations such as
that proposed by Cornell are sufficienfly reliable af this stage of engineer-
ing knowledge for computing the probability of failure for a wide range of
distribution functions of load and resistance, |

It must be emphasised, however, that these conclusions only hdld whenV < < b,

As V gets larger; that is, as the level of conirol exercised on the design variables

decreases and the factor of ignorance increases, the conclusions become less valid,

3.6.3 Initial Cost.

For the purposes of this study, only the initial cost is required. Since all
other costs, except material cost, are reasonably constant for a particular class of
structure, such as simple-span reinforced concrete bridges, only the material Aco'sf
will be considered.

The material cost of a bridge beam is a function of the quantities of concrete

ond steel and the unit costs of these materials, Thus,
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Ci = F(C.. Q) + G(C;. ©)
where C; is the total initial cost per unit length; Cc and Cs, the unit costs of
concrete and steel respecﬁvély; and Q. and Qg the quantities of concrete and steel.

For a rectangular concrete bear,

Qs_ = Ay x 1

Suiosfituﬁng, and converting all quantitizs to the same unit of measure,

Cr = 0.00694bT Co + 3.40 4Cs ° - -- (3.30)
The values of Cc and Cg employed in thi: study are .50 and .07 respectively. These
values are based on prices in Montreal, Canada. |

A formulation of the cost functicr: and the probability of failure in terms of
the distributions of load and resistance hzs been presented. Due to the complexity
involved in the evaluation of the failure probability in the general ‘_formulaﬁon, an

approximate method, developed by Corrizll, has been applied to the specific problem,

- The final proposed formulation requires crily the means and variances of the distributions

of the design variables to solve the problem,

3.7  Summary.
On the basis of Afhe preceding discussion, the following are adopted:
" (1) The relationship between n and P is given by Equation (3.11) with
k = 7.5andb' = 4.5,
(2) The mean moment capacity fMa is given by Equation (3.4) with the

constants a,, aj and ay equal to 0,011, 1,114 and -0,90 respeéffvely,

and @ = 0.999.



o
. | (3) The coefficient of variation of moment capacity VMA is given by
Equaﬁon (3.15) and of applied"momemL VMS by Equation (3.17).
_ (4) Construction costs of concrete related .fo the cost of materials are
given by Equation (3.30), with unit costs C¢ and Cs equal to

0.50 and 0,07 respectively.
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OPTIMAL SOLUTION

The optimization techniques of operations research have been applied to
structural design within recent years to obtain a "minimumtweight design" or a
"minimum-cost design". | In general, writers hcv:v.e referred to the combination of
design variables resulting frorﬁ such optimization procedures as the optimum combina-
tion. But the term optimum can be very misleading unless. it is defined in relation
to the specific problem; that is, the framework within which the opﬁm'ol problem

is to be solved. Herein, a method of obtaining the optimal solution of a reinforced

concrete bridge problem based on cost factors and subject to certain safety require-

ments is presented,

4.1  Fomulation of the Optimal Problem,
13,43,48 ; .

Several writers within recent years have formulated the optimal
problem as a non-linear programming problem and by employing certain approximations
"and iterative procedures, they obtain an "optimal solution". This optimization tech~
. . . A8 53
nique has been applied to plate girders™®, prestressed concrete structures™™, framed
18,45

structures , and, in some cases, a general formulation applicable to different

classes of structures has been atfemp’redm. However, these formulations are made
within the present design framework; that is, by adhering to the limitations and condi-

' tions set by the present design code. On this basis, an absolute optimum is sought.
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This approach is unrealistic for two main reasons. Firstly, it does not relate
cost to safety on a realistic basis, Safety or lack of safety can only be expressed in
a probabilistic sense as discussed in previous chapters. By basing the optimal solution
on fixed "allowable stresses" and‘ "allowable load", the formulation ignores the statistical
variation of these design variables,

Secondly, economy in structural design cannot be absolute. In other words,
a designer cannot obtain an absolute optimum in a design problem. For example,
rectangular R.C. beams have no finite optimum that is absolute. The cost of materials
of such beams decrease as the depth of the beam increases, Thus the absolute optimum
is at d equal to infinity, Further, the solufion of the non-linear programming pr'oblem
involves a complex procedure]8l43r44'45 and the results are questionable.

Economy in structural design, therefore, can only be considered in the context
of a relationship befwéen cost and safety, The problem here fs to compute the optimum
initial cost of aR.C. bridge beam cross-section for different values of the probability of

failure and to examine the relationship between them,

4,2  Optimization Procedure,

An optimization procedure for solving ‘the optimal problem is formulated as a com-
puter’ programming problem. The known variables and constants 6ré the input and the
unknown variobles are determined in logical sequence.

The optimal solution is obtained for a rectangular beam cross-section at mid-
span of a simple span R.C, bridge. The bridge geometry is considered as a simple
beam and slab arrangement. The bridge span is 50 feet and the superstructure is

supported for one lane of traffic on three rectangular beams spaced on a width of
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15 feet ai 5 foot cenires. The procedural steps are best understood by diséussing

each step as the formulation is developed.

4.2.1, Compu'ra'ﬁonql Steps.

The optimization procedure consists of the following compu’raﬁo.ncl steps:

Step 1: Constant Input = This input consists of the constants and all
variables kept fixed throughout the computation.

Ste.p 2: Variable Input , This consists of variables, the values of which
are not constant, but are varied in the analysis,

Step 3: Central Safet.y Foc’ro} - fhe statistical parameters of fl¢, fy,
@ and M| are obtained from the frequencyl distributions of
these variables. On the other hand, the statistical parameters
of Vp andVyare estimated. This es’rimcﬁc;n is based on designx
experience., On the basis of these determined parameters and
by using an initial value for E = m;, VZMA and V2MS are
computed from the formulas developed in Section 3.5 of
Chapter 111 for various values of '5[ Thus, with VZMA and
V2MS known, —rT_is determined for different values of Pg from

the formula:

7= N2, +v2 - &
n exp. ( Bk Vépa +V MS) | 4.1
where Bk = (7.5 - log Pg) /4.5. A check is made in
- Step 6 for the value of m,
_ Step 4: Design Variables - With n computed and an initial value of

m estimated, the design moment is obtained from:



Step 5:

MA =0 (M (1+m))
and T can then be computed from

¢ J12.0 B MA ) 1/3
(rﬁ Tlc (oo + ‘d]a + ‘0221_2 )y )

'J:

where B = d /b, This equation for d is developed in
Appendix A, See Appendix C for assumptions on .

It is necessary at this stage to choose values of one of the
variables, d, b or A;_, or a combination of these in order

to compute the others, for there can be no absolute optimum,
A preliminary computation \;vcss carried out to investigate which
variable of variables' combination would be best éuifed to the
analysis, The combination, B =d/b, was chosen because in
prucﬁ‘cal problems B would rarely be greq’rer.f_han three and,

as a result, only three o four values need to be used. Also,
the volume of computations to be carried out using B is com-i
pcroﬁ;‘/ely small and therefore the computational time is
reduced and the results less exhaqsff.ng. The other design
variables, b and As, are easi.ly obtained from B =a'/b

andg = AT, /bTFc. |

Totai Depth = 1t is necessary to know the total depth of the
beam before the cost of materials can be determined. It is,
therefore, required to choose bar sizes and compute the number
of rows of steel for a particular total area of steel, By investi-
gating the influence of the bar sizes for various steel areas

on the total depth of a rectangular beam, an automatic method
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was developed for determini‘ng the total depth,” h. This

method is explained in Appendix B.

Step 6: Checking m - With the width and total depth of the beom
determined and 4’rhe bridge geometry given as explained |
earlier, the actual dead load moment, Mp, can be com-
puted, m;,qis then computed and compared with mj;

a tolerance limit of 0,05 being allowed. If the deviation
is greater than 0,05, the procedure is repeated again from
. Step 3 until convergence is obtained,

Step 7: Cost - Hc\)ing obtained b, h—and As, the maferials' cost
can be determined. To do &this, the unit cost of both
steel and concrete was chosen, based on delfvered prices
in Montreal, Canada. The cost per foot len:gth of the
beam, as developed in Section 3.6 of Chapter Ill, is ex-
pressed as

Ci = 0,00694 bhCe + 3.40 A Cs - - - - (7.2)

where C, is the unit cost of concrete and Cs the unit cost
of steel,

Step 8: Repeat - The procedure is repeated from Step 3 for values
ofa; between .05 and .40.

Step 9: Repeat ~ The entire procedure is repeated from Step 2 for

various values of the variables.

The numerical computations were performed on the 1BM~7044 Computer of

McGill University. A list of the values of the input data is given in Appendix C,

The output data consisted mainly of the computed values of VZMA, VZps, 1, T,



-MAI d, b, A, | and Ci.

4.3  Optimum Cost and Failure Probability.
The output data was analysed in order to investigate the relationship between

optimum initial cost and strength, and the influence, if any, this relationship has on

“the design variables,

It was observed early in the analysis of the output data fhuf the optimum cost.
generally, occurred af an almost constant value of q for all values of the input
variables, 'The output data gave the opfimum in some cases at q = 0,20 and in others
at g =0.25, This was as a result of the increment of 0.05 used for 9.

Figs. (4-1A) to (4-1B) show the variation in cost with q for various values of
PE, ML, VMp and VMg. It can be observed from the curves that, in fact, the
optimum lfes somewhere between g =0.20 and § =0.25; perhaps closer to q = 0,25,
This constancy in the values of q for optimum ‘cost can be éxplained by the fact that g =
As?;, / ba”f_]c ; thus if 'f;,_qnd Fl. are constant or (f;,/ﬂ ¢c) is constant, then aopf‘ can
be expected to be constant., Further investigation is required to establish the relation-
ship between qopt, and G;,/ﬂ J .

The relationship between optimum cost and strength is summarised in a series
of tables and curves. Tables (4-1A) f§ (4-1D ) summarises the optimum cost for four
combinations of ‘v'MA and VMS' It can be observed from the tables that a large number
of combinations of PF, M| and B will give fhe same cost for a particular V4 and VMS
and even for various combinations of VMp and VMg. In fact, on each table, lines of

constant cost can be drawn in a contour-like fashion.

7C



71

In order to show the general relaﬁonship obt_cﬁned, a number of curves are
drawn of logPF against Cyfor M| = 50. Iéig. 4/2 shows one such set of curves for
varying VMA' VMS and B. For ony particular Pg, the optimum cost increases for
decreasing B and for increasing VMA and VMg, os is expected. Also, as the
probability of failure decreases, the cost increases, but the rate of increase decreases
as VMA and VMS increases; that is, for increasing VMA and Vs ‘the slope of the
curve logPE/C; decreases.

This influence of VMA and VMS on the logPg vs,C; relationship is further
shown by Figs. 4.3A, 4,38 and 4.3C. |

This general tendency of the logPg vs C; curves for M| = 50 is typical for all
M's. Figs. 4..4A and 4.4B give logPg with C; for various My's, VMAand VMS-

The only influence of the increasing live load moment, My , is to increase the
magnitude of the optimum cost. It can be observed that the s;lope of the curves for all
ML and for a particular combination of VMAond VMS is almost constant. Also, the
increase in the magnitude of C; is almost constant for equal increases in the live load
momenf;.PF being kept constant. Fig.4-5 shows the relationship between logPg and
n . The trend in the curves con be easily deducéd from equcﬁon (3-11)

The most interesting and important relaﬁ.onship obiained wés that between ini-
tial cost and strength or. the central séfety factor, n. The curves shown in Figs. 4-6A to
4-6C indicate that thgré is a linear relationship of the form

Ci = Ap + A
_ between initial cost and n fo;' a bridge beam; the constants Agand Ajdepending on the
live load moment and the depth to width ratio of the beam, [t can be seen from the
Ct - n curves that the relationship is mdependenf of P, VMA and VM- However,

the value of n is directly dependent on PF, VMA and VMS



TABLE - 4-1A

OPTIMUM INITIAL COST

%

VMp = .10 VMg = -05 _

ML = 50 R = 60 ML =70 L = 80 ML = 90

Pe | ® B B B B B
2.0 2.5 3.0 2.0 2.5 3.0 2.0 2.5 3.0 2.0' 2.5 3.0 2.0 2.5 3..0 .

10-2 1.3511.948 [ 1.809 {1.677| 2.008{ 1.841 | 1.729 |2.,068 | 1.899 | 1.770 | 2.115| 1.943 ].821. 2.179| 1.999 11.875

10-3 | 1.42 | 2.037] 1.877 | 1.751] 2.100} 1.924| 1.806 | 2.164] 1.980| 1.848| 2.209 2,021. 1.903 2.302 2.084 ]..960
104 | 1.50 2.131 1.964 {1.830]2.197] 2.022 | 1.888 | 2.300| 2.052| 1.931| 2.344{ 2.103 '].990 2.429| 2.165} 2.048
105 | 1.59 |2.260 |2.039 |1.912.|2.334| 2.078 [1.973 |2.408 | 2.161 |2.033 | 2.455 | 2.199 | 2.079 | 2.545 | 2.291 2.141 |
10-6 1.69 {2.378 {2,117 }1.999 | 2.451{ 2.181 | 2,063 |2.523 2.282 2,126 12.54812.349 | 2.163 | 2.652| 2.395 | 2.230 |

[#4



TABLE - 4-1B

OPTIMUM INITIAL COST

VM, =10 Vpg = .10

ML = 50 ML = 60 ML = 70 ML = 80 ML = 90

PE | 7 B B 5 B B
20 | 2.5 | 3.0 | 2.0 |25 | 3.0 | 20| 2.5 | 3.0 | 20 | 25.] 8.0 | 2.0 |- 2.5 | 3.0
10-2 | 1.42 | 2.039| 1.880 | 1.752] 2.096 | 1.920 | 1.801 | 2.153| 1.981 | 1.836 | 2.193 | 2.033 | 1.885 |2.321 | 2.061 | 1.937
10-3 | 1.52 | 2.162| 1.986 | 1.846[2.211 |2.036| 1.897 | 2.311 | 2.054 | 1.948 | 2.369 | 2.114 1.985 2.427 2.155 2.038
10-4 | 1.62|2.319| 2.061 | 1.947{2.380 |2.105 | 2.000 | 2.441 | 2.171 | 2.052 | 2.502 | 2.262 | 2.090 | 2541 |2.301 | 2.145
105 | 1.73 | 2.469 | 2.177 | 2.054| 2.518 | 2.272| 2.109| 2.556] 2.331 2.164] 2.586] 2.369| 2.194 | 2.653 2.446 2.290
1076 | 1.86 | 2.575 | 2.342 | 2.168 | 2.6142.403| 2.215 | 2.679 | 2.478 | 2.271 | 2.739 | 2.539 | 2.325 |2.805 | 2.600 | 2.362

€L




TABLE - 4-1C

OPTIMUM INITIAL COST

VM, = 15 VMg = .05 |

M = 50 ML = 60 ML = 70 . ML = 80 ML = 90

Pe n B B B B i
2.0 | 2.5¢ 3.0| 2.0 25| 3.0 2.0 25| 3.0 2.0| 2.5| 3.0 2.0| 2.5| 3.0
102 | 1.52 {2,159 | 1.978 | 1.853 | 2.248 | 2.035| 1.909 | 2.312 | 2073 1.965 | 2.375| 2.122| 2.007 | 2.438 | 2.182 | 2.064
10-3 | 1.65 [2.330 | 2.090 | 1.974 |2.399 | 2.142 | 2.034 |2.468 |2.232 | 2.093| 2.535| 2.294 | 2.187 | 2.577| 2.339 | 2.175
10-4 | 1.79 [2.502 | 2.246 | 2.105 |2.563 |2.314 | 2.168 |2.598 |2.381 | 2.185 |2.675 | 2.488 |2.253 | 2.753 2.535 | 2.303
105 | 1.94 |2.638 | 2.399 [ 2.212 | 2.716 | 2.513 | 2.279 | 2.789 | 2.585 | 2.342 | 2.867| 2.657 | 2.409 | 2.969 | 2.727 | 2.496
10-6 | 2.10 |2.851 | 2.606 | 2.372 | 2.900 [ 2.685 | 2.430 |3.013 |2.762 | 2.502 |3.095 | 2.817 |2.614 |3.176 |2.853 | 2.684

YL



TABLE - 4-1D

OPTIMUM INITIAL COST

VMy = -15 VMg = -10

R = 50 M. = &0 M = 70 ML = 80 ML = 90

PE n B B B B B
2.0 | 2.5 | 3.0 | 2.0 | 2.5 |30 |20 253020/ 25]30]20]25]3.0
102 | 1.63 |2.326 | 2.075 | 1.959 | 2.393 | 2.123 | 2.017 | 2.458 | 2.194 | 2.074 | 2.524 | 2.284 |2.116 | 2.550 | 2.326 | 2.163
10-3 | 1.79 |2.520 | 2.270 | 2.112 | 2.570 | 2.335 2.170 2.601 2,400 | 2.200 | 2.676| 2.489 | 2.273| 2.753| 2.534| 2.315
1074 | 1.97 |2.698 | 2.486 | 2.262 | 2.755|2.547 | 2.327 | 2.825 | 2.617 | 2.410 | 2.900 | 2.686 |2.475 | 3.025 | 2.755 | 2.520
105 | 2.16 |2.918 | 2.677| 2.460 | 3.045| 2.753| 2.531| 3.105| 2.827| 2.581 | 3.196| 2.886 | 2.671| 3.276| 2.938| 2.74]
10-6 | 2.35 [3.213 | 2.905 | 2.661 | 3.320 | 2.969 | 2.736 | 3.320 | 3.021 | 2.786 |3.467| 3.120 | 2.886 | 3.512 | 3.198 | 2.9¢0

s
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It was observed from the results of'the computation that the dead to live load ratio m
.varied w.ideI.y for various values of ML, VM A ﬁnd VMS' The most pronounced variation
in m was observed for:varying ML. As. My increased from 50 to 90, m decreased from
6.0 to 3.0 approximately. Howe\}er, the effect on m of variation in VM and VMS

is not as pronounced, No systematic variation in m for any one variable or combination

of variables was observed.

4.4  New Design Approach,

ISince both cost and safety are the fundamental concern of designer, client and
society, it is necessary and urgent that a new approach to the design problem be pre-~
sented on a realistic, yet simple basis. Hereunder, such a formulation is presented for
a bridge beam of rectangular cross-section, based on the results of this present study,
but which formulation can act as a basis for future invesfiga\;ions.

(1) Say Ty, Vy' f_]c, Ver FAL, Vi, v, Vg, Vp and Vq are obtained from
statistical data and chosen on a subjective basis from experience (the professional code
can be a guide in such a choice).

(2) Probability of Failure - It is not meant here to begin a discussion on the
choice of failure probabilities. However, the choice of the fai lure probcbili’r)./ is
undoubtedly related to the specific class of structure under consideration and the
relative importance of the particular member to the structural operation of the entire

structure. For certain members and certain classes of structures, the designer may be

.allowed a degree of flexibility in choosing the failure probability. Suffice it to say

that a designer can be and must be guided in his choice by a new code. Say that a

choice is made.
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(3) Variance Ratios of Resistance and Load - From the statistical parameters
determined in (1) and by calculating the r"aﬁo (—f‘y/f—]c), aopf‘ for the particular class
of structure, in this case an R.C. simple-span bridge, can be obtained from graphs and
as a result VMA and VMS can be ;;omputed from the formulas given in Chapter 111,
or any other such formulas for the class of structure under consideration.

The only unknow.n is -rﬁ.. At this stage, m can be guesstimated, The results of
the computation shc;wed that m varied from 3.0 to 6.0 approximately as M decreased
from 90 to 50. Thus, knowing ML, say 90, m can be guesstimated to be 3.0. A check
for m is.made in Step (6).

it might be mentioned that with further investigation a new code might guide
a designer by giving values of VM and VMS for certain classes of structures and
levels of control.

(4) Central Safeiy Factor - Having VMA ; VMS cu;d ‘PF, n can be obtained
from a series of curves such as shown in Fig. 4-5. Turkstra®l has drawn a series of
these curves for various types of frequency distributions.

(5) Design Variables - Withn known, MA/‘;’; can be taken from a curve such
as that shown in Fig. 4-7, since My is known from (1). With the initial estimate of
m from (3), MA can be obtained or, instead, _MA/EML can be evaluated.

* Figs. 4-8A, 4-8B and 4-9 shovs) curves for finding the effective dépth, d.

~ Since El.opi'. has been determined in Step (3), values of d can be obtained from one of

these curves for various values of B =d/b, thus giving b =d/B and Ag = ba‘a‘(—f—] /Ty

‘In this way, values of b, d and A can be obtained for various values of B.

It might be necessary to limit, say, d because of clearance required. This

constraint can be taken into consideration at this stage quite simply.
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(6) Check form - Now, the value of MD can be determined and thus
m = Mp/M[ can be evaluated and checked with the initial estimate of m. If
necessary, the procedw.:xre can be repeated from Step (3) for the new value of m.

(7) Cost - The cost depeﬁds, as observed earlier, on many variables. The
procedure at this stage is to minimise cost. With VM and VMgr PE and M| known,
the cost can be investigated for various B's. Further, if flexibility is allowed in the
choice of Pg, the cost can be examined for changes in PF.

The method is equally reversable if an existing structure is to be rated. This
new design approach cuts, to a considerable extent, the time spent on computation.
Consequently, the designer can devote more time to the art of the design and the
considefaﬁon of economy and safety.

There is no doubt that different classes of S’rrucfures'_will have to be treated
differently; but the basi.c pr.ocedure ouilined can be improved And developed for a
wide range of the popular design pr.oblems. The new procedure varies little in actudl
procedural steps from the contemporax;y design process. In fact, although the whole
basis of the de;sign method is changed, a designer can feel familiar with the procedure

presenied within a very short time.
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RESULTS AND CONCLUSION

Thé main purpose of this study was to investigate the relationship between
optimum initial cost and safety on a probabilistic basis as related to ‘simple—span rein-
forced concyefe bridge bedﬁ:s, and to examine the properﬁes of the cost-safety relation-
ship. Basically, the problem consisted of two parts: (a) formulation of the cost
function and ofAfh‘e probability of failure in terms of the central safety factor n,

and (b) the development of a method for solving the optimum problem.

5.1  Summary of Procedure.

- A formulation of the probability problem is presénted. This formulation is an
approxfmoﬁon a's a result of the lack of knowlédge of the parameters of the exact formﬁ-
lation. In order fo obtain the statistical porameters required for the évalvqﬁon of the
approximate formula, a statistical analysis of da*a on load and flexural resistance was
carried out. The loading data was obtained from the 1942 loadometer survey as analysed
by Stephenson. The ultimate strength theory for moment capacity of beams was employed
but the conventional ultimate strength formula was shown to be biased with q. As such,
an empirical formula based on a statistical analysis of iest data wc;s developed. Data
required for a statistical analysis of some of the variables were. not available and a
reasonable estimate of their values was made based on previous investigation,

The cost function was formulated for the <-:ross-sec’rion of the beams at mid-span

and, therefore, was expressed in terms of the sectional characteristics of the beams and
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the specific weights and unit costs of materials,

The optimization technique adopted was based on an iterative search method,

A set of means, ML, ?"lc, '?'y, and coefficients of variations Vg, Vp, VC.',, V'), r Vs

were speciﬁed and VM p was cc;mbu'red for a specified value of q . Then for a pdrﬁ-
cular value of Pg, n was computed and the sectional properties were obtained using
an iterative procedure involving the dead load to live load ratio. The computation

was carried out for various values of § and the optimum section obtained by a s.earch

method. The procedure was repeated for & variety of sets of basic parameters.

5.2  Properties of the Cost-Safety Relationship.

The resuii's of this sfuay indi.ca;re ‘tho.f the relationship between cost and safety
for the class of problem and parameters sh;[died exhibit certain properties that may give
some insight into the probobilistic basis of design.

The optimum value of the ul’rir;mq’re strength parameter § was observed to vary
between 0.20 ond 0.25 for all values of v;:riobles used. The percentage difference in |
cost between q equal t0 0,20 and 0.25 was of the order of 1.0 percent. This indicates
that initial cost is relatively insensitive to changes in 'q_ and therefore in p around
the optimum for a specific value of the T;y/-f-]c réﬁo.

As predicted by theoretical analysis, the central safety factor n was observed
to be relatively insensitive to large changes in Pg around the optimum, For the smallest
values of VMA and \,/MS used (VMA =.,10, VMS = ,05) a 100 percent inc;e;os.e in log PE
only gives a change in-r-x; of 9 percent; wherecs for the largest VMA and VMS
(VMA = .15, VMS = ,10) a 100 percent increase in log PF gives 18 percent change in

n. lItis, therefore, obvious that as VM end VMS increases n becomes more sensitive

to changes in log PE. This increase in sensitivity of T with increasing VM 5 and VMg



9%

may be shown by considering the parameter V =1, VMi + VMS2 . For a 100 percent
in.crease in log Pg, the change in n increases By 100 percent for 50 percent increase in V.
Thus the sensitivity of:-rT to changes in Pp around the optimum depends to a great extent
on the values of the coefficients of variation of load and resistance.

A similar relationship was observed between failure probability and optimum cost.
For 100 percent increase in log PF, the optimum cost only increased by 9 percent. But for
an increase in V of 50 percent, the change in optimum cost for a 100 percent increase in
PF increases fo 17 percent. h‘4 was also observed that the reléﬁonship between optimum
irﬁﬁal cost and T is a linear one of the form, C; = Agn + Aj where A and A are con-
stants, The ration Aj/A, varied betwsen 0.25 and 0.35 as the depth to width ratio
increased from 2.0 to 3.0 with A, remaining almost constant.

One of the mos;r interesting properties of the cost-safety relationship is the effect
on optimum cost of increasing M. For qhy set of vaiues of PF., VMA and VMS, the
absolute increase in the optimum césf was almost constant for an absolute consfcnf. increase
in ML. As ML increases from 50 fo 90, that is an increase of 80 percent, the optimum
cost increased by only 12 percent. A similar effect was observed in the C; - n relation-
ship. Thus the effect of increasing M| on the cost-safety relationship is to increase the
optimum cost proportionately for -cmy PEorn.

The influence of the depth to width ratio of the beams was as expected. Asthe
depth to width ratio increased fhe'opﬁmum cost decreased for any given set of values of the
basic parameters. For example, as depth to width ratio increased from 2.0 t0 3.0 or
50 percent, the optimum initial cost decreased by 15 percent. However, the dead load
to live load ratio did not show any systematic variation. In general, it seems that m

decreased with increasing M| and n but it also varied to a lesser extent with changes in
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VMA, VMS and the depfh to width ratio.

5.3 Remarks,

The basic formulation of fﬁe probebility problem has been developed by many
writers and has beén expressed as a statistical relationship between loua and resistance
based on fhé frequency distributions of these parameters. However, knowledge is lacking
as to the precise nature of these dis’rribuﬁo.n‘s. Data in the range of the tail of the dis-
fribution curve is not available. Only the general trend of the d?sfribuﬁon within the
range 01; experimental measure is known. It is doubtful if sufficient data would ever be
accumulated to allow engineers to spe‘cify the précise nature of the load and resistance
disfribufibns.. Further, data required for a realistic estimate of some of the variables
are not available and engineers will have to mgke a reasonable estimate based on experi~
ence and the level of conf|;o| exercised. Under such circum.sfdnces, it seems that only the
means and variances of the parameters can be reasonably estimated. Also, application of
the probabilistic approach to c':lesign problems g'ive. a complex set of equations which cannot -
be solved at thé presehf state of knowledge. !'.r is as a consequence of this that an approxi~
ma’re.formula’rion of the probability problem is neceséary and may remain so for quite some
time.

The optimization procedure de.\'/eloped in this study avoids many of the pitfalls
of previous optimization methods. Whereas in previous programming problems of this

nature research engineers have found it necessary to use meve limits, adaptive move

T

-limits, accumulation of constraint equations, etc., which could give sub-optima points

“instead of optima, the method developed herein is a straightforward iterative - search method.
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P The preceding discussion on the properties of the cost-saféty relationship shows
frhat many interesting phenomena were obseived but further investigation is required to
confirm their generalif.y to the class of problem considered. The constancy in the value
of Efopf. is one such phenomenﬁm Euf it may be that aop'l-o is related to the (Fy/f 1 c)
ratio. Also, further investigation is required into the effect of the statistical paramefers
of fy and f]c on the cost-safety relationship.

This study shows that a great deal of work is required to be done on the probabil-
istic approaé:h to safety and economy in structural design before the concept is institu-

tionalised and applied to everyday design problems, However, it also shows that the

process of evaluating accumulated data, combining them with experience, examining

v

the results and making a realistic choice can be formulated in a simple and logical manner,



APPENDIX A

EFFECTIVE DEPTH OF BEAM

From Section 3.5 of Chapter Ill:

n = MA/MS

and from Section 3.5.2:

Therefore,

Mpo = "Ms = n (M + Mp)

Since m = ﬁ\D/ﬁ\L
MA = B-.((N\L (1+m))
Also, -
MA=F Mp =7 (bd® flc(og +oyq + a532) )
Thus,

2 - MA
aﬂc (a0 + a].c_l + 0232) b

33 B x MA

g (oo + ajq + 0221_2 )
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APPENDIX B
TOTAL DEPTH OF BEAM

By investigating the relationship between the reinforcing steel bar sizes,
number of rows and total depth of bearﬁ for various areas of steel and widths of
beam, it was found that the followir;g method of determining the total depth of
the beam is both realistic and relioble. A check was made oﬁ the results and the
method was shown to give accurate values of h, _thé total depth.

(a) Bar Sizes -~ Assume the bar size to be No. 11.

(b) Total No. of Bars - If RN is the total number of bars required for

a total area of steel A, then

RN = 0,64 A

(c} No. of Bars in One Row - Let ROW be the number of bars in one

row; bl the required width of beam fox.' ROW; R the total number
of rows, then by putting

ROW = ROW;
and assuming a 2" clear cover with 1" clear spacing between bars,
the equation for bl s

bl = 2.41ROW; + 3.0
Using a tolerance limit of 0,5", if

(b + 0.5 - bl)
is less than zero, ROW) = 1) is used'; if it is zero, ROWj is used,
and if it is greater than zero, the cycle is repeated with ROW =

ROWj + 1.0. The result of this step is a value for ROW.



(d) Number of Rows - Now,
R = RN/ROW
Using a tolerance limit of 0;]; if NR is the nearest lower digit
of R, ond if |
(R ~-(NR +0.1))
is less than or equal to zero, then NR is used as the number of
rows; if it is greater than zero, ’rhen NR + 1 is used.
(e) Total Depth - With the number of rows, NOR, determined,
by a simple computation, T is obtained, thus

h =d + NOR + 1.5

There might be other methods that can be developed, but for the popular

bar sizes used in bridge and structural design in general, whenever heavy loads

are the applied loads, this method is simple and gives accurate resulis,
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. APPENDIX C

VALUES OF INPUT CONSTANTS AND VARIABLES

The values of the constants and variables which form the input data are given
below. Only one value each for '{ﬂc and Ty is used. If two or three values were used,
the output data would be too voluminous and, consequently, too time-consuming to
analyse, One value of V¢ is eniployed as preliminary investigation showed that
variation in Vc has little effect on the value of VM'A. In computing m in Secﬁon 4,21
of Chapter IV, the following assumptions are made:

1. the thickness of the slab is 6";

2. the beams are spaced at 5 feet centres;

3. the bridge span is 50'.

(o) Constants: |

% =0.01; o = L14 e = -0.9

7 = 0.9 Vy = 0.085
. =40, V. = 0.120
Ty - 50.0
Ce = 0.50
C = 0.07

(b)  Variables:

-4

1072, 1073, 107% 1073, 107

< =
E
1 ]

= 50; 60; 70; 80; 90

<
—
I

0.15 ; 0.20



0.05 ; 0.10
0.05 ;' 0.10
0.09 ; 0.12

2.0 ; 2.5 ; 3.0
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