
OPTIMIZATION OF CONCRETE BEAMS 

. W 1 T H REL 1 A Bill T Y CON S T R AI N T S 



OPTIM lZA TlON OF CO NCRETE BEAMS Wl TH 

RELlAB1LlTY CONSTRA1NTS 

By 

FRAN K L YN HARVEY 

B. SCi UN1VERSnV OF LO:'-JDON, 1964 

Submitted in partial fulfillment of the requirements for the 

degree of Mo~l·er of Science in Civil Engineering 

JULY, 1968 

FACULTY OF ENGiNEERING 

McGI LL UNIVERSITY 

MONTREAL, CANADA 

@ Frank1yn Harvey 1969 



ABSTRACT . 

OPTIMIZATION OF CONCRETE BEAMS 
WITH RELlABILlTY CONSTRAINTS 

by 

FRANK L YN HARVEY 

Submitted to the Department of Civil Engineering, McGill 
University, on August 5th, 1968 f in partial fulfillment of the 
requirements for the degree of Master of Civil Engineering. 

This 'thesis attempts to investigate the relationship between safety and 

optimum cost of reinforced concrete beams as related to simple-span highway 

bridges bas~d on probability. 

There have been several proposaIs for a realistic evaluation of safety 

based on probabili'i-y studies as the traditional approach to safety does not ensure 

uniform safety levels. In general, probabilistic approaches to safety are based on 

statistical distributions of design variables and the operational characteristics of 

a structural mechanism. 

The optimization problem is solved by an iterative-search method. 

Failure probabilities and the statistical parameters of certain design variables 

constitute the input variables whose values determine the optimum configuration 

of the beam characteristics. 

As a result of this study, it may be concluded that the cost-safety 

reJationship is linear, or nearly linear ~ but practical application of probabilistic 

formulations are limited because of a tack of knowledge of several components 

of design. 
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NOTATIONS 

The following notations are used in this study: 

R -- Resistance 

S = Load 

if = Mean of Resistance 

S = Mean of load 

(JR = Standard Deviation of Resistance 

9S = Standard Deviation of load 

VR = Coefficient of Variation of Resistance 

Vs = Coefficient of Variation of load 

n = Safety Parameter (R/S) 

r = Safety Parameter (R-S) 

PF - Probability of Failure 

ML = live Load Moment 

MD = Dead load Moment 

MA = Actual Moment Capacity of Bearn 

MS = Total Applied Moment (ML + MD) 

m = Mo/ML = dead load/live load ratio. 

B = Ratio of Effective Depth to Width of Bearn 

Ali other notations used in this study are either slight modifications of the above or 

are the standard notations used in A.C.I. Code (A.C.I. 318-63). In cases where 

the notations are none of the above, they are defined as it becomes necessary. 
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INTRODUCTION 

A fundamental con cern of 011 structural designers and their clients is this: 

that structures be both safe and economical in the sense that the y fulfi Il their 

functional, purposes without being a hazard to society, and the cost must be the 

minimJJm that can be possibly achieved consistent with safety. 

With the development of new methods in mathematics, the compilation of 

new data and the increasing application of modern techniques to engineering de-

sign and construction, it is obvious that the classical maxim: maximum safety at 

minimum cost, is contradictory. 

Basically, the major variables under the control of the structural designer 

ore f.orm, detailed geometry, materials and proportions. A designer may use 

structural steel, reinforced concrete or pre-stressed concrete. Each structural 

member, say, a reinforced concrete beam, consists of a number of design variables 

such as beam shape and size, percentage of stee 1 1 strengths of concrete and stee l, 

etc. The arrangement of the structural members, the materials used and the 

values and proportions of the design variables determine the overall operation of 

the structural mechanism. 

Also, the level of structural operation de pends on the applied forces. 

Thus the design variables and the appli ed forces are not independent. On 

the one hand, the combination of design variables de pends on the 



applied forces; and on the other, the arrangement of the structur~1 members is 

limited by the pur poses or goals of the structure, and also influences the intensity' 

and distribution of the applied forces. The genera'i design process, therefore, must 

be considered as a totality taking ail the important parameters into consideration. 

1. 1 Safety Factor in Design. 

The concept of IIfactor of safety" or "safety factor" forms a fundamental 

premise on which the design of struci'ures is bosed, but the basis of this concept has 

only been investigatedwithin recent years. 
47 

Pugsley, in 1951, placed both the design process and the concept of 

• IIsafety factor" in historical perspective ~ That is, he showed how the design process 

evolved and how the "safety factor" became a fundamental part of the design pro-

cess. 

"It was early apparent to reinforced concrete engineers that, 

- - - , as 50 on as the external loads became such that 

yielding of the steel reinforcing-rods occurred, then large 

cracks and sorne breakdown of adhesion belween concrete and 

steel arose. It wqs thus essential to secure that such condi-

tions did not arise under working loads; and to do this, it 

became customary to adopt limiting working stress in the 

steel that was only half the estimated yield stress. ,,47 

Pugsley further showed "how one ad hoc case after another has been dealt 

with untll an engineering tradition has been set up.1\ 
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Thus, the "factor of safety" is an arbitrari!y chosen figur~ based on stress-

strain relation of the materials and fitted into the design process in anattempt to 

prevent the collapse or failure of the structure. The adoption of this method of 

using only "half the estimated yield stress" reveals on the part of the engineer the 

subje~tive striving for "an adequate measure of safety as weil as a consciousn~ss 

of the limitations of his knowledge and the arbitrariness of his assumptions.,,24 

Since the concept of "safety factor" in the design process has been discussed 

3 

. 47 7 8 23 24 61 . 6,34,55,68 
in great depth by Pugsley , .Baker ' , Freudenthal ' , Turkstra and others, 

it is not necessary to dwell on it in this study. However, an exposition of the 

unrealistic basis of this concept in the face of new data and accumulated knowledge 

of structural behaviour wi Il be given. 

There are three main stages at which the "safety factor" enters the design 

process. 

(1) The choise of the strength of materials. 

ln choosing the strength of materials to be used, the "permissible stress" allowed by 

the Code4 is only a fraction of the strength of the materials, be it steel or concrete. 

And this "permissible stress" is arbitrarily chosen.24 

(2) The choice of the design loads. 

The lack of an objective basis for the determination of design loads is clearly shown in 

the va'riety of loadings now used in design. 7 Actual loading conditions are appr6ximated 

by "standard loads" which at critical points in the operation of a structure underestimate 

sometimes the actual loading conditions and at other times overestimate the aCtual load-

ing conditions to such an extent that the loads used result in a very conservative design. 
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(3) The determ ination of design bending moment and sh~ar. 

Finally, the "safety factor" used in the operational characteristics (bending, 

shear, torsion, etc.) vary from one characteristic to another. For example, the 

"safety factor" 'used in the computation of f1exural resistance is different to that used 

52 
for shear4 • In fact, the "safety factor" can vary from 1.0 to 10.0 for structural members 

and even one particular design.possesses more th an one "safety factor. 117,8. 

The fact that conventionally designed structures almost always appear safe. does 

not necessarily show the validity of the present concept of "safety factor" and the 

reliabi lity of the design process, but more often indicates the caution and. conserva~ 

tism exercised by conventional designers and expressed in the code. 52 

ln actual practice, the variables in a design can be shifted around to obtain a 

safe design on the basis of experience witho~t having any comprehensive knowledge 

of the factors influencing the operation of the structure, so much so that the structure 

may collapse due to conditions not considered or known. 61 Thus the "safety factor" 

as presently used compensates for the designer's ignorance and uncertainty. It is on Iy 

by a re-examination cf the concept of safety can structural design be founded on a 

more realistic basis. 

1.2 The Concept of Safety. 

The first real insight into the concept of safety was giyen by Freudenthal23,24 

in his analysis of the present design process and the contemporary basis of the "safety 

factor". Since then, many engineers have attempted to formulate this concept, both 

philosophically6,12,31,60 and rnathernatically.14,44,61 

The safety of a structure involves two basic parameters: 



(1) Load 

(2) Resistance 

Thus, any concept of safety must be base d, on the interrelationship of these two para-

metersi any mathematical formulation of safety must be a formulation involving these 

two basic parametersi any problems encountered in the determination of a value of 

safety must be problems resulting from the characteristics of load and resistance and 

the relationship existing between them in the operation of a structureo 

Due to the goals of structural design, many writers have dealt with safety as 

24 
a two concept formulation. Freudenthal ,for example, says that the safety of a 

structure involves two aspects -- serviceabi Iity and failure. 

ln the progress report of the AoS. Co E: Committee on safety factors, Julian34 

puts forward the following concept of safety: 

(1) "Minimum Required Factor of Safety to assume that a given prob-

ability of failure PF of the structure is not exceeded, is defined as the 

ratio (greater than unit y) of Ro, the me an (arithmetic average) estimated 

resistance to collapse during the anticipated life of a large number of 

structures meant to be identical with the subject structure, and Wo 

the mean load effect for which the subject structure is designed." 

(2) "Minimum Required Factor of Serviceability to assume that a given 

probability of the structure becoming unserviceable, for the purpose 

and during the anticipated life for which it is designed, is not exceeded, 

is defined as a similar ratio but with respect to serviceobi lit y rather thon 

collapse o .. 34 

The use of these two criteria for cletermining the safety of structures can be 

quite misleading and confusing when taken without question. It may apply to sorne 
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structures and not to others, depending on the operation of the structure and the 

pur poses for which it is used. In sorne cases, both concepts wiil be one and the same 

thing; that is, there will be no distinction between them o ln others, they will. have to 

be considered separately as two criteria. By examining the nature of the load and 

resistance parameters, a better understan~Hng of the concept of safety Clnd the 

safety criteria can be obtained. 

Both load and resistance are in themselves very complex parameters, for in 

ottempting to find their "true" character, other variables have to be consideredo ln 

a mathematical analysis of load and resistance, ail the variables which influence these 

two parameters cannot be taken into account. Firstly, if ail the variables are con­

sidered, the analysis would become quite complex, and, secondly, there is always 

. on "unknown" in structural design. If the exact value of each variable was known 

before the construction of, say, a beam, then the precise value of safety could be 

easily computed o However, this is not the case. There is always sorne variation in 

the values of variables which Freudenthal24 attributes to: 

(l) the imperfections of human observations and actions (uncertainty), 

(2) the imperfections of intellectual concepts devised to reproduce 

physical phenomenon (ignorance). 

The causes of the factor of ignorance can be said to be attributable causes, while the 

causes of the factor of uncertainty can be called chance causes. 

These two factors influence the design variables in both the load and resist-

6 

ance parameters. It is as a consequence of this that the load applied to and the 

resistance of a structural mechanism can only be realistically expressed in a probabi listic 

framework o The method of evaluating the safety of a structure, therefore, must 



involve "prediction within limitsil by using the accumulated wealth of data available 

and predicting the way in which a certain structural phenomenon may be expected to 

vary. As Freudenthal 23 says: "Prediction within Iimits means that one can state the 

probability that an individual value will fall within given Iimits." Thus, safety 

cannot be predicted with certainty but only with a high degree of probability. 

1.3 Safety and Fai lure Probability. 

Laws of the operation of structural systems can be considered as a combination 

of functional and statistical relationships; functional in the sense of the theory of 

structural behaviour and st'atistica! in the sense that real physical properties appear 

only as variables in the functiona! relationships. Further, most functional relation-

ships in structural design are by their very nature and derivation statistic.. It is logi-

cal, therefore, that frequency distributions form an integrol part of the information 

required and reJationships to be determined in"the evaluation of safety in a probabi-

Iistic manner. 

A structural mechanism is considered safe when its resistance is greater than 

the Joad applied, But implicit in this definition of safety is its opposite, that is, the 

failure of the structure. The one impJies the other. As Asplund6 pointed out: "the 

fundamentaJ phenomenon connected with what is called safety is not safety ot ail 

but lack of safety and failure. Il Whatever terms might be coined to express stn!cturol 

safety - IIlack of safetyll, "failure", "risk of failure", etc., the fundamentol point is 

" that the safety of structures can on Iy be truly formulated as a statistical relationship 

between Joad and resistance, for both are randoni variables. This stotistical reJation-

ship can only be realistically expressed by the probability of failure or probabi lit Y of 

7 
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survival of the structural mechanism. 

1.4 Economy 

Within the present design procedure, any structure, from the just strong enough 

to the infinitely strong, is considered adequate or safe, and economy is based purel)' 

on cost. 

Contemporary designers, no doubt, consider economy a major factor in design. 

But on what basis? How should a designer compare the costs of alternative designs in 

order to make a choice? Can a less costly structure serve the required purposes as weil 

as the more costly? These questions, present design methods cannot answer. 

If one structure functioned better than another but cost more, then there is an 

obvious conflict between performance and cost. In fact, designers juggle with section 

properties to achieve economy relative to fixed code requirementso But there is no 

guarantee that the code requirements give designs that are equally safe. 

ln order to make a realistic choice from a number of alternative designs, 

economy must be considered in the Iight of the relation between cost and safety and, on 

this basis, an optimum balance can be achieved. 

1.5 Ob ject and Scope. 

The original purpose of this thesis was to obtain the optimum cost of simple-span 

bridges and to relate this cost to the safety of the bridge structure. However, neither 

cost nor safety is absolute; for the designer's control is severely Iimited due to uncer-

- tainties inherent in the problem of design. And, further, such an analysis would be 

very complex and exhaustive. 

The object of this present study, therefore, is to determine the optimum combina-
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tion of design variables, based on cost criteria, of a simple-span.reinforced concrete 

bridge to satisfy certain safety requirements expressed in a probabilistic manner. 

Even with such an objective, there are certain natural limitations to the range 

of the analysis. There are a number of ~eometric arrangements, shapes of structural 

. elements and almost an infinite combination of design variables that can be used. 

Conseq~ently, only a beam and slab bridge will be considered; the beam being of 

rectangular cross-section. Also, the analysis will be limited to a consideration of the 

beam cross":sèction at mid-span, and a specified set of alternative combinations of 

certain design variables will be considered. The above-described. bridge layout is 

chosen as it is perhaps the simplest and most popular pattern encountered in actual 

design problems. 

The cost of a bridge structure consists of both initial and long-term costs. 

This study will be limited to an investigation based on initial cost, the reasons for 

which will become obvious in Chapter Three. However, the initial cost of a bridge 

structure depends to a great extent on the cost of materials, formwork, falsework and 

erection. The other determinants in the initial cost function, such as cost of design, 

can be considered constant regardless of beam depth, percentage reinforcement, etc. 

Herein, only materials cost will be considered. The inclusion of formwork, falsework 

and erection costs will not only make the problem much more complex, but these 

costs vary significantly with methods used. And the revolution in formwork, false-

work and erection methads is proceeding at such a rapid pace that what was con-

sidered standard yesterday is today obsolete. A clearer insight into the complex 

relationship between cast and safety might therefore be obtained by considering only 

materials cost at this stage. 
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A bridge beam con fail in a number of modes - flexure, s.hear, torsion and 

fatigue. In this study, only flexural failure will be considered •. 

Although shear failure is important in bridge structures, the mechanism of shear 

. '. 5 21 50 65 66 . . 
failure remains a riddle to engineers. Many studles' , , , have been carned 

out to investigate the phenomena of shear failure, .bùt no satisfactory theor~tical 

model has been formulated. This is clearly shown by the number of studies that have 

1 b d ' d . h ·d ••. h 1 b· d 11 ,35,3738,63 recent y een one an t e WI e variatIon ln t e resu ts 0 tame '. 

_ The formula most widely used.at present is extremely conservative and shows no definite 

correlation with test results (Fig.l-1)3. It gives only a lower limit. 

Failure due to bo~d, torsion and fatigue is not considered. Torsion is unim-

portant in bridge structures as a result of the monolithic construction of beams and 

slab. Unfortunately, no practically applicable and satisfactory theoretical model 

has been formulated to represent fatigue failure as shown by the A. A. S. H. O •. 

tests1, and with the development of deformed bars, methods of detailing, etc., bond 

failure has been shown to occur only after the tension steel has yielded. 

It is not the purpose of this study to yield results directly applicable to actual . 

design problems but by analysing a reinforced concrete bridge cross-section in as 

detailed a manner as possible, a method is developed which relates cost to safety 

on a realistic and practical basis and which gives sorne insight into the properties 

and application of the cost-safety relationship. 
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LOAD AND RESISTANCE PARAMETERS 

Recent writers have dealt with load and resistance in a generalised manner 

when discussing and evaluating the safety parameter or the probability of fai lure, 

but such generalisations can only indicate a broad application of the concept of 

safety to structural design. However, in actual practice, the problems encountered 

in the computation of the safety parameter varies for different classes of structures. 

Therefore each particular class of structuretmust be investigated from basic principles, 

examining the nature and complexity of the problem and developing a procedure that 

is directly app!icable to that specific class of structures. In this chapter, therefore, 

the factors that influence the load and resistance parometers and, as a result, the 

frequency distributions of these parameters, will be investigated. 

2.1 Loading Conditions. 

It is not possible to take into consideration ail the factors influencing the 

frequency distribution or statistical variation of the load parameter. Also, sorne of 

the factors which influence the load parameter are only vaguely known and understood. 

ln general, the conditions of loading and the factors influencing these conditions 

are perhaps the least known variables in the design process. 

The basic classes of loads to which a structure is subjected during its opera-

tionol life are: 



2.1.1 Dead LI:>ads. 

(1) Dead Loeds. 

(2) Live Loads. 

The dead load can be categorised as the weights of the materials which make 

up the permanent features of the structure; such as concrete 1 steel, timber, railings, 

fittings, etc. These loads can be considered as fixed in intensity and location; that is, 

they are not movable except when alterations are made to the structure. The factors 

which influence the variation of dea~ loads are mainly the dimensions of members 

and the specific weights of materials. 

Although in the design process both the specific weights of the materials and 

the dimensions of members are fixed, yet in the construction process one can never 

obtain the precise design values. 

The specifie weights of the materials are often different from the designed 

values as a result of errors in workmanship, quality of materials, proportioning of 

materials, etc. There are variations in the specifie weights even within one parti­

cular member of the structure. On the other hand, the variations in the dimension 

of members are mainly due to errors in workmanship. 

With the development of modern methods, the influence of these factors can be 

greatly reduced. As a result, the dead load of a structure is presently considered fixed; 

that is, as a non-statistic. 

2.1.2. Live Loads 

Live loads, unlike dead loads, consist of movable loads, or loads which are 

not a permanent feature of the structure. Such loads, for example, are chairs, desks, 

and people in an office building, or cars, buses and trucks on a highway bridge. These 

, 
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loads, in general r vary in a statistical manner, except in the case of maximum load 

intensity of relatively high frequency of occurrence, where the load can be specified 

in a non-statistical manner (e.g. warehouses, storage tanks, train loads, etc.) The 

main factors which influence live load effects, particularly those on highway bridges, are: 

(1) Intensity and variation of intensity of loads. 

(2) Duration of loads. 

(3) Frequency and sequence of load applications. 

(4) Mechanical properties of the structure. 

The influence of these factors on load effects would vary for different classes 

of structures. The evaluation of ail these variables would require a very complex 

analysis, but for a particular class of structures sorne variables have negligible effect 

and can be eliminated. 

2.1.3. Bridge Loads. 

Perhaps the most complicated analysis of live loads and their effects is that 

required for highway bridges. Stephenson and Jakkula57 have carried out a compre-

hensive analysis of vehicle loads and their effects on bridge structures. As a result 

they have formulated a method which converts heavy vehicle loads in terms of 

"standardised equivalent loadsll and they show how the frequency distributions of 

various intensities of these equivalent loads provide asimple, precise and yet rational 

means for measuring the level or levels of heavy motor vehicle operation corresponding 

to various traffjc conditions and their effects on the operational characteristics of 

highway bridges. However, Stephenson's results are old and as such areonly used as 

a guide. 



According to Stephenson, . the critical operational characteristics produced 

in bridges. by heavy vehicle loads are influenced by no less thon six variables: 

(1) Span length of bridge. 

(2) Gross weight of vehicle. 

(3) Wheel base length of vehicle. 

(4) Nu~ber ofaxles. 

(5) Spacing of axles. 

(6) Distribution of gross weight of vehicles. 

It con thus be seen how complex is the analysis of vehicle loads on highway 

bridges. By converting 011 heavy vehicle loads into "standard loads" and by using 

various types of standard loads, Stephenson was able to simplify the problem, to a 

certain extent, so that the frequency distributions of these loads could be determined 

and the operational characteristics computed. This aspect of the analysis will be 

dealt with in greater detail in section 2.3.5 of this chapter. 

The problem of the evaluation of ioading conditions and their effects on 

structural operation is not an easy one. Although many studies have been made on 

the factors influencing the loads applied to structures; knowledge is still lacking as to 

the nature of load applications and more data is required for accurate analysis of load 

distribution. 

2.2 Resistance Parameter. 

There are many factors which influence the resistance of a structure such as 

strengths of materials, dimensions and spacing of members, percentage of steel in 

reinforced concrete members, etc. However, the influence of these design variables 

15 



is expressed in the more general operational' characteristics of flexure, shear, bond 

" 

and torsion. In this analysis only flex~re will be considered. Finally, the effects of 

these operational characteristics are ail combined in what may be termed the' overall 

behaviour of the structural mechanism. 

2.2.1 Overall Structural Behaviour. 

Although there have been many, experimental'studies on small concrete beams 

to examine their structural bëhaviour, very few prototype experiments have been 

carried out on bridge response to vehicle loads. Perhaps the most comprehensive 

experimental analysis on the structural behaviour of prototype bridges has been that 

undertaken by the American Association of State Highway Officiais {A.A.S.H.O.)l. 

The object of that study was to determine the behaviour of certain simple-span 

highway bridges to the repeated application of vehicle loads and to test the reliabi lity 

of the ultimate strength theory for predicting the capacity of bridge structures. The 

important results of the A.A.S.H.O. tests relevant to this present study can be 

summarised as follows: 

(l) Concrete bridge structures subjected to vehicle loads do not collapse, 

or fall apart suddenly, but gradually approach total collapse after 

extensive cracking of the beams accompanied by increasing permanent 

deformation and crushing of the compression concrete. 

(2) ln the case of equally reinforced bridge beams, the whole bridge 

behaves as one beam for ail, practical purposes and the loads were 

equally distributed to the beams. (That is, for one lane bridges.) 

(3) The ultimate strength formula shows good correlation with experi-

16 



mental results. 

(4) The dynamic response of ,highway bridges to moving loads is a 

complex phenomenon and depends on the approach profile and 

surface conditions of the bridgedeck, the variation of pressure 

in the tyres of vehicles, the suspensiolJ system of the vehicle, 

the frequency of vibration of the vehicle and of the bridge, 

the weight on the axles of the vehicle, etc. In fact, no 

definite correlati?n was obtainedbetween the experimental 

results and theoretical models. 

The A.A. S. H.O. experimental studies, therefore, indicated the behaviour 

of a bridge structure as a whole under increasing vehicle loads. However, the beams 

failed in flexure, more ,particularly in one mode of flexurcilfailure - tension. 

2.2.2 Flexural Failure. 

Flexural failure of beams consists, basically, in the crushing of concrete in 

the compression zone. However, this may be a primary or secondary compression 

failure. 

Firstly, the reinforcing steel in the tensi le zone may yield and cause extensive 

tensile cracking. This tensile yielding of the steel will continue and a redistribution 

of stresses will,take place until the ultimate capacity of the concrete in the cOl1Jpr'ession 

zone is reached. This mode of fai lure was c1early shown in the A. A. S. H. o. tests 1. 

On the other hand, the conditions might be the' reverse. Thot is, failure could 

be caused by the crushing of the concrete compression zone while the. stress' of the 

tensile steel is still below the yield point; the yield point being finally reached after 

17 



. increasing permanent deformation and extensive cracking of the beams. The former 

is secondary compression fai lure and the latter primary compression fai lure. 

There are, therefore, two modes of flexural fai lure: 

(1) Yielding of tensile steel accompanied by extensive cracking 

of concrete followed by secondary failure of the concrete 

compression zone. 

(2) Crushing of the concrete compression zone followed by 

extensive tensile cracking and yielding of the tensile ste~l. 

Most present day designers .attempt to avoid the occurrence of the second mode 

as there is no previous warning of failure; the concrete crushing suddenly. 

. 2.2.3 Ultimate Capacity 

The formula which best predicts flexural capacity of reinforced concrete beams 

is the ultimate strength formula developed by C. S. Whitney64. Since Whitney's 

pioneering work, this theory has been refined and developed by many writers29,30 ,41. 

It is not necessary to discuss the basic assumptions and formulation of the ultimate 

strength the ory as it is weil known and used in everyday design problems. 

The basic formulas used in ultimate strength design are: 

Mu = Asfyd {1-D.59q) - - - - - - - - (2.1) 

where q = Pfy/f1c 

for failure in tension; and for failure in compression, when compression steel is used, 

Mu = (As-Al s) fy (d-a/2) + A1s f\ (d-d1) (2.2) 

where a == (As-Al s) fy/D.85 f1c b. 

18 
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When there is no steel in the compression zone of the concrete, Whitney64 showed that 

the ultimate capacity in compression depends on Iy on the strength of concrete and the 

dimension oi the beam~ Thus, as long as there is sufficient tensile steel to develop the 

full capacity of the compression concrete, ex cess steel in the tensile zone does not 

contribute to the flexural capacity of the beam. By carrying out a lest squares analysis 

of the results for compression failure, Whitney obtained the formula:. 

(2.3) . 

for f1c;"!! 2000 psi. Results obtain~d by Cox16 and Evans19 confirmed Whitney's com-

pression theory. Fig.2.1 shows the correlation between formula (2.3) and test results 

obtained by Evans. The results of 364 beam tests41 for tension failure are shown in Fig.2.2A. 

Fig. 2-2B shows the reJationship between (J, = Mu! Mu and q, where Mu is an empirical 

formula representing the mean of the test results for tension failure. It is dearly seen 

from the figure that Equation (2.1) is biased with q. Thus for the purpose of probabilistic 

studies a statistical analysis of test results is underi'aken in the next section. 

2.3 Statistical Analysis. 

Repeated measurements of design variables seldom 9ive identical values and, in 

fact, samples taken,.say, from a particular mix of concrete or grade of steel, would give 

values that vary within a certain range. This situation makes exact prediction impos~ible, 

but by repeated measurements, an estimate can be made of the relative frequencies of 

the possible values of the design variables. 

On the other hand, safety, or lack of. safety, con only be expre!ised as a rel6tion-

ship between load and resistance which are, in themselves, variables. Thus, not only 
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the material strengths, but the other design variables, the opera!ional characteristics 

and the loads must be analysed in a statistical framework and the resulting frequency 

distributions combined in the safety parameter to obtain the probability of failure 

or survival. 

ln this section, then, the statistical analysis of load and resistémce, and the 

. design variables influencing these parameters, is undertaken. 

2.3.1 Distribution Functions. 

ln the value measurements of certain material phenomena, the plotted points 

show a great scatter about what may be called an "average". Theoretical frequency 

distributions, as ail other intellectual concepts, are only ideal formulations devised 

to represent the shape of and trend in the observed data. Basically, a distribution 

function· is only an expression, represented by a curve which describes in a compact 

and simplified way the experimental scatter of a material phenomenon. As such, 

there are probably several alternative distribution functions that can fit an experiment~1 

scatter equally weIl. 

ln any one experiment, the number of measurements that can be made is limited 

and, therefore, a good estimate of the frequency distribution of the experimental data 

is difficult to obtain. If a particular distribution fits the data, then it is accepted and 

uséd •. Moreover, the tail of the distribution curve is usually not known as data in that 

range is difficult to obtain by experiment. Thus it cannot be known how weil a 

particular distribution fits a material phenomenon outside the range of experim~ntal 

measure. This has led to considerableuncertainty as tothe form of distribution that 

should be used for certain experimental data. . 24 25 34 58 ln sorne cases, wnters ' , , 
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have used two and sometimes four distribution functions to represent the same data. 

One of the methods of reducing the extent of this problem is the use of confi-

dence intervals or confidence limits. It can be assumed that a particular frequency 

distribution, say a normal distribution, fits the data. A range of values of the normal 

distribution can be obtained and tested with the experimental data for "fitness". On 

the basis of the "fitness test", the theoretical distribution can be accepted or rejected. 

However, this "fitness test" does not solve the problem encountered when considering 

the tait of the curve and no specific frequency interpretation can be given to confi-

dence intervals. They only indicate the degree of confidence one can have in pre-

dicting the frequency of values related to the material phenomenon within a specifie 

range by using the theoretical function. 

One of the problems which causes a great deal of confusion among research 

engineers is that of an upper and a lower bound on distributions. Take, for example, 

the measurement of concrete cylinder strengths. Everyone agrees that the compressive 

strength of concrete cannot be infinite. Further, engineers would be startled if a 

sample of concrete mix designed for 3000 psi. specified strength and under controlled 

conditions were to show a strength of 10,000 p~i. Yet, engineers would just not agree 

on what the upper or Iower bound should be. Instead, the distribution curve is used 

over the who 1 e range from 0 to +00. 

The condition that the curve extends over al") infinite range limits the number 

of alternative distributions that can be used. There are, however, many distributions 

that con represent the ,experimental data equolly weil. In fact,it is unlikely that 

there wi" be any uniquely determined distribution function for a particular set of 

experimentol data. 
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2.3.2 Distribution of Concrete Strength • 

. The variation in strength of a particular concrete mix depends on the degree 

of control exercised in the mixing and placing of the concrete. The degree of control 

de pends on the level of supervision exercised during the mixing and placing stages 

and on the choice of the quality of m~terials used ~~(f"their quantitative ratios. Depending 

on the degree of control exercised, the frequency distribution of concrete strengths can 

follow a symmetrical or skewed curve. 

Freudenthal24 has fitted a log-normal distribution to data obtained from 673 tests 

for concrete under good control (Ref. No.l T~ble 2.2). For concrete under pOOl' control 

he fitted an extrenul distribution to the results of 296 tests (Ref. No.4 Table 2.2). 

From the results, he concluded that inadequate or po or cont!ol increases the ~ange of 

variation of the values and the number of low test results while it sharply reduces the 

number of high values. 

On the other hand, Julian34 showed that a normal distribution fits the test 

results of concrete under good control equally weil (Fig.2.3) by analysing the results 

of 861 tests at 28 days (Ref. No.2, Table 2.2). In the case of poor con~rol, he showed 

that the results followed a skewed distribution (Fig. 2.4). From FreudenthaPs and 

Julian's analysis, it can be concluded that both a normal and log-normal distribution 

can be employed to represent the variation in the compressive strength of concrete, manufacturE 

under good control o 

Fig.2.5 shows a histogram of 164 field tests taken bya commercial testing 

laboratory for concrete supplied by a ready-mixed concrete company from January 1958 

through January 19592• The mix was standard commercial concrete proportioned for 

3,000 psi. specified strength at 28 days, using 1-inch maximum size aggregates. The 
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TABLE 2-1' 

COMPARISON OF OBSERVED WITH THEORETICAL FREQUI;NClES 

Obser- Devia- I 1 % Area . Coded ved tion of 
Cel! Mid- Frequ- Class Devia- between % Area 

Boundaries Cel! Limit tion Class in Class ency 
x Limit Interval 

Z fo Z fo Z2 f 
0 

from Mean x/(J & Mean 

2700-2899 14 1 14 196 -1138 -2.55 49.46' 1.15 

2900-3099 15 6' 90 1350 - 938 -2.10 . 48.21' 3.16: 

3100-3299 16 10 160 2560 - 738 -1.65 : 45.05 : 6.56" 

3300-3499 17 19 323 5491: - 538 -1.20 " 38.49, 11. 15. 

3500-3699 ' 18 30 540 9720: - 338 -0.75 : 27.34: 13.66 
- 138 -0.35 : 13.98: 

3700-3899 19 27 513 9747 + 61 +0.14 : 5.57: 19.25: 

3900-4099 20 26 520 10400: 261 0.58 : 21.90 : 16.33: 

4100-4299 21 19 399 8379 461 1.03 " 34.85: 12.95: 

4300-4499 22 17 374 8228: 661 1.48 43.06: 8.21 : 

4500-4699 23 5 115 2645 861 "1.93 47.32: 4.26: 

4700-4899 24 2 48 1152 1061' 2.38 49.13 : 1 .81 : 

4900-5099 25 1 25 625 1261 2.82 49.76 0.63. 

5100-5299 26 1 26 676 . 1~61 3.27 49.94 0.18: 

5300-5499 27 0 . . 0 . ..0"" 1661 ... 3.72 49.99 ·0.05 

164 3147 61169 . " 

TIc = 3.84 ~c =0.45 Vc = 0.116 X2 b = 5 002 os· 

Theor":' 
éf.ical 
Frequ-
ency 

ft .(fo - ft) 

18.0 : -1.0 . 

18.3 : 0.7 : 
22.4 ' 7.6 : 

31.6 : 4.6 : 
26.8 : -0.7 : 
21.2 : -2.2 : 
13.5 : 3.5 : 

11.4 .: -2.4 . 
" , 

163.2 : 

X~05 = 1.145 

. 
'. 

~:il" ! .. ,,"-ti 
~~ 

{fo -ft)2 

1.0 

0.49": . 
58.0 : 

21.1 : 
0.49: 
4.85 ' 

12.3 : 

5.75 : 

X2 

(fo-ft)2 

ft 

.056 

.027 
2.59 

.668 

.018 

.228 

.910 

.505 

5.002 

N 
Oï 
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TABLE 2-2 

STATISTICAL DATA FOR CONCRETE 

Ref •. No of 
No Tests 'flc 6 c 

Vc . fl c H.v/M MIL. V •. 

1 '673 5.32 - - 3.825 1.31 1.35 

2 861 5.18 0.54 .104· 3.830 1.35 1.36 

3 164 3.84 0.45 .116 3,000 1.35 1.33 

4 296 5.85 1.54 .263 : 4.300 1.55 3.90 
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;strengths are based on cin average of three specimens. The chi-squared test is used to 

compare the observed test data to a normal frequency distribution in Table 2.1 and' 

indicates a very good fit. 

A summary of the statistical data for concrete strengths is given in Table 2.2. 

Ref. Nos. l, 2 and 3 are for good control and Ref. No. 4 is for poor control. From the 

table, it can be se en that the highest value/mean and the mean/lowest value, given ' 

in the last two columns, are almost constant and equal for concrete under good control; 

whereas for concrete under pOOl' control, the frequency curve can be seen from the table 

to be skewed towards the low values. The variance ratio or the coefficient of varia-

tion for concrete under good control is about 0.12. 
'" 

2.3.3. Distribution of Steel Strengths. 

Steel, unlike concretc, is subiected to rigid control as it is manufactured un der 

factory conditions. As such, the frequency distribution of the yield points of reinforc-

ing bars are àll mostly similar in shape, varying only in magnitude of the statistical 

parameters. 

Although steel is manufactured under factory conditions, not very many studies 

have been done on the distribution of stee 1 strengths. As a result, l'he volume of test 

data required for a good estimate of the frequency distribution is not readily available. 

However 1 from analysis carried out so far, it c~n be concluded that the distribution 

follows a skewed pattern. 

Freudenthal24 has fitted a log-normal curve to the results of 121 tests of eye bars. 

The results of 171 tests of new bi IIet steel reinforcing bars varying in diameter from 

3/8-inch to 1-1/4-inches have been plotted by Julian34 in the form of a frequency 

distribution curve as shown in Fig.2. 6. There is no doubt that the distribution is 



skewed towards the higher values. Using data obtained by Rice49 as a guide, the 

statistical parameters ~mployed in this study are fy = 50.~ and Vy = .09/ O. 12. 

2.3 0 4. AnCllysis of Flexural Resistance 

ln Section 2.2.3 it was shown that the contemporary ultimate strength equa-

tion is biased with q. Therefore, a series of test results obtained by various research 

engineers was analysed by the following method: . 

(l) The results of 152 tests From eight research experiments representing a 

cross-section of the tests carried out on the flexural capacity of R. C. 

beams failing in tension were collected and the dimensionless para­

meters, Mu/bd2flc and Pfy/f1c, in the ultimate strength theory were 

computed. 

(2) A least squares analysis was then carried out to determine the average 

curve passing through the results (Fig.2.7}. The curve was assumed to 

be a second degree parabola of the form 

y = Ac + Al?C + A2X2 
.'.' 

From the analysis, the following values of the unknown parameters 

were obtained: 

Ao = 0.011, Al = 1. 114/ A2 = -0.90 

Thus, giving the least squares equation: 

Flu = 0.011 + 1. ll4q - 0.90q2 
-:-bd..,.,.2 ..... f..-1 c-

- - - - (2.4) 

The analysis was only done for beams fCliling in tension. It was 

not necessary to do the analysis for beams failing in compression 

as wi Il be shown in the next chapter. 
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(3) Finally" it was assumed that the test Moment capacity, Mtest, is of the 

form 
(2.5) 

where'ft is a random variable. If Equations (2.4) and (2.5) are 

acceptable assumptions, the distribution of ft does not depend on q. 

Test values of ft are plotted in Fig.2-8 together with calculated confi­

dence intervals Jr ±' 2 cr ft. Theoretically, for 95% éonfidence, a 

·maximum of 8 points out of 152 tests are allowed to fall outside the 

limits. From Fig. 2.8 only five points fall outside the Iimits. 

A brief discussion of the various test series from which the results were obtained 

is given hereunder: 

COLU~BIA UNIVERSITY {1935 and 141)32 -- The tests were carried out 

for low percentages of steel. Basically, two grades of steel of nominal strength, 36 

and 56 kips s. i. were used. For one set of beams, the con cre te mix was designed to be 

of specified strength 3,000 psi. The actual concrete strengths used in the calculations 

was the average of three specimens tcken from each batch of concrete used in any one 

beam. For the rest of the beams, the concrete strengths were 3550 and 3510 psi. It 

34 

appears that half the number of beams tested in this set were cast from one batch of con-

crete and the other half from another batch. Thus samples were taken from two bctches 

instead of the specified botch used in each beom. 

LASH AND BRISON {1949-50)39 -- These tests were carried out for 0 variety of 

concrete and steel strengths and percentcges of tensile reinforcement. The concrete varied 

from 2000 to 5000 psi. nominal strength. Two grades of steel of nominal strenghts, 40 and 

65 kips s. i., were used. The concrete strength was taken as the average of three specimens. 
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The reinforcing steel consisted of plain bars rusted to provide adequate bond resistance. 

The percentage of steel varied beiween 0.5 and 4.7 percent. 

A few of the results showed eHher very high Mu/bd2f1 ~ values or very loVi 

ones in comparison to the average value obtained From the least squares equation. On 

close examination, it was found that the high-valued results were produced in beams with 

a high fy/f1c ratio, with steel of low yield point strength and with a high concrete 

strength. 

HUMPHREY AND LOSSE (1912) - Very little can be said on these tests as the 

results have been taken From Jensen32• However, the se tests give relatively 10":" f:lexu-

rai eapacity compared to the least squares eurve. One point that should be mentioned 

is that t~e tests were done with lean eoncrete mixes, that is, with concrete of relatively 

low compressive strength - os low os 1500 psi. As for the tests by Lash and Brison, the 

low results were observed only for eoncrete of very high strengths and beams of a low 

fy/f1e ratio. In this case, the nominal st~el strength was 40 kips s.i. 

RICHART AND JENSEN (1931)51 - ln these tests, the beam size, steel ratio 

and steel strength were ail consi'ant while the actual concrete strengths varied from 

3000 psi. to 4800 psi. No explanation was given for the fixed steel strength used in 

the calculation. 

COX (1941) 15 - Most of the beams of i ntermedi ate strength concrete were 

tested in triplicate, whereas others were tested singly. Wh}'? Cox does not say. 

However, sorne uncertainty exists with respect to concrete and steel strengths which 

were not reported for the individual beams, but for each class of concrete and grade 

of steel. There were four classes of concrete, varying from 1700 psi. to 5800 psi. 

compressive strength. Simi larly, the strengths given for the steel were: 48. 1 and 

53.4 kips s. i. 



The results os shown in Fig. 2.8 indicate a consistently Iow flexural capacity 

relative to equal'ion 2.4. Perhaps the explanation of this phenomenon is to be found 

in the steel and concrete strengths used by Cox in the computation of the dimensionless 

parameters q and Mu/bd2f1c. 

EVANS (1943-44) 19 -- Evans tested samples of concret~ used in each beam for 

both cube and cylinder strength. For each beam, Tour cubes and one cylinderwere 

tested. He established a relationship between the cylinder and cube strength and 
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showed that for high concrete strength, the cube and cylinder strengths ore almost equal. 

However, in the computation of flexural capacity he used the cylinder strength. 

Here, again, the low resu!ts observed around q = 0.06 and q = 0.13, on 

examination, reveal that in the particular beams a high concrete strength and relatively 

lo~ steel streng.th giving a low fy/fl c ~atio was evident. 

JOHNSON AND COX (1939)33 -- ln these tests, four grades of steel and 

one mix of concrete were used. The reinforcing steel consisted of nickel, hard grade, 

square twisted, and cold twisted and stretched bars. The yield point was measured for 

each type or grade of steel; the number of samples tested for any one grade varying from 

2 to 18. 

For the concrete, samples were taken from two batches. Ten control specimens 

were mode for each pair of beams cast from the first batch, and five specimens for each 

beam from the second batch. The average of 011 the specimens from the first batch was 31.90 

psi. and from the second batch 3220 psi. The value of the concrete strength used for 011 

beams was 3200 psi., the average of 3190 psi. and 3220 psi. This method of obtaining 

the concrete strength is highly questionable. With such.a large number of samples tested, 

tna actual strength of concrete in the beom con be far different to the average value used. 



LYSE AND WERNISCH (1937)32 - The concrete strengths used in these tests 

were generally low; about 2500 psi. For such low strengths, the fy/fl c ratio was very 

high resulting in high values of Mu/bd2fl c for small q. This is c1early shown: in 

Fig. 2-8. 

Three grades of steel varying from 48.0 to 93.0 kipss. i. nominal strength were 

used. The concrete strength taken was the average of three specimens for each beam. 

From the foregoing discussion, it can be concluded that the ultimate strength 
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equation developed within a statistical framework fits the test dataquitewell. However, 

Iike ail other theories, there are limitations to its use. One of the important points 

observed in the analysis is that scatter of the data points seems to depend upon the 

ratio of 'fy/fl c. For high fy/fl c ratios, the least squares eq~ation underestimates the 

f1exural capacitYI whereas for low fy/fl c ratios, it overestimates the capacity of the 

beam. It seems t~at a -moderate f}../f1 c ratio gives least scatter and allows prediction 

to be made with greater confidence. 

2.3.5. Distribution of Vehicle Loads. 

As with live loads in general, the nature of vehicle loadings and their effects 

on highway bridges have on Iy recently been sub jected to a comprehensive investigation. 

Stephenson57,58 was perhaps the first to carry out a systematic and methodical analysis 

of the nature of vehicle loadings and to relate this to the operational characteristics 

of highway bridges. It is not possible to discuss his approach in detail, but a brief 

summary of his method and results are necessary. 

By collating and analysing the resu lts of the 1942 loadometer survey, Stephenson 

was able to show that only the heavy vehicles have any significant influence on the opera-

tional characteristics and, as a result, the design of highway bridge structures. The 



heavy vehicles are defined as "those with one or more axles weighing 18,000 lbs. or 

more; Il or,"based on gross weight,all simple-unit trucks weighing 26 kips. or more, 

and ail other combina~ions weighting 34 kips. or more ... 58 

The method of finding the nature of vehicle operation is as follows: 

(1) Firstly, the hecivy vehicle loadings were converted into equivalent 

H, H-S and concentrated loads. These· equivalent loadi; can be . 

defined as the loads which will produce in a bridge of given span 

the same stress as that produced by theheavy vehicle from which 

the ~quivalent load was obtained. 

(2) Once ail the heavy vehicles reportecl by the loadometer survey 

were converted into equivalent loads for a given span, the relative 

frequencies of various intensities of these loading equivalents were 

then obtained by arranging them into groups or cells of increasing 

magnitude and computing the percentages of vehicles thus found 

in each cell respectively. The observed frequency cf equivalent 

concentrated load (E. C. L.) on various span-Iengths, as computed 

by Stephenson5~ are given in Table 2.3A. ïhese frequencies 

relate to the bending moment produced by the E.C. L. on various 

spans. The constant I! is Poisson's coefficient. 

The results of Stephenson1s analysis weîe based on the 1942 traffie 

survey which was taken in the summer of 1942. As such, the survey 

cannot be considered osa yearly s'urvey fo!" 1942. Stephenson pointed 

out, however, that heavy vehicular traffic occurs mostly during the 

summer. In this study, Stephenson's results ore only used as a guide 
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and the statfstical characteristics chosen for the load para-

" " 

meter are considered to be based on yearly traffic data. " 

(3) Althol;'gh any one of severa 1 frequency distribution functions 

might give comparable results for the observed data, Stephen-

son found that the Poisson distribution formula represented 

the observed data reasonably weil (Table 2.3B) and, at the 

" same time, provided "the most satisfactory procedure for 

solving such traffic problems, mainly because it is perhaps 

the simplest to apply in practice when the sample size is large. Il 

By developing this method of analysis, Stephenson laid the basis of a new 
" ~ 

• and realistic approach"to the evaluation of vehicle operation and loadings on highway 

bridges. Thus, with a sufficient backlog of observed heavy vehicle frequency data 

in a given geographical area, the engineer is provided with a rational procedure for 

estimating the level of heavy vehicle operation that would Iikely obtain at a new 

location within the area. 

Although the analysis was also carried out for both equivalent H and H-S loadings, 

the equivalent cuncentrated loading has the greatest potentiol for practical application. 

First of ail, the maximum moment produced by a single concentrated load on a simple 

span bridge can be expressed by a very simple equationi namely, 

M = PL!4" 

in which M is the maximum moment, P the concentrat"ed load and L the span length. 

Secondly, it wi Il be noted that this equation allows the moment M for any given load P 

to be expressed as a continuous function which varies directly with the span length. 

This is not possible with the H and H-S loadings. Thus the equivalent concentrated loadings 

prov"ide both an absolute basis for comparing the operational characteristics produced by 
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TABLE 2-3A - OBSERVED FREQUENCIES 

Equiv. Cone. Span-Feet 
loads 
in Ki ps. 10 20 30 40 50 60 80 100 

4 .5 
5 .8 .5 • 1 

.6 2.5 1.7 .4 • 1 
7 9.6 7.8 3. 1 .4 · 1 
8 19.5 17.3 11. 1 1.9 .3 • 1 
9 24.5 22.3 18.4 7.3 1.2 .3 

10 20.5 20.2 21.1 14.5 5. 1 ,1.6. .3 
11 11.6 12.9 16.6 19.5 ]2.7 6.3 1.4 .8 
12 5.7 8.0 11.2 18.2 18. 1 12.6 4.4 2. ] 
13 . 2.7 4·.6 7.4 13.7 19.0 17.6 11.5 6.4 
14 1.2 2.6 4.7 9.3 14.1 17.0 ]5.7 12.] 
15 .5 1.3 3.0 6.3 10. ] ]3.4 ] 7.1 ]5.7 
16 '.2 .5 1.5 4. ] 7.0 9.6 12.8 15.4 
17 • 1 .2 .8 2.3 5.0 7.1 10.0 ] 2. 1 
18 • 1 .1 'l 1.2 3.2 5.2 6.9 8.8 .u 

19 .2 .7 1.8 3.6 5.4 6. ] 
20 • 1 .3 1.] 2.3 4.0 4.5 

. 2] .2 .6 1.5 3.4 3.9 
22 .3 .8 2.4 3.3 
23 • .1 .5 1.8 2.6 
24 • 1 .2 1.2 2.0 
25 • 1 • 1 .7 1.5 . 
26 .1 .4 1.1 
27 • 1 .2 .7 
28 • 1 .4 
29 • 1 .2 
30 · 1 . 1 
31 • 1 . 1 
32 . 1 

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Avg. E.C.l. 9.3 9.7 10.6 12.2 13.5 14.6 16.2 17.1 
K 5.3 4.7 5.6 6.2 6.5 6.6 6.2 6.1 
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TABLE 2··3B - CALCULATED FREQUENCIES' 

Equiv. Cone. Span-Feet 
Loads . 
in Kips. 10 20 30 40 50 60 80 JOO 

4 .5 
5 2.6 .9 .4 
6 7.0 4.3 2.1 .2 
7 12.4 JO.O 5.8 1.3 .2 
8 16.4 15.7 10.8 3.9 1.0 . 1 
9 17.4 18.5 15.2 8.1 3.2 .9 
10 ' 15.4 17.4 . 17.0 12.5 6.9 3.0 .2 
11 11.6 13.6 15.8 15.5 11.2 6.5 f,3 .2 
12 7.7 9.1 12.7 15.9 14.5 10.8 3.9 1.4 
13 ,. 4.5 5.4 8.9 14.2 15.6 14.2 8. 1 4.2 
14 2.4 2.8 5.5 11.0, 14.6 15.6 12.5 8.5 
15 1.2 1.3 3. 1 7.6 11.9 14.7 15.5 12.9 
16 ,.5 .6 1.6 4.7 8.6 12.1 15.9 15.8 
17 .2 .2 .7 2.6 5.6 8.9 14.2 16.0 
18 . 1 .1 .3 1.4 3.3 5.9 11.0 14.0 
19 . 1 • 1 • 1 .7 1.8 3.5 7.6 JO.7 
20 .3 .9 1.9 4.7 7.2 
21 • 1 .4 1.0 2.6 4.4 
22 .2 .5 1.4 2.4 
23 . 1 .2 .7 1.2 
24 • 1 .3 .6 
25 • 1 . 1 .3 
26 . 1 
27 • 1 
28 
29 
30 
3] 
32 

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Avg.E.C. L. 9.3 9.7 10.6 12.2 13.5 14.6 16.2 17. 1 
K 5.3 4.7 5.6 6.2 6.5 6.6 6.2 6.1 

Std. Dev. 2.302 2.168 2.366 2.'490 2.550 2.569 2.490 2.470 
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effects from one span to another. 

However, from Fig. 2.9, it can be seen that the Poisson distribution fits 

the observed data for the lower spans (lOI to 501) reasonably weil. But for the higher 

,span lengths, the fit is disappointing. 

Freudenthal24, on the other hand, has fitted a log-normal distribution to 

ail equivalent H truck loading for spans of 50' and 100' and to the gross weight of 

vehic les. He showed, by plotting the cumulative distribution function, that .the 

poisson formula gives disappointing agreement with the observed data for high-Ioad 

values, whereas the log-normal distribution gave a "goodH fit for ail load-values •. 
, , 

The explanation given vias that the definition of heavy trucks was not narrow enough 

to justify analysis bythe rare-event approach; that is, by the poisson law. 

Julian34 plotted the distribution of aIl equivalent H truck loadings and showed 

that the frequency curve is skewed towards the high-Ioad values (Fig.2. 10). 

These studies have only shown that ail IOCids on highway bridges have a 

statistical distribution. Precisely what distribution should be used is not yet certain. 

Moreover the distributions relative to fatigue loadings and dynamic effects have not 

yet been fully investigated. It may be ,a long time before sufficient data can be 

accumulated to make a comprehensive analysis of vehicle load distributions and their 

application to bridge design. At the present time, the data obtained and studies 

carried' out so far can only act as a guide. In this study, values of ML between 50 and 

90 in increments of ]0 and values of VL = O. ]5, 0.20 will be ,:,sed. 

2.3.6. Analysis of other Variables. 

Besides the parameters discussed above, there are other variables in the design 

process which vary in a statistical manner. Those most relevant to this study are the 

dimensions of structural members and the dead load of the structure. 
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ln the design of a rectangular R. C. beam, the designer obtains certain 

specific values for the effective depth and the width of the beams. However! these 

values are not necessari Iy realised in the construction process, because of errors of 

workmanship. 

Although the dimensions (or size) of the beams do vary~ yet, with the develop-

ment of modern techniques, this variation is very small and, as such", the dimensions 

can be considered constant 0 The effective depth, on the other hand, can vary tre-

mendously due 1"0 errors in the placing of the steel o It is therefore necessary to take 

account of this variation. Data on the variation of effective depth, however, is not 

available and in the absence of such data, a designer can only choose statistical para-

meters on a subjective basis. 

As a result of variations, however small, in the dimension of beams, and, also, 

variation in the specific weights of materials, the dead load of a structure varies in a 

statistical manner. Here, again, no data are available and the designer will have to 

use his subjective judgment. From preliminary investigations, values ofVd and VD 

of. .05 and. 10 were found to be realistic. These values imply a 95% confidence within 

"20% of the mean. 



III 

FAILURE PROBABllITY AND COST FUNCTION 

The safety of a structure can oflly be realistically expressed in a probabilistic 

sense. Thqt is, by formulating the problem of safety in terms of the probability of 

failure or survival. In order to evaluate the probability of fai/ure the distributions 

of the design variables involved in the ioad and resistance pârameters must be 

convo 1 uted • 

Economy in structural design cèmnot be considered on a cost basis, for cost is 

not absolute, but relative to the level of safety adopted. As such, economy can only 

be expressed as a relationship between cost and safety and on this basis an economic 

choice is made by finding the optimum balance between cost and safety for the 

. particular design problem. 

ln this chapter, therefore, the mathematical formulation of the probability of 

fai/ure in terms of the distribution of the design variables, and the relationship between 

cost and failure probability will be presented. 

3.1 Formulation of the Probability Problem. 

ln the actual process of bridge operation, circumstances surrounding human needs 

and necessities choose one value of the load and nature, partially controlled by human 

ski", chooses one value of the resistance from the respective distributions of possible 

values. 
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If R is the resistance of the bridge structure, and $ is the' load, th en the 

relationship between load and resistance can be expressed by the safety parameter 

r :::: R - $ 

or (3.1) 

n = R /$ 

ïhese two forms are not independent, but, on the contrary, they are interrelated. 

For, from (3.1) 

R = n$ 

and 

r = n$-$ = $ (n-1) 

or 

$ = R /n 

and 

r = R-R/n ='R(n-1)/n 

Since foi lure occurs when resistance is less than load, then, in terms of the 

safety parameters, the bridge structure has fai led when r is less than zero or when 

n is less than one. The probability of failure, therefore, is the probability of r being 

less than zero, or the probability of n being less than one. That is, 

PF = Probe (r ~ 0) = Probe (n ~ 1) 

Either one of the two forms of expressing the safety parameter can be used in deter-

mining the probability of failure. The problel}1, then, is to obtain the distribution of 

the safety parameter by formulating it mathematically in terms of the load and resistance 
., 

distribution. 



3.2 The General Expression. 

Fre~denthal24 in 1956 developed"a geometric method of finding the 

probability of failure or survival. He obtained a three dimensional geometric 

figure on which he superimposed lines of "constant PF and from which he developed 

surfaces of survival. However, his analysis, besides being only on the macro 

level, involved a rather complex formulation. 

Lawrence40 and Corso1? in a discussion of the Freudenthal methocl showed that 

the probabi lit Y of failure can be determined by a very simple computation for relatively 

simple distribution functions. 

ln the general case, the probability of failure can be formulated as follows: 

If Pl(R) is the frequency function of Rand P2(5) is the frequency function of 5, 

such that the areas under the distribution curves are each unit y, then the probability 

of obtaining a value 5 of the load within the interval ds is P2(5) d5, and the prob-

ability that R ~ 5 is 
5 

P (R = 5) = 1 Pl(R) dR 
-CD 

The probabi lit Y of both events occuring simultaneously is the P (5 = 5) and P (R 6 5). 

That is, PF 5 = 

= 

P (5 = 5) and? (R ,{. 5) 
5 

P2(5) « J Pl (R) dR » dS 
-CD 

Thus, for PF over 011 values of S, we obtain the double integral 
S +CD S 

PF = 1 1 P2(S) P1(R) dR dS - - - - - - (3.2) 
-CD -CD 

"Freudenthal25 in 1961 formulated PF in relation to the safety parameter n. If 

n = Ris and the distribution function of n is pen), then R = nS and by the probability 

law of quotients, 
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00 

P(n) = J P1(nS) P2(S) dS 
o 

thus, 
1 00 

PF ·= J f. P1(nS) P2~S) S dS dn 
-00 0 

Both (3.2) and (3 0 3) are the same, for by a suitable transformation (3.~) can be 

reduced to 3.3). 

Freudenthal25 ,26 and others14,61 have formulated the failure probabilitY on 

the macro level for the different and varied aspec.ts of structural design such as repeated 

loading, static loading, multiple member structures, etc. In this present formulation, 

however, only the initial probability of failure will be discussed. 

3.3 Initial Probability of Flexural Failure. 

The determination of the probability of failure can only be based on the 

criteria of failure adopted in a particular situationo 

The bridge structure is considered to have failed, when either 

(1) The tensile steel yields; that is, the load is greater than the 

fJexùrqlcapacity in tension. 

or (2) The concrete in the compression zone is crushed; that is, the load 

greater than the resistance, the flexural capacity, in compression o 

Thus,. the failure of the bridge is related only to its flexural capacity. Also, only the 

bridge beams are considered. This is a rational criterion atthis stage of the analysis as 

the capacity of R. C. bridges is mostly dependent on the flexural resistance of the 

beams1• Shear is not considered for the purpose of simplicity in the an~lysis and, 

also, because of the lack of understanding of shear failure. 
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ln evaluating the probability of failure related to flexural failure, only i'ension 

failure is considered. Compression failure is not taken into account. There are two 

. reasons for this. Firstly, compression failure occurs suddenly and without previous 

warning. As such, designers attempt to avoid compression faflures by designing beams 

for low values of q. Consequently, the probability of compression failure is very 

low compared to that of tension failure. Secondly, the cost of a beam increases 

rapidly as q increases above the optimum as is'shown in Chapter IV. 

The probability of failure is given by Equation@02)where P1{R) is the frequency 

function of the beam moment capacity and P2{S) is the frequency function of app.lied 

moment. 

Theoretically, the frequency function of the true beam capacity MA can be 

determined by combining Equations (2.4) and (2.5) to obtain 

While the only random variable in experimental work is~, in design the variables d, 

fI c and fy are also random variables. 

Thus, if MA is the actual flexural resistance of the beam and MS is the applied 

moment, then 

+00 

= / 
MS 

/ P2 (MS) Pl (MA> d MA MS 
-00 -co 

- - - - (3.5) 
00 

br PF = J P2(MS> Pl (MS) d (MS> 
o 

The incomplete knowledge of the frequency functions of ail these variables and 

the complexity of Equation (3.4) prohibit computation of the frequency function of MA' 

and, therefore, of the failure probability given by Equation (3.5). However, by making 
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certain statistical assumptions and approximations, PF can be evaluated in a relatively 

simple mahner. 

3.4 Approximate Method - CornelPs Approximation. 

The preceding developments suggest that meaningful frequency distributions of 

the random variables involved in safety analysis of moment capacity 'are not reasonably 

obtained. At best, one can hope to establish the means and variances of the random 

variables involved and only a qualitative estimate of the shape of frequency functions. 

A number of expressions for failure probability involving only the means and 

variances of design variables have been developed based on Tchebycheffls inequalities.15 

These simple expressions yield very conservative estimates of failure probabi lit y • 

An alternative approach piOposed by Corne Il 14 seems to provide a reasonable 

measure of likelihood of failure although the results arenecessarily approximate. 

For any structural mechanism, 

PF = P (R 6 S) = P (RiS :6 1) 

= P «log (RiS) ~ 0» 

Assuming that Ris is log-normally distributed, then the standardized variate can be 

expressed as 

x = log (RiS) -' 10g(RIS) 

(j log Ris 

in which log lR7S) is the mean and 610g Ris is the standard deviation of the natural 

logarithm of the ratio Ris. Then, 

and 

log (RiS) = X 6 log Ris + log "RI?) 

- . log (RIS) . 
PF = P « X k (J" log RIS' » 

(3.6) 

(3.7) 



.' 

That is, 
=, FX « - ,log (RiS) 

(j' log RIs 

(3.7) 
» 

where FX is the cumulative distribution function. In general, bya law of prob­

ability, if z = xy, then 

z = xy = x y + cov (x, y) 

When x and y are independent, cov (x, y) is zero. However, when x and y are not 

independent, but cov (x, y) is small and xy is large, the approximation 

z = x·y 

can be made. The smaller the covariance, the better the approximation. Extending 

this approximation principle to statistical functions, it can be said that the mean of a 

function is approximately the function of the means, and the variance of a function can 

Therefore: log RIS 

(J'log RiS 

- log (if IS) 

~ VR
2 -1. VS

2 

52 

assuming that the lower tai 1 of the cumulative distribution function of X can be approxi-

mated by an exponentional of the form 14 

FX(X) ;:::: keb'x - - - - (3.8) 

log Ris 
thus, PF = FX ( - g' ) - - - - (3.9) 

log Ris 



= k exp « - bllog (R,/S) 
» (3.9) 

and log PF = log k bl log (RI S) 

../VR2 + VS2 
(3.10) 

. For equations ·(3.10) and(3 e 11} to be suitable for application to practical probiems, 

k and b must be determ"ined. By plottin~ FX(-X} versus -X, values of log k = 7 0 5 and 

b
l
=4.5 were obtained14 , for Ris log normally distributed. 

ln the development of this approximate method, Cornell recognised that the . . 

assumptions and approximations made could and should be improved and extended by 

further investigations. The validity of the approximate analysis depends mainly on the 

reliability of the assumption that Ris is log-normally distributed. Firstly, it mu~t be 

noted that the "true" distribution is not criticaI. It is the distribution of the values in 

the range of the tai 1 of the frequency distribution that is of importance in evaluating 

the probabi lit y of structural failure. Although a large number of Il common" distribu-
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tions can be approximated by the exponential form for a wide range of values in the region 

of the tail of the frequency distribution, this fact does not make the use of the approxi-

mati on valid for the "true" distribution is not known. Since only direct measurement 



along the tail of the distribution can determine the IItrueli distribution function, it 

is quite impossible at this stage to prove the validity oi using one distribution function 

above anothe"r. It is only by investigating the sensitivi!y of the total cost to changes 

in PF and fi can the reliability of the assumption be tested. This aspect of the 

problem is discussed in Section 3.6.2 of this chapter. 

3.5 Application of Approximate Method. 

If MA is the actual capacity of a bridge beam, MT' the capacity given by the 

theoretical formula, and MS the total load acting on the beam, then formula (3.11) 

can be rewritten by substituting for Rand S. 

Where n is the centra 1 safety factor, then from (3. 11) 

2 
+ VMS 

4.5 
(7.5 - log PF) »- 3.12) 

To obtain a relationship between ri and log PF' the problem is resolved to the ~eter-

mination of VM
A 

and V
MS

• With the evaluation of VMA and VM
S

' fi can be 

obtained for various values of PF. 

3.5.1 Evaluation of VMA: 

Writing Equation (3.4) in the form 

Then, by the same approximation methods of Section 3.4, 
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MA =:;:. ~ MT 

ond 2 
~2 

2 
-2 

2 

(j MA -:::: 6 MT + MT (j'Ç{ 

therefore, 
2 2 2 

VMA Ç{2 cr MT 
. 2 

() Ç{ + MT ... ... 
~ MT2 

2 2 - VMT 
+ V Ç{ .... (3. 13) 

Using the formulo obtained by theleost 'squares onolysis for the theoretical moment 

copocity , 

Assuming thot b and As have no distribution function; that is, they are fixed or con 

be found From other design voriobles, then 

ond 

MT = b d2 f1 c 00 + d fy As 01 + fi A? 02 

fl c b 

il MT = 2 bd f1 c 00 + As fy 01 

~ 

èMT = d As al + 2 A2s fy 

o fy b fIc 

aMT = b d2 
Cl 0 - Al fi 

a f1 b fl 2 
c . c 

Evaluating the partia 1 derivatives ot ëf: ty ondt1 Cf we obtain 
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By putting q = As Ty i 

b "Ci" ~1 c 

As~ Tl a2 )2 

bf1 2 
c 

VM/ = (2 ao 4- al ëj)2 vi + (al "Ci + 2 a2 c[2)2 Vy2 + (ao - a2 (2)2 Vc
2 

(ao + al q + a2 q 2 )2 

'" ------ (3.14) 

where Vd = dd Vy = 2.fY Vc = 0' Oc , , 
ëf r 

TIc ory 

Thus: 
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VMA2 ~ (2 ao + al ëj)2 Vd2 + (al ëj + 2 a2 ëj2)2 Vy
2 + (ao - a2ëj2)2 Vc

2 + V20 

(ao + al q + a2 q 2 )2 
- -- - - (3. 15) 

Once the statistical parameters of d, fy, fI c and fi are determined, values 

of VMA2 can be obtained for various values ofq. 

3.5.2. Evaluation of V MS: 

Let ML and MD be the 1 i ve and dead load respect ive Iy . 

Then, 
(3.16) 



~ 
~ 

MS -" ML + MD 

and 

" 2 6 MS 
~ 6 ML

2 + 6 MD
2 

thus, 

2 2 2" 
+ 6 MD 

2 
Vl>As == 6Ms ;.;:. 6ML - - - (3.16) 

Ml ( ML + MD)2 

Putting.m = MD / ML , VL = 6 ML and VD = cf MD / MD 

ML 
we have, 

- - - (3.17) 

VL is obtained from the dis"tribution of vehicle loads. With an estimate of V D and an 

initial value for 'rri , "MS can be evaluated. 

3.6 Cost. 

Cost is undoubtedly one of the main factors in the economic considerations of 

bridf!e design and construction. 

With the development of the computer and the evolution of new methods and 

techniques, there are three main reasons for placing economy on a truly r ealistic basis: 

(1) It is as easy to optimise cost based on sound engineering principles 

as it is to approximate, 

(2) From a national and international point of view, the resources 

of the construction industry must be deployed to the max.imum advan-

tage in the face of increasing human needs, and 
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(3) Since design for certain purposes is being standardi~ed, -

indu~trial blocks and offices', apartment buildings, highway 

bridges, etc.,- considerable attention should be paid in the 

design stage to economy 1 with which str"uctural engineers are 

already preoccupied. 

3.6.1 General Cost Function. 

The cost of a structure depends on many factors that can. vary from country 

'. . ~. . 
to country and even within one country.. The overall cost of a structure con be 

categorised as follows: 

Cost of (a) design 

(b) materials 

(c) construction 

(d) maintenance 

(e) unserviceability or failure 

(f) demolition 

For a particu lar class of structure, however, some of these cost factors arè 

constant, such as cost of maintenance and demolition. The cost of design, construc-

tion and materials can be considered as the in itial cost of the structure and cost (e) 

is the cost associated with failure. Thus, the two basic cost factors which are of 

particular importance to structural designers are initial cost and failure cost. 

Manyresearch engineers12,24,25,61 have ottempted to incorporate these 

two cost factors into an expression for the total cost of a structure. The generally 

accepted expression for the total cost function is: 

T = 1 + PF CF (3. 18) 
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~n which T is the total c'ost; l, the initial cost and CFI the costcissocia~ed with 

failure. Engineers have attempted to include in CF, not only .interest rates, cost 

of material loss, cost of repair or reconstruction, but also the cost due to loss of 

life. The inclusion of the latter cost, however, is questionable as life cannot be 

measured in dollars and cents or in gold. 

3.6.2 Cost and Failure Probability. 

One of the main problems encountered in obtaining a good estimate of the 

total cost of a structure is the evaluation of the cost of failure, PFCF. Since PF 

has to be approximated as discussed in Section 3.4, it is necessary to investigate 

• the sensitivity of the total cost and the central safety factor (central safety factor 

ri depends on PF ) to changes in order of magnitude in PF. 

The basic form of the total cost function or total uti lit Y losses62 is 

(3.18) 

The initial cost l l, is a function of the strength; that is, it is dependent upon the 

central safety factor and can be expressed as 

1 = f(ri) 

The precise relationship between 1 and ri is not known, but in view of the small 

range of strengths and form in a basic structure, a nearly linear 1 - ri relationship 

is expected. 62 Paez and Toroga (Turkstra62 ,62) have studied the relationship for 

simple bridge structures and found the linear relationship 

1 = Cl iï + Co (3. 19) 

where Cl and Co are constants. One of the aspects of this present study is to 

investigate the 1 - n relationship for a bridge beam. 
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Since the constant Co has no effect on the minimizati0t:! of the total cost 

expression, formula 3.18 can be rewrit'ten in the form 

Equation 3.9 for PF can be rewritten as 

- H/V 
PF;::: k n 

where ri = "RIs and V =4 VR2 + VS2 • 

Substituting in 3.20 for PF' the expression for T becomes 
- ~/v 

T Cln + Crk n 

- (~+ V)/V 

Differentiating and solving for nopt., 

- (b' + V)/V 
o T = C 1 - Cfk b' ri 
in V 

V V 
= (q: ) V+'b' (k b) V + b' 

C1. V 

Substituting nopt. for n in 3.22, 

» 

Topt. = C1 nopt. (1 + V) 
b' 

(3.20) 

- - - (3.?-1) 

- - - (3.22) 

(3.23) 

(3.24) 

Considering values of ri near the optimum and putting nopt. = n*, the expression, 

n = n* (1 + D) - - - (3.25) 

represents a divergence of n From nopt. in the vicinity of the optimum; where D 

is small compared to one. Then, 
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-(b'+V);V 
T = Cl n* (l + D) « 1 + k CF ri* 

ë1 ' . 
-(b'+V) 

= C1n* (l + D) (( 1 + V (l + D) --V 
li 

::! C 1 n* (l + D) (( 1 + V (l .:. D'fi » 
B . V 

Since V G ..: ~ , by simplification 

== T opt 0 + V D C 1 ri* 
I;r 

» 

-(~+V)/V 
(1 + D) » 

- - - - (3.26) 

Since v,Ib' ..:. .G 1 it can be seen that the total cost is relatively insensitive to 

changes in ri near the optimum. 

By substituting the value for n* in the equation for PF t 

P = V 
Fopt. fI 

- - - - (3.28) 

Also, substituting the value for 'ri near the optimum given by equation 3.21 in the 

formula for PFt 

-b'/V 
PF = k 'ri * (l + D) 

-b'/V 
= PF (1- bl D) opte V 

Since bïV '? > l, it can be concluded that ri is relatively insensitive to changes in 

PF around the optimum point. 
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Paaz and Toroioo (Turkstra61 ) has shown that there is a wide range of strength 

within which the computed value of the ~otal cost shows IHtie variation o Computal"ions 

done by Turkstra have given similar results. The general conclusions that can be drawn 

from this theoretical analysis are: 

(1) The total cost is relatively insensitive to changes in n near the optimum. 

(2) There is a range of PF1s that can be used with only small variations in n 
near the optimum. On the other hand, PF is extremely sensitive to small 

changes in n. 
(3) As a result of (1) and (2) , it can be concluded that approximations such as 

that proposed by Comell ère sufficiently reliable at this stage of engineer-

ing knowledge for computing the probability of fa il ure for a wide range of 

distribution functions of load and resistance. 

It must be emphasised, howevoer, that °these conclusions only hdld when..y ..::. ~ b. 

As V gets largeri that is, as the level of control exercised on the design variables 

decreases and the factor of ignorance increases, the conclusions become less valid. 

3.6.3 Initial Cost. 

For the purposes of this study, only the initial cost is required. Since ail 

other costs, except material cost, are reasonably constant for a particular class of 

structure, such as simple-span reinforced con crete bridges, only the material cost 

wi Il be considered. 

The material cost of a bridge beam is a function of the quantifies of concrete 

and steel and the unit costs of these materials. Thus, 
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where Ct is the total initial cost pe~ unit length; Cc and Cs, the unit costs of 

concrete and steel respectively; and Qc :lnd Qs the quantities of concrete and steel. 

For a rectangular concrete bearr: 1 

Qc = b 'Cr x 1 

Substituting, and converting ail quantiti::s to the same unit of measure, 

Ct = 0.00694 b 11 Cc + 3.40 ~·s Cs (3.30) 

The values of Cc and Cs employed in thi: studyare .50 and .07 respectively. These' 

values are based on prices in Montreal, Canada. 

A formulation of the cost functicc and the' probabi lit Y of fai lure in terms of 

the distributions of load and resistance r.cs been presented. Due to the complexity 

involved in the evaluation of the failure probability in the general formulation, an 

approximate method, developed by Cornsll, has been applied to the specific problem • 

. The final proposed formulation requires on Iy the means and variances of the distributions 

of the design variables to solve the problsm. 

3.7 Summary. 

On the basis of the preceding di:z:ussion, the following are adopted: 

(1) The relationship between ri and PF is given by Equation (3.11) with 

k = '7.5 and b ' = 4.5. 

(2) The mean moment capacity MA is given by Equation (3.4) with the 

constants ao' a1 and a2 equal to 0.011, 1.114 and -0.90 respectively, 

and ~ = 0.999. 



(3) The coefficient of variation of moment capacity VMA, is 9iven by 

Equation (3.15) and of applied"moment VMS by Equation (3.17). 

(4) Construction costs of concrete re loted to the cost of materials are 

given by Equation (3.30), with unit costs Cc and Cs equal to 

0.50 and 0.07 respectively. 
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IV 

OPTIMAL SOLUTION 

The optimization techniques of operations research have been applied to 

structural design within recent years to obtain a IIminimurn-lweight design" or a 

"minimum-cost design". In general, writers have referred to the combination of 

design variables ,resulting from such optimization procedures as the optimum combina-

tion. But the term optimum can be very misleading unless it is defined in relation 

to the specific problem; that is, the framework within which the optimal problem 

is to be solved. Herein, a method of obtaining the optimal solution of a reinforced 

con crete bridge problem based on cost factors and subjectto certain safety require-

ments is presented. 

4.1 Formulation of the Optimal Problem. 

Several writers13,43,48 within recent years have formulated the optimal 

problem as a non-linear programming problem and by employing certain approximations 

and iterative procedures, they obtain an "optimal solution". This optimization tech­

nique has been applied to plate girders48 , prestressed concrete structures53~ framed 

structures 18,45, and, in some cases, a general formulation applicab'le to different 

classes of structures has been attempted13• However, these formulations are made 

within the present design framework; that is, by adhering to the limitations and condi-

tions set by the present design code. On this basis, cn absolute optimum is sought. 



~ 
~ 
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This approach is unrealisticfor two main reasons. Firstly, it does not relate 

cost to safety on a realistic basis. Safety or lack of safety can only be expressed in 

a probabilistic sense as discussed in previous chapters. By basing the optimal solution 

on fixed "allowable stresses" and "allowable load", the formulation ignores the statistical 

variation of these design variables. 

Secondly, economy in structural design cannot be absolute. In other words, 

a designer cannot obtain an absolute optimum in a design problem. For example, 

rectangular R. C. beams have no finite optimum that is absolute. The cost of materials 

of such beams decrease as the depth of the beam increases. Thus the absolute optimum 

is at d equal to infinity. Further 1 the solution of the non-linear programming problem 

involves a complex procedure 18,43(44,45 and the results are questionable. 

Economy in structural design, therefore, can only be considered in the context 

of a relationship between cost and safety. Th.e problem here is to compute the optimum 

initial cost of a R.C. bridge beam cross-section f~r different values of the probability of 

failure and to examine the relationship between them. . . 

4.2 Optimization Procedure. 

An optimization procedure for solving the optimal problem is formulated as a com-

puter' programming problem. The known variables and constants ârethe input and the 

unknown variables are determined in logical sequence. 

The optimal solution is obtained for a rectangular beam cross-section at mid-

span of a simple span R. C. bridge. The bridge geometry is considered as a simple 

beam and slab arrangement. The bridge span is 50 feet and the superstructure is 

supported for one lane of traffie on three reetangular beams spaeed on a width of 



15 feet ar 5 foot centres." The procedural steps are best understood by discussing 

each step as the formulation is developed. 

", 

4.2.1. Computational Steps. 

The optimization procedure consists of the following computational steps: 

Step 1: Constant Input - This input consists of the constant"s and ail 

variables kept fixed throughout the computation. 

Step 2: Variable Input - This" consists of variables, the values of which 

are not constant, but are varied in the analysis. 

Step 3: "Central Safety Factor - The stafistical parameters of fl c , fy, 

fi and ML are obtained from the frequency distributions of 

these variables. On the other hand, the statistical parameters 

of .v D andVdare estimated. This estimation is based on design" 

experience. On the basis of these determined parameters and 

by using an initial value for" ID ,,;, mi, V2M
A 

and V2MS are 

computed from the formulas developed in Section 3.5 of 

Chapter III for various values of ëj. Thus, with V2MA and 

V2MS known, iï is determined for different values of PF from 

the formula: 

- - (4.1) 

where Bk = (7.5 - log PF) / 4.5. A check is made in 

Step 6 for the value of m . 
Step 4: Design Variables - With iï computed and an initial value of 

m estimated, the design moment is obtained from: 
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and ëf can then be computed from 

d = « 12.0 B MA )) 1/3 
«;-l1-f+1 c-(-a-o-+-d-1q~+:-"'-a2-q"""2 -) ~)) 

where B = cl / b. This equation for d' is developed in 

Appendix A. See Appendix C for assumptions on m. 

It is necessary at this stage to choose values of one of the 

variables, d, b or A~! or a combination of these in order 

to compute the others, for there can be no absolute optimum. 

A preliminary computation was carried out to investigate which 

variable or variables' combination would be best suited to the 

analysis. The combination, B = d'lb, was chosen because in 

practical problems B would rarely be greater than three aOO, 

as a result, only three or four values need to be used. Also, 

the volume of computations to be carried out using B is com-

paratively small and therefore the computational time is 

reduced and the results less exha~sting. The other design 

variables, b and As', are easily obtained from B = ëf/b 

- .- / -:r-l and q = I-·s f y bof' c • 

Step 5: Total Depth - \t is necessary to know the total depth of the 

beam before the cost of materials con be determined. It is, 

therefore, required to choose bar sizes and compute the number 

of rows of steel for a particular total area ,of steel. By investi-

gating the influence of the bar sizes for various steel are as 

on the toto 1 depth of a rectangu lar beam, an automatic method 



was developed for determining the total depth,·l1. This 

method is explained in Appendix B. 

Step 6: Checking m - With the width and total depth of the beam 

determined and the bridge geometry given as explained 

earlier, the actual dead load mom.ent, MD, can be com­

puted. mi+l is then computed and compared with mi; 

a tolerance Iimit of 0.05 being allowed. If the deviation 

is greater than 0.05, the procedure is repeated again from 

Step 3 unti 1 convergence is obtained. 

Step 7: Cost - Having obtained b, fi and A~'" the materials' cost 

can be determined. To do this, the unit cost of both 

steel and concrete was chosen, based on delivered priees 

in Montreal, Canada. The cost per foot length of the 

beam, as developed in Section 3.6 of Chapter III, is ex-

pressed as 

Ct = 0.00694 bhCc + 3.40 As Cs - - - - (7.2) 

where Cc is the unit cost of con crete and Cs the unit cost 

of steel. 

Step 8: Repeat - The procedure is repeated from Step 3 for values 

of ëj between .05 and .40. 

Step 9: Repeat - The entire proc,edure is repeated from Step 2 for 

various values of the variables. 

The numerical computations were performed on the IBM-7044 Computer of 

McGill University. A Iist of the values of the input data is given in Appendix C. 

The output data consisted mainly of the computed values of y2MA, y2Ms , n, m, 
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4.3 Optimum Cost and Failure Probability. 

The output data was analysed in order to investigate the relationship between 

optimum initial cost and strength, and the influence, if any, this relationship has on 

the design variables. 

It was observed early in the analysis of the output data that the optimum cost: 

:gener.aJIYI occurred at an almost constant value of ëj for ail values of the in~ut 

variables. The output data gave the optimum in some cases at q = 0.20 and in others 

at ëj = 0.25. This was as a result of the increment of 0.05 used for "q. 

Figs. (4-1A) to (4-1 B) show the variation in cost with q for various values of 

PF, RiL, VMA and VMS. It can be observed from the curves that, in fact, the 

optimum lies somewhere betwecn q = 0.20 and ëï = 0.25; perhaps doser to ëj = 0.25. 
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This constancy in the values of ëj for optimum "cost can be explained by the fact that ëj = 

Al:; / bd f1 c ; thus if fy and t1 c are constant or (f),/fÏ d is constant, then qopt. can 

be expected to be constant. Further investigation is required to establish the relation-

ship between ëïopt. and (fy!f1 cl • 

The relationship between optimum cost and strength is summarised in a series 

of tables and curves. Tables (4-1A) to (4-ID) summarises the optimum cost for four 

combinations of VMA and VMS. It can be observed from the tables that a large number 

of combi~ations of PF, RiL and B will give the same cost for a particular VMf.. and VMs 

and even for various combinations of VMA and VMs. In fact, on each table, lines of 

constant cost con be drawn in 0 contour-like foshion. 



ln order to show the general relationship obtained, a nur'nber of curves are 

drawn of logPF against Ctfot ML = 50. Fig. 4/2 shows one such set of curves for 

varying VMA' VMS ~nd B. For any. particular PF' the optimum cost increases for 

decreasing B and for increasing VMA and VMS' as is expected. Also, as the 

probability of failure decreases, the cost increases, but the rate of increase decreases 

as VMA and VMS increases; that is, for increasing VM
A 

and VMS' ·the slope of the 

curve lo9PF!Ct decreases. 

Thï's influence of VMA and VMS on the lo9PF vs.Ct relationship is further 

.. 
shown by Figs. 4.3A, 4.3B and 4.3C. 

This general tendency of the lo9PF vs Ct curves for Iiii L = 50 is typical for ail 

Ml1s. Figs. 4.4A and 4.4B give logPF with Ct for various fÎlL's, VM
A 

and VMS' 

The only influence of the increasing live load moment, ML, is to increase the 

magnitude of the optimum cost. It con be observed that the slope of the curves for ail 

Ml and for a particular combination of VMAand VMS is almost constant. Also, the 

increase in the magnitude of Ct is almost constant for equal increases in the live load 

moment; PF being kept constant. Fig.4-5 shows the relationship between logPF and 

n. The trend in the curves con be easily deduced from equation (3-11) 

The most interesting and important relationship obtained was that between ini-
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tial cost and strength of. the central s~fety factof, n. The curves shown in Figs. 4-6A to 

4-6C indicate that there is a Iinear relationship of the form 

between initial cost and n for a bridge beam; the constants Aoand Al depending on the 

live load moment and the depth to width ratio of the beam. It can be seen from the 

Ct - n curves that t.he relationship is independent of PFI VMA and VMS' However, 

the value ofii is directly dependent on PF 1 V M and VM • 
A S 



PF 

10-2 

10-3 

10-4 

10-5 

10-6 

~~.:ti.1 V:tY 

-n 

1.35 

1.42 

1.50 

1.59 

1.69 

~. 

ML=50 

B 

2.0 2.5 3.0 

1.948 1.809 1.677 

2.037 1.877 1.751 

2. 131 1.964 1.830 

2.260 2.039 .1.912· 

2.378 2.117 1.999 

TABLE - 4-1A 

OPTIMUM INITIAL COST 

VMA = .10 VMS = .05 

ML = 60 ML = 70 

B B 

2.0 2.5 3.0 2.0 2.5 3.0 

2.008 1.841 1.729 2.068 1.899 1.770 

2.100 1.924 1.806 2.164 1.980 1.848 

2.197 2.022 1.888 2.300 2.052 1.931 

" -2.334 2.078 1.973 2.408 2.161 2.033 

2.451 2.181 2.063 2.523 2.282 2.126 

-

ML = 80 ML = 90 

B B .. 

2.0 2.5 3.0 2.0 2.5 3.0 i 

2.115 1.943 1.821 2.179 1.999 1.875 

2.209 2.021 1.903 2.302 2.084 1.960 

2.344 2.103 1.990 2.429 2.165 2.048 , 

2.455 2.199 2.079 2.545 2.291 2.141 

2.548 2.349 2.163 2.652 2.395 2.230 
i 
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PF 

10-2 

10-3 

10-4 

10-5 

10-6 

---

~ 
~ 

-;n 

1.42 

1.52 

1.62 

1.73 

1.86 

2.0 

2.039 

2.162 

2.319 

2.469 

2.575 

ML = 50 

B 

2.5 3.0 2.0 

1.880 1.752 2.096 

1.986 1.846 2.211 

2.061 1.947 2.380 

2.177 2.054 2.518 

2.342 2.168 2.614 

TABLE - 4':'IB 

OPTIMUM INITIAL C.OST 

VMA = .10 VMs = • 10 

ML = 60 ML = 70 

B B 

2.5 3.0 2.0 2.5 3.0 

1.920 1.801 2.153 1.981 1.836 

2.036 1.897 2.311 2.054 1.948 

2.105 2.000 2.441 2.171 2.052 

2.272 2.109 2.556 2.331 2.164 

2.403 2.215 2.679 2.478 2.271 

-

ML = 80 ML= 90 

B B 

2.0: 2.5. 3.0. 2.0 ·2.5. 3.0 

2.193 2.033 1.885 2.321 2.061 1.937 

2.369 2.114 1.985 2.427 2.155 2.038 

2.502 2.262 2.090 2.541 2.301 2.1.l1-5 

2.586 2.389 2.194 2.653 2.446 2.290 

1 

2.739 2.539 2.325 2.805 2.600 2.362 1 

1 

~ 



PF 

10-2 

10-3 

10-4 

10-5 

10-6 

~ 
~ 

-
,11' 

1.52 

1.65 

1.79 

1.94 

2.10 
----

ML = 50 

B 

2.0 2.5c 3.0 

2.159 1.978 1.853 

2.330 2.090 1.974 

2.502 2.246 2.105 

2.638 2.399 2.212 

2.851 2.606 2.372 

TABLE - 4-1(: 

OPTIMUM INITIAL COST 

VMA = .15 VMS = .05 

ML = 60 ML = 70 

B B 

2.0 2.5 3.0 2.0 2.5 3.0 

2.248 2.035 1.909 2.312 2.073 1.965 

2.399 2.142 2.034 2.468 2.232 2.093 

2.563 2.314 2.168 2.598 2.381 2.185 

2.716 2.513 2.279 2.789 2.585 2.342 

2.900 2.685 2.430 3.013 2.762 2.502 
-- - -

- ML = 80 

B 

2.0 2.5 3.0 

2.375 ·2.122 2.007 

2.535 2.294 2.187 

2.675 2.488 2.253 

2.867 2.657 2.409 

3.095 2.817 2.614 

@.. 
~ 

ML = 90 

B 

2.0 2.5 3.0 

2.438 2.182 2.064 

2.577 2.339 2.175 

2.753 2.535 2.303 

2.969 2.727 2.496 

3.176 2.853 12.684 

~ 
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PF 

10-2 

10-3 

10-4 

1

10-
5 

. ]0-6 

- - -- --

~ 
~ 

-.n 

1.63 

1.79 

1.97 

2. 16 

2.35 
---

ML = 50 

B 

2.0 2.5 3.0 

2.326 2.075 1.959 

2.520 2.270 2.112 

2.698 2.486 2.262 

2.918 2.677 2.460 

3.213 2.905 2.661 
-- .- -

TABLE - 4-1 D 

OPTIMUM INITIAL COST 

VMA = .15 VMS = .10 

ML = 60 .' ML = 70 

B B 

2.0 2.5 3.0 2.0 2.5 

2.393 2.123 2.017 2.A58 2.194 

2.570 2.335 2.170 2.601 2.400 

2.755 2.547 2.327 2.825 2.617 

3.045 2.753 2.531 3.105 2.827 

3.320 2.969 2.736 3.320 3.021 
1 

:::..;'~., e· -"'. 

ML = 80 ML = 90 

B B 

3.0 2.0 2.5 3.0 2.0 2.5 3.0 

2.074 2.524 2.284 2.116 2.550 2.326 2.163 

2.200 2.676 2.489 2.273 2.753 2.534 2.315: 

2.410 2.900 2.686 2.475 3.025 2.755 2.520 

2.581 3.196 2.886 2.671 3.276 2.938 2.741 

2.786 3.467 3.120 2.886 3.512 3.198 2.960 
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It was observed from the r'esults of the computation that the dead 'to live load ratio m 

varied w,idely for various values of ML, VMA and VMS. The most pronounced variation 

in m was observed for'varying ML. As ML increased from 50 to 90, ni decreased from 

6.0 to 3.0 approximate.Jy. However, the effect on ni of variation in VMA and VMS 
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is not as pronounced. No systematic variation in m for any one variable or combination 

of variables was observed. 

4.4 New Design Approach. 

Since both cost and safety are the fundamental con cern of designer, client and 

society, it is necessary and urgent that a new approachto the design problem be pre-

sented on a realistic, yet simple basis. Hereunder, such a formulation is presented for 

a bridge beam of rectangular cross-section, based on the results of this present study, 

but which formulation can act as a basis for future investigations. 

(l) Say Ty, Vy' flc' Vc ' ML, VL' Jr, V'I' VD and Vd cre obtained from 

statistical data and chosen on a subjective basis from experience (the professional code 

can be a guide in such a choice). 

(2) Probability of Fai lure - It is not meant here to begin a discussion on the 

c'hoice of failure probabilities. However, the choice of the failure probability is 

undoubtedly re lated to the specifie c1ass of structure under consideration and the 

relative importance of the particular member to the structural operation of the entire 

structure. For certain members and certain classes of structures, the designer may be 

allowed a degree of flexibility in choosing the failure probability. Suffice it to say 

that a designer can be and must be guided in his choice by a new code. Say that a 

choice is made. 
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(3) Variance Ratios oF Resistance and Load - From the statistical parameters . . 

determined i'n (1) and by calculating the ra~io (fy/flc), qopt. for the particular class 

of structure, in this case an R. C. simple-span bridge, can be obtained from graphs and 

as a result VMA and VMS can be computed From the formulas given in Chapter III, 

or any other such formulas for the class oF structure under consideration. 

The only unknown is m. At this stage, m can be guesstimate'd. The results of 

the computation showed that m varied From 3.0 to 6.0 approximately as ML decreased 

from 90 to 50. Thus, knowing ML, say 90, in can be guesstimated to be 3.0. A check 

for m is made in Step (6). 

if might be mentioned that with further investigation a new code might guide 

Ci designer by giving values of VMA and VMS for certain classes of structures and 

levers of control. 

(4) Central Sofet)' Factor - Having VMA' VMS and PF' ri can be obtained 

from a series of curves such as shown in Fig. 4-5. Turkstra61 has drawn a series of 

these curves for various types of Frequency distributions. 

(5) ,Design Variables - With ri known, MA(rn can be taken from a curve such 

as that shown in Fig. 4-7, since ML is known from (1). With the initial estimate of 

m from (3), MA can be obtained or, instead, MAliiiML can be evaluated. 

Figs. 4-8A, 4-86 and 4-9 show curves For finding the effective depth, d. 

Since qopt. has been determined in Step (3), values oF d can be obtained From one of 

these curves for various values of B = d/b, thus giving b = d/B and As = bd"q(r1 cff y}. 

ln this way, values of b, d and As can be obtained For various values oF B. 

It might be necessary to limit, say, dbecause oF clearance required. This 

constraint can be taken into consideration at this stage quite simpl}'. 
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(6) Check for ni ,- Now, the value of Mo can be determined and thus 

m = MD/iV\L can be evaluated and checked with the initial estimate of m. If 

necessary, the proced~re can be repeated from Step (3) for the new value of ~ . 

(7) Cost - The cost depends, a~ observed earlier, on many variables. The 

procedure at this stage is to minimise cost. With VMA and VMS' PF and ML known, 

the cost con be investigated for various B's. Further, if flexibil ity is allowed in the 

choice of PF, the cost con be examined for changes in PF. 

The method is equally reversable if an existing structure is to be rated. This 

new design approach cuts, to a considerable extent, the time spent on computation. 

Consequently, the designer con devote more Hme to the art of the design and the 

consi derati on of economy and safety. 

There is no doubt that different classes of structures'will have to be treated 

differentlYi but the basic procedure outlined con be improvecl and developed for a 

wide range of the popular design, problems. The new procedure varies Iittle in actual 

procedure 1 steps from the contemporary design process. In fact, although the whole 

basis of the design method is changed, a designer con feel fami 1 iar with the procedure 

presented within a very short time. 
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RESULTS AND CONCLUSION 

The main purpose of this study was to investigate the relationship between 

optimum initialcost and safe'ty on a probabilistic basis as related to simple-span rein-

forced concrete bridge beams, and to examine the properties of the cost-safety relation-

ship. Basically, the problem consisted of two pa'rts: (a) formulation of the cost 

function and of the probability of fai lure in terms of the central safety factor n, 
, " 

and (b) the development of a method for solving the optimum problem. 

5.1 Summary of Procedure. 

A formulation of the probability problem is presented. This formulation is an 

approximation as a result of the lack of knowledge of the parameters of the exacl" formu-

lation. In order to obtain the statistical parameters required for the evaluation of the 

approximal"e formula, a statistical analysis of data on load and flexural resistance was 

carried out. The loading data was obtained from the 1942 loadometer survey as analysed 

by Stephenson. The ultimate strength theory for moment capacity of beams was employed 

but the conventional ultimate strength formula was shown to be biased with q. As such, 

an empirica,l formula based on a statistical analysis of j'est data was developed. Data 

required for a statistical analysis of sorne of the variables were not available and a 

reasonable estimate of their values was made based on previous investigation. 

The cost function was formulated for the cross-section of the beams at mid-span 

and, therefore, was expressed in terms of the sectional characteristics of the beams and 



the specific weights and unit costs of materials. 

The optimization technique adopted was based on an iterative search method. 

Asetofmeans, ML, f1 cI fyl and coefficientsofvariationsVd, VD, VCI Vy' VL' 

were specified and VMA was computed for a specified value of Ci. Then for a parti­

cular value of PFI n was compùted and the sectional properties were obtained using 

an iterative procedure involving the dead load to live load ratio. The computation 

was carried out for various values of q and the optimum section obtained by a search 

method. The procedure was repeated for à voriety of sets of basic parameters. 

5.2 Properties of the. Cost-Safety Relationship. 

The resuh·s of this study indicate that the relationship between cost and safety 

for the class of problem and parameters studied exhibit certain properties that may give 

sorne insight into the probobilistic basis of design. 

The optimum value of the ultimate stre.ngth parameter ëj was observed ta vary 
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between 0.20 and 0.25 for ail values of variables used. The percentage difference in 

cost between 'Ci equal to 0.20 and 0.25 was of thE! order of 1.0 percent. This indicates 

that initial cost is relatively insensitive to changes in Ci and therefore in p around 

the optimum for a specifie value of the Ty/fl c ratio. 

As predicted by theoretical analysis, the central safety factor n was observed 

to be relatively insensitive to large changes in PF around the optimum. For the smallest 

values of VMA and VMS used (VMA = .10, YMS == .05) a 100 percent increase in log PF 

only gives a change in n of 9 percent; whereas for the largest V MA and Y M 
. S 

(YMA = .15, YMS = .10) a 100 percent increase in log PF gives 18 percent change in 

n. It is, therefore, obvious that as VMA and YM
S 

increases ri becomes more sensitive 

to changes in log PF. This increase in sensitivity of ri with increasing YMA and YM
S 
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may be shown by considering the parameter V =4 VMl +. VM~ • for a 100 percent 

increase in log Pf' the change in iï increases by 100 percent for 50 percent increasein V. 

• Thus the sensitivity or iï to changes ,in Pf around the optimum depends to a gr~at extent 

on the values of the coefficients of variation of load and resistance. 

A similar relationship was observed between failure probability and optimum cost. 

for 100 percent increase in log Pf, the optimum cost only increased by 9 percent. But for 

an increase in V of 50 percent 1 the change in optimum cost for a 100 percent increase in 

Pf increases to 17 percent. It was also observed that the relationship between 9ptimum 

initial cost and iï is a linear one of the form, Ct = Aon + Al where Ac and Al are con-
. . 

stants. The ration Al/Ao varied be~een 0.25 and 0.35 as the depth to width ratio 

increased from 2.0 to 3.0 with Ao remaining almost constant. 

One of the most interesting properties <?f the cost-safety relationship is the effect 

on optimum cost or increasing lviL• for any set of values of Pf, VMA and VMS' the 

èbsolute increase in the optimum co st was almost constant for an absolute constant increase 

in ML. As ML increases from 50 to 90, that is an increase of 80 percent, the optimum 

cost increa~ed by only 12 percent. A similar ·effect was observed in the Ct - iï relation-

ship. Thus the effect of increasing ML on the cost-safety reJationship is to increase the 

optimum cost proportionateJy ror any PF or iï . 

The influence of the depth to width ratio of the beams was as expected. As the 

depth to width ratio increased the optimum cost decreased for any given set of values of the 

basic parameters. for example, as depth to width ratio increased from 2.0 to 3.0 or 

50 percent, the optimum initial cost decreased by 15 percent. However, the dead Joad 

to live locd ratio did not show any systematic variation. ·In. general, it seems that in 

decreased with increasing ML and n but it 0150 varied to a lesser extent with changes in 
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VMA' V M and the depth to width ratio. S . 

5.3 Remarks. 

The basic formulation of the probabi lit y problem has been developed by many 

writers and has been expressed as a statistical relationship between load and resistance 

based on the frequency distributions of these parameters. I-Iowever, knowledge is lacking 

as to the precise nature of these distributi ons. Data in the range of the tail of the dis-

tribution curve is not available. Only the general trend of the distribution within the 

range of experimental measure is known. It is doubtful if sufficient data would ever be 

accumulated to allow engineers to specify the précise nature of the load and resistance 

distributions. Further, data required for a realistic estimate of sorne of the variables 

are not available and engineers will have to make a reasonable estima te based on experi-

ence and the level of control exercised. Under such circumstances, it seems that only the 

means and variances of the parameters con be reasonably estimated. Also, application of 

the probabi listic approach to design problems give a complex set of equations which cannot . 

be solved at the present state of knowledge. lt is as a consequence of this that an approxi-

mate formulation of the probability problem is necessary and muy remain so for quite some 

time. 

The optimization procedure developed in this study avoids many of the pitfalls 

of previous optimization methods. Whereas in previous program~ling problems of this 

nature research engineers have found it necessary to use mcve limits, adaptive move 

. Iimits, accumulation of constraint equations, etc., which cou Id give sub-optima points 

. instead of optima, the method developed herein is a straightforward iterative'search method. 



The preceding discussion on the properties of the cost-saféty relationship shows 

that many interesting phenomena were obs6ïved but further investigation is required to 

confirm their generality to the class of problem considered. The constancy in the value 

of qopt. is one such phenomen~m but it may be that qopto is related to the (fy/fl c) 
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ratio. Also, further investigation is required into the effect of the statistical parameters 

of fy and fl c on the cost-safety relationship. 

This study shows that a great deal of work is required to be done on the probabil-

istic approach to safety and economy in structural design before the· concept is institu-

tionalised and applied to everyday design problems.. However, it also shows that the 

process of evaluating accumulated data, combining them with experience, examining 

• the results and making a realistic choice can be formulated in a simple and logical manner .. 



APPENDIX A 

EFFECTIVE DEPTH OF BEAM 

From Section 3.5 of Chapter III: 

and From Section 3.5.2: 

Therefore, 

Since m _. 1V\O/1V\L 

Also,· 

Thus, 

1V\A = ii ({ML (1 + m) ») 

= 

= 

ft fi c (00 + 0lQ + 02;;';') b 

B x MA 
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APPENDIX B . 

TOTAL DEPTH OF BEAM 

By investigating the relationship between the reinforcing steel bar sizes, 

number of rows and total depth of beam for various areas of steel and widths of 

beam , it was found that the following method of determining the total depth of 

the beam is both realistic and reliable. A check was made on the results and the 

method was shown to give accurate values of h, .the total depth. 

(0) Bar Sizes •. Assume the bar size to be No. 11. 

(b) Total No. of Bars - If RN is the total number of bars required for 

o total area of steel AS! then 

RN = 0.64 As 

(c) No. of Bars in One Row - Let ROW be the number of bars in one 

rowi b 1 the r:equired width of beam for ROW; R the total number 

of rows, the n by puHi ng 

ROW = ROW1 

and assuming a 2" clear cover with 1" clear spacing between bars, 

the equation for b 1 is 

b1 = 2.41 ROWl + 3.0 

Using a tolerance limit of 0.5", if 

is less than zero, (ROWl - 1) is used; if it is zero, ROWl is used, 

and if it is greater than zero, the cycle is repeated with ROW = 

ROWl + 1.0. The result of this step is a value for ROW. 



(d) Number of Rows - Now, 
, 

R = RN/ROW 

Using a tolerance limit of 0.1; if NR is the nearest lower digit 

of R, and if . 

« R - (NR + 0.1) ) 

is less than or equal to zero, then NR is used as the number of 

rowsi if it is greater than zero, then NR + 1 is used. 

(e) Total Depth - With the number of rows, NOR, determined, 

by a simple computation, li is obtained,· thus 

li = d + NOR + 1.5 
'" 

There might be other methods that can be developed, but for the popular 

bar sizes used in bridge and structural design in general, whenever heavy loads 

are the applied loads, this method is simple and gives accurate results. 
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APPENDIX C 

VALUES OF INPUT'CONSTANTS AND VARIABLES 

The values of the constants and variables which form the input data are given 

below. Only one value each for r1 c andfy is used. If two or three values were used, 

the output data would be too voluminous and, consequently, too time-consuming to 

analyse. One value of V c is erriployed as prelim inary investigation showed that 

variation in V chas little effect on the value of V MA. In computing m in Section 4.2.1 

of Chapter IV, the following assumptions are made: 

1. the thickness of the slab is 611
; 

2. the beams are spaced at 5 feet centres; 

3. the bridge span is 50' • 

(a) Constants: 

ao = 0.011; al = 1. 114; a2 = -0.90 

lf = 0.999; Vrj = 0.085 

-1 
f c = 4.0; Vc = 0.120 

fy = 50.0 

Cc = 0.50 

Cs = 0.07 

(b) Variables: 

PF = 10-2; 10-3. 10-4; 10-5; 10-6 , 

ML = 50 ; 60 ; 70 ; 80 ; 90 

VL = 0.15 ; 0.20 
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f) 
Vd = 0.05 . 0.10 

• ~,I 

1 

VD = 0.05 ;' 0.16 

Vy = 0.09 . 0.12 1 

B = 2.0 2.5 ; . 3.0 , 

8', 
.~~~ .. ' 
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