A PARALLEL IMPLEMENTATION OF THE
A*-VITERBI ALGORITHM FOR SPEECH RECOGNITION

by
M. Ravi Shanker

School of Computer Science
McGill University, Montreal

‘ June 1993

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

Copyright (© 1993 by M. Ravi Shavker

Parallel A*-Viterbi for Speech Recognition

Abstract

The problem of speech recognition is one that lends itself to parallelization A com
mon method used for speech recognition i+ the Viterbi algorithm. Unfortunately, this
method is computationally expensive for large vocabulaties. A new two pass method
has been proposed, using the Viterbi algorithm as the first pass and the A* algo
rithm as the second, making use of the results of the Viterbr algorithm. Both these
algorithms can be made faster by parallelizing them.

This thesis report describes the design and mnplementation of a patallel version
of thesc algorithms on a BBN Butterfly multi-processor machine, and it also presents
the outcome of the parallelization. It was observed that the parallel version of the
Viterbi algorithm ran 8 times faster than the sequential version. This was observed
for the recognition of both short words and long words. The A* algonthin, however,
displayed different behaviour for short words as compared to long words. With a short
word, the parallel version of the A* algotithin ran shghtly slower than the sequential
version; for a long word, it ran considerably faster than the sequential version it

was observed to run as much as 150 tines faster

This thesis comments on the results thus obtained, and atiempts to explam the
behaviour of the different parallel implementations.

Résumé

Le probleme de la reconnaissance de la parole peut facilement étre résolu en par-
allelisant. L'algorithme le plus fréquemment utilisé est celui de Viterbi mais, mal-
heureusement,, cette méthode prend tiop de temps pour un vocabulaire étalé. Pour
y 1emédier, la méthode a “double passe” a été proposé. A son premier passage,
Palgorithme Viterhest utilisé et au deuxieme tour, algorithme A* utilise les résultats
obtenus au passage précédent. Les temps d’exécution des deux processus peut dtre
considérablement réduits s’ils sont. parallélisés.

Cette these déerit la conception et Pimplentation d’une version parallele de ces
algorithmes sur la machine BBN Butterfly tout en présentant les résultats de la par-
allélisation Les 1ésultats obtenus ont montré que la version paraliele de lalgorithme
Viterbi est 8 fois plus rapide, tant pour les mots longs ou courts, que sa version
séquenticlle. Par contre, la version parallele de Palgorithme A* est légérement, plus
lente pour les mots courts que sa version séquentielle tandis que pour un mot long,

la version parallele est 150 {ois plus rapide.

Le but de cette these est d’expliquer les divers comportements des différentes

excécutions paralicles.

-
—
—

Acknowledgments

First, and foremost, I wish to thank Prof. Guang R. Gao for having ace epted me as
his student, and for having given me the opportunity to work i this very imteresting,
field of parallel programming. I would also like to thank IRIS-PRIECARN for lunding,
this research topic.

I am very grateful to Dr. Patrick Kenny, Di. Matthew Lenmg, and INRS
Telecommunications, Montreal, for allowing me to use their soltware m my (hesis.

My love and affection go to my parents, S.G.V. Mani and Lahtha, and to thy
sister, Indu, for all they have given me.

I would also like to extend my love, and my gratitude to my uncle, S €0 Lokanathan,
my aunt, Kausalya, and my cousins, Ramesh, Vanita and Raghu for mahing me feel
so much at home in Montreal.

I would like to thank the Systems Staff Lue Boulianne, Bill Heslan and Matthew
Sams for giving me free access to the labs, and for fixing all the problems that | faced
Special thanks ate due to Kent Tse for helping me with *hieinat”.

My thanks go to the stafl at the School of Computer Science Lorraine, Lise,
Franca, Vicki, Vera and Mirriam for all the help that they extended to me over the
three years that I spent in the department.

I have to extend a very special thanks to Holly Avery for keeping me stupplied
with story books to dispel my blues (of which there were many).

Last, but by no means least, thanks to my colleagues and friends at Mo Gill and
elsewhere — Sumithra and Fraijois, Govind and Bhana, Sreedhar and Lakshini,
Maryam, Shashank. Chandiika, Martin, Azzedine, Sadeka and all the others, too
numerous to me named here, for making life interesting dining these thiee years.

And to all the above, for putting up with my jokes.

Contents

Abstract
Résumé
Acknowledgments

1 Introduction

1.1 Speech Recognition
I.I.L1 The A* Algorithm
I.1.2 The A*-Viterbi Algorithm

1.2 Speeding Up the Algorithm
1.2.1 Parallel Computer Architecture
1.2.2 Parallelization of the Algorithmn

1.3 Main Results and Interpretation

...........

.......

.................

.................

.................

..............

.................

.................

L4 Related Work 0000

...........

.................

1

iii

iv

-1

Hidden Markov Models and the Viterbi Algorithm 9
2.1 Definition of the Hidden Marhov Mode! . . 9
2.2 The HMM Problems . . Ce e I

2.2.1 The Evaluation Problem = The Forward Algonthm [

222 The Decoding Problem -+ e Viterhi Algonthm I
2.3 Using lIMMs for Speech Recognition [0
2.4 Viterbi-based Searches | . . . F
Artificial Intelligence and the A* Algoritlun 18
3.1 The 8-Puzzle 19
3.2 Control Strategies C .)

3.2.1 Graph-Scarch Strategies 2

3.2.2 A General Graph-Searching Procedure .. . 02
3.3 Heuristic Graph-Search Procedures e : 2
The A*-Viterbi Algorithm 28
4.1 Phonetic Graph and Quotient Graph : b
4.2 The Block Viterbi Algorithmn. Ce e . .30
4.3 The A*-Viterbt Algorithin 30
The BRBN Butterfly Machine 33
5.1 Computer Architecture | . . 33

5.1.1 MIMD Architectures BY|
5.2 The BBN Butteifly Machine36

vi

6 Parallelizing the Algorithm 40

6.1 Starting the Parallel Processing e e {2
62 Phase 1. The Paiallel Viterbi Algorithm 2
6.2.1 Part 1 : The Parallel # Value Calceulation 2

6.22 Part 2+ The Paralle]l o Value Caleulation .. .

6.3 Phase IF. The Parallel A* Algorithm o4l
6.3 1 The Centralized Strategy Ce e H

6.3.2 The Distributed Strategy0 L. 5

6.3.3 Implementation of the Parallel A* Algorithm . Ce e 7

7 Results and Interpretation 48
71 Results for a Small Word . . .0 00000 .., ... bl
7.2 Results for a large word o000 55!
7.3 A Summary of the Results00 a3

8 Conclusions and Future Work 60
8.1 Comments on the Parallelization 60
8.2 Suggestions for Further Work0 0o 61
Appendix 62
A Code Used in Parallelization 62
ALl Starting the Processors 0 0L .63
A2 Allocation of Processor Numbers 63
A3 Starting and Stopping Parallel Execution 63

Vit

A1 The Busy Wait Loop

Oh

AD Code for Parallel Computation of Transition Scores iy

A6 Code for Caleulating the 3 Values ON

A 6.1 Calculating the Max for the 3 Values 6N

AT Code for Calculating the a Values 04

A8 The Parallel A* Code. 04

B The Uniform System Subroutines Tl

B.l Generators e il

B.2 Memory Allocators !
B.3 Syunchronization and Atomic Operations . K] |

o
Index "8

T

List of Tables

7.1 Memory Accesses Per Processor for 10 Processors

...........

7.2 Table of results for word ‘he’,

7.3 Table of results for word ‘sabotage’

...................

X

List of Figures

3.1
3.2
4.1
5.1
9.2
3.3
7.1
7.2
7.3
1.4
7.5
7.6

7.7

The Hidden Markov Model

A Trellis in the Forward Computation
A Trellis in the Backward Computation
Initial and goal configuiations for the 8-puzzle
A search tree using an cvaluation function
The Phonetic Graph, .
Architectures for Multiprocessor Machines
The Butterfly Interconnection Network for a 16 Processor System

A parallelized matrix multiplication program
Growth of remote memory accesses with number of processors

Speed up for calculating the g values
Speedup for calculating a values L.,
Speedup for doing the A* scarch

Speed up for calculating the # values

Speedup for calculatingavalue,

Speedup for doing the A*search

Chapter 1

Introduction

In the last two decades, attempts have been made to automate the recognition of

“speech recognition” is one that covers many different ap-

human speech. The term
proaches to the problem of recognizing human speech. It ranges from isolated word
recognition to continuous speech recognition, from speaker-dependent recognition to
speaker-independent recognition, and fiom a -mall vocabulary to a laige vocabu-
lary. The simplest scenario is a speaker-dependent, isolated word 1ecognition on a
small vocabulary and the most complex is a speaker-independent, continuous speech
recognition on a large vocabulary. In any case, the speech 1ecognition prollem, as
developed over the years, is a highly computation-intensive problem; it requires fast
processors, and large amounts of memory. Many attempts have, therefore, been made
to try and speed up the process using various techniques. In this thesis, we attempt
to run a speech recognition algorithm in parallel on a multiprocessor machine, and
we present the results of the parallelization of the algorithm.

1.1 Speech Recognition

In the recent past, many speech recognition strategies have been proposed and imple-
mented [BIMS3, LRSS3]. These strategies span many sciences, including signal pro-
cessing, pattern recognition, artificial intelligence, statistics, information theory, prob-
ability theory, computer algorithms, psychology, linguistics, and biology [Lced9]. Of
these strategies, the probability theory method using hidden Markov models (HMMs)

is most widely used. An HMM is a parametric model that is particularly suitable
for describing speech events HMMs (see section 2 1) have two stochastic PLOCesses
which enable the modeling of acoustic phenomena as well as time scale distortions
Furthermore, efficient algorithins exist for accurate estimation of T1MM patameters,
finally, HMMs a1e a succinet 1epresentation of speech events and therefore requite
less storage than many other strateges.

Isolated word recognition using HMMs is usually formulated as one of finding,
the path in an HMM whose posterior probability (given the acoustie observations)
is maximal [KHG*91]. The ecasiest way of doing this 1s by means of the Viterh
algorithm (see section 2.2.2). This algorithm is a time synchronous search algorithm
that completely processes time t hetore going on to time 4 1. For time £, cach state
of the HMM 1s updated by the best scote from states at time £~ I From this, the

most probable state scquonee can be vecovered at the end of the search

A full Viterbi sca,ch is quite efficient for moderate tasks; however, for larpe tashs,
it can be very time consuming. Another drawback of the Vitethi algorithm is the fact
that it reports only the best 1ecognition hypothesis, whereas, in many cases, we would
like to investigate the N-best hypotheses. These diawbacks have been addiessed by
means of a new approach in which the Viterbi algorithm is coupled with the At
search.

1.1.1 The A* Algorithm

The A* algorithm was developed in an artificial intelligence envitonment, and it
belongs to a class of algorithms known as graph scarch algotithimis (see Chapter 3),
which are widely used in Al applications. These are algorithing that find a path
through a graph from a start node to a (set of) goal node(s) Graph search strategaes
may be of two types * unenformed and anformed Umnlormed search strategies i lude
the depth-first and breadth-first searches These are exhaustive methods for findimng,
paths to a goal node. For many tasks, it 15 possible to use tash-dependent imformation
to help reduce the search [Nil80]. Information of this sort 1s wsually called e uristi
information, and scarch procedures using it are called hewristic search methods ' he
A* algorithm is one such heuristic search method. " makes use of two hunetions
the cost function and the heurwstic function to aid it in scarching the graph for the
goal nodes.

2

1.1.2 The A*-Viterbi Algorithm

The A*-Viterbi algorithm needs a lexical tree G and its corresponding quotient graph
(/*, described in section 4.1, The lexical tree contains nodes, which are labeled by
phonemes, and ares (or transitions) between these nodes. Each word in the lexicon
may be extracted from the tree by traversing the transitions between nodes, and
noting the phonemes that appear along the path from the root of the graph to the
leal. "The nodes of the quotient graph have an equivalence relationship with those of
the lexical tiee, and as a result, the quotient graph is smaller than the lexical tree

(see section 4 1),

The algonthm consists of two passes, the first one uses the quotient graph, and
the second the lexical tree. It is described in detail in Section 4.3. A brief description
of the algorithm follows :

Pass I The Viterbi traversal of the quotient graph G'*. This pass gives us
the backward probabilities, or f-values (described in section 2.2.1), and
the forward probabilities, or a-values (described in section 2.2.1) for the

. , .
complete observation sequence Yy, ..., Y.

Pass II The a- and f-values calculated in the previous pass are used by the
A*-algorithm as it scarches the lexical tree, looking for a word that best

matches the given observation sequence.

1.2 Speeding Up the Algorithm

The ultimate goal of speech recognition is to achieve real time recognition of continu-
ous human speech. in this thesis, we study how the parallelization of the A*-Viterbi

algorithm helps i1 speeding up the process of speech recognition.

In every program, there are some parts that do not depend on the execution of
other parts; in other words, there is no dependency between these different parts of the
program. Such portions of the code which show no dependency may be executed in
parallel, allowing the program to run faster as a whole. In the case of the A*-Vitethi
algorithm for isolated word recognition, there are large portions of the program that
show such a lack of dependency, and which may therefore be 1un in parallel. Ience,

3

there is a potential for the program to run significantly faster when it is patallelized
than when it is purely sequential.

1.2.1 Parallel Computer Architecture

Under the classification proposed by Flynn (see [Fly66, HPY90]), computers may be
categorized as :

1. SISD - Single Instruction, Single Data stream.
2. SIMD - Single Instruction, Multiple Data stream.

3. MIMD - Multiple Instruction, Multiple Data stican.

These categories are discussed in greater detail in section 5.1, In this thests, we are
interested in parallel processing, since we wish to design and implement a patallel
version of the A*-Viterbi algorithm. All parallel processing machimes helong to the
MIMD category because cach processor may work on a different portion of the code,
and may operate on different data. ‘The results of the vanons processors have to
be collected at some pomnt in time and decisions must be made on the results Lhis
obtained. Such an event, where the various processors ¢ ase thew work and share therr

results with other processors, is referred o as synelironizalion.

The two important issucs in a parallel processor system are

¢ Memory latency - The time taken between the issue of a memory fetch, and
return of the value to the processing unit.

e Synchronization - The process by which the various processing wnits cease to
work on the code, and share their results with othet processing units

These two issues are tightly coupled in an inverse relation. Reduction of Imemoty
latency increases the cost of synchionization, and reduction in the cost of synchro-
nization increases memory latency [AI87).

Parallel processing machines may be of two types @ shared-memory machines (o
multiprocessors), and message-passing machines (or mullicomputers). This distine-

tion is created on the basis of a difference in the method of synchionization In a

multiprocessor, the various processing units communicate with each other by means
of setting variables in a common pool of memory referred to as the shared memory
of the machine. On the other hand, in a multicomputer, the various processing units

communicate by sending, messages to one another.

The machine that was used for this thesis was the BBN-Butterfly machine. It

is a multiprocessor with 32 processing wits, in which synchronization between the
various processing units is achieved by means of a shared memory.

1.2.2 Parallelization of the Algorithm

Both, the Viterbi and the A* algorithns have the capacity to be parallelized, and
made to run faster on a multi-processor machine [KCSK87, KRRSS]. In the Viterbi
portion of the code, the calculation of the transition scores for the 3-values is highly
parallehzable. and we should expect to get a speedup proporticnal to the number of
processors worhig on the calculation. Finding the hest path can also be parallelized,
but we can expeet less speedp here, becanse of synchronizatior, and sonme sequen-
tialization of the code Caleulation of n-values s parallelizable fairly easily, with cach
processor wotking on a different phonerie. Tae A™ algovithm is also parallelizable
and we conld expect linear to super-lineas specdup depending on the word to be rece-
ognized. There s one caveat m the parallelization of the A* algorithm, however, and
that is the parallel A* algorithm could give non-optimal answers. We should take

care to discard any crroncous answers from A?

In the parallelization of the Viterbi portion, we come up against the fact that
the BBN Butterfly machme is a distribnted siared memory machine. We therefore
have to distribute the phonetic graph over all the processors in order to balance the
amount of computing done by cach processor. We will also have to consider the fact
that we must keep the number of remote memory accesses to a minimum if we wish

to get good speedup results.

In the parallelization of the A* algorithm, we may follow different, strategies :

o centralized strategy - good for large granularity problems, simple to imple-
ment.,

o distributed strategy - good for small granularity problems, more complicated
than the centralized strategy.

In our case, we use the centralized strategy because of its case of implementation and
because our problem has large granularity.

1.3 Main Results and Interpretation

The results of our parallelization are very informative. The parallehization of the
Viterbi portion of the code gave us a speedup of about 8 times with roughly 13 pro
cessors. With a larger number of processors, the speedup did not. increase appreciably
This is due to the following reasons -

e The quotient graph was designed in such a way as to he used cfficiently by
a sequential machine. This generated constraints on how ecasily it conld e

distributed among the various processors of a parallel machine.

e As a result of the design of the quotient graph, there were a large number ol
remote memory accesses. These could not be reduced without redesigning the
quoticnt graph.

If the graph (and the software) had been designed for optimal use by the parallel nia
chine in question, we could have achicved far greater speedup than what. we obser ved,

The parallel A* code gave us very large speedup results for a large word, but very
little speedup for a small word. This is understandable, hecause for small words, the
A* algorithm takes very little time to process, and parallelization in such cases does
not help.

The most important conclusion that was diawn from this thesis is as lollows © o
get the best possible performance from a parallel machme, the code has Lo be deswgned
lo take full advantage of the capabilities of that machme. Tn this case, the results
obtained were good, but they could have bheen mnch bester had the code heen designed
for the parallel machine starting from the design specifications onward,

1.4 Related Work

Fettweis and Meyr discuss hardware implementations of a parallel Viterbi decoder
in |[FM89] and [FM91]. The central unit of a Viterbi decoder is a data-dependent

6

feedback loop which performs an add-compare-select (ACS) operation. This nonlin-
car recursion is a bottleneck for a high-speed parallel implementation. Their paper
presents a solution to implement the Viterbi algorithm by parallel hardware for high

data rates.

Kimball and associates discuss the parallel irnplementation of the Viterbi algo-
tithm for continuons speech recognition in [KCSK87). The algorithm was developed
for the BBN Butteifly machine, and used context dependent HMMs to achieve high

recognition accuracy.

K. A, Wen and J. Y Lee discuss the parallel implementation of the Viterbi al-
gorithm in [WL83]. They present a dual-dimensional parallelization for the Viterbi
algorithin, 1.e., parallelization of the decoding procedures within each stage of the
trellis and parallehzation ol the decoding procedures over consecutive stages.

Y. I. Zhang and P. Csillag discuss a parallel architecture for Viterbi decoding in

[7(:89).

Austin, Schwartz and Placeway discuss a new technique to speed up time-synchronous
beam scarches in [ASPY1]. They call it the Forward-Backward Search, and it is math-
ematically related to the Baum-Welch forward-backward training algorithm [BEGT].

Black and Meng discuss a parallel Viverbi decoding schere in which the required
hardware complexity approaches the speedup lactor independent of the number of
states in [BMY0]. Theirs is a block based pacallel mmplernentation of the Viterbi
algorithm in which concurrent decoding of independent blocks is achieved by using,
the self synchronizing property of the Viterbi algorithn.

Kumar and Rao discuss the parallelization of the A* algorithm in [RK87, KR87].
Kumar, Rao and Ramesh discuss different parallel formulat-ons of the A* algorithm
and the results of these formulations for the Traveling Salesnian Problem, the Vertex-
Cover Problem, and the 16-puzzle in [KRRSS)|.

1.5 Outline of Thesis

The report is organized as follows. Chapter 2 introduces the hidden Markov model
(HMM), and how it is applied to speech recognition. The Viterbi algorithm is ex-

-1

algorithms (section 2.2.1), and also the block Viterbi algorithm (section 12). Chap
ter 3 discusses some aspects of artificial intelligence related with the A* algorithm,
Chapter 4 discusses the A*-Viterbi algorithm. Chapter 5 will describe the BBN
Butterfly multiprocessor machine, and how we can use it to parallelize the code
Chapter 6 will describe how the algorithms are parallelized, with section 6.2 deserib
ing the parallelization of the backward Viterbi and the block Viterhi algorithms, and
section 6.3 describing the parallelization of the A* algorithm. Chapter 7 interprets

the results of the parallelization and chapter 8 draws the final condlnsions

Chapter 2

Hidden Markov Models and the
Viterbi Algorithm

In the recent past, hidden Markov models (HMMs) have been used extensively in
automatic speech recognition. In this chapter, we will first define hidden Markov
models and present algorithms for evaluating, and decoding, with HMMs.

2.1 Definition of the Hidden Markov Model

A hidden Markov model is a collection of states connected by transitions. Each
transition carries two scts of probabilities : a transition probability, which provides
the probability for taking this transition, and an output probability density function
(pdf), which defines the conditional probability of emitting cach out put symbol from
a finite alphabet given that a transition is taken [Lee89).

A hidden Markov model is defined by :

e {s} A sctofstates including an initial state $; and a final state Sp.

e {a,} - A sctof transitions where a,, is the probability of taking a transition
from state to state j.

® {b,(k)} -- The output probability matrix : the probability of emitting symbol
k when taking a transition from state i to state j.

9

0.3 A 05 02 (A 02) 10 (A 038
B 02 \B 0
C 03 } Lc 02!
0.4
SI
A 03
B 05
C 02

Figure 2.1: The Hidden Markov Modcl

Figure 2.1 shows an example of a hidden Markov model with three oulput symbols,
A, B and C. A sequence of output symbols is generated by a cotresponding tiansition
from one HMM state to another. For instance, to generate the sequence ABCA, the
following transitions would have to be performed @8, — S, S S, S,
Sp, Sp— Sp.

From the definition, since both @ and & are probabilistic, they minst satisly the
following properties [Lee89) :

ay >0, b,(k) >0, Vi, k (2.1)
Z(l” = 1, WV (22)
2
2ob(k) = 1, Vi, (23)
k

a and b can be written as :

ay = P(Xp =X, =) (.
bl](k) = [)(Yt = kl/\’t = 'aXtJrl =) (

| S (e
=

)

where X; = j means the Markov chain was in state J at timel, and Y, = k means the
output symbol at time ¢ was k. We will nse the random variable ¥ to represent the

10

probabilistic funclion of a stationary Markov chain X. Both X and Y are generated
by a hidden Markov model: however, Y, the output sequence, is directly observed,

while X, the state sequence, is hadden.

In a first-order HMM, there are two assumptions. The fitst is the Markov assump-

lion :

l)(.\,l+] = L4 4\,: = .'lfi) = P(‘\,H-l = .’L'H.]l.\,g = .l't) (26)

where X represents the state sequence X,, X144, . .. »X;. Equation 2.6 states that
the probability that the Markov chain is in a particular state at time £ + 1 depends
only on the state of the Matkov chain at time ¢, and is conditionally independent of

the past.
T'he second assumption is the output-independence asswnption :
-1 __ o t—1 % 2 B & r o ro_ - —_— 9o
Py, = !/t“l =y, X =) =P, = .'/tIA\t = 2y, Xip1 = 2yyy) (2.7)

where Y represents the output sequence Y, Y., . .+, Y;. Equation 2.7 states that
the probability that a particular symbol will be emitted at time ¢ depends only on
the transition taken at that time (from state r, to state o), and is conditionally
idependent of the past.,

2.2 The HMM Problems

Given the definition of hidden Markov models, there are three problems of inter-
est [Lee8Y] :

I. The Evaluation Problem - Given a model and a sequence of observations,
what is the probability that the model generated the observations?

2. The Decoding Problem Given a model and a sequence of observations,
what is the most likely state sequence in the model that produced the observa-
tions?

3. The Learning Problem - Given a model and a sct of observations, what
should the model’s parameters be so that it has a high probability of generating
the observations?

11

If we could solve the evaluation problem, we would have a way ol scoting the match
between a model and an observation sequence, which could e used for molated word
recognition.

If we could solve the decoding problem, we could find the best mate hing, state
sequence given an observation sequence, which could be used for continons specch
recognition.

If we could solve the learning problem, we would have the means to antonatically

learn the parameters given a set of training data.

In this thesis, we are only interested in the first two problems, we will concentrate
therefore, on studying the evaluation and decoding problems in s chapter

2.2.1 The Evaluation Problem : The Forward Algorithm

The evaluation problem can be stated as : given a model, M, with patanicters
{s}, {a}, {}, compute the probability that it will genetate a sequence gyl This
volves summing the probabilitics of all paths of length 7' :

P(YIT — y;l') — Z 1)(‘\';1'+1 — .I"‘I‘+l)l)()'l’r — .’/’|I‘| \’;I'H - ',ll'i I) (2 8)

T+1
4

In other words, to compute the probability of the sequence gl we cnmmerate all

aths 7! of leneth T that generate y7 and sum all their probabilities. The proha
p 1 14 g Y1 I i

T+1
1

bility of each path z is the product of the transition probabihties and the ontpt

probabilities of each step in the path.

The first factor (transition probability) in equation 2.8 can he rewritten by apply
ing the Markov assumption :

-
PX{T =alty = T P(Xipr = 1o Xi - 10 (29)
t=1

The second factor (output probability) in equation 2.5 can be rewnitten by apply
ing the output-independence assumption :

T
P(er‘:y“sz:.’rl’H) = HI)(K:,I/IIA,l:J.I-'YI&l = l'[’]) (2'“)
t=1

12

Substituting eqns. 2.9 and 2.10 into eqn. 2.8, we have :

T
P(Ynl = ?/1') = Z H P(Xt+1 = $t+1|Xt = xt)P(Y; = Z'/tin =y Xig1 = Tg1)

l.'lr'H t=1
(2.11)
We can use the HMM parameters a and b to evaluate eqn. 2.11. This method is

exponential since it requires enumeration of all paths with length 7.

However, since the probability of each individual quantity depends only on y,, a,
and x4y, it is possible to compute P(Y;T = yT) with recursion on t. Therefore, let us
define :

0 t=0 & # Sy
a(t)=1¢ 1 t=0 & =5 (2.12)
2,05t = Daybyu(y) t>0

(1) is the probability that the Markov process is in state i having generated yt.
Clearly then,

POV =yl) = as(T) (2.13)

Figure 2.2 illustrates the computation of a as a sweep through a trellis using
the HMM in Fig. 2.1 and the observation sequence A C B A. Each cell indicates the
cumulative probability at a particular state (row) and time (column). An arrow in
Fig. 2.2 indicates that a transition from its origin state 1o its destination state is
legal. Consequently, arrows are only allowed between adjacent columns. As eqn. 2.12
indicates, the computation begins by assigning 1.0 to the initial state and 0.0 to all
other states at time 0. The other cells are computed time-synchronously from left to
right. Each column of states for time ¢ is completely computed before going on to
time £+ 1, the next column. When the states in the last column have been swept, the
final state in the final column contains the probability of generating the observation
sequence. In this case, the probability of generating the sequence ACBA is 0.014.

This algorithm is called the forward algorithm. It enables us to evaluate the
probability that an observation sequence was generated by an HMM, M, or P(y|al).
However, in speech recognition, we need to find P(M|y). By Bayes rule, we have

P(y|M)P(M)

P(Mly) Py

(2.14)

13

output = A output=C output =B output = A

t=0 t=1 t=2 t=3 =4

3x.5
I 1.0 p———» .15

12

LOx .
12 043 - -

— —» 016 R

0145

Figure 2.2: A Trellis in the Forward Compitation

Since P(y) is constant for a given input, the task of recognizing an observation se

quence involves finding the model that maximizes P(y|M)P(M). P(y|M) can he

evaluated by the forward algotithm, and (M) 1s a probability assigned by the lan-
guage model. In the case of a language model where all words are equally hkely (the
P(m)s are equal for all m), only the first factor need be considered.

The Backward Algorithm

In eqn. 2.12 of the preceding section, we defined e (), o1 the probability that an HMM
M has generated y; and is in state «. We could equivalently define its connterpart,
B:(t) , or the probability that M is in state ¢, and will generate .:/;’;Ll. Like v, /3 can
be recursively computed as follows :

0 I
Bty =11 i=Sp & 1= (2.15)
5, by () Bt +1) 01 <

Figure 2.3 illustrates the computation of fas a sweep through the trellis using the
HMM in Fig. 2.1. As we can see, the a values and the f# values give the same final

14

output = A output=B output = A
=0 t= t=3 t=4
3x.5
5 0.0
3x 4
I 1.0x.8 1.0x0 1.0x.8
SF 0.0 J (——————— 00 j«=——+— 00 €« 8 t&——— 1.0

Figure 2.3: A Trellis in the Backward Computation

results for the same observation, i.e., the probability of generating the observation
sequence ACBA is 0.014.

2.2.2 The Decoding Problem : The Viterbi Algorithm

While the forward algorithm computes the probability that an IIMM gencrated an
observation sequence, it does not provide a state sequence. In many applications, it
may be desirable to have such a sequence.

Unfortunately, by definition, the state sequence is hidden in an HMM. The best
we can dois produce the statc sequence that has the highest probabilaty of being taken
while generating the observation sequence. To do that, we need only modify the
forward pass slightly. in the forward pass, we summed the probabilities that came
together. Now, we nead to choose and remember the maximum. Eqn. 2.12 can
therefore be rewritten as :

0 t=0 & ¢ 74 S[
a(t)=1¢ 1 t=0 & i=5; (2.16)
max; a,(t — 1)a,b,,(y) t>0

15

To uncover the most likely state sequence, we must remember the best path to each
cell, which is the concatenation of the best path to its predecessor state and the hest
step to the cell.

This algorithm is known as the Viterbe algorithm [For73, V67, LRSS3, 1 e8],
To be more specific, we could refer to this as the forward Viterbe alyevithm 1 M is a
hidden Markov model, then the Viterbi score of M, given a sequence of observations
Y1,...,yr is defined as follows : V(yy,...,yr|M) = max,ap(s) whete s ranges over
all the sink states.

We have, equivalently, a backward Vilerbe algorithim which we obtain by modilying,
eqn. 2.15. The backward Viterbi algorithm may be defined as :

0 t=T & 1+ £85p
Bty =<1 =T & 1= 5Np (217)
max, a, b, (ye)3, (0+1) 0<t <7

The Viterbi score is this case is given by : V(yi,...,yr|M) = max, fo(s) where s
ranges over all the start states.

2.3 Using HMMs for Speech Recognition

In this section, we will examine how HMMs can be used for speech ecognition. We
will discuss how to construct models to represent units of speech, and how to recognize

speech with HMMs [Lce89].

Hidden Markov models are a natural representation of speecli. The output dis
tribution models the parametric distribution of speech events, and the transition
distribution models the duration of these events. HHMMs can be used 1o 1epresent
any unit of speech.

The most natural unit of speech is the word. But, winle words are what we want,
to recognize, they are not a practical choice for laige-vocabulary tecopnition becanse
the amount, of training and storage is enormous. Instead, some subword unit shonld
be used. The subword unit of speech that is most commonly used is the phoncme .
A phoneme is the fundamental unit of speech. It is the basis on which all sounds
are made. There are approximately 40 ‘istinct sounds m the Euglish language, and

16

henee, 40 different phonemes. All the words in the English language are made up of
varying combinations of these 40 phonemes. Each word could then be represented
as a network of phonemes which encodes every way the word could be pronounced.
We could then instantiate each instance of a phoneme with its hidden Markov model.
Then we have a large HMM that encodes all the legal words.

By placing all the knowledge in the data structures of the IMMs, it is possible to

perform a global scarch that takes all the knowledge into account at every step.

Using such a network (ot graph) or HMMs, it is easy to unplement both isolated
word and continuous speech 1ecognition. For isolated word 1ecognition, we could use
the forward pass to scote the input word against each of the models. Assuming no
language model, the model with the highest probability is chosen as the recognized
word. We could also use the Viterbi algorithin for recognition. If subword units ate

used, then they would be concatenated into words first.

2.4 Viterbi-based Searches

‘The Viterbi search [Vit67, For73] has been discussed as a solution to one of the three
HIMM problems in section 2.2.2. To briefly reiterate, the Viterbi search is a time
synchronous search algorithin that completely processes time ¢ before going on o
time 1 4+ 1. For time ¢, cach state is updated by the best score fiom state at time
I — 1. From this, the most probable state sequence can be recovered at the end of the

search [Lee89).

A full Viterbi search is quite efficient for moderate tasks. IHowever, for large
tasks, it can be very time consuming. In our case, we would like to perform isolated
word 1ecognition on a large vocabulary. This would entail an enormous amount of
computation il we were to use the Viterbi search. Therefore, we make use of a new
algotithm the A*-Viterbi algorithm (see Chapter 1) - which allows us to speed up
the computation quite considerably [Ken90, KHG*91]. ‘To understand the A*-Vitetbi
algorithm, we will first need to study the A* algorithm, which we will discuss in the

following chapter.

17

Chapter 3

Artificial Intelligence and the A*
Algorithm

The A* algorithm is one of the tools developed to search graphs in the artificial
intelligence (Al) environment. Most Al systems display a fairly nigid separation he
tween the standard computational components of data, operations, and condrol[N11S0)].
Hence, the major elements of an Al production system are a global dalabase , a set of
production rules, and a control system.

The global database is the central data structure used by an Al production system.
This database varies depending on the application; in our case (speech 1ec ognition),
it is a tree structure.

The production rules operate on the global database. Fach rule has a precondetion
that is either satisfied or not by the global database. If the precondition is satistied,
the rule can be applhed. Application of the rule changes the database

The control system chooses which applicable rule should he apphed and ceases

computation when a termination condidion on the global database is satisfied,

Let us consider a simple example of an Al production system the 8-puzzle
problem.

18

Initial Goal

Figure 3.1. Initial and goal configurations for the 8-puzzle

3.1 The 8-Puzzle

The 8-puzzle is a simple example of the Al production systemn, and it will enable us to
understand an Al problen, better. The 8-puzzle consists of eight numbered, movable
tiles set in a3 x 3 frame [Nil80]. One cell of the frame is always empty, thus making it
possible to move an adjacent numbered tile into the empty cell. Two configurations of
tiles are given in Fig. 3.1. The problem is to change the initial configuration into the
goal configuration. The solution to the problem would be an appropriate sequence of
moves, such as “move tile 2 to the right, move tile 4 down. ..., etc.”.

To solve a problem using a production system, we must specify the global database,
the rules, and the control strategy. For the 8-puzzle, we can easily identify elements
of the problem that cotrespond to these three components. These elements are the
problem states, the moves, and the goal state. In the 8-puzzle, each tile configuration
18 a problem state. The set of all possible configutations is the space of problem
states, or the problen space These may be represented as a 3 x 3 array or matrix of
numbers

A move transforms one problem state into another state. In the 8-puzzle, we have
the following four moves : move the enipty space (blank) up, move the blank down,
move the blank to the right, and move the blank to the left. These moves are modeled
by production rules that operate on the state descriptions in the appropriate manner.
Fach rule has preconditions that must be satisfied by a state description in order for

19

them to be applicable. Thus, the precondition for the rule “move blank to the left®
is that the blank must not already be at the leftmost column of the matiis

In the 8-puzzle, we want to reach the goal conliguration from a given initial config,
uration. The problem goal condition forms the basis for the ternmunation condition ol
the production system. The control strategy repeatedly applies tules to state descrip
tions until a description of a goal state is produced. It also heeps track of the rules
that have been applied so that it can compose them into the sequence representing,
the problem solution.

3.2 Control Strategies

Selecting rules to be applied on the problem state, and keeping track of those se
quences of rules already tried and the databases they produced constitute what we
call the control strategy for production systems{Nil80]. "The operation of Al produc

tion systems can most accurately be characterized as a scarch proceas wm whndh rules
are tried until some sequence of them is found that produces a database sat istying the
termination condition. Efficient contiol strategies require enongh hnowledge about
the problem being solved so that the rules selected by the contiol strategy have a
good chance of being the most appropriate under the ¢ircumstances,

There are two major kinds of control strategies :

o Irrevocable : In an irrevocable contiol regime, an applicable rule 1s seleeted and
applied without possibility of a later change.

o Tentatwe : In the tentative control tegime, an applicable rule is selected (arbi-
trarily or otherwise), the rule is applied, but provision is made to 1etun later
to this point in the computation to apply some other rule

Tentative control regimes are again distinguished mto

— Backtracking : In this method, a backtiacking powt 15 established when
a rule is selected. If the subsequent compatation encounters difficulty m
producing a solution, the state of the computation reverts to the previous
backtracking point, where another rule 1s applied instead, and the vrocess
continues.

20

— Graph-search : In this method, provision is made to keep track of the
effects of several sequences of rules simultaneously. Various kinds of graph
structures and graph searching procedures are used in this type of control.
The A* algorithm belongs to this class of control strategies.

3.2.1 Graph-Search Strategies

We can think of a graph-search control strategy as a means of finding a path in a graph
from a node representing the initial database to one representing a database that
satisfies the termination condition of the production system[Nil80]. Before discussing
such strategies, let us first review some graph-theory terminology.

A graph consists of a set of nodes (not necessarily finite). Certain paits of nodes
are connected by ares, and these ares are dirceled from one member of the pair to
the other. Such a graph is called a durected graph. For our puiposes, the nodes are
labeled by databases, and the ares are labeled by rules. If an aic is directed from
node n, to node n;, then the node 1, 1s said to be a successor of node n,, and node
n, is said to be a parent of node n,. In our case (for the speech recognition problem),
a node can have only a finite number of successors.

A tree is a special case of a graph in which cach node has at most one parent. A
node in the tree having no patent is called a root node. A node in the tree having no
successors is called a fip node. We say that the root node is of depth zero. The depth
of any other node in the tree is defined to be the depth of its parent plus 1.

A sequence of nodes (MaysNyeen oy iy,)y with cach n, a successor n, _ for j =
2,... ks called a path from node n | to n,, with length k. 1f a path exists from node
1, 10 node ny, then node 1y s said to be accessible from node n,. Node n, is then a
descendent of node n,, and node n, is an ancestor of node n,. The problem of finding
a sequence of rules transforming one database into another is thus equivalent to the

problem of finding a path in a graph.

Often it is convenient to assign positive costs to arcs, to reptesent the cost of
applying the cotresponding rule. It is . _sumed that these costs are all greater than
some arbitrarily small positive number, ¢. The cost of a path between two nodes
15 then the sum of the costs of all the arcs connecting the nodes on the path. In
the speech recognition problem, we will want to find that path having mnunal cost
between two nodes.

In the simplest typc of problem, we desire to find a path (perhaps having minimal
cost) between a given node s, representing the initial database and another given node
t, representing some other database. The more usual situation, however, involyes
finding a path between a node s and any member of a set of nodes {1.} that 1epresent
databases satisfying the termination condition We call the sel {t.} the goal set, and
each node ¢ in {t,} is a goal nod .

In our application, the control strategy generates part of an implicitly specitied
graph. This implicit specification is given by the start node s, representing the
initial database, and the rules that alter databases. It is convenient, at this point, to
introduce the notion of a successor operator that is applicd to a node to give all ol
the successors of that node (and the costs of the associated ares). We call this PLOCess

of applying the successor operator to a node, cepanding the node.

3.2.2 A General Graph-Searching Procedure
The process of explicitly generating part of an inplicitly defined graph can be defined
as follows :

Procedure GRAPHSEARCH

1. Create a search graph, G, consisting solely of the start node, s. Put s on a list

called Open.
2. Create a list called Closed that is mitially empty.
3. LOOP :if Open is emply, exit with failure.

4. Select the first node on Open, remove it from Open, and put it i Closed.
Call this node n.

5. If n is a goal node, exit successfully with the solution obtained by Lracing a
path along the pointers from 2 to s in G. (Pointers are established in step 7).

6. Expand node n, generating the set, M, of its successors that are not ancestors
of n. Install these members of M as suceessors of nin (4.

22

7. Establish a pointer to n from those members of M that were not already in ¢
(ie., not alrcady in Open or Closed add these members of M to Open.(Sce
text)

For each member of M that was already on Open or Closed, decide whether
or not to redirect its pointer to n(See text).

For cach member of M already in Closed, decide f{or each of its descendants in
G whether or not to 1edirect its pointer.

8. Reorder the list in Oper, cither according to some arbitrary scheme, or accord-
ing to heuristic merit.

9. Golo LOOP.

This procedure is sufficiently general to encompass a wide variety of special graph-
scarching algorithms. The procedure generates an explicit graph, @, called the scarch
graph and a subset, T, of (7, called the scarch tree. Each node in G is also in 7". The
search tree is defined by the pointers that are set up in step 7. EFach node (except s)
in (i has a pointer directed to just one of its parents in (7, which defines its unique
parent in 7. The search graph forms a partial ordlering because no node in ¢ is one
ol its own ancestors (step 6). Each possible path to a node discovered by the node is
defined by T'. Roaghly speaking, the nodes on Open ate the tip nodes of the search
tree, and the nodes on Closed ate the nontip nodes. Mote precsely, at step 3 of the
procedure, the nodes on Open are those (tip) nodes of the search tree that have not
yet been selected for expansion. The nodes on Closed are cither tip nodes selected
for expansion that generated no successors in the search graph or noniip nodes of the
scarch tree.

The procedure orders the nodes on Open in step 8 so that the “best” of these
is selected for expansion in step 4. Whenever the node sclected for expansion is a
goal node, the process terminates successfully. The successful path fiom start node
to goal node can then be recovered (in reverse) by tracing the pointers back from the
goal node to s. The process terminates unsuccessfully whenever the search tice bas
no remaining tip nodes that have not yet been selected for expansion. In the case of
unsuccessful termination, the goal node(s) must have been inaccessible from the start
node.

Step 7 requires some additional explanation[Nil80]. If the implicit graph being
searched was a tree, we could be sure that none of the successors generated in step 6

23

had been generated previously. Every node (except the oot node) of a tree is the
successor of only one node and thus is generated once only when its unique parent
is expanded. Thus, in this special case, the members of M in steps 6 and 7 are not
already on cither Open o1 Closed. In this case, cach metmber of M s added to
Open and is mstalled in the search tice as a successor of n The seardls graph is the
search tree throughout the execution of the algorithm, and there is no need to « hange
parents of nodes in T'.

If the implicit graph being searched is not a tree, it is possible that some of the
members of A have already been generated, i.c., they may alicady be in Open o
Closed. The problem of determining whether a newly generated database 1s identical
to one generated before can be computationally expensive. For this teason, some
search processes avoid making this test, with the 1esult that the search tiee may
contain several redundant successor computations Hence, there s a tradeoll hetween
the computational cost of genetating a larger scarch tice (containmg multiple nodes
labeled by identical databases). In steps 6 and 7 of procedute GRAPHSEARCH,
we are assuming that it is worthwhile to test for identical nodes

Procedure GRAPHSEARCH may be “informed” or “uninformed”, depending,
on Step 8. If the reordering is done randomly, then the graph search s “aninfor med”
If it is done according to some heutistic function, then the search s “informed”. T'he
A* is one such “informed” search, which makes use of an heuristic fundtion to expand
the nodes.

3.3 Heuristic Graph-Search Procedures

The uninformed search methods are exhaustive methods for finding paths Lo a goal
node[Nil80]. In principle, these methods provide a solution to the path-finding prob-
lem, but they are often infeasible to nse to control Al production systems hecanse
the search expands too many nodes before a path s found

For many tasks, it 1s possible to use task-dependent mlonnation to help reduce
search. Information of this sott 1s usually called hewristee nformation, and search
procedures using it are called heuristic scarch methods. 1t 1s often possible to specify
heuristics that reduce search cffort without saciificing the guarantee of finding o
minimal length path.

24

Heuristic information can be used to order the nodes on Open in step 8§ of
GRAPHSEARCH 50 that the search expands along those sectors of the graph
that are considered most promising. In order to apply such an ordering procedure,
we need a method for computing the “promise” of a node. One such method makes
use of an cvaluation function over the nodes. Suppose we denote the evaluation
function by the symbol f. Then f(n) gives the value of the function at node n.

We ase the function f to order the nodes on Open in step 8 of GRAPH-
SEARCH By convention, the nodes on Open are ordered in increasing order of
their [values. Ties among [values are ordered arbitrarily, but always in favour of

goal nodes,

The way in which GRAPHSEARCH uses an evaluation function to order nodes
can be illustrated by considering again our 8-puzzle example. We use the simple

cevaluation function ;

f(n) =d(n)+ W(n)

where d(n) is the depth of node n in the search tree and 1V (n) counts the number
of misplaced tiles in that database associated with node n. Thus the start node
configuration

283
1 6 4
7)

has an f value equal to 0+ 4 = 1,

The results of applying GRAPHSEARCH to the 8-puzzle using this evaluation
function are shown in Fig. 3.2. The value of [for cach node is circled; the uncircled

numbers show the order in which the nodes are expanded.

The choice of evaluation function eritically determines search results. The use
of an evaluation function that fails to recognize the true promise of some nodes can
result in nonminimal cost paths; wheteas, the use of an evaluation function that

overestimates the promise of all nodes results in expansion of too many nodes.

In general, we can define the evaluation function f so that its value, f(n). at any
node n is given by

fln) = g(n) + h(n),

where

25

Start
Node

2 3 8 2 8)
o o
5 6 7 S
3 \\\
2 8 2 R
@ ! 8 <«.) L
7 6 6 7 6
\\
3 2 8 3 2 T
p
4 @ 7 4 8 " \ 7
5 5 6 7 6
2
8
6
- 2 3
Goal
Node @ " 4 (7)
6 5

Figure 3.2: A scarch tree using an evaluation funetion
26

g(n) = the cost of the minimal cost path from the start
node s to node n, and

h(n) = the heuristic estimate of the cost of a minimal cost
path from node n to a goal node

That is, f(n) is an estimate of the cost of a minimal cost path constrained to go
through node n. That node on Open having the smallest f value is then the node
estimated to impose the least severe constraint; hence it is appropriate that it be
expanded next.

The GRAPHSEARCH algorithm using this evaluation function for ordering
nodes is called the A* algorithm.

Chapter 4

The A*-Viterbi Algorithm

Isolated word recognition using IIMMs is formulated as one of finding the path
in an HMM whose posterior probability (given the acoustic observations) is max-
imal [Ken90, KHG%91]. The ecasiest way of doing it is by means of the Viterbi
algorithm [For73, Vit67, Lee89, LRS83]. To recapitulate, the Viterhi algorithm is a
time synchronous search algorithm that completely processes time £ before going on
to time ¢t + 1.

A full Viterbi search is quite efficient for moderate tasks; however, for laige tasks,
it an be very time consuming. To speed up the process for large vocabulary isolated
word recognition, a new two-pass algorithm, called the A*-Viterbi algorithin was
developed.

The A*-Viterbi algorithm needs a phonectic graph, @, and its quotient graph, (/*,
in the following section.

4.1 Phonetic Graph and Quotient Graph

A phonetic graph G [KHG*91] consists of a list of nodes and a hst of branches (see
Fig. 4.1). Each branch consists of two nodes and the are that connects them. Consider
the nodes n, and nj, and the arc between them in Fig. 4.1, The triple (uy, fi, 1)
is a branch of the phonetic graph, G. n; is referred to as the starting node, and ny
as the target node. f, is the phoneme that allows the transition from node) to

28

n : nodes of graph
f : phone labels

Iligure 4.1: The Phonetic Graph

ng. Similarly, (ng, f3,n4) and (ng, f5,n6) are also branches of the phonetic graph in
Fig. 4.1. Each phone label is modeled by an HMM as discussed in Chapter 2.

ny and n, are referred to as the initial nodes of the phonetic graph because they
are not the target nodes of any branch. ng, n; and ng are referred to as the final
nodes of the graph since they are not the starting nodes of any branch. A path in G
can then be defined as a sequence of branches by, ..., by, having the property that
the target node for cach branch is the starting node for the succeeding branch. The
path is said to be complete if the starting node of b, is an initial node of G, and the
target node of by, is a final node of @,

If we are given a phonetic graph G, and a lexicon L, we say that G generates L if
every complete path in (i corresponds to a transcription in L, and every transcription
in I, corresponds to a complete path in . When the lexicon is large, the corresponding
phonetic graph is also large. Running the Viterbi algorithm on such a large phonetic
graph is very inefficient, and would take too long to run. We therefore create a smaller
graph, (*, called the quotient of .

Given a phonetic graph (7 and an equivalence relation &~ on the nodes of G, we
can construct a new graph G*, called the quotient of G by . The nodes of G* aie
equivalence classes of the nodes of G. A trivle (n, f,n3) is a branch in G* if there

29

is a branch (ny, f,n2) in G such that n} is the equivalence class of 1y and ny is the
equivalence class of n;. Note that for every path in ¢/ there is a cor responding path
in G* whose branches carry the same phone labeis. In particular, of (7 genetates
a lexicon L, every complete transcription in [corresponds to a complete path
G*. Since the nodes in G* are equivalence classes of the nodes in (7, (¢ has fewer
branches than G and hence is smaller than (. The Viterbt algonthm < m be run on
G*, and the o and f values can be calculated

4.2 The Block Viterbi Algorithm

In this section we discuss how to calculate the forward probabilities (or a values)
using the forward block Viterbi algorithm [KHG*I1] Consider a branch (ny, f, 1))
of the phonetic graph ;. The algorithm enters node 1y at tune £, and enters node
ng at time t'. In the period ¢ — ') the algorithm traverses the HMM that models
the phone f which labels the transition from n to n,, the algonithm, therefore, is at
the start state of the IMM at time ¢ + 1, and leaves the sk state of the HMM af
time ¢'. We would like to calculate the forward probability (or o value) for node i,
at time t', given the a value of node ny at time {. I'his can be done in the following
manner :

ai(ng) = max max max e, (n)V (yigr,. .., yulf) (4.1)
i<t [

where V' (yi41,...,y¢|f) is the Viterbi score for phoneme f,

f ranges over all phones, and

for each f, n; ranges over all nodes such that (n,, f, ng) s a branch in (/. The
paper by Kenny et al [KIIG*91] gives a more detailed description of the block Viterb
algorithm, and the A*-Viterbi algorithm in general.

4.3 The A*-Viterbi Algorithm

The algorithm has two passes :

Pass I The Viterbi pass : This pass is done on the quotient grapn. This
computation has two distinct phases :

30

Pass

Phase I In this phase, the backward probabilities, or 8-values (see
page 16) are calculated for the entire observation sequence i, Yr.
Consider eqn. 2.17 for definition of the B-value calculation :

0 t=T & (# Sf

Buli)=¢ 1 t=T & 1=5r (4.2)

max; ¢, b, (y41)B,(t+1) 0<t<T
This is split into two parts :

1. In the first part, we compute the transition scores, a,, x
b,;(y:), for all values of 2, j and t, given the observation
sequence yy, ..., yr. These scor re then stored in a large
cnough data structure for future use.

2. We find the maximum of the scores calculated in the pre-
vious step, subject to A,(t+ 1) for0 <t < T,

Phase II The block Viterbi algorithm (discussed in section 4.2 is
then used to calculate the forward probabilities, or a-values.

IT The A* pass : This is then done on the phonetic graph correspond-
ing to the lexical tree L, using the a and A values calculated in Pass |
as the cost function and the heuristic function respectively, in order to
recognize the word. The A* search of the lexicon proceeds as follows. At
each iteration of the algorithm, there is a sorted list (or stack) of partial
transcriptions, cach with a heuristic score. The forward and backward
probabilities calculated in the previous pass are associated with the stack
entries as described below.

Let T be the lexical tiee corresponding to L that is generated by the A*
algorithm. EFach stack entry can be thought of as a node in T. The score
of a partial transcription f is defined as : h(f) = maxo< <7 0y (f)3y(f) The
partial transcription with the highest heuristic score is expanded, meaning
that for cach of the one phone extensions permitted by the lexicon, the
heuristic score of the extended transcription is calculated and the extended
transcription is inserted into the stack at the appropriate position. The

algorithm terminates when a complete transcription appears at the top of
the stack [KHG191].

This algorithm can be speeded up further by parallelizing each pass. We have

31

implemented this parallelization on the BBN Butterfly multiprocessor machine (which

is discussed in chapter 5), and we discuss the parallelization of the algorithm in
chapter 6.

32

Chapter 5

The BBN Butterfly Machine

The aim of this thesis is to implement the A*-Viterbi algorithin discussed in Chapter 4
on a multiprocessor machine and to study the speedup results that we can obtain on
it. To that end, we have implemented a parallel version of the A*-Viterbi algorithmn
on the BBN Butterfly multiprocessor machine.

Multiprocessor machines belong to the growing number of computers that come
under the category of high-performance computers. These computers include high-
speed vector computers such as the CRAY, dataflow computers, superscalar machines
such as the R6000, massively parallel machines such as the Connection Machine, etc.

5.1 Computer Architecture

In 1966, Flynn proposed a simple model of categorizing all computer systems [Fly66,
HP90]). This categorization looks at the parallelism in the instruction and data

streams, and placed all computers in one of four categorics :

I. SISD Single Instruction, Single Data stream. Examples of these machines
are abundant the DEC VAX, the IBM 360, the Intel 8086 microprocessor, etc.
This category contains the uniprocessor systems made to-date.

o

SIMD - Single Instruction, Multiple Data stream. Under this scenario, n
data streams would simultaneously go to n processing units to do n operations

33

of the same type (such as addition). Vector computers such as the CRAY
machines could be classified under this heading, but in then case, thete i only
one processing unit which performs the operation on n data sticams. Unlike
vector machines, massively parallel SIMD machines rely on mterconnection o
communication networks to exchange data between processing units Fxamples
of SIMD machines would be the Connection Machine 2, and the TLLIAC TV

3. MIMD - Multiple Instruction, Multiple Data stream. In this category, we have
a network of processing elements working on different data at the same time
in order to speed up the overall processing time. We will discuss this category
in greater detail in the following section because the BBN Buttertly machine
belongs to this category of computers.

5.1.1 MIMD Architectures

The greatest goal of computer architecture is to compose a powerful computer by
connecting many existing smaller ones. To understand the MIMD philosophy, let us
get familiar with a few standard terms that are used with MIMD machines [HP90).

MIMD machines may be broadly divided mnto -

e shared memory machines, or mulliprocessor machines, such as the BBN But
terfly and the Sequent Balance, and

® message passing machines, or mullicompulers | such as the Hypercube and
Transputer based machines.

In a multiprocessor machine, the machine offers the programmer a single menory
address that all processors can access. Processes communicate through shared vari-
ables in memory, with any processor being able to wiite to any portion of the shared
memory. In a multicomputer, processes communicate by sendiug messapes 1o one
another [HP90]. We shall limit our discussion to multiprocessors since the mnachme

on which this thesis was implemented the BBN Butterfly was a mltiprocessor

Two common architectures for multiprocessor machines can be seen in Fig. 5.1 In
Fig. 5.1(a), all the memories are at the same distance from any processor it wonld
take the same amount of time for a processor 1o access any of the MCINoLy nnits;

34

Memory
Processor 1
1o
Memory
Processor 2
interconnection /o
Network /
[
o o
o
Memory
(a)
Processor 1 I T T
Memory o
Processor 2 i T Interconnection
o Network
Memo I
° emory
o ® |
' L o
Processor N T T
Memory o)
(b)

Figure 5.1: Architectures for Multiprocessor Machines

this organization of memory is known as a centralized shared memory. On the other
hand, Fig. 5.1(b) is an example of a distributed shared memory organization. In such
an organization, cach processor has some memory which is physically close to it, and
other memory which is physically far away. The memory which is close to a processor
is referred to as the local memory, and the memory which is farther away 1s referred
to as the remote memory. A processor can access local memory much faster than it
can access temote memory. The BBN Butterfly is an example of one such distributed
shared memory multiprocessor. In this machine, it takes approximately 5 to 8 times
longer to access 1emote memory as compared to local memory.

The intercounection network that connects the various processor and menory
elements is a very important part of an MIMD machine (see Fig. 5.1). It may be

35

a simple bus, or a cross-bar switch, or a multi-stage network (such as the buttertly
network), etc. {Sto90].

5.2 The BBN Butterfly Machine

The BBN Butterfly parallel processor system is a distributed shared-memory MIND
machine [BBN87, GAGS8, Mon8Y]. It has 32 nodes, with cach node confaming a
processing element, a memory management unit and a communications processor.
Collectively, the memories of all the nodes form the shared me mory of the machine,
All inter-processor communication is done using shared memory

Procl —— | - Proc 1
| Switch Switch
N |
. Proc5 [Proc 5
Switch Switch
Proc9 —— Proc 9
_ | Switch Switch
Proc13 | S Proc 13
| Switch Switch

Figure 5.2: The Butterfly Interconnection Network for a 16 Processor System

These 32 nodes are connected by a multi-stage interconnection network known
as the butterfly switch (see Fig. 5.2 for an example of the butterlly interconnection
network for a 16 processor machine). Such a multi-stage connection organization

‘ makes it possible to keep all nodes equidistant from each other with regard to memor y

36

accesses, even though they may physically be at different distances from one another.
Thus, all remote memory accesses take the same amount of time (of course, the local
memory access is much faster than remote memory access).

The BBN Butterfly comes with a library of subroutines which may be used by
the programmer to iniiiate and control parallel programs in C and FORTRAN. This
library of subroutines is known as the Uniform System . Let us discuss the Uniform
System with reference to the patallel matrix multiplication program (see VFig. 5.3).

The Uniform System has subroutines to :

o sct up the machine for parallel programming - Indialize Us (). This indicates
to the operating system that the program will be invoking the Uniform System

routines later on in order to be able to run some functions in parallel.

e initiate patallel programmimg by “generatiig” tasks — GenOnl (). Multiple
tasks are initiated by means of “generators” . Let us assume that there are P
processots available for work, and T is a task that must be done on N (N > P)
index values. Then, GenOnl (T, N) initiates the tasks on P processors, with
cach processor getting a unique index value (0... (P — 1)) to work on. As each
processor finishes its task with the given idex, the generator re-invokes it on
the same task with a new index. This is continued till some processor processes

task 7" with index value N — 1, at which time the processig comes to an end.

In the matrix multiplication program, the generator used is GenOn.t (). in the
function Body (lenOnA calls function Dot Product () with parameters ¢ and J
which refer to the row of matrix b and column of matiix ¢, respectively. When
DotProduct finishes computing the dot product of the two vectors, GenOnA
gives it new values of ¢ and) to compute the dot product of two new vectors.
This process continues till the matrix multiplication is complete.

e share values among various processors - Share (). Share allows all the processors
to share the value in a variable. This variable should always be a non-static
global variable. In the matrix multiplication program, the values of variables

Sezel and Size2 are shated among all the processors.

e allocate memory in either local memory or shared memory - UsAlloe (), etc.
This family of subioutines allows the user to explicitly control the allocation of
memory. UsAlloc allocates memory on any processor that has the most memory

37

* Matrix multiply - unopumized example program */
#include <us.h>

int Sizel, Size2, junk;
float #* g, ** b, ** ¢:

ImitProblemOnce ()
{

inti, j;

a = (float * *) UsAllocScatterMatnx (Sizel, Sizel,
sizeof (float));

b = (float * *) UsAllocScatterMatnx (Sizel, Size2,
sizeof (float)),

>

* We store the matnix C 1n 1ts transposed form

* therefore, C 1s actually a Size2 x Sizel matrix,

* though 1t 1s stored as a Sizel x S1/¢2 matnix.

*/

¢ = (float * *) UsAllocScatterMatnx (Sizel, Size2,
sizeof (float));

ShareScatterMatrix (& a, S1ze1),

Share (& b),
Share (& c),
for 1=0,1< Sizel; 1++4)
{
for) =0;) < Size2; j++)
{
blilh)=(==))?73.0"0.0;
c[i]h)) = Sizel *i+);
}
)
)
InitPerRun ()
(

nt i, j;

for (i=0;i < Sizel; 1++)
for(=0;; Sizel; j++)
alijh] = 0.0;

DotProduct (dummy, 1,)
mnt dummy, 1, §,
{
mk,
float temp,
float *bb=bh|,*cc |y,

temp =00,

for(k =0,k <Size2, ki +)
temp += *bb++ * *¢ey e,

a [y} = temp,

}
Body ()
{
jenOnA (DotProduct, Sizel, Sizel),
}

PrintAnswer (e, procs, speedup)
Int time, procs,
float speedup,

nty, j,

mix,y;

x = (Sizel <6) ? Swel 6,
y = (S1e2 < 6)? S17¢2 s,

for=0,1<x,141)
{
printl ("\na [%d] - ", 1),
for(3=0,)<y,j++)
printf ("%d. ", (i) a h))}),
)

prnintf ("\n"),
TimeTestPrnt (ume, procs, speedup),

}

main ()
{
InittalizeUs (),
pnntf (\nStarung Matrix Muluply\nMatnix size),
scanfl ("%d %d", & Sizel, & Size2),
pnntf ("Size 1 - %d, Sire 2 %udn”, Sivel, S12c2),
Share (& Sizel),
Share (& Size2),
ImtProblemOnce (),
TimeTest (InitPerRun, Body, PrintAnswer),

Figure 5.3: A parallelized matiix multiplication program

38

available. UsAlloclLocal allocates memory from local memory. UsAllocOn Us-
Proc allocates memory on the designated processor. All the above routines
allocate memory in such a way that it can be shared among all the processors.
The standard C memory allocator malloc, on the other hand, allocates memory
from local memory, but this cannot be shared with other processors.

In the matrix multiplication program, UsScatterMatriz is used to allocate each
row of the matrix on a different processor in order to reduce memory contention.

lock portions of code to ensure mutual exclusion - UsLock () and UsUnlock ().

perform atomic operations to add and subtract values from a shared global
variable Atomic_add ().

39

Chapter 6

Parallelizing the Algorithm

In this chapter, we shall discuss the issues faced in the parallehzation of the A*
Viterbi algorithm. Let us consider the various parts of the algorithin and see how
they may be parallelized.

1. The Viterbi algorithm. Consider the ¢quation :
/jl(,) = "lja\’”'ubu(.'/!+l)ﬂ/(, t l)

This may be split into two parts.

(a) The first part is the computation of the transition scores ay < b (Y 00)
This can be parallelized in such a way that cach processor computes the
transition score for a different part of the observation sequence In ot her
words, each processor works on time 0 (1 <1 <7

(b) Calculating the best path thiough the tiellis In this pait, we mahe cach
processor work on N/ P nodes of the phonetic graph, where Noas the tota)
aumber of nodes in the graph, and P is the number of processors bemg
used.

2. Calculating the point scores. Consider the equation 4.1 (page 30)
ai(n) = max maxmax ap(0)V (Yoo Yi|f)
ti<t S n'

Here, it is very casy to sce that calculation of the scores for cach phoneme *f’
can be done in parallel, and the maximurm can then be caloulated

40

3. The A* scarch. Here, parallelization can be achieved by allowing different pro-

cessors to search disjoint sub-trees of the search space graph.
There are a few important implementation criteria to be considered here :

. Contention for memory. The nodes of the phonetic graph will be accessed
very frequently during the Viterbi phase of the algorithm. If all the nodes are
allocated on a single memory module of the BBN Butterfly machine, then we
would have problems with traffic being directed to one module of the machine.
I'his would create hot spots, which would reduce the efficiency of the parallel
algorithm.

This problem is solved by statically distributing the nodes of the phonetic graph

over the processors involved in the parallelization. Each processor will work on

N/ P nodes of the phonetic graph, as mentioned above; and the nodes that each

processor works on will be available in that processor's local memory. This

method of distribution of the nodes thus has the added advantage of reducing
‘ the number of remote memory accesses petformed by the program.

2. Availability of memory. Each memory module has a limited amount of memory;
if we were to attempt to put the entire lexical tree on one module, we would
surely fail to do so. This problem is solved in a manner similar to the first -
we distribute the nodes of the lexical tree among all the processors which take
part in the parallelization of the algorithm.

3. Remote memory accesses. On a distributed shared-memory machine, the penalty
for accessing remote memory as compared to local memory is very high. On

the BBN Butterfly machine, it is approximately 5 to 8 times costlier (in terms

of time) to access temote memory as compared to local memory.

This problem is reduced my making local copies of as much of the data as
possible; for instance, each processor has a local copy of all the phoneme models,

and the transition probabilities.

In this thesis, we will be working on isolated word recognition. To this end, we
will be given each word as a sequence of acoustic observations, Yi,..., Yr, and the
program would attempt to map this observation sequence to a word in the lexical

‘ tree. Therefore, before we begin to calculate the 8 values during the Viterbi phase

41

of the algorithm, we would have the entire observation sequence for the word to be
recognized. For the remainder of this chapter, we will assume that there ate N nodes
in the phonetic graph, and that there are P processors working in paratlel on the
algorithm.

6.1 Starting the Parallel Processing

Parallel processing is initiated by means of the GenOnl() generator routine (disc ussed
in Section 5.2). This routine starts off all the P processors at the same time. Fach
processor is assigned a unique number 0... (P — 1) by means of the UsProc () voutine
Processor 0 acts as the controlling processor, it starts the paallel processing when
needed, and collects the data after all the processors are done After processor 0
does some initializations, it instructs processor 1 to tead the phoneti graph, and
processor 2 to read the lexical tice. The phonetic graph and the lexical tiee are
distributed amorg all the processors by means of the UsAllocOnlUsProc() 1ontine.
After the initializations are done, all the processors other than processor 0 become
idle till processor 0 gives them the signal to stait parallel work on one part of the
program or the other.

6.2 Phase I: The Parallel Viterbi Algorithm

In this section we shall discuss the parallelization of the 4 value calenlation, and the
parallelization of the a value calculation using the block Viterhi algorithm discussed
in Section 4.2.

6.2.1 Part 1: The Parallel /3 Value Calculation

Let us now consider the equation for the calculation of the 3 values :
ﬂt(t) = !njaxatjbu(yt+l)ﬁj(t + 1)

where ¢ and j are states in the phonetic graph, and ¢ — § is a transition from 7 to |
in the graph.

As mentioned earlier, we can split this up into two parts :

42

1.

In the first part, we could calculate the transition scores,

T,(t+1)= @y by (Yegr)

Al
.

in a paralle]l fashion. Fach processor performs the calculation for a different
valueof ‘4’ (0 <t < T'). It is quite obvious that there is no dependence between
a processor working on observation Y;, and a processor working on observation
Yi (t #1'). In other words, we can expect to see parallelization for this part of
the code rise lincarly with the number of processors working on the code.

Both portions of the calculation, a,,, and b,(Yi4+1) are obtained fiom tables
which are stored in local memory, which allows us to 1educe the time taken for
the calculation by avoiding a costly remote memory access. The values could be
stored in logarithmic form, which would then allow us to perform an addition
instead of a floating point multiplication; this would also help in reducing the

time taken for the calculation.

The T,,(t) calculated aie then stored in a large matrix, with N x T values, for

later use.

In the second part, we need to do f,(t) = max, §,(t + 1)T,,(t + 1). This is a
straight forward table look-up (from the previous calculation), followed 1y a
compare and select. The table is set up in such a way that the calculation of
the 8 value for cach node s in the phonetic graph can proceed in parallel as

described below.

The phonetic graph has been statically distributed among the P processors in
such a way that N/P states of the graph are on the local memory of each
processor, and no two processors contain the same state in their local memory.
At cach time instant ¢ (0 < ¢t < T'), each processor works on its set of N/P
states. For each of its states 1, it calculates

max 1,,(t + 1)3,(t + 1)
J

where j is the state linked to 7 by a transition : — j. State j need not be
on the local memory of the processor working on state 1; in such a case, the
processor would have to go to remote memory to fetch the values related to .
This plays a large part in restricting the amount of speed-up that is obtained
in parallelizing this portion of the code.

6.2.2 Part 2 : The Parallel a Value Calculation

Let us consider the equation for the calculation of the a values :
ay(n) = maxmaxmax a (')V (Yo LY]S)
t'<t f n' '

In this equation, all the processors work on time ¢ (I <t <7, with cach processor
working on a different f. After all the processors have finished finding

max max ap(W (Yopr, ...)
for their particular phoneme(s) f, the 1esults are colledted by one processor, which
then proceeds to find maxy of the values thus collected. As may he expected, ths
parallelization will not give us the speedup results that we experienced during the
calculation of the transition scores (see section 62.1) hecause node noand node n'

may be on different memory modules, forcing the processors to go to renote memaory.

6.3 Phase II : The Parallel A* Algorithm

Parallelizing the A* and related algorithms has come under a lot of study in 1ecent
years [KRR88, KR87, RK87, RKR87, NV89]. The heunistic domain knowledge avail
able for the A* algorithm can be used to avoid searching some parts of the search
space which may be unpromising. This means that parallel processors following «a
simple strategy, such as divide the search space statically into disjoint parts and let
each one be searched by a different processor, may end up doing a lot. more work than
a sequential processor. This would tend to 1educe the speedup that can be obtamed
by parallel processing. In the following section, we discus the different methods nsed
to paralleliz. the A* algorithm. both for shared memory nulti-processors, and for dis
tributed memory multi-processors. These parallel formulations mamly differ i the
data structures used to implement the Open list of the At algonthn. The Open
list may be implemented as a heap to allow O(log N) access timie (where N is the
number of entries in the list).

6.3.1 The Centralized Strategy

In this strategy, we use a global Open list, and let each parallel processor work on
one of the current best nodes in the Open list. Thee is one important point to be

14

kept in mind with this approach :

Since Open will be accessed by all the processors frequently (each processor will
access it when it has expanded the best node in the list, and has to expand the next
best node), it will have to be maintained in a shared memory that is eas,ly accessible to
all the processors In the BBN Butterfly parallel processor, there are Uniform System
commands that allow the user to specify various portions of memory as shared, and
these portions of memory can be accessed by all the processors. In addition, locks ate
provided so that this memory can be modified with mutual exclusion guaranteed. The
deletions and insertions into the queue must be done concurtently and so. algorithms
must be designed carefully i order to keep the tocked portion of the Open list to
a minimum while ensuring data integuty [RIKS88]. Even with all this, contention for
Open will limit the performance of the machine.

6.3.2 The Distributed Strategy

One way to avoid the contention due to a centralized Open list is to let each processor
have its own local Open list'. Initially, the search space is divided statically and given
to different processors; this may be done by expanding some nodes and distributing
them to the local Open lists of different processors. Now, all the processors select
and expand nodes simultancously without causing contention on a shared Open list
as before.

However, in the absence of any communication between individual processors, it
is possible that some processors may work on a good part of the search spce, while
others may work on bad parts that would have been pruned by the sequential search,
This would lead to a high redundancy factor and poor speed-up. Some possible ways
to get around this obstacle are listed below :

1. The Blackboard Communication Strategy

In this strategy, there is a shared Blackboard through which the nodes are
switched among processors as follows :

"These Open hists may still be implemented as heaps to allow O(log N) access time

45

After selecting a least f-value node from its local Open list. the PrOCessot
proceeds with its expansion only if it is within a “tolerable™ it of the best
node in the Blackboard.

If the selected node 1s much better than the best node i the Blackboard, then
the processor transfers some ol its good nodes to the Blackboard

If the selected node 1s much worse than the best node m the Blackboard, then
the processor transfers some good nodes from the Blackboard to 1ts ocal Open
list.

In either case, a node is reselected for expansion from the local Open hist Inmy
opinion, this Blackboard could be maintamed as a heap as the only operations
performed on 1t are deletions of the best node, and msertions of pood nodes
The concurient msertions/deletions could be pettormed on the list as stuppested
in [RK88| It could be stored in shared memory (1o, distributed over all the

processors) so that there s no contention at one processor for the Blackboard

The choice of the “tolerable” limit is important, as it allects the number of nodes
expanded as well as the amount of node switching between local Open hists and
the Blackboard. If the tolerance level 1s low, then nodes will be switched very
frequently between the Blackboard and the local Open lists unless all the Open
lists have the same value for their best nodes. I the tolerance level is high, then
the node switching will occur less frequently, but then a processor conlid possibly
expand nodes that are inferior to the nodes waiting to he expanded 1 other

processors.

. The Random Communication Strategy

In this strategy, each processor periodically puts the newly generated siceessors
of the selected node into the Open list of a randomly selected processor. This
ensures that if some processor has a good part of the scarch space, then others
get a part of it. If the frequency of transfer is high, then the redundancy factor
can be small; otherwise it can be very large. The choce of frequency of transfer
is effectively determined by the cost of communication. 1f this cost 1s low (such
as on the BBN Butterfly) then it would be best to perform communic ation after
every node expansion

. The Ring Communication Strategy

In this strategy, different processors are assumed to be connected 1 a virtnal
ring. Each processor periodically puts the newly generated suceessors of the

46

selected node into the Open list of one of its neighbours in the ring. This allows
transfer of good work from one processor to another. As in the previous scheme,

the cost of communication determines the choice of frequency of transfer.

From the studies done in [KRR88], it is scen that the distributed strategy with the
Blackboard scheme performs very well for problems such as the Traveling Salesman
Problem and the Vertex Cover Problem. Tt is superior to the centralized strategy,
mainly because the centralized strategy is not good for problems with small granu-
larity, and it is superior to the other distributed schemes discussed above, because it
has a redundancy factor that can be easily contiolled by the programmer.

6.3.3 Implementation of the Parallel A* Algorithm

We have used the centralized strategy in parallelizing the A* algorithm due to its
simplicity. The parallel algorithm utilizes one Open list, and every processor goes to
it to

e get a new node to expand; and

e inscrt the nodes generated.

Processor 0 expands a few nodes of the tree before it allows the other processors
to work in parallel. This is done to ensure that there is no traffic jam among the
processors at the beginning of the A* search. After the parallel scarch is invoked,
cach processor expands a node and puts the children of that node in its local shared
memory space, while maintaining the links with the rest of the hst on the other
processors; in this way, the Open st is distributed among all the memories of the
parallel machine. Insertion of nodes into and deletion of nodes fiom the Open list
are atomic opetations, and there s a lock to ensute that only one processor can access
the Open hist at any given time. When any processot detects the goal node, it sets
a flag that causes all other processors to abort their scarches and return centrol to
processor 0. Processor 0 then deletes the Open hst that was built during the A*
search. This is done to ensure that no random insertions or deletions are done n
the intervening period when the unsuccessful processors are still expanding their own
nodes.

47

Chapter 7

Results and Interpretation

The Viterbi algorithm was parallelized as described in Chapter 6, and the results are
given below. We performed the speed-up tests on two words o short word (*he™y,
and a long word (‘sabotage’). The rationale for this was that we could expect
fairly uniform speed-up for the parallel Viterbi algorithm for all words, but the A
algorithm would perform differently for words of differing length We expect the A
algorithm to be speeded up quite significantly for long words, and not very imuaeh o
short words.

During parallelization of the Viterbi algorithim, we postulated that the total num
ber of remote memory accesses would increase with the number of processors heing,
used in the parallelization. If we have 2 processors, then we expeet at most 1/ local
memory accesses, and (P — 1)/P remote memory accesses ‘I'his was found 1o hold
true (see Fig. 7.1) during the test runs in which we measured the remote memory
accesses for upto 10 processors.

The implication of this observation is quite obvious. Speed np will not indrease
infinitely as the number of processors increases. There will be an mitial gain of
speedup with number of processors, which will then diop when more Processols are
added. This reduction in speedup can be explained by the increased number of remote
memory accesses. We have mentioned carther that it 1s 5 8 times as costly (in terms
of time) to access remote memory as it is to access local memory (see page 41). Thus,
when a large number of processors are made to work on the problem, more fine is

spent in reading from and writing to remote memory than in performing nseful work.

48

SR o FOIER
N/ . 3
LB Yt M@m‘* 3&3&{ -

.

.

PESORPLL
UUPRRITTL St

S

I3

4 /‘”Fﬂl'
e
PRt

-,

-

WIS ™
.

%

e wagure,
b
.

‘.
‘.

3 7&\\%‘\‘\’-},\\\. R S A e aih. M ned e
% B N ﬁﬁ‘ ot ity W 3
ii%“\\\\ 3\&@\‘} \%}w?;\ 3\%

3
R \\\
54 -. \3 "\\o\ \m& \&\ S \:;Q

'Q”f"

Figure 7.1: Growth of remote memory accesses with number of processors

This drop in speedup due to increased remote memory accesses pertains only to
the Viterbi phase of the algorithm, and not to the A* phase. This is because the
Viterbi phase involves a fixed number of computations, regatdless of the number of
processors involved. The A* phase, on the other hand, is a tree scarch, and the search
is terminated when the goal node is found by any one of the processors involved in
the search.

In the process of measuring the number of remote memory accesses during the
parallel Viterbi algorithm, we observed a very significant fact namely, the phonetic
graph is not a uniformly distributed graph. Different nodes of the graph have differing
numbers of clildren. As a result of such a skewed structure, some processors do
significantly more work than others. On referring to Table 7.1, we see that processor
0 makes & 95000 remote memory accesses whereas processor 9 makes only = 30000
remote memory accesses. Processor 0 thus performs about 3 times the number of
remote memory accesses that processor 9 does, and so processor 9 would have finished
its work, and would be idling while other processors may yet have more than half
their work remaining.

This above problem could be fixed if we redesigned the phonetic graph to make
it more suitable to be used in the distributed shared-memory multiprocessor system

49

|| Proc # | Remote] Local | Total H

0 95261 | 30600 | 125861
1 94836 | 23772 | LIS6OS
2 83704 19614 | 108318
3 32194 L1532 | 96726
4 74424 L1886 | 86310
) 61656 8691 70360
6 47628 08 330 16
7 38178 3318 11196
8 28350 1386 29736
9 30143 97 30910
Total | 641377 | 120017 | 761394

Table 7.1: Memory Accesses Per Processor for 10 Processors

that we were using. Unfortunately, the redesigning of the graph to spread ihe work
evenly among the processors is beyond the scope of this thesis. It is the opinon of the
author that the graph, and indeed, the entite algorithm must he developed from the
beginning with a multiprocessor architecture in mind. Significant gains m speed up
can yet be possible with this approach to speech 1ecognition

We will now present the results of the parallelization of the A*-Viterb algonithm
cn the BBN Butterfly machine. The measurements were made in a very simple man
ner. Each of the three phases was implemented in the form of a function. ‘I'he
software was so implemented that there was one processor that conttolled the Pt
allel execution; this processor would invoke all the other processors to hegin parallel
processing, and it would perform a barrier synchionization to get the valnes from the
other processors. With such a sctup, it was casy to mahe calls to tionnng toutines
just before and just after each of the three functions was called. The finimgs were
calculated in terms of microseconds in order to have accuracy Fach graph m the
following two sections has a line graph drawn in black, and « smooth curve drawn i
grey. The line graph is the actual data, and the grey line is a the 1esult of a curve
fitting algorithm on the actual data.

50

Under cach category, the time taken is displayed in microseconds
Beta Value Impulse Response A* Scarch
Time taken| Speed Up | Time taken| Speed Up | Time taken|Speed Up
1 119758] 1.000] 15324| 1.000 5416] 1.000
2 110183| 1087 14049 1.091 8058 0.672
3 s8666] 2041 7733] 1982 6916 0783
4 | sn9s| 2339 6087/ 2518 7187 0.754
5 46470 2.577 6808 22511 7953 6681
6 33374| 3588{ 5795 2.644 7704 0.703
7 30696 3.901 5362 2.858 7054 0.768
8 28720 4.170 3983 3.848| 6837 0.792.
9 24212 4 946 5004 3.062 7491 0.723
10 23066 5.192 5129 2988 7429 0.729
1 20775 5.765 4291 3.571 7179 0.754
12 20816 5.753 4275 3.585 7270 0.745
13 19529 6132| 4170|3675 7162 0.756
. 14 17504 6.842 3975 3.855 7508 0.721
15 18520 6.466 2850 5377 7504 0.722
16 18737 6.392 3587 4272 7692 0.704
17 188411 6356] 3033|5053 7670 0706
18 18662 6.417 2996| 5.115 8092 0.669
19 18312 6.540 3166 4.840 8450 0.641
20 17966 6.666| 3366| 4553 8766 0.618

Table 7.2: Table of 1esults for word ‘he’

7.1 Results for a Small Word

The following data and graphs show the timing and speedup results for a small word
‘he’. We could come to the following conclusions from Table 7.2 :

o lrom Table 7.2, we see that when only one processor is working on the recog-
nition, it takes almost 2 mmutes (119 seconds) to calculate the 3 values. This
time is reduced steadily as the number of processors working on the problem is
increased, till it reaches about 19 seconds with 13 processors, a total speedup of
about 6.13 times that of a single processor. Beyond 13 processors, the increase

‘ in speedup is negligible, reaching just 6.66 with 20 processors (see Fig. 7.2).

ol

R

:u

34 SRS b KA =
5 J) >“\’3‘**z\\\> N s e ia WX ‘\\ \\N 33 \‘ m\\ *x N G.\N R AN
T ~ A NN RN
» R © SR ~S\g\ M oo l\%\
t
Ntm‘\“ A “ U3 By NWW ol “*** w:&x&t:@\x\\&%;;\: Nk
TRIERY \\. TR ~¢\.-~¢ ;:\ “

\\\\\\

I

Figure 7.2: Speed up for caleulating the /# values

This phenomenon can be explained by considering the equation -

/Bl(t) = Injaxaubz](yt+l)ﬂj(’ + l)

When a large number of processors works on the calculation, the number of
remote memory accesses increases (sce Table 7.0 and Ig. 7.01). As we have
mentioned on ratlicr occasions, remote memory accesses are very slow compated
to local memory accesses, and this is a large part of the reason why the speedup
does not increase beyond a certain limit

e From Table 7.2, we sce that with just one processor working on the o valve
calculation, it takes about 15 seconds to caleulate all the o values. Tlis is a
fairly fast time to start with, and so we cannot expect very large speedup figuies
when parallel processing is initiated.

Speedup for the « value calculation seems to tise almost continnonsly with
number of processors involved, rising to about 3 with 10 processors and 4.5
with 20 processors (see Fig. 7.3). This is well below the tate of approximately
6 that we observed for the 8 value calculation. This s partly becanse o valne
calculation involves quite a bit of remote memory accesses that cannob at this
time be resolved satisfactorily. A major factor in the lower speedup s the

H2

S T T DA \»x Mr,\'gg w
e T v . 3
BRI 7T T A R iR
.
<
-
%
\"’
‘\
AR
N
ie b
»
e B
\/ s . ‘
-
g Ay
/ ~
N
AR
e
Vs £
7 <
5
T
NN
3
P -
B
/ o
.
B
/ &
N
.
M
.
Geiats b o
) T RREES g N R FE
4 “\i*?;‘{%*\z“ . ~*§\‘-\ 0\ \\f 1 ‘«\\ h 16‘ S R
Ny Wy A m “en “Qx \\\\\\ \.\\\\._Q\ “x-*- R “ .,-.““ o e e LN
RN % ~ T N
- s" 3 < AR Q‘<\ \t‘\ .
b T Ny 3 . .
oo Ee] i 4 ~ ~ w4
<

Figure 7.3: Speedup for calculating o values

equation itself :

S an

a(n) = max mjax max au(n)V (Ypyy,.
t'<

Fach processor is calculating maxy¢, maxy cp(n)V (Yo, . ..,

1 f) for a dif-

ferent phoneme f at the same time instant ¢.

After cach processor finds the

maxima over (I < t) and »’,

there is a barrier synchronization at which the

maximum over all the phonemes f is calculated. Thus, though there are three
maxima in the equation, two of them are “hidden” in the parallel processing,
and only one of them max; is a sequential bottle neck. The calculation of the
a values is further helped by the fact that it is largely a table look-up from the

data that have been calculated during the g value calculation.

¢ Irom Table 7 2, we see that in the uniprocessor case, the A™ search was com-

pleted in about 5.1 seconds. This is a fairly fast search, and we cannot expect

the parallel A* to do very much better. In fact, we should expect a probable
degradation of petformance, and in fact, that is what we do see. For 13 proces-
sors, it takes about This
is because the one processor version of the algorithm expanded a very small
number of nodes; this was calculated during the test 1uns, and it was found to
be 9, i.e., the goal node was found in the ninth expansion of the search node.

7.16 seconds to complete the A* search (see Fig. 7.1).

33

e e

7

kG ik sk i

L r srer , e pF Strsgrerrly,

“
T TR ey T R EETRTTITTEET - S
. s N o N IR IS
RS Y LSS AR PNRASS AN ~ IR
- LY B SN v -~ w S .
.~ . B N P TR N SO N PO N . \\»\\\\ K
“ Y N AN
Qf SRR N O e e O e WO
3 B . o SN
S

Figure 7.4: Speedup for doing the A* search

This is indeed a very small number of expansions, and 1t does not serve Lo pai

allelize this particular A* search hecause any parallelization would only inerease
the time spent in the scaiching. What we observe in the graph depicts exactly
that scenario when we attempt to parallelize an A* search which expands very
few nodes in the uniprocessor system. We can expect to see the eflects of pa

allelization m the A* scarch only when a substantial number of expausions are
performed in the uniprocessor system. As an empirical figuie, the anthor would
suggest that parallelization should not be attempted for fewer than 50 o 100
expansions. This figuie is subject to variation depending on the multiprocesso

system used, and the speed of the individual processor

54

Under cach category, the time taken is displayed in microscconds

Beta valuc Impulse response A* Scarch

Time taken| Speed Up | Time taken| Speed Up | Time taken| Speed Up

1 239287 1000] 60991 1.000) 3447779| 1.000
2 204116 1.172] 43987 1.387 71595| 48.157
3 14075) 2299 29300 2.082 45592 75.622
4 79812 2.998 21545 2.831 22062| 156.277
s 67904 3524 17770] 3432 23712] 145402
6 58116 4.117| 14237] 4284 19420| 177.538
7 52808 4.531 14833] 4.112 15387 224.071
8 48816 4.902 12899 4.728 21412 161.021
9 48983 4.885 13474 4527 22391 153.981
10 45458 5.264 12929 4717 22745| 151.584
11 39304 6.088 12716| 4.796 20841 165.433
12 37008 6.466| 12374] 4929 20375| 169.216
13 32062 7.463 10700| 5.700 25054 137.614

31670 7.556 12758 4.781 26096| 132.119
31158 7.680 10912 5 589 19325 178.410

|
wnids

16 32012 7.475 8292 7.355 27412| 125.776
17 30358 7.882 1916 5.118) 27583| 124.997
18 30354 7.883 14137 4.314 30075| 114.639
19 30850 7.756 9604 6.351 33933| 101.605
20 30816 7.765| 10395 5.867| 28883| 119.371

Table 7.3: Table of results for word ‘sabotage’
7.2 Results for a large word

The following table and figures show the timing and speedup results for a large word

sabotage’. We can come to the following conclusions from the Table 7.3 :

e Itom Table 7.3, we see that in the one processor case, it takes almost 4 minutes

(= 239 seconds) to calculate the g values, indicating that this is a longer word

than the one we discussed earlier. This time is reduced with parallel processing

to = 32 seconds with 13 processors, corresponding to a speedup of about 7.46.

‘ And agam, as we observed earlier, this speedup does not increase much after 13

%)

Qt

AN S TR

B, N Sl R SRR \\\\\""\’\\ .

SRR N SRR TR s\;«:N AR \\X*\Q;: N \'\\‘R\\“ R
28 ARV Ny by e S RN N

2 R S) e Ao T E RReL N, SRR N . N

R) 3‘\5\':‘\' ~"-."‘\§&&*\ ﬁ\i\;\\“x 14 X RS PR AT SN RN S%\:\;‘*w

&

N

N
N

Vi

\N
\\‘
2

&
&

X
L

7L

N\
AL

7
.

ki

%

t

®

B

oy R -~ T g

B | AN A R I VR 3 \{V\%\“ AR AR e R el BN, RN %

AR SRR S G Q\“a\\\\\\“i RN R AN
S T SR Y TE R\‘bs%%@i‘\k RS RUEN el W‘&\%‘x\\ 3

! ke
3 3
SRR RIS N

Figure 7.5: Speed up for calculating the g values

processors, and rcaches a value of 7.76 with 20 processors (see Fig. 7.5). The
reasons for this are the same as those discussed in the previous section.

From Table 7.3, we see that it takes about a minute (60 seconds) to calculate
the a values with the block Viterbi calculation. We may hope to gain hetier
speedup values for this o value calculation than we obtained m the carlier case,
because this case 1s much slower than the eather one. Aud, from the table, we
see that with 13 processors we have a speedap of 5.7, whereas carlier we lad a
speedup of 3.675. Beyond 13 processors, we don’t get much increase in speedup,
with a speedup of 6.35 with 19 processors (see Iig 7.6) ‘The reasons for this
are the same as the ones discussed in the previous chapier

A* search is really helped by parallelization in this case because of the tnne
it takes to do it in the uniprocessor case. From table 7.3, we see that 1t took
almost an hour (3447 seconds) to get the goal node i the sigle processor case,
but with more processors working, this was cut down to as hittle as 25 seconds
with 13 processors. In fact, with just 7 processors, it took as hittle as 15 seconds
to get the solution to the A* part, giving us a speedup of about 224 And
this was achieved with a fairly simple parallelization strategy (the centralized
strategy). This gives us a very good speedup curve (see Fig 7.7).

" PN
LN LR "ﬁ.-c{;_;q\

sy E]
SRS

N

Figure 7.7: Speedup for doing the A* search

&3]
3

7.3 A Summary of the Results

The results we have observed and presented in the previous sections may be sumima-
rized as follows :

¢ The speedup for the 3 value calculation is about 6 or 7 with 13 processors, and
it does not increase appreciably beyond that. We have seen that the phonetie
graph is not uniformly structured, and this forces some processors to continue
processing while other processors remain idle. The 1edesigning of the phonetic
graph is a major undertaking which is beyond the scope of this thesis 1 i s
undertaken, and its transitions ordered in a different manner, conducve to the
multiprocessor architecture that we have used, we should he able to see farger
speedups than we have achieved

o The speedup for the o value calculation vanes from about 3 for a small word 1o
about 6 for a large word with 13 processors. A large pottion of this algorithm
involves looking up data from a structure that was filled as a side effect durmg,
the g value calculation. It was not possible to localize the accesses to this data
structure on each processor, and so a large number of 1emote memory accesses
were being performed during this phase. A thoiough redesignimg ol this pait
of the algorithm is needed, with good modularity of data struciures i order
to allow the data structure to be allocated on different memory modules. Tlus
would reduce the number of remote memory accesses, and allow us to achieve
greater speedup.

o We can expect very good speedup for the A* algorithm, provided the anipro
cessor system expands a sufficiently large number of nodes hefore it finds the
goal node. In the case where a small number of nodes are expanded hefore
the goal node is discovered, parallelization docs not give us any speedup, as we
have noticed; it actually detracts from the performance of the algorithm, and
should not be used in such cases. In the case where a large number of nodes
are expanded, parallelization is very useful. As observed with the laige word,
we could get a speedup of 224 with 7 processors.,

It is the author’s suggestion that parallelization of the A” he attempted only
after 50 or 100 nodes are expanded during the A search, depending on the
multiprocessor machine used, and the speed of the individual processors. If the

individual processors are slow, parallelization should be initiated after a fewer

58

number of nodes are expanded,; if the individual processors are fa.t, paralleliza-
tion should be deferred. The above number of 50 or 100 would be good for the
BBN Butterfly machine.

99

Chapter 8

Conclusions and Future Work

In conclusion, the A*-Viterbi algorithm can be parallelized fauly casily, but with
a distributed shared memory machine such as the BBN Butterfly, speedup can he
limited by the amount of remote memory accesses that need to he done,

8.1 Comments on the Parallelization

The distribution of the phonetic graph was done in a very naive manner. If this
distribution is done in a better fashion, we could reduce the number of remote memon y
accesses, and thus speed up the processing of the 4 value calculations

During the calculation of the block Viterbi algorithm, the program agam does a
lot of remote memory accesses for values which could be copied 1nto local memor y. Il
this is done, the calculation of the block Viterbi algorithm could also be speeded up
substantially.

The software that was used for this thesis was optimized for use ny a seqiential
machine. This proved to be a major drawback in its parallelization. In the opinion

of the author, parallclization of code can best be done as follows .

e Keep the code simple; do not make any optimizations by hand.

o Use simple data structures; keep in mind that these data structures may have
to be shared.

60

o lave a knowledge of the basic architecture of the machine on which the paral-
lelization is to be performed. The code will have to be customized differently
for different parallel architectures.

o Have a global view of the code; identify portions of the (ode that may be

parallelized, and move such parts into distinct modules.

8.2 Suggestions for Further Work

One very interesting project. would be to implement this algorithm on a message-
passing multiprocessor system and study the speedup results. There are portions of
the code that can be fairly casily converted into pipelines, and a message passing
multiprocessor system could implement pipelines mote easily than a shared-memory
systein would. The entire approach to this problem would have to be different from
the approach followed here. Static division of the phonetic graph as implemented in
this thesis might not be possible, and so other avenues might have to be explored.
Data sharing among the processors will not be as easy as going to remote memory.
There will be no concept of a global memory from which each processor could access
data. And there are a whole host of other issues that aie unique to the message
passing world that will not appear in the shared-memory world.

A second project would be to take the current implementation, and work on
redesigning the phonetic graph to speedup the § value calculation part. One may
also study as to whether the a value and 8 value calculations may be merged.

A third project would be to convert the A* search into an IDA* scarch. The
IDA* is the Iteratively Deepening A* search which was developed to address one
of the major problems with the A*. The A* search involves enormous amounts of
memory the search tree expands exponentially, and so does the memory it occupies.
The IDA™ search, on the other hand, uses memory i a linear fashion. The algorithm
18 a recursive one, and the memory used depends on the level of recursion at the given
time. A second factor to note in the IDA* search is that we are guaranteed a linear
speedup, and the goal node detected is guaranteed to be the most optimal one. And,
unlike in the A*, the termination criteria need not be modified to detect the optimal
goal node.

61

Appendix A

Code Used in Parallelization

On the BBN Butterfly machine, in order to run a program on more than one processor
under the Uniform System, it has to be run under a eluster. for instance, if we wish
to run the program a.out with 5 processors, we have to give the command line

% cluster 5 a.out

where the % sign is the normal UNIX prompt. This runs a.oul with 5 PLOCCSSOLS,
which may be used for parallel processing in the program. The function mam() is
executed by one of the 5 processors (this is decided by the scheduler at tun time): we
will refer to this processor as the main processor. The other 4 processors are mactive,
waiting for commands from the main processor; these processors may be activated
by means of the generator routines that are available in the Uniform System These
and other issues will be discussed later in this chapter

In this chapter, we shall discuss the way in which the algorithm was patallelized,
and how the parallel processing was contiolled. Each seetion will discuss o different,
facet of the parallelization, and examples will be given in the form of pseudo-code,
In some cases, where relevant, the actual code may be used to demonstiate the
techniques used.

62

A.1 Starting the Processors

Parallel processing is initiated by the main program by means of the generator routine
GenOnl ().

int Genld = GenOnl (par_main, tot_procs);

The parameter par_main is the function that all the processors have to execute,
and the parameter fol_procs is the number of processors that are going to work on
the function par-mam. GenOnl is a synchronous generator, i.e., it forces tot_procs
number of processors, including the processor that is making the generator call, to
work on the function indicated (in this case, par_main). When all the processors have
finished working on the function, control then returns to the original processor which

called GlenOnl.

A.2 Allocation of Processor Numbers

Fach processor is allocated a unique number in order to control the parallelization
process. This is done by means of the UsProc_Node call. This call assigns a unique
Uniform System processot number to the processor that calls it. This number may
then be used to allocated memory on the processor, to force the processor to perform

certain parallel tasks, cte. The usage is as follows :
int my_num = UsProc_Node;

The variable my_num may then be used throughout the program to specify the pro-

COssor.

A.3 Starting and Stopping Parallel Execution

The functions stari_parallel and stop_parallel are used to initiate and terminate par-
allel execution of the program. FEach processor has the responsibility to trigger

63

num-to_.wake other processors. This ensures a smooth transition from single pro
cessor execution to multi-processor execution of the code. The processor which does
the triggering is referred to as the parent processor, and the processor which is trig
gered is the chld. The following section of code sets the processor numbers of the
child processors for the current processor. to_wake is an array that holds the identities
of the child processors. to_sleep 1s the identity of the parent processor of the current
processor. NUM_TO_WAKE is the maximum number of chldien that a processor
can have.

to_wake = (short *) malloc (sizeof (short) * NUM_TO_WAKE) ;
num_to_wake = 0;

for (1 = 0; 1 < NUM_TO_WAKE; 1++)

{

to_wake [1] = my_num * NUM_TO_WAKE + 1 + 1;

if (to_wake [i] < procs_to_use) num_to_wake ++;
}
/*

* The main processor (with my_num == 0) has no parents, therefore
* 1ts ‘to_sleep’ 15 0
*/
if (!'my_num)
to_sleep
else

{

0;

to_sleep = my_num / NUM_TO_WAKE;
if (!(my_num % NUM_TO_WAKE)) to_sleep--;

On completion of a task, if a processor has any child processors, it waits for o signal
from its children indicating that they have finished their work and then signals its
parent; if a processor has no child processors, it signals its parent immediately upon
finishing its work. This method of signalling ensures that there is reduced contention
when a large number of processors are involved in the parallel execution of the code,

64

/*

* Trigger the other processors to do parallel processing
*/

start_parallel ()

{
if there are children to wake
{
wake each child by setting the corresponding ‘my_flag’ variable
set current ‘my_flag’ to be the number of children
}
}
/*

* Signal to the parent processor that the current processor
* has finished execution of the code.
*/
stop_parallel ()
{
1f current processor 1s processor 0, then
wait till all the children have signalled completion
else
if there are any children, then
wait till all the children have signalled completion
else
set ‘my_flag’ to O

signal completion to parent processor

A.4 The Busy Wait Loop

All the processors other than processor 0 perform this infinite loop. Each of them
waits on the pointer my_flag, the contents of which are set by the parent processor
in order to initiate parallel execution of the code.

65

while (1)
{

/*
* Wait till the parent processor wakes you up
*/
while (!(*my_flag)) UsWait (50);
start_parallel (my_flag, num_to_wake, my_num);

RefreshLocalShareValues ();

switch (what_to_do)

{

case PARCOMPUTE :
/* Computes the transition scores */
ParCompute ();
break;

cas2 PARGRAPHPROC :
/* Calculates the max beta values */
ParGraphProcDo(my_ud->GrProc, (*ParGraphlIndex));
break;

case HMMPOINT :
/* Calculates the alpha values with the block Viterb: algorithm */
Atomic_add (doHMMPointFlag, 1);
HMMPoantCalculate ();
Atomic_add (doHMMPointFlag, ~1);
break;

case PARSEARCH :
/* Does the A* search */
ParLexiconSearch ();
break;

}

stop_parallel (my_flag, num_to_wake, my_num);

if (what_to_do == EXIT) break;

66

When my_flag has been set by the parent processor, the current processor then
proceeds to wake its child processors, if any. It then calls the function RefreshLocal-
Share Values, which updates any shared variables whose values may have been set in
the interim. It then checks the variable what_to_do in order to find out which function
must be runin parallel. The switch statement, helps to decide which of the four parts
of the algorithm has to be computed i parallel. When the computation has been
finished, each processor then calls the function stop_parallel to indicate to its parent
that it has completed its task, and is awaiting further ditections. The processor exits
when the variable what_to_do directs it to.

A.5 Code for Parallel Computation of Transition
Scores

The following code was used to parallelize the computation of the transition scores.
We present it in the form of pseudo-code in order to explain it better.

ParCompute ()

{
Get the time instant ‘t’
while t < T
{
Set the data pointer to store the output values
Get the observation vector
for every phoneme model (each is an HMM)
{
Get the model
Set the data pointer to input the data
If the model is not NULL, compute the transition scores
for the model at the given time
}
Get the next time instant
}
}

67

It may be noticed that we have used a whide loop to compute the values for the
time. This is deliberately done in order to make parallelization possible. With the
while loop, getling the next time instant is done atomically, by means of locks. This
allows each processor to get a unique time instant for it to work on. This mght noi
have been accomplished as easily if we had used a for loop.

A.6 Code for Calculating the 8 Values

To calculate the 4 values, we need to calculate the max over all the states J in the
phonetic graph for cach time instant t. Therefore, cach processor works on one part
of the graph for a particular time instant, and the results are collated by processor ()
before going on to the next time instant.

ParGraph ()

{
for each time instant ‘t’ (0 <= t < T)
{
start the parallel execution
calculate the max beta value
stop the paiallel execution
}
}

A.6.1 Calculating the Max for the /3 Values

To calculate the max over all the states y in the phonetic graph, cach processor works
on just the states in its local memory, thus reducing the total time spent i this
section of code. The speedup here cannot be hinear with the number of PLOCCSSOTS
because while getting the best value from all the states commected 1o the current, stat e,
a processor may have to go to remote memory to get the concerned values In fact,
with a larger number of processors, the loop starts performng very badly, hecause
the number of remote memory accesses becomes quite large

68

ParGraphProcDo ()

{
for each state on the current processor
{
Get the phoneme corresponding to the state
and set the data pointers
Get the best value from all the states connected to
the current state
}
}

A.7 Code for Calculating the o Values

cach of the processors executes the following piece of code, thus performing the
calculation for one of the phoneme models.

Get the phoneme model index

vhile there are phoneme models to be done

{
Get the phoneme model
if the model is not NULL
{
for the time period t to t’
Calculate the best alpha value
}
Advance the phoneme model 1index
}

A.8 The Parallel A* Code

Fvery processor executes the {ollowing piece of code. Each processor accesses the
Open list to get the best node in the list. Once the processor has the best node, it

69

0‘.

deletes the node from the list. This process of getting the node and deleting 1t from
the list is done after locking the list so that no other processor changes the list at
the same time. The processor then checks the node to see if it is the desied goal
node. If so, it signals the other processors to cease searehing, and it prints the top 25
contenders from the Open list, and returns SUCCESS to processor 0. 1 the node s
not the desired goal node, the processor expands the node and puts its childien on
the Open list for later scarching.

doLexiconSearch ()
{
do infinitely
{
Check the abort flag
If some other processor has found the
goal node return ABORT

Lock the OPEN list

Get the top node

Delete the top node from the OPEN list
Unlock the OPEN list

If the node just obtained is the best node then
{
set the flag to abort the processing in the other processors.
lock the OPEN list
display the topmost entry, which is the goal
unlock the OPEN list
return SUCCESS

Expand the node just obtained, and add its children
to the search space

70

Appendix B

The Uniform System Subroutines

The BBN Butterfly multiprocessor machine has a library of subroutines that may be used
to parallelize a program. This library of subroutines is known as the Uniform System. In
this section, we shall study the major Uniform System library calls, which involve pro-
cessor control, memory management, synchronization, and atomic operations. These four
categories are very essential for managing a parallel processing system.

B.1 Generators

Generators are part of the processor management routines of the Uniform System. They
control the starting and finishing of a task. In general, a task should be kept fairly small
so that the system can respond to changing task scenarios. The Uniform System supports
two generator contiol disciplines [BBN89] :

* Synchronous generators return to the caller after all of the generated tasks have
been processed. Furthermore, the processor that calls a synchronous generator always

works on the tasks that are generated.

e Asynchronous generators return to the caller as soon as the generator has been
activated. This enables the calling process to do other work. The calling process can
later work on genetated tasks if it so chooses.

The Uniform System supports several “families” of generators :

71

1. Inder family. Given an integer range, generators in the index family generate a task
for each value (index) within the range. The call may be of the form :

code = GenOnl (worker, range);
or

code = AsyncGenOnI (worker, range);
This generates tasks of the form
worker (0, index);

where the parameter inder ranges from 0...(range — 1); in this case, Fange miist
be less than 231. GenOnl is the synchronous generator, and AsyneGenOnl s the
asynchronous generator.

2. Array family. Given twointeger ranges (which can be thought of as array dimensions),
generators in the array family generate a task for each pair of values (which can he
thought of as row and column indices) within the ranges. The call may be of the
form :

code = GenOnA (worker, rangel, range2);
or

code = AsyncGenOnA (worker, rangel, range2);
This generates tasks of the form
worker (O, index1, index2);

where indez! ranges from 0...(rangel—1), and inder2 takes values 0, . Arange2-1).

B.2 Memory Allocators

The Uniform System provides a variety of memory allocators that allocate storage in glob-
ally shared memory. The normal allocator, malloc, can be used with Unilorm System
programs to allocate storage in process private memory; such memory cannot be shared
amoONg Processors.

The various memory allocators are :

12

o UsAlloc (SizeInByles) will allocate a block of storage on a processor whose memory
is least used.

o UsAllocLocal (SizeInBytes) will allocate globally shared storage on the local processor.

o UsAllocOnUsProc (Processor, SizelnBytes) will allocate globally shared storage on
the specified processor. In this case, Processor is a Uniform System virtual processor
number. This virtual processor number is obtained from the variable UsProc_Node,
and it ranges from 0...(FP — 1) where P is the number of processor available to the
program.

B.3 Synchronization and Atomic Operations

Sometimes two processors need to work on the same data at the same time. If the order of
work does not matter, for instance, in the incrementing of a counter, the principal concern
is that the processors should not interfere with one another. The Uniform System supports
atomic operations for 16-bit and 32-bit quantities. The following functions will do atomic

operations on addition, ‘and’ing, and ‘or’ing :

¢ atomadd and atomadd32 perform atomic additions on 16 and 32 bit quantities
respectively. The usage is

int x = atomadd32 (intptr, increment);

In this case, intptr must be a pointer to type long (or int where the implementation
allocates 4 bytes for int). After the atomic addition, *intptr will have been incre-
mented by the value merement and 2 will have the older value of *mntptr. atomadd
should be used while worhing with quantities of type short.

¢ atomand and atomand32 perform atomic ‘and’ing operations on 16 and 32 bit
quantities respectively.

e atomior and atomior32 perform atomic ‘or’ing operations on 16 and 32 bit quan-
tities respectively.

Some cases may require more than a simple atomic operation. In these cases, it may be
necessary to construct a lock around the code, as follows :

73

lock;
operations that must be atomic
unlock;

The Uniform System provides the following lock and unlock operations :

UsLock (lock, n);
UsUnlock (lock);

In this case, lock is a pointer to a short, and is stored in globally shared memotry, and
should be accessible by all the processors involved in the parallel processing. n is an intepoer
that specifies the time to wait in tens of micioseconds between attempts (o set the lock,
Using 0 for n forces the use of a default value, which is about one millisecond,

74

Bibliography

[AI87]

[ASPYI]

[BBN87]
[BBN&Y]
[BEG67)

[BIM83]

[BMY0)

[Fly6o]

[FM89)

[FM91]

Arvind and R. A. lannucci. Two Fundamental Issues in Multiprocessing. Com-
putation Structures Group Memo 226, MIT Laboratory for Computer Science,
1987.

S. Austin, R. Schwartz, and P. Placeway. The Forward-Backward Search Al-
gorithm. In IEEFE International Conference of Acoustics, Speech and Signal
Processing, Toronto, pages 697 - 700, 1991.

BBN Advanced Computers Inc. Butterfly Product Overview, 1987.
BBN Advanced Computers Inc. Programming with the Uniform System, 1989.

L. E. Baum and 1. A. Eagon. An Inequality with Applicatons to Statistical
Fstimation for Piobabilistic Functions of Matkov Processes and to a Model of
Ecology. American Math Society Bulletin, 73:360 - 362, 1967.

L. R. Bahl, F. Jelinek, and R. L. Mercer. A Maximum Likelihood Approach to
Continuous Speech Recognition. IEEE Transactions on Pattern Analysis and
Machine Intelbgence, PAMI-5(2):179 ~ 190, 1983.

P.J. Black and T 11.-Y. Meng. A Hardware Efficient Parallel Viterbi Algorithm.
In TEEE International Conference of Acoustics, Speech and Siwgnal Processiny,
Vol 2, pages 893 - 896, 1990.

M. J. Flynn. Very High-Speed Computing Systems. Proceedings of the IEEE,
54:1901 - 1909, December 1966.

G. Fettweis and H. Meyr. Parallel Viterbi Algorithm Implementation : Breaking
the ACS-Bottleneck. IEEE Transactions on Commaunications, 37(8):785 - 790,
August 1989.

G. Fettweis and H. Meyr. High-Speed Parallel Viterbi Decoding : Algorithm
and VLSI-Architecture. IEEE Communaications Magazine, pages 46 — 55, May
1991.

75

[For73]

[GAGSS]

[HP90]

[KCSKS7]

[Ken90]
[KHG191]

[KR87]

[KRRSS]

[Lee89)

[LRS83]

[Mon89]

[Nil80]
[NV89]

G. D. Forney. The Viterbi Algorithm. Proceedings of the IEEL, GlI(3):268 278,
March 1973.

E. F. Gehringer, J. Abullarade, and M. H. Gulyn. A Survey of Commercial
Parallel Processors. Computer Archutecture News, 16(1):75 107, Septembor
1988.

J. L. Hennessy and D). A. Patterson. Computer Avclutecture : .\ Quantitative
Approach. Morgan Kaufmann Publishers, Inc., 1990.

O. Kimball, L. Cosell, R. Schwartz, and M. Krasnet. Efficient Implementation
of Continuous Speech Recognition on a Large Scale Parallel Processor i Inte -

national Conferenee of Acoustics, Spcech and Sinal Processing, Dallas, papes
77 - 80, 1987.

P. Kenny. The A*-Viterbi Algorithin. Personal Communication, 1990,

P. Kenny, R. Hollan, V. Gupta, M. Lennig, P Mermelstein, and
D. O’Shaughnessy. A* - Admissible Heuristics for Rapid Lexical Access. In
IEEE Procecdings of the ICASSP, 1991,

V. Kumar and V. N Rao. Parallel Depth First Scarch Part 2. Analysis. Inter-

national Journal of Parallel Programnung, 16(6):501 519, 1987

V. Kumar, K. Ramesh, and V. N. Rao. Parallel Best-First Search of State Space
Graphs : A Summary of Results. In Proceedings of the National Conforenee on
Artificial Intelbigence (AAAL 88), pages 122 127, 195K,

Kai-Fu Lee. Automatic Speech Recogration : The Deoclopment of the SPHINY
System. Kluwer Academic Publishers, 1989,

S. E. Levinson, L. R. Rabiner, and M. M. Sondhi An Introduction to the
Application of the Theory of Probabilistic Functions of a Markov Process 10
Automatic Speech Recognition. The Bell System Techueal Journal, 62(1):1035
- 1074, April 1983.

J.-M. Monti. Evaluation of a (i?1000 Buttetfly Computer. ACAPS Techni
cal Memo 14, School of Computer Science, McGill University, Montreal, Que,,
October 1989.

N. J. Nilsson. Principles of Artificral Intelhgenec. Tioga Proess, 1980,

K. §. Natarajan and Sarhar V. Processor Scheduling Algorithms for Constraint
- Satisfaction Search Problems. In Proccedings of the 1988 International ¢on-
ference on Parallel Processing, pages 140 149, August 1989,

76

[RKK7)

[RKSS]

[RKRS7]

[Sto90]

[Vit67]

[W1.88]

[4C89]

V. N. Rao and V. Kumar. Parallel Depth First Search. Part 1. Implementation.
International Journal of Parallel Programmang, 16(6):479 - 500, 1987.

V. N. Rao and V. Kumar. Concurrent Insertions and Deletions in a Priority
Queue. In Proceedings of the 1988 International Conference on Parallcl Pro-
cessing, pages 207 - 211, August 1988,

V. N. Rao, V. Kumar, and K. Ramesh. A Parallel Implementation of Itera-
tive - Deepening A*. In Procecdings of the National Conference of Artificial
Intelligence (AAAI - 87), pages 178 ~ 182, 1987.

H. S. Stone. Ihgh-Performance Computer Architecture, 2nd Edn. Addison-
Wesley Publishing Co., 1990.

A. J. Viterbi. Error Bounds for Convolutional Codes and an Asymptotically
Optimum Decoding Algorithm. IEEE Transaction on Information Theory, IT-
13:260 - 269, April 1967.

Kuei Ann Wen and Jau Yien Lee. Pi-allel Processing for Viterbi Algorithm.
Electronics Letters, 24(17):1098 - 1099, 18th August 1988.

Y. I'. Zhang and P. Csillag. Parallel Architecture for High-Speed Viterbi De-
coding of Convolutional Codes. Electronics Letters, 25(14):887 - 888, 6th July
1989.

Index

a value 3, 13, 31, 32, 71 SISD 1, 34

parallel 45
Uniform System 37, 61, 65, 73

A value 3, 14, 32, 70 UsAllocLocal 10, 75
parallel 43 UsAllocOnUsProc 10, 75
UsAlloce 10, 7h
8-puzzle 20 UsLock 40
A* 2,19, 32 UsUnlock 10

parallel 45, 71
centralized strategy 46
distributed strategy 46 forward 16
implementation 48 block 31

A*-Viterbi 3, 4, 29, 31
parallelization 41
Artificial Intelligence 19
Atomic operations 75 atoraic add 40, 75

Viterbi algorithin 15

backward 16

parallel 13
score 16, 31

BBN 34 backward algorithm 11

Butterfly 37 cluster G4

Graph Search 22 cost 22, 28
heuristic 25 evaluation function 26
procedure 23
. forward algorithm 12, 13
Hidden Markov Model (HMM) 1, 9
first order 11 generator 38, 64, 73
asynchronous 73
MIMD 4, 35

synchronous 65, 74
Phonetic graph 29, 30 graph 22

heuristic 26, 2%
score 32

Quotient graph 3, 29, 30

SIMD 4, 34)
lexical tree 3, 32

78

lexicon 30
local memory 50
lock 70, 75

memory latency 4

message passing machines 4
multicomputer 4, 35
multiprocessor 4, 34, 35

path 30
phoneme 16

remote memory 50

search graph 24

search tree 24

shared memory machines 4
speech recognition 1
synchronization 4

transcription
complete 32
partial 32
transition score 32, 41, 69
tree 22
trellis 13, 14

unlock 76

