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Abstract

Molecular Dynamics simulations often involve the numerical integration of pair-wise
particle interactions with a constant step size method. Of primary concern in these
simulations is the introduction of error in velocity statistics. We consider the simple
example of the symplectic Euler method applied to two-particle collisions in one di-
mension governed by linear restoring force and use backward error analysis to predict
these errors. For nearly all choices of system and method parameters. the post-
collision energy is not conserved and depends upon the initial conditions of the parti-
cles and the step size of the method. The analysis of individual collisions is extended

to predict energy growth in svstems of particles in one dimension.
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Résumé

Les simulations de dynamiques moléculaire implique souvent I'intégration numérique
d'intéractions entre des paires de particules avee une méthode a pas de temps constaut.
Une considération importante de ces simulations est U'introduction d'erreur dans les
statistiques de vitesse.  Nous considérons exemple simple de la méthode d'Euler
symplectique appliquée aux collisions de deux particules en une dimension gouvernées
par un force de restauration lincaire. et nous utilisons analyse d'erreur implicite
(backward error analysis) pour prédire ces erreurs. Pour la plupart des choix de
parametres de systeme et de méthode. I'énergie post-collision n'est pas préservée et
dépend des conditions initiales des particules et du pas de temps de la méthode. On
étend lanalyse des collisions individuelles & la prédiction de la croissance d’énergie

dans les systemes de particules en une dimension.
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Introduction

In the field of molecular dynamics, numerical simulations are commonly used to ob-
tain approximate solutions to the systems of ordinary differential equations defining
the dynamics of interacting particles. In many situations. the differential equations
are integrated over very long periods of time with relatively large fixed time-steps.
Though the trajectories of the computed solutions in these cases may diverge from
those of the true solution, it is believed that the simulations can well approximate
many important system statistics. Yet it has been shown [53] that certain methods,
such as step-and-project methods. while exactly conserving energy. can yield incorrect
statistics. There is evidence that sviplectic methods tend to provide relatively unbi-
ased statistics. However, the introduction of unbounded energy growth or “intrinsic”
(anti)damping in some conservative systems by symplectic methods raises questions
regarding the interpretation of these computed systems.

The goal of this work is to investigate the introduction of errors by fixed time-
step integrators applied to systems of locally interacting particles. The approach
shown here also provides a framework for improving or constructing methods which
will provide more dependable and more desirable results. Though the presentation
revolves around a specific problem. the methods are in many cases relevant to other

problems in computational molecular or gas dvnamics.
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Chapter 1

Symplectic Integration

Symplecticity, as it applics to numerical methods. to a large extent stems from con-
sidering the qualities of generating functions for Hamiltonian systems. The reader is
referred to [24] for a brief overview of generating functions for Hamiltonian systems.
Since Hamiltonian flow is characterized hy a generating function of a certain form
(and vice versa), it is reasonable to consider numerical methods based on such map-
pings. Loosely speaking, methods which conserve Hamiltonian structure are called

symplectic. Given an autonomous Hamiltonian system
p=-VHp.q). ¢=V,Hp. q).

the flow is given by

gt + 1)
= r(q(t). p(1)) (1.1)
plt+7)
where the flow operator, p,. must satisfy
" 0 I



We say that a one step method

qn+1
= Oy (qn.pn) (1.3)

Pn+t

is symplectic if the numerical fow map. @, satisties (1.2). This statement of symplec-
ticity is very similar to that concerning the orthogonality of the matrix V®,, (consider
(1.2) with J replaced by the identity). where instead of conservation of lengths of vec-
tors in the phase space. we now have conservation of the magnitude of oriented areas.
It is important to note that in contrast to the generating functions from which they
are derived. symplectic methods conserve Hamiltonian structure but do not. except
for trivial cases. conserve the value of the original Hamiltonian.

The notion of symplecticity was first put forth by Weyl in 1939 [59]. The word is
taken from the greck adjective and loosely means “plaited together™ as it is used in
anatomy to describe certain bone structures. The connection between Hamiltonian
systems and symplecticity motivated the development of symplectic integrators for
Hamiltonian systems. De Vogelacre [10] initiated this developement around 1956 but
it was not until the 1980’s that the arca of syiplectic integration was to experience
substantial growth under a theoretically rigorous framework. Through the eighties
and early nineties, the foundations of the subject were developed in the work of Ruth
[42], Channell [6]. Menyuk {36]. Neishtadt [38]. Feng [13]. Lasagni [32]. Suris [51],
Channell and Scovel [7]. and Sanz-Serna [44] among others. many of whom were con-
currently developing complimentary ideas in modifed equations and backward error
analysis. During this period there was also much activity in the analysis and under-
standing of symplectic methods in applications. Fast explicit symplectic algorithms
for separable Hamiltonians (e.g. in molecular dynamics) [5]. methods for rigid multi-
body systems [2] and symplectic variable step size integrators [24] [50] were developed.
The explosion of research in symplectic integration has left many open and fairly ac-

cessible problems. McLachlan and Scovel’s survey of open problems [34]. valid as of
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1998, provides an excellent overview of some of these unanswered questions.

Sanz-Serna describes two kinds of symplectic methods. differentiating between
those methods which have a history in other fields and “just happen™ to be svmplec-
tic and those which are derived from generating functions. constructed especially for
Hamiltonian systems [44]. This distinction. however. is purely historical. The strue-
ture preserving nature of these methods explains the surprisingly good behaviour
of many simple. low-order symplectic methods as compared with higher order non-
symplectic methods such as multistep methods. which cannot be symplectic [52]. [21].
A rigorous explanation of this phenomenon lies in backward error analvsis. Some of
the main results of this analysis for symplectic integrators are presented here while
an introduction to backward error analysis will be given in the Chapter 2.

Probably the most important result concerning the behaviour of symplectic meth-
ods applied to Hamiltonian problems is that of their long-time near energy preser-
vation. One of the carliest results comes from Neishtadt [38] who shows that if the
perturbation to the Hamiltonian due to the integrator is of size €. then the energy will
be O(e) close to the true energy over time intervals of order @Q(¢/¢). Later. under the
structure of backward error analysis. more detailed results involving the trajectories
of numerical solutions were presented by Sanz-Serna [44], Benettin and Giorgilli [3].
Hairer [20]. Hairer and Lubich [22], and Reich [41]. It was shown that for symplec-
tic methods applied to Hamiltonian svstems. the numerical solution is very near the
exact solution of a nearby Hamiltonian over time intervals O(1/h). Skeel [49] notes
that. though the time O(1/h) is theoretically large. in practice it can be much shorter
than the interval of integration. The fact that there is little evidence of poor encrey
conservation after such a time length suggests that it may be possible to extend the
hackward crror analysis to much longer time scales.

This excellent behaviour is often limited to step sizes below a critical number.

above which the behaviour of solutions suddenly worsens. sometinies even leading to



energy blowing up in finite time (i.c. over-flow in actual computations) [48]. Further-
more, symplecticity in some sense is an indication of error. For Hamiltonian systems
with no other first integrals. Ge and Marsden [65] show that the energy cannot be
conserved by a symplectic integrator except in trivial cases where the numerical and
analytic trajectories agrec up to a reparameterization of time. So the excellent long-
term behaviour of symplectic methods is somewhat surprising. This does, however,
raise the question of whether the long-term or infinite time behaviowr in floating point
arithmetic is the same as, or at least resembles, the behaviour in infinite-precision
calculations. The effect of rounding errors on svimplectic methods has been consid-
ered by [11]. [49] and [45]. among others. but the cffect of such errors on infinite-time
behaviour remains, to a large extent. an open problen:.

There are Sever&.d other side benefits of using symplectic schenies in long-time
integration. KAM theory implies that symplectic integrators mayv have enhanced
non-linear stability [43]. Volume preservation in phase space is a trivial consequence
of symplecticity. Methods which are both volume preserving and reversible, conserve
detailed balance [35] — that is thev conserve equilibrinm conditions.

The svmplectic method of interest here is symplectic Euler 1. as it is termed in

h
. ot = + &V, H P 1.{/,)
Syvmplectic Euler T 3 w3V Py

. h
Ppyl = DPn— EV(IH(]),,+%,(1,,)

When composed with its adjoint.

. h
: Gpel = Un + ._v ;H([} N _1)
Symplectic Euler 11 Ty 2 Vi ne At d

Pugt = Dn— %V(,H(p,,. q”Jr%)

and applied to a separable Hamiltonian system (Le. H(p.q) = T(p) + V{(q)). the



famous Stormer-Verlet or leapfrog method is obtained:

Unet = Gn + IIT/(])IHr«l})
— hV"(q,)

Stormer-Verlet (L.4)

])n+% :]),,*%

If the symplectic Euler method (I or II) is applied to a system with a separable

Hamiltonian, an explicit representation cau casily be obtained

(In+% = n + gT’(])nwL%) = (n + gT/(pn - g‘//(qn))

SE I (1.5)

Puvt = Dn = 5V (an)
The method, as written in (1.5) but with time-steps of leugth 7, applied to a partic-
ularly simple but illustrative problem will be the subject of the analysis in the rest
of this work.

The Stormer-Verlet method is very similar to the svmplectic Euler method above.
Aany of the results presented here for the symplectic Euler method will also hold true
for the Stormer-Verlet method. To illustrate the similarity of the two methods for
certain problems, we consider the one-step formulation of the Stormer-Verlet method
(1.4). If we apply the symplectic Euler T method (1.5) with time-step 2h and the

Stormer-Verlet method (1.4) with time-step i to a separable Hamiltonian problem

with T'(p) = §[p|* and initial conditions por=po=7p" G0 = q = ¢" then we have
Stormer-Verlet (N) SE T (24)
G =q" 4+ hps 1 =q¢"+hp:
pr =" =@ | py =" =0V
G =g+ hpy @ =q+hp

Prey =01~ V' (@) pLo=pL— hV'(q

)

where the bars merely indicate the difference between the solutions from the two

1=

1

methods. We can sce that, for the first two steps, the methods produce the same
iterates if we consider the transformation ¢ — q;. p_y — p.. ¢ = 1L.2..... map-

ping the sequence of steps given by the Stormer-Verlet method to that given by the

=1



svmplectic Euler method. It is evident that the first two steps are equivalent under
this transformation and it is possible to show by induction that this is true for all
steps. For this particular problem, with constant velocity initial conditions. the two
methods give rise to the same iterates aud the results for the symplectic Euler method

presented in the proceeding chapters also hold for the Stormer-Verlet method.
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Chapter 2

Modified Equations & Backward

Error Analysis

“Divergent scries are the invention of the devil, and it is shameful to base on them
any demonstration whatsoever.” - Abel, 1828

The idea of modified equations is to describe a numerical solution as points along
the exact solution of a modified problem which is in some sense near the original
problem. That is, the exact solutions of the modified problem “interpolate™ the nu-
merically approximated solution. The word interpolate is used loosely. and should
be thought of as meaning mercly that for a given fixed time step. h. the modified
solution passes through the points of the nwunerical solution. For large . the mod-
ified solutions may vary wildly hetween points of the numerical solution and do not
necessarily provide a good or natural interpolant to the mumerical solution in the
traditional sense.

Though notions of backward analysis and backward stability of problems has been
around for some time. the method of modified equations as a means of (backward)
analyzing numerical solutions of differential equations is a much more recent devel-

opment. The general concept of backward error analvsis was developed and used

9



extensively hy Wilkinson in his work during the 1950s and 1960s, primarily in the
field of mumerical linear algebra [62], [61]. N. Higham [28] notes that von Neumann
and Goldstine [58] as well as Turing [56] made implicit use of backward ecrror ideas
several years earlier. The method of modified equations has existed under various
names such as equivalent equations, truncation crror methods. augmented systems
and differential approximations. Early ideas of modified equations can be traced back
to the 1960’s in the works of Dally [9]. Noli and Protter [39]. Moser [37]. Hirt [29] and
‘anenko and Shokin [63]. though in many cases the modified equations or modified
solutions were not explicitly tied to numerical methods. Despite these relatively early
beginnings. it was not until around 1990 that a rigorous formulation of the subject
was penned. in many cases as a result of investigations of the long-term hehaviour
of symplectic integrators. The papers by Griffiths and Sanz-Serna [19]. Feng [14].
Sanz-Serna [44], McLachlan and Atela [33]. Yoshida [64] and Eirola {12] set down the
theoretical foundations of the subject and started a flurry of activity in the fields of
modified equations and geometric numerical integration. Interestingly. the problem of
interpolating discrete dynamical systems using formal series received a much carlier
treatment in the context of combinatorics by G. Labelle [30] in 1980. It seems that
the development of the theorv of backward error analysis for munerical integration
oceurred independently with the only reference to Labelle coming from Corless [8] in

1994.

The primary motivation for sccking such modified problems is that frequently
they are easier to understand than the discrete dyvnamical systems (i.c. difference
equations) which define the numerical integrator. In essence. thev are useful hecause
models are usually developed and expressed in terms of continuous systems which
are difficult to compare with discrete maps. However, modified equations can also
prove useful in obtaining long-term estimates of quantities defined strictly by discrete

models with maps sufficiently close to the identity.
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Furthermore, the practical construction of these modified problems allows for
new consideration of conditioning and stiffness of problems. Corless points to the
idea of a measurable statistic being “well-enough conditioned” — ~if the relevant
statistic is insensitive to perturbations of the problem” [8] — and contrasts this to
the traditional idea of “well conditioned™ which is associated with stabilitv under
perturbations of the initial data. Corless also contemplates an alternative definition
of stiff and chaotic problems. He defines a chaotic problem as “one where a solution
with good backward error may be casily computed with explicit methods while a
solution with good forward crror is too expensive” and “a stiff problem is one where
a solution with good forward error is casily computed using implicit methods. while a
solution with good backward error is too expensive™ [8]. He further notes that these

ideas are qualitative. that there exists a spectrum of problems with aspects of both

properties.

Backward error analysis has a history of succeeding where forward analvsis fails.
Wilkinson’s classical result regarding the stability of Gaussian elimination [60] could
not be explained through the traditional forward analysis approach. Modified equa-
tions have been used to explain the success of numerical methods applied to chaotic
systems [8] and perhaps most notably they have heen used to prove a series of the-
orems regarding the structure preservation of certain tvpes of methods (e.g. energy
conservation of sviplectic methods). Bricfly. these theorems are of the form. “if the
system is Hamiltonian and the method is symplectic. then the modified system is also
Hamiltonian™. A similar statement holds with Hamiltonian and symplectic replaced
by reversible and svinmetric respectively. The proof of these statements is by induc-
tion and can bhe found in [25], [26]. [23] and [20]. but was first given by Benettin and
Giorgilli [3]. These results are closely related to the structural properties of certain
subspaces of the infinite-dimensional Lie algebra of smooth vector fields on R?. How-

ever, structural properties shared by the numerical methods and the original system
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are not in general inherited by the modified equation. A simple counter-example of
a system and method which share a structural property but give rise to modified
cquations which do not possess the same property can be found in [18].

There are two other approaches which fall under the scope of backward error
analysis of numerical integrators and should bhe briefly mentioned: shadowing and
asymptotic expansion. In shadowing, one does not seck a modified problem but keeps
the equation fixed and changes the initial conditions. In backward error analysis hoth
are allbwed to change [8]. The method of asvimptotic expansion is quite similar to that
of modified equations. Instead of expanding the modified equation in powers of /.
one expands the modified solution y. This approacli. termed asymptotic expansion in
[23]. leads to distinctly different and less desirable results. In particular. asymptotic
expansions are more seusitive to truncation than backward analysis. The truncation
error grows linearly in time for backward crror analysis (modified equations) and
polynomial in time for asymptotic expansions [23]. Furthermore there are many
other good properties of the modified equations which the asymptotic expansions do
not possess: the scmigroup property (yyv(f + s.y0) = yn(t. y(s.yo))). the structure
property (e.g. symplectic method + Hamiltonian system gives Hamiltonian modified

equation) and error estimates with exponentially small error [23].

2.1 Construction of the modified equation

Consider the system of ordinary differential equations

y=fy) (2.1)

and apply the numerical method @, to (2.1) to obtain a numerical approximation

Yn+1 = (I)/I(.UN)' (22)



We seek a perturbed or modified function f, such that the solution, y, of
y=fu(y) (2.3)

matches the solution of (2.2) at the points t = 0.4 2h. .. ..

In general. it is not possible to obtain an expression for f, explicitly. Instead f,
can be written as a formal series in powers of i, with the terms defined recursively.
This series does not converge in general but suitable truncations of the series can
approximate f;, well. There are several approaches to calculating the terms in the
h-expansion of f;,. Here we closely follow the approach of Hairer et al. [24]. The idea
is to take expansions of y and @, and match terms of equal powers of h. We start by

writing f, as a scries in h.
fo=f+hfa+02f+ 00+ (2.4)

The modified solution can now be written as

_ ~ N /2~.> /'.‘N.
G+ h) =G+ hj+ o5+ ;—,y“) +oo

~ . h* g n? g Iy
=y +hfy+ Srfadn + ‘3—,(. W (e fn) + o fnfa)

— G+ h(f+hfy+ 24

12 Y g . . 9
+ %(fl +hfs R+ N+ fe+ I fs 4

]3 D et . . D p , . 2
* %((fﬁ + hfél + lz,')j:; + o NfHEHFE s+ DR

(ML D ) s+ W) D 2 s+ )

_‘._

~ . 20 g l/ 30 ¢ l/ l»/' 1-//'
=y+hf+h(fs+ ‘:)",f )+ 07 (fs + 5./2/‘ + 5'/ fo 51‘ fr)+. (2.5)

Here f. f', f" represent f(y). f'(y). ["(y) respectively. Also note that f” is the Jaco-

bian of f and f”. f® ... are binary. ternary.... operators taking 2.3.... arguments.
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Term by term comparison of (2.5) to the expansion of @y,

O (y) =y + hf(h) + Rdoly) + 1Pds(y) + - -

gives the functions fi,; in terms of the fo. fy. . ... fr
v
fo=ds— L

1 1
Fa=dy = 57 fa o) = (U ) et

Methods for implementing this recursion are given by Hairer [24] and by Ahmed and
Corless [1], among others. For most functions f. the symbolic computations become
very costly for higher order terms. An clegant representation of the recurrence relation
can by achieved through the use of trees and ordered trees [27]. [24]. {31] but will not
be presented here as it is outside the scope of this work.

In general, the series (2.4) diverges and the infinite order modified equation does
not exist. W.J.Bevn [4] provides a simple vet illustrative example showing that it
is in general not possible to embed an arbitrary discrete dynamical system into a
continuous one. Nonetheless. taking a finite muuber of ters of the series (2.4) vields
a truncated modified equation that can still provide a good approximation to the
behaviour of the discrete dynamical system.

A very similar approach is taken hy Reich [41] to develop an expression for the
modified equation. the main difference there heing that a recursive expression is
written to define the terms fo. fi. ... of the modified cquation (i.e. f;4 is defined in
terms of f;). The approach is exactly the same otherwise but may be advantageous in
the practical construction of modified equations. With the development of symbolic
computing packages such as Maple. the often cumbersome task of computing terms
of the modified equation can be fully automated. There are several published codes
for symbolically computing modified equations in Maple [24]. [1].

There exist several statements concerning the nearness of solutions of the trun-

cated modified equation to the munerical solution. The following statement is taken

14



directly from [23].

Proposition 2.1. Erponentially small estimates. If the vector field f(y) is real ana-
lytic and if the truncation index N is chosen as N = const/h with a suitable constant.

then it holds (with some ~ > 0)
g1 — gn(h) = O™

Proofs of this and other related estimates can be found in [3]. [22]. [25] and [40].

Corless [8] provides a completely different approach for scalar problems which
expresses the modified equation as an infinite formal product instead of an infinite
formal series. The approach may provide more information about where (in phase
space) the infinite order modified equation exists and can he determined. Tt also scems
that while the analysis of higher dimensional problems may be more complicated than
in the scalar case. even a partial description via this process may provide valuable
information. Corless. however. indicates that in these more complicated systems his
approach would probably not be helpful.

Instead of expanding (2.3) and (2.2) and matching terms, Corless considers dif-
ferentiating (2.2) with respect to time and using (2.3) to express derivatives of the

numerical solution in terms of the r.lis. of the modified equation:

:l;/n+1 = (I);;(;{/Il);(./rl :>.flz(,1/n+l) = (I);z(;(/n)fh(:(/n)

:.f'll((l)/l(!/Iz)) - q);z(;(/n).fh(yn)'.

If @}, (y) is invertible in some neighborhood of y and the discrete dynamical svstem
(2.2) simple enough. the problem of finding the modified equation (in this limited
region) can be transformed into the problem of finding a suitable collection of infinite
products. In the example presented by Corless. the mapping vy, — @5, (y,) is inverted

(so that it is a contraction) and the iteration is run backwards.



2.2 DModified equations of linear systems

For systems of lincar ordinary differential equations with constant coeflicients. the
task of determining the modified equation is greatly simplified and a closed form
expression of the modified equation can often be obtained. If the modified equation
of a linear one-step method applied to a lincar ordinary differential equation exists.

then it is necessarily linear. This is illustrated by considering a linear system
y=Ay. (2.6)

and applying a one-step linear method which vields o, (y) = R(hA)y. We then have

that y(nh) =y, = R(hA)"y,. Thus

~ ‘ t
y(t) = R(hA)7" yy = exp (/—) ln (R(/zA)))y()

= |y = /1111 (R(hA))T. (2.7)

1

For a consistent one-step linear method. R(hA) = (I+ A,) for some matrix A;, with
A, — 0as h — 0. In this case the existence of the modified equation corresponds
to the matrix In series being defined [24]. If A is diagonalizable, we are guaranteed
that n(R(hA)) is well defined for sufficiently small i, taking the principal branch of
the complex function in the case that R(1A) has negative cigenvalues. The problem
of finding the modified equation reduces to that of finding an eigenvalue-eigenvector

decomposition of the matrix A,,.

2.2.1 Damped oscillator with symplectic Euler

We now consider the damped oscillator with lincar restoring force and the symplectic
Euler method and scek the form of the modified cquation. In the future. we will
use the modified solution to obtain an analytic expression of the error induced when

numerically integrating collisions between particles with linear restoring force. The
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damped harmonic (linear) oscillator is given by
T4y +hkr=0 (2.8)

and can be written in first-order form.

where 2 and v are the position and velocity of the point mass. & > 0 and ~ are Young's
modulus and viscosity per unit mass respectively. The dissipation during the collision
is given by 4 where v > 0 and v < 0 correspond to damped and anti-damped collisions
respectively. The eigenvalues of the matrix appearing in (2.9) are

/\(:t.'l'u(‘/ — _j_; :l: /,\i,'Z _ _l/‘ (21())

2

The arguments of the radical determine whether the system is under-damped (7° <
4k), critically damped (72 = 4k) or over-damped (52 > 4k). Fig. 2.1 illustrates the
three regions. In the application considered in Chapter 3. we wish to study problems
where the mass returns to its rest position in finite time. thus we might consider
restricting ourselves to the under-damped case where A is complex (see Fig. 2.2). In
more concrete terms, we want to limit our study to the cases where the oscillator
does in fact oscillate. This is particularly important if the restoring force governing a
collision between two hodies is modeled as a linear force with lincar damping and if
we wish to ensure that the collision is not completely inelastic. Care must be taken in
doing this as the under-damped regions in the exact system and the modified system
arc not the same. To proceed. we must first determine the modified equation and
then determine the behaviour of the modified eigenvalues through various regions
of (kh?.~h) parameter space. It will be scen that these dimensionless parameters
determine the behaviour of the discrete and the modified system up to a rescaling of

time. We begin by applying symplectic Euler to the problem at hand (2.9).
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Figure 2.1: Regions of under- and over-damping for the original system (2.9) and the
modified system (2.12) plotted in (A, 7)-parameter space. Here & and v are the spring
stiffness and damping parameters respectively. The hehaviour of the original system
and modified system is determined from the value of the eigenvalues Ay (2.10) and

Ant (2.20) respectively.
Applying the symplectic Euler method (1.5) to (2.9) we obtain the explicit one-
step map

~vh —kh? N
(I -+ A/1>1/,,. A;, = (211)

Ynpt = 77
L+~h —kh 0

where vh # —1 and (. ¢,,)" has been replaced with g, for case of notation. Notice
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-
e
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kh?

. . . ) . .
Figure 2.2: The diniensionless parameters k0= and ~h are very important in charac-
terizing the hehaviowr of thie numerical solutions and the modified system. Though
the time step N does not appear in the expression for the cigenvalues of the exact sys-
tenm. we can write an expression in terms of A and ~h by multiplying and dividing
by h accordingly (sce (2.14)). The lines divide the parameter space into regions where
the various modified solutions display under-damped or over-damped behaviour. The
dotted line corresponds to the exact svstem and the solid lines correspond to the

modified svstem and numerical solutions.

that for vh = —1 (see curve C in Fig. 2.2). an explicit formulation can still be
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obtained. though the method in this case is not “consistent”™ — at least in the sense

of the limit i — 0 keeping vi = —1 and A constant:
(1 — kb3 r, =1,
(1 = ke = khay,.

For this reason. we will restrict our focus to the case where the method is consistent
and the representation (2.11) is obtainec.
Looking to (2.7) we have the form of the modified equation and modified operator

which we will here write as

SR ~ 1 1
f=Aug A= (——(1+A)). 2.12
) nY I h 1 l+7h( /) ( )
The In series expansion in powers of Ay, is well defined if Ay, is diagonalizable and
~h# =1 I (vh — kh?)? — 4kh? # 0 (sce curve A in Fig. 2.2). Ay, has two distinct

eigenvalues given by

~ho—=kh? 1
Aht = —I—)T)_ + 5\/(7/2 — kh2)? —4RD2. (2.13)

Thus for all points (kh2. ~h) lying off the curves A and C. Ay, is diagonalizable, and
the In series is well defined. Furthermore. if A; has cigenvalues A,+. the cigenvalues
of the modified matrix A, are given by :\,,i = %111(1 + s ) — %111(1 + ~h).

We now consider the behaviour of the modified system (and the munerical solu-
tions) in the four regious I, II, ITI and IV of (Ah2. ~h) parameter space shown in
Fig. 2.2. In the figure. lines divide the parameter space into regious where the various
modified solutions display under-damped or over-damped behaviour. The dotted line
corresponds to the exact system and the solid lnes correspond to the modified system
and numerical solutions. Though the time step o does not appear in the exact solu-
tion, we can write an expression in terms of kh? aud ~vh by multiplying and dividing

by h accordingly:

‘ 1 ~h
/\;J"d = /_ <——ITI + (’7/))2 - 4]\'/12> . (2]‘4)
li < .,
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Setting (2.14) to 0 gives the region of critical damping (curve B in Fig. 2.2) and shows
the under and over-damped regions of the exact solution.

Region I. If 1 + Apx € RT then X;,i € RT and the modified system is “over-
damped”™ with positive damping. Since we ave exclusively considering the case where
the eigenvalues of the exact system (2.9) are complex (under-damped), it makes sense
to consider only the cases where the cigenvalues. X;,i. of the modified system (2.12) are
also complex. This ensures that where the backward error analvsis applies. when we
consider collisions with linear restoring force and damping in Chapter 3. the modified
solution and the numerical solution will not exhibit completely inelastic hehaviour
(“sticking™). For this reason. we ignore choices of parameters lyving within region I.

Region IT. If we assume (vh — kh2)? — dkh? < 0. the eigenvalues A,x arve complex
and hence Xhi are also complex. Herce. the modified system exhibits “under-dampecd”
behaviour with the sign of the effective damping determined by the damping pa-
rameter ~. Solutions from region I gualitatively capture the dynamics of the exact

solution. In this region the eigenvalues of Ay, are given by

wh— k1 ‘
Nt = T AR = (3 = k)2 (2.15)

with corresponding cigenvectors (two convenient representations are included)

A —h
vi=|""] orvy= . (2.16)
_]\h A}’:F
With V = (v, v_) we have
A 0
VaIA vV = [T
0 A



and

In (= :A],h (T+An)) =1 (T— Ay) = In(1+ 7)1

- Vin (I . V‘IA,,V>V‘1 —In(1 + )1

In(l + A\, 0
=V ( ) Vo —In(1 4401
0 In(1+ \,2)
Noting that i1+ Az |> = 1 +~h and letting 1+ N\x = 1+ 7he®™?. cosf) = zj)L;;f,’:) .
we have
1 .
In(l1+ \e) = 5 In(l +~h) £
Grinding through the matrix multiplication gives
- 1 l, In(1 + ~h) + 6 0 1
Ay==-V [~ ( h) V- —n(1 4401
h 0 %ln(l+7/1)—if) h
1 6/1 vh — kh? 2h
(1 + 7)1 /h | (2.17)
T2 \/4A/1- — (vh — kh?)? —2kh  —~h + kh?

with (vh — kh?)? — 4kh? < 0. Checking the limit as b — 0. holding & and ~ constant.

we sce that

lim H(h) l (2.18)
h—0 \/4/ 2 —(vh— k)2 2
i M . (2.19)
h—0 h

and so A, — A as h — 0. Finally. in region I1. the cigenvalues of the modified linear

operator Ay are given by

~ 1 A 0
Apt = ~on In(l 4+ ~h) + i (2.20)

i
Furthermore, the modified solution has a period of T = 27 /Im\,, = 27«'%. In Fig.

2.3 the damping effects in modified and numerical solutions from region IT are at
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least qualitatively similar to those of the exact solutions — positive damping leads to
decaying amplitudes and negative damping to growing amplitudes.

Region III. Assuming (yh — kh*)? — 4kh? > 0 and 14+ \je < —1, :\,,i will be
given by the logarithm of a negative real number and will therefore be complex.
The modified numerical system will again be “under-damped” though the effective
damping will be negative. The calculations involved in finding the modified equation
are similar to those shown above. It turns out that the modified solutions in region
IIT can be obtained simply by taking the real part of the solution from region IL.
Solutions for two choices of paramecters (Ah?. vh) lying in region IIT are shown in
Fig. 2.4, Unlike in region II. positive damping (v > 0) does not result in solutions
with decaying amplitudes. For any choice of parameters (kh?.4h) in region IIL. the
modified solutions grow exponentially.

Region I'V. Here the modified solutions are over-damped with negative damping.
Solutions diverge to infinity (in both » and ¢) without oscillations. Since this case
falls outside the realm of most applications. the hackward error analysis will not be
developed here. though the modified equation in region IV is well defined.

Knowing the modified equation over the regions of (Kh2, 1) space. modified solu-
tions can be calculated and used to predict the behaviour of the numerical solutions.
It is worth noting that the modified cquations approach presented here holds for /i
of any magnitude. The problem of the linear method applied to a linear equation
(symplectic Euler with linear-spring) is indeed a special case. as for most problems

the exact modified equation exists only as a divergent formal series.

2.2.2 Undamped oscillator with symplectic Euler

We now turn to the undamped simple harmonic oscillator where we apply the back-
ward error analysis to characterize the behaviour of the numerical solution. The

spring-mass system with one end fixed (i.e. to a wall of infinite mass) does not con-
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Figure 2.3: Solutions from region II. Position and velocity of nmumerical solutions
(points), modified solutions (solid). and exact solutions (dashed) plotted in time and
in phase space. In this region, the modificd and numerical solutions capture the
qualitative dynamics of the exact solution. The sign of the damping in the exact

svstem corresponds to the sign of damping in the modified and munerical system.

serve momentum but does conserve cnergy. In Chapter 3. we will consider pairwise-
interacting particle systems in which both momentum and energy are conserved.

Ideally. we would like a numerical method to conserve all first integrals exactly. Since
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Figure 2.4: Solutions from region ITI. Position and velocity of numerical solutions
(points). modified solutions (solid). and exact solutions (dashed) plotted in time and
in phase space. Solutions in this region are anti-damped and under-damped regardless

of the choice of ~.

momentuny, and all lincar first integrals in general. are trivially conserved by most
methods [25], we will turn our attention to the conservation (or lack thereof) of total
elergy.

Perhaps more imiportant than the conservation of energy of the undamped sys-

tem is its Hamiltonian structure. Sanz-Serna [44] notes that while there exist encrgy



conserving systems which are not Hamiltonian. all Hamiltonian systems are symplec-
tic. Symplecticity is a property which characterizes Hamiltonian systems.  Either
directly or indirectly, it is probably for this reason that symplectic integrators arc
often favoured over higher order methods which destroy this structure. In fact the
modified equation (or truncated modified equation) of a symplectic method applied
to a Hamiltonian system is again Hamiltonian [20]. [3]. Furthermore, the modifed
Hamiltonian and the original Hawmiltonian are conserved to a high degree over expo-
nentially long time intervals [3].

For general systems. determining the (truncated) modified Hamiltonian to higher
orders often involves lengthy calculations. In the simple linear system presented here,
the full modified Hamiltonian is easily obtained from the modified equation given

above. Setting ~ = 0 in (2.17), gives

X 6/h —kh* 2N

A, = = ‘
K2 (d —Kkh2) \ o) kR2

where cos@ = L(2 — Fh?). An equivalent form of the modified Hamiltonian is derived

(2.21)

in [8] using the formal series expansion of the modified Hamiltonian. Given the

Hamiltonian formulation of the modificd undamped system
y=J'VH,(y). (2.22)

0

where § = (£7.0)" and J = . the modified Hamiltonian, Hy. can be cal-

-1 0

culated using (2.21) by setting U =

—
B> 1N -

ny = J'VH, (7). Some simple manipulation
vields

~ 26 kh.re 6 khaw
r,v) = T00) — = T ) — . 2.23
(i) = s (M) = 57) = S5 (Mle) = 57). (229

For small h. the proximity of H; to H depends on the parameter kh since from (2.18)
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we have that as kh? — 0. <> ~ 1 and
Hy = H + O(kh) (2.24)
[ . . . .. .
where H = 2~ 4+ is the Hamiltonian of the original system. Figures 2.5 and 2.6 show

exact, numerical and modified solutions with 4 = 0 for several values of k42 € (0. 4).
It should be noted that the symmetry of the points of the numerical solutions in
Fig. 2.6 is not coincidental and leads to interesting implications for collisions between
particles governed hy this same linear restoring force. This will be described and

explored further in Chapter 3.
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Chapter 3

Numerical Approximation of a

Simple Collision

[n molecular dynamics simulations. one often considers models in which particles
interact (solelv) by a pairwise potential. If this potential is non-local. an artificial
cut-off can be introduced in implementations to avoid finite hox-size effects such
as particle self-interaction in periodic domains. For cut-offs based on interparticle
distances which arc sufficiently small. and for sufficiently low particle densities, we
may speak of inter-particle interactions in terms of collisions and say that multiple
particle collisions are rare.

Effects of interaction force cut-offs. that is cut-offs based on the magnitude of the
interaction force rather than the interparticle distance. are considered by Skeel [49]
and analyzed in the context of rounding error and numerical (in)stability. The situa-
tion of higher densities or larger distance cut-offs where multiple-particle interactions
(collisions) are significant might be at least partially explained by a similar treatment.

In this chapter we investigate a collision between a particle and a wall governed
by the linear restoring and damping forces (2.9) given in Chapter 2. In Chapter 4.

the two-particle collision is shown to be equivalent to the particle-wall collision un-
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der an appropriate change of variables. The strictly local interaction of the particle
and wall involves a cut-off of the potential when the distance of separation between
the particle and the wall is positive. Applving the symplectic Euler method to this
collision problem yields error in the post-collision velocity of the particle. This error
can be viewed as a combination of error introduced by the method while integrating
the collision forces and error due to the cut-off. Here. the post-collision energy is pre-
dicted using backward error analysis and is shown to he in agreement with numerical

computations.

3.1 Error due to particle-wall collisions

We now consider simple collisions in one dimension involving a single particle and a
wall governed by a linear restoring force and use the results of Chapter 2 to analyze
the crror in energy introduced by the svmplectic Euler method (1.5) and by the
discretization of time. The analysis for the particle-wall collision presented here can
be extended in a similar manner for the relative velocity of colliding particles in one
dimension. In Chapter 4. a simple extension of the analysis allows a full description
of the two-particle collision.

For dvnamical systems of the form (2.1) where f is analytic and the formal series
(2.5) converges. the modified equation approach presented in Chapter 2 can be applied
to exactly determine (up to machine precision) the error induced by the numerical
approximation. In many cases f is not aualvtic or. as in most cases. the formal
series (2.5) is divergent. In these former cases the modified equation can only he
defined up to some finite power in i, If f is piccewise analytic. however, we can
calculate solutions of the truncated modified equation in caclh of the regions where
[ is smooth and attempt to match the solutions at the edges, obtaining a piccewise

modified solution. In the situation presented here. the svstem is piecewise linear and
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Figure 3.1: Position versus tinme for a simple collision hetween a particle and a wall of
infinite mass. The numerical solution is plotted as points and the modified solution.
T, from the region R is the solid line. Note that @ is extended into the region Ry,
for illustrative purposes — = is the solution of the modified equation in R, with

initial conditions given by the numerical solution at time #.

a piecewise linear exact (not truncated) modified equation can be obtained.

For particle-wall collisions where particles ave either in free motion or are subject

to a local interaction with a flat wall. the dyvnamics can be reduced to one-dimension
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normal to the wall. The system is then given by

B (rov)., <)
e .
{ 0. r >0

where o + ¢ is the distauce between the centre the particle of diameter d and the
wall and » is the velocity of the particle in the direction perpendicular to the wall.
Consider (3.1) with initial conditions (0) = . ¢(0) = ¢y and the method &, with

numerical solution {y, } . Let

n=(

Riree = {0 ) > 0}. (3.2)
Reon = {{r. )] < 0} (3.3)

and let g be the modified solution from Chapter 2 with initial conditions

y

U(to) = (elo. o)y, o) (3.4)

where 1 s the step size and p(rg. 1) € [0.1) is a function of the initial conditions as
explained below. Fig. 3.1 illustrates this set up. For the case of the free particle in
R free, the right hand side of (3.1) is 0 and hence the modified equation in this region
will be equal to the exact solution for any reasonable method. Since the numerical
solution is defined ounly at discrete points in time. we can not give initial conditions
at the boundary of Ry, and R but must define the conditions at the first point
in the time discretization where the munerical solution enters Reoqp. In effect. the
numerically integrated solution “feels™ the interaction force slightly too late. when
the particles are alrcady overlapping. This overlap is completely deterined by the
initial conditions and the time step o Since in Ry, the numerical solution is the
exact constant velocity solution. this overlap is non-negative and can be no greater
than vph and in general will be given by (e, vg)eph. Notice that when the duration
of the collision is several times the step size. 2, the modified cquation is a physically

reasonable interpolant of the points at ty — h and ¢.
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The primarv interest in this investigation is the statistical hehaviour of the energy
of the numerically integrated svstem. Using the piccewise-matched solutions of the
modified equation for the particle-wall collision we can determine the post-collision
encrgy as a function of the parameters kh?. j and vy. To calculate the energy change
of the numerical solution due to a collision we seek the value of v, at the first point of
re-entry into region Ry, (immediately after the collision). That is we are interested
in v(to+nh) where n is the munber of time steps between the first point in and the first
point out of R.. Finding an expression for n amounts to finding the length of the
interval between two successive roots of ¥(t). Once an expression for the post-collision
energy is obtained. if the variable g is assumed to be an appropriately distributed
random variable. various statistics of the munerical solution can be caleulated. The
details of the calculations for the damped and undamped linear spring collision are

presented below.

3.1.1 Damped linear-spring collision with the symplectic Eu-

ler method

Here we consider the case of the damped linear-spring collision with the symplectic
Euler method and apply the results of Subscction 2.2.1 to the collision problem as
described above. To compute the modified solution we need only solve (2.12) with

the appropriate initial conditions. We solve

U = A,,;U. g(0) = (pthey. '1v‘0)r (3.5)
where

~h — kh? I

~ 1 1
Ay,=-In{——(I+A,)). A=
, < ( )) —kh 0

h 140



The solution is given by

, ~ the
(1) = oA [ 1) (3.6)

'y

It happens that Ay is just a lincar combination of powers of A, and hence has the

same eigenvectors with corresponding cigenvalues A+ (2.20). Reusing the matrix V'

defined in Subsection 2.2.1. we have
~ Mt [ #he
ylt) =v - |V
At )
0 ¢ Uy
! Y :
6(75 In(I+~h)+ig)t 0 N /l}”vo
=V Ly Ahy—i 2 v
() ()(;ﬁ n( -+~ l)—lﬂ)l ty
ot ;0
1 55 it 0 o /l/)'(,‘(,
) Y al Y
+ yi 0 ("VIEI 'y
H —rh kR ) 2h i (0
cos(t) — ' sin{ 1 = sin{ 5+t
_ (1) VAR = (5 h—kh?2)? (71 VR = (o —kh2)? ()
— e — sin(;—’f) (-os(;—)f) + R sin(}Qf)
VAR = (h =) ! ' VAR = (5 h—kh?)2 ! (3.7)

(thug ( 1 )tl
" 1+~h

~h—k 2 \ . A . . . ep.
2—}\—1% (sce Subsection 2.2.1). Multiplying through and simplifving.
!

where cosf =

we obtain expressions of ¢(t) and Z(t):

- i t ~ho— kDL —=2p) t

v(t) = (L+~h) 2 | cos(—H) — — sin(—4) | v 3.8
(0= (o) {con(0) = e i) | 1 (38)

- ot t 2+ (vl — kh? t

()= (1+~h)" 2 | pcos(— el el sin(—6) | heg. (3.9)

)+ -
h VA = (7 h = k)2 h
To find the energy of the particle after the collision we look for the value of the
modified velocity, ¢. at the time ¢, = ¢, + nh where £, is the time at which the

numerical solution re-enters region Ry, This means that » is the unique integer
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such that vy < 0.2, <0..... 2,0 < 0.2,y <0 and x, > 0 (i.e. nis the number of
points in the collision). Let ¢y = 0 and ¢/ € [0.1) such that 7(~u'h) = 0 as in Fig. 3.2.
Then since the modified solution in R,y oscillates with period T. the time between
collision entry and exit (total time in R,;) is half this period, % (see Fig. 3.2). Since
1’ solves T(—p'h) = 0. and T(t) depends on Ah2.~ and . we will in general have
the dependence ' = p/(kh%. ~vh. j1). We also sce that 8 = 0(kh®.4h) and the integer

n = n(kh? ~h. 1) is given by

(3.10)

Combining (3.10) and (3.8) we obtain an expression for the relative change in energy:

[&0)

E; ., w(nh)\”
E’L (1. A'/}z.q'/z) = <( U ))> (3.11)
0

o= Kh2(1 = 2p)
VARRE — (v h = kh?)?

= (L+~0)7% | cos(nb) — sin(nd) | . (3.12)

It should be noted that n and € are functions of the parameters kh%. vh and g but are
written without arguments for case of notation. Fig. 3.3 shows the relative change
I energy. i—(’) as a function of y for k1% = 2 and several values of 4. Results from
both numerical experiments (points) and backward error analysis (solid) are plotted
to show that rounding error is not significant. For 4 # 0. there is a discontinuous
jump in % as ft varies. while when v = 0 as in Fig. 3.5 and 3.6. the dependence is
continuous. For certain values of . the energy change is coustant with respect to
(. This is illustrated by Fig. 3.4 and by the horizontal lines in Fig. 3.5 and 3.6. In

the undamped system. these lines correspond to perfect energy conservation and are

described in detail in Proposition 3.1.



3.1.2 Undamped linear-spring collision with the symplectic

FEuler method

For the undamped collision. the change in energv is eiven by (3.11) with ~ = 0:
o O o . !

2

kh?(1 -2
i ) sin(nf) | . (3.13)

kh2(4 — kh?)

L 5
= (/1.1.'11‘) = | cos(nf) +
Ey

This expression can be simplificd by noticing that in the undamped case. cos(f) =

(2—kh?)/2 = kh? = 2 —2cos(f). and replacing Ah? in (3.11) accordingly. This gives

| 1= cosf)(1 =2 ¥
% (j1.60) = <cos(nf)) + ( ((:m)él ) Sill(”@) (3.14)

where 6 € [0.7) and n is now a function of y and 6.

A remarkable implication follows from this expression: for certain choices of 8 (or
equivalently. certain choices of kh?). the quantity E;/Ey =1 for all g € [0.1). That
is. for these choices of parameters. the munerical integration exactly conserves cnergy

across the collision.

Proposition 3.1. Let m > 2.m € N and choose kh? such that 6 = ('()5_1(#) =

[

“. Then na(p.0) = m. ¥ p € {0.1) and. for collisions between a particle and a

wall interacting via a linear-spring potential in one dimension. the symplectic Euler

method conserves energy cractly.

Before proving Proposition 3.1 we need to consider (3.7) in the undamped case
and solve T(—p'h) = () obtaining an expression for 4/, Leaving out the details we sece

that

i (i k=) = %tmf‘ </’ (4= kh ))

2 — jkh?
1 frsinf
= p'(j.0) = = tan”! : 3.15
u-0) g <1 — (1 = cos H)) (3.15)
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Proof. (Proposition 3.1) Supposc 6 = I for some m > 2. For § <

o=

g s a strietly

increasing function of y € [0, 1) since tan™" is increasing over all of R. Thus

m sin & m yis
(g 0) <y (1.0) = —tan™' | —2 ) = — tan~ ! tan —‘ = 1. (3.16)
u cos = m m

m

So with # = L. ;// < 1 and we have that

m

s

n(p.6) = (a — /1’] = [m = '] =m. (3.17)

Since 7 is a constant with respect to pwe can plug 0 = 7. n(p.6) = m into (3.14)

to verify the proposition:

- 2
E T 1 —cos =) (1 —2pn) T\ ,
= (10.8) = [ cos(m—) + ( - )5 sinfm—)) = 1. (3.18)
Ey m sin 2 Com
Therefore the energy is conserved exactly. O

In general. the svinplectic Euler method does not conserve energy across the colli-
sions. To estimate the offect of these non-conservative collisions in a system of many
particles, o is assumed to be a uniformly distributed random variable and statis-
tics taken over the initial conditions of collisions are calculated. For example, the

p-averaged energy change over undamped collisions is given by

<Ef> 1 (sin(m + 1)0 — sin @)% — sin® 4 (3.19)
Ey/n 6 (cost — 1) sinm@sin(m + 1)f sin? (sin(m + 1)8 — sin mé)? o
where m is the unique integer satisfving
T T 7
< < vYuelnl) (3.20)

m+1" n(pu.6) — m

(m is simply the minimum number of tine steps in the collision over the range of
initial conditions). The quantity <j_f>u is never less than one. The y-averaged energy
change with v = 0 is shown in Fig. 3.7. The regions IT and III correspond to those
in Fig. 2.2, In Fig. 3.8, the chaunge is plotted as a function of 6 over part of region

IT where 0 < 6 < 7 (0 < kh? < 2). Averages for the general undamped collisions
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are shown in Fig. 3.10. The “troughs™ correspoud to # = T.n = 2.3.... as in the
undamped case. Lines of constant ¢ are shown in Fig. 3.9 for comparison.

For simulations, it will be uscful to know the maximumn penetration depth or
overlap during a collision given the parameters € and oy . It is important to choose
these parameters so that the maximum overlap of particles does not exceed their
diameter. This ensures that the centres of the particles do not cross and the particles
do not pass through cach other during head-on collisions. Since the modified solution.
T, is zero at t = —p'h and oscillates with a period of T = 27h /0. we expect I to
attain a maximum amplitude at ¢ = T/4 — p'h. Looking to (3.9) we set v = 0 and

plug in t = f/4 —y'h.

(T
Tl = —uh) =

4

v

i

{ l - l — ( ;'f)
1 cos (Z _ /1/(}> n /1(‘ cosf) i (
2 sin ¢

; - /1/9> hl'()

L — (1l = cos )
siné

sin
—esin { tan™! fen
I — j(l —cost)

— {1 = cosb) o jesinf
08 | te he
* sin 6 R 1 — (1 —cosh) o

e 1sinf R . T P Y AT | _ BT N O e
Lettinga = —J—Iw/l(]fmw) and using the identities cos(tan™ «) = 1/v1 + ¢? and sin(tan™' a) =

a/ \/( 1 + a?) we have

cos (11'0) | hey

= <—/1 sin (4'6) +
1

a

1
c= <— sin(tan™'a) + = cos(tan™ (1)> ptheg

< a N 1 > ; < 1 —a* > ]
= - = - - HAUy = =} [Ny
VI+a? a1+ a? av'1+a?
It can be shown that for a given 4. this guantity is maximized when g — ). Taking

this limit vields

1—a? hiy
li _— hoy = . 3.21
/111—}(1) <(1‘/l + (12> HITCD sin 6 ( )
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('()/l

It twice the particle radius 2 > 0%

it is guaranteed that the centres of the particles

(in one dimension) will not cross.
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Position vs. time for a simple collision (kh2 close to 4)

e symplectic Euler
—— modified solution

x, = r(tg + nh)

Figure 3.2: Position versus time for a simple particle-wall collision in one dimension.
Again. the numerical solution is plotted as points and the modified solution & is
extended and plotted as a solid line. Here the collision is stiffer than in Fig. 3.1
in the sense that the dimensionless parameter Ah? is larger. When the collision is
stiffer, only one or two points sample the collision and the modified equation offers
an interpolation to the numerical solution which is not as physically reasonable. The
time tg — 1'h is when 7, extended backwards in time, crosses the r-axis. The time
to — peh is when the interpolated linear trajectory of the particle crosses the wr-axis.

As kh? increases. the modified period decreases. and the difference

jo— '] grows.
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Figure 3.3: Relative change in energy from numerical experiments (points) and the
. . n . g o ') ¢
backward crror analysis (solid) plotted as a function of ¢« for kh= = 2 and several

values of ~/.
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n 0/n
Figure 3.4: Left: Relative change in energy plotted as a function of j for 8 = Z.n =
2.3..... 10. Theoretical change from backward error analvsis (solid) and numerical

experiments (points) are shown for comparison. Right: Relative change in energy

B}

plotted as a function of . For anv § = n > 2. the energy changes by a constant

i

factor dependent on € for all initial conditions (all ;) and if v = 0. the energy is
exactly conserved. In this plot the parameters A and /i are held constant and 6 is

varied by changing ~.
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E/E, vs. u for kh*=0..2
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Figure 3.5: Relative change in energy plotted as a function of p for several values of

(kh? =1).
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E/E, vs. u for kn=2..4
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Figure 3.6: Relative change in energy plotted as a function of g for several values of

kh? and v = 0. The horizontal line corresponds to § = Z (kh? = 2).
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Figure 3.7: p-averaged change in energy versus Ah? for undamped linear-spring colli-
sions. Points represent nunierical experinments and the solid line the theoretical change
from backward error analysis. There is no change in energy for Ah? = 2 — 2cos(w/n)
for n = 2.3..... hut for all other values the energy increases on average. The back-

ward error analysis is restricted to region IT solely for reasons of convenience.
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Figure 3.8: Relative change in energy versus ¢, The range corresponds to 0 < bh* < 2,

which is the same as that of the curve lving in region 1T of Fig. 3.7.
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Figure 3.9: Lines of constant 6 plotted over the diagram shown in Fig. 2.2, The lines
le} o O
strongly characterize the interesting hehaviour of the average change in energy and

correspond to the troughs and crests in Fig. 3.10.
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Figure 3.10: Log of the average change in encrgy in region IL The troughs and crests
correspond to lines of constant ¢ (sce Fig. 3.9). The average behaviour in region I11

is relatively unremarkable and has bheen excluded.



Chapter 4

Systems of Particles: Energy
Growth in One-Dimensional

Systems

We now turn our attention to the numerical integration of dyvnamical systems within
the context of molecular dynamics modeling. Specifically, we consider the problem of
the symplectic Euler method (1.5) applied to a system of N particles whose interac-
tions are governed by the pairwise inter-particle potential:
Yhe(r=d)? r—d<0
Viry={ (4.1)
0. r—d >0
where r is the distance of separation of the centres of the two particles cach of radius d.
and & is Young's modulus. In Section 4.1, we apply the results of Chapter 3 regarding
energy change due to particle-wall collisions to two-particle collisions. determining
the post-collision cuergy of a two-particle system as a function of the initial (pre-
collision) conditions. In Scction 4.2, the model system of N interacting particles in
one dimension is described. We make a nunber of assumptions which are appropriate

for models of low density svstems and derive an estimate of the energy as a function



of time where time is measured in number of collisions. Euergy growth predictions

arc compared with the results of computer simulations.

4.1 Two-particle collisions

Consider a collision between two particles i and j governed by linear restoring and

damping forces

Ty o=y

v = (g(z, -y —d)+ 3((, — 1'1)) \'{,,,.J_,,.,._(,<(,}(.11',1. ) (1.2)
i'j =

; _ Ao a3 . S,

v =+ (5(-?7‘ —r—d)+ 5((‘,;‘ - l‘i)) \{\.‘_,—.,-,—(1<0}(v’1'-, -1,;')

where . 2. vy and v¢; are the positions and velocities of the particles, d is the particle
diameter. k and v are Young's modulus and damping coefficient respectively and y 4
is the characteristic function of the set A. Auy two-particle central force problem can
be transformed into a one-dimensional problem by a simple change of variables. The
reader is referred to Chapter 3 of [17] for a more detailed explanation. Appropriately

adding and subtracting the lines of (4.2). we can write the system as

Tp—dp =y ooy
iy =0 == (ko =0 = d) + (05 = i) ,\{,,,_,.__.,,‘/,,,/\n}(;z:i. X)) (4.3)
Titay =0t
vty =0
Substituting R = %(.’1'5 Fug)r=ay o = %(1',- +v;) and v, = ¢; = ¢; in (4.3) we
have
o=,
<".,- = — (h(r —d) +70:) \fr—d<0p (1) (11)
R =g
v =10




Applying the symplectic Euler method to (4.2) yields a discrete system which may

be rewritten using a similar change of variables:

.
LSl o R
] =2+ h
R U, Khoyo. e ~hogo n+1 n+1 NI
ot =l — (B = = d) A T = Y)Y acoy (0 ) (1.5)
’ ’ - ’ ’ ’ )
o = e
n+l o kh(..n el shoo o+l n+t , T
vl = o+ (B = —d) + S =] ) (o —an—d<op (7. )

Adding and subtracting lines of (4.5) in the same way as in (4.3). letting R =

1/..n el g e
s(af + )" =l —a

VIES
U,
I,n+1

g1
U

Rn+1

When the particles are

succinetly as

n

mooho= et + o) and vy = ¢ — ¢ and rearranging we have

=o' = (KD = d) + 30 el ) e —acoy (7)

E— + h,l"l.l—i'-l
(4.0)

= Up

_ n n-1
= R" + hej,

colliding. \ g —qcoy (") = 1 and (4.6) may be written more

],n+l n
- |
T l+nh (I+A/’)
,1,H+l l'”
» r -
(4.7)
R = N"+ hep,
RIES g
l'[]) —_ (I‘)

Under the given transformations. we sce that (4.5) is equivalent to integration of the

1. v, variables via the mapping (2.11) and exact integration of the R. vy variables. This

means that the predictions for the post-collision velocity presented in Chapter 3 for

particle-wall collisions may be applied to predict the post-collision relative velocity for

two-particle collisions.

Given the initial (pre-collision) conditions. the post-collision

relative velocity will be given by the square-root of (3.11). Reverting back to the



original variables we then have the system

ood / 0
vl — v = 03)
’/ ’/, ! (4.8)

where ¢/ and ¢! indicate post- and pre-collision values respectively.  Solving this
system for the total encergy of the particles vields

L Lk osh) ) Y+ o (1= LG knoqn) ) ol (4.9)

Ll = :
K Eo ’ 2 E() !

o =

where Efy = (¢))? 4 (¢f)* and Ef,f/’ = (/) + (z']’)“) fy=0andd=".m=12...,

!

then Tﬁ = 1. and the energy of cach particle is conserved across the collision.

4.2 Systems of particles

In molecular dynamics. mathematically deterministic svstems are often treated as
stochastic, at least i1 terms of certain macroscopic quantities, such as energy or tem-
perature. The deterministic trajectories are supposed to approximate some stochastic
process in the distribution sense. Usually these systems are assued to uphold sonie
form of ergodicity with respect to a particular state (statistical) variable. Important
to this assumption is that the munber of particles is large and that the phase space
is sampled quickly by the system. Taking the number of particles to be large allows
assumptions regarding the independence of particles and ensures that thermodynamic
quantities such as temperature are well defined and make sense. In setting up these
models. it is often useful to assume the times between collisions to be identically
distributed random variables with a particular distribution. It is shown in [46] that
assuming a particular distribution is not necessarv as the time between collisions
converges weakly with the number of particles to an exponential random variable.
If the system is ergodic or in some sense nearly ergodic” over the tine intervals of

simulations run on the computer. the underlying random process can be observed



and the statistics of the simulation will well approximate those of the underlving
stochastic system. For discussion and analysis of stochastic dynamics approximated
by deterministic (and random) dynamical systems sce [57]. [47], [53]. [54] and [55].
Freidmann [16] also briefly considers the introduction of stochasticity by numerical
methods.

Here we consider systems of N particles on a periodic linear domain of length L
interacting via the local pairwise lincar restoring force described in Chapter 3. The
results for two-particle collisions are applied to describe the evolution of the statistics

of the total encrgv of the svstem and of the particle velocities.

4.2.1 Consideration of dimension

Systems of interacting particles in one dimension will not in general be chaotic or
ergodic and may cven display neutrally stable orbits.  Nonetheless. given suitable
initial conditions (Boltzmann distribution) and a large number of particles. non-
ergodic and especially pertodic behaviowr will not be apparent. In this case. velocity
statistics of the one-dimensional systemn may be reasonably modeled by a stochastic

process over finite time intervals.

4.2.2 Energy growth for 1-d system

Consider a simulation of a svstem of N particles in one dimension which interact pair-
wise via the linear restoring force (plus damping) with the svmplectic Euler method.
Since changes in velocities ocenr only through collisions. it is natural to measure time
in discrete increments of collisions. thus eliminating the problem of estimating col-
lision rates. In real svstems, measuring thine in this way is not alwavs possible and
it will be desirable to have an understanding of the collision rates and their relation

to the total energy of the system. The problem of determining the distribution of

(g
&2



collision times in this context is treated in Chapter 5 of [46].

Define

1. The velocity of the particle i after the nth collision: .

2. The total energy of the system after the nth collision:

N
E" = E (v")” (4.10)
i=1
3. The energy of particle A after the nth collision:
- )
El = (o). (14.11)
4. The energy of two particles i and j after the nth collision:
o (12 AW
£l = (o) + (o) (4.12)
A number of assumptions are made.
1. Collisions involving three or more particles are rare.
2. Velocities of non-colliding particles are constant in time.
3. Velocities are iid with Boltzimann Distribution
. 1 .
Plo; € [vjvi +dv)) = f))dv = ——=c ¥ dv. (4.13)
2no;
4. Only one collision happens at a time.




5. Positions of colliding particles are independent of their velocities (i.e. g is

independent of v;.¢=1..... N).

An important implication of Assumption 3 is that the collisions chauge the ve-
locities slowly so that the system is at all times near equilibrium and satisfies the

thermodynamic relation

=2, (1.14)

This also implies that energy is on average distributed uniformly over the system:
(El") = %(E”) at all moments in time. Over long time intervals. the random forcing
introduced by the micthod at eacli collision may in fact shift the system away from the
Boltzmann cquilibrivun distribution. This is the kind of problem one might encounter
in Dissipative Particle Dynamics (Molecular Dyvnamics with random and deterministic
damping and forcing terms). where one attempts to mitigate problems with shifted
equilibrium distributions by choosing the damping and random forcing parameters
carcfully [15]. In the problem presented here. however. the random forcing is an
artifact of the numerically integrated collision and is not given by a “tunable™ random
term in the interparticle potential.  Assumption 5 allows us to independently take
expectations over g, which parameterizes the initial conditions of a collision (see

Section 3.1), and over v; and v;. the velocities of the colliding particles.
Now suppose the (n + 1)th collision involves particles 7. j and that no other col-
lisions occur at the same time. The energy of the system just after this collision is
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given by

N
En+l _ Z ELH—I + E;z}+1
ki
al 1 E 1 E,
=N Er o (1 2 kR2An) ) EL 2 (1= 2L kD2 ) ) e
A;} & 2 E(] (/ ! ) J 2 E() (/ i ) J
1 E; 5 1 E; \
=F"— — (1= 2L kh2Ah) ) ES 4+~ {1 = =L (g kb2 4 h) ) efe?. (4,15
2 E() (:“ ! ! )) 1y + 2 E() (:“ . ! I) (1 (.] ( ‘))

using (4.9) and the fact that the energies of the non-colliding particles are unchanged.

Thus we have a stochastic mapping for the particle velocities with random parameter

i Taking averages over i, and v = (... .. vy ) vields
‘ 1/ Ey .
<E”+1>/ln.1/ = <E”>/1,,.I/ + 2 <l N <_E—.(/_)>/‘u (<(';'(‘.Iil>”l"’./ o <Ei’.l/'>“'~”./) (41()>

From here on, we will simply write (E") = (E"),,,,, and (i—")) = <;—(/)>“,

Though we have that the g, are iid uniformly distributed on [0.1). to write
(4.16) as an expression involving state variables alone (l.e. the average energy or
temperature) we need to compute expectations over the velocities of the colliding
particles ¢;. v;. The joint probahility distribution function of the velocities vy, vy must
be determined in order that the expectations in (4.16) can be written explicitly in
terms of (E") and o?. The approach followed here is that presented in [46] for hard
spheres or billiards where a rigorous derivation of the joint pdf can be found. There.
a conditional pdf is derived and used to obtain an expression for the average rate
of collisions between a given particle of velocity w and all particles with velocity
v. Though billiard systems involve instantancous collisions and can not be exactly
represented by a system of differential equations. it is shown in [54] that the nou-
differentiable flow of the hard-sphere system can be approximated by the soft-sphere
model in the limit as the spring constant A goes to infinity.,

The first key observation to make is to notice that for conservative billiard systems.

where when particles collide they simply exchange velocities instantaneously. we can



think of the particles as point particles (with zero radius) on a reduced interval of
length L —dN. where L is the length of the domain. d is the diamcter of the particles
and N the number of particles. Furthermore. since the collisions are instantancous.
the particles can be thought of as not colliding but passing through one another.
The pdf f(v) is the rate of occurrence or likelihood of particles with velocity v = v.
The rate of occiurence of pairs of particles with velocities v, = v and v; = v; 1s
proportional to the product f(v;)f(v;). Given a pair of particles with the above
velocities situated in a periodic domain. the particles will cross each other (collide)
with a frequency proportional to their relative velocity. [, —v;]. So it scems plausible
that the collision rate for particles of velocities vy = vy and v; = v; is proportional to
fwi) f(vj)|vi—vy]. As stated in [46]. the joint pdf is given by the fraction of collisions
between particles with velocities v and v; to collisions between all particles:

Jwi)fwi)lvi — v
[ f f(“)f("')‘“ - '(‘|(i'u(/u'

This conservative billiard svstem derivation does not account for the fact that colli-

flriov) = (4.17)

sions are not onlv soft but non-conservative. This simple mmodel does. however, provide
reasonable results and opens the door to further analysis involving non-conservative
billiard systeins.

Having now obtained an expression for the joint pdf of the velocitics of colliding
particles, we can compute the expectations in (4.16). A few lines in any symbolic

computation package vield:
. 1 . :
flviov) = W.f(”i)./(”j””i - vl

(E) = / /(lff + l{f),f'(u,‘. v;)dvidy; = 30 (4.18)

2
T,

(vfvf) = / /z/il/_/-f(l/,-.1/_,-)(/14(114 = - (4.19)

Inserting these expressions into (4.16). substituting o2 = (E")/N using (4.14)

and rearranging gives a nice expression for the growth of the expected energy of the

=
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svstem

71 )
Ertly — 1+_{__ = 1 £
= i5 () e
71 E, "
= (E") = |1+ ;% <Ef£>— (EY). (4.20)

The expected energy of the system grows exponentially with the nuunber of collisions.
Results from a single run of 1000 particles over 130 000 collisions are shown in Fig.
4.1. The velocity histograms (Top). show a slight hroadening of what looks to he
a roughly Gaussian distribution. However. much longer runs with more particles
are needed to further investigate the change in the distribution of velocities. In all
simulations presented here, the damping parameter ~ is zero. What is plotted as
points in Fig. 4.2, 4.3, 4.4 and 4.5 is the mean and mean = one standard deviation of
the energy relative to initial energy calculated from a set of 200 computer simulations
for each of the parameter combinations. The solid lines in these figures represent the
mean energy relative to initial encrgy as predicted by the model in (4.20).

In Fig. 4.2, a comparison of the theoretical energy predictions and energy statistics
from three series of 200 simulations. each is shown for three different values of the
number of particles. All other system parameters arve the same for each trial. The
poorer fit between model and simulations for the smaller munber of particles suggests
that finite system size becomes important as the ratio of the number of collisions (the
duration of the simulation) to the number of particles grows. However. even if we
compare the run of 500 particles at the 500th collision to the run of 1000 particles
at the 1000th collision. it scemns that the model more accurately captures the energy
growth of the system with more particles.

Fig. 4.3 shows encrgy predictions of the model and energy statistics from simmula-
tions as a function of number of collisions for four values of the density, p. while all
other system parameters are fixed. It is to be expected that as the density increases.

Assumptions 1 and 4 will no longer be valid and the theoretical model will less accu-
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rately capture energy growth in the simulation. In particular. three particle collisions
can no longer he considered to be negligible especially in the time-discretized system
where particles do not interact as perfect billiards but experience collisions which are
not instantaneous.

The effect of varving the parameter Ah? and the variance of the velocity distribu-
tion, o2, is shown respectively in Figs. 4.4 and 4.5. Again. all other system parameters
arce the same over cach trial. The quality of the fit between model and simulation
statistics seems largely unaffected by changes in kh?. Changing o2 amounts to chang-
ing the initial temperature of the system and involves merelv varving the distribution
of initial velocitics. In both the simulation statistics and in the model, very little
difference is secn over the range of values of ¢ shown in Fig. 4.5.

In the final plot, Fig. 4.6, the cunergies of four simulations of 100 particles are
shown over a period of 100000 collisions. The value of kh? is different for each of the
four simulations and is chosen so that the encrgy is exactly preserved over two-particle
collisions. It is notable that the only siimulation with no obvious drift in energv over
the 100000 collisions is the case where kh? = 2 — the simulation with the largest time
step. This is likely due to a higher frequency of occurrence of multi-particle collisions
in the simulations with smaller time steps. In these simulations. kh? is varied by
changing & while holding A constant. For kh? = 2. collisions last cractly one tinie
step but for the other cases collisions have a duration of 2 time steps or more. Since
h is the same for the four simulations. the number of tine steps between collisions
remains roughly the same, however the duration of collisions is longer for smaller

values of £h? and there is a greater “chance™ for multi-particle collisions to occur.
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Figure 4.1: Particle velocities are recorded from a single simulation of 1000 particles
in one dimension over a period of 130 000 collisions. Top: Velocity histograms are
plotted at regular intervals. The plots are vertically shifted for visibility. Botton:
Energy growth. relative to the initial energy of the svstem. is plotted as a function of
the number of collisions. Sinnlation energv is plotted as points and the theoretical

prediction is the solid line.
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Figure 4.2: Energy statistics are presented from three series of 200 simulations. each
run over a period of 1000 collisions. Average energy and energy £1 standard devia-
tion, relative to initial energyv. are plotted (dotted line) with the theoretical prediction
of the expected value of energy (solid line) for runs with 500. 750 and 1000 particles.
Here and in following plots. all averages pass through (0. 1) but ave shifted vertically

for visibility.
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Figure 4.3: Encrgy statistics are presented from four series of 200 simulations. each
run over a period of 1000 collisions. Average cnergy and energy 1 standard devia-
tion. relative to initial encrgy. are plotted (dotted line) with the theoretical prediction
of the expected value of energy (solid line) for runs with p = 0.1.0.2.0.4. 0.6. Lines

are vertically shifted for visibility.
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Figure 4.4: Energy statistics are presented from three series of 200 simulations, each
run over a period of 1000 collisions. Average energy and energy +1 standard devia-
tion, relative to initial cnergy. are plotted (dotted line) with the theoretical prediction
of the expected value of energy (solid line) for runs with 402 = 1.3. 1.4, 1.5. Lines are

vertically shifted for visibility.
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Figure 4.5: Energy statistics are presented from four series of 200 simulations. each
run over a period of 1000 collisions. Average energy and energy +1 standard devia-
tion. relative to initial encrgy. are plotted (dotted line) with the theoretical prediction
of the expected value of energy {solid line) for runs with 7 = 0.2.0.6.1.0. 1.4. Lines

are vertically shifted for visibility.
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T
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is conserved across two-particle collisions. In the lower three plots. the slow drift in

energy is likely due to the nou-negligible presence of multi-particle collisions when

two-particle collisions last longer than one time step. Lines are vertically shifted for

visibility.
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Conclusion

It has been shown here that for numerically integrated systems of locally interacting
particles, the nunierical method can introduce errors in a systematic and statistically
predictable way. Computations involving pairwise interacting particle systems with a
linear-spring Hamiltonian integrated using the svmplectic Euler method exhibit such
a predictable growth in energy.

Backward crror analysis and the method of modified cquations provide a means
of obtaining analvtic expressions to predict error introduced during collisions by the
‘numerical integrator and the discretization of time. It is important to note. however.
that it is equally feasible to analvze the collisions without ever resorting to backward
error analysis. Oue may compute the outgoing velocity as a function of the initial
conditions and use this information to make (approximate) statistical predictions
about the energy growth of the system. This approach would be germane for nearly all
other types of collisions where the modified system is not linear and the ezact modified
equation does not exist in the sense of convergence of the series (2.5). Furthermore.
in many cases the expectations taken with respect to the randomly distributed initial
conditions will often involve integrals which can only he evaluated using quadrature.

There are a muuber of arcas into which future work might proceed. It seems
quite possible to extend this analysis to svstems of particles in higher dimensions as
well as to those involving other two-body potentials — such as the commonly used

Lennard-Jones potential.  Siimulations run over much longer periods of time with
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many more particles would provide useful information regarding the evolution of the
velocity probability distribution function. In contrast to the purely investigative focus
of the present work, new methods might be constructed which embody the dynamics
of the discretized collisions and more accurately represent the desired dynamics. In
particular. the addition of a post-collision correction, cither as a deterministic quantity
or as a appropriately chosen randomly distributed variable (or both). mav provide a
new method with improved behaviour for the given system. This kind of corrective
tuning would be along the lines of a Dissipative Particle Dynamics approach [15]
though the analysis presented here provides a means of justifving the addition of
non-Gaussian random dissipation or forcing to collision forces.

The analysis shown here will in many cases be too involved for systems involving
many different kinds of particles or those involving asvinnetric particles. Nonetheless.
these simple systems do offer some qualitative insight into the range of behaviour of

numerically integrated particle systems.



Appendix A

Glossary of symbols

1. k- Young's modulus (spring constant over mass)

2. 7y - viscosity over mass

3. h - time step of the numerical method

4. 6 - argument of the complex cigenvalues of the munerical map (2.11)

5. A - lincar operator of the lincarized damped harmonic oscillator system (2.9)
6. Ay - see (2.11)

. Ay, - modified lincar operator (see (2.12))

=1

8. Ax - cigenvalues of A

9. Apt - cigenvalues of Ay,

10. :‘:;,i - eigenvalues of A;,

11. ¢y = (. o)" - exact solution of (2.9)

12. 4, = (ry,.0,)" - numerical solution given by (2.11)

7l



13.

14.

16.

17.

19.

[\)
ot

¥ = (7, 0)! - exact modified solutions (solutions of (

H - Hamiltonian of (undamped) harmonic oscillator

H;, - modified Hamiltonian

T - period of the modified system

AB,CILILITI,IV - curves and regions described in Fig. 2.2

(- parameterizes the initial conditions of a collision (sce Fig. 3.1)

i - see Fig. 3.2

v - vector of particle velocities

p - linear density of system of particles

D) . . . . . e e ..
o - variance of the distribution of initial velocities ($A 5 * temperature)

d - diameter of particles

2

r - distance between centres of two colliding particles

R - centre of mass of two colliding particles

~I

S}

1

2
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