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Abstract

Soft robots have “mechanical intelligence”: the ability to passively exhibit behaviors that

would otherwise be difficult to program. Exploiting this capacity requires consideration of

the coupling between design and control. Co-optimization provides a way to reason over

this coupling. Yet, it is difficult to achieve simulations that are both sufficiently accurate to

allow for sim-to-real transfer and fast enough for contemporary co-optimization algorithms.

In this work, the effectiveness of co-optimization were compared to robot with trained policy

only and different order-reduced models were used to evaluate their robustness during sim-

to-real transfer. The generalization of the framework to new terrains, and the effectiveness

of domain randomization as a means to improve sim-to-real transfer were also studied in

this.
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Abrégé

Les robots souples possèdent une ”intelligence mécanique” : la capacité d’exhiber

passivement des comportements qui seraient autrement difficiles à programmer. Exploiter

cette capacité nécessite de prendre en compte le couplage entre la conception et le contrôle.

La co-optimisation offre un moyen de raisonner sur ce couplage. Cependant, il est difficile

d’obtenir des simulations à la fois suffisamment précises pour permettre un transfert

sim-réel et assez rapides pour les algorithmes de co-optimisation contemporains. Dans ce

travail, l’efficacité de la co-optimisation a été comparée à celle de robots avec une politique

d’entrâınement uniquement, et différents modèles réduits ont été utilisés pour évaluer leur

robustesse lors du transfert sim-réel. La généralisation du cadre à de nouveaux terrains, et

l’efficacité de la randomisation de domaine comme moyen d’améliorer le transfert sim-réel

ont également été étudiés dans ce contexte.
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Chapter 1

Introduction to Soft Robotics

Soft robots are constructed with soft materials. The compliant nature of the robot allows

soft robots to be adaptable and deformable. This adapability leads to the robot responding

to contact and control inputs in a complex manner, exhibiting behaviors that have

demonstrated their effectiveness across various domains. The design of soft robots revolves

around the control policy that governs their motion, enabling them to possess a form of

“mechanical intelligence”[2]. This intelligence entails the interaction between materials and

mechanisms with the environment in ways that facilitate the completion of desired tasks.

For instance, Fig. 1.1 demonstrates a soft grasper grasping an egg; the compliant nature of

silicone allowing the robotic grasper to conform to the shape of the egg, adding additional

contact surface and reducing contact pressure. However, this “mechanical intelligence” can



1. Introduction to Soft Robotics 2

Figure 1.1: A soft grasper designed by Filip Ilievski et al. [1] grasping an egg

only be achieved and maximized if the controller of the robot matches its design.

Therefore, the methods to co-optimize both the morphology and control of the soft robot

provides a promising approach. Although there exists extensive research on joint design

and control optimization [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] for rigid robots, less

exists for soft robots.

The complete framework for the simulation and sim-to-real transfer of the design and

control of modular soft robots for locomotion tasks with a co-optimization algorithm that

utilizes multi-task deep reinforcement learning to generate a design-aware policy capable of

generalizing across the space of designs are proposed by Schaff et al. [16] and explored in

this work. The algorithm utilizes this policy to efficiently concentrate its search on

top-performing designs. In order to promote the development of “mechanical intelligence”,

an open-loop controller is learned, forcing the expression of complex behaviors through the

resulting soft body.
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One crucial pre-requisite to achieve successful co-optimization training is a simulator that is

both fast enough for the learning agent to explore a large enough set of design and control

pairs and accurate enough for the final design and control to be real world physical realizable

and for the physics to endure sim-to-real transfer experiment. However, modelling soft bodies

is computationally intensive job. The fast and accurate simulation of soft robots remains as

an option question, and the few existing co-optimization approaches for soft robotics suggest

different simulation strategies [17, 18, 19]. These simulators have different degrees of realism

and their ability of creating soft robots that can transfer through the reality gap is unclear.

With a focus on achieving sim-to-real transfer, finite element analysis (FEA) is used, a

widely accepted standard for accurately simulating deformable materials. In this work, it

is demonstrated that given sufficient computational resources, FEA simulations enable the

direct transfer of co-optimized soft robots. However, it’s important to note that high-fidelity

FEA simulations can be significantly slower than real-time, making them impractical for

learning-based methods.

In order to improve the computational efficiency of FEA simulations while maintaining their

accuracy, researchers have recently employed a technique proposed by Goury and Duriez [20].

They introduced a model order reduction method within the open-source FEA simulation

framework SOFA [21, 22]. While this approach enhances simulation efficiency, it does come

with a significant upfront cost that can hinder the ability to learn across different robot

designs. To address this limitation, an adaptable reduction framework capable of reducing
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modular components were proposed to be used, which can then be combined to create

reduced-order models of soft robots with varying morphologies. This proposed model-order

reduction technique can be fine-tuned to different levels of fidelity by adjusting reduction

tolerances, allowing us to strike a balance between simulation speed and model accuracy.

However, given the high sample complexity of modern data-driven optimization methods,

the speed-fidelity trade-off becomes increasingly important. How much can model fidelities

affect the training in simulation as well as robustness during sim-to-real transfer still remains

unclear. Therefore, in this work the sim-to-real transfer of robot designs and policies learned

at varying levels of reduced model fidelity are compared and studied.

In addition to evaluating the effect on different fidelity models, domain randomization [23] is

applied to some training sessions to be evaluated as an alternative way of improving realism

of the simulation. It is aimed to assess if there is an enhancement in sim-to-real transfer

when utilizing a lower-fidelity model and whether it results in adaptive gaits for new terrains.

In the field of rigid robotics, domain randomization has been shown to be effective for sim-

to-real transfer when employing reinforcement learning [24, 25, 26]. Yet, the physics of soft

robotics differs from rigid robots, the conclusion on how domain randomization strategies

may generalize still remain unclear.

Although the approach disscussed prior is general, the work focused on easily manufacturable

PneuNet actuators [27], which were used to create crwaling and walking robots [28, 29]. The
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proposed approach is experimentally validated by learning combinations of PneuNets and

their controllers, resulting in the attainment of faster gaits. Importantly, the framework

demonstrates the ability to successfully transfer optimized design-control pairs to real-world

scenarios on a variety of flat terrains characterized by both high and low friction levels with

the robot legs.
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Chapter 2

Background and Prior Work

The challenge of jointly optimizing the physical structure and control of a rigid robot has a

well-established history in robotics research. Neural networks were often employed to

optimize both the design and control of the robot [5, 30, 31, 32]. Another common

approach involved assuming access to a parameterized model of the robot’s dynamics and

optimizing these parameters in conjunction with control

parameters [6, 7, 10, 33, 34, 35, 36]. With the rise of efficient high-fidelity physical

simulators, joint optimization methods based on reinforcement learning have emerged,

enabling the learning of effective design-controller pairs for rigid bodies without prior

knowledge of the dynamics [12, 13, 15, 37]. However, the challenge lies in the transfer of

these learned solutions from simulation to the real world. This work specifically focuses on
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utilizing high-fidelity simulators, which have been demonstrated to facilitate the transfer of

knowledge to rigid robots [24]. In contrast, achieving the necessary level of fidelity for

soft-bodied robots typically demands computationally intensive simulators, making

learning-based co-optimization infeasible. This is the challenge addressed in this work.

Compared to rigid robotics, the exploration of jointly optimizing the design and control

of soft robots is a less developed area. Among the existing research, the majority of it

primarily focuses on simulation. Many of these approaches involve reasoning over design

and control spaces that encompass both discrete and continuous parameters. For instance,

voxel-based soft robots (VSRs) [38]consist of discrete voxels, yet the input frequency to

each voxel is treated as continuous. Spielberg et al. [18] introduced an autoencoder-based

method capable of optimizing the placement of a large number of such voxels for real-world

locomotion, achieving results more than 2 times faster than the baseline.

Cheney et al. [39] utilize an evolutionary neural strategy to generate designs for VSRs that

can move in simulation. Kriegman et al. [40]describe an approach to deform the structure

of VSRs when subjected to damage while maintaining the original control policy’s validity.

Ma et al. [41] employ a material point method-based simulation and gradient-based

optimization techniques to co-optimize the shape and control of simulated swimming

robots. Deimel et al. [42] leverage particle filter-based optimization to co-optimize finger

angles and the grasp strategy of a soft gripper. The success of these methods in simulation

is promising for the field of soft robotics, and recent simulation-based benchmarks have
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enabled a rigorous comparison of co-optimization methods [43, 44]. However, most of above

work is limited to simulation only, and the transferability to real world still remains

unkown. Indeed, experiments conducted on voxel-based soft robots demonstrate significant

disparities between their behavior in simulation and reality [45]. Challenges related to

modeling friction and stick-slip behavior [28, 46] have been identified as core reasons for

the difficulties encountered in achieving successful transfer.

Recent advancements in the field of soft robotics have introduced techniques aimed at

bridging the gap between simulation and real-world application. Zhang et al. [47] present

an system identification method tailored to differentiable soft robot simulators. Meanwhile,

Dubied et al.[48] propose a differentiable finite-element model for soft robotics, which they

experimentally validate using canonical mechanical problems such as a cantilevered beam.

It is worth noting that these approaches focus on fixed robot designs rather than exploring

a space of designs, which distinguishes them from our work. In the realm of rigid robotics,

Tobin et al. [23] demonstrate that applying domain randomization to a policy’s visual

inputs in simulation enables the policy to directly transfer to the real world in a zero-shot

manner. Similarly, Tan et al. [24] employ domain randomization over the parameters of the

dynamics model to transfer the control policy of a quadruped robot trained in simulation

to the real world. Similar approaches have been leveraged to facilitate sim-to-real transfer

in various robot learning domains [25, 26]. However, in the context of soft robotics,

characterized by higher degrees of freedom (DoF) and a broader range of relevant physical
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phenomena, the applicability of domain randomization for sim-to-real transfer remains

relatively unexplored. Centurelli et al. [49] demonstrate that a policy trained on randomly

generated trajectories can control a dynamic soft robot arm. Li et al. [50] utilize domain

randomization by introducing noise to both actions and observations, showcasing control of

a soft arm in path-following. Meanwhile, Tiboni et al. [51] incorporate randomness into the

material properties of the soft robot’s body, demonstrating, in simulation, control of a soft

arm and a crawling robot akin to the expert baseline in this study. Prior findings highlight

the need for a study on the impact of co-optimization and domain randomization on

sim-to-real transfer performance using order-reduced models of varying fidelity.
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Chapter 3

Simulation and Machine Learning

Framework

This research project is based on the co-optimization framework proposed by Schaff et al. [16].

The framework comprises two parts, developed in Python 3 and Python 2 respectively.

The Python 3 packages play a vital role, serving as the central commander. They oversee

the reinforcement learning processes and manage the distribution of design components

within the framework. Additionally, they are integral in optimizing the sequence of training

simulations to enhance the efficiency of the training sessions.

Concurrently, the Python 2 packages operate in tandem, executing commands from the

Python 3 modules. Their main task is to initiate and manage simulation scenes within the
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SOFA FEM simulator, ensuring streamlined coordination throughout the framework.

The SOFA framework is a dynamic FEM simulator that uses finite element models to

computer the deformation of nodes and their interaction forces. It accounts for factors like

Coulomb friction and internal air pressure, while also emphasizing the acceleration of each

node and the associated inertial forces.

SOFA can import multiple parts into the simulator and assemble them by adding specific

constraints between components as needed. Given that the proposed design space consists

of one central disk with eight potential positions for attaching PneuNet actuated legs,

SOFA emerged as the ideal simulator for this project. Several reduced models were initially

processed using the Model Order Reduction (MOR) technique, detailed in section (3.1).

These models were pre-positioned within the space, undergoing translation, rotation, and

orientation adjustments, to facilitate direct connection to the central disk. Appropriate

constraints were established at contact points to ensure numerical stability and physical

accuracy. This setup simplifies the co-optimization process, enabling machine learning

agents to easily initiate simulation environments with their preferred robot design.

Among the plethora of FEM simulators available, SOFA stands out as an open-source option,

offering high accuracy at the expense of computational speed. Furthermore, SOFA does not

support GPU acceleration, adding to computational time. Given that reinforcement learning

demands numerous iterations (1 million steps in this research), it is crucial to ensure the
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models are sufficiently fast for computation on a cluster equipped with a 64-core AMD EPYC

7502 CPU.

3.1 Model Order Reduction

Model order reduction is a plugin in SOFA framework that utilizes mathematical technique

to reduce a complex finite element model while preserving its key dynamic or static

behavior in simulation. To achieve high-accuracy FEM simulation and ensure real-world

transferability, high-fidelity finite element models are employed. Our PneuNet models

comprise 2603 nodes excluding the cavity or collison mesh (cavity and collison mesh were

used to compute deformation as well as contact between other objects in the simulator) to

ensure numerical stability in the SOFA simulator and maintain accuracy. Nonetheless,

FEM simulations with these high-resolution models can be significantly slower than

real-time, hindering the feasibility of learning-based methods [16]. Goury and Duriez [20]

introduced a model order reduction technique in SOFA that enhances computational

efficiency without compromising accuracy. While the MOR technique boosts simulation

speed, its high initial cost hampers the ability of machine learning agents to suggest new

designs. A reconfigurable reduction framework first reduces a set of composable parts,

which are then combined to create reduced order models of soft robots with varying

morphologies. Therefore, the reinforcement learning agents (Sec. 3.2.1) can command the

SOFA simulation interface to create robots with new morphologies using reduced model.
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The MOR method’s flexibility allows for tuning to yield models of varying fidelity,

balancing computational speed with model accuracy.

Figure 3.1: This plot illustrates the trade-off between positional errors introduced by the
reduction and the time required to simulate each animation for a 3x3 grid search over the
two MOR tolerances. The red dot, (1), represents the low-tolerance model, while the pink
dot (2) represents the high-tolerance model.

Considering the high sample complexity of contemporary data-driven optimization methods,

striking a balance between speed and fidelity is paramount. In previous work by Schaff
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et al. [16], errors associated with several reduced order models were examined in fig. 3.1.

Before the integration of domain randomization, co-optimization had already successfully

designed and controlled a soft robot (L1) that outperformed the expert-designed baseline

using a reduced model with MOR tolerances tolg = 0.0032 and tolm = 0.0010. With domain

randomization, the co-optimization framework is anticipated to yield more accurate results.

Thus, a model with slightly higher tolerances, offering less accuracy when operating on 2

legs, was selected to evaluate the ability of domain randomization on sim-to-real transfer

even with less accuracy.

3.2 Machine Learning

In this section, the machine learning approach used to co-optimize the robots is explained.

The co-optimization framework contains a utility model that enables the sofa simulator and

RL agent to load and train directly on reduced models. An evolutionary algorithm that can

automatically select and reconfigure robot with different design with new sample of designs

every episode was used.

3.2.1 Reinforcement Learning

In this research project, reinforcement learning is the primary learning method employed to

update the control policy of the robot. A reinforcement learning agent seeks to maximize

the reward function through exploration and exploitation. For the specific task of this
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project, which involves designing and controlling a soft robot crawler, the reward function is

determined by the distance the robot travels in a 20-second span. Thus, the reinforcement

learning agent aims to update its control policy to maximize this reward. Although the

co-optimization framework can accommodate multiple RL algorithms, soft actor-critic[52]

was used in this project. The agent is set to update its policy per time step, and the policy

takes the design parameters, along with the four most recent actions as well as the current

state of the robot as input, and outputs pressure targets for each regulator.

3.2.2 Design Distribution

After removing symmetries, there exist 6,972 standalone designs that their distribution are

resampled based on their reward in previous steps at each training steps. The design samples

are big in the beginning, before the entropy decaying process starts. The simulation interface

will simulate SOFA environments in parallel to speed up the training by taking advantage

of multiple cores of the CPUs. Ensuring a suitable design and control pair is essential for a

robot to exhibit physical intelligence. Thus, co-optimization techniques are implemented in

this research project. Apart from the reinforcement learning component mentioned in 3.2.1,

which handles control policy updates, the robot’s design pertains to its morphology and is

represented by a vector of length 8. Each vector entry denotes a position on the central disk,

and its value (from the set {0, 1, 2, 3}) indicates whether the disk slot is attached to a PneuNet

and to which pressure regulator (numbered 1, 2, or 3) the PneuNet is connected. Equation 3.1
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has demonstrated the structure of robot design vector space, with D representing the robot

design and xi representing the PneuNet actuator presence and controller number.

D =



x0

...

xi

...

x7



where,
xi ∈ [0, 1, 2, 3],

i ∈ [0, 1, . . . , 7]
(3.1)

Given the available configurations, there are 41,202 unique designs, which can be reduced

to 6,972 by leveraging symmetry in regulator assignments. All these designs follow a linear

entropy decay schedule from the 200K time step to the 950K time step. During the initial

200K time steps, all 41,202 designs are simulated based on the current control policy, and a

design distribution is maintained that stores each design’s performance, updated after each

episode. Performance is gauged as a weighted average of all rewards each design receives post-

simulation. After the 200K mark, designs with subpar performance are temporarily sidelined,

while the active ones continue to be trained. Should an active design underperform and

rank among the ”eliminated” designs, a previously set-aside design could be reintroduced for

training. It’s anticipated that post the 950K time step, only one superior design will persist,

undergoing training by the RL agent until the 1M time step. Equation 3.2 demonstrates the

relationship between total number of active designs Nj and training step j. Step which decay
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starts and ends is a hyperparameter that will be set before the start of training session.

Nj = exp(hj)

h =



ln(6972) if j < jdecay start

ln(6972) −
(

j−jdecay start
jdecay ends−jdecay start

· ln(6972)
)

if jdecay ends < j < jdecay start

0 if j > jdecay ends

(3.2)

3.2.3 Domain Randomization

Domain randomization is a technique prevalent in machine learning, especially for training

intelligent systems. Within this approach, one or more simulation properties are

randomized, diversifying the simulated environment. Consequently, the model is exposed

to varied scenarios, resulting in a more resilient system during sim-to-real transitions.

Given domain randomization’s characteristics, a lower-fidelity reduced model was also

chosen to evaluate simulator performance and sim-to-real robustness. To effectively

leverage the aforementioned co-optimization framework in training environments with

randomized friction domains, significant enhancements were made to the Python 2

interface that oversees SOFA simulator scene initialization. A new function is implemented
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in SOFA Python 2 for every new parallel sofa environments, enabling the automated

generation of friction values between 0.65 and 1.30, with a 0.01 increment.

Subsequent to this, a function was designed to systematically record all friction levels during

training, preserving them in a text file for in-depth future scrutiny. It’s vital to note that

these code modifications were hard-coded, a choice driven by the immutable communication

layer between Python 3 and Python 2.

Additionally, parameters that do not change between environments and global parameters

for reinforcement learning framework are given in Gin config and Yaml files, inialized once

when the program onset.

3.3 Co-optimization

The structure of the co-optimization framework is comprehensively depicted in Fig. 3.2.

Throughout the process, only the environments (Envs) shown in Fig. 3.2 are governed by

Python 2 packages, while all other components are overseen by Python 3 packages. A bridge

exists between the Python 2 and Python 3 interfaces, facilitating communication between

the simulator and the reinforcement learning agents. The communication layer uses JSON

scripts to exchange information including robot design number, final reward at each sofa

parallel environment etc. between Python 2 and Python 3. The reward info is also used to

update the design distribution.
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Figure 3.2: Our approach maintains a distribution over designs p(ω). At each iteration,
the method samples a set of designs ω1, . . . , ωn and controls each using a shared, design-
conditioned, policy πθ. We train the policy using soft actor-critic on a mixture of data from
different designs, and update the design distribution based on the episode returns of the
sampled designs.

To investigate the relationship between co-optimization, reduced models, and domain

randomization in terms of friction, training was done on the environments listed in

Table 3.1.

We chose L1 and the baseline robot to be trained on policy only since L1 was the

best-performing soft robot crawler from prior work [16], and by comparing row 1 and 5, a

conclusion can be drawn regarding the effect of co-optimization. The baseline robot was

selected for training solely on control policy to evaluate the potential of a robot with an
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Reduced Model Co-Opt or Design DR or fixed Seed
1 High fidelity model L1 fixed seed 0
2 High fidelity model L1 DR seed 0
3 High fidelity model Baseline fixed seed 0
4 High fidelity model Baseline DR seed 0
5 High fidelity model Co-opt fixed seed 0
6 High fidelity model Co-opt fixed seed 18
7 High fidelity model Co-opt DR seed 0
8 High fidelity model Co-opt DR seed 18
9 Low fidelity model Co-opt fixed seed 0
10 Low fidelity model Co-opt fixed seed 18
11 Low fidelity model Co-opt DR seed 0
12 Low fidelity model Co-opt DR seed 18

Table 3.1: List of all training environments. (DR stand for friction domain randomized
and fixed stand for trained on specified friction level; Co-Opt stand for co-optimized training
and design stand for the specific design that the controller policy was trained on; seed stand
for the seed used to initialize both the design distribution and control policy)

expertly designed morphology.

For each co-optimized simulation environment, two different seeds were used to initialize the

environment to avoid selective presentation. In a non domain randomized, non co-optimized

run, seeds are used to initialize the control policy in training only and if co-optimization is

enabled, design distribution of the robot will be controlled by another seed; the randomized

friction is controlled by seed in domain randomized runs. Although at the first 200K steps

by default, all 6,972 will be trained together, they carry a weight by which the controller

will have a different emphasize on each robot design and the weight will be controlled by the

design distribution seed.
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Owing to the challenges of implementing a seed for the frictional domain randomization,

given that each Python 2 environment operates independently, three distinct training runs

were initiated for co-optimized, friction domain randomized simulations with seed 0, namely

row 7 and 11 in the Table 3.1.

Incorporating both the high fidelity and low fidelity models into the training list allows

for conclusions to be drawn regarding the impact on models and the potential of domain

randomization to enhance model accuracy in simulations.
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Chapter 4

Sim-to-Real Transfer

After completing the training sessions, the best-performing model from each category is

manufactured and tested. Robot bodies are manufactured using a 3-D printed disk and

assembled with PneuNet actuators using zip-ties. PneuNet actuators are connected to

different pressure regulators as indicated by their configuration. Pressure regulators are

controlled by Raspberry Pi circuits, which include a back-end pressure monitor and a

programmable power supply.

Prior to each test run, evaluations are conducted for each final design and control pair from

the training sessions. The policy of the robot were recorded in the evaluations and can

be visualized. Pressure input to each PneuNet is saved in the evaluation as Plotly plots,

which can then be downloaded as JSON files with Plotly formats. The JSON files are then
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processed to create an array of 20 entries per pressure regulator, indicating the pressure

states at each second during the 20-second actuation period.

4.1 Test Setup and the Construction of the Robot

Figure 4.1: Left: A picture of the hardware set up consisting of a Raspberry Pi, three
pressure regulators, two power supplies, three pressure sensor, and a breadboard connecting
everything to the Pi. Right: A picture of the 3D-printed disk and a molded PneuNet
actuator cut in half to display the internal structure.

Figure 4.1 displays the experiment setup and the construction of the robot. Three pressure

regulators modeled Enfield TR-010-gs were attached in series with a pressure chamber set at

400±100 kPa. The learned and baseline policies are executed on a Raspberry Pi where the

pressure commands are converted to voltage commands and sent to a programmable power

supply modeled BK Precision 9129B. The power supply then sends voltages to each of the

three pressure regulators through a breadboard that converts the voltages into an acceptable

range. Each pressure regulator is connected by a 1/16 inch inner diameter silicone tube to
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the robot. An external pressure sensor was connected to each regulator downstream to store

and verify the operational pressure during experiments.

A modular assembly scheme, allowing for the construction of any robot from the design

space, was proposed. A central polymer disk (Fig. 4.1 (right)) with uniformly distributed

locations where PneuNet actuators can be attached to while routing the pneumatic cables

away from the robot (Fig. 4.1 (left)) is 3D-printed.

Moulds for PneuNets, based on a modification of the design from the Soft Robotics Toolkit

(https://softroboticstoolkit.com/), were also 3D-printed. The modification focused

on filling the two end prismatic segments instead of leaving them hollow (Fig.4.1 (right)),

allowing the first prismatic segment to be used as an attachment point to the disk. Smooth-

On DragonSkin 30 silicone were used to fabricate the PneuNet actuators.

4.2 Experiment procedure

After completing all the training sessions, the test platform, including the pressure regulator

and Raspberry Pi control circuit, was established. Regulator pressure data were obtained

from evaluations towards the final training step.

https://softroboticstoolkit.com/
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Figure 4.2: The linear pressure scaling used to align the behavior of a single PneuNet in
simulation and reality. In simulation, the pressures output by the policy were scaled prior to
applying onto real-world experiments. This helps to reduce discrepancies between simulation
and reality caused by modelling error.

4.2.1 Evaluation

Each trained design and control pair in the simulation environment were evaluated to have

their final reward in simulation, pressure profiles analyzed. The co-optimization framework

introduced in sec 3.3 includes the feature to resume from break-point, it will save the current

training results into checkpoints per 100K steps as default. The checkpoints will include the

design distribution, control policy at the time and the active robot queue to be continually

trained. The co-optimization framework (sec 3.3) also includes an evaluation launcher, which

will read through all the checkpoints and record videos on unreduced model and reduced
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model of user’s choice per checkpoint. The evaluation launcher will also record the average

reward as well as analyze the pressure command policy output. The pressure commands are

shown in the sequence of the legs, it is in the format of 8 Plotly plots and one plot will be left

blank if no leg is attached to the corresponded slot. Therefore, the design of the robot can

be easier verified with the pressure command output and the recorded policy videos. The

plot can be downloaded as JSON scripts with Plotly formats, which can be then analyzed

and exported as arrays of 20 entries; each entry represents the pressure command at the

corresponded time. The array can be easily entered into the Raspberry Pi pressure control

interface for the regulator to control the regulator output. As the experiment focuses solely

on the design and control pair from the final training step, the final checkpoints are extracted

for evaluation.

Fig. 4.2 shows the linear pressure scaling used to align the PneuNet bending response between

simulation and reality. To calibrate the action scaling, the bending of a single PneuNet under

pressures from 10 kPa to 100 kPa were recorded in increments of 10 kPa. The pressures in

simulation which achieve an equivalent bend were then searched in simulation and a linear

function to the results were fitted.

4.2.2 Test Surface and Robot Starting Position

In this project, three surfaces were used to test the performance of domain randomization

on surface friction. The three surfaces include a silicone mat, cardboard, and a table
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surface. Among these surfaces, the silicone mat has the lowest friction coefficient, around

0.6, cardboard has a friction coefficient of about 1.44, and the table surface has a friction

coefficient well beyond the µrnd, reaching 2.64. The friction coefficients of the surfaces were

tested by recording the force required to slide the PneuNet actuator across them with mass

applied perpendicular to the surface. The testing surfaces were selected such that the first

two, with low friction, cover the lowest and highest friction levels in µrand. The table

surface, being on the higher end of the friction spectrum, could potentially indicate

whether domain randomization can generalize the control policy design, making the design

and control pair less sensitive to surface roughness.

Figure 4.3: The starting position of the robot on silicone mat
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Given the size constraint of the silicone mat relative to the robot (Fig.4.3), the robot is

positioned at the edge of the silicone mat to prevent it from leaving the mat during the

20-second action duration. In Fig. 4.3, the starting position of the robot is clearly marked,

with reward indication lines drawn for easier assessment of the reward. A starting position

marker and reward indication lines are also drawn on the cardboard and table. All reward

readings are taken with respect to the center of the disk.

4.3 Sources and Mitigation of Error

Several difficulties encountered during the experiment necessitated repeated experiments to

obtain reliable data. This section focuses on these issues and explains the sources of error

in the experiment.

4.3.1 Pressure Regulator Operational Range and Calibration

Section 4.1 explained the detailed setup of the experiment; the pressure regulators used in

the setup are Enfield TR-010-gs, (the data sheet: https://www.enfieldtech.com/site/

Product-Documentation/TR-Electronic-Pressure-Regulator-Datasheet.pdf). These

valves have an internal built-in pressure sensor and an operational pressure range from 0 to

10 bar. In this project, the commanded pressure input to the PneuNet actuators are between

0 to 0.9 bar, at the lower part of the range of operation; which is noisier than the center

of the range. The proportional-integral-derivative gains of the valves were tuned, enabling

https://www.enfieldtech.com/site/Product-Documentation/TR-Electronic-Pressure-Regulator-Datasheet.pdf
https://www.enfieldtech.com/site/Product-Documentation/TR-Electronic-Pressure-Regulator-Datasheet.pdf
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them to track pressure step changes within 1 second and control the pressure overshoot to a

reasonable extent.

After tuning the PID controller gain, a systematic pressure difference were observed; the

downstream Honeywell sensor consistently record a 20 to 30 percent higher pressure value.

Therefore, a knock-down factor is also applied in the Raspberry Pi controller script to

prevent overshooting. During the tuning process, unregulated exhaust from the controller

sometimes creates unexpected turbulent flows, adding noise to the feedback pressure signal.

The exhausts of all three valves are connected to a 1/16 to 1/4 barb to act as a muffler.

4.3.2 Friction and Dust

Subsection 4.2.2 explained how the friction coefficients of the testing surfaces are measured.

As the research project is highly dependent on stick-slip behavior of the PneuNet actuators

on the testing surfaces, slight variance in friction coefficient could have a significant impact

on the experiment result. As dust continuously accumulates on the testing surfaces, PneuNet

actuators inevitably collect more dust over time as the experiment progresses. While the

intricate surface geometry of PneuNet actuators already makes dust removal a challenging

task, this issue is further complicated by the ongoing settling of ambient dust on the actuators

during their operation. To maintain a consistent level of dust, dry rags are used to clean off

excess dust from PneuNet actuator surfaces before each experiment.
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4.3.3 Measurement Error

The sim to real transition was evaluated by comparing simulated forward progress to

experimentally measured forward progress, which is the reading of the centre of the disk

projected on the yellow ruler (Fig. 4.3). The central hole on the disk is rather big, causing

approximately an 0.5 cm random error on sim-to-real experiment reward readings per trial.

4.4 Evaluation of Sim-to-Real Results

Table 3.1 lists all the training environments. Among the 12 different configurations, entries 7

and 11 are each trained three times. Of the total 16 training sessions, they were categorized

into the following categories regardless of the seed they were trained with.

Reduced Model Co-Opt or Design DR or fixed
1 High fidelity model L1 fixed
2 High fidelity model L1 DR
3 High fidelity model Baseline fixed
4 High fidelity model Baseline DR
5 High fidelity model Co-opt fixed
6 High fidelity model Co-opt DR
7 Low fidelity model Co-opt fixed
8 Low fidelity model Co-opt DR

Table 4.1: List of all training categories. (DR stand for friction domain randomized and
fixed stand for trained on specified friction level; Co-Opt stand for co-optimized training and
design stand for the specific design that the controller policy was trained on)

By consolidating all 16 training sessions into the 8 categories shown in Table 4.1, and
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calculating the mean, error bars, root mean square error and quartiles of simulation and

real-life experiment rewards, Chapter 6 presents the results and conclusions on the

effectiveness of domain randomization.
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Chapter 5

Results

After all the sim-to-real experiments are done, the simulated and real world testing reward

are gathered and analyzed. The results from Scaff et al. [53] were reproduced.

5.1 Results

Among all the final design and control pairs obtained in all the training configurations,

two sets of design and control pairs were selected and displayed along side with the expert

designed baseline robot in 5.1. Both trained robots have shown different use of mechanical

intelligence and utilized slip-stick behavior of friction in a smart way.

Robot trained with τhigh, µrand, Seed 0 run 1: The robot has used a three legged

movement pattern with a periodic gait(Since neural open-loop controller is used, the pressure
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(a)

(b)

(c)
0s 20s

Figure 5.1: The co-optimization framework jointly learns the design and control of crawling
soft robots (top 2) that outperform an expert-designed baseline (bottom). While trained
exclusively in simulation, our learned robots are capable of zero-shot sim-to-real transfer,
with the optimal design moving more than 2× faster than the baseline in the real world.
(a) Robot trained with τhi, µrand, Seed 0. (b) trained with τlow, µfix, Seed 0. (c) Baseline:
design and control developed by expert.
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profile from evaluation show slight difference, but the actuation pattern in general show

periodicity). It has a rapid actuation frequency with a time period of 2 seconds. The central

back leg acts as a pivoting point, supporting the robot and provide interesting frictional

behavior change for the two outer legs allowing them to slip on the surface when contracting

forward and stick on the surface when pushing forward. Slip-stick behavior causes the robot

to have a boost in forward progression when the two outer legs are pushing.

Robot trained with τlow, µfix, Seed 0 run 1: The robot employs a ‘pivoting’ behaviour

that allows for large bursts of forward sliding. Due to asymmetry, the robot roll sideways

and the contact area of the front leg with the floor is reduced (leading to reduced frictional

forces on that leg). This reduction in contact area enables the front PneuNet ‘leg’ to slip

forward instead of pushing backward. Although the gaits seems to be very effective across

the range of friction, the actuation frequency is slower than the former robot with a time

period of 3 seconds, causing the robot to have a lower overall reward at low friction surfaces.

In this project, two different MOR models are trained with and without frictional domain

randomization in the SOFA simulator. The resulting design and control pair are tested

on 3 different surfaces in sim-to-real transfer experiments to investigate the effect of MOR

tolerance τ and friction domain randomization on task performance and transfer error. Since

frictional error accrues over time, the reward are normalized by the episode length (20 sec)

and the results are shown in figure 5.2(a-d). In reality, error accumulated over five individual

independent tests in which robots may receive different reward. In simulation, some variation
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Figure 5.2: (a)-(f) Sim and real reward for final trained robots in the four simulation
settings τlo/hi and µfix/rand; and the L1 robot design and the expert baseline design with
trained policy only. Mean is red square; median orange line; IQR shaded box. (g) Mean
normalized sim-to-real transfer error for same six robots.

is due to robots trained under same category but using different random seeds.

The robot L1, when trained with τlow, µfix, and the final robot trained under τlow, µrand

conditions, yield comparable rewards in a simulated environment. However, in real-world

applications, the former exhibits superior transferability. The strategy used in the latter

scenario (τlow, µrand) is characterized by a smaller number of extended steps. While this

approach minimizes the impact of friction, it potentially heightens the susceptibility to
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perturbations in inertia, such as external moments induced by the tubes.

The highest overall reward in simulation is achieved by the training session with τhi, µrand.

However, the real and simulated reward are separated greater than 0.25cm/s except in the

case of robot co-optimized with τhigh, µrand, s0, the gap of which lies within 0.075cm/s.

Simulated and real reward for policies trained on fixed designs(the L1 design and the four-

legged expert baseline design) are show in in figure 5.2(e-f). These were only trained with

one random seed and therefore less variation in reward is shown. The transfer-ability are

bad on all of the models although rewards in simulation are higher, often lies on the outside

of 1.5x of the interquartile range.

Transfer error calculated through all trials for each setting of which robots were trained are

shown in figure 5.2(g). Variations in transfer errors stem from disparities in the real rewards

obtained throughout the five trials of each real robot experiment, as well as fluctuations in

the simulated rewards of gaits trained under different random seeds. Additional sources

of errors include disagreements between rewards recorded in real-world experiments and

simulations. This type of error is predominant among all sources of errors, and it directly

indicates whether the design and control pairs learned in simulation under each category

transfer well enough to the real world.

In addition to the sim-to-real transfer results, the transfer from the higher MOR tolerance

to higher-fidelity τlo environment in SOFA simulation environment were also analyzed. The
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Figure 5.3: (a) Mean normalized reward at µ = {0.65, 0.7, ..., 1.3} for all co-optimized
robots in τlow environment. (b) Same mean normalized reward for robots co-optimized with
τhi, evaluated in τhi environment.

reward normalized by episode length for robots trained in each environment are shown in

figure 5.3. Despite the minor discrepancies in position error observed between the two

tolerances in the heuristic animations, the gaits that are ultimately trained with τhi

demonstrate a significant transfer error when applied to the τlow simulation environment.

Specifically, the robot trained under the conditions of τhi and µrand experiences a peak

error that surpasses 0.4cm/s in environments characterized by low friction.) Moreover,

Figure 5.3 highlights a consistent trend of increasing reward with respect to µ, with the

sole exception being the scenario where τhi and µfix are evaluated in the τhi environment.
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Chapter 6

Discussion and Conclusion

6.1 Discussion

6.1.1 Effect of Co-Optimization on Sim-to-Real Transfer

The effect of co-optimization is significant for improving the robustness of the robot when

transferring from simulation to reality. Fig 5.1 has shown that the robot trained under

τlow, µfix (b) have obtained a design and control pair that achieves much higher reward (green

arrow) in simulation and real world experiment compared to our expert designed baseline

robot(c). The co-optimized robot (b) has discovered a interesting asymmetrical design which

allows the controller to pivots the robot and allowing the robot to burst forward. Further,

the robot trained under τhi, µrand (c), even further exceeds the performance of (b).
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We further show that training in the joint space of design and control can be advantageous

over training a controller on the expert-developed design or the L1 design are further

demonstrated; here, policies trained through co-optimization achieve higher reward and

stronger transfer in most cases. Although, it is possible that the longer training time from

the co-optimized sessions or other parameter tuning caused this. In general, gaits trained

through co-optimization are qualitatively different than those trained of fixed designs.

L1 coopt vs L1 non-coopt: By comparing the L1 robot (b) with the non co-optimized

L1 robot, although they both achieved a rather good and comparable simulated reward,

the sim-to-real transfer of the non co-optimized robot was unsuccessful. The lack of fore-

leg actuation made the robot to stick on the surface and received a negative reward. This

comparison have demonstrated the ability of open-loop neural controllers to learn more

robust designs towards real-world friction and actuation perturbations and overcome model

errors by exposing it to more robot morphologies.

Compared to voxel-based design spaces [39], the design space in this project is smaller.

The effects that might arise by having a more refined design space (e.g., FEA element-level

rather than actuator level, we note that modularization at the actuator level seems useful

for practitioners with access to standard fabrication tools.) still remain unclear.
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6.1.2 Effect of Tolerance of Reduced Models on Sim-to-Real

Transfer

In spite of having a high tolerance, the robot trained under τhi, µrand with seed 0 and 1st

trial (robot (b) from Fig. 5.1) achieved a good sim-to-real result (although the robots trained

with the high tolerance models in general have a higher variance and less robust in sim-to-

real transfer experiments) . However, it’s worth noting that when the models were replaced

with low-tolerance models and re-simulated, the real-world physics where not revealed. The

reward in evaluation significantly drops when the design and control pair is evaluated on

the high-fidelity model compared to the pair being evaluated on the low-fidelity model.

The physics of the design-control pair succeeded sim-to-real transfer with high accuracy

(lies within 0.075 cm/s). This discovery have suggested that by solely having a test shown

in Fig. 3.1 is not enough, the causes of error in a non-convex multi-dimensional space of

a reduced model in the simulation is also multi-dimensional and decoupling the sources

of error is not feasible. A simplified 1-dimensional error metrics is used in the previous

simulations to model the performance between different reduced models which resulted in

similar amount of error between high tolerance and low tolerance models (Fig. 3.1). Yet,

the sources of error might be different, resulting in a large gap of performance in the trained

design and control pair in the simulation. This underscores the importance of thorough

testing of reduced models before their use in simulators, as some high-tolerance models align

better with real-world physics.
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6.1.3 Effect of Domain Randomization on Sim-to-Real and Robot

Performance

Previous discussion (Sec. 6.1.1) has shown that stick-slip transitions are the main source

for both the performance and error of the robot rewards, domain randomization on the

Coulomb friction parameter are performed to seek for improvement on the ability to carry

out sim-to-real transfer. Randomization of friction coefficient µ are carried out to evaluate

the performance of robots with different MOR models before and after the technique in

simulation and in reality. During sim-to-real transfer experiments, the performance of the

design and control pairs are tested for surfaces within the range of µrand(silicone mat, foam

board) and outside it(table).

Domain randomization positively impacts co-optimization, enabling the discovery of robust

and versatile designs and control strategies on τhi models. When trained under µfix

environments, the transferability of the design and control pair is sub-par compare to

models trained under µrand environments. Although gaits obtained from µrand training

environments seems to be more sensitive to friction and having a rather big variance (1

final robot had complete different design compare to other 3 final robots trained under

same setting, with lower simulated and real-world reward), it successfully discovered the

robot (c) from Fig. 5.1.

Among all the combinations studied in this project, domain randomization on solely friction
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coefficients does not seem to support transfer from simulation to real world. All training

settings achieved comparable transfer error across all surfaces and the potential reasons are

concluded by analyzing the learned gaits. One robot trained under τlo, µrand had learned a

gait that is less sensitive to friction in the simulator, which appears to use longer, precarious

steps that fail more easily in reality. The robots trained under τhi, µrand have achieved the

lowest variance in reward across different surfaces by attempting a variety of step types. The

model trained under τhi accrues significant error when transferring into the τlo environment.

Although some training sessions have found robot gait that is faster compare to L1 robot

in reality while testing on surfaces within the range of µrand, there also exist results that

achieves low reward across all surfaces while transferring.

The effect of physical perturbations is most often demonstrated by changes in discrete set

of values such as joint torques whereas perturbations of a soft robot could have effect on

its motion anywhere along its continuous body. The larger state space of the soft system

makes sim-to-real transfer more challenging compare to rigid bodies when using domain

randomization over a single parameter. The selection of parameters to randomize is crucial

and difficult; reducing the sensitivity to one parameter might also increase the sensitivity to

another. With in the simulator, there exist 11 physical parameters that could be randomized

and future work may include the exploration of randomization parameters.
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6.2 Conclusion

This work demonstrated the impact of co-optimization, reduced models as well as domain

randomization when using the framework proposed by Charles Schaff et al.[16] optimizing

the control or co-optimizing the design and control of modular, PneuNet-based crawling

soft robots capable of sim-to-real transfer. A model-free algorithm for co-optimization

together with a method for creating reconfigurable, high-fidelity reduced-order models were

presented, allowing the algorithm to efficiently optimize over designs with different

topologies while preserving realism. A series of sim-to-real experiments are conducted to

demonstrate the effectiveness of the co-optimization on robustness of transfer of the robots

trained comparing to the trained only robots or expert designed baseline in a soft robot

locomotion task. Two different reduced models were used in the training to evaluate the

performance of domain randomization and it is discovered that the real-world fidelity of

reduced models does not solely correlate with tolerance levels. High-tolerance models also

unveiled physical phenomena in simulation that were not apparent in the low-tolerance

models. Additionally, it has been found that although domain randomization indeed

positively impacts co-optimization on high-tolerance model, allowing it to discover better

design and control pairs in simulation and real-world compare to trained under fixed

friction setting; its effectiveness towards sim-to-real transferability is not significant when

domain randomized towards friction µ only.
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Soft robotic being an emerging field. The compliant nature of soft robots made it hard to be

designed and controlled. This work has demonstrated the power of reinforcement learning

and evolutionary co-optimization algorithms on design and control of soft robotic crawlers.

Although the effect of domain randomization is not significant on sim-to-real transfer, it is

planned to explore adaptations of this framework with additional sim-to-real techniques (e.g.,

domain randomization of multiple variables) and to different design and control spaces. In

future work, high-precision pressure regulators will be used across the experimental operating

range to minimize pressure discrepancies and ensure better alignment with the pressure input

curve in simulations.

In conclusion, our study underscores the potential impact of co-optimization methods in

design and control of soft robotic crawlers. This revolutionary algorithm has the capability

to greatly reduce the human effort required for creating robots tailored to specific tasks,

offering the prospect of highly adaptive robots designed to meet human needs efficiently.

Through the capability to automatically design versatile and adaptable soft robots, this

work promises real-world applications that boast improved performance and functionality.

These implications reach beyond the scope of this study, offering the exciting prospect of

progress and innovation in the field of soft robotics.
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