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Optimal Discretization Based Adaptive Finite
Element Analysis for Electromagnetics with Vector
Tetrahedra

Dennis Giannacopoulos and Steve McFee

Abstract—Efficient functional derivative formulas suitable for ~ formulations. This has made the effective discretization of the
optimal discretization based refinement criteria are developed for physical problem a tacit requirement of efficient modern finite
3-D adaptive finite element analysis (FEA) with vector tetrahedra. - gjament packages. The need for such computational efficiency
Results for generalized vector Helmholtz systems are derived di- .~ . . . .

in finite element electromagnetics methods has led to an in-

rectly from first principles, and confirmed numerically through . -
fundamental benchmark evaluations. Practical adaption applica- creased demand for advanced adaptive solver technologies.

tions are illustrated for selected FEA refinement models. One route to adaption which has proven to be successful for
Index Terms—Adaptive systems, electromagnetic analysis, error 2-D and 3-D scalar syst_em_s, Is to _erT_lpon local error me_asures
analysis, finite element methods. closely related to the variational principle used to determine the

solution to the finite element problem [6], [7]. With this type of
approach, regions of inferior discretization in a finite element
mesh can be detected and ranked by evaluating the sensitivity
HE STUDY of refinement criteria for adaptive FEA hasf the functional to differential displacements of the geometric
been a subject of considerable importance and inter@sides. Therefore, by computing the gradients of the functional
over the past decade [1], [2]. Today, the primary focus is on théth respect to vertex positions, it is possible to determine where
research and development of effective and efficient techniguedmprove the discretization, based on a purely local error mea-
for practical 3-D applications [3]-[5]. Recent work has estalsure that is closely related to the underlying variational principle
lished the strengths of optimal discretization based refinemetsied to compute the finite element solution to the problem.
criteria, and confirmed the value of using functional gradient Functional gradient error indicators associated with optimal
type error indicators for scalar electromagnetic applications [@liscretization based refinement criteria are defined in terms of
[7]. The theoretical potential of these variational approachesdsrivatives with respect to tetrahedral vertex positions. These
now generally accepted [8]. The objective of this contributioflerivatives may be computed directly for vector Helmholtz sys-
is to derive, validate and evaluate a corresponding set tefms. For example, in problems where the field solution varia-
functional derivative formulas suitable for the developmetiion, E, is described in terms of the coordinate variableg,
of optimal discretization based refinement criteria for 3-Bndz, i.e.,E = E(z, y, z), the 3-D vector counterparts of the
adaptive FEA based on vector tetrahedra. functional derivative formulas given in [7] for scalar systems
may be derived following an analogous procedure. Consider the
Il. FUNCTIONAL DERIVATIVES FOR VECTOR TETRAHEDRA first-order vector tetrahedral element (linear edge element), as
) i , . defined in [10], with vertex positions;, w, 2),l =1, 2, 3, 4.
Adaptive FEA is especially useful for solving large problemg yector Helmholtz systems in which the true solutiis the

efficiently, since the computer resources required can incre%?ﬁtionary point of the following complex functional
at a significant rate with respect to the problem size. For ex- '

I. INTRODUCTION

ample, in some finite element implementations the approximate 1 1 P
computational cost can b@(n?), wheren is proportional to F(E) = 2 /v E(V x E)-(VxE) = koerE- B dV
the number of degrees of freedom (DOF) used in the numer- (1)

ical model of the problem [9]. Today, many realistic problem#ez-, y-, andz-components, respectively, of the functional gra-
require a large number of free, or unconstrained, modeling pgiients may be determined from the three matrix forms:
rameters in order to compute their solutions with sufficient ac-

2
curacy. For instance, many practical electromagnetic systems 1 ETVE — 5] ETBE, (2)
do not possess the appropriate symmetry to allow for 1-D or 2 22
2-D treatments, and, therefore, must be analyzed using full 3-D %ETWE _ k% ETCE, ©)

and
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TABLE | TABLE I
EDGE DEFINITIONS FORTETRAHEDRA EXPLICIT FORMS OFOb; /Jy; IN TERMS OF Z;;

Edge ¢ Vertex 1y Vertex i i/l 1 2 3 4

1 1 2 1 0 243 224 Za2

2 1 3 2 Za4 0 Za 213

3 1 4 3 Za2 214 0 2

4 2 3 4 223 Z31 212 0

5 4 2

6 3 4

Further,V;; is defined in terms of;, ¢;, andd; as follows:
number of the system. 'I.'he.sqgare mat'rF&ESW, and'P con- Nij = (ci,diy — diy e3,)es,dy, — dj,c5,)
tain thez-, y-, and z-derivative information, respectively, that T (di b, — by, ds, (s, bs, — bs.d)
corresponds to the first term in (1) for vertéX = 1, 2, 3, 4) 1tz T Tee JATILEg2 - P e

of a tetrahedron. The entries of the matridésW, andP are + (biy ci, — iy biy )(bj ¢j, — ¢5,b5,). (11)
defined by: It may be noted that the partial derivatives/8f; with respect
Nij £ Iwiy — x4,) to the element vertex positions, which appear in (5)—(7), can be
Vij = V)2 [(xil - Ziy) 7 v determined directly from (8)—(11), and Tables I and II, where
/0 the quantitiesy;;, J;;, and Z;, are defined as follows:
) i (le_sz)v_[g'ﬁ
+ (xh ‘sz) / a ] 2
J XL XU =xT; — X, (12)
£:l; ON; _
+ (6V3 X axf , (5) Vij =vi — 5, (13)
N ! 0, o ) and
ij Yi, — Yiy
WZJ = (6VJ)4 |:(yzl 7/12) K—JZ £ Vv Z“ =Z; — Zj. (14)
b (s — i) L O — i)y, oy ﬂ} Thez-, y-, andz-derivatives of the second term in the functional
IRy, oy 2 (1) are given by the second terms in each of (2)—(4), respectively,
Lil; ON;; 5 for vertex!(I = 1, 2, 3, 4) of a tetrahedron. The entries of the
(6V)r ay ©6) matricesB, C, andD are defined by:
and
M 6 Owi, — x4,)
Nz /. 8 v, — 7, = 23 PR—y il [t 12
-Pij = (6VJ)4 |:(Zi1 - Ziz) K—J % 1% B J 72012 |:($ Lo 2) 4; dx; v
7 <l
4 Ny, —xy,) by
l; Nz — 2; d Lo Y2 AL 92y pp ZY
by — 2y 20 =),y _l} o —a) g =gV bl g
Kj 87:1 2
00 N bty OM; (15)
o o e
21
Ci — M, (y —y; ) Z_J a(yn — yiz) Vv
where YT roop2 | M Ty o
v is the tetrahedral volume; 4 Oy, — ys) o
Y denotes the length of th¢h edge connecting + (Wi~ Yiz) ‘0 Em V=Lt 6
verticesi; andis as given in Table I; and /. .
! 0:0; OM;;
b;, ¢;, andd; are geometric parameters related to the 20V a (16)
) it ; Ui
tetrahedron’s vertex positions, which ca
be defined as follows with the subscripts M. 0 3z, — 7i,)
; . D= 9 (g g )L D T )
progressing modulo 4: i = To0p2 [(71 %) ’; 97 v
4 9z, — 2j,) dy
i 1 v 2z + (2 = 25) ¢ 9z V=it 6
b; :(_1) 1 Yiro 2ig2|, (8) fzfj 8M“ (17)
1y 2z 720V Oz
1 2y 2z _— . - : ' .
o qviHl ‘ ‘ wherel;; is given by Table Il1, in whichf;; is defined in terms
¢ =(-1) Lo Zigs Zigo| s ©) of b;, ¢;, andd; as follows:
1 =z 2z
and fU = beJ + cicy + dzdj (18)
11 i v
di=(-1)"|1 210 Yigo|- (10) It may be noted that the partial derivatives(6f,b,,), (cmcr),

1 @1 wia and(d,,d,,) with respect to the element vertex positions, which
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TABLE Il
EXPLICIT FORMS OFM;; IN TERMS OF f;;

i, M;

1,1 202 (f11 ~ f1z + f22)

1,2 L8y (f11 = f13 = fa1 + 2f23)
1,3 L183 (fr1 = fra — fa1 + 2f24)
1,4 0144 (f12 — 2f13 — fa2 + f23)
1,5 L85 (2f14 = f12 = foa + fo22)
1,6 L8e (f1z — f1a — f23 + f24)
2,2 202 (f11 — fia + faa)

2,3 L83 (f11 = fia = fi3 + 2faq)
2,4 L2ly (2f12 = f13 = f23 + fa3)
2,5 Lols (f1a = f12 = faa + f23)
2,6 Lol (fra = 2f14 — faz + f3a)

0 X (cm)

3,3 202 (f11 — fra + faa) y (em)

3,4 €384 (f12 = f13 — f2a + f34)

3,5 385 (fra = 2f12 = f1a + foa) Fig. 1. Hexahedra used to define tetrahedral mesh for cavity.
3,6 L38g (213 — fia — faa + faa)

4,4 202 (f22 — faa + f33) !

4,5 2485 (f23 — f22 — 2f34 + fo4)
4,6 L4le (f23 — 2f24 — faz + faa)

o
©
T

5,5 202 (fa2 — f2a + fa4) 08" 1
5,6 L58e (f24 — 2f23 — faa + faa) o7k 1
6,6 202 (fa3 = faa + fa4) @
"é 06 B
3
el
(53
NS5[ 1
TABLE IV @
EXPLICIT FORMS OF(b,,,b,,)/dy; IN TERMS OFb; AND Z; %0,4_ 4
P4

=3
w
T

Functional derivative

Functional value

=}
[
T

m,n 1 2 3 4
0.1 i

1,1 0 2b1343 2b1324 21}1 232
1,2 by Za4 bz Z43 b2 224 + b1 241 b2Z32 + 51213 O Tor oz o3 o2 o5 s o7 o5 o5 1
1,2 21 ‘?342 23 gqs + 21214 - b3 22b4 2 by Zsbz ; b1221 Normalized x-position of central interior vertex

) 1223 4243 + 01231 04224 + 01212 4232
g’g b 2%25242 b ; 2bb222‘“ b Z2b2f£32 Fig. 2. Variation of normalized functional value and separately normalized
24 bi 2: + bz z§§ bz Z;: baZs 13 +4b12 20, 3 1;4 2132 2t magnitude of functional derivative with-position of central interior vertex.
3,3 2b3 Z42 2b3 214 0 2b3 22
3,4 byZ42 +b3223 baZ14 +b3Za b3 212 by 221 . g . .
4.4 2b4 Z0s 2by Za; 2bys 212 0 The system consists of an air-filled rectangular cavity with per-

fectly conducting walls and excited at the b resonant fre-
quency. One-half of the cavity was discretized using 40 tetra-
are implicit in (15)—(17), can be determined directly fronhedra based on subdividing each of the 8 hexahedra shown in
(8)—(10), and are given for reference in Table IV. Fig. 1 into five tetrahedra—the symmetry plane is defined by
Once the gradients of the functional with respect to vertex= 0 between the conductors. The full cavity has dimensions
positions have been computed, they may be used in various waysn, 1 cm, and 2 cm in the, ¥ andz directions, respectively,
as error indicators. One simple approach is to assess a weiglated was analyzed using first-order vector tetrahedra (linear edge
sum of the vertex-based functional gradients for each elemegigements) [10]. The functional derivative correctly identified
then use these values to rank the elements for refinement. In thig optimal horizontal position for the central interior vertex,
study, this method is investigated to illustrate one possible whyyield the stationary value of the functional (Fig. 2). Further-
to exploit the new 3-D refinement criteria proposed for vectanore, they- andz-components of the functional gradients were
adaptive finite element solvers. confirmed to evaluate numerically to zero at the optighand
z positions for the central interior vertex, respectively, corre-
sponding to the stationary value of the functional.
The proposed 3-D adaptive refinement criterion was also
In order to validate the functional derivative formulas derivedvaluated using the benchmark problem described by Fig. 1
above, the:-component formulas were tested with a benchmadnd excited at the Tf; resonant frequency. Performance
evaluation based on the geometry and mesh defined by Figrdsults for the first-ordek-adaption studies (B) on functional

Ill. RESULTS
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Fig. 3. Cumulative cost of adaption versus error in functional.

Fig. 4. Sample vertex distribution for adaptively refined mesh.

convergence are presented in Fig. 3. The unifarnefinement

baseline (A) is included for comparison. It may be noted that
the h-adaption performance results indicate a considerablee]
savings in computational cost relative to the uniform refinement
approach. In order to illustrate the focus of DOF produced bym

the new refinement criterion, an exampilerefined mesh is
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x {cm)

y (cm)

Fig. 5. Sample vertex distribution for uniformly refined mesh.

IV. CONCLUSIONS

New functional derivative formulas suitable for optimal dis-
cretization based refinement criteria with linear edge elements
for 3-D vector Helmholtz FEA have been derived. The formulas
for the gradients of the functional with respect to tetrahedra
vertex positions were validated by tests based on a simple 3-D
benchmark system. ThHeadaption performance results for the
benchmark system that was investigated show that the new re-
finement criteria can be successfully used in 3-D adaptive finite
element solvers to effectively and economically distribute DOF
over the problem domain.
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