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Abstract 

In this dissertation, the phenomenology of electromagnetic radiation and high trans

verse momentum jets in relativistic heavy ion collisions is investigated. These are two 

very important probes to study the strongly interacting matter at extreme tempera

tures and/or densities and to investigate the possibility of a phase transition between 

hadronic matter and quark-gluon plasma (QGP). First, a new channel of direct pho

ton production from a charge-asymmetric QGP is explored in the effective theory 

of quantum chromodynamics (QCD) at high temperature. The photon production 

from this new channel is found to be suppressed compared to QCD annihilation pro

cess and Compton scattering at low baryon density, but might assume significance 

in baryon-rich matter. Second, the radiative jet energy loss in a three-dimensional 

ideal hydrodynamical medium is studied for Au+Au collisions at Relativistic Heavy 

Ion Collider (RHIC). A systematic analysis of the nuclear modification factor RAA is 

presented for TT° production at high pr in central and non-central collisions, at mid 

and forward rapidity. Third, jet energy loss by elastic collisions is consistently incor

porated in the same formalism and applied to the study of jet quenching at RHIC. 

It is found that the nuclear modification factor RAA for 7r° in relativistic heavy ion 

collisions is sensitive to both collisional and radiative energy loss, while the average 

energy loss is less affected by the inclusion of collisional energy loss. Last, the nu

clear suppression of photon-tagged jets at high pr is studied by incorporating not 

only direct photons, but the additional sources from fragmentation and jet-plasma 

interaction. We find that these additional sources are very important for a complete 

study of the correlations between hard photons and hadrons and even dominate in 

some kinetic regime. 
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Resume 

Dans cette dissertation, nous etudions la phenomenologie de la radiation electro-

magnetique et des jets a grande quantite de mouvement transverse dans les colli

sions d'ions lourds relativistes. Ces observables permettent de sonder la matiere 

en interaction forte a des conditions extremes de temperature et/ou de densite et 

d'investiguer la possibility qu'il y ait une transition de phase de la matiere hadronique 

au plasma quark-gluon (QGP). En premier lieu, nous explorons un nouveau mode de 

production des photons directs a partir d'un QGP charge, a l'aide d'une theorie effec

tive de la chromodynamique quantique (QCD) a haute temperature. Nous demontrons 

que la production de photons dans ce mode n'est pas favorisee a basse densite de 

baryon, par rapport aux processus d'annihilation par l'interaction forte et de la diffu

sion de Compton. Par contre, cette production de photons devient significative dans 

la matiere riche en baryons. En deuxieme lieu, nous etudions la perte d'energie ra

diative des jets dans un milieu hydrodynamique parfait en trois dimensions, d'espace 

pour les collisions Au+Au au "Relativistic Heavy Ion Collider (RHIC)". Une analyse 

systematique du facteur de modification nucleaire est presentee pour la production de 

7T° a haut pr dans les collisions centrales et non-centrales, ainsi qu'a rapidite centrale 

et non-centrale. En troisieme lieu, la perte en energie des jets par collisions elastiques 

est inclue dans le meme formalisme et appliquee a l'etude de "l'extinction des jets" 

a RHIC. Nous trouvons que le facteur de modification nucleaire RAA pour le no dans 

les collisions d'ions lourds relativistes est sensible et a la perte en energie par colli

sions, et a la perte en energie par rayonnement, tandis que la moyenne de la perte en 

energie est moins touchee par l'inclusion de la perte en energie par collisions. Finale-

ment, la suppression nucleaire des jets avec photons marques a haut pT est etudiee 

en incluant les photons directs, ainsi que les contributions venant de la fragmentation 

et de l'interaction des jets avec le plasma. Nous demontrons que ces contributions 

additionnelles sont necessaires dans l'etude des correlations entre les photons durs et 

les hadrons, et peut meme dominer dans certaines regions cinematiques. 
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1 

Basic phenomenology of relativistic heavy ion collisions 

1.1 Introduction 

One of main reasons for physicists around the world being interested in studying 

physical phenomena in relativistic heavy-ion collisions is the large amount of energy 

involved in those collisions. For example, the Relativistic Heavy-Ion Collider (RHIC) 

at Brookhaven National Laboratory (BNL) was designed to accelerate gold (Au) 

nuclei to an energy of about 200 GeV per nucleon pair 1. At the Large Hadron Collider 

(LHC) at the European Organization for Nuclear Research (CERN), lead (Pb) nuclei 

will be accelerated up to 5.5 TeV per nucleon pair, and the center-of-mass energy for 

lead-lead collisions at the LHC will exceed that available for gold-gold collisions at 

RHIC by a factor of about 30. 

On the other hand, experimental results have shown that the collisions between 

two high energy nuclei have large cross sections, and are highly inelastic [8]. The two 

nuclei, after they collide with each other, lose a large fraction of their initial energies. 

The deposited energy is then transformed into intense heat and new particles, which 

are captured by the detectors. Furthermore, since the two nuclei are travelling at 

nearly the speed of light, they appear initially as two very thin disks (pancakes), 

owing to Lorentz contraction. Therefore, the elementary nucleon-nucleon collisions 

in the two colliding nuclei occur very close in space and nearly at the same time. As a 

result, a large amount of energy is deposited in a small space-time volume, leading to 

very high energy densities in the center-of-mass region. In fact, the study of nuclear 

For the details of the latest developments at RHIC, please refer to the review papers [1, 2, 3, 4, 5, 6, 7]. 

1 



1.2 Confinement and chiral symmetry breaking in QCD 2 

matter under extreme conditions is one of the important objectives of relativistic 

heavy ion collisions. 

Theoretically, high energy heavy ion collisions may provide a valuable tool to fur

ther our understanding of strongly-interacting matter. The deep inelastic electron-

proton experiments in the early 1970s indicated that nucleons have an internal struc

ture, made out of strongly-interacting quarks and gluons. It is unanimously acknowl

edged that quantum chromodynamics (QCD) [9, 10] is the well-established theory of 

strong interaction as it is able to correctly describe the most important features of 

quark-gluon interactions and provided plenty of successful predictions. 

According to QCD, quarks and gluons are confined inside hadrons; free quarks and 

gluons are never observable in physical vacuum. One of the predictions of QCD is that 

a deconfined state of quarks and gluons called quark-gluon plasma (QGP) is expected 

to exist at sufficiently high energy density. This has been confirmed by lattice QCD 

calculations [11, 12, 13], which simulate the strong interaction between quarks and 

gluons on a discrete lattice. It is the hope of heavy ion physicists to create such a new 

phase of matter in high energy nuclear collisions and study the critical phenomena 

related to the phase transition between hadronic matter and quark-gluon plasma, 

such as color confinement and chiral symmetry breaking [14, 15]. From a general 

point of view, it is also of great theoretical interest and importance to investigate 

the physics of nuclear matter under extremely high temperatures and densities. In 

a word, relativistic heavy ion collisions may provide new insights into the physics of 

strongly-interacting QCD matter and permit the exploration of the detailed structure 

of the QCD phase diagram. 

1.2 Confinement and chiral symmetry breaking in QCD 

Quantum chromodynamics is a non-Abelian gauge field theory of SU(3) group de

scribing the dynamic of interactions between colors. The fundamental color degrees 

of freedoms are spin-i particles called quarks with Nc — 3 colors, and spin-1 gauge 

bosons known as gluons with JV̂  — 1 = 8 colors. There are at least six different flavors 



1.2 Confinement and chiral symmetry breaking in QCD 3 

of quarks: up, down, strange, charm, beauty and top. 

Let ipf denote the quark field of flavor / , with flavor index f — u,d, s, c, b, t. From 

quantum field theory (16, 17], the Lagrangian for free quarks is 

jCo = J2M^d,-mf)?Pf (1.1) 
/ 

where tp = 7/^7°. The Dirac matrices 7^ are defined by the anti-commutators 

{7M>7"} = 2c/Mi/, and m,f is the quark mass of flavor / . The free Lagrangian has 

a global symmetry under St/(3) transformation 

ipf -* Vv = exp (igsT
a9a) ^ (1.2) 

where Ta denote the generators of the Lie algebra of St/(3) group, with a — 1, • • •, 8, 

and 9a are arbitrary phase parameters. In the fundamental representation of the 

St/(3) group, T° = A0/2, where Ai, • • •, Ag are eight independent Hermitian traceless 

3 x 3 Gell-Mann matrices [18]. 

The gauge invariant QCD Lagrangian is built by applying the gauge principle 

to non-Abelian St/(3) group. The gauge principle requires the Lagrangian to be 

invariant under local SU(3) transformation, 8a = da(x). This is achieved by replacing 

the derivative of the quark field d^ipf by its covariant derivative, 

D^f=(dli-igaT
aAi)rPf, (1.3) 

where A^ denotes the gluon field. The gauge invariant QCD Lagrangian is 

CQCD = £ V7 WD* - ™f) 4>f - \G%G^. (1.4) 
/ 4 

The gluon field strength tensor G^v is 

G°, = d»K - dvAl - gsfabcA^Al, (1.5) 

where fabc are anti-symmetric structure constants of St/(3) group, defined by the 

commutation relations, [Ta,Tb] = ifabcT
c [18]. 
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QCD theory exhibits a number of remarkable features of quark-gluon dynamics. 

Like all other renormalizable gauge theories, the coupling constant as = g2/(4ir) is a 

function of the energy scale Q [19], 

47T 

^Q) = (ll-lNf)MQ/AQCDy ^ 

where AQCD is the energy scale where the coupling becomes strong as Q2 is decreased, 

and Nf is the number of flavor considered in the theory. At short distances or high 

energies, the effective coupling constant decreases logarithmically; quarks and gluons 

appear to be weakly coupled. This famous feature is called asymptotic freedom [20]. 

At large distances or low energies, the effective coupling becomes strong, resulting in 

the phenomena of color confinement [21]. This leads to the conclusion that quarks 

cannot be isolated in nature but are found in hadronic bound states - mesons and 

baryons. All observable particles in our physical world must be colorless or color 

neutral. Even if we try to separate the quark and anti-quark, they cannot be forced 

apart. Indeed, it is postulated that at large distance, the phenomenological potential 

between a pair of quark and anti-quark increases linearly1. Beyond some critical 

distance, the potential energy becomes large enough so that a new quark-anti-quark 

pair can be created from the vacuum: the original quark-anti-quark pair becomes two 

pairs. 

Another important aspect of QCD is the spontaneous breaking of chiral symmetry 

[23]. More specifically, we introduce the left-handed and right-handed quarks, 

^ = ^ ( 1 - 7 5 ) ^ , 4>R = \(l + ls)il>- (1-7) 

where 75 = i^j1"/2^. It is straightforward to check that the QCD Lagrangian with 

massless quarks is invariant under global chiral 5t/i(A r/) x SUji(Nf) rotation, 

ipL -> KL^L = exp (i—ea
L\ ipL: ipR-> ARIPR = exp U—ea

R\ ipR, (1.8) 

'One of the most popular models for the quark-antiquark potential is called Cornell potential [22], 

Vqq(r) = —-+ br, where the first term is the Coulomb part of potential, and the second term is 

linear in distance, which enforces confinement. 
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where A^ (Afl) is an element of S£ /L(A^) (SUn{Nf)) group, and 6L,R are arbitrary 

phases. As far as three massless u, d, s quarks are considered, Aa are Nj — 1 = 8 

Hermitian traceless 3 x 3 Gell-Mann matrices. The conserved currents associated 

with chiral symmetry are 

•/f = ^ 7 " f v > L , J£° = V ^ y ^ - (1-9) 

The invariant charges are Q1 = J d3xJia and QR — J d3xJR
a. It is equivalent to say 

that the QCD Lagrangian with massless quarks is invariant under the SUv(Nf) x 

SUA(Nf) transformation 

i)^Ayip = exp(i—6v)ip, ^ ^ A ^ = exp(i75y^J V, (1.10) 

where 9y,A a r e arbitrary phases. The associated conserved currents are vector current 

V^a and axial-vector current A^a, 

The conserved charges are Qv = QR + Qa
L and QA — QR — Qa

L. The key point is that 

Qy and QA have different behaviors under parity transformation, 

Qv^Qv, QA^-QA- (1-12) 

If chiral symmetry was respected by the QCD vacuum, then for each positive parity 

state, there should be a negative parity state with equal energy (mass). However, this 

parity-doubling pattern is not observed in hadron spectra [8]. The light pseudoscalar 

(Jp = 0_) mesons (ir, K, n) have considerably smaller masses than scalar {Jp = 0+) 

mesons. This implies that the QCD vaccum (the ground state) is not invariant under 

axial-vector transformation A^, 

QM0)=0, QA\0)^0. (1.13) 

The chiral SUL(Nf) x SUfi(Nf) symmetry of QCD Lagrangian is said to be spon

taneously broken down to SUv(Nf) (The axial-vector symmetry SUA{Nf) is spon

taneously broken). This requires that the scalar product of quark fields ipip has a 
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non-zero vacuum expectation value (as it carries the quantum number of the vac

uum), 

( 0 | ^ | 0 ) = (0\MR + ML\0) + 0. (1.14) 

Thus, the quark condensate serves as the order parameter of the spontaneous breaking 

of chiral symmetry in QCD. This is analogous to Cooper pairs and superconductivity 

in metals, where the order parameter is the pairing of two electrons with opposite 

spins e-je|. 

From Goldstone's theorem [24], spontaneous breaking of a continuous symmetry 

generates massless spin-0 particles called Goldstone bosons. In the case of massless 

SU(3) QCD, the eight axial charges Q\ create eight degenerate states from the vac

uum, \(pa) = Q^10), giving rise to eight massless pseudoscalar bosons. However, due 

to the nonzero masses of the light quarks, the chiral symmetry is also broken explic

itly, leading to Goldstone bosons (ir, K, rj) that are not exactly massless. However, 

the explicit breaking is small and can be treated perturbatively. 

It is noted that at extremely high temperatures, chiral symmetry is expected to 

be restored, while at extremely high baryon density, the system exhibits a different 

type of symmetry breaking pattern - color superconductivity [25, 26]. 

1.3 Quark-gluon plasma 

The asymptotic freedom of QCD tells us that at sufficiently high energy densities, 

quarks and gluons will interact with each other very weakly, and the hadronic matter 

will become a deconfined state of quarks and gluons - quark-gluon plasma. QGP can 

be achieved either by heating the QCD matter up to high temperature or compressing 

the system to high density (or equivalently large chemical potential1). There are three 

places where we should expect to find QGP: in the early Universe, at the center of 

compact stars, and in the initial stage of relativistic heavy ion collisions. 

From the definition of single particle phase space distribution f(x,p) = (2n)3dN/d3xd3p, the number 

density is exponentially proportional to the chemical potential n = J d3p/(2n)3f(x,p) oc exp(fi/T) 

for a relativistic Boltzmann distribution. 
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It is believed that our Universe originated from the Big Bang, a state of almost 

infinite energy density, 13.7 billions year ago. During the first few microseconds of 

its life, the energy density and temperature were so high that quarks and gluons 

could not be bound to form hadrons. Instead, they were deconfined from hadrons 

and permeated the entire Universe in a thermalized QGP [27]. Besides, in the core 

of super-dense stars such as neutron stars and quark stars, the density in the center 

of the stars is about several to tens times larger than that of normal nuclear matter, 

there might be the possibility of the existence of deconfined QCD matter. 

Relativistic heavy ion collisions provide another possibility to create quark-gluon 

plasma in the laboratories by compressing and heating the heavy nuclei so much 

that their individual protons and neutrons will overlap, and a large energy density 

can be created. Either high temperature or high density matter might be formed 

by colliding heavy nuclei at high energies. High baryon densities could be achieved 

when the two colliding nuclei stop each other in the center-of-mass region, which 

happens in relatively low energy nuclear collisions (about a few to a few tens of GeV 

per nucleon). On the other hand, when the two colliding nuclei have sufficiently high 

energies, they will pass through each other, and high temperature and low density 

could be created in the center-of-mass region behind the receding nuclei. 

Figure 1.1: A schematic view of the phase diagram of strongly interacting matter. The net baryon 
density is the density of baryons minus the density of anti-baryons [28]. 



1.4 The bag model 

The study of QGP is not only a key issue for the understanding of quark confine

ment, but allow us to explore the phase diagrams of the theory of strongly interacting 

matter: QCD. Clarifying the thermodynamics of QCD is important not only from a 

fundamental point of view, but may also have an important impact on astrophysics 

and cosmology [28]. In Fig. 1.1 we show a schematic view of the phase digram of 

QCD matter in the plane of temperature T and baryon density p (or baryon chemi

cal potential /x) [29]. At low temperature and nuclear density, the nuclear matter is 

in the hadronic phase. As the temperature and nuclear density become sufficiently 

large, quarks and gluons will deconfmed from hadrons and form a quark-gluon plasma 

phase. Currently, it is not totally clear what are all the possible phases of QCD matter 

and the precise locations of critical lines and critical points. In fact, the exploration 

of the detailed structure of QCD phase digram is one of the main objectives in the 

field of hot and dense QCD. 

1.4 The bag model 

The MIT bag model [30] is one of the simplest models to incorporate the main features 

of QCD (color confinement and asymptotic freedom) and examine the possibility of 

a phase transition between hadronic matter and quark-gluon plasma. 

In the bag model, hadrons are considered as bubbles of a QCD vacuum (called 

bags) in a confining medium. Inside the bag, quarks and gluons interact very weakly 

and may be considered almost as free particles. To incorporate the properties of color 

confinement so that no quarks and gluons live outside the bag, a constant energy 

density B, called the bag constant, is introduced for the vacuum. Assuming the bag 

is spherical, the total hadron energy is given by 

E» = f#B + % (L15) 

where the first term is the potential associated with the finite volume of the bag due 

to the finite energy density of the vacuum, and the second term CH/B is the kinetic 

energy of quarks and gluons inside the bag. By minimizing the energy, we obtain the 
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™» 0 =* R = ( ^ ) V \ (1.16) 

size of hadrons 

dR \4irB, 

We may employ the bag model to describe the phase transition between hadronic 

matter and quark-gluon plasma. As a first approximation, we may assume a gas of 

free pions in the low temperature limit and a gas of free quarks and gluons in the 

high temperature limit. 

From statistical mechanics, the pressure, energy density and entropy density for a 

gas of non-interacting massless pions are 

2 2 2 

PH = dH^T\ eH = ^dH~T\ sH = 4dH^T\ (1.17) 

where dn is the hadronic degrees of freedom for Nf flavors of quarks, dn — Nj — 1. The 

above equations are the equations of state for a massless pion gas, which determines 

the thermodynamic properties of the pion system. 

In the quark-gluon plasma phase, the equations of states read, 

PQGP = dQGP^T4 - B, eQGP = ^dQGP~T4 + B, sQGP = 4dQGP^T3, (1.18) 

where dQGP is an effective degeneracy of the quarks and gluons in the QGP phase, 

7 
dQGp = ~dq + dg, dq = 2qg x 2spin x 3coior x Nf, dg - 2spin x (iVc

2 - 1). (1.19) 

The factor 7/8 comes from the difference between Fermi-Dirac statistics for quarks 

and Bose-Einstein statistics for gluons. 

Now we are in a position to describe the phase transition in the bag model. The 

critical temperature Tc is obtained from the phase equilibrium condition, 

/QO B \1//4 

PH{%) = PQGP(TC) = > T c = - J - — . (1.20) 
\irz dQGP - dHJ 

Using the value B ~ (200 MeV)4, we obtain the critical temperature Tc ~ 144 MeV for 

two flavors Nf = 2. The critical energy density required to realize QGP is estimated 

to be ecrit = CQGP(TC) ~ 1 GeV/fm3. This is the typical behavior of the first order 

file:///4irB
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phase transition, and the energy density e and the entropy density s = (e + P)/T are 

discontinuous at T = Tc. 

Suppose that the equations of state lead to a second-order phase transition, then 

P and s are continuous, but ds/dT is discontinuous. This may be realized by param

eterizing the effective numbers of degrees of freedom in two phases as 

dH - rff = dH + be{T-T<)/d, dQGP^d^GP = dQGP-ce<-T-T^d. (1.21) 

It is straightforward that as long as b + c = djf + dQOP, b > 0, b ̂  (dH + dqGp)/2, the 

above parametrizations lead to a second-order phase transition. Besides, the scenario 

of a smooth crossover from QGP phase to hadronic phase may be produced by the 

following parametrizations 

dH, dQGp — deff = -(dQGp + dH) + (dQGP - dH) tanh ( — ^ ) • (1-22) 

In the above parametrizations of equations of state, we have completely neglected 

the effect of the interaction among particles. Such interactions must be taken into 

account in order to have a full understanding of the physics related to the phase 

transition between hadronic matter and quark-gluon plasma. At extremely low tem

perature, chiral perturbation theory [31, 32, 33, 34, 35] may be used to study the 

interaction between pions. Due to asymptotic freedom, at extremely high tempera

ture, perturbative QCD is a suitable tool to calculate the interaction between quarks 

and gluons. To study the physics near the critical points, we have to resort to non-

perturbative approaches, such as lattice QCD simulations [11, 12, 13], and renormal-

ization group methods [36, 37] . 

1.5 The evolution of a relativistic heavy ion collision 

The space-time history of a relativistic heavy ion collision begins from the colliding of 

two Lorentz-contracted nuclei. Then two nuclei cross each other and recede from each 

other at high velocity in the opposite direction from the interaction region. A large 

amount of lost energy by the two nuclei will be deposited in the center-of-mass region, 
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producing very excited nuclear matter. In Fig. 1.2, we show a schematic view of the 

entire history of a relativistic heavy ion collision with a space-time diagram [38]. Since 

the excited strongly-interacting system moves with relativistic velocity, the evolution 

of the system is characterized by the proper time in its rest frame r = \/t2 — z2. Each 

hyperbola in the diagram has a constant proper time. 

Figure 1.2: A schematic view of the space-time evolution of the system produced in a heavy ion 
collision [37]. 

1.5.1 Pre-equilibrium 

The very early stage of relativistic heavy ion collisions is a highly non-equilibrium 

process in which large entropy is produced. Theoretically, entropy production in these 

processes is one of the most difficult questions to answer since it involves non-Abelian 

gauge field theory. Many theoretical models have been proposed to understand the 

entropy production process, such as mini-jets from the incoherent sum of incoming 

partons followed by the equilibration process [39, 40, 41, 42], and a coherent classical 

configuration of low-x gluon associated with incoming nuclei to form the color glass 

condensate (CGC) [43]. 

In the present study, we simply assume that the entropy production and subsequent 

local thermalization take place before certain proper time r = Tj. Then the evolution 
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of the created system in the collisions after that time will be controlled by relativistic 

hydrodynamics [44, 45, 46]). It has already been shown that the collective behavior 

of soft particle production at RHIC may be well described by assuming a perfect fluid 

for the created matter [47, 48, 49, 50, 51, 52], with a thermal equilibrium time r* of 

the system less than 1 fm/c. 

1.5.2 Hydrodynamical evolution 

In this period, the evolution of the quark-gluon plasma and its transition to the 

hadronic phase take place. Suppose local thermal equilibrium is achieved at a certain 

stage of the collisions, T — Ti, then we may study the evolution of the system using 

relativistic hydrodynamics as long as the mean free path of constituent particles is 

much smaller than the typical length scale of the system. 

For a system in local thermal equilibrium, its energy momentum tensor and baryon 

number density may be parameterized only by the local energy density e and pressure 

P. Assuming the system can be approximated by a perfect fluid (without viscosity 

and thermal conductivity), the energy-momentum tensor is given by, 

T^ix) = (e(x) - P ( x ) K ( x K ( x ) - PfrW, (1.23) 

where xM — (t,x). e(x) is the local energy density, P(x) is the local pressure, and 

nM(x) = ~f(x)(l,v(x)) is the four velocity of the fluid with respect to some fixed 

reference frame. It is straightforward to check that in the local frame of the fluid, 

uM = (1,0,0,0), the energy-momentum tensor is diagonal, T00 = e, T^{x) — P{x)b^ 

and Tl0(x) = T0t(x) — 0. In general, the trace of the energy momentum tensor is 

T£{x) = e(x) — 3P(x). For a non-interacting gas of massless particles, P(x) = e(x)/3, 

the trace vanishes. 

The dynamics of the fluid is described by equations of motion based on the con

servation of the local energy and momentum, which can be expressed as 

duT^ix) = 0. (1.24) 

If there are conserved charges, such as baryon number or electric charge, there is an 

additional conservation law for each. For example, the baryon number j%{x) is given 
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by 

j£(x) = nB(x)u»(x), (1.25) 

where nB(x) = jB(x) is the baryon number density measured in the local frame of 

the fluid. The corresponding conservation law is 

d»fBW = 0- (1-26) 

The above conservation laws contain five independent scalar equations, and are 

supplemented by equation of state, e = e(F). The local energy density, pressure and 

baryon density may be expressed in terms of the temperature and chemical potential 

as a function of space and time. By solving these six equations, the space-time 

evolution of six thermodynamic variables, e(x), P(x), UB(X) and three components 

of the flow vector, vx(x), vy(x) and vz(x) can be determined. In general, the above 

equation cannot be solved analytically and we have to resort to numerical methods 

unless some simplified assumptions are placed on the symmetry of the system. Given 

certain initial conditions at r = Tj, the hydrodynamical equations can predict the 

subsequent development of the system until it undergoes freeze-out at r = 77. 

1.5.3 Post-freeze-out 

The freeze-out of the hadronic matter happens at r — 77, when the constituents of 

the system begin free-streaming towards the detectors. The freeze-out is defined by 

the space-time hyper-surface £ / , where the mean free paths A of the plasma particles 

are compatible to the spatial dimensions of the system R (or the time scale of the 

system expansion), 

A ~ — ~ R. (1.27) 
no 

We may define the freeze-out temperature Tf for each particle species, and as the 

temperature of a volume of the fluid is equal to the freeze-out temperature T/, the 

freeze-out process happens for this particle species. The particle spectrum at freeze-

out (the number of particle passing through the freeze-out hyper-surface) is computed 
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from the Cooper-Frye formula [53], 

E1T=[ 77fy3da^f(x,p)= [ j ^ d a ^ * /1.28) 
d6p Jsf (27r)i JT.S (27r)J exp[(pi/u'y —/x/)/T/j ± 1 

where da^ is the normal vector to this hyper-surface, pM is the particle momentum, / 

is the single particle phase space distribution function, and fj,f is chemical potential 

at freeze-out. 

There are two types of freeze-out: chemical freeze-out and thermal freeze-out. 

Chemical freeze-out means the number of each particle species is frozen and no longer 

changes. Thermal freeze-out is achieved as the kinetic equilibrium is no longer main

tained for the system. Since the inelastic interactions have energy thresholds, whereas 

elastic interactions do not, the chemical freeze-out temperature must be higher than 

that of the thermal freeze-out. 

It is noted that even after freeze-out, hadrons can still interact with each other 

in a non-equilibrium way which may be described by the Boltzmann equation at the 

hadronic level. The particle spectra at freezeout can serve as the initial conditions 

for the microscopic transport models, such as hadronic cascade [54, 55, 56], Ultra-

relativistic Quantum Molecular Dynamics (UrQMD) [57, 58], etc. 

1.6 The Glauber model 

The basic idea of the Glauber model [59, 60, 61, 62] is to describe the nucleus-nucleus 

collisions as a collection of independent individual nucleon-nucleon collisions. The 

space distribution of the nucleons is determined from experimental measurements 

of nuclear density distributions, i.e., low-energy electron-nucleus scattering. Conse

quently, the collisions of the two heavy nuclei can be treated as the uncorrelated 

individual interactions of the constituent nucleons. Another assumption in the model 

is that the individual nucleons carry so high energies that their linear trajectories are 

maintained as the nuclei pass through each other. This hypothesis make is possible 

to derive simple analytical expressions for nucleus-nucleus cross sections in terms of 

fundamental nucleon-nucleon cross sections. The nuclear density distribution and 
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inelastic nucleon-nucleon cross section are two important experimental inputs when 

a Glauber approach is employed to calculate the geometry of the nuclear collisions. 

The nucleon density function is usually parameterized by a Fermi distribution, 

^ ) = ^ ^ - ^ [ 1 + ^ ( 0 ] , (1-29) 

where p0 corresponds to the nucleon density in the center of the nucleus, R represents 

the average nuclear radius, d is the surface diffuseness and w characterizes deviations 

from a spherical shape. The distribution for a spherical shape with w = 0 is often 

called Woods-Saxon distribution. The integral of the nuclear density function over 

all space gives the atomic number of the nuclei, / d?rp{r) = A. Those parameters 

are determined by low-energy electron-nucleus scattering [63], i.e., R = 6.38 fm, 

a = 0.535 fm and w = 0 for 197Au, and R = 4.20641 fm, a = 0.5977 fm and w = 0 

for 63Cu. 

Another input of the model is the inelastic nucleon-nucleon cross section. Since 

low momentum transfer processes are involved in the collisions, it is impossible to cal

culate it from perturbative QCD. Experimental results have shown that the inelastic 

nucleon-nucleon cross section is an increasing function of the beam-energy [8]. For 

nucleon-nucleon collisions at y/s^N = 200 GeV at RHIC, the inelastic cross section 

CJVJV ~ 42 mb. 

Now we consider two nuclei, target "A" and projectile "B", colliding with each 

other with relativistic energies at impact parameter 6, as shown in Fig. 1.3. The 

probability for a nucleon being located in the unit transverse area in one of the nuclei 

is called the thickness function 

TA(r±) = JdzpA(r±,z). (1.30) 

The overlap function of two colliding nuclei is defined by 

TAB(b) = Jd2rirA(rl + b/2)TB(f± - 6/2), (1.31) 

which represents the effective overlap area for which a specific nucleon in "A" can 

interact with a given nucleon in "B". Then it is straightforward to obtain the total 
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Figure 1.3: The interaction zone of the collisions between two identical nuclei with impact parameter 
b viewed in the transverse plane. 

number of elementary nucleon-nucleon collisions at impact parameter b, called the 

number of binary collisions 

NcoiiW = TAB(b)aNN. (1.32) 

Since the total possible number of nucleon-nucleon collisions in a A+B collision is 

AB, the probability of having one such collision will be Ncon/(AB). Therefore, the 

probability of having n such collisions between "A" and "B" is given by a binomial 

distribution, 

AB-n 

nnrb)=ciB^^)\i-T-^) (1.33) 

The differential cross section between the collisions between "A" and "B" is then 

given by 

d2crAB 
AB 

= £ , . ( „ , » ) - l - l - ^ p 
TAB<7NN\ 

AB 
(1.34) 

d2b n=i 

The number of participants ("wounded nucleons") in such a collision at impact pa

rameter b is given by [62] 

/ „ r ,~x \ B 

l(b) = Jd2f±TA(rx+b/2) N, partV 
1 _ | i TB{r±-b/2)aNN 
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Figure 1.4: Numbers of binary collisions Nco\\ and wounded nucleon Npa,rt as a function of impact 
parameter in Au+Au collisions at ^/SNN = 200 GeV. 

+ Jd2r±TB(f±-b/2) 1 - 1 -
TA(r± - b/2)gNN 

A 
(1.35) 

In Fig. 1.4, the binary collision number Nco\\ and the participant number -/Vpart are 

shown as a function of impact parameter b for Au+Au collisions at ^/S^N = 200 GeV 

at RHIC, where d = 0.535 fm, R = 6.38 fm and <7JVJV — 42 mb are used in the 

Woods-Saxon distribution. 

Often, the centrality x% as a function of impact parameter b is defined, 

Job d2b daAB/d2b 
x%{b) [1.36) 

Jo00 d?b daAB/d2b 

Then a centrality class x — y% may be used to represent all the collisions with an 

impact parameter b(x) < b < b(y). The average number of binary collisions in a 

centrality class x — y% is calculated by 

(Ncoti) = 
Jffg d2b Ncoll(b) 

J^d%daAB/d% 
(1.37) 

In Fig. 1.5, the centrality x% and the differential cross section daAB are shown as a 

function of impact parameter b for Au+Au collisions at T/S/VW = 200 GeV at RHIC. 
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Figure 1.5: The differential cross section doAB/db and the centrality x% as a function of impact 
parameters in Au+Au collisions at ^/SNN = 200 GeV. 

1.7 The Bjorken model 

The Bjorken model [44] is one of the simplest models to describe the evolution of the 

system created in heavy ion collisions provided that the local thermal equilibrium is 

assumed to be achieved at r = T, . A lot of intuitive information about the evolution 

of the excited matter created in relativistic heavy ion collisions may be extracted 

from this approach. The motivation of the Bjorken model came from the experimen

tal data which indicated that the charged particle multiplicities are approximately 

independent of the rapidity in the central rapidity region, i.e., they are invariant un

der Lorentz boosts of moderate rapidity [64, 65, 66]. Since the reaction region in the 

collisions has strong expansion along the longitudinal beam direction, it is reasonable 

to first approximation to drop the transverse spatial dimension (x, y) and describe the 

central rapidity region of the system in (1 + 1) dimensions, z and t. Now we transform 

the coordinate system to the longitudinal proper time r and the space-time rapidity 

V, 

1 / 4- r 
(1.38) r — \/W— z2, r\ = - In 

1, t + z 
^ In • 
2 t-z 

The inverse transformation reads, 

t — r cosh r), z = T sinh rj. (1.39) 
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The flow four velocity of the fluid is dependent on r and 77, 

dx^ 
u^ = —— = (cosh?7, 0,0,sinhr?). (1-40) 

dr 

It is straightforward to check u^u^ — 1. Another approximation in the Bjorken model 

is that the baryon number is set to be zero in the central rapidity region, ns = 0. 

In the collision of two heavy nuclei with relativistic energies, the baryon number 

is supposed to be carried away essentially by the nucleons leaving the interaction 

region. Therefore, we only need to solve the equation for the conservation of energy 

and momentum 

a,r = ̂ [(f + p)«v-pf] 

-u^uv + (e + P)-z—u" + (e + P K - g" 
dr dxt* dx^ dx^ dr dx^ 

= 0. (1.41) 

The above equation can be simplified by using the following relations: 

(1.42) 

Note that ^ = 0 from Eq. (1.40), then we obtain the evolution equation of the 

dr 
dx^ = • " / ! ' 

du» 
dx*1 

1 
r 

M 9 

VT — = 
OX11 

d 
" dr 

system, 

£ + — = 0. (1-43) 
OT T 

From the thermodynamic relation s — (e + P)/T, and ds = de/T at constant volume, 

we have, 

%• + - - 0. (1.44) 
OT T 

The solution of the above equation is 

S(T)T = s{Ti)Ti = const, (1.45) 

where r% is the initial proper time. As the volume element dV is given by d2r\jdr\, 

the above relation implies that 

— = ST = const. (1-46) 
d'ir±dri 
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As transverse expansion is excluded for consideration in the model, we obtain 

Thus, the hydrodynamical motion of the fluid in the Bjorken model is characterized 

by the constant entropy per unit rapidity with respect to the proper time. 

To further describe the evolution of the system, we have to specify the equation of 

state for the system. Here, we assume a first order transition between the QGP phase 

and the hadronic phase. Above the critical temperature, the system is described by 

the bag model with massless quarks and gluons, with the equation of state given by 

P = e/3. Then the evolution equations for the energy density and pressure of the 

system are 

de 4e n dP 4 P n , 

s + s ; - 0 - * + 3 7 = 0 ' (148) 

which have the solutions 

e(r)T4/3 = e(T.)T4/3> P ( r ) r 4 / 3 = P{TI)T?/\ (1.49) 

From the equation of state, we may get the evolution of the temperature as a function 

of the proper time, 

T ( r ) = T ( r i ) ( ^ ) 1 / S . (1-50) 

As for a first-order phase transition from quark-gluon plasma to the hadronic phase, 

the temperature of the plasma drops down to Tc at the proper time determined by 

n. (1.51) 

After this proper time, the system enters a mixed phase of quark-gluon plasma and 

hadronic matter. The entropy density of the matter is given by 

sir) = fQGp(r)sQGp(Tc) + [1 - fQGP(r)} sH(Tc), (1.52) 

where fqcpij) is the fraction of matter in the QGP phase. By employing the relation 

S(T)T = S(TC)TC = S(T/J)T/J, we may derive the evolution of JQGP{T) as a function of 
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the proper time, 

fQGp(r) = 7~(r^-l), (1.53) 

where r = d,QGP/dH is the ratio of the numbers of degrees of freedom between two 

phases. The entropy density drops to SH(TC) at r^ = rrc, when all the quark-gluon 

plasma matter are converted into hadronic matter, foGp{Th.) = 0. 

In the case that the system starts from the mixed phase at TJ, with QGP fraction 

fQGp{i~i), we have the general expression for the QGP fraction /QGP(I~), 

[(r ~ 1) /QGP(T) + 1] r = [(r - l)fQGp(n) + 1)] r%. (1.54) 

Then the system arrives at hadronic phase at r^ given by 

Th = l(r-l)fQGP(Ti) + l}Tl. (1.55) 

After this proper time, the system will be in the hadronic phase. The dynamics 

of hadronic system can still be described by relativistic hydrodynamics, with the 

appropriate hadron equation of state. The temperature of the hadronic matter will 

decrease until it reaches the freeze-out temperature at Tf. 

Now we relate the initial conditions, i.e., entropy density s(ri) and energy density 

e(rj), to the experimental observables such as the emitted particle per unit rapidity 

dN/drj and transverse energy per unit rapidity d{Ex)/drj. Since the volume element 

on the freeze-out hypersurface at 17 is 7rR2Tfdri in a (l+l)-dimensional expansion, 

the rapidity distribution of emitted particles is given by 

^ = nR*Tfn(Tf), (1-56) 

where n(Tf) is the number density of constituent particles. As the baryon number 

vanishes in the central region, the entropy is mostly carried by pions. From the 

relation between entropy density and particle number density is 

2TT4 

S = 45Cf3)n = A n ~ 3 , 6 n ' (L57) 
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we obtain the relation between initial entropy density and rapidity distribution of 

particles, by using the relation S(T)T — <S(T,)TJ during the expansion, 

( \ - 1 dN - 2?f4 l dN 
S{T'} ~ A

7 r J R 2 T l ~d^ ~ 4 5 C ( 3 ) T T J R 2 T J dr) • ^ - 5 8 > 

From Eq. (1.18), it is straightforward to write down the relation between the initial 

proper time r, and temperature T(r,) to the particle rapidity distribution [67], 

m-\, 7T2 1 dN , 
dQGP({3) irR2 drj 

Similar to dN/dr), the total energy produced per unit rapidity is given by 

^=nR2rfe(rf). (1.60) 

Again, by using the relation e(r)r4/ '3 = e(ri)r,4/3 during the expansion, we find 

'T /y / 3 _ {Br) dN^ 
^ = 0 v T j / irR2Ti drj 

. . 1 d{E7 

C ( T < ) = nR2Ti drj 7j=o N Ti 

n , (1.61) 

where we have used (ET) = {E} at 77 = 0. In the case of free streaming, by setting 

Tf = Ti, we may reproduce the famous Bjorken formula [44]. Thus, the factor (TJ/TJ) 1 / 3 

is a measure of the energy transfer due to the work done by the pressure during the 

hydrodynamical expansion. 

Another way to estimate the energy density is to apply the equation of state, 

e = ?-sT= -XnT. (1.62) 
4 4 

Then, the initial energy density may be related to the rapidity distribution as 

e(Tl) = l(^^) fefe^) • (L63) 

It should be noted that hydrodynamics itself cannot tell the initial conditions, i.e., 

the initial time Tj, the spatial profiles of the energy density, and the baryon chemical 

potential at Tj. The initial conditions are usually adjusted to fit the final experimental 

observables. A more fundamental approach would be to calculate the initial conditions 

from microscopic theories. If we assume the thermallization of quarks and gluons 
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immediately happens upon their production [68], we may obtain a rough estimation 

of the initial conditions by employing the uncertainty principle of quantum mechanics 

at that time, (.E(TJ))TJ sa 1, where (£"(r,)) is the average energy of partons at proper 

time Tj. For simplicity, here we neglected the effects of Bose or Fermi statistics, then 

Eq. (1.59) becomes, 

T\r,)r, = /—!=%•, (1-64) 
dQGP -KR2 drj 

where dQGP = 12iV/+16. Furthermore, the average particle energy is about (E) « 3T, 

then we obtain, 

Ti^n = i. (1.65) 

Putting together, we obtain the temperature at initial thermalization time 7$, 

For central Au+Au collisional at y^vN = 200 GeV at RHIC, we take dNch/dri\rt=0 RS 

700 based on the charged particle pseudorapidity densitity measured by the PHOBOS 

experiment [69]. Thus for three flavors Nf = 3, the initial conditions are estimated 

to be n « 0.17 fm/c and T{TJ w 400 MeV. 

1.8 Signatures of QGP in relativistic heavy ion collisions 

Relativistic heavy ion collisions are designed to create and study a new state of QCD 

matter - quark-gluon plasma and investigate the critical phenomena related to its 

phase transition to the confined hadronic matter. One of the most important tasks 

in relativistic heavy ion collisions is to find clear and unambiguous signatures for 

observing the formation of quark-gluon plasma and studying its properties. This 

turns out to be complicated. The deconfined degrees of freedom (quarks and gluons) 

are not directly observable. If a QGP is produced in a collision it will quickly cool 

down, expand and hadronize into a plethora of mesons and baryons, which fly off to 

the detectors. The QGP created in the collisions has very small size and lifetime, 
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at most a few fermis and perhaps 5 — 10 fm/c in duration. In order to observe the 

QGP formation in the collisions, we have to resort to a variety of indirect probes by 

looking at the particles that stream out from the collisions. Moreover, signals of the 

quark-gluon plasma compete with many backgrounds from the hot hadronic matter 

and are modified by final-state interactions in the hadronic phase. 

In spite of this, a wealth of ideas has been proposed in the past few decades to 

identify and investigate the short-lived quark-gluon plasma phase, such as strangeness 

enhancement [70, 71], heavy quarkonium suppression [72], electromagnetic radiation 

[73, 74, 75], correlations and fluctuations [76, 77, 78], high pr jet quenching [79, 80], 

etc. The basic idea is that a collision that produces QGP will send out different 

signals than a collision that does not produce QGP. A comprehensive survey of the 

quark-gluon plasma signatures is beyond the scope of this thesis, and I will concen

trate on two very important and promising ones: electromagnetic radiation and high 

transverse momentum jets. 

1.8.1 Electromagnetic radiation in relativistic heavy ion collisions 

Real photons and lepton pairs (virtual photons) have been proposed as one of the 

most promising probes of quark-gluon plasma, and are currently under active in

vestigations. As they carry no color charge, these particles will interact only elec-

tromagnetically with the surrounding matter. As the coupling constant ae for the 

electromagnetic interaction is much smaller than the coupling constant as for strong 

interaction (ae ~ 1/137 and as ~ 1/3 for QGP at temperature T ~ 300 MeV), the 

mean free path of the photon is much larger than the typical size of a QGP. As a 

result, once they are produced, photons will leave the medium immediately and fly 

off to the detectors without further rescattering, thus carrying information about the 

interior of the quark-gluon plasma during the earliest and hottest phase of the evo

lution of the fireball. Another advantage of small ae is that it allows the application 

of perturbation theory to calculate photon production rates from QGP. 

However, this ideal scenario is complicated by the fact that photons and dilep-

tons may be produced from various sources. During the early stage of the collisions, 
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photons may be produced either from initial hard collisions between the two nu

clei by Compton and annihilation processes, or by pre-equilibrium interactions. If a 

thermalized QGP is created in a collision, the collisions among the medium partons, 

such as annihilation processes and Compton scattering may create thermal photons. 

Photons may also come from hard jets, either through direct jet-medium interaction 

during their passage, i.e., the photon bremsstrahlung and 2 —> 2 jet-photon conver

sion processes, or through fragmentation after their passing through the QGP. In 

the subsequent hadronic phase, photons may be produced by inelastic collisions of 

hadrons, like 7r + p —> n + 7 and n + N —> N + 7. Finally, the decay of neutral 

hadrons, such as n° and 77, may produce photons. Thus we have to take into account 

all the contributions from both QGP sources and non-QGP sources in order to have 

a comprehensive understanding of the physics of the photon production in relativistic 

heavy ion collisions. In Chapter 2 [81, 82], we will present a new channel of photon 

production which arises solely when the charge symmetry in hot and dense QCD 

matter is explicitly broken. 

1.8.2 High PT jets as probes of QGP 

Large transverse momentum (p?) jets of partons are regarded as good tools to probe 

the color structure of hot and dense QCD matter in relativistic heavy ion collisions. 

They are produced in the early state of the collisions and therefore have the capability 

to probe all the stages of system by interacting directly with the hot and dense 

medium during their path. At this point, hard jets stand in an excellent position to 

make a bridge between the experimental data and the theoretical understanding of 

the medium properties. 

Experimental results at RHIC have shown that high px hadrons in central A+A 

collisions are significantly suppressed in comparison with those in binary scaled p+p 

collisions [83, 84, 61]. Moreover, the disappearance of back-to-back azimuthal cor

relations have been observed in central A+A collisions, in contrast to the strong 

back-to-back correlations in p+p and peripheral A+A collisions [85]. Those results 

have been attributed to the strong interaction between hard partonic jets produced 
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in the early stage of the collisions and the hot and dense nuclear medium created in 

those collisions, and are commonly referred to as jet-quenching [86]. 

A lot of effort has gone into quantitatively calculating jet-quenching processes 

taking place inside the soft matter. Gluon bremsstrahlung have been proposed to be 

one of the dominant mechanisms for the energy loss of jets when traversing through 

the medium. In a thermal medium, it has been shown that the coherence effect called 

Landau-Pomeranchuk-Migdal (LPM) [87] effect controls the strength of the induced 

bremsstrahlung gluon emission. Several theoretical formalisms have been elaborated 

to describe the energy loss by the gluon bremsstrahlung: here we mention the work by 

Baier-Dokshitzer-Mueller-Peigne-Schiff (BDMPS) [88], Gyulassy-Levai-Vitev (GLV) 

[89], Kovner-Wiedemann (KW) [90], Zakharov [91], Majumder-Wang-Wang (Higher 

Twist) [92], and Arnold-Moore-Yaffe (AMY) [93, 94, 95]. Another important energy 

loss mechanism experienced by the color charges in the medium is by scattering off 

the thermal partons from the nuclear medium through 2 —> 2 elastic collisions. The 

collisional energy loss of jets has also been extensively studied in several different 

approaches and scenarios [96, 97, 98, 99, 100, 101, 102, 103]. The first consistent 

study of radiative and collisional energy loss in the same energy loss formalism (AMY 

[93, 94, 95]) was carried out in [104, 105] and is described in this thesis (see Chapter 

5 for details). 

All these studies have given rise to the hope that jets may be seen as a "tomo

graphic tool" to study the hot and dense core of the early evolution of the nuclear 

medium in some detail. Several quantities have been suggested as such "tomographic 

tools". One of those is the nuclear modification factor RAA, defined as the ratio of 

the hadron yield in A+A collisions to that in p+p interactions scaled by the number 

of binary collisions. Since RAA is a rather averaged quantity (over jets' origin and 

in-medium path length), it cannot provide us much of detailed information about 

the hot matter created in collisions. More detailed information about the medium 

properties may be obtained by studying RAA as a function of azimuth and pr in 

non-central collisions [106] (see Chapter 4). This effectively corresponds to studying 
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different paths of partons as they traverse the expanding medium. The nuclear modi

fication factor RAA could also be studied as a function of pr at central and non-central 

collisions at mid and forward rapidity [106] (see Chapter 4). 

We may also perform correlation measurements, i.e., to study the production of 

high pT hadrons correlated with other high pr particles that are produced at the initial 

vertex. One possibility is to use a hadron as the trigger particle, but the energy of the 

away-side parton is not confined even though we choose a specific pr for the triggered 

hadron. Another promising suggested trigger is a high pr photon [107, 108]. At 

leading order, the photons are predominantly produced from hard collisions in the 

early stage. If we trigger such a photon at mid-rapidity, the energy of away-side 

associated jet will be determined. However, it should be noted that high pT photons 

can be produced from other processes in high energy nuclear collisions, such as those 

involving the jet-plasma interactions during their propagation in the medium and 

fragmentation of surviving jets after their passing through the medium. We will see 

in Chapter 6 [109] that it is important to take into account these additional processes 

for a comprehensive study of photon-hadron correlations. 



2 

Photon production from charge-asymmetric hot and dense matter 

This chapter follows our recent work [81, 82], where a new channel of direct photon 

production from a quark-gluon plasma is explored in the framework of high temper

ature QCD. This process appears in the next-to-leading-order in the presence of a 

charge asymmetry in the excited QCD matter, and may be effectively described as 

the bremsstrahlung of a real photon from a thermal gluon. It is found that the photon 

production rate from this new channel is suppressed compared to the QCD annihila

tion and Compton scattering at low baryon density, but could become important in 

baryon-rich matter. 

2.1 Introduction 

As have been mentioned earlier, photons (real and virtual) occupy a privileged status 

in theoretical studies of hot and dense strongly interacting systems as they suffer 

essentially no final state interaction after their initial production [110]. Thus, their 

emission rates have the potential to provide direct insight into the nature of the 

medium created at RHIC. 

In this chapter, we will explore the electromagnetic signatures from a series of 

pure glue processes, which arise when the hot and dense medium is itself electrically 

charged. This is achieved by the introduction of a non-vanishing charge chemical 

potential or a net asymmetry between the quark and anti-quark populations. The 

possibility of such rates was first pointed out in Ref. [Ill], and the dilepton rates 

from such processes in different scenarios was explored in Ref. [112]. Here, we will 

focus on the spectra of real photons from such processes. 

28 
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There have been a large number of calculations of photon production from an elec

trically charged QGP [75, 93, 94, 95, 113, 114]. However, all these calculations have 

neglected the baryon chemical potential / iB in the plasma. As is known, the central re

gion at the CERN SPS and even at RHIC is not just heated vacuum [115, 116, 117], 

but actually displays an asymmetry between baryon and anti-baryon populations, 

thus nB in the QGP does not vanish. In Ref. [118, 119, 120, 121], the photon produc

tion rate was calculated for finite baryon chemical potential, but they only include 

processes which are non-vanishing at \IQ = 0. Here, we extend those efforts and 

present the first attempt to calculate hard photon production rates from processes 

which arise solely at finite chemical potential. 

2.2 The photon-gluon-gluon vertex 

In Quantum Electrodynamics (QED), diagrams that contain a fermion loop with an 

odd number of photon vertices (see Fig. 2.1) vanish at zero temperature, and at 

finite temperature and zero charge density, due to the cancellation by an equal and 

opposite contribution originating from the same diagram with fermion lines running 

in the opposite direction (Furry's theorem [122, 123]). 

Figure 2.1: Diagrams with a fermion loop and odd number of photon vertices in QED. 

The above statement may be understood as we evaluate Green's functions with an 

odd number of gauge field operators. At zero temperature in QED, we are focusing on 

quantities such as {0\AlilAll2...Afl2n+1\0). Under the action of the charge conjugation 
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operator C, the photon vector gauge field transforms as CA^C l = —A^, while the 

vacuum is invariant under charge conjugation, C|0) = |0). Thus, we obtain 

(OlA^A^.-.A^AO) = (0\C-1CA)ilC-1CAfl2...A,2n+1C-lC\0} 

^ O I A ^ . . A 2 n + 1 | 0 ) ( - l ) 2 " + 1 = -(0\A,1A,2...A,2n+1\0) = 0. (2.1) 

The expectation value of an odd number of gauge fields is zero. At a finite temperature 

T, the corresponding quantity to consider is 

oo 

Tv[p(^P)A,1A,2...A,2n+1}^ £ (ji\AtlxAlii...A^1\n)e-p{En-^n\ (2.2) 
n=—oo 

where (3 — 1/T, [i is a chemical potential, and n is the number of thermal particles 

and anti-particles in the medium. Note C\n) = el<t>\ — n), where | — n) is a state in 

the ensemble with the same number of antiparticles as there are particles in \n) and 

vice-versa. At zero chemical potential, [i = 0, inserting the operator C~lC as before, 

one obtains, 

{n\A^A^...A^n+An)e-^ = -{-n\A^A^2...A^n+A-n)e-^. (2.3) 

As the sum over all states in the ensemble contain the mirror term (—n\AtllAli2...AMj2n+1 

n)e - / 3 £ n , with the same thermal weight, it is zero, 

E(n\A^2-A»2n+1\n)e-0E« = 0. (2.4) 
n 

Thus, Furry's theorem still holds. However, for a charged QCD medium, ^ 0, 

there are unequal number of particles and antiparticles. Under the action of charge 

conjugation, 

{n\A^A^...A^+l\n)e-^-^ = -(-^A^A^.A^J - n)e'^~^{2.b) 

Now since the net charge of the state | — n) is weighted differently by the chemical 

potential, the mirror term becomes {—n\AIJilAll2..A^2n+1\ — n)e_/3(£n+/i<:?n), with a 

different thermal weight. As a result, the thermal expectation of an odd number of 

gauge field operators is non-vanishing, 

£H4«A*-A*B +>>e-*£ n-*w ¥= o. (2.6) 
n 
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Thus Furry's theorem is now broken, leading to finite Green's functions, which allows 

the appearance of new processes in a perturbative expansion. One may say that the 

charge conjugation invariance is manifestly broken by the charged medium itself. 

In the above discussion of Furry's theorem, we have focused on the diagrams in 

pure QED. The extension of the above statement to QCD is straightforward, i.e., 

processes with two gluons and an odd number of photon vertices (see Fig. 2.2). 

As been pointed out in Ref. [112] that the processes of Fig. 2.2 are also affected 

by the constraints imposed by Yang's theorem which states that a spin one particle 

may not decay or be formed by two identical massless vectors [124, 112]. However, 

the processes outlined in the following are computed within a thermalized medium, 

where the symmetry which underlies Yang's theorem is broken due to the presence 

of longitudinal gluon excitations. 

Figure 2.2: The one-loop Feynman diagrams of gluon-gluon-photon vertex as the sum of the two 
diagrams with quark numbers running in opposite directions in the quark triangle loops. 

It should be noted that the incorporation of thermal gluon masses and self-energies 

in perturbation theory has to be done carefully, owing to issues arising from color 

gauge invariance. In this work, we carry out our calculation in the framework of 

gauge invariant resummed theory of Hard-Thermal-Loops [125], where one assumes 

the temperature T —> oo and as a result the coupling constant gs{T) —> 0. Effective 

propagators and vertices involving soft ~ gsT momenta are obtained by integrating 

out the hard ~ T modes. This allows for a well defined perturbative expansion of the 

photon production amplitude. 
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The Feynman diagrams corresponding to the leading contributions (in coupling) 

to the new channel of photon production are those of Fig. 2.2, with two gluons 

and a photon attached to a quark loop [111]. Such processes do not exist at zero 

temperature, or even at finite temperature and vanishing chemical potential. At non

zero density, this leads to two new sources for photon production: the fusion of gluons 

to form a photon (gg —> 7) and the decay of a massive gluon into a photon and a 

softer gluon (g —> 57). 

The full, physical, matrix element is obtained by summing contributions from both 

diagrams which have fermion number running in opposite directions, 

T^(p, k,p-k)= Trip, k,p-k)+ Tr(p,p- k, k). (2.7) 

The amplitudes corresponding to these two diagrams may be expressed in the imag

inary time formalism as: 

d31 „„2<W r ,u « ,„„ a « /vi (g + k)aq0(q + k-p) 
TrP(P, fc,p - fc) = ? T / ^eg^fTrWrY^Yl1 7 

(2TT)3
 y 2 L' ' ' ' ' ' ^q + kYq^q + k-p)2 

12 {p,p k,k)-l^J ^^eg 2
 l r l 7 7 7 7 7 7 ] ( g _ f c ) V ( ( 7 _ f c + p ) 2 -

(2.8) 

The masses of quarks have been omitted as the momenta of the quarks is consid

ered hard ~ T in the HTL expansion. In the imaginary time formalism, the zeroth 

components of four momentum are discrete Matsubara frequencies, 

q0 = iu>n + p, = i(2n + l)irT + p , ko = itou = i2rmrT , po = i&p — i2lnT, (2.9) 

where integers n, m and I in the above expression range from —00 to 00, and \i is 

the quark chemical potential. It may be easily demonstrated that [111], using the 

properties of the 7 matrices, 

Tr^^YlPYla} = T r [ 7 a 7 ^ 7 / 3 7 V 7 l = TrlY^Yl^Yl1} (2-10) 

and changing integral variable q —» — q in T2Vp(p,p — k,k), we obtain 

Tr = TY [ - ^ e q ^ T r h ^ ^ A V l ~ ( 9 + k)aQ0{q + k ~ P)" (2 11) 2 e J (2nY S 2 [1 7 7 / 7 7 J (a + Jfc)V(<7 + k- p)2 ' K } 
90 
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but with g0 = iwn — \i = (2ra + \)ixT — \i. It is obvious that these two amplitudes 

Tivp and T$vp cancel each other at zero chemical potential /i = 0, consistent with the 

QCD generalization of Furry's theorem [122, 111, 112, 123]. 

The sum over the Matsubara frequencies may be conveniently performed using 

the non-covariant propagator method [111, 126, 127]. Here, one defines a time-three-

momentum propagator A(T,E) in the mixed representation as (see Appendix B and 

D for details), 

A±(r , E) = T £ e-*""TA(iun ± /x, E) (2.12) 
n 

The inverse transformation being 

A(iun±H,E)= f dTeiuj"TA±(T,E). (2.13) 
J o 

In the above equations, E = \p\ represents the real energy of the particle from its 

three momentum, not the conjugate of the imaginary time r. The explicit expression 

of the Matsubara propagator reads, 

A{iun ±fi,E) = — - - == 
(tujn ±nY -El 

^ s±£r 2Eiun±[i- sE 

The explicit expression of the imaginary time quark propagator in the mixed repre

sentation is given by 

A ± ( r , E) = £ A.,±(r, £ ) = £ - - L [l - f±(sE)} e " ^ ^ , (2.15) 
s=±l s=±l Z£j 

where f±(E) = l/(exp[(E =F n)/T] + 1) are Fermi-Dirac distribution functions. The 

amplitude may be expressed in terms of Matsubara propagator 

T^p = TY,J-0y, ^ T r [ y T V / T V ] ( q + k)aqp{q + k - p)7 

x [A(iw„ + iuik + fj,, Ei)A(iun + fi, E2)A(iun + iujk - iwv + V, E3) 

-A(iuin + iiok ~ M; Ei)A(iujn - /i, E2)A(iujn + iu)k - iup - fi, E3)\ , (2.16) 
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where Ex = Eq+k = \q + k\, E2 = Eq = \q\, and E3 = Eq+k-p = \q + k~p\. Now we 

are in the position to evaluate the following sum of the frequency ujn, 

T J2 A(iw„ + iuJk ± A*) Ei)A(iun ± /x, E2)A(iujn + iuk - iup ± /i, E3) 
n 

^T Yl ASl(iujn + iuk±jji,El)AS2{iun±ii,E2)AS3{iun + iuk-iujp±^,E3) 
TIS1S2S3 

1 r <!i ~ ~ s, ~. ~ 1 

(2.17) =TE; ' 
nsis2S3 "^P 

iWp - S1E1+ S3E3 

_ ^ A A - - * - £ A 
L-iS2L-i-Sl 0 j - , '-1S2'-iS3 _2£3 2£a 

It is straightforward to show (see appendix D for derivation) 

Sis2 /±(s i^ i ) - f±(s2E2 T J2 As2(
iuJ

n ± A*, E2)ASl(iu)n + iuk±n)El) =^-
ns2si t^^ExE2 iuk - sxEx + s2E2 

(2.18) 

Therefore, we obtain the expression for the sum of the frequency ujn for the product 

of three propagators, 

T ]T A(iwn + iuk ± fi, E{)A(iun ± /x, £2) A(iwn + icuk - iup ± \x, E3) 
n 

S\S2S3 1 

= £ 8EXE2E3 iujp - siEx + s3£3 S1S2S3 "-^1-^2-^3 ^ p 

; , (UsiEr) - f±(s2E2) f±(s3E3) - f±(s2E2) \ 
\ iuk - s\Ex + s2E2 iiok-iup- s3E3 + s2E2) ' 

Adding two diagrams together, we obtain 

T J2 [A(iw + iukn + /i, Ex)A(iujn + /x, E2)A(iun + icuk - iujp + n, E3) 

£ 
-A(iun + iuk - n, E{)A(iujn - fj,, E2)A(iujn + iuk - iup - /i, E3) 

S\S2S3 1 

1^3 ZExE^Es iup-s1E1+ s3E3 

x ^Af(SlE2)-Af(s2E2) _ A/(s 3 £ 3 ) - A / ( S 2 ^ ) \ 

\ iuk- S1E1 + s2E2 iojk-iujp-s3E3 +s2E2) ' 

where we have used the shorthand, Af(sE) — f+(sE) — f-(sE). Now with the use 

of the identity f±(—E) — 1 — f^(E), it is straightforward to obtain 

Af(sE) = f+(sE) - UsE) = f+(E) - / _ (£ ) = Af(E), (2.21) 
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for both s = 1 and s — — 1. Furthermore, from the following identities, 

0 A ± ( T , Eq) =TJ2(-iuJn)e-^A(iu;n ± », Eq) 
^ n 

dA±£Eq)=^ ^ ^ ^ ^ ̂  ( __s_ } ^ _ / ± ( s ^ } j e_T{sEq_,^ (222) 

we may put quark momenta (q + k)a, qp and (q + p — p)1 inside the sums over Si, 

S2 and S3 by substituting them with (q + k)Sia, qS2p and (q + k — p)S37, respectively, 

where qs — (sEq, q). After performing the summation of the Matsubara frequency un 

in the quark propagators, we obtain 

^ p = / ( ^ 3
e g

2 ^ T r [ 7 ^ 7 V 7 V ] 

x £ 

dsq eg2Sa 

(27T)* 

S1S2S3 {q + k)SiaqS20{q + k-p)s 

8Eq+kEqEq+k_p iujp — siEq+k + s3Eq+k. •p 

x (Af{Eq+k)-Af{Eq) _ Af(Eq+k.p) - Af(Eq) \ _ 

\zu;fe - SiEq+k + s2i?q iuk - iujp - s3Eq+k-p + s2Eq J ' 

Our next task is to evaluate the sum over Si, S2 and S3 to obtain the photon 

production amplitude. This is carried out in the HTL approximation for the quark 

loop. In this limit, the photon and gluon momenta are considered soft p, k ~ gsT, 

and the quark momenta are hard q ~ T, where T is the temperature and gs is the 

effective coupling constant in the medium. The quark lines which carry a component 

of the external gluon energies are Taylor expanded as follows, 

F ~- F 1 b •? 1 &~(k-q)2 (q + k)sa_ k ~ 
Eq+k « Eq + k-q-\ — , — w qsa + — / l a , {2.24:) 

lh,q hjq+k zn,q 

where qs — (s,q) and K = 2(0, fc — (k • q)q). Similarly, for any function f(Eq+k), we 

have the following expansion, for fc«9, 

s f ( F , , j : MEq) P-{k.qfdf{Eq) {k.gfd2f{Eq) f(Eq+k) - f(Eq) + k • q — + — — — + — ^ - . (2.25) 

The above approximation allows for a factorization of the quark angular integral. In 

the limit of high temperature, we may perform the integral over the magnitude of the 

quark momentum q analytically, 

P « < l ^ - N » - P«ki£-" P«TST=WW jq u ^u ±-/q <J>jjjq ^ u U - L g 
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After substituting the above expressions, we find that the leading order terms pro

portional to dAf(Eq)/dEq are cancelled automatically. Putting all together leads to 

the following expression for the amplitude, 

T,,yp f dQq eg 8ab p < „ a u 0 P ^ 
J (2TT)3 2 8 [ 7 7 7 7 7 7 1 

x fq±2q±pq±1 (k2-{k-qf + k'2 - (k' • q)2\ 

p-q+ y k-q+ k'-q+ 

kJCaq+0q+J - k'q+aq+!3K'1 (k-q k' • q 

p-q+ \k-q+ k'-q+J 

q+aq+0q+1 [k2 - (k • qf] - [fc'2 - (k' • qf\ (k-q k'• q 

p-q+ p-q+ \k-q+ k'-q+J 

g+aq+0q+1 ( k-q k2 - [k • qf k' • q k'2 - (k' • q)2\ 
p-q+ \k-q+ k-q+ k'• q+ k'• q+ J 

| 2q+aq+0q+y ((k-q)2 jk' • q)2\ 
p-q+ \k-q+ k'-q+J 

, -. , k' -q „ A . p-q „ „ A k-q\ 
-q-aq+0q+1- q+aq-0q+1 q+aq+0q^-—— } , (2.27) 

K • q+ p • q+ K • q+ J 

where k' = p — k and dQ,q — d cos ddqd<pq is the differential solid angle of the quark 

momentum q. The first line of the above equation, demonstrates explicitly that 

the amplitude is directly proportional to the chemical potential //. As a result, the 

contribution to the photon production rate from this channel will grow quadratically 

with increasing chemical potential if the temperature of the medium is held constant. 

It is noted that in the above equation, the gluon energy ko — iu>k is still an imaginary 

frequency and its sum will be performed later in the calculation of the imaginary part 

of the photon self-energy. 

The remaining nontrivial angular integral over dQq is performed numerically. The 

possibility of radiation or absorption of a space-like gluon by an on-shell quark induces 

an enhancement in a small part of phase space (k-q+ ~ 0) in each of the two diagrams 

separately. In this regime of phase space, we may perform the integration over cos $kq 
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analytically if we employ the following expansions, 

ko k I k% „ - k 
cos# f c < 7 «f + — \jl--^u, qs~qs + —uQ, (2.28) 

where q and Q are given by 

qs = ( s, y 1 - fc^/fc2 cos 0, y 1 - fcg/A;2 sin 0, k0/k 

Q= (o, -k0/k\Jl-k$/k2cos(l>, -k0/k\/l-k2
l/k

2sin<f>, 1 - fcg/fc2) . (2.29) 

In the above expansion, we have chosen the z-axis as the direction of the photon 

momentum k. Performing the integral over new variable u in this part of phase 

space, we find that such contributions are diminished by the destructive interference 

between the two diagrams. Including all contributions leads to the survival of only 

the imaginary part of the amplitude in this sector. The resulting expression is, 

| - ^ 7 | (ktaq+pq+1 - k?q+J+f)lC\ 

[fc2-(fc-g-)2]-[fc'2-(fc'-q)2]~- , , 

+ —s . (Qaq+0q+1 + q+aQiq+1 + q+Jl+pQ-y) - q+aq+fiq_y > , (2. 30) 

Note that while the result has been derived in a thermalized environment, it may 

be easily generalized to moderate departures from equilibrium, which will remain 

the subject of a future effort. In the following sections, the above amplitude will be 

applied to compute the photon production rate from the fusion of gluons to form 

a photon or the decay of a gluon into a photon and a gluon of lower energy in the 

simplest model of a QGP, a plasma of quasi-particle quarks and gluons in complete 

thermal and chemical equilibrium. 

2.3 The photon production rate 

In the case of a medium in complete thermal and chemical equilibrium, the thermal 

photon emission rate R = dAN/d4x is related to the discontinuity or the imaginary 
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part of the retarded photon self-energy 11^, at finite temperature T through the 

relation [73, 128, 129], 

E^r = -7TT3lmK"^—> ( 2 - 3 1 ) 
d3p (2TT)3 M

 er - 1 

where E and p are the energy and momentum of the photons. This formula is valid 

to all orders of strong interactions, but only to e2 in the electromagnetic interactions, 

as the photons, once produced, will tend to escape from the matter without further 

interaction. In what follows, the focus will lie on the imaginary part of the photon 

self-energy of Fig. 2.3. 

Figure 2.3: The Feynman diagram of the photon self-energy evaluated in this chapter, where the 
dark blobs represent effective vertices or propagators in the HTL approximation. 

The photon self-energy from the Feynman diagram in Fig. 2.3 may be expressed 

formally as, 

U^\p)=Tj2[S^T^(p,k,p-k)S^(k)T^^P\^,^,^+k)SPAp-k),(2.32) 
k0

J ( 2 v r ) 

where TfiUp(p, k,p — k) is the effective photon-gluon-gluon vertex evaluated in the last 

section, and SliU(k) is the effective gluon propagator, after summing up all the HTL 

contributions to the self-energy of the gluon. In the Coulomb gauge, the effective 

propagator is given by [129] 

S^(k) = AT{k0,k)Pf + AL(fcb,A;Ku.>, (2-33) 

In the above equation, Po0{k) = 0, P?(k) — Sij — kzkj/k2 is the transverse projection 

tensor, and u^ — (1,0,0,0) specifies the rest frame of the medium. Ai,(ko,k) and 

AT(/K), k) are longitudinal and transverse gluon propagators, 

A * , f c ) ~ , AL(ko,k) = 1 r ^ ^ (2.34) 
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where the explicit expressions for FL(k0, k) and Fr(ko, k) are, 

FL = 2m2
g(l - x2)(l - xQ0{x)) , FT = m2

g-!j. (2.35) 

In the above equations, Qo(x) = | In ^j is the Legendre function with x = uj/q, and 

mg is the thermal gluon mass, 

» - ^ + i W ( r 2 + ¥ m = -cCAg'T' + -NFg< \T' + ^ , (2.36) 

where CA = 3 is the SU(3) group factor, and Nf is the number of quark flavors. 

In the complex fc0 plane, the longitudinal and transverse propagators exhibit a 

discontinuity or cut from —k to k; in addition, they have poles at k0 = ±LUTtL(k), 

which give the two dispersion relations for the longitudinal and transverse modes of 

the gluons in the medium. The expressions for u)r{k) and to^ik) are determined by 

the following equations [129, 126], 

XT I " k2 

m2 I" 2 xT(l -x2,) xT + l 
- Xy -\ —i— In 

2ml 
1 + 

XT — 1 

xL xL + 1 
1 ——In 

2 xL-l\ 

= 0 

= 0 (2.37) 
k2 

where XT = ur/k and XL = ui^/k. These two equations can be solved numerically. 

In Fig. 2.4, two dispersion relations ujr{k) and wt(fc) are plotted. In the plot, the 

upper branch is the dispersion relation for transverse excitation modes, and the lower 

branch is for the longitudinal one. The solid line represents the light cone. 

In order to calculate the thermal photon differential production rate, we evaluate 

the imaginary part or the discontinuity of the photon self-energy, which involves 

evaluating its various cuts. In the interest of a physical interpretation of the various 

cuts, the polarization tensor P^u{k) may be expanded as a product of polarization 

vectors as P^u(k) = e+ll{k)e*+u{k) + e_Al(fc)ei(y(A;), where the z-axis is chosen as the 

direction of the photon momentum k. Then the effective propagator may be formally 

written as 

S^(k)= Yl ^{k)e^{k)eiu{k), (2.38) 
i=+,-,0 
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Figure 2.4: The dispersion relations U>T,L('C) for transverse gluons and longitudinal gluons in a 
quark-gluon plasma, where mg is the thermal gluon mass. 

where we set eft = u^1 = (1,0,0,0) and A± = A^, A0 = AL. The entire expression 

for the rate, may be expressed in a factorized form f(ko)g(po — ho), where k0 is the 

Matsubara frequency of the gluon and po is the frequency of the external photon. The 

remaining sum over fco and the discontinuity across the real po is achieved by means 

of the identity, [111, 130] (see Appendix D for derivation), 

D i s c T £ f(k0)g(p0-k0) = 2m j'du j ' du'PI{UJ)PI(UJ,)5{U+U'-E)(l + / H + j V ) ) , 
fc0 

where f(co) and /(u/) are the thermal distribution functions of gluons, and p\(u) 

and p2(w') are the spectral functions of f(k0) and g(po — k0). The spectral function 

p(z) for f(z) is defined as p(z) — Discf(z)/(2iri). Employing the above formula, the 

discontinuity in the photon self-energy may be expressed in a kinetic form, 

d R _ _ v ^ 1 1 r d3k 

x f<kjJdu'pi(u;)pj(u')6(u + Lj' - E)(l + /(w) + f{u)'))\MHj\
2, (2.39) 

where the matrix element Mjy = eiIM(p)eiU(k)ejP(p — k)T^vp{p, k,p — k), and Pi(w) and 

Pj(u>') are the spectral functions of the gluon propagators A, and Aj. 

PrAko,k) = ZTiL(k)[5(k0-ujT,L(k))-5(k0+ijTtL(k))} + pT,L{ko,k)d(k2-k2
o)l2A0) 
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where the explicit expressions of ZL,T and /3L,T are given by [129] 

Zh{k) ~ k\k2 + 2m2 - ul)' ZT{k) " 2m2u;2 - (u,2 - fc2)2' ( 2 ' 4 1 J 

and 

m2x 

(k2 + 2m2(l - f In |2±1|)2 + 7r2m4x2 

„ /L. ^ = |m2x(l - x2) 

The two spectral functions contain contributions from the poles UJT,L with residue 

ZT,L a s well as from the branch cuts PT,L- The product of two p functions give three 

types of contribution: pole-pole, pole-cut, and cut-cut. The pole-pole terms represent 

the process involving two quasi-particles with dispersion relations displayed in Fig. 

2.4. The terms from the cuts represents the processes involving space-like gluons from 

the medium, i.e., gluons which are intermediate states of a scattering process. In this 

first effort, the focus will lie on the hard photon production rate, i.e., photons with 

momenta p ~ T. This requires that at least one of the gluons in Fig. 2.3 to be hard. 

While in the usual HTL prescription, such particles receive suppressed contributions 

from hard loops, a component of the HTL self-energy which produces a thermal gluon 

mass is retained. The cut-cut contribution with two space-like gluons is dominant 

only in the region where both gluon momenta are soft and is ignored in this effort. 

2.4 Results 

In this section, we will present the numerical results for the hard photon production 

rate from our new channel in a plasma with finite baryon density. Here we only 

consider two massless flavors of quarks with equal chemical potentials p,u — p,d = / i s /3 

and the strange sector has been ignored in this calculation. The strong coupling 

constant is set to be as = 0.4 in such a plasma. 

In Fig. 2.5, the photon production from our new channel (ggj vertex) is compared 

with the contribution from the leading order QCD annihilation process (qq —> 37) 

and Compton scattering (qg —> qg). The photon differential rate from annihilation 
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Figure 2.5: The differential rate of photons from gg'y vertex in a hot and dense medium with 
temperature T = 200MeV compared with the contribution from QCD annihilation and Compton 
processes. 

and Compton processes at finite temperature and chemical potential is parameterized 

asinRef.[75, 120, 121] by 

E-
. dR 5 aPax T2 + g)e-# ln 2.912ET 

+ G (2.43) 
d3p 9 2TT2 \ n2J \g2(T2 + ii2/ir2) 

where the dimensionless quality G is fitted to be G = ln(l + /J?/7r2T2) for fi/T < 1 

and G = ln(l + 0.139/i2/T2) for \xjT > 1. 

From Fig. 2.5, one may immediately find that the contribution from the new 

channels (ggj vertex) to the photon production is much smaller than the QCD anni

hilation and Compton processes at low chemical potential. However, with increasing 

chemical potential at a fixed temperature, the photon production rate from the gg^ 

vertex tends to increase at a larger rate. This may be understood from the fact that 

the matrix element corresponding to the gg^ vertex in Fig. 2.2 is proportional to the 

chemical potential as we see from Eq. (2.27). Thus, we will expect that in baryon-rich 

matter such as that produced in low energy collisions of heavy ions or in the core of 

neutron stars, the new channel from ggj vertex will become significant in comparison 

to the leading order QCD rates. Interestingly, the new FAIR accelerator at GSI will 

have the mandate to explore the realm of high baryon densities. 
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In the above estimates, the chemical potential and temperature are held fixed sep

arately. It has been shown in Ref. [118, 120, 121] that the photon production rate 

from leading order QCD processes have a strong dependence on increasing chemical 

potential \i of the medium if the energy density of the medium is fixed. If the energy 

density were held constant, the temperature T and \x are related to each other by the 

equation of state. Here we use the equation of state derived from the phenomeno-

logical MIT bag model [30, 118, 120, 121] (see Chapter 1). In this case, the energy 

density is given as, 

e = 
377T2 l l 7 r a , 

T4 + 3 1 
2a 

,,^+MI-^",+B-&M) 
30 3 

where the bag constant B is fixed to be 200 MeV4. If T is made dependent of /i 

in this way, then both rates will decrease strongly with increasing chemical potential 

because of the decreasing of the temperature T of the medium. At RHIC, one expects 

a maximum energy density of about e = 5 GeV/fm3, and the average energy density 

will be smaller than this value. We pick a conservative estimate of e = 1.8 GeV/fm3, 

which corresponding to T = 200 MeV at zero chemical potential. 

~> 1 ' i—'—i ' r 

o-^3 ggy vertex, u/T=l 
a- -o ggy vertex, |a/T=2 
o - o ggy vertex, |i/T=3 

LOQCD, u/T=l 

2 2.2 2.4 2.6 2.8 3 
E (GeV) 

Figure 2.6: The differential rate of photons from gg*y vertex in a hot and dense medium with 
energy density fixed, e = 1.8GeV/fm , compared with the contribution from QCD annihilation and 
Compton processes. 

In Fig. 2.6, the result of the leading order rate and that from the new channels 
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(ggj vertex) is presented, where we increase the chemical potential \i from ji/T = 1 

to ix/T = 3. As may be seen from the plot, the photon production rate from our 

new channel {gg^f vertex) decreases with increasing chemical potential with fixed 

energy density, showing a similar dependence to the QCD leading order processes. It 

would appear that with energy density fixed, the photon production from our new 

channel has a much stronger dependence on the temperature than on the chemical 

potential and has not exceeded the photon production rate from QCD annihilation 

and Compton processes in the range of energies explored. It should be noted that the 

above statement may not be true for soft photons where cut-cut contributions need 

to be incorporated. 

2.5 Conclusions 

In the present chapter, we have presented the hard photon signature emanating from 

the gluon fusion channel. We employed an effective field theory of QCD at high 

temperature (HTL) and focus the photon spectrum from a medium at equilibrium. It 

is found that the hard photon production rate from this channel tends to be suppressed 

compared to the leading order rate from QCD annihilation and Compton process for 

realistic values of temperature and chemical potential, but will gain significance in 

baryon-rich matter. Since photon production from such channels is dependent on the 

gluon density of the medium, it offers a new window to probe the gluon sector of the 

highly excited strongly interacting matter. 

Our results may be extended to non-equilibrium cases, such as in the early stages 

of relativistic heavy ion collisions. In such a scenario, the gluon populations are much 

larger than those of quarks, and the photon production from this new mechanism 

could outshine that from conventional channels. Another application of such rates is 

to photon production in neutron stars where the chemical potential far exceeds the 

temperature and many of the conventional channels are Pauli blocked. It would be 

highly interesting to estimate the photon production rate from two gluons in such 

diverse scenarios, and this is left for future efforts. 
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Photon and gluon bremsstrahlung in the AMY formalism 

In this chapter, we briefly review the Arnold-Moore-Yaffe formalism (AMY) [93, 94, 

95] for photon and gluon bremsstrahlung in a quark-gluon plasma. We first discuss 

the complete leading-order result of thermal photon emission rates from a quark-

gluon plasma, including 2 —> 2 processes as well as bremsstrahlung and inelastic pair 

annihilation processes with Landau-Pomeranchuk-Migdal (LPM) effect [87]. Then 

the induced photon emission from bremsstrahlung with LPM effect is generalized to 

induced gluon bremsstrahlung process. Later, we follow Ref. [131] and present some 

simple applications to the calculation of radiative part of jet energy loss in the quark-

gluon plasma. In the last section, the applicability of the AMY formalism is discussed 

[131, 132]. 

In AMY, it is simply assumed that the temperature T of the quark-gluon plasma is 

so high that one may treat QCD running coupling constant gs(T) as a parametrically 

small quantity. This allows us to compute the leading order photon and gluon emission 

rates using perturbation theory. As the temperature T is the only momentum scale in 

the quark-gluon plasma, we usually call those particles with momenta of order T hard 

particles, those with momenta of order gsT soft particles, and those with momenta 

of order g2
sT ultra-soft particles. 

It should be emphasized that we treat the quark-gluon plasma as a relativistic 

dynamical medium, with moving scattering centers. The screened color electric and 

magnetic field generated by the medium is treated as a classical random background 

field, and photons and gluons are emitted when an energetic parton is propagating 

through such a color gauge field. It has been shown in the model that by simple 

45 
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physical considerations of localization of particles in both space and momentum, the 

LPM effect in bremsstrahlung can be interpreted as an infinite sum of self-energy 

diagrams, called ladder diagrams. As it is just a geometric series, the resulting sum 

is then converted into a linear integral equation, from which the photon and gluon 

emission rates are computed. 

3.1 Complete LO result for photon emission from QGP 

It is of great importance for theory to establish the production rates of photons 

from the quark-gluon plasma. According to QCD theory, the simplest diagrams 

contributing to the leading order photon emission rate are 2 —> 2 processes, such 

as annihilation process qq —• gj and Compton scattering process q(q)g —> q{q)^, as 

shown in Fig. 3.1. 

|2 i |2 

+ 

Figure 3.1: QCD annihilation process and Compton scattering - 2 —> 2 processes that contribute to 
the leading order photon production rate. 

Perturbative QCD calculations of photon emission rate from annihilation and 

Compton scattering processes encountered the infrared singularity when the exchanged 

momenta in internal quark lines are zero. It was shown in Ref. [75] that this diver

gence can be circumvented by using the hard thermal loop (HTL) approximation [125], 

where the correlation functions are expanded in terms of effective dressed propagators 

and vertices instead of bare ones. One may introduce an arbitrary momentum scale 

to separate the photon emission rate into soft contribution (with quark momentum 

of order gsT) and hard contribution (with quark momentum of order T). The soft 

contribution is computed with appropriately dressed propagators in one-loop photon 
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self-energy as shown in Fig. 3.2, and the hard contribution can be computed using 

perturbative methods in kinetic theory. When the two parts of the contribution are 

finally put together, the result is independent of the arbitrary separation scale as it 

should be. 

•€> ^ 

Figure 3.2: The one-loop hard photon self-energy with one of the quark propagators being dressed. 

If we define the photon emission rate per unit volume i?7 = dN^/dPxdt, the final 

result of photon emission rate from 2 —> 2 processes is given by [75, 93, 94, 95], 

(2vr)3di?2-2 x-^ fef\2 8naeasT
2 „ , , . / l , kT „ ., ,„. . . 

where /^(fc) = l/[exp(fc/T) + 1] is Fermi-Dirac thermal distribution function and 

mn 
is the thermal gluon mass, m2 — g2T2/6. In the limit of k » T, C22(k/T) is a 

constant given by 

C2^2(k/T) = - I - ^ + ? l n 2 + ^ « -0.3614902. (3.2) 

As for any value of k, it has been shown in Ref. [93, 94, 95] that the following simple 

parametrization may reproduce the numerical values of C2->2(x) quite accurately, 

C W x ) « -0.3615 + ^ ^ + l.Ole"1-351. (3.3) 

One might expect that 2 —> 2 processes are the complete lowest order result for 

the photon production in the quark-gluon plasma at leading order 0(aeas). But it 

was pointed out in Ref. [93, 133, 94] that some 2 —> 3 processes, namely photon 

bremsstrahlung process (qq —> qqj, qg —> qg^) and inelastic pair annihilation process 

(qqq —> qj, gqq —> gj) as shown in Fig. 3.3, generate the same order contribution 
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+ 

Figure 3.3: 2 —> 3 particle processes (bremsstrahlung and inelastic pair annihilation) that also 
contribute to the leading order photon production rate. 

as 2 —> 2 processes to the emission of photons from the quark-gluon plasma. As for 

2 —> 3 processes, if the exchange gluon momentum q is hard ~ T, then the rates are 

0(aea
2), negligible compared to 2 —> 2 processes, whose rate are 0(aeas). But if 

the exchange gluon momentum is soft ~ gsT, an enhancement from the soft gluon 

propagator l/(gsT)2 will cancel the extra power of g2. from the extra vertices, making 

the contribution to the photon emission rate from these 2 —> 3 processes the same 

order as 2 —> 2 processes. 

However, in order to obtain the correct leading order photon emission rate from 

the quark-gluon plasma, it is not sufficient to incorporate only those additional 2 —> 3 

processes as shown in Fig. 3.3. First, the mean free path (time) of hard jets between 

soft scatterings by thermal partons in the surrounding medium is given by 

A = — (3.4) 
no T\g2jT2) q\T 

Second, as the exchanged gluon momentum is soft, from energy and momentum 

conservation, the corresponding internal quark line are nearly on-shell, which implies 

that the photon and the quark are highly collinear. As the scattering angle is small, 

it will take some time for the photon and the quark to be apart in space. This is 

the formation time of the collinear photon emission. In fact, the energies of internal 

quark lines are off-shell by an amount of 

SE 
T 

g;T, (3.5) 
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from which we may obtain the time duration of this process, 

^-^-jJ-^-^r (3'6) 

We may see that the photon emission time is the same order as the mean free time 

between soft scatterings by the surrounding partons from the medium. This implies 

that the quark has the potential to suffer more than one soft scattering with thermal 

medium particles before emitting the hard collinear photon. As a consequence, the 

multiple scattering processes cannot be treated independently; the interference of all 

those scatterings, such as 3 —> 4 processes, 4 —> 5 processes, or more, have to be 

taken into account consistently in order to obtain a complete calculation of leading 

order photon emission rates. This is known as Landau-Pomeranchuk-Migdal (LPM) 

effect [87]. 

. U£L - UiL . 

gT gT 

Figure 3.4: The typical orders of magnitude of various momentum, length and angular scales asso
ciated with a photon bremsstrahlung. 

In Fig. 3.4, we show the typical orders of magnitude for various momentum, 

length and angular scales when a hard photon (with momentum k ~ T) is emitted 

by a hard partonic jet (with momentum p ~ T) propagating through the dynamical 

medium. The hard parton suffers more than one soft scatterings (with momentum 

transfer q ~ gsT) before emitting the photon. The angle deflection in each collision is 

6 ~ q/p ~ gs. It is noted that scattering off ultra-soft gauge bosons (with momentum 

q ~ g2
sT) is not important, as the momentum exchanged is too small to affect the 

kinematics of the photon emission process. 
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Figure 3.5: Cutting the ladder diagram may be interpreted as the interference between two diagrams 
with photon emission before and after the soft scatterings. 

From Eq. (2.31), the photon production rate is related to the imaginary part of 

the photon self-energy, called ladder diagram. This corresponds to considering its 

cuts. It has been shown in Ref. [93, 94, 95] that a correct treatment of collinear 

bremsstrahlung and inelastic pair annihilation processes requires a summation of all 

ladder diagrams of the type shown in Fig. 3.5, each with a different number of gluon 

rungs (see Fig. 3.6). As indicated in Fig. 3.5, cutting the ladder diagram leads 

directly to bremsstrahlung and inelastic annihilation processes with LPM effects. 

Considering bremsstrahlung for example, this corresponds to the interference between 

two diagrams with photon emission before and after the soft scatterings. As all the 

exchanged gluons are soft (with momentum of order gsT), the hard thermal loop 

(HTL) corrections [125] must be employed to the soft gluon propagators. As the 

resulting sum is just a geometric series, AMY [93, 94, 95] have written the total 

self-energy in terms of a linear integral equation, as illustrated in Fig. 3.6. 

Figure 3.6: The sum of the geometric series of photon self-energy may be written in terms of the 
solution to a linear integral equation. 
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After performing the numerical computation of the integral equation, the leading 

order photon emission rate from bremsstrahlung and inelastic annihilation processes 

with LPM effect may be written as [93, 94, 95] 

-=2^[-7l 1 fF(k)CLpM(k/T), (3.7) 

where the numerical values of CLPM(^) may be reproduced quite accurately by the 

following parametrization [93, 94, 95], 

C L P M ( ^ ) ~ \ / 1 + - ^ 
0.548 ln(12.28 + 1/x) 0.133x 

(3.« 

For details of how to derive the above formula, please refer to Ref. [93, 94, 95]. Finally, 

putting all necessary ingredients together, we obtain the complete leading order result 

for photon emission rates from the quark-gluon plasma at 0(aeas) [93, 94, 95], 

(2-KfdR^ _ „ / e A 2 8iraeasT
2 

Cl K r \ 6 / K 

1 UJ1 

- In — + C2^2(k/T) + ChPM(k/T) (3.9) 

where C2^2(x) and CLPM(^) are approximated by Eq. (3.3) and Eq. (3.8), respectively. 

3.2 Gluon emission by bremsstrahlung from QGP 

The above analysis of LPM effect for photon emission can be analogously extended 

to the evaluation of gluon emission by bremsstrahlung process in the quark-gluon 

plasma. The key complication here is that gluons also carry color charges. Thus, the 

emitted gluon will interact with the soft color background field, as shown in Fig. 3.7. 

In spite of this difference, much of the argument for photon emission still holds for 

gluon emission, i.e., the emitted gluon and the incoming quark are nearly collinear. 

As we are considering hard gluon emission, we may treat the emitted gluon as another 

incoming particle propagating through the soft color background field. As a result, it 

is still possible to convert the resummation of infinite ladder diagrams into a similar 

integral equation. Analogous to photon emission, we may obtain the induced gluon 

emission rate dR^PM{k)/d3k (see Ref. [93, 94, 95] for details). 
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Figure 3.7: A typical gluon bremsstrahlung diagram that needs to be resummed in the AMY for
malism. 

In order to obtain the time evolution of the jet distribution, we need to extract the 

transition rate dT3
ab(p, k)/dkdt for the partonic process j —> a + b. For example, the 

gluon emission rate from the process q —> qg may be written in terms of transition 

rate as, 

(2ir)3dRg(k) {2nfdNg{k) r d3p (2ir)3dNg(p) (27r)3dr«s(p, k) 

d3k d3kd3xdt (27T) 

dP^ifgiP) 

d3pd3x d3kdt 
rfT«9(p,fc) 

(3.10) 
k2 " " " ^ dkdt 

where fq(p) = (2n)3 / dq • dNq(p) / d3pd3x = /F{P) is the phase space distribution of the 

quark in the medium (Fermi-Dirac thermal distribution function) and dq — 2 • 3 = 6 

is its spin-color degeneracy. Finally, the complete result for the gluon bremsstrahlung 

rate is [131, 132] 

dT(p,k) Csg
2

s 1 1 
dkdt 167rp71 ± e-fc/T 1 ± e->-fc)/T 

l+( l -x) 2 

x { N<xlt{}-$ g^qq >x 
x2+(l-x)2 

Vf x2(l-x)2 

x3(i-x)3 9 ~* 99 

I d?h 
( 2 ^ 

2h-ReF(h,p,k). (3.11) 

Here x = k/p is the momentum fraction of the gluon (or the quark, for the case 

9 ~^ QQ)- The factors l/[l±exp(fc/T)] are Bose enhancement or Pauli blocking factors 

for the final states, with — for bosons and + for fermions. h = p x k determines how 

non-collinear the final state is; it is treated as parametrically 0(gsT
2) and therefore 

small compared to p • k. Therefore it can be taken as a two-dimensional vector 
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in transverse momentum space. F(h,p,k) is the solution of the following integral 

equation [131, 132]: 

-(CA/2)[F(h) - F(h+pq±)} + (CA/2)[F(h) - F(h-(p-k) qx)}} . (3.12) 

2h = i5E(h,p, k)F(h) + gl J ^C(q±){(Cs - CA/2)[F(h) - F(h-kq±) 

Here 5E(h,p, k) is the energy difference between the final and the initial states: 

8E(h,p,k)=n ,? , ,+ ^ + 4 ^ 4 T - ^ , (3-13) 
v 'F' ' 2pk{p-k) 2k 2{p-k) 2p v ! 

and m2 are the medium induced thermal masses. Also, C(q±) is the differential rate 

to exchange transverse (to the parton) momentum q±. In a hot thermal medium, its 

value at leading order in QS is [134] 

m2 n2T2 

For the case of g —> qq, (Cs — CA/2) should appear as the prefactor on the term 

containing F(h — pq±) rather than F(h — kqx). 

3.3 Application of AMY to radiative jet energy loss 

It has been shown in Fig. 3.7 that when a hard partonic jet traverses through a 

quark gluon plasma, it will interact with the colored medium by exchanging soft 

momentum ~ gsT with the constituent particles. Those soft multiple scatterings will 

induce the radiation of a gluon by bremsstrahlung, leading to the energy loss of the 

propagating hard parton. This energy loss mechanism is commonly referred to as 

radiative jet energy loss. In this section, we present some simple applications of the 

AMY formalism to the radiative part of jet energy loss in a hot and dense medium. 

The expressions of transition rates in Eq. (3.11) are used to evaluate the time 

evolution of the hard quark plus anti-quark distribution Pq(p,t) = dNq(p,t)/dp and 

the hard gluon distribution Pg(p,t) = dNg(p,t)/dp, as they traverse the soft color 

medium. The joint evolution equations for Pg(p, t) and Pg{p, t) are given by [131, 132]: 

dPq{p) fDf , ^dT«g(p + k,k) p n ^ M x 9 P f x n ^ M M 
~ir=Lp^+k)~^kdt p^~dMT+2P^P+k) dkdt ' 
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dP9(p) 
dt 

t < 
-- Pq(p + k)-
Jk 

dmP+k,P) 
dkdt 

+ Pg(p + k)-
dT9(p + k,k) 

dkdt 

-P9{P) 
dT&fofc) , dT$g(p,k) 

dkdt + dkdt 
-e(2k-P) , (3.15) 

where the k integrals run from —oo to oo. The integration range with k < 0 represents 

absorption of thermal gluons from the QGP; the range with k > p represents annihi

lation against an anti-quark from the QGP, of energy (k—p). In writing Eq. (3.15), 

we used dT-j (p, k) = dT~jg(p,p—k) and similarly for g —• qq; the 0 function in the loss 

term for g —> gg prevents double counting of final states. 
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Figure 3.8: The evolution of a quark jet with initial energy Ei = 16 GeV propagating through a 
medium of temperature T = 400 MeV, where the vertical lines represent the values of mean energies 
related to the corresponding distributions. 

As the first simple application to jet energy loss, we follow Ref. [131] and study 

the time evolution of a single hard particle traversing a quark-gluon plasma. In Fig. 

3.8, the time evolution of the quark momentum distribution is plotted as a function 

of the quark energy for several different times. In the plot, The quark has the initial 

energy Ei — 16 GeV, and the medium has a constant temperature T = 400 MeV. 

Here the strong coupling constant as is set to be a constant as = 1/3. With the 

above setting, the result of Fig. 1 in Ref. [131] is reproduced. The vertical lines in 

the plot represent the values of mean energies of the quarks, as evaluated by the first 
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moment of the corresponding quark momentum spectra. We may see that the final 

quark distributions are not centered at the mean energies, and become broader as the 

energy loss grows. 
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Figure 3.9: The ratios of the final and initial momentum spectra for quarks plus anti-quarks, after 
propagating through a medium of temperature T = 400 MeV. 

To have a more realistic evolution of jet momentum spectra in the thermal medium, 

we evolve the jets with the following power-law parametrization for initial pr spectra 

of quarks and anti-quarks, taken from [114] 

dN _ 
7/ 

»=o 
(Pprdy 

K- (3.16) 
(l+pr/br 

where a = 500, 6—1.6 and c = 7.9 for quarks, and a = 130, 6 = 1.9 and c = 8.9 for 

anti-quarks. K is a constant to account for the next-leading-order corrections to the 

leading order result as inferred from perturbative QCD calculation. 

The time evolution of quarks plus anti-quarks with above pow-law distributions is 

shown in Fig. 3.9, where the ratio of the final momentum spectrum to the initial mo

mentum spectrum is plotted as a function of quark energy for several different times. 

The suppression of the jet momentum distribution is clearly observed as they traverse 

through the thermal medium. As for a plasma with temperature T — 400 MeV, we 

already observe approximately 4 — 5 times suppression for quark jets when the size 
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of the medium is 2 fm/c. This size might be too small compared to the medium 

achieved at RHIC, but 400 MeV is probably the highest temperature being created 

at RHIC. In order to have a more accurate calculation of jet quenching at RHIC, a 

realistic hydrodynamical model is required to describe the space-time evolution of the 

created medium. This will be addressed in later chapters. 

3.4 Discussions 

In this section, we present some discussion of the applicability of the AMY formal

ism following Ref. [131, 132]. There have been several other theoretical models 

to describe the radiative energy loss by induced gluon bremsstrahlung, i.e., Baier-

Dokshitzer-Mueller-Peigne-Schiff (BDMPS) [88], Gyulassy-Levai-Vitev (GLV) [89], 

Kovner-Wiedemann (KW) [90], Zakharov [91] and Majumder-Wang-Wang (Higher 

Twist) [92]. AMY formalism differs from other approaches in several different ways 

[132]. First, as was mentioned at the beginning of this chapter, the model treats QGP 

as a relativistic dynamical medium; the constituent particles of the medium are dy

namic. The calculation of gluon emission rate is completely thermal; it is performed 

in the framework of finite temperature field theory, and temperature enters through 

the thermal phase space of the initial and final particles. Second, the model incor

porates both energy loss processes and energy gain processes, such as the absorption 

of thermal partons and quark-anti-quark pair annihilation and creation. Third, the 

model explicitly solves for both the transition rates and the coupled rate equations 

for hard quarks plus anti-quarks and gluons. 

In this work, the transition rates in the momentum space are calculated in the 

thermodynamic limit, which implies that the high energy parton experiences a uni

form medium in the time scale of the gluon emission. However, the medium created 

in relativistic heavy ion collisions has a finite size, which will impose some limits on 

our formalism. This limitation is related to the coherence length of induced gluon 

radiation. 

There are three typical length scales associated with the gluon bremsstrahlung 
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in relativistic heavy ion collisions: the mean free path A for soft scatterings, the 

coherence length lcoil for induced radiation and the size L of the medium created in 

the collisions. The coherence length /coh plays an important role in the consideration 

of the coherence pattern of induced gluon emission. 

Now we consider a gluon with energy oj emitted by a hard partonic jet after 

suffering iVcoh coherent soft scatterings. If we assume that the multiple soft scattering 

can be described by a random walk, with a momentum kick k± ~ /J, ~ gsT from a 

single soft scattering, then the total transverse momentum squared /ij?oh accumulated 

by the hard jet after Afcot, coherent scatterings is given by 

lScoh = Ncohfi
2. (3.17) 

Moreover, The distance travelled by the hard jet is given by 

ĉoh = ^VCOhA (3.18) 

This is also the formation time (length) of the hard collinear gluon radiation, 

'coh = tform = = 2 ' ^O.iyj 

Mcoh 

Therefore, one may obtain the expression of the coherence length as [135], 

U = \h^- (3-20) 
V M 

When ĉoh <C A, the multiple scatterings are incoherent, and we may treat them 

as independent scatterings. This is the Bethe-Heitler regime, where the energy loss 

per unit length is proportional to the incoming energy [135], 

"•rr = " 4 - (3-21) 

a/jjaz IT A 

When A <C /COh "C L, the multiple scatterings are coherent. This is the LPM regime, 

where the energy loss per unit length is proportional to the square-root of the incoming 

energy [135], 
dT a* AT X a° M [tf* a oô  

U J - — = — N C - — = —Nc\—. (3.22) 
duoaz IT tcoh vr \ ALO 
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When the coherence length exceeds the length of the medium ĉoh 3> L, effectively 

there is only a single scattering. In this case, we are back to Beth-Heilter limit [132], 

u——- = —NcT. (3.23) 

Equivalently, we may introduce two energy scales: the LPM scale £LPM and fac

torization scale £fact defined as, 

[L\2 u2L2 

EhPM — A/i , E{act = -ELPM ( y ) = —r—• (3.24) 

When the emitted energy ui is in the range UJ < -ELPM, one is in incoherent Beith-

Heilter regime. When the emitted energy UJ is in the range £LPM < w < mm[Ei, E{act], 

one is in coherent LPM regime. As the emitted energy u exceed the factorization 

energy scale, u > Efact, effectively there is only a single scattering. 

In our formalism, it is assumed that the high energy parton experiences a uniform 

medium on the time scale of the gluon emission, lcoh < L. This requires that the 

energy of incoming parton is limited to be smaller than the factorization energy scale, 

Ei < Efact. As for Au+Au collisions at RHIC energies, setting L ~ 5 fm, \i ~ 0.5 GeV 

and A ~ 1 fm, we obtain the applicability of AMY formalism: Ei < 30 GeV. This 

is essentially within the momentum acceptance of the four RHIC detectors. As for 

Pb+Pb collisions at the LHC, setting L ~ 5 fm, /i ~ 1 GeV and A ~ 0.5 fm, we 

obtain Et < 250 GeV. 
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Radiative jet energy loss in a 3D hydrodynamical medium 

This chapter follows our recent work [106, 136], where the formalism [93, 94, 95] 

described in Chapter 3 is employed to study the radiative jet energy loss by induced 

gluon emission in relativistic heavy ion collisions. First, we present our calculation of 

the nuclear modification factor RAA for n° production at high transverse momenta pT 

in Au+Au collisions at ^S^N = 200 GeV at RHIC [106] by applying relativistic ideal 

three-dimensional hydrodynamics [137] to describe the thermalized medium produced 

in those collisions. We provide a systematic analysis of the azimuthal asymmetry of 

7T0 suppression at high px in central and non-central collisions, at mid and forward 

rapidity. Then, a calculation of the charged hadron RAA is presented as a function of 

pT for central Pb+Pb collisions at y/5jviv = 5.5 TeV at mid-rapidity at the LHC [136], 

where ideal two-dimensional hydrodynamical model [138] is employed to describe the 

soft thermalized medium. 

4.1 Introduction 

In Chapter 3, we have presented the basic ingredients of our formalism, and some 

simple applications to the radiative part of jet energy loss in a quark-gluon plasma. 

In this chapter, we will perform a more sophisticated calculation of jet quenching 

at RHIC by employing relativistic three-dimensional hydrodynamical to model the 

space-time evolution of the thermalized medium produced in those collisions. 

As has been mentioned earlier, significant jet quenching has been discovered at 

high px in central Au+Au collisions at RHIC. Experimentally, jet quenching can be 

quantified by measurements of various quantities, such as the nuclear modification 

59 
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factor RAA in central collisions as well as non-central collisions [139]. Additional 

tomographic observables are high px triggered correlation measurements, see e.g. 

[140, 141, 142, 143]. In this and next chapter, we will focus on the nuclear suppression 

of single particle spectra, and two particle correlations will be addressed in Chapter 

6, where we present our study on the energy loss of photon-tagged jets at RHIC. 

There have been considerable theoretical effort developed to improve our under

standing of jet-quenching in the nuclear medium [144, 145, 146]. However, early cal

culations often relied on an elementary description of the soft medium, which varies 

with time unconstrained by the bulk observables. Recently, a 3D hydrodynamical 

evolution calculation [137] of the expanding medium in central and non-central colli

sions was employed in detailed studies of jet energy loss as predicted in the BDMPS 

formalism [147, 148] and in the higher twist formalism [149]. In this effort, we ap

ply the tools described in Chapter 3 to the energy loss of the hard partons induced 

by gluon bremsstrahlung in the thermal partonic medium in central and non-central 

collision as inferred from 3D relativistic hydrodynamics [137]. The incorporation of 

the collisional energy loss will be done in Chapter 5. Note that in our approach, 

we only considers the energy loss in the thermalized partonic phase, and the energy 

loss in the confined hadronic sector is excluded in the present study, as essentially no 

jet-quenching has been observed in d+Au collisions [85]. Here we present a calcula

tion of RAA as a function of transverse momentum (and the azimuth) in central and 

non-central collisions and also study the rapidity dependence of this quantity. 

4.2 Relativistic 3D hydrodynamical medium 

In this section, we briefly review the relativistic ideal three-dimensional hydrodynam

ical model [137], which will be applied to describe the space-time evolution of the hot 

QCD matter being created in Au+Au collisions at RHIC. 

The behavior related to the bulk properties of the high energy density phase in 

heavy-ion collisions at RHIC is well described by Relativistic Fluid Dynamics (RFD, 

see e.g. [44, 45, 46]). It should be noted that this description is not applicable in the 
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late dilute stages of the collisions as the mean free path of hadrons is large than the 

typical length scales of the system. Here in the calculation of the ultra-relativistic 

regime of heavy collisions at RHIC, we utilize the coordinates (r, x, y, rj) with the 

longitudinal proper time r = \/t2 — z2 and space-time rapidity r\ = \ ln[(t+z)/(t — z)]. 

We have already seen, in Chapter 1, the evolution of the system is controlled by 

the relativistic hydrodynamical equations, 

d,T^(x)=0, d(lj£(x) = 0. (4.1) 

For an ideal fluid, the energy momentum tensor T^v(x) and the baryon density current 

JB(X) can be expressed as 

T ^ O ) = (e(x) + P{x))v?{x)uu{x) - P(x)g^, fB{x) = nB(x)u"(x). (4.2) 

To solve the above partial differential equations, an equation of state (EoS), e = 

e(F), has to be specified. Here we use a simple equation of state with first order phase 

transition between QGP phase and hadron phase. Above the critical temperature 

(Tc = 160 MeV at /i = 0), the medium is described by a bag model will massless u, 

d, s quarks and gluons [150, 151]. Below the critical temperature Tc, a hadron gas 

equation of state with corrections from excluded volumes [152] is employed. 

The initial conditions have to be provided to solve the relativistic hydrodynamical 

equations. The information of the initial conditions can be extracted by comparing 

to the experimental data. Here, we assume early thermalization with subsequent 

hydrodynamical expansion at Ti — 0.6 fm/c. The initial energy density and baryon 

number density are parameterized by 

e(x, y, v) = emaxW(x, y; b)H{rj), 

nB(x, y, rj) = nBm^W(x, y; b)H(rj), (4.3) 

where b and emax (nsmax) are the impact parameter and the maximum value of energy 

density (baryon number density), respectively. The transverse distribution W(x,y;b) 

is parametrized by a combination of binary collision model and wounded nucleon 
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model [153], 

W(x,y;b) = uj + (1 - u) I , 4.4 
dzr± d2r± 

where u> is the weight factor for binary scaling. The binary scaling is characteristic 

of "hard" particle production processes, while the wounded nucleon scaling is char

acteristic of "soft" particle production processes. The longitudinal distribution H{rj) 

is parametrized by 

H[rj) = exp [-(iTyl - r ? 0)2 /(2^) • 0(\V\ - %)] , (4.5) 

where rjo and on determine the plateau size and spreading of the longitudinal distri

bution. The initial conditions have been chosen such that a successful description 

of the soft physics at RHIC (elliptic flow, pseudo-rapidity distributions and low-px 

single particle spectra) is achieved. Below, we list the values of the parameters at 

Tt = 0.6fm/c used in the our calculation: 

emax = 55 GeV/fm3, nB m a x = 0.15 fm -3, u = 0.6, rj0 = 0.5, on = 1.5. (4.6) 

Once the EoS and the initial conditions at r* have been specified, the hydrody

namical evolution of the system is determined uniquely. This allows us to calculate 

the properties of the soft matter at RHIC, especially collective flow and particle spec

tra. The particle momentum spectra at freeze-out may be obtained by employing 

Cooper-Frye formula [53], 

ET-=l Jr-3da^f(x,p)= f j^dotf? r, v
 l

 W T 1 , ^ (4 .7 ) dsp J-Ef (2Tr)i Jzf {2TT)6 exp[(pl/n" — jif)/Tj\ ± 1 

where da^ is the normal vector to the freezeout hyper-surface £ / , pM is the parti

cle momentum, / is the single particle phase space distribution function, and jif is 

chemical potential at freeze-out. Here, the freezeout process is assumed to happen 

when a temperature in a volume element of fluid is equal to a freezeout temperature 

Tf = 110 MeV. Also the freezout temperature 7/ may be treated as a free parameter 

and determined by comparing to the experimental data on single particle spectra. 
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It should be mentioned that the 3D hydrodynamical model used in this thesis 

does not take into account the subsequent interactions among hadrons after freeze-

out. Those interactions may be described by microscopic transport models, such as 

Ultra-relativistic Quantum Molecular Dynamics (UrQMD) [57, 58]. As for this case, 

the ensemble of hadrons produced at freezeout is used as the initial input for UrQMD 

calculation. For further details of the implementation of UrQMD calculation and its 

possible implications, we refer the reader to [137]. 

4.3 Jet evolution in the soft medium 

In this section, we present the techniques employed to calculate the initial jet pro

duction in the early stage of the collisions, the subsequent propagation through the 

hot and dense medium, and final hadronization in the vacuum. As we focus on the 

hadrons in the high pr region, fragmentation will be the dominant mechanisms for 

the production of hadrons. Other mechanisms such as the recombination of par-

tons become of increasing significance for the production of softer hadrons (below 

p r ~ 7 G e V / c ) [154]. 

The momentum distribution of initial hard jets is computed from pQCD in the 

factorization formalism [113], 

- ! % - = £ f dxaGa/A(xa,Q)Gb/B(xb,Q)± 2XaX) Kdaa+';J+d. (4.8) 
d Prdy abdJ n 2xa - xJ

Tey at 

In the above equation, Ga/A(xa,Q) is the distribution function of parton a with mo

mentum fraction xa in the nucleus A at factorization scale Q, taken from CTEQ5 

[155] including nuclear shadowing effects from EKS98 [156] l. The index j represents 

one of the partonic species (j = Q,Q,g), and x3
T = ^PrI\/sNN-, where /̂SJVAT is the 

center-of-mass energy for nucleon-nucleon collisions. The distribution da/dt is the 

leading order QCD differential cross section, and the K-factor accounts for next-to-

leading order (NLO) effects and is taken to be constant in our calculation as it is 

LUnless otherwise stated, in the following discussions the use of CTEQ5 + EKS98 for nuclear parton 

distribution functions will be applied. 
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almost PT independent [138, 157, 158]. The initial Cronin effect is neglected in our 

calculation since the nuclear modification factor of neutral pions from d+Au collisions 

is consistent with 1, within systematic errors [159]. 

The hadron production is obtained by introducing the hadron fragmentation func

tion D)1/J(ZJ,QF), which gives the multiplicity of the hadron h with the momentum 

fraction Zj = PT/PT produced from a jet j at a scale Qp. For p+p collisions, as no 

medium is produced (thus no energy loss for the jets), the final hadron spectra are 

obtained by fragmenting the initial hard jet spectra, 

^ E / f ^ , « ^ , (4.9) 
In our calculation, the fragmentation function is taken from the KKP parametrization 

[160]. The factorization scale Q = p°T and fragmentation scale Qp = pr are set as 

in [138] where the i-C-factor is found to be 2.8. These values nicely reproduce the 

experimentally measured n° yield at mid and forward rapidity in p+p collisions at 

y/s^N = 200 GeV, as shown in Fig. 4.1 and Fig. 4.2, where experimental data 

are taken from PHENIX [161] and STAR [162], respectively. It can be clearly seen 

that replacing the CTEQ5 parton distribution functions by MRST01 [163] yields 

essentially the same result for the inclusive 7r° production in p+p collisions. We point 

out that the presence of a nuclear medium in relativistic heavy ion collisions might 

in principle alter these scales but we postpone a detailed study of this possibility to 

future research. 

As for the hadron production in Au+Au collisions at RHIC, we must include the 

energy loss of hard jets during their propagation through the thermalized medium 

produced in those collisions before fragmentation in vacuum. This is performed by 

taking into account the induced gluon emission during jets travelling. The jet energy 

loss depends on the path taken by the jet and the medium profile along that path, 

which in turn depends on the location of the production vertex f± of the jet and its 

propagation angle (f> with respect to the reaction plane. Therefore, we must convolve 

the jets over all origins f± and directions <f>. 

The probability density distribution of initial jets VAB^P, r_L) at the transverse 
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Figure 4.1: The inclusive cross section for n° production versus ir° transverse momentum at mid-
rapidity in pp collisions at y's/v/v = 200 GeV, compared with PHENIX data. 

position r± in A+B collisions with impact parameter b is given by 

TA{r± + b/2)TB{r±~b/2) 
VAB(b,f±) = -

TAB(b) 
(4.10) 

Here we use a Woods-Saxon form, p(r*j_, z) — po/[l + e x p ( r ^ ) ] , for the nuclear den

sity function to evaluate the nuclear thickness function TA(f±) = J dzpA(r±, z) and 

the overlap function of two nuclei TAB^) = Id2r±TA{f±)TB(f± + b). The values of 

the parameters R = 6.38 fm and d — 0.535 fm are taken from [63]. 

We have already seen, in Chapter 3, the evolution of jet momentum distribution 

Pj(p,t) = dNj(p,t)/dp (essentially the probability of finding a jet with energy p at 

time t) in the medium is obtained by solving a set of coupled rate equations for 

quarks, anti-quarks and gluons, which have the following generic form, 

dPj(p,t) 

dt ab 
dk P^ + Kt)^l^.PiM^M (4.11) 

dkdt JK ' dkdt 

where dT3
ab(p, k)/dkdt is the transition rate for the partonic process j —> a + b. We 

point out that the calculation includes not only the emission but also the absorption 

of thermal partons as the k integral in Eq. (4.11) ranges from - c o to oo. 

The strength of the transition rate in pQCD is controlled by the strong coupling 

constant as, temperature T and the flow parameter j3 (the velocity of the thermal 
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Figure 4.2: The inclusive cross section for ir° production versus n° energy at forward rapidity in pp 
collisions at ^/SJJN = 200 GeV, compared with STAR data. 

medium) relative to the jet's path. In a 3D expanding medium, the transition rate 

is first evaluated in the local frame of the thermal medium, then boosted into the 

laboratory frame, 

dT(p,k) 

dkdt 
\l-vrf3) 

dF(p0,kQ) 
(4.12) 

local I lab dk<>dt° 

where ko = k{\ — Vj • (3)/\/l — (32 and to = t\J\ — f52 are momentum and the proper 

time in the local frame, and Vj is the velocity of the jet. As jets propagate in the 

medium, the temperature and the flow parameter depend on the time and the posi

tions of jets, and the 3D hydrodynamical calculation [137] is utilized to determine the 

temperature and flow profiles. The energy-loss mechanism is applied at r0 = 0.6 fm/c, 

when the medium reaches thermal equilibrium, and turned off when the medium 

reaches the hadronic phase. 

The final hadron spectrum at high pr in A+B collisions is obtained by the fragmen

tation of jets in the vacuum after their passing through the 3D expanding medium, 

dcrAB(b) _ 1 f j 2 - r, ru * \Y fdZj n i~ ^ \ dcrAB(b,r±,(p) 

3 

1 t f dz• 

= 2^ / d2r±TAB(b,r±)J2J -^Dh/j(Zj,QF) (4.13) 

fin d?pTdy 2irJ -•^""'-'•^'^J zj-•"•"-'"*" dyTdy 

where daJ
AB/d^p^dy]^ is the final momentum distribution of the jet initially created 

at transverse position f± and propagating at azimuthal angle (p. The yield of final 
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hadron production is given by, 

dNh
AB{b)__NcoX{{b)dah

AB{b) 
(4.14) 

d2pTdy aNN d2pTdy ' 

The nuclear modification factor RAA is denned as the ratio of the hadron yield in 

A+A collisions to that in p+p interactions scaled by the number of binary collisions 

aNN dN\B(b) I'd2pTdy da\A(b)/d2pTdy 
R-AA(b,PT,y)--
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Figure 4.3: The neutral pion RAA at midrapidity in most central (upper) and midperipheral (lower) 
Au+Au collisions at RHIC compared with PHENIX data. 

In this section, we present the numerical results of our radiative jet energy loss 

study. Here we only show results for the nuclear modification factor RAA for neutral 

pions, as results for charged hadrons (including contributions from charged pions, 

kaons and protons) are qualitatively similar. In Fig. 4.3, we present the calculation 

of the nuclear modification factor RAA f° r neutral pions measured at midrapidity 

for two different impact parameters b — 2.4 fm and b = 7.5 fm, compared with 

(preliminary) PHENIX data for most central (0 — 5%) and midcentral (20 — 30%) 

collisions [139]. 
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The strong coupling constant as is the only quantity which is not uniquely deter

mined in the model once the medium evolution is fixed by the initial conditions and 

subsequent 3D hydrodynamical expansion. The value of as is a direct measure of the 

interaction strength and adjusted in such a way that the experimental data in the 

most central collisions is described. The same value, as = 0.33, is used in peripheral 

collisions. Treating as as a constant from early thermalization on down to the phase 

transition temperature is a simplification and corresponds to the assumption that the 

deconfined phase of the medium formed in Au+Au collisions at ^sNN = 200 GeV 

at RHIC can be characterized by one average effective coupling. We have verified 

that choosing different constant values of as does not influence the shape of RAA as 

a function of pr significantly while only the overall normalization is affected. 
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Figure 4.4: The inner and outer boundaries for T = Tc in the transverse plane at two different 
proper times, b = 7.5 fm. 

In Fig. 4.3, RAA at midrapidity is averaged over the azimuth (f>. However, RAA 

in central collisions alone is not suited to distinguish in detail between different the

oretical conjectures about jet energy loss [164]. More tomographic capabilities can 

be achieved if one studies RAA at midrapidity in non-central collisions not only as a 

function of pr averaged over (f> but also as a function of the azimuth cf) [139]. 
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Figure 4.5: The time evolution of the temperature seen by a jet initially created at (ro, <j>o) moving 
in plane and out of plane through the medium, b = 7.5 fm. 

In non-central collisions, the initial geometric asymmetry for the reaction zone 

leaves its imprint on the subsequent 3D hydrodynamical evolution. As a result, 

initial jets experience different energy loss due to the different local properties of the 

nuclear medium with which they interact. The important input from the evolution 

is the temperature in the rest frame of the local fluid that the jet experiences (and 

to a lesser extent the flow profile of the medium, as discussed later). 

To illustrate the geometrical asymmetry of the medium, we show in Fig. 4.4 

isotherms for T = Tc in the transverse plane for an impact parameter of b = 7.5 fm 

at two different proper times of the evolution. They represent the inner and outer 

boundaries of the mixed phase during the evolution. The geometric asymmetry of the 

temperature profile can be clearly seen from the plot. Both boundaries move towards 

the center and the inner boundary moves faster than the outer boundary. It is useful 

to define the emission in plane (0 = 0) versus out of plane ((/> = 7r/2). 

Fig. 4.5 shows the temperature observed by a jet traversing this medium. The 

jet is assumed to be created at position (ro,<^o) by a hard scattering at early times 

in the heavy-ion collision. As it propagates through the medium, the surrounding 

environment will change from the QGP phase to the mixed phase, then to the hadronic 

0.3 

1 0 . 2 
H 

0.1 
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phase and will eventually freeze-out. We plot the temperature evolution experienced 

by jets that are created in a symmetric position (</>0 = TT/4) relative to in-plane and 

out-of-plane and illustrate the geometrical asymmetry of the medium experienced by 

the jet. We compare jets starting at the origin and those at r0 = 3 fm. 

As is clearly evident, jets that propagate out of plane pass the mixed phase and 

the hadronic phase at a later proper time than those traversing in plane and will 

interact with the deconfined and mixed phase of the medium longer. As a result, the 

energy loss experienced by the jets propagating out of plane will therefore be larger 

than in plane if they start from the same point and carry the same energy. 
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Figure 4.6: The neutral pion RAA at midrapidity for emissions in plane and out of plane as a function 
of px for different impact parameters. 

This behavior is reflected in Fig. 4.6, where RAA is shown as a function of pr for 

emissions in plane and out of plane for different impact parameters. While there is 

a very small difference for RAA between the two planes in central collisions, a much 

larger difference for midcentral collisions (~ 13% for b = 7.5 fm) is predicted, as can 

been seen from the ratio of RAA out of plane to that in plane shown in Fig. 4.7. 

As a further tomographic quantity, one can also study RAA for non-central colli

sions as a function of the azimuthal angle 4> f° r different pr- In Fig. 4.8, we show the 

ratio of differential RAA{4>) to the (^-averaged RAA as a function of 4> for three different 

OS 

u . t 

0.3 

< 
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PT- From the plot, we observe a monotonous decrease of RAA for emissions from in 

plane to out of plane. This reflects (an average of) the asymmetric temperature (and 

flow) profiles experienced by the jets while they traverse the medium. 
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Figure 4.7: The ratio of the neutral pion RAA at midrapidity for emissions in plane and out of plane 
as a function of PT for different impact parameters. 
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Figure 4.8: The neutral pion RAA at midrapidity as a function of the azimuthal angle <j> of the pion 
for different pr, b = 7.5 fm. 

The azimuthal anisotropy is often studied in terms of Fourier expansion of the 

particle spectrum dN/d2prdy as 

dN dN 
Prdp-rdcpdy 2-KpTdprdy 

1 + Y^2vn(pT,y)cos(n<p) (4.16) 
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Figure 4.9: The neutral pion V2 at midrapidity in most central (upper) and midperipheral (lower) 
Au+Au collisions at RHIC compared with PHENIX data. 

where the coefficient vn is given by 

vn(PT,y) = 
/ tf d</> cos(ncf))dN/d2pTdy 

J*n dcpdN/ d?pTdy 
(4.17) 

It is evident that all odd coefficients vanish because of symmetry, leaving the coeffi

cient v2 to be the most important one. 

In Fig. 4.9, the anisotropy parameter v2 of 7r° production in Au+Au collisions 

at RHIC energies is shown as a function of pp. Our calculation is compatible with 

available experimental data at high pp. Our results imply that v2 at high pp is almost 

identically zero for most central collisions, as the medium is essentially symmetric with 

respect to the azimuthal angle. As for for mid-peripheral collisions (b = 7.5 fm), v2 

is positive (around 0.03) and has little dependence on hadron pp. It should be noted 

that our calculation includes only fragmentation for the final hadron production, thus 

our result is only reliable at higher pp regime. For the production of softer hadrons 

(below pr ~ 7 GeV/c), other mechanisms, such as the recombination of partons, 

become of increasing significance [154]. 

In a 3D expanding medium, there is also considerable collective flow being built up 

during the evolution. This can affect the energy loss of jets and may to some degree 

influence the asymmetry in the final pion spectrum [165]. To quantify this effect, we 
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Figure 4.10: Comparing the neutral pion RAA at midrapidity with and without flow for emissions 
in plane and out of plane as a function of pr, b = 7.5 fm. 

use the same 3D hydro temperature profile, but disregard the transverse flow. We 

compare the case with flow to one where the flow velocity is disregarded, namely 0 — 0 

is enforced by hand in Eq. (4.12) (only for illustration purposes). This treatment can 

give an estimate on how collective flow (not the temperature of the medium) influences 

the jet energy loss in the evolution. As is shown in Fig. 4.10, flow effects only slightly 

increase the quenching power of the medium in the calculation. It is emphasized that 

for a realistic hydrodynamical calculation, the overall temperature of the medium 

would not drop as fast if collective flow was switched off and the medium itself would 

expand more slowly in this case. 

We may perform more differential analysis of jet quenching in a three dimensional 

dynamical evolving medium, i.e. the dependence of the nuclear suppression of jets on 

their initial production vertices f±_ = (x, y) in the transverse plane. For example, one 

may cut the transverse plane into many small slices along x axis and study RAA of 

the hadrons produced from the quenched jets originating in each of those slices. This 

corresponds to calculating the following quantity, 

J dyVAA(.x,y)RAA{x,y) 
RAA{X) 

JdyVAA(x,y) 
(4.18) 
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Figure 4.11: In-plane RAA for neutral pions as a function of jet origin x in Au+Au collisions at 
RHIC. The momenta of pions are take to be 8 GeV/c < p r < 10 GeV/c. 

where x is the mid-point of each slice (or we may perform the integration over x 

around the mid-point in both numerator and denominator). In Fig. 4.11, we show 

RAA of neutral pions with transverse momenta 8 GeV/c < p^ < 10 GeV/c originating 

from quenched jets moving in the positive x direction as a function of jet production 

vertices along the a>axis. It can be clearly seen in the plot that the quenching of jets 

has a strong dependence on the medium size traversed by jets before fragmentation. 

Furthermore, a small rise of RAA is observed when jets are produced in the furthest 

slice. This is because the medium traversed by those jets has the smaller energy 

densities and temperatures compared to those jets produced in more central positions. 

Another highly interesting question is where those quenched jets that produce the 

hadrons with a certain momentum PT come from. This is equivallent to the question 

how big is the probability for the jets to survive and fragment into hadrons after 

traversing a certain depth of thermal medium. Mathematically, one may define a 

normalized probability density function P(x, y) as follows, 

VAA(x,y)RAA(x,y) 
P(x,y) (4.19) 

/ dxdyVAA(x, y)RAA{x, y)' 

where the position-dependent nuclear suppression factor RAA{X,V) is weighted with 
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Figure 4.12: The probability distribution of initial jets in transverse plane to produce a hadron in 
plane with a transverse momentum pr in Au+Au collisions at RHIC. The distribution has been 
projected onto x axis by integrating out the distribution in y direction. 

the jet probability density function PAA(X, y). In fact, this is the conditional probabil

ity of finding a jet at the position (x, y) given that a hadron with a certain momentum 

pT is observed. In Fig. 4.12, we show the probability function P(x, y) projected onto 

x axis (^-integrated probability P(x) — J dyP(x, y)). Again we look for neutral pions 

originating from quenched jets moving in the positive x direction. From the plot, we 

observe that in most central collisions (b = 2.4 fm), hadrons are more likely produced 

from those jets around x = 3 fm region, not in the center. This is due to the fact that 

the medium traversed by jets produced around the center has the largest energy den

sity. As we move to more peripheral collisions, the energy loss by those jets become 

smaller. Consequently, the most probable region for jets to produce hadrons become 

closer to the center of the medium (around x = 1 fm for b = 7.5 fm). 

4.5 Nuclear suppression of jets at forward rapidity 

We point out that a further interesting quantity is RAA as a function of PT at forward 

rapidity. The formalism as outlined in the above sections can be straightforwardly 

extended to treat this case. Here we restrict ourselves to only moderate deviations 
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from midrapidity (maximum forward rapidity y — 2). One reason is that the nuclear 

parton distribution functions can be less exactly determined in the relevant region 

[156, 166]. On the other hand, the assumption of a thermalized medium essential for 

a hydrodynamical treatment is no longer fulfilled far away from midrapidity. 
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Figure 4.13: The jet (quark plus anti-quark) transverse momentum distribution at different rapidi
ties, b = 2.4 t'm. 
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Figure 4.14: The neutral pion RAA at different rapidities, b = 2.4 I'm. 

In Fig. 4.13, we show the initial jet distribution of quarks plus anti-quarks for 

different rapidities. Note that at finite rapidity, the energy of a highly-relativistic jet 

with a transverse momentum pr is given by E = pr cosh y. Therefore, the kinematical 
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cut off at E = ^/SJVTV/2 =100 GeV is reached at lower pr for finite y. 

In Fig. 4.14 we show RAA as a function of pr for central collisions (0 — 5%, 

b = 2.4 fm) at mid and forward rapidity. It is interesting to notice that RAA behaves 

quite differently as a function of pr at y = 2 than at y = 0. This is not only due to 

the different temperature profiles of the hydrodynamical medium at forward rapidity 

but also strongly influenced by the different initial jet distributions, see Fig. 4.13. 
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Figure 4.15: Comparing neutral pion RAA with and without nuclear shadowing effect at different 
rapidities, b = 7.5 fm. 

To provide additional insight, we studied the same quantity averaged over (ft for 

midcentral collisions with an impact parameter of b — 7.5 fm with and without nuclear 

shadowing effects taken into account in the parton distribution functions utilized in 

Eq. (4.8). Results are shown in Fig. 4.15. It is interesting to notice that RAA is not 

monotonously increasing as a function of pr- The midrapidity RAA is decreasing above 

~ 18 GeV/c (with nuclear shadowing), the turning point for y = 1 is at ~ 9 GeV/c 

(with nuclear shadowing). The values of RAA at y = 2 decreases monotonically above 

~ 6 GeV/c in the case without nuclear shadowing and exhibits two turning points if 

shadowing is taken into account. We have also found that assuming a simple power 

law approximation for dN/d2prdy distributions for all values of pr would lead to 

increased RAA at higher pr (comparison not shown). This demonstrates that the 
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overall decrease of RAA at higher pr is mainly due to the initial jet distribution 

according to Eq. (4.8) at high transverse momentum which decreases faster than an 

overall power law, see Fig. 4.13. 
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Figure 4.16: The neutral pion RAA at midrapidity in most central (upper) and midperipheral (lower) 
Au+Au collisions at RHIC compared with PHENIX data. Different prescriptions of nuclear parton 
distribution functions are used for comparison. 

The non-monotonous behavior of RAA at forward rapidity at higher p? can be 

traced back to the parton distribution function. As has been pointed out earlier, see 

e.g. [166], the determination of nuclear parton distribution functions (nuclear PDFs) 

from experimental data is ambiguous. These uncertainties can also influence the 

calculation of the nuclear modification factor at mid and forward rapidity at RHIC. To 

illustrate this, here we compare results obtained with the nuclear parton distribution 

functions as determined by NPDF04 [166] with those that were employed so far, 

namely EKS98. We remind that the nucleon parton distributions which NPDF04 

and EKS98 rely on, namely MRST01 and CTEQ5, respectively, lead to almost the 

same prediction of the inclusive cross section for TT° production in p + p collisions 

(compare Fig. 4.1 and Fig. 4.2). 

In Fig. 4.16, we show the neutral pion RAA at midrapidity in central and midpe

ripheral Au+Au collisions at RHIC as obtained with the two different nuclear PDFs. 
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Figure 4.17: Comparing neutral pion RAA at different rapidities using different descriptions of 
nuclear parton distribution functions, b = 2.4 fm. 

Differences due to the different nuclear PDFs appear especially at larger transverse 

momenta of the produced pions. The same holds true for RAA at forward rapidity, 

see Fig. 4.17 for a comparison in central collisions. 

It is possible to trace these differences in RAA back to differences in the initial jet 

distributions resulting mainly from the different shadowing descriptions. We show in 

Fig. 4.18 upper panel the ratio of the initial quark and anti-quark jet distributions 

as inferred from NPDF04 to EKS98. This translates - after jet-energy loss and frag

mentation have been taken into account - into a similar behavior of the ratios of the 

nuclear suppression factor RAA in the two cases. Differences in the initial distribution 

(mainly resulting from different nuclear shadowing) will therefore be reflected in RAA 

at mid and forward rapidity and at different centralities. This clearly demonstrates 

that that RAA is not only sensitive to the employed jet quenching formalism but also 

to nuclear shadowing effects. The reason is that - even after energy loss and frag

mentation - RAA is sensitive to the initial jet distribution which in turn varies within 

the uncertainties of the determination of nuclear shadowing. A further reduction 

of uncertainties in the determination of nuclear shadowing effects will make a more 

stringent test of jet quenching formalisms by RAA measurements. 
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Figure 4.18: The ratio (NPDF04/EKS98) for the initial quark plus anti-quark jet distributions 
(upper) and nuclear modification factors RAA (lower) using different descriptions of nuclear parton 
distribution functions, b = 2.4 fm. 

In the above calculation, the 3D hydrodynamical model has been applied to de

scribe the evolution of the thermalized medium created at RHIC. One may address 

the question: how the above results would change if one utilizes a 2D hydrody

namical evolution model? Here we investigate this issue by comparing the full 3D 

hydrodynamical calculation to an effective 2D boost-invariant approach in which the 

hydrodynamical solution at midrapidity is assumed to describe the medium at for

ward rapidity. More specifically, the information of the medium at finite rapidity is 

inferred by applying longitudinal boost invariance, 

P±(0,T,r±) 
T{rj, T, fj.) = r (0 , r, r l ) , ft. (77, r, f±) = -,/?2(r7,r,fL) = tanh77, (4.20) 

cosh 77 

where the medium profile at midrapidity is obtained from 3D hydrodynamical calcu

lation. This corresponds effectively to imposing a posteriori Bjorken expansion onto 

the non-Bjorken hydrodynamical evolution. We study the ratio of R&A by imposing 

a boost invariant expansion, and comparing with the fully 3D non-Bjorken evolution. 

Fig. 4.19 shows a calculation at forward rapidities for non-central collisions with 

a finite impact parameter of b = 7.5 fm. This ratio is obviously not measurable, but 

is interesting from a theoretical point of view. Its relatively strong deviations from 
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Figure 4.19: The ratio of the neutral pion RAA imposing a boost-invariant expansion to RAA as 
calculated from the 3D hydrodynamical (non-Bjorken) medium, b = 7.5 fm. 

1 at y = 2 stem mainly from the different transverse temperature profiles at forward 

rapidity in the non-Bjorken evolution whereas these differences at y = 1 are not 

significant. The fact that the ratio is rather flat in pr (it varies only in the range of 

0.7±0.05 for y = 2) indicates that the reduction of the quenching power of the medium 

in the non-Bjorken case compared to the boost-invariant one is similar for partons over 

the full range of initial jet energies probed in the collision. Therefore a measurement 

of the absolute normalization of RAA at midrapidity and forward rapidities might be 

useful in quantifying the deviations arising from the simplifications made in boost 

invariant expansion models. 

In 3D hydrodynamical calculation, the longitudinal distribution of the initial 

medium profile is parametrized by the function H(rj) in Eq. (4.5). With this input, 

the final temperature and flow profiles are obtained by solving the hydrodynamical 

evolution equations in both transverse and longitudinal directions simultaneously. 

One might be interested in the influence of the longitudinal evolution on the medium 

expansion in the transverse directions. To address this issue, we may still assume the 

boost invariance for flow profiles, but the temperature profile of the medium at finite 

c 

oq 
0.9 

o 
£ 0.8 

< 
< 

c 
J * 

u 
o 
< 

0.7 

0.6 

0.5, 



4.5 Nuclear suppression of jets at forward rapidity 82 

1.3 

-o 
•^ 1 2 
3 
O o 

I * 

T3 

"S. 
O 
O 
o 

< 

1 -

<0.9 
ei 

0.8, 

. ] 1 1 1 

1 1
,

1
,

1
, 

1 

- - y = l 
y = 2 

i 

, 

10 
PT (GeV/c) 

15 20 

Figure 4.20: The ratio of the neutral pion RAA by decoupling longitudinal direction from transverse 
direction to RAA as calculated from the 3D hydrodynamical (coupled) medium, b = 7.5 fm. 

rapidity is reduced by the factor H(r]) compared to that at mid rapidity, 

T(77,r,ri) = r ( 0 , r , r 1 ) i J ( 7 7 ) A f a , T ) f L ) = ^ ( ° ^ ' r x ) . ^ f a r . f j = tanh 77.(4.21) 
cosh 7] 

As long as the longitudinal evolution decouple from the transverse expansion, we 

may use the above equation to infer the medium profiles at finite rapidity from the 

information at mid rapidity. Thus, by comparing RAA at finite rapidity using the 

real 3D hydrodynamical calculation (the longitudinal and transverse directions are 

coupled) to that using the above estimation, we might be able to know whether it is 

important to include the longitudinal expansion for jet quenching study at forward 

rapidity. Such comparison is shown in Fig. 4.20, where we show the ratio of RAA from 

the decoupled case to the coupled case. We may observe that while the longitudinal 

direction seems decoupled from transverse expansion at very forward rapidity, they 

couple to each other much stronger in the smaller rapidity regime. As a result, the 

densities and temperatures of the medium at moderate rapidity are raised by the 

medium at mid rapidity if we solve the coupled equations in the longitudinal and 

transverse directions simultaneously, leading to higher suppression of jets. 
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Figure 4.21: The neutral pion RAA at midrapidity in most central Au+Au collisions at RHIC 
compared with PHENIX data. Two different hydrodynamical models (2D and 3D) are used for the 
description of the thermalized medium created at RHIC. 

In this section, we calculate the nuclear modification factor RAA for charged hadron 

production as a function of pr in Pb+Pb collisions at ŷ ŝ T/v = 5.5 TeV in central 

collisions at mid-rapidity at the LHC. The energy loss of the partonic jets is calculated 

by applying the same formalism described in previous sections to calculate gluon 

bremsstrahlung. Here we use a boost-invariant ideal hydrodynamic model with initial 

conditions calculated from perturbative QCD + saturation [138, 167]. 

The strong coupling constant as is a direct measure of the interaction strength 

between the jet and the thermalized soft medium and is the only quantity not uniquely 

determined in the model, once the temperature and flow evolution is fixed by the 

initial conditions and subsequent hydrodynamical expansion. We verified that by 

assuming a constant as = 0.33, RAA for n° production as a function of pr as obtained 

in the same boost-invariant ideal hydrodynamical model adjusted to Au+Au collisions 

at y/swN = 0.2 TeV at RHIC [138] is in agreement with preliminary data from 

PHENIX in central collisions at RHIC. The result is very close to the one obtained 

in 3D hydrodynamics presented in previous sections, as shown in Fig. 4.21. 
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Figure 4.22: The time evolution of the temperature seen by a jet initially created at (ro, 4>o) moving 
in plane through the nuclear medium created in most central Au+Au collisions at RHIC (6 = 0 for 
2D and b = 2.4 fm for 3D). 

Although the calculations of RAA in two different hydrodynamical models agree 

with each other, the medium profiles inferred from two models are quite different. Es

pecially, the initial conditions are quite different between two hydrodynamical mod

els, i.e., the initial equilibrium time r* = 0.6 fm/c in 3D hydrodynamical model [137], 

whereas Tj = 0.17 fm/c in 2D hydrodynamical model [138]. This difference is under

stood from different assumptions employed to infer the initial conditions. In Fig. 4.22, 

we compare the temperature profiles from 2D and 3D hydrodynamical calculations 

for Au+Au collisions at RHIC. 

It is conjectured that as should not be changed very much at the LHC since the 

initial temperature is about twice larger than the one at RHIC whereas as is only 

logarithmically dependent on temperature. In Fig. 4.23 we present a prediction for 

charged hadron RAA as a function of pr at mid-rapidity for central collisions at the 

LHC. We present results for as = 0.33 and 0.25. We consider that these two values 

of as define a sensible band of physical parameters. Note that here we only include 

the radiative energy loss from induced gluon radiation. The above prediction for the 

LHC will be changed if we include the collisional energy loss (see Chapter 5). 
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Figure 4.23: The pr dependence of the nuclear modification factor RAA for charged hadrons in 
central P b + P b collisions at mid-rapidity at the LHC. 

4.7 Conclusions 

In this chapter, we have studied the jet energy loss by employing a 3D hydrodynamical 

evolution model [137] to describe the bulk properties of matter created in heavy-ion 

collisions at RHIC. 

We first calculated the nuclear suppression factor RAA as a function of pr for 

neutral pions in central and non-central collisions. Our model calculations are in 

good agreement with the current available experimental measurements. Then we 

provided the calculations of RAA as a function of pr and the azimuth 4> m non-central 

collisions. These give us more capabilities to understand the interaction between hard 

jets and the hot and dense medium at RHIC once further data become available. We 

furthermore studied RAA as a function of pr in central and non-central collisional 

at forward rapidity. It is found that a measurement of these dependences might not 

only be able to reveal more information about the nuclear medium, but also provide 

a possibility to observe nuclear shadowing effects in the initial parton distribution 

function indirectly given appropriate experimental resolution. 

In conclusion, our study provides a stringent test of our theoretical understanding 

of jet energy over a variety of initial jets and medium profiles, and thus lays the 
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groundwork for a tomography of the nuclear medium. It is noted that additional 

tomographic information can be obtained by measuring high pT triggered correlations. 

This will be addressed in Chapter 6. 



5 

Radiative and collisional jet energy loss in the quark-gluon plasma 

This chapter follows our recent work [104, 105], where we calculate and compare ra

diative and collisional energy loss of hard partons traversing a quark-gluon plasma. 

We include both radiative energy loss by induced gluon radiation and additional en

ergy loss by elastic collisions. It is found that the solution of Fokker-Planck equations 

of the probability density distributions of partons until fragmentation is decisive for 

a correct calculation of the nuclear modification factor RAA for hadron production 

in heavy ion collisions. While the averaged energy loss induced by elastic collisions 

is smaller compared to the radiative one, the time evolution of parton distribution 

function differ significantly in both cases. We find that the magnitude of RAA is 

sensitive to the inclusion of both collisional and radiative energy loss contributions. 

5.1 Introduction 

In Chapter 4, we presented a calculation of RAA in central and non-central collisions 

by calculating the jet energy loss induced by gluon bremsstrahlung. In this chapter, 

we consistently incorporate collisional and radiative energy loss in the same formalism 

and to employ this formalism in a realistic description of energy loss of hard pr leading 

partons in the soft nuclear medium as described by (3+l)-dimensional hydrodynamics 

in ^/s^F = 200 GeV Au+Au collisions at RHIC. 

Several points are to be emphasized here. First, although there have been extensive 

literatures addressing the radiative or collisional energy of hard jets in a thermal 

medium, this is the first study which incorporates both radiative and collisional energy 

loss in the same formalism. Second, in many previous jet-quenching calculations, the 
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average energy loss is applied to the primary partons. However, bremsstrahlung and 

collisional energy loss are not well described by an average energy loss alone. In fact, 

the evolution of the probability density distributions of partons until fragmentation 

is the decisive quantity for such studies [131]. In our model, we directly evolve 

the spectrum of partons as they undergo bremsstrahlung and collisional energy loss. 

Third, a lot of approaches take the LPM coherence effect as a parametrically large 

suppression. This is only true when the parent parton and the emitted gluon are 

highly energetic. For small radiated gluon energies, the LPM suppression can be 

significantly less. In fact, those bremsstrahlung events with small energy radiation 

are of significant importance in jet quenching due to the steeply falling initial parent 

parton spectrum [131]. Fourth, until recently most jet quenching calculations used 

simple medium models only loosely constrained by the value of bulk observables. Here 

we use the (3+l)-dimensional hydrodynamics to describe the thermalized medium 

produced in Au+Au collisions at RHIC [137]. 

5.2 Collisional jet energy loss in QGP 

We now consider a high energy jet of energy E traversing a thermalized QCD plasma 

with a temperature T. The jet will lose energy by scattering off thermal particles, i.e., 

through binary elastic collisions. The interaction rate T{E) for the binary scatterings 

between the jet of energy E and the thermal particles is given by 

x|M|V(*)[l±/Wl- (5.1) 

In the above equation P — (E, p) and K = (k, k) are the four-momenta of the 

incoming jet and the thermal parton, and P' = (E',fi) and K' — (k',kr) are four-

momenta of the outgoing jet and thermal parton. Here we are interested in the energy 

loss of high energy light quarks and gluons and all the particles are set to be massless. 

The phase space is weighted by a thermal distribution for the incoming thermal parton 

with dk its statistical degeneracy, and a Bose-enhancement or Pauli-blocking factor 

for the outgoing thermal parton. 
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Figure 5.1: The t channel Feynman diagrams for the collisional energy loss of quarks: qq and qg 
scatterings. 
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Figure 5.2: The t channel Feynman diagrams for the collisional energy loss of gluons: gq and gg 
scatterings. 

Assuming that the energy of the incoming jet is very high E 3> T, the amplitude 

is dominated by t channel gluon exchange processes, as shown in Fig. 5.1 and Fig. 

5.2. The energy loss rate dE/dt is related to the differential interaction rate by the 

following relation, 

dE f , „ , , „ w . d r 
dt 

= fdE\E e^E,e). (5.2) 

One may find 

dE _dk_ r d3k r d3p' r d3k' 

~dt~2E J {2irf2k J (2TT)32E' J (27r)32fc' 

x(E-E')\M\2f(k)[l±f(k')\, 
-WwklidmlA^^^-^-^ 

(5.3) 

To evaluate the integration from t channel processes, we may use the three-momentum 

S function to perform the p' integration. By introducing an integration variable 

to — p — p' — k! — k, the energy loss rate can be written as 

x\M\2f(k)[l±f(k% (5.4) 

We may shift k! integration toq — p — p1 — k' —k and choose a coordinate such that 

the z axis is along the direction of q while p lies in the xz plane. Then the two 5 
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functions may be written as 

—8 \cos9pq h — 
pq \ q 2pq 

8(p — p' — Ijj) — —b ( COS 6pq h 7^3— 

*<*-*-") = £*(«•»*-7-iSi)- <55) 

By taking the limit p —• 00, one may find 

where 4>pq\kq the is the angle between the px q plane and k x q plane. The limits of 

integrations come from taking into account the restriction from q<k + k',q<p + p' 

and — q < UJ < q. As is well known, Eq. (5.6) has an infrared logarithmic divergence 

which has to be screened by plasma effects. Here we introduce an arbitrary momentum 

scale qc to divide the integration over q into two parts, hard part qc < q < p and 

soft part 0 < q < qc. The contribution from hard momentum transfer ~ T can 

be calculated at tree level, but for the soft momentum transfer ~ gT, the hard 

thermal loop corrections (HTL) [125] to the propagator of the exchanged gluon must 

be employed. The contributions must be matched together consistently to give the 

correct energy loss rate to the leading order. 

We first compute the energy loss from the hard momentum transfer part. Fig. 5.1 

and Fig. 5.2 show the t channel scatterings experienced by the quark jets and gluon 

jets. And the corresponding matrix elements squared are [168, 169] 

\Mt\l - H (l-S-^), \Mt\l = U (%-%)• (5-7) \gq - z s I * £2 / ' I l>99 2 V 8 t2 J 

To evaluate the integral in Eq. (5.6), we need the expressions for the Mandelstam 

variables s, t and u in the matrix element |M|2. They are 

t = cu2-q2, 

s = -^{[(p + p'){k + k') + q2} - cos(j)pq[kqsj(Appi + t)(4kk' + t ) | , 

u = - s - t . (5.8) 

file:///cos9pq
file:///Mt/l
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Then we obtain, i.e., for qq —> qq scattering, 

/ 2TT 
Mt\L = 9t 

1 2(2pp' + 2kk' + u2) (p + p')2(k + k') J\2 

+ (5.9) 
3 9q2 3q4 

Furthermore, we rewrite the Bose or Fermi distribution function in terms of the 

infinite sum of Boltzmann distribution function, 

1 
- = E ( ± i r 1 e x p ( - n A ; / r ) . 

1 n = l 

(5.10) 
exp(k/T) T 

By inserting the above expansion, the integral in Eq. (5.6) can be computed analyti

cally. Then we take the limit p —• oo and neglect the terms that vanish as qc —> 0. 

By using the following relations 

1 7T 
E ^ = CP) = T , E 

ln(ra) 

W 

or 

-C'(2) ~ 0.937548, 

Irw/ 

(5.11) 

E(- l ) B _ 1 i - k(2), E ( - l ) n _ l l # - -5(C(2) + ln(2)C(2)], (5.12) 
n" 

one may obtain, i.e., for soft momentum transfer, qq —> gg scattering, 

99 

= 7:Nfira2
aT

2 ' £T c'(2) , „ 23' 
'"ir-^ + cP) + 1 " 2 + i2 . 

(5.13) 

Next we compute the energy loss from the soft momentum transfer part. We may 

write t channel matrix element squared \Mt\
2, i.e., for qq —> qq scattering as 

Mt\
2=Laa,(P,P')LP0,(K,K')Dae(Q)D*a'e\Q). (5.14) 

By tracing over the quark line and averaging the spin and color of the initial particle, 

one finds, for q ~ gT, 

1 
Laa,(P,P') = ^g2tv[TaTb}8PaP^. 

The matrix element squared is then simplified to be 

(5.15) 

\Mt\
2

qq=fgt\paD^(Q)K^. (5.16) 
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In the coulomb gauge, the effective thermal propagator takes the form of 

D^(Q) = AL(u, q)SaO500 + AT(u, q)Pf, (5.17) 

where P°° = 0, P? = 8tj — q'qi is the transverse projector and Ai(w, q) and Aj(w, q) 

are longitudinal and transverse gluon propagators, whose expressions may be found 

in [129] 

A T ( ^ ) = ] ^ , A,(W ,g) = ^ l ^ ^ > (5.18) 

where the explicit expressions for FL(fc0,fc) and FT(k0,k) are, 

FL = 2m2
g(l - x2)(l - xQ0(x)) , FT = m2 - ^ (5.19) 

In the above equations, Qo(^) = § m f^i ^s ^n e Legendre function with x = w/g, and 

mg is the thermal gluon mass, m2 = | (1 + Nf/6)g2T2. The final expression of matrix 

element squared |Mi|2 is 

| M ^ 9 - - 9 s V f c 2 | A L + A r[(p.9)(fc-g)-(p-A;)] | . (5.20) 

Note that (p•q){k-q) — {p-k) — sin6pqsin^gcos4>kq\Pq, and at leading order, sin 6pq « 

s i n ^ « wl — u!2/q2, we obtain 

/ ^ I W I U 12 _i*2 4 2,2 , A L , 2 + l f 1 _ f 4 V | A T | a 

2 -,2 
(5.21) 

The expressions of |A^|2 and |A<r|2 are 

1 
|AfM = 

[g2 + TTOTZ^QL^)]2 + TT2x2m^' 

I A | 2 _ _ / c 99s) 

1 T l [w 2 -Q 2 + i7rx(l-x2)m2QT(a:)]2 + i7 r 2 x 2 ( l -x 2 ) 2 m4' l ' ; 

where the functions QL{X) and QT{X) are 

Q L x = - - - h i - , QT(X) = - [ - j + I n - . 5.23 
IT \X l — Xj 7T V I — X1 I—Xj 

Note that the integral Eq. (5.3) is symmetric under the exchange of k and k'. There

fore it can be symmetrized by replacing the thermal distribution factor f(k)[l — f(k')} 
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by (f(k) — f(k'))/2. By making use of the fact that q ~ gT, the thermal distribution 

factor can be expanded to lowest order in u, 

f{k)-f{h') = -uf(k) + (5.24) 

To further simplify the integration, it is convenient to change integration variable 

LO to x = Lu/q. The integration over q can be done analytically by taking the limit 

qc S> mg, revealing a logarithmic dependence on qc. The integration over x for the 

logarithmic term can be evaluated analytically. The final result for the energy loss 

rate from soft part reads 

dE_ 
~dt 

-Ntira2T2 

QQ 
9 

V / 7 In + c. 
mi 

(5.25) 

In the above equation, the constant cs accounts for the following integration: 

"3 
C, 

Jo 
dxx l n ( ^ V ) - In 2 + ln(l + Qi(x)) + 2QL{x) arctan (l/QL(x)) 

+ - ln(l + Q2
T{x)) + QT(x) arctan (l/QT(x)) (5.26) 

The remaining integration over x may be evaluated numerically, giving cs = —1.66246. 

It is noted that the result for soft part is consistent with the calculation in [170], where 

the energy loss of a high energy quark is computed by considering the effect of the 

Lorentz force on the quark by the induced chromo-electric field described by the 

screened dielectric functions. 

The resulting expressions for collisional energy loss rate dE/dt\ab for the scattering 

of a light hard parton a off a soft thermal parton b are: 

dE 
~dt 9 ; s 

" ET 23 
In —5- + cf + — + cs mi 12 

qq L y -> 

dE 

dt 
= -nazT x 

3 s 

" ET 13 
In —z + cb + — + cs mi 6 

qg L y j 

dE 

~dt 
= -Nfna2

sT
2 

2 ; 

', ET 13 
In —T + cf + — + cs mi 6 

gq L y j 

dE 
~dt = 3Tra2

sT
2 x 

.95 

" ET 131 
In — + cb + —- + cs 

mj 48 
(5.27) 
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In the above equations, the two constants Q, = — JE + C'(2)/£(2) + In 2 and C/ = 

~1E + C'(2)/C(2). Note that the collisional energy loss as calculated by [170] differs 

by constant terms in the brackets in Eq. (5.27) since only the s2/t2 terms were kept 

by setting t. = 0 and u = — s in the numerators of the matrix elements squared \Mt\
2 

for the hard scattering processes there. Remember that for hard momentum transfer 

~ T, t = J1 — q2 is not necessarily small. It is also noted that these differences are 

not of phenomenological importance. 
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Figure 5.3: The energy loss rate dE/dt for quarks (upper) and gluons (lower) in a medium of 
temperature T = 400 MeV. 

In Fig. 5.3, we plot the energy loss rate dE/dt for quarks and gluons when they are 

transversing a thermal medium (Nf = 3) with a constant temperature T — 400 MeV. 

Here, the strong coupling constant of jet-medium interaction is taken to be as = 

1/3. Due to different color charges carried by quarks and gluons, the energy loss 

experienced by gluon jets is larger than that by the quark jets (~ 9/4). Also, the 

energy loss rate of jets by scattering off the thermal gluons is larger than that by 

scattering off the thermal quarks (~ 6/./Vj) because of different degeneracies for the 

incomong thermal particles. 
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5.3 Incorporation of collisional jet energy loss in AMY 

In this section, we will address how we incorporate the collisional energy loss and 

radiative energy loss consistently in the context of the AMY formalism. We have 

already seen, in Chapter 3 and Chapter 4, jet momentum distribution P(E,t) — 

dN(E, t)/dE evolves in the medium according to a set of coupled Fokker-Planck type 

rate equations with the following generic form, 

dPj(E,t) 
dt ab 

PaiE + Uit)^^p^_PiEjt)^td^^ (5.28) 
duodt dcodt 

where dT(E,co)/dcodt are the transition rate for processes where partons of energy E 

lose energy co. The co < 0 part of the integration incorporates processes which increase 

a particle's energy. The radiative part of the transition rate has been discussed in 

Chapter 3. In the following, we will focus on addressing the collisional transition 

rates. 

Compared to radiative loss, collisional losses are more dominated by small energy 

transfers, therefore it should be an adequate procedure to approximate elastic colli

sions by a mean energy loss plus a momentum diffusion term as dictated by detailed 

balance. If elastic collisions turn out to dominate jet quenching we may want to im

prove this treatment, but if they are subdominant it should be sufficient to quantify 

their effect. More specifically, for small energy transfer oo, we may expand the gain 

term in the Fokker-Planck equation to the second order, 

P(E + cu) 
dT{E + co,uo) 

dcodt 
„,„.dr(E,u) d 
P(E) +to-— v ' dcodt dE 

P(E) 
dT(E,co) 

1 2 d2 

+ -UJ 
2 dE2 P(E) 

dcodt 

dT{E,co) 
dcodt 

+ • 

Then the Fokker-Planck equation becomes, 

d2 

T-&*™-W [B x P{E)} + 

(5.29) 

(5.30) 

where the transport coefficients A and B are called drag and diffusion coefficients. 

They are determined to be 

dT{E,oj) dE If 2dT{E,co) „dE 
A I diOLO-

dtodt 
dE 

~dt' 
B = 2 y diouj2^)~\~' = T^, (5.31) 

duodt dt' v ' 
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where the second relation is derived by using microscopic detailed balance, 

dT(E,«,)/du,dt _ e x p , » y (5>32) 

dT{E,-io)/dujdt *\T 

Thus we obtain for small u 

fdT{E,uj) dT(E,-u 
A--

dwdt dudt 

2 J [ \ Tj\ dudt 2T J dudt T K ' 

As we perform the numerical computation of discretized Eq. (5.28), such that / dui —> 

Aw Y2Ui=nAUJ > the transition rates for elastic collisions are approximated by two spikes 

at ui = ±AW, 

^r-|i + /.(^)]^f^-^)+/.(^)£f% + ^ ) , P-34) 
where / B ( A U ) = l/[exp(Alt,/T) — 1] is the Bose-Einstein thermal distribution function. 

In the limit of small Aw, it may be easily check that the above transition rates yield 

the correct energy loss rate and preserves detailed balance. So the above procedure to 

incorporate the collisional transition rates is equivalent to introducing the drag term 

and the diffusion term for into the coupled jet evolution equations Eq. (5.28) for the 

collisional energy loss. 

5.4 Results 

In this section, we present the calculation and comparison of radiative and collisional 

energy loss of hard jets traversing a hot and dense medium. To illustrate how col

lisional and radiative energy loss influence the time evolution of the leading parton 

distributions, we first consider a single light quark jet of energy Ei — 16 GeV travers

ing through an infinite medium with a constant temperature T = 400 MeV. Here, the 

strong coupling constant of jet-medium interaction is taken to be a constant as — 1/3. 

In Fig. 5.4 we compare the evolution of the jet parton distribution P(E, t) under 

three different scenarios: (1) with only collisional energy loss, (2) with only radiative 

energy loss (already calculated in Chapter 3 and Ref. [131]), and (3) with both energy 
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Figure 5.4: The evolution of a quark jet with initial energy Ei = 16 GeV propagating through a 
thermal medium with a constant temperature T = 400 MeV, where the vertical lines represent the 
values of mean energy related to the corresponding distributions. 

loss mechanisms. The vertical lines represent the mean energy (E), defined as the 

first moment of the corresponding momentum distribution. The figure indicates as 

expected that radiation leads to a larger mean energy loss than with elastic collisions 

only. Adding collisional energy loss to radiative one leads to small change for the 

mean energy loss of hard jets (compare the vertical lines in the case (2) and the case 

(3)). While the time evolution of P(E,t) in case (3) resembles qualitatively the case 

(2) in which only radiative energy loss has been considered, quantitative differences 

are large, especially at energies closer to £*. 

One may further study the mean energy loss (AE) — Ei — (E) of single quarks 

jet with different initial energies. This is illustrated in Fig. 5.5, where we show the 

fractional mean energy loss of the quark jet as a function of its initial energy Ei after 

travelling through such a thermal medium for 1 fm/c. We may see that for very high 

energy quark jets, the energy loss induced by radiation is much larger than that by 
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elastic collisions (approximately 4 times larger for a light quark with initial energy 

E% = 30 GeV). The total mean energy loss seems not very sensitive to the inclusion 

of collisional energy loss for high energy quark jets. 
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Figure 5.5: The fractional mean energy loss of a quark jet with initial energy E, after travelling 
through a thermal medium with a constant temperature T = 400 MeV for t — I fm/c. 
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Figure 5.6: The ratio of the final to initial jet spectra P(E,t)/P{E, 0) for quark jets after propagating 
through a thermal medium with a constant temperature T = 400 MeV for t = 1 fm/c. 

We may study the evolution of jet momentum spectra in a thermal medium by 

evolving the jets with initially a power-law distribution for initial px spectra of quarks 
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and anti-quarks [114], 

dN 

d2pTdy 
= K- (5.35) 

y=o [1+Pr/bY 

where a = 500, b = 1.6 and c = 7.9 for quarks, and a = 130, b = 1.9 and c = 8.9 for 

anti-quarks. K is a constant to account for the next-leading-order corrections to the 

leading order result as inferred from perturbative QCD calculation. 

In Fig. 5.6, we show the ratio of the final spectrum to the initial spectrum as a 

function of the energy of quark jets after their propagating in such a thermal medium 

for 1 fm/c. We may observe that for quark jets with such power-law initial spectra, 

adding collisional energy loss to radiative increases the quenching of jet momentum 

spectra by approximately 30%. 
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Figure 5.7: The probability distribution function P(E,tf) of a single particle with initial energy 
Ei = 16 GeV after passing through the nuclear medium created in central collisions (b = 2.4 fm) at 
RHIC. The jet starts from the center of the medium and propagates in plane. 

In the following, we perform a more realistic calculation of jet quenching at RHIC 

by modelling the space-time evolution of the quark-gluon plasma using relativistic 

fluid dynamics, which has been shown to give a good description of bulk properties 

at RHIC. Here we employ a fully (3+l)-dimensional hydro dynamical model for the 

description of Au+Au collisions at RHIC [137]. The product of the initial hard 

parton densities is determined from the overlap geometry between two nuclei in the 
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Figure 5.8: The mean energy loss of a quark jet with initial energy Ei passing through the nuclear 
medium created in most central collisions (b = 2.4 fm) at RHIC. The jet starts from the center of 
the medium and propagates in plane. 

transverse plane of the collision zone. The initial momentum distribution of hard jets 

is computed from perturbative QCD, using the factorization theorem. The evolution 

of jet momentum distribution in the thermalized medium is evaluated by solving 

Fokker-Planck equations with both collisional and radiative energy loss. The final 

hadron spectrum at high pT is obtained by the fragmentation of jets in the vacuum 

after their passing through the (3+l)-dimensional expanding medium. For further 

details see Chapter 4 where the radiative energy loss has been studied in an analogous 

manner. 

We first study a single light quark jet traversing through a 3D hydrodynamical 

medium created at RHIC. In Fig. 5.7, we show the final spectra P(E, tf) of a quark jet 

with initial energy Ei = 16 GeV after its passing through the nuclear medium created 

in most central Au+Au collisions (6 — 2.4 fm) at RHIC. In this figure, the jets are 

assumed to be created at the center and propagating along the in-plane direction. As 

usual, we turn on the energy loss at equilibrium time r, — 0.6 fm/c and switch off 

the energy loss when the medium surrounding the jet goes into the hadronic phase. 

The value of as is now taken to be as = 0.27, which reproduces the most central 



5.4 Results 101 

1 

0.8 

<0.6 
rt<0.4 

0.2 
Mi, 

0 

0.8 

<0.6 
< & 0.4 

0.2 

PHENIX 0 - 5%, Preliminary 

^ " K M H T S S ^ l i S j j T O T * T 
PHENIX 20 - 30%, Preliminary 

ft I IHlllfiiilllS 
,. XT M J 

10 
PT (GeV/c) 

15 20 

Figure 5.9: Nuclear suppression factor RAA for neutral pions in central and mid-central collisions. 
Here the dashed curves account for only radiative energy loss, the dash-dotted curves for only 
collisional energy loss and the solid curves incorporate both radiative and collisional energy loss 
mechanisms. The dotted curves are the results from Chapter 4 with radiative energy loss only 
( a s = 0 . 3 3 ) . 

data for RAA measurements (see Fig. 5.9). In Fig. 5.8, we show the mean energy 

loss of such quark jets as a function of their initial energies J5*. While in agreement 

with [97], the average energy loss is not very affected by the addition of collisional 

contributions, large differences are observed for the final jet distribution between case 

(3) and case (2). This is especially true for energies close to the initial parton energy 

Ei. As the initial parton spectrum in relativistic nucleus-nucleus collisions is steeply 

falling, stronger differences in RAA can result. 

In Fig. 5.9 we present the calculation of RAA for neutral pions measured at 

mid-rapidity for two different impact parameters, 2.4 fm and 7.5 fm, compared with 

PHENIX data for the most central (0-5%) and mid-central (20-30%) collisions [84]. 

We present RAA for purely collisional (1) and purely radiative (2) energy loss, as well 

as the combined case (3). One finds that while the shape of RAA for case (3) is not 

strongly different from case (2) that has only radiative energy loss, the overall mag

nitude of RAA changes significantly. The stronger influence on RAA stems from the 

differences in the evolution of the parton distributions in case (2) and (3), as shown 
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in Fig. 5.7. This has already been discussed in the case of a constant temperature 

(compare Fig. 5.4). Therefore, the magnitude of RAA is sensitive to the actual form 

of the parton distribution functions at fragmentation and not only to the average 

energy loss of single partons (compare Fig. 5.8). 
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Figure 5.10: Nuclear suppression factor RAA for neutral pions in plane and out of plane in mid-
peripheral Au+Au collisions (6 = 7.5 fm) at RHIC. 

In Chapter 4, the observational implications on RAA measurements due to only 

radiative energy loss is studied. There, we have presented RAA for neutral pions in 

central collisions as a function of pr at mid and forward rapidity and have discussed 

how the azimuthal asymmetry of the medium in non-central collisions allows to put 

stronger constraints on our understanding of jet energy loss by induced gluon radi

ation. We have recalculated RAA versus reaction plane including elastic collisions, 

and only small differences are found in the shape of RAA as a function of pr and the 

azimuth after adjusting the coupling strength from as = 0.33 to as = 0.27. The effect 

of the inclusion of collisional energy loss on the shape of RAA is also illustrated in 

Fig. 5.10, where we show nuclear suppression factor RAA for neutral pions in plane 

and out of plane in mid-peripheral Au+Au collisions (b — 7.5 fm) at RHIC. 

We may also perform the calculation of nuclear suppression factor RAA for neutral 

pions at finite rapidity including elastic collisions. Fig. 5.11 shows RAA for neutral 

(|> = 0, rad only 
§ = n/2, rad only 
<)> = 0, rad + coll 
0 = 7T./2, rad + coll 
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Figure 5.11: Nuclear suppression factor RAA for neutral pions for different rapidities in most central 
Au+Au collisions (b = 2.4 fm) at RHIC. 

pions in most central Au+Au collisions (b — 2.4 fm) at RHIC for three different 

rapidities. Compared to the results from Chapter 4 with radiative energy loss only 

(as = 0.33), we may observe a sizable change in the shape of RAA at large rapidity 

after the inclusion of collisional energy loss, (i.e., at higher pT regime for y = 2). 

However, this difference is obscured by the large theoretical uncertainties of RAA due 

to the uncertainties of the determination of the nuclear parton distribution function 

(see Chapter 4). Moreover, this regime is close to the kinematical limit and might be 

beyond the scope of experimental measurements. 

5.5 Collisional jet energy loss at the LHC (in 2D hydro) 

In Chapter 4, we have presented a calculation of the nuclear modification factor 

RAA for charged hadrons at the LHC. In this section, we will present the possible 

effect on our prediction of RAA as a function px after incorporating the collisional 

energy loss. Again, we use a boost-invariant ideal hydrodynamic model with initial 

conditions calculated from perturbative QCD + saturation to describe the nuclear 

medium created at Pb+Pb collisions at y/sjvjv = 5.5 TeV [138, 167]. 

As has been illustrated in the last sections, the strong coupling constant as at 
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Figure 5.12: The pr dependence of the nuclear modification factor RAA for charged hadrons in 
central P b + P b collisions at mid-rapidity at the LHC. 

RHIC is adjusted from as = 0.33 to as = 0.27 in order to describe the nuclear 

suppression factor RAA in central Au+Au collisions at RHIC after the collisional 

energy loss is incorporated. The value will generate the lower bound of the prediction 

of RAA at the LHC. The upper bound is obtained by setting the strongly coupling 

constant to be as — 0.20 while the corresponding value for as from Chapter 4 with 

radiative energy loss only is taken to be as = 0.25. 

In Fig. 5.12, we compare the results for charged hadron RAA in central Pb+Pb 

collisions at the LHC before and after we incorporate the collisional energy loss in the 

calculation. We observe that adding the collisional energy loss tends to increase the 

slope of the nuclear modification factor RAA as a function ofpr- This effect might be 

measurable at the LHC. 

5.6 Conclusions 

We calculated collisional and radiative jet energy loss of hard partons in the hot 

and dense medium created at RHIC. We included the LPM effect for induced gluon 

emission and treated elastic collisions using a drag plus diffusion term reproducing 

the energy loss rate dE/dt and detailed balance. While we find that the additionally 
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induced average energy loss due to elastic collisions is small in comparison to the 

radiative one, the time evolution of the parton distributions P(E,t) in both cases 

differ significantly. This is especially true for energies close to the initial parton 

energy. Since the initial parton spectrum is steeply falling, stronger differences in 

RAA can result. We find that the inclusion of collisional energy loss significantly 

influences the quenching power quantified as the overall magnitude of neutral pion 

RAA at RHIC, but that the shape as a function of pr and the azimuth does not show 

a strong sensitivity. 
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Jet-tomography by studying the energy loss of photon-tagged jets 

In this chapter, we study the photon-hadron correlations in Au+Au collisions at 

RHIC by incorporating all sources for the hard photons, including direct photons, 

fragmentation photons and jet-plasma photons [109]. The energy loss of photon-

tagged jets traversing the medium is evaluated by consistently taking into account 

induced gluon radiation and elastic collisions. The hot and dense strongly interacting 

medium created in these collisions is modelled with (3+1)-dimensional relativistic hy

drodynamics [137]. Our results for per-trigger yield of photon-tagged hadrons in both 

p+p and Au+Au collisions are consistent with the first experimental measurements. 

It is found that all photon sources are important to a full understanding of high ZT 

photon-hadron correlation studies at RHIC. Especially, the additional photon sources 

from jet-plasma interaction and fragmentation show significant contribution at the 

high pT regime. We conclude that photon-tagged jets serve as additional probes of the 

interaction between high transverse momentum jets and the hot and dense medium 

created in relativistic heavy ion collisions. 

6.1 Introduction 

In Chapter 5, we have developed a consistent model to incorporate both collisional and 

radiative jet energy loss in the same formalism, and applied it to calculate the nuclear 

modification factor RAA of hadrons in relativistic heavy ion collisions at RHIC. In 

this chapter, we continue and extend this effort by studying the correlations of back-

to-back hard photon and jet. 

As has been seen from earlier chapters, RAA is a rather averaged quantity. The 

106 
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final hadron spectrum is a convolution of the jet production cross section and the 

jet fragmentation functions. Therefore, the suppression of the produced hardons at a 

fixed pr results from jet quenching with a wide range of initial transverse momenta. 

Furthermore, single jet measurements are also averaged with the nuclear overlap 

function accounting for the distribution of the initial hard vertices. It is therefore not 

particularly surprising that a wide variety of energy loss conjectures could agree with 

the measured RAA in central Au+Au collisions at ^/S^N = 200 GeV at RHIC. 

In order to improve this situation, one may perform correlation measurements, 

i.e., the production of high pr hadrons correlated with other high pT trigger particles. 

One such suggested trigger is a hadron [140, 141]. But choosing a specific trigger 

PT hadron does not yet confine the momentum of the away-side parton: the trigger 

hadron is produced by fragmentation of a parton that has also traversed the medium 

and lost energy. 

Another promising trigger is a high pr photon, i.e., to study jet-quenching by 

measuring the pT distribution of hadrons in the opposite direction of a trigger direct 

photon [107, 108]. Since photons suffer no further interaction with the medium once 

they are produced, the momentum of the initial away-side parton before energy loss 

would be fixed at the direct photon's momentum. Thus photo-tagged jet may provide 

a calibrating probe for the study of the properties of high energy density QCD matter. 

There have been several theoretical studies performed along this direction [171, 172, 

173]. 

However, all those calculations only focused on direct photons and neglected other 

important sources of photon production, such as fragmentation and jet-plasma inter

action during or after jets traversing the plasma. As the initial away-side partonic jets 

could have bigger energies than the near-side trigger photon, photons produced from 

those processes might have significant contribution to the study of photon-hadron cor

relations. It is the purpose of the present work to incorporate all possible processes 

for hard photon production and study their relative contributions to the correlations 

between back-to-back hard photons and hadrons. 
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6.2 Hard photon production at RHIC 

In Ref. [132, 174], the calculation of photon production from nuclear collisions at 

RHIC has been presented, by employing (l+l)-dimensional Bjorken evolution model 

and (2+l)-dimensional relativistic hydrodynamics to describe the hot and dense 

strongly interacting matter in those collisions, respectively. In this section, we present 

the calculation of hard photon production in the context of (3+l)-dimensional rela

tivistic hydrodynamics for the description of the soft QCD matter. 

Figure 6.1: Photon production in relativistic heavy ion collisions from various sources: direct pho
tons, fragmentation photons, bremsstrahlung photons, jet-conversion photons and thermal photons. 

As is well known, photons produced in nuclear collisions may come from a variety 

of sources, namely direct photons, fragmentation photons, jet-plasma photons and 

thermal photons, as shown in Fig. 6.1. Direct photons are predominantly produced 

from hard collisions in the early stage of the relativistic heavy ion collisions, via 

quark-anti-quark annihilation (q + q —> g + 7) and quark-gluon Compton scattering 

(9(9) + 9 —> Q(Q) + 7)- Fragmentation photons are produced from the surviving high 

energy jets after their passing through the thermal medium. Jet-plasma photons are 

produced from the processes involving the interaction between jets and the surround

ing medium when they are traversing through the plasma. Those include induced 

photon radiation (bremsstrahlung photons) and direct conversion from the high en-
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ergy jets (conversion photons). It has been illustrated that those two processes are 

very important for the understanding the experimental data for photon production 

in Au+Au collisions at RHIC [132, 174, 114]. The thermal photon emission from 

quark-gluon plasma has negligible contribution at high pr, and thus is excluded from 

consideration in the present work. 

The inclusive direct photon cross section may be obtained from perturbative QCD 

calculations [113], 

*Prdy = £ / **aGa/A(xai Q)Gb/B(xb, Q)-2xa _ XT&V dt , (6.1) 

with XT = 2pr/y/SNN, where y/s^N is the center-of-mass energy. In the above equa

tion, Ga/A(xa, Q) is the distribution function of parton a with momentum fraction xa 

in the nucleus A at factorization scale Q, taken from CTEQ5 [155] including nuclear 

shadowing effects from EKS98 [156]. The distribution da/dt is the leading order QCD 

differential cross section, and the /('-factor accounts for next-to-leading order (NLO) 

effects. As for direct photon production, i<"-factor as a function of the transverse 

momentum of direct photon is obtained by employing the NLO calculation of photon 

production in p+p collisions [175, 176, 177], where the factorization scale Q is set to 

be the photon transverse momentum. 

The above equation is applicable for the calculation of jet production resulting 

from corresponding QCD partonic processes. The fragmentation photon production 

is obtained by introducing the photon fragmentation function D1/J(Z,QF), where 

z = PT/PT is the momentum fraction. The resulting expression is 

d<?A+B->-,+X X^ f dz n < ~ •, dcTA+B-^j+X 

d2Prdy ^ J z2 d2p'Tdy =?/?^^«')f^£- (6'2) 

Here the vacuum fragmentation functions of quarks and gluons into real photons 

are taken from Ref. [178]. The inclusive cross section for hadrons produced by 

fragmentation from nuclear collisions may calculated in a similar way by employing 

the above equation with appropriate hadron fragmentation function. To calculate the 

final photons and hadrons produced from fragmentation of hard jets, we need to fix 
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Figure 6.2: The inclusive cross section for TV° production versus 7r° transverse momentum at mid-
rapidity in pp collisions at y/sjvriv = 200 GeV, compared with PHENIX data. 

if-factor in the calculation of initial jet cross section (and jet pair cross section used 

for fragmentation into photon-hadron pair in Eq. 6.14). If if-factor for the initial 

jet production (and jet pair production) is only dependent on the pr of the jet, it 

should have the same value for fragmentation into photons and hadrons (as well as 

photon-hadron pairs). Here we fix if-factor following Ref. [138] by comparing the 

theoretical calculation of inclusive n° production at high pr with the experimental 

measurements since fragmentation is the only mechanism for hadron production. In 

this way, if-factor is set to be 2.8 when the factorization scale Q is taken to be the 

transverse momentum of the initial jets, and the fragmentation scale Qp is taken 

to be the transverse momentum of produced photon (or hadrons). By the above 

conventions, we can reproduce both the inclusive n° cross section (see Fig. 6.2) and 

the inclusive 7 cross section in p+p collisions (see Fig. 6.3) at T/SNN = 200 GeV, 

where the data points are taken from [179, 180]. 

As for the production of fragmentation photons in Au+Au collisions at RHIC, we 

must include the energy loss of hard jets during their travelling through the thermal 

medium before fragmentation in vacuum. This is performed by taking into account 

both induced gluon radiation and elastic collisions during jet propagation. We may 

1 • • PHENIX, Preliminary 

CTEQ5, KKP, Q = pT
J, QF = pT, K = 2.: 
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Figure 6.3: The photon production in 200 GeV p + p collisions at RHIC, compare with PHENIX 
data. 

write the final spectrum of fragmentation photons as 

dz ^ 

3 

d^A+B^f+X 
— J d2f±vAB{f±)J2J -#DiiAzJ^$) 

da A+B^j+X (6.3) 
cPprdy 27T7 " , J - " 1 " V ^ V - / z 2 ~ 7 / : ' V ~ ' ' " ' ' r / d?p>Tdy 

where VAB{^L) is the probability distribution of initial hard jets in the transverse 

position f±, and D1/j(z,f±,(f)) is the medium-modified fragmentation function for a 

single jet initially created at transverse position fj_ and propagating at azimuthal 

angle <fi in the transverse plane. 

As for A+B collisions at impact parameter b, the probability distribution VAB^, f±) 

of initial hard jets at f± in the transverse plane is determined by the overlap geometry 

of two nuclei in the reaction zone, 

VAB(b,r±) 
TA(fx + b/2)TB(f±-b/2) 

(6.4) 
TAB(b) 

where T^(rj_) = / dzpA(f±,z) and IAB(6) — I d2r±TA{r±)TB(r± + b) are nuclear 

thickness function and overlap function of two nuclei, respectively. Here we use a 

Woods-Saxon form for the nuclear density function p(fj_,z) — po/[l + exp ( 1 ^ ) ] . 

The values of the parameters R = 6.38 fm and d — 0.535 fm are taken from [63]. 

The medium-modified fragmentation function £)7/j(2, fj_,̂ >) for a single jet is re-
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lated to the vacuum fragmentation function D1^{z) by, 

D-i/jiz, f±, cp) =Y1J dpr-D^/r{z')P(pr\pj,r^ <f>)- (6.5) 

where z = p-y/pj and z' — p-y/pj* are two momentum fractions, and the sum overs j ' 

is the sum over all parton species. In the above equation, the probability function 

P(pji\pj,fx,(j)) contains the information about the energy loss of hard jets during 

their propagation in the medium. It represents the probability of obtaining a jet f 

with momentum pji from a given jet j with momentum pj initially created at f± and 

propagating at </> direction in the transverse plane. 

We have already seen, in Chapter 3, 4 and 5, the evolution of jet momentum 

distribution P(E, t) = dN(E, t)/dE in the medium is determined by a set of coupled 

Fokker-Planck type rate equations with the following generic form, 

dPj(E,t) 

*> ab 

^Jdu pa(E+.,t)dT-f;/^ -P^t/i^^ 
duidt dujdt 

(6.6) 

where dT^a{E,uj)/dujdt is the transition rate for the partonic process j —> a, with 

u> the lost energy in the process. The u < 0 part of the integration incorporates 

processes which increase a particle's energy. The radiative and collisional parts of the 

transition rates have been discussed in Chapter 3 and Chapter 5, respectively. 

Now we present the calculation of photons produced from jet-plasma interaction 

when jets are propagating through the hot and dense medium. Those processes may 

be incorporated by solving an additional evolution equation for photons, 

dPJe ,-plasma(£,£) fj / r i i ^ fdrb
qZ^(E+u,uj) ] dTc

q°^(E+uj,ujy 

dt 
=j duPqq(E+u, t) ^ — + ^ J - (6.7) 

In the above equation, dT^^/dujdt are transition rates for photon bremsstrahlung 

processes, which has been discussed in Chapter 3. The transition rates dTc
q°^/dujdt 

for 2 —> 2 jet-photon conversion processes may be inferred from the photon emission 

rates in those processes. 

If we define the photon emission rate per unit volume i?7 = dN1/d
3xdt, the final 

result of photon emission rate from 2 - ^ 2 processes is given by [75, 93, 94, 95] (also 
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see Chapter 3), 

(27r)3dR2^2 (ef\
2 8naeasT

2 , • , / ! . kT E(?)^/«<*>(^ + w * / 4 m (Pk f 

where mq is the thermal quark mass, m2 = g2T2/6. In the limit of k S> T, 

C2-,2(k/T) = -0.36149 is a constant, and fqq(k) = (27r)3/dw- • dNqq{k)/d3kd3x is 

the phase-space distribution of quark plus anti-quark jets, with the spin and color 

degeneracy dqq = 2 • 2 • 3 = 12. As long as we know the local phase-space distribution 

of quark plus anti-quark jets, we may obtain the local phase-space distribution of 

photons produced from these jets by conversion. By integrating over the space-time, 

we will obtain the spectra of the photons produced from those processes. As 2 —» 2 

processes are dominated by (-channel diagrams, the produced photon will have almost 

the same energy as incoming jet. Thus the differential conversion rate from a quark 

(or anti-quark) to a photon is given by 

The 5 function generates the constraint that the incoming quark (or anti-quarks) 

experiences no energy loss in the conversion processes x. 

Putting all together, we obtain the total yield of photon production in nuclear 

collisions, 

dN^sib) = NcoU(b) daA+B-*1+x ,Q lQ, 
d2pTdy aNN d2pTdy 

where Nco\\ is the number of binary collisions and the <JNN is the inelastic cross section 

of elementary nucleon-nucleon collisions. 

In Fig. 6.4, we show the photon production from different channels in most cen

tral 0-10% Au+Au collisions (b = 2.4 fm) at RHIC, where the number of binary 

collisions is taken to be (Nco\\) — 955 [61, 181, 182]. Data points are taken from 

PHENIX [183]. The direct photon from the initial hard collisions of partons from two 

:In the numerical computation, we discretize the evolution equation such that J du> —> Aw 5Zu ,= n^ 

and use the approximation 5(ui) ss | [<5(w — Aw) + 5(to + Aw)] for small Aw . 
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Figure 6.4: The contributions from different channels to the photon production in Au+Au collisions 
at RHIC for b = 2.4 fm compared with most 0-10% PHENIX data. 

nuclei is the most dominant mechanism for photon production at very high pr regime 

{PT > 7 GeV). At intermediate pr regime (pr ~ 3 — 6 GeV), jet-plasma interaction 

gives very significant contribution to the photon production. The thermal photon is 

expected to be dominant at very low pr regime (pr < 2 GeV, not shown) [132, 174]. 

After summing over all photon production channels, our calculation agrees with the 

experimental measurements well. We may observe that the presence of the jet-plasma 

interaction is important to understand the total photon yield in Au+Au collisions at 

RHIC. 

Photon RAA is another quantity to measure the effect of the nuclear medium on 

the photon production. In Fig. 6.5, the photon RAA is shown as a function of photon 

pT for most central Au+Au collisions (b = 2.4 fm) at RHIC compared with 0-10% 

PHENIX data. As pr is increased, the experimental data points seem to decrease, 

consistent with the theoretical curve. At lower pr region, the theoretical curve is 

increasing due to the presence of plasma effect in Au+Au collisions, but not in p+p 

collisions (compare Fig. 6.3 and Fig. 6.4). However, the experimental error bars are 

too large to allow a strong judgement on this observation. 

10 12 
pT (GeV/c) 
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Figure 6.5: The nuclear modification factor RAA lor photon in Au+Au collisions at RHIC for 
b = 2.4 I'm compared with most 0-10% PHENIX data. 

6.3 Photon-hadron correlations in QGP 

In this section, we will present the calculation of the correlations between back-to-

back hard photons and hadrons in Au+Au collisions at RHIC. The hadron production 

in Au+Au collisions in the AMY formalism has been elaborated in Chapter 4 and 

Chapter 5, and the photon production has been discussed in the last section as well 

as in Ref. [132, 174]. The technique presented here is applicable for back-to-back 

hadron-hadron correlations by replacing the trigger photon with a trigger hadron. 

The near-side hadron-hadron correlations may also be studied similarly if we assume 

both the triggered and associated hadrons are produced from the fragmentation of 

the same jets. 

One of the commonly exploited observables in correlation studies is the (differ

ential) yield per trigger P{PT\PT, 4>) — ^/^-ydNh+1(p^\pj,,(())/dp^, which gives the 

conditional probability of producing a hadron with momentum p\ in the away side 

given a trigger photon with momentum p^ in the near side at an azimuthal angle cj) 

in the transverse plane. From probability theory 
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where the two-particle jointed probability and single-particle probability are related 

to the two-particle to single-particle cross sections, 

Nevts J dy-fdp^dcp atot J dy^dpj^dcf) 

Nevts J dyhdy^dp^dp^dcf) atot J dyhdy^p^dp^dcp 
(6.12) 

where iVevts is the number of events and atot is the semi-inclusive cross section for 

that event sample. Then we obtain 

nVT\VTA) = jdyhdyldyhdy^hTdpld(j)/ J d y , ^ - ^ (6.13) 

Notice that the yield per trigger has a strong dependence on the associated hadron 

rapidity y^ range (and a weak dependence on the trigger photon rapidity y1 range due 

to the cancellation between the numerator and the denominator). Unless otherwise 

stated, in the following, all results on photon-hadron correlations are presented at 

mid-rapidity, which corresponds to setting —0.5 < yh,y-y < 0.5 in the calculation. 

As for the fragmentation process, since the back-to-back hard photon and hadron 

are produced from a pair of back-to-back jets, we obtain, 

P(PT, <t>) = ^Jd2r1_VAB{r1_)YJJdp>TP]{p
i
T)P{pl\pi

T, f±, <j>), 
3 

n 

In the above equation, Pj(p3
T) = Jdyjdaj(p3

T)/atotdyJdpJ
T is the single-particle cross 

section of hard jets, and PJ+J'(PT>PT) — I dyjdyj>daj+j'(p3
T,p3

T)/atotdyjdyjtdp3
TdpJ

T 

is the two-particle cross section of hard back-to-back jets. Those cross sections 

may be calculated from pQCD as described in the previous section. P(p'^\pJ
T,fx,(f)) 

(F(pj.|pj.,fj_, 4>)) is photon (hadron) yield per trigger jet, giving the conditional prob

ability of producing a photon (hadron) with momentum p\ (pj.) from a jet with 

momentum p3
T initially created at f and propagating in the (ft direction in the trans

verse plane. To derive the above equation, we have assumed no correlation between 
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the individual evolutions of two partonic jets once they are produced. As has been 

described in previous sections, the evolution of the jet momentum distribution in 

the thermalized medium is controlled by a set of coupled Fokker-Planck equations,. 

Therefore, the photon yield per trigger jet is given by, 

P(pl\p^r±,<p) =Y.jdpiTP{P1M)P{PiT\p'T^A)- (6.15) 
j ' 

As for fragmentation process, the photon yield per trigger jet is related to medium-

modified photon fragmentation function by 

Dy/j(z,r±,<l>) =pJ
TP(p^\pJ

T,r±,(t>), DI/J,{Z')=P'TP(P1
T\P>T), (6-16) 

where z — PT/PT
 a n d z' = PT/PT- At this point, Eq. (6.15) is equivalent to Eq. (6.5). 

The quantity IAA is denned as the ratio of yield per trigger in A+A collisions to that 

in p+p collisions, 

T ( h\ 1 A\ PAA{PT\PT,4>) ,(. r 7 N 

IM(VT\VTA)- p M v t ) . (6.17) 

As is well known, photon-hadron correlations have been proposed as a calibrated 

probe of medium-modified fragmentation function since the momenta of away-side 

hadron are fixed by the trigger photons if we are capable of triggering direct photons 

at leading order. Thus, it is often useful to define the photon-triggered fragmentation 

function as [184, 185], 

DAA(zT,p1
T,<j))= / dyhdy1

 y / dVl , 6.18 
J dyhdy-ydzTdp^d^/ J dy7dp^d(p 

where ZT = PT/PT- The yield per trigger is related to the photon-triggered fragmen

tation function as, DAA(z,p^, </>) = PJ>PAA(PT\PT> <$>)• Thus IAA may be written as the 

ratio of inclusive fragmentation function in A+A collisions to that in p+p collisions, 

T t h\ 7 x\ DAA{ZT,PTI4>) / f l 1 n N 

DPP{ZT,PT) 

The above equations were derived by assuming that photons and hadrons are 

coming from fragmentation of back-to-back jets. This is true for high pr hadron pro

duction, and other hadronization mechanisms, such as the recombination of partons, 
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will be excluded for consideration here, as they assumes significance only in the lower 

PT region [154]. As for high pr photon production, we have to include all relevant 

photon production sources. 

P(pT\Pr, rj., <t>) = £ P{pl, s r c K , f±, </>), (6.20) 
src 

where the sources include direct photons, fragmentation photons and jet-plasma pho

tons. As for direct photon contribution, we may simply write the probability function 

(photon yield per trigger jet) as P(pT, direct\p?T, r±, </>) = 8{PT ~ PT) since the direct 

photon and the away-side jet have the same momentum at the production time. To 

include the production of jet-plasma photons, we may obtain the probability function 

P(pT,jet—plasma\Pr,r±,(f)) by solving the photon evolution equation Eq. (6.7). 

6.4 Results 

In this section, the numerical results for the correlations between back-to-back pho

tons and hadrons will be presented at high pr- The product of the initial hard parton 

densities is determined from the overlap geometry between two nuclei in the trans

verse plane of the collision zone. The initial momentum distribution of hard jets is 

computed from perturbative QCD. The energy loss of hard jets is computed by taking 

into account both induced gluon radiation and elastic collisions in the hot the dense 

medium. The production of trigger photons at high pT regime is obtained by taking 

into account all possible sources for hard photons, and the production of associated 

hadrons is calculated from the fragmentation of jets after their passing through the 

thermal plasma. The bulk properties of the medium created in Au+Au collision at 

RHIC is described by (3+l)-dimensional relativistic ideal hydrodynamics [137], which 

has been shown to give a good description of bulk properties at RHIC. 

In Fig. 6.6, we show the integrated per-trigger yield of away-side hadrons as a 

function of the trigger photon momenta in p+p collisions at RHIC, compared with the 

experimental data from PHENIX [186] for two different hadron momentum regimes: 

p£ = 2 — 3 GeV and 3 — 5 GeV. We may observe that our theoretical calculations can 

qualitatively describe the experimental measurements of photon-hadron correlations 
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Figure 6.6: The integrated per-trigger yield of away-side hadrons as a function of the momenta of 
trigger photons in p+p collisions at RHIC. 

in p+p collisions. The per-trigger yield is smaller in the lower panel (J>J. = 3 — 

5 GeV) for a given trigger photon momentum. This can be easily understood because 

associated hadrons with larger momenta have larger momentum fraction 2T. It should 

be noted that in these regimes, fragmentation may not be the only mechanism for 

the hadron production, especially for p\ = 2 — 3 GeV. 

In Fig. 6.7, the photon-triggered fragmentation function D^ZT) is shown as 

a function of hadron momentum fraction ZT in p+p collisions at RHIC. We show 

the photon-triggered fragmentation function for three different regimes for away-side 

hadrons: p\ — 3 — 5 GeV, 5 — 7 GeV and 7 — 9 GeV. The experimental data are 

from PHENIX [187]. Here, we have chosen those data points with hadron pr greater 

than 3 GeV as hadrons with small px might not produced from fragmentation. As 

can be clearly seen from the figure, the theoretical curves are in good agreement 

with the experimental data. Also, a slight difference is observed for the slope of 

photon-triggered fragmentation function L>PP(ZT) for different associated hadron mo

menta. This difference may be traced back to the momentum (fraction) dependence 

of different parton distribution functions (PDF). As is well known, gluon PDF has a 

deeper slope than quark PDF as a function of momentum fraction. As we increase 
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Figure 6.7: The photon-triggered hadron fragmentation function as a function of momentum fraction 
ZT in p+p collisions at RHIC. 

the momenta of initial partons (thus the momentum fraction in PDF), more quarks 

appear in the initial state. As a result, more gluons will be obtained in the final state 

after partonic scatterings. Since photon-triggered fragmentation function DPP(ZT) is 

a weighted average over quark and gluon fragmentation functions weighted with their 

fractions, a deeper slope is expected for photon-triggered DPP(ZT) since gluon frag

mentation function is deeper than quark fragmentation function. But it seems that 

the current experimental data are not able to resolve this difference. 

We now turn to study photon-hadron correlations in Au+Au collisions. In Fig. 6.8, 

we show photon-triggered fragmentation function DAA(ZT)
 a s a function of hadron 

momentum fraction ZT when we trigger photons in the near side with momenta p j = 

8 - 1 6 GeV in central Au+Au collisions (b — 2.4 GeV) at RHIC. The data points are 

taken from STAR for both central (0-10%) and peripheral (40-80%) Au+Au collisions 

[188]. We may observe that the theoretical curve of photon-triggered fragmentation 

function DAA{ZT) in centrral Au+Au collisions agrees with experimental data quite 

well. We also compare the photon-triggered fragmentation DPP{ZT) in p+p collisions 

with the data for peripheral Au+Au collisions, and they are in good agreement. 
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Figure 6.8: The photon-triggered fragmentation functions as a function of momentum fraction ZT 
in central Au+Au collisions and p + p collisions (peripheral Au+Au collisions) at RHIC. 

Note that STAR has tried to remove the contribution from fragmentation photons by 

employing isolation cut method. 

In the above plots, we have shown our calculation of the photon-hadron correla

tions a function of hadron transverse momentum fraction zT for p+p collisions and 

most central Au+Au collisions. For Au+Au collisions, it would be interesting to 

study the centrality dependence of photon-hadron correlations by integrating out the 

transverse momenta for both triggered photons and associated hadrons. In Fig. 6.9, 

we show our numerical calculation of the centrality dependence of per-trigger yield of 

photon-tagged hadrons in Au+Au collisions at RHIC and compared the experimental 

measurements from STAR [188]. We compare the per-trigger yield for four different 

impact parameters, b — 2.4 fm, b = 4.5 fm, b = 6.3 fm and b = 7.5 fm. In the plot, we 

trigger photons in the near side with momenta p j = 8 — 16 GeV, and study away-side 

hadrons with momenta "p\ = 4 — 6 GeV and 6 — 8 GeV. We may observe that the 

theoretical calculations of per-trigger yield for photon-triggered hadrons are consis

tent with the experimental measurements. It is noted that we do not perform the 

calculation for very peripheral Au+Au collisions as the assumption of a thermalized 

medium essential for a hydrodynamical treatment is no longer fulfilled. 
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Figure 6.9: The per-trigger yield for photon-tagged hadrons in Au+A collisions at RHIC as a function 
of centrality. The four points in each theoretical curve correspond to four impact parameters, 
b = 2.4 fm , b = 4.5 fm, b = 6.3 fm and b = 7.5 fm. 

The above numerical results for photon-hadron correlations have been shown by 

taking into account all possible sources of high px photons, including direct photons, 

fragmentation photons and jet-plasma photons. It would be highly interesting to 

study how different sources of photons contribute the final photon-hadron correla

tions. In order to address this issue, it is useful to study the momentum correlations 

between the initial back-to-back partonic jets and the trigger photon. Given a trigger 

photon produced in the near side, the momentum probability distribution of initial 

partonic jets at production time is given by, 

ESrc f (Pr .Pr»0. s r c ) 
P(pJ

T\p1
TA) = P(ph -

(6.21) 

where P(jPr,Pr, 0, src) is the two-particle momentum distribution of , 

P(PT^PrA,src) = — d2f1VAB{ri_)P{pi
T)P{p1

T)sxc\p!T,f^,t 
Zir J 

(6.22) 

In the above equation, we have performed the medium average for the initial jet as we 

have no knowledge about where the jets are originally created in the traverse plane 

of the medium. 
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Figure 6.10: The contributions from fragmentation photon and jet-plasma photon parts to the 
initial jet momentum distribution at the production time when we trigger a photon with momentum 
p j = 15 GeV in most central Au+Au collisions (b = 2.4 fm) at RHIC. The contribution from 
direct photon part is a delta function with certain normalization constant at 15 GeV. The total 
distributions of quarks and gluons will be the sum of the contributions from those three parts (not 
shown). 

In order to study the various contributions from different sources of high pr pho

tons to the total initial jet momentum distribution, we rewrite Eq. (6.21) as the sum 

of different parts, each tagged by a specific source of photons, 

P(p^\pl, <$>) = J2 P(A, H A <£)• (6-23) 
src 

In Fig. 6.10, we show the function P(p3
T,sxc\p'j) for different sources of photons. In 

the plot, we trigger a photon with momentum p^T — 15 GeV, thus the probability 

distribution of jets tagged by direct photons is a S function with some normalization 

weight determined by the fraction of direct photons to total photons at 15 GeV. In the 

plot, we show the distribution of jets (quarks plus gluons) tagged by those photons 

produced from fragmentation and jet-plasma interaction. It may be clearly seen that 

the initial jets may have higher momenta than the trigger photon. Jets tagged by 

fragmentation photons dominate at high momentum regime, while jets tagged by jet-

plasma photons is prevalent at relatively lower momentum regime except at 15 GeV, 

where the jets are predominantly tagged by direct photons. Note that the initial 
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Figure 6.11: Different contributions to per-trigger yield of the away-side hadrons when we trigger a 
photon with momentum pj, = 15 GeV in most central Au+Au collisions (6 = 2.4 fm) at RHIC. 

jets could have lower momenta than the trigger photon since we also include the 

absorption processes during the jet evolution in medium (see Fig. 5.4). 

By applying the fragmentation function, we may also study how different parts 

of jet initial distribution contribute to the away-side hadron production after their 

passing through the medium. Similarly, we break the hadron yield per trigger into 

different parts associated with different photon sources, 

P(PT\PTA) = £ P ( p £ , s r c | ^ » . (6.24) 
src 

In Fig. 6.11, we show the function P(pT,src\pT) for different sources of high px 

photons. As we trigger a photon in the near side, the away-side hadrons at relatively 

lower pr regime is mostly produced from those jets tagged by direct photons, while at 

higher px regime, a large amount of away-side hadrons come from those jets tagged by 

jet-plasma photons and fragmentation photons. Especially, close to the trigger photon 

momentum, the away side hadron production is dominated by those jets tagged by 

fragmentation photons. 

To further study the various contributions from different sources of photons to the 

photon-hadron correlations, we may consider comparing the following three scenarios: 
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Figure 6.12: Photon-triggered IAA for hadrons as a function of momentum fraction ZT in central 
Au+A collisions (6 = 2.4 fm) at RHIC. 

(1) only direct photons in both p+p and A+A collisions; (2) including direct and 

fragmentation photons in both p+p and A+A collisions, but no jet-plasma photons 

in A+A collisions; (3) including all possible sources of high pr photons. One of the 

important reasons for studying jet-photon correlations is that the original away-side 

jet has a single transverse momentum fixed by the near-side tagged photon if we 

could trigger direct photons at leading order; this corresponds to case (1). As has 

been discussed, jet-plasma photons are very important for the understanding of the 

experimental measurements of total photon yield in Au+Au collisions at RHIC. It 

would be interesting to quantify their effect on jet-photon correlations, which will be 

investigated by comparing case (2) and (3). 

In Fig. 6.12, we compare IAA for photon-triggered hadron production in these 

three different scenarios, where the momenta of the triggered photons are chosen to 

be py = 15 GeV. As expected, IAA is a falling function of momentum fraction ZT 

if we only consider direct photon production in both p+p and Au+Au collisions. 

As we include fragmentation photons for both p+p and Au+Au collisions, IAA is 

significantly enhanced at much higher ZT regime. Especially, close to the trigger 

photon momentum (ZT = 1), we observe a small rising of IAA as a function of ZT- This 
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Figure 6.13: The photon-triggered hadron fragmentation functions as a function of momentum 
fraction ZT in p+p collisions and Au+Au collisions at RHIC. 

is because those hadrons close to the trigger photon momenta are mostly produced 

from the jets tagged by the fragmentation photons. In this case, the initial jets tend 

to have higher momentum than the trigger photon (see Fig. 6.10 and Fig. 6.11). 

When we incorporate jet-plasma photons in Au+Au collisions, an overall change of 

IAA is observed for hadron in all ZT range explored. This is because jets tagged by 

jet-plasma photons have sizeable contributions to all pr hadron production in Au+Au 

collisions (see Fig. 6.11), while no jet-plasma interaction is present in p+p collisions. 

It would be interesting to see whether the current data can tell the difference 

among these three different scenarios. In Fig. 6.13, we show the photon-triggered 

fragmentation function DAA{ZT) for these three different scenarios, compared to the 

experimental measurements [188] for Au+Au collisions at RHIC. From the figure, we 

see sizable difference when we include fragmentation photons and jet-plasma photons. 

But it should be mentioned that the direct photons production is obtained from 

leading-order pQCD calculation with a pT-dependent K factor. If a full next-to-

leading order (NLO) calculation is employed for two-particle spectrum, there will be 

additional contribution to the photon-hadron correlations due to the 2 —• 3 collisions. 

The incorporation of a full NLO treatment will be our next step. At this point, the 
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Figure 6.14: Photon-triggered IAA for hadrons as a function of hadron momentum pr or momentum 
fraction ZT in central Au+Au collisions (b = 2.4 fm) at RHIC. 

current comparison between experimental data and our calculations seems not be able 

to distinguish between different scenarios. However, it should be pointed out that 

larger differences might be observed if we are able to measure the away-side hadrons 

with high ZT (and also high enough pr for fragmentation to be dominant), where 

jet-plasma interaction and fragmentation assume more significance to photon-hadron 

correlations (see Fig. 6.11). Finally, in Fig. 6.14, we show the photon-triggered IAA 

for hadrons as a function of hadron momentum pT and momentum fraction zT. 

6.5 Conclusions 

In this chapter, we have studied the nuclear suppression of high pr photon-tagged 

jets in the quark-gluon plasma at RHIC. The energy loss experienced by hard jets 

is evaluated by consistently incorporating both collisional and radiative energy loss, 

combined with a fully (3+l)-dimensional hydrodynamical evolution model for the 

description of the thermalized medium created at RHIC. The production of hard 

photons in Au+Au collisions at RHIC is calculated by incorporating all the possible 

sources, including direct photons, fragmentation photons and jet-plasma photons. 
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Numerical results have been shown for the suppression of away-side hadrons tagged 

by hard photons in Au+Au collisions relative to p+p collisions. Our calculations 

of yield per trigger of photon-tagged hadron in both p+p and Au+Au collisions 

are consistent with the experimental measurements by both PHENIX and STAR 

collaborations. Our results illustrate that all sources of hard photons are important 

to a full understanding of the correlations between back-to-back photons and hadrons. 

At relatively lower Zj- regime for the associated hadrons, photon-hadron correlations 

are found to be dominated by direct photons. At high ZT regime, jet-plasma photons 

and fragmentation photons become of increasing significance. 

In conclusion, our study of photon-hadron correlations will allow together with 

earlier studies in Chapter 4 and Chapter 5 to experimentally test our understanding 

of the interaction between the jets and the surrounding plasma created at RHIC. 



7 

Summary 

In Chapter 1, we briefly review the basic phenomenology in relativistic heavy ion 

collisions, which have been designed to create and study the strongly nuclear matter 

at extreme temperatures and densities by colliding two heavy nuclei at relativistic 

energies. According to quantum chromodynamics (QCD), a new phase of matter 

called quark-gluon plasma (QGP) is expected to exist at such extreme conditions. It 

is the hope of heavy ion collisions to create such a new phase of matter and study the 

critical phenomena related to the phase transition to the hadronic matter. The study 

of QGP is important not only for the understanding of the physics of strongly inter

acting QCD matter, but have an important impact on cosmology and astrophysics. 

However, the deconfined degrees of freedom - quarks and gluons, are not directly 

observable. It is one of most important tasks for physicists to find clear and unam

biguous signatures for observing the formation of quark-gluon plasma and studying 

its properties. This thesis constitutes one of those ongoing efforts by presenting our 

original research work on two promising signatures in relativistic heavy ion collisions: 

electromagnetic radiation and high transverse momentum jets. 

In Chapter 2, we present a new channel of the direct photon production from a 

quark-gluon plasma. This new mechanism vanishes in the vacuum and arises solely 

when the charge conjugation invariance is explicitly broken for the medium. Effec

tively, it may be described as the bremsstrahlung of a real photon from a thermal 

gluon in the excited QCD matter. As photon production from such channels is depen

dent on the gluon density of the medium, it offers a new window to probe the gluon 

sector of the highly excited strongly interacting matter. It is found that the photon 
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production rate from this process is suppressed compared to the QCD annihilation 

and Compton scattering for realistic temperatures and chemical potentials, but could 

become important in baryon-rich matter. 

In Chapter 3, the photon and gluon emission from the quark-gluon plasma is 

presented in the Arnold-Moore-Yaffe (AMY) formalism. Although this chapter does 

not constitute my own work, it is important for the work in the following parts of 

this thesis. The induced gluon emission by jets during their propagating through 

the plasma is the backbones of the calculation of radiative part of jet energy loss in 

relativistic heavy ion collisions. The induced photon emission constitutes one of the 

important sources of hard photon production in QGP and play an important role in 

the study of photon-hadron correlations at RHIC. 

In Chapter 4, we study radiative jet energy loss at high transverse momenta 

transverse momentum (pr)- The relativistic ideal three-dimensional hydrodynamical 

model is employed to describe the produced thermalized medium for the calculation 

of the neutral pion nuclear modification factor RAA in Au+Au collisions at RHIC. 

We have provided a systematic analysis of RAA as a function of pr and azimuth <f> in 

central and non-central collisions, at mid and forward rapidity. Our study will not 

only be able to reveal more information about nuclear medium, but also make for 

a stringent test of theoretical understanding of jet energy loss over a variety of in-

medium path lengths, temperatures and initial partonic jet energies once further data 

become available. We also present our prediction of the nuclear modification factor 

RAA for charged hadron production at the LHC by employing the two-dimensional 

ideal hydrodynamical model. 

In Chapter 5, we calculate and compared the collisional and radiative energy loss 

of hard jets in the hot and dense medium created at RHIC. We include radiative 

energy loss and the additional energy loss by elastic collisions. Our treatment of 

both processes is complete at leading order in the coupling and accounts for the 

probabilistic nature of the jet energy loss. While the average energy loss due to 

elastic collisions is small compared to the radiative one, the time evolution of the 
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parton momentum distributions are significantly different. We find that the solution 

of the Fokker-Planck equations of the probability density distributions of partons 

until fragmentation is decisive for a correct calculation of the nuclear modification 

factor RAA for pion production in heavy ion collisions. Especially, the magnitude 

of RAA is sensitive to the inclusion of collisional and radiative energy loss while the 

shape as a function of px does not show strong sensitivity. Possible implications of 

the collisional energy loss on jet quenching at the LHC have also been presented. 

In Chapter 6, we investigate the correlations between the back-to-back triggered 

photons and associated hadrons in Au+Au collisions. The energy loss of hard jets 

is evaluated by taking into account both radiative and collisional energy loss. The 

production of triggered photons is obtained by incorporating all possible sources of 

photons, and the production of associated hadrons is calculated from the fragmenta

tion of jets after their passing through the hot and dense plasma. The bulk properties 

of the medium created in Au+Au collision at RHIC is described by (3+l)-dimensional 

relativistic ideal hydrodynamics. Our results for hadron yield per trigger photon in 

both p+p and Au+Au collisions are consistent with the experimental measurements. 

It is found that all photon sources are important for the understanding of high energy 

photon-hadron correlations. 

In conclusion, this thesis constitutes a contribution to our theoretical understand

ing of the properties of the strongly interacting matter created in relativistic heavy 

ion collisions. Especially, our study of hard photon production and high momentum 

hadron suppression as well as their correlations will allow us to experimentally test 

our understanding of the interaction between the travelling jets and the surrounding 

plasma. A natural extension of this work will be to study the energy and system 

size dependence of hard photon and hadron production and their correlations, such 

as Au+Au collisions at lower energies, Cu+Cu collisions and especially Pb+Pb colli

sions at the LHC. Lepton pair production and hadron-hadron correlations would be 

another set of interesting topics for future investigation. Also in our present work, 

we focus on hadrons in high pr regime, where fragmentation is expected to be the 
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dominant mechanism for hadron production. It would be nice if we could have a uni

fied hadronization scheme which combines fragmentation and recombination naturally 

and describes the experimental data from lower pT to high pr regime consistently. 

Such an approach, however, does not yet exist. 



A 
Path integral representation of partition function 

In quantum statistical mechanics, the fundamental quantity is the probability density 

operator p, from which all the macroscopic quantities of the system can be computed. 

For example, let A be an observable of the system, then the expectation value of 

the measurement (ensemble average) of this observable can be calculated from the 

following equation, 

(A)=Tr[pA}. (A.l) 

For the canonical ensemble, the density operator p(P) is give by 

1 e~fiH 

^ ) = 2 i e x p M = i ^ ' ( A - 2 ) 

where H is the Hamiltonian of the system, Z((3) = Tre_/3/ / is the partition function, 

and (3 is the inverse of the temperature, (3 = \jT. In the above equation, we have set 

the Boltzmann constant to be a natural unit, ks — 1. It can be easily seen that the 

trace of the density operator is unity, Trp(/3) = 1. For a thermal equilibrium system 

of bosons, the partition function reads, 

Z(l3) = Y,ld4a{<t>a\e-fiH\<!>a), (A.3) 

where the sum runs over all states. The partition function may be rewritten as 

Z(P) = E jdU4>a\e-iH^-u)\<f>a) = £ [d<f>a(<f>a,tf\<f>a,U), (A.4) 

with ti = 0 and tj = —i(3. We are now in the position to evaluate the general 

transition amplitude in the quantum field theory, 

(4>fMM = {<f>f,t = O l e - ^ ' - ^ . i = 0) = ttfle-Wf-^lh), (A.5) 
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where the Hamiltonian is a functional of the field operator and its conjugate momen

tum, 

H= f d3xH(Tr,<f>). (A.6) 

The path integral of this transition amplitude is obtained by discretizing the time 

interval tt < t < tf, into iV equal small pieces At = (tf — U)/N. At each time 

interval, we may insert a complete sets of states, 

(A.7) 

As we know, (</>i|0i 

<^|e-^-^)=lim f(f[ 

•••{fa\^)(^\e-mAt\fa)(fa\fa). 

8{fa -fa), and 

H+i^k) = exp \iJ d3XTTk(()k+1j . (A.8) 

As At —> 0 or N —> oo, we can expand the transition amplitude as follows. Keeping 

terms up to the first order, we obtain 

(7rk\e-mAt\4>k) « (l-iHkAt)(nk\fa) = (l-iHkAt)exp (-i Jd'xTr^ .(A.9) 

By putting all ingredients together, the transition amplitude now reads, 

•,xk.d'Kk 

<0/|e-
W(t'^)l^> = w l i m M / ( n ^ ) ^ i - ^ ) 

N 
T^kvpk+l 0 

At 
H(nk, , (A.10) x exp < iAt 2^ / d x 

{ fc=r 

where fa — fa and <PN+I = 4>f- Taking the continuum limit, we obtain the formal 

expression for the transition amplitude, 
r<p{tf,x)=<pf _ r r<P\tfix)=<Pf 

(fa\e-^f-^\fa)= [dn} [dfa 
J J<t>{titX)=<t>i 

x exp « / ' * / < f x ^ - « ( 1 r , (A.11) 

In the above equation, the symbols [dn] and [dfa\ denote functional integration. By 

switching the real time variable t to the imaginary time variable r, where t — —ir 

with T real, we obtain the final expression for the partition function [129], 

rP , 

(A.12) Z(p) = f[dn] [{dfa exp f dr j d3x im-^- - H(ir, 
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where the integration over the field <fi is constrained by a periodic boundary condition 

If the system has a conserved charge, it is straightforward to generalize the result 

by performing the following replacement, 

H-*H-nN, (A.13) 

where TV" is the density operator of the conserved charge. The result may also readily 

be generalized to an arbitrary number of fields and conserved charges. 

For a neutral scalar field, the general renormalizable Lagrangian is 

£ = \d^d^ - \m2<f>2 - V(<f>), (A.14) 

where <p(x) is a real field, m is the mass of scalar particles and the interaction is 

contained in the potential V(4>), 

F(0) = # 3 + A04, (A.15) 

with A > 0 for the stability of the vacuum. The momentum conjugate to this field is 

dC d<t> i\ ifi\ 
n=dm^m> (A'16) 

and the Hamiltonian is obtained through the usual Legendre transformation 

U = T T ^ - £ = \n2 + \(V<t>? + ± m V + V(4>). (A.17) 

By performing the similar procedure as described above, we are able to obtain the 

partition function 

Z = A#]e s [ 0 l - f[d(p]exp(ffidT f d3xA , (A.18) 

where the functional integration of <p is constrained by a periodic boundary condition 

4>(f3, x) = 0(0, x). For the case of free field, V(4>) = 0, we may perform the integration 

by parts [129], 

Z = | [ # ] e x p -lfdTJd3x(t>(-§^-V2+rn2) (A.19) 
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It is similar to generalize the above result for fermions, which are described by a 

four-component Dirac spinor ip. For example, the Lagrangian for the free Dirac field 

reads, 

£ = ^i^fdn - m)ip. (A.20) 

The Dirac matrices 7M are defined by the anticommutators {7^,7"} = 2p'"/. In the 

standard convention, they are given by 

* - ( : : ) • < - ( : : ) • 

We may write the Lagrangian out explicitly using the identity ip = ip^°, 

£ = ^ 7 ° ( H ° O 7 + *7- V - m ) ip. (A.22) 

The momentum conjugate to the field ip is 

n =mm=* ' • (A-23) 

The Hamiltonian is found using the Legendre transformation 

H = Il^-£ = ip(-tf-V + mU. (A.24) 
at 

The final expression for partition function is found to be [129] 

Z = f[idipf] [dip] exp / dr f d3xip ( - 7 ° ^ - + «7 • V - m ] 1P (A.25) 

where the functional integration of ip is constrained by a periodic boundary condition 

rl>(P,x) = -r/;(0,x). 



B 
Thermal Green's function - Imaginary-time propagator 

The thermal average of time-ordered two-point function is given by 

A(Ti,fi ;r2 ,x2) = (T^TuxMn,^)). (B.l) 

The T-product in imaginary time r operates as follows, 

T(0(r 1 , f i )^(r 1 , f 2) = <f>(n,Xi)</)(T2,X2)0(T1 - r2) ± </>(r2, X2)<KTI, £I)(9(T2 - 7 I ) ( B . 2 ) 

where 0 is the step-function, and + and — are for bosons and fermions, respectively. 

Now we define a function A(r, x), 

A(r, f) = A(r2 -n,x2- xx) = A(TI , f i ; r2, f2). (B.3) 

From the periodical property <p(P, x) = ±0(0, £), we know A(r, a;) is a periodic (anti-

periodic) function of imaginary time r, 

A(r,£) = ± A ( r - / ? , £ ) , (B.4) 

for any vale of r in the interval [0,/?]. The Fourier transform of the imaginary-time 

propagator is defined as 

A(w n ,p )= J dr Jd3xeiiuinT+i!S)A(T,x), (B.5) 

with the inverse formula being 

A(r,x) = T^J-^e-«»»T+fi-*>A{u>n,p), (B.6) 
n 
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where n is an integer and con are discrete Matsubara frequencies. Since r, A(x) is 

periodic (anti-periodic) in the interval [0,/3], the frequencies take discrete values 

un = 2irnT, L0n = 27r(n + - )T, (B.7) 

for bosons and fermions, respectively. Therefore, in the imaginary time formalism, 

the energy variable po is switched to the Matsubara frequencies un, where po = icon, 

with L0n real. 

For a neutral scalar field, the Lagrangian density in Minkowski space reads 

£=^JmV-^), (Bi 

As usual in quantum field theory, we define a generating functional Z[f3,J], with 

Z[0] = Z[0,J = O], 

(B.9) Z\p, J] = f[d(f>] exp ( S[(j)} + f dr f d3xJ<f> 

The propagator in the imaginary time formalism is obtained by functional differenti

ation 

A(TI,XI;T2,X2) = 
S2Z[P,J] 

Z{(3\ 8J(TUX1)8J(T2,X2) 

1 

r=0W 
[d(/)}(j)(Ti,Xi)(j)(T2,X2)e ? „ V S M 

(B.10) 

For the case of free field, V{4>) = 0, we may perform the integration by parts. The 

generating function reads, 

(B.ll) ZF[P,J] = A # ] e x p -]- f'dr I ' d3x<j)(-^ - V 2 + rrA </> + J<p 

After performing the integration over the field <fi(x), we obtain 

ZF[P, J] = ZF[j3] exp ( - JdT1dT2 Jd3x1d
3x2 J(TU £ I ) A F ( T I , fx; r2, X2)J{T2, X2) J , 

(B.12) 

where the two-point Green function A f ( r , x) = AF (r2— n , x2—x{) — AF{rux\\ r2, x2) 

is the solution of the following partial differential equation 

d2 

dr2 - V2 + m2 AF(T, x) = 5(T)53(X). (B.13) 
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In the momentum space, the above equation reads, 

(io2
n+f + m2)AF(ujn,p) = l, (B.14) 

where ujn = 2mr/(3, with n an integer. It is straightforward that the above equation 

has the following solution, 

A F K ' P _ ) = "(iu^-C^ + m*) = j ^ W^-sE^ (B-15) 

where Ep — y/jp + m2. It is often useful work in the mixed representation. Then the 

propagator AF(r,p) in the mixed representation is defined as 

AF(r,p) = T^e-iuJnTAF(un,p). (B.16) 
n 

The inverse transformation reads, 

AF(un,p) = f0 dTe^TAF{T,p). (B.17) 

Jo 

The propagator in mixed representation may be obtained by converting the frequency 

sum into the contour integral [129] (see Appendix D), 

AF(T>P> = WP ([1 + KE^e~BpT + f ^ e E p T ) 

= £ As
F(r,p) = £ £r il + f(sEv)] e~sEpT> (B-18) 

s = ± l s = ± l Z £ / P 

where f(Ep) = l/[exp(/3£?p) — 1] is the Bose-Einstein distribution function. The last 

step in the above equation is obtained by using the identity, 1 + f(E) + f(—E) = 0. 

The propagator in coordinate space AF(T,X) may be obtained by 

For a free Dirac field, the general Lagrangian reads, 

AF{r,x) =Tj:j - ^ - e - ^ ^ A ^ ^ p ) =/^ e -**AF ( r ,p) . (B.19) 

£ = ̂ ii-fdp - m)i>. (B.20) 

The free propagator for fermions in the imaginary time can be obtained following the 

same procedure, 

SF^^ = - uuny - & + m*) • ( B '2 1 ) 
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where ujn = (2n+ 1)TT/P, with n an integer. Now we define the quantity AF(iu;„, Ep) 

AF^n, Ep) = -{wn)2_^ + m2) = Ex ^ - 4 ^ - (B'22) 

Similarly, its mixed representation AF(r ,p) may also be defined, 

A F ( r , p ) = T ^ e - ^ r A F ( a ; „ , p l . (B.23) 
n 

The inverse transformation reads, 

AF(un,p) = f0dre^T AF(r,p). (B.24) 

By computing the similar contour integral [129], we obtain the propagator in mixed 

representation (see Appendix D), 

Ap{T'f)=wp ([1 - KE^e~EpT - f(Ep>EpT) 

= £ AF(r,p) = £ ^ r [l - /(s£p)] e ^ T , (B.25) 
s=±l s=±l Z £ / P 

where /(.Ep) = l/[exp(j3Ep) + 1] is Fermi-Dirac distribution function. Note now 

1 — f(E) — f(—E) = 0. The propagator in coordinate space Af(r , x) is then obtained 

by 

A F ( r , x) = T £ y ^ L e - ^ - * # * > A ^ ^ = | ^ L e - * * £ F ( r , p) (B.26) 

The above result can be generalized to the case of non-zero chemical potential / i ^ O 

by replacing ia;n in the the propagator with iu>n+ji, and Ep in the thermal distribution 

function with Ep — /i, respectively. 



=. c = 
Spectral functions 

The two basic two-point correlation functions in the real time are D>(t,x) and 

D>(t,x), defined as, 

iD>{t,x) = (4>(t,x)(f>(0,d)), iD<{t,x) = {(f>(0,0)(f){t,x)) (C.I) 

Their Fourier transformations and the inverse transformations read 

D>(Po,p) = Jd4xe^t-^D>(t,x), D>(t,x) = J j ^ e ^ - ^ D ^ ^ p ) , 

D<{Po,p) = fd4xe^t-^)D<(t,x), D<(t,x) = J ^-4e-^°t-^D<(p0,p). (C.2) 

By using the cylindrical properties of the trace, we obtain 

£>>(t,x) = - ^ T r [ e - ^ ( t , f ) 0 ( O , 0 ) ] = ^ p T r [<£(£ + ^ , x ) e - ^ ( 0 , 0 ) 

= ^Tr[e-f3H<P(0,6)<P(t + i[3,x)}=D<(t + if3,x). (C.3) 

Going to the momentum space, the above relation reads, 

D>(po,p) = e0p°D<(Po,p). (C.4) 

The physical interpretation of this result is related to the microscopic detailed balance. 

It is often useful to to define the normal correlation function Dn(t, x) in the real time, 

iDn{t,x) = ([(£(*,£),0(0,CT)]> = iD>(t,x) -iDK{t,x). (C.5) 

By doing Fourier transformations, we obtain its expression in momentum space, 

Dn(p0,p) = Jd4xei{P0t-p-s)Dn(t,x). (C.6) 
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The spectral function is now defined as 

p(Po,p) = iDn(p0,p) = iD>(p0,p)-iD<(p0,p). (C.7) 

Therefore, we may rewrite the correlation functions D>(p0,p) and D<(p0,p) in terms 

of the spectral function as follows, 

iD>(p0,p) = [1 + f(po)}p(po,p), iD<(p0,p) = f(p0)p(po,p), (C.8) 

where f(po) — l/[exp(/?po) — 1] is the Bose-Einstein thermal distribution function. 

In linear response theory, the most relevant correlations are the retarded and 

advanced correlation functions DR(t,x) and DA(t,x), defined as follows, 

iDR(t,x) = (6(t)[(f>{t,x), 0(0,0)] = 9(t)iDn(t,x)) 

iDA(t,x) = -(e{-t)[(i)(t,x),(t>{0,d)}) = -6{-t)iDn{t,x). (C.9) 

It is easily to see 

[iDR{t,x)]] = - [iDA{t,x)\ =^ [DR(t,x)f = [DA(t,x)] . (CIO) 

The Fourier transforms in the momentum space read 

DR{pQ,p) = fd4xet{pot-p-s)DR{t,x), DA{p0,p) = j dAxel^ot-^)DR{t,x). (C.ll) 

From the definitions of DR(t, x) and DA(t, x), we obtain 

iDR{t,x)-iDA(t,x) = iDn(t,x) = iD>(t,x) - iD<(t,x). (C.12) 

Therefore, we may also write the following expression for the spectral function 

p(po,p) = iDR(po,p)-iDA(po,p). (C.13) 

From the usual representation of the ^-function, 

P^—, (C14) 
-oo 2n u + te 

we find that the retarded and advanced correlation functions may be expressed as the 

integrals of the spectral function, 
•nRf -̂  . f°° duj p(cj,p) A . [°° dto p{u,p) 

J-oo 2TT U — po — te J-oo 2TX LO — PQ + te 
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From the identity 

M l Ti^(x), (C.16) 1 p 
x ± ie 

where P represent the Couchy principle value, the above equations imply that the 

spectral function is related to the imaginary part of two-point functions, 

p(po,p) = -2lmDR(p0,p), p(p0,p) = 2lmDA{p0,p). (C.17) 

The real parts of retarded and advanced correlation functions are equal, 

ReDR(p0,p) = ReDA(p0,p). (C.18) 

The imaginary-time propagator in the finite temperature field theory may also be 

connected to the spectral function. Performing the Fourier transformation, we obtain 

A ^ p ) = f dr f d ^ e * - - * * ) A ( r , x) = f ^Lf^K. (C.19) 
Jo J Joo 2n u — iun 

This implies that the retarded and advanced propagators may be obtained from the 

imaginary-time propagator by analytical continuation as follows, 

DR(p0,p) = - A K , p ) L n = p o + J e , DA(PQ,p) = - A(Wn ,p)|JWn=po_ i e . (C.20) 

From the imaginary-time propagator of a free field for bosons, 

*''*»*>" -w-v+nty (c'21) 

we obtain 

p(p0,p) = 2TTsign(Po)5{p2
0 -f- m2). (C.22) 

Thus the spectral function has the weight concentrated on the mass shell of the 

particle. Generally, for interacting particle in the medium, this weight will get spread 

out over a range of energies. 

It is also of great interest to take a look at the real-time propagator D(t, x) in the 

finite temperature, defined as 

iD(t,x) - (T<f>(t,x)</)(0,S)) = 6(t)iD>(t,x) + 6{-t)iD<(t,x). (C.23) 
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In terms of spectral function, it reads [126], 

iD(p0,p) = -i F° d"_P^D_ + f(p0)p(p0,f). (C.24) 
Joo 2TT to — po — te 

It is easy to find the free propagator in the real time by substituting the free spectral 

function [126], 

iDF(po,p) = -a ^ l , . + 2irn(p0)5(p2
0 - f - m2), (C.25) 

PQ— p —ml + te 

where n(pQ) = l/[exp(/3|p0|) — !]• The first term is the zero temperature part, and 

the second term is the thermal part which vanishes in the zero temperature. 



D 
Matsubara frequency sum 

In the imaginary-time formalism, the zeroth components of four momenta are discrete 

Matsubara frequencies. In this appendix, we will present some techniques to perform 

the sum of Matsubara frequencies encountered in the computation of Feynman dia

grams. 

The first frequency sum we are going to compute is the mixed representation of free 

propagators of fermions with zero chemical potential (the generalization to Eq. (2.13) 

with /Li 7̂  0 is straightforward), 

AF(r,p) = Tj2e-iuJnTAF(icon,p), (D.l) 
n 

where the propagator in the momentum space is given by 

with Ep — \/p2 + m2, and p° = iojn — i[2n + l)irT. As has been stated in [129], the 

sum over the Matsubara frequencies can be converted into contour integrals in the 

complex plane. Here for p° — iuin = i(2n + l)7rT, we have 

pU 

where the contour C is shown as in the left figure, which is equivalent to C\ + C^ in 

the middle figure. 

1 1 

2 e^° + 1 
(D.3) 
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Therefore, we obtain 

A ^ = Wc1+c^VP°V (P0)2 ~ Ej 

1 1 
2 ~~ ePP° + 1 

(D.4) 

Note that l / ^ " ^ 0 + 1) = 1 - l / (e^° + 1), we have 

AF(T,J?) = ~ [ dp°e-v° 
2m Jci (p0)2 - El [2 e^° + 1 

2ni Jc2 ( 
1 1 1 

2 e-^° + 1 JC2 (p°)2 - £ 2 

To further evaluate the contour integral, we need to close the integral contour, C\ 

C[ and C2 -> C2. 

D.5) 

AF(T. ^ = -2^Ic 

27TZ JC 

Ci^C[ 
dtfe P»-P°T_ 1 

(P0)2 - El 

1 
e/3fc0 + ! 

1 
cfo°e~p°r-

c2-*q ( p ° ) 2 - £ ! 2 e - ^ + l" 
(D.6) 

Note that we have put the constant —1/2 in the second term to the first term in order 

to make the integral in the second term zero as p° —> —oo. Evaluating the residues 

at p° = Ep in contour C[ and p° = —Ep in contour C'2, we obtain the final result for 

the mixed representation of Fermion propagator, 

A F ( T , P) = 2 ^ - ([1 - n{Ep)\e-^T - n(Ep)e
E^) (D.7) 

Second, we compute the following product of two imaginary-time fermion propaga

tors (corresponding to setting /i = 0 in Eq. (2.18), and the generalization to non-zero 

chemical potential is straightforward), 

S(iujn) = T]TAS 2( iwn , E2)ASl(iLL>„ + iuk, Ei), (D.8) 
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where uin = (2n + 1)ITT, Uk = 2nkirT, and 

A s f e , E) = ̂ e'sET ( l - f(sE)) . (D.9) 

From the Fourier transformation of mixed propagator, we obtain 

S(iun) = TJ2 [0dr2 [" dne^e^+^A^fa, E2)ASl(n, E,). (D.10) 

As Ti,T2 € (0,/3), we have the identity 

T£ezuM(r1+r2) = 5(n + T 2 _ py p_n j 

Substituting the above identity and the following equation, 

As(T,E) = ~[l-f(sE)}e-*ET, (D.12) 

we obtain 

S(iun) = j^dr^-^+s^J^ [j _ J ^ ^ ] ^ ^ [j _ J(sijBi)j (D13) 

Performing the integral over ri gives us 

sis2 e - s l £ l / 3 - e -

4£ ,
1£2 iwfc - SiEi + s2E2 

S l S o p-si£i/3 _ p-S2E20 , r _ 

From the identity 

(D.15) _0sE _ f(sE) 
I-RSEY 

we obtain the final result for the product of two imaginary-time propagator, 

S(iun) = ATjiSlEl)-J{S2E>]. (D.16) 
v nl 4E1E2iujk~s1E1+s2E2

 y ' 

Finally, we compute the following expression, which appears in Chapter 2 when we 

evaluate the photon production rate by cutting self-energy diagrams (see Eq. (2.39)), 

D i s cT £ / ( f c ° Mp° - f c 0 ) , (D.17) 

k° 

In the above equation, p° and k° are imaginary discrete Matsubara frequencies, p° = 

npi2iiT) k° — U^TTT, with integers np, nk ranging from —oo to oo. The discontinuity 
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of a complex function f(z) across real axis is defined as Disc/(z) = f(z+ie) — f (z—ie), 

where e = 0+ is any tiny number. In order to evaluate the above expression, we first 

recall the Cauchy theorem for the contour integral, 

/ (a) = ^ / — J w 2mJc z- -dz. (D.18) 

where the contour C is taken counter-clockwise. We may take the integral contour C 

across the real axis, such that 

/ (a) 
1 

2TTI 

Therefore, 

/

oo — ie r 

. + -oo —it Jo 

-oo-Be 

oo+ie 

/ ( * ) dz 
1 r°° f(z + ie)-f(z-ie) 

z — a 
-If 

2mJ-

/ ( o ) = i r D i s c ^ _ _ , 
2m J-oc z — a J-

P(z) 
•dz. 

dz. (D.19) 

(D.20) 
-oo Z — CI J—oo Z — a 

where we the spectral function p(z) of f(z) has been defined as p(z) = Disef(z)/(2iri). 

Now we may also rewrite Eq. (D.17) in terms of the spectral functions of f(k°) and 

g(p° — k°) as follows, 

DiscTj2 f(k°)g(p° - k°) = DiscT 
k° k° u dlO r-

oo OJ — K u J-oo LU — ' -oo LO -p° + k° 

Now our task becomes to evaluate the following expression, 

1 1 
DiscT y^ — — r——. 

y u - k° u' - p° + k° 

. (D.21) 

(D.22) 

As has been stated in [129], the sum over the Matsubara frequencies can be converted 

into contour integrals over a complex k°, i.e., for any function f(k°), 

1 1 
2 + e^° - 1 

(D.23) TEf(k°) = ~ f dk°f(k°) 
V 2m Jc 

where the contour C is shown as the left figure, which is equivalent to C\ + Ci in the 

middle figure. C\ + C^. 

I fcv k° i f c v k° 

Ci 
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Therefore, we obtain 

1 1 
TE 

1 
/ dk°- 1 1 1 1 

L2 + ^ r rr 
.(D.24) 

^ ui ~k0ui' -p° + k° 2m Jcx+c2 u - k° u' - p° + k° 

To further evaluate the contour integral, we need to close the integral contour, C\ —> 

C{ and C2 —> C'2- Taking the residues of the function inside the integral at k° = u 

and k° = p° - a/, 

1 1 1 / 1 1 
TE 

fco 

1 
LO - k° u>' - p° + k° ~ u>' - p° + cu \2 + e#" - 1 

1 1 1 
+ uj-p° + u>\2 ' e-^-lJ' ( D ' 2 5 ) 

where the identity exp(/3p°) = 1 has been implicitly employed. The above expression 

may be simplified to be, 

1 1 1 
T V 

^ Lo-k0oo' -p° + k° co' + to-p 
- [1 + f{u) + /(u/)] , (D.26) 

by using the fact that 1 + f{u) + f(-ui) = 0, where f(u>) = l /(ew /T - 1). Now taking 

the discontinuity across the real axis, 

DiscT V - -
^LU-k°u'-P

0 + k0 
Disc 

1 

u>' + to — p° 
[1 + f{u) + / ( a / ) ] . (D.27) 

It is straightforward to show that when p° —> E ± ie 

1 

Ul' + US — p° 

Putting all together, we obtain the desired formula, 

Disc = 2iri5(u + w' -E). (D.28) 

DiscT Y,f(k°)9(P° - k°) = 2m f du f du'PI{LO)PI{J) 

x5(u + uj'-E)(l + f(io) + f(oj')). 

By employing the following identity, 

1 + f(u) + / (a /) = [e^+^'T - l]/(o,)/(a/), 

we obtain 

DiscT Ef(k°)g{p° - k°) = 2m{eE/T - I) jdu JdJPl{u)Pl{u') 

x6(u + u'-E)f(u)f(Lj'). 

(D.29) 

(D.30) 

k° 
(D.31) 
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