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Abstract

In order to overcome the adverse effects of fading in wireless telecommunication channels,

using a combination of error correcting codes and repeat requests has proven to be a practical

solution. Such a combination is indeed offered in Hybrid Automatic Repeat reQuest (HARQ)

where retransmissions of encoded bits from the same message packet increase chances of

successful decoding. HARQ thus becomes a method for reliable delivery of bursty traffic of

data in wireless channels. By exploiting a feedback channel, HARQ targets smaller error

rate and higher throughput by retransmitting the failed packets. Conventional HARQ

transmission assumes a single-bit feedback message that can acknowledge the success or

failure of a transmission attempt to the transmitting node. It is also conventionally accepted

to assume fixed transmission parameters throughout the HARQ retransmission process. As

a natural extension, the idea of being able to vary transmission parameters from one attempt

to another has been of an extensive interest in the recent studies on HARQ. Moreover,

the feedback message shows a great performance boost to the conventional HARQ when

accompanied by side information about the channel state.

This dissertation aims to answer the question: how beneficial a feedback of more than

just one bit message can be to the performance of HARQ, if the transmission parameters

such as rate, can be varied? To answer this question, we define the optimal rate control

problem to find the maximum achievable throughput of HARQ protocol. We also consider

two scenarios: in the first one the transmitter does not have any knowledge about the

state of the channel and gets a reliable feedback from the receiver in the conventional

way; in the second case we assume that the instantaneous channel state information is not

available in transmitter but an independent outdated version of it that can be accessible

via the feedback channel can be used by the transmitter to adapt the transmission rate.

Assuming a fixed-power transmission, we find the optimal rate policies, which yield the

maximum achievable throughput and outage-probability-constrained optimal throughput.

We present various simplification approaches to the non-convex optimization problems that

can significantly reduce the complexity. Our approach is based on the Markov decision

process theoretical framework and the optimization that uses the dynamic programming.

Theoretically proven performance bounds for truncated and infinite transmission HARQ are

presented for both single-hop and relay channels. We show that a few bits of extra feedback

message with truncated HARQ can approach closely the performance limit.
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Résumé

Le protocole Hybride ARQ est principalement utilisé pour garantir une livraison fiable de

trafic de données dans les canaux sans fil à évanouissements. HARQ permet de réduire la

probabilité d’erreurs grâce à l’utilisation d’un canal de retour. En effet, HARQ retransmet

correctement les paquets non reçus. Les protocoles HARQ classiques utilisent un message

de retour à un seul bit pour déclarer l’échec ou le succès de la transmission. On suppose

également que les paramètres de transmission restent fixes tout au long du processus de

la retransmission pour le HARQ traditionnel. l’idée de varier les paramètres de HARQ

d’une transmission à l’autre a fait récemment l’objet de plusieurs de travaux de recherche.

De même, les performances du système HARQ augmentent en améliorant les messages de

feedback. Notamment, lorsque ces derniers contiennent une information partielle à propos

du canal supposée non connue par l’émetteur. les messages de feedback donnent une idée

sur le canal de transmission au récepteur.

Dans cette thèse, on montre l’avantage d’utiliser plusieurs bits dans le canal de retour.

On suppose que les paramètres de transmission, notamment le débit, peuvent varier entre

les retransmissions dans le protocole HARQ.

Notre objectif est d’optimiser le débit afin de maximiser le débit (throughput) du

protocole HARQ. Notre étude couvre les systèmes “point à point” et les systèmes à relais

dans un canal à évanouissements par blocs. Nous considérons deux scénarios: le premier

cas où l’émetteur n’a pas d’informations sur l’état du canal, mais il reoit un seul bit de

retour. Dans le deuxième cas, l’émetteur n’a aussi pas d’informations instantanées sur l’état

du canal, cependant, une information sur l’état précédant est disponible. Pour les deux

scénarios, et en supposant que la puissance reste constante tout le long du processus, on

détermine le débit qui maximise le throughput avec contraintes sur la probabilité de coupure.

Nous prouvons que les solutions obtenues des cas simplifiés sont aussi proches que celles du

problme original avec moins de complexité. Pour résoudre le problme d’optimisation, on

utilise la théorie sur les processus markoviens, précisément, la programmation dynamique.

On détermine aussi les limites des performances du protocole HARQ avec un nombre fini

ou infini de retransmissions. Nous montrons qu’uniquement quelques bits de messages de

rétroaction supplémentaire suffisent pour atteindre les performances maximales.
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Chapter 1

Introduction

W
ireless networks provide the users with anywhere/anytime services. This feature

makes the wireless communication technologies very popular as the number of

wireless devices are now larger than the world population. Wireless communication has

always been facing an ever-increasing demand on data transmission services; for instance, one

can look at the various web-based services that are extremely popular in telecommunication

industry today. Bursty sporadic communication from a large population of users in wireless

mobile access to the Internet or packet-oriented data transmission that requires instantaneous

large data rates and very small error probabilities for a short time [1].

Wireless networks can generally cost less to be built compared to the wired networks.

But, what makes it challenging to create wireless networks is the fading characteristics

of the wireless channel which increases the chances of packet loss. This way, the random

fading process crucially debilitates wireless communication. Reducing the chances of losing

a message packet in communication system providing high data rate along with the system

performance is the motivation for researchers to introduce advanced techniques like Hybrid

Automatic Repeat reQuest (HARQ) or Adaptive Modulation and Coding (AMC).

Because of the multi-path characteristic of a wireless channel, a signal may appear

in multiple constructive and/or destructive versions at the receiver. This may result in

various fading levels on the signal which may make the decoding impossible in deep fading

situation [2]. As a result, error correction coding is not guaranteed to be successful in message

delivery and transmission of a codewords have to be repeated occasionally. This chapter

discusses how a fading channel should be dealt with, in order to increase the reliability of
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M x y M̂
Encoder

Channel
Pr(y|x) Decoder

Figure 1.1 Illustration of a point-to-point communication channel.

communications among the parties. This will bring to light a number of questions with

regard to the reliable and fast transmission over fading channel and we will talk about our

motivations in this research work. At the end of this chapter, a summarized overview of the

contributions made in this research work is presented, which will be explained in detail in

the following chapters.

1.1 Motivation and Problem Statement

A communication channel without fading, the characteristics of noise (and interference)

describes the performance (Figure 1.1). The channel is represented by Pr(y|x) as the

conditional probability density function for an output y given an input x. In a wireless

channel, it is not only noise and interference but also changes in channel state over time that

may harm a reliable communication. Path-loss and shadowing in a wireless communication

link vary with time and, as a result, the wireless signal faces time-variant fading. The

coherence time of a fading channel is the minimum time required to have a new channel

coefficient value (changed in magnitude or phase) which is uncorrelated from the previous

value1. Based on the relation between the number of symbols in a codeword Ns (in channel

uses), and the channel coherence time Tc (also in channel uses), three scenarios can happen

in a fading channel (Figure 1.2).

• Fast-fading - where Ns is greater than the channel coherent time Tc. This is the

case for fast-moving users and/or encoders with long codewords. An example for

fast-fading experience is in Ultra Wideband (UWB) channels [3].

• Slow-fading - where the codeword length is considered to be not greater than the

channel coherent time.
1The same definition can be considered in frequency domain.
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• Quasi-static - where the coherence time is long enough so that the channel remains

fixed for several codeword length. This is a useful model for slow-moving users and/or

relatively short codewords in networks with general stationary situations.

F1 F2 F3 F4 F5 F6

(a)

(b)

(c)

0

9Tc 18Tc

3Tc 6Tc

1Tc 2Tc

channel
gain

|h1|2 |h2|2
|h3|2 |h4|2

|h5|2

|h6|2 |h7|2 |h8|2
|h9|2

|h10|2
|h11|2 |h12|2

|h13|2 |h14|2

|h15|2

|h16|2
|h17|2

|h18|2

|h1|2
|h2|2

|h3|2
|h4|2

|h5|2
|h6|2

|h1|2
|h2|2

Figure 1.2 Channel gain experience for six consecutive frames of F1, . . . ,F6

(i.e., 6×Ns symbols), with respect to time (in channel uses). The three cases
of (a) fast-fading, (b) slow-fading and (c) quasi-static are being compared. The
channel fading factor is denoted by a complex value hi and as a result the
channel gain is equal to |hk|2.
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1.1.1 Block-Fading Channel Model

In block-fading channel model, an entire encoding frame experiences a constant channel

condition. This can be interpreted as both slow-fading and quasi-static models. In case of

having a quasi-static situation, (for instance, using Orthogonal Frequency-Division Multi-

plexing (OFDM) [4]) a coherence time slot of the channel can be converted into a set of

parallel block-fading channels.

The characteristics of block-fading channel is known to be common in many practical

wireless communication setups. One truly interesting example is OFDM which is the core

technology in many wireless standards including Institute of Electrical and Electronics

Engineers (IEEE) 802.11 Wireless Local Area Network (WLAN) [5] and IEEE 802.16

Worldwide interoperability for Microwave access (WiMax) [6]. Moreover, the Global System

for Mobile communications (GSM) and the Enhanced Data GSM Environment (EDGE),

also rely on a block-fading channel model [7]. For further discussions about fading channel

we refer the readers to [8].

1.1.2 Transmission over Fading Channel

The two main schemes for channel coding are the Forward Error Correction (FEC) and the

Automatic Repeat reQuest (ARQ). In FEC, error-correcting channel codes are employed

to help the receiver node with correcting errors. In ARQ on the other hand, only error

detection codes are used. Here, the receiver tries to detect errors in the received packet

and, using a reliable feedback channel, notifies the transmitter about the result of decoding

procedure. Depending on success or failure of the decoding process, an Acknowledgement

(ACK) or Negative Acknowledgement (NACK) message is sent back to the transmitter

respectively. In case of failure, retransmission of the same message is the solution to channel

error in ARQ.

Throughput is a well accepted performance criterion for wireless channel analysis. It

is defined as the average number of correctly received bits per average number of channel

uses necessary for the data delivery and is measured by bits per channel use (bpcu). In

HARQ, FEC is used along with ARQ to decrease the number of retransmissions and increase

channel throughput [9]. In other words, HARQ looks for efficient information delivery in

data transmission by combining re-transmitted versions of the same data packet in case of

unsuccessful decoding in the first attempt to decode the packet.
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Figure 1.3 A comparison of decoder action between ARQ and CC-HARQ

transmission methods. Here, we denote by P
(k)
n , the kth transmission attempt

for the nth packet. Packet P1 is successfully decoded after one transmission
attempt. Packet P2 is retransmitted two extra times, due to the decoding

failure on it’s first attempt P
(1)
2 . The decoder function D(.), takes only the last

received packet for decoding process in ARQ, while in CC-HARQ, all of the
received packets of the same packet will be used in the decoding process.

1.1.3 How HARQ Works

HARQ can be divided into two main groups: Chase Combining (CC) and Incremental

Redundancy (IR). In CC-HARQ, every retransmission contains the same packet (Figure 1.3).

The receiver uses maximal-ratio combining (MRC) to combine the received packets during

the ARQ retransmissions. Because all transmissions are identical, CC can be seen as

repetition coding. In IR-HARQ, multiple sets of codeword symbols are generated, each

representing the same set of information bits. The retransmission typically uses a different

set of codeword symbols than the previous transmission, with different redundancy versions

generated by puncturing the encoder output. Thus, at every retransmission the receiver
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gains extra knowledge [10].

The key idea in HARQ is to keep the received information from the first transmission

attempt in case of decoding failure, instead of dropping it. The received information is

buffered, not in the form of hard channel bits (i.e., observation sequences), but rather in

form of soft channel bits (i.e., data only known in terms of probabilities). The soft channel

bits in the buffer will then be used for soft MRC in CC or, soft combined decoding in

IR [11].

In CC-HARQ, because MRC is used at the decoder, transmission rate is fixed throughout

all the retransmission attempts. In other words, with Rk denoting the transmission rate at

the kth attempt, we have Ri = Rj, ∀i, j. On the other hand, variable transmission rates

are feasible in IR-HARQ, which gives this setup new degrees of freedom for performance

optimization (Figure 1.4). The parameter of the maximum number of transmission attempts

for a message governs the number of degrees of freedom in this sense. We denote this

parameter by K throughout this dissertation. An HARQ process is called truncated when

K is finite.

To have a better idea on how the two different HARQ types work, we can refer to the

outage probability of the two. For CC-HARQ transmission, the outage probability has a

form as follows.

P CC-HARQ

out = Pr

{
log(1 +

K∑
k=1

γk) < R

}
, (1.1)

where we assume Gaussian noise and codeword distribution and use γk to denote the Signal

to Noise Ratio (SNR) of the transmission attempt k and R to denote the coding rate. (1.1)

shows how CC-HARQ with K transmission attempts and MRC at the decoder can be seen

as a single transmission with an SNR equal to
∑K

k=1 γk. Using the same notation, IR-HARQ

has an outage probability of the following form.

P IR-HARQ

out = Pr

{
K∑
k=1

log(1 + γk) < R

}
, (1.2)

where a summation overtime of the mutual information, denoted by log(1 + γk), must be

less than the transmission rate to have an outage.

HARQ in its simplest version, can be discussed as if the error correcting code is
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chosen (possibly differently) based on the operating SNR and the encoded data packets are

being transmitted as in conventional ARQ. The error correcting code merely increases the

probability of successful transmission, and thus the overall throughput. It is well-agreed that

the throughput criterion (along with other criteria such as transmission delay, probability of

losing the packet, etc.) is one of the key criteria to exhibit the usefulness of a transmission

protocol. For the sake of a better throughput, in HARQ it is important to have as few

channel uses as possible for a desired level of reliability to make sure that the bandwidth is

employed in an efficient way.

It is not surprising that HARQ is now widely popular in telecommunication industry. In

applications such as mobile and satellite packet data transmission, the IR-HARQ achieves

high throughput efficiency by adapting the error correcting code redundancy to varying

channel conditions [10]. Both CC-HARQ and IR-HARQ are being widely used in contempo-

rary wireless systems such as High Speed Packet Access (HSPA), WiMax and 3rd Generation

Partnership Project (3GPP) Long Term Evolution (LTE) [12]. Also, HARQ can be used in

a single-user channel or multi-user channel for packet transmission. Currently, HARQ

HARQ is also being used for implementing AMC technique in wireless mobile com-

munication. Suppose two users, where one of them is closer to the cell base station of a

wireless network than the other and so having a more favorable position. The better user

can be assigned a higher order modulation and code rate than the user with poorer position

to increase its average throughput. Now, for a single user, when the channel experience

changes over time, an adaptive modulation and coding rate can help the user to have a

more efficient communication. Estimation of the channel state needs to be accurate enough

to make the adaptation useful. Using HARQ, a feedback message from the receiver to the

transmitter conveying the estimated channel condition can help the transmitter to adapt

its transmission parameters. AMC is being used in HSPA to increase throughput combined

with IR-HARQ [13]. If the code or modulation rate of the subsequent transmissions of a

given packet is adapted with the channel condition and changes between re-transmissions

then we have adaptive HARQ. Otherwise if the transmissions use the same modulation

order and code rate scheme, then we have non-adaptive HARQ.

Dealing with HARQ, as the combination of FEC and ARQ, two main parameters show

up for design: coding rate and number of retransmissions.

• In FEC, the greater number of redundant bits in a codeword for a well-designed
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system, results in better error correcting capability. On the other hand throughput

may suffer by decreasing coding rate.

• In ARQ it is obvious that allowing an infinite number of retransmissions gives a

zero outage probability, which is the probability of losing the data. However, by

truncating the ARQ process to finite K, there is always a possibility of outage which

is non-increasing by K increasing.

The tradeoff between transmission rate and the number of retransmissions in an ARQ

protocol is the critical point in the design of an HARQ system.

1.1.4 Motivation

The capacity of a fast-fading channel, when only the decoder knows the Channel State

Infromation (CSI), is known in general. In a fast-fading channel, an asymptotically long

transmitted packet is assumed to experience the whole characteristics of the channel, thus the

channel coding rate is limited by the ergodic capacity (the so-called Shannon capacity) [14].

C = B

∫ ∞

0

log2(1 + γ)p(γ)dγ (1.3)

with B being the bandwidth of a fading channel with Gaussian noise (and consequently

using Gaussian input) while the distribution of the fading is characterized with p(γ).

The capacity C in (1.3), is the probabilistic average of the capacity of an Additive White

Gaussian Noise (AWGN) channel with SNR of γ. One can easily investigate, based on the

well-known Jensen’s inequality, that the capacity of a fast-fading channel with decoder CSI

is less than or at most equal to the capacity of an AWGN channel with SNR of γ̄ = E{γ},
where E denotes the expectation of a random variable.

In block-fading channel model with an idealistic capacity achieving code in each block,

the transmitter can adapt the transmission power to the channel conditions if the CSI is

available at the transmitter. The result of this adaptive transmission is to reach the Ergodic

capacity in the long term [9]. In a practical sense, when CSI is available at the transmitter

side, (e.g., the Channel Quality Indicator (CQI) signalling in LTE that represents the

receiver’s desired modulation and coding rate), AMC can be exploited in order to adapt the

transmission parameters to the instantaneous channel conditions [15] in order to guarantee

a certain level of successful message delivery.
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Figure 1.4 Incremental redundancy HARQ transmission with variable/fixed
rate. The Retransmission attempts are consisted of new redundancy chunks of
symbols, unlike CC-HARQ, where the same packet is retransmitted in case of
decoding failure.

In a block-fading channel with only decoder CSI, transmissions with even a very low

coding rate are not guaranteed to be delivered correctly at the receiver. This is a result

of the time-varying nature of a fading channel and the probable times of channel being in

deep fade. HARQ transmission can be seen as a means of error control in this situation.

The feedback channel of the HARQ protocol can be exploited to report the outdated -CSI

(i.e., the CSI experienced in the previous attempts by the decoder) to the transmitter and

inform the encoder of how close the decoder is to a successful decoding. Capacity can not
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be defined for such a channel and instead, capacity with outage is used in analysis [2].

Capacity with outage [2] is represented with a dual of a transmission rate limit and the

probability of outage when functioning above that limit. The transmitter fixes a minimum

received SNR of γmin and encodes its data with the rate of log2(1 + γmin). Decoding of

asymptotically large codewords will be successful if the instantaneous SNR is greater than

or equal to γmin [16]. In case that the experienced SNR is less than γmin, the channel will

be in fade and outage happens. Therefore, the probability of outage is as follows:

Pout = Pr{γ < γmin}, (1.4)

and the capacity with outage is calculated as

Co = (1− Pout) log2(1 + γmin) (1.5)

in bits per channel use.

The relation between Pout and Co as capacity versus outage gives the capacity with

outage defined for block fading channels. In general, the performance of a block-fading

channel is discussed in the average sense of achievable rate (or throughput) and transmission

over such a channel is never guaranteed to be successful. However, we are interested to

know if a block-fading channel can achieve the rates in ergodic capacity in the long run,

where the outage probability is arbitrarily small.

It is shown in [1] that with an arbitrarily large number of retransmission attempts in

HARQ, the throughput achieves the ergodic capacity limit for a single-hop transmission

channel. This interests us in finding out the performance limits of a truncated HARQ, since

it considers technical limits of a system where time is of severe importance (and the service

tolerance to delay is very high) in delivery of data. We want to take advantage of the

degrees of freedom in truncated HARQ, such as the adjustable transmission parameters, e.g.

transmit power [17] or transmission rate [18]. Since a fixed-rate fixed-power transmission

is just a special case of the general problem, it will be interesting to know how much

throughput gain can we achieve, in terms of throughput, with variable rate and/or variable

power transmission in truncated HARQ.

For the transmitter to wait for twice the propagation delay time (round-trip delay)

to receive the feedback message from the receiver, it might lose the time resource for
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transmission of other message packets in ARQ protocol. The effect of a large propagation

delay on decreasing the throughput, which can happen in satellite communications [19],

can be ignored by assuming the use of many parallel ARQ processes to fully exploit the

available time resources. This idea is being used in the Media Access Control (MAC) layer

HARQ transmission in the LTE standard.

Moreover, HARQ can be introduced as a practical approach to communication networks

comprising relays and cooperative communication [20]. This makes us wonder how beneficial

variable transmission parameters can be in a truncated cooperative HARQ. As in the case

of the single-hop channel, we are interested in studying the performance limits of channels

with relays.

With a relay node lying in between transmitter and receiver nodes, and assuming

independent channels between nodes, there is always a higher possibility of decoding success

at the relay node compared to the receiver. As a result, the HARQ process, started from

the node that has the message, can be continued with the relay node in case it decodes the

message successfully. Therefore, if it could be proved optimal, the transmission policy can

takes this idea into account in order to make the best out of the available resources. Since

the capacity of a relay channel is not known in general [21, 22], it is highly intriguing to

look for the performance limits of HARQ transmission over relay channel.

1.1.5 Objectives

The main question we look to answer in this research is how to find the performance limits

of truncated IR-HARQ in single-hop and relay channels. Our vision is to find the optimal

transmission rate policy for HARQ in different channel models. We are interested in finding

out how the feedback of an HARQ channel can be exploited in order to adjust transmission

parameters in useful way.

In a block fading channel with independent and identically distributed (i.i.d.) channel

states, HARQ feedback which is transmitted back to the encoder at the end of a transmission

attempt, can never help to estimate the instantaneous CSI. Although, it may help to make

the best out of the transmission time by giving the transmitter information about how far

the decoder is from a successful decoding.

Fixed-outage performance of block fading channel is an interesting topic which has

been addressed in the literature very often [2]. This is an as interesting question to be
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investigated for HARQ transmission. We look for an optimal resource allocating policy to

increase the throughput with respect to the fixed-rate fixed-power conventional HARQ.

The complexity of an optimization problem is in most cases an exponentially growing

function of the number of optimization parameters. Using the well-known Dynamic Pro-

gramming (DP) technique is one of the approaches we would like to investigate as the

possible simplifying methods to decrease the complexity of optimization problems. Thus,

the questions to be addressed in the thesis are

• What is the throughput-optimal transmission rate in a fading channel when using

truncated HARQ?

• Can we get better fixed-outage performance in a block-fading channel by applying an

optimized HARQ transmission protocol?

• What is the effect of outdated CSI on throughput for HARQ?

• What are the limits of performance for a truncated HARQ?

• How well can a cooperative channel perform in terms of achievable throughput, using

HARQ?

• How robust are the optimal policies in fulfilling the achievable throughput with respect

to the limitations on the feedback message?

1.2 Outline and Contributions

1.2.1 Contributions

The following summarizes the major contributions of this dissertation:

• This work analyzes optimal rate control policies for single hop and relay block fading

channel to meet the best throughput performance of HARQ transmission process. We

study two different scenarios: first, where the feedback message in the HARQ process

is limited to a single bit of ACK or NACK and second, when there is no limit imposed

on the length of this feedback message. We show that the two scenarios require

different optimization approaches. In the first scenario we call the optimal control

policies rate allocation since it shall be allocated before the start of the process to all
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the transmission attempts. In the second scenario, the control policy is called rate

adaptation because the transmission rate can be adapted depending on the information

in the feedback message.

• We show how to use the well-known DP methods [23] to optimize the rate adaptation

policies for truncated HARQ in order to maximize the throughput under constraints

on outage. We study the trade-off between average total number of channel uses

and probability of packet dropping. The idea of using DP was already suggested for

HARQ optimal design, e.g., in [24] and [18] however to the best of our knowledge, it

has not been used for rate adaptation in truncated HARQ.

• For truncated HARQ, the rate allocation scenario is presented for both single hop and

the relay channel, we optimize the presented closed-form representation of throughput.

While, DP was already suggested to optimize the rate allocation for an infinite number

of transmissions in [24], its practical implementation aspects were not shown. We

argue that it may be difficult to solve the problem exactly and we propose suitable

approximations.

• A dual to the optimization problem in both rate allocation and rate adaptation

scenaria is presented. We prove that the solution to the dual problem is a globally

optimal solution for the original optimization problem. This helps us to significantly

reduce the complexity of the optimization problem.

• We introduce a cooperative rate adaptation scheme based on multi-bit feedback in

multi-relay cooperative HARQ transmission with opportunistic relay selection. For

the case of single-relay networks, we show that the presented scheme shows signifi-

cant performance improvement over conventional non-adaptive fixed-rate cooperative

HARQ. The rate adaptation process is studied as a Markov Decision Process (MDP)

statistical model. We emphasize the benefits of such an approach and show how the

complex problem of HARQ rate optimization can be reduced to a recursive algorithm

which is significantly less complex.

• In the rate adaptation scenario, we study the effect of a discretized feedback message

with limited number of bits on the performance of the presented scheme. The results

suggest that a very small number of feedback message bits is sufficient to achieve the
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maximum achievable throughput. In the rate allocation scenario for relay channel,

we introduce the use of the nested loop dynamic programming for optimization of the

throughput in a recursive problem.

• Finally, we show numerical results for practically interesting models of the wireless

channel, comparing the throughput and outage for various rate adaptation/allocation

methods. These results indicate that, specially in high SNR regime, a maximum

number of retransmissions of K = 4 can give an optimal throughput close to that

of the performance limit (i.e., ergodic capacity). We show that throughput-optimal

rate adaptation may result in packet dropping and terminating the HARQ process

before the last transmission is even reached. When an infinite number of transmission

attempts are allowed, we present the performance limit for HARQ transmission in

single hop and relay channels.

1.2.2 Document Organization

This dissertation is organized as follows:

• Chapter 2 presents the HARQ resource allocation problem and describes the channel

under investigation in both cases of single-hop and multi-hop networks. We introduce

the normalized accumulated information at the decoder as a measure of the decoder

state in HARQ transmission. Then, based on the number of feedback messages being

available for each transmission attempt, we categorize the problem into two main

branches of allocation and adaptation studies. We discuss the throughput of HARQ

channel and the outage probability and present them as the performance criteria in

this dissertation and the limits of performance are stated for all the channel model

setups. We show how the resource allocation problem in HARQ fits the definition of

a MDP problem and finally, we will briefly discuss some of the practical concerns on

the subject of resource allocation.

• In Chapter 3 we review the background on optimizations of transmission parameters

over HARQ protocol. We will cover the most critical problems and the answers in

this research area in five sections: exploiting feedback, optimal coding rate, joint rate

and power optimization, cooperative HARQ and finally dynamic programming. For
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each of the topics we will present the approach that we employed to the problem in

this research thesis.

• In Chapter 4, we first establish the optimization framework that we use in this

dissertation. We prove that the throughput maximization problem in both adapta-

tion/allocation problems can be substituted with a dual problem in order to reduce

the optimization complexity and cast it into a recursive minimization problem. Then,

for the single-hop channel model the rate adaptation and the rate allocation problems

in a fixed-power scenario are studied. Numerical results are presented in both cases,

together with simplifying approaches to find the optimal results.

• Chapter 5 studies the orthogonal-relaying channel model. We first cover the rate

adaptation problem and show in a case study how a few feedback message bits can be

enough for an optimum rate policy to reach the performance limits. Then, for the

rate allocation problem in the relay channel, we present two optimization approaches.

Then the numerical results are presented with comparisons between the performance

of rate allocation and rate adaptation methods.

• Chapter 6 covers all the concluding remarks and future research perspective.
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Chapter 2

HARQ Resource Control Problem

A
ssumption of a feedback channel is inherent for HARQ protocols and it is used to

inform the transmitter node whether if the destination has successfully decoded the

previous packet (ACK) or has failed in decoding it (NACK). Figure 2.1 shows fading channel

with feedback. However, the amount of information conveyed by the feedback signal may

be different based on the capabilities of the feedback channel and the protocol design. We

categorize the types of feedback into two categories as follows.

• A one-bit feedback (ACK/NACK signal): This type of feedback is only capable of

informing the transmitter node as to whether the decoding has been successful or not.

• A feedback conveying more than one bit of information: Here we can expect the

transmitter to become somewhat aware of the state of the decoder, which implies how

close the decoder is to a successful decoding.

This dissertation focuses on the assumption of having error-free feedback channels while

we note here that there are studies in the literature on the effects of feedback error on

the performance of HARQ (See [25–27]). In this chapter, for the two scenarios explained

above, we present the resource control problem for HARQ in block-fading channel. First we

describe the channel model for single hop and relay transmission and talk about the decoder

state. Then, we discus the performance criteria that we want to focus on in this dissertation

and the effects on these performance criteria, of having CSI at the decoder/encoder .



2 HARQ Resource Control Problem 17

M
(Nb bits)

Channel
Encoder
Channel
Encoder

Channel
Decoder
Channel
Decoder

xkxk

√
qk hk ξk

yk M̂

Transmitter Channel Receiver

Feedback Channel

Figure 2.1 Block-fading channel model with feedback.

2.1 Channel Model with no Transmitter CSI

In this dissertation, we analyze the case where CSI is available at the decoder, but not at

the encoder. Because of the behavior of block-fading channel, estimation of the CSI at the

receiver is relatively simple and results in a negligible loss in the transmission rate [7,28,29].

We use the term outdated-CSI to describe the case where transmitter CSI is not available

but instead, an outdated version of the CSI i.e., some information about the history of

the channel state in the HARQ process, is available at the encoder (See [30]). In all cases

we assume that the distribution of channel state (i.e., statistics of the channel or Channel

Distribution Information (CDI) [2]) is known to all parties.

2.1.1 Single-hop Channel Model

In this case, we assume a channel with two nodes: Source (S) and Destination (D). A

packet of Nb bits of information is to be delivered to node D while it is only known at node

S at time zero. The packet is encoded into a codeword X of Ns symbols x1, x2, . . . , xNs . The

codeword is chosen from a codebook which we denote by CNs and is generated from random

and independent symbols with complex zero-mean unit variance Gaussian distribution and

is already revealed to all nodes. We are interested in IR-HARQ so each codeword will be

partitioned into disjoint subsets of symbols xi to create sub-codewords xk for 1 ≤ k ≤ K.
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The lengths of sub-codewords are chosen according to the coding rate policy. This is depicted

in Figure 2.2.

Encoding

The encoding function acts from the set of Nb-bit messages to the set of codewords CNs

generated randomly according to
∏Ns

i=1 pxi
(xi) with the probability density function (pdf)

px(x) being a Gaussian distribution.

At the start of the IR-HARQ process, a sub-codeword x1 of Ns,1 symbols is transmitted

to D. Then, S receives an error-free feedback from D. In case that the decoding has

failed, the transmitter sends the second sub-codeword x2 composed of Ns,2 symbols and

listens to the new feedback from D. This process will go on until the message is successfully

decoded at D or the maximum number of allowed transmission attempts K has been reached

(truncated HARQ).

x1 x2 x3 x4 · · · xK

Ns,1 Ns,2 Ns,3 Ns,4 · · · Ns,K

X

Figure 2.2 A codeword X and the sub-codewords xk, for 1 ≤ k ≤ K. The
length of the sub-codewords can be chosen by the encoder in variable-rate
transmission. For fixed-rate transmission though, Ns,k = Ns

K , ∀k.

Channel Parameters

The channel is block-fading and as a result it remains constant during each transmission

period. The received signal during the kth transmission attempt (1 ≤ k ≤ K) can be shown
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as

yk = hk
√
qkxk + ξk, (2.1)

where hk denotes the complex channel gain of the channel and ξk is the zero mean unit

variance complex Gaussian noise of the channel at kth transmission and qk is the transmit

power (Figure 2.1). Since the message symbols and the noise are assumed to have unit

variance the SNR will be γk = |hk|2 · qk. The channel gain is assumed to be perfectly

estimated at the receiver but unknown to the transmitter. Moreover, it varies independently

from one transmission to another. This corresponds to a practical model where subsequent

sub-codewords are sent in non-adjacent time instants and are separated by several channel

coherence times.

The transmit power qk is a parameter to be set by the transmitter, which can be also

used besides transmission rate as a means to optimize throughput, and truncated HARQ

implies qk ≡ 0, k > K. A constant power transmission discipline sets qk ≡ q1, ∀k.

Decoding

A code combining approach as shown in Figure 2.3, is assumed at the decoder node based

on all the observations that the decoder has of the transmitted sub-codewords up to the

decoding time [1]. That is, an observation Y is generated using all the received symbols yi

up to the decoding time k where 1 ≤ i ≤ ∑k
l=1 Ns,l, and Ns −

∑k
l=1 Ns,l dummy symbols zi

generated independently from the received signal, for the spots where no symbol has been

transmitted yet. The decoder function is then from the set of codewords CNs to the set of

all Nb bit messages.

Redundancy Variables

From now on in this dissertation, we will use a normalized version of the sub-codeword length

ρk = Ns,k/Nb that is interpreted as redundancy. ρk is equal to the inverse of transmission

rate Rk and is measured by the number of channel uses per information bit. As we will

see in the following chapters, the main goal in analyzing the HARQ problem in here would

be optimization of throughput for rate allocation/adaptation using ρks. In case of rate

adaptations ρk(.) is a function of the decoder state of D and may change with k. On the
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y1 y2 y3 y4 z

Ns,1 Ns,2 Ns,3 Ns,4 Ns −
∑4

l=1Ns,l

Y

Figure 2.3 A decoding codeword Y after 4 transmission attempts. The
codeword is generated using the observed sub-codewords yk for k = 1, 2, 3, 4
and the dummy sub-codeword z.

other hand for rate allocation ρks are constant values which may only vary by k. The special

case of ρk ≡ ρ1, ∀k is fixed-rate transmission which is already discussed in [1] and [12].

2.1.2 Normalized Accumulated Mutual Information

In the analysis of HARQ the ACcumulated Mutual Information (ACMI) is used in most of

the research works in the literature as a measure for the decoder state. It is proved to be

an appropriate measure for theoretical analysis of HARQ (particularly ACMI is introduced

and analyzed for different HARQ types in [1] and [31]). For an information theoretic model

with asymptotically long codewords, the ACMI after k transmission attempts with a code

combining decoder, denoted with Ik is defined as follows [1, 18, 31–33].

Ik =
k∑

l=1

Ns,l

Ns,1

Cl (2.2)

where, for the model described in Section 2.1.1, Cl = C(γl) = log2(1 + γl) with γl being the

SNR received at decoder during the lth transmission period.

Decoding is successful if the ACMI is not less than the targeted transmission rate of the
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initial transmission (i.e., if Ik ≥ R1 =
Nb

Ns,1
). This can be interpreted as follows.

1 ≤
k∑

l=1

Cl
Ns,l

Nb

(2.3)

or,

1 ≤
k∑

l=1

Clρl. (2.4)

Using (2.4), we define Ik =
∑k

l=1 Clρl =
Ik
Nb

as the Normalized ACcumulated Mutual

Information (NACMI) after k transmission attempts. This definition makes the analysis

simple since the NACMI does not depend on the initial transmission rate and HARQ is

successful if and only if Ik ≥ 1.

The NACMI model can be used for adaptation/allocation analysis as we will show in

the following chapters. We note here that the ACMI model has already been used for

adaptation analysis in [30] and for allocation analysis in [34–36]. Besides the information

theoretic analysis, the ACMI model has also been used in coded modulations in [37].

The NACMI quantity is a weighted sum of the channel capacities of the block fading

channel experienced by the decoder in the past blocks. By getting informed of the series of

{Il|1 ≤ l ≤ k}, because the encoder already knows the ρk variables, it will be able to find

out the history of channel up to time k, i.e., the outdated CSI1. Thus, choosing the NACMI

measure as the feedback message of the HARQ process, we can notify the encoder of all

the outdated CSI that has been experienced by decoder in the previous attempts. Clearly,

Ik = 1 means a successful decoding of the message and any less value of this variable with

Ik ∈ [0, 1) implies decoding failure. A feedback channel which is capable of carrying more

than one bit, can be used to transmit the value of Ik to S. This value can be quantized

into the arbitrary number of bits depending on the capacity of the feedback channel. The

number of bits in the feedback message, as we pointed out in the beginning of this chapter,

specifies the category of the rate optimization analysis.

1Also note that CSI is the only information that the decoder node has it and is worthy to share with the
encoder.
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Rate Allocation

We will shortly see that rate allocation, as the first scenario, is a special case of the second

where Ik is discretized into one single bit. However, the reason why it is a different scenario

is that in the case of a single-bit feedback message, the encoder has no side information to

adapt the transmission rate based on it and it can only decide between zero or an allocated

amount of redundancy to be transmitted. In other words, for a maximum of K transmission

attempts, the transmitter can allocate upfront the set of K transmission rates to be used in

case it will receive a NACK. Throughout this dissertation we will use the term rate allocation

to address optimization of transmission rates for this category of IR-HARQ. On the other

hand with a feedback containing more than one bit of information, at the beginning of kth

transmission attempt, rate can be adapted with respect to Ik−1 in a way (which we call it

rate adaptation) that might be more beneficial to throughput than allocating the rate set

upfront.

Rate Adaptation

A discretized version of Ik can be substituted interchangeably with the CSI experienced

by the receiver at the previous attempt. This CSI information, when delivered at the

transmitter node, is outdated and independent of the current CSI. However, the transmitter

can decide on the transmission rate based on the outdated CSI by inferring the amount

of information that the decoder has gathered so far. Using outdated CSI for throughput

optimization has been noticed earlier in research works in [17,30,31,34] and we will cover in

details in Section 4.2 and Section 5.1 what make our approach different from the previous

works.

2.1.3 Multi-hop Channel Model

A cooperative version of the channel model described above has a relay node added to the

network which will aid the transmission. In this section we first describe the topology of the

cooperative channel and the cooperative protocol of the problem. Then, the incremental

redundancy scheme is defined on top of the channel model based code combining.
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Relaying Protocol

The communication network considered here includes three nodes: Source (S), Destination
(D) and Relay (R), each having a single half-duplex radio. We assume a block fading channel

and an error free feedback network between all nodes. At the end of each transmission

attempt, the receiver node(s), can transmit their feedback signals back to transmitter node.

Node R is a decode-and-forward communication party so, it can start transmitting to D
only after successful decoding of the message from node S which is the only node having

knowledge of the Nb-bits message at time zero.

S

R

D

Source

Relay

Destination

Figure 2.4 Topology of the relay channel.

As depicted in Figure 2.4 node R is positioned somewhere closer to D than S, implying

that, on average, it has a better channel to D than what node S has. The goal of the

network is to deliver the message from S to D using the cooperation of R.

The transmission starts with S broadcasting the encoded message to all the other nodes

in the network. We call this the broadcasting phase. While one node is transmitting the

other nodes are only listening and remain silent. The transmission process ends when node

D successfully decodes the message. If node R decodes the message first, then it relays the

message to D and node S goes silent. We call this the relaying phase.

Adaptive Incremental Redundancy Transmission

Coding and decoding is the same as described in Section 2.1.1: We assume that random

channel codes are used through all transmission attempts and a packet of Nb information

bits is encoded into Ns random complex symbols x1, x2, . . . , xNs . The symbols are samples of

a zero-mean unit-variance complex Gaussian random process. The channel code is revealed
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to all nodes. Here, K is the maximum total number of transmissions performed by source

and relay nodes together.

At each transmission attempt a subset of the Ns symbols is transmitted. At the start

of the ARQ process nodes are in the relaying phase in which only S has the message. So,

source has to decide the number of symbols N S
s,1 for broadcasting to D and R. The selected

sub-codeword x1 would be modulated into a signal and transmitted over the block fading

channel. Then S will receive feedback signals from both receiver nodes. In the case that

both receivers have failed decoding the message, the same process will be repeated with

new decision on N S
s,2 based on the knowledge that S has gathered from feedbacks. This will

keep going until either D or R decodes the Nb bits message successfully or the maximum

number of transmission attempts K has been reached.

If R can successfully decode the message at any time k (k < K) then we go into the

broadcasting phase when S will go silent. In this phase, R starts transmitting the message

by making a decision on the number of symbols NR
s,k+1 to create a sub-codeword xk+1. Since

incremental redundancy is assumed to be implemented and the sub-codewords at each

transmission attempt are meant to be disjoint codes, R will choose the NR
s,k+1 symbols from

the subset of symbols in the corresponding codeword that have not been transmitted by S
before. This process will continue for K − k attempts or will stop if D decodes the message.

We assume that Ns can be arbitrarily large which results in an arbitrarily low rate. This

will allow us to apply no constraint on the size of sub-codewords.

Here, like in the single-hop channel model, we use normalized sub-codeword length

(redundancy) ρk = Ns,k/Nb. Encoders at the transmitter nodes can decide on the amount

of redundancy to transmit, based on the knowledge they get from the feedback channels

embedded in the network. For the case of rate adaptation, ρks are functions and in rate

allocation they are constant values changing with k (variable rate). This makes our work

different from that in [38] which analyzes the special case of ρk ≡ ρ1, ∀k.
Similar to the channel model in Section 2.1.1 the signal over the kth transmission attempt

(1 ≤ k ≤ K) transmitted by node a and received at node b can be written as

yb
k = hab

k

√
qakx

a
k + ηk (2.5)

with hab
k being the complex channel gain of the channel between nodes a and b and ηk being

the zero mean unit variance complex Gaussian noise of the channel at the kth transmission.
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Again γk = |hab
k |2 · qak is the SNR experienced at node b of this transmission attempt while

qak is the transmission power of transmitter node a, during the kth attempt.

Decoder Accumulated Information

Information at the decoder defined in Section 2.1.2 is cumulative over the discrete time and

the state of the dynamic system is defined via the pair (ID
k , I

R
k ), the accumulated information

at the decoders of R and D nodes. Therefore, the system can be described using the

following relations:

ID
k = ID

k−1 + ρS
k · CSD

k + ρR
k · CRD

k , (2.6a)

IR
k = IR

k−1 + ρS
k · CSR

k (2.6b)

for k = 1, 2, ..., K with (ID
0 , I

R
0 ) ≡ (0, 0), i.e., the destination and the relay have zero

information at time zero. The decision variables are (ρS
k, ρ

R
k) and the random parameters

are (CSD
k , CSR

k , CRD
k ).

Successful decoding condition in here is the the same as in (2.4). So, we can interpret the

broadcasting phase as the state where IR
k < 1 holds and the relaying phase as the state where

IR
k ≥ 1 (noting that at both phases we have ID

k < 1). Moreover, the transmission process

stops when ID
k ≥ 1 for some k < K or the maximum number of transmission attempts K is

reached.

Transmission Parameters

The redundancy transmitted from S and R at attempt k ∈ {1, · · · , K} can be written as

ρS
k =

{
ρS
k(I

D
k−1, I

R
k−1) ID

k−1 < 1, & IR
k−1 < 1

0, o.w.
(2.7a)

ρR
k =

{
ρR
k(I

D
k−1) ID

k−1 < 1, & IR
k−1 ≥ 1

0, o.w.
(2.7b)
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where the ρ
{R,S}
k () are constant functions in the rate allocation scheme. Similarly, the

transmit power can generally be a function and it can be written as

qS
k =

{
qS
k(I

D
k−1, I

R
k−1) ID

k−1 < 1, & IR
k−1 < 1

0, o.w.
(2.8a)

qR
k =

{
qR
k(I

D
k−1) ID

k−1 < 1, & IR
k−1 ≥ 1

0, o.w.
(2.8b)

with the q
{R,S}
k () being constant functions in the allocation case.

We use the term policy to describe a set of transmission control parameters for a HARQ

process and we denote it with π. A control policy in general might include all transmission

parameters such as power, rate, modulation, etc. In this dissertation whenever we use the

term policy it refers to the set of all redundancy functions. Thus, in case of a single-hop

transmission a policy π is: π = {ρk|1 ≤ k ≤ K}, while for the cooperative transmission

it is: π = {(ρS
k, ρ

R
k)|1 ≤ k ≤ K}. From now on in our analysis we will assume fixed-power

transmission which is why the q variables do not show up in the policy set π.

2.2 Performance Criteria

In the channel models described above, an outage happens if decoding fails at node D after

at most K transmission attempts. In this section we consider the two channel models in

a similar approach to introduce outage probability and throughput as the performance

criteria in our optimization problem.

2.2.1 Outage Probability

Decoding at node D, as it is shown in [1] and discussed more in [18, 33], can asymptotically

have an arbitrarily small failure probability at the kth transmission attempt, for 1 ≤ k ≤ K

(considering large values of Ns,k and as a result large value of Ns), if the code rate is less

than the accumulated information about the transmitted codeword up to time k or

R <

k∑
l=1

I(px(x), pl(y|x)) (2.9)
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where px(x) is the pdf of the code generator and pl(y|x) is the single letter transmission pdf

of the channel.

For a block fading channel, the maximum achievable I(px(x), pl(y|x)) during transmission

block l is the capacity of the channel Cl using the maximizing px(x). For asymptotically

large sub-codewords, the probability of decoding failure after k decoding attempts can be

arbitrarily small if the normalized accumulated mutual information up to kth transmission

is larger than 1. On the contrary, we have an outage if the normalized accumulated mutual

information up to kth transmission is smaller than 1, which can be written as follows with

Ik defined in (2.3) [12, 38]:

Pr(error|Ik > 1) = 0, (2.10a)

Pr(error|Ik < 1) = 1. (2.10b)

After a truncated HARQ process is finished there is still a possibility that the message

is not decoded correctly at the receiver. This is called outage and the probability of an

outage happening Pout, is equal to the probability that IK is less than one.

Here Pout is equal to the probability that IDK is less than one:

Pout = Pr{IDK < 1}. (2.11)

2.2.2 HARQ Throughput

The throughput η of the presented channel is equal to the number of bits decoded successfully

divided by the number of channel uses up to time t while t → ∞. With c(t) denoting the

number of channel uses and b(t) counting the number of successfully decoded bits up to

time t we have

η = lim
t→∞

b(t)

c(t)
(2.12)

which, based on the renewal-reward theorem [1], changes into

η =
Nb

N s

, (2.13)
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with Nb being the expected number of correctly received bits. Also, N s denotes the expected

number of channel uses (or transmitted symbols) which can be written as

N s =
K∑
k=1

N s,k =
K∑
k=1

E
{
Ns,k

}
(2.14)

while N s,k is the expected number of channel uses in the kth transmission attempt.

For a truncated HARQ transmission the number of successfully decoded bits at the end

of the process can be zero with probability of Pout or Nb with probability 1 − Pout which

changes (2.13) as follows.

η =
Nb(1− Pout)

N s

(2.15)

Maximization of throughput η for a fixed-power scenario will be done based on all of

the transmission redundancies (ρ variables). We denote the optimal throughput with η̂.

η̂ = max
π

η(π) (2.16)

An outage constrained optimal throughput is also defined as follows.

η̂ε =max
π

η(π),

s.t. Pout(π) ≤ ε (2.17)

2.3 Markov Decision Process Framework

The problem model described earlier can be cast into MDP model. The general framework

of an MDP process, as shown in Figure 2.5, with the discrete time k consists of the following

elements [39]:

• The system is measured by its state parameter Sk which is a function fS(.) of the

previous state Sk−1, action Ak−1 and disturbance ωk−1;

• A controller that creates the action Ak using the function fA(.);

• A cost (or reward) associated to a state transition;
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Controller

Ak+1 = fA(S
k, Ak)

Cost

Costk = fCost(Sk, Ak)

System

Sk+1 = fS(Sk, Ak, ωk)

Observation

k ← k + 1
Ak

Sk+1

Ak+1

Tk+1

ωk

Figure 2.5 Flowchart of an MDP model: Note that Sk =
{
S1, ..., Sk

}
and

similarly Ak =
{
A1, ..., Ak

}
.

• Transition probabilities Pr(Sk+1 = s′|Sk = s, Ak = a).

An MDP state Sk is a Markov function of its history and two other parameters; the

action Ak and disturbance ωk. At time step k, the controller, which might aim at decreasing

the long-term total cost of the system, observes the last state measure of the system through

an observation block. Normally, the observation Tk is equivalent to the state Sk. However,

in some examples Tk is a modified version of the state Sk, e.g. a quantized version of it,

which changes the model to a Partially Observable Markov Decision Process (POMDP).

The analogues of the above elements in our problem model are as follows. The normalized

ACMI Ik is the state Sk in Figure 2.5. The action Ak in our problem model is the redundancy

parameter ρk. The cost being paid at time k is the number of channel uses that a transmission

takes or Ns,k. The transition probability is determined by the channel coefficient.

The observation block in Figure 2.5 determines whether the state of the HARQ system

(Ik) or a modified version of it (e.g., a single bit quantized version of it as an ACK/NACK)

is being observed at the controller (encoder). In other words, the difference between rate

allocation and rate adaptation can be seen in the observation block in Figure 2.5.

The outdated CSI transmitted back to node S on the feedback channel gives information

about the state of the decoder at the destination node. This decoder state can be seen as a

random state of the process which is predictable for the future of the process solely by the
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action (i.e., redundancy values) and the disturbance (i.e., channel state random process).

This makes our problem suitable to be dealt with using DP [23].

2.4 Practical Concerns

In the system-level implementation of the variable-rate HARQ described above, it may be

assumed that each transmission contains only one sub-codeword. In such a case, the duration

of transmission attempts must vary, which might be a valid approach for a single-user

communication when the transmitter and the receiver can negotiate the transmission time

for each sub-codeword. On the other hand, it may be a questionable strategy in multi-user

communications, where sharing the requirement for a variable-length transmission with all

the users is not practical.

However, even if it might be possible to assign the time resources independently of the

varying transmission length, it would lead to bandwidth waste (sub-codewords shorter than

the assigned transmission time slot) or to collisions (sub-codewords longer than the assigned

time slot). Because of this, in the design of the system model described in this chapter, we

assume an implementation approach similar to [30], which is described as follows.

We can still assume a communication network with a fixed transmission time (Time

Division Multiple Access (TDMA)) and let the variable-length packets of our system lie

inside the fixed-rate frames of the TDMA channel. To avoid such a conceptual difficulty, we

assume that the sub-codewords corresponding to different packets are gathered in frames

that have a constant duration of NF symbols. Such an assumption, also used in [40, 41]

allows us to deal with variable-length codewords to fill up the frame and corresponds to

TDMA-type communication, where users are provided with a fixed transmission time (i.e.,

fixed frame length). An example is shown in Figure 2.6.

The structure of four frames sent over channel realizations h1 to h4 is shown in Figure 2.6.

The sub-codeword packets are denoted by Pi for i = 1, . . . , 13. All the frames have the same

length of Nframe. The sub-codewords corresponding to different transmission attempts are

shown by different colors. A re-transmission for a packet Pi happens only if decoding has

failed in the previous attempts of it and the packet has been transmitted less than K times.

The HARQ process for the first five packets takes 4 transmission attempts to terminate

while this number for packets P6,P7 is 2. The two packets P8,P9 are transmitted only once.

The differences in the number of attempts for different packets might be because of any of
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P5 P4 P3 P2 P1

P5 P4 P3 P2 P1

P5 P4 P3 P2 P1

P5 P4 P3 P2 P1

P7 P6

P7 P6P9 P8

P13 P12 P11 P10

h1

h2

h3

Nframe

h4

First attempt

Second attempt

Third attempt

Fourth attempt

Unfilled

ti
m
e

Figure 2.6 Example of the structure of frames for variable-rate HARQ
transmission.

the following reasons:

1. The packet is delivered correctly and the feedback message from the decoder stops

the encoder from re-attempting the same packet.

2. The controller unit (encoder), decides on discarding (dropping) the packet. This can

happen in rate adaptation scenario, if the decoder is in a poor state (i.e., very low

ACMI) and continuing on the retransmissions of the same packet is too costly for the

objective criteria. We will talk more about the packet droppings in Chapter 4.

The length of the sub-codeword in the kth transmission attempts for 1 < k ≤ K, might

vary from frame to frame based on the feedback message, only in rate adaptation scenario.

Also, we note that the relative loss due to unfilled space in the frames can be made arbitrarily

small, by loading the frame with many sub-codewords.
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Due to unavoidable processing and communication delays, the CSI at moment of the kth

transmission attempt is not the same as the CSI that may be obtained from the receiver via

feedback. In general, if channel coefficients for different transmission periods were correlated,

they might be used to predict the instantaneous CSI. However, we assume that the channel

gains are i.i.d. random variables. This means that they might not be used to predict the

instantaneous CSI and as a result our case can be considered the worst case from the point

of view of usefulness of the outdated CSI. This makes our work different from what is

presented in [21] and [42] where the channel coefficients are assumed correlated and used to

estimate CSI.
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Chapter 3

Answers In the Literature – State of

the Art

I
t is known that different types of diversity (spatial/frequency/time) can help in increasing

the performance of wireless communication. Truncated HARQ with K maximum

transmission attempts serves as a form of retransmission diversity. Such a process has

transmission parameters like coding rate and transmit power as degrees of freedom that can

be used to improve the overall performance.

As we already explained in Chapter 2, any HARQ process can be seen in general as

an MDP process: For a data packet of Nb bits, at the beginning of the HARQ process a

decision is made about the transmission parameters. This decision along with a random

process of the channel state form the state of the decoder at the receiver node. Then a

feedback signal is fed back to the transmitter, informing it about the success/failure of the

decoding process. Based on the received feedback signal, the next decision is made by the

transmitter for the second attempt. Decision parameters in such an MDP process can be

the coding rate, transmission power, etc.

It has been of much interest in the literature to optimize HARQ transmission using as

many degrees of freedom as possible. Moreover, a cooperative network of communication

nodes, exploiting an HARQ protocol has been of a considerable interest since it shows

significant improvements over conventional multi-hop relaying protocols [20, 43–46].

In this chapter we study the state of the art research on HARQ and optimization

of transmission control parameters. We will review the cooperative HARQ topic in the
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literature and discuss the control policies adaptable to a relay network. At the end of each

subsection, we highlight our contribution to the particular sub-area. In the final section, we

discuss the DP technique and will show how it can be used in optimizing the throughput of

IR-HARQ.

3.1 Exploiting Feedback

A communication system with a feedback channel, as depicted in Figure 2.1, is called a

closed-loop communication system as opposed to an open-loop communication system, that

has no feedback channel and relies only on the CSI at the receiver. The idea behind using a

feedback is thus informing the transmitter about the CSI. Based on the scheduling discipline

that is used in the communication system, the feedback is in one of the following approaches:

• Quantized instantaneous CSI: This consists in giving the transmitter a rough

measure of the CSI before starting the transmission [17,47]. With the partial informa-

tion about instantaneous CSI, the transmitter can adapt the transmission parameters

to reduce chances of outage. However, in practice, the reported CSI can never be fed

back perfectly and without quantization/compression. In [48, 49], it is shown that a

compression on the quantized CSI with a ratio of 5− 30 will still keep the throughput

virtually the same in an adaptive OFDM-based system. A study on the effects of

feedback reliability in [50] shows that the assumption of a noiseless feedback line

with no limit on the power is not so far-fetched. The work in [50] assumes that the

feedback channel is also affected by fading and has a limited transmission power. In

this situation, for a high quality feedback channel, virtually the same performance as

the noiseless feedback can be expected.

• Outdated single-bit/multi-bit CSI: This is the case studied in this dissertation,

where an already experienced CSI is fed back to the transmitter. As we discussed

earlier, this can be conveyed in a single-bit message of ACK/NACK, e.g. in ARQ and

conventional HARQ transmission. It can also be a multi-bit message of a quantized

outdated CSI. This is the assumption that is adopted in [30] [51–54] for an uncorrelated

channel state. In [55], for temporally-correlated channels, the outdated CSI is used

for beamforming purposes. Power allocation mechanisms with the outdated CSI is

also studied in the literature [56, 57].
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The MDP nature of HARQ process has made it highly desirable in the literature to

study the resource allocation strategies that can make the best performance out of the

retransmission attempts. One of the challenges here is how to exploit the feedback channel

and what are the different ways of informing the encoder about the decoder state.

It is practical to assume that CSI is known (approximated) at the decoder and is not

known at the encoder. Therefore, it is not feasible for the transmitter to predict its optimal

decision unless a side information is provided to help the encoder to do so. In case of i.i.d.

block-fading channel, the transmitter cannot predict the instantaneous channel state based

on the information about the outdated CSI. However if the channel gains are correlated

for different transmission attempts in the assumed model, partial information about the

instantaneous CSI can be generated by the encoder using the feedback signal. A similar

idea has been considered in [17] and [58].

The work in [17] studies the idea of using HARQ feedback channel as a means of

informing transmitter about CSI to some extent. This is mainly the idea behind rate/power

adaptation for ARQ protocols. The intuitive question presented in [17] is on the possibility

of gaining benefits out of using HARQ feedback channel in a way different from the classic

way. It is customary in HARQ transmission that the feedback conveys only a one bit

information at the end of each transmission attempt declaring decoding success/failure at

the receiver party. So the question addressed in [17] is: how beneficial would it be to send

the feedback at the start of transmission attempt in one (or probably more) bit(s) to inform

the transmitter, who is by definition unaware of the instantaneous CSI, of the knowledge

that receiver has about state of the channel? As shown in [17], a quantized version of

the instantaneous CSI fed back to the transmitter as partial CSI can help to improve the

performance of HARQ.

In [58], the conventional ACK/NACK feedback is assumed however, using the control

actions and the single-bit feedback messages of several previous time slots, a history record

is created to estimate the probability of ACK/NACK for the present time slot. This idea

has been studied as a POMDP, over the ARQ.

As already discussed in Chapter 2, the information accumulated at the decoder can

be considered as the state of the receiver. It can be assumed that the transmitter has a

perfect knowledge of this state using a reliable feedback channel or has a partial knowledge

of the state (like a quantized multi-bit or single-bit ACK/NACK version of it). Using this

knowledge of the state, the transmitter would decide on its following actions and this goes
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on until the state of the receiver decoder gets to a satisfactory level for successful decoding

or the maximum number of attempts is achieved. This idea has been addressed in [30] for

adaptive IR-HARQ with considering the feedback signal as outdated CSI.

In [30], it is assumed that the encoder does not have the instantaneous CSI, but that

instead, it is capable of optimizing the transmission rates, using the outdated version of

the CSI experienced by the decoder at the previous attempt. An example of incremental

redundancy HARQ channel supports this claim in [30] while it is optimized for throughput

with respect to transmission rate.

Our Approach

In this dissertation, we study the performance of the presented system model, in various

feedback situations. First we start with an ideal feedback channel that has not limits and

no errors (with un-quantized feedback message), to find the performance limit. Then we

consider a very limited feedback capacity of only one bit per transmitted packet. This gives

us the performance capacity of conventional HARQ. Finally, we investigate the required

feedback rate that can reach the upper limit of the performance. This allows to emphasize

on the values of the rate/power design with respect to fixed transmission strategies.

The rate adaptation HARQ presented in our research on the HARQ relay channel is

inspired by the work in [30] and can be considered as a generalization over the special case

of relay being positioned infinitely far from source and destination. We assume a perfect

feedback that informs the encoder about the accumulated information at the decoder. This

completes the MDP realization of the rate adaptation problem by choosing feedback signal

as the state of the process.

3.2 Optimal Coding Rate

A fixed-rate transmission policy is clearly just a special case of HARQ transmission and not

necessarily the optimal one. This is already discussed and proved otherwise in [31], showing

an example of variable-rate HARQ that gain a better throughput than the fixed-rate IR.

It is best shown in [30] how significantly an optimal variable-rate policy can improve

the throughput of IR-HARQ with respect to the fixed-rate case. In [30], a rate adaptation

policy based on outdated CSI is introduced where ρk(Ik−1) are set to be functions of the

accumulated information at the decoder.
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As means of simplification of the problem, transmission rate policies in [30] are heuris-

tically assumed to be linear as ρk(Ik−1) = (1 − Ik−1) · ρ with respect to the accumulated

information at decoder. The linear function coefficient ρ is then found using a simplified

recursive optimization technique. It is shown that the optimized linear rate policy functions

will result in a significant improvement for throughput compared to the maximum achievable

throughput without using the outdated CSI.

In [59], optimization of throughput with respect to coding rate is studied for a constrained

transmitter buffer occupancy in type-I HARQ. An MDP problem model is established with

the composition of buffer occupancy, incoming traffic and channel state as the state of

the process, ARQ feedback as the observation and transmission rate as the decision. DP

optimization of the defined MDP is found to be complex to solve, therefore a number of

heuristics have been employed to solve the problem. The numerical results presented in [59]

are basically the suboptimal throughput and the corresponding average buffer occupancy

with respect to the packet arrival probability for specific channel characterization and

coding/modulation.

An approximate method is presented in [60], to derive the outage probability of a

HARQ process. The combining effect of retransmission over a Rayleigh fading channel

is approximated with a sum of Gamma variables. It is shown that the product of two

independent Rayleigh distributed random variables could be approximated by a sum of

two Gamma variables. This is extended to the case of Nakagami fading, when the involved

variables’ statistical moments are the same. Using this approximation method, [60] obtains

the performance estimate of HARQ with code combining over the ideally interleaved Rayleigh

fading channel. In the optimization of allocated rate we use the Gaussian approximation

for outage probability to cast the complex problem into an iterative simplified optimization.

Our Approach

We present a general framework for rate optimization in IR-HARQ for both cases of limited

and unlimited feedback capacity, based on the renown DP technique. We present the

throughput-optimal rate policies for truncated HARQ as well as the outage-constrained

optimal policies, in both rate adaptation/allocation scenarios. In Chapter 4 the analysis

is presented for a single-hop channel. Then in Chapter 5, we extend the analysis to a

cooperative channel with a single relay node and the a general network with M nodes.
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Moreover, we consider a random coding/code combining approach with unlimited buffer size

for IR-HARQ therefore, presented results can be considered as the performance limit for

the channel model. The heuristic assumption of linear redundancy functions in [30] is not

exploited in this dissertation and, as we will show in the following chapters, this will result

in finding the global optimal solutions and also prove the optimality of packet-dropping

when the previous channel experiences have been poor.

3.3 Joint Rate and Power Optimization

Considering rate and power control parameters for optimization dramatically increases the

complexity of the problem, firstly because of the increase in the number of optimization

variables and secondly because of various constraints applied on the optimization at the

same time. The general optimization of a truncated IR-HARQ transmission has not been

studied in the literature so far. However, there are research works presented in the literature

that consider both power and rate in their optimization problem to some extent, e.g., [58,61].

Minimization of the amount of transmitted power is usually aimed for one (or several)

of the following reasons [4].

• To increase the battery life or allow using smaller batteries on the devices.

• To increase the number of users that a network can serve by reducing the interference

between them.

• To reduce the chances of a user/communication line to be detected.

Moreover, energy saving and environmental protection has become a global demands and

researchers have shown much interest in energy efficiency oriented design [62]. Moreover,

for most applications the acceptable service entails an average rate with small probability

of error with constraints relating to the data delivery delay (e.g., average delay constraint

or maximum delay constraint).

The problem of power adaptation using the outdated CSI can be solved using the DP

technique (as already remarked in [17]) if we change the constraint on the average power to

a constraint on the total power. This means that the maximization of throughput can be

done subject to the constraint of
∑K

k=1 qk ≤ qtot where qk is the power policy at kth attempt

and K is the maximum number of transmissions allowed. This modification may change
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the problem into a classic DP problem. Here, we can assume qtot = K · q̄. This comes

from applying the short-term constraint on each transmission attempt separately since the

outage probability on each attempt happens with transmission rate exceeding capacity, and

capacity for each block depends only on the short-term power constraint on that block.

Moreover, an average power constrained representation of the maximum throughput

is presented in [17] without giving the solution on the general case. In [17] author uses

the long-term power constraint defined in [63] as a constraint to satisfy the total transmit

power. The long-term power constraint is an average of the short-term power constraint

when a sequence of transmission attempts occur. The short-term constraint satisfies the

necessary condition of capacity problem.

In [58], type-I HARQ, which assumes discarding previously received signals on the same

message, is studied in which the same packet is retransmitted upon receiving a NACK from

the receiver. The system model comprises two nodes with a fading channel that can be slow

fading or fast fading. A limited buffer size at the transmitter node is considered for rate

and power optimization. Besides, the constraint on the delay is taken into account in some

parts of the analysis.

Authors in [58] assume two different scenarios, one with perfect CSI knowledge at both

receiver and transmitter and the other scenario where only receiver knows the CSI. In

both scenarios, based on the one bit feedback from receiver at the end of each attempt,

transmitter makes a decision on the transmission rate and power in an optimum way to

meet the delay and buffer overflow constraints. Optimization is done using DP since the

process is an MDP, and results are shown for special cases of channel characteristics and

demanded delay/buffer overflow values.

The throughput or outage probability are not explicitly defined as the optimization

goal in [58], which instead optimizes the weighted sum of criteria related to the buffer

occupancy, overflow probability and the throughput. The system model has a known

coding/modulation scheme which makes it different from our work where we assume random

coding/code combining. In more general terms, [58] is an extension of the idea presented

in [24] with different MDP state definition.

Two different approaches are exploited in [58] for optimization. First one is to add

the different average cost functions together with weighting and minimize this summation,

second one is to minimize one of the average cost functions subject to the other costs

constrained to a certain value. As it is shown in [17] it can be more helpful if the observation
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of the MDP process is sent back in the beginning of the attempt to inform transmitter

about the instantaneous channel quality or as shown in [30] to use the outdated CSI as the

channel state.

In [64], type-I and type-II HARQ transmission over a single-link channel with Rayleigh

block fading is studied. It is assumed that the transmissions are fixed-rate fixed-power but

there are design parameters available for energy-efficiency and delay trade-off which are

the transmission time per bit and the total energy per bit. They present trade-off analysis

for the design parameters and conclude that only for IR-HARQ the minimum total energy

per bit decreases as well as the transmission time per bit if we increase the number of

retransmission attempts.

The work in [61] is basically on the same idea presented in [58] with the same set of

analyzation and goals except that this paper is on the IR-HARQ. Again, based on a system

model that consists of limited buffer size at transmitter, with known coding/modulation

schemes, state of the channel accompanied by the state of the feedback message and the

incoming number of packets at transmitter buffer, is chosen as the state of MDP problem.

Transition probability matrix for the Markov process is derived and the reward of the process

is defined as a combination of three different costs of transmitted power, delivery delay, and

buffer overflow with the transmission rate being the decision parameter. Using this model,

long term average transmitted power is optimized over decision parameter (transmission

rate) with constraints on maximum delay and overflow.

Our Approach

In this research we focus on the effects of variable-rate transmission. The more general

problem (i.e., considering power variables in the optimization), provides an upper-bound

on the performance of the model we consider here. However, to the authors knowledge,

there is no research in the literature addressing this general problem so far which makes it

an interesting topic for future work. What makes this work different from [61], is in the

absence of outdated CSI at the transmitter node in the channel model of [61]. Moreover,

the system model in [61] is defined for a specific coding/modulation technique as opposed to

considering the general case to find the performance limits as is the case in this dissertation.
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3.4 Cooperative HARQ

Cooperative HARQ is of much interest recently because in the modern wireless networks

cooperation seems to be necessary to ensure the reliability and efficiency of transmission.

While HARQ is named to be the practical mean of implementing real cooperation between

nodes in a communication network [20], there are only a few research studies on optimization

of HARQ in cooperative channel though channel models differ from one study to another

which makes it difficult for comparison purposes.

The work in [65] discusses the cross-layer analysis of a cooperative channel without

fading. On the MAC layer, network stability is defined as whether the maximum of the

average overflow of a transmitter node with buffer size of ζ goes to zero by ζ → ∞. In the

stability situation of a cooperative network, the throughput optimal rate region is analyzed.

In [20] the idea of a practical relay network based on HARQ is studied. A network of

K communication node with K − 2 relays is assumed and it is shown that using HARQ

with retransmission being done from the relays that have successfully decoded the message,

outperforms both HARQ with retransmissions from source node and the multi-hop protocols

(cascade of point-to-point).

The research in [38] studies cooperative HARQ and shows the throughput for three

different protocols. The idea of this paper is basically generalizing the formulation of

throughput calculation given in [1] for a relay channel. Rate and transmission power are

assumed fixed over a block-fading channel and the only optimization presented in this

paper is over the position of the relay node with respect to source and destination and also

optimization of throughput over the value of the fixed rate. In this paper, outage probability

at each transmission attempt is calculated using a Gaussian approximation. Moreover, [38]

uses the state transition diagram to find a closed-form representation of throughput.

The work in [44] presents some bounds on the expected number of transmissions and

the average throughput for a general multi-relay network. It assumes fixed-rate fixed-power

transmission and the relays collaborate only when the decoding at destination is erroneous.

In [66], for a M -hop channel (i.e., M − 1 relay nodes), optimization of long-term average

transmission rate (LATR) is studied for CC-HARQ for a limited number of retransmissions

among whole hops. The work considers an outage-constrained approach using suboptimal

search algorithms to find the optimal round transmission rate (RTR).

For a HARQ relay channel with one relay node, the throughput has been optimized
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in [67] with respect to the transmission power of retransmission attempts. A closed-form

of the throughput is approximated for high average values of SNR and with a fixed relay

transmission power, and fixed power values for source node (but different from that of relay),

and the results show improvement on throughput compared to fixed-power transmission.

The total power constraint applied on the optimization process in [67] assumes a fixed total

power transmission on each step of the HARQ on the sum of relay and source transmitted

power. This totally differs from the long-term power constraint presented in [63].

The achievable rate region for any AWGN channel needs a constraint on the average

total power. For a number of retransmissions this results in a long-term average total power

on the all transmission attempts. This is well presented in [17] as a constraint on the

optimization problem. On the other hand, assuming fixed rate on each node is definitely

not the optimal case as implied in [24] or [17].

Our Approach

We study the cooperative channel model described in Chapter 2 for rate optimization. As it

is presented in Chapter 5, the rate adaptation cooperative IR-HARQ shows a significant

improvement in throughput over fixed-rate transmission. Rate allocation in cooperative

channel is also studied in the same chapter and a framework is presented for analysis of

the rate allocation problem in a other network realizations. We will show in Chapter 5 a

closed-form of the throughput for variable-rate allocation IR-HARQ and present ideas for

optimization of the multi-dimensional maximization.

3.5 Optimization with Dynamic Programming

A mathematical optimization problem with objective function f0(.) and constraint functions

fi(.), can be shown in general in the following form for the optimization parameter vector π

of size n.

minimize f0(π)

subject to fi(π) ≤ εi, i = 1, . . . ,m (3.1)
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If the optimization problem has the following form

min f0(π), (3.2)

and there are no imposed constraints, it is called an unconstrained optimization. For various

types of optimization problems different techniques are presented as solution methods.

However, most of the time, the general optimization problem is surprisingly difficult to

solve. Therefore, approaches to solve a general optimization problem problem therefore

involve some kind of compromise either in the computation time or on the possibility of not

finding the solution [68]. In this regard, we can categorize optimization problems into the

following classes:

• Linear programming : If the objective function and the constraint functions are linear

functions, i.e., they satisfy

fi(απ1 + βπ2) = αfi(π1) + βfi(π2), (3.3)

for all α, β ∈ R and all π1, π2 ∈ Rn, the optimization problem is called linear

programming.

• Least-squares : It is an optimization problem where the objective function is a sum of

squares of linear terms as follows.

min f0(π) =
K∑
k=1

(αiπ − βi)
2 (3.4)

where αi ∈ Rn and all βi ∈ R.

• Convex Optimization: An optimization problem of the form in (3.1) is convex if

fi : Rn → R is convex, i.e., it satisfies

fi(απ1 + βπ2) ≤ αfi(π1) + βfi(π2), (3.5)

for all α, β ∈ R+
0 and all π1, π2 ∈ Rn, with α + β = 1.

• Nonlinear programming : This class of optimization problems includes all the problems

that are neither linear nor least-squares but are not known to be convex.
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For the two important and well known classes of least-squares problems and linear

programs, there are effective and reliable algorithms that can solve even large problems,

with thousands of variables and constraints. To prove that an optimization problem is

convex can be really complex. Moreover, there are no general analytical formulas for the

solution of convex optimization; however, there are effective methods like the interior-point

methods that in some cases can provably solve the problem to a specified accuracy. For a

nonlinear programming problem however, there is no effective solution method and with

number of variables growing, the optimization problem can get intractable.

Convex optimization can still have an important role in solving an optimization problem

that is not known to be convex. The trick is to modify the original problem to find an

approximate but convex version of its formulation. The approximate convex problem can

then be solved and the solution, which essentially sub-optimal compared to to the original

problem, can be used as starting point to a local optimization approach on the original

problem to improve the solution1.

DP is a well-known technique presented in early 1950s [69] that is commonly used for

optimally solving complex problems. In DP, complex problems are broken down into simpler

ones, which reduces the complexity dramatically. It is both a mathematical optimization

method and a computer programming method which deals with the situations where

decisions are made [23].

In the literature, DP is usually introduced using case studies. Therefore, we use our

particular problem to present the DP idea and we will then use it in solving our problem in

the following chapters.

In [24] the Markov characteristics of a general ARQ protocol are introduced. A dynamic

approach to programming the control parameters in ARQ is formulated and the optimization

of the protocol for transmission redundancies is presented. It is shown that, using the

Bellman equation, an optimal rate allocation control can be searched which optimizes

cost-to-go for infinite attempts. The idea presented in [24] is used in the research works

in [58], [59] and [61].

The research presented in this dissertation is also based on the Markov representation

of ARQ presented in [24]. However, since we are using truncated HARQ in our problem

description, it is our interest to optimize the throughput for a limited number of transmission

1The new solution is still a lower bound to the optimal solution however, it has the potential to improve
the solution found by the approximate convex problem.
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attempts for different K.

As we will see in the following chapters, in rate allocation we basically ignore the MDP

model for our problem and instead a closed-form of the desired criterion (throughput)

is subjected to optimization using recursive optimization with respect to allocated rates.

However, in rate adaptation, our MDP model is the same as in [24] and we use the Bellman

equation to find the upper bound to the achievable throughput.

The basic model for DP problem has the main features of a discrete time dynamic

system and a cost function which is additive over time. The state parameter expresses

the evolution of the dynamic system and is a function of the previous state, the decision

variable and the random parameter which affects system. The state of the system I can be

written as

Ik = gk(Ik−1, ρk, Ck), (3.6)

with ρk being the decision variable, Ck denoting a random variable and gk being a function

describing the system.

We assume I0 as the state of the system at time zero while decision on ρ1 is needed and

C1 affects the system so that altogether it gets to I1.

The additive cost of the system is a summation over the cost at all the steps or

Costtot =
K−1∑
k=1

Costk(Ik−1, ρk, Ck) + CostK(IK−1), (3.7)

while in our problem we simply have Costk = ρk(Ik−1), since it simply represent the number

of channel uses per bit. The goal of the optimization is to minimize the whole cost with

choosing the optimal control policy. This can be shown as

J1(I0) = min
ρ1,...,ρK

E
{
Costtot

}
, (3.8)

assuming that the system is at state I0 at the start of the time.

The main idea of DP technique is the simple principle of optimality [23]. According

to this principle, having an optimal policy like π̂ = {ρ̂1, . . . , ρ̂K} for (3.8), and assuming

that by using π̂ a given state Ii happens at time i with positive probability, we have the
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truncated {ρ̂i+1, . . . , ρ̂K} as the optimal policy for the subproblem

min
ρi+1,...,ρK

E
{ K∑

k=i+1

Costk

}
(3.9)

if the subproblem is in state Ii at time i.

Based on the simple principle above, the optimization of the total cost can be formed

into a recursive representation as follows:

J1(I0) = min
ρ1

EC1

{
Cost1(I0, ρ1, C1) + J2(g1(I0, ρ1, C1))

}
(3.10a)

J2(I1) = min
ρ2

EC2

{
Cost2(I1, ρ2, C2) + J3(g2(I1, ρ2, C2))

}
(3.10b)

· · ·
JK(IK−1) = min

ρK
ECK

{
CostK(IK−1)

}
(3.10c)

The optimization process then starts by solving the one dimensional minimization of

(3.10c) and continues up to (3.10a). The result of the optimization will be the optimal

policy π̂ and J1(I0) will give the expected total cost for this optimal policy [23].

Our Approach

We prove in the next chapter (Section 4.1), that the optimal throughput-maximizing rate

policy can be found by solving the recursive optimization system in (3.10), considering the

final cost to be equal to the minimum number of average channel uses per bit delivery (i.e.,

inverse of maximum throughput). In other words, setting CostK(Ik−1) = 1
η̂
· I(IK) with I(.)

being the indication function, the DP recursive system presented above will give us the

optimal rate policy.
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Chapter 4

Single-Hop HARQ Transmission

Policies

I
n this chapter we study rate optimization in the HARQ channel model described in

Section 2.1.1 for fixed transmit power. The two classes of feedback signal of HARQ

channel introduced in Section 2 are analyzed separately. The function ρ is constant in the

case of rate allocation, while, in the case of rate adaptation, it is a function of feedback

message, i.e. the NACMI parameter Ik. Thus, optimization of the two cases go through

different approaches. Rate adaptation HARQ, as discussed earlier, is a MDP problem and

DP can be used to find optimal rate control policies. On the other hand, as we will see rate

allocation is a multi-dimensional optimization problem which needs some simplifications to

make the recursive optimization feasible.

4.1 Throughput Optimization

In this section we present our approach for solving throughput maximization problems

in (2.16) and (2.17). The framework will be used in rate optimization of both single-hop

channel in this chapter and the relay channel in Chapter 5.

In general, the problem of maximizing throughput in (2.16) can be represented as follows:

η̂ = max
π

η(π). (4.1)

We define R̂ as the set of all the solutions to (4.1), and R̆ε as the set of all policies π that
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have an outage probability of Pout(π) = ε.

R̂ = {π|η(π) = η̂} (4.2)

R̆ε = {π|Pout(π) = ε} (4.3)

Denoting the expected number of channel uses N s from (2.15) by D(π), the problem in

(4.1) can be reformulated as follows,

η̂ = max
π

1− Pout(π)

D(π)

= max
ε

max
π∈R̆ε

1− ε

D(π)

= max
ε

1− ε

minπ∈R̆ε
D(π)

= max
ε

1− ε

Dε

, (4.4)

which leaves us with solving the following problem.

Dε = min
π∈R̆ε

D(π)

= min
π

D(π), s.t. Pout(π) = ε. (4.5)

We formulate the Lagrangian dual problem of (4.5) using a Lagrangian multiplier λ as

g(λ, ε) = min
π

D(π) + λ · (Pout(π)− ε), (4.6)

where due to the non-negative duality gap of Lagrangian, leads to

g(λ, ε) ≤ Dε. (4.7)

The policy π that minimizes g(λ, ε), does not depend on ε for a given λ thus, for a given

λ an equivalent set of solutions of (4.6) can be made by solving the following minimization.

Jλ = min
π

D(π) + λ · Pout(π). (4.8)
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We denote by R̃λ the set of all solutions to this minimization problem as follows.

R̃λ = {π|π = arg Jλ}. (4.9)

Therefore, R̃λ is equivalent to the set of all solutions to (4.6) for λ given.

Following the definition in [51] we call a policy π degenerate if it leads to zero redundancy

transmission (and as a result Pout(π) = 1). In other words a policy is degenerate if and

only if D(π) = 0 which happens if and only if ρS
k(Sk = 0) = 0, ∀k. We also call a policy π

non-degenerate if it is not degenerate.

One obvious conclusion that follows from (4.8) is that,

D(π) + λ · Pout(π) ≤ λ, ∀π ∈ R̃λ and ∀λ > 0, (4.10)

which can be proved by putting ρS
k(Sk = 0) = 0, ∀k.

The following propositions, that are proved in Appendix A, state the degenerate charac-

teristics of R̃λ for different values of λ.

Proposition 1. (Degenerate Policies) For all λ < 1/η̂, R̃λ is a set of degenerate policies.

Proposition 2. (Non-Degenerate Policies) For all λ > 1/η̂, all the policies in the set R̃λ

are non-degenerate policies.

We denote by λth = 1/η̂ the threshold that separates the degenerate and non-degenerate

policies to (4.8).

Proposition 3. (Separating Point) The set R̃λth
contains both degenerate and non-degenerate

policies.

The following theorem, which is proved in Appendix A, asserts the characteristics of the

set of solution for (4.8) for given λ = λth.

Theorem 1. (Maximum Achievable Throughput) The throughput (2.15) is maximized by

any of the policies π in the non-degenerate subset of R̃λth
(denoted by R̃

non-deg

λth
).

As the result of Theorem 1, the maximization problem (4.1) is equivalent to finding λth

for (4.8), which is the smallest value of λ where a non-degenerate solution for Jλ can be

found. Note that this solution is found by solving (4.8) instead of (4.6), because they have
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the same sets of solutions for a given λ. As a result, the smallest value of λ that gives us

a non-degenerate policy, can be found without involving ε parameter in the optimization

process. However, the policy π, found for λth from (4.8), is the throughput maximizing

policy.

The approach to solve (2.16), based on Theorem 1, is to solve (4.8) for a number of λ

values and then apply any root-finding method (e.g., bisection method) until the λth value

is derived.

To solve the constrained optimization in (2.17), we use the same approach as described

above noting that there is a one-to-one correspondence between outage probability values ε

and the λ values in (4.8). To prove this statement, note that the outage probability Pout(π)

for π ∈ R̃λ decreases monotonically with increasing λ. This is because for any λ ≥ λth there

is one and only one ε where R̃λ ⊂ R̆ε.

We may equivalently prove that R̃λ = R̊Dε , where

R̊Dε = {π|π = argDε}. (4.11)

We denote by ε̂ the outage for the found π̂ ∈ R̂. In the following two propositions (proved

in Appendix A) we assert that R̃λ = R̊Dε for any ε where ε ∈ (0, ε̂].

Proposition 4. For a given λ, if there is at least one policy π where π ∈ R̃λ, and Pout(π) = ε,

then R̊Dε ⊂ R̃λ.

Proposition 5. For an arbitrary λ where λ ≥ λth, there is one and only one ε ∈ (0, ε̂]

where R̃λ ⊂ R̊Dε.

Finally, for an arbitrary outage probability ε ≤ ε̂, the optimal outage constrained

throughput is the solution η(π) of (4.8) that gives out Pout(π) = ε. Also, for ε > ε̂ the

optimal outage constrained throughput is η̂.

η̂ε =

⎧⎨
⎩η̂, if ε̂ < ε

1−ε
Dε

, o.w.
. (4.12)
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4.2 Optimal Rate Adaptation

We start from (2.14) where the number of channel uses in the kth transmission is the

random variable Ns,k.

N s,k = E
{
Ns,k

}
= E

{
Nb · ρk

}
, (4.13)

with E being the expectation over all channel gain variables (this will be the case throughout

this dissertation).

This gives the representation for throughput of adaptive rate single-hop HARQ channel

ηAD-S, with the help of (2.15), as follows:

ηAD-S =
1− Pout

E
{∑K

k=1 ρk
} . (4.14)

From (2.11) we have

Pout = Pr{IK < 1} = E
{
I(IK < 1)

}
(4.15)

where I(x) is equal one if x is true and is equal to zero otherwise.

In order to find the maximum throughput,

η̂AD-S = max
ρ1,...,ρK

ηAD-S, (4.16)

we use the Lagrangian form of it by substituting (4.13) in (4.8) to form the recursive

equations for any particular value of λ as follows.

Jλ
1 (I0) = min

ρ1,...,ρK
E
{ K∑
k=1

ρk
}
+ λ · Pout, (4.17)

where the expectation is over all channel gains similar to (4.15) which gives us

Jλ
1 (I0) = min

ρ1,...,ρK
E
{ K∑
k=1

ρk + λ · I(IK < 1)
}
, (4.18)
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and in a recursive form it appears as

Jλ
1 (I0) = min

ρ1
E
{
ρ1 + Jλ

2 (I0 + ρ1 · C1)
}

(4.19a)

Jλ
2 (I1) = min

ρ2
E
{
ρ2 + Jλ

3 (I1 + ρ2 · C2)
}

(4.19b)

· · ·
Jλ
K(IK−1) = min

ρK
E
{
ρK + λ · I(IK−1 + ρK · CK < 1)

}
(4.19c)

where I0 ≡ 0 and is the zero state at time zero.

The optimization starts from (4.19c) and goes backward to (4.19a). In each step, the

state I has to be discretized to L points over the interval [0, 1). Then, for a given Ik−1 value

we can optimize the value of the function ρk(Ik−1) provided the function Jk+1(Ik) is known.

So, as discussed in Section 3.5, the global optimization of the possibly non-convex function

J(λ) over the space of LK values is reduced to K · L one-dimensional optimizations. The

optimization starts with solving (4.19c) which can be written as

Jλ
K(IK−1) = min

ρK

{
ρK + λ · FC(

1−IK−1

ρK
)
}
. (4.20)

In (4.20), FC(.) is the cumulative density function (cdf) of the random variable C. With

the first and second derivative test we can easily see that only one minimizing solution of

ρK exists for (4.20) (We leave the this analysis to the reader, however in Section 5.1.2 we

will go into the details of it in the more general case of multi-hop channel.). After finding

ρK(IK−1) the recursive optimization continues with Jλ
K−1(IK−2) and goes on up to (4.19a).

This process is assumed for a given value of λ and for the optimal policy π derived from

this DP process, we have π ∈ R̃λ. In case of π being a degenerate solution, then we know

that λ < 1/η̂, otherwise, λ ≥ 1/η̂. As we discussed earlier, following a root-finding method

and repeating these steps, λth can be found.

In Figure 4.1 the maximum achieving policy for K = 4 in average SNR of 10 dB is shown.

At the start of the HARQ process a redundancy of ρ1 would be the best start. However,

based on the feedback provided at the end of the first transmission, a zero redundancy

transmission (packet dropping) for the following attempts may be decided if the normalized

information accumulated at the decoder is below a certain threshold (as it appears in

Figure 4.1 to be around 0.06, 0.2 and 0.41 for the second, third and fourth transmission
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Figure 4.1 Throughput maximizing redundancy policies for three different
rate control approaches compared together. The channel exhibits Rayleigh-
fading with γ = 10 dB and a truncated HARQ process with K = 4 and L = 100
is assumed. Redundancy values are multiplied by the ergodic capacity C of
the same channel. The optimal policies shown are: ρk(x) (solid lines) for rate
adaptation (AD), ρk for rate allocation (AL) and fixed rate (FR) (dashed
lines).

respectively.). This shows us that an optimal throughput HARQ may drop the packet at

some level if the previous attempts of the same packet have been disappointing.

4.3 Optimal Rate Allocation

Rate allocation HARQ is associated with the single-bit feedback case where the signal over

feedback channel is only capable of informing the transmitter whether the decoding has



4 Single-Hop HARQ Transmission Policies 54

been successful or not. Here, we start with the failure probability of the kth transmission

for 1 ≤ k ≤ K. We define fk as the probability of failure at kth decoding. Therefore, from

(2.11) we have

P SD
1 = Pr{Ik < 1}

= Pr
{ k∑

l=1

Cl · ρl < 1
}

=

∫ 1

0

pIk(x)dx (4.21)

where P SD
K = Pout and pIk(x) is the pdf of the random variable Ik =

∑k
l=1 Cl · ρl. Since this

random variable is a sum of random variables νl = Cl · ρl, each with pdf of pνl(x), we have

pIk(x) = (pν1 ∗ . . . ∗ pνk)(x) (4.22)

with ∗ being the convolution operator. On the other hand, in (2.14) we have

N s =
K∑
k=1

E
{
Ns,k

}

=
K∑
k=1

Ns,k · P SD
k−1

= Nb ·
K∑
k=1

ρk · P SD
k−1 (4.23)

with P SD
0 = 1 by definition.

Then according to (2.15) throughput for the single-hop HARQ rate allocation ηAL-S is

ηAL-S =
1− P SD

K∑K
k=1 ρk · P SD

k−1
(4.24)

and casted in the Lagrangian form of (4.8), the optimization problem is the following:

min
ρ1,...,ρK

{ K∑
k=1

ρk · P SD
k−1 + λ · P SD

K

}
. (4.25)
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However, DP recursive representation of Section 3.5 is not feasible for (4.25), since P SD
k

depends on all of the optimization parameters ρi with i from 1 up to k. However, for it

to be cast into DP we need it to be only dependent on a state parameter and the current

optimization parameter at each step. This observation leads us to the conclusion that the

rate allocation problem cannot be solved exactly via DP method and approximations are

necessary.

Here we use the Gaussian approximation introduced in several papers like [12], to

approximate computation of (4.22). From the central limit theorem, a summation over n

i.i.d. random variables is a random variable with normal distribution if n goes to infinity.

This has been proved also for a weighted sum of i.i.d. random variables in [70]. Therefore, we

can use the Gaussian approximation proposed in [15] to approximate pVk
(x) in (4.22) since

it is a summation of random variables vk = ρl ·Cl. As a result, P SD
k can be approximated as

shown below.

P SD
k = Pr

{ k∑
l=1

Cl · ρl < 1
}

≈ Q
(C ·Xk − 1

σC · √Yk

)
(4.26)

where C = EC

{
C
}
and σ2

C = EC

{
C2

}− C
2
. Also, Xk =

∑k
l=1 ρl, Yk =

∑k
l=1 ρl

2 and Q(x)

is the Q-function defined as

Q(x) =
1√
2π

∫ ∞

x

exp
(−τ 2

2

)
dτ. (4.27)

Using this approximation we substitute P SD
k in (4.25) with P̃ SD

k , where

P̃ SD
k =

⎧⎨
⎩

FC

(
1
ρk

)
, k = 1

Q
(

C·Xk−1
σC ·

√
Yk

)
, otherwise.

(4.28)

P̃ SD
k is a function of Xk and Yk so, we use the two dimensional real valued vector (Xk, Yk)

as the state of a new optimization formulation. Multiplying (4.25) with C and using the
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approximations we have

Jλ
1 (X0, Y0) = min

ρ′1,...,ρK

{
ρ1 + ρ2 · P̃ SD

1 +
K∑
k=3

ρk · P̃ SD
k−1 + λ · P̃ SD

K

}
(4.29)

where we can use the relation between successive states as Xk+1 = Xk + ρk and Yk+1 =

Yk + ρk
2.

The formulation in (4.29) can be solved recursively in K steps and reduce the complexity

of a K-dimensional optimization into K one-dimensional subproblems. Furthermore, we

use the approximation of P SD
k by P̃ SD

k only for k ≥ 2 and P̃ SD
1 = P SD

1 is calculated in exact

form without harming the recursive optimization.

In a recursive form (4.29) appears as follows:

Jλ
1 (X0, Y0) = min

ρ1

{
ρ1 + Jλ

2 (X0 + ρ1,
√

Y 2
0 + ρ12)

}
(4.30a)

Jλ
2 (X1, Y1) = min

ρ2

{
ρ2 · P̃ SD

1 + Jλ
3 (X1 + ρ2,

√
Y 2
1 + ρ22)

}
(4.30b)

· · ·
Jλ
K(XK−1, YK−1) = min

ρK

{
ρK · P̃ SD

K−1 + λ · P̃ SD
K (XK−1 + ρK ,

√
Y 2
K−1 + ρK2)

}
(4.30c)

The recursive optimization process starts with (4.30c) and finds the optimal two dimen-

sional function ρK(x, y) for all the state space (XK , YK) (discretized into L2 points) and

goes on backward until it finds the optimal function ρ1(x, y). Then, setting (X0, Y0) ≡ (0, 0)

we find ρ1(0, 0) as the optimal allocated first transmission redundancy ρ1 for the given

particular λ value. Using ρ1 we then search for ρ2(x, y) at point (0 + ρ1, 0 + (ρ1)
2) to find

optimal ρ2 and continue until all the optimal allocatee redundancies for the given λ are

found. The heuristic limit for the two dimensional state space is from (C ·K,C ·K) since we

don’t expect ρ to be greater than 1/C. The optimal π will be used in the exact formulation

of throughput and the resulting Pout(π) and η(π) are linked to the given λ in a table.

This process repeats for all the given λ values and among all the results we are able

to look for maximum throughput η̂AL-S as well as finding the optimal outage-constrained

throughput η̂AL-S,ε. The optimal π for K = 4 and an average channel SNR of 10 dB is

shown in Figure 4.1. We show them as constant functions with respect to the normalized

accumulated information at decoder, because the rates are allocated before the transmission
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process begins.

4.3.1 Simplified Optimization Method

The optimization process discussed above can be simplified by getting rid of the two-

dimensional state and using a one dimensional state. This needs another level of approxi-

mation in (4.28) by letting
√
Yk ≈ Xk as follows.

P̌ SD
k (Xk) =

⎧⎨
⎩

FC

(
1
ρk

)
, k = 1

Q
(

C·Xk−1
σC ·Xk

)
, otherwise.

(4.31)

This approximation will reduce the complexity of the recursive minimization. However, as

it is showed in [51], the throughput of a policy π in (4.24), calculated with the approximate

outage probabilities P̌ SD
k , is a lower bound to the throughput calculated with the same policy

π but using the outage probabilities P̃ SD
k in (4.28).

η̃AL-S(π) =
1− P̃ SD

K∑K
k=1 ρk · P̃ SD

k−1
≥ η̌AL-S(π) =

1− P̌ SD
K∑K

k=1 ρk · P̌ SD
k−1

(4.32)

As a result of (4.32), maximization of throughput using the new approximate outage

probabilities in (4.31) will result in maximizing the lower bound to η̃AL-S. Moreover,

maximization of η̌AL-S does not need to follow the Lagrangian function in (4.25). Instead,

this simplification allows us to solve the following optimization problem.

max
π

η̌AL-S(π) = max
X

1− P̌ SD
K (X)

DK(X)
(4.33)

where

DK(X) = min
ρ1,...,ρk∑k
l=1 ρl=X

ρ1 +
k∑

l=2

ρl · P̌ SD
l−1(Xl−1)

= min
0≤ρk≤X

min
ρ1,...,ρk−1∑k−1
l=1 ρl=X−ρk

ρ1 +
k−1∑
l=2

ρl · P̌ SD
l−1(Xl−1) + ρk · P̌ SD

k−1(X − ρk)

= min
0≤ρ≤X

Dk−1(X − ρ) + ρ · P̌ SD
k−1(X − ρ). (4.34)
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The optimization results are stored as ρk(X) = argminρ Dk−1(X − ρ) + ρ · P̌ SD
k−1(X − ρ).

Once the functions Dk(X) are obtained, we can recover the solution ρ̂k as follows letting

X̂K = argX max
1−P̌ SD

K (X)

DK(X)
.

1. ρ̂K = ρK(X̂K)

2. for k : K − 1 → 2

• X̂k = X̂k+1 − ρ̂k+1

• ρ̂k = ρk(X̂k)

3. ρ̂1 = X̂2 − ρ̂2.

The results obtained through the simplified formulation were very close to those obtained

using the two dimensional state space optimization. This reduces the complexity at every

step of the recursive optimization, by the number of discretization points over the state

parameter. In Chapter 5 we will discuss the complexity of optimization for rate allocation

and compare it to the alternative approaches.

4.4 Performance Limits

The obvious lower bound of one transmission K = 1 for both the single-hop channel model

and the cooperative channel model (which will be studied in the next chapter) is the direct

transmission from S to D (also known as lower bound for decode-and-forward in multi-hop)

averaged on the channel state. In this case Pout(ρ) = Pr
{
C(γ) · ρ < 1

}
= FC(γ)(

1
ρ
) and

lower bound for maximum achievable throughput is derived as

η̂0 = max
ρ

{1− Pout(ρ)

ρ

}
(4.35)

An upper bound of the single-hop model would happen when an infinite number of

transmission attempts is allowed (K → ∞). For an infinite number of transmissions Pout → 0.

As a result, maximization of throughput is the same as minimization of the denominator

in (2.15). The steady average total redundancy function for infinite transmissions is the

expectation on the amount of redundancy (number of channel uses divided by Nb) in infinite
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time and we denote it by J∞.

J∞ = lim
K→∞

N s

Nb

= lim
K→∞

∑K
k=1 E

{
Ns,k

}
Nb

= lim
K→∞

K∑
k=1

E
{
ρk
}

(4.36)

According to Bellman’s theorem [23, Chap. 3] we can find the minimum of J∞ as follows.

Ĵ∞(S) = min
ρ

E{ρ+ Ĵ∞(Ś)} (4.37)

where ρ is the redundancy transmitted in the infinite time by the active transmitter and S

is the state of the process as we defined in Section 2.3 and Ś = fS(S, ρ, C) is the new state

which is a function of the previous state, redundancy ρ and the channel random parameter

C. Therefore, the maximum achievable throughput can be calculated as

η̂∞ =
1

Ĵ∞
(4.38)

as soon as J∞ for the desired scenario is known. It is shown in [1] that for fixed-power

fixed-rate transmission, when the allowed number of transmission attempts grows, K → ∞,

the throughput of a well designed HARQ approaches the ergodic channel capacity given

by [21,42].

C =

∫ ∞

0

c · pC(c)dc (4.39)

A fixed-rate HARQ is obviously a particular case of variable rate HARQ however, since

the channel is memoryless the block-wise feedback does not change the capacity of the

channel [1] and as a result the achievable region for variable-rate (adaptation and allocation

scheme) is limited by the ergodic capacity (4.39).
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Figure 4.2 Optimal outage-constrained throughput for ε = 10−2. The solid
black line shows ergodic capacity C and black dots show η0,ε (or K = 1).

4.5 Numerical Results

In this section we present numerical examples for the two problems solved in Section 4.2

and Section 4.3. Results will be compared with the fixed-rate case (ηFR-S) which is a special

case of rate allocation HARQ. The channel is assumed to be Rayleigh block fading and, as

a result, SNR is characterized by the exponential probability distribution function

pγ =
1

γ
exp(−γ

γ
), (4.40)

with γ denoting the average SNR.

The results shown in this section for the optimal throughput, are compared to the

maximum achievable throughput η̂∞ and the throughput lower bound η̂0, that we described
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Figure 4.3 Optimal outage-constrained throughput for ε = 10−4. The solid
black line shows ergodic capacity C and black dots show η0,ε (or K = 1).

in Section 4.4. The maximum throughput is achievable when K → ∞ is equal to the ergodic

capacity C. This is also confirmed in our numerical analysis by solving the Bellman’s

equation in (4.37). With K increasing, the number of channel uses (i.e., the redundancy

value) in each transmission frame for a particular message decreases. As a result, the

observation Y defined in Section 2.1.1 can be seen as the output of a fast-fading channel to

a long codeword X. From the capacity of a channel with state [71] we know that a coding

rate bounded with the ergodic capacity can be delivered with an arbitrary small outage

probability using an arbitrary long codeword.

First we show the results for outage constrained throughput optimization which is of

much interest in trade-off analysis in system design [72]. It can be computed according

to (4.12) and using the table of λ values associated with the corresponding η and Pout.
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Figure 4.4 Optimal throughput for different scenarios of HARQ. The solid
black line shows the ergodic capacity C and black dots show η̂0 (or K = 1).

The optimum outage constrained throughput η̂ε, for two different values of ε = 10−2 and

ε = 10−4, is shown respectively in Figure 4.2 and Figure 4.3 for the three cases of rate

adaptation η̂AD-S,ε for K = 2, 3, 4, rate allocation η̂AL-S,ε and fixed-rate η̂FR-S,ε for K = 2, 4, 8.

We choose to compare K = 4 of rate adaptation with K = 8 of rate allocation and fixed-rate

to show the advantage of the rate adaptation.

Optimal throughput and the corresponding outage probability for the three cases are also

shown, respectively, in Figure 4.4 and Figure 4.5. As shown, a significant improvement on the

throughput is achievable by adaptive incremental redundancy even if the transmitter does

not know the instantaneous CSI. An upper bound for the maximum achievable throughput

is shown too which is the ergodic capacity C. The outage probability corresponding to a

maximum throughput is shown in Figure 4.5. Even if the outage is varying, we assume that
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Figure 4.5 Outage probability of the optimal rate policies for different
scenarios of HARQ.

the suitable level of reliability can be obtained via additional retransmission mechanisms,

implemented at the upper layers. This idea is adopted in the LTE standard and the outage

probability of the MAC layer HARQ transmission is controlled by an upper layer ARQ

protocol embedded in the Radio Link Control (RLC) layer.

The outage probabilities of fixed-rate HARQ, shown in Figure 4.5, follow a non-smooth

behavior which we explain in Figure 4.6 for K = 2. As shown in Figure 4.6, the throughput

value ηFR-S(ρ), as a function of ρ, has a global and a local maximum which switch places

while increasing γ (from 23 to 24 dB). For K = 2 according to (4.24), throughput follows

ηFR-S(ρ) =
1−P SD

2

ρ·(1+P SD
1 )

, which for small values of ρ goes to
1−P SD

2

2ρ
and for large values of ρ

it goes to 1
ρ·(1+P SD

1 )
(respectively depicted by dashed and dotted lines in Figure 4.6). By

increasing the SNR value, the argument ρ̂ for which the global maximum (indicated with ×
in Figure 4.6) occurs, may change abruptly. This makes the outage probability (P SD

2 ) to
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Figure 4.6 Throughput of the fixed-rate scenario with respect to redundancy
value ρ for different γ values and K = 2. The × marker indicates the point
where the globally optimum throughput is attained.

increase abruptly as shown in Figure 4.5. The same analysis can be followed for K = 4 and

8.

The policy is optimized for a given channel SNR for both rate allocation/adaptation

cases as we saw earlier. As a result we expect the same optimal policy to have a different

performance if the channel SNR varies. Figure 4.7 shows an example of this matter, where

optimal policies for γ = 10 dB and γ = 20 dB are being used as transmission policy for a

rang of different SNR values. Figure 4.8 shows the corresponding outage probability values.

4.6 Summary and Complementary Notes

In this chapter we discussed two main problems of rate adaptation and rate allocation IR-

HARQ along with the fixed-rate transmission to show the effect of variable-rate transmission

in a fixed-power scenario. Even though the channel is assumed to be block-fading and

channel gains for different blocks are assumed independent, the information fed back from
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Figure 4.7 Throughput gained by using an optimal policy calculated for
different average channel gain. The results are shown for the following policies:
π̂γ as the optimal rate adaptation policy, π̃γ as the optimal rate allocation
policy and ρ̂γ as the optimal fixed-rate redundancy value. Optimal policies
found for two average SNR values of γ = 10 and γ = 20 dB are used for
transmission in different average SNR channels for K = 4.

receiver to transmitter is shown to be useful to increase the throughput.

The rate adaptation IR-HARQ performs very close to the ergodic capacity limit even

with a small number of retransmissions (e.g. for truncated HARQ with K = 4). Outage

constrained results show that very small values of outage probability (e.g. Pout = 10−4) can

be achieved with acceptable throughput values using optimized variable rate HARQ.

A multi-bit feedback for rate adaptation is considered to convey the actual value of

Ik in (2.4) (i.e., the discretization of Ik is not explicitly considered). This may not seem

practical as the information has to be conveyed using a limited number of bits. First, we
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Figure 4.8 Outage probability corresponding to the use of optimal rate
policies of π̂γ , π̃γ and ρ̂γ , for γ = 10 and γ = 20 dB in different channel average
SNR situation for K = 4.

need to note that all numerical calculations imply that the signal are discretized. Following

this line of though we would need to convey the number of bits necessary for floating point

representation of the numbers, i.e., 64 bits. While it is possible to reformulate the problem

to take explicitly into account the discretization levels of Ik, such a problem may be difficult

to solve optimally (we note that [56] made an intent in this direction in the context of

power adaptation). Instead, we may opt for a sub-optimal approach, choosing the uniform

discretization and adopting the solutions obtained with ”infinite” discretization offered by

the numerical tools we used. In the next chapter we will discuss this for the relay channel

in more details and we will see that only a small number of feedback bits can actually do

the work.
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Chapter 5

Orthogonal Relaying Policies and

Multi-Hop Channel

T
his chapter studies the rate optimization problem in the cooperative HARQ channel

model described in Section 2.1.3 for fixed transmit power. The node R in the

network operates an orthogonal relaying and has no information of its own to deliver to the

destination [73,74].

In the first section, we present the problem solution to rate adaptation in cooperative

IR-HARQ and investigate the performance limits for the throughput of the proposed channel

model, which is important since the capacity of such a channel is not known in general [71].

A lower bound of the performance is the optimal transmission from S to D which is known

as Decode-and-Forward direct transmission. Rate adaptation HARQ as an MDP problem

and can be solved straightforwardly using DP which is similar to the solution proposed in

Section 4.2.

Next, we discuss the rate allocation scenario and present the formulation on the through-

put as well as introducing a novel approach for optimization of rate allocation problem.

Similar to the rate allocation problem in Chapter 4, we start with solving an approximated

version of the problem. Then we discuss the complexity of the proposed approach compared

to that of optimizing the original non-convex problem. Then we investigate the possibility

of improving the solution of the proposed approximate optimization.

Performance limits of the relay channel model and the numerical results of rate alloca-

tion/adaptation HARQ are also presented in this chapter. Finally we extend the problem
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set-up to a general network with M relay nodes and discuss the rate adaptation problem

for such a network.

5.1 Adaptive-Rate Orthogonal Relaying

In this section, we study the achievable throughput of truncated HARQ transmission over

the cooperative channel model. We assume that the NACMI Ik is being fed back to the

transmitter node(s) at the end of each transmission attempt and the encoder is capable of

adapting the transmission rate based on the feedback message.

5.1.1 Optimum Policy

To find the optimum decision policy for K transmission attempts we start from (4.8), and

look for λth by finding the smallest value of λ where a non-degenerate solution for Jλ exists.

The minimization problem in (4.8) can be cast into a DP problem and be solved in a

recursive manner, starting from last stage to find the optimal decision policy for a given

λ. The policy found in this way would correspond to transmitting the smallest amount of

redundancy for the given λ value. So, (4.8) can be rewritten as,

Jλ = min
π

D(π) + λ · Pout(π)

= min
ρS1,...,ρ

S
K

ρR1 ,...,ρ
R
K

E
{ K∑

k=1

ρS
k + ρR

k + λ · I(ID
K < 1)

}
. (5.1)

The recursive optimization problem, using (2.6a) and (2.6b), can be shown as follows in

(5.2). The MDP state of this problem is a two-tuple Sk = (ID
k , I

R
k ).

Jλ = Jλ
1 (I

D
0 , I

R
0 ) = min

ρS
1,ρ

R
1

E
{
ρS
1 + ρR

1 + Jλ
2 (I

D
0 + ρS

1 · CSD
1 + ρR

1 · CRD
1 , IR

0 + ρS
1 · CSR

1 )
}

(5.2a)

Jλ
2 (I

D
1 , I

R
1 ) = min

ρS
2,ρ

R
2

E
{
ρS
2 + ρR

2 + Jλ
3 (I

D
1 + ρS

2 · CSD
2 + ρR

2 · CRD
2 , IR

1 + ρS
2 · CSR

2 )
}

(5.2b)

· · ·
Jλ
K(ID

K−1, I
R
K−1) = min

ρS
K ,ρR

K

E
{
ρS
K + ρR

K + λ · I(ID
K−1 + ρS

K · CSD
K + ρR

K · CRD
K < 1)

}
(5.2c)
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The minimization process starts with (5.2c) by solving

Jλ
K(I

D
K−1, I

R
K−1) = min

ρSK ,ρRK

{
ρS
K + ρR

K + λ ·Θ(ID
K−1, I

R
K−1)

}
, (5.3)

where

Θ(ID
K−1, I

R
K−1) =

⎧⎨
⎩FCSD

(1−IDK−1

ρSK

)
IR
K−1 < 1

FCRD
(1−IDK−1

ρRK

)
IR
K−1 ≥ 1

. (5.4)

and FX(x) = Pr{X < x} is the cdf.

The optimization is done off-line before the start of the transmission process. However,

in real-time it is possible to optimize the remaining transmission attempts of an HARQ

process. For instance, if 2 (not necessarily optimal) transmission attempts are already done

and the decoder state is S2 and maximum number of attempts is 5, we can always find

the optimum policy for the remaining 3 attempts. In this example we need to solve the

recursive system in (5.2) for K = 3 and setting (ID
0 , I

R
0 ) = S2 in (5.2a) (instead of choosing

(ID
0 , I

R
0 ) = (0, 0) when we optimize the process off-line). This way we can find an optimal

policy for the remaining 3 transmission attempts in real-time.

5.1.2 Initializing DP Recursion

A policy π, as a set of ρ functions, has 2K elements which we find one by one in a recursive

optimization process. This can be seen as finding 2K − 1 functions ρ that optimize the

throughput of the transmission process (we already know that ρR
1 = 0). Solving this

problem directly leads to a complexity which grows exponentially in the number of points

required to represent the function ρ and exponential in K as well. But, thanks to the

recursive optimization using DP, the complexity of the (2K − 1)-dimensional minimization

problem reduces significantly (An example of an optimal redundancy policy for adaptive-rate

transmission is shown in Figure 5.1).

The recursive optimization looks for K − 1 of 2-dimensional ρS functions, plus K − 1 of

1-dimensional ρR functions, which is significantly less complex than the main problem (ρS
1 is

a scalar of transmission redundancy at the start of the process and not a function therefore,

complexity of optimizing it is negligible compared to the whole problem).

The optimization is done point by point over the discretized values of the state variables
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(ID
k−1, I

R
k−1) and the overall computational complexity grows linearly with K increasing1.

As a result, it is possible to optimize the policies even for large values of K and increase

the number of discretization points as desired. As defined in (2.7a) the ρS
k(I

D
k−1, I

R
k−1) is a

2-dimensional function and is non-zero only where 0 ≤ ID
k−1 < 1 & 0 ≤ IR

k−1 < 1; ρR
k(I

D
k−1) is

one-dimensional function and is used only in the Relaying phase.

The minimization process starts with (5.3) and the first step can be done analytically

by finding the zero-crossings of the first derivative of cost in (5.4), with respect to the

optimization parameters ρ. Since at each time only one node can be transmitting in the

system, we are looking for two one-dimensional functions in this stage (This is because the

ρS
K is fixed with respect to IR

K−1). As a result, we find the solution to the following two

equalities as the optimal ρ values

pCSD

(1− ID
K−1

ρS
K

)
· 1− ID

K−1
ρS
K · ρS

K

=
1

λ
, IR

K−1 < 1 (5.5a)

pCRD

(1− ID
K−1

ρR
K

)
· 1− ID

K−1
ρR
K · ρR

K

=
1

λ
, IR

K−1 ≥ 1. (5.5b)

We discuss the first equation in (5.5a) while the second one follows the same discussion.

Following the first equation in (5.5a), the right part of the below equation is non-negative

(IR
K−1 < 1)

1

λ
= pCSD

(1− ID
K−1

ρS
K

)
· 1− ID

K−1
ρS
K · ρS

K

. (5.6)

For a Rayleigh fading channel, like most of the other common wireless channel models, the

pdf decays exponentially which is faster than ρ−2. This tells us that the right side of (5.6)

has a maximum maxIDK−1,ρ
S
K

{
pCSD

(1−IDK−1

ρSK

) · 1−IDK−1

ρSK ·ρSK

}
= 1

λc
, where λc varies with ID

K−1 and

therefore, we denote it as λc(I
D
K−1). As a result, if λ < λc(I

D
K−1) there is no solution to

(5.6) which yields ρS
K = 0 and Jλ

K = λ. On the other hand, for λ > λc(I
D
K−1) there are two

solutions to (5.6) and we chose the one for which the second derivative is positive. The

chosen solution and the solution equal to zero, will then be tested to find the optimum. The

same way we can solve the second equation in (5.5a) for ρR
K . Having the Jλ

K(I
D
K−1, I

R
K−1) the

recursive minimization continues numerically to finally solve (5.2a) and finding the policy

1This means that for 100 discretization points, the number of point-by-point minimizations to be solved
is: (K − 1)× (100)2 + 1 + (K − 1)× 100 which becomes 30301 minimizations for K = 4.
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for the K-stage process. It is worth noting here that for K = 1 one can easily show that

λth = λc(0) while for K > 1 we have λth < λc(0).
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Figure 5.1 Optimal rate adaptation policy for HARQ over the relay channel
model: ρS

k(I
S
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k−1) shown for k = 2, 3, 4 (K = 4) and γSD = 10
dB. The packet dropping regions, where the redundancy value is equal to zero,
is shown in blue for ρS

k.



5 Orthogonal Relaying Policies and Multi-Hop Channel 72

5.1.3 Throughput Calculation

For a given policy π, we can anticipate the events of transmission stages by finding the

joint probability distribution of ID
k and IR

k , starting from k = 1 and going recursively up to

k = K. Due to the independency of channels for k = 1 (for given ρS
1) we have

p
ID1 ,IR1

(x, y) = p
ID1
(x) · p

IR1
(y) (5.7)

with p
ID
k
,IR
k

(x, y) being the joint pdf of ID
k and IR

k . For k > 1 the joint pdf can recursively be

calculated as shown in (5.8).

p
ID
k
,IR
k

(x, y) =

∫ x

0

∫ y

0

p
ID
k−1

,IR
k−1

(α, β) · Pr{ID
k = x, IR

k = y|ID
k−1 = α, IR

k−1 = β}dβdα (5.8)

It easily follows from (5.8) that, for x, y < 1, we have

p
ID
k
,IR
k

(x, y) =

∫ x

0

∫ y

0

p
ID
k−1

,IR
k−1

(α, β) · p
CSD

( x− α

ρS
k(α, β)

)
· p

CSR

( y − β

ρS
k(α, β)

)
dβdα. (5.9)

Also, for x < 1 & y ≥ 1, (5.8) yields the following

p
ID
k
,IR
k

(x, y) =

∫ x

0

p∗
ID
k−1

(α) · pCRD

(x− α

ρR
k(α)

)
dα (5.10)

+

∫ x

0

∫ 1

0

p
ID
k−1

,IR
k−1

(α, β) · p
CSD

( x− α

ρS
k(α, β)

)
·
(
1− FCSR

( 1− β

ρS
k(α, β)

))
· ρS

k(α, β)dβdα,

where,

p∗
ID
k−1

(α) =

∫ ∞

1

p
ID
k−1

,IR
k−1

(α, β)dβ. (5.11)

Then, the outage probability Pout, as the probability of ID
K being less than 1, can be

found as follows.

Pout =

∫ 1

0

∫ ∞

0

p
IDK,IRK

(α, β)dβdα. (5.12)

The process of finding the optimal policy that gives the maximum achievable throughput

for K transmission attempts can be summarized as the following steps:
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• For a given λ value we first solve (4.8) in the recursive manner depicted in (5.2a)

through (5.2c). This process starts with (5.3) and goes backward in k to find a policy

π ∈ R̃λ.

• If ρS
1(0, 0) = 0 then the found policy π is degenerate, otherwise it is non-degenerate.

• We need to find at least one degenerate and one non-degenerate solution first and

their corresponding λ values, λdeg and λnon-deg.

• Using the Bisection method (or any other root-finding method) we look for λth which

is somewhere in λth ∈ (λdeg, λnon-deg]. The accuracy of the solution obtained can be

arbitrarily chosen by changing the number of Bisection iterations.

• The throughput η̂ is then

η̂ =
1

λth

. (5.13)

Finally, for an arbitrary outage probability ε ≤ ε̂, the optimal outage constrained

throughput is the solution η(π) of the DP process described in Section 5.1.2 that gives

Pout(π) = ε. Also, for ε > ε̂ the optimal outage constrained throughput is η̂.

The computation of the outage probability for a given policy π can be done using the

joint probability distribution of ID
k and IR

k as shown in (5.12). We note here that, because

of the complexity of the integration process due to the discontinuities in the policies π, in

Section 5.4, we use the Monte-Carlo method instead to calculate outage probabilities.

5.1.4 Quantization of the Feedback

In practice, the feedback message is supposed to be a limited-length packet of bits. To

complete our analysis on rate adaptation, we assume an index of the discretized version

of ID
k and IR

k , denoted respectively by �D
k and �R

k, being sent back through the feedback

channels. For Nf bits of feedback message and a uniform discretization over Ik ∈ [0, 1) we

have L+ 1 = 2Nf possible messages as feedback, or

�k ∈ {0, 1, . . . , L} (5.14)
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where Nf can be chosen differently for any of the feedback channels. The uniform discretiza-

tion can then be formalized as

�k =

{
�Ik · L� 0 ≤ Ik < 1

L Ik ≥ 1
, (5.15)

where �.� gives the largest integer smaller than the argument.

We assume that the encoders will still decide on the number of symbols (or, equivalently,

on the amount of redundancy) to transmit, using the optimum policies π ∈ R̂ as found

through the dynamic programming optimization. However, this decision may be made in

different ways. We discuss here three different approaches of minimum (Min.), median

(Med.) and average (Avg.) as defined below since they are simple to analyze and to

implement in practice.

The encoder first finds an approximation of the actual value of Ik, denoted by I̊k in one

of the three approaches as follows

I̊k =

⎧⎪⎨
⎪⎩

�k ·Δ Min.

(�k +
1
2
) ·Δ Med.

Ik Avg.

(5.16)

where Δ = 1
L
and Ik is the expectation of Ik given the received feedback messages. For the

encoder of S this means that: I
D
k = E{ID

k |�D
k = l1, �

R
k = l2} and I

R
k = E{IR

k |�D
k = l1, �

R
k = l2},

while for the encoder at node R it means: I
D
k = E{ID

k |�D
k = l1}. The encoders then

respectively encode ρD
k(I̊

D
k , I̊

R
k ) and ρR

k(I̊
D
k) redundancies.

Based on the definitions presented here, we will show in the numerical results in

Section 5.4, that using a few feedback message bits N D
f = log2(L

D+1) and NR
f = log2(L

R+1),

the HARQ process can achieve the maximum throughput.

5.2 Rate Allocation in Orthogonal Relaying

The rate allocation policy π for the proposed relaying protocol is composed of K (the

maximum number of transmission attempts) sets.

π = {�S, �R
l }, 1 ≤ l < K (5.17)
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The set of transmission rates for node S, denoted by �S, is a vector of length K. Moreover,

depending on the time l, at which the relay node decodes the message successfully and the

system transits from broadcasting phase to relaying phase, a different set of transmission rates

�R
l for the K − l remaining transmissions from relay node are employed. Hence, altogether

K(K+1)
2

input parameters (degrees of freedom) would be available for the optimization

problem. So, inputs to this optimization problem are a set of transmission rates described

as follows.

�S : {ρS
k|1 ≤ k ≤ K} (5.18a)

�R
l : {ρR

l,k|l < k ≤ K}, 1 ≤ l < K (5.18b)

We denote the normalized mutual information exchanged between nodes S and D at the

kth transmission attempt by νSD
k = C(γSD

k ) · ρS
k. Where, for the Gaussian distributed symbols

of the coding method used here, the mutual information per channel use (symbol) gained

by the decoder of node b from the node a encoder is equal to Cab
k = log2(1 + γab

k ). We also

denote the normalized mutual information exchanged between nodes R and D at the kth

transmission attempts, with the successful decoding at relay happening in lth attempt, by

νRD
l,k = C(γRD

l,k) · ρR
l,k.

Following from these definitions, the NACMI at decoder of D at the end of the kth

transmission for two example cases is as follows.

• in case that relay node decodes the message at the lth attempt ID
k =

∑l
t=1 ν

SD
t +∑k

t=l+1 ν
RD
l,t ,

• in case that relay node doesn’t decodes the message up to the time k then, ID
k =∑k

t=1 ν
SD
t .

In broadcasting phase IR
k < 1, and in relaying phase IR

k ≥ 1 (noting that at both phases

ID
k < 1). Also, γRD ≡ 0 in the broadcasting phase while γSD ≡ 0 and γSR ≡ 0 during the

relaying phase. The transmission process stops as soon as ID
k ≥ 1 or k = K.
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5.2.1 Closed-Form Representations

A failure happens in the truncated HARQ process only if after K transmission attempts

ID
K < 1. This can be the resulting from any of the K disjoint events bellow:

E∗l =
{ l−1∑
k=1

νSR
k < 1 ∧

l∑
k=1

νSR
k > 1 ∧

l∑
k=1

νSD
k +

K∑
k=l+1

νRD
l,k < 1

}
, 1 ≤ l ≤ K − 1 (5.19a)

E∗K =
{K−1∑

k=1

νSR
k < 1 ∧

K∑
k=1

νSD
k < 1

}
(5.19b)

There are also several events that lead to the decoding success in the HARQ process.

We categorize them into two groups:

• Success events that happen in the broadcasting phase which we denote by El. In

these events, decoding at D is done only based on the information from node S.

• Success events that happen following a transition to the relaying phase at transmission

attempt l and we denote them by El,k. In this group of events, R has succeeded

in decoding at some time l and therefore, the destination node has some mutual

information from the relay node too.

We formulate these two events as follows:

El =
{ l−1∑

i=1

νSD
i < 1 ∧

l−1∑
i=1

νSR
i < 1 ∧

l∑
i=1

νSD
i > 1

}
, 1 ≤ l ≤ K (5.20a)

El,k =
{ l−1∑

i=1

νSR
i < 1 ∧

l∑
i=1

νSD
i +

k−1∑
i=l+1

νRD
l,i < 1

∧
l∑

i=1

νSR
i > 1 ∧

l∑
i=1

νSD
i +

k∑
i=l+1

νRD
l,i > 1

}
, 1 ≤ l < k ≤ K (5.20b)

To be able to compute the probability of the events defined above, we introduce three
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probability functions as follows:

P SD
k � Pr

{ k∑
i=1

νSD
i < 1

}
, (5.21a)

P SR
k � Pr

{ k∑
i=1

νSR
i < 1

}
, (5.21b)

P SRD
l,k � Pr

{ l∑
i=1

νSD
i +

k∑
i=l+1

νRD
i < 1

}
. (5.21c)

Here, P SD
k and P SR

k are the probabilities of decoding failure, respectively at the destination

and the relay, after k transmission attempts by the source node S. Moreover, P SRD
l,k is the

probability of decoding failure at the destination after l transmission attempts from the

source node followed by k − l transmission attempts from the relay node.

We use the definitions in (5.21a), (5.21b) and (5.21c) to calculate the throughput of the

relaying protocol, which follows from (2.13) as:

η =
Nb · (1− Pout)

N s

(5.22)

The following corollary to the throughput theorem in [1] presents a closed-form for the

outage probability and the throughput of the presented variable-rate transmission, based

on the policy set π in (5.17).

Corollary 1. (Throughput Formula) Throughput of the cooperative HARQ protocol described

in Section 2.1.3 with variable-rate transmission can be calculated as

η =
1− Pout

D
, (5.23)

where Pout and D are given as follows.

Pout = P SD
K · P SR

K−1 +
K−1∑
i=1

[
P SR
i−1 − P SR

i

] · P SRD
i,K (5.24)
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D =
K∑
i=1

ρS
i · P SD

i−1 · P SR
i−1 +

K−1∑
i=1

[
P SR
i−1 − P SR

i

]
.

[
K∑

l=i+2

ρR
i,l · P SRD

i,l−1 + ρR
i,i+1 · P SD

i

]
(5.25)

The proof is given in Appendix B.

5.2.2 Approximate Recursive Optimization

The throughput of HARQ for K retransmissions as introduced in Corollary 1 has K(K+1)/2

optimization variables. In this section we present a dual optimization problem inspired

by [51, 53] and solve the optimization problem in a recursive manner which reduces the

complexity of problem.

The first step here is to substitute the original problem with its dual in (4.8). However,

we need to have the MDP state Sk which meets two conditions: first, the probability

of failure events at the end of kth transmission must be computed knowing Sk; second,

knowing the kth optimization parameter (transmitted redundancy) and Sk, the new state

Sk+1 should be obtained [24]. However, for calculation of the probability of any failure

event we need to know the optimization parameters for all the steps up to that stage, which

implies that whatever the state Sk we choose, it cannot satisfy the first condition.

Following this observation, in the same approach as in Section 4.3, we do some mod-

ifications to the problem. As already suggested in [12, 51] we choose to approximate the

probability of failure events using a Gaussian approximation [15]. For instance for P SD
k in

(5.21a) we use P̃ SD
k where

P̃ SD
k =

⎧⎨
⎩

FCSD
(

1
ρSk

)
, k = 1

Q
(

C
SD·Xk−1

σCSD ·
√
Yk

)
, otherwise.

(5.26)

In (5.26), C
ab

= ECab

{
Cab

}
and σ2

Cab = ECab

{
Cab2

} − C
ab2

. Also, Xk =
∑k

l=1 ρ
S
l , Yk =∑k

l=1 ρ
S
l
2 and Q(x) defined as in (4.27).

We can define P̃ SR
k in the same way for the channel with ab = SR. Moreover, we use

P̃ SRD
l,k defined below, instead of P SRD

l,k

P̃ SRD
l,k =

⎧⎪⎨
⎪⎩

FCSD
(

1
ρSk

)
, k = 1

Q
(

C
SD·Xk+C

RD·x′
k−1

σCSD ·
√
Yk+σCRD ·

√
y′k

)
, otherwise

, (5.27)
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where x′k =
∑k

i=l+1 ρ
R
l,i and y′k =

∑k
i=l+1 ρ

R
l,i

2.

In this case, instead of Jλ we find J̃λ, which is calculated with substituting the Gaussian

approximated outage probabilities in (4.8).

J̃λ = J̃λ
1 (0, 0), (5.28)

We show in Appendix C how to find J̃λ
1 (X0, Y0). It is also shown how to find the optimal

π̃ = π(X̂K , ŶK). The throughput of the maximizing policy π̂ will then be denoted as

η̃ = η(π̃), with the exact calculation as discussed in Section 5.2.4.

5.2.3 Simplified One-Dimensional State Optimization

A simplified version of the proposed optimization can be obtained by modifying the problem

in a way that the MDP state is only one dimensional or Sk = Xk. The state elements in

(5.31) have be discretized into L points and for a two dimensional space, which would create

L2 minimizations at each step. Therefore, reducing the state space to a one dimensional

state will immediately decrease the complexity of the optimization process by reducing the

number of minimizations from L2 to L.

We discuss the one dimensional state in this section using Gaussian approximation as

presented in Section 4.3 and approximating the state elements as:
√
Yk ≈ Xk and

√
y′k ≈ x′k.

The failure probabilities P SD
k (and similarly P SR

k ) and P SRD
l,k when approximated as functions

of Xk and x′k, are presented as follows.

P SD
k ≈ P̌ SD

k (Xk) =

⎧⎨
⎩

FCSD
(

1
ρSk

)
, k = 1

Q
(

C
SD·Xk−1
σCSD ·Xk

)
otherwise

. (5.29)

P SRD
l,k ≈ P̌ SRD

l,k (Xl, x
′
k) =

⎧⎨
⎩

FCSD
(

1
ρSk

)
, k = 1

Q
(

C
SD·Xl+C

RD·x′
k−1

σCSD ·Xl+σCRD ·x′
k

)
, otherwise

. (5.30)

As a result, to maximize the throughput using one-dimensional Gaussian approximation

probabilities, we look for J̌λ instead of Jλ with substituting the outage probabilities in (4.8)
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with the approximated version. Then, the goal is to find the following.

J̌λ = J̌λ
K(X̌K), (5.31)

where X̌K = argX min Jλ
K(X) and J̌λ

K is presented in Appendix D. After X̌K is found, the

solution set π̌ = π(X̌K) is created and η̌ = η(π̌) is computed using the exact throughput

calculation in Section 5.2.4.

5.2.4 Exact Throughput Calculation

The next step after finding a solution π is to calculate the exact probability of failure P SD
k ,

P SR
k and P SRD

l,k as introduced respectively in (5.21a), (5.21b) and (5.21c) and then calculate

η(π) using (5.24) and (5.25). In general we have the representation of a failure probability

as

Pk = Pr
{ k∑

i=1

νi < 1
}
, (5.32)

where νi = ρi · Ci is a random variable with cdf as follows:

Fνi(x) = Pr
{
νi < x

}
= Pr

{
Ci <

x

ρi

}

=

∫ 2
x
ρi −1

0

pγi(γ)dγ. (5.33)

Moreover, the pdf of the random variable νi, using (5.33), can be shown as follows.

pνi(x) =
d

dx
Fνi(x)

= pγi

(
2

x
ρi − 1

) 2
x
ρi

ρi
ln(2). (5.34)

As discussed briefly in Section 4.3, the pdf of the random variable Ik =
∑k

i=1 νi, since all

νis are independent for 1 ≤ i ≤ k, would be the convolution of the individual pdf functions
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as follows.

pIk(x) = pν1 ∗ pν2 ∗ · · · ∗ pνk(x), (5.35)

which can be found numerically for known pνi(x)s using, e.g., discrete Fourier transform.

The failure probability Pk can then be found as

Pk = Pr{Ik < 1}

=

∫ 1

0

pIk(x)dx. (5.36)

5.2.5 Remarks on the Complexity

It is difficult to prove that the optimization function in (4.1) is convex. As we discussed

so far, for the rate adaptation, thanks to DP, we can easily transform the exponentially

complex non-linear problem into a set of recursive optimizations, which can be globally

optimized without major complexity concerns.

In case of the rate allocation problem, we discussed that a recursive optimization on the

original problem will not be feasible. As a result, we generated an approximate version of

the throughput formulation using approximate outage probabilities presented in (4.28) and

(5.27) respectively for the single-hop and relay channel models. We also presented a more

simplified version by introducing the one dimensional approximated outage probabilities

in (4.31) and (5.29) respectively for single-hop and relay channel models. The modified

problem can then be solved as a recursive optimization problem with a global optimization

at each recursion. The solution found in this way, as noted earlier, is a lower bound to the

optimal solution.

Here, we want to use a convex programming optimization method on the rate allocation

throughput maximization problem. The question is: Can we get a better solution by locally

optimizing the original problem and using the solution of the approximate problem π̃ as the

starting point?

To answer this question we run a set of experiments using the “fminsearch” function in

MATLAB which is an interior-point optimization function. We focus on the relay channel

model rate allocation problem because it is the the more complex problem with a significantly

large number of optimization parameters. However, we note that the same experiments



5 Orthogonal Relaying Policies and Multi-Hop Channel 82

S R D
Source Relay Destination

d 1− d

Figure 5.2 Topology of the relay channel for experimental analysis.

can be done for the single-hop channel model. The experiments are on optimizing the

original rate allocation throughput representation in (5.23), using different starting points,

as follows:

1. Set the starting point at 0.1 for all the optimization parameters (i.e., the redundancy

values). We denote the result of this experiment by πo.

2. Optimization using π̃ (i.e., the solution to the two-dimensional approximated version

of the problem) as the starting point. We denote the result of this experiment by π̃o.

3. Starting point being set at π̌ (i.e., the solution to the one-dimensional approximated

version of the problem) with the result of this experiment being denoted by π̌o.

We run the tests for the channel characteristics as follows. We assume a channel with

normalized distance of one between source and destination and a relay node positioned

with a distance of 0 ≤ d ≤ 1 from source on the line between source and relay (Figure 5.2).

Therefore, the relation of the average long-term channel gain of the links between the nodes

will be

γSR =
1

dν
γSD (5.37a)

γRD =
1

(1− d)ν
γSD, (5.37b)

with ν the path-loss exponent. For a Rayleigh fading channel, SNR is characterized by the

exponential probability distribution function

pγab(γ) =
1

γab
exp

(− γ

γab

)
, (5.38)
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Figure 5.3 Throughput for different optimization experiments.

where γab is the average SNR. Unless otherwise specified, for all the numerical results we

assume that d = 0.5 and we set ν = 4 for the path-loss exponent2.

The results of the maximum achieved throughput with each of the above experiments are

shown in Figure 5.3. The optimization experiments result in a slightly improved throughput

value in all the cases except for the first experiment where a random point is given to

the optimization algorithm as an starting point. This underlines the importance of the

starting point in a non-linear optimization problem. The optimal policy found using both

2Any desired changes can be made to the topology of the relay channel and/or the path-loss exponent,
which may change the optimum policy but will not affect the approach for the optimization process.
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Figure 5.4 Histogram plot for the normalized frequency of a solution πr that
is found using the MATLAB optimization function with randomly generated
starting point for γSD = 15 dB. The maximum throughput found in the random
starting point experiment and the maximum throughput found using the
proposed optimization method (η(π̃)) is shown for comparison.

2-dimensional and simplified one-dimensional approaches are compared to π̃o for γSD = 15

dB and K = 4 in Figure 5.5.

Simulation results for the second test that we run are shown in Figure 5.4. In this test

we try to globally optimize the throughput using randomly generated starting points πr.

We repeated the test for 2000 randomly generated starting points. For K = 4, 96.4 % of

the tests converged to a solution with the solution values depicted in Figure 5.4, while only
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Figure 5.5 Optimal rate allocation policy for HARQ over the relay channel
model found for γSD = 15 dB and K = 4. Solution of the two recursive
optimizations methods presented with 2-dimensional state space denoted by
π̃ and with one dimensional state space denoted by π̌ are compared to the
optimized version of π̃ which is denoted by π̃o. The back dotted line show the
optimum fixed-rate (FR) redundancy value.

0.15 % of the results are in the range of η(π̃) or larger. For K = 8 the convergence rate is

only 64.9 %.

The optimal result of this test is less than the result of optimization result when the

starting point is set to π̃ which is shown as π̃o in Figure 5.4. This is despite the fact that

finding π̃ and then π̃o takes at most a few hours of time on a regular personal computer for
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K = 8 while the random starting point test above takes time in order of weeks on the same

machine.

5.3 Performance Limits

In [30], it is shown that for the HARQ single-hop transmission channel, η̂K grows with

K increasing. As shown in the same paper, and proved in [1], with infinite transmission

attempts the maximum achievable throughput reaches the ergodic capacity of the fading

channel. Here, we expect η̂K to grow with K however, knowing the throughput of a

channel is always bounded with the capacity, there should be certain maximum achievable

throughput for K → ∞.

The capacity of the relay channel with input X1, relay input X2, output Y and relay

output Y1 for an arbitrary channel given by p(y, y1|x1, x2) and a feedback from (Y, Y1) to

both X1 and X2 is given by [?, Theorem 17.3]

C = max
p(x1,x2)

min
{
I(X1, X2;Y ), I(X1;Y, Y1|X2)

}
, (5.39)

where I(.) is the mutual information function. For the full-duplex (FD) relay transmission

the capacity of AWGN channel becomes [75]

CFD = max
β

min
{
C
(
β(γSR + γSD)

)
, C

(
γSD + γRD + 2

√
βγSDγRD

)}
, (5.40)

where β = 1− β, C(x) = 1
2
log(1 + x) and the ergodic capacity is CFD-erg = E{CFD}.

However a full-duplex transmission in the relay node is not fully practical. In case of a

half-duplex (HD) relay we can assume a Time Division (TD) manner over the relay node as

suggested in [76]. We suppose that relay node listens (and does not transmit) in α portion

of the time (0 ≤ α ≤ 1) and transmits in the remaining α = 1 − α portion of the time.

Under this assumptions the terms in (5.39) can be represented as

I(X1, X2;Y ) = αI(X1;Y ) + αI(X1, X2;Y ), (5.41a)

I(X1;Y, Y1|X2) = αI(X1;Y, Y1) + αI(X1;Y |X2). (5.41b)

Since the relay node uses all its energy in α portion of time and the source node can allocate
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κ fraction of its energy (0 ≤ κ ≤ 1) in the first α portion of time and the remaining κ = 1−κ

fraction in the remaining α portion of time, (5.41b) becomes (5.42a) and (5.42b).

CHD-1 = I(X1, X2;Y )

= αC
(κ
α
(γSR + γSD)

)
+ αC

(
βγSR κ

α

)
(5.42a)

CHD-2 = I(X1;Y, Y1|X2)

= αC
(κ
α
γSD

)
+ αC

(
κ

α
γSD +

1

α
γRD + 2

√
β

κ

(α)2
γSDγRD

)
(5.42b)

Then the capacity is

CHD = max
β,α,κ

min
{
CHD-1, CHD-2

}
. (5.43)

Since we are assuming fixed-power transmission in the problem definition of our HARQ

channel, we can relax κ in the maximization in (5.43) by choosing κ = α in (5.42b).

Moreover, for the particular case where only one transmitter node can be active at a time,

we study β = 0 as well. Finally, the ergodic form of the half-duplex capacity can be obtained

as CHD-erg = E{CHD}.
Even though we cannot compare the upper limit of our multi-hop channel model with

a known capacity region (e.g., upper bound on it are introduced in the literature [71]),

it can be still accepted as an achievable region (perhaps close to the unknown capacity).

The performance upper bound in this case happens when infinite number of transmission

attempts is allowed (K → ∞). The steady average cost for the cooperative channel can be

found by putting ρ = ρS + ρR in (4.37), noting that J∞ = limK→∞
∑K

k=1 E
{
ρS
k + ρR

k

}
.

5.4 Numerical Results

In this section we present some numerical results for the described relaying schemes with IR-

HARQ for both rate adaptation/allocation. In case of rate allocations, we use the optimized

version of the 2-D state space solution for maximum throughput in Section 5.2.5 denoted

by π̃o, as the maximum throughput achieved with variable rate allocation as introduced in

and we denote it by η̂AL-M = η(π̃o). We use the same channel characteristics as described in

Section 5.2.5.
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Figure 5.6 Throughput for K = 2, 3, 4; for constrained outage probability
of ε1 = 10−2 (red) and ε2 = 10−4 (blue). The results are compared with the
maximum achievable throughput of the relaying protocol (thick black) and the
direct transmission lower bound (dotted black).

As stated in (2.7a), the optimum rate adaptation policy π̂AD-M for the transmission

attempt k consists of two functions: a two parameter function ρS
k(I

D
k−1, I

R
k−1) which can be

non-zero only at 0 ≤ ID
k−1, I

R
k−1 < 1 and a one parameter function ρR

k(I
D
k−1) which can be

non-zero only at 0 ≤ ID
k−1 < 1. As an example in Figure 5.1 for average SNR of γSD = 10

dB, we can see the optimal policy for maximum K = 4 transmission attempts.

For the first transmission, as depicted in Figure 5.1, there is no information accumulated

at decoders so, the source node starts with transmitting ρS
1(0, 0) = 0.0923 (ρR

1 = 0). The

second decision might be made over ρS
2 or ρR

2 depending on the decoder states. In the last

transmission attempt in case of still being in broadcasting phase, source is having a last try,

as we can appreciate in the left, bottom figure of Figure 5.1, but this time only to deliver



5 Orthogonal Relaying Policies and Multi-Hop Channel 89

the message at node D and thus ρS
4 does not change by IR

3 . It is noticeable that the accurate

small redundancy values presented here imply relatively long packets for transmission. We

based our analysis on asymptotically long codewords where the arbitrarily small outage

probability can be presumed for the transmission rate being in the capacity region of the

channel. This means that for relatively short codewords, the presented results in can be

optimistic.

As shown in Figure 5.1, the adaptation policies ρSk (I
D
k−1, I

R
k−1) for 1 < k ≤ K may become

zero for small values of the arguments. This is an interesting result similar to what we

noted in Section 4.5 for single-hop transmission which means that in order to maximize the

throughput, if the receiver has not accumulated enough of mutual information, we should

rather stop the transmission and proceed with the HARQ process of the next available

packet.

For the rate allocation problem, Figure 5.5 shows the maximum throughput achieving set

π̃AL-M for the case of two dimensional state space optimization for the SNR of γSD = 15 dB.

Following this result, S starts the transmission process by choosing a subset of N S
s,1 = ρS

1 ·Nb

number of symbols from the generated codeword x and broadcasts it to the other two nodes.

Retransmissions from S (or R in case of decoding success at relay) will then be pursued

using Ns,k = ρk · Nb new symbols from the same codeword until D decodes the message

successfully or a maximum K = 4 transmission chances are over.

It is also depicted in Figure 5.5, the optimal policy found using the one-dimensional

state space optimization π̌AL-M, described in Section 5.2.3. Since it can be found through a

much simpler minimization process, it is still an interesting result for us, not only because

it gives a better performance than fixed-rate transmission but also because it can be used

as an easy-to-find starting point for any global optimization method used to solve (5.23).

In Figure 5.6 the maximum achievable throughput for a constrained ε outage probability

η̂ε is shown for two different values of ε = 10−2 and ε = 10−4. In this figure, we assume

the rate adaptation HARQ is being used and as expected, tighter constraint on the outage

decreases the optimal throughput. As depicted in Figure 5.6, a tighter constraint on outage

does not affect the throughput at high SNR values as the K value increases. This follows

the fact that the outage probability of the optimal solution in the case of high SNR and

large K is already less than or very close to the constrained outage value and as a result,

the constraint does not affect the throughput as much as it does for lower SNR values.

Figure 5.7 shows the optimal throughput with respect to the average SNR for different
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Figure 5.7 Optimal throughput for K = 2, 3, 4 of our problem of adaptive-
rate (AR) transmission compared with rate allocation (AL) and optimal fixed-
rate (FR) throughput; maximum achievable throughput (K = ∞) and obvious
lower bound of K = 1 are shown as well for comparison.

values of K. The results are shown for three different HARQ transmission protocols of:

• Maximum throughput for a multi-hop channel which is achievable with rate adaptation

(AD): η̂AD-M

• Maximum throughput achievable with fixed-rate (FR) transmission: η̂FR-M

• The optimal rate allocation (AL) throughput found using the 2-dimensional state

space optimization method presented in Section 5.2 and optimized using fminsearch

as discussed in Section 5.2.5: η̂AL-M
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Figure 5.8 Outage Probability for optimal-throughput-achieving policies for
K = 2, 3, 4 of rate adaptation (AD), rate allocation (AL) and fixed-rate (FR)
HARQ transmission.

As shown in Figure 5.7, a significant improvement on the throughput is achievable by

rate adaptation HARQ, with transmitting back the outdated CSI on a multi-bit feedback

channel.

The upper bound for the maximum achievable throughput η̂max, as introduced in Sec-

tion 5.1 is also shown in Figure 5.7 which is the upper bound to the non-adaptive case as

well. One of the most important points depicted in this figure is how fast we can reach to

the maximum achievable throughput η̂max by increasing K in truncated HARQ transmission.

With K = 4 number of rate-adaptive transmissions in high SNR region we get pretty close

to the performance limit while this number gets bigger than 8 for both rate allocation and

fixed-rate transmission.

The capacity bounds of the relay channel studied in [76], averaged over all channel states
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Figure 5.9 Discretized feedback analysis results: throughput of the optimal
rate adaptation (AD) policy π̂ for γSD = 10 dB and K = 4 when the feedback
message is discretized with N D

f : 2 → 7 (Throughput η(π̂) with discretized
feedback increases with N D

f growing) in 1. Min.; 2. Med.; and 3. Avg. modes
of decision making with (a): NR

f = 1 and (b): NR
f = N D

f . The results are
compared with the optimal rate adaptation throughput value for ideal feedback
η̂(π̂); the maximum rate allocation (AL) throughput η̃; and the throughput of
the fixed-rate (FR) transmission.

is also shown in Figure 5.7. A comparison between the low and high SNR regimes in this

figure shows that the proposed HARQ transmission scheme has a maximum achievable

throughput which is comparable to the capacity of the channel at low SNR. On the other

hand, for higher SNR the maximum achievable throughput gap to the capacity increases.

Moreover, with the number of retransmissions increasing, the achievable throughput increases

significantly as the throughput of the proposed transmission scheme for K = 3 is significantly
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Figure 5.10 Effect of the relay positioning parameter d, on the optimal
throughput performed by rate adaptation η̂AD-M and rate allocation η̃AL-M for
truncated HARQ. The results are compared to that of the performance limit
η̂∞ and the ergodic half-duplex capacity limit.

greater than the throughput of an optimal fixed-rate transmission even for K = 4. The

outage probability corresponding to the optimal policy for different SNR values is shown

in Figure 5.8 which shows the SNR gained with increasing Kfor both rate adaptation and

allocation.

Figure 5.9 shows the achievable throughput with limited number of bits of feedback

message as discussed in Section 5.1.4. The results are shown for different decision making

modes and for different values of NR
f and N D

f where by increasing N D
f the throughput

increases. We can see that with NR
f = N D

f = 7 all the three proposed decision making modes

can reach the optimal value of the throughput.

Moreover, in case when the relay node cannot send back more than a single bit of
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feedback message, we can still get a significant increase on the throughput with respect to

fixed-rate transmission by only a few number of bits fed back from D. With NR
f = 1 the

Avg. approach performs comparably better which is the result of packet dropping regions of

the state space as shown in Figure 5.1.

Because of the single-bit feedback message in fixed-rate transmission it may not seem a

fair comparison to put the optimal throughput in Figure 5.7 next to the fixed-rate maximum

throughput. However, as we can see in Figure 5.9, with very few bits of feedback message

which is technically feasible, we can still have a higher throughput compared to fixed-rate

transmission.

The effect of the relay position on the maximum achievable throughput is also analyzed

by changing the position of the relay on the line that connects source node to the destination.

The maximum achievable throughput for different number of allowed retransmissions as well

as the capacity of the relay channel with respect to the parameter d is shown in Figure 5.10

for a fixed average SNR of γSD = 15 dB.

5.5 Multi-Hop HARQ Transmission

In a more general form, the communication network may consist of M relay nodes Rm

for 1 ≤ m ≤ M other than the destination D and the source node denoted as R0 ≡ S.
In this section we discuss how the throughput analysis can be extended to such a case.

The assumption we adopt on top of the system model in Section 2.1.3 is the use of an

opportunistic relaying (selection relaying) strategy [77], where at each transmission time k

a node with the best channel (closest) to D will be selected among the nodes that have the

message as the next transmitter.

Without loss of generality we assume that γRmD < γRnD if and only if m < n. Assuming

that every node is aware of the distribution of its channel (i.e., physical distance) to all the

other nodes in the network, the opportunistic relaying strategy can be managed in either of

the following manners [78].

• By having a network of feedback channels among all the nodes: at the end of each

transmission attempt, the transmitting node Rm (0 ≤ m ≤ M) and the receiver relay

nodes Rn, m < n will be notified about the state of the decoder of all the receiving

nodes (i.e., Rn, m < n and D).
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Figure 5.11 Topology of the M -relay network.

• In a centralized manner by node D assuming that it is being informed about the state

of all the decoders.

• By adopting a timer factor tm for each relay node Rm where tm is proportional to

the inverse of hRmD. At the end of each transmission attempt, if a node Rm has

successfully decoded the message and wants the other nodes to go silent for the next

transmission attempt, it has to broadcast an announce message at time tm except for

if it is put to silent earlier by a node with smaller timer factor.

We use the simplified notation of IRm→n
k = {IRm

k , I
Rm+1

k , . . . , IRn
k } for 1 ≤ m < n ≤ M to

represent a set of variables. The redundancy functions can then be shown as follows

ρS
k =

⎧⎨
⎩ρS

k(I
D
k−1, I

R1→M
k−1 ) ID

k−1 < 1 & IRm
k−1 < 1 ∀m

0 otherwise
(5.44a)

ρRm
k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ρRm
k (ID

k−1, I
Rm+1→M

k−1 )
ID
k−1 < 1 & IRm

k−1 ≥ 1

& IRn
k−1 < 1 for n > m

0 otherwise

. (5.44b)
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The optimization process for the M -relay network can follow a similar approach as in

(5.2a), (5.2b) and (5.2c). However, every step of this process will have a M + 1 dimensional

cost function to be minimized with respect to M + 1 redundancy variables in (5.44a) and

(5.44b). We do not carry out the numerical analysis for M > 1 and we note here that with

M increasing, the complexity of this optimization problem grows rapidly however, for small

M it is still possible to solve the optimization problem using DP.

It might seem possible to simplify the optimization problem by choosing the feedback of

all the relay nodes to be a single-bit message, and choose to adapt the transmission rates

only based on ID. However, it should be noted that by assuming the redundancies in (5.44a)

and (5.44b) to be one dimensional functions of ID, the optimization problem does not fit

into DP framework any more and as a result it will be a complex optimization. To be able

to cast the problem into DP, the state of the process, which is Sk = (ID
k , I

R1→M
k ) at time

k, should be obtained from the state at time k − 1 and the decision policy π [24]. The

Gaussian approximation that we used in Section 5.2 removes this characteristic from the

problem set-up and makes the optimization impossible with DP.

5.6 Summary and Complementary Notes

The feedback network assumed between the three communication parties is supposed to be

error-free in all the analysis in this dissertation. However, we note here that this assumption

is idealistic in the sense that it needs an infinite amount of information being transmitted

back from each receiver node to all the transmitter nodes at the end of each attempt, due to

the continuous nature of the accumulated information at the receiver. We refined this into

a technically feasible system model by assuming a discretization over the feedback message.

In this sense the accumulated information at the receiver would be discretized so that it

can be conveyed on a feedback message with a limited number of bits. Decision making on

the transmitter side will be then based on a discretized state space.

In this chapter we presented a study on different feedback scenarios. We presented

the rate adaptation optimal throughput η̂AD-M as the performance limit that any HARQ

transmission protocol is upper bounded by in the same channel model. A general framework

was established to find the performance limits of truncated/non-truncated HARQ protocol.

Next, we presented the analysis of the channel in a practically more realistic situation of

limited feedback messages. It is shown that very small number of bits for the feedback
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messages can reach the performance limit discussed above. Moreover, we studied the

conventional ACK/NACK feedback case to find the maximum throughput η̃AL-M we can get

by variable rate allocation.

We presented a framework for throughput and outage probability analysis of variable-rate

allocation in different channel setups. A closed-form representation of the outage probability

and the throughput was presented for truncated HARQ with single-bit feedback message.



98

Chapter 6

Conclusion and Future Work

In this thesis, we established the groundwork for rate control policies for HARQ in single-

hop and cooperative transmission over block fading channels with using outdated CSI

and considering fixed-power. As it was depicted in the numerical results, a significant

improvement on throughput is achieved over conventional fixed-rate transmission.

We presented a closed-form representation of throughput for the rate allocation scenario

where the CSI knowledge (whether outdated or not) is completely absent at the encoder node.

Using simplifying approximations the formulations were cast into the recursive optimization

to substitute the K-dimensional maximization with several lower dimensioned optimization

problems. The presented results showed a dramatic improvement over fixed-rate transmission

in both the single-hop and the cooperative channel .

6.1 Concluding Remarks

The objectives of this research, as are listed in Section 1.1.5, were addressed and achieved

through the analytical and numerical approaches which are presented in Chapter 4 and

Chapter 5. In this section we go through the questions that were raised in Section 1.1.5

and briefly summarize the answers given in this thesis.
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What is the throughput-optimal transmission rate in a fading channel when

using HARQ protocol?

What is the effect of outdated CSI on throughput of an HARQ channel?

The conventional fixed-rate HARQ transmission is an special case of a general setup which

allows for variation of the transmission parameters. Variable-rate transmission provides the

encoder with new degrees of freedom to improves the overall performance of the HARQ

protocol. Two different scenarios can be considered for a variable-rate transmission: In

the first one, the encoder is only provided with the conventional single-bit ACK/NACK

feedback. We called this scenario as rate allocation throughout this thesis. In the second

scenario, a side information is also available at the encoder via the feedback channel. This

scenario was addressed as rate adaptation in this thesis.

The rate allocation scenario takes advantage of the variable-rate transmission assumption

by performing an a priori statistical analysis to find an optimal set of transmission rate

values for the truncated HARQ process. The result of this analysis, even with fixed-power

transmission, is a significant increase on the overall throughput, in both single-hop and

relay channel models. The variable-length coded packets of different messages could be used

to fill up a relatively bigger (but fixed-size) frame in order to make the protocol suitable for

fixed-frame-size TDMA transmission.

In the rate adaptation scenario, the only information that the encoder can be provided

with is the history of the channel. Having this knowledge about the outdated channel

experiences, the encoder is able to measure how close the decoder is to a successful decoding.

Optimal rate adaptation increases the overall throughput significantly compared to the rate

allocation in all the channel models we studied.

The optimal rate policy shows the much interesting conclusion that it is better in terms

of throughput to discard a packet in the middle of an HARQ transmission, if the first

channel experiences are all “very poor”. We found threshold levels for the decoder state

that tells whether a packet is worth more retransmission attempts or is best to be discarded.

However, this can never be the case for rate allocation since the encoder only gets informed

about the decoding success/failure.
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How well a can cooperative channel perform in terms of achievable throughput?

An asymptotically large number of allowed retransmission attempts provides the limit of

performance for an HARQ protocol. In a relay channel model, since the capacity is not

known in general, this upper limit for achievable throughput is an interesting result that

can be found through the rate adaptation scenario. For a point-to-point transmission, the

throughput of an infinite number of allowed transmission attempts reaches the ergodic

capacity. In the relay channel, depending on the relaying protocol, the maximum achievable

throughput found in the rate adaptation scenario, is the upper limit of the fixed-power

transmission performance.

Can we get better fixed-outage performance in a block-fading channel by ap-

plying optimized HARQ transmission protocol?

Outage constrained optimization of the transmission rate can be exploited to depict a

trade-off between the outage probability (error rate) and the channel throughput, where by

improving one the other worsens. For values less than outage probability of the optimal rate

policy, outage-constrained maximum throughput decreases with the constraint decreasing.

What are the limits of performance for a truncated HARQ?

The throughput of truncated HARQ with K maximum transmission attempts increases

with K and, if the incremental redundancy is used, for K → ∞ the throughput reaches

the ergodic capacity. Even a limited number of transmission attempts, e.g., K = 4 in the

single-hop channel, approaches close to this limit in the rate adaptation scenario. Because of

the significant throughput difference between the variable-rate scenarios and the fixed-rate

transmission in the proposed channel model, it is easier to approach the capacity with the

variable-rate transmission. In other words, a relatively smaller number of transmissions is

necessary with variable-rate HARQ.

How robust are the optimal policies in fulfilling the achievable throughput with

respect to the limitations on the feedback message?

The exact value of the decoder state has to be fed back to the encoder in the rate adaptation

scenario. However, this is only necessary in the theoretical analysis and when it comes
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to the numerical optimization, the presented results have already taken into account the

discretization of the feedback message. This is because all the numbers on a digital machine

are discretized to a limited number of bits and the decoder state parameter in our analysis

goes through this discretization too. Moreover, as we showed in Section 5.1.4, only a small

number of feedback bits (7 bits in one example of a relay channel) is sufficient for an encoder

that follows an optimal rate adaptation policy, to reach the maximum achievable throughput.

In other words, even the discretization precision of a 64bit processor computer machine is

more than enough for the rate adaptation scenario and the assumption of an infinite bit

feedback can be easily relaxed.

Complexity of optimization

Non-convex optimization problems have a complexity that grows exponentially with the

number of optimization parameters. This might result in very time-consuming optimization.

While there are no general methods to overcome the complexity of non-convex optimization,

one idea is to approximate the problem with an approximation which is simple to solve

and use the solution as a starting point to globally optimize the original problem. In this

dissertation, as presented in Section 5.2.5, we showed that a solution to the approximated

version of the throughput optimization problem can be simply optimized using the interior-

point optimization tool fminsearch. We showed that this optimized solution which can be

found in less than one hour of time on a normal machine for K = 8 transmission attempts,

can not be reached even by trying 2000 random starting points in the same optimization

tool which may take several weeks to be done.

6.2 Future Directions

There are several avenues for future work following this dissertation. The perspectives

driven from this research work mostly revolve around three main topics:

• Adding the power parameter to the optimization problems

• Analyzing HARQ transmission over other channel models

• Considering practical coding/modulation techniques
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6.2.1 Transmission Power

As already mentioned in Section 3.3, the optimization problem with variable transmission

rate and power parameters, is computationally more complex. The problem has been

addressed in the literature [58,61] for particular cases however, to the best of our knowledge

the performance limits of truncated HARQ with variable rate and power parameters is

still unknown. By adding the power parameters, new constraints will show up in solving

the non-linear throughput optimization problem due to the limits on the average total

transmitted power.

6.2.2 Channel Model

The problem of rate adaptation for a communication network with M number of relay nodes

was introduced in Section 5.5. We showed that the optimization problem, even though it can

be formulated easily, is very difficult to solve. However, exploiting simplifying assumptions

both in the relaying protocol and in outage probability calculation, might be helpful in

reformulating the optimization problem.

The orthogonal-relaying channel model in Chapter 2 assumes that the relay node is

fully dedicated to assist the source node with delivering its’ data to the destination. A

different approach to the channel model is to assume that all the cooperating nodes have

their very own data that they want to deliver to the destination node. This problem is

studied in [79] for the case of two cooperating transmitter nodes. It is assumed that each

node can use superposition modulation to send their own data along with relaying the other

transmitter node’s data. The work in [79] finds the optimal superposition ratio for two

HARQ transmission attempts however, the performance limits of such a network is still an

open problem.

6.2.3 Coding/Modulation

Cross-layer optimization of HARQ transmission is a popular topic in the literature [59, 61,

80–82]. The goal is to exploit the retransmission characteristics of the HARQ protocol in

designing a communication system where a desirable latency and buffer overflow rate is

guaranteed for the least use of the bandwidth. The idea of variable transmission parameters

is a suitable idea to increase the performance of the HARQ protocol in such a design system.
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Appendix A

Proofs for Propositions and

Theorems

Proof of Proposition 1

Assume that for λ, where λ < 1/η̂, there exist a non-degenerate policy π that π ∈ R̃λ. Then

according to (4.10) we have,

D(π) + λ · Pout(π) ≤ λ (A.1)

where, since from the assumption we have that D(π) > 0, this inequality results in the

following.

1

λ
≤ 1− Pout(π)

D(π)
≤ η̂, (A.2)

which contradicts with the assumption.

Proof of Proposition 2

From (4.6) and (4.7) we can conclude that

D(π) + λ · (Pout(π)− ε) ≤ Dε, ∀π ∈ R̃λ, ∀ε ∈ [0, 1). (A.3)

Now, assume that for λ, where λ > 1/η̂, there exist a degenerate policy π that π ∈ R̃λ.
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From (A.3), we have

λ · (1− ε) ≤ Dε, ∀ε ∈ [0, 1) (A.4)

and,

1− ε

Dε

≤ 1

λ
< η̂, ∀ε ∈ [0, 1), (A.5)

which contradicts with 1−ε̂
Dε̂

= η̂. This completes the proof to the proposition.

Proof of Proposition 3

From Proposition 1 and (4.10) one can easily arrive at the conclusion that

D(π) + λ · Pout(π) = λ, ∀π ∈ R̃λ, and ∀λ < λth (A.6)

First we want to show that (A.6) holds also for λ = λth. Assume thatD(π)+λth·Pout(π) < λth

for any arbitrary non-degenerate policy π (this assumption is never valid for a degenerate

π). This will result in 1−Pout(π)
D(π)

> 1/λth = η̂ which contradicts with the definition of η̂. So,

following (4.10) we have

D(π) + λth · Pout(π) = λth, ∀π ∈ R̃λth
(A.7)

From (A.7), any degenerate policy π can be in R̃λth
. Also, any π ∈ R̂ satisfies (A.7) and as

a result it can be a solution to Jλth .

Proof of Theorem 1

From Proposition 3, we have R̂ ⊂ R̃
non-deg

λth
, and

η(π) = 1/λth = η̂, ∀π ∈ R̃
non-deg

λth
(A.8)

therefore, R̃
non-deg

λth
⊂ R̂ which yields R̃

non-deg

λth
≡ R̂.
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Proof of Proposition 4

Since π ∈ R̃λ, from (4.7) we have

D(π) + λ · (Pout(π)− ε) ≤ Dε (A.9)

or,

D(π) ≤ Dε (A.10)

which follows to D(π) = Dε according to (4.5). Therefore, since for any π∗ ∈ R̊Dε ,

D(π∗) = Dε then, π
∗ ∈ R̃λ.

Proof of Proposition 5

Jλ increases monotonically by growing λ (strictly positive first derivative with respect to

λ). So, according to the Proposition 4, for any arbitrary λ ≥ λth there is one and only one

ε ∈ (0, ε̂] where R̃λ ⊂ R̊Dε , because otherwise there is π́ ∈ R̃λ where Pout(π́) = έ �= ε which

results in R̊Dέ
⊂ R̃λ and Jλ = J λ́ where λ �= λ́ and this is a contradiction.
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Appendix B

Throughput of Cooperative

Variable-Rate HARQ Transmission

All the success events in (5.20a) and (5.20b) are mutually exclusive. This can be proved

easily if we notice that the chance of two success events happening is zero. The same way we

can show that the success events and the failure events in (5.19a) and (5.19b) are disjoint

too.

Probability of a failure event E∗k can be represented using (5.21a)–(5.21c). For instance

from (5.19b) we have the probability of event E∗K as follows.

Pr{E∗K} = Pr
{K−1∑

k=1

νSR
k < 1

} · Pr{ K∑
k=1

νSD
k < 1

}
= P SD

K · P SR
K−1 (B.1)

For any two random events A and be B we know that P (A ∩ B) = P (A)− P (A ∩ Bc),

where Bc is the complement the event B (not B, i.e., the event that B does not occur).

This gives us the Pr{E∗l } for 1 ≤ l < K as,

Pr{E∗l } = Pr
{ l−1∑

i=1

νSR
i < 1 ∧

l∑
i=1

νSD
i +

K∑
i=l+1

νRD
l,i < 1

}

− Pr
{ l∑

i=1

νSR
i < 1 ∧

l∑
i=1

νSD
i +

K∑
i=l+1

νRD
l,i < 1

}
, (B.2)
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which results in the following.

Pr{E∗l } =
[
P SR
l−1 − P SR

l

] · P SRD
l,K (B.3)

The same way, we can find the probability of the success events as follows.

Pr{Ek} =
[
P SD
k−1 − P SD

k

] · P SR
k−1 (B.4)

Pr{El,k} =

{ [
P SR
l−1 − P SR

l

] · [P SD
k−1 − P SRD

l,k

]
k = l + 1[

P SR
l−1 − P SR

l

] · [P SRD
l,k−1 − P SRD

l,k

]
k > l + 1

(B.5)

An outage in message delivery in the transmission process can happen due to any of the

failure events E∗1 , · · · , E∗K . Therefore, the outage probability can be shown as follows.

Pout = Pr{∪K
k=1E

∗
k} (B.6)

Because the failure events are mutually exclusive, (B.6) can be shown as,

Pout =
K∑
k=1

Pr{E∗k}. (B.7)

Substituting (B.1) and (B.3) in (B.7) gives us (5.24).

The expected number of channel uses N s in (2.15), is the expectation over the number

of channel uses of all the possible events. Thus it can be shown as follows.

N s = Nb ·
( K∑

k=1

Pr{Ek} · pk +
K−1∑
l=1

K∑
k=l+1

Pr{El,k} · pl,k +
K−1∑
k=1

Pr{E∗k} · pk,M
)
, (B.8)

where,

pk =
k∑

i=1

ρS
k (B.9)
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and,

pl,k =
l∑

i=1

ρS
i +

k∑
i=l+1

ρR
l,i. (B.10)

Substituting (B.1), (B.3), (B.5) and (B.5) in (B.8) gives us (5.25).

One can easily investigate the fact that all success and failure events create a set of

disjoint events where the sum of their probabilities equals 1. This is shown in the following.

K∑
k=1

(Pr{Ek}+ Pr{E∗k}) +
K−1∑
l=1

K∑
k=l+1

Pr{El,k} = 1. (B.11)
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Appendix C

DP Recursive Optimization for Rate

Allocation in Relay Channel

Using the approximate failure probabilities, the minimization problem in (4.8) can be

follows.

J̃λ = min
π

{
D̃(π) + λ · P̃out(π)

}
= min

π

{
K−1∑
i=1

[
ρS
i · P̃ SD

i−1 · P̃ SR
i−1

]
+ f̃i · g̃λi + λ · P̃ SD

K · P̃ SR
K−1 + ρS

K · P̃ SD
K−1 · P̃ SR

K−1

}
, (C.1)

where,

f̃i = P̃ SR
i−1 − P̃ SR

i (C.2)

and,

g̃λi = λ · P̃ SRD
i,K +

K∑
l=i+2

ρR
i,l · P̃ SRD

i,l−1 + ρR
i,i+1 · P̃ SD

i . (C.3)

It is noticeable here that any solution to (C.1) is not necessarily the optimal solution to

(4.8). However, the fact that (C.1) can be solved via DP, makes it a interesting problem for

the purpose of throughput optimization.

The function g̃λi is important here because we can optimize it based on the set of
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parameters �R
i , if the two summations of

∑i
k=1 ρ

S
k and

∑i
k=1(ρ

S
k)

2 are given. Therefore, we

start with the term g̃λi which is nested inside of the optimization function in (C.1), and

define the minimization function of g̃λi as follows.

V λ,i(α, β) = min
ρRi,l∈Ri∑i

k=1 ρ
S
k=α,

∑i
k=1(ρ

S
k)

2=β

{
g̃λi
}
, (C.4)

V λ,i(α, β) can be solved recursively as we will show later, and stored as a pre-stage for

the optimization of (C.1). But first we show how the results of the minimization in (C.4)

can be used in a nested loop minimization problem of (C.1). Using (C.4) we can rewrite

(C.1) as in (C.5).

J̃λ = min
π

{K−1∑
i=1

[ρS
i · P̃ SD

i−1 · P̃ SR
i−1] + fi · V λ,i

( i∑
k=1

ρS
k,

i∑
k=1

(ρS
k)

2
)

+ λ · P̃ SD
K · P̃ SR

K−1 + ρS
K · P̃ SD

K−1 · P̃ SR
K−1

}
. (C.5)

The minimization problem in (C.5) can be solved recursively using a two-dimensional

state Sk = (Xk, Yk) and finding J̃λ = J̃λ
1 (X0, Y0)|(X0,Y0)=(0,0)

, where,

J̃λ
1 (X0, Y0) = min

ρS1

{
J̃λ
2

(
X0 + ρS

1, Y0 + (ρS
1)

2
)
+ ρS

1 (C.6)

+ f1 · V λ,1
(
X0 + ρS

1, Y0 + (ρS
1)

2
)}

, (C.7)

and Jλ
k (Xk−1, Yk−1) for 1 < k < K and for k = K, are shown respectively in (C.8a) and

(C.8b) below.

J̃λ
k (Xk−1, Yk−1) = min

ρSk

{
J̃λ
k+1

(
Xk−1 + ρS

k, Yk−1 + (ρS
k)

2
)
+ ρS

k · P̃ SD
k−1 · P̃ SR

k−1

+ fk · V λ,k
(
Xk−1 + ρS

k, Yk−1 + (ρS
k)

2
)}

(C.8a)

J̃λ
K(XK−1, YK−1) = min

ρSK

{
ρS
K · P̃ SD

K−1 · P̃ SR
K−1 + λ · P̃ SD

K · P̃ SR
K−1

}
(C.8b)

The recursive optimization starts with (C.8b) to find the function J̃λ
K and continues

going backward on k up to k = 1. After finding J̃λ
1 , the optimal �S will be found starting

with ρS
1 as follows with (X̂0, Ŷ0) = (0, 0).



C DP Recursive Optimization for Rate Allocation in Relay Channel 111

1. ρ̃S
1 = argρ J̃

λ
1 (X̂0, Ŷ0)

2. for k = 2 → K

• X̂k−1 = X̂k−2 + ρ̃S
k−1 and Ŷk−1 = Ŷk−2 + (ρ̃S

k−1)
2

• ρ̃S
k = argρ J̃

λ
k (X̂k−1, Ŷk−1)

All the steps for this recursive optimization can are assuming given V λ,k for 1 ≤ k ≤ K−1.

On the other hand, calculation of V λ,k in (C.4) can be done recursively using a nested state

of si = (x′i, y
′
i). This can be shown as follows:

V λ,i(α, β) = V λ,i
i+1(x

′
i+1, y

′
i+1, α, β)|(x′i+1,y

′
i+1)=(0,0)

,

where V λ,i
i+k(x

′
K−1, y

′
K−1, α, β) for k = 1, 1 < k < K− i and k = K− i are shown respectively

in (C.9a), (C.9b) and (C.9c).

V λ,i
i+1(x

′
i+1, y

′
i+1, α, β) = min

ρRi,i+1

{
ρR
i,i+1 · P̃ SD

i

+ V λ,i
i+2

(
x′i+1 + ρR

i,i+1, y
′
i+1 + (ρR

i,i+1)
2, α, β

)}
(C.9a)

V λ,i
i+k(x

′
i+k, y

′
i+k, α, β) = min

ρRi,i+k

{
ρR
i,i+k.P̃

SRD
i,i+k−1

+ V λ,i
i+k+1

(
x′i+k + ρR

i,i+k, y
′
i+k + (ρR

i,i+k)
2, α, β

)}
(C.9b)

V λ,i
K (x′K , y

′
K , α, β) = min

ρRi,K

{
ρR
i,K .P̃

SRD
i,K−1 + λ · P̃ SRD

i,K

}
(C.9c)

This will be solved starting from (C.9c) and ending with (C.9a) considering
∑i

k=1 ρ
S
k = α

and
∑i

k=1(ρ
S
k)

2 = β2. Then the set of ρR
i,l i < l ≤ K will be found starting with ρR

i,i+1

using (C.9a) with (x′i+1, y
′
i+1) = (0, 0) and going up to ρR

i,K in (C.9c) recursively.
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Appendix D

One Dimensional State Optimization

The minimization problem in (4.8), using the approximation probabilities in (5.29) and

(5.30), becomes the following.

J̌λ = min
π

{
Ď(π) + λ · P̌out(π)

}
= min

π

{
K−1∑
i=1

[
ρS
i · P̌ SD

i−1 · P̌ SR
i−1

]
+ f̌i · ǧλi + λ · P̌ SD

K · P̌ SR
K−1 + ρS

K · P̌ SD
K−1 · P̌ SR

K−1

}
, (D.1)

where,

f̌i = P̌ SR
i−1 − P̌ SR

i (D.2)

and,

ǧλi = λ · P̌ SRD
i,K +

K∑
l=i+2

ρR
i,l · P̌ SRD

i,l−1 + ρR
i,i+1 · P̌ SD

i . (D.3)

With the same approach as in Appendix C, we first start with minimizing ǧλi as follows.

Uλ,i(X, x′) = min
ρRi,k∈Ri∑K

l=i+1 ρ
R
i,l=x′∑i

k=1 ρ
S
k=X

gλi (D.4)
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This will be in order to find the following function for different X values:

Uλ,i(X, x̌′), (D.5)

where

x̌′ = argx′ min
x′

Uλ,i(X, x′). (D.6)

The minimization in (D.4) can be done as follows.

Uλ,i(X, x′) = Uλ,i
K (X, x′) = min

ρRi,i+1,...,ρ
R
i,K∑K

l=i+1 ρ
R
i,l=x′∑i

k=1 ρ
S
k=X

gλi (D.7)

= min
ρRi,K

min
ρRi,i+1,...,ρ

R
i,K−1∑K−1

l=i+1 ρ
R
i,l=x′−ρRi,K∑i

k=1 ρ
S
k=X

gλi (D.8)

= min
ρ=ρRi,K

Uλ,i
K−1(X, x′ − ρ) + ρ · P̌ SRD(X, x′ − ρ) + λ · P̌ SRD(X, x′),

(D.9)

where for i+ 3 ≤ k ≤ K − 1 we have (D.10) as

Uλ,i
k (X, x′) = min

ρ
Uλ,i
k−1(X, x′ − ρ) + ρ · P̌ SRD(X, x′ − ρ), (D.10)

and for k = i+ 2, we have (D.11) as

Uλ,i
i+2(X, x′) = min

ρ
(x′ − ρ) · P̌ SD(X) + ρ · P̌ SRD(X, x′ − ρ). (D.11)

The minimization process starts with (D.11) and then goes on with (D.10) and ends

with (D.9). The optimization results are stored as ρR
i,k(X, x′) = argρ U

λ,i
k (X, x′). Thus, after

finding x̌′ according to (D.6), we find the optimal set of ρ̌R
i,k(X), step-by-step as follows.

1. ρ̌R
i,K(X) = ρR

i,K(x̌
′)

2. for k : K − 1 → i+ 2

• x̌′ ← (x̌′ − ρ̌R
i,k+1)
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• ρ̌R
i,k = ρR

i,k(x̌
′
k)

3. ρ̌R
i,i+1 = x̌′ − ρ̌R

i,i+2

The next step is to find J̌λ where J̌λ = J̌λ
K(X̌K) and,

X̌ = argX min
X

Jλ
K(X). (D.12)

To find the J̌λ
K(X̌K) function, we have the following.

Jλ
K(X) = min

ρS1,...,ρ
S
K∑K

k=1 ρ
S
k=X

{K−1∑
i=1

[
ρS
i · P̌ SD

i−1 · P̌ SR
i−1

]
+ f̌i · Uλ,i(X, x̌′) (D.13)

+ λ · P̌ SD
K · P̌ SR

K−1 + ρS
K · P̌ SD

K−1 · P̌ SR
K−1

}

This can be made into a recursive form as follows.

Jλ
K(X) = min

ρSK
min

ρSi,1,...,ρ
S
K−1∑K−1

k=1 ρSk=X−ρSK

{K−1∑
i=1

[
ρS
i · P̌ SD

i−1 · P̌ SR
i−1

]
+ f̌i · Uλ,i(X, x̌′) (D.14)

+ λ · P̌ SD
K · P̌ SR

K−1 + ρS
K · P̌ SD

K−1 · P̌ SR
K−1

}
= min

ρ=ρSK
Jλ
K−1(X − ρ) + ρ · P̌ SD(X − ρ) · P̌ SR(X − ρ) + λ · P̌ SD(X) · P̌ SR(X − ρ)

(D.15)

For 3 ≤ k ≤ K − 1 we (D.16) as follows,

Jλ
k (X) = min

ρ
Jλ
k−1(X − ρ) + ρ · P̌ SD(X − ρ) · P̌ SR(X − ρ) + f̌(X, ρ) · Uλ,k(X, x̌′), (D.16)

and for k = 2 we have the following.

Jλ
2 (X) = min

ρ

{
(X − ρ) + [1− P̃ SR

X−ρ] · Uλ,1(X − ρ, x̌′)

+ ρ · P̌ SD(X − ρ) · P̌ SR(X − ρ) + f̌(X, ρ) · Uλ,2(X, x̌′)
}
, (D.17)

and according to (D.2), f̌(X, ρ) = P̌ SR(X − ρ)− P̌ SR(X).

The minimization process starts with (D.17) and then goes on with (D.16) and ends
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with (D.15). The optimization results are stored as ρS
k(X) = argρ J

λ
k (X). Then, to find the

optimal set of ρ̌S
k we go through the following steps.

1. ρ̌S
K = ρS

K(X̌)

2. for k : K − 1 → 2

• X̌ ← (X̌ − ρ̌S
k+1)

• ρ̌S
k = ρS

k(X̌)

3. ρ̌S
1 = X̌ − ρ̌S

2.
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