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ABSTRACT

The optimal transport problem has found many applications in mathematics

and physical sciences, in part due to the importance of the Wasserstein gradient

flow. To appreciate this importance, we first introduce the optimal transport

problem in the formulations of Monge and Kantorovich and present a numerical

approach to the discrete equivalent problem. This numerical procedure is used

to visualize optimal transport plans. We then prove the result of Gangbo and

McCann that, under standard assumptions, there exists a unique optimal transport

plan to problems involving strictly convex cost functions. This background allows

us to build the Wasserstein gradient flow from its discretization, the Jordan-

Kinderlehrer-Otto scheme. We use this procedure to justify that the Fokker-Planck

equation is the Wasserstein gradient flow of a physical energy functional and

conclude by briefly presenting similar applications to other dissipative equations.
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RÉSUMÉ

La théorie du transport optimal est aujourd’hui appliquée dans plusieurs

domaines des sciences physiques et mathématiques. Cette omniprésence s’explique

en partie par la puissance de la descente de gradient par la métrique de Wasser-

stein. Pour apprécier l’importance de cette technique, on introduit le problème de

Monge et de Kantorovich ainsi qu’une approche numérique et visuelle au problème

discret. On montre le résultat de Gangbo et McCann qu’il n’existe qu’une unique

solution aux problèmes avec un coût strictement convexe. On construit ensuite la

descente de gradient de Wasserstein à partir de sa discrétisation, la méthode de

Jordan, Kinderlehrer et Otto. On établit ainsi que l’équation de Fokker-Planck est

la descente de gradient de Wasserstein d’une fonctionnelle avec une interprétation

manifestement physique. On conclut par un bref sommaire des applications de

cette descente de gradient aux équations de dissipation.
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CHAPTER 1
Introduction

We begin with a very brief exposition of the history of the optimal transport

problem then detail the organization of this thesis.

1.1 A Brief History of the Optimal Transport Problem

The first scientist to investigate ideas related to the optimal transport prob-

lem was the French mathematician Gaspard Monge in his 1781 paper entitled

Mémoire sur la théorie des déblais et des remblais [1]. He considers the problem,

hereafter called the Monge problem, of displacing a quantity of materials from

several quarries (déblais) to construction sites (remblais) as “efficiently” as pos-

sible. Historically, this context was inspired by the military problem of efficiently

assigning sand quarries to the construction of fortifications, a situation sketched

in figure 1-1. To make the notion of efficiency precise, it is necessary to attribute

a cost to the displacement of materials, usually as a function of the distance over

which it must be carried. Monge simply assumed this cost to be the Euclidian

distance between the material’s initial position in a quarry and its final position in

a construction site. Such an assignment from initial to final position, a “transport

plan”, is optimal if the cost required to effect the transportation is minimal over
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Figure 1–1: If sand is the material to be carried from quarries (red) to construction
sites (blue), Monge’s problem is to calculate the transport plans that minimize the
expenditure in carrying the sand.

an admissible set of realizable transport plans. This terminology gives the name of

this field of study.

This work of Monge was at first dismissed, but it was eventually rediscovered

and built upon by the Russian economist Leonid Kantorovich in parallel to

his work that lead to the foundation of linear programming and optimization,

especially in an economics setting. His contribution to optimal transportation

theory was to recognize that the minimization in the Monge problem could be

mirrored by the maximization of a dual quantity that turned out to be much

simpler to work with. Kantorovich’s formulation of the optimal transport problem

is usually called the Monge-Kantorovich problem in their honor [2].

After Kantorovich revived interest in the Monge problem, various mathemati-

cians sought to obtain the prized results of existence, uniqueness and regularity

for such problems. In 1987, Yann Brenier showed in [3] that there indeed exists

a unique transport plan that minimizes the total cost associated to the Euclidian
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distance squared. This work was expanded upon in 1995 by Wilfrid Gangbo and

Robert McCann who showed in [4] and [5] that this result may be extended to any

strictly convex or concave functions of distance, under some analytical restrictions.

In 1998, Felix Otto introduced a discrete variational method that deeply

connected the optimal transport problem to gradient flows and dissipative partial

differential equations, those evolution equations in which an energy decreases

in time. In [6] and [7], he showed that it is possible to write certain dissipative

equations, notably the Fokker-Planck equation, as the gradient flow of a physically

motivated energy functional with respect to a metric arising from optimal trans-

portation theory. This spawned many recent developments in studying physical

equations with such techniques. Indeed, optimal transport is now a very active

field of research which has found diverse applications in many scientific fields of

study, including statistical physics, fluid dynamics, biology, economics and image

processing.

1.2 Organization of This Thesis

The remainder of this thesis is organized as follows. In chapter 2, we

describe the basic Monge problem, its limitations from an analytical point of view

and its generalizations to the more amenable problem of optimal transport. We

then present the intimately related Wasserstein distance and some of its properties.

In chapter 3, we develop intuition into the problem’s nature by solving

a discrete version of it. We then obtain a visual representation of the discrete

optimal transport plans in certain important cases.
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In chapter 4, we introduce Brenier’s theorem and then review Gangbo and

McCann’s 1995 paper [4] and expand on several aspects of their proof that optimal

transport problems have a unique solution if the cost is a strictly convex function

of Euclidian distance. This proof relies on showing that the minimization and

maximization of Monge and Kantorovich are equivalent.

In chapter 5, we briefly introduce the notion of gradient flows and present

the Fokker-Planck equation. With these preliminaries, we review Jordan, Kinder-

lehrer and Otto’s 1998 paper [7] and highlight some aspects of their proof that

the Fokker-Planck equation is the gradient flow of a physical energy functional

with respect to the Wasserstein distance. We conclude this final chapter with a

formal introduction to the Otto calculus and a few other examples of Wasserstein

or Wasserstein-like gradient flows.
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CHAPTER 2
The Monge Problem and its Generalizations

We begin this chapter by introducing a very simple version of the Monge

problem. We will show that this simple description must be generalized if we

are to obtain any uniqueness result. We close the chapter by introducing the

Wasserstein distance, which we will use extensively in Chapter 5.

2.1 The Basic Monge Problem

We now make precise the ideas introduced earlier and properly define the

Monge problem and related terminology. Consider two compact sets A and B

of Rn that have the same volume. The Monge problem can be stated rather

simply: what is the map s mapping A to B that, among a set of admissible maps,

minimizes the integral

C =

∫
A

|x− s(x)|dx ? (2.1)

In words, the sets A and B correspond to the déblais and remblais which

we shall also call the source and sink or initial and final densities. For now, we

consider A to be uniformly filled with materials or “mass”, and this mass must

be displaced into B; a map s that effects this displacement is called a transport

plan. Since it is a priori reasonable to expect that total costs, whether in money

or energy, are linear in the total transportation distance, a transport plan that

5



minimizes the integral above may be understood as efficient or optimal. We then

call C a total cost while we will call the distance |x − s(x)| a cost density1 . The

procedure of finding an optimal map s will be called the Monge problem, and

later, the optimal transport problem.

So far, our description lacks generality in two ways. First, a linear cost does

not correspond to a wide variety of actual problems. Another important issue

with this linear cost is that it makes the Monge problem highly degenerate:

many optimal transport plans may equally minimize the total cost. Second, our

choice that the mass to be transported be uniformly distributed over a set is very

restrictive. We will spend the next few sections fixing these issues, but we now

spend some time discussing the important insight that Monge had in regards to

this problem.

The original work by Monge [1] essentially begins by asking the question

above in two and three dimensions. Monge considers discrete mass elements, sand

scoops for example if moving sands from the déblais to the remblais. His work is

based on geometrical intuition and drawings, see figure 2-1, in moving these scoops

from point to point. It is then not rigorous mathematics from our modern point of

view, but several results that Monge obtained are valid and provide good intuition

into the nature of transport plans, of which we mention only two:

1 If the total cost is to be measured in energy and the material to be trans-
ported is assumed to be mass, the cost density should be measured in Joules per
kilogram. These units and notions may however be adapted to any applied con-
text: energy and charge or price and quantity are other examples.
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• Optimal transport plans must map points to points using straight lines.

This is intuitively obvious: it is never more efficient to displace the same

mass element from xa to xb then from xb to xc than from xa to xc directly.

This can also be seen to follow from the triangle inequality: |xa − xc| ≤
|xa − xb|+ |xb − xc|.

• If the straight lines connecting xa to xc and xb to xd cross and are not

collinear, it is more efficient to connect xa to xd and xb to xc. This is again

intuitively obvious and likewise follows from the triangle inequality, which is

strict whenever the points considered do not lie on the same line.

Figure 2–1: This diagram illustrates the two properties described by Monge. The
transport plans in red are geometrically more optimal than the ones in blue.

In the following, we will generalize Monge’s problem greatly and potentially

lose most of Monge’s insight. However, the first of the previous two points is

so important, especially from a numerical point of view, that we will adapt our

7



assumptions to ensure its validity. The second point is less important and in fact,

we will give a counterexample under a specific relaxation of the problem.

2.2 A First Generalization and the Degeneracy of the Monge Problem

To weaken our notion of efficiency, fix a general cost function c(x, y) :

R
n × R

n → R. This cost represents the expense in moving mass from position x

to y. In the Monge problem, c(x, y) = |x − y|, but we want to consider forms of

the cost function that have useful applications. It will be sufficient for our purpose

to assume that c is a non-negative, finite and continuous function on R
n × R

n.

Moreover, we will assume that c depends only on the distance between x and y,

such that we can write c(x, y) = h(|x − y|) for a monotone function h with the

required properties. The monotonicity condition is required in order to ensure

that optimal transport plans still map points to points with straight lines. Indeed,

“curving” the path may then never decrease the total cost C, so that without

loss of generality, only the coordinates x and y are needed to compute a cost.

Later on, especially to invert h, we shall often write c(x, y) = h(x − y) with the

understanding that h is radially symmetric for analytical simplicity.

As promised earlier, let us now demonstrate that given the linear cost, |x− y|,
the Monge problem turns out to admit multiple minimizers. In one dimension, let

the initial mass distribution A consist of m unit mass packets of length less than

1 and lined up at the integer positions {1, 2, ...,m}. Similarly, let the final mass

distribution B consists of similar packets lined up at the positions {2, 3, ...,m + 1}.
Consider the following transport plans:

8



• s1: Move all mass packets by one unit to the right.

• s2: Move the mass packet at position 1 to position m+ 1.

The total cost for these transport plans can be calculated as the number of

packets transported times the transport distance, or m · 1 and 1 · m respectively.

The linearity of the cost |x − y| allows for other equivalent transport plans:
intermediates between s1 and s2, splitting packets in two, and even allowing

packets to “invert” upon themselves, as shown in figure 2-2. In this problem,

there are in fact an infinite number of minimizers since the packets can be split in

arbitrary subpackets.

The existence of these optimal transport plans precludes any sort of nice

regularity theory, not to mention uniqueness, for the Monge problem. The simplest

remedy to this issue is to break the linearity of |x − y| by considering the costs

c(x, y) = |x − y|p for p positive but not equal to 1. Using these cost functions

and the previous two transport plans, the new total costs are m · 1p and 1 · mp

for s1 and s2 respectively. For the same reason, the other previously equivalent

transport plans will no longer have the same total cost, such that one can find a

unique optimal transport plan: s1 if p > 1 and s2 if p < 1.

This method of lifting the degeneracy of the Monge problem is generic:

we will prove in chapter 4 that given reasonable assumptions on the densities,

a cost function of the form c(x, y) = h(x − y) for h strictly convex will be

sufficient to show the existence and uniqueness of optimal transport plans. A slight

modification of the proof will extend the result for h strictly concave, albeit we will

not need this result.

9



Figure 2–2: Minimizers of the given Monge problem with the initial and final dis-
tributions drawn in red and blue respectively. The initial and final distributions
are not drawn on the same line for clarity purposes. From top to bottom; arbitrary
packets are moved, packets are split in two and a packet is inverted upon itself.
Note that the later examples do not violate Monge’s second result on optimal
transport plans since all points are collinear in one dimension.
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2.3 The Modern Monge Problem

The second generalization we will carry out is to replace the assumption

that the source and sink densities are the characteristic functions of sets. We will

assume that f and g are non-negative functions with compact support, correspond-

ing to “continuous” source and sink mass densities respectively. Without loss of

generality and in the interest of simplicity, we require that f and g have the same

total mass of 1. Note in particular that the support of f and g correspond to the

sets A and B in the basic Monge problem and that we no longer require their

volume to be the same. As we will eventually want to apply our developments to

partial differential equations, PDEs, it will be useful to let the functions f and g

be suitably weakly defined to apply the tools of elliptic theory.

In order of “weakness”, the classes of functions we will study are the following:

• f and g belong to L1(Rn).

• f and g are probability measures on R
n.

• f and g correspond to the marginals of a coupling measure on R
n × R

n.

We remark that another avenue for generalization would be to use a different

metric space instead of Rn. There have been many developments in the literature

when the underlying metric space is a Riemannian manifold, see for example [8],

but we will not explore this generalization here.
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The densities are L1 functions

Let us assume that f and g are non-negative Lebesgue measurable functions

with unit norm, such that f, g ∈ L1(Rn) and ||f || = ||g|| = 1. We define a

transport plan as a Borel map s : Rn → R
n such that for every Borel set B ⊂ R

n,

∫
B

g(y)dy =

∫
s−1(B)

f(x)dx . (2.2)

This condition makes precise the notion that the mass of g found in some set

B originates from the mass of f on the set s−1(B). Notice that this definition may

be rewritten in terms of the characteristic function of B, χB. In particular, since

χB(s(x)) is non-zero only when x ∈ s−1(B), it follows that

∫
Rn

χB(y)g(y)dy =

∫
Rn

χB(s(x))f(x)dx . (2.3)

Using the fact that characteristic functions span the continuous functions, the

following result holds:

Proposition 2.1. Suppose s is a transport plan, then for any Borel continuous

function a, ∫
Rn

a(y)g(y)dy =

∫
Rn

a(s(x))f(x)dx . (2.4)

12



In the formalism where f and g are L1 functions, we will characterize trans-

port plans using the previous proposition. We denote by S(f, g) the set of trans-

port plans from f to g. We are now ready to write our first version of the optimal

transport problem.

Definition 2.2. Consider a non-negative, finite and continuous cost function

c(x, y). The total cost C : S(f, g) → [0,∞) of moving mass from f to g with

respect to c is given by

C(s) =
∫
Rn

c(x, s(x))f(x)dx . (2.5)

We say that t ∈ S(f, g) is an optimal transport plan if it is such that

C(t) = inf
s∈S(f,g)

C(s) . (2.6)

The optimal transport problem in these terms is then to obtain an optimal

transport plan, if such a map exists. Further, we can question the uniqueness of

such a plan. We note in passing that given our assumption that c(x, y) = h(|x−y|),
it is intuitively clear that if an optimal transport plan t were to exist, then the

analogous problem of moving mass “backward” from g to f ,

inf
s∈S(g,f)

∫
Rn

c(y, s(y))g(y)dy , (2.7)

would produce at least an optimal transport plan t̂ that corresponds to the inverse

map of t.

13



We will prove that in the case where the cost function is strictly convex, then

an optimal transport plan t exists and is unique. Similarly, the backward problem

will admit a unique optimal transport plan t̂ such that t̂ ◦ t = Id on the support

of f , and t ◦ t̂ = Id on the support of g. While our present formalism is a good

generalization of Monge’s problem, it will be useful later on to view f and g as

measures.

The densities are probability measures

Let us now assume that f and g are probability measures on R
n that are

absolutely continuous with respect to the Lebesgue measure. We will denote this

set by P(Rn). Using the Radon-Nikodym theorem, we note that if μ ∈ P(Rn),

there exists a Lebesgue measurable function m ∈ L1(Rn), such that

μ(B) =

∫
B

m(x)dx =

∫
B

m(dx) ∀B Borel . (2.8)

We will always label m as μ by abuse of notation. The new notion of a

transport plan can be given in terms of the measure theoretic pushforward:

Definition 2.3. The pushforward of the measure f by the Borel map s : Rn →
R

n is written s#f and satisfies, for all Borel sets B ∈ R
n,

s#f(B) = f(s−1(B)) . (2.9)

The map s is called a transport plan if s#f = g as measures.

14



The class S(f, g) and the total cost C are defined as in the previous section.

The truly powerful version of the optimal transport problem may be stated in

terms of couplings.

The densities are couplings

This final flavor of optimal transport has been an active area of research in

the past decade, mainly because it generalizes readily to situations where f and g

are Dirac masses. The principal idea is to view f and g not as separate elements,

but as two sides of the same object.

Definition 2.4. A coupling γ between f and g in P(Rn) is a measure on R
n×R

n

such that for all Borel sets B ∈ R
n,

γ(B × R
n) = f(B) and γ(Rn × B) = g(B) . (2.10)

The set of all couplings between f and g is denoted by Γ(f, g).

We also say that the coupling γ has marginals f and g.

The new set Γ(f, g) may be regarded as the relaxation of S(f, g). Indeed, let

s ∈ S(f, g) and define the measure τ(A × B) = ((Id × s)#f)(A × B), then clearly

τ ∈ Γ(f, g). However, it is easy to find couplings that cannot be written in terms

of elements of S(f, g). With this new notion of transport plans as couplings, we

must slightly change the total cost function:

15



Definition 2.5. Consider a non-negative, finite and continuous cost function

c(x, y) = h(|x− y|). The total cost C : Γ(f, g) → [0,∞) of moving mass from f to

g with respect to c is given by

C(γ) =
∫
Rn×Rn

c(x, y)γ(dx× dy) . (2.11)

We say that τ ∈ Γ(f, g) is an optimal coupling if it is such that

C(τ) = inf
γ∈Γ(f,g)

C(γ) . (2.12)

This problem is clearly a relaxation of our optimal transport problem, and is

often called the Monge-Kantorovich problem. We can ask two important questions

at this point: is it true that

inf
s∈S(f,g)

C(s) = inf
γ∈Γ(f,g)

C(γ) (2.13)

and if so, can the optimal coupling be written in terms of an optimal transport

plan? As Gangbo and McCann show in [5], this is true in particular for strictly

convex costs.

2.4 The Wasserstein Distance

We close this chapter by introducing the main tool that will be used in the

final chapter. In the coupling framework, let us fix the cost function to be |x− y|2.
Let us also define a new space of measures and the metric we will work with:

16



Definition 2.6. The space of probability measures with finite second

moment is the set

P2(R
n) =

{
μ ∈ P(Rn)

∣∣∣∣ M [μ] =

∫
Rn

|x|2μ(dx) < ∞
}

. (2.14)

Definition 2.7. The (2)-Wasserstein distance between two elements μ and ν

in P2(R
n) is

dW (μ, ν) =

(
inf

γ∈Γ(μ,ν)

∫
Rn×Rn

|x− y|2γ(dx× dy)

)1/2

. (2.15)

The p-Wasserstein distances are those that use the p-Euclidian norm instead,

and are similarly defined on spaces of probability measures with finite pth moment.

We will not consider these and simply refer to the 2-Wasserstein distance as the

Wasserstein distance. The following result justifies the choice of P2(R
n).

Proposition 2.8. The Wasserstein distance is well defined on P2(R
n).

Proof. Let γ be the trivial coupling γ(A × B) = μ(A)ν(B). Using that |x − y|2 ≤
|x|2 + |y|2 + 2|x||y|,

d2W (μ, ν) ≤
∫
Rn×Rn

|x− y|2γ(dx× dy)

≤
∫
Rn×Rn

(|x|2 + |y|2 + 2|x||y|)μ(dx)ν(dy) . (2.16)

The first two terms equal M [μ] and M [ν] respectively since

∫
Rn×Rn

|x|2μ(dx)ν(dy) =
∫
Rn

|x|2μ(dx)
∫
Rn

ν(dy) = M [μ] (2.17)
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by definition. The remaining term is then simplified using Jensen’s inequality:

d2W (μ, ν) ≤ M [μ] +M [ν] + 2

∫
Rn

|x|μ(dx)
∫
Rn

|y|ν(dy)

= M [μ] +M [ν] + 2

((∫
Rn

|x|μ(dx)
)2 (∫

Rn

|y|ν(dy)
)2

)1/2

≤ M [μ] +M [ν] + 2

((∫
Rn

|x|2μ(dx)
)(∫

Rn

|y|2ν(dy)
))1/2

= M [μ] +M [ν] + 2
√
M [μ]M [ν] < ∞

(2.18)

�

We will not prove the following results, referring instead the reader to [9].

Theorem 2.9. The pair (P2(R
n), dW ) forms a complete metric space.

Proposition 2.10. The infimum in the definition of dW is achieved.

We will obtain a specialized version of the previous proposition as a corollary

of the main theorem of the next chapter. This theorem will in addition give that

the infimizer, hence the minimizer, of dW is unique.
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CHAPTER 3
Intuitive Optimal Transport and a Visualization Procedure

From an applied point of view, the optimal transport problem is unlike

many similar association problems in that it is not easy to visually come up

with “good approximations” to the optimal transport plan. For this reason, we

build a numerical method to easily visualize the flow of mass according to a

given transport plan. To do this, we must introduce a dynamical interpolation

technique and a numerical method to compute discrete transport plans. We

then combine these ideas to gain intuition into the optimal transport problem.

We do not attempt to rigorously justify our developments in this chapter. The

general methodology presented here was suggested by Adam Oberman in private

communications [10].

3.1 The Applications of Convex and Concave Costs

Let us first spend some time investigating the domains of application of

optimal transport plans with respect to costs that are concave or convex functions

of the Euclidian distance. The intuition we present will be expanded upon when

we present the numerical simulations at the end of this chapter.
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Convex cost functions

Convex cost functions seem to arise naturally in a physical setting that

depends very much on geometric factors. In an electrostatic context for example,

it is possible to prepare charge configurations that give rise to electric potentials

of the form V = k|x|p for some positive integer exponent p and a constant k. The

energy of a charge q in this field is given by U = qV and therefore, the work in

displacing this charge over space may be likened to the cost c(x, y) = k|x − y|p.
The total work needed to displace a distribution of charges into another is then

given by the optimal transport total cost C associated to c(x, y). In particular, the

Monge cost arises naturally in the well-known infinite charged plate problem while

the quadratic cost arises inside of an infinitely long uniformly charged cylinder

[11]. The quadratic cost also arises when comparing the kinetic energy T = 1
2
m|v|2

of particles with mass m and velocity v: the work necessary to change the kinetic

energy of a particle from u to v may be associated to the cost c(u, v) = |u− v|2.
The convex cost is unfavorable to large displacements, therefore, the optimal

transport plans will intuitively tend to displace small packets of mass over small

distances.

Concave cost functions

In an economics setting, concave costs arise naturally when production costs

grow slower than profits in a process known as the “economies of scale”. Suppose

that the cost c is measured in expense per mass or units sold, the total cost can

then be viewed as a measure of the total expense in producing and selling goods.

In many situations, the profit in selling a number of goods increases linearly
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with this number while the expenses in producing this number of goods grows

slowly. This can be accounted for by various mechanisms, including “rebates” in

buying bulk raw materials and the fact that after an initial investment, production

facilities may be operated over a large range of production quotas for the same

expenses. The overall result in balancing loss and gains makes it generally more

efficient to produce a large number of goods where demand exists. This also

translates to the transport of goods.

In contrast with the convex setting, the optimal transport plans corresponding

to concave cost functions will intuitively tend to displace large packets of mass

over long distances. As seen in the previous chapter when lifting the degeneracy

of the Monge problem, it becomes more optimal to effect few large displacements

than several small ones due to the concavity of the cost.

3.2 The Interpolation

In the optimal transport problem, the total cost is minimized by an optimal

association between sources and sinks s. To visualize this pairing, it would be

intuitive to let a mass element at an initial position x in the source distribution f

move onto its assigned position y in g. The issue here is that there is no intrinsic

notion of “dynamics” in the problem, however, we accept that optimal transport

plans must map points to points with straight lines. To implement some sort of

dynamics, we therefore simply let the mass move at constant velocity |x − y|/t
over a unit of time t. This is a natural choice that allows us to visualize the

transformation of f into g.
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To implement this artificial dynamics, let ρ(t) be a probability density

distribution for all t ∈ [0, 1] such that ρ(0) = f and ρ(1) = g. For which choice of

ρ(t) will the simple dynamics described above arise? An incorrect approach would

be the trivial interpolation ρ(t) = (1 − t)f + tg. This is not an appropriate flow

since mass may flow infinitely fast. The correct interpolation may be seen to be

ρ(t) = ((1− t)Id+ ts)# f . (3.1)

Indeed, ρ(0) = Id#f = f and ρ(1) = s#f = g. To see why this push-forward

provides the correct dynamics, suppose f contains a localized mass m in a very

small set B around x. If s is sufficiently continuous, nearly all the mass m will be

moved into g in a small set B′ around s(x). While the push-forward itself is not

linear, let us track the motion of the small set B. At time t, the small set will be

around the point ((1 − t)Id + ts)(x) = (1 − t)x + ts(x) which gives the correct

behavior: the small set B is moving at constant velocity, in a straight line, from x

to s(x).

This interpolation procedure defines a density that can be visualized in time.

To apply this procedure numerically, we must first translate the optimal transport

problem into discrete terms.

3.3 The Optimal Transport Problem on a Grid

The discretization procedure we now describe was communicated to us by

Adam Oberman [10]. For simplicity, we consider the optimal transport problem

on an interval Ω ⊂ R. We take f and g to be continuous on Ω and the cost
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function to be strictly convex or concave and continuous. We are now interested in

computing a numerical approximation for the optimal transport plan t.

To discretize the problem, we begin by discretizing the domain Ω into N equal

subintervals. The idea is that on each subinterval, there lies a mass fj = f(xj)

localized at xj, without loss of generality, the left endpoint of the interval. This

is justified by our assumption that f is continuous. The mass elements must be

moved in such a way as to become the corresponding masses gi, localized at xi. In

general, the values of fj and gi will not be equal, so that it is necessary to allow

the masses to split and reform. This splitting and matching can be expressed as

the N × N matrix P whose non-negative element Pij corresponds to the mass

transferred from xj to xi:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1 f2 ... fj ... fN

g1 P11 P12 P1N

g2 P21 P22

...
. . .

...

gi Pij PiN

...
. . .

...

gN PN1 ... PNj ... PNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

To implement the requirement that P be a “discrete transport plan”, the total

mass leaving xj should equal fj and the total mass arriving at xi should equal gi.
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We then have:

∑
i

Pij = fj

∑
j

Pij = gi

Pij ≥ 0

(3.2)

Any matrix P satisfying these three conditions will be called a discrete

transport plan. Note that the discrete class PN(f, g) consisting of such matrices

is convex1 and thus much simpler than its continuous equivalent S(f, g). It is

clear that the maps P need not be one-to-one or onto in general because the mass

elements will need to be split or assembled to deconstruct or reconstruct f and g

respectively.

In a similar fashion, the approximate cost matrix C can be calculated by

letting Cij = c(xi, xj), such that the total cost of the plan P is given by

C(P ) =
∑
ij

CijPij . (3.3)

To obtain an optimal discrete transport plan T , the quantity C(P ) must be

minimized over PN(f, g). The discrete optimal transport problem can then be

1 The set PN(f, g) is convex in the sense that for matrices P 1 and P 2 in
PN(f, g), αP

1 + (1− α)P 2 ∈ PN(f, g) for any α ∈ [0, 1].
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written as the convex optimization procedure:

Minimize
∑
ij

CijPij

subject to∑
i

Pij = fj

∑
j

Pij = gi

Pij ≥ 0

(3.4)

The procedure outputs a matrix T which can be used to visualize approx-

imations to the continuous optimal transport plan t. It is straightforward to

implement the above convex optimization procedure numerically using a convex

optimization routine.

To extend the procedure to higher dimensions, note that the convex op-

timization problem only requires the indices i and j to refer to sinks (gi) and

sources (fj). It is conceptually easy to label arbitrary non-intersecting regions

Ri ⊂ Ω ⊂ R
n represented by some xi ∈ Ri. The element Pij will carry some mass

fj from the region Rj to the region Ri with a cost approximated by Cij = c(xi, xj).

At this point, it is outside of the scope of this work to guarantee that the

original continuous optimal transport problem is well approximated by our current

discrete construction. It seems however reasonable to expect that the discrete

optimal plans T should converge in some sense to the continuous optimal transport

plan t.
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3.4 The Visualization Procedure

We now wish to apply the interpolation technique discussed above to a

discrete optimal transport problem in an attempt to visualize it and gain valuable

intuition. In this section, we assume that we are given a discrete optimal transport

plan matrix T with the corresponding spatial labels xi and xj. In one dimension,

we describe the numerical procedure that uses the dynamic interpolation to

represent T visually.

Since this interpolation is not dynamic in nature, we must calculate interme-

diate densities as described earlier. The number of these intermediate densities

may be chosen to be sufficiently high to produce a “movie” of the motion. Un-

fortunately, we cannot reproduce a movie in paper format so we limit our time

resolution to a few time steps only.

To describe the visualization procedure in 1d, we first define several variables

then write the numerical procedure as pseudo code. The following variables are

used

• xleft, xright: The borders of the interval on which the transportation problem

is defined.

• Nx: The number of discrete positions in space.

• Nt: The number of intermediate densities, or time steps, to create.

• T : The matrix whose elements are the masses mi carried from xi to yi.

• R: A refinement multiple to create a finer grid.

Since the discrete optimal transport plans are computed with coarse grids

for efficiency reasons, a finer grid is needed to create a smooth interpolation in
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space. The ratio of the grid spacing of these two grids is dictated by R. With

these variables, we now describe the numerical procedure that prepares an array of

densities that may be animated:

• Set up a discrete grid using xleft, xright and Nx to match the setup of T .

• Set up the finer grid using the same interval but Nx × R as the number of

subintervals.

• Extract the elements mi, xi, yi from T , discarding empty elements.

• Create an empty time array of size Nt to accumulate densities on the finer

grid.

• Begin a loop over the times t and select the corresponding intermediate

density.

∗ For each mass element mi, calculate the interpolated position

zi = (1− t)xi + tyi . (3.5)

∗ For each mass element mi, add mi to the selected density at the

position zi of the finer grid.

Finally, it only remains to animate the time array of densities. We imple-

mented this numerical procedure and a few sample animations are presented in the

following section.
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3.5 Sample Results and Discussion

We now present a few chosen examples with relevant cost functions and briefly

analyze the output to expand on the intuition formulated in the first section of this

chapter. In the following simulations, we use the interval [xleft, xright] = [−1, 1],

subdivided in N = 200 subintervals with a grid refinement multiple of R = 20.

The initial density is f(x) = 1 + sin(8x) and the final density is g(x) = e−x

after an appropriate rescaling. This choice of densities is interesting because

the two densities overlap and because the initial density presents three “source

lumps” while the final density is gently varying. As will be seen later, this choice

highlights the distinguishing aspects of concave and convex costs. Eight images are

generated (Nt = 8), including the initial and final densities.

Convex cost functions

Let us begin with the discrete optimal transport plan generated with

c(xi, xj) = |xi − xj|2, a discrete version of the Wasserstein distance squared.

The sequence of plots is printed chronologically in figure 3-1 from left to right

and from top to bottom, and this at equal intervals. The red and blue curves

correspond to f and g respectively while the shaded gray region corresponds to

the computed mass density. Note that the lack of mass around 1 and the spurious

oscillations are caused by the numerical smoothing procedure. These effects are

purely visual and do not contribute to our interpretation below.

It is clear from the snapshots in figure 3-1 that the mass initially located in

the three peaks of f is displaced to the left, almost continuously. This is because

the cost being convex favors many local mass transfers. We can then give the
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Figure 3–1: An example of a discrete optimal transport plan corresponding to the
square of the Euclidian distance.
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general intuition that convex cost functions give rise to transport plans that

continuously deform f into g while preserving the “ordering” of the mass packets.

Note indeed that the mass common to f and g is displaced, even though this a

priori unnecessary displacement incurs a cost. This behavior may be likened to

dissipative processes like diffusion which smoothly change the state of a system to

another. This is an important aspect of our later developments, and the intuition

gained in this example may be regarded as justifications to use the Wasserstein

distance to explain physical processes.

Concave cost functions

We now present the discrete optimal transport plan generated with c(xi, xj) =√|xi − xj|.
The snapshots in figure 3-2 present the potential difficulty in dealing with

concave cost functions. Two general behavior may be observed: the displacement

of large mass packets to the left over long distances and the displacement of small

mass packets to the right over short distances. Note especially how the rightmost

peak in f is split in three parts to fill the three troughs of f . One may also see

these shipments overtaking others and further, it is more optimal to use some mass

from the middle peak to fill the rightmost compared to filling this trough with

mass from the third peak. This reveals that concave costs may give rise to optimal

transport plans that cross in different ways; the “ordering” of the packets is then

not necessarily preserved. Another important aspect that is found is that the mass

common to f and g does not move. This is impossible in the continuous version of

the problem since that mass packets may not split.
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Figure 3–2: An example of a discrete optimal transport plan corresponding to the
square root of the Euclidian distance.
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It is interesting to note however that the existence and uniqueness proof of the

next chapter may be modified to account for concave cost functions with exactly

this additional requirement that the mass common to f and g be removed from

both distributions.

The numerical tool developed in this chapter is useful to give a firsthand

intuition on the behavior of optimal transport plans, especially when the cost

function is changed. This intuition carries over at least heuristically to the

continuous problem, to which we now return.
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CHAPTER 4
An Existence and Uniqueness Result

We prove in detail the result of Gangbo and McCann in [4] that there exists

a unique optimal transport plan when the cost function is strictly convex, under

suitable conditions on the initial and final densities. To do so, we begin by

introducing the prototypical result of Brenier. We then introduce the Kantorovich

dual problem which will allow us to compute an optimal transport plan.

4.1 Brenier’s Theorem

The result which we now present was essential to the development of optimal

transportation theory. In fact, the existence and uniqueness result which we prove

later in this chapter is but a generalization of Brenier’s ideas. The main result of

Brenier in [3] is that there exist unique polar factorizations and rearrangements of

vector fields. This is terminology to state that under certain conditions, a vector

field may be written as the composition of the gradient of a convex function (a

one-to-one map) and of a mass-preserving map. The formulation of the theorem is

as follows:

Theorem 4.1. Let φ be a Borel, bounded and Lebesgue integrable map from a

compact set K to R
n. Denote by S the set of mass-preserving maps from K to

33



itself, for example, in the sense of chapter 2. If the Lebesgue measure μ(φ−1A) is 0

whenever the set A has measure 0, there exist maps g and u such that

• g ∈ S

• u is Lipschitz and convex in a neighborhood of K

• φ = (Du) ◦ g
• g is the unique projection of φ on S in the L2 sense

In steps similar to our next developments, Brenier shows that the Monge-

Kantorovich problem with a quadratic cost may be molded into the shape of his

general theorem. It can be shown that g plays the role of the optimal transport

plan and can be written as Dv ◦ φ where v is the Legendre transform of u, which is

convex. This immediately gives the existence and uniqueness of optimal transport

plans while optimality holds since g is a projection in the L2 sense: it is exactly

given by the optimal transport problem with a quadratic cost. This theorem was

generalized to strictly convex or concave costs by Gangbo and McCann, as we

show later.

Let us give a formal example of the usefulness of Brenier’s theorem to PDEs.

Recall that a transport plan is a map s satisfying, for any continuous function a,

∫
Rn

a(y)g(y)dy =

∫
Rn

a(s(x))f(x)dx . (4.1)

Brenier’s theorem gives the existence of a transport plan t for quadratic

optimal transport problems. Moreover, t = Dv for some convex function v.
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Formally, the change of variables y = Dv(x) gives

∫
Rn

a(Dv(x))g(Dv(x))det(D2v(x))dx =

∫
Rn

a(Dv(x))f(x)dx (4.2)

where the determinant of the Hessian D2v is at least non-negative since v is

convex. Therefore, in an appropriately weak sense, v satisfies the famous Monge-

Ampère PDE

g(Dv(x))det(D2v(x) = f(x) . (4.3)

From results in optimal transportation theory, it is therefore possible to imply

properties of PDEs: existence, uniqueness, convexity of solutions, and so on. This

is the main subject of chapter 5: combining functionals, optimal transport and

PDEs.

4.2 Assumptions for the Existence and Uniqueness Result

We now make certain assumptions on the densities and the cost to prove a

limited existence and uniqueness result. We isolate these assumptions for clarity.

Assumptions on the densities

First, let us work in the L1 formalism. We assume that the source and sink

densities f and g are L1(Rn) probability densities with compact support U and V

respectively. Since we eventually want to obtain an optimal transport plan t, it

is clear that modifying t outside of U or at any point where f vanishes will have

no impact on the total cost C. For this reason, we will say that a statement holds

f -almost everywhere if it holds almost everywhere where f is positive.
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Assumptions on the cost

Second, we will work with a uniformly continuous cost function c : Rn × R
n →

[0,∞) of the form c(x, y) = h(x − y). Moreover, and more importantly, we assume

that c is a strictly convex function of |x− y| and C1(Rn × R
n).

In their paper, McCann and Gangbo show that our result also holds for

strictly concave functions of |x−y| if U ∩V is empty. This can be further relaxed if

the mass that is common to f and g is constrained to remain in the same position

by using the densities

f ∗ = max{f − g, 0} and g∗ = max{g − f, 0} . (4.4)

These new densities will then have disjoint supports U∗ = U\(U∩V ) and V ∗ =

V \(U ∩ V ) respectively.

Another relaxation is to work with costs that are not C1, in which case the

notion of c-convexity must be used extensively. This approach is used in Gangbo

and McCann’s second paper [5].

4.3 The Kantorovich Dual Problem

We now present a problem that is “dual” in some sense to the optimal

transport problem. The infimizer of the later problem is difficult to find because

of the complexity of S(f, g). The idea is to construct a simpler functional that is

always less than the total cost, but whose maximum value equals the infimum of C.
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The particular case in which this holds true will be used to construct a transport

plan t that will turn out to be the (unique) minimizer of C.
Let us define the class of objects and the functional which we will use.

Definition 4.2. The Lipschitz class with respect to the cost c(x, y) is the set

Lipc = {(u, v) ∈ C(Rn)× C(Rn) | u(x) + v(y) ≤ c(x, y) ∀(x, y) ∈ U × V } . (4.5)

The name “Lipschitz” is justified by the fact that the elements u and v in

the above definition are Lipschitz over the compact sets U or V since they can be

bounded by the continuous function c. This property will eventually allow us to

differentiate u and v.

Definition 4.3. The dual functional J(u, v) : Lipc → (−∞,∞) to C is defined

as

J(u, v) =

∫
Rn

u(x)f(x)dx+

∫
Rn

v(y)g(y)dy . (4.6)

The dual problem will be to find, if it exists, a maximizer (ψ, φ) ∈ Lipc to

J(u, v), such that

J(ψ, φ) = sup
(u,v)∈Lipc

J(u, v) . (4.7)

An important element of the proof will be to show that such a maximizer has

convex properties with respect to the cost function. The notion of “c-convexity”

generalizes the familiar notion of convexity while the Fenchel transform generalizes

37



the Legendre transform. We will only require basic definitions for our purpose, but

more details can be found in [5].

Definition 4.4. The Fenchel transform uc : V → R of u : U → R is

uc(y) = inf
x∈U

(c(x, y)− u(x)) . (4.8)

The Fenchel transform vc : U → R of v : V → R is

vc(y) = inf
y∈V

(c(x, y)− v(y)) . (4.9)

We will use the notation ucc = (uc)c to mean the “double” Fenchel transform

of u.

Proposition 4.5. Suppose u ∈ C(U), then (u, uc) ∈ Lipc.

Proof. Let us first show that the Fenchel transform of a continuous function is

continuous. For any y1, y2 ∈ V :

|uc(y1)− uc(y2)| =
∣∣∣∣ infx∈U

(c(x, y1)− u(x))− inf
x∈U

(c(x, y2)− u(x))

∣∣∣∣
≤ sup

x∈U
|c(x, y1)− u(x)− c(x, y2) + u(x)|

= sup
x∈U

|c(x, y1)− c(x, y2)|

(4.10)

Since c is jointly continuous in x and y over the compact domain U × V , uc

must be continuous over V . Now, fix (x, y) ∈ U × V and choose z = x such that

u(x) + uc(y) = u(x) + inf
z∈U

(c(z, y)− u(z)) ≤ u(x) + (c(x, y)− u(x)) = c(x, y) (4.11)
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which gives that (u, uc) ∈ Lipc. �

An equivalent inequality can be obtained for vc by symmetry. The string

of inequalities in the previous proof can then be used to bound the Lipschitz

constant of the Fenchel transforms with that of the cost function. In particular,

both members of the pair (ucc, uc) ∈ Lipc are Lipschitz whenever u ∈ C(U).

The following lemma makes clear the usefulness of the Fenchel transform in our

context:

Lemma 4.6. Suppose (u, v) ∈ Lipc, then J(u, v) ≤ J(ucc, uc).

Proof. Consider first the difference

J(u, uc)− J(u, v) =

∫
U

(u(x)− u(x))f(x)dx+

∫
V

(uc(y)− v(y))g(y)dy

=

∫
V

inf
z∈U

(c(z, y)− u(z))− v(y)g(y)dy .

(4.12)

Since v(y) is a constant with respect to the infimum and u(z) + v(y) ≤ c(z, y),

J(u, uc)− J(u, v) =

∫
V

inf
z∈U

(c(z, y)− u(z)− v(y))g(y)dy

≥
∫
V

inf
z∈U

(c(z, y)− c(z, y))g(y)dy = 0 .

(4.13)

By symmetry, the same can be done to show that J(u, v) ≤ J(vc, v), such that

J(ucc, uc) ≤ J(u, v). �

This result implies that if there exist a maximizer of the functional J , there

exists at least one maximizer of the form (ψ, φ) where ψ = ψcc and φ = ψc. A
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function ψ satisfying these requirements is called “c-convex” in analogy with the

fact that a function that is its own double-Legendre transform is convex.

We are now ready to show that, under our assumptions, the dual problem

admits at least one maximizer (ψcc, ψc). We begin by showing that the supremum

of J is bounded, hence we can find a maximizing sequence (ψn, φn). This sequence

will be shown to satisfy the requirements of the Arzela-Ascoli theorem, such that

at least a subsequence converges to a maximizer (ψ, φ) ∈ Lipc. We follow the

demonstration given in Guillaume Carlier’s lecture notes [12].

Theorem 4.7. There exists a maximizer (ψcc, ψc) ∈ Lipc such that

J(ψcc, ψc) = μ = sup
(u,v)∈Lipc

J(u, v) . (4.14)

Proof. First, μ is non-negative since (0, 0) ∈ Lipc and J(0, 0) = 0.

Fix (u, v) ∈ Lipc, then for all w ∈ V , we may write u(x) ≤ c(x, w)− v(w), such

that

∫
U

u(x)f(x)dx ≤
∫
U

c(x, w)f(x)dx− v(w)

∫
U

f(x)dx ≤ Cf − v(w) , (4.15)

where Cf is the (finite) supremum over w of the integral of c(x, w) against f . A

similar expression can be written for v with another constant Cg:∫
V

v(y)g(y)dy ≤
∫
V

c(z, y)g(y)dy − u(z)

∫
V

g(y)dy ≤ Cg − u(z) (4.16)

Using that u(z) + v(w) ≤ c(z, w) and that c is non-negative,

J(u, v) ≤ Cf + Cg − (u(z) + v(w)) ≤ Cf + Cg − c(z, w) ≤ Cf + Cg (4.17)
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so that μ ≤ Cf + Cg < ∞. Now, let {(ψn, φn)}n∈N ⊂ Lipc be such that,

without relabeling, ψn = ψcc
n , φn = ψc

n and

lim
n→∞

J(ψn, φn) = μ . (4.18)

Since J(u − λ, v + λ) = J(u, v) for any pair (u, v) ∈ Lipc and any constant λ,

we may further assume that minU ψn = 0.

We now want to show that the maximizing sequence above satisfies the

requirements of the Arzela-Ascoli theorem, namely uniform boundedness and

equicontinuity. Let ωc : (0,∞) → R be the modulus of continuity of the cost

function over U × V :

ωc(t) = sup
|x1−x2|+|y1−y2|≤t

|c(x1, y1)− c(x2, y2)| (4.19)

Since c is assumed to be jointly continuous on U × V , limt→0 ωc(t) = 0.

Moreover, from the calculation in equation (4.10), we may obtain the bound

|φn(y1)− φn(y2)| ≤ sup
x∈U

|c(x, y1)− c(x, y2)| ≤ ωc(|y1 − y2|) . (4.20)

The same calculation can be repeated with the double Fenchel transform ψcc
n

such that both sequences ψn and φn are uniformly bounded by the modulus of

continuity of the cost function. The sequence (ψn, φn) is therefore equicontinuous.

Moreover, since ψn(x0) = 0 for at least some x0 ∈ U ,

0 ≤ |ψn(x)| = |ψn(x)− ψn(x0)| ≤ ωc(|x− x0|) ≤ M (4.21)
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for all x ∈ U , where M is the modulus of continuity of c evaluated at the diameter

of U . Since ψn is uniformly bounded, and the infimum of the Fenchel transform

preserves uniform boundedness, (ψn, φn) is uniformly bounded.

The two conditions of the Arzela-Ascoli theorem are met, so there exists a

subsequence of (ψn, φn) ⊂ Lipc that converges uniformly to a pair (ψ, φ) ∈ Lipc for

which J(ψ, φ) = μ. Finally, μ = J(ψ, φ) ≤ J(ψcc, ψc) ≤ μ which shows that there

exists a maximizer (ψcc, ψc) ∈ Lipc to J . �

We are now ready to use the maximizer (ψ, φ) = (ψcc, ψc) in the next section.

4.4 Existence and Uniqueness for Strictly Convex Costs

We first present a result that will allow us to construct a transport plan from

the pair (ψ, φ).

Lemma 4.8. Let W ⊂ R
n be open and f : W → R be Lipschitz continuous on W ,

then f is differentiable almost everywhere in W .

This theorem is often called Rademacher’s theorem, theorem 3.1.6 of [13]. We

will apply this lemma to show that ψ can be differentiated almost everywhere in

the support of f , U . We may now prove the main result of this chapter.

Theorem 4.9. Let f and g be L1(Rn) probability densities with compact support U

and V respectively. Let c : Rn×R
n → [0,∞) be of the form c(x, y) = h(x−y) where

h is a strictly convex C1(R) function of |x − y|. Then there exists a transport plan
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t ∈ S(f, g) that minimizes the total cost C over S(f, g). Moreover, this optimal

transport plan is f -almost everywhere unique.

Proof. In order to use Rademacher’s theorem in what follows, let W be the

smallest open domain containing both U and V and let (ψ, φ) be as in Theorem

4.7. The cost c is Lipschitz on W because it is continuous and W is bounded.

Since the modulus of continuity of c bounds the Lipschitz constants of ψ and φ,

both functions ψ and φ are also Lipschitz in W . Rademacher’s theorem then

guarantees that ψ is almost everywhere differentiable in U ⊂ W with gradient ∇ψ.

This gradient is a Borel map since its set of discontinuities has measure zero.

The gradient of h is continuous and one-to-one since h ∈ C1(Rn) and strictly

convex. Denoting this gradient by ∇h, the inverse (∇h)−1 must also be continuous

by the open mapping theorem.

We now construct a transport plan from (ψ, φ). Since ψ(x) = infy∈V (c(x, y) −
φ(y)) and c and φ are continuous, the infimum must be attained at some value y

for all x ∈ U . Fix x where ψ is differentiable, then for some y,

ψ(x) = h(x− y)− φ(y) . (4.22)

From the previous justifications, one sees that ∇ψ(x) = ∇h(x − y), and using

the continuous inverse of ∇h, we can write

y = t(x) = x− (∇h)−1∇ψ(x) . (4.23)
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The map t can be seen to be Borel and defined everywhere on U . Note

that this implies that for almost every x, a unique point y ∈ V is such that

ψ(x) + φ(y) = c(x, y).

Let us now show that t is a transport plan by using the fact that the first

variation of J vanishes at (ψ, φ) since it is an extremizer. Let a be a continuous

function and ε a small parameter and define the functions:

vε(y) = φ(y) + εa(y)

uε(x) = vcε(x) = inf
y∈V

(c(x, y)− φ(y)− εa(y))
(4.24)

For all x where ψ is differentiable, only the choice y = t(x) produces the

infimum in the definition of ψ(x) = φc(x), such that ψ(x) = c(x, t(x))−φ(t(x). The

continuity of a and the smallness of ε means that the infimum in the definition of

uε will be attained near y = t(x). The error between the true uε(x) and the value

of c(x, y)− φ(y)− εa(y) evaluated at t(x) can therefore only be superlinear in ε:

uε(x) = c(x, t(x))− φ(t(x))− εa(t(x))) + o(ε) = ψ(x)− εa(t(x)) + o(ε) (4.25)

Note now that (u0, v0) = (ψ, φ) is a critical point of J , so

gradaJ(ψ, φ) = lim
ε→0

J(uε, vε)− J(ψ, φ)

ε
= 0 (4.26)

independently of the function a.
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Let us compute directly the limit

gradaJ(ψ, φ) = lim
ε→0

(∫
U

uε(x)− ψ(x)

ε
f(x)dx+

∫
V

vε(y)− φ(y)

ε
g(y)dy

)

= lim
ε→0

(∫
U

−εa(t(x)) + o(ε)

ε
f(x)dx+

∫
V

εa(y)

ε
g(y)dy

)

= −
∫
U

a(t(x))f(x)dx+

∫
V

a(y)g(y)dy = 0

(4.27)

which is exactly the condition for t to be a transport plan by Proposition 2.1.

Consider now any pair (u, v) ∈ Lipc and any transport plan s ∈ S(f, g). The

continuity of v gives that

J(u, v) =

∫
U

u(x)f(x)dx+

∫
V

v(y)g(y)dy

=

∫
U

u(x)f(x) +

∫
v(s(x))f(x)dx =

∫
Rn

(u(x) + v(s(x)))f(x)dx

≤
∫
Rn

c(x, s(x))f(x)dx = C(s)

(4.28)

where the equality holds if (u, v) = (ψ, φ) and s = t. Therefore, supLipc J =

infS(f,g) C such that indeed, C(t) ≤ C(s) for all s ∈ S(f, g). This proves the duality

of J and C and that t is an optimal transport plan.

To finally show that t is almost everywhere unique on U , suppose that t∗ is

another optimal transport plan such that C(t∗) = supLipc J . Without requiring that

(ψ, φ) be unique, it remains nonetheless true that J(ψ, φ) = C(t∗) such that

sup
Lipc

J =

∫
Rn

(ψ(x) + φ(t∗(x)))f(x)dx =

∫
Rn

c(x, t∗(x))f(x)dx = inf
S(f,g)

C (4.29)

which similarly holds for t. Therefore, f almost-everywhere, ψ(x) + φ(t(x)) =

c(x, t(x)) and ψ(x) + φ(t∗(x)) = c(x, t∗(x)). Since for all x there exists a unique
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y with the property that ψ(x) + φ(y) = c(x, y), it follows that y = t(x) = t∗(x)

f -almost everywhere, concluding the proof. �

A corollary is that the optimal transport problem is symmetric under the

exchange of f and g.

Proposition 4.10. Under the assumptions of the previous theorem, there exists

an optimal transport plan t̂ ∈ S(g, f) that minimizes the total cost C over S(g, f).

This transport plan is g-almost everywhere unique and is such that t̂ ◦ t = Id

f -almost everywhere and t ◦ t̂ = Id g-almost everywhere.

Proof. It is clear that there exists a unique optimal transport plan t̂ ∈ S(g, f)

by interchanging f and g, without changing J , in the previous theorem. By

symmetry, t̂ will be the only map such that ψ(t̂(y)) + φ(y) = c(t̂(y), y) g-almost

everywhere. Fixing x = t̂(y), the only solution to ψ(x) + φ(y) = c(x, y) is y = t(x).

Therefore, t̂ ◦ t(x) = x f -almost everywhere and the result holds by symmetry. �

4.5 The Connection With the Monge-Kantorovich Problem

We have thus shown that given a strictly convex cost function, the infimum

problem

inf
s∈S(f,g)

∫
Rn

c(x, s(x))f(x)dx (4.30)

is actually a minimum problem with a unique solution t. We now investigate the

significance of t under the relaxation of the optimal transport problem to the

Monge-Kantorovich formulation. Namely, is it true that t directly gives rise to a
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coupling τ , that uniquely minimizes the problem

inf
γ∈Γ(f,g)

∫
Rn×Rn

c(x, y)γ(dx× dy) ? (4.31)

This question was answered by Gangbo and McCann in [5]. To further extend

the result to measures in P2(R
n) of unbounded support, extra growth requirements

on the cost function are required, in particular, superlinearity away from the

origin. When c(x, y) = |x − y|2, these requirements are satisfied and the following

theorem holds:

Theorem 4.11. Suppose that the initial and final mass distributions f and

g ∈ P2(R
n) and that the cost function is c(x, y) = |x − y|2, then given the map

t(x) = x− (∇h)−1∇ψ(x) obtained in Theorem 4.9, the coupling

τ(A× B) = ((Id× s)#f)(A× B) (4.32)

is the unique (Borel) optimal coupling to the Monge-Kantorovich problem.

In other words, at least for certain cost functions, only the optimal transport

plans may achieve the lowest total cost in the Monge-Kantorovich problem. The

proof of this result requires extensive background on c-convexity to obtain a non-

empty set of optimal couplings and a c-convex function ψ. This set is a singleton

since the gradient of the maximizers ψ of J can be shown to be unique.

This result is extremely important because it not only states that the Wasser-

stein distance dW is uniquely attained, but it also explicitly characterizes the form

of the connection between f and g.
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We have now solved the optimal transport problem, at least in the case of

the Wasserstein distance. Other avenues for investigation in the properties of

optimal transport plans would be to understand their geometry and regularity.

The modern developments in these issues are reviewed in McCann and Guillen’s

series of lecture notes [8].

In the following chapter, we will use the result of this chapter applied to the

Wasserstein distance to highlight an important relationship between this metric

and the Fokker-Planck equation and other dissipative PDEs.
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CHAPTER 5
The Jordan-Kinderlehrer-Otto Scheme and Dissipative Equations

Let us summarize the previous developments in preparation for this final

chapter. In chapters 1 and 2, we have introduced the optimal transport formalism

and its generalizations. Most importantly, we introduced the Wasserstein distance,

a metric on the space of probability densities P2(R
n) that computes an “energy

cost” in transforming one probability density into another with respect to the

quadratic cost. In chapter 3, we have given a visual interpretation to the prob-

lem and in chapter 4, we have proved that the optimal transport problem has a

unique solution, in particular for the quadratic cost. From this analysis and the

correspondence between the “flavors” of optimal transport problems, the Wasser-

stein distance becomes extremely powerful because it intrinsically guarantees the

existence and uniqueness of transport plans on the space of probability densities.

The strength of the metric space (P2(R
n), dW ) rests upon four major ideas:

• The space of probability densities is relevant in virtually all fields of physical

sciences due to the statistical treatment of particles in statistical mechanics

and to the wavefunction formalism in quantum mechanics.

• The existence and uniqueness theorem guarantees that there is a unique

optimal way to move particles from one configuration to the other with the

energy cost given by the Wasserstein distance.
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• As seen intuitively, the Wasserstein optimal transport plans continuously

transform densities into others similarly to physical dissipative processes.

• Indeed, as we will see in this chapter, the gradient flow of the negative

entropy in the space (P2(R
n), dW ) is the diffusion equation.

The last point in particular makes one wonder if the space (P2(R
n), dW )

might not be natural for dissipative systems, in which entropy plays an important

role. This is true as we will see later for the Fokker-Planck equation: the gradient

flow with respect to (P2(R
n), dW ) of the free energy functional of an ensemble of

particles in an external field is the Fokker-Planck equation. One might then hope

the Wasserstein distance to be a general tool to connect physical energy principles

to dissipative equations of motion, similarly to the Lagrangian formalism, but this

simple idea does not seem to be directly applicable.

A different but general question might be: in what space will a gradient flow

link a physical energy principle to a dissipative equation of motion? We will briefly

present at the end of the chapter a few such pairs linked through a gradient flow

with respect to the Wasserstein distance or to a related “metric”. This might seem

to indicate that dissipative equations and optimal transportation theory are deeply

related.

Before we continue, let us point out that many heuristic arguments in this

chapter are based on the application of well-known thermodynamic principles,

notably the Second Law of thermodynamics: entropy is always increasing for

spontaneous processes. For our purpose, we only need this concept to justify that

physically reasonable dynamics should follow from maximizing the dissipation of
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free energy, the difference between the energy of the system and its entropy. If

the system is described by a probability density function ρ, the relevant negative

entropy is the Gibbs or Shannon entropy

S : ρ �→
∫

ρ ln(ρ) . (5.1)

This choice arises from physical considerations and the interested reader is

directed to Landau’s Statistical Physics course [14] for more developments.

To make the previous ideas clear, we will begin by briefly reviewing the main

ideas of gradient flow theory and the Fokker-Planck equation. We will then present

the result of Jordan, Kinderlehrer and Otto that this equation is a gradient flow

with respect to the Wasserstein distance. Finally, we will briefly introduce similar

results that link Wasserstein and Wasserstein-like metrics to dissipative equations

of motion.

5.1 Gradient Flows

The notion of a gradient flow can be described in simple terms. Take a

smooth energy functional F over a metric space (X, d) satisfying the boundedness

condition F : X → [0,∞). Given an initial point x0 ∈ X, is it possible to find a

“natural” path in X that carries x0 into a minimum of F? Precisely, does there
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exist a map x(t) ⊂ X satisfying

x(0) = x0

lim
t→∞

F [x(t)] = inf
z∈X

F [z]

lim
t→∞

x(t) = a “minimizer” of F in X

(5.2)

If such a map exists, it is called a gradient flow for F with initial point x0.

Note that a major issue with this formulation is that it is possible for x(t) to

become “stuck” in a local minimum of F or even diverge if F does not grow

far away from the origin. These issues may be avoided if the functional F is

explicitly required to be convex and lower semicontinuous, as described by Evans

in the Gradient Flows section of [15]. In the calculus of variations framework,

this condition ensures that there exists a single point x that satisfies the Euler-

Lagrange equations. Alternatively, x is the only point in X where the first

variation of F vanishes. An intuitive diagram of a gradient flow is presented in

figure 5-1.

A very simple example of this problem would be to set X = R
n and let x(t)

evolve according to the gradient of F . The procedure is best explained by using

discrete time steps: let h > 0 be a small time increment and consider the sequence

of points {x(i)}i∈N defined by:

x(0) = x0

x(i+ 1) = x(i)− h∇F [x(i)]

(5.3)
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Figure 5–1: In this illustration, the plane represents the metric space X and the
graph of F is drawn in blue. The red curve is the gradient flow starting at x0 and
moving into a local minimum of F .

In words, x(i + 1) is determined by moving from x(i) into the direction where

F is decreasing the fastest. If we now take the continuous time interpolation of the

sequence x(i)

x(t) = x(i) where i = �t/h� , (5.4)

where �·� denotes the floor function, then it is intuitively clear that as h → 0,

x(t) becomes a continuous curve in X that may satisfy the properties of a gradient

flow. Using the numerical analogy further, the combination x(i+1)−x(i)
h

can be

thought of as the first-order approximation to the time derivative of x, such that

the gradient flow may also be understood as a solution of the PDE

dx

dt
= −∇F [x(t)] (5.5)
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with x(0) = x0. Note that the steady-states of this equation correspond to the

extremizers of F . In this basic setting, the numerical method is aptly named a

“gradient descent” and is used to locate local or global minima of functions in R
n,

depending on the choice of x0.

When the underlying space is an infinite dimensional space of functions,

say X = L2(Rn) or X = H−1(Rn), the same ideas can be used with the slight

modification that the “gradient” of the functional F must be replaced by an

appropriate derivative: the functional derivative, denoted by gradF . The gradient

flow in these spaces is then given by a solution of the analogous PDE

∂u

∂t
= −gradF [u(t)] (5.6)

where u(t) ⊂ X for t ∈ [0,∞) and u(0) = u0. Without exposing too many

details, the functional derivative corresponds to the Euler-Lagrange equations of

the functional with respect to the chosen metric. This last statement is of crucial

importance: the same functional can give rise to different gradient flows depending

on the chosen metric space. The ubiquitous example is that of the Allen-Cahn and

Cahn-Hilliard equations, well-known models for smoothing and homogenization

processes. Consider the functional FW acting on u(t) : Rn → [0, 1], with the initial

spatial distribution u(0) = u0,

FW : u �→
∫
Rn

1

2
|∇u|2 +W (u)dx (5.7)
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for some potential W . This potential is typically a double well with minima at

0 and 1, u2(1− u)2 for example. The following result holds:

Proposition 5.1. The gradient flow of FW with respect to the L2(Rn) metric is a

solution of

∂u

∂t
= ∇2u−W ′(u) (5.8)

while the gradient flow of FW with respect to the H−1(Rn) metric is a solution of

∂u

∂t
= −∇2

(∇2u−W ′(u)
)

(5.9)

both with the initial condition u(0) = u0.

These two PDEs behave very differently and model completely different phys-

ical situations. In particular, the steady states of these PDEs are not necessarily

the same and must indeed model different smoothing and homogenization pro-

cesses. The reader is directed to [16] for explicit calculations and exact definitions.

From this last example, it must be appreciated that a gradient flow is a

construction that relates three kinds of objects:

• An energy functional

• An underlying metric space

• A dissipative partial differential equation

If two of these objects are fixed, an interesting problem is to obtain the third

that completes the gradient flow procedure. Writing a PDE from a functional and
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a metric is well understood, but the other directions have not been investigated as

much.

With this brief introduction to gradient flows, we now wish to consider a

special case of the given problem where the energy functional is the free energy

of a system of particles and the PDE is the Fokker-Planck equation. We will see

in the next few sections that the metric that connects the two is the Wasserstein

distance by using a discrete gradient flow formalism.

5.2 The Fokker-Planck Equation and the Jordan-Kinderlehrer-Otto
Scheme

In this section and the following, we review the approach of Jordan, Kinder-

lehrer and Otto in [7] to show that the Wasserstein distance produces physically

relevant gradient flows. This property was realized by Otto in the context of

pattern formation in magnetic fluids [6], and was generalized as the Jordan-

Kinderlehrer-Otto scheme in [7]. In essence, the scheme relies on the construction

of a discrete gradient flow with respect to the Wasserstein distance. This discrete

flow converges in an appropriate sense to a limit that solves a certain PDE. We

then say that this limit is the Wasserstein gradient flow of the functional, and

that this gradient flow solves this PDE. In the spirit of the original paper, we will

consider a standard free energy functional to write the Fokker-Planck equation as

a gradient flow. To do so, we will first introduce the necessary objects required in

the proof, then highlight its most important aspects. In the next section, we will
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present the formal Otto Calculus, which is a direct but a priori formal method to

compute Wasserstein gradient flows.

The Fokker-Planck equation

The Fokker-Planck or Smoluchowski equation models the behavior of a large

number of weakly interacting particles in an external potential. An individual

particle will experience random interaction forces leading to diffusion and an

external force due to the potential. The qualitative behavior of the system will

then be an approximate superposition of diffusion and the motion of a single

particle in the same potential. Because of this, the Fokker-Planck equation can

be thought of as a stochastic generalization of the deterministic single particle

dynamics of classical or quantum mechanics to an ensemble of particles.

The ensemble of particles is represented by a time varying probability density

function ρ : Rn → [0,∞), where ρ(x) corresponds to the probability of finding a

particle at position x. Formally, given a volume element dV and a region R of Rn,∫
R
ρ(x)dV corresponds to the number of particles found in R. For our purpose, we

will assume that ρ is unit normalized and has finite second moment. We will then

work with the space P2(R
n); recall from equation (2.14):

P2(R
n) =

{
ρ ∈ P(Rn)

∣∣∣∣ M [ρ] =

∫
Rn

|x|2ρ(x)dx < ∞
}

Recall that elements in P2(R
n) may be represented by an L1(Rn) probability

density function. The additional requirement that M [ρ] be finite is necessary to

ensure that the free energy of the system (or its partition function) is finite.
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The external potential will be a smooth function Ψ : Rn → [0,∞) satisfying

the requirement that

|∇Ψ| ≤ C(Ψ + 1) (5.10)

for some constant C. Note that the energy of a particle at position x is given by

Ψ(x).

The last ingredient is temperature, or the “inverse temperature” β > 0, which

controls the timescale of diffusion processes. Let then ρ(t) be the time evolution of

the particle density ρ ∈ P2(R
n); the Fokker-Planck equation may be written in the

form

∂ρ

∂t
= ∇ · (ρ∇Ψ) +

1

β
∇2ρ (5.11)

with an appropriate initial condition.

The first term on the right corresponds to the dynamics given by the potential

while the other term corresponds to diffusion. Note that this equation degenerates

into the diffusion equation when Ψ is constant, and into the single particle

dynamics when the temperature vanishes or β → ∞.

The development in the remaining of this section will be to show that the

solutions to (5.11) can be written as the Wasserstein gradient flow of the free

energy functional

F [ρ] =

∫
Rn

ρ(x)Ψ(x)dx+
1

β

∫
Rn

ρ(x) ln(ρ(x))dx . (5.12)

Intuitively, F has the thermodynamic interpretation of “Free Energy =

Energy - Temperature × Entropy” if the energy and (negative) entropy are defined
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by:

E[ρ] =

∫
Rn

ρ(x)Ψ(x)dx

S[ρ] =

∫
Rn

ρ(x) ln(ρ(x))dx

(5.13)

The free energy functional may be written as F [ρ] = E[ρ] + 1
β
S[ρ] which

is ubiquitous in statistical mechanics. To complete this heuristic interpretation,

the steady states of the Fokker-Planck equation correspond to local or global

minimizers of F . Given necessary growth conditions, a formal calculation using

the calculus of variations shows that the minimizer of F corresponds to the Gibbs

distribution obtained in statistical mechanics:

ρsteady(x) =
1

Z
e−βΨ(x) where Z =

∫
Rn

e−βΨ(x)dx (5.14)

It is standard to call e−βΨ(x) the Boltzmann factor and Z the partition function of

the system. In equilibrium, ∂ρ
∂t

= 0 and it is easy to verify that ρsteady(x) solves the

Fokker-Planck equation.

Without loss of generality, we now let β = 1. We have now laid the setup of

our next developments and now turn to the discrete scheme that will become our

gradient flow.

The discrete scheme

We now come to the main section of this chapter: the Jordan-Kinderlehrer-

Otto or JKO scheme. The scheme is a reformulation of the gradient descent

approach (5.3) adapted to the Wasserstein distance to compute the gradient flow
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of an energy functional F . Let our underlying space be (P2(R
n), dW ) and take

an initial probability density ρ0 ∈ P2(R
n). Define the small parameter h > 0

corresponding to the length of a time step. The JKO scheme is an iterative

algorithm that computes the sequence {ρhi }i∈N∗ using the formula

ρhi+1 = argminρ∈P2(Rn)

{
1

2
d2W (ρhi , ρ) + hF [ρ]

}
. (5.15)

We also define the interpolation ρh(t) ⊂ P2(R
n) for t ∈ [0,∞) to be

ρh(t) = ρhi where i = �t/h� . (5.16)

The interpolation ρh(t) can then be interpreted as a discrete gradient descent

of F with respect to the Wasserstein distance. We will highlight details of the

proof that the limit ρ(t) = limh→0 ρ
h(t) is actually a continuous gradient flow that

solves an equation of motion. For now, let us examine the JKO scheme further

and formally justify why it can be thought of as a gradient descent and why it is

well-behaved.

First, since a step of the JKO scheme is a minimization problem, subtracting

the constant −hF [ρi] will not change the minimizer, such that the step can be

rewritten in the intuitive form

ρhi+1 = argminρ∈P2(Rn)

{
1

2
d2W (ρhi , ρ)− h(F [ρi]− F [ρ])

}
. (5.17)

It is now clear how this formulation can be linked to the usual gradient

descent approach: the difference on the right hand side corresponds to an approx-

imation of the “gradient” of F while the Wasserstein distance corresponds to the
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adaptation of the difference |ρi − ρ| to the metric we are currently using. With the

usual interpretation that the Wasserstein distance squared evaluates the work in

displacing mass from ρi to ρ and that the difference F [ρi] − F [ρ] corresponds to

a gain in free energy from displacing the mass, the JKO scheme can be thought

of as minimizing the difference “work - gain in free energy = -dissipation” from

the laws of thermodynamics. Minimizing the negative dissipation is equivalent to

maximizing it, therefore, the JKO scheme has the nice physical interpretation of

sequentially maximizing the dissipation, or maximizing the rate of energy dissipa-

tion in a system. This is essentially what a gradient descent is doing since at each

step, it evolves in the direction where functional decreases the fastest.

With this justification, it should be reasonable to expect that the interpo-

lation (5.16) should behave, in the limit, as a continuous gradient flow, provided

that certain well-posedness conditions are met. Of main interest is that the JKO

scheme should not wander “outside” of the chosen class P2(R
n): if no maximizer

of the dissipation could be found in P2(R
n). This could happen if either dW or

the difference in F would not be well-defined, or if each step would increase M [ρi]

without bound. From the results we have obtained about the Wasserstein distance,

the first problem is a non-issue since this distance is well-defined on P2(R
n). The

other issues must explicitly be verified to not happen: i.e., M and F must be

bounded for all finite times1 .

1 This bound needs not remain valid in the other limit as time grows to infinity.
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Another potential issue with the method is that the interpolation ρ(t) should

be a solution to some equation of motion if the gradient flow approach is to be

successful at linking a functional to dynamics. This turns out to be guaranteed

in some cases by the existence and uniqueness of the optimal transport plans

associated to the Wasserstein distance given L1(Rn) probability densities. This is

where our developments on optimal transport become of quintessential importance.

For simplicity of exposition, we now strictly turn our attention to the Fokker-

Planck equation and the functional that we have defined in the previous section.

The following steps are general in that they can be applied to a variety of prob-

lems, provided that the quantities of interest are well-defined. Let us now argue

that the JKO scheme is well-defined for the Fokker-Planck equation, omitting a

few steps detailed in [7].

Theorem 5.2. Suppose that ρ0 ∈ P2(R
n), h > 0 is a given constant and F is as in

(5.12), then there exists a unique sequence {ρhi }i∈N ⊂ P2(R
n) defined by the scheme

(5.15).

Sketch of proof. The sequence ρi is obtained recursively, therefore, it will be

uniquely defined if and only if each step of the scheme satisfies this property. In

other words, we only need to show that there exists a unique ρ1 ∈ P2(R
n) that

solves the minimization problem

μ = inf
ρ∈P2(Rn)

δ[ρ] = inf
ρ∈P2(Rn)

(
1

2
d2W (ρ0, ρ) + hF [ρ]

)
. (5.18)
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As in the existence proof of a maximizer to the functional J , we must build a

minimizing sequence ρk ∈ P2(R
n) such that δ[ρk] → μ and show that this sequence

has a limit ρ1 ∈ P2(R
n) with δ[ρ1] = μ. A minimizing sequence can be found if δ is

bounded below. The non-negativity of Ψ and ρ implies that

F [ρ] ≥ S[ρ] =

∫
Rn

ρ(x) ln(ρ(x))dx ≥
∫
Rn

min{0, ρ(x) ln(ρ(x))}dx . (5.19)

For δ to be bounded below on P2(R
n), the Wasserstein distance must grow

faster than the negative part of the entropy.

Note from the triangle inequality that

|y|2 ≤ (|y − x|+ |x|)2 = |y − x|2 + |x|2 + 2|x||x− y| . (5.20)

Young’s inequality applied to |x| and |x − y| gives that |x||x − y| ≤ |x|2/2 +
|x− y|2/2. Combining these inequalities, we have that |x− y|2 ≥ |y|2/2− |x|2. Now
fix ρ ∈ P2(R

n) and let τ be the optimal coupling between ρ0 and ρ such that

d2W (ρ0, ρ) =

∫
Rn×Rn

|x− y|2τ(dx× dy)

≥ 1

2

∫
Rn×Rn

|y|2τ(dx× dy)−
∫
Rn×Rn

|x|2τ(dx× dy)

=
1

2

∫
Rn

|y|2ρ(y)dy −
∫
Rn

|x|2ρ0(x)dx =
1

2
M [ρ]−M [ρ0] .

(5.21)

We must thus show that the negative entropy of ρ grows sublinearly in M [ρ]

such that δ[ρ] may not become arbitrarily negative. It can indeed be shown that,

bounding the growth of −z ln(z) by any fractional power of z,

S[ρ] ≥ −C(M [ρ] + 1)α (5.22)
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for some positive constant C and an exponent α ∈ ( n
n+2

, 1) for all ρ ∈ P2(R
n).

From these two arguments, it follows that

δ[ρ] ≥ 1

4
M [ρ]− 1

2
M [ρ0]− C(M [ρ] + 1)α (5.23)

is bounded below for every ρ ∈ P2(R
n), it is thus possible to find a minimizing

sequence ρk ∈ P2(R
n) for δ.

It now remains to show that this minimizing sequence converges to some

ρ1 ∈ P2(R
n). This follows by ensuring that:

F [ρ1] ≤ lim inf F [ρk]

d2W (ρ0, ρ1) ≤ lim inf d2W (ρ0, ρk)

(5.24)

such that δ[ρ1] ≤ lim inf δ[ρk] = μ, showing that ρ1 solves the minimization

problem.

To show that ρ1 uniquely minimizes δ, suppose that ρ∗1 ∈ P2(R
n) is another

minimizer different from ρ1. Notice that P2(R
n) is convex in the sense that for

α ∈ [0, 1], ρα = αρ1 + (1 − α)ρ∗1 ∈ P2(R
n). Note that E is linear and that the

function z ln(z) is strictly convex making S a strictly convex functional. Also,

recall from Theorem 2.9 that (P2(R
n), dW ) is a metric space, therefore, the square

metric d2W (ρ, ·) is a convex function. Since δ is the sum of a linear, a convex and a

strictly convex functional on P2(R
n), it is itself strictly convex so that

δ[ρα] < αδ[ρ1] + (1− α)δ[ρ∗1] = αμ+ (1− α)μ = μ (5.25)
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for any α ∈ (0, 1), which is a contradiction. Hence, each step of the JKO scheme

admits a unique minimizer such that there exists a unique sequence ρhi ⊂ P2(R
n)

as claimed. �

From the sequence provided by the theorem, it is possible to construct an

interpolation for every h > 0 using (5.16). Note especially that the JKO scheme

does not “get stuck” in local minimas because δ has a nice convex structure.

Taking the limit as h → 0, a continuous function of time can be obtained. This is

the main result of Otto’s work in [6] and [7] which may be summarized as follows

in our present context:

• The limit interpolation ρ(t) exists as a weak limit in L1(Rn) for finite times.

• This limit is actually strong in L1(Rn) for all times.

• This limit uniquely solves the Fokker-Planck equation and satisfies the initial

condition that ρ(0) = ρ0.

Therefore, the solution to the Fokker-Planck equation, ρ(t), is the gradient

flow of the functional F with respect to the Wasserstein distance. In particular,

taking Ψ to be constant, the gradient flow of the standard entropy
∫
ρ ln ρ is the

diffusion equation. In this example, note that the limit of the solution to the

diffusion equation is 0 in an unbounded domain, so that the second moment of the

interpolation ρ(t) may not remain bounded as time grows to infinity.

We will not reproduce the proof of these statements as this is done in ex-

tensive detail in the previously cited papers and relies principally on combining

the existence of optimal transport plans of the Wasserstein distance with usual
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techniques in regularity theory. Instead, we now describe a technique to com-

pute Wasserstein gradient flows without first using a discrete scheme and taking

interpolation limits.

5.3 The Otto Calculus

The discrete approach we have followed previously is lengthy but analytically

sound and instructive. However, it would be incredibly useful to have a formalism

that allows one to calculate the Wasserstein gradient flow heuristically. Such a

formal approach exists and is called the “Otto Calculus” in honor of Otto’s work.

We briefly mention the main result of this formalism based on Villani’s exposition

in [17].

To keep the notation simple, we consider energy functionals operating on

densities defined on R
n of the form

F [ρ] =

∫
Rn

U(ρ(x))dx (5.26)

with U the energy density associated to the particle density. Note that this

framework is valid not only in R
n but in a more general differential geometry

setting. The following result is the basis of the Otto calculus:

Theorem 5.3. With our usual notation, the Wasserstein gradient flow of F is

given by

∂ρ

∂t
= −gradF [ρ] = ∇ · (ρ∇U ′(ρ)) (5.27)

where U ′ is the derivative of U with respect to its argument.
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A trivial calculation immediately shows that this holds for the Fokker-Planck

equation. We shall not attempt to justify this formula, referring the reader to [17]

for further discussion.

5.4 Other Wasserstein Gradient Flows

In this final chapter, we have argued that the Fokker-Planck equation natu-

rally arises as the gradient flow of the Fokker-Planck functional F with respect to

the 2-Wasserstein distance, the Otto calculus providing a formalism to simplify the

calculations. We now present three other examples of such gradient flows, one of

which makes use of a modified “Wasserstein distance”.

The porous medium equation

After the publication of the JKO scheme in [6] and [7], Otto published [18] in

which he undertakes the study of the porous medium equation

∂ρ

∂t
= ∇2(ρm) (5.28)

with the usual notation and a positive number m. It can be shown that m must be

chosen to be greater than the maximum of 1− 1
n
and n

n+2
for the equation to make

sense. This equation introduces a non-linearity in the usual diffusion equation

that favors “fast” diffusion and homogenization if m > 1 and “slow” diffusion if

m < 1. This modification of the usual linear equation models systems in which the
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speed of diffusion depends on the density, for example, when the diffusion of gas

molecules is obstructed by a solid porous medium. Similarly to the Fokker-Planck

equation, it is possible to write the porous medium equation as the Wasserstein

gradient flow of the functional, for m �= 1,

Fporous[ρ] =
1

m− 1

∫
Rn

ρmdx . (5.29)

Indeed, first observe that ∇(ρm) = mρm−1∇ρ. Since U(ρ) = 1
m−1ρ

m,

∇U ′ = ∇
(

m

m− 1
ρm−1

)
=

m

m− 1
(m− 1)ρm−2∇ρ = mρm−2∇ρ (5.30)

The Otto calculus gives that the gradient flow of Fporous with respect to the

Wasserstein distance is

∂ρ

∂t
= ∇ · (ρ∇U ′) = ∇ · (mρm−1∇ρ

)
= ∇ · ∇(ρm) = ∇2(ρm) . (5.31)

Therefore, the porous medium equation arises as the Wasserstein gradient

flow of Fporous. This result may be shown rigorously by using techniques similar to

those presented in this chapter, but adapted to a Riemannian geometry setting.

Such a reformulation is necessary to decouple the energetic and entropic driving

forces in the problem which has the advantage of making the rigorous analysis

simpler and more transparent. The interested reader is directed to Otto’s rigorous

proof and exposition in [18].
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Aggregation equations

Another example of Wasserstein gradient flow comes about in the context of

aggregation equations [19] of the form

∂ρ

∂t
= ∇ · (ρ∇K ∗ ρ) (5.32)

where K is the translation independent interaction kernel in the energy functional

Faggregation[ρ] =

∫
Rn×Rn

K(x− y)ρ(x)ρ(y)dxdy . (5.33)

These aggregation equations model the behavior of strongly interacting

particles. Indeed, the above free energy is the obvious generalization of summing

the interaction energies (and self energies) between discrete particles. Of particular

importance are the equations whose interaction kernel may be written as the sum

of attractive and repulsive potentials of the form

K(x) =
1

q
|x|q − 1

p
|x|p (5.34)

where −N < p < q. Such models have been applied to colloidal suspensions, swarm

formation and other problems in pattern formation systems.

Again using the Otto calculus,

U(ρ(y)) =

∫
Rn

K(x− y)ρ(x)ρ(y)dx =⇒ U ′(ρ) = K ∗ ρ . (5.35)

Given some weak regularity conditions, ∇(K ∗ ρ) = ρ ∗ ∇K, such that the

Wasserstein gradient flow of Faggregation is indeed an aggregation equation. The

reader is directed to [19] and [20] for rigorous calculations and related results.
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The Vlasov-Poisson-Fokker-Planck system

A similar kind of gradient flow can be found in the work of Huang and Jordan

[21], where the equation of motion describes a plasma in a very particular regime.

For simplicity, the plasma consists of electrons at position x with velocity u; it can

then be described with the density distribution p(x, u) in the phase space R
2n. The

electrons interact through the electromagnetic interaction which can be split into

two components:

• A “long range” self-consistent electromagnetic field.

• Brief and “short range” collision events.

The magnetic interaction is neglected, further simplifying the first field to

the electric field E(x) = −∇xφ(x). The second contribution accounts for the

brief events in which a pair of electrons interact at close range. Under some

conditions on the temperature of the plasma, these collisions may be assumed to

be inefficient, meaning that the momenta of the particles are almost unchanged

after each collision. This then leads to the slow diffusion of p(x, u) in the velocity

argument, characterized by a damping constant β and a diffusion constant σ.
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The system of equations that describe the behavior of the electron density

distribution in this context is the Vlasov-Poisson-Fokker-Planck (VPFP) system2 :

∂p(x, u)

∂t
+ u · ∇xp(x, u) +∇u · ((E(x)− βu)p(x, u)) = σ∇2

up(x, u)

∇2
xφ(x) =

∫
Rn

p(x, u)du

lim
|x|→∞

φ(x) = 0

(5.36)

The free energy of the system may be written as FVPFP = H − σ
β
S where

H[p] =
1

2

∫
Rn×Rn

(
φ(x) + |u|2) p(x, u)dxdu

S[p] = −
∫
Rn×Rn

p(x, u) ln(p(x, u))dxdu

(5.37)

are the energy and entropy of the system. For further discussion on plasma physics

and the regime of application of the VPFP system, the reader is directed to [22].

From the mathematical point of view, the insight provided by Huang and

Jordan was to recognize that the VPFP system could be written as the gradient

flow of the energy functional FVPFP with respect to a distance functional similar

to the Wasserstein distance. This new distance is the total cost of the optimal

transport plan between the densities p1 and p2 given the cost density

c(x, u; y, v) =
1

2
|u− v|2 + 1

2h2
|(y − hv)− (x+ hu)|2 . (5.38)

2 Vlasov for the plasma physicist Anatoly Vlasov; Poisson for the electrostatic
Poisson equation; Fokker-Planck for the diffusion dynamics in the electrostatic
potential.
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This cost measures the work in changing the kinetic energy of particles with

velocity distribution u to v in the first term, and the spread in the particle posi-

tions after one time-step h in the second term. This cost is obviously much more

difficult to work with than the usual, simple, quadratic cost of the Wasserstein

distance, yet it is “adapted” to the physical problem. The overall procedure to

prove these claims rigorously is analogous to the Jordan-Kinderlehrer-Otto scheme

but involves more subtleties due to the complexity of the new cost function.

The physical relevance of Wasserstein gradient flows

The natural question at this point is to wonder whether the Wasserstein

distance, or indeed optimal transport total costs, have physical relevance or not.

Since it is possible to express the diffusion equation as the L2 gradient flow of

the Dirichlet energy, there are surely other combinations of metric and energy

functional that give rise to the equations discussed above. Assuming that the

equation of motion is somehow fundamental since it is experimentally observable,

there are then two opposing points of view: which of the metric and energy

functional is also fundamental.

If we consider the metric to be fundamental, both the Gibbs or Shannon

entropy and the Dirichlet energy could be called “entropy” since the later also

gives rise to the diffusion equation in the L2 metric. In this framework, if we

accept that the Wasserstein distance is the “correct” metric to describe dissipative

equations, we must conclude that FVPFP is not correct even though it is derived

from physical principles.
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On the other hand, if energy functionals are to be fundamental, the metric

that correctly produces the equation of motion from a functional must have

physical meaning. This reasoning implies that the modified cost function presented

above must have deep physical relevance to plasma systems.

As usual in mathematical physics, the previous points of view are not neces-

sarily contradictory, the “truth” often being a complex superposition. We choose

to leave this questioning for further investigations and adopt the conservative po-

sition that the Wasserstein distance, and optimal transport total costs in general,

turn out to be very convenient tools for the analysis of many dissipative PDEs, but

it remains to be shown that they have deep physical meaning.
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CHAPTER 6
Conclusion

In this thesis, we have reviewed two very important subjects: optimal trans-

portation theory and gradient flow theory. We have sequentially generalized the

basic Monge problem to the modern Monge-Kantorovich formulation and in-

troduced the related Wasserstein distance. To gain intuition into the nature of

optimal transport plans, we presented a numerical formalism to obtain discrete

approximations to these maps and visualize the displacement of mass. We then

reviewed the important result of existence and uniqueness for optimal transport

problems with strictly convex costs. We briefly introduced the gradient flow

formalism and connected this variational method to optimal transport with the

Jordan-Kinderlehrer-Otto scheme. Finally, we introduced several Wasserstein

gradient flows for dissipative equations, notably the Fokker-Planck equation.

While there exist many reviews of subjects presented in this thesis, we believe

to have succeeded in combining such ideas to elaborate a concise overview of key

results in optimal transportation theory, leading to its connection to gradient

flows and mathematical physics. We hope that our work will prove useful to

students and researchers who wish to tackle the optimal transport problem and

its multiple applications. In particular, we hope that other mathematicians will

take an interest in the problem of connecting physical energy principles to PDEs

through Wasserstein-like metrics and gradient flows.
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vol. 321, no. 12, pp. 1653–1658, 1995.

[5] W. Gangbo and R. J. McCann, “The geometry of optimal transportation,”
Acta Mathematica, vol. 177, no. 2, pp. 113–161, 1996.

[6] F. Otto, “Dynamics of labyrinthine pattern formation in magnetic fluids: a
mean-field theory,” Archive for Rational Mechanics and Analysis, vol. 141,
no. 1, pp. 63–103, 1998.

[7] R. Jordan, D. Kinderlehrer, and F. Otto, “The variational formulation of the
Fokker-Planck equation,” SIAM Journal on Mathematical Analysis, vol. 29,
no. 1, pp. 1–17, 1998.

[8] R. J. McCann and N. Guillen, “Five lectures on optimal transportation:
geometry, regularity and applications,” Analysis and geometry of metric
measure spaces: lecture notes of the séminaire de Mathématiques Supérieures
(Montréal), pp. 145–180, 2011.

75



76

[9] C. R. Givens and R. M. Shortt, “A class of Wasserstein metrics for prob-
ability distributions,” The Michigan Mathematical Journal, vol. 31, no. 2,
pp. 231–240, 1984.

[10] A. Oberman. Personal communication.

[11] J. D. Jackson, Classical Electrodynamics. Wiley, 3 ed., 1998.

[12] G. Carlier, “Optimal transportation and economic applications,” New
mathematical models in economics and finance: lecture notes of the Institute
for Mathematics and its Applications (Minneapolis), 2010.

[13] H. Federer, Geometric measure theory. Springer, 1969.

[14] L. D. Landau and E. M. Lifshitz, Statistical Physics: Second Revised and
Enlarged Edition, vol. 5 of Course of Theoretical Physics. Pergamon Press,
2 ed., 1969.

[15] L. C. Evans, Partial Differential Equations, vol. 19 of Graduate studies in
mathematics. American Mathematical Society, 2 ed., 2010.

[16] C. Cowan, “The Cahn-Hilliard equation as a gradient flow,” Master’s thesis,
Department of Mathematics-Simon Fraser University, 2005.

[17] C. Villani, Optimal transport: old and new. Grundlehren der mathematischen
Wissenschaften, Springer, 2009.

[18] F. Otto, “The geometry of dissipative evolution equations: the Porous
Medium equation,” Communications in Partial Differential Equations, vol. 26,
no. 1-2, pp. 101–174, 2001.

[19] R. Choksi, R. C. Fetecau, and I. Topaloglu, “On minimizers of interaction
functionals with competing attractive and repulsive potentials,” in Annales de
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