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Abstract 

Natural scenes are composed of first-order and second-order information. First-order 

information is defined by variations in luminance or chromaticity, while second-order 

information is defined by variations in properties other than luminance or color, such as contrast, 

texture or motion. This thesis investigates the processing of second-order information in normal 

and amblyopic visual systems.  

Amblyopia is a neuro-developmental disorder of human vision. Processing nonlinearities 

are relevant to both first- and second-order visual mechanisms and are an important feature for 

any sensory system. In the current thesis, second-order processing nonlinearities were 

investigated using a pedestal masking paradigm and were modeled with a divisive gain control 

model. Second-order nonlinearities are involved in processing three kinds of second-order 

information; these are contrast-modulation (CM), orientation-modulation (OM) and motion-

modulation (MM). In normal vision, CM and OM go through the same second-order nonlinearity 

while MM undergoes a second-order nonlinearity of a different form. This result suggests that 

second-order modulations are not always processed by a common mechanism in a “cue-

invariant” manner. 

 In an orientation discrimination sensitivity task, amblyopic subjects demonstrated 

general deficits in all three second-order modulation conditions during amblyopic eye 

stimulation, and also demonstrate reduced sensitivity in MM stimuli during fellow eye 

stimulation. Likewise, second-order nonlinearities in amblyopic vision involved in processing 

CM and MM reveal that only MM stimuli are processed differently. The altered second-order 
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nonlinearity for MM exists during individual stimulation of both the amblyopic and fellow eye. 

The different deficit patterns for MM compared to other types of second-order modulation are 

consistent with the earlier conclusion that MM and CM are processed by separate mechanisms. 

While the dorsal and ventral visual pathways are both affected in amblyopia, these results 

suggest that they are affected to different degrees. 

 

French version 

Dans les scènes naturelles, il y a des informations de premier-ordre, définies par des 

variations de luminance ou de chrominance, et des informations de second-ordre, définies par 

d’autres types de variations telles que des modulations de contraste, texture ou mouvement. Cette 

thèse a étudié le traitement de ce second type d’information dans les systèmes visuels normaux et 

amblyopiques. L’amblyopie est un désordre développemental de la vision humaine. La non-

linéarité du traitement, qui concerne à la fois les mécanismes de premier- et second-ordre, est 

une propriété importante des systèmes sensoriels. Dans cette thèse, la non-linéarité de second-

ordre impliquée dans le traitement de trois types d’information de second-ordre que sont la 

modulation de contraste (MC), la modulation d’orientation (MO) et la modulation de mouvement 

(MM) a été étudiée en utilisant un paradigme de masquage par piédestal et modélisée par un 

modèle de contrôle de gain divisif. Il a été observé, en vision normale, que les MC et MO 

passent par la même non-linéarité de second-ordre alors que la MM subit une non-linéarité de 

second-ordre de forme différente. Ce résultat suggère que tous les types de modulations de 

second-ordre ne sont pas traités par un mécanisme commun d’une manière ―invariante aux 

indices‖. La mesure de la sensibilité à la discrimination d’orientation pour ces trois types de 

stimuli de second-ordre chez les amblyopes a montré des déficits généralisés dans les trois 
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conditions pour la stimulation de l’œil amblyope (OA) et une sensibilité réduite uniquement dans 

la condition MM pour la stimulation de l’œil dominant (OD). Aussi, pour la vision amblyopique, 

l’étude de la non-linéarité de second-ordre impliquée dans le traitement des MM et MC révèle 

qu’elle est uniquement affectée pour la MM. L’altération de la non-linéarité de second-ordre de 

la MM est présente pour la stimulation de chaque œil des amblyopes. Les patterns de déficit 

différents pour la MM en comparaison des autres types de modulation de second-ordre sont 

consistants avec la conclusion précédente que les MM et MC sont traitées par des mécanismes 

distincts. Ils suggèrent également que les voies dorsale et ventrale dans le cortex extrastrié sont 

toutes deux affectées par l’amblyopie, mais à des degrés différents. 
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Introduction 

There are various kinds of information in the visual world, including first-order 

information, which is defined by luminance or chromaticity variations, and second-order 

information, which is defined by variations other than luminance or color, such as contrast, 

texture or motion. The mechanism of first-order processing has been modeled as a set of linear 

filters (Hubel & Wiesel, 1959, 1962) followed by a nonlinear transducer in the form of divisive 

normalization (David J. Heeger, 1992). Second-order mechanisms,  on the other hand, have been 

modeled by a linear-nonlinear-linear (LNL) model and are studied less extensively. First-order 

processing is thought to happen mainly in the primary visual cortex (Hubel and Wiesel 1959, 

1962) whereas second-order processing involves extrastriate cortex (Albright, 1992; Larsson, 

Heeger, & Landy, 2010; Larsson, Landy, & Heeger, 2006; Zhou & Baker, 1993, 1994). A 

nonlinearity after the second set of linear filters is also found in processing several kinds of 

second-order stimuli, for example contrast-modulation (CM) (Huang & Chen, 2014; Schofield & 

Georgeson, 1999) and orientation-modulation (OM) (F. A. Kingdom, Prins, & Hayes, 2003; 

Schofield & Yates, 2005). Nonlinearity in both first- and second-order processing is often times 

studied with the pedestal masking function – a pattern which shows a “dipper” shape if the 

underlying transducer function is nonlinear. The shape of the nonlinearity is an important 

resultant feature of neural responses and can provide clues to the types of underlying 

computations involved. Modeled as divisive normalization (David J. Heeger, 1992), the 
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nonlinearity reflects the active and inhibitory lateral connections among cortical neurons. 

Studying the second-order nonlinearity contributes not only to understanding second-order 

processing generally, but also to determining whether different types of modulations are 

processed by the identical mechanism. The first purpose of this thesis is to investigate the 

second-order nonlinearities involved in three kinds of second-order stimuli – CM, OM and 

motion-modulation (MM). I investigated, assuming each type of second-order stimulus had its 

own nonlinear transducer function, whether and how these functions differ across the three 

different second-order modulations. 

In Manuscript 1, the second-order nonlinearities involved in CM and OM processing are 

studied by a pedestal masking paradigm and modeled with divisive normalization. The pedestal 

masking functions both showed the typical dipper shape. Likewise, the nonlinear transducer 

functions are found to be the same for CM and OM. In Manuscript 2, the same method was 

employed to study nonlinearities for CM and MM. A “dipper” function was also found in this 

dataset. Surprisingly, however, the nonlinear transducer function for MM has a different shape 

than for CM.  

The second and third aims of this thesis concern second-order processing in human 

amblyopia. Amblyopia is a neuro-developmental disorder of the visual system. It affects various 

visual functions on different levels due to disrupted visual input from the amblyopic eye in early 

childhood. A better understanding of amblyopia is important for developing new treatment 

methods. Investigating amblyopia also contributes to a deeper understanding of neural plasticity 

– specifically, how early disruption in neural input can affect the structure and function of adult 

brains and how plasticity can be utilized for novel treatments. My investigation concerned the 

prevalence of second-order deficits in amblyopia. In Manuscript 3, orientation discrimination 
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sensitivities to three kinds of second-order modulations, CM, OM and MM, are measured over a 

large range of spatial frequencies. Second-order deficits were found to be general in the AE. 

Sensitivities to all three modulations are impaired, compared to normal observers, especially at 

high spatial frequencies. Reduced sensitivity was also found in the FE but only for MM 

processing. 

This was not the first time that amblyopic deficits were found in both the amblyopic and 

fellow eyes. FE deficits in amblyopes usually involve higher-level motion-related functions 

including second-order motion (Zhou & Baker, 1993, 1994). Different nonlinear transducer 

functions were found for MM and CM in Manuscript 2; and different second-order modulations 

were found to be affected differently in Manuscript 3. Because of these findings, I wanted to 

know if any change in the second-order nonlinearity can account for the different deficit patterns 

for CM and MM in amblyopia. Does amblyopia affect the form of the second-order response 

nonlinearity? If so, is it affected to the same degree for CM and MM, as well as for the 

amblyopic eye and the fellow eye? I investigated this question in Manuscript 4, using the same 

pedestal masking method to study the second-order nonlinearities involved in monocular 

processing of CM and MM stimuli. Only the MM nonlinearity was affected and we found no 

difference between the two eyes. This result is consistent with those of the previous manuscripts. 

Jointly, they suggest that: (1) MM is processed by a separate mechanism to that of CM and OM, 

(2) the second-order MM deficit is binocular in amblyopia, and (3) the dorsal and ventral 

pathways in the extrastriate cortex are likely to be both affected by amblyopia but to different 

degrees. 
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Literature review 

Classification of visual information 

There are various forms of visual information in the world that the human visual system 

is adapted to process, such as color, shape, motion, texture and depth. In the perspective of 

evolutionary theory, the ability to process each of these different forms of information is 

necessary for our ability to perceive the world. Understanding how the human visual system 

perceives the world is the goal of vision scientists. In studying the mechanisms of visual 

perception, an important job of vision scientists is the classification of visual information. A 

clear structure of categorization enables us to focus on one or more specific kinds of visual 

information so that we can design experiments in a logical way to understand the complex 

mechanisms of visual perception and their relationships piece by piece. 

One of the classical ways of categorizing visual stimuli is to differentiate between first-

order and second-order information. The definition of first-order information is, “ a change in 

luminance level or color”. First-order information refers to a spatiotemporal modulation of 

luminance or color. On the other hand, second-order information is spatiotemporal modulation of 

first-order information (Huang & Chen, 2014). In their review about motion perception, 

Cavanagh and Mather (1989) first proposed the terms “first-order” and “second-order” motion to 

replace the conventional dichotomy of “short-range” and “long-range” motion. They generalized 

the terms to stationary information as well. Before the terms were proposed, in their foundation-

laying work for second-order processing, Chubb and Sperling (1988) proposed a kind of second-

order motion stimulus that they termed a “drift-balanced” random stimulus. This kind of stimulus 
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is distinguished from first-order information that has energy or power in the Fourier domain at 

corresponding spatiotemporal frequency. First-order information has energy in the Fourier 

domain whereas second-order information does not (Chubb & Sperling, 1988). Therefore, first-

order motion is also called Fourier-motion and second-order motion is often called non-Fourier 

motion. 

This classification was also proposed (Cavanagh & Mather, 1989) based on the response 

that they characterized from low-level retinal ganglion cells, lateral geniculate nucleus and 

standard direction- and orientation-selective neurons in early visual cortex. First-order 

information is effective at generating strong responses in these low-level visual cells. The 

physiological mechanism and the location in which first-order information is processed have 

been investigated long before the notion of first-order was proposed. Studying receptive fields is 

informative in understanding how neurons in sensory systems transform sensory information into 

perceptually meaningful states. The receptive field of a neuron in the visual system is the region 

in visual field or the retina in which visual stimuli influence its firing activities (Hartline, 1938). 

In their Nobel prize-winning work, Hubel and Wiesel (1959, 1962) mapped the receptive fields 

of neurons in various areas of cat visual cortex by varying the shape, size, location, orientation 

and motion direction etc. of spots of light shone onto one or both retinas and analyzing the 

response of individual neurons using micro-electrodes. In primary visual cortex, most neurons 

have “simple receptive field” composed of adjacent excitatory and inhibitory regions that are 

usually elongated along their boundaries. An individual receptive field can have a center region 

of either excitatory or inhibitory nature and two flanks, one on each side, of opposite sign. It can 

also have only two regions of opposite signs. Neurons with this kind of receptive field respond 

strongest to a light slit or a dark bar of specific size, shape, orientation, location and velocity. 
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The stimulus can be stationary or moving across the receptive field. This kind of slit or bar is 

defined by luminance change corresponding to first-order stimuli.  

There are also cells with “complex receptive field”, especially in higher-level visual 

areas, which also responds to first-order stimuli. They show selectivity for orientation, spatial 

frequency and velocity as well. One difference is that the requirement for the location of the 

stimulus does not hold. That is to say that the excitatory and inhibitory regions are not spatially 

separated. The structure and responsive properties of neurons in the primary visual cortex 

suggest that it is more sensitive to perceiving luminance (or color) changes, i.e. contrast, than 

absolute luminance level. Since luminance and color changes usually signify the edges of object, 

it is important for object recognition and motion perception.  

First-order processing 

Neurons with simple receptive fields correspond to the linear filter model for first-order 

processing. One receptive field with excitatory and inhibitory areas can be modeled as a linear 

filter in which the positive areas respond positively to luminance and the negative areas respond 

negatively as shown in Figure 1a. The output of the linear filter is the linear summation of 

responses from excitatory and inhibitory regions. Therefore, only when the bright and dark areas 

of the stimulus align with the positive and negative areas of the linear filter does its output 

become strongly positive (Figure 1b). Linear filters are also selective for orientation and spatial 

frequency corresponding to the orientation and size of the receptive fields. Figure 1 shows that 

for gratings of different orientation (Figure 1c) or spatial frequency (Figure 1d) other than the 

optimal orientation and spatial frequency of the linear filter, the output of linear summation is 

very weak. For the same reason, diffuse light that covers the whole receptive field is ineffective 
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at evoking a strong response (Figure 1e). The linear filter model does a good job at explaining 

the processing of first-order luminance-defined information and integrating the results from 

neurophysiological studies.  

 

 
Figure 1. Linear filter model for first-order luminance-defined information processing showing 

linear filter and its selectivity for orientation and spatial frequency.  (a) a linear filter; (b) The 

linear filter responds strongly to a first-order stimulus with the correct spatial frequency and 

orientation; (c) It does not respond when the orientation is not correct; (d) It does not respond 

strongly when the spatial frequency is not correct; (e) It does not respond to diffuse light; (f) It 

does not respond to a second-order contrast-modulated stimulus. 

  

 

Contrast sensitivity 

According to the linear filter model, one should be able to predict the responses of a 

certain receptive field to different levels of first-order information. The level of first-order 
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information is quantified by luminance contrast. In the literature, responses of either the visual 

system as a whole or of specific neurons are often characterized by gratings or filtered random 

noise in which the bright and dark areas are nearly equivalent. Because of this, the luminance 

contrast often takes the form of Michelson contrast (Michelson, 1927). The Michelson contrast is 

defined as  

   
         

         
 ,                                                                    Equation 1 

where Lmax and Lmin represent the highest and lowest luminance, respectively. Contrast sensitivity 

represents the ability to detect luminance variations, i.e. luminance contrast. Contrast sensitivity 

is calculated as 1/contrast threshold. Contrast threshold is the lowest contrast level that is needed 

for the visual system to detect the contrast signal or for a neuron to respond. The contrast 

sensitivity function represents the extent to which contrast sensitivity varies with spatial 

frequency. The contrast sensitivity function is one of the most widely used measurements to 

characterize the function of normal and pathological visual systems. Many early measurements 

(Campbell & Green, 1965; Campbell & Robson, 1968; Robson, 1966; Westheimer, 1960) of 

contrast sensitivity function of human visual system demonstrated that it has a band-pass bell 

shape when plotted in log-log scale and it is thought to represent the envelope of the tuning of all 

the underlying cellular responses. Early neuro-physiological studies also have reported contrast 

sensitivity functions of similar shape in cat retina ganglion cells (Enroth-Cugell & Robson, 1966) 

and cortical neurons (Campbell, Cooper, & Enroth-Cugell, 1969). The contrast sensitivity 

functions of cat cortical neurons also show that cortical neurons are tuned to a narrow band of 

spatial frequency (Campbell et al., 1969). 
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Contrast response function 

The linear filter model implies that the output of the filter has a linear relationship with 

the contrast level of the stimulus. However, many neurophysiology studies have measured the 

contrast response function (CRF) of single neurons, no matter whether simple or complex cells, 

in cat or primate visual cortex and found it to be nonlinear in form (Albrecht & Hamilton, 1982; 

Barlow, Kaushal, Hawken, & Parker, 1987; Dean, 1981; Maffei & Fiorentini, 1973; Ohzawa, 

Sclar, & Freeman, 1982, 1985). The nonlinearity mainly consists of two parts, the thresholding 

behavior at the low contrast levels and the saturation at high contrast levels. In Figure 2, a typical 

contrast response function is plotted with hypothetical data in log-log scale. 

 

 

Figure 2. The contrast response function of primary cortex neurons in its typical shape. The 

curve is plotted with hypothetical data. The curve shows the “threshold” at which contrast level 



 14 

the neurons start to response, and the saturating part of the response function at high contrast 

levels. 

 

 

Extensive efforts have been made to model this nonlinear response function. Some chose 

a linear function to model the response function on log contrast scale (Maffei & Fiorentini, 1973) 

or to model only a part of the response function below a certain contrast level on a linear contrast 

scale (Dean, 1981). Others (Albrecht & Hamilton, 1982) model the nonlinearity with a 

hyperbolic ratio function: 

      

  

       
  

                                                           Equation 2 

where R represents is neuron’s response, Rmax is the maximum attainable response, c the is 

contrast level of the grating and    is the semisaturation constant. When    is not zero, the 

response R will vary between zero and Rmax.  

Divisive Normalization 

A divisive normalization model was developed (David J. Heeger, 1992) to account for 

the nonlinearity of the contrast response function as well as to explain more physiological data 

about contrast adaptation and suppression. In this model, the response gain of a certain cortical 

neuron is normalized by pooled responses of nearby neurons that have different spatial frequency 

tuning and different spatial phases. This normalization can be calculated globally, over all spatial 

positions and all spatial frequencies, or locally, over an arbitrarily chosen spatial frequency 

bands and four phases in steps of π/2. The normalized response of a model simple cell is 

expressed as: 

  
 

     

  
 

   
 

 
∑ ∑   

 
  

,                                                         Equation 3 



 15 

where   
  represents the response of a model simple cell with phase   and spatial frequency 

tuning i,   
  is the half-squared output of the linear operator that corresponds to the model simple 

cell,    represents the semisaturation constant. The half-square operation to the linear response 

(D. J. Heeger, 1992) is a special feature of this divisive normalization model. It means taking the 

square value of the half-wave-rectification of the linear response. This feature enables the model 

cell to account for the nonlinearity in the CRF. What’s more, this feature makes the model 

function equivalent to  =    
  

       , 

                                                           Equation 2 when n equals to 2 because the half-squared 

output is proportional to c
2 

. Heeger (1992) showed that this divisive normalization model can 

explain most of the neurophysiology data about CRF, contrast adaptation and suppression 

available at that time. 

Intercortical inhibition 

There is plenty of evidence from neurophysiology studies to support the divisive 

normalization model. Cells in the cat striate cortex have been reported to receive divisive 

inhibitory input from a pool of neurons (Bonds, 1989; De Valois & Tootell, 1983). A mask 

grating superimposed on a base grating was found to modify the base response of a striate 

cortical cell (Bonds, 1989; Morrone, Burr, & Maffei, 1982). When this mask grating is not at 

optimal orientation, the effect is usually inhibition. This inhibition effect can be orientation-

selective for narrowly tuned cells and more broad band for broadly tuned cells. The spatial 

frequency tuning of this inhibition effect is much broader than the spatial frequency passband of 

a typical cell. These effects suggest that inhibition is derived from a pool of neurons, not one. 

The inhibition is often referred to as cross-orientation or cross-spatial frequency inhibition 

(Carandini, Movshon, & Ferster, 1998). In another neurophysiological study, Robson (1988) 
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suggested that the mutual inhibition among striate neurons normalize effectively the responses of 

them with respect to overall contrast level (David J. Heeger, 1992). This intercortical inhibition 

is also thought to be the mechanism for striate neuron orientation selectivity (Bonds, 1989; 

Ringach, Hawken, & Shapley, 1997). Blocking the inhibition effect by the neurotransmitter 

gamma-aminobutyric acid (GABA) significantly reduces orientation selectivity of striate neurons 

(Sillito, 1977, 1979). 

Dipper function 

Behaviorally a phenomenon called “the pedestal effect”, which was observed and studied 

for a long time (Barlow et al., 1987; Foley, 1994; Foley & Legge, 1981; Legge, 1979; Legge & 

Foley, 1980; Nachmias & Sansbury, 1974; Stromeyer & Klein, 1974) can also be modeled as the 

result of a nonlinear response system. The pedestal effect was found in contrast discrimination, 

contrast masking, or pattern masking studies in which the increment threshold for discrimination 

was found to be lower than detection threshold when the base contrast was at low level. 

Nowadays the contrast masking paradigm is often referred to as “the pedestal masking 

paradigm”. It is often done by a 2-interval forced choice task (2IFC) in which observers need to 

identify the test interval that contains the target from two intervals that both contain the pedestal 

mask. The interval that only contains the pedestal mask is called null interval. Pedestal masking 

gets its name from the fact that it usually has the same spatial properties as the target. Measuring 

the increment thresholds at different base contrast levels and plotting them gives the increment 

threshold versus pedestal contrast (TvC) function. Because historically the TvC function has 

been used to also refer threshold versus external noise contrast in equivalent noise paradigm, to 

avoid confusion, in the current thesis I call the TvC function for patter masking experiment 



 17 

“pedestal masking function”. And the TvC function for equivalent noise experiments with this 

original term. 

The pedestal masking function exhibits a “dipper” shape defined by the increment 

threshold decreasing when the pedestal contrast is low. However, at pedestal contrasts higher 

than the detection threshold, the increment threshold increases as the pedestal contrast increases. 

As shown in Figure 3 the pedestal masking function is composed of two parts; the facilitatory 

part and the inhibitory part. When the pedestal is of moderate level, it facilitates the detection of 

the increment contrast and when the pedestal gets much higher than the detection threshold, it 

inhibits the contrast discrimination task. 

 

Figure 3. Pedestal masking function with the typical “dipper” shape. The figure is made by 

replotting Huang and Chen’s (2014) data. The dots are the increment thresholds for their 

contrast-modulation condition with 40% contrast. The curve is made from fitting their 

increment threshold data with divisive normalization model (see Chapter 1).  

  

The dipper shape of the Pedestal masking function implies that the contrast response 

system is not linear. If it was linear, the increment threshold should be independent from the 
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pedestal. The most popular explanations for the mechanism underlying this nonlinearity are: (1) 

a fundamental nonlinear transducer function with divisive inhibition, or (2) a change in 

uncertainty of the visual system together with increasing internal noise at high contrast levels. 

Both of these models can fit psychophysical data equally well.  

Nonlinear transducer functions 
Legge and Foley (1980) first developed a nonlinear transducer function model to account 

for the results from contrast masking experiments. An early form of their model included a linear 

response function, a nonlinear transducer function, and a decision process with additive internal 

noise. The nonlinear transducer function is expressed as such: 

              
        

       
 ,                                                Equation 4 

where E is the excitatory input to the nonlinear transducer, a1 and a2 are constants. This 

nonlinear transducer is accelerating at low contrast levels and compressive at high contrast levels 

which correspond to the facilitatory and the inhibitory parts of the pedestal masking function, 

respectively (Legge & Foley, 1980). Foley (1994) later incorporated divisive inhibition (David J. 

Heeger, 1992) into the contrast masking model and modified the nonlinear transducer function 

into the following form: 

  
  

    
,                                               Equation 5 

in which        ∑           represents the inhibitory input from a broadband of channels, p 

and q are constant exponents, and z is divisive gain control constant. The modification is mainly 

concerning the source of the inhibition. They also developed another model by raising the 

inhibitory activities from each channel to the power q before summing them. This modified 

version fits the data slightly better under some conditions. By manipulating the orientation of the 

pedestal masks and adding a second mask, the author demonstrated that the inhibition cannot be 
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a single mechanism; rather a divisive inhibitory mechanism that pools from a broadband of 

spatiotemporal channels to normalize the output fits the data much better. Thus the nonlinear 

transducer function for the contrast masking model developed in this study (Foley, 1994) is 

actually composed of two parts; the nonlinear accelerating excitation process to account for 

facilitatory effect of the pedestal mask and the divisive normalization process to account for the 

inhibitory effect.   

Explanation with uncertainty and multiplicative noise 
The other explanation for the dipper shape is also composed of two parts. The facilitatory 

effect is explained by the reduction of internal uncertainty in the visual system by the existence 

of the pedestal (Pelli, 1985). The inhibitory effect is accounted for by multiplicative noise that 

increases with contrast level of the stimulus only at high contrast levels (Nachmias & Sansbury, 

1974; Sanborn & Dayan, 2011).  

The uncertainty model was developed by combining a probability summation assumption 

and a decision variable assumption (signal detection theory, see next paragraph for introduction) 

(Pelli, 1985). When the uncertainty is high, the decision system has to monitor multiple channels, 

the relevant ones and the irrelevant ones, to pick one that has the largest decision variable. If the 

decision variable is larger than a certain subjective criterion, the system responds. When the 

pedestal is presented, the uncertainty is lower due to the information about position, spatial 

frequency, orientation etc. Reduced uncertainty results in reduced increment thresholds. Pelli has 

shown that the uncertainty model can explain the facilitatory effect but not the masking effect. 

The multiplicative noise that depends on the contrast level generates a larger increment contrast 

to be necessary for the discriminating task. 
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Nonlinear transducer model prevails 
Now I would like to come back to the discussion about nonlinear transducer function and 

uncertainty. There have been a few studies that have tried to distinguish these two potential 

mechanisms and they favored the nonlinear transducer. Some (Barlow et al., 1987) tried to 

manipulate the level of uncertainty by presenting the targets at a designated location or in a range 

of various sizes. Knowledge of the specific location of the stimulus reduced increment thresholds 

at all mask levels in general but did not eliminate the dip. However, location uncertainty is most 

likely not the only source of uncertainty. The uncertainty from spatial frequency and orientation 

channels could still cause the dipper shape. They also compared the human contrast 

discrimination data with measurements of contrast response function from monkey primary 

cortex single neuron recording and found promising similarities. These results suggest that the 

nonlinear transducer function is supported by neurophysiological data of the contrast response 

function of single neurons (Westrick & Landy, 2013).  

Another study (Kontsevich & Tyler, 1999) concluded that uncertainty cannot be the sole 

source of nonlinearity because pedestal masking functions of positive-signed and negative-

signed pedestal masks are very different phenomena. If uncertainty is the sole source of 

nonlinearity, the nonlinear functions from these two kinds of masks should be similar.  

While trying to determine the efficacy of their observer model-perceptual template model 

(PTM), Lu and Dosher (2008) also compared uncertainty and nonlinear transducer functions and 

favored the latter. In a PTM, besides the perceptual template which acts like a filter tuned to the 

stimulus, additive noise, and the decision making stage, they employed a nonlinear transducer 

function (half-wave rectified followed by an expansive transformation) and a multiplicative 

noise to account for the nonlinearity in the contrast response function and the equivalent external 
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noise results. They compared different observer models by fitting them to double-pass results 

and triple TvC results.  

The triple TvC method was introduced and incorporated into the equivalent noise 

paradigm. It is a method used to calculate internal noise level by adding different levels of 

external noise,  created by the same authors (Lu & Dosher, 2008). The TvC function here in the 

equivalent noise paradigm refers to detection or discrimination thresholds versus external noise 

contrast. Three TvC functions at three different performance levels (represented by signal-to-

noise ratio d’ or equivalently percent correct, see explanation in the next section Signal Detection 

Theory) are measured. From these three TvC functions, two threshold ratios are calculated and 

plotted at each external noise level. Results from this method reflect the nonlinearity in the visual 

system. 

The double-pass procedure, on the other hand, was developed to estimate the internal 

noise relative to external noise (D. M. Green, 1964). In this procedure, the same sequence of 

trials, which contain both signal and external noise, is repeated twice for each observer. It has 

been used to conclude that the internal noise is not a constant; rather it increases with the 

external noise and signal contrast levels (Burgess & Colborne, 1988; Lu & Dosher, 2008). 

However, it has been proved that the PTM with multiplicative internal noise and a contrast gain 

control model with constant internal noise are mathematically equivalent (Dao, Lu, & Dosher, 

2006) and both can account for the double-pass results (Lu & Dosher, 2008). 

 Although both nonlinear transducer function and uncertainty models can explain the 

triple TvC results, surprisingly the PTM with nonlinear transducer function outperforms 

uncertainty models in fitting double-pass results (Lu & Dosher, 2008). As for distinguishing 

between the multiplicative noise and the gain control mechanism, the current psychophysical 
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data that are available are not enough to decide whether internal noise changes with the stimulus 

level (F, 2016). Both the PTM and a nonlinear transducer function of the form of divisive gain 

control can account for the results from pattern-masking experiments, as well as double-pass and 

triple TvC experiments. 

To determine whether the internal noise is constant (additive noise) or variable with the 

signal strength (multiplicative noise), current available data derived from contrast discrimination 

tasks including pedestal masking paradigm are simply not mathematically powerful enough. 

Either additive or multiplicative noise could possibly account for the pedestal masking functions. 

In his recent review, Kingdom (2016) proposed an approach to study this question by comparing 

data of discrimination experiments to difference-scaling experiments. The principle of 

difference-scaling experiment is to adjust the stimulus level until the differences between the two 

upper and lower stimuli are perceived as identical. This difference-scaling performance is not 

subject to the influence of internal noise. Thus, if the shapes of the transducer functions 

generated by discrimination and scaling paradigms are same, the internal noise is constant for the 

current stimuli and task. In the review, Kingdom showed that the transducer functions from two 

early studies (Whittle, 1986, 1992) about discrimination and scaling , respectively, are almost 

identical. This suggests constant internal noise for perceived luminance in the studies. This 

approach provides a possible solution for determining whether perceptual internal noise is 

constant. Applying it to second-order processing can be an interesting future research topic. 

Based on the aforementioned studies that favor contrast-gain control over uncertainty 

models, I chose the nonlinear transducer model with a constant internal noise assumption when 

modeling second-order nonlinearity. 
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Signal detection theory 

Regardless which mechanism is used to explain the dipper shape of the pedestal masking 

function which reflects the underlying nonlinearity in the visual system, one can take      as the 

output/response of the processing system. c denotes the stimulus contrast level. When this 

response gets to the decision-making stage, it is subjective to internal noise from various sources, 

which is a fundamental feature of the brain (Faisal, Selen, & Wolpert, 2008). In this thesis, the 

internal noise at the decision making stage is modeled as a whole; its specific source will not be 

mathematically studied. The signal detection theory (SDT), originated from engineering field, 

describes the distribution of internal noise as a Gaussian distribution with zero mean and 

constant standard deviation σ (constant additive noise assumption). Thus in the 2-interval forced 

choice (2IFC) task of the pedestal masking paradigm, the responses to the stimuli in the test 

intervals and the null intervals can be described by Gaussian distributions with means f(m) and 

f(m+t), respectively, and a standard deviation σ. m is the contrast of the pedestal mask and t is 

the contrast of the target. In each trial, response to both the target and the pedestal mask in the 

test interval under the effect of internal noise is  

                                         ;                                                           Equation 6 

and in the null interval response to only the mask is 

             ,                                                               Equation 7 

where Nint ~ N(0, σ
2
) is a random variable sampled from the normal distribution of internal noise. 

In Figure 4(a), the probability density distributions of test-interval responses and null-

interval responses are shown in standard deviation units. The two distributions are normalized in 

a way that the null-interval distribution is centered on zero while the test-interval distribution on 
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           . In standard deviation unit, the standard deviations of both distributions are 1. 

The decision variable is defined as the signal-to-noise ratio that is  

   
           

 
.                                                   Equation 8 

In the standard deviation units, d’ is the distance between two means.  

 

Figure 4. Illustration of how d’ and percent correct are related under the SDT. The probability 

density functions are plotted against response magnitude on the standard deviation (SD) units. 

(a) The probability density function of the response magnitude to the pedestal mask is centered 

on zero and that to the target plus mask is centered on the response difference between the 

test and the null intervals. The SD is equal for the two distributions and has a value of 1. (b) The 

probability density function of the difference between the two distributions. It is centered on 

the difference of responses and has a SD of √ . The signal-to-noise ratio d’ equals to f(t+m)-

f(m). The probability that the response magnitude is larger in test interval is the grey area in (b) 

which can be calculated as   
  

√ 
 . 
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The SDT provides a way of linking the percent correct to the magnitude of the stimuli in 

psychophysical experiments so that one can mathematically model the data (F. A. A. Kingdom & 

Prins, 2016). In the 2IFC task, the observer’s criterion is to choose the interval with larger 

response. Then if the response in the test interval is larger than the null interval, the answer is 

correct. That is to say, percent correct on the task, which is the probability that a certain observer 

picks the test interval correctly, is equal to the probability that the response of test interval minus 

null interval is larger than zero. The probability density distribution of the difference of the two 

distributions of the two intervals is shown in Figure 4(b) in the same standard deviation units. 

According to the variance sum law, the mean of the difference distribution equals to the 

difference of the two means, and the standard deviation of it equals to √      √   that is 

√  on the standard deviation unit. Therefore, the probability of the difference distribution 

function having a value larger than zero is   
  

√ 
 .      is the cumulative probability 

distribution. This value is also the percent correct of the task overall. Because d’ is a function of 

stimulus magnitude, in this way, the percent correct and the stimulus magnitude are linked. For 

each arbitrarily chosen performance level d’, there is a percent correct value corresponding to it. 

By incorporating the SDT into the modeling process, one can build a complete observer 

model as well as studying the internal noise level under different task and perceptual conditions. 

 

Second-order processing 

Although neurons with simple receptive fields have been studied extensively, the 

physiological mechanism of second-order processing is not very clear. Second-order processing 

cannot be mediated by these neurons with separate excitatory and inhibitory regions in their 
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receptive fields. Such linear filter model cannot account for second-order processing because the 

average luminance level is identical on both sides of a second-order boundary so that the 

activation and inhibition within a linear receptive field are equal. Figure 1f shows that a linear 

filter tuned to the spatial frequency of the second-order information will give no response. 

Second-order information is by definition a modulation of first-order information. In the 

literature, a second-order stimulus comprises two components; a carrier that consists of first-

order information and an envelope, which modulates the carrier. The modulation can be contrast-

defined, texture-defined, motion-defined, etc. The kind of second-order information that has 

been most studied is contrast-modulation. 

Different mechanism than first-order processing 

Psychophysical results 
It is generally agreed that second-order processing is done by a different mechanism to 

that responsible for first-order processing. Psychophysical methods to investigate whether two 

kinds of stimuli are processed with the same mechanism include employing masking, facilitation 

and adaptation paradigms between these two stimuli. The existence of any of these effects 

between two different stimuli could be evidence for identical mechanism. With the masking 

approach, we found no mutual masking effect between first-order and second-order stimuli 

regardless of which one constitutes the mask (Allard & Faubert, 2007). Similarly, we found no 

facilitation between the two kinds (Schofield & Georgeson, 1999). Adaptation to one kind of 

stimulus does not elevate the threshold of the other (Nishida, Ledgeway, & Edwards, 1997). 

Furthermore, alternating between luminance-defined and contrast-defined frames in a multi-

frame motion sequence makes observers unable to tell the motion direction (T. Ledgeway & 
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Smith, 1994). Likewise, second-order motion has no effect on extracting first-order global 

motion (Edwards & Badcock, 1995). 

Neurophysiological and imaging results 
Neurophysiology also provides support for separate mechanisms for first- and second-

order processing. Although no neurons were found to respond exclusively to second-order 

envelope information (C. L. Baker, Jr. & Mareschal, 2001), about 50% of the neurons in cat A18 

and less in A17 (Mareschal & Baker, 1998b; Zhou & Baker, 1993), and about 30% of neurons in 

primate V2 (G. Li et al., 2014) respond to second-order envelope information. However, these 

envelope-responsive neurons also respond to luminance gratings. The spatial frequency and 

orientation tuning to first-order luminance grating matches that was found for the envelope, 

however the carrier tuning is 5-30 times higher than that of the envelope. (G. Li et al., 2014; 

Mareschal & Baker, 1999; Zhou & Baker, 1996). There is no fixed ratio between the optimal 

spatial frequencies of the carrier grating and either the luminance grating or envelope grating in 

cat Area 17,18, and primate V2. This independence of first-order luminance, second-order carrier 

and second-order envelope tuning even within the same cells suggests separate processing 

streams (C. L. Baker, Jr. & Mareschal, 2001). Furthermore, recent studies by Rosenberg and 

colleagues found that this dual processing of first-order and second-order carrier information 

while having different tuning properties in cortex may be inherited from LGN Y cells 

(Rosenberg, Husson, & Issa, 2010; Rosenberg & Issa, 2011). Human fMRI studies also reported 

that different areas in the visual cortex respond differently to first- and second-order motion 

(Smith, Greenlee, Singh, Kraemer, & Hennig, 1998). fMRI adaptation of one kind does not 

reduce the response level of the other kind (Ashida, Lingnau, Wall, & Smith, 2007; Larsson et 

al., 2006). In a lesion study, selective deficits for first- and second-order motion processing were 

reported in two human patients (Vaina, Cowey, & Kennedy, 1999). 
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Temporal properties 

In terms of temporal properties, second-order processing has been reported to be more 

sluggish than its first-order counterpart by some authors (Lu & Sperling, 1995) but not by others 

(Schofield & Georgeson, 2000). Although there is no consensus in the temporal properties from 

psychophysical studies, in two electrophysiological studies, one using visually evoked potentials 

(VEP) (Calvert, Manahilov, Simpson, & Parker, 2005) and another single cell recording 

(Mareschal & Baker, 1998a) found longer latency for second-order processing. These latter 

results imply that first-order and second-order processing undergo different processes. 

Brain locus of processing 

Unlike first-order processing whose neural substrate  is  attributed to the linear receptive 

fields of the simple neurons in the primary visual cortex (V1 or cat A17), results about the 

location where second-order processing occurs are of less consistent form. Nevertheless, it is 

generally agreed that second-order processing involves higher visual areas downstream from V1 

though V1 may still make an important contribution. The techniques researchers have employed 

to investigate this question include neurophysiology, brain imaging and lesion analysis.  

One interesting question to ask when studying second-order processing is whether 

different kinds of second-order information are processed by the same neurons in the same 

cortical area, a so called cue-invariant area (Self & Zeki, 2005). This question is not only about 

understanding the processing mechanism(s) for second-order information in general. It also 

provides insights about whether one can generate his or her conclusion based on results from 

studying a certain kind of second-order stimulus to second-order processing in general. In terms 

of different kinds of second-order stimuli, there is an important distinction between second-order 



 29 

motion and motion-modulated (or motion-defined) second-order information. Second-order 

motion information represents spatiotemporal variations in second-order features, such as 

contrast and texture. A typical second-order motion stimulus that was used early in the literature 

is a patch of flickering dots moving on the background of similar static dots. The average 

luminance is the same for the moving patch and the background. Motion-defined second-order 

information, on the other hand, is created by different motion velocities. For example, a motion-

modulated boundary has components on each side of it moving at different velocities. I believe 

categorizing second-order information with respect to the specific type of modulation is a more 

reasonable approach. Because it corresponds to the Linear-nonlinear-linear model for second-

order processing (see introduction in the later section) in terms of the responses of the first-stage 

linear filters fed into the second-stage linear filters. In the Literature Review, I survey both of 

these two kinds of second-order information. However, in three of the four articles that compose 

this thesis, the stimulus is second-order motion-modulation instead of second-order motion. 

Previous studies about the locus or physiological basis of second-order processing have 

almost all found that it starts from the primary visual cortex (V1) and extends to involve higher 

visual areas in the extra-striate cortex. For second-order motion, the earliest finding is that 

neurons in the middle temporal (MT) area are responsive to texture-modulated motion and are 

direction-selective (Albright, 1992). Also using single neuron neurophysiological technique, 

Zhou and Baker found neurons in cat A17 and A18 responded to the contrast-modulated moving 

envelope (Zhou & Baker, 1993, 1994). In an early human fMRI study, many areas including V1, 

V2, V3, VP, V3A, V3B and MT are all found to respond to second-order; and only V3, VP, V3A 

and V3B respond stronger to second-order than first-order motion. For motion-modulated 

second-order boundaries, selective response over first-order boundaries was found in V1, V2, V3 
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and VP (Reppas, Niyogi, Dale, Sereno, & Tootell, 1997) in a human fMRI study. Likewise, areas 

V3A, V3B, LO1, LO2 and V7 show orientation-selective adaption in another fMRI study 

(Larsson et al., 2010). For stationary second-order information, Larsson and colleagues (2006) 

reported orientation-selective adaptation in many areas for both contrast- and orientation-

modulated second-order gratings using a human fMRI approach. In a few areas including VO1, 

V3A, V3B and LO1, the adaptation value was also found to be larger than V1. This result 

suggests that there are additional processes involved in static second-order processing after V1 

(Larsson et al., 2006). Also using fMRI methods, areas V4 and V3A were found to exhibit 

stronger activities for texture-defined boundaries than plain textures without boundary (Kastner, 

De Weerd, & Ungerleider, 2000). Neurons in areas V1, V2, V3 and V4 have also been reported 

to be selective to spatial frequency (Hallum, Landy, & Heeger, 2011). A lesion study in monkeys 

also reveals the critical role of V4 for second-order texture discrimination (Merigan, 2000).  

In summary, all the results about selective responses and selective adaptation to one or 

other kinds of second-order information, as well as to a certain attribute of it (such as spatial 

frequency or orientation) collectively imply that second-order processing stems from early visual 

areas V1 and V2 and involves multiple areas, depending on the type of second order modulation, 

in the extra-striate cortex. 

 

Second-order models 

Modulation transfer function 
In psychophysical studies characterizing the properties of second-order processing, 

researchers have measured the modulation transfer function (MTF). Similar to the contrast 

sensitivity function for first-order processing, the MTF is the sensitivity across different 
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modulation (envelope) spatial frequencies. Although there are several inconsistencies due to the 

choice of stimuli and the range of spatial frequencies of the carrier and the envelope, the MTF 

was found to be generally a low-pass one for both contrast-modulation (Jamar & Koenderink, 

1985; Schofield & Georgeson, 1999; Sutter, Sperling, & Chubb, 1995) and orientation 

modulation (F. A. Kingdom, Keeble, & Moulden, 1995; Landy & Oruc, 2002). A smooth MTF 

could signify a single second-order mechanism that operates on the whole spatial frequency 

range with preference on a portion of that whole range. It could also be, similar to first-order 

contrast sensitivity function, the summation of various modulation sensitivity functions of 

multiple second-order mechanisms each tuned to a specific narrower spatial frequency 

bandwidth.   

Linear-nonlinear-linear model 
This idea is consistent with the linear-nonlinear-linear (LNL) model. This modeal  

originates from the observation that second-order motion or texture information which could not 

be accounted for by a single linear filter model could be captured by a three-stage model that 

involves a first linear filter followed by a nonlinearity of any format and a second linear filter 

that process the nonlinearly transferred output of the first linear filter (Chubb & Sperling, 1988; 

Sutter, Beck, & Graham, 1989). The model is widely used to explain second-order processing 

(N. Graham & Sutter, 1996, 1998, 2000; N. Graham, Sutter, & Venkatesan, 1993; N. Graham, 

Sutter, Venkatesan, & Humaran, 1992; Sutter & Graham, 1995; Sutter et al., 1995; Wilson, 

1994).  

Tuning properties of the linear filters 
Second-order mechanisms that are selective to spatial frequency and orientation 

(Arsenault, Wilkinson, & Kingdom, 1999; N. Graham et al., 1993; Kwan & Regan, 1998; Landy 

& Oruc, 2002; Sutter et al., 1995), like their first-order counterparts, were found with various 
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methods, such as adaptation (Kwan & Regan, 1998), masking (Arsenault et al., 1999) and sub-

threshold summation (Landy & Oruc, 2002). A relatively recent study from our lab employed the 

discrimination at detection threshold approach to show that the bandwidth of these spatial 

frequency and orientation tuning channels are 1-2 octaves for spatial frequency and 30° for 

orientation (Alexandre Reynaud & Hess, 2012). 

It has also been shown that second-order mechanisms are tuned to the carrier spatial 

frequency and orientation. Psychophysics studies using narrow-band (N. Graham et al., 1993) or 

band-pass (Dakin & Mareschal, 2000) carriers reveal that the first stage filter is tuned to both 

spatial frequency and orientation. In neurophysiology, Baker and colleagues (Mareschal & 

Baker, 1999; Zhou & Baker, 1996) found that envelope-responsive neurons are tuned to carrier 

spatial frequencies that are much higher than their optimal envelope spatial frequency. These 

neurons also show broad bandpass tuning to carrier orientation (Mareschal & Baker, 1998a, 

1999).  

Intermediate nonlinearity 
The intermediate nonlinearity between the two linear filter stages is necessary because 

otherwise pooling outputs from different first-stage linear filter will cancel, and the two linear 

filters will collapse to only one linear filter. The second-order modulation will not be extracted 

by this one linear filter. Mathematically, however, almost any kind of nonlinearity would serve 

the purpose (Huang & Chen, 2014) and often researchers simply employed point-wise half-wave 

or full-wave rectification, it has been suggested that an expansive spatial nonlinearity (N. 

Graham, 1994; N. Graham & Sutter, 1998) and a compressive nonlinearity of the divisive 

normalization form between first-order channels (N. Graham & Sutter, 1996, 1998, 2000; Olzak 

& Thomas, 1999) are involved as well.  
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In studies about texture segregation, the “element arrangement textures” are often used. 

These are stimuli in which the texture boundaries are created only by different arrangements of 

the elements. Elements can vary in size, contrast, spatial frequency and orientation in different 

stimuli. It is believed that square element textures are processed by first-order simple cells 

whereas Gabor element textures are processed by second-order complex cells tuned to the 

fundamental spatial frequency of the texture information. An area experiment was used to study 

the spatial nonlinearity by investigating the area-contrast trade-off (N. Graham & Sutter, 1998). 

For square element textures, the trade-off is linear. Gabor element textures, on the other hand, 

exhibit a trade-off between area size and Gabor contrast level. This shows that the spatial 

nonlinearity is a power function with an exponent in the range from 2 to 4. In a later study by the 

same authors, a series of “constant-difference” experiments with element arrangement textures 

were conducted in the effort to distinguish between an early local compressive nonlinearity 

before the first-order channels and a normalization network in the form of divisive inhibition 

after the first-order channels. In the experiment, the amount of contrast difference between two 

types of elements is constant while they both vary together. By comparing the results with the 

results from area experiments, they found that only the divisive normalization model can explain 

the results from both experiment. When contrast is in the middle-high range, compressive 

nonlinearity overwhelms the expansive nonlinearity, thus in the constant-difference experiment, 

the ends of the segregation curves show clear compressiveness. In the same contrast range, 

because the spatial nonlinearity is decided by the spatial pooling within complex channels, it is 

independent from the normalization network. Thus, an intermediate nonlinearity of expansive 

form would explain the result of expansive power functions in the area experiment. Graham and 

colleagues showed that the nonlinearity of a divisive normalization form as well as an expansive 
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nonlinearity between channels are needed for second-order element-arrangement texture 

segregation. 

Canonically (F. A. Kingdom et al., 1995; Landy & Oruc, 2002; Sutter et al., 1995), it is 

assumed that the modulation information in the envelope is successfully and faithfully 

demodulated by the first two stages-the first linear filters followed by the intermediate nonlinear 

stage. Then the second linear filters can successfully extract the modulation information. My 

studies about second-order nonlinearity are also based on this assumption. When modeling the 

nonlinearity, the input to the nonlinear transducer function is equal to the modulation contrast. 

Identical or different mechanisms for different second-order stimuli? 
In a classical LNL model, the second linear filters will respond to spatiotemporal 

variations in any second-order modulation dimension (F. A. Kingdom et al., 2003). This 

flexibility implies that different types of second-order modulations are processed by the same 

mechanism. Indeed, there is evidence in the literature from psychophysics, neurophysiology and 

imaging studies that supports this idea of identical mechanism for different types of second-order 

modulations. Usually, studies that bear upon this topic are done with the goal of investigating the 

processing of second-order, complex boundaries. Complex boundaries that were studied could be 

contrast-defined, texture-defined (which includes orientation-, size, spatial frequency-defined), 

motion-defined etc. Studying the processing of complex boundaries is essentially the same as 

studying second-order modulation. 

 For boundary processing, the idea of “cue-invariant” processing has been advocated for 

many years. Weak mutual facilitation between the processing of contrast-modulation and 

orientation-modulation was reported in a psychophysical study (Schofield & Yates, 2005). There 

is also cross-adaptation effect between luminance- and contrast-defined boundaries, as well as 

between luminance- and orientation-defined boundaries (Filangieri & Li, 2009; Hawley & 
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Keeble, 2006). Tilt after effect was also found between pairs of motion-, luminance-defined 

boundaries and illusory contours (Berkley, Debruyn, & Orban, 1994). Neurophysiological 

experiments have also shown that there are neurons in various regions in the visual cortex that 

respond in a cue-invariant manner to more than one types of contours, for example primate V2 

(Leventhal, Wang, Schmolesky, & Zhou, 1998; Marcar, Raiguel, Xiao, & Orban, 2000) and 

inferior temporal (IT) region (Sary, Vogels, Kovacs, & Orban, 1995) and cat Area 18 (Gharat & 

Baker, 2012; Song & Baker, 2007). Specifically in cat Area 18, neurons show similar selectivity 

to spatial frequency and orientation for both envelope and carrier between contrast-modulation 

and motion-modulation (Gharat & Baker, 2012). In an fMRI study, boundaries defined by 

luminance and motion showed similar radial biases that involved a stronger blood oxygen level-

dependent (BOLD) signal in the parts of the retinotopic map that have radial orientations with 

respect to the fixation point. Although motion processing was shown to involve a separate 

pathway to that of static luminance information (Derrington, Allen, & Delicato, 2004; Goodale 

& Milner, 1992), all the aforementioned studies suggest that there is one general mechanism for 

second-order modulation/boundary processing. 

However, there is also evidence that second-order stimuli are processed by at least partly 

separate mechanisms. A study that tested the pedestal effect between different types of second-

order modulations (F. A. Kingdom et al., 2003) found no facilitative effect when the pedestal 

mask was of different type as the target. In a later study, however, Schofield and Yates (2005) 

argued that the lack of facilitation is due to the phase relationship between the carrier and 

envelope and pedestal levels that Kingdom et. al. used. 

In an EEG study, visual evoked potentials (VEPs) were used to compare second-order 

modulations of different types (Babenko & Ermakov, 2015). The authors found that contrast-, 
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orientation- and spatial frequency-modulations had all different parameters for their evoked 

response. This result implies that different second-order modulations involve different brain 

processes suggesting separate mechanisms for various second-order modulations.  

Evidence also comes from neuroimaging results. Two fMRI studies done by Larsson and 

colleagues (Larsson et al., 2010; Larsson et al., 2006) showed that orientation-selective 

adaptation to different types of second-order boundaries is elicited in different cortical visual 

areas. Overlap exists but is very limited. For motion-modulation, fMRI adaptation exhibits in 

areas including V3A/B, LO1 (lateral occipital), LO2 and V7; while for contrast-modulation and 

orientation-modulation, the areas are V1, V2, V3, V3A/B, LO1, hV4 and VO1. Beyond this, a 

monkey lesion study reported that the removal of MT affected the processing of kinetic 

boundaries but not luminance-defined boundaries (Marcar & Cowey, 1992). Importantly, this is 

not due to local motion processing being impaired – when the two motion directions are 

orthogonal and not opposite, the ability of using motion-defined boundaries in shape 

discrimination remains intact.  

Whether different kinds of second-order modulations are processed by a single 

mechanism is still an open question. In this thesis, the first, second and fourth chapters all 

contribute to the resolution of this question by investigating the nonlinearities involved in these 

different types of second-order processing. 

Second-order nonlinearity 

  The pedestal effect that is the dipper shape in TvC function has also been found in 

second-order processing (Huang & Chen, 2014; F. A. Kingdom et al., 2003; Schofield & 

Georgeson, 1999; Schofield & Yates, 2005). In second-order pedestal masking experiments, the 
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TvC function refers to increment threshold of the modulation versus contrast of the pedestal 

modulation. The existence of such a dip implies that the output of second-stage filters is also 

subjected to a nonlinearity which is accelerate/expansive at low modulation levels and 

decelerate/compressive at high modulation levels.  

The earliest application of pedestal masking paradigm to second-order processing is 

probably the study in which gain control mechanisms in first- and second-order motion 

processing was studied (Lu & Sperling, 1996). However, a static pedestal grating was used to 

mask a second-order motion grating (contrast-modulated) and no facilitative or inhibitory effect 

was found. I think it is reasonable that no pedestal effect was found because the target (moving 

grating) and the pedestal (static grating) are not processed by the same mechanism, it makes 

sense that they do not undergo a same nonlinearity. Contrary to what the authors’ claim, I think 

this result cannot prove that the envelope modulation is not involved in the gain control network 

in second-order processing. 

The facilitatory part of the pedestal effect can be used to investigate whether the target 

and mask stimuli are processed by the same mechanism. If facilitation exists when the mask and 

the target represent different types of information, one can conclude that they are processed by at 

partially overlapping mechanisms. If cross-facilitation does not exist, the mask and the target are 

probably processed separately. Following this rationale, first-order luminance-modulation and 

second-order contrast modulation have been shown to be processed by different mechanisms 

(Schofield & Georgeson, 1999). Similarly, three types of second-order stimuli, contrast-, 

orientation- and spatial frequency-modulations, are reported to be processed by independent 

mechanisms (F. A. Kingdom et al., 2003). These two studies, although they reported the 
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existence of second-order pedestal effect, they did not specifically try to mathematically model 

the nonlinearity involved in second-order processing.  

The only study (Huang & Chen, 2014) that has systematically studied second-order 

nonlinearity did so recently by modeling the pedestal masking functions of first-order luminance-

modulation and second-order contrast-modulation, respectively. The model they built for second-

order processing is composed of five stages: 1. Early linear filters that extract carrier 

information; 2. Early nonlinear response that is half-wave rectification followed by a nonlinear 

transform of divisive inhibition form; 3. Late linear filters that operates on the contrast-

modulation information; 4. Late nonlinear response that is of same form of the earlier one; 5. 

Decision making stage that accords to signal detection theory with internal noise of fixed value 

1. Even though they state that contrast-modulation may not need the late linear filters and the late 

nonlinear response to be extracted, these two stages are of important interest for the current 

thesis. One important conclusion of this study is that divisive normalization is needed for both 

first- and second-order processing.  

The second-order nonlinearities of other types of second-order modulations besides 

contrast-modulation have not been studied and modeled. Modeling the second-order nonlinearity 

not only contributes to understanding the full picture of second-order processing, it can also 

provide insights about the question of whether different types of second-order information are 

processed by identical or separate mechanisms. The form of the nonlinear transducer function 

represents the shape of the nonlinearity which reflects the underlying divisive normalization 

network and interneuron connectivity. Thus different nonlinearities could suggest different 

mechanisms for different second-order modulations. In this thesis, I will present the pedestal 

masking functions of three different kinds of second-order modulations; contrast-modulation 
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(CM), orientation-modulation (OM) and motion-modulation (MM) in Chapter 1 and Chapter 2. 

Through modeling the data with a nonlinear transducer function of divisive normalization form, I 

found the same shape of nonlinearity for CM and OM, but a different nonlinearity for MM.   

Amblyopia 

Besides investigating the second-order processing in normal human vision, this thesis 

also studied second-order vision of amblyopic patients because it provides a better understanding 

of this neural developmental deficit as well as provides an insight into understanding normal 

visual function and neural plasticity. 

General Introduction 

Amblyopia is a neural developmental disorder of visual system. It is caused by disrupted 

or abnormal visual input in early life. Clinically amblyopia is often diagnosed by reduced visual 

acuity in the disrupted eye without any organic ocular disorder. Usually an interocular difference 

of two lines or more in an eye chart when both eyes are optically corrected to their best, is 

enough for the diagnosis. Amblyopia is typically categorized into three types-strabismus, 

anisometropia and deprivation, according to the specific cause of the disorder. Strabismus, also 

referred to as “crossed eyes”, is a vision disorder due to misalignment of the two visual axes that 

causes uncorrelated visual input from the two eyes. Anisometropia is a condition where two eyes 

have unequal refractive errors. Deprivation occurs because of a physical obstruction, such as 

cataract blocking the view of one eye or both. For some patients, more than one condition may 

apply. The most common combination is strabismus and anisometropia (Simons, 2005).  
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Low-level deficits 
Although the typical diagnosis is done according to visual acuity loss, amblyopia has 

been reported to affect a wide range of visual functions from low level to higher levels, mainly in 

the amblyopic eye (AE). Low-level AE deficits include not only first-order contrast sensitivity 

loss (Bradley & Freeman, 1981; Hess, 1979; Hess & Howell, 1977; Levi & Harwerth, 1977), but 

also spatial distortion (Bedell & Flom, 1981; Hess, Campbell, & Greenhalgh, 1978; Lagreze & 

Sireteanu, 1991).  

Higher-level deficits 
Higher-level, more complex visual functions are also affected extensively and many of 

which have been reported to show deficits in the fellow-fixing eye (FE) as well (see introduction 

in the later session). Higher-level deficits include multiple object tracking (Ho et al., 2006; Levi 

& Tripathy, 2006; Tripathy & Levi, 2008), global motion integration (Aaen-Stockdale & Hess, 

2008; Hess, Mansouri, Dakin, & Allen, 2006; Ho et al., 2005; C. Hou, Pettet, & Norcia, 2008; 

M. R. Joshi, Simmers, & Jeon, 2016; Meier, Sum, & Giaschi, 2015; Simmers, Ledgeway, Hess, 

& McGraw, 2003), global form processing (Dallala, Wang, & Hess, 2010; Hess, Wang, 

Demanins, Wilkinson, & Wilson, 1999; Husk & Hess, 2013; M. Joshi, Simmers, & Jeon, 2015; 

M. R. Joshi et al., 2016; Lewis et al., 2002; Mansouri & Hess, 2006; Rislove, Hall, Stavros, & 

Kiorpes, 2010; Simmers, Ledgeway, & Hess, 2005), second-order perception including contrast-

modulation (CM) (Mansouri, Allen, & Hess, 2005; E. H. Wong, Levi, & McGraw, 2001), 

second-order motion processing in which the stimuli can be contrast-, orientation, texture-

modulated (Aaen-Stockdale, Ledgeway, & Hess, 2007; Ellemberg et al., 2005; Simmers et al., 

2003; Simmers, Ledgeway, Hutchinson, & Knox, 2011; Simmers, Ledgeway, Mansouri, 

Hutchinson, & Hess, 2006a; Tang et al., 2014), as well as motion-defined form which I think is 

largely the same as second-order motion-modulation (MM) (D. Giaschi, Chapman, Meier, 
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Narasimhan, & Regan, 2015; D. E. Giaschi, Regan, Kraft, & Hong, 1992; Hayward, Truong, 

Partanen, & Giaschi, 2011; J. Wang, Ho, & Giaschi, 2007), texture-defined form (Aaen-

Stockdale & Hess, 2008; J. Wang et al., 2007). Although it is argued that pure integration of 

motion directions or element orientations can be normal in amblyopia, deficit for global 

processing only occurs when external noise is added (Hess et al., 2006; Mansouri et al., 2005; 

Mansouri, Allen, Hess, Dakin, & Ehrt, 2004). Even higher-order abnormalities in amblyopia 

have been reported for attention (Popple & Levi, 2008) and decision making (Farzin & Norcia, 

2011). 

What’s more, amblyopic patients often have poor binocular vision as well. Many studies 

have shown that amblyopes have poor binocular summation of at contrast detection threshold 

(Levi, Harwerth, & Manny, 1979; Levi, Harwerth, & Smith, 1980; Pardhan & Whitaker, 2000). 

It was thought that binocular mechanism may be lost in amblyopia. However in a later study, 

binocular summation in strabismic amblyopia was found to be intact when the contrast level was 

normalized to equalize detectability in the two eyes (D. H. Baker, Meese, Mansouri, & Hess, 

2007).  

There are many recent reviews (Bretas & Soriano, 2016; Hamm, Black, Dai, & 

Thompson, 2014; Joly & Franko, 2014; Levi, 2013; Meier & Giaschi, 2017; Tsirlin, Colpa, 

Goltz, & Wong, 2015) that have good introduction about diagnosis, causes and clinical 

symptoms. What is of main concern in this thesis, is that the amblyopic deficit for second-order 

processing and its implications for neural basis of the disorder as well as any implication this 

might have for second-order mechanisms of normal vision. 
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Neural substrates for amblyopic deficits 

Primary visual cortex deficit 
As mentioned earlier, the AE shows deficits for contrast sensitivity, particularly at high 

spatial frequencies (Hess & Howell, 1977; Levi & Harwerth, 1977; Bradley & Freeman, 1981). 

This loss in contrast sensitivity is thought to occur in the striate cortex. Neurons in the striate 

cortex show similar reduced contrast sensitivity. In human primary visual cortex (V1), the AE 

shows reduced activity in VEP (Levi & Harwerth, 1978) especially at high spatial frequencies. 

Lower resolution and contrast sensitivity are also found in cat striate cortex neurons (Eggers & 

Blakemore, 1978). Besides reduced activity, there is also an imbalance in terms of the 

interconnections between regions in the visual system. Much fewer cells in cat striate cortex are 

driven by the eye that was deprived since birth (Kiorpes, 2006; Wiesel & Hubel, 1963). Also in 

the striate cortex of strabismic cats, there are fewer binocular neurons (Chino, Smith, Yoshida, 

Cheng, & Hamamoto, 1994; Hubel & Wiesel, 1965). Synchronization of population response is 

also reduced in AE-driven neurons (Lowel & Engelmann, 2002; Roelfsema, Konig, Engel, 

Sireteanu, & Singer, 1994) as well.   

Extra-striate cortex deficits 
As reflected by higher-level deficits, amblyopia does not only affect primary visual 

cortex. Similar to the striate cortex, neurophysiological studies found that ocular dominance in 

the extrastriate cortex also shifted towards the FE for (Schroder, Fries, Roelfsema, Singer, & 

Engel, 2002). The level of ocular dominance change is not equivalent in regions that belong to 

the dorsal and ventral pathways respectively (Schroder et al., 2002). Another neurophysiological 

study compared the behavioral and neuronal performance in area MT/V5 of macaque monkeys. 

The authors (El-Shamayleh, Kiorpes, Kohn, & Movshon, 2010) found that, unlike normal MT 

neurons which are binocular, most MT neurons of amblyopic monkeys have strong preference 
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for FE input and their response to coherent motion in the AE greatly reduced compared with the 

FE. Furthermore, an fMRI study (Barnes, Hess, Dumoulin, Achtman, & Pike, 2001) 

demonstrated that the cortical deficit affected large regions of the extrastriate cortex.  A recent 

study involving multiple-object tracking found less BOLD activity in MT complex in both eyes 

of the amblyopes and reduced activity in the AE in anterior intraparietal sulcus and frontal eye 

fields  (Secen, Culham, Ho, & Giaschi, 2011).  

Since second-order processing is thought to involve extrastriate cortex (see earlier 

introduction about second-order processing), studying second-order processing in amblyopia 

provides a good way to speculate deficits in the extrastriate cortex.  

Second-order processing deficits 

Many studies have reported that amblyopia shows second-order deficits that cannot be 

accounted to the loss of first-order sensitivity (Ellemberg et al., 2005; E. H. Wong et al., 2001). 

Wong and colleagues (2001) inferred that amblyopia exhibits extra loss for second-order 

contrast-modulation from the results that both AEs and NAEs showed increased detection 

threshold for second-order stimulus when the carrier visibility was equated for the amblyopes 

and normal control eyes. The evidence suggests that when first-order loss is accounted for by 

equating the detectability of first-order carrier for AEs, FEs, and the normal eyes (NEs), 

amblyopia still shows deficits in processing second-order contrast modulation for both detection 

(Mansouri et al., 2005; E. H. Wong et al., 2001) and orientation-discrimination (Mansouri et al., 

2005).  

Ellemberg et al. (2005) measured the motion direction discrimination for both first-order 

luminance-modulated and second-order contrast-modulated sine-wave gratings in patients with 
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early monocular or binocular visual deprivation due to congenital cataracts. Sensitivity loss for 

second-order motion was greater than its first-order counterpart (Ellemberg et al., 2005). Global 

motion deficits are also found to exist for both first-order and second-order elements (Aaen-

Stockdale et al., 2007; Simmers, Ledgeway, Mansouri, Hutchinson, & Hess, 2006b). In a 

relatively more recent study (Simmers et al., 2011), the sensitivity for second-order motion 

defined by contrast-, flicker-, size- or orientation-modulation in a large spatial and temporal 

frequency range was measured in strabismic amblyopia. It was found that the “window of 

visibility” of second-order motion in the AE reduced more than that of the first-order motion for 

all four kinds of modulations. What’s more, second-order motion defined by some texture 

modulations, e.g. orientation, are almost invisible for severe amblyopes (Simmers et al., 2011). 

The same second-order motion (contrast-modulated gratings) deficit was found in a group of 

anisometropic amblyopes as well (Tang et al., 2014). 

For second-order motion-modulation, an early study found that both the AEs and the FEs 

of amblyopic children shows reduced ability to recognize motion-defined letters (D. E. Giaschi 

et al., 1992). In adults, the deficit also exists for the AEs (D. E. Giaschi et al., 1992). More 

studies have found the ability to detect motion-defined simple shapes is degraded in both eyes of 

the amblyopes (Hayward et al., 2011; J. Wang et al., 2007). A clinical study (D. Giaschi et al., 

2015) followed the occlusion treatment process of a group of amblyopic children and measured 

their ability to detect motion-defined forms. What they found out was that occlusion therapy 

does not resolve the deficit in motion-defined form processing even when the visual acuity and 

contrast sensitivity are greatly improved. For second-order orientation modulation, the 

amblyopic eye deficit has also been reported for detecting orientation-modulated form (J. Wang 

et al., 2007). 
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Motion- and texture-defined form processing is a complex process in which the 

amblyopic deficit could be due to either specifically second-order processing or form processing 

in general. One study that tested motion-defined form, texture-defined form and global motion 

tasks in the same group of amblyopic children claim that figure-ground segregation might be the 

reason behind the deficit in motion- and texture-defined form (J. Wang et al., 2007). Their reason 

for this was that performance on the global motion task was not significantly worse compared 

with normal, while performance for both motion- and texture-defined form was reduced. 

However, their finding of no global motion deficit somewhat contradicts the results of other 

studies, as mentioned earlier. In order to study the amblyopic deficit for second-order 

modulations, purer second-order stimuli are needed. In this thesis, I employed motion-modulated 

and orientation-modulated gratings to study amblyopic second-order vision. 

Before my paper (Gao et al., 2015), which constitutes Chapter Three in this thesis, was 

published, there was no study that systematically investigated amblyopic deficits for various 

kinds of second-order modulations. In this paper, we wanted to ask whether amblyopia shows 

general deficits for all kinds of second-order modulations and to what degree the fellow eye is 

also affected in processing second-order modulations. I tested the orientation-discrimination 

sensitivity monocularly for contrast-modulation (CM), orientation-modulation (MM) and 

motion-modulation (MM) in 28 patients including both strabismic and anisometropic amblyopes. 

This study answered the two questions by finding reduced sensitivity in the AEs for all three 

kinds of modulations, especially at high spatial frequencies. Furthermore, only for MM, the FEs 

showed reduced peak sensitivity. Thus amblyopic deficit for second-order processing is general 

but the FE is affected in processing only some types of modulations.  
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Fellow eye deficit 

A deficit in the FE for amblyopes is not only found in my study. It has been reported for 

various higher-level visual functions. Global motion is the task that was most reported to show 

FE deficit (Aaen-Stockdale & Hess, 2008; Aaen-Stockdale et al., 2007; C. Hou et al., 2008; 

Kiorpes, Tang, & Movshon, 2006; Simmers et al., 2003; Simmers et al., 2006b). This deficit for 

global motion processing cannot be explained by contrast sensitivity loss (Aaen-Stockdale et al., 

2007; Simmers et al., 2003; Simmers et al., 2006b). It exists for translational, rotational and 

radial components of the global motion task (Simmers et al., 2006b). When the components are 

contrast-defined (second-order), the deficit in the FE is comparable to that in the AE (Aaen-

Stockdale & Hess, 2008; Aaen-Stockdale et al., 2007). 

 Motion-defined form perception has also been reported to show FE deficit especially in 

children (D. Giaschi et al., 2015; Hayward et al., 2011; J. Wang et al., 2007). The presence of 

amblyopic deficits in both eyes is reported for a structure-from-motion task as well (Aaen-

Stockdale & Hess, 2008; Husk, Farivar, & Hess, 2012). What’s more, the FE is affected in 

multiple-object tracking task which reflects a binocular deficit in not only passive viewing 

condition but also in active motion tracking system (Ho et al., 2006; Secen et al., 2011).  

This higher-level motion-related binocular deficit is consistent with the 

neurophysiological finding that the dorsal pathway is more binocular than the ventral pathway in 

strabismic amblyopic cats (Schroder et al., 2002). According to the parallel processing 

hypothesis (Goodale & Milner, 1992; Haxby et al., 1991; Van Essen & Gallant, 1994), the extra-

striate cortex is organized into two parallel processing streams-the “dorsal” or “action” pathway 

and the “ventral” or “form” pathway. The dorsal pathway is specialized for processing location 

and motion of objects while the ventral pathway is specialized for processing form and pattern. 
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 Correspondingly, deficits for global form perception (Dallala et al., 2010; Hess et al., 

1999; M. R. Joshi et al., 2016; Levi, Yu, Kuai, & Rislove, 2007) and second-order contrast-

modulation perception (Mansouri et al., 2005) have mostly been found to affect only AE 

function. FE deficits have been reported in contour integration across space, but it is much less 

severe compared with the AEs and only exists in a small portion of the amblyopic observers 

(Kovacs, Polat, Pennefather, Chandna, & Norcia, 2000; Levi et al., 2007). Furthermore,  only 

two out of five patients (E. H. Wong et al., 2001) and one out of seven patients (Tang et al., 

2014) FEs showed slightly higher CM detection threshold. 

The fact that FE deficit was consistently found for motion-related higher-level visual 

functions suggests that dorsal and ventral pathways may be affected by amblyopia to different 

degrees. In the last Chapter, I studied whether second-order nonlinearity, which reflects divisive 

normalization (according to our model), can account for the different deficit patterns for the 

processing of second-order motion- and contrast-modulation. 

 

Manuscript 1: The response nonlinearity to 

second-order contrast and orientation 

modulation characterized using pedestal masking 

Yi Gao, Alex S. Baldwin, Robert F. Hess 
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Abstract 

Second-order processing in the visual system can be modeled by a linear non-linear linear 

(LNL) process. There is evidence that the second-order modulation signals extracted by the LNL 

process undergo a gain-control nonlinearity. This study systematically investigates and models 

this second-stage nonlinearity in the processing of contrast-modulation (CM) and orientation-

modulation (OM) using data from a pedestal masking paradigm. The basic model describes the 

nonlinear modulation response function in a divisive inhibition form with three parameters 

including two exponents and a gain parameter, followed by the decision-making process with 

one internal noise parameter. The pedestal masking functions of both CM and OM have the 

typical dipper shape. Model fitting reveals that OM has the same internal noise and transducer 

exponents as CM, but a four-fold larger gain parameter. The similarity of the transducer 

exponents suggests that OM processing goes through identical second-stage nonlinearity and 

decision-making process as CM. The difference in the gain parameter would be consistent with 

the output from the OM channels receiving greater divisive inhibition, or smaller effective carrier 

contrast due to cross-orientation suppression between the carrier orientations.  

 

Introduction 

Information about objects and structures in the retinal image can be extracted from both 

first- and second-order features (Cavanagh & Mather, 1989; Chubb & Sperling, 1988). First-

order features are defined by changes in luminance or chromaticity. Second-order features are 

changes in those first-order features, such as changes in contrast, orientation or motion 

properties. The most basic second-order feature that has been investigated is contrast-modulation 
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(CM). Stimuli that test CM processing can be constructed by modulating a first-order carrier 

stimulus defined by luminance changes (e.g. a high spatial-frequency grating or visual noise) by 

a lower spatial frequency envelope grating(Huang & Chen, 2014). Second-order stimuli are 

thought to be processed by separate mechanisms from that of their first-order counterparts. This 

notion is supported by a number of previous studies employing various methods including 

psychophysics (Edwards & Badcock, 1995; T. Ledgeway & Smith, 1994; Schofield & 

Georgeson, 1999, 2003), electrophysiology (C. L. Baker, Jr., 1999; Mareschal & Baker, 1998a, 

1999), brain imaging (Smith et al., 1998) and visually evoked potentials (VEP) (Calvert et al., 

2005). 

A commonly-used model for second-order processing involves a three-stage process: i) 

the input image is filtered by in a set of first-stage linear filters, ii) the filter outputs are 

transformed by a non-linearity, iii) the transformed filter outputs are filtered again by a final-

stage linear filter. This is the linear non-linear linear (LNL) model (N. Graham & Sutter, 1998, 

2000; N. Graham, Sutter, et al., 1992; Wilson, 1994). In this model, the first-stage linear filters 

are tuned to orientation and spatial frequency. These extract the luminance-defined structure. The 

form of the nonlinear operation applied to their output has been suggested to be either a simple 

full-wave or half-wave rectification followed by a gain-control (N. Graham, Beck, & Sutter, 

1992; N. Graham & Sutter, 1998, 2000; Olzak & Thomas, 1999). The final-stage filters, also 

tuned to orientation and spatial-frequency (Arsenault et al., 1999; Landy & Oruc, 2002; 

Mareschal & Baker, 1998a, 1999; Alexandre Reynaud & Hess, 2012; Sutter et al., 1995),
 
extract 

the modulation at the scale of the envelope. 

In a typical LNL model the final-stage linear filters will respond to spatiotemporal 

variations in any second-order modulation dimension (F. A. Kingdom et al., 2003). This 
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flexibility implies that different types of second-order modulations can be processed by the same 

LNL mechanism. Evidence from neurophysiological studies (Gharat & Baker, 2012; Song & 

Baker, 2007) shows that neurons in cat early visual cortex respond to different types of second-

order contours in a form-cue invariant manner. A psychophysical study found mutual facilitation, 

although weak, between the processing of contrast-modulation (CM) and orientation-modulation 

(OM) (Schofield & Yates, 2005). However, there is also evidence that second-order stimuli are 

processed by at least partly separate mechanisms from psychophysics (F. A. Kingdom et al., 

2003), VEP (visual evoked potential) (Babenko & Ermakov, 2015) and fMRI studies (Larsson et 

al., 2010; Larsson et al., 2006).  

Psychophysical studies have provided evidence that the response to the second-order 

modulation bears a nonlinear relationship to the input (N. Graham & Sutter, 2000; Norma 

Graham & Wolfson, 2004; Huang & Chen, 2014; F. A. Kingdom et al., 2003; Schofield & 

Georgeson, 1999; H. X. Wang, Heeger, & Landy, 2012). The form of this nonlinearity is 

consistent with a gain-control process. One study (Huang & Chen, 2014) has investigated the 

form of the gain-control nonlinearity for CM processing and compared it to that for first-order 

luminance-modulation counterpart. They found that, similar to first-order processing, divisive 

inhibition is necessary to explain the nonlinearity involved in CM processing. No study has 

systematically investigated the second-stage nonlinearity involved in OM and determined 

whether it is of the same form as that for CM. 

The pedestal masking paradigm can be used to examine the response nonlinearity in first-

order mechanisms (C. Chen, Foley, & Brainard, 2000a, 2000b; C. C. Chen & Tyler, 2008; Foley, 

1994). Observers discriminate between a null interval containing a mask stimulus with a certain 

―pedestal‖ modulation alone, and a test interval that contains that pedestal mask with an 
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increment added to it. Plotting discrimination threshold against mask level gives a pedestal 

masking function. In a linear system the pedestal mask level would not affect the discrimination 

threshold. In the nonlinear visual system, the pedestal masking function often has a ―dipper‖ 

shape (e.g. Fig. 1). At low pedestal mask levels (where the mask itself is around detection 

threshold) the increment threshold first decreases (―dips‖). At high mask levels the 

discrimination threshold increases with the mask level. The shape of the dipper function is 

consistent with a nonlinearity that is accelerating at low stimulus levels and saturating at high 

stimulus levels. The dipper function has been shown not only in first-order processing but also in 

second-order CM (Huang & Chen, 2014; F. A. Kingdom et al., 2003; Schofield & Georgeson, 

1999) and texture segregation (F. A. Kingdom et al., 2003; Landy & Oruc, 2002). 

Here, we employ the pedestal masking paradigm to study the form of the second-stage 

nonlinearity in the processing of two kinds of second-order modulations: contrast-modulation 

(CM) and orientation modulation (OM). The nonlinear transform we utilize here is a gain control 

function(Foley, 1994; N. Graham, Beck, et al., 1992; N. Graham & Sutter, 1998, 2000; Huang & 

Chen, 2014; Legge & Foley, 1980) popularly used for contrast processing. In our model the 

outputs of this function are considered in the context of signal detection theory (D. M. Green, 

Swets, J. A., 1988; Gregory & Cane, 1955). The typical contrast response function (CRF), has 

the form of  

		
f (c)=

cp

cq + z
,                                                                 (1) 

where c is the contrast level, p and q are exponents controlling the shape of the expansive and 

compressive regions of the response function, and z represents general inhibition from divisive 

gain control process. We assume the second-order modulation response function (MRF) also 

takes the same form and we replace c with m, representing the strength of modulation. Under 
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signal detection theory, discrimination of different modulation strengths is limited by internal 

noise from various sources in the brain (Faisal et al., 2008). Samples of this noise are drawn on 

an interval-by-interval basis from a Gaussian distribution with zero mean and constant standard 

deviation σ. 

Hence in the pedestal masking experiment, the modulation responses in the two intervals 

are both Gaussian distributions with means f(m) and f(m+t), respectively, and the same standard 

deviation σ(C. C. Chen & Tyler, 2008). On each trial the response in the test interval is  

                                                    
		
r

t
= f t +m( )+N

int
,                                                             (2) 

and in the null interval  

                                                    
		
r

n
= f m( )+N

int
,                                                                  (3) 

where m is the pedestal modulation level, t is the increment added in the test interval, and Nint ~ 

N(0, σ
2
) is a random variable sampled from a normal distribution representing internal noise. 

According to signal detection theory, the signal-to-noise ratio (d’) is  

                                                        
		
d '=

f t +m( )- f m( )
s

.                                                           (4) 

The percent correct at a threshold d’ level, d’ = 1, is 

		

F
d '

2

æ

èç

ö

ø÷
 = 76.02%.  

Therefore, in our model, there are four parameters, namely σ, p, q and z. We used the 

maximum likelihood method to fit the data from CM and OM pedestal masking experiments 

simultaneously with a set of models. There was a model with completely independent gain 

control functions for CM and OM, a model with identical gain control functions for the two 

conditions, and a range of intermediate models with some shared parameters. These models were 

compared using a twenty-fold cross-validation method to find which one best explained the data 

without overfitting(Baldwin, Schmidtmann, Kingdom, & Hess, 2016). We find the typical dipper 
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shape for the pedestal masking functions of both CM and OM. Through our model selection 

operation, we find that the only critical modeling difference between CM and OM is in the 

divisive inhibition parameter z. The response functions for CM and OM both have the same 

shape (defined by the exponents p and q). 

 

Results 

Pedestal masking functions 

Incremental thresholds from four observers are plotted as dots against pedestal 

modulation depth in the four panels of Figure 1. The left-most points are the detection thresholds 

obtained without a pedestal mask. Both threshold and pedestal modulation levels are in the dB 

log unit calculated as 
		
20´ log10 m( ) . For both CM and OM, the pedestal masking functions 

show the typical dipper shape. Incremental threshold initially decreases as pedestal level 

increases, showing a facilitative effect of the pedestal at low modulation depths. In general, the 

greatest facilitation occurs when the pedestal level is around the detection threshold (d’=1). This 

dipper shape is consistent with the contrast response functions derived from both first-order 

contrast processing(C. Chen et al., 2000a, 2000b; C. C. Chen & Tyler, 2008; Foley, 1994; 

Schofield & Georgeson, 1999) and the second-order CM processing(Huang & Chen, 2014; 

Schofield & Georgeson, 1999).  
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Figure 1. Results from the observers in the pedestal masking experiments. Symbols show 

increment thresholds obtained from psychometric function fitting at each pedestal modulation 

level. Curves show the threshold prediction from the modulation response function that provides 

the best fit to the data at all pedestals (see Cross-validation model selection, below). 

 

The magnitudes of the dip for each observer are shown in Table 1. The mean magnitude 

across four observers is 10.64 dB for CM and 9.44 dB for OM. The dip magnitude for both CM 

and OM are similar to the values found in first-order contrast processing(Baldwin, Baker, & 

Hess, 2016) as well as for CM(Huang & Chen, 2014) in previous studies. There is no significant 

difference between these two values (paired t-test: p = 0.55). After the dip, increment thresholds 

increase with the pedestal level. We obtained the slopes of the increasing region (handle) of the 

pedestal masking function by fitting the points to the right of the deepest point to a straight line. 

The handle slopes for each observer are shown also in Table 1. On average the handle slope of 

OM is steeper than CM, although paired t-test showed no significance (p = 0.14). These slopes 
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are not very well constrained as they are based on fits to only a few values. There is a limit to the 

range of mask levels above the dip we can measure, because we are limited in the modulation 

depths we are able to produce. For this reason, only two observers in CM have thresholds at the 

highest pedestal level that are higher than their detection thresholds. This limitation also affected 

the previous pedestal masking study that used CM (Huang & Chen, 2014).  

 AB DS JWZ YG Mean +/- ste 

CM dip size (dB)  7.5 8.6 3.6 12.1 8.0 +/- 1.7 

OM dip size (dB) 7.5 6.4 11.4 12.4 9.4 +/- 1.5 

CM handle slope 0.48 0.57 0.44 0.48 0.49 +/- 0.03 

OM handle slope 1.08 0.33 1.30 1.11 0.95 +/- 0.21 

Table 1. The magnitude of dip and the slope of the masking handle of the dipper function are 

shown for each observer. We also show their mean with the standard error. When calculating the 

handle slope of OM for observer AB, we omitted the last threshold at mask level 36 dB, because 

this drop is due to the poor psychometric function fit that occurred as a result of lack of 

modulation space at high mask levels. However, the trail-by-trial data from this mask level still 

made a contribution to maximum likelihood fitting.  

 

Cross-validation model selection  

We employed a twenty-fold cross-validation method to a set of candidate models in order 

to find that which best accounted of our data. This allowed us to compare models with different 

degrees of independence between CM and OM. The cross-validation method is a standard 

procedure that allows for different models to be compared while avoiding over-fitting. Our 

approach develops from that described in Baldwin et al.(Baldwin, Schmidtmann, et al., 2016). 

We provide the details of our cross-validation procedure in the methods section.  
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The eight candidate models are constructed by varying the number of shared parameters 

between the two conditions. The basic MRF model has four free parameters – σ, p, q and z for 

each condition. Therefore, when all parameters are the same for CM and for OM the model will 

have four free parameters, when all parameters are allowed to vary between CM and OM there 

will be eight free parameters.  

We quantify the quality of the model fits using the deviance, which indicates the 

deviation between the model under consideration and one that fits the data perfectly (the 

saturated model, which has as many parameters as there are conditions in the experiment). The 

best-fitting model will have the smallest deviance. Deviances from the eight candidate models 

are plotted in Figure 2. On average, the model that has the lowest test deviance is Model 3. In 

this model CM and OM have identical internal noise σ, and transducer exponents p and q, but 

different values for the divisive inhibition constant z. Letting z varying freely between the two 

conditions increases the quality of the model fit compared to Model 1 where it is fixed. Beyond 

Model 3, the deviances are actually very similar for models with greater numbers of parameters. 

Letting more parameters other than z vary between CM and OM did not lead to a reduction in the 

deviance. In summary, the selection of Model 3 suggests that the differences between CM and 

OM are accounted for by changes in only the divisive inhibition parameter z.  
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Figure 2. Test deviances from cross-validation model selection procedure. The mean and 

standard error of the test deviances across the four observers are plotted for eight candidate 

models. The eight models vary in the number of identical parameters between CM and OM. The 

model with the lowest test deviance is indicated by a ring. In this model, CM and OM has same 

nonlinear exponents and internal noise, but different values for the divisive inhibition parameter. 

 

 

Best model fit result 

We then fitted the data of CM and OM to the best model (Model 3) using a maximum 

likelihood method to find the best-fitting parameter values. The curves of the best model fit to 

the raw data in each condition for each observer are plotted in Figure 1. There are noticeable 

individual differences between the observers in terms of the shape of the dipper functions as well 

as the absolute values of the incremental thresholds in the full pedestal range. For all observers 

however the pedestal masking functions of both CM and OM showed the typical dipper shape. 

And the model selected above fitted the data of both CM and OM well.  
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To investigate the reliability of our parameter estimates we also performed fitting to 

simulated data obtained through nonparametric bootstrapping of the raw data (generating 500 

sample datasets). This analysis is provided in Table 2. Individual observer values are the median 

and standard error from the bootstrap samples. The internal noise σ and the divisive inhibition 

parameter z are given in the log unit dB. The 13 dB increase in the value of z between CM and 

OM is equivalent to a factor of 4.4x in linear units. 

 N (dB) p q ZCM (dB) ZOM (dB) Deviance 

AB -11.0 +/- 2.5 1.82 +/- 0.14 1.50 +/- 0.11 42.3 +/- 2.7 49.1 +/- 2.8 176.7 

DS 4.7 +/- 2.6 2.56 +/- 0.29 1.92 +/- 0.27 31.6 +/- 4.8 46.7 +/- 6.4 143.5 

JWZ 3.8 +/- 2.0 2.36 +/- 0.29 1.74 +/- 0.27 25.1 +/-4.8 45.0 +/- 6.4 176.8 

YG -8.7 +/- 3.6 2.86 +/- 0.22 2.46 +/- 0.16 64.8 +/- 3.8 74.7 +/- 4.2 183.4 

Mean -2.8 +/- 2.1 2.40 +/- 0.11 1.90 +/- 0.10 40.9 +/- 4.4 53.9 +/- 3.5 170.1 +/ 18.0 

PCH 9.4 2.40 1.78 46.1   

CWC 7.0 3.17 2.63 67.3   

Mean_H&C 8.2 2.78 2.21 56.7   

Table 2. Bootstrap analysis from the best model-Model 3. The median parameters for each 

observer are shown, with the standard error given by the bootstrap samples. We also provide the 

mean across observers with standard error. The deviance of fitting the best model to the 

combined data for both CM and MM of each subject as well as the mean and standard deviation 

across subjects are shown in the last column. The parameter values from fitting our basic model 

to Huang and Chen’s data(Huang & Chen, 2014) of two observers-PCH and CWC as well as 

their mean are also shown in the table.  

 

Using the mean parameters from Table 2, we plot pedestal masking functions for CM and 

OM, in Figure 3. The blue dashed line represents CM and the red solid line represents OM. The 

larger z for OM is manifested as an up-right shift of the pedestal masking function from CM. The 

grey curves show fits to the CM data (grey symbols) from Huang and Chen’s study (Huang & 
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Chen, 2014). As shown in Figure 3, our model describes Huang and Chen’s CM data as well. 

The four parameters obtained from fitting their data to our basic model are shown in Table 2 as 

well. The difference in the position of the pedestal masking functions and in the parameters may 

be due to different experiment settings especially the different spatial frequencies used in the 

stimuli. What’s worth noticing is that the values of the exponents p and q are 2.78 and 2.21, 

although slightly larger than the mean values in our study, they are in the range of the values we 

obtained. This similarity in the exponents confirms the same nonlinearity for CM. 

 

Figure 3. Pedestal masking functions of CM (blue) and OM (red) constructed from the mean 

values of the fitted parameters of best model-Model 3. The grey curves with corresponding 

incremental thresholds are pedestal masking functions from fitting our basic model to the CM 

data of two observers in Huang and Chen’s study (Huang & Chen, 2014).  

 

 

Discussion 

We find the expected dipper shape for pedestal masking functions for both contrast-

modulated (CM) and orientation-modulated (OM) second-order stimuli. This implies that a gain 
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control nonlinearity exists not only for the processing of CM(N. Graham & Sutter, 2000; Norma 

Graham & Wolfson, 2004; Huang & Chen, 2014; F. A. Kingdom et al., 2003; Schofield & 

Georgeson, 1999; H. X. Wang et al., 2012), but also for the processing of OM. This is consistent 

with the idea that nonlinear normalization processes (e.g. surround suppression) operate on the 

representation of second-order texture modulations, as proposed by Wang and colleagues(H. X. 

Wang et al., 2012).  

The dipper function has been shown for CM in former studies(Huang & Chen, 2014; F. 

A. Kingdom et al., 2003; Schofield & Georgeson, 1999). Specifically, Huang and Chen(Huang 

& Chen, 2014) demonstrated that a divisive inhibition process after the second-stage linear filters 

explains the dipper function they found for CM. The dipper function of OM was also shown in 

two former studies(F. A. Kingdom et al., 2003; Landy & Oruc, 2002), but the current study is the 

first one to systematically model and compare the second-stage nonlinearity for CM and OM 

processing. 

Within our model, the difference between CM and OM processing is accounted for solely 

by an increase in the gain-control parameter z for OM. The internal noise parameter and the 

exponents controlling the shape of the modulation response function (MRF) are shared between 

the two conditions. The shared shape of the response functions for CM and OM would be 

consistent with their reliance on the same second-order mechanisms. It is also compatible with 

the finding of form-cue invariant responses in cat early visual cortex(Gharat & Baker, 2012; 

Song & Baker, 2007) to boundaries defined by second-order modulation. This suggests that the 

CM and OM are processed either by a single generalized second-order mechanism, or at least 

pass through the same nonlinearity. 
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A number of studies(Dakin & Mareschal, 2000; N. Graham, Sutter, et al., 1992; 

Mareschal & Baker, 1998a, 1999; Motoyoshi & Nishida, 2004; N. Prins, 2008; N. Prins & 

Kingdom, 2002, 2006) have shown that the first-stage linear filters, which provide the input to 

the second-stage filters, are tuned to carrier orientation and spatial frequency. This would allow 

OM to be detected by comparing the outputs of sets of second-stage filters that process the 

contrast variations in the two orthogonal orientations. Prins (N. Prins, 2008) showed that OM 

textures that contain CM in two orientation bands are processed by three mechanisms: two of 

which only detect CM within each modulated orientation band, while the other integrates 

contrast across all orientations to detect overall contrast modulations. Two other earlier 

studies(Motoyoshi & Kingdom, 2007; Motoyoshi & Nishida, 2004) also supported the idea of an 

isotropic mechanism that detects the overall contrast modulations in all orientation-tuned 

channels. When there is no overall contrast variation over space, like in our OM stimuli, Prins’ 

study supports probability summation between the two mechanisms, whereas Motoyoshi and 

Nishida’s results suggests that the two mechanisms are integrated(Motoyoshi & Nishida, 2004). 

However, Kingdom and colleagues(F. A. Kingdom, Baldwin, & Schmidtmann, 2015) has 

questioned the use of high threshold theory that was used to model probability summation in 

Motoyoshi and Nishida’s study and suggested as an alternative, signal detection theory. 

Therefore, how the two mechanisms tuned to orthogonal carrier orientations are combined is still 

an open question. 

The larger z we found in OM and CM, could imply greater divisive inhibition to the 

responsible second-order channel (s) from other relevant second-order channels. This implication 

makes sense because in the carrier of OM there are two orientations involved instead of only one 

as in the carrier of CM. Therefore, for OM there are more channels activated by the stimuli 
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presented on the screen that could have a divisive inhibitory input on the target channel. Another 

potential explanation is that cross-orientation suppression(Foley, 1994; Morrone et al., 1982) 

between the two orthogonal orientations in the carrier of OM stimuli could reduce the response 

of the first-stage linear filters. This would reduce the effective carrier contrast. From fitting 

Huang and Chen’s data to our model and comparing the values of the z parameter in two 

conditions of different carrier contrasts, we find that smaller carrier contrast results in z values 

increasing from 67.33 dB for carrier contrast at 0.40 to 104.61 dB for carrier contrast at 0.16.   

The other three parameters in our model, the internal noise and the nonlinear exponents 

are similar between CM and OM. The same internal noise would be compatible with CM and 

OM judgments occurring at a common decision stage and being affected by the same level of 

internal noise, notwithstanding the idea that different types of second-order modulations are 

processed by, at least partially, separate mechanisms(Babenko & Ermakov, 2015; F. A. Kingdom 

et al., 2003; Motoyoshi & Nishida, 2004; N. Prins & Kingdom, 2003). The shared values of 

exponents p and q between the two conditions are compatible with the idea that the OM 

responses could be built up from the CM responses. Perhaps surprisingly, the fitted values of p 

and q that we find are very close to typical values 2.4 and 2 that researchers have been using in 

modeling first-order, luminance-modulation(D. H. Baker & Meese, 2013; Legge & Foley, 1980). 

This common nonlinearity could suggest that the first-order and second-order modulations are 

processed by the same, or partially common mechanism. This idea is compatible with the 

findings that in cat early visual cortex Area 18(Gharat & Baker, 2012, 2017; Song & Baker, 

2007; Zhou & Baker, 1993) and LGN Y pathway(Rosenberg et al., 2010), as well as primate 

V2(G. Li et al., 2014), there are a substantial fraction of neurons responding to boundaries 

defined by first-order or second-order modulations. Together with the neurophysiological 
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evidence, our result of a common nonlinearity challenges the previous idea that first-order and 

second-order features are encoded by independent mechanisms(Edwards & Badcock, 1995; T. 

Ledgeway & Smith, 1994; Mareschal & Baker, 1998a, 1999; Schofield & Georgeson, 1999, 

2003; Smith et al., 1998).  

In summary, we find that pedestal masking functions for second-order contrast-

modulation and orientation-modulation both have the typical dipper shape. The basic model we 

propose for second-order processing, which is a linear non-linear linear model (LNL) plus a 

gain-control nonlinearity and a decision stage consistent with the signal detection theory, 

accounts for the data of both CM and OM well. The only difference between the two conditions 

is the larger gain control parameter in the case of OM, which suggests greater divisive inhibition 

for the responsible second-order channels for OM than CM or smaller carrier contrast gain due to 

cross-orientation suppression. The invariant internal noise and nonlinear exponents suggest 

identical nonlinearity and decision process between the two second-order conditions-CM and 

OM. 

 

Method 

Apparatus 

Stimuli were generated by a Macintosh computer running Matlab (Mathworks) under OS 

X, and presented on a gamma-corrected Compaq CRT monitor (30 cm × 40 cm, refresh rate: 85 

Hz; resolution: 1280 × 960 pixels; mean luminance 20 cd/m
2
). Observers viewed the stimuli 

from 86 cm in a dimly lit room. At this distance, there were 48 pixels per degree of visual angle. 

A Bits++ box (Cambridge Research System) provided 14 bits of digital to analog converter 
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(DAC) depth. The experiment software utilized functions from the Psychophysics 

Toolbox(Brainard, 1997). Data analysis and model fitting were performed in MatLab. The 

Palamedes toolbox 2(N. K. Prins, F. A. A. , 2009) was used to fit the psychometric functions.  

 

Participants 

Four experienced psychometric experiment observers including two of the authors, YG 

and AB, participated in the current experiment. Observers gave written informed consent. They 

all have normal or corrected-to-normal vision. All procedures were conducted in accordance 

with the Declaration of Helsinki, and approved by the Ethics Review Board of the Montreal 

Neurological Institute. 

 

Stimuli 

The constructions of the second-order contrast-modulation (CM) and orientation-

modulation (OM) stimuli in both cases involves multiplying a carrier C(x,y), which is a high-

spatial-frequency tilted sinusoidal grating, by an envelope G(x,y), which is a low-spatial-

frequency horizontal sinusoidal grating. The carrier and the envelope are defined as 

		
C x , y( )= sin 2p f

c
x( ) and 

		
G x , y( )= sin 2p f

e
x( ), where fc and fe are spatial frequencies of the 

carrier and the envelope, respectively. Figure 4 illustrates the construction of CM and OM 

stimuli. 
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Figure 4. Construction of second-order CM patterns by multiplying an envelope grating by a 

carrier grating. This is followed by construction of an OM pattern by adding two CM stimuli 

with opposite phases and orthogonal carrier orientations together. The CM1 stimulus is the one 

that is used in the current experiment. 

 

 

The CM stimulus is constructed by the modulation of the contrast of one carrier by one 

envelope. In the null interval, the stimulus, that only contains the pedestal mask m, can be 

described by  

                 
		
N x , y( )=C x , y( ) c+c´mG x , y( )é

ë
ù
û
w x , y( ) ,                                                 (5) 
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where c is the contrast of the carrier, m is the modulation depth of the pedestal, and        is a 

raised cosine window with a blur width of 0.5º to soften the edge of the stimulus. The CM 

stimulus in the target interval, which contains both the pedestal mask and the target, is described 

by   

		
T x , y( )=C x , y( ) c+c´ m+t( )G x , y( )é

ë
ù
û
w x , y( ) ,                                         (6) 

where t is the modulation depth of the target.  

The OM stimuli involve the addition of two CM patterns which have carrier gratings of 

orthogonal orientations, 45° and -45°, as well as envelope gratings of opposite phases. The OM 

stimuli in the null interval and the target interval can be described by  

		
OM x , y( )= C

1
x , y( ) c+c´mG

1
x , y( )é

ë
ù
û
+C

2
x , y( ) c+c´mG

2
x , y( )é

ë
ù
û{ }w x , y( ) ,             (7) 

and  

		
OM x , y( )= C

1
x , y( ) c+c´ m+t( )G1

x , y( )é
ë

ù
û
+C

2
x , y( ) c+c´ m+t( )G2

x , y( )é
ë

ù
û{ }w x , y( ) (8) 

All of the carriers have a spatial frequency of 4 cycles per degree and all of the envelopes 

have a spatial frequency of 0.5 cycles per degree. The contrast of carrier is kept constant at 0.40 

in all conditions. Figure 5 shows examples of CM (a) and OM (b) stimuli. 

 

Procedure 

The two-interval forced-choice (2IFC) paradigm was employed to measure the increment 

thresholds. During each trial, the target and null stimuli were presented, each for 500 ms, in a 

random order with a 400 ms inter-stimulus interval between them. To reduce temporal 

uncertainty, an auditory tone was given at the onset of each interval. The task was to identify 

which interval was the target containing the greater modulation. The observer responded with a 
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button press on a keyboard. Auditory feedback informed observers whether they responded 

correctly on each trial. 

 

 

Figure 5. Examples of the stimuli-CM (a) and OM (b) gratings. The upper row shows the stimuli 

in the blocks of zero mask level and the lower row shows the stimuli in the blocks of 36dB mask 

level. In both (a) and (b), the left figure shows the stimuli in the null interval while the right one 

shows the stimuli in the target interval. 

 

 

The experiment was conducted in blocks of pedestal modulation levels with two 

repetitions for each block. The pedestal levels were adjusted for each observer to give an 

informative sampling of the masking function. First, the detection threshold (T) was measured. 

Then this T determined the seven pedestal mask levels: (T-12), (T-6), (T-3), (T+3), (T+6) and 

(T+12) dB. The unit dB is 20*log10(c), where c represents the modulation depth. At each 

pedestal level, a psychometric function was measured with two interleaving staircases and a 
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threshold was obtained by fitting the psychometric function. One staircase was one-up-three-

down and the other one was one-up-two-down, both terminated after 60 trials. Therefore, there 

were 60 x 2 x 2 x 8 = 1920 trials in each of the two conditions-CM and OM. The two conditions 

were measured alternately and the sequence of the two was balanced among observers.  

To test whether the observers used a second-order strategy to do the task, there were 10 trials 

blended in each block where the modulators were half-wave rectified. These trials were split 

evenly into positive (+) and negative (-) modulators. For the positive modulators, the modulating 

envelopes had only the ―positive parts‖-values between the crest and the mean, while the 

―negative parts‖-values between the trough and the mean - were set to zero. By examining 

performance on the three modulators it is possible to infer the strategy that the observers 

adopted. If the observers did not use a second-order strategy, instead focusing on a positive stripe 

of the stimulus and discriminate its first-order contrast level, the performance for (+) modulators 

should be much better than (-). Figure 6a shows average percent correct values for (+) and (-) 

modulators under different pedestal mask levels for all four observers. There are 29 points higher 

than the unit line and 27 dots lower. This indicates that there was not an advantage for detecting 

increments on the positive regions of the stimulus, suggesting that observers made use of the 

whole stimulus in the main task. Following the same logic, if the observers did use the whole 

stimulus to do the task, the performance for full modulator should be better than either (+) or (-) 

modulators. In Figure 6b we plot the average percent correct values for (+) and (-) modulators 

separately against those for full modulators. The green-blue points are for (+) and the yellow-

brow ones are for (-) modulators. 48 out of 56 points for the (+) modulator and 46 out of 56 

points for the (-) modulator are lower than the unit line. This also indicates that observers 

generally used the whole stimulus to perform the task with a second-order strategy. 
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Figure 6 a: The percent correct values for positive (x axis) and negative (y axis) modulators. 

Each point represents the mean percent correct values of all trials of positive and negative 

modulators, in the form of (+,-), under each pedestal mask level for each observer. b: The percent 

correct values for positive (green-blue points) and negative (yellow-brown points) modulators on 

the y axis again those for full modulators on the x axis. The color shade represents pedestal mask 

levels-the lighter the color, the higher the pedestal mask level. 

 

 

Data Analysis 

A model selection procedure seeks to answer the question of which of a number of 

candidate models best accounts for the data. We did so using a cross-validation analysis. This 

relies on splitting the data up and then using fits to some of the data to try to predict other data 

that were excluded from the fitting. In our analysis, we partitioned the data into 20 sets. Each 

was used as the holdout test set once, and the remaining 19 sets were combined together and 

used to fit the model. Parameters were obtained by fitting to the fit dataset. The predictions from 



 70 

these fits were tested against the holdout test dataset in order to calculate the deviance. Our 20 

iterations of this procedure gave us 20 deviance values (one for each test set).  

Considering the comparison between the processing mechanisms of the two types of 

second-order modulation, namely contrast-modulation (CM) and orientation-modulation (OM), 

we identified eight possible models to fit. As in the equation (1) and (2), the models to explain 

the second stage nonlinearity and decision making of CM and OM each has four free parameters, 

internal noise n, p, q, and z. Depending on the number of same and different parameters between 

the two conditions CM and OM, there are eight possible models in total. Here p and q are 

restricted to be either both same or both different between the two conditions. Therefore, the 

eight models are: 

1. Four parameters are all the same between CM and OM; 

2. Except for σ, the other three parameters p, q and z are same; 

3. Except for z, the other three parameters σ, p and q are same; 

4. σ and z are same, p and q are different between two conditions; 

5. σ and z are different, p and q are same; 

6. σ, p and q are different, only z is the same; 

7. Except for σ, the other three parameters p, q and z are different; 

8. Four parameters are all different between CM and OM. 

The data (fit sets) of CM and OM were brought together and fitted simultaneously with 

each of these eight models using the method of maximum likelihood. The best model is defined 

as the model with the smallest deviance: 

                       
		
D= -2´ logL

test
- logL

sat( )                                                  (9) 
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Where Ltest is the test likelihood of the candidate model and Lsat is the likelihood of the 

saturated model(Baldwin, Schmidtmann, et al., 2016). To calculate the deviance of each 

candidate model, from the maximum likelihood fitting with each fit set, we obtained the best fit 

values of the parameters. Then we calculated the test likelihood of the candidate model by 

calculating the likelihood of the data in the corresponding test set(Baldwin, Schmidtmann, et al., 

2016) within the model having the fitted parameters from the fit set.  

 

Data Availability 

The datasets generated and analyzed during the current study are available from the 

corresponding author on reasonable request. 
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Manuscript 2: Different nonlinearity in the 

processing of contrast- vs motion-defined 

boundaries 

Yi Gao, Alex S. Baldwin, Robert F. Hess* 

Abstract 

             To extract information from the outside world, the visual system detects boundaries 

where there are changes in the retinal image. In the simple case of first-order contrast these 

might be boundaries between light and dark regions. One interesting question is whether the 
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boundaries defined by different features, e.g. changes in luminance, contrast, texture or motion 

are processed by a general mechanism in a cue-invariant manner. The processing of two types of 

second-order modulation, contrast- and orientation-modulation has been reported to involve a 

nonlinear gain-control similar to that previously established for first-order processing. In the 

current study, we investigated the nonlinearity involved in processing second-order motion 

boundaries using a pedestal masking paradigm. This nonlinearity was then compared to that for 

contrast-defined boundaries. We find the typical dipper shape in the pedestal masking functions 

for motion-modulation. In our modeling however we find that the processing of motion-defined 

boundaries goes through a different nonlinearity compared to contrast-defined boundaries. 

Furthermore, this difference cannot be accounted for by the carrier’s temporal properties. Our 

result challenges the view of a cue-invariant boundary processing mechanism. 

 

Introduction 

The natural scene comprises boundaries defined by changes in different types of visual 

features, including luminance, color, contrast, texture and motion. Boundary processing 

facilitates figure-ground segregation. This enables identification and discrimination of objects of 

interest within complex natural scenes. Specifically, motion-defined boundary processing plays 

an important role in extracting form from motion (Timothy Barnes & Ennio Mingolla, 2013), 

breaking camouflage (T. Barnes & E. Mingolla, 2013) and generating depth percepts (Yoonessi 

& Baker, 2011).  

Among the different types of boundary contrasts, luminance- and color-defined visual 

features are classified as first-order or Fourier based. Their processing can be explained by a 
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linear filter model followed by a gain-control nonlinearity. While the other features (e.g. 

contrast-, texture- and motion-defined) are classified as second-order or non-Fourier and their 

processing can be modeled by a linear, nonlinear, linear model (LNL) (N. Graham, Beck, et al., 

1992; N. Graham & Sutter, 1998; Wilson, 1994). The LNL model involves three stages: i) the 

input image is filtered by a set of first-stage linear filters, ii) the filter outputs are transformed by 

a nonlinearity, iii) the transformed outputs are filtered again by a final-stage linear filter. Some 

previous studies involving contrast-modulation (N. Graham & Sutter, 2000; Huang & Chen, 

2014; Schofield & Georgeson, 1999) and orientation-modulation (Gao, Baldwin, & Hess, in 

review) suggest that the response to second-order modulation also goes through a gain-control 

nonlinearity. The relevance of this to second-order motion defined boundary processing is not 

known. 

The processing of a motion-defined boundary has been considered to involve two stages; 

first, the extraction of local motion and second, the integration of local motions (Durant & 

Zanker, 2009; Sinha, 2001). Variations in both motion direction and motion speed generate 

detectable motion-defined boundaries (Durant & Zanker, 2008). However these two kinds of 

information are probably processed by separate mechanisms (Hess & Ledgeway, 2003) with 

direction difference having a greater influence in boundary localization (Durant & Zanker, 

2008). Tuning properties of motion-defined boundary processing depend on the specific stimuli 

used. Spatial frequency tuning to the local motion signal is band-pass for boundary stimuli 

constructed with grating carriers and grating envelopes (Gharat & Baker, 2012). The contrast of 

the carrier has been shown to positively contribute to the discrimination of boundary orientation 

(Regan, 1989). Then in the motion integration process, the second-stage filter is shown to be 

elongated with the length of 4-5 degrees of visual angle (Durant & Zanker, 2009). Orientation 
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discrimination of boundaries defined by combining direction and speed differences among dot 

elements has been shown to be low-pass for spatial frequency (Durant & Zanker, 2009). While 

using grating carriers and envelopes, Gharat et al. (Gharat & Baker, 2012) showed band-pass 

tuning for envelope spatial frequency as well as orientation. Moreover, numerous studies have 

reported neurons that are selective for the orientation of motion-defined boundaries in different 

areas, such as middle temporal (MT) (Albright, 1992), V1,V2 (Marcar et al., 2000) ,V3A and 

V3B (Larsson et al., 2010), and V4 (Mysore, Vogels, Raiguel, & Orban, 2006). These neurons 

could be the neural substrates for extracting the orientation of motion-defined boundaries.  

One interesting question about boundary processing is whether it is done in a cue 

invariant manner, or are motion-defined boundaries processed by a mechanism that is separate 

from that involved in the processing of luminance-, contrast- or orientation-defined boundaries? 

Many previous studies support the former view. Psychophysical studies have shown mutual 

facilitation between the processing of contrast-defined and orientation-defined boundaries 

(Schofield & Yates, 2005). Adaptation effect was found between luminance- and contrast-

defined boundaries, as well as between luminance- and orientation-defined boundaries 

(Filangieri & Li, 2009; Hawley & Keeble, 2006).  Tilt after-effect was also shown between pairs 

of motion-defined, luminance-defined and illusory contours (Berkley et al., 1994). Our previous 

study (Gao et al., in review) modeled the second-order nonlinearity for contrast- and orientation-

defined boundaries and found it to be identical. Neurophysiological experiments have also 

shown that there are neurons in various regions in the visual cortex that respond in a cue-

invariant manner to more than one type of contour, for example primate V2 (Leventhal et al., 

1998; Marcar et al., 2000) and inferior temporal (IT) region (Sary et al., 1995) as well as cat 

Area 18 (Gharat & Baker, 2012). Although motion processing may involve a separate pathway to 
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that of static luminance information (Derrington et al., 2004; Goodale & Milner, 1992), the 

majority of studies suggest that there is one general mechanism for boundary processing which 

in turn leads to our hypothesis that there will be one common nonlinearity in motion- and 

contrast-defined boundary processing.  

The purpose of current study is to investigate the second-stage nonlinearity in processing 

two types of second-order boundaries: motion-modulation (MM) and contrast-modulation. 

Insights about the nonlinearity will contribute to our general understanding about boundary 

processing as well as providing more evidence to decide whether motion- and contrast-defined 

boundaries are processed by a common mechanism. To study the nonlinearity, we employed the 

pedestal masking paradigm that has been widely used to investigate the nonlinearities in both 

first-order (C. C. Chen & Tyler, 2008; Foley, 1994) and second-order processing (Gao et al., in 

review; Huang & Chen, 2014; F. A. Kingdom et al., 2003; Landy & Oruc, 2002; Schofield & 

Georgeson, 1999). Observers discriminate between a null interval containing a mask stimulus 

with a ―pedestal‖ modulation alone, and a test interval containing that pedestal mask with an 

increment target added to it. Plotting increment threshold against mask level gives a pedestal 

masking function. In the nonlinear visual system, the pedestal masking function often has a 

―dipper‖ shape (e.g. Fig. 1)-at low pedestal mask levels the increment threshold first decreases 

and as the mask level then increases, the increment threshold increases. These two parts of the 

pedestal masking function reflect facilitation and inhibition effects of the pedestal mask on the 

target discrimination. The shape of the dipper function is consistent with a nonlinearity that is 

accelerating at low stimulus levels and saturating at high stimulus levels.    

Our basic model to describe the second-order nonlinearity involves a nonlinear transform 

as a divisive gain-control function (Foley, 1994; N. Graham & Sutter, 2000; Huang & Chen, 



 77 

2014), and its outputs are considered in the context of signal detection theory (D. M. Green, 

Swets, J. A., 1988; Gregory & Cane, 1955). This basic model is the same as that of our recent 

study (Gao et al., in review). The typical nonlinear response function has the form of  

               
		
f (c)=

cp

cq + z
,                                                                            (1) 

where c is the modulation depth, p and q are exponents controlling the shapes of the expansive 

and compressive regions of the response function, and z represents general inhibition from 

divisive gain control process. Under signal detection theory, discrimination of different 

modulation depths suffers from internal noise from various sources in the brain
(Faisal et al., 2008)

. 

Samples of the internal noise in each interval are drawn from a Gaussian distribution with zero 

mean and constant standard deviation σ. According to signal detection theory, the signal-to-noise 

ratio (d’) is  

		
d '=

f t +m( )- f m( )
s

,                                                                   (2) 

where m is the pedestal modulation depth, t is the increment added in the test interval. The 

percent correct at a threshold level, d’=1, is 

		

F
d '

2

æ

èç

ö

ø÷
= 76.02%. Therefore, in our basic model, 

there are four parameters, namely σ, p, q and z.  

             The current study is composed of two parts. In Experiment 1 we measure the increment 

discrimination thresholds for boundaries defined by contrast- (CM) and motion-modulation 

(MM) where the CM has the standard static grating carrier. In Experiment 2, the carrier of the 

CM stimulus has the same motion properties as the MM stimulus. By comparing the pedestal 

masking functions for CM and MM and letting CM carriers vary between being static and 
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moving, we can gain insights into differences between MM and CM defined boundary 

processing and whether these differences are due to first or second-order processing.  

We found the typical dipper shape in the pedestal masking functions for both contrast-

defined and motion-defined second-order boundary processing. This indicates the existence of a 

nonlinearity of the divisive inhibitory form not only for second-order contrast-modulation but 

also for motion-modulation processing. However, larger nonlinear transducer exponents and 

larger divisive inhibition parameters were found in the case of motion-defined boundaries. This 

suggests a different response nonlinearity for motion-defined boundary processing compared to 

other types of boundary processing. This difference cannot be explained by the different 

temporal properties of the first-order carrier. What’s more, varying the contrast level of the 

carrier does not change the fundamental properties of the response nonlinearities for either 

contrast- or motion-defined boundary processing. 

 

Results 

Pedestal masking functions 

Increment thresholds plotted as dots against pedestal modulation depth are shown in 

Figure 1 for Experiment 1 and Figure 2 for Experiment 2. The increment threshold indicates the 

ability to detect the target modulation in the presence of the pedestal modulation at each pedestal 

mask level. The data at each pedestal mask level are fitted with a Quick psychometric function 

(Quick, 1974). The thresholds are calculated as the signal level at 76.02 percent correct (see 

introduction). The left-most point in each panel is the detection threshold obtained without a 
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pedestal mask. Both threshold and pedestal mask levels are in the dB log units calculated as 

		
20´ log10 m( ) .  

In Experiments 1 and 2, for both CM and MM, the pedestal masking functions show the 

typical dipper shape. In general, the greatest facilitation occurs at the pedestal mask level that is 

around the detection threshold (d’=1). And in most cases, the inhibitory effect of the pedestal 

mask makes the increment thresholds at high mask levels higher than the corresponding 

detection thresholds. This dipper shape is consistent with the contrast response functions derived 

from first-order contrast processing (C. C. Chen & Tyler, 2008; Foley, 1994; Legge & Foley, 

1980; Schofield & Georgeson, 1999), as well as second-order CM (Huang & Chen, 2014; F. A. 

Kingdom et al., 2003; Schofield & Georgeson, 1999; Schofield & Yates, 2005) and OM (Gao et 

al., in review; F. A. Kingdom et al., 2003; Schofield & Yates, 2005) processing.  

 

Figure 1. Results of four observers in Experiment 1. The dots- blue for CM and red for MM-

show increment thresholds obtained by fitting a Quick psychometric function then calculating at 

76.02% percent correct corresponding to d’=1 (see introduction) at each pedestal modulation 
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level. Curves represent the threshold prediction from the best model in which the four parameters 

are all different between CM and MM (see Data analysis in Methods section).  

 

 

Figure 2. Results of four observers in Experiment 2. Figure caption is the same as Figure 1. 

 

We then calculate two features of the dipper functions, the magnitude of the dip and the 

slope of the positively increasing region (the handle). The magnitude of the dip is defined as the 

difference between the smallest increment threshold and the detection threshold at zero mask 

level. The handle slope is obtained by fitting the points to the right of the lowest threshold to a 

straight line. As shown in Table 1, the mean dip magnitude for MM is larger than CM in both 

Experiment 1 (paired-samples t-test, t(3) = -1.72 , p = 0.18) and Experiment 2 (t(3) = -0.58, p = 

0.6), although the difference is not significant according to the t-test result. The mean handle 

slope is significantly steeper in MM than in CM in both Experiment 1 (t(3) = -9.89, p = 0.002) 

and Experiment 2 (t(3) = -2.91, p = 0.05). The effect size of the significantly different handle 
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slope is 6.99 for Experiment 1 and 1.99 for Experiment 2. The effect size was computed with 

pooled standard deviation, which is    √
          

              
 

         
  (Coe, 2002). 

The curves are the pedestal masking functions obtained from fitting the best model, in 

which all four parameters are different between CM and MM, to the raw data as a whole for both 

conditions. This is discussed further in the Best model fit result section below.  

 Experiment 1 Experiment 2 

 AB DS JWZ YG Mean 1 BZ JFH WCQ XYY Mean 2 

CM dip size 

(dB) 

7.6 8.6 3.6 12.1 8.0 +/- 1.8 10.3 9.0 8.7 7.6 8.9 +/- 0.6 

MM dip size 

(dB) 

8.4 8.7 9.3 14.0 10.1 +/- 1.3 7.3 8.2 14.6 9.9 10.0 +/- 1.6 

CM handle 

slope 

0.47 0.57 0.43 0.48 0.49 +/- 0.03 0.55 0.44 0.54 0.52 0.51 +/- 

0.02 

MM handle 

slope 

1.42 1.21 1.17 1.09 1.22 +/- 0.07 0.67 0.72 1.11 1.32 0.96 +/- 

0.15 

Table 1. The magnitudes of the dip and the values of handle slope of the dipper functions from 

four observers in Experiment 1 and four observers in Experiment 2. The mean and standard error 

are also shown for each group. 

 

Model fit 

We constructed eight candidate models from the basic model. These were composed of 

second-order divisive normalization, followed by a decision-making stage. The eights models 

differ from each other in the number of parameters varying between CM and MM processing. 

They range from Model 1 that has four free parameters that are shared between the two 

conditions, to Model 8 where each condition gets its own set of four parameters. To select a best 
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model, we employed a twenty-fold cross-validation method (see Methods for detail) and found 

that the model that best accounted of the data allows all four parameters to be different between 

CM and MM. This was the case for both Experiment 1 and Experiment 2. We then fitted the raw 

data of CM and MM to the best model using a maximum likelihood method to find the best-

fitting values of the four parameters. The pedestal masking functions predicted by the parameter 

values from the best model fit in each condition for each observer are plotted as solid curves in 

Figure 1, superposed on the increment threshold data.  

The mean parameter values are shown in Table 2, separately for Experiment 1 and 

Experiment 2. The internal noise σ and the divisive inhibition parameter z are in dB log units 

which is calculated as            . First we compared the parameters from Experiment 1 and 

Experiment 2 for each condition. For CM, all four parameters are not significantly different 

between the two experiments (in t-test p values all larger than 0.35). For MM, only the internal 

noise is significantly larger in Experiment 2 (p = 0.006, df = 3). The other three parameters are 

not different (p values all larger than 0.32).  

 

 Experiment 1 Experiment 2 

 p q Z (dB) σ (dB) p q Z (dB) σ (dB) 

CM 3.0 +/- 0.3 2.7 +/- 0.2 52 +/- 9 3.7 +/- 0.9 3.1 +/- 0.2 2.6 +/- 0.2 53 +/- 3 2.7 +/- 1.3 

MM 3.9 +/- 0.2 3.4 +/- 0.2 65 +/- 3 0.8 +/- 0.5 4.0 +/- 0.3 3.5 +/- 0.4 75 +/- 9 3.5 +/- 1.0 

 

Table 2. The mean values with standard error of four parameters from fitting the best model to 

the data of CM and MM together, for Experiment 1 and Experiment 2 separately.  

 

Since the divisive gain control parameter and the exponents of the nonlinear transducer 

function do not vary with the change of carrier type (static or moving) or the change of carrier 
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contrast, we combined these three parameters of every observer from Experiment 1 and 

Experiment 2 to better compare CM and MM. Whereas the internal noise value is significantly 

different between the two experiments for MM, therefore we show its values separately for 

Experiment 1 and 2. The four parameters are plotted as bars to compare CM and MM (Figure 3). 

The nonlinear exponents p and q are both significantly larger for MM than CM (paired t-test, df 

= 7, p1 = 0.05, p2 = 0.04). The effect sizes are 1.20 for p and 1.31 for q, respectively. The gain 

control parameter z is also greater for MM than CM (df = 7, p = 0.02). The effect size is 1.40 for 

z. The fact that for MM the exponents p and q have larger values suggests different second-stage 

nonlinearities between the processing of contrast-modulated and motion-modulated boundaries. 

And this difference is not due to the temporal property of the carrier in MM. The much larger 

divisive inhibitory parameter in MM suggests larger divisive inhibition to the response of the 

responsible second-order channels. 

 

Figure 3. Three parameters-two exponents and the divisive gain parameter-are shown as means 

and standard error across all 8 observers combined from Experiment 1 and Experiment 2. Z is in 
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dB units. Red bars represent CM and the green ones represent MM. Stars indicate significant 

difference between the two conditions. Compared to CM, all three parameters have larger values 

for MM. 

 

Using the mean parameters from Table 2, we plot the pedestal masking functions for CM 

and MM in Experiment 1 and Experiment 2, respectively, as shown in Figure 4. The blue dashed 

line indicates CM and the red solid line indicates MM. In both Experiment 1 and Experiment 2, 

the larger exponents for MM are manifested as a deeper dip in the pedestal masking function 

than that for CM. As shown in the figure, thresholds for MM are generally higher than those of 

CM across pedestal mask levels especially in Experiment 2. And there is no difference between 

Experiment 1 and Experiment 2 for CM. However, changing the carrier temporal properties 

affects the pedestal masking functions for MM. This difference is mainly expressed as an 

increased internal noise when the carrier is moving, as shown in the last section of Results about 

fitted parameters. 
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Figure 4. Pedestal masking functions of CM (blue) and MM (red) constructed with mean 

parameters from best model fit in Experiment 1 (solid curves) and Experiment 2 (dashed curves), 

respectively.  

 

Discussion 

We find the typical dipper shape for pedestal masking functions for motion-modulated 

(MM) second-order boundary processing. We also replicated its existence for contrast-

modulation (CM) (Huang & Chen, 2014; Schofield & Georgeson, 1999). This dipper function 

implies the existence of a nonlinearity, which is consistent with a gain-control function of a 

divisive inhibitory form. Similar forms of nonlinearity have been found not only in first-order 

processing
 
(Foley, 1994; Legge & Foley, 1980), but also in two types of second-order processing 

including contrast-modulation (N. Graham & Sutter, 2000; Huang & Chen, 2014; Schofield & 
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Georgeson, 1999) and orientation modulation(Gao et al., in review; F. A. Kingdom et al., 2003; 

Landy & Oruc, 2002). This divisive inhibition in MM processing could be explained by mutual 

lateral inhibition among the second-order spatial channels that are tuned to envelope spatial 

frequency and orientation (Durant & Zanker, 2009; Gharat & Baker, 2012). The channels may 

also differ in their tuning to different carrier spatial frequencies, orientations and motion 

velocities. Carrier spatial frequency and orientation tuning are reported in some previous studies 

(Durant & Zanker, 2009; Gharat & Baker, 2012; Timothy Ledgeway & Hess, 2006). For carrier 

velocity, a recent physiological experiment (Gharat & Baker, 2012) found very broad carrier 

temporal frequency tuning and no carrier motion direction tuning for motion-defined boundary 

processing in cat Area 18. In our stimulus, a motion-defined contour is defined solely by a 

motion direction difference between regions of the same carrier spatial frequency, orientation 

and speed. Therefore, the divisive inhibition among channels for processing motion direction or 

contrast-defined boundaries in our stimuli is probably from channels that are tuned to carrier or 

envelope spatial frequencies and orientations other than the ones we used, if the carrier tuning 

properties are similar between human and cat visual neurons. 

The model we employed to explain the nonlinear process involved in second-order 

modulation processing is a nonlinear transducer function of the divisive gain-control form 

(Equation (1)). Outputs of this nonlinear transform are then considered under signal detection 

theory. Fitting our model to the data we find significantly larger nonlinear transducer exponents 

p and q for MM than CM. The exponents for MM are also larger than the typical values 2.4 and 

2 that have been used in modeling first-order luminance modulation (D. H. Baker & Meese, 

2013; Legge & Foley, 1980). In a recent study (Gao et al., in review) the exponents of second-

order CM and orientation-modulation (OM) processing were found to be similar to those typical 
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first-order values. Since the shape of the nonlinear transducer function is determined by the 

values of the exponents, this difference in exponent values suggests a separate nonlinearity 

involved in motion-defined boundary processing.  

Previous results have suggested common processing of different types of boundary. 

These include tilt after effect between any pair of motion-defined, luminance-defined and 

illusory contours(Berkley et al., 1994), similar selectivity to envelope spatial frequency and 

orientation for CM and MM(Gharat & Baker, 2012), similar carrier spatial frequency tuning 

between CM and MM(Gharat & Baker, 2012), and similar radial bias in processing motion- and 

luminance-defined boundaries(Clifford, Mannion, & McDonald, 2009). Neurons that respond to 

both motion-defined and other types of boundaries can be the neural substrates of the common 

part of the mechanism, including primate V2(Leventhal et al., 1998; Marcar et al., 2000) and 

inferior temporal (IT) region(Sary et al., 1995) and cat Area 18(Gharat & Baker, 2012). Our 

results suggest that the mechanism for motion-defined boundary processing must be at least 

partially separate from other types of boundary processing. In support of this idea, Morita et 

al.(Morita, Morita, & Kumada, 2003) have found performance to be particularly poor at 

detecting boundaries defined by combined motion and luminance variation or motion and color 

variation compared to single attribute defined boundaries. Additionally, two fMRI studies by 

Larsson et al.(Larsson et al., 2010; Larsson et al., 2006) showed that orientation-selective 

adaptation to different types of second-order modulation-defined boundaries is elicited in 

different cortical visual areas with limited overlap. Furthermore, the removal of MT affected the 

processing of kinetic boundaries but not luminance-defined boundaries(Marcar & Cowey, 1992). 

This is not due to local motion processing being impaired because when the two motion 
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directions are orthogonal not opposite, the ability of using motion-defined boundaries in shape 

discrimination remains intact. 

Motion-defined boundaries require the use of moving carriers, which would possibly 

explain differences in processing, however here we also present contrast-defined boundary 

results with moving carriers. We found no difference in contrast-defined boundary processing 

between static or moving carriers. This implies that changing carrier type does not influence the 

shape of the nonlinear transducer function involved in second-order processing. What’s more, 

comparison between the pedestal masking functions for a motion-defined boundary and a 

contrast-defined boundary comprising the same moving carriers gives significantly different 

values of exponents and divisive inhibitory parameter. This suggests that there is a different 

nonlinearity for motion-defined second-order boundary processing that is not explained by 

carrier differences.  

In conclusion, our results indicate that motion-defined boundary processing has larger 

nonlinear transducer exponents and a larger divisive inhibitory parameter than those found for 

contrast-defined boundary processing. This suggests a separate nonlinearity for motion-defined 

boundary processing, rather than cue-invariant processing of different boundary types. 

Unsurprisingly, the carrier contrast does not affect the shape of the nonlinearity for either CM or 

MM. 
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Method 

Stimuli 

Experiment1 
Both second-order boundaries, contrast-defined and motion-defined, are constructed 

multiplying an envelope G(x,y), which is a low-spatial-frequency sinusoidal grating, to a carrier 

C(x,y), which is a high-spatial-frequency sinusoidal grating. The envelope and the carrier are 

defined as 
		
C x , y( )= sin 2p f

c
x( ), and 

		
G x , y( )= sin 2p f

e
x( ), respectively, where fe and fc are 

spatial frequencies of the envelope and the carrier.  

The CM stimulus is constructed by the modulation of the contrast of one static carrier 

tilted 45° clockwise by one horizontal envelope. In the null interval, the stimulus, that only 

contains the pedestal mask m, can be described by  

		
N x , y( )=C x , y( ) c+c´mG x , y( )é

ë
ù
û
w x , y( ) ,                                                          (3) 

where c is the contrast of the carrier, m is the modulation depth of the pedestal, and        is an 

raised cosine window with a blur width of 0.5º to soften the edge of the stimulus. The CM 

stimulus in the target interval, which contains both the pedestal mask and the target, is described 

by   

		
T x , y( )=C x , y( ) c+c´ m+t( )G x , y( )é

ë
ù
û
w x , y( ) ,                                         (4) 

where t is the modulation depth of the target.  

               To construct a MM stimulus, we add two CM patterns which have orthogonal carrier 

motion directions, 45° and -45°, and opposite envelope phases. Note that the two carriers are 

drifting at 2 Hz instead of being static in the CM stimulus. Therefore the carrier function is 
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actually                          , where   is the temporal frequency 2 Hz. The MM 

stimuli in the null interval and the test interval can be described as  

		
MM x , y( )= C

1
x , y( ) c+c´mG

1
x , y( )é

ë
ù
û
+C

2
x , y( ) c+c´mG

2
x , y( )é

ë
ù
û{ }w x , y( ) ,              (5) 

and 

		
MM x , y( )= C

1
x , y( ) c+c´ m+t( )G1

x , y( )é
ë

ù
û
+C

2
x , y( ) c+c´ m+t( )G2

x , y( )é
ë

ù
û{ }w x , y( ) .        (6) 

The spatial frequency of all carriers is 4 cpd and the spatial frequency of all envelopes is 

0.5 cycles per degree. The contrast of carrier is kept constant at 0.40 in all conditions.  

Experiment 2 
The differences in the stimuli are: 1) the carrier of CM is also drifting at 2 Hz instead of 

being static, to allow a better comparison between CM and MM; and 2), the carrier contrast of all 

stimuli is set to 0.48 (c.f. 0.40 in Experiment 1). A higher carrier contrast can lower increment 

thresholds to provide a greater modulation range above the dip to show the masking effect at 

high pedestal contrasts (Huang & Chen, 2014).  

Figure 5 illustrates the construction of two CM stimuli and a MM stimulus. Among the 

two CM stimuli shown in Figure 5, only CM1 is actually used in the Experiment 2. And the CM 

stimulus used in the Experiment 1 has static carrier instead of a moving one shown in Figure 5. 

Adding two CM stimuli of opposite carrier moving directions and opposite envelope phases 

generates an MM stimulus. 
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Figure 5. The process of constructing a MM stimulus from adding two CMs with moving carriers 

of opposite directions (C1 and C2) and envelopes of opposite phases (G1 and G2). In Experiment 

2, the actual CM stimulus is CM1 which is constructed by multiplying a moving carrier grating 

of high spatial frequency with a static envelope grating of low spatial frequency. In Experiment 

1, the CM stimulus has static carrier. The MM stimulus is the same for both Experiment 1 and 

Experiment 2. 

 

 

Procedure 

We employed the two-interval forced-choice (2IFC) paradigm to measure the increment 

thresholds. During each trial, the target and null intervals were presented, each for 500 ms, in a 

C1 C2 G1 G2 

CM1 CM2 

MM 



 92 

random order with a 400 ms inter-stimulus interval between them. An auditory tone was given at 

the onset of each interval to reduce temporal uncertainty. The task was to identify which interval 

contained greater modulation. The observer responded with a button press on a keypad and were 

given auditory feedback as to whether they were correct for each trial. There is an inter-trial-

interval of 1000 ms before the onset of next trial. We conducted the experiment in blocks of 

pedestal mask levels with two repetitions for each level. The pedestal levels were adjusted for 

each observer to give an informative sampling of the masking function. First, the detection 

threshold T was measured. Then the eight pedestal mask levels were calculated as: (T-12), (T-6), 

(T-3), T, (T+3), (T+6) and (T+12) dB. The unit dB is 20  log10(c), where c represents the 

modulation depth (Eq. 10). At each pedestal level, a psychometric function was measured with 

two interleaving staircases and a threshold was obtained by fitting the psychometric function. 

One staircase was one-up-three-down and the other one was one-up-two-down, both terminated 

after 60 trials. Therefore, there were 1920 trials in each of the two conditions. The two 

conditions were measured alternately and the sequence of the two was balanced among 

observers.  

 

Data Analysis  

To compare the processing mechanisms of CM and MM, we identified eight candidate 

models. As in Eq. 1 and 2, the basic model to account for the second stage nonlinearity and the 

decision making process of second-order modulation processing has four free parameters, 

internal noise σ, exponents p and q, and divisive inhibition parameter z. The question was 

whether these parameters would be the same or different between CM and MM. By varying the 
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number of same and different parameters between the two conditions, we constructed eight 

candidate models. The exponents p and q were restricted to be either both same or different 

between the conditions. The eight models are, from least different parameters to most different 

parameters, shown in Table 3. 

 

 

Models Shared p Shared q Shared z Shared σ # free 

parameters 

1 ✓ ✓ ✓ ✓ 4 

2 ✓ ✓ ✓ ✗ 5 

3 ✓ ✓ ✗ ✓ 5 

4 ✗ ✗ ✓ ✓ 6 

5 ✓ ✓ ✗ ✗ 6 

6 ✗ ✗ ✓ ✗ 7 

7 ✗ ✗ ✗ ✓ 7 

8 ✗ ✗ ✗ ✗ 8 

 

Table 3. The eight candidate models. The number of identical parameters between CM and MM 

varies among the models. This table shows whether the four parameters are same or different 

between CM and MM for each candidate model. 
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Figure 6. The mean and standard error of test deviances across 20 partitions of cross-validation 

are plotted for eight candidate models, for Experiment 1-(a) and Experiment 2-(b). Each 

candidate model is represented by a symbol of unique shape and color. The model that has the 

smallest test deviance is shown with a ring on its symbol. For both groups Model 8, in which all 

four parameters are different between the two conditions, has the smallest test deviance among 

the candidate models. 

 

A twenty-fold cross-validation analysis was employed to perform model selection 

procedure. The cross-validation analysis relies on splitting the data and then using fitting 

parameters from fitting some of the data to try to predict other data that were excluded from the 

fitting. First, we partitioned the data for each condition of each observer into 20 sets. Each was 

used as the holdout test set once, and the remaining 19 sets were combined together to form the 

fit dataset and used to fit the model. Parameters were obtained by fitting to the fit dataset. The 

predictions from these fits were tested against the holdout test dataset in order to calculate the 

deviance. Our 20 iterations of this procedure gave us 20 deviance values (one for each test set). 

The best model is defined as the model with the smallest deviance: 

                                                                                     (7) 

Where Ltest is the test likelihood of the candidate model and Lsat is the likelihood of the 

saturated model(Baldwin, Schmidtmann, et al., 2016). To calculate the deviance of each 

candidate model, from the maximum likelihood fitting with each fit dataset, we obtained the best 
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fit values of the parameters. Then we calculated the test likelihood of the candidate model by 

calculating the likelihood of predicting the data in the corresponding test dataset(Baldwin, 

Schmidtmann, et al., 2016) with the fitted parameters from the fit dataset. After calculating the 

deviance of each of the twenty fit and test datasets, the mean and standard deviation across 20 

partitions were obtained for each model. The mean test deviance values with standard deviation 

of all eight candidate models are shown in Figure 6. Experiment 1 (a) and 2 (b) are shown 

separately.  The model which used the same set of parameters for CM and MM (Model 1) was 

the worst, especially in Experiment 2. Model 3, which would be compatible with a simple input 

gain difference between CM and MM (or difference in suppression) fared little better. We found 

that the best-performing model was Model 8, in which all four parameters can have different 

values between CM and MM. We fitted the whole data set of CM and MM to Model 8 to obtain 

the fitted curve and parameters shown in Figure 1 and Table 2.  

 

Apparatus 

For Experiment 1, stimuli were generated by a Macintosh computer running OS X and 

presented on a gamma-corrected Compaq CRT monitor (30 cm × 40 cm, refresh rate: 85 Hz; 

resolution: 1280 × 960 pixels; mean luminance 20 cd/m
2
). Observers viewed the stimuli from 86 

cm in a dimly lit room. A Bits++ box (Cambridge Research System) was used to provide 14 bits 

of digital to analog converter (DAC) depth and was running in mono mode. For Experiment 2, a 

computer running Windows 7 and a Multiscan G220 monitor (32 × 24 cm, refresh rate: 60 Hz, 

resolution 1024 × 768, mean luminance: 60 cd/m
2
) were used to generate and present the stimuli. 

The viewing distance is 86 cm in order to keep the same value of pixel per degree. For both 
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experiments, the experiment and data analysis software was written in Matlab (Mathworks) 

using functions from the Psychophysics Toolbox(Brainard, 1997). The Palamedes toolbox 2(N. 

K. Prins, F. A. A. , 2009) was used to fit the psychometric functions. 

 

Participants 

For Experiment 1, four experienced psychometric experiment observers including two of 

the authors, YG and AB, participated. The other two observers are naïve to the purpose of the 

experiment. For Experiment 2, there are four observers as well, all university students in China. 

Two of them are experienced observers. All eight observers had normal or corrected-to-normal 

vision at the time of testing. All four observers are naïve to the experimental purpose and signed 

written informed consent. All procedures were conducted in accordance with the Declaration of 

Helsinki, and approved by the Ethics Review Board of the Montreal Neurological Institute. 

 

 

Appendix 

Effect of carrier contrast 

In the current study, we also tested the effect of carrier contrast on the second-order 

nonlinearity for processing motion-defined boundaries. Two of the authors, YG and AB, as well 

as a naïve observer completed the same pedestal masking task for MM with two carrier contrast 

levels-3 and 10 times of the first-order detection threshold respectively. As shown in Figurea, 

fitting the same model to these data shows that none of the four parameters is significantly 
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different (paired-t test, p > 0.05) between the two carrier contrast levels. We then reconstruct the 

pedestal masking functions of each observer with their fitted parameters and plot the mean 

pedestal masking function with standard deviation of each carrier contrast level in Figure 7b. As 

shown in Figure 7b, although it seems that the pedestal masking function of the 3 times condition 

(blue) is shifted up-right from that of the 10 times condition (red), which corresponds to an 

increase in z parameter, the areas of standard deviation of each condition overlap with each 

other. Thus the pedestal masking function for MM is not affected by the change in carrier 

contrast. This means that the second-order nonlinearity for MM is unaffected by carrier contrast. 

 

Figure 7. The results of studying the effect of carrier contrast on second-order nonlinearity of 

MM. The pedestal masking functions were measured with two carrier contrast levels-3 times 

(blue) and 10 times (red) of first-order detection threshold. (a) Mean parameters with their 

standard deviations are plotted for two carrier contrast levels. (b) The mean pedestal masking 

functions of two carrier contrast levels with their standard deviations are reconstructed from 
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fitted parameters. The difference of four parameters between two levels are not significant. And 

the standard deviations of the two pedestal masking functions overlap.  

 

Considering the effect of carrier contrast on CM processing, we can have a look at a 

previous study of Huang and Chen (Huang & Chen, 2014) in which the pedestal masking 

functions of CM gratings were measured with two different levels of carrier contrast. Fitting our 

second-order gain-control nonlinear model to the data in that study reveals that the internal noise 

and the shape (nonlinear exponents) of the nonlinearity do not vary considerably under different 

carrier contrast levels (values change between 16% and 23%). The gain control parameter z 

increased over 40 times when the carrier contrast was reduced from 0.40 to 0.16. None of the 

parameters show significant difference between two carrier contrast levels. This might partially 

due to low statistical power with merely two observers. The mean values of parameters from 

fitting our model to their data are shown in Table 4.  

Carrier contrast σ (dB) p q Z (dB) 

0.16 8.80 3.68 3.21 100.67 

0.40 6.96 3.17 2.63 67.21 

Change  0.23 0.16 0.22 47.11 

Table 4. The mean values of the parameters from fitting our model to Huang and Chen’s 

data(Huang & Chen, 2014). Only z parameter increased dramatically when the carrier contrast is 

reduced. 

 

In conclusion, for both MM and CM, the carrier contrast appears to have no effect on the shape 

of the second-order processing nonlinearity.   
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Manuscript 3: The amblyopic deficit for 2nd 

order processing: Generality and Laterality 

Yi Gao, Alexandre Reynaud, Yong Tang, Lixia Feng, Yifeng Zhou, and Robert F. Hess
 

 

Abstract 

A number of previous reports have suggested that the processing of second-order stimuli 

by the amblyopic eye (AE) is defective and that the fellow non-amblyopic eye (NAE) also 

exhibits an anomaly.  Second-order stimuli involve extra-striate as well as striate processing and 

provide a means of exploring the extent of the cortical anomaly in amblyopia using 

psychophysics. We use a range of different second- order stimuli to investigate how general the 

deficit is for detecting second order stimuli in adult amblyopes. We compare these results to our 

previously published adult normative database using the same stimuli and approach to determine 

the extent to which the detection of these stimuli is defective for both amblyopic and non-

amblyopic eye stimulation. The results suggest that the second order deficit affects a wide range 

of second-order stimuli, and by implication a large area of extra-striate cortex, both dorsally and 

ventrally. The NAE is affected only in motion-defined form judgments, suggesting a difference 

in the degree to which ocular dominance is disrupted in dorsal and ventral extra-striate regions. 
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Introduction 

The natural environment is composed of luminance-defined (first-order) as well as 

contrast/motion/stereo-defined (second-order) features. It is widely accepted that the first-order 

information is processed by the neurons in early visual cortex (V1) with receptive fields tuned 

for orientation (Hubel & Wiesel, 1962) and spatial frequency (Campbell, Cooper, & Enroth-

Cugell, 1969; DeValois & DeValois, 1988) of the luminance-defined stimuli. However, there are 

two conflicting views for where second-order visual features are processed, though it is widely 

accepted that it involves additional processing in extra-striate cortex. There is some debate over 

whether all second-order stimuli are processed in one cue-invariant area in extra-striate cortex, 

such as V3A (Zeki & Shipp, 1988) or whether multiple different areas are involved for the 

different varieties of second-order stimuli (e.g. contrast-defined, motion-defined and orientation-

defined). For example, for motion-defined stimuli, there is evidence supporting the involvement 

of V1, V2 and V3 in representation of motion boundaries (Reppas, Niyogi, Dale, Sereno, & 

Tootell, 1997). There are also reports that MT (V5) responds to second-order motion stimuli 

(Smith, Greenlee, Singh, Kraemer, & Hennig, 1998), as well as reports that V3 and VP respond 

stronger to second-order than first-order stimuli. For orientation (texture)-defined stimuli, single 

cell studies suggest the involvement of areas downstream from V2 (El-Shamayleh & Movshon, 

2011), while human fMRI studies suggest the involvement of many areas including V1, V2, V3, 

V3A/B, LO1, hV4 and VO1 (Larsson, Landy, & Heeger, 2006). There is also evidence from 

lesion study for the involvement of V4 in texture discrimination (Merigan, 2000). For contrast-

defined stimuli, there is evidence for the involvement of V1/A17 and V2/A18 (Hallum, Landy, 

& Heeger, 2011; Zhou & Baker, 1993, 1994). 
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The psychophysical deficit in amblyopia is extensive involving not only contrast 

sensitivity (Hess & Howell, 1977; M. Levi & R. S. Harwerth, 1977) but also the encoding of 

spatial position (Bedell & Flom, 1981; Hess, Campbell, & Greenhalgh, 1978; Lagreze & 

Sireteanu, 1991), global motion (Aaen-Stockdale & Hess, 2008; Ho et al., 2005; Simmers, 

Ledgeway, Hess, & McGraw, 2003), global form (Simmers, Ledgeway, Hutchinson, & Knox, 

2011; Husk & Hess, 2013; Simmers, Ledgeway, & Hess, 2005), contrast-defined form (Hong, 

Levi, & McGraw, 2001) and motion-defined form (Giaschi, Regan, Kraft, & Hong, 1992; 

Farivar, & Hess., 2011). The site of the amblyopic deficit is thought to be primarily in the striate 

cortex (Kiorpes & McKee, 1999) but the extent to which the extra-striate cortex is separately 

affected is not clear (Kiorpes, Kiper, O'Keefe, Cavanaugh, & Movshon, 1998). Although it is 

true that second-order processing is thought to involve extra-striate areas, it is not always 

possible to exclude an explanation based on a reduced feedforward input from striate cortex for 

reduced second order function. Simmers and colleagues (Simmers et al., 2005; Simmers et al., 

2003; Simmers, Ledgeway, Mansouri, Hutchinson, & Hess, 2006) specifically separated contrast 

from global integrative effects and argue for a primary deficit in ventral as well as dorsal extra-

striate function. Wong and colleagues (Wong, Levi, & McGraw, 2001) also show that the deficit 

for contrast-defined form is not simply due to reduced visibility of the carrier, suggesting extra-

striate involvement.  Similarly, Husk and colleagues (Husk, Farivar, & Hess, 2012) argue that 

deficits for motion-defined form remain even after correcting for low-level differences in 

contrast sensitivity. 
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Thus there is support for defective second order processing in amblyopia that is not 

explicable in terms of striate function, suggesting extra-striate involvement. Here we address the 

nature of this extra-striate involvement with the following questions;  

 

1. How general is this deficit? For example, are only some types of second order 

processing affected in amblyopia or are all types of second order processing affected equally?  

 

2. How lateral is this deficit? For example, is this deficit specific to the AE information or 

is information from the NAE equally affected? 

 

An answer to the first question bears upon the extent of the extra-striate deficit as there is 

evidence from both single cell neurophysiology (Zhou & Baker, 1993, 1994) and human fMRI 

(Reppas et al., 1997; Hallum et al., 2011) that separate ventral and dorsal extra-striate regions 

underlie the processing of different second-order stimuli.  On the basis of the suggested 

developmental vulnerability of the dorsal extra-striate cortex (Braddick, Atkinson, & Wattam-

Bell, 2003), one might expect a greater loss of motion-defined form compared with either 

contrast- or orientation-defined form. The answer to the second question has been partly 

answered by previous studies (Giaschi et al., 1992; Ho et al., 2005; Wong et al., 2001), 

information through the NAE is affected to some extent. The numbers of amblyopes studied to 

date does not allow us to gauge how general a finding this is and whether both eyes are affected 

equally. Also this effect seems clear in children but less clear in adults (Giaschi et al., 1992; Ho 

et al., 2005). By using a larger number of adult subjects and comparing results to a large database 



 103 

of normal adult responses collected using the same psychophysical approach, we hope to answer 

both of these questions for the adult population.  

 

We used the quick Contrast Sensitivity Function (qCSF) approach (Lesmes, Lu, Baek, & 

Albright, 2010) to measure two types of first-order contrast sensitivity and three types of second-

order sensitivity that relied on form judgments (i.e. contrast-, orientation- and motion-defined 

form).  

The qCSF method has been successfully applied to measuring second-order sensitivity of 

normal observers (A. Reynaud, Tang, Zhou, & Hess, 2014) as well as first-order sensitivity of 

amblyopes (F. Hou et al., 2010). This is the first time that qCSF model is applied to second-order 

sensitivity of amblyopes and we are relatively confident that the model is valid based on its 

previous successful applications. The stimuli used for the first order measurements served as the 

carriers for the second order measurements. The results on 28 adult amblyopes were compared 

with a normative database from 52 adult subjects using an identical approach (Reynaud et al., 

2014). 

 

 

Methods 

Subjects 

In total 28 subjects (17 males and 11 females, average age=26.3 ± 9.69 years, range: 13 – 

55 years) volunteered in the main experiment which included two first-order conditions: static 

and moving stimulus conditions, and three second-order conditions: contrast-modulation, 
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orientation-modulation, motion-modulation (see Stimuli). There are two groups-the first group 

includes 21 subjects (9 males and 12 females, average age=22.0 ± 3.62 years, range: 13 – 27 

years) that were tested in Hefei; the second group includes 7 subjects (4 males and 3 females, 

average age=38.5 ± 11.40 years, range: 23 – 55 years) that were tested in Montreal. All of the 

subjects were diagnosed with amblyopia (6 with strabismus) and the visual characteristics are 

detailed in Table 1. 24 (16 males and 7 females, average age=28.5 ± 9.38 years, range: 21- 55 

years) of them also did a normalized contrast-modulation condition (see Stimuli). Informed 

consent was obtained from all participants. This research project has been approved by the Ethics 

Review Board of the Montreal Neurological Institute and by the Ethics Committee in University 

of Science and Technology of China. It was performed in accordance with the ethical standards 
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laid down in the 1964 Declaration of Helsinki.  

 

Subjects Refraction Error Visual Acuity Strabismus CMn

NAE -0.25/ -0.50*120° 20/ 20

AE  +0.50/ -1.00*0° 20/ 40

NAE plano 20/ 20

AE  -1.25/  -0.50*90° 20/ 40

NAE -1.25/ -0.50*30° 20/ 20

AE +2.50/ 1.50*75° 20/ 50

NAE plano 20/ 12.5

AE  +2.50 /  -0.50 * 180° 20/ 100

NAE plano 20/ 20

AE -0.75/ -0.50*60° 20/ 63

NAE plano 20/ 12.5

AE  -1.00 20/ 63

NAE +0.50/ -0.50*60° 20/ 16

AE  +2.00 20/ 160

NAE plano 20/ 20

AE  +2.00/ +1.00*90° 20/ 63

NAE -0.50 DS 20/ 20

AE  +2.50/ 0.50*90° 20/ 50

NAE plano 20/ 16

AE  +2.50/ 1.50*85° 20/ 50

NAE plano 20/ 20

AE  +1.00/ +1.50*95° 20/ 40

NAE -0.50*165° 20/ 25

AE  +2.00/ +3.00*70° 20/ 50

NAE -2.75 DS 20/ 20

AE  +1.50 DS 20/ 50

NAE plano 20/ 20

AE  +4.00/ +1.00*85° 20/ 160

NAE plano 20/ 20

AE +3.00/ +2.00*100° 20/ 80

NAE -2.00/ -1.00*10° 20/ 20

AE  -1.00/ +3.50*85° 20/ 40

NAE +0.50/ 1.50*180° 20/ 25

AE +4.00/ +1.00*170° 20/ 63

NAE plano 20/ 20

AE  +1.00/ +0.25*90° 20/ 80

NAE -2.25 DS 20/ 25

AE  +3.00/ +1.50*75° 20/ 100
ZY None Y

XCX None Y

DJY None Y

XL None Y

SJ None Y

YJ None Y

WS None Y

YX None Y

YFZ None Y

LS None Y

ZH None Y

JF L exo 15° Y

CS None Y

EV R exo 15° Y

MG
Microtropia 

eso  6!
Y

GH L exo 6° Y

EC None Y

EL L eso 10° Y

KM R exo 20° Y
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Table 1. Clinical details of amblyopic subjects  

 

 

Apparatus 

All of the procedures and the analysis were processed with Matlab (© the MathWorks) 

using the psychophysics (Brainard, 1997; Pelli, 1997), Palamedes (Prins & Kingdom, 2009) and 

qCSF (Lesmes et al., 2010) toolboxes. Stimuli were presented on a gamma-corrected Sony G220 

CRT monitor for the first group of subjects and on a gamma-corrected Compaq CRT monitor for 

the second group. For the first monitor the display area was 24.4 x 32.5 cm with the mean 

luminance 40 cd/m
2
, the refreshing rate 75 Hz and the resolution 1600 x 1200 pixels. For the 

second monitor the display area was 30 x 40.5 cm with the mean luminance 20 cd/m
2
, the 

refreshing rate 120 Hz and the resolution 1024 x 768 pixels. Subjects viewed the stimuli 

monocularly in a dimly lit room with a viewing distance of 60 cm.  

 

Stimuli 

The visual stimuli presented in this experiment on amblyopes were the same as the ones 

in our previous study on normals (Reynaud et al., 2014) except that in addition to the five existed 

conditions, namely first-order oriented luminance modulation (subsequently denoted as LM1d), 

first-order moving luminance modulation (denoted as LM2d), second-order non-normalized 

contrast-defined modulation (denoted as CM), second-order normalized orientation-defined 

modulation (denoted as OM) and second-order normalized motion-defined modulation (denoted 

as MM), an additional normalized contrast modulation condition (denoted as CMn) was added. 
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The two types of first-order stimuli were then used as carriers to build the second-order stimuli. 

To keep consistency, the contrast is always expressed as Michelson contrasts.  

 

Figure 1. Stimuli and sensitivity functions. (a) Orientation case. The carrier is an oriented one-

dimensional filtered noise (first-order orientation case, LM1d). Two carriers of orthogonal 

orientations are respectively modulated by out-of-phase sine-wave gratings and combined to 

generate the second-order orientation-modulated stimulus (OM). (b) Motion case. The carrier is a 

non-oriented two-dimensional filtered noise moving horizontally or vertically (first-order motion 

case, LM2d). Two carriers moving in random orthogonal directions are respectively modulated 

by out-of-phase sine-wave gratings and combined to generate the second-order motion-

modulated stimulus (MM). (c) Contrast-modulation. The carrier is a non-oriented two-

dimensional filtered noise, its contrast is modulated by a sinusoidal grating to generate the 

second-order contrast-modulated stimulus (CM), or contrast-modulated normalized stimulus 

(CMn). (d) The sensitivity is described by the truncated log-parabola model as a function of the 

spatial frequency. Four parameters are studied: the peak gain (γmax), the peak frequency (fmax), the 

bandwidth (β), and the cutoff frequency (fc). Stimuli are rendered here at 100% Michelson 

contrast, adapted from Reynaud, Tang, Zhou and Hess 2014. 
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First-order, carriers 

In the case of LM1d and OM, the first-order carriers ch and cv (Figure 1a, first row) were 

generated by filtering white noises by the horizontal Gabor filter Gh or the vertical one Gv 

respectively in a two-dimensional space (x,y) with values ranging from -1 to 1 (Equation 1). The 

frequency and contrast of the Gabor filters were determined by the qCSF method (see 

Procedures) and the bandwidth was 3 octaves.  

ch(x,y)=w1(x,y)*Gh(x,y) 

cv(x,y)=w2(x,y)*Gv(x,y)   (1) 

In the case of LM2d or MM, the carriers c'h and c'v (Figure 1b, first row) were functions 

of two-dimensional space and time (x,y,t) with a range of values between -1 and 1. They were 

generated by successively filtering white noises by both the orthogonally oriented Gabor filters 

Gh and Gv (Equation 2). The carriers were moving randomly leftward or rightward for the 

horizontal conditions and upward or downward for the vertical conditions, at a drifting rate of 

2Hz. Note that the illustration Figure 1b only indicates leftward and downward arrows as 

examples. 

c'h(x,y,t)=w1(x+t,y)*Gh(x,y)*Gv(x,y) 

c'v(x,y,t)=w2(x,y+t)*Gh(x,y)*Gv(x,y)   (2) 

The carrier of CM and CMn – c0 was also generated by successively filtering white noise 

by both Gh and Gv but in a two-dimensional space (x,y) with a range of values between -1 and 1, 

as shown in Equation 3. 

c0(x,y)=w1(x,y)*Gh(x,y)*Gv(x,y)   (3)  

 

 



 109 

 

Second-order, modulation 

The envelopes that were used to build the second-order stimuli were two half-cycle 

phase-shifted gratings with a frequency of 1/4 that of the carrier, m1 and m2 respectively 

(Equation 4). These envelopes took values between 0 and 1. They were weighted by a 

modulation parameter m (0<m<1) characterizing the blending applied between the two textures 

(Figure 1a and b, second rows), and could both be horizontal or both be vertical. These 

envelopes modulated the carriers in each second-order condition. 

m1(x)= 1/2 (1 + m sin(2π fm x)) 

m2(x)= 1/2 (1 - m sin(2π fm x))                         (4) 

For the OM stimulus Io consisted of the sum of the modulated oriented carriers ch and cv 

(Equation 5, Figure 1a third row). The MM stimulus Im consisted of the sum of the modulated 

moving carriers c'h and c'v (Equation 6, Figure 1b third row). While for the CM and CMn the 

stimulus Ic contained only modulation of one carrier (Equation 7, Figure 1c).  

Io(x,y)= (ch(x,y)×m1(x)) + (cv(x,y)×m2(x))    (5) 

Im(x,y,t)= (c'h(x,y,t)×m1(x)) + (c'v(x,y,t)×m2(x))   (6) 

Ic(x,y)= c0(x,y)×m1(x)                                                              (7) 

In all of the second-order stimuli, there is no relationship between the orientation of the 

carriers and that of the envelopes. In particular, for the motion-modulation case, the two carriers 

were moving in random orthogonal directions (one horizontally and one vertically). Thus the 

direction of motion never provided any cue on the envelope orientation. All the stimuli were 

showed on a grey background in a Gaussian aperture of 10° standard deviation (Reynaud & 

Hess, 2012). The filtered noise carrier has an RMS contrast of approximately 0.2 times that of 



 110 

the Michelson contrast. The application of the Gaussian mask also has the effect of reducing the 

apparent contrast of the stimulus. 

 

Procedures 

Trial procedure 

A single-interval identification task was employed to estimate the detection sensitivity. 

The subjects’ task was to identify the orientation of the carrier for the first-order measurements 

or the orientation of the envelope for the second-order measurements: horizontal or vertical. The 

trial time course was as follows: (1) a green fixation dot appeared on the screen, (2) the dot 

turned red and the stimulus was presented for 1 s with an auditory cue, (3) the dot turned orange 

and indicated to the subject that a response was needed, (4) when the subject answered, the dot 

disappeared and audio feed-back about the correctness of the response was provided.  

The first-order sensitivities were always measured before their second-order counterparts 

for each subject individually so that the contrast of the carrier for the subsequent OM and MM 

conditions could be set to 10 times the contrast threshold for detecting the respective carrier 

(LM1d and LM2d conditions). It was set to 1 if larger than 1. However, for the CMn condition 

the mean contrast was set to 5 times the contrast threshold.  For the CM condition, the mean 

contrast was set to 50% to ensure that the full range of modulation was always available. Each 

run consisted of 100 trials preceded by 5 training trials, took approximately 7 minutes and was 

repeated two times. Sensitivity was measured monocularly with the sequence of first run of all 

measurements of the NAE, first run of the AE, second run of the NAE and second run of the AE. 

An extra run was performed in case these two repetitions showed a notable difference.  
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qCSF method  

The sensitivity functions were determined using the quick contrast sensitivity function 

(qCSF) method (Hou et al., 2010; Lesmes et al., 2010). This method is a Bayesian adaptive 

procedure that estimates multiple parameters of the psychometric function at the same time. The 

qCSF jointly estimates thresholds across the whole spatial frequency range. For each trial, the 

method finds the optimal stimulus in order to maximize the expected information gain about the 

sensitivity function under study (Lesmes et al., 2010). The method estimates the sensitivity 

function with the truncated log-parabola model (Watson & Ahumada, 2005). The log-parabola 

function in Equation 8 can be described by three parameters: the peak gain γmax, the peak 

frequency fmax, and the bandwidth β (full-width at half-maximum, Figure 1d).  

                   (
                    

   ⁄
)
 

 (8) 

with κ=log10(2) and  β'=log10(2β).  

The truncated log-parabola comes from the truncation imposed for low frequencies and 

described by the parameter δ. The log-sensitivity S is then expressed in Equation 9 : 

                                          if f < fmax and S'(f) < log10(γmax) – δ    

                                                     else                              (9) 

We discarded the truncation parameter from our analyses because it was often out of the 

range of our measurements. Another parameter that we used in the analysis was the cutoff 

frequency fc defined as the frequency for which the sensitivity is minimal S=0 (Equation 10). 

          
  

 
√           

  (10) 
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For the qCSF measurements, the possible range for the modulation was 0.001 to 1. The 

frequency range was 1 to 14.16 c/d for first-order luminance and 0.25 to 3.54 c/d for second-

order modulation frequency. The initial priors required by the qCSF were set manually: the gain 

prior was set to 100 for the first-order and to 10 for second-order; the peak frequency prior was 

set to 8 c/d for the first-order and to 2 c/d for the second-order; and the bandwidth prior was set 

to 3 octaves in both cases.  

 

Data analysis 

To check if the results of the two groups of subjects that were tested in the two different 

experimental set-ups were different from each other, we compared the shapes of the average 

contrast sensitivity function and the modulation sensitivity function as well as the four 

parameters of the qCSF function. There was no significant difference between the two groups. 

Therefore, in the following analysis we report combined data. 

Because the carrier contrast could not exceed 1, the contrast of some carriers was less 

than 10 times their detection threshold. In order to assess the capacity of second-order processing 

per se, i.e. to make sure any reduced performance for second-order stimuli is because of second-

order processing per se instead of a loss of visibility of first-order information, only data for 

which the carrier contrast was larger than 5 times its detection threshold are displayed. For the 

first-order conditions, we used only contrast sensitivity data that was above zero.  

 

We then compared the qCSF parameters obtained from the amblyopes with those 

parameters obtained from normal adults from our previous study (Reynaud et al., 2014). Since 
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there was no significant difference between normal eyes and the NAE of amblyopes, we 

compared the parameters obtained from AE with those obtained from NAE.  

 

 

Results 

The averaged sensitivity functions of 28 subjects are shown in Figure 2a for non-

amblyopic eyes (NAE) and Figure 2b for amblyopic eyes (AE). The two kinds of first-order 

stimuli and the three kinds of second-order stimuli (see Methods) are shown in different colors. 

There are four important observations from these results. First, the sensitivity functions for first-

order and second-order stimuli present a low-pass bell shape in both eyes. The functions cluster 

into two groups: a first-order group with large max gain and high peak spatial frequency and a 

second-order one with smaller gain and reduced peak frequency. This result is consistent with 

previous studies in terms of the shape of the first-order contrast sensitivity function (Campbell & 

Robson, 1968), the shape of the second-order contrast sensitivity functions (Hutchinson & 

Ledgeway, 2006; Landy & Oruc, 2002; Meso & Hess, 2010, 2011; Schofield & Georgeson, 

2003; Sutter, Sperling, & Chubb, 1995; Watson & Eckert, 1994) and the higher sensitivity to 

first-order stimuli than that to second-order stimuli (Hutchinson & Ledgeway, 2006; Sutter et al., 

1995). Second, although the shapes of the sensitivity functions of the NAE and the AE are 

similar, the gain and the peak frequency are higher in NAE than in the AE for both first-order 

and second-order sensitivity functions. Third, the sensitivity functions of the two first-order 

stimuli, namely the static and the moving first-order noise stimuli, are very similar in terms of 

shape, gain and peak frequency. In the NAE, the peak frequency is about 1.9 c/d and the gain is 
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about 54, which is consistent with previous results (Campbell & Robson, 1968). In the AE, the 

functions peak at about 1.40 c/d and have a sensitivity of about 37. The fact that the peak 

frequency and the max gain of the AE is smaller than that of the NAE is consistent with the 

widely accepted idea that amblyopic eyes have reduced contrast sensitivity (Gstalder & Green, 

1972; Hess & Howell, 1977; D. M. Levi & R. S. Harwerth, 1977). Fourth, the sensitivity 

functions of the three second-order stimuli, although having similar shapes, are different in gain 

and peak frequency. In the NAE, the contrast-modulation sensitivity function peaks at 

approximately 1.14 c/d and has a sensitivity of 6.20; the orientation-modulation sensitivity 

function peaks at 0.99 c/d and has a sensitivity of 4.8; and the motion-modulation sensitivity 

function has a peak frequency of 0.72 c/d and a gain of 3.67. While in the AE, the contrast-

modulation sensitivity function peaks at approximately 0.67 c/d and has a sensitivity of 5; the 

orientation-modulation sensitivity function peaks at 0.61 c/d and has a sensitivity of 4.32; and the 

motion-modulation sensitivity function has a peak frequency of 0.4 c/d and a gain of 3.66. 

Therefore compared to the NAE, there is also a sensitivity deficit for second-order processing for 
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amblyopic eye stimulation.

 

Figure 2: Data and model fits; a) averaged sensitivity functions from the data with standard 

deviation for the NAE; b) same functions for the AE; c) sensitivity functions reconstructed with 

the qCSF parameters using the log-parabola model for the NAE; d) the same functions as in c for 

the AE. In each figure five conditions are shown in different colors - first-order static luminance-

modulated noise in light blue, first-order moving luminance-modulated noise in light red, 

second-order contrast-modulation in green, second-order orientation-modulation in darker blue 

and second-order motion-modulation in darker red. 
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The Figure 2c and 2d show the sensitivity functions reconstructed using the log-parabola 

model (Watson & Ahumada, 1985) with the parameters estimated by the qCSF model for the 

NAE and AE separately. The model representation was truncated to the delta threshold level of 

the qCSF (Lesmes et al., 2010) because this parameter is not of interest here, and the curve has 

been extrapolated to show the cutoff frequency (see Methods). As reflected in the data (figures 

2a and b), the sensitivity functions derived from the parameters show that the AE has lower gain 

and peak frequency for both first-order and second-order sensitivity functions compared with 

that of the NAE. The cutoff frequency for the first-order functions is approximately 15 c/d in the 

AE and 30 c/d in the NAE. It is around 3, 2.6 and 1.5 c/d in the AE for second-order contrast-, 

orientation- and motion-modulation respectively. And in the NAE it is around 8.7, 5.7 and 3.4 

c/d respectively. 

 

Figure 3 shows the log threshold elevation ratios for the AE compared to the NAE in 

each condition as a function of spatial frequency for each subject separately. The data were fit by 

linear regression for each subject in each condition separately. The mean and standard deviation 

of the two regression parameters are shown in Table 2. Two features are noteworthy for the 

threshold elevation of the AE, first, the slopes of the regression lines in figure 3 are mostly 

positive and the mean of the slopes in every condition is positive. Second, in the two first-order 

conditions the intercepts are mostly at or above zero whereas for the three second-order 

conditions they are mostly below zero. Therefore, for both first-order and second-order 

processing the sensitivity of the AE declines relative to the sensitivity of the NAE as the spatial 
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frequency increases. For the first-order conditions, the contrast sensitivity of the AE is reduced 

relative to the NAE at all spatial frequencies including mid-low spatial frequencies. In the 

second-order conditions, however, the AE’s sensitivity is worse than that of the NAE at high 

frequencies but better at mid-low frequencies.  

 

Figure 3. Logarithmic ratios of the sensitivity of the NAE to the AE against the spatial 

frequency. First row: first-order stimuli-LM1d (luminance-modulation orientation), LM2d 

(luminance-modulation motion); second row: second-order stimuli-OM (orientation-

modulation), MM (motion-modulation), CM (contrast-modulation). The color of the symbols 

refers to the type of stimulus used from the color code of figure 2. Different number of points are 

shown for each subject because only the data that survived the truncation is shown (see 

Methods). 
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Table 2. The fitted parameters and their means and standard deviations. 

 

Four parameters from qCSF model fits to the data are shown in figure 4, a – the gain, b – 

the peak frequency, c - the cutoff frequency and d - the bandwidth. For each parameter, averaged 

values are compared for 104 normal eyes, 28 NAEs and 28 AEs. 

This parameter comparison is for the two first-order conditions and the 3 second-order 

conditions respectively. The data of the normal eyes are from our previous study (Reynaud et al., 

2014) in which no significant difference was found between the sensitivity functions of the 

dominant eye and the non-dominant eye of normal subjects for either first-order or second-order 

stimuli. Therefore, in the current analysis the previous data of the dominant eyes and non-

dominant eyes were averaged for comparison with those of the AE and the NAE.  

Since it cannot be assumed that the NAE of amblyopia patients is absolutely normal, we 

used a Wilcoxon Rank Sum two-tail test for comparing the parameters between the NAE and the 

average of normal eyes. On the other hand, since our expectation is that the amblyopic eye will 

show a deficit, we used a one-tail test for comparing the parameters between the AE and the 

average of normal eyes. The difference between the AE and the normal eyes is significant for all 

parameters in all conditions (p<0.05). Hence compared to the normal eyes, the AE exhibits a 

deficit that is general for different types of first-order and second-order stimuli. On the other 

Condition Slope mean Slope std Intercept mean Intercept std

LM1d 0.2843 0.3595 0.0289 0.2379

LM2d 0.2135 0.2698 0.1255 0.1838

CM 0.274 0.2314 -0.0725 0.1843

OM 0.2999 0.2882 -0.1319 0.1656

MM 0.348 0.2954 -0.1868 0.2059
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hand, the parameters for the NAE are only significantly different from those of normal eyes in 

very few conditions (p<0.05). The gain and the cutoff frequency in the first-order motion 

condition and the bandwidth in the orientation-modulated second-order condition are superior to 

those for the normal eyes.  However, the gain in the motion-modulated second-order condition is 

lower than that of normal eyes. Therefore, there is no general deficit in the NAE for either first-

order or second-order processing, enabling further analysis to be done between the data of the 

NAE and the AE. 
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Figure 4. Parameter comparison between normal eyes and the NAEs, and between normal eyes 

and AEs. Each group of three bars, from left to right, are parameter values for normal eyes 

(normative dataset), NAEs and AEs. For each parameter, bars and error bars represent mean and 

standard deviation over the 104 normal eyes, 28 NAEs and 28 AEs. a) maximum gain γmax; b) 

peak frequency fmax; c) cutoff frequency fc; d) bandwidth β. The asterisks indicate that the 

parameters are significantly different from the normative dataset (two-tail Wilcoxon rank sum 

test for the NAE and one-tail for the AE, p < 0.05), all the other comparisons are not 

significantly different. Note that the y-axis is on a log-scale in panels a) and c). 

 

 

The comparison between the parameters of the qCSF model for the first and second-order 

data of the AE and NAE are shown in a scatter plot, subject-by-subject, in Figure 5. Each 

parameter of the AE for each subject is plotted against the corresponding parameter of the NAE 

for the same subject with the first-order conditions on the left and the second-order conditions on 

the right. From top to bottom, the parameters are the max gain, the peak frequency, the cutoff 

frequency and the bandwidth. The data are mostly above the identity line for almost all the 

parameters in all the conditions except that for the max gain parameter in the second-order 

conditions where the data are approximately equally distributed about the identity line. All the 

parameters were compared between the AE and the NAE using Wilcoxon Signed Rank one-tail 

test. Except for the gain in second-order orientation- and motion-modulation and the bandwidth 

in second-order contrast modulation, all the parameters in all conditions are significantly smaller 

in the AE than in the NAE (p<0.05). Hence compared with the NAE, the AE has significant 

deficits for first-order processing. For the second-order processing, we found that the AE also 

has significant deficits, manifested by lower peak frequency and cut off frequency as well as a 

narrower bandwidth for all three second-order conditions and lower gain for contrast-modulation 

compared to the NAE. In orientation-modulation and motion-modulation conditions, since the 
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peak gain (i.e. max gain) is not significantly reduced in the AE compared with the NAE, the 

deficit is restricted to higher modulation spatial frequencies.  

This comparison confirms our observation about the sensitivity function as well as the 

parameter means, namely that compared to the NAE, the AE is defective in first-order processing 

at all spatial frequencies and in second-order processing at only high spatial frequencies. 
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Figure 5. Individual parameter (qCSF) estimates for the NAE plotted against corresponding 

values for the AE for both first (left panels) and second order (right panels) conditions. a) 

maximum gain γmax; b) peak frequency fmax; c) cutoff frequency fc; d) bandwidth β. The color of 

the symbols refers to the type of stimulus used from the color code of figure 2. Data points above 

the identity lines indicate that the parameters are larger in the NAE than the AE.  

 

In all the second order conditions except for contrast modulation, the carrier was set to be 

10 times its first order threshold to ensure that loss of second order sensitivity was not the result 

of reduced first-order carrier visibility. This was not done for contrast modulation because we 

wanted to be able to use the whole contrast range for each spatial frequency, and so we set the 

mean contrast of the stimulus to 50%. Here we assess the impact of this decision by comparing 

AE and NAE functions for contrast modulated stimuli that have either a fixed mean contrast of 

50% (non-normalized condition- termed CM) or a mean carrier contrast set at 5 times its own 

detection threshold (normalized condition- termed CMn). 

To address the question about the comparison between normalized contrast-modulated 

second-order stimuli (CMn) and the non-normalized one (CM), firstly the sensitivity functions of 

each condition are shown in figure 6 separately for the AE and the NAE. From this figure we see 

that the sensitivity for the CM condition is better than that for the CMn condition only at mid-

low spatial frequencies. Indeed, these two conditions don't show any differences at high-spatial 

frequencies because in this range the first-order contrast thresholds are high, and after 

normalization, the mean contrast in the CMn condition is close to 50%. 
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Figure 6. Averaged sensitivity functions comparing AE and NAE for two different contrast-

modulated conditions: CM- contrast modulation and CMn- normalized contrast modulation.  In 

the former the mean carrier contrast was fixed at 50% whereas in the latter, the mean contrast 

was always set to be 5 times its detectability. 

 

 

In order to further compare the sensitivity functions for the CMn and the CM conditions, 

figure 7a shows a scatter plot of the sensitivity of CM against CMn over the full spatial 

frequency range for all the subjects for the NAE and the AE with linear regression. There are 

more data in the upper part of the quadrant for both eyes, indicating that sensitivity is higher for 

the CM than for CMn. However, there is no difference in this regard between the AE and the 

NAE. 

In figure 7b the ratio between the sensitivity of CM and CMn for the NAE and the AE is 

shown over the full spatial frequency range for all the subjects. When the contrast is low, the 
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ratio for both AE and NAE is relatively high while when the mean contrast is close to 1 (that of 

the non-normalized condition) the ratio drops to 1. The change of the ratio for both eyes with 

contrast suggests that the mean contrast of the carrier plays a role in the detection of the contrast 

modulation. The dashed lines are two regressions of an inverse function with two parameters: the 

slope and the intercept. Using a bootstrap distribution for each parameter, a Student’s t-test 

revealed these two fitted curves were not significantly different. Thus, there is no significant 

difference in the way that first-order information inputs into second-order processing in the AE 

and the NAE. We can conclude two things; first, the influence of using a normalized carrier 

contrast (i.e. set to a multiple of detection threshold as in the CMn condition) is mostly seen at 

low mean carrier contrasts corresponding to low-mid modulation frequencies (where sensitivity 

is best but where there is no difference between AE and NAE) rather than at high modulation 

frequencies where there is an AE deficit; second, this effect at low mean contrasts is equal for 

both AE and NAE and would not by itself contribute to additional second order sensitivity 

deficits. This suggests that the second-order deficits reported here for contrast-defined stimuli are 

not due to upstream deficits in contrast sensitivity affecting the visibility of the carrier. 
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Figure 7. a) Scatter plot of the sensitivity of CM against CMn over the full spatial frequency 

range for all subjects for the NAEs (crosses) and the AEs (circles). The dashed lines are linear 

regression lines for each eye respectively; b) the ratio between the sensitivity of CM and CMn 

over the full spatial frequency range for all the subjects and for the NAEs and the AEs. The 

dashed lines are regression lines of an inverse function for each eye. 

 

Discussion 

In this study we compared both first and second order contrast sensitivity for the 

amblyopic and fellow non-amblyopic eyes of 28 amblyopes to the non-dominant and dominant 

eyes of 52 normal observers using an identical psychophysical approach, the qCSF, to address 

two question, namely; 

 

1. How general is this deficit? For example, are only some types of second order 

processing affected in amblyopia or are all types of second order processing affected equally?  

 

2.How lateral is this deficit?  For example, is this deficit specific to amblyopic eye 

information or is information from the fixing eye equally affected? 

 

We confirmed the first-order deficit and showed that the second-order deficit is of a 

general nature affecting the detection of spatial form defined by contrast, orientation and motion. 

The amblyopic eye exhibits a range of anomalies for these stimuli when compared with that of a 

normal observer. There is evidence from a case series that while a wide range of second-order 

functions is affected they may not be equally affected (Simmers et al., 2011). This suggests that 

the underlying deficit is extensive and possibly not uniform within the cortex because these 
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different spatial and temporal second-order stimuli optimally drive neurons in different specific 

regions of ventral and dorsal cortex respectively. Such a conclusion is in line with the available 

fMRI (Barnes, Hess, Dumoulin, Achtman, & Pike, 2001; Li, Dumoulin, Mansouri, & Hess, 

2007) and psychophysical studies that have investigated this issue (Simmers et al., 2005; 

Simmers et al., 2003; Simmers et al., 2006). Although second-order function can be associated 

with extra-striate cortex, it is presently unclear the extent of striate (Larsson, Landy, & Heeger, 

2006;Hallum, Landy, & Heeger, 2011; Zhou & Baker, 1993, 1994) or indeed pre-striate 

(Rosenberg, Husson, Mallik, & Issa, 2008; Rosenberg & Issa, 2009) involvement. This 

uncertainly makes it difficult to go from psychophysical deficit to cortical locus. 

An important issue is whether the deficit for the detection of first-order stimuli could be 

responsible in whole or part for the second order deficit. We set out to use first order stimuli that 

could serve as carriers for the second order modulation to specifically address this issue. This 

allowed us to measure the detectability of the carriers so that we could set the carriers at 10 times 

their detection threshold to ensure that carrier visibility was not the explanation for any observed 

reduction in second-order sensitivity for the amblyopic eye. We did this for motion and 

orientation defined. To examine whether carrier visibility played a role in the measured 

amblyopic deficit for contrast defined form, we compared measurements with a fixed 50% mean 

contrast (CM) with those for mean contrast set to 5 times their detection threshold (CMn). This 

comparison shows that the fixed 50% contrast carrier resulted in better modulation sensitivity but 

only at low modulation spatial frequencies where sensitivity is best but where the different 

between fixing and normal eyes is least. Additionally, these effects were similar for both fixing 

and amblyopic eyes. Taken together this strongly suggests that even for the contrast-defined 
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form stimuli, the visibility of the carrier played little or no role in the measured modulation 

deficits. This suggests that the deficits reported here are extra-striate in nature. 

It has been reported that the fixing eye of amblyopes exhibits a deficit for the detection of 

second-order stimuli (Giaschi et al., 1992; Ho et al., 2005; Husk et al., 2012; Husk & Hess, 2013; 

Wong et al., 2001) although the evidence is mainly confined to motion-defined form stimulation 

(Giaschi et al., 1992; Ho et al., 2005; Husk et al., 2012). We asked how general is this deficit for 

different types of second-order processing and is it comparable to that exhibited for amblyopic 

eye stimulation. Our results suggest that there is no general second order deficit for fellow non-

amblyopic eye stimulation, our normative database of 104 eyes (Reynaud et al., 2014) provides a 

firm foundation from which to assert this. However, we did find a significant difference in the 

qCSF gain parameter between the NAE and the eyes of normal subjects for the motion defined 

second order stimulus which could indicate a selective motion second-order deficit in the NAE 

along the lines of that suggested by (Aaen-Stockdale & Hess, 2008). The sparing of the NAE for 

second order functions (excepting motion-modulation) could be explained by a shift of ocular 

dominance in regions of the extra-striate (Schroder et al., 2002; Sireteanu et al., 

1993)comparable to that previously reported in the striate cortex (Wiesel & Hubel, 1965). 

An unexpected finding was that second-order sensitivity at low spatial frequency was 

better in the AE compared to the NAE. First-order low spatial frequency sensitivity can, in some 

cases, be better for the amblyopic compared with the fixing eye (Hess and Howell, 1977). This is 

thought to be due to the added temporal stimulation due to unsteady eye-movements which 

enhance selectively sensitivity at low spatial frequencies (Robson, 1966). However, since we did 

not observe such an effect for our first order stimuli, there must be an alternate explanation for 

the second-order enhancement. One possibility is that, as the spatial frequency is lowered and the 
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number of cycles reduced, the effect is due more to the reduced cycles than it is to the spatial 

frequency per se. If this was so then it would suggest anomalous spatial summation for second-

order stimuli by the amblyopic eye at low modulation frequencies (<1c/d). Spatial summation for 

second order stimuli has been found to be normal at 1c/d (E. H. Wong & Levi, 2005) but it is yet 

to be investigated below 1c/d. 
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Abstract 

Amblyopia is a neural developmental disorder of visual system that influences a wide range of 

functions. It is caused by a deficient input from one eye during development, resulting in changes to 
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neural development that permanently impair the use of that eye. Further changes in amblyopia have been 

found that also affect the processing of input from the non-amblyopic eye. These effects have been 

established in high-level motion-associated tasks, including second-order motion modulation. Here, we 

investigate whether the deficit found for motion-modulation compared to contrast-modulation can be 

attributed to differences in the response nonlinearity. The pedestal masking paradigm was used to 

measure the shape of the response nonlinearity. Data were fitted with a model that combines divisive 

gain-control with a decision stage based on signal detection theory. Model-fits revealed that nonlinearities 

did not differ between the two eyes of amblyopes. However, comparing amblyopic against normal 

observers reveals a difference in the nonlinearity for motion modulation only. This dissociation between 

the results found for processing second-order MM and CM indicates, first, they are processed separately; 

second, in amblyopia, the dorsal and ventral pathways may be affected to different degrees.  

 

Introduction 

Amblyopia is a developmental disorder of vision that arises from disrupted visual input to one 

eye early in life. It is classically defined as a loss of visual acuity in the disrupted eye without an organic 

ocular disorder. Amblyopia has been reported to affect a wide range of visual functions of the amblyopic 

eye from low-level contrast sensitivity to higher-level functions such as second-order vision, stereovision 

and global integration, see recent reviews (Bretas & Soriano, 2016; Hamm et al., 2014; Joly & Franko, 

2014; Levi, 2013; Meier & Giaschi, 2017). Interestingly, for higher order visual functions, the deficit is 

not confined to the amblyopic eye. Studies testing the perception of stimuli shown to the fellow eye of 

amblyopes have also found deficits compared to normal vision (Meier & Giaschi, 2017). 

Many of the deficits found to affect both eyes are related to higher-level motion processing. A 

global motion deficit in the fellow eye has been reported to approach the strength of the deficit in the 

amblyopic eye (Aaen-Stockdale & Hess, 2008; Aaen-Stockdale et al., 2007; C. Hou et al., 2008; Kiorpes 
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et al., 2006; Simmers et al., 2003). The fellow eye deficit exists for different types of global motion 

including translational, rotational and radial (Simmers et al., 2006a). The deficits for various kinds of 

global motion patterns in both eyes of amblyopic vision suggest a general deficit in the dorsal pathway of 

the extra-striate cortex. Deficits affecting both eyes have also been found for second-order motion-

modulation detection (Gao et al., 2014). Motion modulation sensitivity was reduced in both the 

amblyopic and fellow eye compared to normal observers. For contrast- or orientation-modulation only the 

amblyopic eye showed reduced sensitivity. Fellow eye deficits have also been shown with second-order 

motion stimuli constructed with modulations of contrast, flicker or texture (Simmers et al., 2011). 

Motion-defined form perception (sometimes referred to as form-from-motion), which also involves 

processing second-order motion-modulated boundaries and shapes, has been reported to show fellow eye 

deficits, especially in children (D. Giaschi et al., 2015; Hayward et al., 2011; J. Wang et al., 2007). The 

presence of deficits in both eyes has also been reported for a structure-from-motion task (Husk et al., 

2012). 

According to the parallel processing hypothesis (Goodale & Milner, 1992; Haxby et al., 1991; 

Van Essen & Gallant, 1994), the extra-striate cortex is organized into two processing streams-the ―dorsal‖ 

or ―action‖ pathway and the ―ventral‖ or ―form‖ pathway. The dorsal pathway is specialized for 

processing location and motion of objects while the ventral pathway is specialized for processing form 

and pattern. The fellow eye deficit found in second-order motion-modulation processing (Gao et al., 2014) 

is consistent with the results from neurophysiology and imaging studies that the dorsal and ventral 

pathways of the extra-striate cortex are affected differently. Ocular dominance in the extra-striate cortex 

of strabismic cats has been shown to be more biased towards the fellow eye in the ventral pathway than 

the dorsal pathway (Schroder et al., 2002). A deficient (El-Shamayleh et al., 2010; Secen et al., 2011) but 

more balanced dorsal pathway is consistent with the behavioral finding that motion-related functions are 

binocularly affected.  

In the current study, we investigate the amblyopic deficit for second-order motion-modulation 

(MM) processing by examining its associated processing nonlinearity. We compare this with the 
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nonlinearity for second-order contrast-modulation (CM) processing. In our previous study (Gao, Baldwin, 

& Hess, in preperation), we found different second-order nonlinear response functions for MM and CM 

processing in normal vision. This suggests a separate mechanism for processing MM compared with other 

types of second-order modulations (Gao et al., in review), consistent with previous studies which have 

argued against a cue-invariant mechanism for processing forms and boundaries defined by different types 

of modulations (Larsson et al., 2010; Larsson et al., 2006; Marcar & Cowey, 1992; Morita et al., 2003). 

Since MM and CM go through different nonlinearities in normal vision, and the dorsal pathway may be 

particularly affected by amblyopia (Schroder et al., 2002), we set out to discover whether amblyopia 

affects the nonlinearities associated with MM and CM. A further question is if so, whether they are 

affected in the same way. 

We employed the pedestal-masking paradigm to study the nonlinearity involved in the detection 

of MM and CM. This paradigm has been widely used to investigate the nonlinearities in normal vision for 

both first-order (C. C. Chen & Tyler, 2008; Foley, 1994) and second-order processing (Gao et al., in 

review; Huang & Chen, 2014; F. A. Kingdom et al., 2003; Landy & Oruc, 2002; Schofield & Georgeson, 

1999). It is usually done in a two-interval forced choice task in which observers discriminate between a 

null interval containing a ―pedestal‖ mask modulation alone, and a test interval containing that pedestal 

mask with an increment target modulation added to it. Plotting increment threshold against mask level 

gives the pedestal masking function. If the response to modulation is a nonlinear function of the gain-

control format, the pedestal masking function will have a dipper shape. This is typically found by studies 

employing this paradigm. In the pedestal masking function, there is a facilitative dip, where the increment 

threshold first decreases at low pedestal mask levels. This reflects the accelerating region of the nonlinear 

response function. Higher mask levels map onto the inhibitory part of the function, where increment 

thresholds increase again as the mask level increases (see Figure 1 for an example). This masking effect 

reflects the saturating region of the response function.  

Our model involves a nonlinear response function of the divisive gain-control form (Foley, 1994; 

N. Graham & Sutter, 2000; Huang & Chen, 2014), and its outputs are considered in the context of signal 
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detection theory (D. M. Green, Swets, J. A., 1988; Gregory & Cane, 1955). The nonlinear response 

function is described as  

 ,                                                                 (1) 

where c is the modulation depth, p and q are exponents controlling the shapes of the accelerating and 

saturating regions of the response function, and z represents general inhibition from divisive gain control 

process. Under signal detection theory, discriminations of different modulation depths are made against 

internal noise from various sources in the brain (Faisal et al., 2008). Here we assume additive noise, 

where samples in each interval are drawn from a Gaussian distribution with zero mean and constant 

standard deviation σ. According to signal detection theory, the signal-to-noise ratio (d’) is  

,                                                                   (2) 

where m is the modulation depth of the mask, t is the increment target added in the test interval. The 

percent correct at a threshold level, d’=1, is  (
  

√ 
)        . 

We measure the increment thresholds at a wide range of pedestal mask levels for MM and for 

CM. The data are fitted by the nonlinear model to obtain the values of four parameters for each eye of 

amblyopes in each condition. Features of the pedestal masking functions and the fitted parameters are 

compared between the amblyopic eye and the fellow eye of the amblyopic observers. The comparison is 

also made between each eye of the amblyopic observers and normal observers that were tested in a 

previous study (Gao et al., in preperation). The effects of amblyopia on second-order nonlinearity for MM 

and CM as well as its implication on normal second-order processing mechanisms are discussed. 
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Method 

Apparatus 

The stimuli were generated by a computer running Windows 7 and presented by a Multiscan 

G220 monitor (32 × 24 cm, refresh rate: 60 Hz, resolution 1024 × 768, mean luminance: 60 cd/m
2
). The 

viewing distance is 86 cm to have a pixel per degree of 48. The experiment and data analysis softwares 

were written in Matlab (Mathworks) using functions from the Psychophysics Toolbox (Brainard, 1997). 

The Palamedes toolbox 2 (N. K. Prins, F. A. A. , 2009) was used to fit the psychometric functions. 

 

Participants 

All six anisometropic amblyopic observers were graduate students in University of Science and 

Technology of China at the time of testing (October 2015). Their age ranges from 22 to 25. None of them 

has been treated with any treatments for amblyopia. All six observers were naïve to the purpose of the 

current experiment. The clinical information about the six amblyopic observers are shown in Table 1. All 

procedures were conducted in accordance with the Declaration of Helsinki, and approved by the Ethics 

Review Board of the Montreal Neurological Institute. 

  

Subject Gender Age 

Visual Acuity 

(corrected) 

Refractive Error 

Left eye Right eye Left eye Right eye 

WLJ M 23 0.8 1.0 +2.00DS /+0.50DC*135 -5.75DS 

YLG M 24 1.2 0.4 -0.75DS/-0.50DC*175 +1.00DS/+1.00DC*85 

LS M 23 0.3 1.0 +4.50DS/0.50DC*35 -1.50DS/-0.50DC*30 
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ShW M 24 1.0 0.12 Plano +4.00DS/+1.00DC*85 

JS M 26 0.5 1.0 -1.00DS/+3.50DC*85 -2.00DS/-1.00DC*10 

ShL M 24 0.5 1.0 +2.50DS/0.50DC*90 -0.50DS 

Table 1. The clinical details of six amblyopic observers. They are all of anisometropic type. 

 

Stimuli 

The two second-order stimuli, CM and MM, are both constructed by multiplying an envelope 

G(x,y), which is a low-spatial-frequency sinusoidal grating, to a carrier C(x,y), which is a high-spatial-

frequency sinusoidal grating. The envelope and the carrier are defined as                          , 

and , respectively, where fe and fc are spatial frequencies of the envelope and the 

carrier.  

The CM stimulus is constructed by modulating the contrast of one moving carrier tilting 45° 

clockwise by one horizontal envelope. In the null interval, the stimulus containing only the pedestal mask 

can be described by  

,                                                       (3) 

where c is the carrier contrast, m is the modulation depth of the pedestal mask, and        is an raised 

cosine window with a blur width of 0.5º to soften the edge of the stimulus. In the target interval, the 

stimulus containing both the pedestal mask and the target is described by   

,                                         (4) 

where t is the modulation depth of the target grating, the other letters have the same meaning as in 

Equation 3.  
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To construct an MM stimulus, we add two CM patterns of which the directions of moving carrier gratings 

are opposite (45º and -45º) and the phases of the envelopes are also opposite. The MM stimuli in the null 

interval and the test interval can be described as  

,              (5) 

and 

.        (6) 

Figure 1 illustrates the construction of two CM stimuli and a MM stimulus. Among the two CM 

stimuli shown in Figure 1, only CM1 is actually used in the current experiment. For both CM and MM 

stimuli, the carriers drift at 2 Hz. The spatial frequency of all carriers is 4 cpd and the spatial frequency of 

all envelopes is 0.5 cycles per degree. The contrast of carrier is kept constant at 0.48 for the amblyopic 

eye (AE) of all amblyopic observers. The carrier contrast for the fellow eye (FE) is calculated for each 

observer in order to keep the ratio of the carrier contrast to the first-order motion direction discrimination 

threshold same between the AE and the FE. The first-order motion direction discrimination threshold is 

measured monocularly with the qcsf2d test in our former study (Gao et al., 2014). 
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Figure 1. The process of constructing a MM stimulus from adding two CMs with moving carriers of 

opposite directions (C1 and C2) and envelopes of opposite phases (G1 and G2). CM1 is the CM stimulus 

that was actually used in the current study. Same as CM2, the CM stimulus is constructed by multiplying 

a moving carrier grating of high spatial frequency with a static envelope grating of low spatial frequency.  

 

Procedure 

We conducted the experiment in blocks of pedestal mask levels with two repetitions for each 

level. The pedestal levels were adjusted for each observer to give an informative sampling of the masking 

C1 C2G1 G2

CM1 CM2

MM
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function. First, the detection threshold T was measured. Then the other seven pedestal mask levels were 

determined as (T-12), (T-6), (T-3), (T+3), (T+6) and (T+12) dB. The unit dB is         , where c 

represents the modulation depth. At each pedestal level, a psychometric function was measured with two 

interleaving staircases and a threshold was obtained by fitting the psychometric function. One staircase 

was one-up-three-down and the other one was one-up-two-down, both terminated after 60 trials. 

Therefore, there were 1920 trials in each of the two conditions-CM and MM. The two conditions were 

measured alternately and the sequence of the two was balanced among observers.  

A two-interval forced-choice (2IFC) task was used to measure the increment threshold. The task 

was to identify which interval is the target interval that contains greater modulation. During each trial, the 

target and null intervals were presented, each for 500 ms, in a random order with a 400 ms inter-stimulus 

interval between them. An auditory tone was given at the onset of each interval to reduce temporal 

uncertainty. The observer responded with a button press on a keypad. Auditory feedback was provided to 

inform the correctness of each decision. After the auditory feedback, there is an inter-trial-interval of 

1000 ms before the onset of next trial. 

 

 

Results 

Pedestal masking functions 

The pedestal masking functions for both CM (in blue) and MM (in red) are shown in Figure 2. In 

each panel the increment thresholds are plotted as dots against pedestal mask level for each of the six 

observers. The filled dots represent thresholds of the amblyopic eye (AE) and the empty dots represent 

those of the fellow fixing eye (FE). The increment thresholds were obtained by fitting a Quick 

psychometric function to the data for each mask level and calculating the stimulus levels corresponding to 
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76.02% correct. The left-most point in each panel is the detection threshold obtained without a pedestal 

mask. Both threshold and pedestal mask levels are in dB log units which is calculated as            . 

 

Figure 2. Pedestal masking functions for six amblyopic observers. Dots- blue for CM and red for MM-

show increment thresholds obtained by fitting a psychometric function at each pedestal mask level. 

Curves represent the threshold prediction from fitting our model of nonlinear response function combined 

with signal detection theory to data as a whole across all mask levels (see Data analysis in Methods 

section). Filled dots and solid curves are for the amblyopic eye (AE); Empty dots and dashed curves are 

for the fellow-fixing eye (FE).  

 

The pedestal masking functions in Figure 2 generally show the typical dipper shape. The greatest 

facilitation, i.e., smallest increment threshold, occurs around where the mask level is equal to the 

detection threshold. We calculated the mean dip magnitude for each condition and for the amblyopic eye 

and the fellow eye respectively (Table 2). The depth of the dip is computed as a difference between the 

detection threshold and the smallest value among the increment thresholds at the third, the fourth and the 

fifth mask levels which are (T-3), T and (T+3) dB. T refers to the corresponding detection threshold at 
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zero mask level. A two-way ANOVA test was conducted to compare the dip depth between eyes and 

conditions. There is a main effect for conditions (p = 0.037), no main effect for eyes (p = 0.16) and no 

interaction (p = 0.89). Combined with the values in Table 2, this result indicates that the dip depth is 

larger for CM than MM in both eyes of amblyopes.  

(dB) FE AE 

CM 6.82 +/- 2.95 9.38 +/- 2.37   

MM 5.18 +/- 1.81 7.06 +/- 1.18 

Table 2. The depths of dips for the FE and the AE in each of the two conditions-CM and MM are shown 

as means with standard deviations across six observers.  

 

There are some abnormalities in the shapes of the pedestal masking functions we found. The 

fellow eye of observer ShL does not show a facilitative dip. Furthermore, at the higher pedestal mask 

levels, half of the tested eyes do not show greatly increased thresholds compared to the corresponding 

detection threshold for both CM and MM. This lack of a masking ―handle‖ to the dipper functions is 

probably due to mask levels not being high enough to show the inhibitory effect. This is consistent with a 

previous study (Huang & Chen, 2014). Another phenomenon worth noting is that there is a drop in 

threshold at the highest mask level for MM in three eyes (2 amblyopic eyes and 1 fellow eye). This is 

probably due to the fact that there is a ceiling effect for the test increment at the highest mask level. As a 

result, the psychometric function fit is poor and these three increment thresholds are not precisely 

determined. However, because the raw data for these trials are valid, they still contribute to the maximum 

likelihood fitting of our model. This will be discussed in the Model fitting section.  
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Model fitting 

Our model was fitted using the raw data from each eye. This was done for each observer under 

each of the two conditions CM and MM. The model was fit using the maximum-likelihood method. The 

fitting optimized the values of four parameters: the internal noise σ, nonlinear exponents p and q, and the 

gain-control parameter z. The pedestal masking functions predicted by the fitted parameter values in each 

condition for each observer are plotted as the solid (amblyopic eye) and dashed (fellow eye) curves in 

Figure 2, superposed on the increment threshold plot. We calculated the deviance of model fitting which 

is expressed as  

     (           ),                                                              (7) 

where D denotes deviance, LLfit represents log-likelihood value from fitting the model to the data with 

maximum likelihood method and LLsat represents log-likelihood from the saturated model. The average 

values of deviance for each condition and each eye across the six amblyopic observers are reported in 

Table 3. Although the absolute value of deviance is not very informative in terms of the quality of fitting, 

it provides good basis for comparing the current model with other models built by peer researchers. 

 AE FE 

CM 96.33 +/- 18.55 54.96 +/- 10.37 

MM 73.37 +/- 15.20 65.14 +/- 24.21 

Table 3. Mean and standard deviation of deviance for model fitting across the six amblyopic observers in 

each condition and each eye. 

 

The mean values of the four parameters across six observers are shown in Table 4. The internal 

noise σ and the gain-control parameter z are in dB log units which is calculated as 20 x log10(c). To 

compare the parameters between the amblyopic eye and the fellow eye, as well as those between the two 

second-order conditions, we performed a two-way ANOVA test for each parameter. For all four 

parameters, there is no significant main effect or interaction for any parameter. The insignificant 
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comparison between the amblyopic eyes and the fellow eyes indicates that in terms of second-order 

nonlinearity the two eyes of amblyopic visual system do not differ from each other.  

 

 AE FE 

 σ (dB) p q Z (dB) σ (dB) p q Z (dB) 

CM -5.7 +/ -3.1 2.42 +/- 0.36 2.13 +/- 0.33 61.9 +/- 7.4 -1.6 +/- 2.7 3.12 +/- 0.44 2.80 +/- 0.42 82.0 +/- 11.0 

MM -9.0 +/- 4.8 2.28 +/- 0.51 2.09 +/- 0.47 70 +/- 11 -5.0 +/- 2.2 2.32 +/- 0.21 2.12 +/- 0.21 72.7 +/- 5.1 

Table 4. The mean values (across each group of observers) with standard error of four parameters from 

fitting the best model to the data of CM and MM together, for Experiment 1 and Experiment 2 separately.  

 

The parameter values for each eye and for each condition are also plotted in Figure 3 against the 

mean values (grey) from eight normal observers in our previous study (Gao et al., in preperation). We 

compared each parameter of the amblyopic eyes and the fellow eyes to that of the normal eyes (NE) under 

each condition using a Wilcoxon rank sum test (Table 5). The stars in Figure 3 represent significant 

differences from the normal eye under the indicated condition. For the nonlinear exponents p and q, in 

CM there is no significant difference between the normal eye and either the amblyopic eye or the fellow 

eye. Therefore, the amblyopic deficit in the amblyopic eye for CM does not significantly affect the shape 

of the nonlinear response function. Whereas in MM, both exponents show significant differences between 

the amblyopic eye and the normal eye, as well as between the fellow eye and the normal eye. The effect 

sizes are shown in Table 6. The deficit for MM that was found in both the AE and the FE (Gao et al., 

2014) is reflected in smaller exponents. This changes the shape of the nonlinear response function for 

MM in the amblyopic visual system. For the internal noise, surprisingly we do not find larger values in 

the amblyopic eye than the fellow eye, or larger values in the two amblyopic eyes than the normal eyes. 

For the gain control parameter z, the amblyopic eye shows a larger value than the normal eye in the CM 

condition.  
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Figure 3. The mean of four fitted parameters from each of the two eyes of the amblyopic observers under 

two conditions. Darker colors are for the fellow eye (FE) and lighter colors are for the amblyopic eye 

(AE). Bluish colors represent CM and reddish colors represent MM. The fitted parameters of normal eyes 

(NE) from our previous study under same conditions (Gao et al., in preperation) are also plotted as grey 

bars. The stars indicate significant difference in the comparison between one eye of the amblyopic vision 

and the normal eyes.  

 

Eye AE FE 

Param. σ  p q Z  σ  p q Z  

CM 0.02 0.06 0.28 0.49 0.18 0.75 0.85 0.03 

MM 0.14 0.03 0.03 0.57 0.02 <0.01 <0.01 0.34 

Table 5. The p values of Wilcoxon rank sum test done between the amblyopic eye (AE) and the normal 

eyes (NE), as well as between the fellow eye (FE) and the normal eye (NE) for each parameter in each 

condition. The data of the NE is from our previous study (Gao et al., in review).  

 

Eye AE FE 

Param. σ  p q Z  σ  p q Z  

CM 2.16 1.18 0.67 0.98 1.0 0.16 0.23 1.49 

MM 1.43 1.63 1.36 0.13 1.89 2.51 2.0 0.18 
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Table 6. The effect sizes of comparing each of the four parameters between each eye of the amblyopes 

with the normal eyes in each condition. 

Using the mean parameters from Table 4, we reconstructed the pedestal masking functions for 

CM (left panel) and MM (right panel) in the AE (solid curve) and the FE (dashed curve) in Figure 4. The 

pedestal masking functions for the NE for CM and MM are also reconstructed from the data in our 

previous study and plotted as dashed grey curves in Figure 4. Compared to the NE, both of the AE and 

the FE show poorer performance at almost all mask levels in both second-order conditions-CM and MM. 

And consistent with the analysis of parameters, the pedestal masking functions of the AE and the FE are 

similar in both conditions.

 

Figure 4. Pedestal masking functions of CM (a) and MM (b) constructed with mean parameters from best 

model fit in CM and MM, respectively. The grey dashed curve in each panel is the pedestal masking 

function of normal vision in each condition. Data from our previous study (Gao et al., in preperation) are 

replotted here as well.  
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Discussion 

This study is the first to present the dipper functions from pedestal masking experiments for 

second-order contrast- and motion-modulations processing in amblyopic vision. The dipper shape exists 

not only in the FE but also in the AE of amblyopes. This dipper shape has been found in normal vision for 

first-order processing (Foley, 1994; Legge & Foley, 1980), as well as for second-order processing, 

including contrast-modulation (N. Graham & Sutter, 2000; Huang & Chen, 2014; Schofield & Georgeson, 

1999), orientation modulation (Gao et al., in review; F. A. Kingdom et al., 2003; Landy & Oruc, 2002) 

and motion modulation (Gao et al., in preperation). It was also found for first-order contrast 

discrimination task in amblyopic vision (Bradley & Ohzawa, 1986). A nonlinearity in the form of divisive 

inhibition (Foley, 1994; Foley & Chen, 1999; Huang & Chen, 2014) describes these functions. This 

suggests that a divisive inhibitory nonlinearity is involved in amblyopic second-order processing, similar 

to that of normal vision.  

The answers to the two questions proposed in the Introduction session are: first, amblyopia does 

affect the nonlinearity of second-order modulation processing; second, amblyopia affects CM and MM 

nonlinearity differently—only the shape of nonlinear transducer function for MM was significantly 

affected. The change in the shape of the nonlinearity gives smaller p and q values in the nonlinear 

transducer function for MM in amblyopes. The fact that only MM, not CM, was affected by amblyopia 

has two implications: first, the mechanisms behind the nonlinearities of MM and CM must be at least 

partially separate in normal vision; second, the dorsal and ventral pathways may be affected to different 

degrees in amblyopia.  

The first conclusion is consistent with our previous finding of different shapes of second-order 

nonlinear transducer functions for MM and CM in normal vision (Gao et al., in review). The processing 

of both MM and CM involves an essential step of detecting the boundaries formed by second-order 

modulations. A different nonlinear transducer function for MM from CM argues against the classic view 

of cue-invariant boundary processing (Berkley et al., 1994; Hawley & Keeble, 2006; Leventhal et al., 
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1998; Sary et al., 1995; Schofield & Yates, 2005). In the literature, there are some results supporting this 

idea that motion-defined boundaries are processed by a different mechanism than that used to process 

other kinds of boundaries. Morita and colleagues found that performance was poorer at detecting 

boundaries defined by combined motion and luminance variations or motion and color variations 

compared to single attribute-defined boundaries (Morita et al., 2003). Two fMRI studies (Larsson et al., 

2010; Larsson et al., 2006) showed that orientation adaptation to different types of second-order 

modulation-defined boundaries is elicited in different cortical visual areas with some overlap. For motion-

defined boundary, the areas include V3A/B, LO1 (lateral occipital), LO2 and V7; while for contrast-

modulation and orientation-modulation, the areas are V1, V2, V3, V3A/B, LO1, hV4 and VO1. One 

lesion study found that removal of MT affect processing of kinetic boundaries but not luminance-defined 

boundaries (Marcar & Cowey, 1992).  

The second conclusion that the dorsal and ventral pathways of the extra-striate cortex may be 

affected differently by amblyopia is consistent with two different reports in the literature. First, ocular 

dominance in extra-striate cortex of strabismic cats is more biased towards the FE in the ventral pathway 

(Schroder, Fries et al., 2002) resulting in deficits for functions processed along the ventral pathway to be 

more monocular. Second, the more binocularly affected dorsal pathway (Schroder, Fries et al, 2002) 

explains why the behavioral findings for motion-related high-level functions are binocularly affected by 

amblyopia, for example global motion (Aaen-Stockdale & Hess, 2008; Aaen-Stockdale et al., 2007; C. 

Hou et al., 2008; Kiorpes et al., 2006; Simmers et al., 2003; Simmers et al., 2006a), form-from-motion 

(D. Giaschi et al., 2015; Hayward et al., 2011; J. Wang et al., 2007) and second-order motion (Gao et al., 

2014; Simmers et al., 2011); while deficits for global form (Dallala et al., 2010; Hess et al., 1999; M. R. 

Joshi et al., 2016; Levi et al., 2007) and second-order orientation (Mansouri et al., 2005) perception have 

mostly been found to affect only AE function.  

Note that the fact that the dorsal pathway may stay more binocular than the ventral pathway does 

not necessarily mean it is less affected by amblyopia. In fact, the result that the second-order nonlinearity 

is affected by amblyopia only for MM is consistent with the idea of ―dorsal stream vulnerability‖. It has 
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been proposed to be a group of problems, including global motion processing, visual-motor action 

planning, attention etc. that are common across many neural developmental disorders. To name a few: 

amblyopia, Williams’s syndrome, autism and developmental dyslexia (see review (Atkinson, 2017) for 

more details). For amblyopia, deficits in the dorsal pathway has been reported by fMRI (Secen et al., 

2011) and neurophysiological studies (El-Shamayleh et al., 2010) as well.  

The next question is: what do these changes in the nonlinearity mean for the underlying neural 

mechanisms? It is believed that the divisive inhibition model accounts for the physiological results of 

intracortical inhibition among striate neurons (Allison, Smith, & Bonds, 2001; DeBruyn & Bonds, 1986; 

N. Graham, Beck, et al., 1992; C. Y. Li & Creutzfeldt, 1984; Morrone et al., 1982; Movshon, Thompson, 

& Tolhurst, 1978). Therefore, the changes we found in the shape of nonlinear transducer function for 

processing MM in amblyopic vision could well reflect the changes in the interneuron connectivity of the 

amblyopic visual system. Explanations involving connectivity changes in the amblyopic brain are 

appealing, since simple sensitivity reduction of V1 and extra-striate cortex neurons does not explain all 

the functional deficits that are present (Levi, 2013; A. M. Wong, 2012). Li and colleagues (2011) 

investigated the effective connectivity of different networks in regions of thalamic, striate and extra-

striate cortex in humans with amblyopia. They found that the effective connectivity of these networks 

driven by the AE was reduced and the reduction was equal between feed-forward and feedback 

interactions (X. Li, Mullen, Thompson, & Hess, 2011). They did not however find the reduction in 

connectivity to disproportionately affect the dorsal pathway. Another recent study (Duan, Norcia, 

Yeatman, & Mezer, 2015) found that the structural properties of some major white matter tracts are 

affected in strabismic amblyopia. This is an area of active study, and future studies of structural and 

functional connectivity among different neuron networks will provide meaningful insight for the 

functional deficits and potential treatments in the amblyopic visual system. 

In conclusion, we found the typical dipper shape in second-order pedestal masking functions for 

both motion-modulation (MM) and contrast-modulation (CM) in amblyopic vision. We confirmed 

previous finding about the presence of a fellow eye deficit for second-order MM processing. Amblyopia 
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affects the second-order nonlinearity but in different ways for different types of second-order 

modulations. The fact that the nonlinearity for only MM is affected, suggests first that MM and CM are 

processed by at least partially separate mechanisms; second, the dorsal and ventral pathways may be 

influenced to different degrees in amblyopia. The change in the nonlinearity for MM in both eyes of 

amblyopes potentially explains binocular deficits in functions like global motion, form-from-motion and 

second-order motion processing. Changes in the nonlinearity could be explained by a deficit in 

intracortical interactions.  
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Conclusion and discussion 

Summary of results 

This thesis is the first work that models and compares the second-order nonlinearity 

involved in three different kinds of second-order modulation including contrast-modulation 

(CM), orientation-modulation (OM) and motion-modulation (MM) in normal as well as 
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amblyopic vision. It also reports systematic measurements of the modulation sensitivity function 

in amblyopia over a large spatial frequency for all three kinds of second-order modulation.  

The second-order nonlinearity was investigated with a pedestal masking paradigm. A 

typical dipper shape was found in the pedestal masking functions for all three modulations for 

normal vision, as well as for CM and MM for amblyopic vision. All data can be modeled by a 

linear-nonlinear-linear (LNL) model, which extracts second-order envelope information, 

followed by a nonlinear transducer function of the form of a divisive gain control and a decision 

making stage according to signal detection theory. For the second-order nonlinearity, CM and 

OM are found to share a nonlinearity of highly similar form to the one that was found in first-

order processing. While MM processing undergoes a separate nonlinearity of a different form. 

This result suggests that all second-order modulations are not processed by a common 

mechanism.  

The first amblyopia study found general second-order deficits for CM, OM and MM for 

amblyopic eye stimulation. This general deficit likely reflects a general abnormality involving a 

large extent of amblyopic extrastriate cortex. In terms of lateral effect, the fellow eye of 

amblyopes is also affected but only for MM processing. The different patterns of deficit among 

various second-order modulations suggest that dorsal and ventral pathways are both likely to be 

affected but to different degrees. In the second amblyopic study, I investigated whether this 

difference between MM and CM can be attributed solely to the second-order nonlinearity. The 

results show that amblyopia affects the second-order nonlinearity only for MM and the two eyes 

of amblyopes behave similarly in terms of their second-order nonlinearity. These results are 

consistent with my first three studies in three aspects: first, it implies that MM and CM are 

processed by separate mechanisms; second, the fellow eye is affected for MM processing; third, 
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it also suggests that dorsal and ventral pathways are probably affected to different degrees in 

amblyopia. 

Second-order nonlinearity in normal vision 

In first two studies, the second-order nonlinearities for CM, OM and MM were studied by 

the pedestal-masking paradigm and modeled as a nonlinear transducer function as a divisive gain 

control mechanism. The nonlinear transducer function has three parameters including two 

exponents that determine the shape of the nonlinearity, and a divisive gain control parameter 

representing the general divisive inhibition effect from all the mechanisms other than the 

responsible channels. Compared to CM and first-order contrast processing, the nonlinearity 

involved in OM has the same exponents, which suggest the same shape for the nonlinearity. 

While for MM, values of two exponents are significantly different from those for CM and OM, 

indicating that the nonlinearity is of a different shape for MM. 

The difference between the nonlinearity for CM and OM is the larger divisive gain 

control parameter for OM. This increased divisive gain control parameter could be due to two 

reasons. First, there is larger divisive inhibition to the output of the second-order channels that 

are responsible for extracting the modulation in OM. Compared to a CM stimulus, an OM 

stimulus is likely to elicit more inhibitory input from other channels that have different carrier 

orientation tuning properties (Dakin & Mareschal, 2000; N. Graham et al., 1993) because it 

contains one more orientation band in the carrier,. Secondly, cross-orientation suppression 

between the two orthogonal carriers (Foley, 1994; Morrone et al., 1982) reduces the response of 

first-stage linear filters, which is equivalent to reducing the carrier contrast. Lower carrier 

contrast was found to generate a larger divisive gain control parameter in CM (Huang & Chen, 
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2014). Although it is hard to distinguish these two possible explanations, the same shape of 

nonlinearity for CM and OM suggests that processing of OM could be done on the basis of two 

CM stimuli of different carrier orientations. Whether the outputs of two CM processing 

mechanisms are integrated linearly (Motoyoshi & Nishida, 2004) or chosen according to 

probability summation (N. Prins, 2008) needs further study to resolve. The difference between 

the nonlinearities for MM and CM involves a fundamental change in the shape of the 

nonlinearity and has a potential bearing on this issue. This different nonlinearity is consistent 

with there being two underlying mechanisms. The MM nonlinearity may reflect a completely 

separate nonlinear mechanism, which is in a different form from that of CM. The second 

possibility is that the MM processing mechanism is built up from two CM mechanisms, that have 

the corresponding carrier velocity tuning, and there is another layer of nonlinearity in the process 

of integrating the outputs of the two CM mechanisms. There is a way of distinguishing between 

these two possibilities. If the MM mechanism is built up from CM mechanisms, then there will 

still be an interaction between the processing of these two stimuli. Therefore, studying the 

interaction between MM and CM using either adaptation or cross pedestal masking resolves this 

question. 

 I also demonstrated, in the second study, that second-order nonlinearity is not affected by 

carrier contrast. This suggests that the nonlinearity I have been studying is of second-order 

nature since first-order carrier does not control it. 

These two studies are the first ones to systematically model and compare second-order 

nonlinearities involved in different types of modulations. The different nonlinearities found for 

MM compared to CM and OM argues against the idea that different types of second-order 

information are processed by the same mechanism (F. A. Kingdom et al., 2003). It also argues 
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against a cue-invariant mechanism of boundary processing (Berkley et al., 1994; Filangieri & Li, 

2009; Hawley & Keeble, 2006). All the previous studies that support this idea did not compare 

motion-defined boundaries with static ones. That may be the reason behind the results suggesting 

a common underlying mechanism. Furthermore, this is consistent with the findings in my first 

study that the two statically-defined boundaries CM and OM go through the same nonlinearity.  

Amblyopia  

Second-order deficits 

The third study of this thesis was the first to apply qCSF paradigm (Lesmes, Lu, Baek, & 

Albright, 2010) to the measurement of sensitivities to second-order modulation in amblyopia. It 

was also the first to systematically compare second-order discrimination sensitivities for CM, 

OM and MM. A general deficit was found for amblyopic eye stimulation that involved all three 

types of second-order modulation. This general deficit suggests that amblyopia influences 

extrastriate cortical function over a large area as it involves functions normally attributed to both 

the dorsal and ventral pathways. The type of amblyopia, age or gender of the observers did not 

show any effect on this general second-order deficit. Stimulation of the fellow fixing eye, 

however, shows a reduced peak sensitivity only for MM. The find that only MM processing is 

affected by stimulation of either eye may be a consequence of residual binocular function in the 

dorsal pathway. 

Second-order nonlinearity in amblyopia 

The results of my fourth study strongly support the conclusions from the aforementioned 

three studies. The common experimental design allows for the comparison between normal and 



 154 

amblyopic visual systems. The fourth study was the first to find the dipper shape in the pedestal 

masking function for second-order processing in amblyopic vision. The increment thresholds for 

both CM and MM are higher across the whole range of pedestal mask levels in both AE and FE. 

This helps characterize amblyopic deficit. The result that the AE and FE show the same 

nonlinearities suggests that these involve binocular, higher-level mechanisms. Second-order 

processing in amblyopic vision can also be modeled by a LNL model plus a nonlinear transducer 

function followed by a decision making stage. The nonlinear transducer function also takes the 

form of divisive normalization. Amblyopia affects the shape of the nonlinearity in only MM and 

not CM. The only way that the nonlinearity in MM processing is affected while CM is kept intact 

is if these two kinds of second-order modulation are processed by separate mechanisms. This is a 

strong conclusion from an amblyopia study that is relevant to normal visual system. This 

conclusion is also consistent with that of my second study. Since MM and CM are thought to be 

processed by dorsal and ventral pathway, respectively, the result that only an MM nonlinearity is 

affected also suggests that dorsal and ventral pathways may be affected by amblyopia to 

differing degrees. This implication is consistent with that of my third study which found that the 

fellow fixing eye was affected only for MM. Together with this finding that the MM deficit is 

binocular, the result suggests that dorsal pathway is affected more but stayed more binocular 

than the ventral pathway. This deduction is consistent with two results in the literature; first, the 

dorsal stream vulnerability (Atkinson, 2017) has been shown in many neural developmental 

disorders including amblyopia; and second, more neurons in the ventral pathway are 

monocularly driven by the fellow eye than in the dorsal pathway (Schroder et al., 2002).  
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Fellow eye deficits 

An interesting question to consider is why the FE is also affected in unilateral amblyopia. 

In unilateral amblyopia, only the vision of the amblyopic eye is interrupted in early childhood. It 

makes sense that there are deficits for amblyopic eye stimulation. However, the fellow fixing eye 

is also affected for some higher-level, motion-related visual functions. One possible reason is 

that disrupted visual input from the AE causes abnormalities in the development of binocular 

vision and deficits in binocular areas such as extra-striate cortex. Subsequently higher-level 

functions, which are processed in these high-level areas, exhibit binocular deficits. The fact that 

most FE deficits are motion related suggests that the dorsal pathway remains more binocularly 

than the ventral pathway. The traditional treatment of patching the FE is unlikely to be the reason 

even though it disrupts the visual input from this eye temporarily. This is due to (1), the FE 

deficits still exist for amblyopes who have never received the patching treatment, and (2) the FE 

deficits are manifested even before the onset of any treatment (Meier & Giaschi, 2017).  

The change in nonlinearity suggests that intracortical connectivities in extrastriate cortex 

are affected by amblyopia. This finding suggests an interesting future research direction looking 

at functions that depend on intracortical connectivity such as contour integration (Baldwin, Fu, 

Farivar, & Hess, 2017) and surround suppression (Yazdani, Serrano-Pedraza, Whittaker, 

Trevelyan, & Read, 2015) 

Is the nonlinearity second-order? 

With regards to the location of the nonlinearity that was examined in the current thesis, a 

main concern is that it may be located before the second-stage linear filters, i.e. the nonlinearity 

is an intermediate or even first-order one instead of a second-order one as I claimed. In the 
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thesis, I modeled my results in a way that assumed that second-order information was truthfully 

extracted by the linear filters in the two stages. Thus the modulation level that is the contrast of 

the envelope was used directly as the input to the second-order nonlinear transducer function. 

Here in the appendix, I demonstrate that if the gain control nonlinearity is before the second-

stage filters, the output or response of the second-stage linear filters will still be linear with 

regards to the modulation level. In all actuality, regardless of what kind of intermediate 

nonlinearity is applied, it does not have any influence on the linear shape of the response 

function of the second-stage filters. 

I simulate the whole process of processing a second-order stimulus using the linear-

nonlinear-linear (LNL) model. A group of OM stimuli were used to do the simulation of 

processing. The stimuli have same carriers and their modulation levels range from 15 dB to 40 

dB (~5.6% to 100%). This simulation can be generalized to any kind of second-order 

information.  

First, each stimulus at each modulation level is filtered by four Gabor filters. The four 

filters all have the same spatial frequency as the carriers. Their orientation and phase are the four 

combinations of two orientations of the two carriers and two phases with half a cycle difference. 

Each filter is applied by convolving the stimulus matrix with the filter matrix. Then, the output of 

each filter goes through (1) a half-wave rectification, then (2) a nonlinear transformation as 

   
  

    
, where C represents the output of the first linear filters and the three parameters take 

the values from fitting OM data in Chapter 1 that are 2.4, 2 and ~500. Then (3) values that were 

originally negative in the output were set back to negative in the responses Ri. After that (4) the 

four responses of four filters were integrated as such to recover the second-order information: 
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   √  
    

  √  
    

  in which R1 and R2 are responses of the filters having the same 

orientation and R3 and R4 of the other orientation.  

Finally, two second-stage Gabor filters of opposite phases are applied to M also using 

convolution and combined as the geometric mean to get the final output of the whole LNL 

model. Geometric sum of the elements in the matrix of the final output is calculated to represent 

the output level at each modulation level. The outputs at different modulation levels are 

normalized by the largest value and plotted against the modulation levels that are used to 

construct the stimuli (Figure 1). Fitting outputs against modulation levels with a 2
nd

-order 

polynomial reveals the constant of the 2
nd

-order term having a value smaller than 0.00001. 

Because of this finding I fit the results with a linear function instead. The fitted line is plotted in 

Figure 1 as well. The slope is 0.01 and the intersect is 0.0275.  
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This linear relationship between the final output and the modulation level determines that 

this mechanism that only with gain control nonlinearity before the second-stage linear filters 

cannot produce a dipper pedestal masking function. Therefore, a nonlinearity after the second-

stage filters is necessary to fit the pedestal masking function data.
 

 

Future study 

To further understand why the second-order nonlinearity of only MM processing is 

affected by amblyopia and in both eyes, it is necessary to confirm and establish this finding in a 

larger amblyopic population. The current paradigm takes six hours to test each subject, which 

makes it difficult to do on a large number of amblyopes. A good way to reduce the testing time is 

based on a feature of the pedestal masking function. The dip depth reflects the values of the 

exponents, i.e. the shape of the nonlinear response function. Obtaining the dip depth, which only 

requires measuring the detection threshold and one increment threshold at the pedestal level 

equal to the detection threshold, is enough to characterize the nonlinear response function. This 

will reduce the testing time to one hour per subject. The hypothesis here is that there will be a dip 

depth about 3 dB smaller in the amblyopic eye and 5 dB smaller in the fellow eye than that found 

the normal vision for MM processing.  

Conclusion of the conclusion 

In summary, the current thesis found an identical second-order nonlinearity for CM and 

OM which is different from that for MM. Amblyopic second-order nonlinearity was affected 

binocularly only for MM. These results jointly suggest a separate mechanism for processing MM 

than other types of second-order modulations. General second-order deficits were found for all 
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three kinds of modulations in the amblyopic eye suggesting extensive deficits in the extrastriate 

cortex. Deficits in the fellow eye are only found for MM processing, consistent with the 

differentially affected second-order nonlinearity in MM. This different deficit pattern for MM 

suggests that the dorsal and ventral extrastriate pathways are most likely affected to different 

degrees in amblyopic visual systems. 
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