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Abstract

This thesis presents a detailed kinematie analysis of a 3 -degrce -of-freedoll' p\anar

parallel manipulator with holonomie higher pairs. The manipnlator eonsists of a

cireular disk which rolls without slip on the non-groundcd rigid links of eaeh of three

2R seriai legs.

The first portion of the thesis is devotcd to the revi"w of the gcometrie and

mathematieal tools used in the kinematie analysis. Planar isomctries and group tllcory

are use<! in the development of the inverse kinematics (IK) algorithm. Kincmatie

mapping and Grobner bases are important for the fon\"ard kinematics (FK) algorithm.

After si.'\: important geometrie properties of the manipulator arc identificd, the

IK algorithm is de\"eloped. It is based on the dccomposability and eommutativity of

planar displaeements. The four step algorithm provides closcd form analytie solutions.

The algorithm may be used O!l similar parallel manipulators with any number of 2R

legs, and henee, applies to a whole class of manipulators. It will be shown that there

ean be no more than 4n real solutions, where n is the number of 2R legs. Thrcc

numerieal e.'l:amples are given.

The FK problem is solved using kinematie mapping. To employa technique from

the Iiterature, pseudo inputs must be used to specify joint parameter inputs. The

rcsulting set of three non-Iinear equations in three unknowns is solved using Griibner

bases theory. A numericai e.'\:ample is given.

Finally, velocity and aeeeleration analysis are performed after the determination

of the Jaeobian matm.
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Résumé

Le sujet de cette thèse est l'analyse cinématique d'un manipulateur. plan et parallèle. à

trois degrés de liberté muni de trois liaisons holonomiques supérieures. La poignée est

portée sur trois ou plus pattes à trois liaisons: deu:\( liaisons rotoïdes et une crémaillère.

Chaque crémaillère s'engage à un seul engrenage fi.,é au corps rigide de la poignée

et les couples supérieurs sont formées aux points de contact entre les crémaillères et

l'engrenage.

On traite, au commcncement, la mathématique et la géométrie nécessaires pour

l'analyse cinématique. L'algorithme pour la cinématique inverse est basé sur des con­

cepts de la géométrie Euclidienne et non-Euclidienne et de la théorie des groupes.

L'algorithme pour la cinématique directe est basé sur des concepts de kinematic map­

ping et de la théorie des bases de GrObner.

Apres avoir identifié sL, propriétés géométriques importantes, on peut formuler

l'algorithme qui conduit à un nombre de solutions analytiques pour la cinématique

inverse. Cet nombre des solutions n'e.,céde pas 4R
, où n est le nombre des pattes

sérielles. Afin d'illustrer l'algorithme, on présente des e.,emples numeriques.

En utilisant le kinematic mapping, les équations de cinématique directe sont

obtenues. Les pseudo entrées sont nécessaires pour permettre l'utilisation de la

méthode développée par Husty. Ces trois équations sont résolues par les calculs

symboliques qui utilisent les bases de Grobner. Finalement, Encore, on présente un

e.,emple.

Enfin, on accomplit l'analyse de vitesse et d'accélération est déduit les matrices

Jacobiennes.

ü
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Claim of Originality

Certain aspects of the rnanipulator and its kinernatic analysis are original and are

presented herein for the first tirne. The following contributions are of particular

interest:

(i) The 3-legged architecture.

(ii) Si:\: "special" geornetric rnanipulator properties.

(iii) An a1gorithm for the IK problern which results in c1osed-form solutions.

(iv) The upper bound on the nurnber ofIK solutions is 4n , where n is the number

of legs.

Cv) The introduction of "pseudo inputs" so a kinematic mapping can be used to

solve the FK problem.

Sorne of the results reported in this thesis have been partly presented in two

refereed publications: [27, 28].

1
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Chapter 1

Introduction

1.1. Background

This thesis is an investigation of the kinematics of a novel class of planar paraIlel

manipulators. The end effector is a disk which rolls without slip aIong the straight

lines of the non-grounded rigid links of 2R1 seriai legs. Pairs of two 2R seriai legs

together \Vith the disk forrn -R-R-G-G-R-R-2 closed kinematic chains. 2R seriai legs

may be added as the application requires. Twc and three-legged versions will be

considered in this thesis (see Fig. 1.1).

A similar manipulator comprised of one closed chain was introduced by Vijay

Kumar at the Univen:ity of Pennsylvania through the work of S.K. AgrawaI and R.

Pandravada at Ohio University in [3]. An anaIysis of the workspace was made in

[4], and an attempt to solve the inverse kinematics (IK) problem was made in [3].

However, there is a f1aw in the IK solution aIgorithm which may result in erroneous

solutions (see Section 1.2).

It is well known that the II<: solutions are uncoupled between legs, so solution

procedures cao treat each leg as a seriai chain [20]. A result is that a successful IK

solution algorithrn could be used on platforms \Vith any number of 2R legs. Prior to

1An R-pair is a revolute pair.
2 A G-pair is a highor pair. Details will he p......teel in section 1.1.1•
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FIGURE 1.1. Two and three-leggcd planar platforms ,,1th higher pairs.

our work, the IK problem reported herein was essentially unsolved, and the forward

kinematics (FK) problem had not been addressed.

1.1.1. Lower and Higher Kinematic Pairs. The terni kinematic pair, or

just pair, indicates a joint between two links. Joints involving surface contact are

called lower pairs. Those involving point, line, or curve contact are higher pairs.

Lower pairs enjoy innate practical advantages. First, applied loads are spread over

the contact surfaces, and second, they can be easily and accurately manufactured.

There are sbc types of lower pair, classified as follows [30]:

1. S-pair: The spherical S-pair consists of a convc.'C or solid sphere which elC­

actly conforms with a spherical shell of identical radius. In other words, a

balI-joint. S-pairs have three rotational degrees of freedom (DOF).

2. E-pair: The planar E-pair (E stands for the German word Ebene, which

means plane) is a special S-pair comprising two concentric spheres of infinite

radius. To fix one plane relative to the other requires three generalised coor­

dinates, usually two translations and one rotation. RegardIess, the E-pair has

three DOF.

3
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1.1. BACKGROnm

3. C-pair: The cylindrical C-pair consists of mating conwx and concave cir­

cular cylinders. They l'an rotatc rclati\"C to one another. about t.heir ('ommon

a,is. and they l'an translate rc1at.i\"C to each other aIong that. axis. ~kn('e.

there are t""O DOF: one rotational and one transIationaI.

4. R-pair: The revolute R-pair is made up of t""O congruent. mat.ing surfaces

of revolution. It has one rotatioilal DOF about its a.,is.

5. P-pair: The prismatic P-pair comprises t""O congruent non-circuIar cylin­

ders. or prisms. It has one translational DOF ,,"hose a.,is is any straight. line

parallel to the direction of translation.

6. H-pair: The helical H-pair, or scre,,", consists of t\\"o congruent helicoidal

surfaces \\"hose elements are a convex scre\\" and a concave nut. For an angle ()

of relative rotation about the scre\\" a.'\:Îs there is a translation of distance h in

a direction parallel to the scre\\" a'\:Îs. The sense of the translation depends on

the hand of the scre\\" threads and on the sense of the rotation. The distance

h is the pitch. When h = 0, the H-pair becomes an R-pair; when h = 00

it becomes a P-pair. The H-pair has one DOF which is either specified as a

translation or a rotation, coupied by the pitch, h.

Any joint that does not fall into these six classifications is a higher pair. A

few examples are mating spur gears, a rack and pinion, a carn and follower. These

pairs are important because they often offer the simplest means of achieving complcx

motions. The main drawback is that they are often more complicated, and hence,

more cxpensive to manufacture. The higher pairs may be classified according to the

nature of the relative motion between the jointed links:

1. Pure sliding: The relative motion is pure translation as in, for cxample, the

linger tip of a robot hand sliding along a fiat surface.

4
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2. Pure rolling: The relative mot.ion involves rolling without slip. ~lating sets

of spur gears, and rack and pinion systems are good examples.

3. Combinatio:l of slirling and rolling: In cam and follower systems the tip

of t.he follower slides along the surface of the cam. As the cam rotates and.

relative 1.0 the follower, its radius of curvature changes, the follower rotates

about sorne a.-..:is. As this occu:s the follower tip will also roll on the cam

surface.

The subject of this thesis involves higher pairs that roll without slip on a straight

line, like rack and pinion gear sets. This type of higher pair will be abbre,iated as a

G-pair (G for gear).

1.1.2. ParaIleI Manipulators. The recent interest in research and develop­

ment of robotic systems in general is spurred by the reality of the open market

economy wherein goods and services must be sold. A consumer base with dimin­

ishing disposable income results in more intense competition among the suppliers.

A manufacturer capable of supplying a superior product at a sufficiently high vol­

ume and relatively low cost will usually capture a larger share of the market. The

ever-growing need for greater efficiency in manufacturing leads 1.0 new production

methods. Processes that make use of robotic manipulators comprise a large part of

these new methods.

Currently, most industrial manipulators have seriai architecture. Planar ones,

like that shown in Fig. 1.2, have an intermediate link with a degree of connectivity

of 2. In other words, an intermediate link of a seriai arm is connected 1.0 two other

links. Terminal links, like the end effector (EE) and base (B), are exceptions. They

are jointed 1.0 only one other link, and hence, have a degree of connectivity of 1. SeriaI

manipulators have certain advantages because [16, 25]:

5



•
1.1. U.-\CKGR()l"XD

EE

•

•

, ,
i •

1 ": ;

/ i
~'

FIGURE 1.2. A planar 3R seriai arro.

(i) People can readily identify with an open loop kinematic chain which may be

compared with the human arm. This is a strollg advantage in programming

the arm, training operators, etc..

(ii) Each joint actuator enjoys complete independence.

(iii) The forward and inverse kinematics a:-e weil known and the dynamics have

been thoroughly analysed for many cases.

It is frequently claimed that seriai architecture suffers from the following disad­

vantages [25, 20]:

(i) Seriai manipulators require an actuator for each joint. The added mass of the

actuators located at intermediate joints contributes to the total inertia of the

robot.

(ii) The structural design of the links must take the above point into account. That

is, because of the cantilever-like structure of the links, f1cxibility is a concern.

6
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To control the fkxihility of the system the links must be 'over~designed' [25].

This usually Jcads tu still more massive links.

(iii) If high degrees of accuracy and precision in motion arc required. the vclocity

of the EE is limited b~' the abo,·e considerations.

(iv) If the actuators arc located at the base. force and torque transmission become

an issue. Transmission systems reduce the absolute accuracy, precision, and

the repeatability of EE motions and add to fle;\:ibility.

Therefore, kinematic rcsearch turned to parallel architecture in the quest for

robot designs that offer more streamlined, cost-effective manufacturing processes.

This has lcd to efforts to develop robots that exhibit better characteristics, e.g.,

spœd of operation, load carrying capacity, dynarnic response, accuracy, precision, and

reliability. To this end, parallel manipuIators consisting of closed kinematic chains

have bœn investigated. Stewart-Gough (SG) type platforrns are a typical e."arnple,

see [23, 53, 19, 33, 34, 36]. This type ofplatforrn was !irst devised by Gough [23] in

1956 to serve as a test stand for automobile tires. The moving platforrn is connected

to the base by sL" teIescoping prismatic legs. The sL" legs are jointed to the moving

platforrn, and to the base, by spherical and universal joints. This gives the moving

platforrn 6 DOF. The design was adapted by Stewart [53] in 1965 for use as a flight

simulator.

Since this thesis is about a particular type of planar SG platforrn consider Fig.

1.3. It depicts a typica! planar three-legged SG type platform \vith nine revolute

joints. Note that each 3R seriai leg is kinematically equivalent to an -R-P-R- seriai

leg. This is because a change in location of a reference point on the EE corresponding

to changes in the orientation of the first link and the relative angle bet\veen the first

and intermediate links in the 3R leg can always be achieved by a telescoping -R-P­

R- leg. This concept is illustrated in Fig. 1.4. There are many other e.'CaIIlples

ï
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FIGURE 1.3. A typical planar thrre-leggcd. 9R SG t~'pe platrorm.
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FIGURE 1.4. 3R and -R-P·R- seriai chains arc kinematically cquivalent.

of parallel architecture, see for e.'tample [27, 28, 3, 4, 10, 20, 40, 56]. Moreover,

parallel manipulators have applications in fields other than manufacturing. These

include aircraft, ship, and automobile simulators, ambulatory, or walking machines,

and robot hands.

Parallel manipulators are characterized by the fact that the EE is attached to the

base, or ground, by more than one kinematic chain; an architecture with closed-loops.

General advantages of parallel architectures \Vere cited in [25, 20]:

(i) It is not necessary for each joint to be actuated directly by individual motors,

hence a =aller contribution to the mass of the links. The links, in turo, can

be made lighter.

8
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(ii) By allowinp; at Ieast sorne motors to be fixed. they can be Iarger and more

powerfu1. Thus. the Ioad -carrying capacity \"ersus the mass of the robot can

be increased. along with the speed of operation.

(iii) The ensuing reduction in gear dri\"es and transmission systems increases the

inherent accuracy of the robot while simultaneously lowering the cost to make

one.

A few of the potential drawbacks are:

(i) The workspace is limited.

(ii) The workspace may contain many singularities.

(iii) Simultaneous control is required for sorne or ail of the drive motors.

1.1.3. Planar Parallel Systems with Pure-Rolling Higher Pairs. Planar

parallel manipulators with higher pairs restricted to pure rolling, such as that shown

in Fig. LI, constitute an important and unique sub-class. They are important

because they have an inherently sound architecture and unique because the pure

rolling constraint forces a kinematic dependency on the initial assembly configuration

(lAC). That is, displacement analysis requires the presence of initial conditions in the

kincmatic closure equations. This dependency on the Lo\C means that analysis is not

possible using the conventional techniques employed on 100ver pair jointed SG type

platforms.

1.2. Motivation

Research issues concerning general 3 DOF manipulators form an important sub­

group of the problems of manipulator kinematics. Planar 3 DOF manipulators are a

special case because the freedoms consist of two linearly independent translations in

the plane and rotations about an a:ds normal to the plane. Ail planar displacements

9
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l.~. ~lnTl\""\Tln:-;

belong ta the group of i~onwtrie~ of the planl'. It i~ l'llllllllonly lwli,'\'ed that th,'re i~

no group for general 3 DOF rigid body di~plact'nll'nt~ in ~paCt'.

The problem~ of planar manipulattl~. both ~erial and parallt'l. art' 1Il0~tly \\'l'!l

documented and unde~tood. Clo~ed form ~olution~ t'xi~t for tht' FI' and II' prohll'lIl~

of most seria! planar manipulato~ [16, 42]. The kinematic~of tlIany parallt'llllanip­

ulators are also wellunderstood. For instance. the II' problem of a lo\\'er pair jointt"]

SG type platform is identical to the IK problem of a seriai manipulator architecturally

equivalent to one of each of the kinematic sub-chains of the parallcl manipulator [20J.

On the other hand, the FK problem of paraiIl'l platforms is generally more complex

than that of serial manipulators. Due to the nature of the problem. much of the ear­

lier research concentrated on numerical solutions [44, 45]. \Vhile numerical methods

are weil suited to certain conditions. they yield no insight into theoretical issues, such

as the size of the solution space, i.e., the number of assembly modes. Furthermore,

these methods rely on an initial guess which must be fairly close ta the solution in

order to converge [45, 21]. Many efforts have been made to provide sorne theorctical

insight by viewing the problem from a different perspective. Gossdin and Sefrioui

[21] investigated polynomial solutions of the planar SG platform. An algebraic ap­

proach was used in [54] to derive a degree 6 input-output equation for the same type

of platform. Both confirm the weil known results of Hunt [31J.

The success of most of these methods derends largely on the fact that the plat­

forms are jointed with lower pairs. This allows the platform geometry to be readily

determined. This is a critical point, since the above methods require knowledge of

the platform geometry. However, when the EE is replaced with a disk (pinion gear)

and the three revolutes joining the EE to the legs are replaced with racks, along

with the condition that contact is always maintained between the racks and pinion,

10
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tJw g"OUll'Uy sud,jpnly hecolIws complicated. particularly in the conte:'l.t of the FK

pr<Jhl ..m.

The pruhlem common tu ail three legged planar platforms with 3 DOF is that.

unIes., r"dundant actuators arc nsed, only thrcc joint inputs l'an be specified. The

prublem unique to the pure rolling contact platform is how the change in location of

the contact point betwccn each rack and the pinion affects the displacement. If the

pinion remains stationary while a rack mO\'es. it must be that the rack rolls on the

disk. Conversely, the pinion l'an roll on a stationary rack, In the abo,'e situations. if

the change in location of the contact point along the rack is identical. the displacement

of the disk centre will be different. In the tirst case, the location of the pinion centre

is constant. In the second case, it translates along a line parallel to the stationary

rack. Most displacements. however, require a combination of the t",o types of relative

rolling. Keeping track of the proportions is critical to both the IK and FK problems.

It also appears to be a formidable task. Regardless, ail methods thus far depend on

the geometry of the platform.

In 1994 a new approach to the kinematic analysis of three legged planar SG

platforms jointed \Vith lower pairs \Vas revealed. Husty [34] used /,;inematic mapping

to solve the FK problem of such platforms. The importance of this approach is that

it produces an algorithm which is independent ofthe platform geometry. Moreover, it

\Vas confirmed that there are a ma.~um of sb, real solutious using a simple geometric

argument [3IJ.The same mapping was used to determine the workspace of 3-legged

planar platforms in [35]. Clearly, kinematic mapping is \Vorthy of study because of

its potential as an analytic tool.

The literature on the kinematics of planar parallel manipulators has largely been

restricted ta manipulators jointed e.xclusively \Vith 10\Ver pairs. The main e.xceptions

being \Vork on rolling contact in the conte."\":! of grasp and control. E."\":!ensive recent

11
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research h(\$ b('en dont' in l"OIlIlel'tioIl with ~ra,"'pin~ and !iUt' tlHlti\lt1 manipulatil1tl

by multi-fingered robo:ic hand~ :-10]. Th., l"tah/)'lIT d""tn)ll~ hand i~ an ,·","nph·.

Various types of contact bet\\·e.':\ hand and obj.'ct han' b".'n ~tlldi,'d eXll'n~i,'<'1\ in

[51J. But. l'ven here the robotic hands are joint,'d with lower pai~ only. Th., rnllin~

contact is mercly an approximation of contact Ill'tw('cn th., EE allli workpi"l"t,. Con­

tinuing in this '·ein. the kincmati~ of rolling conlact for IWO ~urfal"t'" of arbitrary

shape wcre examined in [12J. Control schelll~ for parall.'llllaniplllatl)~ with rüllin~

constraints were put forward in [55, 12]. Howevcr. rolling ~y~t('lIl~ an' not Pl".'llliar to

robotic hands. Automatic Guided Yehides (AGY) are an important da.o;.~ for indus­

trial applications, dangerous materials handling. etc.. The kinematics and dynamics

of a three wheeled 2 DOF AGY were studied in great detail in [49J. However. in the

case of the AG\', continuous rolling contact is a by-product of constraints imposed

by the operating environment. It is not a design parameter alfccting control (exccpt

to detcct wheel slip) or kinematic synthesis.

With the exception of caros and gears. which are not considered to be robotic

mechanical de\ices, research on mechanisms containing higher pairs is rare. Tbe

roll-without-slip pair is considered in tbis thesis partly bccause it l'an be elfectively

modelled as a mating gear pair. Gears are l'ommon, efficient and reliable machine

elements but they are unusual as robotic joints. One intriguing possibility involves

the planar parallel systems with the pure rolling higher pairs in Fig.!.!. If tbe initial

Lo\C were adjustable then the reachable workspace would be dynamic. This could be

accomplished by allowing one rack at a time to disengage and reposition itself on the

disk. Sucb a manipulator has industrial potential.

The effects of the Lo\C on the reachable workspace of a similar planar rolling

system \Vere e:'Camined in [4]. Previously, the same authors described an algorithm

based on vector analysis for the IK problem of the same manipulator [3]. However,

12
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they failed to account for the orientation of the end-effector in the inertial reference

frame. That is, a relative angle was used to specify the disk orientation, which is

a neccssary rcsult when a vector approach is employed. The main problem is that

there arc sorne displaccments where this angle changes, yet the orientation of the end

effector remains constant. So, erroneous solutior.~ can arise. No other reference to

the IK problem of such a planar manipulator was found. No references, whatsoever,

were found in connection \\;th the FK problem of planar parallel manipulators with

holonomie higher pairs.

Optimal trajectory planning and obstacle avoidance in a crowded workspace re­

quires fast computation of IK solutions. Control of the robot requires the availability

of FK solutions. Hence, this thesis addresses these issues in some detail.

1.3. Thesis Overview

In Chapter 2 the geometry and mathematics relevant to the kinematic analysis

used in subsequent chapters will be reviewed. Subjects range from the basic concepts

of isometries in the Euclidean plane, which aid in the solution of the IK problem, to

the more esoteric notions of kinematic mapping and Grobner bases, a relatively new

tool from computational algebra, for use in solving the FK problem.

Chapter 3 introduces the planar manipulator along with the necessary nomencla­

ture. The mobility is e:'Camined and the commutativity of the disk displacements is

explained. Finally, sb, special geometric manipulator properties are given.

In Chapter 4 the development of the IK algorithm is outlined. The four-step

algorithm will then be introduced. It is illustrated with three numerical examples.

Chapter 5 contains a discussion of the problems involved in formulating the FK

problem. Pseudo inputs are introduced and an adapted version of Husty's algorithm

is given, illustrated with a numerical example.

13
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Chapter 6 incIudcs topics beyond static positioning problems. The wlodty analy­

sis is necessary for trajectory planning and as the lirst step in the accc1eration amùysis.

The latter is required for the investigation of manipulator dynamics.

Finally, Chapter ï contains conclusions and suggestions for future research.
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Chapter 2

Mathematical Background

2.1. Isometries

2.1.1. The Group of Isometries of the Euclidean Plane. An isometry of

the Euclidean Plane is a one-to-one mapping of the plane onto itself which leaves

distance invariant. The isometries consist of rotations, translations, reflections, and

glide reflections. They are congruent transformations that are also called motions of

the plane [14). However, the use of the term motion is misleading. An isometry ofthe

plane is the correspondence between the initial and final positions of an object in the

plane displaced in a way that leaves the distance between every pair of points in the

object unchanged. Although a motion takes place, the motion is not the isometry. A

motion is a continuous series of infinitesimal displacements.

Planar isometries constitute a group. A group consists of a set, ç;, together with

a binary operator, *, defined on ç; which satisiies the following axioms [7):

1) [closure) x *y E ç; "V x, y E ç;
2) [associativity) (x * y) *Z = X * (y *Z) "V x, y, Z E ç;
3) [identity) 3 1 E ç; : h x = x *1 = x,

"VXEÇ;
4) [inverse) 3 x-1 E ç; : x *x-1 = x-1 *X = l,

"VxEÇ;
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If in addition to a.,ioms 1) through -1). the clements in ç are l'Ollllllutat.iYl' (i.,'..

x * y = y * x, ':fx. y E Ç) then ç is an A.be/ian. or commutative group. The :\l",lian

group a.,ioms of closurc and commutativity will proye to be indispl'nsable in t.llt'

deyelopment of a solution procedure for the IK problelll.

2.1.2. The Sub-Group cf Direct Isometries. :\ subset of ç which is a

group under the binary operator defined on ç is a sub-group 11. [9]. It is weil known

[14] that the isometries of the plane are a group. Let l be this group. A planar

displacement consists of the direct isometrics only. The direct isometrics are transla­

tions and rotations. Let 'D be the sub-group of planar displacements of group I. The

manipulator under study has 3 DOF. Two are translations in the directions of the

basis vectors of a non-moving reference frame (the inertial reference frame), the third

consists of rotations about the centre of the disk. The group operator in 'D, called

"product", is denoted by the symbol *. It represents successive implementations of

given isometries and hence is not an algebraic product. By virtue of the a.,iom of

closure, ail the products of all translations and all rotations are also in 'D. Hence,

the disk can move in any combination of translation and rotation within the physical

limits of its workspace.

Since direct isometries preserve sense, as weil as distance, the product of any

number of direct isometries is another direct isometry. It is easy to show that the

associativity a.xÏom holds for the product of three direct isometries. It is cqually

simple to show the existence of an identity displacement and that there is an inverse

for l'very displacement in the plane. Hence, 'D is indeed a sub-group of I. However,

the indirect, or opposite, isometries do not preserve sense and therefore do not form

a sub-group since the product of opposite isometries is not necessarily opposite. For

example, the product of two reftections in parallellines is a translation through twice

the distance between the lines. The product of two rellections in intersecting lines is

16



•

•

•

\

2.2. PROJECTIVE GEOMETRY

a rotation through twice the angle between the lines. In both cases, the product of

two opposite isometries is a direct isometry. Since direct isometries are not opposite,

closure is violated, hence the opposite isometries do not form a sub-group of I.

2.2. Projective Geometry

2.2.1. Five Axioms. Sorne concepts from projective geometry are introduced

here primarily to provide background for the kinematic mapping, which is later used

to solve the FK problem. Kinematic mapping involves the transformation of given

displacement parameters from the Euclidean plane to a three dimensional projective

image space.

The following a.'Ôoms are e.'l:tracted from Euclidean geometry [5]:

(1): Any two distinct points determine one and only one line.

(2): Any three distinct non-collinear points, also any line and a point not on the

line, determine one and only one plane.

(3): Two distinct coplanar lines either intersect in a point or are paralleI.

(4): Aline not in a given plane either intersects the plane in a point or is parallel

to the plane.

(5): Two distinct planes either intersect in a line or are parallel.

Note that these propositions deal ooly with the connection of points and the inter­

sections of lines and planes. They are entirely free of metric notions.

The space in which projective geometry operates is constructed by expanding

Euclidean geometry. That is, certain objects are adjoined to the Euclidean plane

and space. These objects are the ideal points, Zines and planes. For purposes of

distinction, let the Euclidean counterparts be called ordinary. The last three of the

previonsly stated live a.'l:Ïoms from Euclidean geometry are amended snch that they

17
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hold true for ail cornbinations of ideal and ordinary quantities. The spaee that results

is called projective space.

(1'): Any two distinct points deterrnine one and only one line.

(2'): Any three distinct non-collinear points, also any Hne and a point not, on

the Hne, deterrnine one and only one plane.

(3'): Any two distinct copIanar Hnes intersect in one, and only one point.

(4'): Any Hne not in a given plane intersects the plane in one, and only one

point.

(5'): Any two distinct planes intersect in one, and only one Hne.

Consider first the projective plane, P2. The ordinary lines are adjoined with

an ideal point (called the point at infinity) to becorne projective Hnes. Two distinct

intersecting ordinary Hnes will have distinct points at infinity. Two ordinary parallel

\ines will share the same point at infinity. The ordinary plane together with the

totality of the points at infinity of its ordinary \ines constitutes the projective plane,

p2. A projective \ine has but one point at infinity, not two (one for each direction).

That is, a projective \ine is closed, this idca is discussed at length in subsection 2.2.2.

Aiso, all the points at infinity of a given projective plane layon the same \ine at

infinity.

Projective space, p3 consists of the totality of projective planes. The \ines at

infinity associated with cach plane in the projective space are coplanar. The plane in

which they \ie is called the plane at infinity.

2.2.2. Homogeneous Coordinates. Let 0 be the origin of the Cartesian

coordinate system, {O : x, y} shown in Fig. 2.1. Let Q be a distinct point in the

plane. The ray passing through 0 and Q is dcscribed by Q(p.x, p.y), where p. E 'R.

(ie., a real number). Conversely, for a given point S =f: 0 the pair (p.x, p.y) dcscribes

18
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y

Q( jJX, !J..y)

s (X, y)
y

o
~ X

x

•
FIGURE 2.1. Cartcsian coordinatcs in E'.

a distinct point Q on OS. As p. -t ±oo the seemingly meaningless pair (00,00) is

obtained.

If S = (x, y) E E2 and (Xl> X2. Xh) is an ordered triple with Xh '1: 0, then the

point S tan be uniquely described by the triple if the point S is represented as:

Xl X2
X=- • y=-.

Xh Xh
(2.2.1)

•

Then any triple of the form (>.xl> ..\x2, ..\xh) (for>. '1: 0) describes exactly the same

point S. In other words, two real points are equal if their homogeneous coordinates

are proportional. This is because

The coordinates (Xl : X2 : Xh) are called homogeneous coordinates, where Xh is

the homogenizing coordinate. Note that when Xh = 1 the Cartesian coordinate pair

(x,y) is recovered.
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The Cartesian coordinates (tIX. /lY). JI f. O. of the family of points on thl' ray

through Q in Fig. 2.1 can be exprcssed in homogeneolls coordinate," as follo,,"s:

(/lX. /lY) = (/lXt : /lX~ : Xh) = (Xl : X~ : Xh).
JI

In E2, as /l -+ ±oo the homogeneous coordinates (Xl: X2 : 0) are obtained. There is

no point on the line OS 1.0 which this triple can correspond because E2 is llnbollnded.

In the e.'(tended Euclidean plane the triple (Xl: X2 : 0) dcscribes the point at infinity

(ideal point) on the line OS. Since the same triple is obtained regardlc."S if JI -+ +00

or IL -+ -00, a single, unique point al. infinity is associated with the line OS in E 2 •

Hence, an ordinary line adjoined by its point al. infinity is a c10scd curve.

The triple (0 : 0 : 0) describes neither an ideal point or a real point on OS.

(x : y : 0) = (0 : 0 : 0) seems 1.0 imply that 5 = 0, which is a contradiction in

the construction of the line segment OS. The trivial triple (0 : 0 : 0) is therefore

discounted.

Entirely analogous statements can be made for the three-dimensional Euc1idean

space, E3. This space is covered by a Cartesian coordinate-system {a : x, y,::} with

the origin a and a.xes x, y, z. The axes are usually defined as orthogonal. Such an

orthogonal Cartesian system is illustrated in Fig. 2.2. As Fig. 2.2 shows, a unique

triple, (x,y,z) cau be assigned 1.0 every point S E E3. The converse is also true. A

point Q E 1=OS has the coordinates Q(/lX, ILY, ILZ), where IL E R. As IL -+ ±oo the

triple (00,00,00), is obtained.

The projective homogeneo\lS coordinates (Xl: X2 : X3 : Xh) of the point S E E3

are defined as:

(2.2.2)

.A.s in two dimensional projective space, when Xh = 1 the Cartesian coordinate triple

(x, y, z) is recovered.
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Z

S(X,y,Z)
fJ.-Z

Z ~ Q( j.1X, fJ.-Y,fJ.-zl

/

y fJ.-y
Ol)'----=--.:-=-_ y

x

•

•

FIGURE 2.2. Cartesian coordinates in E3.

2.3. A Kinematic Mapping of Planar Displacements

2.3.1. Planar Displacements. A general displacement in the plane requires

three independent coordinates to fully characterize it. In other words, a position of

one rigid body relative to another is given by three numbers. Typically, a displacement

is described by D(a, b, ,p), where a and b are the components of a position vector in

the directions of linearly independent basis vectors, and ,p is a rotation angle about

some fi."ed a.'(Ïs normal to the plane, see Fig. 2.3. In 1911, Grunwald and Blaschke

independently suggested using the three numbers which describe a planar position

as the coordinates of the points in a three dimensional projective space, called the

image space [33, 8]. This was done originally to gain a deeper insight, and to derive

new theorems, of plane kinematics.

A planar motion is a continuous series of displacements, hence a complete motion

in the plane is mapped to a curve of the image space. One, two, and three degree of

freedom planar motions are represented respectively by curves, surfaces, and solids
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/ D(a,b, <Ç)

x

•
FIGURE 2.3. A pianar disp1.lccmcnt dcscribcd by D(a,b,<I».

in the image space [39]. The classification of planar motions can be reduccd to the

classification of curves, surfaces, and solids [46].

It is convenient to think of the relative planar motion betwccn two rigid bodies

as the motion of a Cartesian reference coordinate system, E, attachcd to one of the

bodies, with respect to the Cartesian coordinate system, ~, attachcd to the other

[8]. Without loss of genera1ity, ~ may be considered as fbced while E is free to move.

Then the position of a point in E relative to ~ can be given by

where

[XI] = [c?st/> -sint/>] [;xl] + [ a ]
Y' Sin t/> cos t/> y' b' (2.3.1)

•
(i) (;xl, y') are the Cartesian coordinates of a point in E.

(ü) (X', Y') are the Cartesian coordinates of the same point in ~.

(ili) (a, b) are the Cartesian coordinates of the origin of E measured in ~. i.e., the

components of the position vector of the origin of E in ~.
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(i,,) 0 is the rotation angle measured from the .\'~a.'l:is to the x'~a.'l:is. the positive

sense being cOllnter-cIockwisc.

Equation (2.3.1) does not represent a linear transformation. This fact is compu­

tationally inconvenient, and can be rcmedied by the use of homogeneous coordinates.

(x: y : .:) and (X: Y : Z), where [52]

, x
x=-

,., _ X
.I\. --

Z

, y
y =:'

Y' = y.
Z

Substituting thesc homogeneous coordinates in equation (2.3.1) gives for X'

x x . y ..
- = - cos tp - - sm tp + a.
Z • •. . (2.3.2)

•
Without 1058 of generality. the homogenizing coordinates may be set to be equal since

their value is arbitrary, Le. set Z = .:. Multipl);ng through by .: gives

x = xcos.p - ysin.p + a.:.

Similarly, the Y' expression becomes

Y = xsin.p + ycos.p + b.:.

The following linear transformation is obtained:

[~] [

cos.p -sin.p
sin 4> cos4>
o 0

(2.3.3)

which may be e.'l:pressed very compactly as the vector-matrL'I: equation

X=Ax. (2.3.4)

•
Equation (2.3.4) represents a displacement of E with respect to E. If A is a

continuous function of a pararneter, such as time, then equation (2.3.4) represents a

motion of E with respect to E .
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i,p X

-X~' ,P, .....y""" . .
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FIGURE 2.4. The pole is an invariant of a planar displacement.

2.3.2. The Pole of a Displacement. Ali general planar displacclllcnts that

are not translations may be reprcsentcd by a single rotation through a finitc angle

about a fL"cd a"cis normal to the plane [15]. Even a pure translation can be considered

a rotation through an infinitcsimal angle about a point at infinity on a Hne perpendic.

ular to the direction of the translation. The coordinatcs of the piercing point of this

a"às dcscribe the pole of the displacement. If E and ~ are initially coincident, then

after the displacement the pole has the sarne coordinates in both E and~. This is

illustratcd in Figure 2.4, where P reprcsents the pole and the p-subscripted quantities

are the pole cooroinates in their respective coordinate systems.

To prove that the pole is an invariant of the displacement, the eigenvalues of

the 3 x 3 homogeneous transformation matrbc A are c.'Camincd [39]. The eigenvalue

problem is statcd as follows:

.xx - Ax,

(A - >J:)x - 0,

where x is column vector, ), is a scalar constant, and 1 is the 3 x 3 identity matrix.
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The system of equations has non-trivial solutions if. and only if

det (A - ..\1) = O.

The 3rd order eharaeteristie polynomial for this 3 x 3 matrix is found by the

Laplacian expansion of the above determinant:

(1- ..\)([eos,p- ..\][eos,p-..\] + sin2ô) = O.

(1 - ..\)(..\2 - 2..\ eos Ô + eos2Ô + sin2Ô) - O.

(1-..\)(..\2-2..\eosô+l) - O.

Sinee the charaeteristie is 3rd order, there must be three eigenvalues. By inspection,

the first eigenvalue is ..\1 = 1. The second and third are from

"\2,3 - ~(2cos,p ± J4cos2 ,p - 4),

- cos li> ± J cos2 t/> - l,

• - cos 6 ± J-sin
2t/>,

- cos t/> ± sin ,pH,

- cost/> ± i sin 6,

Hence, for any general planar displacement the homogeneous transformation matrÎ:\:

has only one real eigenvalue. ..\ =1. Corresponding to this eigenvalue, the eigenvalue­

matrÎ:\: equation is quite similar ta equation (2.3.4)

x = Ax.

Now, re-consider equation (2.3.4). It can be de-homogenized and e.'\:pressed as

If it is true that the pole is an invariant, then its coordinates must be the same in E

and in ~, i.e., X~ = x;, and y; = y~. Substituting these into the previous equation•
[ X'] [cost/> -sint/>] [X'] [a]Y' = sin t/> cos t/> y' + b . (2.3.5)
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gl\"eS

[r;.] = [l"~)~O
!lp SIIl 0

This is compactly expressed as

- ~in 0 ] [ .r;, ] + [ li ] .
cos 0 !J., b,

(:!.:Ltil

X '-Bx"d·P-·"i. (:!.:1.7)

where the components of the "ector x~ are r p and !Ip • B is th" :2 x :2 rutati,'n lIIatrix

and d is the translation vector whose components art' li and b.

It is a simple matter to solve for x'p:

1 B' d.x p - x p =
(1 - B)x'p = d.

, (1 - B)-ld.x p =

•

•

The last equation may be rearranged as

These are the Cartesian coordinates of the pole.

Retum now to the eigenvalue problem,

(A - ..\I)x = O.

Setting >. =1, the only real eigem-alue for the matrbc A,

(A- I)x = O.

The matri."{ (A - 1) l'an be partitioned as

[ (BO - 1) do] x =O.
tx3

Equation (2.3.9) may be de-homogenized and expanded giving

(B - I)x' + d = O.

Solving for the eigenvector, Jé yie1ds

x' = -(B - I)-Id.

(2.3.8)

(2.3.9)

(2.3.10)
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Comparing equations (2.3.8) and (2.3.10) it is seen that the eigenvector which

corresponds to the sole real eigenvalue shared by ail planar homogeneous displacement

transformation matrices is identical to the pole of the displacement. Since it is an

eigenvector, the pole is coordinate system independent, and hence, invariant.

2.3.3. Pole Coordinates in Terms of a, b and ifJ. Given that the pole P is

defined as the point where X p = Xp and Yp = yp, as in Fig. 2.4, one may immediately

write a = a(xp,yp,ifJ) and b = b(xp,yp,ifJ) as

a = Xp + ypsinifJ - Xp cosifJ,
b =yp - yp cos ifJ - xp sin ifJ.

Solving for x:' and yp yields

a bsinifJ
Xp= --

2 2(1- cosifJ)

and

a sin 9 b
yp= +-.

2(1- cos 9) 2

The homogenizing coor":inate is z and its value may now, without loss of generality,

be set to z =sin~. Xp and yp must also be multiplied by this value. Then the double

angle relationships

sin'29 =2sin 9 cos 9, cos 29 =cos2 9 - sin2 9

are used to obtain the following:

Xp= xp= ~asin (9/2) - ~bcos (9/2),

1';,= Yp= ~acos (9/2) + ~bsin (9/2),

Zp= ;,= sin 9/2.

(2.3.11)

•
Hence, the homogeneous coordinates of the pole, which are identical in each of

the two coordinate systems I: and E, in terms of the three displacement parameters

a, b, and 9 are determined by the thrœ equations (2.3.11).
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2.3.4. The Image Point and Image Space. The location of the pole of a

displaeement along \Vith the rotation angle eonvey sufficient information to ehamc­

terize the displaccment. The image of the pole nnder the kinematic mapping is calleel

the image point. Many mappings ean be defined that mal' a position (a. b. 0) of the

mO\'ing coordinate system E \Vith respect to the fixed system ~ in the plane to a point

described by the homogeneous coordinates (Xl : X~ : X3 : X.• ) of a thrce e1imcnsional

projective image space, ~'. The mapping used here is

(2.3.12)

•

where

(Xl: X2 : X3 : X4 ) # (0: 0 : 0 : 0),

T - cot(if>/2),

0::; if> < 2..,

and Xp : Yp : Zp depend on (a, b, if» as given by the set of equations 2.3.11. The image

point is given by

(Xl: X2 : X3 : X4) - [(a sin (if>/2) - bcos (if>/2) :

(a cos (if>/2) + bsin (if>/2) :

2sin (if>/2) : 2 cos (if>/2)]. (2.3.13)

•

By virtue of the relationships expressed in (2.3.13), the Iinear transformation

operator, the matrix A from equation (2.3.4), may be expressed in terms of the

homogeneous coordinates of the image space, L;'. Recall that
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Ail and A22 may be re-exprcssed using the identitics cos2 (0/2) = (1 + cos 0)/2 and

sin2 (0/2) = (1 - costf»/2. This gives

=

•

•

- (2 cos (ç,/2W - (2sin(ç,/2)f,

4 + cosç,) 4 - cosç,)
4 4

= 4coso.

A 12 and A 21 arc related by A 12 = -A21 • •412 may be obtained from

2X3X 4 - 2[(2sin(ç,/2))(2cos(4'>/2))].

The identity

sin <1>
2 sin (<1>/2) - cos (<1>/2)

is uscd to get

A13 is obtaincd from

2(X1X 3 +X2X4) - 2[(asin (4'>/2) - bcos (<1>/2))(2 sin (<1>/2))

+(acos (4'>/2) + bsin (4'>/2))(2 cos (4'>/2))],

- 4(asin2 (4'>/2) - bcos (4'>/2) sin (4'>/2)) +

4(acos2 (4'>/2) + bcos (t/J/2) sin (t/J/2)),

- 4a.

(2.314)

(2.3.15)

(2.3.16)

(2.3.17)
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.·h3 is obtained from

2(.\2X3 - XIX.I) - 2[(acos (0/2) + bsin (0/2))(2 sin (0/2))

-(asin (0/2) - bcos (<1>/2))(2 cos (0/2))].

- 4(a cos (4)/2) sin (<1>/2) + bsin2 (<1>/2)) -

4(acos (<1>/2) sin (tjJ/2) - bcos2 (0/2)).

- 4b.

A33 is obtained from

xi + xf - (2 sin (4)/2))2 + (2 cos (4)/2)f,

- 4.

(2.3.18)

(2.3.19)

• Notice that 4 is a factor common to ail non zero terms of A. Since homogeneous

coordinates are used,

x =.Ax =4.Ax.

So, equation (2.3.3) may be re-expressed using the homogeneous coordinates of the

image space. This means that we now have a linear transformation, or a kinematic

mapping, to express a position of E with respect to ~ in terms of the image point as

given by (2.3.13):

[~] =
-2X3X4

(Xf -Xi)
o

•
It may now he said that for each unique displacement descrihed by (a, b, t/J) there is a

corresponding unique point in the image space, because equation (2.3.20) is a linear

transformation. From equation (2.3.13), the inverse mapping is ohtained. That is,

for a given point of the image space, the displacement parameters, or pre-image are
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obtained from

tan (q,/2) = X3 / X,.

a = 2(X1X 3 + X 2X,)/(Xi + X-D.

b - 2(X2X 3 - X1X,)/(Xi + X.n.

The geometry of the image space is discussed in detai! in appendix A.

2.4. Displacements With One Point Bound to a Circle

(2.3.21)

•

•

2.4.1. Planar SG Type Platforms. A planar SG type platform is a manipu­

lator that consists of a mO\'able platform connected to a base by three legs of variable

length. Each leg is either an R-P-R or a 3R leg. Figure 2.5 shows the 3R variety.

The lengths, Ti' jE {A,B,C} between the platform connection points, A,B,C and

corresponding base points, Ao, Bo, Co is varied directly with the prismatic pair in the

R,..P-R type, or by changing the relative angle, -ai' j E {A, B, C} between the two

links in the 3R leg. If the Ti are fi.xed the platform points must be on corresponding

circles centred at Ao, Bo, and Co with radii Ti'

A moving reference frame E, which moves with the triangular platform, has its

origin incident on the platform point A. A non-moving reference frame !:, with

origin incident on the point Ao, is fi.xed to the base of leg A. Each leg consists of

a 2R grounded leg connected to the triangular platform by another R-pair. What

remains when legs B and C are disconnected from the platform is a single 2R open

chain. Since TAis fixed in magnitude, the two leg links behave as a single rigid body.

They can only rotate about the point Ao. The platform can rotate about A. It is

clear that all allowable displacements of this 3R chain require that the point A remain

bound to the circle centred at Ao with radius rA. Thus, two parameters are required

to describe a displacement of the moving frame E with respect to !:, the fixed frame.
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.,
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,~

h B

FIGURE 2.5. A planar SG type platform with thrcc 3R legs.

For a given set of input angles, {Jj, the platform points must be on circles of radii Tj.

Thus, the locations of the platform on the respective circles are the FK solutions.

Husty [34J showed that kinematic mapping is a good tool for solving the FK

problem for SG type platforms because of the condition that one point of the moving

system is bound to a circle. This gives a quadratic condition for the corresponding

image points of the possible positions of the platform. Morcovec, the mapping does

not depend on the platform geometry.

2.4.2. The Hyperboloidal Constraint Manifold. The image of the possi­

ble displacements has to be a two parameter set of points, which is a surface in the

image space. Bottema and Roth [8] show that it is a quadric surface, specifically a

hyperboloid. The points on this hyperboloid correspond to all possible positions of

the 2R open sub-chaïn, hence all image points are constraincd to lie on this surface.

McCarthy [39J points out that these constrainthyperboloids are manifolds. Husty
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FIGURE 2.6. A planar 2R scriai kincmatic chain.

[35] demonstrates that the constraint manifolds arc skew hyperboloids, not neces­

sarily hyperboloids of revolution. Furthermore, '::Iusty shows the intersection curve

of the hyperboloid with planes X3 = constant arc circles, and that the a.xis of the

hyperboloid is independent of link length.

Consider the 2R seriai chain in Fig. 2.6. !: and E are arbitrary 5:'1:00 and moving

coordinate reference frames, respectively. Without loss of generality, !: is fi."(oo to

the groundOO base with its origin incident on Ao, and E is attachOO to link 12' with

its origin at the point A. The point .4 is constrainOO to move on a circle of radius

il, Furthermore, link 12 is free to rotate about point.4. The positions of this two

parameter system map to a hyperboloid in the image space. Each possible assembly

mode of the 2R chain corresponds to a point on the hyperboloid. Since ail positions

are coustrainOO to be on this quadric, it is callOO the constraint hyperboloid, H.

•
The equation of this quadric, H (which is derived in Section 5.2) is found using

equation (2.3.20) and the fact that the moving point A. is bound to a circle with

33



•
2.4. DISPL\CDlE:\TS \VITH O:'\E POI:'\T 130l':'\D 1'0 A e!HeLE

radius r. and ccntre described by the homogelll'o\ls coordinat cs (.\,_ : )~ : Z) \\'ith

respect to the fixed refercncc frame ~. The standard hyperboloid ,'quation is

H: 0 = ;:2(.\~ + .\~) + (1/-l)[(x2 + 1/) - 2C,x;: - 2C2!1;: + C,,;:2).\~ +

(1/-l)[(x2 + y
2) + 2Cl x;: + 2C2y;: + C,,;:2].\.f + (Cl;: - xl;:.\!.\" +

(C2;: - Y);:.\2.\3 - (y + C2;:):.\!.\4 + (Cl: + X);:.\2.\.1 +

(2.-1.1)

where

Cl = - ..Ye ,

C2 = -r~,

C3 X· y' 2= ·;+c·- r .•
For e.,ample, suppose Cl = C2 = 0 and C3 = -16. Furthermore, let the ho­

mogenizing coordinates have the values ;: =X4 = 1. With these simplifications, the

equation of the constraint surface H is reduced to

H: O=X;+Xi-4Xi-4. (2.4.2)

•

This surface is c1early a hyperboloid of one sheet in the variables Xl, X2, X3 , sec Fig.

2.ï.

The essential idea of Husty's FK solution algorithm [33, 34] is to determine

the constraint surfaces for each 2R sub-chain. The assembly modes arc the posi­

tions which are common to ail three constraint surfaces, i.e., the intersections of the

hyperboloids. The algorithm is discussed in greater detail in Section 5.2.
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FIGURE 2.i. The constraint hyperboloid, H in the image space.

2.5. Grobner Bases

Determining the intersections of the three hyberboloids requires the solution of a

system of three non-linear equations in three unknowns. Common tools for solving

sucb syrtems are the iterative (Newton-Raphson, etc.), continuation, and elimination

methods [44, 45]. However, one thing shared by these methods is that they ignore

the geometric properties of the solution space and do llOt take possible alternate

descriptions of the system into account [1].

Grobner bases were introduced in the Ph.D. thesis of Bruno Bucbberger, written

in 1965 at the University of Innsbruck, Austria. They were named in honour of Wolf­

gang Grobner, Bucbberger's research supervisor. The essential idea is a generalisation

of the theory of univariate polynomials and finite systems of linear equations to mul­

tivariate and non-linear systems. The Buchberger algorithm [1, 6], whicb computes

Grobner bases, is an e.~ensionof the division algorithm for polynomial long division,

the method of determining least common multiples (lem) of certain terms of two poly­

nomials, and the Euclidean algorithm for determining the greatest common divisor
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(gcd) of t",o polynomials. Thus. gÎ\'en a finite set of multivariate polyno'nials O\'er a

field. the Buchberger algorithm computes a ne", set of polynomials. cal1ed Groblll'r

bases, ",hich are generators of the same ideal as the original.

The minimal Grobner basis of a given ideal can be thought of as basis ,·ccl,ors.

That is, every polynomial in the ideal is generated by a linear combination of thc

minimal Grobner basis. The variety, or solution space, of the Grobner basb is iden­

tical to the variety of the ideal. It is important to note that a variety il' determined

by an ideal, not by a particular set of equations, or polynomials. Depending on the

given ideal, it may be that the set of equations which comprise the Grobner basis are

'easier' to solve than the given set of the ideal.

The advantage of using Grobner bases theory over numerical methods, such as the

Newton-Raphson or secant methods, is that the reduction is algebraic, not numeric.

The potential advantage over the continuation and elimination methods is that the

reduced system may require less effort to solve. The biggest potential drawback is

that for difficult problems intermediate results can become very large, which usually

leads to excessive computational time [44, 45].

A very detailed description of Grobner bases theory may be found in [1] and [6].

Most of the notation from [1] will be used here so that additional information will be

easily accessible from that reference.

2.6. Term Orders

Systems of linear equations cao be transformed using Gauss-Jordan elimination

to the reduced rowechelon form. This is the form of the coefficient matrix where

l'very row has a leading '1' with zeros directly beneath and above it. This system

has the same solutions as the original but, ID general, requires less computational

effort to solve. Grobner bases theory offers an analogous procedure for non-linear
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systellls. This method involves finding a 'better' representation for the corresponding

variety (solution space), meaning that the original non-linear system is now 'casier'

to solve. The desired 'better' representation for the variety "r(fl,'" ,J.) will be a

'better' generating set for the ideal 1 = (fI, ... J,). 'Setter', in this case, means

the new set of generators give a better understanding of the algebraic structure of

1 = (f" ... J,), and the geometric structure of V(fJ,··· , J.).

Suchberger's algorithm for computing Grobner bases is essentially a generalisa­

tion of the Euclidean algorithm for determining the gcd of two univariate polynomials.

It may also be viewed as Gauss-Jordan row reduction for systems of non-linear equa­

tions. Employing Gauss-Jordan elimination or the Euclidean algorithm requires a

certain ordering of terms. For e."{ample, univariate polynomials are ordered by term

degree, with the leading term having the highest degree if the division or Euclidean

algorithms are to be used. For solving linear systems, the order is unimportant, but

it must be specified. For multivariate systems, an analogous order is required.

Recall that the set of power produets is denoted by

Bn = {~', ... ,~·I.BiEN,i=l,... ,n}.

Let :c(j = ~', '" ,~', where {3 = (131)''' ,l3n) E Nn. It will be assumed that the

different terms in a polynomial have different PO\ver produets, 50 3x2y would never

be written as 2x2y + x2y. The terms in a polynomial are arranged in increasing or

decreasing order, henee there must be a way to compare any two power produets.

The order must be a total order. That is, given any :ccc,:c(j E Bn, e."{actly one ofthe

follO\ving must be true:

The following three total term orders are used effectively in determining Grobner

bases [l, 6].
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DEFINITION 2.6.1. Let lex dcnotc thc lexicographical ord"r <m B" with

XI > X2 > ... > X n and be defincd as follolL's: If

Q = (a, .... . n,,).{3 = (31..... 3,,) E,Y"

then

{

the first coordinates ai and ,J, in Q and {3
:z;Q <:z;/3 -= from the left which arc differcnt sati..'ify ni < ,J,.

"From the left" meaTl..' starting with the largc.'t variablcs.

For e.'l:ample, in the commutative polynomial ring k[x, y] with lex X < y. the

following order is implied

") 3 ") ")
1 < X < X' < x < ... < y < xy < x'y < ... < y. < ....

DEFINITION 2.6.2. Let degle.'I: denote the degrcc lexicographical arder on Bn

with XI > X2 > ... > X n and be defined as fol/ows: If

then

{

E:':I Qi < E:':I /3i
Q /3 or

:z; <:z; -= "n ._"n /3, d Q /3
LJi=l Q& - Li=l ,an :c <::z:
with respect ta le.x with XI > ... > Xn

In the commutative polynomial ring k[x, y] the degree 1e."<Ïcographicai ordering

degle.x with x < y is

The final term ordering is the degree reverse lexicogmphical order.

DEFINITION 2.6.3. Let degrevlex denote the degree reverse lexicographical order

on Bn with XI > X2 > ... > Xn and be defined as fol/ows: If

then
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L::~ 1 Qi < 2:7: l 13.
or
I:~= 1 Qi = I:~= 1 {3i and the first coordinates Qi and !Ji ;n
Q and {3 from the right, which are different. satis!!: Qi > .8.

In this case. "from the right" means that the smallest variables are compared

untiJ a set of corresponding exponents are found that have different values.

In the case of two variables, deglex and degrevle., are identical. But, if there are

three or more variables in the ring this is no longer the case. This can be seen in the

following e.,ample:

XrXZX3 > XIX~ for degle., with XI > Xz > X3

but, if the degrevle., order is used the opposite is true:

Using degrevle., the e.,ponents of X3 are compared because they are the first from the

right that are different. That is, on the left hand side the e.'ponent of X3 is l, on the

right hand side is e.,ponent is O. The tie is broken because 1 > 0, hence :z:Q < :z:I3.

To compare the three term orderings, consider the polynomial in k[x, y, z], de­

scribed by f =4x2y2z - 10xy4 + 2x4.

lex with X > y > z ==> xy4 < x2y2z < x4,
==> f =2x4+ 4J:2y2Z - 10xy4.

degle., with X > y > z ==> x4 < xy4 < x2y2z,
==> f = 4x2y2z - 10xy4 + 2x4.

degrevle., with x > y > z ==> x4 < x2y2z < xy4,
==> f=-10xy4+4J:2y2z +2x4.

Again, note that for the degrevle., ordering, to break the tie the first set of different

e.'\.-ponents from the right are those of z. Sînce 1 > 0 then x2y2z < xy4.
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2.7. The Univariate Case

2.;.1. The Euclidean Algorithm. The algorithm attribllll'd 10 Elldid i~ for

determining the gcd of two po~iti\"C intege~, Sllppo~e a 'Uld b arl' po~it.i\'<' inll'gl'~

with a > b, Then for some intege~ ql and ri. 0 :5 ri < b.

Since ri < b. we also have

where q2 and r2 are integers, with 0 :5 r2 < ri'

Successive divisions produce the sequence of equations

•
a = qlb+rlo

b =rlq2 + r2,

ri = r2q3 + T3,

0:5 ri < b
0:5 T2 < TI

0:5 T3 < T2

•

Since the successive remainders are decreasing non-negative integers, the remainder

Tn = 0 must be obtained after a finite number of divisions. The gcd of a and b is the

last positive remainder in the sequence. This is se because Tn-l is a diviser of each

divisor and of each remainder. It must, therefore, be a diviser of each dividend, and

the gcd of a and b is the same as that of Tn -2 and Tn-lo namely, Tn_l [18).

The operations used in the Euclidean algorithm are addition and division. These

operators may also be used on polynomials. Hence, the Euclidean algorithm may

be used to determine the gcd of two polynomials. The main tool in the Euclidean

algorithm is the division algorithm.

2.7.2. The Univariate Polynomial Division Algorithm. The degree of a

polynomial J, denoted by deg(f), is the largest exponent of x in J. The leading tenn

of J, lt(f), is the highest degree term of J. The leading coefficient of J, lc(f), is the
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TABLE 2.1. Polynomial tcrm rcfcrcncc tcrminology.

Symbol Meaning
deg(f) Degree of polynomial J

!t(f) The leading term of polynomial J
le(J) The leading coefficient of polynomial J
lp(f) The leading power product of polynomial J

coefficient of It(J). The leading power product of J, Ip(J), is the power product of the

leading term, It(J). These are summarised in Table 2.1.

The polynomial J is divisible by the polynomial 9 if and only if deg(g) :5deg(J).

Consider the two polynomials

with n = deg(f) ~ m = deg(g). If this is so, then 9 divides J.

The first step in the division of J by 9 is to subtract from J the product t"xn-m9'

The factor of 9 in this product is ~;~~~. The remainder after the first division step is

denoted by rI and is given by

lt(f)
rI = J - lt(g)g·

rI is called a reduction of J by 9 and the process of computing rI is indicated by

deg(rI) is necessarily Jess than deg(J) due to the subtraction of a suitable multiple

of g, which eliminates lt(f). If deg(rI) >deg(g) the process continues, reducing rI by

9 to obtain r2 as

It(rI)
r2 = rI - lt(g) g.

The division algorithm continues until the final remainder equals zero, or the degree

of the remainder is less than deg(g). At this point lt(g) cau no longer be used to
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eliminate It(r). If the polynomial division required thrcc steps to obtain the final

remainder. the reduction could be reprcsented by

However, the foIIowing shorthalld may be used to indicate that repeated redllction

steps were used.

f9 -r+ r.

Note that an ordering of the po!ynomials is implied. That is, for the algorithm

to terminate, the final remainder r must be zero, or have a degree less than that of

g. This can only occur if the powers of x are ordered with xm < xn and m < n. The

last condition, m < n is equivalent to the statement that xm dividcs xn [1].

It is well cstablished [24, 18, n] that, given a non-zero polynomial 9 E k[x],

for any f E k[x] ,vith deg(k) ,=:deg(g), 3 q, the quotient, and the remainder, r, both

E k[x] sucb that

f = qg + r, with r = 0 or deg(r) < deg(g).

Moreover, q and r are unique.

Next, consider an ideal J = (il, hl E k[x]. The gcd of il and 12 will have a

variety identical to V(f!> 12) [1]. Hence, it may be that the system (fb'" ,f.) can

be solved with less computational effort if 9 =gcd{il, ... ,f.) is first computed with

the Euclidean algorithm. Then aH solutions to the system are obtained by solving

9 = O. Furtr.ermore, any other polynomial in k[x] for whicb the remainder is zero

upon division by 9 is in J. gis said to generate J, and is the 'best' generator for the

ideal.
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2.8. The Mu1tivariate Case

2.8.1. Multivariate Polynomial Division Algorithm. Now, consider the

case of ideals generated by !Dore than two multivariate polynomials, 1 = (JI. ... ,l,).

In order to divide 1 by Il,''' ,l, requires a reworking of the division and Euclidean

algorithms given earlier. The general idea is the same as for linear and univariate

polynomials: cancel terms of 1 using the leading terms of the Ns, 50 that new terms

are smaller order than the cancelled terms. and continue the process of subtracting

multiples of the Ns until the remainder has a smaller degree than any of the li 's.

One complicating factor is that the dividend may have more than one divisor.

Given l, g, h E k[xI •... , xn ] with 9 :f: 0, the reduction symbol given earlier

19 ---+ h

may be thought of as 1 reducing to h modulo g, if and only if Ip(g) divides a non-zero

term :cO that appears in 1, and

:cO
h = 1 - It(g)g.

In this regard, h is thc remainder of a one step division of 1 by g. This process

of subtracting off terms in 1 that are divisible by It(g) continues until h = 0, or

deg(h) >deg(g). This final remainder is denoted by r.

Let 1, h, and Jl>'" , J. be polynomials in k[xl>'" , xn ], with Ji :f: 0(1 ~ i ~ s),

and let F ={ft, ... ,J.}. Then

is the notation for J reduces to h modulo F, if and only if there exists a sequence

of indices il> i2, • .. , it E {1, ... , s} and a sequence of polynomials hl>'" ,ht- 1 E

k[xl> ... ,xn ] such that
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If h = 0 or there is no power product in h that is divisible by any of t.11<' IpU,).

then h is reduced with respect 1.0 the set. of non-zero polynomials F. Such a rl'duccd

polynomial is a remainder and is called r. In other words. r can not. bl' reùuced

modulo F. This reduction process allows for the definition of a multivariate divi­

sion algorithm, analogous 1.0 the uni\"ariate case. Gi\"en J, JI, ... ,f.. E k[xI .... •xn ]

with f; '!- 0, the algorithm below returns quotients U;, . •• ,u.• E k[xl, ... ,xn ], and a

remainder r E k[Xb'" ,xn], such thal.

J = udl + ... + u.J. + r.

Note that in this algorithm an ordering is assumed among the polynomials in the set

{Jb" • , J.} when i is chosen 1.0 be least such that Ip(f;) divides Ip(h).

ALGORITHM 2.8.1. Multivariate Polynomial Division Algorithm.

INPUT: J,JI ... ,J. E k[Xb'" ,x"] with J; '!- 0(1 ~ i ~ s)
OUTPUT: Ub ••• , u., r such that J = udl + + u.f.. + r and

r is reduced with respect 1.0 {ft, ,J.} and
max(lp(uI)lp(ft), ,lp(u.)lp(J.),lp(r))=lp(J).

INITIALIZATION:UI := 0, , u. := 0, r := 0, h := J
WHILE h,!-O DO

IF 3 i such that Ip(Ji) divides Ip(h) THEN
choose the least i such that Ip(Ji) divides Ip(h)

It(h)
u; .-

U; + It(Ji)

h .- h - It(h) f,.
It(Ji) ,

ELSE

r .- r + It(h)
h .- h -It(h)

CONTINUE

• END
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2.8.2. Definition of Grëibner Bases.

DEFINITION 2.8.1. A Grôbner Basis for an ideal J is a set of non-zero polyno­

miaL. G = {YI, ... ,Yt} contained;n J if and only if for ail f E J suclt tltat f "# 0, 3

i E {l, ... ,t} suclt tltat lp(g;) divides Ip(J).

If G is a Grobner basis for J, then ail polynomiais in J can be reduced with

respect to G. For a subset S of k[xJ, ... xn ], the leading term ideal of S i~ defined to

be the ideai

Lt(S) = (It(s)js ES).

With this definition in mind, the following statements are equivalent [1]:

(i) G is a Grobner basis for J.

(ii) f E J if and only if fG --++ O.

(iii) Lt(G) =Lt(J).

The proof for the existence of G is given in [1].

2.8.3. S-Polynomials and Buchberger's Theorem.

DEFINITION 2.8.2. Let 0"# I,g E k[xJ, ... ,xnl. Let the least common multiple

(lem) of two power products he denoted L =lcm(lp(J),lp(g)). Tite polynomial

L L
S(I,g) = It(l/ - It(g)g

is defined to he the S-polynomiai of1 and g.

S-polynomials are used for the following reason. In the division of1 by il, ... ,1..

it may happen that some term:co in 1 is divisible by both Ip(li) and lp(lj) with i "# j,

henee, :ca is divisible by L =lcm(lp(li),lp(lj)). If 1 is redueed by li then
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is obtained. On the other hand. if f is reduced by fj

XO
h2 = f - fj 1;

will be obtained. The ambiguity introduced is

A key theorem concerning S-polynomials is duc to Buchberger.

THEOREM 2.8.1. (Buchberger) Let G = {yl, ... ,YI} be a set of non-=ero poly­

nomials in k[xl, . .. , xn ]. G is a Grèibner basis for the ideal l = (Ylo'" ,y,) if and

only if for aIl i f. j,

Buchberger's proof is given in [1].

2.8.4. Buchberger's Aigorithm. The Buchberger theorem outlines a strat­

egy for computing Grobner bases: Reduce the S-polynomials and if a remainder is

non-zero, add it to the Iist of polynomials in the generating set. Continue doing this

until there are 'enough' polynomials in the generating set to make ail S-polynomials

reduce to zero. Buchberger's algorithm will produce a Grobner basis for the ideal

1= (Jh'" , f.), given F = {Jh'" ,f.} with fi f. 0(1 ~ i ~ s).

ALGORITHM 2.8.2. Buchberger's Algorithm for Computing Grobner bases.
INPUT: F = {fh'" ,f.} ç k[Xh'" ,xnl with fi f. 0(1 ~ i ~ s)

OUTPUT: G = {gh' .. ,g.}, a Grobner basis for l

INITIALIZATION: G:= F,g:= {{Ji,Mlfi f. fi E G}

WHILE g f. 0 DO

Choose any {J,g} E g

g:= g - {{J,g}}

S(J,g)G --++ h, where h is reduced with respect to G
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IF ft # 0 THEN

9u{{u,h}I'/UEG}

G:=GU{ft}

CONTINUE

END

2.8.5. Minimal Grobner Bases. It can be shown [1] that there e.'i:ists a set

of minimal Grobner bases for cvcry idcal. This ICflds to the important definition:

DEFINITION 2.8.3. A Grobner basis G = {Yb' .. , Yt} is called minimal if for

ail i, IC(Yi)=l and for ail i # j, ip(Yi) does not divide ip(Yj).

2.9. Example

EXAMPLE 2.9.1.

FIGURE 2.8. Non-lincar equations fI & 12: Intersecting circle and ellipse.

Consider a set of non-iinear equations in two variables. Let the first equation

represent a circle withradius 2, given by x2 + y2 =4. It is required to determine the
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yariety of the set. i.e.. the SN of real intersections (if any) of this cirdl' ",ith tht' l'!lipst'

described by 2x2 + y2 = 5. These t",o equations may be rearrangl'd ,IS po!ynomials

in t"'o yariables. x and y:

1)..9.1 )

(2.9.2)

•

.-

A plot of these geornetric entities re\'eals that they do, indced. haye four intersections.

This is shown in Fig. 2.8. Hence, the yariety is not the empty set.

The goal of this ,,-,ample is to iIIustrate how the Buchberger algorithm computes

a Grobner basis for the ideal J. First, a term ordering is requircd. We wiII choose lex

\Vith y < x, specify the input to the algorithm, and procecd:

INITIALIZATION: G:= {Ib M, g := {{ft, M}

Pass one through the WHILE loop:
g:= {{ft,M} - {{II>M} =0

•

SUI> hl = ~1l - ~ can be reduced by neither Il or 12'
Then SUt, f2)G --++ h =F O.
This being the case, let h := ~y2 - ~.

Continuing with the first pass:
g:= {{ft,hHh,h}}
G:={ft,f2,M

Pass two through the WlmE loop:
Choose {{fI> M} E g
g := {{f2.J3}}
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X-Y~"') x·Y" l 'l

= -., (x- + y' - -l) - ( "/')) (;-)Y' - -'))x' Y' _ _ _
,) 1 ')

= 3x' + y' - -ly'

= 3fl + -lf; - 2h + O.
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•

•

This illlplics that
S(f"h)G _+ 0 = il

Pass three through the While Ioop:
Choosc {{h, h}} E 9
9:=0

This implies that

S(h,/3)G _+ 0 '""" h

The WHILE loop stops, since 9 = o.
G:= {h,h,h}

Hence, a set of Grobner basis consists of the original second degree polynomials

plus a third univariate second degree polynomial. However, this is not a problem

bccause the minimal Grobner basis can always be determined. It is readily shown

that Ip(h) and Ip(fl) divide each other. 14 can be obtained as a Iinear combination

of Il and f2.

14 - h -h,

_ 2x2 + y2 _ 5 _ (x2 + y2 - 4),

_ x2 -1.
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.,

FIGURE 2.9. The set of four orthogon:ù lînes.

FIGURE 2.10. The \-ariety V(/t,h) is identical to V(f.,!.).

Finally, multiply !J through by 2 to get /5 =2/3 = y2 - 3. This givcs the minimal

Grobner basis for l = (fJ, f2):

•
(2.9.3)
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Every polynomial in the idea! 1.0 which JI and h belong can be expressed as a

linear cOlllbinat.ion of the minimal Griibner basis. f. and J5' Geometrically, f. and

J5 represent a set of two pairs of orthogonal lines, shown in Fig. 2.9. C!early then,

the points shared by the lines x = ±Jï and y = ±v'3 arc the same as those shared

by x2 + y2 = 4 and 2x2 + y2 = 5. The variety VU" h) is identical 1.0 the \"ariety

V(fJ, J5), as can be seen in Fig. 2.10. The difference is that the system {J.1JS}

requircs less computational effvrt to solve than {il, h}.
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Chapter 3

Manipulator Description

3.1. Holonomie Planar Rolling System

3.1.1. Manipulator Description. A manipulator with 3 closcd kincmat.ic

chains, or loops (.'loBa, AoCo, BoCo), is shown in Fig. 3.1. It consists of i articulatcd

rigid elements, which move with constrained relative motion, and a rigid groundcd

base. These 8 members are connected by 6 R-pairs and 3 G-pairs. The end-cffect.or,

disk D, is the link -G-G- in each -R-R-G-G-R-R-Ioop. Legs A, B, and C each consist

of two links.

Fig. 3.2 shows the disk and a single leg. The first link in each leg is grounded to the

base, connected byall R-pair and to the second link by another R-pair. The circular

disk roUs, without slip, along the straight lilles QjSj (in ger·eral, j E {A,B,C}

throughout this te;'l:t) on the non-grounded links of each of thrL'C 2R seriai legs.

Although these !ines remain in tlUlgential contact with the disk, the points of tangency

can be varied by relative rolling between the lines and disk.

3.1.2. Holonomie Higher Pairs. Referring to Fig. 3.1, the points of contact,

PI::. between the disk and legs constitute three holonomie higher kinematic pairs. The

tenn refers to the fact that the constraint equations are in integral form, that is. in

terms of displacement. The constraint equation is simply the arc length equation

for a circular arc. It may be expressed in terms of the displacement of the points

of contact along lines QiSi and the appropriate lAC. Furthermore, the pure rolling
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• ~ A.

•

Hama (:cro) position

FIGURE 3.1. A planar manipulator with three holonomie higher pairs.

condition and that fact that the displacements are planar allows the simple, linear

arc lcngth cquation to e.'i:press the constraint for the higher pairs. Because of these

related conditions, the higher pairs are holonomic.

3.2. Nomenclature

The IK analysis of a para1lel manipulator is the same as that for a serial manipu­

lator, e.'i:ccpt that the solution is repeated for each leg [20]. Moreover, the kinematic

mapping procedure for the FK analysis also considers each leg separately [33, 34].
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FIGURE 3.2. One of the thrcc 2R legs and the disk.

Hence, joint and position variables along with link design pararneters must be de­

scribed so as to allow for analysis of the manipulator on a leg by leg basis. To

minimise the confusion that results from the handling of the kinematic relationships

in component form, a system of left and right sub and super-scripts shall be adoptcd.

Each joint and position variable is fully identified by left and right sub and super­

scripts while link parameters require only right sub and super-scripts. The system

described below is intended for use with the IK algorithm. Certain modifications are

required for the FK procedure and are detailed in section 3.2.6. Referring to Fig. 3.2,

consider the generic parameter

1 .
mtPf·
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3.2.1. Left and right sub and super-scripts.

(il For a joint variable, the right sub-script i, i E {l, 2, 3} identifies the joint

number. For each manipulator ieg, the joint number at the connection between

the first link and the base is 1. Between the first and second link is 2. The

higher pair between Iink 2 and the disk is 3.

(ii) For a coordinate axis, the right sub-script i, i E {D,l, 2, 3} represents the Iink

to which the coordinate system is attached. Dis for the base, 1 is for the first

link, etc..

(iii) The right super-script, j, jE {.4o,B,C} denotes a particular manipulator leg.

(iv) The left super-script, J, f E {D, l, 2, 3} refers to the reference frame in which

the variable is represented.

(v) The left sub-script, m indicates the type of planar motion. R is for pure

rotation of the disk about its centroid. T is for pure translation of the disk

centre. No left sub-script means either general plane motion, or that the type

of motion is obvious from the conte.~.

3.2.2. Fixed link design parameters.

(i) 11 is the length of link i in leg j and r is the radius of the disk.

(ii) I~~ is the projected distance a10ng the horizontal a:cis of the inertial reference

frame, {~} between the origins oflegs j and k, jE {A,B,C}, k E {A,B, Cl.

Note 1: For ail analysis in this rl.,esis the non-moving reference frame,

{~}, attached to the base of leg A is considered as the inertial reference

frame. In Chapter 5 it is referre<l to as I:.

Note 2: If j = k, the value ofthis parameter, as weil as the one below, is

zero since there is no base offset distance in this case.

(iii) I~ is the projected distance a10ng the vertical axis of the inertial reference

frame, {~} between the origins of legs j and k, j E {A, B, Cl, k E {A, B, Cl.
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3.2.3. Joint variables.

(i) !n t9f is t.he joint. angle i of leg j described in reference frame f with fl·gard to

m type of motion. Positive angles arc measured counter-clockwisc (C'C'\\').

(ii) ;;,d~ is the distance from point pl 1.0 ;loint Pb measured along !~. Notc that

lA and ~ are always parallel. So d~ could be mcasured in frame g} along

~. fiowever, in order to later derive the manipulator displaccment equations

using Denavit and Hartenberg (OH) parameters [17]. d~ must be express('(!

in frame {n. In the home position shown in Fig. 3.2. the points pi and Pb
are coincident. The origin of the frame { ~ } is superimposcd on the point of

contact between the straight Hne QiSi, and the disk D, and translates with il.

along Hne QiSi .

3.2.4. Position variables: The Pose AIray. The pose of thl' disk will be

described by a 3 x 1 array. The variables are ail e:'Cpressed in the inertial rererence

frame, so the lert super-script '0', while always implied, is omitted. The array is

\vritten as:

where

XE is the X Cartesian coordinate of the disk centre,

YE is the y Cartesian coordinate of the disk centre,

{)E is the orientation of the disk expressed as the angle between the XE axis

and the xC a.xis. In the home position, the XE axis is parallel 1.0 the x~ axis.

Because of the pure rolling constraint, the initial pose of the disk must be consid­

ered in both the FK and IK problems. The variables corresponding 1.0 the home, or
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zero position of the manipulator \Vi!l be scripted \Vith an additional '0'. For c-,ample,

the pose array in the home position is given by

[

XEO ]
YEO .

{)EO

3.2.5. Link Reference Frames. The algebra involved in both the IK and

FK problems can be simplified by c-,pressing each joint variable in its own reference

frame. Variables in the cascaded reference frames are transformed to other reference

frames as the problem requires. Careful selection of frame origins further simplifies

computation. Hence, Iink reference frames (with the exception of frames E and T) are

assigned using the weil established procedure developed by Denavit and Hartenberg

[17, 26] and adapted here for higher pairs. The procedure is summarised below [16]:

(i) Identify the point of intersection, or the common normal of neighbouring joint

a.'Ces i and i + 1. Assign the origin of the frame for Iink i at the point of

intersection, or where the common normal meets the ith axis.

(ii) Assign the z; direction pointing a10ng the ith joint a.,is.

(iii) Assign the Xi direction pointing a10ng the common normal, or if the axes

intersect, assign Xi to be normal to the plane containing the two axes.

(iv) Assign the Yi direction to complete a right-handed coordinate system.

This procedure introduces the planar systems (x, y) and (x, z), see Figs. 3.1 & 3.2.

These systems are used for their computational convenience when concatenating the

4x4 DH parl'.meter transform':ltions (section 4.2) to derive the displacement equations.

3.2.6. Additional Nomenclature for the FK Problem. Additional nomen­

clature is required te> suit the demands of the FK prohlem. In order to make the

transform between actual and pseudo inputs (introduced in section 5.1.2) it is conve­

nient to have two reference frames, E and T, attüChed to the disk. Both E and T
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translate with the disk, but only E rot.ates with the disk. The origius of E aud T are

both incident on the centre of the disk.

The R-pairs connecting two links in a leg shaH be rcferred to as kn<'e joinL' .-1. B.

and C. Recall that 2d~, jE {A., E, C} is the dist&nce of the contact point. me<lSured

along the 114 coordinate axis, which is always parallel to the rack. Obserye that. t.he

Euclidcan distance between the knee joint and the cent.re of t.he disk is a fuuct.ion

of this distance. Also, the three normals through each contact point are aH incident.

on the disk centre. The change in the angle a normal makes with respect to the

non-rotating frame, T, is related to the change in position of the contact point. along

the rack by

A2dj TIli
.:..> 3 - Tt::.. rTE'

3.3. Mobility Analysis

An unconstrained rigid body in the plane has three DOF. It can t.ranslate in

two mutually orthogonal directions in the plane and il. can rot.ate about any axis

perpendicular to the plane. This is a special case of general 3 DOF motions in 3­

space, where the 3 freedoms can be any of the (g), i.e., 20 permutations of translations

and rotations.

1unconstrained rigid links have 3(1-1) relative degrees offreedom, given that one

of the rigid links is designated as a non-moving reference link. Any joint connecting

!.wo neighbouring bodies removes al. least one or al. most two relative DOF. If the

joint removes no DOF then the bodies are not connected. If the joint removes three

DOF then the two bodies are a rigid structure.
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The !;eneral mobility formula for pl?nar motion. often referred to as the Chebyshev­

GriiblerKutzbach formula [2, 30]. is expressed as:
j

3(1 - 1) - LUi = DOF.
i::: 1

where 1 is tl,e number of links. Ui is the number of constraints imposed by the i'h

joint. and j is the number of jcints.

The three legged manipulator shown in Fig. 3.1 is characterised as fol!ows: In­

c1uding the base. there are eight links; six R-pairs take away two freedoms each;

the three G-pairs also take away two freedoms each. Using the Chebyshev-Grübler­

Kutzbach formula:

3(8 - 1) - 6(2) - 3(2) = 3. (3.3.2)

•
Since th-:!re are 3 DOl', three independent coordinates are required to specify the pose

of the disk.

It is worthwhIle to note that the disk has 3 DOF regardless of the number of

grounded 2R legs ta which it is connected by pure rolling. This is proven by showing

the left hand side (LHS) of equation (3.3.1) is always equal to 3. Equation 3.3.1 may

be r~"I:pressed as:

3(1 -1) - 2j = DOF, (3.3.3)

since each joint removes two DOF. The ground link and disk always count as two

links and each of the n legs is composed of two links, thus for n legs the number of

links is

Substituting equations (3.3.4) and (3.3.5) into the LHS of equation (3.3.3) gives•

1=2n+2.

Furthermore each leg has three joints, so:

j =3n.

(3.3.4)

(3.3.5)
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3(211 + 2 - 1) - 2(311)
= 611 + 3 - 6n
= 3.

Therefore. n can be any positive non zero int<'ger. This implies the disk may

havc any position and oricntation. within thc physical !imits of it.s workSpal'l'. l'hl'se

3 DOF arc indcj:~ndent of thc numbcr of 2R Icgs upon which t.hc disk roUs.

3.4. Tangency Condition

By \'irtue of t.he pure rolling constraint.s. thc straight !incs along which t.hc disk

roUs must always remain tangent to thc disk. Considcr a !inc and a circlc in the

Euclidean plane. The equation of the liue can be represented by the linear equation

for constant coefficients a, b, c, and variable points (x, y). A circle with centre (xc, Ve)

and radius r is given by•
ax+by+c= 0,

(x - xef + (y - Ye? - r2 = O.

(3.4.1)

(3.4.2)

Equation (3.4.1) can be solved for y to give the familiar slope-intercept form of the

Hne, and the expression is substituted into equation (3.4.2). The result is e;'<panded

in powers of x which yields a quadratic:

where:

Ax2 + Bx + C = 0,

A
a2

- b2 + l,

B ( ac aye)- 2 -xe + b2 + T '
C - x~ - r2+ ((clb) + Ye)2 .

(3.4.3)

•
1'0 satisfy the tangeney condition, the discriminant of t.he quadratic must vanish:
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The discriminant itself is a quadratic in terms of the constant a:

(3.4.4)

•

•

This condit.ion is necessary, but not sufficient 1.0 guarantee pure rolling contact.

However, ail sol utions to the FK and IK problems must satisfy this condition. FK

and IK algorithms can use this condition as a check on the validity of solutions.

3.5. Commutative Disk Displacements in the Plane

Recall section 2.1.2: The group operator defined on 'D, *, is called "product". *

represents successive implemcntations of given isometries. Now, any displacement of

the disk, that is, any product of translations and rotations about arbitrary parallel

a"(es normal 1.0 the plane may be decomposed into the product ofa single translation of

the disk centre and a single rotation through a finite angle of the disk about its centre

[14]. Furthermorc, since il. is the centre of rotation which is translated, these specifie

translations and rotations commute. The latter daim is shown by the following: Let

7d - Translation through distance d,

S~ - Rotation through angle <1> about centre S.

Consider the arbitrary motion of the disk along sorne path between an initial

position, P;., and a final position, PI> shown in Fig. 3.3. 7d is the translation through

distance d of the disk centre from P;. 1.0 PJ' Although many paths are associated with

the isometry 7d, the distance d is independ€llt of the path between the two points.

In fact, d is the sum of the directed translations along any path between P;. and PJ'

Along any arbitrary path, the disk orientation can change such that when il.

arrives al. PI> a reference line painted on the disk has been rotated through an angle <1>.

This angle is the SUffi of all angular displacements of the disk about arbitrary parallel

a"(es (perpendicular 1.0 th~ plane of the disk) encountered along the path. This SUffi
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d

FIGURE 3.3. Arbitrar)" motion of tbe disk betwccn two points.

may be e.'i:pressed as the dilference between 4>, and 4>i, such that 4>, == 4>i(mod27r).

It follows that the sum of ail angular displacements along the path may be expressed

as a single rotation of the disk about its centre, Sol>' where 4> = 4>, - 4>i.

Thus, any arbitrary motion of the disk may be representcd by the product of a

single t~anslation of its centre and a single rotation about its centre. The centre of

the disk is a point. Points can not rotate, they can only translate. Since the centre

of rotation is translated it is evident that Sol> may occur independently from 7.J.. It

then follows that:

3.6. Special Geometrie Manipulator Properties

The general motion of the disk in the plane involves relative motion betwccn the

disk and each seriai 2R leg. The rolling contact is conveniently modelled as multiple

racks and a single pinion. Each rack can roll on the pinion, the pinion can roll on the

racks, or there can be a combination of the two motions. For general planar motion

the system, with link frames as assigned in Fig. 3.1, has the following properties:
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(i) If the pinion 1'0115 on one rack, then it must roll on ail.

(ii) As a consequence of (i), if one of the higher pairs is locked, the disk ean not

rot.ate about its centre.

(iii) Any or al! of the racks may roll on the pinion.

(iv) If, during general motion, the pinion is stationary with respect ta one rack

while the other racks roll on the pinion there are two possibilities. Consider

leg .4, for c.xamp!e. Suppose that the higher pair in this leg is locked. First, if

01J~} is constant, the motion of the pinion is pure curvilinear translation in the

fixed base frame. Second, if °'1921 changes during the motion, then the pinion

rotates about a centre other than its own a.-cis by an angle equal to the change

in °'1921• Regardless, there can be no rotation of the disk about its centre, since

one of the higher pairs is locked. Suc-h a motion would violate (ii).

(v) If Ll2dt has the same magnitude but opposite sense as either fl2df or Ll2d!j,

then the motion of the pinion is pure rectilinear translation of its centre. Pure

curvilinear translation can also occur if the magnitude condition is violated

however, the opposite sense condition must be met.

(vi) If Ll2dt, Ll2df, and Ll2df have the same magnitude and sense, then the motion

of the pinion is pure fixed a.-cis rotation about its centre.
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Chapter 4

The Inverse Kinematics Problem

4.1. Approach

The lK problem involves the determination of a set of feasible joint variables

required to attain a desired pose. It may be stated succinctly as: given [Xs, Ys, 19s jT

determine [Dl?{, l~, 2d~JT. A complicating factor in general plane displacement is the

ambiguity that the rolling constraint introduces. That is, 19s, the desired final disk

orientation does not divulge how much of the new position was achieved by rotation

of the grounded and non-grounded links and how much was achieved by pure rolling

between the disk and the legs. By how much has the disk rolled on the racks and by

how much has each rack rolled on the disk? Is there a combination, and if so, what

is the ratio? These questions lead to difliculties in the calculation of the joint offsets,

2~. To address this problem the special properties cf the manipulator (section 3.6)

and the group properties of'D (section 2.1.2) are invoked. Any feasible displacement

of the disk cau then be decomposed into a pure translation of the disk and pure, fixed

axis rotation about the centre of the disk (see section 3.5).

Given both the desired pose array and the lAC, a set of intermediate joint vari­

ables may be calculated for the pure translation component. The translation set may

then be combined with a subsequent set calculated for the pure rotation component.
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4.2. DERIVATIO" OF DISK DISPLACEl\lE"T EQUATIO"S

As shown in section 3.·5, these rotations and translations commute. Hence, the order

of rotation and translation is not important. This last fact will be used for the sake

of convention: The intermediate solutions for pure translation will be calculated first.

Then, using this intermediate set as new initial conditions, solutions will be generated

for fixed <l.xis rotation. The final solution set is simply the combination of the two

solution sets.

A result determined in section 4.3.3 is that the upper bound on the number of

solutions to the IK problem is 4", where n is the number of legs. For the three­

legged version, this means that there are as many as 64 real solutions. The aim was

to devclop an a1gorithm to determine solutions and not to generate vast tables of

data. Since the solutions are not coupIed from leg to leg we can, without loss of

generality, dcvelop the a1gorithm using the two-Iegged version as the model. The

solution a1gorithm can then be applied to similar manipulators with any number of

2R legs. It is for this reason that the two-Iegged version, shown in Fig. 4.1, is now

considered.

4.2. Derivation of Disk Displacement Equations

Input-output displacement equations for each leg are required for the IK a1go­

rithm. The inputs for a given leg are the location of t.he base in the inertial reference

frame; the three joint parameters, Dl?{, l~, and 24; the L<\C. The outputs are the

disk position and orientation, XE, YE, and -DE. The displacement equations for the

two-Iegged version of the manipulator are readily obtained by inspection. However,

the DH notation provides an e.xcellent means for 'accounting' as weil as keeping the

problem 'general'. After assigning Iink reference frames by the procedure given in

section 3.2.5, the following definitions of Iink parameters apply [16, 17]:
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~ • y.
1" .. Y.'l "'t'.
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Q r x,! •

::i "di x~ • J/
'cl" /'

P~.p'" . l.r<"~p~ pD

..
" ,..,

•

•

\-----1:: ------1

Home (:ero) position

FIGURE 4.1. Disk plalform wilh Iwo 2R legs.

a; =distance from Zi to Zi+l along Xi.

Qi = angle betwccn Zi & Zi+1 about Xi·

ci; =distance from Xi_1 to Xi along Zi.

{Ji =angle between Xi_1 & Xi about Zi.

Using homogeneous Cartesian coordinates [52] with a homogenising coordinate

of Xh = 1, the relative displacement betwccn adjacent links can be cxpressed as a

linear transformation of the form:

where i+lX and iX are the position vcctors of points in reference frames {i + l} and

{i} respcctively, with x having the form:

Either y or z will be set to zero, depcnding on which reference plane is used (sec Fig.

4.1). The additional dimensions are included for the sake of computation and have

66



•
4.2. DERIVATIO:-: OF DISK DISPLACE:-'IE:-:T EQtiATIO:-:S

no cffect on t.he outcornc. The operator ;+ t T is a 4 x 4 homogeneous transformation

rnatrix which maps vectors defined in frame ·i into frame i + 1. Employing the DH

parameters, it has thc form:

where c == co~ and 5 == sin.

-51?

cOiCQ.-l

cOiSQi-t

o

o
-801_1

CQi-l

o

•

A transformation matrLx must be calculated for each link. The matrices may

then be concatenated, in the '\ppropriate order, to obtain the transformation matrLx

which relates the pose of the disk in the disk frame, {E} to the pose of the disk in

the base frame of înterest. Since the base frame {~} has been select:~ as the inertial

reference frame, the locations of the bases of all other legs must be expressed with

respect to {~} and illcorporated into the calculations. The displacement equations

for each hg may then be obtained, by inspection, from this transformation matrLx.

After sorne algebra the following equations are obtained (note the right super­

seript is dropped, since all variables refer to the current leg):

Kr - 11C1 + (12 + r)c12 - d 3s 12, (4.2.1)

Ky - 1151 + (12 + r)s12 + d3C12, (4.2.2)

where

K", lAt- XE - 0:'

K lAt
y - YE - Dy'

Cl - COS (°19 1),

Cl:! - COS (°191 + 1192),

51 - sin (°191),

• S12 - sin (°191+ 1192)'
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4.3. !?I:\'ERSE K!?l:E~lATlCS ALGORITH~1

Note that for leg ..1. 1\. = Xé·. and l\y = YE. because of the location "f t ht' oril'in ,'f

the inertial reference frame.

4.3. Inverse Kinematics Algorithm

4.3.1. The Four Algorithm Steps. Since solutions arc not couplcd betwœn

legs, [20], each leg is treated as an open four-bar chain and soh-cd for separatcly. A

convention mentioned in section 3.2.2, is that the inertial reference frame will remain

coincident with the fi.."ed reference frame on the base of leg .4.. The choice of leg .4. is

arbitrary, however any subsequent legs wiII be labelled B, C, ... ,j, CCW from leg.4.­

Leg .4 will always be solveà for tirst. The inverse kinematics algorithm is summarized,

with reference to Fig. 4.1, in the following four steps. Note the dependence of the

results on the initial conditions. This dependency is what removes this manipulator

from the more common group of SG type planar platforms jointcd exclusively with

lower pairs.

Step 1. Pure translation: Remove the higher pair connection with all but the leg

being considered. The first iteration concerns leg A. Lock the highcr pair so that

!),.2dt = 0 and calculate the joint angles required to rcach the new position given

by the ordered pair (XE, YE)' Cali the new angles }1'}l'o, }1'}2'o, and }1'}2'o (recall that

O.oA _ O.oA LaA)
r V 20 - rV10 + r V 20 •

Step 2. Remove artificial angular offset: Recall special property (iv) in section

3.6: If the disk is stationary with respect to one rack while in motion, then the disk

orientation can change. Since pure translation of the disk is required, any angular

offset created by step 1 must be removed. This is accomplished by an imaginary

fi.'l:ed axis rotation about the disk centre equal in magnitude, but opposite in sense

to }1'}2'o. Calculate}dt, which is the joint offset required to e!fect the imaginary

rotation. Recalculate the joint angles. These are the joint angles necessary to cause
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the pure translation of the disk centre. Cali these intermediate angles ~19;I. }19:;I, and

!j.19:}. Of course, if there is no rotation component to the motion, these are the final

joint angles. If there is no translation component, these angles are the same as the

initial joint angles.

Step 3. Pure rotation: Recall special property (vi) in section 3.6: If b.2d31 (ie.,2d31­

2dJt) anJ b.2df have the same magnitude and sense, then the motion of the disk is

pure rotation about its centre. Hence, b.2dJ1 is simply calculated from the arc length

subten,ied by b.19E (ie., 19E - 19Eo ), and is the same for ail legs. Using the joint

variables from step 2 as initial conditions and the desired disk angle 19E , calculate

O.aA 119A and 2d,1
"VI , 2' 3·

Step 4. Repeat Steps 1, 2, and 3 for the remaining legs.

4.3.2. Closed Form Analytic Solution. Once the displacement equations

arc known, the following procedure may be used to solve for the set of joint variables

required to achieve a desired feasible pose. Again, since the solution proceeds on a leg­

by-Ieg basis ail variables correspond to th•.; current leg, so the right superscript may

be omitted. Equations (4.2.1) and (4.2.2) are squared and added. 0191 is eliminated

using the identities:

The following equation in two un!mowns, 1192 and 2d3, is obtained:

(4.3.1)

•
The variable 2d3 cao be determined because of special pruperty (vi) (in section

3.6) and the fact that the general plane motion is decomposab!,' into pure translational
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and rotational components. In the algorithm. step 1 requin's that the high,'r pair Ill'

locked. Hence. there is no change in zd3 • Stcp 2 reco\"('rs the angular of[,,'t artilicially

caused by step 1. This is accomplished by lixed a.,is rotation of the disk about its

centre. Step S is the actual pure rotational component of the mot.ion. Again, this is

a fixed axis rotation about the disk centre. Thus zd3 in each of steps 2 and 3 is &iwn

by:

(.1.3.2)

(4.3.3)

Determining the joint ....5 using the pure rolling constraint equations guarantœs

that the tangency condition is met since tangency is a nccessary (although not sufli­

cient) condition for pure rolling.

Equation (4.3.1) can now be e.,pressed as a function of just one variable, 119z:

• ~e'l9) = [KI ±2JK2] (4.3.4)tan 2 2 2K
3

'

where

KI - 411
2

d 3 ,

K2 - 212(12 + 2d5 + r2) + 41 rW - 2ef; + K2+ K2)12 213:r; Y

-22d5W + r2) + 2(K2+ K 2)(l2 +e+ 2d2+ r2)• 2 ':r; Y 1 2 3

-2K;K; - 41~r - 6r21i - 4r3i2 -11 -l~

_2~ _ r4 _ K4 _ K4
:r; y'

K3 - lr + li + 2d~ + r2 - K; - K; + 212(r - II)

-21I r.

•
Solving (4.3.4) for 1'192 yields two solutions:

1'192 =2 tan -1 [KI ~;~] . (4.3.5)
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Solving for angles using tan -1 has an inherent arnbiguity concerning the quadrant

in which the angle lies. However, this solution involves the half angle and hence the

quadrant is unique.

4.3.3. Upper Bound on the Number of Solutions. For a general displacc­

ment, the four algorithm steps produce the following: From step 1 two .'alues n: ~V2n
are obtaincd from equation (4.3.1). Corrcsponding to each of thesethere is a unique

value of ~VlO that will satisfy both equations (4.2.1) and (4.2.2). From step 2, there

is one value of }d3 obtaincd for each value of ~V20 determincd in step 1. Also, two

values of each of }V2 and ~191 are obtaincd. Step 3 yields two values for 2d3 , one for

each of the values of }d3 determincd in step 2. For each value of 2d3 thcre correspond

two values for each of 1192 and 0191• These are the elbow-up and elbow-down solutions.

Thus, for each leg there are up to four solutions. The solutions for eacll leg are un­

couplcd. Hence, for a manipulator with n legs, thcre are 4n solutions, some of which

may be comple". conjugate pairs. It must be notcd that not all configurations can be

achieved by smooth from the home position.

4.4. Examples

The following three numerical exarnples deal with 1) pure rotation of the clisk

about its centre; 2) pure translation of the disk, no disk rotation; 3) combined trans­

lation and rotation. In all three examples, the home position shown in Fig. 4.1 is the

initial position. The fixcd link parameters and initial conditions are as follows, where

lengths are in "generic" units and angles are in degrecs:

Initial Pose Array

•
r~: ]
L19EO

[
SV2]

= ~f2

il
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Fixed Link Paramet.crs

r = -!
rAB - 10V2'Or
1.·\8 0'Or -
l' - lB = -!1 1

I~ - If - 10

Initial Joint Parameters

2dA - 2dB - 030 30
019" - 135°19
°19 B - 45°10
119" - 270°20
119B 90°20 -
019" - 45°20
°19 B 135°20 -

EXAMPLE 4.4.1.

Pure Rotation: Pure rotation of the disk about its centre is the simplest motion

for obtaining solutions. There are no intermediate joint parametcrs 1.0 calculate. As

a result, a maximum of only four solutions may be expected.

In this example, the disk centre remains in its home position while it rotates

through 15°. The desired pose array is:

[
5V2]9V2 .
15°

•

The four solutions are given in Table 4.1 at the end of the chapter and arc rcpresented

graphically in Fig. 4.2.

EXAMPLE 4.4.2.

Pure Translation: In this examplc, joint parameters are calculated for the case

of pure translation of the disk. Despite the fact that no real rotation of the disk
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FIGURE 4.2. The solutions for pure rotation from Tahle 4.1.

occurs, the algorithm requires the calculation of a set of intermediate joint variables.

The desirro pose array is:

[

2.0ï10 ]
1l.~:80 .

Si:'l:teen real solutions were obtained. The first four, from Table 4.2 at the end of

the chapter, are shown in Fig. 4.3.

i
"-SOLUTIONS 1-4 ........

FIGURE 4.3. The first four solutions for pure translation from Table 4.2

ï3
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EXAMPLE 4.4.3.

General Plane Displacement: The displacernent.s of Exampll's ·1..l.1 and ·1.·1.2

are cornbined to give a general plane displacernent. The desirl'd pose array is:

[

2.0710 ]
= 11.7280.

150

The first four of the sixteen real solutions obtained are illustrated in Fig. 4.4. Ali

sbi:teen solutions are given in Table 4.3 at the end of the chapter.

•
FIGURE 4.4. The lirst four solutions for general displacement from Table 4.3.

4.5. Tables of Solutions

TABLE 4.1. 4 real solutions for Example 4.4.1.

432 ]1Sol'n ~

°il~ (deg) 135.5602 135.5602 -13.6694 -13.6694
'il: (deg) 265.1628 265.1628 -273.7183 -273.7183

'cI: 1.0472 1.0472 1.0472 1.0472
°il~ (deg) -166.3306 44.4398 -166.3306 44.4398
lil: (aeg) 265.1628 -273.7183 265.1628 -273.7183

'Il: 1.0472 1.0472 1.0472 1.0472• 74
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TABLE 4.2. 16 rcal solGtions for Examplc 4.4.2.

4

8

2

6

1Sol'n il
°lJ~ (deg) -165.1389 -165.1389 -165.1389 -165.1389
'lJ~ (deg) 235.8lï4 235.81ï4 235.8lï4 235.8lï4

'dA -1.3830 -1.3830 -1.3830 -1.3830,
°lJf (deg) lï6.0545 95.59ï5 1ï6.1665 95.4856
'il: (deg) 306.3ï02 -311.9312 312.2698 1 -305.ï6ï4

'd~ 0.6ï99 0.6ï99 -0.ï953 -0.ï953
, - -

°il~ (deg) -34.8899 -34.8899 -34.8899 -34.8899
'il~ (deg) -224.5344 -224.5344 -224.5344 -224.5344

'd: -1.3830 -1.3830 -1.3830 -1.3830
°ilf (deg) 1ï6.0545 95.59ï5 1ï6.1665 95.4856
'il: (deg) 306.3ï02 -311.9312 312.2698 -305.ï6ï4

'd8 0.6ï99 0.6ï99 -0.ï953 -0.ï953,

1 Sol n ~

1211109

°il~ (deg) -158.056ï -158.056ï -158.056ï -158.056ï
'il~ (deg) 238.484ï 238.484ï 238.484ï 238.484ï

'dA -3.5019 -3.5019 -3.5019 -3.50193

°19f (deg 1ï6.0545 95.59ï5 1ï6.1665 95.4856
'19: (deg 306.3ï02 -311.9312 312.2698 -305.ï6ï4

'd8 0.6ï99 0.6ï99 -0.ï953 -0.ï9533

1 Sol'n ~

•
1 Sol'n ~ 13 14 15 16

°il~ (deg -41.9ï21 -41.9ï21 -41.9ï21 -41.9ï21
'19: (deg -21O.39ïl -21O.39ïl -210.39ïl -210.39ïl

'd: -3.5019 -3.5019 -3.5019 -3.5019
°19f (deg) 1ï6.0545 95.59ï5 1ï6.1665 95.4856
'19: (deg) 306.3ï02 -311.9312 312.2698 -305.ï6ï4

'cJ: 0.6ï99 0.6ï99 -0.ï953 -0.ï953

•
ï5
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TABLE -1.3. 16 real solutions for Example -1.-1.3.

Sol'n ~ 1 2 3

86Soin ~

°ti~ (dcg) -166.3263 -166.3263 -166.3263 -166.3263
'ti; (dcg) 232.5227 232.5227 232.5227 232.5227

'dA -0.3358 -0.3358 -0.3358 -0.3358,
°ti~ (dcg) 177.6881 93.9640 175.7910 95.8611
'ti~ (dcg) 300.1970 -314.2627 308.4310 -310.4928

'dB 1.7271 1.7271 0.2519 0.2519,
- -

1211109Sol n ~

°ti~ (dcg) -33.7025 -33.7025 -33.7025 -33.7025
'ti; (dcg) -229.7750 -229.ii50 -229.7750 -229.ii50

'd; -0.3358 -0.3358 -0.3358 -0.3358
°ti~ (dcg) 176.0545 95.5975 175.7910 95.8611
'ti~ (deg) 300.1970 -314.2627 308.4310 -310.4928

'df 1.i271 1.7271 0.2519 0.2519
,

•
°19~ (deg) -162.3804 -162.3804 -162.3804 -162.3804
'19; (deg) 237.8740 237.8740 237.8740 237.8740

2d~ -2.4548 -2.4548 -2.4548 -2.4548
°19~ (deg 176.0545 95.5975 175.7910 95.8611
'19~ (deg 300.1970 -314.2627 308.4310 -310.4928

"dB 1.i271 1.7271 0.2519 0.25193

16 ]151413Sol'n ~

°ti~ (deg -37.6483 -37.6483 -37.6483 -37.6483
'19: (deg -217.9837 -217.9837 -217.9837 -217.9837

'cI: -2.4548 -2.4548 -2.4548 -2.4548
°19~ (deg) 176.0545 95.5975 175.7910 95.8611
'19~ (deg) 300.1970 -314.2627 308.4310 -310.4928

'dB 1.i271 1.7271 0.2519 0.25193
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Chapter 5

The Forward Kinematics Problem

5.1. The FK Problem Formulation

5.1.1. Difliculties. The FK problem is conventionally e;'(pressed as a transfor­

mation of the position and orientation of the end effector from a joint space represen­

tation to a Cartesian space representation. That is, given a set of n joint variables,

one for each n degrees of freedom, determine the position and orientation of the end

effector with respect to a non-moving reference coordinate system. The pure rolling

nature of the higher pairs makes this manipulator markedly different from planar SG

type platforms because the pure rolling condition renders FK solutions completely

dependent on the lAC. The FK analysis can not be reduced to the planar SG case be­

cause no equivalent mechanism e:cists which can e;'<actly reproduce a rack-and-pinion

motion [30]. For this reason, and those discussed in section 4.1 associated with the

presence of the higher pairs, the methods in [54] and [21] can not be used. Hence

the FK problem must be reformulated.

5.1.2. Input Variables: Pseudo Inputs. A way to decompose a general

displacement of the manipulator to determine the contributions of the racks rolling on

the disk and the disk rolling on the racks has proven elusive. As a result, conventional

joint variable inputs can not be used. This is because cach type of rolling may produce
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the same change in the location of the contact point but yields an entir('ly dilfen·nt

displacement. One solution is to modify the problem by using inst('ad a set of p.<wdo

inputs from which the position and orientation of the c1isk in th(' non-moving reference

frame can be determined.

The pseudo inputs are the position of the knee joints in the disk frame. E. as

described in section 3.2.6. These positions are

(5.1.1 )

•

Each position is specified by a 2 x 1 array of Cartesian coordinatcs e;"prcsscd in E,

hence sbc pseudo input variables are required. Because the knec joints are constrained

to move on circ1es, the position and orientation of the disk in the non-moving frame

:E can be determined with the kinematic mapping discussed earlier in the same way

as [33, 34].

The actual joint inputs are the variable joint lengths 2~, j E {A, B, Cl. Thcse

lengths are the change in distance of the contact point measured along the lA coor­

dinate a.'CÎs, which is always parallel to the rack. This is why the solution is coupled

with the Lo\C. They are related to the pseudo inputs in the following way:

[
T:d ]
T~ -

[T~]TlA -

(5.1.2)

(5.1.3)

•

where c =cos, s =sin, and "!;t/J is the orientation angle of the disk. T is the non­

rotating reference frame incident on the origin of E.

Since the reference frame T translates with the disk, T t/J = "!;t/J and, of course,

T {} = "!;{}. So, the pseudo inputs are theoretically valid as input parameters, except

that the actual inputs can not be specified UIltii the disk orientation is known. The

higher pair variables along with the lAC must be specified or the disk orientation can
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not be determined. A cart-beforc-horse scenario, to be sure. \Vhile this approach to

the FK problem is not neccssarily practicaI, it is a start. To the best of our knowledge

the FK of such a planar paralle! platform with higher pairs have never been addressed.

using the pseudo inputs and lAC, the FK problem of the manipulator shown in

Fig. 3.1 can be stated in the following way: Given the coordinates of the three base

points AD, BD, Co in an arbitrary fixed coordinate system, :E, the coordinates of the

kncc joints E.4, EB, EC e.xpressed in an arbitrary coordinate system, E, which moves

with the disk, the fixed lengths of each link, If, i E {1,2} and j E {.4., B, Cl, and

given the radius of the disk, find the position(s) and orientation(s) of the disk such

that the kncc joints EA, EB, EC ean be joined to the base points AD, BD, Co with legs

of the given lengths.

5.2. Forward Kinematics Aigorithm

To obtain the solutions for a given set of inputs, begin by removing the disk

connections with legs B and C. Observe that the higher pairs are locked by virtue of

the specified input pararncter. That is, there can be no relative motion between the

disk and the rack because that would change the relative location of the knee joint

in the moving coordinate system, E. The knee joint E A is constrained to move on a

circle with AD as its centre and radius Ir. Furthermore, the rigid body comprised of

link 1: and the disk can rotate about E A. Since this is a two pararneter motion it must

correspond to a two parameter set '~f points in the image space. This set of image

points is a surface, called a constraint $urface, H. The equation of H is found using

equation (2.3.20) and the faet that the moving point EA is bound to a circle. Note

that the rack and pinion joints can be aetuated by means of power transmission from

motors located on the base. The advantages of parallel architecture are contracdicted

by placing the motors on the moving platform.
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The general homogeneous equation of this circle is detl'rmilH'd as follo\\'s: :\ drcl,'

\\'ith a centre described by the hOlllogeneous coordinates (Xc: }~ : Z) and radius r

has an equation

Expanded, this becomes

,,2 v2 _ ? '" ,- Z _ ?v}.- Z ,-2Z2 }-2Z2 _ 2Z2 - 0.'\ +, _., '-'c -, c +.'c + c r -.

'\Te can set

(5.:!.l)

(5.:!.:!)

•
and substitute these constants back into equation (5.2.2) to get

(5.2.3)

Recall from Chapter 2 that the equation of the image point (equation (2.3.20)) is

given by:

[

X] Tl (XJ - Xi) -2X3X4 2(X1X3 + X2 X4)] [X]
y = 2X3X4 (X~ - Xi) 2(X2X3 - X 1X 4 ) y. (5.2.4)
ZOO (X~+Xi) Z

Substituting the e:"pressions for X, Y, Z from equation (5.2.4) into equation (5.2.3)

gives the quadric surface

H: 0 =Z2(X; + Xi) + (1/4)[(x2+ l) - 2C1xz - 2C2yz +c3z2]X5 +

(1/4)[(x2+ y2) + 2C1xz + 2C2yz + C3Z2]X~ + (C1z - X),~XIX3 +.
(C2z - y)ZX2X3 - (y + C2Z)ZX1X4 + (C1z + X)ZX2X 4 +

(C2x - C1Y)ZX3X 4• (5.2.5)

•
It is shown in [8] that this quadric constraint surface is a hyperboloid containing

the isotropie points J1(1 : i: 0 : 0) and J2(1 : -i : 0 : 0). When the other two points
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5.3. EXA~IPLE

TABLE 5.1. Input pararnctcrs.

~X r. y " "yX

.10 a a "A -9 -11
Bo 13 a "B 9 -11
Co 10 26 "c 9.5 10.5

1 r - 4 1 l~ - 4 1 l; = 10 jE A,B,C} 1

B and C arc analyzcd in turn, thrcc hypcrboloidal surfaces are generated, HA, H B,

and He, which correspond to the complete r<'.IIge of possible displacements around

the points still connected. The points of intersection of HA,HB , and He represent

the positions of the elld-. Tector where its three kllee joints are on their respective

circles. Therefore, these points of intersection constitute the solution(s) to the FK

problem.

It must be noted that, according to Bézout's theorem [30], three second order

surfaces can intersect in at most eight points. However, the isotropie points JI and

J2 are common to ail such constraint hyperboloids, and are therefore always in the

solution set. Recall that points \Vith X3 =X4 = acorrespond to no real displacement.

Since only real solutions are of interest, the isotropie points are discounted. Hence,

thcre are a maximum of sb.: real solutions to the FK problem for manipulators of this

type, which confirms the already well known result for planar SG type platforms [31].

5.3. Example

EXAMPLE 5.3.1.

5.3.1. Determining the 3 Hyperboloids. Table 5.1 gives the coordinates of

the base points 040 , Bo, Co in the fi....ed frame !: \Vith origin at 040 , the input variable

coordinates of the knee joints E.4., EB, EC in the moving trame E, with origin at

centre of~ne disk, D, along with the fi....ed link lengths lf, i E {l, 2}, j E {A, B, C}

and radius of the disk r.
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,•. 3. EXA~IPLE

Substitutir.g the d,lta from Tabi,' 5.1 into ,'quation (5.:?5) gi\'l's rhe following

three constraint surfaces in the image space:

H X·' X· 93 X· -16 - X" 9 X X Il X X\"\",4: -1+·~+2·:i+ ·",.i+·\·:I+ .~.,,+11.\..,

-9.\2.\".\ = 0 (5.3.1)

H X· X·' 589 X·' 121 ,.. )) ,. X ,- X \" ,-
5: - 1 +. ~ + T' :i + T-'·i - :':'-'1' ,,- -1"2' ·1 + 11. 2,'"

+ llSI.\4 = 0 (5.3.2)

He
'. ,-2 '-2 ... 3393 ,-2 -1-19 ,-2 _ 39,. , __ ï3,_ ,_ 31 ,- ,-

·'1 +-'2' S"" + S -'.\ 2 -'1-'" 2 -'2·\3 + 2 "1-'.'

- ~X2X4 - 1-12X3.\4 = O. (5.3.3)

These constraint surfaces in the image space are shown from two different per­

spectives in Fig.'s 5.1 and 5.2. They were generated using Husty's parametrization

[35]:

1 [ rJS2 + 1 cos t + m ]
= 2 rJS2 + ~:in t + n ,

where m = ElA + C2 - s(CI - E~), n = s(ElA - C2) - CI - E~ and t E [0, 21f],

sE [-00, +00].

Setting the range of parameter s (ie., X 3 ) to be [-1, +1], the constraint surfaces

are clearly seen to be skew hyperboloids in Fig. 5.2. Decreasing this range tu .• =

-0.1 -l- +0.1 in Fig. 5.1, the line of intersection betwe..n two of the surfaces clearly

intersects the third surface in a single point. This single point represents one of

the possible six real solutions. The remaining common intersections are not visible

because of the display parameters.

5.3.2. Determining the Minimal Univariate Polynomial. Using the Gr­

obner bases package in the computer algebra software MapleV the equations of the

three hyperboloids are easily reduced to a minimal sixth degree univariate polynomial
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FIGCRE S.l. The constraint surfaces in the image spacc.

FIGURE 5.2. The range set to s = -0.1 ..... +0.1.

in X 3• The default deglex ordering was used with XI > X2 > X 3• Since X4 is the

homogenising coordinate, its value is arbitrary, hence it is set X4 =1. The following
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0.3. EXA~lPLE

n'duel'cI Gri,hncr ba...ws \\T~rr' obtaincd:

C, - 12·1.\,);:1 - 20);2 - .103);; + 520);:1 + 65

-2..t8);, + 2!"lï6);2);3 - 112);2 - 1881ï);i - 2!"(16);3 - 12Jï

1..t88);~ + 16120);, + 1..t88);~ - 106ï2);2 + 19898!"l);5 - ..t1580.\3 + 60..t..t5

333312);'.\2 - 616280.\, - 2166528.\~ + 126..t558..t.\2 -

56233!"l69Xi - 265..tl..t8X3 - 1..t833553

C5 = -13933136.\, + ..t32..tï232.\~ - 21O..t..tOïï6X2 + ..t896028803.\;­

136ï81ï3..tX5 + 214608051.\3 + 130439302

C6 - 1328309913568920X, + 2023ï96353854464X~ - 19992562531269888X~ +

+60596ï26119966896X2 - 18099230593581020X3 - 46163366ïï265240:-

This givcs sb: nonlinear equations, sorne with very large coefficients. However,

since these equations represent bases, they are independent, sc any three may be used

to solve for the three unknowns. The nrst three bases are selected, as they appear

to be the easiest to work \Vith. A univariate polynomial in X 3 is obtained using the

elimination method on Gb G2 ,G3 • The resulting polynomial is

8ï5 + 13ï340X3 - 24560ï5Xi + 13ï26104X; - 6066866X~ +

4ï61Oï548X~ - 1632009601X: (5.3.4)

•
The roots of this polynomial are then obtained and the set of equations HA =

O,Ha = O,He = 0 can now be sclved for the remaining variables X2,X3• The
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following sol1ll ions an' ob! ainpc!:

SI: .\1 = -5.35S1750S. .\~ = 1.69375:l·1.1..\" = 0.18;)97·1·17

S~: .\1 = -·U3-1-1-1169. .\~ = 3.1363597:l.'\;1 = O.153:l50:17

53: .\1 = --I.71:lSS:l1:l . .\z = :l.:l5S00666. .\" = 0.:l07030·17

S.,: .\1 = -6.907-13973. .\~ = :l.7695706·1..\" = 0.03:l:l9377

55: .\1 = --1.306063 + :l.80199-1i. .\~ = O.65:l8:l-l + O.IL1:l659i .

.\3 = -0.0-13999 + 0.1800:l9i

56: .\1 = --1.306063 - 2.80199-1i. .\z = 0.65282-1 - O. i02659i .

.\3 = -0.0-13999 - 0.180029i

There arc four real and one set of comple:" conjugate solutions for a total of six

solutions. as e.'l:pected, since two of th~ possible eight correspond to JI and J2. Back

substitution of the solutions into equations (5.3.1), (5.3.2), and (5.3.3) verifies the

four real solutions. The position and orientation of the end-effcctor corresponding

to each of these solutions in terrns of the displacement pararneters a, b, and t/J can be

found by substituting the solutions for X b X2, X3 , along \Vith X4 = 1 into equations

(2.3.21). The subsequent four sets of displacement pararneters arc given in Table 5.2.

The four real solutions are iIIustrated in Figures 5.3. It is a simple matter of planar

Euclidean geometry to deterrnine the the Iink pararneters 2d~ and T~, je {A, B, C},

given the locations of the knee joints in E along \Vith the fbced link lengths and disk

radius. These values are given in Table 5.3.

TABLE 5.2. Four real positions and orientations in ~.

Sol'n 1 Sol'n 2 Sol)n 3 Sol'n 4
a l.34ï918 4.860ï03 2.459188 5.08ïïOl
b 10.96ï028 9.213ï88 9.934891 13.9ï9180

t/J (deg.) 2l.0ï0388 li.425626 23.393454 3.69930ï
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FIGURE 5.3. The four reaI solutions.
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.'.>' EX.Hll'I.E

S"!,,, 1 Sn!'" ~ S...!'" ;, . ~01';1~'1-'-

'ri:.! 2.·1·19·IS9 2.·1·1!J·IS~) 2..l·I~).IS~)-· -'~i~\l"

'ri;' -2.·1-19-1S9 2.-1-19·189 2.·I·tn·1S~)! 2.·I·I!J·1S~)

l 'd~' Il -2.121320 : -2.121:l20 1 -2.121:320 1 -2.1~1:;211 1

'II;' (deg.) il 2-11.856.62 1 238.211999 1 2·1-1.1 .9S2S 1 22·1.·IS;lliS 1 i
'II;' (deg.) Il -19.•15986 ! ·-13.20918. 1 -3'.2·I1:l59 1-',li.935511',
r(J~' (deg.) Il 'j'j.5-188'-1 i .3.90-1112 1 '!J.8'19-1ll 1 liO.1 .7'!J~"
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Chapter 6

Velocity and Acceleration Analysis

6.1. The Jacobian Matrix

An unconstrained rigid body in the plane has 3 OOf. Suppose we had three

functions. each of which dependcd on the sarne number of at least three linearIy inde­

pendent variables. These thrcc functions could describe the position and orientation

of a planar rigid body in terms of n ~ 3 input parameters:

Employing the chain ruIe, the differentials of the Yi as functions of the x" are

determincd as

iE{1,2,3}.

The 3 x n matri.'I: of partial derivatives, ~, is a linear transformation which

maps the ox" to the 0Yi. lt is callcd the Jacobian matrix, or simply, the Jacobian,

and denotcd as J. Then the e.'\.-pression in equation (6.1.1) may be rewritten

•

This resuIt may be expresscd more compactly using vector notation as

ôF
6Y = ôXoX.

OY = Jc5X.

(6.1.1)

(6.1.2)



•
t;.~ YEU)Cl l'y .\\.\I.Y~l~

Dividing htHh ~idl':-' l1f t'qllatilHl tt~.l.:21 by tIlt' ditft,ft'I1tial titllt' .'lt'IW'Ilt. l~:. J

hl'COnW'fo a Illapping, nf the \"dlll"iril'~ 1)[ X hl tlh' n'h)citil':-; l,f "'f:

For nlo~t robot luaniplliators t.h..' !l''f, art' non liIll'ar and tht' partial dt'ri\"ativt's an'

functions of the "n' Thus. at ditf,'re!lt instanl"l's of tiu\l'. J will h:,,'" ditf..n'nt ,·al­

ues. The Jacobian. a..... far as a rnanipulator is COllCl'rn(·cl. is a tintt.' \"aryin~ lÎIH'ar

transformation.

The com'entional application of J for seriai manipulators is ta map joint rates 1.0

the Cartesian "elocitics of the EE. or tip of the arm:

where V is the \"ector of Cartesian \"elocities and è is the \"ector of joint rates. The

number of rows in the Jacobian matrix is the same as the number of OOF of the seriai

manipulator. The number of columns in J cquals the number of joints. For rcdundant

seriai manipulators J is not square: there arc more columns than rows. Note that

in a seriai manipulator ail joints must be actuatcd. A parallel manipulator rcquires

only as many motors as there arc OOF. The Jacobian for a parallel manipulator

should be constructed, if possible, sucb that it maps the actuatcd joint rates to the

EE \"elocities. In this case, the number of rows cquals the number of OOF, where as

the number of columns cquals the number of powered joints.

•
v = Jé. (6.1..\)

•

6.2. Velocity Analysis

The fust step in the velocity analysis of the manipulator presented in the previous

cbapters is to determine the Jacobian matrh: for each leg of the manipulator. This

can be donc by direct differcntiation of the kinematic closure equations. From section
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·l.2 t 111':-;'-' f'f1Uat ions an'

(6.2.1 )

(6.2.2)

(6.2.3)

"her" j = k E {..l. B. Cl. The last term in equation (6.2.3) cornes from the constraint

rP1atic>n

z.·}
VI': (6.2..1)

Dilferentiating the closure equations \Vith respect to time gives

1) JD.Zl1 (1)' )..1 (D.àJ . LàJ) Z.l1..1 (D.àJ . LàJ) z';'.
- loSl VI - 2 ~ r ~-12 Vi T 1T2 - CL3C""x2 VI T Ir:! - UJ"'12'

o" '0" 1 0

- ""'0" 1" ","lici iJi + (l~ + r)ciz( iJi + ~) - -C&sh( iJi + ~) + -c&C1Z.
D' l' 1z .iJi + ~ +;: C&.

XE -

YE =

{JE -

Collecting tcrms and c.'i:pressing the cquations in matrL'i: form yields

." . . . .. ] [D" ]-(I~si + I~ + r + c&ciz) -(I~ + r + zc&ciz) -siz iJi
= [ (lisi + I~ + r + 4siz) (I~ + r - Zd~siz) ciz I~.

1 1 l/r zc&

•
Comparing this last equation with equation {5.l.4), it is seen that the 3 x 3 matrL'i:

which maps the joint rates for a particular leg onto the Cartesian velocities of the

(6.2.5)

disk is the Jacobian for that leg. Hence,

[

-(I{s{ + l~ + r + 4ciz) -(l~ + r + z4c{z) -s{z]
Ji = (l~si + l~ + r ~ 4S{z) (l~ + r - z4s{z) c{z .

1 1 l/r

Continuing in this fashion, the totai JacobiaI\ for the manipulator is a 3 x 9 matrL'I:.

•

The vector of joint rates, è. becomes a 9 x 1 an:ùY composed by stacking the three

3 x 1 joint rate vectors for each leg, èi. However, there are only three powered

joints. one for each DOF. In~ architecture, as described in chapter 5, three motors

which .;ontrol the parameter z4 determine the position and orientation of the disk.

Therefore, the rates of change of these parameters set the Cartesian velocities of the
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niIlf' joint ratf'~. but nnly TIw thn't" ::d~.

Th~ llnactll;H~d joint rat('~ can 1", diminat~d hy mnltiplying hoth ~id,'~ .'f li,,-

~quation

(li.::!.6)

by a 3-dimen~ional vector n perpendicnlar to th~ fi~t and ~~cond colllmn~ of Jl. Thi~

\"Cctor is easily calculatcd as the cross product of th~e two collllllns, naml'1y

The following vector is determincd for each leg:

(6.2.7)

• n = (6.2.8)

where

k - (licl + l~ + r - 2~s{2)(1~ + r + 2~cl2) ­

(/{sl + l~ + r + 2~cl2)(1~ + r - 2~sl2)'

Multiplication of both sides of equation (6.2.6) by the transpose of n (Le., nT), and

then rearranging yields:

2~ = r[c{xE + sl1iE + 9E(sl e~sl2 -l~ - r) +

cle~C:2 + l~ + r))]I[r(s{c{2 - c{s{2 - s{ + cl) +

l4(C{ - s{) + 2~(s{s{2 + c{cl2)]' (6.2.9)

•
Expressions for the joint accelerations can be readily derivcd by diiferentiation of

the previons equation with respect to time.
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6.3. Acceleration Analysis

TIll' dyn;'mÎcs uf IIH'ciIanisUls is et field of cVlsidt'rat>lp inTl'rt'ST. The dynalllics can

ouly Iw itnalys..d aft.l'r tlH' kiIll'matic eou:..;jdl'ratiùIls of starie position. static forcl', a.nd

,",·Iocity. TI", forces whieh caus!' the motion of a manipulator are typiea!ly analysed

using 1.1", :\!'wlon Euler. Lagrange. or Kalll"s mt'thod. The :\ewton- Euler approach

n-quin's th,- immediatl' eakulation of the manipulator acet'!erations.

Th!' rdationship bet\\'l'en thl' Cartesian and joint accell'rations is deri\'ed by the

differentiation of l'quation 6.1.-1 with respect to time. gi\'ing

v = jè+Jë. (6.3.1)

•

•

Alternatl'1y. expressions for the joint accclerations can be readi~y deri\'ed by dif­

ferentiation of equation (6.2.9) with respect to time.
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Chapter 7

Concluding Remarks

7.1. Conclusions

This thesis has prcsented a kinematic analysis of a planar parallcl maniplliator

with holonomie higher pairs. This analysis invo:"ed t.he detailed investigation of tilt'

IK and FK position problems. and a cllrsory look at the velodty and accelcration

analysls.

As a prelude 1.0 the study. the relevant geometry and mathematics were revicwe<!.

The group of planar isometries and the group propertics provcd 1.0 be important for

the development of the IK algorithm. Specifically, planar displacements arc ùecom­

posable into components of certain translations and rotations, and these components

commute. Kinematic mapping and Grobner bases theory were disclIsscd in detai!.

They provcd tO be useful and elegant tools for the FK problem.

After describing the manipulator, a mobility analysis was performcd. Further­

more, sb: special geometric properties were observcd which provcd 1.0 be useful in

developing the IK algorithm.

An algorithm for determining closcd form analytical solutions to the IK problem

was developcd. Because the algorithm proceeès on a leg-by-leg basis, solutions can

be obtaincd for similar rolling systems compriscd of any number of 2R seriai legs. 11.
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7.2. 5CGGE5TIO:"5 FOR FCTCRE RE5EARCH

t urIls 0111 rbat Thl' Uppl'f bOllIlci 011 the Ilumher of n'al ~olution~ for ;:lny ~uch systcrll

lS ·1", wtll'rr' " is TeH' I1umlwr of ZR ll'~s.

Ilus!\"s FI\: al~orit.hlIl \\,LS adaptpd for t.h" holonomie higher pairs by t.hc intro­

duct.ion of pSt'IHio inputs to be Wied as powered joint inputs for the FI\: problem. The

kinematic mapping approach yields promising results for this initial effort with the

except.ion of a small direction anomaly. The anomaly is probab!y duc 1.0 the problem

formnlation using the pseudo inputs. Il. is believcd that this may be overcome with

minor correction of the algorithm. In any e\·ent. the procedure needs reformulation

because of the fact that the real inputs can not be specified from the pseudo inputs

aIone, but l'equire knowledge of the aetual disk orientation. The FI\: solutions in the

exanlple were easily obtaincd using Grobner bases.

Finally, the Jaeobian for the manipuIator was determincd. It was then uscd in a

vclocit.y and aeceleration analysis.

7.2. Suggestions for Future Research

The workspaee singularity analysis in chapter 6 appears 1.0 hold the promise of

great interest. Bascd on this preliminary work, il. would appear that the interior of

the workspaee is devoid of singularities. If this is so, then the manipulator has a

bright future. Henee, il. is recommendcd that a detailcd workspaee and singularity

analysis be carricd out. The manipulator dynamics should also be investigatcd. Sinee

the Jaeobian matrices are known. the Newton-Euler method eould be uscd.

For practical design reasons, the li( and FK solutions must be made quickly

available 1.0 the eontroller or path planner. The FK problem needs 1.0 be reformuIatcd

1.0 eliminate the direction ambiguity which is, apparently, generatcd by the use of the

pseudo inputs. Better still, the problem should be reformuIatcd 1.0 allow the aetual

powercd joint variables 1.0 be uscd as inputs.
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Onct' a llt.'ttl'r r~)rmlI1atiunllf tht' FI', pnlhlctn t'xi,:.;ts. manipul;ltl.'r ll1l l tillIl:-l ,:.;11\1111,1

lw ~inlulatr·d. Thl' animatioIl shlluld l'XlhISl' aIl~' tlaws in tht' Il''': and FI...: ~lllHtilltl Pl'l~

c('dun's. TheIl bsut's uf ubstadt' <l\"llidatlc,' and tra.kl·t,)r~· planIlitl~ l'an hl' ;lddn's:"t·d.

Aftl'r tlu.'s(' ta~ks han' b('l'tl compll'ted. the dl·,:.;i~1l tIf ~l prl)hlt~'I)t' :-;hllllid ,',ltlltllt'tH't'

\\ïth Cl. sound design in plan'. lht· rUIlstructillIl llf a prlllotypt' Sllllltld hl' l"\IIl:,idt'I't'd.
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Appendix A

Geometry of The Image Space

A.l. Erlangen Programme

In 18ï2, F. Klein introduced his Erlangen Programme as a means of classifying

geometries according to the groups of transformations which leave the propositions

intact. Usually these groups have sub-groups that preserve the central concepts of

the geometry [13].

The Erlangen Programme is conveniently stated in the form of thrce propositions

[46]:

Proposition 1: A geometry on a space defines a group of transformations in

that space.

Proposition 2: A group of transformations in a space defines a gcometry on

that space.

Proposition 3: Geometry is the study of those relations which remain invariant

under the group of transformations associated with it.

In Euclidean geometry the group of isometries preserves distance and angle. The

isometries are actually a sub-group of the similarity transformations. It is this group

which preserves the propositions of Euclidean geometry [15].
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•

.-\.2. I;\lAGE SPACE GEO;\lETRY

Projf'clivf' i;f'om('lry dof's not admit conc('pts of Ieni;lh. angle. parallelism. or

!"'!W(,f'!ItWSS. and henc('. is different from Euelidean geometry. Indeed. using the

Erlani;('n Programme. projective geometry is ela..o,;sified by the group of col/incations

and corrdations. These i;roups preserve the elass of points and the class of lines

[13,9].

:\ collineation is a point-to-point correspondence which preserves collinearity. :\

planar correlation is a point-to-line. or line-to-point correspondence relating collinear

points to concurrent lines.

A.2. Image Space Geometry

Following the propositions of Klein's Erlangen Programme, the image space group

and its invariants may be determined for the mapping given by equation (2.3.13).

Hence, the geometry on the image space may be defined. A very detailed investigation

is given in [8], and the results \Vere used in [46J to classify planar algebraic motions.

The image of a displacement given by the three parameters (a, b, q») is dependent

on the arbitrary zero positions of the reference frames E and~. Therefore, there are

006 mappings. It is shown in [8] that if (Xl : X 2 : X 3 : X 4) is a representation of a

displacement all other allowable representations (X; : X:i :X~ : X~) are related to it

by

•

4 4

X~ =L L C;jXj ,
i=l j=1

(A.2.1)
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wh"r" thl' c') obl'Y

lA.::!.::!)

•

•

C31 = C32 = C'1l = C.l:! = O.

Equations (A.2.1) and (A.2.2) represent a group G of 006 non-singular linear

transformations in ~' connecting ail the allowable representations of a gi"en displaCL'­

ment [46]. The group G of transformations and its invariants determines the ~'

geometry. G has sb:: independent parameters and five invariants. The invariants are

[8]:

(i) The line I(X3 = X4 = 0).

(ii) The isotropic points JI (l : i : 0 : 0) and J2(1 : -i : 0 : 0) on the line 1.

(iii) The conjugate imaginary planes Vj(X3 = iX4 ) and V2(X3 = -iX4 ).

The isotropic points refer to the intersection points of a line which cuts the circle at

infinity [52].

The invariant elements in the non-Euclidean hyperbolic and elliptic geometries

are respectively. general real and imaginary quadrics. Whereas, in the E' geometry

they cûnsist of two imaginary planes. .I\s a result, the geometry on the image space

of the mapping is identical with none of the classical metric geometries. In [8] the r::
geometry is labelled quasi-elliptic, since it il; considered a borderline case of elliptic

geometry. Furthermore, the metric concepts of the distance betwcen two points,

the angle between two planes, and the parallelism of two lines are defincd. Finally,
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:\.2. I:'.l:\GE SP:\CE GEO:-'lETRY

il is shown that two sets of transformations in ~' are comparable to rotations and

translations of Euclidean geollletry.

Of inten'st arc thr"" special cases [35]:

(i) X:I = O. X., i' 0 => " = 0: These arc the pure translations in the Euclidean

plane.

(ii) XJ i' O. X., = 0 => " = ... These arc the 1800 half-tums in the Euclidean

plane.

(iii) X3 = constant, => S., = constant: This situation corresponds to translations

in the Euclidean plane where the moving frame E maintains a constant angle

with respect to the fi;"ed frame !:.
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