Switching Activity in CMOS Digital Circuits

Sandeep P. Shenoy

McGill University, Montreal

August 1996

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of
the requirements of the degree of Master of Engineering.

© Sandeep P. Shenoy, 1996

l ¥ n National Library

of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Weilington Street
Onawa, Ontano
KI1AON4 K1A ONE

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Crawa (Ontano)

Your e Votre re'teence

Our e NOTHe rAfdreace

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniére et sous
quelque forme que ce soit pour
metire des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
these. Ni la thése ni des extraits
substantiels de celleci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-19881-2

Canada

Abstract

In [48. 47] a pattern-independent method to estimate the switching activity of a
CMOS circuit was presented. The technique relies on the use of abstract waveforms, described
down to the level of individual transitions. which are propagated through the circuit. In order
to tmprove the switching activity estimate so obtained, case analysis is undertaken on nodes
with large fanout.

The objective of this thesis is to develop and implement a2 method to further improve
upon the switching activity estimate through consideration of reconvergent fanout regions in
the circuit. The idea is to impose functional ccnsistency upon the waveforms at the nodes of
a subset of the circuit to obtain an exact count of the number of transitions and potentially
the exact waveforms which give rise to tnat. The result is the same as if an exact simulation
was performed, but the novelty here is in the technique. An exact simulation would have
exponential complexity as al! possible waveforms on the Pls to the sub-circuit would have to
be enumerated. Branch and bound techniques are used here instead to execute 3 progressively

limited analysis which avoids exponential complexity. Furthermore heuristics are used to speed
up the algorithm.

In addition a simple greedy algorithm has been developed and implemented to identify
the sub-circuits where application of the above described technique would have the best
resuits. The greedy algorithm represents only a preliminary step, and further work needs to
be done on a more comprehensive circuit partitioning technique.

Résumé

Une méthode non liée 3 la forme est présentée en [48. 47] pour estimer I'activité
de commutation d'un circuit CMOS. La technique repose sur |'utilisation de formes d'ondes
abstraites, décrites jusqu'au niveau des transitions individuelles qui se propagent dans le
crcuit. Pour améliorer I'estimation de l'activité de commutation ainsi obtenue, on a soumis

des noyaux de large sortance 3 une analyse par cas.

Cette these 2 pour but de développer et de mettre en oeuvre une méthode permettant
d"améliorer 'estimation de ' activité de commutation en tenant compte des régions de sortance
reconvergente dans le circuit. La méthode consiste a imposer une cohérence fonctionnelle sur
les formes d'ondes aux noyaux d'un sous-ensemble du circuit pour déterminer le nombre
exact de transitions et éventuellement les formes d'ondes exactes permettant d’arriver a cette
estimation. Le résultat est le méme que si I'on procédait 3 une simulation exacte, mais
fa nouveauté tient ici 3 la technique. Une simulation exacte comporterait une complexité
exponentielle, car il faudrait dénombrer toutes les formes d'ondes possibles sur les entrées
primaires du sous-circuit. Dans le cas présent, on a plutdt reccurs a des techniques de
dérivation et de limitation pour exécuter une simulation progressivement restreinte qui évite
la complexité exponentielle. De plus, des heuristiques permettent d'accélérer 'exécution de
[algorithme.

On 2 aussi congu et mis en oeuvre un algorithme glouton simple afin d'identifier les
sous~circuits ol 1'application de la technique décrite ci-dessus risque de donner les meilleurs
résultats. L'algorithme glouton ne constitue qu'une étape préliminaire et il faudra consacrer
d'autres travaux a la mise au point d'une technique de partitionnement de circuit plus ex-
haustive,

Acknowledgements

I would like to thank my supervisor. Dr. Nicholas Rumin, for his constant support,
help and enthusiam throughout this research. Thanks aiso due to Dr. Eduard Cerny at the
Université de Montréal, for his numerous ideas and tnexhaustible enthusiasm. | am deeply
grateful to Jindrich Zejda. also at the Université de Montréal, for taking the time to explain
the inner workings and implementation of the power bounding system and answering my
numerous questions in full and always promptly. | would also like to acknowledge his help and

work in developing the algorithm for counting transitions on a node.

This work was supportad by the Natural Sciences and Engineering Research Council of
Canada (NSERC) through a strategic grant awarded to Dr. Nicholas Rumin and Dr. Eduard
Cerny.

CONTENTS v

Contents

Abstract i
Résumé il
Acknowledgements iti
1 Introduction 1

1.1 Literature Review

o

1.1.1 Low-Level Techniques 4
1.1.2 Statistical Techniques S
1.1.3 Probabilistic Techniques 10
1.1.4 High-Level Techniques 14
1.1.5 Pattern-Independent Techniques 16
1.2 Motivation and Overviewof Thesis 20
System Overview 21
Estimating Switching Activity 28
3.1 Counting TransitionsonalNode 28

3.2 Counting TransitionsonaSetof Nodes 30

CONTENTS

3.2.1 Algorithm for Convergent Circuits

3.2.2 Branch and Bound Algorithm

4 Sub-circuit Picking Algorithm

5 Results

5.1 Transition Counting over a Sub-circuit

5.2 Sub-circuit Picking Algorithm L L
6 Conclusions
7 References

8 Appendix A

9 Appendix B

31

47

52

63

66

68

74

. LIST OF FIGURES vi

List of Figures

1]

10

11

12

i3

14

15

16

17

The STGPE of a 2-input Nand gate[13] 6
Power model for a Finite State Machine[39]. 16
Uncertainty waveform[42] 17
Activity waveform[46] Lo 19
Waveform representation Lo 21
Mapping a real waveform onto a simple waveferm 22
Waveformclasse01 22
Abstract waveform evaluationatan AND gate 23
Transition evaluation for the two-input AND function 23
Functional evaluation of a three-input AND gate 24
Backward propagationonan AND gate 25
Asamplecaseanalysistree L e 26
A sample path withina waveform 28
Pseudocode for counting transitionsonanoede 29
Value of variables over time for a sample waveform 29
Temporal relationship between waveforms intree circuits 32
Temporal relationship between waveforms in non-tree circuits 33

LIST OF FIGURES vil

18 Trivial circurt of asingle (Rgate 33
19 Inputs from time 1 to 7 and their ‘inks"0 . 35
20 Sample analysis tree L 37
21 Sample analysistree foran QR gate 38
22 Waveforms at branching condition evaluation 10
23 Abstract waveforms on a circuit prior to transition analysis SR
24 Sub-circuit picked withnode a. L. 19
25 Sub-circuit picked withnode = L. 50
26 Sub-circuit picked withnode xory L oL 30
27 Performance of exhaustive analysis 53
28 Sub-circuit exhibiting reconvergence from¢880 54
29 Sub-circuit exhibiting some reconvergence fromc880 59
30 Sub-circuitfromeB880 L 35
31 \Largesub-circuitfromce880 oL 39
32 A sub-circuit with large fanout nodes oL 56
33 A sub-circuit with no reduction in transitioncount 26
34 Sub-circuitfromceB80 38
35 Sub-circuit fromc2670. L. 38

36 Sub-circuitsfrom c2670and c432 L. e e 59

LIST OF FIGURES viil

37 Large €2670 sub-circuit 60
38 One of several identical sub-circuits from¢432 60
39 Typical sub-ciruits from 499 Lo 60
40 Transition evaluation for the XOR function 62

41 Typical sub-circuit from ¢432

LIST OF TABLES

List of Tables

—

[0S

Analysis of sample convergent circuit in Figure 18
Imtial list of class-sets
Sorted st of class-sets
Summary for some ISCAS circuits Lo
Detailed results for ¢880 oo
Detailed resuits for ¢432 Lo
Detailed results for ¢499o

Detailed results for c432o

61

63

1 INTRODUCTION 1

1 Introduction

There is a constant insatiable demand for faster, better and smaller computers.
More and more powerful processors are being used in 2 myriad of applications. The range
of applications of computers is continually increasing. More than any other industry, the
computer industry has an ethos of innovation driven by frenzied urgency. Pushed as much by
advances in technology as by the demands (performance-wise and economic) made upon it,
chip densities and operating frequencies are increasing and feature sizes are shrinking. Of late,
there has been a considerable demand for portable battery powered devices. One of the issues
that has come to the fore as result of this is that cf power consumption. The power profile
of a chip is important not only in situations of limited power supplies but also in cases where
the nature of operation demands high throughput. In the latter case chip overheating can
lead to degradation of performance and has critical implications for packaging and heat-sink
arrangements. Furthermore consistent overheating can actually reduce chip lifetime through
physical deterioration. Higher levels of integration and shrinking line widths have resulted in
circuits being increasingly susceptible to the effects of power dissipation.

The demand for low-power chips means designers have one more feature to integrate
into CAD tools. There is 3 need to predict power consumption during the design process,
as well to modify a design to take account of power-related considerations. In this regard,
two problems that have garnered much interest are the reliability of metal interconnect lines
and the voltage-drop problem. For both of these, it is necessary to obtain information about
transient current waveforms. The problems can be approached at various levels of abstraction
but the requirements are the same for all proposed solutions: a fast and accurate resolution.
The dominant technology in use at present is CMOS. A widely accepted assumption is made
about the power characteristics of CMOS digital circuits: significant power is consumed only
during logic transitions when charging/discharging currents are drawn. This implies that the
power consumed depends on the switching activity of a circuit and therein lies the crux of the
whole problem: how to estimate switching activity. It is clear that it is the applied inputs and
the functionality of the circuit that determine the switching activity. The problem is input
pattern-dependent and the direct way to solve it is to perform exhaustive simulation. But
this is clearly impractical for large circuits. Most other techniques attempt to work around

1 INTRODUCTION 2

the pattern-dependent nature of the problem. One way would be to employ statistical means
to apply a comparatively small number of inputs to obtain a result that is within certain error
bounds. Another would be to use probability factors to represent the input patterns. Using
abstract waveforms allows one to compute maximum switching activity estimates. Out of
these techniques, only those that keep track of temporal relationships between transitions are
able to compute transient current waveforms.

The work in this thesis falls into the pattern-independent class of solutions. It adds
to the system presented in [47, 48], where part of the results of this thesis has been included.
This system is itself based on ideas first developed in [41] dealing with timing verification.
The underlying technique of analysis used in timing verification is the same as that used
for estimating switching activity, thus allowing the synthesis of a single tool to handle both
timing verification and maximum switching activity estimation. However, the waveform repre-
sentations used are different. This thesis contributes algorithms to obtain improved switching
activity estimates. Much of the remainder of this section will review in detail various ap-
proaches to the problem of power estimation reported in literature after which the motivation
and outline of this thesis will be discussed.

1.1 Literature Review

Most techniques reviewed in this section compute either the power or transient current
waveforms or both. Transient currents, of course, have a direct bearing on the reliability of
metal interconnect lines which is ensured by designing the width, or more correctly the cross-
sectional area, appropriately. The median time to failure, MTF, is given by the following
equation[2],

MTF = b_*lﬁgeon«r

rms

where ¢ and 3 are constants of the materials and crystal structure, M is constant (usually
taken as 2} and J is the current density. To size metals lines against electromigration one
needs the RMS current, I.,,, which takes into account both the peak value and the duration
of different currents, since the MTF' depends or the shape of the waveform and not just its
time-average[4]. It is given by the following relationship,

Irms = /[2 (2)0t/T

1 INTRODUCTION 3

where /(1) is the instantaneous current and T is the time period or inverse frequency. For a
gate or small module, the current is usually approximated by a triangular waveform of some
sort which depends on three parameters: the peak current value, the duration of the current
and the frequency. The peak current depends on transistor size and supply voltage, and the
current duration on the load capacitance. The frequency is in fact the effective frequency
which is input-pattern dependent. It is this effective frequency that is the target of much
research. The RMS value of the current may be computed from this current waveform allowing
one to estimate the MTF. The other consideration in designing the width of metal lines is
the problem of voltage drops in power and ground buses. Large drops in voltage adversely
affect switching speed and can even result in incorrect logic operations. Voltage is a direct
function of current and the width of the conductor. To design for the worst-case voltage
drop, again one needs the peak value of the transient currents. Power analysis techniques
generally focus on either obtaining the transient currents or computing the power directly.

Power analysis can be done at several levels of abstraction. The most accurate are
simulators like SPICE which operate at the transistor level. They are in general also the
slowest because of the detailed non-linear models and the complete pattern dependence.
Techniques which can be classified as low-level attempt to speed up computation by approx-
imating the underlying models trading off accuracy for speed. In order to obtain accurate
data a large number of input patterns must be applied and the results of each simulation run
recorded (cumulatively or otherwise). Probabilistic techniques dispense with the application
of input patterns altogether substituting representative probability factors instead. These are
then propagated through the circuit according to some model. Further computation may be
performed on a global or local basis to take account of spatial and/or temporal correlation.
The results are probability factors at individual nodes which indicate switching activity. This
type of technique is limited by the accuracy of user-supplied information on the probabilities
at the inputs. Statistical techniques attempt to combine the advantages of both simulation
(accuracy) with probabilistic techniques (speed). Fairly simple models are used to represent
the circuit allowing the application of a large number of randomly generated input patterns
in a reasonable amount of time. The number of patterns to be applied is limited according
to the desired level of confidence and error.

All the above mentioned techniques provide data on typical or average switching

1 INTRODUCTION 4

activity or power consumption. The problem of worst-case power consumption is dealt with in
pattern-independent techniques. By eschewing the pattern-dependent nature of the problem
altogether, they attempt to provide only upper bounds on power consumption. Typically this
is done by computing upper bounds on transient currents. Such information is of particular
interest in deciding the line widths in chips. At present very conservative estimates of power
consumption are used in industry and hence considerable area is wasted. The trend towards
increasing chip densities, higher operating frequencies and shrinking feature sizes concomitant
with the current emphasis on low-power design has increasingly focussed attention on this
area.

An alternative approach to analysing a circuit for power consumption is to design for
low power in the first place. The functionality of the circuit is considered, and the design
altered accordingly. These high-level techniques are not strictly in the power verification
category, but an understanding of them provides insight into where and how power analysis
techniques may be useful.

The remainder of this subsection is given over to a review of the literature on power
estimation. It is divided into the groupings discussed previously.

1.1.1 Low-Level Techniques

Methods in this area operate mainly at the transistor level. A good example is
SPICE. It is accurate enough to be used as the benchmark for comparision but slow and
most inappropriate for the problem at hand. In order to obtain an estimate for average power
dissipation one would have to apply a large number of input patterns and keep track of the
current waveforms. Direct circuit simulation of this kind is impractical because of the sheer
size of current circuits. Even if it were possible, the question of what input patterns to apply
would have to be considered. The obvious answer would be to apply typical input patterns.
What exactly are typical patterns is a moot point.

Nonetheless there are a number of offerings in the literature of SPICE-like circuit
simulators. Many attempt to speed up the simulation through simplification of the models

I INTRODUCTION 5

used, sacrificing some accuracy in the process. The priority accorded to characteristics of
such simulators such as speed, accuracy, ease of use, etc. are the defining factors. An event-
driven simulator which uses such low-level modeling is presented in [14]. Here a model is
computed for each gate by collapsing the set of transistors. Four basic waveforms are taken
to cover all possible capacitative currents and a single waveform is used for the short circuit
current. The waveforms are piecewise-linear whose defining parameters are computed from
the collapsed gate. Maple, a symbolic software package, is used for the computations. A
timing simulation is carried out to obtain temporal information about switching activity. This
is then combined with the current models obtained previously to estimate the total supply
current. This approach is suitable mainly for fast input signals. An accuracy of 10% (maximum
deviation) and a speed-up of 3-4 orders of magnitude over SPICE is claimed.

A technique derived from [15] is presented in [6]. Here MOS devices are modeled
as current-limited switches, ie. a device can produce only two values of currents depending
on the gate-to-source voltage. Reactive effects are dealt with by modeling them as capac-
itors connected between circuit nodes and ground. This modeling dispenses with the need
for integration during time-domain response computation. The original scheme in [15] has
been modified to allow increased accuracy in evaluating current peaks, to simulate non-fully-
complimentary CMOS circuits as well as sequential circuits with positive feedback loops.
Comparision of supply current waveforms produced by SPICE and the Power Estimator[6]
indicate that the error for the average power consumption estimate is below 10%. The
speedup over SPICE is about two orders of magnitude and the authors expect this advantage
to increase with larger circuits.

A probabilistic low-level approach is proposed in [13]. In contrast to most probabilistic
techniques which consider only the charging and discharging of output capacitances, this
method takes into account the power consumption of gate internal nodes and the capacitance
feedthrough effect as well. The authors claim that neglecting internal gate nodes could well
result in underestimation of power consumption by 10% to 20%. Modified State Transition
Graphs for Power Estimation (STGPE), with several different fanout loads, are constructed
for every gate in the cell library as a model of its power consumption behaviour.

Each edge of the STGPE is accorded a triplet, (i;x, E, W), where i is the input

1 INTRODUCTION 6

Figure i: The STGPE of a 2-input Nand gate[13]

pattern which causes a state transition, E;’k" is the edge activity number when the input
is i;z and N sequential patterns are fed into the gate and I'I’j'}c“ is the energy consumed.
Briefly, the graph is used to capture information regarding state {(output and internal nodes
only) changes and the accompanying power consumption which is obtained through SPICE
simulation. Given input signal probabilities and transition densities, a logic simulation is
performed to obtain the same data for every node in the circuit. The edge-activity is then
computed assuming temporal independence. The power consumption for each gate can then
be computed. Results shown for some circuits were good (very close to SPICE results) while
others contained an error of as much as 20%. [n the absence of any detailed analysis of the
results it is difficult to attribute the range of errors obtained to any specific factor.

A technique of collapsing CMOS logic gates into equivalent inverters{10] combined
with a fast analytical method for computing the maximum currentf11] is detailed in [12]. The
main advantage of using this technique is that it avoids numerical integration and it does
not impose any restrictions with respect to the number of switching inputs, relative delays
of the inputs or the transition times. The collapsed circuit is full fledged in the sense that
it can account for the effects of output load, input slope, short-circuit current and transistor
size. However, glitches are ignored in the analysis. Estimates of peak supply currents are
accurate to within 12% compared to SPICE with a speedup of over three orders of magnitude.
Investigation of the model's performance when used for large circuits{7] determined that while

1 INTRODUCTION 7

fast and accurate results are obtained for the peak current and its time of occurence, in general,
there are certain instances where significant discrepancies in the waveforms occur. This ¢an

be directly attributed to the problem of glitches which has yet to be fully dealt with.

An empirical approach is proposed in PowerPlay[9] where the instantaneous power
waveform is derived from a predefined empirical energy model. The model itself is derived
from a detailed analog simulation of all the cell types in a design library by approximating
the analog power waveform by a rectangular one. A digital simulation is performed upon the
entire circuit which yields logic waveforms giving information about timing and transitions.
The data-base of waveforms for each cell-type is now used to create an instantaneous power
waveform for the entire circuit. The time required for power analysis is of an order comparable
to that of logic simulation with good accuracy claimed.

Thus far there is a great body of work dealing with the problem of producing fast ac-
curate simulators. A few of the varied approaches have been discussed above. However, issues
arising from the way in which simulators should be used have been inadequately addressed.
As mentioned earlier, one of the key questions is just what and how many patterns to apply
to a circuit in attempting to obtain an estimate of the average power. The enormous size of
modern circuits would seem to automatically preclude any practical application of simulators
because of time and reliability considerations. Nonetheless these techniques remain useful for
sub-system power analysis.

Recently a seminal step was taken in addressing these very matters in [8]. A definite
quantitative relationship has been proposed between the number of patterns to be applied
and the desired accuracy. The basic idea is to use Bernoulli random variables to model
the occurence of a switching event, rising or falling, at each node. The authors make an
assumption that a single pattern will at most generate one rising and one falling transition
at any node. While this might seem to be too constricting at first, simulation data provided
seems to surprisingly indicate that the assumption is well borne out. However, it is admitted
that in specific cases this assumption will break down and that it does not deal fully with
glitches. However, this does not detract from the importance of the overall analysis.

Using probability theory the relation n = -;?”_- is proposed for the number of patterns,

1 INTRODUCTION 8

n, required for an error . = is a variable reluted to the confidence level, (1 —), desired.
A tabulation of the £ and (1 — &) shows that for an error of 5% and a confidence level of
99.90% only 1084 patterns need be applied to a circuit. This result touts discrete simulation
as an extremely viable method of obtaining accurate average switching activity estimates.
Comparison of switching activity estiniates obtained from using the number of input patterns
predicted by the model against extensive simulations performed indicate that the number of
nodes which have activity above the predictions is within the confidence level. Further work
is underway in this area, particularly with respect to multiple transitions and bounding the
possible error on individual nodes in very large circuits. The results may have significant
implications.

1.1.2 Statistical Techniques

Statistical techniques rely upon repeated simulation of circuits to obtain measure-
ments of power consumption. The idea here is basically to reduce the size of the problem,
that of having to simulate for an impractically large number of possible inputs, to one where
only a relatively small number of simulations need be carried out. Over time the power be-
ing measured will converge to the average power. Statistical analysis allows one to put a
confidence and accuracy rating on the obtained result for a given number of simulations.

A Monte Carlo technique is proposed in McPOWER[16] which estimates the energy
dissipated per clock cycle by applying a set of randomly generated input patterns. The
number of patterns to be applied depends upon the desired accuracy and confidence level.
The average power at each node during a3 given time interval T is,

SVACE
where n., (T') is the number of transitions that occur at node n,, during the the time interval
T and C; is the total capacitance at i. There are two phases to the simulation: the setup and
the sample phase. Two requirements must be met in deciding the length of both phases: one
is that the signals be stationary processes, and the other is that the total average power
computed from each sample phase be obtained from samples of independent random variables.
The first requirement ts met by ensuring that the setup phase lasts long enough to allow the
switching activity due to an input, time to propagate through the circuit. For a combinational

I INTRODUCTION 9

circuit this implies the setup phase must last at least as long as the maximum possible delay
of the circuit. For sequential circuits the use of unspecified heuristics is suggested since
technically the maximum length of a path would be infinite. The second requirement is
satisfied by restarting the simulation at the beginning of every setup phase. This is considered
sufficient to guarantee independence between the simulations. The length of the sample time
is harder to determine. Clearly the longer the sample time the smaller will be the sample
standard deviation, which itself is dependent upon the circuit, but this dependency is not
clear and hence the sample time is determined experimentally.

The input patterns are generated using random number generators available on com-
puters which in reality are not truly random. It is unclear what effect this might have on the
results. The results themselves are very good in terms of speed, the only drawback being that
only an estimate of the total power is available and there is no information about individual
gates or even groups of gates. In addition the stopping criterion used assumes normality
with respect to power distributions but this may well be not the case quite frequently, espe-
cially if techniques proposed in [34] are used in designing circuits. The one advantage cf this
technique is the ability of the user to specify a desired accuracy beforehand.

A modification of the above technique is implemented in MED[20] which estimates
individual node transition densities. Here the user is required to supply the transition density
as well as the probability of the signal being high at every input node. Random logic waveforms
based on the supplied information are generated and the circuit is simulated. As before, over
time the transition density count at the nodes of the circuit should converge towards the
mean. The simulation time then depends on the desired accuracy and confidence level. The
caveat here is that nodes of a circuit do not all converge at the same rate — nodes which
experience little switching activity in particular converge slowly thereby necessitating a larger
number of input patterns. This problem is overcome by classifying such nodes as low-density
and certifying them with absolute error rather than percentage error bounds. A drawback of
this method is its slow speed.

Statistical methods are used again in [19] to estimate state line probabilities for se-
quential circuits. A synchronous sequential circuit is assumed and randomly generated input
patterns are used to simulate it at a very high leve! — functional or zero-delay logic simulation.

1 INTRODUCTION 10

This allows one to simulate for a very large number of cycles in the minimum of time, but
glitching is thereby not taken into account. Given the accuracy and confidence level, the
number of simulations that must be run is computed. These simulations are run in parallel,
in the implementation, until the node probabilities are said to have converged. The run time

of this method is rather slow.

Another way of dealing with sequential circuits using the Monte Carlo technique is
presented in [17]. The primary objective was to deal with the intial transient problem which
biases a Monte Carlo-based technique. A method to choose the intial states prior to simulation
and the length of the “warmup” periods is proposed based on the Markov Chain theory.
Results on ISCAS benchmark circuits indicate that the average absolute error is under 3%.

1.1.3 Probabilistic Techniques

The pattern-dependent nature of the power estimation problem can also be tackled
by using a set of probabilities to represent signals. Information about typical input behaviour,
assuming this is known, can then be supplied in this fashion. This is then propagated into
the circuit according to some model enabling one to obtain an estimate of node activity at
every node in the circuit. These type of techniques are potentially very powerful since they
can provide information on switching activity for every node. They are limited, however, by
the accuracy of the models used and the user-supplied probabilities.

The earliest approach to utilising probablities for power estimation, implemented as
LTIME[23], relied on the concept of controilability. A signal flow direction is assigned to every
transistor in order to identify signal paths. The controllabilities of a node is computed by
considering the union of the controllabilities of the signal paths which culminate in that node.
Capacitive loads on transistors vary depending on the input vectors; the probability of certain
pathways being open and thereby adding to the capacitive load is considered. The power is
expressed as,

P = V3, % CL TG

where Cy, is the load capacitance, T; is the transition probability and G; is the probability

1 INTRODUCTION 11

that the source of the switching transistor leads to a power or ground line. A zero-delay model
was used which meant glitches were ignored, and temporal independence was also assumed.
Any practical assessment of [23] is difficult as the only circuit it was run on was a four-input
AND gate.

A more comprehensive approach was taken in CREST[28) where a real-delay model was
used and temporal independence was not assumed. User-specified probablity waveforms are
used to generate expected current waveforms at every node. CREST operates at the transistor
level and propagates probability waveforms in an event-driven manner. Each gate current pulse
is modeled as a triangular pulse that starts with a peak value, E[/], and then decays linearly
to zero over time 7. However, CREST cannot handle pass-transistor networks completely and
only propagates events through them ignoring any power dissipation. This method requires
that the probability waveforms at the inputs to a gate be independent, which obviously cannot
be guaranteed if the circuit contains reconvergent fanout or feedback. Supergates are used to
ensconce such regions which are then simulated with logical waveforms generated from the
probability waveforms.

The results for this method were compared with SPICE yielding peak currents within
20% and average currents and timing estimates within 10%, as well 2 very large speed-up over
SPICE. However, the largest circuit that CREST was run on consisted of only 1800 transistors.

The problem of correlation between nodes encountered in CREST was tackled in [32], a
method, which uses the steady-state conditions of the transition waveforms, and approximates
the correlation between nodes. Each transition waveform is tagged by its steady-state values
upon the assumption that the correlation is purely between the steady-state values. An OBDD
is then used to compute signal probabilities therefore limiting the application of this method
to only small circuits.

1

Both spatial and temporal correlation are handled in 2 technique proposed in [24].
It uses symbolic simulation operating under a general or unit delay model using BDDs to
compute Boolean functions at every node in terms of the primary inputs. The results exhibit
great accuracy but as with any such symbolic simulation method, the intensive computation
required makes it impractical for large circuits.

1 INTRODUCTION 12

A similar approach to [32] is taken in [25] where spatiotemporal correlations are taken
account of by building OBBDs. Correlation is approximated by allowing only pairwise corre-
lation between signals based upon the lag-one Markov Chain: this makes the problem more
tractable. Two possible approaches to building the OBBDs are outlined: global and incre-
mental. The global method is similar to that used in [24] while the incremental method
entails building an OBBD for each node in terms of its immediate fan-in only. This reduces
accuracy but is less resource-intensive. The implementation uses a zero-delay model, thereby
underestimating the power.

To get over the limitations of constructing BDDs, a Taylor expansion method is used
in BAM[33]. Signal probabilities are approximated at each node using this technique. The
signal probabilities are computed incrementally as are the cofactor probability terms, but with
respect to the primary inputs. This ensures that correlation due to reconvergent fanout regions
is taken into account at the same time ensuring that the procedure is not computationally
expensive. Comparision with the results from [25] indicate improved accuracy in general with
drastically reduced run times for the benchmark circuits.

A method of improving performance when using BDDs is proposed in [21] where the
concept of supergates is used based on an algorithm given in [31]. The supergate of a node
X is the minimal sub-circuit in X's transitive fan-in, feeding X, such that the sub-circuit’s
fan-ins are logically independent[21]. The idea here is to define regions of the circuit where
a BDD analysis would be most effective. This is treated as a preprocessing step prior to the
power estimation step in any method using BDDs. Certain stubborn nodes exist in circuits
which have a large supergate and a correspondingly large potential BDD, necessitating further
special consideration. In general the BDDs constructed will tend to be smaller as nodes will
tend to be expressed in terms of the supergate inputs rather than the primary inputs. Results
indicate that where previously a BDD-based technique may have run out of memory or taken
excessive time, the same technique modified with the addition of supergate analysis is able
to complete the analysis in reduced time and memory consumption.

Some of the techniques described above are based on zero gate-delay models. Thus
toggle power due to glitches is effectively unaccounted for. Glitches can, however, form a
considerable fraction of the total power[7]. One way of forming an accurate estimate of

I INTRODUCTION 13

switching activity is through transition density{29]. This is basically the average number of
transitions on a node per unit time. The power would then be calculated by the following
equation,
P = %1'!'3,1) Y Cr, D(xy)

where ;s the load capacitance and D{r;) is the transition density. Further analysis of the
transiticn density measurement reveals that some nodes are extremely sensitive to internal
delays[30]. For these nodes slight delav variations result in large changes in the transition
density. A technique to identify these nodes and compute an upper bound is implemented in
MaDest[30]. Signal probabilities are propagated through gates using the interval delay model
to form a loose upper bound on the switching activity which is then improved through a
simple heuristic based on gate logic functions. MaDest is extremely fast posing an insignificant
overhead and the upper bound computed is robust with respect to gate delay variations.

The assumption so far in the techniques computing transition density[29. 30] is that
only a single gate input switches at any one time. This assumption is realistic for FSMs
which follow the gray code sequence but not in general. Computing transition density in
the case of simultaneous switching at the inputs to a logic gate is dealt with in PAS[22].
Signal probabilities at the primary inputs are propagated through the circuit using symbolic
probablity expressions. A heuristic similar to that proposed in [18] is used for partitioning
the circuit to improve results and retain speed. Gates are assumed to have zero-delays thus
neglecting glitching.

A technique which takes into consideration both glitching and non-zero gate delays
is presented in PSIM[27]. It is based upon computing boolean differences using BDDs. The
results, for a number of non-standard circuits, are reported in terms of a power factor which
is proportional to the actual power, although exactly how is not made clear so it is difficult
to make any assessment.

A novel technique based upon the concepts of conditional independence and almost
isotropic signals is presented in [26]. The details are rather involved but results presented for
inputs with low correlation and for those with high correlation indicate that the correlation on
primary inputs is a very significant factor in power estimation. These results are very relevant
in view of the fact most techniques assume independence on the inputs streams on the Pls,

1 INTRODUCTION 14

ignoring correlation between states of a synchronous sequential circuit.

1.1.4 High-Level Techniques

At this level the focus is on designing for low power. The problem can be approached
at the system (modules not in use can be turned off), architectural (transforming logic net-
works for low power) or device level (reducing supply voltages where possible or resizing gates).
At the logic level, one technique is to reduce the amount of switching activity by encoding
states in FSMs appropriately. Another technique is to add extra logic to circuits specifically to
avoid unnecessary switching activity where it is known beforehand that this would not serve
any purpose. At the device level reducing the load capacitance faced by gates would result
not only in lower power consumption but reduced area as well. To lower the load capacitance
means to reduce gates sizes but this reduces the drive capacity of the now-smaller gates which
may lead to increased rise/fall times. A thorough analysis is necessary before attempting re-
sizing so as not to vitiate the functionality of the ciruit. A brief review of the work in this
area follows.

The technique of gate-resizing requires that one has accurate timing information about
a circuit. Since resizing with a view to lowering power consumption necessarily adds delays to
a circuit, it is imperative that the accuracy of information on false paths and true circuit delays
is of the higest order. A gate-resizing tool is presented in [35], an extension of the work in [36].
which provides timing information of the necessary calibre using symbolic procedures based
upon Algebgraic Decision Diagrams (ADDs). The concept is fairly simple. The objective is
to calculate the arrival time, AT (g.x), which is the time when the output of gate g settles
to its value if input vector x is applied at time 0, and the required time, RT(g.z), which is
the time at which the output of g is required to be stable when input vector z is applied.
The slack time, ST (g.x) is then computed as the difference between the arrival time and the
required time. This then gives the extent to which a delay can be added to the gate without
compromising the functionality of the circuit and concurrently by how much the gate can be
resized. The complete algorithm is more complicated since the effect of resizing one gate
will mean recomputing the slack time for gates down the line. Results are given for a set of
MCNC "91[5] benchmarks circuits and the power saved per circuit ranges from 0.5% = 39%.

1 INTRODUCTION 15

No CPU times are given and the largest circuit consists of 306 gates.

A technique which re-encodes an existing circuit is presented in [37]. The objective
is to find an encoding scheme such that the number of bit changes per state transition is
minimized. Two methods are discussed; one using recursive weighted non-bipartite matching
and one using recursive mincut bi-partitioning. Results are presented for a set of ISCAS '89
and MCNC circuits and show considerable reduction in power consumption as measured by
[24]. However, it is not made clear which method was used. Furthermore this technique is
not applicable for large circuits as it is too memory-intensive.

A method of minimizing power consumption in a boolean network through consider-
ation of network “don’t cares” is presented in [38]. A zero-delay network is assumed and the
aim is to optimize each node for switching activity and its effect upon its fanout. A different
approach is used in NCVA[40] where the problem is reduced to the solution of face hypercube
embedding and ordered face hypercube embedding. These two problems arise in the course of
optimizing a symbolic representation of the combinational part of the FSM where the states
form a set of possible values for a single multiple-valued variable.

In a similar vein the problem of state encoding of an FSM is dealt with in [39]. Using
a zero-delay model the total power is expressed as,

P, reg + Pinputs + P, comb

where the components are as shown in Figure 2. A simple approach is to minimize the
Hamming distance between state pairs to reduce F,., but this may increase the other two
components. An improved power cost model is presented which takes into account not only
the switching activity but the capacitive loading and the frequency of occurence of each
state as well. The technique has been implemented for dynamic PLAs only and results for
circuits from the MCNC '91[5] benchmarks compared to NOVA[40] show an average of 6.3%
improvement for two-level logic. There is, however, no data on the CPU times for these
experiments.

A novel approach that considers the problem from a logic level is to use add special
precomputation logic to certain parts of a circuit to turn off those parts in order to minimize
switching activity[34]). This involves computing the output values one clock cycle in advance

1 INTRODUCTION 16

Privary >) -

=2 -

] I %

i 55:!
A |

a‘——-[
g” \\\,____

Figure 2: Power model for a Finite State Machine[39]

and using the results to either turn on or off the circuit under consideration. As the addition
of this precomputation logic adds to the area and the clock period, the technique must
be applied carefully only to non-critical regions of a circuit. A number of precomputation
architectures are presented as well as procedures to automate the process. Results for MCNC
'91 benchmark circuits incCicate substantial power reductions with an average area penalty of
only 3%. No results are given for any increase in clock period which may well have occurred.

1.1.5 Pattern-'ndependent Techniques

Most of the techniques described previously have to some extent or other been input-
pattern dependent. They are only able to give estimates and, in general, there have been
no guarantees on the error of those estimates. The exception in this regard are statistical
techniques. Bounds on power consumption are useful in designing for worst-case situations
in particular in designing power lines. The aim of the techniques in this section is to compute
an upper bound on the total current or the power.

A technique to measure the maximum currents at every contact point in a circuit
has been implemented in iMax[42]. The idea is based on the use of uncertainity waveforms
which describe the presence of the following excitations at various time intervals: high, low,
high-low, low-high. A typical waveform may look something like in Figure 3.

1 INTRODUCTION 17

X(t) ‘
1] 1 1] [}]
]] 1 1 1 1 1
1] 1 t]] 1
| 1 1 i 1] i
hi 1 1 i t o ——
1 1 b 1 1 r 1
[} 1 3 [1]]
Ih | S 1 L 1 | S
] |) 1] i 1
1 ' 1 H] i 1
high | IS T— 1 : 1 J
1) i 1] t |
]) t 1] 1 |
fow z J — 3 L . y
1)] 1]] 1
] [} 1 1 [} 1 '
] L L1 L 1 L L] :
0 ty L iy ta 1y 1y 1; Timo

Figure 3: Uncertainty waveform[42]

The solid lines in Figure 3 indicate which of the four possible excitations are possible
during specific time periods. So for instance between time 0 and t; the waveform is fow as
indicated by the single solid line at Jow. Between time t; and t; the waveform can be /low,
high or switching from Jow to high which means that the waveform is low at time t;, switches
from low to high somewhere between time t; and t; and is high at time ta.

First the primary inputs are all assigned a waveform which contains the set of all
possible transitions. This is propagated through the circuit to obtain an uncertainity waveform
on every node. To reduce the complexity of the waveforms that are generated, some merging
is carried out on the intervals depending on a user-specified parameter. Each low-high and
high-low transition is assumed to draw a triangular pulse of current. Combining these currents
at a node results in a Maximum Envelope Current, or MEC, which is basically the maximum
current that can be drawn at that time. Signal correlations are taken into account at fan-out
nodes by exhaustively enumerating the waveforms and running the iMax algorithm for all the
gates that are contained within a cone of influence defined by the fanout. The results are
compared to a logic simulation using randomly generated inputs which provide a lower bound
on the switching activity. The ratios between the upper and lower bounds for a set of ISCAS
circuits range from 1.23 to 2.23 with reasonable CPU times.

The iMax algorithm is further improved by the use of a Partial Input Enumeration,
PIE, technique that better resolves signal correlation. It was first proposed in [43]; a more
detailed exposition can be found in [44]. The idea is to enumerate waveforms on certain

I INTRODUCTION 18

primary tnputs to resolve signal correlation and thereby improve the MEC estimate. The
enumeration proceeds by conducting a best first search, or BFS, on the search space of all
possible input patterns. One advantage of BFS is that the procedure can be terminated at
any time since it effects a progressive improvement on the upper bound. Two heuristics are
proposed for the decision-making process, whereby primary input nodes to be enumerated are
chosen. The improved technique gives marginally better results for most ISCAS circuits, but
certain circuits exhibit significant improvement in the upper bound to lower bound ratio at
the expense of increased running times.

Another technique which is based on a similar uncertainty waveform representation is
presented in {45]. A waveform is a set of four binary functions, LH (t). HL(t), L(t), H(t).
which describe when low-high switching and high-low switching may occur and when the logic
state is at low or high respectively. A two-vector input stimulus is applied to all the primary
inputs and then propagated through the circuit. A count of the transitions establishes an
upper bound on the switching activity. This is the basic algorithm. Due to the exponential
growth in the number of transition data points at internal nodes in a circuit, a merging
strategy is resorted to whereby transitions of the same polarity with no intervening transitions
of opposite polarity are merged to form a single interval in time where only a single transition
may occur. The waveform representation is now in terms of intervals rather than individual
transitions reducing significantly the amount of storage needed. Signal correlation is not taken
into account in this technique. Results for ISCAS benchmarks circuits show that for most
circuits, the ratio between the upper bound and lower bounds, provided by simulation, on
individual nodes is 1.0 or less for about 75% of the nodes. CPU times are not provided but
it is claimed that the technique is applicable to large circuits.

A technique which computes not only maximal currents but also maximal current
derivatives has been implemented in PRITI[46]. A novel representation of switching activity,
activity waveforms, is used to describe the turning-on and turning-off of transistors as shown
in Figure 4 over all possible voltage waveforms.

The graph at the top in Figure 4 shows three possible waveforms, V,(t),Va(t) and
V3(t), that might occur at a node. These waveforms are represented by the activity waveforms
shown in the bottom graph. The idea is to represent only the “activity” or the rising and

I INTRODUCTION 19

vy A —_— Vv,
- V;-ﬂ)
vag === = ===~
Y : V;(I)
s\
Ay
voa2 A "\
.
\
LY
LY
b -
) t
Te
actiy &
ACTIVE -
TURN AN OFF TURNON AN OFF
CONSTANT / / i

Figure 4: Activity waveform{46]

falling of the voltage waveforms. The first trapezoid in the activity waveform is formed by
combining the earliest and latest rising voltage; and similarly for the second trapezoid. Such
an activity waveform does not allow for any distinction between rising and falling activity so
two separate activity waveforms are used per node: one for rising and one for falling transitions.

A transistor-level description of a circuit is used. The problem is simplified by splitting
the circuit at certain nodes which form additional inputs like clocks whose behaviour is known
beforehand. D flip-flops are also considered additional inputs since they influence their fanout
only at certain points in time, ie. their effect on their fanout does not depend on the exact
time at which their input nodes switch. It is assumed that only one input of a gate will switch
at any point in time. Activity waveforms as described in Figure 4 are then propagated through
the circuit from the primary and additional inputs.

The current and its derivative is modelled by a trapezoidal waveform and a rectangular
waveform respectively. The duration of the current waveforms and their amplitudes are
dependent on factors drawn from the activity waveforms on each node. However, it is not
made clear what kind of waveforms are initially on the primary inputs. The authors claim
results are 2 to 5 times better than existing commercial tools.

1 INTRODUCTION 20

1.2 Motivation and Overview of Thesis

The work presented in this thesis falls into the category of pattern-independent tech-
niques described in section 1.1.5. It represents a contribution to the power bounding method
presented in [47, 48]. The technique reported there relies on the use of abstract waveforms,
described down to the level of individual transitions, which are propagated through the circuit.
In order to improve the switching activity estimate so obtained, case analysis is undertaken
on nodes with large fanout. This is a global analytical technique which attempts to reduce
the pessimism in the switching activity estimate over the entire circuit.

The alternative to a global analysis is local analysis. Developing and implementing
a method of local analysis to further improve upon the switching activity estimate through
consideration of sub-circuits is the objective of this thesis. The idea is to impose functional
consistency upon the waveforms at the nodes of a subset of the circuit in order to obtain an
exact count of the number of transitions and potentially the exact waveforms which give rise
to that. If an exact simulation had been performed, the resuit would have been the same, but
the novelty here is in the technique. An exact simulation would have exponeatial complexity
as all possible waveforms on the Pls to the sub-circuit would have to be enumerated. Branch
and bound techniques are used instead to execute a progressively limited analysis which avoids
exponential complexity. Furthermore heuristics are used to speed up the algorithm.

In addition a simple greedy algorithm has been developed and implemented to identify
the sub-circuits where application of the above described technique would have the best
results. The local analysis is best applied to regions or sub-circuits which exhibit reconvergent
fanout. The greedy algorithm is only meant to represent a first step, and further work needs
to be done on a more comprehensive circuit partitioning technique.

The next section will describe in some detail the main concepts and operation of
the overall power bounding system into which the resuits of the present work are incorpo-
rated. Sections 3 and 4 will then detail the algorithms developed for local analysis and the
greedy algorithm to pick sub-circuits respectively. Experimental results and conclusions will
be presented in the final two sections.

. 2 SYSTEM OVERVIEW 21

2 System Overview

In [47, 48] a power verification tool was presented which utilized a pattern-independent
method to compute an upper bound on power consumption. This thesis presents further
contributions to that tool. To put this work into context it is necessary to first understand
the overall system described in [47, 48]. A brief discussion of the main concepts in the power
estimation part of the tool follows, along with a definition of some of the terminology that
will be used.

As mentioned previously, the problem of power estimation in CMOS circuits is an input
pattern-dependent problem. Any solution technique must have a way of describing inputs.
The input waveform representation used in this thesis was first proposed in [48]. It uses a set

of four transitions: rising, falling, stable 0, and stable 1 as shown in Figure 5.

Stable 1 transition
. Rising transition /)/ Falting transition

' 1uttl1ri'l‘e' \ Stable 0 transition

Figure 5: Waveform representation

These transitions will henceforth be referred to by the following symbols:

stable 0 transition:
stable 1 transition:
rising transition: r
falling transition: f

A real waveform would then be mapped onto the discretized version as shown in Figure 6.
. Simple waveforms which begin and end at the same logic levels can then be merged together
to form a waveform class. So for instance all simple waveforms which begin at logic level 0

[

SYSTEM OVERVIEW 22

-------------------- ——————— - - - - Lofic iovel 1

.- -—J ----------------------- Logic ievel O

............. ---- Logiclevel 1

Logic lovel 0

Discrote time 0 1 2 3 4 5] 7

Simple waveform

Figure 6: Mapping a real waveform onto a simple waveform

and end at logic level 1 could be merged together to form a class referred to as c01 as shown
in Figure 7. There are four possible classes of complex waveforms: ¢00, ¢01, cli and c10.

Complex waveform clasa c01

Simple wavetorms

Figure 7: Waveform class c01
An abstract waveform is the set of all these four waveform classes.

The tool takes in a gate-level description (Verilog format) of a circuit and applies
a two-vector input stimulus representing the four transitions to the primary inputs. The
waveforms are then propagated through the circuit. Since every node has a set of abstract
waveforms, evaluation at a gate consists of combining each of the classes of waveforms on
the input nodes according to the functionality of the gate. For a two-input gate this would
mean 16 possible input combinations to be evaluated which are then merged into four classes
on the output node as illustrated in Figure 8. The AND gate has a delay of one time unit.

. 2 SYSTEM OVERVIEW 23

Claloln
[
00
b
A ‘ ot
1 c I
———] ¢10
6 BAEE
ctt
1 !

Figure 8: Abstract waveform evaluation at an AND gate

The output waveforms are therefore shifted forward by one time unit. The evaluation of the
. transitions is carried out according to the definitions shown in Figure 9. This type of table

aol N\

— —— ey —

v
— — N\ \
7\

| / N\ |
|

Figure 9: Transition evaluation for the two-input AND function

can be constructed for any function such as OR, XOR, NAND, etc., quite easily. It is simply
a matter of examining the endpoint of each transition, as to whether it is a logic 0 or logic 1,
and evaluating them separately according to the functionality of the gate under consideration.

. Gates with more than two inputs are handled slightly differently. Instead of creating
an n-dimensional, for n inputs, transition evaluation look-up table, the computation is carried

. 2 SYSTEM QVERVIEW 24

out using 2-dimensional tables such as one in Figure 9. Figure 10 iliustrates the concept of

D ———
————

Figure 10: Functional evaluation of a three-input AND gate

using 2-dimensional tables for a multi-input gate. The four-input AND gate is broken down
into three two-input AND gates. Each of these is evaluated incividually using the table in
Figure 9. Other gates are handled similarly differing only in the internal breakdown. For
instance a three-input NAND gate might internally consist of three AND gates and a single

NOT gate. The implementation of the functionality of multi-input gates is hidden from the
user.

. Two-vector input stimuli, as shown on node A in Figure 8, are applied to every primary
input of a circuit. The waveforms are propagated through the circuit and an initial estimate
of the switching activity in the circuit is obtained by determining the greatest number of
transitions possible at each node. This involves implicitly obtaining the simple waveforms in
each class at a node. The maximum transition count of these is then the transition count for
that abstract waveform at that node. The transition count thus obtained is quite clearly very
pessimistic mainly because of the merging that is performed with no regard to correlation
such as that introduced at fanout nodes.

To improve this estimate case analysis is performed. This is a global analysis over the
whole circuit that attempts to find the set of classes on each node which corresponds to the
greatest number of transitions over the entire circuit. The idea is to impose constraints on
various nodes and evaluate the circuit. A node may be constrained to a certain class and the
effect of this is evaluated both forwards and backwards. For the backward case this means
determining which classes of waveforms on the input of the gates could possibly give rise to
that particular class. For the forward case, it is akin to simulation except that classes are

. being considered.

. 2 SYSTEM OVERVIEW 25

Backward propagation is carried out using partial inverse functions{3]. These describe
the deduction of an abstract waveform set for one input as a function of the other inputs and
the output. Basically all transitions on the input which could not possibly have contributed to
the reduced waveform set on the output are eliminated; a necessarily pessimistic operation.
The operation procedes one time unit at a time considering each transition on the output
individually as illustrated in Figure 11. Given an AND gate with a set of waveforms as shown

a g ‘ E
1 =
—
]
@

(d)

Figure 11: Backward propagation for a transition set on an AND gate

in Figure 11a, the output being at some time t and the inputs at time t-1, suppose that the
output is restricted to r. If this is propagated backwards on a with respect to b and c, the
. result is shown in Figure 11b. Only rl on a ANDed with Orf on b can possibly result in r on

2 SYSTEM OVERVIEW 26

c. The 0 on a ANDed with Orf on b cannot resuit in r on ¢ so it can be eliminated. Now rl
ANDed with Orf actually gives Qrf, more than just the r needed, but for the moment that is
not of concern. By similar reasoning. propagating r on ¢ backwards onto b with respect to
a gives r on b as shown in Figure 11¢. The final result is shown in Figure 11d, where both
the new transitions on a and b have been computed. This computation is easily extended to
multi-input gates.

The procedure tn case analysis is to pick a node, impose a class constraint and perform
a transition count. This is done for each of the four classes on 2 node in turn; the circuit at
the end of each constraint evaluation is returned to its initial state. Based on a comparision
of the four transition counts, for each class, the largest one is chosen and the corresponding
constraint imposed. The process now repeats with a different node. In [48, 47] the criterion
used to pick nodes was fanout; nodes with the largest fanout have constraints imposed first.
The reasoning behind this was that such nodes would have a greater influence on the rest of
the circuit.

Case analysis proceeds by constructing a case analysis tree using a frontier technique.
A sample tree is shown in Figure 12 for a circuit which, after the initial propagation of

Number of transitions in entire citcuit
/ Circuit stale

................ Initial state

Circuit node N1t

Cireuil node N2

c0 ¢10 ¢ Circuit node N3

e L N21TNG24

\ Case analysis frontier

Figure 12: A sample case analysis tree

waveforms, has a transition count of 32 over the entire circuit. Imposing the constraints
¢00, c01, c10 and cl11 in turn on node N1 results in a transition count of 28, 30, 27 and 24

2 SYSTEM OVERVIEW 27

respectively. Out of these, the worst-case, 30. is chosen as the point from which to further
explore the tree. Constraints are now imposed on node N2. Two of those constraints, c00 and
c01, result in an inconsistent assignment which means that restricting node N1 to the class
c01 is incompatible with restricting node N2 to either class c00 or c01. The tree expansion

then continues from the remaining nodes.

The success of case analysis depends to a large degree on the nodes chosen to be
analysed. For smali circuits it may be sufficient to simply apply it to the primary inputs as
these very likely exert the most influence. In large circuits, however, the nodes which have the
greatest influence must be identified according to a topological or functional consideration of
their influence upon the circuit.

Case analysis is scalable in the sense that the analysis can be continued for as long as
is desired or resources permit. Potentially one can explore the tree down to the bottom leaf
and in effect realise the equivalent of a full simulation of the circuit, thereby indentifying a
vector which gives rise to the greatest number of transitions overall. However, this in general
is not practical for most circuits. Their size and the number of primary inputs simply precludes
any such prospect. The tree exploration has to be terminated at some point once some user-
defined time or resource limit has been reached. If 2 power budget has been assigned to
the circuit, exploration may, of course, be terminated as soon as it is met. The longer the
exploration, the tighter is the upper bound on switching activity, and hence on the power
estimate.

The aiternative to global analysis is local analysis. The idea here is to pick certain
regions of the circuit and perform exhaustive analysis. If the regions are chosen correctly, it
may be more profitable, in terms of resources used, to conduct an in-depth analysis after a
certain amount of global analysis. The most obvious regions or sub-circuits to consider would

be reconvergent regions since correlation between waveforms can be exploited.

3 ESTIMATING SWITCHING ACTIVITY 28

3 Estimating Switching Activity

Switching activity in the circuit is measured by counting the number of rising and
falling transitions on every node in the circuit. One way to achieve this is to simply count
all the rising and falling transitions. However, this clearly results in an overestimate since
any simple continuous path, a subset of the complete waveform, can only consist of a series
of successive rising and falling transitions with appropriate stable 1 and stable 0 transitions
interspersed between them. This is illustrated in Figure 13: the line in bold is one example of

KT TIRAT

Figure 13: A sample path within a waveform

Such a path may or may not occur in =eality. The merging of waveforms into the four
classes described earlier increases the complexity of the waveforms — a class may have many
more transitions in its component paths than were in the original waveforms. Currently it
is not possible to distinguish the real paths from those that were created as a result of the
merging.

An algorithm to extract such a worst-case path, maximal in the number of transitions
(rising and falling), referred to as a maximal simple waveform, is presented in this section.
The worst-case path in itself is not so much the issue as the number of rising and falling
transitions contained within it. It is this value, referred to as an exact count, that is used
in case analysis to determine which branch to explore in the case analysis tree. The exact
count over a node is in reality an overestimate over the true count which may be obtained by
exhaustive simulation over the entire circuit.

3.1 Counting Transitions on a Node

A complex waveform on a node represents the set of all possible transitions over a
period of time. Of all the possible paths through such a waveform there is only one which

3 ESTIMATING SWITCHING ACTIVITY 29

will actually occur in reality. The remaining paths are either false (creations of the merging
process) or would occur in non-maximal cases — the maximal case being the set of paths on
every node which give rise to the greatest number of transitions over the entire circuit. Of
course, there could be more than one maximal case with their corresponding set of paths.
The objective here is to find a path or subwaveform, which might or might not be real, with
the greatest number of rising and falling transitions. An algorithm for this is presented in
pseudocode in Figure 14:

for (t = 0 to Tmax) // Tmax is the time over which

{ /7 the waveform extends. 1Iptld
if waveform(t] has a rising transition // and 1lptl keep track of the
1ptift] = lptoft - 1] = 1: // longest path to logical @

. ; L // and logical 1 respectively.
if waveform([t] has a falling transition

// waveform{t] contains a des-
lprofel) = Ipelfe - 11 + 1; // eription of the waveform ac

// every pointc in time

Figure 14: Pseudocode for counting transitions on a node

The working of the algorithm is best illustrated through Figure 15. A sample complex
waveform along with the values of the variables at each point in time is indicated below. The

s e e o es e m g -

R ' | ' : '
] L]] [}]]
ERRARRRITEE TEES R S kit SEELCIET SELE it SRt LR SELECEELL EEL
Time 6.:1.,2.3,4.5.6.7.:8.8,10, 11,12,
]] L]] 1 1 t]] 1
1pto 0i0:2:!2!4,4:4:4:6:.6:8:8°:8:
R A | JERNY. RV TP U R NP | S Y I SR R | S,
[1 1 L [] 1 [[}] 1 1
Ipt1 50515153:3:5 51555:75759 9 i
- PEm ESE e EmE Tt e wr EE e m S S s S wm e Ll il D R R = -

Figure 15: Value of variables over time for a sample waveform

possible paths from time 0 to time 12 which end at logic 0, can contain 2 maximum of 8 rising
and falling transitions as indicated by the value of 1pt0 at time 12. Similarly the maximum
number of transitions in any path which ends at logic 1 is 9 as indicated by the final value of
1pti. In the implementation of this algorithm the value of the variables 1pt0 and 1pt1l is

3 ESTIMATING SWITCHING ACTIVITY 30

not kept for every time as may be implied by Figure 15. Instead other vaniables are used to
temporarily store the values of 1pt0 and 1pt1 of the previous time unit only.

The advantage of this algorithm is that its running time is linear with respect to the
length, or extension over time, of the waveform. The complexity of the waveform or the
number of possible paths, which may be maximal in the number of transitions since there is
usually more than one, does not affect the running time at all. The variables 1pt0 and 1ptl
keep 2 cumulative transition count for all the possible waveforms at any point in time which
is what makes the algorithm so efficient. Depending on the class of the waveform for which
the transition count is being done, the appropriate variable is taken as the exact count; for
instance counting transitions on the waveform c00 and ¢10 would mean taking the final value
of the variable 1pt0 and conversely for the c0Ol1 and cl1.

3.2 Counting Transitions on a Set of Nodes

The problem is essentially to determine the maximum number of transitions possible
in the waveforms of a set of functionally interconnected nodes. This is primarily intended
as a limited form of local analysis as opposed to the global nature of case analysis. The
complex waveforms at any node represent the set of all possible simple waveforms as described
previously and some additional artificial ones. The simple waveforms within the complex
waveforms are related by the topological functionality of the entire circuit not just the sub-
circuit being considered. Limiting the analysis to a sub-circuit still provides a transition
count which errs on the side of pessimism with respect to switching activity. Enlarging the
sub-circuit to include more functional elements, or gates, would be equivalent to imposing
additional constraints on the system and would result in an even more accurate transition
count in the sense that the reduction in pessimism would be greater. The tradeoff is between
larger sub-circuits (correspondingly more accurate transition counts) and available resources
(time, computation power and memory).

It is relatively simple to determine the set of all maximal simple waveforms at every
node by making use of the transition counting algorithm for a node described in the previous
section. These maximal complex waveforms, however, may well not be functionally consistent

3 ESTIMATING SWITCHING ACTIVITY 31

over a sub-circuit. The maximal complex waveforms on a node or subset of nodes within the
sub-circuit do not necessarily imply maximal complex uyaveforms on any other nodes. The
largest transition count over a circuit is most likely given by a set of non-maximal complex
waveforms. It would seem then that there is no alternative to that of exhaustive simulation to
determine exactly those non-maximal complex waveforms and thereby the overall maximum
transition count. In general this is true but there are two facets of the problem that can be
exploited to improve the problem resolution. The first concerns topology and second is the
analytical technique used; each one will be discussed separately in the subsections to follow.

3.2.1 Algorithm for Convergent Circuits

In convergent or tree-like circuits the exhaustive simulation method which is of ex-
ponential complexity can be avoided in favour of a “table” method which is considerably less
complex. The key difference between a2 convergent circuit and a non-convergent one is that
for a convergent circuit, one can always associate the set of transitions at each time unit in
every waveform with another set of transitions in a uniquely corresponding time unit with re-
spect to functionality. This is illustrated in Figure 16 where a circuit time-unit is as indicated.
The circuit consists of three functional elements, each of unit delay. The transitions on a and
b within the enclosed circuit time-unit are directly responsible for producing the transitions on
e, similarly b and c for £, and e and £ for g. This relationship is not always as unambiguous
for non-tree circuits. In general, a time unit in one waveform cannot be uniquely associated
with another time unit in another waveform as shown in Figure 17. The circuit in Figure 17
is a simple one of only three gates each of unit delay and exhibits reconvergent fanout. As
can be seen there is no single unique circuit time-unit that can be associated with this circuit.
Instead the temporal relationships between the nodes are complex.

For tree-like or convergent circuits the analysis can proceed one circuit time-unit at a
time. The idea is essentially to avoid the exponential complexity of a full simulation, where
every possible simple waveform on every node would have to be enumerated, by combining
results obtained at intermediate stages. The complexity with this technique is limited to 4"
where n is the number of primary inputs. An example will serve to illustrate this technique
best. Consider a trivial circuit, a single OR gate, with waveforms on the inputs as shown

3 ESTIMATING SWITCHING ACTIVITY 32

i

)

d
5

]
b
1

One circuit time-unit

- -]k -y---H--

B DU, VDU

¢ i/ NS
RN NN L

:I::.\\'::::.'
e ! N\ NS
f1o A SN G
o i | LIANDOINAN

Figure 16: Temporal relationship between waveforms in tree circuits

in Figure 18. The ‘table’ that will be constructed for this case is Table 1. The 3™ and 4*"
columns in the table list all the possible transitions on the inputs of the OR gate. The 5%
column lists the resultant output. The first column assigns a unique number. the ‘index’, to
each input combination for easy reference. The second column lists the number of transitions
for that set of inputs and output. The ‘Links’ column lists, for each input and output set,
the set of possible inputs which could have occurred in the previous time unit, using the
index. For instance input 00, index 1, can only be preceded by any one of 00, Of, fO and ff as
indicated by the indices 1, 4, 13 and 16 in the 'Links’ column. The analysis commences by
considering the input transitions for time 1. From Figure 18 the possible inputs are 01 and
rl. The number of transitions for each input combination is written into the appropriate row
in the column for time 1. From time 2 onwards the procedure is slightly different. At time
2 the possible inputs are 01, 0f, 11 and 1f. For each of these the ‘Links’ column is used to

33

3 ESTIMATING SWITCHING ACTIVITY

Figure 17: Temporal relationship between waveforms in non-tree circuits

12

- -

mmet e p =

Figure 18: Trivial circuit of a single OR gate

. 3 ESTIMATING SWITCHING ACTIVITY 34
Table Discrete time units
Index | # tran- || input | Output Links 213 56 |7 |89 |10]|11/12
sitions [[alb c
1 0 0(o 0 1,4 13,16
2 2 Bir r 1, 4,13, 16 12 | 14 | 18
3 0 ot 1 2,3, 14,15 0 14 20
4 2 Qff f 2,314, 15 2 12 1 14 22
5 2 r|Q r 1.4, 13,16
6 3 rir r 1,4, 13, 16 5 1311519 25
7 1 r| 1l 1 2,314, 15 15| 19 21
8 2 rlf] 1 231415 2 8 12 | 14
g8 0 110 1 589 12
10 1 1 r 1 5.8,9 12 9 | 13}15 21
11 0 11| 1 6,710, 11 15 19 | 19
12 1 11 1 6,710, 11 2 10 | 14 20
. 13 2 flo f 5809 12 10

14 2 flel 1 58,9, 12) 0 [10]14 |16
15 1 fil 1 6, 710, 11 16 | 20
16 3 fle| f 6. 7 10, 11 P 12 | 16

Table 1: Analysis of sample convergent circuit in Figure 18

determine all the possible inputs in the previous time unit. The highest number of transitions
is picked from that and added to the number of transitions in the current input transition.

This is entered in the appropriate row for the current time. For instance, for input Of at time
2, which has 2 transitions (including the output f), the only possible input in time 1 is 01
(with O transitions since the output is 1). The other possible inputs are QOr, fr and fl but
there are no entries in the table for these inputs because they cannot possibly exist at time
1. The entry for Of at time 2 is then 2 (2 transitions at time 2 + 0 transitions at time 1).
This process continues for all the remaining time units. For instance for input f at time 5,
the possible inputs, from examining the 'Links’ column for f, at time 4 are Or, 01, fr and f1.
Of these the largest number of transitions at time 4 is 6. The number of transitions for input

rf is 2 and hence the entry for input f at time 5is 6 +- 2 = 8.

3 ESTIMATING SWITCHING ACTIVITY 35
By choosing the largest entry in the preceding time unit the worst-case input in the
number of transitions is being chosen. Effectively the worst-case input {and output) is chosen

every time and result in the final column at time 12 is 3 number of possible worst-case number

of transitions over the entire waveforms. At any point in time one can look up the table to

Inpus and output e
9 Oh L
0\0

A

e

ascertain the worst-case up to that point.

f
@e

d

8
o

e€2?®

\ Nurnbor of tranaitions in this sot of nputs and output

Time 1 2] £ 5 8 7

Figure 19: Inputs from time 1 to 7 and their ‘links’

The possible inputs and the corresponding number of transitions for that input only are
shown in Figure 19. Each node, representing inputs and an output at that time, is connected
to the possible inputs (nodes) at the preceding and subsequent time units. Ignore the bold
lines and nodes for the moment. The relationship between this tree and Table 1 is simple.
In the table the entries are simply the sum of the number of transitions along any path in
the tree. At nodes like rfl at time 5 where there are four possible inputs at time 4, only the

3 ESTIMATING SWITCHING ACTIVITY 36

highest value is taken to be the number of transitions at time 4. This is then added to the
number of transitions for rfl at time 5 to give the corresponding entry in Table 1.

The specific waveforms which give rise to the worst-case can be easily derived by
traversing the table backwards from time 12. At time 12 pick the largest entry and, for that
input, look up all the inputs pointed to by the links at time 11. Pick the largest entry of those
links at time 11 and continue in this fashion until the time unit 1 is reached. The numbers
in bold indicate the particular input-output combination at specific time points which lead
to the desired waveform for this example. This is illustrated in Figure 19 by the bold lines
and nodes. For instance, at time 7 pick the largest entry in the table which is 13 for the
input ree. The only possible input in time 6 for rer is fOf so this chosen. Similarly for fOf the
only possible input at time 5 is rfl and this is therefore chosen. At this point, there are four
possible inputs, Orr, 011, frl and fi11 at time 4 for the input rfl at time 5. Only the highest
values are to be chosen so both Qrr and f11 are chosen. The process continues in this manner
taking each input, Orr and f11, in turn. Compare this with the paths indicated by the bold
lines in Figure 19.

This algorithm’s running time is very fast, taking 0.04s on a Sparc 4 for the circuit in
Figure 18, due to the fact that the table does not keep track of all possible simple waveforms
over time but only the set of possible transitions any time unit. However, this technique
is only applicable to small tree-like circuits and therefore limited in its usefulness. A simple
version has been implemented in C as a concept demonstrator and no attempt has been made
to optimize it in any manner.

3.2.2 Branch and Bound Algorithm

This is a technique of an exhaustive nature applicable to all circuits regardless of
their topology since it essentially utilizes exhaustive analysis. For most circuits, this is the
only way to determine the maximum number of transitions over all the nodes. It involves
enumerating on each primary input of the circuit all the possible simple waveforms. The circuit
is then analysed for all combinations of these simple waveforms. Clearly the complexity here
is exponential because all possibilities are being tried. To ameliorate this, a branch and bound

3 ESTIMATING SWITCHING ACTIVITY 37

technique is used. This involves attempting to predict during the analysis, of any set of simple
waveforms on the primary inputs, whether it is in fact of any value to continue any further.
This condition is evaluated at every point in time. If it can be discerned that further analysis
would not be useful, the analysis of that set of simple waveforms is terminated. Analysis
proceeds with consideration of other simple waveforms that have not yet been explored.

' ‘
il Rt it Badnlienll sl il Refienlienlinll ol

time 0, 1., 2. 3., 4., 5,

time

Figure 20: Sample analysis tree

The analysis proceeds by constructing a tree structure. Each node in the tree repre-
sents a particular set of transitions on all nodes of the circuit for a particular time uniz. Each
node has only one parent node but can have any number of child nodes. The child nodes
represent the set of possible transitions in the next time unit from the pareni node. This
is illustrated in Figure 20. The diagram shows what an analysis tree would look like for the
two waveforms a and b as shown at the top of Figure 20. At time O the only possible set of

3 ESTIMATING SWITCHING ACTIVITY 38

transitions are 0 on both a2 and b. At time 1 there are r and 0 on both a and b which results
in the four combinations 00. Or, r0 and rr on a and b respectively as shown in the tree. Going
down the tree in a depth-first fashion is equivalent to specifying a particular simpie waveform
on a and b as shown for two sample leaf nodes at the bottom of Figure 20. Although the
figure would seem to imply that the tree is constructed breadth-first, this is not true. It is
shown in this manner purely for explanatory purposes.

Figure 21: Sample analysis tree for an OR gate

When constructing such a tree for a circuit, each node would also store the values on
all other nodes of the circuit at that time unit as well as the number of transitions so far.

This is illustrated in Figure 21 where the analysis tree for a trivial circuit consisting of a single

3 ESTIMATING SWITCHING ACTIVITY 3%

OR gate is shown. There are two items in each node: the top item is the transition set on
the inputs a and b and the output ¢, and the bottom item, a single number in italic font, is
the number of transitions up to that time unit for the simple waveforms ending in that node.
There are a number of other data items also stored in each node; these will be detailed later.
With two primary inputs the maximum branching factor at each node is four. The branching
factor, in general, is 4" where n is the number of primary inputs.

The analysis tree is initially constructed in a depth-first manner. The objective is to
explore to the leaf node with the largest number of transitions. The idea is to first carry out
an analysis for one set of complete simple waveforms right down to the final time unit. This
basically translates to exploring the tree once all the way down to one leaf node. The number
of transitions at the final leaf node is noted. This number, denoted maxODFsum in the imple-
mentation, is then used as a basis of comparision for the rest of the tree exploration. It may
be updated from time to time during the analysis. Depth-first exploration proceeds now with
one additional constraint: a condition is evaluated prior to every branching. This condition
decides whether continuing the analysis down that particular branch is a viable proposition.
If it is not, then the entire subtree below that branch can be discarded. The condition can
be stated as follows:

if (transitions(t) + worst-case.transitions(t)) > max0ODFsum then

branching is viable

else

terminate analysis for this branch

transitions(t) -~ Number of transitions at the current
node
worst-case_transitions{t) - Number of transitions in a maximal sim-

ple path from current time to final time

The value of transitions(t) is that which is kept within every node. However,
worst-case_transitions(t) must be calculated prior to beginning any analysis. It is the
number of transitions of a maximal simple path within the compiex waveform from the current
to the final time unit. It is certainly an overestimate since it is computed for the complex

3 ESTIMATING SWITCHING ACTIVITY 40

waveform which is all the simple waveforms merged together. The reasoning behind this
branching condition is that one is always looking for the largest possible value for the total
number of transitions and there is no point in continuing down a particular branch if the

worst-case number of transitions for that is lower than the current max0ODFsum.

[
+

_ N__

] L

- fr = = = = -

Figure 22: Waveforms at branching condition evaluation

This can be better understood by examining Figure 22 which is a figurative illustration
of the state of analysis of a set of waveforms at a certain point in time. The analysis tree
has been explored up to time 5 — simple paths exist for all waveforms up to and including
time 5 and complex waveforms thereafter, which represent the unexplored part of the wave-
forms. The lines drawn in grey indicate the remainder of the original waveforms. At this point
transitions(t) would have a value of 9 which is simply a count of the rising and falling tran-
sitions on all the simple paths from time 1 to time 5 inclusive. worst~case_transitions(t)
would have a value of 21 which is the sum of the number rising and falling transitions in the
maximal simple waveforms from time 12 to time 6 inclusive. From the branching condition,
if max0DFsum is greater than 30 than the analysis would be terminated here; essentially the
analysis upto time 5 has reduced the number of transitions overall so much that even as-
suming the worst-case from time 6 to 12 (ie. maximal simple paths on alf waveforms) it still
would not be worth it compared to the one particular analysis which resulted in a value of 30
for maxODFsum. Conversely if maxODFsum happened to be less than 30 then it implies that
there is a possibility that this particular analysis, if continued further, might finally result in a
number of transitions greater than the current max0DFsum. This possibility may well change

3 ESTIMATING SWITCHING ACTIVITY 41

further down the analysis as the branching condition is evaluated at every point in time.

The algorithm for counting transitions on a single node comes into play when comput-
ing a value for worst-case_transitions(t). Basically a table of values for 1pt0 and 1ptl
are created running along the complex waveform in reverse order, ie. proceeding from the
final time unit to time 0. This table is created for every node in the circuit. If one proceeds
down the table from time 0, it will give at any point in time the maximum, or worst-case,

possible number of r and { transitions from that point onwards.

A particuiar branch of the analysis tree will be explored down to the final time unit
only if the branching condition is consistently satisfied all the way down for every node. If
the final leaf is reached, then the value of max(ODFsum is updated to the new value of the
number of transitions in the final leaf node. Effectively what is happening here is that a new
set of simple waveforms on the primary inputs have been found which give rise to the largest
number of transitions over the whole circuit. The analysis then proceeds as before. The
value of maxODFsum will either increase or remain the same as the tree coverage increases.
The larger the value of max0DFsum the more likely it is that the subtrees discarded will be
larger. This is because the larger maxQDFsum allows an earlier, or closer to the root of the
tree, “prediction” of whether or not branching down any particular subtree is viable. It would
seem that the analysis should be biased towards an exploration of those paths which are more
likely to result in complete exploration to the final leaf nodes. In effect what is required is to
accord a higher priority to branching in the direction of increased switching activity or r and
f transitions.

A heuristic which attempts to produce exactly this bias has been implemented in
addition to the branching condition. Every node whose children have yet to be explored
holds a list of child nodes. As each child node is explored, that child node is removed from its
parent node’s list. The heuristic simply orders the list of child nodes in the order of decreasing
number of transitions. Since each (child) node represents a set of transitions on the primary
inputs, this in effect biases the analysis towards the more “active” simple waveforms. The
assumption behind this is that the activity on the primary inputs will be propagated through
the circuit. In general this assumption would seem to make sense since to have activity within
the circuit one would first have to have it on the inputs.

3 ESTIMATING SWITCHING ACTIVITY 42

The effect of the branching condition is somewhat unpredictable in the sense that it
cannot be said precisely beforehand what percentage of the total tree will not have to be
explored because of its use. [t remains very much a heuristic; its effect 1s known but not
its performance which will vary with the circuit and the waveforms on the nodes. The same
holds for the ordering heuristic, for which it is known only that it gives a better performance

in terms of the time taken for the analysis to complete, compared to random branching.

Clearly the larger the circuit the larger will be the analysis tree to be explored. The
analysis tree is simply the means by which analysis is carried out. It is not necessary to
maintain the tree or part of it in memory for any longer than it's needed. As the depth-first
exploration progresses, nodes which have been explored are deleted to reduce memory usage.

The discussion so far has centred on circuits with one complex waveform on each of
their nodes and this is the basic form of analysis. But each node in fact has an abstract
waveform which is a set of four complex waveforms organized by class. This is true initially at
least. As case analysis proceeds, however, nodes may not contain the full complement of four
classes as constraints are progressively imposed upon the circuit. Transition counting on a sub-
circuit takes cognizance of this situation and first performs what is termed as class analysis.
This involves enumerating all possible combinations of the existing classes on 3ll inputs of
the sub-circuits and computing the corresponding classes on the remaining sub-circuit nodes,
effectively restricting the nodes to a single complex waveform each.

An example of a simple circuit and some possible abstract waveforms are shown in
Figure 23. Enumerating all possible combinations of classes on the inputs A, B and D and
computing the corresponding classes which can exist on the remaining nodes for the circuit in
Figure 23 would give the results shown in Table 2. Each of the entries in the table is referred
to as a class-set. The sum of the transitions of the maximal simple paths on all the nodes is
then taken for every class-set with the values as shown in the table. This list is then sorted

in order of decreasing number of worst-case transitions and would then appear as shown in
Table 3.

Since the objective is to determine the largest possible number of transitions over the
set of circuit nodes, it is not usually necessary to analyse all the class-sets. The analysis
proceeds by taking groups of class-sets which have the same overall number of worst-case

3 ESTIMATING SWITCHING ACTIVITY

Table 2:

Inputs Nodes | Worst-case
A B D | C E | transitions
c00 <00 ¢01 | cO0 <01 8
c00 <00 10 |c00 <10 12
c00 <01 <01 |c00 c01 7
¢00 01 ¢10}c00 <10 11
¢00 i1 <01 | c00 <01 8
¢00 cll <10 [00 <10 12
c0l <00 c01|c00 cO1 7
0l <00 10| c00 cl0 11
c01 D1 01)c0l cOl 5
0l c01 cl10|c0l cli 8
c0l cll <01 |c0l e01 6
0l c11 cl0|c0l cll 9
Initial list of class-sets for the circuit in Figure 23
Inputs Nodes | Worst-case
A B D} C E | transitions
00 <00 cl0 |00 clo 12
¢00 cll 1| c00 cl0 12
c00 01 <10 |c00 <10 11
0l ¢00 <10 |c00 cl0 11
01 cll cl0|c0l «cll 9
¢0) 00 c01|e00 cO1 8
¢00 11 01 (c00 <01 8
0l c01 cl0|c0l cll 8
c00 01 01 |c00 <01 7
01 c00 <01 |cO00 cO1 7
0l cll c02|cO0l c01 6
0l 01 c01)cO0l <01 5

Table 3: Sorted list of class-sets

43

. 3 ESTIMATING SWITCHING ACTIVITY 44

Alsfcltiolaf4fs

cw '
NP NEEEE

0
RN CToirlzlals]s]

NN “i—.‘.}#,—m
[BTeTo[[==]4Ts e V= ';:l RN

coo_/\ A I ero!
R D__c T I B A I
wo| 27 | T
EnARE B o
[1+]
L] 1 :
c1t li;/‘ L o Efarol1[2alals]

(31]

eoeo oy
00 !
Bftlolri2alalatsl
RN
eta cO!I H
NpRENE PRl
[+]] ctp !
G b Ll b
10 { cit N
REAww e
er
[N I)

Figure 23: Abstract waveforms on a circuit prior to transition analysis

transitions. Each class-group is identified by its worst-case number of transitions, or class-
group value, So for instance, class-group 12 would refer to the first two entries in table 3.
The transition counting algorithm proceeds in class-groups at a time — all the class-sets within
a class-group are analysed and only the largest result (number of transitions) is retained as
the group exact count. If this result is equivalent to the class-group value then clearly no
further analysis is necessary. [If the result is greater than the class-group value of the next
class-group, then agzin the analysis can be terminated at this point. If the group exact value
is less than the next class-group value then the analysis continues with consideration of the
next class-group. The process is best understood by examining the pseudocode below:

next_cgv = class_set[0].trans; // next class group value
curr_gev = 0; // current group exact value
i=3j=0;

while (i < num_class_sets)
{
while ((next_cgv == class_set[j].trans) &% (j < num_class_sets))
. next_cgv = class_set[++j].trans;

3 ESTIMATING SWITCHING ACTIVITY 45

// next_cgv now contains the class group value of the
// next group in the list
while ((i < max_num_class_sets) &% (i < j))

{
curr_gev = max(curr_gev, analyse_circuit(class_set[i]);
// amalyse_circuit performs the branch & bound
// analysis upon the circuit given a certain class-set
i+ // increment index to next class-set
if (curr_gev >= (class_set[i] - 1))
return (curr_gev);
}

if (curr_gev >= next_cgv)
return (curr_gev);
}
return (max(next_cgv, analyse_circuit(class_set[++i])));

// Takes care of boundary cordition in while loop

For the circuit in Figure 23 with Table 3, class-group 12 would be analysed first. If
the result of analysing the first class-set was 12 this would be the value returned immediately.
Similarly if the value of the analysis was 11, this would be taken as the final value since
this is guaranteed to be the largest given the list as in Table 3. But suppose the highest
value obtained from analysing class-group 12 was 8, it would then be necessary to analyse
class-group 11. If the analysis of class-group 11 resulted in a a group exact value of 10 then
this would be returned as the final value since it is greater than the next class group value
which is 9.

Where precisely the exhaustive analysis algorithm would fit within the entire system
described in Section 2 has not been decided yet. That would depend partly on the time the
algoritbm takes to run. If it doesn't take too long then it might conceivably be used at every
point in the case analysis when a transition count is desired; essentially immediately following
the evaluation of a set of constraints. More accurate transition counts at every step have the
potential to alter the exploration of the case analysis tree substantially. However, if the run
times are considered too long to allow exhaustive analysis at every step, a more sparing use
would have to be considered. This could involve some kind of criterion such as performing

3 ESTIMATING SWITCHING ACTIVITY 46

the analysis for only one of the four classes that are evaluated at each step. Further research
and experimentation is required in this aspect of the implementation.

The factors that affect the run times of the exhaustive analysis will be discussed in
detail in the results section but for now it is important to realize that much depends on what
kind of sub-circuits are picked. The user can control this through a set of command-line
parameters. Thus, what parameters are specified must be taken into account when deciding

whether to use exhaustive analysis sparingly or not.

4 SUB-CIRCUIT PICKING ALGORITHM 47

4 Sub-circuit Picking Algorithm

As discussed earlier, the branch and bound algorithm is meant to be applied to smali
sub-circuits within a larger circuit. These sub-circuits have to be chosen judiciously to ensure
the best performance from the transition counting algorithm. If the circuit is too large, too
much time may be spent on computation. On the other hand if the circuit is too small,
the gains from any analysis may be paltry. The best type of sub-circuits would be those of
‘medium’ size exhibiting reconvergence where there is a clear opportunity to enforce functional
consistency between the nodes. Attempting to partition the entire circuit is inadvisable as
most of the sub-circuits would undoubtably contribute little if anything primarily because
most circuit topologies are unsuited for the kind of analysis being conducted. Among those
sub-circuits identified, sharing of nodes or gates must be avoided since the branch and bound
algorithm provides a transition count over an entire sub-circuit and shared gates or nodes
would lead to erroneous overestimation.

As a preliminary step in investigating the performance of the transition counting algo-
rithm, a procedure to identify sub-circuits was developed (the pseudocode is given in Appendix
A). This is based on a simple greedy strategy; no overall topological analysis is conducted.
The algorithm picks sub-circuits based on a list of nodes of the circuit sorted in decreasing
order of fanout. The idea is to take a node and pick all the gates connected to it up to a
certain logic depth. This then forms a sub-circuit. The gates surrounding this region are
specially marked to form a boundary. Other sub-circuits may not contain the gates in this
boundary and thus there are no overlapping regions. Sub-circuits are ‘picked’ by marking
them with a unique identification number. Each sub-circuit has its own number; all the gates
in that sub-circuit have that ID. Once a sub-circuit has been picked, it is then ‘delimited'.
This means marking all the gates which are connected to all the gates in a sub-circuit with a
special 1D number; these gates form the boundary.

The user must supply a number of parameters at the command line. Each of these
are described below:

lidepth: ~ This specifies the logic depth to which gates should be picked from a node. A good
“value is 3 or 4. A higher value means larger sub-circuits.

4 SUB-CIRCUIT PICKING ALGORITHM 43

minfanout: Specifies that nodes being examined must have a fanout degree at least equiv-
alent to or greater than this value. Nodes with fanout are attractive because
sub-circuits containing such nodes may lead to regions of convergence or recon-

vergence both of which are good prospects for imposing functional consistency.

maxfanout: Specifies that nodes being examined cannot have a fanout degree greater than
this value. There are two phases of sub-circuit picking: in the first phase only
nodes which have fanout between minfanout and maxfanout are examined. In
the second phase, all nodes which have a fanout degree greater than minfanout
are examined. The rationale behind the fanout conditionality is that nodes with

very high fanout are likely to result in [arge sub-circuiis which is not desirable.

max_rPl: Only sub-circuits which have primary inputs equal to or below this value will be
analysed. A good value for this is usually 6 though this may vary.

max_subPI: The first node from which the gate picking begins has a fanout restriction set
by max_rPl, subsequent nodes, further down the logic depth, have a fanout
restrcition set by max_subPl. This is way of limiting the size of sub-circuits.

mingates: This restricis the minimum size of sub-circuits in terms of gates. If a region is
identified and found to be below this value, the region is unmarked and the gates
and nodes will be available again to be picked as part of another sub-circuit. This
is useful because small sub-circuits of 2 or 3 gates often identified are of no value
for the transition counting algorithm.

The algorithm has a number of shortcomings, the main one being that it is not
specifically targetted towards identifying regions of convergence or reconvergence. Where it
does manage to include reconvergent regions in a sub-circuit it often picks additional gates
that contribute little to the results. An example of this is illustrated in Figure 24. lgnore
the functionality of the circuit for the moment, and consider simply the topology. If the gate
picking begins at node a with the logic level depth set to 3, then the circuit within the broken
line will be picked. However, it is only the circuit within the dotted lines that will really be
useful in the exhaustive analysis. The remaining three gates cannot be expected to contribute
anything much as far as reducing the pessimism in switching activity is concerned. The result
is that the exhaustive anziysis will not give as good results as it could have. The superfluous
gates merels increase the computation time.

4 SUB-CIRCUIT PICKING ALGORITHM 49

B e .
| ~— 1 = T

Figure 24: Sub-circuit picked with node a

The nodes from which the gate picking commences are very important in defining
the sub-circuit that is picked. The current. technique of prioritizing nodes according to their
fanout is inadequate as demonstrated by the circuit in Figure 25 which can be assumed to be
part of a larger circuit. If the sub-circuit-picking algorithm is applied to node z with the logic
level depth set to 2 then the region within the broken line is the one identified.

Node z is the one most likely to be picked first as it has a higher fanout than nodes
x or y or w. However, if either of nodes x or y were picked first then the sub-circuit picked
would be as shown in Figure 26. Clearly the sub-circuit picked in Figure 26 encompasses more
reconvergence then than that in Figure 25 and would be a better choice for the transition
counting algorithm. This points out the insufficiency of merely considering nodes in order of

their fanout.

When experimenting with the algorithm by varying parameters, it was found that
a number of small sub-circuits of 1 or 2 gates were consistently being identified. These
sub-circuits were quite useless to perform exhaustive analysis upon. 1 his problem was dealt
with by having a parameter, mingates which would restrict sub-circuit size above a certain
minimum number of gates. The small sub-circuits were often being picked from the areas

4 SUB-CIRCUIT PICKING ALGORITHM 50

Figure 25: Sub-circuit picked with node z
—N\ TS Y =y
— e i——D_A—r__.}
; >
=1 —
‘x N . , ;

Figure 26: Sub-circuit picked with node x or y

between two or more larger sub-circuits; in a sense these were the ‘leftover’ gates. As such
they have no inherent attractive topology that could be exploited.

Another serious shortcoming is that sub-circuits identified are too large to be exhaus-
tively analysed. All sub-circuits which exceed max_rP! will be passed over by the transition
counting algorithm. Attempts were made to deal with this problem by keeping track of the
number of sub-circuit primary inputs, sPls, as the picking proceeded but it was found this
wasn't possible without an inordinate amount of computation. As this would have made

4 SUB-CIRCUIT PICKING ALGORITHM 51

the algorithm very time-consuming, this approach was abandoned. A technique employing a
heuristic was then attempted; this involved making an approximation of the number of sPls
the final sub-circuit would have during the picking process. However, the results the heuristic
gave turned out to be too unpredictable to be of much use. The idea was that if one had an
estimate of the number of sPls during the gate picking process, one could then terminate the
picking once the estimated number of sPls reached a certain value (possibly close or equal to
the user specified maximum number of sPls).

This greedy sub-circuit picking algorithm is meant to be a simple one in the absence of
a more comprehensive one which would accurately identify reconvergent regions in a circuit.
As the results in the following section show, the transition counting algorithm for a set of

nodes gives best results when presented with reconvergent regions.

. 5 RESULTS 52

5 Results

The algorithms for counting transitions over a sub-circuit and picking sub-circuits were
implemented in the timing and power verification tool. Prior to conducting zase analysis, sub-

circuits are identified and analysed. A summary of the results is presented in Table 4. The

Circuit | # gates || Number of | Average Size | Time to Time to Reduction in count (%)
nets || sub-circuits | Gates | Pls | pick (s) || count (min} | Sub-circuits | Overall

880 | 383 15 5 3 | 063 15.0 104 | 28
443 20 4 3 0.63 8.7 120 32
15 5 3 0.66 1277.3 9.5 16
€432 160 9 4 3 0.21 0.12 7.6 1.7
196 S 5 4 0.06 0.37 16.2 3.5
4 6 5 0.06 1.44 8.3 1.3
6 5 4 0.22 0.19 18.9 2.8
. 5 5 5 0.20 0.78 13.6 1.7
c499 202 7 3 4 0.16 0.19 6.0 1.0
243 5 3 4 0.15 0.06 5.2 0.6
6 3 4 0.14 0.13 5.5 0.9
c1355 546 6 12 5 0.41 19.6 10.3 1.0
587 9 10 4 0.42 34 34 0.6
c2670 1193 37 5 3 4.29 35 49 1.2
1426 31 5 3 4.20 8.9 5.5 1.2
36 6 3 4.20 806.7 6.5 1.6
33 5 3 4.24 | 25 5.5 1.2

Table 4: Summary for some ISCAS circuits

table lists some of the ISCAS '85[1] circuits and results for each of them. All circuits have
more than one set of results because the sub-circuit picking algorithm was run with different
parameters each time. Depending on what parameters were set, the sub-circuits identified
can vary. The number of sub-circuits can vary as well as the size (in terms of gates, nets
and Pls). The time taken to pick sub-circuits is shown in the sixth column and the time that
. the branch and bound algorithm takes to analyse all the sub-circuits is shown in the seventh

5 RESULTS 53

column. The last two columns list the percentage reduction in transition count from the
initial count, obtained using the algorithm described in section 3.1, against the more exact
count given by exhaustive analysis. Two comparisions are made: the 'Sub-circuits’ column

considers only the sub-circuits analysed while the ‘Overall' column considers the entire circuit.

The results in Table 4 were obtained by calling the function performing the exhaustive
analysis prior to case analysis. This means that all the waveform classes are present on all
the nodes of the circuit and the maximum number of class-sets for each sub-circuit have to
be analysed. The reduction in count is also therefore the lowest that one might obtain, As
constraints are progressively imposed during case analysis and classes of waveforms disappear,
exhaustive analysis takes less time to run as well as giving higher reductions in transition
counts. In general the relationship is described by the graphs in Figure 27 based on preliminary
experimentation. The exact shape of the graphs would vary depending on circuit and sub-

Reduction in Tirne taken to
rrangition count ﬂ analyse

Depth of case Analysis tree

° Depth of case onalysis iree °

Figure 27: Performance of exhaustive analysis vs. case analysis tree depth

circuit topology, the order in which the constraints are imposed on nodes in case analysis and
the size of the circuit. If the case analysis tree were explored in a purely breadth-first fashion,
the performance would be exactly as depicted in Figure 27. However, a frontier approach
is used and therefore there may well be significant deviations. Table 4 represents figures for
the point at which the curves intersect the vertical axis. Up to a certain depth in the case
analysis tree, reductions in transition count will increase after which they will start decreasing
as the contraints increasingly narrow down possible activity within. However, the time taken
by the analysis will decrease continuously with the tree depth as more constraints obviously
mean less to analyse.

The overall reduction in count may seem meagre but these results are worst-case.

5 RESULTS 54

Based on some tentative investigation, it can be said that reductions in transition count once
case analysis has proceeded for some depth are several times better than those in Table 4.
Analysis times are similarly reduced.

Many of the sub-circuits identified do not show any reduction in transitions count at
all. Had it not been for this fact, the average sub-circuit reduction (column 8 in Table 4) would
have been higher. The performance of the branch and bound algorithm is very dependent on
the topology of the sub-circuits identified. Those sub-circuits which exhibit reconvergence give
the best results. However, the sub-ctreuit picking algorithm doesn’t always manage to identify
reconvergent regions. A detailed examination of the performance of both the algorithms will
serve to illustrate this better,

5.1 Transition Counting over a Sub-circuit

The best results are obtained when the sub-circuit is entirely a reconvergent region.
For instance the circuit in Figure 28 had a reduction in transition count of from 12 to 4 or
66.7%. A similar case, the circuit in Figure 29, had a reduction of 50%. These small circuits

o
h: } >O_ Lﬁ>——*
O >— ~_

Figure 28: Sub-circuit exhibiting reconvergence from c880

show extremely good results. But combining two or more of these does not necessarily give an
even larger reduction. The circuit in Figure 30 is basically a combination of two circuits of the
type in Figure 29. But the reduction in transition count is only 14.6% which is considerably
less than the 50% that was obtained for the circuit in Figure 29.

A rather larger circuit that had a reduction of 19.4% is shown in Figure 31. This

. 5 RESULTS 55

g\;l:} L>°

)
—

Figure 29: Sub-circuit exhibiting some reconvergence from c880
T

Danks
L~

Figure 30: Sub-circuit from c880

———

=S
D

Figure 31: Large sub-circuit from ¢880

5 RESULTS 56

circuit has two reconvergent regions ending in nodes a and b as well as some superfluous
gates. Regions which have no reconvergence at all will show very little reduction in their

transition counts. The sub-circuit in Figure 32 showed a reduction of only 4.5%. The high

L/

|

VARVARVAY

N
\4

wivivIsivIR

>

Figure 32: A sub-circuit with large fanout nodes

<
\

fanout degree of the input nodes allows some reduction to be achieved through accounting for
correlation between waveforms. In general if the fanout is low then the reduction in transition
count will be nil. The sub-circuit in Figure 33 for instance had no reduction at all in its
transition count. It seems that among circuits that have no reconvergence, only those that

Figure 33: A sub-circuit with no reduction in transition count

have nodes with high fanout wili show a little reduction in transition counts.

The sub-circuits illustrated so far were all taken from the results of analysing circuit

iy

5 RESULTS

57

¢880. It will be instructive to look at the detailed breakdown. The sub-circuit picking
Circuit | Sub-circuit | # gates | # nets | # sPls | Worst-case | Exact | Time (s) | Reduction (%)
c880 Ixx 16 30 14 sub-circuit too large to analyse
2 7 12 5 12 12 5.54 0.0
3 8 15 7 sub-circuit too large to analyse
4 5 10 5 24 20 8.27 16.7
5 5 8 3 8 6 0.32 25.0
6 2 2 4 0.08 0.0
7 10 15 5 39 35 6.94 6.94
8 8 14 16 sub-circuit too large to analyse
9 20 31 11 sub-circuit too large to analyse
10 2 3 12 8 0.67 333
11 2 E 3 13 13 0.28 0.0
12 7 15 8 sub-circuit too large to analyse
13 12 24 12 sub-circuit too large to analyse .
14 3 7 4 7 7 1.15 0.0
15 4 7 3 63 44 434.69 30.2
16 3 5 2 50 38 10.73 24.0
17 3 5 2 32 24 0.65 25.0
18 3 5 2 65 49 50.93 24.6
19 2 4 2 6 0.08 25.0
20 2 4 2 6 0.08 25.0
21 4 7 3 g 0.32 0.0
22 5 6 1 6 0.04 0.0
23 5 8 3 13 13 0.32 C.0
24 3 6 3 6 0.30 0.0
25 3 6 3 6 6 0.29 0.0
26 2 3 1 18 18 0.0%4 0.0
27 10 24 14 sub-circuit too large to analyse
Average 20 | 4 | 7 3 20 16 26.09 120 |

|

Table 5: Detailed results for c880

algorithm was run with the following parameters: minfanout = 2, maxfanout = 4, lidepth =

5 RESULTS 58

3. max.rPl = 5, max_subrPl = 3 and mingates = 1. A total of 27 sub-circuits are identified
in Table 5 of which only 20 are analysed. The rest are too large in terms of the number of
Pls. Of the 20 that are analysed, fully half of them show no reduction at all. Most of these
are similar topologically to those shown in Figures 32 and 33.

The entira analysis for ¢880 takes 521.7s of which 485.6s is occupied analysing sub-
circuit 15 and 18 both of which zre small reconvergent circuits with only a single output.
The remaining sub-circuits take an average of 2s to analyse. This scenario, where a few
sub-circuits monopelise almost the entire analysis time, is repeated a number of times. Two
extreme cases of this nature can be seen in Table 4 for ¢880 taking 1277.3 minutes and 2670
taking 806.7 minutes to analyse. The breakdown of the analysis time shows that in c880
only two sub-circuits took 1276.1 minutes while the remainder took 69.7s. Cf these two,
one sub-circuit, shown in Figure 31, took 68.9 minutes while the other, shown in Figure 34,
took 1207.2 minutes. Similarly in c2670 the circuit shown in Figure 35 took 792.1 minutes

— o

~

Figure 34: Sub-circuit from ¢B80 which took the longest to analyse

to analyse. It is not clear why some circuits should take so much time while others take a

Figure 35: Sub-circuit from ¢2670 which took the longast to analyse

fraction of that. These circuits are not particularly large in terms of the number of gates or
nodes. It can only be surmised that either the heuristic is at fault or the situation required

5 RESULTS 59

a large number of class-sets to be analysad. The heuristic may have failed completely in
deciding which branches of the analysis tree are not worth exploring, resulting in the tree
being fully explored.

It seems, from examining the table, that there is no one common denominator that
would serve to indicate which circuits would achieve a greater reduction in transition count
than another. The only conclusion in this regard that can be made is that circuits with two
gates are of no use — such as the one in Figure 33. Among all the ISCAS circuits analysed, all
sub-circuits which consisted of two gates experienced no reduction in their transition counts.
Larger sub-circuits with similar results mostly had a single sPl. A few of these circuits are
shown in Figures 36. Clearly there is not much room for any reduction in the transition count

o
Do
o

> N
i/’_
Figure 36: Sub-circuits from c2670 and c432
through any analysis. However, there were a few larger circuits which wera reconvergent

structures but experienced no reduction in transition count. These were all from the circuit
¢2670. One such circuit is shown in Figure 37. It was not clear why this should be the case.

Often circuits have regular structures and as a result the sub-circuits turn out to be
identical, differing only in their location within the circuit. In c432 for instance, the results
were as shown in Table 6. The first two sub-circuits wer: too large to be analysed and sub-
circuit 11 is illustrated on the LHS of Figure 36. Sub-circuits 3 to 10 inclusive are topologically
exactly alike, as in Figure 38. It seems from the identical results obtained for these sub-circuits
that the waveforms on each of them may be the same as well. This could well be a recurrent
feature of circuits with regular structures and analysis time could be saved by exploiting this

5 RESULTS 60

1

— N
T e
™S
— o -
=D O
Figure 37: Large ¢2670 sub-circuit which experienced no reduction

|

__J|>o__4.
=) >

Figure 38: One of several identical sub-circuits from c432

since only one of such identical sub-circuits need be analyzed.

Small sub-circuits do not necessarily show no reduction in their transition counts;
circuit ¢499 shows a low reduction as the results in “Table 7 illustrates. The sub-circuits are
very small in stze, conzisting of only two or three gates. It is not only size which plays a part
but also functionality. In this case the sub-circuits were constituted entirely of XOR gates as
shown in Figure 39. Sub-circuits consisted of only these two illustrated topographies. XOR

> —— e
—) > _5

Figure 39: Typical sub-ciruits from c499

5 RESULTS 61
i Circuit | Sub-circuit | # gates | # nets | # sPIs [Worst-case | Exact | Reduction (%) | Time (¢}

c432 1 10 22 12 sub-circuit too large to analyse
2 i2 27 15 sub-circuit too large to analyse

3 5 g 4 22 18 18.2 278

4 5 9 4 22 18 18.2 2.74

5 5 o 4 22 18 18.2 2.76

6 5 9 4 22 18 18.2 2.73

7 5 9 4 22 18 18.2 2.75

8 5 9 4 22 18 18.2 275

9 5 9 4 22 18 18.2 2.76

10 5 9 4 22 18 18.2 2.75

11 3 4 1 20 20 0.0 0.04

Average 5 8 4 22 18 16.2 245

Table 6: Detailed resuits for c432

gates are clearly good candidates for transition analysis because they have no controliing value

and hence no controlling transition. An examination of the transition evaluation table shown

in Figure 40 will clarify this.

In summary, it would seem that the key factor which determines the extent of reduction
in switching activity is topology. Sub-circuits which are reconvergent regions (eg. Figure 28)

or contain reconvergent regions within (eg. Figure 29) give the best results. The next most
influential factor would seem to be functionality as evidenced by the small simple circuits

Circuiil_Sub—circuit ! # gates I # nets | # sPls | Worst-case | Exact | Reduction (%) |
g9 | 1 3 7 2 20 19 5.0
2 3 T 4 20 19 5.0
3 2 5 3 18 17 5.6
4 2 5 3 18 17 5.6
5 3 7 4 20 19 5.0
Average 5 3 6 19 18 5.2

Table 7: Detailed results for ¢499

5 RESULTS 62

N 7
N/ _

|/ N\ |
N
|
I
/

Figure 40: Transition evaluation for the XOR function

in Figure 39 showing reductions of the order of 5% even though these circuits exhibit no
reconvergence and have very low fanout nodes. In particular XOR gates would seem to be
the critical contributing factor here.

The results also indicate that fanout seems to be an element that comes into play at
times. High fanout, as in the circuit in Figure 32, can have an effect although not a very
substantial one. Last but not least, the waveforms on the nodes or nets are very important.
Waveforms with few transitions may well not result in much reduction in transition counts.
Obviously those with a higher number of transitions will have a greater chance of showing a
reduction.

It is difficult to draw conclusions about the analysis times for sub-circuits from the
results. In general, the larger the number of Pls to a sub-circuit, the longer it takes to
analyse., However, there are sufficient deviations from this in the results to detract from any

such statement. This aspect of exhaustive analysis certainly needs more investigation.

5 RESULTS 63

5.2 Sub-circuit Picking Algorithm

As described earlier the user specifies a few parameters which guide the ailgorithm
towards the type of sub-circuits desired. For the ISCAS circuits analysed, it is generally most
practical to consider nodes with fanout between 2 and 5 and logic level depths of 3 or 4.
These settings seem to give the best results. Increasing the maximum fanout results in larger

Circuit Sub-circuit | # gates | # nets [# sPls | Reduction (%)
c432 1 10 22 12 sub-cireuit not analysed
minfanout = 3 2 26 55 29 sub-circuit not analysed
maxfanout = 5 3 3 6 3 0.0
logic depth = 4 4 3 6 3 0.0
maxrPl =6 5 3 6 3 0.0
max-subPl = 5 6 3 6 3 0.0
7 3 6 3 0.0
8 5 9 4 2.7
9 5 9 4 22.7
10 5 9 4 22.7
L Average 4 7 3 8.5
[32 1 10 22 | 12 | wcecot oot seained
minfanout = 3 2 12 27 15 sub-circuit nat analysed
maxfanout = 5 3 5 9 4 18.2
logic depth = 3 4 5 9 4 18.2
max.rPl = 6 5 5 9 4 18.2
max_subPl =5 6 5 g 4 18.2
7 5 9 4 18.2
8 5 9 4 18.2
9 5 9 4 18.2
10 5 9 4 18.2
11 3 4 1 0.0
L __Average _ 5 8 4 | 162

Table 8: Detailed results for ¢432

sub-circuits which cannot be analysed by the transition counting algorithm in reasonable time

5 RESULTS 64

or exceeds the maximum number of sPls specified. Setting the minimum fanout below 2
gives a large number of small circuits which give little or no reduction in switching activity.
A similar reasoning holds for the logic level depth setting. Setting it much higher than 5
gives sub-circuits that are too large and setting it lower than 3 results in sub-circuits which
are too small. It must be noted that these numbers may well be different for other circuits
depending on topology. What is best can only be determined through experimentation. A
good illustration of this are the results in Table 8 obtained for two different sets of parameters.

The first set of parameters differs from the second set only by the logic level depth
which is 4 and 3 respectively and yet the results, in terms of transition count reduction, are
markedly different. One would have expected the results to be the other way around since
deeper sub-circuits would be expected to give better results. The reason for this state of
affairs can be easily discerned. Sub-circuit 1 is identical for both sets of parameters but
sub-circuit 2 is much larger when the logic depth is set to 4. The effect of this seems to
have been that gates which might have been picked to be part of the rest of the sub-circuits
are not available because they have been picked to be part of sub-circuit 2. Contrast this
with the case when the logic depth is set to 3; sub-circuit 2 is too large to analyse but small
enough that it does not take gates away from other sub-circuits. The sub-circuits analysed in
the first set of results which showed a reduction of 22.7%, are all of the type shown in Figure
41 while the sub-circuits analysed in the second set of results are all of the type shown in

D—>

_Do__

— >
—) >

Figure 41: Typical sub-circuit from ¢432

Figure 38. In general a larger value for the logic level depth results in fewer sub-circuits which
contain more gates, resulting in the transition counting algorithm giving a greater reduction
in switching activity. However, changing the parameters further for <499 did not make much
difference. The sub-circuits identified and the results were the same as those in Table 7. The

5 RESULTS 65

only thing that changed were the size of sub-circuits too large to be analysed.

One key point to note is that the gate coverage, the percentage of gates included in
the sub-circuits compared to the size of the entire circuit, was on average 15% for all the
ISCAS circuits considered. This is one reason the overall transition count reductions are $0
small: 15% of the gates cannot be expected to be contribute much. Higher overall reductions
can be obtained if the fraction of gates analysed is increased, though this may lead to higher
analysis times.

The running time of this algorithm is generally very small, under 1 second in most
cases, though proportional to the size of the circuit. A listing of the run times is in Table 4.
Most of the time is taken up in printing the results of the sub-circuit picking to the screen.
This is especially true for 2670 which is a large circuit of 1193 gates and there are a large
number of sub-circuits.

From the results, it is clear the performance of exhaustive analaysis is critically de-
pendent on the topology of the circuits it analyses. Certain topologies, regardless of size,
seem to cause the heuristics employed to fail resulting in 3 massive increase in analysis time.
Considering how frequently it is envisaged exhaustive analysis will be used within the frame-
work of case analysis, this is unacceptable. At present the only solution is to experiment with
different settings for the sub-circuit picking and ascertaining that analysis takes a reasonable
amount of time before proceeding with case analysis.

6 CONCLUSIONS - 66

6 Conclusions

An algorithm has been presented for computing the maximum amount of switching
activity in a given circuit while maintaining the functional relationships between nodes. The
work is a contribution to the power verification too! described in [48, 47] and is based on the
concepts elaborated therein. The algorithm has been demonstrated to work for small circuits.
Results presented have shown that the amount of reduction in switching activity from the
worst-case primarily depends on topological characteristics. In general, reconvergent circuits
give the best results. However, in rare cases the algorithm may take an unacceptable amount
of time to complete its analysis. The cause of this has yet to be determined but it appears
to stem from a failure of the branch and bound technique thereby resulting in a complete
exploration of the analysis tree. This tentative conclusion is borne out by the extremely large
number of tree nodes that were created in these particular cases.

The second most influential factor in determining the performance of the algorithm
seems to be the functionality of the sub-circuit. XOR gates, in particular, because of their lack
of a controlling value, or transitions in this case, offer the greatest potential for a substantial
reduction in switching activity. As shown in the results, circuits containing XOR gates, not
withstanding their poor topology with regard to reconvergence or fanout, still manage to post
a reduction in switching activity.

A heuristic was used to speed up the algorithm based on the assumption that a greater
amount of switching activity on the inputs of a sub-circuit will translate into greater activity on
the internal nodes. This improved the overall running time by a significant amount. However,
the assumption this heuristic is based on may not be applicable to certain circuits where the
functionality dictates otherwise. An cobvious instance of this is a ¢ircuit composed of XOR
gates.

Further work ts needed to investigate other heuristics which might help speed up the
analysis tree exploration. Aspects of the implemenation can be improved too. In particu-
lar, instead of enumerating when necessary the set of transitions possible in the next time
unit, given the current set of transition on the inputs, it is possible to create a table of this

information prior to commencing the tree-exploration. However, this information grows expo-

6 CONCLUSIONS 67

nentially and it 1s therefore necessary to develop a new way of reducing storage by exploiting

redundancy.

A simple greedy algorithm for picking sub-circuits from a given circuit has been pre-
sented. The primary pupose of this algorithm was to zllow a fast evaluation of the branch and
bound transition counting algorithm in the absence of a more comprehensive circuit partinion-
ing routine. The flexibility of this algorithm in specifying the characteristic of the sub-circuits
being picked allowed investigation of what type of circuits would be best for transition count-
ing analysis. The running time of this algorithm is negligible compared to the running time
for entire tool.

The performance of this algorithm could be improved if a way is found whereby one
could have a good idea of the number of sPls the final sub-circuit would have during the
gate picking process. This would allow termination of the gate picking before the sub-circuit
grows too large. It would also leave more gates to be possibly picked to be part of other
sub-circuits.)

The running time of this algorithm is dependent on the topology and size of the circuits
(in terms of the primary inputs) it is analysing. It is therefore necessary to have a good circuit
partitioning routine not only to improve the running time but also for good results. Results
presented have shown substantial reductions in switching activity for most circuits containing
reconvergent regtons, indicating the potential for even larger reductions should sub-circuits
be entirely reconvergent rather than only partially.

7 REFERENCES 68

7 References

[1] F. Brglez, H. Fujiwara, "A Neural Netlist of 10 Combinational Benchmark Circuits and
a Target Translator in FORTRAN", international Symposium on Circuits and Systems,
pp. 663-698, 1985.

[2] Lance A. Glasser, Daniel W. Dobberpuhl, The Design and Analysis of VLSI Circuits,
Addison-Wesley Publishing Company, 1985.

[3] Olivier Lhomme, “Consistency Techniques for Numeric CSPs”, 13" //CAJ Conference,
1993,

[4] J. W. McPherson, P. B. Ghate, “A Methodology for the Calculation of Continuous DC
Electromigration Equivalents from Transient Waveforms”, Proceedings Symposium on
Electromigration of Metals, New Orleans, LA, pp. 64-74, October 7, 19384.

[5] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide Version 3.0",
Technical Report, Microelectronics Centre of North Carolina, Research Triangle Park,
North Carolina, January 1991.

Low-Level Techniques

[6] L. Benini, M. Favalli, P. Olovo, B. Riccd, “A Novel Approach to Cost-Effective of Power
Dissipation in CMOS 1Cs", European Design and Test Conference, pp. 354-360, 1993.

[7] Na-Han Chan, “Rapid Current Analysis for CMOS Digital Circuits”, Master's Thesis,
McGill University, July 1994,

[8] Anthony M. Hill, Sung-Mo Kang, “Accuracy Bounds in Switching Activity Estimation”,
IEEE Custom Integrated Circuits Conference, pp. 73-76, 1995.

[9] Thomas Krodel, “PowerPlay - Fast Dynamic Power Estimation Based on Logic Simula-
tion”, JEEE International Conference on Computer Design, Cambridge, MA, pp. 96-100, -
October 1991.

[10] A. Nabavi-Lishi, N. C. Rumin, “Inverter-Based Models for Current Analysis of CMOS
Logic Circuits”, /EEE International Symposium on Circuits and Systems, pp. 13-16,

7 REFERENCES 69

1964,

[11] A. Nabavi-Lishi, N. C. Rumin, “Delay and Bus Current Evaluation in CMOS Logic

Circuits”, Proc. IEEE International Conference on Computer-Aided Design, pp. 198~
203, November 1992,

[12] A. Nabavi-Lishi, N. C. Rumin, “Inverter Models of CMOS Gates for Supply Current and
Delay Evaluation™, Proc. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 13, No. 10, pp. 1271-127, October 1994,

[13} Jiing-Yuan Lin, Tai-Chen Liu, Wen-Zen Shen, “A Cell-Based Power Estimation in CMOS
Combinational Circuits”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, pp. 304-209, 1994.

[14] F. Rouabti, B. Haroun, A. J. Al-Khalili, “Power Fstimation Tool for Sub-Micron CMOS
VLSI Circuits”, IEEE/ACM International Conference on Computer-Aided Design, pp. 204-
209, 1992.

[15] G. Ruanm, J. Vlach, J. Barby, “Current-Limited Switch-Level Timing Simulator for MOS
Logic Networks”, JEEE Transactions on Computer-Aided Design, Vol. 7, No. 6, pp. 659-
667, 1988.

Statistical Techniques

[16] R. Burch, F. N. Najm, P. Yang, T. N. Trick, “A Monte Carlo Approach for Power
Estimation™, IEEE Transactions on VLSI Systems, Vol. 1, No. 1, pp. 63-71, March
1993.

[17] Tan-Li Chou, Kaushik Roy, “Statistical Estimation of Sequential Circuit Activity”, IEEE
International Conference on Computer-Aided Design, pp. 34-37, 1995.

[18] B. Kapoor, “Improving the Accuracy of Circuit Activity Measurement”, 31% ACM/IEEE
Design Automation Conference, San Diego, California, pp. 734-739, 1994.

[19] F. N. Najm, S. Goel, I. N. Hajj, “Power Estimation in Sequential Circuits”, 32
ACM/IEEE Design Automation Conference, San Francisco, California, pp. 635-640,
June 1995.

7 REFERENCES 70

[20] M. G. Xekellis, F. N. Najm, “Statistical Estimation of the Switching Activity in Dig-
ital Circuits”, 31% ACM/IEEE Design Automation Conference, San Diego. California,
pp. 728-733, 1994,

Probabilistic Techniques

[21} David I. Cheng, M. Marek-Sadowska, Kwang-Ting Cheng, “Speeding up Power Estima-
tion by Topological Analysis”, /EEE Custom Integrated Circuits Conference, pp. 623-
626, 1995.

[22] Tan-Li Chou, Kaushik Roy, Sharat Prasad, “Estimation of Circuit Activity Considering
Signal Correlations and Simultaneous Switching”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, pp. 3C0-303, 1994,

[23] Mehmet A. Cirit, “Estimating Dynamic Power Consumption of CMQS Circuits”, /EEE
Intl. Conference on Computer-Aided Design, pp. 534-537. November 9-12, 1987.

[24] A. Ghosh, S. Devadas. K. Keutzer, J. White, “Estimation of Average Switching Ac-
tivity in Combinational and Sequential Circuits”, 29%" ACM/IEEE Design Automation
Conference, Anaheim, California, pp. 253-259, June 8-12, 1992.

[25] Radu Marculescu, Diana Marculescu, Massoud Pedram, “Switching Activity Analy-
sis Considering Spatiotemporal Correlations”, Proceedings International Conference on
Computer-Aided Design, pp. 294-299, 1994,

[26] Radu Marculescu, Diana Marculescu, Massoud Pedram, “Efficient Power Estimation
for Highly Correlated Input Streams”, 32°¢ ACM/IEEE Design Automation Conference,
San Francisco, California, pp. 618-622, J::ne 1995.

[27] H. Mehta, M. Borah, R. M. Owens, M. J. lrwin, “Accurate Estimation of Combinational
Circuit Activity”, 32" ACM/IEEE Design Automation Conference, San Francisco, Cal-
ifornia, pp. 618-622, June 1995.

[28] F. N. Najm, R. Burch, P Yang, I. N. Hajj, “Probabilistic Simulation for Reliability Anal-
ysis of CMOS VLSI Circuits”, IEEE Transactions on Computer-Aided Design, Vol. 9,
No. 4, pp. 439-450, April 1990.

. 7 REFERENCES 71

[29] F. N. Najm, “Transition density: A New Measure of Activity in Digital Circuits”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 12,
No. 2, pp. 310-323, February 1993.

[30] F. N. Najm, Michael Y. Zhang, “Extreme Delay Sensitivity and the Worst-Case Switch-
ing Acitivity in VLSI Circuits”, 32" ACM/IEEE Design Automation Conference, San
Francisco, California, pp. 623-627, June 1995.

[31] S. C. Seth, V. D. Agarwal, “An Exact Analysis for Efficient Computation of Random
Pattern Testability in Combinational Circuits”, 16* International Symposium on Fault-
Tolerant Computing Systems, Vienna, Austria, op. 318-323, July 1986.

[32] Chi-Ying Tsui, M. Pedran, A. M. Despain, “Efficient Estimation ¢/ Dynamic Power
Consumption under a Real Delay Model", /EEE International Conference on Computer-
Aided Design, Santa Clara, California, pp. 224-228, November 1993.

[33] Taku Uchino, Fumihiro Minami, Takashi Mitsuhashi, Nobuyuki Goto, “Switching Activ-
. ity using Boolean Approximation Method”, IEEE International Conference on Computer-
Aided Design, pp. 20-25, 1995.

High-Level Techniques

[34] M. Alidina, José Monteiro, S. Devadas, A. Ghosh, M. Papaefthymiou, “Precomputation-
Based Sequential Logic Optimization for Low Power”, /EEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, pp. 74-81, 1994.

[35] R. 1. Bahar, G. D. Hachtel, E. Macii, F. Somenzi, “A Symbolic Mathod to Reduce Power
Consumption of Circuits Tontaining False Paths”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, pp. 368-371, 1994,

[36] R. I Bahar, H. Cho, G. D. Hachtel, E. Macii, F. Somenzi, “Timing Analysis of Com-
binational Circuit. using ADDs", IEEE European Conference on Design Automation,
Paris, France, pp. 625-629, February 1994.

[37] G. D. Hachtel, M. Hermida, A. Pardo, M. Poncino, F. Somenzi, “Re-Encoding Se-
. . quential Circuits to Reduce Power Dissipation”, IEEE Transactions on Computer-Aided

"I' 7 REFERENCES 72

Design of Integrated Circuits and Systems, pp.70-73, 1994.

[38} Sasan Iman, Massoud Pedram, “Multi-Leve! Optimization for Low Power”, IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, pp. 72-377,
1994,

[39] Chi-Ying Tsui, M. Pedran, Chih-Ang Chen, A. M. Despain, “Low Power State Assign-
ment Targeting Two- and Multi-Level Logic Implementations”, /EEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pp. 82-87, 1994.

[40] T. Villa, A. Sangiovanni-Vincentelli, "NOVA: State Assignment of Finite State Machines
for Optimal Two-Level Logic Implementations”, [EEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 9, pp. 905-924, September 1990.

Pattern-Independent Techniques

. [41] Eduard Cerny, Jindrich Zejda, “Gate-Level Timing Verification Using Waveform Narrow-

ing", European Design Automation Conference (EuroDAC), Grenoble, France, pp. 374~
379, September 1994.

[42] Harish Kriplani, Farid Najm, ibrahim Hajj, “Maximum Current Estimation in CMOS
Circuits”, 20" ACM,IEEE Design Automation Conference, pp. 2-7, 1992.

[43] Harish Kriplani, Farid Najm, lbrahim Hajj, “Resolving Signal Correlations for Estimat-
ing Maximum Currents in CMOS Combinational Circuits”, 30t ACM/IEEE Design
Automation Conference, pp. 384-388, 1993.

[44] Harish Kriplani, Farid Najm, lbrahim Hajj, “Pattern Independent Maximum Current
Estimation in Power and Ground Buses of CMOS VLS! Circuits: Algorithms, Signal
Correlations and their Resolution”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 14, No. 8, August 1995,

[45] Chin-Chi Teng, Anthony M. Hill, Sung-Mo Kang, “Estimation of Maximum Transition
Counts at Internal Nodes in CMOS VLS! Circuits”, IEEE International Conference on
Computer-Aided Design, pp. 366-370, 1995.

. [46] Paul Vanocostende, Paul Six, Hugo J. De Man, "PRITI: Estimation of Maximal Current

. 7 REFERENCES 73

Derivaties in Complex CMOS Circuits using Activity Waveforms”, IEEE Journal of
Solid-State Circuits, Vol. 1, No. 1, pp. 347-353, 1993.

[47] Jindrich Zejda, Eduard Cerny, Sandeep Shenoy, Nicholas C. Rumin, "Bounding Switch-
ing Activity in CMOS Circuits Using Constraint Resolution”, European Design and Test
Conference (EDAC), Paris, March 1996.

[48] Jindrich Zejda, Eduard Cerny, Sandeep Shenoy, Nicholas C. Rumin, “Gate-Level Power
Estimation Using Transition Analysis”, Workshop on Design Methodologies for Micro-
electronics (DMM), Smolenice Castle, Slovakia, pp. 111-119, September 1995.

8 APPENDIX A 74

8 Appendix A

Two key algorithms, in pseudocode, for exhaustive analysis are given here. They do
the bulk of the work involved in constructing the analysis tree. Both algorithms are presented
in greatly simplified versions to allow one to focus on the main concepts. Insert_Depth_First
creates the tree recursively in a depth-first fashion. Insert_Terminating Nodes is used for
the few nodes which represent waveforms on the internal nodes of a sub-circuit when there
are no more transitions on the primary inputs.

void Insert_Depth_First (struct TreeNode *CurventNode, int time, int rID)
{
time++;
if (time < max_PI_res) // max_PI_res = time of last transition on PIS
{
evaluate_subcircuit (CurrentNode, rID);
// evaluate sub-circuit with the
// inputs as given by CurrentNode
if (CurrentNode != tree root)

CurrentNode->NumTransitions = count_transitions (

CurrentNode->waveforms) + CurrentNode->Parent->NumTransitions;
// store cummlative count of transitions so far
else
CurrentNode->NumTransition = 0O;

if (the analysis tree has been fully explored to the bottom once)

{
BranchViable = Check_Branch_Viability(CurrentNode);
if (!BranchViable)
{
delete (CurrentNode); // if this branch of the analysis tree
return; // is not worth analysing then delete
} // CurrentNode and exit from function
}

CurrentChild = new TreeNode from NextiInput->Input;
// New child node created

8 APPENDIX A 75

CurrentChild->Parent = CurrentlNode:
CurrentChild->time = time;

if (time < max_PI_res - 1) // if there are still transitions on

// the PIs
{
Create list of pcssible inputs on PIs for (time+2) for
CurrentChild;
Insert_Depth_first(CurrentChild, time, rID);
CurrentNode->NextInput = CurrentNode->NextlInput->next;
// advance pointer to next set of possible inputs
}
if (time == max_PI_res - 1) // If this is the penultimate set of
// transitions on the PIs
{
evaluate_subcircuit(CurrentChild, rID);
// evaluate sub-circuit with the inputs as given
// given by the waveforms on CurrentChild
CurrentChild->NumTransitions = count_transitions (
CurrentChild->waveforms) + CurrentNode->NumTransitions;
// store cumulative count of tramsitions so far
CurrentNode->NextInput = CurrentNode->NextInput->next;
// advance pointer to next set of possible inputs
Insert_Terminating_Nodes (CurrentChild, (time+1), rID);
// as there are no more transitions on the Pls
// need to compute tree nodes that huve tramnsitions
// on the intermal sub-circuit nodes only
}

8 APPENDIX A 76

void Insert_Terminating Nodes {stru.t Treelode =CurrentNode, int time, int rID)

{

CurrentChild = new TreeNode;
CurrentChild->time = time;
CurrentChild->Parent = CurrentlNede;
evaluate_subcircuit (CurrentChild, rID);
// evaluate sub-circuit with the inputs as given
// given by the waveforms on CurrentChild
CurrentChild->NumTransitions = count_transitions (
CurrentChild->waveforms) + CurrentNode->NumTransitions;

// store cumulative count of tramsitions so far
if (CurrentChild->NumTransitions > max0DFsum)
max0DFsum = CurrentChild->NumTransitions;
// If the current number of transitions for this tree
// branch > maxODFsum (the value for one complete tree
// branch analysis) then update maxODFsum
if (there exist more waveforms to be computed on internal circuit nodes
for (time+1))
Insert_Terminating_Nodes (CurrentChild, (time+1), rID);
// even if there are no transitions on the PIs at the
// current time, there will be transiticns on the intermal
// nodes dve to gate delays

9 APPENDIX B 77

9 Appendix B

The pseudocode for the sub-circuit picking algorithm is given here. It consists primarily
of three functions. pick_region takes a node and marks a set of gates according to some
given parameters returning the number of gates in that sub-circuit. pick_regional _PIs goes
through the sub-circuit and marks those nodes which are primary inputs for this sub-circuit.
delimit._region creates a boundary around the sub-circuit by marking the adjoining gates
so that they cannot be picked as part of any sub-circuit.

int pick_regions (UDMwaveforms* fnode, int lldepth, int num_region, int

max_rPIs, int max_subPI)

{

if (lldepth == 0) // if the limit on the logic level

{ // depth has been reached, set the
fnode->region_ID = num_region; // current net to be part of the sub-
return O; // circuit and exit.

}

tmpgate = fnode->fanoutgate();

if (tmpgate == NULL) // if fnode is a primary output

{
if (fnode->region_ID == 0) // if this net is not part of any

fnode->region_ID = num_region; // sub-circuit, pick this net

return O; // and exit.

}

for (fogate = fnode->fanoutgates; fogate != NULL; fogate++)
{
if (fogates->region_ID == 0) // if this fanout gate has not been
{ // picked
gatepick = 1; // set flag to indicate gate is to be
for (Inets = fogate->inputnets; Inets != NULL; Inets++)
{
if (Inets->region_ID == 0 || Inets->region_ID == num_region)

{
// If this net has not been picked or is already part of

9 APPENDIX B 78

// this sub-circuit
Inets->region_ID = num_region;
+
else
gatepick = 0; // unset flag so gate is not picked
// since the gate’s inputs are already
// part of some other subcircuit - must
// maintain disjoint sub-circuits.
}
if (gatepick)

fogate->region_ID = num_region;

else // this gate is a boundary gate and
{ // cannot be part of any sub-circuit
for (Inets = fogate->inputnets; Inets != NULL; Inets++)
{
if (Inets->region_ID == num_region) // make sure all the
Inets->region_ID = 0; // inputs to this gate
> // are not part of this sub-circuit

}
for (Onets = fogate->outputnets; Onets != NULL; Onets++)
{ // For each fanout net, if the logic level
// depth has not yet reached the limit,
// pick_region recursively from this net.
if (lldepth > 0)

pick_regions(Onets, lldepth - 1, num_region, max_rPIs);

}
}
else // if the fanout gate has already been picked
{
if (fogate->region_ID == -1 && fnode->region_ID <= Q)
{ // if the current gate has not been picked
gatevalid = 0; // && the net is not picked or a boundary

// set flag to not pick the gate.
for (figate = fnode->faningates; figate != NULL; figate++)
{ // Take care of case where a boundary

9 APPENDIX B 79

// might be dividing the same sub-circuit.
1% (figate->region_ID == num_region)
gatevalid = 1;
} // Pick the gate to remove the boundary
if (gatevalid) // dividing the same region into two.

fnode->region_ID = num_region;

int pick_regional_PIs(int r_ID)

{
for (fogate = fnode->fanoutgates; fogate != NULL; fogate++)
{ // for all agtes
if (fogate->region_ID == r_ID)
{ // if the gate is in the sub-circuit
num_gates++;
for (Inets = fogate->inputnets; Inets != NULL; Inets++)
{ // for all the input nodes
if (Inets->faningates == NULL) // if they have no fam-in
Inets->set_rPI(r_ID); // gates => they are PIs
}
for (Rgates = Inets->faningates; Rgates != NULL; Rgates++)
{ // for all the fan-in gates
if (Rgates->region_ID <= 0) // of the input nodes, if
Inets->set_rPI(r_ID); // they are not part of the
} // sub-circuit the input nodes are PIs
}
}
return (num_gates); // return the number of gates in this sub-circuit
}

‘I' 9 APPENDIX B 80

void delimit_region(int rID)

{

for (agates = all gates; agates != NULL; agates++;)

{ // for all gates which are not
if (agates~>region_ID != rID) // part of this sub-circuit
{
for (Inets = inputnets; Inets != NULL; Inets++)
{ // for whom the input nodes
if (Inets->region_ID == rID) // are part of the sub-circuit
{
agates—>set_region_ID(-1); // set that gate to be a
break; // boundary gate
}
}
for (Inets = ocutputnets; Inets != NULL; Inets++)
{ // for vhom the output nodes
if (Inets->region_ID == rID) // are part of the sub-circuit
{
agates->det_region_ID(-1); // set that gates to be a
break; // boundary gate
}
}

How the three functions given above are used is illustrated in the fellowing short

main() program. First the list of nodes, arranged in order of decreasing fanout, is traversed
taking only those nodes which have a fanout between minFANOUT and maxFANOUT, both
parameters having been specified by the user. Sub-circuits are picked using these nodes.
Then the list of nodes is traversed again, this time examing all nodes which have a fanout
greater than maxFANOUT. The idea is to give priority to those nodes which may be most useful
in producing ‘good’ sub-circuits, namely those which have a fanout between a certain range.

The remaining nodes are more likely to produce circuits that are too large but the max_subPI

parameter goes some way towards controlling this.

9 APPENDIX B 81

void main()
{
while ((fanout_list != NULL) && (fanout_list->nodefancut >= minFANOUT))
{
if (fanout_list->node <= maxFANOUT) // if the node has fanout
// betweer minFANOUT and maxFANOUT

{
pick_region(fanout_list->node, maxLLDEPTH, region_count, max_rPIs,
max_subPI);
// pick a region attached to it
if (number of gates in region > minGATES)
{ // if the region has # of gates
// greater than the min specified
delimit_region(regiorn_count);
// create a boundary around it
pick_regional PIs(region_count);
// mark the PIs to this sub-circuit
region_count++; // increment sub-circuit count
}
else
delete_region(region_count); // this region will not form a
// sub-circuit since it is too small
}
(fanout_list->node)++; // next node in list
}
fanout_list->reset; // reset list to point to first node

while ((fanout_list != NULL) && (fanout_list->nodefanout >= minFANGUT))
// if the node has fanout > minFANQUT

pick_region(fanout_list->node, maxLLDEPTH, region_count, max_xPIs,
max_subPl);
if (number of gates in region > minGATES)
{
delimit_region(region_count);

// create a boundary around it

9 APPENDIX B 82

pick_regional PIs(region_count);

// mark the PIs to this sub-circuit

region_count++; // increment sub-circuit count
}
else
delete_region(region_count);; // this region will not form a
// sub-circuit since it is too small
}
(fanout_list->node)++; // next node in list

