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Abstract

Spin fluctuations (SF) are magnetization fluctuations in a metal. They have been
proposed as the fundamental origins of the finite temperature properties of transition
metals. This thesis presents amorphous iron-zirconium (a—Fe.Zrigo—) as an ideal
system in which to study SF. a—-Fe Zripp-- transforms from an exchange-enhanced
paramagnet to a weak ferromagnet with increasing z, while the atomic structure
remains virtually unchanged. 7' =nhancement by SF of the effective electron mass
has been studied in ¢—Fe.Zr10,- .ow temperature calorimetry. We report the first
observation of the complete quenching or suppression of SF in a metal, achievable by
either raising the temperature, or by applying a high magnetic field. This complete
quenching allows us to rule out the formation of super—paramagnetic clusters, the only
other plausible explanation of the data. a—Fe,Zrig9_., therefore, shows the clearest

evidence to date of SF in the electronic properties.
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Résumé

Les fluctuations de spin (FS) sont des fluctuations de magnétisation dans un
métal. Les F'S ont été proposés comme les origines fondamentales des propriétés a
températures finies des métaux de transition. Cette thése présente le fer-zirconium
amorphe (a—Fe,Zr100-.) commnie systéme idéal pour étudier les F'S. a—Fe Zrigo—o
se transforme d’un para—aiment augmenté par un couplage d’échange & un ferro-
aiment faible quand la valeur de z augmente, pendant qué“ la structure atomique
reste presque inchangée. L’augmentation par F'S de la masse effective de 1’électron a
été étudiée par calorimétrie & basses températures, Ici, nous présentons la premiére
observation du “quenching” ou la suppression des F'S dans un métal, qu’on peut
faire par augmentation de la température ou par application d'un grand champs
magnétique. Ce quenching complet nous permet d’exclure la formation des régions
super—paramagnétiques, la seule autre explication des résultats. Donc, a—Fe.Zr1gp—-
montre, jusqu’a maintenant, une preuve la plus claire des F'S dans les propriétés

* -
électroniques.
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Chapter 1

Introduction

Historically, an understanding of magnetism in solids has been approached from two
perspectives. In the local moment picture, which applies in magnetic insulators and
rare earth f-electron metals, the moments are treated as being completely localized,
each associated with one particular atom in a solid. In the completely opposite
itinerant moment picture, which applies to alkaline, alkaline earth and noble metals
in an applied magnetic field, electrons are treated as being completely delocalized and
existing in an energy band. Controversy about which picture applies in d-electron
transition metals, notably the iron group metals (Fe, Co, Ni), lasted fifty years. While
the ground state properties of the iron group metals were finally demonstrated to be
explainable within the itinerant model, mean field theory was unable to predict finite
temperature properties. The challenge, both to experiment and to modern theories
of magnetism is to therefore explain the finite temperature magnetic properties of
d-band metals.

The failures of mean field theory can be traced to its neglect of fluctuations.
Fluctuations may affect the static mean field in a system whose response is non-linear.
Dubbed spin fluctuations (SF), magnetization fluctuations in an itinerant magnet
determine magnetic properties at all finite temperatures, particularly in weak itinerant
ferromagnets. Modern theories of d-band magnetism incorporating SF promise a

unified picture of magnetism which reduces to the itinerant or localized picture in
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appropriate limits.

Generally, measurement of static magnetic properties cannot unambiguously iden-
tify the presence of SF. Consequently, experimental evidence for the existence of SF
has come mainly from observations of the SF' scattering effects on electronic proper-
ties and from neutron scattering results. Many experimental studies have investigated
weakly magnetic d—~band metals, like NizAl, ZrZn, a.nd InScs, often as the compo-
sition is varied slightly off that of the stoichiometric crystal. This allows the study
of SF as the strength of the magnetism is varied through the critical concentration
for magnetism. The conclusions of these studies are often weakened, however, by the
unfortunate necessity of comparing measurements from a perfect crystal with those
from off-stoichiometry crystals containing different numbers of defects.

We present amorphous iron zirconium (e—Fe,Zr;o0-z) as an ideal system in which
to study spin fluctuations. On adding an appropriate amount of iron, this system
undergoes a transition from a nearly ferromagnetic metal into a weak itinerant fer-
romagnet. The advantage of the glassy structure of this system is that the atomic
arrangement is virtually unchanged over a wide composition range. We have studied
the effect of SF'scattering on the effectve electron mass in a—Fe_Zr 09—, by measuring
the low temperature specific heat, Cp(T), of a—Fe,Zryg0—, at finely spaced intervals
of composition z near the critical composition of z, ~ 37% . These measurements
show an enhancement of the effective electron mass at low temperatures (T'<5 K)
which disappears at higher temperatures (T'>7 K). We have identified this mass en-
hancement as arising due to SF. This view is supported by the observation that the
mass enhancement is greatest for samples right near the critical concentration.

Since the spin fluctuation temperature, Tsp, the characteristic energy scale of SF,
is very low (~ 7 K) in a—Fe_Zri00-2, we are able to observe for the first time the
vanishing of the SF at higher temperatures. We also report the first observation of
the complete quenching or suppression of SF modes by high magnetic fields.

Many authors [1,2] have warned that the effect of magnetic clustering may appear

as SF effects in Cp(T") . Because, however, the SF may be completely quenched in
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one of our samples, we are able to rule out the existence of magnetic cluster formation
in this sample using thermodynamic arguments.

In Chapter 2, we present the Weiss and Stoner theories of magnetic order, and give
an account of their successes and failures. Modern theories of magnetism incorporat-
ing spin fluctuations are then discussed along with their experimental consequences.
Previous experimental work on a—Fe Zrypp_= is also reviewed in Chapter 2. Fabri-
cation of a—Fe_Zr;go_. ribbons is discussed in Chapter 3, and a description is given
of important sample characterization techniques. Precision absolute calorimetry is
necessary to compare SF effects in different samples and a discussion of this difficult
low temperature measurement is given in Chapter 4. Previous magnetometry results
are re-interpreted in Chapter 5, and the results of calorimetry and magnetocalorime-
try measurements are presented and discussed. Chapter 6 summarizes the important

results of this study and discusses suggestions for future work.



Chapter 2

Background

2.1 Local Magnetism

The simplest picture of magnetism is that of elementary magnetic moments localized
on individual atoms in a solid. This picture is found to apply in the vast majority of
magnetic solids and many of the concepts introduced here aid in an understanding of
itinerant magnetism.

Classically, according to the Bohr-van Leewen theorem [3], magnetic phenomena
in solids should not exist at all. Quantum Mechanics is necessary for an understanding
of the fundamental origins of the elementary magnetic moments, i, which combine
to produce a measurable magnetization, M. The discrete electronic energy levels of
the free atom lead to the formation of an electronic magnetic moment, jZ, which is
given by:

i =—g(J,L,S)psd (2.1)

where pp is the Bohr magneton. The total, orbital and spin angular momentum of
the electrons in the atom (J, L and S respectively) are calculable using Hund’s rules.
The Landé factor, g(J, L, S), is given by [4]:

3, 1[5(5+1) - L(Z+1)

Q(J’L:S) 7T 9 J(J-l-l) ’

(2.2
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if the electronic g~factor is taken as exactly 2.

2.1.1 Local Paramagnetism

In an applied magnetic field, H , an atomic moment acquires a magnetostatic energy,
i H = g(J,L,S)upJ . H. This energy, and simple statistical mechanics, allows us
to calculate the volume magnetization, M(H,T), of a gas of N isolated atoms in
equilibrium at a temperature, T'.

() o N (oL S
M(H,T)_MO(T)-g(J,L,S)pBJVBJ( 2Skel) )

where E(u) is the Brillouin function [4]. For small fields, the magnetic volume
susceptibility, x(T'), can be written in CGS units as:

ooT) = P _PELSMIULON g3, L S
X =xe@) = gg=""3pr v T pr <"
2
ers N
xo(T) = 4L (2.4)

3kgTV

This expression is the Curie law which describes paramagnetism in any system of
non-interacting local moments at low enough fields. In a solid, if the ionization state
of the magnetic atoms is known, the Curie law can be used directly to calculate x(T').

In paramagnetic rare earth metals, for instance, the magnetic moment of the f-
electron ion calculated by Hund’s rules and equation 2.1 agrees well with the magnetic
moment determined from the experimentally observed Curie law [5].

In transition metal salts, d—electron wavefunctions centered about the metal ion
are extended in space, so that the ion cannot be treated as isolated. Crystal electric
fields from neighboring atoms, with sufficient asymmetry, cause L levels to be split
such that the ground state has I = 0. In this case, J = § for the ion gives Curie
moments in good agreement with experimentally observed susceptibilities of transition
metal salts [6]. This suppression of the orbital moment, L, in d-electron salts is known

as orbital quenching [5].
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2.1.2 Weiss Theory of Local Magnetic Order

The most obvious manifestation of magnetism is ferromagnetism, which refers to the
experimental observation of a spontaneous magnetization in a solid in the absence of
an applied magnetic field. The earliest theory of ferromagnetism was the phenomeno-
logical Weiss molecular field model [5). In this treatment, an elementary moment feels

a molecular field, AM, proportional to the overall volume magnetization in addition

to the applied field H. The resultant effective field is:
H EFF = H+4 MM ’

where A is the dimensionless molecular field constant. The magnetization is deter-
mined by assuming that the system responds to the effective field just as if it were an
externally applied field. The actual origin of the effective field constant, A, (or for that
matter the origin of the elementary moments themselves) was unknown classically.
Estimates of A due to dipole-dipole coupling were 1000 times too small compared
with observed values of ~10* [3].

The magnetization, M, of a system of interacting local moments can now be
determined simply by inserting Herr into the expression for the magnetization of
the non-interacting system. Equation 2.3 becomes:

= (22)

If H = 0 and we define u = AM/T, then this equation becomes:

ul
T = Mu(’u.).

In Fig. 2.1, Mo(u) is plotted together with the straight lines, wT'/), for different
values of /A, At small values of u, My(u) can be approximated by xcTwu while
at high values of u, My(u) curves over and eventually saturates to g(J,L,S)usJ.
As can be easily seen from the figure, the equation has a non-zero solution, M, for
small values of T'/A, or, more precisely, when ©T'/X < x¢(T)Tu. The ferromagnetic

ordering temperature or Curie temperature, Tc, below which there is a spontaneous
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T>T
A

M
g(I,L,Sy I—

u=AM/T

Figure 2.1: Weiss molecular field theory of ferromagnetism in a system of interacting local moments.
The solid line is the non-interacting magnetization Mp({u) and the dashed lines are 4T/ for different
values of T'/A.

magnetization, is given by:

1
)\I_’z.ﬂﬁ
kg V'’

Axe(Te)

or Teg = (2.5)

using the Curie law. At T¢, M=0, but as the temperature decreases, there is a
solution for M # 0 as shown in Fig. 2.1. As T — 0, v — oo and the magnetization
saturates at g(J, L, S)upJ i with all moments aligned. This is a critical test of the
Weiss model, i.e. that the spontaneous magnetization at T = 0 is directly derivable
from J. At finite temperatures below T¢, the spontaneous magnetization, M(T'), can
be solved for numerically and compared with experiment.

At high temperatures, there is no spontaneous magnetization, but if H #0 then:

M = xc(T)Hgrr = xc(T)(H + AM)
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so0 that:

X = Gg =%/ =xe(T)) (26)

This is a more general equation which relates the non-interacting susceptibility, in
this case x¢(T), to the susceptibility of a paramagnet, x(T), in the presence of
interactions (X # 0). Inserting the Curie susceptibility, xo(T") from equation 2.4:

x = xe(T)/(1 -Tc/T) (2.7)

Piss N
X = 3k5(T — @GW) Tf-’ where @cw = Tc. (2.8)

This equation, called the Curie-Weiss (CW) law, is a first order correction to the
Curie law. The Curie-Weiss law accounts for the effect of interactions between local
moments on the paramagnetic susceptibility. While it strictly applies only to systems
of local moments, the Curie- Weiss law has been used to parameterize the susceptibility
of virtually all magnets above the ordering temperature. In Weiss theory, @cw = T¢,
but experiments usually yield different, even negative, values.

Another critical test of the Weiss theory is that the ordered moment, p,, at T =0
is the same as the high lemperature paramagnetic moment, p.. The ordered moment,

P, is derived from the magnetization at T' = 0:

\ |4
P = %E%Mﬁ (2.9)

The Curie moment, p, is determined from the high temperature susceptibility:

dx17?
PEH = 3kp [ :T ] = pe(pe + 9(J, L, S)pp)- (2.10)

From these definitions and equations 2.3, 2.4, 2.8, p, = p. = g(J, L, S)upJ, so that

for a Weiss local magnet, the moment ratio, p./p,, is unity.
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Weiss local moment theory correctly describes virtually all insulating f- and d-
electron compounds. By this, we mean that the observed moment ratios are unity
and the ordered moments are given by equation 2.1. Weiss theory can also be used to
describe many rare earth f-electron metals. Here, the f-electrons, buried deep within
the atom and shielded by outer conduction electrons, behave as local moments. Weiss
theory is mean field theory which, with slight modifications, can be made to describe
magnetic ordering in many exotic magnetic structures such as anti—ferromagnetic,

ferrimagnetic or helimagnetic structures [5,7].

2.1.3 Deviations from Weiss Theory

Weiss theory qualitatively describes the energetics of the magnetic phase transition
in local moment systems. By this, we mean that values of molecular field parameter,
A, taken from different measurements, agree and can be roughly used to calculate
the Curie temperature [5]. This implies that Weiss theory contains all the ingredients
necessary to describe the thermodynamics of the phase transition. On closer exami-
nation, however, small deviations of the experimentally observed behaviour of M(T)
from the predictions of Weiss theory occur in two temperature regimes: at very low
temperatures and at temperatures near Tc.

At low temperatures, the spontaneous magnetization, M(T'), is reduced more
quickly with increasing temperature than determined by the Weiss model which pre-
dicts that M(T) should decay exponentially with temperature according to the Boltz-
mann factor (M(T) « exp AE/kpT). This is simply because, in Weiss theory, the
magnetization decays due to single spin flips (|| T]]). It can be shown, however, that
spreading a single spin~flip sinusoidally over all of the spins with a wavevector, ¢,

leads to magnetic excitations with a lower magnetic energy:
hw(q) = Dg?. (2.11)

These excitations are called sﬁin waves or magnons. Equation 2.11 is the spin wave

dispersion relation and D is the spin wave stiffness. Since hw(g) — 0 at §— 0, these
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. low energy ezcitations dominate the behaviour of M(T') at low temperatures.
At a temperature, T, spin wave populations are given by the Bose function, ng(g).
The magnetization, M(T'), and specific heat, Cp(T), resulting from spin wave excita-
tions are calculated as being proportional to the total number of spin waves and the

derivative of the total energy respectively.
M(0) — M(T) j ngy (hw(d) d*q o« T}

Cp(T) %; [/: np (hw(3)) hw(cj')dsq] x T% (2.12)

e ()]

where : np(e)

The prominence of the spin wave contribution at low temperatures is a consequence of
the fact that thermal excitation need not destroy the magnetization by flipping spins
completely, but merely by canting them (T./—\ 1./ +"\1). Spin waves are, there-
fore, transverse ezcitations [8]. The T'7 behaviour in M(T') and Cp(T), characteristic
of spin waves, has been observed in many insulating and metallic systems [5].

The second region where the Weiss mean field theory is inapplicable is near the
Curie temperature. Weiss theory predicts a second order phase transition. The effect
of fluctuations in the magnetization. must be explicitly included in renormalization
group theory, which is appropriate for a magnet near the critical point. These mag-
netization fluctuations exhibit scale invariance and lead to power law divergences of

the thermodynamic quantities in temperature. In particular [4]:
M(T) « (Te—-TF T<To

x(T) « (T-T¢)™ T>1¢
Cu(T) « |T" — Te|™=. (2.13)

Weiss theory predicts # = ; and ¥ = 1. Experiment, as well as more modern theories,

. give 8 ~ ; and 4 = 1.3 [4]. The Cp(T) exponent, a, observed to be or order 0.1, is not
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definable in Weiss theory, which predicts a characteristic second order discontinuity
in Cp(T') at Tc. Finite values of a, above and below T, are an indication of how the

phase transition is smeared out by fluctuations.

2.1.4 Exchange and Correlation

We now know that the energy which gives rise to magnetic ordering is not magnetic,
but electrostatic in origin, The molecular field arises as a subtle consequence of
the requirement that electrons must comply with the Pauli exclusion principle which
says that: no two electrons may occupy the same quantum state. Since electrons
are indistinguishable, for a system of N electrons at positions, 7;, and with spins,
§;, the square of the N-electron wave function, |¥ (7131, 7232, 7233...7x3x) |*, must
remain unchanged upon the interchange of any two electrons. For electrons, the
Pauli principle can be restated as : the total many-electron wavefunction must be

antisymmetric with respect to the ezchange of any two electrons :

- = —

-4 - — — - = -4 I e — - —
¥ (7’131...T;s;...Tij...TNSN) = —V¥ (1'1.91...r,-s_.,-...r;s.-...rN.sN) .

Let us consider the 2—electron wavefunction describing the electrons in the hydro-
gen molecule (H;), the simplest “solid”. The two electron Hamiltonian for the H,

molecule may generally be written as:
H ="Hi +Haz + Hy

where H; and H, are the Hamiltonians of electrons #1 and #2 in the absence of
interactions between them. The ground state solutions to these terms, ¢4 (71) and

@5 (72) are given by :

Hida (F1) = Eada(fi)
Haép (72) = Epdp(fs).
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The two simplest approaches to the problem are to use the Heitler-London model
or the molecular orbital model. In the former ¢, (71) and ¢p (73) are taken as the
wavefunctions describing isolated H atoms at points A and B while, in the latter,
they are molecular orbital wavefunctions corresponding to the Hi ion with 2 bond
distance A — B. These two models correspond to the local and itinerant picture,
respectively, in an infinite crystal.

The interaction Hamiltonian, H, 2, contains the Coulomb interaction Hamiltonian,
e?/|7, — 71|, and any (presumably small) l-electron Hamiltonians which were not
included in H; and H,. In order to do perturbation theory and determine the first
order effect of H; 2, we must first construct spatially symmetric and antisymmetric
2—electron wave functions. Normalized symmetric and antisymmetric combinations,

Y4 (71,72) and P_(71,72), are constructed as:

P2 (F1,72) = Azl[@a (7)) ¢5 (72) + 64 (72) 65 (71)]
where the normalization, A7? = 2[1+qf

o0

and the overlap integral, a = jw qu (1) é8 (71) ¢L (72) ¢ (72) dr1dPra.

The 2-electron spin states are the standard spin parallel and spin antiparallel
2-electron spinor combinations, Xsriplet @0d Xsinglet- The total antisymmetrized wave-

functions may now be written as:

v, (7-"131,;2,5.2) = Py (7-‘.1’7:.2)Xdﬂglet (5'1,5'2)

v_ (7_"15'1,7—"2,5.2) = Y- (ﬁaﬁ)Xiriptet(Engz)-

We now use the Hartree—Fock approzimation (HFA), to determine the perturbed
energies of these states. The HFA is simply first order perturbation theory applied

to the properly antisymmetrized 2-electron wavefunctions. The total energy Ei of

of the ¥_ and ¥ in the HFA is therefore;

Ey = f_ : L H T, dridr,
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= f ‘YL [H:[ + Ha +7‘£1|3] ¥, d31'1d31'2

= Ea,+ Ep+243(Q@+J),
where : @ = j_ : & (71) 8 (72) Ha2da (71) b (72) dPridirs

and : J f ': &4 (71) &b (72) Ha 268 (71) a (72) dradra.

There are two new terms which appear in the energy as a result of H; ;. The direct
integral or Hartree energy, Q, is simply H,, integrated over clouds of the charge
density, e|¢(7)|?, of the unperturbed basis states. This term would result if we had
not antisymmetrized the wavefunctions. The ezchange integrel, J, has no classical
analog and occurs as a result of the antisymmetrization of the basis wavefunctions.
The energy difference between (¥_), the polarized state, and (¥ ), unpolarized spin
states, is:

AE=E -E,=-2[Q(A%L-A%) +7 (4 + 4%)].

This allows us to cast as an effective spin-spin Hamiltonian, H.zciange:

.1 o o
chchaﬂgc = —-J |_§+ 281&282]
if 7 = [Q(AL-A%) +T (42 +42)],

where we have defined the ezchange constant, J, which can be positive or negative.
This form of the exchange Hamiltonian is clearly diagonal in the total spin, 41 + 53,
which means that there is a solution with both spins aligned. This solution is the
ground state if J > 0. It turns out that J < 0 in the hydrogen molecule, which is
therefore antiferromagnetic. In materials with high J, however, we may expect J > 0
which leads to ferromagnetic alignment of the spins. Hezchange reveals the physical
origin of the molecular field as arising from Coulomb interactions between eléctrons
constrained by the Pauli principle. J is proportional to the dimensionless molecular
field parameter, A, which may now be estimated. These estimates agree in order of

magnitude with observed values of A ~ 10* [3].
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All additional terms in the correct total energy, not accounted for by the (HFA),
we define as the correlation energy. Correlation hetween parallel spins is explicitly
included in the HFA and is often called ezchange correlafion. Antisymmetrization
of the basis wavefunction explicitly keeps parallel spins spatially separated. This is
because the spatial part of ¥_ is antisymmetric, ( ¥_(71, 72) = —¥_(F2, 71)), and
so there is zero amplitude at 7} = 7. The inter-electronic Coulomb energy can thus
always be lowered by choosing this ferromagnetically ordered wavefunction. The HFA
is, therefore, prejudiced in favour of ferromagnetic order. The correlation energy is so
named because it must account the correlations existing between electrons of opposite
spin which also avoid each other because of Coulomb repulsion. The inclusion of the
correlation energy must correct the prejudice of the HFA. Consequently, the corre-
lation energy must work against ferromagnetic order. The correlation Hamiltonian
cannot be cast as we did H,zchange, so that the total spin is no longer a good quantum
number and the ferro/antiferromagnet wavefunctions are not static solutions. Corre-
lation is largely accounted for in a local Weiss model since the electrons are explicitly
confined to sit at separate atomic sites, thus avoiding each other completely. Proper
account of the correlation energy in a metal, however, defines the unresolved problem

in the theory of itineraat magnetism.

2.2 Itinerant Magnetism

The iron group metals (Fe,Co,Ni) are the only transition elements which are ferro-
magnetic at room temperature. In these metals, we would expect the orbital angular
momentum to be quenched (L = 0), so that J = S. The expected ordered moment
from Weiss theory is, therefore: —g(J, L, S)|J|gs = —g(S,0, §)Sup = —28up. Since
the total spin, S, is always an integer or half integer, this means that local ordered
moments observed in d-electron metals must be in integral multiples of ug.

It is immediately evident that the local moment picture cannot be used for the iron

group metals since their ordered moments are non-integral (pur. = 2.22up, pco =
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Figure 2.2: Rhodes-Wolfharth Plot for various transition metal elements and alloys taken from
ref. [10]. The moments p, and p, are defined in equations 2.9 and 2.10.

1.7pg, pni = 0.61xp). Also the moment ratios, p,/p., exceed 1 by as much as 40%.
Weak ferro-magnets (e.g. NisAl, ZryZn, Scyln) are a class of d-electron magnetic
alloys with extremely low ordered moments (~ 0.1up) and high values of p./p, (up to
10)[9] Clearly the local moment picture is inapplicable in these metals. Values of the
moment ratio are displayed in Fig 2.2 for many transition metal elements and alloys.
This is referred to as the Rhodes— Wolfharth plot.

In the following sections, we discuss the itinerant electron model, which is capa-
ble of explaining the existence of non-integral ordered moments and moment ratios

different from unity.
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2.2.1 Free electron theory

Electrons can always lower their kinetic energy by occupying the entire sample volume
instead of only the volume near a particular atomic site. For core electrons which
occupy filled inner shells in the atom, the negative atomic binding energy of the
electron outweighs the lowering posrible due to delocalization. If the binding energy
is small, however, as we may expect for electrons in outer partially filled shells, then it
may be energetically favourable for the electron to occupy the entire sample volume.
This is the case in simple metals, such as sodium, where conduction electrons are not
localized on any particular atom and can be treated as being nearly free.

In the Sommerfeld free eleciron model of a metal, electrons feel no potential except
that which confines them to the sample volume, V', The energy of an electron with
a wavevector, k, is then simply its kinetic energy, hi%k? /2m, where m is the electron

mass. The volume confinement requires that the wave vector conform to the relation:
- 27[' - Y A
k= \:‘/_V_ [n,z -+ nyJ + nzk] N (2.14)

The reciprocal lattice vectors, K = VN E, can be defined as the wavevector states
allowed to an electron confined to the unit cell volume, V/N. Each k state can
accommodate two electrons: one with spin up (1) and one with spin down (|).

In accordance with the Pauli principle, at T = 0, N electrons fill N states, starting
from that of zero energy, up to the Fermi energy, cp. In wavevector space the locus
of states with energy er is given by hzic‘fp/ 2m, which defines the Fermi sphere. The
Fermi wave vector, kr, is completely determined by the electron number density,
N[V, so that ep can easily be calculated and is of order k5(10* K).

Since the n; of equation 2.14 are of order 107, we can treat the set of allowed
wavevectors as a continuum characterized by a density function. From equation 2.14,

we can calculate the number of states, AN, in the wavevector space volume element
d*k as : |

VAk3=2V

e (2r)’ drk Ak

AN = 2
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AN o« +feAe

The density of electron energy levels, Ny(e), for a gas of free electrons can thus be
written, since, by definition of er, ;7 No(e)de = N, as:

AN 2N [e

— ) =—/— if ise). .
( A ) 3ep\ sy L€ > 0, (zero otherwise) (2.15)

The Fermi function, f.(c), describes how electron states are populated at a finite

NQ(E) = lim

Ae—0

temperature, T'. It turns out that the only electron states whose occupations are
significantly changed from that at T' = 0 are those with energies within kpT of cp.
The density of states at the Fermi level, No(eF), is a most important quantity since
No(ep)kpT is roughly the number of electrons which can change their energy and
therefore contribute to measurable electronic properties. We note in passing that,
since No(er) & €5 = 2m/(h?k%) and since kp is only a function of the electron
density, No(er) is proportional to the electron mass, m. Sommerfeld free electron
theory works surprisingly well, considering its crudeness, and gives good order of
magnitude estimates for almost all electronic properties.

We can derive the specific heat, Cp(T'), of a gas of non—interacting electrons [4,11]

by noting that the total energy at a temperature T is:

e = f_: fu(e)No(e)ede (2.16)
where : N = f_: fu(€)No(e)de (2.17)
fule) = [1 + exp (%—;%)] - ,

where u is the chemical potential and f,(€) is the Fermi function. To simplify this

calculation, we make use of the Sommerfeld expansion [4] which, for any function,
H(e), is:

[ : fe)H(e)e = f_: H(s)de+%2(kBT)’ H(p) +0(T%).  (2.18)
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The energy now becomes:

€ = f: No(e)ede — .%3 (kpT)? [No(e)el.-,, - (2.19)

The conservation requirement of equation 2.17 allows us to calculate the first order
shift in the chemical potential, p, [4] at a temperature, T, from its value of e at
T=0;

_. = 2 [ No(er)
p=EFr— (ksT) [No(sr) . (2.20)
Inserting this into equation 2.19 gives:
m 2
e = f_ Nu(e)eds-l-%-(kBT)z No(er),
therefore : C = & T =
erefore : Cp(T) = T3 3T No(er) = 1T (2.21)

This important relation tells us that Cp(T') is given by the classical value of 3kz, times
No(er)kpT, the number of electron states which have their occupations significantly
different from that at 7' = 0, times some constants of order unity. Since, as discussed,
No(er)x m, the ratio of the measured linear coefficient, 7, of the low temperature
Cp(T') to that of a free electron gas, 4o, is universally referred to as the effective
electron mass, m* = ~v/7o.

In a crystalline system an electron feels a potential which has the periodicity of the
lattice. In this periodic potential, the free electron wave functions combine to form
Bloch states which are still itinerant and can still be characterized by a wavevector,
k. In this nearly free electron model [4], it can be shown that electron state ener-
gies are significantly modified from their free electron values only where the electron
wavevector is near Brillouin zone boundaries of the reciprocal lattice corresponding
to the crystal. The resulting energy dispersion curve, e(E), has forbidden energy gaps
near Brillouin zone boundaries and so is broken up into erergy bands. For Fermi
wavevectors near Brillouin zone boundaries, the potential can have a profound effect

on the Fermi sphere, distorting it in some cases beyond all recognition into the general
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Figure 2.3: Energy level scheme describing the magnetic splitting of electron density of states a)
of an unmagnetic metal, b) of an paramagnetic or weakly ferromagnetic metal and ¢) of a strongly
ferromagnetic metal,

Fermi surface. The equations of free electron theory can be salvaged if we define an

Qe e 1 de

3 -1 . . . -
effective band mass, m* = k? [F] , and an effective Fermi velocity, ir = ;5.

2.2.2 Pauli Paramagnetism

A metal can show paramagnetism without a local moment. Fig. 2.3a shows an energy
level scheme corresponding to a partially filled electron band. If we choose to distin-
guish spin, then the density of { and | spins in each spin sub~band, Ny(c) and N(¢),
are both 3 Ny(e). Occupying the band with N electrons then gives each sub-band
N/2 electrons. If we now apply a small magnetic field, H, then the energy of the
spin sub-bands is split by an energy 2A. From equation 2.1, each free electron has
a moment ~g(J, L, S)|J|gs = -9(3:0,%) (-}) pp = —1lpp, so that A is simply the
Zeeman splitting, ug H. The T electron thus acquires an additional magnetic energy

+A and likewise the | electron acquires —A, The densities of states in the presence
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of A can be written:

Nie) = %No(s —A)~ -;-[No(e) _NY(e)A] HA<e
Ni(e) = FNofetA)w 2 [No(e) + Ni(e)A] if A < e

Since A < ep for the highest experimentally accessible fields, the approximations are
valid for ¢ near ep. These energies are the only ones for which electron occupation
changes significantly so that other energies are irrelevant to the problem.

The resulting situation is displayed in Fig. 2.3b, which shows that some of the
electrons in the T sub-band spill into the | sub—band. The number of electrons in

each sub-band (n; and n|) 