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Abstract

For realistic nanostructures, there are inevitably some degree of disorder such as

impurity atoms, imperfect lattices, surface roughness, etc.. For situations where dis-

order locate randomly in the nanostructure, any calculated quantum transport results

should be averaged over disorder distributions. A brute force approach is to generate

many disorder configurations, calculate each of them, and then average the results.

For atomistic first principles modeling, such a brute force averaging is computationally

prohibitive - if not impossible, to perform. It is therefore very important and useful

to develop a theoretical framework where the disorder averaging is done analytically

before atomic first principles analysis is carried out.

In this thesis, we have developed such a first principles non-equilibrium quantum

transport theory and its associated modeling software for predicting disorder scatter-

ing in nano-electronic devices. Our theoretical formalism is based on carrying out

density functional theory (DFT) within the Keldysh non-equilibrium Green’s func-

tion (NEGF) framework, and a non-equilibrium vertex correction (NVC) theory for

handling disorder configurational average at the non-equilibrium density matrix level.

In our theory, we use the coherent potential approximation to calculate disorder av-

eraging of the device Hamiltonian and one particle Green’s functions, and use NVC

to calculate correlated multiple impurity scattering at the non-equilibrium density

matrix level. After the NEGF-DFT-NVC self-consistent calculation is converged, we

calculate the transmission coefficients by a second, unavoidable, vertex correction.

The NEGF-DFT-NVC theory allows us to predict non-equilibrium quantum trans-

port properties of nanoelectronic devices with atomistic disorder from first principles

without any phenomenological parameters. The theory and implementation details

are presented.

We have applied the NEGF-DFT-NVC method to investigate several important

problems associated with disorder scattering in nano-electronic device systems. These

include interface roughness scattering in Fe/vacuum/Fe magnetic tunnel junctions;

the diffusive scattering of carriers due to oxygen vacancies in Fe/MgO/Fe magnetic

tunnel junctions; the surface roughness scattering that enhances resistivity of cop-

per interconnect wires; and effects of barrier layer coating for Cu interconnects. Our

xi
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investigations reveal very important role played by the atomic level defects and im-

purities to both equilibrium and nonequilibrium quantum transport properties, and

results compare favorably with the corresponding experimental data.



Résumé

Dans le cas de nanostructures concrètes, un certain degré de désordre apparâit inévitable

tel que la présence d’impuretés, de structures cristallines imparfaites, de surfaces

rugueuses, etc. Dans les situations où le désordre se matérialise aléatoirement dans

la nanostructure, tout calcul de transport quantique devrait être réalisé en tant que

moyenne sur plusieurs distributions désordonnées. Une approche par force brute con-

siste à générer plusieurs configurations désordonnées, calculer les propriétés d’intérêt

pour chacune d’entre elles, et ensuite effectuer la moyenne des résultats. Dans le

cas de la modélisation atomique à partir des principes premiers, une telle moyenne

par force brute est prohibitive en terme de temps de calcul - sinon impossible. Il

est ainsi très important et utile de développer un cadre théorique où la moyenne de

désordre est faite analytiquement avant que l’analyse par les principes premiers ne

soit effectuée.

Dans cette thèse, nous avons développé une telle théorie de transport quantique

hors équilibre à partir des principes premiers et le logiciel de modélisation associé

pour la prédiction de la diffusion par désordre dans des dispositifs nanoélectroniques.

Notre formalisme théorique est basé sur l’utilisation de la théorie de la fonctionnelle

de densité (DFT) dans le cadre de la fonction de Green hors équilibre de Keldysh

(NEGF), et sur l’emploi d’une correction de sommet hors équilibre (NVC) pour le

traitement des moyennes configurationnelles de désordre au niveau de la matrice de

densité hors équilibre. Dans notre théorie, nous utilisons l’approximation du potentiel

cohérent afin de calculer les moyennes de désordre de l’Hamiltonien du dispositif et

les fonctions de Green à une particule, et nous utilisons la NVC pour calculer la diffu-

sion par impuretés multiples corrélée au niveau de la matrice de densité horséquilibre.

Après que le calcul auto-cohérent NEGF-DFT-NVC ait convergé, nous calculons les

coefficients de transmission par le biais d’une seconde correction de sommet inévitable.

La théorie NEGF-DFT-NVC nous permet de prédire les propriétés de transport quan-

tique hors équilibre de dispositifs nanoélectroniques avec désordre au niveau atomique

à partir des principes premiers sans aucun paramètre phénoménologique. La théorie

et les détails d’implémentation sont présentés dans ce travail.

Nous avons appliqué la méthode NEGF-DFT-NVC afin d’examiner plusieurs problèmes

xiii
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importants associés à la diffusion par désordre dans des systèmes de dispositif nanoélectronique.

Cela inclut la diffusion par rugosité de surface dans des jonctions tunnel magnétiques

Fe/vide/Fe; la diffusion due à des lacunes d’oxygène dans des jonctions tunnel magnétiques

Fe/MgO/Fe; la diffusion par rugosité de surface qui décuple la resistivité de fils de

connexion en cuivre; et les effets des revêtements couche barrière pour des connex-

ions en Cu. Notre étude révèle le rôle très important joué par les défauts de niveau

atomique et les impuretés vis-à-vis des propriétés de transport quantique à la fois en

équilibre et hors équilibre, et les résultats se comparent favorablement aux données

expérimentales correspondantes.



Statement of Originality

In this thesis we report our development of a theoretical formalism and its associated

software tool for calculating disorder scattering at the nonlinear and non-equilibrium

level for quantum transport in nanoelectronic devices. Our theory is based on carry-

ing out density functional theory (DFT) calculations within the Keldysh nonequilib-

rium Green’s function framework (NEGF), and deal with the disorder effects by the

nonequilibrium vertex correction (NVC) theory. This work has resulted in a powerful

and unique quantum transport technique such that non-equilibrium electron transport

properties of realistic devices having atomistic disorder, can be predicted from first

principles without using any phenomenological parameter. My original contributions

to this work include:

• Derivation and implementation of the NEGF formalism for quantum transport

within the tight-binding linear Muffin Tin orbital method (Chapter 4).

• Formulation and implementation of the NVC theory using a many-body per-

turbation approach within the NEGF-DFT formalism such that the disorder

averaging at non-equilibrium can be carried out at the density matrix level

(Chapter 5). This is the first time in literature for solving the problem of

non-equilibrium disorder scattering, which represents a significant theoretical

advance for quantum transport theory. The associated software implementa-

tion provides a most efficient, accurate and powerful modeling method for a

wide range of applications.

• Design and develop the comprehensive software package with full parallelization

that implements the NEGF-DFT-NVC formalism. Many important computa-

tional algorithms have been developed and applied for fast and accurate compu-

tation, these include: 1) Renormalization-decimation technique: most efficient

for calculating surface Green’s functions; 2) Real space technique for boundary

condition of the device; 3) Techniques for incorporating the coherent poten-

tial approximation and NVC self-consistent solution into the entire electronic

structure calculation; 4) Using the geometry symmetry of the device to save

k-sampling; 5) Full Parallelization over spin, energy and BZ k-points computa-
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tion; 6) Recursive Green’s function technique for inverse of tri-diagonal matrix;

7) Optimization over calculation procedures, and developing various mixers to

realize fast convergence of non-equilibrium computation.

• The investigation of effects of various disordered impurities/defects in a variety

of nano-electronic devices: interface roughness scattering in Fe/vacuum/Fe mag-

netic tunnel junctions; disorder scattering by oxygen vacancies in Fe/MgO/Fe

magnetic tunnel junctions; surface roughness scattering that enhances resis-

tivity of copper interconnect wires; and effects of barrier layer coating for Cu

interconnects.

The work in this thesis has resulted in several papers for peer-reviewed journals

[1, 2, 3, 4, 5].
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Physical Constants and Units

1 Å = 10−10 m

a0 (Bohr radius) = 0.5292 Å

me (electron mass) = 9.1096× 10−31 kg

mp (proton mass) = 1.6726× 10−27 kg

e (electron charge) = 1.6 ×10−19 C

h (Planck’s constant) = 6.626× 10−34 J s

kB (Boltzmann’s constant) = 1.38× 10−23 K

kBT (at 1 K ) = 8.616× 10−5 eV

c (speed of light) = 2.9979× 108 m/s

G0 (quantum unit of conductance) = 7.75 ×10−5Ω−1 = 1

12.9kΩ

Atomic units are used throughout this thesis unless otherwise indicated. In this

system of units, e = me = h̄ = 1.

1 unit of Length = a0 = 0.5292 Å

1 unit of Mass = me = 9.1096 ×10−31 kg

1 unit of Charge = e = 1.6 ×10−19 C

1 unit of Angular momentum = h̄ = 1.0546 ×10−34 J s

1 unit of Energy = 1 Hartree = 27.2 eV

1 unit of Time = h̄

1 Hartree = 2.4189 ×10−17 s

xviii



List of Abbreviations

TMR Tunneling Magnetoresistance Ratio

MTJ Magnetic Tunnel Junction

DFT Density Functional Theory

EQ Equilibrium

TB-LMTO Tight-Binding Linear Muffin Tin Orbital

NVC Non-Equilibrium Vertex Correction

NEQ Non-Equilibrium

NEGF Non-Equilibrium Green’s Function

XC Exchange-Correlation

PC Parallel [Magnetic] Configuration

APC Anti-Parallel [Magnetic] Configuration

xix





1

Introduction

Due to the continuing down-scaling of semiconductor electronic devices, modern tran-

sistors in today’s computer technology have entered the nanometer era. For the past

four decades, the electronics industry has followed the Moore’s observation that de-

vice feature sizes steadily decrease at a rate of roughly a factor of two every eighteen

months. According to the International Technology Roadmap for Semiconductors

(ITRS), 22 nm technology will be achieved by year 2016 when the projected min-

imum device features will be less than 10 nm and computer chips will have more

than six billion transistors[6]. The device miniaturization has brought the technology

into a new regime where the quantum phenomena of charge and spin transport be-

come important physics. In addition, the discrete properties of materials are playing

increasingly dominant roles in device operation. So far, it has become clear both

experimentally and theoretically that quantum transport in nano-electronic devices

is closely coupled to the atomic, chemical and materials properties of the device nano-

structure. Such a coupling poses new challenges to both experimental and theoretical

understanding of nano-electronic device physics.

On the theoretical side, it has been a very difficult problem to simultaneously

incorporate non-equilibrium quantum transport effects and atomic scale microscopic

details of the material, into the same device physics formalism. We begin by recalling

that the well established traditional device theory in micro-electronics has its principle

rooted in classical or semi-classical physics. As such it is insufficient or even invalid for

quantum effects. The practical modeling methods of micro-electronics are empirical

1
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or semi-empirical where material and electronic parameters are obtained by fitting

to experimental data. Such a fitting procedure is becoming increasingly expensive

and less reliable as device sizes reach the ∼ 20nm regime. The discrete properties

of the materials have already produced very large device to device variability that

has become a major problem of the device industry. Therefore, there is an urgent

need to develop a practically viable quantum transport theoretical formalism that can

make predictive modeling of nano-scale devices without using any phenomenological

parameter, namely an atomistic first principles theory and method.

For materials theory, the most powerful, practical and widely used atomistic for-

malism is the density functional theory (DFT) [7]. DFT solves the many-body quan-

tum mechanic model of the material in a mean field manner[8]. The success of DFT

is evidenced by the 1998 Nobel Prize awarded to its discoverer, Prof. Walter Kohn.

Traditionally, DFT has been applied to two kinds of problems: (i) closed/isolated sys-

tems of atoms/molecules, as in quantum chemistry; (ii) periodic systems as in solid

state physics. A nano-electronic device is however neither finite nor periodic: it is

an open boundary problem where a scattering region is contacted by external metal

electrodes and connected to the outside world. Because a current is flowing through

the system, the physics is strictly non-equilibrium process.

For non-equilibrium quantum transport theory, the most powerful and systematic

technique is the Keldysh non-equilibrium Green’s function formalism(NEGF)[9, 10,

11]. NEGF expresses quantum transport properties such as electric/spin current and

conductance in terms of various Green’s functions which can be calculated for a given

Hamiltonian of the device. In a typical NEGF theoretical analysis[10, 11, 12], however,

the device Hamiltonian and its potential terms are not calculated but assumed with

phenomenological parameters. The aim was to reveal quantum transport features

qualitatively. One can also adjust the parameters in the Hamiltonian to fit the

theoretical results to the experimental data.

During the past one and half decade, tremendous effort has been devoted to develop
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a theoretical formalism and associated modeling tool that combine the NEGF quan-

tum transport theory with the DFT materials theory. The aim of such an effort was

to achieve the capability for quantitative prediction in non-equilibrium transport

problems from atomic first principles without any phenomenological parameter. The

NEGF-DFT formalism, as first reported in Ref.[13] in 2001, has steadily evolved in to

a state-of-art first principles technique that goes beyond (i,ii) above where DFT-like

method is applied within the NEGF framework in real space[13]. The basic idea of the

real space NEGF-DFT formalism[13] is to calculate device Hamiltonian and electronic

structure by a DFT-like self-consistent field theory, populate this electronic structure

by NEGF which accounts for the non-equilibrium quantum statistics, and deal with

open device boundaries and electrostatic boundaries directly using real space tech-

niques. The fact that NEGF-DFT formalism works for steady state quantum trans-

port has been demonstrated by many direct quantitative comparison to experimental

data, as well as by recent literature which puts this formalism onto more rigorous

theoretical footing[14]. As a result, many groups in the world have developed similar

NEGF-DFT implementations [13, 15, 16, 17, 18, 19, 20, 21, 22] and it has become the

de facto standard technique for quantitative modeling of nano-electronic devices.

In traditional DFT, the electronic density is determined by the electron wave

function,

ρ(r) =
∑
i

fi|ψi(r)|2 , (1.1)

where fi is the Fermi-Dirac distribution function for orbital i. The appearance of fi

indicates equilibrium physics. In the NEGF-DFT formalism, on the other hand, the

electronic density is calculated by the NEGF G<,

ρ(r) =
1

2π

∫
dEG<(E, r) , (1.2)

where the quantity G< accounts for non-equilibrium distribution and by integrating

the electron energy E, Eq.(1.2) fills the electronic states to build the density ρ at non-

equilibrium. After ρ is obtained this way, it is used to determine the Hamiltonian
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of the system. In the NEGF-DFT formalism, the electronic Hamiltonian has several

terms including the kinetic energy term, the Hartree potential term, the exchange-

correlation term, and terms due to external fields. Even though these are the same

terms as in the conventional equilibrium DFT theory, the density that determines

these terms are from Eq.(1.2) - which is non-equilibrium, and not from Eq.(1.1).

Going to equilibrium, it can be proved that Eq.(1.2) reduces to Eq.(1.1) exactly.

Therefore, even though ‘DFT’ is used in naming the NEGF-DFT method, the theories

of NEGF-DFT and conventional DFT are qualitatively different. After the NEGF-

DFT self-consistently determined the Hamiltonian of the system, transport properties

can be calculated. For instance the electron transmission coefficient is obtained by

the following formula,

T (E) = Tr[ΓL(E)G
r(E)ΓR(E)G

a(E)]. (1.3)

where Gr,a are the respective retarded and advanced Green’s functions, ΓR/L describes

the coupling between the device and left and right electrodes which can be obtained

from the surface Green’s functions of the electrode surfaces.

Despite of its successes, so far the NEGF-DFT formalism has been restricted to

analyzing quantum transport in perfect nano-structures without random disorder.

However, any realistic nano-electronic devices inevitably contain some amount of dis-

order or imperfections, such as impurities, defects, dopants, dislocations, and so on.

Indeed, it is the unintentional impurities sitting at unpredictable random locations

that have produced the large device-to-device variability. Effects due to disordered

impurities or defects inside realistic devices are very important from both the theo-

retical and technological points of view, because quantum transport properties can

be dramatically influenced by or even built on the impurities. The examples are

the disorder effect in magnetic tunneling junctions[23], spin dependent transport in

dilute magnetic semiconductors[24], dopant scattering in semiconductor nano-wires

and transistors[25], disorder scattering in the memresitive devices[26], and so on. Un-
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derstanding the roles of disordered impurities for non-equilibrium quantum transport

has become a critical issue for device theory.

The most difficult stumbling block for materials theory of disordered systems is

the absence of translational invariance which renders many well established solid

state physics methods useless. For example, the Bloch theorem no longer holds for

disordered atomic structures and, as a consequence, momentum conservation is lost.

This turns the electron scattering from specular to diffusive1. In order to determine

physical properties, one is faced with a rather disconcerting task of examining indi-

vidually, one by one, each possible configuration of the disorder. Afterward, random

spatial distribution of the disorder require theoretical results to be averaged over a

large ensemble of the disorder configurations. For example, for disordered systems,

Eqs.(1.2,1.3) are no longer meaningful. Instead, one needs to calculate their configu-

rationally averaged results:

ρ =
1

2π

∫
dEG<(E)

T (E) = Tr[ΓL(E)Gr(E)ΓR(E)Ga(E)]. (1.4)

where (· · ·) denotes configurational average.

In first principles calculation of disordered systems, the above configurational av-

erage may be carried out over a super-cell with a translational invariant boundary

condition. This super-cell calculation can be performed by choosing an appropriate

size of the super-cell, generating many atomic configurations for a given impurity

concentration x, computing physical quantities for each configuration, and finally av-

eraging the results. Such a brute force approach is simple but is severely limited due

to the prohibitively large computational costs and the fact that the averaged results

1Throughout this thesis, specular scattering is sometimes called coherent scattering; while diffusive
scattering is sometimes called incoherent scattering. These wording should not be confused with
quantum coherence. For both specular and diffusive scattering, our theory assumes quantum coher-
ence, namely no inelastic scattering is considered and the impurities provide elastic scattering to the
charge carriers.
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depend on the super-cell size. Especially, the super-cell method becomes imprac-

tical when treating two-probe nano-electronic device systems such as those shown

in Fig.(6.2,7.1,8.1 and 8.2) because the system size becomes impossible to handle

even with a modern or even future supercomputer. For instance, there are known

situations where millions of disordered configurations must be calculated to obtain

accurate averaging to quantum transport properties[27]. It is clear that a practical

and efficient technique is desired for addressing the configurational average problem

within the NEGF-DFT framework for realizing ab initio simulation of the disordered

nano-electronic devices.

There are many different ways in which realistic materials deviate from the ideal

structure, e.g. substitutional disorder, magnetic disorder, vacancy, interface rough-

ness, etc. The substitutional disorder is known as the simplest type of disorder in

which the system is still characterized by a regular lattice and the lattice sites can

be occupied by the original host atoms or by impurity atoms. A vacancy can be

viewed as replacing a host atom by an empty atom. So far, the greatest progress in

theory toward understanding disordered materials is on the substitutional disorder.

A widely used technique is the coherent potential approximation (CPA)[28, 29, 30]

as implemented in KKR[31] and tight-binding linear Muffin Tin orbital (LMTO)

[32, 33, 34, 35] first principles methods. In CPA, an effective medium with transla-

tional invariance is constructed self-consistently to describe the substitutionally disor-

dered system. Such a restoration of translational invariance drastically reduces com-

putation complexity and allows us to apply many well established solid state physics

techniques. In particular, CPA analytically derives formula for configurational aver-

aged quantities and, afterward, evaluates these averaged quantities numerically only

once (instead of many times in super-cell brute force approach). CPA is now a well

established formalism that has seen a wide range of applications in materials physics.

More recently, CPA theory has even been developed to investigate thermal phase

transitions[36].
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However, so far the first principles CPA technique can only been applied to equi-

librium problems[28, 30, 37]. On the other hand, nano-electronic devices operate

under non-equilibrium conditions due to current flow and, for instance, one often

wishes to predict nonlinear current-voltage (I-V) characteristics of a device. There-

fore, it is extremely important to develop appropriate theoretical techniques for non-

equilibrium disorder averaging within the NEGF-DFT framework, namely, to calcu-

late Eq.(1.4). The purpose of this thesis research is to solve the problem of non-

equilibrium disorder average for non-equilibrium and nonlinear quantum transport.

To treat the non-equilibrium quantum transport properties of nano-electronic de-

vices having atomistic substitutional disorder under external bias potential, we have

developed a non-equilibrium vertex correction (NVC) theory and implemented it

into the NEGF-DFT formalism. In particular, NVC solves the problem for non-

equilibrium density averaging, and we apply CPA to self-consistently construct the

effective medium that gives the configurationally averaged one-particle Green’s func-

tion, Gr,a(E). The configurational average of NEGF which determines the non-

equilibrium density matrix is performed by the NVC theory such that:

G< = GrΣ<Ga = Gr(Σ< + ΩNV C)Ga (1.5)

where Σ< is the self-energy due to the ordered electrodes, the self-energy ΩNV C is

the central quantity of this work which is called the non-equilibrium vertex correction

describing the multiple impurity scattering at non-equilibrium. The electric current

after configurational average is evaluated using the Landauer formula which involves

an unavoidable second vertex correction self-energy,

T (E) = Tr[ΓLGrΓRGa]

= Tr[ΓLGrΓRGa + ΓLGrΩV CGa] (1.6)

where the first term on the right hand side represents specular scattering, the second
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term gives the inter-channel diffusive scattering due to the impurities. Our NEGF-

DFT-NVC formalism is derived and implemented within the tight binding LMTO

first principle framework.

By using the NEGF-DFT-NVC theory, disorder effects to nonlinear and non-

equilibrium quantum transport properties can be calculated from atomic first principle

in a self-consistent and efficient manner. The capabilities of our NEGF-DFT-NVC

method are illustrated by several representative studies of nano-electronic systems

where the disorder effects of impurities or defects are found to be very important for

electron conduction. These examples include the interface roughness scattering in

Fe/vacuum/Fe magnetic tunneling junctions (MTJ)[2]; effects of oxygen vacancies in

Fe/MgO/Fe MTJ[3]; and effects of rough surfaces in Cu interconnects[4, 5].

This thesis is organized as follows. In chapter 2, we review the basic theorems of

DFT and the Kohn-Sham equation. We introduce the exchange-correlation energy

functional, the self-consistent mean field nature of DFT. These serve as a starting

point for the first principles materials theory.

In chapter 3, we present the implementation of the tight binding LMTO method

for solving the the Kohn-Sham equation. We introduce the Muffin Tin approxima-

tion for crystals, the tight binding representation of a quantity α, Muffin tin orbital

linearization, the atomic sphere approximation, and finally the Hamiltonian matrix

in the nearly orthogonal LMTO basis.

In chapter 4, we derive the NEGF formalism for quantum transport in two-probe

electronic device structures and present its implementation in a finite localized basis

set. We introduce the useful recursive Green’s function method. Finally, we rewrite

the NEGF formalism into the tight binding LMTO framework.

In chapter 5, we present details of the NVC theory for non-equilibrium disorder

averaging of the density matrix; we also present a numerical implementation of the

NEGF-DFT-NVC formalism within the tight binding LMTO framework for quantum
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transport [1].

In chapter 6, we apply the our NEGF-DFT-NVC method to investigate the inter-

face roughness scattering effects in the Fe/Vacuum/Fe MTJ. The results of this work

can be found in Ref.[2].

In chapter 7, we present a study of the roles of disordered oxygen vacancies inside

the Fe/MgO/Fe MTJ. The results of this work has been submitted for publication at

the writing of this thesis[3].

In chapter 8, we present a investigation of random surface roughness scattering in

the copper interconnect wires. Results of this chapter can be found in Refs.[4, 5].

Finally, chapter 9 is reserved for a short conclusion, outlook and other related

applications of our NEGF-DFT-NVC currently underway.



2

Density Functional Theory

As briefly discussed in chapter 1, the density functional theory (DFT)[7] is the most

powerful, practical and widely used atomistic formalism for quantitative modeling of

materials. DFT solves the many-body quantum mechanic model of the material in a

mean field manner[8]. In this chapter, we shall briefly review DFT.

2.1 Basic theorems

In this section, we shall present two basic Hohenberg-Kohn (HK) theorems [7] that

have put DFT on firm theoretical footing. The first HK theorem states that the

ground-state properties of a N interacting electron system is a functional of the ground

electron density. Namely, if the density is known, then all the properties of the ground

state of the N-electron system become known. The second HK theorem asserts that

the correct ground-state electron density should minimize the total energy functional.

The original HK theorems were derived only for the non-degenerate ground state.

Then, M. Levy[38] in 1979 provided a more general derivation to encompass the

degenerate ground state. Here, we will follow Levy’s derivation of these basic theorems

of DFT.

We start with the Hamiltonian which describes the N interacting electrons in an

10
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external potential Vext.

Ĥ =
N∑
i=1

T̂i +
∑
i<j

1

| ri − rj |
+

N∑
i=1

Vext(ri) = T̂ + V̂ee + Ûext (2.1)

where T̂ and V̂ee are the kinetic energy operator and electron-electron Coulomb inter-

action operator, respectively. Let’s define an universal functional of electron density

for the kinetic and electron repulsion energies[38],

F [ρ] = min⟨Ψρ | T̂ + V̂ee | Ψρ⟩ . (2.2)

The minimum is searched over all the antisymmetric wavefunctions Ψ that give the

fixed density ρ

ρ = ⟨Ψρ | Ψρ⟩ (2.3)

The functional F [ρ] is universal because it is not dependent on either the specific

system or the external potential Vext. If we introduce the total energy functional

E[ρ],

E[ρ] =
∫
dr⃗Uext(r)ρ(r) + F [ρ] = ⟨Ψρ,min | T̂ + V̂ee + Uext | Ψρ,min⟩ (2.4)

where Ψρ,min denotes the wave function satisfying Eq.(2.2), then the two basic theo-

rems of DFT become:

E[ρ] ≥ EGS (2.5)

For all the possible choices of ρ, the ground state density ρGS gives the minimum:

E[ρGS] = EGS (2.6)

where EGS is the total energy of the ground state.

The proof of the first theorem is very straightforward. According to the minimum
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property of the ground state, we can easily write down

⟨Ψρ,min | T̂ + V̂ee + Uext | Ψρ,min⟩ ≥ EGS . (2.7)

This proves the inequality in the first HK theorem. To prove the second HK theorem,

applying the minimum property of the ground-state again, we find

EGS = ⟨ΨGS | T̂ + V̂ee + Ûext | ΨGS⟩ ≤ ⟨ΨρGS ,min | T̂ + V̂ee + Ûext | ΨρGS ,min⟩ (2.8)

where ΨGS is the ground-state wave function which yields the correct ground-state

electron density ρGS = ⟨ΨGS | ΨGS⟩. We can subtract the external potential term

from both side of above equation and obtain

⟨ΨGS | T̂ + V̂ee | ΨGS⟩ ≤ ⟨ΨρGS ,min | T̂ + V̂ee | ΨρGS ,min⟩ (2.9)

According to the definition of ΨρGS ,min, we can obtain a reverse relation

⟨ΨGS | T̂ + V̂ee | ΨGS⟩ ≥ ⟨ΨρGS ,min | T̂ + V̂ee | ΨρGS ,min⟩ (2.10)

The above two equations are satisfied simultaneously when and only when

⟨ΨGS | T̂ + V̂ee | ΨGS⟩ = ⟨ΨρGS ,min | T̂ + V̂ee | ΨρGS ,min⟩ (2.11)

Then we have

EGS = ⟨ΨGS | T̂ + V̂ee + Uext | ΨGS⟩

=
∫
dr⃗Uext(r⃗)ρGS(r⃗) + ⟨ΨGS | T̂ + V̂ee | ΨGS⟩

=
∫
dr⃗Uext(r⃗)ρGS(r⃗) + ⟨ΨρGS ,min | T̂ + V̂ee | ΨρGS ,min⟩

=
∫
dr⃗Uext(r⃗)ρGS(r⃗) + F [ρGS]

= E[ρGS] (2.12)
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we can see the possible degeneracy of ΨGS will not affect the above proof. The HK

theorems promise that the electron density is the fundamental variable for describing

the many-body problem of interacting electrons. Introducing the kinetic energy func-

tional T [ρ] = ⟨Ψρ,min | T̂ | Ψρ,min⟩ and electron-electron interaction energy functional

Vee[ρ] = ⟨Ψρ,min | V̂ee | Ψρ,min⟩, the total energy functional can be rewritten as

E[ρ] =
∫
dr⃗Uext(r)ρ(r) + T [ρ] + Vee[ρ] (2.13)

For Vee[ρ], we may separate it into two terms,

Vee[ρ] =
1

2

∫ ρ(r⃗)ρ(r′)

| r− r′ |
drdr′ +Wee[ρ] (2.14)

where the first term is the Hartree energy describing the classical electrostatics, and

the functional Wee[ρ] is a non-classic term of the electron-electron interaction which

is the major part of the exchange-correlation energy we shall discuss next. If the

universal functionals T [ρ] and Wee[ρ] are known, minimization of the total energy

functional E[ρ] with respect to the density will yield the ground state energy and

the electron density of the system, and all other ground-state properties can then be

derived from them.

Unfortunately, the exact form of the functional T [ρ] and Wee[ρ] are not known.

Total energy minimization therefore requires approximations for them, this gives rise

to the corresponding approximations in EGS and ρGS(r⃗) and other derivable ground-

state quantities. So far, two different approaches have been constructed for practical

applications of DFT. One approach is the orbital free density functional theory [39]

which is closely related to the original spirit of the HK theorems. In orbital free

formulation, there are many deficiencies that come from the approximate treatment

of the kinetic energy functional. The other approach, which is the standard, is due

to Kohn and Sham[8] who introduced a different partitioning of the total energy

functional so that the ground-state energy can be found by solving a set of single

particle equations. In the next section, we will derive the single particle equations
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of Kohn and Sham [8] and show how to map the interacting many-body problem of

interacting electrons onto the tractable problem of non-interacting electrons moving

in an self-consistent field. We should emphasize that DFT based calculations are in

principle restricted to systems in their ground states.

2.2 Kohn-Sham equations

Kohn and Sham in 1965 separated[8] the functional E[ρ] into the following form,

E[ρ] = T0[ρ] +
1

2

∫ ρ(r)ρ(r′)

| r− r′ |
drdr′ +

∫
drUext(r)ρ(r) + EXC [ρ] (2.15)

where T0[ρ] defines the kinetic energy of a non-interacting electron system that owns

the same electron density ρ(r) as the original system of interacting electrons. The

second and third terms are the classical Coulomb potential energy and external po-

tential energy, respectively. The exchange-correlation energy EXC contains all other

residual interactions,

EXC [ρ] = Wee[ρ] + T [ρ]− T0[ρ] . (2.16)

Although T0[ρ] is different from the true many-body kinetic energy T [ρ], it can be

treated exactly in the Kohn-Sham (KS) approach and removes the deficiency associ-

ated with approximation made to kinetic energy functional - if T [ρ]− T0[ρ] is known.

But since it is not known, some inevitably approximations have to be made (see

below).

To find the ground state quantities, we must minimize the total energy E[ρ] with

the constraint that the system contains a constant number of electrons. Using the

Lagrange multiplier µ, we apply the variational principle to obtain,

δ

δρ(r)
{E[ρ]− µ

∫
ρ(r)dr} = 0 . (2.17)



2.2 Kohn-Sham equations 15

Hence
δE[ρ]

δρ(r)
=
δT0[ρ]

δρ(r)
+ Uext(r) +

∫ ρ(r′)

| r− r′ |
drdr′ +

δEXC [ρ]

δρ(r)
= µ (2.18)

If we compare this result to a similar equation for non-interacting electrons moving

in an effective potential Veff (r
′), namely:

δE[ρ]

δρ
=
δT0[ρ]

δρ
+ Veff (r) = µ , (2.19)

we see that Eqs.(2.18) and (2.19) describe the same mathematical problem if:

Veff (r) = Uext(r) +
∫ ρ(r′)

| r− r′ |
drdr′ +

δEXC [ρ]

δρ
|ρ=ρGS

(2.20)

Hence, the ground-state single-particle density satisfying above equations (Eq.(2.18)-

(2.20)) can be found by solving the one-electron Schördinger equation for the non-

interacting electrons moving in an effective potential,

HKSψi(r) = [−∇2 + Veff (r)]ψi(r) = ϵiψi(r) (2.21)

such that

ρGS(r) =
N∑
i

| ψi(r) |2 . (2.22)

Eq.(2.21) is the well known Kohn-Sham (KS) equation where the operator acting on

the KS orbital ψi is the KS Hamiltonian. Here N is the number of electrons, ϵi is the

eigenvalue of the KS Hamiltonian. The ground-state total energy of Eq.(2.15) can be

rewritten in term of KS orbital energy ϵi,

E[ρ] =
N∑
i

ϵi −
∫ ρ(r)ρ(r′)

| r− r′ |
drdr′ −

∫
ρ(r)VXC(r)dr+ EXC [ρ] (2.23)

where VXC = δEXC [ρ]
δρ

is called exchange-correlation potential. The magic of the

Kohn-Sham DFT lies in the fact that it transforms the complicated interacting many-

electron problem into a tractable problem of non-interacting electrons moving in a
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self-consistent effective potential field. The solution of these self-consistent equations

(Eqs.(2.20)-(2.23)) yields in principle the exact ground state energy and electron den-

sity, provided that the exact exchange-correlation functional is known. Practically, a

calculation starts from an initial guess for ρ(r). One then calculates the correspond-

ing Veff and solves the Kohn-Sham equations for the ψi. Using the KS orbital one

constructs a new density ρ(r) from Eq.(2.22) for the next iteration, and the process

is repeated until numerical convergence is achieved.

The Kohn-Sham DFT has been the foundation of modern electronic structure

calculations. It should be noted that the Kohn-sham DFT outlined above breaks down

for cases of spin polarization, magnetic field, multi-components, relativistic, and time-

dependent problems. To extend DFT to these situations, since the original work of

Kohn and Sham[8], many further generalizations of DFT have been developed to meet

different physical requirements. As an example, for non-relativistic systems having

spin polarization[40], EXC may depend on the single-particle densities of electrons

with each spin channel:

EXC = EXC [ρ↑, ρ↓] , (2.24)

and the total single-particle density is the sum of the spin channels:

ρ = ρ↑ + ρ↓ . (2.25)

In addition, we have a spin dependent exchange-correlation potential:

VXC,ρσ =
δEXC [ρ↑, ρ↓]

δρσ(r)
(2.26)

where σ =↑, ↓ is the spin index. The Kohn-Sham equation must then be solved for

each spin orientation separately.

From the above equations, the only thing that remains unknown and can not be

calculated exactly is the exchange-correlation energy functional EXC which play the

central role in the Kohn-Sham DFT calculations. The exchange-correlation energy is a
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relatively small part of the total energy in a typical system, but it is the largest part in

nature’s “glue” that binds atoms together. The exchange-correlation energy contains

all the complexities of an interacting many-electron problem, but an exact numerical

determination of EXC [ρ] is far too complicated beyond a few simple atoms (by exact

diagonalization). In practical applications, approximate expressions for E[ρ(r)] and

VXC have been created, each having its own deficiencies. Developing these functionals

is a very active field of research but is beyond this thesis. In the next section, we

will examine some general aspects of EXC which may place constraints for developing

approximate functionals.

2.3 Exchange-Correlation energy EXC

The exchange-correlation effect that contains all the many-body physics of interacting

electrons, arises from the fact that normally electrons can not move randomly but

try to avoid each other in order to reduce the electron-electron Coulomb interaction.

The exchange-correlation energy separated from the total energy above, consists of

three different contributions (see Eq.(2.16)). The first term is the potential energy

of exchange EX . The exact exchange energy includes the effect of anti-symmetric

wave functions due to the Pauli exclusion principle and it corrects the unphysical self-

interactions included in the Hartree potential energy. The second term is the potential

energy of correlation EC that represents the effect of electron-electron repulsion on

the interacting many-body wave function that is beyond the Hartree-Fock term. Both

potential energies of exchange and correlation must be negative because interacting

electron motion reduces the expectation value of electron-electron Coulomb repulsion,

and any approximation must give negative values for them. The third term in the

exchange-correlation is a smaller positive kinetic energy of correlation due to the

extra swerving motion of electrons as they avoid one another. To achieve a deeper

understanding about the exchange-correlation energy, we will introduce the concept

of exchange-correlation hole that guides the construction of accurate approximations.
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In the Khon-Sham DFT, the essential simplification lies in the link drawn between

the interacting electrons and the non-interacting electrons. This link can be studied

by varying the electron-electron interaction by changing a parameter λ from 0 to 1 in

the following Hamiltonian [41],

Hλ = −1

2
∇2 + V λ

ext + λVee (2.27)

where V λ
ext is added to keep ⟨Ψλ | ρ̂ | Ψλ⟩ = ρ(r) and ⟨Ψλ | Hλ | Ψλ⟩ = EGS during

the variation, and Ψλ is the corresponding ground-state wave function of Hλ. Then

the relation of exchange-correlation energy to the exchange-correlation hole can be

found exactly using the integral over the coupling constant λ[42, 43, 44],

EXC =
∫ 1

0
dλ⟨Ψλ | ∂Hλ

∂λ
| Ψλ⟩ − EHartree =

1

2

∫
drρ(r)

∫
dr′

1

| r− r′ |
ρXC(r, r

′ − r)

(2.28)

where

ρXC(r, r
′ − r) = ρ(r′)

∫ 1

0
dλ[g(r, r′, λ)− 1] (2.29)

is defined as the exchange-correlation hole density. The function g(r, r′, λ) is the

normalized pair correlation function of the system of Hλ. The exchange-correlation

hole ρXC arises from the fact that the presence of electron at r must reduces the

possibility of finding another one at r′, thus it is always negative. We can see that the

exchange-correlation energy is formulated in term of the potential energy resulting

from the electron interacting with its exchange-correlation hole.

Three aspects should be stressed for the exchange-correlation hole. First, since

g(r, r′ − r, λ) − 1 tends to be zero as r′ − r → ∞, we may expect the exchange-

correlation energy to be the consequence of short-range effects of the Coulomb in-

teraction. Therefore, it is reasonable to approximate EXC as local or semi-local

functional of density in form of,

EXC =
∫
drρ(r)ϵXC([ρ], r) (2.30)
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ϵXC(ρ, r) is the exchange-correlation energy density at r, it is exactly given by ρXC

ϵXC(ρ, r) =
∫
dr′

1

| r− r′ |
ρXC(r, r

′ − r) (2.31)

Second, the definition of the pair correlation function promises that the exchange-

correlation hole must obey a sum rule that it integrates to unity. This is the con-

sequence of the fact that if one electron sits at r, then there must be one electron

missing in r′ space. The sum rule is expressed as an integral over r′

∫
dr′ρXC(r, r

′ − r) = −1 (2.32)

This sum rule is satisfied for any realistic electron system, it constrains and guides the

development of accurate approximations: a construction that violates the sum rule

can not be expected to work well. The sum rule has been used to explain why existing

approximations for the exchange-correlation (XC) functionals actually work[44].

The last aspect of the XC functional arises from the isotropic nature of Coulomb

interaction (translational and rotational invariance). This gives a significant conse-

quence that EXC only depends on the spherical average of nXC . Thus, approxima-

tions can give rather accurate EXC as long as the spherical part is close to reality -

even though the approximations may be quite bad for the non-spherical part of the

exchange-correlation hole.

In the case of spin polarization, the exact form for exchange-correlation energy can

be expressed in term of spin density and spin dependent pair correlation function,

EXC =
1

2

∑
σ,σ′

∫
drρσ(r)

∫
dr′

1

| r− r′ |
ρσ′(r′)

∫ 1

0
dλ[gσ,σ′(r, r′, λ)− 1] (2.33)

where σ and σ′ denote spin indexes.

Except the three aspects discussed above for the exchange-correlation hole, the

exact exchange and correlation energies also satisfy some other known properties



20 2 Density Functional Theory

which may also be used to help developing approximate functionals. For example,

the coordinate scaling conditions[45], the one electron limit, the Lieb-Oxford bound

relation[46], and the derivative discontinuity of EXC in insulators [47, 48, 49], have

all been used to constrain the form of EXC . Here we wish to emphasize the derivative

discontinuity which is expressed with respect to the total electron number,

∆XC =
δEXC

δn
|N+δ −

δEXC

δn
|N−δ= V +

XC − V −
XC (2.34)

The origin of the derivative discontinuity is the fact that the nature of states change

discontinuously as a function of n(r⃗) at the band gap, where n(r⃗) is the occupation.

This derivative discontinuity requires the exchange-correlation potential for all elec-

trons in the system to change by a constant amount when one electron is added. As

a consequence, even with an accurate exchange-correlation potential, the Kohn-Sham

band gap is still different from the true gap by an amount of ∆XC ,

Egap =
δE

δn
|N+δ −

δE

δn
|N−δ=

δ(T0 + EXC)

δn
|N+δ −

δ(T0 + EXC)

δn
|N−δ= ∆KS +∆XC

(2.35)

where ∆KS = δT0

δn
|N+δ − δT0

δn
|N−δ (derivative discontinuity in KS kinetic energy) is the

KS band gap. Although the above equation is exact in the exact Kohn-Sham theory,

because the amplitude of ∆XC is unknown, we still have to ask the question: how

much of the error in the prediction of band gap using approximate XC functionals

such as the functionals in local density approximation [50, 44] and generalized gradient

approximation [51] , is not the intrinsic error of the KS theory. This question might be

answered to some extent by the improved XC functionals such as hybrid functionals

[52, 53, 54] and self-interaction corrected functionals[55]. The mechanism for making

progress in prediction of band gaps with DFT are under intense debate because of

its scientific significance. Most recently, it has been explained that the incorrect

band-gap prediction with most approximate functionals originates mainly from errors

in describing systems with fractional charge [56, 57], and it is possible to have a

functional which gives the correct band gap. In the following, we will present a brief
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description for the different classes of the approximations in the XC functional.

We can group the popular XC functionals into three types: the local density

approximations (LDA), the semi-local approximations (GGA, meta-GGA), and the

non-local approximations known as orbital functionals (hybrid functionals[52], opti-

mized effective potential (OEP) schemes [58], and LDA + U methods [59, 60]). In

the case of weakly inhomogeneous electron gas, EXC [ρ(r⃗)] can be approximated by

the exchange-correlation energy of the homogeneous electron gas having a constant

density ρ: namely replacing the constant ρ by ρ(r⃗) to describe the inhomogeneous

system. This is the well known local density approximation (LDA)[50, 44] which is

precise only in the limit of very slow-varying density. LDA has been proven rather

successful for a wide range of materials but it suffers a number of deficiencies such as

overestimating the binding energy, underestimating the bonding distance and band

gaps in semiconductors and insulators. Systematic improvements of LDA can be

made by adding more features when building the EXC functional. Better description

of reality can be expected by incorporating more constraints to EXC .

The GGA functional[51] adds gradients of local density ∇ρ to EXC . Meta-GGA

includes the local kinetic energy density τ(r) and Laplacian of the local density

∇2ρ[61], in addition to ∇ρ and ρ, to EXC . Using GGA, good results for geome-

tries and total energies have been achieved although the band gap problem still re-

mains. Higher accuracy should be expected from meta-GGA calculations. Recently, a

new type of meta-GGA, called the modified Becke-Johnson exchange potential func-

tional (MBJ)[62] has been reported to correcting the band gap in semiconductors

and insulators, we have implemented this new exchange potential functional into our

transport software package. To achieve more accurate results, some orbital dependent

functionals have been developed by building the exact exchange (EXX) energy from

the Hartree-Fock theory. This type of orbital functionals are known as the hybrid

functionals and OEP-EXX[58] methods. Another type of orbital functionals are the

self-interaction corrected functionals[55] which completely remove the self-interaction
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error from the approximated density functional. This is critical for the description of

the localized electrons and very useful to investigating the atomic limit of impurity

atoms in solid state hosts. In particular, a particular approach called LDA (GGA)+U

method has been widely used in strongly correlated material calculations with great

success[59, 60]. This method incorporates the insight gained from studies of strong

correlations using the Hubbard model Hamiltonian. It corrects errors in the local

or semi-local functionals thus improves the description of correlation effects in the

localized d- and f-bands. We have implemented the LDA+U[59, 60] method into our

NEGF-DFT software package for transport calculations for investigating the quantum

transport properties in the devices with strong on-site coulomb interaction.

2.4 Using KS-DFT as a mean field theory

As seen from Eq.(2.23), the total energy is not simply a sum of the KS eigenvalues ϵi

and, as known, the many-body wave function is not the single Slater determinant of

the KS single particle orbitals. Therefore we should not assign any physical meaning

to the KS eigenvalues and eigenstates. The KS eigenvalues often bear only semi-

quantitative representation for the true energy spectrum. However, by comparison to

experimental data, in many situations the KS eigenvalues do provide a surprisingly

good approximation to the true energy spectrum of extended systems, for instance

DFT often results in very good agreement with experimental photoemission and in-

verse photoemission measurements[63]. Practically, using DFT the band structure

calculations in solid state physics are significantly simplified to the calculations of the

KS eigenvalues. Nevertheless, we should be aware of that KS-DFT, applied this way,

is not rigorously the many-body ground-state theory but is self-consistent mean field

theory. In the following, this mean-field nature of KS theory is emphasized again in

the application of Keldysh non-equilibrium Green’s function based density functional

theory which form the basis of this thesis.

Fig.4.2 shows a representative structure of a two-probe nano-electronic device,
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where a central device scattering region is contacted by two semi-infinite electrodes.

Steady state electric current is driven by a bias voltage applied to the electrodes. In

such a system, the applied bias breaks the time reversal symmetry and brings com-

plications to theoretical treatment[9]. The NEGF-DFT method provides a first prin-

ciple approach to calculate non-equilibrium electronic structure from which quantum

transport properties is derived. In the NEGF-DFT approach[13], the KS equation is

solved self-consistently using NEGF to populate the electronic states. Importantly,

the description of devices under bias requires the physics of non-equilibrium quantum

statistics but not a ground-state theory of total energy minimization. In particular,

the NEGF-DFT equations cannot be solved by a variational principle but must be

solved directly by the differential NEGF-DFT equations. The NEGF-DFT method is

restored to exactly the same form of ground-state KS DFT theory when the device is

set back to equilibrium at which time reversal symmetry is restored and fluctuation-

dissipation theorem is satisfied. Finally, the mean-field nature of the KS equation is

utilized in the NEGF-DFT quantum transport approach for the infinite two-probe

system.
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Tight-Binding Linear Muffin Tin Orbital Method

In this chapter, we review the tight binding linear Muffin Tin orbital method (LMTO)

for self-consistently solving the Kohn-Sham DFT equations. The LMTO method has

a long history[64] and is a very well established method in the DFT community. We

choose this method for two main reasons. First, the tight binding version of the

LMTO method can solve large number atoms, for instance we have solved transport

problems involving several thousand atoms[4, 5] at nonequilibrium. No other DFT

method can have such a computational ability for nonequilibrium transport analysis.

Note that the phrase “tight binding” only means the method is atomic center based,

and the method is fully self-consistent. Second, the mathematical procedure of the

LMTO method most naturally allows us to implement CPA and the vertex correction

theory (see Chapter 5).

3.1 Solving the Kohn-Sham equations

To solve the Kohn-Sham equation

HKSΨj(r) = [−∆+ Veff (r)]Ψj(r) = EjΨj(r) (3.1)

the KS orbital Ψj is expanded by a complete basis set {χi}, namely:

Ψj(r) =
∑
i

ci,jχi . (3.2)

24
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The solution of the KS equation Eq.3.1 can be transformed to an eigenvalue problem

of the secular equation

[H − EO]c = 0 (3.3)

where the Hamiltonian matrix is defined as Hi,i′ = ⟨χi|−∆+Veff |χi′⟩ and the Overlap

matrix is defined by Oi,i′ = ⟨χi|χi′⟩. For a fast solution of Eq.3.3, the chosen basis

set should be mathematically simple for the computation of the Hamiltonian and

overlap matrix elements. Moreover, if reasonable accuracy can be guaranteed, it is

computationally advantageous to reduce the size of basis set. After solving Eq.3.3,

the electron density ρ is constructed from the eigenvectors using Eq.(2.22). Next, the

new electron density is used to update the effective potential Veff which forms the new

KS equation of the next iteration step. This process is iterated until the KS equation

is solved to self-consistency. The various methods for calculating electronic structure

of matter may be distinguished by the way in which the basis function χi is chosen.

One can use fixed basis functions such as the linear combination of atomic orbital

(LCAO), Gaussian (LCGO), etc. One can also choose partial-wave basis functions

such as the linear augmented plane wave (LAPW), Muffin Tin Orbital (MTO), etc.

In this chapter, we will introduce a particular method which is the tight binding linear

Muffin Tin orbital (TB-LMTO) method.

TB-LMTO is based on the Muffin Tin (MT) approximation of the crystal potential

Veff . In MT approximation, the crystal potential is approximated to be spherically

symmetric inside the MT spheres centered at the individual nuclei, and a constant

value VMTZ in the interstitial region between the MT spheres[65]. This approximation

to the real potential Veff (r) has high physical transparency for the crystal and gives

very good accuracy. It should be mentioned that in practical calculations, even if a

suitable basis set is used, it is still rather complex to achieve efficient convergence of

the self-consistent iteration of the KS equation. Many important mathematical and

computational issues such as matrix inversion and diagonalization, mixing schemes

in the self-consistent iteration[66], parallel computation techniques, etc are of vital
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importance for achieving efficient self-consistent computation.

3.2 Muffin Tin approximation for crystals

According to the MT approximation[65], for a single MT sphere, we can define the

potential to be

VMT (rR) = vR(rR)− VMTZ (rR ≤ sR) (3.4)

VMT (rR) = VMTZ (rR ≥ sR) (3.5)

where vR(rR) is the spherically symmetric potential inside the R-th atomic sphere, R

denotes the nuclei site, rR is the distance | r⃗ − R⃗ |, and sR is the radius of the MT

sphere. Hence, the KS Hamiltonian of a crystal in MT approximation can be written

in the following form,

HKS = −∆+
∑
R

VMT (rR) (3.6)

where the sum extends over the whole crystal. The corresponding KS equation be-

comes:

(HKS − E)Ψ = (−∆+
∑
R

VMT (rR)− E)Ψ = 0 . (3.7)

Now, the question that we face is to choose a suitable basis set for solving such a

KS equation with a simple MT potential. Within the MT geometry, the construction

of the basis function χRL involves the choices for basis “head” and “tail” functions

within the MT spheres, and a reasonably complete envelop functions in the interstitial

region. In principle, from the minimal basis set consideration, one should achieve fast

l convergence. The best choice of each function is a reasonable solution of the KS

equation in a larger region of the system. Therefore, we seek the solutions of the KS

equations inside each single MT sphere and in the interstitial region, based on these

solutions we can construct MTO basis functions in the entire space.



3.2 Muffin Tin approximation for crystals 27

The Schrödinger equation inside the MT sphere on site R reads:

[−∆+ vR(rR)− E]φ(E, rR) = 0 . (3.8)

It is not difficult to find the solution of this differential equation for any energy E.

The solution can be given in a general form,

φRL(E, r⃗R) = φRl(E, rR)YL(r̂R) (3.9)

YL is the spherical harmonics. The radial function φRl(E, rR) can be obtained by

numerical integration of the following radial Schrödinger equation inside the MT

sphere,

[− d2

dr2R
+
l(l + 1)

r2R
+ vR(rR)− E]rRφRl(E, rR) = 0 (3.10)

The radial function can be normalized within the MT sphere,

∫
sR

φ2
Rl(E, rR)r

2
RdrR = 1 (3.11)

and also satisfies the following orthogonality relation

∫
sR

φRl(E, rR)φ̇Rl(E, rR)r
2
RdrR = 0 (3.12)

where the functions φRl(E, rR) and φ̇Rl(E, rR) = ∂φRl/∂E are both truncated inside

the R-th sphere of radius sR. φRl and φ̇Rl will be used for construction of the basis

head and tail functions within the MT spheres in the TB-LMTO method. It can

be proven that not only φRl but also φ̇Rl are orthogonal to the core electron states.

This gives an important consequence that the basis set constructed from them are

orthogonal to the core electron orbitals.

A good choice of envelop function can be the solution of the Schrödinger equation
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in the interstitial region where the potential is flat,

[−∆− κ2]χe
RL(κ, rR) = 0 (3.13)

Here the envelope function may be defined as atomic centered angular momentum

functions χe
RL, κ

2 = E − VMTZ is the electron kinetic energy in the interstitial region

between the MT spheres. For the above differential equation, there are generally

two independent solutions which may be taken as the spherical Bessel and Neumann

functions[65] for any energy. These exact solutions are all energy dependent functions

which may be used for constructing energy dependent basis functions. However, in a

linear method the basis function is required to be independent of energy, hence one

takes a constant value of κ. We shall from now on make the simplest choice κ = 0,

then the Schrödinger equation Eq.(3.13) is reduced to the Laplace equation,

−∆χe
RL(rR) = 0 (3.14)

This is a reasonable choice within the atomic sphere approximation (ASA) which will

be introduced to eliminate the interstitial region by filling the space using overlapping

spheres (see section 3.7).

3.3 The bare envelop function

We may first only consider the system in the absence of atomic MT spheres so that

the Laplace equation is valid in the entire space. The atomic MT spheres will be put

back by augmentation in Section 3.5. The Laplace equation of Eq.(3.14) is known to

have two independent solutions. According to the asymptotic behavior at rR → ∞,

the regular solution is given by

J0
RL(rR) = (rR/w)

l[2(2l + 1)]−1YL(r̂R) (3.15)
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and the irregular solution is

K0
RL(rR) = (rR/w)

−l−1YL(r̂R) (3.16)

where the superscript 0 means the bare MTO representation, and w is a scaling factor

which makes the two solutions dimensionless. The solution K0
RL(rR) is regular except

at point R, and has the form of electrostatic field of 2l poles at R. We may take this

multi-pole field solution of KRL(rR) as the bare envelope function in the full space.

The bare envelop function K0
RL can be expanded into the irregular solutions of J0

R′L

about any other site R′ ̸= R [67], according to:

K0
RL(rR) = −

∑
L′
J0
R′L′(rR′)S0

R′L′,RL (3.17)

where the expansion coefficients S0
R′L′,RL are the so-called bare canonical structure

constant which is only determined by the lattice geometry of the crystal. The S0

matrix is independent of the crystal potential. The explicit form of S0 matrix element

is given by [67],

S0
RL,R′L′ =

∑
L′′

(−1)l
′+18π(2l

′′ − 1)!!CLL′L′′

(2l − 1)!!(2l′ − 1)!!
K0(R′ −R) (3.18)

for R ̸= R′. When R = R′, S0
RL,RL′ are equal to zero. The quantities CLL′L′′ are the

Gaunt coefficients. The matrix S0 is a real and symmetric matrix, and the element

S0
RL,R′L′ depends on the distance | R−R′ | according to a inverse power law:

S0
RL,R′L′ ∝

(
1

| R−R′ |

)l+l′+1

(3.19)

Since the bare envelop function of Eq.(3.16) is a long-range function which decays

slowly by inverse power law of rR, we shall introduce a screening procedure to obtain

a localized envelope function which is desired for efficient computation. For this

purpose, we introduce a separation of the space using the Wigner-Seitz (WS) cell
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labeled by R, and we define the functions |K0
RL⟩ and |J0

RL⟩ to be truncated inside the

WS cell around R, and the function |K0
RL⟩∞ extends over all space. Then, we can

rewrite the bare envelop function in the full space |K0
RL⟩∞ in the following form,

|K0
RL⟩∞ = |K0

RL⟩ −
∑
R′

∑
L′

|J0
R′L′⟩S0

R′L′,RL (3.20)

where the envelop function inside the WS of R′ ̸= R is replaced by the expansion of

Eq.(3.17). The above equation can be rewritten in a more compact format,

|K0⟩∞ = |K0⟩ − |J0⟩S0 (3.21)

The localized envelop function can be obtained by screening the bare function with

added multi-poles at the neighboring sites [32, 67] which we shall introduce in the

next section.

3.4 Screened envelope function

We can modify the regular solution |J0
RL⟩ discussed in the last section by adding an

amount −αRl of the irregular solution |K0
RL⟩ inside the R-th WS cell by defining:

|Jα
RL⟩ ≡ |J0

RL⟩ − αRl|K0
RL⟩ (3.22)

where the constant αRL is named screening constant (usually independent of R). The

above equation is the α representation of MTO. In analogy with the bare envelope

function of Eq.(3.21), we define the screened envelope functions in the full space as:

|Kα⟩∞ = |K0⟩ − |Jα⟩Sα (3.23)
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Where matrix Sα is the screened structure constant which will be found in the fol-

lowing. Inserting |Jα⟩ into the bare envelope function of Eq.(3.21), we find:

|K0⟩∞ = (|K0⟩ − |Jα⟩S0[1− αS0]−1)(1− αS0) (3.24)

Inserting |Jα⟩ into the screened envelope function, we find:

|Kα⟩∞ = (|K0⟩ − |J0⟩Sα[1 + αSα]−1)(1 + αSα) (3.25)

Comparing the above two equations, we can find - if and only if

Sα = S0[1− αS0]−1 (3.26)

or equivalently

S0 = Sα[1 + αSα]−1 (3.27)

|Kα⟩∞ is the superposition of |K0⟩∞ that is given by

|Kα⟩∞ = |K0⟩∞(1 + αSα) = |K0⟩∞(1 + αS0)−1 . (3.28)

So far, we have defined the envelope functions |Kα⟩∞ for a general α representation

of MTO. An exponential decay can be achieved for |Kα⟩∞ with increasing distance.

Thus the screened structure constant Sα
RL,R′L′ must decrease exponentially with the

inter-atomic distance | R − R′ | as seen from Eq.(3.23). The fastest decay can be

realized by choosing a suitable screening constant for each orbital l. In the most

screened α [32] representation, the range of the screened structure constant Sα can

even be limited to the first- and second-nearest neighboring sites. Consequently, the

screened envelope function provides a great advantage for fast computation. In the

subsequent sections, we shall construct the TB-LMTO basis set | χα
RL⟩∞ by augment-

ing the wave function |Kα
RL⟩∞ inside MT spheres. The LMTO is defined as the linear

approximation to the energy-dependent MTO which we shall introduce in the next
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section.

3.5 Augmentation to Energy Dependent MTO

To proceed further, we now use the MT geometry of the space instead of the WS cell

separation of last section, so that the screened envelop function in Eq.(3.23) can be

rewritten in the full space,

|Kα⟩∞ = |K0⟩ − |Jα⟩Sα + |Kα⟩i (3.29)

where the functions |K0
RL⟩ and |Jα

RL⟩ are truncated inside the MT spheres, and the

wave function in the interstitial region is |Kα⟩i which is given by the difference:

|Kα⟩i = |Kα⟩∞ − [|K0⟩ − |Jα⟩Sα] (3.30)

The envelop function in Eq.(3.29) is continuous and differentiable in the full space. In

the following, we will augment the wave function inside MT spheres using the solution

of the Schrödinger equation in atomic sphere, and keep the envelop function inside

the interstitial region unchanged.

As we have known from Section 3.2, the Schrödinger equation inside the atomic

MT sphere on site R can be solved to obtain an energy-dependent regular solution

|ψRL(E, rR)⟩ which is truncated inside the MT sphere and normalized to unity within

the MT sphere. To construct the energy-dependent MTO, we first augment the wave

function |Jα
RL⟩ in Eq.(3.29) to some regular function |J̃α

RL⟩, namely

| Jα
RL⟩ →| J̃α

RL⟩ (3.31)

To keep the wave function continuous and differentiable at the sphere boundary sR,



3.5 Augmentation to Energy Dependent MTO 33

we need |J̃α
RL⟩ to satisfy the following:

J̃α
RL(sR) = Jα

RL(sR) (3.32)

[∂J̃α
Rl(rR)/∂rR]sR = [∂Jα

Rl(rR)/∂rR]sR (3.33)

The wave function |J̃α
RL⟩ will be determined in the next section. The wave function

| K0
RL⟩ inside the MT sphere can be substituted by proper linear combination of the

radial function φRL(E) and J̃
α
RL in the following form,

K0
RL(rR) → φRL(E, rR)N

α
RL(E) + J̃α

RL(rR)P
α
RL(E) (3.34)

Here, the functions Nα
RL(E) and Pα

RL(E) can be determined using the condition of

continuous and differentiable matching at sR which can be easily realized by using

the Wronskian [67],

W [f1(r), f2(r)] = r2[f1(r)f
′

2(r)− f
′

1(r)f2(r)]r=SR
(3.35)

As a result, the function Pα
Rl(E) is given by,

Pα
RL(E) =

W [φ(E), K0]RL

W [φ(E), J̃α]RL

=
W [φ(E), K0]Rl

W [φ(E), Jα]RL

(3.36)

which is the so-called potential function in the α representation, and the function

Nα
RL(E), which serves as the normalization function, reads as:

Nα
RL(E) =

W [J̃α, K0]RL

W [J̃α, φ(E)]RL

=
W [Jα, K0]RL

W [Jα, φ(E)]RL

= [(w/2)Ṗα
Rl(E)]

1/2 (3.37)

It is easy to see that by augmentation of the functions | Jα⟩ and | K0⟩ in the Eq.(3.29)

using Eq.(3.31) and Eq.(3.34), the energy dependent MTO of α representation can

be written in the full space in the following form,

|χα(E)⟩∞ = |φ(E)⟩Nα(E) + |J̃α⟩(Pα(E)− Sα) + |Kα⟩i (3.38)



34 3 Tight-Binding Linear Muffin Tin Orbital Method

where |⟩∞ denotes that the function extends in all space, the function |⟩ is truncated

inside MT sphere, and the function |⟩i is truncated inside the interstitial region.

3.6 Energy linearization

The function J̃α in Eq.(3.38) may be defined in such a way that the energy dependence

of |χα(E)⟩∞ vanishes at the first order of (E − ϵv), where ϵv is the energy chosen at

the center of interest, namely |χ̇α(E)⟩∞/ϵv = 0. Thus we have

|χ̇α(E)⟩∞/ϵv

= [|φ(E)⟩Ṅα(E) + |φ̇(E)⟩Nα(E) + |J̃α⟩Ṗ α(E)]/ϵv

= [|φ̇α(E)⟩Nα(E) + |J̃α⟩Ṗα(E)]/ϵv

= [|φ̇α⟩Nα + |J̃α⟩Ṗα] = 0 (3.39)

where the omission of the energy variable means E = ϵv. We thus can obtain the

function,

|J̃α⟩ = −|φ̇α⟩Nα/Ṗα = −|φ̇α⟩(w/2)/Nα (3.40)

Here, |φ̇α⟩ reads,

|φ̇α⟩ = |φ⟩oα + |φ̇⟩ (3.41)

where the quantity oα is given by:

oα = Ṅα/Nα = ⟨φ|φ̇α⟩ (3.42)

Up to now, we see that the first energy derivative of |φ⟩, namely |φ̇⟩, is also a com-

ponent of the TB-LMTO basis function.

Letting |χ̇α(E)⟩∞/ϵv = 0, the energy dependent MTO |χα(E)⟩∞ can be expanded
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around the energy center ϵv in the form of:

|χα(E)⟩∞ = |χα⟩∞ + (E − ϵv)
2|χ̈α⟩∞ + ...... (3.43)

where |χα⟩∞ = |χα(ϵv)⟩∞. Neglecting the (E − ϵv)
2 and higher order terms, we can

define |χα⟩∞ as the energy independent MTO in the α representation. Therefore,

after normalization, we have the TB-LMTO:

|χα⟩∞ = |χα(ϵv)⟩∞/Nα

= |φ⟩+ |φ̇α⟩hα + |Kα⟩i/Nα

= |φ⟩(1 + oαhα) + |φ̇⟩hα + |Kα⟩i/Nα (3.44)

where the matrix hα reads as:

hα = −w
2

1

Nα
[Pα − Sα]

1

Nα

= −(Ṗα)−1/2[Pα − Sα](Ṗα)−1/2

= Cα − ϵv + (∆α)1/2Sα(∆α)1/2 (3.45)

after using Eqs. (3.36), (3.37) and (3.40). In Eq.(3.45), only the screened structure

constant matrix Sα is a non-diagonal matrix. The potential parameter Cα
RL reads,

Cα
RL = ϵv,RL − Pα

RL/Ṗ
α
RL = ϵv,RL −W [K,φ]RL/W [K, φ̇α]RL (3.46)

which determines the Rl − th band position and hence is usually called the band

center defined in the α representation. The second parameter ∆α is defined by

∆α
RL = 1/Ṗα

RL = −(w/2)W [K, φ̇α]−2
RL (3.47)

which represents the width and hybridization strength of the Rl − th band in the α

representation.
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In Eq.(3.44), the envelope function |Kα⟩i (see Eq.(3.30)) can be rewritten to:

|Kα⟩i = |Kα⟩∞ − |K0⟩+ |Jα⟩Sα

= |K0⟩∞(1 + αSα)− |K0⟩+ |Jα⟩Sα

= (|K0⟩∞ − |K0⟩)(1 + αSα) + |J0⟩Sα (3.48)

according to the Sections 3.3 and 3.4.

Up to now, the only thing we may have questions about is the choice of the energy

center ϵv for each basis function |χα⟩∞. Generally speaking, ϵv should be chosen to

suit the problem at hand. For example, one can use ϵv,Rl = EF to give a correct Fermi

surface and Fermi velocity, and use the center of the occupied part of RL band to

achieve accurate charge density in the self-consistent DFT calculations.

As a summary for this section, we have found the general TB-LMTO basis set

characterized by the screening constant α. The explicit basis function is expressed in

full space by Eq.(3.44) in which the interstitial wave function is given in Eq.(3.48),

and all the associated quantities have also been defined in proper detail above. In

the following, we shall introduce the atomic sphere approximation to remove the

integration over the interstitial region, which greatly simplifies the computation of

the Hamiltonian and overlap matrices within the TB-LMTO method.

3.7 Atomic sphere approximation: Hamiltonian and over-

lap matrices

The atomic sphere approximation (ASA) [64, 65] uses overlapping atomic spheres to

fill the entire space so that the interstitial envelop function |Kα⟩i in Eq.(3.44) drops

out. Thus the basis function of all space within ASA becomes:

|χα⟩∞ASA = |φ⟩(1 + oαhα) + |φ̇⟩hα (3.49)
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Using the normalization of partial wave (see Eq.(3.11)) and the orthogonal relation

between a partial wave and its first energy derivative (see Eq.(3.12)), the overlap

matrix becomes:

Oα
ASA =∞

ASA ⟨χα|χα⟩∞ASA = (1 + hαoα)(1 + oαhα) + hαphα (3.50)

where p = ⟨φ̇|φ̇⟩ is a small quantity. The last term is usually neglected in most

applications, thus

Oα
ASA ≃ (1 + hαoα)(1 + oαhα) (3.51)

Using the relation [−∆+V (rR)− ϵv]φ̇(E)/ϵv = φ, we can also write down the Hamil-

tonian Matrix without difficulty,

Hα
ASA =∞

ASA ⟨χα| −∆+ v(r)|χα⟩∞ASA

= (1 + hαoα)hα + (1 + hαoα)ϵv(1 + oαhα) + hαϵvph
α (3.52)

After neglecting the last small term containing p, we have

Hα
ASA ≃ (1 + hαoα)hα + (1 + hαoα)ϵv(1 + oαhα) (3.53)

We have so far obtained the Hamiltonian and overlap matrices in Eq.(3.53) and

Eq.(3.51), respectively, within the TB-LMTO method in ASA. The ASA has been

proven to work rather well not only for close packed solids, but also for open systems

such as the diamond structure when vacuum spheres are used to fill the empty space

[68]. The major error of ASA is due to neglecting the integration over the intersti-

tial region. To correct this error, one can include the contribution of the interstitial

region to the overlap and Hamiltonian matrices, using the so-called combined correc-

tion. The integral Oα
i =∞ ⟨χα,i|χα,i⟩∞ = 1

Nα

i⟨Kα|Kα⟩i 1
Nα gives us the correction to

the overlap matrix, and hence the correction to the Hamiltonian matrix is Oα
i VMTZ .
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The calculation of the matrix Oi is complicated [67]. It should be mentioned that

if we include the combined correction term, the subsequent derivation of the NEGF

formalism may become impossible within the TB-LMTO method. In practical appli-

cations, the ASA error can be minimized by minimizing the interstitial volume or the

overlapping volume between spheres. In other words, we need to optimize the choice

of the radii of the atomic spheres in the system to overcome the error introduced by

ASA.

3.8 Transformation to the nearly orthogonal basis

From the particular form of the overlap matrix in Eq.(3.51), we can introduce the

nearly orthogonal basis set by the following transformation in ASA,

|χorth⟩∞ = |χα⟩∞(1 + oαhα)−1 = |φ⟩+ |φ̇⟩hα(1 + oαhα)−1 (3.54)

Then the overlap matrix becomes unit matrix after neglecting p = ⟨φ̇|φ̇⟩,

Oorth
ASA =∞ ⟨χorth|χorth⟩∞=̇1 (3.55)

The Hamiltonian matrix in nearly orthogonal representation is given by:

Horth
ASA =∞ ⟨χorth| −∆+ v(r)|χorth⟩∞=̇ϵv + hα(1 + oαhα)−1 (3.56)

Inserting hα = Cα − ϵv + (∆α)1/2Sα(∆α)1/2 and according to the previous definitions

of the associated potential parameters Cα in Eq.(3.46), ∆α in Eq.(3.47) and oα in

Eq.(3.42), the Horth
ASA can be simplified to the following form:

Horth
ASA = C +

√
∆Sα[1− (γ − α)Sα]−1

√
∆ (3.57)

where the potential parameters C, ∆ and γ are diagonal matrices and are respectively



3.8 Transformation to the nearly orthogonal basis 39

defined as,

CRL ≡ ϵv,RL −W{K,φ}RL/W{K, φ̇}RL (3.58)

∆RL ≡ −(w/2)[W{K, φ̇}RL]
−2 (3.59)

γRL ≡ W{J, φ̇}RL/W{K, φ̇}RL (3.60)

The potential parameters CRL, γRL and ∆RL are independent of the α constant, they

represent the center, width and distortion of the RL − th band respectively. By

applying the definition of Sα (see Eq.(3.26)), Horth
ASA can be equivalently expressed as

the following:

Horth
ASA = C +

√
∆S0[1− γS0]−1

√
∆ = C +

√
∆Sγ

√
∆ (3.61)

Hence we see that Horth
ASA is independent of the screening constant α.

To conclude this section, we have obtained the nearly orthogonal LMTO basis set

in Eq.(3.54), and the corresponding Hamiltonian matrix in Eq.(3.57) or equivalently

in Eq.(3.61). Consequently, the KS equation Eq.(3.1) can be solved self-consistently

with the TB-LMTO method such that electronic structures of matter is obtained from

atomic first principles.

As seen from the derivation procedure in previous sections, the error in TB-LMTO

method has three different origins. The first is due to the linearization of the energy

dependent MTO inside the atomic spheres. The linearized basis is accurate to first

order of (E − ϵv), thus the ASA Hamiltonian matrix of Eq.(3.57) is only accurate

to (E − ϵv)
2, yielding eigenvalues accurate up to (E − ϵv)

2. The second origin of

error arises from the choice of the envelop function by using solutions of the Laplace

equation Eq.(3.14), this is actually equivalent to the zero-th order approximation of

κ2 = E − VV TZ in the envelop function, or approximating the kinetic energy k2 in

the interstitial region to zero. This gives rise to the energy independent structure

constant in the Hamiltonian matrix, although ASA removes the interstitial region.
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The third source of error lies in the atomic sphere approximation which removes the

interstitial integration from the Hamiltonian and overlap matrix, and approximates

the real potential and charge density to be spherically symmetrical. This implies that

it is much more important to choose the sphere radii in an ASA calculation than

in a full potential calculation. Many applications have amply proven that ASA is a

good approximation for crystals with symmetries. Moreover, the variational approach

allows one to go beyond ASA by incorporating interstitial integral and non-spherical

potential. The TB-LMTO with ASA provides very efficient practical computation

and, at the same time, very good accuracy. It will be used in this work for quantum

transport.

3.9 Summary

To summarize, we have presented the TB-LMTO in ASA for self-consistent solution

of the KS equation. In particular, starting from the Muffin Tin approximation to

the crystal potential, we presented the mathematical procedure for constructing the

general TB-LMTO characterized by α in full space (Sections 3.3-3.6). We introduced

ASA to simplify the computation of the Hamiltonian and overlap matrices by elimi-

nating the interstitial region. Finally the nearly orthogonal LMTO in ASA is defined

and the corresponding Hamiltonian matrix is obtained. This TB-LMTO-ASA method

is particularly useful and reasonably accurate for describing crystals with symmetries.

The most important property of this method lies in its simple Hamiltonian matrix

elements in which all quantities, such as potential parameters and the structure con-

stant, are defined with very explicit physical meaning (see Eq.(3.61)). The final

results obtained in this chapter are the nearly orthogonal LMTO in Eq.(3.54) and

the corresponding Hamiltonian matrix in Eq.(3.57) or Eq.(3.61), which will serve as

the starting point for our subsequent derivations. In subsequent Chapters, we shall

introduce Green’s function formalism within the TB-LMTO-ASA method.
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The non-equilibrium Green’s function formalism

In this Chapter, we review the Keldysh Non-equilibrium Green’s Function formalism

(NEGF) for treating quantum transport in nano-scale devices. The NEGF formalism

[9, 10, 11] provides a conceptually simple and computationally powerful approach for

taking into account the non-equilibrium quantum statistics for devices under finite

bias. It has been widely used in the community of device simulation.

4.1 Basic definitions

For future use, here are the definitions of the retarded, advanced, lesser and greater

Green’s functions:

GR(r, t, r′, t′) = −iθ(t− t′)⟨{ψ̂(r, t)ψ̂+(r′, t′)}⟩ (4.1)

GA(r, t, r′, t′) = iθ(t′ − t)⟨{ψ̂(r, t)ψ̂+(r′, t′)}⟩ (4.2)

G<(r, t, r′, t′) = i⟨ψ̂+(r′, t′)ψ̂(r, t)⟩ (4.3)

G>(r, t, r′, t′) = −i⟨ψ̂(r, t)ψ̂+(r′, t′)⟩ (4.4)

where θ(x) is the step function, θ(x) = 1 for x ≥ 0 and θ(x) = 0 otherwise. The

operators ψ̂† and ψ̂ are the creation and annihilation field operators for the electrons.

The retarded Green’s function GR is nonzero only for t ≥ t′ and it describes the

retarded response at time t to an earlier perturbation of the system at time t′. The

41
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advanced Green’s function GA differs from zero only if t ≤ t′, and provides the

advanced response to a later perturbation. The lesser Green’s function G< provides

the distribution function for particles, and the greater Green’s function that for the

holes. From the above definitions, we see that these four Green’s functions are not

independent and they satisfy:

GR −GA = G> −G< (4.5)

and

GA = [GR]† (4.6)

It is easy to find the important relation by which the lesser Green’s function is directly

linked to the electron density,

n(r, t) = −iG<(r, t, r, t) (4.7)

The calculation of G< is the ultimate goal of this chapter.

Generally, the equation of motion for the field operator ψ̂†(r, t) is:

i
∂ψ̂(r, t)

∂t
= ψ̂(r, t)H −Hψ̂(r, t) (4.8)

where H is the Hamiltonian which we shall assume to not depend on t explicitly, and

ψ̂(r, t) can be written as eiHt/h̄ψ̂(r)e−iHt/h̄ in the Heisenberg picture.

Because our goal is to find self-consistent solutions to the KS equation, we will

only concentrate on deriving relations in the mean field approximation where the

Hamiltonian can be written in terms of one-body operators:

H = −∇2 + V (r) (4.9)
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Equivalently, H can be expressed in term of field operators:

H =
∫
dr′ψ̂+(r′)[−∇2 + V (r′)]ψ̂(r′) (4.10)

Thus we can write,

ψ(r)H =
∫
dr′ψ̂(r)ψ̂+(r′)[−∇2 + V (r′)]ψ̂(r′) (4.11)

and

Hψ(r) =
∫
dr′ψ̂+(r′)[−∇2 + V (r′)]ψ̂(r′)ψ̂(r)

= −
∫
dr′ψ̂+(r′)[−∇2 + V (r′)]ψ̂(r)ψ̂(r′)

= −
∫
dr′ψ̂+(r′)ψ̂(r)[−∇2 + V (r′)]ψ̂(r′) (4.12)

by using the relation ψ̂(r)ψ̂(r′) + ψ̂(r′)ψ̂(r) = 0. From the above, we find,

ψ̂(r)H −Hψ̂(r) =
∫
dr′[ψ̂(r)ψ̂+(r′) + ψ̂+(r′)ψ̂(r)][−∇2 + V (r′)]ψ̂(r′)(4.13)

=
∫
dr′δ(r− r′)[−∇2 + V (r′)]ψ̂(r′) (4.14)

= [−∇2 + V (r)]ψ̂(r) (4.15)

Finally, the Heisenberg equation of motion Eq.(4.8) can be rewritten for the mean

field system as follows

i
∂ψ̂(r, t)

∂t
= eiHt/h̄[ψ̂(r)H −Hψ̂(r)]e−iHt/h̄ = eiHt/h̄[Hψ̂(r)]e−iHt/h̄ = Hψ̂(r, t) (4.16)

We will start from this equation of motion to derive the lesser Green’s function for

the two-probe devices discussed in Section 4.2. In particular, the retarded Green’s

function can be proven to satisfy the following equation for one-body Hamiltonian:

[i
∂

∂t
−H]GR(r, t, r′, t′) = δ(r− r′)δ(t− t′) (4.17)
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When there is no explicit time dependence in the Hamiltonian, the Green’s function

depends only on the time difference, namely G(r, t, r′, t′) = G(r, r′, t−t′). In this case,

one usually prefers to work in energy space by Fourier transforming the variable (t−t′)

to energy E:

G(r, r′, E) =
∫ +∞

−∞
G(r, r′, t− t′)eiE(t−t′)dt (4.18)

It is straightforward to prove that energy dependent retarded Green’s function satisfies

the following equation:

[E+ −H(r)]GR(r, r′,E) = δ(r− r′) (4.19)

where E+ ≡ E + iη and η is a positive infinitesimal number.

If the system has translational invariance, Green’s function only depends on the

difference r− r′, G(r, r′, E) = G(r− r′, E). For this situation, one usually prefers to

work in k-space by Fourier transforming the variable r− r′ to momentum k,

G(k, E) =
∫
drG(r− r′, E)eik(r−r′) (4.20)

Here, G(k, E) satisfies:

[E+ −H(k)]GR(k, E) = I (4.21)

where I is a diagonal matrix.

A very useful relation, i.e. the fluctuation-dissipation theorem, is worth mentioning

here. If we define a spectral function A(k, E) as:

A(k, E) = i[GR(k, E)−GA(k, E)] = i[G>(k, E)−G<(k, E)] , (4.22)

then, at equilibrium, the lesser Green’s function satisfies the following equation[11]

G<(k, E) = if(E)A(k, E) (4.23)
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where f(E) is the Fermi-Dirac distribution function. This relation is the fluctuation-

dissipation theorem which is the most important property of the equilibrium theory.

The fluctuation-dissipation theorem provides great conveniences for the calculation

of equilibrium systems because, from the above, we obtain

G<(k, E) = f(E)[GA(k, E)−GR(k, E)] = f(E)[GR,+(k, E)−GR(k, E)] (4.24)

Since the retarded Green’s function is analytical on the upper half energy plane,

the above relation greatly simplifies the theoretical calculation of G< for equilibrium

situations (see later). In particular, when we compute the equilibrium density matrix

from Eq.(1.2), the energy integration can be completed by a contour going through

the upper half plane - avoiding the many poles of the Green’s functions on the real

energy axis.

4.2 Non-equilibrium Green’s Function

In this Section, we formulate the NEGF formalism for two-probe device structures

as shown in Fig.4.1, in which the central device scattering region is sandwiched by

two semi-infinite electrodes. These electrodes extend to electron reservoirs at z =

±∞. The two reservoirs are at equilibrium having their respective electrochemical

potentials µl and µr. The electron current flowing through the central scattering

region is driven by the difference of the chemical potentials, namely by the bias

voltage eVb = µl − µr. For calculating the material properties, we only consider the

mean field Hamiltonian which is consistent with the Kohn-Sham DFT, and neglect

any inelastic scattering process.

To derive NEGF equations, we start from Eq.(4.16), namely

i
∂ψ̂(r, t)

∂t
= Hψ̂(r, t) (4.25)
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Dividing the two-probe system into three parts: left and right electrodes and central

device scattering region, the Hamiltonian of the device becomes

H = Hl + τl + τ+l +Hc + τr + τ+r +Hr (4.26)

Here, as shown in Fig.4.1, terms Hc, Hl and Hr describe the central device region, the

Figure 4.1: Schetch of a two probe device. Here, Hc, Hl and Hr describe the central device region,
the left and right electrodes respectively; τl, τ

+
l , τr and τ+r correspond to the interactions between

the electrodes and the central device region. The electrodes extend to z = ±∞.

left and right electrodes respectively; τl, τ
+
l , τr and τ

+
r correspond to the interactions

between the electrodes and the central region. The field operator is separated as,

ψ̂(r, t) =


ψ̂l(r, t)

ψ̂c(r, t)

ψ̂r(r, t)

 (4.27)

Therefore we can directly rewrite the equation of motion Eq.(4.25) in a matrix format,

i
∂

∂t


ψ̂l

ψ̂c

ψ̂r

 =


Hl τ+l 0

τl Hc τr

0 τ+r Hr




ψ̂l

ψ̂c

ψ̂r

 (4.28)

From the above equation, it is straightforward to write down the following coupled

equations,

i
∂ψ̂l

∂t
= Hlψ̂l + τ+l ψ̂c (4.29)
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i
∂ψ̂c

∂t
= τlψ̂l +Hcψ̂c + τrψ̂r (4.30)

i
∂ψ̂r

∂t
= Hrψ̂r + τ+r ψ̂c (4.31)

Because the electrodes are assumed at equilibrium where the fluctuation-dissipation

theorem Eq.(4.24) holds, our task is to find the lesser Green’s function for describing

the central scattering region of the device which is out of equilibrium. Therefore, we

shall solve for ψ̂c by eliminating electrode field operators ψ̂l and ψ̂r. This can be done

by the above three differential equations Eq.(4.29)-Eq.(4.30).

For Eq.(4.29), it is easy to write down the solution for the left electrode,

ψ̂l(r, t) = Ψ̂l(r, t) +
∫
dr′

∫ +∞

−∞
dt′gRll (r, t, r

′, t′)τ+l ψ̂c(r
′, t′) (4.32)

where Ψl is given by

i
∂Ψ̂l

∂t
= HlΨ̂l (4.33)

which represents the field operator in the isolated left electrode before attaching to the

central scattering region of the device. The Green’s function gRll satisfies the following

differential equation,

[i
∂

∂t
−Hl(r)]g

R
ll (r, t, r

′, t′) = δ(r− r′)δ(t− t′) . (4.34)

Similarly, for the right electrode, we can write down the solution according to Eq.(4.31),

ψ̂r(r, t) = Ψ̂r(r, t) +
∫
dr′

∫ +∞

−∞
dt′gRrr(r, t, r

′, t′)τ+r ψ̂c(r
′, t′) (4.35)

where Ψ̂r and gRrr are defined in the same way as that of left electrode in Eq.(4.33)

and Eq.(4.34) respectively .

To solve the Green’s function of the central region, inserting Eq.(4.32) and Eq.(4.35)
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into Eq.(4.30), we obtain

i
∂ψ̂c(r, t)

∂t
−Hcψ̂c(r, t)−

∫
dr′

∫ +∞

−∞
dt′Σ(r, t, r′, t′)ψ̂c(r

′, t′) = Ŝ (4.36)

where

Σ(r, t, r′, t′) = τlg
R
ll (r, t, r

′, t′)τ+l + τrg
R
rr(r, t, r

′, t′)τ+r (4.37)

Ŝ(r, t) = τlΨ̂l(r, t) + τrΨ̂r(r, t) (4.38)

Now, let’s define the Green’s function GR
cc(r, t, r

′, t′) by the following differential

equation,

i
∂GR

cc(r, t, r
′, t′)

∂t
−HcG

R
cc(r, t, r

′, t′)

−
∫
dr′′

∫ +∞

−∞
dt′′ΣR(r, t, r′′, t′′)GR

cc(r
′′, t′′, r′, t′) = δ(r− r′)δ(t− t′) (4.39)

and define a new field operator Ψ̂c(r, t) satisfying,

i
∂Ψ̂c(r, t)

∂t
−HcΨ̂c(r, t)−

∫
dr′

∫ +∞

−∞
dt′ΣR(r, t, r′, t′)Ψ̂c(r

′, t′) = 0 (4.40)

Here Ψ̂c(r, t) is decoupled from the electrodes compared to Eq.(4.36): it represents

electrons in the central region of the device. The solution for the central region can

be expressed in term of Ψ̂c and Gcc,

ψ̂c(r, t) = Ψ̂c(r, t) +
∫
dr′

∫ +∞

−∞
dt′Gcc(r, t, r

′, t′)Ŝ(r′, t′) (4.41)

It is easy to check that the above solution satisfies Eq.(4.36). The second term in

Eq.(4.41) includes the contribution of electrons coupled to the electrodes. According

to the definition of Eq.(4.3), the lesser Green’s function is thus obtained as,

G<
cc(r, t, r

′, t′) = i < ψ̂c(r
′, t′)+ψ̂c(r, t) >= i < Ψ̂+

c (r
′, t′)Ψ̂c(r, t) > (4.42)

+
∫
dr′′dt′′

∫
dt′′′dr′′′GR,∗

cc (r′, t′, r′′, t′′)GR
cc(r, t, r

′′′, t′′′)i < Ŝ+(r′′, t′′)Ŝ(r′′′, t′′′) >
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=< Ψ̂+
c Ψ̂c > +

∫
dr′′dt′′

∫
dt′′′dr′′′GR

cc(r, t, r
′′′, t′′′)Σ<(r′′′, t′′′, r′′, t′′)GA

cc(r
′′, t′′, r′, t′)

Because < Ψ̂c(r, t)
+Ŝ(r′, t′) >=< Ŝ+(r′, t′)Ψ̂c(r, t) >= 0, the isolated systems do not

respond to each other. Here Σ<(r′′′, t′′′, r′′, t′′) = i < Ŝ+(r′′, t′′)Ŝ(r′′′, t′′′) > is the

lesser self-energy which will be described in detail in next section, and we have used

GA
cc(r

′′, t′′, r′, t′) = GR,∗
cc (r′, t′, r′′, t′′).

Now, we may want to know the contribution of the bound states, namely the first

term in Eq.(4.42). To derive an expression for < Ψ̂+
c Ψ̂c >, we start from the definition

of a new Green’s function Gcc0(r, t, r
′, t′) that describes the completely isolated central

region (i.e. no electrodes), comparing with Eq.(4.39),

i
∂GR

cc0(r, t, r
′, t′)

∂t
−HcG

R
cc0(r, t, r

′, t′) = δ(r− r′)δ(t− t′) (4.43)

and the corresponding field operator Ψc0(r, t) satisfies

i
∂Ψ̂c0(r, t)

∂t
−HcΨ̂c0(r, t) = 0 (4.44)

It can be easily found that the following Ψ̂c satisfies Eq.(4.40),

Ψ̂c(r, t) = Ψ̂0(r, t) +
∫
dr′dt′

∫
dr′′dt′′GR

cc0(r, t, r
′′, t′′)ΣR(r′′, t′′, r′, t′)Ψ̂c(r

′, t′) (4.45)

For convenience, in the following we shall rewrite all the quantities and operators

in the form of matrices [in the space of (r, t)]. For example, Eq.(4.45) can be rewritten

as;

Ψ̂c = Ψ̂0 + Ψ̂cG
R
cc0Σ

R (4.46)

Gcc and Gcc0 can be connected by the Dyson equation,

GR
cc = GR

cc0 +GR
cc0Σ

RGR
cc (4.47)
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With above relations, we can find

i < Ψ̂+
c Ψ̂c >= (1 +GR

ccΣ
R)G<

cc0(Σ
AGA

cc + 1) (4.48)

where G<
cc0 = i < Ψ̂+

c0Ψ̂c0 > is the lesser Green’s function of the isolated central region

of the device.

Finally, we can write down the complete form of the lesser Green’s function for

the central region of interest[11],

G<
cc = (1 +GR

ccΣ
R)G<

cc0(Σ
AGA

cc + 1) +GR
ccΣ

<GA
cc (4.49)

where all the quantities have already been defined in detail above. This is the well

known Keldysh equation. It can be proven that the first term of Eq.(4.49) is nonzero

only at true bound states. But for open systems, the bound states in the central

region acquire some width due to coupling to the electrodes. It does not matter how

small the width is - as long as it is nonzero, the first term vanishes identically[69].

Hence for our problem G<
cc becomes:

G<
cc = GR

ccΣ
<GA

cc (4.50)

This is equivalent to neglecting Ψc in Eq.(4.41), thus

ψ̂c(r, t) =
∫
dr′

∫ +∞

−∞
dt′Gcc(r, t, r

′, t′)S(r′, t′) (4.51)

So far all the quantities are defined in the space of (r, t). Because in steady state, all

the quantities only depend on t − t′, it will be very useful to Fourier transform into

energy space to obtain:

G<
cc(r, r

′, E) =
∫
dr′′dr′′′GR

cc(r, r
′′, E)Σ<(r′′, r′′′, E)GA

cc(r
′′′, r′, E) (4.52)
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and GR
cc(r, r

′′, E) satisfies the equation

(E+ −Hc)G
R
cc(r, r

′, E)−
∫
dr′′ΣR(r, r′′, E)GR

cc(r
′′, r′, E) = δ(r− r′) (4.53)

Eq.(4.52) and Eq.(4.53) form the basic equations of our NEGF formalism where the

self energies Σ and Σ< describe the coupling between electrodes and the central region.

4.3 The self-energies Σ< and Σ

In Section 4.2, it has been shown that,

Σ<(r, t, r′, t′) = i < Ŝ+(r′, t′)Ŝ(r′, t) > (4.54)

and

Ŝ(r, t) = τlΨ̂l(r, t) + τrΨ̂r(r, t) (4.55)

Consequently,

Σ<(r, t, r′, t′) = τ ∗l τli < Ψ̂+
l (r

′, t′)Ψ̂l(r, t) > +τ ∗r τri < Ψ̂+
r (r

′, t′)Ψ̂r(r, t) >

= τlg
<
ll (r, t, r

′, t′)τ+l + τrg
<
rr(r, t, r

′, t′)τ+r (4.56)

where g<ll = i < Ψ̂+
l Ψ̂l > and g<rr = i < Ψ̂+

r Ψ̂r > are the lesser Green’s functions for

the isolated left and right electrodes, respectively. For steady state situations, Fourier

transformation can be carried out to obtain an energy dependent self-energy,

Σ<(r, r′, E) = τlg
<
l (r, r

′, E)τ+l + τrg
<
r (r, r

′, E)τ+r (4.57)

In our consideration, electron reservoir is in equilibrium state. The electrode which

connects to the reservoir is made of good metal and is equilibrated with the reservoir.

Hence the fluctuation-dissipation theorem, Eq.(4.24), is applicable to the electrode,
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namely g<ll/rr = fl/r(E)[g
A
ll/rr − gRll/rr] with fl/r(E) corresponding to the Fermi-Dirac

distribution function in the left and right electrodes respectively. The self-energy in

Eq.(4.57) can be rewritten as

Σ<(r, r′, E) = fl(E)[Σ
A
l (r, r

′, E)− ΣR
l (r, r

′, E)]

+fr(E)[Σ
A
r (r, r

′, E)− ΣR
r (r, r

′, E)]

= fl(E)Γl(r, r
′, E) + fr(E)Γr(r, r

′, E) (4.58)

where Γl/r = ΣA
l/r −ΣR

l/r and Σ
R/A
l/r = τl/rg

R/A
ll/rrτ

+
l/r. Σ

< basically describes the coupling

of the electrodes to the central device region, and it broadens the electronic states

there.

4.4 Electric current

The electric current flowing from the left electrode to the central region is given by

the time derivative of the charge,

Jl(r, t) = −e d
dt
< ψ̂+

l (r, t)ψ̂l(r, t) >

=
−e
ih̄

{< ψ̂+
l (r, t)[ih̄

d

dt
ψ̂l(r, t)] > − < [−ih̄ d

dt
ψ̂+
l (r, t)]ψ̂l(r, t) >} (4.59)

where < ψ̂+
l (r, t)ψ̂l(r, t) > represents the electron density matrix of the left electrode.

From the formulation in the last section, it is known that (see Eq.(4.29))

ih̄
∂ψ̂l(r, t)

∂t
= Hlψ̂l(r, t) + τ+l ψ̂c(r, t) . (4.60)

Therefore,

−ih̄∂ψ̂
+
l (r, t)

∂t
= H+

l ψ̂
+
l (r, t) + τlψ̂

+
c (r, t) . (4.61)
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Substituting the two equations above, Eq.(4.59) can be rewritten in the following

form,

Jl(r, t) = −e d
dt
< ψ̂+

l (r, t)ψ̂l(r, t) >

=
−e
ih̄

{τ+l < ψ̂+
l (r, t)ψ̂c(r, t) > −τl < ψ̂+

c (r, t)ψ̂l(r, t) >} (4.62)

The electric current is formulated as the difference of the flowing-in and flowing-out

electrons of the left electrodes. From the Eqs.(4.32,4.51), we know,

ψ̂+
l (r, t) = Ψ̂+

l (r, t) +
∫
dr′

∫
dt′gR,∗

ll (r, t, r′, t′)τlψ̂
+
c (r

′, t′) (4.63)

ψ̂+
c (r, t) =

∫
dr′

∫
dt′GR,∗

cc (r, t, r′, t′)Ŝ+(r′, t′) (4.64)

Hence, we can write

τ+l (r) < ψ̂+
l (r, t)ψ̂c(r, t) >= τ+l

∫
dr′

∫
dt′Gcc(r, t, r

′, t′) < Ψ̂+
l (r, t)Ŝ(r

′, t′) >

+τ+l

∫
dr′

∫
dt′gR,∗

ll (r, t, r′, t′)τl < ψ̂+
c (r

′, t′)ψ̂c(r, t) >

= −i
∫
dr′

∫
dt′[GR

cc(r, t, r
′, t′)Σ<

l (r
′, t′, r, t) +G<

cc(r, t, r
′, t′)ΣA

l (r
′, t′, r, t)] (4.65)

Where Σ<
l is the less self-energy contributed from the left electrode. Similarly, it is

found that

τl < ψ̂+
c (r, t)ψ̂l(r, t) > (4.66)

= −i
∫
dr′

∫
dt′[Σ<

l (r, t, r
′, t′)GA

cc(r
′, t′, r, t) + ΣR

l (r, t, r
′, t′)G<

cc(r
′, t′, r, t)]

The electric current of Eq.(4.62) is thus obtained as

Jl(r, t) = −e d
dt
< ψ̂+

l (r, t)ψ̂l(r, t) > (4.67)

=
e

h̄
[GR

ccΣ
<
l +G<

ccΣ
A
l − Σ<

l G
A
cc − ΣR

l G
<
cc](r,t,r,t)
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Here, to keep the formula simple, we have written all quantities as matrices in space

of (r, t). The electric current J(r, t) can be viewed as the diagonal matrix element.

In steady state, it is easier to work with energy dependent quantities. By Fourier

transformation, we find

Jl(r) =
∫
dEJl(r, E) (4.68)

=
e

h̄

∫
dE[GR

cc(E)Σ
<
l (E) +G<

cc(E)Σ
A
l (E)− Σ<

l (E)G
A
cc(E)− ΣR

l (E)G
<
cc(E)](r,r)

The total current is obtained by integrating Jl(r⃗),

Itotal,l =
∫
dr⃗Jl(r⃗)

=
e

h̄

∫
dETr[GR

cc(E)Σ
<
l (E) +G<

cc(E)Σ
A
l (E)− Σ<

l (E)G
A
cc(E)− ΣR

l (E)G
<
cc(E)]

=
e

h̄

∫
dETr{Σ<

l (E)(G
R
cc(E)−GA

cc(E)) + (ΣA
l (E)− ΣR

l (E))G
<
cc(E)}

=
e

h̄

∫
dETr{Γl[fl(E)(G

R
cc(E)−GA

cc(E)) +G<
cc(E)]}

=
e

h̄

∫
dETr{(fl(E)− fr(E))ΓlG

R
ccΓrG

A
cc} (4.69)

Here we have used the relations: Γl = ΣA
l −ΣR

l , GA,−1
cc −GR,−1

cc = ΣR−ΣA = −(Γl+Γr),

and Σ< = fl(E)Γl + fr(E)Γr and also Σ<
l = fl(E)Γl . Finally, in exactly the same

way we can derive the electric current from the right electrode, namely

Itotal,r =
e

h̄

∫
dETr{(fl(E)− fr(E))ΓlG

RΓrG
A} (4.70)

For non-equilibrium steady state, we know

Itotal,l + Itotal.r = 0 (4.71)

and the total current flow through the two probe device is

I = Itotal,l =
e

h̄

∫
dETr{(fl(E)− fr(E))ΓlG

RΓrG
A} =

e

h̄

∫
dET (E) (4.72)
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This is the well known Landauer formula where we can define a transmission coefficient

T (E), as

T (E) = Tr{ΓlG
RΓrG

A} (4.73)

Note that T (E) is also a function of external bias voltage because the Green’s func-

tions depend on the bias.

4.5 Implementation with local orbital basis set

In previous sections, we have provided a detailed derivation of the general NEGF

formalism for non-equilibrium quantum transport calculations of two-probe devices.

The numerical implementation of the formulation is based on local orbital basis set

which provides good accuracy and also manageable sized matrices. In the following,

we discuss the implementation of NEGF within a general basis set. The choice of

different basis functions only changes implementation details.

Let {χRL} to denote a complete set of local orbital basis functions which are

centered at the atomic sites labelled by R and having quantum number L. All the

quantities can be expanded using this basis set. For instance, eigen-functions ϕi can

be expanded as:

ϕi(r) =
∑
RL

ci,RLχRL(r) . (4.74)

Similarly, the Hamiltonian matrix can be constructed as HRL,R′L′ = ⟨χRL|H|χR′L′⟩;

the overlap matrix ORL,R′L′ = ⟨χRL|χR′L′⟩. From now on, I will use the black bold

characters to represent matrices. Using the basis sets, the retarded Green’s function

satisfies a matrix equation, or equivalently

GR(E) =
(
E+O − H

)−1
(4.75)

where E+ = E + iη and η is a positive infinitesimal. Hence, the retarded Green’s

function is obtained by inverting the matrix E+O−H.
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Equivalently, the matrix Eq.(4.75) can also be written as:

(E+O−H)GR(E) = I . (4.76)

where I is the identity matrix.

For open systems such as the two-probe device shown in Fig.4.1, Eq.(4.76) is

actually an infinite matrix equation since the electrodes are semi-infinitely long. To

deal with this problem, we divide the system into three parts: left electrode, central

region and right electrode. With this division, Eq.(4.76) can be rewritten in block

matrix form as follows,


E+Oll −Hll E+Olc −Hlc 0

E+Ocl −Hcl E+Occ −Hcc E+Ocr −Hcr

0 E+Orc −Hrc E+Orr −Hrr




GR

ll GR
lc GR

lr

GR
cl GR

cc GR
cr

GR
rl GR

rc GR
rr

 =


I 0 0

0 I 0

0 0 I


(4.77)

Now, our goal is to obtain the expression for Gcc of the central region. From the last

matrix equation, it is straightforward to write down the following set of equations for

various blocks:

(E+Oll −Hll)G
R
lc + (E+Olc −Hlc)G

R
cc = 0 (4.78)

(E+Ocl −Hcl)G
R
lc + (E+Occ −Hcc)G

R
cc + (E+Ocr −Hcr)G

R
cr = I (4.79)

(E+Orc −Hrc)G
R
cc + (E+Orr −Hrr)G

R
rc = 0 (4.80)

Eliminating the Green’s function blocks of GR
lc and GR

rc, we find the solution for GR
cc:

GR
cc(E) = [E+Occ −Hcc −ΣR

l (E)−ΣR
r (E)]

−1 (4.81)

where

ΣR
l (E) = (E+Ocl −Hcl)G

R,0
ll (E+Olc −Hlc) (4.82)
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GR,0
ll (E) = [E+Oll −Hll]

−1 (4.83)

ΣR
r (E) = (E+Ocr −Hcl)G

R,0
rr (E+Orc −Hrc) (4.84)

GR,0
rr (E) = (E+Orr −Hrr)

−1 (4.85)

With Eq.(4.81), the retarded Green’s function of the central region GR
cc(E) is now

expressed in terms of the Hamiltonian and overlap matrices of the central region,

plus the self-energies ΣR
l and ΣR

r due to electrodes. Since all these quantities are

matrices of finite size, Eq.(4.81) can be calculated by matrix inversion. The Eq.(4.78)

and Eq.(4.80) will be further used in Section 4.7 below.

From the matrix form Eq.(4.81), the Green’s function in real space GR
cc(r, r

′, E) in

Eq.(4.53), can be obtained by an outer product of the basis set functions. Hence,

GR
cc(r, r

′, E) =
∑

RL,R′L′
GR

cc,RL,R′L′(E)χRL(r)χ
∗
R′L′(r′) (4.86)

where atomic sites R and R′ are defined within the central region of the device.

Next, we define the NEGF matrix using our basis set {χRL} for the central device

region. By inserting Eq.(4.86) into Eq.(4.52), we can rewrite the NEGF Eq.(4.52) in

terms of basis functions and Green’s function matrices,

G<
cc(r, r

′, E) =
∫
dr1dr2G

R
cc(r, r1, E)Σ<(r1, r2)G

A
cc(r2, r

′, E)

=
∫
dr1dr2[

∑
im

GR
cc,im(E)χi(r)χ

∗
m(r1)]Σ

<(r1, r2)[
∑
nj

GA
cc,nj(E)χn(r2)χ

∗
j(r

′)]

=
∑
ij

χi(r)χ
∗
j(r

′)
∑
mn

GR
cc,im(E)[

∫
dr1dr2χ

∗
m(r1)Σ

<(r1, r2)χn(r2)]G
A
cc,nj(E)

=
∑
ij

χi(r)χ
∗
j(r

′)
∑
mn

GR
cc,im(E)Σ

<
mn(E)G

A
cc,nj(E)

=
∑
ij

χi(r)χ
∗
j(r

′)[GR
cc(E)Σ

<(E)GA
cc(E)]ij (4.87)

where all the indexes i, j,m, n run over the atomic positions in the central region.



58 4 The non-equilibrium Green’s function formalism

Defining the NEGF matrix G<(E) as:

G<
cc(E) = GR

cc(E)Σ
<(E)GA

cc(E) (4.88)

where the matrices GR
cc(E) and GA

cc(E) are connected by the matrix Σ<(E), and

GA
cc(E) = GR,†

cc (E). Then,

G<
cc(r, r

′, E) =
∑

RL,R′L′
G<

cc,RL,R′L′(E)χRL(r)χ
∗
R′L′(r′) (4.89)

From the definition of the lesser self-energy in Section 4.3 (see Eq.(4.57)), the matrix

Σ<(E) becomes:

Σ<(E) = fl(E)Γl(E) + fr(E)Γr(E)

= fl(E)(Σ
A
l (E)−ΣR

l (E)) + fr(E)(Σ
A
r (E)−ΣR

r (E)) (4.90)

where the line width function matrix Γl/r(E) of the electrodes are giving by the

following expression:

Γl/r(E) = ΣA
l/r(E)−ΣR

l/r(E) (4.91)

in which the self-energy ΣR
l/r(E) is defined in Eqs.(4.82,4.84). At equilibrium, one

can confirm that the NEGF matrix in Eq.(4.88) satisfies the fluctuation-dissipation

theorem using Eqs.(4.81,4.82,4.84,4.90), namely,

G<
cc(E) = GA

cc(E)−GR
cc(E) (4.92)

Therefore,

G<
cc(r, r

′, E) =
∑

RL,R′L′
χRL(r

′)χ∗
R′L′(r)[GA

cc(E)−GR
cc(E)]RL,R′L′ (4.93)

which provides great simplicity for the equilibrium theory since the electron density

is directly given by ρ(r) ∼
∫
G<

cc(r, r, E)dE. The complexity of the theory for non-
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equilibrium can be seen by comparing Eq.(4.92) (for equilibrium) and Eq.(4.88) and

will be further discussed in Chapter 5.

Similarly to NEGF, we can express the electric current formula, Eq.(4.72) where

all quantities are defined in real space, into a matrix form. By inserting Eq.(4.89)

and Eq.(4.86) into Eq.(4.72), we obtain,

Itotal =
e

h̄

∫
dE

∫
drdr′Γl(r, r

′, E){fl(E)[GR
cc(r

′, r⃗, E)−GA
cc(r

′, r, E)] +G<
cc(r

′, r, E)}

=
e

h̄

∫
dE

∫
drdr′Γl(r, r

′, E)
∑
ij

{fl(E)[GR
cc,ij(E)−GA

cc,ij(E)] +G<
cc,ij(E)}χi(r⃗)χ

∗
j(r⃗

′)

=
e

h̄

∫
dE

∑
ij

[
∫
drdr′Γl(r, r

′, E)χi(r)χ
∗
j(r

′)]{fl[GR
cc,ij(E)−GA

cc,ij(E)] +G<
cc,ij(E)}

=
e

h̄

∫
dE

∑
ij

Γl,ji(E){fl(E)[GR
cc,ij(E)−GA

cc,ij(E)] +G<
cc,ij(E)}

=
e

h̄

∫
dE

∑
j

{Γl(E){fl(E)[GR
cc(E)−GA

cc(E)] +G<
cc(E)}}jj

=
e

h̄

∫
dETr{Γl(E){fl(E)[GR(E)−GA(E)] +G<(E)}} (4.94)

Using Eqs.(4.90,4.88) in the above equation, we obtain,

Itotal =
e

h̄

∫
dETr{(fr(E)− fl(E))Γl(E)G

R
cc(E)Γr(E)G

A
cc(E)} (4.95)

which is the Landauer formula. We can define a transmission coefficient T (E) as

follows in term of matrices,

T (E) = Tr[Γl(E)G
R
cc(E)Γr(E)G

A
cc(E)] (4.96)

The equilibrium conductance G is obtained from T (E) at the Fermi energy of the

system,

G =
e2

h̄
T (EF ) (4.97)

So far, we have rewritten equations of NEGF into a matrix form using a general

local orbital basis set {χRL}. Since χRL is an atomic orbital centered at the atomic site
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R, it decays away from R. Therefore the overlap of two basis functions χRL and χR′L′

can be neglected when R − R′ is large. This approximation makes the Hamiltonian

and overlap sparse matrices. Furthermore, we shall carry out the following procedure.

The two-probe device system is divided into principle layers (PL) from one end to the

other end as shown in Fig.4.2, the PLs are labeled by an index p: the central device

region contains p = 1, 2, ..., n − 1, N PLs, the left and right electrodes contain PLs

labeled by p = −∞, ...,−1, 0 and p = N + 1, N + 2, ...,+∞, respectively. The width

of PL is chosen such that atoms in a PL only have direct orbital overlap to atoms in

the same PL, as well as those in the nearest neighbor PLs. Such a division into PLs

makes the matrix (EO−H) to have a tri-diagonal form. Denoting M ≡ (EO−H),

we have:



...... M−10 0 0 0 0 0 0 0

M0−1 M00 M01 0 0 0 0 0 0

0 M10 M11 M12 0 0 0 0 0

0 0 M21 M22 M23 0 0 0 0

...... ...... 0 0 0

0 0 0 0 MN−1,N−2 MN−1,N−1 MN−1,N 0 0

0 0 0 0 0 MN,N−1 MN,N MN,N+1 0

0 0 0 0 0 0 MN+1,N MN+1,N+1 MN+1,N+2

0 0 0 0 0 0 0 0 .......


(4.98)

This immediately results in the following important simplification for the self-

energy matrices Σl and Σr,

ΣR
l = (E+Ocl −Hcl)G

R,0
ll (E+Olc −Hlc) =


ΣR,l

11 0 .... 0

.....

0 0 .... 0


cc

(4.99)
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Figure 4.2: Schetch of two probe device in principle layers. A portion of the electrode is included in
the central device region for screening, the central device region contains N principle layers.

ΣR
r = (E+Ocr −Hcr)G

R,0
rr (E+Orc −Hrc) =


0 0 .... 0

.....

0 0 .... ΣR,r
NN


cc

(4.100)

where the only non-zero blocks are ΣR,l
11 for ΣR

l , and ΣR,r
NN for ΣR

r . These nonzero

blocks are:

ΣR,l
11 = (E+O10 −H10)G

R,0
ll,00(E

+O01 −H01) (4.101)

ΣR,r
NN = (E+ON,N+1 −HN,N+1)G

R,0
rr,N+1,N+1(E

+ON+1,N −HN+1,N) (4.102)

Here, quantities GR,0
00 and GR,0

N+1,N+1 are the surface Green’s functions of the left and

right electrodes which we will describe in detail in the next section.

We can finally rewrite the NEGF matrix elements of Eq.(4.88) by using Eqs.(4.99,

4.100),

G<
cc,pp′(E) = fl(E)G

R
cc,p1Γ

l
11(E)G

A
cc,1p′(E) + fr(E)G

R
cc,pN(E)Γ

r
NN(E)G

A
cc,Np′(E)

(4.103)

where Γl
11 = ΣA,l

11 −ΣR,l
11 and Γr

NN = ΣA,r
NN −ΣR,r

NN . Noting that GA
1p′(E) = GR,†

p′1 , and

GA
Np′(E) = GR,†

p′N(E), the computation of the full matrix G<
cc only needs the elements

GR
cc,p1 of the first column and GR

cc,pN of the last column. Similarly, the transmission
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coefficient can be rewritten as,

T (E) = Tr[Γ11(E)G
R
cc,1N(E)ΓNN(E)G

A
cc,N1(E)] (4.104)

where GA
cc,N1(E) = GR,†

cc,1N(E). Only the block GR
cc,1N(E) is needed for the calculation

of T (E).

In this section, we discussed the NEGF theory for calculating electron density

matrix and electric current for two-probe device systems. It should be noted that we

shall implement this formalism in the framework of KS DFT which is a mean field

materials theory. For strongly correlated systems, more complicated expressions are

needed to calculate quantum transport. In the next section, we will introduce the

recursive Green’s function technique for the inversion of the tri-diagonal matrix like

Eq.(4.98), which is extensively used in NEGF simulation of nano-electronic devices.

4.6 The recursive Green’s function technique

From the discussion in the last section, we see the retarded Green’s function of the

central device region in Eq.(4.81) is explicitly written as inverse of a tri-diagonal

matrix, according to Eqs.(4.98,4.99,4.100),

GR
cc =



M11 −ΣR,l
11 M12 0 0 0

M21 M22 M23 0 0

..... 0 0

0 0 MN−1,N−2 MN−1,N−1 MN−1,N

0 0 0 MN,N−1 MNN −ΣR,r
NN



−1

(4.105)

The recursive Green’s function technique provides efficient inversion of this tri-

diagonal matrix. Here, we directly write down the equations for computing each

block of the Green’s function[70]. First, the diagonal blocks of the Green’s function
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are given by,

GR
ii = [Mii −Σl

i −Σr
i ]
−1, (1 ≤ i ≤ N) (4.106)

where Σl
i and Σr

i can also be called self-energies which are recursively calculated

by starting from the left side and right side of the central region: Σl
i and Σr

i are

calculated independently. For example, by calculating from the left side, we obtain

ΣR,l
1 = ΣR,l

11 (4.107)

ΣR,l
i+1 = Mi+1,i[Mii −Σl

i]
−1Mi,i+1 . (4.108)

Calculating from the right side, we obtain

ΣR,r
N = ΣR,r

NN (4.109)

ΣR,r
i−1 = Mi−1,i[Mii −Σr

i ]
−1Mi,i−1 (4.110)

Once the diagonal block is found, the off-diagonal block of the Green’s function

can be derived in the following manner,

GR
ij = −[Mii −Σr

i ]
−1Mi,i−1Gi−1,j, (i > j) (4.111)

GR
ij = −[Mii −Σl

i]
−1Mi,i+1Gi+1,j, (i < j) (4.112)

These results are general for inverting tri-diagonal block matrices. Such recursive

Green’s function technique provides great advantages in computing the NEGF matrix

of Eq.4.93 for which only the first and last columns of the retarded Green’s function,

namely GR
p1 and GR

pN for 1 ≤ p ≤ N , are needed.

In the following, we present recursive equations for the surface Green’s function

that is needed for calculating self-energies of the electrodes (see Eqs.(4.101,4.102)).
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For the left electrode, we can write down the following equation according to Eq.(4.82),

 MDD MD0

M0D M00


 GR,0

ll,DD(E) GR,0
ll,D0(E)

GR,0
ll,0D(E) GR,0

ll,00(E)

 = I (4.113)

Here, the subscript D includes all the principle layers from −∞ to −1. One can solve

the block GR,0
ll,00,

GR,0
ll,00(E) = [M00 −M0DM

−1
DDMD0]

−1 = [M00 −M0−1[M
−1
DD]−1−1M−10]

−1 (4.114)

In practical applications, we always assume that the semi-infinite electrode is a perfect

crystal, namely all principle layers in the electrode are the same. As a result, in the

left electrode where p ≤ 0, Mpp = M00, Mp,p−1 = M0−1, Mp−1,p = M−10, and

[M−1
UU ]−1−1 = GR,0

ll,−1−1 = GR,0
ll,00 = GR,0

left. Therefore, the above equation for the surface

Green’s function G0
00 is changed into a self-consistent equation,

GR,0
left(E) = [M00 −M0−1G

R,0
left(E)M−10]

−1 (4.115)

It is similar to find the surface Green’s function for the right electrode, letting

GR,0
N+1,N+1 = G0

right we have:

GR,0
right(E) = [MN+1,N+1 −MN+1,N+2G

R,0
right(E)MN+2,N+1]

−1 (4.116)

These two non-linear self-consistent equations provide a way to compute the surface

Green’s functions GR,0
left(E) and GR,0

right(E). In the literature, several different ap-

proaches were invented to compute them iteratively[71]. The most efficient method

appears to be the renormalization-decimation technique [71] which we have imple-

mented in our quantum transport software package. In this technique, 2n number of

principle layers can be included after n iterations.
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4.7 Green’s function method in TB-LMTO-ASA

In previous sections, we have introduced a general NEGF formulation and a general

localized orbital basis set for practical calculations. In the rest of this thesis, we shall

focus on a particular implementation within the tight binding LMTO-ASA framework

as described in Chapter 3. As shown there, the Hamiltonian matrix that corresponds

to the nearly orthogonal LMTO basis takes the following form (see Eq.(3.57)),

Horth = C +
√
∆
{
Sα [1 + (α− γ)Sα]−1

}√
∆ (4.117)

Here the diagonal matrices C , ∆ and γ are the potential parameters that represents

the center, the width and the distortion of the RL-th“band”(see Eqs. (3.58, 3.59,3.60)

); α is the screening constant for the TB-LMTO representation (see Eq.(3.22) ); and

the matrix Sα is the screened structure constant in α representation (see Eq.(3.26)

). It should be mentioned again that the Hamiltonian matrix constructed by the

orthogonal LMTO is invariant with respect to the screening constant α.

Because the orthogonal LMTO basis are rather long-ranged functions, it is compu-

tationally demanding if we apply the NEGF formalism described above directly. For

practical purposes, we therefore rewrite the Green’s function matrix by the following

procedures,

G(z) = [z −Horth]−1

= [z − C −
√
∆Sα[1 + (α− γ)Sα]−1

√
∆]−1

=
√
∆

−1
{
z − C

∆
− Sα[1 + (α− γ)Sα]−1

}−1 √
∆

−1

=
√
∆

−1
[1 + (α− γ)Sα]

{
z − C

∆
[1 + (α− γ)Sα]− Sα

}−1√
∆

−1

=
√
∆

−1
[1 + (α− γ)Sα]

{
z − C

∆
− ∆+ (z − C)(γ − α)

∆
Sα

}−1 √
∆

−1

=
√
∆

−1
[1 + (α− γ)Sα]

{
z − C

∆+ (γ − α)(z − C)
− Sα

}−1 √
∆

∆+ (z − C)(γ − α)
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=
γ − α

∆+ (z − C)(γ − α)
+

√
∆

∆+ (z − C)(γ − α)

{
z − C

∆+ (γ − α)(z − C)
− Sα

}−1

√
∆

∆+ (z − C)(γ − α)
= λα(z) + uα(z)[Pα(z)− Sα]−1uα(z) (4.118)

This is the final form of the Green’s function matrix in LMTO-ASA. Here, the ma-

trices λα(z), uα(z) and Pα(z) are all diagonal matrices with elements λαRL,u
α
RL and

Pα
RL respectively,

Pα
RL(z) =

z − CRL

∆RL + (γRL − αRL)(z − CRL)

λαRL(z) =
γRL − αRL

∆RL + (γRL − αRL)(z − CRL)

uαRL(z) =

√
∆RL

∆RL + (γRL − αRL)(z − CRL)
.

We introduce an auxiliary Green’s function in the α representation of TB-LMTO

for our calculations:

gα(z) = [Pα(z)− Sα]−1 . (4.119)

From now on, to distinguish from the auxiliary quantities gα and gα,< which we shall

introduce below, we call Gδ where δ = r, a,< the physical Green’s functions. From

Eq.(4.118), we can observe that the physical Green’s function is simply connected

with the auxiliary Green’s function by the following relation,

GRL,R′L′(z) = λαRLδRL,R′L′ + uαRLg
α
RL,R′L′uαR′L′ (4.120)

Although all quantities are α dependent, the Green’s function is invariant with re-

spect to the screening constant because of the α independent Hamiltonian matrix.

The screening constant α can thus be considered as a free parameter which can be

exploited to simplify numerical computation. Inside a particular form of the aux-

iliary Green’s function gα of Eq.(4.119), the lattice geometry is only described by

the screened structure constant Sα, and the chemical occupants on lattice sites are

represented by the quantity Pα, thus the physical representation of a real atomistic



4.7 Green’s function method in TB-LMTO-ASA 67

system is greatly simplified in this method. The structure constant matrix Sα in the

most screened representation is a short-ranged matrix[32], it provides a substantial

computation advantage by calculating the auxiliary gα before obtaining the physical

Green’s functions.

When we consider a two-probe system, the Green’s function for the central scat-

tering region can be written in term of gα, according to Eq.(4.120),

Gcc(z) = λαc (z) + uαc (z)g
α
cc(z)u

α
c (z) (4.121)

Similar to Eq.(4.77), we can write down the following equation for gα
cc from Eq.(4.119),


Pα
l − Sα

ll −Sα
lc 0

−Sα
cl Pα

c − Sα
cc −Sα

cr

0 −Sα
rc Pα

r − Sα
rr




gα
ll gα

lc gα
lr

gα
cl gα

cc gα
cr

gα
rl gα

rc gα
rr

 =


I 0 0

0 I 0

0 0 I

 (4.122)

Thus

(Pα
l − Sα

ll)g
α
lc − Sα

lcg
α
cc = 0 (4.123)

−Sα
clg

α
lc + (Pα

c − Sα
cc)g

α
cc − Sα

crg
α
cr = I (4.124)

−Sα
rcg

α
cc + (Pα

r − Sα
rr)g

α
cr = 0 (4.125)

We can then find:

gα
cc = [Pα

cc − Sα
cc −Σα

l −Σα
r ]

−1 (4.126)

where

Σα
l (z) = Sα

clg
a,0
ll (z)Sα

lc (4.127)

ga,0
ll (z) = [Pα

l (z)− Sα
ll]

−1 (4.128)

Σα
r (z) = Sα

crg
a,0
rr (z)S

α
rc (4.129)
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ga,0
rr (z) = [Pα

r (z)− Sα
rr]

−1 (4.130)

Here Σα
l/r and gα,0

ll/rr are the respective self-energies and surface Green’s function that

correspond to the auxiliary Green’s function.

In the following, we rewrite the physical NEGF in Eq.(4.88) in terms of the aux-

iliary Green’s functions. If we only consider orthogonal basis sets, according to

Eq.(4.82) to Eq.(4.85), where the overlap matrix O = I, Eq.(4.88) can be rewrit-

ten into the following form,

G<
cc(E) = fl(E)G

R
ccHcl(G

A,0
ll −GR,0

ll )HlcG
A
cc(E)

+fr(E)G
R
ccHcr(G

A,0
rr −GR,0

rr )HrcG
A
cc(E) (4.131)

According to Eq.(4.78) and Eq.(4.80), we can obtain a similar equation for GA by

replacing E+ with E−,

[E− −Hll]G
A
lc −HlcG

A
cc = 0 (4.132)

and

[E− −Hrr]G
A
rc −HrcG

A
cc = 0 (4.133)

where Olc/rc = 0 and Oll/rr = 1 for orthogonal basis set. Substituting these two

equations into Eq.(4.131), and using the relation GR = GA,†, we rewrite the physical

NEGF as,

G<
cc(E) = fl(E)G

R
cl(E

+ −Hll)(G
A,0
ll −GR,0

ll )(E− −Hll)G
A
lc(E)

+fr(E)G
R
cr(E

+ −Hrr)(G
A,0
rr −GR,0

rr )(E− −Hrr)G
A
rc(E)

= fl(E)G
R
cl(E

+ − E−)GA
lc(E) + fr(E)G

R
cr(E

+ − E−)GA
rc(E) (4.134)

Now, apply the block Green’s function using Eq.(4.120), we obtain

G<
cc(E) = fl(E)u

α
c (E

+)gα,R
cl uαl (E

+)(E+ − E−)uαl (E
−)gα,A

lc uαc (E
−)
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+fr(E)u
α
c (E

+)gα,R
cr uαr (E

+)(E+ − E−)uαr (E
−)gα,A

rc uαc (E
−) (4.135)

Noting:

uαl (E
+)(E+ − E−)uαl (E

−) = Pα
l (E

+)− Pα
l (E

−)

= [P α
l (E

+)− Sα
ll][g

α,A,0
ll − gα,R,0

ll ][Pα
l (E

−)− Sα
ll]

uαr (E
+)(E+ − E−)uαr (E

−) = Pα
r (E

+)− Pα
r (E

−)

= [P α
r (E

+)− Sα
rr][g

α,A,0
rr − gα,R,0

rr ][Pα
r (E

−)− Sα
rr] (4.136)

and from Eqs.(4.123, 4.125), we obtain the following relations,

[Pα
l (E

−)− Sα
ll]g

α,A
lc = Sα

lcg
α,A
cc (4.137)

[Pα
r (E

−)− Sα
rr]g

α,A
rc = Sα

rcg
α,A
cc (4.138)

and equivalently the relations

gα,R
cl [Pα

l (E
+)− Sα

ll] = gα,R
cc Sα

cl (4.139)

gα,R
cr [Pα

r (E
+)− Sα

rr] = gα,R
cc Sα

cr (4.140)

The NEGF formula in Eq.(4.131) is written into the following final form:

G<
cc(E) = fl(E)u

α
c (E

+)gα,R
cc [Σα,A

l −Σα,R
l ]gα,A

cc uαc (E
−)

+fr(E)u
α
c (E

+)gα,R
cc [Σα,A

l −Σα,R
l ]gα,A

cc uαc (E
−)

= uαc (E
+)gα,<

cc uαc (E
−) (4.141)

This is the final expression of the physical NEGF within the tight binding LMTO-

ASA method. The physical NEGF is also independent of the α representation. In
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Eq.(4.141), we defined the a auxiliary NEGF gα,< in the α representation,

gα,<
cc = gα,R

cc {fl(E)Γα
l + fr(E)Γ

α
r }gα,A

cc = gα,R
cc Σα,<gα,A

cc (4.142)

where Γα
l/r = Σα,A

l/r −Σα,R
l/r and

Σα,< = fl(E)Γ
α
l + fr(E)Γ

α
r (4.143)

By computation of gα,<, one can directly determine the physical NEGF G<.

Finally, we need to express the transmission coefficient in terms of the auxiliary

Green’s function. Similar to the above derivation of NEGF, we first rewrite T(E) of

Eq.(4.96) as:

T (E) = Tr[ΓlG
R
cr(E

+ − E−)GA
rc] = Tr[GA

rcΓlG
R
rc(E

+ − E−)] (4.144)

Because from Eq.(4.77), we can obtain that, for the orthogonal representation,

(E −Hll)Glr = HlcGcr (4.145)

Then it is easy to find

T (E) = Tr[GA
rl(E

+ − E−)GR
lr(E

+ − E−)] (4.146)

Using the Green’s function of Eq.(4.120), the above T (E) can be rewritten as

T (E) = Tr[gα
rlu

α
l (E

+ − E−)uαl g
α
lru

α
r (E

+ − E−)uαr ]

= Tr{gα
rl[P

α
l (E

+)− Pα
l (E

−)]gα
lr[P

α
r (E

+)− Pα
r (E

−)]} (4.147)

Algebraically, this expression looks exactly the same as Eq.(4.96) with Pα−Sα taking

the place of z −H. The final expression for transmission coefficient in tight binding
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LMTO-ASA method becomes:

T (E) = Tr(Γα
l g

α,R
cc Γα

r g
α,A
cc ) (4.148)

So far, we have rewritten the Green’s function formalism for quantum transport

in terms of the auxiliary Green’s functions within the framework of tight binding

LMTO-ASA method, see Eq.(4.148) for electric current, Eqs.(4.141 ,4.142) for the

physical NEGF, and Eqs.(4.120,4.119) for the physical Green’s function.

4.8 Summary

As a summary for this Chapter, we reviewed the general NEGF formalism and its

practical implementation for treating non-equilibrium quantum transport in nano-

electronic devices. Starting from the KS Hamiltonian, in Sections 4.2,4.3,4.4, we de-

rived the Keldysh NEGF equation in Eq.(4.52) and the Landauer formula in Eq.(4.72).

In Section 4.5, we presented a practical implementation of the NEGF quantum trans-

port formalism within a general local orbital basis set by rewriting the NEGF for-

malism in terms of the Green’s function matrices. The recursive Green’s function

technique is introduced for fast computation. In Section 4.7, a particular implemen-

tation of NEGF formalism within the TB-LMTO-ASA approach is introduced by

reformulating the physical Green’s function and NEGF in terms of their auxiliary

counterparts, and rewriting the Landauer formula using the auxiliary Green’s func-

tion. The NEGF-DFT approach provides the most powerful technique for simulating

quantum transport properties of nano-electronic devices from atomic first principles.

Based on NEGF-DFT, in the next chapter, we will develop a non-equilibrium vertex

correction theory for handling the non-equilibrium disorder averaging problem. The

results obtained in this Chapter, Eqs.(4.119, 4.120, 4.141, 4.142, 4.148) will serve as

the starting point of Chapter 5.
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Theory of non-equilibrium vertex correction

As we discussed in Chapter 1, it is inevitable that all nano-electronic devices pro-

duced in laboratories contain some amount of disorder or imperfections such as im-

purities, defects, dopants, dislocations, and so on. These unintentional impurities sit

at unpredictable random locations in the host lattice and significantly affect quantum

transport and electron scattering. There are experimental evidence that even a single

impurity can some times affect charge transport substantially[72]. Understanding the

roles of disordered impurities for nonequilibrium quantum transport has become a

critical issue for device theory. The main intellectual contribution of this thesis is

to develop a non-equilibrium vertex correction (NVC) theory to calculate disorder

averaging in the NEGF-DFT formalism. In this Chapter, we present the details of

the NVC theory that allows us to calculate disorder averaging at the density matrix

level, Eq.(1.5), and the transmission coefficient level, Eq.(1.6).

So far in the theoretical literature, understanding effects due to substitutional dis-

order have achieved the greatest progress and we shall focus on this type of disorder

as well. Substitutional disorder is produced by replacing a randomly selected host

atom in a perfect crystal with an impurity atom. The atomic potential is changed at

the replacement site inducing a charge rearrangement that affect the potential land-

scape at neighboring sites. Such a potential change provides electron scattering which

alters quantum transport properties of the system. As a simplest assumption, atomic

substitution occurs on sites of an unperturbed rigid lattice, namely the host lattice is

assumed to not undergo significant structural change after atomic substitution. This

72
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is an approximation because the impurity atom may not have the same size as the

host atom and local strain may induce some structural relaxation near the impurity.

The lattice relaxation can be important in disordered systems and it is itself a large

topic of active research. Since our interest is on electron scattering and quantum

transport, we shall not consider structural issues due to impurity and assume a rigid

lattice model.

With these in mind, the probability of finding an atom of a given species on a

lattice site is independent of the nature of the atoms occupying the neighboring sites.

For example, in a binary alloy AxB1−x, the probability that a given site is occupied by

an A atom is x, which is the atomic concentration of the A-species relative to the total

number of atoms. In reality, various effects such as atomic size, electrostatic effects,

chemical nature of the atoms etc., may cause atoms to aggregate or to preferentially

choose neighboring atoms. Even though such clustering is usually short range for

small concentration x, it produces some degree of non-randomness. Again, we shall

not consider such structural issues.

We emphasize that our NVC theory is atomic center based (see below), hence it

can be applied to systems where impurities preferentially locate at certain sites. For

instance, perhaps there are more impurities near the interface of a heterostructure

than deep inside the lattice, namely the impurities are distributed randomly but not

uniformly. For such non-uniformly distributed impurity structures, one may carry

out DFT total energy calculations to determine the likely low energy atomic configu-

rations and then carry out quantum transport calculations. We will use the coherent

potential approximation (CPA) within the multiple scattering theory to calculate the

configurationally averaged retarded or advanced Green’s functions, and develop the

NVC theory for the configurational average of NEGF.
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5.1 Basic definitions

We consider a binary disorder system of two different atomic elements Q = A,B,

which are distributed randomly over a regular ideal lattice site R with probabilities

cAR and cBR = 1− cAR, and the site label R runs over the entire lattice. The probability

cQR can depend on R thus impurity can be non-uniformly distributed. In the Muffin

Tin approximation, the corresponding Hamiltonian can be written in the form of (see

Eq.(3.6) ),

H = −∆+
∑
R

VMT (rR) (5.1)

VMT (rR) = ηARV
A
MT (rR) + ηBRV

B
MT (rR) (5.2)

Here ηQR denotes the occupation of site R by an atom of type Q, for example ηQR = 1

if the R-site is occupied by an atom of type Q, otherwise ηQR = 0. The potential

V Q
MT (rR) represents the component dependent (Q dependent) potential within the Q

atomic sphere on site R. For random disorder, the probability for ηAR = 1 is cAR; for

ηAR = 0 is 1−cAR. In the above Hamiltonian, the potential VMT (rR) can randomly take

on two different potentials V A
MT (rR) and V B

MT (rR) with the respective probabilities

cARand c
B
R. As a direct consequence, within the tight binding LMTO-ASA approach,

the potential parameters CR, ∆R and γRL at the site R can have two different values

randomly, CA
R and CB

R , ∆
A
R and∆B

RL, γ
A
R and γBR with the respective probabilities cAR

and cBR. Please distinguish the capital CR from the lower case cR.

With these statistical quantities, we can rewrite the Hamiltonian and the physical

Green’s function matrices of Eqs.(3.57, 4.120), HR,R′ and GR,R′ , in terms of the

occupation indices,

HR,R′ =
∑
Q

CQ
Rη

Q
RδR,R′ +

∑
Q,Q′

√
∆Q

Rη
Q
R

{
Sα [1 + (α− γ)Sα]−1

}
RR′

ηQ
′

R′

√
∆Q′

R′ (5.3)
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where γR =
∑
Q
ηQRγ

Q
R , and

GR,R′(z) =
∑
Q

λα,QR (z)ηQRδR,R′ +
∑
Q,Q′

uα,QR (z)ηQRg
α
RR′η

Q′

R′u
α,Q′

R′ (z) (5.4)

Here gα is the auxiliary Green’s function in α representation (see Eq.(4.119)),

gα(z) = [Pα − Sα]−1 (5.5)

where Pα
R =

∑
Q η

Q
RP

α,Q
R . In the above Eqs.(5.3,5.4,5.5), α is the screening constant

which is independent of the atomic species. The diagonal matrices λαRL, µ
α
RL and Pα

RL

in addition to those potential parameters, are all statistical quantities which depend

on the random occupation of the given site R by atoms A or B. The only non-random

quantity is the tight-binding structure constant matrix Sα which is corresponding

to the lattice geometry. The Green’s function G(z) and the corresponding auxiliary

Green’s function gα(z) are thus statistical quantities.

For a two-probe binary system, the physical NEGF matrix elements of the central

region within the tight binding LMTO-ASA approach can be rewritten in the following

form (using Eq.(4.141)),

G<
cc,RR′(z) =

∑
Q,Q′

µα,Q
R (z)ηQRg

<,α
cc,RR′(z)η

Q′

R′µ
α,Q′

R′ (z) (5.6)

and the auxiliary NEGF g<,α in the α representation is given by the expression (see

Eq.(4.142)),

gα,<
cc = gα,R

cc Σα,<gα,A
cc (5.7)

where the index cc denotes the central region, Σα,< is the auxiliary self-energy. These

quantities were discussed in Section 4.7. We shall assume that the electrodes of the

device contain no disorder, hence Σα,< is not a statistical quantity. It is evident that

the physical NEGF and auxiliary NEGF are both statistical matrices.
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The statistical quantities must be averaged over configurations of disorder in order

to obtain physically meaningful results. Namely, we need to calculate the following:

GR,R′(z) =
∑
Q

cQRλ
α,Q
R δR,R′ +

∑
Q,Q′

µα,Q
R ηQRg

α
RR′η

Q′

R′µ
α,Q′

R′ (5.8)

and

G<
cc,RR′(z) =

∑
Q,Q′

µα,Q
R (z)ηQRg

<,α
cc,RR′(z)η

Q′

R′µ
α,Q′

R′ (z) (5.9)

where (· · ·) denotes configurational average, and the relation ηQR = cQR has been used.

Using the relation ηQRη
Q′

R = ηQRδQ,Q′ , we can rewrite the configurationally averaged

site-diagonal elements as:

GRR(z) =
∑
Q

cQRλ
α,Q
R +

∑
Q,Q′

µα,Q
R ηQRg

α
RRη

Q′

R µ
α,Q′

R

=
∑
Q

cQRλ
α,Q
R + µα,Q

R ηQRg
α
RRµ

α,Q
R

=
∑
Q

cQRG
Q

RR(z) (5.10)

G
Q

RR(z) = λα,QR + µα,Q
R gα,Q

RR µ
α,Q
R (5.11)

where GQ
R,R is the the conditionally averaged site-diagonal Green’s function which

is connected to its auxiliary counterpart defined as,

gα,Q
RR = ηQRg

α
RR/c

Q
R (5.12)

For the site-diagonal elements of NEGF, we have a similar decomposition,

G
<

cc,RR(z) =
∑
Q

µα,Q
R (z)ηQRg

<,α
cc,RR(z)µ

α,Q
R (z) =

∑
Q

cQRG
<,Q

cc,RR (5.13)

G
<,Q

cc,RR = µα,Q
R (z)g<,α,Q

cc,RR (z)µ
α,Q
R (z) (5.14)
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Here we have defined the conditionally averaged site-diagonal physical NEGF, G
<,Q

cc,RR

which has a simple connection to its auxiliary counterpart,

g<,α,Q
cc,RR (z) = ηQRg

<,α
cc,RR(z)/c

Q
R (5.15)

From above relations, it is seen that the averaged site-diagonal part of physical

Green’s function and NEGF, GRR and G
<

cc,RR, are both partitioned into contributions

corresponding to the occupation of the site R by atoms Q = A,B. The conditional

average over site-diagonal quantities, such as G
Q

RR, g
Q
RR, G

<,Q

cc,RR and gα,<,Q
cc,RR , has the

following meaning: the occupation on site R is fixed to atom Q, and the averaging

is restricted to all configurations of the remaining sites in the system. This is usu-

ally called “restricted ensemble average”. The averaged local density matrices of the

atoms of type Q, which are needed in charge self-consistency in the atomic sphere

approximation, are directly provided by the conditionally averaged quantities G
Q

RR

and G
<,Q

cc,RR at equilibrium and non-equilibrium, respectively (see Section 5.6). This

is why we only concentrated on the site-diagonal elements so far.

For the averaged auxiliary quantities, one can check the following equations to be

true, ∑
Q=A,B

CQ
Rg

α,Q
RR = gα

RR = {[Pα − Sα]−1}RR (5.16)

∑
Q=A,B

CQ
Rg

α,<,Q
cc,RR = gα,<

cc,RR = {gα,R
cc Σα,<gα,A

cc }RR (5.17)

These are guaranteed by the relation
∑

Q=A,B
ηQR = 1.

The configurational average produces averaged quantities which are non-random

and most importantly, the averaged quantities such as G, gα, G
<
and gα,<, have the

full crystal symmetry of the underlying ideal lattice. Therefore the configurational

average has restored translational invariance which is critical for applying many tech-

niques and theories of solid state physics (such as the Bloch theorem). This averaging

procedure renders an intractable problem of disorder to a calculable theory.
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In the following, we will derive the averaged auxiliary Green’s function gα under the

coherent potential approximation (CPA) within multiple scattering theory in Section

5.2. After obtaining gα, the averaged auxiliary NEGF gα,< will be formulated by

deriving the non-equilibrium vertex correction in Section 5.3. The derivation of the

conditionally averaged site-diagonal element of the auxiliary green’s function and

NEGF, gα,Q
RR and gα,<,Q

RR respectively, will be presented in section 5.4.

5.2 Coherent potential approximation

The coherent potential approximation (CPA) was independently introduced by Soven[28]

and Taylor[29], and mathematically worked out by introducing the single-site approx-

imation by Velicky et al[30]. The CPA was first applied within the KKR method

to do charge-self-consistent calculation by Stocks and Winters[31]. Kudrnovsky et

al.[34, 35] implemented CPA within the tight binding LMTO method. There are ex-

tensive literature on the CPA method and its implementations[73, 74]. CPA provides

a self-consistent method to construct a translationally invariant effective Hamiltonian

characterizing the configurational averaged material. In this section,we will apply the

CPA method to calculate the configurationally averaged auxiliary Green’s function

in the tight binding LMTO-ASA method,

gα(z) = [Pα − Sα]−1 (5.18)

In the above equation, the structure constant Sα possesses all the symmetry of the

underlying lattice, and the only statistical quantity is the diagonal potential function

Pα
R which describes atoms occupying the site R statistically. According to the basic

idea of CPA[28, 29], let us introduce a coherent potential function Pα by defining it

in the following way:

gα ≡ [Pα − Sα]−1 (5.19)
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The unknown coherent potential function Pα describes an effective medium after

configurational average which recovers the translational invariance of the system.

The coherent potential Pα is in general a site non-diagonal and non-statistical

quantity. Its determination can be significantly simplified by using the site-diagonal

approximation[34, 35],

Pα
RR′(z) = Pα

R(z)δR,R′ (5.20)

where all the site non-diagonal matrix elements are set to zero. The coherent potential

function describes the properties of effective non-random atoms which characterize the

system after configurational average. The main task of CPA is to find the unknown

site-diagonal coherent potential function Pα
R. To do so, we proceed by the following

identity:

Pα − Sα ≡ (Pα − Sα) + Pα −Pα . (5.21)

Using gα = [Pα − Sα]−1, and gα = [Pα − Sα]−1, we obtain

gα,−1 = gα,−1 + Pα −Pα . (5.22)

Therefore,

gα = gα + gα(Pα − Pα)gα = gα + gαTgα (5.23)

where T is the T-matrix which contains all the disorder scattering processes in the

system:

T = (Pα − Pα) + (Pα − Pα)gαT (5.24)

It is clear that the T-matrix has a functional dependence on Pα. Performing config-

urational average on the above equation, we immediately obtain:

T = 0 (5.25)

which provides a self-consistent condition for calculating the coherent potential func-

tion Pα. The self-consistent solution leads to physically meaningful results for all the
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physical properties of the disordered system, and preserves all the analytical and sym-

metry properties of the averaged material. However, it is rather difficult to solve this

self-consistent equation exactly and some approximations are needed. We will now

introduce the widely used single-site approximation to determine the site-diagonal

matrix Pα self-consistently.

Introducing a single-site scattering matrix tR associated with the site R,

tR = (Pα
R − Pα

R) + (Pα
R − Pα

R)g
αtR (5.26)

namely tR = [1− (Pα
R − Pα

R)g]
−1(Pα

R − Pα
R) = (Pα

R − P α
R)[1− g(Pα

R − Pα
R)]

−1, we can

express the total T-matrix in terms of the single-site property tR. Let △R ≡ Pα
R−Pα

R ,

we obtain

tR = [1−△Rg
α]−1△R = △R[1− gα△R]

−1 (5.27)

Hence

T =
∑
R

(Pα
R − Pα

R)(1 + gαT) =
∑
R

△R(1 + gαT) =
∑
R

QR (5.28)

where the QR ≡ △R(1 + gαT) = △R(1 + gαQR + gα ∑
R′ ̸=R

QR′), or:

QR = tR(1 + gα
∑
R′ ̸=R

QR′) = (1 +
∑
R′ ̸=R

QR′gα)tR (5.29)

Here, QR describes the total contribution of the atom on site R to the T-matrix

and it is different from the single-site quantity tR. The above equation expresses the

strength of an individual scatterer as a product of an isolated scattering event and a

factor describing the transformation of an unperturbed wave incident on site R into

an effective wave due to the multiple scattering events. Using Eq.(5.29) yields the

multiple scattering equation:

T =
∑
R

QR =
∑
R

tR +
∑
R

tRg
α
∑
R′ ̸=R

tR′ +

∑
R

tRg
α
∑
R′ ̸=R

tR′gα
∑

R′′ ̸=R′
tR′′ + · · · (5.30)
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where T is written as a sum of single-site scattering contributions. In this multiple

scattering equation, the electron can not scatter twice in sequence on the same atomic

site. The Eq.(5.26) to Eq.(5.30) are exact and represent a closed form of the multiple

scattering theory. They lead to the exact configurational average,

T =
∑
R

QR (5.31)

QR = tR(1 + gα
∑
R′ ̸=R

QR′) (5.32)

To proceed further, we introduce a single site approximation (SSA)[30] to decouple

the individual single-site scattering events in Eq.(5.30). Application of SSA means

the configurational average over the T-matrix is done in the following approximate

manner:

QR = tR(1 + gα
∑
R′ ̸=R

QR′)

= tR(1 + gα
∑
R′ ̸=R

QR′) + tR(1 + gα
∑
R′ ̸=R

QR′ −QR′)

≈ tR(1 + gα
∑
R′ ̸=R

QR′) (5.33)

Here, the first term describes the average scattered wave by the individual atom on

site R; the second term contains fluctuations away from the average wave. Neglecting

the second term forms the single-site approximation. The physical meaning of SSA is

that during the multiple scattering process, the electron wave scatters off one impurity

at a time. In other words, the scattering events from the sites at different times are

independent of each other. Since the probability is small for scattering off multiple

impurities at the same time, SSA is a good approximation. The SSA becomes exact

in dilute limit of disorder.
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Applying SSA, we can rewrite the averaged T-matrix as:

T ≈
∑
R

tR +
∑
R

tRg
α
∑
R′ ̸=R

tR′ +
∑
R

tRg
α
∑
R′ ̸=R

tR′gα
∑

R′′ ̸=R′
tR′′ + · · · (5.34)

Finally, the CPA self-consistent condition Eq.(5.25) is immediately simplified to tR =

0 for each site in the system. This simplified self-consistent condition of CPA reads

tR = CA
Rt

A
R + CB

R t
B
R = 0 (5.35)

where tQR = (Pα
R − Pα,Q

R )[1− g(Pα
R − Pα,Q

R )]−1.

Therefore, the coherent potential function is found to satisfy the following self-

consistent equation:

Pα
R = P

α
R + (Pα

R − Pα,A
R )gα(Pα

R − Pα,B
R ) (5.36)

where P
α
R = (CA

RP
α,A
R + CB

RP
α,B
R ). In Eq.(5.36), only the site-diagonal matrix ele-

ment of gα
RR is required. Thus, Eq.(5.36) and Eq.(5.19) consist of a closed system

of self-consistent equations. Due to the translational invariance after configurational

average, the elements of the quantity gα
RR within an unit cell can be calculated using

computational techniques developed for crystals such as the lattice Fourier transfor-

mation.

To solve Eq.(5.36) self-consistently, one starts by setting Pα
R = P

α
R; then calculates

the site-diagonal elements of gα
RR which gives a new coherent potential function Pα

R by

Eq.(5.36) for the next iteration step, and this process is repeated until self-consistency

is achieved. In practical first principle application of CPA, a quantity called coherent

interactor (see Chapter 4.2 in Ref.[75]) is introduced for simplifying the solution of

the CPA equations. From Eq.(5.36), we observe that SSA allows us to achieve the

average over the whole system self-consistently by carrying out calculation on each

individual site one by one.
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In summary, the single site approximation within CPA [30] provides a very powerful

way to calculate the average auxiliary Green’s function gα. In particular the coherent

potential function Pα
R can be calculated self-consistently from Eq.(5.36). In the next

Section, we apply SSA again to decouple the individual scattering events tR in order

to calculate ga,<. A new quantity will emerge which is the nonequilibrium vertex

correction (NVC).

5.3 Non-equilibrium vertex correction

Consider a two-probe device such as that shown in Fig.4.1, the configurational average

over the auxiliary non-equilibrium Green’s function give us,

gα,<
cc (z) = gα,R

cc Σα,<gα,A
cc (5.37)

where the averaging is carried out over the product of three quantities: gα,R
cc ,Σα,<, and

gα,A
cc which may all be statistical quantities for disordered systems. The mathematical

method for averaging the product of three quantities is much more complicated than

that for averaging the product of two random quantities. For our two-probe system,

we shall assume that impurities only exists inside the central scattering region of the

device and not inside the left/right electrodes. This way, the self-energy Σ<,α (see

Eq.(4.143)) is not a statistical quantity. This assumption is not limiting because the

scattering region contains a portion of electrodes (see Fig.4.2), namely our formalism

allows disorder to appear in the that portion of the electrodes as well. Within this

assumption, the configurational average of the above equation becomes the average

over two statistical quantities gα,R
cc and gα,A

cc , connected by the non-statistical self-

energy matrix Σα,<.

For a two-probe system, the auxiliary Green’s function of the central region can

be expressed as follows for a particular disorder configuration of the central region
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(see Eq.(4.126) ),

gα
cc(z) = [Pα

cc(z)− Sα
cc −Σα

L(z)−Σα
R(z)]

−1 (5.38)

and using CPA of Section 5.2, we can write down its configurational average,

gα
cc(z) = [Pα

cc(z)− Sα
cc −Σα

L(z)−Σα
R(z)]

−1 (5.39)

Even though the lesser self-energy Σα,< is independent of impurity configurations

of the central region, gα,RΣα,<gα,A ̸= gα,RΣα,<gα,A, because impurity scattering

correlates gα,R and gα,A. To find the accurate expression for gα,RΣα,<gα,A, we can

start by making the substitutions,

gα,R = gα,R + gα,RTRgα,R (5.40)

gα,A = gα,A + gα,ATAgα,A (5.41)

where TA and TR are the total T-matrices corresponding to the retarded and ad-

vanced auxiliary Green’s functions, and they satisfy the relation TA = [TR]†. The

average auxiliary NEGF can be immediately written,

gα,<
cc (z) = gα,R

cc Σα,<gα,A
cc

= [gα,R + gα,RTRgα,R]Σα,<[gα,A + gα,ATAgα,A]

= gα,RΣα,<gα,A + gα,R[TRgα,RΣα,<gα,ATA]gα,A

= gα,RΣα,<gα,A + gα,RΩα
NV Cg

α,A (5.42)

Ωα
NV C = [TRgα,RΣα,<gα,ATA] . (5.43)

Here the self-consistent condition of CPA, T = 0 (Eq.(5.25)), is applied. The config-

urationally averaged quantities gα,R
cc and gα,A

cc are obtained by CPA using the single

site approximation. The quantity Ωα
NV C is the central quantity which is the non-
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equilibrium vertex correction (NVC). The average in Ωα
NV C is an average over the

pair of TR and TA connected by the already averaged quantity gα,RΣα,<gα,A which

do not depend on specific impurity configurations any more. The NVC is a self-energy

that represents multiple impurity scattering in the device under non-equilibrium con-

ditions. The equation Eq.(5.42) is exact for the averaged auxiliary NEGF. Its first

term is the coherent part whose calculation was discussed in detail in Chapter 4.

The NVC term can play very important and even dominanting roles for quantum

transport. Once Ωα
NV C is calculated, we obtain the averaged non-equilibrium density

matrix that is used to construct the Hamiltonian of the system.

We now derive the NVC self-energyΩα
NV C . Inserting Eq.(5.28), namelyT =

∑
R
QR,

into Eq.(5.43), we obtain

ΩNV C =
∑
R,R′

QR
Rg

α,RΣα,<gα,AQA
R′ , (5.44)

QR
Rg

α,RΣα,<gα,AQA
R′ = tRR(1 +

∑
M ̸=R

gα,RQR
M)gα,RΣα,<gα,AQA

R′ (5.45)

where QR = tR(1 + gα ∑
M ̸=R

QM) = (1 +
∑

N ̸=R
QNg

α)tR. We apply SSA to decouple

the single-site scattering matrix tR and the quantity QR′ when R ̸= R′. Therefore,

for R ̸= R′, we have the average

QR
Rg

α,RΣα,<gα,AQA
R′ = t

R
R(1 +

∑
M ̸=R

gα,RQR
M)gα,RΣα,<gα,AQA

R′ = 0 (5.46)

Hence, in SSA, Ωα
NV C is actually a site-diagonal matrix:

ΩNV C =
∑
R

ΩNV C,R (5.47)

Namely, NVC is a sum of single-site contributions:

ΩNV C,R = QR
Rg

α,RΣα,<gα,AQA
R
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= tRR(1 +
∑
M ̸=R

gα,RQR
M)gα,RΣα,<gα,A(1 +

∑
N ̸=R

QA
Mgα,A)tAR (5.48)

Again, apply SSA, ΩNV C,R can be approximated by the following procedure,

ΩNV C,R

= tRRg
α,RΣα,<gα,AtAR + tRR

∑
M,N ̸=R

gα,RQR
Mgα,RΣα,<gα,AQA

Ng
α,AtAR

= tRRg
α,RΣα,<gα,AtAR + tRR

∑
M,N ̸=R

gα,RQR
Mgα,RΣα,<gα,AQA

Ng
α,AtAR

= tRRg
α,RΣα,<gα,AtAR + tRR

∑
M ̸=R

gα,RQR
Mgα,RΣα,<gα,AQA

Mgα,AtAR

= tRRg
α,RΣα,<gα,AtAR + tRR

∑
M ̸=R

gα,RΩNV C,Mgα,AtAR (5.49)

Finally, we obtained a closed set of linear equations for the unknown NVC. In

Eq.(5.49), the average is over the pair of scattering events on the same site. In

other words the scattering from different sites is regarded as statistically uncorrelated

and the motion of two particles in the medium is correlated only if they both scatter

from the same site. This two-particle decoupling is consistent with the assumption

that disorder is completely random.

By solving Eq.(5.49), we obtain the averaged auxiliary NEGF. The configurational

average over the auxiliary NEGF is given by

gα,< = gα,RΣα,<gα,A +
∑
R

gα,RΩα
NV C,Rg

α,A (5.50)

where the vertex correction to the average auxiliary NEGF is a sum of single-site

contribution. Using Eq.(5.49), we can express gα,< by expanding it as an infinite

series:

gα,< = gα,RΣα,<gα,A +
∑
R

gα,RtRRg
α,RΣα,<gα,AtARg

α,A +

∑
R ̸=R′

gα,RtRRg
α,RtR

′
R gα,RΣα,<gα,AtAR′gα,AtARg

α,A + · · · (5.51)
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This expression may be written diagrammatically as in Fig.5.1 in which the solid

lines are the averaged propagators gα,A/R and the dotted lines are associated with

two particle scattering from a single site denoted by a cross. The rules for obtaining

this diagram are: 1) no crossed line is allowed - this is equivalent to neglect spatial

correlations; 2) two adjacent unconnected dotted lines represent scattering from two

different sites. This reflects the fact that a particle is not allowed to scatter twice

in succession at the same site; 3) all unconnected lines are averaged over separately.

These three rules represent the implementation of the single-site decoupling to the

average auxiliary NEGF. The first line in Fig.5.1 gives the sequence of scattering

events that contribute to gα,<. The single-site decoupling technique can be observed

in this figure: the diagram on the left hand side represents gα,<; the first diagram on

right side is the first term in Eq.(5.51); the second diagram on the right hand side

represents two-particle scattering at a single site, and the third diagram represents

two-particle scattering at two different sites. These diagrams are the second and third

terms of Eq.(5.51). The infinite series of diagrams are summed diagrammatically in

the second line of Fig.5.1 in term of the vertex correction defined in Eq.(5.49).

Since any (· · ·) is the average over single-site quantity, the final result of Eq.(5.49)

can be rewritten explicitly as a sum of contributions from each atomic species on the

site:

ΩNV C,R =
∑

Q=A,B

CQ
R t

Q,R
R [gα,RΣα,<gα,A]RRt

Q,A
R

+
∑

Q=A,B

CQ
R t

Q,R
R [gα,R ∑

R′ ̸=R

ΩNV C,R′gα,A]RRt
Q,A
R . (5.52)

This site decomposition is similar to that done in equilibrium calculations[30, 37].

To proceed further, we note that after impurity average, the two-probe device sys-

tem in Fig.4.2 restores translational invariance along the transverse (x,y) directions.

Therefore ΩNV C,R can be calculated within an unit cell of the central scattering region

plus a k-sampling in the 2-dimensional (2D) transverse Brillouin zone (BZ). To do so,
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Figure 5.1: Diagrammatical representation of the average auxiliary NEGF of Eq.(5.51)

we add and subtract a R = R′ term in the second term of Eq.(5.52),

ΩNV C,R =
∑

Q=A,B

CQ
R t

Q,R
R [gα,RΣα,<gα,A]RRt

Q,A
R

−
∑

Q=A,B

CQ
R t

Q,R
R gα,R

RR ΩNV C,Rg
α,A
RR tQ,A

R

+
∑

Q=A,B

CQ
R t

Q,R
R [gα,R∑

R′
ΩNV C,R′gα,A]RRt

Q,A
R (5.53)

After a 2D Fourier transform, the above equation changes to:

ΩNV C,R =
∑

Q=A,B

CQ
R t

Q,R
R

1

Nk∥

∑
k∥

[gα,R(k∥, E)Σα,<gα,A(k∥, E)]RRt
Q,A
R

−
∑

Q=A,B

CQ
R t

Q,R
R gα,R

RR ΩNV C,Rg
α,A
RR tQ,A

R

+
∑

Q=A,B

CQ
R t

Q,R
R [

∑
R′

1

Nk∥

∑
k∥

gα,R
RR′(k∥, E)ΩNV C,R′ × gα,A

R′R(k∥, E)]tQ,A
R (5.54)

where the site-diagonal property of ΩNV C has been applied in the Fourier transfor-

mation, all the site labels R and R′ are now defined within the unit cell of the central

region of the device. In the above equation, all the quantities have been defined

previously: gα(k∥, E) is defined in Eq.(5.27), site-diagonal element gα
RR and tR are

given by Eq.(5.27) and Eq.(5.26), respectively. Finally, the retarded and advanced

quantities are not independent, they obey gα,A(k∥, E) = gα,R,†(k∥, E), tA = tR,†.

After finding all the relevant quantities, Eq.(5.54) can be solved explicitly by linear

algebra or implicitly by iteration. Obviously, for a clean sites R with only one atomic
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specie, ΩNV C,R = 0 because tR = 0 on clean sites. Therefore, Eq.(5.54) can be

simplified to only include disordered sites. Hence, for the third term of Eq.(5.54),

only the elements gα
R,R′(k∥, E) associated two disordered sites R and R′ are required

in the evaluation of ΩNV C . This is very useful for simplifying numerical computation.

For devices possessing some geometrical symmetry, one can reduce the BZ integration

in Eq.(5.54).

In summary, based on SSA within CPA, the averaged auxiliary Green’s function

has been formulated and NVC self-energy ΩNV C is derived. These are necessary

in order to obtain configurationally averaged auxiliary NEGF gα,<. In the NEGF-

DFT self-consistent calculation, the component-projected local electron density ma-

trix nQ
R,LL′ (See section 5.6) is obtained by the conditionally averaged physical quan-

tities G
Q

RR for equilibrium and G
<,Q

RR for non-equilibrium which are simply connected

with gα,Q and gα,<,Q through Eqs.(5.11,5.14). Thus the next key step is to formulate

the conditionally averaged auxiliary Green’s functions gα,Q andgα,<,Q.

5.4 Conditionally averaged site-diagonal quantities: gα,QRR

and gα,<,QRR

To calculate the conditionally averaged site-diagonal auxiliary Green’s function gα,Q
RR

in Eq.(5.12) and gα,<,Q
RR in Eq.(5.15), we first employ the projection operator-like

property [34] of ηQR to derive ηQRg
α
RR of Eq.(5.12) and ηQRg

α,<
RR of Eq.(5.15).

According to the definition of occupations ηAR and ηBR (see Eq.(5.2) Section 5.1),

we have:

ηAR + ηBR = 1 (5.55)

ηARP
α,A
R + ηBRP

α,B
R = Pα

R (5.56)

which are always satisfied in a particular disorder configuration of impurities. Here,
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the potential function Pα
R is a statistical quantity. We solve to obtain:

ηAR = ∆(Pα
R)

−1
(
Pα,B
R − Pα

R

)
(5.57)

ηBR = −∆(Pα
R)

−1
(
Pα,A
R − Pα

R

)
(5.58)

where ∆(Pα
R) ≡ (P α,B

R −Pα,A
R ), the occupation labels ηQR are handled as site-diagonal

matrices which may be a zero matrix or an identity matrix. Using these expressions,

we obtain:

ηAgα = ∆(Pα)−1(Pα,B − P α)gα

= ∆(P α)−1[(Pα,Bgα)− (P αgα)] (5.59)

This expression is simplified by using Eq.(5.22),

ηAgα = ∆(Pα)−1(Pα,B − Pα)gα (5.60)

where Pα is the coherent potential introduced in Section 5.2 to describe the averaged

effective medium. With this result, we can write down the conditionally averaged

auxiliary Green’s function as follows:

gα,A
RR = ηARg

α
RR/C

A
R

= ∆(P α
R)

−1(Pα,B
R − Pα

R)g
α
RR/C

A
R (5.61)

Using CA
R = ηAR and Eq.(5.57), apply the CPA self-consistent equation (5.36), we

finally obtain the conditionally averaged auxiliary Green’s function for atomic specie

A as follows:

gα,A
RR = [1− gα

RR(Pα
R − Pα,A

R )]−1gα
RR . (5.62)
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Similarly, for atomic specie B we have:

gα,B
RR = [1− gα

RR(Pα
R − Pα,B

R )]−1gα
RR . (5.63)

From these results, one can confirm that the relation gα
RR = CA

Rg
α,A
RR + CB

Rg
α,B
RR is,

indeed, satisfied.

Next, we calculate the conditionally averaged site-diagonal NEGF gα,<,Q
RR by Eq.(5.15).

We start from:

ηAgα,< = ∆(Pα)−1(Pα,B − P α,+)gα,<

= ∆(Pα)−1[Pα,Bgα,< − Pα,+gα,<]

here gα,< = gα,RΣα,<gα,A , gα,< = gα,R(Σα,< + ΩNV C)g
α,A and Pα,+ = Pα,+ −

gα,R,−1 + gα,R,−1 where Pα,+ is the coherent potential function corresponding to the

gα,R. Using these relations we can derive the following expression for ηAgα,<:

ηAgα,< = ∆(Pα)−1[(Pα,B − Pα,+)gα,R

×(Σα,< +ΩNV C)g
α,A +ΩNV Cg

α,A]

= ∆(Pα)−1[(Pα,B −Pα,+)gα,< +ΩNV Cg
α,A] (5.64)

With this result, Eq.(5.15) gives the conditionally averaged auxiliary NEGF for atomic

specie A:

gα,<,A
RR = ∆(Pα

R)
−1[(Pα,B

R −Pα,+
R )gα,<

RR

+ΩNV C,Rg
α,A
RR ]/CA

R (5.65)

A similar derivation gives, for atomic specie B:

gα,<,B
RR = −∆(Pα

R)
−1[(Pα,A

R −Pα,+
R )gα,<

RR

+ΩNV C,Rg
α,A
RR ]/CB

R (5.66)
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Finally, it can be checked that gα,<
RR = CA

Rg
α,<,A
RR + CB

Rg
α,<,B
RR .

Because configurational average restores translational invariance, the auxiliary

quantities gα
RR and gα,<

RR in the above equations can be calculated by a lattice Fourier

transformation. Using these results we can calculate the component-projected aver-

age local electron density matrix n
A/B
R . At equilibrium, the averaged local density

matrix n
A/B
R is given by the physical Green’s function G

A/B
RR which are related to

g
α,A/B
RR through Eq.(5.11). At non-equilibrium, the averaged local density matrix is

determined by the physical NEGF G
<,A/B

RR which are related to g
α,<,A/B
RR through

Eq.(5.14). The electronic density is obtained from the density matrix and the DFT

Hamiltonian is then determined by Eq.(2.21) of Chapter 2. This process is repeated

until numerical convergence of the entire NEGF-DFT-NVC iteration is reached. This

way, the DFT self-consistent calculation of disordered systems becomes feasible using

the NVC theory under non-equilibrium quantum transport conditions (see section 5.7

for implementation details).

5.5 Testing NVC

A stringent test to the NEGF-DFT-NVC formalism and its numerical implementation

is to check if the fluctuation-dissipation theorem is satisfied at equilibrium:

G<,Q,σ
RR = GA,Q,σ

RR −GR,Q,σ
RR (5.67)

which is equivalent to the following relation within LMTO-ASA approach,

gα,<,Q,σ
RR = gα,A,Q,σ

RR − gα,R,Q,σ
RR (5.68)

where we explicitly indicated the spin index σ. In the above relations, evaluating the

left hand side needs ΩNV C while evaluating the right hand side does not.

As an example, we consider a spin polarized magnetic structure. The central
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Figure 5.2: Results for spin-up (a) and spin-down (b) electron in the test structure at equilibrium
plotted against the iterative steps in solving Eq.(5.54). Black Square: the deviation ∆Ωσ

NV C ; The

deviation ∆gQ,σ
RR ( red circles for the Cu atom, green up-triangles for the Co atom). All quantities

are iterated to zero as dictated by the fluctuation-dissipation theorem.

scattering region consists of 5 monolayers (ML) of Cu, connecting to 5 ML Co0.8Cr0.2

alloy, further connecting to 20 ML of Cu, then connecting to 2 ML of Co and finally

connecting to 5 ML Cu. The system is connected to two semi-infinite Cu electrodes

from left and right. In this rather complicated system, the disorder is due to the

Co0.8Cr0.2 alloy where 20% Cr substitute the Co atoms. In the numerical calculation,

all atomic spheres are put on the ideal Cu FCC lattice in (111) direction. We then

carry out the NEGF-DFT-NVC two probe self-consistent calculation to obtain the

electron potential inside the device scattering region at equilibrium (no bias voltage),

then we focus on the Fermi energy E = Ef of the Cu electrode using a 200 × 200

k-sampling grid for the BZ integration.

In the test, gA,Q,σ
RR − gR,Q,σ

RR serves as the benchmark accurate result which is ob-

tained by CPA from the converged electronic potentials. The NVC self-energy Ωσ
NV C

is evaluated iteratively to obtain g<,Q,σ
RR . At equilibrium, the difference ∆gQ,σ

RR ≡ ∑
LL′

|

g<,Q,σ
RR − (gA,Q,σ

RR − gR,Q,σ
RR ) |L,L′ must approach zero due to the fluctuation-disspation

relation Eq.(5.68). Furthermore, the deviation of NVC self-energy Ωσ
NV C between two

iteration steps, namely ∆Ωσ
NV C ≡ ∑

R,LL′
| Ωσ,n

NV C,R −Ωσ,n−1
NV C,R |L,L′ where n is the num-

ber of iteration, must also approach zero when n is large. We monitor these quantities

on each atom of the system. We present them for the Cu atom on the clean layer-4 of
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the above test structure and the Co atom on the disordered layer-6 (counting from the

left). The results are shown for spin-up channel in Fig.5.2(a) and spin-down channel

in Fig.5.2(b). We can clearly see that both ∆gQ,σ
RR and ∆Ωσ

NV C approach zero as the

iteration proceeds, indicating that the fluctuation-dissipation theorem is numerically

well satisfied after certain iteration steps. For this spin polarized test system, different

spin converges in different ways.

We now investigate the diagonal elements of g<,Q,σ
RR with and without the NVC

self-energy Ωσ
NV C for the above Cu and Co atoms, to compare with the benchmark

results given by (gA,Q,σ
RR − gR,Q,σ

RR ). The comparison is given in Table-5.1. Without

NVC, quantity g<,Q,σ
RR shows a large difference from that with NVC. With NVC, g<,Q,σ

RR

is essentially the same as the benchmark result given by the fluctuation-dissipation

theorem gA,Q,σ
RR − gR,Q,σ

RR for all the elements. These tests provide confidence of the

NEGF-DFT-NVC formalism and its numerical implementation.

Table 5.1: Some diagonal matrix elements of g<,Q,σ
RR for spin-up of the Cu atom on layer-4, and the Co

atom on layer-6 of the test structure. Method 1: calculated g<,Q,σ
RR without NVC self-energy; Method

2: g<,Q,σ
RR with NVC; and Method 3: using fluctuation-dissipation theorem g<,Q,σ

RR = gA,Q,σ
RR −gR,Q,σ

RR .
Clearly, results of method-2 and method-3 are essentially identical, giving a strong test of the NEGF-
DFT-NVC theory and implementation; while results without NVC have large errors.

Matrix Elements Method 1 Method 2 Method 3

11(ss)/Cu 0.1795688 0.3424076 0.3424076
44(pp)/Cu 0.0663471 0.1251638 0.1251638
99(dd)/Cu 0.0026016 0.0048582 0.0048583
11(ss)/Co 0.0650346 0.2369839 0.2369839
44(pp)/Co 0.0207483 0.1144417 0.1144417
99(dd)/Co 0.0029164 0.0590015 0.0590015

5.6 Charge density

The full spin-dependent and component-dependent local charge density within the Q

atomic sphere on site R, ρQ,σ
R , is given by

ρQ,σ
R (rR) = ρQ,σ,val

R (rR) + ρQ,σ,core
R (rR) (5.69)
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ρQ,σ,val
R (rR) =

∑
R,LL′

∫ EF

EB

φQ,σ
R,L(rR, E)nQ,σ

R,LL′(E)φ
Q,σ
RL′(rR, E) (5.70)

From now on, the spin index is restored. The charge density is the sum of con-

tributions from valence electrons and core electrons, denoted by ρQ,σ,val
R (rR) and

ρQ,σ,core
R (rR), respectively. In Eq.(5.70), the energy integration in the first term is car-

ried out between the bottom of the valence band EB and the highest occupied band

which is usually represented by the Fermi Level, φQ,σ
RL (rR, E) = φQ,σ

RL (rR, E)YL(r̂R) is

the partial wave function which is the regular solution of the Schördinger equation at

energy E normalized to unity within the Q atomic sphere on site R; nQ,σ
R,LL′(E) is the

component projected local density of state (DOS) matrix which can be determined

by the conditionally averaged site-diagonal physical Green’s function at equilibrium,

nQ,σ
R,LL(E) =

1

2π
(GQ,A,σ

RL,RL −GQ,R,σ
RL,RL) = − 1

π
ImGQ,R,σ

RL,RL(E) (5.71)

and by conditionally averaged site-diagonal physical NEGF at non-equilibrium,

nQ,σ
R,LL(E) =

1

2π
GQ,<,σ

RL,RL (5.72)

The conditionally averaged site-diagonal physical Green’s function and NEGF are

given by Eq.(5.11) and Eq.(5.14).

For the two-probe device system under bias, the valence density can be rewritten

ρQ,σ,val
R (rR) =

∑
R,LL′

∫ µr

EB

φQ,σ
RL (rR, E)[−

1

π
ImG

Q,R,σ

RL,RL′(E)]φ
Q,σ
RL′(rR, E)

+
∑

R,LL′

∫ µl

µr

φQ,σ
RL (rR, E)[

1

2π
G

Q,<,σ

RL,RL′ ]φ
Q,σ
RL′(rR, E) (5.73)

where µr/l are the chemical potentials of the left and right electrodes such that eVb =

µl−µr. Numerically, we separate the energy integration into two different parts. The

first part satisfies the fluctuation-dissipation theorem, and the integration is done

in the energy range of EB to µr. The second part is for the non-equilibrium density
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where the integration range is between µr and µl. The core electron density is actually

spherically symmetric ρQ,σ,core
R (rR) = ρQ,σ,core

R (rR).

As an important approximation in the tight binding LMTO method, we perform

a spherical average over the valence charge density to obtain spherical total density,

ρQ,σ,val
R (rR) =

1

4π

∑
R,L

{
∫ µr

EB

dE[φQ,σ
RL (rR, E)]2[− 1

π
ImG

Q,R,σ

RL,RL(E)]

+
∫ µl

µr

dE[φQ,σ
RL (rR, E)]

2[
1

2π
G

Q,<,σ

RL,RL]} (5.74)

which can be calculated using the radial function φQ
R,L,σ(rR, E) and diagonal elements

of the conditionally averaged quantities, all the off-diagonal contributions are inte-

grated to be zero. In practical calculations, the energy dependent radial function is

replaced by a Taylor expansion at an energy EQ
ν,RLσ which may be chosen as the center

of the occupied part of the valence band,

φQ,σ
RL (rR, E) = φQ,σ

R,L(rR) + φ̇Q,σ
RL (rR)(E − EQ,σ

ν,RL) (5.75)

As a direct consequence, the valence charge density can be rewritten as:

ρQ,σ,val
R (rR) =

1

4π

∑
R,L

mQ,σ,0
RL [φQ,σ

RL (rR)]
2

+2mQ,σ,1
RL φQ,σ

RL (rR)φ̇
Q,σ
RL (rR) +mQ,σ,2

RL [φ̇Q,σ
RL (rR)]

2 (5.76)

where the quantities mQ,σ,k
RL (k=0,1,2) denote the energy moments of the QRLσ-

projected valence densities of state,

mQ,σ,k
RL =

1

4π

∑
R,L

{− 1

π

∫ µr

EB

dEImG
Q,R,σ

RL,RL(E)(E − EQ,σ
ν,RL)

k

+
1

2π

∫ µl

µr

dEG
Q,<,σ

RL,RL(E − EQ,σ
ν,RL)

k} (5.77)

The two energy integrations can be calculated along two separate energy contours.

From the bottom of valence band EB to µr, a complex energy contour can be used
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because of the analytical property of the retarded Green’s function in the upper

complex energy plane. The choice of this complex energy contour can be many, such

as a semi-circle, a rectangle etc.. The use of complex energy contour presents two

most important advantages: a few energy points are enough to converge the integral

and a small number of k-points is enough to converge the BZ integration on each of

the complex energy point.

The integration from µr to µl, unfortunately, has to be done along the real energy

axis because the integrand NEGF is not analytic on complex energy plane except on

the real energy axis. As such, a much denser energy mesh as well as a much larger

number of k-points are required to obtain accurate results and numerical convergence.

The details depend on the research problem and will be presented in Chapters 6-8 for

several applications.

5.7 Electronic potential

Within the tight binding LMTO-ASA method, the component dependent electron

potential in Eq.(5.2) can be determined by[33]

V Q,σ
R (rR) = −2ZQ

R

rR
+
∫
(R)

2ρQR(rR)

| rR − r′R |
drR + V Q,σ

xc,R(rR) + VM,R (5.78)

where all terms are spherically symmetric. The first term is the nuclear potential

in which ZQ
R denotes the nuclear charge in the Q atom at site R; the second term

is the Hartree potential where ρQR = ρQR↑ + ρQR↓ is the total charge density; the third

term is the exchange-correlation potential. These three terms represent the intra-

atomic interaction. The inter-atomic interaction is included in the last term which is

a constant for a particular site R. The component independent term VM,R is usually

called the Madelung potential which depends on the averaged charge density and
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Figure 5.3: Flowchart of the NEGF-DFT-NVC self-consistent calculation.

multipole moments corresponding to all the other lattice sites,

VM,R =
∑
R′L′

MRs,RL′qR′L′ (5.79)

where MRs,RL′ is the Madelung constant and

qRL =
∑
Q

CQ
R q

Q
RL (5.80)

qQRL = QQ
RL − ZQ

R δL,s (5.81)

QQ
RL =

√
4π

2l + 1

∫
(R)

rlYL(r̂R)ρ
Q
R(rR)drR . (5.82)

The charge density ρQR(rR) is the density before the spherical average and the real

Harmonics can be used for YL. For L = 0, QQ
R0 is the total electron charge of the Q

atom on site R which is simply given by the moment QQ
R0 =

∑
Lσm

Q,0
RLσ. For L > 0,

qQRL are the multipole moments. In our calculations, contributions of L = 0, 1 are
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included in Eq.(5.79) and higher multipole moments are neglected because of the

relatively much smaller effect for most cases.

Finally, Fig.5.3 pltos the implementation flowchart that illustrates our NEGF-

DFT-NVC self-consistent calculation procedure.

5.8 Transmission coefficient

Using the NEGF-DFT-NVC formalism presented so far, the electronic structure

of disordered systems at non-equilibrium can be calculated self-consistently. After

the NEGF-DFT-NVC self-consistent calculation is converged, we calculate current-

voltage (I-V) characteristics by the Landauer formula, Eq.(4.95). Within LMTO-

ASA, in Section 4.7 we have proven that the Landauer formula takes the following

form in terms of the auxiliary Green’s functions, after disorder average:

I =
e

h

∫ µl

µr

Tr[Γα
l g

α,RΓα
r g

α,A]dE (5.83)

The integrand of Eq.(5.83) is the transmission coefficient T (E) where impurity av-

erage, once again, correlates the retarded and advanced auxiliary Green’s functions

gR and gA. The calculation of T (E) involves a vertex correction even at equilibrium.

In particular, T (E) is written into a specular contribution and a vertex correction

contribution. The specular contribution is sometimes called “coherent” contribution,

but not to be confused with quantum coherence. The vertex contribution describes

inter-channel scattering events[37]. Therefore,

T (E) = Tr
[
Γlg

α,RΓα
r g

α,A
]
+ Tr

[
Γα

l g
α,RΩ′

V Cg
α,A
]

(5.84)

where the average auxiliary Green’s function gα is determined in Section 5.2 (see

Eq.(5.19)); Ω′
V C is obtained from the expression of ΩNV C by replacing Σ<,α with Γα

r

in Eq.(5.54). The equilibrium conductance for a spin channel is given by G = (e2/h)T .
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Similar to the diagrammatical expansion of the average auxiliary NEGF in Fig.5.1,

the transmission coefficient can also be expanded diagrammatically as in Fig.5.4, In

Figure 5.4: Diagrammatical representation of the transmission coefficient of Eq.(5.84)

the first line, the first term on the right hand corresponds to the specular part of

Eq.(5.84), and all other terms describe the infinite multiple scattering expansion. The

infinite series of the diagrams for describing multiple impurity scattering is summed

up diagrammatically in the second line in term of the vertex correction.

Due to the translational invariance after configurational average, we can perform

Fourier transformation to obtain transmission of the unit cell, T (E) = 1
Nk∥

∑
k∥
T (E, k∥),

where T (E, k∥) is the k∥ resolved transmission coefficient which is given by,

T (E, k∥) = Tr
[
Γα

l (E, k∥)g
α,R(E, k∥)Γ

α
r (E, k∥)g

α,A(E, k∥)
]

+Tr
[
Γα

l (E, k∥)g
α,R(E, k∥)Ω

′
V Cg

α,A(E, k∥)
]

(5.85)

In the above expression, Ω′ is independent of k∥ since it is a site-diagonal matrix. It

can be seen that the electron energy is conserved during the transport. The first term

is contributed by the specular transport, in which the electron transports through the

central device region by conserving the momentum represented by k∥. In the second

term which is the vertex correction, electrons may transport through without the re-

striction of momentum conservation, an electron enters the device from one electrode

having momentum k∥, and goes out of other electrode with a different momentum

k′∥. In other words, disorder scattering makes electrons traversing the device diffu-

sively without conserving k∥. Fig.5.5 shows a cartoon for illustrating the specular
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transport and diffusive transport by disorder scattering. A sophisticated theoretical

approach for analyzing realistic devices must include the effects of multiple scattering

by randomly distributed impurities, as we have done here.

Figure 5.5: Schematic plot for illustrating specular transport (a) and diffusive transport due to
random disorder scattering (b).

5.9 Summary

We have developed a non-equilibrium vertex correction theory and its associated soft-

ware package for analyzing quantum transport properties of disordered nanoelectronic

devices at non-equilibrium. The impurity averaging of the non-equilibrium density

matrix is facilitated by NVC that is related to quantum statistical information of the

device scattering region. Our NEGF-DFT-NVC theory has several desired features,

including atomistic first principle, non-equilibrium, efficient configurational average

and self-consistency. This allows us to analyze non-equilibrium quantum transport

of realistic device structures including realistic atomic substitutional impurities. The

next several Chapters will present some typical applications of our theory.
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Effects of interface roughness in magnetic tunnel junctions

From this Chapter on, we shall apply the NEGF-DFT-NVC theory as implemented

within the tight binding LMTO-ASA self-consistent DFT scheme, presented in Chap-

ter 4-5, for several practical applications of quantum transport modeling. As a first

application, in this Chapter we investigate disorder effects due to interface roughness

in magnetic tunnel junctions (MTJ).

The simplest MTJ consists of two ferromagnetic metal electrodes sandwiching a

very thin non-magnetic insulting barrier layer. The barrier is typically several nano-

meters thick, as shown schematically in Fig.6.1. It was experimentally found (for

reviews, see Ref.[76, 77]) that the resistance of the MTJ is large when the magnetic

moments of the two ferromagnetic layers are in parallel configuration (PC), and it is

small when they are in anti-parallel configuration (APC). A MTJ is therefore a digital

device registering two values of resistance depending on the magnetic properties.

Information can therefore be stored in the MTJ and magnetic random access memory

(MRAM) device can therefore be produced[78]. The digital nature of MTJ can also

be applied to produce magnetic sensors, spin pumps and spin transistors[78]. In

fact, MTJ is just one example of a larger problem of spintronics which exploit the

spin degrees of freedom of the electron, in addition to charge, for electronic device

applications[79]. At present, small scale commercial application of MRAM has already

happened.

A most important device merit of MTJ is the tunnel magnetoresistance ratio

102
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(TMR) which is defined as

TMR ≡ IPC − IAPC

IAPC

(6.1)

where IPC and IAPC are the total current in the parallel PC and APC. The tunneling

current in a MTJ is spin polarized, contributed by both spin-up (majority) and -

down (minority) electrons. Hence IPC,APC = I↑PC,APC + I↓PC,APC for total PC and

APC currents, respectively.

The magnetoresistance effect was first experimentally demonstrated by Jullier in

1975 in a Fe/Ge/Co junction [80], producing a TMR of 14% at low temperatures.

It took two decades for this effect to be measured at room temperature. In 1995,

Moordera[81] and Miyazaki[82] independently observed significant TMR at the order

of 20% in MTJs made of amorphous aluminium oxide AlOx barriers. Since then,

tremendous effort has been spent on improving TMR value. TMR value of 70%

has been achieved in FeCoB/AlOx/FeCoB amorphous structure[83]. The situation

changed quite dramatically with the demonstration of large TMR value in MgO based

MTJ at room temperature. In 2004, giant room temperature TMR up to 200% have

been reported experimentally in epitaxial Fe/MgO/Fe structure[84] and textured

FeCo/MgO/FeCo MTJ[85]. The highest TMR in MgO based MTJ reported to date

is about 600% at room temperature and slightly above 1000% at low temperatures

[86].

Figure 6.1: Schetch of magnetic configuration in magnetic tunnel junction
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The value of TMR is determined by spin polarization of the electrons tunneling

through the barrier from one ferromagnetic electrode to the other. It was thought

that the spin polarization of the tunneling electron is an intrinsic property of the

ferromagnetic electrode, and thus given by the spin polarization of the electronic

density of state (DOS) at Fermi level of the magnetic metal[80]. This provided a

reasonable explanation for TMR values in conventional MTJ based on amorphous

material AlOx.

However, as revealed by experiments[84, 87], the spin polarization is determined

by the whole properties of the MTJ. It is not an intrinsic property of the ferromagnets

metal alone, but it depends on the structural and electronic properties of the tunnel

barrier material and the ferromagnetic/barrier interfaces[87]. The degree of spin po-

larization, its sign and the bias voltage dependence of the properties of a MTJ may all

be changed by use of different barrier materials and magnetic electrodes, and even by

using the same material but with different fabrication conditions. Although extensive

experimental and theoretical research have been carried out for understanding spin

dependent tunneling, the mechanisms governing the spin polarization in MTJ is still

far from being completely understood.

In particular, the effects of interface roughness at the metal/barrier interface is

expected to be important. In practical MTJ, some interface roughness is inevitable

since the growth of one material over another material is usually accompanied by some

degree of strain. This is especially true for metal/insulator interfaces. It is therefore

an interesting and important problem to understand how interface roughness influence

the TMR ratio.

In this Chapter, we shall investigate a tunnel junction made of Fe electrodes sand-

wiching a vacuum (VA) barrier in the form of Fe/VA/Fe heterostructure. Such a sys-

tem has attracted many experimental studies already[88, 89, 90, 91]. For our problem

of interface roughness effects, using vacuum as barrier excludes other disorder ef-

fects which might exist in real solid state insulators, hence any disorder scattering
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of the spin polarized electrons is unambiguously due to the interface roughness. The

NEGF-DFT-NVC formalism developed in Chapter 5 allows us to carry out disorder

averaging of transport results which is critical for this problem. A short account of

this work has been published before[2].

6.1 Calculation overview

The atomic structure of the Fe/VA/Fe MTJ is shown schematically in Fig.6.2, where

two semi-infinite ferromagnetic Fe (100) electrodes are separated by a vacuum spacer.

In our calculations, the device scattering region consists of the vacuum spacer plus

some layers of Fe (100) on either side, as shown in Fig.6.2. The atomic sphere ap-

proximation (ASA, discussed in Section 3.7 of Chapter 3) is used with sites of a bcc

lattice occupied by either Fe atoms or vacuum spheres. The atomic spheres of Fe and

vacuum are kept the same. The thickness of vacuum spacer is thus measured by the

number of mono-layers of vacuum spheres. The experimental lattice constant of bulk

Fe, aFe = 2.866 angstrom, is used throughout our calculation.

The disordered roughness on the Fe/VA interfaces is represented by randomly

replacing Fe atoms by vacuum spheres. Thus the roughness can be modeled by a

binary alloy model FexV A1−x where x measures the degree of disorder. We only

consider the roughness to be present in the surface Fe layer. For simplicity, any

possible lattice relaxation at the surface is neglected.

Let us fix the left/right Fe/VA interfaces to have x% and (1 − x)% Fe atoms

respectively, and the rest are vacuum spheres. Namely we have FexV a1−x on left, and

Fe1−xV ax on right, such that the width of the vacuum spacer is a constant on average

with respect to the variable x. The scattering region consists of ten perfect atomic

layers of Fe on the left and right ending with the rough interface sandwiching four

pure vacuum layers. By setting x = 0, the junction is restored to the ideal structure

having perfect interface and 5 vacuum layers. The ideal structure as well as the
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Figure 6.2: Schematic of atomic structure of the Fe/VA/Fe magnetic tunnel junction. The two
Fe/VA interfaces have roughness disorder. Fe: yellow spheres; vacuum: white spheres.

configurationally averaged structures have translational symmetry in the transverse

x, y directions (see discussions in Section 5.2), and a k-sampling technique is used to

deal with the x,y periodicity.

We use s,p,d basis set to expand all physical quantiteis and the exchange-correlation

potential is treated at the local spin density approximation (LSDA) level[50]. In the

self-consistent electronic structure calculation, to obtain excellent convergence with

respect to the 2 dimensional BZ integration, we use 100 × 100 k∥ mesh for converg-

ing the equilibrium density matrix; and a 200 × 200 mesh for converging the non-

equilibrium density matrix. For the I-V curve calculation, using Eq.(5.85), 300× 300

BZ k-mesh is used for converging the transmission coefficient.

6.2 Perfect junctions

We first consider an ideal perfect Fe/VA/Fe junction in which electron tunnels by

conserving the transverse momentum k∥, namely the scattering is specular.

We calculated spin dependent conductance of the ideal junction as a function of

vacuum spacer thickness at equilibrium. Fig.6.3 plots the spin-up conducance G↑
PC in

PC, spin-down conductance G↓
PC in PC, and conductance in APC, Gσ

APC . In APC,
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Figure 6.3: Conductance versus thickness of the vacuum spacer for spin-up and spin-down channels

in PC and APC of ideal MTJs. Red circles: G↑
PC ; blue up-triangles: G↓

PC ; black squares: Gσ
APC .

Note G↑
APC = G↓

APC for the symmetric junctions we calculated. Inset: TMR versus thickness of
vacuum spacer for the perfect junctions.

conductances of the two spin channels are calculated to be exactly the same, which

is actually expected for our symmetical ideal junction. In all cases, an exponential

dependence on the vacuum spacer thickness can be reached after about 3 ML. It is

seen that spin-down channel dominates the conductance in PC, giving rise to the

large and negative spin polarization of the tunneling electron. We found that G↑
PC

and Gσ
APC decay faster than G↓

PC . As a direct consequence, the TMR value calculated

from Eq.(6.1) and shown in the inset of Fig.6.3, is enhanced significantly by orders of

magnitude with increasing spacer thickness, reaches about 1500% at when the vacuum

is 6 ML thick.

Fig.6.4 plots the k∥ resolved transmission coefficient (transmission hot spots) for

spin channels in PC and APC of the junctions with 3, 5, 6 ML vacuum spacers at

the Fermi energy of the Fe electrodes. All the spin channels show a 4-fold symmetry

which is due to the geometry of the junction. For the spin-up channel in PC and

for all three junctions [Fig.6.4(b,c,i)], the total conductance is mainly contributed by
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transmission hot spots surrounding the center of the 2D BZ (the Γ-point). In Fig.6.4,

the transmission possesses a maximum at the center and decays rapidly away from

the center. As the thickness of the vacuum spacer is increased, the transmission is

reduced exponentially and becomes more and more concentrated around the center.

We note the nearly circular symmetry of the transmission around the Γ point in

Fig.6.4(b,e,i), which reflects the symmetry of the ∆1 band of spin up electrons in

the Fe electrode. The dominant role of the spin-down channel in PC is evident as

illustrated in Fig.6.4(c,f,j). The spin-down channel transmission in PC, for all the

thickness, is dominated by some hot spots having high transmission values as large

as unity. We can see there are two different sets of hot spots, one set is closely

surrounding the Γ-point, and the other is far from Γ. When thickness of the vacuum

spacer is increased, the size of these hot spots is rapidly shrunk especially for those

outer hot spots. At 6 ML vacuum, the hot spots surrounding the Γ point become

dominant.

The hot spots of resonant peaks in k∥ resolved transmission was previously investigated[92,

93]. The resonance peaks in the spin-down channel were attributed to the resonant

states on the surface of the Fe electrodes[92, 93] and confirmed experimentally in Fe

(001) surfaces[88]. In PC, both Fe surfaces in the ideal junction have surface states

for spin-down electrons and these states form bonding and anti-bonding pairs across

the junction[92], giving rise to a resonant tunneling behavior. The increase of vac-

uum thickness weakens the coupling between the surface resonances and shrink the

hot-spots significantly. Finally, the transmission hot spots in APC are quite similar

to those of the spin-down channel in PC, but with much smaller amplitudes.

So far, we have seen that the large TMR value in Fe/VA/Fe is a direct result of the

important resonant tunneling transmission arising from the resonant surface states

of spin-down electrons in PC. Clearly, the resonance will be reduced by applying a

bias voltage which mis-aligns resonant peaks on one Fe surface relative to those on

the other Fe surface. Fig.6.5(a) plots the spin polarized electron current a function
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Figure 6.4: k∥ resolved transmission coefficient T = T (EF , kx, ky) in 2D BZ for the spin-up and
spin-down channels in PC and APC of perfect junctions having 3,5,6 ML vacuum spacer, shown in
logarithmic scale . (a)(d)(h): APC spin-up channel. The APC spin-down channel is the same as the
spin-up channel; (b)(e)(i): PC spin-up channel; (c)(f)(j):PC spin-down channel.

of bias for 5 ML vacuum spacer in PC and APC. For all spin channels, the calculated

current is symmetric about zero bias due to the symmetric nature of the junctions.

Applying a bias breaks the time reversal symmetry, thus transmission coefficients in

spin-up and spin-down channels in APC are no longer the same. In both PC and

APC, the current is dominated by the spin-down channel which has a nonlinear bias

dependence. Currents of spin-up channels in PC and APC show almost a linear

behavior.

We can calculate the TMR value from the spin polarized I-V curves in Fig6.5(a) for

PC and APC. At zero bias when all currents vanish, we use the results of conductance

at equilibrium to compute the TMR value. Fig6.5(b) shows the TMR versus bias from

-0.7 V to 0.7 V. We found TMR = 366% at equilibrium, it is significantly quenched

to about 100% by applying a small bias of 0.1 V and reaches 50% at 0.2 V after which

TMR decreases at a slower rate. This TMR vs bias phenomena is referred to as the

“zero bias anomaly” which is often found experimentally in many different tunneling

junctions[94, 95, 96, 97]. This zero bias anomaly in our perfect junction can be easily
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Figure 6.5: (a) Spin polarized current versus bias voltage for spin-up and spin-down channels in PC

and APC of a junction having 5 ML vacuum. Black squares: I↑PC ; red circles: I↓PC ; up-triangles:

I↓APC ; down-triangles: I
↑
APC . (b) TMR value as a function of bias voltage.

understood: the bias shifts the resonance peaks on one Fe surface relative to the

other Fe surface, thus drastically quenching the resonant tunneling of the spin-down

channel in PC, thereby reducing the TMR value.

6.3 Rough interface junctions

Since perfect junction interface is very difficult to realize experimentally, it is im-

portant to investigate spin polarized transport in junctions with rough surface layers.

We model the interface roughness by replacing some Fe atoms randomly with vacuum

spheres on the interface Fe layer.

A rough interface may influence transport in three different ways. First, the rough-

ness destroys the point group symmetry of the junction and therefore breaks the

surface resonant states. As a result it is expected to decrease the large resonant

transmission found in ideal junctions for spin-down channel of PC. Second, rough-

ness may effectively reduce the thickness of the vacuum spacer thereby enhance the

transmission which depends exponentially on the barrier thickness. This is likely

to influence transmission in spin-up channel of PC. Third, roughness induces inter-

channel scattering so that electrons may tunnel through the junction by changing its
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momentum to couple to the simplest modes in the vacuum spacer.

Figure 6.6: (a) total conductance G↑,↓ versus disorder x at equilibrium. Red circles: G↓
PC ; black

squares: G↑
PC in PC. Blue down-triangles: G↓

APC in APC; green up-triangles: G↑
APC in APC. (b)

TMR value versus x.

Fig.6.6(a) shows the disorder dependence of configurationally averaged total con-

ductance for both spin-up and -down channels in PC and APC of junctions having

5 ML vacuum spacer at equilibrium (Vb = 0). Since the left interface is chosen to

be FexV A1−x while the right Fe1−xV Ax, G
↑,↓
PC are both symmetric about x = 0.5

in PC (black squares and red circles). For APC they are not symmetric but satisfy

G↑
APC(x) = G↓

APC(1 − x), as expected. It is apparent that G↓
PC is greatly reduced

by the interface roughness, namely reduced by about two orders of magnitude when

x = 50%. The roughness has less effect for G↑
PC and for APC. As x is increased from

zero, G↑
PC increases steadily and reaches its maximum at x = 50%. Conductance of

both spin channels in APC show a fast increase at very small x and then decreases.

The TMR value can be calculated using the equilibrium total conductance in

Fig.6.6(a). Fig.6.6(b) plots TMR versus x showing a dramatic effect of disorder. In

particular, as x is increased from zero, TMR drops to very small values, even to

slightly negative values at about x = 25%. These TMR features are consistent with

previous super-cell calculations[98] for a thicker vacuum barrier.

To see how the interface roughness affect spin polarized tunneling, Fig.6.7 plots

the specular part and vertex correction part of the conductance - the first term and
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Figure 6.7: Conductance versus disorder x at equilibrium. Black squares: specular part, the first
term of Eq.(5.84). Red circles: vertex correction part, the second term of Eq.(5.84). Blue up-
triangles: total conductance. (a): GPC

↑ . (b): GPC
↓ . (c): GAPC

↑ . (d): GAPC
↓ .

second term of Eq.(5.84), as a function of x for spin-up and -down channels in PC

and APC. Most evidently, the vertex correction part plays an important role in all

spin channels. As shown in Fig.6.7(b,c,d), for the spin-down channel in PC and all

spin channels in APC, the total conductance is dominated by contributions from

the vertex correction; while the specular parts in these channels are dramatically

quenched by even a very small amount of interface roughness. In other words, a very

small amount of disorder on the Fe interface may turn the specular tunneling into

diffusive tunneling. At very weak disorder, the surface resonant state of spin-down

electrons quite possibly survives but it can be broadened by the disorder. These

resonance states have high DOS around the Fermi energy, they may contribute to

tunneling through inter-channel scattering. This is likely responsible for the sudden

jump of the vertex correction from zero to a large value by a small amount of disorder

x, as shown in Fig.6.7(b)(c)(d).

We now investigate non-equilibrium properties when Vb ̸= 0 so that current flows

through the disordered junctions. First, to show the importance of NVC, we have

calculated I-V curves at x = 0.05 by including vertex correction only at the level of



6.3 Rough interface junctions 113

Figure 6.8: (a) Comparison of I-V curves with disorder x = 0.05. Solid lines (green): current
for PC (up-triangles) and APC (down-triangles) without using NVC in the density matrix self-
consistent iteration. Dashed lines (red): current for PC (circles) and APC (squares) using the full
NVC formalism.(b) Bias induced electrostatic potential change versus atomic layer of the disordered
junctions at Vb = 0.544V . Up-triangle: x=0.8; Red Circle: x=0.5; Black Square: x=0.2. the marked
layers are the two interfacial disordered atomic layers.

transmission coefficient, i.e. without NVC in the NEGF-DFT self-consistent itera-

tions of the density matrix: the solid lines (green) in Fig.6.8 plots this result. In

comparison, the dashed lines (red) plot the full results where NVC is included. The

substantial difference indicates that NVC is extremely important for obtaining correct

results at non-equilibrium. Fig.6.8(b) plots the bias induced electrostatic potential

change in each atomic layer of the disordered junction when applying Vb = 0.544V ,

using the NVC in the self-consistent NEGF-DFT iterations. The potential change

arises from the bias induced charge redistribution in which NVC plays extremely im-

portant roles. As expected, deep inside the left and right electrodes, the potential

changes by essentially two constants whose difference is exactly the value of the ap-

plied bias voltage. The potential drops in the middle region of the junction in nearly

linear manner. The disorder effect on the potential profile, especially in the middle

region, is apparent. It is worth to emphasize that the use of NVC in NEGF-DFT

self-consistent calculation is critical to obtain the expected potential change as shown

in Fig.6.8(b).

Fig.6.9 plots the total current and TMR versus bias for x = 0.05, 0.3, 0.5, obtained

using the full NVC formalism of Chapter 5. The non-symmetric bias dependence in
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Figure 6.9: Total current for PC and APC and TMR versus bias voltage for different value of x.
(a)(b) for x=0.05; (c)(d) for x=0.3, and (e)(f) for x=0.5. in (a)(c)(e), black squares: total current
for PC IPC ; red circles: total current for APC IAPC .

(a,b,c,d) is the result of the left-right asymmetry of MTJs. The effect of disorder on

the I-V characteristics is apparent in Fig.6.9(a,c,e). For small value of x = 5%, the

zero bias anomaly appears in Fig.6.9(b), and TMR reduces rapidly with increasing

Vb. For larger x, the situation is completely changed and the zero bias anomaly is

absent in Fig.6.9(d,f). In particular, for x = 0.5, TMR maintains almost a constant

at small bias less than 0.3V , then it reduces slowly with the increase of bias. For

x = 0.3, when applying a positive bias, the TMR is negative and the absolute value

of TMR is increased with increasing bias in the positive direction. On the other

hand, the calculated TMR goes to positive value very slowly at negative bias. Our

theoretical observations at larger x is consistent with the experimental measurement

of spin dependent vacuum tunneling in Co(0001)[90] which showed the absence of
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zero bias anomaly.

In the vacuum spacer based MTJ, mechanisms that may influence tunneling in-

cludes scattering by interface disorder, by disorder in the electrodes, and by exciting

magnons that propagate away from the Fe interfaces. Zero bias anomaly is usually

attributed to magnon scattering[96] even though there is so far no experimental confir-

mation. According to our calculation of ideal and rough junctions, zero bias anomaly

can be attributed to weak disorder on the interface.

Figure 6.10: (a) Spin currents versus disorder x at bias Vb = 0.544V, for PC and APC. Red circles
and black squares: spin currents for spin-up and -down in PC; green up-triangles and blue down-
triangles: spin currents for spin-up and -down in APC. (b) TMR versus x at the same Vb. Inset of
(b): TMR versus Vb for a device where left and right interfaces have different values of x, on the left
interface x = 0.3, on the right x = 0.05.

Fig.6.10 plots spin currents and TMR versus disorder x at Vb = 0.544V. This is to

be compared with Fig.6.6 where Vb = 0. A finite bias breaks left-right symmetry of the

atomic structure and therefore, the spin currents do not have a symmetric behavior

about x = 0.5 anymore. Both spin currents (Fig.6.10(a)) and TMR (Fig.6.10(b))

varies with disorder x in substantial ways. In particular, TMR rapidly dips to negative

values when x is increased to about 20%. So far we have focused on devices where the

left has a FexVac1−x interface while the right has Fe1−xVacx. We have also applied

the NEGF-DFT-NVC formalism to devices where the left and right interfaces are

disordered totally differently. The inset of Fig.6.10(b) plots TMR for such a system

where left interface has x = 0.3 while the right interface has x = 0.05. For this
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system TMR is negative and its absolute value decreases as Vb is increased which is

qualitatively similar to what discussed above.

6.4 Summary

In summary, we have applied the NEGF-DFT-NVC first principle quantum transport

method to investigate effects of interface roughness on spin polarized electron tun-

neling in Fe/vacuum/Fe MTJ. It is found that roughness very efficiently turns the

specular scattering at the interface to diffusive scattering. In particular, the TMR

value is dramatically influenced by the interface disorder. Moreover, the interface

disorder can alter the bias dependence of TMR in significant ways: the zero bias

anomaly can be observed in junctions having weak or no disorder, but it disappears

when the interface disorder is increased. The NVC is crucial for the self-consistent

calculation of non-equilibrium electronic and transport through the disordered device.
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Role of oxygen vacancy in Fe/MgO/Fe MTJ

As discussed in the last Chapter, one of the most important device merits of magnetic

tunnel junctions (MTJ) is the tunnel magneto-resistance ratio (TMR). The higher

the TMR, the more sensitive the device. For typical MTJs such as the amorphous

AlOx based systems[81, 82], the TMR ratio is ∼ 20%. About a decade ago, using

density functional theory, Butler et al.[99] and Mathon and Umerski[100] predicted

that MgO can be an excellent barrier material for MTJ. In particular, they found

that Fe/MgO/Fe junctions can have huge TMR values, up to 10,000%. The physical

reason is the very efficient coherent spin filtering effect in such a device (see below).

MTJ is the fundamental device element for practical systems such as the magnetic

random access memory and other spintronic devices[79, 78, 101]. More recently,

experiments[85, 84] have achieved TMR ratio exceeding 200% at room temperature

in epitaxial or textured Fe/MgO/Fe MTJs. The significant advance in this field was

due to a deeper microscopic understanding of the physical mechanism that governs

the spin dependent tunneling in the ideal structures of Fe/MgO/Fe MTJ. Since the

experimental work of Parkin et al.[85] and Yuasa et al.[84], the experimental record of

TMR value has been continuously increasing in MgO based MTJ. To date, the highest

room temperature TMR value is ∼ 600% reported in textured CoFeB/MgO/CoFeB

junctions grown by sputtering[86], and it is slightly above 1000% at low temperatures.

Nevertheless, it has been more than ten years since the original theoretical predictions[99,

100] of huge TMR ∼ 10, 000%, and more than six years since experimentalists[85, 84]

achieved TMR ∼ 200%: there is still a very large gap between predicted and mea-

117
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sured TMR values. A very important problem is to identify and therefore rectify

detrimental effects that prevent experimental TMR ratio from reaching much higher

values.

For ideal clean Fe/MgO/Fe junctions, as explained clearly before[99], by symmetry

the minority-spin d-states having transverse momentum k∥ ̸= (0, 0) in Fe, cannot

couple to the slowly decaying ∆1 band of MgO at k∥ = (0, 0). These Fe states are

therefore filtered out by MgO. Furthermore, the majority-spin channel in the left Fe

cannot tunnel through in APC, because the right Fe is in the antiparallel state. The

overall result is a very small APC current and a large spin polarized PC current,

giving rise to the huge TMR in the ideal limit.

It is therefore generally believed that atomic defects in the experimental MTJ

is the likely cause for not reaching the ideal theoretical TMR limit, because defect

scattering can destroy the tunneling symmetry. One such effect[102, 103, 104, 105]

is the possibility of extra oxygen atoms at the Fe/MgO interface forming a FeO

layer. On the other hand, experiments on devices with clean, none oxidized Fe/MgO

interfaces[106, 107, 108, 109] still report a TMR ratio far from the theoretical ideal

limit. Calculations showed that small Fe/MgO interface structural randomness also

drops TMR[103], but not enough to reach the current experimental range. More re-

cently, experiments were carried out to investigate another kind of defects, oxygen

vacancies (OV) inside the MgO barrier[110], and Ref.[111] provided direct experimen-

tal evidence of localized defect states inside the MgO energy gap which was attributed

to the OV. In the experiment of Miao et al.[110], by introducing oxygen vacancies

into the MgO barrier, the resistances of the Fe/MgO/Fe MTJ was dramatically en-

hance by about 50 times and the TMR value is significantly reduced. The oxygen

vacancy within Fe/MgO/Fe MTJ is likely due to the compressive strain of Fe/MgO

interface mismatch during the crystal growth[111]. Theoretical investigation of OV

effects on TMR is rather limited. Ref.[112] reported a supercell density functional

theory (DFT) calculation in which one oxygen atom in the MgO barrier was removed,
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this defect reduced the TMR ratio from the ideal limit by a factor of roughly two.

In this Chapter, we provide a systematic analysis of the disorder effect due to

oxygen vacancies (OV) in MgO barrier from atomistic first principle. Our results

provide very good insight to spin dependent tunneling within the diffusive scattering

regime. By placing the OVs at interfacial layers or interior layers in the MgO, a

general trend is discovered: (i) merely a few percent of OV at the interfacial layer

drop the TMR value from the theoretical limit 10000% to the experimental range;

OV at the next layer to has similarly dramatic effect; (ii) effect of the interior OVs

on the TMR is far less important, although they significantly increase the junction

resistance; (iii) interfacial OV efficiently reduces the specular scattering in favor of

diffusive scattering, causing the spin channels in Fe to scattering into the ∆1 band of

MgO, thereby dramatically reducing the TMR; (iv), by filling the OVs with nitrogen

atoms, the ideal TMR limit is partially recovered.

7.1 Calculation overview

The Fe/MgO/Fe MTJ is schematically shown in Fig.7.1, where two semi-infinite Fe

electrodes are separated by 13 atomic layers of MgO barrier in the (100) direction.

We adopt the same atomic structure as the Ref.[99] for the Fe/MgO/Fe junction, in

which the interfacial Fe atoms sit on the top of the O atoms and the Fe-O distance

is 2.16 angstrom. The experimental lattice constant a = 2.866 angstrom is used for

the Fe lattice, and the MgO lattice constant is taken to be a factor of
√
2 larger than

that of the Fe lattice, so that these two lattice matches perfectly at the interface. The

nearly 3% lattice mismatching is neglected in our calculations.

In order to apply the NEGF-DFT-NVC formalism as implemented within the

LMTO-ASA self-consistent scheme ( see Chapters 3,5 ), we have carefully chosen the

atomic spheres inside the device. For Fe, the atomic sphere has radius 1.411 angstrom

which space fills the bcc lattice. Inside MgO, we take radius 1.354 angstrom for oxygen
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Figure 7.1: Atomic structure of the Fe/MgO/Fe MTJ with 13 ML MgO. Blue sphere: Fe; red: O;
Green: Mg; White: Oxygen Vacancy. the junction is periodically extended in the transverse x,y
directions. the numbers label the MgO layers from left to right.

atoms and 0.960 angstrom for Mg atoms. Vacuum sphere of radius 0.673 angstrom

is added at the center of the cube with 4 O-atoms and 4-Mg atoms to fill the space.

The calculated MgO band gap is 5.8eV within LSDA. At the Fe/MgO interface, two

vacuum spheres are inserted exactly above the vacuum spheres inside the MgO with

the same radius, and a vacuum sphere of radius 0.814 angstrom is added exactly

above the Mg atom to fill the total volume of the transport junction. Positions of

the interfacial vacuum spheres are arranged to minimize overlap. The quality of

these choices of sphere size will be tested by reproducing results of previous first

principle calculations for perfect ideal junctions. The oxygen vacancy is represented

by replacing oxygen atoms with vacuum spheres (Va) of the same size, where we

neglect the small structural distortion[113]. For the substitutional disorder of oxygen

vacancies, we use the binary alloy model O1−xV ax with the x as an input parameter.

We use the LSDA exchange-correlation potential of Ref.[50], and use s,p,d basis

sets to expand physical quantities. For all the self-consistent calculations of the MTJ,

a 100×100 k-mesh is used to sample the transverse two-dimensional BZ for converging

the equilibrium density matrix (see Eq.(5.74)in Chapter 5). A 200 × 200 k-mesh is

used to converge the non-equilibrium density matrix (see Eq.(5.74) in Chapter 5). To

converge the transmission coefficients of all spin channels, a 400× 400 k-mesh is used

for most MTJs. The only exception is the case where the oxygen vacancies are on

the MgO layer next to the interface: we use a much denser k-mesh of 1600× 1600.
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7.2 Coherent tunneling in ideal junction

We begin by investigating the equilibrium coherent spin dependent tunneling in per-

fect Fe/MgO/Fe junctions. Fig.7.2 plots the conductances as a function of MgO thick-

ness L for up-spin channel G↑
PC and down-spin channel G↓

PC in parallel configuration

(PC); and Gσ
APC in APC. For the symmetric junction of Fig.7.1, G↑

APC = G↓
APC .

The excellent spin filtering effect[99, 100] in the ideal Fe/MgO/Fe junction is re-

produced. In particular, as barrier thickness L increases, the conductances of all spin

channels exponentially decay, but G↓
PC decays the fastest while G↑

PC the slowest. As

a result, the calculated TMR value shown in the inset of Fig.7.2 increases rapidly as a

function of the MgO thickness, and reaches about 10000% when the thickness L = 13

monolayers (ML).

Since MgO has a large band gap, electron wave functions tunnelling into MgO

exponentially decay but the decay rate takes a minimum value at k∥ = (0, 0) with

the ∆1 symmetry. Thus, in perfect junctions where electron tunnels and maintains

transverse momentum k∥ conservation, those with k∥ = (0, 0) and ∆1 symmetry will

contribute dominantly to the conductance G↑
PC ; while electrons having k∥ ̸= (0, 0)

contribute to the conductances G↓
PC and Gσ

APC because the spin down state in Fe

electrodes is empty at k∥ = 0 on the Fermi level. Therefore, we can observe that G↑
PC

decays slower than G↓
PC and Gσ

APC .

These behaviors can be confirmed by examining the k∥ resolved transmission co-

efficient (transmission hot spots) T σ(EF , kx, ky) distributed in the 2D BZ, shown in

Fig.7.3, on the Fermi level. Fig.7.3 shows the results for spin channels in PC and APC

of the MTJ with 3 ML and 7 ML thick MgO barriers. For the spin-up channel in PC,

T ↑
PC - as seen in Fig.7.3(a)(d), is dominated by the transmission around the center

of BZ (k∥ = (0, 0)) with a circular symmetry, while the spin-down channel in PC is

contributed by the hot spots at the BZ boundary. These hot spots in T ↓
PC is due to

interface resonance states existing away from the k∥ = (0, 0). This is also why we can
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Figure 7.2: Conductance versus thickness of MgO barirer for spin up and spin down channels in PC

and APC for perfect MTJ. Black square: G↑
PC ; red circle: G↓

PC ; blue up-triangle: Gσ
APC . In APC,

G↑
APC = G↓

APC for the symmetric perfect junctions. Inset: TMR versus thickness of MgO barrier.

see that for L < 6 ML, G↓
PC is larger than Gσ

APC . As L increases, T ↑
PC increasingly

becomes more concentrated around the BZ center and its amplitude decreases expo-

nentially. The hot spot T ↑
PC is shrunk dramatically to quench G↓

PC in Fig.7.2, and the

APC channel becomes dominated by the transmissions surrounding the k∥ = (0, 0)

point. As shown in Fig.7.2, for all the thickness we calculated (L = 3 to 13 ML)

the conductance in PC is dominated by the spin-up channel. All these observations

agree very well with previous first principle calculations[99, 103, 100], they provide

confirmation on the high quality of our chosen atomic spheres in the electrodes, in

the MgO barrier and on the Fe/MgO interfaces of the MTJ.

7.3 Disorder effects of oxygen vacancy

From now on, we investigate effects of disordered oxygen vacancies in the MgO barrier

of the MTJ. We will focus on the MTJ with 13 ML MgO which was the experimental

system in Ref.[110]. The effects of OV are revealed by putting different concentrations
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Figure 7.3: k∥ resolved transmission coefficient T = T (EF , kx, ky) in 2D BZ for the spin-up and
-down channels in PC and APC of perfect junctions with 3 and 7 MLs thick MgO barrier, shown on
logarithmic scale . (a)(d): PC spin-up channel, (b)(e): PC spin-down channel; (c)(f): APC spin-up
and -down channels. Due to the symmetry in perfect junctions, the spin-down channel transmission
is the same as that of spin-up channel in APC.

Figure 7.4: Conductance versus interfacial OV concentration x at equilibrium for spin-up (a)(c)
and -down(b)(d) channels in PC (a)(b) and APC (c)(d). Layer-1 of the MgO is fixed with 3%
OV; Layer-13 with x%. Blue up-triangle: total conductance; Red Circle: Vertex Correction; Black
Square: Coherent part.
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of OVs in different MgO layers.

Interfacial oxygen vacancy. First, we investigate the influence of interfacial

OVs located on layer-1 and -13 of the MgO. We do not consider trapping Fe atoms into

OV sites on the surface of MgO because of the blind adsorption effect discussed in Ref.

[114]. Fixing 3% OV on the layer 1 of the MgO and putting x% on layer-13, leaving the

rest MgO layers perfect, the results are shown in Fig.7.4 which plots the conductance

versus x for PC and APC ranging from 1% to 9%. The most striking result is

that the vertex correction part of the transmission, for example, the second term of

Eq.(5.84), plays a dominant role in all spin channels for both PC and APC. As shown

in Fig.7.4(b)(c)(d), the spin-down channel in PC and both spin channels in APC are

almost entirely contributed by diffusive scattering. The OVs assist minority-spin d-

states in Fe to traverse the MTJ by introducing inter-channel scattering which couples

these states to the slowly decaying ∆1 band of the MgO. As a result the coherent spin

filtering effect[99] discussed above is drastically reduced. The conductance in APC

increases significantly resulting to a drastic reduction of the TMR ratio.

Shown in Fig.7.5, for several OV distributions, TMR reduces dramatically from

the ideal limit of ∼ 10, 000% to the experimental range of ∼ 250%, when x is merely

4%. The blue stars in Fig.7.5 are the TMR values versus x for junctions having 7

ML MgO barrier and the same disorder distribution as the black circles. It is clearly

seen that the results of 7 ML thick MgO barrier have the almost same magnitude as

that of 13 ML MgO. This indicates that the TMR value has very weak dependence

on the thickness of MgO for when junctions have interfacial disorder. This result is

consistent with the experimental measurements[84]. To emphasize the dominating

roll of interfacial OV, we have calculated a junction where layers-1 and -13 have 3%

OV while layer-7 has a varying x%, the results are shown in Fig.7.7. It is clear that

all spin channels are decreased at the same rate. Consequently, As the inset of Fig.7.7

shows, the TMR essentially stays at ∼ 350% independent of the layer-7 x.

Next-neighbor oxygen vacancy. When the OVs are located at layer-2 and -12,
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Figure 7.5: TMR versus disorder x for three types of MTJ. Red Square: for symmetrical junctions
with x% OV on both MgO layers of 1 and 13; Black Circles: for asymmetric junctions with 3% OV
fixed on layer layer-1 and x% on layer 13; Blue star: same disorder distribution as the black circles
but for a junction with 7 ML thick MgO barrier.

Figure 7.6: Conductance versus interfacial OV concentration x at equilibrium for spin-up (a)(c)
and -down(b)(d) channels in PC (a)(b) and APC (c)(d). Layer-2 of the MgO is fixed with 3%
OV; Layer-12 with x%. Blue up-triangle: total conductance; Red Circle: Vertex Correction; Black
Square: Coherent part.
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and all other MgO layers are clean, the disorder effects are found to be qualitatively

the same as that of the interfacial OV. Again, the TMR is diminished very quickly

from the theoretical ideal limit to ∼ 250% when OV concentration x is less than a

few percent (similar to Fig.7.5). With 3% OV on layer-2 and -12, adding further

OVs in the middle layers of MgO does not significantly reduce TMR any further

indicating, again, the importance of OVs near the Fe/MgO interface. We have fur-

ther calculated junctions with both interfacial OV and next-neighbor OV, the TMR

drops more quickly. The only main difference between the interfacial OV and the

next-neighbor OV, is the behavior of the conductance of spin-up channel in PC and

spin-down channel in APC. For the interfacial OV, Fig.7.4(a)(d) show an increasing

conductance versus x; for the next-neighbor OV, it is a decreasing conductance. For

the conductances of the other two spin channels behave the same as that of Fig.7.4(b)

(c). The existence of an interfacial OV layer in effect reduces the width of the perfect

MgO tunnel barrier, thus enhancing the tunneling probability. On the other hand,

OVs (especially the interior OVs) provide scattering centers that reduce the tunneling

probability.

Interior OV and interface roughness. By Leaving the interfacial and next-

neighbor MgO layer clean, a few percent interior OVs still reduces the TMR but much

less drastically. For example, when 5% OVs are put on the layer-3, we found that

the total conductance in APC is almost the same as the perfect junction, while the

spin up channel in PC is decreased by a factor of 2. Hence TMR is reduced from

10000% to 4067%. The interior OV has much less effect on TMR because the spin

down electron in Fe has more difficulty to reach the interior OV to cause inter-channel

scattering that couple it to the evanescent state at k∥ = (0, 0) in the MgO barrier.

In all the interior OV (on layers 3-11) configurations, the spin-up channel in PC is

found to decrease for increasing OV concentrations.

For comparison, we have also investigated the surface roughness scattering by

replacing randomly the Fe atoms at the Fe/MgO interface with x% of the vacuum
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Figure 7.7: Conductance versus OV concentration x for spin-up and -down channels in PC and single
spin channel in APC. 3% OV is fixed on interfacial MgO layer of 1 and 13, x% OV is put on the

layer-7. Black Square: G↑
PC ; Red Circle: G↓

PC ; Blue up-triangle: Gσ
APC .

spheres with the same atomic size, so that the roughness is simulated using the binary

alloy modelFe1−xOx. We consider a symmetrical case in which the roughness presents

on both the left and right Fe/MgO interfaces, and find TMR of the MTJ is reduced

steadily as x increases, reaching to 2300% at x = 9%. This shows that the interface

roughness is much less effective than the interfacial OV and next-neighbor OV in

reducing the TMR magnitude.

Junction resistance. Experimentally, introducing OV to MgO layers can cause

junction resistance to increase by 50 times[110]. We have calculated resistance 1/GP↑

as a function of disordered layers of MgO, results shown in the inset of Fig.7.8. 10

junctions with x = 5% (circles) and x = 3% (squares) OVs existing on layers 3, or

on 3-4, or 3-4-5, ..., or 3-4-...-10-11, are calculated. The resistances exhibit an expo-

nentially fast increase: 5% OV causes 220-fold increase while 3% OV causes a 50-fold

increase. This is consistent with experiment observations[110].

k∥ resolved transmission coefficient. So far, a general trend emerges: small

amount of OVs on or near the Fe/MgO interface very efficiently turn the specular
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Figure 7.8: 1
GP↑

versus number of disordered layers (3,3-4,3-4-5,......,3-4-...-10-11) in logarithmic

scale. Red Circle: for 5% OV; black square: for 3% OV.

Figure 7.9: k∥ resolved transmission distribution in 2D BZ for coherent and vertex correction parts
of spin ↑ and spin ↓ in PC and APC of the junction with 3% on both layers 1 and 13, in logarithmic
scale. (a)-(d): PC; (e)-(f):APC. (a)(c)(e)(g): Spin ↑;(b)(d)(f)(h):Spin ↓. (a)(b)(e)(f): Coherent
part;(c)(d)(g)(h):vertex correction part.
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scattering into diffusive scattering, causing the spin-down channel in Fe to couple to

the minimum decaying ∆1 band of the MgO barrier, leading to a dramatic reduction

of TMR value. This trend is vividly depicted in Fig7.9 which plots the k∥ resolved

coherent and vertex correction parts of the transmission coefficient, i.e., the 1st and

2nd terms of Eq.(5.84), for a symmetric junction with 3% OV at the layer-1 and -13.

In the coherent part of all spin channels, electron tunnels through the MgO barrier by

conserving k∥. The coherent part is largely contributed by the transmission around

k∥ = (0, 0) for all channels calculated. The spin-up channel in PC (Fig7.9 (a)) is

circularly distributed surrounding the BZ center, while PC spin-down and APC spin

channels have a 4-fold symmetry ((Fig7.9 (b)(e)(f)).The coherent parts of spin up

(e) and spin down (f) channels in APC are completely the same for the geometrical

symmetry. The vertex correction part of all spin channels shows diffusive feature due

to the inter-channel scattering at the interface. In the vertex correct part, a similar

shape but different amplitude can be found between (c) and (g), and between (d)

and (f). Most importantly, the APC spin-up vertex correction part have a circular

symmetry around k∥ = (0, 0), which matches the symmetry of the state at k∥ = (0, 0)

inside MgO barrier. Consequently, the APC spin up diffusive channel can easily pass

through MgO barrier via this state, which increases APC transmission and drastically

reduces the TMR magnitude. It is worth to mention that for APC, Fig7.9 (g) and

(h) show completely different transmission distribution and amplitude in BZ, but the

total transmission coefficient after integrating over the entire BZ gives exactly the

same value: this is actually guaranteed by the left/right symmetry of the junction

after configurational average.

TMR Dependence on the Bias. So far, we have investigated important OV

effect on the equilibrium transport properties of the junction. We may want to ask

what’s the OV effect on the TMR dependence on bias voltage. Applying the NEGF-

DFT NVC method, we calculated the non-equilibrium electronic structure for a 7-

layer MgO junctions with and without OVs self-consistently, and then the TMR
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Figure 7.10: TMR versus bias voltage for a MTJ with 7 MLs thick MgO barrier. (a) Perfect
Junction without OVs; (b) a unsymmetrical MRJ with 2% and 3% OVs on the interfacial layer-1
and -7 respectively; (c) symmetrical MTJ with 3% OVs on both layer-1 and -7.

versus bias is obtained by calculating the spin dependent currents, results are shown

in Fig.7.10(a,b,c) for both clean, asymmetrical and symmetrical disordered interfacial

layers. The asymmetrical MTJ shows a asymmetrical dependence on bias voltage. For

all three cases the external bias reduces TMR ratio significantly at small bias voltage

and the existence of OV does not qualitatively alter the general voltage dependence,

even though the vertical scales of Fig.7.10(a,b,c) are very different. Similar voltage

dependence of TMR has been reported experimentally[85, 84] and theoretically[103].

Nitrogen doping. Recently it has been reported that nitrogen can be doped into

MgO[115, 116] as substitutional atoms to oxygen. Since OV causes a dramatic reduc-

tion of TMR, filling the OV with nitrogen may partially restore it toward the clean

theoretical limit. To exploit this possibility, we have calculated a 13-layer Fe/MgO/Fe

junction where the interfacial OVs are filled with nitrogen atoms. Fig.7.11 plots the

TMR versus the nitrogen concentration: TMR remains above 8000% when 4% of
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Figure 7.11: TMR versus disorder x for a junction where interfacial oxygen vacancy is filled by
nitrogen atoms, namely x% nitrogen atoms replace the oxygen atoms on the 1st and 13th MgO
layers.

interfacial oxygen atoms are randomly replaced by nitrogen. This means the diffusive

scattering of spin-down electrons injected from Fe is much less effective by nitrogen

impurity than by OV. Therefore, if viable experimental methods can be found to

fill the almost unavoidable OVs near the Fe/MgO interface, it is possible to reach

extremely high TMR ratio.

7.4 Summary

In summary, by using the NEGF-DFT-NVC first principle quantum transport method,

we have investigated the significant effect of disordered oxygen vacancies in the MTJ

of Fe/MgO/Fe. It was found that interchannel scattering by disordered oxygen va-

cancies on interface result in substantial reduction of the tunnel magnetoresistance

ratio (TMR). Diffusive scattering by the oxygen vacancies inside the MgO barrier

was found to exponentially enhance the the junction resistance. The TMR value of

the junction with disordered interfacial oxygen vacancies can be rapidly reduced by

applying the bias. The inclusion of disordered oxygen vacancies significantly improves

the agreement between first principle calculation and experiments.
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Surface roughness scattering in Copper interconnects

One of the key issues for integrated circuit technology is the increase of Cu intercon-

nect resistivity with decreasing wire cross section[6], a phenomenon typically referred

to as “size effect”[117]. The “size effect” becomes appreciable when the interconnect

line-width approaches ∼ 100 nm, namely when it reaches 2-3 times the mean free

path which is 39 nm for Cu at room temperature. The size effect becomes severe

below 50 nm, giving rise to ∼ 100% increase in the resistivity[118, 119, 120]. This

size effect in copper wires has been a great challenge for the continued down scaling of

electronic devices because increased resistivity dramatically enhances heat dissipation

and interconnect delay in the integrated circuits.

Experimentally, among the several electron scattering mechanisms that contribute

to the resistivity of Cu interconnects[117, 118, 119, 121, 122, 123] including the scat-

tering by phonons, random impurities, grain boundaries and surface roughness, the

surface roughness scattering has been identified as a major source to the size effect

when the line width is less than 50 nm. A 50% increase in Cu resistivity due to

surface roughness scattering has been reported in a recent experimental study[119].

Theoretical investigations of bulk film resistivity has a very long history starting

with the well known semiclassical model of surface roughness scattering by Fuchs[124]

in the 30’s and by Sondheimer[125] in the 50’s. The Fuchs-Sondheimer (FS) model

is still widely used by circuit engineers today. In the FS model, a phenomenological

specularity parameter p is used to characterize electron scattering at the surface:

132
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p = 1 means perfectly specular scattering while p = 0 means completely diffusive

scattering. Different scattering mechanisms in metal films have also been described

by empirical models[126, 127, 128, 129] and by advanced analytic models that take

into account quantum effects prevalent in very thin films[130, 131, 132]. The long

history and extensive investigation have provided our current understanding of thin

film resistivity.

While the empirical and analytic models have provided useful knowledge on the

influence of different scattering mechanisms in Cu interconnects and are appealing

for their simplicity, there is a clear need that calls for more accurate quantitative

methods to directly calculate the resistivity for realistic atomic configurations with-

out employing any phenomenological parameter and without fitting to experimental

data. Atomistic first principles approaches can be very useful in this regard. Re-

cently, several ab initio studies [133, 134] of the resistance of Cu films and nanowires

have been reported where a super-cell approach was employed on periodic atomic

structures. In an earlier study[133], we have shown a 30% to 40% reduction in the

conductance of thin Cu films due to surface roughness and the reduction was at-

tributed to the destruction of isotropic Fermi surface sheets by atomic mounds on the

surface. However, one limitation of the super-cell approach is that it can be applied

only to calculate the resistance, but not the resistivity. Besides, within this approach

the roughness on the surface cannot be completely random due to the periodic atomic

arrangements.

In this chapter, using the NEGF-DFT-NVC quantum transport method, we in-

vestigate surface roughness scattering induced resistivity in Cu film from atomic first

principles.
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Figure 8.1: (a) Atomic structure of the Cu thin film. The two leads and the buffers (denoted by B)
are perfect Cu films without any disorder. The buffer regions connect the leads to the scattering
region. The atomic models used for surface roughness are shown in (b) for 1-sided roughness and
(c) for 2-sided roughness.

8.1 Calculation overview

Fig.8.1(a) shows the atomic structure of the copper film. We treat the copper film as

a two-probe device having two semi-infinite perfect films as electrodes separated by a

scattering region of specific length (L) and thickness (d). The device is periodic in the

width direction. The atomic structure is formed as such that the (010) direction is

along the thickness (denoted by d) of the film while the (101) and (101̄) directions are

along the length (denoted by L) and the width of the film respectively. The thickness

and length of the copper film will be expressed as the number of monolayers (MLs) of

Cu planes in each direction. We use the periodic boundary condition in the thickness

direction by including enough vacuum space in the calculation box such that images

of the films do not interact. The experimental lattice constant of fcc bulk Cu a = 3.61

angstrom is used in all our calculations.

For the surface roughness, we employ two models: 1-sided roughness (Fig.8.1(b))

and 2-sided roughness (Fig.8.1(c)). In both cases, the surface roughness is modeled

by randomly replacing a fraction (1 − x) of Cu atoms on the outermost layer by
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Figure 8.2: (a) Atomic structure of the Cu thin film treated as a two probe device of length L and
thickness d. The barrier metal coating is shown for the 1-layer coating model. For the 4-layer coating
model, three additional pure metal layers are added on top of the 1-layer model.

vacuum spheres of the same size. In order to solely focus on the surface roughness

scattering, we consider single crystal Cu film without any impurity atom but with

surface roughness. This way, the only contribution to the resistivity in our calculation

is the surface roughness scattering. Later on (see below), to investigate the effects of

coating material as shown in Fig.8.2, we fill the randomly distributed vacuum spheres

on the outermost layers with some other metal atoms.

We will investigate transport properties in these copper films at equilibrium, be-

cause for good metal the nonequilibrium (finite bias) effects are weak at typical volt-

ages applied to interconnects. Since we consider Cu films to have infinite extent in one

transverse, say x-direction, and a finite width d in the other transverse y-direction,

the 2D BZ is sampled by (kx, ky) = (60, 1) k-mesh for each energy point. The energy

integration for the equilibrium electron density matrix, Eq.(5.74), is performed with

28 energy points along a complex energy contour in the upper half plane[2]. We have

checked that these computational parameters produced converged numerical values.

In the transport calculations, both the specular and the vertex parts in Eq.(5.84)

are evaluated with (100,1) k-mesh in the k-sampling. One of the main advantages of

our NEGF-DFT-NVC formalism is that it can handle quite large systems: we have

performed calculations of Cu films with up to around 1800 Cu atoms without any

difficulty. The main results of this Chapter can also be found in Refs.[4, 5].
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Figure 8.3: Copper film resistance R as a function of length L of the film for two cases. (a) x = 0.9,
i.e. 10% disorder and 1-sided roughness. (b) x = 0.5, 50% disorder and 2-sided roughness. the
Resistance is calculated by 1/G (G is the equilibrium conductance).

8.2 Surface roughness scattering

We begin by calculating the resistance R = 1/G of the Cu film for different thicknesses

and lengths. The results are presented in Fig.8.3 for 1-sided roughness having 10%

disorder (x = 0.9) and for 2-sided roughness with 50% disorder (x = 0.5). The former

is very conductive with little surface roughness whereas the latter is low conducting

with high roughness concentration. In both cases, resistance increases rather linearly

with the length for all thickness of the film, showing an expected Ohmic behavior. A

resistance of several thousand Ohms (Ω) suggests significant contributions from the

surface roughness.

From the slope of resistance versus length curves in Fig. 8.3, we obtain the resis-

tivity ρ, the results are presented in Fig. 8.4 as a function of disorder x for different

thickness of the film. The resistivity shown here are solely due to surface roughness

scattering. The surface is perfect if x = 1 (no disorder, i.e. roughness is zero); it is

also perfect if x = 0, i.e. when the topmost layer atoms are all replaced by vacuum

sites so that the next perfect layer of Cu becomes the top surface. Since the scat-

tering is completely specular at a perfect surface, the resistivity caused by roughness

scattering is zero at both x = 0 and x = 1, as shown in Fig.8.3. We observe that the

resistivity is not quite symmetric around x = 0.5 for the 1-sided roughness model: this
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Figure 8.4: Surface roughness induced resistivity ρ versus x for different thickness d of the Cu films.
(a): 1-sided roughness,(b): 2-side roughness. the resistivity is obtained by fitting the linear slope of
resistance versus length

is expected since the atomic potentials of a Cu atom and a vacuum site are different.

Interestingly, resistivity is maximum when the disorder is 40% (i.e. x = 0.6). On

the other hand, for 2-sided roughness the resistivity is completely symmetric around

x = 0.5 (the ρ values for x < 0.5 are not shown in Fig. 8.4b). We also notice that the

resistivity is much higher at around x = 0.5 for d = 7 ML compared to the resistivity

for the other thickness values, showing a substantial size effect when the film thickness

is smaller.

Fig. 8.5 plots the increase in resistivity with decreasing film thickness, this is the

size effect mentioned earlier. Our calculated values for resistivity (∼ 2-14 µΩ-cm)

are quite substantial compared to the room temperature bulk Cu resistivity value

of ρb = 1.67 µΩ-cm obtained experimentally. This shows that surface roughness

scattering can have a significant effect on the resistivity of very thin Cu films. When

the surface roughness is small (i.e. x ∼ 1), the resistivity becomes less dependent on

the thickness of the film which is expected for specular scattering. On the other hand,

for high level of surface roughness (x ∼ 0.5) the resistivity shows strong dependence

on thickness. For the 2-sided roughness the resistivity becomes almost twice as large

as for the 1-sided roughness. It is not exactly twice as large because the roughness

concentrations are not symmetric on both sides for the 2-sided roughness model (see

Fig. 8.1c), and the films are so thin that the top and the bottom surfaces can have
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Figure 8.5: Resistivity ρ as a function of thickness (d) of the Cu film for different roughness con-
centrations (1-x). The ρ values (which equal our calculated resistivity due to surface roughness
scattering plus the bulk resistivity value of 1.67 µΩ-cm) are shown by the circles and the triangles.
Solid lines are the corresponding fit of our data with the Fuchs-Sondheimer analytic model where p
is the specularity parameter. The p values obtained from the fitting are shown as a function of x in
the inset.

some correlations. We wish to point out that quantum oscillation in resistivity versus

thickness d is difficult to observe in Cu films even though the thickness we have used

are within the quantum regime. This is because a necessary condition to observe

quantum oscillation is that the layer spacing should be much smaller than λF

2
where

λF is the Fermi wavelength[130]. For Cu film, the layer spacing is 1.81 Å while λF

2

is 2.33 Å as obtained from the calculated Fermi energy of -6.9 eV for Cu. These two

length scales are too close for appreciable quantum oscillations to be observable.

It is somewhat difficult to compare our calculated results quantitatively with ex-

perimental data available in the literature for two reasons. (i) Almost all the available

experimental data were obtained for Cu film of thickness greater than 10 nm which

is too large a system for atomistic ab initio calculations; (ii) due to the presence of

all scattering mechanisms (phonon, impurity, surface roughness and grain boundary)

in experimental systems, it is quite difficult to identify the contribution from each

scattering process independently. Nevertheless, in a recent experiment[121], great

care was taken to minimize the bulk impurity and grain boundary scattering effects

by growing thin Cu film of pure and single crystalline nature, and the reported ex-

perimental value of resistivity is 8.35 µΩ-cm at d = 6.6 nm. In comparison, our
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(a) 1-sided Roughness (b) 2-sided Roughness
x p ±∆p RMSE
0.1 0.80 0.016 0.14
0.5 0.50 0.024 0.21
0.9 0.77 0.015 0.13
0.99 0.97 0.002 0.01

x p ±∆p RMSE
0.5 0.29 0.049 0.43
0.7 0.36 0.056 0.49
0.9 0.65 0.043 0.37
0.99 0.94 0.004 0.03

Table 8.1: Values for the specular parameter p obtained from the Fuchs-Sondheimer fitting where
±∆p is the error bound for the p value and RMSE is the Root Mean Squared Error for the fit. Low
values for both ±∆p and RMSE indicate the goodness of our fit.

calculated value at d = 5.6 nm is 5.30 µΩ-cm (which includes a bulk resistivity value

of 1.67 µΩ-cm to take into account of the phonon scattering). The consistency is

quite reasonable and the remaining discrepancy can be attributed to the nature of

the roughness model used in our calculations.

As mentioned before, surface scattering is conventionally described by a semi-

classical model developed by Fuchs[124] and Sondheimer[125] and later modified by

Rossnagel and Kuan[117] to take into account surface roughness. This model proposes

a relationship between the resistivity ρ and the thickness d of a thin film:

ρ

ρb
= 1 + 0.375

λ

d
(1− p)S (8.1)

where ρb is the bulk resistivity, λ is the room temperature electron mean free path,

and p is called “specularity parameter”whose value ranges from 0 to 1 for completely

diffusive to completely specular scattering, respectively. The surface roughness factor

S is an empirical constant which quantifies the contribution due tomacroscopic surface

roughness. It can have a value greater than or equal to 1.0 with S = 1 representing

a perfect surface. It is obvious that the two phenomenological parameters p and S

are related since diffusive scattering is a direct consequence of the surface roughness.

Therefore, it is almost impossible to independently determine p and S.

In order to estimate the value for p which is rather useful for experimental char-

acterization of resistivity of rough films, we fit our calculated results with the Fuchs-

Sondheimer (FS) equation (Eq. 8.1) by tuning the specularity parametr p, and we
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employ the following values for the other parameters in Eq. 8.1: ρb = 1.67 µΩ-cm,

λ = 39 nm, ρ = ρb + ρs (ρs is our calculated resistivity), and S = 1 (in this study, we

choose to focus solely on the parameter p). We observe a good fit (see the solid lines

in Fig. 8.5) of our data to the FS model by adjusting p. The resulting p values are

shown in Table 8.1 (also, see the insets of Fig. 8.5). The fit is very satisfactory as sug-

gested by the low values of ±∆p and RMSE in Table 8.1. The minimum values of p

for 1-sided and 2-sided roughness are 0.5 and 0.29 near x = 0.5, respectively. We note

here that these p-values are obtained by directly fitting the data using Eq.(8.1), which

assumes identical top and bottom surfaces. This assumption is likely reasonable for

our 2-sided roughness layers which have comparable morphologies on top and bottom

surfaces. Thus, we expect that the p-values in Table I(b) correspond to the specular-

ity of the simulated surfaces. In contrast, the p values shown in table I(a) represent

an average of the perfectly flat bottom surface and the rough top surface of the 1-

sided layers. Assuming specular scattering (p = 1) for the bottom perfect surface, the

p-value for the rough top-surface at x = 0.5 drops exactly to p = 0, corresponding to

completely diffuse scattering. This is in agreement with various experimental studies

which reported completely diffuse surface scattering[117, 121, 122]. Here, we would

like to mention clearly that the good fit of our calculated ab initio data with the

semi-classical FS model does not endorse or validate the FS formula for any quantum

effects. In order to validate the FS model properly, one needs to perform a fitting

with resistivity data for a much wider range of thickness values which includes both

the quantum and semi-classical regimes. In addition we note that the F-S relation

in Eq.(8.1) is an approximation which becomes inaccurate for d/λ < 0.1. Therefore,

one could argue that Eq.(8.1) is not applicable to our computational approach since

in the absence of true bulk scattering λ = ∞. However, a more sensible λ-value for

our simulated thin layers may be the system length L. In that case, Eq.(8.1) holds

true, since λ ∼ L < 10nm and thus d/λ > 0.1 for all simulated thicknesses d > 1nm.

Despite these uncertainties in how to interpret the F-S model within our results, we

believe that there is value in the presented fitting, as it provides an estimate of the
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Figure 8.6: Resistivity (ρ) as a function of thickness (d) when the surface is almost perfect, i.e. the
vacuum concentration (1 − x) is very low. The data presented here are for the 2-sided roughness
model. As expected, resistivity shows less dependence on the thickness at low roughness concentra-
tions, even though there is still substantial contribution from the surface roughness scattering.

specularity parameter p.

Finally, we plot resistivity as a function of thickness in Fig. 8.6 for diluted concen-

trations of roughness, i.e. for nearly perfect Cu surfaces. We expect that for perfect

surface the resistivity will be independent of thickness and it will not deviate much

from the bulk value. However, we observe in Fig. 8.6 that the resistivity is still in-

creasing with decreasing thickness even when x is as high as 0.99 (i.e. 1% disorder).

In other words, our calculations show that a thin Cu film which misses 1 atom for 100

(i.e. x = 0.99) is still rough enough to produce significant scattering at the surface.

We also notice that at these diluted concentrations the resistivity is almost directly

proportional to the disorder concentration.

8.3 Searching for coating material

Since Cu wires will continue to dominate the interconnect technology in any foresee-

able future, it is of critical importance to find ways to minimize roughness scatter-

ing. Experimental growth of Cu films having a perfectly flat surface has not been

possible so far, as even annealed single crystal Cu(001) layers still show a peak-to-

valley roughness of more than 1 nm[135]. By coating barrier atoms on the Cu film,
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Figure 8.7: Cu thin film resistivity ρ as a function of film thickness d for different metal barriers
with concentration x = 0.9 for the 1-layer (a) and the 4-layer (b) coating model. The resistivity for
bare rough Cu films is denoted as ‘Va’. The maximum thickness value of d = 5.59 nm corresponds
to 31 MLs of Cu film.

the geometrical roughness may be filled by barrier atoms resulting in a smoother

geometry thus possibly less diffuse scattering[117]. Barrier metals being examined

experimentally[117, 136, 137, 138, 139] include Ti, Ta, Ru, Al and Pd: results in-

dicate that some barrier metals actually increase resistivity compared with bare Cu

films while others do reduce it, and there has been little theoretical understanding of

the trends. In this Section we investigate effects of coating material from atomic first

principles. The results can be found in Ref.[5].

Fig. 8.7 plots the calculated Cu resistivity ρ as a function of film thickness d for

four different barrier metals Ta, Ru, Pd, and Al, as well as rough Cu films without a

barrier coating denoted by ‘Va’. The results for Ti coating are not presented to make

the plot less crowded, since they are very similar to that of Ta with little difference

in the resistivity values. It is clear that barrier metals make a significant difference

in the resistivity. For Ta and Ru coating, the size effect is very pronounced and the

resistivity is higher than bare Cu films. On the other hand, the resistivity with Al and

Pd barriers are lower than the bare Cu films (see Fig. 8.7). These results qualitatively

agree with experimental observations where the Cu sheet resistance was reported to

increase by up to 15% using Ta barrier coating[136], and was always reduced with

Al barrier coating[117]. A comparison between the two coating models (1-layer or
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Figure 8.8: Resistivity (ρ) of Cu thin film at thickness d = 3.43 nm and 1-layer coating model versus
disorder parameter x.

4-layer barrier) does not show a significant qualitative difference, suggesting that the

most important contribution to resistivity comes from the Cu-barrier metal interface.

For all four barrier metals, the 4-layer coating model has higher resistivity which

can be attributed to the increased mismatch of the pure Cu leads with the thicker

barrier layers in the scattering region, causing electron scattering into the barrier

layer. Since there is no qualitative difference, in the following we will focus on the

1-layer coating model.

Fig. 8.8 is a plot of the resistivity versus the disorder concentration parameter

(1−x) for a film of thickness d = 3.43 nm. The resistivity is not completely symmetric

around x = 0.5 which is expected because the atomic potential of the Cu atom and

the barrier atom are not the same. The maximum resistivity value is observed in

the range between x = 0.5 to 0.7 for all barrier materials. The resistivity is zero at

both limits x = 0 and x = 1 where the Cu surface is perfect such that scattering is

completely specular. Very importantly, for any x value the resistivity with Al and

Pd barrier coating is always lower than the bare Cu film; but it becomes higher with

Ta and Ru barriers. These results suggest that Al and Pd barrier layers should be

effective in suppressing the size effect in Cu films.

The effect of the barrier coating can be due to several factors including localized
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Figure 8.9: Density of states (DOS) as a function of energy E at the metal impurity atoms on the
Cu surface. The solid line denoted by ‘Cu’ represents the DOS for Cu atom on a perfect Cu surface
without any impurity.

d states, a change in the Fermi surface, and/or a difference in the lattice structure

and crystal potentials. To better understand this effect, we calculated the density

of states (DOS) at the barrier metal atoms on the Cu-barrier interface layer. The

results are presented in Fig. 8.9. We found that the DOS for Al/Pd match very

well with that for Cu atoms on a perfect Cu surface, while the DOS for Ta/Ru does

not match. Therefore, the effect of Al/Pd barriers is to effectively smooth out the

electronic structure of a rough Cu film toward that of a perfect film, thereby reducing

the overall resistivity. For Ta/Ru barriers, even though the DOS around EF is much

higher than that for Cu, it is mostly composed of the rather localized d orbital. We

may thus argue that the d states of the Ta/Ru atoms do not contribute as well to

the overall conductance, and the mismatch of the DOS with that of Cu does not

smooth out the electronic structure of the rough Cu film. To further confirm the

behavior of DOS of Fig. 8.9, we have carried out additional calculations[140] using

a projector augmented wave (PAW) DFT method as implemented in the electronic

package VASP[141, 142] on periodic structures of the barrier coated films, and the

results (not presented) show very good qualitative agreement with our two-probe

results in Fig. 8.9.
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8.4 Summary

In summary, we have investigated surface roughness induced resistivity of thin Cu

films by using the NEGF-DFT-NVC ab initio formalism. Our calculations for bare

rough films demonstrate that electron scattering due to surface roughness significantly

enhances resistivity. Even in the low roughness regime, the resistivity of very thin

Cu films remains substantial as compared with the bulk value. Our results can be

fit to the Fuchs-Sondheimer semi-classical formula which allows us to estimate the

degree of specular scattering, and for the first time in literature we have obtained the

p = p(x) characteristics.

It is found coating copper films by other barrier atoms may reduce or enhance

resistivity. Compared with the bare rough surface, the resistivity value of Ti, Ta

and Ru coated surface are higher while for Al and Pd the resistivity is lower. These

different effects can be attributed to difference in the electronic states of the coating

metals on the surface. Our results strongly suggest that it is possible to electronically

smooth out the effects of roughness of thin Cu films such that the resulting Cu-barrier

metal interface becomes more specular to electron scattering.
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Conclusion

We have developed a non-equilibrium vertex correction (NVC) theory within the

NEGF-DFT framework for analyzing quantum transport properties of disordered na-

noelectronic devices under finite external bias potential that drives current flow. In

the NEGF-DFT-NVC quantum transport method, the impurity averaging at the non-

equilibrium density matrix level is carried out by self-consistently including the NVC

self-energy that describes the change of the non-equilibrium distribution due to mul-

tiple impurity scattering. After the NEGF-DFT-NVC self-consistent calculation is

converged for the Hamiltonian, a second, unavoidable vertex correction is needed to

calculate the transmission coefficient that includes inter-channel disorder scattering.

The entire theoretical formalism is implemented successfully in the linear Muffin Tin

orbital DFT framework. At this point, it is worth to recall the well known field theo-

retical calculations of the Kubo formula for impurity scattering in metal[143]. There,

the vertex correction is calculated at the equilibrium conductivity level[143]. In our

work, the NVC theory is developed at the non-equilibrium density matrix level which

is necessary for nonequilibrium quantum transport problems.

The NEGF-DFT-NVC theory has several desired features, including atomistic first

principle, non-equilibrium, accurate, self-consistent and efficient computation. These

features allow us to analyze nonlinear and non-equilibrium quantum transport proper-

ties of realistic device structures from atomic first principle without any phenomeno-

logical parameters.

146
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We have applied the NEGF-DFT-NVC method to investigate effects of disor-

dered impurities/defects to the quantum transport properties of several typical nano-

electronic device systems. First, it is found that for Fe/Vacuum/Fe magnetic tunnel

junction (MTJ), the interface disorder can alter the bias dependence of TMR in sig-

nificant ways: the zero bias anomaly can be observed in junctions having weak or

no disorder, but it disappears when the interface disorder is increased. Second, we

investigated the important role of disordered oxygen vacancies in Fe/MgO/Fe MTJ.

The inclusion of oxygen vacancies significantly improves the agreement between first

principle calculation and experiments: the TMR value is substantially quenched from

the ideal theoretical limit of 10, 000% to the experimental range of around 250% by

just a few percent of vacancies. Diffusive scattering by the oxygen vacancies inside the

MgO barrier was found to exponentially enhance the the junction resistance, which

was observed in recent experiments[110]. The TMR value of junctions having disor-

dered interfacial oxygen vacancies can be rapidly reduced by bias. Third, we have

calculated surface roughness scattering induced resistivity in copper interconnects. It

is demonstrated that disordered surface roughness scattering significantly enhanced

the resistivity of very thin copper lines. On the other hand, the resistivity can be low-

ered by coating the rough film using Al and Pd, while metals Ta, Ti and Ru increase

the resistivity.

The research on effects of disordered impurities/defects is of vital importance for

technological applications because all realistic systems have a degree of disorder.

We believe our NEGF-DFT-NVC formalism and its associated software tool provide

a powerful first principle approach for many future directions. Several immediate

and very important problems can be tackled including quantum transport in dilute

magnetic semiconductors[144]; non-uniform doping effects in nanoscale Si field effect

transistors[145]; spin injection from ferromagnetic metal into GaAs where diffusion of

metal atoms into GaAs create spin flipping scattering centers[146]; disorder effects in

graphene and carbon nanostructures[147]; impurity scattering in the newly discovered

topological insulators[148], etc.. At the writing of this thesis, we are carrying out all
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of these calculations and results will be published in the near future.

On a more theoretical level, there is a need to improve certain issues in our existing

NEGF-DFT-NVC method. These include relaxing the linear energy expansion in the

LMTO and realize the MTO computation; relaxing the atomic sphere approximation

and the single site approximation; as well as other issues in DFT itself such as the

exchange-correlation functionals. With these improvements, more accurate results

are expected and more complicated systems can be investigated. We hope to make

these advances in the future.
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