
UNIVERSIDADE ESTADUAL DE CAMPINAS

Instituto de Física Gleb Wataghin

GUILLERMO GERARDO RIVERA GAMBINI

Um candidato à matéria escura no contexto da física

além do modelo padrão

A dark matter candidate in the context of physics

beyond the standard model

CAMPINAS

2022



GUILLERMO GERARDO RIVERA GAMBINI

Um candidato à matéria escura no contexto da física

além do modelo padrão

A dark matter candidate in the context of physics

beyond the standard model

Supervisor/Orientador: Pedro Cunha de

Holanda ESTE EXEMPLAR

CORRESPONDE À VERSÃO FINAL DA

TESE DEFENDIDA PELO ALUNO

GUILLERMO GERARDO RIVERA

Supervisor/Orientador: Pedro Cunha de

Holanda

ESTE TRABALHO CORRESPONDE À

VERSÃO FINAL DA TESE DEFENDIDA

PELO ALUNO GUILLERMO GERARDO

RIVERA GAMBINI, E ORIENTADA

PELO PROF. DR. PEDRO CUNHA DE

HOLANDA.

Tese apresentada ao Instituto de Física

Gleb Wataghin da Univerisdade Estadual

de Campinas como parte dos requisitos

exigidos para a obtenção do título de Doutor

em Ciências, na área de Física no âmbito

de Acordo de Cotutela firmado entre a Uni-

camp e a McGill University.

Thesis presented to the Gleb Wataghin In-

stitute of Physics of the University of Camp-

inas in partial fulfillment of the require-

ments for the degree of Doctor of Sci-

ences, in the area of Physics under the Co-

tutelle/Joint Ph.D Agreement signed be-

tween Unicamp and McGill University.

CAMPINAS

2022



Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Física Gleb Wataghin
Lucimeire de Oliveira Silva da Rocha - CRB 8/9174

    
  Rivera Gambini, Guillermo Gerardo, 1984-  
 R524d RivA dark matter candidate in the context of physics beyond the standard

model / Guillermo Gerardo Rivera Gambini. – Campinas, SP : [s.n.], 2022.
 

   
  RivOrientadores: Pedro Cunha de Holanda e James Michael Cline.
  RivTese (doutorado) – Universidade Estadual de Campinas, Instituto de Física

Gleb Wataghin.
 

  RivEm cotutela com: McGill University.  
    
  Riv1. Matéria escura (Astronomia). 2. Lépton neutro pesado. I. Holanda, Pedro

Cunha de, 1973-. II. Cline, James Michael. III. Universidade Estadual de
Campinas. Instituto de Física Gleb Wataghin. V. Título.

 

Informações Complementares

Título em outro idioma: Um candidato à matéria escura no contexto da física além do
modelo padrão
Palavras-chave em inglês:
Dark matter (Astronomy)
Heavy neutral lepton
Área de concentração: Física
Titulação: Doutor em Ciências
Banca examinadora:
Pedro Cunha de Holanda [Orientador]
Flávia Sobreira
Ernesto Kemp
Cássio Bruno Magalhães Pigozzo
Gustado do Amaral Valdiviesso
James Michael Cline
 Data de defesa: 07-11-2022
Programa de Pós-Graduação: Física
 
 
 
 
 

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-9381-7049
- Currículo Lattes do autor: http://lattes.cnpq.br/9082825225407765  

Powered by TCPDF (www.tcpdf.org)



MEMBROS DA COMISSÃO EXAMINADORA DA TESE DE DOUTORADO DO ALUNO GUILLERMO
GERARDO RIVERA GAMBINI  -  RA  153914 APRESENTADA E APROVADA AO INSTITUTO DE
FÍSICA “GLEB WATAGHIN”, DA UNIVERSIDADE ESTADUAL DE CAMPINAS, EM  07/11/2022.

COMISSÃO JULGADORA:

- Prof. Dr. Pedro Cunha de Holanda – Presidente e orientadora (IFGW/UNICAMP)

- Profa. Dra. Flávia Sobreira (IFGW/UNICAMP)

- Prof. Dr. Ernesto Kemp (IFGW/UNICAMP)

- Dr. Cássio Bruno Magalhães Pigozzo (Universidade Federal da Bahia)

- Dr. Gustavo do Amaral Valdiviesso (Universidade Federal de Alfenas)

- Dr. James Michael Cline (McGill University)

OBS.: Ata da defesa com as respectivas assinaturas dos membros encontra-se no SIGA/Sistema de 
Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

CAMPINAS

2022



para mi familia por creer en mí



Acknowledgements

First of all, I would like to thank my family for their endless patience and support.

I am deeply grateful to both of my supervisors: Prof. Pedro C. de Holanda at Uni-

versidade Estadual de Campinas and Prof. James M. Cline at McGill University. Thank

you for your trust in me, for your guiding of my research, and for sharing good times in

non-academic activities like marches for science, recitals, having lunch, etc.

I want to thank Profs. Giorgio Torrieri, Saulo Carneiro, Bruce Sánchez-Vega, Flávia

Sobreira, Orlando Peres, Ernesto Kemp, Orlado Pereyra Ravinez, and Rosendo Ochoa for

their continuous academic support and friendship.

(Old) friends and colleagues who had direct impact in my life during the Ph.D.: Den-

nis Zavaleta, Armando Pezo, Paulo H. de Moura, Fernanda F. Rodrigues, Kayman J.

Gonçalves, Andres Navarro, Garv Chauhan, Carlos Alvarez Salazar, Ana Romero Castel-

lanos, Bárbara Peluzo, Mariano Chaves, Yago P. Porto-Silva, Gabriela Vitti Stenico, Pe-

dro Pasquini, Jean-Samuel Roux, Benoit Laurent, Matteo Puel, Gonzalo Alonso-Álvarez,

Karishma Moorthy, Qiu Shi Wang, Katarina Bleau, Cedrick Perron, Oscar Chacaltana,

Frank Coronado, Ingrid Ribeiro, Leonardo Leite, Erick Lamilla, Marvyn Inga, Fiorella

Aquino, Caroline Mouls, Lisbeth Corbacho, Jamille Feitosa, Luis Alejo, Jullyane G. de

Jesus, and Hernan Chalco, thank you for the good things I have learned from you.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior - Brasil (CAPES) - Finance Code 001 - 1583268, Ministry of Science,

Technology and Innovation” and the “National Council for Scientific and Technological

Development – CNPq 141699/2016-7, Fundo de Apoio ao Ensino, à Pesquisa e à Exten-

são (FAEPEX) 2039/20, the Canadian government: Emerging Leaders in the Americas

Program (ELAP) scholarship, McGill Space Institute (MSI): Trottier MSI Grad Awards

2020 and 2021, McGill Graduate and Postdoctoral Studies (MGAPS): travel awards 2021

and 2022, and Canada’s Natural Sciences and Engineering Research Council (NSERC).

I would like to thank Profs. Gustavo Valdiviesso, Cássio Pigozzo, Ernesto Kemp, and

Flávia Sobreira for their comments and questions which helped me improve this thesis.

Special thanks to the CPG team at IFGW, you guys do a great job.



“The effort to understand the universe is one of the very few things which lifts human

life a little above the level of farce and gives it some of the grace of tragedy.”

Steven Weinberg

The first three minutes (1976)



Resumo

A motivação para estender o modelo padrão da física de partículas vem de muitas fontes.

As massas de neutrinos e a natureza da matéria escura estão entre essas fontes e são

discutivelmente os ingredientes desconhecidos mais importantes do universo que exigem

explicação. Neste trabalho, estudamos como os limites publicados sobre o ângulo de mis-

tura entre léptons neutros pesados e neutrinos ativos podem mudar quando o primeiro

acopla a um singleto escalar leve. O método apresentado aqui pode ser usado para re-

formular restrições de outros experimentos (antigos) sem recorrer a simulações de Monte

Carlo computacionalmente caras. Também propusemos um novo mecanismo para re-

solver o problema da cúspide central através da reativação tardia das aniquilações da

matéria escura. Isso foi feito no contexto da matéria escura assimétrica. Finalmente,

estudamos matéria escura multicomponente em um modelo onde 𝐵 − 𝐿 é uma simetria

gauge. Mostramos que mesmo que a densidade relativa atual do componente instável seja

desprezível, o efeito da radiação escura produzida por seus decaimentos pode restringir

severamente o espaço de parâmetros dos VEVs do modelo, o que está em conflito com os

benchmarks anteriores na literatura.



Abstract

Motivation for extending the standard model of particle physics comes from many sources.

Neutrino masses and the nature of the dark matter are among these sources and they are

arguably the most important unknown ingredients of the universe which call for explana-

tion. In this work, we have studied how the published limits on the mixing angle between

heavy neutral leptons and active neutrinos can change when the former couples to a light

scalar singlet. The method presented here could be used to recast constraints from other

(older) experiments without resorting to computationally expensive Monte Carlo simula-

tions. We have also proposed a new mechanism to solve the core-cusp problem through

the late-time reactivation of dark matter annihilations. This has been done in the context

of asymmetric dark matter. Finally, we study multi-component DM in a gauged 𝐵 − 𝐿

model. We show that even if the present-day relative density of the unstable component

is negligible, the effect of the dark radiation produced by its decays can severely constrain

the parameter space of the VEVs of the model, which is in conflict with previous bench-

marks in the literature.



Résumé

La motivation pour étendre le modèle standard de la physique des particules provient de

nombreuses sources. Les masses de neutrinos et la nature de la matière noire font partie

de ces sources et sont sans doute les ingrédients inconnus les plus importants de l’univers

qui appellent une explication. Dans ce travail, nous avons étudié comment les limites

publiées sur l’angle de mélange entre les leptons neutres lourds et les neutrinos actifs

peuvent changer lorsque les premiers se couplent à un singulet scalaire léger. La méthode

présentée ici pourrait être utilisée pour refondre les contraintes d’autres expériences (plus

anciennes) sans recourir à des simulations de Monte Carlo coûteuses en calcul. Nous avons

également proposé un nouveau mécanisme pour résoudre le problème noyau-pointe par

la réactivation tardive des annihilations de matière noire. Cela a été fait dans le contexte

de la matière noire asymétrique. Enfin, nous étudions le DM multi-composants dans un

modèle 𝐵 − 𝐿 calibré. Nous montrons que même si la densité relative actuelle de la

composante instable est négligeable, l’effet du rayonnement d’obscurité produit par ses

désintégrations peut contraindre sévèrement l’espace des paramètres des VEV du modèle,

ce qui est en conflit avec les repères précédents dans le Littérature.
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1 Introduction

The history of the dark matter (DM) research program began in 1933 when Fritz

Zwicky showed there was missing matter in the Coma cluster of galaxies [1]. This un-

detected matter is used to explain cosmological observations like flat rotation curves in

spiral galaxies [2], gravitational lensing from clusters of galaxies, and the bullet cluster [3],

among others1. Let us briefly see how cold dark matter appears in different cosmological

scenarios and why it is thought to be of non-baryonic origin.

1 Galaxy halos: The shape of the Universe has always been of great interest for

humankind. It is possible to know if it is open, close, or flat by determining the

ratio of its mass density 𝜌 to the critical density Ω = 𝜌/𝜌𝑐. As finding 𝜌 is a very

difficult task, a first approach would be to determine the average mass density ⟨𝜌⟩

by multiplying the number density of galaxies 𝑛GAL times the average mass per

galaxy ⟨𝑀GAL⟩. Invoking Kepler’s 3rd law,

𝐺𝑀(𝑟) = 𝑣2𝑟, (1.1)

where 𝑀(𝑟) is the mass interior to 𝑟, 𝑣(𝑟) is the orbital velocity at distance 𝑟

from the center of the galaxy, and 𝐺 is Newton’s constant. Assuming all luminous

matter is concentrated in a region of radius 𝑟GAL, the mass of this matter 𝑀LUM =

𝑣2(𝑟GAL)𝑟GAL/𝐺 gives ΩLUM ≈ 0.01 [8]. This means that this kind of matter only

accounts for about 1% of the mass in the Universe. Where is the rest? Maybe there

is something there that our detectors are not ‘seeing’. When 𝑟 > 𝑟GAL, Eq.(1.1)

gives 𝐺𝑀GAL = 𝑣2𝑟, so we have

𝑣 ∝ 𝑟−1/2. (1.2)

Observations of spiral galaxy NGC 3198 give a flat rotation curve, i.e. the circular

velocity is approximately constant for 𝑟 > 𝑟GAL, which obviously disagrees with

Eq.(1.2) (see Fig.1a). Models that try to solve this discrepancy usually take into

consideration two distinct distributions of matter: an exponential disk of luminous
1 Modified gravity theories are alternatives to the dark matter hypothesis, but they will not be discussed

in this work.
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(a) Rotation curve of spiral galaxy NGC 3198 [4]. (b) Galaxy cluster Abell 2218 [5].

(c) The cosmic microwave background [6].
(d) Galaxy cluster 1E 0657-56 (a.k.a. the bullet cluster)

[3].

(e) Map of the gravitational potential in a collision of
two clusters of galaxies [3].

(f) Color light curve for a star in the Magellanic cloud
[7].

Figure 1 – Evidence of dark matter in our universe. (a) Spiral galaxy NGC 3198 can not be successfully
modeled by a disk of baryonic matter only. A halo of some unseen matter must be added to match
the rotation curve. (b) Light coming from luminous objects that are positioned behind galaxy
cluster Abell 2218 gets deflected by it, creating faint arcs. (c) The detailed picture of the early
universe reveals 13.77 billion year old temperature fluctuations, which were the seeds that created
the galaxies. (d) In the collision of two clusters of galaxies, the hot ionized gas of the smallest one
gets shaped like a bullet, hence producing a bow-shaped shock front. (e) The collision of two large
clusters could not exhibit this form of the gravitational potential, if it wasn’t for dark matter. (f)
Flux divided by median observed flux, microlensing model fitting in both blue and red passbands.
The brightness of the star presents a temporary (33.9 days) increase around 𝑡 = 433.55± 0.04 days
after january 2nd 1992.
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matter and a halo of dark matter [4]. As a result, two-component models usually

get good fits (see Fig.1a).

2 Clusters of galaxies: In his 1933 paper ‘The redshift of extragalactic nebulae’,

Fritz Zwicky studied the Coma cluster of galaxies and showed, by means of the

virial theorem, that the density of the dark matter is much greater than that of

the luminous matter. Assuming the Coma cluster to be a mechanically stationary

system, the virial theorem tells us that the mean kinetic ⟨ℰ𝑘⟩ and potential ⟨ℰ𝑝⟩

energies are related by

⟨ℰ𝑘⟩ = −
1

2
⟨ℰ𝑝⟩ . (1.3)

For purposes of estimation, let us assume a uniform distribution of mass (𝜌= con-

stant) in the cluster. In this way, if 𝑀 and 𝑅 for stand for its mass and radius,

respectively, then its gravitational energy 𝑈 is

𝑈 = −
∫︁ 𝑀

0

𝐺𝑀(𝑟)

𝑟
𝑑𝑚 = −3

5

𝐺𝑀2

𝑅
. (1.4)

From this result and Eq.(1.3), we get

1

2

⟨︀
𝑣2
⟩︀
= ⟨ℰ𝑘⟩ = −

1

2
⟨ℰ𝑝⟩ = −

1

2

(︂
𝑈

𝑀

)︂
=

3

10

𝐺𝑀

𝑅
, (1.5)

⟨︀
𝑣2
⟩︀1/2 ≈ 80𝑘𝑚/𝑠. (1.6)

Unfortunately, the velocity dispersion in the Coma cluster goes from 1500 to 2000

km/s. This problem made Zwicky think that, as ⟨𝑣2⟩1/2 ∝
√
𝑀 from Eq.(1.5), the

cluster needed its mass to be at least 400 times greater than the mass of its luminous

matter2.

3 Gravitational lensing: Clusters of galaxies can be used as telescopes because

gravity can ‘bend’ light. They will deflect light coming from, say, a single galaxy

or a group of them (see Fig.1b), and the measurement of the deflection will give

us the mass of the cluster. Lensing results seem to match the mass-to-light ratio

𝑀/𝐿 ≃ 300ℎ obtained from the study of the Coma cluster, therefore reinforcing the

statement of missing mass in this group of galaxies.
2 Zwicky’s estimate of 𝑀GAL was significantly smaller than its current value, but he noted a troubling

discrepancy in the mass-to-light ratio of the Coma cluster, i.e. 𝑀/𝐿 ≃ 300ℎ (see item 4).
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4 Mass-to-light ratios: If we consider the mass of the universe to be mainly the

addition of the masses of its visible parts, i.e. the galaxies, then finding the mass-to-

light ratio of a single galaxy and, assuming this is the same for the whole universe,

multiplying it by the luminosity of the universe should give us its mass and, conse-

quently, Ω.

The luminosity of astronomical objects in the Universe reveal a total luminosity

density of 𝜌𝐿 = 2 ± 0.7 × 108ℎ𝐿⊙𝑀𝑝𝑐−3 [9]. As the critical density is given by

𝜌𝑐 = 3𝐻2
0/8𝜋𝐺 = 2.77537(13) × 1011Ωℎ2𝑀⊙𝑀𝑝𝑐−3 [10], the critical mass-to-light

ratio reads [11] (︂
𝑀

𝐿

)︂
𝑐

= 1390ℎ± 35%. (1.7)

As we have seen before, 𝑀/𝐿 ≃ 300ℎ. Since this value is far from the result

obtained in Eq.(1.7), more low luminosity massive objects are needed in order to

get our observed flat universe, i.e. Ω = 1.

5 The cosmic microwave background (CMB): Planck3 measurements of the

CMB temperature and lensing-potential power spectra at high multipoles were used

to find the physical densities of baryons (Ω𝑏ℎ
2 = 0.02205± 0.00028) and cold dark

matter (Ω𝐷𝑀ℎ2 = 0.1199±0.0027) in the ΛCDM cosmology [12] . From this results,

it can be seen that not only matter is not the most dominant contributor to the

energy density of the universe, but also most of it is of unknown composition.

6 The large-scale structure of the Universe: As the baryonic density parameter

Ω𝑏 is very small compared to the other ‘ingredients’ of the Universe, it would have

required large fluctuations in the primordial baryon density in order to form the

observed number of galaxies in our universe. These large fluctuations would also

mean large anisotropies in the cosmic microwave background today. Consequently,

galaxy formation in a purely baryonic medium is totally ruled-out by the observation

of small anisotropies in the CMB (Fig.1c).

7 The bullet cluster: The most recent works on observational cosmology highlight

the presence of DM in collisions of galaxy clusters. In Fig.1d we see the collision

of two galaxies merging into a double cluster (galaxy cluster 1E 0657-56), which is
3 Planck is the European Space Agency’s mission to map the sky measuring temperature and polariza-

tion anisotropies of the cosmic microwave radiation.
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known as the bullet cluster after the bullet-shaped hot gas resembling a supersonic

bullet producing shock waves. The main ingredients in these collisions are galaxies,

clouds of hot gas, and dark matter. As galaxies are very distant from each other,

they don’t participate much in the collisions. However, hot gases do collide, produc-

ing a shock front (Fig.1d) and, most importantly, separating themselves from the

DM. How can we know this? As can be seen in Fig.1e, the map of the gravitational

potential clearly indicates the presence of two unseen massive objects that dominate

in terms of the mass in this system.

“Most of what we have learned (about dark matter) since 1986 is what the dark matter is

not; discovering what the dark matter really is remains an exciting challenge”

John N. Bahcall4

Microlensing: This astronomical phenomenon is based on the gravitational lens effect

and uses the relative motion between the source and the lens to temporary brighten the

combined signal. This means it is possible to find objects that emit little or no light

by monitoring the light curves coming from the source, which are being deflected and

distorted by such objects. After monitoring tens of millions of stars, which increase their

brightness by means of this phenomenon, it is believed that most of the unseen matter

is not of baryonic origin. As a result, MACHOs5 in the mass range 10−7 < 𝑀/𝑀⊙ < 15

cannot account for the galactic dark matter [14]. For this reason, it is necessary to go

beyond of the standard model of particle physics where dark matter can be studied as,

for example, a WIMP [15].

4 In 1986, John Bahcall and Steven Weinberg organized the 4th Jerusalem Winter School. The articles
that grew up out of those lectures were published here [13].

5 Massive compact halo objects.
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2 Recasting constraints for heavy neutral lep-

tons

Right-handed neutrinos 𝑁 with masses in the range 0.1 − 1000GeV are commonly

known as heavy neutral leptons (HNLs). Since they are SM-gauge-singlet fermions and

interact with the SM only through mixing with active neutrinos, they naturally belong to

the dark sector. These mixings |𝑈 | ∼
√︀

𝑚𝜈/𝑚𝑁 have been constrained by beam-dump

and other experiments. In this chapter, we show these limits cannot be directly applied

to HNLs that couple to a light singlet scalar that mixes with the Higgs boson.

The content of this chapter is heavily based on Ref. [16], where our main results are

published. These have been presented at the XXX International Conference on Neutrino

Physics and Astrophysics (Neutrino 2022) in Seoul, Korea and The Eleventh Workshop

of the LLP (Long-lived particles) Community at CERN (by invitation).

2.1 Motivation

2.1.1 (Partially) asymmetric dark matter

The dark matter puzzle, the mystery of small neutrino masses, the matter-antimatter

asymmetry, and inflation call for physics beyond the standard model (BSM). A common

denominator in BSM models which can address several of these missing pieces in the SM,

e.g. 𝜈MSM [17, 18], SMASH [19], and scotogenic [20, 21], is the presence of right-handed

neutrinos in their matter content.

Along these lines, a new model [22] has come up recently where the (partially)1 asym-

metric dark matter candidate is a quasi-Dirac heavy neutral lepton, its stability is related

to the mass of the lightest neutrino, and its relic abundance can be explained if there’s

also a new SM-singlet scalar that couples to this DM particle and mixes with the Higgs

boson. In this scenario, when the singlet scalar can be produced in DM decays, experi-

mental limits that don’t consider this decay channel must be reanalyzed.
1 If asymmetric DM annihilations are not strong enough, its symmetric component may not be totally

depleted, hence after freezeout the total DM would still have both symmetric and asymmetric com-
ponents. In the next chapter, we delve deeper into asymmetric DM models.
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2.1.2 Heavy neutral leptons (HNL)

Neutrinos are massive. However, there is not a consensus on the mechanism responsi-

ble for the generation of these masses. One of the most popular proposals for generating

these masses is the seesaw mechanism. In its simplest form, new SM singlet fermions 𝑁

mix with the active neutrinos 𝜈𝛼 (𝛼 = 𝑒, 𝜇, 𝜏)

−ℒmass
𝜈 = 𝜇�̄�𝜈 +

𝑀

2
�̄� 𝑐𝑁 +H.c., (2.1)

producing light 𝜈𝑖 and heavy neutral fermions 𝑁 ′
𝑗, where 𝜇 and 𝑀 are the Dirac and

Majorana masses, respectively. For instance, for one SM singlet fermion 𝑁 that mixes

exclusively with electron neutrinos 𝜈𝑒,

𝜈1 ≃ 𝜈𝑒 −
(︁ 𝜇

𝑀

)︁
𝑁 and 𝑁 ′ ≃ 𝑁 +

(︁ 𝜇

𝑀

)︁
𝜈𝑒, (2.2)

with masses

𝑚1 ≃
𝜇2

𝑀
and 𝑀𝑁 ′ ≃𝑀, (2.3)

in the limit where 𝜇≪𝑀 .

As we can see from Eq.(2.2), the new physics appears in the ratio of the Dirac to the

Majorana masses, so it is convenient to define

|𝑈𝑒| ≡ 𝜇/𝑀, (2.4)

as this quantity will appear in the production and decay of the HNLs, which can be

produced in neutrino experiments. For this reason, many experiments looking for these

HNLs have put bounds on this mixing parameter in the case of ‘pure mixing’, i.e when

there is only one HNL and it mixes with one active neutrino only. We will discuss three

of these experiments in the next section.

N
νe

|Ue|2

e−

W+

νe, νµ

e+, µ+

N

|Ue|2 νe

νe

Z

e−, µ−

e+, µ+

Figure 2 – Left: HNL production from B meson decays. Center: HNL charged decays.
Right: HNL neutral decays.
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Figure 3 – HNL weak decays. Image reproduced from [23].

Figure 4 – HNL two-body decay 𝑁 → 𝜈 𝑠.

2.1.3 SM gauge singlet scalar: a new decay channel for HNLs

A singlet scalar 𝑠 that interacts with heavy neutral leptons 𝑁 through

𝑔𝑠 𝑠�̄�𝑁 ∈ −ℒ, (2.5)

can induce two-body decays (as shown in Fig.4) with decay rate

Γ(𝑁 → 𝑠𝜈𝛼) =
𝑔𝑠
32𝜋

𝑚𝑁

(︂
1− 𝑚2

𝑠

𝑚2
𝑁

)︂2

|𝑈𝛼|2. (2.6)

These new decays will compete with the usual weak decays. As an example, in Fig.5 we

show the production and decay of HNLs from electron-positron collisions. The new decay

channel 𝑁 → 𝜈 𝑠 is shown at the bottom.

2.2 Experiments

2.2.1 DELPHI

The DELPHI detector at the Large Electron-Positron (LEP) collider collected 3.3×106

hadronic 𝑍 decays from 1991 to 1994 [24]. In these decays, HNLs could be produced in

Z boson decays: 𝑍 → 𝑁𝜈, 𝑍 → �̄�𝜈, and 𝑍 → �̄�𝑁2, through the mixing with light
2 𝑍 → �̄�𝑁 is suppressed by |𝑈 |4.
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Figure 5 – 𝑍 boson decays including the new 𝑁 → 𝜈 𝑠 channel.

neutrinos. The branching ratio for these decays is given by

BR(𝑍 → 𝑁𝜈𝛼) = BR(𝑍 → 𝜈𝛼𝜈𝛼)|𝑈𝛼|2
(︂
1− 𝑚2

𝑁

𝑀2
𝑍

)︂2(︂
1 +

1

2

𝑚2
𝑁

𝑀2
𝑍

)︂
, (2.7)

where BR(𝑍 → 𝜈𝛼𝜈𝛼) ≈ 0.063 for 𝛼 = 𝑒, 𝜇, 𝜏 3(no summation over repeated indices). The

mean decay length of the HNLs is approximately

𝐿 ∼=
3

|𝑈𝛼|2

(︂
GeV
𝑚𝑁

)︂6

cm. (2.8)

In their study, the DELPHI Collaboration analyzed three different decay topologies: 𝜈ℓℓ̄,

𝜈𝑞𝑞, and ℓ𝑞𝑞′ where ℓ = 𝑒, 𝜇, 𝜏 , 𝑞 = 𝑢, 𝑑, 𝑠, 𝑐, 𝑏, and 𝑞𝑞′ = 𝑢𝑑, 𝑐𝑠 plus charge conjugate

states, which we illustrate in Fig. 5.

The fraction of 𝑍 bosons leading to observed HNLs decaying inside the detector via

weak interactions is

𝑓𝑤 = 2× BR(𝑍 → 𝑁𝜈𝛼)
(︀
1− 𝑒−𝐷𝐿/𝐿

)︀
𝜀(𝑚𝑁). (2.9)

The factor of 2 accounts for the charge conjugate decay channel 𝑍 → �̄�𝜈𝛼 and the

reconstruction efficiency 𝜀 is a function on the mass of the HNL 𝑚𝑁 that we take from

Fig. 4 of Ref. [24]. 𝐷𝐿 is the length of the region where decays are observed. As described

below, we infer this parameter (obtaining 𝐷𝐿 = 200 cm) when we reproduce the published

limits for weak HNL decays.

2.2.2 Belle

The Belle experiment (1999-2010) searched for direct HNL decays (𝑁 → ℓ±𝜋∓, ℓ =

𝑒, 𝜇) at the KEKB 𝑒+𝑒− collider, where 𝐵�̄� pairs were created at the ϒ(4𝑆) resonance
3 LEP limits apply equally to all flavors of HNLs [25].
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Figure 6 – Belle efficiencies 𝜀(𝑅) for different HNL production modes. Solid curves: our
fits for these efficiencies. In order to interpolate between different values of
masses, we use the mass-dependent efficiency curves shown in Fig. 2 of Ref.
[26].

in these collisions. The usual formula to calculate the number of detected heavy neutral

leptons (𝑁𝑁) is [26]

𝑁𝑁 = 2𝑁𝐵�̄� BR(𝐵 → 𝑁)BR(𝑁 → ℓ𝜋)

∫︁
𝑚𝑁Γ𝑁

𝑝𝑁
exp

(︂
−𝑚𝑁Γ𝑁

𝑝𝑁
𝑅

)︂
𝜀(𝑅) 𝑑𝑅, (2.10)

where 𝑝𝑁 = |𝑝𝑁 | is the momentum of the HNL, Γ𝑁 is its total decay width, and 𝜀(𝑅) is

its reconstruction efficiency, which depends on the distance 𝑅 from the interaction point,

the mass of the HNL, and its production mode. In Fig. 6, 𝜀(𝑅) is shown for three values

of 𝑚𝑁 and the most relevant decay channels of the 𝐵+ meson4.

At Belle, the most favorable mass range in which to look for HNLs is 𝑀𝐾 < 𝑚𝑁 <

𝑀𝐵. For this reason, the total branching ratio for HNL production includes 𝑋 =

𝜋, 𝜂, 𝜌, 𝜔, 𝜂′, 𝜑,𝐷,𝐷* for semileptonic decays

BR(𝐵 → 𝑁) =
∑︁
𝑋

BR(𝐵 → 𝑋ℓ1𝑁), (2.11)

and

BR(𝐵 → 𝑁) = BR(𝐵 → ℓ1𝑁), (2.12)

for purely leptonic decays [26]. For Majorana HNLs,

BR(𝑁 → ℓ2𝜋) = BR(𝑁 → ℓ−2 𝜋
+) + BR(𝑁 → ℓ+2 𝜋

−), (2.13)

where BR(𝑁 → ℓ+2 𝜋
−) = BR(𝑁 → ℓ−2 𝜋

+). Therefore the signal events of the form

ℓ1ℓ2𝜋 are 𝑒+𝑒+𝜋−, 𝑒+𝑒−𝜋+, 𝑒−𝑒+𝜋−, and 𝑒−𝑒−𝜋+. In case of Dirac HNLs, we should only

consider processes where the signal fermion ℓ2, which is produced by the HNL, has the

opposite electric charge with respect to the production fermion ℓ1 that is coming from the
4 We thank Dmitri Liventsev for providing these data.
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decay of the 𝐵 meson. For the calculations of the HNL production and decay products

we followed Ref. [23]5, which is updated relative to the values used in the Belle analysis

and leads to some small differences in our determination of the standard limits for |𝑈 |2

compared to the published version.

2.2.3 CHARM

The CHARM Collaboration searched for HNLs in the mass range 0.5− 1.8 GeV pro-

duced in the decays of 𝐷± and 𝐷0 [29]. In subsequent analyses [30, 31], this range was

expanded up to ∼2 GeV by considering also the production of 𝐷𝑠, which we emulate in

this work.

In the CHARM search, 400 GeV protons were stopped by a copper beam dump,

producing 𝐷 mesons. These could decay into HNLs via mixing, subsequently decaying

and producing one or two separate electromagnetic showers (𝑁 → 𝑒+𝑒−𝜈𝑒), two tracks

(𝑁 → 𝜇+𝜇−𝜈𝜇), or one track and one electromagnetic shower (𝑁 → 𝑒+𝜇−𝜈𝑒 or 𝑁 →

𝜇+𝑒−𝜈𝜇). The decay region was 35 m long and it had a 3× 3 m2 cross-sectional area.

The expected number of events is given by

𝑁 = 𝑁𝐷 BR(𝐷 → 𝑁)BR(𝑁 → ℓ′ℓ𝜈ℓ)𝒜 𝑒−𝑑/𝐿𝑁
(︀
1− 𝑒−𝐷𝐿/𝐿𝑁

)︀
𝜀, (2.14)

where 𝑁𝐷 is the number of 𝐷 mesons produced by protons in the dump, 𝒜 is the accep-

tance factor (the fraction of HNLs that enter the decay region), 𝑑 = 480m is the distance

from the interaction point (IP) to the beginning of the decay region, 𝐷𝐿 =35 m is the

length of the decay region, 𝐿𝑁 is the mean decay length of the HNLs, and ℓ, ℓ′ = 𝑒, 𝜇.

This formula is similar to Eq.(2.10) in the case where the reconstruction efficiency 𝜀 is

constant and the integration limits correspond to the boundaries of the detection region.6

A typical value for the efficiency is 𝜀 ∼ 0.6 for HNLs of mass 𝑚𝑁 ∼ 1GeV [29].
5 We used 𝑀pole = ∞ [27, 28] instead of 5.65 GeV [23] for 𝑓𝐵→𝜋

0 in the calculations of the 𝐵 meson
form factors.

6 In the original analysis made by the CHARM collaboration [29], the distance from the interaction
point to the beginning of the detector was ignored, thus taking 𝑑 = 0 and incorrectly leading to
exclusion of arbitrarily large mixings |𝑈 |2.
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2.3 Methodology

2.3.1 An algorithm to reproduce existing limits on |𝑈 |2

The first step we take to reproduce the observed limits of a given experiment is to

compute the fractional number 𝑓 of signal events, relative to decaying parent particles, on

a grid in the log10 |𝑈 |2 − log10(𝑚𝑁/GeV) plane. Next, we plot contours of 𝑓 , and choose

the curve that best reproduces the published limit. This fraction is generally determined

by the product of three probabilities,

𝑓 =
𝑁𝐸

𝑁𝑃

=
∑︁
𝑃,𝑋,𝑌

𝒫1(𝑃,𝑋)𝒫2(𝑌 )𝒫3(𝑃,𝑋) , (2.15)

where 𝑁𝐸 is the number of observed events and 𝑁𝑃 is the number of parent particles 𝑃

the decays of which could produce HNLs. 𝑁𝑃 might be given by a collaboration or it

might be computable from, for example, the number of protons on target (POT) and the

production fractions [32, 33]. The three probability factors are specified as follows.

𝒫1 = BR(𝑃 → 𝑁𝑋) is the probability of HNL production for a given decay mode of

𝑃 . The HNL is accompanied by particles 𝑋. For instance, for CHARM in the case of

pure mixings with electron neutrinos, 𝑋 = 𝑒+, 𝑒+𝐾0, 𝑒+𝐾*0, and 𝑒+𝜋0, with 𝑃 = 𝐷+.

𝑋 could be used to trigger for event candidates (Belle) or not (DELPHI, CHARM).

𝒫2 = BR(𝑁 → 𝑌 ) is the probability for the HNL to decay into the particles that

produce the signal being searched for. For DELPHI, 𝒫2 = 1 since all HNL decays compete

with the Z bosons’. In the case of Belle, 𝒫2 = BR(𝑁 → 𝑒𝜋) for HNLs that mix exclusively

with 𝜈𝑒 (recall signal events are 𝑒𝑒𝜋 where the second lepton and the pion have opposite

electric charge.) In contrast with DELPHI and Belle, the CHARM detector is far from

the interaction point, so one must account for the fact that not all decay products of the

HNLs travel towards the detector. The acceptance factor 𝒜, which generally depends on

the mass of the HNL and the geometry of the experiment, quantifies this effect [29]. In

our analysis, it is taken as a free parameter to be fit by reproducing the sensitivity of the

experiment.

𝒫3 is the probability of reconstructing the HNL from its decays. Its general form is

𝒫3 =

∫︁ 𝑑+𝐷𝐿

𝑑

𝑒−𝑅/𝐿𝑁

𝐿𝑁

𝜀(𝑅,𝑃,𝑋) 𝑑𝑅, (2.16)
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where 𝜀(𝑅,𝑃,𝑋) is the reconstruction efficiency. 𝜀 depends on the mass of the HNL 𝑚𝑁 ,

its production mode (𝑃,𝑋), and the distance 𝑅 from the interaction point to where it

decays. The decay length 𝐿𝑁 of the HNL depends on its momentum and the production

modes, but it is more sensitive to the type of decay, i.e. two-body or three-body.

In Eq. (2.16), the distance from the interaction point to the beginning of the decay

region inside the detector is called 𝑑. For DELPHI where HNLs are created from the

decays of Z bosons at rest, 𝑑 = 0. For Belle, the background is higher near the interaction

point, so the experiment is insensitive to small-𝑅 events. Therefore, these are rejected

by selection criteria such that 𝜀 → 0 at 𝑅 = 0. As the exact behavior of 𝜀 is uncertain

near 𝑅 = 0, we take 𝑑 to be an undetermined small cutoff to be fit by matching Belle

constraints. For CHARM the value 𝑑 = 480m is specified in their article [29].

To calculate the mean decay length of the HNLs, 𝐿𝑁 = 𝑝𝑁/(𝑚𝑁Γ𝑁), we calculated

the momenta in the rest frame of the parent particles and boosted them to the laboratory

frame. We neglected departures from the axis of the parent mesons. For three-body

decays 𝑃 → 𝑁ℓ𝑥 the maximum value of the momentum of the HNL is

|𝑝 (max)
𝑁 | = 1

2𝑚𝑃

[︂(︂
𝑚2

𝑃 − (𝑚ℓ +𝑚𝑥 +𝑚𝑁)
2

)︂(︂
𝑚2

𝑃 − (𝑚ℓ +𝑚𝑥 −𝑚𝑁)
2

)︂]︂1/2
. (2.17)

We used |𝑝𝑁 | = |𝑝 (max)
𝑁 |/2 before applying Lorentz transformations to the laboratory

reference frame and assumed |𝑝𝑃 | ≈ 67 GeV, for 𝑃 = 𝐵±, 𝐷±, 𝐷0, and 𝐷𝑠 as in [30].

Fig. 7 shows contours of the fraction 𝑓 of signal events for DELPHI. The best-fit value

is log10 𝑓 = −6.05. This value indicates that the experiment was sensitive to one part

in ∼ 106 𝑍 bosons decaying into HNLs. This is the correct order of magnitude because

DELPHI produced ∼ 106 𝑍 bosons and observed one event. The expected background

of events is 0.8. The shape of the exclusion curve can be further tuned by varying the

length of the decay region 𝐷𝐿. We took 𝐷𝐿 = 200 cm as it provides the optimal fit in

comparison with the red curves in Fig. 7.

For Belle, one must consider the dependence on the reconstruction efficiencies 𝜀(𝑅) (see

figure 6). In this case, we have considered the integration limits to go from 𝑑 = 1.75 cm

to 𝑑 + 𝐷𝐿 = 60 cm. The curve that best reproduces the original constraint on |𝑈 |2 vs.

𝑚𝑁 is obtained with log10 𝑓 = −10.1, regardless of the HNL flavor. With this choice,

the total number of events is 𝑁𝐸 = 2𝑁𝐵𝐵 × 10−10.1 = 0.12, where 𝑁𝐵𝐵 = 772 × 106 is

the number of 𝐵�̄� pairs produced at Belle, indicating the limits in Fig. 8 (center) are in
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Figure 7 – Contours of detectable fraction 𝑓 of 𝑍 bosons decaying into HNLs at DEL-
PHI. Black curves illustrate the dependence on 𝑓 , while red curves show the
dependence on 𝐷𝐿, the assumed size of the decay detection length, Eq. (2.9).
Blue curve is the best fit to the published limit (dashed curve).

accordance with the null results in this search for HNLs. For these calculations we used

updated formulas for 𝐵 meson branching ratios and HNL decay widths from Ref. [23].

We also reproduced Belle’s original limits based on superseded branching ratios [34]. The

main difference between the updated and original constraints is seen in the region near

𝑚𝑁 & 2 GeV because of revisions in the branching ratios for 𝐵 → 𝜌𝑁ℓ and 𝐵 → 𝜋𝑁ℓ

production modes.

For CHARM, we integrate from 𝑑 = 480m to 𝑑+𝐷𝐿 = 515m [30]. The excluded region

in the |𝑈 |2−𝑚𝑁 plane is located to the left of the blue curve in Fig. 8 (Right). In order to

interpret 𝑓 as the fraction of events for a null search for HNLs in the CHARM experiment,

we consider the efficiencies to be 60% as reported by the CHARM collaboration for 𝑚𝑁 =1

GeV [29], and the acceptance factor to be 𝒜 ∼= 10−3 (see Fig. 7 of Ref. [31]). Next,

we fix log10 𝑓 = −15.6 to match the original limit, giving the number of events 𝑁𝐸 =

𝑁𝐷 × 𝑓 = 2.24 < 2.3 at 90% C.L.. The number of 𝐷′𝑠 was determined using 𝑁𝐷𝑖
=

𝑁𝑃𝑂𝑇 × 𝜒𝑐𝑐 × 𝑓𝑐→𝐷𝑖
, 𝑁𝑃𝑂𝑇 = 2.4× 1018, 𝜒𝑐𝑐 ≈ 4× 10−3 for a 400 GeV proton beam [35],

𝑓𝑐→𝐷+ = 0.207, 𝑓𝑐→𝐷0 = 0.632, and 𝑓𝑐→𝐷𝑠 = 0.088. The values of the production fractions

are taken from [32, 33].
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Figure 8 – (Left) Dashed curve: DELPHI limits at the 95% confidence level on |𝑈 |2 as
a function of the HNL mass [24]. These limits apply equally to all neutrino
flavors. Blue curve: our result using equation 2.9. (Center) Dashed curve:
Belle limits at 90% C.L. on |𝑈𝑒|2 [26]. Blue curve: our result using the proce-
dure described above. The difference in the region & 2 GeV is due to the use
of updated formulas for HNL production and decay [23], and the treatment
of HNL momenta (see appendix). (Right) Dashed curve: CHARM limits at
90% C.L. on |𝑈𝑒|2 [29]. Blue curve: our result for these limits. A similar result
is obtained in [31].

2.3.2 Adding a SM gauge singlet scalar

Now we add a SM gauge singlet scalar 𝑠 that couples to HNLs with strength 𝑔𝑠 and

also mixes with the Higgs boson through a small angle 𝜃,

𝑔𝑠𝑠�̄�𝑁 +
𝑠𝜃 𝑚𝑓

𝑣
𝑠𝑓𝑓 ∈ −ℒ, (2.18)

where 𝑠𝜃 ≡ sin 𝜃, 𝑣 = 174GeV is the complex Higgs vacuum expectation value (VEV),

and 𝑓 represents SM fermions with mass 𝑚𝑓 . As a consequence, for DELPHI (see Fig. 5),

the decays of the singlet scalar into fermions (𝑠→ 𝑓𝑓) will only affect the signals for the

first two event candidates, i.e., 𝜈ℓℓ̄ and 𝜈𝑞𝑞. However, the total decay width of the HNL

Γ𝑁 will increase and so will the probability for the HNL to decay inside the detector.

Consequently, we replace Eq. (2.9) with the fraction that includes the additional events

from the decays of 𝑠,

𝑓𝑤+𝑠 = 2× BR(𝑍 → 𝑁𝜈)
[︁
BR𝑤 × (1− 𝑒−𝐷𝐿/𝐿𝑁 ) + BR𝑠 × (1− 𝑒−𝐷𝐿/(𝐿𝑁+𝐿𝑠))

]︁
, (2.19)

where

BR𝑤 =
Γ𝑁(weak decays)

Γ𝑁(weak decays) + Γ(𝑁 → 𝑠𝜈)
,

BR𝑠 = 1− BR𝑤 , (2.20)

and 𝐿𝑠, the mean decay length of the SM gauge singlet scalar 𝑠, is calculated following

Refs. [36, 37].
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At Belle, like for the DELPHI search, the 𝑁 -𝑠 interaction introduces competition

between 3-body weak decays and 2-body scalar decays of the HNL. But in contrast to

DELPHI, now the 𝑁 → 𝑠𝜈 decays cannot contribute to signal events, which are pions

and charged leptons in the final state. Although 𝑠 could decay to ℓ+ℓ− or 𝜋𝜋, it can never

produce the combination 𝜋ℓ which is required by this search. Therefore, 𝑁 → 𝑠𝜈 are

invisible decays in the Belle analysis and these decays can only weaken the limit on |𝑈 |2,

independently of the size of the singlet-Higgs mixing angle 𝜃.

At CHARM, in order to account for the singlet scalar decay channel, we modify Eq.

(2.14) similarly to the recasting of DELPHI, making the replacement

𝑒−𝑑/𝐿𝑁
(︀
1− 𝑒−𝐷𝐿/𝐿𝑁

)︀
→ BR𝑤 𝑒−𝑑/𝐿𝑁

(︀
1− 𝑒−𝐷𝐿/𝐿𝑁

)︀
+ BR′

𝑠 𝑒
−𝑑/(𝐿𝑁+𝐿𝑠)

(︀
1− 𝑒−𝐷𝐿/(𝐿𝑁+𝐿𝑠)

)︀
, (2.21)

where we define

BR′
𝑠 ≡ BR𝑠 ×

BR(𝑠→ ℓℓ̄)

BR(𝑁 → ℓ′ℓ𝜈)
, (2.22)

as the singlet 𝑠 not always decays into light lepton pairs. This is similar to the case of

Belle, where BR′
𝑠 = 0, because the singlet scalar 𝑠 cannot decay into 𝜋ℓ.

2.4 Results

2.4.1 DELPHI

With the modifications to 𝑓 previously mentioned, we obtain the upper bounds for

𝑁 − 𝜈 mixing. For DELPHI, the new limits are shown in Fig. 9. The modified limits

on |𝑈 |2 can be understood as the result of the competition between HNL weak (three-

body) and scalar (two-body) decays, through the factors BR𝑤 and BR𝑠 defined above,

and the interplay between the altered decay length of the HNL 𝐿𝑁(weak + 𝑠) and that

of 𝑠. For instance, the bottom right plot of Fig. 9 shows the weakened limits starting

at the kinematic threshold 𝑚𝑁 > 𝑚𝑠 = 8GeV. As the coupling 𝑔𝑠 between the HNL and

the singlet increases, 𝑁 → 𝑠𝜈 decays become more prevalent. These are invisible decays

at small mixing angle 𝜃 = 10−7, decreasing the number of signal events and weakening

the limit on |𝑈 |2. On the other hand, at larger singlet scalar-Higgs mixing 𝜃 ≥ 5× 10−5,

the scalar decays to 𝑓𝑓 with a short enough decay length for the final state particles

to be observed as though they were coming from weak decays. We assume experimental
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Figure 9 – DELPHI: Upper limits on |𝑈 |2 for HNLs that couple to a light singlet scalar
𝑠, which mixes with the Higgs boson, in the HNL mass range from 2𝑚𝜇 up to
𝑚𝑍 at LEP. The blue contour is DELPHI’s limit on |𝑈 |2 at the 95% C.L. in
the case of no singlet, which is independent on the HNL flavor (see figure 8).

sensitivity to these events to be similar to that for weak decays, resulting in an unmodified

limit relative to the published result.

As we move to the left in Fig.9, for smaller values of 𝑚𝑠, the kinematic threshold

discontinuity for 𝑁 → 𝑠𝜈 also moves to the left, until the first column where it is no

longer visible since 𝑚𝑠 < 𝑚𝑁 for the range of 𝑚𝑁 considered. The pattern described for

the right-most column is similar, except that the decay length 𝐿𝑠 is additionally increased

by the small 𝑚𝑠, which suppresses 𝑠 → 𝑓𝑓 decays, leading to more invisible decays and

generally weaker limits.

Exceptionally, there are several regions where the constraint on |𝑈 |2 is strengthened.

Most notably, this can be seen in the panel where 𝑚𝑠 = 350MeV, 𝜃 = 10−2, 𝑚𝑠 <

𝑚𝑁 . 4GeV. It can be understood through the increased signal from 𝑁 → 𝑠𝜈 followed

by 𝑠 → 𝑓𝑓 in comparison to weak decays. This new excluded region eventually merges
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Figure 10 – Belle: Light blue curves show our reconstruction of the Belle limits on weak
decays of heavy neutral leptons. Other colors show the relaxed constraints
for different values of the coupling constant 𝑔𝑠 due to 𝑁 → 𝑠𝜈 decays.

back to the pure weak decay limit as 𝑚𝑁 increases because the weak decay rate scales as

𝑚5
𝑁 , while the two-body rate scales as 𝑚3

𝑁 .

2.4.2 Belle

Fig. 10 shows our results for three choices of 𝑚𝑠 and a range of values for 𝑔𝑠. As

stated, the effect of the invisible decays is only to weaken the bounds. A borderline case

appears when the coupling 𝑔𝑠 = 10−5 (green lines). We can see that at high HNL masses

there is no change relative to the purely weak decay bounds. This is because the weak

decays dominate in the region of large 𝑚𝑁 as a consequence of their decay rate scaling as

𝑚5
𝑁 while the rate for 𝑁 → 𝑠𝜈 goes as 𝑚3

𝑁 . At lower 𝑚𝑁 , provided that 𝑚𝑠 < 𝑚𝑁 (left

column), one can observe a weakening of the limits. On the other hand, for large enough

𝑔𝑠, the limits can disappear entirely when 𝑚𝑠 < 𝑚𝑁 .



2.4. RESULTS 31

Figure 11 – CHARM: Recasted limits on |𝑈𝑒|2 versus HNL mass 𝑚𝑁 on a grid of scalar
mixing versus mass.

2.4.3 CHARM

The CHARM limits are sensitive to lepton flavor. Although the original CHARM

analysis did not include 𝑈𝜏 constraints, Ref. [31] extended the published results to do so

by including neutral current contributions to the decays of the HNL, and we have done

likewise.

Similarly to the case of DELPHI, not only can constraints be weakened by the singlet

decay channel, but also in some regions of parameter space the signal can be enhanced by

singlet decays into 𝑓𝑓 , which leads to new excluded regions when 𝜃 × 𝑔𝑠 is large enough.

For example, in the upper left plot of Fig. 11, the singlet decays within the detector for
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Figure 12 – CHARM: Like Fig. 12 but constraining |𝑈𝜇|2 from the CHARM experiment.

most values of 𝑔𝑠 (even when |𝑈𝑒|2 = 1) allowing exclusion of large mixing angles. At

larger 𝑚𝑠, the singlet starts to decay before reaching the experimental decay region and

the upper boundaries on the excluded regions reappear. The bottom right graph has a

disconnected excluded region at large |𝑈𝑒|2 because the singlet decay length starts to fall

within the detection region. The constraints on |𝑈𝜇|2 shown in Fig. 12 are quite similar.

The ones on |𝑈𝜏 |2 in Fig. 13 are qualitatively distinct, but display similar general features.

We used the results of Ref. [31] to calibrate the sensitivity curves at low values of |𝑈𝜏 |.
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Figure 13 – CHARM: Recasted limits on |𝑈𝜏 |2.

2.4.4 Relation to singlet scalar bounds

The Higgs mixing versus mass parameter space of the singlet 𝑈−𝑚𝑁 , in which we have

displayed our recasted results for DELPHI and CHARM, is independently constrained

by a variety of experiments or astrophysical considerations. In Fig. 14 we show how

the regions considered in our previous results compare with the previously constrained

parameter space [37]. There it can be seen that the largest mixing angle 𝑠𝜃 = 0.01 we

considered is ruled out by beam dump experiments or LHCb, except in the case of heavy

singlets, 𝑚𝑠 & 4GeV. Moreover, for lighter singlets 𝑚𝑠 . 250MeV, the region of small

mixing angles 𝑠𝜃 ∼ 10−7 that we have considered is excluded by the effects of singlet

decays on supernova 1987A or by BBN. We have, nevertheless, included these regions in
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our analysis to give a complete picture of the qualitative trends. It can be seen that our

results overlap with a significant region of singlet parameters that is currently still open.

Just as the interactions of the singlet scalar with HNLs can alter the constraints on the

HNL-active neutrino mixing angle, even if the singlet does not decay into the signal that

a given experiment (e.g., Belle) is looking for, they can also affect the constraints on the

singlet scalar-Higgs boson mixing 𝜃. These changes in the limits come from modifications

of the production and decays of the heavy neutral lepton and the singlet scalar.

The HNL width can be increased by the new decay channel 𝑁 → 𝑠𝜈 or by 𝑁 → 𝑓𝑓𝜈

mediated by virtual 𝑠 exchange, which compete with the weak HNL three-body decays.

The singlet scalar width can be increased by 𝑠 → 𝑁𝜈 or the analogous process with

off-shell 𝑁 , which decays weakly. The on-shell decays 𝑁 → 𝑠𝜈 and 𝑠 → 𝑁𝜈 open when

𝑚𝑁 > 𝑚𝑠 and 𝑚𝑠 > 𝑚𝑁 , respectively. As these two regions of the full parameter space

are mutually exclusive, our previous analysis is not affected by the new decay channels

of the singlet. Off-shell contributions would not modify our results since these mediate

processes like 𝑠 → 𝜈𝑁* → 𝜈ℓ𝑊 which is kinematically forbidden for the light scalars

studied in this work.

Regarding HNL production, one would expect it to be affected by the presence of

the scalar singlet, since it inherits the couplings of the Higgs boson suppressed by the

mixing angle theta. For Belle and CHARM, this is not the case because the probability

of producing an HNL from a meson parent particle 𝑃 is

BR(𝑃 → 𝑁) = Γ(𝑃 → 𝑁)× 𝜏𝑃 , (2.23)

where 𝜏𝑃 is an experimental value and the singlet does not affect Γ(𝑃 → 𝑁).

For DELPHI, HNLs can be produced in Z boson three-body decays 𝑒+𝑒− → 𝑍 →

𝑠𝑍* → 𝑠𝑁𝜈 [38], which are suppressed by 𝑠2𝜃 and kinematical factors in comparison with

𝑍 → 𝑁𝜈 and 𝑍 → 𝑁𝜈. As a result,

BR(𝑍 → 𝑁) = BR(𝑍 → 𝑁𝜈) + BR(𝑍 → 𝑁𝜈)

+ BR(𝑍 → 𝑠𝑁𝜈)

≈ BR(𝑍 → 𝑁𝜈) + BR(𝑍 → 𝑁𝜈).

(2.24)

For this reason, we expect small variations in HNL production.
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SN1987A

Figure 14 – Current bounds on singlet scalar-Higgs boson mixing from LEP [38], CMS
[39], LHCb [40], CHARM [29], E949 [41], BaBar [42–44], KTeV [45], BBN [36],
and SN1987a [37]. Black and blue boxes show the 𝑠𝜃 −𝑚𝑠 parameter space
used to get the results presented in Fig. 9 and Figs. 11-13, respectively. The
results for Belle (see Fig. 10) are independent from the singlet scalar-Higgs
boson mixing 𝜃. Limits adopted from [37].

2.5 Conclusions

In this chapter we have estimated the changes to HNL-active neutrino mixing bounds

due to the new decay channel 𝑁 → 𝑠 𝜈, for HNL masses between 0.5 and ∼ 5GeV. One

motivation for focusing on this mass range is the possibility that one generation of such

HNLs could be the DM of the Universe if the mixing is small enough [22], while the other

generations would be subject to the constraints investigated here.

It is possible that the constraints derived here could be adapted to other qualitatively

similar models. For instance, if HNLs couple to a light vector, 𝑍 ′, which kinetically mixes

with the standard model hypercharge, it would give rise to effects that are similar to the

ones studied here. In this case, 𝑔𝑠 represents the new gauge coupling and 𝜃𝑦𝑓 maps onto
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𝜖𝑒. Also, 𝑦𝑓 is the fermion Yukawa coupling and 𝜖 is the kinetic mixing parameter.

Beyond the specific limits presented in this work, it may be that the general method

described could be useful to recast other experimental constraints, especially in the case

of older experiments, where access to their original data is not available or Monte Carlo

simulations would be difficult to carry out.
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3 Late-time dark matter oscillations

In this chapter we present a novel scenario for addressing the core-cusp problem –

a long-standing small-scale discrepancy between ΛCDM predictions and observations of

dark matter profiles in galaxies.

The content of this chapter is heavily based on Ref. [46], where our main results are

published. These have been presented at the 3rd South American Dark Matter Workshop,

ICTP-SAIFR, São Paulo, Brasil.

3.1 Motivation

3.1.1 The core-cusp problem

There is no doubt ΛCDM is a very successful model for the large scale structure

of the universe. However, discrepancies with observations arise at small scales because

structure formation is highly nonlinear. ΛCDM simulations show that the inner regions

of cold dark matter halos present central cusps [47], in contrast with what is deduced

from observations of rotation curves [48] which indicate constant ‘cored’ density profiles.

This is the core-cusp problem and it represents a small-scale challenge for theoretical

cosmology. See [49] for a review.

3.1.2 Oscillating asymmetric dark matter

The similarity in orders of magnitude of the dark matter (DM) and baryon densities,

i.e. 𝜌DM/𝜌B ≈ 5, and the difference in mechanisms for producing these values, e.g. freeze-

out for WIMPs and baryogenesis, call for an explanation. An initial asymmetry for the

DM, similar to the baryon asymmetry, could link these densities to each other, thus

providing a natural explanation for this ratio. See Ref. [50] for a review on theories of

asymmetric dark matter.

In this scenario, where the DM density is set by its chemical potential, the symmetric

DM component is depleted efficiently through annihilation and the relic DM abundance

is fixed by the initial asymmetric component (asymmetric freeze-out), associated with
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a conserved 𝑈(1)𝑋 symmetry. In the presence of tiny 𝑈(1)𝑋-violating mass terms, DM

particle-antiparticle oscillations take place [51–55]. If oscillations turn on after freeze-

out, the symmetric component, which did not survive the annihilations, is repopulated

by these oscillations, and annihilations are reactivated. These residual annihilations can

modify the DM relic density substantially [56] and they were thought to be avoided at

late times [57].

The study of oscillating asymmetric dark matter (OADM) requires solving the gen-

eralized Boltzmann equations taking into account quantum coherence between particle

and antiparticle [56, 58]. Here, the density matrix structure of the collision term de-

pends strongly on the interaction governing the DM annihilation. Defining ‘flavor’ as the

property of being a particle or antiparticle, the DM interaction is ‘flavor-blind’ or ‘flavor-

sensitive’. This difference will be reflected in the scattering term which does or does not

lead to decoherence by measuring the flavor of the coherent state.

3.2 Boltzmann equations for OADM

Having discussed the motivation for oscillating asymmetric dark matter, let us focus

on understanding the basics of the oscillation formalism required for phenomenological

purposes. This subsection is based on Ref. [58] where the Boltzmann equations for OADM

were derived from first principles.

First, let us consider a Dirac fermion 𝜒 as our dark matter candidate, which enters

the theory through

ℒ𝜒 = �̄�(𝑖/𝜕 −𝑚𝜒)𝜒. (3.1)

Here 𝜒 is a mass eigenstate of the free Hamiltonian with eigenvalue 𝑚𝜒 in its rest frame.

So, adding 𝑈(1)𝜒-invariant interactions to account for 𝜒�̄� annihilations

ℒ𝜒 = �̄�(𝑖/𝜕 −𝑚𝑋)𝜒+ ℒint, (3.2)

does not alter this statement. The addition of a tiny Majorana-type mass term

ℒ𝜒 = �̄�(𝑖/𝜕 −𝑚𝑋)𝜒−
𝛿𝑚

2
(�̄�𝑐𝜒+ �̄�𝜒𝑐) + ℒint, (3.3)

where charge conjugation is defined by 𝜒𝑐 = −𝑖𝛾2𝜒* breaks this symmetry, causing the

mass matrix 𝑀 in the {𝜒, 𝜒𝑐} basis to have eigenvalues 𝑚𝜒 ± 𝛿𝑚. Therefore, 𝜒 and 𝜒𝑐
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are no longer mass eigenstates and oscillations occur between them. For this reason, it

is useful to define a flavor-like doublet Ψ = (𝜒, 𝜒𝑐) which allows us to write Eq.(3.3) in

compact form

ℒ =
1

2
Ψ̄
(︀
𝑖/𝜕 −𝑀

)︀
Ψ+ ℒint, 𝑀 =

⎛⎝ 𝑚𝜒 𝛿𝑚

𝛿𝑚 𝑚𝜒

⎞⎠ . (3.4)

In order to describe the oscillation phenomenon between 𝜒 and 𝜒𝑐, it is customary to

work with the free Hamiltonian of the system ℋ𝑘 =
√
𝑘2 +𝑀2 since mass eigenstates

gain a phase exp(−𝑖𝐸𝑘𝑡) when they propagate and 𝜔osc(𝑘) = Δ𝐸𝑘 is the frequency of

𝜒-𝜒𝑐 oscillations. For instance, in the nonrelativistic limit we have 𝜔osc ≈ 2𝛿𝑚.

Thus far, we have ignored interactions of our dark matter candidate with other parti-

cles in the dark sector or with standard model particles, and this is because ℒint is pretty

much model dependent. For this reason, a first step would be to consider contact inter-

actions resembling the Fermi four-fermion interaction and write

ℒint =
𝐺𝜒

2
√
2

(︀
Ψ̄Γ𝑖𝑂±Ψ

)︀ (︀
𝑓Γ𝑖𝑓

)︀
, (3.5)

where 𝑖 = 𝑆, 𝑉, 𝑃,𝐴, 𝑇 is the index for scalar Γ𝑆 = 1, vector Γ𝑉 = 𝛾𝜇, pseudoscalar

Γ𝑃 = 𝛾5, axial vector Γ𝐴 = 𝛾𝜇𝛾5, and tensor Γ𝑇 = 𝑖
2
[𝛾𝜇, 𝛾𝜈 ] interactions, 𝑓 is a standard

model or dark sector state, and 𝑂+ = 12×2 and 𝑂− =diag{1,−1}. This last notation 𝑂±

is useful because of the following reason. In this formalism, annihilation and scattering

amplitudes are arranged into matrices in ‘flavor’ space

M𝑎 =

⎛⎝ ℳ(𝜒�̄�↔ 𝑓𝑓) 0

0 ℳ(𝜒𝑐�̄�𝑐 ↔ 𝑓𝑓)

⎞⎠ , (3.6)

M𝑠 =

⎛⎝ ℳ(𝜒𝑓 ↔ 𝜒𝑓) 0

0 ℳ(𝜒𝑐𝑓 ↔ 𝜒𝑐𝑓)

⎞⎠ . (3.7)

In a process where the interaction discerns no difference between the two flavor states

𝜒 and 𝜒𝑐, these matrices become proportional to the identity 12×2 and, therefore, they

couple differently than if it did, i.e.

M𝑎 =ℳ(𝜒�̄�↔ 𝑓𝑓)𝑂±, M𝑠 =ℳ(𝜒𝑓 ↔ 𝜒𝑓)𝑂±. (3.8)

For this reason, we can think of classifying interactions according to their being sensitive

to 𝜒→ 𝜒𝑐 or not. So, if ℒint is invariant under 𝜒→ 𝜒𝑐, the interaction is termed flavor-

blind. For example, scalar, pseudoscalar, and axial-vector interactions are of this type.

On the other hand, vector and tensor interactions are flavor-sensitive.
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The Boltzmann equations for the density matrix F𝑘 read [58]

𝜕F𝑘

𝜕𝑡
−𝐻𝑘

𝜕F𝑘

𝜕𝑘
= −𝑖[ℋ𝑘,F𝑘] + C [F𝑘]. (3.9)

In these equations, 𝐻 is the Hubble rate, ℋ𝑘 is the free Hamiltonian

ℋ𝑘 =
√
𝑘2 +𝑀2, (3.10)

where 𝑘 is the momentum of the DM particle and

C [F𝑘] = − 1

2𝜔𝑘

∫︁
𝑑Π𝑘′𝑑Π𝑝𝑑Π𝑝′(2𝜋)

4𝛿4(𝑘 + 𝑘′ − 𝑝− 𝑝′)

× 1

2𝑠+ 1

∑︁
spins

1

2

(︂
{F𝑘,M

†
𝑎F 𝑘′M𝑎}(1± 𝑓𝑝)(1± 𝑓𝑝′)

− {1±F𝑘,M
†
𝑎(1±F 𝑘′)M𝑎}𝑓𝑝𝑓𝑝′

)︂
, (3.11)

with 𝜔𝑘 =
√︀
𝑘2 +𝑚2

𝑋 , corresponding to annihilation 𝜒(𝑘)𝜒(𝑘′) ←→ 𝑓(𝑝)𝑓(𝑝′). Here

+(−) is used for bosons (fermions), 𝑓𝑝(𝑓𝑝) is the 𝑓 (anti)particle distribution function

with momentum 𝑝, and 𝑑Π𝑘 = 𝑑3𝑘/((2𝜋)32𝜔𝑘).

The density matrix F𝑘 and the ‘barred’ density matrix F 𝑘 are

F𝑘 =

⎛⎝ F11 F12

F21 F22

⎞⎠ F 𝑘 =

⎛⎝ F22 F12

F21 F11

⎞⎠ . (3.12)

Regarding the relativistic nature of our dark matter candidate, we consider it to be a

cold relic, i.e. 𝑥 ≡ 𝑚𝜒/𝑇 > 1 when decoupling from the primordial plasma, allowing

us to treat it as a nonrelativistic particle throughout the evolution of the cosmos. This

assumption enables the approximating of ℋ𝑘 to leading order in 𝛿𝑚 and the taking of the

nonrelativistic limit of the free Hamiltonian ℋ0,

ℋ𝑘 =
√
𝑘2 +𝑀2 ≃ 𝜔𝑘1+ 𝛿𝑚

𝑚𝑋

𝜔𝑘

𝜎1 =⇒ ℋ𝑘 −→ ℋ0 =

⎛⎝ 𝑚𝜒 𝛿𝑚

𝛿𝑚 𝑚𝜒

⎞⎠ , (3.13)

where 𝜎1 is the first Pauli matrix.

The master Boltzmann matrix equation for oscillating dark matter then reads

𝑑

𝑑𝑥
𝑌 (𝑥) = − 𝑖

𝐻𝑥
[ℋ0, 𝑌 ]− Γ±

2𝐻𝑥
[𝑂±, [𝑂±, 𝑌 ]]−

𝑠 ⟨𝜎𝑣⟩±
𝐻𝑥

(︂
1

2

{︀
𝑌,𝑂±𝑌 𝑂±

}︀
− 𝑌 2

𝑒𝑞

)︂
(3.14)

where 𝑥 = 𝑚𝜒/𝑇 , 𝑌𝑒𝑞 = 𝑛𝑒𝑞/𝑠, 𝑠 = 2𝜋2

45
𝑔*𝑆(𝑇 )𝑇

3, Γ± is the scattering rate, and 𝑛𝑒𝑞 is

defined by

𝑛𝑒𝑞 ≡ 2

∫︁
𝑑3𝑘

(2𝜋)3
exp(𝜔𝑘/𝑇 ) =

𝑚3
𝜒

𝜋2

𝐾2(𝑥)

𝑥
, (3.15)
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Figure 15 – DM density (black lines) for flavor-blind (bottom) and flavor-sensitive (top)
interactions. Image reproduced from [58].

and 𝐾𝑛(𝑥) is the modified Bessel function of the second kind [59].

In Fig.15, we reproduced the results from Ref. [58] by solving the Boltzmann equations

for 𝑚𝜒=300 GeV, ⟨𝜎𝑣⟩ =7.5 pb, 𝛿𝑚 = 10−7eV, and Γ = 𝜅𝐺𝐹𝑇
5, with 𝜅 = 10−4. The

dashed line is the initial DM asymmetry, which in this example is 𝜂DM = 8.8× 10−11, and

the red line is the observed DM relative density. Note that flavor-blind interactions do

not care about the value of the scattering rate Γ (bottom panel). On the other hand, if

this is turned off for flavor-sensitive interactions, there are no residual annihilations after

freeze-out (upper right panel).

3.3 Vector and scalar models

In this section, we describe the models of oscillating asymmetric dark matter we will

use to solve the core-cusp problem.
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Figure 16 – Self-energy diagrams for the vector model (model 1).

3.3.1 Model 1: Vector mediator

We consider two models of quasi-Dirac fermionic DM 𝜒. In the first model, DM

couples to a lighter vector boson 𝑉 𝜇

ℒ ∋ −1

2
𝑚2

𝑉 𝑉
2
𝜇 − 𝑔′�̄� /𝑉 𝜒. (3.16)

The DM-number violating Majorana mass term is

ℒ𝑚 =
1

2
𝛿𝑚(�̄�𝜒𝑐 +𝐻.𝑐.). (3.17)

Since this interaction is flavor-sensitive, the set of Boltzmann equations read

𝑌 ′ = − 𝑖

𝑥𝐻
[ℋ, 𝑌 ]− 3 ⟨𝜎𝑣⟩𝑠 𝑠

2𝑥𝐻

⎛⎝ 0 𝑌12

𝑌21 0

⎞⎠Tr𝑌 − 3 ⟨𝜎𝑣⟩𝑎 𝑠

𝑥𝐻
(det𝑌 − 𝑌 2

eq)12×2, (3.18)

where 𝐻 ≃ 1.67
√
𝑔*𝑚

2
𝜒/(𝑀𝑝𝑥

2) is the Hubble parameter and the collision term for elastic

scattering of 𝜒𝜒 or �̄��̄� through exchange of the vector boson is derived from the diagrams

in figure 16 which are the analog of figure 4b in Ref. [58],

⟨𝜎𝑣⟩𝑠 =
𝐼𝑠𝑔

′4𝑚
3/2
𝜒 𝑇 1/2

4𝜋𝑚4
𝑉

, (3.19)

where 𝐼𝑠 ≈ 2.26 (see Appendix A). For the annihilation cross section (𝜒�̄� → 𝑉 𝑉 ), we

have

(𝜎𝑣⟩𝑎 =
𝜋𝛼′2

𝑚2
𝜒

[︃
1−

(︂
𝑚𝑉

𝑚𝜒

)︂2
]︃3/2 [︃

1− 1

2

(︂
𝑚𝑉

𝑚𝜒

)︂2
]︃2

, (3.20)

where 𝛼′ = 𝑔′2/4𝜋.

3.3.2 Model 2: Scalar mediator

In this second model, DM 𝜒 couples to a complex scalar Φ = 𝜑+ 𝑖 𝑎,

ℒ ∋ −1

2
𝑚2

𝜑𝜑
2 − 1

2
𝑚2

𝑎𝑎
2 − 𝑔′�̄�(𝜑+ 𝑖𝑎𝛾5)𝜒, (3.21)
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with the same DM-number violating term of Eq.(3.17). From Eq. (3.14), the set of

Boltzmann equations now read

𝑌 ′ = − 𝑖

𝑥𝐻
[ℋ, 𝑌 ]− ⟨𝜎𝑣⟩𝑎 𝑠

𝑥𝐻

⎡⎣⎛⎝ det′ 𝑌 𝑌12Tr𝑌

𝑌21Tr𝑌 det′ 𝑌

⎞⎠− 𝑌 2
eq12×2

⎤⎦ , (3.22)

where det′ 𝑌 = 𝑌11𝑌22 + 𝑌12𝑌21 and scatterings do not play any role, as expected for

flavor-blind interactions. For the annihilation cross section (𝜒�̄�→ 𝜑𝑎), we have

(𝜎𝑣⟩𝑎 =
𝜋𝛼′2

𝑚2
𝜒

[︃
1− 1

4

(︂
𝑚𝜑

𝑚𝜒

)︂2
]︃2

, (3.23)

where we have assumed for simplicity that 𝑚𝑎 ≪ 𝑚𝜑 and neglected the 𝑝-wave suppressed

channels 𝜒�̄�→ 𝜑𝜑 and 𝜒�̄�→ 𝑎𝑎.

3.4 Structure formation

The Navarro-Frenk-White (NFW) profile reads [60],

𝜌𝜒,0(𝑟) =
𝜌𝑠

(𝑟/𝑟𝑠)(1 + 𝑟/𝑟𝑠)2
, (3.24)

where 𝑟 is the distance from the center of the DM halo and 𝜌𝑠 and 𝑟𝑠 are parameters that

vary from halo to halo. Because 𝜌 = 𝑚𝜒 𝑛, we can use this profile as an initial condition

assuming the DM halo has formed at some time 𝑡0 (before oscillations have any effect)

where the density matrix elements correspond to a pure 𝜒 state at each position 𝑟 in the

collapsed system,

𝑛11(𝑟, 𝑡0) = 𝜌𝜒,0(𝑟),

𝑛12(𝑟, 𝑡0) = 0,

𝑛21(𝑟, 𝑡0) = 0,

𝑛22(𝑟, 𝑡0) = 0. (3.25)

The evolution of these elements of the density matrix is through the Boltzmann equations.

In this case, the system is separated from the Hubble expansion, so we can drop the 3𝐻𝑛

term and set 𝑛eq = 0. For this reason, we solve

�̇� = −𝑖 [ℋ0, 𝑛]−
3

2
⟨𝜎𝑣⟩𝑠 (Tr𝑛)

⎛⎝ 0 𝑛12

𝑛21 0

⎞⎠− ⟨𝜎𝑣⟩𝑎 det𝑛 12×2, (3.26)
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for the vector model (model 1) and

�̇� = −𝑖 [ℋ0, 𝑛]− ⟨𝜎𝑣⟩𝑎

⎡⎣⎛⎝ det′ 𝑛 𝑛12Tr𝑛

𝑌21Tr𝑛 det′ 𝑛

⎞⎠− 12×2

⎤⎦ , (3.27)

for the scalar model (model 2). Results are shown in Fig.19.

In both cases, the initial NFW profile can be obtained by finding 𝑟𝑠 and 𝜌𝑠 from the

virial radius 𝑟200, concentration 𝑐200, mass 𝑀200, and velocity 𝑣200 through

𝜌𝑠
𝜌𝑐

=
200

3
𝑐3200𝑔(𝑐200),

𝑟200 = 𝑐200𝑟𝑠,

𝑀200 =
4𝜋

3
200𝑟3200𝜌𝑐,

𝑣2200 =
𝐺𝑀200

𝑟200
, (3.28)

where 𝜌𝑐 is the present critical density, and 𝑔−1
𝑐 = log(1 + 𝑐)− 𝑐/(1 + 𝑐).

For model 1, there is one more consideration to be made. Since ⟨𝜎𝑣⟩𝑎 depends on

the relative velocity 𝑣rel between 𝜒 and �̄�, we need to specify the DM velocity profile.

To do so, we adopted the analytical solution for the radial velocity disperion 𝜎𝑟(𝑟) from

Ref. [61], derived by solving the Jeans equation for a NFW profile. This determines 𝜎𝑟(𝑟)

for given NFW parameters 𝑟𝑠 and 𝜌𝑠.

3.5 Results

3.5.1 Reactivation of oscillations at late times

From Eqs.(3.18) and (3.22), the cosmological evolution of 𝜒, �̄� and total abundances

for model 1 and model 2 can be calculated. Results are shown in Fig.17. The model

parameter values have been chosen in order to allow for oscillations to start before the

epoch of structure formation. This allows annihilations to recouple during this period of

time 𝑡𝑠 ∼ 0.1Gyr. If annihilations begin before, the DM relic density changes more than

is allowed by CMB constraints [62]. Defining 𝛿𝜂 as the fractional change in the initial DM

asymmetry 𝜂𝐷𝑀 , a value of 𝛿𝜂 ≃ 3% is allowed by the CMB constraints. This leads to a

window of allowed values for our models,
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Figure 17 – Cosmological evolution of 𝜒, �̄� and total abundances for model 1 (left) and
model 2 (right). We indicate the approximate time of BBN and CMB with
vertical lines.
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𝑎 𝜂

3/2
𝐷𝑀𝑀

5/2
𝑝

, (3.29)

for model 1 and

1

𝑡𝑠
. 𝛿𝑚 .

342
√
𝑔*

𝛿
1/2
𝜂

⟨𝜎𝑣⟩2𝑎 𝜂2𝐷𝑀𝑀3
𝑝

, (3.30)

for model 2 (see Appendix). Numerically, for the values used in Fig.17, we get

10−31eV . 𝛿𝑚 .

⎧⎨⎩ 5× 10−30eV ( Model 1)

3× 10−30eV ( Model 2)
(3.31)

3.5.2 Structure formation

We solved Eqs.3.26 and 3.27 for two systems. The first one is dwarf galaxy DDO 154

and the second one is galaxy cluster A2537. This choice was made because these systems

are largely dominated by DM. Results are shown in Fig.19. As we can see, variations in

the density profile are larger in denser regions (small 𝑟), while less dense regions remain

practically unaltered by the reactivation of annihilations at late times.

For the vector model (model 1), since annihilations depend on the relative velocity 𝑣rel,

this mechanism acts stronger on density profiles for galaxy cluster A2537 where velocity

dispersion 𝜎𝑣 ∼ 1000 km/s [63]. For the scalar model (model 2), the effect of late-time
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annihilations is stronger for dwarf galaxy DDO 154. This occurs because this dwarf

spheroidal galaxy is denser than galaxy cluster A2537.

In order to compare our results with the fits from SIDM [64] which , adjusted to the

appropriate cross section, gives good fits to the rotation curves of DDO 154, we added

their results (organge curves) to Fig.19. We note that, for model 1, the curves that

approach the closest to SIDM results for DDO 154 favor lighter V’s, while the curves do

the same for A2537 prefer larger values of 𝑚𝑉 . For model 2, where 𝑚𝜑 plays a minor role,

the situation is the opposite. So, only 𝛼′ matters. The SIDM profile can be approximately

matched by taking 𝛼′ = 0.01 in the DDO 154 dwarf spheroidal galaxy, while for the same

choice of parameters, the predicted inner profile of galaxy cluster A2537 lies somewhat

above the SIDM fit.

One may also wonder to what extent a given model can match the observed properties

of different spheroidal dwarf galaxies whose density profiles can be diverse. Although

an exhaustive comparison is beyond the scope of the present work, we have studied a

contrasting example which is DDO 126, whose DM density profile (like that of DDO 154)

was estimated by ref. [65]. The best fits to the circular velocity measurements for the

two galaxies occur at different values of the model parameters, as shown in the left panel

of Fig. 18 for model 1, where we fixed 𝑚𝜒 = 65MeV and 𝛼′ = 0.015, and allowed 𝑚𝑉

to vary1. However, an acceptable fit to both systems can be found at an intermediate

value 𝑚𝑉
∼= 20.6MeV, resulting in 𝜒2/d.o.f. ∼= 0.8 for either system. We have allowed for

systematic uncertainty in the magnitude of the DM density profiles reflecting an estimated

∼ 25% uncertainty in the baryonic content of the galaxies [66]. Since the baryons comprise

∼ 10% of these systems, this translates to a 2.5% uncertainty in the overall DM densities,

that we have marginalized over to slightly improve the fits. For model 2, a mild tension

in explaining the density profiles of both dwarf galaxies is also present (see right panel

of Fig.18). Like for model 1, this is not a serious difficulty since an intermediate value

𝛼′ ∼= 0.0053 results in an acceptable 𝜒2/d.o.f. = 0.72 for both systems.

Both model 1 and 2 face challenges when trying to simultaneously fit the rotation

curves of dwarf galaxies and clusters. One possibility to overcome this problem is to have

both scalar and vector mediators present in the model. This is a challenging task, so
1 Notice we have chosen a lower value of 𝑚𝜒 in this example. This is motivated by the discussion in

the next paragraph.
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Figure 18 – Left: 𝜒2 per degree of freedom versus the vector mediator mass 𝑚𝑉 in Model
1. Fits are made to the circular velocities of dwarf spheroidals DDO 154 and
126 with DM mass 𝑚𝜒 = 65MeV. Right: similar to left panel for Model
2. In either model, acceptable joint fits can be found by taking intermediate
values of 𝑚𝑉 or 𝛼′, respectively.

here we will just give an example where the vector gives a good fit to a cluster, while

leaving the dwarf spheroidal relatively unaffected and, at the same time, a scalar mediator

achieves the opposite. An exhaustive analysis is left for future work.

Taking 𝑚𝜒 =65 MeV, and model 1 parameters 𝛼′ = 0.015, m𝑉 =44 MeV, we fit the

observed stellar line-of-sight velocity dispersion profile 𝜎*
LOS for A2537 extremely well.

On the other hand, choosing 𝛼′ = 0.004 in model 2 gives an excellent fit to to dwarf

spheroidal DDO 154 rotation curve (see Fig.20). In elastic SIDM, a cross section of

𝜎/𝑚 ≃3 cm2/g [64] is needed to agree with dwarf spheroidal galaxies, whereas 0.1 cm2/g

is used to explain clusters [66].

The theoretical analysis is supplemented by a complementary N -body simulations.

Through this approach we can predict the evolution of galactic structures in a more

quantitatively way. The theoretical approach and the N-body simulations should be

viewed as complementary since each has its own limitations (see Appendix C in [46] for

details). Results are shown in Fig.21 where we can see the N-body simulations for both

models and their comparison with Fig.19 are in good agreement. This suggest the N-body

simulations model reasonably well the physics encapsulated in the quantum Boltzmann

equations where the coherence of DM particles plays a decisive role.

To compare our results with existing data, we calculated the circular velocity for

dwarf galaxies and the projected stellar velocity along the line of sight for galaxy clusters,

𝑣circ(𝑟) =
√︀

𝐺𝑀(𝑟)/𝑟, where 𝑀(𝑟) is the mass at radius 𝑟. The left panels of Fig.22 show
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Figure 19 – Left: density profiles for dwarf spheroidal galaxy DDO 154. NFW and mod-
ified profiles from SIDM are from Ref. [64]. Dot-dashed curves are the pre-
dictions of Model 1 (Model 2) for different values of the vector mediator mass
𝑚𝑉 (dark fine-structure constant 𝛼′ = 𝑔′2/4𝜋). Right: corresponding results
for galaxy cluster A2537 where SIDM result is from Ref. [66].

our predictions for the rotation curve of DDO 154. The gray points show the total circular

velocity of the dwarf galaxy as observed by the LITTLE THINGS survey [65], whereas

the white points represent just the DM contribution to 𝑣circ, obtained by subtracting the

gas and star components after carefully modeling their distribution within the galaxy. For

A2537, it is possible to measure the stellar line-of-sight velocity dispersion profiles with

spatially-resolved spectroscopy [63, 67]. As a result, in the right panel of Fig.22 we show

our predictions for 𝜎*
LOS(𝑟) are in good agreement with the existing data.

3.6 Conclusions

The long-standing discrepancies between ΛCDM gravitational N-body simulations of

structure formation and observations of cored density profiles continue to motivate explo-

ration of alternative DM models and mechanisms. In this work we have revived one of

the earliest of such proposals [68] by showing that dark matter annihilations in galactic
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Figure 20 – Illustration of how combining vector and scalar mediators could give a good
simultaneous fit for both dwarf spheroidal galaxies (left) and galaxy clusters
(right). Left: predicted circular velocities due to the dark matter component
alone from the same two models and from SIDM [64]. Data taken from
Ref. [65]. In each case, one mediator dominates the coring effect of the central
profile in one system while having little effect in the other system. Right:
stellar velocity dispersion along the line-of-sight for galaxy cluster A2537 with
predictions based on the dark matter density profile from two of our models,
from SIDM [66]. Data taken from Ref. [63].

structures, like dwarf spheroidal galaxies and galaxy clusters, can be responsible for era-

sure of the cusps, using distinctive properties of asymmetric dark matter. The key idea is

that very strong annihilations would freeze out early in cosmic history, thus solving the

problem of removing the ‘symmetric’ ADM relic density, and are reactivated at late times

(by oscillations of DM into its antiparticle) relevant for structure formation.

To obtain a large-enough annihilation cross section while respecting perturbativity

of couplings, the DM and the mediator of the strong hidden force are to be light, typ-

ically below 100 MeV. We have illustrated the mechanism in two representative models,

with vector or scalar mediators, respectively. We used two complementary approaches

to model the structure formation dynamics. A fully consistent simulation is challenging

because it must incorporate the quantum coherence of the oscillating dark matter while

tracking the spatially-dependent annihilation rates within a DM halo. In our case, the N-

body simulations, which treat the coherence in an approximate way, give relatively close

results to a quantum Boltzmann equation approach. We have tested the scenario on two

representative dwarf spheroidal galaxies, as well as a galactic cluster. Both methods lead

to significant coring of the density profiles, qualitatively similar to the effects of elastic

SIDM scattering that have been widely used to address the cusp-core problem.
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Figure 21 – Like Fig. 19, but now including the N-body simulation results. The latter are
shown as solid lines surrounded by the 1𝜎 uncertainty band.

Like the elastic SIDM paradigm, the new mechanism we propose in this work does

not, in its simplest forms, address the diversity of halo profiles on all scales. In elastic

SIDM, this is accomplished by assuming velocity-dependent scattering with a cross section

that goes down at larger DM speeds. Within our mechanism, scalar mediators generically

have a relatively stronger coring effect on small halos than larger (less dense) ones. Vector

mediators have the opposite behavior. We presented evidence that the combination of

both mediators could provide a good universal fit, leaving a detailed investigation for

future study.
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Figure 22 – Comparison between our model predictions and observational data. Left:
circular velocity as a function of distance from the galactic center of the
dwarf galaxy DDO 154. Data taken from Ref. [65]. In particular, the grey
dots show the total effect of dark matter, gas, and stars on the rotation curve,
whereas the white dots show just the dark matter contribution obtained after
a careful modelling of stars and gas components (see Ref. [65] for details).
Right: projected stellar velocity dispersion along the line-of-sight 𝜎*

LOS(𝑟) as
a function of radial distance 𝑟 for galaxy cluster A2537. Data taken from
ref. [63]. In all panels, N-body simulation results are shown as solid lines
surrounded by the 1𝜎 uncertainty band. The black dotted curve corresponds
to the original NFW profile. The other dot-dashed curves are the results of
Fig. 19. The orange solid line is the SIDM prediction from Ref. [64] for dwarf
galaxy DDO 154 and from Ref. [66] for galaxy cluster A2537.
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4 Constraints on new energy scales from dark

matter decays

In this chapter we study how new physics scales, like the vacuum expectation value

(VEV) responsible for 𝐵−𝐿 spontaneous symmetry breaking (SSB), could be constrained

when a new light scalar that decays into dark radiation in the form of neutrinos appears

in the spectrum of the theory.

The content of this chapter is heavily based on our recent preprint [69], where our

main results are published.

4.1 Motivation

A large amount of astronomical and cosmological observations is compatible with a

cold relic whose self-interaction could solve, for example, small-scale problems [46,49,66,

70], while its interactions with SM particles could explain anomalies in terrestrial exper-

iments [22, 71–74], as well as discrepancies between low-redshift and cosmic microwave

background (CMB) determinations of the Hubble parameter 𝐻0 and the matter pertur-

bation amplitude 𝜎8 [75–78].

The resolution of these 𝐻0 and 𝜎8 tensions [79–82] could also indicate the presence of

a new neutrino species [83], primordial black holes [84], decaying dark matter [?, 85, 86],

among others. In particular, a natural decaying DM candidate is the Majoron, which

appears in models where the 𝐵 − 𝐿 symmetry is broken by gravitational effects [87]

or is spontaneously broken by the vacuum expectation value of a new complex singlet

scalar [88]. If this CP-odd scalar decays predominantly into light neutrinos, it could

largely modify the cosmological observables, so even if its relic density is negligible today,

its history can rule-out a huge portion of the parameter space.
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4.2 A gauged 𝐵 − 𝐿 model with unstable dark matter

The model we use to study decaying dark matter is based on the gauge group 𝑆𝑈(3)C⊗

𝑆𝑈(2)L⊗𝑈(1)Y′⊗𝑈(1)B−L, where C, L, Y′, and 𝐵–𝐿 stand for color, left chirality, a new

charge different from SM hypercharge, and baryon minus lepton number, respectively.

If we take 𝐵–𝐿 as a gauge symmetry, many models arise from the set of solutions to

anomaly equations [89]. In Ref. [90], a model with three right-handed neutrinos with

𝐵–𝐿 = 5,−4,−4 charges was proposed. Its representation content is that of the SM

slightly extended by these new particles and six new scalars, i.e. two doublets Φ1,2 and

four singlets 𝜑1,2,3,𝑋 , such that

𝑆𝑈(2)L ⊗ 𝑈(1)Y′ ⊗ 𝑈(1)B−L
⟨𝜑⟩−→ 𝑆𝑈(2)L ⊗ 𝑈(1)Y

⟨𝐻,Φ⟩−−−→ 𝑈em. (4.1)

All of these new scalars have unique 𝐵–𝐿 quantum numbers [91] (see table 1). In this

Table 1 – Third component of the isospin, isospin, electric charge, 𝑌 ′, and 𝐵–𝐿 quantum
number assignments for the fermions (left) and scalars (right)

Fermion 𝐼3 𝐼 Q 𝑌 ′ 𝐵–𝐿
𝜈𝑒𝐿 1/2 1/2 0 0 -1
𝑒𝐿 -1/2 1/2 -1 0 -1
𝑢𝐿 1/2 1/2 2/3 0 1/3
𝑑𝐿 -1/2 1/2 -1/3 0 1/3
𝑒𝑅 0 0 -1 -1 -1
𝑢𝑅 0 0 2/3 1 1/3
𝑑𝑅 0 0 -1/3 -1 1/3
𝑛1𝑅 0 0 0 4 -4
𝑛2𝑅 0 0 0 4 -4
𝑛3𝑅 0 0 0 -5 5

Scalar 𝐼3 𝐼 Q 𝑌 ′ 𝐵–𝐿
𝐻0 -1/2 1/2 0 1 0
𝐻+ 1/2 1/2 1 1 0
Φ0

1 -1/2 1/2 0 -4 3
Φ−

1 1/2 1/2 -1 -4 3
Φ0

2 -1/2 1/2 0 5 -6
Φ−

2 1/2 1/2 -1 5 -6
𝜑1 0 0 0 -8 8
𝜑2 0 0 0 10 -10
𝜑3 0 0 0 1 -1
𝜑𝑋 0 0 0 3 -3

model, the most general renormalizable and gauge-invariant scalar potential reads

𝑉𝐵−𝐿 = −𝜇2
𝐻𝐻

†𝐻 + 𝜆𝐻 |𝐻†𝐻|2

−𝜇2
11Φ

†
1Φ1 + 𝜆11|Φ†

1Φ1|2 − 𝜇2
22Φ

†
2Φ2 + 𝜆22|Φ†

2Φ2|2 − 𝜇2
𝑠𝛼|𝜑𝛼|2 + 𝜆𝑠𝛼|𝜑*

𝛼𝜑𝛼|2

+𝜆12|Φ1|2|Φ2|2 + Λ𝐻𝛾|𝐻|2|Φ𝛾|2 + Λ𝐻𝑠𝛼|𝐻|2|𝜑𝛼|2 + Λ
′

𝛾𝛼|Φ𝛾|2|𝜑𝛼|2 +Δ𝛼𝛽(𝜑
*
𝛼𝜑𝛼)(𝜑

*
𝛽𝜑𝛽)

+𝜆
′

12(Φ
†
1Φ2)(Φ

†
2Φ1) + Λ

′

𝐻𝛾(𝐻
†Φ𝛾)(Φ

†
𝛾𝐻)

+[𝛽123𝜑1𝜑2(𝜑
*
3)

2 + Φ†
1Φ2(𝛽13𝜑1𝜑

*
3 + 𝛽23𝜑

*
2𝜑3)− 𝑖𝜅𝐻1𝑋Φ

𝑇
1 𝜏2𝐻𝜑𝑋

−𝑖𝜅𝐻2𝑋(Φ
𝑇
2 𝜏2𝐻)(𝜑*

𝑋)
2 + 𝛽𝑋(𝜑

*
𝑋𝜑1)(𝜑2𝜑3) + 𝛽3𝑋(𝜑

*
𝑋𝜑

3
3) +𝐻.𝑐.],
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where 𝛾 = 1, 2, 𝛼, 𝛽 = 1, 2, 3, 𝑋, and 𝛼 > 𝛽 in the Δ𝛼𝛽 terms. The quadratic potential

is 𝑉2 = 1
2
𝜙𝜏𝑀𝜙, where 𝑀 = 𝜕2𝑉𝐵−𝐿/𝜕𝜙

2. Interested in the CP-odd sector, we take

𝜙 = {Im𝜙} with 𝜙0 = 1√
2
(𝑣𝜙 + Re𝜙 + Im𝜙) and 𝜙 = 𝐻,Φ1,Φ2, 𝜑1, 𝜑2, 𝜑3, 𝜑𝑋 .

In order to find the squared masses from 𝑀 , we have found the roots of the eigenvalue

equation det(M − 𝜆 I7×7) = 0. This is a hard task because of the large number of free

parameters, which forbid useful analytical expressions. For this reason, we departed from

the ‘general model’ approach (where all couplings are independent) and proceeded to

simplify the model as it was done in [91], assuming similar terms in 𝑉𝐵−𝐿 may have

similar couplings. Namely,

𝜆11 = 𝜆12 = 𝜆𝑠1 = 𝜆𝑠3 = 𝜆𝑠𝑋 ,

Λ𝐻1 = Λ𝐻1 = Λ𝐻2 = Λ𝐻𝑠1 = Λ𝐻𝑠3 = Λ𝐻𝑠𝑋 = Λ′
𝐻1 = Λ′

𝐻2,

Λ′
11 = Λ′

13 = Λ′
1𝑋 = Λ′

21 = Λ′
23 = Λ′

2𝑋 = 𝜆12 = 𝜆′
12 = Δ13 = Δ1𝑋 = Δ3𝑋 ,

Λ′
12 = Λ′

22 = Δ12 = Δ23 = Δ2𝑋 , (4.2)

and leave all other parameters free except for the VEVs of the new scalars, which we

make 𝑣D for all Φ′𝑠 and 𝑣M for all 𝜑′𝑠. Here 𝑣D ≪ 𝑣SM ≈ 246 GeV ≪ 𝑣M. This choice

was made in Ref. [91] in order to obtain significant phenomenological results and here

we follow their work closely. In that article, the masses in the CP-odd scalar sector were

found in the limit where 𝑣D/𝑣M → 0,

𝑚2
𝐼3
= 𝒪(𝑣D/𝑣M), (4.3)

𝑚2
𝐼4
=

1

2

[︀
Λ𝐻𝑠2𝑣

2
SM + (Λ′

12 + 𝜆′
22 − 2Λ𝐻𝑠2)𝑣

2
D + (Δ12 +Δ23 +Δ2𝑋)𝑣

2
M − 2𝜇2

𝑠2

]︀
, (4.4)

𝑚2
𝐼5,6

=
1

4
𝑣M

[︂
(1 +

√
2)𝑣SM − 2𝛽13𝑣M ∓

√︁
4𝛽2

13𝑣
2
M + (3− 2

√
2)𝑣2SM

]︂
, (4.5)

𝑚2
𝐼7
= −5𝛽3𝑋𝑣

2
M, (4.6)

where 𝐼𝑖 (𝑖 = 1 − 7) are linearly-independent eigenvectors of the mass matrix 𝑀 . Note

that even if 𝑚2
𝐼3

is not explicitly shown in Eq.(4.3), apart from the two Goldstone bosons,

the remaining particles are much heavier than 𝐼3, for their masses are proportional to the

largest VEV 𝑣M
1. In this work we calculate 𝑚𝐼3 and show its correct relation with the

new physics scales 𝑣D and 𝑣M.
1 unless these are fine-tuned not to be so
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A method to obtain approximate expressions for eigenvalues and eigenvectors is known

as Rayleigh-Schrödinger perturbation theory [92–94], where the mass matrix is expanded

in terms of a small parameter. In our case, 𝜁 ≡ 𝑣D/𝑣M ≪1 allows us to obtain, for

instance, the zeroth-order eigenvector

𝐼
(0)
3 =

1√
10

Im𝜑3 +
3√
10

Im𝜑𝑋
. (4.7)

For the mass of 𝐼3, we have found a better approximation using a different method (see

Appendix C.3),

𝑚2
𝐼3
≃ 37 𝑣SM 𝑣2M𝑣

2
D 𝛽13 𝛽3𝑋

5
√
2(1 +

√
2)𝑣3M𝛽13𝛽3𝑋 − 𝑣SM (11𝑣2D𝛽13 + 10𝑣2M𝛽3𝑋)

, (4.8)

where 𝛽13 < 0 and 𝛽3𝑋 < 0 because of the positivity of other two masses squared.

Numerically, as 𝑣SM ≈ 246 GeV and 𝑣SM ≪ 𝑣M, for 𝛽13 ∼ 𝒪(1) then

𝑚𝐼3 ≈ 0.73

√︂
𝑣D

1 MeV

√︂
𝑣D
𝑣M

GeV. (4.9)

4.3 Observational limits

𝐼3 mainly decays into active neutrinos [91]. When including this into the dynamics of

the different components in the universe, we can write the following equations

�̇�𝐼3 + 3𝐻𝜌𝐼3 = −Γ𝜌𝐼3 , (4.10)

�̇�𝜈 + 4𝐻𝜌𝜈 = Γ𝜌𝐼3 , (4.11)

�̇�𝑚 + 3𝐻𝜌𝑚 = 0, (4.12)

where 𝜌𝐼3 is the density of the unstable particle 𝐼3, which produces an increase on the

neutrino density 𝜌𝜈 . The stable cold dark matter is denoted by 𝜌𝑚 and Γ ≈ Γ𝐼3→𝜈𝜈 is the

total decay rate of 𝐼3, which is given by [95]

Γ𝐼3→𝜈𝜈 ≈
𝑚𝐼3

16𝜋

∑︀
𝑖 𝑚

2
𝜈𝑖

𝑣2M
. (4.13)

Considering I3 does not decay before freeze-out, at temperature T𝐷 & 𝑚𝑡 ≈ 173 GeV, its

abundance can be written as [8, 96]

Ω𝐼3,0 ℎ
2 =

𝑚𝐼3

1.25 keV
exp (−𝑡0/𝜏) , (4.14)



4.3. OBSERVATIONAL LIMITS 56

1 1000 1e+06 1e+09 1e+12
t (s)

0

2

4

6

8

10

Ω

I
3

neutrinos from decay
radiation (photons+neutrinos)
CDM
Λ

Figure 23 – Relative densities for the case 𝑣D = 1 MeV and 𝑣M = 1 TeV (see [91]).

where 𝜏𝐼3 = 1/Γ is the lifetime of 𝐼3 and 𝑡0 is the age of the Universe.

Both the lifetime and the abundance of 𝐼3 depend on 𝑣D and 𝑣M, and the sum of

neutrino squared-masses is a free parameter. Now, let’s analyze the example from [91],

i.e. 𝑣D = 1 MeV and 𝑣M = 1 TeV. Here, these values can give valid neutrino masses by

means of the type-I seesaw mechanism and also the correct relic abundance for another

DM candidate, which is stable, when a Z2 symmetry is imposed on the 𝜑2 singlet scalar.

Using these values, we get

𝜏𝐼3 ≈ 0.1 year and Ω𝐼3,0 ℎ
2 ≈ 103 exp (−𝑡0/(0.1 yr)) . (4.15)

In this case, 𝐼3 represents a negligible fraction of the current dark matter in the universe.

This is ok if there is another DM candidate that can account for the observed cold dark

matter (CDM) relic density Ω𝑐𝑑𝑚,0. Furthermore, we can calculate the amount of pro-

duced neutrinos from the decays of 𝐼3 and check whether this value is in conflict with

observations. We do this calculation by numerically integrating equations (4.10) to (4.12)

with initial conditions for 𝜌𝐼3,𝑖 deduced from Eq. (4.14) and 𝜌𝜈,𝑖 = 0 for the neutrinos

coming from the decays of 𝐼3.

In Fig. 23 we see the fractional abundances in comparison with ΛCDM. Due to the

large abundance of 𝐼3 at early times, there is a period of cold dark matter (CDM) dom-

inance driven by 𝐼3 around 𝑡 ∼ 1000 s. When decays begin, the energetic content is

populated by relativistic neutrinos, which would be the main ingredient in the Universe
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until the cold dark matter starts to preponderate again. Such scenario would affect

dramatically the cosmological observables and would hardly be acceptable by the latest

perturbation data. Consequently, since some choices for the model parameters can affect

the cosmology, we present in the following some weak limits on such parameters.

If 𝐼3 is long-loved (𝜏𝐼3 ≫ 𝑡0), it should not close the universe, i.e. Ω𝐼3 . 1. From Eqs.

(4.14) and (4.9),

Ω𝐼3 ≈
𝑚𝐼3

1.25 keV
ℎ−2,

≈ 9× 10−3

ℎ2

(︁ 𝑣D
keV

)︁(︂
1000 TeV

𝑣M

)︂1/2

,

≈ 9× 10−3

ℎ2

(︂
Gyr
𝜏𝐼3

)︂(︁ 𝑣M
1000 TeV

)︁2

, (4.16)

where we assumed
∑︀

𝑚2
𝜈 = 5 × 10−3 eV2. As a result, we get an upper bound for the

energy scale 𝑣M of the 𝐵 − 𝐿 SSB,

𝑣M . 6.9ℎ

(︂
𝜏𝐼3
Gyr

)︂1/2

× 103 TeV. (4.17)

Numerically, for instance, if 𝜏𝐼3 = 100 Gyr, using ℎ = 0.674 we get

𝑣M . 46.6× 103 TeV. (4.18)

For lower values of the lifetime of 𝐼3, 𝜏𝐼3 , we can make the following estimation. If at

𝑡 = 𝜏𝐼3 every 𝐼3 particle converts immediately to neutrinos, then the energy density would

decrease with an extra scaling factor of 𝑎, in comparison with the CDM. Assuming a

matter dominated Universe, such event happens when

𝑎 ≈
(︂
3𝐻0𝜏𝐼3

2

)︂2/3

.

Then,

Ω𝜈ℎ
2 ≈ (𝐻0𝜏𝐼3)

2/3 𝑚𝐼3

1.25 keV
≈ (𝐻0𝜏𝐼3)

2/3 10−7

(︂
1 Gyr
𝜏𝐼3

)︂(︁ 𝑣M
1 TeV

)︁2

.

Replacing the value of the Hubble rate, 𝐻0 ≈ 0.1ℎ Gyr−1, we get

Ω𝜈ℎ
2 ≈ (0.1ℎ)2/310−7

(︂
1 Gyr
𝜏𝐼3

)︂1/3 (︁ 𝑣M
1 TeV

)︁2

.

Because Ω𝜈 . 1, for 𝜏𝐼3 ≈ 0.1 yr, we get 𝑣M < 76 TeV. These numbers help us to restrict

the space of parameters. However, we would expect much stronger restrictions when

analyzing other cosmological observables. For instance, we can calculate the scale factor
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k

Figure 24 – Scale factor at matter-radiation equality in the model. For reference, 𝑎𝑒𝑞 ∼
3× 10−4 is the ΛCDM prediction.

when the radiation and matter densities are equal to each other. A strong production of

radiation (matter) would increase (decrease) the value of 𝑎𝑒𝑞., thus affecting the growth

of structures or CMB asymmetries. One way to estimate the limit on the amount of dark

radiation produced by the decays of 𝐼3 particles would be to translate the limits on the

number of neutrino families, given by [97], i.e. 𝑁𝑒𝑓𝑓 = 2.99± 0.17, to a 3− 𝜎 interval in

which the time of equality between radiation and non-relativistic species happens, arriving

at

𝑎𝑒𝑞. = (3.0± 0.2)× 10−4.

In Fig. 24 the scale factor of such equality is shown. The safe choice would be to stay

on the left of both blue and green lines. Note that there is a fine-tuned region where the

blue and green lines are almost indistinguishable and would produce the ‘correct’ scale

factor 𝑎𝑒𝑞..

A fraction of the CDM of the universe could be allowed to decay into dark radiation.

If initially (before decays) this fraction is 𝑓dcdm, strong limits on its decay rate Γdcdm has

been put by a global analysis of both CMB and low redshift datasets [62, 98]. Here we
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Figure 25 – Gravitational constraints on decaying DM fraction as a function of its total
decay width. Image taken from [62].

show that using these limits, it is possible to put constraints on the new energy scales of

the model. In Ref. [62], it was shown that if Γdcdm < 𝐻0 ∼ 0.07 Gyr−1, then 𝑓dcdm Γdcdm <

𝒪(10−3)GeV−1 (see Fig.25). On the contrary, if Γdcdm > 𝐻0, then 𝑓dcdm . 0.04. In this

chapter, we use the most conservative of these bounds to search in the parameter space 𝑣M
vs. 𝑣D the allowed regions for fixed values of 𝑓dcdm. Since the sum of neutrino squared-

masses
∑︀

𝑚2
𝜈 is a free parameter, we proceed to analyze their limits. In the normal

hierarchy, the lightest(heaviest) neutrino is 𝜈1(𝜈2) and the present limits on its mass are

0 ≤ 𝑚𝜈1 . 30 meV (Normal hierarchy),

49.9 meV . 𝑚𝜈2 . 52.3 meV (Inverted hierarchy). (4.19)

These masses can affect the sum of squared-masses according to the following expression
3∑︁

𝑖=1

𝑚2
𝜈𝑖
=

{︂
3𝑚2

𝜈1
+Δ𝑚2

Sun +Δ𝑚2
atm (NH),

3𝑚2
𝜈2
−Δ𝑚2

Sun +Δ𝑚2
atm (IH).

(4.20)

Therefore, upper and lower bounds for
∑︀

𝑚2
𝜈𝑖

are approximately (see Fig.(27))

2500 meV2 .
∑︀

𝑚2
𝜈𝑖

. 5200 meV2 (Normal hierarchy),

4900 meV2 .
∑︀

𝑚2
𝜈𝑖

. 5600 meV2 (Inverted hierarchy). (4.21)

We calculated the values of
∑︀

𝑚2
𝜈𝑖

using Eq.(4.20), the central values of Δ𝑚2
Sun and Δ𝑚2

atm

from [99], and
∑︀

𝑚𝜈 <120 meV [100].

For reference, it is convenient to rewrite Eq.(4.9) and Eq.(4.13) as

𝑚𝐼3

eV
≈ 23.1

(︁ 𝑣D
keV

)︁(︂
1000 TeV

𝑣M

)︂1/2

, (4.22)
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𝜏

Gyr
≈ 9.1

(︂
5× 10−3 eV2∑︀

𝑚2
𝜈

)︂(︂
keV
𝑣D

)︂(︁ 𝑣M
1000 TeV

)︁5/2

. (4.23)
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Figure 26 – Upper and lower bounds on 𝑚𝜈1 and 𝑚𝜈2 as functions of
∑︀

𝜈 for the normal
and inverted hierarchy, respectively.
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Figure 27 – Constraints on the sum of neutrino squared masses for the normal and in-
verted hierarchies.

4.4 Results

If we assume an initial dark matter relative density Ωini
dm with an initial stable compo-

nent Ωsdm = (1− 𝑓dcdm)Ω
ini
sdm, then

Ωdm = Ωsdm + Ωdcdm

=
[︀
(1− 𝑓dcdm) + 𝑓dcdm 𝑒−Γdcdm𝑡

]︀
Ωini

dm. (4.24)

In this case, the present value of the DM relative density reads

Ω𝑑𝑚 =
𝑚𝐼3

1.25 keV
ℎ−2

(︂
1− 𝑓dcdm
𝑓dcdm

+ 𝑒−Γ𝐼3
𝑡

)︂
. (4.25)
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Our results are presented in Figs. 28 and 29 where white regions indicate the values for

Γ𝐼3 compatible with the bounds shown in Fig.25. Also, blue regions are excluded because

the decay rate Γ𝐼3 is too large for a given 𝑓dcdm, and green regions are excluded because

Γdcdm > 𝐻0 and 0.04 ≤ 𝑓dcdm. Moreover, black curves indicate different results for the DM

relative density and colored dotted curves represent the different values for the lifetime

of 𝐼3 (in Gyr). For instance, below the blue dotted curve (13.8 Gyr), 𝜏𝐼3 < 𝑡0 (the age of

the universe).

4.5 Conclusions

A model containing a DM candidate should predict its right abundance today. How-

ever, this is not enough for successful model building. The model analysed here presents

some regions on the parameter space that produce the right amount of dark matter, but

it also presents some discrepancies with the standard cosmological model due to a very

high production of dark radiation in the form of neutrinos, which, for instance, would

distort the CMB anisotropies.

The dark matter of the universe could be multi-component. The lifetime of its decaying

component is strongly constrained when the produced dark radiation is in the form of

neutrinos, gravitational waves or other new relativistic degrees of freedom. In the model

studied in this chapter, the unstable dark matter candidate 𝐼3 decays mainly into light

neutrinos, allowing us to use the sum of their squared-masses and the fraction 𝑓dcdm of

unstable DM before decays begin (Ωini
dcdm = 𝑓dcdmΩini

dm) as free parameters to constraint

the new energy scales 𝑣D and 𝑣M. The latter is the vacuum expectation value responsible

for 𝐵 − 𝐿 spontaneous symmetry breaking and the former is the VEV responsible for

dynamically generating Dirac neutrino masses.

Our results show that, even if taking the most conservative limits on Γdcdm, a large

area in the parameter space is ruled-out when the decaying dark matter candidate 𝐼3

represents a significant amount of the initial CDM (> 4%) and its total decay rate is

lower than the present Hubble parameter, i.e. Γ(𝐼3 → 𝜈𝜈) < 𝐻0, or when the decay rate

of 𝐼3 is larger than the present value of the Hubble rate and 𝑓dcdm > 0.04. The strongest

bounds come from the present value of the total dark matter relative density. These are

dominant when the initial fraction of decaying dark matter component is of a few percent.
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Figure 28 – Normal hierarchy: dark matter relative density (solid black) and 𝐼3 lifetime in Gyr (dotted)
curves. Blue regions are ruled-out because 𝐼3 represents too-large of a fraction of the cold
dark matter and its mean lifetime is too short, even if it is larger than the age of the
Universe. Green regions are excluded as Γ(𝐼3 → 𝜈𝜈) > 𝐻0, and 𝑓dcdm used in these plots
are larger than 0.04.
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Figure 29 – Like Fig.28 for neutrino inverted hierarchy.
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5 Conclusions

Despite the title of this thesis, in this work we have studied more than one dark matter

candidate. In fact, we have studied models of asymmetric and decaying dark matter which

could solve some of the small-scale challenges for theoretical cosmology. In particular, we

solve the core-cusp problem by means of late-time reactivation of DM annihilations at the

center of DM-dominated systems such as dwarf-spheroidal galaxies and galaxy clusters.

We have worked two models of fermionic asymmetric dark matter with small DM-number

Majorana mass terms. These allow for DM particle-antiparticle oscillations and we have

derived upper bounds for them by imposing that the late-time depletion of DM density

be allowed by CMB constraints.

When the DM is a heavy neutral lepton that couples to a light singlet scalar which

mixes with the Higgs boson, experimental constraints that only consider HNL decays via

weak interactions, must be reanalized. For this reason, we have performed a reinterpre-

tation of three of the current limits on HNL mixing angles with active neutrinos versus

HNL mass. We have found that for DELPHI and CHARM, the parameter space can

open, close or remain the same, depending on the mass of the singlet scalar, its mixing

angle with the Higgs boson, and the strength of its coupling to the HNLs. On the other

hand, for Belle, the parameter space always opens because in this experiment the signal

events include pions, which cannot be obtained from the decays of the singlet scalar. We

have presented a new method to recast constraints from (older) experiments without the

need to resort to computationally expensive Monte Carlo simulations.

Going beyond simple extensions of the SM, we study multi-component DM in a gauged

𝐵 − 𝐿 model. In this theory, there is a stable component and an unstable one. Since

the lifetime of a decaying DM component is strongly cosntrained when it produces dark

radiation such as neutrinos or gravitational waves, we have used the most conservative

limits on its decay rate as a function of the fraction of CDM it represented before decays

to put constraints on the energy scales of the model. As a result, some results in previous

works found in the literature are strongly disfavored, even if the present-day relative

density of the unstable component is negligible.
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APPENDIX A – Self-interacting term for

the vector model

The content of this chapter is heavily based on Ref. [46], where our main results are

published.

In this appendix we derive the collision term for elastic scattering of 𝜒𝜒 or 𝜒�̄� through

exchange of the vector boson 𝑉 𝜇, needed for the quantum Boltzmann equations.

k − k′ k′ − k

p′

p

k k′ k

−
k − k′ p′ − k

p

k k′ p′ k

Figure 30 – Self-energy diagrams for the vector model (model 1).

We can read off the imaginary part of the self-energies Σ>,<, in analogy to their Eq.

(A26) of ref. [58],

Σ>,<(𝑘) = 𝑖
𝑔′4

4

∫︁
𝑑𝑘′𝑑𝑝′𝑑𝑝 (2𝜋)4𝛿(4)(𝑘 + 𝑝− 𝑘′ − 𝑝′)

·

[︃
1

((𝑘 − 𝑘′)2 −𝑚2
𝑉 )

2
𝑂−𝛾

𝜇𝑆>,<
𝑘′ 𝑂−𝛾

𝜈 Tr
(︀
𝑆<,>
𝑝 𝑂−𝛾𝜇𝑆

>,<
𝑝′ 𝑂−𝛾𝜈

)︀
− 1

((𝑘 − 𝑘′)2 −𝑚2
𝑉 )((𝑝− 𝑝′)2 −𝑚2

𝑉 )
𝑂−𝛾

𝜇𝑆>,<
𝑝′ 𝑂−𝛾

𝜈𝑆<,>
𝑝 𝑂−𝛾𝜇𝑆

>,<
𝑘′ 𝑂−𝛾𝜈

]︃
,

(A.1)

where 𝑑𝑝 = 𝑑 4𝑝
(2𝜋)4

and the Green’s functions are given by

𝑆<
𝑘 = −2𝜋𝛿(𝑘2 −𝑚2)(/𝑘 +𝑚𝜒)

[︀
𝜃𝑘0ℱ𝑘 − 𝜃−𝑘0(1− ℱ̄𝑘)

]︀
,

𝑆>
𝑘 = +2𝜋𝛿(𝑘2 −𝑚2)(/𝑘 +𝑚𝜒)

[︀
𝜃𝑘0(1−ℱ𝑘)− 𝜃−𝑘0ℱ̄𝑘

]︀
. (A.2)

Here ℱ̄ is the matrix with the diagonal entries interchanged, as in Eq.(11) of [58], and

𝑂−) is Pauli 𝜎3 matrix. The trace is over both Dirac and flavor indices. We also define

ℱ̃ = 𝑂−ℱ𝑂− , and ˜̄ℱ = 𝑂−ℱ̄𝑂− . (A.3)

This has the effect of reversing the signs of the off-diagonal elements.
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Considering the relevant physical processes, it is not necessary to take account of all

eight of the terms that arise from each diagram from the products of the 𝑆>,< functions.

First, since annihilation diagrams are suppressed while 𝑘0 > 0, we can ignore 𝑘′0 < 0,

which would give the 𝑠-channel diagram. Second, by energy conservation, we must have

either

𝑝0 > 0 and 𝑝′0 > 0 , representing 𝜒𝜒 scattering, or

𝑝0 < 0 and 𝑝′0 < 0 , representing 𝜒�̄� scattering.

Let us first write the terms that arise from the middle line of (A.1), apart from the factors

of 2𝜋𝛿(. . . ), i.e.

1

((𝑘 − 𝑘′)2 −𝑚2
𝑉 )

2
𝛾𝜇(/𝑘

′
+𝑚𝜒)𝛾

𝜈 Tr
(︀
(/𝑝+𝑚𝜒)𝛾𝜇(/𝑝

′ +𝑚𝜒)𝛾𝜈
)︀
×

Σ>
𝑘 : (1− ℱ̃𝑘′)

[︁
𝜃𝑝0𝜃𝑝′0 Tr

(︁
(−ℱ𝑝)(1− ℱ̃𝑝′)

)︁
+ 𝜃−𝑝0𝜃−𝑝′0 Tr

(︁
(1− ℱ̄𝑝)(− ˜̄ℱ𝑝′)

)︁]︁
,

Σ<
𝑘 : − ℱ̃𝑘′

[︁
𝜃𝑝0𝜃𝑝′0 Tr

(︁
(1−ℱ𝑝)(−ℱ̃𝑝′)

)︁
+ 𝜃−𝑝0𝜃−𝑝′0 Tr

(︁
(−ℱ̄𝑝)(1− ˜̄ℱ𝑝′)

)︁]︁
.

(A.4)

Similarly, the last line of (A.1) contributes

− 1

((𝑘 − 𝑘′)2 −𝑚2
𝑉 )((𝑝− 𝑝′)2 −𝑚2

𝑉 )
𝛾𝜇(/𝑝

′ +𝑚𝜒)𝛾
𝜈(/𝑝+𝑚𝜒)𝛾𝜇(/𝑘

′
+𝑚𝜒)𝛾𝜈 ×

Σ>
𝑘 : (1− ℱ̃𝑝′)

[︂
𝜃𝑝0𝜃𝑝′0

(︁
(−ℱ𝑝)(1− ℱ̃𝑘′)

)︁
+𝜃−𝑝0𝜃−𝑝′0

(︁
(1− ℱ̄𝑝)(− ˜̄ℱ𝑘′)

)︁]︂
,

Σ<
𝑘 : − ℱ̃𝑝′

[︂
𝜃𝑝0𝜃𝑝′0

(︁
(1−ℱ𝑝)(−ℱ̃𝑘′)

)︁
+𝜃−𝑝0𝜃−𝑝′0

(︁
(−ℱ̄𝑝)(1− ˜̄ℱ𝑘′)

)︁]︂
.

(A.5)

Now, the collision term comes from Σ>,< by

𝒞𝑠 = 𝑖

∫︁
𝑑 4𝑘

(2𝜋)4
tr

[︂(︂
/𝑘 +𝑚𝜒

4𝑚𝜒

)︂
({Σ<

𝑘 , 𝑆
>
𝑘 } − {Σ>

𝑘 , 𝑆
<
𝑘 })

]︂
, (A.6)

where, unlike Tr above, tr denotes only the trace over Dirac matrices. Since we are

interested in low densities, we can neglect terms of order ℱ3, which means that we need

only keep terms of order

Σ<
𝑘 : 𝑂(ℱ2) , 𝑆>

𝑘 : 𝑂(1) , Σ>
𝑘 : 𝑂(ℱ) , 𝑆<

𝑘 : 𝑂(ℱ) . (A.7)
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After carrying out the Dirac traces and combining like terms, we find the respective

contributions from the two diagrams are

𝒞1 = −4𝑔′4
∫︁

𝑑Π𝑘𝑑Π𝑘′𝑑Π𝑝𝑑Π𝑝′
(2𝜋)4𝛿(4)(𝑘 + 𝑝− 𝑘′ − 𝑝′)

((𝑘 − 𝑘′)2 −𝑚2
𝑉 )

2

×
[︀
(𝑘 · 𝑝)(𝑘′ · 𝑝′) + (𝑘 · 𝑝′)(𝑘′ · 𝑝)−𝑚2

𝜒(𝑘 · 𝑘′ + 𝑝 · 𝑝′) + 2𝑚4
𝜒

]︀
× 𝜃𝑘0𝜃𝑘′0

{︁
𝜃𝑝0𝜃𝑝′0

[︁
ℱ̃𝑘′ Tr ℱ̃𝑝′ −ℱ𝑘 Trℱ𝑝

]︁
+ 𝜃−𝑝0𝜃−𝑝′0

[︁
ℱ̃𝑘′ Tr ℱ̄𝑝 −ℱ𝑘 Tr

¯̃ℱ𝑝′

]︁}︁
,

𝒞2 = −4𝑔′4
∫︁

𝑑Π𝑘𝑑Π𝑘′𝑑Π𝑝𝑑Π𝑝′
(2𝜋)4𝛿(4)(𝑘 + 𝑝− 𝑘′ − 𝑝′)

((𝑘 − 𝑘′)2 −𝑚2
𝑉 )((𝑝− 𝑝′)2 −𝑚2

𝑉 )

×
[︀
(𝑘 · 𝑝)(𝑘′ · 𝑝′)− 1

2
𝑚2

𝜒(𝑘 · 𝑘′ + 𝑝 · 𝑝′ + 𝑘 · 𝑝+ 𝑘 · 𝑝′ + 𝑘′ · 𝑝+ 𝑘′ · 𝑝′) +𝑚4
𝜒

]︀
× 𝜃𝑘0𝜃𝑘′0

{︁
𝜃𝑝0𝜃𝑝′0

[︁
ℱ̃𝑝′ℱ̃𝑘′ − 1

2
{ℱ𝑝,ℱ𝑘}

]︁
+ 𝜃−𝑝0𝜃−𝑝′0

[︁
ℱ̃𝑝′ℱ̄𝑝 − 1

2
{ ¯̃ℱ𝑘′ ,ℱ𝑘}

]︁}︁
, (A.8)

where 𝑑Π𝑝 = 𝑑 4𝑝 𝛿(𝑝2 −𝑚2
𝜒)/(2𝜋)

3.

In the non-relativistic limit, it further simplifies since the squared matrix element in

brackets is equal to 2𝑚4
𝜒 for 𝒞1, while for 𝒞2 it depends on which of the theta functions

are taken, i.e. [. . . ] = −𝑚4
𝜒 for positive energies and +𝑚4

𝜒 for negative energies. The

resulting collision term is

𝒞𝑠 = − 𝑔′4

4(2𝜋)8𝑚4
𝑉

∫︁
𝑑 3𝑘 · · · 𝑑 3𝑝′ 𝛿(4)(· · · )

[︁
4
(︁
ℱ̃𝑘′ Trℱ𝑝′ −ℱ𝑘 Trℱ𝑝

)︁
− ℱ̃𝑝′ℱ̃𝑘′ +

1
2
{ℱ𝑝,ℱ𝑘}+ ℱ̃𝑝ℱ̄𝑝′ − 1

2
{ ¯̃ℱ𝑘′ ,ℱ𝑘}

]︁
. (A.9)

Here, we used the identities Tr ℱ̃𝑝 = Tr ℱ̄𝑝 = Tr ¯̃ℱ𝑝 = Trℱ𝑝, as well as the fact that

any terms with negative energies can be transformed to the corresponding phase space

integrals with positive energy by changing 𝑝↔ 𝑝′.

The next step is to make the following ansatz

ℱ𝑘 = 𝑒−𝛽𝜔𝑘
𝑛

𝑛eq

, (A.10)

where 𝜔𝑘
∼= 𝑚𝜒 + 𝑘2/2𝑚𝜒 ≡ 𝑚𝜒 + 𝐸𝑘,

𝑛 =

(︂
𝑛11

𝑛21

𝑛12

𝑛22

)︂
, (A.11)

and 𝑛eq is the equilibrium number density. Then, the momentum integrals can be carried

out to get collision terms as a function of the density matrix 𝑛

𝒞𝑠 = − 𝑔′4 𝑒−2𝛽𝑚𝜒

4(2𝜋)8𝑚4
𝑉 𝑛2

eq

∫︁
𝑑 3𝑘 · · · 𝑑 3𝑝′ 𝛿(4)(· · · )

[︁
𝑒−𝛽(𝐸𝑘+𝐸𝑝)

[︀
4(�̃�− 𝑛) Tr𝑛− �̃�2 + 𝑛2

)︀
+ 𝑒−𝛽(𝐸𝑝+𝐸𝑝′ )�̃��̄�− 𝑒−𝛽(𝐸𝑘+𝐸𝑘′ ) 1

2
{˜̄𝑛, 𝑛}

]︁
. (A.12)
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The integrals are all equal to (𝑚𝜒𝑇 )
9/2/𝑇 times a dimensionless number and there are

only two different possibilities, depending upon whether the two energies in the Boltzmann

factors are both initial/final state or one initial and one final. We get

𝒞𝑠 = −𝑔′4𝑚
3/2
𝜒 𝑇 1/2

16𝜋𝑚4
𝑉

[︁
𝐼𝑠

(︀
4(�̃�− 𝑛) Tr𝑛− �̃�2 + 𝑛2

)︀
+ 𝐼𝑑

(︀
�̃��̄�− 1

2
{¯̃𝑛, 𝑛}

)︀ ]︁
, (A.13)

where the two dimensionless integrals 𝐼𝑠 and 𝐼𝑑 are

𝐼𝑠 =
1

8𝜋4

∫︁
𝑑 3𝑝 𝑑 3𝑘 𝑑 3𝑝′ 𝑑 3𝑘′ 𝛿(4)(𝑝+ 𝑘 − 𝑝′ − 𝑘′) 𝑒−(𝑝2+𝑘2)/2

=
1

8𝜋4

∫︁
𝑑 3𝑝 𝑑 3𝑘 𝑑 3𝑝′ 𝛿(𝑝 · �⃗�) 𝑒−(𝑝+𝑝′)2/2−(�⃗�+𝑝′)2/2 ∼= 2.26 ,

𝐼𝑑 =
1

8𝜋4

∫︁
𝑑 3𝑝 𝑑 3𝑘 𝑑 3𝑝′ 𝑑 3𝑘′ 𝛿(4)(𝑝+ 𝑘 − 𝑝′ − 𝑘′) 𝑒−(𝑝2+𝑝′2)/2

=
1

8𝜋4

∫︁
𝑑 3𝑝 𝑑 3𝑘 𝑑 3𝑝′ 𝛿(𝑝 · �⃗�) 𝑒−(𝑝+𝑝′)2/2−𝑝′2/2 =∞ , (A.14)

and the zeroth component of the delta function is in terms of the non-relativistic dimen-

sionless energies. The second forms of the integrals, in which the delta function of energies

simplifies, are obtained by shifting 𝑝 → 𝑝 + 𝑝′ and �⃗� → �⃗� + 𝑝′. 𝐼𝑠 was evaluated numer-

ically. The divergent integral is inconsequential because it multiplies �̃��̄� − 1
2
{¯̃𝑛, 𝑛} ≡ 0,

which vanishes identically. In retrospect, we understand that this term is unphysical,

since it corresponds to the interference of the 𝑡- and 𝑢-channel scattering diagrams, which

vanishes for scattering of 𝜒 with �̄�. Finally, the relevant matrix evaluates to

4(�̃�− 𝑛) Tr𝑛− �̃�2 + 𝑛2 = −6(𝑛11 + 𝑛22)

(︂
0

𝑛21

𝑛12

0

)︂
, (A.15)

so the collision term from scattering reads

𝒞𝑠 =
3𝐼𝑠𝑔

′4𝑚
3/2
𝜒 𝑇 1/2

8𝜋𝑚4
𝑉

(𝑛11 + 𝑛22)

(︂
0

𝑛21

𝑛12

0

)︂
≡ 3

2
⟨𝜎𝑣⟩𝑠(𝑛11 + 𝑛22)

(︂
0

𝑛21

𝑛12

0

)︂
, (A.16)

which would appear in Eq. (20) of ref. [58]. The normalization of ⟨𝜎𝑣⟩𝑠 is chosen to agree

with the usual definition in which the low-energy cross section is

𝜎 ≈
𝑔4𝑚2

𝜒

4𝜋𝑚4
𝑣

, (A.17)

and the thermal averaging is done as in ref. [59].
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APPENDIX B – Thermal decoherence in

the Boltzmann equations

The content of this chapter is heavily based on Ref. [46], where our main results are

published.

For the vector model (model 1), we have simulated the effect of thermal decoherence

due to the oscillation rate depending on the momentum in the quantum Boltzmann equa-

tion for the density matrix

𝑑ℱ𝑘

𝑑𝑡
−𝐻𝑘

𝑑ℱ𝑘

𝑑𝑘
= −𝑖[ℋ𝑘,ℱ ] + 𝒞[ℱ ], ℋ𝑘 = 𝜔𝑘1 +

𝑚𝜒𝛿𝑚

𝜔𝑘

(︂
0

1

1

0

)︂
, (B.1)

where 𝐻 is the Hubble rate and 𝜔𝑘 =
√︀

𝑘2 +𝑚2
𝜒. The 𝑘-dependence in the second term

of the Hamiltonian implies that high-𝑘 parts of the distribution oscillate with slightly

lower frequency than low-𝑘 parts. This is an additional source of decoherence that is

neglected by integrating over momenta to reduce Eq. (B.1) to an equation for the number

density matrix 𝑛. Our goal here is to verify that this neglect is justified. For the scalar

model (model 2), this issue is less important since decoherence is not a requirement for

annihilations to occur, as the interaction here is flavor-blind.

To model the effect, one would like to divide the particle distribution into several

momentum bins. We will be content to divide them into just two, labeled by 𝑠, 𝑙 for small

and large momenta relative to the midpoint of the distribution. Accordingly, we split the

density matrix 𝑛 into

𝑛 = 𝑛𝑠 + 𝑛𝑙, (B.2)

and one finds separate Boltzmann equations for each component. These are coupled to

each other through the collision terms. The Boltzmann equations take the form

�̇�𝑠 + 3𝐻𝑛𝑠 = −𝑖[𝐻𝑠, 𝑛𝑠]−
⟨𝜎𝑣⟩𝑠
8

(𝑆𝑠 + 𝑆)− ⟨𝜎𝑣⟩𝑎
2

(︀
𝐴𝑠 − 𝑛2

eq

)︀
,

�̇�𝑙 + 3𝐻𝑛𝑙 = −𝑖[𝐻𝑙, 𝑛𝑙]−
⟨𝜎𝑣⟩𝑠
8

(𝑆𝑙 + 𝑆)− ⟨𝜎𝑣⟩𝑎
2

(︀
𝐴𝑙 − 𝑛2

eq

)︀
, (B.3)

where ⟨𝜎𝑣⟩𝑠,𝑎 are the scattering and annihilation cross sections. The matrices 𝑆𝑖, 𝑆, 𝐴𝑖
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are defined as

𝑆𝑖 =

⎛⎝ 𝑛𝑖,11(6𝑛11 + 8𝑛22)− 𝑛𝑖,12𝑛21 − 𝑛𝑖,21𝑛12 7𝑛𝑖,12𝑛− 𝑛𝑖,𝑡𝑛12

7𝑛𝑖,21𝑛𝑡 − 𝑛𝑖𝑛21 𝑛𝑖,22(8𝑛11 + 6𝑛22)− 𝑛𝑖,12𝑛21 − 𝑛𝑖,21𝑛12

⎞⎠ ,

(B.4)

𝑆 =

⎛⎝ −3𝑛2
11 − 4𝑛11𝑛22 + 𝑛12𝑛21 3𝑛12𝑛

3𝑛21𝑛 −3𝑛2
22 − 4𝑛11𝑛22 + 𝑛12𝑛21

⎞⎠ , (B.5)

𝐴𝑖 =

⎛⎝ 2𝑛𝑖,11𝑛22 − (𝑛𝑖,12𝑛21 + 𝑛𝑖,21𝑛12) (𝑛𝑖,12𝑛𝑡 − 𝑛𝑖𝑛12)

(𝑛𝑖,21𝑛− 𝑛𝑖𝑛21) 2𝑛𝑖,22𝑛11 − (𝑛𝑖,12𝑛21 + 𝑛𝑖,21𝑛12)

⎞⎠ , (B.6)

and we defined 𝑛𝑖𝑗 = 𝑛𝑠,𝑖𝑗+𝑛𝑙,𝑖𝑗, 𝑛 = 𝑛11+𝑛22, and 𝑛𝑖 = 𝑛𝑖,11+𝑛𝑖,22. These expressions can

be read from the form of the collision and annihilation terms in terms of the ℱ matrices

before doing the final integral over the momentum 𝑘 of the particle whose distribution is

being tracked in the Boltzmann equation. If one adds the two equations together, they

revert to the standard equation in terms of 𝑛 alone. The decoherence effect comes from

the fact that the free Hamiltonians ℋ𝑠,𝑙 are slightly different for the two components. For

non-relativistic particles we have

ℋ𝑠,𝑙
∼= 𝑚𝜒

(︂
1

0

0

1

)︂
+ 𝛿𝑚

(︂
0

1

1

0

)︂
+
⟨𝑘2⟩𝑠,𝑙
2𝑚𝜒

[︂
1− 𝛿𝑚

𝑚𝜒

(︂
0

1

1

0

)︂]︂
. (B.7)

The important feature is the difference between ⟨𝑘2⟩𝑙 and ⟨𝑘2⟩𝑠, so for simplicity one could

take, for example,

⟨𝑘2⟩𝑠 = 1
2
⟨𝑘2⟩ and ⟨𝑘2⟩𝑙 = 3

2
⟨𝑘2⟩, (B.8)

which is a temperature-dependent split. For temperatures such that scattering is still in

equilibrium, we can estimate

⟨𝑘2⟩ ∼ 3𝑚2
𝜒/𝑥, (B.9)

where 𝑥 = 𝑚𝜒/𝑇 . After scatterings freeze out, the wavenumber red-shifts as 1/𝑎, so

⟨𝑘2⟩ ∼ 3𝑚2
𝜒 𝑥𝑓/𝑥

2.

This effect can be important only in the early universe when the momenta are suffi-

ciently large that 𝑘2/𝑚2
𝜒 is not negligible. We have applied this formalism to check the

early-universe solutions shown in Fig.17 and we have found no appreciable effect from

this extra source of decoherence.
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APPENDIX C – Upper limits for the DM

Majorana mass

The content of this chapter is heavily based on Ref. [46], where our main results are

published.

In this appendix, we will investigate the upper bound on the Majorana mass 𝛿𝑚.

This parameter determines the timescale on which annihilations recouple after the initial

asymmetric dark matter freezeout epoch. For convenience, we define 𝛼 = 𝑌11 − 𝑌22, 𝛽 =

𝑌12 − 𝑌21, 𝜃 = 𝑌12 + 𝑌21, 𝛾 = 𝑌11 + 𝑌22, 𝑠 = 𝑠𝑚3
𝜒/𝑥

3, 𝐻 = 𝜅𝑚2
𝜒/𝑥

2, where 𝑠 = 2𝜋2

45
𝑔*𝑠,

𝜅 = 1.67
𝑀𝑝

√
𝑔*.

C.1 Flavor-blind interactions

From the Boltzmann equations after freeze-out we get

𝑥2𝛽′ −
(︂
𝑠 ⟨𝜎𝑣⟩𝑎𝑚𝜒

𝜅
𝜂𝐷𝑀

)︂
𝛽 −

(︂
2𝑖𝛿𝑚

𝜅𝑚2
𝜒

𝜂𝐷𝑀

)︂
𝑥3 = 0, (C.1)

with 𝛽(�̄�) = 0 as initial condition. Here we used 𝛼 ≈ 𝑌11 ≈ 𝜂𝐷𝑀 (this does not imply

𝛼′ = 0), as we are working before the moment of residual annihilations. The solution to

this equation can be approximated to 𝛽(𝑥) ≈ 𝑖𝐵𝑥(𝐴+ 𝑥)/2, where

𝐴 ≡ 𝑠 ⟨𝜎𝑣⟩𝑎 𝑚𝜒

𝜅
𝜂𝐷𝑀 , 𝐵 ≡ 2 𝛿𝑚

𝜅𝑚2
𝜒

𝜂𝐷𝑀 . (C.2)

Plugging this result into the Boltzmann equations for 𝑌11 and 𝑌22, we get

16 𝜂𝐷𝑀 𝑌 ′
11 = 𝐵2(𝐴+ 𝑥) (𝐴(𝐴+ 𝑥)− 4) ,

16 𝜂𝐷𝑀 𝑌 ′
22 = 𝐵2(𝐴+ 𝑥) (𝐴(𝐴+ 𝑥) + 4) ,

(C.3)

with initial conditions 𝑌11(�̄�) = 𝜂𝐷𝑀 and 𝑌22(�̄�) = 0.

Taking the solutions for 𝑌11 and 𝑌22 and solving for 𝑥 when 𝑌11(¯̄𝑥) = 𝑌22(¯̄𝑥) gives

¯̄𝑥 = 1.53
𝑚𝜒√︀
𝛿𝑚𝑀𝑝

𝑔1/4* . (C.4)
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Now that we have found 𝛾 = 𝑌11 + 𝑌22 near the epoch of residual annihilations, let us

calculate how much it can deviate from 𝜂𝐷𝑀 . Defining the fractional change in the dark

matter comoving density from 𝛾 = 𝜂𝐷𝑀 (1− 𝛿𝜂), we get

𝛿𝑚 .
342
√
𝑔*

𝛿
1/2
𝜂

⟨𝜎𝑣⟩2𝑎 𝜂2𝐷𝑀𝑀3
𝑝

, (C.5)

for 𝑥 > ¯̄𝑥. As a numerical example, for our set of parameters and taking 𝛿𝜂 ≃ 3% (as

limited by the change in the dark matter density after the formation of the CMB [62]),

we get 𝛿𝑚 . 3× 10−30 eV. This bound will be relaxed if the second epoch of annihilation

freezes out before the formation of the CMB [101].

C.2 Flavor-sensitive interactions

In this case, the equation for 𝛽 reads

𝑥5/2𝛽′ +

(︂
3𝐼𝑠𝑔

′4𝑚3
𝜒𝑠 𝜂𝐷𝑀

8𝜋𝜅𝑚4
𝑉

)︂
𝛽 −

(︂
2𝑖𝛿𝑚 𝜂𝐷𝑀

𝜅𝑚2
𝜒

)︂
𝑥7/2 = 0 (C.6)

where we considered 𝛼 ≈ 𝜂𝐷𝑀 and

⟨𝜎𝑣⟩𝑠 =
𝐼𝑠𝑔

′4𝑚2
𝜒

4𝜋𝑚4
𝑉

1√
𝑥
= ⟨𝜎𝑣⟩𝑠

1√
𝑥
. (C.7)

This time, 𝐴 is redefined to

𝐴 ≡
3𝐼𝑠𝑔

′4𝑚3
𝜒𝑠 𝜂𝐷𝑀

8𝜋𝜅𝑚4
𝑉

. (C.8)

Working with our set of parameters, it is possible to approximate the solution of Eq. (C.6)

to

𝛽(𝑥) ≈ 𝑖

(︂
2

3

)︂7/3

𝐴4/3𝐵 Γ

(︂
− 4

3
,

2𝐴

3𝑥3/2

)︂
, (C.9)

where the incomplete gamma function is defined by Γ(𝑎, 𝑧) =
∫︀∞
𝑧

𝑡𝑎−1𝑒−𝑡𝑑𝑡. Now we can

use this result and solve for 𝛼. Taking the limit Γ(𝑠, 𝑟)/𝑟𝑠 = −1/𝑠 when 𝑟 → 0 for

𝑅𝑒(𝑠) < 0, we get

𝛼(𝑥) = 𝜂𝐷𝑀

(︂
1− 𝛿𝑚2

2𝜅2𝑚4
𝜒

𝑥4

)︂
. (C.10)

Solving 𝛼 = 0 for 𝑥 gives us the previous result of Eq. (C.4).

Now, let us rearrange the Boltzmann equations as an equation for the total DM

comoving density 𝛾

𝑥𝐻𝛾′ = −1

2
⟨𝜎𝑣⟩𝑎 𝑠

(︀
𝛾2 −ϒ2

)︀
(C.11)
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and an equation for its “late-time equilibrium” function ϒ =
√︀

𝑓(𝑥)

2𝛿𝑚
,

𝑓 ′ = −3⟨𝜎𝑣⟩𝑠
𝑠√
𝑥
𝜂𝐷𝑀𝑥𝐻(𝛼′)2, (C.12)

where

𝑓 = (𝑥𝐻𝛼′)2 + 4𝛿𝑚2𝛼2. (C.13)

We will not attempt to solve the full set of equations from before freeze-out to today.

Instead, let’s try to evolve our functions from their states in the flat land to new states

in the region of residual annihilations.

As we are working with smaller and smaller values of 𝛿𝑚, let us explore what happens

when 𝛿𝑚→ 0. In this limit, there should be no residual annihilations, i.e. the total DM

density must follow a constant equilibrium function, lim𝛿𝑚→0ϒ = 𝜂𝐷𝑀 . Consequently,

lim
𝛿𝑚→0

𝑓(𝑥) = 4𝛿𝑚2𝜂2𝐷𝑀 . (C.14)

From this result, and equations (C.12) and (C.13) we get, 𝛼′ → 0 and 𝛼 → 𝜂𝐷𝑀 , in this

limit. Also, 𝛽 → 0. Thus, ϒ2 → 𝛼2. Now, Eq. (C.10) was obtained using 𝛼 ≈ 𝜂𝐷𝑀 .

Performing the inverse substitution we get

𝛼(𝑧) =
𝜂𝐷𝑀(︀
1 + 𝑧2

2

)︀ , (C.15)

where we defined 𝑧 ≡ 𝛿𝑚
𝜅𝑚2

𝜒
𝑥2. From now on, we will use 𝑧 instead of 𝑥. For example,

from Eq. (C.10), the moment when 𝑌11 = 𝑌22, i.e. 𝛼 = 0 , is given by 𝑧 =
√
2. Now, the

equation we need to solve is,

𝑧3/2𝛿′𝜂(𝑧) = 𝑊 𝜂𝐷𝑀

[︃
1− 2𝛿𝜂(𝑧)−

1(︀
1 + 𝑧2

2

)︀2
]︃
, (C.16)

where we have parametrized the total DM density as 𝛾 = 𝜂𝐷𝑀(1− 𝛿𝜂), where 𝛿𝜂 ≪ 1 and

we have used (1− 𝛿𝜂)
2 ≈ 1− 2𝛿𝜂. Also, we defined

𝑊 ≡ ⟨𝜎𝑣⟩𝑎 𝑠
4𝜅3/2

√
𝛿𝑚 = 𝑊

√
𝛿𝑚. (C.17)

To a good approximation, we obtain

𝛿𝜂(𝑧) ≈
𝑊 𝜂𝐷𝑀

2

√
𝛿𝑚

𝑧3/2

2 + 𝑧2
. (C.18)

In this way,

𝛿𝑚 ≈ 1521
√
𝑔*

𝛿2𝜂

⟨𝜎𝑣⟩2𝑎 𝜂2𝐷𝑀𝑀3
𝑝

(2 + 𝑧2)2

𝑧3
. (C.19)
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Before getting an upper bound for 𝛿𝑚, let us go back to Eq. (C.12) and Eq. (C.13).

These can be merged into

𝑥5/2𝛼′′ +
(︀
2𝐴− 𝑥3/2

)︀
𝛼′ +

(︂
𝐵

𝜂𝐷𝑀

)︂2

𝑥9/2𝛼 = 0. (C.20)

We notice there is a dramatic change in this equation when the damping term changes

sign. For this reason, we take 2𝐴− 𝑥3/2 = 0 and solve for 𝑥,

¯̄𝑥 =

[︂
3

1.66
√
𝑔*
⟨𝜎𝑣⟩𝑠𝑠𝑚𝜒𝑀𝑝 𝜂𝐷𝑀

]︂2/3
(C.21)

which gives us a a better approximation for the starting point ¯̄𝑥 for residual annihilations.

Numerically, this gives us ¯̄𝑧 ≪ 1, so we can make the following approximation

(2 + ¯̄𝑧2)2

¯̄𝑧3
→ 4

¯̄𝑧3
. (C.22)

Since this is our starting point, for any 𝑧 > ¯̄𝑧 we have from Eq. (C.19)

𝛿𝑚 < 16.3
𝑚

1/2
𝜒

𝑔
1/4
*

𝛿
1/2
𝜂

⟨𝜎𝑣⟩𝑠 ⟨𝜎𝑣⟩
1/2
𝑎 𝜂

3/2
𝐷𝑀𝑀

5/2
𝑝

. (C.23)

As we can see, for a fixed 𝛿𝑚, the change in the DM comoving density 𝛿𝜂 goes to zero

when we turn off scatterings. For our parameters, we obtain 𝛿𝑚 < 5× 10−28 eV.

C.3 An approximate expression for the mass of 𝐼3

The content of this chapter is heavily based on our recent preprint [69], where our

main results are published.

In order to calculate the mass of the dark matter candidate in this model, we make

the following definitions

𝜁 ≡ 𝑣D
𝑣M

, 𝜂 ≡ 𝑣D
𝑣𝐻

, 𝜒 ≡ 𝑣𝐻
𝑣M

, (C.24)

where 𝑣D ≪ 𝑣𝐻 ≈ 𝑣𝑆𝑀 ≈ 246 GeV ≪ 𝑣M. From Eq.(4.2) the mass matrix for CP-odd

scalars 𝑀2
𝐼 is

𝑀2
𝐼 =

𝑣2𝑆𝑀
2𝜒3

(1− 𝜂2)2 𝑚2
𝐼 , (C.25)
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where 𝑚2
𝐼/𝜒 is given by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 +
√
2) 𝜁

2

𝜒

√
2 𝜁 𝜁 0 0 0 (−2 +

√
2) 𝜁2

√
2 𝜁

√
2𝜒− 𝛽13 𝛽13 𝛽13𝜁 0 −𝛽13𝜁

√
2𝜁𝜒

𝜁 𝛽13 𝜒− 𝛽13 −𝛽13𝜁 0 𝛽13𝜁 −
√
2𝜁𝜒

0 𝛽13𝜁 −𝛽13𝜁 −𝛽13𝜁
2 0 𝛽13𝜁

2 0

0 0 0 0 2𝜅𝜒2

(1−𝜂2)2
0 0

0 −𝛽13𝜁 𝛽13𝜁 𝛽13𝜁
2 0 −9𝛽3𝑋 − 𝛽13𝜁

2 3𝛽3𝑋

(−2 +
√
2) 𝜁2

√
2𝜁𝜒 −2𝜁𝜒 0 0 3𝛽3𝑋 (4 +

√
2)𝜁2𝜒− 𝛽3𝑋

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(C.26)

Since the role of 𝜂 is small in this matrix, we can safely take 𝜂 → 0 independently of 𝜁

and 𝜒. From the (5, 5) element of this matrix, we can note one eigenvalue is equal to 2𝜅𝜒2

and det(𝑀2
𝐼 )=0, so at least another one is also zero. Solving for the eigenvalues 𝜆, we

get the following eigenvectors in the { Im(H), Im(Φ1), Im(Φ2), Im(𝜑1), Im(𝜑2), Im(𝜑3),

Im(𝜑𝑋) } basis:

{6𝜒,−9𝜁, 0,−8, 0, 1, 3} and {−𝜒, 𝜁, 𝜁, 0, 0, 0, 0} for 𝜆 = 0 (C.27)

{0, 0, 0, 0, 1, 0, 0} for 𝜆 = 2𝜅𝜒2

up to normalization factors. In Ref. [91] all masses were found (in the limit 𝜁 → 0) in the

CP-odd scalar sector except for 𝑚𝐼3 , which was given a numerical estimate of ∼ 𝒪(𝜁1/2) in

GeV. Here we find an approximate value for this mass, which is the mass of the decaying

DM candidate we are studying in this work 𝑚𝐼3 .

The equation for the eigenvalues of 𝑚2
𝐼 reads

𝜆2(𝜆− 2𝜅𝜒2)𝑝(𝜆) = 0, (C.28)

where 𝑝(𝜆) =
∑︀4

𝑖=0 𝑐𝑖 𝜆
𝑖 with 𝑐4=1. Expanding and comparing coefficients with det(𝜆 I7×7−

𝑚2
𝐼), we get (to lowest order in the new parameters from Eq.(C.24)),

𝑐0 ≈ 74
√
2𝛽13𝛽3𝑋𝜁

2𝜒6,

𝑐1 ≈ 10
√
2𝜒5𝛽3𝑋 + 11

√
2𝜁2𝜒5𝛽13 − 10(1 +

√
2)𝜒4𝛽13𝛽3𝑋 ,

𝑐2 ≈
√
2𝜒4 − 10(1 +

√
2)𝜒3𝛽3𝑋 − (1 +

√
2)𝜒3𝛽13 + 20𝜒2𝛽13𝛽3𝑋 ,

𝑐3 ≈ −(1 +
√
2)𝜒2 + 10𝜒𝛽3𝑋 + 2𝜒𝛽13.
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Because 𝑚𝐼3 is expected to be small, we can expand 𝑝(𝜆) around zero 𝑝(𝜆) ≈ 𝑝(0)+𝑝′(0)𝜆

and solve 𝑝(𝜆) = 0 for 𝜆, i.e.

𝜆 ≈ − 𝑝(0)

𝑝′(0)
= −𝑐0

𝑐1
=

74
√
2𝛽13𝛽3𝑋𝜁

2𝜒2

10𝛽3𝑋((1 +
√
2)𝛽13 −

√
2𝜒)− 11

√
2𝛽13𝜁2𝜒

, (C.29)

which gives us

𝑚3
𝐼3
≃ 𝑣2𝑆𝑀

2𝜒3
𝜆 =

37 𝑣𝑆𝑀 𝑣2M𝑣
2
D 𝛽13 𝛽3𝑋

5
√
2(1 +

√
2)𝑣3M𝛽13𝛽3𝑋 − 𝑣𝑆𝑀 (11𝑣2D𝛽13 + 10𝑣2M𝛽3𝑋)

. (C.30)

C.4 Rayleigh-Schrodinger perturbation theory

The content of this chapter is heavily based on our recent preprint [69], where our

main results are published.

In this appendix, we find approximate expressions for 𝐼3 and its mass using Rayleigh-

Schrodinger perturbation theory [92–94].

First of all, let’s write �̃�2
𝐼 ≡ 𝑚2

𝐼/𝜒 as

�̃�2
𝐼 = �̃�2

0 + 𝜁�̃�2
1 + 𝜁2�̃�2

2, (C.31)

where

�̃�2
0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0

0
√
2𝜒− 𝛽13 𝛽13 0 0 0 0

0 𝛽13 𝜒− 𝛽13 0 0 0 0

0 0 0 0 0 0 0

0 0 0 2𝜅𝜒2 0 0 0

0 0 0 0 0 −9𝛽3𝑋 3𝛽3𝑋

0 0 0 0 0 3𝛽3𝑋 −𝛽3𝑋

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(C.32)

�̃�2
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√
2 1 0 0 0 0

√
2 0 0 𝛽13 0 −𝛽13

√
2𝜒

1 0 0 −𝛽13 0 𝛽13 −2𝜒

0 𝛽13 −𝛽13 0 0 0 0

0 0 0 0 0 0 0

0 −𝛽13 𝛽13 0 0 0 0

0
√
2𝜒 −2𝜒 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(C.33)
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�̃�2
2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1+
√
2

𝜒
0 0 0 0 0 −2 +

√
2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 −𝛽13 0 𝛽13 0

0 0 0 0 0 0 0

0 0 0 𝛽13 0 −𝛽13 0

−2 +
√
2 0 0 0 0 0 (4 +

√
2)𝜒

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(C.34)

The first unperturbed eigenvalues and eigenvectors come from �̃�2
0 and they are (before

normalization)

𝜆
(0)
1 = 0, 𝜆

(0)
2 = 0, 𝜆

(0)
3 = 0, 𝜆

(0)
4 = −10 𝛽3𝑋 , 𝜆

(0)
5 = 2𝜅𝜒2,

𝜆
(0)
6,7 =

[︂
−2𝛽13 + (1 +

√
2)𝜒∓

√︁
4𝛽2

13 + (3− 2
√
2)𝜒2

]︂
/2, (C.35)

𝐼
(0)
1 = (1, 0, 0, 0, 0, 0, 0), 𝐼

(0)
2 = (0, 0, 0, 1, 0, 0, 0), 𝐼

(0)
3 = (0, 0, 0, 0, 0, 1, 3),

𝐼
(0)
4 = (0, 0, 0, 0, 0,−3, 1), 𝐼(0)5 = (0, 0, 0, 0, 1, 0, 0), 𝐼

(0)
6 = (0, 𝑟−, 1, 0, 0, 0, 0),

𝐼
(0)
7 = (0, 𝑟+, 1, 0, 0, 0, 0), (C.36)

where 2𝛽13 𝑟
± = (

√
2− 1)𝜒±

√︁
4𝛽2

13 + (3− 2
√
2)𝜒2. The first order corrections are

𝜆
(1)
𝑖 =

⟨
𝐼
(0)
𝑖 |�̃�2

1|𝐼
(0)
𝑖

⟩
and 𝐼

(1)
𝑖 = −

(︁
�̃�2

0 − 𝜆
(0)
𝑖 I7×7

)︁PS (︁
�̃�2

1 − 𝜆
(1)
𝑖 I7×7

)︁
𝐼
(0)
𝑖 , (C.37)

where I7×7 is the identity matrix and PS stands for the pseudoinverse of a matrix. For

𝑖 = 3 we have 𝜆
(0)
3 = 0, so

𝐼
(1)
3 = −�̃�PS

0 �̃�2
1𝐼

(0)
3 = (0, 3𝑡− 8𝛽13,−6𝑡+ 8

√
2𝛽13, 0, 0, 0, 0), (C.38)

where
√
2 𝑡 = (2 +

√
2)𝛽13 − 2𝜒. Next, the second order correction reads

𝜆
(2)
3 =

⟨
𝐼
(0)
3 |�̃�2

0|𝐼
(0)
3

⟩
+
⟨
𝐼
(0)
3 |�̃�2

1|𝐼
(1)
3

⟩
𝜆
(2)
3 =

1

10

(︁
9(4 +

√
2)𝜒− 𝛽13

)︁
+

1

3
√
10𝑁3

[︂
(6𝑡−8

√
2𝛽13)(6𝜒−𝛽13)+(3𝑡−8𝛽13)(3

√
2𝜒−𝛽13)

]︂
,

(C.39)

with the normalization factor 𝑁3 = [90𝜒2 + 6(2− 7
√
2)𝛽13𝜒+ (87− 54

√
2)𝛽2

13]
1/2.
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Now, we can compute the second order contribution to the eigenvector of 𝐼3

𝐼
(2)
3 = −(�̃�2

0)
PS

[︁
(�̃�2

2 − 𝜆
(2)
3 )𝐼

(0)
3 + �̃�2

1𝐼
(1)
3

]︁
= (0, 0, 0, 0, 0,−3, 1)/

√
10. (C.40)

Finally, 𝐼3 and its mass can be approximated to

𝐼3 ≃ 𝐼
(0)
3 + 𝜁 𝐼

(1)
3 + 𝜁2 𝐼

(2)
3 and 𝑚2

𝐼3
≃ 𝑣2𝑆𝑀

2𝜒2
𝜁2𝜆

(2)
3 ≈

1

2
𝑣2D𝜆

(2)
3 . (C.41)
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