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ABSTRACT

The High Energy Light Isotope eXperiment (HELIX) is a balloon-borne detector,

currently in development, to measure the chemical and isotopic abundances of light

cosmic-ray nuclei. One of the primary goals is to measure the 10Be/9Be ratio for 0.2 -

10 GeV/n over two flights. 10Be is a radioactive isotope with a half-life of 1.39 Myr so

its abundance, compared to the stable 9Be, constrains cosmic-ray propagation models.

HELIX consists of a 1 Tesla superconducting magnet and a drift chamber tracker to

measure the particle rigidity. The velocity is measured with a time-of-flight system

and a ring-imaging Cherenkov detector (RICH). The RICH radiator plane consists

of 32 aerogel tiles with a refractive index of n = 1.15 - 1.16 and four NaF tiles. In

order to achieve the desired HELIX mass resolution of 2.5 %, the aerogel refractive

index n must be known to a resolution of less than 0.07 %. Due to the fabrication

process, the refractive index variations for each tile could be larger than 0.07 %, which

requires measuring the refractive index changes in a grid along each aerogel tile. In

this thesis, I will describe the calibration system designed to measure aerogel tile

refractive index variations using an electron linear accelerator. I will also explore the

effect of the properties of the electron beam and the calibration system on producing

accurate and precise refractive index and particle velocity measurements.
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ABRÉGÉ

Le High Energy Light Isotope eXperiment (HELIX) est un détecteur en ballon,

présentement en développement, pour mesurer l’abondance chimique et isotopique

des noyaux de rayons cosmiques légers. Un des objectifs principaux est de mesurer

le rapport 10Be/9Be pour 0.2 - 10 GeV/n au cours de deux vols. 10Be est un

isotope radioactif avec une demi-vie de 1.39 millions d’années alors son abondance,

en comparaison avec 9Be qui est stable, limite les modèles de propagation des rayons

cosmiques. HELIX consiste d’un aiment supraconducteur de 1 Tesla et une chambre

de dérive pour mesurer la rigidité de la particule. La vélocité est mesurée avec des

détecteurs temps-de-vol et un détecteur Cherenkov (RICH). Le plan radiateur RICH

contient 32 tuiles d’aérogel avec un indice de réfraction de n = 1,15 - 1,16 et quatre

tuiles de NaF. Pour atteindre la résolution de masse désirée d’HELIX de 2,5 %, il faut

que l’indice de réfraction n soit connu à une résolution moins que 0,07 %. À cause du

processus de fabrication, les variations d’indice de réfraction pour chaque tuile pouvait

être plus grand que 0,07 %, qui rend nécessaire des mesures des changements de

l’indice de réfraction sur une grille à travers chaque tuile d’aérogel. Dans cette thèse,

je vais décrire le système d’étalonnage conçu pour mesurer la variation de l’indice de

réfraction de la tuile d’aérogel avec un accélérateur linéaire d’électrons. Je vais aussi

examiner l’effet des propriétés du faisceau d’électrons et le système d’étalonnage sur

la production des mesures exactes et précises de l’indice de réfraction et la vélocité

des particules.
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CONTRIBUTION OF AUTHOR

The purpose of this thesis is to describe the development and running of a

detector to map the refractive index of aerogel tiles and to explore the system’s

systematic uncertainties. Original contributions from the author are as follows:

• Chapter 3: The author was involved in all aspects of building, troubleshooting,

improving and running the calibration system described in the thesis. This

chapter is a summary of the calibration system that was built and run alongside

work from Thomas Rosin, Ste O’Brien and David Hanna.

• Chapter 4: This chapter is a description of the analysis code written by Ste

O’Brien. All of the text and the plots to explain the analysis code were done

by the author.

• Chapter 5: All of the studies done using the RICH Geant4 simulation and

studies of the effects of changing calibration parameters and distinguishing

isotopes are original work by the author.

Chapter 1, 2 and Appendix A present information that can be found in literature.

Appendix B is written by the author, but the measurements were done with Ste and

Thomas.
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CHAPTER 1
Introduction

The High Energy Light Isotope eXperiment (HELIX) is a new balloon-borne

experiment designed to measure the isotopic composition of light cosmic-ray nuclei. It

will be launched during the NASA Antarctic Balloon Campaign in 2021/2022. One of

its principal goals is to make high precision measurements of the 10Be/9Be ratio, which

is a key measurement in distinguishing cosmic-ray propagation models. This chapter

provides background information on cosmic rays to motivate the scientific goals of

HELIX. The proceeding chapters will be a description of the HELIX experiment

followed by the aerogel calibration system. The calibration system is designed to

measure the refractive index variations across the aerogel used in the HELIX ring-

imaging Cherenkov detector. It will be followed by a series of simulations and

calculations to understand sources of systematic uncertainty caused by the calibration

system and the electron beam properties.

1.1 History

The history of cosmic rays is closely linked to the history of radioactivity with

early detections by Hess and Wulf. Theodor Wulf expected that spontaneous pene-

trating radioactive emission came from the Earth. He brought electroscopes to the

top of the Eiffel tower and he noted a decrease in the event rate he observed compared

to the ground, but not as much as he predicted [1].

Victor Hess then carried out similar measurements using three electroscopes on

multiple hot-air balloon flights in 1912, reaching a height of 5350 m [2, 3]. He observed

a decrease in counts up to 1000 m, consistent with the ground based radiation theory

and Wulf’s results. However, that theory did not explain the increase in the count rate

at higher altitudes. He concluded that the source of radiation must therefore come

from above the atmosphere. This is considered the first observation of cosmic rays,
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which was followed by the discovery of the positron in 1932 [4] and the observation

of what turned out to be muons in 1937 [5].

These discoveries led to the emergence of the field of cosmic-ray astrophysics.

Research in this field includes measurements of the composition of cosmic rays and

trying to understand the sources and propagation mechanisms of these particles.

1.2 Spectrum

Fig. 1–1 is the cosmic-ray energy spectrum showing results from different exper-

iments. There are three features of this spectrum that will be discussed: the knee,

the second knee and the ankle.

Figure 1–1: Cosmic-ray all-particle energy spectrum with data from different
experiments. TA is the Telescope Array and KG is KASCADE-Grande. The lines
are global spline fit models for specific nuclei or groups of nuclei. This plot includes
the all-particle flux (black), protons (red), helium (yellow), oxygen group (green) and
iron group (blue). The oxygen group is Li - F and the iron group is Na - Ni, named
after the nucleus that contributes most to the flux. Image Source: [6].

The knee is one of the key features in the cosmic-ray spectrum, at about 3×106 GeV

[6, 7]. This feature could indicate that there is a maximum energy for Galactic cosmic

accelerators, for example, in the shock front of a supernova [8, 9]. The knee has also

been associated with a higher escape rate of particles in the Galaxy at this energy, as

discussed in [8]. The second knee is observed by experiments on the order of 108 GeV.

This is often associated with a greater contribution of heavier nuclei to the spectrum.
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The ankle of the spectrum is at approximately 3×109 GeV and it is postulated to be

due to extragalactic sources becoming the dominant flux source [7].

At about 3×1010 GeV [7], it is theorized there should be a quick decrease of

the spectrum when inelastic collisions of cosmic rays and CMB photons, such as

p + γCMB → p + π0 and p + γCMB → n + π+, start to become a dominant feature.

This is known as the Greisen-Zatsepin-Kuzmin (GZK) limit [10, 11].

1.3 Composition of Cosmic Rays

This section focuses on the various cosmic-ray particles that are either primaries

produced by astrophysical sources or secondaries produced by spallation of primary

cosmic rays with the interstellar medium (ISM).

1.3.1 Primary

Figure 1–2: The differential energy spectrum flux of primary cosmic rays as a function
of the kinetic energy per nucleus. The inset is the H/He ratio for a given rigidity.
The flux is scaled for each species to make it easier to read. Image Source: [7].
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Primary cosmic rays consist of those elements that are produced and accelerated

by astrophysical sources including e-, p, He, C, O and Fe [7]. Some of these particles

will originate from the Sun, but in general these particles are Galactic or extragalactic

in origin [7]. Although cosmic rays are expected from sources such as supernova

remnants [12], it can be difficult to determine their origin due to multiple magnetic

fields and materials these particles can interact with as they travel. The trajectories

of the cosmic rays bend in the magnetic field so that they do not point directly to

their source. Cosmic-ray propagation will be discussed in Section 1.6.

The composition of primary cosmic rays is dependent on the energy of the

particle. It is about 86 % protons, 11 % alpha particles, 1 % heavier nuclei and 2 %

electrons [13]. The energy spectra of several primary cosmic-ray nuclei are shown in

Fig. 1–2, which includes data from multiple experiments. The primary cosmic rays

at lower energies than the spectrum knee obey the differential intensity equation [7]

IN(E) ≈ 1.8× 104(E/1 GeV)−2.7
nucleons

m2 s sr GeV
. (1.1)

1.3.2 Galactic

Figure 1–3: The nuclear abundance of
Galactic cosmic rays compared to the Solar
System composition. Image Source: [14].

The chemical composition of Galac-

tic cosmic rays is presented in Fig. 1–

3 where the composition is graphed

in terms of abundance relative to C.

Often this composition is compared to

the chemical composition of the Solar

System due to the striking similarities

in the relative abundances of nuclei.

These similarities point to the possibil-

ity that Galactic cosmic rays originate
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from stars or stellar remnants so the cosmic-ray nuclei from those sources have a

similar composition.

A notable trait in Fig. 1–3 is the low amount of Li, Be and B in the Solar

System; they are much more abundant in Galactic cosmic rays. Those elements

are not generally formed during nucleosynthesis or nuclear fusion. They are almost

exclusively spallation products from heavier nuclei like C and O. Some of these nuclei

are unstable, such as 10Be. There is a similar trend for nuclei like Sc, Ti, V and Mn,

from the spallation of Fe and Ni [13].

1.3.3 Electrons and Positrons

Figure 1–4: The cosmic-ray positron fraction
e+/(e++e-) with results from multiple experi-
ment. Image Credit: [15].

Electrons and positrons are

a key measurement by a num-

ber of direct and indirect cosmic-

ray experiments. The positron

fraction e+/(e++e-) is particularly

interesting because several exper-

iments, including AMS-02 [15],

have measured an increase above

about 20 GeV, as seen in Fig. 1–

4. Cosmic-ray models must be

adjusted to account for the observed increase [16]. The electron and positron fluxes

have distinctly different flux structures, which suggests that they must come from

different sources [15]. The positron flux is postulated to be a result of a diffuse term

from cosmic-ray collisions at low energies, and from a source term at high energy with

cutoff at 810 GeV [16]. This new source is consistent with either an astrophysical

object, such as a pulsar, or from dark matter annihilation [16, 17].

A definitive explanation for the observed increase past 20 GeV is particularly

difficult since the exact cosmic-ray propagation mechanism is not well understood.
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Measurements of the isotopic composition would be useful to constrain the propaga-

tion models.

1.4 Secondary-to-Primary Ratios

Figure 1–5: The boron to carbon (B/C) ratio in
terms of the kinetic energy per nucleon for multiple
experiments. The dashed line is the ratio for the
model in [18]. Image Source: [19].

Primary cosmic rays are

nuclei produced and accelerated

by astrophysical sources, as dis-

cussed in Section 1.3.1. Sec-

ondary cosmic rays are those

produced in the spallation of

the heavier primary nuclei with

the interstellar medium (ISM).

Since the secondary nuclei are

exclusively produced during pri-

mary cosmic-ray propagation,

the ratio of secondary to pri-

mary cosmic rays helps to probe cosmic-ray propagation mechanisms [19]. Secondary-

to-primary ratios can refer to ones where both nuclei are stable, as discussed in this

section, or where one is unstable, discussed in Section 1.5.

The most commonly measured secondary-to-primary ratio is the boron to carbon

ratio (B/C). Secondary cosmic-ray B is formed by spallation of primary cosmic-rays

like C, N and O from interactions with the ISM. Consider a simple case where the

spallation of C and O produces B. For a simple propagation model, like the Leaky

Box model discussed in Section 1.6.1, assume that there is a particle lifetime τ and

an interaction length λB of B in the Galaxy. For a given species, this lifetime τ can

include the expected escape time out of the Galaxy halo or loss due to spallation

[20]. Since B is a secondary particle and some of it is formed by the C spallation,

the density of C, NC , should influence the amount of B, NB, and it should depend
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on the amount of interaction with the ISM. The notation Ni refers to the density of

cosmic-ray species i at specific point in the Galaxy and differential in energy [14].

Assuming C and O have the same Galactic flux, the B/C ratio can be estimated by

[14]
NB

NC

=
λesc(E)

1 + λesc(E)/λB

σC→B + σO→B
mp

, (1.2)

where λesc(E) = βcρτesc(E) is the escape length, the mean amount of matter that

the particle goes through. βc is the particle velocity, ρ is the density of the ISM

and τesc(E) is the mean containment time for particles in the halo of the Leaky Box

model. λB is the interaction length of B in the Galaxy ≈ 71 kg/m2, σC→B and σO→B

are cross sections of the spallation to boron from carbon and oxygen, respectively

[14]. The majority of the ISM is made up of protons with mass mp.

The B/C ratio has been measured by a number of experiments, as shown in

Fig. 1–5. Comparing this data with a model and known spallation cross sections,

σC→B ≈ 73 mb and σO→B ≈ 30 mb [14], allows for a prediction of λesc(E), the

amount of material that the cosmic rays have traversed as a function of energy [14].

The spallation cross section and the escape time τesc(E) are energy dependent, which

is reflected in the energy dependence in Fig. 1–5. Therefore, it is important to have

multiple measurements of B/C covering a wide range of energies to fit an accurate

model. For one example from [14] using the Leaky Box model and Eq. 1.2, a particle

with 5 GeV/n corresponds to a ratio of 0.239, which results in λesc=85 kg/m2. λesc

decreases with increasing energy. These measurements of λesc alone are not enough to

fully constrain the propagation model. Another ratio, like a radioactive clock isotope

ratio, is necessary to provide further constraints.

1.5 Radioactive Clock Isotopes

Cosmic-ray spallation produces both stable isotopes, such as 10B and 11B, and

unstable ones, such as 10Be, 26Al, 54Mn and 36Cl isotopes [21]. These unstable

radioactive isotopes decay as they travel through the ISM. Since radioactive isotopes
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could only have travelled a finite distance before decaying, it sets a confinement time

on cosmic rays in the Galaxy and thus they are known as clock isotopes.

Figure 1–6: The 10Be/9Be ratio with data from ACE/CRIS [22] (triangles) and
ISOMAX [23] (squares). The solid lines are the propagation models: the Leaky Box
model with the Local Bubble (blue) [24] and a diffusive halo model (red) [25, 23].
The blue and green points are the HELIX predicted results for the first flight (7 days)
and the second flight (28 days) respectively. Image Source: [26].

10Be is an example of one of these clock isotopes that radioactively decays with a

half-life of 1.39 Myr [27]. It is produced along with the stable 9Be almost exclusively

in spallation interactions. The ratio of a clock isotope to a stable isotope depends

completely on the propagation of the cosmic rays and the length of time of their

travel. Combined with the secondary-to-primary ratio B/C, 10Be/9Be can be used

to distinguish between many different propagation models [28]. For a model like a

diffusive halo, the combination of secondary-to-primary ratios and clock isotope ratios

helps to determine the halo size and diffusion coefficient [29].

Fig. 1–6 is a plot of the predicted 10Be/9Be ratio as a function of energy for

two propagation models. The black points are measurements from ACE/CRIS and

ISOMAX and the coloured points are predictions for the HELIX experiment. It is

apparent from this graph that ISOMAX has large uncertainties that make it difficult

to distinguish between different propagation models. The HELIX experiment will be
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attempting to produce high resolution results of the 10Be/9Be ratio at larger energies

where there is better distinguishing power between propagation models.

1.6 Propagation Mechanisms

One of the major goals in cosmic-ray astrophysics is to understand the propa-

gation mechanism of cosmic rays through the Galaxy. This section discusses some

simple propagation models and the equations that define their diffusion and transport.

1.6.1 Leaky Box Model

Figure 1–7: Diagram of the Leaky Box
model. The cosmic rays are produced in
the disk and propagate within the cylinder
of the halo with a total height of 2H and
a radius R. Image Source: [20].

The Leaky Box model [30] is the

simplest image of cosmic-ray propaga-

tion. It assumes that the Galaxy is a

flattened cylinder where the sources are

distributed uniformly and axisymmetri-

cally in the disk and the cosmic rays

are confined to move within the halo,

a larger concentric cylinder, as shown

in Fig. 1–7 [20]. The halo has a

total thickness 2H and radius R. In

this model, the cosmic rays are initially

accelerated in the Galactic plane. The particles propagate throughout the cylindrical

halo interacting with different particles without additional acceleration [30]. When a

particle reaches the boundary, it will typically reflect off and continue its movements

within the halo. Every time that the particle reaches the boundary there is a small

probability that it escapes, hence the name the Leaky Box model.

The Galactic sources of cosmic rays should be concentrated in the Galactic plane

where they are transported along magnetic field lines. The simplest case is with static

field lines where charged particles will spiral around the lines, but generally the field
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changes with time. The magnetic field also gets altered by these charged particles.

Cosmic rays diffuse in this more complicated magnetic field environment [14].

The diffusion equation for cosmic rays is found by considering the continuity

equation [14, 20] relating the differential density N , its flux ~J and the contribution

of local source intensity Q by

∂N

∂t
= −∇ · ~J +Q . (1.3)

These relate to Fick’s first law of diffusion for an isotropic medium where the

flux relates the number density and a diffusion coefficient D by ~J = −D∇N [14, 20].

The diffusion equation then becomes

∂N

∂t
= ∇ · (D∇N) +Q . (1.4)

For the Leaky Box model there is no local source of cosmic rays in the wider halo

so the Q term is not included. There is also a constant escape probability to simplify

the equation for the density. Instead of a differential term, it can be expressed as a

constant loss over time. This can be summarized for a specific species i as

∂Ni

∂t
= ∇ · (D∇Ni) = −

Ni

τesc
→ Ni(t) ∝ exp(−t/τesc) . (1.5)

This equation includes the escape time τesc. It is the mean time for a cosmic ray to

escape the halo including time interacting with particles inside the halo [20]. These

interactions make τesc much longer than a simple straight path to travel the distance

H to the edge of the halo from the disk. The exponential part points to the probability

that a particle is still in the halo after time t [14].

1.6.2 More Complex Models

The Leaky Box is one of the simplest models of cosmic-ray propagation. Many

newer models addressed problems and limitations of the Leaky Box model to match

observed data.
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The local bubble is an extension to the steady-state solution for the Leaky Box

model where, instead of assuming a uniform distribution of sources and material in

the plane of the disk, there is a local low density bubble or hole where there are no

sources of primary cosmic rays [24]. The Solar System is thought to currently be, or

formerly have been, in a local bubble.

Figure 1–8: The prediction of the 10Be/9Be
for the diffusive halo model for various halo
half thicknesses H. Image Source: [29].

Some cosmic-ray experiments, like

AMS-02, use a diffusive halo propagation

model to interpret their data discussed

in more detail in [29]. The Galaxy is

still considered to be a flattened cylinder.

The main takeaway from this model is

that its solution is very dependent on

the size of the halo to define the escape

time. Secondary-to-primary ratios like

B/C only weakly constrain the model

and require measurements of unstable

nuclei like 10Be/9Be to further constrain

the model. Fig. 1–8 shows the predicted 10Be/9Be ratio for the diffusive halo model

for different H compared to current measurements and models, as shown in Fig. 1–6.

1.6.3 Transport Equation for Primary Cosmic Rays

The general cosmic-ray transport equation described by [14] is

Ni(E)

τesc(E)
= Qi(E)−

(
βcρ

λi
+

1

γτi

)
Ni(E) +

βcρ

mp

∑
k≥i

σk→iNk(E), (1.6)

where the subscript i denotes the secondary cosmic rays formed by the spallation of

primary cosmic rays denoted with subscript k. N is the number density, Qi(E) is

the local production rate, and λi is the interaction length of nuclei i in the Galaxy.

The first term Qi(E) is the cosmic-ray production rate by a local source in the halo.
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For the Leaky Box, Qi(E) = 0. The term within the brackets relates to the loss

of a nucleus from its interaction with the ISM and the decay of radioactive species

produced in spallation with a Lorentz dilated lifetime of γτi. The final term has to

do with the production of a secondary cosmic ray species from heavier nuclei.

For a given species, it may not be necessary to include all of the terms of Eq. 1.6.

Consider stable primary cosmic rays where there is no production due to spallation

and there is no decay. In this case, the transport equation simplifies to

Np(E) =
QP (E)τesc(R)

1 + λesc(R)/λP
, (1.7)

where the terms now apply to a primary cosmic ray denoted by the subscript P

[14]. The escape time and length are a function of the rigidity R, the resistance of a

charged particle to bending in a magnetic field, to make it easier to compare different

nuclei. Particles with the same rigidity behave the same in the magnetic field, but

depending on the species, they will have different kinetic energy per nucleon.

Secondary cosmic rays are not produced and accelerated by a source so there is no

Qi(E) term and the primary production method is from spallation. Some secondary

particles are stable so they do not include the decay term. Other nuclei, like 10Be,

are unstable so the decay term is necessary.

1.7 HELIX Scientific Motivation

The HELIX experiment is designed to measure light isotopes during long-duration

balloon flights. It includes a 1 Tesla superconducting magnet and a drift chamber

tracker to measure the rigidity of cosmic particles. A time-of-flight system and ring-

imaging Cherenkov detector measure their velocity. The energy for these experiments

is usually expressed as the energy per nucleon, GeV/n, contained in the nucleus.

HELIX is designed to measure light isotopes with charges up to Z=10 for energies

ranging from 0.2 GeV/n to 10 GeV/n over two flights [28].
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As shown in Fig. 1–6, ACE/CRIS measured 10Be/9Be up to 200 MeV/n [22]

while ISOMAX made measurements up to 1-2 GeV/n [23]. The measurements by

these experiments were limited to lower energies where the models behave similarly.

Fig. 1–6 also shows that HELIX expects to be able to measure this ratio to high

enough precision to distinguish between propagation models.

Nuclei Energy [GeV/n]

10Be/9Be 0.2 - 10

3He/4He 0.3 - 12

22Ne/20Ne >1

7Li/6Li >1

10B/11B >1

Table 1–1: Primary scientific goals of
HELIX [31].

The primary scientific goals for the

two stages of HELIX are given in Table

1–1. 10Be/9Be is the main measurement

since it is vital for constraining propa-

gation models and the instrument has

been specially designed for this. The

first stage will focus on 10Be/9Be ratio

measurements up to 3 GeV/n to cover

just beyond the energy range already

covered by ACE/CRIS and ISOMAX. The second stage will increase the measurement

range to 10 GeV/n.

With the high-resolution required to make those measurements and the energy

range of interest, HELIX offers the ability to measure other isotope ratios. HELIX

will measure the ratios of 10Be/9Be, 22Ne/20Ne, 7Li/6Li, 10B/11B at the highest

energies to date [31]. These measurements are intended to complement the results of

other cosmic-ray experiments to provide a clearer view of the cosmic-ray propagation

mechanism.

Some secondary goals of HELIX include the first measurements of 15N/14N,

18O/16O and 13C/12C above 1 GeV/n. There will be additional measurements of

B/C and 2H/4He as well as an attempt to measure 14C/12C. Primary H and He will

be measured up to 125 GeV/n [31].
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CHAPTER 2
High Energy Light Isotope Experiment (HELIX)

This chapter serves as an introduction to the HELIX experiment, including

background information about balloon-borne experiments and the reasoning for the

HELIX design. It also includes descriptions of the different detector components and

the aerogel fabrication process for the ring-imaging Cherenkov detector.

2.1 Overview of Balloon-Borne Experiments

Figure 2–1: Partially filled balloon
prepared to carry the STO-II payload
during the 2016 balloon campaign.
Image Source: [32].

HELIX is a balloon-borne detector to

measure the energy spectra of light nuclei

in cosmic rays. The experiment is designed

to be carried via a balloon to an altitude

of 40 km where the interaction depth is ∼

28.3 kg/m2. This means that the balloon

is above over 99 % of the atmosphere. At

this altitude, the primary cosmic rays will

interact directly with the detector system be-

fore entering the bulk of the atmosphere and

producing particle showers. The HELIX sci-

entific program includes at least two balloon

flights, the first of which will measure the

cosmic-ray energy spectrum up to 3 GeV/n

during its initial seven day flight. The first

flight data acquisition is limited to about 7 days due to the limited amount of liquid

helium on board to cool the superconducting magnet. The first flight is currently

scheduled for the 2021/2022 austral summer NASA Antarctic Balloon Campaign out

of McMurdo Station. The second flight will include an upgraded system to measure

cosmic rays up to 10 GeV/n in a 28 day flight.
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The project will use a 1.13×106 m3 zero-pressure balloon partially filled with

helium during launch, as shown in Fig. 2–1. The balloon expands to the full volume

around the desired float altitude as the pressure outside of the balloon decreases.

This helium provides the lift while it is ascending [33].

During the austral summer, the station receives 24-hour daylight that is useful

for balloon experiments. The payloads are all solar powered and so the constant

daylight keeps the project electronics functioning. The constant light makes it easier

for balloons to maintain a constant altitude and have longer flights. This is because a

day/night cycle heats and expands the balloon gas during the day, lifting the balloon

and then at night the gas condenses and lowers the balloon. The Antarctic austral

summer also produces a stratospheric anticyclone that provides a circular flight path

around the South Pole over the Antarctic continent [32]. When the balloon runs out

of helium, the payload is disconnected by an operator on the ground and it descends

using an attached parachute. The combination of the vast, isolated location with

effectively no electronic interference and constant daylight makes it an ideal place for

medium to long duration balloon flights.

2.2 Detector Background Information

This section is meant to introduce the physical motivation for the detector design

so that HELIX is capable of making high precision measurements of multiple light

isotopes in cosmic rays.

2.2.1 Measurement Goals

The HELIX instrument is designed to hold multiple detection systems to measure

cosmic-ray properties such as the charge, rigidity and velocity in order to identify

the nuclei that pass through the system. The instrument consists of four main

components: a 1 T superconducting magnet and a drift chamber tracker (DCT)

to measure the rigidity, as well as a time-of-flight (TOF) system and a ring-imaging

Cherenkov (RICH) detector to measure the velocity. The charge Z is measured by
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analyzing the pulse height from the TOF scintillator bars, which scales as Z2. The

particle mass, velocity and momentum are related by

p = βγmc. (2.1)

The momentum of a particle is determined by how much a particle track bends

in a magnetic field. For HELIX, this is measured with a 1 T superconducting

magnet and a DCT. The trajectory of a non-relativistic charged particle travelling

in a perpendicular magnetic field should bend in a circular path with the Larmor

radius given by qvB = (mv2)/rL. This can also be written in a form better suited for

relativistic particles, rL = p/(ZeB), where rL is the Larmor radius, p is the particle

momentum, B is the magnetic field strength and Z is the charge [20]. This Larmor

radius is often converted to a rigidity R in Volts. The rigidity quantifies the resistance

of a charged particle to being deflected by a magnetic field according to

R ≡ rLBc =
pc

Ze
. (2.2)

Combining Eq. 2.1 and Eq. 2.2, the mass of the particle can be calculated using

the measurements of the charge, rigidity and β by

mc2 =
ZeR

γβ
= ZeR

√
1− β2

β
, (2.3)

where the energy is often presented in terms of the energy per nucleon GeV/n.

The velocity of the particle can be measured in multiple ways. For lower energy

particles, the simplest method is a TOF system consisting of at least two detection

planes placed at a fixed distance apart. The amount of time it takes for the first

system to trigger, travel that distance and then trigger the second system should

give a measurement of β. This technique is used to measure β for particles up

to approximately 1 GeV/n. At higher energies, a RICH measures the velocity.

A charged particle travelling through a transparent radiator medium faster than
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the speed of light in the medium will emit coherent radiation in a cone known

as Cherenkov radiation (see Appendix A). A RICH consists of the radiator plane

where the Cherenkov photons are emitted from and a detection plane covered with

photosensors, such as silicon photomultipliers (SiPMs), that detect these photons at

a fixed distance from the radiator. The Cherenkov cone is detected as a ring on

this plane. Information on the radius of that ring, the distance between the radiator

plane and the detection plane and the radiator thickness are used to calculate the

Cherenkov opening angle θc. The radiator refractive index n, the velocity β and θc

are related by

cosθc =
1

nβ
, (2.4)

where particles with a higher β will produce a larger Cherenkov ring. Thus the

velocity of the particle has a direct effect on the Cherenkov ring radius.

2.2.2 Expected Resolution

With measurements of the mass and the charge, it is possible to identify the

specific isotopes and produce mass histograms like Fig. 2–2. The width of the peaks

depends on the precision of the charge, rigidity and velocity measurements. One of the

principal goals of HELIX is to measure the mass with high precision to achieve a four-

sigma mass separation between the isotope peaks for 10Be and 9Be [27]. According to

the simulation summarized in Fig. 2–2, this four-sigma separation should be possible

with a mass resolution∆m/m = 2.5 % at 3 GeV/n. It would be difficult to distinguish

the two isotopes at ∆m/m = 10 %.

The mass resolution is calculated according to(
∆m

m

)2

=

(
∆R

R

)2

+

(
γ2
∆β

β

)2

, (2.5)

where R is the rigidity as measured using the magnet and the DCT and β is the

velocity as measured with the TOF system and the RICH.
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Figure 2–2: Comparison between an instrument with 2.5 % mass resolution (left) and
one with 10 % resolution (right) to distinguish a 10Be peak from a 9Be peak. The
blue curve is the ‘measured’ mass spectrum in the simulation and the red curves are
the individual isotopic contributions assuming 10Be/9Be = 0.3. Image Source: [26].

Figure 2–3: The mass resolution of the different HELIX components. The black curve
is the quadrature sum of the RICH/TOF and DCT contributions according to Eq.
2.5. The mass resolution goal for HELIX (dashed line) shows that for essentially all
cosmic rays with E≤3 GeV/n (orange line), the measurements should be close to or
within the 2.5 % mass resolution. Image Source: [26].

The 2.5 % total mass resolution ‘budget’ for this experiment is split evenly

between the rigidity and velocity measurements ΔR/R = γ2 Δβ/β ≈ 1.8 %. For

3 GeV/n, this works out to Δβ/β ∼ 1 % [27]. For the RICH, the resolution is split
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evenly along the θ and n components of Eq. 2.4 according to(
∆β

β

)2

=

(
∆n

n

)2

+ (∆θtanθ)2 . (2.6)

This results in ∆n/n = ∆θ tanθ ≈ 0.07 %. Considering the other limitations of the

detector, the refractive index of the aerogel RICH radiator must be known to within

∆n/n = 0.07 % to get the velocity resolution necessary for the RICH detector.

Fig. 2–3 shows the contributions of the rigidity and velocity measurements

and their combination to the total mass resolution as a function of particle energy

according to Eq. 2.5. The rigidity is measured by a single instrument, which is limited

by the resolution of the particle tracking system. Up to 1 GeV/n, the TOF measures

β, but above that energy the uncertainty gets too large for the resolution allowance

so the RICH becomes the principal β detector. In Fig. 2–3, the sudden drop in the

TOF/RICH line at 1 GeV/n is due to switching from the TOF to the RICH detector.

2.3 HELIX Detector Components

The HELIX detector is composed of four main instruments: the 1 Tesla super-

conducting magnet and the DCT to measure the rigidity, and the TOF and RICH

detectors to measure the velocity, as shown in Fig. 2–4. These components will be

explained in the following section.

2.3.1 Superconducting Magnet

The central part of HELIX is occupied by a 1 T superconducting magnet built

by Cryomagnetics Incorporated and previously used by the High-Energy Antimatter

Telescope (HEAT) [34] for its five flights starting in 1994. HEAT measured the

positron fraction (e+/(e++e-)) and antiproton-proton fraction (p̄/p) in cosmic rays.

The magnet is sitting in a 260 L cryostat filled with liquid helium (LHe) to cool it

below the 9.8 K critical temperature [28, 27]. The LHe is expected to last seven

days. The magnet system previously functioned in an external pressure vessel. With

the HELIX upgrade to the system, it now functions at the low atmospheric pressure
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Figure 2–4: The HELIX detector labelled with all of the major components. The
gold coloured rings are the superconducting magnet coils and the DCT sits between
the coils in a pressurized vessel. The scintillator bore paddle is not shown in this
image, but it is located between the bottom of the DCT and the RICH radiator.
Image Source: [27].

experienced during flight when the balloon is at 40 km altitude. The magnetic field

has been mapped within the rectangular warm bore that measures 0.51×0.51×0.61 m3

[26]. The DCT sits within this rectangular bore, as seen in Fig. 2–4 [26].

2.3.2 Drift Chamber Tracker

The DCT tracks cosmic-ray nuclei that are deflected in the magnetic field from

the superconducting magnet. The purpose of the DCT is to measure the rigidity

of the particle passing through it, according to Eq. 2.2. The DCT fills the bore

with a multi-wire flat-geometry drift chamber. The DCT is housed in a pressure
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vessel so it can run at 1 atm, but the magnet could run at the local atmospheric

pressure. The DCT consists of 72 sense layers each with three drift cells. Each fills

0.45×0.45×0.58 m3 of the pressure vessel [28, 27]. The tracker uses CO2 as it is a low

diffusion drift gas. Combined with the ∼100 kV/m drift field and the high sampling

rate electronics, it is possible to achieve a spatial resolution of 65 μm for Z>3 cosmic

rays [26, 27].

2.3.3 Time-of-Flight

The TOF system is designed to measure the velocity for particles with E ≤

1 GeV/n as they pass through the different detector layers and to measure the charge

using scintillation light. There are three layers of the TOF system: the top layer,

bottom layer and bore paddle. The top and bottom TOF are separated by 2.3 m

where each layer consists of eight 0.2×1.6 m2 scintillator paddles that are 10 mm thick

[26] covering a total area of 1.6×1.6 m2. Each paddle is read out with 16 SiPMs, 8

at each end [27]. The signals from the SiPMs are digitized with 10 ps time-to-digital

converters that should achieve a timing resolution for the entire system to less than

50 ps for cosmic rays with Z>3 [28]. The timing resolution of the system is dependent

on the type and geometry of the scintillator and the electronics. This includes the

time for photons produced to reach the SiPMs and pass a discriminator threshold on

all of the TOF scintillator layers in the detector.

Particles traversing all of the layers of the TOF system trigger the data acqui-

sition. The transit time between the paddles can be used to estimate the velocity,

however, as the energy increases the velocities approach the speed of light c. For

energies above 1 GeV/n, the time difference for two particles with different masses,

such as 9Be and 10Be, measured over the 2.3 m separation, is within the 50 ps

timing resolution of the TOF system. So it cannot be used to distinguish the

particles. Therefore, at higher energies, the RICH system is used to make velocity

measurements.
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There is a bore paddle located between the DCT and the RICH radiator plane.

It is a 0.6×0.6 m2 scintillator paddle that is read out with 32 SiPMs total, 16 on each

end [27]. This bore paddle requires the particles to pass through the RICH radiator

layer. The three layers of scintillator paddles measure to charge up to Z=10.

2.3.4 Ring-Imaging Cherenkov Detector

The HELIX RICH is used to make velocity measurements for cosmic rays with

E>1 GeV/n, up to about 3 GeV/n for the first detector flight [28]. An explanation

of the physics of the Cherenkov effect is included in Appendix A. The RICH consists

of a radiator plane and a SiPM detection array, as shown in Fig. 2–5. It is designed

as a proximity focused Cherenkov detector so that it is compact, but able to produce

the high-resolution measurements necessary to distinguish different isotopes [35].

Figure 2–5: A diagram of the HELIX RICH
detector including the aerogel and NaF radiator
plane and the SiPM array. The yellow track is
a possible Be track through the RICH detector
and the blue cone is the resulting Cherenkov cone.
Image Source: [35].

The radiator plane is com-

prised of a square array of 36

radiator tiles covering an area

of 0.6×0.6 m2. This includes an

NaF tile in each of the corners of

the plane. NaF has a well mea-

sured spectrum with wavelength

with an average refractive index

of n = 1.33 so it will be used for

in flight calibration of the RICH

detector. The remaining 32 tiles

are aerogel tiles with n ≈ 1.15 − 1.16. This refractive index was chosen so that the

velocity threshold (β ≥ 0.87, E ≥ 1.03 GeV/n) overlaps with the upper end of the

TOF capabilities (≈ 1 GeV/n). Both the aerogel and NaF tiles are approximately

100×100×10 mm3 with flattened and angled corners to fit into aluminum frames.
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There is a 0.5 m expansion length between the radiator and the SiPM detection

plane. The SiPM array is populated in a checkerboard pattern to save costs while still

sampling the Cherenkov ring enough to meet the velocity resolution requirements.

The SiPMs are 6×6 mm2 Hamamatsu pixels arranged in 8×8 pixel arrays. The

SiPM array is made of 200 pixel arrays of 64 pixels each which results in a total of

12800 SiPM channels [35]. 8 SiPM arrays are read out on a board consisting of 16

CITIROC1A [36], which have a timing resolution of 100 ps and single photoelectron

charge resolution. The SiPMs were chosen because of their insensitivity to the

magnetic field that is found in the region of the detector plane and because of

their superior spatial resolution. For these reasons, SiPMs are a better choice than

conventional photomultiplier tubes. The SiPM plane is maintained at 0◦ C to reduce

the background from temperature-dependent dark current [35].

2.4 Aerogel Manufacturing and Properties

The principal focus of the thesis research was on the RICH aerogel and its

refractive index variations. It is important to understand how the aerogel is produced

and some properties to motivate that work. HELIX’s aerogel was made by Makoto

Tabata, a HELIX collaborator at Chiba University, Japan.

2.4.1 Aerogel Production

Aerogel was first used in physics experiments in the 1970s to fill the gap in the

refractive index between gases and liquids/solids for producing Cherenkov light in a

transparent material. Aerogel is a synthesized solid silica-based material that is highly

porous, with silica and air structures on the order of 10 nm [37]. Silica aerogels are a

class of materials with a wide range of refractive index, transparency and density that

can be tuned to suit an experiment’s requirements. It has a styrofoam-like texture,

but it is extremely brittle and prone to cracking and surface deformations if it is not

handled properly. Aerogel tiles have been produced with refractive indices just above

1 up to 1.3 [37].
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Conventional aerogel fabrication methods are capable of producing extremely

high transparency, low refractive index tiles that are either hydrophilic or hydrophobic

and suitable for many experiments. If hydrophilic aerogel is exposed to moisture, it

will become opaque and dissolve. It could be used for projects where it is sealed from

moisture, but that is not practical for a balloon experiment. Hydrophobic aerogel is

treated with a reagent that replaces the hydroxyl groups on the surface of SiO2 with

a hydrophobic group during drying so it will not react with water [38]. HELIX uses

hydrophobic aerogel because it is not sealed and if water did reach the tile it would

lose the transparency that the RICH detector depends on.

Based on the 1-3 GeV/n energy range of interest for the HELIX RICH, the

geometry constraints in the RICH detector and the range already covered by the

TOF, the RICH will use ultrahigh refractive index hydrophobic aerogel tiles with

n ≈1.15-1.16. Tiles with these properties are difficult to fabricate with conventional

methods due to cracking. Dr. Tabata uses a novel pinhole drying technique to make

the tiles.

2.4.2 Fabricating the Aerogel

The aerogel starts its fabrication as a wet-gel that is synthesized with a silica

precursor, water, a solvent such as methanol or N,N-dimethylformamide [37], and

catalysts, whose ratios are tweaked depending on the desired ending refractive index

[39]. The gel is then left to dry for an hour in a mold so it solidifies enough to be

transferred to a pinhole drying container.

The pinhole drying container is a semi-sealed container where the wet-gel sits

on a sieve with a glass lid. The lid has a series of pinholes with tape on top that

is removed to control the drying rate as seen in Fig. 2–6. This fabrication method

allows the wet-gel to dry uniformly and slowly and produces a high-density aerogel

without any cracks. The mass of the wet-gel is measured every day until it reaches

65 % of its initial mass after about 70 days of drying [39].
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Figure 2–6: The pinhole drying process for an aerogel tile with the wet-gel sealed in
the container with most holes closed on the left and then the same tile after drying
with most holes opened. The tile shrinks as it dries. Image Source: [39].

After the pinhole drying, the wet-gel is put into a bath of ethanol along with

the hydrophobic reagent silazane to exchange the initial solvent and to make the tile

hydrophobic [37, 39]. Then the aerogel is subjected to supercritical drying by liquid

CO2 for approximately a week [40]. This process extracts the ethanol and replaces it

with air. A photograph of a finished aerogel tile is shown in Fig. 2–7.

2.4.3 Aerogel Properties

The aerogel produced using this method has a final density of around 530 kg/m3

with an estimated refractive index between n=1.15 and n=1.16 [40]. The refractive

index is proportional to its density so a higher density aerogel will have a larger

refractive index.

After the tiles are completed, they are subjected to several tests to determine

if they are suitable for HELIX. The first test is a visual check to see if there are

any major deformations or cracks. Of the 96 tiles produced for HELIX, 74 did not

have cracks [39]. The transmittance is measured, using a Hitachi spectrophotometer,

between 200 nm and 800 nm [38]. On average, the aerogel has a transmittance of

about 73 % at 400 nm [39]. A preliminary refractive index measurement is completed

for each tile using a laser deviation method. This method involves measuring the

deviation of a 405 nm laser beam passing through a corner of the aerogel [38]. The
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method to do this is described in great detail in [38]. Fig. 2–8 is summary of the

transmittance and refractive index for each of the 96 aerogel tiles produced. The

refractive index measurement for each point in Fig. 2–8 is the average measurement

from the laser deviation in the four corners of a single aerogel tile, which was then

repeated for all 96 aerogel tiles.

To get the required RICH resolution for HELIX, the refractive index must be

known over the whole aerogel face, not just in the corner. Another method is required

to measure refractive index variations across the aerogel tiles.

Figure 2–7: A picture of a flight
quality aerogel tiles in its frame.
Image Source: [39].

Figure 2–8: Transmittance and refractive
index from the corners of an uncut aerogel
tile. The measurements shown are from
the 96 aerogel tiles produced for HELIX.
Image Source: [39].

The aerogel tiles are initially 120×120 mm2 and 10 mm thick. If the tiles pass

the initial tests, the edges are water-jet cut to 100×100 mm2 to fit the aluminum

frames shown in Fig. 2–7. The full RICH radiator includes 32 aerogel tiles and 4

NaF tiles as mentioned previously. Of the 96 tiles produced, at least 32 of them must

be considered flight quality. This means that they have no blemishes and are within

the requirements for the refractive index, transmittance and thickness. Fifty aerogel

tiles with these properties were marked as flight quality tiles and sent to McGill for

full refractive index scans. This will ensure that there are backup tiles for the array.
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CHAPTER 3
Aerogel Calibration System

This chapter is a description of the various components of the aerogel calibration

system. It is designed to measure the Cherenkov cone opening angle as a charged

particle of fixed energy from a linear accelerator passes through a HELIX RICH

aerogel tile. The principal research focus of the author for this project was in all

aspects of the development and operation of the calibration system.

3.1 Aerogel Calibration Background

This section presents the motivation for measuring the refractive index of aerogel

tiles including an explanation of past techniques from other experiments to do this

task. It explains the approach taken by HELIX to make these measurements.

3.1.1 Motivation for Aerogel Calibration

In the HELIX RICH, and other experiments that image Cherenkov rings, a

charged particle with sufficient energy will pass through the radiating medium and

produce a Cherenkov cone. This cone is detected on a plane at a fixed distance away

as a ring. The radius of this ring gets larger with increasing velocity, so by measuring

the radius, it is possible to determine the particle’s velocity β. This interaction obeys

Eq. 2.4, which relates the refractive index n and particle velocity β to the Cherenkov

cone opening angle θc. During measurements with these types of systems, n is known

and θc can be calculated. Determining θc requires information about the radiator

geometry, the distance between the radiator and the detector and the measurement

of the Cherenkov ring radius. Then it is straightforward to calculate β and hence the

energy of the particle according to

β =

√
1−

(
mc2

E

)2

, (3.1)

that compares the rest energy and the total energy of the particle. This task becomes

more difficult when the particles do not enter perpendicular to the radiator face as
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that produces an ellipse of Cherenkov photons. That shape must be accounted for in

order to determine β accurately.

However, all of these calculations are based on the assumption that the refractive

index of the radiating medium is known precisely and that the faces are flat and

parallel. In homogeneous materials that have flat parallel faces, like pure NaF crystals,

the Cherenkov ring only needs to be measured at a single location since the refractive

index should be constant throughout the material. This is difficult for aerogel where

each tile has variations in the refractive index due to the fabrication. This necessitates

having a way of making high precision refractive index measurements across all tiles.

The approach for the aerogel refractive index calibration measurements used in

this experiment is to rearrange Eq. 2.4 such that the particles of fixed energy go

through the aerogel perpendicular to the surface. In that scenario, the Cherenkov

ring should be circular and, with all other variables fixed, the change in the radius

measured should be solely due to the refractive index change. By this method, the

setup of the calibration system is fairly similar to the RICH structure, but allows for

a high precision measurement of the refractive index.

3.1.2 Cherenkov Ring Measurement Geometry

Figure 3–1: Diagram modified from [41] showing the geometry of the Cherenkov
photon path through aerogel. r is the Cherenkov ring radius, ze is usually half the
aerogel thickness, d is the distance from the aerogel surface to the detection plane.
The other parameters do not appear in the final equation of measured variables, Eq.
3.2, but are involved in the derivation.
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At the interface between the exit face of the aerogel and the air, as shown in Fig.

3–1, there is an additional refraction of the Cherenkov photons due to the different

refractive indices of the the two media. Cherenkov photons should be emitted equally

throughout the ∼10 mm aerogel thickness so the average emission point ze is just

quoted as half of the aerogel tile thickness ze ∼5 mm.

To account for this extra refraction there is an equation that uses the variables

shown in Fig. 3–1 to relate the measurable quantities of the system, the ring radius

r, the half-thickness ze and the aerogel-CCD distance d, to the desired output, the

Cherenkov cone opening angle θc. It requires additional input of the refractive index

of air, n0 - 1 = 3×10-4 [42], and the velocity of the charged particle. The main

equation used for the analysis, based on Fig. 3–1, is

tanθc = n0β

(
r − zetanθc√

(r − zetanθc)2 + d2

)
, (3.2)

which is solved numerically using a function like Python’s scipy.optimize.fsolve. θc is

related to n and β by Eq. 2.4. In a calibration setting, β is fixed to extract n. During

HELIX flight data analysis, β is calculated by a measurement of θc and n as measured

with the described calibration system. The focus of McGill’s HELIX research was to

build a calibration system following the convention in Fig. 3–1 using a 35 MeV linear

accelerator (linac). This linac provides a narrow beam of ultra-relativistic electrons

to measure the refractive index variations across the aerogel tiles.

3.1.3 Measuring the Cherenkov Ring

Overall, it is important to have accurate measurements of r, d and ze in order

to accurately calculate the index n. However, this is an ideal model where the beam

is coming in perpendicular to an aerogel tile with uniform n and ze. If the beam

interacts with the aerogel at an angle or ze, d or r are not all correct, then this will

introduce systematic uncertainties in the calculation of the refractive index.
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The aerogel tiles for the HELIX experiment are expected to be between n = 1.15

and n = 1.16. For this reason, the index is typically set to 1.155 for calculations

and simulations. The electron beam for the calibration experiment described in this

work has an energy of 35 MeV resulting in β ≈ 1. For a n = 1.155 medium with a

35 MeV electron beam, the Cherenkov cone opening angle θc = 30.0◦ by Eq. 2.4. If

n = 1.15, θc = 29.6◦. While running the system, the distance d in Fig. 3–1 is typically

between 274 - 280 mm according to the distance calibration procedure described in

Appendix B. According to Eq. 3.2, with the aerogel tile half-thickness ze = 5 mm

and d = 278 mm, increasing n from 1.15 to 1.155 increases the Cherenkov ring radius

on the detection plane by over 5 mm.

3.1.4 Previous Aerogel Calibration Experiments

LHCb, AMS-02 and CREAM required refractive index measurements of their

aerogel tiles. LHCb [43] is an experiment on the CERN LHC to measure the decay

of B mesons. The LHCb RICH consists of two separate detectors: one with n = 1.03

aerogel [44] and C4H10 gas and the other with CF4 [43]. AMS-02 [45] is an antimatter

and cosmic-ray nuclei experiment mounted to the ISS where the RICH radiator

plane includes an inner region of NaF tiles surrounded by n = 1.05 aerogel. The

RICH measures the particle charge and velocity. The CREAM experiment was a

balloon-borne experiment to measure the flux of cosmic-ray nuclei [46]. The CREAM

CHERenkov CAMera (CHERCAM) system used n = 1.05 aerogel for their particle

charge measurements. It could not measure velocity as γ of the particles are high so

β = 1 and the Cherenkov ring radius does not change [47].

There are several methods that were employed to make the refractive index

measurements for these projects. These methods can be divided into two categories:

those using lasers and those with charged particle beams.

The laser methods measure deviations of a laser beam as it passes through a tile

to either measure the absolute or relative refractive index at a specific wavelength.
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In the so-called gradient method, if there is an index gradient perpendicular to the

beam direction, the beam will deviate from the path it would take without a gradient

[47]. For the rotation method, the refractive index is determined by measuring the

deviation of the laser beam while the aerogel is at different angles with respect to

the beam direction. The gradient and rotation methods were used to measure the

refractive index for the HELIX project by Thomas Rosin [48]. These methods all

require corrections for surface profiles and for thickness of the tiles and this introduces

sources of systematic errors.

LHCb developed a method that involved the 500 MeV electron beam of the

DAΦNE Beam Test Facility in Frascati, Italy and the Aerogel Photographic Anal-

ysis by CHerenkov Emission (APACHE) imaging system [44]. AMS and CREAM

subsequently tested the use of this method for their calibration. The electron beam

passes through the aerogel, creating a Cherenkov ring of photons that are recorded

on a photographic plate. The ring size is reduced using a focusing system based on

a spherical mirror. The Cherenkov ring properties are calculated by precise image

analysis of the photographic plates. The main limitation is that this method is time

consuming, taking three days to fully analyze two AMS-02 or CREAM aerogel tiles

that are approximately 115×115×25 mm3 [45, 47]. This method was used for LHCb,

although it was ultimately not used for the complete study of the aerogel tiles for

AMS-02 [44].

3.1.5 Challenges in Measuring the Aerogel Refractive Index

There is no standard method of determining n of aerogel, as the choice of analysis

method depends on the requirements of the specific project. Many methods rely on

strict geometric assumptions such as that the faces of the aerogel are flat and that all

adjacent edges are perpendicular, for their optics arguments to work. The gradient

method relies on neighbouring measurements to calculate a relative refractive index
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change. It also requires fine measurements of the aerogel properties like surface

features and thickness.

The beam method most closely resembles what happens in a RICH detector,

with a charged particle creating a Cherenkov ring, but analyzing the photographic

plate takes too long to be reasonable for large scale experiments. One option is to

use a charge coupled device (CCD) camera and scan on a detection plane at a fixed

distance from the aerogel, but this would still take quite a long time for a single point

on the aerogel tile. The method used by HELIX has the same general premise as this

beam test, but focuses on a more efficient detection method.

3.1.6 Method Adopted for Calibration

One of the methods adopted by HELIX for the refractive index measurements is

based on using an electron beam. With a fixed beam energy, the changes in the aerogel

refractive index should alter the Cherenkov ring radius measured on a detection plane.

HELIX does not use photographic plates on its detection plane, like LHCb in their

beam method, to map the entire Cherenkov ring. HELIX opts instead to sample the

radial profile of the Cherenkov ring and identify the ring radius based on the position

of the Cherenkov profile peak. This sampling technique was initially proposed by Ian

Wisher, a HELIX collaborator from the University of Chicago, as a way of saving on

the cost and time of the calibration procedure compared to photographic plates or a

full two-dimensional CCD array.

This method is based on the simplified design in Fig. 3–1 with the aerogel faces

and the detection plane placed perpendicular to the beam direction. The velocity

of the particle β dictates the Cherenkov cone opening angle θc. A fixed distance

d away, the Cherenkov photons are recorded on a detection plane. The detection

board features sixteen linear CCD photosensors placed radially from the centre of

the detection board to sample the Cherenkov ring. The CCDs are positioned such

that the centre of each CCD is at a 200 mm radius from the board centre. The board
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Figure 3–2: A diagram of the detection board for the aerogel calibration system. The
black lines are the positions of the CCDs on the board centred at a 200 mm radius.
It shows that if the board is placed at a distance where the resulting Cherenkov ring
radius is roughly 200 mm, then the Cherenkov ring (red) will pass through the centre
of all of the CCDs.

is placed at a specific distance from the aerogel where the radius of the Cherenkov

ring on the board is approximately 200 mm. Fig. 3–2 shows an example of a 200 mm

radius Cherenkov ring centred with the system where the ring passes through the

middle of every CCD. These CCDs will record the radial profile of the Cherenkov

ring during the calibration procedure. In the analysis, these profiles will be fit to find

the peak of the distribution. The position of those peaks on the board will be used to

fit a circle to determine the Cherenkov ring radius. This radius is used to determine

the refractive index n according to Eq. 3.2.

The final detector design of this aerogel calibration system is the focus of the

remainder of this chapter. Subsequent chapters will focus on analyzing the data to

produce index maps of aerogel tiles and an exploration of the tolerances associated

with the system’s measurements.
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3.1.7 Requirements

HELIX’s electron beam method has certain requirements to make it a feasible

way of measuring the refractive index. Each of the sixteen CCDs consists of 3694

pixels that are 8 μm long and 200 μm wide arranged in a single pixel wide line. This

results in CCDs that are 200 μm wide and 29.552 mm long total. With an expected

ring diameter of 200 mm, the CCDs cover a very small fraction of the detection

board area, as shown in Fig. 3–2. The beam must run at high enough current so

that it produces a sufficient number of photons to produce a significant CCD signal.

This method also requires a well focused narrow beam so that it only probes a small

region of the aerogel at a time. A larger beam could interact with areas with different

refractive indices at the same time making the Cherenkov ring wider and difficult to

analyze.

3.2 HELIX Aerogel Calibration System Components

The system designed to measure the Cherenkov ring consists of three main parts:

the linear accelerator producing the electron beam, the aerogel scanning system and

the detection system.

3.2.1 Electron Beam

This project uses a 35 MeV electron linear accelerator (linac) located at the

National Research Council of Canada (NRC) in Ottawa.

The linac produces a focused pulsed beam of electrons up to 35 MeV with a

normal energy distribution with σE ≈ 0.4 % [49]. The beam pulses are 2.5 μs long

and are produced at a rate, which is defined by the user, in multiples of 30 Hz. After

acceleration, the electrons pass through the linac exit window pictured in Fig. 3–3.

That image shows the laser alignment for the system. A small laser placed on the

wall opposite the exit window allows the linac user to align their setup with the beam

location within ∼1 mm of the true beam exit position, as shown in Fig. 3–3.
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The linac beam profile is approximately a two-dimensional Gaussian with σx,y .

2 mm, as measured by a beam profile monitor. The monitor measures the beam

profile on wires in two dimensions located ∼100 mm before the exit window to get

cross-sections of the beam and check its symmetry and positioning [49].

Figure 3–3: An aerogel tile is shown in the
foreground. The laser beam passing through
the upper left corner of the tile is used to
align the system with the electron beam.

For the aerogel calibration pro-

cedure, the linac was set at 90 nA

with the 2.5 μs pulses repeating at

60 Hz. These parameters were settled

on during the detector’s research and

development phase since the current

gave sufficient light output to clearly

see a Cherenkov ring signal over the

background, but without saturating

the charge coupled devices (CCDs) on

the detection plane.

This information allows for a sim-

ple calculation of the number of electrons in every 2.5 μs linac pulse, according to

90× 10−9C
s(

1.602× 10−19 C
electron

)
×
(
60pulses

s

) = 9.36× 109
electrons
pulse

. (3.3)

3.2.2 Charge Coupled Devices

The CCDs used in this project are Toshiba TCD1304DG linear CCDs (Fig. 3–4)

that are 1 pixel wide and 3694 pixels long. Each CCD features 32 dummy outputs at

the beginning followed by 3648 active pixels, which collect photons, and ending with

14 additional dummy outputs [50]. The pixels themselves are 200 μm wide and 8 μm

long p-n photodiodes. Since the CCD is only one pixel wide and oriented radially

from the board centre, the 3648 active pixels on each of the sixteen CCDs record
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a one-dimensional radial profile of the Cherenkov ring along 8 μm×3648 pixels =

29.184 mm.

Figure 3–4: Toshiba
TCD1304DG CCD.

Figure 3–5: A diagram of the TCD1304DG layout from
[50]. Three of the CCD pins are occupied by the ICG,
SH and φM input timing signals. VAD and VDD provide
power to the CCD. Data collected in the CCD is clocked
out through a buffer to the output signal (OS) pin.

Each CCD has 22 pins, six of which are occupied. Two pins are reserved for

supplying power to the board, one is the output signal pin and the remaining three

are for input timing signals, as shown in Fig. 3–5. The CCDs are plugged into sockets

on the electronics board to provide the input power and timing signals and to direct

the output signals.

Three signals are required to run the CCDs. The shift gate (SH) is responsible

for setting the exposure window; one pulse starts the exposure and the other ends it.

During that exposure time, the CCDs accumulate charge from collecting Cherenkov

photons. The integration clear gate (ICG) pulse acts as the readout trigger to the

CCDs, after the exposure, to initiate readout of the individual pixels. It is also used

as the system wide data acquisition trigger. The master clock (φM) is a 2 MHz

square wave that shifts and reads out a pixel of a CCD every four φM pulses. This
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works out to be every 2 μs. Each CCD has 3694 pixels so it is read out in 7.388 ms.

The process of creating these timing signals will be discussed further in Section 3.3.2.

3.2.3 The Cherenkov Ring Detection Board

Figure 3–6: Diagram of the detection board designed and built by Adam Gilbert, an
electrical engineer at McGill University, for this system. Any changes to the original
board are given in the diagram in red, timing signal repeaters and splits are outlined
in blue, the op-amps are outlined in magenta and the board connections for power,
timing signal input and signal output are outlined in yellow.

The Cherenkov ring detection board holds the CCDs that detect the Cherenkov

photons produced from the interaction of the electron beam with aerogel. It consists of

a 500×500 mm2 printed circuit board (PCB) designed by Adam Gilbert, an electrical

engineer at McGill University, with the sixteen CCDs arranged radially around the

board centre, as shown in Fig. 3–6. The CCDs are positioned such that the centre

of each CCD is at a radius of 200 mm from the centre of the board so that it can

record the radial profile of the Cherenkov ring. The ring is sampled at equal angular
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intervals. The premise of this detection board is that the centre and radius of the

Cherenkov ring can be calculated accurately with this sampling without having to

detect the full Cherenkov ring.

The three timing signals that control the exposure and readout of the CCDs are

produced by external NIM/CAMAC electronics modules and all enter the detection

board through a connector in the back. These signals are split and copied so that

each of the three signals reaches all of the CCDs. A single trigger sent to the board

exposes and reads out all of the CCDs simultaneously. Data from the CCD pixels

are routed to the digitizing electronics via coaxial cables with one cable per CCD.

3.3 Readout Sequence and Electronics

The pulses and timing signals are an essential part of running the CCD data

acquisition (DAQ) system and ensuring that there is low electronic noise and back-

ground light levels. For the system electronics, there are pulses that are created with

the linac electronics and those that make the CCDs function.

3.3.1 Linac Electronic Pulses

The trigger pulse is a signal provided by the linac electronics with the same

frequency as the electron beam pulse. It acts as the overall trigger for the aerogel

calibration system. The electron beam pulse occurs approximately 50 μs after the

trigger. This time between the trigger and the beam pulse leaves some time to

initialize the CCD exposure window so that when the beam pulse occurs, the CCD

exposure will have already begun to collect the resulting Cherenkov photons.

However, there is some jitter observed in the arrival time of the beam pulse

relative to the trigger. To amend this, there is an electronic alignment pulse created

from the beam pulse that is 15 μs wide. This width encompasses the full range of the

jitter observed in the beam arrival time, thus the electron beam pulse will occur at

some point in this 15 μs window, as shown in Fig. 3–7.
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If the delay is set properly, the alignment pulse will fit between the two shift gate

(SH) pulses separated by the 20 μs exposure time. This effectively guarantees that

a single beam pulse will occur during each CCD exposure window so that the CCDs

collect the photons from that beam pulse. The process of creating the integration

clear gate (ICG) and SH pulses for the CCDs are discussed in the next subsection.

Figure 3–7: The relative timing of the electronics and beam pulses. The SH and ICG
pulses are initiated by the trigger pulse. The trigger, alignment and beam pulses are
all initiated by the linac electronics, but are separate signals. The beam pulse occurs
∼50 μs after the trigger. A delay after the trigger pulse aligns the SH pulses around
the beam pulse. The beam pulse timing jitters relative to the trigger, so the alignment
pulse encompasses the range for the jitter and is used to set the SH delay. The φM
square wave is not shown as its short 500 ns period would clutter the diagram.

3.3.2 CCD Timing Signals

The timing signals for the CCDs are made using a series of NIM/CAMAC

electronics modules. As mentioned previously, there are three timing signals to run

the CCDs: the SH is made of two pulses marking the start and end of the CCD

exposure, the ICG starts the readout of the pixels and the φM pulses clocks the data

along and out of the CCD.

The main purpose of this timing signal system is to produce clean timing signals

that synchronize the CCD trigger/readout with the linac beam pulses so that the

CCDs are only exposed when the beam pulses, as discussed in Section 3.3.1. The key
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Figure 3–8: Diagram of the NIM and CAMAC system to produce the shift gate (SH),
integration clear gate (ICG) and master clock (φM) timing signals for the CCDs given
a trigger from the linac.

to connecting the beam pulse to the electronics trigger is the trigger NIM pulse and

the master delay shown in Fig. 3–7 and Fig. 3–8. The trigger consistently pulses

about 50 μs before the beam pulse. While the rest of the circuit in Fig. 3–8 is involved

in coordinating the timing and structure of the ICG and SH pulses, the first delay in

the circuit shifts all of those pulses so that the SH pulses surround the beam pulse.

The logic involved in creating the timing signals is summarized in Fig. 3–8 for

the SH and ICG pulses. There are multiple NIM/CAMAC units that are used to

split the discriminated trigger pulse signal to be used in the rest of the circuit. The

length of pulses and their relative timing are based on requirements from the CCD

data sheets [50]. All of the timing pulses are created after the trigger pulse and set

to their relative timing structure and shape by a series of gate and delay generators,

signal splits, a logic unit, level adapters and attenuators.

The master clock, φM, is generated using a Berkeley Nucleonics Model 645

arbitrary waveform generator to produce a 2 MHz square wave between 0 V and 1 V.

The pulse is sent directly to the board to set the clock pulse rate.
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The final relative timings of the pulses generated in the timing circuit are shown

in Fig. 3–7. In this setup, the two SH pulses are 2 μs positive-going pulses, separated

by 20 μs, which sets the exposure window of all of the CCDs for a given single trigger.

The electron beam pulse arrives during that exposure time. When the exposure ends,

the ICG pulse then initiates the readout of the pixels according to the timing of the

φM pulses, where a pixel is read out every four φM pulses.

3.3.3 Data Acquisition Computer

The data acquisition is done using a single-board cPCI-6620 series Adlink com-

puter in a crate connected to four Acqiris U1063A DC270 Fast Analog to Digital

Converters (FADCs) [51]. The Acqiris DC270 is an 8 bit, 250 MHz bandwidth,

1 GS/s FADC with four internal channels and one external trigger channel. The

computer runs a Linux-based operating system with drivers for the FADCs installed.

The acquisition code consists of a central C++ structure to send the commands to

the FADC, and a Python-wrapper to make the program easier to use. The FADC

collects data by sampling these input channels at a user-defined number of samples

and sampling rate after receiving a trigger pulse through one of the external channels.

The sixteen CCD outputs from the board are connected to the internal channels

on the FADCs. The ICG pulse is the main trigger for the system in one of the

FADC’s external channels; it starts the CCD readout and the FADC sampling. The

clock-out of the pixels and the FADC sampling are run completely separately, with

one sending signals and the other recording signals. However, the parameters are

set such that when one pixel is clocked out the FADC is ready to read it. After the

ICG pulse, every four φM pulses, a single pixel is shifted and read out (clocked out)

simultaneously on all of the CCDs. For a 2 MHz φM, the pixels are clocked out at

0.5 MHz or 2 μs for each of the 3694 pixels and those signals are sent to the FADC.

Separately, but off the same ICG trigger, the FADC is set to sample from the signals

sent to its channels from each CCD. The FADC is set to sample every 2 μs for 3694
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samples starting at the same time as the CCD clock out so there is a single sample

recorded on the FADC per pixel. The total readout takes 7.388 ms. When this data

is analyzed, each recorded data value corresponds to the signal from a single pixel

and can be plotted to form a trace like Fig. 3–9.

3.3.4 CCD Settings

All CCDs are supplied with 4.9 V, but when read out on the digitizers, each CCD

has a slightly different baseline voltage and range due to manufacturing tolerances

and how long the CCD has been used. Studies of the range of each CCD showed

that they had very similar baselines and ranges. The digitizers are set to act like a

digital oscilloscope so it has an adjustable time axis and an adjustable voltage axis.

Those values are set so that the signal fits perfectly in the digitizer window. For the

CCDs, the window size (1 V) and offset (∼-0.7 V) for the readout with the FADC is

the same for all of the CCDs. The time axis is set to match the number of samples

(3694) and sampling rate (0.5 MHz) of the CCD readout.

Each CCD has a range of 0.7-0.8 V between the baseline of a completely dark

CCD to the CCD saturation level. If light is applied past the point of saturation of

a CCD pixel, then the signal will begin to bleed over to the neighbouring pixels. For

this reason, the current of the linac is set such that there are enough photons to make

a clear signal in the pixels, but it does not saturate them.

The FADC functions on an inverted voltage scale so that the baseline is at a

high voltage and any light on the CCDs will cause the voltage recorded to decrease.

Fig. 3–9 is an example of a single CCD readout, or trace, for one CCD directly from

the digitizer showing this effect. There is one data set with a Cherenkov ring (data

trace) and one from the dark frame (dark trace). The inverted scale is apparent

with the higher signal voltage recorded for the dark trace and lower voltage for the

data trace. The dark frame records the CCD baseline. The dark frame is the pixel

mean of 100 dark traces taken successively. The data is usually plotted as the dark
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Figure 3–9: A single CCD readout trace
from a Cherenkov ring data set and a dark
frame readout. Both traces are raw data
directly from the digitizers.

Figure 3–10: A single readout Cherenkov
ring trace subtracted from the 100 dark
frame readout average. The trace is
smoothed with an 11 pixel median filter.

frame subtracting each data trace from it to get the signal above the background, as

shown in the single CCD profile in Fig. 3–10. The signal change from the baseline is

equivalent to the charge generated in the pixels from the absorption of photons.

The analysis chapter, Chapter 4, will describe the conversion of pixel number

for each CCD to that pixel’s physical position on the detection board, which is used

during analysis. Fig. 3–10 is an example of a trace that would then be fit with

parabolas to determine the peak position.

3.4 Scanning Setup

The experimental setup for the aerogel calibration system consists of two parts

shown in the digital model of Fig. 3–11. The first part consists of the detection

board that sits atop a three-axis positioning system. The second part is a two-axis

positioning system with the aerogel in its holder on top of that system. This moves

the aerogel in a grid pattern in the electron beam path. Both of these parts are

mounted on an optical table so that they are aligned with each other and then the

entire system can be positioned so that the detection board and the aerogel face are

perpendicular to the beam.
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Figure 3–11: A digital model of the aerogel calibration system. The electron beam
enters from the left producing a Cherenkov cone in the aerogel. The Cherenkov ring
is detected by the CCDs on the board on the right. Model Credit: Thomas Rosin.

3.4.1 Detection Board Position and Orientation

Figure 3–12: The back of the detec-
tion board system supported on the
three-axis positioning system. Model
Credit: Thomas Rosin.

The detection board is mounted verti-

cally with the CCDs positioned as shown in

Fig. 3–6, with CCD 1 at the bottom and

the CCD number increasing clockwise. More

details of the board itself and its electronics

were discussed in Section 3.2.3. The board

output on the bottom right corner leads to

the FADC channels. The orientation of the

board in Fig. 3–6 is how it is positioned in

the setup. The board is supported vertically

using brackets on top of the positioning

system as can be seen in Fig. 3–12.

Fig. 3–11 and Fig. 3–6 show a clearer view of the front of the board. The

electron beam passes through the middle of the hole in the detection board.
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3.4.2 Detection Board Positioning System

The board positioning system consists of two 100 mm range horizontal stages

stacked, but oriented perpendicular to each other, and a single 50 mm vertical stage

on top to form a three-axis positioning system. On top of this system there are two

brackets supporting a small vertical optical breadboard that the detection board is

secured to, as seen in Fig. 3–12.

These positioning stages are controlled by the user to calibrate the distance from

the aerogel to the CCDs and to align the centre of the board with the Cherenkov

ring centre. Any changes to the stage position are documented to be included in later

analysis if necessary. These stages are used before the beam scans begin, but remain

fixed during the scan.

3.4.3 Aerogel Frame and Holder

Figure 3–13: Diagram of the exit face of the
aerogel tile in the holder. The aerogel is secured
in the holder with the top bar. The base plate
acts as an adapter between the holder and the
stages. Model Credit: Thomas Rosin.

Each aerogel tile is cut such

that it fits in a custom-made, an-

odized aluminum frame, as shown

in Fig. 3–13. Since the aerogel

is so fragile and brittle, the frame

provides some protection to the

edge of the aerogel. To secure the

aerogel in the frame, it is glued

in with Dow Sylgard 184 silicone

adhesive. In addition, there are

tabs on the edges of the frame.

These tabs support the tile, when

it is installed in the payload, in

case the adhesive fails. The aerogel

is placed so that it should be flush
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with the inner edge of the frame tabs. Each tile has its own frame with a unique

binary label to be able to identify and orient it, as described in Section 3.4.4.

Fig. 3–13 shows how an anodized aluminum aerogel holder secures the framed

aerogel to the top of the aerogel scanning system. The holder remains fixed once

adjusted to the correct alignment so that each aerogel tile is placed at the same

position. It is U-shaped with a groove at the bottom to exactly fit the aerogel frame

and secure it to the scanning system. A top bar with the same groove is screwed on

the top to prevent the tile from tipping over.

3.4.4 Aerogel Scan Coordinate System

Fig. 3–14 defines the coordinate system of the beam scans. The aerogel is

glued into its aluminum frame with the beam travelling towards the observer in this

reference frame.

Figure 3–14: The coordinate system
for the aerogel calibration system. All
of the tile rotations about one of the
axes are right-handed rotations.

The beam exit face of the aerogel, as

seen in Fig. 3–14, can be identified by the

tabs next to the face. One of the tabs has

a binary label that consists of a starting

and ending mark and space for a six digit

binary code between those. The flight quality

aerogel tiles are numbered 1-50. The tile in

Fig. 3–14 has the binary label -001010- that

identifies it as flight tile 10. For all of the

flight quality aerogel tile scans, the tiles are

oriented with the tile ID along the top edge.

Fig. 3–14 shows the labelled axes of this

coordinate system. Any rotation of the tile is done by a right-handed rotation about

one of the axes.
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3.4.5 Frame Scanning System

This system involves a stack of a single 100 mm range horizontal stage and two

vertical 50 mm range stages with the aerogel holder bolted on the top so it has a

vertical and horizontal range of 100 mm as visible in Fig. 3–11. The aerogel and the

range of the positioning system are deliberately the same size so the entire aerogel

tile can be scanned in the beam. To scan the aerogel, the beam and the detection

board are fixed so the scanning stages move the aerogel in the beam’s path in a 5 mm

grid.

3.4.6 Frame and Board Systems Power and Control

Both of the systems are secured to a large optical breadboard base and fixed into

place for the duration of the aerogel tests, as shown in Fig. 3–11. They are powered

from a common 24 V DC power supply. All six of the stages are connected via ribbon

cables to a motor driver control system where there is one DM556T digital stepper

driver for each of the six stage motors. These drivers are all controlled by an Arduino

Mega [52]. An Arduino program is integrated into a series of serial based commands

to move each stage in the system.

3.5 Scanning Procedure

A lot of effort has been put into refining the procedure to make the results as

reproducible as possible. To accomplish this there are tasks that need to be done at

a specific time in a certain order to maintain the same standard for all scans.

3.5.1 Pre-Beam System Checks

There are several checks that need to be done on the system itself before the

beam hall is closed and the beam is turned on. These checks include verifying that

the timings signals are working properly and ensuring that the CCDs are free from

dust that can block Cherenkov light.

In general, all of the components that cannot be directly observed during the

scan procedure are checked ahead of time. All of the stages are checked to see if
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they move properly for a specific movement command. If the stages failed to move,

the same part of the aerogel would constantly be exposed to the beam. This would

damage the aerogel after a few minutes exposure and cause the tiles to crack. The

entire setup is covered with a large light-tight box to ensure that any stray photons

from emergency lighting or electronics do not reach the CCDs.

3.5.2 Initialization

The initialization process of the beam test consists of all of the tasks that are

done before every beam scan. The principal tasks are acquiring two data sets to

ensure that the data set will be as clean and accurate as possible for analysis.

The linac is completely shut down every night so before a new day of aerogel cal-

ibration, the linac must be turned on. This process takes 20-30 minutes. Throughout

the day, the beam is temporarily turned off so that the aerogel tiles can be changed

in the calibration system. The system is not completely shut off for each of these

temporary stops. The radio frequency feed to the linac is turned off to prevent the

electron gun from pulsing. This can be turned back on, once needed, to produce a

stable electron beam current in a minute.

The dark frame data set is taken before the beam is turned on and consists of

100 readouts of the 16 CCDs. This is a measurement of the background light levels

when the beam is off and the linac hall is dark. The dark frame also corrects for the

slightly different baseline in each CCD. All of the grid scan data sets use the same

dark frame that is taken just before the scan.

The test data set is taken once the beam has been turned back on and it is stable

at 90 nA. This test involves repositioning the board such that the Cherenkov ring is

optimally aligned with the centre of each CCD. When the board is properly aligned

the grid scan can begin. The position of the board’s z-stage is recorded after this

alignment as its position is necessary to calculate the distance d between the aerogel

face and the CCD to use in the analysis (see Appendix B).
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3.5.3 Graphical User Interface

Figure 3–15: The graphical user interface used
for data acquisition and for moving the frame
scanning system stages.

The entire calibration system is

controlled remotely from a graphical

user interface (GUI) to move the

stages and initialize data acquisi-

tion. The GUI was written by the

author to have a simple interface for

anyone who uses the system. Fig.

3–15 is a screenshot of the GUI.

The first section opens the test

program that is included when the

FADC drivers are installed. It is

mainly used for CCD level trou-

bleshooting.

The next section changes the

board position. One moves all of the

stages home and then moves them to

the specified positions for large scale movements. The second opens up a smaller GUI

to allow the user to press a single button to move any of the stages in 1 mm or 5 mm

increments. It is used to move stages to centre the Cherenkov ring on all of the CCDs

on the board.

The next section changes the aerogel frame position on its positioning system

with essentially the same pop-up GUI except for two axes. There is also a shortcut to

move the frame stages to (25,25), the distance from home horizontally and vertically

in mm, for the test data set just before the grid scan.

The data acquisition section is the main purpose of this GUI. The grid scan was

written during the project development to be as flexible as possible allowing for any
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number of readouts, number of CCDs read, grid size and spacing. The single position

takes a data set with the above parameters without moving any stages. To start the

grid scan, the user saves the settings and begins the run in the Grid Pattern section,

which moves the stages, acquires data and organizes files automatically.

3.5.4 Grid Scan Parameters

To avoid complications arising from scanning too close to the tile edges, the grid

scan only takes data on the inner 90 mm square of the aerogel tile between 5 mm

and 95 mm vertically and horizontally. There is 5 mm between each of the grid

scan points and this results in a total of 19×19 = 361 data points. At each of these

grid positions, the data set consists of 100 beam pulses and readouts. During each

readout, the pixels are clocked out simultaneously on all of the CCDs and written to

a buffer before the next beam pulse occurs.

As shown in Fig. 3–14, the aerogel coordinate system defines (0, 0) as the bottom

left corner of the tile. When the stages are at home, the vertical stages are at their

lowest so the beam actually passes through the (0, 100) position. When the beam

scan starts, the stages first move to (5, 95) and then take data in a horizontal row

before the moving up by 5 mm to scan the next line (90 mm) on the aerogel tile

moving horizontally in the opposite direction. This scan pattern continues until the

final grid point at (95, 5).

3.5.5 Data Formatting and Management

There is a standard scan directory naming convention for this system. One

example of this is ‘flight30_X0Y0Z0_191212’. The first part indicates the tile name

‘flight30’ so it is the 30th tile deemed to be of flight quality by the tests in Section 2.4.3.

Next is the rotation of the tile according to the right-handed coordinate system

rotation in Fig. 3–14. X0Y0Z0 is the base orientation where the binary label is

at the top and the beam exits out of the aerogel face with the tabs and label. This is

followed by the date in YYMMDD. For the grid scan, this directory contains separate
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.dat data files for each scan point. At the end of each of those data file titles there is

an added ‘_hn_vm’ tag. n and m are two-digit numbers to indicate the horizontal

and vertical stage position for that data file relative to the origin in mm.

Each data file contains the 100 readouts of all of the 16 CCDs with 3694 samples

for each CCD for a total of 5910400 measurements. The data file is a simple .dat file

with a column for each CCD. Each row is the signal from one pixel for a readout of

the CCD. Subsequent readouts are appended to the bottom. For example, readout 1

will be the data in rows 0-3693 and readout 2 is in rows 3694-7387. All of the data is

written in binary format because there is a lower overhead time to write that many

values in binary rather than floats. By switching to writing in a binary format the

program went from completing an entire scan in 62 minutes with a 50 Mb file per

scan point to a scan that took 35 minutes with a 23 Mb file per scan point. The

program also outputs a header file to save the FADC settings used for that scan.

These include the voltage range, offset, time between samples and the total number

of samples.

At the beginning of the grid scan program, the parameters for the scan are read

in from the GUI. Then the program initializes the construction of the dynamically-

allocated arrays that are used as pointers for the data. This sets the size of the buffer

memory for a three-dimensional array where the dimensions are the number of pixel

samples per readout, the number of CCDs and the number of readouts per position.

All 100 readouts are collected to fill the entire buffer before it is written in binary

format to the file. At the end of the readout, the destructor is called to clear the

constructed arrays so that the next data set can be acquired.

3.5.6 Beam Scan Timing

The beam scan process was refined over the course of more than a year of research

and development with the electron beam before the production run of aerogel scans

51



was undertaken. This subsection is a detailed description of the timing involved in

all of the processes of the calibration procedure.

For the actual grid scan there are two main contributions to the overall time of

the scan: the data acquisition and the stage movements between grid points. The

60 Hz beam pulse rate means that there are 16.7 ms between pulses. This rate was

specifically chosen so that there was enough time to expose the CCDs, read them

out and write them to the buffer before the next pulse came. The CCDs are exposed

for approximately 20 μs and then read out at a rate of one pixel every 2 μs. The

total readout of the CCDs takes up 7.4 ms of the 16.7 ms between pulses, with a

small amount of time dedicated to saving data to the buffer. The system does not

do anything for the rest of the time between pulses. This was set intentionally as it

was found that at trigger rates higher than 60 Hz, the FADC missed random triggers.

The buffer is not written to the disk until all 100 readouts in that position are taken.

In total, initializing the points, acquiring 100 readouts and writing all of that data

to disk takes about 3.3 s per point. It then takes about 2.5 s for the stages to receive

the command to move 5 mm, move that distance and then settle before the next

data acquisition. With all of these different timing processes, a complete grid scan

consistently takes about 35 minutes.

In an eight-hour day of aerogel scans, it is possible to scan 8-9 aerogel tiles. The

start time of each grid scan is recorded in the aerogel scan logbook summary presented

in Table 3–1. This table shows that there are 50-60 minutes between each aerogel

scan. The scan itself takes 35 minutes. This would suggest that there is at least a

15 minute period between the end of one scan and the beginning of the next. There

is a 2-3 minute pause before entering the linac hall to allow for the ozone produced

from the linac electrons to subside. The aerogel tile is then taken out of the holder,

repackaged and then a new one is secured into the holder. When that is done, the

room is secured and sealed again. That whole process takes about 5 minutes. It takes
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a further 5 minutes to take the dark frame, turn the beam on and allow it to stabilize

and to take the test data sets to align the board, as outlined in Section 3.5.2.

3.6 Data Summary

There were fourteen multi-day trips to the electron beam at NRC in Ottawa.

During the last four trips (11 days) all 50 flight quality aerogel tiles were fully scanned.

Table 3–1 are the logbook entries for the flight quality aerogel tile scans.

All of the flight tiles were scanned at least once with a few repeated scans for

tiles where data was missing due to beam quality. There was also at least one scan

of the reference tile HLX 21-3 at the beginning of each day. The analysis of all the

data is still ongoing.
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Date Tile ID Time Date Tile ID Time
2019-12-03 HLX 21-3 4:28:24 PM 2020-02-18 HLX 21-3 11:53:42 AM

flight4 5:29:25 PM flight31 1:09:37 PM
flight5 6:29:44 PM flight32 2:04:34 PM
flight6 7:24:18 PM flight33 3:00:55 PM
flight7 8:14:31 PM flight34 3:45:57 PM

2019-12-04 flight8 11:02:50 AM flight35 4:47:06 PM
21-3 11:52:43 AM flight36 5:37:55 PM
flight9 12:38:28 PM flight37 6:45:12 PM
flight10 2:10:46 PM 2020-02-19 HLX 21-3 12:13:03 PM
flight11 3:07:03 PM flight35 5:06:13 PM
flight12 4:03:41 PM flight36 5:51:56 PM
flight13 5:04:54 PM flight37 6:40:32 PM
flight14 6:20:30 PM flight38 7:39:01 PM

2019-12-05 HLX 21_3 10:27:33 AM flight39 8:28:09 PM
flight15 11:21:30 AM flight40 9:12:29 PM
flight16 12:11:05 PM flight41 10:04:42 PM
flight17 1:00:27 PM flight42 10:58:21 PM
HLX 21_3 5:15:30 PM 2020-03-02 HLX 21_3 4:22:38 PM
flight18 6:07:34 PM flight43 5:14:57 PM
flight19 6:51:16 PM flight44 6:45:48 PM
flight20 8:20:33 PM flight45 7:31:32 PM
flight21 9:07:06 PM 2020-03-03 HLX 21_3 11:51:53 AM

2019-12-06 HLX 21_3 10:15:01 AM flight45 1:22:10 PM
flight1 11:10:55 AM flight46 2:12:56 PM
flight2 12:01:51 PM flight47 3:02:39 PM
flight3 1:39:30 PM flight48 4:00:42 PM

2019-12-11 HLX 21-3 11:54:20 AM flight49 7:00:47 PM
flight22 12:54:41 PM flight50 7:56:40 PM
flight23 2:49:33 PM flight6 8:48:22 PM
flight24 3:34:21 PM 2020-03-04 HLX 21_3 11:56:19 AM
flight25 4:26:11 PM HLX 21_3 12:45:00 PM
flight26 5:09:24 PM HLX 21_3 1:38:00 PM
flight27 6:17:27 PM HLX 21_3 3:17:21 PM
flight27 7:05:41 PM flight9 4:26:31 PM

2019-12-12 HLX21-3 10:12:29 AM flight10 5:28:08 PM
flight28 11:34:45 AM flight12 6:27:27 PM
HLX21-3 12:19:18 PM
flight29 1:06:10 PM
flight30 2:06:25 PM

Table 3–1: Aerogel scan logbook summary.
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CHAPTER 4
Aerogel Scan Analysis

Ste O’Brien, a postdoc at McGill University wrote the data analysis software

used to get from the raw data sets collected during the beam scan to full aerogel tile

refractive index maps. This section was written by the author of this thesis to explain

that software’s features and general data analysis properties.

4.1 Mapping CCD Output to Physical Position

For each of the 361 positions in a grid scan, there is a data file with 100 readouts

of 16 CCDs with 3694 pixels each. For every grid there is also a file of 100 dark

readouts to correct for background illumination on the CCDs. The dark frame used

for analysis is the pixel by pixel average over the 100 dark readouts, which results

in a single 3694 element data set for each CCD. The inverted scale of the data set

is dealt with by subtracting each of the 100 readouts from the dark frame leaving a

positive going signal with a baseline at 0 V. Then an 11-pixel-wide median filter is

applied to the readouts to smooth out pixel-to-pixel variations, as shown in Fig. 4–1.

Figure 4–1: A background subtracted initial CCD readout (blue) and the same data
processed with an 11 pixel median filter (orange). The x-axes show the conversion
between pixel number and the physical position of that pixel on the board.

These variations could come from different pixel gains or from the various sources

of noise. CCDs will have dark noise, the photon counting shot noise from Poisson
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statistics, readout noise associated with converting photoelectrons to a voltage and

noise in the digitizers among other sources. The median filter helps to reduce the

intensity of these variations to make it easier to analyze the data. It does this by

comparing the signal of a pixel to the signals in surrounding pixels and taking the

median signal of the group as the central pixel’s new value. An outlying signal from a

single pixel compared to the overall trend will not pass this filter and thus the overall

CCD readout is smoothed out while preserving the underlying signal structure of the

Cherenkov ring.

The 16 CCDs are positioned radially and at equal angular intervals where the

CCD centre is at a radius of 200 mm from the board centre. Each of the CCDs’

3694 pixels are 8 μm long. If the CCDs are placed perfectly, where half the pixels

are on either side of 200 mm, then the first pixel should be at 214.772 mm and the

last one at 185.228 mm from the board centre. The CCD position is highly unlikely

to be exactly correct, but this micron-level pixel position is given for the purpose of

having a pixel position for the data analysis. The raw data is usually expressed in

pixel number, but this is converted to a distance r from the board centre using

φ = (CCD − 1)× 22.5◦ (4.1)

r = 214.772− (p× 8× 10−3) mm , (4.2)

which depends on the CCD number (1-16) and the pixel number p (0-3693). This

conversion is shown in the two x-axes of Fig. 4–1.

The coordinates of each pixel on every CCD can be calculated by

x = −rsinφ mm y = −rcosφ mm . (4.3)

With the CCD angle and the pixel number, it is simple to match the position of

each pixel on a CCD physically with the data for that pixel. An example of this is

shown in Fig. 4–2. In Fig. 4–2, the CCD readouts are plotted 150 mm closer radially

56



Figure 4–2: An example of the output of the CCDs projected to their angular position.
To make the CCD details easier to see, the CCDs are plotted at 50 mm radius instead
of the true 200 mm position. The intensity of the light recorded by the CCD is given
by the colour scale.

to the board centre compared to their physical positions to make it simple to see the

Cherenkov ring sampled by the CCDs. The plot uses the mean CCD readout for the

100 events on each CCD with the dark frame subtracted and then matches that data

to the physical pixel coordinates using Eq. 4.1-4.3. A version of this plot is used to

centre the Cherenkov ring on the CCDs before each grid scan.

4.2 Determining the Peak of the Cherenkov Ring

At this point in the analysis, the pixels of the 16 CCDs are mapped to their

physical positions on the board using Eq. 4.1-4.3. The data for each of the CCDs is

then individually fit with a two-pass parabolic fit to find the peak of the distribution,

as shown in Fig. 4–3.

For the first parabolic fit in Fig. 4–3a, the first and last 250 pixels of each CCD

are ignored as there can be some deviations on the edge of the CCD. This first pass

is meant to find the parabolic peak that should be close to the Chernekov ring peak.

That first fit peak can be used for the second fit. The second fit, shown in Fig. 4–3b,

is another parabolic fit done with the 2000 pixels surrounding the peak of the first

fit. This two-pass technique helps to reduce the chance that deviations or noise on

57



(a) 1st parabolic fit. (b) 2nd parabolic fit.

Figure 4–3: The parabolic fits to the Cherenkov ring profile data from a single CCD,
shown in blue. (a) is the first parabolic fit and it does not include the first and last
250 pixels due to potential edge effects. (b) is the second parabolic fit over a 2000
pixel window around the peak of the first parabolic fit.

the edges of the CCDs affect the final fit peak position. Both fits involve a parabolic

fit done with numpy.polyfit, a Python least-square polynomial fitter.

Using the parabola standard form formula az2+ bz+ c = 0, the peak is found at

zmax = −
b

2a
. (4.4)

The uncertainty in that peak position is calculated from the diagonals of the polyfit

covariance matrix and the formula

∆zmax =

√(
− 1

2a

)2

∆b2 +

(
b

2a2

)2

∆a2. (4.5)

Eq. 4.1 and Eq. 4.3 are used to convert the position of the second parabolic

fit peak for a given CCD, zmax, to its physical position on the detection board

(xmax, ymax), setting r = zmax.

4.3 χ2 Cut to Poor Parabolic Fits

The inclusion of a χ2 cut in the data analysis was motivated by the observation

of signal variations in just under 20% of the CCD readouts which are not associated

with photons. These variations will be referred to as background waves. The majority

of the data does not have significant noise and remains essentially constant except
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(a) Clean Dark Frame Trace. (b) Dark Frame Trace With Background
Wave.

Figure 4–4: Examples of dark frame traces without (a) and with (b) the background
wave. The background wave appears in about 20% of dark and data traces.

for some small variations on the level of the digitizer sensitivity, as seen in Fig. 4–4a.

The digitizer measures the voltage at fixed intervals hence the step structure. Ideally,

there would be no background wave and, in the absence of Cherenkov light, the trace

would be essentially flat like in Fig. 4–4a. The dark frame traces were used for these

plots instead of Cherenkov ring data as it is simply much easier to see the waves on

a flat background. Fig. 4–4b is an example of the next CCD readout in the same

data set that has this background wave. The background wave will appear in all 16

CCDs for a single readout. Overall, these waves have a total voltage range of about

18 mV covering the majority of the pixels. A typical Cherenkov ring has a voltage

range of the CCD of about 70 mV so this effect can cause variation in the voltage on

the scale of 25%. Even at this level of noise, the gradual change of the voltage from

this background wave across the CCD makes it difficult to see on a plot, but easy to

identify in a χ2 distribution.

The dark frame is an average of the 100 readout traces for each of the 16 CCDs.

The background wave will also appear in about 20% of the dark frames. Based

on observations, the background wave can appear anywhere in the CCD pixels.

Generally, the average dark frame was not observed to be noticeably affected by

the background waves. χ2 cuts eliminate the data frames with the background wave.
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After an extended search into the source of the background waves, it was traced

to cross-talk caused by the φM signal going into the detection board. Resolving this

issue would necessitate redesigning the detection board to separate the timing signal

input. The decision was made to account for these waves in the analysis.

A χ2
par cut acts as a filter to eliminate poor parabolic fits to CCD readouts. It

is calculated for all the CCDs in each of the 100 readouts excluding the first and last

250 pixels again, but using the second parabolic fit parameters.

The χ2
par is calculated for the parabolic fit for each CCD readout according to

χ2
par =

3444∑
i=250

(
datai − fiti

σpixel

)2

, (4.6)

where the sum is over all of the pixels in the desired range and σpixel is the the pixel

error. The χ2
par is usually expressed in its reduced form where χ2

ν,par=χ2
par/(N − 3)

where N is the number of pixels, in this case N=3444-250=3194.

The pixel error is estimated as the pixel-to-pixel variations in the CCD. Consider

the signal variation of each pixel i to its immediate neighbours, which is datai−datai−1

and datai − datai+1 for i in the range 250≤ i ≤3444. The collection of these two

variation calculations for every pixel is expected to form a normal distribution. The

pixel error σpixel is set to the rms of this distribution.

The CCD readouts with the background waves produce the highest χ2
ν,par which

has been observed to consistently affect just under 20% of the 100 readouts×16 CCDs

= 1600 data sets. The simplest way of cutting the affected data sets is to set a straight

cut level. This is done by putting the χ2
ν,par in increasing order and associating it

with a cumulative distribution function (CDF) to produce a list ordered from 0 to

1. Any of the χ2
ν,par that have a CDF value greater than 0.8 are cut. This eliminates

the upper 20% of χ2
ν,par. In total, 0.8×1600 traces = 1280 fits will pass this cut. The

peak position (xmax, ymax) of each of those fits on the detection board and the error

on that peak position, ∆zmax, are used for later analysis.
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4.4 Excluding CCDs

The aerogel’s aluminum frame and the tile holder obscure the path of some of

the Cherenkov photons when one is scanning near the edges. The Cherenkov photons

should be produced almost uniformly throughout the ∼10 mm aerogel thickness.

However, those produced when the beam passes close to the tile edge and the frame

can get absorbed by the frame or scatter off of it. In Fig. 4–5 and Fig. 4–6, the

electron beam passes through the top edge of the aerogel tile. The upper portion of

the Cherenkov ring is blocked by the frame and will not reach the CCDs. The lower

CCDs still record their typical Cherenkov ring profile like CCD 1 in Fig. 4–5. The

top CCD (CCD 9) and the three CCDs on either side of it (CCDs 6-12) record very

low levels of light with no apparent Cherenkov ring profile structure. These low light

CCDs are excluded from the analysis for that point and potentially the entire top

row as all of the plots should produce similar results to Fig. 4–2.

Figure 4–5: An example of CCD readouts
from the (x, y) = (50, 95) position of a
grid scan showing an acceptable CCD 1
and an excluded CCD 9 from Fig. 4–6.

Figure 4–6: Board view of signals with
the beam at (x, y) = (50, 95). The
Cherenkov light is partially blocked by
the aerogel frame.

This poor data is excluded by creating a list of CCDs that should be excluded at

each grid scan position. Since this is an edge effect, the list only includes data for the

first two or three rows and columns from the tile edges. Each aerogel tile is placed at

the same position so, for a given geometry, the list of CCDs that should be excluded
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for a specific position should be the same. These excluded CCDs have been verified

by more analytical means. One of these methods is the mean signal since it will be

much lower for excluded CCDs than those with light, as shown in Fig. 4–6.

4.5 Fitting Data to a Circle

Figure 4–7: A circle fit to the CCD readouts
to determine the Cherenkov ring radius. The
blue points are the parabolic fit maxima of
the CCD data, the red circle is the fit to those
points with the centre marked by the x.

After the last analysis step, the

data consists of the x-y positions on

the board of the pixels where the

Cherenkov ring peaks for every read-

out of each CCD. The data is filtered

by the χ2
ν,par limits. If a CCD is

blocked by the frame then all of the

points belonging to that CCD are ex-

cluded from the circle fit for that run.

This smaller data set is fit with a circle

of radius r and centre position (xc, yc)

using the iminuit [53] minimization

package to minimize

χ2
circle =

∑
i

(
r −

√
(xmax,i − xc)2 + (ymax,i − xc)2)

∆zmax,i

)2

, (4.7)

which is a sum over the readouts from all CCDs that passed the χ2
ν,par cuts. Fig.

4–7 is an example of matching the position of the maximum for each CCD readout’s

parabolic fit to its physical position on the board. iminuit fits those points with a

circle that represents the Cherenkov ring position. The radius of the circle and its

uncertainty are necessary to then calculate the refractive index.

4.6 Calculating the Refractive Index

The final step in the analysis for a single data point is to convert the calculated

Cherenkov ring radius to the refractive index. For the data set in this example, the
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aerogel-CCD distance is d = 278 ± 1 mm. There is a half-thickness of ze = 5 mm,

an air refractive index of n0−1 = 3×10-4 and β ≈ 1 for E = 35 MeV. The radius for

this example data set is r = 198.6±0.1 mm based on the circle fit from the previous

section. The refractive index n is calculated by using Eq. 3.2 to get the Cherenkov

cone angle θc and then applying θc to Eq. 2.4 to get n.

At the time of writing, a full determination of the systematic uncertainties are

still ongoing. As such, the uncertainty on the aerogel surface to CCD distance

is stated as d = 278 ±1 mm, for this specific example, which was calculated by

measuring various distances in the system as discussed in Appendix B. An exact

systematic uncertainty for ze for use in the analysis has not been agreed upon yet.

Systematic uncertainties for d and ze are not incorporated into the analysis yet,

but they are discussed in Chapter 5. It is also important to note that this data

analysis procedure and the Geant4 simulations presented in Chapter 5 assume that the

electron beam is perpendicular to both the aerogel tile faces and the CCD detection

plane. Realistically, it is possible that the beam is at some small angle with respect

the system. Future analysis into sources of systematic uncertainty should explore the

effect to determine the possible contribution from the electron beam alignment.

The statistical uncertainty on the refractive index, ∆n, is calculated by building

a normal distribution of r where µ = r and σ = ∆r and calculating n for each value

in that distribution. This produces another normal distribution where µ = n and

σ = ∆n. For the example in this section, n = 1.154 and the statistical error is ∆n

= 1×10-4, which results in ∆n/nstat = 9×10-5. These values will vary depending on

the tile and the position on the tile, but should be similar. This relative statistical

uncertainty is well within the required resolution of ∆n/n = 7×10-4. The overall

measurement uncertainty will be dominated by systematic uncertainties, which are

still under investigation, with a small contribution from statistical uncertainties.
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4.7 Producing Refractive Index Maps

A full aerogel calibration scan involves a grid with 19×19 = 361 positions sep-

arated by 5 mm on the tile’s inner 90×90 mm2. The analysis procedure is used to

calculate the index n at each of these points. The final data product of this analysis is

the position of the beam on the aerogel face and the refractive index at that position.

The colour map is a way of visualizing these final (x,y) position and index arrays.

Fig. 4–8a is a colour map of the refractive index made by repeating the analysis

for all the grid scan point. There is more variation in the index near the tile edges,

which coincides with where more CCDs are excluded due to the frame edge blocking

the photons. The accuracy of the radius measurements and refractive index decreases

where more CCDs are excluded. There are a few points where the fit failed (dark

blue) due to bad data or a computation error. Each of these refractive indices are

entirely independent measurements, and overall they show that the refractive index

is smoothly varying within the expected refractive index range.

Fig. 4–8b is a two-dimensional fourth-order polynomial fit to the data which

helps to soften the sudden changes in refractive index near the tile edges and estimate

the refractive index where the analysis failed. The model fit is important for those

points where the fit failed or near the tile edges where CCDs were excluded from the

fit. Fig. 4–8c is the residual plot of the model and the fit. As expected, the largest

variation from the model map fit is at tile edges and where fits failed.

32 of the 36 tiles in the RICH will be aerogel while the 4 in the corners are

NaF. After this analysis, each of those aerogel tiles will be associated with a grid of

refractive index measurements covering the face of a tile. During the HELIX data

acquisition, when the RICH detector records a cosmic ray, the refractive index at the

closest measured point is used to calculate β and the mass. Therefore, it necessary

to understand how changes in the calibration system parameters can change the

refractive index and, in turn, the calculated cosmic-ray velocity β.
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(a) Calculated data map.

(b) 2D polynomial fit to data. (c) Residuals from the data fit.

Figure 4–8: Refractive index maps for a single aerogel tile at all of the grid points.
(a) is the output data from the analysis procedure. (b) is a 2D 4th order polynomial
fit over all of the data. Assuming the index varies smoothly, the fit helps to eliminate
sudden variations and to provide an estimate of the index for failed fits (dark blue) in
(a). (c) is the residual map calculated as (data-fit)/fit to show how the model differs
from the data. The tile edges where multiple CCDs are excluded and random fits
failed are the most affected. Initial plots generated by Ste O’Brien.
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CHAPTER 5
Exploring Aerogel Scan Systematic Uncertainties

The HELIX index resolution goal, ∆n/n = 0.07 %, is affected by the statisti-

cal uncertainty described in Section 4.6 and systematic uncertainties. The aerogel

calibration system aimed to limit sources of systematic uncertainty. Differences

between the real detector and the model from [41] will introduce uncertainty in the

measurements. There is a limit to how much uncertainty is allowable to achieve ∆n/n

= 0.07 %. This chapter will focus on exploring the properties of the electron beam

and calibration system and their effect on the refractive index and β.

5.1 Simulating the Cherenkov Ring with Geant4

Figure 5–1: Geant4 simulation of
the calibration system. Electrons
(red) generated before the tile pro-
duce Cherenkov photons (green)
in the aerogel, which are projected
on a detection plane after the tile.

Geant4 simulations are useful to explore

properties that are difficult to do in the real

setup. For the calibration system, it is used

to understand how the electron beam properties

affect the Cherenkov ring. The initial simulation

for this section was adapted from code written

by R. Prechelt, a HELIX graduate student at

the University of Chicago [41]. Some parameters

were modified to match the aerogel calibration

system setup and the linac beam properties. See

Fig. 5–1 for a sample of the simulation display.

5.1.1 Simulation Setup

The simulation begins with a two-dimensional

Gaussian shaped electron beam with σx,y =

2.0 mm. This beam profile is based linac beam profile monitor measurements. The

electron beam diverges; electron tracks are assigned angles pulled from a normal

distribution with µ = 0◦ and a divergence σ = 1.1◦, which is discussed in Section 5.1.3.
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The aerogel is a 100×100×10 mm3 tile and the beam passes through the square

faces. The entry face of the aerogel is placed 100 mm after the beam origin, perpen-

dicular to the beam axis. The Cherenkov photons are produced uniformly through the

10 mm thick tile. When the photons reach the exit face of the aerogel tile, they refract

at the aerogel-air interface, as shown in Fig. 3–1. The aerogel density is assigned

ρ = 531 kg/m3 at T = 295 K and P = 101325 Pa, based on an example of HELIX’s

aerogel density. The detection plane is a 0.5×0.5 m2 board placed d = 278 mm from

the exit face of the aerogel tile and perpendicular to the beam.

The entire system is in air with n0−1=3×10-4. Unless otherwise stated, n = 1.155

and the half-thickness ze = 5 mm. With these parameters in Eq. 3.2, the Cherenkov

ring radius is 197 mm. The simulation parameters are set to match the real beam

calibration setup as close as possible. The simulation records the position and energy

of photons and electrons on the detection plane. A typical simulation consists of

10000 electrons, producing ∼1.6×106 photons.

5.1.2 Analyzing Geant4 Results

Figure 5–2: Plot of the full simulation pho-
ton distribution (blue+orange) to the distance
range covered by the CCD pixels (orange).
Bins have the same size and position of the
real CCD pixels.

The Geant4 photon coordinates

correspond to the horizontal and

vertical distance from the board cen-

tre, in mm, which is also the central

electron beam axis. Based on the

system setup, the Cherenkov ring

on the detection plane should be

azimuthally symmetric. Due to this

symmetry, if there were CCDs, they

would all record the same signal so

the simulated photons are written in

terms of the distance from the board centre D2 = x2+y2 to describe the radial profile.
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In the histogram in Fig. 5–2, the bin width and position exactly correspond to

the theoretical position of the pixels in the real CCDs in orange according to Eqs.

4.1-4.3. It also shows the overflow of photons not detected by the CCD in blue. The

distance, CCD pixel positions and general aerogel and beam parameters are the same

between the beam test data and the simulated data. Therefore, it should be possible

to compare these data sets to determine how beam properties affect the resulting

Cherenkov ring, a task that would be impossible to test in the real system.

5.1.3 Determining the Beam Divergence for Geant4

Figure 5–3: Comparing Cherenkov ring data on a
single CCD with an unknown n (red fit) and a
Geant4 simulation result for n = 1.155 aerogel (blue
histogram).

Knowing the divergence

of the electron beam is nec-

essary to compare the real

beam data to the simulation.

The simulated Cherenkov ring

without divergence is much

thinner than what is observed

experimentally so the diver-

gence stretches the Cherenkov

ring so they have the same

profile. Fig. 5–3 is a real data set which was fit with a Gaussian with σ = 18.7 mm.

The simulation was run for multiple divergences until the width of the Cherenkov

ring produced was similar to σ for the real data. When the divergence was set at

1.1◦, the fit to the simulation had the same width as the data, σ = 18.7 mm.

The CCD readout sample and the closest Geant4 equivalent data set are given

in Fig. 5–3. The distance is the same in the real and simulated data sets, but Geant4

has a known n = 1.155 while, for the real data set, n = 1.154 with a statistical

uncertainty of ∆n/nstat = 9×10-5, as calculated in Chapter 4. Based on the refractive

index difference alone, the peaks of the distributions are not expected to be close but
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not perfectly aligned. The beam divergence helps to adjust the simulation to model

the real setup. This does not mean that the beam divergence of the NRC linac is

actually 1.1◦. Rather, the width of the simulated Cherenkov ring with this divergence

and the starting beam profile most closely resembles the width of the data fit.

5.1.4 Contributions to the Cherenkov Ring Width

The divergence, explored in Section 5.1.3, is not the only contribution to the

Cherenkov ring width. However, with the aerogel calibration system, it is difficult

to discern if the observed width is from beam divergence or other physical processes.

This study explores how the Cherenkov ring width, and general shape, change de-

pending on the physical electron processes involved. In the Geant4 simulation, there

are three electron processes: ionization, bremsstrahlung and multiple scattering.

Divergence and multiple scattering are expected to be the principal contributors to

the width since divergence is required to match the data Cherenkov ring width. For

multiple scattering, the effect decreases with increasing energy. At E = 35 MeV,

multiple scattering could significantly contribute to the profile width. Looking into

these factors is perfectly suited to Geant4 where they can be carefully controlled.

Fig. 5–4a is the base case, with the parameters described earlier, where there are

no electron processes or beam divergence. The only contributions to the Cherenkov

ring shape are photon processes like absorption, Rayleigh scattering and Compton

scattering, and the two-dimensional σ = 2 mm Gaussian beam. A Gaussian fit to the

Cherenkov ring gives a width of σ = 2.7 mm.

When ionization and bremsstrahlung are introduced (Fig. 5–4b), the Cherenkov

ring is wider with σ= 2.9 mm, which is mainly due to the wider range of energy of

electrons. Simulations with only ionization showed that this small shape change is

due almost entirely to ionization and not bremsstrahlung. A second simulation was

run to measure the energy of the electrons exiting the aerogel to determine the energy

loss, as shown in Fig. 5–5. With no electron processes, the electron energy remained
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(a) No electron processes (b) Ionization and bremsstrahlung

(c) All electron processes (d) Electron processes + divergence

Figure 5–4: The Cherenkov ring from Geant4 simulations with different electron
physical processes. (a) does not include any electron processes or divergence, (b)
adds ionization and bremsstrahlung and (c) adds multiple scattering. (d) includes all
three electron processes and beam divergence.

at 35.0 MeV, but with ionization, the weighted mean of the distribution decreases

to 33.6 MeV with a skew towards lower energies, producing a wider energy range.

Adding bremsstrahlung and multiple scattering does not change the shape of the

distribution although it decreases the mean energy to 32.3 MeV. Since the Cherenkov

cone angle gets smaller with decreasing velocity, the wider energy range produces a

wider distribution of Cherenkov angles. This produces a wider Cherenkov ring and

introduces some asymmetry from the skewed energy distribution towards smaller

radii. The electron energy distribution with added bremsstrahlung and multiple

scattering does not change its general shape or significantly shift its position. Thus,

the width observed in Fig. 5–4d is not due to the electron energy change.
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Figure 5–5: The energy of electrons at the aerogel exit face. The no-processes case is
a symmetric distribution while adding ionization changes the energy of the electrons
and skews it towards lower energy. Bremsstrahlung and multiple scattering do not
significantly impact the electron energy.

Fig. 5–4c adds multiple scattering to the data from Fig. 5–4b. This process

results in a significant change to the width of the Cherenkov ring as well as some

additional asymmetry in the shape. The Cherenkov ring width increases to σ=

13.3 mm compared to 2.9 mm without multiple scattering. Multiple scattering is

an elastic process so the energy of the electrons does not change, but the angular

distribution of electrons changes. The analysis is based on the idea that, on average,

the electron and Cherenkov cone axis should be perpendicular to the aerogel face. If

electrons are scattered at different angles from that axis then the Cherenkov cone will

be at an angle. With the refraction off the aerogel-air interface, the off-axis Cherenkov

ring will refract off that interface with different angles. These effects introduce a

wide angular distribution to Cherenkov cones which will produce an overall wider

Cherenkov ring on the CCDs and it could also account for the asymmetry.

Fig. 5–4d includes all three electron processes and the 1.1◦ beam divergence to

match the real data width. Like multiple scattering, beam divergence increases the

angular distribution of electrons producing off-axis Cherenkov cones. This leads to

a wider overall Cherenkov ring. Adding divergence increases the ring width from
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σ = 13.3 mm to 18.7 mm. This does assume that photon and electron processes and

beam divergence are the only contributions to the Cherenkov ring width.

All of the plots in Fig. 5–4 have the same binning and same number of simulated

electrons. Therefore, the difference in the height of these distributions is represen-

tative of the intensity of light reaching the detection board. Between the case with

no electron processes (Fig. 5–4a) and the one with all processes and divergence (Fig.

5–4d), the peak intensity of the light decreases to 1/7 of its initial value.

5.1.5 Cherenkov Ring Width Dependence on Aerogel Tile Thickness

One effect on the Cherenkov ring width that has not been considered yet is

the aerogel tile thickness. To explore this effect, the Geant4 simulation was run with

different thicknesses while keeping all other variables the same as previous simulations

including d= 278 mm, n= 1.155, σ = 2 mmGaussian beam and 1.1◦ beam divergence.

As shown in Fig. 5–2, real CCD data is limited to only a portion of the full

Cherenkov ring profile. In the CCD distance range, the Cherenkov ring profile does

not show the standard Gaussian structure so it is simpler to fit with a parabola. The

Geant4 simulation for the thickness test will appear as a full Gaussian-like distribution

like Fig. 5–2. Due to the overall Gaussian-like shape in this wider distance range,

the σ of the Gaussian fit is treated as the Cherenkov ring width. Fig. 5–6 shows the

change in the Cherenkov ring width σ as a function of tile thickness.

The ring width increases with thickness due to the amount of material the

electrons go through. The Cherenkov photons are generated uniformly throughout

the aerogel. For n = 1.155 aerogel and electrons with E = 35 MeV, the Cherenkov

cone angle is 30◦. A Cherenkov cone generated near the entry face will always be

larger, at a given position, then one generated later. This introduces an aberration

from all of the different radii contributing to the detected ring. The Cherenkov ring

width and the tile thickness are related by r0 = z0tanθc, replacing the ze in Fig. 3–1
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with the total tile thickness z0. For z0=10 mm, the Cherenkov ring width due to

aberration is r0=5.8 mm while for z0=5 mm, r0=2.9 mm.

Figure 5–6: The effect of changing the
aerogel tile thickness on the Cherenkov
ring width. The width of a Gaussian
fit to the Cherenkov ring profile increases
linearly with the tile thickness.

The Cherenkov ring width is approx-

imately linear with tile thickness. A

linear fit to the data has a y-intercept of

13.1 mm. Based on this intercept, a very

thin piece of aerogel the Cherenkov ring

would still have a finite width that must

come from other contributions. Based on

the studies in Section 5.1.4, the electron

beam properties such as the initial beam

width, electron processes and beam diver-

gence are the most significant contribution to the Cherenkov ring width. Therefore,

a thinner aerogel tile would decrease the Cherenkov ring width, but the decrease is

limited by the contribution of electron processes and beam divergence.

The number of photons changes with tile thickness according to Eq. A.1 in

Appendix A. In a thicker tile, there are more opportunities for electron interactions

with the aerogel to produce photons. The Geant4 simulation produces ∼16 pho-

tons/mm/electron in the aerogel tile. The wider 10 mm thick aerogel tile is used in

HELIX to maximize the CCD signal at the expense of having a wider Cherenkov ring

with the associated ring fitting difficulties.

5.1.6 Calculating the Refractive Index of Simulations

Most of the studies done with Geant4 in this section do not depend exactly on

the index output. They depend on the relative trends in the width and features of the

Cherenkov ring that can be used to explore parameter spaces that are difficult with

the real beam. For completeness, it is important to explore what noutput is calculated,

when the exact n used for the simulation, ninput = 1.155, is known.
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(a) Typical simulation, 10 mm thick, all
electron processes.

(b) 5 mm thick aerogel tile, all electron
processes

Figure 5–7: Calculating n for a Geant4 simulation with d = 278 mm, ze = 5 mm and
ninput = 1.155 and analyzed with the two pass parabolic fit. (a) is the full realistic
beam width fit for the typical 10 mm thick tile while (b) is the fit for a thinner
distribution from a 5 mm thick tile.

For this study, the simulation parameters are used including ninput = 1.155.

Assuming, for now, that d and ze do not have any uncertainties, any difference in

noutput to ninput should be due to the Cherenkov ring shape and the fitting function.

The simulated Cherenkov ring was put into bins corresponding to the size and position

of the CCD pixels and analyzed using the procedure from Chapter 4. This includes

the 11 pixel median filter and the two-pass parabolic fit. noutput is calculated with

Eq. 3.2 with the known d, ze and the peak of the fit, as shown in Fig. 5–7a.

If the peak of the first parabolic fit was used as the radius to calculate the output

index then it would be 6×10-4 above ninput. The second fit improves the accuracy so

the index is 4×10-4 over ninput. From this result, it is clear that there is a certain

amount of error associated with fitting a Cherenkov ring with this width. For HELIX,

the allowed uncertainty is ∆n/n ≤ 7×10-4 so this shift from the true input refractive

index is significant. Ideally, noutput = ninput = 1.155 and instead it is higher. This

difference could be due to a combination of the fitting technique and the Cherenkov

ring width.
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To determine if the Cherenkov ring width was responsible for the poor fit, the

same analysis was applied to a 5 mm thick tile in Fig. 5–7b. The effect of the tile

thickness on the Cherenkov ring width is discussed in Section 5.1.5, however, in this

section, the thinner tile is only used to determine if the thinner Cherenkov ring will

improve the fit quality. The two-pass parabolic fit was applied which produced a

calculated refractive index over the input ninput=1.155 of noutput − ninput = 5×10-5.

In comparison, the wider Cherenkov ring has noutput − ninput = 4×10-4. Both cases

had χ2
ν = 0.13. Therefore, the Cherenkov ring width is a major contributor to how

accurately the two-pass parabolic fit can determine the refractive index.

The difference between ninput = 1.155 and noutput is dominated by the width of

the Cherenkov ring. The width alone can shift the calculated refractive index. This

is assuming that the distance, thickness and CCD positions are all perfectly accurate,

but in reality these measurements have uncertainties.

5.2 Effect of Parameter Variations on the Refractive Index

This section focuses not on simulations, but on manipulating the equations used

during data analysis. Eq. 3.2 and Eq. 2.4 are used to calculate n from the Cherenkov

ring radius r, which is based on d and ze. If d and ze are not exactly the same

as the values for the aerogel and the system, then this will introduce systematic

uncertainties. In this section, we will alter d and ze in Eq. 3.2 and Eq. 2.4 to

determine the largest variations which will still result in ∆n/n <0.07 %.

The basic parameters used are r = 200.0 mm, ze = 5.0 mm, β ≈ 1 for E = 35 MeV

electrons and n0−1=3×10-4. The initial distance between the aerogel tile and the

CCD plane is 278.6 mm as that is the distance where the base n = 1.155 results in a

r = 200.0 mm Cherenkov ring.

5.2.1 Distance d Variations

To simulate the change in the refractive index if the distance was measured

incorrectly, the refractive index was calculated above and below the ideal distance of
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278.6 mm in 1 mm intervals. This is the situation where the radius is r = 200.0 mm

and ze = 5.0 mm, but the distance is not correct. If it were set to d = 278.6 mm,

the refractive index would be 1.155. The blue points in Fig. 5–8 show the results of

using those distances with Eq. 3.2 to calculate the refractive index compared to the

true refractive index given by the black dashed line.

Figure 5–8: The change in refractive index due
to an incorrect measurement of the aerogel-CCD
distance for a 200.0 mm radius Cherenkov ring
and a n = 1.155, 10.0 mm thick aerogel tile.

The second test incorporated

into this plot is the deviation

in d at the limits of ∆n/n.

For an n = 1.155 aerogel and

∆n/n = 0.07%, ∆n = 8×10-4 mm.

The plot includes this limit in red

above and below n = 1.155. These

lines represent the maximum devi-

ation from the true refractive index

that would still be within 0.07%

systematic shift in the refractive

index. This does not incorporate uncertainties on r and ze.

Rearranging the equation to find the distance where the refractive index reaches

the two red limit lines results in ∆d±=d±−278.6 mm=∓1.2 mm. This is just a

simple example to show that if the distance is not measured with uncertainties less

than approximately 1.2 mm, then the refractive index will be too far off of its required

resolution for HELIX’s target sensitivity. Therefore, the overall uncertainty must be

within these limits since r, ze and d each have their own uncertainties.

5.2.2 Half-Thickness ze Variations

The aerogel tile is not always 10.0 mm thick, as it is usually assumed to be, and

it is not necessarily constant across the aerogel tile. The thickness was measured at

TRIUMF, using a coordinate measuring machine, for all of the tiles and showed that
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the aerogel tile thickness ranged from 9.4 mm to 10.0 mm. These scans also showed

that the aerogel faces were not completely flat like Eq. 3.2 assumes. They actually

have slightly parabolic shapes.

Figure 5–9: Variations in refractive index n
due to the half-thickness ze with r = 200 mm,
d = 278.6 mm. The standard n = 1.155 is in
black and the n resolution limits are in red.

Fig. 5–9 follows the same

procedure as Fig. 5–8 except that

it involves a change in the half-

thickness ze between 4.0 mm and

6.0 mm. d is fixed and r is recorded

for different values of ze which is

converted into n. The limits of the

allowed refractive index resolution

correspond to a ze variation of

∆ze,±=ze,±−5.0 mm=∓ 1.5 mm.

At ∆d± = ∓1.2 mm, the allowable

distance error is similar to ∆ze,±=∓1.5 mm, but the relative error is very different,

1.2/278.6 = 0.5 % for the distance compared to 1.5/5.0 = 29.0 % for ze.

Based on the TRIUMF thickness measurements, ze might be 0.3 mm smaller

than expected, which is well within the 1.5 mm maximum uncertainty allowance.

According to these calculations, Eq. 3.2 is less sensitive to changes in ze than in d.

Going forward in the analysis, it should not be assumed that the thickness is always

10 mm as that will unnecessarily introduce errors into the index. The TRIUMF

thickness maps of the aerogel tiles were done along the same coordinates as the scan

so they can be used to correct ze.

5.3 Distinguishing Isotopes with Refractive Index and Rigidity
Variations

This study looks at the wider HELIX experiment and how the errors introduced

from refractive index measurements affect the ability to distinguish between Be
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isotopes. The DCT rigidity, R, and the TOF/RICH velocity, β, measurements are

related to the particle mass by Eq. 2.3 where the charge Z = 4 for Be. A more useful

form of this equation is

β =

((
mc2

ZeR

)2

+ 1

)− 1
2

, (5.1)

which uses a specific R, m and Z. This is the parameter space of HELIX so it is

useful to plot the expected β for many R for both Be isotopes to understand where

measurements should fall in this space. It also helps to understand how changing

some parameters can alter where the curves appear in this space and even how the

curves get wider and more indistinguishable when uncertainties are introduced.

5.3.1 Adding Variations to the Refractive Index and Rigidity

The first panel of Fig. 5–10 simply uses Eq. 5.1 for the two isotopes. It is assumed

that 9Be and 10Be have masses of 9 amu and 10 amu, respectively. Converting amu

to GeV/c2, the isotope masses become 8.38 GeV/c2 and 9.32 GeV/c2. β is calculated

for a range of rigidities for both isotopes. One of the principal goals for HELIX is

to distinguish 9Be and 10Be. This is possible if the β and R measurements clearly

fall closer to one of the isotope curves. The greater uncertainty there is in these two

parameters, the wider these curves will appear which will make it hard to associate

a measurement definitively with either 9Be or 10Be.

Figure 5–10: Effect of refractive index n and rigidity R variations on distinguishing
10Be and 9Be according to Eq. 5.1. Left: The original plot of R and β. Middle: Added
variation in input n, but analyzing as a constant n to find β. Right: n variations and
additional R variations on the scale of the HELIX DCT uncertainty.
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The middle panel in Fig. 5–10 considers what happens with variations in n. The

goal for HELIX is for ∆n/n ≤0.07 %. To determine the effect of n on the left panel

and Eq. 5.1, the β calculated is put through cosθc = 1/(nβ). The n used here is

pulled from a normal distribution with n = 1.155 and σn/n = 0.07% to represent

the n variations in the tile measurements. This results in a smeared θc distribution

which then goes back through the equation to recalculate β. During the analysis, n is

assumed to be constant. This should give a more realistic aerogel model where there

are n variations that propagate to β. The ‘smearing’ affects the curve thickness, but

at lower β there is still good distinguishing power between the two isotopes. The

smearing makes it difficult to distinguish the isotopes near β = 1. In a full plot, there

should be a geometric factor, ∆θtanθ from Eq. 2.6, included in the uncertainty in the

calculation of β and its uncertainty, which has not been included here. That would

increase the uncertainty to 1%.

The right panel of Fig. 5–10 involves the same process as the middle panel except

that there is also an R variation. HELIX’s rigidity resolution ∆R/R as a function of

R ranges between 0.01-0.04 up to R = 30 GV [26]. To simplify the calculation, ∆R/R

is set constant at 1.8%, the rigidity resolution allowance for HELIX. R is picked from

a normal distribution with the mean at the input R and σR = ∆R which introduces

horizontal smearing in R. This smearing means that moderate β data, where the

isotope curves were still distinguishable with only n variations, are now harder to

distinguish due to the R variations.

It will be more difficult to distinguish the Be isotopes with an uncertainty in n

and R. Although this is an obvious conclusion, it is shown clearly in the two smeared

overlapping curves in Fig. 5–10. However, the values for the uncertainties are based

on the allowed resolution to still achieve the 2.5% mass resolution. Even with the

uncertainties, up to R = 15 GV [26], it should still be possible to distinguish 10Be

from 9Be to the four-sigma goal even including the geometric factor to β.
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5.3.2 Comparing Precision and Accuracy in Index Measurements

The main purpose of these plots is to check whether it is more important for

the β-R curves to be accurate around the true value or precise with low uncertainty.

Ideally both would be true. This study generates data in the same way as the middle

panel of Fig. 5–10, introducing a σn/n = 0.07% uncertainty in the n of the tile and

then either changing that uncertainty or the n used in the analysis to get β from θc.

(a) Absolute value of n increased by 0.5 % in
analysis (n = 1.16), σn/n = 0.07%

(b) σn/n = 0.5 % variation of the tile n,
analyzed as having a n uniform n = 1.155.

Figure 5–11: Determining the effect of precise or accurate measurements of n on β.
(a) The tile is uniform n = 1.155 with 0.07% uncertainty, but it is analyzed with
higher n of n = 1.16. (b) The case where the tile index has 0.5 % variations from the
true n, n = 1.155, but it has not been mapped so it is analyzed as a uniform tile.

If the calibration of n is done correctly with the same n used in analysis and

0.07% uncertainties, the resulting β-R plot would look like the middle panel of Fig.

5–10. Consider the case where the n measured during calibration is 0.5 % higher

(n = 1.16) than the true value (n = 1.155) and the higher value is used to analyze

data. The measurements of n are precise within the 0.07% n resolution goal. Fig.

5–11a is the result using n = 1.16 to analyze data from a tile with n = 1.155. This

increased n causes the isotope curves to shift β downwards by 0.5 %, compared to the

analysis with n = 1.155. This shift maintains the relative isotope curve separation,

but its absolute β value is incorrect. With this shift, but low uncertainties, it would

still be easy to distinguish the two curves and notice that they are not at the correct
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β for a given R. Since it is a simple shift, a β correction factor could be applied to

the curves to improve the β results so they match the expected mass distribution.

If there was no aerogel tile calibration and the tiles naturally had a 0.5 % n

variation distribution, the β-R curves would be like in Fig. 5–11b. The 0.5 % variation

is pulled from a normal distribution centred at n = 1.155. Without a more accurate

measurement, it would be simplest to assume that the tile has a uniform n. For this

example, that uniform n is set to match the mean of the distribution, n = 1.155.

The 0.5 % n uncertainty introduces uncertainty into the β-R curves. Without the

colour coding of the two isotopes in Fig. 5–11b, it would be difficult to distinguish

the isotope curves enough to definitely identify a measurement as 9Be or 10Be.

Fig. 5–11a is where the relative variations in n extent of the tile are measured

precisely, but the overall scale is off by some scaling factor. In comparison, Fig. 5–

11b is when the measured n is accurate to the true n of the tile, but it is not precise

enough to distinguish isotopes. In this sense, it is better to have a high precision

like Fig. 5–11a because the data can be corrected later. With Fig. 5–11b, there is

too much noise to distinguish 10Be from 9Be. The focus of all of the n calibration

measurements is to have low uncertainties in the measurements and try to get an

accurate n. There is the understanding that there are many measurements involved

in calculating n, such as the distance d and the position of the CCDs, which could

result in a systematic shift observed in all of the data. If these systematic shifts exist,

then they can potentially be corrected for in later analysis if β-R does not produce

an accurate mass distribution.
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CHAPTER 6
Conclusion

The HELIX cosmic-ray experiment is designed to measure the abundances of

light nuclei, especially 10Be and 9Be to a mass resolution of ∆m/m = 2.5%. The

HELIX RICH radiator plane is predominantly composed of n = 1.15 - 1.16 aerogel

tiles. Variations in the refractive index across the tile must be measured across the

tile because they are larger than the allowed resolution of ∆n/n ≤ 0.07 % due to the

aerogel fabrication process.

The purpose of this research was to build a system to make efficient and precise

measurements of the refractive index on a grid over the aerogel tiles. This includes

details of the final system design, running the system and the analysis procedure. The

radius of the Cherenkov cone on a detection plane produced when a linear accelerator

electron beam passes through a point on the aerogel is directly related to the refractive

index. A full 361 data point scan of the index takes 35 minutes per tile. Analysis is

still ongoing, but preliminary results show that this method is capable of detecting

smooth refractive index variations across a tile in the expected refractive index range.

The accuracy of the refractive index measurements is dependent on many factors.

Electron processes, divergence and the tile thickness produce a wider Cherenkov ring

which is difficult to fit accurately. In addition, any deviations from the true values

of the radius, the aerogel-CCD distance or the tile thickness, will affect the final

calculated refractive index and its uncertainty. Studies showed that even if there are

systematic shifts in the refractive index compared to the true value, if the uncertainty

is low, it should still be possible to distinguish Be isotopes and calculate 10Be/9Be.

The 50 flight quality aerogel tiles produced for HELIX have all been scanned and

analyzed at least once using the discussed calibration system. Further scans and more

detailed analysis are planned to fully understand sources of systematic uncertainties

and to test result reproducibility.
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APPENDIX A: The Cherenkov Effect

Figure A-1: The Huygens spherical wavelet
diagram for a charged particle travelling be-
low (left) and above (right) the phase veloc-
ity threshold. The right diagram shows the
Cherenkov emission wavefront. Image Credit:
[54].

In the Cherenkov effect, a

charged particle polarizes the nearby

atoms in the material asymmetri-

cally [55]. The atoms will relax and

emit dipole radiation that moves out

spherically, according to Huygens

principle, at the phase velocity of the

medium [56]. When β < 1/n the

emitted waves interfere destructively

and no light is emitted. At β > 1/n,

they constructively interfere and emit coherent radiation in a cone along the particle

path, as shown in Fig. A-1 [56]. The photons are in phase along a line at an opening

angle θc from the charged particle’s direction of travel. Frank and Tamm wrote the

quantitative theory of Cherenkov radiation [55] and found that the emission obeyed

Eq. 2.4. Since cosθc is bounded with a maximum of 1, only particles with β > 1/n

will produce Cherenkov radiation [55].

Frank and Tamm also derived the expected number of photons emitted per unit

length and wavelength λ [56] and found

∂2N

∂x∂λ
= 2πα

(
1− 1

n2β2

)
1

λ2
, (A.1)

where α = 1/137, the fine-structure constant.

The photon yield increases when the wavelength decreases leading to the blue-

violet colour generally observed for Cherenkov radiation.
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APPENDIX B: Distance Calibration

To accurately determine the refractive index, the aerogel-CCD distance dmust be

known to mm precision over the ∼ 300 mm expanse marked in Fig. 3–1. Calculating

d involves multiple precise measurements. All distance values are written to the

precision of the measuring instruments for this calculation.

The calibration rod is a piece of aluminum machined to have flat parallel ends

which was approximately the distance between the backboard that holds the de-

tection board to the aerogel holder base. The rod was measured with calipers as

306.14±0.01 mm. The board z-stage is moved until there is a tight fit between the

backboard, the calibration rod and the holder, which occurs when the z-stage is

26.0±0.1 mm from its home position. The horizontal distance from the aerogel face

to the base of the holder is 4.00±0.02 mm based on frame measurements. The average

distance from the board to the CCD face is 7.78±0.12 mm, measured using calipers.

Three washers separate the detection board from the backboard and, on average,

each are 1.57±0.03 mm thick, as measured with calipers. The detection board itself

was measured also using calipers at multiple points resulting in a mean thickness

1.55±0.02 mm.

The overall distance is 322.1±0.4 mm calculated using

d = 306.14︸ ︷︷ ︸
Calibration

Rod

+ 26.0︸︷︷︸
Motor

at Rod Fit

− (3× 1.57︸︷︷︸
Washer

)− 1.55︸︷︷︸
Board

− 7.78︸︷︷︸
Board
-CCD

+ 4.0︸︷︷︸
Holder

-Aerogel

− z︸︷︷︸
Stage

Position

mm. (B.1)

The board position is adjusted before each scan to center the CCDs, which can

alter the z-stage position. For the production run, the z-stage position was between

z = 42.0 and z = 48.0 mm (±0.1 mm) making d= 274.1 - 280.1 mm with∆d≈ 0.7 mm.

∆d is likely larger than what is measured so in preliminary analysis it is set to 1 mm.

Thus the distance is often written in the thesis to zero significant figures unless the

extra precision is required for a theoretical calculation.
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