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Abstract 

Interactive Hashing has featured as an essential ingredient in protocols realizing 
a large variety of cryptographic tasks. We present a study of this important 
cryptographic tool in the information theoretic context. We start by presenting 
a security definition which is independent of any particular setting or application. 
We th en show that a standard implementation of Interactive Hashing satisfies ail 
the conditions of our definition. Our proof of security improves upon previous 
ones in severa 1 ways. Despite its generality, it is considerably simpler. Moreover, 
it establishes a tighter upper bound on the cheating probability of a dishonest 
sender. Specifically, we prove that if the fraction of good strings for a dishonest 
sender is f, th en the probability that both outputs will be good is no larger than 
15.6805· f. This upper bound is valid for any f and is tight up to a small constant 
since a sender acting honestly would get two good outputs with probability very 
close to f. 

We illustrate the potential of Interactive Hashing as a cryptographic primi
tive by demonstrating efficient reductions of String Oblivious Transfer with string 
length k to Bit Oblivious Transfer and severa 1 weaker variants. Our reductions 
incorporate tests based on Interactive Hashing that allow the sender to verify the 
receiver's adherence to the protocol without compromising the latter's privacy. 
This allows a much more efficient use of the available entropy without any ap
preciable impact on security. As a result, for Bit OT and most of its variants 
n = (1 + €)k executions suffice, improving efficiency by a factor of two or more 
compared to the most efficient reductions that do not use Interactive Hashing. 
As it is theoretically impossible to achieve an expansion factor ni k smaller than 
1, our reductions are in fact asymptotically optimal. They are also more general 
since they place no restrictions on the types of 2-universal hash families used 
for Privacy Amplification. Lastly, we present a direct reduction of String OT to 
Rabin OT which uses similar methods to achieve an expansion factor of 2 + € 

which is again asymptotically optimal. 
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Résumé 

Le hachage interactif figure parmi les ingrédients essentiels de plusieurs protocoles 
accomplissant tout un éventail de tâches cryptographiques. Cette thèse présente, 
dans le contexte de la théorie de l'information, une étude de cet important outil 
cryptographique. Tout d'abord, nous définissons la sécurité indépendamment du 
cadre de toute application particulière. Ensuite, nous démontrons qu'un protocole 
standard réalisant le hachage interactif satisfait à toutes les conditions de notre 
définition. Notre preuve de sécurité constitue une amélioration significative par 
rapport aux preuves antérieures. Malgré sa généralité, elle est considérablement 
plus simple. De plus, elle établit une borne supérieure plus serrée sur la probabilité 
de succès d'un expéditeur malhonnête. Plus précisément, nous prouvons que si 
l'expéditeur commence avec un ensemble de bonnes chaînes de bits représentant 
une fraction f du total, la probabilité que les deux valeurs de sortie soient bonnes 
ne dépasse pas 15.6805 . f. Cette borne supérieure vaut pour toute fraction f 
et est juste à une petite constante près puisqu'un expéditeur suivant le protocole 
obtiendrait deux bonnes valeurs de sortie avec probabilité presque f. 

À titre d'exemple du potentiel, en tant que primitive cryptographique, du 
hachage interactif, nous démontrons des réductions efficaces de String OT avec 
longueur k à Bit OT et quelques unes de ses variantes plus faibles. Nos réductions 
font appel à des tests dérivés du hachage interactif pour permettre à l'expéditeur 
de vérifier l'adhésion du receveur au protocole, tout en respectant la confiden
tialité de la valeur d'entrée de ce dernier. Les réductions qui en résultent font un 
usage sécuritaire bien plus efficace de l'entropie disponible du côte du receveur. 
Pour Bit OT et la plupart de ses variantes, n = (1 + €)k exécutions suffisent, 
ce qui double l'efficacité de nos réductions par rapport aux meilleures réductions 
qui n'utilisent pas le hachage interactif. Comme il est théoriquement impossible 
d'avoir un facteur d'expansion ni k plus petit que 1, nos réductions sont en fait 
asymptotiquement optimales. Elles sont aussi plus générales puisqu'elles perme
ttent l'utilisation de toute famille universelle-2 de fonctions de hachage pour la 
phase de Privacy Amplification. Enfin, nous présentons une réduction directe de 
String OT à Rabin OT utilisant des méthodes semblables pour obtenir un facteur 
d'expansion de 2 + € qui est, lui aussi, optimal. 
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1 ntrod uction 

An Interactive Hashing protocol allows a sender Alice to input a string w which, 

in the course of the protocol, will be transmitted to a receiver Bob along with a 

second output string w' =1= w. In a nutshell, the protocol should guarantee that 

(any dishonest) Bob cannot guess which of w, w' was the original input, while at 

the same time, it should ensure that at least one of the two output strings must 

be chosen effectively at random, and beyond (any dishonest) Alice's control. 

Interactive Hashing has found many applications in computational as weil 

as information theoretic contexts. Various implementations of Interactive Hash

ing appear in protocols achieving a multitude of cryptographie tasks, ranging 

from Zero-knowledge Proofs to Bit Commitment and Oblivious Transfer [OVY93, 

OVY94 , NOVY9a, OVY92 , CCM9a, DHRS04]. The versatility and wide applica

bility of Interactive Hashing suggest that a more thorough investigation of this 
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cryptographie tool is in order. This thesis sets out to present a study of Interac

tive Hashing in the information theoretic context, namely under the assumption 

that any (dishonest) party may be computationally unbounded. The properties 

that are typically required of Interactive Hashing protocols in this context are dis

tilled and formalized independently of any particular application. This application 

independence sets the stage for viewing Interactive Hashing as a cryptographie 

primitive in its own right rather than simply as a class of sub-protocols within a 

larger application, with security properties defined on an ad-hoc basis according 

to the specifie needs of the given setting. It is our hope and belief that this 

encapsulation of Interactive Hashing as a stand-alone primitive with well-defined 

properties will lead to a greater appreciation of its potential as a cryptographie 

tool. At the same time, it will render Interactive Hashing more accessible to 

designers of cryptographie protocols, who will be able to incorporate it in their 

constructions as a self-contained building block with severa 1 implementations to 

choose from, each with security properties that have (ideally) been independently 

and rigorously scrutinized. 

Regarding practicality, we demonstrate that Interactive Hashing as we defined 

it can be efficiently implemented in practice. Specifically, we prove that one of 

the Interactive Hashing protocols that appeared in the literature [OVY93] in a 

computational context actually satisfies ail our information theoretic security re

quirements as weil. Our proof of security is one of the major contributions of 

this thesis, as it improves in severa 1 important ways upon a previous proof for 

a slight variant of this protocol [CCM98]: besides its application-independence, 
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our proof takes a different, more natural approach to establishing that the prob

ability of successfully cheating for any dishonest receiver is small. The resulting 

upper bound on this probability is much tighter and the proof is considerably less 

complicated overall. 

Another major goal of this thesis is to illustrate the power of Interactive 

Hashing as a cryptographic protocol. To this end, we demonstrate its applicability 

to reductions between Oblivious Transfer variants [Rab8I, EGL85]. In short, a 

protocol for String Oblivious Transfer allows a sender Alice to send to a receiver 

Bob one of two strings xo, Xl. The protocol should guarantee that (honest) 

Bob can receive the string of his choice Xc without (dishonest) Alice being able 

to obtain information about Bob's choice bit c. On the other hand, (honest) 

Alice is assured that (dishonest) Bob can receive information about exclusively 

one of the two strings. Bit Oblivious Transfer can be seen as a special case of 

String OT, with both strings having length 1. We show that Interactive Hashing 

can lead to efficient reductions of String Oblivious Transfer to Bit Oblivious 

Transfer and several of its variants. The novelty of our reductions arises from tests 

based on Interactive Hashing that are incorporated into well-known reductions 

[BCW03, Cré87] based on Privacy Amplification [BBR88]. These tests allow 

the sender (in String OT) to query the receiver on a small subset of the bits 

he received. Without compromising the honest receiver's privacy concerning his 

choice bit, these tests ensure that a dishonest receiver cannot deviate much 

from the protocol without getting caught. Consequently, as our reductions need 

only allow for a small potential deviation in the case of a dishonest receiver, they 
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make much more efficient use ofthe receiver's entropy about the transmitted bits. 

Compared to the best known reductions that do not use Interactive Hashing, our 

reductions are at least twice as efficient, and in most cases provably asymptotically 

optimal. Moreover, they are more general since they can use any 2-universal family 

of hash functions to perform Privacy Amplification. 

Remark: The nature of our subject matter calls for a modular presentation 

of the material covered in this thesis. We thus defer a more detailed technical 

treatment of ail the notions and results presented above, as weil as a thorough 

review of prior work, to the introductory sections of Chapters 2 through 5. 

1.1 Structure of this thesis 

Each of the following chapters is as self-contained as possible. Chapter 2 presents 

our study of Interactive Hashing in the information theoretic context. Chapter 3 

introduces the notion of Oblivious Transfer in detail and defines the variants we 

will be encountering in the rest of the thesis. The reductions of String Oblivious 

Transfer to Bit Oblivious Transfer and severa 1 weaker variants are the subject of 

Chapter 4. Chapter 5 shows how the techniques behind the reductions of Chap

ter 4 can be adapted to provide a direct reduction of String Oblivious Transfer 

to Rabin Oblivious Transfer. The conclusion, along with a brief summary of 

our results, is given in Chapter 6. Finally, a brief Appendix lists some useful 

mathematical tools and notions. 
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Interactive Hashing 

Interactive Hashing (IH) is a cryptographie primitive that allows a sender Alice 

to send a bit string w to a receiver Bob who receives two output strings, labeled 

wo, W1 according to lexicographie order. The primitive guarantees that one of 

the two outputs is equal to the original input. The other string is guaranteed to 

be effectively random, in the sense that it is chosen beyond Alice's control, even 

if she acts dishonestly. On the other hand, provided that from Bob's point of 

view Wo, W1 are equiprobable inputs for Alice, the primitive guarantees that Bob 

cannot guess which of the two was the original input with probability greater than 

1/2. We remark that typically both outputs are also available to Alice. See Figure 

2.1. 

ln this Chapter we provide a study of Interactive Hashing in the information 

theoretic setting. We follow a modular approach, whereby we study Interactive 
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W 1\\'" ""\\\1 
IH 

Alice 

1\\\\"'\\1 Wo 

11/1//111 W1 

Bob 
Figure 2.1: Interactive Hashing: the sender Alice sends string w to Bob, who 
receives two strings wo, Wb labeled according to lexicographie order. One of the 
two (in our example, wo) is equal to the input string while the other is effectively 
randomly chosen. Bob cannot distinguish which of the two was the original input. 

Hashing independently of the context of any specifie application where it may 

be used as a sub-protocol. Our application-independent analysis opens the way 

to a better appreciation of the power of Interactive Hashing as a cryptographie 

primitive in its own right. 

We start by identifying and formalizing the information theoretic security prop-

erties of Interactive Hashing in Section 2.2. Then, in Section 2.3 we turn our 

attention to the Interactive Hashing implementation that appeared as a sub-

protocol in [OVY93] and demonstrate that des pite its simplicity, it meets ail 

security properties set forth in Section 2.2. Our new proof of security is an im-

portant improvement over the proof that appeared in [CCM98] where the authors 

demonstrate that a slight variant of the IH protocol of [OVY93] could be securely 

used in their specifie scenario. 

Since it does not rely on the specifie context of any application, our new 

pro of is more general. Moreover, it is significantly simpler and more intuitive. 

Lastly, our proof establishes an easier to use and much tighter upper bound on 
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the probability that the protocol fails to ensure that one of the two strings is 

sufficiently random. 

2.1 P revious work 

Various implementations of Interactive Hashing have appeared as sub-protocols in 

the cryptographie literature, first in computational contexts where at least one of 

the participants is polynomially bounded and later also in contexts where security 

is unconditional (information theoretic). 

While reviewing the previous work, the reader should bear in mind that so 

far, Interactive Hashing has never been presented as an independent primitive. 

Instead, it only appears within the context of larger protocols achieving a variety 

of different cryptographie tasks. Not surprisingly, the properties it is expected to 

have can vary significantly from one application to the next, and thus the proof 

of security in each case depends on the specifie setting. 

2.1.1 Uses of Interactive Hashing in computational con

texts 

Interactive Hashing first appeared as a sub-protocol within a protocol achieving 

Oblivious Transfer from an unbounded sender to a polynomial-time bounded re

ceiver [OVY93]. Soon thereafter. Interactive Hashing was deployed in various 

other scenarios, su ch as Zero-knowledge Proofs [OVY94] and Bit Commitment 

schemes [OVY92 , NOVY98]. where at least one of the participants was compu-

15 



tationally bounded. 

An illustrative example of its applications in such computational contexts is the 

Bit Commitment scheme of Naor et al. [NOVY98]. We briefly remind the reader 

that a Bit Commitment scheme allows a player. Alice. to send a commitment to 

a bit b of her choice to sorne other player Bob. The scheme should guarantee 

that. on one hand. the value of b remains hidden from (dishonest) Bob until the 

decommitment phase. wh en Alice opens the commitment and reveals the value 

of b she had committed to. On the other hand. the scheme should also guarantee 

that after the commitment phase. (dishonest) Alice is only able to decommit to 

one value. In the Bit Commitment scheme of [NOVY98]. Alice commits to a bit 

b by choosing uniformly at random a string mE {O. 1}t. computing W = 7r(m) 

where 7r is a one-way permutation l • and sending the image W to Bob using 

Interactive Hashing. Alice then announces a labeling of the two outputs WO. Wl 

such that Wb = W (this labeling allows her to later decommit to the right value). 

Note that b remains perfectly hidden even from a computationally unbounded2 

Bob since. by the properties of Interactive Hashing. Bob cannot tell which of 

WO. Wl was Alice's original input since they are both equally likely to be the 

image of Alice's uniformly chosen string m (recall that 7r is a permutation). At a 

later time. Alice decommits to b by announcing m. namely the pre-image under 7r 

of one of wo. Wl. As Interactive Hashing guarantees that one of the two outputs 

is chosen effectively at random, cheating would imply having to invert 7r on an 

lin short, a one-way permutation 7r has the property that it can be efficiently evaluated on 
any input x, yet given an image y chosen uniformly at random, it is computationally infeasible 
to compute the pre-image x such that 7r(x) = y, except with negligible probability. 

2A computationally unbounded player can be thought of as having infinite computational 
power at his disposaI. 
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efFectively rando~ string in {O,l}t. Therefore, if 7r is one-way, Alice can only 

cheat a negligible fraction of the time. Indeed, the security of this commitment 

scheme is formally proved via a reduction showing that if (polynomially-bound~d) 

Alice can decommit both ways a non-negligible fraction of the time, th en there 

exist efficient algorithms that invert 7r, thereby contradicting its one-wayness. 

2.1.2 Uses of Interactive Hashing in information theoretic 

contexts 

Beside the computational scenarios in which it was originally used, Interactive 

Hashing proved to be an important tool in information theoretic contexts as 

weil. Its first such use was in protocols for Oblivious Transfer which are informa

tion theoretically secure under the sole assumption that the receiver's memory is 

bounded [CCM98, ADR02, Din01, DHRS04]. Interactive Hashing was later used 

to optimize reductions between Oblivious Transfer variants [CS06]. a topic which 

will be explored further in Chapters 4 and 5. 

We remark that while sorne of the security properties required of Interactive 

Hashing in information theoretic settings bear a very close resemblance to their 

counterparts in computational settings, sorne other properties are substantially 

difFerent. Moreover, the transition from computational to information theoretic 

settings requires a re-evaluation of ail security properties of any protocol. For 

this reason, starting with [CCM98]. the security properties of the underlying In

teractive Hashing sub-protocol have been re-evaluated in the light of the specific, 

information theoretic context in which it was used. 
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2.2 Information theoretic security definition of 

Interactive Hashing 

We now formalize the security properties that Interactive Hashing is expected 

to satisfy in information theoretic contexts3 . As these properties do not de pend 

on any specifie application, they allow us to define Interactive Hashing as an 

independent cryptographie primitive. 

Definition 2.1. Interactive Hashing is a cryptographie primitive between two 

players, the sender and the receiver. It takes as input a string w E {O, 1} t from 

the sender, and produces as output two t-bit strings one of which is w and the 

other w' =j:. w. The output strings are available to both the sender and the 

receiver, and satisfy the following properties: 

1. The receiver cannot tell which of the two output strings was the original 

input. Let the two output strings be wo, Wl, labeled according to lexico-

graphie order. Then if both strings were a priori equally likely to have been 

the sender's input w, then they are a posteriori equally likely as well4 . 

2. When both participants are honest, the input is equally likely to be paired 

with any of the other strings. Let w be the sender' s input and let w' be the 

second output of Interactive Hashing. Then provided that both participants 

follow the protocol, w' will be uniformly distributed among ail 2t -1 strings 

31n some specifie applications, one or more ofthe security properties may actually be relaxed. 
4Note that if we want this property to hold for ail possible outputs, then w must be uniformly 

chosen. Otherwise, this property will only hold whenever w happens to be paired with a string 
w' having the same a priori probability as w. 
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different from w. 

3. The sen der cannot force both outputs to have a rare property. Let g be 

a subset of {O, l}t representing the sender's "good set". Let G be the 

cardinality of g and let T = 2t . Then if G/T is "small", the probability that 

a dishonest sender will succeed in having both outputs WO, Wl be in g is 

comparably "small". 

Remark: ln the computational contexts of Section 2.1.1, similar properties to 

Properties 1 and 2 were also required. On the other hand, the computational 

counterpart to Property 3 is usually stated quite differently, as there is no pre

determined good set g. For instance, in [NOVY98] (see Section 2.1.1) where 

the inputs and outputs of Interactive Hashing are interpreted as images under 

a one-way permutation ?r, one of the two outputs is required to be sufficiently 

random so that any polynomial-time algorithm that can compute pre-images to 

both outputs a significant fraction of the time can be used to efficiently invert ?r 

on a randomly chosen string with non-negligible probability. 

2.3 A Protocol for Interactive Hashing and a new 

proof of its security 

We will be examining the implementation of Interactive Hashing given in Proto

col 2.1. This standard implementation was originally introduced in a computa

tional context by Ostrovsky, Venkatesan, and Yung [OVY93]. In Section 2.3 we 

will see that this very simple protocol actually meets ail our information theoretic 
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security requirements as weil. 

Protocol 2.1 Interactive Hashing 

Let w be a t-bit string that the sender wishes to send to the recelver. Ali 
operations below take place in the binary field ;:2' 

1. The receiver chooses a (t - 1) x t matrix Q uniformly at random among 
ail binary matrices of rank t - 1. Let qj be the jthquery, consisting of the 
ithrow of Q. 

2. For 1 ::; i ::; t - 1 do: 

(a) The receiver sends query qj to the sender. 

(b) The sender responds with Cj = qj • w. 

3. Given Q and C (the vector of Bob's responses), both parties compute the 
two values of w consistent with the linear system Q . w = c. These 
solutions are labeled Wo, Wl according to lexicographie order. 

Remark: One way of choosing the matrix Q is to choose a (t - 1) x t binary 

matrix uniformly at random and test whether it has rank t - 1. repeating the 

process if necessary. Note that a later variation of the protocol [NOVY98] chose 

Q in a canonical way to guarantee that it has rank t - 1, which results in a 

somewhat more practical implementation. However, this appears to complicate 

the proof of security. 

Theorem 2.1 establishes the security of Protocol 2.1. 

Theorem 2.1. Protocol 2.1 satisfies ail three information theoretic security prop-

erties of Definition 2.1. Specifically, for Property 3, it ensures that a dishonest 

sen der can succeed in causing both outputs to be in the "good set" 9 with 

probability at most 15.6805· G/T. 
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Theorem 2.1 follows from Lemmas 2.1 and 2.2, which we prove ln Sec-

tions 2.3.1 and 2.3.2, respectively. 

Lemma 2.1. Protocol 2.1 satisfies Properties 1 and 2 of Definition 2.1. 

Lemma 2.2. Protocol 2.1 ensures that a dishonest sender can succeed in causing 

both outputs to be in the "good set" 9 with probability at most 15.6805 . G/T . 

2.3.1 Satisfying Properties 1 and 2 

Lemma 2.1 is rather straightforward to prove. Protocol 2.1 essentially builds the. 

linear system of equation (2.1) in a row-by-row manner. 

ql 

.(w) 
Cl 

q2 C2 
(2.1) 

qt-l Ct-l 
.1 

V' 

Q 

The properties of the linear system easily establish that Property 1 of Definition 

2.1 is met, in other words, that the receiver cannot guess which ofthe two output 

strings was the sender's original input to the protocol. Let V be the receiver's 

(marginal) view at the end of the protocol and let wo, Wl be the corresponding 

output strings. Note that V would be identical whether the sender's input was 

Wo or Wl, as the responses obtained after each challenge would be the same 

in both cases. Consequently, if before the protocol begins the sender is equally 

likely to have chosen Wo and Wl as input - both with sorne typically very small 

probability Q - then at the end of the protocol, given the view V, each of these 

two strings has equal probability 1/2 of having been the original input string. We 
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observe that a dishonest receiver would have nothing to gain by selecting a matrix 

Q of queries in a non-random fashion or by selecting a matrix with rank less than 

t - 1. 

As for Property 2, let w be the sender's input and let w' be the second 

output of Interactive Hashing. We first note that since the linear system has two 

distinct solutions, it is always the case that w' =1 w. To see that w' is uniformly 

distributed among ail strings in {O, 1}t\ w, it suffices to observe that Q is chosen 

uniformly at random among ail rank t - 1 matrices and that the number of su ch 

Q's satisfying Q(w) = Q(w') {:} Q(w - w') = 0 is the sames for any w' =1 w. 

2.3.2 Satisfying Property 3 

The bulk of the proof is devoted to the considerably more ambitious undertak

ing of proving Lemma 2.2 establishing that Property 3 is also met. Note that 

Property 3 would be rather easy to satisfy when G E o( fi) as in this case, 

the probability that a matrix Q selected as in Protocol 2.1 will lead to collisions6 

within G is negligible. Consequently, in this scenario there would not even be a 

need for interaction since the sender could simply send the whole of Q in one 

round. Interaction only becomes necessary for larger sets 9 for which the prob

ability of collision becomes significant because of the Birthday Paradox1
. What 

5To be more specifie, to each such pair w, w' correspond exactly n::5 (2t - 1 - i) matrices 
O. To see this, let v = w - w'. As v "# Q, the equation q. v = 0 has 2 t - 1 solutions. A matrix 
Q of rank t - 1 satisfying QC v) = 0 must have rows ql ..... qt-l that are non-zero and linearly 
independent of ail previous rows. 

6A collision occurs when there exist strings wo. WI E g such that O· Wo = O· Wl. In other 
words, wh en Wo - Wl = W where W is the unique non-zero solution to the equation OC w) = Ô. 

7 According to the Birthday Paradox, it is almost certain that there will be collisions if 
GE w(.jf). 
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we will show is that interaction in efFect "beats" the Birthday Paradox, in the 

sense that a dishonest sender can only produce a collision in G with probability 

O(GjT). 

Notation 

ln what follows, we say that a dishonest sender succeeds in cheating if and only if 

both output strings are from G. Table 2.1 presents the notation we will be using 

for the rest of the pro of. 

Remark: at the beginning of Protocol 2.1, Gi, Pi, etc. are random variables 

whose exact value will only be determined at the beginning of round i. The 

intended interpretation of statements such as Pi = Gi(~-l) or Pi < ~ is that 

the relation holds in ail executions of the protocol once the corresponding values 

are fully determined. Wh en we say that we condition on a given value of Gi , 

say, the intended interpretation is that we are setting Gi to a specific value 9i. 

Ali associated variables determined at the same round (such as Pi) are th en also 

implicitly set to the specific values corresponding to 9i, but variables such as 

Gi+1' whose exact value will de pend on future queries, still remain undetermined. 

Alice's cheating strategy 

At the beginning of round i, Alice has Gi good strings which are th en split into 

G?, Gl by query qi. It is tempting to assume that the optimal cheating strategy 

for Alice is to always choose the value of Ci that allows her to carry the larger 

of the two sets into the next round. This would simplify our analysis since it 
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Table 2.1 Notation 

T = 2t The number of ail strings in {O, 1}t. 

9 The set of Alice's good strings at the beginning of Protocol 2.l. 

We will denote its cardinality 191 by G. 

2-U The fraction of Alice's good strings at the beginning, namely G/T. 

Gi The number of Alice's (remaining) good strings at the beginning 

of round i, right before query i is sent. Note that there are G1 = G 

good strings at the beginning of Protocol 2.1 and Gt good strings 

at the end (after t - 1 rounds). A dishonest sender succeeds in 

cheating if and only if Gt = 2. 

Pi The number of pairs of good strings remaining at the beginning 

of round i. Note that Pi = Gi(~-l) and that a dishonest sender 

succeeds in cheating if and only if Pt = l. 
Gp, Gl The number of strings in Gi that are mapped to 0, 1 respectively, 

by query i. Note that Gp + Gi
1 = Gi . 

Gi, Gr Respectively, max(GP, Gl) and min (GP, Gl). Note that Gi + 
G~ = G," and that G~G~ = GOG~ , ", " 
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would allow us to establish both an upper and a lower bound on the expected 

size of Gi for ail i. However intuitively obvious it may be, though, proving that 

choosing the maximum subset is indeed the optimal strategy for Alice is not that 

straightforward8 . To avoid this difficulty, we will consider an imaginary Alice 

to whom we grant extra powers compared to real Alice, subject to the following 

condition: after query qi splits the Gi remaining strings into two sets of cardinality 

Gp and Gl, imaginary Alice can choose and announce either value for Ci, and 

must then construct a new set of good strings to be carried forward into the 

next round. This new set must be of cardinality Gi+1 = max (G?, Gl) and its 

contents can be chosen arbitrarily among ail strings that satisfy Equation (2.1) 

up to and induding the row containing qi. We remark that intuitively, it would 

be in imaginary Alice's best interest to choose the value of Ci and the contents of 

the set 50 as to maximize the probability that two good strings will remain at the 

end of the protocol. However, for the purposes of our proof, we do not need to 

assume anything about imaginary Alice's actual strategy; it suffices to argue that 

imaginary Alice is no less powerful than real Alice. This is true because whatever 

strategy real Alice uses, imaginary Alice can always copy it by choosing the same 

value for Ci in each round, and by defining the set she carries into the next round 

to contain ail the strings that real Alice would carry, plus sorne arbitrarily chosen 

strings to reach the size imposed by our condition. Thus, if we were to run the 

two Alices in parallel, with the same queries, then for ail i, imaginary Alice's Gi 

8The structure of the subsets may have an impact on the futu.re probability of cheating. For 
example, sets consisting of linear subspaces are probably undesirable to dishonest Alice, as each 
incoming query would break them into two subsets of equal cardinality. It is thus conceivable 
that in some cases, the smaller subset might be preferable to the larger one. 
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would be a superset of real Alice's Gj • It is easy to see that real Alice cheats only 

if imaginary Alice copying real Alice's strategy cheats. 

Therefore, real Alice is no more likely to cheat than imaginary Alice, 50 if we 

show that any strategy followed by imaginary Alice can succeed with probability 

no larger than p, the same bound will apply to any strategy followed by real Alice 

as weil. From this point on, we will assume that we are dealing with imaginary 

Alice. 

Some preliminary results 

Lemma 2.3. Alice's strategy implies the following relations for ail i: 

Proof 

Gj ~ 1 

G 
G·>-

1 - 2 j - 1 

G G
m Gj 

j+1 = j ="2 + 
n _ Gr(G j - 1) - GfG j

1 

ïj+l -
2 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.2) For sorne i, let Gj ~ 1. Then, as query qj separates Alice's good strings 

into those that evaluate to 0 and those that evaluate to 1 and Alice's 

strategy is to carry into the next round a subset of cardinality equal to 

that of the larger set, it will necessarily be the case that Gj+1 = Gr ~ 1. 

26 



Consequently, provided that G1 ;::: 1, it follows by induction that for ail i 

we have Gi ;::: 1. 

(2.3) It follows from Alice's strategy that for ail i, Gi+1 ;::: Gi/2. We then apply 

this bound i - 1 times to get from G1 = G to Gi . 

(2.4) We can write (G0)2 = Gm(G/"-G~) = G0G/"-G0G~ As GmG~ = G9G~ 
/ / / / / /' / / / /' 

this implies 

Equation (2.4) gives the larger of the two solutions to this quadratic equa

tion (the smaller one would be Gr = ~ - J (Gl - GfGl)· 

(2.5) We have: 2Pi+1 = Gj(Gj - 1) = (Gj)2 - Gj. Substituting (Gj)2 = 

G/"G0 - G9G~ we get 
/ / / 

(2.6) Note that GfGl can be interpreted as the number of pairs in Pi that are 

separated by query qi (one element of the pair is mapped to 0 and the 

other to 1). These pairs will be separated no matter what value Alice 

announces for Ci. It is thus intuitively obvious that Pi+1 cannot be any 

larger than Pi - GfGl. For a more rigorous proof, we will prove that 
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A - GPGl - Pi+! 2:: O. We have 

= (Gr + Gn(Gi - 1) - Gr(Gr - 1) - 2GrG; 

= Gr(Gi - 1 - Gr + 1 - 2Gn + G;(G i - 1) 

= -GrG; + G;(G; - 1) 

= G;(G; - Gr - 1) 

2:: 0 since G; is always a non-negative integer. 

o 

Lemma 2.4. Conditioning on a given (specifie) value of G; the expected value 

of GPGl satisfies 

(2.7) 

(2.8) 

Proof Let Qi be any set having cardinality G;. We can arbitrarily enumerate ail 

its strings and write 

G; G; 

G? = LZj and Gl = Lnj 
j=l j=l 

where Zj (resp. nj) is an indicator random variable taking on the value of 1 
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whenever the corresponding string in Qi is mapped to 0 (resp. 1) by query qi 

(which has not been sent yet). Then we have 

( 

G; ) (G; ) 
GPGl = LZj . Lnj 

)=1 )=1 

G; G; 

= L L (Zjnk + Zknj). (2.9) 
j=l k=j+1 
~~-------v~------~~ 

(G;- G;}/2 = P; terms 

The last step follows by observing that part A vanishes since Vj, zjnj = 0 and by 

grouping the terms in B into the sum of Pi terms of type Zjnk + Zknj with k > j. 

We will now show that Vj, k U i- k) 

we are still conditioning on the same Gi . Fix j, k su ch that 1 :::; j, k :::; Gi and 

j i- k. Let Wj, Wk be the corresponding strings in Qi.There are two cases to 

consider: 

Case 1: Wj, Wk i- O. Let's count the queries that result in 2.J'nk = 1. These 

queries must satisfy 

(
" . Wj ".). (~i) = (0) . 
... Wk ... . 1 

(2.10) 

As Wj, Wk are different and non-zero, they are linearly independent. Consequently, 

there are exactly 2t - 2 solutions for qi. Note that ail such solutions are linearly 

independent of ail previous queries. This is because both Wj, Wk satisfy the linear 

system of Equation (2.1) up to the row containing qi-l, which makes it impossible 
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for a linearly dependent query qi to map them to different values. 

At this round there are 2t - 2i- 1 valid queries qi for Bob to choose from 

(since the 2i- 1 queries that are linearly dependent on ql, ... , qi-l are excluded). 

Therefore E [Zjnk] = /.:;~-1 and by symmetry the same ho Ids for E [zknJl Con

sequently by linearity of expectation we have: 

Case 2: one of Wj, Wk is O. Without 1055 of generality, suppose it is Wj. Then 

no query can result in Zknj = 1. Let's count the queries that produce Zjnk = 1. 

These must satisfy the system 

(
. . . Wj ... ). (~i) 
... Wk ... . 

(2.11) 

This system has (effectively) one equation with t unknowns and hence 2t -
1 

solutions for qi, ail of which are linearly independent of ail previous queries9
. 

As in Case l, Bob has 2t - 2i- 1 possible values for qi to choose from, from 

which it follows that E [Zjnk] = 2t~;~-1. Since E [Zknj] = 0, we have that again, 

9This is because as Wj = 0, we must have had Cl = C2 = ... = Ci-l = 0 and 50 a linearly 
dependent query would necessarily map Wk to o. For the special case of the first round, observe 
that ql = 0 (the only disallowed query) would map Wk to o. 

30 



Combining the two cases, we see that ail Pi terms in (2.9) satisfy 

and 50, by linearity of expectation 

(2.12) 

o 

Lemma 2.5. Using Lemma 2.4 we can establish the following bounds: 

(2.13) 

(2.14) 

(2.15) 

Proof We first remark that conditioning on a specifie value of Pi (i.e. setting 

Pi = p) is equivalent to conditioning on the corresponding value of Gi and vice 

versa as the value of one uniquelylO determines the other. 

lOGi uniquely determines Pi = Gi(~-l). On the other hand, given A there are two solutions 
to the corresponding quadratic equation for Gi of which only the larger is valid since the smaller 
one is either negative or zero, in violation of (2.2). 
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(2.13) From (2.4) we have 

E[G~ 1 G·] = G; + E [ (G;)2 - G9G~ 1 G'] 
1 1 2 4 1 1 1 

~ ~i + E [~- G?Gll Gi] by Jensen's Inequality 

-_ G; + (G; f _ E [Go. G1. 1 G·] b 1· . f . 2 4 1 1 1 Y meanty 0 . expectatlon 

G· 
<~+ - 2 ---

4 

G; +.jGi 
-

2 

G;(G; -1) 1 

2 2 
using (2.8) 

(2.14) Using (2.5), we get the following: 

E [Pi+! 1 G;] = ~ E [G;n(G; - 1) - G?Gll G;] 

1 m] 1 [01 ] = 2'(G; - 1) E [G; 1 G; - 2' E G; G; 1 G; 

< !(G. _ 1)G; +.jGi _! G;(G; - 1) 
-2 1 2 2 4 

_ G;(G; - 1) ( _2) 
- 8 1+.jGi 

= ! (1 + _2_) p'. 
4 .jGi 1 

<- 1+_2 Pi. 1 ( 2L±1.) 
- 4 VG 1 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

Note that (2.17) follows by linearity of expectation, (2.18) follows From 

bounds (2.2), (2.8), (2.13) while (2.21) is obtained by applying Inequality 

(2.3). 
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(2.15) From (2.6) we have 

using (2.7) 

o 

def u-b 
Lemma 2.6. Let 1 ::; b::; t - 1 be a positive integer. Let R = 2-2 . Then the 

expected number of pairs at the end of Protocol 2.1 satisfies 

G 2 00 ( R ) 
E [Pt] ::; T . 2 _ 2- b • R-2 

. n 1 + 2jf2 . 
)=0 , ~ 

V' 

Y 

Proof Taking expectations on both sidesll of (2.14) we get 

1 ( 2i+1) 
E [Pi+1] ::; 4" 1 + ~ E [Pi] 

= .! (1 + 2(i+1- t+U)/2) E [A] replacing G = 2t- u 
4 

(2.22) 

= ~ (1 + Ri) E [P;] writing Ri ~ 2(i+1-t+u)/2. (2.23) 

llThis can alternatively be seen as follows: 

00 00 1 ( 2!±l ) LE [P;+! 1 Pi = pl . Pr [P; = pl :::; L 4 1 + :r . p . Pr [Pi = pl :::} 
p=o p=o vG 

1 ( 2~) E [Pi+!l :::; 4 1 + VG E [P;] . 
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Similarly, taking expectations on both sides of (2.15), we get 

(2.24) 

Note that (2.23) and (2.24) are both valid upper bounds on E [Pi+1] for any i. 

Note also that these two inequalities remain valid if E [P;] on the right hand side 

is replaced by any upper bound for E [P;]. 

Let a = (t - 1) - b. Suppose that we start by sequentially applying (2.23) 

a times. Then, 

1 a 

E [Pa+1] ~ E [Pd· 4a II (1 + Ri) 
i=l 

1 a-1 ( R ) 
= Pl . 4a II 1 + 2i/2 

1=0 

1 00 ( R ) < Pl . - II 1 + -.- 4a 2//2 
i=O 

since E [Pd = Pl 

using Ri/ Ri-l = v'2 

u-b 
since Ra = R = 2-2 

since ail terms are at least 1. (2.25) 

Now suppose we sequentially apply (2.24) for the last b rounds to get an upper 
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bound for E [Pt] in terms of E [Pt- b]. Then 

where Equation (2.26) follows from the fact that t - b = a + 1. Combining 

(2.25) and (2.26), we have 

11( 1 )OO( R) 
E [Pd::; Pl . 4a 2b 2 _ 2-b Da 1 + 2i/2 

G2 (1) 00 ( R ) < _2-2a- b il 1 + -.-
- 2 2 - 2-b 2'/2 

i=O 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

35 



Note that for Equation (2.27) we used the fact that Pl = G(~-l). For Equation 

(2.28) recall that G = 2t - u . Equation (2.29) uses 2t - 2a = 2b + 2 while 

Equation (2.30) follows from G/T = 2-U and R = 2 U;b. D 

We are now ready to prove Lemma 2.2, which, along with Lemma 2.1 estab-

lishes Theorem 2.1. 

Proof of Lemma 2.2. Since Pt = 1 if the two output strings are both good 

and Pt = 0 otherwise, it follows that the probability that Alice cheats satisfies 

Pr [Pt = 1] = E [Pt]. Consequently, the upper bound on E [Pt] established by 

(2.22) is also an upper bound on the probability of successful cheating. Note that 

any integer value of b in (2.22) establishes a valid upper bound. We can fix12 b = 

ru + 0.031 in which case part Y becomes a function of u only. The probability of 

cheating is thus upper bounded by min (G/T· Y(u), 1) = G/T · min (Y(u), T/G). 

Recalling that G/T = 2-u , we set 

Z(u) = min (Y(u), 2U
). 

A graph of Z(u) (see Figure 2.2) shows that it never exceeds 15.6805. It 

therefore ho Ids that for ail ratios G/T the probability that Alice cheats is upper 

bounded by 15.6805· G/T. D 

Remark: The maximum of Z(u) cannot occur beyond the first few peaks 

depicted in Figure 2.2. To see this, recall that R = 2
U;b where b = ru + 0.031, 

12This value of b was chosen with the help of at a 3-D graph of part Y of Equation (2.22). 
We remind the reader that however b is chosen, it establishes a valid upper bound. 
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15.6 

15.4 

15.2 

15 

14.8 

Figure 2.2: Graph of Z(u) vs u, showing that the maximum value of Z(u) = 
min (Y(u), 2U

) does not exceed 15.6805. This maximum is attained at the 
intersection of Y(u) with 2u , occurring near Ul = 3.9709. Note that Z(u) = 2U 

for u::; Ul while Z(u) = Y(u) for u> Ul. 
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while Y(u) from Equation (2.22) can be expressed as the product of two factors, 

A and B, as follows: 

2 00 ( R ) Y(u) = 2 _ 2-b . R-2 
. JI 1 + 2j!2 . 

j=O 

(2.31) 

"-v-" ' ..., J 

A B 

Note that factor B of Equation (2.31) depends entirely on R, which, within any 

interval of length 1 of u, takes on ail the values in (Ro, Rd where Ro = 2-103
/

2 

and RI = 2-003
/

2
. This explains the oscillations, whose peaks are decreasing due 

to the fact that A(u) is decreasing, converging to 1 as u 4- 00. For any u, u' 

su ch that u' = u + 1, we have R' = R while b' = b + 1. As A(u') < A(u) and 

B(u') = B(u), we have Y(u') < Y(u). This shows that the maximum cannot 

occur after the first twoI3 peaks of the graph. 

2.3.3 Contributions of our new proof 

Cachin, Crépeau, and Marcil [CCM98] proved a similar property to Property 3 

for a slight variant of Protocol 2.1 in the context of memory-bounded Oblivious 

Transfer where aga in, the goal of a dishonest sender is to force both outputs of the 

protocol to be from a subset 9 of cardinality G (out of a total T = 2t ). While 

their approach relies on upper-bounding the number of the sender's remaining 

good strings during the various rounds of the protocol, ours focuses instead on 

l30ur reasoning does not allow us to daim that the global maximum cannot occur after the 
(irst peak of Z(u), as is in fact the case. This is because the first peak does not necessarily 
correspond to a peak of Y(u), but might be determined by the intersection of Y(u) with 2u . 

It is th us conceivable that this first intersection is lower than the peak of Y(u) immediately 
following it. 
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following the evolution of the number of pairs of good strings remaining after 

each round. This seems to be a more natural choice for this scenario, as there is 

exactly one such pair remaining at the end of the protocol if the sender succeeds 

in cheating and none otherwise (as opposed to two strings versus zero or one). 

Consequently, the probability of cheating is simply equal to the expected number 

of remaining pairs. Thanks to the nature of the protocol, it is relatively easy to 

establish an upper bound on the expected number of remaining pairs after each 

incoming query, and to keep track of its evolution through the protocol. 

Our approach not only leads to a simpler and more robust pro of of security, 

but more importantly, it also allows us to establish a more general and much 

tighter upper bound on a dishonest sender's probability of cheating. Specifically, 

it allows us to show that any strategy a dishonest sender might employ can 

succeed with probability no larger than 15.6805 . G/T, for ail fractions G /T of 

good strings. The corresponding upper bound in [CCM98] is v'2 . {IGïT and is 

only valid provided that G/T < (16t8)-1. It should be noted that our upper bound 

is in fact tight up to a small constant. Indeed, the probability of succeeding in 

cheating using an optimal strategy is lower-bounded by the probability of getting 

two good output strings when the sender chooses W E 9 as input and then acts 

honestly. By Property 2 of Interactive Hashing, w is equally likely to be paired 

with any of the remaining strings. It follows that the probability of w being 

paired with one of the other G - 1 good strings is exactly G-l/T -1. Assuming 

that G 2: 2, our upper bound is larger than this lower bound by a factor of at 

most 15.6805· (~) (~:::D < 15.6805 (G~l) ~ 2·15.6805. This establishes that 
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our upper bound is tight up to a small constant in ail cases where the possibility 

of cheating exists (cheating is impossible when G < 2). 

2.3.4 An alternative implementation 

Ding et al. [DHRS04] make use of a new, constant-round Interactive Hashing 

protocol to achieve Oblivious Transfer with a memory-bounded receiver. The 

main idea behind their protocol, which requires only four rounds of interaction 

(compared to t -1 rounds in Protocol 2.1), is that if the receiver sends a random 

permutation 'Ir to the sender (Round 1) who th en applies it to his input string 

w and announces a certain number of bits of 'Ir ( w) (Round 2), th en two more 

rounds suffice to transmit the remaining part of 'Ir ( w) so that only 1 bit remains 

undetermined: in Round 3, the receiver chooses a function 9 uniformly at random 

from a family of 2-wise independent 2-1 hash functions, and in Round 4 the 

sender announces the value of the function applied to the remaining bits of 'Ir ( w). 

The output of the Interactive Hashing protocol consists of the two possible inputs 

to the permutation 'Ir consistent with the values transmitted at rounds 2 and 4. 

The security of this scheme is based on the observation that the permutation 'Ir in 

the first round divides the (dishonest) sender's good set 9 into buckets (indexed 

by the bits transmitted at Round 2), so that with high probability, in each bucket 

the fraction of good strings is below the Birthday Paradox threshold. This allows 

regular 2-1 hashing to be used in Rounds 3 and 4 to complete the protocol. 

It should be noted that since a random permutation would need exponential 

space to describe, the construction resorts to almost t-wise independent permu-
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tations, which can be efficiently constructed and compactly described. 

Unfortunately, the protocol of [DHRS04] is less general than Protocol 2.1 for 

a variety of reasons: first, its implementation requires that the two parties know a 

priori an upper bound on the cardinality ofthe dishonest receiver's good set g, as 

this will determine the number of bits of 7r( w) announced in Round 2. Secondly, 

the upper bound for the probability that Property 3 is not met is, according to 

the authors' analysis, 0 (t . GjT) and only applies when G ~ 4t. Moreover, the 

protocol does not fully satisfy Property 2, but only a slight relaxation14 of it. 

Lastly, the protocol is very involved, and probably prohibitively complicated to 

implement in practice. We leave it as an open problem to improve upon this 

construction. 

2.4 A sample application 

ln order to illustrate the power of Interactive Hashing in information theoretic 

con texts , we will consider its application to the following problem: suppose that 

a sender Alice and a receiver Bob wish to implement 1-out-of-k Bit Oblivious 

Transfer (more on Oblivious Transfer in later chapters), which we will denote as 

(~)-Bit OT. For the purposes of our example, suffice it to say that Alice would 

like to make available k randomly chosen bits to Bob, who must be able to choose 

to learn any one of them, with ail choices being equally likely from Alice's point 

of view. Alice is only willing to participate provided that (dishonest) Bob learns 

information about exclusively one bit, while Bob must receive the assurance that 

14it approximates the uniform distribution over the remaining strings within some TJ < 2-t . 
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(dishonest) Alice cannot obtain any information about his choice. Suppose that 

ail that is available to Alice and Bob is an insecure version of (~)-Bit OT, denoted 

(k - l)-faulty (~)-Bit OT, which allows honest Bob to receive (only) one bit 

of his choice but might allow a dishonest Bob to learn up to k - 1 bits of his 

choice. Over the past few years, Crépeau and Kilian [CK] have made repeated but 

unsuccessful attempts to find a satisfactory reduction of (~)-Bit OT to (k -1)

faulty G)-Bit OT. Protocol 2.2 shows how Interactive Hashing makes such a 

reduction almost trivial. 

Remark: For simplicity, Protocol 2.2 reduces (i)-Bit OT to (k - l)-faulty 

(~)-Bit OT without any 1055 of generality since G)-Bit OT can in turn be re

duced to (i)-Bit OT using the well-known reduction in [BCR86]. For simplicity, 

we will also assume that k is a power of 2. 

It is relatively straightforward to see that when both participants are honest, 

Protocol 2.2 allows Bob to obtain the bit of his choice since he knows Rd = 

E97=1 ric; and can thus decrypt et. In case Alice is dishonest, Bob's choice ë is 

perfectly hidden from her when she obtains f at Step 6. This is because at the 

beginning of the protocol, Bob is equally likely to make the choices encoded by 

Wo as those encoded by Wl. Consequently, by Property 1 of Interactive Hashing, 

given the specific outputs, the probability of either of them having been the 

original input is exactly 1/2. Hence d is uniformly distributed from Alice's point 

of view and 50 f = d EB ë carries no information about ë. As for the case where 

Bob is dishonest, we can assume that he always avails himself of the possibility 

of cheating afforded by (k - l)-faulty (~)-Bit OT, and obtains k - 1 out of k 

42 



Protocol 2.2 Reduction of (~)-Bit OT to (k - l)-faulty (~)-Bit OT 

Let bo, bl and ë be the inputs of Alice and Bob, respectively, for (i)-Bit OT. 

1. Alice and Bob agree on a security parameter n. 

2. For l ~ i ~ n do: 

(a) Alice selects at random bits ril, ri2,"" rik while Bob selects at ran
dom Ci ER {l, ... , k}. 

(b) Alice uses (k - l)-faulty (~)-Bit OT to send her k bits to Bob, who 

chooses to learn ric;' 

3. Bob encodes his choices during the n rounds of (k - l)-faulty (~)-Bit OT 
as a bit string W of length n ·Iog(k) by concatenating the binary represen

tations of Cl, C2, ... , cn· 

4. Bob sends w to Alice using Interactive Hashing. Let wo, WI be the output 
strings labeled according to lexicographic order, and let d E {O, 1} be su ch 

that W = Wd. 

5. Let Pl, P2, ... , Pn be the positions encoded in Wo and let ql, q2, ... , qn be 
the positions encoded in WI. Alice computes 

n 

Ro = E9 riP; 

i=l 

6. Bob sends f = d œ ë to Alice. 

n 

RI = E9riq;. 
i=l 

7. Alice sends eo = bo œ Rf and el = bl œ Rf to Bob. 

8. Bob decodes bt = et œ Rfffit = et œ Rd, 
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bits every time. Then, by the end of Step 2, it is always the case that among ail 

encodings of positions, only (kkl) n < e-n
/

k are "good", in the sense that they 

represent positions that are ail known to him (a long with their exclusive OR). By 

Property 3 of Interactive Hashing, Bob cannot force both Wo and Wl to be among 

these "good" encodings except with probability no larger than 15.6805 . e-n
/

k
• 

This probability can be made arbitrarily small by an appropriate choice of the 

security parameter n. 

2.5 Conclusion and open problems 

We have provided a rigorous definition of Interactive Hashing by distilling and for

malizing its security properties in an information theoretic context, independently 

of any specifie application. This opens the way to recognizing Interactive Hashing 

as a cryptographie primitive in its own right, and not simply as a sub-protocol 

whose seeurity properties, as weil as their pro of, depend on the specifies of the 

surrounding application. We have also demonstrated that there exists a simple 

implementation of Interactive Hashing that fully meets the above-mentioned se

curity requirements, and gave a proof of correctness that significantly improves 

upon previous results in the literature. We have also provided a simple example 

that offers a glimpse into the power of Interactive Hashing as a cryptographie 

primitive, as a preview to the more elaborate applications that we will be encoun

tering in Chapters 4 and 5. 
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Open problems The interested reader is encouraged to consider the following 

open problems: 

1. Devise a more appropriate name for Interactive Hashing which better cap

tures its properties as a cryptographie primitive rather than the mechanics 

of its known implementations. 

2. Investigate how much interaction, if any, is really necessary in principle to 

implement Interactive Hashing. 

3. Explore ways to implement Interactive Hashing more efficiently, especially 

regarding the amount of interaction. To this end, the constant-round Inter

active Hashing protocol of [DHRS04] we briefly described in Section 2.3.4 is 

an important step in the right direction. We invite the interested reader to 

improve on this construction so that it meets ail the security requirements. 
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Oblivious Transfer 

Oblivious Transfer (OT) is a cryptographie primitive of paramount importance, 

especially in the context of multiparty computation. One of its early variants had 

been studied by Wiesner [Wie70] under the name of "multiplexing" but his work 

was only published post-facto. The notion of Oblivious Transfer was introduced 

to cryptography by Rabin [Rab8I]. Rabin OT is a primitive that allows a sender 

Alice to send a bit b to a receiver Bob who receives either b or b. (the erasure 

symbol), each with probability 1/2. The primitive guarantees that Alice does not 

learn which of the two events occurred. 

Another, more frequently encountered variant of Oblivious Transfer is one out 

of two Bit Oblivious Transfer [EGL85], denoted (D-Bit OT or simply Bit OT. 

Here, the sender Alice sends two bits bo, b1 to Bob, who can choose to learn 

the bit of his choice c, namely bc . This primitive guarantees that on one hand, 
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Bob learns nothing about the other bit while on the other hand Alice doesn't 

find out what c was. Despite the differences in appearance between Bit OT and 

Rabin OT, the two variants are in fact equivalent cryptographie primitives, as was 

demonstrated by Crépeau [Cré87]. 

The apparent simplicity of Oblivious Transfer belies its surprising power as 

a cryptographie primitive. Its applicability to multiparty computation was first 

studied by Even, Goldreich and Lempel [EGL85]. Ever since, Oblivious Transfer 

has featured as a main ingredient in an array of protocols implementing a large 

variety of cryptographie tasks, such as Bit Commitment, Zero-knowledge Proofs, 

and general Secure Multiparty Computation [Yao86, GMW87, GoI04]. Kilian 

[KiI88] demonstrated that this primitive is in and of itself sufficient to securely 

implement any two-party computation. 

String OT is a generalization of Bit OT that allows Alice to send one of 

two k-bit strings to Bob. In the next two Chapters, we will see how Interactive 

Hashing, which was presented in Chapter 2, enables String OT to be efficiently 

reduced to Bit OT and other related but weaker primitives (Chapter 4), as weil 

as to the original Rabin OT (Chapter 5). The rest of the present chapter is 

devoted to introducing the various types of Oblivious Transfers that we will later 

encounter. 

3.1 String DT and Bit DT 

One-out-of-two String Oblivious Transfer, denoted (D-String OTk
, is a primitive 

that allows a sender Alice to send one of two bit strings, xo, Xl E {O,l}k to a 
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receiver Bob who receives Xc for a choice bit C E {O, 1}. It is assumed that the 

joint probability distribution PXQXIC from which the inputs are generated is known 

to both parties. The primitive offers the following guarantees: 

1. (Correctness) When both parties are honest, Bob obtains Xc while Alice 

obtains nothing. 

2. (Security for Bob) Any (dishonest) Alice cannot learn any extra information 

about Bob's choice c beyond what can be inferred from her inputs xQ, Xl 

and the distribution PXQXIC. 

3. (Security for Alice) Any (dishonest) Bob can learn information concerning 

exclusively one of xQ, Xl. This excludes any joint information about the two 

strings except what can be inferred from Bob's input, (Iegitimate) output, 

Bit OT can then simply be viewed as a special case of (~)-String OTk with 

k=1. 

3.2 Weaker variants of Bit DT 

XOR OT1, Generalized OT and Universal OT are weaker variants of (~)-Bit OT 

obtained by relaxing the security guarantees against a dishonest receiver (Bob), as 

lAs a brief historical aside, we mention that XOR OT was originally studied in the context of 
reversing the direction of Oblivious Transfer. Crépeau and 5antha [C591] showed that it is very 
easy to obtain XOR OT in one direction if (D-Bit OT in the reverse direction is available. Using 

their approach, obtaining (D-Bit OT itself required a more elaborate construction involving 
severa 1 executions of (i)-Bit OT in the reverse direction. These results were obviated by a 

more recent approach [WW06] that fully reverses (i)-Bit OT using just one execution. 
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described below. Note that in ail cases, bo, b1 denote Alice's input bits. Whatever 

extra choices may be available to Bob, he always has the option of acting honestly 

to obtain bc for a choice C E {Q,I}. As in "regular" (D-Bit OT, Alice never 

obtains information about Bob's choice c, or learns whether Bob actually made 

use of his expanded choices. 

XOR OT (XOT) Bob can choose to learn one of bo, b1 , b$ where b$ ~ bo6Jb1 . 

Generalized OT (GOT) Bob can choose to learn f(bo, b1 ) where f is any of 

the 16 possible one-bit functions of bo, b1 . 

Universal OT (UOT) Bob can choose to learn n(bo, bd where n is any arbi

trary discrete memoryless channel whose input is a pair of bits and whose 

output satisfies the following information theoretic constraint: let Bo, BI E 

{Q,I} be uniformly distributed random variables and let a ~ 1 be a con

stant. Then, 

Note that we do not consider channels with a > 1 as this would disallow Bob to 

act honestly. 

3.3 Rabin DT 

ln this incarnation of Oblivious Transfer, which, as already noted, was the first 

one to appear in the cryptographic literature [Rab81], the sender Alice sends a bit 

b to the receiver Bob over an erasure channel with erasure probability 1/2 and is 
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then oblivious to what transpired during the transmission. In Chapter 5 where we 

deal with this variant of OT, we will only be concerned with the case where the 

bits sent by Alice are chosen independently and uniformly at random. In other 

words, as the bits are uncorrelated with any information that Bob might have in 

his possession, whenever he receives the erasure symbol /1, he cannot guess thee 

value of b with probability greater than 1/2. 

3.4 Randomized DT 

(D-ROTk is a randomized variant of (D-String OTk where Alice makes avail

able to Bob two strings '0, '1 E {O,I}k chosen uniformly at random and inde

pendently. Bob learns 'c for a randomly chosen C ER {O, I}. The fact that the 

inputs are random and uncorrelated greatly simplifies the security requirements 

of (~)-ROTk. Specifically, this primitive offers the following guarantees: 

1. (Correctness) Wh en both parties are honest, Bob obtains 'c while Alice 

obtains nothing. 

2. (Security for Bob) Bob's choice bit c is uniformly distributed in (dishonest) 

Alice's view. 

3. (Security for Alice) Any (dishonest) Bob can learn information concerning 

exclusively one of '0, '1. Specifically, at the end of every execution there 

must exist sorne c' E {0,1} such that, given (dishonest) Bob's view as 

weil as 'c' (provided by an oracle), 'ë' is uniformly distributed in {a, I}k. 
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Despite its simplicity, (i)-ROTk is in fact equivalent to (~)-String OTk
. In

tuitively, it is easy to see that (~)-ROTk reduces to (~)-String OTk. Protocol 3.1 

shows that there exists a straightforward reduction in the reverse direction as weil. 

For a more formai proof of the equivalence of these two variants, see Section 3.5.3. 

Protocol 3.1 Reduction of String OT to Randomized OT 

Let the inputs to (D-String OTk be xo, Xl E {a,l}k for the sender and c E 

{a, 1} for the receiver. 

1. The sender uses (~)-ROTk to send 'fo, 'fI ER {a, l}k to the receiver, who 
receives 'ft for sorne randomly chosen C E {a, 1}. 

2. The receiver sends d = cEBe to the sender. 

3. The sender sets eo = Xo EB 'fd and el = Xl EB 'fa and sends eo, el to the 
receiver. 

4. The receiver decodes Xc = ec EB 'f~. 

Remark: Step 1 can be performed before the two parties' inputs to 
(i)-String OTk have been determined and its results stored for later use. 

The simplicity of (i)-ROTk compared to (~)-String OTk makes it consider

ably easier to work with. For this reason, in Chapters 4 and 5 where our goal 

is to provide efficient reductions of (i)-String OTk to other Oblivious Trans

fer variants, we actually resort to reductions of (~)-ROTk, without any 1055 of 

generality. 
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3.5 Information theoretic definitions of DT 

Although the formulation of the properties of (î)-String OTk is quite intuitive 

and rather straightforward even for the general case where the inputs of the 

two parties may be correlated, a corresponding formai definition in the language 

of information theory is rather elusive. Indeed, over the past decades, severa 1 

attempts have been made to capture the security properties of (î)-String OTk 

in such an information theoretic definition. Most of the resulting definitions 

are either too restrictive in scope and thus applicable to only a few specialized 

scenarios, or suffer from subtle (and sometimes not so subtle) flaws. An overview 

of sorne of these definitions and their shortcomings appears in [CSSW06], along 

with a new information theoretic definition of (î)-String OTk which is shown 

to be equivalent to a widely accepted security definition of general two-party 

computation in the real/ideal model paradigm and will thus hopefully stand the 

test of time. 

We present this new definition of (î)-String OTk in Section 3.5.1 and its 

counterpart for (î)-ROTk in Section 3.5.2. Finally, in Section 3.5.3 we pro

vide a formai proof establishing that G)-String OTk and (D-ROTk are indeed 

equivalent using these definitions. 

3.5.1 Definition of (i)-String OTk 

ln what follows, X = XOX 1 is a random variable denoting the sender's input, C 

is a random variable denoting the receiver's choice bit and Z is a random variable 

denoting the environ ment. V, V are random variables denoting the outputs of the 
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sender and receiver, respectively. 

Theorem 3.1 ([CSSWD6]). A protocol between Player 1 and Player 2 securely 

computes (~)-String OTk perfectly if and only if for every pair of algorithms 

A = (Ab A2 ) su ch that at least one of Al, A2 follows the protocol, and for ail 

inputs (X, C) and auxiliary input Z, A produces outputs2 (V, V) su ch that the 

following conditions are satisfied: 

1. (Correctness) If both players are honest, th en (V, V) = (-L, Xc). 

2. (Security for Player 1) If Player 1 (the sender) is honest, th en we have 

V = -L and there exists a random variable C', su ch that 

1 (X; C' 1 Z C) = D and I(X; VI ZCC'Xc ) = D. 

3. (Security for Player 2) If Player 2 (the receiver) is honest, then we have 

I(C;VIZX)=D. 

3.5.2 Definition of (i)-ROTk 

We provide an information theoretic definition of (~)-ROTk along the lines of 

Theorem 3.1. Let Ro, RI E {D, l}k be two uniformly distributed, independently 

chosen random variables corresponding to Alice's input and let R = RoRI. Let 

C E {D,l} be a binary, uniformly distributed random variable corresponding 

2We remark that the output of a dishonest party can, without 1055 of generality, be assumed 
to contain the party's marginal view of the protocol's execution. 

53 



to Bob's choice bit. Theorem 3.2 captures the information theoretic security 

requirements for (~)-ROTk. 

Theorem 3.2. A protocol between Player 1 and Player 2 securely computes 

(~)-ROTk perfectly if and only if, for every pair of algorithms A = (Al, A2 ) 

su ch that at least one of Al, A2 follows the protocol, and for randomly and 

independently chosen inputs (R, C) and auxiliary input Z, A produces outputs 

(V, V) such that the following conditions are satisfied: 

1. (Correctness) If both players are honest, then (V, V) = (..l, Re). 

2. (Security for Player 1) If Player 1 (the sender) is honest, then we have 

V = ..1 and there exists a random variable C', su ch that 

I(R; C' 1 ZC) = 0 and H (Rël 1 ZCC' RC'V) = k. 

3. (Security for Player 2) If Player 2 (the receiver) is honest, th en we have 

H(CIZRV)=l. 

Intuitively, Theorem 3.2 guarantees that from the point of view of any dis

honest receiver, one of Ro, RI is uniformly distributed, even if the other string 

is provided to the receiver by an oracle (this ensures that no joint information is 

available). In other words, there exists sorne C', which must not de pend on R, 

such that H (Rël) = k after conditioning on Re' and ail information available 

to the receiver. Likewise, from the point of view of a dishonest sender, C is 
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uniformly distributed, namely H (e) = l, given ail available information. 

3.5.3 Equivalence of (i)-5tring OTk and (i)-ROTk 

ln this section we show that (D-ROTk can be implemented using (~)-String OTk 

and vice versa. 

Reducing G)-ROTk to (~)-String OTk 

Lemma 3.1. If a (~)-String OTk Protocol satisfying the security conditions of 

Theorem 3.1 is used with uniformly and independently chosen inputs (R = RoR! 

and e for the sender and receiver, respectively), then the security conditions of 

Theorem 3.2 will also be met. 

Proof It is easy to see that if both players are honest and the protocol for 

(~)-String OTk satisfies Condition 1 of Theorem 3.1, then it also satisfies Condi

tion 1 of Theorem 3.2. As for Condition 2 of Theorem 3.2, we first observe that 

there exists C' such that I(R; C' 1 Ze) = 0 since the corresponding condition in 

Theorem 3.1 guarantees it. Moreover, since it holds that I( R; V 1 zeC' Re') = 0, 

we have 

H (R 1 zee' Re'V) = H (R 1 zee' Re') (3.1) 

which implies that 

=0 __ ----~A~------~ 
H (Rë' 1 zee' Re,v) + H (Re' 1 zee' Re'Rë'V)' = 

(3.2) 

H (RRe' 1 zee') - H (Re' 1 zee'). 
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From (3.2) it follows that 

H (Ré' 1 ZCe' ReM) = H (R 1 ZCC') - H (Re' 1 ZCe') 

= H (R 1 ZC) - H (Re' 1 ZC) (3.3) 

= 2k - k (3.4) 

= k. 

Note that 3.3 follows from I(R; C' 1 ZC) = a while 3.4 is follows from the fact 

that RD, RI E {a, l}k are chosen uniformly at random and independently of Zc. 

Finally, for Condition 3 (protecting the honest receiver from a dishonest 

sender), observe that the corresponding condition for (D-String OTk guaran

tees that I( C; U 1 ZR) = a ~ H (C 1 Z RU) = H (C 1 ZR) = 1 since C is 

chosen uniformly at random and independently of ZR. 0 

Reducing (~)-String OTk to (~)-ROTk 

Lemma 3.2 proves the security of the reduction of (D-String OTk to (D-ROTk 

presented in Protocol 3.1. 

Note on notation: ln order to make the distinction between the variables for 

G)-String OTk and G)-ROTk
, we will place a small circle above ail the latter 

ones, whether they have a similarly-named counterpart in (~)-String OTk or not. 

Lemma 3.2. Ifthe G)-ROTk subprotocol used in Protocol 3.1 satisfies the con

ditions of Theorem 3.2, th en the conditions of Theorem 3.1 for (D-String OTk 
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are also met. 

Proof Let R RoRI and ë be random variables corresponding to the two 

parties' random inputs for the (D-ROTk subprotocol. Let Ü, V be the two 

parties' outputs, and let Z be the auxiliary string (which honest parties always 

ignore). Similarly, let X = XOXI and C be the two parties' respective inputs to 

the String OT protocol and let V, V be the corresponding outputs. Let 0 = cœë 

and let Eo = Xo œ RD, El = Xl œ RD. Let Z be the auxiliary string denoting 

the environment. Since no new auxiliary information is made available during 

Protocol 3.1, we will assume that Z = Z. 

Condition 1 If the (~)-ROTk subprotocol satisfies Condition 1 then it is easy to 

see that Condition 1 for (D-String OTk will also be met. Indeed, in Step 2 

the receiver sends to the sender a "flip bit" d which effectively allows him to 

invert the order in which the input strings of (~)-String OTk are encrypted 

and thus to eventually output the string Xc of his choice regardless of his 

initial random choice of ë in Step 1. Clearly, the honest sender will not 

output anything. Therefore, (V, V) = (1.., Xc). 

Condition 2 We first note that indeed, if the sender is honest th en V = Ü = 1... 

For the su bprotocol , there must exist a random variable ë' such that 

I(R; ë' 1 Zë) = o. Let C' = ë' œ O. Note that by Step 2 when ë,o 

have been determined, the (honest) sender has not made any use of his 

input X. As only the value of C, which is known to the dishonest receiver 

at the beginning of the protocol, could have influenced Steps 1 and 2, it 
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must be the case that e contains no information about X beyond what is 

already included in C and thus I(X; e 1 ZC) = O. 

We now need to show that I(X; V 1 ZCeXc ) = 0 or equivalently, that 

Notice that the dishonest receiver's output (or view) V can, without 1055 

of generality, be assumed to be V = VEoEl = VEcIECI. It is clear that 

I(V; X 1 C) = 0 since V is unrelated to X given C. Since we condition 

on Xc', Ec adds no further information on X. As for ECI' it corresponds 

to XCI after encryption using Roœcl = RCI as a one-time pad. Since it 

holds that H (Rcl 1 zee' Rc, V) = k, by the properties of the one-time 

pad no information about XCI is made available through ECI' It follows 

that H (XcII zce XcV) = H (XcII zce Xc). 

Condition 3 The only information made available to the dishonest sender after 

Step 1 is the value of D. We can thus assume that U = Ü D. Since 

o = C œ e and H (e 1 ZRÜ) = 1, 0 contains no information about C. 

Since X is available to the dishonest sender at the beginning of Protocol 

3.1, it is conceivable that the subprotocol was influenced by X. However, 

Ü cannot carry any information beyond X since the honest receiver never 

made any use of C during the (i)-ROTk subprotocol. It follows that 

I(C; U 1 ZX) = o. 

o 
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Reducing String OT ta Bit OT variants 

As mentioned in Chapter 3, (D-Bit OT is by itself sufficient to securely implement 

any two-party computation [KiI88]. It should thus not come as a surprise that 

(~)-String OTk can be reduced to (D-Bit OT, at least in principle. However, as 

such generic reductions are typically inefficient and impractical, many attempts 

at finding direct and efficient reductions have been made in the pasto Besides 

increasing efficiency, an orthogonal goal of sorne of these reductions has been to 

reduce G)-String OTk to weaker variants of Bit OT such as XOR OT, General

ized OT and Universal OT. As we shall see in this Chapter, Interactive Hashing 

can supplement sorne of the techniques used in reductions of (î)-String OTk to 

the above-mentioned variants. This gives rise to enhanced reductions that are 

both more efficient - in fact, most of them can be proved to be asymptotically 

optimal - and more general than reductions that do not make use of Interac-
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tive Hashing [CS06]. Note that as (~)-ROTk and (~)-String OTk are equivalent 

(see Section 3.5.3), without 1055 of generality, our goal in this Chapter and the 

next will be to present reductions of (~)-ROTk to Bit OT and its variants. This 

choice is motivated by the fact that the randomized nature of (D-ROTk and the 

independence of the two parties' inputs yield simpler constructions with easier to 

prove secu rity. 

4.1 Previous work 

Ail reductions of (D-ROTk to Bit OT fall within two major categories: reductions 

based on Self-intersecting Codes [BCS96] (Section 4.1.1) and reductions based 

on Privacy Amplification [BBR88] (Section 4.1.2). 

4.1.1 Reductions based on Self-intersecting Codes 

Self-intersecting Codes are a special class of error-correcting codes encoding k-bit 

input strings into n-bit codewords. They have the extra property that any two 

non-zero codewords Co, Cl always have at least one non-zero position in common. 

ln other words, there exist sorne position i such that c~c{ =1= O. This property 

turns out to be relevant to Oblivious Transfer, since it can be shown that it 

guarantees that if / is the set of n positions and vo, VI are any two disjoint 

subsets of /, th en there exists d E {a, 1} such that the following always holds 

about Vd: if R E {a, 1 Y is randomly chosen among ail encodings that decode to 

any specific r E {a, l}k, th en announcing the bits of R at positions Vd provides 

no information at ail about r. 

60 



Consequently, to achieve (i)-ROTk
, the sender Alice first selects two random 

strings Ro, RI from {O, Ir, which are decoded into ro, rI E {O, l}k by the code. 

Alice sends Ro, RI pairwise through n executions of Bit OT to the receiver Bob. 

If Bob is honest, he will receive Re for sorne choice bit c, which he can then 

easily decode into rc. On the other hand, if Bob is dishonest he will receive the 

bits of Ra at positions Va and the bits of RI at positions VI with Vo n VI = 0. By 

the properties of the code, then, he learns nothing about rd for sorne d E {O, 1}. 

Note that this would remain true even if Bob were given ra by an oracle. 

Advantages and Disadvantages 

The main advantage of these reductions is that the self-intersecting code can be 

chosen ahead of time and embedded once and for ail in the protocol for future 

use. One of the main disadvantages is the rather large expansion factor n/k, the

oretically lower-bounded by 3.5277 [Sti99] and in practice ranging from roughly 

4.8188 to 18 depending on the type of code. Another important limitation is 

that this approach does not lend itself to generalizations to weaker forms of Bit 

OT, such as XOT, GOT and UOT. 

For more information on Self-intersecting Codes and their use in String OT 

reductions we refer the reader to [BCS96]. 

4.1.2 Reductions based on Privacy Amplification 

Privacy Amplification [BBR88] is a technique that allows a partially known string 

to be hashed to a shorter string about which almost nothing is known. This 
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shorter string can th en be used in cryptographie contexts where guaranteeing 

an (almost) uniform distribution from the point of view of an eavesdropper or 

adversary is crucial as, for example, in the case where the string is to be used as 

a one-time pad. For more information on Privacy Amplification, see Section A.3. 

ln Protocol 4.1 we introduce the construction of [BCW03] upon which our 

own construction (Protocol 4.2) builds and expands using Interactive Hashing. 

Protocol 4.1 Reduction of G)-ROTk to Bit OT 

1. Alice selects Ra, RI ER {a, 1}n. Bob selects C ER {a, 1}. 

2. Alice sends Ra, RI to Bob using n executions of Bit OT, where the ithround 

contains bits Rb, R~. Bob receives R~. 

3. Let k = n/2 - 5 where 5 is a security parameter. Alice randomly chooses 
two k x n binary matrices Mo, Ml of rank k and sets ra = Mo . Ra and 

rI = Ml' RI' 

4. Alice sends Mo, Ml to Bob, who sets re = Me' Re. 

It is easy to see that wh en both parties are honest, Protocol 4.1 always 

succeeds in achieving G)-ROTk
. The properties of Bit OT guarantee that (dis

honest) Alice cannot obtain any information on Bob's choice bit c at Step 2. On 

the other hand, at the end of Step 2, (dishonest) Bob is guaranteed to be missing 

at least n/2 bits of Rd for sorne d E {a, 1}. This is exploited at Step 3 by using 

matrices Mo, Ml as hash functions to perform Privacy Amplification with output 

length k = n/2 - s. This guarantees that rd is uniformly distributed in {a, 1}k 

and independent of ra except with probability exponentially small in the security 

parameter s. Quite importantly, this property remains true even if Bit OT is 
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replaced with weaker variants su ch as XOR OT, Generalized OT and Universal 

OT - albeit at the co st of having to further reduce the size of k in the last two 

cases. 

Advantages and disadvantages 

Besides its apparent simplicity and straightforward implementation, the reduc

tion of Protocol 4.1 has two main advantages over reductions based on Self

intersecting Codes: 

1. Using n executions of Bit OT one can achieve G)-ROTk for k slightly less 

than n/2. This translates into an expansion factor n/ k of 2 + E, which is 

smaller than that of any reduction based on Self-intersecting Codes. 

2. Using the 2-universal family of Hash Functions defined at Step 3, the re

duction works without any modification when Bit OT is replaced with XOT 

and requires only a decrease in the size of k to work with GOT and UOT. 

The construction suffers from two disadvantages: 

1. The proof of security relies heavily on the properties of matrices in :F2 that 

are used as hash functions for Privacy Amplification in Step 3. A general 

result for any universal class of hash functions was left as an open problem. 

2. In every run of the protocol a new set of matrices Mo, Ml must be selected 

and transmitted, thereby increasing the amount of randomness needed as 

weil as the communication complexity by 8(n2 ) bits. 
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4.2 Reduction of (~)-ROTk to (~)-Bit OT using 

Interactive Hashing 

We now demonstratehow Interactive Hashing allows us to augment Protocol 4.1 

of [BCW03] with tests that check the receiver's adherence to the protocol. As 

we shall see, these tests limit a dishonest receiver's ability to deviate From the 

protocol, thus allowing our reduction to be about twice as efficient in terms of 

the expansion factor ni k, without any appreciable sacrifice of security. 

4.2.1 Preliminaries 

Encoding of Subsets as Bit Strings 

Let x be a very small positive constant. In our reductions we will need to encode 

subsets of xn elements out of a total of n as bit strings. Let K = (:n) be the 

number of su ch subsets. There exists a simple and efficiently computable bijec

tion between the K subsets and the integers 0, ... , K -l, providing an encoding 

scheme with output length m = rlog (K)l :::; n H (x). See [CCM98] (Section 

3.1) for details on its implementation. Note that in this encoding scheme, the 

bit strings in {O, l}m that correspond to valid encodings, namely the binary rep

resentations of numbers 0, ... , K - l, could potentially make up only slightly 

more than half of ail strings. In order to avoid having to deal with invalid en

codings (which could cause the parties to abort the protocol), we modify the 

encoding of [CCM98] so that any string W E {O, l}m encodes the same subset 
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as w (mod K), which is always a valid encoding in the original scheme l . Thus 

in our modified encoding scheme each string in {D, l}m is a valid encoding of 

some subset, while to each of the K subsets correspond either 1 or 2 bit strings 

in {D, 1} m. This imbalance2 in the number of encodings per subset will turn out 

to be of little importance in our scenario thanks to Lemma 4.1 below. 

Lemma 4.1. Assume the modified encoding of Section 4.2.1 mapping subsets 

to bit strings in {D, 1} m. If the fraction of subsets possessing a certain property 

is f, then the fraction f' of bit strings in {D, l}m that map to subsets possessing 

that property satisfies f' ::; 2f. 

Proof Let P be the set containing ail subsets possessing the property, and let 

Q be its complement. Then f = ,P/:Io" The maximum fraction of strings in 

{D, l}m mapping to subsets in P occurs when ail subsets in P have two encodings 

each, while ail subsets in Q have only one. 

'P~~b, = 2f. 

Notation and conventions 

Consequently, f' ::; 21~/:/QI < 

D 

ln the reduction of Protocol 4.2, two randomly chosen strings To, Tl ER {D, l}n 

are transmitted pairwise using n executions of Bit OT. We denote by tb, t{ the 

lAn alternative would be to reduce the fraction of invalid encodings to an arbitrarily small 
fraction by adding redundancy to the encoding. Indeed, as was shown in [DHRS04]. at the 
modest cost of increasing the encoding length from m to m + l, one can guarantee that the 
proportion invalid encodings is no larger than 2- l . While this scheme does not completely 
eliminate invalid encodings, it has the advantage of assigning an equal number of encodings to 
each subset. 

2We remark that the imbalance could be further reduced, if necessary, at the cost of a slight 
increase in the encoding length. Let M ~ m and let every w E {Q,l}M map to the same 

subset as w (mod K). Then each of the K subsets will have at least L 2; J and at most r 2; l 
different encodings. 
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bits at position i of To, Tl, respectively. Let 1 be the set of ail n positions. For a 

subset s ç 1 let T(s) be the substring of T consisting of the bits at ail positions 

i E s in increasing order of position. Note that T(/) = T. Subsets of 1 of 

cardinality xn will be mapped to bit strings of length m = f'og (c~)) l using 

the encoding/decoding scheme of Section 4.2.1. Let w E {O, I}m be such a bit 

string, encoding a subset s. We will let T(w) den ote the same substring as T(s). 

4.2.2 The reduction 

Protocol 4.2 presents our reduction of (i)-ROTk to (i)-Bit OT. 

Intuition behind Protocol 4.2 

At Step l, the two parties agree on the value of x, namely the proportion among 

the n bit positions that will be sacrificed for tests. This also determines the 

encoding length m for subsets of xn positions. At Step 2, Alice selects the two 

random n-bit strings that are to be transmitted to Bob using n executions of 

Bit OT. At Step 3, Bob randomly chooses his choice bit C E {O,I}. He also 

selects a small subset sel of cardinality xn. The selection is made by first 

choosing an encoding w uniformly at random in {O, I}m and then mapping it to 

the corresponding subset s. This ensures that ail strings in {O, I}m are equally 

likely to be Bob's initial choice w, a fact which will become important at Step 5 

when w is sent to Alice using Interactive Hashing. Note that 5 is not uniformly 

chosen, as sorne subsets might have two encodings in {O, I}m while others only 

have one. Nonetheless, as we shall see, it is random enough for our needs. At 
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Protocol 4.2 Reduction of (D-ROTk to Bit OT using IH 

1. Alice and Bob select x to be a (typically very small) positive constant 

less than 1. They let m = flOg ( (;n) ) l be the encoding length for the 

eneoding scheme of Section 4.2.1. 

2. Alice chooses two random strings To, Tl ER {a, 1y. 
3. Bob ehooses a random c ER {a, 1}. Bob selects W ER {a, l}m uniformly 

at random and decodes w into a subset 5 C 1 of cardinality xn. 

4. Alice transmits To, Tl to Bob using n executions of Bit OT, with round i 

containing bits tb, t{. Bob chooses to learn t~ if i tJ. 5 and tb if i E 5. 

5. Bob sends w to Alice using Interactive Hashing (Protocol 2.1). Alice and 

Bob compute the two output strings, labeled wo, W1 according to lexi

cographie order, as weil as the corresponding subsets So,51 C 1. Bob 

computes b E {a, 1} s.t. Wb = w. 

6. Alice checks that ISo n 511 ~ 2x2 n and aborts otherwise. 

7. Both parties compute 5b = So \ (So n 51) and 5~ = 51 \ (So n 5d· 

8. Bob announces a = bœc to Alice. He also announces To(5~_a) and T1(5~). 

9. Alice checks that the strings announced by Bob are consistent with a and 

contain no errors. Otherwise she aborts the protocol. 

la. Alice and Bob discard the bits at positions So U 51 and concentrate on the 

remaining positions in J = 1\ (So U 51). Let} = IJI and Ro = To(J), RI = 

T1(J). 

11. Alice chooses two functions ho, hl randomly and independently from a 2-

universal family of hash functions with input length } and output length 

k =} - 6xn ~ n - 8xn. She sends ho, hl to Bob and sets ro = ho(Ro) 

and rI = h1(Rd· 

12. Bob sets rc = hc(Rc)· 
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Step 4, Alice transmits To, Tl in pairs, using n executions of Bit OT. Bob selects 

to learn tb at ail positions except at the few positions in 5 where his choice is 

reversed. As a result he knows most bits of Tc and only xn bits of Të . This is 

depicted in Figure 4.1. 

The goal of the protocol at Step 5 (see Figure 4.2) is to select a second, 

effectively random subset. Bob starts by sending w to Alice using Interactive 

Hashing, the output of which will be wo, W1 with Wb = w. As both strings 

are equally likely to have been Bob's original choice at Step 3, Property 1 of 

Interactive Hashing guarantees that from (dishonest) Alice's point of view, the 

value of b is uniformly distributed. At the same time, Property 3 guarantees that 

the choice of one of wo, W1 was effectively random and beyond (dishonest) Bob's 

control. We will see that this implies that among the corresponding subsets, 

.50, Sb which will be used for tests at Step 9, one is random enough to ensure 

that a dishonest Bob who deviates "too much" from the protocol will get çaught 

with overwhelming probability. 

At Step 6, Alice makes sure that the intersection of .50, 51 is not too large as 

this would interfere with the proof of security against a dishonest Bob. At Step 7, 

the two parties exclude the bit positions contained in the intersection from the 

tests that will follow since Bob cannot be expected to know both To(50 n sd and 

Tl (.50 n 51). What remains of .50,51 is denoted sb, s~. At Step 8, (honest) Bob 

announces Tc(srJ and Të(S~). Note that he can do so since sb n 5 = 0 and so he 

knows ail of Tc(sb). As for Të(S~), it is also known to him since s~ ç s. Observe 

that the only information related to c which is implied by the choice of which 
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substrings to announce is the value of a, which is already made available to Alice 

at the beginning of this step. Alice can thus correctly guess c = a lB b if and only 

if she can correctly guess b which, as mentioned above, is uniformly distributed 

given her view. At Step 9, Alice checks that the strings were announced correctly 

and are consistent with the value of a - see Figure 4.3. If that is the case then 

Alice is convinced that Bob has not deviated much from the proto co 1 at Step 4. 

ln a nutshell, the idea here is that Interactive Hashing guarantees that even if Bob 

behaves dishonestly, at least one of So, 51 - say, without loss of generality, 51 

- was chosen efFectively at random. Therefore, if Bob can announce ail bits in 

To(Sb) , Tl(sD, it must have been the case that he knew most bits in Tl to begin 

with and consequently few bits in To. In fact, we prove that if (dishonest) Bob 

learns more than 5xn bits of both To and Tl during Step 4 then he gets caught at 

this Step with overwhelming probability during these tests. At Step 10, the two 

players discard the bits at positions SoUSl that were used for tests and concentrate 

on the remaining j positions. Note that j 2:: n - 2xn. As Bob passed the tests of 

Step 9, Alice is convinced that for sorne d E {a, 1}, Bob knows at most 5xn bits 

of Td and thus at most 5xn bits of Rd, This implies that he is missing at least 

j - 5xn bits of Rd' At Step Il, she thus sets k = U - 5xn) - xn 2:: n - 8xn and 

performs Privacy Amplification (with security parameter xn) on Ro, RI to get 

ro, rI. See Figure 4.4. At Step 12, honest Bob obtains the string of his choice 

by applying the appropriate hash function to Re, which is known to him entirely. 
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5 

n rounds 
of Bit DT 

BI Recorded positions 

c::::J Unrecorded positions 

Figure 4.1: During the n Bit OT executions Bob chooses t~ at positions i E 1 \ s, 
and tb at positions i E s. In the Figure, c = 0 so in the end Bob knows ToU \ 5) 
and Tl (s). Note that while 5 clis shown here as a contiguous block, in reality 
the positions it represents occur throughout the n executions. 

l 

Figure 4.2: Honest Bob uses Interactive Hashing to send the encoding w of his 
subset 5 to Alice. Alice does not know which of the two outputs was Bob's input 
w. These two outputs correspond to subsets So,SI of which one is 5 and the 
other is effectively randomly chosen. The intersection of So, 51 is later excluded 
to form sb, s~. 
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Ta To 

•• 5'0 s'o •• 

OR 

Figure 4.3: After establishing sets sb, s~, Alice expects Bob to announce either 
To(sb) and Tl (sD or To(sD and Tl (sb), depending on the value of a. If, for 
example, Bob's choice is c = 0 as in Figure 4.1 and 5 = 50 after Interactive 
Hashing, th en he would choose the latter option. 

50 

1 --. 

Figure 4.4: After Bob has passed the tests in Step 9, both players ignore the 
bits at positions 50 U 51 and form strings Ro, RI from the remaining bits. Then 
independent applications of Privacy Amplification on Ro, RI give rise to ro, rI E 
{o,l}k. 
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Gains in efFiciency 

As k 2:: n - 8xn where x is a very small constant less than 1, the expansion factor 

ni k is 1 + e for e = l~~X ~ 8x. As one cannot do better than ni k = 1 (see 

[DM99] for a formai proof of this fact) , our expansion factor is asymptotically 

optimal and represents a two-fold improvement over the corresponding reduction 

in [BCWa3] where the expansion factor is at least 2 + e'. 

4.2.3 Proof of Security and Practicality 

Theorem 4.1 establishes that Protocol 4.2 rarely needs to be aborted when both 

participants are honest while Theorems 4.2 and 4.3 establish the protocol's secu

rity against a dishonest sender and a dishonest receiver, respectively. 

Theorem 4.1. The probability of failure of Protocol 4.2 when both participants 

are honest is exponentially small in n. 

Proof If both parties are honest th en Protocol 4.2 can only fail at Step 6. We 

will show that for any (fixed) W E {a, 1}m that Bob inputs to Interactive Hashing 

at Step 5, the probability that the second output w' is such that 15 n 5'1 > 2x2 n 

is exponentially small in n. Let 5 be the subset corresponding to Bob's choice of 

w. We will cali a subset s' bad if 15 n 5'1 > 2x2 n. Likewise, we will cali a string 

w' E {a, l}m bad if it maps to a bad subset. 

We start by showing that the fraction of bad subsets is exponentially 5mall in n. 

Suppose s' clis randomly chosen among ail subsets of cardinality xn. One way 

to choose s' is by sequentially selecting xn positions uniformly at random without 
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repetition among ail n positions in 1. The probability qj that the ?hposition thus 

chosen happens to collide with one of the xn positions in 5 satisfies 

xn x 
qj < ---

n-xn 1-x· 

As a thought experiment, suppose that one were to choose xn positions inde-

pendently at random, so that each position collides with an element of 5 with 

probability exactly q = l~x. Since Vi, qj < q, this artificial way of choosing 

xn positions can only increase the probability of ending up with more than 2X2 n 

collisions. We can use the Chernoff bound (Equation (A.2)) to upper bound this 

(Iarger) probability. Assuming x < 1/2 and setting 0 = 1 - 2x we get 

(1-2x)2x2 

where ë = e- 4(1-x) n. This in turn guarantees that when s' is selected in the 

appropriate way, the event 15 n 5'1 > 2x2n occurs with probability € < ë. In 

other words, the fraction of bad subsets is upper bounded by € < ë. 

By Lemma 4.1, the fraction of bad strings in {O, 1}m is at most 2€. As w 

itself is bad, it follows that among ail 2m - 1 strings other than w the fraction of 

bad strings is no larger than 2€. Since by Property 2 of Interactive Hashing, w 

is paired with sorne uniformly chosen w' =1 w, the probability that the protocol 
(l-2x)2x2 

aborts at Step 6 is upper bounded by 2€ < 2· e- 4(1 x) n, which is exponentially 

small in n. D 
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Remark: Theorem 4.1 establishes that Condition 1 (Correctness) of The

orem 3.2 defining the information theoretic properties of a perfect protocol for 

Randomized Oblivious Transfer is met except with exponentially small probability. 

Indeed, unless the protocol aborts, the honest sender does not output anything 

and the honest receiver always succeeds in recovering one of the two strings. 

Theorem 4.2. Alice learns nothing about (honest) Bob's choice bit c. 

Proof. During Bob's interaction with Alice, his choice bit c comes into play only 

during the Bit OT executions of Step 4 and later at Step 8 when Bob announces 

a = bœc. As Bit OT is secure by assumption, Alice cannot obtain any information 

about c in Step 4. As for Step 8, since (honest) Bob chooses w uniformly at 

random in {O, 1}m, both Wo and W1 are a priori equally likely choices. By Property 

1 of Interactive Hashing (see Section 2.2), the a posteriori probabilities of wo. W1 

having been Bob's input are then equal as weil. Consequently, Alice cannot guess 

b with probability higher than 1/2 and the same holds for c = a œ b. D 

Remark: Theorem 4.2 establishes that Condition 3 (Security for Player 2) of 

Theorem 3.2 is perfectly met in ail cases since given ail available information, the 

sender's entropy about the receiver's choice bit c is 1 bit. 

Security against a dishonest Bob 

The proof of Theorem 4.3 establishing the protocol's security against a dishonest 

Bob is considerably more involved. The main idea is that if Bob deviates from 

the protocol more than a small fraction of the time, then he must be missing 

"too many" bits of both To and Tl and will thus fail to pass the tests at Step 
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8 with overwhelming probability. If, on the other hand, he deviates only a small 

fraction of the time, th en Privacy Amplification at Step 11 will effectively destroy 

the illegal information he may have obtained. We start with sorne definitions and 

lem mas that will help to prove Theorem 4.3. 

Definition 4.1. For a bit string T, define up(T) to be the number of bits in T 

that can be guessed correctly with probability at most p < 1. These bits will be 

referred to as unknown bits. 

Definition 4.2. Let 5 C 1. Assuming Definition 4.1, we cali 5 good for T E 

{D, 1r if up(T(s)) ::; 3x2 n, namely if T(s) does not contain more than 3x2 n 

unknown bits. Otherwise, we cali 5 bad for T. We say that 5 is good for either 

To or Tl if at least one of up(To(s)), up(Tl(s)) does not exceed 3x2 n. 

Definition 4.3. Let w be a string in {D, 1}m. We cali w good for T ifthe subset 

5 it encodes is good for T according to Definition 4.2. Otherwise, w is bad for 

T. 

Lemma 4.2. Let up(T) 2: 5xn. Then among ail subsets 5 C 1 of cardinality xn 

the fraction of good subsets for T is less than e-x2n
/ 8 . 

Proof. We will use the Probabilistic Method to show that the probability that a 

randomly chosen subset 5 is good for T is less than e- x2n
/ 8 . One way of choosing 

5 would be to sequentially choose xn positions in 1 at random and without 

replacement. Note that regardless of previous choices, for ail 1 ::; i ::; xn the 

probability qi of position i being chosen among the up(T) positions of unknown 
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bits always satisfies 

up(T) - xn 5xn - xn 
qi > III ~ n = 4x. 

This implies that the probability of choosing a good subset for T would be greater 

if we were to choose the xn positions independently at random so thateach 

position corresponds to an unknown bit with probability q = 4x. In this artificial 

case the distribution of the number of unknown bits is binomial with parameters 

xn,4x and mean J.1. = 4x2 n. Applying the Chernoff bound (Equation A.1) with 

8 = 1/4 we get 

We condude that a subset 5 chosen randomly in the appropriate way has proba

bility smaller than e-x2n
/ B of being good for T, which establishes the daim. D 

Lemma 4.3. Let both up(To), up(T1) ~ 5xn. Then the fraction of strings in 

{Q, l}m that are good for either To or Tl is no larger than 4. e-x2n
/ B• 

Proof It follows from Lemma 4.2 and the Union Bound that the proportion of 

good subsets for either To or Tl is no larger than 2· e-x2n
/
B. Lemma 4.1 in turn 

guarantees that the fraction of strings in {Q, l}m that are good for either To or 

D 

Lemma 4.4. Let both up(To), up(Td ~ 5xn. Then the probability that (dis

honest) Bob will dear Step 9 is exponentially small in n. 

Proof By Lemma 4.3, the proportion of good strings in {Q, l}m for either To 

or Tl is at most 4 . e-x2n
/ B. By Theorem 2.1, Interactive Hashing guarantees 
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that the probability that both wo, Wl will be good at Step 5 of the protocol is no 

larger than 

El = 15.6805 .4. e- x2n
/ 8 . 

Consequently, with probability at least 1 - El, at least one of the two bit strings 

(without loss of generality, wd is bad for both To and Tl. In other words, Wl 

corresponds to a subset 51 with both up(To(sd), up(Tl(sd) ~ 3x2 n. Moreover, 

as Alice did not abort at Step 6 it must be the case that ISo n 511 :s; 2x2 n. 

It follows that both up(To(sD), Up(Tl(S~)) ~ 3x2 n - 2x2 n = x2 n. Therefore, 

however Bob decides to respond in Step 8, he must correctly guess the value of at 

least x2 n unknown bits in one of To, Tl. As the bits were independently chosen, 

the probability of guessing themall correctly is no larger than E2 = px
2
n. 

Bob will clear Step 9 only if he got two good strings from Interactive Hashing 

or got at least one bad string and then correctly guessed ail the relevant bits. 

This probability is upper bounded by El + E2, which is exponentially small in n. 

o 

Theorem 4.3. The probability of (dishonest) Bob successfully cheating in Pro

tocol 4.2 is exponentially small in n. 

Proof. Let Vo ç 1 be the subset of ail positions i where (dishonest) Bob obtained 

th during Step 4. Let VI be defined analogously. Note that Vo n VI = 0. We 

distinguish two cases, which taken together establish the daim. 

Case 1: Both IVoi, IVII :s; n - 5xn. 
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ln this case Ul/2 (To) , Ul/2 (Tl) 2: 5xn, 50 by Lemma 4.4 (dishonest) Bob will 

fail to clear Step 9 except with exponentially (in n) small probability. 

Case 2: One of Ivoi, IVll is greater than n - 5xn. 

Without 1055 of generality, let Ivoi> n-5xn. Then Bob knows less than 5xn 

bits about Tl, and consequently, less than 5xn bits about RI = TI(J). Note that 

as To, Tl are independently chosen, even if an oracle were to provide to Bob ail 

the bits of To (or Ro, or ro), he would obtain no new information about RI' As 

Ul/2 (RI) 2: j - 5xn, Privacy Amplification with output length k = U - 5xn) - xn 

destroys ail but an exponentially (in n) small amount of information about rI, 

with probability exponentially close to 1. 0 

Remark: Theorem 4.3 shows that Protocol 4.2 cornes arbitrarily close to 

satisfying Condition 2 (Security for Player 1) of Theorem 3.2 defining the in

formation theoretic properties of a perfect protocol for Randomized Oblivious 

Transfer. Recall that in Case l, dishonest Bob is caught except with exponen

tially small probability while in Case 2, there always exists sorne "effective" c' 

such that 1 Vc' 1 > n - 5xn, determined by the end of Step 4. Since Alice's random 

strings ro, rI are only determined after applying the hash functions ho, hl cho

sen at Step 11, c'is independent of ro, rI. Moreover, as we have seen, Privacy 

Amplification guarantees that the entropy of rë' given ail available information is 

exponentially close to k. 
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4.3 Extension to weaker variants of Bit DT 

We demonstrate that Protocol 4.2 can accommodate certain weaker versions of 

Bit OT, specifically XOT, GOT and UOT as described in Section 3.2. We show 

that the Protocol requires no modification at ail if Bit OT is replaced with XOT, 

while a virtually imperceptible decrease in the output length k guarantees its 

security with GOT. Decreasing k even further allows us to prove the Protocol's 

security when Bob has access to UOT with Cl: :::; 1. As in ail three cases honest 

Bob's choices during Step 4 are identical to the case of Bit OT and remain equally 

weil hidden from Alice's view, the proofs of Theorems 4.1 and 4.2 (establishing the 

Protocol's practicality and security against dishonest Alice) carry over verbatim 

to the new settings. 

On the other hand, arguing that the Protocol remains secure against dishonest 

Bob becomes even more involved and requires a separate analysis in each case. 

However, the basic idea remains the same as in the case of Bit OT and consists 

in showing that if Bob has deviated "significantly" from the protocol then he gets 

caught with overwhelming probability, and if he has not, th en Privacy Amplifica

tion effectively eliminates any illegal information he may have accumulated. 

4.3.1 Security against a dishonest Bob using ,XOT 

Theorem 4.4. The probability of (dishonest) Bob successfully cheating in Pro

tocol 4.2 is exponentially small in n even if the Bit OT protocol is replaced with 

XOT. 

Proof. Let Vo, Vl, VEIl ç 1 denote the sets of positions i where (d ishonest) Bob 
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requested t6, tf, t~ = t6 EB tf, respectively, during Step 4. As in the proof of 

Theorem 4.2, we distinguish two cases, in both of which the probability of cheating 

is exponentially small in n, as desired. 

Case 1: One of 1 vol, 1 vII is greater than n - 5xn. 

Without 1055 of generality, let Ivoi> n - 5xn. Then IVI U vEBI < 5xn. 

Consequently, Bob knows less than 5xn bits about RI even if he is provided with 

ail the bits of To by an oracle after Step 4. We note in passing that such oracle 

information can only be helpful forthe positions in VEB. Since Ul/2 (Rd> j - 5xn, 

Privacy Amplification with output length k = U - 5xn) - xn destroys ail but 

an exponentially (in n) small amount of information about rI, with probability 

exponentially close to 1. 

Case 2: Both Ivoi, IVll :::; n - 5xn. 

This implies that both IVI U vEBI and Ivo U vEBI are at least 5xn and conse

quently both Ul/2 (To) and Ul/2 (Td are at least 5xn. By Lemma 4.4, Bob will 

fail to clear Step 9 except with exponentially (in n) small probability. D 

Gains in efficiency 

The expansion factor is identical to the case of Bit OT (and optimal). The 

reduction of String OT to XOT using Protocol 4.2 is thus again twice as efficient 

compared to the one in [BCW03]. 
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4.3.2 Security against a dishonest Bob using GOT 

ln the case of Generalized OT, during round i of Step 4 dishonest Bob can choose 

to obtain f( tb, tU for any of the 16 functions f : {D, 1} 2 
1-+ {D, 1}. Without 

loss of generality, we will assume that Bob never requests the two constant 

functions as this would provide him with no information. It is not difficult to 

see that in our context, the information content of each of the remaining 14 

functions is equivalent to that of one of the four functions fo, fI, fœ, fAND defined 

in Equation (4.1) below. We will thus assume that Bob always requests the output 

of one of these functions. In keeping with the notation of previous sections we 

let vo, VI. vœ, VAND ç 1 be the positions where Bob requested fo, fI, fœ, fAND , 

respectively. 

(4.1) 

A necessary modification to Protocol 4.2 

Our proof of security requires that the output length of the hash functions used 

for Privacy Amplification be slightly shorter than in the case of Bit OT and XOT. 

Specifically, in Step 11 we let k = U - 8xn) - xn 2:: n - llxn. 

The security analysis of the Protocol in this setting is somewhat more com

plicated compared to the case of Bit OT and XOT. This is due to the fact that 

requesting rAND may or may not result in loss of information about (to, tl): with 

probability 1/4 the output of fAND is 1 and so Bob learns both bits, while with 

complementary probability 3/4 the output is D in which case the input bits were 
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(0,0), (0, 1), (1,0), ail with equal probability. Note that in this latter case both 

ta, tl are unknown as each can be guessed correctly with probability at most 2/3. 

Complications arising from adaptive strategies 

If dishonest Bob's requests could be assumed to be fixed ahead of time, our anal

ysis would be quite straightforward since we could claim that among ail requests 

in VAND, with high probability a fraction 3/4 - E would produce an output of 0 

and thus both ta, tl would be added to the set of unknown bits in Ta, Tl' Our 

task is complicated by the fact that Bob obtains the output of the function he 

requested immediately after each round and can thus adapt his future strategy 

to past results. For example, Bob may be very risk-averse and start by asking for 

fAND in the first round. If he is lucky and the output is l, he asks for fAND again, 

until he gets unlucky in which case he starts behaving honestly. This strategy 

makes it almost impossible to catch Bob cheating while it allows Bob to learn 

both ra, rI with some nonzero - but admittedly quite small - probability. This 

example illustrates that we cannot assume that 1 VANDI is known ahead of time 

and remains independent of results obtained during the n executions of Step 4. 

Dealing with adaptive strategies 

ln order to prove the security of the protocol for any conceivable strategy that 

dishonest Bob might use, we start by observing that at the end of Step 4 one of 

the following two cases always ho Ids: 

Case 1: One of Ivoi, IVll > n - 8xn. 
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Case 2: Both Ivoi, IVll ~ n - 8xn. 

Note that these two cases refer only to the types of requests issued by Bob 

during Step 4 and do not depend in any way on the results obtained along the 

way. Given any (adaptive) strategy 5 for Bob, one can construct the following 

two strategies: Strategy 51 begins by making the same choices as 5 but ensures 

that eventually the condition in Case 1 will be met: it "steps on the brakes" just 

before this constraint becomes impossible to meet in the future and makes its 

own choices from that point on in order to meet its goal. Similarly, Strategy 52 

initially copies the choices of 5 but if necessary, stops following them to ensure 

that the condition of Case 2 is met. Let 0, 01, 02 be the probabilities of successfully 

cheating using Strategies 5,51,52, respectively. We will argue that 0 ~ 01 + 02. 

To see this, imagine three parallel universes in which Bob is interacting with 

Alice using strategies S, Sir 52, respectively. Note that by the end of Step 4, 

the universe of Strategy 5 is identical either to the Universe of Strategy 51 or 

to the Universe of Strategy 52 (one of 51, 52 never had to "brake"). Therefore, 

Strategy 5 succeeds only if one of 51, 52 succeeds and so 0 ~ 01 + 02. 

Remark: this upper bound is not unreasonably large: 51 and 52 might be 

successful in disjoint events. As 5 has more flexibility than either of them during 

Step 4, it is conceivable that 0 > max (01,02). 

It remains to prove that both 01,02 are exponentially small in n. To do this, 

we let LI, L2 be any adaptive strategies ensuring that the conditions of Case 

1 and Case 2, respectively, are met. We will show that for any such strategies 

(thus, for 50 ,51 as weil), the probabilities of success /11, /12 are exponentially 
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small in n, and therefore 50 is 0 (since 0 :::; 01 + 02 :::; {j.l + {j.2). 

Theorem 4.5. The probability of (dishonest) Bob cheating in (modified) Proto

col 4.2 is exponentially small in n even if Bit OT is replaced with GOT. 

Proof. We will prove that {j.l, {j.2 are both exponentially small in n. 

Probability of cheating using any Strategy El Without 1055 of generality, 

let 1 Vo 1 > n - 8x n at the end of Step 4. Then Bob knows at most 8x n bits a bout 

Tl, even if he is provided with ail the bits of To by an oracle. Consequently, 

Ul/2 (RI) > j - 8xn and therefore using Privacy Amplification with output length 

k = (j - 8xn) - xn ~ n - llxn will result in Bob having only an exponentially 

small amount of information about rI (even given ro), except with an exponentially 

small probability {j.l. 

Probability of cheating using any Strategy E 2 We start by showing that 

Pr [U2/3 (Tl) :::; 5xn] is small. Since any such strategy guarantees that IVII :::; n-

8xn, it follows that Ivo U Vœ U VANDI ~ 8xn. Given this constraint, the probability 

that U2/3 (Td :::; 5xn is maximized if IVANDI = 8xn, Ivoi = IVœl = O. This is 

because each request in Vo and Vœ results with certainty in the corresponding 

bit in Tl being unknown, while a request in VAND produces an unknown bit in 

Tl with probability 3/4 (moreover, in this case the unknown bit can be guessed 

correctly with probability 2/3 instead of 1/2). Using the Chernoff bound (Equation 

A.1) with (n, p, 0) f-t (8xn, 3/4,1/6) gives 

Pr [U2/3 (Td :::; 5xn] :::; Pr [B(8Xn, %) :::; 5xn] :::; e-xn
/

12
. 
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By the same reasoning, this also holds for U2/3 (To) and 50, by the Union 

Bound, U2/3 (To) and U2/3 (Td are both at least 5xn except with probability at 

most 2 . e-xn/ 12 . In this case, Lemma 4.4 guarantees that Bob will only manage 

to clear Step 9 with some exponentially (in n) small probability €. We conclude 

that using any Strategy L2, Bob can successfully cheat with probability 6.2 :::; 

2 . e-xn/ 12 + € which is also exponentially small in n. 

Probability of successfully cheating using any adaptive strategy 5 As 

argued above, for any adaptive strategy S, the probability 0 of cheating is upper 

bounded by 01 + 02 :::; 6.1 + 6.2 and hence 0 is exponentially small in n. D 

Gains in efFiciency 

As k 2: n - llxn where x is a very small positive constant, the expansion factor 

ni k is 1 + €' for €' = l~i~x ~ llx. This factor is only slightly larger than the one 

for the case of Bit OT and XOT and remains asymptotically optimal. Compared 

to the corresponding reduction in [BCW03]. ours improves efficiency by a factor 

of about 4.8188. 

4.3.3 Security against a dishonest Bob using Universal OT 

ln the case where Bit OT is replaced with UOT, at each execution during Step 4 

dishonest Bob can choose to obtain the output of any discrete, memoryless 

channel subject to the following constraint: let Bo, BI be independent, uni

formly distributed random variables corresponding to Alice's input bits and let 

r2 = r2( Bo, BI) be the channel's output to Bob. Then for sorne constant a :::; 1 

85 



the following holds: 

(4.2) 

Note that we require a to be at most l, since otherwise the channel would 

disallow honest behavior as weil. Let € < 1/2 be a (very small) positive constant. 

We can partition ail possible channels satisfying the constraint of Equation 4.2 

into the following three categories. 

Qo: Ali channels satisfying H (Bo 1 Q) < €a and H (BI 1 BoQ) > (1 - €)a. 

QI: Ali channels satisfying H (BI 1 Q) < €a and H (Bo 1 BlQ) > (1 - €)a. 

Qb: Ali channels satisfying H (Bo 1 Q), H (BI 1 Q) ~ €a. 

Let p(a) be the unique solution to the equation h(x) = a for x E [0,1/2]. 

Let Po = Pl = P ((1 - €)a) and Pb = P (€a). Then from Fano's inequality and 

Lemma A.1 (Section A.2) we can assert the following: 

• Po is a lower bound on the error probability when guessing the value of BI 

after using a channel of type Qo and this is true even if the value of Bo is 

known with certainty (via an oracle, say). There thus exists an indicator 

random variable !J.o (provided as side information by an oracle) which leads 

to an erasure of BI with probability 2po. Note: when there is no erasure 

(!J.o = 0) it is not necessarily the case that BI is known with certainty . 

• Likewise, Pl lower bounds the error probability when guessing Bo given the 

output of a channel of type QI and the value of BI. This implies the 
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existence of side information in the form of an indicator random variable 

b.. 1 that leads to an erasure of Ba with probability 2P1 = 2po . 

• When using a channel of type nb , the probability of guessing Ba incorrectly 

given the channel's output is at least Pb, and the same holds when guessing 

the value of B1. Thus, there exists an indicator random variable b..g (resp. 

b..~) which, if provided by an oracle, would lead to an erasure of Ba (resp. 

Bd with probability 2Pb' Note that this statement is true only if the oracle 

provides one of b..g, b..~ each time. To see why this is 50, suppose both 

were provided at the same time, with b..g = 1. Since the value of b..~ 

along with that of n might convey more information about Ba than would 

otherwise be available in n alone, one can no longer assume that this event 

corresponds to an erasure of Ba. 

ln order to simplify our analysis we will assume that after each round of UOT in 

Step 4, an oracle supplies Bob with the following side information, depending on 

the type of channel that Bob used: 

no: The exact value of Ba, as weil as the value of b..o. Note that this leads to 

B1 being erased with probability 2po. 

n1 : The exact value of B1' as weil as the value of b.. 1. Note that this leads to 

Ba being erased with probability 2P1 = 2po. 

nb : One of b..g, b..~, chosen at random with equal probability. Note that this 

leads to each of Ba, B1 being erased with probability Pb in each round (not 

independently, though: Ba and B1 cannot be erased at the same time). 
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Another modification to Protocol 4.2 

Our proof of security will require that we reduce k even further at Step 11, by 

setting k = 2PoU - 8Pbn). For convenience, we will also set x = p~ at Step l. 

Theorem 4.6. The probability of dishonest Bob successfully cheating in (mod

ified) Protocol 4.2 is exponentially small in n even if the Bit OT protocol is 

replaced with UOT satisfying the constraint of Equation (4.2). 

Proof. Let vo, VI, Vb ç 1 be the positions in Step 4 where Bob selected a channel 

of type no, nI, nb , respectively. Then, at the end of Step 4 one of the following 

two cases always holds: 

Case 1: One of Ivoi, IVll > n - 6Pbn. 

Case 2: Both Ivoi, IVll :::; n - 6Pbn. 

As in the proof of security for GOT in Section 4.3.2, we will assume the 

existence of two strategies 51 ,52 initially following the choices of Bob's strategy 

S, but ensuring that Case 1 and Case 2 respectively always holds. We will 

show that the probabilities of successfully cheating of any adaptive strategies 

LI, L2 satisfying the constraints of Case 1 and Case 2, respectively, are both 

exponentially small in n and thus so is their sum, which in turn upper bounds 

the probability that any adaptive strategy 5 that dishonest Bob may use will 

successfully cheat. 

Probability of successfully cheating using any Strategy.L1 Without loss 

of generality, let 1 Vo 1 > n - 6Pbn at the end of Step 4. This implies that at 
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least j - 6Pbn of the bits of R1 were received over a channel of type no. Let J.L1 

be the expected number of erasures in R1, resulting from the side information 

1.10 provided by the oracle in each round. Then J.L1 2: 2po U - 6Pbn). From 

the Chernoff bound (Equation A.3) we deduce that with probability exponen

tially close to 1 there will be at least 2po U - 7Pbn) erasures, in which case 

Ul/2 (R1) 2: 2po U - 7Pb n). Applying Privacy Amplification with output length 

k = 2po U - 8pbn) will thus produce an almost uniformly distributed k-bit string 

r1 (independent of ro), except with exponentially (in n) small probability. 

The probability of any strategy L1 successfully cheating is at most equal 

to the probability that there are too few erasures to begin with (fewer than 

2po U - 7 Pbn)) plus the probability that there are enough erasures but Privacy 

Amplification fails to produce an almost uniformly distributed string. As both 

probabilities are exponentially small in n,50 is their sumo 

Probability of successfully cheating using any Strategy Lz We show that 

with near certainty, both Ul/2 (To) and Ul/2 (Tl) are at least 5xn, which by Lemma 

4.4 guarantees that Bob will fail to clear Step 9 with probability exponentially 

close to 1. We start by upper bounding the probability that Ul/2 (Tl) :::; 5xn. 

Since 1 v11 :::; n - 6Pbn, there are at least 6Pbn bits that were either sent over 

a channel of type no or nb. We will assume that exactly 6Pbn bits were sent 

over a channel of type nb , as this choice minimizes the expected number of 

erasures in Tl given our constraints, and hence maximizes the probability that 

Ul/2 (Tl) :::; 5xn. Note that the expected number of erasures of B1 in this case is 
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Pb· 6Pbn = 6p~n = 6xn. By the Chernoff bound (Equation A.l) 

where À is exponentially small in n. 

The same argument applies to Ul/2 (To). Therefore, except with probability at 

most 2À, both Ul/2 (To) , Ul/2 (Tl) 2:: 5xn in which case, by Lemma 4.4 Bob fails 

to clear Step 9 with probability 1 - €' where €' is exponentially small in n. We 

conclude that using any Strategy L2, Bob can successfully cheat with probability 

at most 2À + €' which is exponentially small in n. 

Probability of cheating using any adaptive strategy 5 As argued in Section 

4.3.2, the probability of successful cheating for any adaptive strategy 5 is upper 

bounded by the sum of the largest possible probabilities of success of strategies 

of type LI, L2. We have shown that both of these are exponentially small. 0 

Gains in efficiency 

ln both our reduction and that of [BCW03]. the expansion factor ni k is a function 

of o. In our case 

k = 2po U - 8Pbn) 

~ 2po (n - 2xn - 8pbn) 

= 2po (n - 2p~n - 8Pbn) . 
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Since Po = p((1 - €)a), Pb = p(€a), for € -+ a we get Po -+ p(a), Pb -+ a 

and therefore k ~ 2p(a)n, which translates to an expansion factor of 2P~a) + €'. 

The corresponding expansion factor in [BCW03] is at least 41n 2 where Pe is the 
Pe 

unique solution in (a, 1/2] to the equation h(Pe) + Pe 1092 3 = a. Thus our 

expansion factor is about 4~:2. 2p(a) > 81n2 = 5.545 times smaller than the 

one in [BCW03]. Note that the inequality follows from the fact that p(a) > Pe. 

This can be seen by observing that h(p(a)) = a = h(Pe) + Pel0923 and thus 

h(p(a)) > h(Pe). Since both p(a) and Pe are at most 1/2 and the entropy 

function h is strictly increasing in the range [0,1/2], it follows that p(a) > Pe. 

Remark: in the special case where a = 1 we have p( a) = 1/2 and therefore 

the expansion factor is 1 + €', which is optimal. Proving optimality for other 

values of a is left as an open problem. 

4.4 Conclusion, open problems and possible av-

enues of further research 

ln this Chapter, we have demonstrated how tests based on Interactive Hashing 

can be embedded in reductions of String OT to Bit OT and various weaker 

primitives in order to ensure the receiver's adherence to the protocol. By severely 

limiting a dishonest receiver's ability to deviate from the protocol without getting 

caught, these tests allow our reductions to be much more efficient than others 

in the literature, without any appreciable impact on security. Our reductions are 

provably asymptotically optimal for the case of Bit OT, XOT and GOT, as weil 
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as for the special case of UOT where Cl = 1. Moreover, our reductions are more 

general since they can use any 2-universal family of hash functions to perform 

Privacy Amplification. 

We end this chapter by listing sorne problems that our current work leaves 

open, as weil as sorne suggestions for further research. 

• Modify Protocol 4.2 so that it never aborts when both participants are 

honest. One possibility to go about this is to abolish Step 6 and show that 

Interactive Hashing at Step 5 would be effective in preventing dishonest 

Bob from obtaining subsets So, 51 that have too large an intersection. 

• Prove that our reduction is optimal for ail Cl in the case of UOT, or modify 

it accordingly to achieve optimality. 

• Replace the Interactive Hashing Protocol (Protocol 2.1) with an appropri

ately adapted implementation of the constant round Protocol of [DHRS04] 

(see Section 2.3.4) and prove that the ensuing reduction (Protocol 4.2) 

remains secure. 
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Reducing String OT to Rabin OT 

As we have seen in Chapter 4, (~)-String OTk can be efficiently reduced, via 

(i)-ROTk, to Bit OT and other weaker variants. As Bit OT is in turn equivalent 

to Rabin OT (see [Cré87]), it follows that a reduction of (î)-String OTk to 

Rabin OT is also possible. In fact, the main technique behind the reduction of 

Bit OT to Rabin OT in [Cré87] can be used in conjunction with later results 

on Privacy Amplification [BBR88] to provide a direct reduction of (i)-ROTk 

requiring n = (4 + E)k executions of Rabin OT. 

ln the present Chapter we will be concerned with providing an optimal re

duction of (~)-ROTk to Rabin OT. Our reduction (Protocol 5.1) employs tests 

based on Interactive Hashing similar to those used in the reduction of (D-ROTk 

to (i)-Bit OT (Protocol 4.2) in order to prevent a dishonest receiver from de

viating "too much" from the prescribed behavior. This allows us to implement 
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(~)-RDTk with only n = (2 + E')k executions of Rabin DT. We observe that 

after n executions of Rabin DT, the expected entropy of the receiver about the 

transmitted bits is n/2. This precludes reductions with an expansion factor n/ k 

smaller than 2 (see [DM99] for a formai proof) and suggests that this reduction, 

just like the one in Protocol 4.2, is asymptotically optimal. 

Remark: As in Chapter 4, we will be focusing on reducing (~)-RDTk rather 

than (D-String DTk since the former is easier to work with even though the two 

are in fact equivalent (see Section 3.5.3). 

5.1 Dptimally reducing (i)-RDTk to Rabin DT 

using Interactive Hashing 

Notation and conventions 

Unless otherwise noted, our notation is consistent with that of Chapter 4, in par

ticular Section 4.2.1. In our reduction (Protocol 5.1), Alice transmits n randomly 

chosen bits to Bob using n executions of Rabin Bit DT. We will cali the positions 

of bits recei~ed by Bob "good" while the "bad positions" will be those of bits 

that were erased during the transfer. Let Gand B be the set of ail good and bad 

positions, respectively, with each element being an integer in the interval [1, n]. 

Alice and Bob choose x to be a (very small) positive constant that will determine 

the fraction of bits that will be sacrificed for tests. Let y = 1/2 - 2x and let 1 

denote the set of ail positions 1, ... ,yn. Let R be a bit string of length yn. For 

any subset s ç l, we will let R(s) be the substring consisting of the bits of R at 
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the positions in s, in increasing order of position. Using this notation, note that 

RU) = R. 

Encoding of Subsets as Bit Strings 

Alice and Bob will use the modified encoding scheme of Section 4.2.1 to en

code subsets 5 C 1 of cardinality xn (out of yn) as bit strings of length m = 

f'Og ( (~~) ) 1· 

5.1.1 The reduction 

Protocol 5.1 presents our reduction of G)-RDTk to Rabin DT. 

Intuition behind Protocol 5.1 

At Step 1 Alice and Bob agree on the value of x which determines the number 

of bits that will eventually be used for tests. At Step 2 Alice uses n executions of 

Rabin DT to transmit n randomly chosen bits to Bob. As erasures occur inde-

pendently with probability 1/2 at every execution, with overwhelming probability 

Bob will receive no more than {1/2 + x)n bits and no less than {1/2 - x)n by the 

end this step. At Step 3, Bob ensures that enough bits have been received for 

the needs of the rest of the protocol, and aborts otherwise. The good and bad 

positions are collected in sets Gand B, respectively. At Step 4, Bob chooses 

C ER {O,l} at random and defines two bit strings Ro, Rl of length yn each 

so that Re is composed exclusively of good positions. As for Ré, the protocol 

requires that it has at least xn good positions spread randomly throughout Ré 
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Protocol 5.1 Reduction of (~)-ROTk to Rabin Bit OT using IH 

1. Alice and Bob select a (typically very small) positive constant x < 1/4 and 

set y = 1/2 - 2x. 

2. Alice transmits n random bits using n executions of Rabin OT. 

3. Bob collects the good and bad positions in sets Gand B, respectively. He 

aborts if IGI < {1/2 - x)n = yn + xn. 

4. Bob chooses at random C ER {a,l} as weil as w ER {a,l}m, where 

m = f'Og ( (~~) ) 1· He decodes w into a subset 5 of cardinality xn (out of 

yn) using the encoding scheme of Section 4.2.1. He then defines two yn

bit strings Re and Rë as follows: yn positions from Gare chosen at random 

and without repetition. The corresponding bits, in the order chosen, make 

up Re. For Rë, xn (new) positions are chosen at random from G, and 

define substring Rë(S). For the remainder, yn - xn positions are randomly 

chosen from G u B. 

5. Bob announces the bit positions making up Ro and RI. Alice checks that 

no bit position appears more than once. 

6. Bob sends w to Alice using Interactive Hashing (Protocol 2.1). Let wo, W1 

be the output strings, let So, 51 C 1 be the corresponding subsets of cardi

nality xn and let b E {a, 1} be such that Wb = w. 

7. Bob announces a = b EB C as weil as Ro(51-a) and R1(5a). 

8. Alice checks that the substrings announced contain no errors. 

9. Alice announces ho, hl, chosen randomly and independently from a 2-

universal family of hash functions with input length yn and output length 

k = yn - 6xn. She sets ro = ho(Ro) and rI = h1(Rd· 

10. Bob sets re = he(Re). 
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- see Figure 5.1. To this effect, Bob chooses a substring 5 of cardinality xn. 

This choice is done by first choosing an rn-bit string w uniformly at random and 

then using the encoding scheme of Section 4.2.1 to map it into 5. The fact that 

the choice of w was uniform will be crucial in ensuring that Bob's choice bit c 

remains hidden from Alice at later steps. We observe that 5 is not entirely uni

formly selected since the encoding scheme maps sorne subsets to two bit strings 

and others to only one. This, however, will turn out not to be important in our 

scenario. 

At Step 5, Bob provides a description of RD, RI to Alice, who makes routine 

checks to ensure that both strings are properly constructed. As from the point of 

view of (dishonest) Alice both RD and RI are equally likely to consist entirely of 

good positions for Bob, she cannot guess which of the two is Re with probability 

greater than 1/2 and thus (honest) Bob's choice bit c is perfectly hidden. 

Steps 6 through 8 introduce tests based on Interactive Hashing that are de

signed to catch a dishonest Bob who deviates from the prescribed behavior at 

Step 5 by putting "too many" good positions in both RD and RI. The tests allow 

Alice to verify that Bob has indeed used almost exclusively good bits to construct 

one of RD, RI. If 50, th en Bob has very little information about the other string 

(a fact that will be used later at Step 9 to set the parameters for Privacy Am

plification). More specifically, at Step 6 Bob uses Interactive Hashing to send 

to Alice string w encoding 5 C 1 (recall that, if Bob is honest, then he knows 

ail of Rë(5)). The output of Interactive Hashing consists of two strings Wo, Wl 

encoding subsets 50,51 - see Figure 5.2 - and there must exist b E {O, 1} such 
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that Wb = W. While the value of bis known to Bob, it is completely hidden from 

(any dishonest) Alice thanks to Property 1 of Interactive Hashing and the fact 

that both Wo and WI are equally likely to have been chosen by Bob at Step 4. At 

Step 7, (honest) Bob effectively announces substrings Rc(sr,) and Rë(Sb), both 

of which consist entirely of good positions - see Figure 5.3. Note that Bob's 

choice of which substrings to announce does not carry any information related to 

c beyond the value of a = b œ c which was announced at the beginning of the 

step. Consequently, as long as Alice cannot guess b, Bob's choice bit c remains 

perfectly hidden from her. 

While these tests are easy to pass for an honest Bob, a dishonest Bob who 

has deviated "significantly" from the protocol will get caught with overwhelm

ing probability and cause the protocol to abort, while a dishonest Bob who has 

deviated only slightly will obtain no advantage in the end. The reasoning is as 

foIl ows: by the properties of Rabin OT and the Chernoff bound, Bob receives no 

more than {1/2 + x)n bits du ring Step 4 except with sorne probability exponen

tially small in n. Assuming that this is the case, we observe that since Ro and RI 

are made up of distinct bit positions and have length yn = {1/2 - 2x)n each, at 

least one of the two - say, without loss of generality, Ro - will consist mostly 

of good positions (Case 1) or else both Ro, RI will have a significant fraction 

of bad positions (Case 2). In Case 1, RI will necessarily consist mostly of bad 

positions and so at Step 9, Privacy Amplification with output length k slightly 

less than yn will result in an almost uniformly distributed1 string rI - see Figure 

5.4. As for Case 2, recall that Property 3 of Interactive Hashing guarantees that 

1Note that r1 would be almost uniform even if Bob were given Ro (or ro) by an oracle. 
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the choice of at least one of wo, Wl (say, without loss of generality, wd was effec

tively out of Bob's control. This also holds for the corresponding subset 51 which, 

with overwhelming probability, will be such that both Ro(51) and Rl (51) contain 

severa 1 bad positions each. Consequently, whatever value of a (dishonest) Bob 

announces at Step 7, in order to pass the tests he will have to correctly guess 

the value of a large number of unknown bits, which can only happen with neg

ligible probability. It follows that, except with negligible probability, either Bob 

has not deviated much from the prescribed behavior and so Privacy Amplification 

destroys any illegal information he has gathered, or else Bob gets caught cheating 

at Step 8 in which case Alice aborts the protocol. 

Lastly, at Step 10 (honest) Bob can easily obtain re by applying the appropriate 

hash function to Re, which he knows completely. 

Gains in efFiciency 

We first observe that a reduction of (~)-Bit OT to Rabin OT was provided in 

[Cré87]. It is not hard to see that the approach of [Cré87] can be combined with 

Privacy Amplification [BBR88] to provide a reduction of (~)-ROTk to Rabin OT .. 

The main difference between this approach and ours is that without the tests 

ensuring that one of Ra, RI is made almost exclusively of good positions, one 

has to make the assumption that in the worst case, (dishonest) Bob could have 

divided the good positions evenly between the two strings. To protect against 

this possibility, the output of Privacy Amplification must be reduced to less than 

half of the length of each string, yielding an overall expansion factor ni k of at 
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s 

yn positions 

(BI Good positions 

Figure 5.1: Bob constructs two strings, Ra, RI by selecting only good positions 
for the whole of Re as weil as for a small, random subset 5 C 1 of ail positions 
in Rë. The rest of Rë consists of leftover, mostly bad positions. In the Figure, 
e = O. Note that while 5 is shown here as a contiguous block, in reality the 
positions it represents are generally distributed throughout Rë. 

l 

Figure 5.2: Honest Bob sends the string w encoding subset 5 to Alice through 
Interactive Hashing. This procedure produces two outputs Wa, Wl, encoding two 
subsets Sa, 51. Alice does not know which of the two outputs was Bob's input. 

100 



R R R 

OR 

Figure 5.3: Alice expects Bob to announce either Ro(So) and R1(sd or Ro(sd 
and R1 (So), depending on the value of a. If Bob's choice was c = 0 as in Figure 
5.1 and b = 0 at Step 6, then Bob would choose the latter option. 

Figure 5.4: Alice performs Privacy Amplification on Ra, Rl independently, by 
randomly choosing two functions ho, hl from a 2-universal family. This results in 
two shorter stri ngs ra, r1 E {O, 1} k . If Bob' s choice was c = 0 then he wou Id 
know ra and have practically no information about r1, except with negligible 
probability. 
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least 4 + €. 

ln our case, as k = yn - 6xn = {1/2 - 8x)n where x is a very small positive 

constant, the expansion factor n/ k is 2+€' for €' = l/~~~X ~ 32x. This represents 

a two-fold improvement over the method described above. Moreover, since the n 

bits transmitted at Step 2 give rise to n/2 bits of entropy on average and in any 

reduction of (~)-ROTk the length of the strings k cannot exceed the amount of 

available entropy [DM99], our reduction is in fact asymptotically optimal. 

5.1.2 Proof of Security and Practicality 

Theorem 5.1 establishes that Protocol 5.1 rarely needs to be aborted when both 

participants are honest while Theorems 5.2 and 5.3 establish the protocol's secu-

rity against a dishonest sender Alice and a dishonest receiver Bob, respectively. 

Theorem 5.1. The probability of failure of Protocol 5.1 with honest participants 

is exponentially small in n. 

Proof If both parties are honest, Protocol 5.1 can only fail at Step 3, namely if 

the n executions of Rabin OT at Step 2 have not produced enough good positions. 

Recalling that erasures occur independently with probability 1/2, we can use the 

Chernoff bound (Equation A.1) with (n, p, 8, J-L) H (n, 1/2, 2x, n/2) to establish 

that 

Note that in the unlikely event that the protocol is aborted, no priva te information 

of either party has been compromised. o 

102 



Theorem 5.2. Alice learns nothing about (honest) Bob's choice bit c. 

Proof. During Bob's interaction with Alice, c cornes into play only at Steps 5 

and 7. By the properties of Rabin OT, after each execution at Step 2, Alice 

cannot guess with probability greater than 1/2 whether Bob received the bit or an 

erasure. Consequently, wh en Bob announces Ra, RI at Step 5, from Alice's point 

of view both strings have equal probability of corresponding to Re (namely, of 

being made up entirely of good positions). At Step 7 Bob announces a = b œ c, 

so Alice can correctly guess c if and only if she can correctly guess the value of 

b such that W = Wb after Interactive Hashing at Step 6. As the input W was 

chosen uniformly at random, Property 1 of Interactive Hashing establishes that 

from Alice's point of view wo, Wl both have probability exactly 1/2 of having been 

Bob's input W and thus b is uniformly distributed and perfectly hides the value 

of c. 0 

Security against a dishonest Bob 

Theorem 5.3. The probability of (dishonest) Bob successfully cheating in Pro

tocol 5.1 is exponentially small in n. 

The proof of Theorem 5.3 has many similarities to the proof of Theorem 4.3. 

ln a nutshell, the main idea is that Bob has only about n/2 good positions at the 

end of Step 2, except with some probability exponentially small in n. There are 

two cases to consider. In Case l, Bob uses "many" good positions in both Ra 

and RI, which means that both strings will necessarily have several bad positions 

as weil. Consequently, with overwhelming probability the subsets produced at 
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Step 6 will contain many positions corresponding to bits that are unknown to 

Bob. As a result, except in the unlikely event that Bob guesses ail the unknown 

bits correctly at Step 7, he will fail to clear Alice's checks at Step 8. In Case 2, 

Bob uses only a few good positions in one of Ro, R1 (perhaps a few more than 

the protocol prescribes). In this case, Bob may weil be able to pass the tests at 

Step 8 but Privacy Amplification at Step 9 will then effectively destroy the partial 

information Bob has about one of the strings, by virtue of having included those 

extra good positions in its construction. 

We start with sorne definitions and lem mas that will help us prove Theorem 

5.3. 

Definition 5.1. For a bit string R, define Ul/2 (R) to be the number of bits in R 

whose value can only be guessed correctly with probability 1/2. 

Definition 5.2. Let 5 C 1. Assuming Definition 5.1, we cali 5 good for R if 

Ul/2 (R(s)) < x2 n. Otherwise, we cali 5 bad for R. Similarly, a string w E 

{O, l}m is good for R if and only if the subset 5 it encodes is good for R. We 

say that 5 is good for either Ro or R1 if at least one of Ul/2 (Ro(s)) , Ul/2 (R1(s)) 

does not exceed x2 n. 

Lemma 5.1. Let R E {O, lyn be such that Ul/2 (R) 2 2xn. Then the fraction 

f of subsets 5 of cardinality xn that are good for R satisfies f < e- x2n
/
4

. 

Proof We will use the Probabilistic Method to show that a subset 5 chosen 

uniformly at random would be good for R with probability less than e- x2n
/
4

. 

One way of choosing 5 would be to sequentially choose at random and without 
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replacement xn positions among ail yn positions of R. Then for ail 1 :::; i :::; xn, 

the probability qj that position i is chosen among the Ul/2 (R) bad positions always 

satisfies 

Ul/2 (R) - xn 2xn - xn 
qj> > /2 = 2x. yn n 

This implies that the probability of choosing a good subset for R would be strictly 

greater if we were to choose the xn positions independently at random 50 that 

each position is bad with probability q = 2x. In this artificial case, the distribution 

of the number of unknown bits is binomial and we can apply the ChernofF bound 

(Equation A.1) with (n, p, {J, J.1.) t-+ (xn, 2x, 1/2, 2x2 n) to get 

We condude that a subset 5 chosen uniformly at random in the appropriate way 

has probability strictly smaller than e-x2n
/ 4 of being good for R, which establishes 

the daim. o 

Lemma 5.2. Let Ra, RI E {O, 1yn and let both Ul/2 (Ra) and Ul/2 (Rd be at 

least 2xn. Then the fraction of strings in {O, l}m that are good for either Ra or 

RI is no larger than 4 . e-x2 
n/4. 

Proof It follows directly Lemma 5.1 and the Union Bound that the fraction of 

subsets s that possess this property is no larger than 2· e- x2n
/
4 . By Lemma 4.1, 

the fraction in {O, l}m of strings that are mapped to such subsets by the encoding 

scheme of Section 4.2.1 must be no larger than 4 . e-x2n
/ 4 . o 
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Lemma 5.3. In Protocol 5.1 let both Ul/2 (Ro) , Ul/2 (Rd 2: 2xn. Then the 

probability that (dishonest) Bob will clear Step 8 is exponentially small in n. 

Proof By Lemma 5.2, the proportion of strings in {O, l}m that are good for 

either Ro or R1 is at most 4· e-x2n
/ 4 . Consequently, at Step 6 by Property 3 

of Interactive Hashing the probability that (dishonest) Bob can get both wo, Wl 

to be good for either Ro or R1 is no larger than El = 15.6805 ·4· e-x2n
/ 4 . It 

follows that with probability at least 1- El, at least one of the two bit strings -

say, without 1055 of generality, Wl - is bad for both Ro and Rl. In other words, 

Wl corresponds to a subset 51 with both Ul/2 (RO(Sl)) and Ul/2 (R1(sd) being at 

least x2n. Recalling that at Step 7 Bob must announce either RO(Sl) or R1(sd, 

we see that he can clear the checks of Step 8 only if he correctly guesses the 

values of at least x2 n unknown bits. As the bits were independently chosen, the 

probability of guessing themall correctly is E2 < 2-x2n. 

Bob clears Step 8 only if he either gets two good strings as outputs from 

Interactive Hashing or else, if he gets at least one bad string and then correctly 

guesses ail the relevant bits at Step 7. This probability is upper bounded by 

El + E2 which is exponentially small in n. o 

We are now ready to prove Theorem 5.3. 

Proof of Theorem 5.3. During each execution at Step 2, Bob receives an erasure 

independently with probability 1/2. From the Chernoff bound (Equation A.1) with 

(n, p, {J, J.L) H (n, 1/2, 2x, n/2) we obtain IBI 2: ~ - xn except with probability 

{J1:::; e- x2n
. We condition on IBI2: ~ - xn and distinguish two cases: 

106 



Case 1: One of Ul/2 (Ro) , Ul/2 (RI) is smaller than 2xn. 

Without loss of generality, let Ul/2 (Ro) < 2xn. We will show that RI IS 

th en almost entirely composed of bad positions. Recall that n - 2yn = 4xn bit 

positions were never used wh en defining Ro, RI' Since Ul/2 (Ro) + Ul/2 (RI) + 

4xn ~ IBI ~ ~ - xn, we have Ul/2 (RI) ~ ~ - 4xn - 2xn - xn = yn - 5xn. 

Consequently, at Step 9 Privacy Amplification with output length k = yn - 6xn, 

will produce a string rI which, from Bob's point of view, is almost uniformly 

distributed in {Q, l}k except with some exponentially small (in n) probability 02. 

Note that this property holds even if we condition on Ro (or ro) since Alice chose 

her bits independently at random at Step 2. 

Case 2: Both Ul/2 (Ro) , Ul/2 (Rd ~ 2xn. 

Then by Lemma 5.3 Bob will fail to dear Step 8 except with sorne probability 

03 exponentially small (in n). 

The probability that either too few erasures occurred or else that Bob has 

successfully cheated either in Case 1 or in Case 2 is no larger than 01 +max (02,03), 

As 01,02,03 are ail exponentially small in n, this establishes the daim. 0 

5.2 Conclusion 

We have demonstrated a direct reduction of (i)-ROTk to Rabin OT. As in 

Chapter 4, our reduction relies on tests based on Interactive Hashing to verify 

the receiver's adherence to the protocol. The assurance that a dishonest receiver 

cannot pass the tests unless he has deviated little from the protocol allows our 
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reduction to be twice as efficient as a a similar reduction without such tests, 

achieving an expansion factor n/ k of only 2 + c. Since the expected entropy of 

the receiver about the n bits transmitted using Rabin OT is no larger than n/2, 

our reduction is in fact optimal. Our reduction provides yet another example of 

the applicability of Interactive Hashing to reductions between Oblivious Transfer 

variants. 
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Summary and Conclusion 

The goal of this thesis has been two-fold. First, to provide a study of Interactive 

Hashing in the information theoretic context. To this end, we have given a def

inition formalizing its security properties in isolation of any specifie application 

setting. This abstraction enables Interactive Hashing to be treated as a crypto

graphie primitive in its own right rather than as a class of sub-protocols whose 

implementation, properties and proof of security ail depend, to various extents, 

on the surrounding application. 

ln order to demonstrate the practicality of this primitive, we have shown that 

there exists at least one protocol implementing Interactive Hashing which fully 

satisfies our security requirements. The corresponding proof of security has been 

one of the major contributions of this thesis. As in other proofs in the literature 

establishing the security of similar protocols, its most challenging aspect has been, 
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by far, showing that if a dishonest sender starts with a small fraction of good 

strings, he cannot force both outputs of the protocol to be good except with a 

comparably small probability. Unlike the other proofs that focus on bounding the 

number of strings remaining after each round, our proof follows the evolution of 

the number of pairs of good strings instead. This is a more natural choice for our 

setting as the dishonest sender succeeds if and only if exactly one pair remains at 

the end. Consequently, the probability of success is simply equal to the expected 

number of such pairs remaining when the protocol finishes. This observation 

leads to a significantly less complicated proof and results in a simpler, tighter 

and more general upper bound on the dishonest sender's probability of success. 

Specifically, it establishes that if the fraction of good strings at the beginning of 

the protocol is f, then no dishonest sender can succeed in obtaining two good 

strings with probability greater than 15.6805 . f. This upper bound is tight up 

to a small constant since a dishonest sender who uses one of the good strings as 

input and then acts honestly will succeed with probability slightly less than f. 

The second goal has been to highlight the potential of Interactive Hashing 

as a cryptographic primitive by demonstrating its applicability to reductions of 

(~)-ROTk to simpler primitives su ch as (i)-Bit OT. In our reduction we use 

tests based on Interactive Hashing to allow the sender in (i)-ROTk to query 

the receiver on a small subset of the bits he obtained during the executions of 

(~)-Bit OT. We have shown that the properties of Interactive Hashing guarantee 

that on one hand, these tests do not compromise the receiver's privacy while 

on the other hand, they effectively prevent a dishonest receiver from deviating 
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significantly from the prescribed behavior without getting caught. This extra 

guarantee allows our reduction to take almost full advantage of the receiver's 

entropy ofthe transmitted bits. Specifically, we show that n = (l+€)k executions 

of (D-Bit OT suffice to securely implement (D-ROTk
, ma king our reduction at 

least twice as efficient as the best known constructions in the literature. As a 

reduction with an expansion factor ni k smaller than 1 would be theoretically 

impossible, our reduction is asymptotically optimal. 

As far as weaker variants of (~)-Bit OT are concerned, we have shown that 

the reduction works without any modification if (~)-Bit OT is replaced with 

XOR OT, while an imperceptible increase in the expansion factor allows it to 

accommodate Generalized OT as weil. Further modifications allow the reduction 

to also cover the case of Universal OT. In the case of XOR OT and Generalized 

OT our reductions remain asymptotically optimal and improve efficiency by a 

factor of 2 and 4.8188, respectively. As for Universal OT, the reduction is more 

efficient than previous ones by a factor of at least 5.545, but we prove it to be 

optimal only for the special case where a = 1, leaving the general case as an open 

problem. It should be noted that our reductions can use any 2-universal family of 

hash functions in the Privacy Amplification phase. Consequently, besides being 

more efficient, they are also more general than previous ones which require special 

classes of hash functions. 

Lastly, we have shown that our techniques can be adapted to provide a direct 

reduction of (D-ROTk to Rabin OT with an expansion factor of 2 + t'. This 

reduction is again asymptotically optimal, and twice as efficient compared to the 
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case where Interactive Hashing is not used. 
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T ools and Mathematical Background 

A.t Tail bounds 

Let B(n, p) be the binomial distribution with parameters n, p and mean J.L = np. 

We will use the following versions of the Chernoff bound [Che52] (as they appear 

in [Vaz04], p.354) for 0 < 6 ::; 1: 

Pr [B(n, p) ::; (1 - 6)J.L] ::; e-
ë2

1J./2 

Pr [B(n, p) ~ (1 + 6)J.L] ::; e-fJ21J./4. 

From (A.1) we can also deduce the following inequality 
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A.2 Error probability and its concentration on an 

erasure event 

A.2.1 Fano's lemma 

(Adapted from [BCW03]) Let X be a random variable with range X and let 

y be another random variable. Let Pe be the (average) error probability of 

correctly guessing the value of X with any strategy given the outcome of Y. 

Let H (X 1 Y) den ote the conditional entropy of X given Y, and let h(p) def 

-p log p - (1 - p) log(1 - p). Then Pe satisfies: 

(A.4) 

A.2.2 Specifying an erasure event Li 

Let X be a binary random variable and let Pe be the error probability of guessing X 

correctly using an optimal strategy (in other words, Pe is the minimum average 

error probability). Let P :::; Pe. For a specifie guessing strategy with average 

guessing error at most 1/2, let E be an indicator random variable corresponding 

to the event of guessing the value of X incorrectly. Note that Pr [Ë] ~ Pr [E] ~ 

Pe ~ p. Define 6 to be another indicator random variable su ch that 

P 
Pr [6 1 El = Pr [E] 
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It follows that Pr [~] = 2p and that Pr [E 1 ~] = Pr [Ë 1 ~] = ~. Suppose that 

the value of ~ is provided as side information by an oracle. Then with probability 

2p we have ~ = I in which case X is totally unknown (the probability that its 

value was guessed incorrectly is 1/2). We will refer to this event as an erasure of 

X. This leads to the following lemma: 

Lemma A.1. Let X be a binary random variable and let Pe be the error probability 

when guessing X. Then X can be erased with probability 2p :::; 2Pe. 

A.3 Privacy Amplification 

Privacy Amplification [BBR88] is a technique that allows a partially known string 

R to be shrunk into a shorter but almost uniformly distributed string r that can 

be used efFectively as a one-time pad in cryptographie applications. For our needs 

we will use a simplified version of the Generalized Privacy Amplification Theorem 

[BBCM95] (also covered in [BBR88]) which assumes that there are always u or 

more unknown physical bits in R (as opposed to general bounds on R'S entropy). 

Theorem A.l. Let R be a random variable with uniform distribution in {O, Iy. 

Let V be a random variable corresponding to Bob's knowledge of R and suppose 

that any value V = v provides no information about u or more physical bits of R. 

Let 5 be a security parameter and let k = u- s. Let 1l be a 2-Universal Family of 

Hash functions mapping {O, l}n to {O, l}k and let H be uniformly distributed in 

1l. Let r = H(R) (note that H, r, Rare random variables). Then the following 
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holds: 

2k - u 2-5 

H Cr 1 V H) > k - log (1 + 2k-U) > k - - = k - - (A.6) 
- - ln 2 ln 2· 

It follows from Equation (A.6) that 1er; V H) ~ 2-5
/ ln 2. From Markov's in

equality it follows that the probability that Bob has more than 2-5 /
2 bits of 

information about r is no larger than 2-5
/
2 / ln 2. In other words, except with 

exponentially (in 5) small probability, Bob's information about r is no more than 

an exponentially small fraction of a bit. 

116 



Bibliography 

[ADR02] Yonatan Aumann, Yan Zong Ding, and Michael O. Rabin. Everlast
ing security in the bounded storage model. IEEE Transactions on 
Information Theory, 48(6):1668-1680, June 2002. 

[BBCM95] Charles H. Bennett, Gilles Brassard, Claude Crépeau, and Ueli Mau
rer. Generalized privacy amplification. IEEE Transaction on Informa
tion Theory, 41(6):1915-1923, November 1995. 

[BBR88] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy 
amplification by public discussion. SIAM J. Comput., 17(2):210-229, 
1988. 

[BCR86] Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. AII-or
nothing disclosure of secrets. In Advances in Cryptology: CRYPTO, 
pages 234-238, 1986. 

[BCS96] G. Brassard, C. Crépeau, and M. Santha. Oblivious transfers and 
intersecting codes, 1996. 

[BCW03] Gilles Brassard, Claude Crépeau, and Stefan Wolf. Oblivious transfers 
and privacy amplification. IEEE Transaction on Information Theory, 
16(4):219-237,2003. 

[CCM98] Christian Cachin, Claude Crépeau, and Julien Marcil. Oblivious trans
fer with a memory-bounded receiver. In Proc. 39th IEEE Symposium 
on Foundations of Computer Science (FOCS), pages 493-502, 1998. 

[Che52] H. Chernoff. A measure of asymptotic efficiency for tests of a hypoth
esis based on a sum of observations. The Annals of Mathematical 
Statistics, 23:493-507, 1952. 

[CK] Claude Crépeau and Joe Kilian. Private communication. 

117 



[Cré87] Claude Crépeau. Equivalence between two flavours of oblivious trans
fers. In CRYPTa, pages 350-354, 1987. 

[CS91] Claude Crépeau and Mikl6s santha. On the reversibility of oblivious 
transfer. Lecture Notes in Computer Science, 547:106-113, 1991. 

[Cs06] Claude Crépeau and George savvides. Optimal reductions between 
oblivious transfers using interactive hashing. In Serge Vaudenay, ed
itor, Advances in Crypt%gy: EUROCRYPT 2006, volume 4004 of 
Lecture Notes in Computer Science, pages 201-221. springer, 2006. 

[CSSW06] Claude Crépeau, George savvides, Christian schaffner, and Jürg 
Wullschleger. Information-theoretic conditions for two-party secure 
function evaluation. In Advances in Crypt%gy: EUROCRYPT '06, 
Lecture Notes in Computer Science, pages 538-554. springer-Verlag, 
2006. 

[DHRs04] Yan Zong Ding, Danny Harnik, Alon Rosen, and Ronen shaltiel. 
Constant-round oblivious transfer in the bounded storage model. In 
Moni Naor, editor, Proe. 1st Theory of Cryptography Conference 
(TCC 2004), volume 2951 of Lecture Notes in Computer Science, 
pages 446-472. springer, 2004. 

[Din01] Yan Zong Ding. Oblivious transfer in the bounded storage model. In 
Joe Kilian, editor, Advances in Crypt%gy: CRYPTO 2001, volume 
2139 of Lecture Notes in Computer Science, pages 155-170. springer, 
2001. 

[DM99] Yevgeniy Dodis and silvio Micali. Lower bounds for oblivious transfer 
reductions. Lecture Notes in Computer Science, 1592:42-54, 1999. 

[EGL85] shimon Even,. Oded Goldreich, and A. Lempel. A randomized protocol 
for signing contracts. Communications of the A CM, 28:637-647, 
1985. A preliminary version was presented at CRYPTO '82. 

[GMW87] Oded Goldreich, silvio Micali, and Avi Wigderson. How to play any 
mental game or a completeness theorem for protocols with honest 
majority. In Proc. 19th Annua/ ACM Symposium on Theory of Com
puting (STa C), pages 218-229, 1987. 

[GoI04] Oded Goldreich. Foundations of Cryptography, volume 1 & II. Cam
bridge University Press, 2001-2004. 

118 



[KiI88] Joe Kilian. Founding crytpography on oblivious transfer. In STOC 
'88: Proceedings of the twentieth annua/ ACM symposium on Theory 
of computing, pages 20-31, New York, NY, USA, 1988. ACM Press. 

[NOVY98] Moni Naor, Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti 
Yung. Perfect zero-knowledge arguments for NP using any one-way 
permutation. Journa/ of Crypt%gy, 11(2):87-108, March 1998. 

[OVY92] Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung. Se
cure commitment against a powerful adversary. In Alain Finkel and 
Matthias Jantzen, editors, STACS '92: Proc. 9th Annua/ Symposium 
on Theoretica/ Aspects of Computer Science, volume 577 of Lecture 
Notes in Computer Science, pages 439-448. Springer, 1992. 

[OVY93] R. Ostrovsky, R. Venkatesan, and M. Yung. Fair games against an all
powerful adversary. In Advances in Computationa/ Comp/exity The
ory, volume 13, pages 155-169. AM S, 1993. Initially presented at 
DIMACS workshop, 1990. Extended abstract in the proceedings of 
Sequences '91, June 1991, Positano, Italy. 

[OVY94] Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung. In
teractive hashing simplifies zero-knowledge protocol design. In Tor 
Helleseth, editor, Advances in Crypt%gy: EUROCRYPT '93, volume 
765 of Lecture Notes in Computer Science, pages 267-273. Springer, 
1994. 

[Rab81] M. O. Rabin. How to exchange secrets by oblivious transfer. Technical 
Memo TR-81, Aiken Computation Laboratory, Harvard University, 
1981. 

[Sti99] D.R. Stinson. Sorne results on nonlinear zigzag functions. Journa/ of 
Combinatoria/ Mathematics and Combinatoria/ Computing, 29:127-
138, 1999. 

[Vaz04] Vijay V. Vazirani. Approximation A/gorithms. Springer, 1 edition, 
2004. 

[Wie70] Stephen Wiesner. Conjugate coding. Reprinted in SIGACT News, 
vol. 15, no. l, 1983, original manuscript written ca. 1970. 

[WW06] Stefan Wolf and Jürg Wullschleger. Oblivious transfer is symmetric. 
ln Advances in Crypt%gy: EUROCRYPT '06, pages 222-232, 2006. 

119 



[Yao86] Andrew c.-c. Yao. How to generate and exchange secrets. In Proe. 
27th IEEE Symposium on Foundations of Computer Science (FOCS), 
pages 162-167, 1986. 

120 


