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CHAPTER 1

INTRODUCTION

In [1], Birkhoff and Pierce introduced the
concept of f-ring. In [7], (9], and [10] it was
shown that certain Archimedian f-rings can be
represented as rings of continuous extended real
valued functions on various topological spaces.

It was noted that the m-=topology on rings 6f
continuous real valued functions (see problem 2K of

Eﬁ]) could be generalized to arbitrary f-rings pro-
| vided they were convex in the sense of [5]. It was
also shown that every f-ring can be embedded in a
smallest convex f-ring. PFor this p-unit topology on
a convex f-ring the ring becomes a topological ring.
 The concept of a C-ring was then introduced since
-these were the convex f-rings for which the p-unit
topology is Hausdorff. By a slight generalization
of the methods of topologicel ring theory it was
established that the completion of a C-ripg is a
topological f-ring. The question then arose whether
this completion is a C-ring and if its topology is
the b~unit topology. It was then shown that a C-ring,

R, could be represented as a subring of the ring of
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all continuous “sections” from the maximal ideal
space of R (with the Stone topology) into the
“pundle” space of R and that this ring of continuous
sections with the p-unit topology is the completion
of R, This answered the above question in the
affirmative. It was then proved, as an application,
that a bounded Archimedian f-ring can be represented
as a subring of the ring of all continuous real valued
functions on its maximal .f-ideal space, which is a
- special case of the results of [10]. By then using
the methods of [5] it can be shown that an Archimedian
f-ring with identity can be represented as a subring
pf the ring of continudus extended real valued func-
tions on its maximal ,feideal space.

The m@terial in Chapter II is from [1] and (81 .
The material in Chapter V is from [3] and ([4]. The
concept of con;ex f-ring in Chapter III is from [5].
The material in Chapter VI from 6-19 to 6-29 is a
8light modification of the ‘construction of the reals

in [4].




CHAPTER II

PRELIMINARY RESULTS ON f-RINGS

Throughout by ring will be understood a com-
mutative ring with identity, 1.

Definition 2-1
A partially ordered ring, <R,<> , is a system
" such that R is a ring and € is a partial order on R
such that for all a,beR
1) abd = a+c <b+e
2) a,b30=>ab>0

Definition 2-2

An [{ -ring is a partially ordered ring which is
also a lattice. A totally ordered ring (teo- ring) is
a partially ordered ring such that < is a total order

on R,

Definition 2~3

An f-ring, R, is an {-ring such that for all
a,b,ceR

aAb = 0 and c)O' =» (ca)A\b = 0

Progoéition 2-4

Any teo+ ring is an f-ring.

In a ring R for A,BCR define A+B = fa+b|acA,beB}
and similarly define A-B and ~A, | |
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In a partially ordered ring an element, r, is

positive if r > 0 and negative if r £ 0.

Proposition 2-5
If R is a partially ordered ring and P the sub=-

set of positive element_s then P+PCP, P'P&SP, and
PN-P = {03, If R is a ring and Q a subset of R such '
that Q+QSQ, Q*QSQ, and QN-Q = {0} then the relation
, <, defined by a<b iff" b-aeQ makes <R, <) a
partially ordered ring with Q = P, R is a t¢o° ring
iff PU-P = R.

Definition 2-6

A mapping from an ,(-ring, R, into an {-ring, S,
is an [ -homomorphism if it is both a ring and lattice
homomorphism, Similarly define ,l-monomorphism,

J -epimorphism and ,e-iaomofphiam.

Definition 2-7

In any ,e-ring define
1) at=aVo 2) a = (-a)V0 . 3) |lal = a V-a.

Definition 2-8

In an { -ring, R, an f-ideal, I, is & ring ideal
such that |
bel and |a) £)b) =pacl,
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Proposition 2-9
If I is an (f-ideal of the J{-ring, R, let ry

be the residue class of R/I containing r. Then B/I
is an ;Q-ring under the definitions ry+ey = (r+s)1 ’
-(ry) = (=v); » }rz':: = (re)y , vy Ve = (rVs)y , and
r,Ney = (r-./\s)I' . It follows that Iryl = Irlg ,
(rI)+ = (r*)I , and (rI)' = (r")I . Write Ry for the
A -ring R/I. Also reI iff r; = Oy + The natural map,
r—ry , is an | ~epimorphism of R onto R, .

Definition 2-10

The cardinal prdduct, C(Rgq), 0of the partially
ordered rings {R |acA} is the cartesian product T| Rq
with operations defined as follows; (a+b)y = a;+bg,
(ab)gq = agby, (~-a)g = ~8qy (1) = 1, and (0)y = O and
also the relation, £, defired by a<b iff for all aeA,

aa’s by

A _Proposition 2=-11

The cardinal product of f-rings, R,, is an f-ring.
Also (aVb), = aa\/ba, (aAb)y = agA by, lalg = lagl,
(8%)q = (8)*) and (a7)q = (ag)" |
Proposition 2-12

For any f-ring, 'R, there exists a set of l-ideals,

{I,lacA}, such that Ry, is & t-o: ring and the mapping,

x, defined by (x(r))y = 1, is an ).-nonoxﬁorphiam of R
into C(Rla)' '
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The above proposition is the principal characf
terization of f-rings and is used to prove that many
properties of tcoc rings extend to f-rings.

Definition 2-13

A sub- ﬂ-ring of an l-—ring is a set which is
both a subring and a sublattice.

Proposition 2-14
A sub- L-ring of an f-ring is an f-ring.

Proposition 2-15
An f-field is totally ordered.

Proposition 2-16

Commutative f-rings with identity can be equa-
tionally defined in terms of a set, R, fixed elements
0,1eR, the unary operation, -, and the binary operations
4y A, V.

A regular element in a ring is one which is not
5 gzero divisor. Thus all units are regular.

The following two propositions list the algebraic

/

identities needed later.

Proposition 2-17
In any f-ring
1) 'asb\ and ¢ 30 =p»ac<sbe
2) a4b and c£d =pa+cSb+d
3) adb=» -~b<-a “
. 4) 820 and -ap0 => a -6




5) a0 =>a(bAc) = abAac and a(bVec) = abVac
6) a<bey alb =a | |
7) ajo<>a = \al

8) a20&y 8 = at

9) wl>0
10) a*20
11) a* = |a|® |
12) |b-cl a & c-a4b4c+a
13) [a]| = 0 &>a = 0
14) la+b| <lal +1b]
15) |lal=1vll £ la=bi

16) lavl = |allvli
17) la*-b*| < la-ni
18) lal < vl = a*4£ vt
19) a*a” =0

20) a*Na” =0

21) 1* =1 and (-1)" =1

22) aVb = :a+(b-a)+

23) alAb = <(-aV-b)

24) ‘¢ regular and e20=»c>0

25) ¢ regular, ¢ >0 and a<b =» ac<bc
26) a,b31 =>ab>1

27) a = a‘t-a”
28) a2l = a regular

29) 1o
30) l-al = [a]
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A p-unit in a partially ordered ring is a
positive unit. |

Proposition 2-18
In any f-ring
' 1 1
1) vaunit::}!—v-l-m
2) 2 aunit and a<b =5 a<2R<y
| 1,1
3) u,v p~units and udv = O<-;g-‘-l-
4) wu,v p-units =b»u Av a p-unit
5) u,v p-units =% uv a p-unit
6) u a p-unit "-’:’% a p-unit
7) 2 & unit =>aVb = 3 (a+b+ la-b])

Definition 2-19

In an ,e-ring, R,
1) If AGE then <> is the smallest [-ideal
containing A, in particular, if aeR then <a) is the

| smallest f-ideal containing a.

2) If A,B f-ideals of R then <AB) is the

smallest £-idea1 containing the ideal AB.

3) For a set of A-ideals f§AjlicI} of R, 344
iel

is the smallest {-ideal containing every A;. For two
ideals A,B it is written as A+B.

7 4) A prime ﬂ-—ideal is an l—ideal which is
prime as a ring ideal.

Proposition 2-20 |
l) If R is a sub- I,-ring of the l-ring, S, and



I an AL-ideal in S then INR 16 an [{-ideal in R.

2) For A-ideals {Ailieﬂ of an A-ring, R,
S_"Ai is the ordinary sum as ring ideals in R.

3) An [ -ideal P is prime iff for any two
l-ideale I and J,

I¢P and JEP =» <II> 4 P.

4) PFor every proper Q-ideal I there is a
meximal {-ideal M such that IS M. Also Ry 18 &
totally orhered ring; _

5) If R is an f-ring and a,beR then

La> <> = <ab> .

6) A maximal [{-ideal is prime.

Definition 2-21 |
The J-radical of an { -ring R, J(R), is the

intersection of all the meximal {f-ideals in R.

Definition 2-22
In a partially ordered set, P, define for a,beP:
1) (a,b) = {xeP|a<x<b) |
2) [a,b] = {xePlagxgb} | -~
3) (8,00) = {xePla<x3 |

4) (-0, 8) = {xeP|x<a}

5) [a,20) = {xeP|a <x3

6) (-so0,8] = fxeP|x a3

The intervals of types 1), 3), and 4) are called
~ open intervals and the intervals of types 2), 5), and

6) are called closed intervals.

9.



10.

Proposition 2-23%

If R is an l-ring and a0 then
xe[~a,a] € |xl<a.

Proposition 2-24

I1f I, J are l-—ideals of an f-ring, R, and
I<J then the mapping ’"RI")RJ' defined by =(ry) = r;
is an ,e-epimorphism.

Definition 2-25

An f-ring, R, is

1) bounded if for all neR there exists &
positive integer, n, such that |al €nl,

2) Archimedian if r,teR and for all positive

integers, n, nr £t then r<£0.

Proposition 2-26

1) The l;homorphic image of a bounded f-ring
is & bounded f-ring. } |

2) A bounded totally ordered field is
l-isqmorphic to a sub~f-field of the reals. ‘

3) If R is an Archimedian f-ring then J(R) = £03.



CHAPTER III
THE CONVEX CLOSURE OF AN f-RING

Definition 3-1
A convex f-ring is an f-ring R such that

reR and r>1 = T & unit

Proposition 3-2 |

In a convex f-ring all maximal ideals are l-ideals.
Proof |

Let M be a maximal ideal in the convex f-ring R.
Let a,beR be such that |a/</bl and agM. Since M maximal
there exists reR and meM such that ar+m = 1 so l-areM.
Thus (l-ar)(l+ar) = 1-a®*r®eM so there exists neM such that
n+a’r® = 1, By 2-17(18), a’< b® and so by 2-17(10,1,2),
1 = n+a®r’< nsd*r®. Since R convéx,n+b'r" is a unit and
H n+b*r® /M thus b¢M since otherwise n+b*r®*cM., Thus if M a
‘maximal ideal, beM, and lal<|bl then acM, Therefore by
2=-8, M is an l-ideal. |
Corollary 3=3

In a convex f-ring all maximal l1-ideals are also
- maximal ideals.
Proof

- Let M be a maximal l-ideal. Since M a proper ideal

it is contained in a maximal ideal ,N. By 342, N is an
1-ideal so M = N. |
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Lemma 3-4 In an f-ring

b2 0, b regular, and be>0=>e3 0
Proof |
By 2-17(27), b(e*=e”) = be> 0 and so bj 2-17(2),
be*> be~ and be/Abe” = be” by 2-17(6). Now '
be*Ave” = b(e*Ae™) = b(o') = 0. by 2-17(5,20). Thus
be” = 0 and since b regular then e~ = 0. By 2-17(27),
e = et and by 2-17(8), e3>0. o

If R is a ring let Qc(R) be its classical ring
of quotients. I.et[g] bo’ the equivalence class of Qo(ﬁ)
containing the tractiong .
Lemma 5 | |

If R is an f-ring the set P ={[2] eQe(R)]sb2 o}
is well defined.
Proof |

Assume [%] = [&] and ab2 0., Then ad = cb and so
ad®b = cb®d. Thus by 2-17(10,1), cdb®2 0. Now b regular
" 80 that b*® is also and b®* 2 0. Therefore by 3-4, cd20.
Lemma 3-6

The s»et P satisfies the conditions of 245 and so
defines a partial order of Qc(R), R an f;ring, whiéh
makes Qc(R) a partially ordered ring. |
Proof |

Assume [%], [g] eP 8o that ab2 0 and ¢d 20, Then
by 2-17(1), acbd 20 and therefore (E](5] = [8§] e», tnat
is P-PSP. By 2-17(10,1,2), O <abd®+cdd® = (ad+cb)bd so
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that [§] + [§] = [“d+°b €P, that is P4PSP.
Assume[.a] €PN =P then there exists [&] €P such
that [§] ==-[§] = [3§] . ‘hue ca>0 and —ca>o
80 by 2-17(4), cd =0 but d is regular so ¢ = 0,
 Therefore[g] = 0 and rn-r = {0} . |
Lemma 3=7

- 1£[f] » [£] eqe(R) and h,b20 then [E]3[§] 121
gb 2 ah.

If gb»ah then by 2-17(1,2), (gb-ah)hb30
.therefore[f] - [2] =[ER2R] P vy 3-5 and by 2-5,
[&] >8] -

12[§]>[§] tnen [£] - [3)] - [@E‘?] €? by 2-5

and by 3-5, (gb-ah)hb> 0. Since h and b are regular
so is hb and hb 20 by 2-17(1). Therefore by 3-4,
gb-ah 20 so by 2-17(2), gbpah.
Lemma 3-8 |
, For any [g] €Qe(R) there exists c,deR such that
adoama [3] - [§].
Proof

If b regular then b* is regular and b* >0 by
2-17(10). Fow [2] =[22]. | |
Lemma 3-9 '
65,030 then [SV3] - [24422] ana

[EAlg] = [2afee]
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Proof

Since b and 4 regular so bd is regular and
[aVeb] ¢ qe(r). By 2-17(5), b(ad Veb) = aba Vcb® > abd
so that by 3-7[232]H[2] . simirariy [24¥R]>[e] .

1£{E]3[2] » [§] then by 3-8 1t can be assumed
h 20. By 3-7, gb2ah and gd2ch so by 2-17(1,5),

g bd >ahdVehd = h(ad Veb). Thus by 3-7.[&])[525\&-@-‘]

and therefore

[%] V[H] [ad Vcb] and aimilarly[s}/\[a] [a__d/\ Ohj
Theorem 3-10
~ If R an f-ring then Qc(R) is an f-ring containing

i - sub-f-ring T l-isomorphic to R.
Proof
Qc(R) is a partially ordered ring by 3-6. If
[%J,[g] €Qe(R) then by 3-8 it may be assumed b,d 20 so
by 3-9, [%’]/\[g] and [%‘] V[g] exist. Therefore Qc(R)
is an l-ring.
1£[E] D0 and by 3-8 it is assumed h 20 then by
3-5, gh20 and by 3-4, g20. If [E]A[§] =0 and by
3-8 it is assumed b,d 20 then by 3-9 ad/cb = 0 and by
2-3, gad Aebh = 0. By 2-17(1), hb20 so by 3-9,
[g] [g] /\[g] -[ﬁ%] /\[&] = [sfgé;sb—h] = 0, Therefore
by 2-3 Qc(R) is an f-ring.
Consider the subset T = {[%] , aeR} of Qc¢(R).
As 18 well known T is iqomorphic to R a8 a ring under
the mapping: a—)[:af] . By 2-17(10), 120 8o by 3-9,

(EIVEE] - [82] e st (5] ALE] - [32]
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~Thus T is l-isomorphic to R.
Proposition 3-11

The subset R = i[%] lb)l] of Qc(R) is a convex
. f-ring containing a sub-f-ring ,T, l-isomorphic to R.
Proof

By 2-17(26) if b,d>1 then bd 21 80 R is a sub-
ring of Qo(R).' Since 120 then bd2> 0 and by 3;9,'1'2‘ is
a sub-l-ring of Qo(R). By 2-14, R is an f-ring. KNow
the set T of 3-10 is coﬁtained in B and it l;isomorphic
to R. |

1t [2] & and (3] 21 then b1 and by 3-7, ab
80 a2l and by 2-17(28), a is regulai'. fPhus [-2] R so
R convex.
Lemma 3-12

If S is a convex f-ring containing a sub-f-ring
T l-isomorphic to an f-ring R then S contains a sub-f-
ring l-isomorphic to E.
Proot |

Let = be the l-isomorphism of R onto T so if beR
and b>1 then xb21. If c,deT and d 31 then 3§ €S since
S coniex. Define a map n of ']?in_to S by n[g] = %‘% .
It is easily verified by the techniques of 3-7, 3-8,
and 3-9 that n is an 1-monomorphism.

Definition 3-13

The convex closure of an f-ring R . is the R of 3-11,
As usual R can be considered as a sub-f-ring of R

and for any element ge'l? there exists a,bén such that
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b1 and g = 2 . Aleo by 2-17(28) if a,beR and b1
then % eR. ,

The relation between the l-ideals of R and of R .
is now investigated.
Lemma 5=14

If R is an f-ring and I an l-ideal in R then
T= {-:-e'ﬁ ]aeI} is an l-ideal in R.
Proof |

If g, § €I then %-I-g - a—dﬁk and ed+cbel so g+3el.
Similariy if %ef and geﬁ then g gc?. Therefore T is an
ideal in .

If %’eT and }§|< I%‘l then by 2-17(16) and 2-18(1),
E} Q}%{ . Now by 2-17(9,1,16) lbel = |v])c] £la) la] =ladl
and adel 8o by 2-8 bcel, Since b 21 then b0 and by
2-17(7) \bl = b21. Now by 2-17(9,1,16), |bel = Ibl [el Dlef
is an l-ideal.

- 80 by 2-8, cel and g €I. Thus T
Lemma 3-1

If R is en f-ring, I an l-idesl in R, and J an
1-ideal in T thenTNR = I and TR = J.
Proof

Since £ = a, ICT and so ISTAR. If c€I/NR then

there exiatelgef such that c g-' and acl. Thus a = be
80 beel and b2 1. 48 in the proof of 3-14, cel so |
“TNARSI. Thus TNR = I,

| By 2-20(1), JNR is an 1-ideal in R so that JNR
is an l-ideal of R by 3-14. If %em then aeJNR by

3-14 80 aed. KNow %eﬁ 80 (%)a = %e_J. Thus JNARSJI., If
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BeJ then b(B) = agJ s0 acJN R and by 3-14, BeJﬂ Re Thus
ng. Therefore J = JI\ R.

If R an f-ring and ceR let <c>fR~ be the l-ideal
generated by ¢ in R and let <c)g be the 1l-ideal generated
by ¢ in R (see 2-19(1)). -

I.emma 3-16

'If R an f-ring and ceR then <c>AI\R = <ed R
Proof

By 2-20(1), <c>»h~ NR is an l-ideal in R containing
c. Now by 2-19(1), <°>R <c>f~ /M R, Since <°>R
is an l-ideal in R by 3-14 then by 2-19(1) e & <c>R
Therefore <c>'§ N R Q<¢=>R )\ R and by 3-15, <c>R
- <°>R /R so <c>R <c>-§~ /\ R. Therefore <°>R
= (c)"‘ M\ R.

Lemma }-—17‘

If M is a maximal l-ideal in R then M is a maximal
l-ideal in R,
Proof

If %’ £ then a ¢ M by 3-14 and M+(aD o = R since
M maximal l-ideal in R., By 2-20(2)'there exists meM and
xe <a>p such that m+x = 1. Since b(§) = a then
.‘<A>,§ c(%},\ by 2-19(1). By 3-15, MCH and by 3-16
(a)R (a)a 80 1-(m+x)eM+<5)—\ . Thus M is a
maximal l-ideal in R,
Lemma 3-18

If N a maximal l-ideal in R then N/\ R is a maximal
l-ideal in R.
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Proof

By 2-20(1), NNR is an l-ideal in R. If ceR and
cfNNAR then cfN so that N+ <e >'R = R, Thus there exists
%eN and ge' <c>§~ such that %‘+§ = 1, Since h(%) = a and
d(&) = @ then aeKNR and ec <c>'R‘/\R '<°>R by 3=16.
Now bd = (ad+eb)e(NNR)+ (c)R and bd 21 by 2-17(26). By
2-8 and 2-17(7), le(NAR)+<ed>p 80 R = (NNR)+<e2, .
Therefore NNR is a maximal l-ideal in R.
Proposition 3-19

If M the set of maximal l-ideals of the f-ring R
and N the set of maximal l-ideals of R and x is the
mapping of M into 7] defined by =x(M) ="M then = is &
one~-to-one and onto mapping. |
 Proof

By 3-17 if M & maximal l-ideal in R thenX is a
maximal l-ideal in R so that x is a mapping of Minto 7.
Define a mapping n of N into mby n(¥) = NAR. By 3-18,
NNR is a maximal 1-ideal in R so n is a mapping of n
into M. Now nx(M) = n(M) = ENR = M by 3-15 so nx is
the identity map on 7. Also #nn(N) = x(N/\R) = m = N
by 3-15 so xn is the identity map on n. Therefore % is a
one-to-one mapping of monto n .
Lemma 3-20 ‘

For any f-ring R, J(R) = J/(-R\).
Proof

By 3-19 for any Ne)lthere exists Me}Tlsuch that

.N =¥ 80 J(B) -ﬂ{mh}-n iﬁ)xe m;. Now -
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JI®NR =N {RNRMeMI=N MM M= 3(R) by 3-15.
So J(R) = J(R)NR = J(R) vy 3-15.
Lemma 3-21 N

For any f-ring R, J(R) = {0j iff J(RB) = [0},
Proof | |
I J(R) = 10} then J(R)SJ(R) so J(R) = {0} . It
J(R) = £0) then {0} = (R} = J (B)..




CHAPTER 1V

MAXIMAL 1-IDEAL SPACE OF AN f-RING

Throughout let 77be the set of all maximal
l-ideals of an f-ring R.

Definition 4-1 _
For any set ASR, let S(A) = tMecM/[A ¢M}.
In particular if acR then S(a) = {McM|agM].

Proposition 4-2
The collection of sets, §S(A)|ASR}, form a top-

ology onm + A basis for this topology is given by the
sets {S(r))reR3.

Proof

If <A) is the 1l-ideal generated by ASR (see
' 2-19(1)) then S( <A) ) = S(A) since AEM 1iff <Ay m
for any MeM. Now

MeU{S(A,)]1eIf & JieI, Ai_drn¢:>

MeSCI A | 1€1}). Therefore U i8(a,)|1e1]

-S(Z{(Ai) | 1e13).

By 2-20(6,3), Me S(A)\S(B)<=> <A & M and
By Eues > BYLEN & Me s(SL) <BYD) =
S( <AY <B? ). Therefore S(A)NS(B) = 8( <&A> <B)).

Now 5(1) =T and S(0) = ¢ so the sets {s(A)lAgnj
for a topology onm .

- Now S(A) = 8(<A) ) = 8( 3 {é> | aca} )




21.

.=U{S(a)|aeA} 80 the sets {S(a)|aeR} form a basis for

~

this topology.

Lemma 4-

The space m is compact.

Proof | -
Suppose fS(Ai)|1513 is an open cover of Y then

M= U i{s(a)|1e1] = 8(3 {<a,)|1eI}) as in proor

_of 4-2 so for all MeM, TV{<A>|1eI} M. Theretore

by 2-20(4), R = 3\ {<A>| 1e1}, and so 1e 5, {<A) | 1eI} .
By 2-20(2) there exists a finite subset F of I such that

le 3,{<A) | 1eF} . Thus for all MeM, T {<AD | icFign

8o that M= 5( T{<AD [1eP}) = U {5(4;)|1cF} . There-
fore {S(Ai)|i§£} is a finite subcover. Thus /Nis compact.

Lemma 4-

The space /1| is Hausdorff.

Proof

Consider any M, NeMMlsuch that M ¥ N. Then M+N = R
80 by 2-20(2) there exists reM and seN such that r+s = 1.
et &8 = r-8. NOW & = r-8 = r-(l-r) = r+r-l1 so by 2-6,
ay = (r.+r-1)M = Py+Ty=ly = OptOp=1ly = -1lye Then by 2-6
a"/M or MeS(a™). ‘Similarly NeS(at). Now as in proof
‘of 4-2 and by 2-20(5), S(a*)Ns(a”) = 5(<&*D <a™>D)
= 5( {a*a~) ) = s(a*a”) = S(0) = # by 2-17(19), Thus
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/

MeS(at) and NeS(a™) and S(a™)\s(a*) = @ so M is
Hausdorff.

Theorem 4-5
The maximal l-ideal space m ot any f=-ring is

compact and Hausdorff.

Theorem 4-6

If m is the maximal 1l-ideal space of an f-ring R
‘and 7\ the maximal l-ideal space of R then 7Yl is homeo-
morphic to 7'1. .

If ACR let S,,(A) = { MeM|A¢M} and if BER
let Sy (B) = {Nen|B¢N3

Consider the mapp:mg . of M into N defined by
‘x(M) = M., By 3-19, x is a one-to-one onto mapping.
' Let I be any l-ideal of R, If ISMe M then TSV and if

TN then I = TARSHNR = M by 3-15, Thus I¢Me M

© iff T¢R. Now if MeSy,(I) then x(M) = ReS, (T) eo
i(Sm(I))QSh(T). If NeS,, (I) then by 3-19 there exists
Me M such that N = ¥ and so T¢K. Then I¢M 80 MeS,, (I)
and =M = ¥ = Neu(sm(l)). Thus S.).L(I)Cu(s,m(I)) 80
%(S (1)) = 84 (D).

Now all open sets ‘of 77 are of the form S'm(A') for
some ACR and S,m(A) = S'm( {A%) a8 in the proof of 4-2.
Thus all open sets of N are of the form S.m(I) for some

v -
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l-ideal I of R. Therefore by above & is a one-to-one
onto open mapping of a Hausdorff space onto .a compact

space and so x is a homeomorphism,



CHAPTER V

lPRELIMINARY RESULTS FROM THE
THEORY‘OF TOPOLOGICAL RINGS

Definition 5-1

A family of subsets, @ y of a topological space,
S, is a local base at peS if every Be (B is a neighbor-
hood of p and if V a neighborhood of p then there exists
we B such that WSV,

Definition 5-=2

In a topological space, S, & point xeS is an
adherence point of the subset ASS if all neighborhoods

of x intersect A in a nonnull set.

Definition 5-%

A filter, FH y on a set, S, is a family of subsets
of S such that

1) FePand FEXSS =Xe T

2) Fp,Fye 7"#1‘1(\1‘25 %

3) Se A

4) g £ H

Definition 5-4

If 8 is a family of subsets of S such that the
set #={x=s) 3B B, B=X} is a filter on S then B is
a filter base on S of S and ;,zi- is the filter generated

byB.
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Definition 5-5
If § a filter base on S then a point peS is a

1imit point of & if for every neighborhood V of p there
exists Be & such that BGV. A filter base is convergent
if it has & limit point.

Definition 5-6

If £ a filter base on S then a point peS is an
adherence point of (B if p adherent to every Be B.

Proposition 5-7

If £ and g are two continuous mappings from a
topological space, S, into a Hausdorff topological space,
T, ASS is dense in S and f]A = g|A then f = g,

Proposition 5-8
If AiSESi dense in the topological space, Si, for

o ‘each i then Alﬂzx. o .XAn is dense in slxszxo ') .Xsn.

Proposition 5-9
A set of subsets @ of a set S is a filter base on

s iff |
1) B,,B,eH=»3Jce®, cSB,NB,

2) B AJanag /B

Proposition 5-10
If 8 is a 1limit point of a filter, ?, in a topo-

logical space then s is an adherence point of FH

Proposition 5~-11 _
If S and T are topological spaces, £ and g mappings
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from S into T, W open in S, g(x) = f£(x) for all xeW,

and g continuous at seW, then f is continuous at s.

Proposition 5-12

If S, T and V are topological spaces and the map=-
ping, £, of SXT into V is continuous then all of the
maps gg:T—>V and hi:S— V defined by ga(t-) = f(s,t) and

ht(s) = f(s,t) are continuous.

Definition 5-13

A uniform structurce »n a8 set S is a family of sub-
sets, U, of SXS such that

1) U is a filter on SXS -
2) Ue U=>ACU where A = {<x,x> | xes3
3) Ve U=v"Le U where v~ = §<x, 7> | <y, x> evy
4) veU = 3IwelU, Wo WSV where

AoB = "{(x,z}l Qyes, <x,y> €A and {y,z) €B} .
A uniform space, <S, U >, is a set S with uniform

structure, u y on S, The sets of u are called entourages.

Definition 5-14 .

A vase, B, for a uniform structure,?{, on S is a
family of subsets, @ , of SXS such that B < Uand
ve U = IBe f, BSU.

Definition 5-15

A mapping, £, from a uniform space, <S,U)>, into a
uniform space, <1‘, w>, is uniformly continuous if for all
We W there exists Ue U such that |

<z,7> 0 = L1£(x),2(y)> eV,
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Definition 5-16

A uniform space, S, is (uniformly) isomorphic
to & uniform space, T, if there exists a one-~to-one
- onto mapping, f, of S onto T such that f and £~1 are

both uniformly continuous.

Definition 5-17

If Sl and 32 afe uniform spaces then the uniform
structure on S = S‘»]_'XS2 is the smallest such that each
of the maps pizs-->8:l is uniformly continuous where
pi(<81,82>) = 8; for i = 1,2,

Definition 5-18

1 <S, UD> is a uniform space and ASS then the

uniform structure, 'LU', induced on A by the uniform struc-

ture on S is the trace on AXA of the sets of the uniformity,

U. <A, W)is called a uniform subspace of <S, UD.

Proposition 5-19

Let £, 84 be maps as follows;

- i i o0 i [ 3 oo 0
gi.slxszx ‘X.Smc—> Ti and f.TIXTZX an—>v
and also let h be the map

* 1 L 2R 2N J l 2 o0 0 2 LN J n [ K 2N ] n
RsSTX- * XSy XSTX«+ XSy Xe XS X oo XSy =5V

. 1 . '
where h(sy,***,8y ) = f(sl(ai,---s:,' Jovesgy(e]y e 8y ))
then ‘ ‘

1) if £ and ell g; are continuous then h is
continuous, '

2) if f and ell g, are uniformly continuous then
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h is uniformly continuous.

Proposition 5-20

.If S and T are uniform spaces, f a mapping from
S into T, 49 a Baae for the uniformity of S, and G a
base for the uniformity of T +then f is uniformly con-
tinuous iff |

VYceG, 3 Be G, <x,y> e B = <2(x),2(y)> €C.

Proposition 5-21 .
1£ <s,U> is a uniform space and B(x) = §V(x)[ve U}

then there exists a unique topology on S such that for
all xeS, B (x) is the filter of neighborhoods of x. The
topology induced on S by the uniform structure U is
called the uniform topology for U .

Proposition 5-22

If S and T are uniform spaces and f:S—)T is a
uniformly continuous mapping then f is continuous for

the uniform topologies on S and T.

Definition 5-23
If <S, ) is a uniform space then a set ASS is
of order Uell if AXAGU.

Definition 5-=24

1f <S,WU> is a uniform space then a Cauchy filter,
P, is a filter on S such that for all Ucl, there exists
Fe Peuch that F is of order U,
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A Cauchy filter base is a filter base whose gen-
erated filter is Cauchy. |

J

Proposition 5-2 .

It B is a Cauchy filter base in a subspace, 7T,
of a uniform space, S, then 49 is a Cauchy filter base
in S,

Proposition 5-26
If S and T are uniform spaces, £:5S -7, a

" uniformly continuous mapping, and B a Cauchy filter
base on S then the image of & is a Cauchy filter base

on T,

~ Proposition 5-2
A complete space is a uniform space in which all

Cauchy filters are convergent.

Proposition 5-28
' In a complete Hausdorff uniform space every Cauchy

filter base has a unique limit point.

Proposition 5=-29

If S is a uniform space and T a dense subspace such
that all Cauchy filter bases on T are convergent in S

then S is complete.

Proposition 5-30
If S and T are uniform spaces, T Hausdorff and
complete, A & dense subspace of S, and f:A—T is a

uniformly continuous mapping, then there exists a
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unique mapping, f:S—>T such that ¥ is uniformly

continuous and £|A = f.

Definition 5-=3%1

A topolbgical ring, <R, &), is a ring, R,
together with & topology, Nog sy on R such that
1) +the mapping x—>-x of R into R is continuous,
2) the mapping <x,y»—> x+y of RXR into R is
continuous, - ' '
3) the mapping <x,y) —> xy of RXR into R is

continuous,.

Proposition 5-32
If A is a closed set in the topological ring, R,

" then -A and fr3+A are closed sets for any reR.

Proposition 5-33
If R, a commutative ring and ® » & filter base on

R such that

1) vef=3Ive B, V+VET

2) Ue ®=>3vel, -Vv<U

3) Ve B=>3ve @, V.VSU

4) Ue B and reR = JVe B, {r} -veU
then there exists a unique topology aO' on R which makes
<R,o@'>, a topological ring and for which @ is a local

" base at OeR in the topology,cﬁ. For the topology,od, the

set B +a = $V+ 93 |ve 83 18 a local base at acR.

Proposition 5-34
A topological ring is Hausdorff iff the intersection
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of ‘all neighborhoods of 0 is £0j .

Proposition 5-35 .
Let U be the collection of all subsets of RXR

. of the form U = f(x,y)»\x,yeR and x-er} where V is &
neighborhood of O in the topologicel ring, R. Then UL
is the base of a uniform structure on R and the uniform
structure generated by WU is called the ring uniformity
of R. The uniform topology for U is the original -
topology on R.

Proposition 5-36 |
If 43, & local base at O in the topological ring.

R then 11, the collection of all subsets of RXR of the
form U = {<x,y> | x,yeR and x-yeBe B is a base for the

ring uniformity of R.

~Proposition 5-37
| For a topological ring, R, the mapping <x,y»~»x+y

of RXR into R and the mapbing x—~3=-x of R into R are

uniformly continuous in the ring uniforﬁity of R.

Definition 5-3%8

An isomorphism % of & topological ring, R, into
a topological ring, S, is a mapping, x, of R onto S
such that n is both a ring isomorphism and a homeomorphism

of the topological spaces.

Proposition 5-39
If S; and 8, are complete, Hausdorff topological

rings and Rl,R2 dense subrings of S1 and 82 respectively,



and x, an isomorphism of Rl onto Rz then there exists a

unique isomorphism, ®, of Sl onto 82 such that X|R = Ko

Proposition 5-40

For any commutative Hausdorff topological ring,
. Ry with identity there exists a commutative Hausdorff
topological ring, RE » with identity such that
1) R is isomorphic to a dense subring of R®
2) R€is complete in its ring uniformity
. 3) 4if S is another commutative Hausdorff topolo-
gical ring with identity satisfying (1) and (2) then S
is isomorphic to R . | ‘
RS is called the completion of R.

~ Proposition 5-41 .

If R is a Hausdorff topological ring with B as a
local base at O then the collection {3 |Be B3 is a local
base at 0 for the topology of RE .

Definition 5-42 ’
A topological field <F,dJ) is a field F with a
topology,a@', on F such that

1) < P,> is a topological ring
1

2) the mapping x —x~
where F*is the subspace, F~- {0}, of P.

Proposition 5-43
The completion of a topological field, F, as a

32

of P* into P* is continuous
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topological ring, is a topological field iff under the
mapping x=>x"1 of F¥*into F*any Cauchy filter in ¥
which as the base of a dauchy filter in F does not have

0 as an adherence point is mapped onto a Cauchy filter

in ¥,




CHAPTER VI

0-RINGS AND THEIR TOPOLOGY

Definition 6-1

In an l-ring, R, for u a p-unit in R define
I(u) = {xeR| |x|<u}. | |

Note that although I(u) could be defined for
elements other than p-units, in the folloWing it vdll

be used for p-units only.

Theorem 6-2
If R is a convex f-ring there is a unique topology
on R that makes R a topological ring and which has as a
local base at O the collection &= §I(u))u a p-unit in R},
The collection X+ 6 = {xo+1(u)l I(u)e @} is a local base
~at x,eR in this topology.
Proof |
By 2-18(4) if u,v p-units then u/Av is a p-unit.
Thus
xeI(w)NI(v) & |x/€u and |x] SV PR Ixl SuAv
< xeI(uv), |
so I()NI(v) = I(uAv). Now I(l)e Bso B # £ enad
0eI(u) for all p-units so gg¢ 6. Thére\fore by 5-9, @ is
a filter base on R.
 Since 2>1 and R convex then by 3-1, 2-17(29),
'2-18_(5.6), —% is a p-unit if u a p-unit. Thus
1(3)e 8 ana vy 2-17(14,2), 1(3) +1(3) S 1(w). By
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2-17(30), -I(u) = I(u).
| If reR let v = |rl V1 so v>1 and since R convex

then by 3-1 and 2-17(29), v is & p-unit., Now|r/<v s'o
by 2-18(6) and 2-17(1), l;‘;-'sl. By 2-18(5,6) I (3)e 8
for any p-unit u. Now , ’
er(%):) \xlé% = |rx| = IrIleém#éu => rxeI(u)
by 2-17(16,9,1).
. Thus &3 (%) < I(u)e |

If u a p-unit then by 2-18(4), v = u/\l is a
p-unit and v<1 so v*<v<u by 2-17(1). Thus I(v)e &
and by 2-17(16,9,1),I(v)I(v) < I(u).

Therefore by 5~33, there exists a unique topology
Jj on‘R such that R is a topological ring and 43 is a
local/base at Ovin this topology. Also x,+ é; is a
local base at x, in this topology.

From now on this topolbgj JS will be referred to
as the p-unit topology on the convex f-ring R.

Definition 6-3

A C-ring, R, is a convex f-ring with J(R) = {03} .
A C-ring could be characterized as a sub-f-ring

of a cardinal product of totally ordered fields.

Proposition 6-4
If R is an f-ring then J(R) = {0} iff the convex

closure, R, is a C-ring.
Eroof

By 3-21, the proposition holds.
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Lemma 6-5 \
If R a convex f-ring then ueR is a p-unit iff

uy >0 for all Me /7L
Proof
.~ If u a p-unit then ugM for all Me Mso uyA 0

for all Me M. By 2-9, uy>0 for all Me/M, so u;4>0
for all MeM. '

If uy>0 for all Mc Mthen for any [R-ideal I of
R such that RI is totally ordered let M be & maximal
" f -ideal such that IS M by 2-20(4). For any reR if
ry £0 then rv<0 by 2-24 and since Ry and Ry are totally
ordered then if ry >0 then ry> 0. Therefore uy >0 for
~all I such that Ry is totally ordered and by 2-12, uz0.
Now uy # 0 for all Me M so ugM for all Me Mby 2-9.

Therefore by 3-3, u is a unit and so uis a p-unit.

~ Lemma 6~6

If R a convex f-ring and reR, Me Mare such that
ry >0 then there exists a p-unit ucR such that ry= upy.
Eroof

For any Ne M such that N # M there exists seR such
that seS(N) and sZS(M) by 4-4., For each N # M choose
such an s ™ and let G = §s(sV)|¥ # M}US(r). Since
ry # O then r):'ﬁ or MeS(r) so & is an open cover of M.
Since by 4-3, m is compacf then there exists ?f‘ SC
such that ?"18 & finite cover of M. Since MZS(sM) for
all N # M then S(r)e?f‘. Let ?/’be determined by fhe
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elements 8,,8,y°**y8, and r and let u -[sll\/---V'lsnIVr.
Then for any Nellleither there exists s; such that

- NeS(s;) or NeS(r) since ZF 18 a oover of Mso that
either (s;)y £ 0 or rN;l 0. By 2-9 and 2-17(9)

le;ly = HBC’N|>° or ry> 0., Therefore by 2-9,

uy >l8;ly >0 or uy>ry>0 8o uy>0 for all NeM. By
6~5, u is a p-unit in R. Now all s;eM so (Bi)n' 4]

and by 2-17(13), Is;l, = 0. Therefore wy = Ty by

2-9 and 2-17(9).

Lemma 6-7

If R a convex f-ring then J(R) = M\ {I(u)|u a
p-unit inR} .

Eroof

I red(R) then ry = 0 for all MeM by 2-9 so
lrl = Irly = 0 by 2-17(13). Thus by 6=5, Irly<upy
~ for all Me M and all p-units u. By 2-9, (u-ir| )M>°
for all Me Mso by 6-5, u-|r| >0 and by 2-17(2),
udir|. Therefore reI(u) for all p-units U, Thus
J(R)Sf\{l(u)[u a p-unit in R} .

If v a p-unit then by 2-18(5,6), % is a p-unit
and by 2-18(3), 0<3<1 so by 2-17(25), 0<¥<v. If
for some Me M, (%)M = V) then 0 = vM-(yz-)Ma (v-%)Mz (%)M
80 by 2-9, %eM. This is & contradiction since % a
unit so (%)M;l M for all Msm. By 2-9, (%)M évm 80

]



38.

~(-‘-2T-)M <vM for all Me/.

12 re/){I(u)lu a p-unitl then |ri<u for all
p-units u so by 2-9 |rly<upy for all Me M and all
p-units u. If r£J(R) then there exists Me ?/1such
that T£M or by 2-9, Ty # O so by 2-9 and 2-17(13,9),
lrMI = Irly > 0o By 6-6 there exists a p-unit v such
that vy = Irly . Then by sbove (F)y LIrly o This is
a contradiction so redJ(R). ' Therefore () {I(u)} SJ(R)
and so J(R) = N{I(u)}.

Proposition 6-8

A convex f-ring, R, is Hausdorff in the p-unit
topology‘ iff R is a C~ring.
Eroof

Since the collection, fI(u)|u & p-unit} , forms
a local base at O the intersection of all neighborhoods
0f 0 by 5-1 is N§{I(u)| u a p-unit3 = J(R) by 6-7. By
5-34, R is Hausdorff iff J(R) = £0} . Thus R is Haus-
dorff iff R is a C-ring by 6~3.

The uniformity of the topological ring, R, where
R is a convex f-ring with the p-unit topology will be
- referred to as the p-unit uniformity on R,
" Lemma 6-9 | |

"If R a convex f-ring and u a p-unit let
V, = {<x,y> eBXR||x~y|€u3 . Then the collection
AN , u a p-unit} is a base for the p-unit uniformity

on Re
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Proof
Since x-:yeI(u) ife Ix-yi <u then

94x,y> eRXR|x-yeI(u)} =V, « By 6-2 and 5-36 the

collection, {V,| u a p-unit}, is a base for the

p-unit uniformity om R, '

" Lemma 6-10

A function £:R~>R on a convex f-ring, R, is
uniformly continuoﬁs in the p-unit uniformity iff
for all p-units u there exists a p-unit v.-such that
\x-yl £v implies [f(x)=f(y)] < u.
© Prootf |

The result follows from 6-~9 and 5-20.

Lemma 6-11 ' |

If R a convex f-ring then the mappings
<x, 7> — xVy and <x,y» —>xAy of RXR into R are
- uniformly continuous in the p-unit uniformity on R.

If uw & p-unit in R and if )x-y|<u then
|xt-y*| €u by 2-17(17) so by 6-10 the mapping x—>x*
of R into R is uniformly continuous in the p-unit
uniformity. By 2-17(22), 5-37, and 5-19 the mapping
£x,y» — xVy is uniformly continuous. By 2-17(23),
. 5=37, and 5-19 ﬁhe_ mapping <£x,y» -_—)xl\y is uniformly

continuous.
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" Definition 6-12 |
| A topological f-ring <R, ) is an f—ring, R,
~ with a tcpology,uU; on R such that
1) <R,Y is a topological ring,
2) the mappings of <x,y> —» xVy and {x,y) —»xAy
of RXR into R aré continuous,
- Definition 6-13

An ,e-iaonorphisn, Xy of a topological f-ring, R,
onto a topological f-ring, S, \:I.s a mapping, n, of R onto
S such that = is an J.Qisgmorphiam of R onto S and x is
a homeomorphism of R onto Se
Proposition 6-14

A convex f-fing, R, is a topological f-ring in
lthe p-unit topology. ‘ |
Proof |
| By 6-~2, R is a topological ring. By 6-»11, 5«35,

and 5-22, R is a topological f-ring.
Lemma 6-15
It Sl and 32 are complete Hau_sdorff topological
f-rings and R,» R, are dense sub-f-rings of 81,32 and
if = is an l-i_somorphisn of Rl onto Hz then there is
" a unique { -isomorphiem ¥ of S, onto S, such that
- ?IRl = Ko '

Proof

By 5=39 there is a unique isomorphism, %, of S

T T U0V VU PP S U PR QSO o e e s e i
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-onto S as topological rings such that 'ilRl = K, Now
~ the mappings <X,y>—> ®(xAy) andlx,y> —> R(x)A%(y)
of slxsl' into S, are continuous by 5-19, 6-12 and 6~13.
" Also % (x /\y)‘,- ?(x)A?(y) for all x,yeR, since
?IRl = %, So by 5-8 and' 5-7, *(xAy) = R(x)A®(y)
~ for all x,yesl.' Therefore % is an /,e,-iaonorphian of
S, onto S,.

Theorem 6-16
IfT R is a c-ring with the p-unit topology then
- there exists a commutative Hausdorff topological

 fering, R_ , with identity such that
| 1) R is -sﬂ-isomorphic to a dense subring of Rc,
2) R®is complete in its ring uniformity,
3) it S is another commutative Hauadbrff topol-
~ ogical f-ring with identity satisfying 1) |

and 2) then 8 is [ -isomorphic to RS |

| RC 18 called the completion of R,
By 6-8 and 6~14, R is a commutative Hausdorff
~ topological f-ring with identity in the p-unit
‘topology. By 5-40 there exists a commutative Hausdorff
~ topological f-ring R® with identity such that Ris

' “"isomorphic to a dense subring, T, of RS and R¢ is

‘complete in its uniformity. Define lattice operations

e et s+t s s e e oot = <0 S zpmrn. = e pem bt e ons s S 1 s
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‘  on T by means of the isomorphic mapping of R onto T

and T is a C-ring for these operations. Since the

. mapping is a.homeomorphiam the topology induced on
. ? by R® must be the p-unit topology on T. By 6-11,
' 5-8 and 5-30 the binary operations V and A on T
" can be extended to RS . By 5-35 and 5-22, V and A
. are continuous operations from R°X R into RS . Thén
" by 5-19, 5~12 and 5-7 any equation in terms of
0,1,<,4,+, V, and A holding in R also hold in R .
 Sherefore by 2-16, R® 18 a commutative f-ring with
‘identity. Also by 6-12, RS 1is a topological f-ring.

| If S is another commutativé Hausdorff'topological

. f-ring with identity satisfying 1) and 2) then by
~ 6=15, S is ff—isonorphic to RS .

The question immediately occurs.*“IsiRc a

;;ﬂc-ring and is its topology the ﬁ-unit t°P°1OGYr

In the following asn affirmative answer is given by
representing RC as a ring of functions.

Definition 6-17
A topological f-field is an f-field which is

- "both a topologiéél f-ring and a tbpological field

© (see 5-42).
- Lemma 6-18 |
~ If R is a convex f-ring with the p-unit topology

I

».




then for u a p-unit the set {xeR| |x-a/$ul is a

neighborhood of aeR,
- Proof

By 6-2, a+1(u) is a neighborhood of aeR. Now
yea+I(u) ¢=p (y-a)eI(u) &> |y-aigu

80 a+I(u) = tyer| |y-a| & ul .
- Lemma 6-19

If P is an f-field then F is a topological

 f-field in the p-unit topology.

" Proof

Now F is automatically a C-ring so F is a

- topological f-ring in the p-unit topology by 6-14,

If acP* then by.2-17(13,9), lal >0 so if u a p-unit
2

then by 2-18(5,6,2) %L AE&—-‘-’% is a p-unit. By 6-18,

W= {xel’l x-a| £ !2" /\194'2-33 is a neighborhood of

& in F. Now IO-aI%—-lby 2-18(3) and 2-17(25) 80

O £ W and W is a neighborhood of a in PN 1

\x-al é-—‘;‘-then \\xl-la\\ é—‘%‘-by 2-17(15) so by 2-17

(12) ixi 2 lal -l%‘-r\%l. Therefore if xeW then
1xl > Bleo by 2-18(1) and 2-17(9,1) m $TT 1t

xeW then ‘%—%—‘ = Eh'ﬂ.\“‘,\s %‘li'%' Lu bj 2-18(1)

and 2-17(16,1,9). Thus if f is the mapping x-—)% of

| P*into P then £(W) S iyeklly-aléul « Therefore by

6-18, £ is continuous for all _aer*. Now the range
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of £ is l‘* 80 the mapping x—-)%- of P* into P*

is continuous. By 5-42, F is a topological field
80 by 6-17, P is a topological f-field in the péunit
- topology.

Lemma 6-20

If F is an f~field with the p-unit topology
then every Cauchy filter in P ¥, which as the base
of a Cauchy filter in F does not have 0 as an adherence
point, under the mapping x —> -i- of P¥* into P¥ is
mapped onto a Cauchy filter in P ¥,
Proof

Let C be a Cauchy filter in P such as that
the base of a Cauchy filter in F does not have O as
‘an adherence point. Let @ be the image of C under
> Lot P* into ¥ s0 @ 18 8 filter
“on F¥*., Since 0 is not an adherence point of

the mapping x —>

then there exists a p-unit, v, such that I(v) is
disjoint from some Ve®. Thus for. all xeV, |x| iv
80 by 2-15, for all xeV, |x| > V. |

If u a p-unit then by 2-18(5), uv® is a p-unit
80 by 6-9 and 5-24 there existe,Wec such that fqr
all x,yeW, |x-yl<Luv®. Now WNVe C and for all
’ ‘x,ycwﬂv 1t holds that |

1 1 1 ]
I3 -7 w17 St




by 2-17(16,1) and 2-18(1,3). Thus the image of WNV
1
b3
6-9 and 5-23) and so 6 containe a set of order V,

under the mapping x —><= is a set of order V, (see

for any p-unit, u, and by 5-24, 6 is a Cauchy filter.

Proposition 6-21
" If P is an f-field with the p-unit topology

then € is a topological f-field.
Now F is é C-ring so by 6-16, _]!'C exists and is
e topological f-ring. By 5-43, 6-19, and 6-20, FC 18
& topological field so by 6-~17, PC ia.q_ topological
£-field. | | |

As usual F is henceforth considered as a sub-

field of its completion

Lemma 6-22

iIf.F is an f-field with the p-unit topology and
FS its completion let P be the positive elements of
" F and P the positive elements of FS then T = Pf‘ .
- Broof

Since the mapping x —> -x of F< into F€ is

continuous then -(’.F)QT:P—). By 5-32 -(P) is closed in
F¢ and -P < «(F) 8o (-B) S ~(F). Therefore —(F) = (-P).

Since x* = x for all xeP by 2-17(8) then by 5-7, 6-8,
| :and 6-11, x* =x .fo\r all xecP. Thus by 2-17(8.)’ x=0
for all xcP s0o P& PC . | |

Now PU~(F) = FU(-F) = PU-P = F = F® By 6-16, 2-15
.and 2=-5, | |

t
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Also =-(P)NPC -P°N P° = £07 by 2-5 so
~(P)NP® = {0}. It xcP® and x£P then xe~(P) so

" xe=(P)/\P° , that is x = 0. This is a contradiction

 since OcP. Therefore Pa=P.,

In the follbwing 1et [ ’.:|, ( ), etc. indicate

. Py . '
intervals in P and [ ], ( ), etoc. indicate
intervals in P° (see 2-22).

~ Lemma 6-23

All closed (open) intervals in P are closed
(open) sets in the topology of 2. |
Eroof

By 6-22, [0, 00) = [0, 2c) 80 [0, 00)" 1is
closed in F° . By 2-17(2), a+ [0, °°)c. = [a, e0 )€

‘80 that by 5-32, [a, >0)" 1s closed in P¢. By 2-17(3),
- [—a,oo)c = (-oc,a.]c. 80 by 5=32, (=co ,ajc is

' closed in F°€ . By 2-15, 6-21 the complement of ‘_[a,.eo)c .

is (= oo,a)° and that of (-oo,a]c is (a,oo)c 80
(a, o0 )€ and (-ao,a)c are open in F€ . Now (a.,l:o)c
= (a, w)‘ﬂ ("°°9b)c and [a:bj = [3. °°)cﬂ ("°°9bJC

so (a,b)c is open in P and [a,b]c is closed in F€ .

Lemma 6-24

If F an f-field with the p-unit topology and

Broof

Now [8,b] < [a,b] and by 6=23, [é.,b]c is




closed in F¢ 8o mg[a,b].c . 1If xe(a,b)* and

V any neighborhood of x in F* then W = VN (a,b)®

‘is & neighborhood of x in‘ F° since (a,Jb)c open by
6-23., By 6-16, F is dense in F€ so there exists
scF such that seW. Now se(a,b)S and seF so se(a,b),
that is every neighborhood of x contains a point of
(a,b). " Thus x is an adherence point of (a,b) and so
X is an adherence point of Ca,b:l e Therefore

(a,0) & m and so ['_a.,‘:ﬂc = (a,bﬁlfa,b}gm .
Thus m = ['a,b]c . |

Lemma 6-25
If F is an f-field then for any x,ych such

that x<y there exists reF such that x<r<y, that is
F is order dense in FC . |
Proof

By 2-18(2) and since F€ a field, ::(3'-‘3-5I <y 80
(x,y)¢ # &. By 6-23,(x,y)° is open in F € and by
6-16, F is dense in F ¢ 8o there exists reF such that
re(x,y)® , that is x&r<y. |

‘ Proposition 6-26 , |
If F is an f£-field then the topology of F < is

the p-unit topology.
Proof | |

By 5«41 the collection {T(;) Iv a p-unit in F}
is a local base at 0 for the topology pf P‘c'. .I'_‘or §
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a p-;unit in P let I(v) = fxekllxl $v} and for u

a p-imit in P¢ let IS (u) = {xeP®| I1xI £ u} . By
2-23, I(v) = [-v,v] and I€ (u) = [—u,u]c , 80 by 6-24,
I(v) = I (v). Thus the collection {IC (v)|v a p-unit
in F] is a local base at O for the topology of PC .

- By 6-25 for all p=units u in F_° there exists a
p-unit v in F such that 0<v<u and so I¢ (Vv)SI€ (u).
Thus for all p-units u in F€, 1¢€ (u) is a neighbor-
hood of 0 and for every neighborhood, V, of O there
exists a p-unit v in F and so in F°© such that I€ (v)S V.
Thus the collection fI€ (u)|u & p-unit in P} is a
local base at O for the topology of F€, By 6-~2 the
topology of P€ is the p-unit topology.

Thus the question asked after theorem 6-16 has

been answered in the affirmative for f-fields,

: Théorem 6-27
' For every f-field, F, there exists an f-field,
P¢ s such that if PC has the p-unit topology then
1) P is a dense sub-f-field of P©
2) P induces the p-unit topology on P
3) P is order dense in pe
‘4) FCis complete in the p-unit uniformity
5) P°is unique up to {-isomorphism.
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Proof ‘
The theorem follows fron.6-16, 6-21, 6-25 and
6-26., |

Definition 6-28

The interval topology on & totally ordered set
is the topology with the open intervgls as a base.,
(See 2-22).

Note that by 2-15 the f-fields are the same as
the totally ordered fields.

Proposition 6-29
The interval topology on an f-field, F, is the

p-unit topology.
Proof

Let P have the interval topology. If V is a
- neighborhood of 0 then there exists an open interval,
I, such that 0eISY. If I = (a,b) let u = lal Aibl,
if I = (¢,90) or I = (-o0,c) let u = fc[. By 2-17
(13,9), lal, Ivl, lcl >0 so they are all p-units since
P a field and by 2-18(4), u is & p-unit in all cases.
By 2-17(25) and 2-18(3) 3<u so [-3, %]gx since F
is totally ordered by 2-15. For any v> O,
oe(-v,v)S[-v,v] so [-v,v] is a neighborhood of O.
By 2-23, I(v) sv[}v,v] 80 that the collection
$I(v)|v a p-uﬁit in P} is a local base at 0 for the
interval topology of ¥. Therefore by 6-2, the inter-
val topology is the p-unit topology. '

49.



CHAPTER VII

THE TOPOLOGY OF THE BUNDLE SPACE

In this chapter let R be a C-ring and 771 the
maximal ,2-1dea1 space of R with the topology of 4-2.

’Lemma T-1

For any Mcm, R";-is an f-field and R,f"' is an
f-field containing Ry« |
Proof _
By 3?3, Ryis an f-field. By 6-21, R:is an
f-field.
Definition 7-2

. For a C-ring, R, the bundle space is

B = USRS |MeTN3, that is the aisjoint union.
Definition 7-3

A section, g, is a mapping from M into & such

‘that g(M)eRS .

Lemma 7-4
The set of all sections, S, under the definitions
(g+R) (M) = g(M)+h(M), (-g)(M) = -g(M),
(gh)(M) = g(M)h(M), (gVh)(M) = g(M)Vh(M),
(g Ab)(M) = g(M) An(M), 1(M) = 1,, O(M) = Oy,

- form an f-ring.

'

Proof

S is the oardinal product of the f-fields, Ry,




MeM vy 2-10. So by 2-11, S is an f-ring.
Defintion T7-5

For each reR define ahse'c'tion,.?, by
$(M) = r,, eRf,’ .
Proposition 7-6

The mapping, r—> ¢ is an A -monomorphism of R
into S.
2roof

Now (T+8) (M) = (r+s)y = 1""+s,,l = #(M)+8(M) for
all MeM by 2-9 so (T+8) = +8. Similarly, ¥8 = £8,
TwVs) = £V8, TrAs) = €A%, ana T(M) = 1, = 1(M) so
1 =1. Thus by 2-6, the mappi#lg r—% is an ,é-homo—
morphism. If £=0 then ?(M) = ry = 0) for all Mem

8o by 2-9, reM for all MeM. Thus re/{M|MeMj= J(R)

| 8o by 6~3, r = 0., There the kernel of the mapping is
£0} and so the mapping is an ,e ~-monomorphism.
Definition 7-7 ’

Let R = §¥|reR}. The sub;f-ring, £, of S is
called the Gelfand representation of R,

A topology for B is »dea_ired such that B induces
the p-unit topology on each R ;’ and if each R,.1 is a
subfield of the reals theh a section is continuous iff
| it is continuous as a real valued function on M.

Definition -8 |
Por V open in /1] and r,secR such that ry, <8y for
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all MeV define the subset of B ’
<r,s ; V‘> = {aeR,:[MeV and rN<a<sM} .
Lemma 7- , | |
For r,seR, the set {M/r,<s,] 'is open in/M.
2roof ” |
If ry<sy then lay -ryl = 8, -r, £ Oys80
(8y =Ty )+|8y =1yl = 2(8y -r,, ') # 0y o Thus by 2-9,
(s=r)+|s-r| /M 80 by 4-1,. MeS [(s-r)+ls-rl] .
ry £ 8y then by 7-1 and 2-15, 8,<T, 80 ls, =rp| = T) -8,
and (sy -Ty )+la" -r"l = 0p o Thus by 2-9, (s=R)+ |s-r| eM
so by 4-1, Mf£S [(e-r)+la-rl] . Therefore {M | rM<sM}
=8 [(e-r)+ Is-rl] and by 4-2, it is open in m.
Lemma 7-10 | |
For any r,s,t,ueR and any open sets U,V in m,
<r,83U> N w3 VD> = <rVi,s \uW)
) where W = I‘J(\V{'\fl‘l](:‘_Vt%1 < (s Au)y3 .
Now,
- ae <r,8;U> N <t,u,v> &
aeRy , MeUNYV, ry, <a<sy and t,4|<a<‘uM }
<> MeUNV, (rVi)y<a<(sAu),, aeRf,,’
<> acRg , MeW, and (r Vi)y<a<(s I\‘u)M ‘
ae <&V, 8 Au; w>
By T7-9, W is open in m 80
{ry830> NG,u37> = <th, s A\usWw> .
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Theorem 7-11

The collection $<r,s;V> |r,seR, V open in M3
is a base for a topology on <] .
Proot |

1 ac @ then for some MM, aeRf, and so by
6-27(3) there exists r,seR such that
a-1,1<rn<a <sy<a+lye Let V = {Miry <syleoV is
open in M by 7-9 and ae <r,s8;V)> . Thus by 7-10 the
collection §{<r,s;V> | r,ecR and V open in M} forms

& base for a topology on @ .

Henceforth the bundle space, B y Will be assumed
to have this topology.

Lemma 7-12 '
If P an f-field then a base for the interval

topology on FC is given by the collection f(r,s)‘]r,seF}.

Proof
If acF€ and V a neighborhood of a in the interval

i:opolo'gy then there exists an open interjal, I, such

that aeICV. Whether I is bounded or unbounded there

exists B,yeF® such that ae(a,y)CQI. By 6-27(3) there _ 1

exists r,seF such that p<r<a<s<y so , | \

ae(r,s)cg(ﬁ,y)chQV. Thus the collection f(r,s)clr,se]ﬂ |

is a base for the interval topology on i,c . .

Proposition 7-1

The topol’ogy of @ induces the p-unit topology

‘ c
On Rm0
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Proof

If MeV then <r,8;V> N\ Ry = (T,,8,)" and if MAV
" then <r,8;V> MRy = g, Now consider (rM,é;M)c in R:
for r,8eR. Let V = fN|ry,<sy} so by 7-9, V is open
and MeV. Then <r,s;V> MRy = (ry,8,)°. Thus the
topology on B induces a topology on B:with base the
collection {(r",s,‘1 )°|r,seR}. By 7-12 the induced
topology on Rf.‘ is the interval topology. By 6=29 the
induced topology on R:‘ is the p-unit topology.
Propogition 7-14

If P, @ are f-fields, F a aub-f;field of G and
F order dense in G then F€ is‘,e-ieomorphic to G°.
Proof

If «,peG® and a<p then by 2-18(2) and 6-25
there exists g,heG such that a<g(g§'ﬂ<h <{p. Now
- there exists reF such that a <g<r<h <p since F order
dense in G so F order demse in 6. As in 7-12, F is |
dense in G in the interval topology so by 6-29, F is
dense in G< in the p-unit topology. By 6-16(3), G€ is
ﬁ-i'somorphic to P€', N

Corollary T7-15

If P, G are f-fields such that FEGCFC then
FC is [ -isomorphnic to 6.

By 6-27(3), F is order demse in P€ so F is order
dense in & 80 by 7-14, G¢ is ;e-isomorphic to F¢ ,
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For the rationals, Q, define Q€ to be the reals,
[Re If P a sub-f-field of [R then since Q<P by 7~15,
7€ is {-isomorphic to {R. Thus for any sub-f-field,
F, of the reals, [R, take P € t0 be rR,. ,

Lemma 7-16 .

If for R each RM is a sub-f-field of the reals,
R, then the collection §<m,n;V)> |m,neq and V open in M3
is a base for the topology of B
Proof

Since R convex, Q is a sub-f-ring of R. Also Q
is order dense in each R; + Consider any <r,s8;V) and
any ae <r,s;V> . Then there exists McV such that aeRﬁ
and ry<a <sy and also there exists m,neQ such that
ry<m<a<n<sy. Let W = {N|ry<m}N{N|n<s3 NV 80
by 7-9, W is open in M and MeW so ae <m,n;W) . If
| pe <m,n;W> then there exists NeW such that ﬂeR; and
ry<m<p<n<sy so that pe <r,s;V> . Thus
ae <m,n;W) S &r,83V> B0 the collection
{<m n;V> | m,neq and V open in713 is a base for the
topology of@ |
Definition 7-17

If for R each Ryis a sub-foiéld of the rgals,
[R, then for each section, £:TN—> @ define IR m- R
by f.R(H;) = £(M) where R hae the usual fopology of the

reals.
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Proposition 7-18

If for R each R\ is a sub-f-field of the reals,
rR , then a section fz'm—> B is continuous iff ffR is
continuous. '

Proof | |
Now Me£™ ( <m,n;V) ) &> MeV and m <£(M)<n

4> MeV and Mefy (m,n)é> MeVN £z (m,n). Thus

£ (<myn;¥> ) = £2'(m,m) NV

If f!R is continuous then consider & basic open
set <m,n;V> in B « Now V is open in m and since er
is continuous, f&'(m,n) is open in ‘M so £~' ( <m,n;V> )
= f‘i‘(m,n)f\v is open in M. Thus £ is continuous.

If £ is continuous then £-' ( <m,n; M)
= f"; (myn) NM= fI;\l (m,n) is open in m. Thus fpis

continuous.



CHAPTER VIII

THE RING OF CONTINUOUS SECTIONS

In this chapter let R be a C-ring, 71 the
maximal f{-ideal space of R with the topology of
4-2, and @ the bundle space of R with the topology
of 7-11. | |

Definition 8-1

Let F be the set of all continuous sections

from Tﬂ into @ .

Proposition 8-2
For any reR, P: M~ B 1e continuous, that is

RerF.
Proof
Now, MeR ™' ( <s,t;V> ) & 2(M)e <a,t;V> &
MeV and s, <r, <t,<>Mefl|r,<t,<8,3NV. Thus
8" ( <8y t5V> ) = VN MIr, <ty <8y] =
VN Mlx, <t} N Mty <8yl s0 by 7-9 £ ( <o, t;V))

is open in.m. Therefore ¥ is continuous.

Lemma 8-3 ,
If fcP then ~fcF.




Broof

Now by 7-4, 2-9, and 2-17(3)

He(-2)" ( <rye37> ) € (-£)(M)e <ryosVD>

&> MeV and 1, < (-£)(M) <8y

&> MeV and (=8)y <£(M) <(=r)y

SMet™ (( Lo8,-r3V> ).
Thus (-£)~ ( <r,sﬂf) ) = £7'( ¢-8,-r;¥> ) which is
open in MM since feF. Therefore -feP. |

Lemma 8-4 ,
If feF thenf{MeM|£(M)>0} is open in M.

2roof

Let A = {aeR;la >0 and MeM}. If BeA then there
 existe Me M and reR such that BER,, and 0<p <r, <p+l
by 6;-27(3). Let V = {KeM|r,>03 then by 7-9, V is
open in 1Ml and MeV. Therefore pe <0,r;V> <A so A is
open in § . Now {MeM]f(M))O} = I"(A) which is open
in msince feF. |

Lemma 8-5 _

If feP and S(£) = {MeM|£(M) £ 0} then S(f) is
" open inM. |
Proof |

Since each R is totally ordered 'Ehen
{meMm|z(w) # 03 = (HeMle(x)>03 UfneM|(-2)(m)> 0.
By 8;3, ;st so by 8-4, S(f£) is open in M.
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Lemma 8-6

If feF and teR then f+@eF.

Proof

Now by 2-9 and T-4 _
I"Ie.(f-r?;)"l <r;s;V> & MeV and rM<(f+%)(M)<sM
&> MeV and (r-t), <f(m)<(§-t)"
> Met™ r-1),(s=t);VD> .
Thus (f+"€)'\ <{r,s;V> = £ {(r-t),(s-t);V> is open

in M since feP. Therefore f+%eF.

Lemma 8-7

If £,geF, W open in M, and for all
NeW,f(N) {g(N) then <£f,g;W) =
{aeRﬁlMeW and £(M)<a<g(M)} is open in'@.

Proof

If ae {£,g;W)> then there exists MeW such that

¢ ,
-«eR) and since Ry dense in R;',‘ by 6-25 there existe

r,8eR such that £(M)<r,<a sy <g(M). Let |
v, = {N|8(N) <g(M)3, Vv, = {N|£(N)<E(N)3, and

Vi = {N|®(N)LB(N)}. sSince V, = {K|(g-8)(N)> 03
~ then by 8-5 and 8-4, V, is open in M and similarly

by 8-3,8-5 and 8-4, V, is open in M. Now by 7-9,
V, is open inm so V=VNV,NV;A\AVW is open inm,
Then MeV and ae <r,s;V) & <f,g;W> so that <f,g;W>
is open in @ .

Lemma 8-8

It f,g_eli' then f+geF.

59,
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Proof

Now by 7-4 |
Me(£+g)” <r,8;V> <> MeV and R(M) <(£+g) (M) <B(M)
&> MeV and (F-g) (M) <£(M) <(8-g) (M)

- > MeL(F-g),(8-g)iV>. |

Thus (f+g)” <r,8;V> = £~ (F-g),(8-g);V> which is
open in /N by 8-3, 8-6 and 8-7. Therefore f+gcF.

- Lemma 8-9

If feF then |f]|eF.
Proof |
It t(M)DO then MeW = {le(n)) 0} and W is open
by 8-4. Since each R; is totally ordered then
f(N) = |£(N)| = Ifl(N) for all NeW. So by 5-11, £l
is continuous at M. |
1f £(M) <O then MeW = {N|(-£)(N)> 0} and W ie
open by 8-3 and 8-4. Now (-f)(N) = If(N)]u = |£](N)
for all NeW so by 8-3 and 5-11, [f] is confinuoue at M.
If £(M) = O then |£|(M) = |£(M)| = 0. 1If
|£1(M)e <r,s;V) then ry<0<sy. Let V, = £~ <r,8;V>,
Vo = (-£)7< r,8V> and v, = V,N\V, 8o by 8-3,V,
is open. Since f(M) = (-f)(M) = O then MeVg. Now if
£(N) >0 then [£] (N) = £(N) so if NeV, then
ry<Ifl (N)<sy. Similarly if £(N) <O then
I£1(N) = (-£)N 80 if NeV, then rN1<]f|(N)<:sN. 'Thus
\£1(Vy) S<ry83V> 80 |£l is continuoue at M.
~ Since each R: is totally ordered then |f| is
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continuous for all Me Mand so |f] eP.

Lemma 8-10

If reR and ry >0 then there exists V open in m
and a p-imit u in R such that MeV and r, = u, for ’Iall
Nev. o
Proof

Since R convex then -‘EeR and 0<(§)M<rn. By
6-6 there exists a p-unit v in R such that vy = (—g) Me
Let u = vVr and V = {N|v, <r~} so by 7-9, V is open
in M and MeV. Now uy = v,Vry = r, for all KeV.
Since u2v then uy >vy>0 for all Ne M by 2-9 and 6-5.
Thus by 6-5, u is a p-unit in R, |

Lemma 8-11

If fecP and u a p-unit in R then Qfer,
Proof |

Since u & p-unit in R then by 2-18(6), i+ &
p-unit in R and (%)M is-%'- 20. If ry<sy for all MeV
 then by 2-17(25) end 2-9, (%)n<(%)m for all MeV.

Now by 2-17(25), 2-9 and T-4 ,

Me(ﬁf)"l Lr,8;V) <> McV and T, <8(M)£(M) <5M
&> MeV and%(f(M)(%z &>
MeV and (%)"<f(n)< (-%)Mé-;rMsf" I2v> .
" Thus (Qf)“ &r,8;Vy = £~ <-1-1;,%‘;V> 'which‘is open in
msizice feF sb AfeF. |
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Lemma 8-12

If f£,geP then {Ke?’mf(m) <g(M)} is open in M.
Proof |

Now {Me Mi£(M) <g(M)] = {MeM|(g-£)(M)> 0]. By
8-3 and 8-8, g-fcF 80 by 8-4, {MeM|(g-£)(M) >0} is
open in m. | |

Lemma 8-13%

If f£,g¢cF and g(M) = 0 then fg is continuous at M.
Proof

By 6-25 there exists teR such that
0 L\l (M) <t 4<(If] +1)(M). By 6-6 there exists a
p-unit u in R such that uy= ty . Let V = {N[if] (N) <&(N)}
then by 8-2, 8-9 and 8-12, V is open in M. If
fg(M)e Lr,8;W) t/hg{l\{ﬂew and ry<0<8 . Let

X = {Nl]gl(n)<(3/\‘r)w)}then by 8-2, 8-9 and 8-12,

X is open inm Now sn>0 and (-r),>0 8o

"r)(M)>0 since RM is totally ordered and by 2-18(6) .
and by 2-17(25). Now |gl(M) = \g(M)I = 0 so MeX, Let
Z = VAWNX then Z open and MeZ. If NeZ then

\£gl(N) = \£g(N)| = |£(N)] lg(m)]

= 121 (w) 18l () /) |l (1) KBM AL ()

by 2-17(1,25) so that by 2-23 and 2-17(23)
?(N) <fg(N)<€(N). Thus £g(2)< <r,s;W> and MeZ so

that fg is continuous at M.
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Lemma 8-14
If fcP and reR then $reP.

~ Proof
If $(M) = O then by 8-2 and 8-13, Pf is contin-

uous at M. If £(M) >0 then by 8-10 there exists V open
in T and u a p-unit in R such that MeV and §(N) = 2(N)
for all NeV. Thus ({f)(N) = (%£)(N) for all NeV so by
8-11 and 5-11, $f is continuous at M. If (M) <0 then
| ZD)(M)> 0 so by above and 8-3, (/-B(-f) = Pf is
continuous at M. Since each R:‘ is totally ordered

then #f is ‘continuous for all Me meo PreF.

Lemma 8-15
If f,geF then £Vg, £AgeF.

Proof |
| Since R convex %‘eR. Now S is an f-ring by 7-4

so fVg = @(f+g+ |£-gl) by 2-1',8(7). So by 8-3, 8-8,
8-9 and 8-14, £V geF. Also by 2-17(23) £Ag = -(~£V~g)
so by 8-3, ‘fl\geP. |

Definition 8-16

If ueS and u(M) # O for all Me M then define

1 1
aM = 5w
' 1

_ 1 e
Note that Ti"s singe m-)enn .

Lemma 8-17 _
ueS is a unit in 8 iff u(M) # 0 for all Mcl.
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Proof
If 1
u(M) £ 0 then (u) ) (M) = u(M)m = 1 s0
u is a unit in S. If ueS is a unit then there exists
veS such that uv = 1., Thus for all MeM, u(M)f(M) = 1
so u(M) # 0 for all Me M. ‘

Lemma 8-18
If ueP then u is a p-unit in P iff u(M) >0 for
all MeMl.

Proof |
If u a p-unit in P then u(M)_>0 for all Me M by
2-9. By 8-17, u(M) # O since u & unit in S so u(M)>0
for all Me M.

If u(M)>0 for all Me M then 3
%-(M)e <r,s;v>( then rM<%(M)<sM and MeV. Since

€S by 8-16. 1If

u(M) > 0 then by 2-18(6), %(M)}O so by 2-9,

/\ .
Z(M)> (T VO) (M) and since R, is totally ordered. By
6-25, there exists teR, (rVO)M<tM<%(M). Let
W =‘{N](r\./0)N'<t n<8y] NV then MeW and W is open by

' 7-9, Therefore T];-(M)e $ey83W> S (ry83V)> . Now by 8-10

there exists open sets U, and U, and p-units v,w in R
such that v, = tN forAall NeU, and wy = 8, for all
NeU, end also MeU NU, « Let X = U NU,NW so MeX

and G(M)e <vywiX) S<5,85W> o By 2-18(.3)’(%)N<(%)N

for all NeX and X is open 80 let Y = u™ I, x> .
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Now (—%)M <u(M)<(—3;)M by 2-18(3) so MeY. If NeY
then NeX and (%), <u(m) < (2); s0 vy 2-18(3),
vu<%(N)<w~ . Thus %(Y) S v, Wil &<&r,8;V)>

and MeY. Thus 3 is continuous for all Me lso %er.
" Since u(M)%(M) = 1 for all MeM thén_ u-\-]i '.1 .80 u is
a p-unit in F. | ‘

Lemma 8-19

If feF and £(M) >0 then there exists V open in
M and u a p-unit in F such that MeV and £(N) = u(N)
for all NeV,
Proof

By 6-;25 there exists reR such that 0 <ry<f(M).
By 6-6 there exists a p-unit v in R such that
Vy=Tme. Letus= ?V£ so by 8-15, ueF. KNow
u(N)>%(N) >0 for all Nemby'ﬁ-s so by 8-18, u is a
p-unit in P. Let V = {N|¥(N) <£(N)] so by 8-2 and
8-12, V is open in.?Y\and_MeV. Since each Rﬁ is
totally ordered then for all NeV, u(N) = £(N) V¥(N)=£(N).

Lemma 8-20
If feF and u a p-unit in F then ufePF.
Proof

Now u(M)> 0 for all Me /Mby 8-18 so by 2-18(6)
. A N
“and 2-17(25), F(0)<8m) 122 HY S for any r,ecR,

N A

Also by 8-14, I,3cF. Kow by 8-18, 2-18(6) and 2-17(25)



Me(uf)' <r,8;V> A (M) L (ug) (M) < B(M) and
MeV@-—(M)(f(M)(-—(M) and MeV &5 Mef "<u iV e

Therefore (uf)”' <r,s8;V> = £~ u,v) which is open
in N by 8-7 and thus ufeF.

' Lemma 8~-21

If f£,geF then fgePF.
Proof

Let Me 1\ and consider (£g)(M) = £(M)g(M). If
g(M) = 0 then by 8-13, fg is continuous at M., If
g(M) >0 then by 8-19 there exists V open in 7] and a
p-unit u in P such that MeV and u(N) = g(N) for all
NeV., Thus (fg)(N) = (fu)(N) for all NeV so by 5-11,
fg is continuous at M. If g(M)< 0 then (-g)(M)D>0 by
2-17(3) and 7-4 so fg = (-£)(=-g) by 7-4 and by above

fg is continuous at M. Therefore fg is cdntinuous for

all Mem so fgeP.

Proposition 8-22 -
F is a convex f-ring.

Proof

Now S is an f;ring and by 8-3, 8-8, 8-15 and 8-21,
P is a sub-,2~ring/of S so by 2-14, F is an f-ring. If
' feP and £ 21 then by 7-4, £(M)>1>0 for all Mc /]so by
" 8-18, £ is & unit in F. Therefore by 3-1, F is convex.

66.
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‘Lemma 8-23

If for feF and u a p-unit in F for each M, Mza m
there exists seR such that |8 (M;)-£(1;)| Lu(x;) for
i = 1,2 then there exists reR such that |P-f] <u.
Proof |

For a given Me MM let s"eR be such that

" |5‘ (N)?-f(N)|<u(N) aamd'lfah (M)-£(M)| <u(M), Let

Vy = fQIQ‘ (Q_)-f(Q).<u(Q)3 then by 8-3, 8-8 and 8-12,
Vyis open in M and by 2-23, NeVy so {V,[Ne/N} is an
open cover of m By 4-3, I is compact so a finite
subcover of {VNINs'm} exists, say for N, ’Ni’”"NP .
Tet tM= sMA ---AsM 50 tMeR ana M (Q)(s“- (Q)
for all QeM. Por any Qe M there exists Vy; such that
QeVN so oV (Q)-f(Q) <u(Q). Therefore

& (Q)-f(Q) L(Q)-f(Q)<u(Q) by 2-17(2) so by

2-17(2), A (Q) £(Q)+u(Q). for all Qe M. Since each

RQ is totally ordered there exists N; such that

P @ = % (@), Tet Wy = [){al8M (2)>2(2)-u(Q)

then as above Wy is open in 'm and by 2-23 and 2-17(2),
MeWy o  Now f’" Q) = é\"’é (Q)> £(Q)-u(Q) for all QeWy .
Then {W,|McMM} is an open cover of M so a finite

subcover exists say for M,,MQ,--,-,M.i « Let

T = tMV eee VM g0 reR and 9(Q)>/74£(Q) for all

Qe_‘m. Now for any Qem there exists Wy, such that
QeWy, 80 that $(Q)3 tM‘(Q)>f(Q)-u(Q) Thus for all
QeM, r(Q) D£(Q)=u(Q) so by 7-4, TS f-u. Since each



RS Q is totally ordered then there exists M; such
that £(Q) = t"'* (Q) and so £(Q) <£(Q)+u(Q) for all
QeM. Thus by 7-4, T £f+u and so by 2-17(2) and"
2-23, |%-f| Lu.

.Lemma 8-24

For any feF, u a p-unit in F and any M,,M,¢ m
there exists seR such that |f(M,;)-3(M")| <u(M;) for
i=1,2.

Proof |

By 6-27(1), RM‘. is dense in Rg‘, for the p-unit
topology and by 2-18(5), %(Mé ) is & p-unit in Rﬁ,‘, .
Thus by 6-18, there exists s, 8, €R such that
| &, (2;) f(M )| \2(14 ) Lu(M;) by 2-17(25). If M, = M,
let 8 = 8, If M, # M, then by 4-4 there exists
r, ,r,eR such that M;eS(r;) for i = 1,2 and
s(r,)Ns(r,) = #o Thus T (M,) £ 0 #7T,(M,) end
T, (M,) = T,(M,) = 0. Since Ry is & field by 7-1
then there exists t,eR such that 2 (M|)’t\. (M,) = 8 (M)
and similarly there exists t,eR such that
?:. (MQ)%\Q(Ma) = ﬁ“,.(Ma). Let s = r % +r;t; then seR and \
(M) = £ ()% (M,)+8, (1,)%,(M,) = 6, (,) and
similarly 8(M,) = 8,(M;).  Therefore
l’s\(Mt)‘f(ML)vl (u(M,:) for i = 1,2.

Note that as F is‘ a convex f-ring the p-unit
topology can be defined on it.

Proposition 8-25

A\
If F has the p-unit topology then R is dense in F.
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Eroof

By 8=23 and 8~24 for any fePF and any p-unit u
in F there exists reR such that \£-F| <u. Thus by
6-18 and 6-2 every neighborhood of f contains an

- element of 'I\i 80 ﬁ is dense in F.

Lemma 8-26

If u a p-unit in P then‘there exists a p-unit
veR such that ¥ <u.
Proof

Since F is convex then 4 and 8 are p-units in
'F 8o by 2-18(5,6) % and 4 are p-units in F. By 8-25
there exists veR such that |$-22|<{2 so by 2-23 and
2-17(2) 04§ = (F-1)<FEE+H) = B Lu, Thus
0<% <u and Q(M))%(M))O by 7-4 80 by 6-5 v is a
p-unit in R.

Proposition 8-27

The p-unit topology on F induces the p-unit
topology on /ﬁ
Proof |
Let I(u) = ffeFl'If] <ujl for u a p-unit in P
and Ia(?) = {?eﬁll?l £%3 for ¥ a p-unit in R. By
. 8=-26 for any I1¥(u) there exists a p-unit v in R such
that IF(Q) cI F(}u). Thus by 6-2 the collection
{IF(’\?)IQ & p-unit in R} is a local base at O for the

p-unit topology of F. Now IF(Q)f\ﬁ = Iﬁ(% 80 that

[
the collection {IR(%)|% & p-unit in R} 1s a local
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base at O in the topology induced on R by the p-unit
topology on F. Thus by 6-2, the topology induced on
A

R is the p-unit topology.

Definition 8-28

A set V in a convex f-ring R is u-small where

u a p-unit if for all x,yeV |x-y|£Lu.

Lemma 8-29

If R is a convex f-ring with the p-unit uni-

formity then a filter, G , on R is Cauchy iff for

all p-units, u, in R there exists Ve C such that V
is u-small, |
Proof |

The result follows from 5-14, 5-23, 5=-24, 6=9
and 8-28,

Lemma 8-30

If R is a convex f-ring with the p-unit uni-

- formity then a Cauchy filter, C , on R converges to

seR iff for every u-small set Ve, lv-8| £u f.for all
VeV,
Broof

Let C be a Cauchy filter on R and seR such
that for any u-small set Ve, |v-s| <u for all VeV.

Let W, = {reR| |r-s| & u} then by 6-2 and 6-18 the

collection {W,|u & p-unit in R} is a local base at
8 in the p-unit topology. By 8-29 thei‘e exists
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Ve G such that V is u-small so by condition VCW, .
By 5-5 and 5-1, G converges to s.
Let G be a Cauchy filter on R converging to

seR and let Ve & be a u-s;lall set. If there exists
veV such that Iv-sl¢ u then there exists Me 17 such
that Iv-sly £uy, by 7-4, 7-5 and 7-6. Since each Ry
totally ordered then |v-s],>u, 8o by 2-17(2,25) and
2-18(5,6) (=BL=) >o0. By 6-6 there exists w, a
p-unit in R such that wy = (ly_—_g'_-u) M+ Now if Ww
is as above and if reVNW,, then |r-sl&w and |v-r{<gu
by 8-28 so by 2-17(14,2) |v~8l& \v-rl+|r-s] Lu+w. Then
by 2-17(2) and 2-18(2)
 |v=sly SLuyrwy, é(‘x:—gljﬂ)n<\v-s|m . This is a contra-

diction so VNW,, = g and thus by 5-2 and 5-6 s is not
~ an adherence point of (G . .So by 5-10, s is not & limit
point of  which is a contradiction. Therefore for

all veV, |v-8|<Lu.

Lemma 8-31
If feS such that for all p-units ueR there/

exists reR such that |£-£|<Lf8 then feP.

Eroof

If £(M)e <s,t;V> then MeV and s, <f(M)<t,
and since Rﬁ is totally ordered then
(£(1)=8 ) A(ty -£()) >0 by 2-17(2). Since R,dense
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in Rﬁthere exists veR such that

0<Lvy L(£(M)-8y ) N(ty ~£(M)) and by 6-6 there exists
a p-unit ueR such that uy = vy . Let '
W= {N|(3+121-)N<(t-%)~}l\v so by 7-9, W is open in M
and by 6-5 and 2-17(2) <(s+3), (+-3);W)> S <8, t;V> .
Then by 6-5, 2-17(2) and 2-18(5,6)

(s-r%)n < (s+u)y <f(M)<(t-u)M ((t-%)M and MeV so
MeW. By assumption there exists reR such that
|f-?|é(%) 8o let X = &1 <(s+%),(t-125-);'vl>. If NeX
then r, < (t-3)y 8o by 2-17(12,2) and 6-5,

£(N) L(r+§)y < t . Similarly £(N)> sy and NeW so
£(X) S <s,t;V> . Also by 2-17(12), 1, <£(1)+(3),

so by 6-5 and 2-17(2), r+(§)M L f(M)+uy <ty and so
ry <ty -(—12-1-)" . Similarly s, +(%)M<r" and MeW so
MeX. Now X is open in M since FeP so £ continuous

at M. Thus f continuous at all Me Mso feP.

Lemma 8-3%2

Under the natural mapping of R onto RM let the
image of V&R be V, and the image of a filter, c » be
CM. If V is a u-small set in R then V, is & uM/ ~small
set in Ry . If ( is a Cauchy filter in R then G, is
a Cauchy filter in Ry .

Proof

If B,YeVy then there exists r,seV such that
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p=ry and y = s, and since by 8-28, |r-s|<u then
by 2-9, iry -8yl Ly .

If « a p-unit in Ry then by 6-6 there exists a
p-unit veR such that vy = a. Thus if Ir-s| £v then
by 2-9, |ry -8yl &vy = a 80 by 6~10 the natural mapping
is uniformly continuous. Thus by 5-26, CM is a Cauchy
filter on Ry |

Lemma 8-33
If G a Cauchy filter in R then (Gy is & Cauchy

filter base in R; and has a unique limit point in Rf’, .
~Let lim G, be this unique limit point.

Eroof

By 8-32, (b is a Cauchy filter on Ry so by 5-25,
CM is & Cauchy filter base on RS . Now Ry is a C-ring
so by 6-16, Rﬁ is a Hausdorff and complete space in the
p-unit uwniformity. By 5-28, C" has a unique limit
- point in R:' . |
Lemma 8=34

1f G a Cauchy filter on & define fes by

£f(M) = 1lim CM then feP and (G converges in F to f.

Proof

If Ve & is a fi-small set, § & p-unit in &, then
VM is un-small in R; by 8=32. Since GM converges
to £(M) then by 8-33 and 8-30, |¥(M)-£(M)] LG&(M) for
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all ¥eV. Thus by 7-4 and 7-6 |§-f] £8 for all QeV.
Now by 8-29 there exists Ve G such that V is {i-small
for any p-unit ﬁeﬁ so that for any p-unit ﬁsﬁ there
exists PeR such that 18-f| £{. Therefore by 8-31,
feF.

Let £$ be the Cauchy filter on F generated by (o
and let We JJ be a v-small set, where v & p-unit in F.
Let QO'M be the image of & in Rﬁ, o Now oUM and Cn
are bases for‘the same filter on Rﬁ 80 Jznconverges
in R& to £(M). Now |w,~w,| £v for all w, W, EW 80 by
T-4, lw.(M)—wh(M)\igv(M). Therefore by 8-30
\w(M)=£(M)| £ v(M) for all weW and thus by 7T-4,
lw-£l € v for all weW. Since feF then by 8-30, o

converges in F to f.

Proposition 8-3%5

F is complete in the p-unit uniformity;‘
Proof

The result follows from 8-25, 8-27, 8-%4 and 5=29,.

Proposition 8-3%6

F is a C-ring.

Proof

If feF and £ # O then there exists Me 11 such that
£(M) # 0 so by 7-4 and 2-17(9,13), If|(M)>0. Now by
8-19 there exists a p-unit ucP such that u(M) = |£] (M)
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so by 2-18(5,6) and 2-17(25), (3)(m)< |2l (M). Thus
fflf%) and so (\ {I(v)|v a p-unit in P} = {0j. Therefore
by 8-22, 6-7 and 6-3, F is a C-ring.

Theorem 8-37

P is the completion of R.
Proof

By 8-36 and 6-7, F is Hausdorff in the p-unit
topology and by 8-22 F is a topological f-ring in the
p-unit topology. F is complete in its ring uniformity
by 8-35. By 8-25, R is dense in F and the topology
induced on ] is the p-unit topology by 8-27. By 7-6,
R is ,(-isomorphic to Q and R is homeomorphic to ﬁ
since both have the p-unit topology. Therefore by
6-16(3), P is the completion of R.

The following result answers the questions raised

after 6—16 .

Corollary 8-38

If R is C-ring with the p-unit topology then its
completion, RC y is8 &8 C-ring with the p-~unit topology.

Proof .
The result follows from 8-36 and 8-37.
As an application of this theorem consider

Archimedian f-rings.

Prbposition 8=39

A bounded convex Archimedian f-ring, R, is
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l-isomorphic to a sub-f-ring of C(7MN), the ring
of continuous real valued functions on the maximal

ideal space of R, and C(7) is the completion of R.

Proof |

By 7-1 end 2-26(1,2) for all McTM, Ry is a
sub-f-field of the reals. By 2-26(3), R is a C-ring
so by 7-18, P is {-isomorphic %o CG(M). Thus c(M)
is the completion of R by 8-37,

Corollary 8-40

A bounded Archimedian f-ring, R, is {-isomorphic
to a sub-f-ring of ¢(M).

Proof

If,,%,g-e'l'f and n(-%)é% for all positive integers,
n, then by 2-17(1), n(ad)<be and by 2-25(2), ad<0.
Thus by 2-17(3), -(ad)> 0 so by 3-4, -a>0. Then by
2-18(6) and 2-17(1), 23>0 so that by 2-17(3), £<0.
Therefore R is Archimedian.

Since R a sub-f-ring of R then by 8-39 and 4-6,
R is [ -isomorphic to a sub-f-ring of C(7]).
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