TOPOLOGICAL f-RINGS

A THESIS

PRESENTED TO THE

FACULTY OF GRADUATE STUDIES AND RESEARCH

OF

McGILL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

by

K.W. ARMSTRONG

APRIL 1965

The writer wishes to express appreciation to Dr. J. Lambek of the Department of Mathematics for his guidance and interest.

CHAPTER I

INTRODUCTION

In [1], Birkhoff and Pierce introduced the concept of f-ring. In [7], [9], and [10] it was shown that certain Archimedian f-rings can be represented as rings of continuous extended real valued functions on various topological spaces.

It was noted that the m-topology on rings of continuous real valued functions (see problem 2N of [6]) could be generalized to arbitrary f-rings provided they were convex in the sense of [5]. It was also shown that every f-ring can be embedded in a smallest convex f-ring. For this p-unit topology on a convex f-ring the ring becomes a topological ring. The concept of a C-ring was then introduced since these were the convex f-rings for which the p-unit topology is Hausdorff. By a slight generalization of the methods of topological ring theory it was established that the completion of a C-ring is a topological f-ring. The question then arose whether this completion is a C-ring and if its topology is the p-unit topology. It was then shown that a C-ring, R, could be represented as a subring of the ring of

all continuous "sections" from the maximal ideal space of R (with the Stone topology) into the "bundle" space of R and that this ring of continuous sections with the p-unit topology is the completion of R. This answered the above question in the affirmative. It was then proved, as an application, that a bounded Archimedian f-ring can be represented as a subring of the ring of all continuous real valued functions on its maximal l-ideal space, which is a special case of the results of [10]. By then using the methods of [5] it can be shown that an Archimedian f-ring with identity can be represented as a subring of the ring of continuous extended real valued functions on its maximal l-ideal space.

The material in Chapter II is from [1] and [8]. The material in Chapter V is from [3] and [4]. The concept of convex f-ring in Chapter III is from [5]. The material in Chapter VI from 6-19 to 6-29 is a slight modification of the construction of the reals in [4].

2.

CHAPTER II

PRELIMINARY RESULTS ON f-RINGS

Throughout by ring will be understood a commutative ring with identity, 1.

Definition 2-1

A partially ordered ring, $\langle R, \leq \rangle$, is a system such that R is a ring and \leq is a partial order on R such that for all a, beR

- 1) $a \leq b \Rightarrow a+c \leq b+c$
- 2) $a,b \ge 0 \implies ab \ge 0$

Definition 2-2

An l-ring is a partially ordered ring which is also a lattice. A totally ordered ring (t.o. ring) is a partially ordered ring such that \leq is a total order on R.

Definition 2-3

An f-ring, R, is an l-ring such that for all a,b,c ϵ R

 $a \wedge b = 0$ and $c \ge 0 \implies (ca) \wedge b = 0$

Proposition 2-4

Any too ring is an f-ring.

In a ring R for A,B \subseteq R define A+B = {a+b}a ϵ A,b ϵ B} and similarly define A-B and -A. In a partially ordered ring an element, r, is positive if $r \ge 0$ and negative if $r \le 0$.

Proposition 2-5

If R is a partially ordered ring and P the subset of positive elements then $P+P\subseteq P$, $P\cdot P\subseteq P$, and $P \land -P = \{0\}$. If R is a ring and Q a subset of R such that $Q+Q\subseteq Q$, $Q\cdot Q\subseteq Q$, and $Q \land -Q = \{0\}$ then the relation , \leq , defined by $a \leq b$ iff b-acQ makes $\langle R, \leq \rangle$ a partially ordered ring with Q = P. R is a t-o- ring iff $P \lor -P = R$.

Definition 2-6

A mapping from an ℓ -ring, R, into an ℓ -ring, S, is an ℓ -homomorphism if it is both a ring and lattice homomorphism. Similarly define ℓ -monomorphism, ℓ -epimorphism and ℓ -isomorphism.

Definition 2-7

In any *L*-ring define

1) $a^+ = a \vee 0$ 2) $a^- = (-a) \vee 0$ 3) $|a| = a \vee -a$.

Definition 2-8

In an L-ring, R, an L-ideal, I, is a ring ideal such that

beI and $|a| \leq |b| \Rightarrow a \in I$.

Proposition 2-9

If I is an ℓ -ideal of the ℓ -ring, R, let r_I be the residue class of R/I containing r. Then R/I is an ℓ -ring under the definitions $r_I + s_I = (r+s)_I$, $-(r_I) = (-r)_I$, $r_I s_I = (rs)_I$, $r_I \lor s_I = (r \lor s)_I$, and $r_I \land s_I = (r \land s)_I$. It follows that $|r_I| = |r|_I$, $(r_I)^+ = (r^+)_I$, and $(r_I)^- = (r^-)_I$. Write R_I for the ℓ -ring R/I. Also reI iff $r_I = 0_I$. The natural map, $r \rightarrow r_I$, is an ℓ -epimorphism of R onto R_I .

Definition 2-10

The cardinal product, $C(R_{\alpha})$, of the partially ordered rings $\{R_{\alpha} | \alpha \in A\}$ is the cartesian product $\prod R_{\alpha}$ with operations defined as follows; $(a+b)_{\alpha} = a_{\alpha}+b_{\alpha}$, $(ab)_{\alpha} = a_{\alpha}b_{\alpha}$, $(-a)_{\alpha} = -a_{\alpha}$, $(1)_{\alpha} = 1$, and $(0)_{\alpha} = 0$ and also the relation, \leq , defined by $a \leq b$ iff for all $\alpha \in A$, $a_{\alpha} \leq b_{\alpha}$.

Proposition 2-11

The cardinal product of f-rings, R_{α} , is an f-ring. Also $(a \lor b)_{\alpha} = a_{\alpha} \lor b_{\alpha}$, $(a \land b)_{\alpha} = a_{\alpha} \land b_{\alpha}$, $|a|_{\alpha} = |a_{\alpha}|$, $(a^{+})_{\alpha} = (a_{\alpha})^{+}$, and $(a^{-})_{\alpha} = (a_{\alpha})^{-}$.

Proposition 2-12

For any f-ring, R, there exists a set of \mathcal{L} -ideals, $\{I_{\alpha} | \alpha \in A\}$, such that $R_{I_{\alpha}}$ is a t-o- ring and the mapping, π , defined by $(\pi(r))_{\alpha} = r_{I_{\alpha}}$ is an \mathcal{L} -monomorphism of R into $C(R_{I_{\alpha}})$. The above proposition is the principal characterization of f-rings and is used to prove that many properties of too rings extend to f-rings.

Definition 2-13

A sub-l-ring of an l-ring is a set which is both a subring and a sublattice.

Proposition 2-14

A sub-l-ring of an f-ring is an f-ring.

Proposition 2-15

An f-field is totally ordered.

Proposition 2-16

Commutative f-rings with identity can be equationally defined in terms of a set, R, fixed elements $0, 1 \in \mathbb{R}$, the unary operation, -, and the binary operations +, \cdot, \wedge, \vee .

A regular element in a ring is one which is not a zero divisor. Thus all units are regular.

The following two propositions list the algebraic identities needed later.

Proposition 2-17

In any f-ring

- 1) $a \leq b$ and $c \geq 0 \implies ac \leq bc$
- 2) $a \leq b$ and $c \leq d \Rightarrow a + c \leq b + d$
- 3) $a \leq b \Rightarrow -b \leq -a$
- 4) $a \ge 0$ and $-a \ge 0 \implies a = 0$

5)
$$a \ge 0 \Rightarrow a(b \land c) = ab \land ac and a(b \lor c) = ab \lor ac$$

6) $a \le b \Leftrightarrow a \land b = a$
7) $a \ge 0 \Leftrightarrow a = a^{+}$
9) $|a| \ge 0$
10) $a^{2} \ge 0$
11) $a^{2} = |a|^{2}$
12) $|b-c| \le a \Leftrightarrow c-a \le b \le c+a$
13) $|a| = 0 \Leftrightarrow a = 0$
14) $|a+b| \le |a|+|b|$
15) $||a| = |b|| \le |a-b|$
16) $|ab| = |a||b|$
17) $|a^{+}-b^{+}| \le |a-b|$
18) $|a| \le |b| \Rightarrow a^{2} \le b^{2}$
19) $a^{+}a^{-} = 0$
20) $a^{+} \land a^{-} = 0$
21) $1^{+} = 1$ and $(-1)^{-} = 1$
22) $a \lor b = a+(b-a)^{+}$
23) $a \land b = -(-a \lor -b)$
24) c regular and $c \ge 0 \Rightarrow c > 0$
25) c regular, $c \ge 0$ and $a \le b \Rightarrow ac \le bc$
26) $a, b \ge 1 \Rightarrow a^{2} = a^{-}a^{-}$
28) $a \ge 1 \Rightarrow a$ regular
29) $1 > 0$
30) $|aa| = |a|$

7.

A p-unit in a partially ordered ring is a positive unit.

Proposition 2-18

In any f-ring

- 1) v a unit $\Rightarrow \left|\frac{1}{v}\right| = \frac{1}{|v|}$
- 2) 2 a unit and $a < b \implies a < \frac{a+b}{2} < b$
- 3) u, v p-units and $u \leq v \Rightarrow 0 < \frac{1}{v} \leq \frac{1}{u}$
- 4) u,v p-units → u ∧v a p-unit
- 5) u,v p-units uv a p-unit
- 6) u a p-unit $\implies \frac{1}{u}$ a p-unit
- 7) 2 a unit $\Rightarrow a \lor b = \frac{1}{2} (a+b+|a-b|)$

In an *l*-ring, R,

1) If $A \subseteq R$ then $\langle A \rangle$ is the smallest \mathcal{L} -ideal containing A, in particular, if as R then $\langle a \rangle$ is the smallest \mathcal{L} -ideal containing a.

2) If A,B l-ideals of R then $\langle AB \rangle$ is the smallest l-ideal containing the ideal AB.

3) For a set of l-ideals {A₁|iεI} of R, $\sum_{i\in I} A_i$ is the smallest l-ideal containing every A_i . For two ideals A,B it is written as A+B.

4) A prime *L*-ideal is an *L*-ideal which is prime as a ring ideal.

Proposition 2-20

1) If R is a sub-L-ring of the L-ring, S, and

I an \mathcal{L} -ideal in S then IAR is an \mathcal{L} -ideal in R.

2) For l-ideals $\{A_i\}$ is I an l-ring, R, $\sum A_i$ is the ordinary sum as ring ideals in R.

3) An l-ideal P is prime iff for any two l-ideals I and J,

 $I \notin P$ and $J \notin P \implies \langle IJ \rangle \notin P$.

4) For every proper \mathcal{L} -ideal I there is a maximal \mathcal{L} -ideal M such that $I \subseteq M$. Also R_M is a totally ordered ring.

5) If R is an f-ring and a, beR then

 $\langle \langle a \rangle \langle b \rangle \rangle = \langle ab \rangle$.

6) A maximal \mathcal{L} -ideal is prime.

Definition 2-21

The J-radical of an \mathcal{L} -ring R, J(R), is the intersection of all the maximal \mathcal{L} -ideals in R.

Definition 2-22

In a partially ordered set, P, define for a, bEP:

- 1) $(a,b) = \{x \in P | a < x < b\}$
- 2) $[a,b] = \{x \in P \mid a \leq x \leq b\}$
- 3) $(a,\infty) = \{x \in P \mid a < x\}$
- 4) $(-\infty, a) = \{x \in P | x < a\}$
- 5) $[a,\infty) = \{x \in \mathbb{P} | a \leq x\}$
- 6) $(-\infty, a] = \{x \in P | x \leq a\}$

The intervals of types 1), 3), and 4) are called open intervals and the intervals of types 2), 5), and 6) are called closed intervals. Proposition 2-23

If R is an \mathcal{L} -ring and $a \ge 0$ then $x \in [-a, a] \iff |x| \le a$.

Proposition 2-24

If I, J are l-ideals of an f-ring, R, and I \leq J then the mapping $\pi: \mathbb{R}_{I} \rightarrow \mathbb{R}_{J}$ defined by $\pi(r_{I}) = r_{J}$ is an l-epimorphism.

Definition 2-25

An f-ring, R, is

1) bounded if for all $n \in \mathbb{R}$ there exists a positive integer, n, such that $|a| \leq nl$,

2) Archimedian if $r, t \in \mathbb{R}$ and for all positive integers, n, $nr \leq t$ then $r \leq 0$.

Proposition 2-26

1) The \mathcal{L} -homorphic image of a bounded f-ring is a bounded f-ring.

2) A bounded totally ordered field is \mathcal{L} -isomorphic to a sub-f-field of the reals.

3) If R is an Archimedian f-ring then $J(R) = \{0\}$.

CHAPTER III

THE CONVEX CLOSURE OF AN 1-RING

Definition 3-1

A convex f-ring is an f-ring R such that

reR and $r \ge 1 \Rightarrow r$ a unit

Proposition 3-2

In a convex f-ring all maximal ideals are l-ideals. Proof

Let M be a maximal ideal in the convex f-ring R. Let a,bcR be such that $|a| \leq |b|$ and $a \notin M$. Since M maximal there exists rcR and mcM such that ar+m = 1 so 1-arcM. Thus $(1-ar)(1+ar) = 1-a^{2}r^{2}cM$ so there exists ncM such that $n+a^{2}r^{2} = 1$. By 2-17(18), $a^{2} \leq b^{2}$ and so by 2-17(10,1,2), $1 = n+a^{2}r^{2} \leq n+b^{2}r^{2}$. Since R convex, $n+b^{2}r^{2}$ is a unit and $n+b^{2}r^{2} \notin M$ thus $b \notin M$ since otherwise $n+b^{2}r^{2}cM$. Thus if M a maximal ideal, $b \in M$, and $|a| \leq |b|$ then $a \in M$. Therefore by 2-8, M is an 1-ideal.

Corollary 3-3

In a convex f-ring all maximal 1-ideals are also maximal ideals.

Proof

Let M be a maximal 1-ideal. Since M a proper ideal it is contained in a maximal ideal ,N. By 3-2, N is an 1-ideal so M = N. Lemma 3-4 In an f-ring

 $b \ge 0$, b regular, and $be \ge 0 \Rightarrow e \ge 0$ <u>Proof</u>

By 2-17(27), $b(e^+-e^-) = be \ge 0$ and so by 2-17(2), $be^+ \ge be^-$ and $be^+ \land be^- = be^-$ by 2-17(6). Now $be^+ \land be^- = b(e^+ \land e^-) = b(0) = 0$ by 2-17(5,20). Thus $be^- = 0$ and since b regular then $e^- = 0$. By 2-17(27), $e = e^+$ and by 2-17(8), $e \ge 0$.

If R is a ring let Qc(R) be its classical ring of quotients. Let $\begin{bmatrix} B \\ B \end{bmatrix}$ be the equivalence class of Qc(R)containing the fraction $\frac{B}{B}$.

Lemma 3-5

If R is an f-ring the set $P = \{ \begin{bmatrix} a \\ b \end{bmatrix} \in Qc(R) | ab \ge 0 \}$ is well defined.

Proof

Assume $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} c \\ d \end{bmatrix}$ and $ab \ge 0$. Then ad = cb and so $ad^2b = cb^2d$. Thus by 2-17(10,1), $cdb^2 \ge 0$. Now b regular so that b^2 is also and $b^2 \ge 0$. Therefore by 3-4, $cd \ge 0$. Lemma 3-6

The set P satisfies the conditions of 2-5 and so defines a partial order of Qc(R), R an f-ring, which makes Qc(R) a partially ordered ring.

Proof

Assume $\begin{bmatrix} a \\ b \end{bmatrix}$, $\begin{bmatrix} c \\ d \end{bmatrix}$ εP so that $ab \ge 0$ and $cd \ge 0$. Then by 2-17(1), $acbd \ge 0$ and therefore $\begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} ac \\ bd \end{bmatrix} \varepsilon P$, that is $P \cdot P \le P$. By 2-17(10,1,2), $0 \le abd^2 + cdb^2 = (ad+cb)bd$ so that $\begin{bmatrix} a \\ b \end{bmatrix} + \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} ad+cb \\ bd \end{bmatrix} \in P$, that is $P+P \subseteq P$. Assume $\begin{bmatrix} a \\ b \end{bmatrix} \in P \land -P$ then there exists $\begin{bmatrix} c \\ d \end{bmatrix} \in P$ such that $\begin{bmatrix} a \\ b \end{bmatrix} = -\begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} -c \\ -d \end{bmatrix}$. Thus $cd \ge 0$ and $-cd \ge 0$ so by 2-17(4), cd = 0 but d is regular so c = 0. Therefore $\begin{bmatrix} a \\ b \end{bmatrix} = 0$ and $P \land -P = \{0\}$.

Lemma 3-7

If $\begin{bmatrix}g\\h\end{bmatrix}$, $\begin{bmatrix}a\\b\end{bmatrix}$ $\in Qc(R)$ and $h,b \ge 0$ then $\begin{bmatrix}g\\h\end{bmatrix} \ge \begin{bmatrix}a\\g\end{bmatrix}$ iff $gb \ge ah$.

Proof

If $gb \ge ah$ then by 2-17(1,2), $(gb-ah)hb \ge 0$ Therefore $\begin{bmatrix} g \\ h \end{bmatrix} - \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} gb-ah \\ hb \end{bmatrix} \in P$ by 3-5 and by 2-5, $\begin{bmatrix} g \\ h \end{bmatrix} \ge \begin{bmatrix} a \\ b \end{bmatrix} \cdot$

If $\begin{bmatrix} g \\ h \end{bmatrix} \ge \begin{bmatrix} a \\ b \end{bmatrix}$ then $\begin{bmatrix} g \\ h \end{bmatrix} - \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} gb-ah \\ hb \end{bmatrix} \varepsilon P$ by 2-5 and by 3-5, (gb-ah)hb ≥ 0 . Since h and b are regular so is hb and hb ≥ 0 by 2-17(1). Therefore by 3-4, gb-ah ≥ 0 so by 2-17(2), gb \ge ah.

<u>Lemma 3-8</u>

For any $\begin{bmatrix} a \\ b \end{bmatrix}$ eQc(R) there exists c,deR such that $d \ge 0$ and $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} c \\ d \end{bmatrix}$.

<u>Proof</u>

If b regular then b^2 is regular and $b^2 \ge 0$ by 2-17(10). Now $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ab \\ b^2 \end{bmatrix}$.

Lemma 3-9

If b,d ≥ 0 then $\begin{bmatrix} a \\ b \end{bmatrix} \vee \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} ad \lor cb \\ bd \end{bmatrix}$ and $\begin{bmatrix} a \\ b \end{bmatrix} \wedge \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} ad \land cb \\ bd \end{bmatrix}$.

Proof

Since b and d regular so bd is regular and $\begin{bmatrix} \underline{ad \lor cb} \\ \underline{bd} \end{bmatrix} \in Qc(R). \quad By \ 2-17(5), \ b(ad \lor cb) = abd \lor cb^2 \ge abd$ so that by $3-7[\underline{ad \lor cb} \\ \underline{bd} \end{bmatrix} \ge \begin{bmatrix} a \\ \overline{b} \end{bmatrix}$. Similarly $\begin{bmatrix} \underline{ad \lor cb} \\ \underline{bd} \end{bmatrix} \ge \begin{bmatrix} c \\ \overline{d} \end{bmatrix}$. If $\begin{bmatrix} g \\ h \end{bmatrix} \ge \begin{bmatrix} a \\ \overline{b} \end{bmatrix}$, $\begin{bmatrix} c \\ \overline{d} \end{bmatrix}$ then by 3-8 it can be assumed h \ge 0. By 3-7, gb \ge ah and gd \ge ch so by \ 2-17(1,5), g bd $\ge ahd \lor chb = h(ad \lor cb)$. Thus by 3-7, $\begin{bmatrix} g \\ h \end{bmatrix} \ge \begin{bmatrix} \underline{ad \lor cb} \\ \underline{bd} \end{bmatrix}$ and therefore $\begin{bmatrix} a \\ b \end{bmatrix} \lor \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} \underline{ad \lor cb} \\ \underline{bd} \end{bmatrix}$ and similarly $\begin{bmatrix} a \\ b \end{bmatrix} \land \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} \underline{ad \land cb} \\ \underline{bd} \end{bmatrix}$ Theorem 3-10

If R an f-ring then Qc(R) is an f-ring containing a sub-f-ring T l-isomorphic to R.

Proof

Qc(R) is a partially ordered ring by 3-6. If $\begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} c \\ d \end{bmatrix} \in Qc(R)$ then by 3-8 it may be assumed b,d ≥ 0 so by 3-9, $\begin{bmatrix} a \\ b \end{bmatrix} \wedge \begin{bmatrix} c \\ d \end{bmatrix}$ and $\begin{bmatrix} a \\ b \end{bmatrix} \vee \begin{bmatrix} c \\ d \end{bmatrix}$ exist. Therefore Qc(R) is an 1-ring.

If $\begin{bmatrix} g \\ h \end{bmatrix} \ge 0$ and by 3-8 it is assumed $h \ge 0$ then by 3-5, $gh \ge 0$ and by 3-4, $g \ge 0$. If $\begin{bmatrix} a \\ b \end{bmatrix} \wedge \begin{bmatrix} c \\ d \end{bmatrix} = 0$ and by 3-8 it is assumed $b, d \ge 0$ then by 3-9 ad $\wedge cb = 0$ and by 2-3, $gad \wedge cbh = 0$. By 2-17(1), $hb \ge 0$ so by 3-9, $\begin{bmatrix} g \\ h \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \wedge \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} ga \\ hb \end{bmatrix} \wedge \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} ga \\ hb \end{bmatrix} \wedge \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} gad \wedge cbh \\ hbd \end{bmatrix} = 0$. Therefore by 2-3 Qc(R) is an f-ring.

Consider the subset $T = \left\{ \begin{bmatrix} a \\ 1 \end{bmatrix} \middle| a \in R \right\}$ of Qc(R). As is well known T is isomorphic to R as a ring under the mapping: $a \rightarrow \begin{bmatrix} a \\ 1 \end{bmatrix}$. By 2-17(10), $1 \ge 0$ so by 3-9, $\begin{bmatrix} a \\ 1 \end{bmatrix} \lor \begin{bmatrix} b \\ 1 \end{bmatrix} = \begin{bmatrix} a \lor b \\ 1 \end{bmatrix}$ and similarly $\begin{bmatrix} a \\ 1 \end{bmatrix} \land \begin{bmatrix} b \\ 1 \end{bmatrix} = \begin{bmatrix} a \land b \\ 1 \end{bmatrix}$. Thus T is 1-isomorphic to R.

Proposition 3-11

The subset $\widehat{\mathbb{R}} = \{ \begin{bmatrix} a \\ b \end{bmatrix} | b \ge l \}$ of Qc(R) is a convex f-ring containing a sub-f-ring ,T, l-isomorphic to R. <u>Proof</u>

By 2-17(26) if b,d >1 then bd >1 so \widehat{R} is a subring of Qc(R). Since 1>0 then bd>0 and by 3-9, \widehat{R} is a sub-1-ring of Qc(R). By 2-14, \widehat{R} is an f-ring. Now the set T of 3-10 is contained in \widehat{R} and it 1-isomorphic to R.

If $\begin{bmatrix} a \\ b \end{bmatrix} \in \widehat{R}$ and $\begin{bmatrix} a \\ b \end{bmatrix} \ge 1$ then $b \ge 1$ and by 3-7, $a \ge b$ so $a \ge 1$ and by 2-17(28), a is regular. Thus $\begin{bmatrix} b \\ a \end{bmatrix} \in \widehat{R}$ so \widehat{R} convex.

Lemma 3-12

If S is a convex f-ring containing a sub-f-ring T l-isomorphic to an f-ring R then S contains a sub-fring l-isomorphic to \widehat{R} .

Proof

Let π be the 1-isomorphism of R onto T so if beR and b \geqslant 1 then $\pi b \geqslant$ 1. If c,deT and d \geqslant 1 then $\frac{c}{d}$ eS since S convex. Define a map η of \widehat{R} into S by $\eta \begin{bmatrix} a \\ b \end{bmatrix} = \frac{\pi a}{\pi b}$. It is easily verified by the techniques of 3-7, 3-8, and 3-9 that η is an 1-monomorphism.

Definition 3-13

The convex closure of an f-ring R is the \widehat{R} of 3-ll. As usual R can be considered as a sub-f-ring of \widehat{R} and for any element ge \widehat{R} there exists a, beR such that $b \ge 1$ and $g = \frac{a}{b}$. Also by 2-17(28) if a, b \in R and $b \ge 1$ then $\frac{a}{b} \in \widehat{R}$.

The relation between the 1-ideals of R and of $\widehat{\mathbf{R}}$. is now investigated.

<u>Lemma 3-14</u>

If R is an f-ring and I an l-ideal in R then $\widehat{I} = \left\{ \frac{a}{5} \in \widehat{R} \mid a \in I \right\}$ is an l-ideal in R.

<u>Proof</u>

If $\frac{a}{b}$, $\frac{c}{d} \in \widehat{I}$ then $\frac{a+c}{b+d} = \frac{ad+cb}{bd}$ and $ad+cb\in I$ so $\frac{a+c}{b+d}\in \widehat{I}$. Similarly if $\frac{a}{b}\in \widehat{I}$ and $\frac{c}{d}\in \widehat{R}$ then $\frac{a}{b} \stackrel{c}{d}\in \widehat{I}$. Therefore \widehat{I} is an ideal in \widehat{R} .

If $\frac{a}{b} \in \widehat{\Gamma}$ and $|\frac{c}{d}| \leq |\frac{a}{b}|$ then by 2-17(16) and 2-18(1), $|\frac{|c|}{|d|} \leq |\frac{|a|}{|b|}$. Now by 2-17(9,1,16) $|bc| = |b||c| \leq |a||d| = |ad|$ and ad ϵI so by 2-8 bc ϵI . Since $b \geq 1$ then $b \geq 0$ and by 2-17(7) $|b| = b \geq 1$. Now by 2-17(9,1,16), $|bc| = |b||c| \geq |c|$ so by 2-8, $c\epsilon I$ and $\frac{c}{d} \in \widehat{\Gamma}$. Thus \widehat{T} is an 1-ideal. Lemma 3-15

If R is an f-ring, I an 1-ideal in R, and J an 1-ideal in \widehat{R} then $\widehat{T} \land R = I$ and $\widehat{J \land R} = J$. Proof

Since $\frac{a}{1} = a$, $I \subseteq \widehat{I}$ and so $I \subseteq \widehat{I} \land R$. If $c \in \widehat{I} \land R$ then there exists $\frac{a}{b} \in \widehat{I}$ such that $c = \frac{a}{b}$ and $a \in I$. Thus a = bcso bc i and $b \ge 1$. As in the proof of 3-14, c i so $\widehat{I} \land R \subseteq I$. Thus $\widehat{I} \land R = I$.

By 2-20(1), $J \cap R$ is an 1-ideal in R so that $\widehat{J \cap R}$ is an 1-ideal of \widehat{R} by 3-14. If $\frac{a}{5} \epsilon \widehat{J \cap R}$ then $a \epsilon J \cap R$ by 3-14 so $a \epsilon J$. Now $\frac{1}{5} \epsilon \widehat{R}$ so $(\frac{1}{5})a = \frac{a}{5} \epsilon J$. Thus $\widehat{J \cap R} \subseteq J$. If $a_{\overline{b}} \in J$ then $b(\frac{a}{\overline{b}}) = a \in J$ so $a \in J \cap \mathbb{R}$ and by 3-14, $\frac{a}{\overline{b}} \in J \cap \mathbb{R}$. Thus $J \subseteq J \cap \mathbb{R}$. Therefore $J = J \cap \mathbb{R}$.

If R an f-ring and ccR let $\langle c \rangle_{\widehat{R}}$ be the l-ideal generated by c in \widehat{R} and let $\langle c \rangle_{\widehat{R}}$ be the l-ideal generated by c in R (see 2-19(1)).

<u>Lemma 3-16</u>

If R an f-ring and cER then $\langle c \rangle_{\widehat{R}} \wedge R = \langle c \rangle_{\widehat{R}}$ <u>Proof</u>

By 2-20(1), $\langle c \rangle_{\widehat{R}} \cap R$ is an 1-ideal in R containing c. Now by 2-19(1), $\langle c \rangle_{\widehat{R}} \subseteq \langle c \rangle_{\widehat{R}} \cap R$. Since $\widehat{\langle c \rangle}_{\widehat{R}}$ is an 1-ideal in \widehat{R} by 3-14 then by 2-19(1), $\langle c \rangle_{\widehat{R}} \subseteq \widehat{\langle c \rangle}_{\widehat{R}}$ Therefore $\langle c \rangle_{\widehat{R}} \cap R \subseteq \widehat{\langle c \rangle}_{\widehat{R}} \cap R$ and by 3-15, $\langle c \rangle_{\widehat{R}}$ $= \widehat{\langle c \rangle}_{\widehat{R}} \cap R$ so $\langle c \rangle_{\widehat{R}} \supseteq \langle c \rangle_{\widehat{R}} \cap R$. Therefore $\langle c \rangle_{\widehat{R}}$ $= \langle c \rangle_{\widehat{R}} \cap R$. Lemma 3-17

If M is a maximal 1-ideal in R then \widehat{M} is a maximal 1-ideal in \widehat{R} .

<u>Proof</u>

If $\frac{a}{b} \notin \widehat{M}$ then $a \notin M$ by 3-14 and $M + \langle a \rangle_{\widehat{R}} = \mathbb{R}$ since M maximal 1-ideal in R. By 2-20(2) there exists meM and $x \in \langle a \rangle_{\widehat{R}}$ such that m+x = 1. Since $b(\frac{a}{5}) = a$ then $\langle a \rangle_{\widehat{R}} \subseteq \langle \frac{a}{5} \rangle_{\widehat{R}}$ by 2-19(1). By 3-15, $M \subseteq \widehat{M}$ and by 3-16 $\langle a \rangle_{\widehat{R}} \subseteq \langle a \rangle_{\widehat{R}}$ so $1 = (m+x) \in \widehat{M} + \langle \frac{a}{5} \rangle_{\widehat{R}}$. Thus \widehat{M} is a maximal 1-ideal in \widehat{R} .

<u>Lemma 3-18</u>

If N a maximal 1-ideal in $\widehat{\mathbb{R}}$ then N \bigwedge R is a maximal 1-ideal in R.

<u>Proof</u>

By 2-20(1), N \land R is an 1-ideal in R. If ccR and $c \not \in N \land R$ then $c \not \in N$ so that $N + \langle c \rangle_{\widehat{R}} = \widehat{R}$. Thus there exists $\frac{a}{b} \in N$ and $\frac{e}{d} \in \langle c \rangle_{\widehat{R}}$ such that $\frac{a}{b} + \frac{e}{d} = 1$. Since $b(\frac{a}{b}) = a$ and $d(\frac{e}{d}) = e$ then $a \in N \land R$ and $e \in \langle c \rangle_{\widehat{R}} \land R = \langle c \rangle_{\widehat{R}}$ by 3-16. Now bd = $(ad + eb) \in (N \land R) + \langle c \rangle_{\widehat{R}}$ and bd $\geqslant 1$ by 2-17(26). By 2-8 and 2-17(7), $l \in (N \land R) + \langle c \rangle_{\widehat{R}}$ so $R = (N \land R) + \langle c \rangle_{\widehat{R}}$. Therefore $N \land R$ is a maximal 1-ideal in R. Proposition 3-19

If \mathcal{M} the set of maximal 1-ideals of the f-ring R and \mathcal{N} the set of maximal 1-ideals of \widehat{R} and π is the mapping of \mathcal{M} into \mathcal{N} defined by $\pi(\mathcal{M}) = \mathcal{M}$ then π is a one-to-one and onto mapping.

Proof

By 3-17 if M a maximal 1-ideal in R then \widehat{M} is a maximal 1-ideal in \widehat{R} so that π is a mapping of \mathcal{M} into \mathcal{M} . Define a mapping η of \mathcal{N} into \mathcal{M} by $\eta(N) = N \land R$. By 3-18, $N \land R$ is a maximal 1-ideal in R so η is a mapping of \mathcal{N} into \mathcal{M} . Now $\eta \pi(M) = \eta(\widehat{M}) = \widehat{M} \land R = M$ by 3-15 so $\eta \pi$ is the identity map on \mathcal{M} . Also $\pi \eta(N) = \pi(N \land R) = \widehat{N \land R} = N$ by 3-15 so $\pi \eta$ is the identity map on \mathcal{N} . Therefore π is a one-to-one mapping of \mathcal{M} onto \mathcal{N} .

<u>Lemma 3-20</u>

For any f-ring R, $J(\widehat{R}) = \widehat{J(R)}$.

<u>Proof</u>

By 3-19 for any NeNthere exists MeMsuch that $N = \widehat{M}$ so $J(\widehat{R}) = \bigcap \{N \in \mathcal{N}\} = \bigcap \{\widehat{M} \mid M \in \mathcal{M}\}.$ Now 18.

 $J(\widehat{R}) \cap R = \bigcap \{\widehat{M} \cap R | M \in \mathcal{M}\} = \bigcap \{M | M \in \mathcal{M}\} = J(R) \text{ by } 3-15.$ so $\widehat{J(R)} = \widehat{J(\widehat{R}) \cap R} = J(\widehat{R}) \text{ by } 3-15.$

<u>Lemma 3-21</u>

For any f-ring R, $J(R) = \{0\}$ iff $J(\widehat{R}) = \{0\}$. <u>Proof</u>

If $J(\widehat{R}) = \{0\}$ then $J(R) \subseteq J(\widehat{R})$ so $J(R) = \{0\}$. If $J(R) = \{0\}$ then $\{0\} = \widehat{J(R)} = J(\widehat{R})$.

CHAPTER IV

MAXIMAL 1-IDEAL SPACE OF AN 1-RING

Throughout let \mathcal{M} be the set of all maximal l-ideals of an f-ring R.

Definition 4-1

For any set $A \subseteq \mathbb{R}$, let $S(A) = \{M \in \mathcal{M} | A \neq M\}$. In particular if as then $S(a) = \{M \in \mathcal{M} | a \notin M\}$.

Proposition 4-2

The collection of sets, $\{S(A) | A \subseteq R\}$, form a topology on \mathcal{M} . A basis for this topology is given by the sets $\{S(r) | r \in R\}$.

Proof

If $\langle A \rangle$ is the 1-ideal generated by $A \subseteq \mathbb{R}$ (see 2-19(1)) then S($\langle A \rangle$) = S(A) since $A \notin M$ iff $\langle A \rangle \notin M$ for any Me \mathcal{M}_{\bullet} . Now

$$\begin{split} & \operatorname{Me} \bigcup \{ S(A_{i}) | i \in I \} \Leftrightarrow \exists i \in I, A_{i} \notin M \Leftrightarrow \\ & \operatorname{Me} S(\Sigma \{ \langle A_{i} \rangle | i \in I \}). \quad \operatorname{Therefore} \bigcup \{ S(A_{i}) | i \in I \} \\ & = S(\Sigma \{ \langle A_{i} \rangle | i \in I \}). \end{split}$$

By 2-20(6,3), Mc S(A) \land S(B) $\Leftrightarrow \langle A \rangle \notin M$ and $\langle B \rangle \notin M \Leftrightarrow \langle \langle A \rangle \langle B \rangle \rangle \notin M \Leftrightarrow Mc S(\langle \langle A \rangle \langle B \rangle \rangle) =$ S($\langle A \rangle \langle B \rangle$). Therefore S(A) \land S(B) = S($\langle A \rangle \langle B \rangle$). Now S(1) = \mathcal{M} and S(0) = \emptyset so the sets {S(A)|A \subseteq R}

for a topology on \mathcal{M} .

Now $S(A) = S(\langle A \rangle) = S(\sum \{\langle a \rangle | a \in A\})$

= \bigcup {S(a) | acA} so the sets {S(a) | acR} form a basis for this topology.

<u>Lemma 4-3</u>

The space M is compact.

<u>Proof</u>

Suppose $\{S(A_i) | i \in I\}$ is an open cover of \mathcal{M} then $\mathcal{M} = \bigcup \{S(A_i) | i \in I\} = S(\sum \{\langle A_i \rangle | i \in I\})$ as in proof of 4-2 so for all ME \mathcal{M} , $\sum \{\langle A_i \rangle | i \in I\} \notin M$. Therefore by 2-20(4), $R = \sum \{\langle A_i \rangle | i \in I\}$, and so $l \in \sum \{\langle A_i \rangle | i \in I\}$. By 2-20(2) there exists a finite subset F of I such that $l \in \sum \{\langle A_i \rangle | i \in F\}$. Thus for all ME \mathcal{M} , $\sum \{\langle A_i \rangle | i \in F\} \notin M$ so that $\mathcal{M} = S(\sum \{\langle A_i \rangle | i \in F\}) = \bigcup \{S(A_i) | i \in F\}$. Therefore $\{S(A_i) | i \in F\}$ is a finite subcover. Thus \mathcal{M} is compact. Lemma 4-4

The space M is Hausdorff.

Proof

Consider any M, Na Msuch that $M \neq N$. Then M+N = Rso by 2-20(2) there exists reM and seN such that r+s = 1. Let a = r-s. Now a = r-s = r-(1-r) = r+r-1 so by 2-6, $a_M = (r+r-1)_M = r_M+r_M-1_M = 0_M+0_M-1_M = -1_M$. Then by 2-6 and 2-17(21), $(a^-)_M = a_M^- = (-1_M)^- = 1_M \neq 0_M$ so that $a^- \not M$ or McS(a^-). Similarly NcS(a^+). Now as in proof of 4-2 and by 2-20(5), $S(a^+) \land S(a^-) = S(\langle a^+ \rangle \langle a^- \rangle \rangle)$ $= S(\langle a^+a^- \rangle) = S(a^+a^-) = S(0) = \emptyset$ by 2-17(19). Thus MES(a⁺) and NES(a⁻) and S(a⁻) \cap S(a⁺) = \emptyset so \mathcal{M} is Hausdorff.

Theorem 4-5

The maximal 1-ideal space M of any f-ring is compact and Hausdorff.

Theorem 4-6

If \mathcal{M} is the maximal 1-ideal space of an f-ring R and \mathcal{N} the maximal 1-ideal space of \widehat{R} then \mathcal{M} is homeomorphic to \mathcal{N} .

Proof

If $A \subseteq R$ let $S_m(A) = \{M \in M | A \notin M\}$ and if $B \subseteq \widehat{R}$ let $S_n(B) = \{N \in N | B \notin N\}$.

Consider the mapping π of \mathcal{M} into \mathcal{N} defined by $\pi(M) = \widehat{M}$. By 3-19, π is a one-to-one onto mapping. Let I be any 1-ideal of R. If $I \subseteq M \in \mathcal{M}$ then $\widehat{I} \subseteq \widehat{M}$ and if $\widehat{I} \subseteq \widehat{M}$ then $I = \widehat{T} \land R \subseteq \widehat{M} \land R = M$ by 3-15. Thus $I \notin M \in \mathcal{M}$ iff $\widehat{I} \notin \widehat{M}$. Now if $M \in S_{\mathcal{M}}(I)$ then $\pi(M) = \widehat{M} \in S_{\mathcal{N}}(\widehat{I})$ so $\pi(S_{\mathcal{M}}(I)) \subseteq S_{\mathcal{N}}(\widehat{I})$. If $N \in S_{\mathcal{N}}(\widehat{I})$ then by 3-19 there exists $M \in \mathcal{M}$ such that $N = \widehat{M}$ and so $\widehat{T} \notin \widehat{M}$. Then $I \notin M$ so $M \in S_{\mathcal{M}}(I)$ and $\pi M = \widehat{M} = N \in \pi(S_{\mathcal{M}}(I))$. Thus $S_{\mathcal{N}}(\widehat{I}) \subseteq \pi(S_{\mathcal{M}}(I))$ so $\pi(S_{\mathcal{M}}(I)) = S_{\mathcal{N}}(\widehat{I})$.

Now all open sets of \mathcal{M} are of the form $S_{\mathcal{M}}(A)$ for some $A \subseteq \mathbb{R}$ and $S_{\mathcal{M}}(A) = S_{\mathcal{M}}(\langle A \rangle)$ as in the proof of 4-2. Thus all open sets of \mathcal{M} are of the form $S_{\mathcal{M}}(I)$ for some l-ideal I of R. Therefore by above π is a one-to-one onto open mapping of a Hausdorff space onto a compact space and so π is a homeomorphism.

CHAPTER V

PRELIMINARY RESULTS FROM THE THEORY OF TOPOLOGICAL RINGS

Definition 5-1

A family of subsets, \mathcal{B} , of a topological space, S, is a local base at pcS if every Bc \mathcal{B} is a neighborhood of p and if V a neighborhood of p then there exists We \mathcal{B} such that W \subseteq V.

Definition 5-2

In a topological space, S, a point x ϵ S is an adherence point of the subset A \subseteq S if all neighborhoods of x intersect A in a nonnull set.

Definition 5-3

A filter, \mathcal{F} , on a set, S, is a family of subsets of S such that

- 1) Fe \mathcal{F} and FSISS \Rightarrow Xe \mathcal{F}
- 2) F1, F2 & F1 A F2 & F
- 3) SE 7
- 4) Ø & #

Definition 5-4

If \mathcal{B} is a family of subsets of S such that the set $\mathcal{H} = \{X \leq S\} \exists B \in \mathcal{B}, B \leq X\}$ is a filter on S then \mathcal{B} is a filter base on S of \mathcal{H} and \mathcal{H} is the filter generated by \mathcal{B} .

Definition 5-5

If \mathscr{B} a filter base on S then a point pcS is a limit point of \mathscr{B} if for every neighborhood V of p there exists Bc \mathscr{B} such that B \subseteq V. A filter base is convergent if it has a limit point.

Definition 5-6

If \mathcal{B} a filter base on S then a point pES is an adherence point of \mathcal{B} if p adherent to every BE \mathcal{B} . Proposition 5-7

If f and g are two continuous mappings from a topological space, S, into a Hausdorff topological space, T, A \subseteq S is dense in S and f|A = g|A then f = g.

Proposition 5-8

If $A_1 \subseteq S_1$ dense in the topological space, S_1 , for each i then $A_1 X A_2 X \dots X A_n$ is dense in $S_1 X S_2 X \dots X S_n$. Proposition 5-9

A set of subsets ${\mathcal B}$ of a set S is a filter base on S iff

- 1) $B_1, B_2 \in \mathcal{B} \Rightarrow \exists C \in \mathcal{B}, C \subseteq B_1 \cap B_2$
- 2) $B \neq \emptyset$ and $\emptyset \notin B$.

Proposition 5-10

If s is a limit point of a filter, \mathcal{H} , in a topological space then s is an adherence point of \mathcal{H} . <u>Proposition 5-11</u>

If S and T are topological spaces, f and g mappings

from S into T, W open in S, g(x) = f(x) for all xeW, and g continuous at seW, then f is continuous at s. Proposition 5-12

If S, T and V are topological spaces and the mapping, f, of SXT into V is continuous then all of the maps $g_s: T \rightarrow V$ and $h_t: S \rightarrow V$ defined by $g_s(t) = f(s,t)$ and $h_t(s) = f(s,t)$ are continuous.

Definition 5-13

A uniform structure on a set S is a family of subsets, U, of SXS such that

- 1) U is a filter on SXS
- 2) UE $\mathcal{U} \Rightarrow \Delta \subseteq \mathcal{U}$ where $\Delta = \{\langle x, x \rangle | x \in S\}$
- 3) $V \in \mathcal{U} \Rightarrow V^{-1} \in \mathcal{U}$ where $V^{-1} = \{\langle x, y \rangle | \langle y, x \rangle \in V\}$
- 4) $V \in \mathcal{U} \Rightarrow \exists W \in \mathcal{U}, W \circ W \subseteq V$ where

 $A \circ B = \{\langle x, z \rangle | \exists y \in S, \langle x, y \rangle \in A \text{ and } \langle y, z \rangle \in B\}.$

A uniform space, $\langle S, U \rangle$, is a set S with uniform structure, U, on S. The sets of U are called entourages. <u>Definition 5-14</u>

A base, \mathcal{B} , for a uniform structure, \mathcal{U} , on S is a family of subsets, \mathcal{B} , of SXS such that $\mathcal{B} \subseteq \mathcal{U}$ and

 $U\varepsilon \mathcal{U} \Rightarrow \exists B\varepsilon \mathcal{B}, B \subseteq U.$

Definition 5-15

A mapping, f, from a uniform space, $\langle S, U \rangle$, into a uniform space, $\langle T, W \rangle$, is uniformly continuous if for all We W there exists UE U such that

 $\langle x,y \rangle \in U \implies \langle f(x),f(y) \rangle \in W.$

Definition 5-16

A uniform space, S, is (uniformly) isomorphic to a uniform space, T, if there exists a one-to-one onto mapping, f, of S onto T such that f and f^{-1} are both uniformly continuous.

Definition 5-17

If S_1 and S_2 are uniform spaces then the uniform structure on $S = S_1 X S_2$ is the smallest such that each of the maps $p_1: S \longrightarrow S_1$ is uniformly continuous where $p_1(\langle s_1, s_2 \rangle) = s_1$ for i = 1, 2.

Definition 5-18

If $\langle S, U \rangle$ is a uniform space and $A \subseteq S$ then the uniform structure, W, induced on A by the uniform structure on S is the trace on AXA of the sets of the uniformity, $U. \langle A, W \rangle$ is called a uniform subspace of $\langle S, U \rangle$.

Proposition 5-19

Let f, g_i be maps as follows;

 $g_i: S_1^i X S_2^i X \cdots X S_{m_i}^i \longrightarrow T_i$ and $f: T_1 X T_2 X \cdots X T_n \longrightarrow V$ and also let h be the map

 $h: S_{1}^{1} X \cdots X S_{m_{i}}^{1} X S_{1}^{2} X \cdots X S_{m_{2}}^{n} X \cdots X S_{1}^{n} X \cdots X S_{m_{n}}^{n} \longrightarrow V$ where $h(s_{1}^{1}, \cdots, s_{m_{n}}^{n}) = f(g_{1}(s_{1}^{1}, \cdots, s_{m_{i}}^{1}), \cdots, g_{n}(s_{1}^{n}, \cdots, s_{m_{n}}^{n}))$ then

1) if f and all g_i are continuous then h is continuous,

2) if f and all g_i are uniformly continuous then

h is uniformly continuous.

Proposition 5-20

If S and T are uniform spaces, f a mapping from S into T, B a base for the uniformity of S, and C a base for the uniformity of T then f is uniformly continuous iff

 $\forall C \in \mathcal{C}, \exists B \in \mathcal{B}, \langle x, y \rangle \in \mathcal{B} \Rightarrow \langle f(x), f(y) \rangle \in \mathcal{C}.$ Proposition 5-21

If $\langle S, \mathcal{U} \rangle$ is a uniform space and $\mathcal{B}(x) = \{V(x) | V \in \mathcal{U}\}$ then there exists a unique topology on S such that for all xcS, $\mathcal{B}(x)$ is the filter of neighborhoods of x. The topology induced on S by the uniform structure \mathcal{U} is called the uniform topology for \mathcal{U} .

Proposition 5-22

If S and T are uniform spaces and $f:S \rightarrow T$ is a uniformly continuous mapping then f is continuous for the uniform topologies on S and T.

Definition 5-23

If $\langle S, U \rangle$ is a uniform space then a set A $\subseteq S$ is of order UE U if AXA $\subseteq U$.

Definition 5-24

If $\langle S, U \rangle$ is a uniform space then a Cauchy filter, \mathcal{H} , is a filter on S such that for all Us U, there exists Fe \mathcal{H} such that F is of order U. A Cauchy filter base is a filter base whose generated filter is Cauchy.

Proposition 5-25

If \mathcal{B} is a Cauchy filter base in a subspace, T, of a uniform space, S, then \mathcal{B} is a Cauchy filter base in S.

Proposition 5-26

If S and T are uniform spaces, $f:S \to T$, a uniformly continuous mapping, and \mathcal{B} a Cauchy filter base on S then the image of \mathcal{B} is a Cauchy filter base on T.

Proposition 5-27

A complete space is a uniform space in which all Cauchy filters are convergent.

Proposition 5-28

In a complete Hausdorff uniform space every Cauchy filter base has a unique limit point.

Proposition 5-29

If S is a uniform space and T a dense subspace such that all Cauchy filter bases on T are convergent in S then S is complete.

Proposition 5-30

If S and T are uniform spaces, T Hausdorff and complete, A a dense subspace of S, and $f:A \rightarrow T$ is a uniformly continuous mapping, then there exists a 29.

unique mapping, $\overline{f}:S \longrightarrow T$ such that \overline{f} is uniformly continuous and $\overline{f}/A = f$.

Definition 5-31

A topological ring, $\langle R, \mathcal{O} \rangle$, is a ring, R, together with a topology, \mathcal{O} , on R such that

1) the mapping $x \rightarrow -x$ of R into R is continuous,

2) the mapping $\langle x, y \rangle \longrightarrow x+y$ of RXR into R is continuous,

3) the mapping $\langle x, y \rangle \rightarrow xy$ of RXR into R is continuous.

Proposition 5-32

If A is a closed set in the topological ring, R, then -A and $\{r\}$ +A are closed sets for any rER.

Proposition 5-33

If R, a commutative ring and $\mathcal B$, a filter base on R such that

- 1) $U \in \mathcal{B} \Rightarrow \exists V \in \mathcal{B}, V + V \subseteq U$
- 2) UE $\mathcal{B} \Rightarrow \exists V \in \mathcal{B}, -V \subseteq U$

3) UE $\mathcal{B} \Rightarrow \exists V \in \mathcal{B}, V \cdot V \subseteq U$

4) Us \mathcal{B} and reR $\Rightarrow \exists V \in \mathcal{B}, \{r\} \cdot V \subseteq U$

then there exists a unique topology \mathcal{O} on R which makes $\langle R, \mathcal{O} \rangle$, a topological ring and for which \mathcal{B} is a local base at OeR in the topology, \mathcal{O} . For the topology, \mathcal{O} , the set $\mathcal{B} + a = \{V + \{a\} \mid V \in \mathcal{O}\}$ is a local base at asR.

Proposition 5-34

A topological ring is Hausdorff iff the intersection

of all neighborhoods of 0 is 203.

Proposition 5-35

Let \mathcal{U} be the collection of all subsets of RXR of the form $U = \{\langle x, y \rangle | x, y \in \mathbb{R} \text{ and } x - y \in \mathbb{V}\}$ where \mathbb{V} is a neighborhood of 0 in the topological ring, R. Then \mathcal{U} is the base of a uniform structure on R and the uniform structure generated by \mathcal{U} is called the ring uniformity of R. The uniform topology for \mathcal{U} is the original topology on R.

Proposition 5-36

If \mathcal{Q} , a local base at 0 in the topological ring R then \mathcal{U} , the collection of all subsets of RXR of the form $U = \{\langle x, y \rangle \mid x, y \in \mathbb{R} \text{ and } x - y \in \mathbb{B} \in \mathcal{Q}\}$ is a base for the ring uniformity of R.

Proposition 5-37

For a topological ring, R, the mapping $\langle x,y \rangle \rightarrow x+y$ of RXR into R and the mapping $x \rightarrow -x$ of R into R are uniformly continuous in the ring uniformity of R.

Definition 5-38

An isomorphism π of a topological ring, R, into a topological ring, S, is a mapping, π , of R onto S such that π is both a ring isomorphism and a homeomorphism of the topological spaces.

Proposition 5-39

If S_1 and S_2 are complete, Hausdorff topological rings and R_1, R_2 dense subrings of S_1 and S_2 respectively,

Proposition 5-40

For any commutative Hausdorff topological ring, R, with identity there exists a commutative Hausdorff topological ring, R^{c} , with identity such that

1) R is isomorphic to a dense subring of R^{c}

2) R^C is complete in its ring uniformity

3) if S is another commutative Hausdorff topological ring with identity satisfying (1) and (2) then S is isomorphic to R^{c} .

R^c is called the completion of R.

Proposition 5-41

If R is a Hausdorff topological ring with \mathcal{B} as a local base at 0 then the collection $\{\overline{B} | B \in \mathcal{B}\}$ is a local base at 0 for the topology of \mathbb{R}^{c} .

Definition 5-42

A topological field $\langle F, \mathcal{D} \rangle$ is a field F with a topology, \mathcal{O} , on F such that

1) $\langle F, \mathcal{J} \rangle$ is a topological ring

2) the mapping $x \rightarrow x^{-1}$ of F^* into F^* is continuous where F^* is the subspace, $F-\{0\}$, of F.

Proposition 5-43

The completion of a topological field, F, as a

topological ring, is a topological field iff under the mapping $x \rightarrow x^{-1}$ of F^* into F^* any Cauchy filter in F^* which as the base of a Cauchy filter in F does not have 0 as an adherence point is mapped onto a Cauchy filter in F^* .

CHAPTER VI

C-RINGS AND THEIR TOPOLOGY

Definition 6-1

In an l-ring, R, for u a p-unit in R define I(u) = $\{x \in \mathbb{R} \mid |x| \le u\}$.

Note that although I(u) could be defined for elements other than p-units, in the following it will be used for p-units only.

Theorem 6-2

If R is a convex f-ring there is a unique topology on R that makes R a topological ring and which has as a local base at 0 the collection $\mathcal{B} = \{I(u) | u \ a \ p$ -unit in R}. The collection $x_o + \mathcal{B} = \{x_o + I(u) | I(u) \in \mathcal{B}\}$ is a local base at $x_o \in \mathbb{R}$ in this topology.

Proof

By 2-18(4) if u, v p-units then $u \wedge v$ is a p-unit. Thus

 $x \in I(u) \cap I(v) \Leftrightarrow |x| \leqslant u$ and $|x| \leqslant v \Leftrightarrow |x| \leqslant u \wedge v$

 \Leftrightarrow xeI(u \wedge v),

so $I(u) \cap I(v) = I(u \wedge v)$. Now $I(1) \in \mathcal{B}$ so $\mathcal{B} \neq \phi$ and OEI(u) for all p-units so $\phi \notin \mathcal{B}$. Therefore by 5-9, \mathcal{B} is a filter base on R.

Since $2 \ge 1$ and R convex then by 3-1, 2-17(29), 2-18(5,6), $\frac{u}{2}$ is a p-unit if u a p-unit. Thus $I(\frac{u}{2}) \in \mathcal{B}$ and by 2-17(14,2), $I(\frac{u}{2}) + I(\frac{u}{2}) \subseteq I(u)$. By 2-17(30), -I(u) = I(u).

If reR let $\mathbf{v} = |\mathbf{r}| \vee 1$ so $\mathbf{v} \ge 1$ and since R convex then by 3-1 and 2-17(29), \mathbf{v} is a p-unit. Now $|\mathbf{r}| \le \mathbf{v}$ so by 2-18(6) and 2-17(1), $\frac{|\mathbf{r}|}{\mathbf{v}} \le 1$. By 2-18(5,6) I $(\frac{\mathbf{u}}{\mathbf{v}}) \in \mathcal{B}$ for any p-unit u. Now $\mathrm{xeI}(\frac{\mathbf{u}}{\mathbf{v}}) \Rightarrow |\mathbf{x}| \le \frac{\mathbf{u}}{\mathbf{v}} \Rightarrow |\mathbf{rx}| = |\mathbf{r}||\mathbf{x}| \le \frac{|\mathbf{r}||\mathbf{u}|}{\mathbf{v}} \le \mathbf{u} \Rightarrow \mathrm{rxeI}(\mathbf{u})$ by 2-17(16,9,1). Thus $\{\mathbf{r} \ge I(\frac{\mathbf{u}}{\mathbf{v}}) \le I(\mathbf{u})$.

If u a p-unit then by 2-18(4), $\mathbf{v} = \mathbf{u} \wedge \mathbf{l}$ is a p-unit and $\mathbf{v} \leq \mathbf{l}$ so $\mathbf{v}^2 \leq \mathbf{v} \leq \mathbf{u}$ by 2-17(1). Thus $\mathbf{I}(\mathbf{v}) \in \mathcal{B}$ and by 2-17(16,9,1), $\mathbf{I}(\mathbf{v}) \cdot \mathbf{I}(\mathbf{v}) \subseteq \mathbf{I}(\mathbf{u})$.

Therefore by 5-33, there exists a unique topology \emptyset on R such that R is a topological ring and B is a local base at 0 in this topology. Also $x_0 + B$ is a local base at x_0 in this topology.

From now on this topology \mathcal{S} will be referred to as the p-unit topology on the convex f-ring R.

Definition 6-3

A C-ring, R, is a convex f-ring with $J(R) = \{0\}$.

A C-ring could be characterized as a sub-f-ring of a cardinal product of totally ordered fields.

Proposition 6-4

If R is an f-ring then $J(R) = \{0\}$ iff the convex closure, \widehat{R} , is a C-ring.

<u>Proof</u>

By 3-21, the proposition holds.

Lemma 6-5

If R a convex f-ring then usR is a p-unit iff $u_M > 0$ for all MsM.

Proof

If u a p-unit then us for all Me \mathcal{M} so $u_{\mathcal{M}} \neq 0$ for all Me \mathcal{M} . By 2-9, $u_{\mathcal{M}} \ge 0$ for all Me \mathcal{M} , so $u_{\mathcal{M}} \ge 0$ for all Me \mathcal{M} .

If $u_M > 0$ for all Me \mathcal{M} then for any \mathcal{L} -ideal I of R such that R_I is totally ordered let M be a maximal \mathcal{L} -ideal such that $I \subseteq M$ by 2-20(4). For any reR if $r_I \leq 0$ then $r_M \leq 0$ by 2-24 and since R_I and R_M are totally ordered then if $r_M > 0$ then $r_I > 0$. Therefore $u_I > 0$ for all I such that R_I is totally ordered and by 2-12, $u \geq 0$. Now $u_M \neq 0$ for all Me \mathcal{M} so $u \notin M$ for all Me \mathcal{M} by 2-9. Therefore by 3-3, u is a unit and so u is a p-unit.

Lemma 6-6

If R a convex f-ring and reR, Me Mare such that $r_M > 0$ then there exists a p-unit usR such that $r_M = u_M \cdot \frac{Proof}{2}$

For any NE \mathcal{M} such that N \neq M there exists sER such that sES(N) and s \neq S(M) by 4-4. For each N \neq M choose such an s^N and let $\mathcal{G} = \{S(s^N) | N \neq M\} \cup S(r)$. Since $r_M \neq 0$ then $r \not\in M$ or MES(r) so \mathcal{G} is an open cover of \mathcal{M} . Since by 4-3, \mathcal{M} is compact then there exists $\mathcal{H} \subseteq \mathcal{G}$ such that \mathcal{H} is a finite cover of \mathcal{M} . Since $M \not\in S(s^N)$ for all N \neq M then S(r) $\in \mathcal{H}$. Let \mathcal{H} be determined by the elements s_1, s_2, \dots, s_n and r and let $u = |s_1| \vee \cdots \vee |s_n| \vee r$. Then for any NEMeither there exists s_i such that NES(s_i) or NES(r) since \mathcal{H} is a cover of \mathcal{M} so that either $(s_i)_N \neq 0$ or $r_N \neq 0$. By 2-9 and 2-17(9) $|s_i|_N = |(s_i)_N| > 0$ or $r_N > 0$. Therefore by 2-9, $u_N \ge |s_i|_N > 0$ or $u_N \ge r_N > 0$ so $u_N > 0$ for all NEM. By 6-5, u is a p-unit in R. Now all $s_i \in \mathcal{M}$ so $(s_i)_M = 0$ and by 2-17(13), $|s_i|_M = 0$. Therefore $u_M = r_M$ by 2-9 and 2-17(9).

Lemma 6-7

If R a convex f-ring then $J(R) = \bigcap \{I(u) | u a p-unit in R\}$.

Proof

If $r\varepsilon J(R)$ then $r_M = 0$ for all Me \mathcal{M} by 2-9 so $|r_M| = |r|_M = 0$ by 2-17(13). Thus by 6-5, $|r|_M < u_M$ for all Me \mathcal{M} and all p-units u. By 2-9, $(u-|r|)_M > 0$ for all Me \mathcal{M} so by 6-5, u-|r| > 0 and by 2-17(2), u > |r|. Therefore $r\varepsilon I(u)$ for all p-units u. Thus $J(R) \subseteq \bigcap \{I(u) \mid u \ a \ p-unit \ in \ R\}$.

If v a p-unit then by 2-18(5,6), $\frac{\mathbf{v}}{2}$ is a p-unit and by 2-18(3), $0 < \frac{1}{2} < 1$ so by 2-17(25), $0 < \frac{\mathbf{v}}{2} < \mathbf{v}$. If for some Me \mathcal{M} , $(\frac{\mathbf{v}}{2})_{\mathsf{M}} = \mathbf{v}_{\mathsf{M}}$ then $0 = \mathbf{v}_{\mathsf{M}} - (\frac{\mathbf{v}}{2})_{\mathsf{M}} = (\mathbf{v} - \frac{\mathbf{v}}{2})_{\mathsf{M}} = (\frac{\mathbf{v}}{2})_{\mathsf{M}}$ so by 2-9, $\frac{\mathbf{v}}{2}$ eM. This is a contradiction since $\frac{\mathbf{v}}{2}$ a unit so $(\frac{\mathbf{v}}{2})_{\mathsf{M}} \neq \mathbf{v}_{\mathsf{M}}$ for all Me \mathcal{M} . By 2-9, $(\frac{\mathbf{v}}{2})_{\mathsf{M}} \leq \mathbf{v}_{\mathsf{M}}$ so $\left(\frac{\nabla}{2}\right)_{M} < \nabla_{M}$ for all MEM.

If $r \in \bigcap \{I(u) \mid u \text{ a } p-unit\}$ then $|r| \leq u$ for all p-units u so by 2-9 $|r|_{M} \leq u_{M}$ for all ME \mathcal{M} and all p-units u. If $r \notin J(R)$ then there exists ME \mathcal{M} such that $r \notin M$ or by 2-9, $r_{M} \neq 0$ so by 2-9 and 2-17(13,9), $|r_{M}| = |r|_{M} > 0$. By 6-6 there exists a p-unit v such that $v_{M} = |r|_{M}$. Then by above $(\frac{v}{2})_{M} \leq |r|_{M}$. This is a contradiction so $r \in J(R)$. Therefore $\bigcap \{I(u)\} \leq J(R)$ and so $J(R) = \bigcap \{I(u)\}$.

Proposition 6-8

A convex f-ring, R, is Hausdorff in the p-unit topology iff R is a C-ring.

Proof

Since the collection, $\{I(u)|u \text{ a } p\text{-unit}\}$, forms a local base at 0 the intersection of all neighborhoods of 0 by 5-l is $\bigcap \{I(u)|u \text{ a } p\text{-unit}\} = J(R)$ by 6-7. By 5-34, R is Hausdorff iff $J(R) = \{0\}$. Thus R is Hausdorff iff R is a C-ring by 6-3.

The uniformity of the topological ring, R, where R is a convex f-ring with the p-unit topology will be referred to as the p-unit uniformity on R. Lemma 6-9

If R a convex f-ring and u a p-unit let $V_{u} = \{\langle x, y \rangle \in RXR | |x-y| \leq u \}$. Then the collection $\{V_{u} | u = p-unit\}$ is a base for the p-unit uniformity on R.

Proof

Since x-y \in I(u) iff $|x-y| \leq u$ then $\{\langle x,y \rangle \in RXR | x-y \in I(u)\} = V_{ij}$. By 6-2 and 5-36 the collection, $\{V_{ij} | u = p-unit\}$, is a base for the p-unit uniformity on R.

<u>Lemma 6-10</u>

A function $f: \mathbb{R} \longrightarrow \mathbb{R}$ on a convex f-ring, \mathbb{R} , is uniformly continuous in the p-unit uniformity iff for all p-units u there exists a p-unit \mathbf{v} such that $|\mathbf{x}-\mathbf{y}| \le \mathbf{v}$ implies $|f(\mathbf{x})-f(\mathbf{y})| \le \mathbf{u}$.

Proof

The result follows from 6-9 and 5-20. Lemma 6-11

If R a convex f-ring then the mappings $\langle x,y \rangle \longrightarrow x \lor y$ and $\langle x,y \rangle \longrightarrow x \land y$ of RXR into R are uniformly continuous in the p-unit uniformity on R. <u>Proof</u>

If u a p-unit in R and if $|x-y| \leq u$ then $|x^+-y^+| \leq u$ by 2-17(17) so by 6-10 the mapping $x \rightarrow x^+$ of R into R is uniformly continuous in the p-unit uniformity. By 2-17(22), 5-37, and 5-19 the mapping $\langle x,y \rangle \rightarrow x \forall y$ is uniformly continuous. By 2-17(23), 5-37, and 5-19 the mapping $\langle x,y \rangle \rightarrow x \land y$ is uniformly continuous.

Definition 6-12

A topological f-ring $\langle R, \mathcal{B} \rangle$ is an f-ring, R, with a topology, $\tilde{\mathcal{D}}$, on R such that

1) $\langle R, \mathcal{B} \rangle$ is a topological ring,

2) the mappings of $\langle x, y \rangle \rightarrow x \vee y$ and $\langle x, y \rangle \rightarrow x \wedge y$ of RXR into R are continuous.

Definition 6-13

An l-isomorphism, π , of a topological f-ring, R, onto a topological f-ring, S, is a mapping, π , of R onto S such that π is an l-isomorphism of R onto S and π is a homeomorphism of R onto S.

Proposition 6-14

A convex f-ring, R, is a topological f-ring in the p-unit topology.

Proof

By 6-2, R is a topological ring. By 6-11, 5-35, and 5-22, R is a topological f-ring.

Lemma 6-15

If S_1 and S_2 are complete Hausdorff topological f-rings and R_1 , R_2 are dense sub-f-rings of S_1, S_2 and if π is an l-isomorphism of R_1 onto R_2 then there is a unique l-isomorphism $\overline{\pi}$ of S_1 onto S_2 such that $\overline{\pi}/R_1 = \pi$.

Proof

By 5-39 there is a unique isomorphism, $\overline{\pi}$, of S

onto S as topological rings such that $\overline{\pi}/R_1 = \pi$. Now the mappings $\langle x, y \rangle \longrightarrow \overline{\pi}(x \wedge y)$ and $\langle x, y \rangle \longrightarrow \overline{\pi}(x) \wedge \overline{\pi}(y)$ of $S_1 X S_1$ into S_2 are continuous by 5-19, 6-12 and 6-13. Also $\overline{\pi} (x \wedge y) = \overline{\pi}(x) \wedge \overline{\pi}(y)$ for all $x, y \in R_1$ since $\overline{\pi}/R_1 = \pi$. So by 5-8 and 5-7, $\overline{\pi}(x \wedge y) = \overline{\pi}(x) \wedge \overline{\pi}(y)$ for all $x, y \in S_1$. Therefore $\overline{\pi}$ is an \mathcal{L} -isomorphism of S_1 onto S_2 .

Theorem 6-16

If R is a C-ring with the p-unit topology then there exists a commutative Hausdorff topological f-ring, R^{C} , with identity such that

- 1) R is l-isomorphic to a dense subring of R^c,
- 2) R^Cis complete in its ring uniformity,
- 3) if S is another commutative Hausdorff topol ogical f-ring with identity satisfying 1)
 and 2) then S is *L*-isomorphic to R.^C

R^C is called the completion of R.

Proof

By 6-8 and 6-14, R is a commutative Hausdorff topological f-ring with identity in the p-unit topology. By 5-40 there exists a commutative Hausdorff topological f-ring R^{C} with identity such that R is isomorphic to a dense subring, T, of R^{C} and R^{C} is complete in its uniformity. Define lattice operations on T by means of the isomorphic mapping of R onto T and T is a C-ring for these operations. Since the mapping is a homeomorphism the topology induced on T by R^C must be the p-unit topology on T. By 6-11, 5-8 and 5-30 the binary operations \vee and \wedge on T can be extended to R^C. By 5-35 and 5-22, \vee and \wedge are continuous operations from R^CX R^C into R^C. Then by 5-19, 5-12 and 5-7 any equation in terms of 0,1,-,+, \vee , and \wedge holding in R also hold in R^C. Therefore by 2-16, R^C is a commutative f-ring with identity. Also by 6-12, R^C is a topological f-ring.

If S is another commutative Hausdorff topological f-ring with identity satisfying 1) and 2) then by 6-15, S is \mathcal{L} -isomorphic to \mathbb{R}^{C} .

The question immediately occurs, "Is R^{c} a C-ring and is its topology the p-unit topology." In the following an affirmative answer is given by representing R^{c} as a ring of functions.

Definition 6-17

A topological f-field is an f-field which is both a topological f-ring and a topological field (see 5-42).

Lemma 6-18

If R is a convex f-ring with the p-unit topology

then for u a p-unit the set $\{x \in \mathbb{R} | |x-a| \le u\}$ is a neighborhood of as \mathbb{R} .

Proof

By 6-2, a+I(u) is a neighborhood of $a \in \mathbb{R}$. Now $y \in a+I(u) \iff (y-a) \in I(u) \iff |y-a| \le u$ so $a+I(u) = \{y \in \mathbb{R} \mid |y-a| \le u\}$.

Lemma 6-19

If F is an f-field then F is a topological f-field in the p-unit topology.

Proof

Now F is automatically a C-ring so F is a topological f-ring in the p-unit topology by 6-14. If $a\epsilon F^*$ then by 2-17(13,9), |a| > 0 so if u a p-unit then by 2-18(5,6,2) $\frac{|a|}{2} \wedge \frac{|a|^2 u}{2}$ is a p-unit. By 6-18, $W = \{x\epsilon F \mid |x-a| \leq \frac{|a|}{2} \wedge \frac{|a|^2 u}{2}\}$ is a neighborhood of a in F. Now $|0-a| \leq \frac{|a|}{2}$ by 2-18(3) and 2-17(25) so $0 \notin W$ and W is a neighborhood of a in F^* . If $|x-a| \leq \frac{|a|}{2}$ then $||x| - |a|| \leq \frac{|a|}{2}$ by 2-17(15) so by 2-17 (12) $|x| \geq |a| - \frac{|a|}{2} = \frac{|a|}{2}$. Therefore if $x\epsilon W$ then $|x| \geq \frac{|a|}{2}$ so by 2-18(1) and 2-17(9,1) $\frac{1}{|x|} \leq \frac{2}{|a|}$. If $x\epsilon W$ then $|\frac{1}{x} - \frac{1}{a}| = \frac{1}{|x| |a|} |x-a| \leq \frac{|a|u}{2|x|} \leq u$ by 2-18(1) and 2-17(16,1,9). Thus if f is the mapping $x \to \frac{1}{x}$ of F^* into F then $f(W) \subseteq \{y\epsilon R | |y-a| \leq u\}$. Now the range

of f is F^* so the mapping $x \rightarrow \frac{1}{x}$ of F^* into F^* is continuous. By 5-42, F is a topological field so by 6-17, F is a topological f-field in the p-unit topology.

Lemma 6-20

If F is an f-field with the p-unit topology then every Cauchy filter in F^* , which as the base of a Cauchy filter in F does not have 0 as an adherence point, under the mapping $x \longrightarrow \frac{1}{x}$ of F^* into F^* is mapped onto a Cauchy filter in F^* .

<u>Proof</u>

Let C be a Cauchy filter in F^* such as that the base of a Cauchy filter in F does not have 0 as an adherence point. Let \mathcal{B} be the image of C under the mapping $x \rightarrow \frac{1}{x}$ of F^* into F^* so \mathcal{B} is a filter on F^* . Since 0 is not an adherence point of Cthen there exists a p-unit, v, such that I(v) is disjoint from some VeC. Thus for all xeV, $|x| \leq v$ so by 2-15, for all xeV, |x| > v.

If u a p-unit then by 2-18(5), uv^2 is a p-unit so by 6-9 and 5-24 there exists We C such that for all x,yeW, $|x-y| \leq uv^2$. Now WAVE C and for all x,yeWAV it holds that

 $\left|\frac{1}{x} - \frac{1}{y}\right| = \frac{1}{|x||y|} |x-y| \leq \frac{1}{y^2} uv^2 = u$

by 2-17(16,1) and 2-18(1,3). Thus the image of $W \cap V$ under the mapping $x \longrightarrow \frac{1}{x}$ is a set of order V_{μ} (see 6-9 and 5-23) and so \mathcal{B} contains a set of order V_{μ} for any p-unit, u, and by 5-24, \mathcal{B} is a Cauchy filter. Proposition 6-21

If F is an f-field with the p-unit topology then F^{C} is a topological f-field.

Proof

Now F is a C-ring so by 6-16, F^{C} exists and is a topological f-ring. By 5-43, 6-19, and 6-20, F^{C} is a topological field so by 6-17, F^{C} is a topological f-field.

As usual F is henceforth considered as a subfield of its completion F^{C} .

Lemma 6-22

If \mathbf{F} is an f-field with the p-unit topology and \mathbf{F}^{C} its completion let P be the positive elements of F and P^C the positive elements of \mathbf{F}^{C} then $\mathbf{P} = \mathbf{P}^{\mathsf{C}}$. <u>Proof</u>

Since the mapping $x \to -x$ of F^{c} into F^{c} is continuous then $-(\overline{P}) \subseteq \overline{(-P)}$. By 5-32 $-(\overline{P})$ is closed in F^{c} and $-P \subseteq -(\overline{P})$ so $\overline{(-P)} \subseteq -(\overline{P})$. Therefore $-(\overline{P}) = \overline{(-P)}$. Since $x^{+} = x$ for all $x \in P$ by 2-17(8) then by 5-7, 6-8, and 6-11, $x^{+} = x$ for all $x \in \overline{P}$. Thus by 2-17(8) $x \ge 0$ for all $x \in \overline{P}$ so $\overline{P} \subseteq P^{c}$. Now $\overline{P} \cup -(\overline{P}) = \overline{P} \cup \overline{(-P)} = \overline{P} \cup -\overline{P} = \overline{F} = F^{c}$ by 6-16, 2-15 and 2-5. Also $-(\overline{P}) \cap P^{c} \subseteq -P^{c} \cap P^{c} = \{0\}$ by 2-5 so $-(\overline{P}) \cap P^{c} = \{0\}$. If $x \in P^{c}$ and $x \notin \overline{P}$ then $x \in -(\overline{P})$ so $x \in -(\overline{P}) \cap P^{c}$, that is x = 0. This is a contradiction since $0 \in \overline{P}$. Therefore $\overline{P} = P^{c}$.

In the following let [], (), etc. indicate intervals in F and $[], ()^{c}$, etc. indicate intervals in F^c (see 2-22).

Lemma 6-23

All closed (open) intervals in \mathbf{F}^{C} are closed (open) sets in the topology of \mathbf{F}^{C} .

Proof

By 6-22, $\overline{[0, \infty)} = [0, \infty)^c$ so $[0, \infty)^c$ is closed in \mathbb{P}^c . By 2-17(2), at $[0, \infty)^c = [a, \infty)^c$ so that by 5-32, $[a, \infty)^c$ is closed in \mathbb{P}^c . By 2-17(3), $-[-a, \infty)^c = (-\infty, a]^c$ so by 5-32, $(-\infty, a]^c$ is closed in \mathbb{P}^c . By 2-15, 6-21 the complement of $[a, \infty)^c$ is $(-\infty, a)^c$ and that of $(-\infty, a]^c$ is $(a, \infty)^c$ so $(a, \infty)^c$ and $(-\infty, a)^c$ are open in \mathbb{P}^c . Now $(a, b)^c$ $= (a, \infty)^c \cap (-\infty, b)^c$ and $[a, b] = [a, \infty)^c \cap (-\infty, b]^c$ so $(a, b)^c$ is open in \mathbb{P}^c and $[a, b]^c$ is closed in \mathbb{P}^c . Lemma 6-24

If F an f-field with the p-unit topology and a, bcF then $\overline{[a,b]} = [a,b]^{C}$.

Proof

Now $[a,b] \subseteq [a,b]^{c}$ and by 6-23, $[a,b]^{c}$ is

closed in F^c so $\overline{[a,b]} \subseteq [a,b]^c$. If $x \in (a,b)^c$ and V any neighborhood of x in F^c then $W = V \wedge (a,b)^c$ is a neighborhood of x in F^c since $(a,b)^c$ open by 6-23. By 6-16, F is dense in F^c so there exists seF such that seW. Now $s \in (a,b)^c$ and seF so $s \in (a,b)$, that is every neighborhood of x contains a point of (a,b). Thus x is an adherence point of (a,b) and so x is an adherence point of [a,b]. Therefore $(a,b)^c \subseteq \overline{[a,b]}$ and so $[a,b]^c = (a,b)^c \vee \{a,b\} \subseteq \overline{[a,b]}$. Thus $\overline{[a,b]} = [a,b]^c$.

Lemma 6-25

If F is an f-field then for any $x,y \in F^{c}$ such that x < y there exists reF such that x < r < y, that is F is order dense in F^{c} .

Proof

By 2-18(2) and since \mathbf{F}^{c} a field, $\mathbf{x} < \frac{\mathbf{x}+\mathbf{y}}{2} < \mathbf{y}$ so $(\mathbf{x},\mathbf{y})^{c} \neq \emptyset$. By 6-23, $(\mathbf{x},\mathbf{y})^{c}$ is open in \mathbf{F}^{c} and by 6-16, F is dense in \mathbf{F}^{c} so there exists reF such that $\mathbf{r}\epsilon(\mathbf{x},\mathbf{y})^{c}$, that is $\mathbf{x} < \mathbf{r} < \mathbf{y}$.

Proposition 6-26

If F is an f-field then the topology of F^{C} is the p-unit topology.

Proof

By 5-41 the collection $\{\overline{I(v)} | v \neq p-unit \text{ in } F\}$ is a local base at 0 for the topology of F^{C} . For v a p-unit in F let $I(v) = \{x \in F \mid |x| \leq v\}$ and for u a p-unit in F^c let I^c(u) = $\{x \in F^c \mid |x| \leq u\}$. By 2-23, I(v) = [-v,v] and I^c(u) = $[-u,u]^c$, so by 6-24, $\overline{I(v)} = I^c(v)$. Thus the collection $\{I^c(v) \mid v \text{ a p-unit}\}$ in F³ is a local base at 0 for the topology of F^c. By 6-25 for all p-units u in F^c there exists a p-unit v in F such that 0 < v < u and so $I^c(v) \subseteq I^c(u)$. Thus for all p-units u in F^c, $I^c(u)$ is a neighborhood of 0 and for every neighborhood, V, of 0 there exists a p-unit v in F and so in F^c such that $I^c(v) \subseteq V$. Thus the collection $\{I^c(u) \mid u = p-unit = I^c, I^c(u) \leq V = I^c$.

48.

Thus the question asked after theorem 6-16 has been answered in the affirmative for f-fields.

Theorem 6-27

For every f-field, F, there exists an f-field, F^{C} , such that if F^{C} has the p-unit topology then

- 1) F is a dense sub-f-field of F^{C}
- 2) F^C induces the p-unit topology on F
- 3) F is order dense in F^c
- 4) F^C is complete in the p-unit uniformity
- 5) F^c is unique up to *L*-isomorphism.

<u>Proof</u>

The theorem follows from 6-16, 6-21, 6-25 and 6-26.

Definition 6-28

The interval topology on a totally ordered set is the topology with the open intervals as a base. (See 2-22).

Note that by 2-15 the f-fields are the same as the totally ordered fields.

Proposition 6-29

The interval topology on an f-field, F, is the p-unit topology.

Proof

Let F have the interval topology. If V is a neighborhood of 0 then there exists an open interval, I, such that $0 \in I \subseteq V$. If I = (a,b) let u = $|a| \land |b|$, if I = (c, ∞) or I = (- ∞ ,c) let u = |c|. By 2-17 (13,9), |a|, |b|, |c| > 0 so they are all p-units since F a field and by 2-18(4), u is a p-unit in all cases. By 2-17(25) and 2-18(3) $\frac{u}{2} < u$ so $\left[-\frac{u}{2}, \frac{u}{2}\right] \subseteq I$ since F is totally ordered by 2-15. For any v > 0, $0 \in (-v,v) \subseteq [-v,v]$ so [-v,v] is a neighborhood of 0. By 2-23, I(v) = [-v,v] so that the collection $\{I(v) | v = p-unit in F\}$ is a local base at 0 for the interval topology of F. Therefore by 6-2, the interval topology is the p-unit topology.

CHAPTER VII

THE TOPOLOGY OF THE BUNDLE SPACE

In this chapter let R be a C-ring and \mathcal{M} the maximal \mathcal{L} -ideal space of R with the topology of 4-2. Lemma 7-1

For any Me \mathcal{M} , R_{M} is an f-field and R_{M}^{C} is an f-field containing R_{M} .

<u>Proof</u>

By 3-3, R_M is an f-field. By 6-21, R_M^C is an f-field.

Definition 7-2

For a C-ring, R, the bundle space is $\beta = \bigcup_{n \in \mathbb{N}} \{ \mathbb{R}_{n}^{C} \mid M \in \mathcal{M} \}$, that is the disjoint union. Definition 7-3

A section, g, is a mapping from \mathcal{M} into \mathcal{B} such that $g(M) \in \mathbb{R}_{M}^{C}$.

Lemma 7-4

The set of all sections, S, under the definitions

(g+h)(M) = g(M)+h(M), (-g)(M) = -g(M),

 $(gh)(M) = g(M)h(M), (g \vee h)(M) = g(M) \vee h(M),$

 $(g \wedge h)(M) = g(M) \wedge h(M), l(M) = l_M, 0(M) = 0_M,$ form an f-ring.

Proof

S is the cardinal product of the f-fields, R_M^C ,

Me \mathcal{M} by 2-10. So by 2-11, S is an f-ring. Definition 7-5

For each rER define a section, \hat{r} , by $\hat{r}(M) = r_M \in \mathbb{R}_M^C$.

Proposition 7-6

The mapping, $r \rightarrow \hat{r}$ is an \mathcal{L} -monomorphism of R into S.

<u>Proof</u>

Now $(r+s)(M) = (r+s)_M = r_M + s_M = \hat{r}(M) + \hat{s}(M)$ for all ME \mathcal{M} by 2-9 so $(r+s) = \hat{r} + \hat{s}$. Similarly, $\hat{rs} = \hat{r}\hat{s}$, $(r\vee s) = \hat{r}\vee\hat{s}$, $(r\wedge s) = \hat{r}\wedge\hat{s}$, and $\hat{1}(M) = 1_M = 1(M)$ so $\hat{1} = 1$. Thus by 2-6, the mapping $r \rightarrow \hat{r}$ is an \mathcal{L} -homomorphism. If $\hat{r} = 0$ then $\hat{r}(M) = r_M = 0_M$ for all ME \mathcal{M} so by 2-9, rEM for all ME \mathcal{M} . Thus $r\in \cap \{M | M \in \mathcal{M}\} = J(R)$ so by 6-3, r = 0. There the kernel of the mapping is $\{0\}$ and so the mapping is an \mathcal{L} -monomorphism. Definition 7-7

Let $R = \{\hat{r} | r \in R\}$. The sub-f-ring, \hat{R} , of S is called the Gelfand representation of R.

A topology for \mathcal{B} is desired such that \mathcal{B} induces the p-unit topology on each \mathbb{R}_{M}^{c} and if each \mathbb{R}_{M} is a subfield of the reals then a section is continuous iff it is continuous as a real valued function on \mathcal{M} . Definition 7-8

For V open in \mathcal{M} and r, see such that $r_M < s_M$ for

all MeV define the subset of \mathcal{B} ,

 $\langle r, s ; V \rangle = \{ \alpha \in \mathbb{R}_{M}^{C} | M \in V \text{ and } r_{N} < \alpha < s_{M} \}$.

Lemma 7-9

For r,scR, the set $\{M/r_M < s_M\}$ is open in \mathcal{M} . <u>Proof</u>

If $r_M < s_M$ then $|s_M - r_M| = s_M - r_M \neq 0_M s_0$ $(s_M - r_M) + |s_M - r_M| = 2(s_M - r_M) \neq 0_M$. Thus by 2-9, $(s-r) + |s-r| \notin M$ so by 4-1, McS [(s-r) + |s-r|]. If $r_M \not < s_M$ then by 7-1 and 2-15, $s_M \leq r_M$ so $|s_M - r_M| = r_M - s_M$ and $(s_M - r_M) + |s_M - r_M| = 0_M$. Thus by 2-9, $(s-R) + |s-r| \notin M$ so by 4-1, MfS [(s-r) + |s-r|]. Therefore $\{M \mid r_M < s_M\}$ = S [(s-r) + |s-r|] and by 4-2, it is open in \mathcal{M} . Lemma 7-10

For any r,s,t,ucR and any open sets U,V in \mathcal{M} , $\langle r,s;U \rangle \cap \langle t,u;V \rangle = \langle r \lor t,s \land u;W \rangle$ where $W = U \cap V \cap \{M \mid (r \lor t)_M < (s \land u)_M \}$.

Proof

Now,

$$a\varepsilon \langle \mathbf{r}, \mathbf{s}; \mathbf{U} \rangle \land \langle \mathbf{t}, \mathbf{u}; \mathbf{V} \rangle \iff$$

$$a\varepsilon \mathbf{R}_{\mathsf{M}}^{\mathsf{C}}, \ \mathsf{M}\varepsilon \mathbf{U} \land \mathbf{V}, \ \mathbf{r}_{\mathsf{M}} \langle \alpha \langle \mathbf{s}_{\mathsf{M}} \ \mathsf{and} \ \mathbf{t}_{\mathsf{M}} \langle \alpha \langle \mathbf{u}_{\mathsf{M}} \rangle$$

$$\iff \mathsf{M}\varepsilon \mathbf{U} \land \mathbf{V}, \ (\mathbf{r} \lor \mathbf{t})_{\mathsf{M}} \langle \alpha \langle (\mathbf{s} \land \mathbf{u})_{\mathsf{M}}, \ \alpha \varepsilon \mathbf{R}_{\mathsf{M}}^{\mathsf{C}} \rangle$$

$$\iff \alpha \varepsilon \mathbf{R}_{\mathsf{M}}^{\mathsf{C}}, \ \mathsf{M}\varepsilon \mathsf{W}, \ \mathsf{and} \ (\mathbf{r} \lor \mathbf{t})_{\mathsf{M}} \langle \alpha \langle (\mathbf{s} \land \mathbf{u})_{\mathsf{M}} \rangle$$

$$\iff \alpha \varepsilon \langle \mathbf{r} \lor \mathbf{t}, \ \mathbf{s} \land \mathbf{u}; \ \mathsf{W} \rangle.$$

By 7-9, W is open in M so

 $\langle r,s;U \rangle \cap \langle t,u;V \rangle = \langle r \lor t, s \land u;W \rangle$.

Theorem 7-11

The collection $\{\langle r,s;v \rangle \mid r,s \in \mathbb{R}, v \text{ open in } \mathcal{M}\}$ is a base for a topology on \mathcal{B} .

Proof

If $\alpha \in \mathcal{B}$ then for some MEM, $\alpha \in \mathbb{R}_{M}^{C}$ and so by 6-27(3) there exists r,seR such that $\alpha - 1_{M} < r_{M} < \alpha < s_{M} < \alpha + 1_{M}$. Let $V = \{M | r_{M} < s_{M}\}$ so V is open in M by 7-9 and $\alpha \in \langle r, s; V \rangle$. Thus by 7-10 the collection $\{\langle r, s; V \rangle \mid r, s \in \mathbb{R} \text{ and } V \text{ open in } \mathcal{M}\}$ forms a base for a topology on \mathcal{B} .

Henceforth the bundle space, B, will be assumed to have this topology.

Lemma 7-12

If F an f-field then a base for the interval topology on F^{C} is given by the collection $\{(r,s)^{C} | r, s \in F\}$. <u>Proof</u>

If $\alpha \in F^{c}$ and V a neighborhood of α in the interval topology then there exists an open interval, I, such that $\alpha \in I \subseteq V$. Whether I is bounded or unbounded there exists $\beta, \gamma \in F^{c}$ such that $\alpha \in (\beta, \gamma)^{c} \subseteq I$. By 6-27(3) there exists r, s \in F such that $\beta < r < \alpha < s < \gamma$ so $\alpha \in (r,s)^{c} \subseteq (\beta, \gamma)^{c} \subseteq I \subseteq V$. Thus the collection $\{(r,s)^{c} | r, s \in F\}$ is a base for the interval topology on F^{c} . Proposition 7-13

The topology of \mathcal{B} induces the p-unit topology on \mathbb{R}^{C}_{M} .

Proof

If MeV then $\langle \mathbf{r}, \mathbf{s}; \mathbf{V} \rangle \cap \mathbb{R}_{\mathsf{M}}^{\mathsf{C}} = (\mathbf{r}_{\mathsf{M}}, \mathbf{s}_{\mathsf{M}})^{\mathsf{C}}$ and if MeV then $\langle \mathbf{r}, \mathbf{s}; \mathbf{V} \rangle \cap \mathbb{R}_{\mathsf{M}}^{\mathsf{C}} = \emptyset$. Now consider $(\mathbf{r}_{\mathsf{M}}, \mathbf{s}_{\mathsf{M}})^{\mathsf{C}}$ in $\mathbb{R}_{\mathsf{M}}^{\mathsf{C}}$ for $\mathbf{r}, \mathbf{s} \in \mathbb{R}$. Let $\mathbf{V} = \{\mathbf{N} | \mathbf{r}_{\mathsf{N}} \langle \mathbf{s}_{\mathsf{N}} \}$ so by 7-9, \mathbf{V} is open and MeV. Then $\langle \mathbf{r}, \mathbf{s}; \mathbf{V} \rangle \cap \mathbb{R}_{\mathsf{M}}^{\mathsf{C}} = (\mathbf{r}_{\mathsf{M}}, \mathbf{s}_{\mathsf{M}})^{\mathsf{C}}$. Thus the topology on \emptyset induces a topology on $\mathbb{R}_{\mathsf{M}}^{\mathsf{C}}$ with base the collection $\{(\mathbf{r}_{\mathsf{M}}, \mathbf{s}_{\mathsf{M}})^{\mathsf{C}} | \mathbf{r}, \mathbf{s} \in \mathbb{R}\}$. By 7-12 the induced topology on $\mathbb{R}_{\mathsf{M}}^{\mathsf{C}}$ is the interval topology. By 6-29 the induced topology on $\mathbb{R}_{\mathsf{M}}^{\mathsf{C}}$ is the p-unit topology.

If F, G are f-fields, F a sub-f-field of G and F order dense in G then F^{c} is \mathcal{L} -isomorphic to G^{c} . <u>Proof</u>

If $\alpha,\beta\epsilon G^{c}$ and $\alpha < \beta$ then by 2-18(2) and 6-25 there exists g,h ϵG such that $\alpha < g < \frac{\alpha+\beta}{2} < h < \beta$. Now there exists r ϵF such that $\alpha < g < r < h < \beta$ since F order dense in G so F order dense in G^{c} . As in 7-12, F is dense in G^{c} in the interval topology so by 6-29, F is dense in G^{c} in the p-unit topology. By 6-16(3), G^{c} is ℓ -isomorphic to F^{c} .

Corollary 7-15

If F, G are f-fields such that $F \subseteq G \subseteq F^{C}$ then F^{C} is λ -isomorphic to G^{C} .

Proof

By 6-27(3), F is order dense in F^{c} so F is order dense in G so by 7-14, G^{c} is \mathcal{L} -isomorphic to F^{c} . For the rationals, Q, define Q^{C} to be the reals, \mathbb{R} . If F a sub-f-field of \mathbb{R} then since $Q \subseteq F$ by 7-15, F^{C} is \mathcal{L} -isomorphic to \mathbb{R} . Thus for any sub-f-field, F, of the reals, \mathbb{R} , take F^{C} to be \mathbb{R} .

Lemma 7-16

If for R each R_M is a sub-f-field of the reals, \mathbb{R} , then the collection $\{\langle m,n;v \rangle \mid m,n\in Q \text{ and } V \text{ open in } \mathcal{M}\}$ is a base for the topology of \mathcal{B} .

Proof

Since R convex, Q is a sub-f-ring of R. Also Q is order dense in each \mathbb{R}_{M}^{C} . Consider any $\langle r,s;V \rangle$ and any $\alpha \in \langle r,s;V \rangle$. Then there exists MEV such that $\alpha \in \mathbb{R}_{M}^{C}$ and $r_{M} < \alpha < s_{M}$ and also there exists m,neQ such that $r_{M} < m < \alpha < n < s_{M}$. Let $W = \{N | r_{N} < m\} \cap \{N | n < s_{N}\} \cap V$ so by 7-9, W is open in \mathcal{M} and MEW so $\alpha \in \langle m,n;W \rangle$. If $\beta \in \langle m,n;W \rangle$ then there exists NEW such that $\beta \in \mathbb{R}_{N}^{C}$ and $r_{N} < m < \beta < n < s_{N}$ so that $\beta \in \langle r,s;V \rangle$. Thus $\alpha \in \langle m,n;W \rangle \leq \langle r,s;V \rangle$ so the collection $\{\langle m,n;V \rangle | m,n\inQ$ and V open in \mathcal{M} } is a base for the topology of \mathcal{B} .

Definition 7-17

If for R each \mathbb{R}_M is a sub-f-field of the reals, \mathbb{R} , then for each section, $f: \mathcal{M} \rightarrow \mathcal{B}$ define $f_{\mathbb{R}}: \mathcal{M} \rightarrow \mathbb{R}$ by $f_{\mathbb{R}}(\mathbb{M}) = f(\mathbb{M})$ where \mathbb{R} has the usual topology of the reals. Proposition 7-18

If for R each \mathbb{R}_{M} is a sub-f-field of the reals, \mathbb{R} , then a section $f: \mathcal{M} \to \mathcal{B}$ is continuous iff $f_{\mathbb{R}}$ is continuous.

Proof

Now $\operatorname{Mef}^{-1}(\langle m,n;V \rangle) \Leftrightarrow \operatorname{MeV}$ and m < f(M) < n $\Leftrightarrow \operatorname{MeV}$ and $\operatorname{Mef}_{\mathbb{R}}^{-1}(m,n) \Leftrightarrow \operatorname{MeV} \cap f_{\mathbb{R}}^{-1}(m,n)$. Thus $f^{-1}(\langle m,n;V \rangle) = f_{\mathbb{R}}^{-1}(m,n) \cap V$.

If $f_{\mathbb{R}}$ is continuous then consider a basic open set $\langle m, n; V \rangle$ in \mathcal{B} . Now V is open in \mathcal{M} and since $f_{\mathbb{R}}$ is continuous, $f_{\mathbb{R}}^{-1}(m,n)$ is open in \mathcal{M} so $f^{-1}(\langle m,n; V \rangle)$ = $f_{\mathbb{R}}^{-1}(m,n) \cap V$ is open in \mathcal{M} . Thus f is continuous.

If f is continuous then $f^{-1}(\langle m,n;M \rangle)$ = $f_{\mathbb{R}}^{-1}(m,n) \cap \mathcal{M} = f_{\mathbb{R}}^{-1}(m,n)$ is open in \mathcal{M} . Thus $f_{\mathbb{R}}$ is continuous.

CHAPTER VIII

THE RING OF CONTINUOUS SECTIONS

In this chapter let R be a C-ring, \mathcal{M} the maximal \pounds -ideal space of R with the topology of 4-2, and \pounds the bundle space of R with the topology of 7-11.

Definition 8-1

Let F be the set of all continuous sections from $\mathcal M$ into $\mathcal B$.

Proposition 8-2

For any reR, $\hat{r}: \mathcal{M} \rightarrow \mathcal{B}$ is continuous, that is $\hat{R} \subseteq F$.

Proof

Now, $\operatorname{Me}\hat{r}^{-1}(\langle s,t;V\rangle) \Leftrightarrow \hat{r}(M) \varepsilon \langle s,t;V\rangle \Leftrightarrow$ MeV and $s_{M} \langle r_{M} \langle t_{M} \Leftrightarrow \operatorname{Me}\{N | r_{N} \langle t_{N} \langle s_{M}\} \cap V$. Thus $\hat{r}^{-1}(\langle s,t;V\rangle) = V \cap \{M | r_{M} \langle t_{M} \langle s_{M}\} =$ $V \cap \{M | r_{M} \langle t_{M}\} \cap \{M | t_{M} \langle s_{M}\} \text{ so by } 7-9 \ \hat{r}^{-1}(\langle s,t;V\rangle)$ is open in \mathcal{M} . Therefore \hat{r} is continuous.

Lemma 8-3

If feF then -feF.

Now by 7-4, 2-9, and 2-17(3) $M\varepsilon(-f)^{-1} (\langle r,s;V \rangle) \Leftrightarrow (-f)(M)\varepsilon \langle r,s;V \rangle$ $\Leftrightarrow M\varepsilon V$ and $r_M < (-f)(M) \langle s_M$ $\Leftrightarrow M\varepsilon V$ and $(-s)_M < f(M) < (-r)_M$ $\Leftrightarrow M\varepsilon f^{-1} (\langle -s, -r;V \rangle).$ Thus $(-f)^{-1} (\langle r,s;V \rangle) = f^{-1} (\langle -s, -r;V \rangle)$ which is open in M since fcF. Therefore $-f\varepsilon F$.

Lemma 8-4

If feF then{MeM|f(M)>0} is open in \mathcal{M} . <u>Proof</u>

Let $A = \{\alpha \in \mathbb{R}_{M}^{C} | \alpha > 0 \text{ and } M \in \mathcal{M}\}$. If $\beta \in A$ then there exists $M \in \mathcal{M}$ and $r \in \mathbb{R}$ such that $\beta \in \mathbb{R}_{M}^{C}$ and $0 < \beta < r_{M} < \beta + 1$ by 6-27(3). Let $V = \{N \in \mathcal{M} | r_{N} > 0\}$ then by 7-9, V is open in \mathcal{M} and $M \in V$. Therefore $\beta \in \langle 0, r; V \rangle \subseteq A$ so A is open in \mathcal{B} . Now $\{M \in \mathcal{M} | f(M) > 0\} = f^{-1}(A)$ which is open in \mathcal{M} since $f \in F$.

Lemma 8-5

If feF and $S(f) = \{M \in \mathcal{M} \mid f(M) \neq 0\}$ then S(f) is open in \mathcal{M} .

Proof

Since each R is totally ordered then $\{M \in \mathcal{M} | f(M) \neq 0\} = \{M \in \mathcal{M} | f(M) > 0\} \cup \{M \in \mathcal{M} | (-f)(M) > 0\}.$ By 8-3, -feF so by 8-4, S(f) is open in \mathcal{M} . Lemma 8-6

If fEF and tER then $f+\hat{t}\in F$.

Proof

Now by 2-9 and 7-4 $M\epsilon(f+\hat{t})^{-1} \langle r,s;V \rangle \iff M\epsilon V \text{ and } r_{M} \langle (f+\hat{t})(M) \langle s_{M} \rangle \Leftrightarrow M\epsilon V \text{ and } (r-t)_{M} \langle f(M) \langle (s-t)_{M} \rangle \Leftrightarrow M\epsilon f^{-1} \langle (r-t), (s-t);V \rangle.$

Thus $(f+\hat{t})^{-1} \langle r,s; V \rangle = f^{-1} \langle (r-t), (s-t); V \rangle$ is open in \mathcal{M} since feF. Therefore $f+\hat{t}\in F$.

<u>Lemma 8-7</u>

If f,gEF, W open in \mathcal{M} , and for all NEW,f(N) < g(N) then <f,g;W> = $\{\alpha \in \mathbb{R}^{C}_{M} | M \in \mathbb{W} \text{ and } f(M) < \alpha < g(M) \}$ is open in \mathcal{B} . <u>Proof</u>

If $\alpha \in \langle f,g;W \rangle$ then there exists MeW such that $\alpha \in \mathbb{R}_{M}^{c}$ and since \mathbb{R}_{M} dense in \mathbb{R}_{M}^{c} by 6-25 there exists r,seR such that $f(M) \langle r_{M} \langle \alpha \langle s_{M} \langle g(M) \rangle$. Let $V_{l} = \{N \mid \hat{S}(N) \langle g(N) \}, V_{2} = \{N \mid f(N) \langle \hat{T}(N) \}, \text{ and}$ $V_{3} = \{N \mid \hat{Y}(N) \langle \hat{S}(N) \}$. Since $V_{1} = \{N \mid (g-\hat{s})(N) > 0\}$ then by 8-5 and 8-4, V_{1} is open in \mathcal{M} and similarly by 8-3,8-5 and 8-4, V_{2} is open in \mathcal{M} . Now by 7-9, V_{3} is open in \mathcal{M} so $V = V_{1} \cap V_{2} \cap V_{3} \cap W$ is open in \mathcal{M} . Then MeV and $\alpha \in \langle r,s;V \rangle \subseteq \langle f,g;W \rangle$ so that $\langle f,g;W \rangle$ is open in \mathcal{B} .

Lemma 8-8

If f,geF then f+geF.

<u>Proof</u>

Now by 7-4

$$\begin{split} & \operatorname{Me}(f+g)^{-1} \langle r,s;V \rangle \Leftrightarrow \operatorname{MeV} \text{ and } \widehat{f}(M) \langle (f+g)(M) \langle \widehat{s}(M) \rangle \\ & \Leftrightarrow \operatorname{MeV} \text{ and } (\widehat{r}-g)(M) \langle f(M) \langle (\widehat{s}-g)(M) \rangle \\ & \Leftrightarrow \operatorname{Me} \langle (\widehat{r}-g), (\widehat{s}-g);V \rangle . \\ & \operatorname{Thus} (f+g)^{-1} \langle r,s;V \rangle = f^{-1} \langle (\widehat{r}-g), (\widehat{s}-g);V \rangle \text{ which is} \\ & \operatorname{open} \text{ in } \mathcal{M} \text{ by } 8-3, 8-6 \text{ and } 8-7. \\ & \operatorname{Therefore} f+g \in F. \end{split}$$

<u>Lemma 8-9</u>

If $f \in F$ then $|f| \in F$.

Proof

If f(M) > 0 then $M \in W = \{N | f(N) > 0\}$ and W is open by 8-4. Since each R_N^c is totally ordered then f(N) = |f(N)| = |f|(N) for all NEW. So by 5-11, |f|is continuous at M.

If f(M) < 0 then $M \in W = \{N | (-f)(N) > 0\}$ and W is open by 8-3 and 8-4. Now (-f)(N) = |f(N)| = |f|(N)for all NEW so by 8-3 and 5-11, |f| is continuous at M.

If f(M) = 0 then |f|(M) = |f(M)| = 0. If $|f|(M) \in \langle r, s; V \rangle$ then $r_M < 0 < s_M$. Let $V_1 = f^{-1} < r, s; V \rangle$, $V_2 = (-f)^{-1} < r, s; V \rangle$ and $V_3 = V_1 \cap V_2$ so by 8-3, V_3 is open. Since f(M) = (-f)(M) = 0 then $M \in V_3$. Now if $f(N) \ge 0$ then |f|(N) = f(N) so if $N \in V_1$ then $r_N < |f|(N) < s_N$. Similarly if f(N) < 0 then |f|(N) = (-f)N so if $N \in V_2$ then $r_N < |f|(N) < s_N$. Thus $|f|(V_3) \subseteq \langle r, s; V \rangle$ so |f| is continuous at M. Since each R_M^C is totally ordered then |f| is continuous for all Me \mathcal{M} and so $|f| \in F$.

Lemma 8-10

If reR and $r_M > 0$ then there exists V open in \mathcal{M} and a p-unit u in R such that MeV and $r_N = u_N$ for all NeV.

Proof

Since R convex then $\frac{r}{2} \in \mathbb{R}$ and $0 < (\frac{r}{2})_M < r_M$. By 6-6 there exists a p-unit v in R such that $v_M = (\frac{r}{2})_M$. Let $u = v \vee r$ and $V = \{N | v_N < r_N\}$ so by 7-9, V is open in \mathcal{M} and MeV. Now $u_N = v_N \vee r_N = r_N$ for all NeV. Since $u \ge v$ then $u_N \ge v_N > 0$ for all Ne \mathcal{M} by 2-9 and 6-5. Thus by 6-5, u is a p-unit in R.

Lemma 8-11

If fEF and u a p-unit in R then ûfEF.

Proof

Since u a p-unit in R then by 2-18(6), $\frac{1}{u}$ a p-unit in R and $\left(\frac{1}{u}\right)_{M} = \frac{1}{u_{M}} > 0$. If $r_{M} < s_{M}$ for all MeV then by 2-17(25) and 2-9, $\left(\frac{r}{u}\right)_{M} < \left(\frac{s}{u}\right)_{M}$ for all MeV. Now by 2-17(25), 2-9 and 7-4

$$\begin{split} & \operatorname{Me}(\widehat{u}f)^{-1} \langle r, s; V \rangle \Leftrightarrow \operatorname{Me} V \text{ and } r_{\mathsf{M}} \langle \widehat{u}(\mathsf{M})f(\mathsf{M}) \langle s_{\mathsf{M}} \\ & \Leftrightarrow \operatorname{Me} V \text{ and } \frac{r_{\mathsf{M}}}{u_{\mathsf{M}}} \langle f(\mathsf{M}) \langle \frac{s_{\mathsf{M}}}{u_{\mathsf{M}}} \Leftrightarrow \\ & \operatorname{Me} V \text{ and } \left(\frac{r}{u}\right)_{\mathsf{M}} \langle f(\mathsf{M}) \langle \left(\frac{s}{u}\right)_{\mathsf{M}} \Leftrightarrow \operatorname{Me} f^{-1} \langle \frac{r}{u}, \frac{s}{u}; V \rangle \end{split}$$

Thus $(\hat{u}f)^{-1} \langle r,s;v \rangle = f^{-1} \langle \frac{r}{u}, \frac{s}{u};v \rangle$ which is open in Msince feF so $\hat{u}feF$.

Lemma 8-12

If f,geF then $\{M \in \mathcal{M} \mid f(M) \leq g(M)\}$ is open in \mathcal{M} . <u>Proof</u>

Now $\{M \in M | f(M) < g(M)\} = \{M \in M | (g-f)(M) > 0\}$. By 8-3 and 8-8, g-feF so by 8-4, $\{M \in M | (g-f)(M) > 0\}$ is open in M.

Lemma 8-13

If f,gEF and g(M) = 0 then fg is continuous at M. Proof

By 6-25 there exists teR such that $0 \leq |f| (M) \leq t_{M} \leq (|f|+1)(M)$. By 6-6 there exists a p-unit u in R such that $u_M = t_M$. Let $V = \{N | | f | (N) < \hat{u}(N)\}$ then by 8-2, 8-9 and 8-12, V is open in \mathcal{M} . If $fg(M) \in \langle r, s; W \rangle$ then MeW and $r_M < 0 < s_M$. Let $X = \{N \mid |g|(N) < (\frac{s \wedge -r}{n})(N) \}$ then by 8-2, 8-9 and 8-12, X is open in \mathcal{M} . Now $s_{M} > 0$ and $(-r)_{M} > 0$ so $(\underline{s \wedge -r})(M) > 0$ since \mathbb{R}_{M}^{C} is totally ordered and by 2-18(6) and by 2-17(25). Now |g|(M) = |g(M)| = 0 so MeX. Let $Z = V \wedge W \wedge X$ then Z open and McZ. If NcZ then |fg|(N) = |fg(N)| = |f(N)| |g(N)| $= |f|(N)|g|(N) \leq \hat{u}(N)|g|(N) < \hat{s}(N) \land (-\hat{r})(N)$ by 2-17(1,25) so that by 2-23 and 2-17(23) $\hat{r}(N) < fg(N) < \hat{s}(N)$. Thus $fg(Z) \leq \langle r, s; W \rangle$ and $M \in \mathbb{Z}^{-}$ so that fg is continuous at M.

Lemma 8-14

If feF and reR then ffeF.

Proof

If $\hat{\mathbf{r}}(\mathbf{M}) = 0$ then by 8-2 and 8-13, $\hat{\mathbf{r}}\mathbf{f}$ is continuous at M. If $\hat{\mathbf{r}}(\mathbf{M}) > 0$ then by 8-10 there exists V open in $\hat{\mathbf{M}}$ and u a p-unit in R such that MeV and $\hat{\mathbf{u}}(\mathbf{N}) = \hat{\mathbf{r}}(\mathbf{N})$ for all NeV. Thus $(\hat{\mathbf{u}}\mathbf{f})(\mathbf{N}) = (\hat{\mathbf{r}}\mathbf{f})(\mathbf{N})$ for all NeV so by 8-11 and 5-11, $\hat{\mathbf{r}}\mathbf{f}$ is continuous at M. If $\hat{\mathbf{r}}(\mathbf{M}) < 0$ then $\widehat{(-\mathbf{r})}(\mathbf{M}) > 0$ so by above and 8-3, $\widehat{(-\mathbf{r})}(-\mathbf{f}) = \hat{\mathbf{r}}\mathbf{f}$ is continuous at M. Since each $\mathbb{R}^{c}_{\mathsf{M}}$ is totally ordered then $\hat{\mathbf{r}}\mathbf{f}$ is continuous for all Me $\widehat{\mathcal{M}}$ so $\hat{\mathbf{r}}\mathbf{e}\mathbf{F}$.

Lemma 8-15

If f,geF then $f \lor g$, $f \land g \in F$.

Proof

Since R convex $\frac{1}{2} \in \mathbb{R}$. Now S is an f-ring by 7-4 so $f \lor g = (\widehat{\frac{1}{2}})(f+g+|f-g|)$ by 2-18(7). So by 8-3, 8-8, 8-9 and 8-14, $f \lor g \in \mathbb{F}$. Also by 2-17(23) $f \land g = -(-f \lor -g)$ so by 8-3, $f \land g \in \mathbb{F}$.

Definition 8-16

If usS and $u(M) \neq 0$ for all Ms \mathcal{M} then define $\frac{1}{u}(M) = \frac{1}{u(M)}$.

Note that $\frac{1}{u} \in S$ since $\frac{1}{u(M)} \in \mathbb{R}_{M}^{C}$.

Lemma 8-17

ueS is a unit in S iff $u(M) \neq 0$ for all Me \mathcal{M} .

Proof

If $u(M) \neq 0$ then $(u)\left(\frac{1}{u}\right)(M) = u(M)\frac{1}{u(M)} = 1$ so u is a unit in S. If us S is a unit then there exists veS such that uv = 1. Thus for all Me \mathcal{M} , u(M)v(M) = 1so $u(M) \neq 0$ for all Me \mathcal{M} .

Lemma 8-18

If usF then u is a p-unit in F iff u(M) > 0 for all MsM.

Proof

If u a p-unit in F then $u(M) \ge 0$ for all Me \mathcal{M} by 2-9. By 8-17, $u(M) \ne 0$ since u a unit in S so u(M) > 0for all Me \mathcal{M} .

If u(M) > 0 for all Me \mathcal{M} then $\frac{1}{u} \in S$ by 8-16. If $\frac{1}{u}(M) \in \langle \mathbf{r}, \mathbf{s}; \mathbf{V} \rangle$ then $\mathbf{r}_{M} < \frac{1}{u}(M) < \mathbf{s}_{M}$ and MeV. Since u(M) > 0 then by 2-18(6), $\frac{1}{u}(M) > 0$ so by 2-9, $\frac{1}{u}(M) > \widehat{(\mathbf{r} \vee 0)}(M)$ and since \mathbb{R}_{M}^{c} is totally ordered. By 6-25, there exists teR, $(\mathbf{r} \vee 0)_{M} < \mathbf{t}_{M} < \frac{1}{u}(M)$. Let $W = \{N \mid (\mathbf{r} \vee 0)_{N} < \mathbf{t}_{N} < \mathbf{s}_{N}\} \land V$ then MeW and W is open by 7-9. Therefore $\frac{1}{u}(M) \in \langle \mathbf{t}, \mathbf{s}; W \rangle \subseteq \langle \mathbf{r}, \mathbf{s}; V \rangle$. Now by 8-10 there exists open sets U_{1} and U_{2} and p-units \mathbf{v}, \mathbf{w} in \mathbb{R} such that $\mathbf{v}_{N} = \mathbf{t}_{N}$ for all NeU₁ and $\mathbf{w}_{N} = \mathbf{s}_{N}$ for all NeU₂ and also MeU₁ $\land U_{2}$. Let $\mathbf{X} = U_{1} \land U_{2} \land W$ so MeX and $\frac{1}{u}(M) \in \langle \mathbf{v}, \mathbf{w}; \mathbf{X} \rangle \subseteq \langle \mathbf{t}, \mathbf{s}; W \rangle$. By 2-18(3), $\left(\frac{1}{\mathbf{w}}\right)_{N} < \left(\frac{1}{\mathbf{v}}\right)_{N}$ for all NeX and X is open so let $\mathbf{Y} = \mathbf{u}^{-1} < \frac{1}{\mathbf{w}}, \frac{1}{\mathbf{v}}; \mathbf{X} > .$ Now $\left(\frac{1}{w}\right)_{M} < u(M) < \left(\frac{1}{v}\right)_{M}$ by 2-18(3) so MEY. If NEY then NEX and $\left(\frac{1}{w}\right)_{N} < u(N) < \left(\frac{1}{v}\right)_{N}$ so by 2-18(3), $v_{N} < \frac{1}{u}(N) < w_{N}$. Thus $\frac{1}{u}(Y) \leq \langle v, w; X \rangle \leq \langle r, s; V \rangle$ and MEY. Thus $\frac{1}{u}$ is continuous for all ME \mathcal{M} so $\frac{1}{u}$ EF. Since $u(M)\frac{1}{u}(M) = 1$ for all ME \mathcal{M} then $u \frac{1}{u} = 1$ so u is a p-unit in F.

Lemma 8-19

If fcF and f(M) > 0 then there exists V open in M and u a p-unit in F such that McV and f(N) = u(N)for all NcV.

<u>Proof</u>

By 6-25 there exists rER such that $0 < r_M < f(M)$. By 6-6 there exists a p-unit v in R such that $v_M = r_M$. Let $u = \hat{v} \lor f$ so by 8-15, uEF. Now $u(N) \ge \hat{v}(N) > 0$ for all NE \mathcal{M} by 6-5 so by 8-18, u is a p-unit in F. Let $V = \{N | \hat{v}(N) < f(N)\}$ so by 8-2 and 8-12, V is open in \mathcal{M} and MEV. Since each \mathbb{R}_N^C is totally ordered then for all NEV, $u(N) = f(N) \lor \hat{v}(N) = f(N)$. Lemma 8-20

If feF and u a p-unit in F then ufeF. Proof

Now u(M) > 0 for all Me \mathcal{M} by 8-18 so by 2-18(6) and 2-17(25), $\hat{r}(M) < \hat{s}(M)$ iff $\frac{\hat{r}(M)}{u(M)} < \frac{\hat{s}(M)}{u(M)}$ for any r,seR. Also by 8-14, $\frac{\hat{r}}{u}, \hat{s}$ eF. Now by 8-18, 2-18(6) and 2-17(25)
$$\begin{split} & \operatorname{Me}(\operatorname{uf})^{-i} \langle \mathbf{r}, \mathbf{s}; \mathbf{V} \rangle \Leftrightarrow \widehat{\mathbf{r}}(\mathbf{M}) \langle (\operatorname{uf})(\mathbf{M}) \langle \widehat{\mathbf{s}}(\mathbf{M}) \text{ and } \\ & \operatorname{MeV} \Leftrightarrow \frac{\widehat{\mathbf{r}}}{\mathbf{u}}(\mathbf{M}) \langle \mathbf{f}(\mathbf{M}) \langle \frac{\widehat{\mathbf{s}}}{\mathbf{u}}(\mathbf{M}) \text{ and } \operatorname{MeV} \Leftrightarrow \operatorname{Mef}^{-i} \langle \frac{\widehat{\mathbf{r}}}{\mathbf{u}}, \frac{\widehat{\mathbf{s}}}{\mathbf{u}}; \mathbf{V} \rangle \\ & \operatorname{Therefore} (\operatorname{uf})^{-i} \langle \mathbf{r}, \mathbf{s}; \mathbf{V} \rangle = \mathbf{f}^{-i} \langle \frac{\widehat{\mathbf{r}}}{\mathbf{u}}, \frac{\widehat{\mathbf{s}}}{\mathbf{u}}; \mathbf{V} \rangle \text{ which is open} \\ & \operatorname{in} \mathcal{M} \text{ by } 8-7 \text{ and thus ufeF.} \end{split}$$

<u>Lemma 8-21</u>

If f,gEF then fgEF.

Proof

Let Me \mathcal{M} and consider (fg)(M) = f(M)g(M). If g(M) = 0 then by 8-13, fg is continuous at M. If g(M) > 0 then by 8-19 there exists V open in \mathcal{M} and a p-unit u in F such that MeV and u(N) = g(N) for all NeV. Thus (fg)(N) = (fu)(N) for all NeV so by 5-11, fg is continuous at M. If g(M) < 0 then (-g)(M) > 0 by 2-17(3) and 7-4 so fg = (-f)(-g) by 7-4 and by above fg is continuous at M. Therefore fg is continuous for all Me \mathcal{M} so fgeF.

Proposition 8-22

F is a convex f-ring.

Proof

Now S is an f-ring and by 8-3, 8-8, 8-15 and 8-21, F is a sub-l-ring of S so by 2-14, F is an f-ring. If fEF and f > 1 then by 7-4, f(M) > 1 > 0 for all ME M so by 8-18, f is a unit in F. Therefore by 3-1, F is convex.

Lemma 8-23

If for fEF and u a p-unit in F for each M_1 , $M_2 \in \mathcal{M}$ there exists sER such that $|\widehat{s}(M_i)-f(M_i)| \leq u(M_i)$ for i = 1,2 then there exists rER such that $|\widehat{r}-f| \leq u$. <u>Proof</u>

For a given Me \mathcal{M} let $s^N \in \mathbb{R}$ be such that $|\hat{s^{N}}(N)-f(N)| \leq u(N)$ and $|\hat{s^{N}}(M)-f(M)| \leq u(M)$. Let $V_{N} = \{Q | \hat{s}^{R}(Q) - f(Q) < u(Q)\}$ then by 8-3, 8-8 and 8-12, V_N is open in \mathcal{M} and by 2-23, NeV_N so $\{V_N | N \in \mathcal{M}\}$ is an open cover of M. By 4-3, M is compact so a finite subcover of $\{V_N | N \in \mathcal{M}\}$ exists, say for N_1, N_2, \dots, N_P . Let $t^{M} = s^{N_{i}} \wedge \cdots \wedge s^{N_{p}}$ so $t^{M} \in \mathbb{R}$ and \hat{t}^{M} (Q) $\leq \hat{s}^{N_{i}}$ (Q) for all QEM. For any QEM there exists ∇_{N_L} such that $Q \in V_{N}$; so $\hat{s}^{N_i}(Q) - f(Q) < u(Q)$. Therefore $\widehat{t}^{M}(Q) - f(Q) \leq \widehat{s}^{N_{i}}(Q) - f(Q) \leq u(Q)$ by 2-17(2) so by 2-17(2), $\hat{t}^{M}(Q) \leq f(Q) + u(Q)$ for all $Q \in \mathcal{M}_{\bullet}$ Since each $R_{\mathcal{N}}^{\mathsf{C}}$ is totally ordered there exists N; such that $\widehat{t^{M}}(Q) = \widehat{s^{N}}(Q)$. Let $W_{M} = (\bigwedge_{i=1}^{N} \{Q \mid \widehat{s^{N}}(Q) > f(Q) - u(Q)\}$ then as above W_{M} is open in \mathcal{M} and by 2-23 and 2-17(2), MEW_M. Now $\widehat{t}^{M}(Q) = \widehat{s}^{N_{i}}(Q) > f(Q) - u(Q)$ for all $Q \in W_{M}$. Then $\{W_{M} | M \in \mathcal{M}\}$ is an open cover of \mathcal{M} so a finite subcover exists say for M_1, M_2, \cdots, M_q . Let $r = t^{M_i} \vee \cdots \vee t^{M_{\ell}}$ so reR and $\hat{f}(Q) \ge \hat{t}^{M_i}(Q)$ for all QEM. Now for any QEM there exists W_{M_i} such that $Q \in W_M$, so that $\hat{f}(Q) \ge t^{M_i}(Q) > f(Q) - u(Q)$. Thus for all $Q \in \mathcal{M}, r(Q) > f(Q) - u(Q)$ so by 7-4, $\hat{r} \ge f - u$. Since each

 R_Q^C is totally ordered then there exists M_i such that $\hat{r}(Q) = \hat{t}^{M_i}(Q)$ and so $\hat{r}(Q) < f(Q) + u(Q)$ for all $Q \in \mathcal{M}$. Thus by 7-4, $\hat{r} \leq f + u$ and so by 2-17(2) and 2-23, $|\hat{r}-f| \leq u$.

Lemma 8-24

For any fEF, u a p-unit in F and any $M_1, M_2 \in \mathcal{M}$ there exists sER such that $|f(M_i)-\hat{s}(M_i)| \le u(M_i)$ for i = 1, 2.

<u>Proof</u>

By 6-27(1), \mathbb{R}_{M_i} is dense in $\mathbb{R}_{M_i}^{C}$ for the p-unit topology and by 2-18(5), $\frac{u}{2}(M_i)$ is a p-unit in $\mathbb{R}_{M_i}^{C}$. Thus by 6-18, there exists $\mathbf{s}_1, \mathbf{s}_2 \in \mathbb{R}$ such that $|\hat{\mathbf{s}}_i(M_i) - \mathbf{f}(M_i)| \leq \frac{u}{2}(M_i) \leq u(M_i)$ by 2-17(25). If $M_1 = M_2$ let $\mathbf{s} = \mathbf{s}_1$. If $M_1 \neq M_2$ then by 4-4 there exists $\mathbf{r}_1, \mathbf{r}_2 \in \mathbb{R}$ such that $M_i \in \mathbb{S}(\mathbf{r}_i)$ for $\mathbf{i} = 1, 2$ and $\mathbf{S}(\mathbf{r}_1) \cap \mathbf{S}(\mathbf{r}_2) = \emptyset$. Thus $\hat{\mathbf{r}}_1(M_1) \neq 0 \neq \hat{\mathbf{r}}_2(M_2)$ and $\hat{\mathbf{r}}_1(M_2) = \hat{\mathbf{r}}_2(M_1) = 0$. Since \mathbb{R}_{M_1} is a field by 7-1 then there exists $\mathbf{t}_1 \in \mathbb{R}$ such that $\hat{\mathbf{r}}_i(M_1) \hat{\mathbf{t}}_1(M_1) = \hat{\mathbf{s}}(M_1)$ and similarly there exists $\mathbf{t}_2 \in \mathbb{R}$ such that $\hat{\mathbf{r}}_2(M_2) \hat{\mathbf{t}}_2(M_2) = \hat{\mathbf{s}}_2(M_2)$. Let $\mathbf{s} = \mathbf{r}_1 \mathbf{t}_1 + \mathbf{r}_2 \mathbf{t}_2$ then $\mathbf{s} \in \mathbb{R}$ and $\hat{\mathbf{s}}(M_1) = \hat{\mathbf{r}}_1(M_1) \hat{\mathbf{t}}_1(M_1) + \hat{\mathbf{r}}_2(M_1) \hat{\mathbf{t}}_2(M_1) = \hat{\mathbf{s}}_1(M_1)$ and similarly $\hat{\mathbf{s}}(M_2) = \hat{\mathbf{s}}_2(M_2)$. Therefore $|\hat{\mathbf{s}}(M_1) - \mathbf{f}(M_1)| \leq u(M_1)$ for $\mathbf{i} = 1, 2$.

Note that as F is a convex f-ring the p-unit topology can be defined on it.

Proposition 8-25

If F has the p-unit topology then \widehat{R} is dense in F.

Proof

By 8-23 and 8-24 for any feF and any p-unit u in F there exists reR such that $|f-\hat{r}| \leq u$. Thus by 6-18 and 6-2 every neighborhood of f contains an element of \hat{R} so \hat{R} is dense in F.

<u>Lemma 8-26</u>

If u a p-unit in F then there exists a p-unit veR such that $\hat{\mathbf{v}} \leq \mathbf{u}$.

Proof

Since F is convex then 4 and 8 are p-units in F so by 2-18(5,6) $\frac{u}{4}$ and $\frac{u}{8}$ are p-units in F. By 8-25 there exists veR such that $|\hat{v}-\frac{3u}{8}| \leq \frac{u}{4}$ so by 2-23 and 2-17(2) $0 < \frac{u}{8} = (\frac{3u}{8} - \frac{u}{4}) \leq \hat{v} \leq (\frac{u}{4} + \frac{3u}{8}) = \frac{5u}{8} < u$. Thus $0 < \hat{v} < u$ and $\hat{v}(M) \geq \frac{u}{8}(M) > 0$ by 7-4 so by 6-5 v is a p-unit in R.

Proposition 8-27

The p-unit topology on F induces the p-unit topology on \widehat{R} .

<u>Proof</u>

Let $I^{F}(u) = \{f \in F \mid |f| \leq u\}$ for u a p-unit in F and $I^{\hat{R}}(\hat{v}) = \{\hat{r} \in \hat{R} \mid |\hat{r}| \leq \hat{v}\}$ for \hat{v} a p-unit in \hat{R} . By 8-26 for any $I^{F}(u)$ there exists a p-unit v in R such that $I^{F}(\hat{v}) \subseteq I^{F}(u)$. Thus by 6-2 the collection $\{I^{F}(\hat{v}) \mid \hat{v}$ a p-unit in $\hat{R}\}$ is a local base at 0 for the p-unit topology of F. Now $I^{F}(\hat{v}) \land \hat{R} = I^{\hat{R}}(\hat{v})$ so that the collection $\{I^{\hat{R}}(\hat{v}) \mid \hat{v}$ a p-unit in $\hat{R}\}$ is a local base at 0 in the topology induced on \widehat{R} by the p-unit topology on F. Thus by 6-2, the topology induced on \widehat{R} is the p-unit topology.

Definition 8-28

A set V in a convex f-ring R is u-small where u a p-unit if for all $x,y \in V |x-y| \leq u$.

Lemma 8-29

If R is a convex f-ring with the p-unit uniformity then a filter, C, on R is Cauchy iff for all p-units, u, in R there exists Ve C such that V is u-small.

Proof

The result follows from 5-14, 5-23, 5-24, 6-9 and 8-28.

Lemma 8-30

If R is a convex f-ring with the p-unit uniformity then a Cauchy filter, C, on R converges to seR iff for every u-small set VeC, $|v-s| \leq u$ for all VeV.

Proof

Let C be a Cauchy filter on R and sER such that for any u-small set VEC, $|v-s| \leq u$ for all VEV. Let $W_{ij} = \{r \in R | |r-s| \leq u\}$ then by 6-2 and 6-18 the collection $\{W_{ij}|u$ a p-unit in R $\}$ is a local base at s in the p-unit topology. By 8-29 there exists VeC such that V is u-small so by condition $V \subseteq W_u$. By 5-5 and 5-1, C converges to s.

Let C be a Cauchy filter on R converging to scR and let Vc C be a u-small set. If there exists veV such that $|v-s| \leq u$ then there exists Me M such that $|v-s|_M \leq u_M$ by 7-4, 7-5 and 7-6. Since each R_M totally ordered then $|v-s|_M > u_M$ so by 2-17(2,25) and 2-18(5,6) $\left(\frac{|v-s|-u|}{2}\right)_M > 0$. By 6-6 there exists w, a p-unit in R such that $w_M = \left(\frac{|v-s|-u|}{2}\right)_M$. Now if W_W is as above and if $reV \cap W_W$ then $|r-s| \leq w$ and $|v-r| \leq u$ by 8-28 so by 2-17(14,2) $|v-s| \leq |v-r|+|r-s| \leq u+w$. Then by 2-17(2) and 2-18(2)

 $|v-s|_{M} \leq u_{M} + w_{M} \leq \left(\frac{|v-s|+u}{2}\right)_{M} < |v-s|_{M}$. This is a contradiction so $V \cap W_{w} = \emptyset$ and thus by 5-2 and 5-6 s is not an adherence point of C. So by 5-10, s is not a limit point of C which is a contradiction. Therefore for all $v \in V$, $|v-s| \leq u$.

<u>Lemma 8-31</u>

If fcS such that for all p-units ucR there exists rcR such that $|f-\hat{r}| \leq \hat{u}$ then fcF.

Proof

If $f(M) \in \langle s, t; V \rangle$ then MEV and $s_M \langle f(M) \langle t_M \rangle$ and since R_M^C is totally ordered then $(f(M)-s_M) \wedge (t_M - f(M)) > 0$ by 2-17(2). Since R_M dense

in R_mthere exists veR such that $0 < v_M < (f(M)-s_M) \land (t_M - f(M))$ and by 6-6 there exists a p-unit usR such that $u_M = v_M$. Let $W = \{N \mid (s + \frac{u}{2})_N < (t - \frac{u}{2})_N\} \land V$ so by 7-9, W is open in \mathcal{M} and by 6-5 and 2-17(2) $\langle (s+\frac{u}{2}), (t-\frac{u}{2}); W \rangle \subseteq \langle s,t; V \rangle$. Then by 6-5, 2-17(2) and 2-18(5,6) $(s+\frac{u}{2})_{M} \leq (s+u)_{M} \leq f(M) \leq (t-u)_{M} \leq (t-\frac{u}{2})_{M}$ and MeV so MEW. By assumption there exists rER such that $|f-\hat{r}| \leq \left(\frac{\hat{u}}{2}\right)$ so let $X = \hat{r}^{-1} < (s+\frac{\hat{u}}{2}), (t-\frac{\hat{u}}{2}); W > .$ If NEX then $r_N < (t - \frac{u}{2})_N$ so by 2-17(12,2) and 6-5, $f(N) \leq (r+\frac{u}{2})_N < t_N$. Similarly $f(N) > s_N$ and NeW so $f(I) \subseteq \langle s, t; V \rangle$. Also by 2-17(12), $r_M \langle f(M) + \left(\frac{u}{2}\right)_M$ so by 6-5 and 2-17(2), $r + \left(\frac{u}{2}\right)_{M} \leq f(M) + u_{M} < t_{M}$ and so $r_{M} < t_{M} - \left(\frac{u}{2}\right)_{M}$. Similarly $s_{M} + \left(\frac{u}{2}\right)_{M} < r_{M}$ and MeW so MEX. Now X is open in \mathcal{M} since $\widehat{\mathbf{r}} \in \mathbf{F}$ so f continuous Thus f continuous at all ME M so fEF. at M.

Lemma 8-32

Under the natural mapping of R onto R_M let the image of V \subseteq R be V_M and the image of a filter, C, be C_M . If V is a u-small set in R then V_M is a u_M -small set in R_M . If C is a Cauchy filter in R then C_M is a Cauchy filter in R_M .

Proof

If $\beta, \gamma \in V_M$ then there exists $r, s \in V$ such that

 $\beta = r_M$ and $\gamma = s_M$ and since by 8-28, $|r-s| \le u$ then by 2-9, $|r_M - s_M| \le u_M$.

If α a p-unit in \mathbb{R}_{M} then by 6-6 there exists a p-unit veR such that $\mathbf{v}_{M} = \alpha$. Thus if $|\mathbf{r}-\mathbf{s}| \leq \mathbf{v}$ then by 2-9, $|\mathbf{r}_{M} - \mathbf{s}_{M}| \leq \mathbf{v}_{M} = \alpha$ so by 6-10 the natural mapping is uniformly continuous. Thus by 5-26, \mathcal{G}_{M} is a Cauchy filter on \mathbb{R}_{M} .

<u>Lemma 8-33</u>

If C a Cauchy filter in R then G_M is a Cauchy filter base in R_M^c and has a unique limit point in R_M^c . Let lim G_M be this unique limit point.

Proof

By 8-32, C_M is a Cauchy filter on R_M so by 5-25, C_M is a Cauchy filter base on R_M^C . Now R_M is a C-ring so by 6-16, R_M^C is a Hausdorff and complete space in the p-unit uniformity. By 5-28, C_M has a unique limit point in R_M^C .

Lemma 8-34

If G a Cauchy filter on \hat{R} define for by f(M) = lim G_M then for and G converges in F to f. <u>Proof</u>

If VeC is a \hat{u} -small set, \hat{u} a p-unit in \hat{R} , then V_M is u_M-small in R_M^C by 8-32. Since G_M converges to f(M) then by 8-33 and 8-30, $|\hat{v}(M)-f(M)| \leq \hat{u}(M)$ for all $\hat{\mathbf{v}} \in \mathbf{V}$. Thus by 7-4 and 7-6 $|\hat{\mathbf{v}}-f| \leq \hat{\mathbf{u}}$ for all $\hat{\mathbf{v}} \in \mathbf{V}$. Now by 8-29 there exists $\mathbf{V} \in \hat{\mathbf{C}}$ such that \mathbf{V} is $\hat{\mathbf{u}}$ -small for any p-unit $\hat{\mathbf{u}} \in \hat{\mathbf{R}}$ so that for any p-unit $\hat{\mathbf{u}} \in \hat{\mathbf{R}}$ there exists $\hat{\mathbf{r}} \in \hat{\mathbf{R}}$ such that $|\hat{\mathbf{r}}-f| \leq \hat{\mathbf{u}}$. Therefore by 8-31, f \in \mathbf{F}.

Let \mathcal{O} be the Cauchy filter on F generated by \mathcal{C} and let We \mathcal{O} be a v-small set, where v a p-unit in F. Let \mathcal{O}_{M} be the image of \mathcal{O} in \mathbb{R}_{M}^{C} . Now \mathcal{O}_{M} and \mathcal{C}_{M} are bases for the same filter on \mathbb{R}_{M}^{C} so \mathcal{O}_{M} converges in \mathbb{R}_{M}^{C} to f(M). Now $|w_{1}-w_{2}| \leq v$ for all $w_{1}, w_{2} \in W$ so by 7-4, $|w_{1}(M)-w_{2}(M)| \leq v(M)$. Therefore by 8-30 $|w(M)-f(M)| \leq v(M)$ for all weW and thus by 7-4, $|w_{-}f| \leq v$ for all weW. Since feF then by 8-30, \mathcal{O} converges in F to f.

Proposition 8-35

F is complete in the p-unit uniformity. Proof

The result follows from 8-25, 8-27, 8-34 and 5-29. Proposition 8-36

F is a C-ring.

Proof

If fcF and f $\neq 0$ then there exists Mc \mathcal{M} such that $f(M) \neq 0$ so by 7-4 and 2-17(9,13), |f|(M) > 0. Now by 8-19 there exists a p-unit ucF such that u(M) = |f|(M)

so by 2-18(5,6) and 2-17(25), $\left(\frac{u}{2}\right)(M) < |f|(M)$. Thus $f \not\in I\left(\frac{u}{2}\right)$ and so $\bigcap \{I(v) | v \text{ a p-unit in } F\} = \{0\}$. Therefore by 8-22, 6-7 and 6-3, F is a C-ring.

Theorem 8-37

F is the completion of R.

<u>Proof</u>

By 8-36 and 6-7, F is Hausdorff in the p-unit topology and by 8-22 F is a topological f-ring in the p-unit topology. F is complete in its ring uniformity by 8-35. By 8-25, \hat{R} is dense in F and the topology induced on \hat{R} is the p-unit topology by 8-27. By 7-6, R is \mathcal{L} -isomorphic to \hat{R} and R is homeomorphic to \hat{R} since both have the p-unit topology. Therefore by 6-16(3), F is the completion of R.

The following result answers the questions raised after 6-16.

Corollary 8-38

If R is C-ring with the p-unit topology then its completion, R^{c} , is a C-ring with the p-unit topology.

<u>Proof</u>

The result follows from 8-36 and 8-37.

As an application of this theorem consider Archimedian f-rings.

Proposition 8-39

A bounded convex Archimedian f-ring, R, is

l-isomorphic to a sub-f-ring of C(\mathcal{M}), the ring of continuous real valued functions on the maximal ideal space of R, and C(\mathcal{M}) is the completion of R. <u>Proof</u>

By 7-1 and 2-26(1,2) for all Me \mathcal{M} , R_M is a sub-f-field of the reals. By 2-26(3), R is a C-ring so by 7-18, F is \mathcal{L} -isomorphic to C(\mathcal{M}). Thus C(\mathcal{M}) is the completion of R by 8-37.

Corollary 8-40

A bounded Archimedian f-ring, R, is ℓ -isomorphic to a sub-f-ring of $C(\mathcal{M})$.

Proof

If $\frac{a}{b}, \frac{c}{d} \in \mathbb{R}$ and $n\left(\frac{a}{b}\right) \leq \frac{c}{d}$ for all positive integers, n, then by 2-17(1), $n(ad) \leq bc$ and by 2-25(2), $ad \leq 0$. Thus by 2-17(3), $-(ad) \geq 0$ so by 3-4, $-a \geq 0$. Then by 2-18(6) and 2-17(1), $-\frac{a}{b} \geq 0$ so that by 2-17(3), $\frac{a}{b} \leq 0$. Therefore \widehat{R} is Archimedian.

Since R a sub-f-ring of \widehat{R} then by 8-39 and 4-6, R is \mathcal{L} -isomorphic to a sub-f-ring of $C(\mathcal{M})$.

- [1] G. Birkhoff and R.S. Pierce, <u>Lattice-ordered Rings</u>, An. Acad. Brasil. Ci., Vol. 28 (1956), pp.41-69.
- [2] G. Birkhoff, Lattice Theory, New York, 1948.
- [3] N. Bourbaki, <u>Topologie Générale</u>, Ch. I and II, Paris, 1961.
- [4] N. Bourbaki, <u>Topologie Générale</u>, Ch. III and IV, Paris, 1960.
- [5] N.J. Fine, L. Gillman, and J. Lambek, <u>Rings of Quotients</u> of Rings of Continuous Functions, McGill, 1965.
- [6] L. Gillman and M. Jerison, <u>Rings of Continuous Functions</u>, Princeton, 1960.
- [7] M. Henriksen and D.G. Johnson, <u>On the Structure of a</u> <u>Class of Archimedian Lattice-ordered Algebras</u>, Fund. Math., Vol. 50 (1961), pp.73-94.
- [8] D.G. Johnson, <u>A Structure Theory for a Class of Lattice-ordered Rings</u>, Acta Math., Vol. 104 (1960), pp.163-215.
- [9] D.G. Johnson, On a Representation Theory for a Class of Archimedian Lattice-ordered Rings, Proc. London Math. Soc. (3), Vol. 12 (1962), pp.207-225.
- [10] J. Kist, <u>Representations of Archimedian Function Rings</u>, Illinois J. Math., Vol. 7 (1963), pp.269-278.