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ABSTRACT

Follow-up studies on a group of units such as subjects, geographical, or eco-

logical regions, are frequently carried out to explore the evolution of one or more

observations over time. After several initial or baseline observations, either due to

some intervention or natural cause, the distribution of the observations may change.

When the unit-specific instants at which the changes in the distribution occur are not

directly observable, statistical inference falls under the general heading of change-

point inference. In this thesis we investigate the problem of covariate selection for

multi-path change-point models of the type described above. Often, in applications

many covariates are used and their contributions to the pre- and post-change ob-

servation distributions, as well as the change-point distribution, may be different.

This creates a complex variable selection problem. The very few existing methods

for variable selection in multi-path change-point models depend on either Akaike’s or

the Bayesian Information Criterion and are computationally infeasible, when there

are even only a moderately large number of covariates. Here, we propose for the

first time a penalized likelihood approach using modern regularization methods to

overcome these difficulties; these include the use of the LASSO, SCAD, HARD and

Ridge Regression penalty functions, which, in some cases, allow for simultaneous

variable selection and parameter estimation. Our new approach is shown to be con-

sistent in variable selection and parameter estimation. We assess the performance of

our method through simulations, and demonstrate its usage in modeling cognitive

decline in subjects with Alzheimer’s disease.
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ABRÉGÉ

Des études de suivi portant sur des groupes d’éléments tels que des individus, ou

des régions géographiques ou écologiques, sont souvent réalisées dans le but d’obtenir

plus d’informations sur l’évolution d’un ou plusieurs de ces éléments au fil du temps.

À la suite d’observations initiales ou de référence d’un certain nombre d’éléments,

la loi des valeurs observables peut être sujette à changement dû à une intervention

expérimentale ou une cause naturelle. Le moment précis au cours duquel la loi

d’une valeur change n’est parfois pas lui-même observable ; dans ce cas, l’inférence

statistique suit le cadre général dit d’inférence sous point de rupture. Dans cette

dissertation, nous considérons le problème du choix des covariables dans les modèles

de point de rupture à plusieurs trajectoires décrits plus haut. Il arrive souvent dans

les faits que plusieurs covariables à la fois soient utilisées et que leurs incidences sur

les lois pré- et post-rupture diffèrent. Ceci induit un problème complexe de choix des

covariables. Les très rares méthodes existantes pour effectuer ces choix sont basées

sur les critères d’information d’Akaike ou bayésien, et mènent à des problèmes inso-

lubles même pour un nombre modeste de covariables. Pour surmonter ces difficultés,

nous proposons ici, pour la première fois, une approche de vraisemblance pénalisée

fondée sur des méthodes modernes de régularisation. Ces méthodes comprennent

le LASSO, SCAD, HARD et la fonction de pénalisation de la régression ridge qui,

dans certains cas, permettent la sélection de covariables et l’estimation de paramètres

simultanément. Nous démontrons que notre nouvelle approche est convergente en

regard du modèle et des paramètres sous-jacents. Nous évaluons le rendement de
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notre méthode par la voie de simulations et illustrons son utilisation pour modéliser

le déclin cognitif de patients atteints de la maladie d’Alzheimer.
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procedure, are new.

6. The application of penalized likelihood methods to the assessment of determinants

of cognitive decline in subjects with Alzheimer’s disease is new, when the model

allows for changes in the rate of decline at random unknown time instants.
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CHAPTER 1
Introduction

This thesis brings together two topics that, separately, have been the subject

of much research, over the past couple of decades. These are penalized likelihood

methods and change-point problems. The current literature on the use of modern

regularization methods to carry out variable selection in change-point problems is

restricted to two papers (Anraku 1999, Ninomiya 2005) and these address problems

different from those in this thesis. By proposing methods for simultaneous variable

selection and parameter estimation in both the observation distribution(s) and the

change-point distribution, we fill a gap in the literature.

Change-point problems in which explanatory variables (covariates) form part

of the model provide natural settings for the application of penalized likelihood

methods. We begin with an example that demonstrates the need for methods beyond,

for example, the Bayesian Information Criterion (BIC) (Schwarz 1978) or Akaike’s

Information Criterion (AIC) (Akaike 1973).

In Alzheimer’s disease (AD), the rate of progression is highly variable and there

has been much interest in the identification of factors associated with cognitive de-

cline, for example, age, education, and sex (Mortimer et al. 1992, Hall et al. 2007).

Further, some studies have suggested that the rate of cognitive decline in patients

with AD is not constant and is piece-wise linear (Joseph et al. 1999, Hall et al. 2000),



and most researchers would agree that, broadly, there is an initial stable period fol-

lowed by a period of roughly linear decline, ending with another relatively stable

period, late in the disease process. Therefore, it is reasonable to assume the obser-

vation distributions of a measure of cognitive ability, recorded on subjects over time,

might change at unknown time-points. In this so-called multi-path change-point set-

ting, selection of the factors associated with cognitive decline presents computational

challenges.

Criteria for the selection of these relevant factors such as AIC and the BIC are

prohibitively expensive when the number of potential submodels is very large. For

instance, in the Alzheimer’s disease application that we present in Chapter 6, with

only ten covariates and five follow-up observations on each subject, the number of

submodels is 242 which makes the use of AIC and the BIC for variable selection

infeasible (The pre- and post-change observation distribution regression models in-

clude ten covariates and four interaction terms and have 214 × 214 submodels, while

the change-point regression model which includes ten covariates in addition to four

possible increments in the logit of the baseline hazard, has 210 × 24 possible sub-

models). These difficulties are a feature of variable selection problems in multi-path

change-point models in general. In this thesis, we present a computationally efficient

method for variable selection in such models.

Amongst the first change-point papers for fixed sample sizes were those by Hink-

ley (1970), and Feder (1975a, 1975b) on single-path change-point models. (We

will formally define the single-path and multi-path change-point models in Chap-

ter 2). Hinkley considered maximum likelihood estimation (MLE) in the single-path

2



change-point setting for binomial random variables, while Feder considered single-

path change-point regression models. The long lists of references in the review articles

by Hackl and Westlund (1989) and Khodadadi and Asgharian (2006) represent only

a fraction of the single-path change-point literature. Since our current work is con-

cerned with the multi-path change-point setting, we shall not attempt to review the

single-path change-point literature.

The multi-path change-point model was first introduced by Joseph (1989). He

considered sequences of conditionally independent observations, each with a change-

point. This early work was followed by several applications of multi-path change-

point models (Lange et al. 1992, Joseph and Wolfson 1992, 1993, Joseph et al. 1997,

Bélisle et al. 1998, Beckage et al. 2006). Later, Joseph et al. (1996) introduced

sequences of correlated random variables with a change in each path and used a multi-

path autoregressive change-point model to capture changes in silt concentration as a

function of depth at different geographical sites. Although Young (2012) considered

multi-path change-point regression models, he assumed fixed probabilities of change

at different time-points, with covariate information only in the regression models

before and after the change. Moreover, he neither allowed the covariates in the

change-point distribution nor carried out variable selection for his proposed model.

Further, in the multi-path change-point literature few attempts were made to

include covariates in the model, and in particular, no model included covariates in

the change-point distribution until the work of Asgharian and Wolfson (2001). See

Lange et al. (1992) and Joseph and Wolfson (1992) and Joseph et al. (1999), who

introduced covariates only to model the observation distributions.

3



Multi-path change-point models with covariates in the change-point distribution

can be considered as mixture-of-experts models (Jacob et al. 1991). The basic

assumptions for these two models are, however, different as will be pointed out in

Section 4.1 of Chapter 2. The above authors were concerned with estimation rather

than variable selection. There is a limited literature on variable selection for mixture-

of-experts models (Khalili 2010).

In a broad setting, suppose we observe a stochastic process, {Yt, t ∈ [0,T]} =

{Yt}, where without loss of generality the index t ∈ [0,T] represents time. At

some unknown time-point τ ∈ [0,T], it is assumed that the distribution of Xt might

change (if τ = T , by convention, no change is said to have occurred). In the simplest

case, we allow only one possible change-point. The main inferential issues that are

commonly considered are: 1) Determining if any change occurred in the distribution

of the stochastic process. 2) If a change has occurred, estimating the time to change

and 3), estimating the distributions before and after the change - assuming there

has been one. For brevity, we shall simply refer to the observation distributions;

for example, blood pressure readings on a subject, over time may be modelled as a

stochastic process. If the subject undergoes a medical intervention, it is possible for

the distribution of blood pressures to change. However, we expect this distribution

will often change with a lag which is not directly observable. It is also possible that

the intervention will have no effect. Now suppose that instead of a single stochastic

process on [0,T], we observe n stochastic processes, each on [0,T], corresponding to

n subjects, each with the possibility of a change, at τi ∈ [0,T], for i = 1, 2, . . . , n.

4



This is called a multi-path change-point setting. For now, we avoid the details of the

model assumptions; we will discuss them in Chapter 2.

In the above description, we have assumed the changes to be sudden. This could

happen, for example, if there is an unobservable underlying latent process which

induces a sudden change only when the process crosses a certain threshold. Threshold

models have been considered by Tong (1983), Petruccelli and Davies (1986), Chan

and Tsay (1998) and Tsay (1997). Alternatively, we might consider a two-distribution

sudden change model as a first approximation to a model that allows for a gradual

change. A further extension would include bi-phasic regression models as illustrated

by our example in Chapter 6.

Now, in practice, one takes a discrete set of observations on [0,T] for each path,

leading naturally to a random effects model that includes the τis, the path-specific

change-points, as random effects with distributions, P (τi = k), k = 1, 2, . . . ,m, i =

1, 2, . . . , n. This random effects model permits us to draw strength from the ensemble

of n sequences of observations. To be consistent with the change-point literature, we

shall refer to the index τi, induced by the discrete sampling of each process {Yt}, as

the change-point for the ith sequence of observations, Yij for j = 1, 2, . . . ,m and τi

could be any of the points, 1, 2, . . . ,m. When τi = m no change is said to occur.

Extending our model, it is clear that in most applications the observation dis-

tributions will depend on path (sequence)-specific covariates. We shall also assume

that the change-point probabilities, P (τi = k), depend on path-specific covariates,

Xi = (Xi1, Xi2, . . . , Xip) where p represents the number of covariates. However, in

order to be able to draw strength from the different sequences we shall assume that
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covariate effects are common across the sequences. Thus, we shall consider a dis-

crete set of conditionally independent observations given the change-points and other

model parameters.

It is common to introduce a large number of predictors at the initial stage of

modelling, but this is not always the best choice. In this thesis, we present variable

selection methods for covariates that affect both the change-point distribution as

well as the observation distributions before and after the change-point.

Wahba (1990), and Green and Silverman (1994) and the references therein, in-

troduced penalized likelihood methods using quadratic penalty functions. These

reduce the variability of estimators via an L2-norm (ridge regression) penalty func-

tion. Perhaps the three most used penalty functions are the LASSO (Tibshirani

1996), the SCAD (Fan and Li 2001), and the HARD (Fan and Li 2002). The LASSO

is based on an L1-norm penalty function, and the SCAD and the HARD are weighted

sums of L1- and L2-norms. Harchaoui and Lévy-Leduc (2010) used the LASSO and

LARS penalty functions to identify the location of change-points in one dimensional

piece-wise constant signals observed in the presence of white noise. The SCAD and

the HARD have the oracle property, meaning that the penalized maximum likeli-

hood estimators perform as well as maximum likelihood estimators of the nonzero

parameters knowing which parameters are equal to zero. Here, we consider these

three penalty functions to simultaneously carry out model selection and parameter

estimation. Our penalized likelihood approach is shown to be consistent in variable

selection and parameter estimation. We assess its performance through simulations,
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and demonstrate its usage in modelling cognitive decline in subjects with Alzheimer’s

disease.

The layout of this thesis is as follows. In Chapter 2, we formally introduce

change-point models, in particular multi-path change-point models. We discuss the

similarities and differences between our model and the mixture-of-experts model.

We also assess the identifiability of our change-point models. In Chapter 3, we dis-

cuss several common variable selection approaches and the advantages of applying

a penalized likelihood approach. We emphasize the penalty functions we use in this

thesis and their properties. We present our model and numerical methods for esti-

mation in Chapter 4. We also derive the asymptotic properties of these estimators.

In Chapter 5, we investigate the finite sample properties of our methods through

simulations, and in Chapter 6 we use our methods to study predictors of cognitive

decline in subjects with Alzheimer’s disease. Chapter 7 includes closing remarks and

suggestions for several possible further research directions.
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CHAPTER 2
Change-point Problems

In many single change-point settings we observe a sequence of ordered random

variables at successive time-points or locations. A priori, we believe that a change

over time/location in the data may have occurred. That is, the random variables

before the change cannot be exchanged with the variables after the change. The

defining feature is that if a change has occurred, the location of this change-point

is unknown. There are three main problems of statistical inference that arise from

such data: i) Test whether a change has occurred, ii) If there is a reason to believe

that a change has occurred, make inference about the location of the change and iii)

make inference about the pre- and post-change-point observation distributions.

Definition 1. The single-path change-point model: Let Y1, Y2, . . . , Ym be

observations (responses) on the time interval [0, T ], taken at equally spaced time-

points 0 = t1 < t2 < · · · < tm = T . We say a change occurs at τ = k for k =

1, 2, . . . ,m − 1, if Y1, Y2, . . . , Yk have joint cumulative distribution function (c.d.f.)

F0(·), and Yk+1, Yk+2, . . . , Ym have joint cumulative distribution function F1(·) which

is different from F0(·). If τ = m, we say there is no change in the distribution of

the sequence of observations. Henceforth, we shall assume that Y1, Y2, . . . , Yk are

independent and identically distributed (i.i.d), conditional on k and other model

parameters. Similarly, for Yk+1, Yk+2, . . . , Ym. Under this assumption, F0(·) and

F1(·) will be the respective marginal c.d.f.s of Yis.
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For the observation distributions there are several possibilities:

1) The cumulative distribution functions, F0(·) and F1(·) are completely unspec-

ified.

2) F0(·) and F1(·) are specified up to a finite number of unknown parameters, θ0

and θ1. That is, F0(·) = F0(·, θ0) and F1(·) = F1(·, θ1).

3) Under 2), even θ0 and θ1 are specified a priori.

For the third scenario, inference is then only about the change-point, while in the

first and second scenarios, inference is often made about the observation distributions

F0 and F1 as well.

A common change-point model assumes the observation random variables are

identically normally distributed both before and after the change, while their means

θ0 and θ1 differ but their variances do not.

Although not the setting of this thesis, it is possible to assume multivariate

distributions with a correlation structure for the random variables both before and

after the change. We avoid this added complexity in this thesis since the large number

of unknown parameters with which we must contend in our simpler model provides

a considerable challenge on its own.

Another generalization is to allow for multiple change-points, thereby once more

introducing additional complexity into the model. We restrict our discussion to a

single change-point scenario.

2.1 Multi-path Change-point Problems

Multi-path change-point settings differ from their single-path counterparts in

that there are n paths, or sequences, of observations, usually each with m follow-up
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observations over time (or location). It is common to assume independence between

paths, and we will do so here. If we instead were to assume the paths to be correlated,

this correlation would need to be modelled.

In the multi-path setting, it is assumed that the change for each path can happen

at a different time-point (location). If we assume that each path represents a different

subject, this means that each subject’s observation distribution changes at a different

time-point, as might be the case, for example, in the longitudinal follow-up of a group

of study subjects of size n. If the change-points are unknown parameters, they con-

tribute n unknown parameters to the model in addition to the unknown parameters

of the observation distributions before and after the change. To overcome potential

over-parametrization, we may impose a distribution on the change-points. We shall

take this approach and refer to this distribution as the change-point distribution.

We now formally introduce the model we propose for the multi-path change-point

setting.

Definition 2. The multi-path change-point model: Let observations (re-

sponses) on the time interval [0, T ] be taken on n subjects, at equally spaced time-

points 0 = t1 < t2 < · · · < tm = T . Let (Yi,Xi) = (Yi1, Yi2, . . . , Yim, Xi1, Xi2, . . . , Xip),

denote the vector of observations for subject i, where Yi corresponds to the vector

of responses over time and Xi corresponds to the vector of p fixed covariates that ac-

company each subject. The corresponding realized values are denoted by (yi,xi) =

(yi1, yi2, . . . , yim, xi1, xi2, . . . , xip), y = (y1,y2, . . . ,yn) and x = (x1,x2, . . . ,xn). For

simplicity, we shall refer to each path as a subject. We denote the observation on the

ith subject at the `th time by yi`. We shall call τi a change-point for the observations
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on subject i if the observations before the change-point, Yi1, Yi2, . . . , Yiτi , have a differ-

ent distribution from the observations after the change-point, Yiτi+1, Yiτi+2, . . . , Yim.

Specifically, τi is said to be a change-point if, conditional on τi = ki, the observa-

tions Yi1, Yi2, . . . , Yiki have probability density function fi0(·) and the observations

Yi(ki+1), Yi(ki+2), . . . , Yim have probability density function fi1(·), which is different

from fi0(·). If τi = m, we say there is no change in the distribution of the sequence

of observations.

We assume there are no missing values in the sequences of observations or in

the vectors of covariates. The realizations on n paths form a matrix as follows:

τ1

...

τn


Y11 . . . Y1m

...
...

...

Yn1 . . . Ynm


The final step in defining our model is to specify how we include covariates.

2.1.1 Introducing Covariates into the Model

We begin by specifying how the observation distribution depends on putative

covariates. Following common practice, we assume that the covariates enter through

an appropriate link function. For example, the observations could follow a gener-

alized linear model, or a linear model with normal errors. In our simulations and

example, we impose linear models for the observations before and after the change-

point. The change in the distribution occurs through the change in the regression

coefficients - that is, the covariate effects change after the change-point. In the lin-

ear model with time as a covariate, if τi = k, for k = 1, . . . ,m − 1, we assume
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Yil
i.d∼ N(β10 + η1l + x>i β1, σ

2
1) for l = 1, 2, . . . , k and Yil

i.d∼ N(β20 + η2l + x>i β2, σ
2
2)

for l = k + 1, k + 2, . . . ,m, respectively. We shall call τi < m a change-point for

i = 1, 2, . . . , n if, conditional on τi = ki and the covariate values xi, the obser-

vations Yil for l = 1, 2, . . . , ki have probability density function f ∗1 (·;θ1(l,xi), σ
2
1),

respectively and the observations Yil for l = (ki + 1), (ki + 2), . . . ,m have proba-

bility density function f ∗2 (·;θ2(l,xi), σ
2
2), which is different from f ∗1 (·;θ1(l,xi), σ

2
1),

respectively. We assume θk(l,xi) = g(βk0 + ηkl + x>i βk) for k = 1, 2, where

g(·) is a known link function and (β10, η1,β1) = (β10, η1, β11, β12, . . . , β1p)
> and

(β20, η2,β2) = (β20, η2, β21, β22, . . . , β2p)
> are vectors of regression parameters be-

fore and after the change, respectively. The variance of the observation distribution

before the change is denoted by σ2
1 and the variance after the change, by σ2

2. In our

simulations and real data analysis we assumed σ2
1 = σ2

2. We denote the vector of

parameters of the observation distributions by Υ = (β10, η1,β1, β20, η2,β2, σ
2
1, σ

2
2).

2.2 The Change-point Distribution

The change-points in our model have discrete distributions. To introduce co-

variates into the change-point distributions, given Xi = xi, we assume that for each

i, τi has a probability mass function, P (τi = ki|xi,α∗) for ki = 1, 2, . . . ,m, where

α∗ is a vector of parameters in the change-point distribution to be defined later.

The τis are not directly observable; they can be considered as latent variables. The

distributions of the τis, therefore, are seen to differ from subject to subject through

their respective covariate vectors, xis.

Let πk(xi) = πk(xi,α
∗) be the conditional probability of a change at the kth

time-point for the ith subject with covariate vector xi, given that there has been no
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change at any of the previous k − 1 time-points in the sequence of observations. By

conditioning backwards, we have:

P (τ = k|xi,α∗) =



πk(xi,α
∗) k = 1

πk(xi,α
∗)

k−1∏
l=1

(1− πl(xi,α∗)) k = 2, . . . ,m− 1

m−1∏
l=1

(1− πl(xi,α∗)) k = m.

(2.2.1)

Therefore, it is sufficient to specify how πk(xi,α
∗) depends on xi. We can

consider the change-point problem in a simple survival analysis setting with one

failure time since “failure” is an absorbing state. This survival analysis analogy is

hypothetical, since we do not actually observe the change-point (failure time). Apart

from this difference, change-point and failure time are equivalent. Hence, the hazard

of a change is the same as the hazard of a failure. Since, by definition, a change

can only occur at one of the discrete time-points in the sequence of observations,

the change-point model may be considered as a discrete survival analysis model

with covariates. A common method of modelling the hazard of failure in a discrete

setting is through a proportional odds model, and therefore, we introduce covariates

into the change-point distribution through a proportional odds model for the hazard

of change. Let xi1 and xi2 be two covariate vectors. The proportionality of the odds

implies that
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πk(xi1)

1− πk(xi1)
πk(xi2)

1− πk(xi2)

= exp{(xi1 − xi2)>α}. (2.2.2)

This form of the odds ratio yields a specific form for the hazard function. If we

set xi1 = xi and xi2 = 0, then

πk(xi)

1− πk(xi)
πk(0)

1− πk(0)

= exp(x>i α).

Calling πk(0) = ρk, the baseline hazard at time k, we have

πk(xi)

1− πk(xi)
=

ρk
1− ρk

exp(x>i α).

By regarding the πk(xi,α
∗)s as the hazards in a proportional odds model and

setting
ρk

1− ρk
= exp

(
k∑
l=1

α0l

)
, we obtain

πk(xi,α
∗) =

exp

{
k∑
l=1

α0l + x>i α

}

1 + exp

{
k∑
l=1

α0l + x>i α

} . (2.2.3)

for k = 1, 2, . . . , (m−1) whereα∗ = (α01, α02, . . . , α0(m−1),α) = (α01, α02, . . . , α0(m−1),

α1, α2, . . . , αp). In this model, α0k corresponds to the increment in the baseline haz-

ard at the time-point tk (see Asgharian (2013) for details). In Chapter 4, we will

discuss the reason for our different parameterization from his.
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Finally, under the proportional odds assumption, using (2.2.3) we arrive at the

following model for the change-point distribution that includes covariates:

P (τ = k|xi,α∗) =



exp

{ k∑
l=1

α0l + x>i α

}

1 + exp

{ k∑
l=1

α0l + x>i α

} k = 1

exp

{ k∑
l=1

α0l + x>i α

}

1 + exp

{ k∑
l=1

α0l + x>i α

} k−1∏
l=1


1

1 + exp

{ l∑
s=1

α0s + x>i α

}
 k = 2, . . . ,m− 1

m−1∏
l=1


1

1 + exp

{ l∑
s=1

α0s + x>i α

}
 k = m.

(2.2.4)

2.3 Likelihood Function

Conditional on the τis and covariates, we assume the m×n observations Yij are

independent. Hence, the conditional joint density for the ith subject, given τi = ki

and covariates, is

fki(yi|xi,Υ) =

ki∏
l=1

f ∗1 (yil|θ1(l,xi), σ
2
1)

m∏
l=ki+1

f ∗2 (yil|θ2(l,xi), σ
2
2) (2.3.1)

for ki = 1, . . . ,m− 1, while

fm(yi|xi,Υ) =
m∏
l=1

f ∗1 (yil|θ1(l,xi), σ
2
1). (2.3.2)

Note that if τi = m, by convention, no change is said to occur.
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The joint density for the ith subject, given the covariates and averaging over the

possible change-points, is

f(yi|xi,Φ) =
m∑
k=1

p(τi = k|xi,α∗)fk(yi|xi,Υ), (2.3.3)

which has the form of a mixture model, and Φ = (Υ,α∗) = (β10, η1,β1, β20, η2,β2, σ
2
1,

σ2
2,α

∗) is the vector of all the parameters in the model. Using the conditional

independence of the observations between subjects, the unconditional (on τ ) joint

density over all subjects is:

Ln(Φ) =
n∏
i=1

f(yi|xi,Φ) =
n∏
i=1

[
m∑
k=1

p(τi = k|xi,α∗)fk(yi|xi,Υ),

]
. (2.3.4)

The likelihood (2.3.4) was introduced by Asgharian (1998) and Asgharian and

Wolfson (2001).

2.3.1 Mixture-Of-Experts Models (MOEs): Similarities and Differences

The likelihood in the multi-path change-point setting considered in this thesis

is a mixture and is sometimes called a mixture-of-experts model. In the mixture-of-

experts models, covariate information is included in the mixing proportions as well

as the observation distributions. Variable selection is more difficult in this type of

mixture model than in standard mixture models.

It is important to examine the similarities between general mixture models and

our change-point mixture model. In particular, we shall compare our model with so-

called mixture-of-experts models to which variable selection methods have already

been applied (Khalili 2010).
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The most general finite mixture model consists of m (possibly multivariate) mix-

ture component distributions, and m corresponding mixing proportions (weights).

The mixture distribution is then the weighted sum of the mixture components.

Mixture-of-experts models form a subclass of general mixture models. They are

characterized by the following features:

1) The m mixture components could be multivariate.

2) Covariates are assumed to affect the outcomes associated with the mixture

components. Each mixture component is assumed a priori to be characterized

by a different covariate effect vector.

3) The mixing proportions may also depend on covariates whose covariate effect

vectors are the same for all mixing proportions.

4) A single observation drawn from this model consists of an observed covariate

vector (the covariates deemed, a priori, to be relevant to the mixture or mixing

components) and the outcome variable drawn from the mixture distribution

(the weighted sum).

5) Under conditional independence, the joint likelihood of n such observations is

the product of the weighted sums introduced in feature 4).

6) The mixture components are exchangeable, meaning that there is no difference

in the model if we exchange the order of any two components. (A permutation

does not change the model).

Our main goals are variable selection and covariate effect estimation. In mixture-

of-experts models, these goals are achievable provided the number of mixture compo-

nents is small (generally no more than four) and the outcome variable is univariate.
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The multi-path change-point mixture model is characterized by the following

features.

1) The structure of the model unavoidably induces multivariate mixture com-

ponents: at the lowest level in the structure, each observation point in time

results in a univariate observation drawn from one of two possible distributions.

Given the change-point occurs at k ( for k = 1, 2, . . . ,m), the observations up

to and including the kth are drawn from the first distribution and those oc-

curring from the (k + 1)th to the mth are drawn from the second distribution.

At the next level, under conditional independence of the observations for each

subject, the joint distributions of the observations before and after the change-

point k, are, respectively, k- and (m − k)-dimensional. At the third level, the

product of these two multivariate distributions defines the distribution of the

m-dimensional kth mixture component. The uncertainty in the location of the

change-point means that the unconditional m-dimensional joint distribution of

all m univariate observations taken on a subject is a mixture distribution, with

mixing proportions that depend on the possible locations of the change-point.

2) Covariates are assumed to affect the outcomes associated with the univariate

distributions introduced in feature 1), and hence the multivariate mixing com-

ponents. These covariate effects are assumed to be the same for all subjects.

3) Each mixing proportion may also depend on covariates whose covariate effect

vectors are the same for all mixing proportions, and for all subjects.

4) A single observation vector comprises an observed covariate vector for a specific

subject (the union of the covariates deemed, a priori, to be relevant to the two
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univariate distributions and those pertinent to the mixing (i.e., change-point)

distribution), and the multivariate outcome variable drawn from the mixture

distribution (the weighted sum).

5) Under conditional independence, the joint likelihood of n such observations

is the product of the weighted sums of observation distributions introduced in

feature 4). Recall that our main goals are variable selection and covariate effect

estimation. In the multi-path change-point model, these are achievable even

when the number of mixture components is large.

6) The components of the mixture likelihood are not exchangeable. Since the

components are ordered by the location of the change, they cannot be per-

muted.

This model contrasts with mixture-of-experts models due to the assumption of

common covariate effects on the outcomes and on the special structure of the mul-

tivariate mixture components. The time order in which the univariate observations

occur contributes to this structure.

2.4 Inference for Single- and Multi-path Change-point Problems

In our change-point model, inference is about the unknown parameters intro-

duced into the model. In a single-path change-point setting, inference is about the

pre- and post-change observation distributions and the location at which a change

may have occurred. For different approaches in this setting, see Hinkley (1970), and

Smith (1975), who took frequentist and Bayesian approaches, respectively, to make

inference about their proposed model.
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In our multi-path change-point setting, our inference is likelihood-based and

covers both observation distributions before and after the change as well as the

change-point distribution. Perhaps the first attempt to model the change-point dis-

tribution as a function of covariates was by Asgharian (1998) and Asgharian and

Wolfson (2001). Alternatively, Joseph and Wolfson (1992) and Lange et al. (1992)

had a Bayesian perspective. As we shall soon see in Chapters 3 and 4, a straight

likelihood approach often cannot be used and must be modified by the introduction

of a penalty function. Indeed, penalized likelihood methods are essential to this

dissertation.

2.5 Identifiability of the Model

An important consideration in the application of multi-path change-point models

is that of identifiability. In general, the identifiability of a family of distribution

functions is defined as follows:

Definition 3: A parametric family of probability distributions P = {FΦ; Φ ∈

Θ}, on a sample spaceW , which has density f(·; Φ) with respect to a σ-finite measure

µ is identifiable when, for any Φ,Φ∗ ∈ Θ, if f(w; Φ) = f(w; Φ∗) almost everywhere

with respect to µ, then Φ = Φ∗.

The introduction of covariates into the model leads us to consider the conditional

distribution (with respect to covariate values) when defining identifiability. Since

our multi-path change-point model (2.3.4), is a special form of mixture models,

we discuss the identifiability of mixture models, in particular the finite mixture-of-

experts model. For this model, identifiability is defined as follows:
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Definition 4: A finite mixture-of-experts model with the conditional density

function given a design matrix x

f(y;x,Φ) =
m∑
j=1

πj(x,αj)fj(y;x,βj), (2.5.1)

(where Φ = (α1,α2, . . . ,αm,β1,β2, . . . ,βm) is the vector of all the parameters in

the model and αj and βj are vectors of parameters in the mixing proportion and

observation distribution, respectively for the jth component for j = 1, 2, . . . ,m), is

identifiable when for any two Φ,Φ∗ ∈ Θ, f(y;x,Φ) = f(y;x,Φ∗) for almost all y,

implies Φ = Φ∗.

In a mixture-of-experts model, if the order of the components changes, Φ changes

as well. Thus, in Definition 4 of identifiability, Φ = Φ∗ only up to a permutation in

the mixture components.

Although multi-path change-point models have a similar form to (2.5.1), they

do not fall exactly into the class of models assumed in Definition 4. This is due to

the ordering of the mixing proportions, or probabilities of change at different time-

points. These components are not exchangeable, since altering the possible times of

change alters the components in the multi-path change-point model.

There are other approaches to the problem of identifiability in this setting.

Young’s (2012) discussion of identifiability in mixtures of regression models with

change-points has similarities to our model. However, his setting is different from

ours:
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1. In Young’s model, the mixing proportions are fixed unknown parameters, while

in our model the mixing proportions depend on the vectors of covariates for

different subjects.

2. In order to ensure identifiability, they suggest the introduction of an ordering

constraint (either increasing or decreasing) on the mixing proportions. In our

multi-path change-point setting, the mixing proportions, or probabilities of a

change at different time-points are defined by (2.2.4). While each probability

is a function of covariates, its special form means that for i = 1, 2, . . . , n,

P (τi = 1) ≥ P (τi = 2) ≥ · · · ≥ P (τi = m− 1).

We can also constrain these probabilities to be increasing, with a suitable

choice of baseline hazard. However, the probability of no change, P (τi = m),

need not necessarily follow the same order. This is particularly problematic

when the probabilities of change, and therefore, the probability of no change,

depend on subject-specific covariates. Indeed, some choices of covariates could

be associated with a high probability of no change.

3. Another type of non-identifiability mentioned by the author arises for some

parameter combinations (see Young 2012). He claims that this type of non-

identifiability may not be that serious since it has been shown by Allman et

al. (2009) that these combinations of non-identifiable “generic” parameters has

measure zero. However, Allman et al. define the term “generic” in a precise

algebraic geometric sense, and in this context it does not mean “standard” or
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“canonical.” Since it is difficult to identify the set of generic parameters, there

is little comfort in asserting that apart from a subset of them of measure zero,

we have identifiability.

It would therefore appear that there is no obvious way to ensure identifiability

of a multi-path change-point model, particularly when the change-point distribution

is assumed to depend on subject-specific covariates. Viewed from a different perspec-

tive, though, Asgharian (2013) has recently made some progress on this problem.

It is well known that there is an association between identifiability of a model

and the non-singularity of the Fisher information matrix. Specifically, Rothenberg

(1971) showed that local identifiability is equivalent to non-singularity of the Fisher

information matrix at points in the parameter space for which there is an open

neighbourhood where the information matrix has constant rank. Asgharian’s 2013

paper originated with his goal of showing that under certain weak conditions the set

of singularities of the information matrix forms a set of measure zero. However, it

transpired that his hypothesis was not true as was shown by a counter-example (see

Klaassen and Lenstra 2003). Consequently, he sought to show that under a form

of identifiability, which he called quasi-identifiability, the set of singularities of the

information matrix is “sparse”, although not of measure zero. Quasi-identifiability

in the presence of covariates is concerned with the likelihood conditioned on the

covariate values rather than with identifiability of the joint distribution of the co-

variates and the responses. Importantly, Asgharian showed that under conditions

(C.1–C.3) below, that are possible to check, the multi-path change-point model is
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quasi-identifiable. We provide more detail in the discussion below and, in particular,

define exactly what we mean by “sparse.”

Definition 5: A parametric family of conditional probability distributions P =

{{PΦ(·|x); Φ ∈ Θ};x ∈ X}, on the sample spaceW = X ×Y , with density f(·|x,Φ)

with respect to a σ-finite measure µ, is quasi-identifiable if for any Φ,Φ∗ ∈ Θ, where

Φ 6= Φ∗, there exists a set of xs in X , XΦ,Φ∗ with measure greater than zero, such

that f(y|x,Φ) 6= f(y|x,Φ∗) for any x ∈ XΦ,Φ∗ .

Asgharian proved that the set of singularities of the Fisher information matrix

of a quasi-identifiable model is a nowhere dense set. This property of the set of

singularities makes it sparse, meaning that its members are scattered throughout

the parameter space rather than concentrated in any one area.

We recognize that establishing that the set of singularities of the Fisher in-

formation matrix forms a nowhere dense set, is not an entirely satisfying solution.

Nevertheless, in our experience, problems of non-singularity have not arisen. Thus,

it is reasonable to speculate that non-singularity of the information matrix in our

multi-path change-point model is, indeed, rare.

2.5.1 Sufficient Conditions for Quasi-identifiability

Asgharian’s conditions C.1 to C.3 can be used to establish quasi-identifiability

for the multi-path change-point model.

C.1 Let Rx be the range of the p×1 covariates x. Then it is required that {0} ⊂ Rx

and that Rx must contain at least one other vector.

C.2 The projection matrix M , induced by the design matrix X must be of full rank.
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C.3 The conditional pre- and post-change-point observation distribution families

{f(·|x,βi, σ2
i ) : x ∈ x} for i = 1, 2, respectively, must be quasi-identifiable.

Since the change-point distribution proposed by Asgharian (2013) with ∆ =

(ρ1, ρ2, . . . , ρm−1,α) = (ρ1, ρ2, . . . , ρm−1, α1, α2, . . . , αp) as the vector of parameters,

has the form,

P (τ = k|xi,∆) =



ρk exp
{
x>i α

}
(1− ρk) + ρk exp

{
x>i α

} k = 1

ρk exp
{
x>i α

}
(1− ρk) + ρk exp

{
x>i α

} k−1∏
l=1

(
(1− ρl)

(1− ρl) + ρl exp{x>i α}

)
k = 2, . . . ,m− 1

m−1∏
l=1

(
(1− ρl)

(1− ρl) + ρl exp
{
x>i α

}) k = m,

(2.5.2)

it is similar to ours, given by (2.2.4). Because, ρk =

exp

( k∑
l=1

α0l

)

1 + exp

( k∑
l=1

α0l

) , the baseline

hazards ρk are one-to-one functions of the α0ks for k = 1, 2, . . . ,m− 1.

In this thesis, we assume that C.1-C.3 hold. We also assume the observation

distributions before and after the change to be identifiable (in the joint distribution

sense). This is a stronger assumption than the quasi-identifiability required by C.3.

Therefore, Asgharian’s proof of identifiability applies to our model immediately.

25



CHAPTER 3
Penalized Likelihood Approach

For statistical inference in many classes of models such as multi-path change-

point models, a likelihood approach is suggested. However, maximum likelihood,

as well as least squares estimators can have low bias but high variance, when the

number of parameters is large, such as in a model with a large number of covariates.

Since maximum likelihood methods estimate all model parameters, which could be

initially large, it can be advantageous to use methods that while increasing the bias,

decrease the variance sufficiently to reduce the mean square error (MSE) overall.

Further, in models with a large number of covariates some of them may be collinear.

Penalized likelihood methods are designed with the goal of reducing the number of

covariates or shrinking their regression coefficients, thereby ameliorating the above

problems.

Multi-path change-point models, with a large number of covariates (also called

features, attributes, or predictors) relative to sample size, are particularly suitable

for penalized likelihood variable selection methods.

For example, in the Alzheimer’s disease data we analyze in Chapter 6, the sample

size is small and the number of covariates initially believed to be associated with

the outcome is large relative to the sample size. Unpenalized MLE would produce

estimators with unacceptably high variance.
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We give, here, a brief review of variable selection methods. We present two all-

subset selection approaches, Akaike’s Information Criterion (AIC) (Akaike 1973) and

the Bayesian Information Criterion (BIC) (Schwartz 1978). The BIC is particularly

important to us since, although we do not use the BIC to choose the best submodel

directly, we use it to choose the regularization (tuning) parameter, an important

step in variable selection methods. We also give the features of shrinkage methods,

especially ridge regression while penalty functions will be presented in Section 2.

Finally, we discuss a newer generation of penalty functions.

3.1 Classical Variable Selection

The classical approaches to creation of a parsimonious set of model covariates

include forward inclusion, backward exclusion, step-wise selection, and information

based all-subset selection criteria such as AIC and the BIC. These methods quickly

become computationally expensive as the number of covariates increases. In this

section, we discuss the features of these approaches.

3.1.1 Step-wise Variable Selection

Forward and backward variable selection methods depend on inclusion/exclusion

criteria to select a parsimonious submodel. They are most common in linear regres-

sion models, although they have occasionally been applied in more complicated set-

tings such as change-point models (see Pocok 1982 and Reed 1998). Their drawbacks

are as follows:

1. If a predictor is chosen in forward selection or deleted in backward selection,

its inclusion status will never change.

27



2. At each iteration, we must re-estimate the model parameters for each possible

new set of covariates. This can be computationally very expensive, especially

when the number of covariates is large.

Step-wise selection using a combination of forward and backward selection overcomes

the first issue with these approaches. However, it worsens the second issue by making

the procedure even more computationally expensive.

3.1.2 All-subset Selection Methods

Error-based all-subset selection methods, such as the Cp or Cross-Validation

(CV) (Mosteller 1948), are variable selection methods which have previously been

used in change-point problems; see Liang and Wong (2000) and Faragge and Simon

(1996). Since we take a likelihood approach in this thesis, we do not discuss these

methods here. Information based all-subset selection criteria, such as AIC or the

BIC, have, respectively, penalized likelihoods of the form:

− 2 logL(Φ̂) + 2
κ∑
j=1

I(Φ̂j 6=0), (3.1.1)

and

− 2 logL(Φ̂) + 2 log(n)
κ∑
j=1

I(Φ̂j 6=0), (3.1.2)

where I(Φ̂j 6=0) is equal to 1 when Φ̂j 6= 0, and otherwise is zero, for j = 1, 2, . . . , κ,

and Φ̂ is the estimator of Φ.

In (3.1.1) and (3.1.2), the term
κ∑
j=1

I(Φ̂j 6=0) can be considered as the L0-norm of

Φ̂. These methods have several features:
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1) All possible sub-models must be considered, forcing us to calculate the in-

formation criterion for each subset of parameters. With a large number of

parameters, this procedure becomes computationally infeasible.

2) When the number of parameters increases, AIC may over-fit the model, relative

to the BIC. Both criteria reward models with a good fit, and have penalties

that increase with the number of parameters in the model. However, the BIC

has a heavier penalty on the number of non-zero parameters in the model.

Hence, the BIC would select a simpler model than AIC.

3) AIC is based on the Kullback-Leibler divergence. The BIC is, naturally,

Bayesian.

4) There is no clear choice between AIC and the BIC for the purposes of model

or variable selection. The BIC is a consistent selection criterion, meaning that

when the sample size increases to ∞, the BIC selects the true model with

probability converging to 1. In the same setting, AIC asymptotically selects a

model with too many parameters. For small sample sizes, however, the BIC

tends to choose a model which is too simple, due to its heavy penalty on the

number of parameters.

Depending on the sample size, the complexity of the model, and the purpose of the

modelling, one may choose any of the above approaches. However, in our change-

point setting, it is not computationally practicable to use such methods.

3.2 Penalty Functions

There are several drawbacks to the classic variable selection approaches, and

shrinkage methods do not perform variable selection. Step-wise selection and ridge
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regression ignore stochastic errors inherited from the previous stages at each iteration.

It is difficult to establish the asymptotic and theoretical properties of these methods.

Even using subset selection methods jointly with step-wise selection does not resolve

these issues.

In penalized likelihood methods that perform variable selection, some parame-

ters estimates may be set to zero automatically while others less than a pre-specified

threshold may be set to zero. In addition, if the penalty functions are chosen prop-

erly, depending on the application, it can be shown that the induced estimators

possess important asymptotic properties such as consistency, sparsity, and asymp-

totic normality. These properties must be re-established if the application is not

standard; our multi-path change-point scenario is one such instance. The penalized

log-likelihood function is written standardly as:

l̃n(Φ) = logLn(Φ)− Pλn(Φ) = ln(Φ)− Pλn(Φ), (3.2.1)

where Ln(Φ) is the likelihood function of the model, and Pλn(Φ) is the penalty

function on the parameters. Further, it is common to assume an additive form for

the penalty function, Pλn(Φ) =
∑k

j=1 Pλn(Φj). For the parameters we believe must

stay in the model, such as intercepts in regression models, the penalty function is

defined to be zero.

Below, we introduce penalty functions used in this thesis, including ridge regres-

sion (shrinkage method), the least absolute shrinkage and selection operator (LASSO,

Tibshirani 1996; Chen et al. 1998), HARD thresholding (Fan and Li 2002), and the
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smoothly clipped absolute deviation (SCAD) penalty (Fan and Li 2001), and review

some of their properties.

3.2.1 Shrinkage Methods

Shrinkage methods are another set of classic regularization methods. They have

also been applied to change-point problems (see Hall and Simar 2002). Not all

shrinkage methods result in variable selection, and they are primarily used to re-

duce variability and prediction error. The ridge regression penalty function is a

continuous function of the parameters and introduces a penalty on the magnitude of

the parameters through the L2-norm of the vector of parameters. Ridge regression

prevents singularity of the variance-covariance matrix of the regression coefficient

estimators, which results from collinearity between covariates. In models such as

logistic regression, it is common to use a ridge penalty function, whose effect is to

shrink the estimated coefficients toward zero. However, we should note that ridge

regression cannot be used directly for variable selection since it does not automati-

cally set certain coefficients equal to zero. We will describe later how we use a ridge

penalty function on the change-point distribution to reduce the size of the parameter

estimates.

3.2.2 Regular Penalty Functions

Penalty functions can be considered from two different viewpoints. They can

be regarded as imposing a constraint on the parameters. In this role, the tuning

parameter is analogous to a Lagrange multiplier. Alternatively, viewed through

a Bayesian lens, the introduction of a penalty function can be thought of as the
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imposition of a prior distribution on the regression parameters. We take the former

view in this thesis.

The following penalty functions are among the most commonly used in the

current variable selection literature, and we shall emphasize these three:

• LASSO penalty (Tibshirani 1996): Pλn(θ) = nλn|θ|.

• SCAD penalty (Fan and Li 2001): Pλn(0) = 0 and

P ′λn(θ) = n sign(θ)λn{I(|θ| ≤ λn) + (aλn−|θ|)+
(a−1)λn

I(|θ| > λn)},

where (·)+ = max(0, ·) under the restriction that a > 2. A common choice for

a is 3.7 (see Fan and Li 2001).

• HARD Thresholding penalty (HARD) (Fan and Li 2002):

Pn(θ) = n2λ2
n − (|θ| − nλn)2I(|θ|<nλn).

The choice of tuning parameter λn, the weight of the penalty function in the

model, is critical. We use a BIC tuning parameter selector which identifies the true

model consistently (for more discussion see Wang et al. 2007). We discuss our use

of the BIC further in Chapter 4.

The LASSO penalty function is considered to be equivalent to soft-thresholding.

Zou and Hastie (2005) introduced a linear combination of LASSO and ridge regression

(soft and hard-thresholding) which they called an elastic net. The elastic net penalty

function encourages a grouping effect. We use the elastic net to carry out estimation

in our change-point model.

Theoretically, using the SCAD penalty function, it is better to choose (λn, a)

over two-dimensional grids using the criterion we use to select the tuning parameter.
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However, due to the computational expense of such a procedure, we use a = 3.7 as

suggested by Fan and Li (2001).

In Figure 3–1, we provide depictions of the four penalty functions we used in this

thesis, as functions of a single parameter, β, say. The SCAD and LASSO penalty

functions behave similarly at zero and they are non-differential at this point. While

the LASSO penalty function penalizes all parameters equally in the full model, the

SCAD penalty function penalizes the parameters with small estimates with a heavier

penalty, forcing them to be equal to zero. Its penalty on non-zero parameters (with

large enough estimates) is defined to be constant. Hence, the SCAD penalty function

results in asymptotically unbiased estimators while the LASSO penalty function does

not. The HARD-thresholding penalty function behaves in a similar fashion to the

SCAD penalty and induces asymptotic unbiasedness and sparsity.

Each of the different penalty functions may introduce some finite-sample bias

into the estimated model. The LASSO penalty function leads to estimation bias in

parameters with large estimators. The ridge estimator also has a large bias as the

estimate’s value becomes larger, and only induces an unbiased estimators for true

zero parameters.
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Figure 3–1: The penalty functions for λ = 1.5 (we set a = 3.7 in the SCAD penalty
function).
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3.2.3 Conditions on the penalty function

The following conditions are commonly imposed on the penalty function, Pλn(·),

in a general setting:

P.1 For all n = 1, 2, . . . and λn > 0, Pλn(0) = 0 and Pλn(θ) is a symmetric,

nonnegative, and nondecreasing function of θ and has a first derivative for

all θ ∈ (0,∞). The function is also continuously twice differentiable for all

θ ∈ (cλn,∞), and some constant c > 0.

P.2 Let bn = max

{
P ′λn (Φj)√

n
: Φj 6= 0 for j = 1, 2, . . . , κ

}
, be O(1), and cn =

max

{
P ′′λn (Φj)

n
: Φj 6= 0, j = 1, 2, . . . , κ

}
be o(1) as n→∞.

P.3 Let Γn = (0, log(n)√
n

). Then lim inf
n→∞

P ′λn(θn)
√
n

= +∞, for all sequences {θn} ∈

Γn for every n ≥ some n0, or equivalently,

lim
n→∞

inf

{
P ′λn(θ)
√
n

: 0 < θ ≤ n−1/2 log n

}
= +∞.

These conditions are necessary in order to induce an estimator which is asymp-

totically unbiased, continuous and has the sparsity property. Conditions P.1–P.3

guarantee the “oracle property” for the estimated model; that is, penalty functions

which satisfy conditions P.1–P.3 result in penalized likelihood estimators that are

asymptotically identical to those obtained if we were to fit the true submodel.

3.2.4 Fused Penalty Functions and an Alternative approach

Variable selection can be used as a parameter space dimension reduction method

in some circumstances. If there is a meaningful order in the features, we may use

a fused penalty function in order to smooth the model. The fused penalty function

encourages sparsity in the pair-wise differences between the adjacent coefficients,
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which induces local or piece-wise constancy of the parameter profile (see Tibshirani

et al. 2005). The more pair-wise adjacent parameter differences that are equal to

zero, the smoother the model.

For example, in longitudinal studies, we may believe that the observation dis-

tribution has a piece-wise constant mean over time, or that in a survival analysis

setting, the baseline hazard function is piece-wise constant. In both settings, the

feature, time, is naturally ordered. In such cases, we may believe some adjacent

parameters (which are indexed by time or location) are equal, leading to pair-wise

differences that are zero.

For the change-point distribution, we proposed a proportional hazards model

with a baseline hazard that changes from one observation time-point to the next.

Hence, the number of baseline hazard parameters in the change-point distribution

component of the model is one less than the number of follow-ups. The large number

of parameters in the model makes estimation computationally expensive. However, if

the follow-up times are not far apart, it may be reasonable to allow adjacent baseline

hazards to be equal and therefore their differences to be zero. Although, it would be

appropriate to use a fused penalty when estimating the baseline hazard, we took an

alternative approach by re-parametrizing the logit of the baseline hazard. We defined

the logit of the baseline hazard at each time-point to be the sum of the increments

in the logits over the previous time-points.

The advantage of our re-parametrization is that: 1) It does not change the

number of parameters in the baseline hazard. 2) It allows us to introduce regular

penalty functions on the increments of the logit of the baseline hazard which results
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in a smoother baseline hazard. 3) The computational cost of estimation in the new

setting is less and more affordable than the original, and 4) to assure the asymptotic

properties of the resulting estimators using a fused penalty function, we would need

to introduce further constraints on the parameter space as well as the likelihood

function while using this re-parametrization model we avoid these additional steps.
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CHAPTER 4
Penalized Likelihood for Longitudinal Data with Change-points

To begin, we allow the observation distribution means before and after the

change to depend on subject-specific covariates. The introduction of covariates into

statistical models, such as those for multi-path change-point problems, results in a

complex non-linear model with a large number of (initial) parameters. Our approach

to variable selection and parameter estimation is through penalized likelihood. The

multi-path change-point setting allows us to introduce time as a covariate in the ob-

servation distribution means, both before and after the change-point. Next, we allow

the covariate effects to change with time, through the introduction of an interaction

between time and covariates.

We also permit the change-point distribution to include covariate effects, al-

though the lack of exchangeability of the probabilities of change between different

time-points does not allow time to be used as a covariate in the change-point dis-

tribution. Further, we allow the change-point distribution to have a time-varying

hazard, modelled through a baseline hazard that is piece-wise constant on the ob-

servation intervals, as proposed by Asgharian (2013). Naturally, the baseline hazard

of a change may not necessarily differ from each observation interval to the next;

for example, the baseline hazard may be constant through several adjacent intervals.

From a practical viewpoint, this structure often reduces the computational burden.
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To produce a model that allows for the same baseline hazards on successive

time intervals, we re-parametrize the baseline hazards, ρk, in (2.5.2) of Chapter 2,

as follows:

1) Let
ρk

1− ρk
= exp{ρ∗k}, for k = 1, 2, . . . ,m − 1 (thus, ρ∗k is the logit of the

baseline hazard at the kth time-point).

2) For k = 1, 2, . . . ,m− 1, define α0k = ρ∗k − ρ∗k−1 to be the increment in the logit

of the baseline hazard at the kth time-point, or, equivalently,

ρ∗1 = α01

ρ∗2 = α02 + α01

...

ρ∗(m−1) = α0(m−1) + α0(m−2) + · · ·+ α01.

This results in the model (2.2.4) defined in Chapter 2. Re-writing ρ∗k in this form

places it in a canonical penalized likelihood framework, wherein the belief that the

baseline hazard may not change over adjacent intervals reduces to the belief that

some of the α0ks are equal to zero. An alternative approach using a fused penalty

function was discussed in Chapter 3. Therefore, in addition to variable selection, we

carry out smoothing using penalized likelihood methods.

Next, the regression model in the change-point distribution may result in a need

to control the variance of the estimated regression coefficients, particularly in the

presence of collinearity. We address this problem by using a ridge penalty function

in this regression model. This controls the L2-norm of the vector of regression coef-

ficients, using a tuning parameter γn. Although the ridge penalty function does not
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set any of the estimates to zero, the convexity of L2-norm eases the computational

difficulty of finding the maximum penalized likelihood estimates. In summary, we

use penalized likelihood methods adapted to each component of our model.

4.1 Penalized likelihood estimation

Let C1 = C2 = {1, 2, . . . , p1}, C3 = {1, 2, . . . , p2}, and C4 = {1, 2, . . . ,m − 1}

be the index sets of entries of β1, β2, α, and α0, respectively. We allow p1 and

p2 to be different, because in different problems we may believe initially different

sets of covariates to be effective in the observation distributions and change-point

distribution, respectively (for instance, we can allow time as a covariate in the ob-

servation distributions while we cannot include it as a covariate in the change-point

distribution). The sets C1, C2, C3, and C4 are the index sets of entries of parameter

vectors in the full model, which we believe is not necessarily the true model, but

includes the true model. Therefore, a subset of them specifies the true underlying

model of the data and we assume that there exist Si ⊂ Ci for i = 1, 2, 3, 4 which

partitions Ci into the sets of true non-zero parameter indexes and true zero param-

eter indexes (β0
ij 6= 0 for j ∈ Si and i = 1, 2, α0

j 6= 0 for j ∈ S3, and α0
0k 6= 0

for k ∈ S4 where β0
1, β0

2, α0, and α0
0 are the true parameter vectors). We denote

βk[Sk] for k = 1, 2, α[S3] and α0[S4] as subvectors of the parameter vectors in

the full model, β1[C1], β2[C2], α[C3], and α0[C4], respectively. Also, we let x[S1],

x[S2], and x[S3] represent the design matrices of dimension |S1| × n, |S2| × n, and

|S3|×n in the observation distribution before and after the change and in the change-

point distribution, respectively. Hence, the true submodel observation distribution

is f(y;x[S1],x[S2],x[S3],β1[S1],β2[S2],α[S3],α0[S4]). We call this model “sparse”

40



when the Sis are small subsets of Cis for i = 1, 2, 3, 4. We use maximum penalized

likelihood to find the true submodel and estimate the model parameters simultane-

ously.

To find the penalized likelihood estimates, we maximize the penalized log-

likelihood function,

l̃n(Φ) = logLn(Φ)− Pλn(Φ) = ln(Φ)− Pλn(Φ), (4.1.1)

where Ln(Φ) is the likelihood function defined by (2.3.4) in Chapter 2, and the

penalty Pλn(Φ) is of the form,

Pλn(Φ) =
m−1∑
k=2

{
Pλn(α0k) +

γn
2
α2

0k

}
+

p2∑
j=1

{
Pλn(αj) +

γn
2
α2
j

}
+

p1∑
j=1

Pλn(β1j) +

p1∑
j=1

Pλn(β2j). (4.1.2)

The penalty on the α0k’s, the increments in the logit of the baseline hazard

controls the smoothness of the baseline hazard of a change while the penalties on

the αj’s, β1j’s and β2j’s control the number of covariates in the model. The ridge

penalties
∑m−1

k=2 γnα
2
0k/2 and

∑p2
j=1 γnα

2
j/2 are needed to prevent “wild” estimates of

parameters α0k and αj when m is large and there are highly correlated covariates.

Similar penalties are used by Park and Hastie (2008) and Bunea (2008) in logis-

tic/multinomial regression. Furthermore, convexity of the ridge penalty is advanta-

geous in numerical computations when dealing with a complex likelihood function

such as (2.3.4) in Chapter 2.
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For variable selection, we use three penalty functions: LASSO, SCAD, and

HARD. We assume σ2
1 = σ2

2 = σ2 in our model. We do not penalize σ2
1, σ

2
2, β01, β02

and α01, since we want the intercepts in all three components (pre- and post-change-

point observation distributions as well as the change-point distribution) to remain

in the model. The above assumptions are used in the remainder of this thesis.

4.2 Numerical Computations

Since the penalized likelihood function has a complicated form, the maximum pe-

nalized likelihood estimators must be found numerically. We present an Expectation-

Maximization (EM) algorithm (Dempster et al. 1977) with modified maximization.

4.2.1 Maximization Algorithm

To estimate the parameters, we use a modified EM algorithm. Let (yi,xi)

for i = 1, 2, . . . , n be a random sample of observations from the model (2.3.4) in

Chapter 2. Let zik be equal to one if the change in the sequence of observation

distributions for the ith subject occurs at the kth time-point, and otherwise equal

to zero, for i = 1, 2, . . . , n and k = 1, 2, . . . ,m. The ziks are not observable and

can be considered as latent or missing random variables. The penalized complete
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log-likelihood function, with the ziks as missing values, may be written as:

l̃cn(Φ) = lcn(Φ)− Pλn(Φ)

=
n∑
i=1

{
m∑
k=1

zik [log(p(τi = k|xi,α∗)) + log(fk(yi|xi,Υ))]

}
− Pλn(Φ). (4.2.1)

Starting from an initial value Φ(0), the EM algorithm maximizes l̃cn(Φ) in two

steps:

E-Step: Let Φ(r) be the estimate of the parameters after the rth iteration. In

the E-step we compute the conditional expectation of l̃cn(Φ) with the Ziks as random

variables, given the data (yi,xi), and assume that the values of the current estimate

Φ(r) = (Υ(r),α∗(r)) are the true model parameters. The conditional expectation is

Q(Φ,Φ(r)) =
n∑
i=1

{
m∑
k=1

w
(r)
ik

[
log(p(τi = k|xi,α∗)) + log(fk(yi|xi,Υ))

]}
− Pλn(Φ),

(4.2.2)

where the conditional expectation of the Zik for i = 1, 2, . . . , n and k = 1, 2, . . . ,m

is:

w
(r)
ik =

p(τi = k|xi,α∗(r))fk(yi|xi,Υ(r))
m∑
l=1

p(τi = l|xi,α∗(r))fl(yi|xi,Υ(r))

.

M-step: In the M-step, at the (r + 1)th iteration we maximize (4.2.2) with respect

to Φ. Owing to non-differentiability of the Pλn(θ) at θ = 0, we cannot use the

Newton–Raphson algorithm directly. We follow Fan and Li (2001)’s suggestion and

replace Pλn(θ) by a local quadratic approximation in a neighbourhood of θ0, where

θ0 is an initial value that is close to the MPLE,
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P̃λn(θ) = Pλn(θ0) +
P ′λn(θ0)

2θ0

(θ2 − θ2
0).

Here P̃λn(θ) is an increasing function of θ as |θ| → ∞, leading to a simpler M-step.

To avoid numerical instability in the algorithm caused by very small estimated values

of θ0 in the denominator of the local quadratic approximation, we substitute θ0 by

θ0 + ε, for a chosen small value ε > 0, as suggested by Hunter and Li (2005). Let

Φ(r+1) = argmaxΦQ(Φ,Φ(r)) =

argmaxα∗,Υ

{
n∑
i=1

{
m∑
k=1

w
(r)
ik [log(p(τi = k|xi,α∗)) + log(fk(yi|xi,Υ))]

}
− P̃λn(Φ)

}
.

Starting from an initial value Φ(0), we iterate between the E- and M-steps until

the Euclidean norm of two consecutive updates of the parameters, ‖Φ(r+1) −Φ(r)‖,

is smaller than some threshold value. We chose the threshold to be 10−6 in our

simulations and data analysis.

When the EM algorithm converges, some of the estimates of the parameters will

be “very small” (we took estimates less than 10−5 in our simulations and real data

analysis as “very small”). We set these “very small” estimates equal to zero.

We use the maximum likelihood estimate of the vector of unknown parameters

as an initial value (Φ(0)), since our model is not excessively over-parametrized. One

can also choose the best initial value by comparing the log-likelihood functions at

possible candidates and choosing the one with the largest log-likelihood value. When
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the algorithm converges, we use the derivative of the penalized likelihood function

to find non-zero elements of Φ̂ which must satisfy:

∂

∂Φj

ln(Φ)
∣∣
Φj=Φ̂j

− P ′λn(Φj)
∣∣
Φj=Φ̂j

= 0, (4.2.3)

since when using a suitable penalty function, the derivative of log-likelihood function

as well as the penalty function must each be zero at large true parameters and, there-

fore, their appropriate estimates. Otherwise, the estimates will be automatically set

to equal zero. This approach is useful for deciding the inclusion status of parameters

in a real data set since we do not know in advance which parameter is non-zero.

Since we use the Newton–Raphson algorithm, the choice of initial value is important

(see Zou and Li 2008).

Recall that some penalty functions enable simultaneous selection and estima-

tion, and therefore, we are able to estimate the variance-covariance matrix of the

estimators. Conditional on the covariates, the estimated variance-covariance matrix

for the estimators has the following form:

Ĉov(Φ̂) =

[
∂2

∂Φ∂Φ>
ln(Φ) +

∂2

∂Φ∂Φ>
P̃λn(Φ)

]−1

Φ=Φ̂

× Ĉov(
∂

∂Φ
ln(Φ)

∣∣
Φ=Φ̂

)

[
∂2

∂Φ∂Φ>
ln(Φ) +

∂2

∂Φ∂Φ>
P̃λn(Φ)

]−1

Φ=Φ̂

In our simulations and real data analysis, we proposed normal distributions

for the observation distributions before and after the change and introduced the

covariates through linear regression models. In Model 2 to be defined in Chapter 5,
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we denote xi, to be the vector of p-covariates for the subject i, and xit = (1, t,xi)

for i = 1, 2, . . . , n and t = 1, 2, . . . ,m. We also let β1 = (β10, η1, β11, . . . , β1p1) and

β2 = (β20, η2, β21, . . . , β2p1). Therefore, the complete log-likelihood function in the

EM algorithm has the following form:

l(Φ) =
n∑
i=1

m∑
k=1

zik

[
log(p(τi = k|xi,α∗))−

m

2
log(2πσ2)− 1

2σ2

( k∑
l=1

(yil − x>ilβ1)2

+
m∑

l=k+1

(yil − x>ilβ2)2

)]

=
n∑
i=1

{
zi1 log

( exp(α01 + x>i α)

1 + exp(α01 + x>i α)

)
+

m−1∑
k=2

zik

[
log
( exp(

k∑
l=1

α0l + x>i α)

1 + exp(
k∑
l=1

α0l + x>i α)

)

−
k−1∑
l∗=1

log
(
1 + exp(

l∗∑
l=1

α0l + x>i α)
)]
− zim

(m−1∑
l∗=1

log
(
1 + exp(

l∗∑
l=1

α0l + x>i α)
))

+
n∑
i=1

m∑
k=1

zik

[
−m

2
log(2πσ2)− 1

2σ2

( k∑
l=1

(yil − x>ilβ1)2 +
m∑

l=k+1

(yil − x>ilβ2)2
)]}

Given the estimate at the rth iteration, Φ(r) = (Υ(r),α∗(r)) = (β
(r)
1 ,β

(r)
2 , α

(r)
01 , α

(r)
02 , . . . ,

α
(r)
0(m−1),α

(r)), at the (r + 1)th iteration:

• The estimates of β1 and β2, the vectors of regression coefficients before and

after the change, have closed forms, so that β
(r+1)
1 is the solution of the equa-

tion:
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∂l̃(Φ)

∂β1

=
n∑
i=1

m∑
k=1

w
(r)
ik

(
1

σ2

k∑
l=1

x>il (yil − x>ilβ1)

)
+

P′λn(β
(r)
1 )

β
(r)
1 + ε

.β1 = 0

Therefore,

β
(r+1)
1 =

[ n∑
i=1

m∑
k=1

w
(r)
ik χik diag

(
0, 0,

P ′λn(β
(r)
11 )

β
(r)
11 + ε

,
P ′λn(β

(r)
12 )

β
(r)
12 + ε

, . . . ,
P ′λn(β

(r)
1p )

β
(r)
1p + ε

)]−1

×
( n∑
i=1

m∑
k=1

w
(r)
ik

k∑
l=1

x>ilyil

)

where χik =
k∑
l=1

x>ilxil. Note that the first two elements of β1 represent the

intercept and the time coefficient in the regression model, which are not penal-

ized. Similarly, we have:

β̂
(r+1)

2 =

[ n∑
i=1

m∑
k=1

w
(r)
ik χ

∗
ikdiag

(
0, 0,

P ′λn(β̂
(r)
21 )

β̂
(r)
21 + ε

,
P ′λn(β̂

(r)
22 )

β̂
(r)
22 + ε

, . . . ,
P ′λn(β̂

(r)
2p )

β̂
(r)
2p + ε

)]−1

×
( n∑
i=1

m∑
k=1

w
(r)
ik

m∑
l=k+1

x>ilyil

)

where χ∗ik =
m∑

l=k+1

x>ilxil.

• To estimate the change-point distribution parameters, α∗, since the estimates

α∗(r+1), do not have a closed form, we use a Newton–Raphson method nested

in the M-step of the EM algorithm. Let α∗(r), be the estimate of α∗ at the

rth iteration of EM algorithm and we choose it as the initial value for the

Newton–Raphson method.
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For α, the vector of regression coefficients in the change-point distribution, if

α
(r+1)
(s) is the estimate at the sth iteration of Newton–Raphson algorithm, the

estimates at the following iteration have the following form:

α
(r+1)
(s+1) = α

(r+1)
(s) −

[
∂2l̃cn(Φ)

∂α∂α>

]−1

α=α
(r+1)
(s)

[
∂l̃cn(Φ)

∂α

]
α=α

(r+1)
(s)

and similarly for α0k, the increment in the logit of the baseline hazard, if α
(r)
0k

is the estimate at the rth iteration of the EM-algorithm. We take this to be

the initial value for the nested Newton–Raphson algorithm (α
(r+1)
0k(0) = α

(r)
0k ).

Then, given α
(r+1)
0k(s) be the estimate at the sth iteration, the next iteration of

the Newton–Raphson algorithm has the following form:

α
(r+1)
0k(s+1) = α

(r+1)
0k(s) −

[
∂2l̃cn(Φ)

∂α2
0k

]−1

α=α
(r+1)
0k(s)

[
∂l̃cn(Φ)

∂α0k

]
α0k=α

(r+1)
0k(s)

.

We use a similar stopping rule as that for the EM algorithm, and stop the

Newton–Raphson algorithm when the Euclidean distance between the esti-

mates (α∗(r+1)), between two successive iterations, is less than 10−6.

• Estimation of the variance (σ2) proceeds as follows:

σ2(r+1) =

n∑
i=1

m∑
k=1

w
(r)
ik

( k∑
l=1

(yil − x>ilβ
(r)
1 )2 +

m∑
l=k+1

(yil − x>ilβ
(r)
2 )2

)
m

n∑
i=1

m∑
k=1

w
(r)
ik

,
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since the w
(r)
ik is the expectation of zik,

m∑
k=1

w
(r)
ik = 1 and therefore,

σ2(r+1) =

n∑
i=1

m∑
k=1

w
(r)
ik

( k∑
l=1

(yil − x>ilβ
(r)
1 )2 +

m∑
l=k+1

(yil − x>ilβ
(r)
2 )2

)
mn

.

We iterate the EM algorithm until ‖Φ(r+1) −Φ(r)‖ < 10−6.

4.2.2 Choice of the Tuning Parameters

Fan and Li (2001) and Khalili and Chen (2007) used generalized cross-validation

(GCV) to choose the tuning parameters. However, Wang et al. (2007) showed that

using the GCV to choose the tuning parameter leads one to over-fit the final selected

model. They used the BIC to choose the tuning parameter, and showed that this

method is consistent when selecting the true sparse model. In applications of the

proposed method, one needs to choose appropriate values of the tuning parameters

(γ, λ). We suggest a Bayesian information criterion (BIC) with a grid search scheme

as follows.

Consider the grid of values {0.0, 0.1, 0.2, 0.3, 1.0, 1.5, 5, 10}, scaled by log n to

satisfy our asymptotic condition, for γ. Further, let {0.01, 0.02, . . . , 0.40} be a grid

for λ. For a given pair (γ, λ) from the above grid, we obtain the MPLE Φ̂n using

the modified EM algorithm presented above. The BIC is computed as

BIC(γ, λ) = −2ln(Φ̂n) + DF(γ, λ) log n
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where DF(γ, λ), referred to as the degrees of freedom, is the total number of non-zero

elements of the parameter-vector estimates (Υ̂, α̂∗). This criterion mimics the one

used in linear regression by Wang et al. (2007).

To start the iterative procedure we chose the maximum likelihood estimates

of the parameters in the full model as initial values. More precisely, to find these

maximum likelihood estimates, we used several different initial values, and then

chose the estimated parameter vector which maximized the likelihood overall. This

approach is practical in analyzing real data, where we do not know the true submodel

and parameters.

4.3 Asymptotic properties (Large sample behaviour)

In this section, we discuss the large sample behaviour of the MPLEs. Our main

results are contained in Theorem 1 in which we establish the consistency, sparsity

and asymptotic normality of our maximum penalized likelihood estimators.

We first introduce some notation. As usual, we assume that the true model

underlying the data is the change-point model specified in Chapter 2 with the cor-

responding parameter vector Φ0. We also assume that Φ0 is an interior point of the

parameter space Θ ⊂ Rκ, where κ = 2(p1 + 2) + p2 +m− 1 + 2 = 2p1 + p2 +m+ 5,

(p1 + 2 is the number of parameters in the pre- and post-change observation dis-

tribution including time as a covariate in the regression models, p2 is the number

of parameters in the change-point distribution regression model, and m − 1 is the

number of baseline hazard parameters, in addition to two observation distribution

variances). We partition the true parameter vector as Φ0 = (Φ01,Φ02) so that the

sub-vectors Φ01 and Φ02 contain the true non-zero and zero parameters, respectively.
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The true observation distribution variances (σ20
1, σ

20
2) before and after the change, re-

spectively, are included in Φ01. A similar partitioning is considered for any candidate

parameter vector Φ = (Φ1,Φ2) ∈ Θ.

4.3.1 Assumptions

In our asymptotic theory, some regularity conditions are required on the penalty

function Pλn(θ) (given in Chapter 3), and also the joint probability density function

f(wi; Φ0) of W i = (xi,Y i). A detailed proof is given in this chapter. Note that

f(wi; Φ0) = f(yi|xi,Φ0) × fx(xi), where f(yi|xi,Φ0) is specified in Chapter 2,

and we assume that the marginal probability density function fx(xi) of xi does not

depend on the parameter of interest Φ0.

Assumptions on the parameter space as well as the distribution family are needed

in order to establish the asymptotic properties of the estimators. In stating the

regularity conditions, we write Φ = (Φ1,Φ2, . . . ,Φκ). We use Φ0
j to represent the

entries of the true parameter vector Φ0 = (Φ01,Φ02).

Also, denote the index sets S1 = {1 ≤ j ≤ p1 : β0
1j 6= 0}, S2 = {1 ≤ j ≤ p1 :

β0
2j 6= 0}, S3 = {1 ≤ j ≤ p2 : α0

j 6= 0}, S4 = {2 ≤ j ≤ m−1 : α0
0j 6= 0}, which identify

the true non-zero parameters (β0
1j, β

0
2j, α

0
j , α

0
0j) as the entries of the sub-vector Φ01.

D.1 The parameter space of the model, Θ ⊂ Rκ, is a bounded open set.

D.2 The probability density function f(w; Φ) is at least three times differentiable

for each Φ ∈ Θ and for ν-almost all w ∈ W .

D.3 Let Φ0 ∈ Θ be the unique true model parameter vector (guaranteed by the

established model identifiability). There exists an open neighbourhood NΦ0 of

Φ0, and an integrable function M(w) for almost all w ∈ W , such that for each
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Φ ∈ NΦ0 , and for all i, j and k,∣∣∣∣∂ log f(w; Φ)

∂Φi

∣∣∣∣ ≤M(w),

∣∣∣∣∂2 log f(w; Φ)

∂Φi∂Φj

∣∣∣∣ ≤M(w), and

∣∣∣∣∂3 log f(w; Φ)

∂Φi∂Φj∂Φk

∣∣∣∣ ≤M(w).

D.4 For the Fisher information matrix, I(Φ0), we have det (I(Φ0)) 6= 0.

We assume Conditions D.1-D.4 hold in our model of Chapters 5 and 6.

4.3.2 Theorem

These properties in turn, ensure that our estimators have the so-called “oracle

property”; this means that they are as asymptotically good as the maximum likeli-

hood estimators that would have been obtained had we known the true submodel in

advance. Further, they converge to the true parameter values at the same rate as do

those based on the true submodel.

Theorem 1. Let W 1,W 2, . . . ,W n be a random sample from a probability density

function f(w; Φ0) that satisfies the conditions D.1–D.4. Suppose that the penalty

function Pλn(θ) satisfies conditions P.1–P.3 in Chapter 3, and let the ridge tuning

parameter γn in (4.1.2) be chosen such that γn√
n

converges to zero as n tends to ∞.

Then, as n→∞,

(a) (Consistency): There exists a local maximizer Φ̂n of the penalized log-likelihood

function l̃n(Φ) for which ‖Φ̂n − Φ0‖ = Op(rn), where rn = n−1/2(1 + bn) and

bn is given in P.2 in Chapter 3.

(b) For any root-n consistent estimator Φ̂n = (Φ̂n1, Φ̂n2) of Φ0,

i. (Sparsity): Pr(Φ̂n2 = 0)→ 1.
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ii. (Asymptotic Normality):

√
n

{[
I11(Φ01) +

P′′λn(Φ01)

n

]
(Φ̂n1 −Φ01) +

P′λn(Φ01)

n

}
d→ N(0, I11(Φ01))

where I11(Φ01) is the Fisher information matrix when all the true zero pa-

rameters are removed from the model, P′λn(Φ) =
∂Pλn(Φ)

∂Φ
, and P′′λn(Φ) =

∂2Pλn(Φ)

∂Φ∂Φ>
.

It should be noted that the rate of convergence in part (a) of Theorem 1 depends

on bn which, in turn, depends on the first derivative of the penalty function. The

penalty function Pλn(θ) and the tuning parameter θ must be chosen such that bn =

O(1) in order to attain the standard rate of convergence n−1/2 for maximum likelihood

estimation. For example, if we use the SCAD penalty function with λn tending to zero

as n tends to ∞, then bn = 0, while the desirable rate holds for the LASSO penalty

function if λn = O(n−1/2). Moreover, to achieve consistency in feature selection and

smoothness of the estimator of the baseline hazard parameters, α0k’s by Condition

P.3 for Pλn(θ) and therefore, λn should be chosen using the SCAD penalty function

such that
√
nλn → ∞ as n tends to ∞. Both purposes, consistency in estimation

and feature selection, are achievable using the SCAD penalty function, although

we cannot fulfill both purposes using the LASSO penalty function. If we choose

the estimators to be consistent in variable selection, the LASSO penalty function

introduces a large bias into the Φ01’s estimator (Φ̂1n).

4.3.3 Proof of Theorem 1.

Before proving part (a) of Theorem 1 we present the idea of its proof. Consider a

very simple case, with just one parameter in the model. Let Φ̇ be the true parameter
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and Φ̂ be the local maximizer of the likelihood function. For a given ε > 0, we should

chooseH large enough such that a neighbourhood centred at the true parameter, (Φ̇−

rnH, Φ̇ + rnH) captures the local maximizer of the penalized likelihood. Therefore,

there exists a large enough constant H > 0, such that

P

{
sup
‖u‖=H

l̃n(Φ0 + rnu) < l̃n(Φ0)

}
≥ 1− ε. (4.3.1)

Figure 4–1. and Figure 4–2. depict the likelihood function for a set of observation

y1, y2, . . . , yn for the true model and for two different choices of H.

Figure 4–1: Φ̂ is the penalized maximum likelihood estimate, Φ̇ is the true parameter
value, U = Φ̇ + rnH1 and L = Φ̇− rnH1.

In Figure 4–1, the choice of positive constant H1 for H is not large enough:

sup
|u|=H1

Ln(Φ̇ + rnu) ≥ Ln(Φ̇) since it occurs at u = H1 and the condition (4.3.1)
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does not hold. In Figure 4–2, H2 is chosen appropriately and large enough, and

sup
|u|=H2

Ln(Φ̇+rnu) < Ln(Φ̇). Hence, the neighbourhood (Φ̇−rnH2, Φ̇+rnH2) captures

the local maximizer Φ̂.

Figure 4–2: Φ̂ is the penalized maximum likelihood estimate, Φ̇ is the true parameter
value, U = Φ̇ + rnH2 and L = Φ̇− rnH2.

Both figures depict the likelihood function for a fixed sample of size n. As the

sample size increases, the likelihood will be more concentrated around the maximizer.

Since rn converges to zero as n tends to ∞, the neighbourhoods shrink towards the

true Φ̇, while still containing the local maximizer of the penalized likelihood function.

Hence, we ensure that there exists a local maximizer in the neighbourhood, which is

consistent for the true parameter.

(a) To prove consistency of the maximum penalized likelihood estimator Φ̂n, let

rn = n−1/2(1 + bn). It is enough to show that for each ε > 0 there exists a
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constant H > 0, such that (4.3.1) holds. This ensures a sequence of neighbour-

hoods shrinking towards Φ0 which are guaranteed to include the local maxi-

mizer, since with probability at least (1− ε) there exists a local maximizer, Φ̂n,

in the set {Φ0 + rnu : ‖u‖ ≤ H}, for which ‖Φ̂n −Φ0‖ = Op(rn).

Since Pλn(0) = 0 and the penalty function is nonnegative, we have:

l̃n(Φ0 + rnu)− l̃n(Φ0) ≤ ln(Φ0 + rnu)− ln(Φ0)

−
{ κ1∑
j=1

(
Pλn(Φ0j + rnuj)− Pλn(Φ0j)

)
+ γn

[ p2∑
j′=1

j′:α0
j′ 6=0

((α0
j′ + rnuj′)

2 − α0
j′

2
)

]

+ γn

[ m−1∑
k′=2

k′:α0
0k′ 6=0

((α0
0k′ + rnuk′)

2 − α0
0k′

2
)

]}
, (4.3.2)

where κ1 is the number of components in Φ01, the set of true nonzero param-

eters in the model and uj′ and uk′ , for j′ = 1, 2, . . . , p2 and k′ = 2, . . . ,m − 1

are elements of u corresponding to elements of α and α0, respectively. Using

a Taylor expansion of the log-likelihood function, we have:( n∑
i=1

∂

∂Φ
log f(Wi; Φ)

∣∣∣∣
Φ=Φ0

)>
rnu

+
1

2
r2
nu
>
( n∑
i=1

∂2

∂Φ∂Φ>
log f(Wi; Φ)

∣∣∣∣
Φ=Φ0

)
u +RL

n(Φ0,u), (4.3.3)

where RL
n(Φ0,u) is the remainder term in the Taylor expansion, and the reg-

ularity Conditions D.1-D.3 on the likelihood function imply that RL
n(Φ0,u) =

op(1). By rn = (1+bn)√
n

with bn defined in Condition P.2, (4.3.3) has the following
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form:(
1√
n

n∑
i=1

∂

∂Φ
log f(Wi; Φ)

∣∣∣∣
Φ=Φ0

)>
(1 + bn)u

+
1

2
(1 + bn)2u>

(
1

n

n∑
i=1

∂2

∂Φ∂Φ>
log f(Wi; Φ)

∣∣∣∣
Φ=Φ0

)
u(1 + op(1)). (4.3.4)

Using a Taylor expansion for the penalty function, we have:

κ1∑
j=1

(
P ′λn(Φ0j)rnuj + P ′′λn(Φ0j)r

2
nu

2
j +RPλn

n (Φ0,u)

)

+ γnrn

[ p2∑
j′=1

j′:α0
j′ 6=0

(2α0
j′uj′ + u2

j′) +
m−1∑
k′=2

k′:α0
0k′ 6=0

(2α0
0k′uk′ + u2

k′)

]
(4.3.5)

whereR
Pλn
n (Φ0,u) is the remainder term in the Taylor expansion. R

Pλn
n (Φ0,u) =

o(1) by Conditions P .1-P .2 on the penalty function. Hence, since rn = (1+bn)√
n

,

(4.3.5) has form

κ1∑
j=1

(
P ′λn(Φ0j)√

n
(1 + bn)uj +

P ′′λn(Φ0j)

n
(1 + bn)2u2

j(1 + o(1))

)

+
γn√
n

(1 + bn)
( p2∑

j′=1

j′:α0
j′ 6=0

(2|α0
j′ ||uj′ |+ |uj′|2) +

m−1∑
k′=2

k′:α0
0k′ 6=0

(2|α0
0k′||uk′ |+ |uk′|2)

)
.

(4.3.6)
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Using Condition P .2 we can bound (4.3.6) by:

κ1

(
bn(1 + bn)‖u‖+

cn
2

(1 + bn)2‖u‖2(1 + o(1))

)
+

(
γn√
n

(1 + bn)‖u‖
[ p2∑

j′=1

j′:α0
j′ 6=0

(2α0
j′|+ |uj′|) +

m−1∑
k′=2

k′:α0
0k′ 6=0

(2|α0
0k′ |+ |uk′|)

])
. (4.3.7)

Using Condition P .2, bn(1+bn)‖u‖ = O(1),
cn
2

(1+bn)2‖u‖2 = o(1), and the last

term in brackets in (4.3.7) converges to zero as n tends to∞. In addition, con-

ditions D.1, D.2 and D.3, the regularity conditions on the likelihood function,

imply
1√
n

n∑
i=1

∂

∂Φ
log f(W; Φ)

∣∣∣∣
Φ=Φ0

= Op(1). The Law of Large Numbers in-

duces convergence of
1

n

n∑
i=1

∂2

∂Φ∂Φ>
log f(Wi; Φ)

∣∣∣∣
Φ=Φ0

to −I(Φ0) as n tends

to ∞. Condition D.4, the positive definiteness of the Fisher’s information ma-

trix alone implies that u>I(Φ0)u ≥ 0. Hence as n goes to ∞, the dominant

term in (4.3.2) is −(1 + bn)2

2
u>I(Φ0)u by choosing H to be sufficiently large

for a given ε > 0. Hence, (4.3.1) holds.

To prove part (b) of the Theorem, we need the following lemma.

Lemma 1. For i = 1, 2, . . . , n, let Wi be independent and identically distributed

random vectors with the probability density function f(·; Φ0), where Φ0 = (Φ01,0).

Let Ln(Φ) represent a likelihood which is of the form of (2.3.4) in Chapter 2, and

L̃n(Φ) represent the penalized likelihood function of Φ = (Φ1,Φ2). Assume D.1-D.3

are fulfilled, and the penalty function Pλn(·) satisfies Conditions P.1-P.3. Then, for
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any Φ ∈ Θ, such that ‖Φ−Φ0‖ = O(n−1/2), we have:

P

{
L̃n(Φ1,Φ2)

L̃n(Φ1,0)
≤ 1

}
→ 1, n→∞.

Proof of Lemma 1.

Let Φ = (Φ1,Φ2) be in the neighbourhood {Φ : ‖Φ − Φ0‖ ≤ Hn−1/2} for a

positive constant H. Since Pλn(0) = 0, we have:

log L̃n(Φ1,Φ2)− log L̃n(Φ1,0) = logLn(Φ1,Φ2)− logLn(Φ1,0)−
κ∑

j=κ1+1

Pλn(Φj).

(4.3.8)

We show that (4.3.8) is negative as n tends to ∞. We first find the rate of conver-

gence for the first two terms in the right-hand side of (4.3.8). Condition D.2 on the

likelihood function allows us to invoke the mean value theorem, so that:

logLn(Φ1,Φ2)− logLn(Φ1,0) =

(
∂

∂Φ2

logLn(Φ1,Φ2)
∣∣
Φ2=ξ

)>
Φ2, (4.3.9)

where ξ is chosen, such that ‖ξ‖ ≤ ‖Φ2‖, where ‖Φ2‖ = O(n−1/2). To find the rate

of convergence of the first term on the right side of (4.3.9), ∂
∂Φ2

logLn(Φ1,Φ2)
∣∣
Φ2=ξ

,

we use condition D.3 on the derivatives of the log density functions, which implies
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n∑
i=1

M(Wi) = O(n). Also, using the mean value theorem, we have:

∥∥∥∥ ∂

∂Φ2

logLn(Φ1,Φ2)

∣∣∣∣
Φ2=ξ

− ∂

∂Φ2

logLn(Φ01,Φ2)

∣∣∣∣
Φ2=0

∥∥∥∥
≤
∥∥∥∥ ∂

∂Φ2

logLn(Φ1,Φ2)

∣∣∣∣
Φ2=ξ

− ∂

∂Φ2

logLn(Φ1,Φ2)

∣∣∣∣
Φ2=0

∥∥∥∥
+

∥∥∥∥ ∂

∂Φ2

logLn(Φ1,Φ2)

∣∣∣∣
Φ2=0

− ∂

∂Φ2

logLn(Φ01,Φ2)

∣∣∣∣
Φ2=0

∥∥∥∥
≤
∣∣ n∑
i=1

M(Wi)
∣∣(‖ξ‖+ ‖Φ1 −Φ01‖

)
= O(n1/2). (4.3.10)

The conditions D.1-D.3 on the density function imply that ∂
∂Φ2

logLn(Φ01,Φ2)

∣∣∣∣
Φ2=0

is Op(n
1/2), and therefore in (4.3.10), ∂

∂Φ2
logLn(Φ1,Φ2)

∣∣∣∣
Φ2=ξ

= Op(n
1/2). Therefore,

for (4.3.9) we have:

logLn(Φ1,Φ2)− logLn(Φ1,0) = Op(n
1/2)

κ∑
j=κ1+1

|Φj|.

Consequently,

log L̃n(Φ1,Φ2)− log L̃n(Φ1,0) = Op(n
1/2)

κ∑
j=κ1+1

|Φj| −
κ∑

j=κ1+1

Pλn(Φj)

=
√
n

{
κ∑

j=κ1+1

[
|Φj|O(1)− Pλn(Φj)√

n

]
− γn

2
√
n

∑
j:αj 6=0

α2
j

}
. (4.3.11)

Since γn√
n

= o(1), and by Condition P.3 on the penalty function for the Φj in a neigh-

borhood shrinking to zero, the term
[
|Φj|O(1)− Pλn (Φj)√

n

]
, is negative with probability

tending to 1 as n→∞, for each j = κ1 + 1, κ1 + 2, . . . , κ. The proof is complete.
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4.3.4 Continuation of the Proof of Theorem 1.

(b) i. For the partition Φ = (Φ1,Φ2), let the (Φ̂n1,0) be the maximizer of the

log penalized likelihood l̃n(Φ1,0) = log L̃n(Φ1,0), as a function of Φ1. We

only need to show that for any Φ, such that ‖Φ − Φ0‖ = O(n−1/2), we

have:

P

{
log L̃n(Φ1,Φ2)− log L̃n(Φ̂n1,0) < 0

}
→ 1 as n→∞.

As we showed in part (a) of Theorem 1, Φ̂n = (Φ̂n1,0), the local maxi-

mizer, also has the property that ‖Φ̂n −Φ0‖ = Op(n
−1/2). We can write:

log L̃n(Φ1,Φ2)− log L̃n(Φ̂n1,0) = log L̃n(Φ1,Φ2)− log L̃n(Φ1,0)

+ (log L̃n(Φ1,0)− log L̃n(Φ̂n1,0))

(4.3.12)

Lemma 1 forces log L̃n(Φ1,Φ2)− log L̃n(Φ1,0) to be negative with prob-

ability converging to 1 as n tends to ∞, and by definition of Φ̂n, we also

have log L̃n(Φ1,0)− log L̃n(Φ̂n1,0) ≤ 0. Hence, (4.3.12) is negative with

probability tending to 1 as n tends to ∞ and the proof is complete.

ii. Considering log L̃n(Φ1,0) as a function of Φ1, there exists a consistent

local maximizer Φ̂n1 according to the part (a) of Theorem 1, for which

the derivative of penalized likelihood function is zero,

∂

∂Φ1

log L̃n(Φ1,0)

∣∣∣∣
Φ1=Φ̂n1

=[
∂

∂Φ1

logLn(Φ1,0)− ∂

∂Φ1

Pλn(Φ1,0)

]
Φ1=Φ̂n1

= 0.
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Using a Taylor expansion,[
∂

∂Φ1

logLn(Φ1,0)− ∂

∂Φ1

Pλn(Φ1,0)

]
Φ1=Φ̂n1

=
∂

∂Φ1

logLn(Φ1,0)

∣∣∣∣
Φ1=Φ01

+

[
∂2

∂Φ1∂Φ>1
logLn(Φ1,0)

∣∣∣∣
Φ1=Φ01

+Op(n)

]
(Φ̂n1 −Φ01)

−
{

∂

∂Φ1

Pλn(Φ1,0)

∣∣∣∣
Φ1=Φ01

+

[
∂2

∂Φ1∂Φ>1
Pλn(Φ1,0)

∣∣∣∣
Φ1=Φ01

+Op(n)

]
(Φ̂n1 −Φ01)

}
= 0.

Therefore,

∂

∂Φ1

logLn(Φ1,0)

∣∣∣∣
Φ1=Φ01

− ∂

∂Φ1

Pλn(Φ1,0)

∣∣∣∣
Φ1=Φ01

=

{
− ∂2

∂Φ1∂Φ>1
logLn(Φ1,0)

∣∣∣∣
Φ1=Φ01

+
∂2

∂Φ1∂Φ>1
Pλn(Φ1,0)

∣∣∣∣
Φ1=Φ01

+Op(n)

}
(Φ̂n1 −Φ01).

Using a similar argument to that in the proof of part (a) of Theorem 1

the Law of Large Numbers implies that − 1

n

∂2

∂Φ1∂Φ>1
logLn(Φ1,0)

∣∣∣∣
Φ1=Φ01

converges to I11(Φ01) as n tends to ∞. Now, by the Central Limit

Theorem,
∂

∂Φ1

logLn(Φ1,0)

∣∣∣∣
Φ1=Φ01

converges in distribution to Z, where

Z ∼ N (0, I11(Φ01)) and so using Slutsky’s theorem, we have:

√
n
(
I11(Φ01) +

P′′λn(Φ01)

n

)
(Φ̂n1 −Φ01) +

P′λn(Φ01)
√
n

d→ Z,

which completes the proof.

62



CHAPTER 5
Simulation Study

In this chapter we present the results of the simulations we carried out to inves-

tigate the performance of our variable selection method for longitudinal data with a

change-point. We assess its small sample performance with two different multi-path

change-point models. The models and parameters we chose were motivated by the

Alzheimer’s disease example analyzed in Chapter 6. The two models we considered

are as follows:

Model 1. Starting with a simple model, we assumed constant (with respect

to time) means for the observation distributions before and after the change, and

a constant hazard for the change-point distribution. In this setting, we examined

the effects of changing the sample size, number of follow-ups, number of binary

covariates, and pair-wise correlation between covariates. The simplicity of Model 1

made it easy to check many different scenarios.

Model 2. Allowing for greater flexibility, we assumed a model with time as

a covariate in the observation distribution means before and after the change, and

a time-varying hazard for the change-point distribution. Although this scenario

is of more practical use, its greater complexity results in considerably increased

computation time, when carrying out the repetitions of a simulation study. In this

model, we assessed the effects of sample size (particularly small samples), number of

follow-ups, and several other features from Model 1.
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In both models, we varied the magnitude of the parameters. In Setting 2 of

Model 2, we assumed the baseline hazard model of a change to be sparse, in the

sense that some elements of α0 are zero. A sparse structure in this setting would

result in a smoother baseline hazard. There are some assumptions common to both

models. These common assumptions are:

1. In all the scenarios, we assumed the number of covariates to be the same

(p = 10). We assumed there to be a combination of continuous and binary

covariates, and varied the number of binary covariates.

2. We compared two different covariate profiles: no discrete covariates, and several

binary covariates. In the latter case, the remaining covariates were taken to

be continuous and were sampled from a multivariate normal distribution with

mean zero and pair-wise correlations ρ(Xi,Xj), for i 6= j, equal to 0, 0.5 or 0.75

in the first scenario, and 0 or 0.75 in the second scenario. Under Model 1, for

i = 1, 2, . . . , n, given the generated vector of covariates xi and that the change

occurs at k (for k = 1, 2, . . . ,m− 1), we generated observations independently

before and after the change-point from univariate normal distributions. That

is, Yij ∼ N(β01 + x′iβ1, σ
2
1) for j = 1, 2, . . . , k, and Yij ∼ N(β02 + x′iβ2, σ

2
2) for

j = k + 1, k + 2, . . . ,m. If k = m, Yij ∼ N(β01 + x′iβ1, σ
2
1) for j = 1, 2, . . . ,m.

Under Model 2, given τ = k, the means of the normal distributions were taken

to be β01 + η1j + x′iβ1 and β02 + η2j + x′iβ2 before and after the change,

respectively. We chose the variances σ2
1 and σ2

2 before and after the change-

point to be equal to 1 in both models; these nuisance parameters were not our

primary concern.
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3. We assumed the change-point distribution to be (2.2.4), as described in Chap-

ter 2.

To choose the tuning parameter, we used the BIC, setting the tuning parameter

λn ∈ {0.01, 0.02, . . . , 0.4}. We also used a modified form of the Newton–Raphson

method in our simulations, as well as in the real data analysis in Chapter 6. In

the standard Newton–Raphson method, the goal is to find the root of the equation

∂f

∂y
= 0. Let yn be the value at the nth iteration. Then the update at the next

iteration has the following form:

yn+1 = yn −
[

∂2f

∂y∂y>

]−1

y=yn

[
∂f

∂y

]
y=yn

.

Instead, we let:

yn+1 = yn − (0.5)s
[

∂2f

∂y∂y>

]−1

y=yn

[
∂f

∂y

]
y=yn

for s = 1, 2, . . .. By introducing s, the increment at each iteration is reduced in size,

guaranteeing that we do not miss the true y∗ (the root of the equation). We chose

s = 2. We also set all the estimates smaller than 10−6 equal to zero, which results

in a sparse model.

In all our estimation procedures, we used the ridge regression penalty function

for the change-point distribution regression model. We also used the ridge regres-

sion penalty function in the penalized likelihood estimation of the baseline hazard

parameters in the change-point distribution.

We assessed performance in two different respects: variable selection and esti-

mation. For variable selection, we used:
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Sensitivity (S1) = Proportion of correctly estimated zero coefficients, and

Specificity (S2) = Proportion of correctly estimated non-zero coefficients.

We reported the averages of S1 and S2 over the 500 simulated data sets. We

measured these two for each of the four vectors of parameters, β1, β2, and α∗ =

(α,α0). The vector α0 is not in Model 1.

Our simulations were driven by our Alzheimer’s disease example in which the

aim was to select the “best” set of explanatory variables rather than to carry out

prediction. Therefore, we have not attempted to evaluate our approach with predic-

tion in mind. Had this been one of our goals we would have simulated test data sets,

separate from the training data sets, and based our evaluation on the sum of the

squared differences between the observed and expected Y s. Alternatively, we could

have used K-fold cross validation.

For estimation, we considered: 1) the errors in parameter estimation and 2) the

average error. For the error in the parameter estimates, we computed the sums of

the component-wise mean square errors for each of the vectors of estimates of β1,

β2, and α∗ = (α01,α) , in Model 1 defined as

M̂SE1(β̂j) =
1

p+ 1

p∑
i=0

[β̂ij − β0
ij]

2, j = 1, 2,

M̂SE1(α̂∗) =
1

p+ 1

{ p∑
i=1

[α̂i −α0
i ]

2 + [α̂01 − α0
01]2
}
,

(5.0.1)
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and for β1, β2, α and (α01, α02, . . . , α0(m−1)) in Model 2 as

M̂SE2(β̂j) =
1

p+ 2

{ p∑
i=0

[β̂ij − β0
ij]

2 + [β̂iTime − β0
iTime]

2
}
, j = 1, 2,

M̂SE2(α̂) =
1

p

{
p∑
i=1

[α̂i −α0
i ]

2

}
,

M̂SE2(α̂0) =
1

m− 1

{
m−1∑
k=1

[α̂0k − α0
0k]

2

}
, (5.0.2)

where β0
j for j = 1, 2 is the vector of true regression coefficients including true

intercepts in the observation distributions before and after the change-point, α0

is the vector of true regression coefficients in the change-point distribution and

(α0
01, α

0
02, . . . , α

0
0(m−1)) is the vector of true increments in the logit of the baseline

hazard. The M̂SEk(β̂j)s correspond to the before (j = 1) and after (j = 2) change-

point observation distribution for k = 1, 2, corresponding Model 1 and 2, respectively

and M̂SE(α̂∗) corresponds to the change-point distribution.

As an overall measure of the error in the estimated parameters we used the

average mean square error of the estimated responses (TMSE) compared with the

expected responses. The average was taken over the set of observed independent

variables. The TMSEs in Model 1 were defined as

T̂MSE1(β̂j) =
1

n

n∑
i=1

[β̂0j + x>i β̂j − β0
0j − x>i β0

j ]
2, j = 1, 2,

T̂MSE1(α̂∗) =
1

n

n∑
j=1

m−1∑
k=1

[πk(xj, α̂
∗)− πk(xj,α∗0)]2

=
1

n

n∑
j=1

m−1∑
k=1

[logit−1(α̂01 + xiα̂)− logit−1(α0
01 + xiα

0)]2, (5.0.3)
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where xi is the vector of covariates for the ith subject (i = 1, 2, . . . , n). In Model 2.

these were defined as

T̂MSE2(β̂j) =
1

n

n∑
i=1

m∑
t=1

[β̂0j + x>itβ̂j − β0
0j − x>itβ0

j ]
2, j = 1, 2,

T̂MSE2(α̂∗) =
1

n

n∑
j=1

m−1∑
k=1

[πk(xj, α̂
∗)− πk(xj,α∗0)]2 =

1

n

n∑
j=1

m−1∑
k=1

[logit−1(
k∑
l=1

α̂0l + xiα̂)− logit−1(
k∑
l=1

α0
0l + xiα

0)]2, (5.0.4)

where xit = (t,xi) with xi, the vector of covariates for the ith subject, for t = 1, 2, . . . ,m

and i = 1, 2, . . . , n. For a vector of parameter estimators, say θ̂, we report the median

of the relative efficiency of the parameter estimation methods as

ej(θ̂) =
M̂SEj(θ̂MPLE)

M̂SEj(θ̂Ridge)
(5.0.5)

and the empirical efficiency as

e∗j(θ̂) =
T̂MSEj(θ̂MPLE)

T̂MSEj(θ̂Ridge)
, (5.0.6)

based on 500 simulated data sets for j = 1, 2, respectively. Here θ̂Ridge is the vector of

estimators of the parameters of the full model obtained by maximizing the penalized

log-likelihood function l̃n(·) with only a ridge penalty on the α∗.
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5.1 Simulation Scenario: Model 1

Here we assessed two different settings. The main difference between these two

was the magnitude of the true parameters. In addition, we assumed 1) α02 = · · · =

α0(m−1) = 0 and 2) constant means before and after the change, respectively (time

was not included as a covariate in the regression models before and after the change).

5.1.1 Setting 1

In this setting, we assessed the effect of the number of paths (n = 50 and 100)

and the number of follow-ups (m = 5 and 15) on variable selection for the change-

point distribution. We varied the number of independent binary covariates (pbin =

0, 2, and 4). We also altered the pair-wise correlations (ρ = 0, 0.5 and 0.75). Here,

our primary concern was to detect the covariates which affected the change-point

distribution. When inference is about the change-point distribution, a large number

of subjects, n, is needed because the change-point is not directly observable and the

information about its distribution is, consequently, indirect.
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The parameter specification in this setting is as follows. The vectors of true

parameters are:

β0
1 = (2,−1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0),

β0
2 = (−3,−4,−1,−2, 0, 0, 0, 0, 0, 0, 0, 0),

α∗0m=5 = (−2, 0, 0, 0, 2,−1, 0, 0, 0, 0, 0, 0, 0),

α∗0m=10 = (−2, 0, 0, 0, 0, 0, 0, 0, 0, 2,−1, 0, 0, 0, 0, 0, 0, 0),

α∗0m=15 = (−2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,−1, 0, 0, 0, 0, 0, 0, 0),

where the first element in each vector represents the intercept. We used the LASSO,

SCAD and HARD penalty functions in addition to the ridge regression penalty func-

tion.

Tables 5–1 - 5–4 give the estimated sensitivities and specificities. In Tables 5–5

- 5–8, for any vector of parameters in the model, such as θ, we present simulation

results for median

{
e(θ̂

j
); j = 1, 2, . . . , 500

}
where e(θ̂

j
), defined in (5.0.5), and θ̂

j

is the estimated vector θ from the jth simulated data set.
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Table 5–1: Estimated sensitivity (S1) and specificity (S2) for cases with pcon covariates
from MN(0,Σρ) and pbin binary covariates under Model 1, Setting 1 for n = 50 and m = 5.

Setting β1 β2 α∗

Pen. n m pcon pbin ρ S1 S2 S1 S2 S1 S2

LASSO 50 5 10 0 0 0.924 1.000 0.892 0.999 0.966 0.802
.5 0.915 1.000 0.886 0.998 0.941 0.572

0.75 0.892 1.000 0.839 0.969 0.890 0.407
8 2 0 0.917 1.000 0.890 0.914 0.932 0.448

.5 0.886 1.000 0.891 0.962 0.943 0.525
0.75 0.855 1.000 0.842 0.956 0.920 0.436

6 4 0 0.899 1.000 0.895 0.971 0.914 0.459
.5 0.898 1.000 0.892 0.991 0.936 0.483

0.75 0.895 1.000 0.894 0.940 0.913 0.463

SCAD 50 5 10 0 0 0.982 1.000 0.984 0.999 0.985 0.687
.5 0.981 1.000 0.985 0.998 0.972 0.534

0.75 0.983 1.000 0.957 0.933 0.926 0.559
8 2 0 0.980 1.000 0.888 0.896 0.962 0.618

.5 0.982 1.000 0.873 0.866 0.948 0.674
0.75 0.982 1.000 0.895 0.858 0.910 0.597

6 4 0 0.986 1.000 0.822 0.876 0.917 0.606
.5 0.984 1.000 0.823 0.898 0.939 0.653

0.75 0.990 1.000 0.708 0.799 0.905 0.564

HARD 50 5 10 0 0 0.992 1.000 0.893 0.999 0.638 0.984
.5 0.982 1.000 0.823 0.998 0.602 0.944

0.75 0.951 1.000 0.656 0.965 0.502 0.885
8 2 0 0.986 1.000 0.459 0.951 0.601 0.887

.5 0.985 1.000 0.440 0.942 0.512 0.912
0.75 0.961 1.000 0.432 0.946 0.435 0.898

6 4 0 0.973 1.000 0.379 0.947 0.488 0.885
.5 0.982 1.000 0.414 0.949 0.501 0.914

0.75 0.968 1.000 0.281 0.922 0.406 0.871
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Table 5–2: Estimated sensitivity (S1) and specificity (S2) for cases with pcon covariates
from MN(0,Σρ) and pbin binary covariates under Model 1, Setting 1 for n = 100 and
m = 5.

Setting β1 β2 α∗

Pen. n m pcon pbin ρ S1 S2 S1 S2 S1 S2

LASSO 100 5 10 0 0 0.971 1.000 0.937 1.000 0.973 0.990
.5 0.956 1.000 0.914 1.000 0.950 0.866

0.75 0.917 1.000 0.877 1.000 0.986 0.680
8 2 0 0.972 1.000 0.904 0.996 0.917 0.621

.5 0.940 1.000 0.867 0.993 0.959 0.602
0.75 0.914 1.000 0.864 0.996 0.898 0.632

6 4 0 0.964 1.000 0.924 0.999 0.929 0.582
.5 0.958 1.000 0.925 1.000 0.898 0.639

0.75 0.940 1.000 0.882 0.994 0.906 0.592

SCAD 100 5 10 0 0 0.994 1.000 0.989 1.000 0.988 0.946
.5 0.994 1.000 0.989 1.000 0.978 0.918

0.75 0.996 1.000 0.992 0.999 0.976 0.721
8 2 0 0.997 1.000 0.974 0.998 0.964 0.847

.5 0.997 1.000 0.961 0.974 0.963 0.781
0.75 0.997 1.000 0.970 0.978 0.941 0.756

6 4 0 0.998 1.000 0.969 0.992 0.956 0.802
.5 0.997 1.000 0.978 1.000 0.964 0.826

0.75 0.998 1.000 0.944 0.942 0.919 0.751

HARD 100 5 10 0 0 0.997 1.000 0.980 1.000 0.868 1.000
.5 0.998 1.000 0.969 1.000 0.820 0.997

0.75 0.986 1.000 0.889 0.999 0.633 0.967
8 2 0 0.998 1.000 0.888 0.999 0.816 0.958

.5 0.996 1.000 0.734 0.987 0.657 0.946
0.75 0.994 1.000 0.695 0.993 0.543 0.952

6 4 0 0.996 1.000 0.759 0.996 0.683 0.959
.5 0.996 1.000 0.852 1.000 0.719 0.967

0.75 0.996 1.000 0.649 0.973 0.523 0.943
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Table 5–3: Estimated sensitivity (S1) and specificity (S2) for cases with pcon covariates
from MN(0,Σρ) and pbin binary covariates under Model 1, Setting 1 for n = 50 and
m = 15.

Setting β1 β2 α∗

Pen. n m pcon pbin ρ S1 S2 S1 S2 S1 S2

LASSO 50 15 10 0 0 0.954 1.000 0.955 1.000 0.945 0.962
.5 0.928 1.000 0.936 1.000 0.949 0.896

0.75 0.930 1.000 0.915 1.000 0.960 0.664
8 2 0 0.961 1.000 0.923 1.000 0.901 0.561

.5 0.948 1.000 0.887 1.000 0.918 0.646
0.75 0.910 1.000 0.830 1.000 0.918 0.683

6 4 0 0.958 1.000 0.914 1.000 0.934 0.583
.5 0.945 1.000 0.907 1.000 0.922 0.620

0.75 0.931 1.000 0.846 1.000 0.918 0.648

SCAD 50 15 10 0 0 0.980 1.000 0.980 1.000 0.982 0.898
.5 0.977 1.000 0.978 1.000 0.978 0.824

0.75 0.979 1.000 0.978 1.000 0.961 0.700
8 2 0 0.984 1.000 0.975 1.000 0.961 0.809

.5 0.979 1.000 0.968 1.000 0.964 0.840
0.75 0.980 1.000 0.977 1.000 0.920 0.779

6 4 0 0.985 1.000 0.976 1.000 0.952 0.812
.5 0.984 1.000 0.973 1.000 0.941 0.830

0.75 0.983 1.000 0.977 1.000 0.918 0.795

HARD 50 15 10 0 0 0.988 1.000 0.988 1.000 0.777 0.996
.5 0.983 1.000 0.988 1.000 0.699 0.994

0.75 0.976 1.000 0.980 1.000 0.602 0.956
8 2 0 0.990 1.000 0.961 1.000 0.764 0.944

.5 0.993 1.000 0.959 1.000 0.688 0.965
0.75 0.992 1.000 0.933 1.000 0.534 0.944

6 4 0 0.993 1.000 0.957 1.000 0.712 0.963
.5 0.993 1.000 0.956 1.000 0.652 0.962

0.75 0.993 1.000 0.928 1.000 0.507 0.952
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Table 5–4: Estimated sensitivity (S1) and specificity (S2) for cases with pcon covariates
from MN(0,Σρ) and pbin binary covariates under Model 1, Setting 1 for n = 100 and
m = 15.

Setting β1 β2 α∗

Pen. n m pcon pbin ρ S1 S2 S1 S2 S1 S2

LASSO 100 15 10 0 0 0.997 1.000 0.996 1.000 0.992 1.000
.5 0.977 1.000 0.982 1.000 0.955 0.994

0.75 0.950 1.000 0.954 1.000 0.885 0.914
8 2 0 0.991 1.000 0.946 1.000 0.886 0.918

.5 0.982 1.000 0.938 1.000 0.907 0.886
0.75 0.963 1.000 0.921 1.000 0.873 0.882

6 4 0 0.985 1.000 0.937 1.000 0.897 0.908
.5 0.979 1.000 0.918 1.000 0.871 0.875

0.75 0.969 1.000 0.910 1.000 0.924 0.838

SCAD 100 15 10 0 0 0.999 1.000 0.999 1.000 0.990 0.998
.5 0.994 1.000 0.995 1.000 0.983 0.991

0.75 0.992 1.000 0.992 1.000 0.964 0.955
8 2 0 0.998 1.000 0.988 1.000 0.973 0.972

.5 0.997 1.000 0.990 1.000 0.964 0.960
0.75 0.996 1.000 0.992 1.000 0.957 0.944

6 4 0 0.998 1.000 0.990 1.000 0.953 0.972
.5 0.997 1.000 0.989 1.000 0.953 0.963

0.75 0.997 1.000 0.988 1.000 0.939 0.955

HARD 100 15 10 0 0 0.998 1.000 0.998 1.000 0.828 1.000
.5 0.996 1.000 0.996 1.000 0.839 1.000

0.75 0.992 1.000 0.990 1.000 0.772 0.995
8 2 0 0.996 1.000 0.974 1.000 0.852 0.992

.5 0.997 1.000 0.978 1.000 0.820 0.992
0.75 0.996 1.000 0.982 1.000 0.716 0.990

6 4 0 0.996 1.000 0.969 1.000 0.815 0.992
.5 0.997 1.000 0.980 1.000 0.792 0.991

0.75 0.998 1.000 0.980 1.000 0.730 0.988
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Table 5–5: Empirical estimation efficiency (e(θ̂)) for cases with pcon covariates from
MN(0,Σρ) and pbin binary covariates under Model 1, Setting 1 for n = 50 and m = 5.

Setting
Pen. n m pcon pbin ρ β1 β2 α∗

LASSO 50 5 10 0 0 0.561 0.299 0.840
.5 0.472 0.233 1.143

0.75 0.327 0.263 0.685
8 2 0 0.661 0.102 0.991

.5 0.588 0.079 0.604
0.75 0.587 0.128 0.503

6 4 0 0.583 0.062 0.533
.5 0.745 0.042 0.402

0.75 0.548 0.035 0.327

SCAD 50 5 10 0 0 0.344 0.130 0.811
.5 0.224 0.083 1.160

0.75 0.131 0.118 0.708
8 2 0 0.384 0.139 0.786

.5 0.297 0.183 0.572
0.75 0.176 0.210 0.520

6 4 0 0.294 0.220 0.531
.5 0.285 0.152 0.347

0.75 0.197 0.500 0.398

HARD 50 5 10 0 0 0.252 0.295 0.823
.5 0.163 0.427 1.030

0.75 0.162 0.760 0.742
8 2 0 0.320 0.918 0.838

.5 0.243 0.931 0.729
0.75 0.193 0.903 0.651

6 4 0 0.316 0.960 0.621
.5 0.266 0.910 0.475

0.75 0.241 0.991 0.505
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Table 5–6: Empirical estimation efficiency (e(θ̂)) for cases with pcon covariates from
MN(0,Σρ) and pbin binary covariates under Model 1, Setting 1 for n = 100 and m = 5.

Setting
Pen. n m pcon pbin ρ β1 β2 α∗

LASSO 100 5 10 0 0 0.690 0.436 1.490
.5 0.621 0.374 1.805

0.75 0.454 0.322 1.297
8 2 0 0.728 0.276 2.214

.5 0.613 0.229 1.373
0.75 0.540 0.236 0.884

6 4 0 0.741 0.136 1.266
.5 0.715 0.148 1.402

0.75 0.587 0.159 0.799

SCAD 100 5 10 0 0 0.467 0.261 0.486
.5 0.360 0.173 0.493

0.75 0.131 0.091 1.149
8 2 0 0.462 0.129 0.871

.5 0.264 0.126 0.843
0.75 0.176 0.106 0.679

6 4 0 0.426 0.081 0.622
.5 0.368 0.074 0.712

0.75 0.244 0.117 0.587

HARD 100 5 10 0 0 0.270 0.199 0.703
.5 0.196 0.173 0.829

0.75 0.111 0.366 1.018
8 2 0 0.312 0.349 0.852

.5 0.192 0.592 0.916
0.75 0.127 0.713 0.808

6 4 0 0.354 0.532 0.677
.5 0.303 0.422 0.725

0.75 0.224 0.746 0.677
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Table 5–7: Empirical estimation efficiency (e(θ̂)) for cases with pcon covariates from
MN(0,Σρ) and pbin binary covariates under Model 1, Setting 1 for n = 50 and m = 15.

Setting
Pen. n m pcon pbin ρ β1 β2 α∗

LASSO 50 15 10 0 0 0.510 0.276 0.803
.5 0.391 0.236 0.650

0.75 0.247 0.211 0.831
8 2 0 0.540 0.186 1.932

.5 0.508 0.112 0.888
0.75 0.399 0.216 0.576

6 4 0 0.533 0.118 0.879
.5 0.498 0.101 0.662

0.75 0.364 0.108 0.542

SCAD 50 15 10 0 0 0.391 0.213 0.515
.5 0.246 0.165 0.550

0.75 0.148 0.119 0.823
8 2 0 0.376 0.114 0.917

.5 0.349 0.062 0.471
0.75 0.201 0.067 0.534

6 4 0 0.383 0.063 0.441
.5 0.335 0.057 0.347

0.75 0.204 0.036 0.357

HARD 50 15 10 0 0 0.241 0.134 0.604
.5 0.136 0.098 0.601

0.75 0.098 0.075 0.801
8 2 0 0.214 0.087 0.818

.5 0.212 0.044 0.531
0.75 0.106 0.094 0.682

6 4 0 0.252 0.049 0.428
.5 0.210 0.043 0.471

0.75 0.126 0.041 0.503

77



Table 5–8: Empirical estimation efficiency (e(θ̂)) for cases with pcon covariates from
MN(0,Σρ) and pbin binary covariates under Model 1, Setting 1 for n = 100 and m = 15.

Setting
Pen. n m pcon pbin ρ β1 β2 α∗

LASSO 100 15 10 0 0 0.616 0.327 0.880
.5 0.753 0.204 0.688

0.75 0.722 0.517 1.376
8 2 0 0.248 0.237 0.840

.5 0.576 0.221 0.975
0.75 0.456 0.187 0.718

6 4 0 0.577 0.193 0.757
.5 0.573 0.239 0.753

0.75 0.462 0.205 0.683

SCAD 100 15 10 0 0 0.527 0.286 0.437
.5 0.518 0.148 0.228

0.75 0.404 0.285 0.358
8 2 0 0.195 0.133 0.327

.5 0.419 0.120 0.425
0.75 0.245 0.083 0.246

6 4 0 0.433 0.090 0.314
.5 0.382 0.115 0.307

0.75 0.287 0.088 0.225

HARD 100 15 10 0 0 0.344 0.212 0.620
.5 0.224 0.070 0.462

0.75 0.152 0.118 0.901
8 2 0 0.116 0.087 0.434

.5 0.233 0.059 0.569
0.75 0.110 0.051 0.546

6 4 0 0.292 0.055 0.456
.5 0.229 0.054 0.495

0.75 0.158 0.050 0.411

5.1.2 Setting 2

Here, we used three different sample sizes (n = 20, 50 and 100) and two different

numbers of follow-ups (m = 5 and 15). We present only the results for the LASSO
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and SCAD penalty functions, since in most cases, the SCAD and HARD penalty

functions performed similarly in this setting. We set the model parameters as follows:

β0
1 = (2,−1, 1, 0.5, 0, 0, 0, 0, 0, 0, 0, 0),

β0
2 = (−3,−4,−1,−0.5, 0, 0, 0, 0, 0, 0, 0, 0),

α∗0m=5 = (−2, 0, 0, 0, 2,−0.5, 0, 0, 0, 0, 0, 0, 0),

α∗0m=15 = (−2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,−0.5, 0, 0, 0, 0, 0, 0, 0),

where the first entries of β0
1 and β0

2 are the intercepts in the pre- and post-change

observation distribution regression models, respectively. Here, the vectors of true

parameters included some smaller entries than that of Setting 1, which resulted in a

more challenging problem. Tables 5–9 and 5–10 give the estimated sensitivities and

specificities. We show the empirical estimation efficiencies, defined in (5.0.1) and

(5.0.5), in Tables 5–11 and 5–12. The empirical efficiencies (the median of the ratios

of the average MSEs), as defined in (5.0.3) and (5.0.6), are shown in Tables 5–13 and

5–14, for the LASSO and SCAD penalty functions, respectively.
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Table 5–9: Estimated sensitivity (S1) and specificity (S2) for cases with pcon covariates
from MN(0,Σρ) and pbin binary covariates under Model 1, Setting 2 using the LASSO
penalty function.

Setting β1 β2 α∗

Pen. n m pcon pbin ρ S1 S2 S1 S2 S1 S2

LASSO 20 5 10 0 0 0.824 1.000 0.869 0.464 0.930 0.610
0.75 0.816 0.929 0.916 0.433 0.950 0.590

6 4 0 0.818 0.770 0.892 0.033 0.960 0.360
0.75 0.500 0.377 0.684 0.141 0.908 0.340

1 5 10 0 0 0.862 0.998 0.851 0.976 0.936 0.798
0.75 0.840 0.971 0.833 0.901 0.898 0.722

6 4 0 0.884 0.973 0.810 0.409 0.915 0.467
0.75 0.810 0.952 0.826 0.440 0.969 0.439

50 5 10 0 0 0.921 1.000 0.908 0.940 0.952 0.701
0.75 0.873 0.997 0.839 0.481 0.827 0.637

6 4 0 0.932 0.954 0.919 0.070 0.962 0.401
0.75 0.929 0.938 0.958 0.120 0.976 0.372

15 10 0 0 0.968 1.000 0.908 1.000 0.950 0.773
0.75 0.931 1.000 0.931 1.000 0.944 0.896

6 4 0 0.946 1.000 0.858 0.927 0.870 0.698
0.75 0.922 1.000 0.879 0.928 0.937 0.742

100 5 10 0 0 0.980 1.000 0.966 1.000 0.984 0.873
0.75 0.969 1.000 0.916 0.945 0.977 0.727

6 4 0 0.962 1.000 0.881 0.301 0.930 0.548
0.75 0.942 1.000 0.914 0.303 0.971 0.515

15 10 0 0 0.998 1.000 0.998 1.000 0.997 0.740
0.75 0.978 1.000 0.978 1.000 0.963 0.707

6 4 0 0.984 1.000 0.949 1.000 0.894 0.753
0.75 0.968 1.000 0.908 1.000 0.950 0.773
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Table 5–10: Estimated sensitivity (S1) and specificity (S2) for cases with pcon covariates
from MN(0,Σρ) and pbin binary covariates under Model 1, Setting 2 using the SCAD
penalty function.

Setting β1 β2 α∗

Pen. n m pcon pbin ρ S1 S2 S1 S2 S1 S2

SCAD 20 5 10 0 0 0.870 0.984 0.372 0.681 0.957 0.616
0.75 0.899 0.541 0.306 0.765 0.945 0.598

6 4 0 0.884 0.607 0.198 0.874 0.983 0.669
0.75 0.918 0.704 0.246 0.765 0.978 0.578

1 5 10 0 0 0.902 0.997 0.873 0.974 0.958 0.735
0.75 0.885 0.888 0.887 0.901 0.926 0.681

6 4 0 0.914 0.957 0.268 0.802 0.954 0.681
0.75 0.886 0.962 0.237 0.745 0.952 0.674

50 5 10 0 0 0.969 0.998 0.974 0.937 0.982 0.682
0.75 0.971 0.944 0.936 0.440 0.940 0.693

6 4 0 0.978 0.885 0.745 0.548 0.960 0.668
0.75 0.985 0.869 0.559 0.621 0.942 0.648

15 10 0 0 0.987 1.000 0.987 1.000 0.992 0.687
0.75 0.972 0.997 0.981 0.998 0.974 0.689

6 4 0 0.980 0.998 0.955 0.890 0.959 0.777
0.75 0.980 1.000 0.965 0.870 0.944 0.782

100 5 10 0 0 0.992 1.000 0.995 1.000 0.996 0.727
0.75 0.992 1.000 0.995 0.800 0.991 0.670

6 4 0 1.000 0.965 0.950 0.545 0.953 0.770
0.75 0.999 0.995 0.954 0.460 0.967 0.720

15 10 0 0 0.999 1.000 1.000 1.000 0.999 0.683
0.75 0.996 1.000 0.995 1.000 0.996 0.670

6 4 0 0.995 1.000 0.991 0.985 0.956 0.820
0.75 0.999 1.000 0.992 0.980 0.961 0.833
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Table 5–11: Empirical estimation efficiency (e(θ̂)) for cases with pcon covariates from
MN(0,Σρ) and pbin binary covariates under Model 1, Setting 2 using the LASSO penalty
function.

Setting
Pen. n m pcon pbin ρ β1 β2 α∗

LASSO 20 5 10 0 0 0.310 0.035 1.008
0.75 0.191 0.002 0.525

6 4 0 0.456 0.006 1.838
0.75 0.581 0.038 0.580

15 10 0 0 0.274 0.343 0.353
0.75 0.261 0.199 0.406

6 4 0 0.488 0.004 1.274
0.75 0.498 0.005 1.108

50 5 10 0 0 0.442 0.441 1.112
0.75 0.376 0.372 0.887

6 4 0 0.666 0.032 1.747
0.75 0.532 0.025 1.406

15 10 0 0 0.299 0.345 1.173
0.75 0.251 0.248 0.404

6 4 0 0.583 0.716 1.043
0.75 0.414 0.480 0.606

100 5 10 0 0 0.310 1.113 2.087
0.75 0.235 0.373 1.105

6 4 0 0.653 0.629 1.920
0.75 0.437 0.606 1.662

15 10 0 0 0.276 0.339 1.906
0.75 0.283 0.318 0.733

6 4 0 0.514 0.590 0.888
0.75 0.341 0.565 0.946
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Table 5–12: Empirical estimation efficiency (e(θ̂)) for cases with pcon covariates from
MN(0,Σρ) and pbin binary covariates under Model 1, Setting 2 using the SCAD penalty
function.

Setting
Pen. n m pcon pbin ρ β1 β2 α∗

SCAD 20 5 10 0 0 0.314 1.875 0.581
0.75 0.475 0.420 0.935

6 4 0 0.622 2.291 1.168
0.75 0.104 1.741 0.418

15 10 0 0 0.205 0.277 0.263
0.75 0.298 0.159 0.235

6 4 0 0.529 0.986 0.400
0.75 0.342 0.986 0.301

50 5 10 0 0 0.323 0.255 0.474
0.75 0.321 0.405 0.351

6 4 0 0.537 0.719 0.657
0.75 0.426 0.861 0.621

15 10 0 0 0.256 0.295 0.647
0.75 0.206 0.169 0.293

6 4 0 0.440 0.389 0.518
0.75 0.273 0.332 0.338

100 5 10 0 0 0.280 0.389 0.902
0.75 0.172 0.401 0.323

6 4 0 0.480 0.525 0.508
0.75 0.288 0.474 0.417

15 10 0 0 0.263 0.281 1.068
0.75 0.159 0.179 0.407

6 4 0 0.382 0.403 0.619
0.75 0.241 0.211 0.507
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Table 5–13: Empirical efficiency (e∗(θ̂)) for cases with pcon covariates from MN(0,Σρ)
and pbin binary covariates under Model 1, Setting 2 using the LASSO penalty function.

Setting
Pen. n m pcon pbin ρ β1 β2 α∗

LASSO 20 5 10 0 0 0.354 0.033 1.772
0.75 0.228 0.006 1.056

6 4 0 0.489 0.008 0.178
0.75 0.605 0.126 0.152

15 10 0 0 0.457 0.457 0.658
0.75 0.521 0.376 1.073

6 4 0 0.552 0.005 0.218
0.75 0.607 0.006 0.250

50 5 10 0 0 0.526 0.560 1.537
0.75 0.561 0.716 1.635

6 4 0 0.522 0.041 0.419
0.75 0.555 0.026 0.341

15 10 0 0 0.351 0.395 2.031
0.75 0.488 0.520 1.336

6 4 0 0.475 0.680 0.304
0.75 0.534 0.689 0.280

100 5 10 0 0 0.369 1.086 1.312
0.75 0.697 0.854 4.019

6 4 0 0.423 0.529 0.506
0.75 0.515 0.814 0.667

15 10 0 0 0.307 0.376 2.260
0.75 0.647 0.802 2.712

6 4 0 0.384 0.461 0.433
0.75 0.501 0.728 0.418
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Table 5–14: Empirical efficiency (e∗(θ̂)) for cases with pcon covariates from MN(0,Σρ)
and pbin binary covariates under Model 1, Setting 2 using the SCAD penalty function.

Setting
Pen. n m pcon pbin ρ β1 β2 α∗

SCAD 20 5 10 0 0 0.369 0.768 0.878
0.75 0.225 0.297 0.763

6 4 0 0.383 1.269 1.795
0.75 0.060 1.144 0.226

15 10 0 0 0.397 0.378 0.408
0.75 0.550 0.343 0.430

6 4 0 0.564 0.986 0.381
0.75 0.496 0.989 0.396

50 5 10 0 0 0.407 0.312 0.657
0.75 0.501 0.562 0.670

6 4 0 0.475 0.628 0.306
0.75 0.415 0.870 0.359

15 10 0 0 0.299 0.337 0.887
0.75 0.458 0.392 0.634

6 4 0 0.343 0.372 0.253
0.75 0.352 0.460 0.272

100 5 10 0 0 0.319 0.393 1.391
0.75 0.381 0.706 0.694

6 4 0 0.314 0.398 0.328
0.75 0.332 0.579 0.332

15 10 0 0 0.282 0.308 1.415
0.75 0.368 0.426 0.728

6 4 0 0.346 0.331 0.348
0.75 0.279 0.302 0.351

5.1.3 Discussion

The results of our simulation studies for Model 1 suggest:

1. Unsurprisingly, increasing both m and n improves variable selection.

2. Variable selection and estimation for the post-change observation distribution

means (with β2 as the vector of regression parameters) is more challenging than

85



the pre-change observation distribution means (with β1 as the vector of regres-

sion parameters). Our model allows for no change, in which all the observations

on a subject will be from the observation distribution before the change with no

observation from the distribution after the change. We also assumed that the first

observation on each subject comes from the pre-change distribution. Therefore,

there are more observations from the distribution before the change, leading to

enhanced pre-change statistical inference. This results in high estimated sensi-

tivities and specificities for β1. Increasing the number of follow-ups, m, when n

is fixed, as well as increasing n, for a given m, improves the estimated sensitivi-

ties and specificities for β2. However, the LASSO results in a sparse model and

it performs well on the post-change observation distribution. It chooses a small

number of covariates for the observation distribution after the change and there-

fore, results in a large number of correctly zero estimates. Hence, the estimated

sensitivity using the LASSO is large and its induced bias into estimators is small

(particularly, for small n’s) with small mean square errors; see Tables 5–9, 5–11,

and 5–13 for n = 20 and 50.

3. High collinearity results in a challenging inferential problem. Increasing n and m,

improves overall variable selection in the presence of collinearity. Our simulations

suggest that the LASSO is not recommended in the presence of high collinearity.

The LASSO selects only one covariate in a set of correlated covariates ignoring

their individual effects in the model, resulting in poor variable selection, particu-

larly for the change-point distribution.
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4. Increasing n, for a given m improves variable selection using the penalized like-

lihood approach. However, since the tuning parameter in the LASSO penalty

function, nλn, is an increasing function of n, it introduces bias into estimators,

particularly for the change-point distribution. This results in large mean square

errors as displayed in Tables 5–11 and 5–13.

5. For a fixed n, increasing m has a particular impact on β̂2, and α̂∗, the post-change

observation distribution and the change-point distribution parameter estimates,

respectively. Both variable selection and estimation are improved.

5.2 Simulation Scenario: Model 2

Although Model 1 may not be very realistic for most real change-point settings,

its simplicity allows for extensive, if somewhat preliminary, simulations. Model 2

is more flexible, but computationally more intensive to evaluate. Following are the

two settings we considered for this model: 1) We assumed a non-constant hazard

(α0i 6= α0j for at least one i 6= j = 1, 2, . . . ,m − 1), and 2) included time as a

covariate for the observation distribution means.

5.2.1 Setting 1:

We took combinations of n = 50, 150, and 500 and m = 5 and 15, respectively.

We used the LASSO and HARD penalty functions. The parameter vectors were

chosen to be:
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β0
1 = (2, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0), η0

1 = −1,

β0
2 = (−3,−1,−2, 0, 0, 0, 0, 0, 0, 0, 0), η0

2 = −4,

α0 = (−2, 2,−1, 0, 0, 0, 0, 0, 0, 0),

α0
0
m=5 = (−2, 1,−3, 5),

α0
0
m=15 = (−2, 1,−3, 5,−3, 1,−3, 5,−3, 1,−3, 5,−3, 1).

The first entries of β0
1 and β0

2 correspond to intercepts in the regression models

for the observations before and after the change, respectively. Here, we chose the

baseline hazard not to be smooth.

Tables 5–15 and 5–16 give the estimated sensitivities and specificities using the

LASSO and HARD penalties, respectively. Tables 5–17 and 5–18 give the empirical

estimation efficiencies of the parameter estimation defined in (5.0.2) and (5.0.5) for

the vector of parameter estimates (for β1, β2, α, and α0).

88



Table 5–15: Estimated sensitivity (S1) and specificity (S2) for cases with pcon covariates
from MN(0,Σρ) and pbin binary covariates under Model 2, Setting 1 using the LASSO
penalty function.

Setting β1 β2 α∗

Pen. n m pcon pbin ρ S1 S2 S1 S2 S1 S2

LASSO 50 5 10 0 0 1.000 1.000 1.000 1.000 0.574 0.977
0.75 1.000 1.000 1.000 1.000 0.497 0.972

6 4 0 1.000 1.000 1.000 0.998 0.436 1.000
.75 1.000 1.000 1.000 0.995 0.428 0.973

15 10 0 0 1.000 1.000 1.000 1.000 0.380 1.000
0.75 1.000 1.000 1.000 1.000 0.397 0.981

6 4 0 1.000 1.000 1.000 1.000 0.479 0.980
.75 1.000 1.000 1.000 1.000 0.567 0.877

150 5 10 0 0 1.000 1.000 1.000 1.000 0.593 1.000
0.75 1.000 1.000 1.000 1.000 0.540 0.997

6 4 0 1.000 1.000 1.000 1.000 0.574 1.000
.75 1.000 1.000 1.000 1.000 0.511 1.000

15 10 0 0 1.000 1.000 1.000 1.000 0.559 1.000
0.75 1.000 1.000 1.000 1.000 0.438 1.000

6 4 0 1.000 1.000 1.000 1.000 0.604 1.000
.75 1.000 1.000 1.000 1.000 0.462 1.000

500 5 10 0 0 1.000 1.000 1.000 1.000 0.860 1.000
0.75 1.000 1.000 1.000 1.000 0.764 1.000

6 4 0 1.000 1.000 1.000 1.000 0.844 1.000
.75 1.000 1.000 1.000 1.000 0.745 1.000
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Table 5–16: Estimated sensitivity (S1) and specificity (S2) for cases with pcon covariates
from MN(0,Σρ) and pbin binary covariates under Model 2, Setting 1 using the HARD
penalty function.

Setting β1 β2 α∗

Pen. n m pcon pbin ρ S1 S2 S1 S2 S1 S2

HARD 50 5 10 0 0 1.000 1.000 1.000 1.000 0.940 0.976
0.75 1.000 1.000 1.000 1.000 0.941 0.972

6 4 0 1.000 1.000 1.000 0.996 0.951 0.993
.75 1.000 1.000 1.000 0.991 0.953 0.975

15 10 0 0 1.000 1.000 1.000 1.000 0.882 0.996
0.75 1.000 1.000 1.000 1.000 0.921 0.979

6 4 0 1.000 1.000 1.000 1.000 0.908 0.994
.75 1.000 1.000 1.000 1.000 0.889 0.987

150 5 10 0 0 1.000 1.000 1.000 1.000 0.982 1.000
0.75 1.000 1.000 1.000 1.000 0.978 0.998

6 4 0 1.000 1.000 1.000 1.000 0.981 1.000
.75 1.000 1.000 1.000 1.000 0.979 1.000

15 10 0 0 1.000 1.000 1.000 1.000 0.892 1.000
0.75 1.000 1.000 1.000 1.000 0.897 1.000

6 4 0 1.000 1.000 1.000 1.000 0.894 1.000
.75 1.000 1.000 1.000 1.000 0.889 1.000

500 5 10 0 0 1.000 1.000 1.000 1.000 0.995 1.000
0.75 1.000 1.000 1.000 1.000 0.995 1.000

6 4 0 1.000 1.000 1.000 1.000 0.995 1.000
.75 1.000 1.000 1.000 1.000 0.991 1.000

15 10 0 0 1.000 1.000 1.000 1.000 0.860 1.000
0.75 1.000 1.000 1.000 1.000 0.853 1.000

6 4 0 1.00 1.000 1.000 1.000 0.840 1.000
.75 1.00 1.000 1.000 1.000 0.850 1.000
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Table 5–17: Empirical estimation efficiency (e(θ̂)) for cases with pcon covariates from
MN(0,Σρ) and pbin binary covariates under Model 2, Setting 1 using the LASSO penalty
function.

Setting
Pen. n m pcon pbin ρ β1 β2 α α0

LASSO 50 5 10 0 0 0.314 0.223 0.757 1.521
0.75 0.150 0.147 0.736 1.246

6 4 0 0.382 0.335 0.775 1.076
0.75 0.198 0.242 0.739 0.930

15 10 0 0 0.277 0.254 0.626 0.883
0.75 0.130 0.108 0.603 0.833

6 4 0 0.213 0.320 0.727 0.895
0.75 0.348 0.205 0.889 0.932

150 5 10 0 0 0.301 0.383 0.900 2.450
0.75 0.151 0.206 0.822 2.455

6 4 0 0.453 0.461 0.884 1.793
0.75 0.256 0.269 0.791 1.627

15 10 0 0 0.292 0.324 0.718 0.869
0.75 0.226 0.180 0.778 0.843

6 4 0 0.338 0.360 0.674 0.773
0.75 0.249 0.267 0.653 0.768

500 5 10 0 0 0.363 0.379 1.826 8.028
0.75 0.141 0.203 1.312 7.684

6 4 0 0.456 0.514 1.352 5.064
0.75 0.265 0.311 1.111 5.888
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Table 5–18: Empirical estimation efficiency (e(θ̂)) for cases with pcon covariates from
MN(0,Σρ) and pbin binary covariates under Model 2, Setting 1 using the HARD penalty
function.

Setting
Pen. n m pcon pbin ρ β1 β2 α α0

HARD 50 5 10 0 0 0.302 0.226 0.517 0.339
0.75 0.150 0.134 0.371 0.472

6 4 0 0.381 0.317 0.440 0.474
0.75 0.193 0.238 0.379 0.413

15 10 0 0 0.276 0.252 0.535 0.843
0.75 0.127 0.150 0.398 0.899

6 4 0 0.274 0.258 0.482 0.827
0.75 0.201 0.185 0.470 0.848

150 5 10 0 0 0.299 0.375 0.422 0.501
0.75 0.150 0.200 0.342 0.456

6 4 0 0.446 0.456 0.438 0.481
0.75 0.253 0.276 0.297 0.433

15 10 0 0 0.322 0.326 0.553 0.907
0.75 0.197 0.183 0.462 1.014

6 4 0 0.385 0.376 0.484 1.015
0.75 0.231 0.244 0.356 0.947

500 5 10 0 0 0.349 0.365 0.414 0.459
0.75 0.138 0.190 0.301 0.470

6 4 0 0.419 0.495 0.461 0.478
0.75 0.250 0.286 0.277 0.501

15 10 0 0 0.341 0.388 0.725 1.368
0.75 0.180 0.165 0.493 1.205

6 4 0 0.420 0.400 0.555 1.301
0.75 0.246 0.256 0.516 1.259

5.2.2 Setting 2

In this last setting, the cases considered were with n = 20, 50 and 100, and we

chose the number of follow-ups to be 5 and 15. The true parameters were chosen to
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be:

β0
1 = (2, 1, 0.5, 0, 0, 0, 0, 0, 0, 0, 0), η0

1 = −1,

β0
2 = (−3,−1,−0.5, 0, 0, 0, 0, 0, 0, 0, 0), η0

2 = −4,

α0 = (−2, 2,−0.5, 0, 0, 0, 0, 0, 0, 0),

α0
0
m=5 = (−2, 0, 1, 0),

α0
0
m=15 = (−2, 0, 1, 0, 0,−1, 0, 1, 0, 0,−1, 0, 1, 0, 0, 1),

where the first entries of β0
1 and β0

2 represent the intercepts. The true parameters

here include small values which are not easy to distinguish from zero using regular

maximum likelihood. This is particularly true for the vectors of increments in the

logit of the baseline hazard which have a sparser structure compared to their structure

in Setting 1 (the baseline hazard will be smoother in this setting). For this setting,

we only assessed the performance of the LASSO penalty function, the one used to

analyze in the Alzheimer’s disease example in Chapter 6.

Table 5–19 gives the estimated sensitivities and specificities. Tables 5–20 presents

the empirical efficiency (the median of the ratios of the average MSEs), as defined

in (5.0.4) and (5.0.6).
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Table 5–19: Estimated sensitivity (S1) and specificity (S2) for cases with pcon covariates
from MN(0,Σρ) and pbin binary covariates under Model 2, Setting 2 using the LASSO
penalty function.

Setting β1 β2 α∗

Pen. n m pcon pbin ρ S1 S2 S1 S2 S1 S2

LASSO 20 5 10 0 0 0.728 1.000 0.700 0.715 0.609 0.904
0.75 0.809 0.975 0.857 0.873 0.879 0.491

6 4 0 0.709 0.986 0.675 0.710 0.621 0.799
.75 0.734 0.994 0.780 0.659 0.706 0.879

15 10 0 0 0.651 1.000 0.744 1.000 0.580 0.983
0.75 0.735 1.000 0.713 0.997 0.689 0.790

6 4 0 0.696 0.996 0.714 0.985 0.503 0.890
.75 0.721 0.984 0.720 0.995 0.567 0.822

50 5 10 0 0 0.896 1.000 0.839 1.000 0.791 0.948
0.75 0.853 1.000 0.841 0.995 0.862 0.645

6 4 0 0.824 1.000 0.787 0.983 0.674 0.946
.75 0.803 1.000 0.826 0.926 0.725 0.96

15 10 0 0 0.909 1.000 0.933 1.000 0.474 1.000
0.75 0.789 1.000 0.876 1.000 0.687 0.825

6 4 0 0.931 1.000 0.919 1.000 0.684 0.894
.75 0.763 1.000 0.805 1.000 0.586 0.971

100 5 10 0 0 0.957 1.000 0.907 1.000 0.742 1.000
0.75 0.874 1.000 0.839 1.000 0.845 0.920

6 4 0 0.874 1.000 0.837 1.000 0.833 0.931
.75 0.872 1.000 0.841 1.000 0.726 1.000
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Table 5–20: Empirical estimation efficiency (e(θ̂)) for cases with pcon covariates from
MN(0,Σρ) and pbin binary covariates under Model 2, Setting 2 using the LASSO penalty
function.

Setting
Pen. n m pcon pbin ρ β1 β2 α α0

LASSO 20 5 10 0 0 0.931 0.297 0.542 0.726
0.75 0.775 0.082 0.516 0.846

6 4 0 0.821 0.441 0.569 0.865
0.75 0.848 0.014 0.390 0.758

15 10 0 0 0.916 0.963 0.352 0.436
0.75 0.929 0.738 0.287 0.474

6 4 0 0.833 0.831 0.577 0.651
0.75 0.732 0.709 0.446 0.646

50 5 10 0 0 0.963 0.770 0.622 0.929
0.75 0.895 0.637 1.088 1.037

6 4 0 0.934 0.800 0.955 0.941
0.75 0.917 0.627 0.521 0.946

15 10 0 0 0.992 0.976 0.481 0.679
0.75 0.970 0.941 0.510 0.619

6 4 0 0.942 0.924 0.730 0.793
0.75 0.945 0.925 0.403 0.654

100 5 10 0 0 0.988 0.955 0.792 1.016
0.75 0.957 0.832 0.815 1.058

6 4 0 0.958 0.835 0.790 1.055
0.75 0.953 0.787 0.569 0.953
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Table 5–21: Estimated sensitivity (S1) and specificity (S2) for cases with pcon = 6 covari-
ates from a MN(0,Σρ) distribution, where ρ = 0.75 and pbin = 4 binary covariates under
Model 2, Setting 2.

Pen. Setting β1 β2 α α0

n m S1 S2 S1 S2 S1 S2 S1 S2

20 5 0.734 0.994 0.780 0.659 0.706 0.879 0.392 0.308
50 0.803 1.000 0.826 0.926 0.725 0.967 0.440 0.370

LASSO 100 0.872 1.000 0.841 1.000 0.726 1.000 0.491 0.640
20 15 0.721 0.984 0.720 0.995 0.567 0.822 0.746 0.117
50 0.763 1.000 0.805 1.000 0.586 0.971 0.701 0.268
100 1.000 1.000 1.000 1.000 0.546 0.968 0.662 0.515

20 5 0.849 0.987 0.867 0.737 0.872 0.877 0.351 0.592
50 1.000 1.000 1.000 0.946 0.952 0.905 0.356 0.770

SCAD 100 1.000 1.000 1.000 1.000 0.955 0.990 0.347 0.919
20 15 0.846 0.985 0.862 0.985 0.776 0.833 0.774 0.464
50 1.000 1.000 1.000 1.000 0.811 0.963 0.748 0.722
100 1.000 0.995 1.000 1.000 0.931 0.887 0.764 0.822

Table 5–22: Empirical efficiency (e∗(θ̂)) under Model 2, Setting 2.

Setting LASSO SCAD Oracle
n m β1 β2 α∗ β1 β2 α∗ β1 β2 α∗

20 5 0.931 0.040 0.362 0.985 0.049 0.390 0.974 0.036 0.431
50 0.969 0.812 0.275 0.988 0.911 0.189 0.988 0.894 0.412

Model 2 100 0.980 0.907 0.190 0.996 0.961 0.140 0.993 0.948 0.437
20 15 0.956 0.912 0.372 0.910 0.960 0.471 0.971 0.943 0.545
50 0.959 0.966 0.268 0.957 0.966 0.193 0.970 0.967 0.365
100 0.336 0.387 0.882 0.378 0.371 0.875 0.357 0.354 0.768

For the case with four binary covariates out of 10 and pair-wise correlation equal

to 0.75, we compared variable selection performance using the LASSO and SCAD

penalty functions; Table 5–21 displays the results. We also report the median ratios

of the empirical efficiency, as defined in (5.0.4) and (5.0.6) for the LASSO and SCAD
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penalty functions, and the oracle model (knowing the true zero parameters), in Table

5–22.

5.2.3 Discussion

1. With regard to the observation distributions, the LASSO and HARD penalty

functions both perform well in Setting 1. However, the HARD penalty function

performs better for the change-point distribution. We believe this is the result

of the non-sparse structure, which influences the ability of the LASSO penalty

to detect the correct model; see Tables 5–15 and 5–16.

2. Regrading the change-point distribution, and in particular the baseline hazard

(with α∗ as the vector of parameters), the LASSO penalty function can introduce

a large bias into estimators as n increases. It reduces the efficiency, reflected by

large mean square error ratios (see Tables 5–17 and 5–20 for Settings 1 and 2,

respectively).

3. The results of Tables 5–21 and 5–22 concur with those of Setting 1. For a small

n (n = 20) and m (m = 5), the penalty functions set small estimates to zero,

resulting in a sparse model, therefore explaining the low empirical efficiencies of

the parameter estimators for the observation distribution means after the change

and ensuring satisfactory variable selection and estimation (for more details see

2. in the Discussion of Model 1).

4. We can see in Table 5–22, that under Setting 2 and for both the LASSO and

SCAD penalty functions, all the (median) ratios in the table are less than 1,

indicating better performance of the LASSO/SCAD-based estimators compared
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to the full model-based estimators, and comparable to the performance of the

oracle estimators. As the sample size increases, these ratios increase toward 1,

indicating that the proposed method and the ridge estimators, which for large

sample sizes behave similar to the ordinary maximum likelihood estimators, per-

form similarly in some cases.

5.3 Discussion of the Simulation Results

Based on our simulation results for small sample sizes, such as n = 20, model

selection and estimation are quite challenging. As the sample size increases the

performance of selection and estimation in both Model 1 and Model 2 improves using

the SCAD and HARD penalty function. However, the LASSO penalty function is not

recommended based on our simulation results, because of the large bias it introduces

into the estimators.

We recommend for small n’s and m’s, the LASSO penalty function with ridge re-

gression for the change-point distribution parameters. For large n’s and m’s, in both

assessed scenarios (Model 1 and Model 2), the SCAD and HARD penalties perform

well, selecting the subset of true parameters and estimating them, simultaneously.

If there is enough evidence for the presence of a high degree of multi-collinearity

in the set of covariates, the LASSO penalty function is not recommended and it does

not guarantee the choice of the best subset of covariates. The ridge penalty functions

are needed on the change-point distribution parameters to prevent “wild” estimates

of parameters α0k and αj when m is large and there are highly correlated covariates.

98



In summary, the performance of our methods, shown by simulations, is similar to

the case in which we know the true model in advance, confirming the oracle property,

at least for the penalty functions that we considered. Our proposed method, accord-

ing to the simulation results, is very effective for variable selection and estimation in

the change-point models under consideration.
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CHAPTER 6
Risk Factors for Cognitive Decline in Alzheimer’s Disease

In Alzheimer’s disease (AD), the rate of progression is highly variable. As a

result, there has been much interest in factors associated with cognitive decline, for

example, age, education, and sex; see Mortimer et al. (1992), Wilson (1999, 2004),

Herbert (2000), Stern et al. (1999), Bennet (2002), Hall (2007). Some studies have

suggested that the rate of cognitive decline in patients with AD is not constant but

instead piece-wise linear (Joseph et al. 1999, Hall 2000), and most researchers would

agree that patients generally experience an initial stable period followed by a period

of roughly linear decline, ending with another relatively stable period late in the

disease. The early and late stable periods, though, may only be artifacts due to the

lack of sensitivity of the cognitive tests commonly used. In Figure 6–1, we show the

trajectories of cognitive scores over time, for several subjects with AD. These are a

randomly chosen subset of the subjects in the data set analyzed in this chapter.
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Figure 6–1: Spaghetti plot of centered MMSE scores for 7 subjects over time (Ztj =
MMSEtj − ¯MMSEj for t = 1, 2, . . . , 5 and j = 1, 2, . . . , 7.

Since almost all of the subjects were already in the second decline stage at the

start of the study, we model the trajectories of cognitive decline with a single change-

point. We expect the general picture of MMSE scores to be similar to Figure 6–2.
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Figure 6–2: MMSE scores over time

Understanding the pattern of decline in subjects with AD could assist in prepar-

ing for the coming public health burden caused by the increase in life expectancy.

Also, models that predict disease course can be applied at the individual level, to as-

sist caregivers. Finally, these models provide a valuable understanding of the natural

history of Alzheimer’s disease.

If a patient is at an early stage of the disease, determining the time at which

their rate of decline begins to accelerate is important both in describing the natural
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history of the disease process and in identifying the optimal time window for which

treatments might be useful. At the same time, it is important to identify which

subjects will experience rapid decline and be at risk for early institutionalization.

Folstein et al. (1975) introduced the Mini-Mental State Examination (MMSE),

a brief test of mental status and cognition. It is one of the most commonly used

tests to monitor dementia progression over time. In Figure 6–3, we display the

Mini-Mental State Exam, a 30-point questionnaire. The lower the score, the more

cognitively impaired the subject.
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Figure 6–3: Mini-Mental State Examination questionnaire
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Mortimer et al. (1992) followed a number of subjects in the Minneapolis VA

Medical Center and from the community at large who had probable AD. The purpose

of their study was to explore the effects of subject-specific characteristics on cognitive

decline. They recorded MMSE scores on the subjects every six months over two and

half years. They also recorded baseline covariates for each subject and fitted a

multiple regression model over time, adjusting for disease duration. They proposed

a multiple regression model for the MMSE scores using the information recorded at

baseline, as well as time, as covariates in the model. To choose the best submodel,

they used step-wise variable selection.

The main drawback with the analysis of Mortimer et al. is that they did not

allow for the possibility of a change in the observation distribution over the follow-

up time period. Not all covariates included in the model would be expected to

be associated with decline, nor would they necessarily have the same effect before

and after the possible change. Our model has five main features: (i) We introduce

a multi-path change-point model to describe decline. (ii) We allow for separate

regression components for the distribution of the observations before and after the

change, as well as for the change-point distribution. (iii) We introduce an interaction

term in the model in order to permit the effect of time to depend on subject-specific

covariates, and (iv) we apply our method of variable selection for multi-path change-

point models to the current setting. While Mortimer et al. carried out variable

selection using step-wise multiple linear regression, this approach is known to be

unreliable when used for complex models, such as our change-point model.
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Figure 6–4: Boxplots and estimated density curves for the MMSE scores of subjects over
time

Figure 6–4 is a vioplot (boxplot with kernel density estimates) of the MMSE

scores over time. The density estimates are roughly consistent with “pure” normal

distributions during early and late follow-up, and with a mixture of normal distri-

butions in between. It seems reasonable to assume a multivariate regression with

time as one of the covariates in the model for MMSE scores before and after the

possible change. The timings of the unobserved putative change-points are likely

highly variable and would occur towards the middle of follow-up. Since there were

only five follow-up times, a change could only occur at one of four positions (after

the first visit). Figure 6–4 is consistent with a mixture model form, since the es-

timated densities are bimodal. This mixture form is particularly apparent at the
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second follow-up. The extra distribution uncertainty also qualitatively supports a

model with a change-point.

Since the subjects were recruited at different disease stages, date of entry into

the study is not suitable as a time origin without adjustment. Including disease

duration at entry as a covariate in the model resolves this issue. Formally, for every

subject i, (i = 1, 2, . . . , n) we assumed that conditional on the change occuring at

τ = k,

Yit ∼ N(β10 + x>itβ1, σ
2
1) , for t = 1, 2, . . . , k

Yit ∼ N(β20 + x>itβ2, σ
2
2) , for t = k + 1, k + 2, . . . ,m− 1,

and if a change occurs at τ = m, then Yit ∼ N(β10 + x>itβ1, σ
2
1) for t = 1, 2, . . . ,m.

Here, Yit represents the MMSE score for subject i at time t, and xit the vector of

covariates for subject i at time t. The dependence of the covariate values on time t

arise through the interaction between the fixed covariates and the covariate “time.”

Since the MMSE assessments were six months apart, it is reasonable to as-

sume that, conditional on each subject and given the subject-specific parameters,

the MMSE scores were independent. This assumption is frequently made in the AD

literature; see, e.g., Mortimer et al. (1992).

We restrict our analysis to those participants who had at least five cognitive

evaluations, in order to better capture the trajectory of cognitive decline. We also

assume there to be the same number of follow-ups on all the subjects. This induces

a balanced longitudinal data set. Our data includes forty-two subjects (n = 42), all
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with five follow-up measurements (m = 5) over two and half years. In Table 6–1, we

summarize the covariate information for these 42 subjects.

Table 6–1: Summary of the covariate information for the study subjects (n=42).

Continuous Mean SD
Predictors
Education 12.38 3.15
Age at AD onset 66.74 9.02
Verbal 0.35 0.78
Non-verbal -0.02 0.96
Disease duration 3.43 2.36
(DISDUR)

Dichotomous Frequency Percentage
Predictors (%)
Family history 18 42.9
of dementia
(FHDEM)
Sex (Male) 29 69
EXTRAP 5 11.9
APRAXIA 4 9.5

Education, age at start of the study, and disease duration, are in years. “Verbal”

and “Non-verbal” are neurological scores: higher scores indicate a smaller deficit.

EXTRAP (extrapyramidal signs) and APRAXIA are two dichotomous measurements

which also serve as indicators of neurological deficit. Approximate age at onset was

obtained from a caregiver (Mortimer et al. 1992). “Time” is in half-year units, with

date of entry as origin. Thus, Timei1 = 1, Timei2 = 2, ..., Timei5 = 5 for the ith

subject. Boxplots of the continuous predictors are given in Figure 6–5.
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Figure 6–5: Continuous predictors in the model (EDUC (years of education), AONSET
(age at AD onset), FACTOR1 (“Verbal” score), and FACTOR2 (“Non-verbal” scores)).

To model the effect of the selected covariates on the rate of decline, we in-

cluded interactions between time and four of the covariates - Education, EXTRAP,

APRAXIA and verbal score. An alternative approach would be to introduce random

effect slopes.

The parameter estimates for the multi-path change-point model, as selected by

the LASSO penalty function, are given in Table 6–2 and Table 6–3.
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Table 6–2: MPLE of the parameters (β10,β1, β20,β1,α) (including the estimated stan-
dard deviations) in the selected model using the LASSO. “-” indicates “not selected”.

Estimates Change-point dist. Obs. dist. before change Obs. dist. after change

α̂ (β̂10, β̂1) (β̂20, β̂2)

Intercept - 15.33(0.13) 12.77(0.47)

Time - −2.18(0.12) −2.10(0.39)

EDUC - −0.69(0.14) −0.28(0.32)

FHDEM −0.75(0.34) −0.79(0.16) 2.90(0.69)

AGE - −0.94(0.15) −2.37(0.42)

SEX - - 4.28(0.36)

EXRAP - 2.04(0.15) −1.38(0.42)

APRAXIA - −1.76(0.14) -

Verbal - 1.54(0.18) 5.88(0.52)

Nonverbal - 2.38(0.18) 1.40(0.49)

DISDUR - 0.57(0.16) -

TIME*EDUC - −0.65(0.12) −0.31(0.55)

TIME*EXRAP - 1.24(0.13) -

TIME*APRXIA - - -

TIME*Verbal - 0.52(0.14) 1.07(0.35)

Table 6–3: MPLE of the increments (α01, α02, α03, α04) in the change-point distribution
(including the estimated standard deviations), in the selected model using the LASSO. “-”
indicates “not selected’.

Estimates α̂01 α̂02 α̂03 α̂04

−0.39(0.38) −3.01(0.30) - -
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Because of the short follow-up and high variability between subjects, it is difficult

to detect the change-points that were “a priori” anticipated, and the evidence for a

change in our analysis is weak.

The estimated increments in the logit of the baseline α0i, for i = 1, 2, 3, 4 are

given in Table 6–3. Although they show a non-zero increment at the second follow-up

time-point, an indication of a possible change at the second time-point, the remaining

increments were estimated to be zero. However, because of the small number of

observations, it is difficult to justify a change in the rate of decline. Although Joseph

et al. (1999) found weak evidence for a change in the MMSE scores for subjects

with AD, they took a fully Bayesian approach and did not include covariates in their

model. We did not fit a second model without change-points since such a refit would

have constituted a post-hoc analysis. Our model choice to begin with was based on

the experience of researchers in the field of dementia.

For convenience, in the following discussion we refer to the period before the

possible change as “early in the disease” and the period after the change as “late

in the disease.” This terminology is also appropriate, given the weak evidence for a

change in our data set.

Other researchers have examined the effect of covariates on the rate of cognitive

decline in patients with AD, using multi-path change-point models. Yu et al. (2012)

used a Bayesian approach to fit a random change-point model. They found age,

education and a certain genetic factor to be important in the timing of the onset of

cognitive impairment and in the rate of decline before and after AD onset. Wilson

et al. (2004) and Stern et al. (1999) claimed that the greater the number of years
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of education, the more rapid the rate of decline in patients with AD late in the

disease. In our model, “years of education” was not selected as a predictor early in

the disease. However, later in the disease, higher education was associated with a

more rapid decline. The interaction of education with time was also selected into

the model. It is hypothesized that high education hides initial deficits, but like an

insidiously eroding foundation, when collapse occurs, it is rapid.

Anderson et al. (1999) found a significant difference between the rate of decline

in older men and women. We found that men decline at a slower rate both early and

late in the disease.

Age at entry was also selected into our model; greater age at entry was associated

with smaller mean MMSE scores at baseline and later in the disease. Bernick et al.

(2012) and Wilson et al. (2012) found that older age at baseline was associated with

a slower rate of decline. Verbal score and its interaction with time were also selected,

which is to be expected since the MMSE score is based on verbal ability and higher

verbal scores are associated with a slower rate of decline.

Although several of our findings are not consistent with those of some other

researchers, there is no consistency in the pre-existing AD literature on the predictors

of cognitive decline. Further, in view of the small numbers of study subjects and

follow-ups, our results should, perhaps, be viewed with caution.

6.1 Discussion

In the data we analyzed here, the choice of the penalty function influenced the

overall conclusion. In particular, with a small number of subjects and follow-ups the

choice of penalty function plays an important role in variable selection. The goal
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of the analysis (the observation distribution or the change-point distribution) affects

our choice of penalty function.

Based on our data analysis and simulations we make the following suggestions

for the design of studies of decline in AD, with a goal of detecting highly influential

covariates:

1. If the aim is to make inference about the observation distributions and their

influential covariates, increasing the number of subjects seems to be more im-

portant than increasing the number of follow-ups.

2. To make inference about the change-point distribution, we have to consider

two aspects of the model: the covariate effects and the baseline hazard of

the change. Increasing the number of follow-ups increases the accuracy of

the inference about the covariate effects, but it also increases the number of

parameters (the increments in the logit of the baseline hazard). Hence, a

large m may induce more variability in the estimators of the baseline hazard.

Therefore, in this case both the number of subjects and the number of follow-

ups have to be large.
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CHAPTER 7
Concluding Remarks

In this thesis, we took a penalized likelihood approach to do variable selection in

a multi-path change-point model, a problem that has not previously been addressed

in the literature. In fact, we were able to do variable selection and estimation si-

multaneously. We proved that our method has good large sample properties and

examined its performance for small sample sizes using simulation studies.

A feature of our model is that it allows the observation distributions as well as

the change-point distribution to change from subject to subject through covariate

values. We model the change-point distribution via a proportional odds hazard

function with a flexible piece-wise constant baseline odds.

Our method is particularly useful when the amount of available covariate in-

formation on each subject (or path) is large. For example, in clinical trials, often

detailed covariate information is collected and there may be an unknown delay for the

treatment to take effect; such scenarios are conveniently captured using change-point

models.

However, in each application there may be computational difficulties. The pres-

ence of increments in the logit of the baseline odds results in a non-concave objec-

tive function requiring a more time-consuming computational procedure. Since our

(modified) EM algorithm depends on the initial value, it is not guaranteed to produce

either global or local maximum likelihood estimates. The Newton–Raphson method
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we used in the EM algorithm can lead to highly variable estimates, as a result of

the non-smooth objective function. Using ridge regression eases the computational

difficulty but still does not completely resolve the problem.

Change-point problems in two and three dimensions entail boundary determi-

nation and unless the boundary is of simple form the modeling required is likely to

be very difficult.

Our method for variable selection in multi-path change-point problems suggests

several new directions for future research.

1. Because of the computational burden, we introduced a single tuning parameter

for all the penalty functions in the model except for the ridge penalty function.

One could, however, use different tuning parameters for different groups of model

parameters. In this extension, a grid of vectors of tuning parameter candidates

could be used and the BIC penalty function would be defined on each point of

the grid. In our model, we consider the parameters of four components: the

observation distributions before and after the change-point, the change-point

distribution regression model, and the baseline hazard of change. Thus we would

use a different penalty function for each parameter vector component.

2. We could allow for multiple change-points per subject.

3. One could consider multivariate distributions for the observations before and

after the change-point, allowing correlated random variables over time.

4. A natural extension of our fixed effect models would be the mixed models that

include random effects for the regression parameters.
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5. We took a frequentist approach. A Bayesian approach to the problem is an

obvious alternative.
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