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Abstract

We investigate the geometric properties of multi-dimensional Lie-algebraic oper-
ators. Such operators are relevant to t‘ho. study of quasi-exactly solvable, quan-
tum mechanical systems. The present effort addresses several issues raised by the
Q.E.S. research program. One such issue is the normalizability of an operator to
Schrédinger form; this criterion is known as the operator closure conditions. We
give a geometric, and a representation-theoretic reformulation of the closure con-
ditions, and then use these techniques to obtain solutions for the case of linear
SL(2) actions in the plane.

The study of multi-dimensional Lie-algebraic operators benefits from an intrin-
sic, geometrically based approach. We do this by taking as our setting the fibre
bundle 7 : G = M, where G is a Lie group, and the base is a homogeneous space.
The symbol of a second-order Lie-algebraic operator induces a pseudo-Riemannian ~
metric tensor, g, on the base; the symbol also induces a horizontal-vertical decom-
position of the above bundle. Not surprisingly, the geometry of ¢ is determined by
this decomposition, and thus allows us to investigate g in terms of the horizontal
and vertical vector fields associated to the decomposition.

Of particular interest is the class of flat geometries induced by Lie algebraic
operators. One motivatica for considering this class is furnished by Turbiner’s
Conjecture, which-states that a Lie algebraic operator admits separation of vari-
ables if its symbol induces a flat metric. In the planar case we prove a global
result to the effect that a flat, Riemannian manifold of the type described above,
is isomnetric to the quotient of the Euclidean plane by reflections. We then use this
result to give a proof of a limited form of Turbiner’s conjecture.



Abstract

Nous étudions les propriétés géometriques des opérateurs induits par des algbbres
de Lie en plusieurs dimensions. Ces opérateurs relévent de Ja théorie des systémes
quasi-exactement résolubles en mécanique quantique. Ce travail traite de plusicurs
questions soulevées par ’étude de ces opérateurs quasi-exactement résolubles, Une
de ces questions est celle de I'équivalence d’un opérateur & la forme de Schrédinger;
ce critére se formule en termes de conditions dites de fermeture. Nous donnouns une
formulation géométrique et enspirée par la théorie de représentations de groupes
des conditions de fermeture. Ceci nous permet d obtenir des soluiions dans le€as
des actions linéaires de SL(2) dans le plan.

L’étude des opérateurs induits par des algébres de Lie en plusicurs dimensions
se fait naturellement par une approche intrinsique, basée sur la géometric sous-
jacente. Le cadre est donc celui d’un fibré 7 : G — M, ot G est un groupe de Lie
et M un espace homogene. Le symbole d’un opérateur du deuxieme ordre induit
par une algébre de Lie definit un tenseur métrique pscudo-ricmannien, g, sur la
base; il définit également une décomposition horizontale-verticale du fibré. Il n’est
pas etonnant que la géomeirie de ¢ soit déterminée par cette décomposition, ct
qu’elle permette donc I’étude de g en termes de champs de vecteurs horzontaux et
verticaux.

Les géométries plates correspondant aux opérateurs induits par des algebres
de Lie sont d’un intérét particulier. Une motivation pour l'étude de cette classe
provient de la conjecture de Turbiner, selon laquelle 'opérateur doit étre sépzrable
si la métrique est plate. En dimension deux, nous démontrons un résultat global af-
firmant que une variété riemannienne plate du type décrit plus haut est isométrique
au quotient du plan euclidien par un groupe de réflexions. Nous nous servons de
ce résultat pour démontrer la conjecture de Turbiner sous une formelimitée.
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Chapter 1
Introduction

Be patient toward all that is unresolved in your heart
And try to love the questions themselves.
. — Rainer Maria Rilke

1.1 Overview

As per the title, the subject of the present dissertation is multi-dimensional, Lie-
algebraic operators. Roughly speaking, these are differential operators that are
defined on multi-dimensional manifolds, and that are generated from a finite di-
mensional Lie algebra of first-order operators. The primary impetus for the study
of these mathematical objects comes from their application to quantum-dynamical
spectral probiems. The relevant concept here is the notion of quasi-exact solvabil-
ity.

A quasi-exactly solvable operator is distinguished by the desirable property
that a part of its spectrum can be computed using algebraic methods. This class
of spectral problems was first defined in the research of Shifman, Turbiner, and
Ushveridze [28] {31] [34]. There are a number of different ways to create quasi-
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exactly solvable operators. At present, the most comprehensive survey of the
different methods is to be found in Ushveridze’s book [35]. There are, as well, Tur-

biner’s algebraic investigations of quasi-exactly solvable operators with polynomial
eigenfunctions [32).

The Lie-algebraic ajproach to quasi-exact solvability was formulated indepen-
dently by Kamran and Olver in [18], and also by Shiftnan and Turbiner in [28].
The idea behind this approach is simple; one must choose a Lic algebra of first-
order operators that leaves invariant a finite dimension subspace of functions, and
use a second-order Lie-algebraic operator constructed from this Lie algebra as the
system Hamiltonian. The Lie-algebraic approach was taken up in the works of
Gonzalez-Lopez, Kamran, and Olver. Thesc authors completed a comprehensive
analysis of the one-dimensional case [12], classificd all quasi-exactly solvable Lie
algebras in two dimensions [9], and created a formalism for the application of the
Lie-algebraic approach to higher dimensions [13].

The article [13] has particular significance for the present work. Much of the
research in the present dissertation was directly inspired by the questions raised
in that paper, and can be understood as an attempt to address these question
through the use of certain geometric and representation-theoretic techniques. The
other driving force behind the present exposition is the relationship between quasi-
exact solvability and the technique of separation of variables. One connection
between these two notions is to be found in the works of Ushveridze [35], which
detail techniques for creating Q.E.S. systems through the use of separation of
variables. Turbiner has conjectured that there is also a connection in the opposite
direction. He has put forward the conjecture (see p. 299 of [32]) that quasi-exactly
solvable systems based on the Laplacian of flat, 2-dimensional space must always
admit a separation of variabies. The present work has something to say about
the conjecture, as well as about Lie-algebraic Laplacians on flat space. In its full
gencrality, however, the conjecture remains unresolved.

The rest of the introductory chapter is organized as follows. We begin with a
brief description of the votion quasi-exact solvability, and follow with a discussion
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of the Lie-algebraic approach to Q.E.S. problems. We will not return to the Q.E.S.
theme in the rest of the dissertation; it is presented in order to give the reader a
sense of motivation and historical continuity. We will then give an overview of the
issues that arise in the study of lxigher—dimensional Lie-algebraic operators. The
end of the chapter is devoted {0 a summary of the research that is contained in
the subsequent chapters.

1.2 Quasi-exact Solvability

Consider the time-independent Schrddinger equation for the quantum-mechanical
harmonic oscillator:

—zz + az’1h = Evf,  where a > 0.

One approach to this equation is to regard the differential operator —8;; + az?
as a symmetric transformation of a certain linear subspace of the Hilbert space
of square integrable functions. Solving the equation then amounts to finding an
infinite orthonormal basis that diagonalizes —8;; + az?. The quantum-mechanical
harmonic oscillator is known as an exactly-solvable problem. This means that
there is an algebraic procedure for diagonalizing —08,, + az>.

One way to go about this is to employ the related operator:
H = 3:;; - 2 axa:c.

The two operators are related by a change of scale:

Pere” 2“'*'21/;_.
In other words, ,
e;'{:zzz (""az;r + a$2)e_"4zi“2 == -—H -+ \/(_]',_

This suggest that we first solve the spectral problem

Hip = Exp,

-
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and then relate the solutions to the original problem. The action of H on mono-
mials is given-by
z" = —2v/anz" + n(n — 1)z"2.

Thus, using monomials as a function basis, we can express H as the following
infinite matrix:

ro 0 2 0 0

0 -2va 0 6 0

0 0 —4/2 0 12

0 0 0 —6/a O

0 0 0 0 —-8a@ ...
S : : SN

Diagonalizing the above matrix is a straight-forward algebraic procedure. The
eigenvectors are polynomials,

PO =1, pV0 =z, PP =2/ar -1, ¥ =2/ar® -3z, .. .

where the eigenvalue of %™ is —2n,/a. We are fortunate because ¢~"/2 times any
polynomial is square integrable. Therefore, the (unnormalized) state functior’s. of
the simple harmonic oscillator are given by e~=" /2™ with corresponding cnergy
values /a(2n +1).

The success of the above technique is, unfortunately, inextricably bound to the
choice of a quadratic potential. Naively, one might expect that a system with a
potential that was just a bit more complicated, say a quartic polynomial, would be
amenable to a similar method; yet there is no known way to generate an exactly
solvable model with a general quartic potential. Ushveridze in [35] points out
an insurmountable analytic obstacle to the exact-solvability of a system with a
general quadratic potential. The difficulty is revealed when one considers systems
with Hamiltonian

~0zp + 2 + azt.
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The parameter, a, determines the eigenvalues, E(a), of operator. If one considers
. — FE(a) as an analytic function, then there is a branch point type singularity at
the value ¢ = 0. This singularity was first studied by Bender and Wu {2]. They
discovered that the function E(a) can be analytically extended to a three-sheeted
Riemann surface, where it has a complicated pattern of singular points. The point
a = 0 turns out tc be an accumulation point of the set of singularities. The exact
solvability of the harmonic oscillator forced the the relation between energy levels
and the parameter to be algebraic:

E? = (2n+1)%a.

The Bender/Wu pattern of singularities precludes such an algebraic relationship in
the case of the quartic potential, and therefore makes it unlikely that there exists
a method that gives exact solutions of such systems.

Interestingly enough, Turbiner and Ushveridze in [33] showed that the situation
improves when one considers anharmonic oscillators with sextic potentials,

V{zr) = Az® + Bz' + C1*.

The resulting system is not exactly-solvable, but for certain values of the param-
cters A, B, and C it does-hecome amenable to an algebraic treatment. Suppose
that :

A=W, B=2%c, C=c+4n+3)b,

where b, ¢ are arbitrary constants, and 7 is a natural number. For such parameter
values the operator =8, + V'(z) turns out to stabilize a finite dimensional module
of functions:

4 2
When b < 0 these functions are square integrable, and therefore form a “finite
block” within a matrix representation of the operator —8;z+V {(z). This operator is
symmetric, and therefore this block can be diagonalized by an algebraic procedure

exp (Ef + gxz) ¥, wherek=0...n.
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to produce n eigenvalues and eigenfunctions of the operator. For instance, when
n = 1 the finite block of the operator is given by

4b —5¢
— -2 ]
The eigenvalues (energy levels) are solutions of the equation

E? 4+ (2—4b)E -5 - 8b =0,

and the corresponding eigenfunctions are

exp (-z-x‘ + %3:2) (:1:2 + E stc) .

It is this property of leaving invariant a finite-dimensional subspace of functions
that has come to be called quasi-exact solvability. As illustrated by the preceding
example, if the invariant, n-dimensional subspace of a Q.E.S. operator consists of

square integrable functions, then we can algebraically obtain n eigenfunctions and
energy levels of the operator.

The next natural question is, how does one construct quasi-exactly solvable
operators? The operator in the preceding example was not chosen by trial an
error; it was constructed with the use of a certain method. One such method is
based on the use of Lic-algebraic operators.

1.3 The Lie-algebraic approach

The authors of [18] and [28] observed that if one begins with a Lie algebra of first
order operators that stabilizes a finite-dimensional subspace of functions, then
any differential operator generated from this Lie algebra leaves the same subspace
invariant. This simple, but important, observation forms the core of the Lie-
algebraic approach to Q.E.S. operators.
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On the line the most general quasi-exactly solvable Lie algebra of operators is
given by
9., 20.-nf2, 2°0,—nz,

where n is a natural number. The corresponding module of invariant functions
is the space of polynomials of degree less than or equal to n. Both the harmonic
oscillator, and the system with a sextic potential described in the preceding section
are generated from the above actions.

To get the anharmonic oscillator system with a sextic potential we begin with
the operator

=1

_2 29, LA
2{23" 2,8,,}-}-1645(,26,_ nz)+4c(z8: 2)+28=.

A change of coordinates, z = z2/4, transforms the operator into
H = Oy + 2(b2° + c2)0, — 4bnz® — 2nec.

Conjugating # by a change of scale with the inverse of the factor

b4, ¢,
p—exp(zz +§$),

gives the following:
PHEY = Opp — b228 — 2bez® — (& + b(3 + 4n))z? — 2¢ — 2ne.

Since the original operator was constructed so as to leave invariant the subspace
generated by {:::k}, where k =0...n, the operator

—0zz + 0%z 4 2bcz? + (¢ + b(3 + 4n))z® -

must leave invariant the subspace generated by { pxk }

The above discussion points the way to a general method of constructing quasi-
exactly solvable operators. First, one needs a Lie algebra of first order operatcrs,
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{T%}, that leaves invariant a finite-dimensional subspace of functions, M. Next,
one forms a second order differential operator,

H=S C*T,+ 5 L°T,, (1.1)
ab a

in such a way that H after a change of scale by a factor, g, will give a Hamiltonian
operator for a quantum-mechanical system. The required change of scale must
also satisfy a normalizability constraint: the elements of M multiplied by ¢ must
be square integrable. This program has been comprehensively carried out for
1-dimensional Q.E.S. operators by Gonzalez, Kamran, and Olver in [12]. One-
dimensional Hamiltonians,
_a:c:: -+ V(E)
are characterized by their potential, V'(z}, and the afore-mentioned article tab-

ulates all possible potentials that arise from the application of the Lie-algebraic
method.

To generalize the method to higher dimensions one must resolve a number of
issues that are not encountered in the 1-dimensional case. First, the second order
part of an operator of the type shown in (1.1) will, in general, have the form

Z g i alJ 1
i

where the coefficients g/ depend on the constants C® and on the local coordinate
expressions for the first order operators, T,. The natural course is to interpret the
g% as the components of a contravariant representation of a pseudo-Riemannian
metric tensor, and to construct Schrodinger-type Hamiltonians of the form

A+Y, : (1.2)

where A is the corresponding Laplace-Beltrami operator and V is the system’s
potential. =

Clearly, we must impose the constraint that ¢ be non-degenerate. The con-
stituent first order operators are a sum of a vector field and a scalar, i.e.

To = Vo + 70

A
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The vector field terms, V;, must form a finite dimensional Lie algebra in their own
right. In order for ¢/ to be non-degenerate this Lie-algebra must act transitively,
and this means that the setting for the system must be the subset of a homogeneous
space. As to the scalar terms, 7,, they must satisfy two constraints: the operators
T, must be closed under the bracket operation, and the resulting Lie algebra of
first order operators must be quasi-exactly solvable, i.e. it must stabilize some
finite dimensional subspace of functions. A complete classification of quasi-exactly
solvable Lic algebras of first-order operators in the complex plane has been carried
out in [9]. An article by Milson [25] deals with the question of the scalar terms,
7., and bracket closure. The quasi-exact solvability constraint for 2-dimensional
operators is explored and illuminated in [8].

The next issue that must be resolved stems from the fact that in higher dimen-
sions most second-orcer operators, '

H =Zgij ,-,-+Zh"6,-+U,
ij i

cannot be transformed by a change of scale to an operator of the form (1.2). The
difficulty is manifest if we write H in an invariant manner:

H=A+gijwi6j+U,

where w = w; dzt is the so called magnetic 1-form associated with the operator. It is
not hard to see that a change of scale results in the addition of an exact differential
to w, and therefore H is locally equivalent to a Schrodinger operator if and only if
w is closed. These closure conditions are automatically satisfied for 1-dimensional
operators, ‘because al! 1-dimensional 1-forms are closed. In higher dimensions,
choosing constants C* and L so that the resulting operator satisfies the closure
conditions is a formidable barrier to extending the Lie-algebraic approach to higher
dimensions. =

As in the 1-dimensional case, the final piece of the puzzle is the normalizability
constraint: the change of scale that transforms an operator of the form (1.1) to
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an operator of the form (1.2) must make the functions in M square integrable.
A number of systems that satisfy the normalizability constraint are exhibited in

[28] and [13], but at this point there does not exist a more general analysis of this
condition.

1.4 Summary of New Results

The dissertation opens with a chapter that defines and formalizes the notion of
a Lie-algebraic operator. For reasons explained in the preceding scctiorif?i»*e take
the background setting to be a homogeneous space M = G/H, and work with
the associated representations of g (the Lie algebra associated with G) by first
order differential operators. There are two original contributions in this chapter.
First, we formally describe the set of Lie-algebraic operators associated with a given
homogeneous space. We then show that the corresponding Lie group acts naturally
on this set, and that the orbits of this action consist of equivalent operators.
Second, we introduce the so called divergence cocycle. This is a 1-cocycle in the
Lie algebra cohomology of g with coefficients in C*(M). This object is naturally
associated with every second-order Lie-algebraic operator, and plays an important

role in the theory of Lie-algebraic operators. In particular, the divergence cocycle:x

is necessary for an invariant, coordinate-free formulation of this theory.

Chapter 3 is devoted to a discussion of representations of g by non-homoge-
neous first order operators. The infinitesimal group actions of G on M engender a
representation of g by vector fields on M. The additional data required for a repre-
sentation by non-homogeneous first order operators turns out to be a cohomology
class in H{g; C=(M)), and classes of inequivalent representations correspond to the
classes of this cohomology. We present an isomorphism theorem for H*(g; C*(M))
that, in particular, allows us to easily compute the dimension of H'. The chap-
ter also presents 2 method for explicitly computing representative cocycles for the
classes in H!. Some of the results in this chapter have appeared in a prior article

S
M
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by Milson [25]. The method of cocycle generation, however, is an improvement on
the techniques presented in that earlier paper.

As mentioned above, the quadratic coeflicients of a Lie-algebraic operator in-
duce a pscudo-Riemannian geometry at the points of M where the corresponding
metric tensor is non-degenerate. In chapter 4 we turn to the study of these Lie-
algebraic metrics and spaces. The fundamental technique employed in this chapter
is to lift the =etting from M up to G. We show that a Lie-algebraic metric induces a
vertical-horizontal decomposition of the tangent space of G, and that the geometry
of the space below can be studied in terms of this decomposition. In particular, we
show that the geodesic flows on M are given by the flow of horizontal vector fields
on G. A particularly interesting phenomenon arises when G acts imprimitively
on M. We will prove a theorem to the effect that in the imprimitive setting, if a
geodesic and the invariant foliation are perpendicular at one point, then they must
be perpendicular everywhere. A useful corollary is:the following: if the invariant
foliation has codimension 1 (such is the case when dim(M) = 2), then the leaves of
the perpendicular foliation are geodesic trajectories. We will also derive a number
of formulas for standard objects like curvature and the Laplace-Beltrami operator
in terms of the horizontal-vertical decomposition.

In Chapter 5 we return to the closure conditions that must be satisfied if a Lie-
algebraic operator is to be of Schrodinger type, that is equivalent to a Schridinger
operator by a change of scale. We begin by giving an invariant reformulation of
the closure conditions in terms of the horizontal-vertical decomposition defined
in Chapter 4. We also list some conditions on Lie-algebraic operators that are
sufficient, but not neéessary for the operator to be of Schrédinger-type. The main
thrust of the chapter is a further reformulation of the closure conditions as certain

“invariant equations on the group, G. Equivalently, this allows us to recast the
closure conditions in terms of the representation theory of G. This approach is
based on the fact that G acts invariantly on the set of Lie algebraic systems.
Reduction by this invariant action was used in [12] to classify normalizable, 1-
dimensional Lie algebraic potentials. We illustrate these ideas for the case of
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linear SL(2} action, and show how to classify Schrédinger-type operators by using
the invariant group action to simplify the problem.

The final chapter takes up the study of flat Lie-algebraic metrics. We prove a
fundamental theorem to the effect that a positive-definite, flat, Lic-algebraic metric
thai can be realized on a compact manifold admits a global cover by the Euclidean
plane.  This cover is an analytic mapping, but it is not everywhere invertibic.
The points of degeneracy correspond to k-fold brancii points, and furthermore
the locus of degeneracy forms a lattice of lines that tile the Euclidean plane into
isometric cells. We apply this theorem to give the proof of a very limited form
of Turbiner’s conjecture. Specifically, we show that if G acts imprimitively on a
compact M, then a flat Lie-algebraic operator on M can be separated in either
flat or radial coordinates. We also exhibit a counter-example that illiistrates that
Turbiner’s conjecture depends critically on the assumption that the metric be
positive-definite. A discussion of the counter-example does not fit well into the

context of Chapter 6, and so we relegate the details of the counter-example to an
appendix.

]
el



Chapter 2

Lie Algebraic Operators

Such is the advantage of a well constructed
language that its simplified notation often
becomes the source of profound theories.

- Pierre-Simon de Laplace.

2.1 Preliminaries

. The present section introduces the technical background material and notation
that we will require in subsequent discussion. The goal here is to define some
terms, to introduce some necessary notatidn, and to thereby eliminate ambiguity;
there will be no attempt to be comprehensive. Most of our investigations will
be set on a manifold M equipped with an action of a Lie group, G. We will be
interested using the infinitesimal actions of G to construct a metric tensor on M,
and therefore require that infinitesimally, at least, G act transitively on M. We
will therefore suppose that M is a homogeneous space, or when working locally
suppose that M is an open, contractible subset of one.

A group can act on itself with either a right or a left action. On a Lie group

13
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there are, correspondingly, two types of infinitesimal action; the infinitesimal left
actions are given by so called right-invariant vector fields, and the infinitesimal
right actions are given by the left-invariant vector fields. Even though the two
types of action are formally equivalent, we cannot ignore the distinction, because
in the settings considered below both types of action have a role and interact with
one another. |

With this in mind, let G be a Lie group and H a closed subgroup. We consider
the homogeneous space, M = G/H, to be the space of right cosets with a corre-
sponding right G action. We define the associated Lie algebra, g, to be the tangent
space of G at the identity point, e. The differential of the adjoint representation
of the group Ad : G — Aut(g) induces the map ad : g — End(g), and we specify
that [a,b] = ad(a) - b, where a,b € g.

For a ﬁ-valued function f : G — g, we define f* to be the vector field
g (Lg)ufy, wherege G,

where Ly : G — G denotes left multiplication by ¢ € G. In particular, by
regarding a € g as a constant function on G, we can represent infinitesimal right
multiplication by a as the left-invariant vector field a*. More generally, if ¢ is
any tensor-valued function on G, we will use ®" (respectively ") to denote the
corresponding tensor field on G induced by right (respectively left) actions. If @
is a constant, then ®* will be a left-invariant tensor ficld, and $® a right invariant
one.

Let 7 : G = M denote the canonical projection, and o = w{e) the associated
origin of the homogeneous space. It is important to realize that the various geo-
metrical entities: functions, differential forms, transformations, and vector fields,
that are associated with M are in correspondence with those G-entities that arc in
some sense invariant with respect to left H-actions. Right multiplication by ¢ € G
is just such a diffeomorphism, and thereby induces a diffemorphism of M, which
we will denote Y,. Smooth functions on the homogeneous space arc naturally iden-
tified with the functions on G that are constant on the fibers of , or equivalently

e
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those functions that are annihilated by the vector fields of §*. A left-invariant,
contravariant tensor field, €%, is also h® invariant, and is thus projectable to a
tensor field, ®™ = 7,(P"), on M. Two types of contravariant tensor fields will be
of particular importance to us. Associated with the homogeneous space we have a
representation of g by vector fields ™ = w.(a") on M. We will also be interested
in type (g) tensors C € &%g, the corresponding left-invariant tensor field, C*, and
the projected tensor field, C™. Working in terms of a basis, a4,...,a,, the latter
tensor field can be expressed as

C" = ZC‘ja’i" @ a;f,

ij
where C¥ is the symmetric n X n matrix of constants that determines C.

Some of the ideas that we will encounter are best described in terms of Lie
algebra cohomology. We will briefly state the relevant definitions here; the reader
is referred to Jacobson’s book [16] for more complete information. Given a Lie
algebra, g, and a g-module, M, one defines a k-cochain with coefficients in M to be
an alternating multi-linear map that takes k arguments from g and returns values
in M. The space of all k-cochains is denoted by C*(g; M). The corresponding
cochain complex is defined to be the cochain spaces linked together by coboundary
operators:

(O o T o .- N

The k% coboundary operator is defined by

k

(e} (00, 01,- 0 ak) = D (~V'is(--. &..)+ 3 (-)"¢(ai, 05, G G )
i=0 0<i<i<k

The space of k-cocycles is defined to be the kernel of 6 and is denoted by Z*(g; M);

the space of k-coboundaries is defined to be the image of d;_, and is denoted by

B¥(g; M). The k' cohomology space is defined to be the quotient Z*/B*, and is

denoted by H*(g; M).
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2.2 The Components of a Lie-algebraic Operator
System

In this section we define the basic objects of our study: Lic-algebraic operators,
and the Lie-algebraic pseudo-Riemannian manifolds induced by these operators.
A Lie algebraic operator is defined to be an operator that can be generated from
the infinitesimal actions of a Lie group. In other words, it must be an clement
in the cnveloping algebra cf some Lie algebra of first order operators. We will
call such a choice of a group action and an element in the enveloping algebra the
operator system. Here we are interested exclusively in second order Lic algebraic
operators, and in second order operator systems. Note: the distinction between
Lie algebraic operators and operator systerns is important because a given operator
can be specified by several different systems.

One begins with a representation of a finite-dimensional Lie algebra, g, by first
order operators,

a” +1(a),

where @ € g, where a” is a vector field on a background manifold, M, and # is
2 linear map from g to C*(M). The vector field portion of the operators give a
representation of g by vector fields. Since we will want to construct non-degenerate
metric tensors from these infinitesimal actions, we must assume that the vector
fields a™ span the tangent space at every point of M. Thus, these vector fields define
a local, transitive action of a Lie group, G, on M. We will fix a basepoint 0 € M,
and make the technical assumption that M is just a contractible neighborhood of
a global homogeneous space, M = G/H, where H is the isotropy subgroup of o.

The operators a™ +n{a) must be closed under the bracket operation, and hence:

[a™ +n(a),b™ -+ n(b)]

[a™,67] + a™ (n(b)) — &7 (n(a)) (2.1)
= [¢,8]" +n([a, b))

" A linear map from g to C*(M) is just a 1-cochain in the complex C*(g;C*(M)).
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Equation (2.1) is true if and only if dn = 0, i.e. if and only if 5 is a 1-cocycle.

A second order Lie algebraic operator is determined by the choice of the second
and first order coefficients, and has the following form:

H =3 CY(a] +m)(af +m5) + > L'(a] +m), (2.2)
ij i
where ay,...,a, is a basis of g, and where 7; = n(e;). In invariant terms, i.e.

without a mention of a basis for g, this amounts to a choice of a symmetric, (g)

tensor C € S%g, and an clement of the Lie algebra (a type (‘1’) tensor), L € g.

We will call C, L, and 7, respectively, the second-order, linear and cohomology
components of the operator system. Later on we will consider a more intrinsic
definition of #. For now we must be content with the following simple tautology:
the operator, #, given by (2.2) is invariant under change of g-basis.

The symbol of an arbitrary second-order operator induces a contravariant ten-
sor field. For a Lie-algebraic operator this tensor field is determined by the second-
order component; i.e. the tensor field is given by

C" = ZC’Ja}’ ® a;-’
ij
In invariant terms, this is just‘ C* = m.(C"), the projection of a left-invariant
tensor-field from G down to M. We will call C™ a Lie-algebraic metric tensor, and

refer to M together with this metric tensor as a Lie-algebraic pseudo-Riemannian
manifold.

The metric tensor, C*, may have degenerate points. Since C™ is analytic with
respect to the real-analytic structure of M, we know that the locus of degeneracy
is either all of M, or an analytic hypersurface in M. We would like to assume
that C™ is such that the first possibility does not hold: The following proposition
gives a criterion for metric tensors, C™, that are not identically degenerate. Two
points of terminology used in the proposition must be explained. First, given an
z € G/H, we use hz C g to den_c_‘te' the isotropy subalgebra of z, and by C g*
to denote the 1-forms that annihilate that subalgebra. Second, it is legitimate to
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regard C € S%g as a symmetric, bilinear form on g*, or as a linear map from g* to
g. As such, the restriction of the bilinear form, C, to b3 is nou-degenerate if and
only if b, @ C(bz) = g.

Proposition 2.2:1 The metric tensor field, C™, is not identically degenerate if
and only if thers exists an * € G/H, such that h, & C(ht) = 9.

Proof: We use the.canonical identification g/ hm = T, G/H, and the dual identi-

fication bt = T G/H. Thus, h, & C(h7) = g if and only if C™ is non-degenerate
at z. O

At times it becomes necessary to consider cases where once or more of the
components C, L, 7 is zero. To accommodate these possibilities we say that the

operator system is basic if 7 = 0, and say that the operator system is homogeneous
if L=0.

In the next two sections we will see that different operator systems can give rise
to equivalent operators. We will make precise this notion of equivalence, and distill
the fundamental invariants that classify and distinguish Lie algebraic operators.
The relevant data turns out to be the class of 7 in H!(g; C*(M)), and the G-orbit.
of (C,L) in S*g @ g. '

2.3 Change of Scale, Equival‘encéfof Operators,
and the Closure Conditions

Before we can discuss operator equivalence we must define and discuss the notion of
a change of scale, also called a scaling (or a gauge) transformation. Every positive
i € C=(M) gives rise to the scaling transformation

f—uf, where feC™(M).
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A linear operator H of the original C*(M) corresponds to the conjugated operator
i H ! of the scaled C<(M).

The effect of such a conjugation on the representation of g by first order dif-
ferential operators is the addition of a coboundary term, 6\, where A = log(). In
other words,

pla™+n@)p” = a"+nla) —a™(A)
= a" +(n—46MA)(a), whereacg.

Scaling transformations impose an equivalence relation on the set of represen-
tations of g by first order operators. Under this equivalence the distinguishing
characteristic of a representation becomes the class of 7 in H{g; C*(M)). The fol-
lowing self-evident propaosition clarifies the relation between changes of scale and
the choice of a cocycle 7.

Proposition 2.3.1 Let- (C,L,n} be an operator system with corresponding Lie
algebraic operator H. Tﬂen, u?{y'l corresponds to the operator system (C,L,n—
0), where A = log(). In other words, a change of scale is equivalent to a change
in the representative cocycle of a class in H'(g;C*(M)). *

We will say that two operators are locally equivalent if they can be related by
the composition of a scaling transformation and a diffeomorphism. The theory
of equivalence for second order differential operators was first worked out by E.
Cotton [4]. In terms of local coordinates, a second order differential operator is
given by

;:. H= g‘ja,',- + h"a,- +U.
There is, however, a more intrinsic description of the operator. We will suppose
that the symbol of #, i.e. the matrix of second order coefficients, ¢*, is non-

degenerate and thereby defines a pseudo-Riemannian metric in the ambient space,
M. Working in terms of this metric, the operator can written as

H=A+L4+T,
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where A is the Laplace-Beltrami operator associated with the metric g%, and
where L = L'8; is a vector field determined by the coefficients ¢ and . The
local coordinate expression for the Laplacian is

" . A7

2g
where 7 is the determinant of the g¥ matrix. This intrinsic description makes
it clear that in order for two operators to be cquivalent it is necessary that the
pseudo-Riemannian metrics induced by their symbols be isometric. The question
of equivalence is therefore reduced to the following. Given an operator

?—Z=g""8.-j+f;+ﬁ,

when does there exist a scaling transformation that relates H to H? In order to
answer this question, it is best to work in terms of the so-called magnetic 1-formn,
w, obtained by lowering the indices on the linear term Li8;. In other words, the
magnetic 1-form is given by

¢lw; = L7,

Proposition 2.3.2 The operators H and H with equal symbols are locally equiv-
alent if and only if the following two conditions are satisfied. First, the difference
of their magnetic 1-forms must be closed, i.e.

w—o=248A,
for some locally defined A € C*(M)'. Second, their scalar terms must be related by
U=U+ A\ + grad(M)2.
Proof: For a given positive p € C*(M), we have

Y Hy = A+ L+ 2grad(A) + U + A(N) + grad())?,

1The factor of 2 is there to simplify the expression Jf later formulas

h&
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where A = log()/2- Hence, in order for H and H to be locally equivalent it is
necessary that

L - L =2grad(N),
for some locally defined function A. This gives the first condition regarding the

magnetic 1-forms, and the preceding formula for the conjugated % gives the second
coendition regarding the scalar terms. O

We are particularly interested in second order operators that can serve as
Hamiltonians of quantum-dyna.micalfng:i:ems. These operators have the form
A +V, where V € C(M); we will call them Schridinger operators. It is there-
fore important to know which second order operators are locally equivalent to a
Schréedinger operator. Proposition 2.3.2 tells us when that is the case.

Definition 2.3.3 We say that a second order operator,
H=A+L+U,

is of Schréadinger type if it satisfies the following equivalent closure conditions:

e H is locally equivalent to a Schrédinger operator, A +V,
e locally, L is the gradient of a function,

¢ the corresponding magnetic 1-form is closed.

If H is of Schrddinger type, we will call V' the associated potential of H, and call
A +V the normalized form of the operator.

Determining which Lie-algebraic operators satisfy the closure conditions is a
difficult problem. Chapter 5 is devoted to the discussion of this question. At
present, we will remark that the set of Schrédinger-type operators is invariant with
respect to conjugation by a change of scale. Therefore, the closure conditions that
determine whether or not a Lie-algebraic operator is of Schrédinger-type depend
only on the cohomology class of the cocycle component, . Moreover, the following
is true.

S
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Proposition 2.3.4 The associated potential of a Schridinger-type, Lie algebraic
operator depends only on the cohomology class of the cocycle component, 7.

Proof: Let H be a Lie-algebraic operator that satisfies the closure conditions.
Thus, we can conjugate H by some p € C*(M) and obtain a Schrodinger operator,
A + V. Note that the above condition fixes 4z up to a constant multiple. The
reasons is that the gradient of a function is zero if and only if that function is a
constant. This Schrddinger operator also happens to be a Lie-algebraic operator;
the second-order and linear components do not change, but the cocycle component
is n — dlog(y). Now let us change the cocycle component by a coboundary, and
obtain another Lie-ilgebraic operator, say H'. Let’s say that the normalized form
of H' is A + V'. Again, this normalized form is a Lie-algebraic opcrator; the
cocycle component belongs to the same cohomology class as 7, say it is n—4 log(pt').
Therefore u/y' must be a constant, and therefore V' = V. 0

2.4 Invariance with Respect to the Group Ac-
tion. -

There is a natural right-action of the group, G, on all the components of an
operator system. The action of G on the tensor spaces of g is derived from the
adjoint representation. The right action of g € G on a € g is given by

a-y=Ad(g)Ha).~

Section 2.1, described how G acts on M via projected right multiplication diffeo-

morphisms, T,, where g € G. These diffeomorphisms also induce a right G action
on C¥(M):

(T)(f-9)=f, where f €C™(M).
There is also a right action on C*(g; C*(M)):

(T ((n-9)(e-g)) =n(a), wheren € C'(g;C"(M)), € g.
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Thus, there is a2 well-defned G action on the set of operator systemns. In this
section we will show that two operator systems that are related by a G-action give
rise to equivalent operators. -

Proposition 2.4.1 Let (C,L,n) be an operator system with corresponding Lie
algebraic operator H. For each g € G the push forward, H = (Y,) H, is a Lie
algebraic operator that corresponds to the operator system (C-g,L-g,m-g).

Proof: Note that
(Yo)u(a™ +nla)) = & +7j(@), wherea€g, d=a-g, 7=7n-9g.

Hence, the push-forward of H is composed of first order Lie algebraic operators.
In terms of a basis a,,...,a, of g, we have

H o= 3 CY(af +(a))(a] +nla))+ 3 L(af +n(as)),

H o= 209G+ @)@ +a(@) + 3 LUEF + (@),

C

where a; = ¢; - g. We conclude by noting that the components:b_f C and L with
respect to the a; basis are equal to the components of C - g and L -ig with respect
to the @; basis. O

The upshot of the above proposition is that if we modify the components of an
operator system by a G-action, we will obtain a diffeomorphically equivalent oper-
ator. Therefore, all intrinsic properties of a Lie algebraic operator — quasi-exact
solvabilﬁiy, the closure conditions, the curvature of the induced metric — are in-
variant under G actions.

It is natural to wonder what 2 G action does to the class of a cocycle n €
Z'(g;C*(M)). 1t is not hard to show that G actions commute with the coboundary
operator of C*(g;C™(M)). There is therefore a well-defined action of G on the
cohomblogy groups.
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Proposition 2.4.2 G acts trivially on H*(g; C™(M)).

Proof: Since there is a G action on H*, the latter must also be a g module.
These infinitesimal actions are given by Lie derivative operators with respect to

the vector fields a™, a € g. Using the well-known homotopy formula, we see that
if 77 is a cocycle then

Lox(n) = i(a")dn + d(i(a")n) = d(i(a™)n).

In other words g-actions take cocycles to coboundaries, and therefore the action
on H* must be trivial. O

In light of the above proposition we can summarize our results on cquivalence
of Lie-algebraic operators as follows.

Proposition 2.4.3 Group actions and scaling transformations break up the sel of
operator systems into classes of equivalent operators. The set of these classes is
given by

(S°s @ g) mod G] x H'(g;C*(M)).

2.5 The Divergence Cocycle

In this section we will given an intrinsic, basis-free specification of the relation
between an operator system (C, L, n) and the corresponding Lie algebraic operator.
We will need this later in our study of the closure conditions. The key to this
description is the divergence cocycle. This is an element of Z!'(g; C=(M)) that is
naturally associated with the Lie algebraic metric induced by the sccond-order
component C € 8%g.

For the moment, let g/ be any pseudo-Riemannian metric on M, and put

#(a) = div(a™), wherea€g.

et
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Proposition 2.5.1 d¢ =0, i.e. ¢ is a cocycle.
Proof: For A, B, vector fields on M, define
S(A, B) = A(div B) — B(div A) — div[A, B].

By the standard properties of the divergence operator we see that for f € C™(M)
we have

S(fA,B)=5(A, fB) = fS(A,B)

ic. Sisa type (g) tensor. Using local coordinates we have

—8; log(|q¥
dive; = 6‘105(19 1)

where |¢"/| = det(g"). Therefore
o Sy = 5(8:, 0;) = ~8:0;(197) + 8;2,(1g) = 0

The desired conclusion follows by taking 4 and B to be g actions and recalling
that S(A, B) is just the definition of (d¢@)(4, B). O

:::_.tﬁ_ggi-oPosition 2.5.2 The class of ¢ in H'(g;C*(M)) is independent of the choice

of pseudo-Riemannian metric, g.

Proof: With respect to a fixed set of local coordinates, the divergence of a vector
field X = ¥; X*§; is given by
3 8:(X%) - X (log(lg 1) /2,

where |g¥/| is the determinant of the matrix ¢, The difference of divergence
operators corresponding g% and to a different metric tensor, §¥, is given by

- 5 (Gloglg?) ~ Slog((5).

Therefore, a change in metric will alter the divergence of a”, where ¢ € g, by 2
coboundary term. B
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Definition 2.5.3 We call ¢ the divergence cocycle of the metric g. The divergence
cocycle of an operator system is to defined as the divergence cocvele associated to

the pseudo-Riemannian metric, C'™, induced by the second-order component, C,
of that system.

Proposition 2.5.4 Consider for the moment a basic, homogeneous operator sys-

tem, (C,0,0) with corresponding Lie-algebraic operator H. An intrinsic description
of H is given by

H=A-(Co),

where ¢ is the associated divergence cocycle, and where (C@)™ is Lre invariant
notation for

Cijafqu.
Proof: Let f € C*(M) be given. In terms of a basis of g, we have
A(f) = div(grad f) S
= av(CY el (1))
= CYal(af(f) +CY div(al) a(f)
H(f) +(Ce)"(f)

O

Proposition 2.5.53 More generally, consider an operator system (C,L,7n). An
intrinsic description of the corresponding H is given by

H=20+(C(2n-¢))" + L7 +C(n,n) - C(¢,n) +div(Cn)" + n(L).

Proof: Again, working in terms of a basis of g, we have

H = Caf +m)(af +m5) + L {(a] +)
= CYafa] +2C7na] + CYymj + CYa5(m) + L7 + (L) (2.3)
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The first term in the above expression is just the homogeneous, basic portion
of H, and hence, by the preceding proposition, is equal to A — C¢™. The second
and third terms are, respectively, equal to 2C7%™ and C(n,n). By the elementary
properties of the divergence operator we have

div(Cimal) = Clinig; -+ CYaT (my).

Hence, the fourth term of (2.3) is equal w0 div(Cn)™ - C(n, ¢). O

i



Chapter 3

The Cohomology Component

Man muss immer generalisicren.

— Carl Gustav Jacobi

3.1 Isomorphism Theorem

As was mentioned in Section 2.2, every representation of a Lie algebra, g, by vector
fields on a space, M, can be modified to a representation by non-homogeneous first

order operators. The necessary ingredient is a linear function, n : g — C™(M) that
satisfies

a™(n(b)) — ¥"(nla)) — n{[e",47)) = 0;

in other words, a cocycle of H'(g; C*(M)). Conjugation by a scaling operator
frrexp(A)f, where ), f € C<(M)

results in the addition of the coboundary term a™(}), where ¢ € g. Thus, given a
vector field representation, in order to classify the corresponding, non-homogenecus
representations it is necessary to determine H'(g;C~(M)). The cohomology in
question has an infinite dimensional coefficient module, and one must wonder if

28
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the resulting cohomology will be finite dimensional. Furthermore, in order to
obtain concrete examples of these representations, one must have techniques to
explicitly determine cocycle representatives of the nontiivial cohomology classes.

These questions are addressed in Chapter 8 of Miller’s book {24]. In that
work we are presented with a method of calculating the dimension of H! and a
technique for computing cocycle representatives for some special types of vector
field realizations. Another relevant work is the by Gonzalez-Lopez, Kamran, and
Olver [10]. This paper lists the cohomology dimensions and cocycle representatives
for the 24 possible types of Lie algebras of planar vector fields. These questions

were further taken up in [25], which presented a generalized isomorphism theorem
for H* (g, C*(M)).

We will begin with a discussion of the cochain complex C*(g; C*(M)) and relate
it to other simpler cochain complexes. In the end we will be able to show the
resulting cohomology is finite dimensional, and to easily computie the dimension
of H!. The next step will be to describe some techniques for computing cocycle
representatives, and illustrate these techniques with several examples.

Consider the cochain complex C*(g; C*(G)"), where the notation C*(G)* indi-
cates that g acts via left-invariant vector fields. This complex can be naturally iden-
" tified with the familiar deRham com‘ﬁiex of differential forms on G. The cochains
of the deRham complex take vector-field arguments and give back functions, while
the cochains of C*(g;C™(G)*) can be thought of as taking g-valued functions as
arguments. Saying-that g acts via left-invariant vector fields, amounts to identify-
ing a g-valued function f with the vector field f“. In the projection 7 : G — M,
the right-invariant vector fields h® span the vertical directions. Thus, C*(M) can
be considered as the h*-invariant submodule of C*(G), and C*(g;C=(M)) can be ~
identified with the complex of h*-invariant differential forms on G.

The local cohomology of the deRham complex is, of course, trivial, but the
same cannot be said of the h®-invariant cohomology. Certainly, every h*-invariant,
closed p-form can be locally integrated to a p — 1 form, but it may be impossible
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to make the latter be h®-invariant also. Such a p-form will then represent a non-
trivial cohomology class. Consider, for instance, a ciosed, [™-invariant 1-form, 7.

Up to a constant, n can be integrated to a function f € C™(G), and a*(f) must
be a constant for all a € ) because

Lo (df) = d(a*1df) = 0.

Let us denote this constant by 7(a). Note that
Ai([e, b)) = a™b*(f} — b"a™(f) =0, where a,b € b,

and hence the map 7 — 7 is actually a cocycle of C!(h;1). Furthermore if 5 were
trivial, i.e. if » = df for some f € C*(M), then % would be zcro. Thus n — 7
factors to a map in cohomology.

Theorem 3.1.1 The above cohomology map,
H'(g;C™(M)) = H'(h; 1),

s an isomorphism

Proof: Suppose 7 = 0, or equivalently, n(a®) = 0 for all a € §. Since 7 is closed
we can always integrate it locally to a function, f, which will be constant along
the directions h*. Since M is contractible we can perform an integration on all of
7l (M) to get an f € C*(M) such that df = 7. Hence, 7 is trivial, and thercfore
the cohomology map must be injective.

Now, let p be a cocycle of H'(h;1). We identify p with the corresponding
invariant 1-form on H. Since M is contractible we can choose a decomposition
71(M) = M x H and pull p back along the second projection to get a 7 €
Q(71(M)). It isn’t hard to verify that p = 7, and thus we have shown that the
cohomology map is surjective as well. o
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A related result appears as Theorem 8.4 of [24]. That particular version asserts
that the dimension of H'(g;C*(M)) is equal to the codimension of [,h] in . In
view of the above we can see why this is true; H'(h; 1) is really the same thing
[h, b]* C b*, the anmihilators of the commutators of §.

Definition 3.1.2 We will call the linear form 7 € [h, §]* the classifying form of
the cocycle 7.

It is remarkable that a similar isomorphism theorem is true for the higher co-
homology groups. For the sake of completeness we will consider this theorem, even
though only H! will be relevant to the present discussion of operator systems. The
basic techniﬁﬁé in describing this isomorphism is to define a certain double com-
plex with exact rows and columns and to show that this double complex computes
both of the above cohomologies. This technique is quite similar to the bicomplex
proof that the Cech and deRham cohomologies are isomorphic. A good reference
for the Cech-deRham bicomplex is [3].

We will proceed by proving a general result about a bicomplex of Lie Algebras
and then as an application generalize Theorem 3.1.1

Let g;, g2 be finite dimensional, real Lie algebras and M a gy, g» bimodule.
This means that M is both a g; and g, module, and that the g, and g, actions on
M commute. Just as a Lie algebra and an associated module give rise to a cochain
complex, a bimodule gives rise to a Lie algebra bicomplex. The cochain spaces of
this bicomplex are defined to be

CP(g1,82; M) = APg @ A9 ® M where p,g > 0,

or CP for short. It is useful to think of C™ as the space of lin-ar forms with
p anti-commuting arguments from g;, ¢ anti-commuting arguments from g and
values in M. The coboundary operators

5 :CP cp+1.q’ 6, 1 CPI — Cpatl
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are defined as follows. ¢, is defined just like the coboundary of C*(g,; M) but with
the go arguments playing the role of parameters. More precisely, for w € CP9,
a; € g1, b; € g2 we put

(61‘_‘;)(0’0,“ _’ap;bl,_ .. ’bq) = Z(—l)ia'iw(' . .(‘L} . ,B).:

i
+Z(—1)i+jw([ai, 1 R SR 3)
i<j
d2 is defined analogously as a parametrized coboundary of C*(gs; M) with the
parameters coming from g,. The coboundaries satisfy 67 = §2 = 0, and 8,4, = d.9);
the verification is trivial if not tedious.

To make use of the bicomplex we augment it by an extra row and an extra
column of invariant cochains. We say that a cochain w € CP(gy; M) is gy-invariant
if

bw(ay,...,a,) =0
for all a; € g1, b € g2; and denote the subspace of such cochains C*™. Note
that CP(g,; M) = CP° and thus the subspace of go-invariant cochains is precisely
the kernel of d, : CP® — CPl. Also note that §; of a gy-invariant cochain is
invariant and that therefore C*™ is actually a subcomplex of C*®. We define
Cinv»_the g;-invariant subcomplex of C°*, analogously. The augmented bicomplex
is summarized by the following commutative diagram. The + arrows label the
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inclusion maps of the invariant subcomplexes.

1]
C2inv. L, (20 2, (Ccal ., (2
l [a I |
criw t, g0 By ou _, gz
T Tﬁx T
Clinv _ty 00 &2, 00 _, 02
‘.] . _L ‘L
/CJnv.D —_ Cmv,l y Qv

-
ol
-

To avoid confusion let us agree to refer to the rows and columns of the main
bicomplex by their row and column numbers. Thus row zero refers to the row
C%*. The extra row of invariant cochains we.will simply call the extra row or the

invariant row, and likewise for the ext:> column.

The ultimate goal is to show that the bicomplex computes the cohomologies of
the extra row and column. This is true if the rows and columns of the bicomplex are
exact. Actually for the bicomplex under discussion a weaker assumption suffices.

Proposition 3.1.3 In order for the ruﬁ‘;‘.zﬁd columns of the Lie algebra bicomplex
to be exact it is sufficient that the 0" row and column be ezact, or equivalently,
that H*(g1; M) and H*(go; M) are trivial.

Proof: Row p is obtained by tensoring APg] with row 0. Tensoring with a fixed
vector space is an exact functor and hence if row 0 is exact so is row p. The same
argument works for the columns. O

The justification for using the bicomplex is given by the following theorem.

Theorem 3.1.4 If H*(gy; M) ar;d""H"(gg;M ) are trivial then H* (g, go; M) &
H™"(g1, g2; M). -

it
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Proof: Note that by the preceding proposition we have the exactness of the rows
and columns of the bicomplex. The standard proof of this theorem is accomplished
by showing that the cohomology of the bicomplex is isomorphic to the cohomologies
of the extra row and column. The reader is referred to [3] for the details. O

Let us now apply the preceding result to the computation of H*{g; C~(M)). We
do so by taking g, = g, g2 = B, and M = C*(G)*". The “LR” superscript means
that g acts with left-invariant vector fields, and while i acts with right-invariant
ones. The following propositions deal with the details of the resulting complex.
First v/e determine the nature of the invariant forms and then prove the row and
column exactness. It is also prudent to recall that we are working locally,’nnd that

“at the moment G, H, M denote contractible open subsets of their corresponding
global objects.

Proposition 3.1.5 C*'(g, b; CG)) = C*(g; C=(M)).

Proof: The values taken by a b invariant cochain are functions that arc annihilated
by h®, i.e. they are elements of C*=(M). 0

Proposition 3.1.6 C"*(g,b;C™(G)) = C*(h;1).

Proof: The values taken by a g invariant cochain are annihilated by g“. The latter
spans the tangent space at each point of G and hence the values of these invariant
cochains are precisely the constant functions. : O

Proposition 3.1.7 H*(g;C™(G)*) = 0.

Proof: As was mentioned earlier, C*(g;C*(G)*} is naturally isomorphic to the
deRham complex of differential forms on G, and of course the latter has trivial
local cohomology. . ] O
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Proposition 3.1.8 H*(§;C™(G)*) = 0.

Proof: First, let us choose a local decomposition G = M x H. With this de-
composition C*(h; C*(G)") can be thought of as the local deRham complex of H
parametrized by points of M. It will turn out that this parametiizcd complex is
trivial because the cohomology at each value of the parameter, is itself trivial, and
because M is contractible. Let us consider the details.

The cochain space of the pararietrized complex in question is C*(M, 2*(H)),
where a map

n: M = QF(H)
is considered smooth if for every choice of smooth vector fields a,...,ax on H,
the map
u — n(u)(ay,-. ., a)
is in C*(M). The coboundary is given by
(dn)(z) = d(n(z)),

where x € M, and where the d on the right denotes the usual exterior derivative.
We identify n with a cochain of C*(h; C*(G)*) using the following formula

71(01:-- "9 ak)(zay) = 77(113; b?s' v 52)(9’); where a; € b,z € M-.- y € H.

The triviality of H(C™(M, Q*(H))) follows from the triviality of *(H)); the proof
requires a parametrized version of the Poincaré Lemma. We prove this lemma
below and thereby conclude the present proof. - O

- o

Proposition 3.1.9 (Parametrized Pciicaré Lemma) Let B* denote the unit
open ball of R*. The cohomology of the parametrized complez, C*(M, Q*(B")), is
trivial, wr
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Proof:  Let us recall a proof of the fact that Hpr(B™) = 0. We follow the
ideas in [30]. It is sufficient to demonstrate the existence of a homotopy operator
K : Q* = Q*! such that £Kd = Kd is the identity map on ©*. One such K is
given by

1
(Kw)(v) = ./0 t*Yvdw)(tv) dt, where w e Q*, v e B",

The parametrized version of the above is

(Kw)(@v) = [ ' =1 wo(a)) (to) dt

where w € C*(M, Q%(B")), v € B*, z € M. . O

As a comsequence of the above propositions and Theorem 3.1.4 we have the
following generalization of Theorem 3.1.1. ' ,’f

Theorem 3.1.10 H*(g;C™(M)) = H*(h;1).

3.2 Determination of Cocycles

Now we turn to the problem of explicitly determining cocycle representatives for
H'(g; C*(M)). Suppose we a have a representation of g by vector fields {a],...,a7}
with structure constants cf. A cocycle n € Z'(g;C*(M)) can be thought of as a
solution to the following system of differential equations:

af (;) — aj (m) — Zc{-‘jqk =0, wherei,j=1,...,dim(g). (3.1)
k

Work in the preceding sections allows us to compute the dimension of H'. Here we
are interested in methods of generating explicit cocycle representatives for every
cohomology class.

Perhaps the simplest way to generate cocycles is to look for ones that have
constant coefficients. The space of such cocycles is isomorphic t{g, g)*, and thus
can be easily computed. :
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By Theorem 3.1.1 we know that H!(g; C*(M)) is isomorphic to [h, §}*, but we
need to consider the finer structurz of the cocycle space Z'(g; C=(M)). Recall the
classifying form map n — 7 from Z! to [, h]* given by

iila) = n(a*), wherea €h.

As given, it is difficult to compute the classifying form explicitly, because the
description of the cocyle 7 is in terms of the homogeneous space, M, and lacks
explicit data about G. Fortunately, the classifying form has a more tractable
description.

Proposition 3.2.1 The classifying form, 7, of a cocycle n € Z'(g; C=(M)} is given
by restricting 1 to b and then evaluating ot 0 = w(e). In other words,

Ma) = n(a)e, wherea €.

Proof: In the original definition in Section 3.1, one identified 5 with a 1-form
on G and put 7j(a) = n(a™); the latter was guaranteed to be a constant. But, a®
and a" have the same value at e € G, and with respect to the above mentioned
identification, n(a), = n{a®)e.. O

In light of the preceding proposition, the content of Theorem 3.1.1 is the asser-
tion that the following sequence is exact. The d arrow is the coboundary operation,
‘s and the following arrow is the classifying form operation.

0 — R — C™(M) - Z\(g;C~(M)) — [, h]* — 0 (3.2)

A powerful technique for building a cocycle is to first define it on a subalgebra
of g, and then to extend it to all of g. We therefore need a criterion for when such
an extension is possible.

Theorem 3.2.2 Let § C g be a subalgebra whose action is transitive in @ neigh-
borhood of the basepoint, o. Let ny € Z1(f;C=(M)) be a cocycle of f, and

o € fNB,FNHH C (fnp)*

At
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the corresponding classifying form. One can extend ny to a cocycle
n € Z'(g; C™(M))

if and only if 7 can be extended to an element of [, h]* C b*, i.e. if and only if 7

annthilates [f, h] N §. The eztension of the classifying form (if it erists), uniquely
determines the extension of the cocycle.

Proof: The sequence (3.2) is a natural construction, and we therefor
following commutative diagram.

-

0—R— M) — ZjCM)) — [fnh,fnplt —0

1 I I

0 —R— C(M) — Zl(gC"M)) — [, b)+ — 0

The first part of the theorem asserts that np € Z!(f; C=(M)) goes to the image of
tp if and only if 7 is in the image of ¢;. One direction of the equivalence is true by
the commutativity of the diagram. To prove the other direction, suppose that the
classifying form of 7y is in the image of ;. Then, there is an 1 € Z*(g; C=(M)) such
that ¢;(n) has the same classifying form as ny. By the exactness of the horizontal
sequences the difference 7y — ¢1(n) is a coboundary, df, for some f € C*(M). But,
t1 takes 77 4 df to g, and therefore g has an extension.

Now, let us consider the uniqueness part of the theorem. Suppose that 7,72 €
Z(g; C*(M)) are extensions of ng € Z!(g;C*(M)), and that 7}; = 7. The rows of
the above diagram are exact, and hence 7, and 7, must differ by a coboundary.
Hence, ¢1(m) and ¢ (1) differ by the same coboundary. But ¢; takes both 7 and
72 to 19. Therefore, the coboundary in question is zero, and therefore 7y = 7.. O

To apply this theorem one executes the following ‘s.teps. First we choose a
subalgebra f, sufficiently large, so that §+ § is all of g. Let us put

n=dim(g), p=dim(f), g¢=-dim(g)~- dim(p).
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Since a sufficiently large | was chosen we have p > ¢, and thus we can choose an
adapted basis ay, ..., an of g, such that ay, ..., a, span §, and such that agq1,...,8,
span h. Next, choose a cocycle 7 € Z1(f;C=(M)) with constant coefficients. This
amounts to choosing constants 7,...,7, in such a way that the resulting form
annihilates the commutators formed by @g41,...,a, ie. [fNh,fNH]. Finally,
extend the classifying form of 7 by choosing initial values 7,41(0),...,7.(0), and
then solve the overdetermined syst:em of linear P.D.E.s,

mn
af(n;) = ik, wherei=1...p,j=p+1...n,
k=1

for the unknowns np.4.1, ,7n- By Theorem 3.2.2, there will Ee a unique solution,
and that solution will determine a cocycle of g.

Example 3.2.3 Consider the standard, projective line realization of g = s{(2):
a] = 6,,; ay; =x0;, a3= z28,.

Let us take £ = 0 as the basepoint. With this choice the isotropy subalgebra is
spanned by a; and az. The commutators of i are spanned by as, and thus have
codimension 1 in . By Theorem 3.1.1 we can conclude that H* is one dimensional.
By Proposition 3.2.1 we know that a cocycle must satisfy 7;(0) = 0, and that the
class of the cocycle will be determined by the constant ¢ = 72(0).

Let us begin “y setting 7, = 0 and then extend by solving
| ax(’b) =0, 7]2(0) =c;
Oz(7m3) = 2m9, 13(0) = 0.

The unique solution is n; = ¢, 73 = cz.
Example 3.2.4 In this example we let g be a certain subalgebra of linear endo-

morphisms of R3. The subalgebra in question will consist of those actions that
stabilize a fixed direction in R®, say the direction spanned by the third unit vector.
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Instead of choosing a single-index basis, we will use the more ratural rcﬁfoscnta—
tion of gl(3) and gl(3)* by 3 x 3 matrices. We take coordinates x',x*, z* on R?,
and thus the g actions are given by

Mt Tz 0 @t
[ 8 02 O3 ] oy T2 O ? | = Z‘f!ij-'ff'aj-
M1 sz N33 z* Y
Taking (1, 0,0) as the basepoint, we see that the isotropy algebra, b, and its com-
mutators are given by

0 = 0
hb=10 % 0 [h,b] =

0 * =

[T e B e

%
0
*

o o o

Since the codimension of [h,§] in h is two, we can conclude that H' is two-
dimensional, and that the classifying forms are given by

0

4] = C17j22 - €273,
0 Co

where ¢;, ¢p are arbitrary constants. Next, we find a cocycle that corresponds

to the above classifying form. We begin with the following cocycle with constant
coefficients.

and extend by solving

M2 = =M, z sz = 0,
z Oamz2 = —C1, z Gamaz = 0,
7 O3z = —Tha, T2 = 0,
Mm2(1,0,0)=0—-  75:2(1,0,0} =0

—
-
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The resulting cocycle is

0 —¢ y/.’B
0 C
0 0 Co

We will consider one further technique that gives cocycles representatives of
certain cohomology classes with virtually no effort. What are these cohomology
clagsses? The choice of subalgebra § C g singles out a certain element x € H!(f),
which we now describe. The adjoint action naturally makes g/b into an § mod-
ule. We let ¥ € b* denote the character of this representation. Since i kills all
commutators of b, we can regard y as an element of H'(h).

Proposition 3.2.5 The classifying form of the divergence cocycle, , is ~x-

Proof: Let’s proceed by examining a slightly more general case. Let z be a point
of a pscudo-Riemannian manifold, X,..., X, a frame in a neighborhood of z, and
f',...,8" the dual 1-form coframe. For a vector field, X, that is zero at = we have

. (dle 29‘ X, Xz
Recall that ai =0forace€ b ’\Iow, let X = a" for an a € §, and take X; = o”
where {¢;} is a basis of some subspace of g Wthh is complementary to h. The
preceding formula directly implies that

(M)(a) = (diva™), = ~x(a).
a

Recall from Proposition 2.5.2 that the class of the divergence cocycle is inde-
pendent of the choice of metric. To get a representative of the class one needs
merely to use the most convenient available metric. As such, it is best to use the
flat metric associated to the local coordinates that are being used to describe the
g action.
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Example 3.2.6 Let us extend a preceding example by considering the action of
sI(3,R) on 2 dimensional projective space. Instead of using a single-index basis,
we will use the more natural representation of sI(3) by traceless 3 x 3 matrices.
We take affine coordinates {1, %%, y*] on RP?, and thus the sI{3) actious are given
by

m T2 T 1
[ —y*0 — y*05 " 0 O ] a1 T2 T y* |, where iy s + s = 0.
a1 T2 T3 Y

We take 32 = 0, ¥* = 0 as the basepoint and hence §, the isotropy subalgebra,
and its commutators are giver by the following matrices

* ok % 0 % x
b=10 % « [B,bl=1]0 * x
0 = * 0 % %

" Since the codimension of [h,h] in h is one, we can concluce that M' is onc-

dimensional, and t~at the classifying form will be

2 0 0
- 0 |,
0 -—c

where cis an arbitrary constant. The classifying form is a multiple of the character,
x, and thus we can obtain a cocycle by simply taking the flat divergence of the g
actions with respect to the 32,33 coordinates. The divergence cocycle is therefore

=2¢ =3cy’ —3cy®
0 ¢ 0
0 0 ¢

W\



Chapter 4

Geometric Aspects of a Lie
Algebraic Operator System

Whoever ... proves his point and demonstrates
the prime truth geometrically should be believed
by all the world, for there we are captured.

- Albrecht Diirer

4.1 Preliminaries

To get at the intrinsic gcomeiry induced by the Sécond-order component of a Lie
algebraic operator system it becomes necessary to expand our viewpoint from the
quotient G/H to all of G. Unfortunately, a Lie-algebraic operator in its raw form
does not determine & explicitly. Certainly, there is a list of vector fields in some
system of local coordinates, and the structure constants that make that list into 2
Lie algebra, g; but G, as such, is not given by the setup. Yet one knows that the
group is there. In theory, it is possible to choose local coordinates of the group,
and to explicitly specify the group action on M in terms of these coordinates. In
certain simple cases this is actually a practical undertaking.

43

b
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Perhaps, even more importantly, the Lie group sctting possesses a rich, for-
mal geometric theory, which can be used to describe and verify properties of the
homogeneous space. We already encountered one such technique in Section 3.1.
Every cocycle 7 € Z(g; C*(M)) can be locally integrated to a function f € C™(G),
and the derivatives of this function with respect to h* vector-ficlds are guaranteed
to be a constant. The poini is that we do not need to explicitly write down this
function. Merely knowing that it exists tells us that H'(g; C™(M)) is isomorphic
to H(h;1) (see Theorem 3.1.1).

The next few sections will proceed in the same vein. We will discuss properties
of homogeneous space, in terms of objects defined on the group above.

4.2 Horizontal Vector Fields
and Adapted Frames

The prdjection 7 : G =» G/H, gives a natural vertical distribution, ", on G.
Dually, there is the natural cotangent sub-bundle of horizontal 1-forms. This sub-
bundle is spanned by differential forms a®, where o € g* annihilates ), We will
denote it by (h1)*. Now, let us fix a C € S%g, and consider the corresponding
left-invariant, type (g) tensor field, C*. In gencral, the extra information given
by C allows us to decompose the tangent bundle of G, and allows us to speak of
horizontal vectors and vertical 1-forms. The decompositicn is given by

TG = []n @ CL([TL)“.

According to Proposition 2.2.1, the decomposition fails if and only if the pro-
jected metric tensor, C%, is degenerate at n(g). Thus, if ¢ € G is not a point of
degeneracy, the projection of the vector-fields C*(f*)" spans the tangent space of
G/H at w(g). Accordingly, we set M to be the subset of G/H where C7 is not
degenerate. One further note on the abuse of notation: we will write the canonical
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projection as 7 : G = M. It should be understood that we are excluding the
fibers that lie above degencrate points of G/H.

Definition 4.2.1 For cach a € b1, we call Ca® a horizontal vector field, because
such vector-fields span the horizontal distribution induced by C. For each e € b, we
call a® a vertical vector field, because these vector fields span the vertical directions
of the projection 7 : G — M. We call this method of indexing horizontal vector
fields by h* and vertical vector fields by b the adapted frame. The restriction of this
index to b+ and the horizontal vector fields will be called the horizontal subframe.

It is helpful to have a description of the adapted frame in terms of a basis. Let

Q1+« 3 nem;y Cn—malye .0y Gy

be an adapted basis of g, such that the last m eniries give a basis of h. This way
the first n — m entries of the dual basis o?,...,a" will give a basis of h*. In terms
of such a basis we will give the adapted frame as H!,..., H*™™ V_ms1y.-., Vo,
where H' = Cta™ and V; = ol "

The structure equations of the adapted frame split into three classes: vertical-
vertical, horizontal-vertical, and horizontal-horizontal. The first two classes do

not depend on the geometry induced by C and are therefore of no interest to us.

Proposition 4.2.2 The vertical vector fields form a Lie algebra isomorphic to .
The vertical-vertical structure equations are therefore equivalent to the structure
equations of h. The Lie derivative of a vertical and a horizontal vector field is @
horizontal vector field. In this way the space of horizontal vector fields is a module
of the Lie algebra of vertical vector fields. The structure constants of this action
are the same as the structure constants of the canonical, coadjoint action of 'ljho‘;z

bt

Proof: The assertion about the vertical-vertical structure equations is self-evident.
For the vertical-horizontal case, since a horizontal vector field C*o* is a contraction
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involving a left-invariant tensor field, C*, we have
[a®, Cta"] = C*(Ln(a™)) = CHad(a)* (o))"
O

To describe the structure equations of the adapted frame it will be convenient
to switch to the indices-oriented approach. To that end, let us name the structure
coefficients of the underlying Lie algebra g:

[ai9aj] ZS:; Qfs i:j7k =1l...n
Recall that
[e®, 6" = —([a,8))"*, a,be€g,
Lor(@") = (ad(a)"(e))", c€gaeg.
Hence, the two types of structure equations for the adapted frame have the same
coefficients as the structure equations for g. Namely,

[Vi. Vi) = =SEVi, (Vi H] = SI.H*.

The horizontal-horizontal type of structure equations, however, have non-constant
coefficients (the tilde above the A and B serves to remind us of this):

[H H) = 3 247H + Y B,
k=1

k=n—m+1
The factor of 2 in the above equation is there to simplify some later formulas.

The adapted frame of vertical and horizontal vector fields will be the primary
tool for our investigation of the geometry of a Lie algebraic space. After two
digressions devoted to technical issues we will resume with a discussion of the
properties of adapted frames.

I
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4.3 Tensor Fields of Mixed Type

A vector field like C*a® is a contraction of a left and a right-invariant tensor. We
call the resulting object a tensor of mixed type. In this section we will develop
calculation techniques to handle such tensors. First let us recall the following
clementary facts.

Proposition 4.3.1 Fora € g, o € g* we have
a" = (Ada)*, o®*=(Ad"0)" = (acAd)",
where we regard Ad as a function from G to End(g).

For case of notation we will use & to denote the g*-valued function Ad"a. We:
thus have &® = &". The identification of tensor fields with tensor valued functions
allows us to define a left-invariant derivative on a Lie group. Let V" be a vector
space and f : G = V a smooth function. We define D*(f) : G — Hom(g, V) by

D*(f)(a) =a"f, a€g.
We will need a formula for the Lie bracket of vector fields in this formalism.

Proposition 4.3.2 Let f, g be g-valued functions on G. Then,
[f*, "] = (ad(f, g} + f D"(g) — g D"())".

We also need a formula for the derivative of Ad.

Proposition 4.3.3 D*(Ad),{(a} = Ad,ad(a), wherea € g, and g € G.

Let us restate the above in a more convenient notation. Since C acts as an inner
product on g* it also induces and inner product, on A_2g‘, which is given by

cik ik

C(aiAaj,akAa')=<aiAa";CakACa‘>= ci ot
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Thus, for o, 8,7 € g* we have

Yad(Ca,CB)) = —67(Ca, CB) = —C(dv,a A ),

where § : g* — A”g* is the usual coboundary operator. The preceding discussion
and Propositions 4.3.2 and 4.3.3 combine to give the following fornmlas.

Proposition 4.3.4 For o, 8,7 € g* we have

(C™)(CH (™, %) = —-C&BAF) —C6B,and),
T([CH e, C*BY]) = —C(87,& A B) + C(08,a A7) + C(da, B A).

At this point we will introduce a number of symbols that will help us with the
calculations involving adapted frames. We work with an adapted basis as described
in Definition 4.2.1. The indices ¢, 7, &, will be presumed to range [rom 1 to n—mn.
We put

CY = CH (o™, o) = C(&, ).
These symbols describe the inner product in terms of-che horizontal vector fields.
Thus,
H-HIi=C9. .

o —

We define the symbols C',-j (subscripts, rather than superscripts) as the entries of
the matrix that is the inverse of C¥. For a given L € g we put

Zi - "t'[t( L)
Writing L as L/a;, the preceding symbol can also be defined as

L'=) L/ Ad;.
-

2

Next, we define

i

&*(ad(Ca*, C&))
= —C(& A&, é6F)
= CrCissk,
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Using these symbols Proposition 4.3.4 can be restated as

Hi(CH) = T4+, -
(@ (H ) = T = M - Tk 42)

4.4 A Generalized Covariant Derivative

In this section we fix a C € §%g, and work with the pseudo-Riemannian geometry
induced by the metric tensor C* on M. In particular we will show how to extend
the covariant derivative operator, V, of the corresponding Levi-Civita connection
10 a more general operator that operates on sections of the bundle TG/h* — G.
We are particularly interested in the covariant derivatives of the horizontal vector
fields, Cta®, where & € h*. These vector fields are not projectable, and that is
why we need to implement a meaningful extension of:the covariant derivative that
can operate on them.

Consider a path, 7 : [~¢,¢] & G. The essence of the present idea is to pull
the parallel translation along the projected path, 7 o5, back to v. There is a
complication; the parallel translation defined along v does not operate on vectors
of G, but on vectors of M. Note that

T-M = T,G/p", where g€ G, z=n(g),

and therefore, we must stipulate that the parallel translation along <, and the
corresponding covariant derivative operate on sections of the bundle TG/H" — G.

With these preliminaries out of the way, we can derive the connection coeffi-
cients in terms of the adapted frame.

Proposition 4.4.1" The parallel translation of a horizontal vector in a vertical
direction is given by the flow of the corresponding vertical vector field. Thus, the
covariant derivalive of a horizontal vector field in e vertical direction is given by
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the Lie derivative of that vertical vector field. Formally,
V. H = [V;, H] = S/ H*.

Proof: Starting from a fixed point ¢ € G, the flow of a vertical vector ficld,
Vi = o}, projects down to an unmoving point w(g) € M. The vector H7 along that
flow is not constant, however. It is given by C*(«(2))", where

a(t) = exp(ta;) e,
is the corresponding curve in h*. The parallel translation along an constant path
is just the identity automorphism of Tr(gyM, and therefore the covariant derivative
of H7 at g is simply the derivative of the curve that 7. (H7 o v) makes in Ty M.
O

Proposition 4.4.2 The covariant derivative of a horizontal vector-field in « hor-
1zontal direction is given by

VuH = 1/2[H,H] mod "
= AJH*.

Proof: The standard fpi‘mula: for the covariant derivative of the Levi-Civita con-
nection remains valid for non-projectable vector fields. The formula in question
is '
OV HY  HF = 2(cX)M(V i HY)
= H(H-HY+ H(HHY) - H¥H - )
D —H[HY,HN - HF[H HM)+ B[ )

Combining,ﬁ-l;ci;above with identities (4.1) and (4.2) gives

~ WV (V) = Tk ik ki
= (o")((H", H))
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By fixing i, j, and varying k, we see that V:H’ must match the horizontal
component of 3[H*, HY). O

4.5 Geometric Properties of
the Adapted Frame

In this section we describe the metric geometry of (M,C™) in terms of the adapted
frame. We will obtain interesting formulas for the gradient, divergence and the
Laplace-Beltrami operator, and also a formula for the divergence cocycle. The
most striking result may well be the following.

Theorem 4.5.1 The projections of the horizontal vector fields are auto-parallel.
In other words, the flow of the horizontal vector fields projects down to geodesics
on M. o

Proof: This theorem is a direct consequence of Proposition 4.4.2, which implies
that V”.-Hi =0. [

A word of caution is required at this point. A horizontal vector field is not, in gen-
eral, projectable, and thus does not give a foliation of M by geodesic trajectories.
The theorem merely states that if 7y is a path in G such that ¥ = C*a® for some
fixed & € B+, then the projection 7 o7 is a geodesic down on M.

The following formulas give the gradient, divergence, and Laplace-Beltrami
operators in terms of horizontal vector fields. At first glance these formulas do
not appear to make sense, because they purport to equate projectable objects on
the left hand side with non-projectable ones on the right. It must be understood
that the proposition asserts that the end product of these formulas is a projectable
object.
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Proposition 4.5.2 Let f be a function on M, and X a projectable vector field on
G. We have

grad(f) = CyH'(f)H (4.3)
div(X) = Ci;Vu(X)- H
A(f) = CyH'(HI(f) (4.4)

Proof: In the sequel we identify f with its pullback to G, and X' with its projection
down to M. The formula for the gradient follows from the following:
H(f) = H'-grad(J),
Y CyH(fYH-H* = HY()).
ij
Since X is a projectable vector field, the covariant derivative of X in a vertical
direction is zero. Hence, Vi X at g € G is cqual to the conventional covariant
derivative V._,;1X at 7(g). Hence
f(é;‘jVHiX . Hj)g = tr(VX),,(g).

The right hand side of the above expression is just the divergence of X at 7(g).

The formula for the Laplacian can be derived as follows. The covariant deriva-
tive is compatible with the metric inner product, and hence

HY(H(f)) = H'(grad(f)- H)
= (Vi grad(f)) - H + grad(f) - V7.
After-mitiplying by C‘,-,-, summing over %, 4, and using the preceding formula for
the divergence we obtain
CyH'(H(£)) = A(f) + Cyy grad(f) - V£,

The desired formula follows from the observation that C‘,-,- is symmetric in ¢ and j,
whilest V z: H7 is anti-symmetric in these variables. Therefore, the second term of
the right hand side of the above equation is zero. O
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Next, we focus on the divergence cocycle, ¢, described in Section 2.5. Since ¢
is a cocycle, it must (at least locally) be the coboundary of some function of G.
We can describe this function in terms of the horizontal vector fields.

Proposition 4.5.3 The divergence cocycle is equal to —dX, where A € C™(G) is
given by

A= 1/2 log(det({Hi-Hj})
= 1/2 log(det{éij}).

Proof: The volume of the M frame formed by the projections of H',..., H" ™ is

given by
ydet {H- Hi} = exp(A).

Hence, the pullback of the metric volume form to G is given by
w=exp(=A) (& )*A... A (™™,

where a!,...,a" ™ is a basis of h*. The Lie derivative commutes with the push-
forward, and hence the divergence of a*, where a € g, is given by

divie™w = La(w)
= a*(exp(=A)) (@')*A... A (a"T)"
= —a"{A)w.

Hence, div(a™) = —a" (,\), and therefore, the divergence cocycle is equal to —dA.
0

Definition 4.5.4 Because of its relation to the divergence cocycle, ¢, we will call
A the divergence function.

Next, I would like to illustrate the formulas in Proposition 4.5.2 with a concrete
example. Let us use the special orthogonal group, G = SO(3), and the 2-sphere,



CHAPTER 4. GEOMETRIC ASPECTS OF THE OPERATOR SYSTEM 54

M = $2 = SO(3)/SO(2). I will not base my calculations on explicit coordinates
of the group and the sphere, such an approach can get quite messy, but rather use
the matrix componuent functions of SO(3):

Iy Iz Iy
Tn Tax Ty

I3y Tya Taa

The projection 7 : SO(3) — S$? is simply the operation of taking the first rovr of -
the orthogonal matrix. The functions xy,, 212, ;3 are constant on the (iber of this
projection and are thus functions of the sphere. As a matter of convenience I will
also label these three functions z, 1, =, respectively.

First, I will compute the gradient and Laplacian of z. The sphere inherits ity
metric structure from the ambient Euclidean (z, y, z} space. The sphere gradient is
therefore the orthogonal projection of the Euclidean gradient, £, onto the tangent
space of the sphere. A straightforward calculation gives

9
— 2 A Y e e . ,
grad(z) = (y*+z )61: Y5 = Ty (4.5)
0 7, 3} 7,
= Yy, - 3'57;) +2(2g- —ug-) (4.6)

The parenthesized vector fields are infinitesimal isometries, and thus have zcro
divergence. Hence,
A(z) = div grad(z) = -2z. (4.7

Now we check the formulas .1 Proposition 4.5.2. against these givens. As the
adapted basis of the Lie algebra let us take

0 ¢ 0 0 10 0 01
0 0 1 -1 00 0 00
0 -1 0 6 00 -1 00

The first of these span the isotropy algebra, and the second and third span the
horizontal complement. The next step is to compute H(z). Let 8% be the right-
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invariant Maurer-Cartan forms. From the identity

R
0 6 12 9‘1‘3 I
—6?2 0 92',13 T2
-0 =63 O 31

it follows that

dza)

dzz =

and hence

H*(H*(z)) =
H*(H*(z))
H(H(z)) =
H*(H%(z)) =

T2 Ti3 dzy, dzip dzis
Top Tozs| = | dTar dzae dTos
T3z T3z dzz; dzzp dxa

R R
= $21912 -+ .'531913

J— R R
= =615 + 2365

R, R
_3:11913 - 3:21923

(2321) —In =
= Hzy) =
H3z3) = -2y = ~—2
H*(z3) =0

In order to get the standard metric on the sphere we must use the negative of the
Killing form on s0(3). The corresponding components are just

According to (4.3) we must have

CY = 8ij.

gra.d(z) = $21H2 + I31H3.

From the definition of the Maurer-Cartan form we get
dl‘n( ) = T, dzy;(H®) = za3,

and hence

dz(grad(z)) = 3%1 +$§1 =1- 3%1 =32 +2°

dy(grad(z)) = zaZe +TnZzp = —IuTiz = —TY

dz(grad(z)) = ZaTes + T31Tay = —TuLi13 = —T2

Va
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This agrees with our earlier result (4.5). As for the Laplacian, Proposition 4.5.2
predicts that A(z) = —z — z = —2z, and this is in agreement with (4.7).

Similar calculations shovq\agr_eement for z, y, and z. But notice that (he formula
for the gradient (4.3) defines a first order homogeneous differential operator and
this operator agrees with grad on z, ¥, and z. The differentials of these functions
span the cotangent space of M, and hence the gradient formula agrees with grad

on all functions. Similar reasoning will show that the operator given by (4.4) must =

agree with A on all functions. We are first required, however, to demonstrate that
the two operators agree on the quadratic as well as the linear functions, This can
be accomplished by noting that the operator in (4.4) and A share the following
identity: :
A(fg) = f Alg) + 2 grad(f) - grad(g) + g A(f)

Our example is also a good illustration of Proposition 4.5.3. Since the S? metric
is both left and right invariant, we have C% = C%. Hence, according to Proposition
4.5.3 the divergence function, J, is a constant, and the divergence cocycle is zero.
This is in perfect agreement with the fact that the horizontal vector fields, H*, are
infinitesimal isometries, and hence have zero divergence.

4.6 The Bundle of Horizontal Frames and the
Canonical Connection

We have already seen that to each ¢ € G corresponds the horizontal frame of
Ta)M given by H',...,H*™™,

Definition 4.6.1 We identify G with the bundle of horizontal frames of M, and
define the the canonical connection on M as the connection given by the horizontal=
vertical decomposition of the tangent space of G. This is in contrast to the Levi-
Civita connection of C™, or the natural connection, that-we have already encoun-
tered. -

4
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The terms natural connection and canonical connection do not originate with us.
Both of these connections arise in the theory of naturally reductive homogeneous
spaces (see [19]). In a very real sense the objects at hand, Lie-algebraic spaces,
extend the notion of a reductive homogeneous space, and these two types of con-
nection come along with the extended theory.

To give an explicit description of the natural connection we again turn to the
adapted frame and to the notion of the extended covariant derivative (see Section
4.4).

Proposition 4.6.2 The extended coveriant derivative associate ~ vith the natural
connection obeys the following identities:

VvH = [V, B

efp‘ HJ = 0

Proof: The first of the above identities holds for reasons explained in Proposition
4.4.1. That proposition treats an analogous identity for the natural connection.
Indeed, the identities involving the covariant derivative in a vertical direction are
derived from the properties of the extended covariant derivative, rather than the
specific nature of the connections in quééﬁion.

The second identity is more or less a tautology based on the definition of the

natural connection. Let -y be a G-path given by the flow of H:. The :ieﬁnition

of the extended covariant derivative states that V H.-H5 is the ordinary covariant
derivative of ,(H?) along wo~. This ordinary covariant derivative is calculated by

‘lifting 2 vector field on M to an h*-valued function on G, the bundle of horizontal

frames; and then taking the derivative of this function along the horizontal lift of
a curve on M. The identity follows because, by definition, «y is the horizontal Iift
of the projected path, 7 oy, and because =, (H”) lifts to a constant function. O

e

The natural and canonical connections are closely related. In fact, as the next
result shows, they give rise to very similar geometries. The principal difference

-
P

v
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between the two connections-is the fact that the natural connection is torsion free,
while the canonical connection has, in general, non-zero torsion.

Theorem 4.6.3 The natural and the canonical connections have the same geode-
sics.

Proof: Just like in Theorem 4.5.1 we have
ﬁHiHi = 0,

and hence, the geodesics of both connections are given by the projected flows of
the horizontal vector fields. a

The above result is related to a theorem due to H. Weyl (see Addendum 1. to
Chapter 6 of [29]), which states that two connections, ¥ and V, have the same
geodesics if and only if their type (f) difference tensor, V — V, is skew-symmetric
in the contravariant arguments. This is clearly the case for the natural and the
canonical connections, whose difference tensor is given by

Vg —VyHY = 1/2[H),H] mod B*
= A7H*

Another difference between the natural and canonical connections involves their
respective structure groups. Like all affine connections, both of these connections
can be described by using the bundle of linear frames of M, and then by restricting
to a smaller sub-bundle. This process of reducing the structure group of a connec-
tion, has a fundamental limitation. I a frame F is in the restricted sub-bundle
of frames, then all frames, F", obtained from the original by parallel translation
must also be in the sub-bundle. Unfortunately, G, the bundle of horizontal frames
does not, in general, contain a sufficient variety of frames to be able to describe
parallel translation with respect to the natural, Levi-Civita connection. It is not,
in general, possible to select a path through G along which the inner product
coefﬁ(;ients, H*- H remain constant. This is because the inner product matrix,

"
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H'. H?, has (n — m)? functional entries, but there are only n degrees of freedom
for a path in G.

4.7 Curvature

In this section we compute and compare the curvatures of the canonical and the
natural connections on M. We will find that the formula for the curvature of
the canonical connection is the simpler of the two, and that the curvature of the
natural connection can be obtained by adding some corrective terms.

Proposition 4.7.1 The curvature ten.éor, R, of the canonical connection is given
by

.éija[V; , Hk]

= B ghH!

R(H', H))H*

Proof: The above is a direct consequence of the standard formula for the curvature
tensor, o
I}(Hi, HJ)HL = ﬁH‘lﬁfﬁH‘k - v]{jﬁgiﬂ* - 6[Hi,Hj1Hk,

and the fundamental relation for the covariant derivative of the canonical connec-
tion, '
Vil =0.

O
Working in terms of horizontal frames we will express the above result by writing
Rk, = Biiosh,

" The reader is cautioned not to confuse our symbol R**, with the more traditional
symbol for the Riemannian curvature tensor. The more traditional symbol is given
with rcepect to a coordinate vector-field frame; that’s why it has three subscripts
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and one superscript. We are working with respect to the horizontal frame, and we
index the elements of this frame with a superscript. That is why our symbol for
the Riemannian curvature tensor has three superscripts and one subscript.

Proposition 4.7.2 In ierms of the horizontal frame, the curvature tensor of the
natural connection is given by

Rty = HCA) - B (AR + A — A, — 200 Ak — ik,

Proof: The derivation is quite straight forward. It involves the usual formula for
curvature as well as the fundamental relation for the covariant derivative of the
natural connection, namely

VHiHj = .&EH’C.
[

We will also give the formulas for the Ricci and scalar curvatures of the nat-
ural connection. These formulas have an intriguingly simple form, and may turn
out to have some bearing on the relation between flatness and separation of varis.\
ables (Turbiner’s conjecture). First, we need to derive a formula that relates the
divergence function (see Proposition 4.5.3) and the structure coefficients A,

Proposition 4.7.3 We have the following ezpression for the “pseudo-divergence”
of a horizontal vector field.!

—tr(VHY) = A7 = Hi(\).
Proof: The standard formula for the derivative of a.determinant gives

Hi(det {H7-H*}) = H'(det {C7*})
= det {éjk} (éjkﬂi(éjk)).

11 say pseudo-divergence, because I do not see how to meaningfully define divergence for a
non-projectable vector field.

¥

Ny
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In terms of A the above reduces to
2H () = C;. H(C*),
According to identities (4.1) aﬁd’:(4.2),

HY(C*) = 1/2([H, H?)- H* + [H', H"] - HY)
(AGok 4. gikEed),

Combining the preceding two equations we obtain
2H'(X) = A¥ge + Aksp = 247

O

Proposition 4.7.4 In terms of horizontal f—ames the Ricci curvature of the nat-
ural connection is given by

Ri* = HI(H(\)) = tr(VH? o VH*) — RI%,
where
Rjk — Rajka

is the Ricci-curvature of the canonical connection.?

Proof: The Rieci curvature tensor is given by R = RY*; and is symmetric in
the indices j, k. To get the desired expression we simply use the formula for R¥7¥;
- given in Proposition 4.7.2; cancel all terms that are skew-symmetric in 7, k; and
use the identity

ﬁ::"’ = —H(})

proven in Proposition 4.7.3. 0

*Since the canonical connection will, in general, have non-zero torsion, Bi* is not necessarily
a symmetric tensor.
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Next, we specialize to the gaussian curvature of a planar Lie algebraic space.
In this setting we get an intriguing relationship between the curvature and the
associated potential of the Lie 2lgebraic operator. First, we neced to make a few
notational remarks. A tensor C € S%g induces the metric tensor C™ on M, and the
latter defines the gradient operation on functions of M. We can sensibly extend
the gradient operation to functions of G by using the left-invariant tensor C":

grad(f) = CYa}(f)aj, feCNG).

If f is a function of M, the above formula gives a vector field that projects down
to the usual grad(f) on M. In Section 3.1 we encountered the rather special
functions, f € C*(G), whose coboundaries give cocycles with coefficients in C*(M),
ie. a“(f) € C*(M) for all @ € g. Such functions therefore enjoy the curious
property of having their gradient be a projectable vector field. In particular, A
is such a function, because —4&X is the divergence cocycle. Hence, grad(}) is a
projectable vector field. In a similar vein we have a meaningful definition of A(A)

as the divergence of grad()), and this definition gives the same result as the formula
first introduced in Proposition 4.5.2:

AQ) = CyHHI(M)).

Proposition 4.7.5 Let C € 529.-65 the second-order component of a basic, homo-
geneous operator system. If the corresponding Lie elgebraic operator satisfies the
closure conditions, then the associated potential is given by

V = A()\/2) — grad(A/2)%

Proof: According to Proposition 2.5.5 the closure conditions are satisfied if there
is a horizontal function, f € C™(M), such that grad()) = grad(f). Hence, in
order to put the Lie algebraic operator, # = C"jai'a;', into Schrodinger form, we
must conjugate H by the change of scale operator, exp(f/2). Formally, this is
summarized by

H = A-—grad(f)

SN

'
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= exp(f/2)(A+V)exp(—£/2)
= A —grad(f) — A(f/2) + grad(f/2)* + V.

The last line of the above equation determines the form of the p;tential, V. O

Proposition 4.7.6 Let C € S%g be the second-order component of a basic, homo-
geneous operator system. If the corresponding Lie algebraic operator satisfies the
closure conditions, then the curvature of the metric C™ is given by

K =V —grad()/2)% - 1/2R,
where V is the associated potential and where

B o= Guit
— 1 = na 1 2 2 1
- (HI.H2)‘§BIZ([V;HH]'H - Vo, H- H)
is the scalar curvature of the canam'cai‘connectian. In particular, if the background
metric is flat, we must have )

-

—exp(A)A(exp(-})) = A(A) — grad(A)? = R.

Proof: On a surface there are only two horizontal vector fields: H?', and H2.
Consequently, the formula for Ricei curvature given in Proposition 4.7.4 fields
takes a particularly simple form:

R* = Hi(HY(N) - FPOVHMO) - B, G k=12

The gaussian curvature is given by 1/2C;.R%*, and the desired conclusion follows
when we use the potential formula in Proposition 4.7.6, and the formulas for the
Laplacian and the gradient given in Proposition 4.5.2. O
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4.8 Imprimitive Group Actions

Earlier we mentioned that the horizontal vector fields, H', are not, in general,
projectable. This is a pity, because, otherwise we would get a foliation of M by
geodesic trajectories. The purpose of the present section is to describe a condi-
tion that allows for something almost as good, the projectability of a portion of
the horizontal distribution. The condition in question is the imprimitivity of the
group action. More comprehensive information on primitive and imprimitive group
actions is available in [26] {7] [20].

Definition 4.8.1 We say that the action of G on M = G/H is imprimitive if
there exists a foliation of M that is invariant under the action of G. A foliation
is a collection of immersed submanifolds of constant dimension (called the leaves
of the foliation) such that a unique leaf passes through each point of M. A foli-
ation can also be represented by its infinitesimal data: an integrable distribution
of constant rank. A rank k distribution is an assignment of k-dimensional lincar
subspaces D, C T,M to all points of M. Integrability means that if vector ficlds
X, Y are tangent to the distribution, then so is their Lie bracket, [X,Y]. Frobe-
nius’ theorem then tells us that if D3 ;integrable, then through every p € M
there passes a k-dimensional integral submanifold whose tangent space is D,. The
foliation corresponding to D is the collection of the maximal integral submanifold
engendered by D. To rephrase our definition in terms of distributions, we can
say that the G-action is imprimitive if there exists a constact rank, integrable,
G-invariant distribution, D. The G-invariance means that for each ¢ € G and
p € M we have

(T,)+(Dy) = Dy

The condition of imprimitivity was first described by LiZ in his classification
of low dimensional homogeneous spaces (see [22]). This concept is useful for the.
classification because an imprimitive group action can be projected to an action
on a quotient of M. Consider as an example the following planar realization of the
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Lie algebra gl(2):
Ory, 20z, 0y, z(x0,—ydy).

Notice how all the coefficients of J; only involve functions of z. This means that
the foliation z = const is invariant under the local group action of GL(2), and
hence we can project the group action down to a l-dimensional quotient, where
the infinitesimal actions wiil b

9z, 20z, 0, z°0,.

The above example illustrates that the imprimitive nature of a group action
can be evident because of an appropriate choice of local coordinates. Fortunately,
one does not have to plasy with local coordinates in order to test for imprimitivity;
an invariant criterion based on abstract properties of the group action is available.

Theorem 4.8.2 Consider a local, effective action of a Lie group, G, on a homo-
geneous space, M = G/H. Let g, h be the Lie algebras of G and the isotropy
subgroup, H, respectively. The G-action is imprimitive if and only if it is not a
mazimal subalgebra of g, i.e. if and only if there ezists a Lie algebra § that is
properly intermediate between b and g:

Proof: Suppose that an intermediate § exists. The desired invariant distribution
can be obtained by projecting the invariant distribution f* down to M. Now the
vector fields a®, where a € f, are not themselves projectable, but we will show that
f* as a whole does project down. Let a € f be given and consider what happens
to m.{a%)y, as we move g within a single fibre of 7w : G — M. It is straightforward
to check that

7. (af) = m (3%,

where h € H, and b = Ad(h)a. Since f is closed under the adjoiut action of H, we
do not get new vectors as we project f* from different positions in the-fbre. The
foliation, m,(f*) is G invariant, because f* defines a right-invariant folfat_ion on G,
and because our convention is that the right G multiplications give the G action
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on M. The projected foliation , 7.(f*), is not trivial, i.e. the leaves are not just
points of M because by assumption f is larger than b, and because the action of
G on M is effective.

Conversely, suppose that we have a k-dimensional invariant foliation, F, on M.
For g € G let D, C TG be the linear space of vectors that project down to the
tangent distribution of F,, where p = w(g). It is not hard to see that D, is tangent
to «7'(F), the preimages of the leaves of F. Hence, D is a rank k -+ dim(H),
integrable distribution. The G-invariance of F means that D is right invariant.
Putting

i'={a € T.G: n.(a) € T,F},
we see that D must be f*. The integrabiiity of D means that f is a subalgebra of
g. Furthermore, since § is in the kernel of (w.)., it must be contained in f. On
the other hand, if k is less than the dimension of M, then h cannot be all of g.
Therefore, b is the desired intermediate subalgebra. "‘ a

For the rest of the section let us suppose that G acts imprimitively on M. We
fix an intermediate subalgebra, f, and let D = 7,(f*) be the G-invariant integrable
distribution on M. We also fix a € € S2%g, and endow M with the pséudo-
Riemannian metric C™. Speaking in terms of the inner product of this gecometry,
let D+ denote the distribution of vectors that are perpendicular to D.

Theorem 4.8.3 The perpendicular distribution, D1 is generated by the projec-
tions of the horizontal vector fields C*o®, where o € §+. Furthermore, if D+ is

tangent to a geodesic of M at one point, then it is tanyent to that geodesic through-
out.

Proof: Let us fix an & € £, a p € M, and consider (C%a?), at various points in
the fiber above p. In the proof of Theorem 4.8.2 we saw that

:-\f:) =D, -
at all g above p. Since the inner product of 7.{(C*a™),) and =, (u}, where u € T,G,
is just a®(u), we can infer that 7, ({C"a®),) is perpendicular to D, for all g above
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p. By the non-degeneracy assumption on C™ we know that dim(D*) is equal to
the codimension of f in g, and hence is equal to dim(f1). Therefore, the projection
of C.*(f4)"™ generates.all of DL,

D SN

The assertion about the geodesic follows directly from Theorem 4.5.1. For if a
geodesic is tangent to Dt in one place, then it can be given by the projection of
the flow of some horizontal vector field C*o®, where o € f-. Since the =, (C*a®)
stays perpendicular to D, so does the geodesic. a

Of course, the distribution D+ is not, in general, integrable and so we do not
get a geodesic foliation of M. There is one special case when this does occur.
We will encounter such special cases in our subsequent study of flat, planar, Lie
algebraic metrics.

Corollary 4.8.4 Suppose that dim(g) = dim(f) + 1. Then there ezists a 1-
dimensional foliation of M by geodesic itrajectories. These geodesics are given
by the flow of Cta™ where o € g* is any non-zero annihilator of §.

Proof: By the preceding theorem we get a rark 1 distribution on M, and this
distribution is generated by C*a™=The des_i"@g_ conclusion follows when we recall
that a rank 1 distribution is always integrable. O

4.9 An example
At this point it will be helpful to illustrate the concepts and formulas of the pre-
ceding sections with a concrete example. This example will be based on the two-
dimensional linear representation of the GL(2, R) group. This group is sufficiently

“small” so as to permit concrete, manageable formulas.

Let us use group coordinates

(z), (9



CHAPTER 4. GEOMETRIC ASPECTS OF THE OPERATOR SYSTEM 68

and the following basis for the lie algebra gI(2):

a1 0) (01
“1lo0 o0 *“\oo
wofoo) _(oo
110 T l0 1

The homogeneous space, M, is R? minus the origin, and the projection from the
group to M will be the operation of taking the first row of the group matrix. As
such, the group coordinates z, and i also furnish us with coordinates on M. This
setup induces the following vector-field realization of gI(2) :

al = z8,

54

= 20,

o} =0, of =y9,

The natural basepoint of M is £ = 1, ¥ = 0. The isotropy algebra at this point is
spanned by a; and a4.

The Lie algebraic operator we will consider is given by

/i

H = a? +ad — {az, a3} + {a;, 2z} + {az, a4},

where {a,b} denote the anticommutator ab + ba. The background metric of this

system is given by
o = 2 +2zy -y
—zy  2wy+y* |

This is a flat metric with flat coordinates (£, n} € R? given by
z =efsin®(n), y=efcos?(n). (4.9)

Next we will explicitly compute the adapted frame for this system. Since
GL(2,R) is an open subset of the Euclidean space of two-by-two matrices, we can

1
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represent the tangent vectors of the group with matrices, and conveniently describe
vector fields as matrices with entries that are functions of z, v, 2, w. Thus, to get a
left-invariant vector field we simply right multiply a constant matrix by the generic
group element (4.8). The vertical vector fields of the adapted frame are therefore

given by,
V3=a§;=(0 o)’ v:,=a?;=(0 o)_
z Yy z w

To des :ribe the horizontal vector fields we need to be able to express the contrac-
tions of right-invariant vector fields and left-invariant 1-forms (see Section 4.3). To
~ this end we use the formula

a*(a¥), = @(Ad,(a)), wherea € g,a€g',g€G.

The adjoint representation matrix is

TWw -~z Yyw —yYz

1 -zy ¢ -y

- Tw=yz | wz -z w? —wz

—yz Tz —yw TW
The horizontal vector fields, H* = C*(a*)®, where i = 1,2, are therefore given by

H = (Ad: + Ad)al + (Ad] — Ad})at + (Adi — Add)at + (Ad + Adi)at.

In matrix form this is

oo 1 z(2yw + yz + zw) —y(zw + 2zz + yz)
zw - yz \ w(zw+2zz+y2) —z(2yw + yz + zw)

B o= 1 —2zy(z +v) 2zy(z +y)
zw=-yz \ —(z+y)(yz+zw) (z+y)(yz+zw)

The structure equation for the frame H', H2, V;, V; are
[HLH] =0 [W,Vi=V;
Vo, Y] = ~H? [Va, E7] =0
[L{IrHl]:O [V:hHQ]:—Hz
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Next, let us compute the divergence function and the divergence cocycle. Accord-
ing to Proposition 4.5.3, the divergence function is given by

A= 1/2 log(CMC% — (1YY,
where N
C7 = CH ()", (o)*) = C* AdE Adi.
The necessary calculation is tedious, but the result is surprisingly simple:
A =log(z) -+ log(y) + 2log{z +y) — 2 log(zw - yz).

Let us check that —dA really is the divergence cocycle, ¢. Recall that ¢; = div(a]).
The determinant of the metric matrix in (4.9) is.2zy(z + ¥)*, and hence,

o1 = div(zd;)
= 1-z/28,(log(zy(z + y)?)

1 T 2r
= 1—-=(14+—
2 (1+ Y N T+ y)
- rty
T 2zry)
On the other hand we have,
Ly
L /\ - 6 20 I ese—
a'l( ) (m x + a-)(}‘) 2($+y)i
. confirming that ¢ = —8X. The remaining components of the divergence cocycle
~ are
by = —(z +3y)z —(3z +y)y z -y
2 ——————— T ——————— —

T 2z+yy 0 2@+wz ] b 2z+y)
Another calculation shows that

H'(\) =0, H(\)=0.

This is in accordance with Proposition 4.7.3 and the fact that the bracket, {H, H?]
is zero. Thus, in this example A is a purely vertical function. This means that

C:((@)*,60) =0, i=1,2,
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or to put it another way, (C¢)™ = 0. We can now confirm the formula for the
Laplacian given in Proposition 2.5.4. Using that formula and the fact that (C¢)™ =
0 we have

A=H+(CP" =H.

Let’s do a computation to confirm this formula. We have

H = (28:) + (¥8,)* — {28,.y8:} + {20z, yE:} + {20, 18,}
= (2% + 22y)8ex — 28y0ny + (2Ty + y%)Byy + YOz + 78,

The standard formula for the Laplacian corresponding to a tetric g7 is

-

i .. ijai i
A= g%0; +0:(9”)9; — 92_|~E’E|_Daj,

where |¢¥] is the determinant of the g matrix. Accordingly, for our example we

“have

A = (2% +2zy)8zz ~ 22Y0y + (22y + 1*) 0y
+2(z + 9)0z — YOz — 0, + 2(z + y)dy — (z + ¥)(8: + ;)
= (2% + 22Y)8sz — 22Y0zy + (22y + ¥2)Byy + yO: + T8,

Thus A = H, as expected.

These computations also serve to illustrate Proposition 4.7.5. According to
that nroposition the associated potential of the basic, homogencous operator is

—_

A(X/2) + grad()/2)%.
Since A is annihilated by horizontal vector fields, Proposition 4.5.2 tells us that the
above expression must be zero. This is in agreement with the fact that H = A. The

latter equation means that the normalized Schrédinger operator does not require
a scale change, and that the associated pd tential is zero.

Next,: let us illustrate Theorem 4.5.1 by integrating the horizontal vector fields
and showing, explicitly, that their flows project to straight lines on M. We proceed

-

‘_W
\\\
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by finding constants of motion for these two vector fields. One constant we already
know; it is A. It will be more convenient to use the expeonential of \,
zy(z + y)°
K = .
(zw —yz)*
Another constant of motion can be obtained by carcful inspection of the matrix
expressions for H! and H2. The second constant of motion is
T 1
Ko = Y .
Ze4w

- 'With the help of x;, and Ko We see that the flow of H! is given by

d - d
— fraed 2 — = ] e 2 & 1
dt(:z:) T + 2k/TY, dt(y) y — 28/,

where k& = /R;/k2. These equations can be solved by rewriting them as

d d Yy ~f=x
—— = 1 —— _— =2 —_ .
dt(:c-f-y) T+y, o (\/;) 2k (y +1)

The solutions in terms of the flat coordinates given in (4.9) are

1 = 2k€ -+ const.

The flow of H? is given by

d d
-(E(LE) = —2K1/Zy, E(y) = 2K1/TY.
The solutions are simply

& = const.
Thus we see that the flows of H'! and H? project down to straight lines.

In section 4.8 we considered an imprimitive plan«r GL(2) action. That action
is equivalent to the group action under present discussivn; one merely makes the
change of coordinates:

©=zly, ¥=vy.
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In terms of the coordinates used here, the invariant foliation is given by the radial
lines, ¥ = kz. In terms of the flat coordinates, £ and 7, this foliation is given
by 77 = const. According to " '.~orem 4.8.2 this foliation must correspond to the
subalgebra spanned by

(a1 +a4)" =20, +y0,, af =yd;, ai=yd,

The annihilators of this subalgebra are generated by o®. Thus, according to Corol-
lary 4.8.4, H? must project to a a foliation of geodesic trajectories which are
perpendicular to the invariant foliation. This is in accordance with the above cal-
culations, which tell us that the projection of the flow of H?, namely £ = const, is
perpe};]dicular to the invariant foliation, namely n = const.



Chapter 5

The Closure Conditions

What is the difference between method and device?
A method is a device which you used twice.
- George Polyd, How to Solve It.

5.1 A Reformulation of the Closure Conditions

At this point we return to the closure conditions, which we first defined in Section
2 4. The goal is to place this notion into a setting based on the group, G, and the
decuposition of the group’s tangent space into vertical and horizontal directions.

Let a Lie algebraic operator, H, be given. Recall from Section 2.2 that this
entails a choice of an operator system (C,L,n) where C € §%g, L € g, and 57 €
Z}(g; C=(M)). The choice of C also gives us the vertical-horizontal decomposition
described in Section 4.2:

TG = hn o CLU’)J')“.
Note that a vertical vector field can be given as v", where v is a b-valued function
on G. Similarly, every horizontal vector field can be given as C4, where 4} is
a l-form that annihilates h®. Also recall Proposition 2.5.5, which tells us that

74 ; [Pone
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H decomposes into three terms: the Laplacian, a linear vector field term, and a
scalar term. The proposition also tells us that the linear part is the projection of
the vector field C*(2n—¢) + L* down to M (Recall that ¢ is the divergence cocycle
described in Section 2.5). We are now ready to restate the closure conditions.

Proposition 5.1.1 Let v be the h® annihilating 1-form such that C“y is the hor-
izontal part of C%(2n — ¢) -+ L. The operator H satisfies the closure conditions if
and only if ¥ is closed.

Proof:  If 4 is closed tnen there exists a local function, f € C*(G) such that
2 df = 1. Since 7 annihilates vertical vector fields, f must actually be a function
of M. Hence,

C(2n— )" + L™ = 2grad(f). (5.1)

It follows that a change of scale by exp(—f) will change # into a Schréedinger
operator.

Conversely, if # satisfies the closure conditions, then there exists an f € C=(M)
such that (5.1) holds. But that means that ¥ = 2 df. O

A closer look at equation (5.1) reveals that there are essentially two components
to the closure conditions. For homogeneous operator systems the closure conditions
reduce to the following question: for which cocycles, 7, is the expression C(2n—¢)
a gradient of some function of M? We will call this the homogeneous closure
conditions. On the other hand if we take the cocycle component, 7 to be equal to
one-half times the divergence cocycle, ¢, then the closure conditions reduce to the
following criterion: for which C € §%g and L € g does there exists an f € C*(M)
such that L™ is equal to grad(f)? If this criterion is satisfied we will say that C
and L arc compatible.

It isn’t difficult to find all compatible L € g for a single, fixed C € S2%g. One
merely has to check whuch 1-forms (C*)™}(L} are closed. This turns out to be a
straizht-forward, linear condition on L. In general, a fixed C will not admit any
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compatible L € g. A fundamental problem is therefore to determine those € that
do admit compatible linear terms.

Let us now reformulate the closure conditions in terms of the adapted frame
(see Section 4.2). We will look at the homogeneous closure conditions and at the
compatibility criterion separately.

Proposition 5.1.2 Let (C,0,7) be a homogeneous operator system with corre-
sponding Lie algebraic operator H. Let p € b be the classifying form of 2y — ¢
(see Section 3.1). Then, H satisfies the closure conditions if and only if for hori-
zontal indices, 1,7 =1,...,n — m we have

B*p =0,

where BY* are the vertical structure coefficients of the horizontal frame (see Section

4.2).

Proof: According to Proposition 5.1.1 the homogeneous closure conditions are
satisfied if and only if the horizontal component of 25 — ¢ is closed. Since both 7
and ¢ are closed this is equivalent to the requirement that the vertical component,
let us call it 9, of 2n — ¢ is closed. By Theorem 3.1.1 the vertical component is
given by
Y(H) =0, (Vi) =p,

where HY, ..., H* ™ V, _mit,+-+, ‘V,l is the adapted frame. The next step is to
evaluate 6 with three types of vector combinations: vertical-vertical, vertical-
horizontal, horizontal-horizontal. In what follows we are relying on the coboundary
formula for 1-cochains:

(e, b) = arp(b) — bb(a) — ¥([a, b]);

and on the fact that 1 evaluated on any vertical vector field is a constant. Since

a classifying form is a cocycle of H!(h; 1), it annihilates all commutators of §, and
hence

59(V, V) = =a([Vi Vi) = 0.
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Since the bracket of a horizontal with » vertical vector field is a horizontal vector
field we have
6"/}(H11 V_?) = _p({Hia V;]) = 0.

Thus, we get no conditions on 1 from these first two ty'ses of combinations. The
horizontal-horizontal combination, however, yields

S(H', HY) = —yp(A] H* + B9V,) = —B¥*p,.
Therefore, all such expressions must be zero in order for ¢ to be closed. O

The next proposition concerns the compatibility criterion. The results are
formulated in terms of tensor fields of mixed type. The relevant concepts and
notation are described in Section 4.3.

Proposition 5.1.3 The compatibility of C € S%g and L € g is expressed by the
following equations: i

d&'(C&, L) - d& (C&, L) — 24¥6¥(L) = 0,

where i, j, k range from 1 to dim(h1), i.e. they are indices of horizontal vector
fields in the adapted frame.

Proof: Let ¥ be the h™ annihilating 1-form such that C%1) is the horizontal
component of L In other words

YH) = (@)Y =&(L),
9V = 0.

By Proposition 5.1.1, C and L are compatible if and only if é¥ = 0. As in the
preceding proposition we must evaluate 64 on the three types of horizontal-vertical
vector combinations. It’s not hard to see that §v) is zero when both of its arguments
are vertical vector fields.

3
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If one vector ficld is horizontal, say Cta®, where a € ht, and the other is
vertical, say a®, where a € h), we get

6,¢)(all, CLall) = aﬂ.(ail(LL)) — ‘(,/)([CL“, CLCER]).

Since Lor(a™) = (ad(a)*(a))* both of the right hand side terms of the above
equations are equal to

(ad(a)* ()" (L"),
and therefore é(a®, C*a®) = 0.

Finally, let us consider the case of two horizontal arguments. Using the notation

and results of Section 4.3, and the structure coefficients introduced in Section 4.2
we get

SY(H',H’) = HY&(L)) - H(&(L)) - y([H*, H’])
= &(ad(Cé', L)) — &' (ad(C&, L)) - 247 &*(L)

The last line is equivalent to the desired formula. O

5.2 Simplified Closure Conditions

Formula (5.1) suggests a number of ways to simplify the closure conditions. The
idea of working with simplified closure conditions was introduced in [13}. Some
similar ideas are also mentioned in [28). The most basic approach is to take 7 to be
¢/2, and L = 0. Then, the closure conditions are automatically satisfied regardless
of the choice of C € &%g. Actually, there is no need to have 7 exactly cqual to

/2.

Proposition 5.2.1 In order for an operator, H, to satisfy the closure conditions
it suffices for H to be engendered by a homogeneous operator system, (L,0,7),
where 1 has the same cohomology cluss as ¢/2. .

~Z

\\i
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Proof: Recalling the discussion in Section 2.3 we see that if these two cocycles
have the same cohomology class in H(g;C*(M)), then their difference is df, for
some f € C*(M), and hence

C(2n — ¢)" = grad(f).

This means (see formula (5.1}) that the closure conditions are satisfied if we take
L=0. O

Next, let us consider basic operators systems (C, L,0). The zero cocycle com-
ponent means that the correspor:'ing Lie-algebraic operator, K, is generated by
pure vector fields. '

Definition 5.2.2 We say that the action of G on M is unimodular if there exists
a volume form, w, on M which is invariant with respect to the G-actions.

Proposition 5.2.3 The G-action is unimodular if and only if x, the character of
the representation of ) on g/ (see Section 3.2), is zero.

Proof: Suppose that x = 0. Let al,...,a™ be a basis of b+, and set
w=(a)*A...A (™"

An easy calculation shows that the Lie derivative of w with respect to a®, where
~« € B, is zero. Hence, w is a pullback of a volume form on M. But w is right-
invariant and hence invariant under the G action on M.

Conversely, suppose that w is 2 G-invariant volume form on M. Consider the
divergence cocycle, ¢, with respect to w. This cocycle is given by

Loo(w) = d(a)w, wherea € g,

and so must be zero by the assumption of invariance. By a slightly modified version
of Proposition 3.2.5 we know that —y is the classifying form of ¢, and therefore v
must be zero. - 0

I

[

-
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Proposition 5.2.4 The following three conditions suffice for the action of G to
be unimodular:

e [ is semi-simple,

e g is compact,

o both g and fy are reductive. !

Proof: A semi-simple Lie algebra can only be represented by trace-free matrices.
Hence, if § is semi-simple, x must be zero.

If g is compact, then there exists an Ad-invariant, positive-definite inncr-
product on g. In particular, this means that the representation of b on g/h can be
given by skew-symmetric, and hence trace-free, matrices.

The adjoint character of a reductive Lie algebra must be zero. Thus, if both g
and b are reductive we have =

Xg/p(a) = xgla) — xp(a) =0, wherea € B.

The preceding two propasitions combine to give the following.

Proposition 5.2.5 If one of the three conditions listed in Proposition 5.2.4 is
satisfied, then every Lie \al_qebraic operator engendered by a basic, homogencous
operator system will satisfy the closure conditions.

We now turn to another method to simplify the closure conditions. This tech-
nique is useful whenever a cohomology class of H'(g; C*(M)) has a representative
cocycle with constant coefficients. Suppose that g € Z(g;1) is such a cocycle.
Then Cp vill actually be an element of g.

1Recall that a reductive Lie algebra is a direct sum of simple and abelian components. As
such, the character of the adjoint representation of a reductive Lie algebra is always zero. See
[16] and [6] for the background material used in this proposition.

<o
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Proposition 5.2.6 A Lie algebraic operator, H, engendered by an operator system
(C, L,n) wiil automatically satisfy the closure conditions if 2n — ¢ has the same
cohomology class as a cocycle with constant coefficients, p, and if L = —Cp.

Proof: If the premise of the preposition holds, then
2n—¢=p+df,
for some f € C*(M). By Proposi: ion 2.5.5 we have
H = A+C(2n—¢)" + L* +scalar
= A +grad(f) + scalar,

and hence the closure conditions are satisfied. |

Let us illustrate the above technique with an example. We use the following
planar realization of gI(2) x R™+!:

z0r, Y0y, T°8; + rzydy, Oz, 8y, 28y, %8y, ..., 70,

where r is some natural number. Let us call these vector fields, ai,...,arss,
according to the order in the above sequence. Taking the basepoint to be (0,0), the
isotropy algebra, b, is spanned by a., as, as, gs,-.., ¢res. The commutator ideal,
(b, b], is spanned by a3, as,..., ar5. Hence, by Theorem 3.1.1, H!(g; C>(M)) has
dimensicn 2. Representative cocycles can be obtained by using the techniques of
Section 3.2. We will use
= aa' + czaz,

where of, with i = 1..r+5, is the dual basis of g*, and ¢1, c; are arbitrary constants.
By Proposition 3.2.5 the divergence cécycle is represented by a! + o?.

This example is so convenient precisely because all cohomology classes can be
represented by cocycles with constant coefficients. For instance, Proposition 5.2.6

tells us that for any C € &2%g, and 7 the closure conditions will be satisfied if we
take

L=C((1 -2¢)a! + (1 = 2c5)a?),

where ¢, co are the cohomology parameters that determine the class of 7.

i
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5.3 The Representation Theory Perspective

Fix an ¢ € g* and consider the equation
CL(aR’ an) = {), (5.‘))

where C € §%g is the variable. In Section 4.3 we showed that the above is equiva-
lent to the equation

C(&,&) =0,

where &, = Ad;,(a), and g € G. In other words, this equation demands that C
annihilate the entire G-invariant subspace of §2g* that is generated by a®a. Solv-
ing this equation is a feasible undertaking if G is semi-simple, because of the well
developed representation theory for semi-simple Lie groups and algebras. Indeed,
if G were semi-simple then S%g* would be the direct sum of certain irreducible
submodules, and the entire task would reduce to computing thigzgccomposition,
as well as determining which components of this decomposition are generated by
the single elem:int o ® . We can summarize by saying that solutions to (5.2)
are given by a certain set of invariant equations. These equations are just the
submodule of §%g* generated by a ® a.

The above simplistic example is meant to be a guiding analogy for the fun-
damental nature of the closure conditions. In Section 2.4 we established that the
closure conditions are invariant under the action of the underlying group. To put
it another way, if C € §%g and L € g are compatible, then every clement of the
G-orbit that is generated by (C, L) gives another compatible-pair. Unlike the sim-
plistic example above, however, the solution orbits cannot be specified by a linear
criterion. Actually, as was shown in Section 5.1, the closure conditions are linear in
the L variable. As we are about to show, however, the invariant equations for the
closure conditions are polynomial in the ¢ variable, and this is the major source
of difficulty in obtaining general solutions.

From now on we will specialize to the case where M is 2-dimensional. This
way the formulas will simpler, but the essential features of the approach can still
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be illustrated. In the 2-dirensional case there are only 2 horizontal vector fields:
H', and H?. From cquatic.: “42) we get

oM[H HY) = 2T - TH -T2, i=1...n

The structure coefficients are therefore determined by the following equations
cu oz Alz T121
A2 A2 ) ( a2 | = | sz ) , (5.3)
c* C% ;)\ A3 T -_ =
iz _ il _ iz o g J1200 4 9 J125% 4 1o (5.4)

Recall from Section 4.3 that C¥ is linear in the C variable, and that 7% is
quadratic. Hence A1 is a ratio of polynomials in the C variable; the numera-
tor has degree 3, and the denominator degree 2. Hence B4 is also a rational
expression in C whose numerator has degree 4 and whose denominator has de-
gree 2. By proposition 5.1.2 the invariant equations for the homogeneous closure
conditions are hrmogeneous fourth degree polynomials in C. By proposition 5.1.3
the invariant equations for the compatibility of C and L are linear in L and third
degree, homogeneous polynomials in C.

Next, let us compute the invariant equations for an uncomplicated, 2-dimen-
sional example. We will use the linear representation of si(2):

maya xaﬂ.‘ - yays yaz"

As per the usual we will use the above sequence as the basis a;, a2, az of g = sl(2),
and take o!, a2, o® as the dual basis. With basepoint z = 1, y = 0, the isotropy
subalgebra, b, is spanned by a;. By theorem 3.1:1 the dimension of H!(g; C*(M))
is 1, and the cohomology classes can be represented by

P

m=0, m=0, m=-,
T

where P is the cohomnlogy class parameter. The classifying form of 7, as given
above, is p = Pa®. It will also be convenient to write out the structure equations
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for sI(2):

do! =20", do® = —-a®, da®=2a",

where we use o/ as an abbreviation for &' A of. Let us also introduce the abbre-
viation '
ol akl = Cl\?(aij,akt) = C;kcjl _ c:lcjk’ (55)

From the structure equations of s1(2), and from equations {5.3) (5.4) it follows that

:I-'l121 = —92!2. 52
Pl22 18, s12
22 =12 =12 A12¢ =13, =12
i C*(-2a'*-a') - Ch*(a* . a'?)
1 a2 . 12 ‘
P ~C12(-2512 . a12) + CM(GB - &' -
2 2. Gl2
BB = _25R.a2+2512.568 4 58.5 2 2:1{"’6-'” —~ 2 l2Gm
(&12 . &12)(&13 . &13 — 4&t2. &23) _ 2(&12 . &1.1)'.!
- al2 . Gi2

From the above identities and from Proposition 5.1.2 we see that the invariant
equations for the homogeneous closure conditions are generated by

Hhom = (0512 '0) alZ) o) (al3 o) a13 - 4(.!12 0 0123) _ 2(0{12 0 al:i) '0) (al2 0] al:i), (56)

where the circled dot is a symbol for the symmetric tensor product. Ostensibly,
the space of fourth-degree polynomials with arguments in C € 8%g is the tensor
space $*(S%g*). So why does upom seem to belong to the tensor space S*S%(A%g™)?
The explanation is that the latter tensor space be canonically mapped to the space
of fourth order polynomials via formula (5.5).

Proposition 5.1.3 gives the formula for the compatibility condition. Evaluating
the first two terms in that formula we obtain:

da'(Ca?, L) = 2a"*(Cé?, L)
da*(Cat, L) = -a*3(Cal, L)
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The formulas for the AY are given above. Pusting all of these formulas together,
we see that the invariant equations for compatibility are generated by

teomp = (@2 0 @ (2P @ a! =202 ®a*) - 202 0P @ (e @) (5.7)

-

The above tensor is an clement of
S A ® (A%g" @ g"),

but we interpret peomp as form that is homogeneous of degree 3 in C € S§%g and is
linear in L € g, i.c. an element of

83(829') ® ga..
This interpretation is accomplished by using the following canonical maps:

AMgRg =280y, et (di0ef)®d - (¢ 0c*) @
. S2A%g — S§%(S%g7), given by formula (5.5).

Before we can derive the full set of invariant equations generated by gnem and
Leomp We need to summarize the representation theory of sl{2). A good reference
for this subject as and other interesting aspects of Lie representation theory is [6].
The standard presentation of s[(2) is given in terms of the raising operator J¥, the
lowering operator J—, the weight operator J°, and the following relations:

[JH,J 1 =J° [0 =2JF, [J%J7)=-2J".

Every finite dimensional s[(2) module decomposes as a direct sum of irreducible
components. The irreducible modules, U, are indexed by natural numbers, ard
the index, n, is the dimension of the respective module. We will describe U, in
terms of the following basis and relations

m ,m () m

= ety - - U_npls —n+43r Uopgsy  eeenUpog Upoys
n+k+1 _m n—k+1
Joul = k™, T = —'2"-—115332, Jul® = — —u, (5.8)
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Working with any sl{2) module, we will call the eigenvectors, u, of J° homo-
geneous elements; the weight, w(u), of these clements is their JU cigenvalue. A
lowest (respectively highest) weight clement is one that is annihilated by J= (re-
spectively J*). A lowest weight element, «, gencrates an irreducible submodule of
dimension equal to —w(u) + 1. Having fixed a lowest weight clement, u, we will
call the sequence of elements,

JT®@) /K, k=o,... cwlu) + 1,

the adapted basis of that submodule. This basis will then obey the standard
relations given in (5.8).

Speaking in terms of the s{(2) basis described at the beginning of this section,
let us take a; as the raising operator, az as the lowering operator, a» as the weight
operator, anc consider the decomposition of some tensor spaces constructed from
the adjoint representation of g = sI(2}. Recall that the action on g* is given by
the negative transpose of the adjoint actions. Thus, taking o' as the lowest weight
element of g* we obtain the following adapted basis:

Turning to S2A%g”, a good choice for the lowest weight element is o'* ® o2, Let
us label the resulting adapted basis as

vy = a@a?,

uy = —2a2@a"
v = a®oal®— 2020
w = 2070,
uw = o> B,

Since $2A%g* has dimension 6, and the above submodule has dimension 5, there
must also be a 1-dimensional submodule. It is generated by the following invariant
tensor:

P
'U:E) — a13 Oala +4O.’12 @aba.
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We can now write ppem quite simply as
‘U._.t'&g - 1/2'&_2‘&_2,

where we omit the @ for the sake of brevity, and where

- 4 1 )
o = Jup — ';'3'“;3 =B e -4a? @ a®.

Presented in this form, it is not hard to verify that J=(puenm) = 0, 1.¢. finem 18 an
element of lowest weight. Since fin,m has weight —4, it generates a 5-dimensional
module. The basis of this module constitutes the invariant equations for the ho-
mogeneous closure conditions; this basis is given below:

U_gllg — %’U._zu_g, (5.9)
Uogllg + dUu_qus — 2U_stg,
’tioﬁo 4+ U_sup + 8'UL...4'U.4 - 2'!1,0'&0,
Uz’ao - 2'U.0’U.2 + 4‘11.....211.4

~ 1., ,
Hallp — §u,2u2.

Now, let us consider feomp. Some of the factors come from $*A%g" ® g*. The
most relevant on2 is o' ® o!. This is a weight -4 element of lowest weight, and
hence generates a 5 dimensional submodule. We name the adapted basis as follows:

Vg — 0412 ® 041,
13 o o1 12 o .2 TR T
v = -2 ®a +20°Qa’, e
v, = a®@a®—2aP®a?,
u = a®@d

We can therefore give pteomp Simply as

U_gUy — U_yTU-2,
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where again we can omit the @ sign without fear of ambiguity. We can now
see that ficomp is an element of lowest weight, and hence generates the following
7-dimensional module. These are the invariant equations for the compatibility
conditions.

—U_qU~g + U_2V_g, (5.10)
—2u_qvg + 2ugu_g,
—3u_4¥o — U_a¥g + Ug¥—2 + 3Us¥q,
~4u_4uy — 2U_oUs + 2uyV_g + dug g,
—3u_avq — UgUp + UsUp + SUqU_p,
-2ugvy + 2u4vyp,

—UaVy + UqV2

The above invariant equations for pnom and pieomp tell us something important
about solutions to the general closure conditions, i.e. Lie algebraic operators such
that 21 — ¢ is non-trivial, and such that L % 0. The invariant equations for the
general closure conditions are generated by fhom+ comp- But now we kncw that the
two terms in questions generate non-isomorphic irreducible modules, and therefore
the module generated by ptnem -+ ;ummp is just the direct sum of the 5-dimensional
module generated by ppom and the 7-dimensional module generated by ficomp. In
other words, the general closure conditions are satisfied if and only if both the
homogeneous closure condition and the compatibility condition are satisfied.

5.4 Using the Group Action to Solve the Closure
' Conditions.
The invariant equationsyzierived in the preceding section tell us that a Lie algebraic

operator satisfies the homogeneous closure conditions if it is engendered by an
operator system whose second-order component, C € &%, is the simultaneous
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zero of 5 fourth degree polynomials. Likewise, now we know that C € S2%g and
L € g are compatible if (C, L} is the simultancous zero of 7 polynomials of degree
(3,1). Unfortunately, this knowledge only serves to reformulate the problem, and
does not provide an effective computational tool. 2 Indeed, we could also obtain
polynomial equations for the s[(2) closure conditions in terms of local coordinates.

A truly useful bit of knowledge is the fact that the closure conditions are invari-
ant under the action of the underlying group (see Section 2.4). To exploit this fact
we need to analyze the orbit structure of g, to find canonical representatives
for each orbit, and to test the closure conditions on these representatives. The
idea of using an invariant group action to simplify a given problem is a veritable
mathematical leitmotif. In the context of Lie-algebraic operator rescarch this idea
has been mentioned in [12] and in [27].

In the present section we will compute the orbit structure of $2g for g = s((2, R)
and use this information to obtain the solutions to the closure conditions for the
homogeneous space described in the last section. Fortuunately, it is not difficult
to describe the orbit structure of the irreducible modules of s[(2), once we realize
that U, is isomorphic to the module of homogeneous, degree (n—1) polynomials in
two variables, say z and y. The group action for the polyromial modules is given
by the change of variables represented by each matrix in SL(2). Such polynomials
factor into a number of linear and quadratic components, and this factorization
is stable under the SL(2) action. Therefore, the multiplicities of the irreducible
factors and the number of irreducible quadratics are two fundamental invariants
of the group action. '

We are particularly interested in Us, the module of fourth degree polynomials.
Such a polynomial is specified by 5 parameters, and so the group action should give
us the freedom to eliminate 3 of them. Furthermore, if we are willing to consider
polynomials up to linear scaling, we should be able to cut down to just 1 parameter.
This is just an upper bound on the number of required parameters; indeed there

2This is not quite true. See the last paragraph of Section 5.3
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are certain types of degenerate orbit types that will require no parameters at all.
The following basic propositions will allow us to choose canonical representatives
for the various orbits.

Proposition 5.4.1 SL(2) is doubly transitive on the space of linear factors; in
other words, given two distinct linear factors there exists a group action that takes
one fuctor to a multiple of z, and the other to ¢ multiple of y. Furthermore, given
three distinct linear faclors, there exists a group action that takes two of the factors
to multiples of x and y, respectively, and takes the third factor to e multiple of z+y.

Proposition 5.4.2 Given two distinct irreducible quadratics, there ezists an
SL(2,R) action that takes the first one to a multiple of 2* + 2, and takes the
second one to a multiple of % + (ky)?, where k is an invariant of the pair.

Proposition 5.4.3 Given an irreducible quadratic and a linear factor, there exists
an SL(2,R) action that takes the quadratic to a multiple of z° + y?, and takes the
linear factor to a multiple of .

The following is a list of all possible root multiplicities, for degree 4 polyno-
mials as well as a canonical representative for each such possibility (see the book
by Gurevich [15] for a systematic treatment). The parameter, R, where it ap-
pears is an invariant that serves to parametrize the given orbits. We also list the
corresponding elements of S%g by using the following identifications:

o' 2 6a3, 42y = 12a0a3, 62°%° = 643 — 12a1a3, 4zy® = —120102, ' = 60l

Since S%g is the direct sum of Us and U; we must also add a multiple of the
invariant tensor -

Cinv =

N oo
[ B B e
o O K

in order to get representatives for all orbits of S%g. This is the role served by the
parameter S. There is also the orbit of the invariant tensor, but we won’t include
in our list because it generates a degenerate metric.
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1. zy(z? + 2Ry + y*). Four distinct lincur factors (|R| > 1); three linear factors,
one of them with double multiplicity (|R] = 1); two distinct lincar factors and a
quadratic f=ctor (R < 1).

0 -3/2 -2R+2S
Cy= -3/2 2R+ S 3/2
-2R+4+25  3/2 0

(3]

. 22y2. Two linear factors, both with double multiplicty.

0 0 -1+428
Cr) = 0 1+S 0
-1+25 0 0

3. z3y. Two linear factors, one of them with a triple multiplicity.

0o 0 2§
Cay=| 0 S 3/2
28 3/2 0
4. %, A single linear factor of quadruple multiplicity.
0 0 2§
Coy=| 0 § 0O
25 0 6

5. (z% + y*)(z® + (Ry)?). Two distinct quadratic factors (R # 0,=1); a double
quadratic factor (R = £1); a double linear factor, and a quadratic factor (R =0).

6R? 0 ~-R2 1428
C(5)= 0 R24+148 0
—R? 1425 0 6

Now let us plug these orbital representatives in the invariant equations and
find out which, if any, parameters give solutions to the closure conditions. To keep
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things reasonably brief we will work out the answer in detail for one of the above
representatives, say Cpy), and list the results for the others in the appendix. To
obtain solutions for the homogeneous closure conditions, we evaluate the invariant
equations (5.9) on the abcve tensor. The relevant calculations for the first equation
are shown below: N

uy = CUCR_(C?)?
= -9/4
,&0 = 011033 _ (013)2 _ 4(cr12023 - 013022)
= 9+8(S~-R)(2R+S)—4(S - R)*

up = —20MCB 20D
= —6R+6S
1 2
u_4ﬁ0 - Eu_gu_g = —'27(R" - 52 - %) (5.11)

The second equations in (5.9) expands as follows:
U_ollg + du_qtp — 2u_pug = —3(S — R)(2S+3-2R)(25-2R-3) (5.12)
Therefore, the only solutions to equations (5.11) and (5.12) are
R=0,8=1/2, R=1,8=-1/2

We won’t bother expanding the rest of the equations; the upshot is that both of
the above solutions satisfy the other 3 polynomials in (5.11). The corresponding
solution for C is given by a multiple of

0 -1 *2
-1 71 1 (5.13)
2 1 0

Let us now consider which L € g, if any, are compatible with a type Cp,
quadratic component. One has to evaluate the 7 expressions given in (5.10) with
C = C1, and then check for which values of the parameters R, S there exists a
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non-zero solution for L. This is best done with a symbolic calculation pucknp;c,
so we won’t bother considering the intermediate computations here. The interest-
ing result is that again, the {5.13) gives the only solutions for €. The solutions
for L must be a multiple of a; + a3. The most general Lic-algebraic operator
corresponding to these solutions is

H - - {xayq Ia;n - yay} + 2 {:an’ 'ya‘r + p/x'.!} +
+(28: — y8,) + {y0x + P/2* 56, — y,} + Q(xd, + 90z + P[2)

= A+ 2grad(log(u)) — f%;ﬁ

-

where the Laplacian and the gradient are determined by the following contravariant
metric tensor:
]
g = z(z + 2y) —(r+y) —ay ,
—(z+y)P-zy  yQ2z+y) )
and where
-p
= eFEH (T +- 'y)"%.
The above metric has hyperbolic signature and a constant positive curvature: K =
4. After a change of scale by p™! this corresponds to the Schrédinger operator

2
A+ —-1.
+4



Chapter 6
Flat Lie Algebraic Spaces

Say what you know, do whai you must, come what may.

- Sonja Kovalevskaia

6.1 Turbiner’s Conjecture

Certaiz, rare values of C € S%g induce a flat background metric. Turbiner [32] has
conjectured that a 2-dimensional Q.E.S. system that (i) satisfies the closure con-
ditions, and (ii) has a flat background metric, must admit separation of variables
in some suitable system of coordinates. The work in this section derives from the
impetus to resolve this conjecture.

We will begin by considering some examples of flat Lie-algebraic metrics. These
examples will illustrate Turbiner’s separation phenomenon, and also reveal two
interesting properties possessed by such metrics.

The first property is 2 local one. We make two assumptions: the coefficients
of the contravariant metric tensor are non-singular analytic functions, and the
curvature vanishes identically. These facts determine the behaviour of the metric
at the locus of the metric tensor’s degeneracy. One aspect of this behaviour is the

94
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fact {hat the flow of a gradient vector fieid can never cross thie locus of degeneracy:
the flow is trapped in the non-degenerate region. This is proved in Corollary 6.-.2.

The second property is global in nature, and requires the additional assumption
that the analytic, contravariant metric tensor be defined on a compact manifcld,
The compactness hypothesis implies that there exists a global analytic map from
the Euclidean plane onto the region where the metric is positive definite. Thn
locus of degeneracy is pulled back by this cevering to a collection of straight lines,
and these lines tile the plane into isometric sectors. This tiling result is proved in
Theorem 6.5.12.

At the present we are not aware of a comprehensive proof of Turbiner’s con-
jecture. However, it is our belief that the conjecture is true. The evidence for this
assertion is two-fold.

First, the coniecture holds for all examples of flat Lie-algebraic metrics knowr.
to us. We will illustrate this point with two examples. In the first example the
separation takes place in both flat and polar coordinates, in the sccond cxample
the separation takes place in a parabolic coordinate system.

Second, we will give the proof of a limited form of the conjecture under the
additional hypothesis that the action of the underlying group is imprimitive ! When
the group acts imprimitively the geometry of the Lie algebraic systenis has some
important properties (see Section 4.8 for a discussion). One consequence of these

properties is that a Lie algebraic operator that satisfies the closure conditions will

separate in either flat or radial coordinates.

We should also note that Turbiner’s conjecture is critically dependent on the
assumption that the signature of the underlying flat metric be positive-zefinite.
The relevant counter-example will be presented in an appendix.

1The current proof also requires a certain compactness condition.

14
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6.2 Two Flai Examples

Let us begin our discussion of flat systems with two clarifving examnles. The first
of these examples will illustrate the separability that arises from an imprimitive
group action. The second example shows that separation can also occur in a
coordinate system that is neither flat nor polar. The second example will also
serve to illustrate the relationship between the closure conditions and separability.

Our first example is based on the following two dimensional s1(2)®s!(2) actions:
s _ 1oy, mﬂa:ra;- a_rn yaya yzazr
Our Lic algebraic operate: will be given by

H = 0%+ {220, + 2y0,, 8,} + 2K 28, + 4K y0, + 4K8,
= A- 26!, + 2](1323;,; -+ 4K1y3y + 4!\’265, )
= A+ grad (Kl'y + (K, —1/2)log(y — :z:z)) ,

where the Laplacian and gradient are taken with respect to the induced metric,

1 2z -
( 2z 4y ) ) (6.1)

The curvature of this metric is zero. Fiat coordinates are given by
z=¢ y=&&+71% (6.2)
The sl(2) & sl(2) actions admits two invariant foliations:
z= const, and ¥y = const.

As a consequence, H(x) is a function of z and H(y) is a function of y. As predicted
by Corollary 4.8.4, the perpendicular distributions,

B}, {68 +ndy},
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run in straight lines in the flat (£, n) coordinates. These two imvariant distributions
give rise to two scts of coordinates in which the equation

HY = E¥ (6.3)

can be separated. We will give a gencral explanation of why invariant foliations
induce separation of variables later, in Theorem 6.6.2. For now, let us illustrate
the phenomenon with the example at hand. Switching to the flat coordinates we
see that the first invariant foliation is given by £ = const; the leaves are straight
lines. As we already noted, this implies that H(£) must be a function of £, and
thereby forces the linear part of the operator to separate into a sum of a gradient
of a £-function and a gradient of a -function:

H = A+ grad (Ki€%) + grad (Kin? + (K, — 1/2) log{n®)) .
We can therefore separaie (6.3) into

(Oge -+ 2K1£0: = E)IN(E) = AT(€),

2K, — 1
(a,,,,+21(ma,,+ﬁn——a,,-E)\pz(n) = —\ly(n),

where A is a constant of separation.

The associated potential of the normalized Schrodinger operator is given by
Ky = 1/2)(K; = 3/2)
I

Here we have an illustration of another interesting phenomenon: a coordinate
system that separates (6.3) also separates the normalized cquation,

V = — K2 — Kt — & - K\, - 2K K.

(A + V)T = £0. (6.4)

The second invariant foliation corresponds to the level lines of the radius func-
tion, r = /€2 + n%. Again, this means that #(r) is a function of r, and therefore
by switching to polar coordinates,

£= rcos(B), n = rsin(d),
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the linear portion of H will separate: .
H = A+ grad (Kir* + (2K, — 1) log(r) ) + grad (2K, ~ 1) log(sin(5})) .

We can therefore separate (6.3) into

2K, -1 A
r

(a,.,+a,+21{1ra + ) —E) nr) = %)
(Opo + (2Ky — 1) cot(8)0p) To(6) == —AP2(6).

Writing the associated potential in polar coordinates we obtain

_ w22 1 (Ko —1/2)(K; - 3/2)
V=-Kr-5 sin?(8)

Thus the normalized equation (6.4) also separates in polar coordinates into

(8rr + 0, = K2 = B — Ky — 2K, Ky By(r) = ;/\2-\111(1'),

- (300 G 1s{i2n)2(£)2 — 3/4)) Wy (6)

- K, - 2K, K.

Il

AT, (8).

The next example of a Lie algebraic operator will be generated from the fol-
lowiny realization of s{(3) actions:

a:n ays maxs Z’ay, ya:z:! yaya m?am -+ myay’ .’Bya,_- + yzay'
The operator itself is given by:

H = {m@x,3=}+32+fx16 + K0, + K330, +K4y6 + Ky (20, — zy5,)

= A+grad(f(110g(x)+K2—+K3 +K4 e (”’” ”6))

where the Laplacian and gradient operators are given with respect the induced

()

metric,

I
I
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This metric has zero curvature, with flat coordinates given by:
D)
=8/, y=q.

The basis of linear terms L € g that are compatible with the given second-order
component, C € §%g, is

Ozy Oy 20, YOy, :L‘By—-a:y&),,—y"'ay.

Thus, the given # is the most general operator with the given second-order compo-
nent that satisfies the closure conditions. The interesting feature of this operator
is that for all choices of parameters K, ..., K5, equation (6.3) separates, although
the choice of coordinates in which separation takes place depends on the value of
the parameters. This suggests that there is some hidden connection between the
closure conditions and separability, and since the si(3) aciion is not imprimitive,
this connection goes deeper than the imprimitivity phenomenon discussed in the
preceding example.

When K5 = 0, the equation separates in the flat coordinates, (¢,7). When
K5 # 0, equation (6.3) separates in parabolic coordinates:

£=2uy, n=u’-vt+ KJ—;PE'-
In the parabolic coordinates equation (6.3) becomes
¥ + (K5u5 + (2K3 — Kq)u® + M&:ﬂu + Kou + %‘-) O (6.5)
+0y ¥ — (K5v5 +(2K3 — Ka)v® — f_{wv - Kov + %l) o,

= E(u? 4 v*)P.
It is obvious how to separate the above equation.

The metric tensor in the separation coordinates is

) 1 10
A+ \ 0 1/
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The above cquation makes clear that
H = A+ grad(f(u) + g(v)),

where f(u) and g(v) are rational functions given by (5.5). These two observations
show that the normalized Schrodinger operator obtained from H by a change of
scale, will separate in the same coordinates as H. This is another indication of a
deep connection between the closure conditions and separability.
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6.3 Contravariant Metric Tensor and Curvature

The goal of the present section is to derive a criterion for fatness based on the
contravariant form of the Riemannian metric tensor. The formula in question is
presented in Proposition 6.3.3. This formula is the key to unlocking the striking
properties of flat metrics with non-singular contravariant tensors that we will be
discussing in the next section.,

Again, our starting data is the contravariant form of a Riemanunian metric ten-
sor, g7, One could invert the matrix ¢/ and then apply the usual formula for
sectional curvature, but the result would have a cumbersome form, and therefore a
limited usefulness. Instead, we will base our approach on the moving (rame of co-
ordinate function gradients. Suppose then that we are given a pseudo-Riemannian,
contravariant metric tensor, g/, and that the coefficients of the metric are analytic
functions of local coordinates z',...,z". It will be useful to use the abbreviations

H' = grad(z’) = ¢“0;.

Note that H' - Hf = g¥, i.e. the functions g¥ arc the metric cocfficicnts of the
coordinate gradients’ frame. It will also be useful to define the following two types
of symbols: )

o = Hi(g*)

Bk = ik _ ik
These symbol arc useful for describing the bracket of coordinate gradients:

[H, HY) = g7%9,.

They can also be used to describe the coefficients of the corresponding Levi-Civita
connection,

(vffiHj) ° Hk:

relative to the coordinate gradients frame. We will abbreviate these cocfficients as
o
gadt
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Proposition 6.3.1 The connection coefficients, v'7*, of the coordinate gradients
Jrame are given by

ijk (aijk — altk 4 akij)
(ﬁijk - akij)

(aijk _ ﬁjki) ]

(SNl N B SR I

Proof: The standard derivation of the covariant derivative of a Levi-Civita con-
nection gives

oV HY)-HF = HY(H!.-H*+ H/(H'-H*) - H*(H - HY)
~[H,HY . HI - [H, H¥|. H' + [H', HY] - H.

Expanding the right hand side in terms of the &% type symbols we obtain
OV i HP) - HE = o#* — ot 4 .
O

We are now ready to derive a contravariant version of the formula for the
Riecmanrian curvature. In what follows, let R denote the Riemannian curvature
tensor and 2¢¥*! the tensor’s components relative to the coordinate gradients frame,
ie. R(H! HI)H*-H'.

Proposition 6.3.2 The curvature tensor is given by

R = % (Hi(ﬁjij) + H.f(ﬁiji)) (6.6)
+ 7 (grad(e™ - grad(g¥) — grad(¥)?)
+ % [HirHj]-z’
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Proof: By definition, the curvature tensor is determined by
RW =V Ny H H =V, Vi H - H — Vg H - HY

The following identities serve to re-express the thiee terms in the right hand side
of the above expression.

Hi () = ViV HH A gy, st

HI(y9y = VsV H - H 4 gy Ty

Vi grnH - HI = guBi%y"
Thanks to these three identities we can reformulate the formula for the curvature
tensor as
R = H(PY) - H(oY) (67)
 gun (o o ianib _ e

The curvature tensor is symmetric with respect to a switch of the ¢ and j indices,
and consequently we can symmetrize these indices without affecting the right hand

side’s value. Upon symmetrizing the first two right hand side terms of (6.7) and
using the identity

4 = = 9,

we obtain
N 1 N
F - = L (el m (o) o
1 1

= SH(BY)+ SHI(6%)

Next we use the identity gq, 0*? = 0,¢"7 and the formula in Proposition 6.3.1 to
transform the remaining terms in the right hand side of (6.7) as follows.

i 1 3
—gua V7 = =7 Jab (87 + o) (7" + o) (6.9}
= -1 (ga.b B2 8t 4 9,69 8% + 0,9Y 7% + 9,40, 359”)
1 1 o
= 7 b Bi7e gl — n 0.9 09" .
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The final transformation is justified by the fact that 8% is skew-symmetric in 4
and j while g% is symmetric, and therefore the second and third terms in the next
to last line vanish after we symmetrize with respect to ¢ and 5. We also have

gap P = % 9" Bag”0ug7. (6.10)
Also, by the formula in Proposition 6.3.1 we have
“~Ga B9 = —% ga B9 (o9 + *) (6.11)
= —5 8765 4 3 gu B

As above, the first term in the next to last line vanished because we symmetrized .
in ¢ and j. Putting (6.8) (6.9) (6.10) (6.11) together we obtain
R = = (H{(@) + H(69)) + 3 0 (9ag"0u6™ — 0ug9846) + 5 gus 6726,
2 4 4
and this is equivalent to the formula given in the body of the current proposition.
=

Our next step is to specialize the above curvature formula to the two dimen-
sional case, and to obtain a certain criterion for metric’s flatness. In what follows
it will be convenient to denote the two coordinate variables as z! = z, z° = y, and
to give the contravariant metric tensor, g* as

(7).

We also introduce the following abbreviations. For the determinant of the con-
travariant metric tensor we write

g% = pr - ¢°.

Setting
Q=dzAdy,
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we can express the metric’s volume form as
|
— =%
w=|g"|"7 Q.

Given a vector field V' = ad, + bd,, we will express the divergence of V' relative to
2 as

Div(V) = a, + b,,.

The divergence relative to the metric g and to w is given by

i
div(V) = Div(V) — ‘O(JQL””

Given any function, f, we will write

f:l.':a.’!.'fv fy= yf&
h=HYS), fo=H}f)

We also put

go= = 41 = P2, (6.12)
= fE=r-a
The bracket of the coordinate gradients can thercfore be given as

[H', H? = §'8, + 5%,

Before proceeding further we also need to gather in one place some basic iden-
tities that will be required later on. The first identity is the formula for the arca
of a parallelogram relative to the metric, g:

UAV2 — (U VY = (U, V) = L6 QU, V)7, (6.13)
where I/ and V are two-dimensional vectors. e polarized version of this identity
is

UV -W) = (U-V)(U-W) = |¢"['QU, V)QU, W), (6.14)
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where U, V, and W are vectors. We will also need the following divergence identity:
V(ig?) = V', H?)
= Div(V)|g"| + Q([V, HY], HY) + Q(HY, [V, H?)).  (6.15)
Another divergence identity is the following. For any function, f, we have

Div(grad(f))|g”| = (L(grad(f))) (', H?)

= d(grad(f)JQ)(H*, H?)
= H' (Qgrad(F), HY) — H* (Qerad(f), H")) ~ grad(f), [H', H)
= H'(f2lg%)) = H*(f,)971) - Qgrad(F), [H', B?) (6.16)

Let f, h be smooth functions. The obvious identities,
O -grad(f) = fzu G- grad(f) = fy,
immediately imply
rhi—af2=19%fs,  ph—afi =195y (6.17)
The obvious identities,
Qgrad(f), grad(h) = QU=H' + f,H?, haH' + b, H?)

= lgij|(fzhy - fyhx)
= Q(f1a,~,- -+ fzay, h18z + hzay)

= fihs — fohy,
imply the following identity, which we will need later:
fiha = fahy = [g7|(fzhy = fyhe) (6.18)

Proposition 6.3.3 The Gaussian curvature is given by the following formula:
—4p|g¥ P K = 3H'(|g”])* — 2lg”| H*(H(|3])) (6.19)
g1 (=p=H(1g1) — dg, H'(197]) + 39, H*(1g"])
+197? (2p=9y — 2Pyqz + 49y0y — 47yPy + 2PPzz — 27Dy + 490y, + 4PGry)

-
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Procf: Using (6.13) with U = H!, V' = [H?, H?] we obtain
plg”| (', H?))* = 1971 (BY)* = (pB° - ¢5")* (6.20)

Making a linear change of coordinates, if necessary, we assume without loss of

generality that p # 0. Recall that K, the Gaussian curvature, is related to the
Riemannian curvature tensor by

_Igij“'\r = R1212-
Multiplying both sides of (6.6) by 4p|g¥|, and using (6.20) we obtain:

—dplg?’K = plg¥| 2H*(8") — 2H' (%)) (6.21)
+plg”| (grad(v) - grad(r) — grad(g) - grad(q))

+3|g7[(8")? + 3(nB” — ¢B8")*.
Next, using (6.17) we obtain

H'\pf - ¢fY) = pH'(B) -qH'B)+mBi -2~ (622)
= pHY(8%) - pH*(B") + 197 9,8" + p18* — /3"
Using {6.14) with U = H', V = grad(p), W = grad(r) we get

p grad(p) - grad(r) —pir1 = w(H',pH + py H)w(H',roH' +r, H*(6.23)
= |g¥ |pyry-
Similarly, we obtain :
p grad(q)’ — g7 = |9”|q}. (6.24)
By substituting (6.22), (6.23), and (6.24) into {6.21) ve transform the curvature
formula into
— 49K = Y| [—2H1 8° = ¢f') + 21 — quB') + prrr — 4 + 3(ﬁ1)2] +
+lg7P? 28,8 + (pyry — D)) + ,
+(pf* — g8'Y. (6.25)

—

Jr
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Next, using (6.12), and (6.18) with f = p and h = 8! we obtain

P -af = pir—pge— ¢ +ap (6.26)
= pim— @ + |97|(gzpy — P=2y)-

The following is also true,

B -af +(8) = pB-abf +8n —p) (6.27)
| = pf-pf
= Q(grad(p), [H', H?))
Substituting (6.26) and (6.27) into (6.25) we obtain
—4lg"PK = |gY| [-2H' (96" - ¢B") + 3 (grad(p), [H', HY)]| +  (6.28)
+g7* [(28,8" + Pegy — Pyt + pyry — 22))] (6.29)

+3(pf? - gp)’
Next, we substitute (6.16) with f = p into (6.28) to obtain
—4gPK = |g7|[-2H (pB* - gB") + 3H (p:lg¥|) + 3H?(n,lg7])]
+lg"? [ (Div(grad(p)) +28,8" + pagy — Pydz + Py7y — 47)]
+3(pf% — ¢f')*
The penultimate step is to use (6.15) to derive
H'(|g¥)) = Div(H")|g"|+Q(H",[H", H?))
= (pz+9)lg"| +pB* — ¢8",
and then to substitute this identity into {6.27) to obtain
-4lg7PK = 3H'(lg"|)* - 2l¢”|H' (H (Ig")) +
+lg%| [4(Pz + a,) H (|g"]) + 3H" (plg”]) + 3H2(py|g7])] +
+lg%? [(Div(grad(p)) +28,8! + p2gy — pygz + Byry — 6% + 30z + 3)°)]

Finally, some straight-forward expansion and simplification yields (6.19). O
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6.4 The Trapping Theorem

The aim of the present section is to present an important local property of flat
Riemannian metrics whose metric coetficients are analytic functions.

Let us first illustrate this phenomenon with an example. Consider again the
flat metric given in (6.1). The metric matrix divides the plane into two regions
according to whether the determinant, y—z2, is positive or negative. The boundary
between these regions is the locus of the metric’s degeneracy, the curve y = z*.
The flat coordinates given by (6.2) are in fact a cover of the positive definite region
by the full Euclidean plane:

z=§ y=&+17°,

where (£,7) are the flat coordinates. It is as if we endowed the paraboloid y =
22 + 22 with the flat metric structure from the projection to the {z,z) plane,
and then projected the paraboloid to the (z,y) plane. 'This covering is irregular.
There are two points in the (£,7) plane above every point in the (z,7) plane;
the exception is the boundary curve, where the relationship is one to one. Thus,
the boundary curve is a “crease” formed by the projection; it is precisely at the
boundary that the rank of the Jacobian drops, and where the covering ceases to
be a diffeomorphism.

It turns out that there are two types of degenerate points. There are the un-
reachable points; the distance between these and non-degenerate points is infinite.
We will see examples of such degeneracies later. The reachable degeneracies, on
the other hand correspond to places where the Euclidean plane “bends back on it-
self”. More precisely, near a reachable, degenerate point the Lic-algebraic space is
analytically covered by Euclidean space, and the locus of degeneracy corresponds
to the points where the covering map is degenerate and the degree of the covering
drops. This behaviour is described in Theorem 6.4.1

This “crease”™ analogy becomes even more marked when we trace out the

R

1
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geodesics of the flat metric. In the (€, n) coordinates the geodesics are given by
a + bm = ¢, where g, b, ¢ are constants;

and in the (z,y) coordinates by

(a® + b?)2? — 2acz — b2y + ¢ = 0.

Thus, in the (z,y) plane, the geodesics are represented by a family of parabolas
that are all “trapped” in the range of the projection, the region {y — 2% > 0}.

The behaviour of the geodesics at the bsundary is particularly interesting. The
geodesic parabolas never cross the boundary. As they get close to the boundary
curve, the geodesics become tangent to it, and are then “reflected” back into the
region {y — z% > 0}.

What can be said about the curves that are not trapped by the boundary?
Consider, for instance, the curve

where k is a constant and ¢ is the parameter of motion. The square of the curve’s
velocity with respect to (6.1} is 3(-!;};—), i.e. the curve’s velocity is singular as it
crosses the boundary. In contrast, a path with finite velocity must be tangent
to the boundary when the two meet. This condition has a more analytical de-
scription: the derivative of det({g"/) along a path with finite velocity must be zero
whenever the determinant is zero. Consider for instance the gradient of an analytic
function, f(z,y). Clearly, the square of this function’s gradient will not have any
singularities, and so we would predict that

grad(f)(y — 2°) =0, whenever y - z° =0.
Let us verify this. We have

grad(f) = f:(0: +229,) + f,(220; + 4y3,),
grad(f)(y — 2%) = 4f,(y—27),
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and so, our prediction is confirmed.

The following Theorem and its Corollary serve to formalize the above discus-
sion. We continue to use the notation established in Section 6.3

Theorem 6.4.1 Let g¥ be a contravariant, planar metric tensor with non-singular,
analytic coefficients p. q, and r. If the curvature of the corresponding metric is
identically zero, then there exist locally defined, analytic functions, py and ps such
that

H'(1g%)) = mlg?l, and  HX(lg%]) = palg?.

Proof: 'The theorem is obviously true for non-singular points of the metric. So
suppose without loss of generality that |¢”7] is zero at the origin. It is a well known
fact that the ring of convergent power series with complex coefficients is a unique
factorization domain (see for instance the book by Gunring and Rossi, [14]). This
means that up to multiplication by invertible functions, |g*/| factors uniquely into a
product of irreducible, complex-valued, analytic functions that are 0 at the origin.
Let f be one such irreducible factor, and let & be the multiplicity with which [
occurs in the factorization of |g¥7|. We therefore have

g} = o,

where o and f are relatively prime. Now suppose that H!(f) and [ are relatively
prime. Hence,

HYg7)) = keH'(F)f*'+ st (6.30)
HYHY(|¢7))) = k(k=Da(H (NP2 + pf*,

where p; and p, are some analytic functions. Hence we can apply Proposition 6.3.3
to conclude that

3HY(|g¥1)* — 2|97 | H'(H' (197)))
is divisible by f2*-!. Using (6.30) to expand the above we obtain

(3]62 _ 2k(k - 1))62(H1(f))2f2k—2 -+ Pszk_l,
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where py is some analytic function. Hence, k(k + 2)o?(H*(f))? must be divisible
by f. But this cannot be because both o and H'(f) are assumed to be relatively
prime to f, and because k(k + 2) is non-zero for all positive k. Therefore H!(f) is
divisible by f. This must be true for all irreducible factors of |¢”|, and therefore
H'(|g¥|) is divisible by |g¥]. O

Corollary 6.4.2 (The Trapping Theorem) Let ¢”7 be as in the preceding the-
orem, and let f be an analytic function. Then, the flow of grad(f) can never cross
the locus of degeneracy. More precisely, this means that the trajectories of the flow
of grad(f) are either contained in the locus of degeneracy of g%, or they never
intersect il.

Proof: Note that grad(f) = fH' + f,H?. By Theorem 6.4.1 grad(f)(|g")
is divisible by [¢”[, and hence grad(f)*)(f) is divisible by |g¥| for any positive
integer, k. Consider an analytically parametrized curve, ¢(t), whose derivative
is equal to grad(f). Since an analytic vector field integrates to an analytically
parametrized curve, |g*?| o ¢ must be an analytic function of t. If |g¥| = 0 at one
point of ¢(t), then all orders of the derivative of |g*/| along this curve will also be
zero. Therefore, there are exactly two possibilities: either |g¥/| is never zero, or
|g%| © ¢ is identically zero. I

Having defined the multipliers u;, and p, we will use them to give yet another
formula for Gaussian curvature. We will need this formula later. We put

P = H2— Ty, Q =“1—2QH
R =m —p S = ua—2¢;.

Another way to express the nature of yu; and y, is to write
ron —qu2 = 9%les  —qp + p2 = |97, (6.31)
With these definitions equations (6.31) can be restated as the following relations:
rR—gS = pr; (6.32)
pP—-qQ = rpy (6.33)
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Proposition 6.4.3 The Gaussian curvature is given by

—4pK = QR+p,S—2p (P, + Qs — prr) (6.34)
-4gK = RP - Pyl — QQ(Q:: + Py - p.'r;r) (6-35)
Proof: Recall that
H(|g”)) = mlg”l, i=1,2.

We can therefore rewrite the formula in Proposition 6.3.3 as

4pK = 3p3 —2u3 — 2H (1) — (pz + 4q,)1m1 + 3pyinz
+2p2qy ~ 2Pz + 4qyqy — 4rypy + 2DPaz — 2rpyy, + dag,, + Apgg,

Using the y-derivative of the relation in (6.31) we obtain

4pK = p3 —2g,p1 — poiin +Pytie —2p(thz +t2y) — 2Py G+ 2Pz Gy + 4P ey + 2PPrz + 24y,

which can be abbreviated as equation (6.34). To obtain equation (6.35) we usc the
following equational relation

p(6.35) — q(6.34) = R(6.32) + p,(6.33).

O

We will conclude this section with a restatement of the above results in terms of
Newton-Puiseux series. Such a series is an expansion of a function of one variable
in terms of fractional powers of that variable. More precisely, a Newton-Puiseux
series is an expansion of the form ¢(z*) where & is a fixed positive integer and ¢(X)
is a convergent power series in the dummy variable X. The fundamental result
about such power series is the Newton-Puiseux Theorem. The proof is widely
available; see for instance Lecture 12 of Abhyankar’s book [1]. We also need to
recall the notion of a Weierstrass polynomial and the Weierstrass Preparation
Theorem. These are also well known topics; a discussion can be found in Lecture
16 of Abhyankar’s book [1).
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We use the standard notations Cf[z]] to denote complex power series in , and
C{[z]][y] to denote the ring of polynomials in y whose coefficients are power series
in z. A Weierstrass polynomial of degree n in the varieble y is defined to be an n'®
degree monic polynomial in Cl[[z]][y] whose coefficients are non-invertible power
series in z. In other words, such a polynomial, /i(z,y)}, has the form

]L(.’L', ."f) = yn + h'n—l (x)yn—l +...tF h’l(m)y + hﬂ(m)s
where the h;(z) € C[[z]], and (0} = 0.
Theorem 6.4.4 (Newton—Puiseux Theorem) Suppose that f(z,y) € C[[z]][y]

ts irreducible and convergent as a power series in z and y. Also suppose that
- f(0,0) =0 and that f is e monic polynomial in the y variable. Then, the equation

flz,y) =0,

can be solved for y in terms of e Newton-Puiseuz series of z. More precisely, there
ezists a convergent fractional power series, ¢ (:c%) such that

: 1
fay) =TI (v— ¢ (wz*)),
[
where the product is taken over the primitive k** roots of unity;.

Theorem 6.4.5 (Weierstrass Preparation Theorem} Suppose that

f € Cl{z,y]] has order n in the y variable, i.e. n is the smallest integer such that
Jon # 0. Then, f can be written uniquely as a product of power series h(z,y) and
u(z,y), such that h is an n'® degree Weierstrass polynomial in y and such that
u(0, 0} # 0. i

‘Going back to the discussion of flat analytic metrics, let us suppose that the
metric tensor is degenerate at the origin, and let f(z,y) be an irreducible analytic
factor of |g¥| = det(g"). By the Weierstrass Preparation Theorem we can without
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. . . . . |
loss of generality assume that f is a Weierstrass polyvnomial in 4. Let w = ¢ (:::F)
be a Newton-Puiseux series solution of

flz,y) = 0.

The curve y = ¢ (a:i') is a branch of the locus of degencracy of the metric. The
following proposition is yet another way of saying that gradient vector ficlds flow
along the locus of the metric’s degeneracy.

Proposition 6.4.6 Let g/ be as in Theorem 6.4.1. Then, the following relations
hold:

¢(z.0) = p(z,9) ¢,  (z.4) = qlz. ¢) '
Proof: By Theorem 6.4.1 we have
pfz+qfy, =0 (mod f). (6.36)
Let us write f as follows:
flzy) = (v - ¢ (%)) o(z, ),

where & is the product of factors invoiviug roots of unity different from 1. Rewriting
(6.36) we have

(p(z, ¢} ¢’ — q(z, 8))o(z, ¢) = 0.
It is clear that ¥ — ¢(z) and o(z,y) are relatively prime, and therefore

p(z, @) ¢' — glx, ¢) = 0.

The relation involving 7 and ¢ follows analogously. O
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6.5 The Tiling Theorem

In the present section we use the trapping theorem of the preceding section to de-
rive a crucia| giobal property of flat analytic metrics on a compact space. In The-
orem 6.5.12 we will prove that positive-definite regions of a flat, two-dimensional,
Riemannian manifold, M, with a non-singular, but possibly degenerate, analytic
contravariant metric tensor are isometric to the Euclidean plane modulo a dis-
crete group generated by reflections. The fixed points of these reflections form a
lattice that tiles the plane into isometric regions. Speaking intuitively, the isome-
try from R? to M is a process of folding the plane along the tiling lattice onto a
positive-definite region of M.

We will begin with five examples to illustrate the salient features of this tiling
theorem. First, let us return to the flat metric given in (6.1). Note that the
region {y > z*} is isometric to the quotient of the (£, 7) plane by a single reflection
isometry. Let us search for some apriori reasons why this should be.

As it stands, the background manifold of this metric tensor is R?, a non-compact
space. For reasons that are about to become clear, we would like to compactify our
setting, i.e. to extend R® to a compact manifold such that the metric tensor extends
in a non-singular fashion to the enlarged space. One such compactification is given
by embedding R? into RP! x RP!. To describe the enlarged space we introduce
extra coordinates,

The whole of RP! x RP! is covered by the following four coordinate systems: (z,7),
(z,9), (%,v), (#,%). In each of these coordinates the metric (6.1) has non-singular
coefficients. For instance, in the (Z,7) coordinates the metric matrix is

AT
28R 4 )

In this compactification the locus of the metric’s degeneracy is the closed curve

{y=2}uiz=0}u{z=0}.
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We can now begin to see an apriori explanation for why the region {y > =*} ix
isometric to a finite quotient of the plane. Let us choose a basc-point in the
{y = z* > 0} region, and extend out geodesic paths away from this point. Since
we are in a compact setting, a geodesic will either travel away from the base-point
forever, or it will come in contact with the locus of degeneracy. At that point the
geodesic will fur an instant match directions with the boundary curve and then
reflect buck into the region where the metric is positive definite. In summary, we
can indefinitely extend a geodesic trajectory in any dircction. Speaking in a more
formal language, we are asserting that the exponential map from the tangent space
of a base-point has as its domain the full tangent space.

It is important to note that the property in question differs essentially from the
usual notion of geodesic completeness. The usual setting for geodesic completeness
is a Riemannian manifold with a non-degenerate metric tensor. We, on the other
hand, wish to investigate the geometry of a space whose contravariant metric tensor
has non-singular coefficients, but possesses degeneracies.

The next example is based on the following flat metric:
1-22 0
0 1-—q?

s =sin(§), y=sin(y).

Flat ccordinates are given by

The locus of degeneracy is the union of the lines, z = £1 and y = +£1, which divide
the (z,y) plane into a 3 by 3 grid. The given flat coordinates cover the central
region of the grid with an infinite-fold covering. The pullback of the degeneracy
locus to the complete, (£,7), plane gives an infinite, bi-directional grid, which
tiles that plane into infinitely many isometric squares. It is therefore clear that the
central region of the (z,y) plane is isometric to the (&, %) plane modulo two vertical
and two horizontal reflections. In the preceding example the Euclidean plane was
tiled into two isometric regions; in the present example we obtain infinitely many;
in the next example we will show that a single region is also possible.
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The metric in question is given by:
2 4 .2
T +1 0
PR (6.37)
0 zé+y
Flat coordinates are given by
T =cfcos(n), y=etsin(n).

In this example the origir.is the only degenerate point. The given flat coordinates
cover the punctured plane with an infinite-fold covering. Note that the origin of
the (z,y) plane is an unréachable point, i.e. the length of any curve from the origin
to any other point is infinite. This example is meant to illustrate the dichotomy
of points on the locus of degeneracy; such points are either unreachable points, or
points where the Euclidean space folds back on itself.

The next example illustrates a more complicated tiling pattern. In this example
the preimage of the locus of degeneracy divides the Euclidean plane into 2k equal
sectors (k is any positive integer) radiating from a common center. The metric in

question is given by
4z 2ky
( oy K2gh-1 ) . (6.38)

Flat coordinates are given by
z=g+rh  y=RE+in),

where the symbol R denotes the real part of a complex number. Let us verify that
with this change of coordinates, the above metric really is equivalent to

8¢ ® B¢ + 8, ® 0.

It is clear that

dz - dz = 2% + 22 = 4(8* + n°) = 4a.

Writing ¢ = § + in we have

dy = ER(¢*)dE — kS(¢F1)dn,
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and hence
dz - dy = 2k (R(C*1)¢ = S(¢*")n) = 24y
Finally we have

dy - dy = BR(C*)? + RBS(CH)? = K,

Finally, let us examine the pullback of the locus of degencracy to the (£,7) Eu-
clidean plane. The determinant of the matrix in (6.38) is 4k*(z* —y*). Hence, the
locus of degeneracy in the flat coordinates is given by

s (€ TR\ .
€0 - (55 =it

-

It is clear that the locus of
| 3(¢H) =0,

consists of & straight lines that divide the plane into 2k equal sectors. We there-
fore see that the positive-definite region {z:" -y > O} is isometric to the (£,7)
Euclidean plane modulo / centrally based reflections.

The final example is meant io illustrate the necessity for the compact setting,
Consider a contravariant metric tensor with matrix

(75
0 ¥
The reasonable choice for flat coordinates is
r=1/§ y=1/n.
These coordinates show that there exist finite length paths such as
z=t+1,y=1 t>0

that do not converge to a limit point. To put it another way R? with the given
metric does not have enough points to form a complete Euclidean space. The dif-
ficulty disappears as soon as we add some points at infinity by stipulating that the
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metric is given on RP! x RP'. We therefore have £ and 7 available as coordinates,
and with these coordinates the metric tensor assumes the standard form,

(+3)

We now generalize the above examples into theorems. The setting will be a
compact, two-dirensional, real-analytic manifold, M?, and a pseudo-Riemannian
metric, ¢, with analytic coefficients. The locus of degeneracy of ¢¥ divides M
into connected 6‘1,,';:1 regions. The signature of the metric may change from region
to region; we assume ‘that one such region, R, has been fixed, and that the metric
in that region is positive-definite. Finally, and most importantly, we assume that
the curvature of g is identically zero.

Before proving the main result we will need some definitions and lemmas. Let
us call a point on the boundary of R an unreacheble point if all smooth curves that
end in that point have infinite length. Let us write the power series expansion of
g about the origin as

g(o) +g(1) + 9(2) +...,

where g is a two-by-two symmetric matrix whose coefficients are homogeneous
k"-degree polynomial in two variables. Our analysis of boundary points will be
based on this expansion. Clearly, the expansion about 2 degenerate point must
have a degenerate ¢{®. In what follows we will without loss of generality treat
generic points on the locus of degeneracy as if they were the origin. Unless stated
otherwise, we will write the contravariant tensor matrix, g% as

(22)

and use || to abbreviate the determinant of this matrix. Much of oy discussion
will be based on the notion of order of an analytic function, f(z,y). We define this
as the smallest total degree, i+ j, of all monomials, z'y? with a non-zero coefficient
in the expansion of f, and denote it as ord(f).



CHAPTER 6. FLAT LIE ALGEBRAIC SPACES 121

Qur first result is a basic criterion for the unrcachability of a degenerate point.

Proposition 6.5.1 Suppose that the power series expansions of all three metric
coefficients, p, q, and r, have order 2 or higher. Then, the origin is unreachable.

This statement continues to hold even if the coefficients of ¢ are real-valued Newton-
Puiseuz series.

Proof: The main idea of the proof will be to compare ¢ with the metric given in
(6.37). The eigenvalues, A, of g are given by

p+7x/(p—1)+4¢?
A= 5 : 5

Let us put
o=z 41>

Because the expansion of g begins with second degree terms, if the coefficients of

g are convergent power series, then we have

p=0p, q=0G r=70F,
where p, G, ¥ are non-singular analytic functions in polar coordinates. If the
coefficients of ¢ are Puiseux series, then we can be assured that p, ¢, and 7 do
not have a pole at the origin. In fact all three of these functions must tend to zero
near the origin. The formula for eigenvalues can now be written as

" (;3+F:i:\/M)

2

Since the parenthetical factor tends to zero near the origin, we can choose a K > 0
such that for o € 1 we will have A < K¢®. This implies that the length of any
path measured with respect to g is greater or equal to 1/K times the length of that
path measured with respect to the metric in (6.37). But the origin is unreachable
with respect to (6.37), and therefore, a fortiori, it is unreachable with respect to
g- O

/)
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The next proposition classifies degenerate points where the metric has a non-
zero constant term.

Proposition 6.5.2 Suppose that ord(|g¥|} > 0, but ¢'® # 0. Then, after a suit-
able change of coordinates |g¥]| = y* h(z,y), where h is invertible.

Proof: Using a linear change of coordinates we can always change g so that the
constant term has the form

10

00/’

i.e. so that p is an invertible function. Let ¥ — ¢(z) be Puiseux series solution of

197 |(z,y) = 0.
By Proposition 6.4.6 we must have
plz, $)¢' = qlz, 8). (6.39)

Since p is invertible, the order of the left-hand side is controlled by ¢'. Also
note that ¢(z, ¢) is g{z,0) plus a multiple of ¢. It is therefore impossible for ¢
to have any fractional powers. Let us see why. Suppose ¢ has terms with non-
integral exponents. Let d be the smallest non-integral rational number such that
the coefficient of z¢ in ¢(z) is non-zero. Hence, the left hand side will have a non-
zero %! term. However, all terms with fractional powers in the right hand side
must have degree d or higher. We have reached a contradiction, and can thereby
conclude that ¢(z) is actually a convergent power series.

We can now take z and y = y — ¢(z) as new: coordinates. We may therefore
assume, without loss of generality, that y is a factor of |g*/|. As we saw in the proof
to Proposition 6.5.3, the preceding assumption means that g and r are divisible
by y. Let us now show that |¢g"7| has no other factors other than y. Again, let
y = ¢(x) be a Puiseux series equation for the locus of degeneracy, and again (6.39)
must be true. Our present assumptions mean that g(z,0) = 0, and hence the right
hand side of (6.39) is a multiple of ¢(z). The order on the left hand side, however,
is equal to the order of ¢'(z). This can only be possible if ¢(z) = 0. O
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Much of our work will be based on one fundamental toul: the quadratic fold
map. We define this to be an analytic map from R* to R® that under a suitable
choice of local coordinates can be expressed as

The name “quadratic fold” reflects the fact that the (&, 1) plane generically covers
the (z,y) plane in a two-to-one relationship. The exception arc the points on the
z-axis (the line of the fold) where the relationship is one-to-one. One fundamental

use of the quadratic fold is to resolve a first order degeneracy in the contravariant
metric tensor. ‘

Proposition 6.5.3 Suppose that ord(|g"|) = 1. Then, there exists a non-degenerate
contravariant metric tensor §7 with analytic coefficients defined on some neighbor-
hood, N C R?, and a quadratic fold map ¢ : N = R, such that ¢.(3) = g.

Proof: Our assumptions about |g¥| amount to the fact that |¢"| can be used as
a coordinate function. We can therefore choose a coordinate system, (i, y), with
the property that the determinant of g/ relative to thesc coordinates is y times an
invertible analytic function. The locus of degeneracy is therefore the x-axis, and
without loss of generality we assume that near the origin, g is positive definite in
the upper half plane. Proposition 6.4.6 tells us that both ¢(z,0) and r(z, 0) must
be zero. This directly implies that y is a factor of both ¢ and r; let us say that
g = 2y§ and that r = 4yf. Next we define a quadratic fold map as per (6.40). We
take N, the domain of this map, to be a neighborhood of the origin, sufficiently
small so that the image of the map is contained in the domain of definition of the
z and y coordinate functions. Contravariant tensors in the two planes are related

by

0565 - 6‘:3;,,
n0d, = 2yd.d,
0,0, = 4y0d,0,.
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Therefore g is the pushforward of the following non-singular metric:

P ng
ng T

Also note that the determinant of the Jacobian of the quadratic fold is 4n? = 4y,
and hence the determinant of § is equal to [¢*|/4y. The result is a non-zer,
analytic function in the &, i variables, i.e. § is non-singular and non-degenerate.

)

The next proposition shows that quadratic factors of |¢*| can be put into
normal form.

Proposition 6.5.4 Let f(z,y) be a second order analytic factor of |g¥|. Then,
after a suitable change of coordinates f(z,y) can be ezpressed as the product of
an tnvertible function, and of one of the following § canonical forms: y*, y* — z*,
where k > 0, or y* + =¥, where k is even. -

Proof: Using the Weierstrass Preparation theorem we can factor f(z,y) into a
unit and into a second order Weierstrass polynomial. We can therefore, without
loss of generality assume that

f(zy) =9+ filz)y + folz).

Note that

flzy) = (y+ f‘—gxl) + folz) - ﬁ%

The first case in our classification occurs when

folz) — il%)z =0.

To obtain the canonical form for f we take z and y + fi(z)/2 as new coordinates.

Now, suppose that

fi(z)?

fo(fL’) - 4 # 01
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cn

and let us say that
fi(z)? .
fota) ~ 2L ok g,
where ¢(z) is an invertible power series. Making the analytic change of coordinates

y=y+ -@ z =z (2¢(z))¥

we can without loss of generality assume that
flay) =y +a* or flz,y)=y* 2"

In the former case, if & is odd, we can do a # — —z change of coordinate, and
thereby obtain a polynomial of the y? — z* form. . 0

The second and third casc’..‘l'n the above classification are instances where the
degeneracy of the metric can be resolved by using a certain class of analytic maps.
The quadratic fold map can be generalized to the notion of a k-fold map. These
are analytic maps from R? to R? of the type presented in example {6.38), i.c. under

a suitable choice of local coordinates (€,7) of the domain and (z,y) of the range,
the k-fold map is given by:

z=¢C,  y=R(CH, (6.41)

where { = £ + i7. These objects are important because they resolve second order
degeneracies in the metric tensor. Also note that in the case £ = 1 the above map

is equivalent to a quadratic fold. We also need to introduce a hyperbolic variant
of the above k-fold map:

L,
s=&n  y=3(E-7" (6.42)

This map is quite similar to the standard k-fold given in (6.41), but differs in that
it is an isometry between flat pseudo-Riemannian manifolds with a hyperbolic
signature.

The following two propositions are necessary for the subsequent discussion
about k-fold maps.

|
A

-
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Proposition 6.5.5 Suppose that z¥ — 42 is an analytic factor of |g¥]. Then g
is equal to the push-forward of some analytic metric tensor, §, via the k-fold map
given in (6.41). Furthermore, if the order of |g'| is 2 then § is non-degenerate. If

the order of |g¥| is greater than 2, then the origin is an unreachable point.

),

where the various functions of x are convergent power series. The Puiseux series
solutions of

Proof: Let us write the metric tensor as follows:

(p q ) _ ( molz) +pi(=)y do(e) + ar(z)y ) ol - ) ( 7

g T go(z) + qi(z)y Tolz) + ()Y 7]

3y

are given by
y = gt/2,
Thus, we can use Proposition 6.4.6 to obtain the following relations:

) k.
kf2 K pk/2-1

gl = 3 (po + pr12*/%)

q(] +$

ko
-~ ro+atirl = S22 (go + quatl?).
Separating the terms with half-powers from those with whole powers we further
obtain the following:

po =2zq, q =%zF1p, (6.43)
e fem 2 g .
To =l§ tq, 1 = kT-’L'L 2 1
Let us set :
4 2k k-1 p g
.4 = o 2 s] bl B = 4?{; 1 2kx ? C = I..). ?. .
2ky K%z Qb1 kRzk-2y § 7
Using (6.43) and the above definitions we can write the metric tensor as
hatBprwr-24c. (6.44)

ok 4
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Next, let us see if the above terms can be given as push-forwards of non-singular
tensors via the standard k-fold map given in (6.41). In the discussion accompanying
example (6.38), we saw that A is the push-forward of the identity matrix. We also
saw that the square of the Jacobian of the A-fold is equal to dA*(y* — x*). This
implies that %2 — z* times any analytic metric tensor in the (ix, ) space is the
push-forward of some non-singular metric tensor in the (€,7) space.

We have dealt with the first and the third terms in (6.44); but what about the
middle term? Note that

.’L‘B:yA+2k(.’Bk-—'y2)({1) (1])

A bit of calculation shows that the right hand side is equal to

(@@ﬂ+ﬁ@ﬂ nR(CEY) — €3(¢FY)
nR(CE") — ES(¢CE1) —ER(CHY) - S(C*Y) |

Using the self-evident identities

CCR(C*H = ER(C*Y) +nS(CE )
—={CS(¢FY) = aR(C*!) - €3(¢*h

we can conclude that B is the push-forward of

( R(C-2)  =S(¢*)
=S¢ R )

To recap, we have shown that all three terms of (6.44) are push-forwards of
non-singular metric tensors in the (£, 7) space, and therefore the same can be said
of our flat metric tensor, g.

To finish the proof, let us suppose that the order of |¢7| is greater than 2.
From equation (6.44) we see that this implies that the order of qi(z) is greater
than 0. But this, in turn implies that all coefficients of ¢ have order 2 or higher,
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and therefore by Proposition 6.5.1 the origin is unreachable. If, on the other hand
the order of jg| is 2, then § must be non-degenecrate at the origin because the
determinant of § is the determinant of ¢ divided by the square of the determinant
of the Jacobian, O

Proposition 6.5.6 Suppose that =¥ + 3>, where k is cven, is an analytic factor of
|g“|. Then g% is equal to the push-forward of some analytic metric tensor via the
k-fold map given in (6.42). Furthermore, the order of the series ezpansion of |g¥|
must be greater than 2, and the origin is en unreachable point.

Proof: Qur proof proceeds analogously to the one for Proposition 6.5.5. Again,
we write the metric tensor as

(p q) _ (po(x)+p1(:v)y 9(z) + a1 (z)y ) + (o + ) (ﬁ

qr () + q1(z)y  ro(z) 4+ ri{z)y 7

~r
S

The Puiseux series solutions of
y*+z =0

are given by

y= i k2,

As before we use Proposition 6.4.6 to obtain the following relations:

Po = %55911 o = _gxk_l o, (6 45)
o = -%xk—l 71, r =—%azk2p,.
Let us set
. - k=1 = =
4= 4z 2Lgi . B= 4y —2kz o= 13 cz .
2ky —k2zh-t —2kxhl | B2rhely - g r
Using (6.45) and the above definitions we can write the metric tensor as
IR Ly Jay o Yol (6.46)

2k° 4

R
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Next, let us show that 4 is the push-forward of 20:8,. Computing the push-
forward of the latter, we obtain:

dr = {dn+ndg,
kKo, -
dy = 5 (€'dg-n""dn),

dz* = 4&n = 4z,
dudy = k(g - n*) = 2%y,
dy2 - _k2£k—lnk—1 - __k'.!xk-l.
This is in agreement with the multiplicatior induced by A. A similar calculation
shows that B is the push-forward of the following:

=2F-2 0
0 2ek=2 |7

Again, since the determinant of the Jacobian is equal to —k(y*+4-z*), every multiple

. of y* + z* is the push-forward of some non-singular tensor. We can therefore
conclude that our flat tensor, g, is the push-forward of some non-singular tensor,
g.

Now let us show that the order of |g”/| must be greater than 2. Let us suppose
the opposite. From this we will presently deduce that g must have hyperbolic sig-
nature in a neighborhood of the origin. This conclusion is, of course, incompatible
with our overall, initial assumption that the origin is on the boundary of a region
where g is positive definite. Since the determinant of § is the determinant of g
divided by the square of the Jacobian, we can deduce that g is non-degenerate

- at the origin. Clearly, whatever our choice for an open domain of the hyperbolic
k-fold (6.42), if that domain includes the origin of the (&, %) space, then the range
must necessarily cover some neighborhood of the origin in the (z,y) space (this is
a consequence of the assumption that & is even). Thus, the signature of ¢ around
the origin is identically hyperbolic, and so we have our contradiction.

Now that we know that the order of |¢¥/] is greater than 2 we can use equation
(6.46) to deduce that the order of q;(z) must be greater than 0. But this implies
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that all the coefficients of the metric tensor have order 2 or higher, and therefore
by Proposition 6.5.1 the origin is an unreachable point. O

As a matter of fact, Propositions 6.5.3 and 6.5.5 exhaust the possibilities for
reachable points on the locus of degeneracy. We will prove this by systematically
showing that all other types of degenerate points must be unreachable.

Proposition 6.5.7 Let f(z,y) be e non-trivial, analytic factor of |¢¥|. Iford(f) =
1, and if the multiplicity of f in the factorization of |g”| is greater than 1, then
the origin is unreachable.

Proof: The conditions on f imply that it can be a coordinate function. Thus,
without loss of generality let us assume that f = y. By Theorem 6.4.6 both g(z, 0)
and r(z, 0) must be zero. As we did in the proof of Proposition 6.5.3 we can write
¢ = yq and r = yr, where ¢ and 7 are non-singular. We again employ a quadratic
fol;i-';’nap as per (6.40), to conclude that ¢ is the push-forward of the following

metric tensor:
@)= P ng
ng T

Let & be the multiplicity of ¥ in |g¥|. The square of the determinant of the
Jacobizn is 4n? = 4y, and hence the multiplicity of 7 in the determinant of § must
be 2k — 2. The assumption that £ > 1 implies that n continues to be a factor of
the metric tensor’s determinant, For reasons we have already seen, n must be a
factor 7, and this can only be possible if y? is a factor of .

We may therefore write the contravariant metric tensor of g as

P vy
yq yi# )’

where ¢, and 7 are non-singular. The next step is to compare g to a metric with
the following contravariant tensor:

@9 = (1 y )  (6.47)

0

s
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This is also a flat metric, with flat coordinates &, 1 given by
z=§ y=e€
Let p be the type (i) tensor ficld given by g§™'. In the z, ¥ coordinates p is -

represented by the matrix
p dly
yi f )’

The eigenvalues, A, of p are given by

——

p+7E/(p—7)?+4¢

A= : .

2

The above formula makes it clear that in a fixed neighborhood, N, of the origin
we can find an upper bound, K > 0, for the eigenvalues, A. The eigenvalues of §
are never negative. Hence, in the vegion, RN N, where ¢ is positive definite, the
eigenvalues of p are non-negative, and in that region K™ serves as a lower bound

on the eigenvalues of g7!. Hence, given a tangent vector, v, based at a point in
RN N, we must have

Ko, v) <57 (07 (v), V) = g7 (v, v).

This in tnrns implies that the length functional on curves engendered by g is
bounded below by K™ times the length functional engendered by §. The origin
is unreachable with respect to the latter metric, and therefore, a fortiori, it is
unreachable with respect to g. a

Proposition 6.5.8 Suppose that ord(|g7|} > 3, but that the order of al least one
of the metric tensor’s coefficients is 1. Then after ¢ linear change of coordinates
the linear term of g can be put into one of the following two canonicul forms:

z 0 y 0
, or .
00 00



—
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Proof: Let p), (1), 7(1) be the linear terms in the expansion of the metric tensor’s
coefficients. We are assuming that pt+(!) = (¢{1)2 = 0, and hence p'¥ and () must
be proportional to ¢). We can therefore perform a linear change of coordinates
so that the linear term in the expansion of g has the form

| '-.a,:z:+by 0
0 0/’

where ¢ and b are constants. If a 7 0, then a change of coordinates
i=%s %

a a2

will result in a tensor of the form £9; ® 0z. If a = 0, then a change of coordinates

7=y,

will result in a tensor of the form 49; @ ;. i} O

Proposition 6.5.9 Suppose that ord(|g¥|) > 3, and that the linear term of g has
the fozvn

“ (50)

Then, g¥| is the product of first order factors, and this implies that the origin is
an unreachable point.

Proof:  First, consider the case where |g"| factors into a product of first order

~ factors. Since ord(|g*]) > 3 there must be at least 3 such factors. If two of them

are equal then the orizin is unreachable by Proposition 6.5.7. If two of the factors
are not equal then by Proposition 6.5.4 their product can be put into the form
y* 2 2% «nd hence by Propositions 6.5.5 and 6.5.6 the origin is unreachable.

Let us therefore suppose that |g'7| has an irreducible factor, f (z,v), whose
order is greater than 1. Let y = ¢(z) be a Puiseux series solution of f(z,y) = 0.
By Proposition 6.4.6 we must have

(= +p1(z)¢ + p2(z)” +...)¢' = (go(m) +aq1(z)d + ga(z)d® +....

L
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Since f is irreducible, ¢ must have terms of non-integral degree. Let d be the
smallest non-integral degree in the expansion of ¢(z). Since the left-hand side
contains the term z¢', the smallest non-integral degree of the left hand side of the
above equation must also be d. But since we are assuming that the order of ¢ ()
is 1 or more, the smallest possible non-integral degree of the right-hand side is
d 4 1. This is impossible, i.e. |g*”/] must be a product of first order factors, and as
we noted above, this implies that the origin is unreachable. O

Proposition 6.5.10 Suppose that ord(|g7|) > 3 and that the lincar term of g has

the form
Y 0\
0 6

Then, the origin is an unreachable poz‘nt‘.

Proof: Since ord(p) = 1 we can take z and y = p as new coordinates. Doing so
changes the products dz - dy and dy - dy; the product dz - dx remains unchanged.
Therefore, the g'! coefficient of the resulting metric is equal to p, which is 4 in the
new coordinates. Thus, we can without loss of generality assume that the metric
tensor is such that p=y.

The constraint of zero curvature will allow us to deduce crucial information
about the order of the expansions of the metric tensor’s coefficients. This inior-
mation will prove sufficient to prove unreachability. First, let us write the flatness
equation by simplifying the curvature formula in (6.34) with the assumption that
p=y:

QR+ S —y(Py+Qz) = 0, (6.48)
RP —7,— 2(P,+Q.) = 0. (6.49)

Recall that
R =Q +2q,, S =P+, ~2q,.

f!
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From (6.33) we also have
r=yP —~qQ. (6.50)

Our hypotheses imply that the orders of g and r are at least 2. Hence, the action
of H? = ¢0; + rd, on any analytic function raises the order of that function by at
least one. Recall that P = pp — 7, where g is an eigenfunction of the H? action.
Hence, the orders of P and S are at Jeast 1. Hence, ord(@) > 1, for otherwise the
left hand side of (6.48) ‘would have order 0. But now we know that the first and
third terms of (6.49) have order at least 2, and hence, ord(r;) > 2. From (6.50)
we deduce that ord(P;) > 1. Taking an z-derivative of (6.48) we obtain

(QR)z + Sz — y(Pry + @zz) = 0.

Hence,
ord(Sz) = ord(Py + 72y — 2qaz)

is greater than or equal to 1. We have already deduced that ord(P;) and ord(rg,)
arc at least 1, and hence ord{gzz) > 1. Let us write the metric tensor coefficients
as power series in y:

¢ = qlz)+a@y+alE@y+...
r o= ro(z) +ri(z)y +rolz)f + ...,

and summarize what we know about the order of these coefficients:

ord{g) >3, ord(g) 21, ord(re) >3,  ord(r) > 2 (6.51)

Again, let y = ¢(z) be a Puiseux series solution of f{z,y) = 0, and put
d = ord(¢). By Proposition 6.4.6 we have

q(z,8) = qo + Mo + @ + @ad* +... = ¢¢'. (6.52)

Hence,
24 — 1 = ord(¢4') 2 min(ord(go), ord(a1) + d),
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and this implies that d > 2.

Our next step is to make the change of coordinates # = y — ¢{x). Since ¢
may have terms of fractional degree, this may also be true of the coetlicients of the
transformed metric tensor. Fortunately, we will not nced the assumption of strict
analyticity in order to conclude our proof, but we do have to explain why this
procedure is valid. Note that |¢”|(z,0) < 0, because p = y. Since we are assuming
that the origin is a boundary point of 2 reginn where g is positive definite, at least
one real-valued, irreducible factor, say f(z,v), of |¢”/| must take both positive and
negative values near the origin. By Proposition 6.4.1, 4/, + ¢f, is divisible by f,
and hence f # z. We will demand that y — ¢(z) be a factor of such an f. Since
f(0,0) = 0, the branch y = ¢(z) does not intersect cither the z or y axis near the
origin. Therefore, we can assume without loss of generality that y = ¢(x) forms
a part of the boundary of R (the chosen region of positive definitencess), and that
in some neighborhood of the origin this curves lies in the upper, right quadrant.
This, in turn implies that ¢(z) = ¢ (:1:313), where ¢(X) is a convergent power scries
with real coefficients.

Now, let us compute the coefficients of the metric tensor after the above change
of coordinates. We have

dz-dz = y=?}+¢1
dz-dj = qlz,y) —yé'(z).
dﬁ ’ d?} = T(.’B, y) - Q(ma '!j)¢' - ¢’(Q($a 'U) - y‘b’)'
Using (6.52) we see that
qlz,y)—y¢' = (p+ay+ay...)— yd'
= (Q+qay+aqy...)— (@+qad+qd...)—¢y- o)
= (g - y—0)+ @’ -¢*)+...

Similarly,

r(z,y) — 9(z,1)¢' = (11 — 1)y — ¢) + (12 — @) (% — ¢°) + ...
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Therecfore we can write the transformed metric as

y+o 244
25§ riF )’

where § and 7 may have fractional z-exponents. Nonetheless, from (6.51) and from

- the fact that ord(¢) > 2 we can deduce that

ord(g) > 1 ord(7) > 2.
Next, we use a quadratic fold map: y = n%. The image of this mapping is the
upper half-plane, and earlier we able to assume that R is contained in the upper
half-plane. The resulting metric tensor has the form

(ﬁ+ﬂﬂ ni(z, )\
nd(z,n?) 7z, n?)

b

for the reason see the proof of Proposition 6.5.3. Since all the coefficients have
order 2 or more, by Proposition 6.5.7 the origin is unreachable. O

Metrics with a nilpotent linear part are not just a theoretical possibility. There
exist a truly large number of such metrics; our preliminary research indicates that
their cardinality is at least as great as the set of all convergent power series! Due
to lack of time and space we can only indulge the reader with a couple of examples:

v zy +z° y -y
zy + % 4y? + yz? - 2t -2 20

Much work remains to be done in regard to these metrics. Some natural questions
are

e How many such metrics are there? Is there some natural way to index them?

e Clearly, such metrics are widely related by changes of coordinates. How
many inequivalent classes of such metrics are there?
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¢ Based on the examples o such metrics obtained by us, it would appear that
the determinants of these metrics always factor into first order factors, i.c.
the locus of degeneracy consists of curves that are non-degenerate at the
origin. To date we have not been able to prove this fact, and would like to
leave it as a conjecture.

We have now accumulated a sufficient number of results so as to give a classi-
fication of degenerate points of g.

Proposition 6.5.11 A degenerate point of g is either an unreachable point, or
there exists a contravariant, non-degenerate metric tensor §* with analytic coeffi-
cients defined on some neighborhood, N C R?, and an analytic ¢ : N — R, such
that ¢.(§) = g. Furthermore, such a map, if it exists, is either a quadratic fold
(Proposition 6.5.3), or it is a k-fold map (Proposition 6.5.5).

Proof: As usual, without loss of generality we assume that degenerate point in
question is the origin. Suppose then that the origin is not unreachable. Thus, by
Proposition 6.5.1, g{® + ¢! % 0. If ¢! # 0, then by Proposition 6.5.3, ord(|y¥|)
must be 1, i.e. the locus of degeneracy is a non-singular curve. This Proposition
also tells shows that a suitable ¢ exists and that this map is a quadratic fold.

For the remainder of the proof assume that ¢@ = 0. If g’ is degenerate, then
by Froposition 6.5.8 there exists a linear change of coordinates that transfyrms
g1 into a normal form which is within the scope of hypotheses’ of Propositions
6.5.9 and 6.5.10. In cither case, we can be assured that the origin is unreachable.

The only case left to consider is a metric such that ord(|g¥]) = 2. By Proposi-
tion 6.5.4, |g¥| up to an invertible multiple is of the form 42, ¥ + =¥, or y* — z*.
By Propositions 6.5.7 and 6.5.6 we can exclude the first two possibilities. In the
y* case the origin is unreachable. The y? +z* case, where k is even, cannot occur,
because we restrict ourselves to the boundary points of a region where the metric
tensor is positive definite. The y? — z* case is covered by Proposition 6.5.5, which
shows-that ¢ exists and is a k-fold map. 0
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We now come to the fundamental theorem of this section. In what follows, we
will regard R? as the Euclidean plane with the standard Euclidean metric gz. Our
goal is to show that the union of /£ and its reachable boundary points is isometric
to the quotient of the Euclidean plane by a certain group of isometries. Once we
build a map

¥R — M,

... let us say that an isometric symmetry of 1 is an isometry, & of the plane such

that 1o = 1. We will employ this notion to isolate the isometries in the quotient
group. '

Theorem 6.5.12 (Tiling Theorem) There exists a globally defined, real-ana-
tytic map ¢ : R? = M such that ¥.{(g9g) = g, and such that ¢ that covers all of
R plus the reachable portions of its boundary. Furthermore, the preimage of the
locus of degeneracy, |g”| = 0, under this map, if it is non-empty, consists of lines
that tile R? into isometric cells. These cells are related by the group of isometric
symmetries .of Y; indeed the union of R and the reachable points is isometric to
the quotient of R® by this group. “

Proof: Since the curvature of g is identically zero, there exists an isometry from
an open neighborhood, O, of R? to an open neighborhood of M. We fix this
germ of an isometry, and try to extend its domain to all of R®*. We proceed by a
process akirf_to analytic continuation, although in our case it should more properly
be called isometric continuation, because it is based on the rigidity of isometries,
rather than the rigidity of analytic maps. Both types of continuation operate
on the same principle: information about a sufficiently high order of derivatives
of a mapping will locally determine that mapping. In this sense, isometries are
even more rigid than analytic mappings; the former are completely determined by
first order information, where as the latter require information about all orders of
derivatives.

Our goal is to build up an atlas, A, of comnpatible analytic 1sometries

wﬁzoa_)'Mr
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where compatibility means that the mappings agree on overlaps. The range of the
O, may include points where the metric on M is degencrate, and so we should
remark that in such instances the term “isometry” simply means that the push-
forward of the Euclidean metric via ¢, is equal to g. By Zorn's lemma there exists
a maximal such atlas, 4. Let us show that .4 must cover all of K*. Suppose not.
Then, there exists a straight path

7 :[0,1] = R?,

such that with the exception of one endpoint, say 1, the image of -y lies entirely in
some O,. Since M is compact ¥,(y) must have a limit point, say x € M. Now,
either x lies in R, or it lies on the lovus of degeneracy of g. Let us show that in
the latter case, X must be a reachable point.

Let £ be the length functional on paths in R that is induced by the metric g,
and let £ be th= length functional induced by the metric dz? + dy?, where z, ¥ is
some choice of local coordinates around x. Now ¢“ is degenerate at x, but it is
not singular there, and therefore in some neighborhood of x the eigenvalues of ¥
are bounded from above, say by B. Hence, the eigenvalues of g;; are bounded from
below by 1/B. This directly implies that i< ‘EE. Hence,

lim &(y(t,1)) < lim £(y(t,1)) = 0.

Since we are assuming that x is a limit point of 9,(y) in the coordinate chart
topology, the above implies that x is actually the unique limit of this path. Since
£(+) is finite, x must be a reachable point.

Thus, by Proposition 6.5.11 even if x is a degenerate point, there exists a
non-degenerate metric tensor §7 defined on some N C R?, and an analytic map
¢ : N = M such that ¢.(§) = g. Note that ¢(N) N 1h,(0a) # ¥, because x is on
the boundary of 1,(0.). We therefore have an isometry

Tﬁ;l 0¢: ¢-1 (qb(N) n %(Oo)) — R
Since 7 is non-degenerate on N we can extend this to an isometry

$: N>R

W
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But then, ¢ o ¢! with domain @¢(N) extends .4, implying that the atlas isn't
maximal, and causing a vontradiction.

Since the topology of R? is trivial, the maps v, piece together to give a global
analytic mapping 7 : R2 — M such that ¢” is the push-forward of gg. In turn,
this implies that the locus of degeneracy, |¢*| = 0, is the image of the locus of
degeneracy of 4, i.e. those points where J(1), the Jacobian is degenerate. The
mapping ¥ therefore tiles R? into connected open cells, C; that are the preimages
of 2. The boundary between these cells is the locus |J(¢)| = 0.

Next, suppose that there is more than one such cell, C;. Since the images of all
the C; are isometric to R, the C; must be isometric to one another. Let ¢ be an
isometry that relates two of these cells, say o(C)) = Cs. Hence, 3 oo and v agree
on C,. Above we saw that the germ of ¥ completely determines 1, and therefore

Yoo =1

By the classification of degenerate puints in Proposition 6.5.11, we know that at a
degenerate point % is equivalent to either a quadratic fold or to a k-fold.

Let €, and z,y be coordinates on R? and on M, respectively such that the
quadratic fold in question has the normal form

Yrr=§ y=n-
It is clear that this mapping possesses a symmetry:

g (f:ﬂ) — (6: "77),

i.c. locally, at least, 9 o o = 9. But this means that the image of & is isometric to
its domain, and therefore o is an isometry of R? that fixes the curve n = 0. The
range of Euclidean isometries is not large; the only one that has such behaviour is
a reflection. The locus n = 0 is therefore a straight line.

Let us now consider the case of a k-fold. Again, let us choose normal form
coordinates on R* and on M such that the action of 3 is given by

z=E+7°, y=R((H,

p—

N
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where { = £ + in. The symmetries of this mapping are generated by
o:{— w,

where w is a primitive £*" root of unity. Since o fixes the curve S‘(w%C) =0, it
must again be a reflection of R*. Furthermore, uote that from the perspective of
the points

{¢:8@wi)=0, ¢#0}
this ¢ is a quadratic fold. We have therefore shown that the locus |J(¢)] = 0

consists of straight lines, and that these straight lines are the fixed points of the
quadratic fold symmetries of .

The actions of quadratic fold symmetries are transitive on the set of cells, C;;
any two adjacent cells can be related by such a symmetry. Furthermore, since
a symmetry of ¢ that acts as the identity on a cell must be the global identity
(isometric rigidity), the quadratic fold symmetries generate the group of isometric

symmetries of 1. This shows that R is isometric to the quoticnt of R* by a group
generated by reflections. O

To conclude, let us just remark that the group of isometric symmetries is a
subgroup of the symmetry group of the tiling |.J(4)] = 0. It is the largest such
subgroup with the property that for all symmetries o, and cells C, if o(C) = C,
then o is the identity. This follows directly from the requirement that o = ).
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6.6 Flat Metrics Arising From Imprimitive Ac-
tions

In this section we will explore the relation between flat Lie-algebraic metrics, and
separation of variables. The main theorem is a partial affirmation of the Turbiner
conjecture in 2-dimensions. We will shows that the conjecture is true if the un-
derlying group acts imprimitively, and if this action can be realized on a compact
manifold where the action is regular. The present result has another limitation;
we will only consider basic Lie algebraic operators, that is operators with a trivial
cohomology parameter, 7.

Note that the class of manifold with regular G-action is larger than the class
of homogeneous spaces of G, because we are not requiring that the G action be
transitive. In particular, almost all two dimensional homogeneous spaces are either
compact, or can be extended to a compact manifold with G-action.

The result that we will prove has wider applicability than might appear at first
glance. In the case of 2-dimensional local group actions one has the advantage of a
classification of all such actions. The original classification for the complex plane
was done by Lie in [22]. This classification was extended to the real plane in [11],
and enriched Lie's list with some new classes of group actions that are inequivalent
under a change of real coordinates.

The classification reveals that there exist exactly 5 types of maximal local group
actions in the real plane. The following table list these maximal actions. The table
is an excerpt of the classification list in [11]; the ID column gives the identification
labels used in that particular work. The significance of this list lies in the fact that
- cvery conceivable Lie algebraic operator in th plane can be formed by using one
of the 5 maximal entries. Therefore, in order to prove Turbiner’s conjecture in the
plane it suffices to verify it for each of the 5 types of maximal actions.

1D Generators Structure

7. p g 3p+yq yp—zq, (¥ —y )p + 2zyq, 2zyp+ (¥° — z%)¢  s0(3,1)
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8. p, a4 T, Yp, 2q, Yq, °p + £yq. Typ + yq sl(3)

16.  p g, 20, ¥q, 2P, ¥q s1(2) ® sl(2)

23, pyg,mT)g - ur(E)e, (P 21) R* x R+

28.  p.q zp, Tq, yq, Tp+rIyg, 22, .., 2Tq, (P2 1) gl(2) x Rr+!
Entries 7 and 8 describe primitive actions, and the group action in entry 23 does

not have a compact global model. Entries 16 and 18, however, fit the imprimitivity
and compactness requirements. A compact manifold on which the actions of entry
16 are realized is just RP! x RP!. Compact manifolds with actions of the type
in entry 28 are given by the Hirzerbruch surfaces. We won’t give an explicit
description of these compact global models here; for us it suffices to know that
they exist. The reader is referred to [8] for some helpful remarks on compact
global models of 2-dimensional group actions.

To proof of Turbiner’s conjecture for the cases at hand rests on the propertics of
imprimitive Lie algebraic systems described in Section 4.8, and in Theorem 6.5.12.
We need one more ancillary result before we can give the proof for the conjecture.

Proposition 6.6.1 Let f(z,y) be a real-analytic function defined on all of R* with
the property that the vector field

grad(f) = fz0: + fyay

flows in straight lines. Then, the level lines of f(xz,y) are either mutually parallel
straight lines, or concentric circles about @ common. center. To put it another way,
_either

f = Flaz + by)
for some constants a, b; or

f=Ffllz-z0)*+ (¥ — 90)%)

for some xy, and yp.
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Proof: The condition that grad(f) flows in straight lines is expressed more ana-
Iytically as
grdd(f)(fy/fz) = 0;

or equivalently as the condition that the vector f.0; + f,0, is an eigenvertor of the

fzz Jo
D*f = v,
d (f f)

annihilates f, or equivalently that T is tangent to the level lines of f. Also note

that
o fox Fe N[ Fo
2_:’::
(fJfJ(f:cy fyy)(fy)

= 2T D*f(grad(f))
= 0

matrix

Note that the vector field

T(f2+ f2)

This tells us that the magnitude of grad(f) is constant along the level lines of f,
and that if df # 0 at some p € R?, then df is non-zero everywhere along the same
level line as f. We can therefore conclude that level lines where df # 0 are closed
1-dimensional submanifolds of R?.

We may without loss of generality assume that df 7 0 at the origin, and that
the flow of grad(f) at the origin is along the y-axis. Hence, f;(0,y) = 0 for some
interval, —e < y < ¢. Since we have assumed f to be analytic everywhere, we
can conclude that f.(0,y) = 0 for all y. To put this point more geometrically, at
any given point on the y-axis grad(f) is either 0 or a vector parallel to the y-axis.
Furthermore, since df # 0 at the origin, the zeroes of df on the y-axis are isolated
from one another.

Now consider the level-line submariiold,

L= {(z,y) : flz,y) = f(0,0)},
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that runs through the origin. At this point two possibilities arise. If L is the
z-axis, then grad(f)(z,0) is a constant vector in the g, dircction, and hence grad(f)
is either zero or parallel to 9, everywhere. In this case, f is a function of y only.

Let us turn to the other possibility, and assume that L is not equal to the
z-axis. At each point (zo,y0) € L, we know that grad(f) is normal to L. The
normal line has equation

—fy(xo,yc)(a: — o) + fz(To, %)y — yo) =0,

and on the points of the normal line grad(f) is either zero or parallel to the normal.
Since L is not the z-axis, some normal line of L must intersect the y-axis, and the
point of this intersection varies continuously with (zg,7) € L. At the points
of intersection grad(f) is simultaneously parallel to the y-axis and to the normal
line through (zp,%s), and hence is zero. Since the points along the y-axis where
grad(f) = 0 are isolated, the point of intersection must be independent. of the
choice of (zg,ys) € L. This is only possible if L is a circle. Therefore, grad(f)
flows along the normals of this circle, and the level lines of f are the other cireles
with the same center as L. O

We can now staie and prove the main theorem. The reader is well-advised
to keep in mind the first example of Section 6.2 while studying this theorem.
The setting for the theorem is a Lie algebraic operator % with quadratic compo-
nent, C € S*g, linear component L € g, but with a zero cohomology component,
n € HY(g;C(M)). We furthermore assume that G acts imprimitively and that
the G action is realized on a compact manifold. An important note: the com-
pactness assumption does not mean that the homogeneous space, M = G/H,
must be compact. The case of the Hirzebruch surfaces bears this out. The group
action on these compact spaces breaks up into 2 orbits; one of the orbits is a non-
compact 2-dimensional homogeneous space, and the other orbit is a 1-dimensional
homogeneous space.

Theorem 6.6.2 If the background metric induced by C is flat, and if H sakisfies
the closure conditions (i.e. C and L are compatible), then both the unnormalized
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cquation

HY = EV,

and the normalized Schridinger equation
(A+ V)P = ET,

where V is the associated potential, admit a separation of variables in either a flat
or a radial coordinate system.

Proof: Since the action of G is imprimitive we can choose a locally defined real-
analytic function f of M such that the level-lines of f give the invariant foliation.
By Corollary 4.8.4, grad(f) flows along geodesic trajectories. By Theorem 6.5.12
there exists a real analytic map ® : K2 — M, such that the Jacobian of & is
degenerate along a certain lattice of straight lines, but at those points where the
Jacobian is non-degenerate the map is a local isometry. Hence, *(f) is a real-
analytic function with the property that grad(f) flows in straight lines. At this
point we would like to apply Proposition 6.6.1 to conclude that ®*(f) is either a
function of a flat or of a radial coordinate. However, a remark is in order at this
point. The hypothesis of Proposition 6.6.1 speaks of a globally defined function,
whereas we have a patchwork of locally defined functions that nonetheless “piece
together” in the senSe that they all have the same level lines. A closer inspection
of the proof of Proposition 6.6.1 will show that the result continues to hold even
with the more general, patchwork data, and therefore the pullback of the invariant
foliation to R? are the level lines of either a flat or a radial function.

For the rest of the proof we will move the setting to 2. There is still the
local action of the group, G, but this action is non-degenerate only wherever the
Jacobian of ¢ is not degenerate. Separation of variables is a local phenomenon,
so for the present purposes we can safely ignore the points of degeneracy. Let
us consider the case where the invariant foliation is given by a flat function. Let
us use z and y as the flat, orthogonal coordinates on R?, and suppose that the
invariant foliation is given by the level lines x == const. Since H satisfies the closure
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conditions, there exists a function ¢(z,y) such that
H=A - 2grad(¢).

Since the foliation is invariant, H(z) must continue to be a function of z, and
this is possible if and only if ¢ is of the form &(z) + n(y), for some single-variable
functions £ and 7. It is now obvious that the equation

HY = E¥ (6.53)

separates in the z, ¥ coordinates. The associated potential of the associated
Schrédinger operator is given by

V = A(g) + grad(¢)®

= ‘f:zx'}'nyy +£;ﬁ +77;is

and therefore the equation
(A+ V) = BT (6.54)

separates in the z, ¥ coordinates as well.

Now let us treat the case where the invariant foliation is given by the level
lines of a radial function. Without loss of generality we will assume that this
radial function is just 7 = \/zZ + 2. The claim is that the differential equations
in question separate in the standard radial coordinates r and #. The contravariant,
form of the flat metric tensor in these coordinates is given by

1 0
0 2}’

0 1 &
A=t maE
As above, A is a sum of the Laplacian and a gradient, say —2grad(¢). Since the

level lines of r are invariant with respect to the G actions, H(r) must be a function

and the Laplacian by
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of r, and hence ¢(r,#) must be of the form p(r) + #(8). Hence, equation (6.53)
separates into

(Our + 8, + poBs = E)Ur(r) = Tizq:l(r)

(Do + 0005) ¥2(0) = —ATo(8),

where A is a constant of separation. The associated potential of the normalized
Schridinger operator is given by

oo + 03
Ve poe o+ o+ =
and therefore equation (6.54) also separates in polar coordinates. O



Appendix A

Closure Condition Solutions for
the Linear SL(2) Action

I wish to God these calculations had been executed by steam.

- Charles Babbage

In this appendix we will list the solutions to the closure conditions obtained by
checking the invariant equations (5.9) and (5.10) against the 5 types of $%g orbits
given in Section 5.4 For ecach solution we will present the operator system (C, L, n),
the potential, V, of the normalized Schrédinger operator, the gauge factor, sz, the
contravariant metric tensor, ¢*, induced by C, and the curvature, K, of that
metric.

The Cy) type: there is one class of general solutions.

0 -1 -2 Q 0
C=1-11 1 L=10 7= 0
2 1 0 Q P/z?
_Q_ - 1-Q/2 =547
V= 4 1 H= (:E -+ 'y) ezt

149
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i z* + 2zy —z* — 3zy — ? Ked
g ~z% = 3oy — y® 2zy + y* o

The Cyy) type: there are no homogencous solutions, and 1 class of basic solutions.

0 0 -1+2§ 0 0
c=| o 145 0 L=1{o0 n=|0
-1+25 0 0 Q 0
ve_s.i_ & = -T
- 2”6 HTEY

g [ #1+8) (S—2)zy _
gJ_((S—?)my (1+S)y2) K=0

The C3) type: there is one class of general solutions, and another of basic solutions.

0 0O 0 0 0
c=[0 o 30 L=| o n=| o
0 3/2 0 Q P/z?

.

V=0 L=e vy

. ' —~3 /242
gt.‘.':( 3zy /2y ) K =0

—-3/2y* 0
0 0 28 0 0
C=| 0 S 3/2 L=| 4/3QS n=10
28 3/2 0 Q 0

_ 5128°Q%z® + 1925%(9 + @*)z?y — T2(27 + 5Q°)Szy? + 81(Q* — 9)y°
27y(88z — 3y)?

n= 3'2%35(85':3 - 3y)%y=.'sg+%,

g = ( Sz%+3zy Szy-—3/2y? ) K= —108Sy?

V=

Szy — 3/2y* Sy?
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The Cy4y type: there is one class of busic solutions.

0 0 28 {0 0
C=| 0 S 0 L=} @ n=10
25 0 6 Qs 0
[ _ASQiz" + 45QiQury + (SQ3 + 2S? + QD
245y
25 - 2Q1r+Qap}
g = ( Sxz* + 6y° S.r_ao; ) K=o
Szy  Sy°
The Ciz) type: there is one general solution, and one class of basic solutions.
0 0 0 0 0
C=10 320 L=]@Q 7= 0
\o 0 6 0 P/
3@ — . 1=Q/3
V= 5”5 =1 .

i = ( 3/2z? + Gy? —3/2:c2'y K= -6
\ -3/2zy 3/2y

6 0 =2+25 Q 0
c=| o 245 o0 L=| o n=|0
-2425 O 6 -Q
2

V=-=-5- _2_5 — 2, p= /:52 + ?j2(3_ o urcmn(:c/y)'

g [ 2+8)+67 (S—4)xy K =0
TZ (S-day  62+2+S) )] '
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Appendix B

Hyperbolic Signature
Counter-example

We think in generalities, but we live in details.
- Alfred North Whitehead

In the present appendix we will show that Turbiner’s conjecture cannot be
true without the assumption that the Lie-algebraic metric in question is positive-
definite as well as flat. We will exhibit a Lie-algebraic operator that engenders a
flat, hyperbolic metric, but does not have a separable potential. We will organize
our discussion into three parts. First we will introduce the Lie-algebraic operator
in question. Second, we will define and discuss the notion of “separation of vari-
ables” for this operator. Finally, we will demonstrate that there does not exist a
‘coordinate system that separates our aperator.

The focus of our attention will be the Lie-algebraic operator
H = {8,, —ud, +vd,} + ud, — 2v0, + ud,.

There any number of Lie algebras that will generate this operator — projective
SL(3) actions, for instance — and there is no need to fix one specific algebra. The

152
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corresponding contravariant metric tensor is given by
0 —u
-u 2w [
Flat coordinates, (z,y), are given by
1
T=-—, y=uv.
U
The metric tensor in these coordinates is given by
01
10/
Writing our operator in the (z,y) coordinates we obtain

H

1 1
{;ay, xaz} ~ 2, — ydy + =0,
= A—grad (% + log(z) + :zry)

A change of scale transforms the above into the following Schradinger operator:

Yy 1 1
A—— 4 —+= B.1
2 * 2z + 2 (B.1)
The theoretical underpinnings for our treatment of separation of variables come
from articles by Miller [23] and Koornwinder {21]. We will say that a second-order

partial differential equation
H(z,u,w;,uy; E) =0, (B.2)

with a parameter, E, additively separates in the coordinate system @,,%.., &y, if

there exist n single-variable ordinary differential equations,

dul? o @) du®
+ Ji

iU ,-dm—i;E,)\l,...,).n_l)=0, whereci=1...n,

‘dx?
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depending on £ and n — 1 other parameters, such that for all values of the param-
cters the function

u(Ty,y ..., Ty) = Zu(i)(mi)

E
is a solution of (B.2). The definition of multiplicative separability is similar; for
all values of the parameters the function

ULy .oy Ty) = Hu(i)(ﬂii) N

must be a solution of {B.2). The above definition of additive separability is equiv-
alent to the notion of regular separability introduced in [23]. This article gives an
equivalent criterion based on H and its derivatives:

HyHoy; (D:D;H) + Hyyuy; (DiH) (D3 H) ' (B.3)
= Hﬂjj (DIH)(DJHu“) + H"‘.‘- (DJH)(DtHu“), " :,é j'.'

where D; is the total derivative operator Oz, + 10y + uii0y;.

We are interested in the multiplicative separability of Schridinger equations:
(A+V)U =EV.

This can be converted into a question of additive separability by introducing the
related dependent variable u = log(\W): Writing the above in terms of u we have:

Au) + grad(u)® +V = E. (B.4)

Applying the criterion in (B.3) we obtain the following conditions (see [23] and
[21] for the proofs and further references):

e The coordinates z,,...,Z, must be orthogonal. In other words, the metric
tensor must satisfy ~ -
g7 =0, wheneveri# j.
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e The metric tensor must satisfy the Levi-Civita separability conditions:
8;;G® + 0,G°0;G® ~ 8;G*9;G' — 9;,G°9,G? =0, for all a and i # j,

and where G* = log(g*). This condition is equivalent to the requirement that
the metric tensor be in Stéckel form. In other words, there exists a so-called
Stickel matrix, {si;}, such that the " row depends only on the variable a;,
and such that the first row of the matrix’s inverse is equal to (g'',..., ¢"").

e The metric tensor must satisfy the Robertson condition:
;) (G*’ -3 G¥| =0, foralli#j.
ki
This, in turn, is equivalent to the condition that
. 9; (Gi - ch) = fili),
ki

for some single variable function f;(z;). Eisenhart proved in [5] that the
Robertson condition is equivalent to the requirement that the Ricci tensor
in the given coordinates is in diagonal form, i.e. that R; = 0, if © # j.
Therefore, the Robertson condition is automatically satisfied whenever the
metric gV is flat. .

e The potential must satisfy
aijv = 3iGj8jV + BjG‘é)iV.

It can be shown that this is equivalent to the condition that the potential
has the form

V=3 hi(z)g",

for some list of single variable functions h;(z;).
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If the above conditions are satisfied, then (B.4) takes the form

Zyii('uii + uf + fiu; + h; = ESI,') =0,

and therefore separates into the following equations:
f2u® + du)
d.'L',‘

2 dul® L
) -+ f,(ﬂ:,)—“— + h.l'(.’L'i) + Z /\J'Sli(.’r.’,‘) =0,

dr? dz; =

where Ay = —FE, and ),,..., A, are the other constants of separation.

" The preceding discussion tells us that the Lie algebraic operator (B.1} will
separate in coordinates (£,7) if and only if the following two conditions are satis-
fied. First, these coordinates must give multiplicative separation of the following
hyperbolic form of Laplace’s equation,

¥,, = EV.

In other words, the metric in the (£,7) coordinates must be in Stickel form. Note
that the Robertson conditions are automatically satisfied, because the metric in
" question is flat. Second, the potential must have the form

V-:“F(_E).*.M

P q

¥

where pdé® — gdn? is the expression for the metric in the (£, ) coordinates,

The separation of the planar, hyperbolic Laplace equation has been studied by
Kalninsin [17]. This article classifics all coordinate systems that allow separation of
variables for this equation. These coordinate systems are presented in the following
table. Note that we will reserve the symbols Z and § for the orthogonal Cartesian
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fo |
-1

coordinates.

Coordinate System Metric Deseription
l. z=%+7 y=I—§ di? — di? Curtesian
2. Z=¢coshy 7 = Esinhy dg* = 2dn® Polar
3. = %(Ez +7%)  g=£&n (€3 = 7°)(d€* — dn®) Parabolic I
4. z=—(E-n)° y=2E+n S=U(de? — dn?) Parabolic 11
5. z =cosh %(E —n) .= sinh :}(E +7) (sinh & — sirk9)(d€? — dn?) Hyp ~rbolic 1
6. r=gsich(f—-1n) y=cxp(+n) (exp(28)+ xp(2n))(de* — dn*) Hypeorbolic 11
7. z=cosh(6—n) y=exp(é+7n) (exp(28) — cxp(2n)}(dE® — dn*) Hyperbolic 111
8. #=sinh€coshn 7 =cosh&sinhn (cosh?€ + sinh®n)(d€® —dny?}  Elliptic 1
9., 7 =coshécoshn % =sinh&sinhy (sinh?& + sinh? 5)(de® — dy*) Elliptic 11
10. £ =cosécosny §G=sinfsiny  (sin®& + sin® n)(de? — dn?) Elliptic 1a

Strictly speaking, the classification is complete up to conjugation by elements of
the pseudo-Euclidean group,

=1

3]

cosh® sinhf s
— | sinh@ cosh§
0 0 1

-3
[
St

—t
[y

the reflection transformation,

(.’E, U) = (—:I"a g)a
and the permutation transformation,
(Z,9) = (4, %)-

Thus, in order to show that the potential given in (B.1) does not separate, it
suffices to check each of the above coordinate systems for the property that an
expression of the form

V=zy+az+by+

, or V=uxy+azr+b
cx+d Y +y+f-"£l+d




APPENDIX B. HYPERBOLIC SIGNATURE COUNTER-EXAMPLE 158

cannot, be reexpressed as

1 , o)

r q
where pdé? + qdn? is the corresponding form of the metric.

1

Indeed, none of the above coordinate systems has this property, and therefore
(B.1) docs not separate. The verification is done by straight-forward inspection.
Consider, as an example, the Parabolic II system. We must check that V(€ — n)
cannot have the form f(§) +¢(n). Let us focus on the Eli-'d term. Wriling in terms
of £ and n we have

§—n _ -1
—c(f—n2+d off-n)+
There is no way to add choose ¢ and d so that the result will have the form

(&) + g(m). The same conclusion holds for terms of the form Ff?&-
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