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Abstract

We investigate the geometric properties of multi-dimensional Lie-algebraic oper­

ators. Such operators are relevant to t'il\' study of quasi-exactly solvable, quan­

tum mechanical systems. The present effort addresses several issues raised by the

Q.E.S. research program. One such issue is the normalizability of an operator to

Schr6dinger form; this criterion is known as the operator closure conditions. We

give n gcometric, and a representation-theoretic reformulation of the closure con­

ditions, and then use these techniques to obtain solutions for the case of !inear

SL(2) a<:tions in the plane.

The study of multi-dimensional Lie-algebraic operators benefits from an intrin­

sic, geometrically based approach. We do this by taking as our setting the fibre

bllndle 'Il' : G --+ M, where G is a Lie group, and the base is a homogeneous space.

The symbol of a second-order Lie-algebraic operator induces a pseudo-Riemannian"

metric tensor, g, on the base; the symbol also induces a horizontal-vertical decom­

position of the above bundle. Not surprisingly, the geometry of Il is determined by

this decomposition, and thus allows us to investigate 9 in terms of the horizontal

and vertical vector fields associated to the decomposition.

Of particular interest)s the class of fiat geometrics induced by L:e algebraic

opcrators. One motivatil'Jl for considering this class is furnished by Turbiner's

Conjecture, which-Dt,,:;;i that a Lie algebraic operator admits separation of vari­

ables if its symbol induces a fiat metric. In the planar case we prove a global

result to the effect that a fiat, Riemannian manifold of the type described above,

is isolIletric to the quotient of the Euclidean plane by reflections. We then use this

result to give a p:oof of a limited form of Turbiner's conjecture.
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Abstract

1\IOU5 étudions les propriétés géometriques des opérateurs induits par des alg"bres

de Lie en plusieurs dimensions. Ces opérateurs relèvent de la théorie des systèmes

quasi-exactement résolubles en mécanique quantique. Ce travail traite de plusieurs

questions soulevées par l'étude de ces opérateurs quasi-exactement n'solnbles. Une

de ces questions est celle de l'équivalence d'un opérateur [lia forme de Schrodingcl';

ce critère se formule en termes de conditions dites de fermeture. Nous donnons une

formulation géométrique et enspirée par la théorie de représentations de groupes

des conditions de fermeture. Ceci nous permet d"o\)tenir dcs solutions dans le:Col~

des actions linéaires de SL(2) dans le plan.

L'étude des opérateurs induits par des algèbrcs dc Lic cn plusieurs dimensiom;

se fait naturellement par une approche intrinsique, basée sur la géometrie sou~­

jacente. Le cadre est donc celui d'un fibré "Ir : G -+ M, où G est un groupe de Lie

et M un espace homogène. Le symbole d'un opérateur du deuxième ordre iuduit

par une algèbre de Lie definit un tenseur métrique pseudo-riemannicn, !J, sur la

base; il définit également une décomposition horizontale-verticale du fibré. Il n'est

pas etonnant qu.e la géometrie de !J soit déterminée par cctte décomposition, ct

qu'elle permette donc l'étude de !J en termes de champs de vecteurs horwnt,aux ct

verticau..'(.

Les géométries plates correspondant aux opérateurs induits par des algèbres

de Lie sont d'un intérêt particulier. Une motivation pour l'étude de cett.) classe

provient de la conjecture de Turbiner, selon laquelle l'opérateur doit être sép:::rable

si la métrique est plate. En dimension deux, nous démontrons un résultat global af­

firmant que une variété riemannienne plate du type décrit plus Iillut c~ isométrique

au quotient du plan euclidien par un groupe de réflexions. Nous nous servons de

ce résultat pour démontrer la conjecture de Turbiner sous une formclimitéc.
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Chapter 1

Introduction

Be patient toward ail that is unresolved in your heart

And tMJ ta love the questions themselves.

- Rainer Maria Rilke

1.1 Overview

•

As per the title, the subject of the present dissertation is multi-dimensional, Lie­

algebraic operators. Roughly speaking, these are differential operators that are

defined on multi-dimensional manifolds, and that are generated from a finite di­

mensional Lie algebra of first-order operators. The primary impetus for the study

of these mathematical objects cornes from their application to quantum-dynamical

spectral prob:ems. The relevant concept here is the.notion of quasi-e.'Cact solvabil­

ity.

A quasi-exactly solvable operator is distinguished by the desirable property

that a part of its spectrum can be computed using algebraic methods. This c1:lss

of spectral problems was first defined in the research of Shifman, Turbiner, and

Ushveridze [28] [31] [3'1]. There are a number of different ways to create quasi-

1



•

•

•

CHAPTER 1. INTRODUCTION

exactly solvable operators. At present, the mOtit comprehcntii\'c sur",,)' of t.hc

different methods is to be found in Ushveridze's book [35]. There are, as weil, Tur­

biner's algebraic investigations of quasi-exact\y solvable operators \Vith polynomial

eigenfunctions [32].

The Lie-algebrai~a.Jproach to quasi-exact solvability \Vas formulatcd indepcn­

dently by Kalman and Olver in [18], and also by Shifmall and Turbiner in [28].

The idca behind this approad. is simple; one must choose a Lie algebm of ri rst­

order operators that leaves invariant a finite dimension subspace of fundions, and

use a second-order Lie-algebraic operator constructed l'rom this Lie algebra a.~ the

system Hamiltonian. The Lie-algebraic approach was taken up in the works of

Gonzalez-Lopez, Kamran, and Olver. T:lesc 'authors completed a comprehensive

analysis of the one-dimensional case [12J, classified ail quasi-exactly solvable Lie

algebras in two dimensions [9], and created a formalism fol' th!) application of the

Lie-algebraic approach to higher dimensions [13] .

The article [13J has particular significance for the present work. Much of the

research i:l the present dissertation was directly inspired by the questions raised

in that paper, and can be understood as an attempt t.o address thesc quetition

through the use of certain geometric and representation-theoretie techniques. The

other driving force behind the present exposition is the relationship between quasi­

exact solvability and the technique of separation of variables. One connectioll

between these two notions is to be found in the works of Ushveridze [35], which

detail techniques for ereating Q.E.S. systems through the use of separation of

variables. Turbiner has conjectured that t.here is also a connection in the opposite

direction. He has put forward the conjecture (see p. 299 of [32]) that quasi-exactly

solvable systems based on the Laplacian of fiat, 2-dirnensional space must. always

admit a separation of variables. The present work has something to say about

the conjecture, as weil as about Lie-algebraic Laplacians on fiat space. In its 1'1111

gencrality, however, the conjecture remains unresolved.

The l'est of the introductory ch'lpter is organized as follows. We begin with a

brief description of the notion quasi-exact solvability, and follow wit,h a discussion
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of the Lie-algebraie approaeh ta Q.E.S. problems. Wc will not return to the Q.E.S.

theme in the rest of the dissertation; it is presented in order to givc the reader a

sense of motivation and historieal eontinuity. Wc will then give an overview of the

issues that arise in the study of ltigher-dimensional Lie-algebraie operators. The

end of the chapter is devoted to a summary of the research that is contained in

the subsequent chapters.

1.2 Quasi-exact Solvability

Consider the time-independent Schréidinger equation for the quantum-mechanical

harmonie oscillator:

One approach to this equation is to regard the differential operator -8xx + ax2

as a symmetric transformation of a certain linear subspace of the Hilbert space

of square integrable functions. Solving the equation then amounts to finding an

infinite orthonormal basis that diagonalizes -8xx +ax2 • The quantum-mechanical

harmonie oscillator is known as an e:l:actly-solvable problem. This means that

there is an algebraic procedure for diagonalizing -8xx + ax2 •

One way to go about this is to employ the related operator:

The two operators are relatcd by a change of scale:

:/2.-'Ij; Ho e- 2 x· 'Ij;..

In other words,
:/2. 2 2:/2. - r.:e 2 x (-8xx + ax )e- 2 x· = -1l + va.

This sug15est that we first solve the spectral problem

1l'lj; =E'Ij;,
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and then relate the solutions to the original problcm. The action of 1i on Illono­
mials is given'by

xn >-+ -2vanx" + n(n -1)x"-2.

Thus, using monomials as a function basis, we can express 1i as the following
Infinite matrix:

0 0 2 0 0

0 -2va 0 6 0
0 0 -4va 0 12
0 0 0 -6va 0
0 0 0 0 -8Jii

•
Diagonalizing the above matrbc is a straight-forward algebraic procedure.

eigenveetors are polynomials,

... ,

The

•

where the eigenvalue of 1/1(n) is -2nva. We are fortunate because e-x '/2 times any

polynomial is square integrable. Therefore, the (unnormalized) state functioC",of
the simple harmonie oseillator are given bye-X' /21/1(n) with eorresponding energy

values va(2n + 1).

The sueeess of the above technique is, unfortunately, inextricably bound to the

choiee of a quadratic potentia!. Naively, one might expeet that a system with a

potential that was just a bit more complicated, say a quartic polynomial, would be

amenable to a similar method; yet there is no known way to generate an exaetly

solvable model with a general quartic potentia!. Ushveridze in [35] points out

an insurmountable analytie obstacle to the cx<let-solvability of a system with a

general quadratie potential. The diffieulty is revealed when one eonsiders systems

with Hamiltonian

a 2 4- xx+x +ax .
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The parameter, a, determines the eigenvalues, E(a), of operator. If one considers

a>-+ E(a) as an analytic function, then there is a brd.llch point type singularity at

the value a = O. This singularity was first studied by Bender and WU [2J. They

discovered that the functiC'n E(a) can be analytically extended to a three-sheeted

Riemann surface, where it has a complicated pattern of sing'.llar points. The point

a = 0 turns out te· he an accumulation point of the set of singularities. The exact

solvability of the harmonic oscillator forced the the relation between energy levels

and the parameter to be algebraic:

•
The Bender/Wu pattern of singularities precludes such an algebraic relationship in

the case of the quartic potential, and therefore makes it unlikely that there exists

a method that gives exact solutions of such systems.

Interestingly enough, Turbiner and Ushveridze in [33J showed that the situation

improves when one considers anharmonic oscillators with sextic potentia!s,

The resulting system is not c.xactly-solvable, but for certain values of the param­

etcrs A, B, and C it does·!'>ecome amenable to an algebraic treatment. Suppose

that

A = b2, B = 2bc, C = ,:2 + (4n + 3)b,

c.xp (~X4 + ~X2) xk, where k = 0 ... n.

When b < 0 these functions are square integrable, and therefore form a "finite

block" within a matrix representation of the operator -axx+V (x). This operator is

symmetric, and therefore this block can be diagonalized by an algebraic procedure

where b, c are arbitrary constants, and n is a natural number. For such parameter

values the operator -a"" + V(x) turns out to stabilize a finite dimensional module

of functions:

•
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to produce n eigenvalues and eigenfunctions of the operator. For instance. when
n = 1 the finite block of the operator is given by

(
4b -5C).
-c -2

The eigenvalues (energy levels) are solutions of the equation

E 2 + (2 - 4b)E - 5c2
- 8b = 0,

and the corresponding eigenfunctions are

It is this property ofleaving invariant a finite-dimensional subspace of fuudions

that has come to be called quasi-exact solvability. As illustrated by the preceding

example, if the invariant, n-dimensional subspace of a Q.E.S. operator consists of

square Integrable functions, then we can algebraically obtain n eigenfullctions and

energy levels of the operator.

The next natural question is, how does one construct quasi-exactly solvable

operators? The operator in the preceding example was not chosell by trial an

error; it was constructed with the use of a certain method. One sucll method is

based on the use of Liè-algebraic operators.

1.3 The Lie-algebraic approach

The authors of [18] and [28] observed that if one begins with a Lie algebra of first

order operators that stabilizes a finite-dimensional subspace of functions, then

any differential operator generated from this Lie algebra leaves the same subspace

invariant. This simple, but important, observation forms the core of the Lie­

algebraic approach to Q.E.S. operators.
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On the Hne the most general quasi-exactly sCJlvable Lie algebra of operators is

given by

where n is a natural number. The corresponding module of invariant functions

is the space of polynomials of degree less than or equal to n. Both the harmonie

oscillator, and the system with a sextic potential described in the preceding section

are generated from the above actions.

To get the anharmonic oscillator system with a sextic potcntial we begin with

the operator

l { n} 2 (n) n7-l = '2 za. - 2' a. + 16b(z a. - nz) + 4c za. - 2 + 2a•.

A change of coordinates, z = x2 /4, transforms the operator into

7-l = au + 2(bx3 + cx)a" - 4bnx2
- 2nc.

Conjugating 7-l by a chan!;e of scale with the inverse of the factor

~ = exp (~X4 + ~X2),

gives the following:

Since the original operatol' was constructed 50 as to leave invariant the subspace

generated by {xk }, where k = O••• n, the operator

must leave invariant the subspace generated by {~k}.

The above discussion points the way to a general method of constructing quasi­

exactly solvable operators. First, one needs a Lie a1gebra of first order operators,



•

CHAPTER 1. INTRODUCTION 8

{Ta}, that leaves invariant a finite-dimensional subspace of fllnctions, M. Ncxt,

one forms a second order differential operator,

1-1. = L CabTan +L LaTa, (1.1)
ab a

in such a way that 1-1. after a change of scale by a factor, JL, will give a I-Iamiltonian

operator for a quantum-mechanical system. The required change of scale must

also satisfy a normalizability constraint: the clements of M multiplied by IL must

be square iDtegrable. This program has been comprehensivcly carried out for

I-dimensional Q.E.S. operators by Gonzalez, Kamran, and Olver in [12J. One­

dimensional I-Iamiltonians,

-8xx + V(x)

are characterized by their potential, V(x), and the afore-mentioned article tab­

ulates ail possible potentials that arise from the application of the Lie-algebraic

method.

To generalize the method to higher dimensions one must resolve a number of

issues that are not encountered in the I-dimensional case. First,~hé second order

part of an operator of the type shown in (1.1) will, in general, have the form

Lgii8ii ,
ij

where the coefficients gii depend on the constants cab and on the local coordinate

expressions for the first order operators, Ta' The natural course is to interpret the

gii as the components of a contravariant representation of a pseudo-Ricmannian

metric tensor, and to construct Schrëidinger-type I-Iamiltonians of the form

.6. + V, (1.2)

where .6. is the corresponding Laplace-Beltrami operator and V is the system's
potential. - '.

•
Clearly, we must impose the constraint that gii be non-degencrate.

stituent first order operators are a sum of a vector field and a sca];lr, i.e.

Ta = Va +T}a.

The con-
. '.
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The vector field tenns, Va, must form a fini te dimensional Lie algebra in their own
right. In order for [Jij to be non-degenerate this Lie-algebra must act transitively,
and this means that the setting for the system must be the subset of a homogeneous

space. As to the scalar terms, "'a, they must satisfy two constraints: the operators

Ta must be closed llnder the bracket operation, and the resulting Lie algebra of
first order operators must be quasi-exactly solvable, Le. it must stabilize sorne

finite dimensional subspace of functions. A cC'mplete classification of quasi-exactly

solvable Lie algebras of first-order operators in the complex plane has been carried

out in [9J. An article by Milson [25J deals with the question of the scalar terms,

"la, and bracket closure. The quasi-exact solvability constraint for 2-dimensional
operators is explored and illuminated in [8].

The next issue that must be resolved stems from the fact that in higher dimen­
sions most second-order operators,

11. = LgijÔij + LhiÔi + U,
ij i

cannot be transformed by a change of scale to an operator of the form (1.2). The

difficulty is manifest if wc write 11. in an invariant manner:

where W = Wi d:r;i i§ the so called magnetic I-form associated with the operator. It is
not hard to sec that a change of scale results in the addition of an exact differential

to w, and therefore 11. is locally equivalent to a Schr6dinger operator if and only if
W is closed.. _T!;;;:;êcdosure conditions a..-e automatically satisfied for I-dimensional

/

operators, because ail l-tiimensional I-forms are closed. In higher dimensions,

chJosing constants ca! and La so that the resulting operator satisfies the closure

-c<mditions is a formidable oarrier to e.xtending the Lie-algebraic approach to higher

dimensions.

A.s in the l-dimensional case, the final piece of the puzzle is the normalizability
constraint: the change of scale that transforms an operator of the form (1.1) to
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an ope,'ator of the form (1.2) must make the functions in M square integrable.

A number of systems that satisfy the normalizability constraint arc cxhibited in

[28] and [13], but at this point there does not cxist a more gcneral analysis of this

condition.

1.4 Summary of New Results

The dissertation opens with a chapter that delines and formalizes th~ notion of

a Lie-algebraic operator. For reasons explained in the preceding section, ,,":) take

the background setting to be a homogeneous space M = G/H, and work with

the associated representations of 9 (the Lie algebra associated with G) by lirst

order differential operators. There are two original contributions in this chapter.

First, we formally describe the set of Lie-algebraic operators associated with a given

homogeneous space. We then show that the corresponding Lie group acts naturally

on this set, and that the orbits of this action consist of equivalent operators.

Second, we introduce the so called divergence cocycle. This is a l-cocyclc in the

Lie algebra cohomology of 9 with coefficients in C~(M). This object is naturally

associated with every second-order Lie-algebraic operator, and plays an important

role in the theory of Lie-algebraic operators. III particular, the divergence cocyc!e".. ,

is necessary for an invariant, coordinate-free formulation of this theory.

Chapter 3 is devoted to a discussion of representations of 9 by non-homoge­

neous first order operators. The infinitesimal group actions of G on M engender a

representation of 9 by vector fields on M. The additional data rcquircd fora repre­

sentation by non-homogeneous first order operators turns out to be a cohomolog"j

class in Hl (9; C~(M)), and classes of inequivalent representations correspond to the

classes of this cohomology. We present an isomorphism theorem for H" (9; C~(M))

that, in particular, allows us to easily c01I1Pute the dimension of Hl. The chap­

ter a1s0 presents a method for explicitly computing representative cocycles for the

classes in Hl. Sorne of the results in this chapter have appeared in a prior article

'.

......-
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by Milson [25J. The method of cocycle generation, however, is an improvement on
the techniques presented in that earlier paper.

As mentioned above, the quadratic coefficients of a Lie-algebraic operator in­

duce a pseudo-Riemannian geometry at the points of M where the corresponding
rnetric tensor is non-degenerate. In chapter 4 wc turn to the study of these Lie­

algebraic metrics and spaces. The fundamcntal technique employed in this chapter

is to lift the ~etting from M up to G. Wc show that a Lie-algebraic metric induces a
vertical-horizontal decomposition of the tangent space of G, and that the geometry

of the space below can be studied in terms of this decomposition. In particular, we

show that the geodesic flows on Mare given by the flow of horizontal vector fields
on G. A particularly interesting phenomenon arises when G acts imprimitively

on M. Wc will prove a theorem to the effect that in the imprimitive setting, if a

geodesic and the invariant foliation are perpendicular at one point, then they must

be perpendicular everywhere. A useful corollary i5: the following: if the invariant

foliation has codimension 1 (such is the case when dim(M) = 2), then the leaves of

the perpendicular foliation are geodesic trajectories. We will also derive a number

offormulas for standard objects like curvature and the Laplace-Beltrami operator
in terms of the horizontal-vertical decomposition.

In Chapter 5 wc return to the closure conditions that must be satisfied if a Lie­

algebraic operator is to be of Schrodinger type, that is equivalent to a Schrodinger

operator by a change of scale. We begin by giving an invariant reformulation of

the closure conditions in terms of the horizontal-vertical decomposition defined

in Chapter 4. Wc also list sorne conditions on Lie-algebraic operators that are
sufficient, but not nece~sary for the operator to be of Schrodinger-type. The main

thrust of the chapter is a further reformulation of the closure conditio11S as certain

'invariant equations on the group, G. Equivalently, this allows us to recast the

closure conditions in terms of the representation theory of G. This approach is

based on the fact that G acts invariantly on the set of Lie algebraic systems.

Reduction by this invariant action was used in [12J to classify normalizable, 1­
dimensional Lie algebraic potentials. We illustrate these ideas for the case of



• CHAPTER 1. INTRODUCTION 12

•

•

!inear 8L(2) action, and show how to classify 8chrodingcr-type opemtors by llsing

the invariant group action t() simplify the problem.

The final cbapter takes up the study of fiat Lie-algebmic metrics. Wc p,'ove a

f1:l1damental theorem to the effect that a positive-definite, fiat, Lie-algebmic metric

tha; ean be realized on a compact manifold admits a global cover by t.he Ellclidean

plane. This cover is an analytic mapping, but it is not everywhêre invertihlc.

The points of degeneracy correspond to k-fold brancH points, and furthermore

the locus of degeneracy forms a lattiee of linl's that tile the Ellclidean plane into

isometric ceUs. We apply this theorem to give the proof of a very limited form

of Turbiner's conjecture. 8pecificaUy, we show that if G acts imprimitivc1y on a

compact M, then a fiat Lie-algebraic operator on M can be separated in either

fiat or radial coordinates. We also exhibit a count<.!r-example that ilh;3trates that

Turbiner's conjecture depends criticaUy on the assumption that the metric be

positive-definite. A discussion of the counter-example does not fit weil into the

conteJl.i; of Chapter 6, and so we relegate the details of the counter-example to an

appendix.



•

•

Chapter 2

Lie Algebraic Operators

Buch is the advantage of a weil constructed

language that its simplified notation often

becomes the source of profound theories.

- Pierre-Simon de Laplace.

., .•
.. '

2.1 Preliminaries

•

The present section introduces the technical background material and notation

that we will require in subsequent discussion. The goal here is to define some

terms, to introduce some necessary notation, and to thereby eliminate ambiguity;
there will be no attempt to be comprehensive. Most of our investigations will

be set on a manifold M equipped with an action of a Lie group, G. We will be

interested using the infinitesimal actions of G to construct a metric tensor on M,

and therefore require that infinitesimally, at least, G act transitively on M. We

will therefore suppose that M is a homogeneous space, or when working locally

suppose thatM is an open, contractible subset of one.

A group can act on itself with either a right or a left action. On a Lie group

13
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there are, correspondingly, two typcs of infin:tesimal action; the infinitesimal left

actions are given by so called right-invariant vector fields, and the infinitesimal

right actions arc given by the left-invariant vector fields. Even though the two

types of action are formally equivalent, wc cannot ignore the distinction, because

in the settings considered below both types of action have a role and interact with
one another.

With this in mind, let G be a Lie group and H a closed subgroup. Wc consider

the homogeneous space, M = G/H, to be the spacc of right cosets with a corre­

sponding right G action. We define the associated Lie algebra, g, to be the tangent

space of G al. the identity point, e. The differentiai of the adjoint representation

of the group Ad : G -+ Aut(g) induces the map ad : 9 -+ End(g), and wc specify

that [a, b] =ad (a) . b, where a, b E g.

For a g-valued function f : G -+ g, we define fL to be the vector field

where Lg : G -+ G denotes left multiplication by 9 E G. In particular, by

regarding a E 9 as a constant function on G, we can represent infinitesimal right

multiplication by a as the left-invariant vector field é. More generally, if <J> is

any tensor-valued function on G, we will use ,]>L (respectively <l>1t) to denotc the

corresponding tensor field on G induced by right (respectively :dt) actions. If '1>
is a constant, then <J>L will be a left-invariant tensor field, and '1>" a right invariant

one.

Let 7r : G -+ M denote the canonical projection, and 0 = ?T(e) the associated

origin of the homogeneous space. It is important to realize that the various geo­

metrical entities: functions, differential forms, transformations, and vector fields,

that are associated with M are in correspondence with those G-entities that arc in

some sense invariant with respect to left H-actions. Right multiplication by 9 E G

is just sucb a diffeomorphism, and thereby induces a diffemorphism of M, whicb

we will denote Tg. Smooth functions on the homogeneous space arc naturally iden­

tified with the functions on G that are constant on the fibers of ?T, or equivalently

.'
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thosc functions that are annihilatcd by the vector fields of ry". A left-invariant,
contravariant tensor field, i[>L, is also ryR invariant, and is thus projectable to a
tensor field, (I>~ = 7l". (i[>L), on M. Two types of contravariant tensor fields will be

of particular importance to us. Associated with the homogeneous space we have a

representation of 9 by vector fields a~ = 7l". (aL) on M. We will also be interested

in type (n tensors C E 5 2g, the corresponding left-invariant tensor field, Cc, and
the projected tensor field, C~. Working in terms of a basis, aj, ... , an, the latter

tensor field can be expressed as

where Cij is the symmetric n x n matrix of constants that determines C.

Sorne of the ideas that we will encounter are best described in terms of Lie
algebra cohomology. We will briefly state the relevant definitions here; the reader

is referred to Jacobson's book [16] for more complete information. Given a Lie

algebra, g, and a g-module, M, one defines a k-cochain with coefficients in M to be

an alternating multi-linear map that takes k arguments from 9 and returns values
in M. The space of ail k-cochains is denoted by Ck(g; M). The corresponding

cochain cornpIe.'\: is defined to be the cochain spaces Iinked together by coboundary

operators:

The kth coboundary operator is defined by

k

(<5k</»(ao,aj, ... ,ak) = I)-l)iai</>(... a; ...)+ L (-l)i+j</>([ai,UjJ, ... a; ... iïj ...).
i=O O~i<j:::;k

The space of k-cocyc1es is defined to be the kernel of Dk and is denoted by Zk(g; M);
the space of k-coboundaries is defined to be the image of Dk-l and is denoted by
Bk(g; M). The kth cohomology space is defined to be the quotient ZkjBk, and is
denoted by Hk(g; M).
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2.2 The Components of a Lie-algebraic Operator

System

In this section we define the basic objects of our study: Lie-algebraic opcrat.ol's,

and the Lie-algebraic pseudo-Riemannian manifolds inc!nced by t.hcsc opcrat.ol's.

A Lie algebraic operator is defined to be an operat.or that can be gcncrat.cd from

the infinitesimal actions of a Lie group. In other words, it :nust be an clement.

in the enveloping algebra cf sorne Lie algebra of first order opcrators. Wc will

call such a choice of a grùup action and an element in the cnvcloping algebra the

operator system. Here we are interested exclusively in second order Lie algebraic

operators, and in second order operator systems. Note: the distinction bet.wccn

Lie algebraic opcrators and operator systems is importll.nt becausc a given opcrator

can be specified by several different systems.

One begins with a representation of a finite-dimensional Lie algebra, g, by first

order operators,

a" + 7](a),

where a E g, where a~ is a veetor field on a background manifold, M, and 'fJ is

a !inear map from 9 to C~(M). The vector field portion of the operators give a

representation of 9 b)' vector fields. Since we will want to construct Ilon-degenerate

metric tensors from these infinitesimal actions, wc must assume that the vector

fields a" span the tangent space at every point ofM. Thus, these vector fields define

a local, transitive action of a Lie group, G, on M: We will fix a basepoint 0 E M,

and make the technical assumption that M is just a contractible neighborhood of

a global homogeneous space, M = GjH, where His the isotropy snbgroup of o.

The operators a" +7](a) must be closed under the bracket operation, and hence:

[a" +7](a),b~ +7](b)J - [a",b"J +a"(7](b)) - b~(TJ(a)) (2.1)

- [a, W+ 7]([a, bJ).

A linear map from 9 to C~(M) is just a 1-cochain in the complex C·(g;C~(M)) .
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Equation (2.1) is true if and only if dTJ = 0, Le. if and only if TJ is al-cocycle.

A second order Lie algebraic operator is determined by the choice of the second

and first order coefficients, and has the fol1owing form:

1i = L:Cij(ai +TJi)(aj +TJj) + L:Li(ai +TJi),
ij i

(2.2)

•

•

where al, ... , an is a basis of g, and where TJi = TJ(ai)' In invariant terms, Le.

without a mention of a basis for g, this amounts to a choice of a symmetric, (~)

tensor C E S2g, and an element of the Lie algebra (a type (n tensor), L E g.

We will cali C, L, and TJ, respectively, the second-order, linear and cohomology

components of the operator system. Later on we will consider a more intrinsic

definition of 1i. For now we must be content with the following simple tautology:

the operator, 1i, given by (2.'l) -:s invariant under change of g-basis.

The symbol o[au arbitrary second-order operator induces a contravariant ten-...._......

sor field. For a Lie-algebraic operator this tensor field is determined by the second-

order component; Le. the tensor field is given by

C" = L: Cijai 1&1 aj
ij

In invariant terms, this is just C" = 1l'.(CL
), the projection of a left-invariant

tensorfield from G down to M. We will cali C" a Lie-algebmic metric tensor, and

refer to M together with this metric tensor as a Lie-algebraic pseudo-Riemannian

manifold.

The metric tensor, C", may have degenerate points. Since C" is analytic with

respect to the real-aIialytic structure of M, we know that the locus of degeneracy

is either all of M, or an analytic hypersurface in M. We would like to assume

that C" is such that the first possibility does not holrl: The following proposition

gives a criterion for metric tensors, C", that are not identically degenerate. Two

points of terminology used in the pnjposition must be explained. First, given an

x E G/R, we use Q" C 9 to den0te the isotropy subalgebra of x, and Q; C g'

to denote the l-forms that annihilate that subalgebra. Second, it is legitimate to
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regard C E 5 2g as a symmetric, bilinear form on g', or as a linear map from g' to

g. As such, the restriction of the bilinear form, C, to Il:; is non-degenerate if and

only if I)x EIl C(I);) ~-= Ç).

Proposition 2.2:1 The metrie tensor field, crr, is not identiCCllly dcycnemte if

and only if ther,~ exists an xE G/H, such that I)x EIl 0(1);) = g.

Proof: Wc use the ':anonical identification g/6x ~ Tx G/H, and the dual ident.i­

fication 1); ~ T; C/H. Thus, I)x EIl C(I);) = 9 if and only if crr is non-degenerate

~X. 0

At times it becomes necessary to consider ~ases where one or IIlore of the

components C, L, 7) is zero. To accommodate these possibilities wc say that the

operator system is basic if 7) = 0, and say that the operator system is homoyeneous

if L = O.

In the next two sections we will sec that different operator systems can give rise

to equivalent operators. We will make precise this notion of equivalence, and distill

the fundamental invariants that c1assify and distinguish Lie algebraic operators.

The relevant data turns out to be the c1ass of 7) in Hl (g; C~(M)), and the G-orbit

of(C, L) in 5 2g EIl g.

2,3 Change of Scale, Equivalence of Operators,

and the Closure Conditions

Before we can discuss operator equivalence wc must define and discuss the notion of

a change of scale, also called a scaling (or a gauge) transformation. Every positive

p. E C~(M) gives rise to the scaling transformation

f I-t p.f, where f E C~(M) .

:
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A linear operator 11. of the original C~(M) corresponds to the conjugated operator

/111./[ 1 of the scaled C~(M).

The effect of such a conjugation on the representation of 9 by first order dif­

ferential operators is the addition of a cl)bou:ldary term, 0>", where >.. =log(fl). In

other words,

fl (a" + 7](a)) fl- 1
- a" + 7](a) - a"(>")

- a" + (7] - o>")(a), where a E g.

Scaling transformations impose an equivalence relation on the set of represen­

tations of 9 by first order operators. Under this equivalence the distinguishing

characteristic of a representation becomes the class of 7] in Hl (g; C~(M)). The fol­

lowing self-evident proposition clarifies the relation between changes of scale and

the choice of a cocyde 7]•

Proposition 2.3.1 Let· (C, L, 71) be an operator system with corresponding Lie

algebraic operator 11.. Then, fl1l. fl- l corresponds to the operator system (C, L, 71­

0>"), where >.. = log(fl). In other words, a change of scale is equivalent to a change
in the representative cocycle of a class in HI(g; C~(M)).c

Wc will say that two operators are locally equivalent if they can be related by

the composition of a scaling transformation and a diffeomorphism. The theory

of equivalence for second order differential operators was first worked out by É.
Cotton [4]. In terms of local coordinates, a second order differential operator is

given by

There is, however, a more intrinsic description of the operator. We will suppose

that the symbol of 11., i.e. the matrb: of second order coefficients, gij , is non­

degenerate and thereby defines a pseudo-Riemannian metric in the ambient space,

M. Working in terms of this metric, the operator can written as

1I.=.6.+L+U,
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where ~ is the Laplace-Beltrami operator associated with the Illctric yij, and

where L = L i 8i is a vector field determined by the coefficients !li j and hi. Thc

local coordinate expression for the Laplaci:ln is

~ = gij8·· + (8 (yi j )) 8 _ gijaiUi) 8
1) ! J 29 J'

where 9 is the determinant of the gij matrix. This intrinsic dcscription makcs

il. clear that in order for two operators to be equivalcn~ it is necessary t.hat the

pseudo-Riemannian l')P.trics induced by their symbols be isomctric. The question

of equivalence is therefore reduced to the following. Given an operator

when does there exist a sealing transformativn that relates Ji to Ji? In order to

answer this question, it is best to work in terms of the so-called maglletic I-form,

w, obtained by lowering the indices on the linear term Liai. In other words, the

magnetic I-form is given by

Proposition 2.3.2 The operators Ji and Ji with equal symbols are loeally equiv­

alent if and only if the following two conditions are satisfied. Fi7'st, the diffcrc1lce

of their magnetic l-forms must be closed, i.e.

w - w= 28'>',

for some locaUy defined .>. E C~(M) 1. Second, their scalar terms must be relatcd by

Proof: For a given positive JL E C~(M), we have

'The factor of 2 is there to simplify the expression ur later fonnulas
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where À = log(ft)/2.
necessary that

Hence, in order for 1-l and 1-l to be locally equivalent it is

•

•

L - L = 2grad(À),

for some locally defined function À. This gives the first condition regarding the

magnetic 1-forms, and the preceding formula for the conjugated 1-l gives the second
condition regarding the scalar terms. 0

We are particularly interested in s~cond order operators that can serve as

Hamiltonians of quantum-dynamical· s~j.tems. These operators have the form
ll. + V, where V E C~(M); we will cali them Schrodinger operators. It is there­

fore important to know which second order operators are locally equivalent to a

Schroedinger operator. Proposition 2.3.2 tells us when that is the case.

Definition 2.3.3 We say that a second order operator,

1-l=ll.+L+U,

is of Schrodinger type if it satisfies the following equivalent closure conditions:

• 1-l is locally equivalent to a Schrodinger operator, ll. + V,

• locally, L is the gradient of a function,

• the corresponding magnetic 1-form is closed.

If 1-l is of Schrodinger type, we will cali V the associated potential of 1-l, and cali
ll. + V the normalized form of the operator.

Determining which Lie-algebraic operators satisfy the closure conditions is a
difficult problem. Chapter 5 is devoted to the discussion of this question. At

present, we will remark that the set of Schrodinger-type operators is invariant with

respect to conjugation by a change of scale. Therefore, the closure conditions that

determine whether or not a Lie-algebraic operator is of Schrodinger-type depend
onlyon the cohomology class of the cocycle component, 1/. Moreover, the following

is true.
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Proposition 2.3.4 The associated potential of a Schrodinger-type, Die algebraic

operator depends only on the cohomology class of the cocycle componcnt, TJ.

Praof: Let 11. be a Lie-algebraic operator that satisfies the closure conditions.

Thus, we can conjugate 11. by sorne f.L E C~(M) and obtain a Schrodinger operator,

!1 + V. Note that the above condition fixes f.L up 1.0 a constant multiple. The

l'easons is that the gradient of a function is zero if and only if that function is a

constant. This Schrodinger operator also happens 1.0 be a Lie-algebraic operator;

the second-order and Hnear components do not change, but the cocycle component

is TJ - 810g(f.L). Now let us change the cocycle component by a coboundary, and

obtain another Lie-:Jgebraic operator, say 11.'. Let's say that the normalized form

of 11.' is !1 + V'. Again, this normalized form is a Lie-algebraic operator; the

cocycle component belongs 1.0 the same cohomology class as TJ, say il. is TJ-810g(f.L').

Therefore f.LI f.L' must be a constant, and therefore V' = V. 0

2.4 Invariance with Respect to the Group Ac­

tion.

There is a natural right-action of the group, G, on all the components of an

operator system. The action of G on the tensor spaces of 9 is derived from the

adjoint representation. The right action of 9 EGon a E 9 is given by

Section 2.1, described how G acts on M via projected right multiplication diffeo­

morphisms, Tg, where 9 E G. These diffeomorphisms also induce a right G action

on COO(M):
(Tg)"(J· g) = J, where J E COO(M).

There is also a right action on C· (g; COO(M)):

(Tg)"((TJ' g)(a· g)) = TJ(a), where TJ E C1(gjCOO(M)), a E g.
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Thus, there is a well-deF.ned G action on the set of operator syste~ns. In this
section we will show that two operator systems that are related by aG-action give

rise to equivalent operators.

Proposition 2.4.1 Let (G, L, TI) be an operator system with corresponding Lie

algebraic operator 1l. For each 9 E G the push forward, 1l = (Yg).ll, is a Lie

algebraic operator that corresponds to the operator system (C . g, L . g, TI . g).

Proof: Note that

(Yg).(a" +TI(a)) = ii" + ij(ii), where a E g, ii =a· g, ij =TI' g.

Hence, the push-forward of 1l is composed of first order Lie algebraic operators.

In terms of a basis ab ... , an of g, we have

1l - L Cij(af +TI(a.;))(aj +TI(aj))+ L Li(af +TI(ai))'
ij

1l - L Cij(af + ij(à;))(aj + ij(aj)) +L Li(af + ij(ai)),
i,

where ai = a.; . g. We conclude by noting that the components ~)~ C and L with

respect to the ai basis are equal to the components of G . 9 and L·g with respect

~fuà;~~ 0

The upshot of the above proposition is that if we modify the components of an

operator system by a G-action, we will obtain a diffeomorphically equivalent oper­
ator. 'Therelore, all intrinsic properties of a Lie algebraic operator - quasi-exact

solvabili1;y, the closure conditioDs, the curvature of the induced metric - are in­

variant under G actions.

It is natural to wonder what a G action does to the class of a cocycle TI E
Zl (g; COO(M)). It is not hard to show that G actions commute with the coboundary

operator of C·(g;COO(M)). There is therefore a well-defined action of G on the

cohomology groups.
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Proposition 2.4.2 G aets trivially on li" (g; CN(M)).

2·1

•

•

Proof: Since there is a G action on H', the latter must also be a 9 module.

These infinitesimal actions are given by Lie derivative operators with respect to

the veetor fields a", a E g. Using the well-known homotopy formula, wc sec that

if 1J is a cocycle then

.c.•• (1J) = i(a")d1J + d(i(a")1J) = d(i(a")1/).

In other words g-actions take cocycles to coboundaries, and therefore the action

on H' must be trivial. 0

In light of the above proposition wc can summarizc our results aIl equivalcIlce

of Lie-algebraic operators as fol1ow8.

Proposition 2.4.3 Group actions and sealing transformations b1'eak 'ILl) the set of

operator systems into classes of equivalent operators. The set of thcsc classes is

given by

2.5 The Divergence Cocycle

In this section we will given an intrinsic, basis-free specification of the relation

between an operator system (C, L, 1J) and the corresponding Lie algebraic operator.

We will need this later in our study of the closure conditions. The key to this

description is the divergence cocycle. This is an element of ZI (g; CN(M)) that is

naturally associated with the Lie algebraic metric induced by the second-order

component C E 5 2g.

For the moment, let gii be any pseudo-Rlemannian metric on M, and put

,p(a) = div(a"), where a E g.
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Proposition 2.5.1 oq, = 0, i. e. q, is a cocycle.

Praof: FGr A, B, vector fields on M, define

S(A, B) = A(div B) - B(div A) - div [A, Bl.

25

•

•

By the standard properties of the divergence operator we see that fer f E C"'(M)

we have

SUA,B) = S(A,JB) = fS(A,B)

Le. S is a type (~) tensor. Using local coordinates we have

div ai = -a;log(lgiiJ)
2

where Jgii 1 = det (gii). Therefore

The desired conclusion follows by taking A and B to be 9 actions and reealling

that S(A, B) is just the definition of (dq,)(A, B). 0

;=J.'j:oposition 2.5.2 The class of q, in Hl (g; C"'(M)) is independent of the choice

of pseudo-Riemannian metric, gii.

Proof: With respect to a fbœd set of local coordinates, the divergence of a vector

field X = Li Xiai is given by

where igiil is the determinant of the matri.x gii. The difference of divergence

operators corresponding gii and to a different metric tensor, gii, is given by

1··· ..
2(0 log(lg'JI) - olog(I9'J 1)).

Therefore, a change in metric will alter the divergence of a", where a E g, by a
coboundary term. 0
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Definit.ion 2.5.3 We cali 4> the divergence cocycle of the metric g. The divergence

cocycle of an operator system is to defined as the divergence cocycle associated to

the pseudo-Riemannian metric, C", induced by the second-order component, C,

of that system.

Proposition 2.5.4 Consider for the moment a basic, homogeneou., o]Jcmto1' .'ys­

tem, (C, 0, 0) with corresponding Lie-algebraic operator 'H. An int1"Î.ns'ic description

of'H is given by

'H =.6. - (C4»",

where 4> is the associated divergence cocycle, and where (C4»" is t:'c 'invllrùmt

notation for

Proof: Let f E C~(M) he given. In terms of a basis of g, we have

D.(J) div(grad J) ., .-
- div(Cii af(J) aj)

- Ciia'J(af(J)) + C;i div(a'J) af(J)

- 'H(J) + (C4»"(J)

o

Proposition 2.5.5 More general/y, consider an operator system (C, L, 'f'). An

intrinsic description of the corresponding 'H is given by

'H =.6. + (C(21] - 4»)" + L" +C(1], 1]) - C(4), 1]) +div(C'f')" + 'I,(L).

Praof: Again, working in terms of a basis of g, we have

'H - C;i(af +1];)(a'J +1]i) + Li(af + ''7i)

- (fiafa'J + 2C;i1]ia'J + C;i1]i1]i + Ciia'J(1]i) + L" + 1](L) (2.3)
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The first term in the above expression is just the homogeneous, basic portion

of 11., and hen~e, by the preceding proposition, is equal to t. - C 4>~. The second

and third terms are, respectively, equal to 2Crt and O(T], T]). By the elementary

properties of the divergence operator we have

•- :.....

Hence, the fourth term of (2.3) is equal '0 div(OT])~ - O(T], 4». o



•

•

Chapter 3

The Cohomology Component

Man m'Uss irnmer ge1LC1'llli.o.ù!ren.

- Carl Gustav .Jacobi

3.1 Isomorphism Theorem

As was mentioned in Section 2.2, every representation of a Lie algebra, g, by vector

fields on a space, M, can be modified to a representation by non-homogencous first

order operators. The necessary ingredient is a linear function, TJ : g --+ COO(M) that

satisfies

a"(TJ(b)) - b"(TJ(a)) - 71([a", b"D = 0;

in other words, a cocycle of W(g; COO(M)). Conjugation by a scaling operator

J 1--+ exp(À)J, where À, J E COO(M)

results in the addition of the coboundary terrn a"(À), where a E g. Thus, given a

vector field representation, in order to classify the corresponding, non-homogeneous

representations it is necessary to deterrnine Hl (g; COO(M)). The cohomology in

question has an infinite dimensional coefficient module, and one must wonder if

28
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the resulting cohomology will be finite dimensional. Furthermore, in order to

obtain concrete examples of thcse representations, one must have techniques to

explicitly determine cocycle representatives of the nontl'Ïvial cohomology classes.

These questions are addressed in Chapter 8 of Miller's book [24]. In that

work wc are presented with a method of calculating the dimension of Hl and a

technique for computing cocycle representatives for sorne special types of vector

field realizations. Another relevant work is the by Gonzalez-Lopez, Kamran, and

Olver [10]. This paper lists the cohomology dimensions and cocycle representatives

for the 24 possible types of Lie algebras of planar vector fields. These questions

were further taken up in [25], which presented a generalized isomorphism theorem

for H" (g, C"'(M)).

We will begin with a discussion of the cochain complex C' (g; C"'(M)) and relate

it to other simpler cochain complexes. In the end we will be able to show the

resulting cohomology is finite dimensional, and to easily compute the dimension

of Hl. The next step wiII be to describe sorne techniques for computing cocycle

representatives, and illustrate these techniques with several examples.

Consider the cochain complex C'(g; C"'(G)L), where the notation C"'(G)L indi­

cates that 9 acts via left-invariant ve~or fields. This complex can be naturally iden­

tified with the familiar deRham complex of differential forms on G. The cochains

of the deRham comple.'I: take vector-field arguments and give back functions, while

the cochains of C'(g;C"'(G)L) can be thought of as taking g-valued functions as

arguments. Saying'Lh:lt 9 acts via left-invariant vector fields, amounts to identify­

ing a g-valued function j with the vector field jL. In the projection 7J" : G -+ M,

the right-invariant vector fields ~R span the vertical directions. Thus, C"'(M) can

be considered as the ~R-invariant submodule of C"'(G), and C'(g;C"'(M)) can be

identified with the complex of ~R-invariantdifferential forros on G.

The local cohomology of the deRham complex is, of course, trivial, but the

same cannot be said of the ~R-invariantcohomology. Certainly, every ~R-invariant,

closed p-form can be locally integrated to a p - 1 forro, but it may be impossible
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to make the latter be ~R-invariant also. Such a p-form will then reprcsent a non­

trivial cohomology class. Consider, for instance, a ciosed, [JR-invariant I-form,ll.
Up 1.0 a constant, TI can be integrated 1.0 a function f E Cro(G), and ,,"(J) must
be a constant for ail a E ~ because

.caR (df) = d(a" J dI) = O.

Let us denote this constant by ii(a). Note that

ii([a, bD =aRbR(J) - bRaR(J) =0, where a, b E ~,

and hence the map TI >-+ ii is actually a cocycle of Cl(~; 1). Furthermore if ri were
trivial, i.e. if TI = df for sorne f E C"'(M), then ii would hc zero. Thus ri >-+ ii
factors to a map in cohornology.

Theorem 3.1.1 The above cohomology map,

is an isomorphism

Proof: Suppose ii = 0, or equivalently, TI(aR
) = 0 for ail a E [J. Since ''1 is closed

we can always integrate it locally to a function, f, which will he constant along
the directions ~R. Since M is contractible we can perform an integration on al! of

71'-1 (M) to get an f E C"'(M) such that df = TI. Hence, TI is trivial, and therefoœ
the cohomology map must be injective.

Now, let p be a cocycle of H1(~; 1). We identify p with the corresponding

invariant I-form on H. Since M is contractible we can choose a decomposition
71'-1 (M) = M x H and pull p back along the second projection 1.0 gel. a TI E

œ(71'-1 (M)). It isn't hard to verify that p = ii, and thus we hav~ shown that the

cohomology map is surjective as weil. 0
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A related result appears as Theorem 8.4 of [24]. That particular version asserts

thH.t the dimension of H1(9;C~(M)) is equal to the codimension of [~, ~l in ~. In

view of the above wc can see why this is truc; H\(~; 1) is really the same thing

[~, ~1.L C ~., the annihilators of the commutators of ~.

Definition 3.1.2 Wc will calI the linear form fi E [~, ~1.L the classifying form of

the cocycle TJ.

It is remarkable that a similar isomorphism theorem is truc for the higher co­

homology groups. For the sake of completeness we will consider this theorem, even

though only Hl y;ill be relevant to the present discussion of operator systems. The

basic techni~ùe in describing this isomorphism is to define a certain double com­

plex with exact rows and columns and to show that this double complex computes

both of the above cohoffi')logies. This technique is quite similar to the bicomplex

proof that the Cech and deRham cohomologies are isomorphic. A good reference

for the Cech-deRham bicomplex is [3].

We will proceed by proving a general result about a bicomple.'i: of Lie Aigebras

and then as an application generalize Theorem 3.1.1

Let Bb 92 be finite dimensional, rea! Lie algebras and M a 9\, 92 bimodule.

This means that M is both a 9\ and 92 module, and that the 9' and 92 actions on

M commute. Just as a Lie algebra and an associated module give rise to a cochain

complex, a bimodule gives rise to a Lie algebra bicomplex. The cochain spaces of

this blcomple.'i: are defined tobo.

or cp,q for short. It is useful to think of CM as the space of lin~ar forms with

p anti-commuting arguments from 9\, q anti-commuting arguments from 92 and

values in Iv[. The coboundary operators

.
~-=::~_-:~
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are defined as f01l0ws. 01 is defined just Iike the coboundary of C'(91; M) bnL with

the 92 argumpnts playing the raIe of parameters. !vlor~ preciscly, for w E CI"'I,

ai E 9l, b; E 92 we put

(olw)(ao, ... ,ap;bb ... ,bq) - 2:(-l)iaiw(... fi; ... ;b):

+2:(-l)i+jw([a;, aj], ... fi; ... â.i ... ;h).
i<j

02 is defined analogously as a parametrized coboundary of C'(92; M) with the

parameters coming from 91. The coboundaries satisfy or = o~ = 0, and cl lcl2 := O~cll;

the verification i~ trivial if not tedious.

To make use of the bicomplex we augment it by an extra row and an extra

_column of invariant cochains. We say that a cochain w E CI'(91; M) is 92-imJtLrifmt

if

bw(a1o" ., ap) = 0

for all ai E 910 b E 92; and denote the subspace of such cochains CI"inv. Note

that CP(91; M) :: cP'o and thus the subspace of 92-invariallt cochaills is precisely

the kernel of 02 : CP,o -+ cP,l. Also note that olof a 92-invarianl. cochain is

invariant and that therefore c·,inv is actually a subcomplex of C·,o. Wc define

Cinv,., the DI-invariant subcomplex of Co", analogously. The augmented bicomplex

is summarized by the following commutative diagram. The 1. arrows label the
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inclusion maps of the invariant subcomplexes.

1 101 1 1
C2,inv ....!4 C2,0 ~ C2,l -r C2,2 -r

1 lOI 1 1
C1,inv ....!4 C1,O ~ C1,l -r C1,2 -r

1 101 1 1
CO,inv ....!4 CO,O ~ CO,l -r CO,2 -r

l' l' l'
Cinv,O -r CiDv,l -r Cinv,:l -r

33

•

•

To avoid confusion let us agree to refer to the rows and columns of the main

bicomplex by their row and column numbers. Thus row zero refers to the row

Co,". The extra row of invariant cochains wc_will simply cali the e.\.1;ra row or the

invariant row, and likewise for the ext :;:>, column.
' ..

The ultimate goal is to show that the bicomplex computes.the cohomologies of

the e.'Ctra row and column. This is true if the rows and columns of the bicomplex are

e.'Cact. Actually for the bicomplex under discussion a weaker assumption suffices.

Proposition 3.1.3 In order for the rU':':;:J.nd columns of the Lie algebra bicomplex

to be exact it is sufficir.nt that the oth row and column be exact, or equivalent/y,

that H* (91; M) and H* (92; M) are trivial.

Praof: Row p is obtained by tensoring AP9i with row O. Tensoring with a fixed

vector space is an e.'Cact functor and hence if row 0 is exact so is row p. The same

argument works for the columns. 0

The justification for using the bicomple.'C is given by the following theorem.

Theorem 3.1.4 If H*(91; M) aniH" (92; M) are trivial then H*,inv(91' 92; M) ::

Hinv'*(91,g2;M).
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Proo/: Note that by the preceding proposition we have the exactness of the rows

and columns of the bicomplex. The standard proof of this theorem is accomplished

by showing that the cohomology of the bicomplex is isomorphic to the cohomolop;ies

of the extra roll' and column. The reader is referred to [3] for the details. 0

Let us now apply the preceding result to the computation of H' (g; CN(M)). Wc

do so by taking gl = g, g2 = 1), and !vI = COO(G)LIl. The "LR" superscript means

that 9 acts with left-invariant vector fields, and while 1) acts with right-invariant

one';;. The following propositions deal with the details of the resulting complex.

First \/e determine the nature of the invariant forms and then prove the roll' and

column exactness. It is also prudent to recall that we are working locally,:n.nd that

c"t the moment G, H, M denote contractible open subsets of their corresponding

global objects.

Proposition 3.1.5 c"inv(g, 1); C"'?(G)) ~ C'(gj COO(M)) .

Prao/: The values taken by a 1) invariant cochain are functions that arc annihilated

by I)R, i.e. they are elements of COO(M). 0

Proposition 3.1.6 Cinv"(g, 1); COO(G)) ~ C'(I); 1).

"". Prao/: The values taken by a 9 invariant cochain are annihilated by g". The latter

spans the tangent space at each point of Gand hence the values of these invariant

cochains are precisely the constant functions. 0

Proposition 3.1.7 H'(g;COO(G)L) =O.

Proo/: As was mentioned earlier, C'(gjCOO(G)L) is naturally isomorphic to the

deRham com:;>lex of differential forms on G, and of course the latter has trivial

local cohomology. 0
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Proposition3.l.S H*(I);C~(G)R)= o.

35
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Praof: First, l~t us choose a local decomposition G = M x H. With this de­

composition C'(I); C""(Gt) can be thought of as the local deRham complex of Ti

parametrized by points of M. It will turn out that this parametlijj~d complex is

trivial because the cohomology at each value of the parameter, is itself trivial, and

because M is contractible. Let liS consider the detaiis.

The cochain space of the parariletrized complex in question is C""(M,I1*(H)),

where a map

.,,: M t-t fi(H)

is considered smooth if for every choice of smooth vector fields ab ... , ak on H,
the map

u t-t .,,(u)(ab ... ,ak)

is in C""(M). The coboundary is given by

(d.,,)(xL= d(.,,(x)),

where x E M, and where the d on the right denotes the usual exterior derivative.

We identify ." with a cochain of Ck(l); C""(G)R) using the foIIowing formula

.,,(ab ... ' ak)(x, y) = .,,(x; b~, ... , b~)(y), where ai E 1), x E M, y E H.

The triviality of H(C""(M, I1*(H))) foIIows from the triviality of I1*(H)); the proof

requires a parametrized version of the Poincaré Lemma. We prove this lemma

below and thereby conciude the present proof. D

Proposition 3.1.9 (Parametrized Pouéaré Lemma) Let Bn denote the unit

open bail oflRn . The cohomology of the parametrized complex, C""(M,I1*(Bn )), is
trivial. .0
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Proof: Let us recall a proof of the fact that Him(Bn) = O. We follow the

ideas in [30]. It is suflicient to demonstrate the existence of a homotopy operator

K : n' --r œ-l such that ±Kd ± K d is the identity map on n'. One such K is

given by

(Kw)(v) = f tk-1(vJw)(tv) dt, where w E nk, 'V E Bn,

The parametrized version of the above is

(Kw)(x; v) = f tk-t(vJ w(x))(tv) dt

where w E COO(M, nk(Bn)), v E Bn, x E M. o

•

. -

As a c0113equence of the above propositions and 'I:heorem 3.1.4 we have the

following generalization of Theorem 3.1.1. " / .

Theorem 3.1.10 H'(gj COO(M)) ~ H'(~; 1) .

3,2 Determination of Cocycles

Now we tum to the problem of explicitly determining cocycle represelltatives for

Hl (g; COO(M)). Suppose we a have a representation of 9 by vector fields {aV, ... ,a~}
with structure constants cfj' A cocycle T/ E ZI(g;COO(M)) cau be thought of as a

solution to the following system of differential equations:

aHi)j) - aj(T/i) - I:cfjT/k = 0, where i,j = 1, ... ,dim(g). (3.1)
k

_, Work in the preceding seetions allows us to compute the dimension of W. Here we

are interested in methods of generating explicit cocycle representatives for every

cohomology class.

Perhaps the simplest way to gen'erate cocycles is to look for ones that have

constant coe,flicients. The space of such cocycles is isomorphic to tg, g].L, and thus

can be easily computed. _.." ..
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By Theorem 3.1.1 wc know that Hl(g;C~(M)) is isomorphic to [1), I)].L, but we

need to consider the finer struct~ ...~ of the cocycle space Zl(gj C~(M)). Recall the

classifying form map TJ t-+ ii from Zl to [1), I)].L given by

ii(a) = TJ(a R
), where a E 1).

As given, it is difficult to compute the classifying form explicitly, because the

description of the cocyle TJ is in terms of the homoge:Je~us space, M, and lacks

explicit data about G. Fortunately, the classifying forin has a more tractable

description.

Proposition 3.2.1 The classifying form, ii, of a cocycle TJ E Zl (g; C~(M)) is given
by restricting TJ to 1) and then evaluating at 0 = 7l'(e). In other words,

ii(a) =TJ(a)o, where a E 1).

Proof: In the original definition in Section 3.1, one identified TJ with a 1-form

on G and put ii(a) = TJ(aR
); the latter was guaranteed to be a constant. But, aR

and aL have the same value at e E G, and with respect to the above mentioned

identification, TJ(a)o = TJ(a").. 0

In light of the preceding proposition, the content of Theorem 3.1.1 is the a.~ser­

tion that the following sequence is exact. The d arrow is the coboundary operation,

<~= and the following arrow is the classifying form operation.

o~ lR.~C~(M) ~ Zl(g; C~(M)) ~ [1), I)].L~ 0 (3.2)

A powerful technique for building a cocycle is to first define it on a subalgebra

of g, and then to e.,tend it to all of g. We therefore need a criterion for when such

an e.,tension is possible.

Theorem 3.2.2 Let f C 9 be a subalgebra whose action is transitive in a neigh­

borhood of the basepoint, o. Let TJo E Zl(f; C~(M)) be a cocycle off, and

Tio E [f nI), fn WC (f n 1))*
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the corresponding classifying form. One can extend 1]0 to a cocycle

38

if and only if';;o can be extended to an element oJ[!), !)].L C !)', i.e. 'if and only if rio

annihilates [!),!)] n f. The extension of the classifying form (if it exist,q) , uniquely

determines the extension of the cocycle.

Proof: The sequence (3.2) is a natural construction, and Wll therefore get the
following commutative diagram.

The first part of the theorem asserts that 1]0 E ZI (fi C""(M)) goes to the image of

t2 if and only if 1]0 is in the image of tl' One direction of the equivalence is true by

the commutativity of the diagram. To prove the other direction, suppose that the

classifying form of 1]0 is in the image of t2. Then, there is an 1] E Zl (9i C""(M)) such
that tl (1]) has the same classifying form as 1]0. By the exactness of the horizontal

sequences the difference 1]0 - tl (7]) is a coboundary, df, for sorne f E C""(M). But,

tl takes 7] + df to 1]0, and therefore 1]0 has an extension.

Now, let us consider the uniqueness part of the theorem. Suppose that 1]1>1]2 E

ZI(9iC""(M)) are extensions of 1]0 E ZI(9iC""(M)), and that ';;1 = 7/2. The rows of
the above diagram are exact, and hence 1]1 and 1]2 must differ by a coboundary.

Hence, tl (1]1) and tl (1]2) differ by the same coboundary. But tj takes both 1]1 and

1]2 to 1]0' Therefore, the coboundary in question is zero, and therefore rit =1]2' 0

To apply this theorem one execu~es the following ~teps. First wc: choose a

subalgebra f, sufficiently large, so that f+ !) is all of g. Let us put

•
o--t lR --t C""(M) --t

l
o--t lR --t C""(M) --t

Zl (fi C""(M))

r'1

Zl (9i C"'(M))

--t 0

--t 0

•
n = dim(g), p = dim(f), q = dim(g) - dim(!)) .
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Since a sufficiently large f was chosen wc have p :::: q, and thus we can choose an

adapted basis al,"" an of g, such that ab"" ap span f, and such that aq+l,"" Un

span 1). Next, choose a cocycle 1/ E ZI (fj C""(M)) with constant coefficients. This

amounts to choosing constants 1/1"", 1/p in such a way that the resulting form

annihilates the commutators formed by aq+b"" ap, i.e. [f n 1), f n 1)]. Finally,
extend the classifying form Ofl1 by choosing initial values 1/P+l(o), ... , 1/n(o), and
then solve the overdetermined system of linear P.D.E.s,

n

a7(1/j) = L ct1/k' where i = 1 .. .p, j = p + 1 ... n,
k=1

for the unknowns 1/p+b ... ,1/n' By Theorem 3.2.2, there will he a unique solution,
and that solution will determine a cocycle of g.

Example 3.2.3 Consider the standard, projective line realization of 9 = $[(2):

Let us take x = 0 as the basepoint. Witb this ehoice the isotropy subalgebra is

spanned by a2 and a3' The commutators of 1) are spanned by a3, and thus have
codimension 1 in 1). By Theorem 3.1.1 we ean conclude that Hl is one dimensional.

By Proposition 3.2.1 we know that a cocycle must satisfy 1/3(0) = 0, and that the

;:: class of the cocycle will be determined by the constant c = 1/2(0).

Let us begin -)y setting 1/1 = 0 and then e..xtend by solving

8.,(1/2) = 0,

8.,(1/3) = 21/2,

The unique solution is T/2 = c, 1/3 =ex.

1/2(0) = c;

1/3(0) = O.

•
Example 3.2.4 In this example we let 9 be a certain subalgebra of linear endo­

morphisms of ]R3. The subalgebra in question ,viII consist of those actions that

stabilize a fi.xed direction in JR3 , say the direction spanned by the third unit vector.

.;
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Instead of choosing a single-index basis, wc will use the more r ~ttural representa­
tion (If g[(3) and g[(3)" by 3 x 3 matrices. Wc take coordinates Xl, :r.~. x:1 on IR3 ,

and thus the 9 actions are given by

Taking (1,0,0) as the basepoint, wc sec that the isotropy algebra, 1), and its com­

mutators are given by

Since the codimension of [~, ~l in ~ is two, we can conclude that Hl is two­

dimensional, and that the classifying forms are given by•
[

* 0]* 0

* *
[
0 * 0]

[~,~]= 000

0*0

where Cl, C2 are arbitrary constants. Next, wc find a cocycle that corresponds

to the above classifying form. Wc begin with the following cocycle with constant

coefficients.

and extend by solving

•

X 81TJI2 = -TJI2,

X 82TJl2 = -Ci>

X 83TJI2 = -TJ32,

TJI2(1, 0, 0) = O~
~/

x8l TJ32 = 0,

X 82TJ32 = 0,

X 83TJ32 = 0,

TJ32(1, 0, 0) =0
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The resulting cocycle is

41

J

•

•

Wc will consider one further technique that gives cocycles representatives of

certain cohornology classes with virtually no effort. What are these cohomology

classes? The choice of sublJ.lgpbr'l ~ c 9 singles out a certain element X E H1(~),

which we now describe. The adjoint action naturally makes g/~ into an ~ mod­

ule. We let X E ~. denote the character of this representation. Since A. kills all

commutators of~, we can regard X as an element of HI(~).

Proposition 3.2.5 The classifying form of the divergence cocycle, TI, is -X.

Proof: Let's proceed by examining a slightly more general case. Let x be a point

of a pseudo-Rlemannian manifold, Xl,'" ,Xn li frame in a neighborhood of x, and

01
, • •• , on the dual1-form coframe. For a veetor field, X, that is zero at x we have

". (divX)x= Llii([Xi,X])x'
i

Recall that a~ = 0 for a E ~. Now, let X = a" for an a E ~, and take Xi = a"

where {ai} is a basis of sorne subspace of 9 which is complementary to~. The
,.

preceding formula directly implies that

(7i)(a) = (diva")o = -x(a).

o

Recall from Proposition 2.5.2 that the class of the divergence cocycle is inde­

pendent of the choice of metric. To get a representative of the class one ueeds

merely to use the most convenient available metric. As such, it is best to use the

fiat metric associated to the local coordinates that are being used to describe the

9 action.
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Example 3.2.6 Let us extend a preceding example by considering the aetion of

5[(3, lR.) on 2 dimensional projective space. Instead of using a single-index basis,

we will use the more natural representation of 5[(3) by traceless 3 x :3 mat.rices.

vVe take affine coordinates [1, y2, y3] on IRP2, and t.hus the $1(3) act.iuns arc givell

by

We take y2 = 0, y3 = 0 as the basepoint and hence ~, the isotropy sllbalgebra,

and its commutators are givell by the following matrices

• [0* *][~, ~]= 0 * *

0**

•

Since the codimension of [~,~] in ~ is one, we can conc1u<:e that 1'1 1 is one­

dimensional, and tl.J.t the c1assifying form will be

where c is an arbitrary constant. The classifying form is a multiple of t.he character,

X, and thus we can obtain a cocycle by simply taking the fiat divergence of the 9

actions with respect to the y2, y3 coordinates. The divergence cocycle is therefore

[

-2c -3C/J?~ -3el ]
o cO.
o 0 c

.'

,
, ....._'
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Chapter 4

Geometrie Aspects of a Lie

Aigebraie Operator System

Whoever ." proves his point and demonstrates

the prime truth geometrically shovld be believed

by ail the world, for there we are captvred.

- Albrecht Dürer

4.1 Preliminaries

•

To get at the intrinsic g<:orneiry induced by the second-order cornponent of a Lie

algebraic opera,tor system it becornes necessary to expand our viewpoint frorn the

qùotient G IH t.o al! of G. Unfortunately, a Lie-algebraic operator in its raw forrn

does not determine G e.."plicitly. Certainly, there is a Iist of vector fields in sorne

sY8tern of local coordinates, and the structure constants that make that list into a
Lie a1gebra, g; but G, as sucb, is not given by the setup. Yet one knows that the

group is there. In theory, it is possible to cboose local coordinates of the group,

and to explicitly specify the group action on M in terrns of these coordinates. In
certain simple cases this is actually a practical undertaking.

43
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Perhaps, even more importantly, thc Lic group sctting posscssps a rich. for­

mai geometric theory, which l'an be used 1.0 uescribe and verify properties of t.he

homogeneous space. vVe already encountered one such technique in Section 3.l.

Every cocycle Tl E Zl(g; C~(M)) l'an be locally integrated 1.0 iL fundion J E CN(G).

and the derivatives of this function with respect 1.0 [)" vcctor-fields an' gnaranteed

1.0 be a constant. The point is that wc do not neecl 1.0 cxplicitly \\Tite clown this

function. Merely knowing that il. cxists tclls us that 1-]1 (g; CN(M)) is isolllorphic

ta Hl(~; 1) (see Theorem 3.1.1).

The next few sections will proceed in the same vein. Wc will discnss pl'Operties

of homogeneous space, in terms of objects dcfinecl on the group above.

•
4.2 Horizontal Vector Fields

and Adapted Frames

•

The projection 'Ir : G --t G/H, gives a natural vertical distribution, 1)", on G.

Dually, there is the natural cotangent sub-bundle of horizontal I-forllls. This snb­

bundle is spanned by differential forms ail, where a E. g. annihilal.es 1). Wc will

denote il. by (~.L)". Now, let us fix aCE S2g, and consider the corrcsponding

left-invariant, type (~) tensor ficld, CL. In gcneral, the extra informatiou given

by C allows us ta decompose the tangent bundlc of G, and allows ns t.o speak of

horizontal vectors and vertical I-forms. The decompositic:l'll is givcn by

According 1.0 Proposition 2.2.1, the decomposition fails if and only if the pro­

jected metric tensor, cor, is degenerate al. 'Ir(g). Thus, if 9 E G is not " point of

degeneracy, the projection of the vector-fields CL(~.L)" spam; the tangent spacc of

G/H al. 'Ir(g). Accordingly, we set M 1.0 bc the subset of G/H where C· is not.

degenerate. One further note on the abuse of notation: wc will write the c"nonical
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projection ;].~ 11" : G -? M. It should be understood that wc arc excluding the

fibers that lie above dcgenerate points of G /H.

Definition 4.2.1 For each a E f).L, wc call C"a" a horizontal vector field, because

such vector-fields span the horizontal distribution induced by C. For each a E f), we

call ail a verl.ical vector field, because these vector fields span the vertical directions

of the projection 11" : G -? M. Wc call this method of indexing horizontal vector

fields by f).L and vertical vector fields by f) the adapted frame. The restriction of this

index to f).L and the horizontal vector fields will be called the horizontal subframe.

It is helpful to have a description of the adapted frame in terms of a basis. Let

be an adapted basis of g, sucb that the last m entrics give a basis of f). This way

the first n - m entries of the dual basis al, ... , an will give a basis of f).L. In terms

of such a basis we will give the adapted frame as Hl, ... , Hn-m, Vn- m+b .•. , Vn,

whcrc Hi = C"ai" and Vj = aj.

The structure equations of the adapted frame split into thre<:>.classes: vertical­

vertical, horizontal-vertical, and horizontal-horizontal. The first two classes do

not depcnd on the geometry induced by C and are therefore of 110 interest to us.

Proposition 4.2.2 The vertical vector fields form a Lie algebra isomorphic to f).

The vertical-vertical structure equations are therefore equivalent to the structure

equations of f). The Lie derivative of a vertical and a horizontal vector field is a

horizontal vector field. In this way the space of horizontal vector fields is a module

of the Lie algeéra of vertical. vector fields. The structure constants of this action

are the same as the structure constants of the canonical, coadjoint action off) on
f).L •

Proo/: The assertion about the vertical-vertical structure equations is self-evident.

For the vertical-horizontal case, since a horizontal vector field C"a" is a contraction
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involving a left-invariant tensor field, CL, we have

o

To describe the structure cquations of the adaptcd framc il. will be convcnicnt

1.0 switch 1.0 the indices-oriented approach. To that end, IcI. ilS namc the stl'llcturc

coefficients of the underlying Lie algcbra g:

[ai, aj] = Si~ ab i,j, k = 1... n.

Recall that

[a", bR] = -([a, bD", a, b E g,

L:.R(aR) = (ad(a)*(a))", a E g, Cl< E g*.

Hence, the two types of structure equations for the adaptcd framc havc thc samc

coefficients as the structure equations for g. Namely,

The horizontal-horizontal type of structure equations, howcvcr, have non-constant

coefficients (the tilde above the A and B servcs 1.0 rcmind us of this):

n-m n

[Hi, Hj] = L 2À1Hk + L fijkvk.
k=l k=n-m+l

The factor of 2 in the above equation is there 1.0 simplify somc latcr formulas.

The adapted frame of vertical and horizontal vector fields will be thc primary

1.001 for our investigation of the geometry of a Lie algebraic spacc. After two

digressions devoted 1.0 technical issues we will resume with a discussion of thc

properties of adapted frames.
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4.3 Tensor Fields of Mixed Type

A vector field like C"O''' is a contraction of a lcft and a right-invariant tensor. We

call the resulting object a tensor of mixed type. In this section we wiII develop

calculat,ion techniques to handIe such tensors. First let us recall the following

clementary facts.

Proposition 4.3.1 For a E g, 0' E g' we have

a" = (Ad a)", 0''' = (Ad' 0')" = (O'Ad)",

wherc wc rcgard Ad as a function from G to End(g).

For case of notation wc wiII use & to denote the g'-valued function Ad' 0'. Wc

thus have 0''' = a". The identification of tensor fields with tensor valucd functions

allows us to define a left-invariant derivative on a Lie group. Let V be a vector

space and f : G -} V a smooth function. We define D"(J) : G --+ Hom(g, V) by

D"(J)(a) = a" f, a E g.

Wc will need a formula for the Lie bracket of vector fields in this formalism.

Proposition 4.3.2 Let f, 9 be g-valued functions on G. Then,

[J",g"] = (ad(J,g) + fD"(g) - gD"(J))".

Wc also need a formula for the derivative of Ad.

Proposition 4.3.3 D"(Ad)y(a) = Adyad(a), where a E g, and 9 E G.

Let us restate the above in a more convenient notation. Since C acts as an inner

product on g' it also induces and inner product, 011 A2g', which is given by

•
C;k Cik

C;l Cil
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Thus, for a, (3" E g" wc haye

,(ad(Ca,C(3)) = -o,(Ca,C(3) = -C(c5"a 1\ (3),

where 0 : g" ~ A2g" is the usual coboundary operator. The preccding discussion

and Propositions 4.3.2 and 4.3.3 combine to give the following formulas.

Proposition 4.3.4 For a, (3, 'Y E g" we have

(CL,")(CL(a\ (3R)) - -C(Oo" ~ 1\ i) - C(o~, 0,1\ i),

,"([CLa", C L(3"]) - -C(oi, 0,1\~) + C(o~, 0,1\ i) + C(e5o" S1\ i) ..

At this point we will introduce a number of symbols that will help liS with the

calculations involving adapted frames. We work with an adaptcd basis ;L~ deseribed

in Definition 4.2.1. The indices i, j, k, will be prcsumed ta range [rom l tn 'II. - '111.

We put
èij = CL(aiR, aiR) = C(ci, &.i) .

These symbols describe the inner product in terms of'che horizontal veetor fields.

Thus,
Hi. Hj = è ij .

. ----.-
We define the symbols èij (subscripts, rather than supcrscripts) as thc clltries of

the matrixth:lt is the inverse of è ii . For a givcn L E 9 wc put

Writing Las Daj, the preceding symbol can also be defined as
n

.u =I: Lj Ad; .
j=l

Next, wc define

f'ijk _ o,k(ad(Co,i, c&.i))

_ -C(o,i 1\ &.i,oak )

_ èirèj , S:...
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Usiug these symbols Proposition 4.3.4 cau be restated as

Hi (è jk ) _

(ci)"([H;, Hj]) -

'Ï'ijk + 'Ï';kj,
'Ï'ijk _ 'Ï'jk; _ 'Ï'kij

(4.1)

(4.2)

•

•

4.4 A Generalized Covariant Derivative

In this section we fix aCE 529, and work with the pseudo-Riemannian geometry

induced by the metric tensor C~ on M. In particular we will show how 1.0 extend

the covariant derivative operator, V', of the corresponding Levi-Civita connection

1.0 a more general operator that operates on sections of the bundle TG11)" -+ G.
We are particularly interested in the covariant derivatives of the horizontal vector

fields, C"a", where a E I).L. These vector fields are not projectable, and that is

why we need 1.0 implement a meaningful extension oLthe covariant derivative that

can operate on them.

Consider a path, , : [-~, ~] -+ G. The essence of the present idea is 1.0 pull
the paraIlel translation along the projected path, 'Ir 0" back 1.0 ,. There is a

complication; the paraIlel translation defined along , does not operate on vectors
of G, but on vectors of M. Note that

and therefore, we must stipulate that the parallel translation along " and the
corresponding covariant derivative operate on sections of the bundle TG11)" -+ G.

With these preliminaries out of the way, we can derive the connection coeffi­
cients in terms of the adapted frame.

Proposition 4.4.1 . The paraUel translation of a horizontal vector in a vertical

direction is given by the flow of the corresponding vertical vector field. Thus, the

covariant derivative of a horizontal vector field in a vertical direction is given by
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the Lie derivative of that vertical vector field. FOT7nally,

Proof: Starting from a fixed point g E G, the flow of a vertical vcdor field,

Vi = af, projects clown to an unmoving point 7[(g) E M. The vectC'l' Hj alunI:( that.

f10w is not constant, however. Il. is given by CL(a(t))", where

a(t) = exp(tai)°a1,

is the corresponding curve in ~.L. The parallel translation along an eonstant path

isjust the idp.ntity automorphism ofT,,<y)M, and therefore the covariant derivative

of Hi at g is simply the derivative of the curve that 7[0 (Hi 0,) makes in T"c!I)M.

o

Proposition 4.4.2 The covariant derivative of a horizontal veetor-fidd in IL hor­

izontal direction is given by

Praof: The standard fonnula. for the covariant derivative of the Levi-Civita con­

nection remains valid for non-projectable vector fields. The formula in question

is

2 (akt('v[[,Hi)

Hi(Hi . Hk) + Hi(Hi . Hk) _ Hk(Hi . Hi)

_Hi. [Hi,Hk]_ Hi. [Hi,HkJ + Hk . [H\HjJ

Combinir:g:!~,;-abovewith identities (4.1) and (4.2) gives

2(ci)R(V'[[,Hi) _ Tiik _ Tiki _ Tkii

_ (ak)R([Hi, Hi])
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By fixin14 i, j, and varying k,
1[ i iJcomponent of ï H ,H .

we see that 'il//, Hi must match the horizontal

o

•

•

4.5 Geometrie Properties of

the Adapted Frame

In this section we describe the metric geometry of (M,C") in terms of the adapted

frame. We will obtain interesting formulas for the gradient, divergence and the

Laplace-Beltrami operator, and also a formula for the divergence cocycle. The

most striking result may weil be the following.

Theorem 4.5.1 The projections of the horizontal vector fields are auto-paraUel.

In other words, the fiow of the horizontal vector fields projects down to geodesics

onM.

Proof: This theorem is a direct consequence of Proposition 4.4.2, which implies

that 'il//,Hi = O. 0

A word of caution is required at this point. A horizontal vector field is not, in gen­

er"l, projectable, and thus does not give a foliation of M by geodesic tmjectories.

The theorem merely states that if 'Y is a path in G such that "y = CLaR for sorne

fixed a E ~.L, then the projection 71' 0 'Y is a geodesic down on M.

The fol1owing formulas give the gradient, divergence, and Laplace-Beltrami

operators in terms of horizontal vector fields. At first glance these formulas do

not appear to make sense, because they purport to equate projectable obJects on

the left hand side with non-projectable ones on the right. It must be understood

that the proposition asserts that the end product of these formulas is a projectable

object.
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Proposition 4.5.2 Let f be a function on M, and X Cl ]JmjcctClblc lI':ct01· field on

G. We have

grad(J) - èijHi(J)Hj (4.3)

div(X) = èij \1 JI' (X) . Hj

t:.(J) - èijHi (Hj (J)) (4.4)

Proof: In the sequel we identify f with its pullback to G, and X with it~ projection

down to M. The formula for the gradient follows from the following:

Hi(J) = Hi. grad(J),

'LèijHi(J)Hj. Hk _ Hk(J).
ij

Since X is a projectable vector field, the covariant derivat.ive of X in a vertical

direction is zero. Hence, \1 /l'X at 9 E G is equal to the conventional covariant

derivative \1".(JI')X at 7I"(g). Hence

{èij \1/l'x, Hj)9 =tr(\1X)"(9)·

The right hand side of the above expression is just the divergence of X at 7I"(g).

The formula for the Laplacian can be derived as follows. The covariant deriva­

tive is compatible with the metric inner product, and hence

Hi(Hj(J)) _ Hi(grad(J)· Hj)

- (\111, grad(J)) . Hj + grad(J) . \1 /li Hj.

Aftcr !!ll1J1jplying by è ij , summing over i, j, and using the preceding formula for

the divergence we obtain

èiëi(Hj(J)) = ~(J) + èij grad(J) . \1 /l,Hj.

The desired formula fo11ows from the observation that è ij is symmetric in i and j,

whilest \111,Hj is anti-symmetric in these variables. Therefore, the ~econd term of

the right hand side of the above equation is zero. 0
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Next, we focus on the divergence cocycle, rP, described in Section 2.5. Since rP
is a cocycle, it must (at least locally) be the coboundary of sorne function of G.

We can describe this function in terms of the horizontal vector fields.

Proposition 4.5.3 The divergence cocycle is equal to -0>', where >. E C""(G) zs

given by

>. - 1/2 log(det({Hi. Hi})

- 1/2 log(det {ë ii }).

Praof: The volume of the M frame formed by the projections of HI, ... , Hn-m is

given by

Jdet {Hi. Hi} = exp(>.).

Hence, the pullback of the metric volume form to G is given by

where al, ... , an- m is a basis of ~.L. The Lie derivative commutes with the push­

fonvard, and hence the divergence of a", where a E g, is given by

div(a")w - .caL(W)

_ aL(e.,p(->'l) (aIt /\ ... /\ (an-m)R

_ -aL(À)w.

Hence, div(a") = _aL (>,), and therefore, the divergence cocycle is equal to -0>'.

o

Definition 4.5.4 Because of its relation to the divergence cocycle, rP, we will cali

>. the divergence function.

Ne.,t, l would like to illustrate the formulas in Proposition 4.5.2 with a concrete

e.,ample. Let us use the special orthogonal group, G = SO(3), and the 2-sphere,
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M = 82 = 50(3)/50(2). l willnot base my calculations on explicit. c()ordinate~

of the group and the sphere, such an approach can get quite me~~y. but. rather u~e

the matrix component functions of 50(3):

(

Xll Xl2

X21 X22

X31 X32

X13 )
::r.23 .

X33

The projection "Ir : 50(3) -+ 82 is simply the operation of taking t.he lir~t. ro,-! of .

the orthogonalmatri."(. The functions Xll, X12, X13 are constant on tlw liber of this

projection and are thus functions of the sphere. As a matter of con\"eniencc l will

also label these three functions x, y, z, respectivcly.

First, l will compute the gradient and Laplacîan of x. The sphere inheritsits

metric structure from the ambient Euclidean (x, y, z) space. The ~phere gradient is

therefore the orthogonal projection of the Euclidean gradient, ~~' onto the tangent
space of the sphere. A straightforward calculation gives• grad(x) _ (y2 + Z2)~ _ Xy~ - xz~

ax ay az
a a a a

- y(y- - x-) + z(z- - x-)
ax ay ax az

(4.5)

(4.G)

The parenthesized vector fields are infinitesimal isometries, and thus have zero

divergence. Hence,

.6.(x) = div grad(x) = -2x. (4.7)

•

Now we check the formulas;.! Proposition 4.5.2. against these givctls. As the

adapteù basis of the Lie aIgebra let us take

( ~ ~ ~ J (~1 ~ ~ J (~ ~ ~)
o -1 0 0 0 0 -1 0 0

The first of these span the isotropy algebra, and the second and third span the

horizontal complement. The next step is to compute Hi(x). Let 0lj be t.he right-
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invariant Maurer-Cartan forms. From the identity

8~2 8~3) (Xli X12 X13) ( dXlI
a 8~ X21 X22 X23:::. = dX21

-8~3 a X31 X32 X33 dX31

it follows that

dxll - X218f2 +X318fJ

dx21 - -xll8f2 + X318~3

dX31 - -xll8fJ - X218~

and hence

H2(JP (x)) - JP(X2Jl = -Xli = -x

H3(H2(x)) _ H3(X2Jl = a
H3(H3(x)) _ H3(X3Jl = -Xli = -x

JP (H3(x)) - JP(X31) = a
In order to get the standard metric on the sphere we must use the negative of the

Killing form on 50(3). The corresponding components are just

cij = t5ij .

According to (4.3) we must have

grad(x) = X21H2+X31 H3 .

From the definition of the Maurer-Cartan form we get

dxli(.g~) = X2;, dx li (H3) = X3i,

and hence

dx(grad(x)) - X~1 + X51 = 1 - X~1 = y2 + z2

dy(grad(x)) - X21X22 +X31X32 = -X11XI2 = -xy

dz(grad(x)) - X21X23 + X31X33 = -X11XI3 = -xz
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This agrees with our earlier result (4..5). As for the Laplacian, Proposition 4.5.2

predicts that .6.(x) =-x - x = -2x, and this is in agreement with (4.i).

Similar calcuiatioiis sho\\,agreement for x, y, and z. But notice that:1J.e formula

for the gradient (4.3) defin.!s a first order homogeneous differential operator and

this operator agrees with grad on x, y, and z. The differentials of these functions

span the cotangent space of M, and hence the gradient formula agrees with grad

on all functions. Similar reasoning will show that the operator given by (4.4) must

agree with .6. on all functions. We are first required, however, to demonstrate that

the two operators agree on the quadratic as weil as the linear functions. This can

be accomplished by noting that the operator in (4;4) and .6. share the following

identity:

.6.(lg) = f .6.(g) + 2grad(l)· grad(g) + g.6.(I)

Our example is also a good illustration of Proposition 4.5.3. Since the S2 metric

is both left and right invariant, we have ëij = Cij. Hence, according to Proposition

4.5.3 the divergence function, .x, is a constant, and the divergence cocycle is zero.

This is in perfect agreement with the fact that the horizontal vector fields, Hi, are

infinitesimal isometries, and hence have zero divergence.

4.6 The Bundle of Horizontal Frames and the

Canonical Connection

We have already seen that to each 9 E G corresponds the horizontal frame of
'r M' b Hl Hn-m,,(g) gIven y , •.. , .

Definition 4.6.1 We identify G with the bundle of horizontal frames of M, and

define the the canonical connection on M as the connection given by the horizontal':' ~.

vertical decomposition of the tangent space of G. This is in contrast to the Levi-

Civita connection of C", or the natural connection, that"we have already encoun-

tered.
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The terms natural connection and canonical connection do not originate with us.

Both of these connections arise in the theory of naturally reductive homogeneous

spaces (see [19]). In a very real sense the objects at hand, Lie-algebraic spaces,
extend the notion of a reductive homogeneous space, and these two types of con­

nection come along with the extended theory.

To give an explicit description of the natural connection we again turn to the
adapted frame and to the notion of the extended covariant derivative (see Section

4.4).

Proposition 4.6.2 The extended covariant derivative associat( ~. 'vith the natuml

connection obeys the foUowing identities:

VViHi - [l/i,Hi]

VHiHi - 0

Proof: The first of the above identities hoids for reasons explained in Proposition

4.4,1. That proposition treats an analogous identity for the natural connection.

Indeed, the identities involving the covariant derivative in a ,ertical direction are

derived from the properties of the ei.:t'~nded covariant derivative, rather than the
specifie nature of the connections in question.

The second identity is more or less a tautology based on the definit~on of the

natural connection, Let "( be a G-path given by the f10w of Hi, The definition

of the extended covariant derivative states that \7Hi Hi is the ordinary covariant
derivative of 71". (Hi) along 71"0"(. This ordinary covariant derivative is calculated by

lifting a vector field on M to an ~.L-valued function on G, the bundle of horizontal

frames; and then taking the derivative of this function along the horizont~ lift of

a curve on M. The identity follows because, by definition, "( is the horizontal lift
of the projected path, 71" 0 "(, and because 7I".(Hi) lifts to a constant function. 0

--
The natural and canonical connections are closely related. In fact, as the next

result shows, they give rise to very similar geometries. The principal difference

.
"
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between the two connection~:is the fact that the natural connection is torsion free,

while the canonical connection has, in general, non-zero torsion.

Theorem 4.6.3 The natural and the eanorl'Îeal eOlllleetio7~~ have the sa71le geode­

sies.

Proo!: Just like in Theorem 4.5.1 we have

and hence, the geodesics of both connections are given by the projected llows of

the horizontal vector fields. 0

The above result is related 1.0 a theorem due 1.0 H. Weyl (sec Addendum 1. t.o

Chapter 6 of [29]), which states that two connections, '\7 and oÇ>, have the same

geodesics if and only iftheir type (î) difference tensor, '\7- oÇ>, is skew-symmetric

in the contravariant arguments. This is dearly the case for the natural and the

canonical connections, whose difference tensor is given by

'\7H;Hi - oÇ>H;Hi _ 1/2 [Hi, Hi) mod ~R

_ À~Hk.

Another difference between the natural and canonical connections involves their

respective structure groups. Like ail affine connections, both of these connections

can be described by using the bundle of linear frames of M, and then by restricting

to a smaller sub-bundle. This process of rl'!ducing the structure group of a connec­

tion, has a fundamental limitation. Ii a frame F is in the restricted sub-bundle

of frames, then all frames, F', obtained from the original by parallel translation

must also be in the sub-bundle. Unfortunately, G, the bundle of horizontal frames

does not, in general, contain a sufficient variety of frames 1.0 bl'! able 1.0 describe

parallel translation with respect 1.0 the natural, Levi-Civita connection. Il. is not,

in ge~eral, possible 1.0 select a path through G along which the inner product

coefficients, Hi . Hi .remain con.<tant. This is because the inner product matrix,
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Hi. Hj, has (n - mJ2 functional entries, but there are only n degrees of freedom

for a path in G.

4.7 C urvature

In this section we compute and compare the curvatures of the canonical and the

natura! connections on M. We will find that the formula for the curvature of

the canonical connection is the simpler of the two, and that the curvature of the

natural connection can be obtained by adding sorne corrective terms.

Proposition 4.7.1 The curuature tensor, R, of the canonical connection is given

by

R(Hi, Hj)Hk _ Ëija(Va, Hk]

• _ ËijaS~HI

Proof: The above is a direct consequence of the standard formula for the curvature
" .

tensor,
-i"k-- k-- k- k
R(H ,HJ)H = \lH.\lH!H - \l/{!\lF/.H - \l[F/',F/!JH ,

and the fundamental relation for the covariant derivative of the canonical connec-

"Cc tion,

o

Working in terms of horizontal frames we will express the above result by writing

R-ijk = B-ijaSk
1 al'

The reader is cautioned not to confuse our symbol Ïlijk1 with the more traditional

symbol for the Riemannian curvature tensor. The more traditional symbol is given

with r6-pect to a coordinate vector-field frame; that's why it has three subscripts

•
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and one superscript. 'vVe are working with respect to the horizontal frame, and wc

index the clements of this frame with a superscript. Thal. is why our symbol for
the Riemannian curvature tensor has three superscripts and one subscript.

Proposition 4.7.2 In terms of the horizontal frame, the Cllruature tcnsor of the

natllral connection is given by

Rijk = Hi(A-ik) _ Hj(A-ik ) + A-jkA-ia _ 4:ik k _ ') 4-;o:ak _ R-jjk
1 l ,. a l ~ a" Ja _ .. a."'it 1. 1·

Proof: The derivation is quite straight forward. Il. involves the usual formula for
curvatur<l as weil as the fundamental relation for the covariant derivative of t!~e

natural connection, namely

o

We will also give the formulas for the Ricci and scalar curvatures of the nat­

ural connection. These formulas have an intriguingly simple form, and may tur[l

out to have sorne bearing on the relation between f1atness and separation of vari~:::.
ables (Turbiner's conjecture). First, we need to derive a formula that relates the
divergence function (see Proposition 4.5.3) and the structure coefficients A~.

Proposition 4.7.3 We have thefollowing expression for the "pseudo-divergence"

of a horizontal vector field. 1

Proof: The standard formula for the derivative of a· :ieterminant givcs

Hi(det{Hi'Hk}) _ Hi (det {ëjk })

_ det{ëik} (ëjkHi(ëik)).

11 say pseudo-divergence, because 1 do not see how to meaningfully dofine divergence for a

non-projeetable veetor field.
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In terms of À the above reduces to

According to identities (4.1) and (4.2),

Hi(ëjk ) _ 1/2([Hi,Hj].Hk +[Hi,Hkl·Hj)

_ (Atëak + A~këaj).

Combining the preceding two equations we obtain

o

Proposition 4.7.4 In terms of horizontal fmmes, the Ricci curvature of the nat­

ural connection is given by

where
Ëë = Rajka

is the Ricci-curvature of the canonical connection.2

Proof: The Ricci curvature tensor is given by Rjk = Rij\, and is symmetric in

the indices j, k. To get the desired e."pression we simply use the formula for Rij\

given in Proposition 4.7.2; cancel all terms that are skew-symmetric in j, k; and
use the idl'ntity

proven in Proposition 4.7.3. o
'Since the canonical connection will, in general, have non-zero torsion, Rjk is not necessarily

a symmetric tensor.
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Next, we specialize to the gaussian curvature of a planar Lie algebraic spnce.

In this setting we get an intriguing relationship between the curvature and the

associated potential of the Lie ~.lgebraic operator. First, we need to make a few

notational remarks. A tensor C E 8 29 induces the metric tensor C~ on M, and the

latter defines the gradient operation on functions of M. We can sensibly extf)lld

the gradient operation to functions of G by using the left-invariallt tensor Cio:

If f is a function of M, the above formula gives a vector field that projects down

to the usual grad(I) on M. In Section 3.1 we encountered the rather special

functions, f E C~(G), whose coboundaries give cocycles with coeffici~nts in C"'(M) ,
Le. aL(I) E C~(M) for all a E g. Sueh functions therefore enjoy t.he curions

property of having their gradient he a projectable vector field. In particular, ..\

is such a function, because -0..\ is the divergence cocycle. Hence, grad(..\) is a

projectable vector field. In a similar vein we have a meaningful definition of Do(..\)
as the divergence of grad(..\), and this definition gives the same result as the formula

first introduced in Proposition 4.5.2:

Proposition 4.7.5 Let C E 8 2g be the second-order component of a basic, homo­

geneous operator system. If the corresponding Lie algebraic operator satisfies the

closure conditions, then the associn.ted potential is given by

v = Do(..\/2) - grad(..\/2?

Proof: According to Proposition 2.5.5 the closure conditions are satisfied if thcrc

is a horizontal function, f E C~(M), such that grad(..\) = grad(I). Hencc, in

order to put the Lie algebraic operator, 1i = Ciiaraj, into Schrodinger form, wc

must conjugate 1i by the change of scale opcrator, exp(I/2). Formally, this is

summarized by

1i - Do - grad(I)
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- exp(J/2)(td V) exp(- f /2)

- /:;, - grad(J) - /:;,(f/2) + grad(J/2? + V.

The last Hne of the above equation determines the form of the putential, V. 0

Proposition 4.7.6 Let C E $2g be the second-order component of a basic, homo­

geneous operator system. If the corresponding Lie algebraic operator satisfies the

closure conditions, then the curvature of the metric C~ is given by

K =V - grad(A/2? - 1/2R,

where V is the associated potential and where

- - ok
R - CjkR?

- (Hl ~ H2' t Ëf2([Va, Hl] . H2- [Va, H2]. Hl)
) a=3

is the scalar curvature of the canonical connection. In particular, if the background

metric is fiat, we must have

- exp(A)/:;, (exp(-A)) = !:;'(A) - grad(A)2 = R.

Proof: On a surface there are only two horizontal vector fields: Hl, and H2.
Consequently, the formula for Ricci curvature given in Proposition 4.7.4 fields
takes a particularly simple form:

The gaussian curvature is given by 1/2ëjkRjk, and the desired conclusion follows

when we use the potential formula in Proposition 4.7.6, and the formulas for the

Laplacian and the gradient given in Proposition 4.5.2. 0
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4.8 Imprimitive Group Actions

Earlier we mentioned that the horizol'.talvector fields, Hi, arc not, in general,

projectable. This is a pity, because, otherwise wc would get a foliation of M by

geodesic trajectories. The purpose of the present section is to describe a conrli­

tion that allows for something almost as good, the projectability of a portion of

the horizontal distribution. The condition in question is the imprimitivity of the

group action. More comprehensive information on primitive and imprimitive group

actions is available in [26] [7] [20].

Definition 4.8.1 We say that the action of G on M = G/H is imprimitive if

there exists a foliation of M that is invariant under the action of G. A foliation

is a collection of immersed submanifolds of constant dimension (called the leaves

of the foliation! such that a unique leaf passes through each point of M. A foli­

ation can also be represented by its infinitesimal data: an integrable distribution

of constant rank. A rank k distribution is an assignment of k-dimensional linear

subspaces V p C TpM to all points of M. Integrability means that if vector fields

X, Y are tangent to the distribution, then so is their Lie bracket, [X, Y]. frobe­

nius' theorem then tells us that if V ~->integrable, then through every pE M

there passes a k-dimensional integral submanifold whose tangent space is Vpo The

foliation corresponding to V is the collection of the !tlaximal integral submanifold

engendered by V. To rephrase our definition in terms of distributions, wc can

say that the G-action is imprimitive if there exists a const<mt rank, integrable,

G-invariant distribution, V. Thc G-inmrianr;e means that for each 9 E Gand

p E M we have

The condition of imprimitivity was first described by Lie in his classification

of low dimensional homogeneous spaces (see [22]). This concept is useful for the

classification because an imprimitive group action can be projected to an action

on a quotient of M. Consider as an example the following planaI' realization of the
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Lie algebra g[(2):

a"" xa"" ya", x(xa", - ya,,).
Notice how ail the coefficients of a", only involve functions of x. This means that

the foliation x = const is invariant under the local group action of GL(2), and

hence we can project the group action down to a I-dimensional quotient, where

the infinitesimal actions will t';

The above example illustrates that the imprimitive nature of a group action

can b~ evident because of an appropriate choice of local coordinates. Fortunately,

one does not have to pJ:rj with local coordinates in order to test for imprimitivityj

an invariant criterion based on abstract properties of the group action is available.

Theorem 4.8.2 Consider a local, effective actio.n of a Lie group, G, on a homo­

geneous space, M = G/H. Let g, l) be the Lie-algebras of G and the isotropy

subgroup, H, respectively. The G-action is imprimitive if and only if it is not a

maximal subalgebra of g, i. e. if and only if there exists a Lie algebra f that is

properly intermediate between l) and g;

Proof: Suppose that an intermediate f exists. The desired invariant distribution

can be obtained by projecting the invariant distribution fR down to M. Now the

vector fields aR, where a E f, are not themselves projectable, but we will show that

fR as a whole does project down. Let a E" f be given and cousider what happens

to 7r.(aR)g, as we.l!l0ve 9 within a sing~~ fibre of 7r : G ~ M. It is straightforward
to check that'

7r.(a~g) = 7r.W)g,

where h E H, and b = Ad(h)a. Since fis cIosed ut'.der the adjoint action of H, we

do not get new vectors as we project fR from different positionshi'tlle-fibre. The

foliation, 7r. (fR) is G invariant, because fR defines a right-invariant foliation on G,

and because our convention is that the right G multiplications ~ve the G action _
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on M. The prôjected foliation, 7I".(fR), is not trivial, Le. the leaves are not just

points of l'v!; because by assumption f is larger than ~, and because the action of

G on M is effective.

Conversely, suppose that we have a k-dimensional invariant foliation, :F, on M.

For 9 E G let 'Dg C TgG be the linear space of vectors that project down to the

tangent distribution of :Fp, where p = 7I"(g). It is not hard to see that 'Dg is tangent

to 71"-1 (:F), the preimages of the leaves of:F. Hence; 'D is a rank k + dim(H),

integrable distribution. The G-invariance of :F means that 'D is right invariant.

Putting

j== {a E TeC : 7I".(a) E: To:F},

we see that 'D must be fR. The integrabiiity of'D means that f is a subalgebra of

g. Furthermore, since f) is in the kernel of (71".)" it must be containcd in f. On

the other hanc!., if k is less than the dimension of M, then f) cannot be ail of g.

Therefore, f) is the desired intermediate subalgebra. 0

For the rest of the section let us suppose that G acts imprimitively on M. We

fui: an intermediate subalgebra, f, and let 'D = 7I".(fR) be the G-invariant integrable

distribution on M. We also fui: aCE 8 2g, and endow M with the pseudo­

Riemannian metric C". Speaking in terms of the inner product of this geometry,

let 'DJ.. denote the distribution of vectors that are perpendicular to 'D.

Theorem 4.8.3 The perpendicular distribution, 'DJ.. is generated by the projec­

tions of the horizontal vector fields C"aR, where a E fJ... Furthermore, if 'DJ.. is

tangent to a geodesic ofM at one point, then it is tan;;ent to that geodesic through­

out.

Proof: Let us fui: an a E f, a p E M, and consider (C"a R
) 9 at various points in

the liber above p. In the proof of Theorem 4.8.2 we saw that

';.'f;) ='Dp

at all 9 above p. Since the inner product of7I".«C"aR)g) and 71". (u), ~here u E TgG,

is just aR(u), we can infer that 7I".«C"aR)g) is perpendicular to 'Dp for all 9 above
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p. By the non-degeneracy assumption on C" we know that dim('Dol) is equal to
the codimension of f in g, and hence is equal to dim(fol). Therefore, the projection
of c.-'(fol)" generatesa.il oLpol.

".,.~-:"::.

The assertion about the gèodesic follows directly from Theorem 4.5.1. For if a
geodesic is tangent to 'Dol in I)ne place, then it can be given by the projection of

the flow of sorne horizontal vector field C"a", where a E f. Since the 1l".(C"a")
stays perpendicular ~o 'D, so does the geodesic. 0

Of course, the distribution 'Dol is not, in general, integrable and so we do not
get a geodesic foliation of M. There is one special case when this does occur.
We will encounter such special cases in our subsequent study of fiat, planar, Lie
algebraic metrics.

Corollary 4.8.4 Suppose that dim(g) = dim(f) + 1. Then there exi.sts a 1­

dimensional foliation of M by geodesic trajectories. These geodesics are given

by the fiow of C"a" where a E g' is any non-zero annihilator of f.

Praof: By the preceding theorem we get a rank 1 distribution on M, and this
distribution is generated by C"a"-;c The dl:'sired conclusion follows when we recall'-_.._,.,

that a rank 1 distribution is always integrable. 0

4.9 An example.
",

At this point it will be helpful to illustrate the concepts and formulas of the pre­
ceding sections with a concrete example. This example will be based on the two­

dimensionallinear representation of the GL(2, lR) group. This group is sufficiently
"small" so as to permit concrete, manageable formulas. ....

Let us use group coordinates

•
(4.8)
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and the following basis for the lie algebra g[(2):

al = (~ na2 = (~ ~)

a3=(~ na'l=(~ n
The homogeneous space, M, is lR.2 minus the origin, and the projection from the
group to M will be the operation of taking the first row of the group matrix. As
such, the group coordinates x, and li also furnish us with coordinates on M. Thi~

setup induces the following vector-field realization of gl(2) :

a" - x8 a:;"_ -- x8y1 - x

The natural basepoint of M is x = l, Y = O. The isotropy algebra at this point is
spanned by a. and a4.

The Lie algebraic operator we will co.nsider is given by

where {a, b} denote the anticommutator ab + ba. The background metric of this
system is given by

C" _ ( x
2+ 2xy -xy )

- -xy 2xy + y2 .

This is a fiat metric with fiat coordinates (Ç,1/) E ]R2 given by

x = e~ sin2 (1/) , y = e~ cos2 (1/). (4.9)

•
Next we will explicitly compute the adapted frame for this system. Since

GL(2, lR.) is an open subset of the Euclidean space of two-by-two matrices, we can
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represent the tangent vectors of the group with matrices, and conveniently describe

vectar fields as matrices with entries that are functions of x, y, z, w. Thus, to get a
left-invariant vector field we simply right multiply a constant matrix by the generic
group element (4.8). The vertical vector fields of the adapted frame are therefore

given by,

v; = a~ = (0 0), 114 = a~ = (0 0).
x y z w

To des ~ribe the horizontal vector fields we need to be able to express the contrac­
tions of right-invariant vector fields and left-invariant I-forms (see Section 4.3). To

this end we use the formula

/

.-
aR(aL)g = a(Adg(a)), where a E 9,a E 9",9 E G.

The adjoint representation matrix is

xw -xz yw -yz

1 -xv x2 _y2 xy
'. _Z2 W2xw-yz WZ -wz

-yz xz -yw xw

The horizontal vector fields, Hi = CL(ai)R, where i = 1,2, are therefore given by

Hi = (Ad~ +Ad;)ar + (Ad~ - Ad;)a5 + (Ad~ - Ad;)ar + (Ad~ +Ad;)a~.

In matrix form this is

1 ( x(2yw + yz + xw) -y(xw + 2xz + yz) )
xw - yz w(xw + 2xz + yz) -z(2yw + yz + xw)

1 ( -2xy(x + y) 2xy(x + y) )
xw-yz -(x + y)(yz + xw) (x + y)(yz + xw)

The structure equation for the frame Hl, H 2 , V3 , V4 are

• -,

[Hl,H2] = 0

[V;, Hl] =-H2
[114, Hl] = 0

[V;, 114] = V;
[V;,H2] =0
[V4,H2] = _H2
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Next, let us compute the divergence function and the divergence cocycle. Accorcl­

ing to Proposition 4.5.3, the divergence function is given by

where

ëii = CL((ai)", (ai)") = cab Ad~ Acli.

The neœssary calculation is tedious, but the result is surprisingly simple:

>. =log(x) + log(y) + 2 log(x + y) - 2Iog(x'W - yz).

Let us check that -0>' really is the divergence cocycle, if>. Recall that if>i = cliv(af).

The determinant of the metric matrix in (4.9) is/2zy(x + y)2, and hence,

if>l - div (x8",)

_ 1 - x/2 8",(log(xy(x + y)2)
1 x 2x

- 1 - - (1 + - +-)
2 Y x+y

-x+y
- 2(x.f-y)"

On the other hand we have,

x-y . ..
aH>') = (x8", + z8=)(>') = 2( i' ..x+y

'-:: confirming that if> = -0>'. The remaining components of the divergence cocycle

are
if> - -(x + 3y)x

2 - 2(x+y)y ,

Another calculation shows that

" _ -(3x + y)y
0/3 - ,

2(x + y)x
x-y

if>4 = .
2(x + y)

•

This is in accordance with Proposition 4:7.3 and the fact that the bracket, [Hl, H 2
]

is zero. Thus, in this cxample >. is a purely vertical function. This means that
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or to put it another way, (Ct/J)" = O. We can now confirm the formula for the
Laplacian given in Proposition 2.5.4. Using that formula and the fact that (Ct/J)" =
owe have

!:l = 1i. + (Ct/J)" = 1i..

Let's do a computation to confirm this formula. We have

1i. - (xôx? + (YÔy)2 - {xôy,yôx} + {xôx,Y&x} + {xôy,YÔy}

_ (x2 + 2xy)ôxx - 2xyôxy + (2xy + y2)8yy + YÔx + xÔy.

The standard formula for the Laplacian corresponding to a metric gii is

ï ï giiôi (lgi;1)
!:l =9 JÔii + ô;(g J)ôi - 21gii l Ôi'

where Igi; 1 is the determinant of the gi; matrbi:. Accordingly, for our example we
. have

!:l - (x2 + 2xy)ôxx - 2xy8xy + (2:r.y + y2)Ôll'J

+2(x + y)ôx - yâx - XÔy+ 2(x + y)ôy - (x + y)(âx + ôv)

_ (x2+ 2xy)ôxx - 2xyôxy + (2xy + y2)Ôyy + YÔx + xây.

Thus !:l = 1i., as expected.

These computations also serve to illustrate Proposition 4.Î.5. According to
that ]lroposition the associated potential of the basic, homogen(,,)us operator is

!:l(>.j2) + grad(Aj2?

Since ..\ is annihilated by horizontal vector fields, Proposition 4.5.2 tells us that the

above expression must be zero. This is in agreement with the fact that 1i. = !:l. The

latter equation means that the normalized Schrodinger operator does not require

a scale change, and tha~ the associated pl. \ential is zero.

~ext,Îet us illustrate Theorem 4.5.1 by integrating the horizontal vector fields

and showing, e.xplicitiy, that their flows project to straight lines on M. We proceed
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by finding constants of motion for these two vector fields. One const.ant wc already

know; it is À. It will be more convenient. to use the exponential of À.

xy(x + yf
,;, - -;-"--'---''"7;;

1 - (:mv _ YZ)2·

Another constant of motion can be obtained by careful inspection of t.he mat.rix
expressions for Hl and H 2 . The second constant of motivn is

x+y
';'2= --.

z+w

-With the help of ';'b anci ';'2 we see that the flow of Hl is given by

where ,;, = ~/ ';'2. These equations can be solved by rewriting thell1 as

• d
dt(x+y) =x+y,

d
-(y) = y - 2,;,,,ftij,
dt

d (if)., ~'(x )- - '-?,;, - + 1dt y - - y .

The solutions in terms of the flat coordinates given in (4.9) are

1] = 2K:ç + const.

The flow of H2 is given by

d
dt (x) =-2K:I"ftij,

The solutions are simply

ç =const.

Thus we see that the flows of Hl and H2 project down to straight \ines.

In section 4.8 we considered an imprimitive plam;, GL(2) action. That action

is equivalent to the group action under present discussi..;;,; nn(' mercly makes the

change of coordinates:

•
x' =x/y, 1Y =y.
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In terms of the coordinates used here, the invariant foliation is given by the radial

lines, y = K.x. In terms of the fiat coordinates, ç and Ti, this foli::tion is given
by Ti = const. According to ,; :,~orem 4.8.2 this foliation must correspond to the

subalgebra spanned by

The annihilators of this subalgebra are generated by a 2 • Thus, according to Corol­

lary 4.8.4, }[2 must project to a a foliation of geodesic trajectories which are

perpendiculal' to the invariant foliation. This is in accordance with the above cal­

culat.;ous, which tell us that the projection of the fiolV of }[2, namely ç =const, is

per[J<i~dicular to the invariant foliation, namely Ti = const.

-',-.
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Chapter 5

The Closure Conditions

What is the difference between method and dcvice?

A method is a deviee which yon nscd twiec.

- George Polya, How to Solve lt.

5.1 A Reformulation of the Closure Conditions

•

At this point we return to the dosure conditions, which we first defined in Sect,ion

'}, :\. The goal is to place this notion into a setting based on the group, G, and the

rj'ç'Cê/'llposition of the group's tangent space into vertical and horizontal directions.

Let a Lie algebraic operator, 11., be given. Recall from Sc,ction 2.2 that this

entails a choice of an operator system (C, L, 1/) where C E 5 2g, L E g, and 1/ E

Zl (g; C"'(M)). The choice of C also gives us the vertical-horizontal decomposition

described in Section 4.2:

Note that a vertical vector field can be given as v", where v is a ~-valued function

on G. Similarly, every horizontal vector field can be given as CL"Ij;, where ",/1 is

a 1-form that annihilates ~R. Also recall Proposition 2.5.5, whi<:b tells us that

74
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11. decomposes into three terms: the Laplacian, a linear vector field term, and a

scalar tcrm. The proposition also tells us that the linear part is the projection of

the vector field C L(2TJ -,p) +LL down to M (Recall that ,p is the divergence cocycle

described in Section 2.5). We are now ready to restate the c10sure conditions.

Proposition 5.1.1 Let 'if; be the I)R annihilating l-form such that CL'if; is the hor­

izontal part of CL(2TJ - ,p) + LL. The operator 11. satisfies the closure conditions if

anJ only if 'if; is closed.

Proof: If 'ifl is c10sed tIlen there exists a local function, f E C""( G) such that

2 dl = ,f;. Sincc 'If; annihilates vertical vector fields, f must actually be a function

ofM. Hence,

It follows that a change of scale by exp(- J) will change 11. into a Schroedinger

operator.

Conversely, if1l. satisfies the c10sure conditions, then there exists an f E C""(M)

such that (5.1) holds. But that means that 'if; = 2 df. 0
•

C(2TJ - ,p)" + L" = 2grad(J). (5.1)

•

A c10ser look at equation (5.1) reveals that there are essentially two components

to the c10sure conditions. For homogeneous operator systems the c10sure conditions

reduce to the following question: for which cocycles, TJ, is the c-xpression C(2TJ -,p)
a gradient of sorne function of M? We will call this the homogeneous closure

conditions. On the other hand if we take the cocycle component, TJ to be equal to

one-half times the divergence cocycle, ifJ, then the c10sure conditions reduce to the

following criterion: for which C E 529 and L E 9 does there exists an f E C""(M)

such that' L" is equal to grad(J)? If this criterion is satisfied we will say that C

and L arc compatible.

It isn't difficult to find all compatible L E 9 for a single, fixed C E 529, One

merely has to check wluch 1-forms (C"t1(L) are c1osed. This turns out to be a

stra::;ht-fon\'ard, linear condition on L. In general, a fixed C will not admit any
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•

•

compatible L E g. A fundamental problem is therefore to determine those C that
do admit compatible linear terms.

Let us now reformulate the closure conditions in tenns of the adapted frame

(see Section 4.2). We will look at the homogeneous closure conditions and at the
compatibility criterion separately.

Proposition 5.1.2 Let (C, 0, 7)) be a homogeneo'Us opemtor "y"tem 'WUh C01,'C­

sponding Lie algebraic operator tl. Let p E Il' be the classiJying form of 2'11 - </J

(see Section 3.1). Then, tl satisfies the closure conditions if and only if for hori­

zontal indices, i, j = 1, ... , n - m 'Ille have

B-ijkp - 0
k - ,

wherc Ëijk are the vertical structure coefficients of the horizontal frame (sec Secl.ion

4.2).

Proof: According to Proposition 5.1.1 the homogeneous closure conditions are

satisfied if and only if the horizontal component of 2"1 -</J is closed. Since both 7)

and </J are closed this is equivalent to the requirement that the vertical component,

let us caU it 'l/J, of 27) - </J is closed. By Theorem 3.1.1 the vertical component is

given by

where Hl, ... , Hn-m, Vn -m+!, ... , V;, is the adapted frame. The rwxt step is to

evaluate 6'l/J with three types of vector combinations: vertical-vertical, vertical­

horizontal, horizontal-horizontal. In what foUows we are relying on the coboundary

formula for 1-cochains:

6'l/J(a, b) = a'l/J(b) - b'l/J(a) - 'l/J([a, b]);

and on the fact that 'l/J evaluated on any vertical vector field is a constant. Since

a classifying form is a cocycle of Hl (1); 1), it annihilates aU commutators of 1), and

hence '-

6'l/J(V·, Vj) = -p([V;, Vj]) = O.
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•

•
.;:::/

.;::::::>-

Since the bracket of a horizontal with a vertical vector field is a horizontal vector

field we have

87j;(Hi
, Vi) = -p([Hi, Vi]) = o.

Thus, we get no conditions on 7j; from these first two t:' !;~s of combinations. The

horizontal-horizontal combination, however, yields

Therefore, ail such expressions must be zero in order for 7j; to be c1osed. 0

The next proposition concerns the compatibility criterion. The results are

formulatcd in terms of tensor fields of mixed type. The relevant concepts and

notation are described in Section 4.3.

Proposition 5.1.3 The compatibility of C E 529 and L E 9 is expressed by the

following equations:

where i, j, k range fram 1 to dim(~.l.), i. e. they are indices of horizontal vector

fields in the adapted frame.

Praof: Let 7j; be the ~R annihilating 1-form such that CL 7j; is the horizontal

component of LL. In other words

7j;(Hi ) _ (ai)R(LL) = ai(L),

7j;(Vi) - o.

By Proposition 5.1.1, C and L are compatible if and only if 87j; = O. As in the

preceding proposition we must evaluate 87j; on the three types of horizontal-vertical

vector combinations. It's not hard to see that 87j; is zero when both of its arguments

are vertical vector fields.

-.
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If one vector field is horizontal, say CLa", where a E I)ol, and the other is

vertical, say ail, where a E 1), we get

o',p(a",CLa") = a"(a"(LL)) - '/fi([al,CLu"]).

Since L:a,,(a") = (ad(a)'(a))" both of the right hand side tcrms of the above

equations are equal to

(ad(a)*(u))"(L"),

and therefore o1/J(a", CLa") = O.

Finally, let us consider the case of two horizontal arguments. Using the notation

and results of Section 4.3, and the structure coefficients introduced in Section 4.2

we get

•
o1/J(Hi,Hi) _ Hi(oJ(L)) - Hi(ài(L)) _,p([Hi,Hi])

_ oJ(ad(Cài,L)) - ài(ad(CoJ,L)) - 2}1~àk(L)

The last line is equivalent to the desired formula.

5,2 Simplified Closure Conditions

o

•

Formula (5.1) suggests a number of ways to simplify the c10sure conditions. The

idea of working with simplified c10sure conditions was introduced in [13]. Sorne

similar ideas are also mentioned in [28]. The most basic approach is to t:tke 11 to be

#2, and L = O. Then, the c10sure conditions are autornatically satisfied regardtess

of the choice of C E 5 29, Actually, there is no need to have 1/ exactly equat to

#2.

Proposition 5.2.1 In order for an operator, n, to satisfy the c10sure conditions

it suffices for n to be engendered by a homogeneous operator system, (L, 0, 1/),

where 1/ has the same cohomology c1ass as ,p/2.
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Prao!: Recalling the discussion in Section 2.3 we see that if these two cocycles
have the same cohomology class in Hl (g; C~(M)), then their difference is df, for

sorne J E C~(M), and hence

C(2T/ -I/J)" = grad(J).

This means (see formula (5.1)) that the closure conditions are satisfied if we take

L=O. 0

Next, let us consider basic operators systems (C, L, 0). The zero cocycle com­
ponent means that the correspor.: 'ing Lie-algebraic operator, 1l, is generated by

pure vector fields.

Definition 5.2.2 We say that the action of G on M is unimodular if there exists

a volume form, w, on M whicl1 is invariant with respect to the G-actions.

Proposition 5.2.3 The G-action is unimodular if and only if X, the character of

the representation of ~ on g/~ (see Section 3.2), is zero.

Proof: Suppose that X = O. Let al, ... , am be a basis of ~1., and set

_An easy calculation shows that the Lie derivative of w with respect to aR, where
"-à E ~, is zero. Hence, w is a pullback of a volume form on M. But w is right­
invariant and hence invariant under the G action on M.

Conversely, suppose that w is a G-invariant volume form on M. Consider the

divergence cocycle, I/J, with respect to w. This cocycle is given by

.caC(w) = I/J(a)w, where a E g,

and so must be zero by the assumption of invariance. By a slightly modified version
of Proposition 3.2.5 weknow that -X is the classifying form of I/J, and therefore X

must be zero. 0 ~/

-
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•

Proposition 5.2.4 The following three conditions suffice for thc action of G to

be unimodular:

• ~ is semi-simple,

• 9 is compact,

• both 9 and ~ are reduetive. 1

Proof: A semi-simple Lie algebra can only be representec1 by trace-free matrices.

Hence, if ~ is semi-simple, X must be zero.

If 9 is compact, then there exists an Ad-invariant, positivc-c1efinite inner­

product on 9. In particular, this means that the representation of ~ on 9/~ can be

given by skew-symmetric, and hence trace-free, matrices.

The adjoint character of a reductive Lie algebra must be zero. Thus, if both 9

and ~ are reductive we have ::.:

Xg/~(a) = Xg(a) - x~(a) = 0, where a E ~.

o

The preceding two propositions combine to give the following.

Proposition 5.2.5 If one of the three conditions listed in Proposition 5.2.4 is

satisfied, then every Lil?- algebraic operator engendered by a basic, hornogeneous

operator system will satisf!i the closure conditions.

We now turn to another method to simplify the closure conditions. This tech­

nique is useful whenever a cohomology class of HI (9; COO(M)) has a representative

cocycle with constant coefficients. Suppose that p E ZI(9; 1) is such a cocycle.

Then Cp v!ill actually be an element of 9.

1Recall that a reductive Lie algebra is a direct sum of simple and abelia... components. As

sucb, the cbaracter of the adjoint representation of a reductive Lie algebra is always zero. Sec
f16] and [6] for the bockground material used in this proposition.
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Proposition 5.2.6 A Lie algebraic operator, 1i, engendered by an operator system

(C, L, T)) wiil automatically satisfy the closure conditions if 2T) - <f> has the same

cohomology class as a cocycle with constant coefficients, p, and if L = -Cp.

Proof: If the premise of the preposition holds, then

2T) - <f> = p + df,

for sorne f E COO(M). By Proposi ion 2.5.5 we have

1i - t:. + C(2T) - <f»" + L" + scalar

- t:. + grad(j) + scalar,

and hence the closure conditions are satisfied. 0

Let us illustrate the above technique with an example. We use the following
planar realization of g[(2) ~ ]Rr+l:

xâ"" yây, x2â", + rxyây, â"" ây, xây, x2ây, ... , xrây,

where r is sorne natural number. Let us calI these vector fields, al,"" ar+5,

according to the order in the above sequence. Taking the basepoint to be (0,0), the

isotropy algebra, 1), is spanned by al, a2, aa, as, ... , ar+5. The commutator ideal,

(1),1)], is spanned by aa, as, ... , ar+5' Rence, by Theorem 3.1.1, RI(g; COO(M)) has

dimension 2. Representative cocycles can be obtained by using the techniques of

Section 3.2. We will use

T) = CIO? + C2a?,

where ai, with i = l..r+5, is the dual basis of g*, and Cb C2 are arbitrary constants.

By Proposition 3.2.5 the divergence cocycle is represented by al + a2•

This example is so convenient precisely because all cohomology classes can be

represented by cocycles with constant coefficients. For instance, Proposition 5.2.6

tells us that for any C E 8 2g, and T) the closure conditions will be satisfied if we

take

L = 0((1 - 2ctla l + (1- 2c2)a2),

where Cb C2 are the cohomology parameters that determine the cla$ of T).

"



• CHAPTER 5. THE CLOSURE CONDITIONS

503 The Representation Theory Perspective

Fix an a E gO and consider the equation

82

(5.2)

•

•

where C E 8 2g is the variable. In Section 4.3 we showed that the above is equiva­

lent to the equation

C(ii,ii) = 0,

where iig = Ad;(a), and 9 E G. In other words, this equation demallds that C

annihilate the entire G-invariant subspace of 8 2go that is gellerated byal8ia. Solv­

ing this equation is a feasible undertaking if G is semi-simple, because of the well

developed representation theory for semi-simple Lie groups and algebras. Indeed,

il' G were semi-simple then 8 2go would be the direct sum of ce:tai!: irreducible

submodules, and the entire task would reduce to computing thi~0ecomposition,

as weil as determining which components of this decomposition arc generated by

the single elen::~t a l8i a. We can summarize by saying that solutions to (5.2)

are given by a certain set of invariant equations. These equations arc just the

submodule of 8 2go generated by a l8i a.

The above simplistic e.'l:ample is meant to be a guiding analogy for the fun­

damental nature of the c10sure conditions. In Section 2.4 wc established that the

c10sure conditions <:!'e invariant under the action of the underlyillg group. To put

it another way, if C E 8 2g and L Egare compatible, then every clement of the

G-orbit that is generated by (C, L) gives another compatible pair. Unlike the sim­

plistic example above, however, the solution orbits cannot be specified by a linear

criterion. Actually, as was shown in Section 5.1, the c10sure conditions are linear in

the L variable. As we are about to show, however, the invariant equations for the

c10sure conditions are polynomial in the C variable, and this is the major source

of difliculty in obtaining general solutions.

From now on we will specialize to the case where M is 2-dimensional. This

way the formulas will simpler, but the essential features of the approach can still
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be illustrated. In the 2-dimensional case there are only 2 horizontal vector fields:

HI, and Ii2 • From equatic, , ,12) wc get

The structure coéficients are therefore determined by the following equations

(5.3)

(5.4)

T/l = 0, T/2 =0,

•

•

Recall from Section 4.3 that èij is linear in the C variable, and that 'Ï'ijk is

quadratic. Hence ÂF is a ratio of polynomials in the C variable; the numera­

tor has degree 3, and the denominator degree 2. Hence Ë'li is aIso a rational

expression in C whose numerator has degree 4 and whose denominator has de­

gree 2. By proposition 5.1.2 the invariant equations for the homogeneous closure

conditions are hr.mogeneous fourth degree polynomials in C. By proposition 5.1.3

the invariant equations for the compatibility of C and Lare linear in Land third

dcgree, homogeneous polynomials in C.

Next, let us compute the invariant equations for an uncomplicated, 2-dimen­

sional cxample. We will use the linear representation of 5[(2):

As per the usual we will use the above sequence as the basis al> a2, a3 of 9 = 5[(2),

and take al, a 2 , a3 as the dual basis. With basepoint x = 1, Y = 0, the isotropy

subaIgebra, 1), is spanned by a3' By theorem 3.1:'1 the dimension of Hl (9; C~(M))

is 1, and the cohomology classes can be represented by

P
T/3 =2'x

whcre P is the cohomr.!ogy class parameter. The classifying form of T/, as giveIlc.

above, is p = Pa3• It will also be convenient to write out the structure equations
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for 5[(2):

where we use cii as an abbreviation for ai 1\ ai. Let us also introdllce t.he abb,,")­

viation

(5.5)

From the structure equations of 5[(2), and from equations (5.3) (5.4) it. follows that

') -12 -12--a °a

à 13 . à 12

ê22(_2à12 . (12) _ êI2(àI3. ( 12 )

ii12 • ii12

_ëI2 (_2à I2 . ( 12 ) + ê ll (à I3 • à::;
ii12 • à 12

_ _2à23 . à 12 + 2à12 . à 23 + ii 13 • à 1:1_ 2.-Il2ê I3 _ 2..l~2ê2:1

(à I2 . ( 12 )(à13
0 à 13 _ 4à 12 . ( 23 ) _ 2(à12 . al :l ?

à 12 . à 12

f121 _

f122 _

• From the above identities and from Proposition 5.1.2 we SP.C that the invariant

equations for the homogeneous closure conditions arc generated by

where the circled dot is a symbol for the symmetric tensor product. Ost.ensibly,

the space of fourth-degree polynomials with arguments in C E 5 29 is the t.ensor

space 54(520"). So why does J.lhom seem to belong to the tcnsor spacc 5252(A29")?
The explanation is that the latter tensor space he canonically mapped to the space

of fourth order polynomials via formula (5.5).

Proposition 5.1.3 gives the formula for the compatibility condition. Evaluating

the first two terms in that formula we ohtain:

•
dà1(Cà2, L) = 2àI2 (Cà2, L)

dà2(Cà1, L) = _à I3 (Cà1, L)
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The formulas for the À~ a!e given above. Pu~ting al! of these formulas together,

wc sec that the invariant equations for eompatibility arc generated by

The above tensor is an clement of

but wc interpret Jlcomp as form that is homogeneous of degree 3 in C E 5 2g and is

linear in L E g, i.e. an clement of

This interpretation is accomplished by using the following canonical maps:

• /l.2g'l8I g' -l- 5 2g'I8I g',

5 2 /1.2g' -l- 5 2(52g'),
0';1181 a k t-+ (ai 0 a k ) 181 ai - (ai 0 ak ) 181 ai;

given by formula (5.5).

Before wc can derive the full set of invariant equations generated by Jlhom and

Jlcomp we need to summarize the representation theory of s[(2). A good reference

for this subject as and other interesting aspects of Lie representation theory is [6].

The standard presentation of s[(2) is given in terms of the raising operator J+, the

lowerillg operator J-, the weight operator JO, and the following relations:

Every finit!:! dimensional s[(2) module decomposes as a direct sum of irreducible

components. Tue irreducible modules, Un, are indexed by natural numbers, and.
the index, n, is the dimension of the respective module. We will describe U,. in

terms of the following basis and relations

•
:. -- .

(n) . (n) (n;: (n) (n)
U_n+l' u_n+3 , u-n+5 , ... ,Un- 3 , 'Un_l'

JOu(n) = ku(n) J+ (n) _ n + k + 1 (n) J- (n) _n - k ~ (n)
k k' uk - 2 Uk+2' Uk - 2 Uk_2 (5.8)
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•
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Working with any 51(2) module, wc will l'ail the eigcnvectors, u, of .Jo homo­

geneous elements; the weight, w(u), of these clements is their .Jo eigenvaluc. A

lowest (respectively highest) weight clement is one that is aunihilated by .1- (re­

spectively J+). A lowest weight clement, u, genemtes lln irreduciblc sllbmOlllllc of

dimension equal to -w(u) + 1. Having fixed a lowest wcight elemcut, '1/., we will

cali the sequence of elements,

J+(k)(u)/k!, k = 0, .. " w(u) + l,

the adapted basis of that submodule. This basis will then obey the st.andard

relations given in (5.8).

Speaking in terms of the 5[(2) basis described at the bcginning of t.his section,

let us take al as the raising operator, a3 as the lowering operator, a~ a.~ the wcight

operator, and consider the decomposition of sorne tensor spaccs constructed from

the adjoint l'l'presentation of 9 = 51(2). Recall that the action on g' is given hy

the negative transpose of the adjoint actions. Thus, taking al as the 10IVcst weight

element of g' we obtain the following adapted basis:

Turning to S2 :\2g', a good choice for the lowest weight clement is al~ 0 (>I~, Let

us label the resulting adapted basis as

U_4 = a 12 0 a 12
,

U-2 - _2a12 0 a 13 ,

Ua - a 13 0 a 13 - 2a12 0 a~",

'U2 - 2a13 0 a 23,

U4 - U2.1 0 a 23 •

Since S2:\2g' has dimension 6, and the above submodule has dimension 5, therc

must also be a 1-dimensional submodule. It is generated by the following invariant

te!lsor:

U~ = 0,13 0 a 13 + 4a12 0 0
23

,
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vVe can now write JLhom quite simply as

where we umit the (;) for the sake of brevity, and whf're

Si

Presented in this form, it i~ not hard to verify that J- (jLhom) = 0, Le. 1"hOlIl is an

element of lowest weight. Since JLham has weight -4, it generates a 5-dimensional

module. The basis of this module constitutes the invariant equatiC'ns for the 110­
mogeneous closure conditions; this basis is given below:

•
- 1

U_4 UO - '2U - 2U- 2 ,

U_2ÙO + 4U_4U2 - 2U_2'UO,

UOùO + U_2U2 + 8U_4'U4 - 2uOUo,

U2ÙO - 2UOU2 + 4U_2U4

- 1
U4 U O - 2"U2'U2.

(5.9)

•

Now, let us consider JLcomp. Sorne of the factors come from S2A2g' 0 g'. The

most relevant on'~ is a 12 0 al. This is a weight -4 clement of lowest weight, and

hence generates a 5 dimensional sl1bmodule. Wc name the adapted basis as fo11ows:

V_4 - a
12 0 a\

V-2 _ _a13 0 al +2a12 0 a 2 , ""'''':~':c_::5'~

Vo = _a
23 0 al - 2a

13 0 a
2

- a
12 0 o?,

V2 - a
13 0 a

3
- 2a

23 0 a
2

,

V4 _ a 23 0a
3

•

We cao therefore give JLcomp simply as
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where again we can omit the 181 sign without fear of ambiguity. We can now

see that /lcomp is an element of lowest weight, and hence generates the following

7-dimensional module. These are the invariant equations for the compatibility

conditions.

The above invariant equations for /lhom and /lcomp tell us s07l1ething important

about solutions to the general closure conditions, Le. Lie algebraic operators such

that 277 - rP is non-trivial, and such that L i= O. The invariant equations for the

general closure conditions are generated by /lhom+/lcomp' But now we kncw that the

two terms in questions generate non-isomorphic irreducible modules, and therefore

the module generated by /lhom + /lcomp is just the direct sum of the 5-dimensional

module generated by /lhom and the 7-dimensional module generated by /lcomp' In

other words, the general closure conditions are satisfied if and only if both the

homogeneous closure condition and the :::ompatibility condition are satisfied.

•

-U-4V_2 + U_2V _4,

-2U_4VO + 2UOV_4,

-3U_4V2 - U-2VO + UOV-2 + 3U2V_4,

-4U_4V4 - 2U_2V2 + 2U2V_2 + 4U4V_4,

-3U_2V4 - UOV2 + U2VO + 3U4V_2,

-2UOV4 + 2U4VO,

-U2V4 + 'U4 V2

(5.10)

5.4 U sing the Group Action to Solve the Closure

Conditions.

•
The invariant equations'derived in the preceding section tell us that a Lie a1gebraic

operator satisfies the homogeneous closure conditions if it is engendered by an

operator system whose second-order component, C E 5 2g, is the simultaneous
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•

•
~..--

zero of 5 fourth dl:'gree polynomials. Likewisc, now we know t.hat C E $29 and
L Egare compatible if (C, L) is the simultaneous zero of ï polynomials of degree

(3,1). Unfortunately, this knowledge only serves to rcformulate the problelll, aud
does not provide an effective computational too\. 2 Indeed, we could also obtain

polynomial equations for the 51(2) closure conditions in terms of local coordinates.

A truly useful bit of knowledge is the fact that the closure conditions are invari­

ant under the action of the underlying group (see Section 2.4). To exploit this fact
we need to analyze the orbit structure of $2g, tQ find canonical represeutativc.:l

for each orbit, and to test the closure conditions on these reprp.sentatives. The

idea of using an invariant group action to simplify a given problem is a veritable

mathematicalleitmotif. In the context of Lie-algebraic operator research this idea

has been mentioned in [12] and in [2ï].

In the present section we will compute the orbit structure of $2g for 9 = 5[(2, lR)

and use this information to obtain the solutions to the closure conditions for the
homogeneous space described in the last section. Fortullately, it is uot difficult

to describe the orbit structure of the irreducible modules of 5[(2), once we realize
that Un is isomorphic to the module of homogeneous, degree (n - 1) polynomials in

two variables, say x and y. The group action for the polyr.omial modules is given

by the change of variables represented by each matrix in SL(2). Such polynomials
factor into a number of linear and quadratic components, and this factorization

is stable under the SL(2) action. Therefore, the multiplicities of the irreducible

factors and the number of irreducible quadratics are two fundamental invariants
of the group action.

We are particularly interested in Us, the module of fourth degree polynomials.
Such a polynomial is specified by 5 parameters, and so the group action should give

us the freedom to e!iminate 3 of them. Furthermore, if we are willing to consider

polynomials up to !inear scaling, we should be able to eut down to just 1 parameter.

This is just an upper bound on the number of required parameters; indeed there

2This is not quite true. See the last paragraph of Section 5.3



• CHAPTER 5. THE CLOSURE CONDITIONS 90

•

•

are certain types of degenerate orbit types that will reqllire no parameters at ail.

The following basic propositions will allow us to choose canonical rcpresentatives

for the various orbits.

Proposition 5.4.1 8L(2) is doubly transitive on the space of linear fac~ors; in

at/ter words, given two distinct linear factors there exists a group action that takes

one factor ta a multiple ofx, and the at/1er ta a multiple ofy. Furthermore, given

three distinct lincar factors, there exists a group action that takes two of the factors

ta multiples ofx and y, respectively, and takes the thirdfactor ta a multiple ofx+y.

Proposition 5.4.2 Given two distinct irreduciblc quadratics, there exists an

8L(2, lR) action that takes the first one ta a multiple of x2 + y2, and takes the

second one ta {J. multiple ofx2+ (ky)2, where k is an invariant of the pair.

Proposition 5.4.3 Given an iTreducible quadratic and a linear factor, there exists

an 8L(2, lR) action that takes the quadratic ta a multiple of x2+ y2, and takes the

linear factor ta a multiple of x.

The following is a list of ail possible root multiplicities, for degree 4 polyno­
mials as weil as a canonical representative for each such possibility (sec the book
by Gurevich [15J for a systematic treatment). The parameter, R, where it ap­
pears is an invariant that serves to parametrize the given orbits. We also list the
corresponding clements of 5 2g by using the following identifications:

8ince 5 2g is the direct sum of Us and UI we must also add a multiple of the

invariant tensor

C;-~U :n
in order to get representatives for ail orbits of 52g. This is the role served by the

parameter S. There is also the orbit of the invariant tensor, but we won't inc1ude

in our list because it generates a degenerate metric.



• CHAPTER 5. THE CLOSURE CONDITIONS 91

1. xy(x2+ 2Rxy + y2). Four distinct linear factors (lRI > 1); threc lincar fact.ors,

one of them with double mult,iplicity (IRI = 1); t\\'o distinct lincar factors ami a

quadratic L.::tor (IRI < 1).

C;J) = ( -~/2
-2R+25

-3/2
2R+5

3/2

-2R+25 )
3/2
o

•

:;:. X2y2. Two linear factors, both with double multiplict)'.

(

0 0 -1 + 25 )
C(2) = 0 1 + 5 0

-1+25 0 0

3. x3y. Two linear factors, one of them with a triple multiplicity.

(

0 0 25)
C(3) = 0 5 3/2

25 3/2 0

4. x 4• A single !inear factor of quadruple multiplicity.

C(4) = ( ~
25

o 25)
5 0
o 6

•

5. (x2 + y2)(X2+ (Ry)2). Two distinct quadratic factors (R # 0, ±1); a double

quadratic factor (R = ±1); a double linear factor, and a quadratic factor (R = 0).

(

6R2 0 - R2 - 1 + 25 )
C(5) = 0 R2 + 1 + 5 0

_R2 -1 +25 0 6

Now let us plug these orbital representatives in the invariant equations and

find out which, if any, parameters give solutions 1.0 the c10sure conditions. To keep
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•

things reasonably brief wc will work out the answer in detail for one of the above

representatives, say CCI)' and list the results for the others in the appendix. To

obtain solutions for the homogeneous closure conditions, we evaluate the invariant

equations (5.9) on the abcve tensor. The relevant calculations for the first equation

are shown below:

U-4 -- CllC22 __ (CI2 )2

-- -9/4

'110 -- Cil C33 _ (CI3? _ 4(Cl2C23 __ C 13C22)

-- 9 + 8(8 - R) (2R + 8) - 4(8 -- R?

"11-2 -- _2Cllc23 T 2C!3C23

-- -6R+68
1

-2ï(R2 _ 8 2 -- ~) (5.11)U_4 ÛO - 2"11-2U-2 -- 4

Th,,: second cquations in (5.9) expands as follows:

(5.12)

Therefore, the only solutions to equations (5.11) and (5.12) are

R =0,8 = 1/2, R = 1,8 = -1/2.

We won't bother e."l:panding the rest of the equationsj the upshot is that both of

the above solutions satisfy the other 3 polynomials in (5.11). The corresponding

solution for C is given by a multiple of

(
~1 ;~ ~2 J
±2 1 0

(5.13)

•
Let us now consider which L E g, if any, are compatible with a type CCI)

quadratic component. One has to evaluate the ï expressions given in (5.10) with

C = C(l), and then check for which values of the parameters R, 8 there exists a
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non-zero solution for L. This is best donc with a symbolic ca!cnlation paclmp;e.

so we won't bother considering the intermediate computations here. The interest­

ing result is that again, the (5.13) gives the only solutions for C. The solutions

for L must be a multiple of al + a3. The most general Lie-algcbmic operat.or
corresponding 1.0 these solutions is

11. = - {xây, xâx - yây} + 2 {xây, yâx + P/J;2} +

+(xâx - yây)2 + {Yâx + P/:r;2, xâx - yay} + Q(xay+ !Jax + P /:1;2)

_ ~ + 2 grad(log(/-L)) _ P(Q; 2)
x

where the Laplacian and the gradient are determined by the following contravariant

metric tensor:

(
x(x + 2y) -(;~ + y)2 - ";y î

-(x + y)2 - xy :V(2x + y) } ,

and where
-p R

/-L = cx(x+>l (x + y) 1-, .

The above metrie has hyperbolic signature and a constant positive curvature: J( =
4. After a change of scale by /-L-l this corresponds tothe Schr6dinger operator

Q2
~+--14 .
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Chapter 6

Flat Lie Aigebraic Spaces

Say what vou know, do whoc Vou must, come what may.

- Sonja Kovalevskaïa

6.1 Turbiner's Conjecture

Certai~, rare values of C E 8 2g induce a fiat background metric. Thrbiner [32J has
conjectured that a 2-dimensionai Q.E.S. system that (i) satisfies the closure con­

ditions, and (ii) has a fiat background metric, must admit separation of variables

in some suitable system of coordinates. The work in this section derives from the

impetus to resolve this conjecture.

We will begin by considering some examples of fiat Lie-algebraic metrics. These
examples will illustrate Thrbiner's separation phenomenon, and also reveal two

interesting properties possessed by such metrics.

The first property is a local one. We make two assumptions: the coefficients
of the contravariant metric tensor are non-singular anaiytic functions, and the

curvature vanishes identicaily. These facts determine the behaviour of the metric

at the locus of the metric tensor's degeneracy. One aspect of this behaviour is the

94
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fact that the flow of a gradient vector field can never cross t~lC locuô of dep;c:ltrac~':

the flow is trapped in the non-degenerate region. This is l'rovec! in Corollary 6..l.2.

The second property is global in nature. and requires t.he aclditlonal a."slJl!~I't.ion

that the analytic, contravariant metric tcnsor be defined on a compact. lI1anifdd.

The compactness hypothesis implies that there exist.s a global analyt.ic lI1ap from

the Euclidean plane onto the region where the met.ric is positive dcfinit". TI:'!

locus of degeneracy is pulled back by this cr.,ering to a collection of straight. lines,

and these lines tile the plane into isomet.ric sectors. This tiling result. is proved in

Theorem 6.5.12.

At the present we are not aware of a comprehensive l'roof of Turbiner's COIl­

jecture. However, it is our belief that the conjecture is true. The evidencc for this

assertion is t,'.vo-fdd.

First, the coniecture holds for all examples of fiat Lie-algebraic metrics knowT.

to us. We will illustrate this point with two examples. In the first. example t.he

separation takes place in both fiat and polar coordinates, in the second example

the separation ta!<es place in a parabolic coordinate system.

Second, we will give the l'roof of a limited form of the conjecture under the

additional hypothesis that the action of the underlying group is imprimitive 1 When

the group acts imprimitively the geometry of the Lie algebraic systems has somc

important properties (see Section 4.8 for a discussion). One consequcncc of t.hcse

properties is that a Lie algebraic operator that satisfies the closure conditions will

separate in either fiat or radial coordinates.

We should also note that Turbiner's conjecture is critically depcndent;:,u the

assumption that the signature of the underlying fiat metric be positive·definite.

The relevant counter-example will be presented in an appendix.

lThe current proof also requires a certain compactness condition.

-.
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6.2 Two Flat Examples
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•

Let us begin our discussioll of fiat systems with two clarifying (:xamnles. The first

of these examples will illustrate the separability that arises from an imprimitive

group action. The second example 5hows that separation can also occur in a

coordinate system that is neith2r fiat nor polar. The second example will also

serve to illustrate the relationship between the dosure conditions and separability.

Our firot example is based on the following two dimensionals[(2) EEis[(2) actions:

Our Lie algebr,,;c operat;,;, will he given by

?-l - cP" + {2xôx + 2yôy , ôy } + 2K1x8x + 4K1yôy + 4K2ôy

= .6. - 2ây + 2K1xôx + 4K1yôy + t!K2ôy

- .6. + grad (Kl'U + (K2 -li2) log(y - x2
)) ,

where the Laplacian and gradient are taken with respect to the induced metric,

(
1 2X)

2x 4y .

Th" curvature of this metric is zero. Fiat coordinates are given by

The s[(2) EEi s[(2) actions admits two invariant foliations:

x = const, and y = const.

(6.1)

(6.2)

•

As a consequence, ?-l(x) is a function of x and ?-l(y) is a function of y. As predicted

by Corollary 4.8.4, the perpendicular distributions,
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l'Un in straight lines in the fiat (E, ''7) coordinatcs. Thcsc two invariant distribntions

give rise to two sets of coordinates in which the eqnation

1i\J1 = E\J1 (6.3)

•

•

can be separated. We will give a general explanation of why invariant foliations

induce separation of variables later, in Theorem 6.6.2. For no\\". let ns illnstrat.e

the phenomenon with the example at hand. Switching to the nat eoordinates wc

see that the first invariant foliation is given by E= const; the lcaves arc straight

lines. As we already not.ed, this implie" t!Jat 1i(E) must he a function of E, and

thereby forces the linear part of the operator to separate int,o a SUIll of a g;radient.

of a ç-hmction and a gradient of a 1)-function:

1l = L). + grad (J<je) + grad (J<j1)2 + (1(2 - 1/2) log(r/)) .

We can therefore separaLe (6.3) into

(8{{ + 2J<jç8{ - E)\J1 j (E) - À\J1,(E),
, 2J<2 - 1

(8~~ + 2I\j1)8~ + 8~ - E)\J12(1)) - -À\J12(r/),
1)

where À is a constant of separation.

The associated potential of the normalizeC: Schrodinger operat.or is given by

V· - J<2c2 J<2 2 (J<2 - 1/2)(J<2 - 3/2) T.' 2 T.' l'- - j" - 21) - 2 - J\ 1 - 1\ 1 \2'
1)

Here we have an illustration of another interesting phenomenon: a eoordinate

system that separates (6.3) also separates the normalized equation,

(.6. + V)\J1 =.6'\J1. (6.4)

The second invariant foliation corresponds to the levellines of the radius fune­

tion, r = .Je + 1)2. Again, this means that 1i(r) is a function of r, and therefore

by switching to polar coordinates,

ç = rcos(B), 1) = rsin(B),
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the lincar portion of 1l will scparatc: .

1l = .6. + grad ([(lr2+ (2[(2 - 1) log(r)) + grad ((2[(2 - 1) log(sin(û;,).

Wc can thcrefore separate (6.3) into
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(
, 2I<2 - 1 )arr +ar +2l\lrar + r ar-E IJ1 I (r) -

(aoo + (2[(2 - 1) cot(B)ao) 1J12 (B) --

•

•

'Vriting the associated potential m polar coordinates we obtain

v = _[(2 2 _ 1 ([(2 - 1/2)(I<2 - 3/2) _ [( _ 2[( r
1 r 2 • 2 (n) 1 1 ~2'r sm u

Thus the normalized equation (6.4) also separates in polar coordinates into

(arr + ar - [(rr2 - E - [(1 - 2[(1[(2) IJ1 I (r) - ~ \lJI(r),

(a _ ([(2 - 1/2)([(2 - 3/4)) lJ1 (B) _ -..\1J1
2

(1J) •
\ 00 sin2 (B) 2

The next example of a Lie algebraic operator will be generated from the fol­

lowing realization of 5[(3) actions:

The operator itself is given by:

1l - ~ {xa", a,,} + a; + [(la" + [(2ay + K.lxa" + [(4yay+ [(5(Xay - xYôx )

(
log(x) y X y2 (xy 'lJ3))

- .6. + grad [(1 2 + [(2'2 + [(3'2 + K 4"4 + [(:; 2 + 6" '
where the Laplacian and ~adient operators are given with respect the induced

metric,
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This metric has zero curvature, \Vith fiat coordinates gi\l'n b~·:
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"fx = 1;- 4, 11 = "1·

ç = 2'U'Il,

•

Thc basis of !inear tenns L E 9 that arc compatible with the givcn second-order

component, CE 5 29, is

Thus, the given 11. is the most general operator \Vit.h t.he given second-oreler CO III po­

nent that satisfies thc dosure condit.ions. The interesting feature of this operat.or

is that for ail choices of parameters J(j, ... , J(5, equation (6.3) sep.:rates, alt,hongh

the choice of coordinates in which separation takes place depend.• on the '/I,Llue of

the parameters. This suggests that there is sorne hidden connect.ion between the

dosure conditions and separability, and since t.he 51(3) acdon is n~t imprimit.ive,

this connection goes deeper than the imprimitivit.y phenomenon discnssed in the

preceding example.

When 1<5 = 0, the equation separates in t.he fiat. coordinat.es, (e ",). When

1<5 ~ 0, equation (6.3) separates in parabolic coordinates:

2 2 J(3 - J(4
'TI = 'Il - 'Il + ---''-::-;-­

1(;,

(6.5)

•

It is obvious how to separate the above equation.

The metric tensor in the separation coordinates is

" 1 (10)
4(U2 +'Il2 ) 0 1 .
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The above equation makes c1ear that

1i = ~ + grad(J(u) +9('0)),
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•

•

where 1('11.) and 9('0) arc rational functions given by (0.5). These two observations

show that the normalized Schr6dinger operator obtained from 1i by a change of

scale, will separate in the same coordinates as 1i. This is another indication of a

deep connection between the closure conditions and separability.
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•

•

6.3 Contravariant Metric Tensor and Curvature

The goal of the present section is to derivc a critcrion for lIat.ncss iJa..'icù on thc

contravariant form of the Ricmannian mctric tensor. The formula in qucst.ion is

prcsented in Propositio;J. 6.3.3. This formula is the kcy to unlockin!-\ thc striking

properties of fiat metrics with non-singular contravariaut t.cnsors that wc will be

discussing in the next section.

Again, our starting data is the cont.ravariant form of a Ricmanuian II1ctric t.en­

sor, gii. One could invert the matrix gii and t.hcn apply the nsual formula for

sectional curvature, but the result would have a cumbersome forIll, and thercfore a

limited usefulness. Instead, we will base our approach on the moving frame of co­

ordinate function gradients. Suppose then that we arc givcn a pscudo-R.iemannian,

contravariant metric tensor, gii, and that the coefficients of the met.ric are analytic

functions of local coordinates Xl, .... ,x". It will be uscful 1.0 usc thc abbreviations

Note that Hi . Hi = gii, Le. the functions gii arc thc metric cocfficients of t.hc

coordinate gradients' frame. It will also he u~eful to dcfinc thc fol!owing t.wo types

of symbols:

oiik _ Hi(gik )

/3iik _ oiik _ ai ik

These symbol are useful for describing the brackct of coordinatc gradicnts:

They can also be used to describc the coefficients of thc corrcsponding Lcvi-Civita

connection,

relative to the coordinate gradients frame. We will abbrcviat.e t.hesc coefficients as
,iik •
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•

Proposition 6.3.1 The connection coefficients, "/ik
, of the coordinate gradients

frame are given by

ijk 1 (aiik _ c)ik + clii)'Y -
2
1 (f3iik + Qkii )- -
2
1 (Qiik _ f3i ki ) .- -
2

Praof: The standard derivation of the covariant derivative of a Levi-Civita con­

nection gives

2(\1J1iHi) . Hk _ Hi(Hi. Hk) + Hi (Hi . Hk) - Hk(Hi . Hi)

- [Hi,Hk]. Hi _ [Hi,Hk]. Hi + [Hi,Hi]. Hk.

Expanding the right hand side in terms of the aiik type symbols we obtain

o

We are now ready to derive a contravariant version of the formula for the

Riemannian curvature. In what follows, let R denote the Riemannian curvature

tensor and kiki the tensor's components relative to the coordinate gradients frame,

Le. R(Hi,Hi)Hk·H1•

Proposition 6.3.2 The curvature tensor is given by

•

Riiii = ~ (Hi(f3iii) + Hi(f3ii i))

+ ~ (grad(gii). grad(gii) - grad(gij)"2)

+ ~ [Hi, Hi]"2 .

(6.6)
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Proo/: By definition, the curvature tensor is determined by

R,j,j = V' IIi V' Ili Hi. Hj - V'J[J V' IIi H' . Hj - V'[Il'.IIJ]H' . Hj.

The following identities serve to re-express the three terms in the right haud side

of the above expression.

Hi (-fi j ) _ V' Il' V' /lJ Hi . Hj + y,,/, yÙ,"'!,j"

Hj l'Yi'j) - V' /lJ V'Il.}!' . Hj + y"" ",!""-fj"

V'[lIi.IlijH' . Hj - Ya"(Jij"",!,,,j

Thanks 1.0 these three identities we can reformulate the forlllula for the curvature

tensor as

(6.7)nijij _
L -

Hi(-f,j) - Hjl'Yiij )

+ Ya" (_-fia",!i j " + "'!iia-fj" - (J,ja"'!",j)

The curvature tensor is symmetric with respect 1.0 a switch of the 'Ï and j indices,

and consequently we can symmetrize these indices without affecting the right hand

side's value. Upon symmetrizing the first two right hand side terms of (6.7) and

using the identity

•

•

we obtain

Hi(-fij ) _ Hjl'Yiij ) _ ~ Hi (-fij - -fji) + ~ Hj (",!iji _ -lij ) (6.8)

_ ~Hi((Jjij) + ~Hj((Jiji)
2 2

Next we use the identity gab aaij = Ôbyij and the formula in Propo';itioll 6.3.1 1.0

transform the remaining terms in the right hand side of (ti.7) as follows.

- gab -fia"'!ijb _ - ~ gab ((Jjia + aaij )((Jijb + a bij ) (6.9)

_ _~ (gab (Jjia(Jijb + Ôbgij(Jijb + ôagij(Jjia + g"bÔ"yij Ôbyi j )

~ y (Jija(Jijb _ ~ yabéJ gijÔ yij
-4 ab 4 ab·
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(6.11)

•

•

The final transformation is justified by the fact that /3ijb is skew-symmetric in i

and j while gij is symmetric, and therefore the second and third terms in the next

to last line vanish after wc symmetrize with respect to i and j. We aiso have

gab -yJja,iib = ~ gab8agii8bgjj. (6.10)

AIso, by the formula in Proposition 6.3.1 we have

.-gab /3ija,bij _ - ~ gab /3ija (ciij + f3i jb)

_ - ~ 8agij f3 ija + ~ gab /3ijaf3 ijb

~ ( /3ija/3ijb- 2 9ab .

As above, the first term in the next to last line vanished because we symmetrized -: .

in i and j. Putting (6.8) (6.9) (6.10) (6.11) together we obtain

Rijij = ~ (Hi(f3jij) + Hj(f3iji)) + ~gab (8agii8bg1j _ 8agij8bgij) + ~ gabf3ijaf3ijb,

and this is equiva!ent to the formula given in the body of the current proposition.

o

Our next step is to specialize the above curvature formula to the two dimen­

siona! case, and to obtain a certain criterion for metric's flatness. In what follows

it will he convenient to denote the two coordinate variables as Xl = X, x2 = y, and

to give the contravariant metric tensor, gij as

Wc also introduce the following abbreviations. For the determinant of the con­

travariant metric tensor we write

Setting

n = dx/\dy,
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we can express the metric's volume form as

•• 1

W = Ig'Jpn.
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•

Given a vector field V = aax + bay, we will express the divergence of F re\<tt;ive to

nas
Div(!l) = ax + by.

The divergence relative to the metric 9 and to w is given by

d· ('l) = D' ('l) _ 1/([gi
j
l)

IV 1 IV 1 2Igij['

Given any function, f, we will write

fx = axf, fy = ayf,

Ji = HI(J), f2 = H2(J) .

We also put

{31 _ {3121 = ql - P2,

{32 _ {3122 = 'fi - Q2.

The bracket of the coordinate gradients can therefore be given as

(6.12)

Before proceeding further we also need to gather in one place sorne basic iden­

tities that will be iequired later on. The first identity is the formula for the area

of a parallelograrn relative to the metric, g:

(6.13)

•
where U and V are two-dimensional vectors. ::lC polarized version of this identity

is
(6.14)
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whcrc U, V, and W arc vcctors. We will also need the following divergence identity:

V(lgiil) _ V(rl(H1,H2))

= Div(V)[gii[+fl([V,Hl],H2) + rl(HI, [V,H2]). (6.15)

Anothcr divergence identity is the following. For any function, f, we have

Div(grad(J)Mil = (.c(grad(J))rl) (HI, H2)

= d(grad(J)J rl)(H l
, H 2

)

=Hl (rl(grad(J) , H2)) - H2 (fl(grad(J) , Hl)) - rl(grad(J), [HI, H2])

= Hl(Jxlgiil) - H2(Jylg;il) - rl(grad(J), [Hl, H2]) (6.16)

Let f, h be smooth functions. The obvious identities,

•
8x • grad(J) = fx,

immediately imply

The obvious identities,

8y . grad(J) = fy,

(6.17)

rl(grad(J), grad(h)) - rl(JxHI + f yH2, hxHI + hyH2)

- Igii 1(Jxhy - fyh x)

- rl(iJ8x + f28y , hl 8x + h28y )

- iJh2 - f2h b

imply the following identity, which we will need later:

f lh2 - f2hl = [giil(Jxhy - fyhx) (6.18)

•

Proposition 6.3.3 The Gaussian curvature is given by the following formula:

_4plgiiI2J( = 3Hl (lgii l)2 _ 21gii lH1(Hl(Jgiil)) (6.19)

+Igiil (_PxHl(lgiil) - 4qyH l(lgiil) + 3pyH 2(lgii 1))
+lgii l2 (2pxqy - 2pyqx + 4qyqy - 4rypy + 2PPxx - 2rpyy + 4qqyy + 4pqxy)

j'
.._,-
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Proc/: Using (6.13) with U = Hl, V = [HI, H2J wc obtain

(6.20)

Making a linear change of coordinates, if necessary, wc assume withollt, 10ss of

generality that p f. O. Recall that K, the Gaussian curvature, is rclated to the

Riemannian curvature tensor by

Multiplying both sides of (6.6) by 4plgiil, and using (6.20) \\'P. obt3.in:

•
_4plgi;12K = plgiil (2H2(pl) _ 2H1(p2)) (6.21)

+p\giil (grad(p) . grad(r) - grad(q) . grad(q))

+3lgiil (Pl? +3(pp2 _ qpl)2.

Next, using (6.17) we obtain

H1 (pp2 _ qpl) _ pHI(p2) _ qHI(pl) +PIP2 _ q•.f3' (6.22)

_ pHI(p2) _ pH2(PI) + Igi;1 dypl + p[p2 - q[j31.

Using (6.14) with U = HI, V = grad(p), W = gr~rl(r) we get

p grad(p) . grad(r) - Plrl - w(HI,PxHI +Py H2
) w(Hl, rxH I + ryH2Q6.23)

_ Igii\pyry.

Similarly, we obtain

p grad(q? - q~ = Ililq;. (6.24)

By substituting (6.22), (6.23), and (6.24) into (6.21) \~e transform the clIrvature
formula into

-
(6.25)

•
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•

•

Next, using (6.12), and (6.18) with f = P and h = /31 we obtain

Pl/32 - ql/31 - Plrl - Plq2 - qr + qlP2 (6.26)

= PITI - qr + Igiil(qxpy - Pxqy).

Thc following is also true,

PI/32 - ql/31 + (/31? - pIf32 - qIf31+ /31(ql - P2) (6.27)

- PI/32 - P2(31

- n(grarl(p), [H!, H2])

Substituting (6.26) and (6.27) into (6.25) we obtain

-4Igii I
2J( = Igiil [-2HI(p(32- q(3I)+3n(grad(p),[H I,H2J)] + (6.28)

.+ldi l2 [(2Ôy/31 +Pxqy -Pyqx+pyry - cfu)] (6.29)

+3(p/32 _ q(3I)2

Next, wc substitute (6.16) with f =pinto (6.28) to obtain

- 41gii l2J( = Igiil [-2HI(p/32 - q(3l) + 3H1(Pxlgii 1) + 3H2(pylgiil)]

+lgii l2 [(Div(grad(p)) + 2ôy/31 +Pxqy - Pyqx + pyry - q;)]

+3(p/32 _ q/3I)2

The penultimate step is to use (6.15) to derive

HI(lgiil) = Div(HI)lgiil+n(HI,[H!,H2])

= (Px + qy) Igiil + p(32 - q/3l,

and then to substitute this idelltity into (6.27) to obtain

_4lgiil2K = 3HI(Igii 1)2 _ 2lg'ilHI (HI (Igiil)) +
+Igiil [-4(Px +qy)HI(lgiil) +3HI(pxlgii l) +3H2(Pylgiill] +

"2[ 1 2 2]+Ig']1 (Div(grad(p)) +2ôy,B +Pxqy - Pyqx +pyry - qy +3(px + qy) )

Finally, sorne straight-forward e.'l:pansion and simplification yields (6.19). 0
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6.4 The Trapping Theorem
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•

•

The aim of the present section is 1.0 presc:lt nn importnllt, locnl property of nat

Riemannian metrics whose metric coetficients are allalytic fUllctions.

Let us lirst illustrate this phtmomenon with an example. Consider agaill the

fiat metric given in (6.1). The metric matrix divides the plane into two regious

according 1.0 whether th<l determinant, y_x2 , is positive or negative. The boundary

between thesc :egions is the locus of the metric's degeneracy, the curve y = x2
•

The flat coordinatcs given by (6.2) are in fact a caver of the positive dcfinite region

by the full Euclidean plane:

where (ç,1]) are the flat coordinates. It is as if wc endowed the paraboloid y =

x 2 + Z2 with the fiat metric structure from the projection 1.0 the (x, z) plane,

and then projected the paraboloid 1.0 the (x, y) plane. This covering is irregular.

There are two points in the (ç,1]) plane above l'very point in the (x, y) plane;

the exception is the bounàary curve, whcre the relationship is one 1.0 one. Thus,

the boundary curve is a "crease" formed by the projection; il. is precisely al. the

boundary that the rank of the Jacobian drops, and where the covering censes 1.0

be a diffeomorphism.

Il. turns out that there are two types of degenerate points. There arc the un­

rear.hable points; the distance between these and non-degenerate points is infinite.

We will see examples of such degeneracies later. The reachable degeneracies, on

the other hand correspond 1.0 plares where the Euclidean plane "bends back vn it­

self". More precisely, near a reachable, degenerate point the Lic-algebraic spacc is

analytically covered by Euclidean space, and the locus of degeneracy corresponds

1.0 the points where the covering map is degenerate and the degree of the covering

drops. This behaviour is described in Theorem 6.4.1

This "crease" analogy becomes l'ven more marked when wc trace out the
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•

•

geodesics of the fiat metric. In the (1;, TJ) coordinates the geodesics are given by

al; + bT! = c, where a, b, c are constants;

and in the (x, y) coordinates by

(a2+ b2)X2 _ 2acx - b2y +è2' = O.

Thus, in the (x,y) plane, the geodesics are represented by a family of parabolas

that arc aIl "trapped" in the range ofthe projection, the region {y - x2 > O}.

The behaviour of the geodesics at the b,,;undary is particularly interesting. The

geodesic parabolas never cross the boundary. As they get close to the boundary

curve, the geodesics become tangent to it, and are then "rcfiected" back into the

region {y - x2 > O}.

What can be said about the curves that are not trapped by the boundary?

Consider, for instance, the curve

x =k, y = t,

where k is a constant and t is the parameter of motion. The square of the curve's

velocity with respect to (6.1) is 4(Y~X')' Le. the curve's velocity is singular as it

crosses the boundary. In contrast, a path with finite velocity must be tangent

to the boundary when the two meet. This condition has a more analytical de­

scriptior;: the derivative of det(gii) along a path with finite velocity must be zero

whenever the determinant is zero. Consider for instance the gradient of an analytic

function, f(x, y). Clearly, the square of this function's gradient will not have any

singularities, and so we would predict that

grad(J)(y - x2
) =0, whenever y - x2 =O.

Let us verify this. We have

grad(J) - fx(ax + 2xay ) + fu(2xax +4yay ),

grad(J)(y - x2
) _ 4fu(y - x2 ),
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and sa, our prediction is confirmed.
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The following Theorem and its Corollary serve to formalize the abov" disc\ls­

sion. We continue to use the notation èstablished iu Section 6.3

Theorem 6.4.1 Let gii be a contravariant. pianar met7-ic tensor 'llIüh non-s'ir!!Juia'r,

anaiytic coefficients P.. q, and r. If the curvature of the con'eSI)07lding met7-ic is

identically zero, then there exist iocally defined, anaiytic funct'ions, p., and tL2 such

that

Proof: The theorem is obviously true for non-singular poiuts of the metric. So

suppose without loss of generality that Igii l is zero at the origin. It is 11 weil kuown

fact that the ring of convergent power series with complex coefficients is a uuique

factorization domain (see for instance the book by Gunning and Rossi, [14]). This

means that up to multiplication by invertible functions, Igii 1 factors uniquely into a

product of irreducible, complex-valued, analytic functions that are 0 at the origin.

Let f be one such irreducible factor, and let k be the multiplicity with which f
occurs in the factorization of Igii l. We therefore have

where 0" and f are relatively prim!'!. Now suppose that Hl (J) and f arc relatively

prime. Hence,

HI(lgiil) _ kO"HI(J)fk-l + pIik

HI(HI(lgiil)) _ k(k -l)O"(HI(J)f fk-2 + P2fk-l,

(6.30)

•

where Pl and P2 are sorne analytic functions. Hence we can apply Proposition 6.3.3,

to conch.de that
3HI(lgiilf _ 21giil HI(HI(lgiil))

is divisible by pk-l. Using (6.30) to expand the above we obtain
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•

wherc P3 is sorne analytic function. Hence, k(k + 2)a2(HI(J))2 rnust be divisible

by f. But this cannot be because both a and HI(J) are assurned to be relatively

prirne to f, and because k(k+2) is non-zero for aIl positive k. Therefore HI(J) is

divisible by f. This must be true for aIl irreducible factors of Ig;jl, and therefore

HI (lg;jJ) is divisible by Ig;jl. 0

Corollary 6.4.2 (The Trapping Theorem) Let g;j be as in the preceding the­

orem, and let f be an analytic function. Then, the flow of grad(J) can never cross

the locus of degeneracy. More precise/y, this means that the trajectories of the flow

of grad(f) are either contained in the locus of degeneracy of g;j, or they never

intersect it.

Proof: Note that grad(J) = fxHI + f yH 2. By Theorern 6.4.1 grad(J)(19;jl)

is divisible by 19;jl, and hence grad(J)(k)(J) is divisible by 19;;1 for any positive

intcger, k. Consider an analytically pararnetrized curve, if>(t) , whose derivative

is equal to grad(f). Since an analytic vector field integrates to an analytically

pararnctrized curve, 19;j 1 0 if> must be an analytic function of t. If 19;j1= 0 at one

point of if>(t) , then aIl orders of the derivative of 19;jl along this curve wiII also be

zero. Therefore, there are o.,actly two possibilities: either 19;j1is never zero, or

Ig;j10 if> is identically zero. 0

Having defined the multipliers /10!> and /102 we wiII use them to give yet another

formula for Gaussian curvature. We will need this formula later. We put

P = /102 -rv'

R = /101 - Px,
Q = /101 - 2qy

S = /102 - 2qx'

Another way to o.'press the nature of /101 and /102 is to write

(G.31)

With these definitions equations (6.31) can be restated as the following relations:

•
rR-qS - prx

pP- qQ - rpy

(6.32)

(6.33)
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Proposition 6.4.3 The Gaussian Cllrvatllrc ·i.~ gilJcn by

-4pI< - QR + PyS - 2p (Py + Qx - Pxx)

-4qI< = RP - PyTx - 2q(Qx + Py - Pxx)

Prao!: Recall that

We can therefore rewrite the formula in Proposition 6.3.3 as
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(6.34)

(6.35)

•

•

4pI< = 3/.Lî - 2/.Lî - 2H1(/.Ll) - (Px + 4qy)/11 + 3Py/12

+2pxqy - 2py'Ix + 4qyqy - 4r"py + 2PPxx - 2'r/Jy" + 4qlJy" + 4/)(/xy

Using the y-derivative of the relation in (6.31) we obtain

which can be abbreviated as equation (6.34). To obtain equation (6.35) we lise the

following equational relation

p(6.35) - q(6.34) = R(6.32) + py(6.33).

o

We will conclude this section with a restatement of the above results in terrns of

Newton-Puiseux series. Such a series is an expansion of a function of one variable

in terms of fractional powers of that variable. More precisc1y, a Newton-Puiseux

series is an expansion of the form q,(xt) where k is a fixed positive illteger and tp(X)

is a convergent power series in the dummy variable X. The fundamental res1l1t

about such power series is the Newton-Puiseux Theorem. The proof is widely

available; see for instance Lecture 12 of Abhyankar's book [1]. We also need to

recall the notion of a Weierstrass polynomial and the Weierstrass Preparation

Theorem. These are also weil known topics; a discussion can be found in Lecture

16 of Abhyankar's book [1] .
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•

•

Wc use the standard notations q[x]] to denote complex power series in x, and

q[x]][y] to denote the ring of polynomials in y whose coefficients are power series

in x. A Weierstrass polynomial of degree n in the variable y is defined to be an n'h

degree monie polynomial in q[x]][y] whose coefficients are non-invertible power

series in x. In other words, such a polynomial, h(x, y), has the form

where the hi(x) E q[x]], and hi(O) = O.

Theorem 6.4.4 (Newton-Puiseux Theorem) Suppose that f(x, y) E q[x]][y]

is irreduC'ible and convergent as a power series in x and y. Also suppose that

f(O,O) =0 and that f is a monic polynomial in the y variable. Then, the equation

f(x, y) = 0,

can be solved for y in terrns of a Newton-Puiseux series of x. More precisely, there

exists a convergent fractional power series, </J (xt) such that

f(x,y) =II (y- </J(wxt )),
w

wherc the product is taken Duer the primitive k'h roots of unit];.

Theorem 6.4.5 (Weierstrass Preparation Theorem} Suppose that

f E C[[x, y]] has order n in the y variable, i.e. n is the smallest integer such that

fon # O. Then, f can be written uniquely as a product of power series h(x, y) and

u(x, y), such that h is an n'h degree Weierstrass polynomial in y and such that

u(O,O) # 0._

.Going back to the discussion of fiat analytic metrics, let us suppose that the

m"ltric tensor is degenerate at the origin, and let i(x, y) be an irreducible analytic

factor of Igiil = det(gii). By the Weierstrass Preparation Theorem we can without
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loss of generality assume that f is a Weierstrass pol~'nomial in !I. Let !I = t/J (:,:t)
be a Newton-Puiseux series solution of

f(x, y) = O.

The curve y = t/J (xt) is a branch of the locus of degeneracy of the metric. The

fo11owing proposition is yet another way of saying that gradient vector fields lIow

along the locus of the metric's degeneracy.

Proposition 6.4.6 Let gi j be as in Theorern 6.4.1. Then, the follo'llli'llfl re/ations

hold:

q(x, </J) = p(x, </J) </J', r(x, </J) = q(x,,p) ,p'.

•
Proof: By Theorem 6.4.1 we have

pfx + qfy == 0 (mod f)·

Let us write f as fo11ows:

f(x,y) = (y-,p(xt))O'(x,y),

(6.36)

where 0' is the product offactors involving roots of unity different from 1. Rewriting

(6.36) we have

(P(x, </J) </J' - q(x, </J))O'(x, </J) =O.

It is clear that y - t/J(x) and O'(x, y) are relatively prime, and therefore

p(x, ,p) </J' - q(x, </J) = o.

•

The relation involving rand q fo11ows analogously. o
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6.5 The Tiling Theorem
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•

•

In the present section we use the trapping theorem of the preceding section to de­

rive a crucio.\ global property of fiat analytic metrics on a compact space. In The­

orem 6.5.12 we will prove that positive-definite regions of a fiat, two-dimensional,

Riemannian manifold, M, with a non-singular, but possibly degenerate, analytic

contravariant metric tensor are isometric to the Euclidean plane modulo a dis­

crete group generated by reflections. The fixed points of these reflections form a

lattice that tiles the plane into isometric regions. Speaking intuitively, the isome­

try from ]R2 to M is a process of folding the plane along the tiling lattice ante a

positive-definite region of M.

We will begin with five examples to illustrate the salient features of this tiling

theorem. First, let us return to the fiat metric given in (6.1). Note that the

region {y ;::: x2 } is isometric to the quotient of the (ç, Tl) plane by a single refiection

isometry. Let us search for sorne apriori reasons why this should be.

As it stands, the background manifold of this metric tensor is]R2, a non-compact

space. For reasons that are about to become clear, we would like to compactify our

setting, i.e. to e;\.1;end ]R2 to a compact manifold such that the metric tensor e.xtends

in a non-singular fashion to the enlarged space. One such compactification is given

by eml:icdding]R2 into JR]?1 x JR]?1. To describe the enlarged space we introduce

e.xtra coordinates,
_ 1 _ 1
x= -, y=-.

x y

The whole of JR]?1 x JR]?1 is covered by the folJowing four coordinate systems: (x, y),
(x, fi), (x, y), (fi, x). In each of these coordinates the metric (6.1) has non-singular

coefficients. For instance, in the (x, fi) coordinates the metric matrix is

(
X4 2Xfi2 )

2xfi2 4fi3 .

In this compactification the locus of the metric!s degeneracy is the closed curve

{Y =x2
} U{x = O}U{fi = O} .
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We can now begin to sce an apriori explanation for why tlJ(' region {y ;:: :r~} is

isometric to a finite quotient of the plane. Let us choose a ba..,e-point in the

{y - x2 > a} region, and extend out geodesic paths away from this point. Since

we are in a compact setting, a geodesic will either travel away from the base-point

forever, or it will come in contact with the locus of degeneracy. At that point the

geodesic will for an instant match directions with the boundary curve and then

reflect b:tck into the region where the metric is positive definite. In summary, wc

can indefinitely extend a geodesic trajectory in any direction. Speaking in a more

formai language, we arc asserting that the exponential map from the tangent space

of a base-point has as its domain the full tangent space.

It is important to note that the property in question differs essentially from the

usual notion of geodesic completeness. The usual setting for geodesic completeness

is a Riemannian manifold with a non-degenerate metrie tensor. Wc, on the other

hand, wish to investigate the geometry of a space whose contravariant metl'il' tensor

has non-singular coefficients, but possesses degeneracies.

The next example is based on the following flat metric:

(

1-X
2 a)

a 1- y2

Flat coordinates are given by

x = sin(~), y =sin(7)).

The locus of degeneraey is the union of the \ines, x = ±1 and y = ±1, which divide

the (x, y) plane into a 3 by 3 grid. The given flat coordinates cover the central

region of the grid with an infinite-fold covering. The pullback of the degeneracy

locus to the complete, (~, 1]), plane gives an infinite, bi-directional grid, which

tiles that plane into infinitely many isometric squares. It is therefore clcar that the

central region ofthe (x, y) plane is isometric to the (1;,7)) plane modulo two vertical

and two horizontal reflections. In the preceding cxample the Euclidean plane was

tiled into two isometric regionsj in the present example wc obtain infinitely manyj

in the next e..<ample we will show that a single region is also possible.
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The metric in question is given by:

(
X

2 +
0

y2 0 )
x2 +y2 .

Flat coordinates are given by

x = ce cos(7)) , y = ce sin(7)).
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(6.37)

•

In this example the origir>.is the only degenerate point. The given fiat coordinates
coyer the punctured plane with an inflnite-fold covering. Note that the origin of

the (x, y) plane is an U7{réachablc point, Le. the length of any curve from the origin

to any other point is infinite. This e.xample is meant to illustrate the dichotomy

of points on the locus of degeneracy; such points are either unreachable points, or

points where the Euc1idean space foids back on itself.

The next example illustrates a more complicated tiling pattern. In this example

the preimage of the locus of degeneracy divides the Euc1idean plane into 2k equal

sectors (k is any positive integer) radiating from a comrnon center. The rnetric in

question is given by

(6.38)

Flat coordinates are given by

x =e+ 7)2, y =~(ç+ i7))k,

•

where the syrnbol ~ denotes the real part of a cornplex number. Let us verify that

with this change of coordinates, the above rnetric really is equivalent to

It is c1ear that

dx . dx = x~ + x~ = 4(e + 7)2) = 4x.

Writing ç= ç+ i7) we have
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and hence

Finally we have

119

•

•

Finally, let us examine the pullback of the locus of degeneracy to the (t;, TI) Eu­

clidean plane. The determinant of the matrix in (6.38) is 4k2(a;k - y2). Bence, the

locus of degeneracy in the fiat coordinates is given by

It is clear that the locus of

consists of k straight lines that divide the plane into 2k equal sectors. Wc there­

fore see that the positivp.-definite region {xk - y2 ?: o} is isometric to the (t;, ,,,)

Euclidean plane modulo i; centrally based reflections.

The final example is mearit t;:> illustrate the necessity for the compact setting.

Consider a contravariant metric tensor with matrix

The reasonable choice for fiat coordinates is

x = l/t;, Y = l/TJ.

These coordinates show that there exist finite length paths such as

x = t + 1, y = 1, t?: 0

that do not converge to a limit point. To put it another way lR2 with the given

metric does not have enough points to form a complete Euclidean space. The dif­

ficulty disappears as soon as we add sorne points at infinity by stipulating that the
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•

•

metric is given on lRIPl x lRIPl . Wc therefore have ç and TI available as coordinates,
and with these coordinates the metric tensOl assumes the standard form,

Wc now generalize the above examples into theorems. The setting will be a
compact, two-dirr.ensional, real-analytic manifold, M 2 , and a pseudo-Riemannian

metric, gij , wit:~ analytic coefficients. The locus of degeneracy of gij divides M
into connected ol/ln regions. The signature of the metric may change from region

to regionj we assume :that one such region, R, has been fixed, and that the metric

in that region is positive-definite. Finally, and most importantly, we assume that
the curvature of 9 is identically zero.

Before proving the main result we will need sorne definitions and lemmas. Let

us call a point on the boundary of R an unreachable point if all smooth curves that
end in that point have infinite length. Let us write the power series expansion of

9 about the origin as
g(O) + g(l) + g(2) + ... ,

where g(k) is a two-by-two symmetric matrix whose coefficients are homogeneous

kth-degree polynomial in two variables. Our analysis of boundary points will he

based on this c.'Cpansion. Clearly, the expansion about a degenerate point must
have a degenerate g(O). In what follows we will without loss of generality treat

generic points on the locus of degeneracy as if they were the origin. Unless stated

otherwise, we will write the contravariant tensor matrix, gii as

and use Igiil to abbreviate the deterrninant of this matrix. Much of o~~'<discussion

will be based on the notion of order of an analytic function, j(x, y). Wë define this

as the smallest total degree, i+j, of ail monomials, xiyi with a non-zero coefficient

in the expansion of j, and denote it as ordU) .
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Our first result is a basic criterion for the unreachabiHty of a degenerate point.

Proposition 6.5.1 Suppose that the power series expans'ions of rdl thl'CC 'IIlctrie

coefficients, p, q, and 1', have arder 2 or higher. Then, the oligin is '/l1/.rcachable.

This statement continues ta hold even if the coefficients ofgare rcal-valucd Ncwton­

Puiseux series.

, ,

Proof: The main idea of the proof will be to compare 9 with the metric given in

(6.37). The eigenvalues, À, of gare given by

p + l' ± J(p - 1')2 + 4q2

À = 2

Let us put
(! = x2 + y2.

Because the expansion of 9 begins with second degree terms, if the coefficients of "

9 are convergent power series, then we have

p = (!2 p, q = (!2ij, l' = (!2:;:,

where p, ij, :;: are non-singular analytic functions in polar coordinates. If the
coefficients of 9 are Puiseu., series, then we can be assured that p, ij, and :;: do

not have a pole at the origin. In fad ail three of these functions must tend to zero

near the origin. The formula for eigenvalues can now be written as

Since the parenthetical factor tends to zero near the origin, we can choose a J( > 0

such that for (! ~ 1 we will have À ~ J( (!2. This implics that the length of any

path measured with respect to 9 is greater or equal ta 1/J( times the length of that

path measured with respect ta the metric in (6.37). But the origin is unreachable
with respect ta (6.37), and therefore, a fortiori, it is unreachable with respect ta

g. 0
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The next proposition classifies degenerate points where the metric has a non­
zero constant term.

Proposition 6.5.2 Suppose that ord(lgiil) > 0, but g(O) # O. Then, after a suit­

able change of coordinates Igiil = yk h(x, y), where h is invertible.

Praof: Using a linear change of coordinates wc can always change 9 so that the
constant term has the form

Le. so that p is an invertible function. Let y -ljJ(x) be Puisem( series s.)lution of

Igiil(x, y) =O.

Since p is invertible, the order of the left-hand side is controlled by ljJ'. Also

note that q(x, ljJ) is q(x,O) plus a multiple of ljJ. It is therefore impossible for ljJ

to have any fractional powers. Let us see why. Suppose ljJ has terms with non­

integral cxponents. Let d be the smallest non-integral rational number such that

the coefficient of xd in ljJ(x) is non-zero. Hence, the left hand side will have a non­
zero X d- 1 term. However, ail terms with fractional powers in the right hand side

must have degree d or higher. We have reached a contradiction, and can thereby

conclude that ljJ(x) is actually a convergent power series.

We can now take x and y = y - cP(x) as nev;. coordinates. We may therefore

assume, without loss of generality, that y is a factor of Igiil. As we saw in the proof
to Proposition 6.5.3, the preceding assumption means that q and r are divisible

by y. Let us now show that Igii 1 has no other factors other than y. Again, let

y = ljJ(x) be a PUiSelL"i: series equation for the locus of degeneracy, and again (6.39)
must be true. Our present assumptions mean that q(x,O) = 0, and hence the right

hand side of (6.39) is a multiple of cP(x). The order on the left hand side, however,

is equal to the order of ljJ'(x). This can only be possible if ljJ(x) = O. 0

•

•

By Proposition 6.4.6 we must have

p(x, ljJ)ljJ' =q(x, ljJ). (6.39)
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Much of our work will be based on one fundamental toul: the qUlulmtie folri

map. We define this to be an analytic map from ]R2 to ]R2 that under a sni table

choice of local coordinates can be expressed as

x =ç, (GAO)

•

•

The name "quadratic fold" reflects the fact that the (ç, Ti) plane gcncrically covcrs

the (x, y) plane in a two-to-one relationship. Thc cxccption arc thc points on thc

x-axis (the line of the fold) where the relationship is one-to-onc. Onc fundament.al

use of the quadratic fold is to resolve a first ordcr degeneracy in the contravariant

metric tensor.

Proposition 6.5.3 Suppose that ord(lgiil) = 1. Then, there exists IL non-riegcnemte

contravariant metric tensor yii with analytic coefficients defined on sorne T1ciyhbor­

hood, Ne ]R2, and a quadratic fold map rI>: N -+ R, such that rI>.(jj) = y .

Prao!: Our assumptions about Igiil amount to the fact that Iyiil can be nsed as

a coordinate function. We can therefore choose a coordinatc systcm, (x, y), with
the property that the determinant of gii relativc to these coordinates is y timcs an

invertible analytic function. The locus of degencracy is thcrcforc the x-'l.'Cis, and

without loss of generality we assume that near the origin, y is positive dcfinitc in

the upper half plane. Proposition 6.4.6 tclls us that both q(x,O) and r(x, 0) must

be zero. This directly implies that y is a factor of both q and r; let us say that

q = 2yij and that r = 4yf. Next we define a quadratic fold map as pcr (6.40). Wc

take N, the domain of this map, to be a neighborhood of the origin, sufficiently

small so that the image of the map is contained in the domain of defini tion of the

x and y coordinate functions. Contravariant tensors in the two planes arc related

by

8{8{ - 8x8x ,

Ti 8{8~ - 2y 8x 8y ,

8~8~ - 4y 8y 8y •
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Therefore 9 is the pushforward of the following non-singular metric:
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Note that

•

•

Also note that the determinant of the Jacobian of the quadratic fold is 4rp = 4y,

and hence the determinant of 9 is equal to Igiil/4y. The result is a non-zer "

analytic function in the ç, TI variables, i.e. 9 is non-singular and non-degenerate.

o

The next proposition shows that quadratic factors of Igii 1 can be put into

normal form.

Proposition 6.5.4 Let f(x, y) be a second order analytic factor of Igiil. Then,

after a suitable change of coordinates f(x, y) can be expressed as the product of

an invertible function, and of one of the following 3 canonical forms: y2, y2 - x k ,

where k > 0, or y2 + xk, where k is even.

Proof: Using the Weierstrass Preparation theorem we can factor f(x, y) into a

unit and into a second order Weierstrass polynomial. We can therefore, without

loss of generality assume that

f(x, y) = y2 + ft(x)y + fo(x).

f(x,y) = (y + fl;X)r+ fo(x) _ fl~)2.

The first case in our classification occurs when

fo(x) - fl~)2 = o.

To obtain the canonical form for f we take x and y + ft (x) /2 as new coordinates.

Now, suppose that
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and let us say that
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•

()
fl(x)2 k

fox - -4- = J; 1> (:r,) ,

where 1>(x) is an invertible power series. Making the analyt.ic change of coor<lillat.es

fI (x) 1

y = y +"2' x =x (±1>(x))' ,

we can without loss ùf generality assume that

In the former case, if k is odd, we can do a x i-T -x change of coorclinat.e, and

thereby obtain a polynomial of the y2 - xk form. 0

The second and third casC·:n the above classification are instances where t.he

degeneracy of the metric can be resolved by using a certain class of analyt.ic maps.

The quadratic fold map can be generalized 1.0 the not.ion of a k-fold Trial'. These

are analytic maps from R2 1.0 R2 of the type presented in example (6.38), i.e. under

a suitable choice of local coordinates (ç,7)) of the domain and (x, y) of the range,

the k-fold map is given by:

x=çë, (6Ai)

where ç = ç+ i7). These objects are important because they resolve second order

degeneracies in the metric tensor. Aiso note that in the case k = 1 the above map

is equivalent 1.0 a quadratic fold. We also need 1.0 introduce a hyperbolic variant

of the above k-fold map:

~, = ç7), (6.42)

•

This map is quite similar 1.0 the standard k-fold given in (6.41), but differs in that

il. is an isornetry between fiat pseudo-Riemannian manifolds with a hyperbolic

signature.

The following two propositions are necessary for the subsequent discussion

about k-fold maps.

....,
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Proposition 6.5.5 Suppose that x k - y2 is an analytie factor of Igij 1. Then gij

is equal to the push-forward of sorne analytie metrie tensor, g, via the k-fc!ti map

given in (6.41). Furthermore, if the arder of Igijl is 2 then 9 is non-degenerate. If

the arder of Igij 1 is greater than 2, then the origin is an unreaehable point.

Proof: Let us write the metric tensor as follows:

(
p q) = (PO((X)) +Pl((X))Y qo((x)) +qj((X))Y) + (y2 _xk ) (~ r~)'
q r qo x + ql x Y ro x + ri x Y q

where the various functions of x are convergent power series. The Puiseux series

solutions of

are given by

Thus, we can use Proposition 6.4.6 to obtain the following relations:

-10 + X
k

/
2 q1

Separating the terms with half-powers from those with whole powers we further

obtain the following:

Let us set

4 _ ( 4x
• - 2ky

(6.43)

c= (~ n.

•
Using (6.43) and the above definitions we can write the metric tensor as

~ A + PI B + ( 2 _ k) C
2k 4 Y x . (6.44)
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Next, let us see if the above tenns can be given <1$ push-for.mrds of uou-singular

tensors via the sta'1dard k-fold mal' given in (6.41). In the discussion accompanying

example (6.38), wc saw that A is the push-fonvard of the identity matrix. We also
saw that the square of the Jacobian of the k-fold is equal ta 4P(y~ - :/:k). This

implies that y2 - xk times any analytic metric tensor in t.he (:r, y) space is the

push-forward of sorne non-singular metric t.ensor in the (~, TJ) space.

We have dealt with the first and the t.hird terms in (6.44); but. what. about the

middle term? Note that

A bit of calculation shows that the right hand side is equal ta

• (
ç~(çk-I) + T).~(Çk-l)
T)~(çk-I) _ ~!::5(çk-l)

Vsing the self-evident identities

T)~(çk-l) _ ~!::5(çk-l) )
_~~(çk-l) _ TJ!::5((k-l) .

•

ç(~(çk-2) _ ~~(çk-I) + "'1~,((k-l)

_ç(!::5(çk-2) = "'1~(çk-l) _ ~~'(çk-I)

we can conclude that B is the push-fonvard of

To recap, we have shown that ail three terms of (6.44) arc push-forwards of

non-singular metric tensors in the (ç, T)) space, and therefore the sarne can he said

of our fiat metric tensor, g.

To finish the l'roof, let us suppose that t.he order of [g'j 1 is greater than 2.

From equation (6.44) we see that this implies that the order of 'lI (x) is f,'Teater

than O. But this, in turn implies that ail coefficients of g have order 2 or higher,
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•

and therefore by Proposition 6.5.1 the origin is unreachable. If, on the other hand

the order of Igii 1 is 2, then 9 must be non-degenerate at the origin because the

determinant of 9 is the determinant of 9 divided by the square of the determinant

of the .Jacobian, 0

Proposition 6.5.6 Suppose that x k + y2, where k is even, is an analytie factor of

IgiiJ. Then gii is equal to the push-forward of some analytie metrie tensor via the

k-fold map given in (6./,2). Furthêcmore, the order of the series expansion of Igiil
must be greater than 2, and the origin is an unreaehable point.

Praof: Our proof proceeds analogously to the one for Proposition 6.5.5. Again,

wc write the metric tensor as

The Puiseu., series solutions of

are given by

y = ixk / 2 •

As before wc use Proposition 6.4.6 to obtain the following relations:

qo =_~Xk-lPl'

rI = _~z X k- 2 Pl'
(6.45)

Let us set

A= ( 4x
2ky

•
Using (6.45) and the above defillitions v:e can write the metric tensor as

~~ A + Pl B + (y2 + x k
) C.

-~""":-- --_._-

(6.46)



..

•

•
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Next, let us show that .1\ is the push-forward of 2âeâ'l' Computillg the push­
forward of the latter, we obtain:

dx = f,dTJ + TJdé"

dy - ~ (E,k-1dE, - TJk-1dTJ) ,

di;'· - 4f,TJ =4x,

dxdy - k(é,k - TJk) = 2ky,

dy2 - _k2çk-1TJk-l = _k2xk- l •

This is in agreement with the multiplication indueed by A. A similar calculatioll

shows that B is the push-forward of the fol1owing:

( - 2~k-2 2é,~-2)'

Again, since the determinant of the Jacobian is equal to _k(y2+Xk), every multiple

of y2 + xk is the push-fonvard of sorne non-singular tensor. Wc ean therefore

conclude that our fiat tensor, g, is the push-fonvard of sorne nOIl-singular tensor,

g.

Now let us show that the order of IgUI must be greater than 2. Let us suppose

the opposite. From this we will presently deduce that 9 must have hyperbolic sig­

nature in a neighborhood of the origin. This conclusion is, of course, incompatible

with our overall, initial assumption that the origin is on the boundary of a region

where 9 is positive definite. Since the determinant of jj is the determinant of 9

divided by the square of the Jacobian, we can deduce that jj is non-degenerate

- at the origin. Clearly, whatever our choice for an open domain of the hyperbolic

k-fold (6.42), if that domain includes the origin of the (é" TJ) space, then the range

must necessarily coyer sorne neighborhood of the origin in the (x, y) space (this is

a consequence of the assumption that k is even). Thus, the signature of 9 around

the origin is identically hyperbolic, and so we have our contradiction.

Now that we know that the order of 19ii\ is greater than 2 we can use cquation

(6.46) to deduce that the order of ql (x) must be greater than O. But this implies
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•

•

that ail the coefficients of the metric tensor have order 2 or higher, and therefore

by Proposition 6.5.1 the origin is an unreachable point. 0

As a matter of fact, Propositions 6.5.3 and 6.5.5 exhallst the possibilities for

reachable points on the locus of degeneracy. Wc will prove this by systematically

showing that ail other types of degenerate points must be unreachable.

Proposition 6.5.7 Let f(x, y) be a non-trivial, analyticfactor oflgij [. Iford(J) =

1, and if the multiplicity of f in the factorization of [gijl is greater than 1, then

the origin is unreachable.

Proof: The conditions on f imply that it can be a coordinate function. Thus,

without loss of generality let us assume that f = y. By Theorem 6.4.6 both q(x, 0)
and r(x, 0) must !"le zero. As wc did in the proof of Proposition 6.5.3 wc can write

q = Yfi and r = YT, where ij and Tare non-singular. Wc again employa quadratic

fo]·,rillap as per (6.40), to '~onclude that 9 is the push-forward of the following

metric tensor:

Let k he the multiplicity of y in [gij [. The square of the determinant of the

Jacobl;;ll is 4rp = 4y, ami hence the multiplicity of Tl in the determinant of li must

be 2k - 2. The assumption that k > 1 implies that Tl continues to be a factor of

the metric tensor's determinant, For reasons we have already seen, Tl must be a

factor T, and this can only be possible if y2 is a factor of r.

Wc may therefore write the contravariant metric tensor of 9 as

(:q :2~)'
where ij, and rare non-singular. The nell:t step is to compare 9 to a metric with

the following contrav-driant tensor:

(yi j ) = (1 0,). (6.47)o y-
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This is also a fiat metric, with fiat coordinates 1;, 'fI givcn by
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x = 1;, y = e'l.

•

•

Let p be the type (:) tensor field givcn by g[;-I. III thc X, y coordillat.cs p is _

represented by the matrix

(;q q~y).

The eigenvalues, À, of pare given by

The above formula makes it clear that in a fixed neighborhood, N, of thc origin

we cau find an upper bound, [( > 0, for the eigenvalues, À. The eigcnvalues of [;

are never negative. Hence, in the rcgion, Rn N, where 9 is positive definite, the

eigenvalues of pare non-negative, and in that region [(-1 serves as a lower bound

on the eigenvalues of p-I. Hence, given a tangent vector, v, based al. a point in

Rn N, we must have

This in t1J r ns implies that the length funct.ional on curvcs ellgendered by 9 is

bounded below by [(-1 times the length functional engendered by fJ. The origin

is unreachablp. with respect to the latter metric, and thcrefore, a fortiori, il. is

unreachable with respect to g. 0

Proposition 6.5.8 Suppose that ord(lgiil) :::: 3, but that the order of aL least one

of the metric tensor's coefficients is 1. Then after a linear change of coordinates

the linear term of 9 can be put into one of the follo1lJing t1lJO carwnical forrrts:
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o

Suppose that ord(lgiii) 2:: 3, and that the linear term of 9 hasProposition 6.5.9

theform

Proof: Let p(1), q(1), r(1) be the linear terms in the expansion of the metric tensor's

coefficients. We are assuming that p(l)r(l) - (q(I)j2 = 0, and hence pel) and r(1) must

be proportional to q(1). We can therefore perform a linear change of coordinates

so that the linear term in the expansion of 9 has the form

(ax~bY n,
where a and b are constants. If a i' 0, then a change of coordinates

_ x by
x = - + - y = y,a a2 '

will result in a tensor of the form xôx 181 ôx. If a = 0, then a change of coordinates
_ x _
x = b' y = y,

will result in a tensor of the form YÔx 181 ôx'

•
Then, Igii 1 is the product of first order factors, and this implies that the origin is

an unreachable point.

Proof: First, consider the case where Igii [ factors into a product of first order

factors. Since ord(lgii i) 2:: 3 there must be at least 3 such factors. If two of them

are equal then the ori;;in is unreachable by Proposition 6.5.7. If two of the factors

are not equal then by Proposition 6.5.4 their product can be put into the form

y2 ± xk,- ',,,d hl::nce by Propositions 6.5.5 and 6.5.6 the origin is unreachable.

Let ùs therefore suppose that [giil has an irreducible factor, f(x, y), whose

order is greater than 1. Let y = if;>(x) be a Puiseux series solution of f(x, y) = O.

By Proposition 6.4.6 we must have

•
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•

Since f is irreducible, rjJ must have terms of non-int2gral degree. Let. d be t.he

smallest non-Integral degree in the expansion of rjJ(x). Since t.he lcft.-hand side
contains the term xrjJ', the smallest non-Integral degree of the left. hand side of the

above equation must also be d. But since we are assuming that. the order of CJ\ (x)
is 1 or more, the smallest possible non-Integral degree of the right-hand side is

d + 1. This is impossible, i.e. Igi;1 must be a product of first order factors, and as
we noted above, this implies that the origin is unreachable. 0

Proposition 6.5.10 Suppose that ord(lgi;l) 2:: 3 and that the lincar tC17i! of 9 has

theform

(~ -~)
Then, the origin is an unreachable point.

Proof: Since ord(p) = 1 we can take x and y = p"as new coordinates. Doing so
changes the products dx . dy and dy . dy; the product dx . dx remains unchanged.

Therefore, the 911 coefficient of the resulting metric is equal to p, which is y in the;

new coordinates. Thus, we can without loss of generality assume that. the metric

tensor is such that p = y.

The constraint of zero curvature will allow us to deduce crucial information

about the order of the expansions of the metric tensor's coefficients. This inl(,:',

mation will prove sufficient to prove unreachability. First, let us write the flatness
equation by simplifying the curvature formula in (6.34) with the assumption that

p=y:

Recall that

QR + S - y(Py + Q,,) - 0,

RP-r,,-2q(Py +Q,,) - O.

(6.48)

(6.49)

•
R= Q+2qy,
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From (6.33) wc also have
r = yP-qQ.
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(6.50)

•

Our hypotheses imply that the orders of q and rare at least 2. Hence, the action

of H2 = qfJx + rfJy on any analytic function raises the order of that function by at

least one. Recall that P = /1'2 - ry where J.L2 js an eigenfunction of the H 2 action.

Hence, the orders of P and Sare at least 1. Hence, ord(Q) ~ 1, for otherwise the

left hand side of (6.48) 'would have order O. But now we know that the first and

third terms of (6.49) have order at least 2, and hence, ord(rx) ~ 2. From (6.50)

we deduce that ord(Px) ~ 1. Taking an x-derivative of (6.48) we obtain

(QR)x + Sx - y(Pxy + Qxx) = o.

Hence,

ord(Sx) = ord(Px + r xy - 2qxx)

is greater than or equal to 1. Wc have already deduced that ord(Px) and ord(rxy )
arc at least 1, and hence ord(qxx) ~ 1. Let us write the metric tensor coefficients

as power series in y:

q - qo(x) + qj(x)y + q2(X)y2 + .
r - ro(x) + rj(x)y + r2(x)y2 + ,

and summarize what wc know about the order of these coefficients:

ord(qd ~ 1, ord(ro) ~ 3, ord(rd ~ 2. (6.51)

•

Again, let y = q'>(x) be a Puiseux series solution of f(x, y) - 0, and put

d = ord(rjJ). By Proposition 6.4.6 wc have

Hence,

2d -1 = ord(rjJrjJ') ~ min(ord(qo),ord(qj) + dl,
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•

and this implies that d ?: 2.

Our next step is to make the change of coordinates Ti = y - q,(:r.). Since q,
may have terms of fractional degree, this may also be t,rue of the coefficients of the

transformed metric tensor. Fortunately, we will not nced the assulllption of strict

analyticity in order to conclude our proof, but wc do have to explain why this

procedure is valid. Note that Igii l(x, 0) ~ 0, because p = y. Since we arc nssnming

that the origin is a boundary point of:l fcgion whcre 9 is positiv0 definite, at le:l.~t

one real-valued, irreducible factor, say j(x, y), of Igiilmust taKe both positive and

negative values near the or;;:;in. By Proposition GA.1, yj", + qju is divisible lJy j,

and hence j t- x. We will demand that y - q,(x) be a factor of such an j. Sincc

j(O,O) = 0, the branch y = q,(x) does not intersect either the x or y n..."is near the

origin. Therefore, we can assume without 10ss of generality that y = q,(x) forrns

a part of the boundary of R (the chosen region of positive definiteness), and that.

in sorne neighborhood of the origin this curves lies in the upper, right quadrant.

This, in turn implies that q,(x) = ~ (xi;), where ~(X) is a convergent power series

with real coefficients.

Now, let us compute the coefficients of the metric tensor after the above change

of coordinates. We have

dx . dx - y = fJ + ,p,

dx· dfJ - q(x, y) - yq,'(x).

dfJ· dfJ - r(x, y) - q(x, y)<l>' - q,'(q(x, y) - yq,').

Using (6.52) we see that

q(x, y) - yl// - ('la + I]IY + 1]2Y"') - yq,'

- ('la + qlY + q2Y"') - (1]0 + I]t,p + 1]2,p2 ... ) - 'I/(y - rjJ)

-('11 - ,p')(y -,p) + q2(y2 - ,p2) + ...

Similarly,

r(x, y) - q(x, y),p' = (ri - ql,p')(y -,p) + (r2 - q2,p')(y2 - ,p2) + ...
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Therefore we can write the transformed metric as

(
il ~_I/J 2~~),
2yq ryr
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where ii and l' may have fractional x-exponents. Nonetheless, from (6.51) and from

t,he fact that ord( I/J) ?: 2 we can deducc that

ord(iid ?: 1

•

Next, we use a quadratic fold map: y =TJ2. The image of this mapping is the

upper half-plane, and eariier we able to assume that R is contained in the upper
half-plane. The resulting metric tensor has the form

for the' :-eason see the proof of Proposition 6.5.3. Since aIl the coefficients have

order 2 or more, by Proposition 6.5.7 the origin is unreachable. 0

Metrics with a nilpotent Iinear part are not just a theoretical possibiIity. There

c.xist a truly large number of such metrics; our preliminary research indicates that
their cardinality is at least as great as the set of aIl convergent power series! Due

to lack of time and space wc can only indulge the reader -.vith a couple of examples:

•

Much work remains to be done in regard to these metrics. Sorne natural questions

are

• How many such metrics are there? Is there sorne natural way to index them?

• Clearly, such metrics are widely related by changes of coordinates. How
many inequivalent classes of such metrics are there?
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• Based on the examples 0;' such metrics obtained by us, it would appear that

the determinants of these metrics always factor into first order factors, Le.

the locus of degeneracy consists of curves that are non-degenerate at the

origin. To date we havI! not been able to prove this fact, and wouId like to

leave it as a conjecture.

Wc have now accumulated a sufiicient number of results 50 as to give a classi­

fication of degenerate points of g.

Proposition 6.5.11 A degenerate point of 9 is either an llnreachable 7)oint, or

there exists a contravariant, non-degenerate metric tensor yiJ with analytic coeffi­

cients defined on some neighborhood, N C ]R2, and an analytic </J : N -, n, such

that </J.(g) = g. Furthermore, such a map, if it exists, is either IL l]uadrat'ic fold

(Proposition 6.5.3), or it is a k-fold map (Proposition 6.5..5).

Praof: As usual, without 1055 of generality we assume that degenerate point in

question is the origin. Suppose then that the origin is not unreachable. Thus, by

Proposition 6.5.1, g(O) + g(l) # O. If g(O) # 0, then by Proposition 6.5.3, ord(lgijl)

must be 1, i.e. the locus of degeneracy is a non-singular curve. This Proposition

also tells shows that a suitable </J e..xists and that this map is a quadratic fold.

For the remainder of the proof assume that g(O) = O. If g(1) is degeneratc, then

by Proposition 6.5.8 there exists a linear change of coordinates that transflirms

g(l) into a normal form which is within the scope of hypotheses' of Propositions

6.5.9 and 6.5.10. In either case, we can be assured that the origin is unreachablc.

The only case left to consider is a metric such that ord(lgijl) = 2. By Proposi­

tion 6.5.4, Igi11up to an invertible multiple is of the form y2, y2 + xk , or il - xk
•

By Propositions 6.5.7 and 6.5.6 we can exclude the first two possibilities. In the

y2 case the origin is unreachable. The y2 +xk case, where k is even, cannot occur,

because we restrict ourselves to the boundary points of a region whcre the metric

tensor is positive definite. The y2 - xk case is covered by Proposition 6.5.5, which

Showb.:that </J exists and is a k-fold map. 0



• CHAPTER 6. FLAT LIE ALGEBRAIC SPACES 138

•

•

Wc now come to the fundamental theorem of this section. In what follows, we

will regard IR2 as the Euclidean plane with the standard Euclidean metric gE. Our

goal is to show that the union of Rand its rcachable boundary points is isometric

to the quotient of the Euclidean plane by a certain group of isometries. Once we

build a map

'if;: lR2 -+ M,

let us say that an isometric symmetry of'lf; is an isometry, a of the plane such

that ..pa = 'if;. Wc will employ this notion to isolate the isometries in the quotient

group.

Theorem 6.5.12 (Tiling Theorem) There exists a globaUy defined, real-ana­

iytic map 'if; : lR2 -+ M sueh that 'if;.(gE) = g, and sueh that 'if; that eovers aU of

R plus the reaehable portions of its boundary. Furthermore, the preimage of the

loeus of degeneraey, Igiil = 0, under this map, if it is non-empty, eonsists of lines

that tile lR2 into isometrie eeUs. These eeUs are related by the group of isometrie

symmetries of 'if;; indeed the union of R and- the reaehoble points is isometric to

the quotient of lR2 by this group.'

Proof: Since the curvature of 9 is identically zero, there exists an isometry from

an open neighborhood, 0, of lR2 to an open neighborhood of M. We fix this

germ of an isometry, and try to extend its domain to ail of lR2 • We proceed by a

process akir.'to analytic continuation, although in our case it should more properly

be called isometric continuation, because it is based on the rigidity of isometries,

rather than the rigidity of analytic maps. Both types of continuation operate

on the sarne principle: information about a sufliciently high order of derivatives

of a mapping will locally determine that mapping. In this sense, isometries are

even more rigid than analytic mappings; the former are completely determined by

first order information, where as the latter require information about ail orders of

derivatives.

Our goal is to build up an atlas, A, of compatible analytic isometries

'if;o. : 00. -+ M,
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where compatibility means that the mappings agree on overlaps. The range of the

0" may inc1ude points where the mctric on M is dcgenerale, and sa w(' should

remark that in such instances the term "isometry" simply Illeans that the push­

forward of the Euc1idean metric via 'Ij;" is equal to g. By Zorn's lemma there exists

a maximal such atlas, A. Let us show that A must cover aIl of ][(2. Suppose not.

Then, there eldsts a straight path

such that with the exception of one endpoint, say l, the image of 1 lies entirely in

sorne 0". Since M is comp:lct '1/1,,(1) must have a limit point, say x E M. Now,

either x lies in R, or it lies on the lo~us of degeneracy of g. LeI. us show that in

the latter case, x must be a reachable point.

Let ebe the length functional on paths in R that is induced by the metric g,

and let ëbe tp';l length functional induced by the metric d:rP + dy2, where x, y is

sorne choice of local coordinates around x. Now gii Is degenerate al. x, but it is

not singular there, and therefore in sorne neighborhood of x the eigenvalues of gii

are bounded from above, say by B. Hence, the eigenvalues of gij arc bounded from

below by 1/B. This directly implies that ë~ -he. Hence,

lim ë(l(t, 1)) ~ lim e(l(t, 1)) = O.
t-..l t-lo l

Since we are assuming that x is a limit point of 'Ij;,,(-y) in the coordinate charI.

topology, the above implies that x is actually the unique limit of this path. Since

e(l) is finite, x must be a reachable point.

Thus, by Proposition 6.5.11 even if x is a degenerate point, there exists a

non-degenerate metric tensor yii defined on sorne N C ]R2, and an analytic map

!/J : N --+ M such that !/J.(Y) = g. Note that !/J(N) n 1/1,,(00 ) t= 0, because x is on

the boundary of '1/10(0,,). We therefore have an isometry

'I/1~1 o!/J: !/J-l(!/J(N) n '1/10(00)) --+]R2.

Since y is non-degenerate on N we can extcnd this 1.0 an isometry

~:N--+]R2 .
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But then, </J 0 ~-l with domain ~(N) extends A, implying that the atlas isn't

maximal, and causing a ::ontradiction.

Since the topology of]R2 is trivial, the maps 'if;Q piece together to give a global

analytic mapping ,j; : ]R2 -t M such that g;j is the push-forward of gE. In turn,

this implies that the locus of degeneracy, Ig;jl = 0, is the image of the locus of

degeneracy of ',p, i.e. those points where .J('if;), the Jacobian is degenerate. The

mapping 'if; therefore tiles ]R2 into connected open cells, Ci that are the preimages

of R. The boundary between these cells is the locus 1.J('if;) 1= O.

Next, suppose that there is more than one such cell, C;. Since the images of ail

the C; are isometric to R, the C; must be isometric to one another. Let (J' be an

isometry that relates two of these cells, say (J'(Cd = C2 . Hence, 'if; 0 (J'and 'if; agree

on Cl' Above we saw that the germ of 'if; completely determines 'if;, and therefore

'if; 0 (J' = 'if;.

By the classification of degenerate p\lints in Proposition 6.5.11, we know that at a

degenerate point 'if; is equivalent to either a quadratic fold or to a k-fold.

Let 1;,7] and x, y be coordinates on ]R2 and on M, respectively such that the

quadratic fold in question has the normal form

'if;:x=ç,
_ 2

Y -7] .

•

It is clear that this mapping possesses a symmetry:

(J' : (ç,7]) t-+ (ç, -7]),

i.e. locally, at least, 'if; 0 (J' = 'if;. But this means that the image of (J' is isometric to

i ts domain, and therefore (J' is an isometry of]R2 that fixes the curve 7] = O. The

range of Euclidean isometries is not large; the only one that has such behaviour is

a reflection. The locus 7] = 0 is therefore a straight Hne.

Let us now consider the case of a k-fold. Again, let us choose normal form

coordinates on ]R2 and on M such that the action of 'if; is given by
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where ( = ~ + iT]. The symmetries of this mapping are generated by

a: ç ...... w(,
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•

where w is a primitive kth root of unity. Sincc a fixes the cnrve 'S(w1 C) = 0, il.

must again be'â" reflection of ]R2. Furthermore, Ilote that from the perspective of

the points

{(:'S(w1() =0, (iD}

this a is a quadratie fold. We have therefore shown that the locus PC/MI = 0

consists of straight lines, and that these straight lines are the fixed points of the

quadratic fold symmetries of ',p.

The aetions of quadratic fold symmetries are transitive on the set of cells, Cj;

any two adjacent ceUs can be related by such a symmetry. Furthermore, sincc

a symmetry of 'I/! that acts as the identity on a ceU must be the global identity

(isometrie rigidity), the quadratic fold symmetries generate the group of isometric

symmetries of 'I/!. This shows that Ris isometric to the quotient of]R2 by a group

generated by reflections. 0

To conclude, let us just remark that the group of isometric symmetries is a

subgroup of the symmetry group of the tiling PC"')1= O. It is the largest snch

subgroup with the property that for aU symmetries a, and cells C, if a(C) = C,

then a is the identity. This foUows directly from the reqnirement that 'ifJa = 'I/J•
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6.6 Flat Metrics Arising From Imprimitive Ac­

tions

In this section wc will explore the relation between fiat Lie-algebraie metrics, and

separation of variables. The main theorem is a partial affirmation of the Turbiner

conjecture in 2-dimensions. Wc will ~hows that the conjecture is truc if the un­

derlying group acts imprimitivcly, and if this action can be realized on a compact

manifold where the action is regular. The present result has another limitation;

wc will only considcr basic Lie algebraic operators, that is operators with a trivial

cohomology parameter, Ti.

Note that the class of manifold with regular G-action is larger than the class

of homogeneous spaces of G, because we arc not requiring that the G action be

transitive. In p~icular, almost ail two dimensional homogeneous spaces are either

compact, or can be extended to a compact manifold with G-action.

The re~ult that wc will prove has wider applicability than might appear at first

glance. In: the case of 2-dimensionallocal group actions one has the advantage of a

classification of ail such actions. The original classification for the complex plane

was donc by Lie in [22]. This classification was extended to the real plane in [11],

and enriched Lie's list with some new classes of group actions that are inequivalent

under a change of real coordinates.

The classification reveals that there exist exactly 5 types of ma.ximallocal group
actions in the real plane. The following table list these ma.""(imal actions. The table
is an excerpt of the classification list in [11]; the ID column gives the identification
labels used in that particular work. The significance of this list lies in the fact that
every conceivable Lie algebraic operator in th:' plane can be formed by using one
of the 5 ma.""(imal entries. Therefore, in order to prove Turbiner's conjecture in the
plane it suffices to verify it for each of the 5 types of ma.ximal actions.

ID Generators Structure

Î. p, q, xp + yq, yp - xq, (x2 - y2)p + 2xyq, 2xyp + (y2 - x2)q 50(3,1)
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S.
16.

23.

2S.

2 "p, '1, Xl', YI', x'1, y'1, X P + xll'1. xyp + Y"'1
') ')

p, '1, Xl', 11'1, X"p, y-'1

p, y'1, r/l(x)'1, ... , '7r(X)'1, (7';::: 1)
') 'l r (p, '1, xl', x'1, y'1, x-p + rxy'1, x-, ... , x '1, 7' ;::: 1)

~1(3)

~[(:.!) ŒJ ~l(:.!)

]R2 t>( ]Rr+1

lJ[(:.!) t>( ]Rr+ 1

•

•

Entries 7 and 8 describe primitive actions, and the group action in cntry 23 docs

not have a compact global mode!. Entries 16 and 18, howcvcr, fit thc imprimitivity

and compactness requirements. A compact manifold on which thc act,ions of cntry

16 are realized is just lRlP'1 x lRlP'1. Compact manifolds \Vith act.ions of thc typc

in entry 28 are given by the Hirzerbruch surfaces. Wc \Von't givc an cxplicit

description of these compact global models here; for us it sllfliees to kno\V that

they exist. The reader is referred 1.0 [8J for sorne helpful remarks on compact.

global models of 2-dimensional group actions.

To proof of Turbiner's conjecture for thc cases al. hand rcsts on thc properties of

imprimitive Lie algebraie systems deseribcd in Section 4.8, and in Thcorcm 6.5.12.

We need one more ancillary result before we can givc thc proof for thc conjeeturc.

Proposition 6.6.1 Let f(x, y) be a real-analytie funetion defined on al/ of]R2 'lUith

the property that the vector field

grad(J) = fxâx + fyây

fiows in straight lines. Then, the levellines of f(x, y) are either mutMl/y TJlLral/d

straight lines, or concentric circ/es about a common center. To put it ano/,her way,

either

f=f(ax+by)

for sorne constants a, b; or

for sorne xo, and Yo·



• CHAPTER G. FLAT LIE A.LGEBRA.IC SPA.CES 144

D2 J = (Jxx Jxy ).
Jxy Jyy

•

•

ProoJ: The condition that grad(J) f10ws in straight lines is expressed more ana­

Iytically as

grad(J)(fvIJx) = 0,

or equivalently as the condition that the vector !TÔX + JyÔy is an eigenver.tor of the

matrix

Note that the vector field

T = -Jyôx + JxÔy

annihilates J, or equivalently that T is tangent to the levellines of f. Also note

that

_ 2(-fy'!x) (fxx fx
y

) ( fx)
fxy fyy fy

= 2T· D2 f(grad(f))

- O.

This tells us that the magnitude of grad(J) is constant along the levellines of f,
and that if df =1 0 at sorne p E ]R2, then dl is non-zero everywhere a10ng the same

levelline as J. We can therefore conclude that levellines where df =1 0 are c10sed

1-dimensional submanifolds of ]R2.

Wc may without loss of generality assume that df =1 0 at the origin, and that

the f10w of grad(J) at the origin is along the y-a.xis. Hence, fx(O, y) = 0 for sorne

interval, -{ < y < {. Since we have assumed f to be analytic everywhere, we

can conclude that fx(O,y) = 0 for ail y. To put this point more geometrically, at

any given point on the y-a.xis grad(J) is either 0 or a vector parallel to the y-axis.

Furthermore, since df =1 0 at the origin, the zeroes of df on the y-axis are isolated

from one another.

Now consider the level-line submaniiold,

L = {(x, y) : f(x, y) = f(O, Ol},
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•

•

that runs through the origin. At this point two possibilities arise. If L is the

x-a,is, then grad(J)(x,o) is a constant yector in the Dy direction, and henœ grad(J)

is either zero or paraIJel to Dy eyerywhere. In this case, f is a f\ludion of y only.

Let us turn to the other possibility, and assume that L is not l'quai to the

x-a,is. At each point (xo, Yo) E L, we know that grad(J) is normal ta L. The

normal line has equation

- fu(xo, yo)(x - xo) + fAxo, Yo)(y - Yo) = 0,

and on the points of the normalline grad(Jl is either zero or parallel ta the normal.

Since L is not the x-a,is, sorne normal line of L must intersect the y-axis, and the

point of this intersection varies continuously with (xo, Yo) E L. At the points

of intersection grad(J) is simultaneously paraIJel to the y-axis and to the normal

line through (xo, Yo), and hence is zero. Since the points along the y-a..,is where

grad(J) = 0 are isolated, the point of intersection must he inr1ependent. of the

choice of (xo, Yo) E L. This is only possible if L is a circle. Tberefore, grad(J)

f10ws along the normals of this circle, and the level lines of f are ti;'e other circleG

with the same center as L. 0

We can now!'t:>té and prove the main theorem. The reader is well-advised

to keep in mind the first example of Section 6.2 while studying this theorem.

The setting for the theorem is a Lie algebraic operator 11. with quadratic compo­

nent, C E 5 2g, linear component L E g, but with a zero cohomology component,

TJ E H1(g;C~(M)). We furthermore assume that G acts imprimitivc!y and that

the G action is realized on a compact manifold. An important note: the corn­

pactness assumption does not mean that the hornogeneous space, M = G/H,
must be compact. The case of the Hirzebruch surfaces bears this out. The group

action on these compact spaces breaks up into 2 orbits; one of the orbits is a non­

compact 2-dimensional homogeneous space, and the other orbit is a 1-dirnensional

homogeneous space.

Theorem 6.6.2 If the background metrie indueed by C is fiat, and if 11. sati4ir;s

the closure conditions (i.e. C and L are compatible), thr;n both tiLt; urmorrrwlizr;d
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cquation

7-{.iIJ = EiIJ,

and thc normalized Schrodinger equation

(t. + V)iIJ = EiIJ,

146

•

•
...•-

11Ihere V is the associated potential, admit a separation of variables in either a fiat

or a radial coordinate system.

Proof: Since the action of G is imprimitive wc can choose a locally defined real­

analytic function f of M such that the level-Iines of f give the invariant foliation.

By Corollary 4.8.4, grad(l) flows along geodesic trajectories. By Theorem 6.5.12

there exists a real analytic map <P : IR2 -t M, such that the Jacobian of <P is

degenerate along a certain lattice of straight Iines, but at those points where the

.Jacobian is non-degènerate the map is a local isometry. Hence, <P' (1) is a real­

analytic function with the property that grad(l) flows in straight Iines. At this

point wc would like to apply Proposition 5.6.1 to conclude that <p' (1) is either a

function of a fiat or of a radial coordinate. However, a remark is in order at this

point. The hypothesis of Proposition 6.6.1 speaks of a globally defined function,

whereas we have a patchwork of locally defined functions that nonetheless "piece

together" in the sense that they aU have the same level Iines. A doser inspection

of the proof of Proposition 6.6.1 will show that the result continues to hold even

with the more general, patchwork data, and therefore the pullback of the invariant

foliation to IR2 arc the leve1lines of either a fiat or a radial function.

For the rest of the proof wc will move the setting to IR2. There is still the

local action of the group, G, but this action is non-degenerate only wherever the

Jacobian of <P is not degenerate. Separation of variables is a local phenomenon,

so for the present purposes we can safely ignore the points of degeneracy. Let

us consider the case where the invariant foliation is given by a fiat function. Let

us use x and y as the fiat, orthogonal coordinates on IR2, and suppose that the

invariant foliation is givlln by the levellines x =const. Since 7-{. satisfies the dosure
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conditions, there exists a functior. ,p(x, y) such thal.

11. = ~ - 2 grad(<p).

l·li

Since the foliation is invariant, 1I.(x) must continue to be a l'uuction of :1:, and

this is possible if and only if,p is of the form ç(x) + .,,(y), for some single-variable

functions ç and TJ. It is now obvious that the equation

1I.1J! = EIJ! (G.G3)

separates in the x, y coordinates. The associated Jlotent;ial of t.he associated

Schrodinger operator is given by

2 .,
- E.xx + TJyy + Çx + .,,;,

v - ~(,p) + grad(<p?

• and therefore the equation

(~ + V)IJ! = EIJ! (G.G4)

-

•

separates in the x, y coordinates as weil.

Now let us treat the case where t.he invariant foliation is given by the level

lines of a radial function. Without loss of generality wc will assume that. this

radial function is just l' = Jx2 + ~P. The daim is that the differential equat.ions

in question separate in the standard radial coordinates rand O. The contravariant

form of the fiat metric tensor in these coordinates is given by

and the Laplacian by
82 1 82

~ = 81'2 + 1'2802'

As above, 11. is a sum of the Laplacian and a gradient, say -2grad(,p). Since the

levellines of rare invariant with respect to the G actions, 11.(1') must he a function
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of r, and hence t/J(r, IJ) must be of the form p(r) + CT(IJ). Renee, equation (6.53)

separates into

(8rr + 8r + pr8r - E) WI (r)

(800 + CT080 ) w2(1J)

where À is a constant of separation. The assoriated potential of the normalized

Schriidingcr opcrator is given by

CToo + CT~11 ~.: P + l + ....:..:..~-"-,rr r r2 '

•

and thcreforc equation (6.54) also separates in polar coordinates. o
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Appendix A

Closure Condition Solutions for

the Linear 8L(2) Action

l wish la Gad Ihese calculalions had been exewled by .,te,u".
- Charles Babbage

In this appendix we wililist the solutions to the closure conditions obtained by

checking the invariant equations (5.9) and (5.10) against the 5 types of 529 orbits

given in Section 5.4 For each solution we will present the operator system (C, L, 1/),
the potential, V, of the llormalized Schr6dinger operator, the gauge factor, p., the

contravariant metric tensor, gii, induced by C, and the curvature, J(, of that

metric.

The C(1) type: there is one class of general solutions.

C= (~1 ~1 ~2 J L = ( ~ ) 1/ = ( ~.).
-2 1 0 Q P/x2

Q2
V=--l

4

149
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i1. ( x2 + 2xy _x2 - 3xy _ y2 )
9 = _x2 _ 3xy _ y2 2xy + y2

K=4.

The C(2) type: there are no homogeneous solutions, and 1 class of basic solutions.

(

0 0 -1 +25l
c= 0 1+5 0

-1 + 25 0 0

1 Q2 l fê Lfê
V = -5 + - - - Ji = x,+ • Y' •

2 6

qi; = ( x
2

(1 + 5) (5 - 2)xy ) K = 0
. (5 - 2)xy (1 + 5)y2

The C(3) type: there is one class of general solutions, and another of basic solutions.

• (00 3~2 l L~m ( 0 lc= 0 0 ry- 0

o 3/2 P/x2

V=O
-p 9.

Ji = e"yl- a

.. ( 3xy -3~2y2 ) K=O.g'1 =
-3/2y2

•

v=

c = (~ ~ :~l L = ( 4/~Q5l
25 3/2 0 Q

51253Q2x3 + 19252(9 + Q2)X2y _ i2(2i + 5Q2)5xy2+ SI(Q2 - 9)y3

2iy(S5x - 3y)2
250,1' t =.2 3

Ji = e u. (S5x - 3y)'y a +'.
gi; = ( 5x

2 + 3xy 5xy - 3/2y2 ) K = -10S5y2
5xy - 3/2y2 5 y2 (S5x - 3y)2
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The C(4) type: there is one class of basic solutious.

C= ( ~
2S

o 2S J
S 0

o 6

v = 4SQix2 + 4SQI Q2XY + (SQ~ + 24S2 + QÏl y2
24Sy2

.. ( Sx
2 + 6y2 SXY)y'} =
Sxy Sy2

[( = o.

•
The C(5) type: there is one general solution, anù onc class of b;l.~ic solntions.

C = (~ 3~2 ~ J L = ( ~ J TI = ( ~., J
\ 0 0 6 0 P/:r.-

3 Q2
V = 2- 6' p. = yi-QI".

yii = ( 3/2x
2 + 6y2 -3/2XY ) , [( = -6

,-3/2xy 3/2y2

.... ( 6

C= 0
-2+2S

o
2+S

o

•

Q2
V= -S- --2

24 '

.. ((2 + S)x2 + 6y2
g') =

(S - 4)xy

(S - 4)xy )
6x2 + (2 + S)y2 '

J{ = O.
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Appendix B

Hyperbolic Signature

Counter-example

We think in generalities, but we live in details.

- Alfred North Whitehead

In the present appendix we will show that Turbiner's conjecture cannot be

true without the assumption that the Lie-algebraic metric in question is positive­
definite as well as fiat. We will exhibit a Lie-algebraic operator that engenders a

fiat, hyperbolic metric, but does not have a separable potential. We will organize

our discussion into three parts. First we will introduce the Lie-aigebraic operator

in question. Second, we will define and discuss the notion of "separation of vari­

ables" for this operator. Finally, we will demonstrate that there does not exist a
coordinate system that separates our operator.

The focus of our attention will be the Lie-algebraic operator

Therc any number of Lie algcbras that will generate this operator - projective

SL(3) actions, for instance-- and there is no need to fi." one specifie aigebra. The

152
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corresponding contravariant metric tensor is givell by

(
0 -'1/.)

-'1/. 2'0 .

Flat coordinates, (x, y), are given by

1
:1; = -, y = ·uv.'1/.

The metric tensor in these coordinates is given by

•
Writing our oper'ltor in the (x, y) coordinates we obtain

1i - {~Ôy,XÔx} - xôx - YÔy + :2ÔY

- .Cl. - grad (~ + log(x) + xY)

(B.1)

A change of scale transforms the above into the following Schr;;dinger operator:

xy 1 1
.Cl. - - + - + -.

2 2x 2

The theoretical underpinnings for our treatment of separation of variables come

from articles by Miller [23J and Koornwinder [21J. We will say that a second-order

partial differential equation

H(x, 'U, 'ai, 'Uij; E) = 0, (B.2)

where i = 1 .. . n,=0,

with a parameter, E, additivcly separates in th'~ coordinate system Xl,"••. , X,,, if

there exist n single-variable ordinary differential equations,

rPé) (- (i) dé). )-dxr + fi Xi, 'II. , dx
i

,E, Àb ••• , Àn _ 1

•
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depending on E and n - 1 other parameters, such that for ail values of the param­

eters the function

is a solution of (B.2). The definition of multiplicative separability is similar; for

ail values of the parameters the function

must be a solution of (B.2). The above definition of additive separability is equiv­

aIent to the notion of regular separability introduced in [23]. This article gives an

equivalent criterion based on H and its derivatives:

H""H"jj (DdJjH) + H",,"jj (DiH)(DjH) (B.3)

= H"jj (DiH) (DjH,,;;) + H"" (DjH)(DiH"j) , 'i f. j,

where Di is the total derivative operator 8"" + ui8" + U ii8",.

Wc are interested in the multiplicative separability of Schr6dinger equations:

(Ll +V)IIJ = EIIJ.

This can be converted into a question of additive separability by introducing the

related dependent variable u = 10g(IIJ): Writing the above in terms of u wc have:

Ll(U) + grad(u)2 +V =E. (BA)

•

Applying the criterion in (B.3) we obtain the following conditions (sec [23] and

[21] for the proofs and further references):

• The coordinates Xl, ... ,Xn must be orthogonal. In other words, the metric

tensor must sati~fy

gij = 0, whenever i f. j .
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• The metric tensor must satisfy the Levi-Civita separability conditions:

a·ca+ acaaca- aCaaCi - aC"D·Cj
- 0 for 'Ill (l and i,Jo J',1] 1 J l J J 1 -, or

and where Ci = log(gii). This condition is equivalent 1.0 the requirelllent t.hat

the metric tensor be in Stiickel form. In other words, there exists a so-called

Stiickel matrix, {Sij}, such that the il" row depends only on the variable :I:i,

and such that the first row of the matrix's inverse is equal t,o (gll, ... , g'''') .

• The metric tensor must satisfy the Robertson condition:

This, in turn, is equivalent 1.0 the condition thal.

for sorne single variable function fi (Xi)' Eisenhart proved in [5] t.hat. t.he

Robertson condition is equivalent 1.0 the requirement that the Ricci tensor

in the given coordinates is in diagonal form, i.e. thal. Rij = 0, if i f j.

Therefore, the Robertson condition is automatically satislied whenever the

metric gij is fiat.

• The potential must satisfy

Il. can be shown that this is equivalent 1.0 the condition thal. the potential

has the form
v = L hi (Xi)gii,

for sorne list of single variable functions hi(Xi)'
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If the above conditions arc satisfied, then (BA) takes the form

and therefore separates into the following equations:

where À 1 = -E, and À2, ••• , Àn arc the other constants of separation.

Thé, preceding discussion tells us that the Lie algebraic operator (B.1) will

separate in coordinates (ç,7'/) if and only if the following two conditions are satis­

fied. First, these coordinates must give multiplicative separation of the following

hyperbolic form of Laplace's equation,

In other words, the metric in the (ç,7'/) coordinates must be in Stiickel form. Note

that the Robertson conditions are automatically satisfied, because the metric in

question is fiat. Second, the potential must have the form

where pde - qd7'/2 is the expression for the metric in the (ç, 7'/) coordinat.~.

The separation of the planar, hyperbolic Laplacp equation has been studied by
Kalnins in [1iJ. This article classifies ail coordinate systems that allow separation of
variables for this equation. These coordinate systems are presented in the following
table. Note that we will reserve the symbols i; and fi for the orthogonal Cartesian
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coordinates.

Coordinate Sy,telIl Mctrie

1. x=x+fJ y=x-fJ dj;2_dfJ2
2. x= ç cosh 7) fJ = ç ,inh ri de - ç2d7)2

3. x = ~(ç2 + 7)2) fJ = ç7) (ç2 - 712)(dç2 - dr,2)

4. x = -(ç - 7)j2 y = 2(ç + 7)) 9(de - d7)2)

5. x = cosh ~(ç - 7)) 1: "sinh ~(ç + 7)) ('inhç - ,ir1::])(de - d712)

6. :r = si!lh(ç -7)) y = exp(ç + 7)) (exp(2ç) +"xp(27)))(de - d7l)

7. x = cosh(ç - 7)) y = exp(ç + 7)) (exp(2ç) - exp(271))(de - 11712)

8. x =sinhçcosh7) fJ = coshçsinh7) (cosh2 ç+ 'inh27))(de -d'Il)

9. x = eoshç cosh 7) fJ = sinhç ,inh 7) (sinh2ç + ,inh2 7))(dç2 - d7?)

la. x = cos ç cos 7) fJ = sinçsin7) (sin2ç +'in27))(de - ri712)

Description

C:Ll"tesiml

Polar
Parabolic 1

Parabolic Il

HYl: "rbolic 1

HYl.cl'bolic Il

Hypcrbolic III

Ellipl.ic 1

Ellipt.ic Il

Elliptic lIa

Strictly speaking, the classification is complete up to coujugatiou by clements of

the pseudo-Euclidean group,

•
(

X) (COShOî >-+ sinoh 0

the refiection transformation,

sinh 0

coshO

o

(x, fJ) >-+ (-:ï:, y),

and the permutation transformation,

(x, y) >-+ (jj, x).

Thus, in order to show that the potential given in (B.1) does uot separate, il.

suffices to check each of the above coordinate systems for the property that an

e:-.:pression of the form

•
1

V=xy+ax+by+ ri'cx+
or

1
V =xy+ax+by+----:

cy + ri

~., -::-'..
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cannot be reexpressed as
!(E,) + g(TJ) ,

Jl q

where prie + qriT? is the corresponding form of the metric.

Indeed, none of the above coordinate systems has this property, and therefore

(B.1) does not separate. The verification is done by straight-forward inspection.

Consider, as an example, the Parabolic II system. We must check that V(E, - TJ)

cannot have the form !(E,) +9(TI). Let us focus on the cx~d term. WriLing in terms

of E, and TJ wc have
E,-TJ -1

-etE, - TJ)2 + ri = e(E, - TJ) + ~~~ .
There is no way to add ehoose e and ri so that the result will have the form

!(E,) + u(-,,). The same conclusion holds for terms of the form "'J~d'
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