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STRESS ANALYSIS OF WEBS WITH FCCENTRIC HOLES

>
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Department of Civil Engineering - M.Eng. Thesis
and Applied Mechanics, March, 1975.
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ABSTRACT —_—

Methods of analysis for beams with circular holes,.
both mid-depth and cccentric, are investigated for both
unreinforced and circularly reinforced holes. An approximate
nethod .of analysis is developed in which regions of a.beam
around a -hole are analfscdgas curved beam sections and the
stresses are calculated acéordingly. In applying this
approximation to cf}cularly reinforced holes, modified cross-
sections are used in calculating the stresses because of
secondary bending of the cufved reinforcement flanges. The
application of the théory of elasticity method is discusscd
for the case of unreinforced holes:. Experimggts are described
and it is shown that in the cage of unreinforced holes, the
curved beam approximation is more aécurate than the theory of
elasticity solution in predicting hole edge stresses f{or large

holes and undzr high shear-to-moment ratios. This method is

also found to be suitakble for use in design of circular



J

reinforceménts for the type of lholes considered.

Design aids in the form of moment-shear interaction

curves for unreinforced holes, and a computer program for

reinforced holes are presented.
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L'ANALYSE DUS CONTRATNTES DE L 'AMEC AVEC TROUS EXCENTRIQUES

’ Peter W.K. Chan
Département deﬁéénie civil Thése de malitrige
et de mécaniaye appliquée, Mars, 1975.

Université MeGill,
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d RES U /

/ Les méthodes analyticues pour des poutres aux trous

[
circulaires, & demi-profondeur et excentrigues, sont &tudiles
pouﬁ des trous non-renforcés ct circulairement rcnforcés.
Ung méthode approximative d'analyse est développCe dans laquelle
les régions d'une poutrg autour a'un‘trou‘sont ahalysées comrme
des sections de poulres courbfes et 18% contraintes’ sont
calculées en consé&guence. En appliqguant cette approximation
aux trous circulairement renforcés,Qﬁes sections transversalcs
modifiées sont utilisdes dans le calcul des contraintes a cause
de flexions sccondaires des collets de renforcement courbis.
L'application de la théorie des méthodes d'élasticité est
discutés pour le cas des trous ndn-renforcés. Les essais sont
dégrits et il est montré que dans le cas des trous non-renforcés
l'approxamation pour les poutie courbées cst plué précise que la
sgggtion de la théorie d'élasticité pour la prédiction des

contraintes aux bords des trous pour des gros trous avec des

rapports Clevés de cisaillement au moment. Cette méthode peut

1
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dtre aussi appliquée dans la conception de renforcements

1

circulaires pour les types de trous ?onsidérés.

Des supports 3 la conception sous la forme de courbés

d'interaction de moment-cisaillement pour des trous non-

renforcés et un programme d'ordinateur potr les trous renforcés
sont attachés. '
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. FOREWORD

ThrEe‘of the chapters presented in this thesis are
written in the form of papers, two of which were published
in journals and the third will bc submitted for publication
on a later date. Other materials not included in these paperé

are described and discussed in other chapters.

Chapter 1 prowides a full introduction on the subject.
»

Chapter 2 with Appendix I which deals with unreinforced
holes was published as a paper in the Proceedings of the
American Socicty of Civil Engineers under the title of "Stresses

in Beams with Circular Eccentric Web Holes". (ﬁef. 6)

Chapter 3 which deals with circular reinforced holes
is written in the forr of a paper to be submitted for

publication in a journal.

Chapter 4 describes the experimental set up and

testing procedure. ,

Chapter 5 which provides design aids for the design
of unreinforced holes was published as a peper in the Proceedings
of the American Society of Civil Engineers under the title of
"Design Aids for Beams with Circular Eccentric Web Holes". w

(Ref. 16)

Chapter 6 is the Summary and Conclusions.

xi N \



. ) Appendix VIII contains additional experimental results

a

which supplement those given in Chapter 2. The results given

‘

' in this RMppendix were not included in the paper reproduced

as Chapter 2 for reason of conciseness.

xili
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¢ NOTATION

area of gross beam section;
area of vertical top sections;
area of one flahge; |
area of unperforated ng (=aw);

area of inclined dbns defined by angle ¢;

width of flange;
actual projecting width of reinforcement flange;
effective Qrojectjnqlwidth of reinforcement flange;
distance f&om the hole edge to the centroid of the
verticgl top sections;’

distance from the hole edge to the centroid of inclined

sections;

“

overall depth ¢f beam;

Young's Il1édulus;

©

‘\
eccentricity with respect to the mid-depth of beam;

allowable bending stress; ‘
p .

allowable shear stressy

yield stress of steel;

|
shear modulus; -
v
-1

moment of inertia of gro$¥ beam section;

moment of inertia of the vertical bottom sections;
moment of inertia of the vertical top sections; »
moment of inertia of the inclined sections;

stress concentration factor;

Xy 7
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all

=
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shear stress parameter for vertical bottom sections;

©

shear stress parameter for vertical top sections;

/
moment at hole centreline;

allowable bending moment based on Fg and the gross
section of the beam;

resulting moment at inc}ined sections;

bending moment at bottom sections (high moment edge of
hole);

bending moment at bottom?sections (low moment edge of
hole);

bending moment at top sections (high moment edge of hole) ;

bending moment at top sections (low moment edge of hole);

*

N - normal force at hole centreline;

N¢ - resulting normal force at inclined sections;

Ox -_firét moment of area about the centroid of bottom
vertical sections;

QT - first moment of area about the centrqid of top
vertical sections;

R - hole radius;

r - distance from hole centre to the centre of reinforcement
flange;

‘% - flange thickness;

tr -"thickness of reinforcement flange;

u; - distance of flange Erom the neutral axis of igclined

tee-sections (Figure 2.2);

4
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Vall

distancc of the web-flange interfécc from the neutral
axis of inclined tee-sections (Figure 2.2);
shear force at hole centreline;
shear force at the bottom section;
shear forq. at the top sectioh;
allowable shear force hased on FV and the gross section
of the web;
web thickness;
property of area;
N @
a ratio (obtained from Bleich's solution);

angle measured from thehorizental through the hole centre:-

ratio of maximum nominal shear stress to T;

angle measurced from the vertical through the hole centre;

nominal bending stress at ouypdide fibre of the beam

)

based on gross section;

= pending stress -at hole edge;.

tangential stress at hole edge;

nominal average shear stress based on gross web area;
maximum shecar stress of Vertical bottom sections;

maximum shear stress of vegtical top sections;

length of web of any vertiééﬁitop tee-section (ligure I.2);
length 6f Web’of vertical to& section at hole ends (Figure

I.2).
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CHAPTER 1

INTRODUCTION

1.1 General

ﬂDistribution of mechanical servicés such as
air-conditioning, heating and water supplies becomes an
integral part in the planning of present day buildings. These
mechanical systems are usually distrib&ted vertically, from
floor to floor through openings on the floor slabs provided by
the érchitects, and then distributed horizontally on‘each
floor. For floor systems supported by open web steel joists,
these systems pass through the open web of the joists. However,

ht
in the past, when beam—-girder floor systems were required to

support\heavy live loads and when no informatioh was available .
regarding web holes in beams, these systems were usually
locgked beneath”the structural flocor, that is, below the beams
and girders. This results in the intrease of floor to floor
height and consequently the overall height of the building.
With the hich cost of construction matcvial, and the extra
costs in heating and eir-conditioring dve to the increased
volume of the building, this becomes an expensive practice.
Tncrefore nore freguently, architects aﬁd engineers are

specifying that access openings be provided in beams and

girders for the passage of service ducts.




v
%

Castellated beams provide one possible solution.
However, since only a few openings are usually required along
the length of . the beam and many different beam sections may be
involved, the high cost of fabricating these beams generally

4’

restricts their uses at least in North America. The other
solution is to cut-holes in the webs of structural beam
sections in locations where access openings are required. They

may be rectangular or circular in shape depending on their

usage.

s At present, a designer is permitted, according to CSA
Standard S516-1969, to'locate opcnings in the webks of beams
without performing any analysis based on the net‘se§tion of the
beam provided that these openings satisfy a certain numbnr of
requirements. These are:t*(l) the beam is simply supported and’
is designed to carry un%form loading, (2) the beam section is
symmetrical, (3) the openings are located with%n the middle
third of the depth and middle half of the span of the heam, and
(4) the spacing between the centres of two adjacent holes
should be a minimum of two and a half times the diameter of the
larger opening. However, the above requirements are very
restrictive. Therefore, in the past few years, a number of
methods of analysis and design have been suggested for beams
conéaining circular or rectan%ular‘holes. These are reviewed

in the next section.
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’ 1.2 Previous Work

Heller et alll!/!?2 first attempted to investigate the

’ stresses around a rectangular hole with fbund corners in a

plate subjected to bending, shear and axial load using methods
’ based upon the theory of elasticity. This work is based on

the assumption that the size of hole is small compared to the
plate itself, and that the edgc of ;he opening is remote from
the applied load. Solutions were obtained using the complex
variable metlhod of Muskhelishvili. Explicit expressions were'
given for the hole edge stresfes as a function of mapping
coFfficiénts and applied‘loading. Although the\analysig are
bascd on ‘a rectangular hole with round corners, the solution
is also valid for circular holes provided the approoriate
mapping coefficients are used. Solutions for holeé which are

eccentric with the cenireline of the plate are also given' in

. the appendix of Ref. 12.

W -

¢

Bower! also used thé theory of elasticity method to
develop an analytical method to oredict the elaséic stresses
around circular holes for wide~flan§e bezs subjected to
uniform loads. Stresses were considered not just at themhole

- eage but throughout the weg. The applicability of this
analysis depends on the she;r~to—m0@ent ratio as well as the

hole diameter-to-beam depth ratio.” The author concluded that

the analysis would be deficient for holes with diameter-to-depth

® “ - ’ ’




ratio bigger than 0.5, and for high shedr-to-moment ratios.
A series of tests on W16x36 beams were carried out to}

substantiate the above theory.

-

A method of analysis using the Vierendeel truss
analogy was proposed by Bower? for rectangular holes located
at the mid-depth of the beam. This method assumes that a point
of counter-flexure exists at the mid-length of the tee-section
of the beam above and below the holé. At this point, the
tge-section is subjected to a shear force VT or V. which ié

B
equal to half of the applied shear at the hole centreline

>

(Figure 1.1). The stresses at the hole centreline are

calculated using the {lexural formula based on the moment of
~.

inertia of the net section of the beam. Stresses at other
points of the tee-section can then be obtained by superimposing
these stresses @xth that due to local bending caused by the
shear forc% at the hole centreline. This analysis has been

found to be satisfactory in analysing rectangular holes.

The Vierendeel method has been extended by Cooper
and Snell® to analyse mid-depth rectangular holes reinforced

by horizontal bars. Satisfactory results were obtained forx

bending stresses for both one sided and two sided reinforcement

AY

cases.

Elastic analysis using the finite element method has




. o
been investigated extensively at McGill University by\Rédwood
et al’/'%, This aPblies only to circular holes since local
yieldiﬁg at corners of rectaﬁéuféf'holes makes fully elastic

analysis unrealistic. Adjacent circular holes with different

v

spacing betvecen them, and éingle large holes with different
types of reinforcements were analysed by plane stress analysis
using constant strain triangular elements. The results
obtained were compared with experimenta% and theory of

elasticity resulis.

Analysis of rectangular holes using plastic design

method was investigated independently by Bower and Redwood"r®r!2rih,

Although two di%{erent approaches were followed, they led td
similar results. Thé theories arc primarily based on a failure
mechanism consisting of fo;r plastic hinges at the cornecrs of
the hole. The results are given in the form of moment-shear
interaction diagrams. Each béam and each hole configuraéion
requires a curve and any combination of moment and shear
repreﬁgﬂted by a point on the concave side of this curve ig\a
safe“ioadlng. Because of the lengthy numerical computation
involved in obtaining these curves, an appfoximate solution

has been suggested by Redwood!3. By assuming the flange

.thickness of beam is small compared with the beam and hole

depth, the result can bec simplified and expressed
non-dimensionally. Thus one interaction diagram is required ’
- 5 - o > 4

4
o
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for geometrically similar beams instead of the series of

diagrams originally required.'

The plastic design method can also be used to analyse
circulér holes!?®. In this case, the locations of plastic
hinges are not clearly known, and therefore many locations must
be tried. The solutions obtained for these locations are then
plotted on the same interaction diagram and the minimum
envelope produéed represents the appropriate curve to be used
in design. Redwood in Ref. 14 suggested that, for practical
pd;poses, a circular hole can be repfesented and analysed as a
rectangular hole of length and height egual to 0.9 and 1.80 of

the radius respectively (Figure 1.2). This simplified

procedure proves to be satisfactory provided that a vertical

‘and horizontal cut-off are used to account for the under-

estimation of bending and shear capacities at the centreline

of the hole.

.

N It was Frost!? who first attempted to analyse
rectangular holes located eccentrically with respect to the mid-
dgpth of the beam. Unlike mid-depth holes, the shear force at,
the hole centreline is not divided equally between the top and
bottom @ge-sections (Figure 1.1). By assuming that the slobes
and defiéctions at the ends of the top and bottom sections are
equal, a relationshfp exists between the shear forces carricd

by the top and bottom sections. After these forces are

°




identified, the Vierendecel method can then be used to obtain
the normal stresses. Four W16x40 beams containing circular
eccentric holes were also tested by Frost!®, however, hole
edge stresses were measured at ohly a few locations. Some of

these results are used for comparison in this thesis.

1.3 Scope

The objective of the work described in this thesis
was :

+ L

(1) to investigate the pehaviour of circular web holes, both
mid-depth and egcentric, in wide flange becams;

(2) to develop an approximate method of analysis based on
simplified theories such that elastic stresses can be
obtained casily and efficiently;

(3) to carry out experimental work to verify the'theories;

(4) to provide design aids for designers and engineers.

Although the plastic desién method may be preferred as
a method in aralysing bcams with web holes, analysis based on

allowable stress design method (elastic design method) may be

necessary in some’ cases, such as for non—-compact beam sections

and for repeated loading cases-because of fatigue consideration.
For rectangular holes, local yielding occurs at the corners of
the holes due to-stress concentrations even under working loads}"\\

/

Because of this well defined locations of plastic hinges and /[ 1



failure mechanism, the plastic design method is a more rational
method to use in the design of rectangular holes. Such is not
the cdse for circular holes. The stress concentration produced
by circular holes are much lower than those produced at the
corners of rectangular holes. The stresses in all regions of
the beam may well remain elastic under working loads, hence,

elastic analysis is appropriate.

The theory of elasticity method has proven to be a
satisfactory method of analysis for circular holes providing
they are of small diameters. Although the finite element method
may be applied to analyse holes of larger diameters, the amount
of computer time, the cost and the involvement in the preparation
of data generally makes its use not feasible under normal design
situations. Therefore it is the intent of this thesis to
formulate methods of analysis for both large and small holes

based on some simplified theories.

Much of the research done to ddte has been concerned
with mid-depth holes. However, siéuations may arise in which
holes need be located eccentric with respect to the mid-depth
_of the beam; therefore, analysis of eccentric holes is of
"considerable importance. Although soﬁe research has been done
for eccentric rectangular holes, information concerning eccentric

circular holes is still lacking, and special attention is

therefore paid to these. ‘
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Figure 1.2 Equivalent Rectangular llole
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-, CHAPTER 2

UNREINFORCED HOLES

2.1 Introduction

’ The stress analysis of beams containing web holes
has received considerable attention because of the frequeﬂéy
of occurrence of such holes in building construction. While
plastic design methods may be preferred because of their
rationality, and because their application to rectangular
holes has been explored extensively, the allowable stress
approach to design may be necessary in some cases. In
particular, holes in noncompact sections require elastic
analysis, and the treatment of circular holes by plastic
design methods is currently less satisfactory than rectangular
holes.2® fThe stress concentrations produced by circular
holes are much lower than those produced near the corners
of rectangular holes, and whereas the latter will normally
produce local yieldin? under working loads, the former may
be low enbugh that stresses under working loads can be kept

within permissible limits.

Much of 4he previous work directed to the analysis

-

of webs with ci4; ar holes has been restricted to mid-depth

-~

holes. It is probable that designers are more frequently

concerned with the case of eccentric holes than with mid-depth




holes, since service ducts or piping may well be _located at
different levels between floors to facilitate any crossing
which may be necessary. Analysis of eccentric holes is

therefore of considerable importance.

The avoidance of fabricating reinforcement is

desirable on the basis of ¢cost, and it is, therefore, of
some importance to determine the stress levels around

unreinforced holes. While some specifications?®

permit
unreinforced circular holes subject to certain size and

location limitations, without the need for analysis these

are, of necessity, quite restrictive. 1In this paper, ﬁore
general conditions are considered, so that any practical
sized circular web hole can be investigated in terms of
the maximum stresses it produces. Attention is restricted

to stress analysis and it is assumed that buckling does

not occur. The buckling of web and flanges near holes is .

/

the subject of a currcent investigation.

Much previous analytjcal work concerning such

holes has made usc of the theory of elasticity in analysing |

12

the web as a large plate containing a small hole?, and in

addition, emphasis has B;eﬁ placed on mid-depth holes,

a

although an outline of an analytical procedure for eccentric

holes has been given in Ref. 12. The accuracy of the theory

2

of elasticity solution has been investigated by Bower!r? and




+

it is clear that the methdd is seriously deficient under some
circumstances, in particular for lafgé holes and unde£ high
shear-to-moment ratios, both of which frequently arise in
practice. Alternative approacheé, for mid-depth holes, have

been proposed in which parts of the beam around the hole have

theory17 with the inclusion of stress concentration factors

to account for the curved ecdge.

The sxtwo approaches: (1) Thcory of elasticity; and
(2) curved beam analysis, are compared herein for mid-depth
holes, and the conditions under which each is most appropriate
are determined. The approximate approach is then extended to
deal with eccentric holes by considering the division of
shear bctween the parts of the beam above and below the hole.
Experiments on large mid-depth holes and eccentric holes are
described and results compared with the analytical solutions.
Previous experimental results, obtained elsewhere!® are also
used for comparison, and it is shown that the analytical
methods can be used to predict the stress levels in the web

and flanges with adequate accuracy for design purposes.

The two approaches are outlined in the following

for mid-depth holes and eccentric holes. The relevant me thod



‘ to use is considered in a subsequent section, in the light of
‘ kS
experimental results.

2.2.1 Mid-Depth Holes \\‘
2.2.1.1 Theory of Elasticity Solution

This theory is outlined in Refs. 1 and 12. A useful
explicit rclationship for the tangential normal stress on the
edge of a hole is given by Eq. 6 in Ref. 12. For the specific

case of a circular hole, this reduces to

o

55 = o'— (22-) (sin B - sin 38)
b all
+ 4 (DT sin 28 (2-1)
B o]
all
\
in which 0= the tangential normal stress on the hole edge;

sz the allowable bending stregs; M = the applied moment at

the hole centreline; = the allowable bending moment based

Ma11

on Fb and the gross section of the beam; R = the hole radius;

—— —d-=—the overall beam depth; B = the angle measured from the

horizontal through the hole centre; T = the nominal average N >

"\—_/

_shear stress based on the gross web area; o = the nominal ..

bending stress at the outside fibre of the beam, again based

on gross section; and I' = the ratio of the maximum.nominal

4 . .
shear stress to 1. Explicit-relationships for stresses in



other locations are not available. Equation 2-1 is valid

for small value of hole diameter to beam depth ratio, except
that if the shear-fo-moment ratio is low, holes with diameter
equal to or somewhat larger than one-half the hole depth

may be analysed with satisfactory results. For larger holes,
especially if the shear~to-moment ratio is not low, the

following analysis is proposed.
2.2.1.2 Curved Beam Analysis ~/

In this analysis ﬁarts of the beam near the hole
are treated as individual structural members, and analysed
accordingly by well-established methods. The resultant
forces acting on a cross-section of the beam through the centre
of the hole, as shown in Figure 2.1, are first estimated.
Symmetry requires that half of the total shear force be 'y
carried above the hole, and the magnityde and line of action
of the normal force, N, can be approxi&ated by application
of the simple flexure formula. This can be based on the
moment applied at the centreline of the hole, and the
properties of the net section at that location. Stresses
are then calculated for several sections fadiating from the
hole centre, as indicated. The normal ﬁggég_gggiggm;nxgggh“~W__whv
the centroid of such a section and the‘moments, N¢ and M¢ ’
are then used to calculaté the stresses.

ta
The stresses due to bending may be calculated on
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the assumption that the section defined By the angle, ¢, is
the cross-section of a curved beam with centre of curvature
at the centre of the hole. Then using the Winkler-Bach

cirved beam formula'® the bending stress at the edge of the

hole is

M c

N S R . (o=
s AR+t T (2-2)
¢ ¢

in which 2 = - = f Y aa (2-3)

= A¢ area (R + c¢)+ Y $
in which A¢ = the area of the inclined tee-section defined

____by the angle, ¢; c¢ = the distance from ;hewheie—nge~te~4“'

the centroid of the inclined tee; and y = a coordinate

»

measured from the centroid of the inclined tee-sectijon.

The integration of Equation 2-~3 may be performed
numerically, or alternatively explicit formulae are given
for a number of different section shapes in Ref. 18. 1In

particular, for a tee-section as shown in Figure 2.2 -———

El
a

R+ C i , 3 7
Z = -1 + ¢ {b. n(R + ¢, + u;y) + (w - b)
Iy >, ¢
‘¢ L
tn (R + c¢ + uy) - w 2n(R)} o, (2- 4)~

<
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—. It is convenient to calculate a stress concentration

factor, 'K, for the hole edge stress based on Equation 2-2. .

Thus
) = .~ M c -
¢ -
R R+ C,) (1~ 7 :
- K= -M,c (2-5)
s~ S -

I
¢ .

-

@

in which I¢ = the moment of inertia of the,inclined tee-section

about its centroid. . . : 4
- The strgss caused by N¢ must be added to the
. "~ 7 bending component and it has been found sufficiently accurate

to apply the same stress concentration factor, K, to the

normal axial stress valye as derived by consideration of the’
5 \

bending stresses , Thus the tangential stress at the hole

edge becomes

o, = k(=2 + 9% _ (2-6)

This calculation is repeated for various values of ¢ until

a maximum value of oL is reached. This process can be .carried

out to a maximum, ¢, of about 450, and it has been found

that for practical holé and beam geometries, the maximum

. N P
.
14 - s
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always occurs with ¢ < 457,

2.2.2 Eccentric Holes

2.2.2.1 Theory of Elasticity Solution . s

The theory is outlined in Ref. 12, and the following

~explicit : relatlonshlp for the hole edge stress for 'circular

holes may be derived:

g
t M 2R . .
— = 7 (=3) (sinf - sin3p)
Fyy ~ Myyp @ all
. + 2 (F—) (§) (1 -.205828) w
all %)
“ . 2
S Y A oY) (@) O 2ed) 2wy
2 Vall Fb d Af I d
{cosf -~ 3cos3p + 4 (< )(ZP) sin2p}
R -]
" (2-7)
x ok

[
in which e = the eccentr1c1ty measuzéd as the distance “from

the centre of the hole to the beam centrellne, V = the total

shear;,Vall = the allowable shear; Fv = the allowable shFar

flange; andﬂI = the moment of inertia of gross beam section.

LI
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2.2.2.2 Curved Beam Solution

"+ This method follews the identical procedure as for

the mid-depth hole; the only difference is that the shear .

force is no longex distributed equally abdve “and below the

hole. 1In order to calculate the division of shear, the sections
of beam above and below the hole are treated separately, and
conditions of slope and deflection compatibility between

Their ends are employed.

are =

e ———

A mmmimenss w03

Equilibrium requires that the sum of shea; forces
&

in the top and bottom sections must be equal to the total

shear force at hole centreline, V, i.e.
Voo + V, =V (2~8)

in which VT and VB = the shear forces in the top and bottom
sections, respectively. From slofe and deflection compatibility,
i.e., equality of the changes in slope and deflection of the

top and bottom sections over the length of the hole, the

following shear force ratio is obtained:

i

R? ./, sin?6 cosbdd® , 1 />
v E—&) T * G é chosedO
T, B
V - 2 . 2
B R°.m/2 sin“6 cosHdh 1l 1/2
‘ '§~£ 7 v &5 kcos6de

T

(2-9)
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¢

. in which E = Young's Modulus; I IB = the moment of inertia
— A . T = .

— 3

of top and bottom sections, respectively, about their centroids;

6 = an angle measured from the centre of the hole from its

shear

vertical centreline; G = shcar modulus; and kT’ kB =
stress parameters for the top and bottom sections, respectively,
as defined in full in Appendix I, which also gives a detailef

analysis of the deraivation of Equation Zééi/

eeee .. In oxrder to verify the previous theories, .and to

determine whieh is the more appropriate to use in a given case,
some experiments were performed, and are described in the next

section.

2.3 Test Program and Results

Two beams each containing two holes were tested to
determine elastic stress distributions and deflections. Details
y of the beams, holes, and test arrangements are shown in Figure
" 2.3. The two holes in beam A were chosen to be large enough
that the theory of elasticity soloution would almost certainly
be inadeéuate for their analysis, and the results, therefore,
represent a test of the curved beam method of analysis. fhe
smaller holes of beam B were chosen in an attempt to explore
the limitations in application of ﬁhe tio analytical apprqaches.

All holes were tested under tvo different shear-to-moment

ratios, since the adequacy of the analytical approaches is

[~~~ ~known to br very dependent om this ratios

& T -




. The holes were machined with a fly cutter, and thus,
had clean, notch+free edges. While in practice most holes
would be flame-cut, the resulting stress raisers would in fact
be ignored by the designer, un]ess‘fatigue was a consideration.
It was, therefore, preferred to eliminate the effects of a
rough edge and so provide a clearer 5icture of the relevance

 of the analyses., The webs and flanges of the beams in the

vicinity of each hole were strain-gauged, and gauge locations -

are shown in Fiqure 2.4.

The beams were simply supported at each end, and
because of the low magnitudes of load, no ]atera]ﬂsupport was
provided. Load was applied by means of an Amsler hydraulic

. jack and readings of gauges and deflections recorded at a
minimum of five increments of load. A maximum load of 13 kips
(57.9 kN) was applied to beam A, and 21 kips (93.5 kN) to beam
B, and no nonlinearity was observed in any of the readings. The
beams were tested with the holes in the positions shown in
Figure 2.3, and then with the reversed position with the holes
*

eccentric below the mid-depth. Much of the data was automatiha]]y

N recorded and stored on disk for later analysis.

/

Tangential normal strei§es around the hole edge are
shown in Figures 2.5 to 2.8. For ease of comparison, all results are
presented for a shear force of 10 kips. Also plotted are solutions

given by the theory of elasticity and by the curved beam method; for

,;‘l'h;mmﬁmi___w"4ﬂu;4a:¢e¥a—st%esses~are—p%0Ehaf1nﬂy~for~maﬂxn*jjﬁﬁn—frvm‘

-~
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the vertical centreline of the hole, because of the limitation
of the method. ' Stresses around the large holes of beam A are
shown in Figures 2.5 and 2.6 for M/V = 24 in. (0.588 m). 1In
both cases, the theory of elasticity solution is quite
inadequate and the curved beam solution accurately predicts
the measured stresses. Similar results were also ohtained for
fhese holes under a M/V ratio of 48 in. (1.176 m). Results

for hole 3 of beam,BAaLe‘Bhown_}H;Figﬁref2ﬁ?~forgtﬁe two M7? - T T

_accuracy of the curved -beamresults—rs—adiminished: SiTi AT

ratios. = Under the lower M/V. ratio, the two analyses give very
close results and both predict the measured stresses well. At
the higher M/V ratio, the theory of elasticity solution -_\~/

provides a good estimate of the measured stresses while the

\

conclusions can be drawn from the results for hole 4, shown in
Figure 2.8. These results are consistent with the known

dependence of both methods on the M/V ratio.

Shear stresses were measured by rosetle gauges placed
on the hole centreline. Experir@ntal results are shown for
one case in Figurec 2.9 and are compared with the theoretical
stress distributions based on the shear force valﬁés given by
Equations 2-8 and 2-9, with the distraibution according to
standard elastic theory. Satisfactory agreement was also

found in all other cases.

Longitudinal normal stresses wexe'measured on the




centreline of the flanges at various positions over the length
of the hole. Typical values are shown in Figures 2.10 and
2.11, and are compared with values obtained in zhe following
two ways: (1) Flexural stresses calculated from the applied

bending moment and based on the gross (i.e., unperforated)

beam section modulus; and (2) values of flange stresses

obtained from the curved bear analysis. The latter were

calculated on planes +45° from the hole centreline, and it can
be expected that the accuracy will diminish as the angle
increases. The results generally do not show great deviations

from the nominal stress values, except in cases where the hole

is very large or the eccentr1c1ty 1§ large. In either casc,

it can be expccted that the maximum hole edge stress will be

large, and might in any case govern. The curved beam estimates

of the longitudinal flange stressecs generally indicate the

stress distributions and predict the maximum values quite well

although the location is generally not predicted accurately.
Y

Four W16x40 beams of A36 steel containing eccentric

circular holes were tested by Frost!'?, The holes were of

\6.4—in. (162.6 mm) diameter, and eccentricities were 1.0 in.

(25.4 mm) and 2.0 in. (50.8 mm). Stresses were measured on
three cross-sections of the becam corresponding to the centreline
and the two ends of the hole. However, straing were not

recorded at the edges of the holes other than at these sections.

¥




. Thus, only the stresses at the hole centreline can be compared
o -
with the theories herein. The stresses were plotted similarly
to those shown in Figure 2.9, and showed equally good

agrecement.

2.4 Conclusions

Eaqr.the experiméntal cases presented _herein, it has

i

’ w

been shown that; depénding upon the hole size and the M/V ratjo,.
either the curved beam method or the theory of élasticity

method gives ? satisfactory solution for the maximum hole edge
stress. The appropriate solution is always the one predicting

the greater stress magnitude. Tt is, therefore, apparent that

Lforwé giveﬁicase, if both solutions are obtaincd, the larger
stress predicted may be teken as the more accurate; however,
it has not been demonstrated-—that such a result will be

sufficiently accurate for,all practical values of M/V and 2R/d.

A study of the accuracy of the two methods predicting
the maximum hole edge stress for mid-depth holes has been
presented in Ref. 5. For a number of reported results of
experiments and finitc element analyses of mid-depth holes,
the maximum stresses predicted by the two analyses have been
ébmpared, and nondimecnsionalised stresses plotted against a
ﬁbndimensZonal parameter, M/Vd, representing the moment-to~;hear

ratio. Results for the smallest hole (2R/d = 0.434) and the

L largest one (2R/d = 0.758) are shown in Figure 2.12. These




‘ and other results showed that taking the largest of the two

stresses could result in unsafe prediction of the actual stress,

with a maximum underestimate of about 14%. This however
applies only over a limited range of M/Vd ratios, and only to
small holes, for which stress levels elsewhere in the beam

" may well be critical. Thus, for most purposes, the largest

value of stress given by the two methods may be considered

K Tolle =
L

£ . i | - e 3 o Falll il N J T b —— " .
Surrrcrenctrty acturatces Wirrre—rnrsurrrerenrc resulcs 10T €CTeITCri’T

holes are available to carry out a similar extensive test of
the theories, it is reasonable, on the basis of the results

presented hercin, to assume that the conclusions arrived at for

mid-depth holes hold equally for eccentric holes.

The results reported herein provide a basis for the
estimation of stress levels around unreinforced eccentric
P
circular holés, on the assumption that local buckling does not
occur. The appropriate methods for given hole and beam sizes

and loadings have been identified. Design aids based on these

results will be presented in a subsequent paper.

...25_
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Figure 2.1 Curved Beam Idealisation:
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Figure 2.2 Typical IncIined Tee-Section
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Figure 2.3 Details Of Test Beams
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Figure 2.6 Hole Idge Stresses For Hole 2, Beam A
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Figure 2.7. Hole Edge Stresses For Hole 3, Beam B

K
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Figurc 2.8 Hole Edge Stresses For Hole 4, Beam B
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Figure 2.10 Flange Stresses For Hole 2, Beam A—-
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‘ / . \ CHAPTER 3

REINFORCED HOLES L4

3.1 Introduction

The necd for web holes 1n beams and girders for the

-

passage of utility ducts and pipes has been discussed widely

in the literaturé, and various methods of analysis and design

—-—----have been-suggested.—UYnreinforeced holes—in—general are —

preferred in order to minimise fabrication costs, however, in
many casés, the -stresses in the beam caused by the presence of
the hole will be so high that reinforcement is reguired. For

circular holes, the reinforcement can be in the form of plates

welded horizontally to the web near the hole or circular rings
Weldéd to the edge of the hole. It has been shown elsewhere’
that horizontal plates are not effective in reducing the hole

- edge stresses around.circular holes except undexr_pure bending _
conditions, and it is concluded that the circular type of
reinforcement is definitely superior if the design is based on

allowable stresscs.

In previously reported work®, satisfactory methods

"of analysis of stresses for!beams with unreinforced circular
+holes were proposcd. Two theories were suggested as being
appropriate: (1) theory of elasticity solution and (2) curved

beam analysis. The first theory is based on the analysis of




. the web as a large plate containing a small hole. The second
theory assumes that a portion of the web and flange can bz,

treated as a-section of a curved beam and this is then analysed

-
-

using the Winkler-Bach curved beam formula. The appropriate

e e kheory. to use is dependent upon the size of the hole and the

relative magnitudes of moment and shear, and the larger the
hole diameter (measured as a fraction of the beam depth, for

example) and the smaller the moment-to-shear ratio, the more

appropriate it is to use the curved beam analysis.

In this paper, the curved beam analysis is applied to

the case of a circular web hole reinforced by means of a

.’

circumferentiél p}ate as illustrated in Figure 3.1. A solution
of the equations of the theory of elasticity has not been
attempted because of the limited range of practical sizcs for
which it is applicable in the unreinforced case, and the

- expectation that the rangec would be as limited for reinforced
holes. However, holes which might b% expected to lie withih

this range of sizes are investigated experimentally.

'

3.2 Analysis

3.2.1 Mid-Depth Holes -

The analysis is basically identical to that discussed

in Ref. 6. The normal force N, and moment M, for a section

¢ ¢

defined by angle ¢, as shown in Figure 3.1, is first determined




-

‘ and then used to calculate the bending stresses at the edge of

the hole using the Winkler-Bach curved beam formula;

- M c
= v - ¢ _
o = E R 4 T 7 (3-1)
) ¢
(.. . - _ 1 -y _
in which 2 = X; farea " c¢) Ty dA¢ (3-2)

[

in which A¢ :‘aféa*éf‘thé‘iﬁéitneélf“”‘section”defined*by~timr~*~‘*"~"'

angle, ¢; c¢ = the distance from the hole edge to the centroid

of the inclined section: and y = a‘éoordinate measured from Ehé

L - —— centreid -of the—inclined section+— — — - ———

This is repeated for various values of the angle ¢
from 0° to *+45°. It is generally not possible to obtain
meaningful solution for ¢ > 450, but in all cases computed,
maximum normal stresses in the reinforcement were found to

occur when ¢ < 45°.

For unreinforced holes, the tangential stresses at
the edge of the hole is assumed to be uniformly distributed
across the thickness of the web. However, for curved
‘reinforcement at this location, the assumption of uniform
stresses is not correct. The primary bending causes the outer
portion of the reinforcement to deflect radially, inward or
outward depending upon whether it is tensile or compressive.
Referring to Figur% 3.2 and considering element strips AB and

. |
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CD, axial forces due to the primary bending are applied at the
ends of the strip AB. In the case of tensile -forces, gince_
the forces are nonconcurrent and the fact that the strip AB is
curved, a resultant force will act towards the centre of the

hole, thus causing the deflection of strip CD which is

perpendicular to AB. This deflection increases from a zero
value at the junction of the reinforcement with the web to a

maximum value at the free edges (Figure 3.2). Also, this-

deflection will result in a change in the circumferential

strain resulting from the primary bending. Thus the ¢

circumferential stress at the free edges will be lower than

, 4
that at the junction with the web. 2An approximate solution

given by Bleich'!® for the case of a curved beam section can be
utilised here. The projecting width on each side of the
reinforcement flange is assumed to be reduced such that the
stresses may be assumed to be uniform across the width ‘of the
flange. If the magnitude of this uniform stress distribution
is taken to be _equal to the maximum stress at the junction of
ihe web, the effective projecting width of the reinforcement

flange is given by,

bg = ob_ . (3-3)

in which bA = the effective (reduced) projecting width of the
reinforcement flange; bn = the actual projecting width of the

reinforcement flange; and o = a ratio obtained from Bleich's



solution. The rafio o is a function of bnz/rtr where tr is the
thickness of reinforcement flange and r is the radius of
curvature to thé.c§htre of the reinforcement flange. Tabulated
valucs of a for different values oflbr;z/rtr are presen?ed in

Ref. 18. These values may be represented by a fitted polynemial,

and a suitable relationship was found to be,

=

b 2 ‘ b 2 b 2

@ = 1.093 - 0.514 () .+ 0.128(=p—)2% - 0.0112(=2—)° ~
. " .LLr .Ll_r .Ll._r
(3-4)

It is usually more convenient to express Eguations
3-3 and 3-4 in terms of the actual total width of reinforcement,

2

br, and not the projecting width, bn, in which case,

b = —I-;-___. . . © (3‘5)

3.2.2 Eccentric Holes

As in the case of unreinforced holes, the only

difference in the analysis from that of mid-depth holes is the
fact that the shear force across the hole centreline' will no
longer be distributed evenly between the top and bottom sections.
The shear forces VT and VB’ carried by the beam above andﬂbelow

s

the hole respecctively, can be obtained by solving simultaneously

Equations 8 and 9 in Ref. 10 (Equations 2-8 ‘and 2-9 in Chapter 2).




"

?

These equations are reproduced herein,

Vo * Vg =V (3-6)
R%? .1/, sin%0 cos04d0 1 .m/2
v E b T_ - * e d kpcosbdd
T - B ‘e
v 3 ; " y y (3-7)
» B R* .1/, 8in”8 costdOl 1 .n/s
B é IT - é chosedG

and I_ and tﬂe shear

However, the moments of inertia IT B

parameters kT and kB are calculated based on the reduced

section.

3.3 Test Program and Results

A beam containing two eccentric holes of equal
diameters was tested to verify the above theory. Reinforcement
in the form of circular rings was welded to the web of the beam
at the edge of the holes. The circular rings were of the same
thickness, 1/4 inch (6.4 rm), but of different width, and were

cut from 5 inch (127 mm) outside diameter pipe. The wider

reinforcement was used for the hole with larger eccentricity
where higher hole edge stresses were expected, and the narrower
‘width was used for the hole with a lesser cccentricity.

Details of beam, holes and reinforcement are shown in Figure

3

3.3. '

The flange and web in the vicinity of the hole were -




instrumented with strain gauges, and the locations of thesé are
shown in Figure 3.4. The beam was siﬁbly supported and was
loaded byla single concentrated load applied by an Amsler
hydraulic jack. No laéeral support was provided because of the
low magnitude of applied loads. Strain readings and
deflections wgre recorded for loadings from 2 kips (8.9 kNl) to

30 kips (133.5 kH) in seven increments of 4 kips (17.8 kN)}, and

readings were automatically recorded and stored on tape for

later analysis. Two tests corresponding to two momemt=torshear
'

ratios of 24 inches (0.588 m) and 48 inches (1.176 1) vere
4

. _performed. The beam was tested witﬁ the holes in,&he position
shown in Figure 3.3, and then in the reversed p%éition with
hole centres beloﬁfzfé*ﬁ}dmdepth of the beam. %his lecads to
two sets of corr;sponding readings for each strain gauge, one
set being of opposite sian to the other. The averaged stresses
for ‘these two positions (obtained with the appropriate sign

change) are given herein, and the values given correspond to

the position of the holes above the mid-depth of the beam, as

b} . I . 2 a1
OTIOWITT DI Iy ule 5. 3%

'I‘
The experimental tangential normal stresses around

the hole edges are shown in Figures 3.5 to 3.8. These stresses
were calculated from strain gauges located at the centre of the

reinforcement, i.e. in the plane of the web, and €hus

correspond to the stresses assurmed to be uniform over the

- 43 -



o

‘ effective width of the reinforcement. Also plotted are the

»

stresses obtained by the curved beam analysis. Stresses for
the hole with a large eccentricity are shown in Figures 3.5

and 3,6 for M/V ratios of 24 inches (0.588 m) and 48 inches

(1.176 m). Good agreement between .the styesses are observed

'in both cases, in the zones where high stresses are predicted,

i.e. in the low moment side of the hole for the upper part of

the beam and in the high moment side of the hole for the lower

I

v
part--of the beam. —Results for the hole—with a -smaller — -

eccéﬁtricity are shown in Figures 3.7 and 3.8. They show

-

similar agreement to results for the case of the hole with a R

larger eccentricity.

Longitudinal normal stresses were measured over the
length of the hole on both flanges along the centreline of the
beam and results are plotted in Figures 3.9‘to 3.12 for both
hglés and both M/V ratios. 2Also plotted are flange stresses

obtained from the flexural formula applied to the gross beam

section, that is, ignoring the presence of hole and

reinforcement. For:the smaller eccentricity cénsidered,
Figures 3.9 and 3.10, it is clear that flange- stresses are not
sibnificantly affected by the presence of the-reinforced hole.
For the larger eécentricity, Figures 3.11 and 3.12, the
stresses in the flange closest to the hole are influenced by

“the lee to the extént that the flexural formula underestimatcs

. the maaéured flange stress at the high momént end by 23%, and



. overestimates it at the low moment end by about 30%. It is

relevant to note that the highest flange stresses measured are

lower than the predicted maximum hole edge stresses. This is

so for both moment-to-shear ratios tested.

- — ——————  ————Shear-stresses—on the cerrtrelineof the holes were ——

“n

measured by rosctte gauges and are shown in Figures 3.13 and

3.14~ " Also plotted aré the shear stresses calculated

according to the standardwshearwgpnmula using the shear feorces— — ~ -

Vip and VB obtained from Equations 8 and 9 in Ref. 10. For the

hole with a smaller eeeentricity, quite close agreement was

¥,

found for both the top and bottom sections; for the other hole,

agreement is not as close. From these results it appears that

I

the shear force predicted for the larger section (in this case
be;ow the hole) is overestimated when the eccentricfly is large,
and in the smaller section it would be correspondingly
underestimated. Howewver, the error is not unacceptably large
éinccfthis shear is also used to calculate the normal stresses
in the reinforcement, and the agreement between theory and

'y

experimental measurement of these stresses is satisfactory/

3.4 Conclusions

| £
The pirposa of this study was to formulate an .

[ 3

analysis to predict the maximum hole edge stresses for

eccentric circular web holes reinforced by circular rings. The
~



[
o

k} 5
»

curved beam analysis which was used in analysing unreinforced
holes as gdescribed in Ref 10 is modif#ied and employed here.

Due to secondary bending of the curved reinforcement flange, a
! -

modified cross-section was used in calculati%g the stresses.

Based on the results obtained from the experimental

~brogrém and the agreement between the measured stresses and the

theoreticall¥fﬁxedicted stresses, it can be concluded that the

curved beam analysis is a suitable method for use in design of

!
circular r@inf?rcement for the type of holes considered.

-
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CHAPTER 4

EXPERIMENTAL PROGRAM

While ahalytical methods are proposed for the analysis
of circular holes in the previous chapters, it is essential -
that some experimental data be obtained to check their
applicability. 1In this chapter, the test procedures used

are described.

4.1 Test Specimens ~

Two wide—flange beams with web holes were tested.

Beam A, a W14x30 beam was 12 feet 2 inches (3.71 m) long and

-

contained tw6 large circular holes of diameters 10} inches

(266.7 mm) and 8 inches (203.2 mm). These two holes were chosen
large enough that the theory of elasticity methoa would not be
adequaté for their anélysis and the results, therefore, represent
a test of the curved beam method. The larger hole was centred

at the mid-depth of the beam whereas the smaller hole was 1 inch

(25.4 mm) eccentric to the mid—deﬁEE.AiThese twd holes were
centred 48 inches :(1.219 m) abart which was more than sufficient

to ensure that the presence of one hole would not affect the

stress distribution around the other (Figure 2.3). Beam B, a

W14x38 beam was 15 feet (4.57Z2 m) in length and“ébntained—two—"—~“—-~

eccentric c}rcuiér holes of equal diameters, 5 inches (127 mm).

, |
This hole diameter was chosen to egplore the limitation in

application of the two theories. They were centred 56 inches




y

-

ihches (1.422 m) apart (Figure 2.3). After Beam B was  tested,
circular reinforcements in the form of circular rings cut from- f

a b ;nch outside diameter pipe were fitted into the holes of

Beam B and welded to both sides of the web with 3/16 continuous

fillet welds. -For identification purpose, Beam B after the

addition of circular reinforcement is denoted as Beam C. Due

to the low magnitude of loads applied during the testing, no |

stiffeners were welded to either beam. The surface of the

beams was slightly polished with an electric sander to get rid

‘'of the rust and mill scale in locations where strain gauges

were to be attached. The hole diameters, locations of holes

and sizes of reinforcement are summarized in Figure 4.1.

o~

All of the holes were machine-cut with a fly cutter
mounted on a drilling machine. The radius of the fly cutter

could be extended to account for different hole sizes.

N

During the process of cutting, a small crack near
the 104 inch diameter hole on Beam A was discovered. This was
later filled with weld material. FHowever, it was apparent’

that the crack was a fabricating defedt and was not caused by
‘ »

the cutting process.

4.2 Instrumentation

-

The webs, flandes and reinforcements of both beams

1

were instrumented with electric resistance strain gauges

- .62 - _
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. manufactured by Tokyo Sokki Kenkyujo Co., Japan. Two types of
these 'gauges were used, PL-5, uniaxial gauges and PR-5, 45
degree rosetté gauges. Adhesive type CN, a quick setting :
adhesive made by the same manufacturer was used to mount -the

“gauges on the surface of the beam. A waterproofing coating
was applied tc all gauges after they have been mounted on the
Ibeam to protect them from atmospheric humidity. The gauge
locations for both beams are shown in Figure 2.4 and Figure
3.2 in Chapters 2 and .3 respectively. Loadings for all tests
were supplied by a 520 kip capacity Amsler hydraulic jack.

<
The beams were tested simply supported with a ctoncentrated

load at mid-span and no lateral support was provided because

of the low magnitude 6f applied loads. '
1
- Two positions of the beam were tested, first with

the holes in the position shown in Figures 2.3 and 3.3 and

then in the reversed position with the hole centres below the

mid-depth. I

4.3 Testing Procedure

Two different methods of recording strains were oo
employed during the experimental programs. Strains obtained

from tests performed ornn Beam A were recorded by a multi-channel

automatic Budd Strain Recorder with the results printed out on

a printer. A more refined, computerized procedure was used in
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-

recording the strain readings for tests performed on Beams B
and C. A multi-channel strain recorder manufactured by B & F
Instrument Inc. and a computer system were used in recordi&g
the strains. The computer system used was the GEPAC System
(manufactured by General Electric) of the DATAC Centre, '
operated by the Department of Mechanical Engineering, McGill
University. A conversational program was designed and stored
in the computer which would give a step by step instruction to
the operator during the performance of the tests. The strain
recorder was linked to the computer through a connecting
terminal mounted in the laboratory. A tele-typewriter
connected to the Bell Telephone system wés used to send
instructions and input data to the computer. A schemetic
diagram showing the essential parts in the test set up iﬁ

given in Figure 4.2.:

Before the sﬁért of each test, the strain recorder
with the gauges connected to it was first calibrated according
to the gauge factors specified by the manufacturer. The
computer was then activated for testing by dialing an on-line
number through the Bell Telephone system. The computer would
first scan through all the channels of the strain recorder and

print out the number of those channels that were not properly

connected, e.g. loose connections and void channels. This

would.be fixed and a recheck done by the computer. When this
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was completed, a load of 2 kips was gradually applied to the
beam to get the initial reading on the gauges. The Amslcr
loading machine was then switched to constant-loading mode
which would keep the applied load constant at the prescribed
level. Under an instruction given by a type-in message, the
computer would again scan through all the channels, record the
readings and store them on the disk. A set of the recordad
readings was also printed out by the teletype as a precaution
measure in case the records on disk were destroyed. After all
these readings had been recorded, the beam was loaded by the

next increment and the above procedure was repeated.

An account of the details of test beams, strain gauge
locations and load increments is discussed in detail in
Chapters 2 and 3. The conversationalﬂprogr%m and some of the

computer printouts are given in Appendix V.
{

\
5,

4.4 Analvsis of Data N

¢
4

¢ K
After each individual test, the data stored on disk
was transferred onto a magnetic tape. When all the tests were
finished, the data stored on the tape were analysed using two

computer programs; the fjrst program, Program 1, calculated

the differences in strain between each load increment and the

second-program, Program 2, anatysedthe straim readitgs using S

linear regression technigues. Before fitting the regression

" \
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line on any set of readings, the confidence intervals of each
individual reading was first established. If any point was
outside this interval, it Qould be discarded when fitting the
regression line. A confidence limit of 90% was used bp all of
the readings. The computer would print out the slopes, i.e.
sf%ain per unit load and the intercepts of the regression line
of all the gauges and the number of points used in the fitting
of the lines. It was observed that only a few points were .

discarded in the entire experiment.

ot

For linear gauges, the stresses were obtained by
multiplying the slopes by the modulus of elasticity, E, which
is equal to 29,600,000 psi.( As for the rosettes, the principle
strains were first calculated based on the strain readingé from
the three gauges and the stresses were obtained using the
biaxial stress—strain relationship. A shear modulus value of

’

11,400,000 psi and Poisson's ratio of 08 were used in the

analysis.

The two computer programs mentioned above are given
~

in Appendix V.

4.5 Experimental Results

e

E@érimmwmm;x_m_le edges and_the
beam flanges Sge plotted and compared with theoretical stresses,

and in most cases, they show good agreement. Also plotted are
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the shear stresses at hole centrelines for eccentric holes, so
as to compare the shear stress distributions based on unequal

shear forces in the top and bottom sections @eterminea by the
method shown in Chapters 2 and 3.

Comparisons of results for
unreinforced holes and reinforced holes are given in Chapters
2 and 3 respectively. Sﬁpplementary results for the

unreinforced hole are given in Zppendix VIII.

¥
!




} | \ o
! t
5
| | _
I 1
| |
L& . 8 o
[ < o~ |
; r— —
+) €1, I @eZ
5 - . . - ol -
R1 { Ry t
r
! b
' , L J *
! i '
e
T —t-
Beam
Bearn Size L a R]{ R» (S es br1 brz trl trz
2
A W1l4x30 | 12'~2" | 2'-0" :!O.S"_B.O" 0 1.25" - - - -
B /-Wl4><38‘ 15'-Q" | 2'~4" r5.0" 5.0"1]11.0" 2.5" - - - -
C W14%x38 ] 15'-0" ] 214" Ltl.fSA" 4.5" 1 1.0" 2.5"y 2.1 3.5") 0.25" 1 0.25"
|
i
Figure 4.1} Details of Test Beams
| <
|
j (4
. f
& |
t 4




eflaly-

B & F
STRAIN
RECORDER

w2y

Figure 4.2 Schemetic Di

=)

DATAC -
| cexreE | T
o .
) -
L2
2&1
)
%)
(o]
K
~
, TCLETYPE |
SPECIMEN

agram Showing Experimental Set Up




il

- ? u
A )
/
5. ey B B
A , CHAPTER 5
, ) DESIGN OF UNREINFORCED HOLES
) ,
vm“- i N
“
‘ (
. .




. : . CHAPTER 5

{

DESIGN OF UNREINFORCED HOLES ’

5.1 Derivation of Design AIEE\\\\\\\\\\ . (.

Previous work has been concerned witﬁ the

-

\y

identification of suitable methods of analysis for stresses

in beams in the region of circular unreinforced holese. |

A satisfactory solution for de§ign purposes can be ébtained

either by a solutich based 6; the theory of elasticity or by

-one based on simplifying assumptionslin which parts of the
___beam around hole are treated by curved beam theory. The R

appropria;e Wethod depends upon the eccentficify of the hole

centre from the mid—depth\of the beam, the mom?;t—to—shear

ratio, anq the diameter of the hole relétivé té the beam

depth. These two methods have been outiined in Ref. 6, and

the purpose herein is to provide designvaids, baseq on tﬁése\

methods, which can be used in allowable stress design. The

aids relate to I-beams symmetric about the neutral axis. ;

The design aids take the form of interaction curves
relating the shear force, V, and moment M which, acting
together, will just cause the maximum normal stress in the

° . région of the hole to reach the allowable value. Thus, values

of M and V which just cause the maximum stress to® reach Fb’

the allowable normal stress in bending/fare represented by

]
‘ \
- s
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points on the curve, and points on the concave side of the
boundary represent lower values of the maximum stress. Foints
outside the curve represent unsafe load combinations. Shear
and moment have been nondiménsionalised by dividing by vall
and Mall’ respectively, these being the allowable values of

shear and moment, based on the nominal\gross beam section. It
has been assumed that Fv - 2Fb/3, in which Fv = the allowable
shear stress. 1In additié%, it has been assumed that_t/d = 0.05
and Aw/Af = 2.C, in which t = the flange thickness; d = the
overall beam agpthL,Aw = the area of the unperforated web; and
Af = the area of one flange. The resuits ar; not sensitive to
these ;atios, and the assumed values both lead to slightly
conservative results. It has been assumed throughout that- ’
parts of the beam around the hole remain stable, and therefore

are not subject to local buckling at stress levels lower than

those predicted.

"

An interaction diagram consisting of four regfons is
shown in Figure 5:1;’éﬁéﬁpﬁrt‘of‘the"curve—correspondSW;o—the
case when flange stresses govern, and the other threeﬁébuhole
edge stresses, and a typical interaction diagram will contain

wo or more of these regions. Of the latter three,‘the;thgory
of elasticity solution may govern at the higher moment—to—sﬁear
ratios, and the .other t(ifare d“;iyeaAfrqm the simplified“
curved beam!analysis. Flange stresses ar€ based on the curvéd

beam analysis, which has been shown to adequately predict the



PR
' .maximum stress in the flange over the length of the hole.

v

These flange stresses govern in only a few cases; these

correspond to small holes with small or zero eccentricity under
a2
low shear forces. '

-

<o Figures 5.2 to 5.13 provide design aids for most

. practical sﬁtuatiods, and account”for the effects of the hole
f 7

-

on normal Stresses in both flange and web. The interaction
diagrams ‘may be used if the hole is centred either above the
neutral axis or below it. They also apply to both positive

and negative values of the shear force and bending moment.

,in all cases therefore, the diagrams shoufd be entered wiﬂp tm%:
absolute values of e, V and M.r If a situation arises in which

Fv is not 2/3 of Fb, then the same interaction diagrams may be -

, . -used, but the abcissa is taken as a measure of 1.5(V/VallL

(Fv/Fb). In the case of compact sections in which Fb is '

normally taken as 0.66 Fy (based upon the ability of the beam

to attain its plastic moment) it wouwld not be appropriate to

A

use the value 0.66 Fy in the elastic d&sign procedure proposed.

b

herein. It would be satisfactory to take E, = 0.60 Fy when
considé}ing stresses around the hole, and if the web slenderness

was such that Fv = 0.40 Ey,the diagrams could then be used

directly. .

\‘\\\fnother'check which a designer must make concerns

the maximum shear stress. As an aid\to‘this, Figure 5.14 gives

g
‘ J
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the division of shear force above and below the hoie."Because

~

these values are dependeﬁt upon Aw/Af, although not very
sensifiveiy, results are given for AW/Af = 0.75 and 2.0/ and
inter%ediate values may bé obtained by interpolétion. 8;‘his
may bé$used to calculate the shear stresses in the top and

,bottom tee-sections on the hole centreline.

5.2 Example - Cj\
] ?

Given the beam dimensions and loading shown in Figure 5.
15,it is required to check the adequacy of the beam if a hole
with a 9-in. (230-mm) diameter and eccentricity 2 in. (51 mm)

is placed 6 feet (1.8 m) from the left-hand support. The beam

is laterally supported along the span and has a yield stress p
of 50 ksi (340 MN/m?). ® ~
, Taking the allowable stresses aé,
\—J Fj, = 0.60 F = 30 ksi (210 MN/m*) and
F, = 0.40 Fy = 20 ksi (140 MN/m?), .
the maximum bending moment at mid-span = égl%gila = 2400 kip—in.
(271 kN-m) ; . I
the maximum bending stress = zgggg%g = 26.93 ksi (185.7MN/m?)
< Fy., éLerefore, 0.K. ) 'T
the hole diameter to beam-depth ratio (2R/d) = 5/18 = 0.5;and
the eccentricity to beam-depth ratio (e/d) = 2/18 = 0.11.
The moment at the hole centreline, M = 20x6x12 = 1440 kip-in.
(163 kN-m). . s

- 73 -



r -

The shear at the hole centreline,-V = 20 kips (89 kN).

30x2x802

The allowable moment, Mall = 18

The allowable.shear, \Y

= 20x18x0.358 = 128.8 kips (573 kN).

= 2673.3 kip-in. (302.2 kN—B).

%, all
Thus ) TN
M 1440
= = 0.54
M_q1 2673.3 o
v 20 - “ ¢
= = 0.16 4
Vall 128.8 ‘ .
This point is plotted in Figure 5.15 and is found to be 4in
the safe region.
\ -~
5.2.1 Shear Stress at Hole Centreline )
Interpolating from Figure 5.14, Vip = 0.26V = 5.2 kip$%
(23 kN) and VB = 0.74V = 14.8 kips (65.9 kN). The locations
of the neutral axis for the top and bottom tee-sections are
given in Figure 5.15.

The moment O6f inertia of the top tee-sectlon, IT =

1.26 in"* (52.5 cm") and the moment of inertia of the bottom

tee-section, IB = 21.32 in"* (888 cm"). Maximum shear stress

in top tee is

a

ViRt  5.2x1.93(2.041 - 1.93/2)

Iw - 1.26 ]

8.57 ksi (59.1 MN/m?) < F, Therefore: 0.K.

4
—



. .

! .
Maximum shear stress in bottom tee is

-

VB2 14.8x(5.137)2
Tw © T 21.32%2

;7 B

Thus, the stresses at the hole are within allowable limits.

]

9.16 ksi (63.2 MN/m2?)< F, Therefore 0.K.

y

5.3 Conclusions

7 -

The design aids preéented herein can be ,used in
allowable stress‘design of beams with eccentric or mid-depth
circular holes, without reinforcement. They are based upon

normal and shear stresses, and do not include consideration of
]

local buckling. The curves are given for hole diameter-to-
L)

beam depth ratios of 0.20 to 0.75, and for eccentricities

of the hole tentre from nftd-depth of up to 0.25 of the beam

depth. In all cases where the hole diameter 1s larger than 0.3
of the beam depth, eccentricity is limited to less than 0.25
of the beam depth because of the proximity of the hole edge

to the flange.
: \

~

-
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CHAPTER 6

SUMMARY AND CONCLUSIONS
o

This thesis provides an analytical method to determine
the stresses at the edge of the circular hole on the web of a .
beam. Both eccentric af¥ mid-depth holes are considered.
Sections of the beam around the hole were anélysed as curved
beam sections using the Winkler-Bach curved beam formula.
Stresses were calculated only for a region of +45° with the
vertical centreline of the hole. Any stresses ogtained for
sections outs%de this region were deemed to be inaccurate

~—

because of the sever® inclination of the sections.

Experimental work was carriedédout to verify the above
theory, and the experimental stresses and those calculated using
the curved beam method were comeared with the theory of
elasticity method. It was obseryéd that for large holes and for
low M/V ratios{ the tkeory of elasticity method was inadeguate
and gave stresses much lower than that of the experiment, _
whereas the curved beam method accurately predicted the stresses.
For smaller holes, boph methods . gave close re®alts and predicted
the measured stresses well fo; small M/V ratios, however, for
higher M/V ratios, the accuracy of the curved beam metiod

diminished. C

i

.The curved beam method was extended to analyse
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circularly reinforced holes. Due ;p.secondary bending of the
reinforcement flange, @Sdified curv:z beam sections were used.
Experiments were also éerformed. Good agreement between the
calculated and tpe experimental stresses were observed.

Interaction curves were produced.as aids for the
desién of unreinforced holes. Any loading represented by a
point on the concave side of these curves is a safe loading and
a point on the curve itself indi'cates that the stresses at

either the hole edge or the flange is equal to the allowable

bending stress. A design example is also provided.

. LT
An attempt to produce design aids for reinforced holes

was not successful. In place of this, a short computer program
is provided in Apfendix VII which can be used for the rapid

analysis of such holes.

. Conclusions are presented at the end of eaé@ cgzﬁter.
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» APPENDIX I /

SHEAR FORCE DIVISION

-
1

The division of shear force, V, between the unequal
top and bottom secgioné‘across the web hole can be determined
by aséum;ng that the deflections and slopes of the top and
bottom sections are equal 10 Using the Moment Area Méthod,
the deflections and changé in slopes of the high moment end of
the ﬁole with respect to the low moment end, or vice versa, can
be calculated. The free-body diagram, the bending moment

diagram, and the M/EI diagram for a typical top section are

given in Figure I.1.

¢

I.1 Defldctions and Slopes

. ) \
With the coordinate system indicated in Figure I.1,
the deflections and slopes due to bending and shear for the top

and bottom sections are given as follows:

Deflection Slope
| 2R Mp X 2R Mp
Bending (top section) é 57 dx £ - dx
T T
\ AN
= 2R Y e Vox
EIT EIT
. 2R TT mé& 2R dTT max -
Shear (top section) -g ,——é——— dx -£ é ~

-



. ) Xending (bottom section)

Ad -

dax
é EIB
2r Vp¥
R
B
5 : ~2R 'B,max 2R dTB max
Shear (bottom section) —é ——é—__ dx "é : é
!

I.2 Sectional Properties

-

It is convenient to express the sectional properties,

area and moment of inertia, in polar coordinates (r,f) rather

than the cartesian coordinates (x,y). With reference to Figure

I.2, the transformation equations are:

o

X = R(sin® * 1) , . (I=1)

and - Y R cose' . A(I-2) o

I

From Figure I.2, it can’be shown that for any section

n-n,
o
o 0
ET = ET - R ﬁose,
- J )
AT = bt + WET, )
L, = {bt(Ey + £/2) * wE2/2}/By v
3
- bt 3 t = 42 "WET = _ ET 2
and Ip =17 " bPtlEp * 3 = &P oy T Wee (G )

’




.

? *
. .

in which t = flange thickness; A, = sectional area; b = flange

T
width; w = web thickness; E& = the distance of thelneutralyaxis
from the hole edge; and IT = the moment of inertia of ,the section.

For the location of the maximum shear_stress,:and its

magnitude, , two cases need to be considered, i.e., when

L7
the neutral axis lies in the web and in the flange.

o

T
T,max

When the neutral axis lies on the web,

= 2
T 0 (I-3) . -«
T,max 21
T .
-and when the neutral axis lies on the flange, .
] Vg (Cy - Eq/2) B
T,max '. IT .
t
In general, TT,max can be expressed as,
T, max = KV (I-5)

in which kf can be obtained from either Equations I-3 or I-4.

¢

I.3 Equating Deflections and Slopes

By equating the deflections and slopes of the top and

bottom se%tions, the following equations are obtained:

%
-

M! x Vv, x2 T
. 2R T _ 2R T _ 2R T,max
¢ B, ax - [ EI, dx - [ G dx




‘ [N » . ,
- - SR )
: V—d X ¢ x?
T et g peR B 2R B” _ (2R _B,max
. R 3 BT, ax = {7 g v - c
. ‘ , a ‘,; ‘ . (I-6)
- 1
2r Mr . 2R V¥ 0 2R. 417, max o
g El, ax - { ET, d 4 G . :
: . .
2R M‘B . 2R VBX 2R d B,max ) .
= { El, dx - { BT, dx - [*7—¢

- R : (1-7)

The above ecuations, I-6 and I-7, - can be rewritten
. R R
in polar cpordinates using Equations I-1, I-2 and I-5 as: e
. —_— JR— 4
T R(sin ' 2 T g2 (sine + 1)°8 8
+ - +
ﬁ—R(slne 1)R cos6dé ﬁ R* (sin ) coséd

T A )

<

n o
' v . T M
2

- ;‘ 4
L 2

m

o

. ' . AV ot
, R -(—;T}—(I R cos6ds o .

_—
. . . :2' 1 4 N -g' v , ,
\*' = 14 EIBR(51n6+ 1)R cosede -\1[[' E—I—R (51n9 + 1)2R cosede
AN =2 .. B,
(\3, . L ,
1 | T V. k ’ . *
- ,"Lz g B R cos6ds o (I-8)

& -2

/
~

‘ | 7 M} ™ V R(sing + 1) \ | e
2 _- R cosbdf - ,(;2 BT R cos8de - ,{;2

: - EI
-2 -2 T -2

G

1 . et )

/ m . m V_R(sin® + 1) TV .
s v 2 —ME—R cos6do - '{;2 B ET R cosbde - 4;2 EE dkB
B -2 7 B vem g

- 2 ’
. | J . o (T-9)




¢

-

. On expansion, many of the integrals are found to be
odd functions, and therefore vanish. Rearrangement of these
equations then leads to the following:

' 1 2 2
MR 62 cos8db _ VpR 62 sin?0césHde _ VqR IE cos6deé
E IT E IT E o} IT
I . , VT g
- - é kqusede -
1 . 2 2
o MpR IE cos8ds _ VBN IE sin?0cos8dd _ BN 62 cos 6d9
. ) . E o] IB E (o] IB E IB
. o
& VB '2' :
- kTCOSGdG (I-10)
PN " r -
1 2 -
g MpR 6’{ cospds _ UrR 62 cos0de : :
E IT E I,Il o
: 1 2 - )
- _ MBR T cosfdf _ VBR 2 cos9db (I-11)
' =TE 0? I E ¢ I
- w B B
_ 7 -
2 N
o c%' . Equations I-10 and I-11l can thus be solved simultaneouslx

/ to yield Equation 2-9, which cdn\be integrated numerically to
H

___ ___provide values of Vg,/Vg.
[ »
/
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APPENDIX IT

}

THEORY OF ELASTICITY SOLUTION

In Ref. 6, the solution for stresses around a
rectangular eccentric hole with round corners was given for the
following cases, namely, pure bending, pure shear, eccentricity

N
effect on pure bending and eccentricity effect on shear. If

the radius of the round corner is taken as half the width of
the hole and the height of the hole is taken ab equal to its
width, the solution for a circular hole can be obtained for the

four cases mentioned above. Any combination of bending and

shear can be solved by addition of the stresses given by the

fogf separate solutions. - - _

8 ,'Ff

II.1 Pure Bending

T &
For rectangular holes with round corners, the
tangential stress on the edge of the hole is given as:
o
32 (5

2 Gg) = YA(Alsing *+ A3sin3B + Assin5B

I O :

+ Ays8in7B + Agsin9B) (I1-1)

ir AS = '}{

3, therefore

In thé case of circular holes,A = %, A,

As = A7 = By = Q, Joz =%, H= R and YO

Equation II-1 is simplified to:

4
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(o)

t, _ _ el ) ; o
(ﬁﬁ) = sinB - sin3B (11-2)
1 4 I ,
My @
Furthermore, if Fb = —5T then Equation II-2 can be
rewritten as: )
Ve
» o't
- ( )( )(51n8 - sin3B) . (I1-3)
b al

II.2 Pure Shear

‘Similarly, fdf“fébEaﬁéﬁIafjh§I6§—WIth4rounﬂ*torners;-"‘

1]
5 4A2<§)(§—>r ,
I ) = ° (1 + 3Ky + 6E - 152 )sin28
T 1 + Ks A2 A2

{

.+ (2K - 2 —, ) sin + 2K;sin68} ,
A

(II-4)

(N

For circular holes, A= 4%, B=C=D=E=0, K; =Ky " Ks = 0,

=%, y, = %, H=Rand h' = (d/2)/2R, then Equation II-4

reduces to:

( < 4G L) &5 )F51n28 , (11-5)

1
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]

FE = 4(ﬁ§-—)(§)rs1nzs (II-6)
b all

. _Where:

& e
P o= 3 A A
21 - 25 T
, A -
=T
) ' ‘Aw -
N Mg_ , -
] o o s as}
. T

II.3 Eccentricity Effect on Pure Bending

For rectangular holes with. round corners,

I

a

<« In the case aqf circular holes, Ao =3, Ay = -4, A,y

>

and Jo2 = 3, then Equation II-7 is simplified to:

) =1 - 2cos28

*ﬂqug
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. 3,2 = 8+ bycos2B + BucosdB + Becos6R (II-7),

= Ag = 0

(I11-8)




o

. —

Sty M
F, M

)(%)(1 - 2cos2B)  (11-9)
b all ;

»
v

1I.4 Eccentricity Effect on Shear

For rectangular holes with round corners,

o

J 2(—E—-) - -2 ¢ {A'cosB + A'COS3B + A'cossB
0 V_IiH - yo L 1 3 H
I
+ A1céé7é * Agcdsgé
[] 1 ]

+ 2e'(N,sin2B + Nusind4df + N¢sin6B) }
(I11-10)
1 [ ] 1 L) L}
In the case of circular holes, Ay T %, A3 = -3, As = b7 = b

[ | [] ' -
N, = 3, Ny =Ne = 0, ' =e/2R, A= 4, y =1 and J* =1,

then Equation II-10 is simplified to:

(o
t - e . ~ =4 e . _
(Viﬁ’ = - p(cosB - 3cos3B + 45§51n28) (II-11)
I
or:
2
LI Y A )(::—") &) (;Yh (-———Aid ) (&R ’
b - all b £ ’
/
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*

4

{cosB - 3cos3B + 4(d)(2R)sin28}

/ - | Q

(I1-12)

For mid-depth holes, the tangential stiess on the

2 hole edge is the sum of stresses due te bending and shear, i.e.,
(e

St o (M
Fb M

P

) (ZR) (sing = sin3g) + 4 (g

)(%)PsinZB
all all

(II-13)
*

For eccentric holes, the tangent1a1 stress is the sum of

1

stresses due to the four loadlng cases described prev1ously, i.e.

(=) &5 (sme - sin3g) 4 (5

Mi11 all

ﬁ
1"

s

)(%)FsinZB

+ 2( —— & )(l - ZCOSZB)/— l(—-Y——)(-F-‘X)(?-)(ﬁy-)
M all 2 Vall Fb d Af
A_d?
( § )(%%){cqe8 - 3cos3B + 4(d)(2R)sin28}

(II-14)



‘APPENDIX III

CURVED BEAM METHOD




- L
‘) ;
- o -
B

APPENDIX III 7

CURVED BEAM METHOD -

t

ITI.1 Unreinforced Holes

- moment M¢ of any inclined section at an angle ¢ from the
. ) ' v .

This Appendix describes how the axial force N, and

¢

vertical are obtained. The stresses are then calculated by

[}

substituting these into Equation 2-6.

ITIT.1.1 Sectional Properties

With reference to Figure III.l, the area, location
of centroid and moment of inertia of an‘inclined section’at an

angle ¢ from the vertical can be determined as follows:

- b TTT-1
A¢ = Afsec¢ + s¢w . (II1I-1)
A_secd(s, + itsecd) + 3ws 2 . .
c, = -L ¢ ¢ (III-2)°
¢ A ,
T
- .1;_ + + - 2
. I¢ = 12{b(tsec¢)3 ws¢3{i Afsec¢(s¢ + dtseco c¢)
- 2 -
+ ws¢(§s¢ c¢) (I11 ?)
in which, -
s, = (Q - e - t)secd) - R - ’ (II1I-4)
¢ " 2 ’

- 105 -

‘e

Z




-

III.1.2 Bending and Shear Forces on Hole Centreline

The distance of the neutral axis from the top flaﬂge of
the beam,yn,and the' moment of inertia, In’ for a section through

the hole centreline are given as:

»

Af;/z + Af(d - t/2) + w(d - 2t)d/2 - w(2R) (d/2 - e)

Yn = 2A; * (d - 2t - 2R)v
3 ' (III-5)
- 2 - 2 2 3
In = Aft /6 + Af(yn t/2)4 + (Awd /12)(hT(d)
) _ _ 2 _ - 2
+ Aw(hT/d)(Yn t hT/Z) + Af(d Yn t/2)
2 3 - - - 2
+ (8,4%/12) (h/d)® + A (hp/d) (@ -y = t - hy/2)
\
{(ITI-6)
in which,
hy,=4d/2 - t-e-R ] (III-7)
" ]
and hB =d4d/2 - t + e - R (III-8)

7

- If a linear distribution of bending stress is assumed,

- .

the normal force NT and its line of action can be determined as:

when . Yy, < HT~+ t + 2R,

n
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Y y -t / .- )
Np =S " b(%i)dy + 0 w(%l)dy , (III-9a)

yn—t n yn-hT—t n .
] " .. . - ’(
4 2 y -t 2, ,
£t opdEay + st w@Eay T
y -t n Yy -h_ -t n :
Y= S ~-R-e'- (y - 35)
[ .’ N
T , .
. #
“ (III-10a)
or when yn pd hT‘+ t + 2R ,
' y . y -t y. =h ~-t-2R
N, = ;o b%%x)dy + 0 w(%z)dy + é n T w(%x)dy :
y,~t "~ 'n y, ~h.-t S n - n ’
(III-9b)
r i
y Yy -t 2 ' Yy h_-t-2R 2
rrp®ey 0D wddy » 0T w@ay
_ yn-t . n yn-hT—t n n \e
Y =
. NT
| T
-R-e- (y- 9 (II1-10b)

1

After integrating and rearranging terms, Equations III-9a, III-9Db,

III-10a and III-10b take the forf respectively as:

s - —— - —

N = {f—n ly2 - (v -t)2]* wly ~t)? - (v -h,~t)2]}

(I1I-11a)
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M

- . : , i ”

: v

o Ny = E%g{b[y; - (y,m8)’] *"W['(ygn-t}h2 - (yn;hT-t)z:]

'

v
PR
o -

-

- = owly ~he-t ~ 2R)* P o . '« (III-11b)
bly? - (vt 3]'+['»:?‘ (y, ~t) - ¥ ~h~t) 3]
. Y = g{ n n . n_ n T }
- - 3 N N
C- Telyl S (v,m0) 2] v v -ey2 - (¥n—hT—t)-2] w (
3 / N - v ¥ .
* . -R-e -y +% o " (I1I-12a)
. © , . o R . / ‘Jd -
3 .._ _- 3 - 3 _ _ __’ 3 K
2D 0] ey - Gyt ]
- 3 2 ¢ ‘ 2.1, - - 2 - , - - 2
, ply2 - w02 v ) - (ymhymt) 7]
) @+ wly ~hpt = 2R)®

,(I11-12b)

} - R=-e -y, +
* wily, ~hp-t - 2R) ?

. ' R . ] . .
III.l.3 Moment:and Shear on an Inclined Section

v Nl

v

' Summing forces and taking morents’ about the centroid

of thé inclined section, the following équétions.arqpobtained:

»
g - A t
+

N¢ :QVT51Q¢ + NTcos¢ . . ‘ ) (II1-13)
N, * l .o T ‘
d - V. (R + c.)sind -»N_{¥y + R - (R *+ c, )cos¢} :
and | My = Vy (R cpdsing > Ry(y (R + c,)cos¢)
e e ] . , .
. ,(1;1—14)
(a\. , T % :‘
I13.1.4 Value of 2 ' .
) . - ) e : o
From Equation 2-3, )
w " :
’
"108" ’ : "8
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R+c

Y
< ¥

to that of unreinforaeed holes,except the section will be an

I-section instead of a tee-section.

[

This is taken into account

in calculating the sectional properties.

Z ==-1+* —K—i{bln(R+c4+u1) + (w - b)ln(R+c¢+uz) - win(R)}
o ¢ ’—/\ \
d
but R + C4 + u; = (f - e)secd
S —— - . , — :
and R + c¢ + u = (3 -. e - t)secd -
therefore, ’ — .
' R+cC : . .
- - € ¢ ’d_—_ A _ c d - -
o z=cle v {btn [(5 - e)secq]+(w - b)En[(5 - e - t)secd]
. S - win(R)} ’
at [ - ©
D R+c¢‘ \g - e (% - e - t)secd
= -1 + y {bin 3 + win R -
:¢ -2-' -e -t ¢
- ° \(III—lS)
III.2 Reinforced Holes a .
The procedures in obtaining N¢ and M¢ are idenéical
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APPENDIX IV

EQUATIONS OF CURVED BEAM METHOD IN NON-DIMENSIONAL FORM

T Equations 1I=T"fto III=g and IITT—Ir &5 IIr—Id . ——

Appendix III can be non-dimensionalised as follows:

&
l Aé = sec¢ + SéA&f - (IV-1)
secd(s! + 3t'secd) + is'?a’
cy = : T b wi (1V-2)
¢ A
e A T
Ié = %f(t‘zsec3¢ + Adfs$3) + sec¢(s$‘+ it'secd
- I)Z + A IJ% T c:|)2 ) (I)V—3) )
4 wES 64284 b A
sé = (3 - e' - t')sec) - iR’ . (IV-4)
‘1 1
1l + iA&f(l - 2t') - A&fR'(é ~e')
y‘ - T _ [ ] (IV—S)
n 2 + AWf(l 2t R'Y)
| - 1 12 4 v [ _l__ ] 1 + [} ] [ - ' - '
In =%t (vp = 3E")2 + $3ALehe’ * ALchply) -t thp)?
KRR LU LI e R L R AR L
(IV-6)
h,]':, =3 ~-t'-e' - 3iR' (IV-7)

T
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h'! =% -~ t' +e' - R' (Iv-8)

’ \/
I° (yn)Z - (y' - t|)2 ®
[ - ] n n [ - 2
Ny = M 3-3{ = + Al [(y t')
-— L - [ 1y 2 _
(y! - hy - £} (Iv-1la)
- 1! (yr'l)2 - (yx;-t')2 )
NT:M—I—E{ o NS [CARR IR D
- (yr'l - h'i‘ - t|)2J + A\:'f(yk— h'i‘ -t - R')Z}
© (IV-11b)
(y|)3 - (yl - t|)3 - v
— 2{ . / [(Y - t )3
¥ =3 (y)? vr - th)
\ /CK* ate [ty - eN?
- (vl - by~ t"?]
= [ T o -1y 2 } - %R' - e' - Y' +%
(yn hT t )] n
) (Iv-12a)
(v - gy -t S
- _2{ £ IR
Y’ )7 - (v, - t)°

v v 1y 2
t * age [vg - €Y
- (yl - h'i‘_ t|)3] + l (Y' - hr}_‘- £ - R')”;
- - LS 4 — | I LR Ty €
y, = bp - t") ] A ey, = hp-t R")

"

%,
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. - 3R —e' - y! + 3 (IV-12b)

A
]

uV'A&fFGbsin¢ + Nécos¢ (xv-13)

- TJTRT v wt + Ll 1 = T T
uv AWEFY T3R Cylsing

=,
i

\

- Nply' + #R' - (3R' *+ cy)cosé) (IV-14)

J

in which A! = A¢/Af ' —_ —

¢ ! kﬁ»
' o s 2

o4
"
N
o)
DS
e
=

~
1]
i
~
o

-
i
=2

AN
o))

]
it
bt
Q\
b
Hh
o
')
c

L}
I
b~
b\
o]
+h
o]
N

&
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as:

-

Similarly, Equations 2-4, 2-5, 2-6 can be rewritten

2' = =1+ (}_R' + c,;\){%-ﬁn Y %_ ;'e'

. LI
(4 - e' - t')secd
+ A'ein I b/ Ay (IV-15) ..
. S — -
. ) 2 ¢
K' = - 0 (1 - 55+ © (Iv-16)
) - ARy oy 5\ :
¢ < ¢ (Y o1 =
N! M'c!- '
o' = K'(=2 « 2% " (IV-17)
¢ By To
o B i
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APPLMNDIX V

COMPUTER PROGRAMS - EXPERIMENTS N

V.1 Conversational Program for Automatic Recording of Strain

Gauge Readings

Most of this program is written in Fortran language
except the subroutines which are written in Assembler. This

program will record strain gauge readings automatically upon an

instruction fed into the computer by an operator through a
tele—typewrite?.iiAfte¥ each get of gauge readings for a
‘particular loading is read, the program will be stopped to allow
time for the operator to load the specimen to the next }oading.
By pressing the BRLAK button, the program will be reactivated
again and start recording the next sect of gauge reaéings. All
these readings will be stored on the disk for later analysis.
The channcl numbers and their :readings will also be printed out
on the tele~typewriter.

The vrogram listing and some typical printouts are

o {
shown on Pages 117 to 122.

v

V. _Q;oqrq@_{

This program computes the differences in strain
-

between cach load increment using the readings already stored on

disk.




3

~

The program listing is shown on Page 123.

§

V.3 Program 2

»

YMHIE progrant ritsTY
strain readings obtained by the conversational program during
the experiment and‘priqts out the intcrceéts and slopes of these

lines. Also calculated and printed out are the confidengce

interval of each reading. If any reading is outside this

interval,—the—reading will be automatically discarded when
fitting the regression line. A confidence limit of 90% is being
n ’ -

used.’

The' program listing is shown on Page 124 to 127.

) |
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e

»7[EY  1d WIPLLIED PRESS BREAX BUTTON 10 GONTINUE

ENTER " L0-0 1IN KIPS ’
2.‘0 4 .
< : “
Lutd = - 2,00 KIP3
0 ~15.109
1. -7,300
2 -25.400
3 -7.5C0
A 5,400
5 "'0.500
g -23,100 . ,
7 -39,200 :
3 -34,600
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e €.
I -15,7C0
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PROGRAM 2

OIMENSZION ETRAIN(SD,S);IQAT(E).NDPEN(ZD),QLGQD(S);APE(B):NCHAN(SD)
*,LS(B);T(é;4):ChDAD(8):?LDPE(SO\;LCHAN(E@?TVﬁtHE(B)

DATA T/46 314,72 w20, 2 5%, 2 132, % 015, 1 943, 12 706, 4. 2072, 3182,

+* o 776, 2 571, 2 847, 43 £57, 7 925, 5 2841, 4. £04,4. 032, 3 707,
#ATA L1, T SPE, 12 PAL, 8 &10, 6 859, 5 T/ %

ENTER FAL
SPE DTRCOZ

LI XFR ' ’
PR _OEL 20

LEAVE FAL
WRITE(L: 1) )

1 FORMAT C1HO, 17HREGREZZION ANALYSIS)
WRITE(A, 2y NTEST, (IDAT(I), IxL, )
7 FORMATCIHO, TIHTEST NO = , 12, 5%, 7HOATE = 5 2AZ)
REALCS, 3) PIT, N, NLOAD
2 FORMATCZID)
NG=Z0-NOZ ,
READ (=, 2) ™MODE - % R £
IF(NT HMNE NTE=T) OO TO 1000
IF(NOC ED Q) GO TO =0
READNCS, 4) (NOFEMCI), I=1, NIOC)
4 FORMAT(14&1%)
GO TO 9 -
20 NOFENOL1)——1
97 READ(S, 5) (ALOADCI )Y, I=1, NLOALDD
5 FORMAT(SFLO 2) - .
READCS, &) NEC )
G FORMAT(IS)
IF(NSE EO O) o TO =21
REQD(S, ) (NCHANCI), I=1, NRL)
oo oTO 9z
91 NCHAN(L)= -1
EER S
M=1 -
LL=1
TOFEN=NIFENC L)
ICHAN-NCHANCL)
ra 100 I=t, 50 ¢ - :
I1=1-1
IF(I1 EO IOFEN) GO TO 101
IF(I1 ED ICHAN) B0 TO 102 .
UMY =0 .
SLMY 2=0 ra
SUMY=0 . /
,/
- \* '
@
- 124 -
‘5 .




oo Za0 J=1, NLOAD
SUMX = SUMX+ALOADN ()

SHMY 2= SLIMX Z+ ALOALDN () %4 Z )
SUMY=SUMY+STRAINCI, 1) '
SUMXY=SLIMXY+ZTRAINCT, ) #ALOADIC)
CLOADNC D =ALOADC)

VALUE (D =5TRAINC T, J)

' ¥ i W W el i 1. o ol &F W ¥ I § el

PR ILLN A S BU L O IS 3 ALK o
SLMY X=SUMX 2 2
N=NL AL .
CALL REGRNCIUMY, SLMY, SUMYFTELNXZ, SUMYX, N A, B)
LEHAN(LL) =11 ,
SLOFE(LL) = E
LL=LL+1
WRITE<4, 7) 1L, A B

IF(MMODE 0Oy OO TO 208
CALL CL{N, SUMX/ cLoaD, A, B, 1, MODE, T LIIE)
204 L0 To 100
10Z READICS, 4) NP
SLIMY.= O
SLUMX 2= 0
MY =0
SUMXY=0

(L=t )b =1, NF3)

IL=L=
DD ZOZ NM=1, NLOAD AN
IFCH B QL)Y o0 TO 202

UMY = SLMIAGALOADCSD) -

~

b=ttt +1
oGO TO 20z
20 IF(L1 GE NP2)
Li=L1+1
L=t
ZOX COMTIMIE
SHMXXF UMY e s 2
N--NL D= N2
CALL REGRMOSUMY, SUMY, SUMXY, SUMXZ, SLUMXX: N, 2, B)
LCHANN L) =T
SLOFE (LINs
LE=LL~+1
WRITE(L, 7)) 1L, ACEN
7 FORMAT(IHO, 12, 9Y, 1ZHINTERCEFT = , F& 2, 55X, SHILOPE
# OF FOINTS = , I2)

EDUI W 6
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¢

IF(MODE EH Q) GO TO 205

CCALL CLCN, UMY, CLOAD, A, B, 1, MODE

IF(M GE N3C) G0 TO 100

M=M+1

TCHAN--NCHAM (M)

GO TO 100

IFCL GE NOC) 50 To 100

LaL+1

IOFEN=MOIFEN (L)

nnon

100

SO T TR
STREZZ ANALYSIS

READ(S, =) FANLYS
IFCGHANLYS ED ©) G0 T 1001
CIFCHANLYS NE 1) 60 TO 1001
WRITE(A, 11)

11

p
[N

10
200

1000

5

NTEST
IDAT
STRAIN

FORMAT C1HD, ZSHANALYSIS OF LINEAR GALIGES)

READ(S, S) &, V
WRITE(A, ) E,V

FORMAT (IHO, 4HE = ,E1Z 4, 2X, 4HV

WRITE (4, 12)

FURMAT(1HO;7HCHQNNEL,3¥;9H LOFE, 64X, AHETRAIN, =X, 6HSTRESS /)

O 200 =1, NG

SESLOFE G Y #U+1 OFE-4
STREZ.=Ex7
WRITE (4, 10)

CONTIMUE

LOTO 1001
WRITE (4, &)
FORMAT CIHO, 79HTHE TEST MJUHEER IN TAFE DOE

T:VQLUE)

LOHAM L l)::LHFF(P\,-,-TRE
FORMATCIH , IS, F10 2, ZE1S

NOT AGREE WITH THAT IN

;— T e ‘—WMWW“‘TEF\W‘ INATE Ty

1001

STOF
ENTER FAaL

DEL O, 72555000
EOR O, 71000
DEL O, NTEST

| ERTRT |

| SR

2RS 400¢

DS 10

DELCZO LIE

LEAVE FAL
ENDI

SUERDUT INE, REGRN(SX, SV, £
ADF=NLOF

A= CEXIRIY-SXHEXYV 7 (ADF S LY -5 XX )
E= (ADF®ZXY~SX#5Y) 7 (ADF# X I~5XX )

RETLIRN

2 XZ SXX NDF, A&, B)




—— = .

ENT - —_—

SUBROUTINE CL(MP, 2X, CLOAD, A B, T ICL, T, VALUE)

INTEGER

OIMEMZION =SDVYICD), YMAXOZ), YMINGD), CLOAD(S), T(A, 4), VALUE(2)
DiF=NF .

XEAR=SX 7T , '

{1=NF-~2Z

All-1

RLZ=0 - -
XMYXELAR=0

oD 10 -1, NF

Y=N+E+CLOATICL)

RL=VALUECT)Y =Y

RLI=RLI+RL ¥ 2

XMADNAR=XMXEOAR+F (CLOAD ) -XEAR) ## 2
10 CONTINUIE .

Dvilll 6 AV o S X AN B |
(SF ~M By e

oo 0 =1, NF
V—(CLZDADC) - XERAR) ## 2
SOYICGHD=Z0RTZDYIZs(L 41 /7DOF+Y 7 XMXEAR) )
Yi=f-+E#C LOAD ) h
YMAX G DAY LT U, TCLY#SDYI L)
YMINCGE)=Y1=-T (U, ICL)Y®#2LYI )
20 TONTIMUE ‘
CWRITECE, 1) LT ICL), (YPIAX T, J=1, NF)
I FOIMAT IO, A%, 12, ZX, 977 1)
WRITE (A, Z) CYRIIMOL), J- 1, NFD)
FORMAT(IH , 19 EF7 1)
RETLM
ENI

N
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APPENDIX VI -~

COMPUTER PROGRAM - THEORY OF EILASTICITY METHOD \

VI.1 Program Abstract

This program computes the stresses at the edge of a

hole in Fhe web of a flanged beam using the theory of elasticity

method described in Chapter 2. The stresscs are calculated at

PR o N - o N o N
1V 1ntervals Tor the wholée Circumierence oi the hole.

VI.2 Input Data Requirement

(a) First card: (FORMAT 1I5)
Read in the number of heams to be analysed.

NB = Numbcr of beam sections.

£

(b) Second card: (FORMAT 8F10.2) ‘

Read 171 the dimensions oOf beam section, radius of hole and
3 . .
eccentricity.

D

H
jov}
o
.
3

depth;

B = Beam flange width;

» m £ S
F =4 E o

TLTT

0]
)

W = Beam -wchb thickness;
= Radius of hole;
EC® = Eccentricity of hole centre with respect to the beam's

mid-dcrtih; equal tdo 0 for mid-depth holes.
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(c) Third card: (FORMAT I5)

Read in the number of moment and shear combinations that
LS

stresses are to be computed.

NMSR = Number of moment-shear combinations.

(d) Read in different sets of moment and shear (M,V) (FORMAT 8F10.2)

One card for each set, that is, there will be NMSR number

of cards.
(e) Repeat procedures (b), (c) and (d) for NB nuﬁﬁe; of timés. S
N N N
VI.3 Output Data j{

ANGLE = The angle at which the

stress is calculated;

X,Y = The location in Cartesian coordinates in which the

stress is .calculated;

SIGA, SIGB, SIGC, SIGD = Represent the stresses calculatcd

SICMA = Stresses at the edge of the hole.

VI.4 Program Listing and Sample Output

A program listing and a sample output are shown on

Pages 130 to 132.
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4 F AT (1= 1RO 2! Rz t3F6.7,"' T
£

er'\L ")T

Pis3, 1415927 ) ’
BEAD 1208 -

F ORIDAT(I®) \.

i+ 50 J=ls.B

BEAD 22000, 1,5 R1CC

FoRuAT(OFLID.2)

I:(I\*'*‘kj—(B-")*(("u—?_*T)**'\\/l'/‘.c

Pb-'f!“ 3}J

Forear(rLeRUpERTIES O BEAM NI, T2)

POInT 4,0, T0Wa 1,R,ICC

'-’F()OZI' W "F6.2)

-
£ 1 j Al "L . Y
€= A

x

VoI= TsEE, 7, rE v rSers !
htl(~ *pwT
LT T'\llbc(h~?*l)ﬁq
k]=/\FlG/AT
tiz], /2
ARl WS/ (L =T/ ly=( (D =2 kT ) el *zwkl)/(z WIk(l, ~kl))

PR SN

TR AIF SR

50 Ka1, 7SR - e

READN 22tV )

boTHT 9,15V .
FOPAT( 0= 1bEBL 2,0 Ve 1,FT7.2)
T pQ,03-6 TO 51

RATIOe?2uV a1/ ( eM&lzosd)

PolnT 12

12 FoRDAT(Y O S PTs VANALE Y, B, 'X')T“hr'Y':T37:'SIPA';*50:‘SIGQ';T63,

]

1STIGU s TT76, ' STLPY 1RGP STGHAY /)
i+ 100 Tl=123612]10
IMiel]-]
Iy f/\aIT]_"-“‘I/]{‘O-
for TAZ=2% U L TA
b TA3=3% 1 TA
b TAG=B i Th ]
S XsSIr (L TAY
§1.aAX-917(nFTA) )
STi2X=S1 (4L T122)
 SX=005 "ETA)
¢ Sox=0nsS (k1 y2) -
€ 'S9%=CUS(HETA3)
¢ ShX:Cfb(PFTAb) , -

G, CAEa T X =511 3h

[ AP R X 3 A GATAANS T ‘\./l‘

% RS S B R ol LLL) FLTy N
SThG0=1=- ?*(‘5?‘

GOz b (0 -y /1 (CUIEX=BeC NS 2X44uE COSIN2X/ (2%R))
Slgrhﬁ(«IJA+5]QB+515h)~W4w/I+SI(C*M*ECC/I_ - o
X1=, 9n 1Sy g

Yiz,.hrS810X . )

e pPiex]

Y2 % %YL )

A Ga=ATAL(YL/X1Y%1p0. /07

100 P Y 11;Awu,\:Y SIGA %*G‘;SIbC;QIGD:SIGMA
11 F REAT (Y 3F 1002, 5E13,4)
6! T{ B0 '
51 P T0T h2 }
52 F LUAT(POTHIS AETOUODFATLS FOR PURE SHEART) -
b0 € TIMUFE
SifPp

bk
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I€T

PRUPERT

Da

Mz

14412
24p.00
ANPBLE

0L 00
10400
20L oo
30L,CO
4«0}, 00
5} 00
60 00
7.0} 20
20|, 00
000

~80, JO
=79l oo
-604, 20

Y=

—SUQQJ'

-4l GO
-30!00
’20000
=100V
-0, 00
1000
20,00
30+ 00
40,00
50.00
64,00
TU. GO
80,00
90,00
~80409
-70,09
-6U,00
~50,00
=-40,00
'30.00
~-20.,00
"Xovoo
-0.C0O

1S GF seaM ho 1

6078 T=
V= 10,00
b

2450
letb
2¢35
2417
192
" lebl
1.25
0086
Neh3
00
g3
-2 A6
~1425
~leH1l
-1.92
~2¢17
~2e¢35
-2246
-2450
-2 046
-2.35
-2,17
'1092
=-1e61
'1025
-v\.ﬁf_\
-~ 1943
1 N0
ekl
e 86
1¢25
1+01
1,92
2417
2435
200
2450

0.51

Y

0,00
0.43
0,86
1,25
1,61
1,92
2,17
2,35
2,46
2'50
2,46
2.35
2,17
1,92
1,61
1.25
0,86
0,643
0.00
"0.{'3
-0,46
-1,25
-1,¢61
-1,92
-2,117
-2,35%
~2.46
-2-50
-2,46
-2,35
-2,17
"1092
-lvbl

-1,25

-0,86
-0,43
~0,00

Ws N0s3)

SIGA

0.0000F 00
~0,.3264F 00
~0.5240F Q0
-0,50001 “uo
~0.22272V 0o

.2l 00

a.8060F Qo

D000l )

N LR51F Ny

0.20C0F 01

n.lnheE )y

Neludny 01

0.8hn0k 00

Ve2061F 20
~0.,22328 00
=0.5000E O
~0.2440E 0n
~0.33464E On
-0.5j7n%-05

N.32363F 00

0.534nF 20

0.35.}a0e an

0.2232F 20
~-0.2360E 0O
=0, 8960 F 00
-0,14490E D01
-0.1851F o
=0.72300FE 01
-0.1R51F 01
~-0,la40F Q1
-0.8660F 00
~0.,2661E 00

0.2232F 0n

0.5060E oo

0.5240E 00

0.3266E 00

0.1968F-0n

I= 38G.70

S168

0.C000E 00
0.,2283L 01
0,429C0C 01
0.5780L 01
0.65721 01
0eH572L 01
(4 5792F 01
04220k 0}
Ce2283E 01
CelAI20L-04
~0e2282k 01
~Ue6290E 0}
=(s>7BCE 01
~(eHS5T2E 0O}

~C46572F 01,

-0,2760L Q1
~Cefe90L 0O}
-0e227%3L 01
~e33%1 =04
0.2243E 01
0.64270F 01
0e5780L C}
VeHhS5720 01
0.6572E 01
0«STRCE 01
049270 01
0.2233E 0L
0s2530E~04
-0,2283F 01
~0e4290L 01
-0.5730€ 01
~0,5572E Cl
~0,4~572E 0Ol
-0.5780t 01
~04429%0E 01
~0e.2233C 0O}
-04642220=04

Rs 2450

ECs

S1G¢e

-0, 1000E 01
-0.,B794E 00
-0,%321E 00
-0.1907E-05
0.652 7€ 00
0.1347E 01
0,200 E 0
0V.25372F 01
0.,2374E 01
0.3007°E 01
0.2875E 021
0,2537E 01}
0.2007E 01
0.1347€ 91
0.6527& 00
0.5172-E-05
~-0,.532'[ 00
-0.,879. k 00
-0,100F 01
-0.8794k QO
-0.5321k 00O
~0.85RE~C5
0.65>%F 00
0.134%E 01
U.2000E 01}
0.2537E 01
0.2870E €1}
0,360 E Q1
0.2R7"E 01
0.2532E 01
0.206:8 01
0.1347E 0}
0.65%27E 00
Q.7391E~05
~-Q,5321E €0
~-0.B79.,£ GO
-0 10M E 01

A

S1G6D

0.2083E 00
0,9679E~01
0.75%5 =01
0.27"0F 09

LD W 0
io.%éza co

0.5450F 00
0,4402F 09
~0,2456E 00
=0, 1RB4% -5
0.2456E 00
0,44C2E VO
0.5450E 0Q
0,5428E 00
Q.66128 00
0e?2700F 09
0,75580-01
“0,95879t=01
jn.?0ﬂ3F 0o
0.2373F (9
«0,19233¢ nY
“0 U2 1E=D1
0.,30°PRE=01
0,1324E 00
0.1842F 0Q
0.1723E CO
C.,10M1E 0
[0,1185E-05
=0, 1031E no
+C.1723F €9
+0,1842E 00
0.,1324E 60
0,30R8F=C1
Jo.qﬂzlﬁ-ﬂl
n.,1923F 0Q
N,2373LC €0
1042083E G

SIGHMA

'Ovlths
0.1BSNE
0.4977E
Q.7395E
0.1N034F
0«1205E
0.1277F
0.,1233¢t
0.1087E
Ce7880C
C.4245E
0.1025E
-0,3733¢
~0.6060F
~0.895AE

-0.9471E
-0.B306E
=0, 5650F
=0, 1°04F
0.2140¢F
0. 6645E
D.,S755¢€
0. 1179L
0.1227E
CeV116F

0. R754E
D.,53R1E
0. 1576E
~0.2139E
-0.5311E
'0'76125
-0.RAH3E
«~0.9N27E
-0.R179E
-0.6471E
~-0.47°G2¢E
=0 1?74BE




M= 48p,00 v=

ANGLE

10
20
30
40

«00
s 00
» 00
1 OO

50
oQ
70!
il

Y1)
+ 00
00
.OO

10,00

Y

0,00
0,43
0:86
1,25
1001
1,92
2,17
2,35
2,46
2,50

2,46
2,35
2,17
1,92
1,01
1,25
0.86
0.43
0.C0
-ot‘43
~0,86
~1,25
-l, 01
-1,92
-2,17
-2,35
-2,46
“2050
~2,46
"2'35
-2,17
~-1,92
-1,61
-1,25
-0,86
~0,43
-0-00

S16GA

g.pn00F 00
’00 26/0F Oﬁ
~0.,5000F 00
=0,2/32F 00

0.72v60F 00O,

0.8’\(10? n
V., 164(F O
0.1951F 01
0.2000F 01
0,1151F 01
Q.1la40F 0}
0., 8060F 00
D.28611 No
~0,2232% 00
05000 0On
=0,5240r 00
-0.,3¢ctaF N
=0.50 10F=-Q8%
0.3767F 00
0.5260F 00
0.5t 0c0F o
0.2c32F 02
~0,720660F 00
-0 é60F 0n
-0, 164nF 01y
«0.1051F 01
0. 20C0F 01
—0.1551? Ol
-0,1640F 01
0. B¢ E0E 0N
-0, 26E1F 00
0.2222F 00
. 5000F 00
0.5240E 00
0.3764F 0On
0.16¢aF-04

S168

0.0000E 00
OsL141E 0O}
0.,21450 01
0.,23%90F 01
C.3206L 01
(0s32361 01
073900 01
De2la5L 01
Os1141L CO1
0¢0460E-05
-0y 11410 O1
~0.21451 0]
~0,2890E 01
~0¢3286E 01}
-0,13286L 01
~0.7850t 01
~0e2165€ Ol
~3.1141F 0]
~0s1672E-04
Oellall O1
Ce2145k 01
0,22390C 01
0e3256L 01
0,3286E 0}
0,2896E 01
Ne2145E 01
Ooll"lE Ol
N0.1265E=04%
~0s1141E 01
~0.,2145L 01
~0,2890F 01
-0,4328%5L 01
=043235E 01
-0,2890k 01
~0e2145C 01
-0.1141E 0}
-~0,2111E=-04

S1Gr

-0.,100/E (
"00879145 c
~0.532'€E
=-0,1907E]
0.6527t 3
0.1367L @
0.2000 8 Q
0.253.L ¢
0.207L
0,300 L U
0.,287-E
0.2532E (
0.200:E Q
0.1347E Q
0,6527E
0,512 E-C
=0.5321E ¢
-0.879.8 @
-0.,100 £ Q
-0,R794k {
-0,.5320C (
-0.6568 0=y
C.052 'L 4
0.1%47¢ N
0,700 E Y
n.25328 Q
0.287¢< L O
0.300°F ¢
V.287°FE O
0.7537E 1
0.2C0(E (¢
0.1347E O
0.6527E (
0.,7391¢~U
-0,5321€ U
~0.8794E Q
-0.100rE Q

!
0
0
5
9
1
1
1
1
1
i
i
1
1
0
5
U
0
1
N
0
5
0
1
1
1
1
1
1
L
1
1
0
5
e
Q
1

sian

2.1042C
£,4340¢F
“0,3777F
=0,13K3F
=0,2276L
~0.7714tL
-1,2725¢
=0.,22010
=-J.17279¢L
=0, 92413L
0.1228°F
0.72201¢k
0,2725¢E
0.2714F
04,226k
0.1353C
0.3TT78E
() H4RAHNE
-C,.1042¢
-0,1197¢
=11,56144
~0,4511L
0. 1%a94(
0.6671F
0,9208E
0.,B6YVIT
0.51584F
0,5923¢L
=0,51%4E
-0, Ab\TE
-D,9708F
=0.6671LE
=0, 1544E
C.4510¢
(0,9614C
0.,1197E
0,1042F

{19
0]
1]
aY
ne
1

no
cQ
rUh
00
0on
00
00
00
00
rOL
-.(\1
00
0Q
—nl
~C1
—()l
01
=01
o1
b(\l
ud8Y,)
-01
=01
=01
-01
~()1
~01
-0l
a0
no

o0

SI1GMA
~0.2R24E

ol

-0.5058F-01

0.3313¢
0.7106F
0.)102F
0.1459¢
0% 17280
0.1859¢F
C.1812F
0.15761
0.117NnE
O.h’o“)ZF
0.7R39¢C
’03441WE
=-0.,8309¢
-0, 10208
=0.997T1E
~0.7581F
-0+ 31080F
0.1477F
NDehe32F
0.1054¢E
0.1217E
0.1'3919E
0.17297¢
0.1043E
0,7002E
0.3152¢
-0+5VT78E
«0,3519E
~0.5125E
-0.7159E
~0.7¢ 46E
=-0.7491E
-0.50335
~0.4964E
~0.7524F

ol
01
02
Q2
02
02
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APPENDIX VII : i >

t

COMPUTER PROGRAM - CURVED BEAM METEROD

VII.l Program Abstract - ;

3

This program computes the stresses at the edge of a
hole in the web of a flanged beam using the curved beam nmethod
described in Chapters 2(and 3. This can bhe used for unreinforced -
and cirdu%arly reinforced holes. The stresses are claculated at
50 intervals for é regiog of +45° from thé vertical centreline
of the holé, for both the upper and lover portions of the beam.
. ¢+ Flange stre?ses are also computed at the same intervals.

0

VII.2 Input Data Requirement

(a) First card: (FORMAT 8F10. 3)

Read in the dimensions of beam section, radius of hole,

eccentricity, rcinforcement width and thickness. ‘

R .-

D = Beam depth;
B = Beam flange width;
. T = Leaw flange thickness;

W - Beam web thickness;

R - Radius of hole; .

ECC = Eccentricity of holc centre with respect to the beam's
mid-depth; cqual“todo for mid-depth holes;

BR

Width of reinforcement;

TR

Thickness of reinforcement.
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(b)

(c)

(a)

(e)

(5

Second card: (PORMAT 2r10.3)

~ «

Read in the elastic and shear moduli.

E

Elastic modulus; A -

G Shear modulus. - -

Third card: (FORMAT I5) ~
-/

Read in the number of moment-shear combination that stresses )

are to be computed.

N = Number of moment-shear combinations.

Read in different sets of moment and shear (M,V) (FORMAT 2F16.3)

One card for each set, that is, there will be N number of

cards.

Repcat procedures (a), (b), (c) and (d) for other beam

sections, if any.

Terminate the program by reading in a card with a zero or a

VII.3 Output Data \

negative number. '

Ve

VB - Shear force for the lower beam section at hole centreline;“;

n

Shear force for the upper beam section at hole centreline;
b LN

"EQUIVALENT BR = Reduced width oI reinforcement;

BETA = The angle of a section measured from the vertical;

ARE? .= Area of a section;

I’- Moment of inertia of a section;




P. = Resulting axial force acting at the centroid of a section: >

M = Resulting moment at a section; 5
CH = Distance of the centroid of a section from the hole edge;,
CF = Distance of the centroid:of a section from the edge of

the flange; ..
FIF = Stresses at the flanges;

FIH - Stresses at the hole edge before multiplying by K

factor;
K = Stress concentration factor;

FMS - Stresses at hole edge after multiplying by K factor.
L]

VII.4 Program Listing and Sample Output

A program listing ang a sample output are shown on

&

Pages 136 to 141. )

\

- 135 -




REAL INyM
COMMON Dy Py T oy Ry[CC,PTFaGaRR,TR

1 FORMAT{BE]ID.3) ' ’
2 FURMAT('ID= .yF-,.?lv‘-)\(y'H: "F—T.%’SX"T: ',F7.39‘3X.'N= 'ero3"qxv

X~ oD

-~
-

21

%
¥

VPz U, FT.3,5%, 'FCC= T,F7.3,5Xy " RR= ', FT7.3,5X,' TR= ',
F7.3) \

FORMAT(IR)

FORMATIZFLIO.D)

FORMAT (Y02 P FTe2,5Y, V= ' 4FTa3,5XK,TVI= Y, FT.3,5%,WP= ',FT.3)

FORMAT{'QUPRLR TEFY/? ~=—m—mm— V)

FOPMAT(*OHINH MOMEHT SIDEY) —-————

FORMAT(Y0OLNW MOMEMT STDEY)

FORMAT(YOLOWER TIFY/Y ——— e ')

Pi=3.1415227

RTAD ],D,R,T.H,R,F‘LC'RQyTQ

[IF(DJATL0) 50 T 22

2000

x

TET Ayt

PRINT?2,0,0, Ty WyRZFCT,BR, TR

CoLL FQUIVIRR  TR,2, W)

CALL SHENDTY{V,V2)

PRIMT 2000,8
FORMAT( 'O, "EQUIVALEMT RR =1,1¥%X,F6.3)
HTI={{i=2e%T1/2 —(R4ECCHTR)

HE=(F =2, %T7T) /2. ~{R-[CC+TR)

AY =RiT %2/ 20 4 BETH(P=T /2 Y HWEHT > ( T4HP7 20 )+ W EHRY D= T-HR LD,
PRDHTRA{ THHT4GR/2. ) +ARXT2X( THUT #TRE2HFR4TR/ 2, )
A= 2P T4 2 TR+ (HT 41N =
V=AY /A
Y1=0-Y
[H=RS w12 4RETHRIY=T/2 ¢ YR 4 WaHT ARG /12 o # W HT R (Y= T=HT /2 ) k2 4R 4T
**3/Y?.FR*]*(YI-T/?.)*32+N*HU*45/1?.+H*HR2(YI“T—H“/?.)?*Z
49U ATR P KA /12 e 4R s TRK(Y=T=HT=TR/24) k2 +BRETRI(Y-T-HT= (R =2 *R=T7/
2. 02
READ 3,M )
DO 20 I=1,M
QEAD éyM,V - . »

VT=V1 sV

VR=V7 Y e

PRINT 54t1,/4VT,VH

FT1=rsv/in

FI2=f T1*{Y=T)/Y

FTI3=F T (Y=T=HT) /Y

FTa=FT1a(Y=T=Hi=TP)/Y .
PTLI=0 -T*(FTI4FT2) /4

PT2=HTHNA (FT24FT31/2.

P1a=nuiTrs (FI3+FT46) /2,

7T1=4/3.(FTI42%FT2)/(FTL+FT?)

7T2=T /3,4 (FT242%0 {3 /LFT24LT )
7T3=TR/R < (FT342%F Y4V LETR4FTG)

JF{Y I ELITH+HHT+TR+2:PY) 5N TH 900

TEAY T (THHTHTR42P) JAND Y [ FL(T+#HT+2%TR+2%R) ) GO TO 901
TF(YeRT(THHT#2%TR42*R)) GO TO 902

DT4=0.

PT5=0.
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ITL=0,

7T15=0.
. G Te 903
. 401 FYS=F11%{Y=T-HT-TP=2%N})/Y

PT4=RAK(Y=T-HI-TR=-24N)%FI15/2.,
PYS=0.

IT4={(¥Y=-T-HT=TP=2%P) /3,

77T5=0,

GO TN 493 ,

02 FTH=FT1{Y=T=-HT=TP=2%R}/Y

FTOE=FTI X (Y=T-HI=2%1R=2%R) /Y
DTL=NDLTRA(F(54FTR)/D,
PYL=V (Y=T—-HT=7"TR=2%R) FTH/2.
7Ta=1"73, 7 (FI5424T16)Y/(FTS+FT0)
IT5=(Y=T=HT=2%T"=2%R) /5.

907 PTO=PT14PT24PT342144DT5

é1=(NFI-ZT1+P{?*(?T?+T)+PT3%(7T34T+HT)!DTA*(ITA+T+Hf1rQ+2*Q)
$ VPrs*(715+2*ra+?*n+ur+T))/Pro

PRINT 6

PRIMT R

CALL STRPSSIPIOWNMT 7T ,14T)
CVT==Vv1

pRIT 7

CALL STRFSSIPTOLYT47T4HT)
FQ1=-t=Y1/1IN -
FR2=rP1“(Y1-T)/VYl
PRY=P*T(FDL+FT' 2V /2.
[RI=T/3.0ERL+2 0T R2)/UTRL+FRD)
THOOYI=T=HR},LFL,D) 6N TH 1000 ‘ .
IFCIY1I=T=HB) BT 0 AND (YT =T-HEB=-TR) LELO) GJ TO 1001
ITF((VI-T-HO=-T0).GT.0) GO TH 1002

1000 PR2=(Y]1~T) ¥fpi2/2.
JRZ2=(Y1-T)/3."
PRrR2=0,
GO 1N 1003 3 _ ‘ _

Sttt 040 1 S 25 M 0 A0 8 1 A KL A 4 S

! PR2=1"s YW (FR24M13%) /2,

JR2=H/ 305 (fR242 %R/ (FR2Z¥FRZY 7 i
PRE3={Y]1-T-HR) PILFN3/2,

IB3-(Y1-T-HB) /3,

¢O T 1003

1002 FE3=FPLI(Y1-1-tP) /N1 ’

Fla=rr)1s(Y1-T-HP=-TRR)/Y]

PR =HE TN FR24AFO3Y /2,
CPPR3=RYRTRE(FRIAFNG) /7.

Ff+-- $bd 4 TP B il o SR Y L and Lo T ¥ PE ot 3
VAL A= A A S I a0 ne o B B A U i R

}
IP3A=TR/ 3 % (FRIL2EFRL4)Y/(FRI+FRG)

1003 PRO=PUl+PB2+7P13 K]
J0R=(PRLIH/B14PB2x{T47821+PR3x(T+R+7R3})/PRO
PIINT O
PRINT 7
CALL STPESSIPHO,VR,78,HAB) »

VH==VR .
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Crtl STRESS(PC,VH,78,HR)
20 COMTYMUF '

LG T 2)
22 STOP

fFND

SURROUTING STRESS (PO, VS,474HS)
REM  TyMS,K
COMM DyB Ty W gRyFCC P14 F 406, , TR
PRING ] .
I FOPMAT CODSECTINNY y T3y "RFETAY W, T23, VARERY , T34, 17, T44, 7P v, 754, M,
i« TOhy "CHY T T4, YOl T8I, VEIF Y T3, PFTHT g T1064,y 'Ky T113, 'FMSY)
DO 10 J:=1,1"

1 b §

H—=——1

X=1%*

BREYA=PTHX/190,
P=pPOCNS{NFTAI+VSESINIBFTA)

H= (HS+P+TR+1 ) /COSIPFTA)Y =R
TT=T/C0OS{RETA)

CAYL AT e T oy Wy BR,TRLAR,Y,T)

FUEYRCOSTTT TR T=7

ARH= (P +) S TY(BETA)=YASTIN(RETA)

MS=PNEFC-Y ST ARM

CHti-H=-Y

Cr=Y :

FAXTAl ==/ Ak ’ '

CHINDH=AS (/]

FTVENNDE =S C1 /] v

FIt=FANTAL-T QUNDFE

FIH=F AXTAL S ITNDH -

CLLL FACTOR{CH,CFyARLRR,GG,TT)

S1GOR==1S% %/ [ AR*RR) -
==(0 T/ (07, RERR ) :

e

Tiih=FTH™X N
10 PPIRT 2,0y Xe ARy 4P MO LH CFyETE,EIH, K, FMS

2 FORMATLY ', 15,11F10.2)
RETURM
9 CHp
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SUPROUTINC SHRODIV(VY,V?)
COMMON DyRy Ty WeRyECC e M1 M3 GoRR, TR
NDIMENSTON Z1(101),720101)
H10=D/?2 .~T~FCC

C/\LL I'\ITGR(HH),Z].Z2,N)
T)=02%2% 721 (1) /F
T2=12{N)Y/G

T4-T1+4T72

HIhN=D/2 «~=T+ECC

CAIL [K\!T“Q(Hﬁﬂq7lvl?y”)
RY=R=k2E71(N)Y /E
R2=72(N)/G

Ra=R14R2

VI=R4/ (T4+B4)
Ve2=T4/{T4+84)

R{ TURN

D

SUBROUTTNE MI(SB1,5T1,5DySW,SR?2,5T2,SAREA,SY,SXI)
H=S30h-ST1-ST2 .

Al==§nixcTy

AP =HXSH }
A3=SAP%ST)

SARFA=A1+A24A3

X1=A1%ST1/2.

Y202 {H/2.45T1)

X3-A3%(SD=-ST?/2.)

SY=(X14X2+4X3) /SAREA
XT1=(SPIRSTL 3) /124 +AIR(SY=5T1/7,)uxD
X12= (SW3HEA3) /124 A2 5 L4/ 2 L #STL=5Y ) %%
XT3=(SR24ST245%3) /12 +A3X(SD=-STP/2e~SY ) kD
SXI=XI11+X12+X]3

REFURY

[eE N a
LN

. ®

SUFPRNUT T IE FOUIVIRR, TP ,P W)
BP=(A2-)/2.

RRR=N+TR /2. .

XX=RI% %D /(R <TN) .
ALPHAz}.nowaon—.3142317*xx+.12“4%fq*¥v**W-.011?tlle*xx**i
RR=? ., %At PHAR3 P4 YW . .

RETURY .
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T
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SUBANUTIME INTGR (11D, 72Y,772,N)
COMMON Dy Ry Ty WaRZEFCCs P17y G AR, TR
PLab i,V
DIMENCTION FLL01 )71 N1),71(1011),72(101)
prz2=vi/?2.
H=P1/2/100. e e
PO 1 J=1,101
K= 3}-1
X~ KA
BETA=ARSIN{RESIN(X)/Z(™+TR))
X] 0= {3+ TRIXCOSIRETA)
ETA= [R4TRYCOS{RAITAY=-R NS (X)
A=PETAXT CI+BLEETA
-(H*1**f/° FPIN AR AT HYI/2 Y4RRAET A A(THXI40TA/ 2.0/ A
H=HO+T-22CNS(X)
Y1=HH-Y

=Rk I3 /12, +H*T“(3'T/7.)**7+W%XI<N°/]? AR JAR(TAXT/2.=Y) %%2

FRREE LA RS /1P ARP A ETAR T AT4ETA/? =Y ) %52
FIJ)=STH{X)I%=2xCOS(X) /]
TF (Y LESTY KI={RPAFTASR(XTHETA/ 2 ) 400X %D /2, ) 7 (T%W)
IF{Y.HTe Y = FTN"(YI—FTA/Z.)+N*(\l~~Ta)442/?.)/(I*N)
700)=K1 0 05(X)
CONT IHUF , ¢

V=101
CALL 0SF(H,F,71,101)
CALL OSF(tiyZ422,101)

RF (URM
£
2 \

SURROUYTT L FATTD M CH, CT e ARRGRRHH(G, TT)
COMMM'E Dy TeW,yR (LT 4P, F G RR, IO
Yl=C°c

o’ U2 =G
N3 =CH-T"
7, =111 - 11 g )
RR=R 4117 i
TTT=P TRCNG (RRFUT)
772 2(1=R ) ALNS R4S )
J73= (R =y} ALNG{RR-UT)
J74=n0 AL N0 (RR=117)
1/==1.4RR/ARRE(TTL 4T 7247713 =7174) N
Sh=1.-U2 /(77 ¥ (RR=12)) '
RETUPN
END
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D= 14,120

EQUIVALENT BR

M= 430.000

UPPFR TEE

LOW MAMENT SIDE

BETA

0.0

5.0
10.0
15.0
20.0
25.Q
30.9
35.0
4Q0.0
45.0

SECTION

CO O

[

O3 WNEPN W~
~

1

[

HIGH MOMENT St

=)

SECTION RET]
040
5.0

1n.0

15.0

20.0

25.0

30.0

35.0

40,0

45.0

OO I/~ D W -
CO OO0 OO0W >

[

LY 6,180 T= 513 W= 0.313
1.482

V= 10,000 VT= 2. 429 V3= T.5N
AREA 1 p M
4313 1473 37.35 1.17
4,35 1476 37.42 0. 36
4.41 1!87 37.21 '0-36
4.50 2406 5.1 -1.37
4.64 2436 35,93 -1.62
4,82 2430 34.39 -2.12
5.07 3447 33.56 -2.73
5.3R 4445 1] ,99 -1.,31
5.78 5196 3N, 1R -3.75
6.30 8433 2R.13 -4.71

£ 3
AREA i g M
4.33 1473 37.35 1.17
4,35 1476 37.00 2.07
4.4l 1487 36.36 3.08
4.50 2406 315.45 4,21
4,64 2436 34,27 Set6
4.82 2480 372,43 6. RO
%.07 347 11.13 .43
5.38 fo J 5 27.21 17.17
5.78 5.96 27,05 12.13
6£.30 8.433 2470 14.135

|
. |
= 1.750 ECC= T 2,500 ARZ™TIT500
|
| 7
! ]
|
i |
| i .
| |
cH CF ! FIF FIH e
1.77 0.54 -8.98 -T.42 1.15
.79 0.54 -R,71 -C.24 1.15
1.63 0e55 ~8.124 ~3.30 1e16
v Nes7 ~7.9n0 -9,10 1.16
2.01 0.59 -7.34 ~9.13 11‘7
2.15 0.63 -6.74 -R.91 1 A
2.34 .67 -6.10 -P.47 1519
2.59 n.7? -5.60 -7.27 1.21
7 .90 N.89 -4 .69 -T.14 l1.23
3.30 0.70 -3.96 ~-6.33 l1.2¢
|
CH CF FIF FIH X
1.77 n.54 -9.98 -7.42 1.15
1.79 N.5% ~%.14 26.40 1.15
1.83 0.55 -7.16 ~5.248 1.16
1090 Ol57 '9.04 -3.99 lo'b
2.01 0.59 -, 74 -2.73 1.17
¢a15 0.63 ~-Ba.34 -1le02 1.18
?2.34 Jeo? -7.78 —Da45 .19
2.59 n.73 -7.09 0.4R 1.21
2.90 0.40 -5.31 1.23 1.73
3.30 -5.47 1.77 1.26

0.30

-
e
[

FMS
-8.57
-7.51

-10.19
-10.57
-10.67
-10.50
-10.10
-9.51
-R.73
~-7.99

FMS
-f .57
-T.29
-¢.0NE
~4.,63
-3.13
-1.81
-0.53
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1.51
2.74
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\ APPENDIX VIII -

SUPPLEMENTAL RESULTS

This appendix provi@es additional results which

were not included in the paper .reproduced as Chapter 2.

Tangential normal stresses around the large holes

(102 inch and 8 inch diameters) of Beam A are shown in

Figures VIII.l and VIII.2 for M/V ratio of 48 inches. Also
plotted on the same diagrams are the stresses obtained from

theory of elasticity solution and the curved beém‘method.

Similar to the case of M/V = 24 inches, the theory of elasticity

solution underestimates the stresses considerably, and the

- £
curved beam method predicts the stresses accurately in most

locations. This further gndicates that the curved beam method

is the appropriate method to use in analysing large holes.

Experimental results for shear stresses at the

centreline of the hole was given only for the 8 inch diameter

hole in Chapter 2. Similar plots for the other holes are shown -

L&

in Figures VIII.3 to VIII.5. Fair agreement between the

experimental stresses and the predicted stresses is observed

in all cases.

The experimental shear stresses obtained by Frost!?

for holes of diameters 6.5 inch and 6.4 inch with eccentricity

+




of 1.0 inch and 2.0 inch respectively are shown on Figure VIII.6.

Plotted on the same diagram are the shear stress distribution
based on the uncqual shear force obtained by Lguations 2-8 and

2-9. Good agreement is observed in both cases.

No

Results for flange stresses not presented in Chapter

are shown in Figures VIII.7 to VIII.1ll.

. e i
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