JOURNEY, A SHARED VIRTUAL SPACE MIDDLEWARE

by
Alexandre Denault

School of Computer Science
McGill University, Montreal

Fall 2010

A THESIS SUBMITTED TO MCGILL UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

DocTOR OF PHILOSOPHY

Copyright (© Alexandre Denault, 2010. All right reserved.

Abstract

The complexity of developing multiplayer games, along with their popularity, has
grown tremendously in the recent years. The most complex of these, Massively
Multiplayer Games (MMOGs), require developers to deal with many issues, such
as scalability, reliability and cheat prevention. Although individual solutions to these
problems exists, very little academic work has been done to address all these issues
simultaneously. In addition, experimentation in these areas can require a significant
implementation effort.

In this work, we present Journey, a unified framework that address all these issues
in a simple, modular and efficient architecture leveraging replicated objects. Scala-
bility is addressed through the use of a dynamic cell load-balancing strategy while
fault tolerance and cheat prevention are achieved by leveraging existing replicated
objects in the system. The proposed framework is implemented using numerous en-
hancements not found in traditional replication, like obstacle-aware partitioning and
remote procedure call systems.

The efficiency of this framework is illustrated through the use of Mammoth, a mas-
sively multiplayer research framework. Using experimental data from human players,
artificial players (NPC) were built and used to stress test and gather performance
data. Analysis of this data demonstrated that load balancing provides important
scalability benefits while very little overhead is incurred from the fault tolerance and

cheat prevention systems.

i

Résumeé

Dans les derniéres années, la popularité des jeux multi-joueurs a connu une crois-
sance sans égale. Cette croissance a aussi provoqué une augmentation importante
dans la complexité de développement, surtout pour les jeux en ligne massivement
multi-joueurs (MMOGS). Ces jeux posent des problémes sérieux, tel que la croissance
de capacité, la fiabilité et la prévention de la tricherie. Quoiqu’il existe de nombreuses
solutions pour chacun de ces problémes, trés peu de travail académique adresse tous
ces problémes ensembles. De plus, 'expérimentation dans ces domaines nécessite de
grands efforts de développement.

Ce document présente Journey, un cadre de librairies informatiques unifiées qui
adresse tous ces problémes avec une architecture simple, modulaire et efficace tirant
parti de la technologie des objets répliqués. Journey utilise un systéme d’équilibrage
de charge avec cellule dynamique pour pallier aux probléemes de capacité. De plus,
les défis de tolérance des failles et la prévention de la tricherie peuvent étre adressés
a 'aide des objets déja répliqués dans le systéme. L’outil proposé utilise plusieurs
améliorations qui n’existe pas dans la réplication traditionnelle, tel que la division
des espaces prenant compte des obstacles et ’exécution de méthode distantes

La performance de Journey est évaluée a ’aide de Mammoth, un outil de recherche
pour les environnements massivement multi-joueurs. A I'aide de données expérimen-
tales de joueurs humains, des joueurs artificiels on été construits pour mesurer la
capacité et la performance de 'outil proposé. L’analyse de ses données démontre que
I’équilibre des charges démontre une grande augmentation de capacité. De plus, les
systémes de tolérance de fautes et de prévention de la tricherie on trés peu d’impact

sur la performance du systéme.

il

Acknowledgments

I would like to sincerely thank my supervisor, Professor Jorg Kienzle, for his guid-
ance, assistance and support. I am extremely grateful for the freedom and flexibility
given to me to explore different research directions. I also truly appreciate his patience,

considering the strong opinions I sometimes have.

Those words can be found in my Master’s thesis, and they deserve to be repeated.
Professor Kienzle’s faith and confidence in me have never wavered, even throughout
the most difficult of times, and for that, I will be forever grateful. I would also like to
thank Bettina Kemme, Hans Vangheluwe, Clark Verbrugge and Joseph Vybihal for
enabling me to become the researcher I am today.

None of this work would have been possible without the Mammoth team, from
the first development team back in 2005 to its current members. Although there are
too many members to name, two developers stand out, Marc Lanctot and Michael
Hawker. Their outstanding contribution and loyalty were essential to the project’s
success. I’d also like to thank Christopher Dragert, Christian Lavoie and Gregory
Prokopski for their help reviewing this thesis.

Not to be forgotten are McGill University and the School of Computer Science, for
providing me with an environment where I could learn and grow, both as a computer
scientist and as a person. For that, I am very grateful. I would also like to thank the
Natural Sciences and Engineering Research Council of Canada (NSERC), Le Fonds
québécois de la recherche sur la nature et les technologies (FQRNT), and Quazal, for
providing the funds that made this research possible.

Finally, I would like to thank my friends and family for their patience and help

v

throughout the years. Surrounding yourself with good people and having their contin-
ued support makes the impossible possible. A special thanks goes out to my partner

in crime, her unwavering faith in me was essential to the final leg of the race.

Contents

Abstract ii
Résumé iii
Acknowledgments iv
Contents vi
List of Figures Xiv
List of Tables xvii
List of Algorithms xviii
1 Introduction 1
1.1 Challenges of Massively Multiplayer Online Games 2
1.1.1 Scalability 2

1.1.2 Consistency 3

1.1.3 Continuity 5

1.1.4 Enmjoyability)

1.2 Contributions Lo 6
1.2.1 Journey, a Unified MMOG Framework 7

1.2.2 Validation of Journey in a Non-Simulated Setting 9

1.3 Section Breakdowno Lo 10

vi

2 Related work on Network Virtual Environment

2.1 Frameworks

2.1.1 Colyseus
2.2 Consistency and Latency
2.3 Partitioning and Load Balancing
2.4 Fault Tolerance

2.4.1 Election and Consensus Problem
2.5 Trusto
2.6 Games and Experimentation

3 A look inside Massively Multiplayer Online Games
3.1 Revenue Model

3.1.1 Content
3.2 MMO Archetypes
3.2.1 Sharded Universe
3.2.2 Single Universe
3.2.3 Hybrid Universe oL
3.3 Technologies
3.3.1 Bigworld Technologies
3.3.2 Multiverse
3.3.3 Project Darkstar
3.4 A Closer Look at Eve Online
3.4.1 Architecture
3.4.2 Backend Bottleneck 0L
3.4.3 Node Bottleneck

I Building Blocks

4 Replicated Objects
4.1 Quazal’s Duplicated Objects / Net-Z
4.1.1 Data Definition Language

vil

12
12
14
14
15
17
18
19
19

21
22
24
24
24
25
26
27
27
28
29
31
31
32
33

34

4.1.2 Other Features
4.2 Eterna
4.2.1 Duplication Space
422 Cells
4.3 Replicated Objects L
4.3.1 Masters and Duplicas
4.3.2 Replication Spaces
4.3.3 Interest Management

Obstacle Aware Partitioning

5.1 Why do we Partition a Map?
5.1.1 Polygon Triangulation and the Obstacle Map
5.1.2 Partitioning in Journeyo
5.1.3 Characteristics of a Good Triangulation

5.2 Improving the Obstacle Map
5.2.1 Dealing with Small Isolated Objects
5.2.2 Transforming Walls into Lines
5.2.3 Eliminating Very Small Objects
5.2.4 Merging Points Close to Each Other
5.2.5 Merging Small Overlapping Objects
5.2.6 Eliminating Flat Edge Triangles
5.2.7 Order is Important

5.3 Experimentso
5.3.1 Quality Metricso
5.3.2 Quality Metric Experiments
5.3.3 Interest Management

6 Extending Remote Procedure Calls (RPC) with Proxies

6.1 Existing RPC Infrastructure
6.1.1 Open Network Computing (ONC) RPC.
6.1.2 Common Object Request Broker Architecture (CORBA) . . .

viii

50
o1
o1
o4
54
95
26
o7
57
o8
29
60
61
62
62
63
67

69
70
71
71

6.1.3 DCOM: Distributed Component Object Model 72

6.1.4 Java RMI: Remote Method Invocation 73

6.1.5 Quazal NetZ 74

6.1.6 Other RPCsystems. 75

6.2 Architecture of the Journey RPC System 75

6.2.1 Using the Journey RPC System 76

6.3 Implementation L 78

6.3.1 Asynchronous 78

6.3.2 Proxy Generator L. 79

II Journey 81
7 A Unified Approach to Load Balancing, Fault Tolerance and Cheat

Detection using Trust and Game Replicas 83

7.1 Unified Approach 83

72 Trust . . . e 86

72.1 Levelsof Trust 86

7.2.2 Acquiring Trust through Time 87

7.2.3 Acquiring Trust through Capacity 87

7.2.4 Acquiring Trust through Honesty 88

7.2.5 Trust Across Sessions 89

8 Load Balancing by Dynamic Adjustment of Cells based over Obstacle-

Aware Partitioning 90
81 Load 91
8.1.1 Physical Load 92
8.1.2 Logical Load 92
8.1.3 Logical Load Model 92
8.2 Dealing with Load o0 93
8.2.1 Dynamic Partitioning 94
8.3 Load Balancing o 97

X

8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6

Burst Migrationo 97

Load Sharing Master Cells 98
Which Tiles to Migrate? 99
Load Sharing Master Objects 101
When a Trusted Node Joins the System 103
Leaving the System 105

9 Fault Tolerance and Cheat Detection within a Replicated Environ-

ment 106
9.1 Consistency Model 107
9.1.1 Possible Faults 0L 108
9.1.2 Trust 108
9.1.3 Service Guarantee 109

9.2 Fault Detectors 110
9.3 Faults Handlers 111
9.3.1 Default Recovery of Object Masters 112
9.3.2 Cyclic Recovery of Cell Masters 113
9.3.3 Dealing with Inconsistent Replicas 115
9.3.4 Fault-Tolerant Burst Migration 116

9.4 Auditing 117
9.4.1 What and When to Audit? 117
9.4.2 State History 118
943 HowtoAudit, 119
9.4.4 The Auditor 120
9.4.5 Dealing with Good and Bad Behaviour 121
9.4.6 Dealing with Cheaters 121

IIT Mammoth 123
10 The Story of Mammoth 125
10.1 Summer 2005, the First summer 125

10.2 Fall 2005 and Winter 2006 127
10.3 Summer of Code 2006 128
10.4 Fall 2006 and Winter 2007 130
10.5 Summer of Code 2007 131
10.6 Fall 2007 and Winter 2008 133
10.7 Summer of Code 2008 135
10.8 Fall 2008 and Winter 2009 137
10.9 Fall 2009 and Winter 2010 oL 138
11 The Architecture of Mammoth 139
11.1 Engines o 140
11.1.1 World Engineo 140
11.1.2 Graphics Engine o000 141
11.1.3 Physics Engineo 143
11.1.4 Replication Engine 143
11.1.5 Network Engine 144

11.2 Managers o 146
11.2.1 Pathfinding Manager 146
11.2.2 NPC Manager 146
11.2.3 Persistence Manager 148

11.3 Implementation Lo 149
11.3.1 Interfaces 149
11.3.2 Listeners 150
11.3.3 XML . . . oo 151

11.4 Services 153
11.5 Evolving Architecture Example 154
12 Implementing Journey in Mammoth 157
12.1 Implementing Trust oL 157
12.2 Implementing Load Balancing 158
12.2.1 Migration Lo 158

x1

12.2.2 Load Calculation
12.2.3 Rules for Load Balancing
12.3 Implementing Fault Tolerance
12.3.1 Fault Detector. oL
12.3.2 Fault Handlers
12.4 Implementing Auditing

13 Experiments
13.1 Validation Techniques
13.1.1 Role of Alin Games
13.1.2 Alfor Testing
13.2 Experimental Setup oL
13.2.1 Player Behaviour
13.2.2 Faulty Behaviour
13.2.3 Network Model
13.2.4 Physical and Logical Setup
13.3 Experiments
13.3.1 Load Testing
13.3.2 Fault Tolerance
13.3.3 Cheating Players
13.3.4 Load Balancing, Cheating and Auditing Combined

IV Conclusion
14 Summary of Work

15 Future Work
15.1 Improving the Building Blocks of Journey
15.1.1 Remote Procedure Calls

15.1.2 Triangle-Based Partitioning
15.1.3 Network Engineo

xil

163
163
164
164
165
165
166
167
167
168
168
181
184
188

190

15.2 Improving Journey Lo oL 196

15.3 Trust Service 196
15.4 Load Balancing and Migration 197
15.5 Fault Tolerance and Auditing 198
Appendices
A Appendix A : Algorithms 199
Bibliography 204

xiil

1.1

3.1
3.2
3.3

4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8

5.1

5.2
5.3
5.4
5.5
5.6

List of Figures

Example of possible inconsistencies in the view of three clients. 4
Bigworld Architectureo oo 27
Multiverse Architecture 29
Darkstar Architecture 30
Duplication Space, as defined in Eterna. 41
Duplication Space with Cells, as defined in Eterna. 42
A simple tomato GameObject. 43
Two instances of Tomatoe, a and 3, replicated over three nodes, A, B,

and C. L 44
Example of circular aura interest. A7
Example of interest based on triangulization. 47

Using circular interest, difference between view (grey) and interest (red). 48

Using triangle interest, difference between view (grey) and interest (red). 49

Example of a trivial game map. Players are drawn in red, obstacle in

S0 L) 52
Example of a game map divided by a quad tree. 53
Example of an obstaclemap. 53
Example of a game map partitioned using triangles. 54

Effect on triangulation of transforming small isolated objects into a line. 56
Effect on triangulization of transforming rectangular wall objects into
aline. 57

Xiv

5.7
5.8
5.9
5.10

5.11
5.12
5.13

6.1

7.1
7.2

8.1
8.2
8.3
8.4
8.5

9.1
9.2

10.1
10.2
10.3
10.4
10.5
10.6
10.7

11.1
11.2

Effect of removing small isolated objects on triangulation. 58

Merging nearby points can greatly simplify the obstacle mesh. 59
Merging overlapping objects greatly simplifies the obstacle mesh. . . . 60
Not using the edges of the world as constraints allows the creation of

a higher quality mesh. 61
Townl9-4dmap. 64
Town20-2 map 64
Network Traffic (in/out) at Hub during IM tests. 67
The Architecture of the RPC system 76
Interactions of Components in Unified Architecture. 84
Trust level increasing and decreasing over time. 88
Space partitioned using rectangles. 95
Partition split in the middle of a hotspot. 96
Experiments on load distribution algorithm. 100
Demonstration of shrinkingacell. 102
Demonstration of load sharing tiles with four level 2 nodes. 104
Cyclic recovery of 2 orphaned cells. 114

Example of Remote Method Executing with and without Auditing. . 118

Mammoth Client in 2005 127
Wall drawing tool, developed by Yannick Thiel 129
Mammoth Client in 2006 130
Mammoth Client in 2007 132
Content Editor in June 2007 134
Render of Redpath Museum as drawn by Edouard 136
Mammoth Client in 2008 137
Components of the Mammoth Framework 140
UML Diagram of the WorldEngine and WorldObject 142

XV

11.3 Different layers for the Graphic Engine 143

11.4 Mammoth’s current Replication Engine 145
11.5 Mammoth’s current PathFinding Manager 147
11.6 Mammoth’s NPC Manager. 148
11.7 Mammoth’s initial network architecture 155
11.8 Mammoth’s current network architecture 156
13.1 RPC Time for Clients in Load Balanced Environment. 171
13.2 CPU Usage on First Server (Halo) in Load Balanced Environment. . 172
13.3 Load on First Server (Halo) in Load Balanced Environment. 174
13.4 Total Network Throughput in Load Balanced Environment. 176
13.5 Load of Servers in Flocking Situation. 177
13.6 CPU Usage of Servers in Flocking Situation. 177

13.7 Distributions of cells during flocking experiment in a 2 servers scenario. 178

13.8 Distributions of cells during flocking experiment in a 4 servers scenario. 179

13.9 Players flocking to the left side of the map. 180
13.10Effects on Network Throughput of Fault Tolerance System. 182
13.11Effect of the loss of a server. 183
13.12Time needed to detect cheating players using Auditing. 185
13.13CPU Usage on main server (Halo) using Auditing. 185
13.14Message Throughput in System using Auditing. 186
13.15Measures taken on Unified Framework. 188

XVl

List of Tables

2.1 Maximum acceptable latency depending on type of game. 15
5.1 Characteristics of Town20-2 and Town19-4 63
5.2 Results of Triangulation Experiments. 65
13.1 Scenarios used for Load Balancing Experiments. 169
A.1 Letter conventions for algorithms 199

xXvii

Al
A2
A3
A4
A5

List of Algorithms

Burst Migration L 200
Fault Tolerant Burst Migration 201
Recovery of Lost Master Object 202
Recovery of Lost Master Cell 202
Audit of Method Call 203

XVviil

Xix

Chapter 1

Introduction

In the last decade, the video game industry has shown unparalleled growth, both in
revenue and in development complexity. With the advent of the Internet, multiplayer
and massively multiplayer games have become more and more popular. Compared to
a traditional multiplayer game, in which usually up to 16 players [Hen01] play a rel-
atively short-lived game, massively multiplayer games (MMOGs) offer the possibility
for thousands of players to play together in a persistent world.

Properly implementing an MMOG requires developers to deal with many issues,
such as scalability, reliability and cheat prevention. However, these issues can be dif-
ficult to solve given that MMOGs are distributed applications running over unreliable
networks with high latency and limited throughput. In addition, these types of games
can often be found on platforms with limited computing power, such as consoles. Fi-
nally, developers cannot assume that every client is an honest participant, given that
cheating is a rampant problem in most popular multiplayer games.

Solutions for addressing these obstacles individually can already be found in the
literature. For example, many articles can be found for dealing with consistency
problems related to high latency. However, to our knowledge, none of them take
into consideration related issues that change the context, such at the limitation in
computing power and cheating.

Nonetheless, proper analysis of the literature has revealed a surprising amount of

common elements between solutions to the above mentioned problems that are based

1.1. Challenges of Massively Multiplayer Online Games

on distributed objects. This thesis demonstrates that these distributed objects can not
only be used as a basis for addressing each of the problems individually, but also as
a unifying framework for addressing them collectively. When compared to solutions
dealing with these problem separately, not only does the unifying framework result
in a simpler architecture, but also provides considerably more functionalities. These
functionalities results from the fact that common tasks found in multiple solutions
need to be executed only once in the unified architecture. As a result, the proposed
framework, Journey, also consumes less resources, given that data structures can be
shared across different solutions.

Mammoth [KVK™09], a massively multiplayer research framework provides an in-
teresting experimental platform for implementing and testing the proposed solution.
It provides a modular architecture where different components, such as the network
engine, the replication engine, or interest management, can easily be replaced. Mam-
moth also offers a modular and flexible infrastructure for the definition of non-player
characters (NPC) with behaviour controlled by complex artificial intelligence algo-

rithms. These NPCs allow for the creation of realistic experimental conditions.

1.1 Challenges of Massively Multiplayer Online Games

Some of the concerns typically associated with massively multiplayer games can be
broken down into four categories: scalability, consistency, continuity and enjoyability.
This section presents these concerns and describes some of the solutions that have

been used to address these issues.

1.1.1 Scalability

The biggest challenge in massively multiplayer games is scalability: the aim is to allow
as many players as possible to play together in the same virtual world. Typically, the
number of concurrent players in an MMOG is in the thousands. The machines of the
players can be located anywhere on the world, connected to the Internet. As a result,

the quality of the network connection to individual nodes varies: some connections

1.1. Challenges of Massively Multiplayer Online Games

exhibit higher latency than others, meaning that it takes more time for a message
to reach its destination. Bandwidth, the maximum throughput of data to and from
a given node, is also limited, and varies depending on the quality of the connection.
Finally, any one machine on the network has itself limited processing power and
memory. On the other hand, with each player that joins the game, a new machine
is added to the game, and hence the total available processing power and memory
increases (from now on we will call each machine participating in the game simply a
node).

The most common solution to scalability is sharding, as described in chapter 3.
When using shards, the deployers of a game can control the maximum number of
users that can be connected to a server at any given time. This makes it easier to
estimate the maximum number of users that can be found in one area. Another
solution is to use instancing, first setting a maximum number of players that can be
found in a location, and then spawning new instances of that location each time the
maximum population is reached. The problem with both of these solutions is that
they separate the player-base. As a result, it is impossible for friends to play online
with each other if they happen to be assigned to different shards / instances of the
virtual world, even if they both play the same game at the same time and move to

the same location in the virtual game world.

1.1.2 Consistency

Massively multiplayer games are complex distributed systems. Each player interacts
with the game in real-time, and therefore his machine must know about the state
of the game world, at least of that part of the world that is somehow visible to the
player. Due to the network latency problem, this game state can unfortunately never
be 100% up to date, since the world is constantly concurrently modified by other
players. The challenge in MMOGs is to nevertheless provide a consistent view of the
virtual world to the players, or provide means to tolerate inconsistencies so that they
do not negatively affect the game play.

Luckily, existing multiplayer games show that perfect consistency is not always

1.1. Challenges of Massively Multiplayer Online Games

Client 1 Client 2 Client 3
<

> g | R A
1 3 ,

Figure 1.1: Example of possible inconsistencies in the view of three clients.

needed, depending on the types of the game and the actions that are taken by the
players. For instance, figure 1.1, the three players all see different positions for their
surrounding friends. However, the fact remains that all three players know that they
are in the vicinity of each other.

This slight inconsistency can be tolerated with looser rules in the game-play. For
example, a sword might require an attacker to be standing about 3 to 4 feet from his
opponent. However, to allow looser consistency, a player might be able to attack his
foe at 7 or even 10 feet. Let’s illustrate the benefit of loosening this constraint with an
example. Players A, B and C are out hunting zombies with swords. Player A decides
to attack zombie X which he sees at 4 feet from him. Player B sees the distance
between A and X as 9 feet, while player C sees this distance as 2 feet. However, the
attack is considered valid because the server, which would be the centre of authority
in this example, sees this distance as 5 feet, well within the attack threshold. Had
the attack threshold been smaller, say 7 feet, player B might be confused by the
apparently invalid successful attack.

As such, the definition of loose consistency must be looked at on a case-by-case
basis, depending on the game. The consistency requirement for a game can vary
greatly depending on the type of action taken. For example, movement might allow
for looser consistency, but some actions, such as trading items or simply picking them

up from the ground, requires perfect or almost perfect consistency.

1.1. Challenges of Massively Multiplayer Online Games

1.1.3 Continuity

In massively multiplayer games, players can acquire and improve skills, pick up items
and put them into their inventory, acquire rare objects, complete quests, amass for-
tunes, etc. The state of the game world is constantly evolving as players interact
in the game. However, it is the game world itself that is persistent; it continues to
change even when players are logged off. These games are meant to be played over
a long period of time, with users spending several months or years playing with a
single character. Thus, any loss of character progression is unacceptable to a player.
Mechanisms to dynamically and constantly record the state of the game are critical in
insuring the persistence of the world. However, this can represent a massive compu-
tational load. For example, Guild Wars requires between 1500 and 2500 transactions
per second on average during the day, going up to 5000 transactions per second during
peak period [DBMO7].

To decrease the computational load, not all information about a player needs to
be permanently recorded to stable storage. For example, in certain MMOGs, the
endurance of a character is represented as hit points. That character has a maximum
hit point score, which is the highest number of hit points he can have at a given
time. He also has a current hit point score, which represents the current health of his
character. Maximum hit points only increase through character progression, when a
character changes level for example. However, current hit points continuously change,
as the player takes damages and receives healing. For this reason, some games only
record the maximum hit points to stable storage, restoring a player to full hit points
every time he logs on. This decision has a tremendous effect on the game-play of the
game, given that players can recharge their energy levels by quitting and returning
to the game. However, the gain in performance is important given that hit points

constantly change, but would not need to be constantly updated in the stable storage.

1.1.4 Enjoyability

The are many technical factors that can adversely affect the enjoyability of a game.

Given that the revenue source of several massively multiplayer online game is based

1.2. Contributions

on subscriptions or micro-transactions (see section 3.1), the loss of players can be
damaging to the game’s viability. A common technical problem is network latency,
or lag. Delays in network transmissions or in processing requests are seen as slowdown
to players, and are considered seriously irritating. Inconsistencies in the player views
can also occur, causing additional irritations. In addition, cheating when present
within a competitive multiplayer game, can quickly be detrimental to non-cheating
players, as they see the cheating players as having an unfair advantage.

The solutions to hiding problems with latency are pretty similar to dealing with
inconsistencies: loosening the gameplay rules so that timing problems are not notice-
able. Since most players already have inconsistent views, a small amount of latency
is not a problem. In addition, the effects of long latency can be diminished as long as
players are not penalized too much for things that might happen outside their control
(accidental death of the character or disconnect). Indeed, players have shown them-
selves to be very tolerant of latency, as long as it does not have a permanent effect in
the game. One example is perma-games, where characters are deleted when they die
once. Losing a character because of a high-latency situation would be unacceptable.

Dealing with cheating players is a much more complicated issue. Technical solu-
tions to deal with cheaters are usually very complex and require some time to safely
implement. Several game companies prefer to use employees titled game masters to
police the game environment. By being in the game themselves, these game masters
typically have a very fast response rate, they are able to discover exploits as they are
being developed by the game population. The classic behaviour of a cheater in an
MMOG is very similar to an evil villain in a North American movie, they will like
to brag to others about their exploits. Working undercover as players, game masters

are well suited to discover these exploits and shut down the cheaters.

1.2 Contributions

The contributions of this work can be broken down into two major topics: Journey

itself and its validation in a non-simulated setting.

1.2. Contributions

1.2.1 Journey, a Unified MMOG Framework

e Journey, a middleware for the development of shared virtual spaces

Journey is a middleware that greatly facilitates the development of shared virtual
spaces or massively multiplayer online games. It proposes a game architecture based
on replicated objects to provide a scalable and reliable way to distribute game state

to all players. The various highlights of Journey are listed below:

e A replicated object system that distributes game objects transparently across

multiple nodes.

To use Journey, the game developer needs to encapsulate all relevant game state
in objects. Once this is done, Journey automatically takes care of distributing the
game state to all the players. This is done on a need-to-know basis using interest
management techniques: only nodes that that need to know about the state stored
in a particular replicated object will receive a copy of it.

One of the copies of the object is designated the master replica. Modifications
to the game state are executed sequentially on the master replica and the resulting
state change is automatically broadcasted to all replicas. In order to modify the
game state, the game developer only needs to call the appropriate update method on
the replicated object without needing to worry about contacting the master replica.
Journey transparently takes care of calling the master replica (if necessary) using a

proxy-based remote procedure call system.

e (Cell-based load balancing that automatically migrates game objects from node

to node to balance network and processing load.

Journey splits a virtual world into several cells based on an obstacle-aware, tri-
angular partitioning. Management of a cell, which includes calculation of interest
regions for all players and game objects currently located within the cell, is assigned
to a node. If a node is overloaded during the game, Journey automatically migrates

any master replicas that the node may contain to other nodes to decrease load. If

1.2. Contributions

the overloaded node is managing a cell, Journey automatically shrinks the cell by
reassigning triangles from the border of the cell to the neighbouring cell. Using this
technique, Journey can tolerate flocking behaviour, i.e. situations where many players

gathers in a small part of the virtual world.
e Built-in fault tolerance capable of tolerating node failures.

Thanks to the replicated object architecture, Journey can tolerate any number
of player node failures by re-electing a new master replica. The fault tolerance al-
gorithms Journey uses can also recover automatically from crashes of nodes that are
currently managing cells, provided that no other nodes fail until the cell has been

assigned to another node.
e A peer auditing system that detects cheating nodes.

The load balancing component of Journey can decide to migrate master replicas
even to player nodes. In order to prevent cheating, Journey can be configured to
periodically audit player nodes in order to verify that they do not update the game
state of their master replicas in an unfair way. This is done by executing a small
percentage of remote method calls not only on the master replica of a game object,
but as well on a trusted node that has a replica of the game object. If the outcomes

of the calls are not identical, then it is possible that the player is cheating.

Other minor contributions that resulted from working on Journey are:

e A proxy generator that enables the automated creation of remotely executable

methods for replicated objects.

Replicated objects must be augmented in a certain fashion to allow methods to
be remotely executed. Although several augmentation techniques were explored, a
proxy-based approach was found to be most efficient and practical. As such, a proxy
generator was designed and implemented that analyzes the objects to be replicated
and generates the appropriate proxy, which provides the remote execution function-

alities.

1.2. Contributions

e A distributed trust system.

Journey keeps track of the behaviour of nodes in the system. It then assigns a
trust value to each node based on the node’s reliability and history of failed audits.
This trust value is used by the load balancing and fault tolerance components of
Journey in order to determine where to migrate or recover master replicas and cells.
Exceptional well trusted nodes can be used as auditors, and validate the work of other

nodes.
e Multiple triangulation optimization algorithms.

Since the quality of the obstacle-aware triangularization used to partition the
shared virtual world has a high impact on the performance of Journey, several opti-
mization algorithms are proposed that improve the triangularization, which in turn

improves the shape of cells.

1.2.2 Validation of Journey in a Non-Simulated Setting

e Supervision of the design and implementation of Mammoth, a massively multi-

player research framework.

A key item in the validation of Journey was the development of Mammoth, a
massively multiplayer research framework. As one of the founding members of Mam-
moth and the lead architect for 5 years, I shaped the development of the framework.
Over 50 students have contributed to the framework, leading to several publications,

graduate thesis and honor’s projects.
e Integration of Journey in Mammoth.

Although Mammoth was developed as a modular framework, significant effort was
required to deploy Journey inside Mammoth. Most of the components mentioned
above needed to written from scratch, as they did not exist in Mammoth prior to this
research. In addition, extensive testing was required to ensure the proper integration

and that the experimental results were valid.

1.3. Section Breakdown

e Implementation of a way-point non-player character (NPC) to generate player-

like load.

Before Journey, the only reliable non-player character in Mammoth was the ran-
dom wanderer, which wandered randomly across the game map. Even though this
NPC was ideal to generate movement across a game map, it generated very little load
on the system. Other experimental NPCs were not suitable for running experiments
with Journey. As such, a way point system was added to Mammoth, where points of
interest can be tagged and linked together. A waypoint NPC was designed to travel

from waypoint to waypoint, following the established links.
e Creation of an experimental environment with hundreds of NPCs.

A key point in experimenting with Journey is demonstrating its ability to handle
a large number of nodes. As such, several shell scripts were designed and imple-
mented to remotely manage (start, stop, etc.) NPC characters running on hundreds
of computers. The scripts are currently being used by several other students of the

Mammoth project to run experiments.

e Evaluation of Journey by measuring CPU usage, memory usage and network

throughput in over a dozen of experiments.

Several tools were required to gather metrics on the computers running Journey
experiments. In addition, given the distributed nature of these experiments, a system

had to be devised to gather and analyze this data.

1.3 Section Breakdown

This thesis is divided into four parts, in addition to the introduction chapters. Chap-
ters 2 and 3 provide background information in the domains of Network Virtual

Environment and Massively Multiplayer Online Games respectively.

10

1.3. Section Breakdown

The first part provides information on the building blocks of Journey, namely
Replicated Objects in chapter 4, Obstacle Aware Partitioning in chapter 5 and Ex-
tending Remote Procedure Calls with Proxies in chapter 6.

The second part introduces Journey, with a description of the motivation and
the trust-based approach in chapter 7. Solutions provided to deal with load issues
are presented in chapter 8, while issues relating to fault-tolerance and cheating are
covered in chapter 9.

The third part is dedicated to Mammoth, the implementation of Journey, and
the experiments done to validate the work done in Journey. Chapter 10 introduces
Mammoth, discussing its initial goals and development history. A detailed description
of Mammoth’s architecture and implementation can be found in chapter 11. The
integration of Journey is described in chapter 12. Finally, several series of experiments
are presented in chapter 13, illustrating the performance impact of the proposed
system.

The final part concludes this work, providing a summary of the work in chapter

14 and some possible future work in chapter 15.

11

Chapter 2
Related work on Network Virtual

Environment

The idea of creating a distributed game infrastructure is decades old, with works
such as [DG99| formally introducing the concept. This particular work introduces
Mimaze, a distributed game that leverages multicasting for communication. The
paper introduces many key issues, such as state inconsistencies and the possibility of
cheating. However, Mimaze did not deal with scalability issues, restricting itself to
25 players.

Since then, there has been no shortage of work proposing distributed architec-
tures for games on a massive scale [CXTL02, KLXH04,IHK04, BECM05,AT06,BPS06,
FTTO07,CYB107,ASdO09] . Several of these ideas are based either on Pastry [RDO01],
which describes a communication system for a large scale peer-to-peer system, or
Mercury [BRS02|, which proposes a publish/subscribe system that could be used for

large-scale games.

2.1 Frameworks

A key concern in distributed game frameworks is scalability, dealing with an increas-
ing number of players. This concern is well introduced in [CXTLO02|, where scaling to

multiple servers in a client/server architecture is achieved by partitioning the game

12

2.1. Frameworks

world. However, developing a multi-server application introduces some important
synchronization and consistency concerns. The Matrix middleware [BECMO05| allows
for dynamic partitioning of the world, while hiding most of the complexities from the
programmers. The world is partitioned into non-overlapping zones, and each game
server is responsible for a zone, plus its overlapping interest surroundings. The key to
the proposed solution is the matrix servers whose main duties include routing mes-
sages between clients and servers and monitoring load on servers. Messages targeting
a specific zone are routed to the appropriate game server, and forwarded to all servers
hosting neighbouring zones. If a game server is overloaded, a matrix server will detect
it, find an empty server and assign it half of the surface of the overloaded server.

A true peer-to-peer distribution of the game workload is proposed by many as
an efficient alternative to traditional client/server architectures [KLXHO04, ITHK04,
FTT07, CYBT07|. However, to be used in a game environment, a peer-to-peer sys-
tem must provide performance, availability and security [KLXHO04]. An interesting
approach is presented by [ITHKO04| where the world is divided into zones and stored
in a distributed hash table (DHT). Information on the content of zones is only dis-
tributed to specific clients on request, and responsibility for a zone is given to the
first client requesting it. At that time, the zone is removed from the DHT and only
returned to it once the client no longer needs access to that zone. This removes any
unnecessary load on the DHT. An alternative approach is proposed by the Hydra
architecture [CYB107|, which also divides the world into disjoint regions. Each of
these regions is considered a slice, and each of these slices is assigned to a server and
a backup server. Game logic must be deterministic, as events are executed both on
the primary and backup server. Thus, if the primary fails, the backup server can
continue managing the slice. Synchronization is done through logical clock ticks, and
the whole thing is managed by a rendez-vous server, although that part can also be
distributed with a DHT. Alternatively, Mediator [FTT07]| innovates on the mentioned
frameworks by introducing the notion of a reputation system, rewarding strong peers
with more work and responsibility. Work is coordinated by a set of mediators, each
with different responsibilities. All game actions are translated as jobs and are assigned

to different peers.

13

2.2. Consistency and Latency

2.1.1 Colyseus

The Colyseus [BPS06] framework is worth particular attention because of the numer-
ous similarities between it and the proposed framework. Although the framework
in designed for first-person shooting games (FPS), it has some important similarities
with our proposed architecture. The framework uses a single-copy consistency model,
where objects can be either mutable or immutable. Immutable objects are globally
replicated (i.e. they are loaded locally on each participants). Mutable objects are
store in the global object store and have a single primary (authoritative) copy that
resides on exactly one node. Changes to a mutable object are serialized to the pri-
mary copy. The replicas are then updated in an application dependent fashion. To
reduce the bandwidth requirement, Colyseus uses area-of-interest filtering (sending
only what is interesting) and delta encoding (sending only the changes in an object).

Interest management is done through a pub/sub system (which is implemented in
Mercury), using a system of range-query subscriptions. Management of the replicas
(sync, replication creation, replication deletion) is the responsibility of the replication
management component. Nodes must periodically register their interest with the
node hosting the primary copy of an object to keep receiving replica updates.

A key difference in Colyseus is the introduction of the think function of an object,
a function to be invoked at every frame/clock tick to determine the actions of that
object. This think function is actually the main source of load in the system. In
addition, the execution of the think action might require access to objects currently
stored on other nodes. Thus, the primary objects are also responsible for predicting

which objects might be needed and pre-fetching them.

2.2 Consistency and Latency

A fundamental challenge faced by all distributed systems is consistency [LLL04| and
latency [HenO1]. This is especially true in a video game, where inconsistencies due to
latency can cause serious impacts to game play [Hen01, HSPA09].

A classic solution to this problem is to synchronize everything using a global clock

14

2.3. Partitioning and Load Balancing

Warcraft 3 several seconds [CCO6]

NHL Madden Football 500 ms [NC04]

Virtual RC Racing 150 ms [PWO02]

Unreal Tournament 2003 | 60ms [QMLT04], 150 ms [BCLT04]

Table 2.1: Maximum acceptable latency depending on type of game.

and time slots [YMYI05]. However, one interesting result obtained from [DG99| sug-
gest that only 65% of movement data is needed for a realistic game experience. This
is because games exist in a continuous space, as opposed to a discrete space commonly
used in databases and network protocols. Thus, strict traditional consistency models
do not apply to games. [LLLO04| proposes a more relaxed consistency model, where
updates are applied as long as they are delivered within a fixed time threshold. A
similar idea is explored by [FRO5] where events can be correlated and obsolete mes-
sages are discarded. [Haw08] explores the idea of consistency in multiple distributed
server environments while [FGWO06| proposes a model where consistency concerns can
be seperated from the application logic.

It should be noted that the maximum latencies that can be tolerated by a player
without impacting too negatively on his gaming experience varies depending on the
type of game. Table 2.1 describes some of the commonly described maximum latency
for different types of games. The IEEE standard on distributed environment (1278)

[ANS93| set a much stricter standard, setting the maximum latency at 100ms.

2.3 Partitioning and Load Balancing

A key element presented in all the approaches is the partitioning of the game world.
This can be particularly difficult given that the game world has dynamic memberships:
players constantly join and leave the game world. A simple approach is to initially
partition the game world into rectangles, further sub-dividing it as the load in a

particular rectangle increases [BECMO05|. An alternate approach is to group players

15

2.3. Partitioning and Load Balancing

depending on their proximity to each other [LLC02|. However, this problem is shown to
be NP-complete as it maps to the subset sum problem. In addition, given that players
are constantly in movement, the grouping must be constantly recalculated, creating
an incredible amount of overhead. Alternatively, [CXTL02| suggests that partitioning
need not be restricted to space, but can also be temporal, where elements are grouped
by their update rate, or functional, where elements are grouped by role or type.

Given its property to easily deal with obstacles, triangulation can be used as an
interesting alternative to grid partitioning. This property is well illustrated in [DB06]
where triangles are used to significantly reduce the pathfinding search effort. In
addition, [BKV06] shows how a specific constrained Delauny triangulation [She96]
can be used for efficient interest management. Delauny triangulations can also be
used as an efficient solution for grouping, as presented by [BAO08|. This is similar to
the grouping approach using Voronoi diagrams, as proposed by [HLO04|.

Ultimately, a static distribution of load cannot deal with players that are con-
stantly moving across the game world. Ideally, load should be dynamically and
equally distributed across all nodes. However, achieving this is a non-trivial task.
Load balancing can be done at two levels [LLO3], globally (one node manages all load
distribution) or locally (each node manages its load with its neighbors). [CWD™05]
presents a global load balancing algorithm which takes into account the position of
players and tries to keep neighbouring regions together, while trying to minimize
inter-server traffic. A more hybrid approach is proposed by [LS06|, where a node is
responsible for monitoring its own load, but the request for help is sent to a single
global server. Furthermore, a key concept introduced by [DZ03| is load sharing, the
ability to share load before a node is overloaded. Their data shows monitoring load
and sharing it before an overload is much more efficient than dealing directly with an
overload.

An alternative to dealing with load is to minimize the amount of information
shared across nodes. Ideally, a node should only receive information about elements
relevant to it. This concept, known as interest management, is presented by [MLS05a]
as the ability to identify when objects should be interacting with each other and en-

able message passing between them. This work introduces the concept of interest as

16

2.4. Fault Tolerance

a circular aura around a player. Understanding how this aura moves around with
the player allows the system to predict which object might be interesting to the
player. The application of interest management into a commercial game in an effort
to conserve bandwidth can be found in [Cad08|. Furthermore, a comparative study
of different interest management schemes |[BKV06| shows that grid and triangula-
tion based IM have a non-trivial performance advantage over traditional aura-based

interest.

2.4 Fault Tolerance

The origin of dependability can be traced back to the first generation of electronic
computers, which were built from unreliable components [ALR04]. Numerous practi-
cal techniques were used to improve the reliability of computation, such as triplication
with voting. Over the last 50 years, these concepts were refined and formalized, giving
birth to the more modern concept of fault tolerance used today.

We can define the service delivered by a system as the behaviour of the system, as
perceived by the user. A service failure occurs when the delivered service deviates from
the correct service. Failures can be broken down into two categories: consistent or
inconsistent. Consistent failures are perceived identically by all users, and are easily
reproducible. Inconsistent failures, also known as byzantine failures, are perceived
differently, if at all, by different users in the system. They are also very difficult to
reproduce.

The deviation in a failure is called an error, and the cause of this error is called a
fault. Faults can be broken down into two categories, either intentional faults (mali-
cious logic, intrusions) or accidental faults (physical, design, interaction). Faults can
be found both at the development phase and the use phase of the software develop-
ment life cycle.

Dependability is the ability to deliver a service in a trusted fashion, without
failure. This encompasses several attributes, such as availability, reliability, safety,

confidentiality, integrity and maintainability. Many different techniques can be used

17

2.4. Fault Tolerance

to achieve dependability. One common technique is fault prevention, where focus
is put on preventing the occurrence of faults. Another technique is fault tolerance,
where the system is designed to continue providing a trusted service, even in the
presence of faults.

An example of fault tolerance is N-version programming [CA78|, where an algo-
rithm that requires high dependability is implemented in N different ways. When that
algorithm is required, all N versions are executed. The results are then compared and
voted on, the predominant value being the correct answer. To survive m faulty exe-
cutions, n implementations are needed where n >= 2m + 1. If the number of faulty
executions is greater, the fault might not even be detected. The implementation of N
version programming can be difficult, as the N versions must have identical behavior,
while having radically different implementations. Implementing the voting scheme
might also be particularly difficult, given that inexact voting might be required to

deal with numerical deviations.

2.4.1 Election and Consensus Problem

In a peer-to-peer NVE, participating nodes might be required to make a common de-
cision. In a reliable distributed environment, several simple consensus algorithm can
be used to achieved this common decision [PSL80]. However, achieving a consensus in
an unreliable environment is a much greater challenge. The complexity of this prob-
lems depends heavily on the assumptions made about the model of computation and
the possible faults [Fis83|. Dealing with byzantine failure is particularly challenging,
as no solution to the consensus problem exists if the communication model is asyn-
chronous. Solutions do exist when dealing with a synchronous communication model,
but they require a very high number of message rounds. Election algorithms are not
helpful, as they are considered a more difficult problem then consensus [SM95|. How-
ever, [HKU| proposes an optimistic approach to voting, which considerably reduces

the number of message rounds.

18

2.5. Trust

2.5 Trust

The increased popularity of P2P systems is threaten by the presence of malicious
users. Threats can range from traitors (players using acquired trust to break the
system) to moles (players helping malicious players to acquire trust) or the simple
whitewashers (players connecting under new ids to shed bad reputation) [MGMO6|.
Trust systems reduce the risks for peers, as they can make better informed decisions
about who they communicate with. These systems are broken down into three com-
ponents: information gathering, scoring/ranking and incentive/punishment. First,
one must determine what and how much data should be gathered on the interactions
between peers. This is a quality vs. quantity issue, where the bias should be put
on the quantity. Then, the data must be processed and transformed into a trust
score [GV08|. This score could be binary (trusted/untrusted), discrete (0 to 100) or
even continuous (between 0.0 and 1.0). The third step is to take action based on this
score. In file sharing networks, an incentive is to grant increased speed to a node, a

punishment is to blacklist it.

2.6 Games and Experimentation

Unfortunately, little academic work exists on commercial games themselves. Coop-
eration between academicia and the game industry is a fairly new concept, and very
little data exists on how people play games. This information is considered confiden-
tial, as it is a very valuable commodity in the industry. One exception is the May
2003 to March 2006 Eve Online data set, which was released to a group of researchers.
Their work [FBS07] demonstrates that given enough data, the workloads generated
by players follow a pattern and can, up to a certain point, be predicted.
Independent studies on games can also be found. For example, [Hen01| provides
some insight into what can be considered acceptable latency on a HalfLife-2 [Ent09]
multiplayer game server. More importantly, [PG07| provides some very valuable in-
sight into the behavior of players on a World of Warcraft [Ent09] game server. For

example, they measured that server population peaked at around 4000 players, and

19

2.6. Games and Experimentation

that 40% of play sessions last less than 10 minutes. This conclusion has a significant
impact on P2P game research, as most P2P frameworks suffer from a high connection
cost.

Lack of available data on existing game architectures only reinforces the impor-
tance of experimentation. However, the key problem with experiments on scalability
issues is the need for hundreds, if not thousands of clients. Although simulations can
be used to evaluate certain characteristics of these framework, it does not replace
testing and benchmarking using a large number of clients. [RK07| proposes a solution
to this by using synthetic (Al) players. This has the advantage of closely reproducing
game conditions without the unpredictability of real human players. Possible behav-
iors for such AI players can be found in [Mat03|, where actions are decided using
either a greedy approach, Markov chains or hierarchical plans. The realism of such

experiments could further be improved by introducing artificial network delays (lag),

as described by [ZWZ*06].

20

Chapter 3
A look inside Massively Multiplayer Online

Games

A massively multiplayer online game (MMOG) is a video game that allows a large
number of players to interact in a virtual persistent world. Breaking down this

definition,

e large number : Some of the more popular MMOGs have millions of sub-

scribers, with several thousand players connected to each game node.

e interact : The nature of the interactions differ depending on the game, but
players either are asked to compete against each other, cooperate with each
other, or a combination of both. MMOGs geared towards cooperation usually
have constructs such as groups, parties, guilds, or alliances to support the co-
operation. Competition takes the form of races or tournaments or other forms

of rankings, and winners are well rewarded.

e virtual : The world in which players interact is not physical: it is digital,
existing only within the computers of the players and of the game provider. As
such, any objects or other form of property within the game is also virtual. This

concept of virtual ownership has sparked various legal battles [Mee06].

e persistent : When a player disconnects, the world continues to evolve without

him. Once the players return, they resume at the point they left off.

21

3.1. Revenue Model

MMOGs are the most commonly found NVEs on the market today. As such, a
closer look at their enabling technology can provide us with a greater insight into

solving key problems in NVEs.

3.1 Revenue Model

Massively Multiplayer Online Games are developed and operated by for-profit cor-
porations. They are considered a high-risk, given the large amount of up-front in-
vestment required to develop, launch and maintain such a service [Dig09]. However,
they can also be very profitable. For example, World of Warcraft [Ent09], one of the
MMOGs with the largest subscription base, earned an estimated 500 million USD in
2008 [New09].

The success of a MMOG highly depends on the revenue model it adopts. These

are five of the most common ones:

e Subscription : The first and for a long time, most profitable model, requires
players to pay a monthly subscription fee. Many MMOG providers offer dis-
counts for players purchasing more than one month at a time. A few providers
have even gone to the extreme of offering a life-time membership fee, although

those are usually extremely expensive.

e Premium Subscription : A variation of subscription, players are first invited
to play the MMOG for free. However, to enhance their play experience, they
are offered the option of paying a monthly subscription. The effect of this
enhancement varies from one game to the other. For some games, premium
subscription only gives access to new items and areas to explore. Other providers
cripple the game-play experience by setting level caps until players pay for the

premium content.

e Micro-Transaction : In this revenue model, players are also invited to play
the game for free. However, to obtain certain items, players are invited to buy

them from the game store using real currency. Given the small cost of items,

22

3.1. Revenue Model

players are often asked to transform a certain amount of real currency into game
currency (tokens, credits, etc.) which can then be used in the game store. For
some games, micro-transactions are only used to purchase cosmetic and non-
gameplay items. Other games require players to spend real currency for real

items, such as healing potions or spell-casting material components.

e Prepaid Card : Not a revenue model in itself, but more of a payment method,
prepaid cards address the reality that not all gamers have access to a credit
card. The value of the prepaid card depends on the revenue model used by the
MMOG. For example, a subscription-based MMOGs might have time cards (1-
month, 120 hours, etc.) while micro-transaction-based MMOGs often load the
prepaid card with a certain amount of their in-game currency (tokens, credits,
etc.). Prepaid cards are more popular in Asia, where the likelihood of owning

a credit card is much lower.

e Ad-based : A relatively new revenue model, ad-based MMOGs pay for them-
selves solely through in-game advertising. This advertising might have a per-
manent spot in the players hud, or might be only shown at specific moments
(login screen, loading screen, etc). This model is often combined with premium

subscription, where the premium subscription allows the removal of the adds.

It’s important to note that many other less-used revenue models also exist. For
example, some games ask players to buy real-world items in toy stores. These items
have a key or code, which can be used to obtain powers or items in the game.

It is also not uncommon for a MMOG to exploit more than one revenue model.
For example, Ragnarok Online [Inc10] was a monthly subscription-based MMOG for
several years. However, in the last year, they have opened a microtransaction-based
free-to-play game server where critical items can only be bought from the game store.
In addition, they have given experience boosts to their paying subscribers, to reward

them for their loyalty.

23

3.2. MMO Archetypes

3.1.1 Content

Independent of the revenue model used by an MMOG, a successful MMOG needs
a large number of subscribers. As such, attracting new players and keeping veteran
players happy are two of the key challenges MMOG providers face. The most common
solution to this problem is to continuously generate new content and add it to the
game. Content is defined as any environment or component of the environment that
the player can interact with. Examples of new content could be a town, a dungeon,
new character classes, new opponents, new skills, etc.

The unfortunate reality is that content is one of the main expenses of developing
a video game today. Statistics have shown that the number of writers, musicians
and artists working on a video game far outnumber the the programmers on the
team [CP09]. In addition, any new content to be added to a game must be extensively
tested. The initial expense of generation of content of an MMOG is also significant,

since the game world must accommodate thousands of players.

3.2 MMO Archetypes

A key difference between a massively multiplayer online game and a typical multi-
player video game is that most of the in-game logic is processed in data-centers man-
aged by the game’s developer, as opposed to a player’s computer. Massive multiplayer
online games can be further divided into different archetypes, depending on how the
game data and players are partitioned across servers. One such classification proposes

three types of archetypes: single universe, shared universe and hybrid universe.

3.2.1 Sharded Universe

The most common of these archetypes is the sharded universe, where players are
distributed across identical copies of a common world. The term “shard” originates
from one of the first popular MMOGs, Ultima Online [Art10], which describes each
instance of a game’s world (the shards) as broken pieces of a mystic gem. This story

element was originally introduced in 1980 in Ultima I, and was repeated many times

24

3.2. MMO Archetypes

in the Ultima mythos before it was actually used in Ultima Online, the MMO version
of the game. Each shard is nearly identical to the others because they all originate
from the same single crystal. Other MMOs use different terminology to express the
same concept, e.g. World of Warcraft describes shards as “realms”.

Sharded MMOGs are fairly common for four reasons:

e They require a smaller amount of content: a sharded environment can be de-

signed to support a few thousand players.

e They are easier to scale: as more players join the game, new content is not

required. The provider only needs to instantiate new shards.

e They are less expensive to create (smaller amount of content needed) and main-

tain (ability to start out with only a few shards).

e They are easier to deploy. Different shards can be used for players in different
geographic regions. Thus, deploying the game to a new region requires the

creation of new shards and does not affect existing players.

However, most sharded MMOGs have the severe limitation that players that play
on different shards are unable to interact with each other. Migrating players from
one shard to another is possible, but often requires administrator intervention and
is offered as a billable value-added service. Typical examples of sharded MMOGs
include World of Warcraft, Ragnarok Online and Age of Conan.

3.2.2 Single Universe

Some MMOGs pride themselves on their ability to maintain a single large virtual
environment for all their subscribers. However, the single universe archetype is par-

ticularly difficult to implement.

e A single universe requires an immense amount of content to support the large

number of players (millions in some cases).

25

3.2. MMO Archetypes

e Single universe MMOGs are more difficult to scale, as adding more capacity can

require an overhaul of the whole system.

e Single universe MMOGs are difficult to deploy in different geographical regions.
For example, a player from America should be able to easily interact with a
player from Asia, with as little lag as possible for both players. This most
likely requires servers both in America and Asia, and a fast communication link

between the two servers.

It should be noted that the single universe archetype is reserved to special cate-
gories of games, simply because of the incredibly large amount of content required.
Space exploration games, like Eve Online [CCP10a|, tend to fit in well with this
archetype given the vastness of space. Games where players generate most of the

content, such as Second Life [Lab10] also fit well into this model.

3.2.3 Hybrid Universe

MMOGs featuring a hybrid universe are very rare, because, although they share the
advantages of both single and sharded universes, they also share their many disad-
vantages. The idea is simple: allow players to communicate as in a single universe,
but shard the actions and network-intensive components of the game. This makes
the design of the game significantly more complicated.

The content requirement is higher than in a sharded environment, but signifi-
cantly lower than in a single environment. Scalability is possible, as load is mostly
found in the “shared” part of the game. Deployment is still very difficult, as players
from different geographical regions can still meet in the single universe and wish to
cooperate in the “sharded” component of the game. To date, one of the only games

to have successfully exploited a hybrid universe is Guild Wars [Net10].

26

3.3. Technologies

Client Client Client Client Client
Internet

|

Switch Fabric ‘
I I I I
Login Server Base Server Base Server Base Server
| I | [
Switch Fabric

I I I I

Cell Server Cell Server Cell Server World Server DB Server
<

Cell Server Cell Server Database
w

Figure 3.1: Bigworld Architecture

3.3 Technologies

Given the complexity of developing MMOG technology, it can be much more cost
effective to purchase the technology from a 3rd party provider. However, not all
MMOG technologies are equal. The following section introduces some of the MMOG

frameworks currently available on the market.

3.3.1 Bigworld Technologies

Bigworld Technologies is one of the most mature MMOG technologies available on
the market. Not only does it provide the backend infrastructure for an MMOG, but
most of the tools needed to build the game itself, including the graphical 3D client
and the content editor. Note that since Bigworld is a commercial product, very little
information is available on its inner workings. Repeated attempts to contact them
have failed. Most of the information presented in this section was gathered from

promotional material, which might not properly reflect the features of the product.

27

3.3. Technologies

Bigworld3.1 supports both the single and sharded universe archetype. It divides
the world into cells, which are then assigned to cell servers. If a cell server is over-
loaded, cells are redistributed across other cell servers. Cell servers can even be shared
with other shards or game worlds. If a cell server fails, cells are automatically re-
distributed to other cell servers. All of this remains transparent to the player, as
communication is managed thought the base servers. Bigworld also features tight
bandwidth control, through the use of level of details and data prioritization on every

game object. Game objects are programmed in Python. (see figure 3.1)

3.3.2 Multiverse

Multiverse is another 3rd party MMOG toolkit, but with a very different business
model. With Multiverse, the tools to develop the game are given freely to the de-
veloper. However, Multiverse handles all transactions between the customer and the
developer, retaining 10% of the revenues plus transaction fees. The set of provided
tools to build the game world is very complete: a terrain generator, a world editor
and a model viewer. Little programming effort is required to build a game itself,
mostly scripting in Python to define the game rules and behaviour of items.

Multiverse breaks down computation load into a set of servers. Events such as
moving in the world, picking up items, fighting foes, saving the state of an item,
detecting collisions between objects or trading between two players are all handled by
different server processes (server plug-ins). These processes can be run on a single or
different machines. A messaging server, using a publish /subscribe sub-system, ensures
communication between the different server processes. All the server software and the
various plug-ins are written in Java, and their behaviour can be customized using Java
or Python code. The world state is recorded by the object manager server, which
records the state in turn to any JDBC compatible database.

A multiverse world is broken down into zones, which are defined as a cube of
maximum 4,000 km per side. Moving from one zone to the other requires zoning
(teleporting from one zone to the other). Zones are managed by world manager

servers, each of which can support a maximum of 2000 players. They are broken

28

3.3. Technologies
Login User Game
/
o Server Database Database
~at
Client -
Climuat World
SN Manager Object Manager
Clien” Server Server Plug-in
Client Plug-in
N / Merchant Server Plug-in
Proxy Message Mob Server Plug-in
Server | Server/ Combat Server Plug-in
Plug-in Registr
ug- B Other Server Plug-in

Figure 3.2: Multiverse Architecture

down using a quad-tree [FB74], the position of the break down can be manually set
or determined dynamically by the load balancer. As more objects are added to a
quad, the quad itself is further broken down. When a server can no longer manage
the load of all its quads, it can transfer some quads to another world manager server.
This is transparent to the user, as all network traffic is routed by the proxy servers
(see figure 3.2).

3.3.3 Project Darkstar

Project Darkstar is an interesting variation on the 3rd party MMOG toolkits currently
available on the market. Contrary to the two previously presented frameworks, Dark-
star is only a communication framework. It does not provide a graphical client or a
world editor. However, the model that Darkstar proposes is radically different, as it
is completely zoneless and shardless. Its goal is to provide a reliable, scalable, per-
sistent, and fault-tolerant experience while providing a transparent single-threaded
event-driven programming model to the developer.

The idea with Darkstar is simple: every action/event is broken down into small

29

3.3. Technologies

Client Client Client Client Client
S A A
Game Game Game Game
Server Server Server Server
Project Project Project Project
Darkstar Darkstar Darkstar Darkstar
Stack Stack Stack Stack
Darkstar Darkstar
meta meta
service service

Figure 3.3: Darkstar Architecture

units. While these units can be stored and executed on any server-side node, they are
grouped using an affinity scheme. This groups actions that can be executed together
This

freedom to execute a unit on any node breaks the traditional concept of zones and

on the same node, because these actions will modify the same set of data.

allows for easier load balancing. In addition, each time an object is modified by a
unit, it is saved back in the object store in a transactional fashion, diminishing the
risks of failures and cheating.

Each Darkstar server is composed of three managers: the task managers, the data
manager and the channel manager. The task manager ensures the execution of the
units. Note that although units created on a client are guaranteed to execute in order,
there is no order guarantee for units created on different machines. Units must be
short lived to prevent excessive locking of data. If a unit requires more than 100
milliseconds to complete, it will be terminated by the server. The Data Manager
stores all the game objects, known as ManageObjects, making sure that their access

is sequential and their state is correctly saved. ManageObjects do not refer to each

30

3.4. A Closer Look at Eve Online

other directly, a ManageReference must be used to access one ManageObject from
another. Finally, the channel manager creates publish /subscribe data channels, which

are used to control communication between clients and servers. (see figure 3.3)

3.4 A Closer Look at Eve Online

Eve Online is a massive multiplayer online game (MMOG) set in a
science-fiction based, persistent world. Players take the role of spaceship
pilots seeking fame, fortune, and adventure in a huge, complex, exciting,

and sometimes hostile galaxy [CCP10b].

Originally created in 2003, Eve Online has evolved significantly over the years,
both on the front end and the backend of the game. This game is academically

interesting for two reasons:

e Eve Online is one of the few games to use the single universe archetype, which

can be easily considered the most challenging to implement.

e CPP, the company developing Eve Online, is very open about its implementa-

tion of the game.

The following section describes some interesting architecture elements of the game,
the problems faced with this architecture and how there were solved. As previously
mentioned, Eve Online uses a single universe archetype. Although the maximum
capacity of concurrent users is unknown, on January 4th, 2010, Eve Online reached

a peak of 54,446 simultaneous users [Brel0).

3.4.1 Architecture

Eve uses a three layers system: the proxy blades, the sol blades and the database
cluster [Min08].

e The proxy blades are the public interface to the game. They manage player

connections and forward requests to the sol layer.

31

3.4. A Closer Look at Eve Online

e The sol blades manage the interactions that occur in different solar systems.

e The database cluster handles the persistence layer of Eve.

All three of these layers have faced performance problems, limiting the number
of players than can be found simultaneously in a given solar system. Discussions on
problems with the database cluster can be found in subsection 3.4.2, while network
performance problems between the proxy blades, the sol blades and the clients can

be found in subsection 3.4.3.

3.4.2 Backend Bottleneck

Persistent storage in Eve Online is handled by a single monolithic SQL Server database.
Although this database is distributed over several servers, it represents a significant
bottleneck, especially during peak hours. In 2006, CCP was experiencing some seri-
ous delay problems: the database was unable to handle the load of 1,250 transactions
per second at peak hour. At that time, it was not unusual for players to experi-
ence 20 seconds delay, a delay that is considered unacceptable in the gaming world.
Traditional solutions of adding new servers, or upgrading existing servers would not
provide the performance increase needed to solve this crisis. Careful analysis of the
situation indicated that the problem was disk IO based.

CCP solved this problem by moving its database to a solid state disk array [CTRO6].

Up until January 2009, the architecture was as follows:

The Eve database runs on a Microsoft SQL Server 2005 Active/S-
tandby cluster. It has two identical database servers, with the database
stored over two RamSan 400s and a DS4800 fiber channel array [Min09].

The performance increase was immediate and developers were able to redirect their
effort to developing new game content. The setup remained relatively unchanged,
until the load on the fiber disk channel increased to an alarming level. By then, the
game generated up to 2000 transactions per second. The problem was solved again

with a hardware solution, upgrading the disk array to a 2TB RamSan 500.

32

3.4. A Closer Look at Eve Online

3.4.3 Node Bottleneck

As previously mentioned, interactions between players in a given solar system are
managed by a sol blade. Typically, blades are set up with two nodes, each node
hosting a solar system. However, some blades hosting a high traffic solar system only
have one node active in order to dedicate all their resources to that solar system.

The maximum number of players that can be found in a given system is limited
by the load that can be handled by the machine hosting the solar system. This can
be properly illustrated by the Jita solar system, which, before February 2009, could
only handle 700 concurrent players. After some important software upgrade, Jita was
able to accommodate more than 1400 players.

One of these software changes was the implementation of a stackless IO network
layer [Exp08b|. FEarly analysis had shown that when executing a remote call to a
busy server, resolution of the call was almost instantaneous, but the remote call itself
would take over 1 minute to return. This pointed to a problem within the network
layer. Switching over to the stackless 10 network layer resulted in a considerable
performance increase.

Once the 10 concerns were removed, memory limitations quickly became the main
concern. Given that the network layer no longer limited the number of players in a
given solar system, the system would scale until it ran out of memory. This issue
was solved by upgrading the Eve server software to 64bit [Exp08a|, thus allowing it

to address more memory.

33

Part 1

Building Blocks

Journey is a complex piece of architecture, built on solid and proven existing con-
cepts. These concepts, and their use in Journey are discussed in this part. First,
chapter 4 describes the core technology behind Journey, replicated object. The follow-
ing chapter presents how obstacle aware partitioning can increase Journey’s perfor-
mance. Finally, chapter 6 introduces Journey’s communication model, which heavily

relies on remote procedure calls using prozies.

35

Chapter 4
Replicated Objects

A game programmer should ideally be able to work with abstractions from the
game domain. A virtual world is usually comprised of many objects, e.g. game items
and players. Game developers therefore naturally apply object-oriented decomposi-
tion techniques to partition the game state.

Replicated objects are a distributed implementation of game objects: they encap-
sulate that part of the state of game objects that has to be distributed to players.
Every node that needs access to the game state encapsulated by a replicated object
possesses a local instance of that object, a duplica. One key challenge is to ensure
that the state of the duplicas are kept up to date and consistent.

The first two sections of this chapter presents Quazal’s Net-Z and Eterna, two
commercial multiplayer game middleware implementations that served as inspiration
for our own replicated objects technology, which is presented in the third section.

Note that the following chapter assumes that the reader is familiar with the notion
of the observer design pattern as defined in [GHJV95]|. The reader is highly encour-
aged to look up this information if he is unfamiliar with this design pattern or the

publish /subscribe communication paradigm.

36

4.1. Quazal’s Duplicated Objects / Net-Z

4.1 Quazal’s Duplicated Objects / Net-Z

The core goal of Quazal’s duplicated object technology, as found in the Net-Z product,
is to create a high level abstraction that relieves developers from dealing with many
of the complex issues of distributed computing. As previously mentioned, object-
oriented programming is a natural fit to game development, as game objects can
easily be mapped to classes. With duplicated objects, game objects are duplicated
and distributed to all the workstation participating in the game. A duplicated object
can have one of two states, either duplication master or duplica. When the state of a

duplication master is altered, the state changes are disseminated to all other duplicas.

4.1.1 Data Definition Language

A key element to this technology is DDL, the data definition language. It allows
programmers to describe game objects and how their states should be transmitted over
the network. This has the advantage of introducing network concerns early into the
development cycle, a common oversight in many game development projects [Gro03].
Once game objects are defined using DDL, network-enabled code can be quickly
generated and is easily tweaked. DDL defines two main components: datasets and
class declarations.

Datasets describe the data stored inside a duplicated object (state) and its update
policy, which specifies how state updates to the duplication master are propagated
to the duplicas. For example, one could decide that updates are only propagated if
the dataset is significantly changed. Another update policy might specify whether
updates should be sent over a reliable or unreliable communication channel.

Class declarations define the attributes and methods of game objects. Attributes
are specified using datasets, while methods are directly defined in the class declara-
tion. Methods can either be defined as remote methods calls (RMC) or actions, the
difference being that only RMCs can have return values. The methods can be exe-

cuted either locally (only on the local duplica), or remotely on either the duplication

37

4.1. Quazal’s Duplicated Objects / Net-Z

master or both the duplication master and all the duplicas. This differs from tradi-
tional duplication object models, where methods are only executed on the duplication
master.

The two components defined in listing 4.1 are inspired from the examples found
in [Qua0l]. Once the DDL for a game object is completed, a compiler generates a
series of stub files. Developers only need to insert the custom game code inside the

method stubs generated by the compiler.

Listing 4.1: Example of a DDL definition for a simple game

// DDL file
// Declaration of the datasets to be associated to duplicated
// objects
dataset Inventory {
int iteml;
int item?2;
int item?2;

} constant;

// An extrapolation filter is used to update the Position
// dataset to minimise bandwidth usage
dataset Position {

double x;

double y;

double z;

} extrapolation filter;

// Declaration of the duplicated objects. The appropriate
// datasets are associated to the objects and the action
// declarations made
doclass GameObject {

Position m_dsPos;

action PlayASound(int iSoundID);

38

4.1. Quazal’s Duplicated Objects / Net-Z

=

doclass Avatar :: GameObject {

Inventory m_dslnv;

}s

4.1.2 Other Features

As mentioned previously, duplication objects (and Net-Z) offer a high level of ab-
straction, allowing complex networking features to be provided to the developer with
little or no development cost. One such feature is fault tolerance: the ability to de-
tect and deal with a failed node. When a node fails in a multiplayer game that uses
the duplicated object paradigm, it is likely that the node contained one or several
duplication master objects. However, for each failed duplication master, one of the
orphaned duplica can be promoted to assume the role of the master object. Thus,
the system can survive the failure transparently, as long as a duplica exists for each
failed duplication master.

Given the high cost of bandwidth and detrimental effect of lag, dead reckoning
[SC94], a feature in which the position updates of an object are predicted using its
current speed and acceleration, is highly desirable. When properly implemented,
dead reckoning can provide a significant bandwidth decrease. However, correctly
implementing dead reckoning is a very difficult task. Given that the state of object
is conveniently stored in datasets, the duplicated objects architecture can provide
dead reckoning as update policy on datasets, removing much of the implementation
complexity.

Another important feature worth mentioning is the ability to easily migrate a
duplication master from one node to another. Hosting duplication masters increases
load on a node, as it is responsible for processing actions/RMC and disseminating
state updates. A node hosting all the duplication masters in a game could see it’s
performance significantly decreased. However, duplication masters can easily and

transparently be migrated to other nodes. This effectively allows balancing of the

39

4.2. Eterna

load generated by hosting duplication masters.

4.2 Eterna

Unfortunately, the duplication object technology, as found in Net-Z, cannot be scaled
to more than 128 players. Although this is more than sufficient for most multiplayer
games, the technology cannot be directly used in massively multiplayer games, where
several thousands of players can interact with each other. Eterna, another product
from Quazal, attempts to leverage the flexibility of duplicated objects, while scaling it
to a massive scale. This scalability is achieved through the use of duplication spaces.
However, given the high demand for the Net-Z product, very little development has

been done on Eterna in the last few years.

4.2.1 Duplication Space

As mentioned previously, the duplicated objects technology cannot scale to environ-
ments with thousands of players. This is partly due to the high cost of bandwidth
(as charged by Internet providers) and the limited processing/networking capacity of
computers. When dealing with a small number of players, it is feasible to duplicate
objects over every single participating node. However, this becomes very inefficient
as the number of players increases, especially since most player nodes do not need all
this information.

Ideally, nodes should only store duplicas which are relevant to their current view
of the game. Duplication Spaces provides this mechanism, by allowing duplicated
objects to “discover” other duplicated objects [Qua02]. A match function is used to
control how the “discovery” occurs.

Duplicated objects within a duplication space are either subscribers, publishers
or both. A subscriber is an object that can discover other publisher objects. When a
subscriber discovers the duplica of a publisher, it creates a duplica on the node where
the duplication master of the publisher resides. This matching is illustrated in figure

4.1 where different publishers can be matched with different sets of subscribers.

40

4.2. Eterna

Figure 4.1: Duplication Space, as defined in Eterna.

As previously mentioned, a match function is used to pair subscriber and pub-
lisher. A match can be determined based on several criteria, such as the closeness of
the two objects, their types, or any other properties involving the state of the two
objects. For example, one match policy might match all objects within a 5 meter
radius of each other. Another match policy might match all objects found in a par-
ticular inventory. An other example is to match all radios operating on the same

radio frequency.

4.2.2 Cells

In a simple duplication space, the matching function previously described is executed
on a single node that has copies of all the objects in the world. As the number of
objects increases, it becomes unfeasible for a single node to handle all this load. Thus,
duplication spaces can be further broken down into distinct cells.

When cells are used, publishers and subscribers are broken down into groups, most
often based on type or location and assigned to a cell. One node is responsible for
determining the matches between all objects that belong to the cell. The matching
duties of each cell are then assigned to different nodes. Cells can also be dynamically

created to deal with the additional load of new players joining the game. Similarly,

41

4.3. Replicated Objects

Figure 4.2: Duplication Space with Cells, as defined in Eterna.

in period of low load, cells can be merged together. A CellMatch function is used to

map which duplicated object should be managed by which cell.

4.3 Replicated Objects

Replicated objects is the high-level distributed communication layer developed at
McGill and used to power the Mammoth Research Framework [KVK'09]. It shares
the same core design philosophy as Quazal’s Duplicated Spaces, to create a high level
abstraction that hides complex issues from developers. However, the goals of both
frameworks differ greatly. Given that Quazal is developing a product that must suit
a large number of clients, every feature is customized for maximum flexibility. For
example, remote method calls can be executed on the duplication master, all the
duplicas or individual targeted duplicas. Replicated Objects is more of a research
tool, and simplifies the execution model to streamline experiments. For example,
remote method calls in the replication engine are always executed on the “master”
copy of an object. The logic behind this architecture is explained in section 4.3.1.
Another important fundamental difference between Duplicated Objects and Repli-

cated Objects is how distributed objects are defined. Developers using Duplicated

42

4.3. Replicated Objects

tomato: GameObject
xPosition:float
yPosition:float
getXPosition(): float
getYPosition(): float
setPosition(x: float, y: float)

Figure 4.3: A simple tomato GameObject.

Objects define their objects using the DDL language and a compiler generates a series
of stub files. These stubs are then completed by the developer. However, Replicated
Objects uses a proxy system, where distributed objects are written in Java, and a
generator creates the appropriate proxy classes to encapsulate the network function-

alities. More information on the proxy system can found in chapter 6.

4.3.1 Masters and Duplicas

When using replicated objects, the state of a game object is replicated across player
nodes. Let us take the example of a tomato, an instance of a GameObject class
(see figure 4.3). The state of the tomato is defined by two attributes describing the
position of the tomato. Two methods are used to describe the state of the tomato
(getXPosition() and getYPosition()) while the third method (setPosition(x,y))
allows the modification of the state of the tomato.

With replicated objects, a game object can either be a master or a duplica. Only
one master can exist at a time for any given object. It contains the authoritative
state. Any number of duplicas can exist, each of them having their local state. In
the case of figure 4.4, the « instance of tomato exists as a master on node A, and as
a duplica on node B and C.

Whenever the game executes a read operation on a game object, it uses the local

state. For example, the getXPosition() and getYPosition() methods are executed

43

4.3. Replicated Objects

Figure 4.4: Two instances of Tomatoe, a and 3, replicated over three nodes, A, B,
and C.

44

4.3. Replicated Objects

locally, even on the duplicas. Modifying operations, however, cannot be executed
locally for consistency reasons. If local execution was allowed, it would be possible
for concurrent modifications across nodes to take place, which could result in serious
inconsistencies visible to the players. For instance, if two players simultaneously
decided to move the tomato, only one player should succeed.

In this case, the setPosition(x,y) should only be executable on the master
object. To this aim, whenever the method is executed on a duplica, the request
is serialized and forwarded to the master object. Once the state of the master is
updated, the newer state is forwarded to all the duplicas, which, in turn, update their
local state.

The remote execution of modifying operations is completely transparent to the
game layer. It has no knowledge whether the game object is a master or a replica.
The game simply invokes the operation on the game object: replicated objects will
redirect the call to the duplication master node, if necessary. This transparency is not
only convenient for the programmer, it also makes it easy to migrate the duplicated
master from one node to another for load balancing or fault tolerance reasons, without

affecting the game layer.

Dealing with Concurrency

It is possible that multiple nodes might try to simultaneously modify the state of an
object. In the case of replicated objects, concurrent access is protected by a simple
“fail” lock. In other words, if two nodes execute the setPosition(x,y) methods
simultaneously, only the call to first reach the master object succeeds. The logic
behind this is simple: once the first call has completed, the state of the object has
changed. Thus, it would be illogical to execute the second call, which was based on
the previous state.

This scheme highly favours the node hosting the master object, given that locally
routed requests are much faster than those originating from the network. In a game
context, this might seem very unfair to players not hosting objects. However, to

prevent a player from cheating, it is also highly desirable not to host the master

45

4.3. Replicated Objects

object on a node that belongs to a player that might gain an unfair advantage by
modifying the object in a game-rule infringing way.

It should be noted that fairness and causality are not addressed in this concur-
rency policy, as they are often ignored in most game environments. A real-time
game environment requires actions to be resolved almost instantaneously. The syn-
chronization mechanisms required to ensure perfect fairness and causality are time
consuming. However, for low-frequency actions they could be implemented on top of
the guarantees provided in Journey, if needed. This is, however, out of the scope of
this thesis.

4.3.2 Replication Spaces

The simplest approach to distributing objects is for each player to maintain a full
copy of the game state, i.e. create duplicas of all game objects on each player’s node.
The problem is that this approach does not scale: as the number of players increases,
the number of messages to be sent over the network and to be processed by each
player’s machine increases exponentially.

Since virtual worlds in MMOGs are vast, the most effective strategies to address
this problem is to store on a player’s node only the game state that is relevant to
its avatar. This represents only a small subset of all duplicated objects found in the
virtual world. This small subset is determined and maintained through the use of

interest management.

4.3.3 Interest Management

As mentioned previously, an effective solution to the scalability problem in replicated
objects is to create duplicas only where they are needed. Interest management (IM) is
the process of determining which information is relevant to each player [MLS05b|. In
replicated objects, IM is a function that determines what a given object is interested
in. That function is then used to determine which duplicas are needed for a given
interest. For example, a node declares itself related to object A. To function properly,

that node requires a duplica of A and any object A is interested in.

46

4.3. Replicated Objects

Figure 4.5: Example of circular aura interest.

Figure 4.6: Example of interest based on triangulization.

47

4.3. Replicated Objects

Figure 4.7: Using circular interest, difference between view (grey) and interest (red).

The interest function can be implemented in numerous ways, several of them
described and compared in [BKV06]. The most common type of interest function
is the circular aura function, as shown in figure 4.5. It is widely used because of
its simple implementation and efficiency. However, a much more realistic notion of
interest can be built using the partitioning techniques proposed in chapter 5. By
using an obstacle aware partitioning, we can easily determine what area of the map

is in the object’s field of vision (see figure 4.6).

Interest Management vs. Field of View

One common type of interest is field of view. For example, a node controlling a player
is interested in all other objects that the player can see. As the player moves around
the map, the interest of that player changes. To ensure a proper game experience, new
interests must be quickly detected so that the appropriate duplicas can be propagated
to the player’s node.

To ensure that all necessary duplicas can be found on the player’s node before
they are seen, a larger interest area is used. This is illustrated in figures 4.7 and 4.8),

where the interest area of that node is painted pink, and the actual view of the player

48

4.3. Replicated Objects

Figure 4.8: Using triangle interest, difference between view (grey) and interest (red).

is painted a darker shade of pink. Since the interest area is larger than the field of
view, duplicas will be propagated before they enter the field of view of the player.
How large the interest area must be depends on the speed the player is traveling
in the virtual world. This is because the field of view of a fast moving object changes
faster. If the replication system updates itself every 2 seconds, the interest area should
be increased by at least the distance the player can travel in 2 seconds. In such a case,
regardless of the direction the player travels, all the necessary duplicas will already
be hosted on his node. However, increasing the size of the interest area even more

will only create useless duplicas and increase the total load on the system.

49

Chapter 5

Obstacle Aware Partitioning

The game map represents the continuous space where players are located and the
game unfolds. It is subject to continuous queries, such as “what is near the player?”,
or “can the player go from point A to point B?”. Dealing with these problems in a
continuous space is a non-trivial problem, which is often addressed by discretizing the
map. This conversion of a continuous map into several small discrete areas is often
referred to as meshing. Common meshing techniques will split a map into a series of
identical squares or hexagons, while more specialized techniques discretize the map
into a series of variable-size rectangles.

This chapter presents a technique to mesh a map using triangles that reflectes the
barriers and obstacles found in that map. This technique requires the construction
of an obstacle map, which is then passed to a triangulation algorithm as a set of
constraints. The quality of the meshing is directly related to the simplicity of the
obstacle map: a high number of constraints will adversely affect the triangulation
algorithm, resulting in triangles with small area or extreme angles. We propose
various techniques that can be used to simplify an obstacle map, allowing for an

improved triangulation.

50

5.1. Why do we Partition a Map?

5.1 Why do we Partition a Map?

Partitioning of the game map is a core element of Journey. It is used to divide up
the responsibilities of the main components (load-balancing, fault-tolerance, cheat
detection) and assign the work to difference nodes. However, partitioning game maps
has been an essential programming task since the beginning of game development.

One such example is the manipulation of location of game objects on the map.
Although determining the location of a target object on the map is usually trivial,
determining which objects are near our target object is a non-trivial task. If the map
is one continuous space, then we need to compare each object on the map to our
target object to determine if it is near. This can be very resource consuming if the
map contains a large number of objects. By discretizing the map into several smaller
areas, we can reduce the number of checks required to determine the neighbourhood
of our target object. Using a quad tree discretization [FB74|, we only need to check
the quad of our object and the neighbouring quads. When using triangular tiles,
we only need to check the tile of the target object and the neighbouring tiles. This
results in a very important gain in performance for many game components relying
on object location, like collision detection or A.I. behaviour (see figure 5.1).

This discretization can also be of great benefit to pathfinding algorithms. The
advantages of pathfinding at different levels of granularity are already well known. By
using different partitioning algorithms, paths can be found using divide-and-conquer
techniques, greatly increasing response time. And these are just a few examples of

how map partitioning is used in game development.

5.1.1 Polygon Triangulation and the Obstacle Map

The most common partition algorithm used in modern video games today is the quad
tree. The game map is divided into 4 rectangles (called quads), which are then sub-
divided themselves into smaller quads depending on the number of objects found in
that quad [FB74]. Thus, all quads have approximately the same number of objects.

Locating objects near a specific point is O(log(n)), where n is the number of objects

51

5.1. Why do we Partition a Map?

Figure 5.1: Example of a trivial game map. Players are drawn in red, obstacle in

green.

on the map. Unfortunately, quad trees are not designed to reflect the geometry of
a game map: they do not take into account the obstacles found on the game map
(see figure 5.2). Hexagonal partitioning techniques, which are used for instance in
telecommunications, have the same flaw.

An obstacle map is a geometric representation of the game map containing only
the obstacles found on the map (see figure 5.3). For the purpose of this work, obstacles
are polygonal in shape, and block player movement.

The proposed partitioning technique is to build an obstacle map, simplify it, and
then generate a triangle mesh using the obstacle map as a set of constraints (see
figure 5.4). As mentioned previously, triangle meshes have the distinct advantage of
easily reflecting the constraints found on a game map. Problems typically associated
with triangle meshes, such as thin triangles, are addressed using various meshing

optimizations proposed in this chapter.

92

5.1. Why do we Partition a Map?

Figure 5.2: Example of a game map divided by a quad tree.

Figure 5.3: Example of an obstacle map.

53

5.1. Why do we Partition a Map?

Figure 5.4: Example of a game map partitioned using triangles.

5.1.2 Partitioning in Journey

Journey’s relies on partitioning to divide the game map into tiles. These tiles are then
used to create cells, which are the main components of the load balancing system.
Cells can be grown or shrunk by reassigning tiles from one cell to another. The size
and shape of a tile determine how many objects can be found in that tiles. In addition,
responsibility in the fault tolerance and cheat detecting system is assigned to different
nodes using cells. Thus the load created by these systems is also influenced by the
shape of the tiles.

Thin triangles create problematic tiles, as they can contain few objects, and these
objects are usually shared among the neighbouring triangles. Large triangles are
equality troublesome, as they can contain too many objects, making it impossible for

Journey to share the load across different nodes.

5.1.3 Characteristics of a Good Triangulation

The run time of an algorithm that uses a mesh is related to the quality of that mesh.

An ideal triangle mesh for our purpose is a collection of equilateral triangles of exactly

o4

5.2. Improving the Obstacle Map

the same surface. However, given the obstacle constraint, it is virtually impossible to
obtain a perfect map.

A good triangle mesh is mostly composed of non-thin triangles of approximately
the same area. For the purpose of this work, we define a thin triangle as a triangle
with at least one very small angle (less than 30 degrees). There are two notable

disadvantages to the presence of thin triangles:

1. Thin triangles have a very small width, which means moving objects will easily

cross in and out of the tile. This increases the tracking costs of moving objects.

2. If the location of an object is determined by its shape, rectangular objects are
rarely contained in only one thin triangle. The object will most likely exist in

two or three tiles, increasing run time costs of algorithms.

It should be noted that these disadvantages are also found in triangle tiles of any
shape with a small surface. As such, small triangles are defined as triangles surface
less than half of the target surface.

Although the presence of some thin or small triangles in a mesh is not problematic,
their predominance in a specific area of the map can be catastrophic to the run time

of algorithms. Thus, it is considered favourable to avoid them.

5.2 Improving the Obstacle Map

Triangulation algorithms have been around for a long time, and the presented work
does not seek to improve them. Instead, we present a series of techniques that can
be used to simplify the obstacle map, thus decreasing the number of constraints
submitted to the triangulation algorithms. These improvements can be seen as filters
on the geometry of a map, simplifying that geometry and thus, the obstacle map.
However, for a filter to be useful, it must preserve important properties of the map.
For example, if two triangles are not connected because an obstacle is present between
them, then these two triangles should still be separated after the geometry is simplified

using the filter.

95

5.2. Improving the Obstacle Map

Figure 5.5: Effect on triangulation of transforming small isolated objects into a line.

5.2.1 Dealing with Small Isolated Objects

As mentioned previously, constraints prevent a triangulation algorithm from generat-
ing an ideal map. An edge constraint forces the creation of 2 triangles, while rectangle
constraints will force the creation of 6 triangles (4 outsides, 2 insides). These “forced”
triangles are undesirable, since one of their edges is automatically determined by the
constraint, and as a result, the created triangle is too small. Thus, edge constraints
are much preferable, as they create less “forced” triangles.

The basic property of the rectangle obstacle is that space on opposite sides of
the obstacle should not be connected. By transforming a rectangle into a single
edge, diagonally crossing the rectangle, we conserve the connection property, while
greatly reducing the number of triangles needed (see figure 5.5). In addition, the
less constraints the partitioning algorithm has, the easier it is to generate an ideal
triangulation.

Small isolated objects found on a game map are problematic, as their four edges
create at least 4 thin triangles, and two small ones (inside). By using the technique
described above, we can reduce this side effect to two thin triangles and no small
ones. Figure 5.5 demonstrates that even in the simplified topology, space on either

sides of the rectangle obstacle remain unconnected.

56

5.2. Improving the Obstacle Map

Figure 5.6: Effect on triangulization of transforming rectangular wall objects into a

line.

5.2.2 Transforming Walls into Lines

Walls are a special case of rectangle objects, as their goal is to separate two areas of
a map. Most walls are composed of two large edges and two thin edges. Long edges
cause no problems to current partitioning algorithms. However, the thin edges are
problematic, as they force the creation of two very small triangle.

Similar to the technique described previously, a rectangle wall can be simplified
to an edge, without violating any of the triangle connection properties. However,
instead of using a diagonal line across a rectangle, a straight line is used across the
rectangle (see figure 5.6). This simplifies the work of the merging algorithm described

in section 5.2.4, which links connecting walls.

5.2.3 Eliminating Very Small Objects

A second subcase of dealing with small obstacles is dealing with very small objects,
defined as objects smaller than the players. Experiments have shown that objects
this small have very little effect on algorithms using the triangulation. However, their
presence greatly increases the complexity of the triangulation, as they introduce many
small edges and thus, small triangles.

Two solutions were explored, one reduces them to a point constraint, the other

57

5.2. Improving the Obstacle Map

Figure 5.7: Effect of removing small isolated objects on triangulation.

simply removes them from the obstacle map. The latter was the best solution (see
figure 5.7), as a small concentration of very small objects would still generate many
small triangles. In addition, the removal of small constraints had no negative effect on
Journey. However, removing very small objects does have a negative effect on path-
finding algorithms using the partitioning. This would suggest the need for different

types of partitioning optimizations depending on how the partitioning will be used.

5.2.4 Merging Points Close to Each Other

Two of the optimizations described above transform a rectangle object into a single
edge. Nomne of these optimizations take into account that some of these rectangle
objects might be adjacent to each other. Once simplified to edges, these obstacles
are not longer adjacent. This creates extra spaces between the edges, which in turn
results in more small triangles in the mesh. A simple solution to this is to merge
points adjacent to each other, closing the number of small openings in the map (see
figure 5.8).

The key difficulty in this optimization is choosing a threshold for which points
should be merged. If the threshold is too small, no points will be merged. However, if
the threshold is too large, the optimization could merge points that were never meant

to be merged. This might close small paths that were inserted into the map by design

58

5.2. Improving the Obstacle Map

Figure 5.8: Merging nearby points can greatly simplify the obstacle mesh.

so that a player was supposed to be able to use them.

Experimentation has showed that this type of error rarely occurs when the thresh-
old for the merging is smaller than the player. The proposed threshold is thus slightly
smaller than a player: small enough to avoid closure of paths meant for players, but
large enough to fix some of the inaccuracies introduced by the other approximation

techniques.

5.2.5 Merging Small Overlapping Objects

As previously demonstrated, each rectangle in the obstacle mesh creates more con-
straints, further increasing the number of triangles in the mesh. This is a particularly
complex problem when a group of small objects are overlapping. Individually, these
objects are negligible and could be ignored. But since they are overlapping, they
create a larger obstacle of complex shape.

The first straightforward solution to this situation was to simply merge all the
shapes into a simple complex polygon. A convex hull algorithm [Gra72| can then be
used to determine the shape of the new polygon. However, this resulting polygon is
often very irregular, especially when many small objects are used to create the new

polygon.
The convex hull algorithm was simplified by linking the center of the shapes,

59

5.2. Improving the Obstacle Map

‘‘‘‘‘‘‘

Figure 5.9: Merging overlapping objects greatly simplifies the obstacle mesh.

instead of using the outer edges. The resulting shape can be further simplified by
transforming any adjacent edges with an internal angle of over 150 into a single edge.
This second simplification does not alter the shape too much, yet reduces the amount

of triangles that are created around the shape (see figure 5.9).

5.2.6 Eliminating Flat Edge Triangles

As mentioned previously, constraints limit the ability of a triangulation algorithm to
produce a good mesh. One constraint found in all triangle meshes is the four edges
delimitating the extremities of the game world. These edges will typically create flat
triangles, especially if an object is be found near the edge of the world.

One solution to this is to simply remove these constraints, allowing the algorithm
to produce a mesh bigger than the size of the game world. Depending on the algo-
rithm, this can be as simple as specifying the game world to be twice the size, and
then removing all excess triangles.

The result, as illustrated in figure 5.10, is a mesh with a smaller number of flat

triangles.

60

5.2. Improving the Obstacle Map

Figure 5.10: Not using the edges of the world as constraints allows the creation of a

higher quality mesh.

5.2.7 Order is Important

Early in the experimentation phase, it was discovered that the order of the simplifi-
cations was very important. For example, the optimization removing the very small
obstacles (see section 5.2.3) must be executed before the obstacle-to-line simplifica-
tion (see section 5.2.1) is applied. Otherwise, very small objects will be converted
to lines before they can be removed. A similar conflict occurs between the merging
of small objects (see section 5.2.5) and removing very small objects, as objects that
should be merged should not be removed.

On the other hand, the early execution of a particular simplification can also
enhance the execution of subsequent algorithms. For example, the merging point
simplification (see section 5.2.4) is much more efficient if the walls have already been
transformed into lines (see section 5.2.2).

Unfortunately, there are no clear rules specifying the order in which simplification
must be applied. However, experiments on ordering revealed that if a simplification
targets a subset of elements from another simplification, it should be executed first.
For example, a simplification targeting very small objects should be executed before
a simplification targeting small objects, as the very small objects might be removed

or transformed by the earlier simplification.

61

5.3. Experiments

5.3 Experiments

Two types of experimentations were done on the simplification techniques. The first
set was done using a quality metric, creating triangulations using various sets of
simplifications and measuring the quality of the mesh. The second set of experiments
compares the network load of 4 interest management techniques, two of which use

triangulation.

5.3.1 Quality Metrics

As previously mentioned, a good quality mesh contains a minimum of small or thin
triangles, as they can create additional load in the system. However, triangles that
are too big should also be avoided, as they can contain an abnormally large number
of game objects. This reduces the effectiveness of the various algorithms that could
make use of the mesh.

When a triangulation is requested, a target surface area is provided to the parti-
tioning algorithm, giving some indication to how large the triangles should be. If we
know the size of the map, the number of triangles in a non-constraint meshed (ideal

mesh) can be determined.

surface of game map

ideal number of triangles = -
target surface area of triangles

The quality metric can then be defined as the number of bad triangles over the

ideal number of triangles.

number of bad triangles

metric =
ideal number of triangles

A lower value of the metric indicates a higher quality mesh. A bad triangle can
be defined as:

e small triangle: the triangle’s surface is smaller than 50% of the target surface

area.

62

5.3. Experiments

Town20-2 | Town19-4
Surface 400 u? 900 u?
Number of objects | 572 4244
Number of trees 108 2134
Objects per u? 1.43 4.71
Trees per u? 0.27 2.37

Table 5.1: Characteristics of Town20-2 and Town19-4

e large triangle: the triangle’s surface is larger than 150% of the target surface

area.

e thin triangle: the triangle has at least one angle that is less than 30°.

5.3.2 Quality Metric Experiments

Metrics were gathered using two maps, Town19-4 (see figure 5.11) and Town20-2 (see
figure 5.12), the standard testing maps in Mammoth. The characteristics of both
maps can found in table 5.1. It should be noted that Town19-4 is significantly more
complex, with buildings that are much more elaborate than what is found in Town20-
2. Note that Mammoth does not use a specific measuring unit. Distance is measured
in units and surface is simply measured in u?. A player occupies a surface of 0.03 u?.

The experiments were done using two different implementations of Delaunay tri-
angulation, a simple one implemented by P. Chew [Paul(| and a more complicated
implementation by J. Shewchuk [She96]. The simplifications were tested using two
different target surface areas, 1.0 and 0.5 square units, allowing for an approximate
maximum of 33 and 17 players per triangle, respectively. The simplifications were
tested by themselves, and in combination with other simplifications.

The results for the experimentations can be found in table 5.2. Note that a lower
value indicates a higher quality mesh, a value of 0 representing an ideal mesh.

Several interesting conclusions can be drawn from the experiments. The first is

63

5.3. Experiments

Figure 5.12: Town20-2 map

64

5.3. Experiments

Map Town20-2 Town19-4
Partition Algorithm Chew Shewchuk | Shewchuk
Target Surface Area 1.0 0.5 1.0 0.5 1.0
*(a) No optimization 1.707 | 1.185 | 1.908 | 1.080 err
(b) Remove Very Small Polygon | 0.890 | 0.792 | 0.616 | 0.583 1.429
(c) Convert Small Polygon 1.217 | 0.941 | 0.925 | 0.457 4.956
*(d) Combine Nearby Points 1.640 | 1.184 | 1.844 | 1.055 err
(e): (c) and (b) 1.151 | 0.899 | 0.772 | 0.584 4.576
(f): (b) and (c) 0.825 | 0.830 | 0.504 | 0.425 1.257
(g): (d), (b) and (c) 0.788 | 0.777 | 0.480 | 0.446 1.288
(i) Combine Overlaping Shapes | 0.945 | 0.868 | 0.716 | 0.514 3.915
(j) Spline Overlaping Shapes 1.062 | 0.862 | 0.841 | 0.560 2.104
*(k) Wall to Line 1.532 | 1.087 | 1.747 | 1.039 err
*(m): (k) and (c) 1.512 | 1.063 | 1.699 | 1.004 err
(n): (k), (c), (a) and (b) 0.763 | 0.699 | 0.362 | 0.340 0.702
(p): (i), (k), (c), (a) and (b) 0.766 | 0.732 | 0.451 | 0.359 1.163
(@): (), (k), (c), (a) and (b) 0.774 | 0.704 | 0.461 | 0.347 0.963

Table 5.2: Results of Triangulation Experiments.

65

5.3. Experiments

that the ordering of simplification does matter, as can be seen in experiment (e) and
(f), where the same two simplifications (b) and (c) are executed in different order.
Regardless of the algorithm or the target surface area, it is always better to execute
the (b) optimization before the (c).

It should be noted that experiments (a), (d), (k) and (m) are tagged with an aster-
isks. The experiments, when done using the Shewchuk algorithm on maps Town19-4,
produce either particularly bad results, or no results at all. This can be easily ex-
plained by the high number of small edges in these experiments, a situation that is
problematic with the Shewchuk algorithm. On the other hand, no results are avail-
able with the Chew algorithm on the Town19-4 map, as the algorithm is unable to
handle the high number of constraints found on that map.

In every scenario, the quality of the mesh is improved using a single simplification.
In addition, the combination of multiple simplification is usually very effective. One
notable exception is experiment (n) versus experiments (p) and (q): the addition of
the simplifications dealing with overlapping objects reduces the quality of the mesh.
This is because the simplification that removes small objects removes all the trees from
the map. Thus, although experiments (p) and (q) obtain a lower score, their mesh less
accurately reflects the geometry of the world. Thus, it is highly recommended that
simplifications dealing with groups of objects be applied before any small individual
object is simplified or removed. Although these simplifications have little effect on
the quality of the mesh, they prevent valuable obstacle data from being removed by
other simplifications. This also suggests that the definition of the metrics used to
compare the approaches could be updated in the future to take into account how
accurate the obstacle-aware triangulation is.

One last conclusion is the disappointing performance of the wall to line opti-
mization. Although these optimization produces meshes that are more aesthetically
pleasing, they have very little effect on the results. This is probably due to the fact
that the two maps we used for testing do not contain many walls. In the future, it
would be interesting to look at game maps of interiors of buildings to investigate if

in that case the wall optimization is more useful.

66

5.3. Experiments

50,000

45,000

40,000

35,000

30,000

25,000

20,000

Total Network Throughput (kBit/s)

15,000

10,000

5,000

10 20 30 40 50 60 70 80 90 100

Number of Clients in System

~==Tile Based Interest Management (Good triangulation) ====Tile Based Interest Management (Bad triangulation)

Aura Based Interest Management ===No Interest Management

Figure 5.13: Network Traffic (in/out) at Hub during IM tests.

5.3.3 Interest Management

To better illustrate the usefulness of good triangulation in interest management, this
experiment measures the load generated by different interest management strategies.
The metric measured in this case is network traffic at the hub (with the current
network engine, all traffic is routed through a central hub), since one of interest
management’s primary goal is to minimize the amount of data to be transmitted. As
such, an effective interest management solution should decrease the network traffic.
Four scenarios were evaluated: no interest management, aura-based (circular) interest
management and triangle-based, both using a good and bad triangulation. These
triangulations have a tile quality value of 0.5 and 1.7 respectively, as described by the
metric in section 5.3.1.

Figure 5.13 illustrates the increasing amount of network traffic as more clients
connect to the system, regardless of the interest management technique used. How-
ever, the no-interest management experiment shows a polynomial curve, which is
clearly undesirable. Both the aura-based and the triangle-based interest management

technique show considerable improvement. However, in the case of the triangle-based

67

5.3. Experiments

interest, the improvement depends on the quality of the triangulation.

The good triangulation offers performance similar to aura based interest manage-
ment, which is highly desirable. This indicates that using a good triangulation allows
for more realistic IM (when compared to aura, which does not take into consideration
walls and other obstacles), without increasing network bandwidth. However, using a

lower quality mesh creates a huge bandwidth penalty.

68

Chapter 6
Extending Remote Procedure Calls (RPC)

with Proxies

Executing a subroutine or procedure on another computer is not a new concept.
Origins can be traced to the mid-seventies, in RFC 707 [Whi75], where the idea for a
“procedure call protocol (PCP)” is presented to allow for remote procedures. To this
date, many different implementations are available.

However, remote call systems have a reputation for being slow and inefficient.
This can be easily explained by the extensive marshalling! required by these systems.
Remote call systems are designed to be generic, to function on any method with
any number or type of parameters. This imposes a great burden on the marshalling
system, as it must be able to encode and decode these method parameters. This
marshalling becomes even more costly for cross-platform/cross-language remote call
systems. In addition, most remote call systems are overly synchronized. To ensure
that data shared by all nodes is update in a coherent and ordered fashion, all method
calls much be routed to a centralized location and extensive locking must be used.
Because of this, most RPC systems do not allow asynchronous method calls, preferring
a simplified call low where one remote call must be completed before a second is

executed.

!Marshalling is the process of transforming the memory representation of information to a data
format suitable for storage or transmission.

69

6.1. Existing RPC Infrastructure

These inefficiencies make remote call systems ill-suited for performance-driven
applications, such as games. However, in a game specific context, the definition
of method calls can be greatly simplified, reducing the burden on the marshalling
system. In addition, games often do not require perfect consistency, thus reducing
the number of locks and safeguards needed in the system. Ideally, remote calls can
even be asynchronous, as games don’t always expect a return value on a remote call.
Thus, game-specific optimizations could provide great performance improvements to
remote call systems.

In addition, most object-based remote call systems use some kind of proxy/stub
system to create the remote object on the participating nodes. These proxies usually
come in two flavours, the master stub and the replica stub. Externally, these stubs
are identical, only their internal implementation differ. This represents one of the
great advantage of such a proxy system: it provides location transparency. In other
words, users of the proxy need not know if they are using the master or replica version
of the stub.

In this thesis, in order to provide an efficient and easy to use, unified framework for
fault tolerance, load balancing and cheat detection, we further extend this architecture
by creating different types of replicas. Various features, such a fault tolerance, logging
and persistent storage can be added to the application with limited effort, by creating
new types of replica stubs. For example, in addition to providing local access, a fault-
tolerant replica object could take over the role of a master stub if a fault occurred on

the node currently hosting the master.

6.1 Existing RPC Infrastructure

Studying existing remote procedure call infrastructures was a critical step in develop-
ing this RPC system. The basic concepts in most RPC systems are quite similar: they
allow remote execution of methods, and provide consistency using various forms of
locking. As such, the following section focuses on the data structures and messaging

systems used by the different RPC infrastructures currently used on the market.

70

6.1. Existing RPC Infrastructure

6.1.1 Open Network Computing (ONC) RPC

Originally developed by Sun Microsystems as part of their Network File System
project (NFS), Open Network Computing (ONC) RPC has been implemented and
deployed on various Unix-like and Windows operating systems. It is considered as
one of the first popular RPC systems to be widely deployed. Procedure calls are
serialized into eXternal Data Representation (XDR) [Sri95], an IETF standard for
encoding data in an architecture independent manner.

ONC RPC itself provides no reliability guaranties, unless it is used with a reliable
transport layer, such as TCP. The RPC call message has three unsigned integer fields:

e program number, managed by a central authority (Sun), each number uniquely

identifies an application.

e remote program version number, allows different versions of an RPC language

to run concurrently.
e remote procedure, uniquely identifies the procedure to be called.

Authentication data is sent with each RPC, and is validated at each call. When
multiple messages must be sent simultaneously, they are often clumped together in
a message. One interesting feature is that an RPC can be broadcast or multicast to
several recipients. Extensive error handling for failed calls is also provided. It should

be noted that ONC does not provide any object replication features.

6.1.2 Common Object Request Broker Architecture (CORBA)

Defined by the Object Management Group (OMG) [OMG09], CORBA is most widely
known because of the large number of language implementations, including Ada, C,
C++, Erlang, Lisp, Ruby, Smalltalk, Java, COBOL, Perl, PL/I, Python, TLC, and
Visual Basic. However, the usability of CORBA is severely hampered by it’s lack of
interoperability among vendors [Cha98, Hen06].

It should be noted that CORBA implements object transparency [V*97]: a remote

party can execute a procedure on a target object with no knowledge of the location or

71

6.1. Existing RPC Infrastructure

the implementation of the object itself. This is achieved through the ORB component,
which ensures communication between the various components of the framework.
Objects are identified through an object reference which is created when a CORBA
object is created. A directory service is provided to allow a client to lookup objects.
CORBA objects are defined using the OMG Interface Definition Language (OMG
IDL), similar in syntax to interfaces in Java. This allows objects to be language
independent. IDL defines a set of basic types, and allows references to other types
of objects. A set of language compilers can then be used to generate stubs for the
client platform and skeletons for the server platform. Generic stubs and skeletons
also exist, to allow remote execution of procedures on objects not defined in IDL.
Commonly, three communication protocols are supported. These protocols mostly
differ with respect to the blocking/non-blocking behaviour of a client when a call is

issued.

e Synchronous: The client blocks once the call is invoked, waiting for a response.

e Deferred Synchronous: The client does not block, but must check periodically

for a response.

e Oneway: The client does not block, since no response is expected.

In addition, asynchronous message-based communication is also possible [SV9S§].
Method calls are transmitted from one party to another using the General Inter-ORB
Protocol (GIOP). A key issue in making sure that two different CORBA implemen-

tations are compatible is making sure their ORB protocols are compatible.

6.1.3 DCOM: Distributed Component Object Model

The Component Object Model (COM) is a software architecture that allows the com-
ponents made by different software vendors to be combined into a variety of appli-
cations [WK94|. This architecture can be considered as a standardized inter-process
object communication system. COM was designed by Microsoft, and is heavily used

in the design of their operating system.

72

6.1. Existing RPC Infrastructure

The Distributed Component Object Model (DCOM) extends the Component Ob-
ject Model (COM) to support communication among objects on different computers
on a local area network (LAN), a wide area network (WAN), or even the Inter-
net [HK97|. As an extension to COM, DCOM is transparent, adding network com-
munication to the existing COM inter-process system.

DCOM also provides location transparency, as clients do not need to know if a
component is running locally or remotely. A location service allows an object to be
located, using a Class ID (CLSID), which in turn, is simply a 128-bit integer. The
marshalling and unmarshalling of method calls is part of the distributed computing
environment (DCE) standard. DCOM Objects are defined using an Interface Defini-
tion Language (IDL), similar to what is found in CORBA. A Microsoft IDL (MIDL)
compiler then creates the proxy and stub code needed by the DCE to transmit the
call across the network. The marshalling and unmarshalling process can also be
customized, giving the programmer full control on how the object is transmitted.

DCOM also provides some interesting security features, mainly in regard to data
protection: integrity and privacy. If the integrity functionalities are activated, each
method call carries additional data that will guarantee data integrity. As for privacy,
it can be controlled at many levels, allowing programmers to define who can access
particular DCOM objects and which methods can be accessed.

It should be noted that COM and DCOM have fallen out of use, now deprecated

in favour of the .NET framework.

6.1.4 Java RMI: Remote Method Invocation

Java Remote Method Invocation (Java RMI) enables a programmer to invoke methods
on objects located on other Java virtual machines, possibly on different hosts [Mic10].
A key goal of RMI is to support seamless remote invocation on objects in a simple
(easy to use) and natural (fits well in the language) way [Mic06].

As with other RPC systems, Java RMI uses stub and skeleton classes to hide the
networking and invocation code of the RMI system. However, these stubs and skele-

tons are generated dynamically by the virtual machine when the object is registered

73

6.1. Existing RPC Infrastructure

with the Java RMI registry. In addition, remote objects are defined natively as Java
interfaces.

This has several implications:

e No IDL language is needed.
e All types in Java are supported.

e Interfaces can use inheritance.

However, RMI uses object serialization to marshal and unmarshal parameters.
Although this provides great flexibility, it hinders performance given that object seri-
alization in Java is very slow. Natively, Java RMI only provides one execution model:
all method calls are blocking and overly synchronized.

Although RMI was a strong candidate as the RPC system for Journey, its slow
marshalling/unmarshalling and it overly blocking model proved problematic performance-

wise. A custom solution inspired by RMI was decided to be preferable.

6.1.5 Quazal NetZ

Although NetZ is primarily an object replication middleware, its communication layer
is powered by a very interesting RPC system. The concept of duplication space
and DDL, which would be the Quazal equivalent to DCOM/CORBA IDL is heavily
discussed in details in section 4.1.

A key difference between NetZ and traditional RPC systems is that data is repli-
cated on client nodes. Most RPC systems only distribute a stub to client nodes.
However, NetZ distributes a duplicated object (interface and state), allowing for both
local and remote calls to be executed on the duplicated object. This can result in a
major speed increase in some method calls, as they can be executed locally. This is
especially true for methods that do not modify the state of the object. However, du-
plicating the state introduces some serious data replication challenges, since changes

to the master copy of the object must always be distributed to duplicas.

74

6.2. Architecture of the Journey RPC System

While most RPC system favour transparency, NetZ sacrifices transparency to al-
low for greater customizability. For example, all remote method calls are associated
with a context object. This context object allows a developer to customize each
method call, including whether the call is blocking and how the state update is prop-
agated. In other words, the programmer is encouraged to interact and customize the

RPC system.

6.1.6 Other RPC systems

This section is, by all means, not a complete list of all RPC systems currently available
on the market. Web RPC services, such as SOAP, or database RPC systems, such as

ODBC are not mentioned, as they are considered outside the scope of this research.

6.2 Architecture of the Journey RPC System

When designing the RPC system for Journey, three types of RPC architectures were
considered. The first uses a configuration file to define the RPC method call and
to generate the appropriate stubs. A developer simply needs to fill in the method
stubs with the game logic. However, this architecture was discarded because of the
complexity of creating a stub generator that would merge the implementation code
if the stubs were to be regenerated. In addition, the use of stubs did not provide the
desired level of transparency. The second architecture uses aspect-oriented [EFBO1|
programming to weave the RPC code into existing classes. Although this solution
has the highest level of transparency, it required using an aspect-oriented compiler
such as AspectJ [Aspl0]. Unfortunately, AO compilers are nowadays still far less
mature as standard Java compilers. In addition, it is not clear how the use of AOP
would affect performance. Thus, the third option was chosen, using the proxy design
pattern to add RPC functionality to existing classes. This provides a good balance
of transparency and efficiency. This architecture is presented in more detail in the
following subsections.

Note that the RPC system of Journey is integrated with the replication space

1)

6.2. Architecture of the Journey RPC System

«interface»
ReplicatedObject

7
«interface» ProxyObject
GameObject - id: ProxylD » <> «interface»
- - masterld : NetworkEnginelD ProxyBehavior
+ gameMethods(): Object -
- acquireLock() : boolean
- releaseLock() : void LP
T $ =
F---zz:C - TITITCTCTCTCCZTZT T J| ________ 1
e 1 e et n
GameObjectimpl GameObjectProxy : 1
+ gameMethods(): Object + gameMethods(): Object | !

+ gameMethods(): Object

|

11!

1!

1!

: : GameObjectMaster
1

1!

1!

GameObjectReplica
+ gameMethods(): Object

Figure 6.1: The Architecture of the RPC system

technology. As such, after an RPC call, any changes to the state of a master object

are propagated to all the replicas of that object.

6.2.1 Using the Journey RPC System

When using the RPC system, three design restrictions are imposed on the developer:

e (Classes with remote calls must be split into two components, an interface defin-
ing all public calls and a class containing the actual implementation. This allows
the proxy to have the same interface as the implementing class, and thus be
used transparently by the developer. This architecture is illustrated in figure
6.1.

e All remote calls must have a void return type and their first argument must be
a RemoteCallContext object. This design restriction is to allow remote calls to
be asynchronous. The RemoteCallContext object is used to track the remote

call and store any return value or exception that might have been thrown.

e To allow the RPC subsystem to distribute updates on shared objects, variables

76

6.2. Architecture of the Journey RPC System

updated by remote calls must either be public or protected. Although this re-
striction could be avoided using reflection or aspect-orientation, doing so would

be very inefficient.

To use the RPC system, developers must use annotations to tag the remote calls
in the interface. For example, the setDestination method call in listing 6.1 is
a remote call that modifies variables in the “destination” data set. However, the

getDestination method is not remote, and is executed locally on the object.

Listing 6.1: Example of an annotated method call

@QRemoteCall(dataSet="destination")
public void setDestination(CallContext callContext, double x,
double y);

public Position getDestination () ;

Variables to be updated by the RPC system must also be tagged in the imple-
mentation class (see listing 6.2). This ensures that annotated variables are properly
updated after remote calls. In addition, variables are tagged with the data set they
are members of. For example, if the setDestination method call from listing 6.1
is executed, then the destination variable is updated on all remote duplicas. How-
ever, the speed variable is not updated, as it is not in the same data set as the
setDestination method call. The path variable is never updated after a remote

call, as it is not tagged as a remote variable.

Listing 6.2: Example of an annotated variables

@QReplicatedAttribute (dataSet="destination")

protected Position destination;

@QReplicatedAttribute (dataSet="speed")
protected double speed;

protected Path path;

7

6.3. Implementation

Once the interface and the implementation class are annotated, the developer

must declare them in the replicationengine.properties file (see listing 6.3).

Listing 6.3: Sample of replicationengine.properties

player.interface = Mammoth. WorldManager. Player
player.implementation = Mammoth. WorldManager. World . PlayerImpl

The final step is to run the proxy generator, which generates all the required files.
The developer can then use the ReplicaFactory class to register the objects to be

replicated and the corresponding proxies will be automatically created.

6.3 Implementation

As mentioned previously, the presented RPC system is tied into the replication space
technology. As such, remote calls are executed only on a master object and state
changes are propagated to all the replicas. A proxy generator class uses the annotation

presented in the previous section to generate the proxies.

6.3.1 Asynchronous

One key limitation in many RPC systems is that executing a call is always syn-
chronous. This is often a side-effect of the RPC system trying to ensure perfect
consistency through locking. However, in game programming, speed of execution is
often more desirable than perfect consistency. Thus, asynchronous method calling is
highly desirable.

In an asynchronous setting, return values from method execution is not immedi-
ately available to the client. Instead, it is made available once the remote method
execution is completed. A mechanism is needed to store the answer so that the de-
veloper can latter poll for it. In the presented RPC system, this is the job of the
RemoteCallContext object. When a developer executes a remote call, he must cre-

ate a new RemoteCallContext object. This object has a unique execution id, which

78

6.3. Implementation

identifies the remote call throughout its lifetime. Once a remote call is completed,

the RemoteCallContext object is updated with the return value.

6.3.2 Proxy Generator

Written using Apache Velocity [Apa09] templates, the generator analyses the anno-
tations described in the previous section and creates four files for each object with

remote calls.

The proxy class

A class describing the behaviour of a master object

A class describing the behaviour of a duplica object

e A message class used to update duplicas

The first iteration of the proxy generator only generated two separate proxy
classes, one for masters and one for duplicas. However, when work on object mi-
gration started, a significant design flaw was discovered. Migrating an object from
one node to another is the equivalent of asking a master object and a duplica object to
exchange roles. However, since masters and duplicas were defined as different objects,
exchanging the roles required creating new proxy objects. This complicated matters,
since the old proxies had to be de-registered from the game engine and replaced by
the new proxies. To avoid this problem, the current proxy generator encapsulates
the master/duplica behaviour in separate classes, making it easy to switch behaviour
without having to recreate the proxy class.

Although the notion of datasets were introduced early in the design, they were
not implemented immediately. Given how custom serialization works in Java, it
was very difficult to pass the dataset name to the de-serialization algorithm as it
traversed the object’s hierarchy. In addition, injecting custom serialization code into
classes would have violated the transparency requirement. The message class was

introduced as a work-around to this problem, by making the de-serialization algorithm

79

6.3. Implementation

external to the object itself. This introduced the small restriction that replicated
variables must be declared as protected or public. As previously mentioned, reflection
or Aspect-Oriented Programming could have been used to removed this restriction.
However, given the high-frequency of the operation, reflection would have been too
inefficient. Similarly, solutions using Aspect-Orientation were previously discarded

for performance reasons.

80

Part 11

Journey

This part introduces the main components of Journey. Firstly, the notion of trust
and its relation to the other components of Journey is discussed in chapter 7. Load
Balancing, which allows Journey to scale to impressive workload, is introduced in
chapter 8. Finally, chapter 9 is dedicated to both fault tolerance and cheat detection,
two components which provide an enhanced user experience through reliability and

fairness.

82

Chapter 7
A Unified Approach to Load Balancing,
Fault Tolerance and Cheat Detection

using Trust and Game Replicas

Researching duplication space has demonstrated the existence of an important
commonality between load balancing, fault tolerance and cheat detection (see figure
7.1). For example, the mechanisms required for load balancing, such as node monitor-
ing and object migration are key components required to implement fault tolerance.
Likewise, monitoring a node for software faults or cheating requires similar function-
alities. The notion of trust is key to all three of these concerns. In case of an overload,
fault or cheat, responsibility should only be bestowed to a trusted node.

Firstly, the unified approach, further describing the commonality between com-
ponents is discussed. Secondly, the notion of trust is explored, as it determines the

level of responsibility each nodes in the system has.

7.1 Unified Approach

Duplication spaces, by definition, have redundant data. Each time a new participant
joins the system, it receives a copy of objects interesting to it. In addition, each time

the ownership of an object is exchanged, a duplicate copy is created. This redundant

83

Unified Approach

7.1.

=> <€

'slejeayo Jo

aoussald ay) "ipne

noge suiepp 0} UB}J0 MOY pue oym
saulwlajep 0} sdjeH N

Bunipny

A

>

‘SI9)88UD UIM |eap 0}
SWISIUBLOBW SOPIAOIH

‘sJo)ipne se
108 UeD seolday

‘S}ine}

"a|qe|ieAe Jabuoj
OU 8le SBpOoU Y2IyM SuIep
prd

J09)8p ued
Bunipny

1sna|

‘'sapou pajie} aoe|dal
0} palsnJ} 8q p|jnoys
oym sauiwisaq

‘uone.biw
ajes aInsus 0} |,

SwisIuByoaW SapIAOId

"Ulim pajsnu) 8q pjnoys
S8pOU PEO| YoNnw Moy saulwisleq

aouel9|o |
_ jjne4 -~ _
E © -f1enooel
y 4 soyljdwis
ejep juepunpay
‘siine}
108)8p
ueo g7 ‘Buioueeq
peo| Asea smojje
Buiouejeg Aouasedsuel} 109[q0

pajeoldey

A

peo

Figure 7.1: Interactions of Components in Unified Architecture.

84

7.1. Unified Approach

data can easily be exploited to provide fault protection and cheat detection. In
addition, developers use objects without any knowledge of the location of its master
copy. Not only does this simplify load balancing by allowing objects to be moved
around freely, it accelerates the recovery process in case of faults, as the location of
the master copy can easily be updated.

Replicas can also be used as auditors. When a request is sent to a master object, it
is forwarded to an auditing replica. Since state updates are propagated to all replicas,
the auditing replica can easily detect how an incorrect update was propagated. A
single occurrence of error might indicate the presence of a fault, and the corrected
state can be easily propagated. However, repeated errors might indicate the presence
of a cheater, who should not be trusted with the master copy of objects.

Unfortunately, auditing each action for faults or cheating is too resource intensive.
However, faults and consistent cheaters can still be detected by auditing a sample of
remote calls. The amount of calls that can be safely audited can be determined by
the current load of a node, as measured by the load balancing system, or its reliability
in the system.

In addition, a common fault in P2P networks is the voluntary or involuntary loss
of a participant, most likely due to disconnection. Load balancing infrastructures
consistently monitor the state of the participants, detecting overloads and balancing
the load to other participants. This makes the load balancing infrastructure ideal for
detecting nodes that have failed or disconnected. In addition, the ability to migrate
objects from one node to another, as done in load balancing, is a key aspect of
recovering from a fault.

To make decisions about which nodes can be used for load-balancing, fault toler-
ance and cheat detection purpose, we propose to add the notion of trustworthiness
of nodes. A node can acquire trust by behaving properly in the system. The more

trustworthy a node it, the more responsibility it is given.

85

7.2. Trust

7.2 Trust

Theoretically, all nodes found in a Journey system are equal. This means that they
have the equal potential to host any type of components, whether a cell or an object.
However, this concept of equality is not practical, given that not all nodes are equal
in terms of resources or reliability.

Reliability can be considered at many level. For example, a node with low comput-
ing power would not be considered reliable under heavy load. The network connection
of the node also plays an important part in its reliability. In addition, it is impossible
to determine if a node joining the system has malicious intent.

In Journey, trust is defined as a metric to measure the amount of confidence the
system should have in a given node. The more confidence a node has, the more
responsibility it can receive. Trust can not only control which types of components a
node can host, but the amount of components a host can handle.

A node gains trust the longer it stays in the system and by handling objects with-
out faults. Trustworthy nodes can then receive more master components, especially
when an overload, fault or cheat is detected.

Nodes hosted by the service provider (the company running the game) are often

considered perfectly trustworthy.

7.2.1 Levels of Trust

The current design of Journey defines three levels of trust.

e Level 0 : Untrusted : At this level, the node is not trusted and cannot
host any master object or cell. It can, however, register its interest to receive
replicas. A node not hosted by the service provider will typically start at this

level, unless trust is recorded in a persistent fashion.

e Level 1: Trusted for Master Object : A node granted this level of trust can
host a limited number of master objects. This level of trust is usually given to

an untrusted participant after of certain period of faultless operation. However,

86

7.2. Trust

the amount of responsibility is limited, as it is assumed that this node can leave

the system at any time.

e Level 2 : Trusted for Master Cell : The highest level of trust granted in
the system, a node with this trust level can host any number of objects or cells,
and can be used for any form of auditing. Nodes at this level are considered to

have extreme capacity, high reliability and security beyond reproach.

In a typical Journey setup, trust level 0 is assigned to clients at startup, and
server-like nodes hosted by the service provider are assigned a trust level of 2. Clients

can earn level 1 by operating flawlessly for a certain period of time.

7.2.2 Acquiring Trust through Time

Dealing with the loss of a level 1 or 2 node is more resource consuming than dealing
with the loss of a level 0 node, because lost master objects or cells must be recovered.
Thus, trust should be acquired only after reaching a certain period of time of flawless
execution. This point is well explained in [PGO7]|, where 40% of World of Warcraft
play sessions they observed lasted less than 10 minutes. Those short game session
represented players who logged in only to check for messages and transactions (trades,
auctions, etc). It was also shown that once a player breaks the 15 minutes barrier, he
is much more likely to stay in the game. However, statistics from [FBS07| show that
80% of sessions last 60 minutes, but less than 10% of play sessions will exceed 120
minutes. If these statistics were used to determine trust over time (see figure 7.2),
trust should increase only after 15 minutes (point X), and should start decreasing

after 60 minutes (point Y).

7.2.3 Acquiring Trust through Capacity

In this case, the word trust is a bit misleading. Trustworthiness does not only repre-
sent a node’s ability to provide a service reliably, but its capacity to do so. As such,
a node that can successfully host several hundred objects without any capacity prob-

lem is considered more reliable than a node capable of hosting less than a hundred

87

7.2. Trust

Trust

: g >
X 'y Time

Figure 7.2: Trust level increasing and decreasing over time.

objects. When dealing with scenarios where objects must be migrated from a failing
node to a new node, high capacity nodes are much more likely to be considered as

receivers because of their ability to deal with higher load.

7.2.4 Acquiring Trust through Honesty

Ideally, the goal of the system is to run without faults, either caused by cheating,
failures or load problems. A low capacity node that has successfully functioned for a
certain period of time without fault is more trustworthy than a high capacity node
known for returning inaccurate results. In addition, this type of reputation is influ-
enced by the amount of processing done by a node: it is impossible to determine if
a node is honest if it never processes any requests. Trust by honesty is especially
important when recovering from faults caused by cheaters, as the system is most

vulnerable to cheating during the recovery process.

88

7.2. Trust

7.2.5 Trust Across Sessions

When player activity is recorded and associated with an account, trust information
can be gathered from several play sessions. Thus, it is possible to recognize players
with a history of cheating and assign them a low level of trust. However, cheating
players often bypass these security precautions by using different accounts, often
stolen from other players. In addition, the usefulness of historical data for trust is
limited, as the quality of the network connection of the player can greatly vary over
time. In addition, a player may use his account on different computers, depending
on his geographical location. This means that network and processing recources can

also vary from one play session to another.

89

Chapter 8
Load Balancing by Dynamic Adjustment
of Cells based over Obstacle-Aware

Partitioning

In MMOGs, players can flock to a given location for many reasons. In some games,
financial institutions, such as banks or auction houses are considered rallying points.
In other games, special events are organized in predetermined cities, making these
cities hubs of activity. Other times, players might discover easy access to a resources
in a certain area, flocking by the hundreds once the word spreads. Unfortunately,
many flocking behaviours cannot be predicted. These behaviours are problematic,
since the load generated by a flock increases exponentially. To provide a responsive
game experience, MMOGs must be able to dynamically adjust to deal with such
situations.

The notion of load balancing has been explored for years in various fields. When
dealing with load that is distributed over a 2D (or 3D) space, which is the case for
most games, it is common practice to implement distribution schemes that split the
world into a pre-determined number of square regions, or dynamically split the game
world using a quad-tree-like division scheme. We propose a solution where we break
down the world into a set of cells composed of triangle tiles. Using triangles allows

the creation of cells that flow around obstacles in the world. These obstacles naturally

90

8.1. Load

partition the interest regions of players in the game world. For instance, a long wall
blocks the sight of a player. He is therefore not interested in objects located behind
the wall.

Interest management for the content of a cell (or multiple cells) is assigned to a
trusted node. That node will overload if there are too many players located in its
cell. To deal with overload, cells can be shrunk by moving triangle tiles from the
overloaded cell to an adjacent cell, reducing the number of players in that cell. In
extreme cases, a cell whose hosting node is overloaded can be migrated entirely to
another, more powerful node.

The effectiveness of the proposed load balancing solutions can be measured using
Mammoth. By creating several hundred artificial players and having them flock
to a given location, we can easily generate flocking scenarios that simulate what is
happening in real game. These flocks trigger the load balancing algorithms which
then allows us to measure their ability to cope with load.

The following chapter describes how Journey addresses load problems, and allows
for large number of players to interact in a game world. Firstly, the notion of load is
discussed. The chapter then focuses on how load can be dealt with and describes the

proposed load balancing algorithms.

8.1 Load

Before addressing the problem of load distribution, the definition of load must be
properly discussed. What is load exactly, and how should it be measured? One
definition of load is any task that consumes hardware resources on that node. With
this definition, load can be measured using a traditional approach, like measuring
hardware constraints (CPU load, memory usage, number of page faults). However,
load on a game can also be defined by the amount of game activity found on that
node. In the case of Journey, game activity is generated by masters objects and the

number of interested parties in those master objects.

91

8.1. Load

8.1.1 Physical Load

Given the high number of processes running on a traditional game machine or server,
it is impractical to monitor game load using game logic. Other processes, such as anti-
viruses, consume a non-trivial amount of resource. Measuring hardware constraints is
a much more efficient way of determining if a machine is currently overloaded, because
it measures the resource consumption of all the processes currently running on the
machine. It also happens that hardware monitoring is fairly easy to implement, as
most operating systems already contain the necessary tools. For the remainder of

this chapter, this type of load is referred to as physical load.

8.1.2 Logical Load

Unfortunately, physical load is not enough information for most partitioning algo-
rithms. Although physical load reflects the workload found on a particular node, it
contains very little information on what is generating load and how it can be dis-
tributed. Partitioning algorithms require information such as “Where is the load is
concentrated?”, or “How is the load distributed?” to better distribute load among
different nodes. This information can be gathered by analyzing the game state, or
the current game activities. However, implementing this type of load monitoring is
difficult, as it requires the construction of an effective load model to represent and
calculate the load. For the remainder of this chapter, this type of load is referred to

as logical load.

8.1.3 Logical Load Model

The first step in establishing a load model is to determine which game elements
generate load. In the case of duplication spaces, experiments have shown that the

following elements generate load:

e master cells: because the node must do interest management for each master

cell it hosts, as well as keep track of the objects moving in those cell. In addition,

92

8.2. Dealing with Load

a higher load value is assigned to active objects (objects controlled by a node

and moving) as opposed to a passive object.

e replicated cells, because the node that hosts them receives updates about those

cells.

e master objects, because the node that hosts them must process all actions done
on these objects and make sure that every time the state of the master object

is updated, the changes are broadcasted to the replicas.

e replicated objects, because the node that hosts them receives updates on those

objects.

Based on experimentation, weights were assigned to each of these elements, and
therefore the logical load of a node can be calculated as the weighted sum of these
four numbers. This simple definition of logical load is used throughout the rest of the
thesis. In the future, it could be interesting to experiment with more sophisticated
logical load definitions, or to additionally use physical load sensors to obtain more

realistic load estimates for nodes.

8.2 Dealing with Load

Several commercial MMOGs handle load in the game world by allocating a dedicated
game server to take care of each part of the world. This is a very straightforward
solution, but it does not deal well with flocking scenarios (i.e. when players converge
to specific points in the world).

Flocking scenarios are fairly common in MMOGs. Some of these scenarios are
permanent in nature, resulting from a design decision in the game. For example,
banks and auction houses are fairly common meeting points in a game. Other flock-
ing scenarios are sporadic. For example, a game master! can organize a scavenger

hunt in a particular city. In this situation, the load increase for this area is easy to

!'Employees of the company hosting the game, they are tasked with policing the game world and
organizing special activities.

93

8.2. Dealing with Load

predict. However, some load increases cannot be predicted, as they result from player
interactions in the game. For example, large fleet battles in Eve Online have been
known to cause quite a slowdown in particular solar systems. CCP, the creators of Eve
Online, took a creative approach to solving this problem by asking players to warn
game masters in advance of where a large fleet will occur with high probability. This
would allow CCP to host the particular solar system on a dedicated high-powered
node.

As previously mentioned, Journey uses a cell-based system to distribute work
across several nodes. Given the difficulty in predicting load spikes, Journey features
functionalities to dynamically resize these cells and offload load to a different node.
However, successfully dealing with dynamic load is a very complex task and requires

two key elements: dynamic partitioning and load balancing.

8.2.1 Dynamic Partitioning

Static partitioning of a workload distributed over a 2D surface is straight forward.
The world is divided into fix (pre-definted) partitions, which are in turn hosted on
fixed nodes. Dynamic partitioning is more reactive, partitioning only occurs when
needed, most often to deal with a load spikes. The question is, how and when to

partition?

How to Partition?

In a virtual world, game objects and players are distributed in a 2D or 3D space?.
Ideally, the game entities are equally distributed over the space. However, situations
like flocking create non uniform distributions where players and game objects are
highly concentrated in certain areas. Thus, any partitioning technique used must be
able to deal with one or more concentrated areas (hot spots). This works explores two
partitioning strategies, line-based and tile-based. Tile-based partitioning is favoured

in Journey for reasons explained in the following sections.

2For the purpose of this work, only 2D space is considered. 3D games, where players walk on
surfaces, can be handled just like a 2D space.

94

8.2. Dealing with Load

Line-Based Partitioning In a line-based partitioning scheme, the world is di-
vided into non overlapping rectangles of arbitrary shapes. Initially, a single rectangle
partition is used to cover the whole world area. That partition can then be split into
two partitions using a line that cuts across its longest side (see figure 8.1). The exact
position of the cut depends on the load in the cell, or else is drawn in such a way
that it cuts the world in half. Although fairly simple to implement, there are some

important limitations of line-based partitioning.

Figure 8.1: Space partitioned using rectangles.

Firstly, an ideal cut in a partition would distribute the load equally among the
two new partitions. However, if that partition is suffering from a hotspot, the cut
is most likely located in the middle of that hotspot (see figure 8.2). In that case,
both partitions would still need to interact very closely with each other, given that
adjacent objects still need to interact with each other. In this situation, migrating a
partition to another node most likely results in very meager performance gains.

Secondly, although rectangle partitions are easy to divide, they are difficult to
merge. Ideally, cells must be merged in the inverse order in which they were divided
initially. This limitation can be dealt with by allowing cells of arbitrary polygo-
nal shape. However, this can seriously reduce performance and complicate interest

management, given that arbitrary polygons are much more difficult to work with.

95

8.2. Dealing with Load

Figure 8.2: Partition split in the middle of a hotspot.

Tile-Based Partitioning In a tile-based partitioning scheme, the world is di-
vided into a set of non overlapping tiles. These tiles can be of arbitrary polygonal
shapes: squares, triangles, hexagons, etc. However, optimizations are easier to achieve
if all the tiles have the same number of sides (for example, if they are all triangles).
The initial partition is composed of all the tiles found on the map. Segmenting is
achieved by assigning the tiles to different partitions. Ideally, all the tiles in a partition
are connected, as split cells can degrade the performance of the interest management
algorithm. When splitting a partition, simple algorithms just look at the current
number of tiles in the partition. More elaborate algorithms determine the load on
each tile and insure that the load is fairly equally distributed across the two new
partitions.

Two types of tiles were evaluated with this framework, square tiles and triangle
tiles. Square tiles were interesting because of their ease of implementation and their
popularity in the research literature. On the other hand, triangle tiles had the distinct
advantage that they can be generated to follow the topology of the world. In the end,
triangle tiles were chosen for their efficient performance when dealing with interest
management [BKVO06].

96

8.3. Load Balancing

When to Partition?

A key element in efficient partitioning is to decide when partitioning should take
place. Should partitioning occur only when load must be distributed? Or would it
be more efficient to pre-partition a space in anticipation of load problems?
Pre-partitioning a space has the definitive advantage of making it easier to mi-
grate load when in situation of heavy load. The partitioning process can be quite
complicated and require additional resources, which is exactly what needs to be to
be avoided in a system under heavy strain. However, when using a pre-partitioning
scheme, there is a performance penalty for managing multiple cells. This performance
penalty is unnecessary for systems that have a low load. In the end, given the low
cost of resizing partition by transferring tiles between partitions, pre-partitioning was

not used. As such, partitioning only occurs when needed.

8.3 Load Balancing

Load is generated by both cells and objects, masters and replicas alike. However,
master objects do generate higher load, making it undesirable to host a large number
of them on the same node. Master objects can only be transferred to trusted nodes.
Given that trust for cells and objects is different, two separate load balancing schemes
are proposed.

Note that the proposed schemes should be considered load sharing algorithms,
as they focus mostly on distributing the load before a node is overwhelmed [DZ03].
However, if a node is overwhelmed, the algorithms will still migrate load from the
overloaded node to underloaded nodes. The proposed schemes assume that load and
trust information is available globally. This can be offered by a central server, or
stored in a distributed hashtable (DHT).

8.3.1 Burst Migration

Load balancing in Journey is feasible because of object location transparency: de-

velopers do not know whether a game object on their node is a master or a replica.

97

8.3. Load Balancing

Objects can be freely moved from one node to another. The process of moving objects
across nodes is called migration.

Migrations are often considered distributed transactions in the academic litera-
ture. The most common model is two-phase commit, where communication is done
in two steps to make sure that both parties agree on the migration. Unfortunately,
two steps migration is too slow to use in Journey.

Journey currently supports burst migration. This migration scheme simply trans-
fers the object to the destination host, with no approval or confirmation. This pro-
vides incredible speed, although it is very unreliable. Discussion on how to make this
algorithm more fault-tolerant is found in section 9.3.4. A description of the algorithm

is found in annex A.

8.3.2 Load Sharing Master Cells

The proposed load sharing algorithm assumes that cells are composed of tiles, either
triangular or rectangular. The system is initialized with a single cell, containing
all the tiles. When a new node allowed to host master cells joins the system, it is
initialized with an empty cell. Given that load(L) information is available globally
to all nodes, we define the total load (T'Ly) and the target load (ALy) for nodes with
level 2 trust in the system (55) as:

Vo € 85, TLy = L(x)

ALy =TLy/ |Ss|

We define a buffer value, which is used to define which node is underloaded and
overloaded. The buffer value is necessary to avoid nodes oscillating between the under-
loaded and overloaded status. Although the buffer value could be defined dynamically
based on the numbers of node in the system and the total load, it is currently defined
as a constant C. As such, we define the underload (ULsy) and overload (OLy) values

as:

98

8.3. Load Balancing

ULy = AL, — C

OLy = ALy +C

A node whose load is higher than the O L, value is overloaded, and will try to shed
load to underloaded nodes. This is achieved by shedding tiles from the overloaded
cell to a neighbouring cell.

The ALy value is determined by the number of nodes in the system, which means
its value changes considerably every time a node allowed to host cells joins or leaves the
system. The proposed load sharing algorithm does not attempt to fix load problems
in a single round of transfer. Instead, it is designed to distribute load over a number
of short transfers, distributed over time as to minimize the performance impact. As
such, the system should stabilize once the number of nodes in the system remains
stable.

8.3.3 Which Tiles to Migrate?

The biggest challenge to load balancing cells is to choose which triangles should be
shed to a neighbouring cell. Choosing the wrong triangles can create oddly shaped
cells. Given that a node must know about objects in neighbouring cells, oddly shaped
cells can greatly increase the load on the system.

We started by implementing a simple tile selection algorithm, ran experiments to
evaluate its performance, and then incrementally changed it to optimize the resulting
cell shapes. The first iteration of the algorithm would randomly pick triangles on
the border of the overloaded cell and transfer them to neighbouring cells (see figure
8.3(a)). Although very fast, the algorithm produced oddly shaped cells and was not
effective. A more successful attempt was to grow cells outward, by transferring all
triangles on the border of the overloaded cell to the adjacent cell (see figure 8.3(b)).
This produced cells that were very aesthetically pleasing. However, the algorithm
would always create cells that were shaped like ribbons, as new cells would always

start from the same corner of the map. Attempting to grow cells from different outer

99

8.3. Load Balancing

]
g

24N

[~

N
[

———

B

N/

e
T

7

o e
Lo oo AN
2

VAV

PRVSNEXA
AV N AAYAT
N Lo

(a) 1st attempt, random distribution of tiles (b) 2nd attempt, growing cells outward from

side of map

(¢) 3rd attempt, growing cells outward from dif- (d) 4th attempt, adding constraint not to split

ferent directions cells

Figure 8.3: Experiments on load distribution algorithm.

100

8.3. Load Balancing

edges (see figure 8.3(c)) had the nasty side-effect of splitting cells down the middle
when dealing with more than two servers.

A fourth attempt was to add a constraint where a node would not give up a
triangle if it split its cell into two (see figure 8.3(d)). However, this often created cells
with long strips. Both strips and split shapes were terribly inefficient on the interest
management system.

The algorithm that was finally chosen for Journey is slightly more complex, but
still does not require elaborate calculations to be performed at run-time. For each tile,
a priority value is calculated as follows: a triangle whose neighbours are all members
of the same cell has priority 0. Otherwise, the priority of a triangle is the distance
between this triangle and the closest triangle of priority 0.

This sorting is illustrated in figure 8.4(a), where triangles are sorted using priorities
ranging from 0 to 3. In this example, the cell with red tiles is hosted on an overloaded
node, which is trying to transfer some load to the node hosting the cell with the tiles
in blue. First, the tile with priority 3 is transferred (see figure 8.4(b)). Then, the tiles
with priority 2 are transferred (see figure 8.4(c)). The order in which these three tiles
are transferred does not matter, as long as they are transferred before the priority
1 tiles. If the cell still needs to shed some load, then level 1 tiles are transferred.
Tiles with only one connected neighbour will be given away first (see figure 8.4(d)).
This helps make the cell shape smoother. It should be noted that transferring tiles
of priority 1 will often increase the priority of priority O tiles, as they are losing a

neighbour.

8.3.4 Load Sharing Master Objects

As with master cells, hosting master objects generates load. However, master objects
can easily be migrated to other nodes. Let us define the notion of total load (T'L;)
and target load (AL;), this time for nodes with at least level 1 trust (S;).

Vo€ 8, TL = L(x)

101

8.3. Load Balancing

NERORONE AN

(¢) Transfering 2nd priority tiles (d) Transfering some 1st priority tiles

Figure 8.4: Demonstration of shrinking a cell.

102

8.3. Load Balancing

AL, =TLy/ |54

We define a minimum load M L constant, where nodes with load higher than M L
will try to migrate some master objects to other nodes. However, only nodes with
load lower than AL, should be considered valid candidates for migration. Considering
that nodes with level 1 trust should greatly outnumber nodes with level 2 trust,
ALy, < AL,. Given that level 1 nodes are not trusted enough to host master cells,
they are good candidates for master object migration.

It can easily be argued that some objects are likely to interact with each other.
One straightforward example is a player object : a player interacts frequently with
the item objects contained in its inventory. It would be logical to keep these objects
on the same node, for efficiency purpose. That aspect, however, is outside the scope

of this work, and left for future work as discussed in chapter 15.

8.3.5 When a Trusted Node Joins the System

The proposed load sharing scheme has the additional benefit of fixing the bootstrap
problem. When the system is initially started, the initial node, A, hosts all the master
objects and one master cell containing all the tiles. When a new node B joins the
system, it has no master objects and, if it is a level 2 node, a master cell with no tiles.
However, the addition of a new node lowers the AL, value, causing A to consider

itself to be overloaded.

e If B has the trust level needed to host cells, it will receive tiles from A, until
the load of A is under the OL4y value.

e If B has the trust level needed to host master objects, it will receive master
objects from A, until its load is higher than AL;.

After a short amount of time, the system will stabilize and both nodes will have
roughly the same load. If a new node C joins the system, both A and B will shed

load (either tiles or objects) until all three nodes stabilize.

103

8.3. Load Balancing

(c) After 3 minutes (d) After 4 minutes

Figure 8.5: Demonstration of load sharing tiles with four level 2 nodes.

104

8.3. Load Balancing

Figure 8.5 demonstrates the load sharing algorithm in action, as three level 2
nodes are successively added to the system. About 4 minutes are required for the
system to stabilize, during which triangles are transferred from one cell to another.

After the 4 minutes, the load on each server is approximately equal.

8.3.6 Leaving the System

When a node leaves the system in a controlled fashion (failure cases are only consid-
ered in chapter 9), it must transfer the tiles and master objects it is hosting to the
remaining nodes. However, because the node is shutting down, it does not have the
time for the typical multi-round load sharing algorithm.

Let us assume that node A is shutting down. Using the global load and trust
information, node A determines that node B is the node with the lowest load and
is able to receive both tiles and master objects. In this case, node B is called the
successor node. As a first step, node A transfers its master cell to node B. The tiles
in this additional master cell will be given away to the next level 2 node joining the
system. As a second step, node A will migrate all its master objects to the successor
node. This successor node will then be able to transfer any excess load using the
regular load sharing algorithm.

Note that a node shutting down will immediately remove itself from the global
load and trust information service. This is to prevent the node from receiving new
load while trying to get rid of its cell and its master objects.

If the system must deal with multiple simultaneous shutdowns, this approach can
be altered to select multiple successors, reducing the possibility of overloading any

single node.

105

Chapter 9
Fault Tolerance and Cheat Detection

within a Replicated Environment

There is a close link between the concepts of fault tolerance and cheat detection. In
the field of fault tolerance, a component failure is defined as “an observable deviation
from the component’s specification”. At its core, a cheating player can be considered
an internal fault in the system, since the player’s computer violates the game rules
(i.e, the specification). Thus, the concepts of detecting faults found in the field of fault
tolerance can potentially also be applied to cheat detection. Dealing with cheaters
means isolating them from the game very quickly. Again, fault tolerance techniques
can help us deal with this situation, as it is similar to error containment and isolation.

Before trying to detect and deal with faults, it is important to understand what
can go wrong in the system. The first section of this chapter defines what is the
correct behaviour of the system, by defining possible faults and the consistency model
provided by Mammoth. The second section describes techniques used to detect faults,
while the third section discusses some solutions to deal with faults. The last section

presents how auditing can be used to deal with cheaters.

106

9.1. Consistency Model

9.1 Consistency Model

The first step in dealing with faults is to properly define the correct behaviour of the
system. In Journey, a change of state on a master object is atomic and defined as an
operation. Note that an operation has a local effect, it only affects one node. When
dealing with a distributed system, a key concern is keeping a consistent view among
all participants. However, given that data cannot be instantaneously shared because
of the physical limitation of communication technology, views will be inconsistent at
one time or another. Thus, some inconsistencies must be tolerated. This is discussed
in section 1.1.2.

A consistency model defines what are the minimum consistency guaranties pro-

vided by the system. In the case of Journey, the consistency model is a follows:

e When the state of a master is changed during an operation, the updated state

of the master is eventually propagated to all non-faulty replicas.

e At the end of the operation, the master and all non-faulty replicas will have the

same state.

e Updates to the state of a replica are executed in the same order as updates on

the master object.

Note that it is assumed that the network communication layer is reliable and that
messages are delivered within a reasonable amount of time. If messages cannot be
delivered to a node, that node is considered faulty and is removed from the system.
The network layer also provides basic security features, preventing messages from
being altered during transit, or spoofing the source of a transmission.

However, the network communication layer does not provide broadcasting as an
atomic operation. This means that if a node crashes while issuing a broadcast, it is

not guaranteed that the broadcast will reach all the targeted nodes.

107

9.1. Consistency Model

9.1.1 Possible Faults

A failure in the system is any deviation from its correct behaviour. This deviation
is caused by a fault in a node. A better understanding of the possible faults in the
system is key to designing proper fault detectors, and taking the necessary steps to
recover the system.

The most common fault in a node would be the loss of communication with a node,
either due to communication failure or because that node in question is overloaded.
In the first case, the node is lost to the system and its assets should be recovered. The
second case causes more of a problem, as it is impossible to detect that messages are
simply delayed. The node can eventually rejoin the system, which is also a problem
if another node has already recovered the lost masters. This leaves the system in an
inconsistent state, as some masters will exist in two locations at a given time.

Other types of faults in the system are intentional, caused by a user in order to
gain a game advantage, or to impede the play experience of other people. These faults
are commonly referred to as cheating. For example, a client might send requests that
violate the rules of the game, or might send requests related to objects not under his
control. The cheats on the system can also be more subtle, such as falsely claiming
ownership of an object, or requesting a migration that would move an important
object to a cheating node.

It is important to note that some cheats are non-technical in nature. Social
cheating has shown itself to be much easier to execute and more difficult to detect.

However, such practices are outside the scope of this work.

9.1.2 Trust

Using the notions of trust and roles discussed in section 7.2, three types of participants
are defined for fault tolerance purposes: nodes hosting cells, nodes hosting objects
and nodes hosting nothing. For the purpose of fault tolerance, we restate these three

types of participants as follows:

e Level 2: Nodes hosting cells : These are dedicated machines featuring redundant

108

9.1. Consistency Model

hardware, hosted by the service provider. As such, they are considered highly
reliable and very expensive to purchase. Thus, only a few of them are present

in the system.

e Level 1: Nodes hosting objects : These are temporary participants (Level 0
nodes) that have gained trust. As such, they are considered reasonably reliable,

although their level of reliability changes over time.

e Level 0: Nodes hosting nothing: These nodes are not trusted in the system and
are not assigned any responsibility. They are more likely to leave the system
after short periods of time. Level 0 nodes represent the majority of the nodes

in the system.

Note that a node leaving the system when properly shutdown is not considered
at fault. When leaving the system in a controlled fashion, a node transfers all its
master objects and cells to another reliable node before disconnecting. However,
disconnecting from the system in an uncontrolled fashion is considered a fault, as

master cells or objects hosted on that node are considered lost.

9.1.3 Service Guarantee

The service guarantee proposed for Journey is that the system will recover if

Scenario A: Any number of Level O or Level 1 nodes are lost.

or

Scenario B: A single Level 2 node is lost and any number of Level O are
lost.

It is important to note that both scenarios are not compatible. For example, if
several Level 1 nodes are lost, the system cannot recover from the loss of a Level 2
node until the Level 1 nodes are first recovered. Also, if a Level 2 node is lost, the
system cannot tolerate the loss of any other Level 1 or 2 nodes until the previous

recovery process is complete.

109

9.2. Fault Detectors

9.2 Fault Detectors

Fault detectors are components which monitor participants for deviation in correct
behaviour. However, the topic of fault detection is very broad and could be considered
a thesis topic by itself. Thus, the elaboration of effective fault detectors is outside
the scope of this work. Instead, this section focuses on some simple fault detectors.

A key concern for fault detection in Journey is to determine if active or passive de-
tectors are more appropriate. An example of an active detector would be to regularly
poll a node, to ensure it is properly functioning. This has the advantage that a faulty
node can be detected before any errors occur in the system. However, active detec-
tors generate load in the system, even when no faults are present. Passive detectors
monitor the system for errors, and investigate the causes of such errors. This method
generates little load in the system, because no action is taken if no errors are present.
However, fault detectors do not work in a preventative fashion, they only react to
erroneous behaviour. Both types of detectors were implemented and compared.

The first experiments with fault detectors were done with a simple active detector.
This detector would monitor the incoming network traffic and record which nodes were
sending out messages. A node that did not send out a message after a certain amount
of time would be suspicious. Once a node was suspected, it would receive a “Keep
Alive Request” message, which would be answered with an “I Am Alive” message.
This was not often required, as the Interest Management component would send out
regular updates to all other nodes. However, this method of monitoring was very load
intensive, as it required the system to record the arrival time of every message. Thus,
this method was quickly eliminated as a viable solution.

Passive solutions provide an interesting alternative, as they generate no load when
no faults are present in the system. The key in developing an effective passive detector
is deciding which behaviour in the system should be monitored for errors. The first
passive detector that was tested monitored for timeouts in RPC calls. Although the
presence of a timeout does not necessarily indicate the failure of a node, it is an
indicator. The timeout could be provoked by a moment of unusually high load in

the system. However, several consecutive timeouts would indicate that a node is no

110

9.3. Faults Handlers

longer reachable, and thus, faulty. However, this approach was problematic because
a node does not necessarily execute calls on objects hosted on every other node in
the system. Thus, failed nodes could easily go undetected for long periods of time.
This was an unacceptable solution, as failed nodes should be detected without delay.

A second passive solution is to monitor the network engine for connectivity loss.
When the loss of a socket connection is detected, it is propagated to the fault detector.
In addition, the loss of connectivity is propagated to the other nodes participating in
the system, as the disconnected node should be considered removed from the system.
The propagation of this event depends on the topology of the network. This second

passive solution was chosen as the primary fault detector in Journey.

9.3 Faults Handlers

Faults in the system are usually the result of the loss of a node. Recovering from that
loss requires determining the responsibilities of the lost node and assigning them to
different nodes. In this case, it involves determining which object and cell masters
were hosted on the lost node. These masters are considered orphaned and new masters
must be assigned on different nodes.

A key difficulty in handling these kinds of faults is determining which node should
be assigned as the new master for an orphan. Nodes with replicas of the orphan can
qualify to host the new master object. However, choosing that host is difficult, as
there are no guarantees to when the remaining nodes will be advised of the loss.

Distributed election or consensus algorithms are possible solutions to this prob-
lem, as they allow the nodes to work out themselves who can be the new master.
However, given that the messaging mode is asynchronous and that the environment
is unreliable, there are no election or consensus algorithms that would allow the re-
maining nodes to agree on a single new node. Even if timers were used to make
the messaging mode synchronous, any election or consensus solution would have too

many messaging rounds.

111

9.3. Faults Handlers

Thus, an effective recovery solution would need to pre-assign the recovery respon-
sibilities, thus avoiding the need for distributed consensus. In the case of object
masters, they are recovered by the node hosting the corresponding master cell (see
section 9.3.1). To deal with the loss of cell masters, cells are linked togeter as a cir-
cular chain. When a cell master is lost, its recovery is handled by the node hosting
the previous cell in the chain (see section 9.3.2).

Although this strategy is effective in most cases, it is possible for a node to crash
while it is broadcasting a state update. In this case, it is possible that the state
update was not properly broadcast to all replicas. However, it is important that the
system recovers to a state were both master and replicas have the same state (see
section 9.3.3).

9.3.1 Default Recovery of Object Masters

As previously mentioned, all objects are physically (x,y) located in a cell. A node
will have a replica of every object physically located in the master cell it is currently
hosting. These replicas can be used to recover objects in case of a failure.

When a node hosting master objects fails, all nodes in the system are advised. Any
replicas with their corresponding master on the failed node are tagged as orphans.
Level 2 nodes will then check for any orphans located in their master cells. Those
orphan replicas are switched to masters.

Note that this recovery scheme only works if master objects are not hosted on the
same node as their cell master. This is not a problem, as this constraint can be easily
enforced using the load balancing system.

Once a master object has been successfully recovered, it is immediately migrated
to a different node. The system will not be considered in a stable state until all
recovered master objects have been moved. Otherwise, the loss of a node with "un-

moved" violate the service guarantee put the system in an unrecoverable state.

112

9.3. Faults Handlers

9.3.2 Cyclic Recovery of Cell Masters

As previously mentioned, each object is physically (x,y) located in a given cell. In a
non-replicated distributed system, finding the corresponding cell of an object would
require broadcasting a request to all nodes hosting a cell, and waiting for a response
from the node hosting the corresponding cell. This is unacceptable in Journey, which
requires up-to-date information on all cells in the system in a timely fashion. Instead,
every cell in the system is replicated on every level 2 node. Finding an object’s
corresponding cell only requires iterating through the cells.

The cell replicas simplify the recovery process given that every node has the nec-
essary data to repair the orphan cell. Cells are linked together in a cycle (see figure
9.1). When dealing with orphaned cells, the owner of the precedessor to the orphan
cell is responsible for restoring that cell.

The complete algorithm can be found in annex A.4. If multiple sequential cells
were stored on the same node, they will be restored, one at a time, by the node
pointing to the first cell in the sequence. By restoring the first cell in the sequence,
that node is now responsible for the second node in the sequence. This repeats itself
until the complete sequence of node has been restored. As long as one node in the
cycle is still functioning, the cell masters can be recovered.

Restoring cells sequentially might appear to be an inefficient solution, given that
the loss of several sequential cells would require multiple rounds to restore the system
fully. However, the temporary loss of a cell master is not to problematic to the system,
as it simply prevents interest management from properly distributing new objects to
nodes. Although some nodes will be missing replicas, the system will continue to
operate according to specifications until all cells are properly restored. Since players
cannot see or interact with objects that are not replicated on their node, the service
interruption will most likely be invisible to the players.

Once a master cell is recovered, a message is sent to all nodes announcing the new
owner of the cell. Nodes hosting master objects located in this cell will re-register

these objects with the cell master.

113

9.3. Faults Handlers

e

) Cell objects organized in a cyclic fashion.) Cells are distributed on 3 nodes: A,B,C.

" B
B
=

(c) Node A fails, orphaning 2 cells. (d) Node B and C recover the orphaned cells,
keeping the cycle intact.

Figure 9.1: Cyclic recovery of 2 orphaned cells.

114

9.3. Faults Handlers

9.3.3 Dealing with Inconsistent Replicas

As mentioned previously, updating the state of the various replicas in the system is
not an atomic operation. If a node fails while broadcasting one such state update, the
update could possibly not propagate properly to all the replicas. This would leave
the system in an inconsistent state, since not all replicas have been properly updated.
This is even more problematic for recovery given that there is no guarantee that the
node handling the recovery has the latest state.

It is important to note that this situation only arises if a failure occurs during state
broadcast. Given that the failure of a trusted node is considered a rare occurrence,
the failure of such a node at that exact moment is considered even more exceptional.
Thus, any solution that deals with inconsistency should have a very low impact on
performance, given the very low likelihood of such a situation occurring.

When updating the state of objects, regardless of the presence of faults, the the
update must be either applied to all replicas, or to none of them. Four possible

scenarios for dealing with inconsistent replicas are proposed:

e Scenario 1: Do nothing This is the easiest solution to implement, as no
monitoring is done when an object is restored. If the failure occurs, the object
will not be restored to its latest state. However, all replicas will be correctly

restored to the state before the update.

e Scenario 2: Safe Locking This is the safest solution by far, but very slow.
All copies of objects are locked before a state update is sent out. The lock is
then only remove once all updates have been applied. In the case of a crash,

the state of all replicas can be quickly reverted and the locks are removed.

e Scenario 3: Best Effort Updates are sent first to the replica on the cell
master, in the hope that at least that update will be applied. However, no
additional effort is done to maintain a consistent state. In case of a fault, all
replicas are updated to the state of the new master, which might or might not

have received the update.

115

9.3. Faults Handlers

e Scenario 4: 3rd party monitoring A third party monitor is used to monitor
the state changes of the object. If the state of the object must be recovered,
the 3rd party will query all replicas to make sure the latest version is restored.

At the end of the recovery, all replicas will have the latest state.

Given the very low likelihood of this failure, scenario 1 seems like the preferable
solution. Scenario 2 and 4 create a lot of overhead in the system, while scenario 3

cannot be used with the current network engine of Mammoth.

9.3.4 Fault-Tolerant Burst Migration

The burst migration algorithm presented in the previous chapter is, by definition,
not fault tolerant. If the destination node does not receive the object, or refuses the
object, the master object is lost and only replicas remain in the system.

Fault-tolerant migration in Mammoth involves three parties: the sender (A), the
destination (B) and the node owning the cell master containing the object being
migrated (C). If node A or B crash during the migration process, node C will recover
the object. However, the migration will not be interrupted if C crashes during the
migration.

Given the network model and the reliability assumptions of the previously defined
consistency model, we can assume that network messages are never lost and are
delivered within X seconds, where X seconds is the maximum time allocated to a
message round.

To make burst migration fault-tolerant, we add a messaging round at the start of
the migration. First, node A informs node C that it is migrating the object. Node
A then burst migrates the object to node B. Node B must then send an updated
copy of the object to node C, informing it of the successful migration. If node A is
unable to migrate the object, it sends a message to C informing it that the migration
is cancelled.

When node C receives the notice of the migration, it waits for 2X seconds. If it

does not receive a confirmation from B, or a cancelation from A, the migration is

116

9.4. Auditing

considered failed and it recreates the master object. A complete description of this

algorithm can be found in annex A.2.

9.4 Auditing

As previously mentioned, cheating players can be compared to faults in the system.
They disrupt the normal operation of the system by introducing variations in how
actions resolve, either to their advantage, or to simply ruin the play experience for
other players. The fault detectors presented in the previous sections can not detect
these malicious parties, since the faults occur at the execution level of the game, not
the node itself.

In order to detect violations of the game rules by malicious player nodes, Journey
incorporates node auditing capabilities: since the game state is encapsulated in master
objects, a cheating player must alter the way methods of a master object change its
state. When auditing is enabled, method calls are executed both on the target node
and the auditing node (see figure 9.2). A successful method call should yield identical
results, confirming that the method was successfully and honestly executed. The
return value can also be audited, ensuring that the target node returns the proper

value.

9.4.1 What and When to Audit?

Not every remote method call requires auditing. The need to audit and the frequency
of the auditing is determined by the importance of the method call and the effect it
has on the system.

For example, a method call used to alter the colour of a player’s shirt has little im-
portance and does not need to be audited. However, a method call for the movement
of a player might require some auditing, as cheating on the location of the player
can have a negative effect on game play. Critical method calls, such as those related
to trading items, might require constant auditing, as cheating on them would have

major negative impact to the game.

117

9.4. Auditing

Method Exec()

I
I
1]
No Audit 5 :
I
I
I
L 1]

Return Value

State Update State Update

Return Value

| |
—L |
- - ! Method Exec() |
With Audit Bl |
I - | : Method Exec() to Audit
| |
| |
| 1
|
|
|
L

Audit IResult
T

Y v v

Figure 9.2: Example of Remote Method Executing with and without Auditing.

The frequency of the auditing can also be influenced by the trustfulness of the
node hosting the master object. For example, a master object stored on a level 2 node
never needs auditing. On the other hand, a newly promoted level 1 node, or a node
with a history of faults are likely candidates for an increased amount of auditing.

Note that only deterministic methods can be audited using the proposed strategies.
A method executed on two different hosts should have the same return value, and

should leave both objects in the same state.

9.4.2 State History

Depending on the auditing strategies, there are no guarantees on when auditing re-
quests will be received. It is quite possible that an auditing object might receive a
request for a state change that has already been applied. Thus, the auditing object
would not have the past state to execute the audit request.

This problem can be solved if the auditing object records the state changes over

118

9.4. Auditing

time. By keeping a history of the last states, the auditing object can execute any
recent auditing requests. To save memory, state data is serialized before being stored.

Historical data that is never needed is never deserialized and discarded.

9.4.3 How to Audit

There exists a tradeoff between how intrusive and how effective the auditing is. Au-
diting is very inconvenient when it causes a slowdown in the normal operation of the
game. However, simple auditing procedures with low overhead are completely useless
when they are not protected from tampering. As such, the next sections present three

auditing schemes, each with a different level of intrusiveness and effectiveness.

Direct to Master and Auditor

This is by far the less intrusive auditing strategy presented in this section. When a
method call needs to be audited, an audit request is sent by the source to the auditor,
bypassing the master. Once the master returns, the return value is also sent by source
to the auditor, which can use this value, in addition to the normal state update, to
determine if the method call was truthfully executed.

This strategy is the fastest of the presented methods, as it does not require any
additional messaging rounds. However, it is also the most vulnerable to abuse, as
there is no way to insure that a client is truthful. For example, a callee can send a
different call to the master object and the auditor, forcing a false auditing result. The
callee can also return a false value to the auditor, also creating a false audit result.
Fortunately, malicious clients can usually be detected after a certain time, as only

their auditing requests will fail.

Auditor Proxy

In this auditing strategies, method calls that require auditing are sent to the auditor,
which in turn forwards them to the master object. The process is transparent, the
master object believes that the original request came from the auditor. This means

the return value is also sent to the auditor, which returns it to the original callee.

119

9.4. Auditing

This auditing strategy is much more reliable, as the callee cannot pass false infor-
mation between the auditor and the master object. However, the price of reliability

is pretty steep, as the time required for an audited method call is doubled.

Forwarded to Auditor

A hybrid of the two previous strategies, audited method calls are forwarded to the
auditor, which in turns forwards it to the master object. However, the method call
is forwarded with the callee as the origin, ensuring that the return value is returned
directly to the callee. The auditor then only uses the state change to audit the method
call.

This strategy adds one message round to the method call, but the callee cannot
maliciously falsify audits. It should also be considered less reliable than other strate-
gies, as the auditor does not receive the return value and cannot use that information

to validate the call. This scheme is currently used in Journey /Mammoth.

9.4.4 The Auditor

Auditing allows a node to suspect another node of cheating but it does not confirm
it. In fact, it is very difficult for a given node to absolutely conclude that another
node is cheating. It might even be unfair to convict a node given the evidence of a
single auditing node, unless that node is absolutely trustworthy.

A possible solution is to forward auditing calls to different auditors. If a group of
distinct auditors each detect a particular node as a cheater, then it is most likely a
cheater. However, as previously mentioned, voting algorithms in this kind of network
environment are very difficult difficult to implement.

Thus, solutions with a single auditor are preferred. Cell managers are an obvious
choice for auditor, as their level 2 trust ensures their trustworthiness. Unfortunately,

cell managers are typically very loaded, making them less than ideal candidates.

120

9.4. Auditing

9.4.5 Dealing with Good and Bad Behaviour

Accusing a node of cheating is a tricky endeavour. Ideally, cheaters should be swiftly
removed from the system, as they impact on the play experience of an honest player.
However, accusing honest players of cheating can also have a serious negative impact
on the game.

A player cannot be accused of cheating after a single violation. In addition, even
if the auditor is trustworthy, it can still be faulty. One approach is to assign every
node a starting trust score, and to decrease that score every time an audit fails. If
the score drops below zero, the node is declared a cheater.

That same score would increase over time, as long as audits were successfully
completed. Once the score reaches a certain value, the node would be promoted.
Note that this promotion should not be permanent, as previously mentioned in section
7.2.2, the likelihood of the player disconnecting increases with time.

For experimental purposes, two simplified decision algorithms were designed and
integrated in Mammoth. The first is very aggressive and declares a player a cheater
after 6 failed audits. There is no notion of time and failed audits are never forgiven.
The second is very conservative and only declares a player a cheater if more than 5%
are failed, and this only after at least 50 audits have been done. This means a player
cannot be banned for failing less than 3 audits. Although the second algorithm allows
for more faults as times goes by, it also takes more time to fail a player that starts

cheating immediately.

9.4.6 Dealing with Cheaters

The most common consequence when detecting a cheater is to banish him from the
game. This is particularly easy to implement when combined with an efficient fault
recovery solution. Cheating nodes are declared as faulty nodes and are removed from
the system. Since the data contained on that node is untrustworthy, it is simply
ignored in the recovery process. Instead, the object might be rolled-back to an earlier
version.

Most multiplayer games (both massive and not), require a player to sign up with

121

9.4. Auditing

an account. Privileges for new accounts are usually limited, until a player can prove
himself honest. In addition, cheaters can be uniquely identified and easily removed
from the system. With this protection scheme, cheaters will prefer to cheat using a

stolen account, as to not risk their own account.

122

Part 111

Mammoth

This part focuses on Mammoth, the framework used to implement and test Jour-
ney. Creating Mammoth itself represents the effort of numerous students over the
last 5 years. Their work is described in chapter 10 . The result is a framework with
a modular and flexible architecture, which is presented in chapter 11. The following
chapter explains how Journey was implemented and integrated in Mammoth. Finally,

chapter 183 discusses the various experiments done to evaluate Journey’s performance.

124

Chapter 10
The Story of Mammoth

Mammoth is a massively multiplayer game research framework. It was created as
a collaborative project between a group of McGill professors and students in early
2005, and has evolved considerably during the last 5 years. The author of this thesis,
Alexandre Denault, was lead architect from May 2005 to September 2005 and from
May 2006 to March 2010.

The story of Mammoth can be broken down into periods delimited by the summer
semesters. Summers typically favoured large development groups composed of a mix
of undergraduate and graduate students, working on projects and improving the core
components. Active developers during the rest of the year were mostly graduate stu-
dents, working on their thesis or graduate projects. An understanding of Mammoth’s

history is critical to understanding how its architecture evolved over time.

10.1 Summer 2005, the First summer

Development of Mammoth officially started in May of 2005. The project was headed
by Alexandre Denault, a master’s student under the supervision of Jérg Kienzle. This
student also wrote the graphic library that first powered Mammoth, MinuetoGL, an
OpenGL extension of the Minueto graphic framework [DK06|. Pierre Marieu, a French
exchange student, developed the core classes of Mammoth, under the architectural

supervision of Alexandre. The initial version of Mammoth was client /server, allowing

125

10.1. Summer 2005, the First summer

for a single server and up to 30 clients. All interactions between clients and the server
were routed through a single Game class.

Client /server communication was provided by Mammoth’s first networking en-
gine, developed by Alfred Leung. Although the initial version of Mammoth did not
explicitly feature interest management (IM), it did have some basic IM functionalities.
The game world was divided into zones, and actions were classified as either major
or minor. A client would receive both major and minor messages for events occurring
in its zone, and major messages occurring in neighbouring zones. The server would
track the position of clients and subscribe them to the appropriate channels, either
with a major or full subscription.

One key challenge in game development is to have adequate tools to generate
content for the game. Loc Bui developed the first content editor for the game, a
particularly difficult challenge as the Mammoth game engine did not exist at that
point. In addition, Mammoth development required the exploration of several new
Java technologies, such as NIO, Webstart and the Sound APIs. Alexandre Ques-
nel was in charge of researching these new technologies and integrating them into
Mammoth.

The first working prototype, known as version 1, was completed in August 2005.
This version of Mammoth was simple; players could walk around the map and pick up
objects. However, it served as the basis for all following research. Alexandre Denault
resigned as the head of Mammoth, as he had completed his Master’s degree. He was
replaced by Jean-Sebastien Boulanger, a master’s student under the supervision of
Jorg Kienzle and Clark Verbrugge.

It should be noted that during this summer, Mammoth was known as project
Martlet. This was a place-holder name, until a suitable project name could be chosen.
After a few days of fierce voting, the name Mammoth, originally suggested by Denis

Lebel, was chosen. Runner up suggestions included Virgo, Medici and Ensemble.

126

10.2. Fall 2005 and Winter 2006

Figure 10.1: Mammoth Client in 2005

10.2 Fall 2005 and Winter 2006

Although the first Mammoth prototype was considered a success, its architecture had
some serious limitations. Mammoth used a communication system that allowed clients
to have either major or minor subscriptions to zones. This regulated the amount of
messages a client would receive for a particular zone. Unfortunately, the system prop-
agated too much data on the network. Clients were receiving useless updates about
objects located way outside their area of concerns. Thus, Jean-Sebastien Boulanger
added the notion of interest management to Mammoth. In addition, Jean-Sebastien
also completed a major refactoring job, separating several of the core component
classes into interfaces and implementation classes.

Nadeem Khan, a master’s student under the supervision of Bettina Kemme, start-
ing working on a distributed Mammoth prototype that would allow the server load
to be distributed across several machines. His strategy was to assign responsibility of

zones to different servers, and have clients communicate with those different servers.

127

10.3. Summer of Code 2006

Although this distributed prototype was successfully implemented, it diverged too
much from the main version of Mammoth for the changes to be integrated.

At the same time, Russell Spence, a physics undergraduate student, developed
the first and still current physics engine, as part of a Phys-489 special project. The
main contribution of this project was a fast and efficient collision detection engine,
which is critical to any game project.

Finally, Jeremy Claude and Marc Ovidiu focused their effort on building a new
content editor, as part of an undergraduate computer science project course. Using
a modular design left by Alexandre Denault, they used the game engine to create a

content editor with an interface very similar to the one found in the actual game.

10.3 Summer of Code 2006

Summers, in the Mammoth team, came to be known as “Summer of Code”. The name
is inspired by Google’s “Summers of Code”, where programmers can get funding to
work on their favourite open-source application.

The first Summer of Code saw an unprecedented number of coders working on
Mammoth. Among the returning coders, both Jean-Sebastien and Nadeem continued
to work on their respective projects. Deciding to start a PhD at McGill, Alexandre
Denault rejoined the project as the head of Mammoth. In addition to coordinating
all the work done on Mammoth, Alexandre did some major improvements on the
graphics engine. Jeremy returned to the Mammoth team to finish his work on the
content editor, this time joined by Jessica Guo and Yannick Thiel. While Jeremy
focused on the user interface of the content editor, Jessica mostly worked on the
tools needed to create items and add them to the map. Yannick’s work centred on
a wall drawing tool (see figure 10.2), which would combine overlapping walls in an
aesthetically pleasing way.

That summer, Michael Hawker, Nicolas NgManSun and Marc Lanctot joined the
team. Michael was interested in the item creation process in Mammoth. Early on

in his work, he noticed that most items in Mammoth were similar. For example, the

128

10.3. Summer of Code 2006

Mammoth Content Edit

File Edit View Tile Help

p OpenObject Cut Copy Paste
| | <) Toolbar

Ealers)

Objects | Players| Wals

Wal Mode

Figure 10.2: Wall drawing tool, developed by Yannick Thiel

Mammoth game map Town19, used in most experiments, contains almost 40 identical
flowers. Michael proposed that items could be defined with a type system, where
flowers could be defined as a type, and that flowers in-game could be instantiated
from that type. Further work on this subject demonstrated that a hierarchy could
also be found in this type system. For example, both wooden and metal bookcases
shared similar properties. Michael’s other research interest was to add purpose to
Mammoth. His work introduced the notion of sub games, where players could join a
mini-game that would be played on the world map. This quickly introduced concerns
on how different games would interact with each other.

Nicolas” and Marc’s work both aimed toward adding artificial intelligence to Mam-
moth. Nicolas’ concerns were path-finding on a large scale map, as found in Mam-
moth. The idea was to use the zone system in Mammoth to determine the path to
take at a macro level. That macro path could then be broken down to several smaller
paths, and solved using more traditional approaches such as A-star [Les05|. During
the summer, Marc’s work mostly focused on sub games and Orbius, providing him
with a test framework for the path-finding algorithms.

Orbius was a capture-the-flag type of game, designed by Marc, Michael and

Alexandre. The goal was for players to collect orbs of different sizes for their team and

129

10.4. Fall 2006 and Winter 2007

& Mammoth: The Massively Multiplayer Prototype

Figure 10.3: Mammoth Client in 2006

bring them back to their home base. To prevent opponents from achieving the same
goal, players could tickle their opponents to steal opponent’s orbs and hide them. In
June 2006, data was gathered from 20 players playing this game for 2 hours. This data
was used in research relating to points of interest [Lan05] and path-finding [LSV06].

10.4 Fall 2006 and Winter 2007

This development period was mostly dominated by the Al developers, Marc Lanctot,
Jonathan Li On Wing and Adrian Ghizaru. Marc Lanctot designed an infrastructure
to easily add NPCs (non-player characters). A key element of this design is that
NPCs could either be run locally on a Mammoth server, or as a separate client. When
developing an Al, it was very convenient to have that Al run locally. However, large-
scale distributed experiments require NPCs to fonction on different nodes as stand-
alone clients. Jonathan and Adrian used this infrastructure to work on a learning
NPC AI. Their goals were to have the Al record the behaviour of a player, analyze

it, and have the NPC reproduce some of that behaviour in the characters once the

130

10.5. Summer of Code 2007

player logged off.

During the Fall 2006, Mammoth was revealed to the world, as part of a poster
presentation at Cascon 2006. Although publications on Mammoth were already avail-
able, it was the first time Mammoth was shown in public in an organized environment.
The reception was very positive. In addition, a Mammoth server was setup locally,
so that people at the conference could login to Mammoth and try it out themselves.

This period also saw the introduction of Mammoth’s most important debugging
tool, the Web Monitor. Distributed consistency bugs are one of the toughest issues
to handle when programming. However, typical debugging tools are not designed
for distributed debugging. In Mammoth, the Web Monitor allows a developer to see
the state of all the game objects as the game is running. Each client will spawn
an internal web server, making this information available from any computer using a
web-browser. A developer can thus compare the live state of the different participants
simply by switching through different browser windows. The idea was first developed
by Alexandre and further enhanced by Michael who found the tool invaluable in fixing

bugs in the items and sub games architectures.

10.5 Summer of Code 2007

Summer of 2007 was an interesting period for Mammoth, as improvements were
done on every module. Noteworthy additions to the team were Arianne Perpignani,
Valérie Ngo and Edouard Lanctot-Benoit, three arts interns from Collége Jean-de-
Brébeuf. Arianne and Valérie worked on revitalizing the 2D artwork in Mammoth,
while Edouard designed some 3D models of objects found on the McGill campus.
After working over a year on sub games, Michael had acquired a good understand-
ing of the architectural requirements of sub games. Thus, he designed a more generic
and modular interface, allowing for quicker development of sub games. Indeed, using
this interface, a simple sub game, such as Flower Recovery, which randomly spawns
flowers, could be developed in less than a day. This generic interface was based on

message interception, where a pre and/or post processing stage could be added to any

131

10.5. Summer of Code 2007

i

&l

(Pl Rl Be e B P R b [RS B
2

i

Figure 10.4: Mammoth Client in 2007

message handler. Sadly, this design was not compatible with the idea of distributed
servers, as there is no guarantee to where objects related to the game are stored
(items, players, etc.).

Some serious improvements were done to the path-finding when Joachim Desp-
land joined the team. His work focused on implementing a more elaborate A-star
pathfinding algorithm. Joachim’s algorithm would try to find a fast initial solution
using very large samples (i.e. big squares) to find a solution. Before the path was
found, the algorithm would return a best guess so that the player could start walk-
ing. The algorithm would then look for a better solution using smaller search samples
(i.e. small squares). Once the better solution is found, the initial solution was dis-
carded and the player continued moving. Experimentations have demonstrated that
the initial guess was very rarely wrong in setting an initial walking direction.

During the previous Fall and Winter term, many optimizations were done on
Mammoth to increase the player capacity, which was about 50 players at that time.

However, the current implementation of the publish/subscribe was simply not fast

132

10.6. Fall 2007 and Winter 2008

enough to expand beyond that limit. Thus Mathieu Couturier set out to study
every existing publish/subscribe system that would be compatible with Mammoth.
Although he was unable to stay all summer, he did produce a very complete study on
existing pub/sub systems compatible with Java applications. His work was continued
in the Fall by Dominik Zindel.

At the same time, a new project on persistence in Mammoth was started by
Kaiwen Zhang. One key feature of MMOGs is their persistent nature: the state of
the world is not loss if the server is restarted. Kaiwen’s work raised some interesting
issues, such as the different levels of importance for different actions. For example,
trading an item requires a high-level of consistency (to avoid cheating). This kind of
action needs to be recorded as soon as possible, possibly in a transactional fashion.
However, walking around the map has a fairly low level of importance, and position
data could be only occasionally recorded.

Mammoth’s user interfaces, long in need of a serious overhaul, were beginning
to be a limitation for several projects. An open source project, Fenggui [Sch09] was
released at that time and allowed for rapid development of a swing-like user interface
under any Java OpenGL plate-form. Wisam Al Abed and Ting Sun took on the

project to integrate Fenggui into MinuetoGL, and then later into Mammoth.

10.6 Fall 2007 and Winter 2008

By Fall of 2007, the Mammoth code was two years old and in a serious need of
refactoring. Fortunately, the Mammoth team had also learned a lot about modular
framework development and managing large-scale projects. Although all modules
were refactored, the network engine received the most important changes. Firstly,
its architecture was completely redesigned. Detailed information on the refactoring
Alexandre did on this module can be found in section 11.5. In addition, the old net-
work code, based on Java NIO technology, was proving itself to be a bottleneck. Thus,
the network code was migrated to a new Java network library, Apache Mina [Min10].

Alexandre replaced the old network engine by two new ones: Stern, which uses a

133

10.6. Fall 2007 and Winter 2008

File Edit View Tile Hel

p
‘ New van H New wmm” Open Map ‘ open omect| ‘cm!} copy ‘msm}

(] Fditing Map - Tawn20-1xm| 5o . i i P s X [5 Tootbar -2 i G
Selecion Drag

I ! I I I Il I ! [Objects [Players ~ Walls

=]

ATM Machine

Figure 10.5: Content Editor in June 2007

centralized hub to route all messaging, and Toile, which provides a fully connected
mesh topology where all participants are connected to each other.

Another important addition to the network was Postina, a network engine de-
signed and implemented by Dominik Zindel. Using Pastry’s peer-to-peer communi-
cation layer [RDO1] and the Scribe publisher/subscriber interface [CDKR02], Postina
was designed to provided a truly scalable network engine. However, the FreePastry
library [DEGT04] used for the project had several problems with nodes disabling
themselves when too many nodes were in the system. Though Postina did work for
a small number of nodes, it was too unstable to provide reliable results in large-scale
experiments. However, Postina’s development was a great contribution to network
engine development, as it helped shape the network interface for future peer-to-peer
network engine.

During this period, Mammoth received an important facelift when Alexandre up-
graded the graphic engine from the custom-built MinuetoGL to the community de-
signed and supported JMonkey [Pow10]. Given that JMonkey had a large amount
of community support. This change greatly reduced the amount of graphic program-
ming needed by the Mammoth team. This upgrade also introduced some interesting
pseudo-3D effects for walls and trees.

Wisam Alabed and Yifan Li started a project to allow GPS-enabled portable

134

10.7. Summer of Code 2008

devices to transfer location data to Mammoth, as a means to control a player. Using
a rudimentary map of McGill, a student would be able to move a Mammoth player
by walking around the campus. Most of the implementation was completed, except
for the integration with the GPS unit, which was unavailable at that time.

In addition, Nicholas Rudzicz started his work on Arda, a flexible content gen-
eration plate-form. The goal was to provide a modular tool to generate content at
different levels (terrain, city, street, building, etc.) and to allow these tools to interact
with each other. The results could then be exported into Mammoth.

The last change this summer, integrated by Alexandre, was the first generation of
the proxy generator, as described in chapter 6. For the first time since its development,

Mammoth could run in a true transparent multi-server configuration.

10.7 Summer of Code 2008

Summer 2008 was particular busy, as numerous undergraduate and CEGEP students
joined the team. One particular component that received numerous upgrade was the
content editor. The first step was to separate the content editor project into several
smaller components: the World Object Editor (Wote), the Map Editor (Mape) and
the 3D preview/conversion tool (Preview). The simplest of these components was
Wote, developed by Julien Dreux. It allowed the creation of object types within the
object hierachy. These object types could then be loaded into Mape and added to the
game world. Wote was quickly upgraded to Wote2 to include new object reflection
features, allowing developers to modify the structure of game objects without having
to constantly modify the content generation tool each time.

When Edouard Lanctot-Benoit returned to the project to build more 3D models of
the campus, additional work was done on the Preview tool, allowing for easy testing
and exporting of 3D objects in Mammoth. Edouard was assisted by another CEGEP
student, Vincent Brillant-Marquis, who mostly focused on texturing the models.

Mape, the most elaborate of the content modules required a new complete over-

haul. The weakness of the first iteration of the editor was that is was too different

135

10.7. Summer of Code 2008

Redpath Museum

Figure 10.6: Render of Redpath Museum as drawn by Edouard

from the game, making it difficult to determine what the map would look like. The
second iteration had the opposite problem; it was too closely coupled with the game
and any changes made to the game graphics affected the map editor. Alexandre refac-
tored all the graphic components into a distinct graphic package, separating it from
the client’s logic. The results of this refactoring can be found in 11.1.2. The second
step was to separate the editor logic from the display. Tommy Sheng Liang, a science
CEGEP student from Marianopolis College, was particularly helpful in improving
Mape to make it more stable and user friendly.

An interesting project initiated by two undergraduate students, Ashton Ander-
son and Amy Goldenberg, was to integrate voice commands into Mammoth. The
challenge was two-fold: integrate a speech-to-text library in Mammoth, and parse
voice commands into Mammoth actions. Unfortunately, given the lack of maturity in
available Java speech-to-text libraries, the voice interface never properly functioned.
However, the voice parsing component was completed and allowed the command of
players through natural commands in the chat box.

That summer, Yanwar Asrigo started working with Quazal’s Rendez-Vous frame-
work, exploring the possibility of integrating Rendez-Vous as the authentication and

chatting infrastructure for Mammoth. Thus, Alexandre designed a generic interface

136

10.8. Fall 2008 and Winter 2009

?

Chat Window i |

Inv
FPS: 62 - Counts: Mesh(428) Vert(1712) Tri(856) -

Figure 10.7: Mammoth Client in 2008

for all the non-game services in Mammoth (messaging, authentication, grouping, etc).
At the same time, Alexandre created a simple implementation of these services using
a stripped-down version of the RPC system found in the replication engine. Finally,
Alexandre continued the work on the replication engine, enabling object migration

between servers.

10.8 Fall 2008 and Winter 2009

By Fall 2008, there was growing interest in implementing a 3D interface for Mammoth.
Although 3D shapes and objects could be inserted into a Mammoth game map, the 3D
support was fairly limited. Three undergraduate students, Robert Rolnick, George
Ciobanu and Scott Mcmurray, took on the task of implementing height map support in
Mammoth, allowing a player to walk over 3D terrain. This proved to be an interesting
challenge, not only in adding the 3D terrain, but allowing other components of the

game, such as the player, to interact with this terrain (i.e. walk on it).

137

10.9. Fall 2009 and Winter 2010

Riry Pheng started work on the PSense network layer. This project was particu-
larly interesting as it introduced a new P2P technique for object discovery, completely
different from Quazal’s approach. As such, PSense also provided an alternative im-
plementation to the replication engine. This was an important change, as it demon-
strated that even the replication engine, one of the most important components in
Mammoth, could be replaced.

The integration of the triangulation tools in Mape allowed for easier experiments
with triangle partitions. Jonathan Pullano implemented a variation of triangulation
A* [DB06] for Mammoth.

During that period, most of Alexandre’s work focused on maintaining and refac-
toring Mammoth. At the same time, he implemented the infrastructure for load

balancing.

10.9 Fall 2009 and Winter 2010

Summer 2009 was a very quiet time for Mammoth, as there was no undergraduate
research project associated with Mammoth and no active developers working on the
code-base. However, many projects were continued during the fall and winter period,
such as Riry’s PSense network engine, Kaiwen’s work on persistence, and Alexandre’s
work on load balancing and fault tolerance.

In addition, Christopher Dragert started his work on formalizing actions in MMOGs
and analyzing the sub-components of these actions. At the same time, Christopher
refactored the action interface, which allows the control of player controlled and NPC
characters. Theodora Dan joined the Mammoth team in the Fall, focusing on improv-
ing the user experience of Mammoth. Much of her work centered around upgrading

the graphic engine to JMonkey 2.0 and improving the NPC players.

138

Chapter 11
The Architecture of Mammoth

The initial goal of Mammoth was to provide an implementation platform for aca-
demic research related to multiplayer and massively multiplayer games in the fields of
distributed systems, fault tolerance, databases, networking and concurrency. During
the last 5 years, several other projects have used Mammoth to conduct experiments in
the fields of artificial intelligence, modelling and simulation, and content generation.

To allow researchers to easily conduct experiments, the Mammoth framework was
designed as a collection of collaborating components that each provide a distinct set of
services. The components interact with each other through two types of well-defined
interfaces, engines and managers. The general architecture is depicted in figure 11.1.
At the highest level, the Mammoth architecture follows the Model-View-Controller

paradigm.

e The main components in the model are the World Engine, the Sub Games

Manager, the Physics Engine and the PathFinding Manager.

e The main components in the view are the Persistence Manager, the Web Mon-
itor, the Logging component, the XMLTools and various Mammoth clients,

which also act as controllers.

Currently, Mammoth has a 3D client and an NPC client, which is a client without

graphical user interface that executes Al algorithms which control the movements of a

139

11.1. Engines

Strateq Controller
World Engine Graphical Client
Partitioning Item —— (_Manager | H Client
[Strateg_y_J Hierarchy} Manager
| o
] Network Manager

Model Replication View
Physics Engine o Engine Persistence | | Web Monitor | | XML
Collision Pathfinding Manager & Logging || Tools
Manager
Bucket

[Subgame Manager

Engine

Figure 11.1: Components of the Mammoth Framework

player. The Model is connected to the Views and Controllers though the Replication
Engine, which implements the run-time support for replicated objects. It contains
the Interest Manager and interfaces with the Network Engine for low-level communi-

cation.

11.1 Engines

Engines are core components that can be completely replaced to experiment with
alternative implementations. A classic example of this would be the multiple network
engines available in Mammoth. The engines can be interchanged transparently, as

long as they provide the required features determined by their interface.

11.1.1 World Engine

The World Engine stores all the components contained in the game world and pro-
vides an easy interface to retrieve these components. At first glance, the World Engine
doesn’t seem like a component that needs to be replaceable, since it is fundamentally
a complex data structure for storing game objects. However, careful profiling re-
veals that a rather large percentage of CPU time (more than 20%) is spent in the

World Engine searching for various game objects. Thus, optimizing the different data

140

11.1. Engines

structures used to store the game components in the World Engine is an interesting
research problem.

The first implementation of the World Engine used one large hash table to store
all the different game components. The current implementation has demonstrated
an important increase in efficiency by storing the different game objects in several

smaller separate hash tables.

World Object

The state of the game world is represented by a collection of World Objects. The
objects are broken down into a hierarchy, as shown in figure 11.2. A World Object is

either static or dynamic.

e Static Objects are immutable, they do not change or move over time. As such,

they are always loaded locally and never transmitted over the network.

e Dynamic Objects are mutable objects that can change over time. They create
most of the network load and are broken down themselves into two categories:

Items and Active objects.

Although both ltems and Active Objects are mutable, Active Objects are defined
by their ability to change/move themselves or other objects. In programming terms,
Active Objects have an update function, which is called at every iteration of the
rendering loop. This enables the active object to execute actions that will alter itself

or the world around it. Players are considered a special case of Active Objects.

11.1.2 Graphics Engine

The graphics engine displays the world to the player, and allows the player to visualize
his status and interact with his environment (moving, manipulating objects, chatting
to other players, etc.). The engine is built using a layered architecture, encapsulating

the graphic programming and hiding it from the programmer. This is key, because

141

11.1. Engines

WorldObjectListener
+onPlayerinfoChanged(): void
+onPositionChanged(): void
+onVisibilityChanged(): void
+onUpdate(dataset: String): void

«interface» ~

«interface»
WorldManager

addWorldObject(object: WorldObject): boolean
addObjectType(type: ObjectType): void
removeWorldObject(object: WorldObject): boolean
getActiveObject(id: Long): WorldObject
getClosestltems(pos: Position): TreeSet<ItemObject>
getClosestPlayers(pos: Position): TreeSet<Player>
getClosestPlayers(player: Player): TreeSet<Player>
getContainer(ld: Long): ItemObject

getContainers(): Collection<ltemObject>
getHeight(): long

getltemObject(uniqueld: Long): ItemObject
getltems(): Collection<ItemObject>
getinventory(uniqueld: Long): DynamicObject
getObjectType(name: String): ObjectType
getObstacles(): Collection

getPlayer(uniqueld: Long): Player

getPlayer(name: String): Player

getPlayers(): Collection<Player>

getWorldShape(): Polygon

getWidth(): long

nextld(): Long

nextPlayerld(): Long

registerListener(listener: WorldManagerListener): void
unregisterListener(listener: WorldManagerListener): void
visitWorldObject(visitor: WorldObjectVisitor): void

«interface» ObjectType
WorldObject
getld(): Long

getPosition(): Position

getShape(): Shape

getName(): String

getGraphicAttributes(): GraphicAttributes
setGraphicAttributes(att: GraphicAttributes): void
isBlocking(): boolean

setBlocking(blocking: boolean): void

isVisible(): boolean

setVisible(visible: boolean): void
registerListener(listener: WorldObjectListener): void
clearListener(listener: WorldObjectListener): boolean
clearListeners(): void

visit(visitor: WorldObjectVisitor): boolean

equals(object: Object): boolean

«interface»
StaticObject

«interface»
DynamicObject

«interface»
WorldManagerListener

+onWorldObjectAdded(object: WorldObject): void
+onWorldObjectUpdated(object: WorldObject): void
+onWorldObjectRemoved(object: WorldObject): void

setPosition(callContext: CallContext, position: Position): void
setPosition(callContext: CallContext, x:double, y: double): void
setinventoryMaxCapacity(callContext: CallContext, size: int): void
setinventoryMaxWeight(callContext: CallContext, weight: double): void
addltem(callContext: CallContext, itemld: Long): void
moveltem(callContext: CallContext, itemld: Long, Long oldContainerld): void
removeltem(callContext: CallContext, itemld: Long): void
containsltem(item: ItemObject): boolean

containsltem(itemld: Long): boolean

getinventorySize(): int

getinventoryMaxCapacity(): int

getinventoryWeight(): double

getinventoryMaxWeight(): double

getParentContainer(): Long

getitemsininventory(): Collection<itemObject>
getltemsininventoryByld(): Collection<Long>

isContainer(): boolean

isinsideContainer(): boolean

registerListener(listener: InventoryListener): void
clearListener(listener: InventoryListener): boolean

I T I A T Tk T T o T T e SR

I\ 1

«interface» «interface»
ActiveObject ItemObject

+ setSpeed(callContext: CallContext, speed: double): void

+ getSpeed(): double

+ setDestination(callContext: CallContext, x: double, y: double): void

+ setDestination(callContext: CallContext, x: double, y: double,

destType: PathType): void

+ updateDestination(callContext: CallContext, newDestition: Position): void

+ getDestination(): Position

+ isMoving(): boolean

«interface»
Player

Figure 11.2: UML Diagram of the WorldEngine and WorldObject

142

11.1. Engines

Mammoth
Display Engine | Feng GUI
Graphic Engine
JMonkey Engine 2

Figure 11.3: Different layers for the Graphic Engine

most developers on the Mammoth project have little or no graphic programming
experience. The architecture of the graphic engine as illustrated in figure 11.3.

At its lowest layer, the engine uses JMonkey [Pow10] to render the scene. The
Graphic Engine layer ties the upper and lower layers together, allowing a developer
to switch the graphic renderer without having to touch the developer’s interface. The
DisplayFEngine is the higher layer, which abstracts the graphic programming for the
developers. Also used by the developers, FengGui [Sch09] provides Ul elements for
OpenGL, similar to Swing.

11.1.3 Physics Engine

The Physics Engine implements interactions between game objects. The current
Physics Engine is very simple: it only implements basic collision detection. This
particular component was subject to numerous optimization, as collision detection is

very CPU intensive.

11.1.4 Replication Engine

The Replication Engine (see figure 11.4) is a component that enables the replication
of objects on different nodes within a distributed system. The replication process is
managed by the Replication Space component (see chapter 4). An alternate peer-to-
peer implementation of Replication Space, based on the PSense [SSJT08] technology
and outside the scope of this work, can also be used.

The Replication Strateqy acts as bridge between the Network Engine and the

143

11.1. Engines

Replication Engine so that different types of communication can be assigned to the
Replication Engine transparently. This is especially useful with unit testing, where a

dummy Replication Strategy is used.

11.1.5 Network Engine

The Network Engine component provides basic communication to Mammoth. In
order to support the communication needs of replicated objects, the Network Engine

provides the following means of asynchronous communication:
e Direct messaging.
e Global broadcasting capabilities.

e Publish/Subscribe-based broadcast capabilities.

The publish/subscribe component is key to the Network Engine, as it ensures
proper propagation of updates in the replicated object infrastructure. Most often,
the subscriptions are directly managed by the interest management system of the
framework. The efficiency of the broadcast and publish capabilities depends on the
topology (how the computers are connected to each other) of each engine.

Mammoth, currently, has multiple implementations of its Network Engine:

e Stern: the star topology Network Engine. A central hub routes the commu-
nication of all nodes connected to it. Messaging is done over TCP/IP, and is

implemented using the Mina [Min10] socket framework.

e Toile: the fully connected engine (every node is connected to every other node).

Toile also uses TCP/IP and Mina to manage its messaging.

e Postina: a self-organizing peer-to-peer Network Engine using tree-based broad-

cast. It is implemented using FreePasty [DEG™04].

e Fake: uses shared memory and emulated serialization to route messages across
components. Fake is mainly used when executing unit tests on components that

depend on a Network Engine.

144

11.1. Engines

¢

«interface»
ReplicationEngine

ReplicationEngineMessage

+ setRefreshRate(refreshRate: long): void

+ registerSpace(space: ReplicationSpace): void

+ unregisterSpace(space: ReplicationSpace): void

+ getSpace(replicationSpaceld: ReplicationSpaceld): ReplicationSpace

+ publish(replicationSpaceld: ReplicationSpaceld, publisher: Object, msg: ReplicationEngineMessage): void
+ sendToMaster(replicationSpaceld: ReplicationSpaceld, publisher: Object, msg: ReplicationEngineMessage): void
+ getReplicationStrategy(): ReplicationStrategy

< MigrationBehavior
migrate(object: ProxyObject,
target: NetworkEnginelD): void

BurstMigration

ReplicationEngineNetwork

- networkEngine: NetworkEngine

‘i ReplicationEngineDummy ‘
4—1 ReplicationEngineBuggy ‘

ReplicationSpace

+ migrate(object: ProxyObject , target: NetworkEnginelD): void

+ addPublisher(object: ReplicatedObject): Object

+ addReplica(proxyObject: ProxyObject): void

+ publish(publisher: ProxyObject, msg: ReplicationEngineMessage): void

+ sendToMaster(publisher: ProxyObject, msg: ReplicationEngineMessage): void
+ registerListener(listener: ReplicationSpaceListener): void

+ unregisterListener(listener: ReplicationSpaceListener): void

+ getProxyObject(id: ProxyID): ProxyObject

+ refresh(): void

+ getld(): ReplicationSpaceld kKo>—

«interface»
ReplicatedObject
getObjectPosition(): Point
notifyObjectUpdate(dataSet: String) : void

WorldObject

ReplicationSpacePSense ‘

«interface»

ReplicationStrategy
+ broadcast(msg: ReplicationEngineMessage): void
+ publish(channel: String, msg: ReplicationEngineMessage): void
+ replicate(replicationSpaceld: ReplicationSpaceld, id: NetworkEnginelD,

pubs: Collection<ProxyObject>): void

+ initializeChannel(channel: String): void
+ subscribe(subscriberld: NetworkEnginelD, channels: Collection<String>): void
+ unsubscribe(subscriberld: NetworkEnginelD, channels: Collection<String>): void
+ sendToMaster(object: ProxyObject , msg: ReplicationEngineMessage): void
+ sendToTarget(id: NetworkEnginelD, msg: ReplicationEngineMessage): void

1

ReplicationSpaceDuplication ‘

MatchFunction

matchinterest(sub: Object, pub: Object): boolean

[ReplicationStrategyDummy

ReplicationStrategyNetwork

- networkEngine: NetworkEngine

Figure 11.4: Mammoth’s current Replication Engine

145

11.2. Managers

In addition, Mammoth has had several experimental network engines, some of
them based on group communication system such as JGroups |[ACL04| or Appia

[Pin05]. The architecture of the network engine can be found in figure 11.8.

11.2 Managers

Managers are components designed to control multiple implementations of a given al-
gorithm or strategy. Compared to engines, which allow a single implementation of a
particular component, managers allow multiple implementations of a given function-
ality to be registered with the system. An example of this would be the Pathfinding
Manager, which provides several different pathfinding algorithms. Different algo-
rithms can then be assigned to different players, allowing for experimentation in a

live setting.

11.2.1 Pathfinding Manager

The Pathfinding Manager (see figure 11.5) is responsible for managing the different
registered pathfinding algorithms found in Mammoth. These algorithms are encapsu-
lated in PathFinder objects. At least one pathfinding algorithm should be registered
with the manager.

Pathfinding requests are executed asynchronously in separate threads. As the
pathfinding algorithm is executing, it adds waypoints to the supplied Path object.
The Pathfinding Manager allocates threads from the thread pool when a pathfinding
requests are executed. Obsolete requests, most often because the object has changed

destination, can be cancelled which allows the threads executing them to be reclaimed.

11.2.2 NPC Manager

The NPC (non-player character) Manager is the central administration unit for the
behavioural Al components. In Mammoth, NPCs are controllers. Once spawned, each

is assigned to a player and takes control of it. The NPC behaviour is encapsulated

146

11.2. Managers

PathFindingManager

+ findPath(start: Position, dest: Position , pathFinder: String): Path
+ registerPathFinder(key: String, pathFinder: PathFinder): void

+ registerListener(PathFindingManagerListener listener): void

+ unRegisterListener(PathFindingManagerListener listener): void

«interface»
PathFinder

+findPath(start: Position, dest: Position, path: Path): void

AStarPathFinder

TRAStarPathFinder

PathFindingManagerListener

+onDestinationChange(object: ActiveObject, destination: Position): void
+onPathCompleted(object: ActiveObject, destination: Position): void

«interface»

Path
+ getNextDestination(): Position
+ peekNextDestination(): Position
+ peekGoal(): Position
+ isDone(): boolean
+ isCancelled(): boolean
+ isEmpty(): boolean
cancel(): void
addDestination(Position position): void

ThreadSafePathimpl

Figure 11.5: Mammoth’s current PathFinding Manager

into a sub-role object, which can be broken down into several other Role objects. At
every game timestep, all Roles registered with the NPC Manager are queried for a
new action. The Roles that decide to take a new action return an NPC Action object,
which is then queued inside the NPC Manager. The NPC Manager then shuffles the
actions and resolves them in a random order. This prevents a Role from gaining an
unfair advantage because it was registered first.

An NPC can observe the world through the iSeeNewObject and iDontSeeOb-
jectAnymore methods. When an object enters a certain radius of a player, the iSee-
NewObject method is triggered. Once that object leaves the visibility of the player,
the iDontSeeObjectAnymore method is triggered in turn.

As mentioned, Roles can be composed of several other sub-roles. For example,
the implementation of a seek and gather AI could be done using three Roles. The
first Role, seek, navigates the character through the game world. The second Role,
gather, analyzes the list of objects it knows about and collects some of them. The

third one is the master Role, which switches between the behaviour of seeker and

147

11.2. Managers

InstantMessagingListener

«interface»

«interface»
TimeSliced

+ timestep(int time)

: void

onReceivelnstantMessage(from: String, message: String): void
onReceiveBroadcastinstantMessage(from: String, message: String): void
onError(String message): void

NPCManager <>—]

+ add(role: Role, lookForObjects: boolean): void
+ remove(role: Role): void

«interface»
NPCAction

execute()

Role
- player: Player

getAction(timeStep: int): Action
onReceiveMessage(msg: String): void
iSeeNewObject(object: WorldObject): void
iDontSeeObjectAnymore(object: WorldObject): void

Removed POVListener.
Instead, it is built-in in

the NPC Manager and
activated when add a role
that looksForObject.

MoveNPCAction

player: Player
destination: Point
pathType: PathType

The NPCActions should
use whatever Chris

PickupltemNPCAction

player: Player
item: IltemObject

Figure 11.6: Mammoth’s NPC Manager.

develops for the client.
(Actioninterface)

gather Roles. The master Role must be registered with the NPC Manager.

11.2.3 Persistence Manager

The Persistence Manager administers the different strategies used by Mammoth to

save the state of the game to stable storage. Both push (automated recording of

events) and pull (explicit retrieving of the state of game objects) strategies are sup-

ported. In addition, the Persistence Manager provides the necessary Data Access

Objects (DAO) required to access stable storage, which is most often a relational

database. Given that the persistence strategy implementations are kept separately

11.3. Implementation

from the DAOs, it is trivial to experiment with different strategy / storage medium

combinations.

11.3 Implementation

The implementation of Mammoth is done almost exclusively using the Java pro-
gramming language. This was a practical decision. Many researchers at the School of
Computer Science of McGill University use Java for their experiments, and many tools
have been developed for research and performance analysis in Java. Furthermore, the
cross platform nature of Java facilitates access to Mammoth for the students, and
makes maintenance easier. Of course, an industrial implementation of our framework
using a lower-level language such as C++ would provide even better performance.
However, our experiments are still valid, since they provide insight into the complex-
ity of our algorithms and techniques as the number of players, game objects and nodes
increases.

In order to achieve flexibility and extensibility, many advanced programming tech-
niques have been used in the development of Mammoth. Given the modularity re-
quirements, many of the design patterns proposed in [GHJV95] are put to good use.
This section outlines the importance of interfaces and listeners in the design of this
modular architecture, and also describes how XML is used to successfully deal with

changing data structures.

11.3.1 Interfaces

One of the key elements in the Mammoth architecture is the flexibility with which
engines can be replaced, and new algorithms registered with the managers. In order
to make this possible, engines and manager strategies define their own interfaces. All
interactions between components in Mammoth are performed using interfaces, i.e. at
the abstract level: no concrete implementation is ever directly referred to. This is
very similar to the bridge design pattern [GHJV95|, where abstractions are decoupled

from their implementations. As a result, the implementation of a component can be

149

11.3. Implementation

changed without the need to modify any of the depending components. However,
the definition of the abstraction is fixed: changes in the interfaces themselves could
require significant refactoring and should therefore be avoided. Fortunately, after over
5 years of development, the interfaces of the major components have become fairly
stable.

To allow greater flexibility in the execution of Mammoth, object factories, and
their respective configuration files, are used to control the instantiation of the differ-
ent implementations. A researcher can simply specify the component to be used in
the Mammoth configuration file before starting the game. Those factories read the
researcher’s choice from the configuration file and instantiate the appropriate engine
or instruct the managers to use a specific strategy. In this manner, the researchers
do not need not worry about the initialization details of a component. Some factories
even use the Java reflection API to automatically recognize new available implemen-
tations of components. This allows the addition of new implementations without the

need to modify existing factories.

11.3.2 Listeners

Modularity and separation of concerns is essential when developing a complex research
framework. Strong dependencies between components greatly reduce the flexibility
and maintainability of the source code. As a result, team development is complicated,
since changes required to implement a specific feature within one module can have
a major impact on other parts of the framework. Within Mammoth, for example,
the Persistence Engine requires knowledge on how and when a World Object is mod-
ified. The World Engine could directly inform the Persistence Engine about the state
update, but that would create a dependency. Changing the implementation of the
Persistence Strategy might then again require the modification of the World Object.
Such modifications could be risky, since the world engine is a central component of
the Mammoth framework.

The Mammoth framework addresses this problem through the extensive use of

150

11.3. Implementation

listeners. As described by the observer design pattern [GHJV95|, core objects con-
taining the game state are considered subjects. Components requiring information
about a subject can register themselves as observers with the subject by implement-
ing the appropriate listener interface. Whenever the state of a subject changes, all
registered observers are notified of the change. The most notable example of the
use of listeners within Mammoth is the graphical game client, which is designed as a
view object registered with every World Object. However, listeners are also used in
various other components, such as the Network Engine, the Replication Engine and
the Pathfinding Manager.

11.3.3 XML

Constant change is one of the most difficult challenges when working on a research
framework. Data structures are constantly updated to reflect new features. The per-
fect example of this is the Mammoth world map, whose format has changed countless
times since the beginning of the project.

The problem is that creating a map is time consuming. In addition, many re-
searchers have created custom maps for their specific research purpose. It is therefore
impractical to recreate or manually convert all available maps each time the data
structures changes.

In Mammoth, data is stored using XML. Objects are decomposed into attributes,
the simpler attributes being stored as tags and more complicated earning themselves
a dedicated subtag.

Whenever the format of a data structure changes, a new XML reader / interpreter
is written for the new format. In addition, the readers of the older formats are updated
to simply convert the old format to the new one. Thus, any data structure that is
read from disk will be saved in the newer format, regardless of the format it was in
originally. In addition, if the data structure is saved back to disk, the most recent
XML format is used.

For example, the code samples 11.1 and 11.2 describe the same object, but saved

using two different XML formats. Early in 2008, the notion of depth ordering, which

151

11.3. Implementation

was used to determine the drawing order of objects when Mammoth was purely 2D,
was converted to elevation. In addition, the code 11.1 is missing the “flat” type tag
in the attributes section. This is understandable since at that time, all objects were
flat.

If the new reader were to load the XML code from 2007, it would detect the
missing type tag. Thus, the older reader would take over and fill in the missing
information. Type would be defaulted to “flat” and elevation would be calculated as
depth ordering divided by 10.

Listing 11.1: XML code for storing a table object January 2007

<worldobject blocking="true" id="1819" name="table"
objecttype="Static" walkable="true" wx="22.28" wy="4.43">

<attributes >
<depthOrdering value="2"/>
<invisiblewhenunder value="false"/>
<forceDrawRect value="true"/>
<textureKey value="table.png"/>
<textureRepeat value="false"/>

</attributes>

<shape>
<point x="-0.11" y="0.23"/>
<point x="-0.11" y="-0.23"/>
<point x="0.11" y="-0.23"/>
<point x="0.11" y="0.23"/>

< /shape>

</worldobject >

Listing 11.2: XML code for storing a table object January 2009

<worldobject blocking="true" id="1819" name="table"

152

11.4. Services

objecttype="Static" walkable="true" wx="22.28" wy="4.43">

<attributes type="flat">
<elevation value="0.2"/>
<invisiblewhenunder value="false"/>
<forceDrawRect value="true"/>
<textureKey value="table.png"/>
<textureRepeat value="false"/>
</attributes>

<shape>
<point x="—-0.11" y="0.23"/>
<point x="-0.11" y="-0.23"/>
<point x="0.11" y="-0.23"/>
<point x="0.11" y="0.23"/>
</shape>

</worldobject >

11.4 Services

Most massively multiplayer games include non-gameplay related features, such as
authentication, chatting, guild-like organization, and so on. In Mammoth, these
features are described as services. Each of the services is defined as an interface (see
section 11.3.1) and then implemented in either a centralized or a distributed way.

Currently, Mammoth has interfaces defined for the following services:

e Authentification
e Instant Messaging (chat)

e Player Distribution (character assignment)

153

11.5. Evolving Architecture Example

Each of these services has two implementations: one using a centralized RPC
infrastructure and a dummy version used for unit testing. In addition, plans are
in progress to implement these services using Quazal’s Net-Z infrastructure. Other

services, such as friend management, are also in development.

11.5 Evolving Architecture Example

Mammoth’s architecture has been designed and redesigned several times since its con-
ception in 2005, and it will continue to evolve as the project advances. These changes
are best illustrated with an example, comparing the initial network architecture from
2005 (see figure 11.7) to the current network architecture (see figure 11.8).

One key difference is the distinct client/server architecture of the original inter-
face. Not only does the architecture force all network engines to have a client /server
topology, but it also strictly defines which role the client and the server is allowed
to have. In addition, the original architecture defines network identifiers as integers.
Another weakness is that several methods use the wrong parameter types. For ex-
ample, the method for sending a direct message required a Serializable object, but
latter type-casted it to a Message object. Mammoth’s implementation had evolved
faster and its API, forcing developers to make some horrible development decision.

The newer architecture is designed for flexibility, using all the strategies defined
previously. The interface contains only the basic functionality that must be found in
all network engine. Methods were refactored with the proper arguments, and network
identifiers were defined as separate objets, allowing programmers more freedom into
what can be stored in the identifier object. Postina, for example, uses the FreePastry
string identifier to distinguish and address clients.

The current architecture was designed in 2007 and has been barely modified since.
At least 6 separate network engines (Stern, Toile, Fake, Postina, Appia, PSense, etc.)
have been developed using this interface. This illustrates how the flexible design
techniques used in Mammoth development have allowed researchers to experiment

with Mammoth for the last 5 years with minimal implementation effort.

154

11.5. Evolving Architecture Example

NetworkEngineServer
«interface»

ServerListener
«interface»

+clientConnect(clientld: int): void
+clientDisconnect(clientld: int): void
+peerServerConnect(servld: int): void
+peerServerDisconnect(servld: int): void

+startServer(port: int): void

+startServer(port: int, sport: int): void

+stopServer(): void

+send(Clientld: int, object: Serializable): void

+sendAll(object: Serializable): void

+send(channelName: String, subscription: int, object: Serializable): void
+sendGlobal(channelName: String, subscription: int, object: Serializable): void
+sendUnblock(clientld: int, object: Serializable): void

+sendPeer(peerld: int, subscription: int, object: Serializable): void
+sendGrp(channelName: String, subscription: int, object: Serializable): void
+getMessageOrWait(timeout: int): Serializable
+getPeerMessageorWait(timeout: int): Serializable

+getMessage(msgList: LinkedList): Serializable

+hasMessage(): boolean

+createChannel(channelName: String): void

+forceDisconnect(clientld: int): void

+waitForMessage(timeout: int): void

+connectToPeer(serverld: int, serverPort: int, serverlP: String): void
+addToMessage(msg: Serializable): void

+boolean isMyChannel(channel: String)

+subscribeChannel(channelName: String, clientld: int): void
+unsubscribeChannel(channelName: String, clientld: int): void
+sendSubscribers(channelName: String, subscription: int, object: Serializable): void
+int getld();

NetworkEngineClient
«interface»

ClientListener
«interface»

+serverDisconnect(): void

+connectRendez(ip: String, port: int): Long
+connect(ip: String, port: int): int
+disconnect(): void

+isConnected(): boolean
+nextDirectMessage(): Serializable
+hasDirectMessage(): boolean
+nextMajorMessage(): Serializable
+hasMajorMessage(): boolean
+nextMinorMessage(): Serializable
+hasMinorMessage(): boolean
+localChannel(channel: String): boolean
+subscribeMajor(channel: String): void
+subscribeMinor(channel: String): void
+unsubscribe(channel: String): void
+sendMessage(object: Serializable): void
+sendBlocking(object: Serializable): Serializable
+waitForDirectMessage(): void
+waitForMajorMessage(): void
+waitForMinorMessage(): void
+waitForDirectMessage(timeout: long): void
+waitForMajorMessage(timeout: long): void
+waitForMinorMessage(timeout: long): void
+getClientld(): int
+switchConnections(newZone: String): void

Figure 11.7: Mammoth’s initial network architecture

155

11.5. Evolving Architecture Example

«interface»
NetworkEngine

+ connect(): NetworkEnginelD

+ disconnect(): void

+ isConnected(): boolean

+ forceDisconnect(id: NetworkEnginelD): void

+ int getld();

+ createChannel(channelName: String): void

+ subscribeChannel(channelName: String, id: NetworkEnginelD): void

+ subscribeChannels(channelNames: Collection<String>, id: NetworkEnginelD): void
+ unsubscribeChannel(channelName: String, id: NetworkEnginelD): void
+ unsubscribeChannels(channelNames: Collection<String>, id: NetworkEnginelD): void
+ hasMessage(): boolean

+ nextMessage(): Serializable

+ getMessageOrWait(timeout: int): Serializable

+ waitForMessage(): void

+ waitForMessage(timeout: long): void

+ send(id: NetworkEnginelD, message: Serializable): void

+ send(channelName: String, message: Serializable): void

+ sendAll(message: Serializable): void

+ registerListener(listener: NetworkEngineListener): void

+ removeListener(listener: NetworkEngineListener): void

+ clearListeners(): void

A

«interface»
NetworkEngineListener

onConnect(id: NetworkEnginelD): void

onDisconnect(id: NetworkEnginelD): vagi

«interface»
NetworkEnginelD

+ equals(object: Object): boolean

Each network engine has a
custom NetworkEnginelD
object.

«interface»
SuggestibleNetworkEngine

|
|
|
I
|
|
| +
|

+ suggestConnection(targetld: NetworkEnginelD, nodeld: NetworkEnginelD): void
+ suggestDisconnection(targetld: NetworkEnginelD targetld, nodeld: NetworkEnginelD): void

BaseNetworkEngine

+ subscribeChannels(channelNames: Collection<String>, id: NetworkEnginelD): void

+ unsubscribeChannels(channelNames: Collection<String>, id: NetworkEnginelD): void
+ queueMessage(message: Serializable): void

+ hasMessage(): boolean

+ nextMessage(): Serializable

+ getMessageOrWait(timeout: int): Serializable

+ waitForMessage(): void

+ waitForMessage(timeout: long): void

+ registerListener(listener: NetworkEngineListener): void

+ removeListener(listener: NetworkEngineListener): void

7 f |

BaseNetworkEngine | AppiaNetworkEngine

implements redundant

stuff needed by several |
engines.

FakeNetworkEngine

| JGroupsNetworkEngine |

| PostinaNetworkEngine |

| SternNetworkEngine |

| ToileNetworkEngine |

| PSenseNetworkEngine |— ———————————

Figure 11.8: Mammoth’s current network architecture

156

Chapter 12

Implementing Journey in Mammoth

Implementing the unified Journey approach inside Mammoth required the addi-
tion of four key functionalities: trust, load balancing, fault tolerance and auditing.
Fortunately, several building blocks, such as replicated objects (see chapter 4), proxy-
based RPC (see chapter 6), and services (see section 11.4) were already implemented
and simplified the integration process.

This chapter describes the integration process of these four components into Mam-

moth.

12.1 Implementing Trust

The central component to Journey is Trust, as it is used by all the other components.
Trust is also the one most difficult to implement, because it should, ideally, have per-
fect reliability and security. Fortunately, evaluating the potential and performance of
Journey does not require a perfect trust component. Thus, the initial implementation
of the trust component uses a simple RPC infrastructure.

Trust is currently implemented as three static levels in Mammoth: Trusted for
Cells (level 2), Trusted for Masters (level 1) and Untrusted (level 0). When a node
joins the system, it must register itself as a Trusted for Cells or Trusted for Masters
node. Otherwise, it is considered Untrusted. In addition, the trust system stores

two additional values for every node, a load value and an overloaded flag. Nodes are

157

12.2. Implementing Load Balancing

responsible for updating their own values at regular intervals. The system can easily
be expanded to hold information about past faults and cheats, useful information for
upgrading and/or downgrading levels.

Clients are allowed to register themselves with the system, update their properties,
get the trust level/load of the other nodes in the system and signal node failures.
Currently, a single node failure signal is enough to disqualify a node and remove
it from the trust system. This is allowed for simplicity sakes, although this power
should be reserved for level 2 nodes. The current implementation of trust uses a pull

architecture, where trust information must be retrieved from a centralized location.

12.2 Implementing Load Balancing

Adding load balancing functionalities to Mammoth required implementing three fea-
tures: object migrations, load calculations and a rule system for the load balancing
itself.

12.2.1 Migration

In Mammoth, migration is defined as the ability to move the master copy of an object
from one node to another. This ability is critical in load balancing, as spreading
the load across nodes requires moving master objects from an overloaded node to a
different node. Migration is implemented using the traditional interface system in
Mammoth, allowing for the implementation of multiple migration algorithms.

Burst migration is the first migration algorithm implemented in Mammoth (see
section 8.3.1). The name originates from the fact that objects are migrated without
warning to the destination node. In other words, a master object is transferred from
one node to another and the destination node cannot refuse the migration. There is
very little reliability in this migration algorithm, because there is no checks to ensure
that the object was successfully migrated. However, when executed over a reliable
communication channel (e.g. TCP network), this has not been a problem.

Burst migration is the fastest migration that can be implemented in Mammoth:

158

12.2. Implementing Load Balancing

it uses only one message passing round (the sending itself). However, to satisfy
reliability concerns, a fault-tolerant version of burst migration was also developed.

Its description can be found in section 9.3.4.

12.2.2 Load Calculation

In Mammoth, the load model allows the system to calculate the amount of load found
on a node. The current implementation is fairly straightforward. A different integer
weight is assigned to each element (items, players and cells) in the load model. The
total load on a node is the sum of the number of each type of elements multiplied by
their weight. More information on the load model used in Journey can be found in

section 8.1.3. The weights currently used in Mammoth were set experimentally.

12.2.3 Rules for Load Balancing

In Mammoth, load balancing is implemented as a rule-based system. A single thresh-
old is used to detect if a node is overloaded, as described in section 8.3. Load balancing
rules will compare this threshold value to the current load to determine if any action
should be taken.

Initially, rules were designed to be independent of each other. This greatly sim-
plified the design of rules, because no knowledge of other existing rules was required.
However, early experiments demonstrated that rules had a tendency to contradict
each other: rules would migrating objects back and forth between the same two
nodes. Thus, the rules were re-written to take into accounts all other existing rules.

The following load balancing rules can be found in Mammoth:

e Rule 1: KeepLoadUnderThreshold: if the threshold is reached, it randomly
migrates master objects to other level 2 nodes. This is the first rule that was
implemented but is now obsolete, because a combination of rule 5 and 3 or rule

5 and 4 achieves similar results.

e Rule 2: SpillObjectsToTrusted: If level 1 nodes are present in the system, this

rule slowly transfers a few master objects to level 1 nodes. Given that these

159

12.3. Implementing Fault Tolerance

nodes are not completely trusted, only a few master objects are stored on any

given level 1 node.

e Rule 3: RandomTransferTileUnderThreshold: This rule was implemented to
test the growing/shrinking functionalities of cells. If a node is above threshold,

it transfers a small number of tiles from its cell to another cell.

e Rule 4: AdjacentTransferTileUnderThreshold: Similar to rule 3, this rule trans-
fers adjacent tiles to the destination cell. This allows for a more coherent cell
division, limiting the migration and registration cost of objects traveling from
one cell to another. The algorithm for choosing which tile to transfer can be

found in section 8.3.3.

e Rule 5: MasterObjectNotOnTheirMasterCell : This rule migrates master ob-
jects if they are located on the same node as their corresponding master cell.
Contrary to the other rules, the purpose of this rule is to ensure that the fault
tolerance algorithms can be properly executed (see section 9.3.1). However,
when combined with rules 3 or 4, this rule will usually balance objects ade-

quately across level 2 nodes.

The experiments presented in chapter 13 use rules 2, 4 and 5.

12.3 Implementing Fault Tolerance

Fault tolerance can be achieved in two steps, detecting faults and dealing with them.
To this end, Mammoth defines two interfaces, one for fault detectors and one for fault

handlers.

12.3.1 Fault Detector

As the name implies, fault detectors detect and identify faulty nodes. Fault detectors
in Mammoth are currently designed to detect crashed nodes: either nodes no longer

connected to the system or no longer responsive. Once such a node is detected, the

160

12.4. Implementing Auditing

system will iterate over all duplicate object to find which, if any, are hosted on the
failed node. These objects are then tagged as orphaned and must be recovered by a
fault handler.

Each node has its own fault detector and is responsible for detecting faulty nodes
itself. A more centralized system was considered, but was found too vulnerable to
cheating. The current fault detector is registered with the network engine to detect

nodes that have disconnect from the system.

12.3.2 Fault Handlers

Fault handlers are designed to recover different types of objects. Two fault han-
dlers are needed, one for cells and one for objects. Their implementation is rather

straightforward and their behaviour is described in sections 9.3.2 and 9.3.1.

12.4 Implementing Auditing

Developing the auditing system required enhancements to several existing features in
Mammoth.

The first enhancement was to allow execution of RPC calls on multiple nodes.
This allows an RPC call to be executed on both the master object and the auditor.
However, the auditor must execute this RPC call in a sandbox environment, so that
it did not modify any objects that might be used by the client. This is not an issue
when auditing method calls such as setDestination, because only the target object is
modified. Auditing multi-object actions, such as picking up objects is more difficult,
as the sandbox must contain both the target object and any other objects which
might also be modified. Handling multi-object actions is outside the scope of this
work.

Audit requests are asynchronous, there is no way to control the order audit re-
quests are received in. This in turn, allows audits on past states of an object. This
modification was simple, given the flexible architecture of proxy objects (see section
6.3.2).The states are serialized and stored in byte format in a first-in last-out (FILO)

161

12.4. Implementing Auditing

queue. Only a fixed number of states are stored in the proxy, older states are dis-
carded as new ones are recorded. The history feature can easily be enabled or disabled
on a per object basis, limiting the recording overhead to only the objects that require
auditing.

The biggest challenge in implementing the auditing system was deciding how au-
diting requests should be forwarded and processed. This is heavily discussed in section
9.4.3. The current auditing system will detect calls that are incorrectly processed, or
not processed at all. Using the decision algorithms discussed in section 9.4.5, it will

accuse a node of cheating if a certain number of faults is detected.

162

Chapter 13

Experiments

The effectiveness of the proposed unified solutions was evaluated using Mammoth,
the massively multiplayer research framework. Situations similar to real-world sce-
narios can be generated by creating hundreds of artificial players and having them
wander over the game map. These movements trigger different load balancing al-
gorithms, allowing the measurement of their effectiveness. In addition, the other
components of the system are tested by having clients either crash or cheat.

The effectiveness of the proposed system is evaluated by running Mammoth in
several different configurations, enabling or disabling the proposed components, as to

better evaluate their individual and unified performance.

13.1 Validation Techniques

Accurately conducting experiments measuring the performance of an MMOG frame-
work would require hundreds of human players. This is, of course, impractical, espe-
cially if repeated experiments are to be conducted. The use of human players can in-
troduce bias in the experimental data, especially if several experiments are conducted,
given that it is impossible to get players to play a game in a consistent fashion over
a long period of time. As players learn the game, their skill level increases, changing

their style of play and biasing the results.

163

13.1. Validation Techniques

If using human players is impractical, both for logistic and consistency reasons,
how can the framework be validated? Many papers present experiments with a small
number of players and then scale up their results to illustrate how the system would
cope with a large number of players. Another strategy is to simply simulate thousands
of players using a simulator. Although these experiments can quickly determine
metrics for several thousands of players, the fidelity of the implementation of the
simulation can affect the validity of the results [DK10]. A third option has recently
gained popularity in this research domain: using Al players to simulate player activity
and produce an accurate activity load [RK07,Mat03|. Automated player behaviour,
also called Artificial Intelligence (Al) in computer games, is usually programmed
using some sort of scripts [OCST05], or even modelled using a graphical modelling
notation [FH02, Unr07, KDVO07].

13.1.1 Role of Al in Games

It should be noted that the term “Al”, when used in a video game context, is vastly
different from the Computer Science term. When used in a scientific context, the term
“Al” is used to denoted a learning system that takes activity data and tries to improve
itself through experimentation and evaluation. In the video game domain, the term
“Al” is used to describe any component of the game that is controlled by some form
of automated logic. Most “Als” are scripted, their behaviour being described in a
particular scripting language. Using a scripting language to control “Al” is purely a
practical decision, it allows for developers and game designers to tweak the behaviour
of components without having to recompile the game. Although most game engines
use their custom scripting solutions, current popular non-engine specific scripting

languages for games are LUA [Lual0] and Javascript [Moz10].

13.1.2 Al for Testing

By studying how people play a game, it is possible to determine patterns in their game
play. These patterns can be used to generate artificial players. These techniques have

been successfully used in commercial games to create computer opponents for players

164

13.2. Experimental Setup

in various types of game. In First-Person-Shooter (FPS) games, these artificial players
are called Bots. The use of Bots for testing is very common, both in commercial games
and academic research. However, their use in load testing a system is fairly new.
The advantage with bot players is that their play style is consistent. Two rounds
of experiments with similar Al player configurations should yield similar results. In
addition, creating an experiment with several thousand participants only requires a
large number of computers. The activation and deactivation of such players can easily
be automated (scripted). Finally, as long as the behaviour of the bots is representative
of player behaviour, the experiment can be considered reasonably realistic. Bots can
also be used transparently in an experiment, given that the node hosting the game
does not know the difference between PCs and NPCs. This is demonstrated in [LB06]
where Quake 3 bots are used to analyze the effect of local lag and time warp on

gameplay.

13.2 Experimental Setup

Great care and planning must be used when using Al players for load testing. [DK10|
describe various configurations used to run the experiments in Mammoth, all achieved
by switching the network engine and by running the NPC agents in different processes.
The conclusion of this paper showed that CPU load, memory and bandwidth usage
showed non-negligible performance variations, demonstrating the important influence
of the simulation setup on the performance results. Following the suggestions of
[DK10], this work uses a configuration where NPC agents are executed on seperate
computers, as this is the most realistic experimentation setting: it is in fact just like

an MMOG environment where each player runs the game client on his own machine.

13.2.1 Player Behaviour

Two different types of NPC control algorithms were used to control the behaviour
of the avatars. The first, Random Wanderer, instructs the characters to wander ran-

domly in strait lines, changing direction approximatively every few seconds. Although

165

13.2. Experimental Setup

the choice of direction is also random, previous experiments with approximately 40
students [BKV06| have shown that this type of computer-controlled players generate
similar network load (message passing) to real human players. From a computational
point of view, instructing an NPC to move randomly is easy for a computer. As
such, this type of NPC generates very little CPU load on the node that is hosting
the master of the player object, and can therefore not be used when stress testing
components.

The second NPC control algorithm, Waypoint, directs characters from waypoints
to other waypoints, using path-finding algorithms to avoid obstacles. This idea orig-
inated from the Orbius experiments [Lan05], where a group of 30 players were sep-
arated into 6 teams and asked to gather orbs of different sizes. The first team that
collected four orbs of different sizes won. However, players from an opposing team
could steal orbs from other players. A careful analysis of movement data in Orbius
showed a pattern in the movement data: players would have a tendency to move along
logical paths (streets, sidewalks, etc) and would gather at specific points, most often
the intersection of the logical paths. The waypoint Al reproduces this behaviour: it
is configured with specific points in the world that are called waypoints. When it
takes control, it steers the player from one waypoint to the other. This behaviour
generates a much heavier load on the nodes hosting the player masters, as extensive
pathfinding is used to navigate between waypoints. The capacity of a server node
is about 25 players, when those players are actively pathfinding between nodes. It
should be noted that the pathfinding algorithm is purposely not optimized, as to

create the load necessary to replicate a real game environment.

13.2.2 Faulty Behaviour

To properly evaluate the performance of the fault tolerance and auditing component,
faulty and cheating behaviour are simulated during the experiments. Three types
of behaviour are simulated: crashing clients (level 1 nodes), crashing servers (level 2
nodes) and cheating clients (level 1 nodes). Simulating faults in level 0 nodes does not

make sense, as they have no responsibility in the system; their failure has no adverse

166

13.2. Experimental Setup

effect on the system. Cheating servers (level 2 nodes) are not used, since level 2 nodes
are defined as nodes with absolute trust.

Crashing nodes (both level 1 and level 2) are used to test the fault tolerance
component. These are nodes that disconnect from the system without warning. Their
responsibilities must then be redistributed to the remaining nodes in the system.

Cheating nodes (level 1 only) are used to test the auditing component. The current
cheat detection algorithm is designed to detect state inconsistencies between replicas
and the auditing replicas. When a cheating player is present, these inconsistencies
are caused by master objects incorrectly executing RPC calls. For the purpose of
these experiments, a cheating node is defined as a node that either fails to execute a
certain percentage of RPC calls, or that returns incorrect results. A specific number

of cheating clients are introduced in the system, as specified by the experiment.

13.2.3 Network Model

The Stern network engine was used for all the experiments presented in this chapter.
A single high-powered machine was used as the centralized network hub for all message
passing between clients. Although a centralized approach limits the scalability of the
system, it provides a central point to measure the network bandwidth circulating
through the system. In addition, a stress test indicated that the single hub could
easily handle 180 client connections, and provided a maximum throughput of 101
mBits/sec. Given that most experiments limit themselves to 100 clients and require
a maximum of 50 mBits/sec, the Stern network engine is more than sufficient for the

experiments found in this section.

13.2.4 Physical and Logical Setup

Three powerful servers were extensively used in the experiments: Halo, Oni and
Rogue. Equipped with Quad-Xeon processors and over 8Gb of main memory, these
machines were used to host bottleneck components of the experiments. Oni was used
as the network hub, routing all network traffic through its network interface. Halo was

used to host the first server (level 2) in all the experiments. Finally, Rogue, hosted

167

13.3. Experiments

the non-gameplay services and ran the scripts to launch other clients. All clients and
secondary servers were hosted on lab machines, with hardware configuration ranging
from Pentium 4 to Core Duo processors. On average, about 85 of these machines
were available, although some of the experiments used as many as 110 machines.

In some load related experiments, the number of clients used is capped at 100 or
150 for practical reasons: configurations unable to deal with a high load terminate
anyway with a much smaller number clients. When experimenting with configurations
supporting a high number of clients, the behaviour when exceeding 100 clients was
shown to be predictable and followed the already established curved. Some initial
experimentation was done with as many as 250 clients, but provided little more
insight into the behaviour of the system. Other experiments use as little as 50 clients,
as the purpose of the experiment is not to determine scalability, but to measure the
performance impact of the evaluated component.

All experiments are done using the Town20-2 map (see figure 5.12). Given its
relatively small surface area, the experiments using 100 clients reproduce a heavy

load environment similar to many commercials MMOGs.

13.3 Experiments

The three main components of the unified approach are first analyzed separately, and

then in a unified fashion.

13.3.1 Load Testing

The framework’s ability to cope with load is first evaluated using nine scenarios, as
defined in table 13.1. In all scenarios, the servers are first started, and then players
join the game successively. A new Al player connects to the system every 29 seconds,
and announces its interest to receive the necessary replicas. Four measurements are
taken during the experiments: RPC time on clients (i.e. how long it takes for a client
to execute a remote method on a server and obtain a result), CPU usage on the

first server Halo, load levels on Halo and the total network throughput. Experiments

168

13.3. Experiments

Scenarios Number | Types of | Type of | Are master
of Cells Als objects
Servers migrated

to trusted
clients
when
available?

Single Server - Wanderer Al | 1 None Wanderer | No

Single Server - Waypoint Al | 1 None Waypoint | No

Single Server - Trusted | 1 None Waypoint | Yes

Clients - Waypoint Al

Dual Server - Static - Way- | 2 Static Waypoint | No

point Al Rectangles

Quad Server - Static - Way- | 4 Static Waypoint | No

point Al Rectangles

Dual Server - Dynamic - | 2 Dynamic Waypoint | No

Waypoint Al Triangles

Quad Server - Dynamic - | 4 Dynamic Waypoint | No

Waypoint Al Triangles

Dual Server - Dynamic - | 2 Dynamic Waypoint | Yes

Trusted Clients - Waypoint Triangles

Al

Quad Server - Dynamic - | 4 Dynamic Waypoint | Yes

Trusted Clients - Waypoint Triangles

Al

Table 13.1: Scenarios used for Load Balancing Experiments.

169

13.3. Experiments

that use dynamic load balancing use a triangular cell tiling, and resize their cells
to equally distribute load across trustworthy nodes. Static configurations rely on
rectangular partitions, which remain unchanged, regardless of the load distribution.
Since fault tolerance is not required in these experiments, master objects are hosted
on their corresponding cell master.

The four observed measurements for the nine experiments are graphically repre-
sented in figures 13.1, 13.2, 13.3 and 13.4 respectively. Each figure is presented as
three sub-figures, separating the single, dual and quad servers experiments. In addi-
tion, two experiments demonstrating Journey’s ability to cope with flocking situations

are discussed at the end of the section.

RPC Time

Looking at figure 13.1, we can estimate the maximum client capacity of each scenario.
The maximum load of a particular configuration is determined by its ability to handle
RPC calls. Once the time to execute a RPC call goes beyond 500 ms, we can consider
the system as unresponsive. Given that remote calls will continuously accumulate at
the node, few nodes recover from response times above the 500 ms threshold.

The single server Wanderer scenario (see figure 13.1(a)) features near-instantaneous
RPC calls, a side-effect of random walking actions requiring no CPU power and thus
generating almost no delay. However, the Waypoint Al, when used with a single
server, generates a tremendous amount of load and greatly limits scalability, since
all the pathfinding is executed on the server which holds the master objects of the
players. This is shown by the exponentially growing red curve. If the player objects
are moved to trusted clients, the system becomes much more scalable again (green
curve). The pathfinding load is distributed to the clients, and the server only needs
to process state updates to the player replicas and perform interest management.
All of the measured RPC times are below 150ms, which is an acceptable delay for a
MMOG, as shown by the green curve.

The dual and quad servers experiments (see figure 13.1(b) and 13.1(c)) offer insight

into scalability by adding more servers to the system. These servers will share the

170

13.3. Experiments

1000 1400

900

1200

800

1000

700
~Dual Server - Static -

Waypoint Al

600

Singler Server - Wanderer Al 800

500

Dual Server - Dynamic -
Waypoint Al

~=Single Server - Waypoint Al 600

RPC Time (ms)
=
RPC Time (ms)

400

300 ! B
I ' Single Server - Trusted 400 A Dual Server - Dynamic -

0 Clients - Waypoint Al Trusted Clients - Waypoint
200 — Al
100 NA N VWAIYT ,M

yi
0 [

0 20 40 60 80 100 120 [20 40 60 80 100

Clients Clients

(a) Single server environments (b) Dual servers environments
1000
900
800
700
—_ === Quad Server - Static -
E 600 Waypoint Al
"E 500 l | Quad Server - Dynamic -
£ 400 Waypoint Al
300 ' A ﬂ Quad Server - Dynamic -
200 A \ V Trusted Clients - Waypoint
w0 Ll A WV g
IALIW
.
0 20 40 60 80 100
Clients

(¢) Quad servers environments

Figure 13.1: RPC Time for Clients in Load Balanced Environment.

workload created by player objects, increasing the scalability as long as the workload
is properly divided among the servers. Given this fact, server configurations featuring
dynamic cells (red curves) should outperform server configurations with static cells
(blue curves), because they are best suited to adapt mutable workloads. However, the
servers from dynamic cells configurations not only perform pathfinding calculations,
but must also take care of load balancing. This seriously impacts their ability to scale
up player capacity. Fortunately, if the pathfinding workload is assigned to trusted
level 1 nodes (green curve), the RPC time for clients drop to minimal level, even when

compared to the corresponding single server scenario (green curve in figure 13.1(a)).

171

13.3. Experiments

{ 18
|
1
ol WLV
(14
1 I} = Dual Server - Static -
j’ Waypoint Al
. X Dual Server - Dynamic -
L JV ~=Single Server - Waypoint Al 08 n . Waypoint Al
HER[) }

o
®

Singler Server - Wanderer Al

CPU Usage (%)
-
t
|
1

CPU Usage (%)
°
&
T
T
T

0.4
”Nﬁ)d ' Single Server - Trusted 06 " bual server - Dynamic

J oA o petse o
02 Hi——y A’AN Al

\N_'." 0.2 /w,
0 [

0 20 40 60 80 100 0 20 40 60 80 100

Clients Clients
(a) Single server environments (b) Dual servers environments

25

Al'\m —— Quad Server - Static -
15 v Waypoint Al
j/// Quad Server - Dynamic -

1 t Waypoint Al
MW Quad Server - Dynamic -
0.5 N\ Trusted Clients - Waypoint

‘/\/"/\ll w "

0 20 40 60 80 100

CPU Usage (%)

Clients

(¢) Quad servers environments

Figure 13.2: CPU Usage on First Server (Halo) in Load Balanced Environment.

CPU Usage

The graphs for CPU usage, shown in figure 13.2, were created by measuring the CPU
usage on the server Halo. In all three single server experiments (see figure 13.2(a)),
load increases linearly as the number of players increases. The CPU measurements
are in accordance with the RPC time measurements. In the single server waypoint
AT case (red curve), the CPU overloads at around 20 players, which explains why
RPC time increases drastically. The CPU usage for both other single server scenarios
increases linearly as the interest management complexifies with the increased number
of players. Both of these scenarios see a dramatic CPU spike at around 60 players,
which corresponds to approximately 30 minutes into the experiment. This CPU

spike can be safely ignored as the JVM on Halo has a tendency to spike at different

172

13.3. Experiments

moments in the execution, most likely an artifact of garbage collection. In all single
server configurations, overload occurs when usage reaches 1 and the CPU handling
the RPC calls is saturated.

The CPU increase found in the multi-servers configurations (see figure 13.2(b)
and 13.2(c)) using static cells (blue curves) is linear, similar to the single server
experiments. However, the slope of the curve is noticeably lower. This is because the
workload generated by the player objects is shared among the multiple servers.

The server, Halo, is equipped with 4 CPUs (quad-core). As such, when more than
one CPU is active, usage can increase beyond 1. This is immediately noticeable in the
multi-server experiments featuring dynamic cells (red and green curves). The load
balancing algorithm used by these configuration is very CPU intensive and extensively
uses a single core. These experimental configuration will usually overload when the
CPU reaches 1.7: both cores are saturated and the server is unable to handle more
RPC calls. However, the configurations using trusted clients (green curves) are much
more scalable than their untrusted counterpart (red curves). Given the workload
generated by the pathfinding requests is assigned to the clients, the servers are free

to concentrate on load balancing and interest management.

Load

Figure 13.3 shows the calculated logical load of Halo during the experiments. By
comparing these measurements to CPU usage and RPC time, the accuracy of the
load model, as established in section 8.1.3, can be verified. The results from the
wanderer Al experiment is omitted from this figure, since this particular AI does not
create any load. The other experiments can be divided into two categories, the ones
with trusted clients (green curves) and the ones with untrusted clients (blue and red
curves).

When trusted clients are present in the system, servers will migrate a few master
objects to each of these clients, to reduce their own load. In all three experiments,
the load steadily decreases until no master objects are left on the server. In the

multi-server configurations, the remaining load represents the master cells, which are

173

13.3. Experiments

1600 1400

1400 1200

1200
1000

~Dual Server - Static -
1000 /_]
800 / Waypoint Al
. .
2 800 ——Single Server - Waypoint Al g
= = Dual Server - Dynamic -
600 .
\ Waypoint Al
600 Single Server - Trusted
Clients - Waypoint Al 400
400 Dual Server - Dynamic -
Trusted Clients - Waypoint
200 200 A
0 [
0 20 40 60 80 100 [20 40 60 80 100
Clients Clients
(a) Single server environments (b) Dual servers environments

600 _//_/_ —— Quad Server - Static -
Waypoint Al
500 //

Quad Server - Dynamic -
Waypoint Al

Quad Server - Dynamic -
200 \ Trusted Clients - Waypoint

Al

Load

0 20 40 60 80 100

Clients

(c) Quad servers environments

Figure 13.3: Load on First Server (Halo) in Load Balanced Environment.

never migrated to clients.

When no trusted clients are present in the system, the load on the server steadily
increases. The initial load on the system, when no active players are present, is about
800. When starting in a static cells dual or quad servers environment (blue curves),
the load is respectively approximately 400 and 200. This is because the workload is
already divided among the servers. With dynamic cells environment (red curves in (b)
and (c)), the initial load is much higher. Dynamic configurations do little partitioning
when starting up, they rely on the load balancing algorithm to progressively distribute
the workload. This can be seen in the several plateaus on the curve, where the load
increase pauses as the load balancing algorithm is distributing the load.

Fundamentally, the load model accurately models the activity found on each node.

174

13.3. Experiments

The correlation between CPU usage increase and load increase is easy to see for some
configurations. In addition, several of the experiments that quickly terminate because
of CPU usage overload display sharp increase in load. Unfortunately, there are several
weaknesses in the model.

The flat curves of the experiments with trusted clients (green curves) do not
accurately reflect the CPU usage of the server. This is especially true for the single
server experiment, which suffers from CPU overload at 100 clients, even though its
logical load is 0. The model must be expanded to reflect other CPU intensive tasks,
such as interest management which consumes more CPU as more clients join the
system. In addition, the model does not accurately reflect a unified saturation point.
Regardless of the experimental configuration, a given machine should always reach
CPU saturation at approximately the same load. Taking into account the experiments
with untrusted clients, Halo suffers from CPU overload when the load varies between
500 and 1400. This is a strong indication that either the weights in the load model

could be improved, or more CPU intensive activities are missing from the model.

Network Throughput

The final measurement for these nine experiments is the total network throughput:
the total number of kB/s sent by all the nodes in the system. The graphs for this
measurement, depicted in figure 13.4, illustrate that network traffic increases linearly
as clients connect in every scenario.

This linear increase can be explained by the interest management, which reduces
the number of updates that must be propagated. Without interest management, the
increase would be exponential (see section 5.3.3). In addition, the linear increase fea-
tures both small and large oscillations. These oscillations are caused by the players
continuously on the move, thus constantly changing their field of interest. When a
group of players converges towards a particular area, new replicas are created. Net-
work traffic increases, both because of the creation of these replicas and the necessity
to update them as players move around. If the players move apart, the updates stop

and network throughput decreases. One particular instance of this flocking can be

175

13.3. Experiments

8000 25000

7000 AN

20000 T A
6000

5000 f 7“
4000 V /NIJ |

. X Dual Server - Dynamic -

~=Single Server - Waypoint Al 1 (1 . ’
3000 10000 +——— Waypoint Al
Single Server - Trusted §
2000 5 Clients - Waypoint Al Dual Server - Dynamic -
5000 - Trusted Clients - Waypoint
Al

1000 y

0 20 40 60 80 100 0 20 40 60 80 100

——Dual Server - Static -
15000 BRY Waypoint Al

Singler Server - Wanderer Al

Network Throughtput (kBit/s)
Network Throughtput (kBit/s)

Clients Clients

(a) Single server environments (b) Dual servers environments

80000

70000 u

60000 H

~Quad Server - Static -

50000 7 ‘Waypoint Al

40000 WA

Quad Server - Dynamic -
30000 Waypoint Al

20000 7" Quad Server - Dynamic -
Trusted Clients - Waypoint
N Al

10000 Y

Network Throughtput (kBit/s)

[
[20 40 60 80 100

Clients

(¢) Quad servers environments

Figure 13.4: Total Network Throughput in Load Balanced Environment.

found in figure 13.4(b) (green curve), once 20 clients had joined the system.
Experimental environments featuring trusted clients generate much more traffic
(green curves). This increase is caused by the additional communication between the
trusted clients hosting master objects, and the servers, where the replicas are stored.
Although the total network throughput increases, the network traffic at each server is

reduced. Unfortunately, the network throughput of single servers was not measured.

Flocking

An important advantage of dynamic partitioning is the ability to deal with players

flocking to a particular location. Although experiments featuring static cells offer

176

13.3. Experiments

3500 3000
3000 2500
2500
M 2000
- 2000 °
5 g 1500
1500
1000
1000
500 500
0 T T T d 0 T T T d
20 40 60 80 100 120 140 160 [20 40 60 80 100 120 140 160
Number of Clients Flocking to Location Number of Clients Flocking to Location
Halo lab6-1 Halo lab6-1 lab6-2 lab6-3
(a) 2 servers (b) 4 servers
Figure 13.5: Load of Servers in Flocking Situation.
25 25
2 2
] g5 £
& &
g g
El El
> >
& 1 &
S S
0.5 0.5
[0
20 40 60 80 100 120 140 160 [20 40 60 80 100 120 140 160
Number of Clients Flocking to Location Number of Clients Flocking to Location
~=—Halo =——lab6-1 —=—Halo =——lab6-1 ~—lab6-2 =——lab6-3

(a) 2 servers

(b) 4 servers

Figure 13.6: CPU Usage of Servers in Flocking Situation.

13.3. Experiments

(b) Distribution of cells after 75 clients

(c) Distribution of cells after 150 clients

Figure 13.7: Distributions of cells during flocking experiment in a 2 servers scenario.

178

13.3. Experiments

Stern Network Id4

Stern Network Id4

(a) Initital distribution of cells (b) Distribution of cells after 75 clients

Stern Network 1d4

(c) Distribution of cells after 150 clients

Figure 13.8: Distributions of cells during flocking experiment in a 4 servers scenario.

179

13.3. Experiments

Figure 13.9: Players flocking to the left side of the map.

better performance in the previous sections, all the benefits of multi-server config-
urations would be lost if players flocked to a single location. The following two
experiments demonstrate how the proposed dynamic cells can cope with load in a
flocking situation.

A special hybrid of the wanderer and waypoint Al is used to flock players to the
left side of the map (see figure 13.9). The waypoint component is used to move players
toward the target area, while the wanderer component is used to keep players active
once they have reached the target area. Level 1 trusted clients are used, allowing the
experiment to scale to a maximum number of players. The experiment is done using
two server configurations, one with 2 servers and one with 4 servers. Load and CPU
usage is measured on all servers.

Load linearly increases at the same relative pace on all servers (see figure 13.5),
even if players are flocking to an area controlled by a single server. Since level 1 nodes
are used, the load presented in this figure is mostly generated by master cells. As load
increases on a server, responsibilities, triangle tiles in this case, are transferred to an
adjacent server. The algorithm can successfully deal with flocking scenarios, given

that servers average a similar load. However, Halo, the initializing server, always has

180

13.3. Experiments

a higher load. This is a side effect of the startup procedure, where Halo is given all
the load and must share it as new trustworthy nodes connect to the system.

A close look at figure 13.5(a) reveals correlated oscillations between the two
servers. This behaviour can also be found in the 4 servers experiments, but is dif-
ficult to see given the interactions between all 4 servers. These oscillations reveal a
weakness in the load balancing algorithm, where tiles are transferred back and forth
between two cells. These oscillations can be eliminated using different strategies, such
as migrating tiles only once a particular threshold is met.

Throughout both experiments, CPU usage remains relatively stable on all servers
(see figure 13.6). This demonstrates that load is effectively distributed among the
servers as players flocked to the left side of the map. As the first server in the
environment and the biggest owner of tiles, Halo is particularly vulnerable to the
flocking in this experiment. This explains why Halo’s curve (blue) is always slightly
above the other servers. The spikes in CPU usage can be safely ignored as artifacts
from the JVM, as previously discussed.

The load balancing algorithm was able to share most of Halo’s left-side tiles with
the other servers, allowing it to cope with the increasing load. This is illustrated in
figures 13.7 and 13.8 where triangles are migrated progressively between nodes. In
both scenarios, the tiles colored in light blue are owned by Halo. Looking at the dual
servers experiment (see figure 13.7), at the beginning of the experiment, Halo owns
a little over half of the map and almost all of the left-side tiles. As more clients flock
to the left, the second server receives half of the left tiles of the map. In the quad
servers experiment (see figure 13.8), the left tiles are divided between Halo and one
other server. However, as time progresses, the other servers are given some left-side

tiles, sharing the load between the four.

13.3.2 Fault Tolerance

The second set of experiments demonstrates Journey’s ability to deal with uncon-

trolled node disconnection, both in single server and multi-servers environments.

181

13.3. Experiments

Client Failure

290 1200 270 1200

280 1100 1100

0 1 f 1000
260 500
250

0 ['A ll’\vn 800

700
230

1000

900

800

Load value

Load value

700

Messages (msg/s)
Messages (msg/s)

600 600

220

500 500

210
200 400 200 400
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180

Time (seconds) Time (seconds)

Messages Load

Messages Load

(a) No faults in system (b) One client crashing every 20 seconds
0 20 40 60 80 100 120 140 160 180
280 1 1200
270 1 1100
_ 260 ’ 1000
E“ 250 900 o
< 3
g 240 W 800 5
% 230 - 00 2
2
220 H ~ - n 600
210 rin n | WAV 500
200 400
0 20 40 60 80 100 120 140 160 180
Time (seconds)
Messages Load

(c) Crashing 10 clients at one time

Figure 13.10: Effects on Network Throughput of Fault Tolerance System.

The first set of experiments deals with the loss of trusted clients (level 1 nodes).
A fixed number of 50 trusted wandering clients and one server is used in these ex-
periments. Three scenarios are evaluated: no fault, one client disconnecting every
17 seconds and 10 clients disconnecting simultaneously. The fault tolerant compo-
nent is passive, it remains inactive if no faults are present in the system. Thus, the
scenario with no faults can serve as a baseline, it represents the performance of the
system without the overhead of the fault tolerant components. The other scenarios
provide insight into the impact of recovering from lost clients. Each experiment lasts
3 minutes and both CPU usage on the server and the message throughput (msg/s)

are measured. However, the data on CPU usage is not shown, as the experiments

182

13.3. Experiments

revealed no changes in the CPU usage when clients are lost.

The green curve in figure 13.10 represents the total load on the server. The spikes
in the curve indicate the loss of one (see figure 13.10(b)) or 10 clients (see figure
13.10(c)). When a trusted client fails, the server recovers the master objects hosted
on that client. This causes a temporary load increase, which disappears when the
server migrates these objects to other trusted nodes.

The red curves in figure 13.10 demonstrates a slight increase in the number of
network messages when the system is recovering from the loss of a trusted client.
The wanderer Als are unpredictable in their movements and create an uneven network
load. However, with 10 simultaneous faults, throughput raises to its highest level. It
should also be noted that the number of network message decreases with time because
less clients are connected to the system. Thus, any increases in messaging created by

the fault tolerant component is hidden by the loss of clients.

Server Failure

14 7000 30,000 7000

12 6000 25,000 " 6000

1 5000 5000

20,000
4000 4000

15,000

CPU Usage (%)
Load

3000 3000

10,000 \—\/_\
2000 2000
02 1000 5,000 1000

0 0 [0
0 20 40 60 80 100 120 20 40 60 80 100 120

L
Network Throughput (kBit/s)

o

Time (s) Time (s)

——CPU Usage on Halo = Load on Halo ——Network Throughput on Halo = Load on Halo

(a) Effect on CPU Usage of First Server (Halo) (b) Effect on Total Network Throughput

Figure 13.11: Effect of the loss of a server.

The loss of a server node (level 2) is much more severe, as server nodes host
both cells and objects. The following experiment demonstrates Journey’s ability to
recover from the loss of a server failure with minimal impact. The experimental

setup consists of 2 servers and 50 untrusted wandering clients. Untrusted clients are

183

13.3. Experiments

used this time to keep master objects on the servers, making the recovery process
even more resource intensive. Observations on the first server’s CPU usage and total
network throughput are taken during the first 2 minutes of the experiments, after all
the clients are connected. The second server is crashed after 20 seconds of starting
the observations, and is restarted 20 seconds latter.

The blue curves in figure 13.11 illustrate the logical load on the first server. After
20 seconds, when the second server is crashed, there is a sharp increase in load. This
load spike is caused by the large number of recovered objects: the lost objects are
recovered as active, thus earning the higher load value (see section 8.1.3). However,
the load decreases as the server determines that some of these objects are not active
and assigns them a lower load value. At around 20 seconds, a new server node is
connected to the system and the first server starts slowly migrating objects to the
new server.

The loss of a server has a definite effect on the remaining server (see the red curve
in figure 13.11(a)). The average CPU usage increases by 0.3 when the second server
is lost, and remains high, even thought a new server is added to the system. CPU
power is needed by the load balancing component to migrate tiles to the new server,
so CPU will not drop until the system fully stabilizes itself.

As for total network throughput, there is a sharp increase both at the loss and
recovery of the server (see the red curve in figure 13.11(b)). These increases are
caused by the recovery of the master objects and their migration to a new server: as
new states for these objects are published to the replicas in the system.

This increase in CPU usage and total network throughput would be a concern, if
the loss of a server was not an exceptional occurrence. By definition, servers (or level
2 nodes) are the most reliable nodes in the system. Even though the recovery process

is costly, the system does recover with time.

13.3.3 Cheating Players

The experiments in this section demonstrate that a cheater introduced into the sys-

tem is eventually detected and with minimal performance impact. CPU usage and

184

13.3. Experiments

/

/

—20%
5%

/
|
J

—1%

Number of Detected Cheating Nodes
ok N W A O @O N ® ©

|

/

/

i
i

0 400 600 800

Time (s)

1000 1200 1400 1600

Number of Detected Cheating Nodes

O B N W & O O N ® ©

/ —20%
5%

—1%

0

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time (s)

(a) Aggressive Auditing

Figure 13.12: Time needed to detect

(b) Conservative Auditing

cheating players using Auditing.

CPU Usage (%)

0 10 20 30 40 50 60

Time (s)

5%
1%

==no auditing

CPU Usage (%)

0 10 20 30 40 50 60

Time (s)

(a) Aggressive Auditing

(b) Conservative Auditing

Figure 13.13: CPU Usage on main server (Halo) using Auditing.

message throughput are measured to evaluate the performance impact. Similar to
the fault tolerance experiments, a fixed number of 50 trusted players are used in
the experiment.. However, 10 of these players are cheaters. Since these players are
connected first, they are assigned most of the responsibilities (master objects), and

hence given the most opportunities to cheat. Clients are connected progressively to

the system, as to not overload the auditing server.

The auditing component is active, as opposed to the passive fault tolerance com-
ponent: audits are performed regardless of the presence of cheating players. As such,

results for experiments without cheaters in the system are nearly identical to those

13.3. Experiments

—20%
5%
1%

Messages (msg/s)
© ® ©
& & 8
»—\ul'l
xR X

Messages (msg/s)
© ® ©
& & 3

===no auditing

0 10 20 30 40 50 60 0 10 20 30 40 50 60

Time (s) Time(s)

(a) Aggressive Auditing (b) Conservative Auditing

Figure 13.14: Message Throughput in System using Auditing.

with cheaters. Thus, the baseline experiment was performed with the auditing system
completely disabled, as to better reflect the overhead of using the auditing system.

A cheating node ignores 40% of RPC calls, and moves characters twice as far
requested. Only setDestination calls are audited in these experiments. It should be
noted that not all faulty setDestination calls are detected, since positions are not
compared for equality, but within an equality threshold. If the destination is close to
the player, the cheating destination is still considered valid.

Two decision algorithms are used to decide if a faulty player is cheating. The first
is quite aggressive and declares a player a cheater after 6 failed audits, regardless, of
the number of successful audits. The second, is much more conservative and declares
a node a cheater after it has failed 5% of its audits, but only after at least 50 audits
are done on that object.

The first figure (see 13.12) illustrates how much time is actually required to de-
tect all the cheaters, depending on the percentage of calls that are audited. The
experiments only detected 9 cheaters, as responsability would typically be assigned
to only 9 of the cheating nodes. Since a cheating node without responsibilities cannot
cheat, it cannot be detected. When auditing a small percentage of RPC calls, a great
deal of time is required to detect all cheaters. Nodes that host more than one active

players have a significantly higher chance of being audited. If cheating, these nodes

186

13.3. Experiments

are usually detected first. In addition, it should be noted that the detection speed for
the 20% and 5% audits are fairly similar when using the conservative auditing (see
blue and green curves in figure 13.12(b)), even though the 20% audit should be much
faster. This can be explained by the fact that in our experimental setup, players were
added gradually over time, and it takes a certain amount of time for enough players
to be in the system to reach the 50 RPC calls minimum. Once that number of calls
is reached, the cheaters are quickly identified.

The performance impact of the auditing system on server CPU usage and message
throughput can be found in figure 13.13 and figure 13.14. A block of 60 seconds was
chosen towards the beginning of the experiment. Note that the 20% auditing rate
is not present when using the aggressive auditing, as the 9 cheaters were found and
disconnected from the system before proper data could be collected.

CPU usage (see figure 13.13) varies over time, even when auditing is not used
(purple curve). However, on average the server that is responsible for the extra
auditing workload, shows some CPU usage increase (blue, red and green curve). In
addition, some of the CPU spikes are caused by the JVM, as described in the previous
experiments. This is particularly the case in figure 13.12(b) at 50 seconds for the 20%
audit.

Message throughput also varies over time (see figure 13.14) ranging from 67 to
100 messages per second, regardless of whether if auditing is used or not. In addition,
all curves have numerous spikes that represent sharp increases of messages over short
amounts of time. These increases are caused by new clients joining the system every
10 seconds. The curves featuring auditing (blue, red and green curves) are almost
always above the no auditing curve (purple curve) confirming that auditing does
increase message throughput. Figure 13.14(b) suggests that on average an additional
15 messages per second are added to the system when using the 20% auditing rate.
Although not catastrophic, this does represent an approximate 18% increase in the

message throughput, which corresponds well with the 20% audit rate.

187

13.3. Experiments

300 —

250 2

200

I
w

150

CPU Usage (%)

s

0 50 100 150 200 250

-

RPC Time (ms)

“ ﬁ]M:l'ﬁd‘ ;v
MiMaod A 76[“1'4" '
M

o
@

o

200 250
Clients

Clients

Dual Servers Quad Servers Single Server Dual Servers Quad Servers

Single Server

(a) RPC Time (b) CPU Usage on Main Server (Halo)

120,000

100,000 a—

80,000 a7

60,000 B

40,000 77 Ay
20,000 H
SN
pd

0

Network Throughput (kBit/s)

[20 40 60 80 100 120 140 160

Clients

Single Dual Quad

(¢) Total Network Throughput

Figure 13.15: Measures taken on Unified Framework.

13.3.4 Load Balancing, Cheating and Auditing Combined

The following set of experiments have one goal, to scale Journey to the highest number
of players possible using all its components. As such, Journey is configured using its
most efficient setup: using trusted clients and dynamic load balancing. Since these
tests measure the overall effectiveness of the system, auditing and fault tolerance are
enabled.

Clients are created using machines from the school’s computer lab. As such, there
is no guarantee that no other user is using the machine during the experiment. As a
result, these nodes are sometimes overloaded, even before the experiment. This was

not a concern in previous experiments, given that a smaller number of computers

188

13.3. Experiments

(less than 80) were used. For this experiments, all available computers were used.
Fortunately, the overloaded nodes will quickly fail their audit, since they are unable
to promptly execute RPC calls. The auditor disconnects these nodes, and the fault
tolerance engine recovers the objects hosted on that node. These objects are then
quickly redistributed to another node.

The experiment was done using one/two/four servers, and a large number of
trusted Waypoint AT clients. Clients were added progressively, every 21 seconds. In
all three cases, the experiment is very stable until the average RPC call reaches 300 ms
(see figure 13.15(a)). At such time, the servers are saturated and cannot load balance
or do proper interest management. Correlating these saturation point with CPU
usage data (see figure 13.15(b)), servers cannot cope with the load once utilization
reaches 1.5. The CPU usage spike at 60 clients for the dual server configuration
can be ignored as a JVM artifact. In a quad server scenario, the system is limited
225 clients. At that point, the network hub is overloaded and cannot route traffic
anymore (see figure 13.15(c)). This means the system could be scaled even further if
the network hub and the load balancing algorithms were further optimized, as they

are the greatest bottleneck in the system right now.

189

Part 1V

Conclusion

Chapter 14
Summary of Work

This thesis introduced Journey, a framework providing a unified approach to load
balancing, fault tolerance and cheat detection for massively multiplayer online games.
By exploiting the fact that load balancing, fault tolerance and cheat detection can
share common data, algorithms and implementation components, a unified frame-
work can provide features that would be impossible to get using these components
individually. Most important is the notion of trust, which defines which nodes can
be given responsibilities and brings these components together.

This thesis described how such a system can be designed, and demonstrated that
the design is valid by implementing the proposed design for the Mammoth MMOG
research framework. Finally, extensive experiments have proven that the unified
approach proposed by Journey indeed provides more elaborate load balancing, fault
tolerance and cheat detection capabilities for MMOGs than would be possible if these
problems were addressed individually.

At its core, the Journey framework uses replicated objects. This technology allows
game data to be shared across nodes in a distributed system following the object-
oriented paradigm in a location-transparent manner. The state of objects in the
system is updated using remote procedure calls (RPC), which were optimized for use
in a game environment. State updates are propagated to replicas using publish /sub-
scribe technology. The RPC system is implemented using the proxy design pattern,

which also simplifies the addition of services relating to logging and auditing.

191

To provide scalability, Journey partitions the game world using a novel, obstacle-
aware triangular partitioning which is used both for interest management and load
balancing. Interest management can take advantage of the obstacle awareness of
the triangulation to determine a player’s area of interest efficiently without actually
having to calculate a player’s visibility area. Load balancing assigns responsibility of
managing the interest of objects within the game world to servers by splitting the
world into cells. Cells are composed of a connected set of triangles, and hence also
nicely flow around obstacles in the world. They can be resized dynamically depending
on the load of each node, or the position of players in the world. This is especially
critical in cases of players flocking to a location, leaving a single node to handle the
load. If the nodes currently found in the system are unable to handle the total system
load, new nodes can be added and load will be dynamically redirected to them.

Given that massively multiplayer systems often involve thousands of participants,
either players or servers, it is not unlikely for a node to fail. Fault tolerance is
even more important in a framework like Journey, where responsibility is given to
trusted clients. Journey provides fault tolerance using the redundant data in the
system. The fault tolerance component can tolerate either the loss of a single server,
or any number of trusted clients. Lost objects are recovered by the node hosting its
corresponding cell. As for cells, they are linked together in a ring topology. If a cell
is lost, it is recovered by the node hosting the previous cell in the topology. A fault
tolerant migration algorithm for object is also presented, using the node hosting the
corresponding cell as a third party to audit the migration and ensure it is correctly
completed.

Journey heavily relies on trusted clients to achieve greater scalability. Unfortu-
nately, this makes Journey vulnerable to cheating, as a trusted clients can still cheat.
By auditing a small percentage of calls on a trusted node, inconsistent states changes
are quickly detected. Nodes hosting cells have absolute trust in the system, and are
used as auditors. RPCs to be audited are both executed as normal and forwarded to
auditors. These call are executed by the auditor in a separate sandbox environment.
This result is then compared to the update propagated by the original executor of the

RPC. Although the presence of inconsistencies is possible, the presence of numerous

192

inconsistencies is a strong indicator of a cheating node. Decision algorithms are used
to determined when a node is accused of cheating and what is done with the offending
node.

The various experiments done in Mammoth using hundreds of NPC players serve
to illustrate the numerous advantages of the proposed system. The load balancing
experiments show that Journey is scalable, and that the proposed dynamic cell par-
titioning can tolerate flocking behaviour of players. Meanwhile, the fault tolerance
experiments demonstrate Journey’s ability to cope with player and server faults with
little overhead. The cheating experiment clearly establishes that the auditing system
is able to detect inconsistencies in state changes, while adding minimal overhead to
the system.

Finally, a set of experiments with all three components allows Mammoth to scale
to 225 clients, a 750% increase beyond its original 30 clients limit. All three compo-
nents are needed to allow Mammoth to scale beyond its original limit. The massive
increase in scalability is provided by the load balancing engine, which migrates re-
source intensive objects to trusted clients. Even though these clients are trusted,
they can still experience faults. The fault tolerance component restores critical data
that would be otherwise lost if a client experiences a fault. Trusted clients can still
be dishonest; the auditing component is needed to detect and remove them from the
system. Without fault tolerance or auditing, it would not be safe to migrate resources
to trusted clients. And without the load balancing component, a single server would
be overwhelmed by its interest management, fault tolerance and auditing responsi-
bilities. The unified solutions requires all three components, but provides impressive

performance improvement while maintaining high reliability.

193

Chapter 15
Future Work

The research on load balancing, fault tolerance and cheat detection presented
in this thesis opens the door for many directions of future work, expanding and
improving Journey, as well as its implementation within the Mammoth framework.
At the time of writing, there are no less than 15 ideas on the “open projects” page of
the Mammoth website, many of them related to replication technology. This chapter

focuses on the many possible expansions and improvements.

15.1 Improving the Building Blocks of Journey

Journey is not in any way limited to the features presented in this thesis. Much work
can be done to improve the building blocks of Journey, most notably in the RPC,

triangle-based partitioning and networking components.

15.1.1 Remote Procedure Calls

The annotation system presented in section 6.2.1 makes the individual customization
of remote calls possible. The work presented in this thesis uses simple annotations,
such as specifying datasets for method calls. However, the annotation system has
much more potential, allowing for customization of how RPCs are executed and how

state changes are propagated.

194

15.1. Improving the Building Blocks of Journey

One such example is “premature” remote calls, where method calls that result in
updating the state of a game object are executed immediately on the local replica of
an object. The call is then forwarded to the master object and executed remotely.
If the call succeeds, and the resulting state change is the same as the one executed
prematurely on the local replica, the state change is propagated to the other replicas.
Otherwise, an error message is sent back to the originating replica and the object is
rolled back to its previous state. Although this annotation is not suitable for all calls,
actions with high visibility and low side effects such as movement can benefit greatly

from this annotation.

15.1.2 Triangle-Based Partitioning

The partition optimizations presented in chapter 5 only scratch the surface of the work
that can be done in this field. One key area for improvement is the analysis of the
provided geometry that is performed when creating the obstacle map. Recognizing
specific elements of the topology of a virtual world is particularly tricky, but would
allow for specific optimizations. For example, the current algorithms attempt to
recognize walls to transform them into lines and merge the corners, in order to decrease
the number of small triangles generated between these edges (see section 5.2.4).

Another key area is the optimization of the obstacle map itself. The optimizations
proposed in this work are designed to work best in a 2D space, which is common in
modern computer games. Even though most modern MMOG worlds are 3D, the pro-
posed algorithms can still be applied to a projection of the world on two dimensions.
However, it would be interesting to see if additional optimizations can be done on a
real 3D obstacle map. For example, an optimization that transforms polygonal walls
into lines would, in 3D, transform walls into planes instead. Merging points in 3D
might also be more complicated, as the closeness threshold might not be the same on
each axis.

Finally, the triangulation metric proposed in this work does not evaluate the loss

of obstacle data caused by the simplification. In this situation, a simplification that

195

15.2. Improving Journey

removes obstacle data most likely improves the score of a triangulation, as less con-
straints will be supplied to the partitioning algorithm. Although the simplifications
proposed in this work are fairly conservative in removing obstacles, an improved met-
ric that accounts for the loss of obstacle data would be useful when developing new

simplifications.

15.1.3 Network Engine

A major scalability bottleneck in Journey is Mammoth’s network engine. In the
unified framework experiment (see section 13.3.4), Mammoth is limited to 225 clients
because the network hub is overloaded. Scalability could be greatly increased with
a multi-hub system: using multiple hubs to relay network messages to all the nodes.
It would also be interesting to explore how a peer-to-peer network engine that uses
the existing clients in the system to relay network messages can be used to increase

network performance.

15.2 Improving Journey

Although effective, the algorithms used in the design of Journey are sometimes sub-
optimal. Many optimizations can be done to improve Journey’s performance and
reliability, most notably in the areas of trust, load balancing, migration, fault toler-

ance and auditing.

15.3 Trust Service

In Journey, trust data can be acquired from various sources. For example, the current
load of a node could be monitored: nodes with low loads could be considered trust-
worthy. As the same time, a node could be monitored for faults or cheats. Nodes with
exemplary records would be considered trustworthy. However, a node disconnecting

often, or failing audits should not be considered trustworthy:.

196

15.4. Load Balancing and Migration

Once trust data is gathered, decisions must be made. This is a non trivial problem
as false positives, demoting a good and reliable node, should be avoided at all costs.
Promoting a non-reliable node is also a problem, as that node can corrupt or cause
data loss in case of a fault. The decision process can be improved with a historical
trust metric kept in persistent storage; decisions can then be made based on the
node’s reliability and trustworthiness from previous game sessions.

A key feature in trust systems is the ability to earn or lose trust, which in turn
affects the responsibilities that a node can take on within Journey. The current
version of the trust service does not allow promotions or demotions, mostly because

it does not have the ability to gather trust data and interpret it.

15.4 Load Balancing and Migration

The proposed load balancing algorithms (see section 8.3) in Journey are simplistic in
nature: using a rudimentary metric, they try to share the load across trusted nodes
in a greedy fashion, making the locally optimal choice at each step. However, existing
literature on load balancing suggest other efficient ways to distribute the load. For
example, the load balancing algorithm could use global state information about the
system to make better decisions. Improving the way load is determined would also
be beneficial, as overloaded node would be more effectively detected.

One key element of the load balancing component is the migration technique
used to move objects from one node to another. Although both burst and fault-
tolerant migration is presented in this work, it would be interesting to explore different
migration strategies.

In addition, load balancing would produce more efficient results if object were
migrated in groups of related objects. As more work is done on complex actions

(actions on multiple objects), the notion of object grouping can be better defined.

197

15.5. Fault Tolerance and Auditing

15.5 Fault Tolerance and Auditing

The fault tolerance techniques in Journey are only effective under the assumptions
presented in section 9.1.3, i.e. that at most one level 2 node fails at a given time, or
any number of level 1 nodes but no level 2 node.

Although the unlikely loss of 2 level 2 nodes does not necessarily cause problems,
there is a non-negligible risk that some master objects are lost. Future work could
investigate if the use of probabilistic replication can provide stronger fault tolerance
guarantees. Another way of providing stronger fault tolerance would be to periodically
store the state of master objects on persistent storage. During recovery, the state of
lost master objects can then be reloaded from persistent storage.

In addition, much work is needed on the decision algorithm of the auditing system.
Even if faults and inconsistencies are detected, proper care must be taken before a
node is declared a cheater. Journey would greatly benefit from a more elaborate
decision algorithm, possibly even a distributed decision algorithm which would require
several nodes to declare a node a cheater before actions to ban the node from the

game are taken. This avoids giving too much power to a single auditing node.

198

Appendix A
Appendix A : Algorithms

These are some of the algorithms most commonly used in Mammoth.

When describing the algorithms, the following conventions will be followed.

Letters Convention

X, Y. Z Variable amounts of quantity (integer variables).
A,B,C,D.E,F, etc. Nodes participating to the system.

X,V,Z Coordinates in space.

a, 3, 7, etc. Game objects or cell objects.

ma,da Respectively, the master and duplica versions of «.

Table A.1: Letter conventions for algorithms

In addition, the following functions/keywords are defined:

e Node(object) : Return the node hosting the master of object.

State(object) : Return the state of object.

Send(message, target) : Send a message to target node.

Publish(object): Publish state of object to nodes interested in object.

Receive(message) : Receive and store the last sent message.

199

e Update(object, message): Update object using data from message.

e Create(object, message): Create object using data from message.

e Wait(n, function) : Wait for n rounds of time, then executes func.

e Migrate(object, target) : Migrate an object to target node.

e SwitchToDuplica(object) : Transform object into a duplica.

e SwitchToMaster(object) : Transform object into a master.

e Execute(request) : Execute the RPC call in request.

e Audit(request, ...): Audit the RPC call in request using the other parameters.

o SelectTiles(source, destination) : Select tiles found in node A’s cell adjacent to

node B’s cell.

The algorithms used in Journey are as follows:

Algorithm A.1 Burst Migration

Migrating ma from node A to node B.

A SwitchToDuplica(a)
message = State(a on A)
A Send(message, B)
B Receive(message)
if da exits on B then
B Update(da, message)
B SwitchToMaster(«)
else
B Create(ma, message)
end if
B Publish(«)

200

Algorithm A.2 Fault Tolerant Burst Migration

Migrate ma from node A to node B. The cell master of ma is stored on node C.

Lines colored in blue originate from the previous non-fault tolerant burst migration

algorithm.

magration_request = Wish to migrate ma to host B.
A send (migration_ request, C)
C receive(migration_ request)
C waits(2, check_for _failure())
A SwitchToDuplica(«)
message = STATE (a on A)
A Send(message, B)
if Send fails then
A SwitchToMaster(«)
A Publish(«)
magration_ cancelled = Migration a cancelled.
A send(migration_ cancelled, C)
return
end if
B Receive(message)
if da exists on B then
B Update(da, message)
B SwitchToMaster(«)
else
B Create(ma, message)
end if
B Publish(«)

check for failure():
if (C Not Receive(publication from B) OR (C Not Receive(migration_ cancelled)
then
C SwitchToMaster(a)
B Publish(a) 201
end if

Algorithm A.3 Recovery of Lost Master Object

In this scenario, Node A has suffered a critical failure. It was hosting the master of

a, located in cell 5. Node B has noticed the failure and is hosting the master of 5.

if host(mf) = A then

The lost of ma will be dealt after the recovery of mf.
else

B SwitchToMaster(«)

B Publish(«)

B Migrate(a ,different node)
end if

Algorithm A.4 Recovery of Lost Master Cell

In this scenario, node A has suffered a critical failure. It was hosting the master

of cell 5. Node B has noticed the failure and is hosting the master of cell v, the

predecessor of (.

B SwitchToMaster(3)
B Publish(ﬁ)

£ will then be migrated to another node the next time a node trusted to receive

cells joins the system.

202

Algorithm A.5 Audit of Method Call

In this scenario, node A wants to execute an RPC call on object o, whose Node(«)

is node B. The auditing node for « is C.

request = RPC to execute on «

A Send(request, B)

A Send(request, C)

B Receive(request)

B Execute(request)

B Publish(«)

C Receive(request)

C Receive(state_update of «)

if C Audit(request, state update of «) = NO then
B might be cheating.

end if

203

Bibliography

[ACLO4]

[AKS8S]

|ALR04]

[ANSO93]

[Apa09]

[Art10]

[ASAO0Y]

T. Abdellatif, E. Cecchet, and R. Lachaize. Evaluation of a group commu-
nication middleware for clustered J2EE application servers. On the Move
to Meaningful Internet Systems 2004: CooplS, DOA, and ODBASE,
pages 1571-1589, 2004.

P.E. Ammann and J.C. Knight. Data diversity: An approach to software
fault tolerance. IEEE Transactions on Computers, 37(4):418-425, 1988.

A. Avizienis, J.C. Laprie, and B. Randell. Dependability and its threats:
a taxonomy. In Building the information society: IFIP 18th World Com-

puter Congress: Topical sessions 22-27 August 2004, Toulouse, France,
page 91. Kluwer Academic Pub, 2004.

DIS ANSI. IEEE std 1278-1993. Standard for information technology,

Protocols for distributed interactive simulation, 1993.
Apache. Velocity, September 2009. http://velocity.apache.org/.

Electronic Arts. Ultima online, March 2010.
http://www.uoherald.com/.

D.T. Ahmed, S. Shirmohammadi, and J.C. de Oliveira. A hybrid P2P
communications architecture for zonal MMOGs. Multimedia Tools and
Applications, 45(1):313-345, 20009.

204

Bibliography

[Asp10]

[ATO6]

[Avios]

[BAOS]

IBCL*04]

[BECMO5]

[BKO07]

[BKV06]

AspectJ Development — Team. AspectJ, July 2010.
http://www.eclipse.org/aspectj/.

M. Assiotis and V. Tzanov. A distributed architecture for MMORPG.
In Proceedings of 5th ACM SIGCOMM workshop on Network and system
support for games, page 4. ACM, 2006.

A. Avizienis. The methodology of n-version programming. Software fault
tolerance, pages 23-46, 1995.

Eliya Buyukkaya and Maha Abdallah. Efficient triangulation for p2p
networked virtual environments. In NetGames "08: Proceedings of the Tth
ACM SIGCOMM Workshop on Network and System Support for Games,
pages 34-39, New York, NY, USA, 2008. ACM.

T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and M. Clay-
pool. The effects of loss and latency on user performance in unreal tour-
nament 2003®). In Proceedings of 3rd ACM SIGCOMM workshop on
Network and system support for games, pages 144-151. ACM New York,

NY, USA, 2004.

R.K. Balan, M. Ebling, P. Castro, and A. Misra. Matrix: Adaptive mid-
dleware for distributed multiplayer games. Lecture notes in computer
science, 3790:390, 2005.

H. Backhaus and S. Krause. Voronoi-based adaptive scalable transfer re-
visited: gain and loss of a voronoi-based peer-to-peer approach for mmog.
In Proceedings of the 6th ACM SIGCOMM workshop on Network and sys-
tem support for games, pages 49-54. ACM New York, NY, USA, 2007.

J.S. Boulanger, J. Kienzle, and C. Verbrugge. Comparing interest man-
agement algorithms for massively multiplayer games. In Proceedings of
5th ACM SIGCOMM workshop on Network and system support for games.
ACM New York, NY, USA, 2006.

205

Bibliography

[BPS06]

[Brel0]

[BRS02|

[CATS]

[Cad08]

[CCo6|

[CCP10a]

|CCP10b]

[CDKRO02]

[CFSS05]

A. Bharambe, J. Pang, and S. Seshan. Colyseus: A distributed archi-
tecture for online multiplayer games. Proceedings of the 3rd conference

on 8rd Symposium on Networked Systems Design and Implementation -
Volume 3, 2006.

Seraphina Brennan. Eve online celebrates 54,446 simultaneous users, a

new record. Massively.com, January 2010. http://www.massively.com/.

A.R. Bharambe, S. Rao, and S. Seshan. Mercury: a scalable publish-
subscribe system for internet games. In Proceedings of the 1st workshop

on Network and system support for games, pages 3-9. ACM New York,
NY, USA, 2002.

L. Chen and A. Avizienis. N-version programming: a fault-tolerance ap-
proach to reliability of software operation. Fault Tolerant Computing,
FTCS, 8:3-9, 1978.

0. Cado. Propagation of Visual Entity Properties Under Bandwidth Con-

straints. Gamasutra. com, 2008.

M. Claypool and K. Claypool. Latency and player actions in online games.
Communications of the ACM, 49(11):45, 2006.

CCP. Eve online, January 2010. http://www.eveonline.com/.

CCP. Eve online faq, January 2010.
http://www.eveonline.com/faq/faq_*01.asp.

M. Castro, P. Druschel, A.M. Kermarrec, and A.I.'T. Rowstron. SCRIBE:
A large-scale and decentralized application-level multicast infrastructure.
IEEE Journal on Selected Areas in communications, 20(8):1489-1499,
2002.

C. Chambers, W. Feng, S. Sahu, and D. Saha. Measurement-based char-

acterization of a collection of on-line games. In Proceedings of the 5th

206

Bibliography

[Cha98]

[CPO9]

[CTRO6]

[CWD*05]

[CXTLO2]

[CYB*07]

[DBO6]

[DBMO7]

ACM SIGCOMM conference on Internet Measurement, page 1. USENIX
Association, 2005.

D. Chappell. The trouble with CORBA. Object News, May, 1998.

Sophie Bernard Charles Premont, Steve Laprise. Guide de ["industrie jeux
video. Lien Multimedia, 2009.

CTR. Sms case study - eve online and ccp games. Computer Technology

Review, March 2006. http://www.wwpi.com/.

J. Chen, B. Wu, M. Delap, B. Knutsson, H. Lu, and C. Amza. Locality
aware dynamic load management for massively multiplayer games. In
Proceedings of the tenth ACM SIGPLAN symposium on Principles and

practice of parallel programming, pages 289-300. ACM New York, NY,
USA, 2005.

W. Cai, P. Xavier, S.J. Turner, and B.S. Lee. A scalable architecture
for supporting interactive games on the internet. In Proceedings of the

sizteenth workshop on Parallel and distributed simulation, pages 60-67.
IEEE Computer Society Washington, DC, USA, 2002.

L. Chan, J. Yong, J. Bai, B. Leong, and R. Tan. Hydra: a massively-
multiplayer peer-to-peer architecture for the game developer. In Pro-
ceedings of the 6th ACM SIGCOMM workshop on Network and system
support for games, pages 37-42. ACM New York, NY, USA, 2007.

D. Demyen and M. Buro. Efficient triangulation-based pathfinding. In
Proceedings of the National Conference on Artificial Intelligence, page
942. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;
1999, 2006.

DBMS2. The database technology of guild wars. Monash Research Pub-
lication, March 2007. http://www.dbms2. com/.

207

Bibliography

[DEGT04]

[DG99]

[Dig09)

[DKO6]

[DK10]

[DTHKO5]

[DWWO05]

[DZ03]

[EFBO]

P. Druschel, E. Engineer, R. Gil, J. Hoye, YC Hu, S. Iyer, A. Ladd,
A. Mislove, A. Nandi, A. Post, et al. Freepastry, 2004.

C. Diot and L. Gautier. A distributed architecture for multiplayer inter-
active applicationson the Internet. IFEE network, 13(4):6-15, 1999.

Screen Digest. There is life beyond World of Warcraft. 2009.

http://www.screendigest.com/.

A. Denault and J. Kienzle. Minueto, a game development framework
for teaching object-oriented software design techniques. In FuturePlay
2006: The International Conference on the Future of Game Design and
Technology, 2006.

A. Denault and J. Kienzle. The Perils of Using Simulations to Evaluate
Massively Multiplayer Online Game Performance. DIstributed SImulation
€ Online gaming (DISIO), 2010.

S. Douglas, E. Tanin, A. Harwood, and S. Karunasekera. Enabling mas-
sively multi-player online gaming applications on a P2P architecture. In
Proceedings of the IEEE International Conference on Information and
Automation, pages 7T-12. IEEE, 2005.

M. Dick, O. Wellnitz, and L. Wolf. Analysis of factors affecting players’
performance and perception in multiplayer games. In Proceedings of 4th
ACM SIGCOMM workshop on Network and system support for games,
page 7. ACM, 2005.

T.N.B. Duong and S. Zhou. A dynamic load sharing algorithm for mas-
sively multiplayer online games. In Networks, 2003. ICON2003. The 11th
IEEFE International Conference on, pages 131-136, 2003.

T. Elrad, R.E. Filman, and A. Bader. Aspect-oriented programming:
Introduction. Communications of the ACM, 44(10):29-32, 2001.

208

Bibliography

[Ent09)

[Exp08a]

[ExpO8b]

[FB74]

[FBSO07]

[FFO3]

[FGWO6]

[FH02|

[Fis83]

[FRO5]

Blizzard Entertainment. World of warcraft, July 2009.
http://www.worldofwarcraft.com/.

CCP Explorer. Eve64. FEve Insider Dev Blog, October 2008.

http://www.eveonline.com)/.

CCP Explorer. stacklessio or: how we reduced lag. Fve Insider Dev Blog,
September 2008. http://www.eveonline.com/.

RA Finkel and JL Bentley. Quad trees a data structure for retrieval on
composite keys. Acta informatica, 4(1):1-9, 1974.

W. Feng, D. Brandt, and D. Saha. A long-term study of a popular
MMORPG. In Proceedings of the 6th ACM SIGCOMM workshop on
Network and system support for games, pages 19-24. ACM New York,
NY, USA, 2007.

W. Feng and W. Feng. On the geographic distribution of on-line game
servers and players. In Proceedings of the 2nd workshop on Network and

system support for games, page 179. ACM, 2003.

R.D.S. Fletcher, T.C.N. Graham, and C. Wolfe. Plug-replaceable con-
sistency maintenance for multiplayer games. In Proceedings of 5th ACM
SIGCOMM workshop on Network and system support for games. ACM
New York, NY, USA, 2006.

Daniel Fu and Ryan T. Houlette. Putting Al in entertainment: An
AT authoring tool for simulation and games. [EEE Intelligent Systems,
17(4):81-84, 2002.

M.J. Fischer. The consensus problem in unreliable distributed systems (a
brief survey), 1983.

S. Ferretti and M. Roccetti. Fast delivery of game events with an opti-

mistic synchronization mechanism in massive multiplayer online games.

209

Bibliography

[FTT07]

[GHIV95)

[GraT72]

[Gro03]

[GVOS]

[Haw08|

[HenO1]

[Hen06)

[HK97]

[HKU]

In Proceedings of the 2005 ACM SIGCHI International Conference on Ad-
vances i computer entertainment technology, pages 405-412. ACM New
York, NY, USA, 2005.

L. Fan, H. Taylor, and P. Trinder. Mediator: a design framework for
P2P MMOGs. In Proceedings of the 6th ACM SIGCOMM workshop on
Network and system support for games, pages 43-48. ACM New York,
NY, USA, 2007.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns:

Elements of reusable object-oriented design, 1995.

RL Graham. An efficient algorithm for determining the convex hull of a
finite planar set. Information Processing Letters, 1(4):132-133, 1972.

A. Grossman. Postmortems from Game Developer: Insights from the
Developers of Unreal Tournament, Black and White, Age of Empires,
and Other Top-Selling Games. CMP Books, 2003.

Josh Goodman and Clark Verbrugge. A peer auditing scheme for cheat
detection in MMOGs. In NetGames 2008: 7th Workshop on Network €
System Support for Games, Worcester, MA, USA, oct 2008.

Michael A. Hawker. Subgames in massively multiplayer online games.
Master’s thesis, McGill University, 2008.

T. Henderson. Latency and user behaviour on a multiplayer game server.

Lecture notes in computer science, pages 1-13, 2001.
M. Henning. The rise and fall of CORBA. Queue, 4(5):34, 2006.

Markus Horstmann and Mary Kirtland. DCOM Architecture. MSDN,
1997.

B. Hardekopf, K. Kwiat, and S. Upadhyaya. Secure and fault-tolerant

voting in distributed systems.

210

Bibliography

[HLO4|

[HSPAO9)

[THKO4]

[Inc10)

[KASO7]

[KDVO7]

[KLXHO04]

[KVK*09]

S.Y. Hu and G.M. Liao. Scalable peer-to-peer networked virtual environ-
ment. In Proceedings of 3rd ACM SIGCOMM workshop on Network and
system support for games, pages 129-133. ACM New York, NY, USA,
2004.

B. Hariri, S. Shirmohammadi, M.R. Pakravan, and M.H. Alavi. An adap-
tive latency mitigation scheme for massively multiuser virtual environ-
ments. Journal of Network and Computer Applications, 32(5):1049-1063,
2009.

T. Iimura, H. Hazeyama, and Y. Kadobayashi. Zoned federation of game

servers: a peer-to-peer approach to scalable multi-player online games.
In Proceedings of 3rd ACM SIGCOMM workshop on Network and system
support for games, pages 116-120. ACM New York, NY, USA, 2004.

Gravity Interactive Inc. Ragnarok online, March 2010.

http://iro.ragnarokonline.com/.

I. Kazem, D.T. Ahmed, and S. Shirmohammadi. A visibility-driven ap-
proach to managing interest in distributed simulations with dynamic load
balancing. In Proceedings of the 11th IEEE International Symposium on
Distributed Simulation and Real-Time Applications, pages 31-38. IEEE
Computer Society, 2007.

J. Kienzle, A. Denault, and H. Vangheluwe. Model-based Design of
Computer-Controlled Game Character Behavior. Lecture Notes in Com-
puter Science, 4735:650, 2007.

B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-peer support for
massively multiplayer games. In INFOCOM 2004. Twenty-third Annual
Joint Conference of the IEEE Computer and Communications Societies,
volume 1, 2004.

J Kienzle, C Verbrugge, B Kemme, A Denault, and M Hawker. Mam-

moth: a massively multiplayer game research framework. In Proceedings

211

Bibliography

[Lab10]

[Lan05|

[LBO6]

[LC02|

[Les05]

[LLO3|

[LLLO4]

[LPMO6|

[LS06]

of 5th ACM SIGCOMM workshop on Network and system support for
games, Orlando, Florida, USA, 2009. ACM.

Liden Labs. Second life, January 2010. http://www.secondlife.com/.

Marc Lanctot. Adaptive virtual environments in modern multi-player

computer games. Master’s thesis, McGill University, 2005.

D. Liang and P. Boustead. Using local lag and timewarp to improve
performance for real life multi-player online games. In Proceedings of 5th
ACM SIGCOMM workshop on Network and system support for games.
ACM New York, NY, USA, 2006.

JCS Lui and MF Chan. An efficient partitioning algorithm for distributed
virtualenvironment systems. I[EEE Transactions on Parallel and Dis-
tributed Systems, 13(3):193-211, 2002.

P. Lester. A* pathfinding for beginners. Almanac of Policy Issues, 2005.

K. Lee and D. Lee. A scalable dynamic load distribution scheme for
multi-server distributed virtual environment systems with highly-skewed

user distribution. In Proceedings of the ACM symposium on Virtual reality
software and technology, pages 160-168. ACM New York, NY, USA, 2003.

F.W.B. Li, LLW.F. Li, and R.W.H. Lau. Supporting continuous consis-
tency in multiplayer online games. In Proceedings of the 12th annual ACM

international conference on Multimedia, pages 388-391. ACM New York,
NY, USA, 2004.

F. Lu, S. Parkin, and G. Morgan. Load balancing for massively multi-
player online games. In Proceedings of 5th ACM SIGCOMM workshop on
Network and system support for games, page 1. ACM, 2006.

Hsiu-Hui Lee and Chin-Hua Sun. Load-balancing for peer-to-peer net-

worked virtual environment. In NetGames ’06: Proceedings of 5th ACM

212

Bibliography

[LSVO06]|

[Lual0]

[Mat03]

[Mee06]

[IMFW02

[MGMO6]

[Mic06]

[Mic10]

[Min08]

SIGCOMM workshop on Network and system support for games, page 14,
New York, NY, USA, 2006. ACM.

M. Lanctot, N.N.M. Sun, and C. Verbrugge. Path-finding for large scale
multiplayer computer games. In Proceedings of the 2nd Annual North
American Game-On Conference (GameOn’NA 2006), pages 26-33, 2006.

Lua Team, Catholic University of Rio de Janeiro. The Lua Programming

Language, April 2010. http://www.lua.org/.

M. Matskin. Scalable agent-based simulation of players in massively mul-
tiplayer online games. In FEighth Scandinavian Conference on Artificial
Intelligence: SCAI’03, page 153. IOS Press, 2003.

M. Meehan. Virtual property: protecting bits in context. Rich. JL &
Tech., 13:1, 2006.

M. Mauve, S. Fischer, and J. Widmer. A generic proxy system for net-
worked computer games. In Proceedings of the 1st workshop on Network
and system support for games, pages 25-28. ACM New York, NY, USA,
2002.

S. Marti and H. Garcia-Molina. Taxonomy of trust: Categorizing p2p
reputation systems. Computer Networks, 50(4):472-484, 2006.

Sun Microsystems. Java rmi specification. Java SE Documentation, 2006.

http://java.sun.com/.

Sun Microsystems. Java remote method invocation. Java SE Documen-

tation, January 2010. http://java.sun.com/.

CCP Mindstar. my node was equipped with the
following... Eve Insider Dev Blog, October 2008.
http://www.eveonline.com/devblog.asp?a—=blog&bid=589.

213

Bibliography

[Min09]

[Min10]

[MLS05a]

[MLS05b)]

[Mon07|

[Moz10|

[NC04]

[Net10]

[New09]

[OCST05]

CCP Mindstar. apocrypharrrrrdware! Eve Insider Dev Blog, February
2009. http://www.eveonline.com/.

Mina Development Team. Apache Mina, August 2010.
http://mina.apache.org/.

G. Morgan, F. Lu, and K. Storey. Interest management middleware for
networked games. In Proceedings of the 2005 symposium on Interactive
3D graphics and games, pages 57-64. ACM New York, NY, USA, 2005.

Graham Morgan, Fengyun Lu, and Kier Storey. Interest management
middleware for networked games. In 13D ’05: Proceedings of the 2005
symposium on Interactive 3D graphics and games, pages 57-64, New York,
NY, USA, 2005. ACM Press.

Curt Monash. The technology of guild wars (overview). The Monash
Report, June 2007. http://www.monashreport.com/.

Morzilla Developer Center. About Javascript, April 2010.
https://developer.mozilla.org/en/About_JavaScript/.

J. Nichols and M. Claypool. The effects of latency on online madden NFL
football. In Proceedings of the 14th international workshop on Network

and operating systems support for digital audio and video, pages 146-151.
ACM New York, NY, USA, 2004.

Arena Net. Guild wars, March 2010. http://www.guildwars.com/.

Virtual Good News. Maple story nets $150-500m in revenue for 2008.
February 2009. http://www.virtualgoodsnews.com/.

C. Onuczko, M. Cutumisu, D. Szafron, J. Schaeffer, M. McNaughton,
T. Roy, K. Waugh, M. Carbonaro, and J. Siegel. A Pattern Catalog For
Computer Role Playing Games. In Game-On-NA 2005 - 1st International

North American Conference on Intelligent Games and Simulation, pages
33 — 38. Eurosis, August 2005.

214

Bibliography

[OMG09]

[Paul0]

[PGO7]

[Pin05]

[Pow10]

[PSL80)

[PW02]

[QML*04]

[Quall]
[Qua02]

[RDO1]

OMG. Corba basics. Object Management Group, November 2009.

Paul Chew. Voronoi Diagram / Delaunay Triangulation, 2010.
http://www.cs.cornell.edu/home/chew/Delaunay.html.

D. Pittman and C. GauthierDickey. A measurement study of virtual

populations in massively multiplayer online games. In Proceedings of the
6th ACM SIGCOMM workshop on Network and system support for games,
pages 25-30. ACM New York, NY, USA, 2007.

A. Pinto. Appia group communication, 2005.

Mark Powell. Jmonkey engine, January 2010.
http://www. jmonkeyengine.com/.

M Pease, R Shostak, and L. Lamport. Reaching agreement in the presence
of faults. Journal of the ACM (JACM), 27(2):228-234, 1980.

L. Pantel and L.C. Wolf. On the impact of delay on real-time multiplayer
games. In Proceedings of the 12th international workshop on Network
and operating systems support for digital audio and video, page 29. ACM,
2002.

P. Quax, P. Monsieurs, W. Lamotte, D. De Vleeschauwer, and N. De-
grande. Objective and subjective evaluation of the influence of small
amounts of delay and jitter on a recent first person shooter game. In
Proceedings of 3rd ACM SIGCOMM workshop on Network and system
support for games, pages 152-156. ACM New York, NY, USA, 2004.

Quazal. Quazal Net-Z 2.0, Technical Overview, 2001.
Quazal. Duplication Spaces, Quazal Multiplayer Connectivity, 2002.

A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. Lecture Notes

i Computer Science, pages 329-350, 2001.

215

Bibliography

[Rep07]

[RK07]

[RLT78]

[SC94]

[Sch09]

[SGB*03]

[She96]

[SKHO2]

[SM95]

[Sri95)

The Monash Report. The technology of guild wars (overview). Monash
Research Publication, June 2007. http://www.monashreport.com//.

A. Raja and M. Katchabaw. Using Synthetic Players to Generate Work-
loads for Networked Multiplayer Games. In 3rd International North

American Conference on Intelligent Games and Simulation, 2007.

B. Randell, P. Lee, and PC Treleaven. Reliability issues in computing
system design. ACM Computing Surveys (CSUR), 10(2):123-165, 1978.

Sandeep K. Singhal and David R. Cheriton. Using a position history-

based protocol for distributed object visualization, 1994.

Johannes Schaback. Feng gui, November 2009.
http://www.fenggui.org/.

N. Sheldon, E. Girard, S. Borg, M. Claypool, and E. Agu. The effect of
latency on user performance in Warcraft III. In Proceedings of the 2nd

workshop on Network and system support for games, pages 3—14. ACM
New York, NY, USA, 2003.

J.R. Shewchuk. Triangle: Engineering a 2D quality mesh generator and
Delaunay triangulator. Lecture notes in computer science, 1148:203-222,
1996.

J. Smed, T. Kaukoranta, and H. Hakonen. Aspects of networking in
multiplayer computer games. The FElectronic Library, 20(2):87-97, 2002.

L.S. Sabel and K. Marzullo. Election vs. consensus in asynchronous
systems. Computer Science Technical Report nestrl. cornell/TR95-1488,
Cornell University, 1995.

R. Srinivasan. RFC 1831: RPC: Remote procedure call protocol specifi-

cation version 2, 1995.

216

Bibliography

[SSJ+08]

SV

[Unr07]

[V*T97]

[Val09)]

[VBDO7]

[Whi75]

[WKO4]

[WRWO6]

[YMYIO05]

A. Schmieg, M. Stieler, S. Jeckel, P. Kabus, B. Kemme, and A. Buch-
mann. pSense-Maintaining a dynamic localized peer-to-peer structure for
position based multicast in games. In Eighth International Conference on
Peer-to-Peer Computing (P2P°08), pages 247-256. IEEE, 2008.

D.C. Schmidt and S. Vinoski. Object Interconnections: An Introduction
to CORBA Messaging. C++ Report, 1998.

Unreal Technology. The Unreal Engine 3, 2007.
http://www.unrealtechnology.com/.

S. Vinoski et al. CORBA: Integrating diverse applications within dis-
tributed heterogeneous environments. IEEE Communications Magazine,
35(2):46-55, 1997.

Valve. Half-life 2, July 2009. http://orange.half-1ife2.com/.

M. Varvello, E. Biersack, and C. Diot. Dynamic clustering in delaunay-
based P2P networked virtual environments. In Proceedings of the 6th
ACM SIGCOMM workshop on Network and system support for games,
pages 105-110. ACM, 2007.

J.E. White. RFC 707: High-level framework for network-based resource
sharing, 1975.

Sara Williams and Charlie Kindel. The Component Object Model: A
Technical Overview. MSDN, 1994.

A. Wollrath, R. Riggs, and J. Waldo. A distributed object model for the
Java system, 1996.

S. Yamamoto, Y. Murata, K. Yasumoto, and M. Ito. A distributed event
delivery method with load balancing for mmorpg. In Proceedings of 4th
ACM SIGCOMM workshop on Network and system support for games,
pages 1-8. ACM New York, NY, USA, 2005.

217

Bibliography

[ZWZ106| Z. Zhou, H. Wang, J. Zhou, L. Tang, K. Li, W. Zheng, and M. Fang. Pi-
geon: a framework for testing peer-to-peer massively multiplayer online
games over heterogeneous network. In 3rd IEEE Consumer Communica-
tions and Networking Conference, 2006. CCNC' 2006, volume 2, 2006.

218

