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Abstract

Although Deep Learning (DL) models have been shown to perform very well on various

medical imaging tasks, inference in the presence of pathology presents several challenges

to common models. These challenges impede the integration of DL models into real clin-

ical workflows. Deployment of these models into real clinical contexts requires: (1) that

the confidence in DL model predictions be accurately expressed in the form of uncer-

tainties and (2) that they exhibit robustness and fairness across different sub-populations.

Quantifying the reliability of DL model predictions in the form of uncertainties could en-

able clinical review of the most uncertain regions, thereby building trust and paving the

way toward clinical translation. Similarly, by embedding uncertainty estimates across

cascaded inference tasks, prevalent in medical image analysis, performance on the down-

stream inference tasks should also be improved. In this thesis, we develop an uncertainty

quantification score for the task of Brain Tumour Segmentation. We evaluate the score’s

usefulness during the two consecutive Brain Tumour Segmentation (BraTS) challenges,

BraTS 2019 and BraTS 2020. Overall, our findings confirm the importance and comple-

mentary value that uncertainty estimates provide to segmentation algorithms, highlight-

ing the need for uncertainty quantification in medical image analyses. We further show

the importance of uncertainty estimates in medical image analysis by propagating un-

certainty generated by upstream tasks into the downstream task of interest. Our results

on three different clinically relevant tasks indicate that uncertainty propagation helps im-

prove the performance of the downstream task of interest. Additionally, we combine

the aspect of uncertainty estimates with fairness across demographic subgroups into the

picture. By performing extensive experiments on multiple tasks, we show that popular

ML methods for achieving fairness across different subgroups, such as data-balancing

and distributionally robust optimization, succeed in terms of the model performances for

some of the tasks. However, this can come at the cost of poor uncertainty estimates as-

sociated with the model predictions. This tradeoff must be mitigated if fairness models

are to be adopted in medical image analysis. In the last part of the thesis, we look at



Active Learning (AL) for reduced manual labeling of a dataset. Specifically, we present

an information-theoretic active learning framework that guides the optimal selection of

images for labeling. Results indicate that the proposed framework outperforms several

existing AL methods, and by careful design choices, it can be integrated into existing deep

learning classifiers with minimal computational overhead.



Abrégé

Bien qu’il ait été démontré que les modèles d’apprentissage en profondeur (DL) fonction-

nent très bien sur diverses tâches d’imagerie médicale, l’inférence en présence de patholo-

gie présente plusieurs défis pour les modèles courants. Ces défis entravent l’intégration

des modèles DL dans les flux de travail cliniques réels. Le déploiement de ces modèles

dans des contextes cliniques réels nécessite: (1) que la confiance dans les prédictions

du modèle DL soit exprimée avec précision sous la forme d’incertitudes, et (2) qu’ils

présentent une robustesse et une équité dans différentes sous-populations. La quantifi-

cation de la fiabilité des prédictions du modèle DL sous la forme d’incertitudes pour-

rait permettre un examen clinique des régions les plus incertaines, renforçant ainsi la

confiance et ouvrant la voie à la traduction clinique. De même, en intégrant les esti-

mations d’incertitude dans les tâches d’inférence en cascade, courantes dans l’analyse

d’images médicales, les performances des tâches d’inférence en aval devraient également

être améliorées. Dans cette thèse, nous développons un score de quantification de l’incerti-

tude pour la tâche de segmentation des tumeurs cérébrales. Nous évaluons l’utilité du

score lors des deux défis consécutifs de segmentation des tumeurs cérébrales (BraTS),

BraTS 2019 et BraTS 2020. Dans l’ensemble, nos résultats confirment l’importance et la

valeur complémentaire que les estimations d’incertitude apportent aux algorithmes de

segmentation, soulignant la nécessité d’une quantification de l’incertitude dans l’imagerie

médicale. analyses. Nous montrons en outre l’importance des estimations d’incertitude

dans l’analyse d’images médicales en propageant l’incertitude générée par les tâches en

amont dans la tâche d’intérêt en aval. Nos résultats sur trois tâches différentes clinique-

ment pertinentes indiquent que la propagation de l’incertitude contribue à améliorer les

performances de la tâche d’intérêt en aval. De plus, nous combinons l’aspect des esti-

mations d’incertitude avec l’équité entre les sous-groupes démographiques dans l’image.

En effectuant des expériences approfondies sur plusieurs tâches, nous montrons que les

méthodes ML populaires pour atteindre l’équité entre différents sous-groupes, telles que



l’équilibrage des données et l’optimisation robuste de la distribution, réussissent en ter-

mes de performances du modèle pour certaines des tâches. Cependant, cela peut se faire

au prix de mauvaises estimations de l’incertitude associées aux prévisions du modèle. Ce

compromis doit être atténué si des modèles d’équité doivent être adoptés dans l’analyse

d’images médicales. Dans la dernière partie de la thèse, nous nous intéressons à l’Active

Learning (AL) pour un étiquetage manuel réduit d’un jeu de données. Plus précisément,

nous présentons un cadre d’apprentissage actif théorique de l’information qui guide la

sélection optimale des images pour l’étiquetage. Les résultats indiquent que le cadre

proposé surpasse plusieurs méthodes AL existantes et, grâce à des choix de conception

minutieux, il peut être intégré dans les classificateurs d’apprentissage en profondeur ex-

istants avec une surcharge de calcul minimale.
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of inference tasks (1,2,..,K). The neural network for any task, Task-k, is pa-
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i = fk(θk; xi, ŷk−1

i ).
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i ) associated

with output (ŷk
i ) for each task. These uncertainties are used as an additional

input to the subsequent task (ŷk
i = fk(θk; xi, ŷk−1

i , ûk−1
i )). Here, Task-K rep-
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1
Introduction

Life was like this game [pachinko]

where players could adjust the dials

yet also expect the uncertainty of

factors they couldn’t control.

— Min Jin Lee, Pachinko

Deep Learning has recently become omnipresent in almost all applied machined learning

fields. For example, in the field of computer vision, Deep Learning (DL) has outper-

formed many classical machine learning algorithms in a varied range of problems like

classification [132], segmentation [144], object detection [201], depth regression [64], etc.

Though these results are promising, most methods only provide a single prediction for
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a single input instead of a distribution of possible predictions. These distributions could

enable us to measure the confidence in its prediction by calculating associated uncertain-

ties. In many critical applications, like self-driving cars, it is of paramount importance to

get associated uncertainty with the output, as a wrong decision can be the difference be-

tween life and death. Take, for example, a case reported in May 2016 [6], where a fatality

was reported as a self-driving car of Tesla could not successfully differentiate between the

sky and the white side of a trailer. In this scenario, it would have been more appropriate

if the system had provided uncertainty associated with their output. This could enable

passengers to override the uncertain decisions of the self-driving car and save a human

life.

Uncertainty is even more necessary in medical image analysis, where despite recent ad-

vances [253, 41, 158, 51, 109, 180, 253, 163, 167], DL models are prone to make mistakes.

Reasons for this include but are not limited to noise and artifacts in medical images, a

variety of shapes, sizes, and textures of pathology across populations, etc. This can cre-

ate situations where the system’s end-user (clinicians) will not trust the system’s output

while reviewing and, therefore, will hesitate to integrate them into the clinic (Figure 1.1

(a)). In this scenario, generating uncertainties associated with system output would be

beneficial, as it can provide information about where a system is not confident in its pre-

dictions. This can potentially allow the end-user (clinicians) to review the system output

and correct it if necessary (Figure 1.1 (b)). This brings the clinicians back into the work-

flow and helps in utilizing both faster computation of machine learning methods and the

experience and judgment of clinicians for better diagnosis.

Classical Bayesian learning methods like Gaussian processes [30] allow us to capture

and represent the model uncertainty, but they are computationally costly and often in-

tractable. Recently, Bayesian deep learning (BDL) methods [79, 136, 250, 130, 27], espe-

cially MC-Dropout [79] which captures model uncertainty and Probabilistic U-Net [130]

which captures inter-rater variability, have gained quite a bit of attention. These methods
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(a) Without uncertainties a clinician would be less likely to trust automatic seg-
mentation model output, especially when it is prone to make mistakes.

(b) With uncertainties a clinician are more likely to include automatic segmen-
tation model output in their workflow as they can review areas where model
output is not confident in its predictions, and correct it if necessary.

Figure 1.1: Example showing a clinician reviewing brain tumour segmentation output produced by a ma-
chine learning model (a) without associated uncertainties and (b) with associated uncertainties.

capture the uncertainty of the deep learning models without the drawbacks (i.e., compu-

tational cost) of classical Bayesian methods. Many metrics exist in the literature to mea-

sure the performance of model uncertainties [90, 176, 114, 87], but they don’t specifically

focus on medical image analysis. The quantification of uncertainty is useful if the model

predictions are confident when they are correct and wrong when they are uncertain. This

permits reviewing clinicians to trust the confident predictions and review other predic-

tions. There is an unmet need to develop an uncertainty quantification metric specifically

designed for medical image analysis with the above mentioned clinical goal in mind. The

first part of this thesis specifically focuses on this aspect and develops a metric to measure

the correlation between uncertainties and model errors for brain tumour segmentation.
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Figure 1.2: An example of a typical medical image analysis pipeline is depicted here. Here, we look at
the survival prediction for patients with brain tumours [22]. Survival prediction and disease prognosis
have been shown to correlate with the segmentation of brain tumours [22]. Typical sequential tasks in this
pipeline include registration of multi-modal images, skull stripping for these images, intensity normaliza-
tion, tumour segmentation, and survival prediction. A small mistake in any initial task (registration, skull
stripping, tumour segmentation) can adversarially affect the downstream task of interest

Using uncertainties to inform the end-user (clinicians) about the confidence of a machine

learning model in its prediction is indeed a great clinical use case. However, it is not

necessary that we will have access to clinicians at all stages of medical image analysis

pipelines. Take, for example, the survival time prediction pipeline for patients with brain

tumours, shown in Figure 1.2. It consists of a sequence of inference tasks (e.g., registra-

tion [51], skull stripping [129], segmentation [92, 109, 180], etc.) before the downstream

survival time prediction task. Here, we might not be able to use the domain knowl-

edge of clinicians at all these stages and correct mistakes made by machine learning (ML)

models. As these are cascaded inference tasks, small errors made by any initial task can

accumulate and adversarially affect the downstream task of interest. For example, if the

machine learning model makes an error in skull stripping, it would be carried forward

to the survival time prediction model and can hinder its performance. In this situation,

embedding uncertainty estimation across cascaded inference tasks can help build better

automatic machine-learning systems for the downstream task of interest. It can inform

the downstream task of any potential mistakes made by initial tasks, make the system

less sensitive to these mistakes, and can lead to improved performance. In the second

part of this thesis, we develop a cascaded medical image analysis pipeline where ma-

chine learning methods for each task produce uncertainty associated with its output. We

show that the performance of the downstream tasks in a medical image analysis pipeline

would improve if, in addition to mean output predictions, the uncertainty estimates are
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Figure 1.3: An example of a machine learning model showing different performances across sex. Here, the
model is biased towards males as it shows an accuracy of 0.6 for images of males, while the same model
has an accuracy of 0.5 for females. A machine learning model is considered fair for sex attributes if this
difference in performance is zero.

propagated across cascaded inference tasks.

For machine learning models to be trustworthy and ready for clinical deployment, in ad-

dition to uncertainty quantification, it also requires fairness and robustness across differ-

ent sensitive attributes (ex. demographic information). Fairness requires that the model’s

predictions and recommendations are not biased against any particular group of patients,

and that the model performs equally well across different sensitive groups. In medical

image analysis, bias can arise from various sources, such as differences in patient popula-

tions, imaging protocols, or variability in the task at hand (ex., size of the tumour in brain

tumour segmentation). To ensure fairness in machine learning models, it is important to

carefully select and prepare the training data, evaluate the model’s performance across

different groups, and monitor the model’s outputs over time. By prioritizing fairness in

medical image analysis, we can ensure that these models are accurate, reliable, and eq-

uitable for all patients. Consider a machine learning system shown in Figure 1.3. Here,

analyzing the model performance, across different subgroups based on sex, reveals that

it is biased toward male patients as it performs relatively better for them than for female

patients. If we deploy such a model in clinical practice, it would lead to unfair recom-

mendations for female patients. As such, it is critical to mitigate these fairness concerns

before its real-world deployment.
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Several methods [284] have been proposed in the machine learning literature to mitigate

a lack of fairness in DL models. However, they focus entirely on the absolute perfor-

mance between groups without considering their effect on uncertainty estimation. As

we discussed previously, real clinical contexts would benefit from knowledge about the

confidence in the model predictions, when made explicit in the form of uncertainties. A

machine learning model that underperforms for a subgroup but indicates higher uncer-

tainties associated with its output for that subgroup, could still be clinically deployed. As

in this scenario, uncertainties could be useful to flag predictions from subgroup where

the model is prone to underperform. Conversely, a machine learning model that achieves

fairness in terms of performance across different subgroups, but produces low uncertain-

ties for predictions where it makes mistakes, would become less trustworthy to clinicians.

Considering this in mind, in this thesis, we take a look at bias mitigation models from the

perspective of both fairness and uncertainty quantification. Our analysis of popular bias

mitigation methods [213, 105] reveal their shortcoming in mitigating bias in terms of both

absolute performance and associated uncertainties.

So far, we only talked about improving the clinical usefulness of medical image analysis

systems from the perspective of their end-use. However, one of the biggest challenges in

deploying a machine learning model in clinical practice is its dependency on a large la-

beled training dataset. The process of labeling medical images is time-consuming and of-

ten requires clinical domain expert knowledge, making it difficult to obtain large datasets

for training machine learning models. Compared to that, unlabelled datasets are easier

to obtain, and in many contexts, it would be feasible for an expert to provide labels for

a small subset of images. Active learning can help address this challenge by identifying

the most informative images to be labeled by experts, thereby reducing the amount of

labeled data required for training (Figure 1.4). This can make the process of developing

machine learning models for clinical practice more scalable, cost-effective, and efficient.

Additionally, active learning can help address bias in medical image datasets by priori-
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Figure 1.4: An example of a typical active learning framework. Here, a machine learning model is trained on
initial labeled data. Following this, based on an acquisition function, many examples from a large unlabeled
dataset are queried. These examples are provided to human experts for annotation, which are appended to
the initially labeled dataset. This process is repeated in a loop until the machine learning model reaches a
pre-defined performance criterion.

tizing the labeling of images from underrepresented patient populations, improving the

overall accuracy and reliability of the model’s outputs. An acquisition function is an

essential part of the active learning framework determining the next data point to be la-

beled. Common acquisition functions include uncertainty sampling [226], which selects

points with the highest uncertainty, and query-by-committee [224], which selects sam-

ples where different model versions disagree. Other acquisition functions include coreset

[220] and Bayesian active learning [80].

Generally, uncertainty-based active learning approaches, particularly entropy-based meth-

ods, have been popular in medical imaging contexts where they have shown some effec-

tiveness in addressing the issue of high-class imbalance. Entropy based methods select

the samples which are the hardest for the current model to classify. The assumption for

entropy based methods is that selecting these hardest samples, labeling them, and retrain-

ing the model with these samples would improve the model performance. However, just

because these samples are the hardest for the current model to classify, does not nec-
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1.1. CONTRIBUTIONS

essarily mean that they will lead to improvement in the performance of the model on

a real-world (ex. test) dataset. In the last part of this thesis, we develop a new active

learning acquisition function that explicitly measures the information gain on an unseen

(evaluation) set. The hypothesis is that selecting samples based on this acquisition func-

tion should lead to better performance of the model on a real-world dataset.

Overall, we can say that uncertainty estimates should be integrated into almost all the

aspects of medical image analysis systems. They would help in improving the trust of the

end-user into the system, enhancing the performance of these systems, and making them

ready for clinical deployment.

1.1 Contributions

In this section, a brief summary of contributions from this thesis is presented. Specifically,

in this thesis following contributions are made (i) Evaluating the uncertainty produced by

different methods for the task of interest (ex., tumour segmentation) by designing a task

and application-specific metric, which can verify if the performance of the method indeed

correlates with the uncertainty produced by them or not, (ii) Embedding the uncertainty

produced by deep learning methods in cascaded medical imaging tasks for improved in-

ference, (iii) Evaluating fairness of deep learning uncertainties for various medical imag-

ing tasks, and (iv) Using information gain formulation in active learning framework for

improved label acquisition in various medical image classification problems.

o Developing a task-specific metric to evaluate the uncertainties produced for brain

tumour segmentation

As a first contribution of this thesis, a novel metric is developed, which can help in eval-

uating and comparing the uncertainties produced by different methods. This is the first

metric in the literature which can help in validating the correlation between uncertainty

and the task of interest in medical image analysis. Furthermore, for two consecutive
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1.1. CONTRIBUTIONS

years (2019 and 2020), we organized the first MICCAI challenge on quantifying uncer-

tainty for brain tumour segmentation (QU-BraTS) by using the developed metric. BraTS

is one of the most popular challenges in the field [22, 170]. By organizing this uncer-

tainty quantification sub-challenge with BraTS, we reached the wider medical imaging

community, which will, in turn, lead to more people understanding the need to gen-

erate uncertainty and quantify it in the field. We ranked the brain tumour segmenta-

tion uncertainties generated by 14 independent participating teams of QU-BraTS 2020,

all of which also participated in the main BraTS segmentation task. Overall, our find-

ings confirmed the importance and complementary value that uncertainty estimates pro-

vide to segmentation algorithms, highlighting the need for uncertainty quantification

in medical image analyses. Our evaluation code is made publicly available at https:

//github.com/RagMeh11/QU-BraTS. This challenge will serve as a good benchmark

for the community and will also lead to more participation from the machine learning

community in the field of medical image analysis, which in turn can be helpful for the

development of better models for uncertainty estimation in medical image analysis.

o Embedding uncertainties produced by deep models in cascaded medical imaging

tasks for improved inference.

As a second contribution of the thesis, we propose the first framework that embeds un-

certainty estimates across cascaded inference tasks, to improve the performance of the

downstream inference task. We demonstrate the effectiveness of the proposed approach

in three different clinical contexts: (i) We demonstrate that by propagating T2 weighted

lesion segmentation results and their associated uncertainties, from brain MRI acquired

for patients with multiple sclerosis (MS), subsequent T2 lesion detection performance is

improved when evaluated on a proprietary large-scale, multi-site, clinical trial dataset

acquired from patients with MS. (ii) We show an improvement in brain tumour segmen-

tation performance when the uncertainty map associated with a synthesized missing MR

volume, generated using our previously published method (Appendix A), is provided

as an additional input to a follow-up brain tumour segmentation network. Experiments
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1.1. CONTRIBUTIONS

are performed on the publicly available BraTS-2018 dataset [22]. (iii) We show that by

propagating uncertainties from a voxel-level hippocampus segmentation task, the subse-

quent regression of the Alzheimer’s disease clinical score is improved. Experiments are

performed on popular publicly available ADNI dataset [111]. The quantitative results

show that uncertainty propagation improves the downstream task performance by 1-5%.

However, quantitative results only demonstrate part of the gain. The qualitative results

illustrate that uncertainty propagation does indeed assist in correcting clinically relevant

errors even when improvement in terms of absolute numbers are small.

o Evaluating the fairness of deep learning uncertainty estimates in medical image

analysis.

As a third contribution of this thesis, we present the first exploration of the effect of var-

ious bias mitigation methods on overcoming biases across subgroups in medical image

analysis in terms of bottom-line performance and their effects on uncertainty quantifica-

tion. This would allow us to analyze the trustworthiness of machine learning models for

medical image analysis from the context of both fairness and uncertainty quantification.

We perform extensive experiments on three different clinically relevant problems: (i) skin

lesion classification, (ii) brain tumour segmentation, and (iii) Alzheimer’s disease clinical

score regression. Our results indicate that popular ML methods, such as data-balancing

and distributionally robust optimization, succeed in mitigating fairness issues in terms

of the model performances for some of the tasks. However, this can come at the cost of

poor uncertainty estimates associated with the model predictions. This tradeoff must be

mitigated if bias mitigation models are to be adopted in medical image analysis.

o Improving active learning image label acquisition via information gain criterion

for deep learning models utilized for medical image classification.

As the last contribution of this thesis, we present a novel information-theoretic active

learning framework that guides the optimal selection of images from the unlabelled pool

to be labeled based on the expected information gain (EIG) on an evaluation dataset. We

10
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Figure 1.5: Outline of the thesis

show that, by careful design choices, our model can be easily integrated into existing deep

learning classifiers. Experiments are performed on two different medical image classifica-

tion datasets: multi-class diabetic retinopathy disease scale classification and multi-class

skin lesion classification. Results indicate that by adapting EIG to account for class im-

balances, our proposed Adapted Expected Information Gain (AEIG) outperforms several

popular baselines, including the diversity-based CoreSet and uncertainty-based maxi-

mum entropy sampling. Specifically, AEIG achieves 95% of overall performance with

only 19% of the training data, while other active learning approaches require around 25%.

The proposed method would greatly benefit in reducing the cost of the label acquisition

process by optimally selecting the data to be labeled.

11



1.2. OUTLINE OF THE THESIS

1.2 Outline of the Thesis

The organization of the work reported in the thesis is described in this section (see Figure

1.5). This introductory Chapter 1 provided an overview and the context, motivation, and

contribution of this thesis.

Chapter 2 presents the necessary background and the literature review of all relevant

works. Specifically, Section 2.1 provides relevant clinical background, while Section 2.2

provides background on machine learning models for uncertainty estimation. Section 2.3

gives literature reviews on the application of various uncertainty estimation methods in

both computer vision and medical image analysis. Section 2.4 discusses various recent

attempts at designing task-specific metrics to evaluate uncertainties produced by deep

neural networks and the remaining challenges for the same. Section 2.5 provides recent

development in estimating uncertainty in multi-rater systems. Section 2.6 provides a lit-

erature review on the fairness of deep learning models. The chapter concludes in Section

2.7 by discussing various recent methods for active learning.

Chapter 3 introduces a metric for evaluating uncertainties produced for brain tumour seg-

mentation. Section 3.1 gives a brief introduction to the necessity of a task-specific uncer-

tainty evaluation metric. Section 3.2 provides the thought process behind the developed

metric, how various parts for the same were designed, and a small example explaining

the working of this metric. Section 3.3 lists the dataset utilized in the uncertainty quan-

tification for the brain tumour segmentation challenge, the evaluation framework for the

same, and the approaches of various participating teams from the QU-BraTS 2020 chal-

lenge. In Section 3.4 different analyses of participating teams from the challenge, an ab-

lation study for the different components of the developed metric and their subsequent

effect on the ranking of teams, and some qualitative results of participating teams are

provided. At last, Section 3.5 summarizes the findings. It concludes that segmentation

uncertainties provide complementary information to absolute performance and future

challenges should evaluate both absolute performance and associated uncertainties for

12
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all participating teams.

Chapter 4 discusses the propagation of uncertainties in a cascade of medical image analy-

sis tasks and their subsequent effect on the downstream task of interest. Specifically, Sec-

tion 4.1 provides a brief introduction to the chapter. Section 4.2 discusses the developed

methodology of uncertainty propagation for three different contexts of brain tumour seg-

mentation, MS T2 lesion segmentation, and Alzheimer’s disease clinical score prediction.

Section 4.3 lists the implementation details, datasets, and evaluation metrics deployed for

the above-mentioned three different clinical contexts. Section 4.4 shows experiments and

results for the effectiveness of uncertainty propagation, the effect of different uncertainty

generation methods like MC-Dropout, Deep Ensemble, and Ensemble Dropout, and dif-

ferent uncertainty measures. Results demonstrate that by propagating uncertainties to

the downstream task of interest, the performance can be improved by 2-10%. The chapter

concludes by providing a brief summary in Section 4.5.

Chapter 5 evaluates the fairness of deep learning uncertainty estimates for a variety of

medical image analysis tasks, ranging from image classification, and image segmenta-

tion, to clinical score regression. Section 5.1 provides an introduction to fairness in ma-

chine learning and medical image analysis models. Section 5.2 discuss the developed

evaluation protocol for fairness in uncertainty estimation and how fairness and uncer-

tainty together can provide more trustworthy models. Section 5.3 gives details of various

experiments performed on three different clinical contexts (brain tumour segmentation,

skin lesion classification, and Alzheimer’s disease clinical score regression) for three dif-

ferent fairness mitigation methods. Results demonstrate that fairness can come at the cost

of associated uncertainty estimates with the model predictions. At last, Section 5.4 sum-

marizes the findings from this chapter.

Chapter 6 presents the final contribution of the thesis describing an active learning frame-

work based on information gain. Section 6.1 provides an introduction to the chapter. Sec-

13



1.2. OUTLINE OF THE THESIS

tion 6.2 describes in detail the developed information gain based active learning frame-

work, and lists all design choices which allowed easy integration of the developed frame-

work in modern deep neural networks. Section 6.3 describes the multi-class medical

image classification context utilized for experiments performed in the following section.

Section 6.4 describes the results of the proposed framework and compares them against

other popular active learning methods. It shows that the proposed method outperforms

previous active learning methods by 4-5%. At last, Section 6.5 gives a summary of the

findings from this chapter.

Chapter 7 concludes the thesis by summarizing the contributions of the thesis and dis-

cussing its limitations and possible future extensions. Finally, Appendix A details our

previously published work on synthesizing full-resolution missing brain MRI in the pres-

ence of pathologies. This work served as a basis for experiments related to the brain tu-

mour segmentation pipeline in Chapter 4.

14



2
Background and Literature Review

Human knowledge is never contained

in one person. It grows from

relationships we create between each

other and the world, and still it is

never complete.

— Paul Kalanithi, When Breath Becomes

Air
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2.1. BACKGROUND: CLINICAL CONTEXT

In the previous chapter, we gave brief motivation and introduction about the different

problems tackled in this thesis. In the first part of this chapter, we discuss the back-

ground of various different clinical contexts and uncertainty estimations in deep learning

models. The aim is to motivate the clinical necessity of different contexts, and provide

a theoretical understanding of uncertainty estimations in deep learning models. During

the discussion, without going into much detail, we only briefly mention how these con-

texts are utilized in the rest of the thesis. When discussing our proposed methods in the

relevant chapters, we assume that the reader is already familiar with specific ideas.

The second part of this chapter reviews literature related to applications of uncertainty

estimation, metrics to evaluate uncertainties, fairness of deep learning models, and active

learning. We aim to provide a reader with a starting point and to assist in developing a

basic understanding of the field.

2.1 Background: Clinical Context

Even though the proposed methods in this thesis are expected to be generalizable to any

medical image analysis pipeline which uses deep learning models, the primary focus of

this thesis is on various sub-problems in the context of brain tumours, multiple sclerosis

(MS), and Alzheimer’s disease (AD). These three contexts provide us the opportunity to

test our proposed methods on heterogeneous yet clinically relevant problems. In addition

to that, unlike many other medical image analysis problems, we have access to the large-

scale datasets for these three contexts either through publicly available datasets [22, 111]

or through our clinical collaborators (specifically for MS).

2.1.1 Brain Tumours

Worldwide, it is estimated that roughly 296,851 [76] cases of brain tumours are diagnosed

every year. One of the primary diagnostic evaluation tools for brain tumours is an MRI
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2.1. BACKGROUND: CLINICAL CONTEXT

Figure 2.1: Heterogeneity in tumour shape, size, and location of a single slice across seven subjects. Here, a
slice of T1ce MR for seven subjects is shown. Image Courtesy: BraTS [22]

of the brain, which helps in evaluating the size of the tumour and its proximity to critical

structures of the brain. Due to its potential life-threatening characteristics and the high

number of deaths, it is critical to analyze the boundaries and substructures of brain tu-

mour accurately. This need becomes more critical for surgical planning as segmentation

and boundary delineation play a crucial role in understanding the prognosis of the dis-

ease.

In clinical practice, usually, experts examine different contrast MR volumes of patients

with brain tumours and delineate the boundaries of tumour manually. Manual delin-

eation is a long and arduous process, prone to human error. However, it might also not

be possible to attain a single “ground-truth” tumour boundary from the MR image alone,

as tumour might have infiltrated the surrounding structure. Automatic segmentation

techniques try to overcome this problem by using image analysis or machine learning

techniques for delineating brain tumour and their sub-structure. Segmentation of brain

tumours from healthy brain tissue in MR is a particularly challenging task given the wide

variability in their shape, size, position, texture, and intensity over a population of patient

images (Figure 2.1). This variability can create situations where automatic tumour seg-

mentation techniques can make mistakes [92] and may require human intervention before

its use in the downstream task of interest (e.g., surgical planning). As we discussed in the

Introduction chapter of this thesis (Chapter 1), uncertainty estimates associated with au-

tomatic segmentation techniques can help in flagging predictions where these techniques

are not confident. These uncertain predictions can be corrected by clinicians. Keeping this

clinical use case in mind, as a part of this thesis (Chapter 3), we develop an uncertainty
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2.1. BACKGROUND: CLINICAL CONTEXT

Figure 2.2: Different MR contrast used in a clinical setting to segment tumour from its surrounding healthy
structures and into sub-structures. From left to right: T1-weighted MR, T2-weighted MR, FLAIR MR, T1-
post contrast (T1ce) MR, Ground Truth tumour segmentation (Edema,Enhancing Tumour, Non-enhancing
core). Image Courtesy: BraTS [22]

evaluation metric specifically designed for the brain tumour segmentation task.

In a clinical setting, different types of MR contrasts are used to delineate tumours and

their sub-structures from the surrounding healthy tissues (Figure 2.2). The performance

of tumour segmentation should increase if several contrasts of MRI be available, as these

different contrasts assist in differentiating healthy tissues from tumours [93]. However, in

real clinical practice, not all MR contrasts are always available for each patient for various

reasons, including cost or time constraints or image corruption from noise, patient mo-

tion, or inappropriate acquisition parameters. Clinical practice and automatic techniques

would benefit significantly from synthesizing one or more of the missing 3D MRI volumes

based on the others provided [254, 106]. Many different works [158, 113, 210, 41]1 can be

utilized to synthesize the missing MR contrasts. However, given the challenges presented

in synthesizing high-resolution volumes with pathologies, synthesized MR contrasts may

not be reliable on their own. In this case, similar to segmentation uncertainties, synthesis

uncertainties would be useful in determining the confidence in synthesized contrasts. In

this thesis (Chapter 4) experiments are proposed and validated which show that by prop-

agating synthesis uncertainty to the downstream task of tumour segmentation, we can

improve segmentation results.

1To keep the thesis focused, our previous work [158] is included in the Appendix A.
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Deployment of medical image analysis systems into real-world clinical contexts, partic-

ularly maintaining clinicians’ trust, requires that robustness and fairness across different

sub-populations are maintained [202]. A mismatch between the distribution of demo-

graphic information of patients used to train the system and the real-world distribution

can hinder the performance of automatic medical image analysis systems [284, 202]. This

is especially true for patients with brain tumours, a disease well-known for its hetero-

geneity. In a part of this thesis (Chapter 5), we examine the fairness and robustness of

deep learning model outputs for brain tumour segmentation.

2.1.2 Multiple Sclerosis

Multiple Sclerosis is a chronic, inflammatory demyelinating disease of the central nervous

system with presently no known cure [84]. It affects the health of nearly 2.3 million people

worldwide and one hundred thousand Canadians [264]. The presence of lesions in MRI

is one of the hallmarks of MS. As a result, MRI has been used to diagnose and monitor

disease progression and treatment efficacy. The number of new or enlarging T2w lesions

as well as gadolinium-enhancing lesions has been used as markers of disease activity

[203, 172, 240]. Disease activity is used as a clinical outcome to monitor the progression

of the disease and also the efficacy of new treatments in clinical trials for patients with

relapsing-remitting MS (RRMS) [118, 242].

Previous work [222] demonstrated that future disease activity from baseline MR images

could be predicted with relatively good accuracy from both MRIs and T2w lesion labels at

the baseline. Their results suggest that the presence of T2w lesion labels plays a vital role

in disease activity prediction accuracy. This result shows the need to delineate MS lesions

from their surroundings, which is a tough task due to the heterogeneity of the lesions

(Figure 2.3). Manual segmentation of these lesions is a long and arduous process, prone

to human error. This process also results in inter-rater variability and disagreement be-

tween them, due to inherent sources of noise like an ambiguous boundary between struc-
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2.1. BACKGROUND: CLINICAL CONTEXT

Figure 2.3: Variability of lesion size and location in a single slice across four different subjects. Manual,
expert lesion labels in red are overlaid over a single slice of the T2 MRI modality. Image courtesy: NeuroRx
(clinical collaborator).

tures, variations in acquisition parameters, the experience of clinicians, and variations in

annotation ”styles”. As such automatic lesion segmentation methods would be useful

for MS. However, as shown in [180], modern deep learning methods are prone to make

mistakes in lesion segmentation, especially for small lesions, but uncertainty generated

by these deep networks correlates with the mistakes. As a part of this thesis (Chapter 4),

we show that by training a second segmentation network, which takes as input T2 lesion

segmentation and associated uncertainty from [180], we could further improve the lesion

segmentation/detection performance.

2.1.3 Alzheimer’s Disease

Alzheimer’s disease (AD) is a neurodegenerative disease known as the most common

cause of dementia worldwide [234]. Older patients are more likely to suffer from AD than

younger ones. While the general cause of AD is not easily understood, many symptoms

are associated with AD. For example, memory loss, mood swings, disorientation, prob-

lems with language, cognitive ability, etc. Based on the symptoms, AD can be broadly

classified into three different disease stages: (i) cognitive normal (CN) - patients who do

not have any symptoms related to AD, (ii) mild cognitive impairment (MCI) - patients

with early signs of AD, and (iii) Alzheimer’s disease (AD) - patient with advance symp-

toms of AD (Figure 2.4).
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(a) AD (b) CN (c) MCI

Figure 2.4: Example slice of structural T1 MR image for (a) a patient with Alzheimer’s Disease (AD), (b)
Cognitive normal (CN) patient, and (c) a patient with onsets of AD, also known as mild cognitive impair-
ment (MCI). Image Courtesy: ADNI [111].

Many tests exist for the diagnosis of AD stages. For example, assessing the neuropsy-

chological ability of patients through questions [207, 69], measuring the presence of neu-

rological symptoms like amyloid plaques, measuring reduction in hippocampus volume

associated with memory loss [73], measuring reduction cortical thickness through func-

tion and structural imaging. While neurological symptoms are better correlated with a

patient’s current state, it is the neuropsychological ability of a patient that can provide

insights into the future progression of the disease. Clinicians are also more likely to treat

symptoms based on the results of structured neuropsychological assessments. Two of the

most popular assessment scores are the Alzheimer’s Disease Assessment Scale (ADAS-

13) [207] and Mini-Mental State Examination (MMSE) [69]. These scores vary greatly

across disease stages (Figure 2.5). While a higher value of ADAS-13 is associated with

AD, a lower value of MMSE indicates AD. These clinical scores can be directly predicted

based on known AD biomarkers like hippocampus volume [28], which could help clin-

icians in making better diagnosis decisions. In this thesis (Chapter 4), we build on this

principle and show that accuracy of machine learning models to predict clinical scores

would greatly benefit from the propagation of uncertainty associated with machine learn-
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Figure 2.5: Distribution of ADAS-13 (top) and MMSE (bottom) score for patients with (a) Alzheimer’s
Disease - AD, (b) Cognitive Normal - CN, and (c) Mild Cognitive Impairment - MCI. Image Courtesy:
ADNI [111].

ing models trained for segmentation of the hippocampus. AD is a highly heterogeneous

disease where its prevalence varies across demography [14]. In this thesis (Chapter 5),

we also examine the ability of machine learning models to make unbiased clinical score

predictions irrespective of the patient’s age.

2.2 Background: Uncertainty Estimation in Deep Learning

Models

In the following sections, we give a brief overview of the methods which allow us to

capture uncertainty associated with the deep learning model output.
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2.2.1 Multiple Sample Generation in Deep Models

Multiple different methods exist in the literature that can generate multiple different sam-

ples for the same input in deep learning models. Broadly, they can be classified into

two categories: (i) Bayesian neural networks, which includes monte-carlo dropout (MC-

Dropout) [79], mean-field variational Inference [31], single-model deep uncertainty [142],

radial Bayesian neural networks [66], Laplace approximation [204], etc. (ii) Ensembling

methods, which provides uncertainty estimates based on ensembling. Examples for this

category of methods include deep ensemble [136], stochastic-weight averaging - gaussian

(SWAG) [147], batch ensemble [271], snapshot ensemble [101], hyperparameter ensemble

[272], ensemble dropout [237], etc.

In this thesis, we focus on MC-Dropout, Deep Ensemble, and Ensemble Dropout. We

chose these specific methods as they are easy to implement and have shown great success

in the literature [79, 180, 114, 5, 11, 139, 208, 13, 71]. The following subsections provide a

brief background of these methods.

Notations: Consider a dataset Dtrain = {X, Y } = {(xi, yi)}Ni=1 with N total samples. Here,

xi ∈ RP×Q or xi ∈ RP×Q×S represents 2D or 3D input image, and yi represents correspond-

ing ground truth labels. yi depends on the task at hand: yi ∈ {0, 1, .., C} for image-level

classification, yi ∈ R for image-level regression, yi ∈ {0, 1, ..C}P×Q or yi ∈ {0, 1, ..C}P×Q×S

for 2D/3D voxel-level segmentation, and yi ∈ RP×Q or yi ∈ RP×Q×S for 2D/3D voxel-

level regression.

MC-Dropout

Bayesian neural networks (BNNs) are neural networks with prior probability distribution

[146, 79], p(W ), placed on their weights, W : W ∼ p(W ). For a training dataset Dtrain,

given a likelihood, p(y|x,W ), the posterior distribution over the output, y, for input, x,

can then be calculated as following:
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(a) MC Dropout

(b) Deep Ensemble

(c) Dropout Ensemble

Figure 2.6: Illustration of sampling multiple outputs for the same input for three different Bayesian deep
learning methods: (a) MC-Dropout, (b) Deep Ensemble, and (c) Dropout Ensemble. Here, we look at the
MS lesion segmentation network for an illustration perspective. Mean segmentation and its corresponding
segmentation uncertainty estimates are estimated based on generated multiple samples. Different shades
of green colour for Deep Network represent different random initialization.
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p(y = c|x,Dtrain) =

∫
p(y = c|x,W )p(W |Dtrain)dW. (2.1)

Since, in this case, exact inference often time is not tractable, various stochastic regu-

larization techniques can be used to approximate it. In [79] (MC-Dropout), it is shown

that using dropout [241] before every weight layer both at training and inference time is

equivalent to performing approximate variational inference where the true posterior dis-

tribution over weights, p(W |Dtrain), is approximated with a tractable distribution q(W ).

The parameters of this function are estimated by minimizing the Kullback-Leibler (KL)

divergence between this function and the true posterior:

q∗(W ) = argminq(W )KL(q(W )||p(W |Dtrain)). (2.2)

In [79], dropout is shown to be equivalent to the variational inference approximation

where q(W ) is a mixture of two Gaussians with small variances where the mean of one

of the Gaussians is set to zero. Having approximated the true posterior p(W |Dtrain) with

q∗(W ), Equation 2.1 can be approximated using Monte-Carlo estimation:

p(y = c|x,Dtrain) ≈
∫

p(y = c|x,W )q∗(W )dW ≈ 1

T

T∑
t=1

p(y = c|x, Ŵ t). (2.3)

Here, Ŵ t ∼ q∗(W ). As is evident from Equation 2.3 MC-Dropout allows us to estimate the

posterior probability over the output and, therefore, estimate the uncertainty associated

with each prediction.

In MC-Dropout, the same input is passed through the neural network multiple times,

leading to a collection of T different samples. Uncertainty is estimated using statistics

computed across these samples. Interestingly enough, MC-Dropout can be seen as an

ensemble method where an average of an ensemble of neural networks with shared pa-

rameters is used as the network prediction.
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Deep Ensemble

Deep Ensemble [136] shows how using an ensemble of independently trained determin-

istic deep neural networks that are randomly initialized can reliably predict model un-

certainty. This method is introduced as an alternative to the MC-Dropout method where

instead of collecting predictions from passing through the same network T times, predic-

tions are collected from T independently trained deterministic models. Deep Ensembles,

if wide enough and under some assumptions, have recently been shown to exhibit sim-

ilar training dynamics to a Gaussian process whose mean and variance do not always

correspond to the posterior sampling of a probabilistic model [138]. Therefore, although

non-Bayesian, deep ensembles can still be considered as a probabilistic method that can

approximate model uncertainty.

Dropout Ensemble

Variational inference methods are prone to underestimate the posterior uncertainty as

they tend to fit the approximate posterior probability to local modes. As a result, the MC-

Dropout method is shown to exhibit similar behavior, at least for some regions [136]. To

overcome this issue, a simple solution is to combine the MC dropout method with an en-

semble method, where an ensemble of different dropout models is used to approximate

the better posterior. MC-Dropout captures local variability across a single network and,

in turn, captures how uncertain a single network is about its prediction. Deep Ensemble

captures global variability in the prediction across different networks in an ensemble and

uncertainty associated with this variability [71]. Thus, Dropout Ensemble can capture

both local and global variability in model predictions [75].

Practically, Dropout Ensemble [237] combines both MC-Dropout and Deep Ensemble by

training N independent networks in an ensemble and using dropout at test time for each

of these networks to collect M different samples from each network. This results in a total

of T = M ∗N sample outputs across these networks.
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2.2.2 Uncertainty Measures

Figure 2.7: Examples of the segmentation and the uncertainty measures for MS lesion segmentation. From
left to right: network segmentation output over the corresponding T2 slice, entropy uncertainty, mutual
information uncertainty, and sample variance. Here, for uncertainty estimates, we look at the zoomed-
in version of one particular false positive lesion. The segmentation is coloured with the following colour
scheme: green true positive, pink false positive, and blue false negative. Increased intensity of red indicates
greater uncertainty.

In this section, we give details about three popular uncertainty measures: sample vari-

ance, predictive entropy, and mutual information.

Sample Variance

The simplest uncertainty measure, sample variance, is estimated by computing the vari-

ance across the T samples collected using either Bayesian neural networks (e.g., [79]) or

ensembles (e.g., [136]). For a regression task the variance in the output ŷi for any input xi,

is defined as follows:

Var(ŷi) =
1

T

T∑
t=1

ŷ2i(t) −

(
1

T

T∑
t=1

ŷi(t)

)2

. (2.4)

Here, ŷi(t) is a prediction for sample t.

For classification and segmentation tasks with C classes, the variance in the output ŷi is

defined as follows for any input xi:

Var(ŷi) =
1

C

C∑
c=1

(
1

T

T∑
t=1

p(ŷi(t) = c|xi)
2 −

( 1
T

T∑
t=1

p(ŷi(t) = c|xi)
)2)

. (2.5)

Here, p(ŷi(t) = c|xi) denotes output softmax probability for class c for a sample t. Sample

variance can be more simply interpreted as a measure of model output consistency across
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different samples.

Predictive Entropy

The predictive entropy is a measure of the informativeness of the model’s predictive den-

sity function for each model output ŷi. It is defined as:

H[ŷi|xi] = −
C∑
c=1

p(ŷi = c|xi) log
(
p(ŷi = c|xi)

)

≈ −
C∑
c=1

( 1
T

T∑
t=1

p(ŷi(t) = c|xi)
)
log
( 1
T

T∑
t=1

p(ŷi(t) = c|xi)
)
.

(2.6)

Here, C is the total number of class labels, and p(ŷi(t) = c|xi) denotes output softmax

probability for class c for sample t. High entropy implies a flatter probability distribution

across classes, while low entropy implies a more peaky probability distribution. Lower

entropy shows that model is more confident in its prediction of the output class.

Mutual Information

The mutual information (MI) captures how much information we gain about the model

parameters by knowing the label for input xi. Similar to sample variance, mutual in-

formation also captures the variability in model predictions. MI is calculated as the dif-

ference between the entropy of the average model prediction (ŷi) and the average of the

entropies of each model prediction (ŷi(t)) [80]:

MI[ŷi, xi] ≈ H[ŷi|xi]−
1

T

T∑
t=1

H[ŷi(t) |xi]. (2.7)
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2.3 Application of Deep Learning Uncertainty Estimates in

Computer Vision and Medical Imaging

According to [121, 221, 97], the uncertainty can be divided into mainly two parts: (i)

epistemic uncertainty, and (ii) aleatoric uncertainty. Epistemic uncertainty captures the

uncertainty associated with the model parameters. This uncertainty arises as our model

parameters are not able to capture the true distribution of the model which generated our

data. This uncertainty can become zero if we have an infinite amount of data, as it will

allow our model parameter to learn the true distribution of the data generation model.

This uncertainty is useful for capturing out-of-distribution examples. Recall that inten-

sity values of MR images vary greatly across different scanner manufacturers [166]. Now

consider an example where we train our machine learning model on MRI scans from

Phillip and Siemens scanners, but during test time we use MRI scans from GE scanners.

In this case, the epistemic uncertainty of the machine learning model for MRI scans from

GE scanners will be higher than for Phillips or Siemens scanners, as the model has not

seen the data from GE scanners during the training.

Aleatoric uncertainty captures the uncertainty associated with the inherent ambiguity

in the data. Aleatoric uncertainty cannot be reduced even if more data were to be col-

lected. Predictive entropy (Section 2.2.2) measures both epistemic and aleatoric uncer-

tainties (which will be high whenever either epistemic is high or aleatoric is high) [78, 80].

A combination of both predictive entropy and MI (Section 2.2.2) together could be used

to isolate the aleatoric uncertainty component through a simple subtraction if needed [78].

The aleatoric uncertainty is further divided into two parts: homoscedastic and heteroscedas-

tic uncertainty. Homoscedastic uncertainty remains constant with the input, but instead,

it changes with a change in the task at hand. Heteroscedastic uncertainty changes with a

change in input. Let us take an example of MRI segmentation problem. In this case, if we

use an MRI scan of the same patient with different noise levels then the heteroscedastic
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uncertainty will change, while homoscedastic uncertainty will remain constant. Instead,

if we change the task from segmentation to regression then for the same MRI scan of a pa-

tient with the same noise, it will result in the change of homoscedastic uncertainty, while

heteroscedastic uncertainty will remain constant.

[121] showed how a neural network could learn to predict heteroscedastic uncertainty

as an additional output for the task of classification and segmentation. This learned un-

certainty is interpreted as a learned loss attenuation, which makes the loss more robust

to noisy data. In the end, it combined both epistemic and heteroscedastic (aleatoric) un-

certainty. Through experiments on various computer vision datasets [33, 233, 216] for

the task of semantic segmentation, it was shown why it is necessary to combine both

uncertainty estimates. Through these experiments, it was demonstrated that epistemic

uncertainty decreases when the model is trained using more data, but it does not result

in a decrease of aleatoric uncertainty.

Homoscedastic uncertainty can be thought of as a task-dependent uncertainty that changes

with a change in task. It was used in [122] to weigh different losses in a multi-task set-

ting. Experiments were performed on the cityscape dataset [48] for the task of semantic

segmentation, instance segmentation, and depth estimation. These experiments showed

how a single parameter associated with each task can help in learning the relative weights

of these tasks in a multi-task setting. The learned weights are inversely proportional to

the homoscedastic uncertainty of each task. The results indicate that multi-task learn-

ing indeed helps to improve overall performance when the weights of each task are

learned using homoscedastic uncertainty; it gives better performance in comparison to

when weights are manually tuned.

One of the disadvantages of the model presented in [121] is that it introduces an addi-

tional output of the network to learn heteroscedastic uncertainty. This additional output

increases the burden on the network. In addition to this, learned uncertainty (variance)
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is also not directly dependent on the model output (mean). Although this assumption

of independence can be valid in some scenarios, it may not always be accurate. In [134]

an approximation of the uncertainty is derived, such that, there is no need for extra pa-

rameters to learn heteroscedastic uncertainty. It was shown that this approximation of

heteroscedastic uncertainty represents associated uncertainty with input in a better way

than the approximation derived in [121]. It was validation by performing experimenta-

tion on ischemic stroke lesion segmentation (ISLES) 2015 challenge dataset [149].

Many papers in the applied machine learning field utilize uncertainty estimation of deep

learning model output [120, 180, 248, 82]. Bayesian SegNet [120] was one of the first pa-

pers to use MC-Dropout based uncertainty estimate in a classical computer vision task of

semantic segmentation. It extends the SegNet [17], which was the state-of-the-art deep

network for semantic segmentation at that time, to include MC-Dropout based uncer-

tainty estimate. It was shown that with an increase in the number of MC samples, the

overall accuracy of the model prediction increases. Moreover, the performance of the sys-

tem is higher than the standard weight averaging method. Experiments were performed

with various variants of Bayesian SegNet, where the dropout layers were placed at dif-

ferent depths and sides (encoder and decoder). It was concluded that when dropout is

applied only at the layers with the lowest resolution, it leads to maximum performance.

The experiments were done on standard computer vision datasets for semantic segmen-

tation [65, 33, 239]. It was also reported that augmenting any semantic segmentation

architectures [144, 17, 102] with dropout at test-time (MC-Dropout [79]) can help in im-

proving the performance of the networks by two to three percent.

Spurred by the success in computer vision tasks, uncertainty estimation has recently been

used in a variety of medical imaging tasks [188, 208, 139, 16], ranging from MR super-

resolution [246] to nodule detection [188] and lesion detection and segmentation [180].

[16] proposed and validated that just by using augmentation at the test time, the network

can produce better uncertainty estimation. Experiments were performed on the Kaggle
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dataset for the multi-class (five) classification of diabetic retinopathy (DR).

Papers like [208, 246] show that predicted uncertainty indeed correlates with the places

where a model is prone to make mistakes. All papers experimented on the different types

of tasks and different types of applications. [208] showed that when voxel-wise uncer-

tainty estimation is converted into structure-wise uncertainty it correlates with the esti-

mated dice score by evaluating segmentation output and uncertainty on publicly avail-

able brain sub-structure segmentation dataset. [246] performed similar type of analysis

for dMRI super-resolution.

Other medical image analysis papers demonstrate improved performance when the net-

work output is evaluated on its most certain predictions [180, 139]. In [180] the above-

mentioned uncertainty measures (Section 2.2.2) were explored for the task of multiple

sclerosis (MS) lesion segmentation and detection. Through experimentation on a pri-

vate multi-cite multimodality MRI dataset, it was shown how uncertainty measurements

could be useful in choosing better operating points. Similarly, in [139], MC-Dropout un-

certainty measures were evaluated for diagnosing DR from fundus images. The uncertainty-

informed decision referral was shown to improve diagnostic performance. A similar type

of analysis was done for mammograms and chest X-ray in [248] and [82], respectively.

Other work also exploits uncertainty estimation to improve model performance [188, 277,

218]. Uncertainty estimation is also used in semi-supervised scenarios for improved seg-

mentation of left atrium from chest MRI [277] and retinal layers from OCT images [218].

Uncertainty estimation-based active learning [227, 285] and omni-learning [260] methods

try to address data scarcity problems in medical imaging.

While the above mentioned approaches illustrate how estimating uncertainty in medical

imaging tasks is helpful in a clinical scenario, they do not show how uncertainty can be

used to inform or improve network performance on a downstream task. Recent work in

32



2.4. EVALUATING UNCERTAINTY PRODUCED BY DEEP LEARNING MODELS FOR THE
TASK OF INTEREST

medical imaging has demonstrated how uncertainty estimates can be used to improve

model performance [188, 95]. In [188], it was shown that uncertainty generated from a

2D lung nodule segmentation network can be used to reduce the false positives in a subse-

quent 3D detection network centered on regions of interest. Although appropriate in the

context of lung nodule detection, this is not the general case in medical imaging applica-

tions where false negative reduction is also, sometimes, more so, of interest. For example,

in MS lesion detection, one false negative lesion can convert a patient from active to in-

active, and in turn change the course of the patient treatment [117, 118]. Furthermore,

existing works [188, 95] only explore uncertainty propagation when both inference steps

are similar to each other. As we discussed in the Introduction (Chapter 1), a typical med-

ical image analysis pipeline involves a variety of cascaded inference tasks. It is important

to explore whether propagating uncertainty estimates from different but related tasks,

can lead to better performance or not. In Chapter 4, we tackle this open problem, and

explore and validate that the propagation of uncertainty maps from an upstream task can

improve performance on a related but dissimilar task.

2.4 Evaluating Uncertainty Produced by Deep Learning Mod-

els for the Task of Interest

Some of the most popular metrics for measuring [79, 136, 250, 13, 271] model confi-

dence output are the expected calibration error (ECE) and the maximum calibration er-

ror (MCE). These metrics measure the difference between the predicted output softmax

probabilities of the model matches the actual probabilities of the correct (“ground-truth”)

prediction. In general, both metrics require softmax predictions (p̂i) to be grouped into

M bins based on softmax score (ranging from 0 to 1). The most common way of group-

ing is to place all predictions into bin Bm if their confidence score falls in the interval

(m−1
M

, m
M
]. Using p̂i to represent the model’s confidence in its predicted class, ŷi, and yi to

denote the ground truth class label, [87] then define the accuracy and confidence associ-
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ated with each bin as: acc(Bm) =
1

|Bm|
∑

i∈|Bm| 1(ŷi = yi) and conf(Bm) =
1

|Bm|
∑

i∈|Bm| p̂i.

ECE is calculated as the average difference between accuracy and confidence for each

bin, while MCE is calculated as the worst-case difference. However, these metrics are

biased estimates, as they cannot differentiate between a model that makes constant uni-

form predictions and another model that makes predictions with actual probabilities of

the correct (“ground-truth”) prediction [13, 186, 87]. Another issue with these metrics

is that are based on softmax probabilities, which cannot capture epistemic or aleatoric

uncertainty [78]. As we discussed previously, these uncertainties are helpful in differen-

tiating between different sources of uncertainties. We require measures like entropy and

MI to capture aleatoric and epistemic uncertainties.

In [136], the usefulness of the predictive uncertainty (measured by entropy) was evalu-

ated for decision-making. The model outputs were evaluated only in cases where the

model’s confidence is below a user-specified threshold. For example, let us consider a

model that makes a total of 100 predictions, and also consider the user-specified confi-

dence threshold as 0.8. In this case, predictions whose confidence is below 0.8 were eval-

uated. Any predictions whose confidence is above 0.8 are “referred” to the end-users.

This has potential in medical image analysis, where we want clinicians to make the final

decision for machine learning model prediction. Through experiments on toy datasets

like MNIST, [136] showed that when the model is evaluated on its most confident predic-

tion, the model accuracy is high compared to when the model is evaluated on all outputs.

This demonstrates that when the model is confident, it is usually more correct in its pre-

dictions. Though this is encouraging and could potentially be useful for the comparison

of different uncertainty generation methods, it does not consider how many model pre-

dictions were discarded at a certain threshold. Consider a model, which has really low

accuracy for its predictions, but uncertainties associated with most of these predictions

are really high. The above-mentioned evaluation criteria would still consider this to be a

good model, as it will produce high accuracy when discarding (referring) highly uncer-

tain predictions. However, using such a model in a clinic would increase the burden on

the reviewing clinicians, as most of the machine learning model predictions need to be
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reviewed by the clinicians due to their high uncertainties. As such, this type of model

would not be much useful in a practical sense.

[176] designed a metric to quantify uncertainty for the task of semantic segmentation of

computer vision images. They made the following assumption during the metric design:

if a model is confident about its prediction, it should be accurate. This also implies that if a

model is inaccurate on output, it should be uncertain. The converse of these assumptions

may not hold. For instance, a model may have a high epistemic uncertainty on a class

which appears infrequently in the training set but can still be accurate on its prediction.

With this in mind, they calculate the following two probabilities at different uncertainty

thresholds: (i) p(accurate|certain): the probability that the model is accurate on its out-

put given that it is confident; (ii) p(uncertain|inaccurate): the probability that the model

is uncertain about its output given that it has made a mistake in its prediction (i.e., is

inaccurate). They used the metric to compare different BDL methods for the semantic

segmentation task. Though this metric is useful for semantic segmentation, where each

pixel in an image is labeled as one class, it is not useful for the task of pathology segmen-

tation where there is a high class-imbalance problem, and the number of pixels (voxels) of

interest (pathology) is low compared to the background-healthy class. For example, in the

brain tumour segmentation task, 99.9% of the voxels belong to the background (healthy

tissue), while only 0.1% belongs to the foreground (pathology). Due to a high-class im-

balance, p(accurate|certain) would be dominated by healthy (background) voxels, most

of which can be accurately classified with high certainty.

[90] developed a metric, probability-based detection quality, to evaluate the uncertainty

estimate for the object detection task. The class labeling measure (i.e., label quality) and

the bounding box detection measure (i.e., spatial quality) were combined into the metric.

Here, spatial quality measures how well the detection describes where the object is within

the image. Label quality measures how effectively a detection identifies the object class.

These are averaged over all possible combinations of bounding boxes and labels gener-
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ated using multiple samples. A challenge associated with this task was also organized at

the annual conference on computer vision and pattern recognition (CVPR) 2019. The pa-

per and its associated challenge [245] illustrate the importance of developing uncertainty

quantification metrics that are tailored to the task of interest.

In many recent papers related to medical imaging [277, 82, 180, 248], it has been shown

that uncertainty estimation indeed correlates with the places where the network is prone

to make errors. These results are indeed useful and can lead to better adaptation of deep

learning models in real-world scenarios. However, as we saw in the above paragraphs,

in the medical image analysis field, to date, there is an unmet need to (1) systemically

quantify and compare how well different uncertainty estimates properly communicate

the degree of confidence in the output and (2) rank the performance of competing esti-

mates, given the objectives of the task and the requirements during a clinical review.

[114] made the first step towards quantifying uncertainty for the brain tumor segmenta-

tion task. They compared various uncertainty generation methods such as MC-Dropout,

Deep Ensemble [79, 136], and others, using standard metrics like ECE, MCE, and reliabil-

ity diagrams. In addition, they proposed a new metric, uncertainty-error (U-E) overlap.

The results showed that Deep Ensemble could produce more reliable uncertainty mea-

sures than other methods. One of the limitations of the above work was that they only

report U-E overlap for a specific threshold where U-E overlap was highest. In a real world

scenario, we prefer if end users define this threshold, and want to make sure that differ-

ent uncertainty generation methods are evaluated on various ranges of these thresholds

before concluding which one produces more reliable uncertainties. Similarly, U-E overlap

doesn’t consider the actual metric of interest (e.g., dice) and doesn’t differentiate between

false positives and false negatives, which changes based on the size of the pathology

(e.g., tumour). Keeping all this in mind, in Chapter 3 we propose a new evaluation met-

ric, specifically designed for quantifying the uncertainty of brain tumour segmentation

task, that overcomes this limitation. More details about how we overcome this limitation

36

https://nikosuenderhauf.github.io/roboticvisionchallenges/object-detection.html


2.5. UNCERTAINTY ESTIMATION IN MULTI-RATER SYSTEM

are given in the respective chapter.

2.5 Uncertainty Estimation in Multi-rater System

Several recent machine learning approaches [130, 27, 174] address an additional type of

uncertainty in medical image analysis caused by the fact that a unique label cannot nec-

essarily be attained in some regions of an image (e.g., at boundaries between tumour and

healthy tissue in MRI). These papers assume that, in this case, they have access to many

different annotators, and these annotators might systematically label things differently.

They then model these inherent uncertainties (in various ways) using label variability as

a proxy. Given the requirement of having access to multiple annotations, a context that is

not common in practice due to the expenses incurred in attaining them, we do not focus

on this type of ambiguity directly in this thesis. Nonetheless, for the sake of complete-

ness, we provide details of some of the relevant work below.

One of the most straightforward ways of designing a system that can mimic multiple

different annotations from different raters is to train an ensemble machine learning (deep

learning) model, where each individual model is trained on a different ”ground truth” an-

notation. These models can generate a hypothesis similar to different annotations, which

allows the overall system to model inter-rater variability.

Another plausible solution explored in [211] was to train a single network with M heads.

Experimentation on optical flow and human pose estimation showed that this indeed re-

sults in overall better performance and better uncertainty estimation compared to [79]

and [136]. Though, these results are good and show promising results, two common dis-

advantages of both models (ensembles and M heads) are their scalability issues regards

to large numbers of hypotheses and their requirement of fixing the number of allowed

hypotheses at training time.
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There has been quite substantial work done to counter the above-mentioned disadvan-

tages. One of the pioneering works in this field was done in a probabilistic U-Net [130]

paper, where conditional variational auto-encoder (cVAE) was combined with the famous

U-Net architecture [26]. It was shown that, given ground-truth annotations from multi-

ple experts, the method could produce an unlimited number of realistic segmentation

samples. Moreover, the method was shown to outperform various related methods, in-

cluding network ensembles, M-heads [211], and the Bayesian SegNet [120]. In [100], the

[130] paper was extended and shown that it is possible to model both epistemic (model)

and aleatoric (data) uncertainty using this approach, and when these uncertainties are

modeled separately, model performance increases.

Though the results of [130, 100] are promising, one of their drawbacks is that stochastic-

ity is only introduced in the last stage of U-Net, which restricts its representation power

and does not allow it to reconstruct multiple ”ground truth” marking available. To over-

come this issue, two parallel papers, hierarchical probabilistic U-Net [130] and probabilis-

tic hierarchical segmentation (PHiSeg) [27], introduces stochasticity at all different levels

of U-Net architectures, inspired by Laplacian Pyramids. The model generates image-

conditional segmentation samples by generating the output at a low resolution and then

continuously refining the distribution of segmentations at increasingly higher resolutions.

Through experimentation on a publicly available LIDC-IDRI dataset of CT lesions [12], it

was shown that this approach can mimic inter-rater variations better than [130]. These re-

sults show the usefulness of these cVAE based approaches. It should be noted that these

approaches are validated only on a dataset that has a single lesion or structure of interest

in the image, and the size of the structure of interest is somewhat homogeneous. These

approaches need to be validated in a scenario where there is more than one disconnected

pathology with varying size and shape, i.e. MS T2 lesions. One more thing that needs

to be noted is that both Prob-U-Net and PHiSeg use unimodal Gaussian distribution to

parameterize the network, as in the case of VAE models. Though this is useful, it is a very
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simplifying assumption, and many medical imaging tasks may not be able to be modeled

by this. To overcome this limitation, recent papers [219, 29] utilized advanced methods

like normalizing flows [127, 189], which can model more complex distributions.

2.6 Fairness of Deep Learning Methods

In addition to uncertainty estimation, robustness and fairness across different sub-populations

are also required to maintain the trust of clinicians, and deploying DL models in real clin-

ical contexts. This means a machine learning model should maintain its performance

when evaluated on different sub-populations. A recent review [202] discusses the ne-

cessity to address the issue of fairness, potential sources of biases, and the remaining

challenges, for machine learning models in medical imaging. According to them, there

are mainly three different sources that can lead to a biased (unfair) system (1) the data be-

ing fed to the system during training, (2) design choices for the model, (3) and the people

who develop those systems. This work mainly focuses on the first two sources of poten-

tial biases.

Several recent studies have indeed exposed significant biases in DL models across sub-

populations (e.g., according to race, sex, age) in the context of medical image analy-

sis [284, 137, 35, 225, 197]. In [137], it is shown that a Computer-Assisted Diagnosis system

trained on a predominantly male dataset for diagnosing thoracic diseases gives lower per-

formance when tested on female patient images. In [35], it is shown how data imbalance

in the training dataset leads to a disparity in accuracies across sub-populations (dark vs.

light skinned individuals) in diagnosing diabetic retinopathy from fundus images. [225]

exposed a significant underperformance of X-ray pathology classification models when

evaluated on groups under-represented in the training dataset (e.g., black patients). [197]

found that segmentation models deployed in cardiac MR image analysis pipelines exhibit

a racial bias resulting from imbalanced training data. A similar analysis has also been per-

formed for brain MR segmentation [107].
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Several methods have been proposed in the machine learning literature to mitigate the

lack of fairness [155] in the models. Popular fairness mitigation methods include data

balancing [112, 105], where the training dataset is balanced across the sensitive attribute

(e.g., sex - male vs. female). The hypothesis is that when a machine learning model is

trained with a balanced dataset in this manner, it should not be biased toward one of

the sensitive attributes (ex. male). Data balancing has shown to be successful for some

medical imaging contexts [197, 107]. While several other fairness mitigation methods

exist in the literature [268, 148, 282, 124, 249, 215, 40, 70], one of the most popular and

effective methods is known as group distributionally robust optimization (GroupDRO)

[213]. It tackles the fairness problem from an optimization perspective by minimizing

the worst-case training loss across different subgroups. [284] provides a framework to

benchmark the fairness of several machine learning models for medical image analysis.

Through several experiments on ten different medical image analysis datasets and eleven

different fairness mitigation methods, it was concluded that state-of-the-art bias mitiga-

tion algorithms do not significantly improve fairness outcomes.

Most fairness mitigation methods focus on correcting performance differences across sub-

groups without considering their effect on the uncertainties associated with the model

output. As we briefly discussed in the Introduction (Chapter 1) and will see in the sub-

sequent chapters of this thesis (Chapter 3, Chapter 4), real clinical contexts would benefit

from knowledge about confidence in the model predictions when made explicit in the

form of uncertainties [24]. Specifically, the trust would be established should uncertain-

ties associated with the predictions be higher when the model is incorrect, and low when

model outputs are correct. Various successful frameworks for quantifying models un-

certainties in the context of medical image analysis have been presented for tasks such

as image segmentation [180, 115], image super-resolution [247], and image classification

[173, 82]. However, these methods only analyze the output uncertainties for the entire

population, without consideration of the results for population subgroups. In Chapter

5, we analyze the popular fairness mitigation methods both in terms of their absolute

performance and quantification of their output uncertainties for three different medical
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image analysis tasks.

2.7 Active Learning

The performance of deep learning methods is largely dependent on the availability of

large, labeled datasets for model training [244]. However, large, annotated datasets are

not widely available in medical image analysis due to the prohibitive time, costs, and

challenges of labeling large datasets. The labeling task is particularly challenging in pa-

tient images with pathological structures (e.g., lesions, tumours) and requires significant

clinical and domain expertise. Various approaches have been proposed for optimally

leveraging a small subset of annotated data that has been (passively) provided along with

an otherwise unlabelled medical imaging dataset. These approaches range from transfer

learning [43, 104], weakly supervised [193, 123], semi-supervised [190, 81] to synthetic

data generation [175, 72].

Active learning (AL) frameworks [223, 280], on the other hand, have been successfully

developed for ”human-in-loop” computer vision [229] and medical imaging classification

contexts [280]. AL tries to maximize the performance of a machine learning model while

annotating the fewest training samples possible. These AL approaches work by training

a model on a small, available, labeled subset, running inference on the larger unlabeled

dataset, and then identifying an optimal set of samples to be labeled and added to the

training pool in an iterative fashion. Sampling is optimized to attain the highest perfor-

mance with the smallest number of samples. Sampling strategies can be broadly catego-

rized as: (i) uncertainty based, which includes selecting samples with the least confidence

in its estimated most probable class [49], the smallest margin between the first and sec-

ond most probable classes [217], the maximum predicted entropy [226], the minimum ex-

pected generalization loss [209], as well as deep Bayesian active learning approaches [80]

(MCD-Entr and MCD-BALD [98]) and (ii) representative based, which focuses on selecting

the most representative and diverse images from the unlabeled set (e.g., CoreSet [220],
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variational adversarial [235, 232], reinforcement learning [266]). Combinations of multi-

ple strategies [275, 125, 276] have also been proposed.

In this thesis, we focus on uncertainty-based active learning approaches. Generally, these

approaches, particularly entropy-based methods, have been popular in medical imaging

contexts where they have shown some effectiveness in addressing the issue of high-class

imbalance. [80] showed that when the acquisition function in AL, is dependent on un-

certainty approximated using MC-Dropout [79], it gives better performance than other

state-of-the-art AL methods. Various functions like entropy, variation ratio (VR), and

mean standard deviation (MSD), were explored as an uncertainty estimate. It was con-

cluded that MI, VR, and entropy outperform MSD, while VR achieves the best perfor-

mance among all others. The usefulness of the AL framework in a clinically relevant task

of cancer diagnosis from image data of skin segments was reported. [270] proposed an

active learning method that uses uncertainty sampling to support quality control of nu-

cleus segmentation in pathology images. Through extensive experiments, it was found

that uncertainty sampling for deep networks to be most useful for nucleus segmentation.

[131] exploited geometric uncertainty for mitochondria segmentation from EM images

and tumour segmentation from MR images. [275] introduced Suggestive Annotation, a

deep active learning framework for medical picture segmentation that combines a rep-

resentativeness density weighting method with an alternate formulation of uncertainty

sampling. State-of-the-art performance using 50% of the available data on the MICCAI

Gland segmentation challenge and a lymph node segmentation task was reported. [236]

suggested MedAL, an active learning framework for segmenting medical images. To

obtain the most useful samples from an unlabeled data set, a sampling technique was

proposed that combines uncertainty and the distance between feature descriptors.

Entropy-based methods select the samples which are the hardest for the current model to

classify, however, entropy alone does not convey the particular source of the uncertainty

(e.g., which classes are the source of confusion in a multi-class classification task). In ad-
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dition, it does not provide information about how the addition of the sample’s labels will

influence downstream performance. The assumption for entropy based methods is that

selecting these hardest samples, labeling them, and retraining the model with these sam-

ples would improve the model performance. However, just because these samples are the

hardest for the current model to classify, does not necessarily mean that they will lead to

improvement in the performance of the model on a real-world (ex. test) dataset. In Chap-

ter 6, we develop a new active learning acquisition function that explicitly measures the

information gain on an unseen (evaluation) set. The hypothesis is that selecting samples

based on this acquisition function should lead to better performance of the model on a

real-world dataset.

2.8 Summary

In this chapter, we provided the necessary background for three different clinical con-

texts, we discussed how we will tackle specific subproblems related to these contexts in

the rest of the thesis. We looked at different methods for generating multiple samples

from deep learning models, and how different uncertainty measures can be calculated

from these samples. Following this, we provided deep dive into the related work for the

application of uncertainty estimates in computer vision and medical imaging, fairness of

deep learning models, and active learning framework. We set up the open problems in

these fields. In the subsequent chapters, we will utilize this knowledge, and provide the

details of contributions made in this thesis.
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3
Evaluating Uncertainty Estimates in Brain

Tumour Segmentation

Fisher realized that the uncertain

answer to the right questions is much

better than a highly certain answer to

the wrong question.

— Dana Mackenzie and Judea Pearl, The

book of Why
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Related Paper

It should be noted that this is not a manuscript based thesis. However, considerable

material from the following paper has been utilised in this chapter.

o R. Mehta, A. Filos, U. Baid, . . . , S. Bakas, Y. Gal, T. Arbel, (95 authors), “QU-BraTS:

MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain tumour Seg-

mentation - Analysis of Ranking Scores and Benchmarking Results”, The Journal of

Machine Learning for Biomedical Imaging (MELBA), August 2022 [161].

The MELBA journal follows the CC-BY license (arxiv overlay journal) and does not re-

quire individuals working on a thesis to obtain a formal reuse license. This license allows

reusers to distribute, remix, adapt, and build upon the material in any medium or format,

so long as attribution is given to the creator. The license allows for commercial use [2].

3.1 Introduction

In the previous two chapters, we provided a brief introduction and relevant background

and literature review for the thesis. In this chapter, we focus on the development of an un-

certainty evaluation metric for the brain tumour segmentation task, analyze various parts

of it, and use it to rank uncertainty provided by participants in the popular brain tumour

segmentation (BraTS) challenge. Our results indicate that tumour segmentation output

and its associated uncertainties give complementary information, and these uncertainties

can give information necessary for integrating these models in real clinical practice.

The main focus of this part of the thesis is three-fold: i) to develop an uncertainty evalua-

tion score with a down-stream clinical goal in mind; ii) to benchmark the various partic-

ipating teams from a recent BraTS challenge [22], using the developed evaluation score;

and iii) to make the associated evaluation code publicly available for future benchmark-

ing of uncertainty estimation methods for medical image segmentation. In particular, we

focus on developing an uncertainty evaluation criterion for brain tumour segmentation.
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We aim to develop a computer-aided diagnosis (CAD) system where the pathology size

is smaller than the surrounding healthy tissue. In this context, the objectives are that

the uncertainty estimates associated with an automatic segmentation system reflect that

the system is (a) confident when correct and (b) uncertain when incorrect. These criteria

would mainly permit uncertain predictions to be flagged and brought to the attention of

the clinical expert, rather than overburdening the expert by having to review the entirety

of the prediction. To this end, we present the resulting uncertainty evaluation score [162]

and the rankings and results for 14 teams participating in the quantification of uncer-

tainty for brain tumour segmentation (QU-BraTS) 2020 challenge. The various analyses

of the methods and results produced by the different teams highlight the necessity of the

different components of our developed score. The results indicate that the segmentation

results and the associated uncertainties give complementary information as teams per-

forming well on one task do not necessarily perform well on the other. Qualitative results

show that the developed score measures the desired real-world properties for tumour

segmentation uncertainties.

3.2 Uncertainty Evaluation Score

The objective of the uncertainty quantification task is to evaluate and rank the uncertainty

estimates for the task of brain tumour segmentation. To this end, each uncertainty esti-

mation methods provide output labels for the multi-class segmentation task and the esti-

mated voxel-wise uncertainties for each of the associated tumour entities, namely, whole

tumour (WT), tumour core (TC), and enhancing tumour (ET). These uncertainties are re-

quired to be normalized in the range of 0− 100 for ease of computation. For each tumour

entity, the uncertain voxels are filtered at N predetermined uncertainty threshold values

τ1,..,N , and the model performance is assessed based on the metric of interest (i.e., the Dice

DSC in this case) of the remaining voxels at each of these thresholds (τ1,..,N ). For example,

τ = 75 implies that all voxels with uncertainty values ≥ 75 are marked as uncertain, and

the associated predictions are filtered out and not considered for the subsequent DSC
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calculations. In other words, the DSC values are calculated for the remaining predictions

of the unfiltered voxels. This evaluation rewards models where the confidence in the in-

correct assertions (i.e., false positives, denoted FPs, and false negatives, denoted FNs) is

low and high for correct assertions (i.e., true positives, denoted TPs, and true negatives,

denoted TNs). For these models, it is expected that as more uncertain voxels are filtered

out, the DSC score, calculated only on the remaining unfiltered voxels, increases.

Although the criterion mentioned above helps to measure performance in terms of DSC,

the metric of interest, it does not keep track of the total number of filtered voxels at each

threshold. In real practice, an additional penalty should be provided to a system that

filters out many voxels at a low threshold to achieve high performance on the metric of

interest, as it will increase the reviewing burden on clinical raters. One solution is to add

a penalty based on the total number of filtered voxels at each uncertainty threshold. This

strategy is also not ideal as it will also penalize methods that filter out FPs/FNs, areas

where mistakes are made. Instead, the evaluation criterion chosen penalizes methods

that filter out only the correctly predicted voxels (i.e., TP and TN). Given that the specific

tumour segmentation task has a high-class imbalance between pathological and healthy

tissue, different penalties are assigned to TPs and TNs. The ratio of filtered TPs (FTP) is

estimated at different thresholds (τ1,..,N ) and is measured relative to the unfiltered values

(τ = 100) such that FTP = (TP100 - TPτ ) / TP100. The ratio of filtered TNs is calculated sim-

ilarly. This evaluation essentially penalizes approaches that filter out a large percentage

of TP or TN relative to τ = 100 voxels (i.e., more uncertain about correct assertions) to

attain the reported DSC value, thereby rewarding approaches with a lower percentage of

uncertain TPs/TNs.

Figure 3.1 and Table 3.1 depict qualitative examples and their associated quantitative re-

sults. Here, decreasing the threshold (τ ) leads to filtering out voxels with incorrect as-

sertions. This filtering, in turn, leads to an increase in the DSC value for the remaining

voxels. Example 2 indicates a marginally better DSC value than the slice in example 1 at
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Figure 3.1: Effect of uncertainty thresholding on two different examples of patient MRI slices (Row-1 and
Row-2) for whole tumour (WT) segmentation. (a) T2-FLAIR MRI. (b) WT ground truth (c) overall model
prediction (d) results with no filtering, uncertainty threshold = 100. (e) uncertainty threshold = 75 (f) un-
certainty threshold = 50 (g) uncertainty threshold = 25. It is desired that with decrease in the uncertainty
threshold, more false positives (blue) and false negative (red) voxels are filtered out (marked as uncertain -
yellow) while true positive (green) and true negative voxels remain unfiltered. ©[2022] CC-BY. Reprinted,
with permission, from [161].

uncertainty thresholds (τ ) 50 and 25. However, the Ratio of FTPs and FTNs indicates that

this is at the expense of marking more TPs and TNs as uncertain.

To ensure that the generated output segmentations are directly associated with the BraTS

challenge protocol, the generated uncertainties are expected to be produced for these ”bi-

nary” tumour entities, i.e., ET, TC, and WT. The associated uncertainties are evaluated

using the scores defined above for each tumour entity.

Finally, the resulting uncertainty measures for each team are ranked according to a unified

score that combines the area under three curves: 1) DSC vs τ , 2) FTP vs τ , and 3) FTN vs

τ , for different values of τ . The unified score is calculated as follows:

scoretumour entity =
AUC1 + (1− AUC2) + (1− AUC3)

3
. (3.1)

In the context of the BraTS uncertainty evaluation task (QU-BraTS), the score is estimated
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Table 3.1: Change in DSC, filtered true positives (FTP) ratio, and filtered true negatives (FTN) ratio with
change in uncertainty thresholds for two different example slices shown in Figure 3.1. ©[2022] CC-BY.
Reprinted, with permission, from [161].

DSC
DSC at 100 (baseline) DSC at 75 DSC at 50 DSC at 25

Example-1 0.94 0.96 0.965 0.97
Example-2 0.92 0.955 0.97 0.975

Ratio of Filtered TPs (1 - (TPx / TPbaseline (τ=100)))
FTP at 100 FTP at 75 FTP at 50 FTP at 25

Example-1 0.00 0.00 0.05 0.1
Example-2 0.00 0.00 0.15 0.25

Ratio of Filtered TNs (1 - (TNx / TNbaseline (τ=100)))
FTN at 100 FTN at 75 FTN at 50 FTN at 25

Example-1 0.00 0.0015 0.0016 0.0019
Example-2 0.00 0.0015 0.0026 0.0096

Figure 3.2: Effect of changing uncertainty threshold (τ ) on WT for entropy measure. Specifically, we plot
(left) DSC, (middle) filtered true positive ratio, and (right) filtered true negative ratio as a function of
100 - τ . We plot the curves for six different uncertainty generation methods, namely, MC-Dropout, Deep
Ensemble, Dropout Ensemble, Bootstrap, Dropout Bootstrap, and Deterministic. All methods use entropy
as a measure of uncertainty. ©[2022] CC-BY. Reprinted, with permission, from [161].

for each tumour entity separately and then used to rank the participating methods.

3.2.1 A 3D U-Net Based Experiment

Experiments were devised to show the functioning of the derived uncertainty evalua-

tions and rankings. A modified 3D U-Net architecture [157] generates the segmentation

outputs and corresponding uncertainties. The network was trained (n = 228), validated

(n = 57), and tested (n = 50) based on the publicly available BraTS 2019 training dataset

(n = 335) [170, 22, 21, 19, 20]. The performances of WT segmentation with the entropy

uncertainty measure [80], which captures the average amount of information contained

in the predictive distribution, is shown in Figure 3.2. Here uncertainties are estimated us-
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ing MC-Dropout [79], Deep Ensemble [136], Dropout Ensemble [237], Bootstrap, Dropout

Bootstrap, and a Deterministic softmax entropy measure. Dropout bootstrap shows the

best DSC performance (highest AUC) and has the worst performance for FTP and FTN

curves (highest AUC). This result shows that the higher performance in DSC is at the

expense of a higher number of filtered correct voxels. Overall, the score is working in line

with the objectives. However, there is no clear winner amongst these uncertainty meth-

ods in terms of rankings.

3.3 BraTS 2020 Quantification of Uncertainty (QUBraTS)

challenge – Materials and Methods

3.3.1 Dataset

The BraTS 2020 challenge dataset [170, 22, 21, 19, 20] is divided into three cohorts: Train-

ing, Validation, and Testing. The Training dataset is composed of multi-parametric MRI

(mpMRI) scans from 369 diffuse glioma patients. Each mpMRI set contains four differ-

ent sequences: native T1-weighted (T1), post-contrast T1-weighted (T1ce), T2-weighted

(T2), and T2 Fluid-Attenuated-Inversion-Recovery (FLAIR). Each MRI volume is skull-

stripped (also known as brain extraction) [251], co-aligned to a standard anatomical atlas

(i.e., SRI24 [205]), and resampled to 1mm3 voxel resolution. Expert human annotators

provided ground truth (GT) tumour labels, consisting of 3 classes described previously.

Note that there is no ”ground-truth” uncertainty label.

The BraTS 2020 Validation cohort is composed of 125 cases of patients with diffuse gliomas.

Similar to the training dataset, this also contains four different mpMRI sequences for each

case. The validation dataset allows participants to obtain preliminary results in unseen

data and their cross-validated results on the training data. The GT labels for the valida-

tion data are not provided to the participants.
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The BraTS 2020 Testing cohort is then used for the final ranking of the participating team.

It is comprised of a total of 166 cases. The exact type of glioma is not revealed to the

participating teams. Each team gets a window of 48 hours to upload their results to the

challenge evaluation platform (https://ipp.cbica.upenn.edu/) [53].

3.3.2 Evaluation Framework

The University of Pennsylvania image processing portal (https://ipp.cbica.upenn.

edu/) is used to evaluate all BraTS participating algorithms quantitatively. This portal

allows the registration of new teams to access the BraTS datasets and the framework for

automatically evaluating all participating algorithms on all three (i.e., training, valida-

tion, and testing) cohorts1. In addition to the IPP, and in favor of reproducibility and

transparency, we make the uncertainty evaluation framework publicly available through

GitHub2. As mentioned previously, the evaluation framework expects the participants

to provide multi-class brain tumour segmentation labels and their associated voxel-wise

uncertainties for three tumour entities: whole tumour (WT), tumour core (TC), and en-

hancing tumour (ET). These uncertainties are expected to be normalized between 0-100

for ease of computation.

3.3.3 Participating Methods

In total, 14 teams participated in the QU-BraTS 2020 challenge. All teams utilized a con-

volutional neural network (CNN) based approach for the tumour segmentation task and

the generation of associated uncertainty maps. Detailed descriptions of 12/14 proposed

approaches are given below3. Details regarding the CNN segmentation architectures uti-

lized by each team are not described in detail here, as this chapter focuses on uncertainty

generation methods rather than the segmentation itself. Readers are requested to refer
1Access to the BraTS testing datasets is not possible after the conclusion of the challenge.
2https://github.com/RagMeh11/QU-BraTS
3Two teams, namely Frankenstein [61] and NSU-btr [86], withdrew after their initial participation.
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to each team’s individual papers (as cited below) for more details about the CNN archi-

tecture used for the segmentation task. A preliminary version of the QU-BraTS challenge

was run in conjunction with the BraTS 2019 challenge. Appendix B provides details about

the participating teams and their performance. We did not include the analysis results of

the QU-BraTS 2019 challenge here, as the task was run as a preliminary task without em-

ploying any statistical significance analysis ranking scheme to evaluate the participating

teams.

Method-1: Team SCAN [153]

The method uses the DeepSCAN [154] model. The training of the model was performed

using a combination of focal loss [140] and a Kullback-Leibler divergence: for each voxel

and each tumour entity, the model produces an output p ∈ (0, 1) (corresponding to the

output of a standard binary classification network) and an output q ∈ (0, 0.5) which rep-

resents the probability that the classifier output differs from the ground truth on that tu-

mour entity. The probability q is supervised by the label z, which is the indicator function

for disagreement between the classifier (thresholded at the p = 0.5 level) and the ground

truth. Given q, an annealed version of the ground truth is formed, w = (1−x)·q+x·(1−q).

Focal KL divergence between w and p is defined as follows:

FocalKL(w||p) = (p− w)2(w · log(w)− w · log(p)).

The final loss function is given by:

Loss = 0.1 · Focal(p, x) + 0.9 · FocalKL(w||p) + 0.9 · BCE(q, z).

An ensemble of the networks were utilized in the final output, where from different pre-

dictions, p and q were combined to a single probability q ·Ip≤0.5+(1−q)Ip≥0.5. The final un-

certainty output (denoted q above) was normalized into the range of 0 to 100: 100∗(1−2q).

The uncertainty in the ensemble can likewise be extracted as for any ordinary model with

a sigmoid output x as: 100 · (1− 2|0.5− x|).
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While this uncertainty measure gives a measure of uncertainty both inside and outside the

provided segmentation, it was empirically observed that treating all positive predictions

as certain and only assigning uncertain values to only negative predictions gives better

performance on the challenge scores.

Method-2: Team Alpaca [177]

An ensemble of three different 2D segmentation networks [102, 42, 99] was used. The

softmax probabilities from each of the three networks were averaged to generate the final

probability maps. These probability maps were used to generate the uncertainty maps for

each tumour entity. This was computed by mapping the most confident prediction value

to 0 and the least confident value to 100.

Method-3: Team Uniandes [54]

A novel deep learning architecture named Cerberus was proposed. The uncertainty maps

were produced by taking the complement of the final segmentation softmax probability

maps, and rescaling them between 0 and 100.

Method-4: Team DSI Med [50]

Five attention-gated U-Net models were trained. The uncertainty maps were normalized

between 0 and 100 for the four nested tumour entities. For each uncertainty map, the

maximum softmax probability from the five models for each voxel in each entity was

taken. The voxels were either part of the given nested entity or not, judging by the seg-

mentation maps acquired from the ensemble of five models. The probabilities of those

voxels that belong to the nested entity were inverted and multiplied by 100. The results

were then rounded to get into the 0-100 range.

Double thresholds were further applied to refine the uncertainty maps. Low and high

probability thresholds for each nested entity were empirically defined: WT(0.1, 0.3), TC(0.2,
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0.3) ET(0.3, 0.5). For each voxel that belongs to a nested entity, the uncertainty was set to

0 when the probability was higher than the corresponding high threshold. For each voxel

that belongs to the background, the uncertainty was set to 0 when the maximum prob-

ability was lower than the low threshold. Such a method enabled the adjustment of the

uncertainty of nested entities and the background independently.

Method-5: Team Radiomics MIU [25]

The method used an ensemble of three different CNNs [265, 26, 58] for segmentation.

Different models were trained for three different tumour entities (i.e., WT, TC, and ET

segmentation). Three model ensembles were used, i.e., a total of nine models were trained

for the task. Averaging various probabilities is one of the best and most effective ways to

get a prediction of the ensemble model in classification. The uncertainty was estimated

using the concept of entropy to represent voxel-wise variance and diversity information.

The resulting uncertainty values were scaled to lie between 0 and 100.

Method-6: Team Med vision [194]

The method proposed self-ensemble-resUNet. The output softmax probabilities (ypred)

were inverted and normalized between 0-100 to obtain the uncertainty maps (Upred): Upred =

100 · (1− ypred).

Method-7: Team Jaguars [206]

The method used an ensemble of a total of 7 U-Net type models. The output probabilities

of each model were averaged for each label in each voxel to obtain a new probability for

the ensemble. Since the model makes a binary classification of each voxel, the highest

uncertainty corresponds with a probability of 0.5. Then the normalized entropy was used

to get an uncertainty measure of the prediction for each voxel:

H =
∑
c∈C

pc · log(pc)
log(|C|)

∈ [0, 1].
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Here, pc is the sigmoid output average probability of class c and C is the set of classes, (C

= {0,1} in this case). These values were multiplied by 100 to normalize it between 0 and

100.

Method-8: Team UmU [263]

The method proposes a Multi-Decoder Cascaded Network to predict the probability of

the three tumour entities. An uncertainty score, ur
i,j,k, at voxel (i, j, k) was defined by:

ur
i,j,k =

200 · (1− pri,j,k), if pri,j,k ≥ 0.5

200 · pri,j,k, if pri,j,k < 0.5

.

Here, ur
i,j,k ∈ [0, 100]|R| and pri,j,k ∈ [0, 1]|R| are the uncertainty score map and probability

map, respectively. Here, r ∈ R, where R is the set of tumour entities, i.e. WT, TC, and ET.

Method-9: Team LMB [23]

The method used a V-net [171] architecture. A combination of test-time dropout and test-

time augmentation was used for uncertainty estimation. In particular, the same input

was passed through the network 20 times with random dropout and random data aug-

mentation. The uncertainty map was estimated with the variance for each sub-region

independently. Let Y i = yi1, y
i
2, ..., y

i
B be the vector that represents predicted labels for

the ith voxel. The voxel-wise uncertainty map, for each tumour entity (WT,TC,ET), was

obtained as the variance:

var =
1

B

B∑
b=1

(yib − yimean)
2.

Here, yimean represents the mean prediction across b samples.

Method-10: Team Matukituki [152]

A multisequence 2D Dense-UNet segmentation model was trained. The final layer of

this model is a four-channel soft-max layer representing the labels ’no tumour’, ’edema’,

’necrosis’, and ’ET’. Uncertainty values were obtained from the final layer of the segmen-
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tation model for each label as follows: For WT, initial uncertainty values were obtained

by adding the voxel-wise soft-max values of ’edema + necrosis + ET’. The initial uncer-

tainty values for TC were the voxel-wise sum of ’necrosis + ET’. The initial uncertainty of

the ET was the values of the voxel-wise soft-max channel representing ET. For all labels,

the initial uncertainty values were clipped between 0 and 1. They were then modified ac-

cording to the function: uncertainty = (1 – initial uncertainty) x 100. Finally, uncertainty

values of 99 were changed to 100.

Method-11: Team QTIM [192]

The method used an ensemble of five networks to estimate voxel-wise segmentation un-

certainty. Mirror axis-flipped inputs were passed through all models in the ensemble,

resulting in 40 predictions per entity. These predictions were combined by directly aver-

aging the model logits, denoted as lx. A voxel with high predictive uncertainty will have

|lx| ≈ 0, whereas a voxel with high predictive certainty will have |lx| ≫ 5. To explicitly

quantify uncertainty (U) in the range 0 (maximally certain) to 100 (maximally uncertain),

the following formula is used:

Ux =

200 · σ(lx) if 0 ≤ σ(lx) < 0.5

200 · (1− σ(lx)) otherwise.

Here, the σ function converts the ensembled logits to probabilities.

Method-12: Team Nico@LRDE

A cascade of two 3D U-Net-type networks was employed for the task of brain tumour

segmentation and its associated uncertainty estimation. The first network was trained for

the brain tumour segmentation task. The second network was trained to predict where

the segmentation network made wrong predictions. Here, the ground truth for training

this network was generated as follows: the ground truth was considered ones (present)

at voxels where the segmentation network was wrong, and it was considered as zeros

(absent) at voxels where the segmentation network was correct. This way, the uncertainty
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networks learn to return zeros where the segmentation network is generally accurate and

values next to one where the segmentation networks will have issues correctly predicting

the segmentation ground truth. The output of the uncertainty estimation network (second

network) was normalized between 0-100.

3.4 Analysis

This section presents the complete analyses and evaluation of teams that participated in

the QU-BraTS 2020 challenge. Section 3.4.1 provides the description of the evaluation

and ranking strategy followed during the QU-BraTS 2020 challenge. Section 3.4.2 pro-

vides the overall ranking results (accounting for all tumour entities) according to which

the winning teams were announced at the challenge (Figure 3.3). We also compare their

ranking on the segmentation task in the same section. Then, Section 3.4.2 provides the

ranked order of the participating teams according to the individual tumour entities (Fig-

ure 3.4-3.6), followed by our ablation study (in Section 3.4.2) on the scores incorporated

in the general score (Equation 3.1) (Figure 3.7-3.9). Table 3.2 encapsulates a summary of

the ranked order of the participating teams for this analysis. Finally, Section 3.4.3 pro-

vides qualitative results highlighting the effect of uncertainty thresholding filtering for

all participating teams.

3.4.1 Ranking Scheme: BraTS 2020 challenge on Uncertainty Quantifi-

cation (QU-BraTS)

The ranking scheme used during the challenge comprised the ranking of each team rela-

tive to its competitors for each testing subject, for each evaluated tumour entity (i.e., ET,

TC, WT) using the overall score (Equation 3.1). This ranking scheme led to each team

being ranked for 166 subjects for three regions, resulting in 498 individual rankings. For

each team, first, the individual ranking for each patient was calculated by adding ranks

across each region. This ranking is referred to as the cumulative ranking score (CRS). For

each team, the normalized ranking score (NRS) was also calculated for each patient by
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Table 3.2: Summary of team ranking for different analyses performed in this chapter. We use the ranking
scheme described in Section:3.4.1 to rank different teams. The “QU-BraTS Ranking” column depicts the
actual team ranking for all participating teams in QU-BraTS 2020 challenge (Section 3.4.2). In the ”Seg-
mentation Ranking” column, we also report segmentation ranking for all teams that participated in the
QU-BraTS challenge. The segmentation ranking is across 78 teams that participated in the segmentation
task during BraTS 2020. In three columns under ”Ranking based on Individual tumour Entities” (Section
3.4.2), we provide a team ranking based only on one of the three tumour entities. Similarly, we also report
the team ranking based on the ablation study of our developed score in the last three columns of ”Ranking
Based on Ablation Study” (Section 3.4.2). For each type of ranking, the total number of provided ranks
(given in the bracket) varies, as we provide the same rank for teams that do not have a significant statisti-
cal difference between their performance (Section 3.4.1). ©[2022] CC-BY. Reprinted, with permission, from
[161].

Teams Challenge Ranking Variations
Ranking Based on

Individual tumour Entities
Ranking Based on

Ablation Study
QU-BraTS

Ranking (9)
Segmentation
Ranking (18)

Whole
tumour (13)

tumour
Core (11)

Enhancing
tumour (11) DSC AUC (10) DSC AUC and

FTP AUC (9)
DSC AUC and
FTN AUC (12)

SCAN 1 4 1 1 1 6 2 4
UmU 2 7 3 2 2 4 3 3
DSI Med 2 13 2 2 3 9 3 7
QTIM 3 7 4 2 3 3 4 2
Uniandes 4 15 5 3 4 8 5 6
nsu btr 5 13 10 8 10 1 4 9
LMB 5 20 8 4 3 10 7 8
radiomics miu 6 13 7 5 5 2 8 3
Nico@LRDE 6 18 6 6 6 7 9 5
Jaguars 6 13 5 6 6 2 8 3
Team Alpaca 7 10 9 7 7 2 1 1
Matukituki 8 19 11 9 9 7 4 12
Frankenstein 9 18 13 11 8 6 6 11
med vision 9 14 12 10 11 5 7 10

dividing their CRS by the total number of participating teams and the total number of

regions. The NRS is in the range of 0-1 for each patient. The final ranking score (FRS)

was calculated by averaging the cumulative rank across all patients for each participating

team. Other challenges, such as the ischemic stroke lesion segmentation challenge (ISLES

- http://www.isles-challenge.org/) [149], use a similar ranking scheme.

Following the BraTS challenge, further permutation testing was done to determine the

statistical significance of the relative rankings between each pair of teams. This permu-

tation testing would reflect differences in performance that exceeded those that might be

expected by chance. Specifically, for each team, given a list of observed patient-level cu-

mulative ranks, i.e., the actual ranking described above, for each pair of teams, repeated

random permutations (i.e., 100,000 times) of the cumulative ranks for each subject were

performed. The difference in the FRS between this pair of teams was calculated for each
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permutation. The proportion of times the difference in FRS calculated using randomly

permuted data exceeded the observed difference in FRS (i.e., using the actual data) in-

dicated the statistical significance of their relative rankings as a p-value. Teams that do

not have a statistically significant difference in their FRS have similar respective ranks

(group) on the leaderboard4.

3.4.2 Team Ranking

This section reports the final rankings of all participating teams on BraTS 2020 test dataset.

Overall Ranking Results

Figure 3.3 (and QU-BraTS ranking column in Table 3.2) provides a relative ranking for

each team5. We can see that Team SCAN comfortably outperforms all other methods and

achieves the first rank in the challenge. Their normalized ranking score (NRS) across all

patients was ∼ 0.14, while the NRS (across all patients) for the teams which achieved

rank 2 (Team UmU and Team DSI Med) was ∼ 0.28. There was no statistically significant

difference between Team UmU and Team DSI Med. Thus both teams were ranked at posi-

tion 2 on the challenge leaderboard. Team QTIM ranked 3rd in the challenge leaderboard

and achieved marginally (though statistically significant) lower performance compared

to Rank-2 teams (average NRS of ∼ 0.31 compared to average NRS of ∼ 0.28).

We also report the relative segmentation ranking of each team participating in the un-

certainty challenge. The reported segmentation task ranking is across 78 teams that par-

ticipated in the segmentation task. From Figure Figure 3.3 (and Segmentation Ranking

column in Table 3.2), we can observe that while the Team SCAN (pink colour) achieves

a higher ranking (Rank-4) than other teams in the segmentation task, the segmentation

4Throughout the chapter, we report any p-value less than 0.05 as the threshold for statistically significant
differences.

5Box plot depicting performance of each team for four different scores - DICE AUC, FTP RATIO AUC,
FTN RATIO AUC, SCORE, for three different tumour entities - WT, TC, ET, is given in Appendix B.
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Figure 3.3: QU-BraTS 2020 boxplots of the normalized ranking score (NRS) across patients for all partici-
pants on the BraTS 2020 test set (lower is better). Boxplots for the top four performing teams are visualized
using Pink (Team SCAN), orange (Team DSI Med), Cyan (Team UmU), and Maroon (Team QTIM) colour. Box
plots for the remaining teams use gray colour. Y-axis shows the name of each team and their respective un-
certainty task ranking, followed by their segmentation task ranking. There was no statistically significant
difference between the per-patient ranking of teams ranked at the same position. Teams that have different
ranks had statistically significant differences in their per-patient ranking. ©[2022] CC-BY. Reprinted, with
permission, from [161].

task ranking and the uncertainty task (QU-BraTS challenge) ranking are not the same.

This is visible for Team UmU and Team QTIM, as both achieved a similar ranking (rank-7)

in the segmentation task of BraTS 2020; while Team UmU was ranked second in the uncer-

tainty task, Team QTIM was ranked third. Similarly, we can observe that three teams that

achieved Rank-13 in the segmentation task (Team DSI Med, Team nsu btr, and radiomics-

miu) were ranked differently in the uncertainty evaluation task (Rank-2, Rank-5, and

Rank-6, respectively). The difference in ranking across both tasks shows that performing

well on the segmentation task does not guarantee good performance on the uncertainty

evaluation task, and both tasks are complementary.
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Figure 3.4: QU-BraTS 2020 boxplots of normalized ranking score (NRS) across patients for all participants
on the BraTS 2020 test set only for Whole tumour (lower is better). Boxplots for the top four performing
teams (in the final ranking - Figure 3.3 ) are visualized using Pink (Team SCAN), orange (Team DSI Med),
Cyan (Team UmU), and Maroon (Team QTIM) colour. Box plots for the remaining teams use gray colour.
Y-axis shows the name of each team and their respective uncertainty task ranking, followed by their seg-
mentation task ranking. There was no statistically significant difference between the per-patient ranking of
teams ranked at the same position. Teams that have different ranks had statistically significant differences
in their per-patient ranking. ©[2022] CC-BY. Reprinted, with permission, from [161].

Team Ranking for Individual Tumour Entities

The BraTS challenge involves three separate tumour entities (WT, TC, and ET). The seg-

mentation performance across these entities varies, as reported in the previous BraTS

challenge reports [170, 22]. Specifically, the BraTS challenge reports good DSC across

different teams for the WT segmentation task, while the performance for the ET segmen-

tation task is relatively lower. The performance gap between different tumour entities

can hinder the clinical adaptation of the segmentation algorithms. The main goal for de-

veloping the uncertainty evaluation scores is to make algorithms more useful for clinical

adaptation. Keeping this in mind, we further report the raking of each participating team

according to the score (Equation 3.1) calculated for each tumour entity in Figure 3.4, Fig-

ure 3.5, and Figure 3.6.
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Figure 3.5: QU-BraTS 2020 boxplots of the normalized ranking score (NRS) across patients for all partici-
pants on the BraTS 2020 test set only for tumour Core (lower is better). Boxplots for the top four performing
teams (in the final ranking - Figure 3.3) are visualized using Pink (Team SCAN), orange (Team DSI Med),
Cyan (Team UmU), and Maroon (Team QTIM) colour. Box plots for the remaining teams use gray colour.
Y-axis shows the name of each team and their respective uncertainty task ranking, followed by their seg-
mentation task ranking. There was no statistically significant difference between the per-patient ranking of
teams ranked at the same position. Teams that have different ranks had statistically significant differences
in their per-patient ranking. ©[2022] CC-BY. Reprinted, with permission, from [161].

When teams are ranked only based on their WT scores (Figure 3.4 and whole tumour

column in Table 3.2), Team SCAN still comfortably outperforms other teams similar to

the original ranking (Figure 3.3). Unlike the original ranking scheme, Team DSI Med

ranks statistically significantly higher compared to Team UmU. Similarly, from Figure 3.5

(and the tumour core column in Table 3.2), we can observe that Team QTIM, Team UmU,

and Team DSI Med perform similarly without any statistically significant difference when

ranked only based on their TC score as all teams are ranked at the same position. In Fig-

ure 3.6 (and the enhancing tumour column in Table 3.2), Team UmU achieves rank-2 with

statistical significance compared to Team QTIM and Team DSI Med. We also observe no

statistically significant difference between Team QTIM, Team DSI Med, and Team LMB.
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Figure 3.6: QU-BraTS 2020 boxplots of the normalized ranking score (NRS) across patients for all partic-
ipants on the BraTS 2020 test set only for Enhancing tumour (lower is better). Boxplots for the top four
performing teams (in the final ranking - Figure 3.3) are visualized using Pink (Team SCAN), orange (Team
DSI Med), Cyan (Team UmU), and Maroon (Team QTIM) colour. Box plots for the remaining teams use gray
colour. Y-axis shows the name of each team and their respective uncertainty task ranking, followed by
their segmentation task ranking. There was no statistically significant difference between the per-patient
ranking of teams ranked at the same position. Teams that have different ranks had statistically significant
differences in their per-patient ranking. ©[2022] CC-BY. Reprinted, with permission, from [161].

Overall, Team SCAN comfortably ranks first for all tumour entities. Team UmU ranks 3-2-

2 for WT-TC-ET, while Team DSI Med ranks 2-2-3 for WT-TC-ET. Both teams are ranked

at position 2 when considering all tumour entities. The analysis shows that different

teams achieve different ranks depending on the tumour entities, which shows that their

performance differs across different tumour entities.

Ablation Study

The overall score for uncertainty evaluation is calculated as a combination of three dif-

ferent AUCs as described in Equation 3.1. Section 3.2 described the rationale behind the

development of this score. As discussed in Section 3.2, evaluating the task-dependent
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Figure 3.7: QU-BraTS 2020 boxplots of the normalized ranking score (NRS) across patients for all partici-
pants on the BraTS 2020 test set based only on DICE AUC score (lower is better). Boxplots for the top four
performing teams (in the final ranking - Figure 3.3) are visualized using Pink (Team SCAN), orange (Team
DSI Med), Cyan (Team UmU), and Maroon (Team QTIM) colour. Box plots for the remaining teams use gray
colour. Y-axis shows the name of each team and their respective uncertainty task ranking, followed by
their segmentation task ranking. There was no statistically significant difference between the per-patient
ranking of teams ranked at the same position. Teams that have different ranks had statistically significant
differences in their per-patient ranking. ©[2022] CC-BY. Reprinted, with permission, from [161].

metric (in our case, DSC) as a function of filtered samples is critical, especially in the

case of pathology segmentation, where there is a high class imbalance. We expect that,

by filtering voxels with a decrease in the uncertainty threshold, the performance on the

remaining voxels measured using the task-dependent metric (DSC) should increase but

not at the expense of filtering true positive or true negative voxels. The final score consists

of the task-dependent metric and filtered true positives/negatives as a function of uncer-

tainty thresholds. In this section, we perform an ablation study of different components

of the final score (DSC, FTP, FTN). Our analysis reaffirms that only considering one or

two components of the final score leads to a different ranking among participating teams.

Ranking according to DSC AUC: The main component of any uncertainty evaluation

64



3.4. ANALYSIS

0.2 0.4 0.6 0.8 1.0
Normalized Ranking Score

TeamAlpaca(1)

SCAN(2)

DSI_Med(3)

UmU(3)

QTIM(4)

nsu_btr(4)

Matukituki(4)

Uniandes(5)

Frankenstein(6)

LMB(7)

med_vision(7)

Jaguars(8)

radiomics-miu(8)

Nico@LRDE(9)

Te
am

s

Figure 3.8: QU-BraTS 2020 boxplots of the normalized ranking score (NRS) across patients for all partici-
pants on the BraTS 2020 test set test set based on a combination of DICE AUC score and FTP AUC score
(lower is better). Boxplots for the top four performing teams (in the final ranking - Figure 3.3) are visualized
using Pink (Team SCAN), orange (Team DSI Med), Cyan (Team UmU), and Maroon (Team QTIM) colour. Box
plots for the remaining teams use gray colour. Y-axis shows the name of each team and their respective un-
certainty task ranking, followed by their segmentation task ranking. There was no statistically significant
difference between the per-patient ranking of teams ranked at the same position. Teams that have different
ranks had statistically significant differences in their per-patient ranking. ©[2022] CC-BY. Reprinted, with
permission, from [161].

score is the task-dependent metric, in our case, DSC. Many previously proposed meth-

ods for various tasks only report the value of task-dependent metrics at various uncer-

tainty filtering thresholds – For example, the AUC score for multiple sclerosis [180]. In

Figure 3.7 (and the DSC AUC column in Table 3.2), we rank participating teams accord-

ing to their performance based on the AUC of DSC vs. Uncertainty threshold. The figure

shows that higher ranking teams in this ranking scheme (Team nsu btr, Team Alpaca, and

Team Jaguars) are different from those (Team SCAN, Team UmU, and Team DSI Med) in the

original ranking scheme (Figure 3.3). A closer look at the higher ranking teams according

to AUC of DSC (Figure 3.7) reveals that teams like Team Alpaca (Section 3.3.3) achieve a

good score by using 100 − (100 · softmax confidence) as a proxy for uncertainty. Using

softmax confidence in the foreground class (e.g. tumour subclass) as a direct proxy to un-
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Figure 3.9: QU-BraTS 2020 boxplots of the normalized ranking score (NRS) across patients for all partici-
pants on the BraTS 2020 test set based on a combination of DICE AUC score and FTN AUC score (lower
is better). Boxplots for the top four performing teams (in the final ranking - Figure 3.3) are visualized us-
ing Pink (Team SCAN), orange (Team DSI Med), Cyan (Team UmU), and Maroon (Team QTIM) colour. Box
plots for the remaining teams use gray colour. Y-axis shows the name of each team and their respective un-
certainty task ranking, followed by their segmentation task ranking. There was no statistically significant
difference between the per-patient ranking of teams ranked at the same position. Teams that have different
ranks had statistically significant differences in their per-patient ranking. ©[2022] CC-BY. Reprinted, with
permission, from [161].

certainty leads to all voxels belonging to the background class (i.e. healthy tissues) being

marked as uncertain at a low uncertainty threshold. This would increase the burden in

a system where we are asking clinicians to review all uncertain voxels (Figure 3.14). We

observed that Team Alpaca used softmax confidence in the foreground class as a direct

proxy for uncertainty.

Ranking according to a combination of DSC AUC and FTP or FTN AUC: In the last

section, we ranked teams according to their performance on the task-dependent eval-

uation metrics (DSC) at different uncertainty thresholds. As mentioned in Section 3.2,

ranking teams only based on their task-dependent evaluation metric rewards methods
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which filter out many positive predictions at low uncertainty thresholds to attain higher

performance on the metric of interest. This would increase the burden in scenarios where

clinical review is needed for all uncertain predictions. To alleviate the issue, teams are

ranked according to a combination of (i) AUC score for DSC and (ii) AUC for FTP or

AUC for FTN. From Figure 3.8 (and DSC AUC and FTP AUC column in Table 3.2), we

can conclude that a combination of both DICE AUC and FTP AUC alone is insufficient.

It still leads to Team Alpaca ranked higher. As shown in Figure 3.14, Team Alpaca marks all

healthy-tissues (True Negative) voxels as uncertain, which reflects that the segmentation

method is not confident in its prediction of healthy tissue. This is problematic as it would

increase the burden in scenarios where we expect clinicians to review all uncertain pre-

dictions. We see a similar problem when teams are ranked only using a combination of

DICE AUC and FTN AUC (Figure 3.9 and DSC AUC and FTN AUC column in Table 3.2).

Analysis in the previous two sections highlights the necessity of combining all three

AUCs to calculate the final score for ranking teams in the context of uncertainty quan-

tification of the brain tumour segmentation task.

3.4.3 Qualitative Analysis

Figure 3.10 - Figure 3.14 plots the effect of uncertainty threshold based filtering on ex-

ample slices from a few BraTS 2020 test cases for all participating teams. Green voxels

represent True Positive predictions, while blue and red voxels represent False Positive

and False Negative predictions. We filter out voxels at different thresholds (100, 75, 50,

and 25). Filtered voxels are marked as yellow. According to the developed uncertainty

evaluation score (Section 3.2), we want methods that filter out (marked as yellow) false

positive and false negative voxels while retaining true positive and true negative voxels

as we decrease the uncertainty threshold.

In Figure 3.10, we visualize the effect of uncertainty based thresholding for WT segmen-

tation on a single slice of a BraTS 2020 test case. A closer look at some of the better per-
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forming teams like Team SCAN, Team UmU, and Team DSI Med reveals that these teams

filter out more False Positives and False Negatives at a higher threshold than other teams

like Team QTIM and Team Uniandes. We can also observe that lower-performing teams like

Team Alpaca, Team Matukituki, Team Frankenstein, and Team med vision mark all background

voxels as uncertain at a low threshold. As mentioned before, marking background voxels

as uncertain is problematic as it shows that the method is not confident in its healthy-

tissue segmentation and requires clinicians to review the segmentation.

In Figure 3.11, we plot the effect of uncertainty based thresholding for WT segmenta-

tion on another slice of the same BraTS 2020 test case. Here we observe a similar trend

where higher ranked teams can filter out False Positives and False Negatives at a higher

threshold than other teams. Team SCAN only filters negative predictions. This results in

them never filtering out their False Positive predictions of the whole tumour inside the

ventricles. It is problematic in a real-world scenario as we do not want a method that is

over-confident about its positive pathology segmentation predictions.

Figure 3.12 shows an example slice of a different BraTS 2020 patient and visualizes the ef-

fect of uncertainty thresholding for core tumour segmentation. The figure highlights that

team ranking is different across different cases as we can see that Team SCAN and Team

UmU has similar prediction at Threshold:100. However, Team SCAN starts filtering out

more true negatives sooner compared to Team UmU, which would result in Team SCAN

ranked lower compared to Team UmU for this particular BraTS test case. We can observe

a similar trend when comparing Team DSI Med and Team LMB, where Team LMB starts

filtering out more false positives sooner than Team DSI Med. Similarly, in Figure 3.13,

we can observe that in scenarios where all teams are making errors by predicting a high

amount of false positives, the overall uncertainty score would be more reliant on which

teams can filter out these false positives sooner. For example, Team UmU performs better

compared to Team DSI Med.
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Figure 3.14 depicts an example slice of uncertainty threshold based filtering for ET seg-

mentation. Here we can see that when all teams make almost the same predictions with

a high amount of true positives compared to false positives/false negatives, the over-

all uncertainty score is similar across teams. Except for teams that mark all background

(healthy-tissue) voxels as uncertain, they perform poorly on the final score.

3.5 Summary

This chapter introduced a new score for evaluating uncertainties in the task of brain tu-

mour segmentation during the BraTS 2020 challenge. The proposed score was used to

rank different participating teams from the Uncertainty Quantification task of the BraTS

2020 challenge (QU-BraTS 2020).

The proposed evaluation score was developed with the clinical objective of enabling the

clinician to review only the uncertain areas of an automatic segmentation algorithm in-

stead of the complete segmentation. Toward this end, this score would reward algorithms

that are confident when correct and uncertain when incorrect. The objective was evalu-

ated by filtering (marking as uncertain) voxels with uncertainty higher than a specified

threshold as uncertain. The task-dependent DSC is measured only on the remaining un-

filtered voxels. To ensure that method does not filter out a high number of correctly pre-

dicted voxels in order to achieve a better DSC, the developed evaluation score also keeps

track of the number of filtered True Positive and True Negative voxels. Keeping track of

these filtered TP and TN voxels ensures that the burden on the reviewing clinicians is not

increased substantially. In short, the proposed score calculates the task-dependent metric

score (i.e. DSC for segmentation), the percentage of filtered true positives and true nega-

tives at different uncertainty thresholds. It combines them to generate a single evaluation

score for a single subject.

The analysis (Section 3.4.2) of algorithms developed by the participating teams from the
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QU-BraTS 2020 task highlighted that the relative ranking of the participating teams for

both the segmentation and uncertainty quantification tasks are different. The different

ranking orders show that performing better on the segmentation task does not guaran-

tee good performance on the uncertainty quantification task. An automatic segmenta-

tion method that provides both the segmentation and its uncertainties is more clinically

relevant. Both the segmentation and the associated uncertainties provide complemen-

tary information. For example, automatic segmentation can provide accurate results with

minimal clinician input. In contrast, the associated uncertainty would allow clinicians to

see where to trust and review the segmentation before deploying it in clinical practice.

Results in Section 3.4.2 indicate that it is necessary to rank teams individually for each

tumour entity as they rank differently across these entities. An ablation study on the pro-

posed score (Section 3.4.2) showed the necessity of utilizing all three components (DSC,

percentage of Filtered True Positive, and percentage of Filtered True Negative) for the

proposed uncertainty evaluation score.

70



3.5. SUMMARY

Figure 3.10: Effect of uncertainty thresholding on a BraTS 2020 test case for whole tumour segmentation
across different participating teams. (a) T2-FLAIR MRI (b) Ground Truth (c) Prediction (d) No filtering.
Uncertainty Threshold = 100 (e) Uncertainty Threshold = 75 (f) Uncertainty Threshold = 50 (g) Uncertainty
Threshold = 25. ©[2022] CC-BY. Reprinted, with permission, from [161].
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Figure 3.11: Effect of uncertainty thresholding on a BraTS 2020 test case for whole tumour segmentation
across different participating teams. (a) T2-FLAIR MRI (b) Ground Truth (c) Prediction (d) No filtering.
Uncertainty Threshold = 100 (e) Uncertainty Threshold = 75 (f) Uncertainty Threshold = 50 (g) Uncertainty
Threshold = 25. ©[2022] CC-BY. Reprinted, with permission, from [161].
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Figure 3.12: Effect of uncertainty thresholding on a BraTS 2020 test case for core tumour segmentation across
different participating teams. (a) T1ce MRI (b) Ground Truth (c) Prediction (d) No filtering. Uncertainty
Threshold = 100 (e) Uncertainty Threshold = 75 (f) Uncertainty Threshold = 50 (g) Uncertainty Threshold =
25. ©[2022] CC-BY. Reprinted, with permission, from [161].
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Figure 3.13: Effect of uncertainty thresholding on a BraTS 2020 test case for core tumour segmentation across
different participating teams. (a) T1ce MRI (b) Ground Truth (c) Prediction (d) No filtering. Uncertainty
Threshold = 100 (e) Uncertainty Threshold = 75 (f) Uncertainty Threshold = 50 (g) Uncertainty Threshold =
25. ©[2022] CC-BY. Reprinted, with permission, from [161].
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Figure 3.14: Effect of uncertainty thresholding on a BraTS 2020 test case for enhance tumour segmentation
across different participating teams. (a) T1ce MRI (b) Ground Truth (c) Prediction (d) No filtering. Un-
certainty Threshold = 100 (e) Uncertainty Threshold = 75 (f) Uncertainty Threshold = 50 (g) Uncertainty
Threshold = 25. ©[2022] CC-BY. Reprinted, with permission, from [161].
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4
Propagating Uncertainty Across Cascaded

Medical Imaging Tasks

Averages mislead by hiding a spread

(a range of different numbers) in a

single number.

— Anna Rosling Rönnlund, Hans

Rosling, and Ola Rosling, Factfullness
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4.1 Introduction

The previous chapter proposed an uncertainty evaluation measure for the brain tumour

segmentation task. Results indicated that the evaluation measure could indeed quantify

if the generated task-specific uncertainties are clinically relevant or not. In this chapter,

we take a further step and integrate the generated task-specific uncertainties in a cascade

of inference tasks, and with extensive experiments show that uncertainty propagation can

improve the downstream task of interest.

This part of the thesis presents a general framework for propagating uncertainties across

different classes of inference steps. This work presents a unified analysis of a variety of

popular uncertainty generation methods (MC-Dropout, Deep Ensembles, Dropout En-

semble), uncertainty measures (e.g., entropy, sample variance, mutual information), and

propagation techniques (summary statistics, random sampling) across three distinct con-

texts: (i) voxel-level binary MS T2 lesion segmentation to lesion detection, (ii) voxel-level

MR modality synthesis to voxel-level multi-class brain tumour segmentation, and (iii)

voxel-level hippocampus binary segmentation to volume-level Alzheimer’s Disease clin-
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ical score regression.

Extensive experimentation shows that uncertainty propagation from a previous task to

a downstream task of interest results in performance improvements in all three contexts

(upto five percent) and for all three model sampling methods, with Deep Ensemble and

Dropout Ensemble achieving significant performance improvements over MC-Dropout

(upto five percent). The maximum increase in performance gain with uncertainty prop-

agation (upto five percent) is achieved when the entire set of different uncertainty mea-

sures are propagated together to the downstream task of interest, indicating that they

provide helpful complementary information. However, the quantitative results only tell

part of the story. The qualitative results illustrate that uncertainty propagation does in-

deed assist in correcting clinically relevant errors even when improvements in terms of

absolute numbers are small. Finally, experiments indicate that, should the clinical con-

text permit that the multiple samples resulting from the first inference task themselves be

available to the downstream task, rather than just the uncertainty information in the form

of summary statistics (e.g., entropy, variance), comparable performance improvements

on the downstream task of interest result. This might be helpful for other tasks where

more complex distributions prevail.

4.2 Methodology: Propagating Uncertainty Across Infer-

ence Tasks

We consider a general medical imaging pipeline (see Figure 4.1), where input images, xi,

are passed through a sequence of inference tasks (Task-1, Task-2, ..., Task-K) before pro-

ducing the downstream output of interest (see Freesurfer [52] or ANTs [15].) The model

is general, but here the context explored is one where the images may reflect some patient

pathology (e.g., tumour, lesion), leading to additional challenges. The framework follows

a protocol where each task is performed by a separate deep learning model sequentially.
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Figure 4.1: An example of a medical image analysis pipeline. During inference, the input image xi (and
output of previous task, ŷk

i ) is passed through a cascade of inference tasks (1,2,..,K). The neural network for
any task, Task-k, is parameterized by θk. The output for Task-k is defined as ŷk

i = fk(θk; xi, ŷk−1
i ). In the

proposed framework, we also estimate uncertainties (ûk
i ) associated with output (ŷk

i ) for each task. These
uncertainties are used as an additional input to the subsequent task (ŷk

i = fk(θk; xi, ŷk−1
i , ûk−1

i )). Here,
Task-K represents the final downstream task of interest. ©[2022] IEEE. Reprinted, with permission, from
[159].

This is typical for most clinical contexts, where access to the individual training label sets

for each of the tasks (e.g., reconstruction, segmentation), (y1
i , y2

i , ..., yK
i ), is not typically

available for the same input images, xi. This hinders end-to-end training of the whole

medical image analysis pipeline. Each task model is parameterized by its corresponding

parameters (θ1, θ2, ..., θK) such that ŷk
i = fk(θk; xi, ŷk−1

i ).

We adopt a Bayesian deep learning [79, 136, 237] framework, whereby model predictions

(ŷk
i ), as well as uncertainties (ûk

i ) associated with these predictions can be generated for

each task. These uncertainties are estimated by acquiring multiple output samples (ŷk
i(t)

)

for the same input images. The model prediction becomes the mean of the samples (ŷk
i ),

and the uncertainties (ûk
i ) are derived from statistics across the samples (Section 2.2.2).

In the proposed framework, depicted in Figure 4.1, in addition to passing the model pre-

dictions (ŷk
i ) from each preceding task to its subsequent task, uncertainties (ûk

i ) are also

passed onto the subsequent tasks. The hypothesis is that this would lead to better per-

formance for the downstream task of interest. We also explore a premise where instead

of passing the mean prediction and its associated uncertainties from the previous task to

the subsequent task, the samples (ŷk
i(t)

) themselves (should they be available) are passed

individually to the next task. Direct sample propagation would help in scenarios where

the output distribution might be multi-modal, for example, and not well represented by

a single statistic (e.g., variance). It should be noted that this comes at the cost of increased

storage requirements and substantial increases in inference time.
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In order to prove the generality of the proposed framework, experiments are performed

for three different clinical contexts with diverse inference steps: (i) T2 weighted MS lesion

segmentation and detection, (ii) brain tumour segmentation, and (iii) Alzheimer’s disease

(AD) clinical score prediction. Here, pipelines include two different sequential inference

tasks, as depicted in Figure 4.2. Note that the uncertainties produced on training cases

would not properly reflect the uncertainties on unseen test cases [136, 13, 79]. In the pro-

posed framework, the Task-1 network and the Task-2 network are trained separately to

provide the Task-2 network with meaningful Task-1 uncertainties as input.

4.2.1 MS T2 Lesion Segmentation

One of the hallmarks of multiple sclerosis (MS) is the presence of multiple hyperintense

lesions visible on T2-weighted MRI (i.e., T2 lesions). The detection and segmentation of

T2 lesions in MRI are therefore important to monitor disease activity and treatment effi-

cacy. However, T2 lesions can be very small (3-10 voxels) and difficult to detect. Popular

neural networks, including U-Nets, have not yet proven to be effective at the detection

and segmentation of small MS lesions in MRI when deployed with commonly used set-

tings [180]. However, uncertainties based on MC-Dropout have been shown to correlate

well with network errors in the context of MS lesion segmentation [180]. In this work, we

propose to first segment T2 lesions from multi-sequence MRI (xi) acquired from patients

with MS using a Bayesian U-Net [180] (Task-1). The resulting mean T2 lesion segmenta-

tion map (ŷ1
i ) and its associated voxel-level uncertainties (û1

i ), along with the original MRI

patient sequences (xi), are then provided as inputs to a second T2 lesion segmentation U-

Net (Task-2). The conjecture is that the second network will learn to improve the lesion

segmentation/detection (ŷ2
i ) performance by learning to interpret the predictions and as-

sociated uncertainties from the first network (see Figure 4.2(A)). This includes learning,

for example, which regions with high uncertainties should indeed be labeled as lesions

and which should not, thus assisting in detecting and segmenting subtle lesions.
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Figure 4.2: Overview of the proposed general framework for propagating inference results and their asso-
ciated uncertainties across sequential tasks in medical image analysis. (A) MS T2 lesion segmentation, (B)
MR synthesis - brain tumour segmentation, and (C) Alzheimer’s disease clinical score prediction. ©[2022]
IEEE. Reprinted, with permission, from [159].
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4.2.2 Brain Tumour Segmentation

The accuracy of detecting and segmenting brain tumours increases significantly should

several MRI channels be available. Different contrasts generally assist in differentiating

healthy tissues from focal pathologies (e.g., T1, T1c, T2, FLAIR) [22, 93]. However, in

real clinical practice, the availability of all sequences is not guaranteed for each patient

for various reasons, including cost or time constraints, and corruption from noise or pa-

tient motion. As such, accurate synthesis of one or more of the missing 3D MRI volumes

based on those acquired would benefit both clinical practices [196] and automatic down-

stream segmentation techniques [254, 113, 106]. Synthesizing high-resolution volumes in

the presence of pathological structures presents significant challenges to current machine

learning methods. As a result, any resulting synthesized MR volumes may not be reliable

on their own. In this context, voxel-level uncertainties associated with the synthesized

volume can be helpful to guide a clinician towards regions of lower confidence where

further inspection is needed [158] or towards detecting an anomaly in a synthesized vol-

ume [199].

In this work, we suggest that by propagating the uncertainties associated with the syn-

thesized missing MRI sequence provided by the synthesis network (Task-1) to a down-

stream tumour segmentation network (Task-2), the final results should improve. Details

are shown in Figure 4.2(B). The Task-1 network is a synthesis network, which takes multi-

modal MR sequences acquired from a brain tumour patient as inputs. It regresses a full,

synthesized image volume for the mean missing MR sequence (ŷ1
i ) as well as the un-

certainties (û1
i ) associated with the synthesis at each voxel. The synthesis network cho-

sen here is the multi-task regression-segmentation Network (RS-Net) proposed in [158]

(Appendix A). The Task-2 network is a multi-class tumour segmentation network that

takes the original MRI sequences (xi), and the synthesized (mean) missing sequence vol-

ume (ŷ1
i ) and associated uncertainties (û1

i ) produced from Task-1 as inputs, and produces
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multi-class tumour labels (ŷ2
i ) at each voxel. The network is a U-Net [45] with instance

normalization [256] added in order to improve performance on small batch sizes.

4.2.3 Alzheimer’s Disease Clinical Score Prediction

Alzheimer’s disease (AD) is the most common form of neurodegenerative disorder in el-

derly people [83]. Machine learning methods have performed well in providing an AD

diagnosis (i.e., a classification task) [279, 85]. However, clinicians are more likely to treat

symptoms based on structured clinical assessments (e.g., Alzheimer’s disease assessment

scale – ADAS-13, mini-mental state examination – MMSE) than on a specific diagnosis

[243]. In this work, the objective is to develop an accurate model to estimate clinical dis-

ease severity scores, specifically the commonly used ADAS13 [207] and MMSE [69], di-

rectly from neuroimaging data (i.e., T1 MR image) [28]. A recognized biomarker for AD

is the presence of reduced hippocampal volume as measured from a single time point,

high-resolution T1-weighted MR image [73]. As such, automatic hippocampal segmenta-

tion has previously been shown to effectively diagnose AD [44, 143].

In this work, we hypothesize that a downstream clinical score prediction network’s accu-

racy can be increased by propagating the estimated uncertainty maps from a preceding

hippocampus segmentation network. Details are shown in Figure 4.2 (C). The hippocam-

pal segmentation network (Task-1) is a BU-Net, which takes a T1 MR image (xi) as input

and produces a mean segmentation of the hippocampus (ŷ1
i ), as well as an estimate of

its associated segmentation uncertainty map (û1
i ). The two outputs (ŷ1

i and û1
i ), along

with the original T1 MR image (xi), are then provided to a downstream deep network (3D

ResNet-34 [91]) which regresses two clinical scores, ADAS-13 and MMSE (ŷ2
i ).
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4.3 Implementation Details, Datasets, and Evaluation Met-

rics

In this section, we provide both task-specific implementation details1, as well as details

about sampling for uncertainty estimation.

4.3.1 Task Specific Details

MS T2 Lesion Segmentation

As depicted in Figure 4.2(A), both the MS T2 lesion labels and their associated uncertain-

ties produced from a Bayesian U-Net are propagated to a second T2 lesion segmentation

U-Net. A large proprietary dataset of multi-modal MRI sequences acquired from a total

of 1073 patients with relapsing-remitting MS (RRMS) at different stages of the disease

was used for training and testing. The dataset consists of over 2700 multi-modal MRI

sequences (T1, T2, fluid attenuated inverse recovery – FLAIR, and proton density – PD)

federated from three different multi-site, multi-scanner clinical trials. The majority of the

patients were scanned annually or bi-annually over 24 months. MRI sequences were ac-

quired at 1mm x 1mm x 3mm resolution. T2 lesion labels were provided with the dataset

and were produced through an external process where trained expert human annotators

manually corrected a proprietary automated segmentation method. The dataset was split

as follows: 40% of the available data was used for training/validating the first network,

with a 90/10 training/validation split. Another 40% was used for training/validating the

second network, again with a 90/10 training/validation split. The final 20% of the avail-

able data was used for testing the second network. The dataset was carefully divided this

way to provide the second network with consistent and meaningful uncertainties reflec-

tive of unseen test cases.

The downstream outcome of interest is the accurate detection of T2 lesions. Therefore, the

performance is evaluated based on lesion-level detection metrics. A connected compo-

1Network architecture and training details specific to each pipeline are provided in Appendix C.1
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nent analysis is performed on the voxel-based segmentation provided by the network to

group lesion voxels in an 18-connected neighbourhood [180]. The detection level metrics,

namely true positive rate (TPR) vs. false detection rate (FDR), are calculated at the lesion

level and are used to plot receiver operating characteristic (ROC)-like curves. Given that

MS lesions vary significantly in size, lesions are grouped into three sized bins for per-

formance evaluation: small (3-10 vox), medium (11-50 vox), and large (51+ vox). Given

that the detection of small lesions is particularly challenging and 40% of the lesions in

the dataset are small, we mainly focus on the overall detection performance for all the

lesions and show the performance on only the small lesions separately. We calculate the

area under the curve (AUC) for ROC-like curves and use it as a quantitative measure of

the network performance.

Brain Tumour Segmentation

RS-Net (Task-1 network) [158] was developed to take in 3 real MRI sequences and synthe-

size the missing fourth sequence. This thesis focuses on the synthesis of T1 post-contrast

(T1ce) and FLAIR MRIs as previous work [254, 158] has shown that their absence sig-

nificantly decreases brain tumour segmentation performance compared to either T1 or

T2 sequences. T1ce is the most challenging sequence to synthesize, as it is the only MR

sequence that indicates enhancement within the tumour post-injection with a contrast

agent, providing a signal of new disease activity. T1, T2, and FLAIR sequences are pre-

sented to RS-Net to synthesize the T1ce MRI, and T1, T1ce, and T2 MRI sequences are

used as inputs to synthesize the FLAIR MRI.

This pipeline is evaluated using the 2018 MICCAI BraTS [22] dataset. The BraTS train-

ing dataset comprises 210 HGG and 75 LGG patients with T1, T1ce, T2, and FLAIR MRI

sequences. Ground truth tumour labels were provided by expert human annotators and

consist of 3 classes: edema, necrotic/non-enhancing core, and enhancing tumor core. 228

patients were randomly selected for training the network and another remaining 57 for
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network validation. A separate BraTS 2018 validation dataset was used to test the seg-

mentation performance. This dataset contains 66 patients with multi-channel MRI. The

BraTS challenge provides pre-processed volumes that were skull-stripped, co-aligned,

and resampled to isotropic (1mm x 1mm x 1mm) resolution. As we mentioned before,

uncertainties on a training dataset would not reflect uncertainties on an unseen dataset.

The RS-Net was trained in two folds, with each fold comprised of 114 volumes. This

training strategy allows us to generate uncertainties on the whole training dataset in two

folds, and should reflect uncertainties on an unseen dataset. The downstream segmenta-

tion U-Net was trained using all 228 volumes in a single fold.

In line with the BraTS challenge [22], the brain tumour segmentation performance is eval-

uated by calculating Dice scores for three different tumour sub-types: enhancing tumor,

whole tumor, and tumour core. Quantitative assessment was generated by uploading the

segmentation results on the challenge portal as there are no ground-truth labels available

for the validation set.

Alzheimer’s Disease Clinical Score Prediction

As depicted in Figure 4.2, a BU-Net [180] is used for hippocampus segmentation with

T1 MRI as the input (Task-1). The segmentation maps and their associated voxel-wise

uncertainties are propagated to a volume-level clinical score regression network (Task-2),

which produces values for MMSE and ADAS-13 scores. A 3D ResNet-34 [91] network

was used for clinical score regression. MMSE is one of the most widely used cognitive

assessments for diagnosing Alzheimer’s disease and related dementias. The scores range

from 0 to 30, with lower scores indicating greater cognitive impairment. The ADAS-13 is

a modified version of the ADAS-cog assessment, with a maximum score of 85. In contrast

to MMSE, higher scores on the ADAS-13 indicate greater cognitive impairment.

The EADC-ADNI/HARP dataset [74] is used for training the hippocampus segmentation
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network. This dataset consists of a subset of 135 volumes selected from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) dataset, with expert manual 3D segmentations

of the hippocampus. There are 45 AD, 46 Mild Cognitive Impairment (MCI), and 44 Cog-

nitive Normal (CN) patients in this dataset. All volumes were in isotropic resolution,

brain-extracted, and linearly registered to MNI152 space. We divide this dataset into an

80/20 training/validation split. The clinical score regression network (3D ResNet-34) is

trained and tested using the ADNI [111] dataset. Specifically, we used baseline data from

participants in the ADNIGO (n=69), ADNI1 (n=442) and ADNI2 (n=354) databases. We

divide this dataset into a training/validation/testing (70/10/20) split such that the ratio

of AD/MCI/CN is maintained across the split. We perform 5-fold cross-validation on

this dataset. Performance evaluation for both ADAS-13 and MMSE scores is based on the

Pearson correlation (r), and root mean square error (RMSE) between true and predicted

clinical scores.

4.3.2 Sampling For Uncertainty Estimation

The proposed framework requires producing uncertainties at the outputs of the Task-1

network along with the estimated predictions (e.g., voxel-based segmentation, regres-

sion). This is achieved by calculating various statistics across multiple samples generated

using different uncertainty estimation methods. Specifically, we use MC-Dropout [79],

Deep Ensemble [136], and Dropout Ensemble [237] as uncertainty estimation methods.

Also, we use predictive entropy, sample variance, and mutual information as uncertainty

measures. Readers are referred back to Chapter 2 for more details about these methods.

In this work, we also explore propagating the samples from the Task-1 network directly

(if available) as inputs to the Task-2 networks. Details about sampling are now provided:

87



4.4. EXPERIMENTS AND RESULTS

MC-Dropout

For all three clinical contexts, 20 samples are generated for the Task-1 network using

dropout (dropout rate=0.2) at test time. We chose this as previous studies have shown

that there is a marginal improvement in performance with more samples [120].

Deep Ensemble

five different Task-1 networks are trained with different weight initializations on the same

training set to get an ensemble of size five for each clinical pipeline. This choice is based

on previous studies [136, 13] which showed that only marginal improvement was at-

tained with ensembles with sizes larger than five. During test time, the five networks

provide five different samples for the same input.

Dropout Ensemble

Each of the five trained networks developed for the Deep Ensemble model generates 20

samples using dropout at test time. This results in a total of 100 samples for Dropout

Ensembles.

4.4 Experiments and Results

Several experiments were performed for each of the clinical pipelines. The goal was to

evaluate the effectiveness of propagating the uncertainties from Task-1 to Task-2 in im-

proving the final downstream results. Evaluations and comparisons were made based

on (a) different uncertainty estimation methods: MC-Dropout [79], Deep Ensemble [136],

and Dropout Ensemble [237], (b) different uncertainty measures: sample variance, en-

tropy, MI, and finally (c) propagating the uncertainties derived from the samples (e.g.,

sample variance) against propagating the samples themselves.
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Table 4.1: Comparing overall MS T2 lesion detection performance using Area Under Curve (AUC) of ROC-
like curves, illustrating TPR (true positive rate) vs. FDR (false detection rate) across (A) all lesions, and (B)
small lesions (3-10 voxels) with several input combinations. The inclusion of the associated uncertainties
with outputs from Task-1, in addition to Task-1 outputs, as inputs to the Task-2 network results in improved
detection performance. Bold values indicate the best performance for each method, while underlined val-
ues indicate the overall best performance across different methods. The performance of the MS T2 lesion
detection for medium and large lesions is provided in Table 4.2 in Appendix C.1. ©[2022] IEEE. Reprinted,
with permission, from [159].

Method
Input AUC

all lesions
(↑)

AUC
small lesions

(↑)
MR sequences Mean Uncertainties Segm.

(T1, T2, FLR, T1ce, PDw) Segm. Var. Entr. MI Samples
1 Baseline-1 ✓ 0.8425 0.6704
2

MC-Dropout

✓ ✓ 0.8465 0.6837
3 ✓ ✓ ✓ 0.8643 0.7197
4 ✓ ✓ ✓ 0.8479 0.6876
5 ✓ ✓ ✓ 0.8419 0.6853
6 ✓ ✓ ✓ ✓ ✓ 0.8652 0.7170
7 ✓ ✓ 0.8591 0.7019
8

Dropout Ensemble

✓ ✓ 0.8613 0.7116
9 ✓ ✓ ✓ 0.8739 0.7312
10 ✓ ✓ ✓ 0.8650 0.7235
11 ✓ ✓ ✓ 0.8654 0.7131
12 ✓ ✓ ✓ ✓ ✓ 0.8781 0.7409
13 ✓ ✓ 0.8771 0.7341
14

Deep Ensemble

✓ ✓ 0.8603 0.7113
15 ✓ ✓ ✓ 0.8735 0.7349
16 ✓ ✓ ✓ 0.8697 0.7225
17 ✓ ✓ ✓ 0.8649 0.7159
18 ✓ ✓ ✓ ✓ ✓ 0.8792 0.7410
19 ✓ ✓ 0.8767 0.7369

4.4.1 Effectiveness of Uncertainty Propagation

The first set of experiments was designed to evaluate the effectiveness of propagating

uncertainties from the Task-1 network to the Task-2 network. To this end, we first ex-

amine the results of the proposed framework for all three clinical pipelines (Figure 4.2)

based on a set of fixed experimental parameters: using MC-Dropout [79] during infer-

ence to provide 20 samples from the Task-1 network, and estimating and propagating

the sample mean and variance across these samples to the Task-2 network along with

the original MRI 2. Sample variance was chosen as it is the simplest and the most com-

monly used uncertainty measure [120, 260, 139, 188, 253, 199]. Results were compared

2Figure C.5 in the Appendix C.1 shows the effect of varying the number MC-Dropout of sample for
uncertainty estimation on a downstream task of interest for MS lesion detection.
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Table 4.2: Comparing overall MS T2 lesion detection performance using area under curve (AUC) of ROC-
like curves, illustrating TPR (true positive rate) vs. FDR (false detection rate) across (A) large lesions (51+
voxels), and (B) medium lesions (10-50 voxels) with several input combinations. The inclusion of the associ-
ated uncertainties with outputs from Task-1, in addition to Task-1 outputs, as inputs to the Task-2 network
results in improved detection performance. Bold values indicate the best performance for each method,
while underlined values indicate the overall best performance across different methods. ©[2022] IEEE.
Reprinted, with permission, from [159].

Method
Input AUC

Med. lesions
(↑)

AUC
large lesions

(↑)
MR sequences Mean Uncertainties Segm.

(T1, T2, FLR, T1ce, PDw) Segm. Var. Entr. MI Samples
1 Baseline-1 ✓ 0.9768 0.9977
2

MC-Dropout

✓ ✓ 0.9775 0.9979
3 ✓ ✓ ✓ 0.9834 0.9992
4 ✓ ✓ ✓ 0.9768 0.9982
5 ✓ ✓ ✓ 0.9782 0.9979
6 ✓ ✓ ✓ ✓ ✓ 0.9852 0.9989
7 ✓ ✓ 0.9831 0.9981
8

Dropout Ensemble

✓ ✓ 0.9801 0.9988
9 ✓ ✓ ✓ 0.9858 0.9992
10 ✓ ✓ ✓ 0.9807 0.9992
11 ✓ ✓ ✓ 0.9851 0.9992
12 ✓ ✓ ✓ ✓ ✓ 0.9861 0.9993
13 ✓ ✓ 0.9844 0.9989
14

Deep Ensemble

✓ ✓ 0.9806 0.9988
15 ✓ ✓ ✓ 0.9855 0.9992
16 ✓ ✓ ✓ 0.9812 0.9991
17 ✓ ✓ ✓ 0.9856 0.9993
18 ✓ ✓ ✓ ✓ ✓ 0.9867 0.9993
19 ✓ ✓ 0.9854 0.9990

against (1) Baseline-1: only passing the MR sequences to Task-2 and (2) Baseline-2: passing

the MRIs and the sample mean outputs from the Task-1 network to Task-2 (Table 4.1 -

Row-2, Row-8, Row-14; Table 4.3 - Row-2, Row-5, Row-8; and Table 4.4 - Row-2, Row-

8, Row-14). Comparisons between Baseline-1 and Baseline-2 indicate the effectiveness

of cascading inference results in general. A comparison of the proposed method with

Baseline-2 should reflect the effectiveness of additionally propagating uncertainties.

Tables 4.1, 4.3, and 4.4 illustrate the results for the MS lesion segmentation/detection,

brain tumour segmentation, and AD clinical score prediction pipelines, respectively. We

perform a two-sided paired sample t-test to find a statistically significant difference be-

tween methods that propagates uncertainty and the baseline method which doesn’t con-

sider uncertainty propagation 3.

3We do not report the statistical significance test result for Table I as it would require us to run multiple
different runs for the large MS dataset, where each training setup takes approximately four days to run,
which is practically infeasible. In this case, we have kept the folds constant across different experiments
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Table 4.3: Comparison of multi-class brain tumour segmentation performance on the BraTS Validation
dataset. The inclusion of the associated uncertainties from the synthesis network, in addition to the syn-
thesis output, as input to the segmentation network results in improved performance. Quantitative results
are based on percentage Dice coefficients for enhancing tumor (DE), whole tumor (DT), and tumor core
(DC). * indicates statistically significant (p≤ 0.05) differences between including and excluding uncertainty
using a two-sided paired sample t-test. Bold values indicate the best performance for each method, while
underlines indicate the overall best performance across different methods. ©[2022] IEEE. Reprinted, with
permission, from [159].

Method
Input Dice Coefficients (%)

Real MR sequ. synth. MR sequ. Var. synth. samples DT
(↑)

DC
(↑)

DE
(↑)T1 T2 T1ce FLR T1ce FLR Uncer. T1ce FLR

FL
R

Sy
nt

he
si

s

1 Baseline-1 ✓ ✓ ✓ 83.27 73.91 71.07
2

MC-Dropout
✓ ✓ ✓ ✓ 84.56 76.72 72.89

3 ✓ ✓ ✓ ✓ ✓ 85.84 * 79.25 * 74.51 *
4 ✓ ✓ ✓ ✓ 84.83 78.43 * 73.84
5

Dropout Ensemble
✓ ✓ ✓ ✓ 84.76 77.65 74.09

6 ✓ ✓ ✓ ✓ ✓ 86.45 * 78.98 75.43
7 ✓ ✓ ✓ ✓ 86.33 79.11 * 74.99
8

Deep Ensemble
✓ ✓ ✓ ✓ 84.86 77.52 74.01

9 ✓ ✓ ✓ ✓ ✓ 86.51 * 79.98 * 75.24
10 ✓ ✓ ✓ ✓ 86.03 79.19 * 74.99

T
1c

e
Sy

nt
he

si
s

1 Baseline-1 ✓ ✓ ✓ 87.17 50.25 26.89
2

MC-Dropout
✓ ✓ ✓ ✓ 86.72 52.80 27.35

3 ✓ ✓ ✓ ✓ ✓ 88.20 57.29 * 32.86 *
4 ✓ ✓ ✓ ✓ 87.91 56.71 * 31.95
5

Dropout Ensemble
✓ ✓ ✓ ✓ 87.54 55.41 29.62

6 ✓ ✓ ✓ ✓ ✓ 88.38 58.99 * 34.02 *
7 ✓ ✓ ✓ ✓ 88.01 58.09 * 32.91
8

Deep Ensemble
✓ ✓ ✓ ✓ 87.45 55.68 29.62

9 ✓ ✓ ✓ ✓ ✓ 88.63 58.84 * 33.91 *
10 ✓ ✓ ✓ ✓ 88.28 57.76 * 32.56

Row-1 to Row-3 in each of these tables illustrate that, for all three pipelines, the network

for the downstream task of interest (Task-2) shows performance improvements of 0.5-4%

when the Task-1 sample mean output is passed to the Task-2 network, relative to only

passing MR sequences (Baseline-1). Propagating uncertainties leads to a further 2-12%

performance improvement over only passing the Task-1 sample mean output to the Task-

2 network (Baseline-2).

Although quantitative improvements are important, they do not tell the entire story. In

some cases, the overall numerical improvements based on the standard performance met-

rics seem relatively small, however, there still can be significant clinically relevant im-

throughout the experiments (and even the random seeds for the neural network initialization), which gives
a fair comparison without repeated runs
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Table 4.4: ADAS-13 and MMSE score prediction performance comparison on the ADNI test dataset. The in-
clusion of the associated uncertainties from the hippocampus segmentation network, in addition to the hip-
pocampus segmentation output, as input to the clinical score prediction network improves both ADAS-13
and MMSE. Quantitative prediction performance is based on root mean squared error (RMSE) and Pearson
correlation coefficient (r). (*) indicates statistically significant (p ≤ 0.05) differences between including and
excluding uncertainty using a two-sided paired sample t-test. Bold values indicate the best performance
for each method, while underlined values indicate the overall best performance across different methods.
©[2022] IEEE. Reprinted, with permission, from [159].

Method
Input ADAS-13 MMSE

T1 MR Mean Uncertainties Segm. RMSE
(↓)

r
(↑)

RMSE
(↓)

r
(↑)sequence seg. Var. Entr. MI samples

1 Baseline-1 ✓ 7.87 ± 0.92 0.47 ± 0.09 2.28 ± 0.17 0.46 ± 0.11
2

MC-Dropout

✓ ✓ 7.77 ± 0.76 0.48 ± 0.06 2.28 ± 0.12 0.47 ± 0.08
3 ✓ ✓ ✓ 7.47 ± 0.76 * 0.54 ± 0.05 * 2.23 ± 0.10 * 0.51 ± 0.05 *
4 ✓ ✓ ✓ 7.71 ± 0.77 0.47 ± 0.06 2.28 ± 0.15 0.48 ± 0.08
5 ✓ ✓ ✓ 7.72 ± 0.78 0.46 ± 0.05 2.27 ± 0.14 0.47 ± 0.07
6 ✓ ✓ ✓ ✓ ✓ 7.45 ± 0.72 * 0.54 ± 0.04 * 2.22 ± 0.11 * 0.51 ± 0.06 *
7 ✓ ✓ 7.51 ± 0.71 * 0.51 ± 0.06 * 2.24 ± 0.15 * 0.49 ± 0.07 *
8

Dropout Ensemble

✓ ✓ 7.67 ± 0.74 0.50 ± 0.04 2.26 ± 0.12 0.48 ± 0.09
9 ✓ ✓ ✓ 7.38 ± 0.71 * 0.57 ± 0.05 * 2.17 ± 0.13 * 0.51 ± 0.05 *
10 ✓ ✓ ✓ 7.59 ± 0.72 0.50 ± 0.04 2.26 ± 0.11 0.47 ± 0.08
11 ✓ ✓ ✓ 7.68 ± 0.68 0.50 ± 0.04 2.25 ± 0.13 0.48 ± 0.07
12 ✓ ✓ ✓ ✓ ✓ 7.36 ± 0.73 * 0.57 ± 0.06 * 2.15 ± 0.16 * 0.53 ± 0.06 *
13 ✓ ✓ 7.37 ± 0.61 * 0.54 ± 0.04 * 2.19 ± 0.17 * 0.52 ± 0.06 *
14

Deep Ensemble

✓ ✓ 7.69 ± 0.74 0.50 ± 0.05 2.27 ± 0.11 0.47 ± 0.08
15 ✓ ✓ ✓ 7.38 ± 0.71 * 0.57 ± 0.05 * 2.19 ± 0.14 * 0.52 ± 0.06 *
16 ✓ ✓ ✓ 7.60 ± 0.70 0.51 ± 0.05 2.27 ± 0.14 0.47 ± 0.09
17 ✓ ✓ ✓ 7.69 ± 0.67 0.49 ± 0.05 2.25 ± 0.14 0.48 ± 0.06
18 ✓ ✓ ✓ ✓ ✓ 7.34 ± 0.73 * 0.57 ± 0.04 * 2.15 ± 0.17 * 0.54 ± 0.07 *
19 ✓ ✓ 7.38 ± 0.63 * 0.55 ± 0.05 * 2.18 ± 0.18 * 0.52 ± 0.06 *

provements. For example, Figure 4.3 depicts qualitative results for three MS patient

cases (top to bottom), where the propagation of uncertainties enabled the correction of

both false positive (bottom case) and false negative (top two cases) lesions. The system

learned how to interpret the uncertainties in the (incorrect) inferences made in those ar-

eas, and corrected the errors.

Figure 4.4 shows example cases for three patients (top to bottom), where the downstream

brain tumour segmentation network makes use of synthesized MRI sequences (here T1ce

and FLAIR). The first example (top row) shows that propagating the synthesized T1ce

image to the downstream tumour segmentation network results in confusion between

enhancing tumour and core tumour, as the enhancing portion is not well synthesized in

the generated T1ce. This result is not unsurprising as T1ce is the post-contrast injection T1

MRI, and accurate synthesis of the enhanced tumour without injection remains an open

problem. Importantly, the system produces an uncertainty map that indicates that the

92



4.4. EXPERIMENTS AND RESULTS

Figure 4.3: Examples demonstrating the corrective effect of uncertainty propagation for MS lesion detection
for three patient cases (Rows 1-3). From left to right: T2 weighted MRI input, expert T2 lesion labels (in
magenta), T2 lesion labels produced by the Task-1 network, sample variance uncertainty estimates for the
Task-1 network output, and the T2 lesion labels produced by the Task-2 network. ©[2022] IEEE. Reprinted,
with permission, from [159].

synthesis uncertainty is higher in this region, and conveys the uncertainty information

to the segmentation network. This enables the segmentation network to learn to correct

these errors and leads to an improvement in the results. This can also be seen in the

example in the second row, where the uncertainty allows the network to fix errors and

correctly identify enhancing and non-enhancing cores. The third example shows the re-

sults of FLAIR synthesis, where an erroneous bright spot appears within the ventricle.

This leads to the segmentation network erroneously predicting edema within the ven-

tricle (which is clinically impossible) when the uncertainty is not propagated. However,

the uncertainty maps indicate that the network is not confident in its synthesis prediction
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Figure 4.4: Examples of three patient cases (top to bottom) demonstrating the 3D U-Net performance on
the multi-class brain tumour segmentation task [22] based on synthesized MRI sequences. From Left to
Right: Expert manual segmentation, synthesized MR sequence, segmentation using real MRI (3 sequences)
+ synthesized MRI, synthesis uncertainty, segmentation using real MRI (3 sequences) + synthesized MRI +
synthesis uncertainty. First two rows: T1ce synthesis. Last row: FLAIR synthesis. Labels: edema (green),
non-enhancing or necrotic tumour core (red), enhancing tumour (yellow). ©[2022] IEEE. Reprinted, with
permission, from [159].

in this region. As such, cascading the uncertainty maps permits the network to learn to

correct its error.

The results for all 3 clinical pipelines demonstrate that multi-step medical image pro-

cessing pipelines, that would otherwise accumulate errors can benefit from including the

network uncertainty for each task as input to subsequent tasks.
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4.4.2 MC-Dropout vs. Deep Ensemble vs. Dropout Ensemble

The next set of experiments compares the performance of uncertainty propagation using

different methods for estimating sample variance uncertainties: MC-Dropout [79], Deep

Ensemble [136], and Dropout Ensemble [237]. Tables 4.1, 4.3, and 4.4, Row-2 and Row-

3, Row-8, and Row-9, and Row-14 and Row-15 report results for MC-Dropout, Dropout

Ensemble, and Deep Ensemble, respectively. These results indicate that ensemble meth-

ods, Deep Ensemble and Dropout Ensemble, achieve 1-5% higher performance over MC-

Dropout when only mean predictions are propagated across tasks. The performance gains

improve by a further 1-4% when the sample variance uncertainties are additionally prop-

agated to the downstream task of interest. A marginal performance gain of Dropout En-

semble over Deep Ensemble can be seen, both with and without uncertainty propagation.

4.4.3 Effect of Different Uncertainty Measures

Experiments were devised in order to compare the effects of propagating each of the dif-

ferent uncertainty measures: sample variance, entropy, and MI (Section 2.2.2), as well

as the effectiveness of cascading all three measures at once for all three uncertainty es-

timation strategies. Experiments were performed for the clinical pipelines of MS lesion

segmentation/detection and AD clinical score prediction, but not for the brain tumour

segmentation pipeline as estimating entropy or MI in the context of image regression

(synthesis) in this context is an open research problem [80]. Tables 4.1 and 4.4 show that

the sample variance gives better performance gains over entropy and MI for both the MS

T2 lesion detection task and AD clinical score prediction task. However, passing all three

uncertainty measures simultaneously shows the best improvement in the performance of

downstream tasks (Row-7, Row-13, and Row-19), indicating that each provides different

yet relevant summary statistics [180].
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4.4.4 Statistics vs Samples

Finally, the effectiveness of passing summary statistics calculated across samples is ex-

amined against propagating the samples themselves for all three uncertainty estimation

strategies. Multiple samples are generated (Section 4.3.2) from the Task-1 network for

these uncertainty estimation strategies. During Task-2 network training, one random

sample from the available Task-1 output samples is provided as input. During inference,

all Task-1 samples are independently passed to the Task-2 network. The output samples

from the Task-2 network are then used to estimate the sample mean, which serves as the

final Task-2 output. Table 4.1, Table 4.3, and 4.4 indicate that passing samples instead of

statistics across samples results in similar performance in the contexts explored in this

chapter.

4.5 Summary

This work proposes a general deep learning framework for propagating uncertainties

across a sequence of inference tasks within medical image analysis pipelines. It demon-

strates that cascading uncertainties (e.g., based on MC dropout, Deep Ensemble) along

with the outputs from the previous inference module can lead to improvements in the

performance of the downstream task. The framework was applied to three different con-

texts. First, we showed that by propagating voxel-based lesion segmentation uncertain-

ties to a second segmentation network, lesion-level detection performance could be im-

proved by reducing both FPs and FNs. Experiments were performed on a large-scale,

multi-site MS patient brain MRI dataset acquired during different clinical trials. Next, us-

ing the publicly available BraTS dataset, we demonstrated that by propagating regression

uncertainties from an MRI synthesis network, the performance of a downstream multi-

class tumour segmentation task could be improved. In the last context, we demonstrated

that uncertainty propagation from a voxel-level hippocampus segmentation network to

a scan-level clinical score regression task in the context of images acquired from AD pa-
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tients leads to improved predictions. These results are encouraging and suggest that un-

certainties can be propagated to a downstream task of interest to improve performance

in cascaded medical image processing pipelines where the upstream task is related to the

downstream task of interest4. The expectation is that the results are generalizable to other

clinical pipelines. Our experiments also showed that by propagating Task-1 samples to

the Task-2 network as a proxy to the uncertainty associated with the Task-1 output, we

could achieve similar performance. This is important as samples could better represent

the Task-1 output distribution when it is multi-modal, compared to a single statistic like

sample variance. It should be noted that the performance improvements resulting from

uncertainty propagation are dependent on the number of samples taken to estimate the

uncertainties (as we show in Appendix C.1 - Figure C.5), as well as sample generation

method. As a result, it would be important to tune these hyper-parameters for optimal

performance in the particular application of interest.

4Propagating uncertainties from a skull stripping task to a hippocampus segmentation task might not
lead to performance improvement, as the two tasks are not directly related.
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Evaluating the Fairness of Deep Learning

Uncertainty Estimates in Medical Image

Analysis

– Bill Watterson, Calvin and Hobbs
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Related Paper

It should be noted that this is not a manuscript based thesis. However, considerable

material from the following paper has been utilised in this chapter.

o R. Mehta, C. Shui, T. Arbel, “Evaluating the Fairness of Deep Learning Uncertainty

Estimates in Medical Image Analysis”, Medical Imaging with Deep Learning (MIDL)

2023 [164].

The MIDL conference papers are published in the Proceedings of Machine Learning Re-

search (PMLR), which follows the CC-BY license and does not require individuals work-

ing on a thesis to obtain a formal reuse license. This license allows reusers to distribute,

remix, adapt, and build upon the material in any medium or format, so long as attribution

is given to the creator. The license allows for commercial use [3].

5.1 Introduction

In the previous chapter of this thesis, we looked at uncertainty propagation for medical

image analysis pipelines and showed how uncertainty propagation could help in im-

proving the performance of the downstream task of interest. While this indeed shows the

effectiveness of generating uncertainty associated with medical image analysis models,

uncertainty itself cannot lead to more trustworthy and clinically applicable models. In

this chapter, we take the next step towards trustworthy models by looking at it from the

lens of fairness and uncertainty quantification together. Related literature review for the

same is given in Chapter 2.

We present the first analysis of the effect of popular fairness models at overcoming bi-

ases of Deep learning (DL) models across subgroups for various medical image analysis

tasks, and investigate and quantify their effects on the estimated output uncertainties.

We conjecture that uncertainty quantification can help mitigate some potential risks in

clinical deployment related to a lack of robustness and fairness for under-represented
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populations. However, the uncertainties will only help clinicians make more informed

decisions if they are accurate. Specifically, a machine learning model that underperforms

for an under-represented subgroup should indicate high uncertainties associated with its

output for that subgroup. Conversely, a machine learning model that achieves fairness

in terms of performance across different subgroups, but produces low uncertainties for

predictions where it makes mistakes, would become less trustworthy to clinicians.

We perform extensive experiments on three different clinically relevant tasks: (i) multi-

class skin lesion classification [46], (ii) multi-class brain tumour segmentation [22], and

(iii) Alzheimer’s disease clinical score [111] regression. Our results indicate a lack of fair-

ness in model performance for under-represented groups. The uncertainties associated

with the outputs behave differently across different groups. We show that popular meth-

ods designed to mitigate the lack of fairness, specifically data balancing [197, 107, 105, 284]

and robust optimization [213, 284] do indeed improve fairness for some tasks. However,

this comes at the expense of poor performance of the estimated uncertainties in some

cases. This tradeoff must be mitigated if fairness models are to be adopted in medical

image analysis.

5.2 Methodology: Fairness in Uncertainty Estimation

This work aims to evaluate the effectiveness of various popular machine learning fairness

models at mitigating biases across subgroups in various medical image analysis contexts

in terms of (a) the absolute performance of the models and (b) the uncertainty estimates

across the subgroups. Although general, the framework and associated notations focus

on binary sensitive attributes (e.g., sex, binarized ages, disease stages).

Consider a dataset D = {X, Y,A} = {(xi, yi, ai)}Ni=1 with N total samples. Here, xi ∈ RP×Q

or xi ∈ RP×Q×S represents 2D or 3D input image, where P, Q, and S represent the num-

ber of pixels/voxels in each dimension. Also, yi represents corresponding ground truth
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labels, and ai = {0, 1} represents the sensitive binary group-attribute. yi depends on

the task at hand: yi ∈ {0, 1, .., C} for image-level classification, yi ∈ R for image-level

regression, and yi ∈ {0, 1, ..C}P×Q or yi ∈ {0, 1, ..C}P×Q×S for 2D/3D voxel-level seg-

mentation. The dataset can be further divided into subgroups, A = {0, 1}, based on the

value of the sensitive attribute: (i) D0 = {X0, Y 0, A = 0} = {(x0
i , y

0
i , ai = 0)}Mi=1 and (ii)

D1 = {X1, Y 1, A = 1} = {(x1
i , y

1
i , ai = 0)}Li=1, where M + L = N .

5.2.1 Fairness

Let us consider a DL model f(., θ) that produces a set of outputs Ŷ = f(X, θ) for a set of

input multi-dimensional images, X . The literature on fairness metrics in medical imaging

is fairly sparse as this is a relatively new area of research. The goal here is to define a

global fairness metric that is applicable and consistent across a wide variety of tasks (e.g.

classification, segmentation, regression). Fairness can be defined as follows: A machine

learning model is considered to be fair if the difference in the task-specific performance

metric between different subgroups is low. To that end, a general fairness gap (FG) metric

(Equation 5.1) calculates the differences in the task-specific evaluation metric (EM) values

between Ŷ and Y when conditioned on a binary sensitive attribute A. The majority of

the fairness metrics [96] are only defined for the classification task. There has been some

recent work related to the fairness of segmentation models [197, 107], where fairness gap

metrics are aligned with the one presented in this work. To our knowledge, fairness in

regression in medical imaging has not yet been explored in the medical image analysis

literature.

FG(A = 0, A = 1) = |EM(Y 0, Ŷ 0)− EM(Y 1, Ŷ 1)|. (5.1)

A machine learning model is fair for the sensitive attribute A if FG(A = 0, A = 1) = 0. EM

differs depending on the task at hand, for example, accuracy for image classification, dice

value for segmentation, and mean squared error for image-level regression. EM is cal-
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culated for each image separately and then averaged across the dataset for a voxel-level

segmentation task. For image classification or regression tasks, EM is calculated directly

at a dataset level.

5.2.2 Uncertainty and Fairness

In the machine learning and computer vision fairness literature, the objective is to bridge

the performance gap across subgroups with different attributes. It is well established in

the literature [283, 59], however, that reduced fairness gap across different subgroups can

come at the cost of poor overall performance. For example, increasing the model per-

formance on the underrepresented group and decreasing the model performance on the

overrepresented group can lead to a smaller fairness gap, but it can come at the cost of

overall worse performance of the model, which is undesirable. In [283, 59], they do not

consider the effect of the bias mitigation methods on the uncertainties associated with the

model output. As we saw in the previous chapters (Chapter 3, and Chapter 4), in medical

image analysis, however, model output uncertainties can play an important role in gain-

ing clinician trust. A machine learning model that is fair in terms of performance across

subgroups but underperforms overall (e.g., accuracy, precision) could still be clinically

useful if it indicates high uncertainties associated with its output when it is incorrect, and

if it is confident when correct. With this objective in mind, this work analyzes the effec-

tiveness of fairness mitigation methods not only in terms of absolute performance but

also in terms of the quantification of uncertainties associated with their output.

There are multiple different existing works in the literature that could allow the deep

learning networks to produce uncertainties associated with model output, for example,

Bayesian deep learning methods [182, 79, 237], Ensembling methods [136, 272, 101], con-

formal prediction [9], etc. The focus of this work is not to compare these different uncer-

tainty quantification methods, but rather to analyze the majority of the current popular

fairness mitigation methods through the perspective of quantification of uncertainties as-

102



5.2. METHODOLOGY: FAIRNESS IN UNCERTAINTY ESTIMATION

sociated with model output. To this end, we specifically focus on Bayesian deep learning

(BDL) models and Ensembling models [182, 79, 136, 237] (Section 2.2.1), which are widely

adopted within the medical image analysis community [24, 159] given their ability to

produce uncertainty estimates, ûi, associated with the model output ŷi. Popular uncer-

tainty estimates include (Section 2.2.2) sample variance, predicted variance, entropy, and

mutual information [121, 80]. Uncertainties ûi are typically normalized between 0 (low

uncertainty) and 100 (high uncertainty) across the dataset.

We propose an uncertainty fairness evaluation metric (Equation 5.2), which evaluates the

fairness gap metric at different uncertainty thresholds. This metric follows the popular

convention employed by various papers in the literature for evaluating uncertainties in

the contexts of classification [24, 82] and segmentation (Chapter 3). The rationale behind

these approaches is to design an uncertainty evaluation method, where performance is

measured based on the following criteria: The correct predictions should have low un-

certainties, and the uncertainties for the incorrect predictions are high. Following those

papers, all predictions whose output uncertainties (ûi) are above a threshold (τ ) are la-

beled as uncertain. The task-specific evaluation metric (EM) and fairness pap (FG) are

then calculated on the remaining certain predictions (Ŷτ and Yτ ) (below the threshold). In

this work, we perform this evaluation for a range of different uncertainty thresholds, and

plot EM (and FG) vs. (100-uncertainty threshold).

FGτ (A = 0, A = 1) = |EMτ (Y
0
τ , Ŷ

0
τ )− EMτ (Y

1
τ , Ŷ

1
τ )|. (5.2)

At τ = 100, equations 5.1 and 5.2 become equivalent. A higher degree of fairness in un-

certainty estimation is established through a reduced fairness gap (FGτ1 ≤ FGτ2) when

the number of filtered predictions increases. In other words, when the uncertainty thresh-

old is reduced from τ1 to τ2 (where, τ1 < τ2), thereby increasing the number of filtered

uncertain predictions, the differences in the performances on the remaining confident pre-

dictions across the subgroups should be reduced. However, this decrease should not lead
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to a reduction in overall performance. In other words, it is desirable that EMτ1 ≥ EMτ2.

Conversely, an increase in the fairness gap (FGτ1 > FGτ2) indicates the undesirable effect

of having a higher degree of confidence in incorrect predictions for one of the subgroups.

5.3 Experiments and Results

Extensive experimentation involves comparisons of two established fairness models against

a baseline: (i) A Baseline-Model: trained on a dataset without consideration of any sub-

group information. This model is trained with standard ERM loss (cross entropy for clas-

sification and segmentation, and mean squared error for regression) and does not con-

sider any subgroup information, and thus can act as a baseline method. (ii) A Balanced-

Model: trained on a balanced dataset. Here, the training dataset is constructed to contain

an equal number of images from each subgroup. This might lead to a smaller overall

dataset as the underrepresented group has a lower number of total images compared

to the overrepresented group, and balancing across subgroups would require sampling a

smaller number of images from the overrepresented group. This is an established fairness

model that focuses on mitigating biases due to data imbalance [197, 107, 105, 284]. (iii)

A GroupDRO-Model: trained with GroupDRO loss [213]. Compared to the Balanced-

Model, in this mitigation method, the dataset is not balanced across different subgroups,

but instead, loss for different subgroups is re-weighed differently, thereby mitigating the

lack of fairness through the optimization procedure. This model might give better perfor-

mance compared to the Balanced-Model as it doesn’t require subsampling of the over-

represented group, and thus can have access to an overall higher number of training data

points. The Balanced-Model addresses fairness from the data balancing perspective, and

the GroupDRO-Model tackles it from the optimization perspective. The number of im-

ages in the test set is the same across all subgroups for fair comparisons.
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Figure 5.1: Number of images for each class and each subgroup for 5 different splits. (a) The ISIC dataset:
From this, we can see a high-class imbalance across different classes. Similarly, distribution across both
subgroups for a particular class is also different. For example, while melanoma (MEL), basal cell carci-
noma (BCC), actinic keratosis (AK), benign keratosis (BKL), and squamous cell carcinoma (SCC), D0 have
a higher number of samples compared to D1, for the rest of the classes (melanocytic nevus - NV, dermatofi-
broma - DF, and vascular lesion - VASC) D1 (age < 60) has a higher number of samples compared to D0

(age≥ 60). (b) Training Set for the Baseline-Model and the GroupDRO Model: Similar to the ISIC dataset,
we see high-class imbalance across different classes, and different distributions across both subgroups for a
particular class. (c) The training set for the Balanced-Model: Compared to the training dataset used for the
Baseline-Model and the GroupDRO-Model, we balance the number of samples across both subgroups,
but we do not balance across different classes. (d) Validation set: The distribution of samples across both
subgroups and across different classes is similar to the ISIC dataset. (e) Testing set: The distribution of
samples across both subgroups is kept similar, but it is not similar across different classes. We kept sim-
ilar distribution across both subgroups for a fair comparison of their performance, while the distribution
across different classes was not kept similar to reflect real-world scenarios where some classes can be more
frequent compared to others. ©[2023] PMLR. Reprinted, with permission, from [164].

5.3.1 Multi-class Skin Lesion Classification

Skin cancer is the most prevalent type of cancer in the United States [89], which can be

diagnosed by classifying skin lesions into different classes. Due to the heterogeneity of

skin cancer, classifying skin lesions into different classes can play an important role in

disease diagnosis. As the heterogeneity and the risk of skin cancer can vary across dif-

ferent demographic differently [10], it is necessary to analyze the fairness of the machine

learning model for skin cancer classification.

Dataset: We use the publicly available international skin imaging collaboration (ISIC)

2019 dataset [46] for multi-class skin lesion classification. A dataset of 24947 dermoscopic

images is provided, with 8 associated disease scale labels, and with high class imbalance.

Demographic patient information (e.g. age, sex) is provided. We consider age as the sen-

sitive attribute (ai). The entire dataset is divided into two subsets: patient images with

age ≥ 60 in subgroup D0 with a total of 10805 images, and patients with age < 60 in sub-

group D1 with a total of 14045 images. We chose age (and respective threshold) such that
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Figure 5.2: (a) A 2D ResNet-18 architecture consists of a 7x7 convolutional unit, followed by 16 3x3 con-
volutional units, one dropout layer (p=0.2), and one fully connected layers. The dotted shortcuts increase
dimensions. (b) Each convolutional unit consists of one CxC convolutional layer with stride S, followed by
Batch Normalization layer [108], and a ReLU layer. ©[2023] PMLR. Reprinted, with permission, from [164].

it led to large differences in images across subgroups and could potentially show a large

fairness gap between different subgroups. This would permit the evaluation of the effects

of different fairness mitigation methods on model performance and on uncertainty esti-

mation. We did indeed run experiments with sex as a sensitive attribute, which showed

similar results. To keep the experiment section brief and easy to follow, these results are

included in Appendix D.1.

Figure 5.1 shows that the Baseline-Model and the GroupDRO-Model are trained on a

training dataset where subgroup D0 contains 8260 images, while subgroup D1 contains

10892 images. While it appears that subgroup D1 contains approximately 32% more im-

ages, it is not strictly the case for all eight classes. A Balanced-Model is trained on a

training dataset where both subgroup D0 and subgroup D1 contain 7251 images. Both

subgroups are balanced for each of the eight classes of the dataset (but not the same across

the eight classes).

Implementation Details: An ImageNet pre-trained 2D ResNet18 [94] architecture was

used for the ISIC 8-class disease scale classification task. The network architecture is de-

picted in Figure 5.2. A Dropout layer [241] with p=0.2 is introduced before the fully con-

nected (fc) layer. The network was trained to reduce the categorical cross-entropy loss.

An Adam optimizer [126] with a learning rate of 0.0005 and a weight decay of 0.00001 is

used to train the network for a total of 100 epochs, and a batch size of 64. The learning

rate is decayed with a factor of 0.995 after each epoch. All ISIC images are resized to
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Figure 5.3: Overall AUC, Accuracy, and Balanced Accuracy for each subgroup (D0 - age >= 60 and D1

- age < 60) for all three models (Baseline-Model, Balanced-Model, and GroupDRO-Model). ©[2023]
PMLR. Reprinted, with permission, from [164].
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Figure 5.4: Classwise accuracy for each subgroup (D0 - age >= 60 and D1 - age < 60) for all three models
(Baseline-Model, Balanced-Model, and GroupDRO-Model). ©[2023] PMLR. Reprinted, with permission,
from [164].

600x450 size and normalized with mean subtraction and divided by std. Random Hori-

zontal Flip, Random Vertical Flip, and Random rotation in the range of 0-30, are applied

as data augmentation on each image. The code is written in PyTorch [191] and ran on

Nvidia GeForce RTX 3090 GPU with 24GB memory. For generating EnsembleDropout

[237], we train three different networks with different random initialization of network

weights and take 20 MC-Dropout samples [79] from each. This results in a total of 60

Monte-Carlo samples for each image. The evaluation metrics (EM) are overall accuracy,

overall macro-averaged AUC-ROC, and class-level accuracy.
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Results: First let us compare absolute performance and fairness gap without consider-

ing uncertainty filtering. Overall performance results are provided in Figure 5.3. From

the figure, it can be observed that the Balanced-Model gives lower absolute fairness gap

compared to the Baseline-Model for all three metrics (AUC-ROC, Accuracy, and Bal-

anced Accuracy), but at the cost of lower overall performance. Compared to this, the

GroupDRO-Model provides a lower fairness gap compared to the Baseline-Model with

only a marginal decrease in absolute performance. This is clearly evident in both AUC-

ROC plots and Balanced Accuracy plots. Braking performance down at a class level in

Figure 5.4, we can see that neither the Balanced-Model nor the GroupDRO-Model con-

sistently across eight classes provides a low fairness gap without a decrease in the abso-

lute performance.

In Figure 5.5, the overall performance of all three models is plotted as a function of dif-

ferent uncertainty thresholds. From this, we can conclude that all three models show

either an increase in the fairness gap or a similar fairness gap when more predictions are

filtered based on uncertainty value (moving towards the right side of the curves). This

shows that achieving better fairness in absolute performance can come at the cost of poor

uncertainties.

Next, we take look at the performance of these three models at a class level in Figure 5.6.

For the Baseline-Model, almost all plots show a high fairness gap between the two sub-

groups when fewer predictions are filtered based on uncertainties (left side of the graph).

When filtering more predictions (moving towards the right side of the curve), an increase

in the accuracy for each subgroup and a reduction in the fairness gap can be observed

for classes with a high number of total samples (ex. melanocytic nevus, basal cell car-

cinoma, and benign keratosis). This demonstrates that the model might be incorrect for

more images in one of the subgroups, but it usually has higher uncertainty in those pre-

dictions compared to the other subgroup. For classes with a lower number of images (ex.

dermatofibroma, vascular lesion, and squamous cell carcinoma), we do not see a similar
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decrease in the fairness gap. For the Balanced-Model, we see a decrease in the fairness

gap for absolute performance compared to the Baseline-Model for the majority of the

classes, but it also comes at the cost of lower absolute performance. In contrast to the

Baseline-Model, the fairness gap of the Balanced-Model increases with uncertainty fil-

tering irrespective of the number of images in the classes. This behavior can be attributed

to the overall less number of images used to train the Balanced-Model compared to the

Baseline-Model. Figure 5.6(c) shows that the GroupDRO-Model might give better class-

wise accuracy compared to the Baseline-Model for classes with a high number of total

samples (e.g., Melanoma, Basal cell carcinoma). But it also shows a high fairness gap

when a low number of predictions are filtered (left side of the graph). The fairness gap

reduces by filtering more predictions. However, it is not completely mitigated for all of

the classes. Classwise accuracy for classes with a lower number of samples (ex. Der-

matofibroma) sees a marginal increase in the fairness gap with uncertainty-based filter-

ing. Results indicate that the GroupDRO-Model might give marginally better absolute

performance than the Baseline-Model, but it does not produce fair uncertainty estimates

across subgroups.

The discrepancy in performance between different models shows that performance is

highly dependent not only on the task at hand, but also on the number of images in

different classes. Similarly, it can be concluded that different models do not behave con-

sistently across different classes, both in terms of fairness gap and uncertainty evaluation.

It indicates that a single model cannot reduce the fairness gap and also provide good un-

certainty estimation.
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(a) Baseline Model
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(b) Balanced Model
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(c) GroupDRO Model

Figure 5.5: ISIC: Overall AUC, accuracy, and balanced accuracy (left y-axis) as a function of uncertainty
threshold (x-axis) for (a) Baseline-Model, (b) Balanced-Model, and (c) GroupDRO-Model on the ISIC
dataset. In addition to metrics, the total number of testing images for each subgroup (D0 - age >= 60 and
D1 - age < 60) are shown as light colours (see y-axis labels on the right). ©[2023] PMLR. Reprinted, with
permission, from [164].
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(a) Baseline Model
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(b) Balanced Model
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(c) GroupDRO Model

Figure 5.6: ISIC: Class-level accuracy as a function of uncertainty threshold for (a) Baseline-Model, (b)
Balanced-Model, and (c) GroupDRO-Model on the ISIC dataset. In addition to the accuracy, the total
number of testing images for each subgroup (D0 - age >= 60 and D1 - age < 60) are shown as light colours
(see axis labels on the right). ©[2023] PMLR. Reprinted, with permission, from [164].
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Table 5.1: Number of samples in both D0 and D1 subgroups for five different splits: (i) Training Dataset
used to train the Baseline-Model and the GroupDRO-Model, (ii) Training Dataset used to the train the
Balanced-Model, (iii) Validation set for all three models, (iv) Testing set for all three models, and (v) for
the whole BraTS dataset. We can observe that for the BraTS dataset, there is a high disparity between the
number of samples for both subgroups. ©[2023] PMLR. Reprinted, with permission, from [164].

Training
Set Validation

Set
Testing

Set
BraTS

DatasetBaseline-Model and
GroupDRO-Model Balanced Model

D0 168 30 18 20 206
D1 30 30 4 20 54
Overall 198 60 22 40 260

5.3.2 Brain Tumour Segmentation

In the previous section, we analyzed the performance of different fairness mitigation

methods for the image-level classification task. In this section, the same methods are

evaluated for the voxel segmentation task.

Dataset: We use the 260 high-grade glioma (HGG) images from the publicly available

Brain Tumour Segmentation (BraTS) 2019 challenge dataset [22]. The BraTS dataset con-

sists of MR images from two disease stages: high-grade glioma - HGG (260 images) and

low-grade glioma - LGG (75 images). In this work, only HGG samples are considered, as

the appearance of tumours across both disease stages is different and lower performance

on LGG cases has been reported in the literature when a single model is trained on both

HGG and LGG samples [198]. The choice for how to split the dataset is based on finding

a subgroup where a performance gap is clearly present based on the provided metrics.

There can be a number of such subgroups. We initially ran experiments whereby the

dataset was split based on imaging centers (i.e. binary subgroups: TCIA vs non-TCIA).

Our results, included in the Appendix-D.2.1, indicated that there is no bias across the re-

sulting groups. It is well established that there is a significant bias in the BraTS dataset,

whereby the performance of small tumour segmentation is significantly worse than that

of large tumour segmentation [183]. This is an important bias to overcome. The image

dataset is therefore divided into two subsets based on the volume of the enhancing tu-

mour: 206 images with volumes > 7000ml3 in subgroup D0 and 54 images with volumes

≤ 7000ml3 in subgroup D1. Baseline-Model and GroupDRO-Model are trained on a

dataset of 168 samples from D0 and 30 samples from D1. While a Balanced-Model is
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Figure 5.7: Network architecture diagram of the modified 3D-BU-Net [180], used for the multi-class brain
tumour segmentation. It takes multi-modal MR images as input and produces multi-class brain tumour
segmentation on the BraTS dataset. ©[2023] PMLR. Reprinted, with permission, from [164].

trained on a balanced training set with 30 samples from each subgroup.

Implementation Details: A 3D BU-Net [180] architecture is used for brain tumour seg-

mentation on the BraTS dataset. Similar to the original 3D BU-Net, the network consists of

encoder and decoder paths that embed convolution and deconvolution operations. High-

resolution features from the encoder path are combined with the up-sampled output of

the decoder to preserve high-resolution features. Each convolution is followed by recti-

fied linear unit activation (ReLU). Instead of using the batch normalization layer used in

the original U-Net, we use instance normalization [256]. Instance normalization typically

improves performance for small batch sizes. The network is trained using Adam [126]

optimizer with a learning rate of 0.0002 and weight decay of 0.00001 for a total of 240

epochs to minimize weighted cross-entropy loss. Here, the weights are defined such that

the weight increases whenever there are fewer voxels in a particular class. After every

epoch, class weights are decayed with a factor of 0.95, which results in equally weighted

binary cross-entropy after around 50 epochs. The code is written in PyTorch [191] and ran

on Nvidia GeForce RTX 3090 GPU with 24GB memory. For generating EnsembleDropout

[237], we train three different networks with different random initialization of network

weights and take 20 MC-Dropout samples [79] from each. This results in a total of 60

Monte-Carlo samples for each image.

Following the BraTS dataset convention, tumour segmentation performance is evaluated
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Figure 5.8: Dice results for whole tumour (WT), tumour core (TC), and enhancing tumour (ET). All three
tumour Dice values are plotted for both the subgroups (D0 and D1) and for all three models (Baseline-
Model, Balanced-Model, and GroupDRO-Model). ©[2023] PMLR. Reprinted, with permission, from [164].

by calculating Dice scores for three different tumour sub-types: enhancing tumor, whole

tumor, and tumour core. The predictions’ uncertainty is measured through the entropy

of an Ensemble Dropout model [237].

Results: Figure 5.8 compares absolute performance and fairness gap for all three models

without considering the uncertainty quantification. From this figure, it can be observed

that similar to the classification experiments, the Balanced-Model provides a reduced

fairness gap between two subgroups at the cost of a decrease in overall performance for

all three tumour subtypes. Unlike, the classification experiments, the GroupDRO-Model

doesn’t lead to a reduced fairness gap compared to the Baseline-Model. In fact, for Tu-

mour Core, it leads to an increase in the fairness gap between two subgroups.

Figure 5.10 provides the behaviour of all three models with uncertainty-based filtering.

It shows that both the Baseline-Model and the GroupDRO-Model perform similarly for

whole tumour (WT) across both subgroups, as an increase in Dice and decrease in the fair-

ness gap is observed with filtering of more voxels in the images (going from left to right in

the graph). For the Balanced-Model though initially (left most at an uncertainty threshold

of 100) the fairness gap is lower compared to the other two models, it increases with the

filtering of more voxels in the images. Tumour core (TC) and enhancing tumour (ET) fol-

low a similar trend, where both the Baseline-Model and the GroupDRO-Model perform
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similarly. Although for both TC and ET, the Balanced-Model doesn’t show an increase

in the fairness gap between the two subgroups with a decrease in uncertainty thresh-

old (moving from left to right), a decrease in overall performance for both subgroups is

observed. This shows that mitigating the fairness gap by filtering out more voxels is in-

sufficient and may lead to a drop in performance in both subgroups. It can be concluded

that for a challenging dataset like brain tumour segmentation, the Balanced-Model or the

GroupDRO-Model do not produce fair uncertainty estimates across different subgroups.
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Figure 5.9: QUBraTS metric [162] for whole tumour (WT), tumour core (TC), and enhancing tumour (ET),
for both the D0 and D1, and for all three models (Baseline-Model, Balanced-Model, and GroupDRO-
Model). ©[2023] PMLR. Reprinted, with permission, from [164].

As we argued in our previous Chapter 3 that when the goal is to develop a Computer-

Aided diagnosis (CAD) system for the brain tumour segmentation task, it is not sufficient

to only increase the Dice values with uncertainty-based voxel filtering. In real practice,

an additional penalty should be provided to a model that filters out many voxels at a low

uncertainty threshold to achieve high Dice values, as it will increase the reviewing burden

on clinicians. Results on our metric (Equation 3.1) is provided in Figure 5.9. From this, we

can observe that similar to the Dice performance, the Balanced-Model provides a reduced

fairness gap at the cost of reduced absolute performance, and the GroupDRO-Model pro-

vides a marginally greater fairness gap compared to the Baseline-Model. These results

are consistent with Figure 5.10. Further plots for all three components of QU-BraTS met-

rics are provided in the Appendix D for all three tumour types and models.
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(a) Baseline Model

(b) Balanced Model

(c) GroupDRO Model

Figure 5.10: Averaged sample Dice as a function of (100 - uncertainty threshold) for (a) Baseline-Model, (b)
Balanced-Model, and (c) GroupDRO-Model on the BraTS dataset. Dice results for whole tumour (WT),
tumour core (TC), and enhancing tumour (ET), for both the D0 and D1, set are shown in each column.
©[2023] PMLR. Reprinted, with permission, from [164].

116



5.3. EXPERIMENTS AND RESULTS

5.3.3 Alzheimer’s Disease Clinical Score Regression

As the prevalence of Alzheimer’s disease (AD) varies across demography [14], in this

section, we specifically analyze the effect of different fairness mitigation methods for the

task of clinical assessment score regression from brain MR images.

Dataset: Experiments are based on the MRIs of a subset (865 patients) of the Alzheimer’s

disease neuroimaging initiative (ADNI) dataset [111] at different stages of diagnosis:

Alzheimer’s disease (145), mild cognitive impairment (498), and cognitive normal (222).

The dataset also provides demographic patient information such as age and gender. Here,

we consider age as a sensitive attribute (ai). As can be seen from Figure 5.11, the dataset

is divided such that patients with age < 70 are grouped into D0 (259 patient images),

and patients with age ≥ 70 are grouped into D1 (606 patient images). Based on the clini-

cal relevance and different prevalence of AD across patients with different ages [14], we

chose the threshold for the sensitive attribute. This also showed a clear performance gap

between these subgroups. A Baseline-Model and a GroupDRO-Model are trained on a

dataset that contains 163 samples from D0 and 440 samples from D1. While a Balanced-

Model is trained on a balanced training set with 163 samples from each subgroup.

Implementation Details: A 3D ResNet34 [91] architecture is designed for the task of

clinical score prediction 1. The network is modified to be a multi-task network, such that

it predicts both ADAS-13 and MMSE scores simultaneously. The network is trained to

reduce the combined mean squared error losses for both ADAS-13 and MMSE. An Adam

optimizer with a learning rate of 0.0002 and a weight decay of 0.00001 is used to train

the network for a total of 200 epochs. The learning rate is decayed with a factor of 0.995

after each epoch. The code is written in PyTorch [191] and ran on Nvidia GeForce RTX

3090 GPU with 24GB memory. For generating EnsembleDropout [237], we train three

different networks with different random initialization of network weights and take 20

MC-Dropout samples [79] from each. This results in a total of 60 Monte-Carlo samples

1https://github.com/kenshohara/3D-ResNets-PyTorch/blob/master/models/resnet.
py
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Figure 5.11: Number of images for each disease stage (AD, MCI, and CN) and each subgroup for five differ-
ent sets. (a) ADNI dataset: We can see a high disparity between the total number of samples in each disease
stage. Similarly, distribution across subgroups for a particular disease stage is also different. (b) Training Set
- Baseline Model and GroupDRO Model: Similar to the ADNI dataset, a high disparity between the total
number of samples in each disease stage is visible. Similarly, distribution across subgroups for a particular
disease stage is also different. (c) Training Set - Balanced Model: Compared to the training dataset used for
the Baseline-Model and the GroupDRO-Model, we balance the number of samples across both subgroups
for each disease stage, but not across disease stages. (d) Validation Set: The distribution of samples across
both subgroups and across different disease stages is similar to the ADNI dataset, (e) Testing Set: The distri-
bution of samples across both subgroups is kept similar, but it is not similar across different disease stages.
We kept similar distribution across both subgroups for a fair comparison of their performance, while the
distribution across different disease stages was not kept similar to reflect real-world scenarios where some
disease stages can occur more frequently compared to others. ©[2023] PMLR. Reprinted, with permission,
from [164].

for each image. A combination of Sample Variance and Predicted Variance, known as

total variance [121], is used to measure uncertainty associated with the model output. We

choose total variance as an uncertainty measure as it is computationally more feasible

compared to the entropy for the regression task, and similar to the entropy, it also mea-

sures both aleatoric and epistemic uncertainties.

Root mean squared error (RMSE) is used as an evaluation metric (EM), where a lower

value of RMSE represents better performance. As the total number of images is low in

this dataset, we run the same experiments on five different folds and aggregate their

results.

Results: Figure 5.13 shows a reduced fairness gap and better overall performance (lower

RMSE) for the GroupDRO-Model compared to the Baseline-Model for both ADAS-13

and MMSE. In contrast to this, the Balanced-Model shows only marginal improvement

in the fairness gap at the expense of poor overall performance (high RMSE) compared to

the Baseline-Model for both ADAS-13 and MMSE. This trend is consistent with what we

observed for the classification and the segmentation experiments where the GroupDRO-
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Figure 5.12: Network architecture diagram of modified 3D-ResNet-18 [91] for the Alzheimer’s Disease
clinical regression pipeline for predicting both ADAS-13 and MMSE scores. The network takes 3D T1-
weighted MR image as input. ©[2023] PMLR. Reprinted, with permission, from [164].

Baseline

Balanced GroupDRO

8.0

8.7

9.4

10.1

ADAS-13

age < 70
age >= 70

Baseline

Balanced GroupDRO

2.22

2.34

2.46

2.58

MMSE

Figure 5.13: Overall Root Mean Squared Error (RMSE) of ADAS-13 (Left) and MMSE (Right) score pre-
diction tasks for each subgroup (D0 - age < 70 and D1 - age ≥ 70) for all three models (Baseline-Model,
Balanced-Model, and GroupDRO-Model). ©[2023] PMLR. Reprinted, with permission, from [164].

Model performed better than the Balanced-Model for overall metrics. Further breaking

down the performance at a disease type level in Figure 5.14, inconsistency of both models

for both ADAS-13 and MMSE can be observed. For example, while the GroupDRO-

Model decreased the fairness gap and reduced RMSE for ADAS-13 of CN patients, it is

inverse for MMSE, where it increases the fairness gap with increased RMSE. Similar ob-

servation can be made for the Balanced-Model and AD patients.

Figure 5.15 column 1 shows that compared to the Baseline-Model, the Balanced-Model

only marginally decreases the fairness gap in the initial performance between two sub-

groups, that too at the cost of poor (higher RMSE) absolute performance for each of the

subgroups. The GroupDRO-Model shows better absolute performance (lower RMSE)

and also a lower fairness gap between each subgroup compared to either of the other two

models. The Baseline-Model shows a decrease in the fairness gap between subgroups

with a decrease in uncertainty threshold (moving from left to right) for MMSE, but it is
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Figure 5.14: Per disease stage (AD, MCI, and CN) Root Mean Squared Error (RMSE) of ADAS-13 (Top)
and MMSE (Bottom) score prediction tasks for each subgroup (D0 - age < 70 and D1 - age ≥ 70) for
all three models (Baseline-Model, Balanced-Model, and GroupDRO-Model). ©[2023] PMLR. Reprinted,
with permission, from [164].

not true for ADAS-13. On the contrary, the Balanced-Model shows an increase in the

fairness gap with a decreased uncertainty threshold for both ADAS-13 and MMSE. The

GroupDRO-Model gives the best performance as the fairness gap decreases with a de-

crease in uncertainty threshold for both ADAS-13 and MMSE.

Further breaking down the performance for each of the different disease types in Fig-

ure 5.15 column 2 - column 4, shows that each model shows different performance across

different disease types. For example, while at a dataset level, the GroupDRO-Model

shows both good absolute performance, lower fairness gap, and decrease in fairness gap

without an increase RMSE; it doesn’t hold true for images belonging to AD patients (col-

umn 2), as both fairness gap and RMSE increases with decrease in uncertainty threshold

for MMSE. Similarly, we see that the Balanced-Model shows a decrease in RMSE for

MMSE with a decrease in uncertainty threshold (moving from left to right), which is in

contrast to its behaviour for all images and AD images. This further reinforces our ob-

servation from skin lesion classification experiments that the performance of the fairness

mitigation methods not only varies across subgroups and across different tasks, but also
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changes for different classes for the same task. And these types of models should be

chosen with care when applying them to real-world medical image analysis applications.

5.4 Summary

Accurate uncertainty estimation of deep learning predictions in medical image analysis is

necessary for their safe clinical deployment. In this chapter, we presented the first explo-

ration of fairness models in mitigating biases across subgroups, and their resulting effect

on uncertainty quantification accuracy. Results on a wide range of experiments for three

different tasks (classification, regression, and segmentation) indicate that popular fairness

methods, such as data balancing and robust optimization, do not always work for differ-

ent tasks. Furthermore, mitigating fairness in terms of performance can come at the cost

of poor uncertainty estimation associated with output. Future work on overcoming these

additional fairness issues is required prior to the clinical deployment of these models.
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(a) Baseline Model
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(b) Balanced Model
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(c) GroupDRO Model

Figure 5.15: ADNI: Root mean squared error (RMSE) of ADAS-13 (Top) and MMSE (Bottom) score pre-
diction tasks as a function of uncertainty threshold for (a) Baseline-Model, (b) Balanced-Model, and (c)
GroupDRO-Model on the ADNI dataset. Specifically, we plot RMSE for all samples as well as samples for
each of the disease stages (AD, MCI, and CN) in each subgroup (D0 - age < 70 and D1 - age≥ 70). The total
number of samples as a function of uncertainty thresholds are depicted with light colours in these plots (see
the scale on the right vertical axis). ©[2023] PMLR. Reprinted, with permission, from [164].
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6
Information Gain Sampling for Active

Learning in Medical Image Classification

When stupid ideas work, they become

genius ideas.

— Andy Weir, Project Hail Mary
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6.1. INTRODUCTION

Related Paper

It should be noted that this is not a manuscript based thesis. However, considerable

material from the following paper has been utilised in this chapter.

o R. Mehta, C. Shui, B. Nichyporuk, T. Arbel, “Information Gain Sampling for Active

Learning in Medical Image Classification”, Uncertainty for Safe Utilization of Machine

Learning in Medical Imaging (UNSURE) Workshop held in conjunction with 25th Interna-

tional Conference on Medical Image Computing and Computer Assisted Intervention (MIC-

CAI) 2022 [165].

The Springer does not require individuals working on a thesis to obtain a formal reuse

license. However, it requires that the thesis author cite the source and include Springer

copyright notice for all figures and tables [4].

6.1 Introduction

The previous chapter of this thesis built towards building trustworthy medical image

analysis models by analyzing the model performance for both fairness across demogra-

phy and the quantification of uncertainty associated with them. While trustworthy mod-

els can indeed help in the clinical deployment of these models, they do not mitigate the

need for a large amount of data required to build these models. In this chapter, we tackle

the necessity of a large labeled dataset by building an active learning framework that se-

lects the optimal images to label from an unlabeled pool of images based on information

gain. Related work for active learning is provided in Chapter 2.

This part of the thesis proposes an information-theoretic active learning framework that

drives the selection of new image samples to label based on maximal information gain.

An active learning framework that selects samples based on expected information gain

(EIG) has been previously used [209] for structure prediction tasks using Support Vector

Machines (SVM). As the first contribution of this part of the thesis, we first adapt an ef-

124



6.2. ACTIVE LEARNING FRAMEWORK WITH INFORMATION GAIN SAMPLING

ficient EIG computation to deep networks with careful design choices. To alleviate the

high-class imbalance issue in medical imaging, we further improve the original EIG by

proposing a novel adapted expected information gain (AEIG) method. In AEIG, the pre-

dicted softmax probability of the trained model is adjusted with the class frequencies of

the validation distribution. The hypothesis is that AEIG based sampling strategy will

lead to higher performance with a lower number of labeled samples, as different labeled

samples provide different information about inter-class ambiguity.

Experiments are performed on two different challenging medical image classification

tasks: (1) multi-class diabetic retinopathy (DR) classification into disease scales from

colour fundus images, (2) multi-class skin lesion classification from dermoscopic images.

Our experiments indicate that for the DR dataset, AEIG achieves 95% of overall perfor-

mance with only 19% of the training data. In comparison, other active learning meth-

ods require around 25% (random: 27%, maximum entropy: 21%, CoreSet: 27%, MCD-

Entropy: 24%, MCD-BALD: 21%). AEIG achieves higher performance than competing

methods due to its ability to sample more images from the minority classes compared to

other methods on highly imbalanced datasets.

6.2 Active Learning Framework with Information Gain Sam-

pling

Consider a labeled training dataset DL : {(XL, YL)}. Here, (XL, YL) = {(xi, yi = c)}Mi=1,

represents that there are a total of M samples (xi) in the dataset; and yi = c represents its

corresponding classification label, where there are a total of C classes (c ∈ {0, 1, ..., C−1}).

Now, consider an unlabeled dataset DU : {(XU)}, with N samples. Similarly, an evalu-

ation dataset Deval : {(Xeval, Yeval)} with K samples. Here, Xeval represents the set of all

samples in the evaluation set, and Y eval its corresponding labels. Ŷ eval would represent

the predicted classification label for each sample in the evaluation set using a machine

learning model. Note that M ≪ N and K < N .
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6.2. ACTIVE LEARNING FRAMEWORK WITH INFORMATION GAIN SAMPLING

Figure 6.1: Active learning via information gain framework. Each active learning run consists of three
different phases: (i) Training Stage - Model (θj−1 → θj) is trained using the labeled set DL, (ii) Information
gain calculation - AEIGa (Equation(6.2)), EIGa (Equation(6.1)), or its variants are calculated for each image
in the unlabeled dataset (∀xa ∈ DU ). The entropy H1 of the evaluation set (Deval) is calculated using the
trained model (θj). For each image xa, The conditional entropy (H2) of the evaluation set is calculated
after updating the trained model (θj) using a single gradient step (θj → θja) for all possible labels ya = c,
∀c ∈ {0, 1, ..., C − 1}. (iii) Update Datasets - Finally, the top-B images (DA) from the unlabeled set are
selected, and both the labeled (DL ← DL ∪DA) and unlabeled datasets (DU ← DU \DA) are updated. The
framework is executed for a total of J runs. ©[2022] Springer. Reprinted, with permission, from [165].

The general active learning framework starts by training a supervised machine learning

model (θ0) on a small labeled dataset (DL). It then selects the B most informative subset

of images to label (DA : {xa}Ba=0, DA ⊂ DU ) from a larger unlabeled dataset (DU ). A

human annotator provides the labels for the selected subset of data (DA∗ : {(XA, YA} =

{xa, ya}Ba=0). Both the labeled (DL ← DL∪DA∗) and the unlabeled datasets (DU ← DU\DA)

are then updated. The model is retrained using the updated labeled dataset (θ0 → θ1). The

process is repeated for a total of J runs.
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6.2.1 Information Gain (IG) for Active Learning

An active learning framework can select the subset of data from the unlabeled set based

on the information gain.

Expected Information Gain (EIG): Let us consider the case of expected information gain

(EIG). In an active learning context, EIG(Ŷ eval; ya) measure the reduction in the entropy

of the predicted labels Ŷ eval of the evaluation set, if we have access to the true state (label

- ya) of an image (xa) in the unlabeled set. In short, EIG(Ŷ eval; ya) measures difference in

the entropy of Ŷ eval for two models. (i) H1: the entropy of the Ŷ eval for a model trained on

DL. (ii) H2: the conditional entropy of the Ŷ eval for a model trained on {DL ∪ (xa, ya)}.

EIG(Ŷ eval; ya) = EIG(Ŷ eval; ya|Xeval, xa, D
L)

= H[Ŷ eval|Xeval, DL]−H[Ŷ eval|Xeval, ya, xa, D
L]

= H[Ŷ eval|Xeval, DL]︸ ︷︷ ︸
H1

−
C−1∑
c=0

p(ya = c|xa, D
L)︸ ︷︷ ︸

P

H[Ŷ eval|Xeval, ya = c, xa, D
L]︸ ︷︷ ︸

H2

.

(6.1)

P = p(ya = c|xa, D
L) denotes the predicted softmax probability of output having class

label ya = c for an image xa using a model trained on DL.

Adapted Expected Information Gain (AEIG): The predicted softmax probability P can

be quite erroneous due to the limited observations and poor calibration [87]. Thus, other

alternatives can be considered to improve the reliability of P, such as injecting prior infor-

mation about the class distribution. In the natural image classification literature, several

methods [212, 252, 269] have been proposed that adapt the softmax probabilities in the

context of highly imbalanced datasets. As such, a variant of the EIG method is consid-

ered here, where the predicted softmax probability (P) of the training model is adjusted

with the class frequencies of the validation distribution. The adapted version of EIG,

denoted adapted expected information gain (AEIG), provides a modification for P to be-
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come p(ya = c|xa, D
L) ∗ |yeval=c|∑C−1

j=0 |yeval=j| , where |yeval = c| denotes the total number of samples

with class-label c in the evaluation dataset:

AEIG(Ŷ eval; ya) = H1− p(ya = c|xa, D
L)

|yeval = c|∑C−1
j=0 |yeval = j|︸ ︷︷ ︸

P

H2.
(6.2)

6.2.2 Efficient IG computation in Deep Networks

As we saw in the previous section, computing both EIG (Equation 6.1) and AEIG (Equa-

tion 6.2) involves estimating the conditional entropy (H2) by retraining the models for

each possible label for an image (i.e., a total of C classes) in the unlabeled set. In the ac-

tive learning framework, this calculation is repeated for each image in the unlabeled set

(i.e., total N images). Although this process might be feasible in the context of SVMs [209],

it would be very computationally expensive (almost infeasible) in the context of a deep

learning model (i.e., a total NxC model retraining). Following design simplifications are

made to reduce the associated computation load.

Choice of Evaluation Set: In the first design simplification, we consider the validation

set as our evaluation dataset (Deval = Dvalid).

Model Parameters: The second design simplification is based on the observation [60] that

any machine learning model, including deep learning, consists of two components: rep-

resentation and classification. In the context of modern convolutional neural network ar-

chitectures, initial convolutional layers can be considered as feature representation learn-

ing layers, while the last MLP layers can be considered as a classification layers. While

updating the model parameters during the IG calculation, only the classification layer pa-

rameters are updated. The convolutional layer’s parameters are not updated. Given that

most of the computation cost comes from the convolutional layers, this design permits

computing IG scores (EIG or AEIG) with minimal computational overhead.
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6.2. ACTIVE LEARNING FRAMEWORK WITH INFORMATION GAIN SAMPLING

Model Updates: In the third design simplification, instead of retraining the whole model

with the labeled dataset and each sample in the unlabeled dataset, the already trained

model on the labeled set is only updated once through a single gradient step for one

sample in the unlabeled set. This design simplification is based on the assumption that

the size of the labeled dataset is greater than a single sample, and including just one more

sample would not lead to a drastic change in the model parameters.

Algorithm 1 Information Gain Based Active Learning
Input: Labeled training dataset DL : {(XL, Y L)}, an unlabeled dataset DU : {(XU)},

and an evaluation dataset Deval

Require: initial machine model (with parameters θ0) trained on labeled dataset DL, total
active learning iterations J , and active learning batch acquisition size B

1: j ← 1
2: while active learning iteration j < J do
3:
4: Calculate H[Ŷ eval|Xeval, DL] based on the model parameters θj−1

5:
6: for each image xa ∈ DU do
7: Calculate p(ya = c|xa, D

L) based on the model parameters θj−1

8: θj−1
a ← θj−1

9:
10: for each possible class label c ∈ {0, 1, .., C} do
11: Using a single gradient step update model parameters (θj−1

a ) with xa and
ya = c

12: Calculate H[Ŷ eval|Xeval, ya = c, xa, D
L]

13: end for
14:
15: Compute Score based on AEIG (or EIG) according to Equation [2] (or [1])
16: end for
17:
18: Select subset of top-B images (DA) from DU according to their score S
19: Acquire ground-truth labels for DA ((DA∗))
20: Update Unlabeled dataset DU ← DU \DA

21: Update Labeled dataset DL ← DL ∪DA∗

22: Retrain the model (θj) with the updated labeled training dataset DL

23: j ← j + 1
24:
25: end while
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6.3. MULTI-CLASS MEDICAL IMAGE DISEASE CLASSIFICATION

6.3 Multi-Class Medical Image Disease Classification

The active learning framework is applied to two different medical imaging contexts. The

first context involves multi-class disease classification of diabetic retinopathy (DR) pa-

tients from colour fundus images. Fundus images are classified into five disease scales

representing disease severity: No DR, mild DR, moderate DR, severe DR, and prolif-

erative DR. A publicly available DR disease scale classification dataset is used for this

task. Experiments in this part of the thesis use a subset of 8408 retinal fundus images

provided by the Kaggle challenge organizers. A label with one of the five disease scales

is provided with each retinal fundus image. For each of the five disease scales, there

are 6150/588/1283/221/166 images, respectively. The differences in the total number of

images per class highlight a high-class imbalance for the task. We randomly divide the

whole dataset into 5000/1000/2408 images for training/validation/testing sets.

The second context involves multi-class classification of skin lesions from dermoscopic

images. We use the publicly available international skin imaging collaboration (ISIC) 2018

dataset [46]. In this dataset, dermoscopic images are classified into seven different classes:

melanoma, melanocytic nevus, basal cell carcinoma, actinic keratosis, benign keratosis,

dermatofibroma, and vascular lesion. The challenge organizers provide a subset of 10015

dermoscopic images. A label with one of the seven disease scales is provided with each

dermoscopic image. For each of the seven classes, there are 1113/6705/514/327/1099/115

/142 images, respectively. The differences in the total number of images per class high-

light a high-class imbalance for the task. We randomly divide the whole dataset into

6000/1500/2515 images for training/validation/testing sets.
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6.4. EXPERIMENTS AND RESULTS
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Figure 6.2: (a) A 2D ResNet-18 architecture consists of a 7x7 convolutional unit, followed by 16 3x3 con-
volutional units, one dropout layer (p=0.2), and one fully connected layers. The dotted shortcuts increase
dimensions. Colour fundus images (or dermoscopic images) were given as input to the network. (b) Each
convolutional unit consists of one CxC convolutional layer with stride S, followed by Batch Normalization
layer, and a ReLU layer. ©[2022] Springer. Reprinted, with permission, from [165].

6.4 Experiments and Results

6.4.1 Implementation Details

Network Architectures: An ImageNet pre-trained 2D ResNet18 [94] architecture was

used for the DR and the ISIC multi-class disease scale classification task. The network

architecture is depicted in Figure 6.2. A dropout layer with p=0.2 is introduced before

the fully connected (fc) layer. The network was trained to reduce the categorical cross-

entropy loss. An Adam optimizer with a learning rate of 0.0005 and a weight decay of

0.00001 was used to train the network for a total of 100 epochs and a batch size of 64. The

learning rate was decayed with a factor of 0.995 after each epoch. All fundus images (DR)

were resized to 512x512 size, normalized with mean subtraction, and divided by std. All

dermographic images (ISIC) were resized to 600x450 size, normalized with mean sub-

traction, and divided by std. Random horizontal flip, random vertical flip, and random

rotation in the range of 0-30, were applied as data augmentation on each image. The code

was written in PyTorch and ran on Nvidia GeForce RTX 3090 GPU with 24GB memory.

The ’macro’ area under the receiver operating characteristic curve (ROC AUC) was used

as a metric for both classification tasks. For both tasks, a macro average (unweighted) of

one-vs-rest (ovr) classifier ROC AUC [67] was performed.

131



6.4. EXPERIMENTS AND RESULTS

10 15 20 25 30 35 40
percentage of labeled samples

0.74

0.76

0.78

0.80

0.82

0.84

0.86
m

ac
ro

 A
U

C-
RO

C
DR Dataset

all
all-95%
EIG (ours)
CFIG (ours)
UIG (ours)
AEIG (ours)

10 15 20 25 30 35 40
percentage of labeled samples

0.90

0.92

0.94

0.96

0.98

m
ac

ro
 A

U
C-

RO
C

ISIC Dataset

all
all-95%
EIG (ours)
CFIG (ours)
UIG (ours)
AEIG (ours)

Figure 6.3: Comparison of the EIG, AEIG, UIG, and CFIG based active learning sampling methods for both
the DR dataset (left) and the ISIC dataset (right). The horizontal solid dashed line (’all’) at the top represents
model performance when the entire training set is labeled. The dotted line (’all-95%’) represents 95% of that
performance. We report the mean and std of evaluation metrics across five different runs (See Table-1 and
Table-2 in the appendix for exact values). ©[2022] Springer. Reprinted, with permission, from [165].

AL framework: The active learning framework was initialized by randomly selecting

10% of the training dataset (i.e., 500 for DR, 600 for ISIC) as the labeled dataset and the

rest as the unlabeled dataset. It was deployed for a total of J = 6 active learning runs in

both cases. Based on previous studies [266, 125], in each run, we select a total of ≈ 6%

of the dataset (B = 300 for the DR, and B = 350 for the ISIC) from the unlabeled dataset

(DU ). We acquire an oracle label, and then, once labeled, these are used to update the

labeled dataset (DL ← DL ∪ DA∗) and the unlabeled dataset (DU ← DU \ DA). Active

learning experiments were repeated five times with different initial randomly selected

images. The means and variances of the evaluation metrics were then recorded across the

five repetitions.

6.4.2 Information Gain Performance

In this section, we compare the proposed AEIG and EIG based active learning sample

selection against two different baseline alternatives for IG computation. Equation 6.1

describes the estimation of EIG, which includes weighing H2 with the predicted soft-

max probability P. Instead of relying on the predicted probabilities, we can compute two

different baseline alternatives based on the prior information of the class distributions:

(i) Uniform Information Gain (UIG) assumes a uniform distribution such that P = 1
C

,

132



6.4. EXPERIMENTS AND RESULTS

10 15 20 25 30 35 40
percentage of labeled samples

0.74

0.76

0.78

0.80

0.82

0.84

0.86
m

ac
ro

 A
U

C-
RO

C
DR Dataset

all
all-95%
Random
Entropy
CoreSet
MCD-Entropy
MCD-BALD
AEIG (ours)

10 15 20 25 30 35 40
percentage of labeled samples

0.90

0.92

0.94

0.96

0.98

m
ac

ro
 A

U
C-

RO
C

ISIC Dataset

all
all-95%
Random
Entropy
CoreSet
MCD-Entropy
MCD-BALD
AEIG (ours)

Figure 6.4: Comparison of the AEIG based active learning sampling method with Random, Entropy, MCD-
Entropy, MCD-BALD, and CoreSet based sampling methods for both the DR dataset (left) and the ISIC
dataset (right). The horizontal solid dashed line (’all’) at the top represents model performance when the
entire training set is labeled. The dotted line (’all-95%’) represents 95% of that performance. We report the
mean and std of evaluation metrics across five different runs. (See Table-3 and Table-3 in the appendix for
exact values.)

∀c ∈ {0, 1, ..., C − 1}. (ii) Class-Frequency Information Gain (CFIG) assumes a distribu-

tion based on the class frequency such that P = |yeval=c|∑C−1
j=0 |yeval=j| , where |yeval = c| denotes the

total number of samples with class-label c in the evaluation dataset.

In Figure 6.3, we compare EIG, UIG, CFIG, and AEIG by experimenting on both datasets.

Experiments indicate that the AEIG achieves 95% of the overall performance (’all-95%’)

with only 19% (for DR) and 14% (for ISIC) of the training dataset. CFIG, UIG, and EIG

require 29%, 30% and >40% of the training dataset for DR; and 17%, 17.5%, and 35% of

the training dataset for ISIC. We hypothesize that the better performance of AEIG is due

to its ability to sample more images from minority classes.

6.4.3 Comparisons Against Active Learning Baselines

In this section, the proposed AEIG based sampling active learning framework was com-

pared against five different baseline methods: Random, Entropy-based sampling [226],

MC-Dropout with Entropy [80], MC-Dropout with BALD [98], and CoreSet [220]. The

macro AUC ROC curve for experiments on the DR and ISIC datasets can be found in

Figure 6.4. Overall, the proposed method gives better (or, in some cases, similar) per-
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Figure 6.5: Plots depicting the total number of samples labelled per class against the percentage of labeled
samples for the DR dataset for the competing active learning sampling methods. Classes 1, 3, and 4 are the
minority classes. ©[2022] Springer. Reprinted, with permission, from [165].

formance compared to the other methods for both datasets and all six active learning

iterations. Applying standard methods for comparison, the proposed method (AEIG)

achieves 95% of the overall performance (’all-95%’) with only 19% of the labeled training

dataset for the DR dataset. MCD-Entropy, MCD-BALD, Entropy, CoreSet, and Random

require approximately 24%, 21%, 21%, 27%, and 27% of the labeled training dataset to

achieve similar performances. For the ISIC dataset, the proposed method (AEIG) achieves

95% of the overall performance (’all-95%’) with only 14% of the labeled training dataset

for the DR dataset. MCD-Entropy, MCD-BALD, Entropy, CoreSet, and Random require

approximately 14.8%, 14.2%, 14.7%, 14.1%, and 18.2% of the labeled training dataset to

achieve similar performances. It is worth pointing out that although all methods are giv-

ing a somewhat similar performance at ’all-95%’ cutoff, the trend is consistent for all 6 AL

acquisitions. The total active learning score computational time for each image in the un-

labeled set was around 1 ms, 6 ms, 10 ms, 10 ms, 16 ms, and 28 ms for Random, Entropy,

MCD-Entropy, MCD-BALD, CoreSet, and AEIG based methods. The computation times

highlight that although the proposed method can achieve better performance compared

to other methods, it is a bit slower. Compared to the time taken by a human annotator for

134



6.4. EXPERIMENTS AND RESULTS

10 15 20 25 30 35 40
percentage of total labeled samples

100

150

200

250

300

350

400

450

to
ta

l n
um

be
r 

of
 s

am
pl

es
 (

cl
as

s=
0)

Class=0
Random
Entropy
CoreSet
MCD-Entropy
MCD-BALD
AEIG (ours)

10 15 20 25 30 35 40
percentage of total labeled samples

400

600

800

1000

1200

1400

to
ta

l n
um

be
r 

of
 s

am
pl

es
 (

cl
as

s=
1)

Class=1
Random
Entropy
CoreSet
MCD-Entropy
MCD-BALD
AEIG (ours)

10 15 20 25 30 35 40
percentage of total labeled samples

50

100

150

200

250

300

to
ta

l n
um

be
r 

of
 s

am
pl

es
 (

cl
as

s=
2)

Class=2
Random
Entropy
CoreSet
MCD-Entropy
MCD-BALD
AEIG (ours)

10 15 20 25 30 35 40
percentage of total labeled samples

25

50

75

100

125

150

175

200

to
ta

l n
um

be
r 

of
 s

am
pl

es
 (

cl
as

s=
3)

Class=3
Random
Entropy
CoreSet
MCD-Entropy
MCD-BALD
AEIG (ours)

10 15 20 25 30 35 40
percentage of total labeled samples

100

200

300

400

500

to
ta

l n
um

be
r 

of
 s

am
pl

es
 (

cl
as

s=
4)

Class=4
Random
Entropy
CoreSet
MCD-Entropy
MCD-BALD
AEIG (ours)

10 15 20 25 30 35 40
percentage of total labeled samples

0

10

20

30

40

50

60

70

to
ta

l n
um

be
r 

of
 s

am
pl

es
 (

cl
as

s=
5)

Class=5
Random
Entropy
CoreSet
MCD-Entropy
MCD-BALD
AEIG (ours)

10 15 20 25 30 35 40
percentage of total labeled samples

0

20

40

60

80

to
ta

l n
um

be
r 

of
 s

am
pl

es
 (

cl
as

s=
6)

Class=6
Random
Entropy
CoreSet
MCD-Entropy
MCD-BALD
AEIG (ours)

Figure 6.6: Plots depicting the total number of samples labeled per class against the percentage of labeled
samples for the ISIC dataset for the competing active learning sampling methods. Classes 0, 2,3,4,5, and 6
are the minority classes. ©[2022] Springer. Reprinted, with permission, from [165].

additional labeling, this difference in computational time will not be significant.
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Figure 6.7: Plots depicting the total number of samples labeled per class against the percentage of labeled
samples for the ISIC dataset for EIG, CFIG, UIG, and AEIG sampling methods. Classes 0, 2,3,4,5, and 6 are
the minority classes. ©[2022] Springer. Reprinted, with permission, from [165].

Figure 6.5 illustrates the different number of acquired images per class on the DR dataset

at each of the active learning acquisition steps for all six acquisition methods (Random,

Entropy, CoreSet, MCD-Entropy, MCD-BALD, and AEIG). The results indicate that the

AEIG based active learning sampling policy results in sampling and labeling of a higher

135



6.5. SUMMARY

10 20 30 40 50 60
percentage of total labeled samples

400

600

800

1000

1200

1400

1600

to
ta

l n
um

be
r 

of
 s

am
pl

es
 (

cl
as

s=
0)

Class=0
EIG (ours)
CFIG (ours)
UIG (ours)
AEIG (ours)

10 20 30 40 50 60
percentage of total labeled samples

40

60

80

100

120

140

160

to
ta

l n
um

be
r 

of
 s

am
pl

es
 (

cl
as

s=
1)

Class=1
EIG (ours)
CFIG (ours)
UIG (ours)
AEIG (ours)

10 20 30 40 50 60
percentage of total labeled samples

100

200

300

400

500

to
ta

l n
um

be
r 

of
 s

am
pl

es
 (

cl
as

s=
2)

Class=2
EIG (ours)
CFIG (ours)
UIG (ours)
AEIG (ours)

10 20 30 40 50 60
percentage of total labeled samples

20

40

60

80

100

120

140

to
ta

l n
um

be
r 

of
 s

am
pl

es
 (

cl
as

s=
3)

Class=3
EIG (ours)
CFIG (ours)
UIG (ours)
AEIG (ours)

10 20 30 40 50 60
percentage of total labeled samples

0

20

40

60

80

to
ta

l n
um

be
r 

of
 s

am
pl

es
 (

cl
as

s=
4)

Class=4
EIG (ours)
CFIG (ours)
UIG (ours)
AEIG (ours)

Figure 6.8: Plots depicting the total number of samples labeled per class against the percentage of labeled
samples for the DR dataset for EIG, CFIG, UIG, and AEIG sampling methods. Classes 1, 3, and 4 are the
minority classes. ©[2022] Springer. Reprinted, with permission, from [165].

number of images from the minority classes (e.g., classes 1, 3, and 4) compared to other

sampling methods. This, in turn, leads to better overall performance for contexts with

highly class-imbalance datasets, as is the case with the DR dataset.

6.5 Summary

In this chapter, we proposed an active learning framework that drives the selection of

new image samples to label based on maximal Adapted expected information gain on an

unseen evaluation dataset. Experiments were performed on two different medical image

classification datasets, and results showed that the AEIG method performs better than

Random, maximum Entropy, MCD-Entropy. MCD-BALD, and CoreSet based sampling

strategies. The AEIG samples minority classes at a greater rate than competing strategies,

improving performance on highly imbalanced datasets, although with a small computa-

tional overhead.

136



7
Conclusion and Future work

So perhaps at a certain perspective

what we leave behind is often

wonderland, always different from

what it was and generally more

beautiful.

— Norman Maclean, A river runs

through it and other short stories

In this thesis, we developed multiple different methods for integrating Bayesian deep
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learning uncertainties in medical image analysis to improve its applicability in clinical

deployment.

As a first contribution, we developed an evaluation metric for quantifying uncertainty

in brain tumour segmentation. The metric was designed with the clinical end goal in

mind, where we can expect an end-user (clinician) to correct the most uncertain predic-

tions made by a machine learning model. As such, it rewards uncertainty estimates that

produce high confidence in correct assertions and those that assign low confidence levels

at incorrect assertions; in addition to that, it penalizes uncertainty estimates that lead to

a higher percentage of under-confident correct assertions. To evaluate its usefulness, the

developed metric was used to rank 14 participating teams from QU-BraTS 2020 challenge.

The ranking and analysis of uncertainties generated by these participating teams showed

the complementary information provided by both the segmentation and their associated

uncertainties, highlighting the need for uncertainty quantification in medical image anal-

yses. The developed metric is general and can be applicable to a wide variety of other

medical image segmentation problems, as was shown by a recent paper [37].

Next, we developed the first framework in medical image analysis where uncertainties

are propagated from one task to another. This is an important direction as cascaded infer-

ence tasks are prevalent in medical image analysis, where mistakes made by an upstream

task can lead to poor performance on the downstream task of interest. In this case, as we

saw in the previous paragraph, if uncertainties are correlated with places where a model

is prone to make mistakes, then we can use them as a proxy to inform the downstream

task of interest about mistakes made by upstream tasks. Our experiments on a wide va-

riety of clinically important tasks showed that propagating uncertainties from upstream

tasks to the downstream task of interest improves performance.

Following this, we focused our attention on the fairness of machine learning models. Fair-

ness of ML models across different sensitive attributes (e.g., age, race, sex) is important as
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it shows that these models are not biased towards any particular subgroups, which would

allow deployment of these models into the real world. However, till now the majority of

fairness analysis was done with only absolute performance in mind. In this thesis, for the

first time, we also analyzed the fairness of machine learning models from both absolute

performance and uncertainty quantification perspectives. Our results on a wide range of

clinical problems demonstrated that popular bias mitigation ML models do not always

work on these types of problems, and when they work, they come at the cost of poor

uncertainties associated with them. It would create situations where despite mitigating

fairness from an absolute performance perspective, these models can not be deployed as

poor uncertainties could lead to distrust by clinicians. As such future bias (fairness) mit-

igation methods should be designed by considering fairness for both the output and its

associated uncertainties.

At last, we tackled an important problem of data scarcity in medical image analysis

through the active learning (AL) framework. We developed a new active learning frame-

work based on information gain. Unlike previous approaches for AL, which select sam-

ples that are hardest for the current model to classify, without considering its impact on

the performance gain; our developed framework was specifically designed to consider

expected information gained by the machine learning model based on selected new data

points. Our results indicated that the proposed framework could achieve better model

performance with a lower number of acquired labels compared to other competing meth-

ods. This has a real clinical impact as the proposed method should lead to overall lower

labeling costs.

Overall, we can say that contributions made in this thesis show the necessity of quanti-

fying uncertainties in all aspects of machine learning models for medical image analysis,

and how it can be useful in making them ready for clinical deployment.
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7.1 Future Work

7.1.1 Uncertainty Evaluation Metric

The uncertainty evaluation metric developed in Chapter 3 employed Dice score (DSC)

for task-specific evaluation. The DSC is a good segmentation metric when the interest

structure contains a high number of voxels. However, it is not a stable metric when cal-

culated on a low number of voxels [200]. In the developed evaluation score, instability

of the DSC leads to low performance at a lower threshold (more filtered voxels), as DSC

calculation considers only a few remaining unfiltered voxels (Figure 3.2). The poor stabil-

ity of DSC is a well-known challenge in the literature [200]. As such, future work could

explore other task-dependent metrics.

Our analysis also revealed that Team SCAN performed better on the overall score by not

marking any positive prediction (both true positive and false positive) as uncertain. In

a real-world scenario, a method that is always confident about its positive predictions

leads to confident over-segmentation. This shows that the developed uncertainty evalu-

ation score is not perfect, and we need to keep improving it. One possible future direc-

tion could be to calculate Precision ( TP
TP+FP

) and Recall ( TP
TP+FN

) at different uncertainty

thresholds and calculate the AUC of these curves (Precision vs Uncertainty threshold,

and Recall vs Uncertainty threshold). A high-performing team should get a high AUC

for both Precision and Recall (same as AUC for DSC). To achieve a high AUC for Preci-

sion, participating teams have to reduce FP (mark them as uncertain). Similarly, to attain

a high AUC for Recall, participating teams have to reduce FN (mark them as uncertain).

In this way, we can penalize teams that are highly confident in their positive predictions

and those that are highly confident in their false negative predictions.

The proposed evaluation framework evaluates uncertainties for each tumor entity as a

single-class segmentation/uncertainty problem, while the overall tumor segmentation

is a multi-class problem. Future extensions could involve developing methods to eval-
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uate uncertainties in multi-class segmentation. Multi-class segmentation uncertainties

and single-class segmentation uncertainties are different and can lead to different out-

comes [37]. In addition, the current evaluation framework focuses on filtering individual

voxels, as most of the developed uncertainty frameworks generate per-voxel uncertain-

ties that are not spatially correlated [79, 136]. The recent development of spatially corre-

lated uncertainty generation methods [174] indicates the necessity of developing uncer-

tainty evaluation scores that consider the spatial correlation between pixels/voxels.

Another future direction is obtaining ”ground-truth” uncertainty maps and evaluating

automatic uncertainty generation methods against these maps. One recent promising

direction uses inter-observer and intra-rater variation to proxy for ”ground-truth” uncer-

tainty [130, 27, 169, 55]. One limitation of this approach is that it assumes that ”ground-

truth” uncertainties can be estimated through multiple labels provided by different raters

for the same (often small) set of images. In recent papers [278, 228], it was noted that

institutional biases [151] play an essential factor in deep learning medical imaging model

performance. However, variability in labeling across raters reflecting institutional biases

are not direct proxies for ”ground-truth” uncertainties. To expand on this point, inter-

rater and intra-rater variability rely on the assumption of attaining a unique label. How-

ever, there are many situations where a unique label cannot necessarily be attained in

some regions of an image. For example, at boundaries between tumor and healthy tissue

in MRI due partly to partial volume effects but also because the labels cannot be seen

in the MRI (and cannot be verified without a biopsy in the case of a tumour). For the

latter case, each annotator is ”guessing” the location of the boundary when none are con-

fident in their annotations. The result might be measuring contextual rater biases (e.g.,

based on their radiology backgrounds) but not reflecting the true uncertainties in the la-

bels themselves (e.g., whether a particular pixel is an enhancing tumour). One alternative

approach could be asking annotators to mark areas they are not certain about, such as

tumor boundaries in an MRI scan. These ”uncertain” areas can then serve as ”ground

truth,” and uncertainty estimates generated by algorithms can be compared to it. That

being said, acquiring a ”ground-truth” uncertainty is still an open area of research.
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7.1.2 Uncertainty Propagation across Cascaded Inference Tasks

In Chapter 4, we proposed uncertainty propagation across a cascade of inference tasks

which showed improvement in the downstream task of interest. All employed methods

in that chapter compute uncertainties based on generated multiple output samples for

the same input. The sample generation process is computationally costly, as it comes with

the overhead of increased inference time. It would be interesting to analyze if propagat-

ing uncertainties generated based on more recent methods like sample-free uncertainty

estimations [258] or learned sample-based models [150], would also lead to improved

performance for the downstream task of interest. These methods do not rely on multiple

samples for uncertainty estimation. They predict uncertainty directly either based on the

knowledge distillation or based on the distance in the data manifold. Thus, these meth-

ods come with the added benefit of low computation overhead. Similarly, other uncer-

tainty estimation methods like evidential deep learning [255] and conformal prediction

[9] methods could also be explored.

A natural extension of the uncertainty propagation framework is to convert it into an end-

to-end system. However, an end-to-end system requires access to ground-truth labels at

all inference stages for the same training data. These data are generally unavailable in real

clinical contexts. For example, let us look at the ADNI clinical score prediction pipeline

utilized in this thesis. This pipeline involves segmentation of the hippocampus followed

by clinical score regression. As we saw in the experimental section (Section 4.3.1), we did

not have access to ground-truth labels for both hippocampus segmentation marking and

the clinical scores for the same training data. Thus, in this case, it would not be possible

to develop an end-to-end system comprised of both segmentation and regression tasks.

However, should it be possible to obtain this type of data, an end-to-end system where

relevant uncertainty measures for a task are learned depending on the downstream task

of interest may be an exciting and essential research direction to explore. It would also be

142



7.1. FUTURE WORK

interesting to propagate labeling uncertainties [130, 27], if multiple annotations for each

patient case are available.

While in the current uncertainty propagation framework, uncertainty maps are passed to

the downstream task of interest as an additional input; future work could explore meth-

ods that either embed uncertainty propagation as a part of a loss function [187] or in the

design of neural networks [57].

Another future direction could explore the impact of uncertainty propagation on the un-

certainties of the downstream task’s outputs. One could expect better uncertainty quan-

tification in a downstream task of interest with uncertainty propagation.

7.1.3 Fairness of Machine Learning Models

In Chapter 5, we analyzed the fairness of machine learning models from the perspec-

tive of uncertainty quantification for many different medical image analysis tasks. Our

results for three different methods indicated the need to consider uncertainty quantifica-

tion while analyzing fairness methods. However, the analyzed fairness mitigation meth-

ods were supervised. This means they require annotation of the sensitive attribute (ex.,

sex, age, etc.) during training. However, these sensitive attributes might not be avail-

able during training for reasons such as privacy. In this scenario, it would be better to

deploy unsupervised fairness mitigation methods like just train twice [141], adversarial

reweighed learning [135], etc. These unsupervised methods mitigate the fairness concerns

of machine learning models without the need for labeled sensitive attributes. It would

be interesting and necessary to analyze the uncertainty quantification of these methods

for various medical image analysis tasks. In the end, it is of paramount importance to

develop new unsupervised fairness mitigation methods that consider both absolute per-

formance and uncertainties.
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In this thesis, we looked at the fairness of machine learning models for segmentation and

clinical score regression problems. In our work, we employed standard metrics like dice

coefficient for segmentation, and mean squared error for the regression problems to mea-

sure fairness. Although these metrics are useful, they are not specifically designed to mea-

sure fairness. Many different metrics have been proposed that are specifically designed

to measure the fairness of classification models with different end goals [47, 38]. How-

ever, these metrics have their limitations. Take an example of demographic parity. This

metric evaluates whether the proportion of positive outcomes is equal across different

subgroups. However, it is possible that the proportion of positive outcomes is dependent

on the sensitive attribute (e.g., demographic) of the subgroups. For example, the preva-

lence of multiple sclerosis is dependent on the sex of the patient, as females are twice as

likely to live with MS as males [264]. In this case, using demographic parity as a fairness

evaluation metric would not be justified. Another example of a fairness evaluation metric

is equalized odds, which is used to evaluate fairness with respect to the distribution of

false positives and false negatives across different groups. It ensures that the true positive

rate (TPR) and false positive rate (FPR) are equal across subgroups. Although, it might be

difficult to achieve equalized odds in practice, especially if the groups have different base

rates (i.e., the proportion of positive outcomes in each group). Additionally, equalizing

FPR may not always be desirable or possible, especially in cases where false negatives are

more detrimental than false positives.

The above examples show that different fairness evaluation metrics can be employed for

classification based on the end goal, as no single evaluation measure can always work in

all scenarios. A similar type of effort must be put into developing fairness metrics specif-

ically designed for regression and segmentation models.

Most of the work in the fairness literature only analyzes and mitigates fairness for a single

sensitive attribute. For example, fairness across different sex, different demographic, or

different age. But in reality, multiple sensitive attributes could lead to bias in model per-
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formance [34]. For example, a model might only underperform for a subpopulation from

a particular race (e.g., Asian) and a particular range of age. In this scenario, it is necessary

to mitigate bias across multiple sensitive attributes. Some recent methods [231, 56] have

started to look into this aspect; however, further research is required to make them more

generalizable.

7.1.4 Active Learning for Medical Image Analysis

In Chapter 6, we developed a novel active learning framework for medical image clas-

sification. However, multiple future directions could be explored to build on top of our

framework. First of all, we made many design choices to ensure we could compute in-

formation gain for deep learning models without much computational overhead. These

design choices could be reconsidered. For example, [128] approximate expected informa-

tion gain (EIG) via Gaussian approximation and generalized linear model. Based on these

assumptions, EIG could be calculated without retraining the whole model, as was done

in our case.

The developed framework uses the difference of entropy to measure information gain

provided by the selected samples. Entropy is a global metric that captures the distri-

bution of probabilities across different classes. Future work should consider a way to

measure information gained by each class separately, as it would lead to more informa-

tive samples for lower-performing classes.

The developed framework was only designed and evaluated for medical image classifi-

cation problems. One of the future possible directions could be to develop a new active

learning framework for medical image segmentation, as labeling of voxel-wise ground

truth segmentation marking is more time-consuming compared to image-level classifi-

cation data. Some work that addresses segmentation labeling for pixel-wise annotations

tends to narrow their application to segmentation of natural images [235, 103, 124]. Some
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Figure 7.1: Trustworthy and safe machine learning models should exhibit four different characteristics: (i)
uncertainty quantification, (ii) interpretability, (iii) robustness and fairness, and (iv) causality.

other work also addresses it from the super-pixel annotation perspective for natural im-

age segmentation [116, 36, 7]. However, only a few works have been proposed that apply

AL to medical image segmentation for deep learning models [275, 181, 77]. Future work

should explore AL methods for medical image segmentation from an information gain

perspective.

7.2 Towards Trustworthy and Safe Machine Learning Mod-

els

This thesis presented novel methods and applications of uncertainty quantification for

medical image analysis. We also looked at the fairness of these models. However, to build

a complete trustworthy, safe, and transparent system, machine learning models should

also exhibit interpretability [214] and causality [39] in addition to fairness [284], robust-

ness [274], and uncertainty quantification [286]. Interpretability allows the end users to

understand how a machine learning model arrived at a particular decision [238, 145, 219].

Causality studies how changes in different input variables affect the change in the output

of machine learning models. Causal machine learning models can be used to identify
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which treatment will have the greatest impact on patient outcomes [63].

As we partially saw in this thesis, all these aspects are related to each other and can help

identify and alleviate issues related to one another. For example, instead of relying on the

performance metrics, one could look at differences in the explanations provided by ma-

chine learning models across different subgroups to check whether these models suffer

from biases [168]. Similarly, counterfactuals can be used to improve the interpretability of

models [261] as well as identify and mitigate fairness concerns [133, 88]. For example, let

us consider a model where the output should not change based on the skin colour of the

input image, as is the case with skin lesion classification. In this scenario, if we generate

a counterfactual image, where apart from the skin colour of the input image everything

else remains the same, then using this counterfactual image as input should not change

the output of the machine learning model. If, in this scenario, the machine learning model

generates different outputs, then it is not a fair system as it is biased based on the skin

colour of the input image.

Future work should focus on building models for medical image analysis that incorpo-

rates all the above-mentioned characteristics. By incorporating these aspects, we can en-

sure that machine learning models can provide all the necessary information to the end

user (clinicians) to make more informed decisions. This will further help in the better

adaptation of these models into real clinical practice.
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A.1. INTRODUCTION

Related Paper

It should be noted that this is not a manuscript based thesis. However, considerable

material from the following paper has been utilised in this chapter.

o R. Mehta, T. Arbel, “RS-Net: Regression-Segmentation 3D CNN for Synthesis of

Full Resolution Missing Brain MRI in the Presence of Tumours”, Simulation and Syn-

thesis in Medical Imaging (SASHIMI) workshop held in conjunction with 21st Interna-

tional Conference on Medical Image Computing and Computer Assisted Intervention (MIC-

CAI) 2018, Lecture Notes in Computer Science, Springer, Vol. 11037, pp. 119-129 [158].

The Springer does not require individuals working on a thesis to obtain a formal reuse

license. However, it requires that the thesis author cite the source and include Springer

copyright notice for all figures and tables [4].

A.1 Introduction

The presence of a variety of different Magnetic Resonance (MR) sequences (e.g. T1,

T2, Fluid Attenuated Inverse Recovery (FLAIR)) improves the analysis in the context of

neurological diseases such as multiple sclerosis and brain cancers, because different se-

quences provide complementary information. In particular, the accuracy of detection and

segmentation of lesions and tumours greatly increases should several sequences of MR

be available [93], as different sequences assist in differentiating healthy tissues from focal

pathologies. However, in real clinical practice, not all MR image sequences are always

available for each patient for a variety of reasons, including cost or time constraints, or

at times, images are available but not usable, for example due to corruption from noise

or patient motion. As such, both clinical practice and automatic segmentation techniques

would benefit greatly from the synthesis of one or more of the missing 3D MR image se-

quences based on the others provided [254, 106]. However, synthesis of full 3D brain MR

image is challenging especially in the presence of pathology as different MR sequences

represent pathology in a different way.
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Figure A.1: Proposed Regression-Segmentation CNN architecture (RS-Net): (1) A 3D U-net, (2) Regression
and (3) Segmentation convolution blocks. The model takes as input several full 3D MR image sequences,
synthesizes the missing 3D MRI, while concurrently generating the multi-class segmentation of the tumour
into sub-types. ©[2018] Springer. Reprinted, with permission, from [158].

Recently, modality synthesis has gained some attention from the medical image analy-

sis community [113, 210, 259]. Several approaches have been explored, such as patch-

based random forest [113] and sparse dictionary reconstruction [210]. Regression En-

sembles with Patch Learning for Image Contrast Agreement (REPLICA) [113] was devel-

oped to synthesize T2-weighted MRI from T1-weighted MRI using the bagged ensemble

of random forests based on nonlinear patch regression. Given the success of Convo-

lutional Neural Networks (CNNs) [281] and Generative Adversarial Networks (GANs)

[110] for image-to-image translation in the field of computer vision, several recent 2D

CNN [41, 259] and 2D GANs [273] have been developed for modality synthesis in the

context of medical imaging, showing promising results for synthesis of healthy subject

MRI. A patch-based Location Sensitive Deep Network (LSDN) [259] was developed to

combine intensity and spatial information for synthesizing T2 MRI from T1 MRI and vice

versa. A 2D CNN model was developed to generate 2D synthesized images with miss-

ing input MRI [41]. Quantitative analysis showed superior performance over competing

methods based on global image metrics (PSNR and SSIM). However, the performance of

the method in the area of focal pathology was not examined.

In this chapter, an end-to-end 3D CNN is developed that takes as input a set of acquired
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MRI sequences of patients with tumours and simultaneously performs (1) regression to

generate a full resolution missing 3D MR modality and (2) segmentation of the brain tu-

mour into subtypes. The hypothesis is that by performing regression and segmentation

concurrently, the network should produce full-resolution, high quality 3D MR images,

particularly the area of the tumour. The network is trained and tested on the MICCAI

2015 and 2017 BraTS datasets [22], as well as a large multi-site, multi-scanner, proprietary

dataset of MS patient MRI. In the first set of experiments, the framework is evaluated

against state-of-the-art synthesis methods [113, 259, 41] based on global image metrics

used in previous work [41], where it is shown to give better performance compared all

reported results. The second set of experiments evaluate the synthesis quality at patho-

logical locations, by examining its performance on subsequent independent downstream

tasks, namely tumour segmentation. Results show that real MR images can be swapped

with the generated synthesized T1, T2, and FLAIR MR images with minimal loss in tu-

mour segmentation performance. The network also quantifies the uncertainty of the re-

gressed synthetic volumes through Monte Carlo dropout [79]. This permits the confi-

dence in the synthesis results to be conveyed to radiologists and clinicians and to auto-

matic downstream methods that would use the synthesized volumes as inputs. In the last

set of experiments, we also evaluate the ability of RS-Net to synthesize missing modali-

ties in case of Multiple Sclerosis (MS) patient MRIs. We evaluate the performance with a

downstream MS T2 lesion segmentation/detection task. Results concur the findings re-

ported for brain tumour segmentation task, and show that indeed missing modalities can

be replaced by RS-Net synthesized modalities with minimal performance degradation.

A.2 Regression-Segmentation CNN Architecture

A flowchart of the proposed Regression-Segmentation CNN architecture (RS-Net) can

be seen in Figure A.1. The network consists of three main components: (1) a modified

3D U-net [45], (2) regression convolution block for synthesizing image sequence, and

(3) segmentation convolution block for multi-class tumour segmentation. RS-Net takes
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as input full 3D volumes of all available sequences of a patient. The U-net generates

an intermediate latent representation of the inputs which is provided to the regression

and the segmentation convolution blocks. These then generate synthesis of the missing

3D MR image sequences and multi-class segmentation of tumours into sub-types, at the

same resolution. The U-net learns latent representation which is common to both tumour

segmentation and synthesis, with focus on high accuracy in the area containing tumour

structures. In addition to the U-net output, the regression block is also provided with one

of the input MRIs, which will provide necessary brain MR context to the regression block.

The architecture details are now described.

The 3D U-net is similar to the one proposed in [45], with some modifications. The U-net

consists of four resolution steps for both encoder and decoder paths. At the start, we use

two consecutive 3D convolutions of size 3x3x3 with k filters, where k denotes the user-

defined initial number of convolution filters. Each step in the encoder path consists of

two 3D convolutions of size 3x3x3 with k ∗2n filters, where n denotes the U-net resolution

step. This is followed by maxpooling of size 2x2x2. At the end of each encoder step, in-

stance normalization [256] is applied, followed by dropout [241] with 0.1 probability. In

the decoder path at each step, 3D transposed convolution of size 5x5x5 is applied, with

2x2x2 stride and k ∗ 2n filters for the upsampling task. The output of the transposed con-

volution is concatenated with the corresponding output of the encoder path. This is, once

again, followed by instance normalization and Dropout with 0.1 probability. Finally, two

3D convolution of size 3x3x3 with k ∗ 2n filters are applied. Rectified linear unit is chosen

as a non-linearity function for every convolution layer.

Each of the segmentation and regression blocks contain four convolution layers. The first

convolution layer is of size 3x3x3, and the rest are of size 1x1x1. The first three convo-

lution layers have k ∗ 4, k ∗ 2 and k filters. In the regression block, the last layer has just

one filter, while, for the segmentation block, there are C filters in the last layer, where C

denotes the total number of classes for the segmentation task.
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Weighted Mean Squared Error (W-MSE) loss is used for the synthesis task, and weighted

Categorical Cross Entropy (W-CCE) loss for segmentation. Here, the weights are defined

such that the weight increases whenever there are fewer voxels in a particular class.

W-CCEi = −
∑
l

wl

∑
n

yin,l log p
i
n,l. (A.1)

W-MSEi =
∑
n

wi
n ∗ (xi

n − x̂i
n)

2. (A.2)

wi
n = wl ∗ yin, where, wl = (

∑k=C
k=0 mk

ml

) ∗ rep + 1. (A.3)

Here, yin, pin, xi
n, x̂i

n, and wi
n denote true label, predicted label, true voxel values, predicted

voxel value, and the weight for voxel n of volume i, respectively. wl denotes the weight

of class l. ml is total number of voxels of lth class in the training dataset. wl are decayed

over each epoch ep with a rate of r ∈ [0, 1]. It should be noted that wl converges to 1 as ep

becomes large.

The final loss function for the network, Li, (for volume i) is a weighted combination of

both of these loss functions:

Li = λ1(W-MSEi) + λ2(W-CCEi). (A.4)

Given the challenges associated with regressing a synthesized volume, errors are bound

to exist. As such, deterministic outputs present dangers to subsequent clinical deci-

sions as well as to downstream automatic methods that make use of the results. In this

work, the network output is augmented with uncertainty estimates based on Monte Carlo

dropout [79]. During testing, N Monte Carlo (MC) samples of the output are acquired by
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passing each set of input volumes N times through the network to predict N different

synthesized output MR volumes with probability of randomly dropping any neuron of

the network equal to the dropout rate. Uncertainty in the synthesized volume, during

testing, is estimated based on the variance of the MC samples at every voxel.

A.3 Experiments and Results

We now evaluate the performance of the RS-Net using two sets of experiments. In the first

set of experiments, we compare the quality of the synthesized volume generated by RS-

Net against other methods [41, 113, 259] using PSNR and SSIM on 2015 MICCAI BraTS

dataset [22]. In the second set of experiments, we evaluate the quality of the synthesized

volumes in a downstream task of tumor segmentation on 2017 MICCAI BraTS datasets

[22].

RS-Net uses four initial convolutional filters and four steps for U-net encoder and decoder

paths.This results in a network with a total of 674455 learnable parameters. Values of λ1

and λ2 in the loss function (Equation A.4), to combine CCE and MSE, were fixed to 1.0

and 0.1 respectively based on experimentation evidence. The networks were trained on a

NVIDIA Titan Xp GPU for 240 epochs. Approximate training time was 3 days. The net-

works were trained with batch size of 1, using Adam optimizer [126] with the following

hyperparameters: learning rate = 0.0002, β1 = 0.9, β2 = 0.999 and ϵ = 10−08. During test-

ing time, a total of 20 samples of the output were generated to estimate the uncertainty in

the synthesized volumes.

A.3.1 Comparison of RS-Net Against Other Methods

In order to compare the quality of the synthesized volumes produced by RS-Net against

other state-of-the-art methods, namely REPLICA [113], LSDN [259], and 2D CNN [41], we
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Table A.1: Quantitative results (mean ± std) for T1-to-T2 (top) and T1-to-FLAIR (bottom) synthesis based
on PSNR and SSIM. Higher values indicate better performance. Absolute highest performing results seen
in bold. ©[2018] Springer. Reprinted, with permission, from [158].

T2 REPLICA [113] LSDN [259] 2D-CNN [41] RS-Net (proposed)
SSMI 0.901± 0.01 0.909± 0.02 0.929± 0.17 0.934 ± 0.02
PSNR 28.62± 1.69 30.12± 1.62 30.96± 1.85 31.13 ± 1.78

FLAIR REPLICA [113] LSDN [259] 2D-CNN [41] RS-Net (proposed)
SSMI 0.870± 0.01 0.887± 0.01 0.897± 0.01 0.900 ± 0.01
PSNR 28.32± 1.38 29.68± 1.56 30.32± 1.61 30.88 ± 1.84

train two different RS-Nets for T2 and FLAIR synthesis from T1 MRI, as done by Chart-

sias et al. [41]. We use the evaluation metrics, SSIM [267] and PSNR, defined in [41], to

evaluate the quality of the synthesized volumes.

Given a ground-truth volume X and its corresponding synthesized volume X̂ , SSIM is

computed as

SSIM(X, X̂) =
(2µXµX̂ + c1)(2σXX̂ + c2)

(µ2
X + µ2

X̂
+ c1)(σ2

X + σ2
X̂
+ c1)

. (A.5)

Here, µX and σ2
X are mean and variance of volume X and σXX̂ is the covariance between

X and X̂ .

PSNR is computed as

PSNR(X, X̂) = 10 log10(
MAX2

I

MSE
). (A.6)

Here, MAXI is the maximum intensity of the volume and MSE is the mean squared error

between volumes X and X̂ .

In order to compare our results to those in the paper [41], experiments were performed on

the 2015 MICCAI BraTS training dataset [22]. This dataset consists of High-Grade Glioma

(HGG) and Low-Grade Glioma (LGG) cases. 54 LGG cases were acquired with T1, T2,
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Figure A.2: Example slice from synthetic MR volumes generated by the proposed RS-Net on BraTS 2015
dataset for T1-to-T2 and T1-to-FLAIR synthesis. ©[2018] Springer. Reprinted, with permission, from [158].

T1ce, and FLAIR. Four tumour sub-classes were defined. Volumes are skull-stripped, co-

registered, and interpolated to 1mm3 voxel dimension. Each volume is of size 240 x 240

x 155. We follow the same pre-processing steps followed in [41], where we normalize

each volume by dividing by the volume’s average intensity. Following [41], we perform

5-fold cross validation on the dataset (LGG cases). Here, for each cross-validation fold,

the dataset is divided into three sets, namely, training, validation, and testing. Each set

consists of 42, 6, and 6 volumes respectively.

Quantitative comparison of all different methods is given in Table A.1. It should be noted

that we didn’t reproduce the results for other methods and instead report them as listed

in [41]. Results indicate that RS-Net performs slightly better than other methods based

on the global metrics of PSNR and SSIM, for both T1-to-T2 and T1-to-FLAIR synthesis.

The results also show the advantage of using the proposed 3D CNN over 2D CNN. An

example showing qualitative results based on RS-Net for both T2 and FLAIR synthesis on

a testing volume is shown in Figure A.2. Note that the resulting MR images are visually

similar to the real images, particularly in the area of the tumour.
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Table A.2: Comparison of multi-class brain tumour segmentation based on S-Net on the BraTS 2017 Vali-
dation dataset. The results using all 4 real MRI volumes are compared against replacing 1 real MRI volume
with a synthesized MRI volume produced by RS-Net. Notation: Real MR volume (✓), and synthesized MR
volume using RS-Net (⊙). Quantitative segmentation results based on Dice coefficients (mean ± std) for:
enhancing tumor (DE), whole tumor (DT), and tumor core (DC). Higher values indicate better performance.
©[2018] Springer. Reprinted, with permission, from [158].

T1 T2 FLAIR T1ce DE DT DC
Real ✓ ✓ ✓ ✓ 68.2 ± 31.0 87.9 ± 09.8 75.7 ± 23.1

T1 Synthesis ⊙ ✓ ✓ ✓ 67.6± 31.2 87.9± 09.8 75.5± 23.1
T2 Synthesis ✓ ⊙ ✓ ✓ 66.3± 32.1 87.3± 11.4 75.6± 23.6

FLAIR Synthesis ✓ ✓ ⊙ ✓ 66.8± 31.8 83.6± 10.7 73.1± 24.7
T1ce Synthesis ✓ ✓ ✓ ⊙ 24.8± 20.2 87.3± 10.0 54.0± 19.9

A.3.2 Evaluation of RS-Net synthesis using Tumour Segmentation

The metrics used in the previous section can be useful in assessing global synthesis qual-

ity, but in the context of volumes with pathological structures such as lesions or tumours

synthesis quality assessment should focus on the pathological areas. To this end, we

quantitatively evaluate the synthesis performance based on their effect on downstream

method, tumour segmentation and tumour sub-class segmentation. To this end, we train

a new segmentation CNN, for the specific task of multi-class tumor segmentation (re-

ferred to as S-Net). This network is similar to the RS-Net but modified such that the syn-

thesis convolution block is removed. S-Net is trained using all four real MR volumes with

weighted CCE as the loss function. To evaluate the quality of the synthesized volume, one

of the real MR volumes is swapped with the synthesized one and the segmentation ac-

curacy is measured. Note that we do not retrain the S-Net with the synthesized volume.

This allows us to measure quality of the synthesized volumes in comparison to the real

volumes.

Dataset and Pre-processing:

The 2017 MICCAI BraTS [22] datasets were used for all the experiments in this sec-

tion. The BraTS training dataset was used to train the networks. This dataset is com-

prised of 210 HGG and 75 LGG patients with T1, T1 post contrast (T1ce), T2, and FLAIR
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Table A.3: Comparison of multi-class brain tumour segmentation results based on S-Net on the BraTS 2017
Validation dataset, where each real MR input volume is replaced by its corresponding synthesized MR
volume generated by either RS-Net or R-Net in a leave-one-out fashion. Notation: Real MR volume (✓),
synthesized MR volume using RS-Net (⊙), and R-Net (•). Quantitative segmentation results based on Dice
coefficients (mean ± std) for: enhancing tumor (DE), whole tumor (DT), and tumor core (DC). Higher
values indicate better performance. ©[2018] Springer. Reprinted, with permission, from [158].

T1 T2 FLAIR T1ce DE DT DC
Real ✓ ✓ ✓ ✓ 68.2 ±31.0 87.9 ±09.8 75.7 ±23.1

T1 Synthesis ⊙ ✓ ✓ ✓ 67.6± 31.2 87.9± 09.8 75.5± 23.1
• ✓ ✓ ✓ 67.5± 31.3 87.8± 09.9 75.3± 23.3

T2 Synthesis ✓ ⊙ ✓ ✓ 66.3± 32.1 87.3± 11.4 75.6± 23.6
✓ • ✓ ✓ 66.1± 32.0 87.2± 11.9 75.4± 23.8

FLAIR Synthesis ✓ ✓ ⊙ ✓ 66.8± 31.8 83.6± 10.7 73.1± 24.7
✓ ✓ • ✓ 62.9± 33.3 81.3± 17.4 71.5± 25.8

T1ce Synthesis ✓ ✓ ✓ ⊙ 24.8± 20.2 87.3± 10.0 54.0± 19.9
✓ ✓ ✓ • 24.1± 22.1 85.9± 11.0 53.9± 23.4

MRI for each patient, along with expert tumor labels for each of three classes: edema,

necrotic/non-enhancing core, and enhancing tumor core. 228 volumes were randomly

selected for training the network and another remaining 57 for network validation. A

separate BraTS 2017 validation dataset, held out during training, was used to test the

synthesis and segmentation performance. This dataset contains 46 patient multi-channel

MRI (with no labels provided). The BraTS challenge provided pre-processed volumes that

were skull-stripped, co-aligned, and resampled to 1 mm3 voxel volume. The intensities

were additionally rescaled using mean subtraction, divided by the standard deviation,

and rescaled from 0 to 1 and were cropped to 184 x 200 x 152. For this context, the addi-

tional complementary input presented to the regression block (see Figure A.1(3)) for T1,

T2, T1ce, and FLAIR sequences were T1ce, FLAIR, T1, and T2 respectively. This was cho-

sen as T1ce is the gadolinium enhanced version of T1, and FLAIR is the fluid attenuated

version of T2.

Qualitative Evaluation:

Synthesis MR volumes produced in a leave-one-out approach by four different RS-Nets

such that three real MR sequences are used to synthesize the fourth (see Figure A.3). The
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results indicate that the network is able to produce high-quality, high-resolution, 3D syn-

thesized MR volumes, particularly for T1 and T2 sequences, and even for FLAIR. As T1ce

shows enhancement within the tumour based on injection of a contrast agent, it was not

expected to be easily synthesized from other sequences and error resulted. However, the

system indicates locations where the network is uncertain about the regressed output.

Qualitative results indicate that errors within the tumour enhancement have associated

relatively high uncertainties. This suggests that these uncertainties can be communicated

to a clinician or radiologist to indicate trustworthy regions of the synthesized images, and

that automatic downstream methods using the synthesized volumes can focus computa-

tions on the areas of high confidence, which should be explored in future work.

Replacing real with synthetic MRI Volumes:

In Table A.2, we compare the tumour segmentation using S-Net in two different testing

scenarios, (i) all four real MR volumes are provided as input and (ii) one real MR vol-

ume is replaced with synthesized MR volume for each sequence generated by RS-Net, in

turn. We train four different RS-Nets to synthesize 4 MR image sequences, where three

real sequences are presented as input to RS-Net to synthesize the fourth. The synthesized

MR volume, along with the three real corresponding MR volumes, were then presented

to the S-Net previously trained on all four real MRIs. This will allow us to measure qual-

ity of the synthesized volume in comparison to the real volume. The resulting labels for

BraTS 2017 validation set were uploaded to the BraTS Challenge server, where quantita-

tive segmentation results were provided based on the Dice coefficients for: whole tumor,

enhancing tumor, and tumor core. These results (Table A.2) indicate that by swapping

out real MR volumes with the synthesized T1 or T2 MR volumes generated by the RS-Net

leads to comparable brain tumour segmentation performance based on all three reported

Dice metrics. For the slightly harder problem of FLAIR synthesis, results indicate a small

degradation in tumour segmentation performance for all three Dice metrics. T1ce synthe-

sis results in no loss of whole tumour segmentation performance, but, as predicted, led

to a significant reduction in performance in terms of enhancement and necrotic core. This
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Table A.4: Comparison of multi-class brain tumour segmentation results based on S-Net against the results
generated directly from the segmentation module of RS-Net for the BraTS 2017 Validation dataset. Nota-
tion: Real MR volume (✓), synthesized MR volume using RS-Net (⊙), and segmentation output of RS-Net
without MR volume (×). Quantitative segmentation results based on Dice coefficients (mean ± std): en-
hancing tumor (DE), whole tumor (DT), and tumor core (DC). Higher values indicate better performance.
©[2018] Springer. Reprinted, with permission, from [158].

T1 T2 FLAIR T1ce DE DT DC
Real ✓ ✓ ✓ ✓ 68.2 ±31.0 87.9 ±09.8 75.7 ±23.1

T1 Synthesis ⊙ ✓ ✓ ✓ 67.6± 31.2 87.9± 09.8 75.5± 23.1
× ✓ ✓ ✓ 66.4± 33.0 85.2± 15.3 71.0± 27.4

T2 Synthesis ✓ ⊙ ✓ ✓ 66.3± 32.1 87.3± 11.4 75.6± 23.6
✓ × ✓ ✓ 66.5± 32.3 87.0± 10.6 71.1± 28.4

FLAIR Synthesis ✓ ✓ ⊙ ✓ 66.8± 31.8 83.6± 10.7 73.1± 24.7
✓ ✓ × ✓ 69.0± 31.0 81.7± 15.1 72.4± 28.8

T1ce Synthesis ✓ ✓ ✓ ⊙ 24.8± 20.2 87.3± 10.0 54.0± 19.9
✓ ✓ ✓ × 23.1± 19.8 86.5± 10.8 52.0± 20.8

was expected as T1ce is a challenging MRI to synthesize due to its reliance on a contrast

agent, which is not used by any other MR sequences.

Effectiveness of combined Regression-Segmentation task:

RS-Net has two output streams for synthesis and segmentation tasks. To check how RS-

Net performs in comparison to a network which is trained only for the task of synthesis,

we train a new network (R-Net) which is similar to RS-Net but modified such that the

segmentation block is removed as well as the additional input to the regression block,

and training is based only on weighted MSE. R-Net was trained for the synthesis of all 4

MR image sequences separately, in a leave-one-out approach, and tested for tumor seg-

mentation using S-Net on the BraTS validation dataset exactly as described above. From

Table A.3, we can observe that R-Net performs comparably to RS-Net, when T1 and T2

are synthesized but shows a small degradation in performance for FLAIR and T1ce syn-

thesis on all three Dice metrics. This shows that performing synthesis and segmentation

together allows the network to focus more on tumour part, and in turn gives better qual-

ity of the synthesized volume, especially for FLAIR and T1ce.

160



A.3. EXPERIMENTS AND RESULTS

Performance of Segmentation part of RS-Net:

One of the advantages of the RS-Net is that, in addition to MRI synthesis, it also provides

tumour segmentation labels. In this section, we will analyze this segmentation part of

RS-Net (Figure A.1 (2)). Table A.4 indicates that the segmentation performance based on

RS-Net directly is lower than the results based on using all four real MR volumes in S-

Net, but is generally lower in comparison to the segmentation results when synthesized

MR volumes generated by RS-Net is used in place of a real MR volumes. This trend is

consistent across all MR image sequences for all three Dice metrics, except for FLAIR

where the enhancing and core tumour Dice is higher for segmentation directly from the

RS-Net over the segmentation results from S-Net with a synthesized input (for unknown

reasons).

A.3.3 Evaluation of RS-Net synthesis results for Multiple Sclerosis

MS is a chronic, inflammatory demyelinating disease of the central nervous system with

presently no known cure. The presence of lesions in MRI is one of the hallmarks of MS.

As a result, MRI has been used for diagnosis and to monitor disease progression and

treatment efficacy. Similar to brain tumours, segmentation of T2 lesion, which is useful

for staging MS patients, requires availability of multiple MR sequences like FLAIR, T2,

T2, PDw etc. In particular FLAIR or T2 MR images are routinely used for visualization

and segmentation of T2 lesion as they appear hyperintense in FLAIR/T2 images. In this

section, we validate the usefulness of RS-Net by synthesizing FLAIR or T2 images from

other modalities available, and check its effectiveness by evaluating it on a downstream

T2 lesion segmentation/detection task.

We train two different RS-Net to synthesize FLAIR and T2 MR sequence from the other

available MR sequence (T1,T2,PDw for FLAIR synthesis and T1,FLAIR,PDw for T2 syn-

thesis). We train a S-Net on all four real MR sequences and at test time replace one of

them (FLAIR or T2) with the synthesized one. This allows us to measure quality of the

synthesized volumes in comparison to the real volumes. We compare this against R-Net.
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The method was evaluated on a proprietary, multi-site, multi-scanner, clinical trial dataset

of 1064 Relapsing-Remitting MS (RRMS) patients, scanned annually over a 24-month pe-

riod. T1, T2, FLAIR, and PDW MRI sequences were acquired at a 1mm x 1mm x 3mm res-

olution and pre-processed with brain extraction, N3 bias field inhomogeneity correction,

Nyul image intensity normalization, and registration to the MNI-space. Ground truth T2

lesion segmentation masks were provided with the data. These were obtained using a

proprietary approach where the result of an automated segmentation method was man-

ually corrected by expert human annotators. All networks (RS-Net/R-Net/S-Net) were

trained on 65% of the subjects, with 17.5% held out for validation and 17.5% for testing.

Since the downstream outcome of interest is the accurate detection of T2 lesions, we eval-

uate the performance of networks based on lesion-level True Positive Rate (TPR) and

False Detection Rate (FDR). To obtain lesion-level detections from the voxel-based seg-

mentations, a connected component analysis is performed to group lesion voxels together

in an 18-connected neighbourhood. A true positive (TP) lesion is detected when the seg-

mentation, including its 18-connected neighbourhood, overlaps with at least three, or

more than 50%, of the ground truth lesion voxels. Insufficient overlap results in a false

negative (FN), and candidate lesions of three or more voxels that do not overlap with

a ground truth lesion are counted as false positives (FP). The TPR (= TP
TP+FN

) and FDR

(= FP
FP+TP

) are then calculated at the lesion level and are used to plot receiver operating

characteristic (ROC) curves. Given that MS lesions vary greatly in size, the system per-

formance is evaluated on lesions grouped into three size bins: small (3-10 vox), medium

(11-50 vox), and large (51+ vox).

Quantitative evaluation (ROC curve of TPRvsFDR) of RS-Net against R-Net for FLAIR

and T2 synthesis by replacing real MR sequence with synthesized MR sequence in S-Net

is given in Figure A.4 and Figure A.5. From these figures we can see that RS-Net performs

better compared to R-Net for all lesions. This also holds true for all individual lesion size
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Table A.5: Comparison of TPR at 0.2 FDR for different lesions sizes for RS-Net synthesized and R-Net
synthesized MR sequences (FLAIR and T2) against Real sequences. ©[2018] Springer. Reprinted, with
permission, from [158].

FLAIR synthesis T2 synthesis
All Large Med. Small All Large Med. Small

All Real sequences (4) 0.740 0.999 0.970 0.360 0.740 0.999 0.970 0.360
3 Real + 1 R-Net synthesized sequences 0.695 0.998 0.952 0.300 0.705 0.990 0.925 0.350
3 Real + 1 RS-Net synthesized sequences 0.715 0.999 0.960 0.315 0.720 0.998 0.945 0.365

ROC curves. Value of TPR at 0.2 FDR (the clinical operating point of interest) is given in

Table A.5. From this table, we can see that RS-Net synthesized MR sequences (FLAIR or

T2) consistently gives better performance compared to R-Net synthesized MR sequence

for all lesion size. This shows that performing synthesis and segmentation together gives

better performance compared to only synthesizing the missing MR sequences.

A.4 Conclusions

In this chapter, a full resolution 3D end-to-end CNN was developed for the task of MR

volume synthesis in the presence of brain tumours. The network was trained for the

concurrent tasks of synthesizing a missing MRI sequence and tumour sub-tissue segmen-

tation. Experimental results on BraTS 2015 challenge dataset indicated that the proposed

method outperforms all previous methods in terms of traditional evaluation metrics like

PSNR and SSIM. The quality of the synthesized images was further evaluated by assess-

ing their effects on the performance in independent tumour segmentation experiments.

Experiments on the BraTS 2017 challenge dataset indicated that multi-task learning helps

in synthesizing high quality volumes over synthesis alone particularly in more challeng-

ing contexts (i.e. FLAIR and T1ce). Evaluation on downstream segmentation/detection

task for brain tumour / Multiple Sclesions patient indicated that real MRIs can be re-

placed with synthesized T1, T2, and FLAIR volumes with minimum degradation in seg-

mentation accuracy, whereas synthesizing T1ce is still too challenging. However, uncer-

tainty measure based on Monte Carlo dropout was shown to be helpful in communicat-

ing the confidence in the synthesis results, which will be essential for their adoption by

clinicians and downstream automatic methods.
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Figure A.3: Example slice from synthetic MR volumes generated using the proposed RS-Net along with its
associated uncertainties. Real MRI (Row 1); synthesized volumes (Row 2) and its associated uncertainty
(Row 3) produced as mean and variance across 20 MC dropout samples. Columns from left to right: T1, T2,
T1ce, and FLAIR. Notice that uncertainties are highest where predicted tumour enhancements in T1ce are
incorrect. ©[2018] Springer. Reprinted, with permission, from [158].
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Figure A.4: Comparison of T2 lesion detection results based on S-Net (Red) for FLAIR synthesis, where
FLAIR MR input image is replaced by its corresponding synthesized MR volume generated by either RS-
Net (Blue) or R-Net (Yellow). Here, Receiver-operating characteristic (ROC) curves are plotted, illustrating
TPR (true positive rate) vs. FDR (false detectionrate) across all lesions (Top Left), large lesions (Top Right),
medium lesions (Bottom Left) and small lesions (Bottom Right). ©[2018] Springer. Reprinted, with permis-
sion, from [158].
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Figure A.5: Comparison of T2 lesion detection results based on S-Net (Red) for T2 synthesis, where T2 MR
input image is replaced by its corresponding synthesized MR volume generated by either RS-Net (Blue)
or R-Net (Yellow). Here, Receiver-operating characteristic (ROC) curves are plotted, illustrating TPR (true
positive rate) vs. FDR (false detectionrate) across all lesions (Top Left), large lesions (Top Right), medium
lesions (Bottom Left) and small lesions (Bottom Right). ©[2018] Springer. Reprinted, with permission, from
[158].
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B
Appendix: Evaluating Uncertainty

Estimates in Brain Tumour Segmentation

B.1 Box Plots for Individual Scores

This appendix provides box plots for four different scores (DICE AUC, FTP RATIO AUC,

FTN RATIO AUC, and Score - Equation 3.1) for three different tumor entities (WT, TC,

and ET) for each team. The teams are ranked from better to worse performance accord-

ing to mean values across all patients for each score. Higher is better for DICE AUC

(Figure B.1 - Figure B.3) and Score (Figure B.10 - Figure B.12), while lower is better for

FTP RATIO AUC (Figure B.4 - Figure B.6) and FTN RATIO AUC (Figure B.7 - Figure B.9).
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Note that these box plots are different from ranking plots, as the ranking plots describe the

overall performance across different tumor entities and different subjects as described in

Section 3.4.1. From these plots, we can see that while for all three tumor entity DICE AUC

plots, Team nsu btr performs better than other teams, their overall Score is compara-

tively lower than other teams as they do not perform well for FTP RATIO AUC and

FTN RATIO AUC.

Similarly, we also observe that Team SCAN does not outperform other teams for DICE AUC

but comfortably outperforms other teams in FTP RATIO AUC. They perform relatively

similar to other top-ranked teams in the FTN RATIO AUC score. Overall, they achieve

the best performance for the Score across all three tumor entities. The main reason for

them outperforming other teams for FTP RATIO AUC is how they developed their un-

certainty generation method. They found that they achieved the best results on the given

Score (Equation 3.1) by considering all positive predictions as certain (Section 3.3.3).

In terms of overall Scores, we observe that Team SCAN comfortably outperforms all other

teams for each tumor entity. Team QTIM and Team Uniandes report better mean scores

across different patients compared to Team SCAN. Despite this, they do not achieve an

overall better ranking for each patient, which shows the usefulness of reporting rank-

ing and statistical-significance analysis across different patients rather than just reporting

mean overall Score across patients.
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Figure B.1: QU-BraTS 2020 boxplots depicting DICE AUC distribution for all teams across different par-
ticipants for Whole Tumor on the BraTS 2020 test set (higher is better). ©[2022] CC-BY. Reprinted, with
permission, from [161].
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Figure B.2: QU-BraTS 2020 boxplots depicting DICE AUC distribution for all teams across different par-
ticipants for Tumor Core on the BraTS 2020 test set (higher is better). ©[2022] CC-BY. Reprinted, with
permission, from [161].
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Figure B.3: QU-BraTS 2020 boxplots depicting DICE AUC distribution for all teams across different partic-
ipants for Enhancing Tumor on the BraTS 2020 test set (higher is better). ©[2022] CC-BY. Reprinted, with
permission, from [161].
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Figure B.4: QU-BraTS 2020 boxplots depicting FTP RATIO AUC distribution for all teams across different
participants for Whole Tumor on the BraTS 2020 test set (lower is better). ©[2022] CC-BY. Reprinted, with
permission, from [161].
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Figure B.5: QU-BraTS 2020 boxplots depicting FTP RATIO AUC distribution for all teams across different
participants for Tumor Core on the BraTS 2020 test set (lower is better). ©[2022] CC-BY. Reprinted, with
permission, from [161].
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Figure B.6: QU-BraTS 2020 boxplots depicting FTP RATIO AUC distribution for all teams across different
participants for Enhancing Tumor on the BraTS 2020 test set (lower is better). ©[2022] CC-BY. Reprinted,
with permission, from [161].
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Figure B.7: QU-BraTS 2020 boxplots depicting FTN RATIO AUC distribution for all teams across different
participants for Whole Tumor on the BraTS 2020 test set (lower is better). ©[2022] CC-BY. Reprinted, with
permission, from [161].
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Figure B.8: QU-BraTS 2020 boxplots depicting FTN RATIO AUC distribution for all teams across different
participants for Tumor Core on the BraTS 2020 test set (lower is better). ©[2022] CC-BY. Reprinted, with
permission, from [161].
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Figure B.9: QU-BraTS 2020 boxplots depicting FTN RATIO AUC distribution for all teams across different
participants for Enhancing Tumor on the BraTS 2020 test set (lower is better). ©[2022] CC-BY. Reprinted,
with permission, from [161].
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Figure B.10: QU-BraTS 2020 boxplots depicting Score distribution for all teams across different participants
for Whole Tumor on the BraTS 2020 test set (higher is better). ©[2022] CC-BY. Reprinted, with permission,
from [161].
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Figure B.11: QU-BraTS 2020 boxplots depicting Score distribution for all teams across different participants
for Tumor Core on the BraTS 2020 test set (higher is better). [2022] CC-BY. Reprinted, with permission, from
[161].
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Figure B.12: QU-BraTS 2020 boxplots depicting Score distribution for all teams across different participants
for Enhancing Tumor on the BraTS 2020 test set (higher is better). ©[2022] CC-BY. Reprinted, with permis-
sion, from [161].
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B.2 QU-BraTS 2019

In this appendix, we analyze and briefly describe methods employed by participating

teams in BraTS 2019 sub-challenge on uncertainty quantification. A total of 15 teams

participated in the challenge. From these 15 teams, five teams further participated during

the following QU-BraTS 2020 challenge.

BraTS 2019 dataset: As described in Section 3.2.1, BraTS 2019 dataset contains 335 pa-

tient MRIs in the training set, 125 in the validation set, and 166 in the testing set. All

teams developed their method using the training set and the validation set. Ground truth

segmentation for the validation set was not publicly available for the teams. The final per-

formance of all teams was measured on the testing set, where each team had access to a 48-

hour window to upload their result to the server (https://ipp.cbica.upenn.edu/).

QU-BraTS 2019 results on the test set: We ran the task of uncertainty quantification pre-

liminary during the challenge and did not employ any ranking scheme. Also, the score

used during the challenge was different from the one described in Section 3.2. Precisely,

we did not calculate the AUC of Ratio of Filtered True Negatives vs. Uncertainty thresh-

old until the validation phase was ended; and only used AUCs of DSC vs. Uncertainty

Threshold and Ratio of Filtered True Positives vs. Uncertainty Threshold. After the val-

idation phase, using qualitative inspection, we found that many teams were employing

1 - softmax confidence as an uncertainty measure, which is not helpful from a real clini-

cal point of view as described in Section 3.2 and Section 3.4.3. Keeping this in mind, we

added the AUC of Ratio of Filtered True Negatives vs. Uncertainty threshold during the

final testing phase. Table B.1 lists all team names and their performance on the BraTS

2019 test phase. The table shows that teams that employed 1 - softmax confidence as un-

certainty measure performed poorly on FTN RATIO AUC score (Ex. Team Alpaca, Team

DRAG, Team ODU vision lab, etc.). We want to point out that we did not employ the rank-

ing strategy used in the QU-BraTS 2020 challenge during the QU-BraTS 2019 challenge.

As we discussed in Appendix A, the ranking strategy and statistical significance analysis

reflect the true potential of the method compared to just ranking teams according to their

mean performance across testing cases.
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C
Appendix: Propagating Uncertainty

Across Cascaded Medical Imaging Tasks

C.1 Implementation Details

In section, we provide details about the network architecture, implementation details and

the training process for all three pipelines explored in Chapter 4: Multiple Sclerosis lesion

segmentation/detection (Section 4.2.1), brain tumour segmentation (Section 4.2.2), and

Alzheimer’s disease clinical score prediction (Section 4.2.3). Note that all our experiments

were implemented using PyTorch, and ran on a machine equipped with an NVIDIA Titan

Xp GPU with 12 GBs of memory.
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C.1. IMPLEMENTATION DETAILS

Figure C.1: Network architecture diagram for the BU-Net [180]. BU-Net provides the segmentation outputs
and permits the estimation of the uncertainties associated with the outputs. BU-Net was used for both Task-
1 and Task-2 in the MS lesion segmentation/detection pipeline depicted here and as a Task-1 network for
hippocampus segmentation in the Alzheimer’s Disease clinical score prediction pipeline. ©[2022] IEEE.
Reprinted, with permission, from [159].

C.1.1 MS T2 Lesion Segmentation Detection

The pipeline (Section 4.2.1) consists of a cascade of two binary lesion segmentation tasks.

We chose an off-the-shelf BU-Net [180] architecture1 for both Task-1 and Task-2 networks,

which can be seen in Figure C.1. The only differences between the two networks were

their inputs. For the Task-1 network, the inputs consisted of all the MR sequences. The

Task-2 network takes as input the MR sequences, the Task-1 network output, and the un-

certainties associated with the Task-1 network output (in the case of the proposed frame-

work). These additional inputs marginally increase the total number of parameters for the

Task-2 network. For exact architecture details, readers can refer to the BU-Net [180] paper.

Both the Task-1 and Task-2 networks were trained to minimize a weighted binary cross-

entropy loss function for the lesion segmentation task. Here, class weights were taken as

an inverse of the frequency of both lesion/non-lesion voxels within the brain mask. After

1We reimplemented the model architecture in PyTorch following the code (link) provided by the authors.
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C.1. IMPLEMENTATION DETAILS

every epoch, class weights were decayed with a factor of 0.95, which results in equally

weighted binary cross-entropy after around 50 epochs. The networks were trained using

an Adam optimizer with an initial learning rate of 0.0002 and a weight decay of 0.00001

for a total of 250 epochs. The learning rate was decayed with a factor of 0.995 after each

epoch.
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C.1. IMPLEMENTATION DETAILS

Figure C.2: Network architecture diagram of RS-Net [158]. We use RS-Net for the synthesis of the missing
MRI sequence synthesis (Task-1) in the brain tumour segmentation pipeline. Note that T1, T2, and T1ce are
used as inputs to the network when synthesizing FLAIR, while T1, T2, and FLAIR are used as inputs when
synthesizing T1ce. ©[2022] IEEE. Reprinted, with permission, from [159].

C.1.2 Brain Tumour Segmentation

The pipeline (Section 4.2.2) consists of two different sequential inference tasks. The first

network (Task-1) is designed for a three-to-one synthesis of a missing MRI sequence in

the presence of a brain tumour. RS-Net2 [158] was chosen for this task and can be seen

in Figure C.2. RS-Net is a multi-task network designed to jointly perform the synthesis

of the missing image while performing the segmentation of the tumour, with the premise

that this would improve the synthesis in the tumor area. RS-Net was trained for a total of

400 epochs using an Adam optimizer with a learning rate of 0.0002 and a weight decay of

0.00001. The learning rate was decayed with a factor of 0.995 after each epoch. The net-

work was trained to minimize a combined weighted mean squared error and weighted

cross-entropy loss [158].

A modified 3D U-Net [45], depicted in Figure C.3, was developed for multi-class brain

tumour segmentation (Task-2 Network). Similar to the original 3D U-Net, the network

consists of encoder and decoder paths that embed convolution, pooling, and deconvo-

lution operations. High-resolution features from the encoder path were combined with

2Readers are requested to refer RS-Net paper for the exact network architecture details.
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C.1. IMPLEMENTATION DETAILS

Figure C.3: Network architecture diagram of the modified 3D-U-Net [45], used for the multi-class brain tu-
mour segmentation (Task-2) in the brain tumour segmentation pipeline. The inputs to this network vary de-
pending on the experiment. For example, when assessing the effectiveness of uncertainty propagation, we
also pass the uncertainties associated with the synthesized MR sequence as input to the network. ©[2022]
IEEE. Reprinted, with permission, from [159].

the up-sampled output of the decoder to preserve high-resolution features. Each con-

volution was followed by rectified linear unit activation (ReLU). Instead of using the

batch-normalization layer used in the original U-Net, we used instance normalization

[256]. Instance normalization typically improves performance for small batch sizes. The

network was trained using Adam optimizer with a learning rate of 0.0002 and weight

decay of 0.00001 for a total of 240 epochs to minimize weighted cross-entropy loss. Here,

the weights are defined such that the weight increases whenever there are fewer vox-

els in a particular class. After every epoch, class weights were decayed with a factor of

0.95, which results in equally weighted binary cross-entropy after around 50 epochs. In-

puts to the network varies depending on the experiment. For example, in the proposed

framework 3D U-Net takes as input the real MR sequences, the RS-Net synthesized MR

sequence, and the uncertainties associated with the synthesized MR sequence. These ad-

ditional inputs result in a marginal increase in the total number of parameters.
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C.1. IMPLEMENTATION DETAILS

Figure C.4: Network architecture diagram of modified 3D-ResNet-34 [45] for the Alzheimer’s Disease clin-
ical regression pipeline for predicting both ADAS-13 and MMSE scores. In our framework, input to this
network varies depending on the experiment. For example, when assessing the effectiveness of uncertainty
propagation, uncertainties associated with the hippocampus segmentation is also provided as input to the
network. ©[2022] IEEE. Reprinted, with permission, from [159].

C.1.3 Alzheimer’s Disease Clinical Score Prediction

The pipeline described in Section 4.2.3 consists of two cascaded inference tasks. The BU-

Net [180] was used for the binary hippocampus segmentation task (Figure C.1). The T1

weighted MRI was provided as an input to the BU-Net. The network was trained to

reduce the weighted binary cross-entropy loss using an Adam optimizer with a learn-

ing rate of 0.0002 and a weight decay of 0.00001 for a total of 250 epochs. Here, class

weights were taken as an inverse of the frequency of both hippocampus/background

voxels within the brain mask. The learning rate was decayed with a factor of 0.995 af-

ter each epoch. After every epoch, the class weights were decayed with a factor of 0.95,

which results in equally weighted binary cross-entropy after around 50 epochs.

A 3D ResNet34 [91] architecture was designed for the task of clinical score prediction

(Task-2) 3. The network (Figure C.4) was modified to be a multi-task network, such that

it predicts both ADAS-13 and MMSE scores simultaneously. The network was trained to

reduce the combined mean squared error losses for both ADAS-13 and MMSE. An Adam

optimizer with a learning rate of 0.0002 and a weight decay of 0.00001 was used to train

the network for a total of 200 epochs. The learning rate was decayed with a factor of 0.995

after each epoch.

3https://github.com/kenshohara/3D-ResNets-PyTorch/blob/master/models/resnet.
py
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C.2. ADDITIONAL RESULTS FOR MS LESION SEGMENTATION

C.2 Additional Results for MS Lesion Segmentation

Figure C.5: Comparing overall MS T2 lesion detection performance using Area Under Curve (AUC) of
ROC-like curves, illustrating TPR (true positive rate) vs. FDR (false detection rate) across all lesions, and
small lesions (3-10 voxels). Here we evaluate the impact of number of samples used to estimate uncertainty
(variance) measure for MC-Dropout uncertainty estimation method. From the plot we can see that for all
lesion detection and small lesion detection, highest performance is achieved when 20 samples are used to
estimate uncertainty. With increase in number of samples, performance saturates. ©[2022] IEEE. Reprinted,
with permission, from [159].
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D
Appendix: Evaluating the Fairness of

Deep Learning Uncertainty Estimates in

Medical Image Analysis

D.1 Multi-Class Skin Lesion Classification - Sensitive At-

tribute: Sex

We use sex as a sensitive attribute for experiments in this section. Specifically, we divide

the ISIC dataset into two subsets based on the sex associated with each image (male vs fe-

male). The entire dataset is divided into two subsets: patient images from female patients
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D.1. MULTI-CLASS SKIN LESION CLASSIFICATION - SENSITIVE ATTRIBUTE: SEX

in subgroup D0 with a total of 11661 images, and patient images from male patients in

subgroup D1 with a total of 13286 images.

Table D.1: Number of images for each class and each subgroup for the whole ISIC dataset. From this, we
can see a high-class imbalance across different classes. Similarly, distribution across both subgroups for a
particular class is also different. For example, while for Melanoma, Basal Cell Carcinoma, Actinic Keratosis,
Benign Keratosis, and Squamous Cell Carcinoma, D0 has a higher number of samples compared to D1, for
the rest of the classes (Melanocytic Nevus, Dermatofibroma, and Vascular Lesion) D1 has a higher number
of samples compared to D0. ©[2023] PMLR. Reprinted, with permission, from [164].

ISIC Dataset

Melanoma Melanocytic
Nevus

Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis Dermatofibroma Vascular

Lesion
Squamous Cell

Carcinoma Total

D0 1980 6379 1317 406 1134 117 125 203 11661
D1 2461 6225 2000 458 1467 122 128 425 13286
Overall 4441 12604 3317 864 2601 239 253 628 24947

Table D.2: Number of images for each class and each subgroup for the training dataset used to train the
Baseline-Model and the GroupDRO-Model. Similar to the whole ISIC dataset (Table-D.1), we see high-
class imbalance across different classes, and different distributions across both subgroups for a particular
class. ©[2023] PMLR. Reprinted, with permission, from [164].

Training Dataset (Baseline-Model and GroupDRO-Model)

Melanoma Melanocytic
Nevus

Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis Dermatofibroma Vascular

Lesion
Squamous Cell

Carcinoma Total

D0 1248 4061 830 257 715 73 78 128 7390
D1 1680 3922 1445 303 1015 78 81 328 8852
Overall 2928 7983 2275 560 1730 151 159 456 16242

Table D.3: Number of images for each class and each subgroup for the training dataset used to train the
Balanced-Model. Compared to the training dataset used for the Baseline-Model and the GroupDRO-
Model (Table-D.2), we balance the number of samples across both subgroups, but we do not balance across
different classes. ©[2023] PMLR. Reprinted, with permission, from [164].

Training Dataset (Balanced-Model)

Melanoma Melanocytic
Nevus

Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis Dermatofibroma Vascular

Lesion
Squamous Cell

Carcinoma Total

D0 1248 3922 830 257 715 73 78 128 7251
D1 1248 3922 830 257 715 73 78 128 7251
Overall 2496 7844 1660 514 1430 146 156 256 14502
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D.1. MULTI-CLASS SKIN LESION CLASSIFICATION - SENSITIVE ATTRIBUTE: SEX

Table D.4: Number of images for each class and each subgroup in the Validation dataset for all three models
(the Baseline-Model and the GroupDRO-Model, and the Balanced-Model). The distribution of samples
across both subgroups and across different classes is similar to the Table-D.1. ©[2023] PMLR. Reprinted,
with permission, from [164].

Validation Dataset (Baseline-Model, GroupDRO-Model, and Balanced-Model)

Melanoma Melanocytic
Nevus

Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis Dermatofibroma Vascular

Lesion
Squamous Cell

Carcinoma Total

D0 138 451 92 28 79 8 9 14 819
D1 187 436 160 34 112 8 9 36 982
Overall 325 887 252 62 191 16 18 50 1801

Table D.5: Number of images for each class and each subgroup in the Testing dataset used to test all
three models (the Baseline-Model and the GroupDRO-Model, and the Balanced-Model). The distribution
of samples across both subgroups is kept similar, but it is not similar across different classes. We kept
similar distribution across both subgroups for a fair comparison of their performance, while the distribution
across different classes was not kept similar to reflect real-world scenarios where some classes can be more
frequent compared to others. ©[2023] PMLR. Reprinted, with permission, from [164].

Testing Dataset (Baseline-Model, GroupDRO-Model, and Balanced-Model)

Melanoma Melanocytic
Nevus

Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis Dermatofibroma Vascular

Lesion
Squamous Cell

Carcinoma Total

D0 594 1867 395 121 340 36 38 61 3452
D1 594 1867 395 121 340 36 38 61 3452
Overall 1188 3734 790 242 680 72 76 122 6904

Table D.6: Overall metrics (AUC, Accuracy, and Balanced-Accuracy) for a Baseline-Model trained on the
ISIC dataset at τ = 100. ©[2023] PMLR. Reprinted, with permission, from [164].

Baseline-Model AUC Accuracy Balanced-Accuracy
D0 96.24 83.02 71.77
D1 96.83 83.02 70.23
Fairness Gap 0.59 0.00 1.54

Table D.7: Overall metrics (AUC, Accuracy, and Balanced-Accuracy) for a Balanced-Model trained on the
ISIC dataset at τ = 100. ©[2023] PMLR. Reprinted, with permission, from [164].

Balanced-Model AUC Accuracy Balanced-Accuracy
D0 96.26 82.24 70.26
D1 95.92 81.66 69.42
Fairness Gap 0.34 0.58 0.74

Table D.8: Overall metrics (AUC, Accuracy, and Balanced-Accuracy) for a GroupDRO-Model trained on
the ISIC dataset at τ = 100. ©[2023] PMLR. Reprinted, with permission, from [164].

GroupDRO-Model AUC Accuracy Balanced-Accuracy
D0 95.76 80.56 70.25
D1 96.31 80.59 69.90
Fairness Gap 0.55 0.03 0.35
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Table D.9: Per class accuracy for a Baseline-Model trained on the ISIC dataset at τ = 100. ©[2023] PMLR.
Reprinted, with permission, from [164].

Baseline-Model Class-level Accuracy

Melanoma Melanocytic
Nevus

Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis Dermatofibroma Vascular

Lesion
Squamous Cell

Carcinoma
D0 65.32 91.64 85.06 61.16 80.29 63.88 71.05 55.74
D1 73.91 91.27 87.09 52.07 68.53 44.44 92.11 52.46
Fairness Gap 8.59 0.37 2.03 9.09 11.76 19.44 21.06 3.28

Table D.10: Per class accuracy for a Balanced-Model trained on the ISIC dataset at τ = 100. ©[2023] PMLR.
Reprinted, with permission, from [164].

Balanced-Model Class-level Accuracy

Melanoma Melanocytic
Nevus

Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis Dermatofibroma Vascular

Lesion
Squamous Cell

Carcinoma
D0 62.79 92.34 88.35 59.50 70.88 66.67 78.95 42.62
D1 68.52 90.95 87.59 54.55 65.88 61.11 94.74 32.79
Fairness Gap 5.73 1.39 0.76 4.95 5.00 5.56 15.79 9.83

Table D.11: Per class accuracy for a GroupDRO-Model trained on the ISIC dataset at τ = 100. ©[2023]
PMLR. Reprinted, with permission, from [164].

GroupDRO-Model Class-level Accuracy

Melanoma Melanocytic
Nevus

Basal Cell
Carcinoma

Actinic
Keratosis

Benign
Keratosis Dermatofibroma Vascular

Lesion
Squamous Cell

Carcinoma
D0 55.05 92.07 83.29 66.12 70.29 55.56 78.95 60.66
D1 63.13 90.52 82.28 59.50 68.24 50.00 81.58 63.93
Fairness Gap 8.08 1.55 1.01 6.62 2.05 5.56 2.63 3.27
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(a) Baseline Model
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(b) Balanced Model
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(c) GroupDRO Model

Figure D.1: ISIC-Sex: Overall AUC, accuracy, and Balanced Accuracy as a function of uncertainty thresh-
old for (a) Baseline-Model, (b) Balanced-Model, and (c) GroupDRO-Model on the ISIC dataset. In ad-
dition to metrics, the total number of testing images for each subgroup (D0 - Female and D1 - Male) are
shown as light colours. ©[2023] PMLR. Reprinted, with permission, from [164].
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(a) Baseline Model
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(b) Balanced Model
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(c) GroupDRO Model

Figure D.2: ISIC-Sex: Class-level accuracy as a function of uncertainty threshold for (a) Baseline-Model,
(b) Balanced-Model, and (c) GroupDRO-Model on the ISIC dataset. In addition to the accuracy, the total
number of testing images for each subgroup (D0 - Female and D1 - Male) are shown as light colours.
©[2023] PMLR. Reprinted, with permission, from [164].
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D.2. BRAIN TUMOUR SEGMENTATION

D.2 Brain Tumour Segmentation

Figure D.3: BraTS: Dice, Filtered True Positive Ratio (FTP), and Filtered True Negative Ratio (FTN) as a
function of uncertainty threshold for Baseline-Model on the BraTS dataset. Specifically, we plot Whole
Tumour (WT), Tumour Core (TC), and Enhancing Tumour (ET) QU-BraTS [162] metrics for both the D0

and D1 set. ©[2023] PMLR. Reprinted, with permission, from [164].
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D.2. BRAIN TUMOUR SEGMENTATION

Figure D.4: BraTS: Dice, Filtered True Positive Ratio (FTP), and Filtered True Negative Ratio (FTN) as a
function of uncertainty threshold for Balanced-Model on the BraTS dataset. Specifically, we plot Whole
Tumour (WT), Tumour Core (TC), and Enhancing Tumour (ET) QU-BraTS [162] metrics for both the D0

and D1 set. ©[2023] PMLR. Reprinted, with permission, from [164].
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D.2. BRAIN TUMOUR SEGMENTATION

Figure D.5: BraTS: We plot Dice, Filtered True Positive Ratio (FTP), and Filtered True Negative Ratio (FTN)
as a function of uncertainty threshold for GroupDRO-Model on the BraTS dataset. Specifically, we plot
Whole Tumour (WT), Tumour Core (TC), and Enhancing Tumour (ET) QU-BraTS [162] metrics for both the
D0 and D1 set. ©[2023] PMLR. Reprinted, with permission, from [164].
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D.2. BRAIN TUMOUR SEGMENTATION

D.2.1 Brain Tumour Segmentation - Sensitive Attribute: Imaging Cen-

tre

In this section, We use the 260 High-Grade Glioma (HGG) images from the publicly avail-

able Brain Tumour Segmentation (BraTS) 2019 challenge dataset. The image dataset is

divided into two subsets based on the imaging center. Specifically, images coming from

TCIA subset were considered in subgroup D0, while images from the rest of the imaging

center were considered in subgroup D1. A Baseline-Model and a GroupDRO-Model are

trained on a dataset of 74 samples from D0 and 124 samples from D1. While a Balanced-

Model is trained on a balanced training set with 74 samples from each subgroup.

Table D.12: Number of samples in both D0 and D1 subgroups for five different datasets: (i) Training
Dataset used to train the Baseline-Model and the GroupDRO-Model, (ii) Training Dataset used to the
train the Balanced-Model, (iii) Validation set for all three models, (iv) Testing set for all three models, and
(v) for the whole BraTS dataset. We can observe that for the BraTS dataset, there is a high disparity between
the number of samples for both subgroups. ©[2023] PMLR. Reprinted, with permission, from [164].

Training
Set Validation

Set
Testing

Set
BraTS

DatasetBaseline-Model and
GroupDRO-Model Balanced Model

D0 74 74 8 20 102
D1 124 74 14 20 158
Overall 198 148 22 40 260

Table D.13: Dice (at τ = 100) and QU-BraTS metric [161] values for Whole Tumour, Tumour Core, and
Enhancing Tumour of a Baseline-Model on the BraTS dataset. ©[2023] PMLR. Reprinted, with permission,
from [164].

Baseline-Model Dice QU-BraTS Metric
Whole Tumour Tumour Core Enhancing Tumour Whole Tumour Tumour Core Enhancing Tumour

D0 91.11 88.42 84.26 93.38 91.79 84.85
D1 91.34 86.35 83.84 92.92 90.18 85.16
Fairness Gap 0.23 2.07 0.42 0.46 1.61 0.31

Table D.14: Dice (at τ = 100) and QU-BraTS metric [161] values for Whole Tumour, Tumour Core, and
Enhancing Tumour of a Balanced-Model on the BraTS dataset. ©[2023] PMLR. Reprinted, with permission,
from [164].

Balanced-Model Dice QU-BraTS Metric
Whole Tumour Tumour Core Enhancing Tumour Whole Tumour Tumour Core Enhancing Tumour

D0 90.49 88.28 83.73 92.96 91.18 86.16
D1 91.23 83.78 81.79 92.95 89.08 85.64
Fairness Gap 0.74 4.50 1.94 0.01 2.10 0.52
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D.2. BRAIN TUMOUR SEGMENTATION

Table D.15: Dice (at τ = 100) and QU-BraTS metric [161] values for Whole Tumour, Tumour Core, and En-
hancing Tumour of a GroupDRO-Model on the BraTS dataset. ©[2023] PMLR. Reprinted, with permission,
from [164].

GroupDRO-Model Dice QU-BraTS Metric
Whole Tumour Tumour Core Enhancing Tumour Whole Tumour Tumour Core Enhancing Tumour

D0 90.45 87.63 83.84 92.35 91.03 84.38
D1 91.79 85.35 83.39 93.13 90.21 85.97
Fairness Gap 1.34 2.28 0.45 0.78 0.72 1.59

Figure D.6: BraTS-Imaging-Centre: Dice, Filtered True Positive Ratio (FTP), and Filtered True Negative
Ratio (FTN) as a function of uncertainty threshold for Baseline-Model on the BraTS dataset. Specifically,
we plot Whole Tumour (WT), Tumour Core (TC), and Enhancing Tumour (ET) QU-BraTS [161] metrics for
both the D0 and D1 set. ©[2023] PMLR. Reprinted, with permission, from [164].
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D.2. BRAIN TUMOUR SEGMENTATION

Figure D.7: BraTS-Imaging-Centre: Dice, Filtered True Positive Ratio (FTP), and Filtered True Negative
Ratio (FTN) as a function of uncertainty threshold for Balanced-Model on the BraTS dataset. Specifically,
we plot Whole Tumour (WT), Tumour Core (TC), and Enhancing Tumour (ET) QU-BraTS [161] metrics for
both the D0 and D1 set. ©[2023] PMLR. Reprinted, with permission, from [164].
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D.2. BRAIN TUMOUR SEGMENTATION

Figure D.8: BraTS-Imaging-Centre: We plot Dice, Filtered True Positive Ratio (FTP), and Filtered True
Negative Ratio (FTN) as a function of uncertainty threshold for GroupDRO-Model on the BraTS dataset.
Specifically, we plot Whole Tumour (WT), Tumour Core (TC), and Enhancing Tumour (ET) QU-BraTS [161]
metrics for both the D0 and D1 set. ©[2023] PMLR. Reprinted, with permission, from [164].
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D.3. ALZHEIMER’S DISEASE CLINICAL SCORE REGRESSION

D.3 Alzheimer’s Disease Clinical Score Regression
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(a) Baseline Model
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(b) Balanced Model
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(c) GroupDRO Model

Figure D.9: ADNI: Mean Absolute Error (MAE) of ADAS-13 (Top) and MMSE (Bottom) score predic-
tion tasks as a function of uncertainty threshold for (a) Baseline-Model, (b) Balanced-Model, and (c)
GroupDRO-Model on the ADNI dataset. Specifically, we plot RMSE for all samples as well as samples
for each of the disease stages (AD, MCI, and CN) in each subgroup (D0 - age < 70 and D1 - age ≥ 70). The
total number of samples as a function of uncertainty thresholds in are depicted with light colours. ©[2023]
PMLR. Reprinted, with permission, from [164].
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E
Appendix: Information Gain Sampling for

AL in Medical Image Classification

E.1 Tabular Results

Table E.1: Comparison of the EIG, AEIG, UIG, and CFIG based active learning sampling methods for both
the DR dataset We report the mean and std of evaluation metric across five different runs. Model perfor-
mance with the entire training set is 0.8561. ©[2022] Springer. Reprinted, with permission, from [165].

Method Percentage of Labeled Sample
10 16 22 28 34 40

EIG 0.7461 ± 0.0035 0.7677 ± 0.0043 0.7834 ± 0.0201 0.7904 ± 0.0119 0.7828 ± 0.0151 0.8019 ± 0.0035
UIG 0.7461 ± 0.0035 0.7874 ± 0.0178 0.8010 ± 0.0109 0.8088 ± 0.0078 0.8162 ± 0.0049 0.8307 ± 0.0084
PIG 0.7461 ± 0.0035 0.7637 ± 0.0066 0.7948 ± 0.0065 0.8023 ± 0.0057 0.8239 ± 0.0069 0.8278 ± 0.0063
AEIG 0.7461 ± 0.0035 0.7985 ± 0.0155 0.8197 ± 0.0072 0.8269 ± 0.0017 0.8363 ± 0.0117 0.8468 ± 0.0024
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E.1. TABULAR RESULTS

Table E.2: Comparison of the EIG, AEIG, UIG, and CFIG based active learning sampling methods for both
the ISIC dataset We report the mean and std of evaluation metric across five different runs. Model perfor-
mance with the entire training set is 0.9789. ©[2022] Springer. Reprinted, with permission, from [165].

Method Percentage of Labeled Sample
10 15.83 21.67 27.5 33.33 39.17

EIG 0.9033 ± 0.0121 0.9122 ± 0.0079 0.9277 ± 0.0032 0.9283 ± 0.0066 0.9281 ± 0.0006 0.9350 ± 0.0042
UIG 0.9003 ± 0.0121 0.9243 ± 0.0040 0.9452 ± 0.0041 0.9538 ± 0.0021 0.9624 ± 0.0021 0.9639 ± 0.0031
PIG 0.9003 ± 0.0121 0.9265 ± 0.0060 0.9443 ± 0.0038 0.9546 ± 0.0041 0.9554 ± 0.0050 0.9574 ± 0.0013
AEIG 0.9003 ± 0.0121 0.9439 ± 0.0040 0.9577 ± 0.0028 0.9681 ± 0.0046 0.9735 ± 0.0022 0.9753 ± 0.0018
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E.1. TABULAR RESULTS

Table E.3: Comparison of the Random, Entropy, CoreSet, MCD-Entropy, MCD-BALD, and AEIG based
active learning sampling methods for both the DR dataset We report the mean and std of evaluation metric
across five different runs. Model performance with the entire training set is 0.8561. ©[2022] Springer.
Reprinted, with permission, from [165].

Method Percentage of Labeled Sample
10 16 22 28 34 40

Random 0.7461 ± 0.0035 0.7774 ± 0.0088 0.7947 ± 0.0034 0.8138 ± 0.0114 0.8261 ± 0.0148 0.8329 ± 0.0040
Entropy 0.7461 ± 0.0035 0.7919 ± 0.0056 0.8154 ± 0.0035 0.8222 ± 0.0078 0.8322 ± 0.0088 0.8378 ± 0.0073
CoreSet 0.7461 ± 0.0035 0.7950 ± 0.0208 0.8065 ± 0.0070 0.8114 ± 0.0072 0.8295 ± 0.0022 0.8309 ± 0.0035
MCD-Entropy 0.7461 ± 0.0035 0.7925 ± 0.0132 0.8036 ± 0.0055 0.8218 ± 0.0026 0.8333 ± 0.0126 0.8424 ± 0.0127
MCD-BALD 0.7461 ± 0.0035 0.7951 ± 0.0125 0.8155 ± 0.0011 0.8225 ± 0.0044 0.8273 ± 0.0077 0.8344 ± 0.0130
AEIG 0.7461 ± 0.0035 0.7985 ± 0.0155 0.8197 ± 0.0072 0.8269 ± 0.0017 0.8363 ± 0.0117 0.8468 ± 0.0024

Table E.4: Comparison of the Random, Entropy, CoreSet, MCD-Entropy, MCD-BALD, and AEIG based
active learning sampling methods for both the ISIC dataset We report the mean and std of evaluation metric
across five different runs. Model performance with the entire training set is 0.9789. ©[2022] Springer.
Reprinted, with permission, from [165].

Method Percentage of Labeled Sample
10 15.83 21.67 27.5 33.33 39.17

Random 0.9003 ± 0.0121 0.9213 ± 0.0021 0.9419 ± 0.0028 0.9499 ± 0.0044 0.9559 ± 0.0030 0.9589 ± 0.0041
Entropy 0.9003 ± 0.0121 0.9385 ± 0.0026 0.9567 ± 0.0072 0.9649 ± 0.0039 0.9714 ± 0.0023 0.9755 ± 0.0034
CoreSet 0.9003 ± 0.0121 0.9426 ± 0.0028 0.9561 ± 0.0030 0.9642 ± 0.0011 0.9703 ± 0.0015 0.9745 ± 0.0014
MCD-Entropy 0.9003 ± 0.0121 0.9372 ± 0.0047 0.9519 ± 0.0030 0.9651 ± 0.0023 0.9707 ± 0.0010 0.9743 ± 0.0034
MCD-BALD 0.9003 ± 0.0121 0.9410 ± 0.0067 0.9540 ± 0.0044 0.9672 ± 0.0024 0.9694 ± 0.0049 0.9747 ± 0.0020
AEIG 0.9003 ± 0.0121 0.9439 ± 0.0040 0.9577 ± 0.0028 0.9681 ± 0.0046 0.9735 ± 0.0022 0.9753 ± 0.0018
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