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July, 2022

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of Master of Science.

©Lucy Grossman 2022



Contents

1 Introduction 6

2 Physics Concepts and Calculations 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Physics Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 The Noether Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 The BRST Procedure - Inverting the Faddeev-Popov Determinant . . 12

2.2.3 Vertex (Operator) Algebras and Operator Product Expansions . . . . 16

2.2.4 Central Charge and Worldsheet Energy-Momentum Tensor . . . . . . 19

2.3 The bc and βγ CFTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 the BC-CFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 The Worldsheet NSR Superstring . . . . . . . . . . . . . . . . . . . . . . . . 27

3 The BV-BRST Formalism 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 The BRST Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 The BV Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 The BV-BRST Double Complex . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 The Cotangent Action Lie Algebroid . . . . . . . . . . . . . . . . . . . . . . 41

4 Factorization Algebras 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Prefactorization Algebras and Factorization Algebras . . . . . . . . . . . . . 47

1



4.3 Formal Moduli Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Connection of Formal Moduli Problems to L∞ Algebras . . . . . . . . 58

4.3.2 Fundamental Equivalence . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 From Formal Moduli Problems to Factorization Algebras . . . . . . . . . . . 61

4.4.1 Between Maurer–Cartan Equations and Physical Fields . . . . . . . . 62

4.4.2 The Prefactorization Algebra Structure on Physical Observables . . . 65

4.4.3 The Factorization Algebra Structure on Physical Observables . . . . . 65

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2



Abstract
In this predominantly expository thesis we describe the worldsheet Neveu-Schwarz-Ramond

(NSR) superstring of high energy physics and factorization algebras. After providing some

context for the aforementioned theory as well as the bc conformal field theory using com-

mon tools and constructions of theoretical physics, we explain how to implement the Becchi-

Rouet-Stora-Tyutin (BRST) and Batalin-Vilkovisky (BV) formalisms to represent the ghosts

and antifields, respectively, of any perturbative classical field theory described by an action

functional and with a group of symmetries, actually forming a double complex (the BV-

BRST complex) characterizing all of those fields and their symmetries and whose cohomol-

ogy groups describe the observables of the theory and have the structure of a factorization

algebra. Correspondingly, we explain how the equations of motion for the entire theory

(fields, ghosts, antifields, and antighosts) can be portrayed in terms of an L-infinity algebra,

which can be shown to be equivalent to a based formal moduli problem that encodes the

perturbative behavior of the theory. This formal moduli problem forms a sheaf on the world-

sheet, which implies that the algebra of functions over it has the structure of a factorization

algebra. The majority of this thesis focuses on clarifying these relationships so as to abet

the understanding of these perspectives on classical field theory.
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Résumé
Dans cette thèse principalement explicative, nous décrivons la théorie des supercordes

type Neveu-Schwarz-Ramond (NSR) sur une surface d’univers et les algèbres de factorisa-

tion. Nous commençons par fournir un molé de contexte de la théorie susmentionée ainsi que

de la théorie classique conforme des champs bc. Dans ce but, nous utilisons des outils et con-

structions standards de la physique théorique. De plus, nous expliquons comment mettre en

œuvre les formalismes de Becchi-Rouet-Stora-Tyutin (BRST) et de Batalin-Vilkovisky (BV).

Le formalisme BRST décrit les champs fantômes de n’importe quelle théorie perturbative

classique des champs possédant un groupe de symétrie et gouvernée par une fonctionnelle

d’action. En outre, le formalisme BV précise les anti-champs d’une telle théorie. Les deux

se réalisent en un double complexe différentiel (le complexe BV-BRST) qui encode tous ces

champs et dont les groupes de cohomologie caractérisent les observables et présentent la struc-

ture d’une algèbre de factorisation. Parallèlement, nous illustrons comment les équations du

mouvement de la théorie au complet (incluant tous les champs, champs fantômes, anti-

champs, et anti-champs fantômes) peuvent être représentées comme une algèbre L-infinie.

En particulier, on peut montrer que celle-ci est équivalente à un problème de modules formel

avec point de base qui décrit le comportement perturbatif de la théorie. Ce problème de

module formel constitue un faisceau, ce qui implique que l’algèbre des fonctions sur celui-ci

forme une algèbre de factorisation. La majorité de cette thèse vise à clarifier ces relations

afin d’encourager la compréhension des différentes perspectives de la théorie classique des

champs.
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Chapter 1

Introduction

Modern high energy physics has and continues to provide a bounty of mathematical in-

spiration and examples. One particularly rich instance of this is string theory. Evolving

throughout the 20th century, the framework of string theory was shown during what is now

called the first superstring revolution, to be able to describe not only the particles of the

standard model, but also, hearkening back to its roots in S-matrix theory, their interactions.

The theories that could encompass both bosonic and fermionic particles became known as

superstring theories, and it is one of these, the type II superstring that shall be most discussed

in this exposition.

The measurable quantities, or observables of a given physical theory are of particular in-

terest to physicists and mathematicians alike: among other reasons, by checking the behavior

of observables, the former may use them to determine how accurately a model is describing

nature, and to the latter, measurable quantities offer an inroad into potential methods of

formalization of perhaps then-hitherto ad-hoc constructions as well as inspiration for math-

ematical exploration in new directions. In this document, we will look at one algebraic

construction, that of factorization algebras at the interface of several areas of mathematics

and physics.

The journey to get from a classical field theory of physics to a description of its observables

in terms of factorization algebras passes through several regions of mathematics, with one

possible path as follows: given a particular classical field theory, one may apply the Batalin–

Vilkovisky – Becchi–Rouet–Stora–Tyutin (BV-BRST) procedure to it to describe the theory
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in full, complete with ghosts, anti-fields, and anti-ghosts. This will produce a double complex,

the total complex of which gives the sought-after cochain complex. The physical observables

of the theory are then described by the cohomology groups of that complex, and these can

be shown to form what looks like a cosheaf with respect to the tensor product instead of

direct sum, i.e. a factorization algebra.

Let X be the space of fields of a classical field theory, and G denote its symmetry group.

Here we assume thatX has at least the structure of a vector space andG is finite-dimensional,

though in many practical applications, one works with an infinite dimensional symmetry

group. Looking infinitesimally, the space of fields can be described by the quotient X/g,

where g is the Lie algebra corresponding to G. One tractable way to examine this quotient

is to look at it dually, i.e. to inspect the algebra of functions on X/g. In the cases that we

are looking at, this space will be the derived critical locus of some action functional, and the

algebraic dual to the homotopy quotient X/g will be the BV-BRST double complex of the

physical theory. It is the cohomology groups of this complex that then describe the physical

observables, and also have the structure of factorization algebras.

This, however, is only one facet of the picture: a classical field theory can also be shown

to correspond to a pointed elliptic formal moduli problem. This is illuminating as to the

structure of the fields and observables of the theory since there is an equivalence of categories

between formal moduli problems and L∞ algebras, where the functor associating to an

L∞ algebra a formal moduli problem is the Maurer–Cartan functor. Modulo the choice of

basepoint of the formal moduli problem, the Maurer–Cartan elements of the L∞ algebra

(here actually considered as a differential graded Lie algebra (dgLa) by that the brackets

above degree 2 are set to zero) correspond directly to the solutions of the Euler-Lagrange

equations, i.e. the physical fields. In fact, taking the symmetric algebra of this dgLa returns

the BV–BRST complex, giving a way to algebraically interpret what could also be viewed as

a map of simplicial sets. In the context of physics, it is possible to, in many cases, at least

obtain the information of the BRST complex directly (we mention one strategy for this, the

inversion of the Faddeev–Popov determinant, in the second chapter), so this whole picture

is not used. At various points in this text, though, we will touch upon the examples of the

bc conformal field theory (CFT) and the worldsheet NSR type II superstring, though not at
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every step of the way.

In this predominantly expository thesis, we aim to explain the type II superstring and

factorization algebras. In the second chapter, we present some standard tools and compu-

tations from field theory, and become acquainted with the worldsheet NSR model for the

type II superstring from the perspective of high energy physics. In the third chapter, the

BV–BRST complex double complex for a classical field theory with a symmetry group and

described by an action functional is introduced. In the fourth chapter, prefactorization and

factorization algebras are introduced, and the path from formal moduli problems to factor-

ization algebras is sketched, along with a means by which to describe a field theory governed

by an action functional in this framework.
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Chapter 2

Physics Concepts and Calculations

2.1 Introduction

The field theories in focus as examples in this exposition will be the closely-related bc− and

βγ−conformal field theories (CFTs) and the worldsheet Neveu–Schwarz Ramond (NSR)

superstring, all free field theories over a one-complex-dimensional worldsheet, a complex

manifold Σ. Physical models amenable to further mathematical description include such

sigma-model field theories, so we examine those here from a physical perspective. We will

begin the chapter with an introduction of some common methods in high energy physics,

and subsequently apply those to the three example field theories.

All of the physical theories we consider here have transformations under which the field

content of the theory is invariant. In this treatise, it is assumed that these symmetries form

a group, the gauge group. Note that this is different than the notion of global symmetry

found in physics: the former indicates that there is some notion of physical equivalence of all

of the states in the same orbit of the gauge group, while the latter concerns symmetries on

the space of physical states. Global symmetries are invariant under the parametrization of

the theory, so no matter which action functional is chosen, these symmetries will be present.

The bc−CFT is a theory of two anticommuting tensor fields, b of weight (λ, 0) and c of

weight (1− λ, 0) for λ ∈ Z≥0 governed by the complex worldsheet action

Sbc =

∫
Σ

dzdz̄b∂̄c.
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The βγ theory is analogous, except that β and γ commute. While the bc−CFT can be treated

as its own theory, it also naturally arises from the application of the BRST procedure to the

bosonic string described by the Polyakov action as seen in [10, Equation 1.2.13],

SP [X, g] = − 1

4πα′

∫
Σ

dτdσ(−g)
1
2 gab∂aX

µ∂bXµ. (2.1)

Foreshadowing to the NSR worldsheet superstring, we may write this action, under a change

of variables on a flat worldsheet,

(σ, τ) 7→ (σ1, σ2) 7→ (z, z̄)

where the first transformation is relabeling and the second is z = σ1 + iσ2, z̄ = σ1 − iσ2, as

SP =
1

2πα′

∫
Σ

d2z∂Xµ∂̄Xµ (2.2)

for Xµ(z, z̄), often written without the variable dependence when that is presented by the

context, a scalar field. The equation of motion for Xµ is ∂∂̄Xµ = 0. One may show, as

is stated in [10, Chapter 1.2], that SP is invariant under Weyl transformations, or local

rescalings of the worldsheet metric γab, i.e. transformations of the form

γ′ab = exp(2ω(τ, σ))γab(τ, σ)

and diffeomorphism transformations, or worldsheet coordinate changes:

∂σ′c

∂σa
∂σ′d

∂σb
γ′cd(τ

′, σ′) = γab(τ, σ),

where in the cases of both diff and Weyl transformations, Xµ(τ, σ) does not change.

By studying these theories, in particular their symmetries, associated Noether conserved

currents, and associated vertex operator algebras, we will gain much insight into the NSR

superstring.

There are at least three ways to describe the superstring action: Neveu-Schwarz Ramond,

Green-Schwarz, and Berkovits Pure-Spinor. In this exposition, we will be looking at the

formermost. Without BRST-ghosts but with BV-antifields, this action is governed by the

worldsheet action, Equation 10.1.5 of [11]:

SNSR =
1

2πα′

∫
Σ

dzdz̄∂Xµ∂̄Xµ + ψµ∂̄ψµ + ψ̃µ∂ψ̃µ

where the field content is as follows:
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• Xµ is the sigma model map, i.e. a smooth map from the worldsheet to the target

space.

• ψµ is a tensor of weight (1
2
, 0), and

• ψ̃µ is a tensor of weight (0, 1
2
).

The fields with tildes throughout this exposition will denote the antifields of a theory. They

arise as a consequence of the BV formalism, as will be explained in the subsequent chapter.

Formally, each summand of this action with the exception of the first one, which is the

Polyakov action on a flat worldsheet (this free bosonic theory is essentially the subject of [10],

and we direct the reader there for further information), (2.2), resembles a bc or βγ model,

so before delving into SNSR, so our strategy will be to explore some properties of those free

conformal field theories and then relate those findings to the NSR worldsheet superstring.

2.2 Physics Constructions

In the following sections, we will use some standard tricks, concepts, and computational

tools familiar to many practitioners of physics. To promote clarity in that explanation, we

introduce those here.

Most of these constructions are related by that all of the physical theories we consider

here have symmetry groups. By varying the action by the symmetry transformations gen-

erating these groups, we may, by way of the Noether procedure, obtain the corresponding

(conserved) currents. Alternatively, one can perform the BRST procedure, encoding some of

these symmetries as additional fields, ghost fields, of the theory. The currents resulting from

the Noether procedure, however, are themselves often informative, as the coefficients of their

terms reveal information about the theory, such as its central charge. This central charge,

which can be shown to commute with all operators in the theory, is a representative of the

center of the symmetry group of the theory, and thus partially specifies the vertex operator

algebra of the theory.
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2.2.1 The Noether Procedure

Noether’s theorem associates to any local and continuous symmetry a conserved current,

which can be integrated to find a corresponding charge. Through the standard derivation of

this theorem, one can read off what that current is explicitly for a given symmetry.

The Noether procedure works via the following steps:

1. Find a small local parameter (this will be denoted by ϵ here) and multiply this by a

chosen field-wise symmetry transformation of the theory.

2. Vary the action with respect to ϵ: S 7→ δS.

3. Insert all linear-order-in-ϵ behavior of the field a as δa in δS; integrate by parts to

rearrange as necessary.

4. Note that if the transformation of a induced by the variation is a symmetry, the

variation of the action will vanish, indicating that the term multiplying the ∂̄ϵ term(s)

in the action must also be equal to zero (while infinitesimal, ϵ is not itself 0).

5. Read off the term that must be 0 from 4. as the current corresponding to the symmetry.

In this procedure, it was not necessary to start with a symmetry of the action, but only by

using that δS vanishes (by virtue of the transformation being a symmetry) is it possible to

so read off a corresponding conserved current.

2.2.2 The BRST Procedure - Inverting the Faddeev-Popov Deter-

minant

Given a field theory with gauge symmetries, it is in some sense possible to encode these

symmetries as extra fields, ghost fields, whose behavior is described by a ghost action. The

original action without gauge symmetries summed with the ghost action will describe the

same theory as the original action replete with gauge symmetries. The formalism used

to convert these symmetries into fields is called the Becchi–Rouet–Stora–Tyutin (BRST)

procedure, and is the BRST portion of the method alluded to in the introduction. While we
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will explore this formalism mathematically to a further extent in the next chapter, we will

provide here a way of explicitly computing the ghost fields given a classical gauge theory.

The BRST formalism is a way of discerning which fields in a space are physical and which

encode symmetries, and then describing the latter as ghosts via a prescribed procedure well

detailed in [10, Section 5.3].

In a field theory with a symmetry group, it is possible that multiple fields will be in the

same orbit of the symmetry group, and in that sense equivalent. In the case of a gauge

theory, this is what is known as “gauge equivalence”. The physical fields of a theory are only

those that are not directly related by symmetry transformation, i.e. in such a theory with

symmetry group, a physical field is a representative of its equivalence class under the action

of the symmetry group. The BRST procedure offers a way to identify each generator of this

symmetry group with an extra field in the theory, expanding the field space, but reducing

the redundancy caused by the identification of fields in the same orbit under the symmetry

group’s action.

In this section, we will mention some points of the BRST formalism, but refer to the

source for more specifics. The mathematical interpretation and implementation of BRST

will be further elaborated upon in the next chapter.

The path integrals corresponding to actions with any sorts of gauge symmetries are

in a sense “ill-defined” because they sum over several physically-equivalent configurations,

with this redundancy emanating from that two fields are considered equivalent, i.e. they

describe the same physics, if they differ by a gauge transformation. One way to deal with

this overcounting is by somehow summing only over the inequivalent configurations. Some

intuition as to how to enact this is as follows:

1. Consider gauge-equivalent states as members of the same orbit of the gauge group.

Then take a “slice” of the gauge group action that intersects each orbit only once. This

is mathematically implemented via delta functions: for each gauge transformation η

(and thus each orbit of the gauge group), insert a factor δ(p− p̂η) into the path-integral

integrand for p some parameter (in bosonic string theory, p is usually the worldsheet

metric g) and p̂η a value for p gauge fixed using the gauge symmetry η (note that

here p̂η is some particular value: while we will range over η when considering all such

13



gauge-fixed p, in each δ only one single value of η is considered). It only will count the

gauge orbit once, as the delta function vanishes unless p = pη. One could then apply

this to each gauge orbit and sum over the thereby constrained orbits to describe the

slice.

2. When changing point of view to just look at this “slice” with respect to p there will

be some sort of Jacobian. This is defined as

∆FP [p] :=
1∫

Dpδ(p− p̂η)

where integration is over the moduli space of p (in practice this could be, for instance,

the moduli space of worldsheet metrics) and the measure of integration, Dp, is left- and

right-invariant under the action of the gauge group. ∆FP is called the Faddeev-Popov

determinant, and it is this that will serve as the measure just on the slice, and will end

up returning the ghosts.

3. To calculate ∆FP , one uses the following trick, based on the definition of ∆FP from 2.

Since

1 = ∆FP

∫
Dpδ(p− p̂η),

one may insert this right-hand-side quantity multiplicatively into any path integral

without any immediate consequence. This procedure is local, so expanding p in a small

neighborhood allows for the calculation of ∆−1
FP perturbatively. In terms of conformal

symmetries and the Polyakov action, (2.1), with p = gαβ, the worldsheet metric, this

looks like

gα,β 7→ δgαβ = 2δωgα,β −∇ασβ −∇βσα

for ω parametrizing a Weyl transformation and σ a diffeomorphism transformation.

We may rewrite this transformation as [10, Equation 3.3.16].

δgα,β = (2δω −∇γδσ
γ)gαβ − 2(Pδσ)αβ

14



where ([10, Equation 3.3.17]) P is the following operator from vectors to symmetric,

traceless 2−tensors,

(Pδσ)αβ =
1

2

(
∇αδσβ +∇βδσα − gαβ∇γδσ

γ

)
.

This allows one calculate that the Jacobian inverse of the Faddeev-Popov determinant

is

∆−1
FP [ĝ] =

∫
[dβ′dδσ]exp

(
4πi

∫
d2σĝ

1
2β′αβ(P̂ δσ)αβ

)
,

which is [10, Equation 3.3.18] for β a symmetric traceless 2−tensor.

4. The Jacobian for the coordinate transformation has been found, and it remains to find

the Faddeev-Popov determinant, which is by definition the inverse of this Jacobian.

One way to invert a path integral is to switch the even variables with Grassmannian

ones. In the example of 3., the coordinate transformations are

β′
αβ ↔ bαβ

and

δσγ ↔ cγ

so the Faddeev-Popov determinant can be written as

∆FP [g] =

∫
[dbdc]exp

(
4πi

∫
d2σĝ

1
2 bαβ(P̂ c)αβ

)
=

∫
[dbdc]exp[−Sgh],

where Sgh is the ghost action. In summary, by avoiding overcounting via looking

only at the “physical” modes, through integrating over one point only in each gauge

orbit, one implements a change of frame, requiring a coordinate-change Jacobian. The

inverse of this quantity, necessary in the calculation of the Jacobian (from the insertion

of 1), causes the appearance of a ghost fields (arising from the inversion of the path

integral by replacing even variables with Grassmann ones). In the case of the bosonic

string, and indeed that of the superstring, the ghost action wrapping them is the bc

action, or some linear combination of bc−action factors, to be elaborated upon in the

forthcoming.
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2.2.3 Vertex (Operator) Algebras and Operator Product Expan-

sions

The objective of an operator product expansion (OPE) is to explain the behavior of two

operators (fields) in the vicinity of one another over a complex worldsheet. Computationally,

this consists of expanding the operators around some point between them, in what amounts

to a Laurent expansion. Since these expansions are formal power series, the OPE is valid both

in the perturbative and non-perturbative regimes, though only the former will be considered

in this document. Given a two-dimensional CFT 1, there are multiple common axiomatic

approaches to the OPE. One is to derive it from the vertex operator algebra of the theory,

and another is to take it as an axiom of the theory. This latter option is frequently what

is done in practice, though the formalism for the former does exist in several cases. In

this section, we will introduce vertex operator algebras following [2] and explain from the

definition how they encode the state-operator correspondence and also induce the operator

product expansion. To begin, we overload the term “field”.

Definition 2.2.1. [2, Definition 5.0.1.1] For V a vector space, a formal power series a(z) =∑
n∈Z anz

−n ∈ EndV [[z, z−1]] is called a field if for each v ∈ V , there exists some N ∈ N

such that aiv = 0 for all i > N .

The notion of field defined directly above does not usually correspond with that of classical

field theory, where the fields are often sections of some bundle(s) over the worldsheet or target

space of the theory. As explained in [2], one way of looking at fields in this context (i.e. that

of vertex operator algebras) is as observables supported at points, or as operators.

Definition 2.2.2. [2, Definition 5.0.1.2] A vertex algebra consists of the following data

• The state space, a C−vector space V

• a vacuum vector, a nonzero vector |0⟩ ∈ V ;

• a shift operator, a linear map T : V → V ; and

1The machinery of the OPE exists in some cases for higher-dimensional conformal field theories, but the

relationship between the OPE and the vertex operator algebra is not yet as clear there.
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• the vertex operation, a linear map Y (−, z) : V → EndV [[z, z−1]] associating to each

vector a field.

satisfying the following axioms.

• The vacuum axiom: Y (|0⟩, z) = idV and Y (v, z)|0⟩ ∈ v + zV [[z]] for all v ∈ V .

• The translation axiom: [T, Y (v, z)] = ∂zY (v, z) for each v ∈ V and T |0⟩ = 0.

• The locality axiom: For any pair of vectors v1, v2 ∈ V , there exists N ∈ N ∪ {0} such

that (z − w)N [Y (v1, z), Y (v2, w)] = 0 as elements of EndV [[z±1, w±1]].

Let us clarify what some of these requirements and axioms mean and imply in the world of

conformal field theories. The state space is taken to be the (Hilbert) space of (physical) states

associated to the theory. It would also be possible to view the non-physical states in this

way. The vacuum vector corresponds to the vacuum state, or the lowest-energy physical state

possible for the theory (the bottom rung of the ladder for the classical harmonic oscillator, or

|0⟩, for instance). The shift operator is a technical tool, allowing navigation between states

within the state space. The vertex operation assigns a field to each vector. Now, if one

views these fields as operators, this can be interpreted as an encoding of a state-operator

correspondence, which is a principle of field theory stating that it is possible to describe

all physical states of a theory in terms of local operators, such as the power series living

in EndV [[z, z−1]]. Frequently, computations can take place either in the state space or the

operator space, so this vertex operation offers a practical convenience in providing a way to

navigate between those spaces. It is the axioms that give us a way to calculate the operator

product expansion for a particular theory. We will give a definition of the operator product

expansion and then explain how it is related to these three axiomata.

Definition 2.2.3. Let z, z1, z2 ∈ C be points on the complex plane, U\{0} be an open

neighborhood of z1, and Fi, Fj ∈ EndV [[z, z−1]] fields in the context of vertex algebras.

Then, the operator product expansion, locally, inside of U , is the sum

Fi(z1)Fj(z2) :=
∑
j∈Z

fkij(z1 − z2)Fk(z2) (2.3)

for fk analytic functions and Fk an operator determined by Fi and Fj.

17



This is a local expression depicting what happens when two fields approach each other

in a small neighborhood. One may show that while 2.3 is convergent for all CFTs, there are

many other field theories with OPEs that have infinite radii of convergence. Notice that the

OPE is of the form of a sum of terms like Y (v, z) from the definition of a vertex operator.

The translation axiom will tell us how to calculate the OPE of fields that are described in

terms of partial derivatives, with the partial derivative corresponding in the vertex algebra

picture to a change in location in the vector space of physical states, i.e. the shift operator

generates translations in z. The locality axiom says that the commutator of operator product

expansions in this context terminates. In the body of this chapter, we will see examples of

the OPE calculation, and one may also visit chapter 2 of [10] for another perspective on this

material.

Computation of the OPE

Given a particular classical field theory, the calculation of the operator product expansion can

be done with the assistance of the Green’s functions (or correlation functions) of the theory.

Physically the correlation functions give S-matrix elements in the form of vacuum expectation

values for time-ordered products of fields. Green’s functions seen mathematically, each as a in

some sense piecewise solution to a differential equation, found by setting that equation equal

to a delta function for each possible point and then solving pointwise, define the Feynman

propagators for any fields. There is some subtlety here regarding the form of the solutions

to the differential equation, since the background geometry of the space upon which the

solutions are being sought can contribute.

The procedure of obtaining the operator product expansion given a particular field theory

works as follows.

1. Obtain the equations of motion from the Lagrangian of the theory.

2. Use the Euler–Lagrange equations as the linear differential operator L and solve the

following equation

LG = δ

18



for G, the Green’s function corresponding to the Euler–Lagrange equation. Do this for

each equation of motion of the theory.

3. Substitute the Green’s functions for their corresponding fields (i.e. the ones from

whose equations of motion they are derived) in the expression to obtain OPE. If there

is an additional differential operator present in the problem, apply this to the Green’s

function (for instance, if one has found the Green’s function for c in the bc−CFT, but

is faced with a term of the form ∂̄c, apply ∂̄ to the Green’s function with which c is

replaced).

4. Using some convention for normal ordering, calculate the operator product expansions.

In the subsequent sections of this chapter, we will come across instances where this

procedure was used to obtain correlation functions and then the operator product expansion.

2.2.4 Central Charge and Worldsheet Energy-Momentum Tensor

If the symmetries of a classical field theory form a group, G, it may be possible to form central

extensions thereof. Fix a classical field theory and a central extension. The generators of the

central extension will be entities in the center of G, and correspond, via the afore-described

Noether procedure, to a conserved current. The integral of this current returns a “charge”,

the central charge of the theory. In practice, such a current is the operator product expansion

of the worldsheet stress-energy tensor of the theory with itself, and the central charge will

generally be the coefficient of the 1
z2

term in that expansion.

2.3 The bc and βγ CFTs

Now that we have working apparatus for exploring physical theories, we will examine the

bc and βγ conformal field theories over a Riemann surface worldsheet without boundary Σ

that are integral to the superstring action. The bc and βγ field theories are formally nearly

alike, differing in the commutativity of the fields: b and c anticommute, whereas β and γ

commute. Due to these extreme similarities, we will work through the details for the bc
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theory and make mentions along the way of how the analogous results look for the βγ one.

We essentially follow the presentation in [10, Section 2.5].

Let (z, z̄) be (anti)holomorphic coordinates on Σ. The fields of the bc−theory are an-

ticommuting tensor fields b(z, z̄) and c(z, z̄) (frequently just written as b and c, with the

variable dependence assumed) of weights (λ, 0) and (1−λ, 0) respectively. These tensors are

“fields” in the context of classical field theory, and when we henceforward refer to fields, we

will mean the term in this sense unless otherwise specified. The action of the bc theory is

S =
1

2πα′

∫
Σ

dzdz̄b∂̄c

An anti-version of this can be developed, but it is formally the same as this theory, with

anticommuting tensor fields b̃(z, z̄) and c̃(z, z̄) of weights (0, λ) and (0, 1−λ) respectively. In

the b̃c̃−action, due to the weights of the fields as tensors, ∂ replaces ∂̄. Here α′ is a constant

called the string tension, and, frequently, dzdz̄ will be denoted by d2z. In this section we will

focus on the bc theory since under the analogy just above, computations in b̃c̃ CFT follow

using the same methods. We first vary the action and set that variation to zero to obtain

the equations of motion for b and c.

0 = δS =
1

2πα′

∫
Σ

d2z(δb∂̄c︸︷︷︸
A

+ b∂̄δc︸︷︷︸
B

) (2.4)

Now integrating summand B by parts (with respect to ∂̄):

B =
1

2πα′

(∫
∂Σ

d2zbδc−
∫
Σ

d2zδc∂̄b

)
=

1

2πα′

∫
Σ

d2zδc∂̄b

since Σ has no boundary and b and c anticommute. Looking at A and what remains of B

together then gives

δS =

∫
Σ

d2z(δb∂̄c+ δc∂̄b)

Inside the integral composing δS there are two variations such that

δS =
δS

δb
δb+

δS

δc
δc.
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Since the variation was set to zero at the outset, this means that both δS
δb

and δS
δc

must be

equal to zero, and the means of achieving this gives the equations of motion:

∂̄b = 0

and

∂̄c = 0.

With the action and equations of motion in hand, a next step is to calculate the energy-

momentum tensor(s) TB (and T̃B, though we will only actually calculate the former, and

appeal again to analogy to obtain the latter) and central charge(s) ℵ (and ℵ̃) of the bc

theory. We will continue only to work with the bc theory, but the arguments all apply for

the b̃c̃ theory, as well.

To calculate the energy-momentum tensor of the bc theory, we use the Noether procedure

with conformal transformations. Our first step is to ascertain how b and c transform under

a conformal transformation, z 7→ z + ϵ(z) for ϵ(z) holomorphic and small:

b(z) 7→
(
1 +

∂ϵ

∂z

)λ

b(z + ϵ(z))

= b(z) + λ∂ϵ(z)b(z) + ϵ(z)∂(b(z)) + O((ϵ(z))2),

where we have only written the z−dependence of b(z, z̄) since it is there that this coordinate

transfomation is implemented. Since ϵ is an infinitesimal parameter, the terms in the above

transformation above linear order shall be ignored. The transformation of c(z, z̄) is up to this

order the same, except for that the multiplicative factor of λ is replaced by one of (1 − λ),

reflecting the (tensorial) weight of the field c.

In this case, the current from using the conformal transformations of b and c as indicated

above will be the energy-momentum tensor, TB, of the bc CFT. In the language of the

introductory sections on the OPE and energy-momentum tensor, calculating this current

and taking the operator product of it with itself will describe the central extension of the

symmetry group generated by the above conformal transformation. Recall Equation (2.4),

the variation of the bc action. Now, varying with respect to conformal transformations, we
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obtain

δS =
1

2πα′

∫
Σ

d2z([λ∂ϵ(z)b(z) + ϵ(z)∂b(z)]∂̄c(z) + b∂̄[(1− λ)∂ϵ(z)c(z) + ϵ(z)∂c(z)])

=
1

2πα′

∫
Σ

d2z(1− λ)b(z)∂̄∂ϵ(z)c(z) + b(z)∂̄ϵ(z)∂c(z).

Integrating by parts again, this time in terms of ∂, and only on the first term delivers

=
1

2πα′

(
(1− λ)

(∫
∂Σ

d2zb(z)c(z)∂̄ϵ(z)−
∫
Σ

d2z(∂̄ϵ(z)∂(b(z)c(z))

)
+

∫
Σ

d2zb(z)∂̄ϵ(z)∂c(z)

)
where again the boundary integral vanishes since M is assumed to have no boundary. Now

arranging the material inside the integrals by factoring out ∂̄ϵ(z):

δS =
1

2πα′

(∫
Σ

d2z((1− λ)∂̄ϵ∂(bc) + b∂̄ϵ∂c)

)
=

1

2πα′

(∫
Σ

d2z∂̄ϵ((−(1− λ)(∂(bc))) + b∂c)

)
The sought-after current is then given by the terms multiplying ∂̄ϵ:

(−(1− λ)(∂(bc))) + b∂c) = (λ− 1)(∂(bc) + b∂c

= (λ− 1)(∂bc+ b∂c) + b∂c

= (λ− 1)(∂bc) + λ(b∂c).

In free field theories, normal ordering conventions are established to determine how prod-

ucts of operators are computed, and to agree with what is often seen in the literature (see

for example the :: normal ordering of [10]), one may insert normal ordering symbols (here

reflecting that same :: normal ordering) into the above expression to obtain

T (z) = −(1− λ) :∂bc :+λ :b∂c : . (2.5)

One may also calculate the “antiholomorphic” energy-momentum tensor, T̃B, but in the case

of a theory such as this one where all of the variations take place on the z−coordinate, all

terms vanish, leaving

T̃B(z̄) = 0.

Notice that if the variations of b and c were functions of z̄ and not of z, the antiholomorphic

T̃B would have the form the holomorphic one does here and vice versa. This is important for

22



the anti-fields later to be introduced: they will essentially be the antiholomorphic versions

of the fields to which they correspond.

By taking the operator product expansion of this energy-momentum tensor with itself,

one may obtain the central charge of the bc theory. Here this calculation will be demonstrated

for the bc theory, still with unspecified weights, and in the next section the result, calculated

in the same manner, will be documented for the commuting βγ theory. First to note is that

the energy-momentum tensor from before can be rewritten as follows:

T (z) = −(1− λ) :∂bc :+λ :b∂c :

= − :∂bc :+λ :∂bc :+λ :b∂c :

= λ∂ :bc :− :∂bc :

This agrees with [10, Equation 2.5.11a] up to a sign. Now calculating the OPE:

T (z1)T (z2) = (λ∂ :b(z1)c(z1) :− :∂b(z1)c(z1) :)(λ∂ :b(z2)c(z2) :− :∂b(z2)c(z2) :)

= λ2∂ :b(z1)c(z1) :∂ :b(z2)c(z2) :︸ ︷︷ ︸
A

−λ∂ :b(z1)c(z1) ::∂b(z2)c(z2) :︸ ︷︷ ︸
B

− λ :∂b(z1)c(z1) :∂ :b(z2)c(z2) :︸ ︷︷ ︸
C

+:∂b(z1)c(z1) ::∂b(z2)c(z2) :︸ ︷︷ ︸
D

Dealing with each term individually, and where ∼ denotes “has terms that are the most

singular proportional to” let

A = λ2∂z1∂z2(b(z1)c(z1)b(z2)c(z2)) ∼ ∂z1∂z2

(
λ2

(z1 − z2)2

)
∼ −6λ2

(z1 − z2)4

B = −λ(∂(b(z1)c(z1))∂b(z2)c(z2)) ∼ −λ∂z1
((

∂z2

(
1

z1 − z2

))(
1

z1 − z2

))
∼ 3λ

(z1 − z2)4

C = −λ(∂b(z1)c(z1)∂(b(z2)c(z2))) ∼ −λ∂z2
((

∂z1

(
1

z1 − z2

))(
1

z1 − z2

))
∼ 3λ

(z1 − z2)4

D = ∂z1b(z1)c(z1)∂z2b(z2)c(z2) ∼ ∂z1

(
1

z1 − z2

)
∂z2

(
1

z1 − z2

)
∼ −1

(z1 − z2)4
,

where we note that the singularities in these OPEs come from the replacement of b and c

by their corresponding Green’s functions, as described in the prior section on computing the

OPE. Combining numerators of A, B, C, and D, we obtain, where the central charge, ℵ is

the coefficient of the 1
2z4

term in this case,

ℵ = 2(−6λ2 + 6λ− 1) = −12λ2 + 12λ− 6.
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Similarly, since T (z̄) = 0, the corresponding central charge is

ℵ̃ = 0.

This calculation looks only at singular behavior, so the results for ℵ and ℵ̃ would be reversed

in the case that the variation was on the antiholomorphic coordinate.

Symmetries of the bc system

The bc system is conformally invariant, hence the name “bc−CFT”, as well as invariant under

a symmetry colloquially known as ghost number symmetry, which will be significant in the

BRST formalism, as it tracks the degree of a function in the enlarged phase space coming

from the turning of symmetries into ghost fields via the BRST procedure. The worldsheet

models for the superstring partially consist of bc and βγ systems of different particular

weights, emphasizing the importance and convenience of these symmetries to the particular

case in focus. The number symmetry has not yet been explored, but it is generated by the

following transformations:

b(z, z̄) 7→ −iϵ(z)b(z, z̄)

c(z, z̄) 7→ iϵ(z)c(z, z̄)

for ϵ(z) an infinitesimal holomorphic function. Then, one shows via varying that the bc

action is invariant under this symmetry. Indeed, we have

δ(b∂̄c) = δb∂̄c+ b∂̄δc

= (−iϵb)∂̄c+ b∂̄(iϵc)

= −iϵb∂̄c+ ib∂̄ϵc+ ib∂̄cϵ

= 0,

with the last equality following from the holomorphicity of ϵ.

Since this is a symmetry under which the action is invariant, there corresponds to it, by

Noether’s theorem, a conserved current described by

jµ(c) =
∂L

∂c
(iϵc) = biϵc

and

jµ(b) =
∂L

∂b
(−iϵb) = 0.
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Summary of the βγ Theory

As mentioned thus far, the βγ theory is set up in the same way as the bc theory, except for

that β and γ are communting fields with weights hβ = hb = (λ, 0) and hγ = hc = (1− λ, 0).

The βγ action is

Sβγ =
1

2πα′

∫
Σ

d2zβ∂̄γ,

and it is invariant under conformal and ghost number symmetries of the form of those

above, with b and β, likewise c and γ substituted for one another. It has a corresponding

antiholomorphic theory, where the fields are β̄(z, z̄) and γ̄(z, z̄), which are tensors of weights

hβ̄ = hb̄ = (0, λ) and hγ̄ = hc̄ = (0, 1 − λ), respectively. The energy-momentum tensor is

again formally identical to that of the bc theory:

T (z) = λ∂ : βγ : − : ∂βγ :

T (z̄) = 0

where for the anti-βγ theory, T (z̄) = T̃ is of the form of T (z) of this theory, and vice versa.

Since the central charge is calculated by the TT OPE, it is

ℵ = 12λ2 − 12λ+ 1

ℵ̃ = 0

and vice versa for the anti-theory, with the difference in sign for these theories coming from

the commutativity of the fields: instead of as in the bc theory, where

b(z1)c(z2) ∼
1

z1 − z2

and

c(z1)b(z2) ∼
1

z1 − z2
,

in the βγ theory, due to the commutativity of the fields, switching b with c and z1 with

z2 generates only a single minus sign (from z1 ↔ z2) instead of two, making the products

resemble

β(z1)γ(z2) ∼
1

z1 − z2
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and

γ(z1)β(z2) ∼ − 1

z1 − z2
.

Again, the products and central charges for the anti-theory are of the same form as those of

the theory.

Relation to NSR Superstring

All of the terms in the worldsheet action of the NSR superstring (including after BRST is

applied), with the exception of ∂Xµ∂̄Xµ, are of the form of some theory from one of the

previous two subsections. Making this correspondence explicit, we have the following formal

similarities:

(ψµ(z, z̄), ψµ(z, z̄) ↔ (b(z, z̄), c(z, z̄))

with hb = hc =

(
1
2
, 0

)
.

(ψ̃µ(z, z̄), ψ̃µ(z, z̄)) ↔ (b̃(z, z̄), c̃(z, z̄))

with weights hb̄ = hc̄ =

(
0, 1

2

)
.

There will also be BRST ghost terms in this superconformal CFT, to be explored in the

next subsection. They also look formally like bc and βγ CFTs, as we shall see.

2.3.1 the BC-CFT

The ghost structure of the NSR superstring will be very similar to that of an amalgamated

bc−CFT and βγ−CFT. We will refer to this resulting CFT as the BC−CFT. Following [11,

Section 10.1] we give a brief summary of this, noting that all of the computations are done

in the same manner as those for the bc−CFT.

The action of the BC−CFT, [11, Equation 10.1.17] is

SBC =
1

2π

∫
Σ

d2z(b∂̄c+ β∂̄γ)

where b and c are anticommuting tensors of weights hb = λ and hc = 1 − λ, as before, and

β and γ are commuting tensors with weights hβ = λ − 1
2
and hγ = 3

2
− λ. One may also

calculate the energy-momentum tensors of these theories as

TB = (∂b)c− λ∂(bc) + (∂β)γ − 1

2
(2λ− 1)∂(βγ)
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and

TF = −1

2
(∂β)c+

2λ− 1

2
∂(βc)− 2bγ,

which are respectively Equations 10.1.18 and 10.1.19 of [11]. Recall that each of these

currents corresponds to a symmetry under Noether’s theorem. TB will come from worldsheet

conformal invariance, and TF from a supersymmetry transformation mixing bosons and

fermions (as is there indicated by the terms consisting of both commuting and anticommuting

fields). There is naturally an anti-theory to this one, as was the case with the bc− and

βγ−CFTs.

2.4 The Worldsheet NSR Superstring

Recall from the introduction that the worldsheet action of the NSR superstring, [11, Equation

10.1.5], is

SNSR =
1

2πα′

∫
Σ

dzdz̄ ∂Xµ∂̄Xµ︸ ︷︷ ︸
A

+ψµ∂̄ψµ︸ ︷︷ ︸
B

+ ψ̃µ∂ψ̃µ︸ ︷︷ ︸
C

(2.6)

where the ψ terms represent bc systems with λ = 1
2
, and the ψ̃ terms stand for the corre-

sponding b̃c̃ systems (also, therefore, with λ = 1
2
). One subtlety here worth noticing is that

the antifields are already included in the action, though the ghosts are not. The antifields

are a result of the BV portion of the Lagrangian BV-BRST formalisn, and will be further

explained in a subsequent chapter. Here, though, it is taken for granted that the BV resolu-

tion has already been implemented. The ghost insertions will come from the BRST part of

the procedure.

After BRST, a systematic way of encoding symmetries of a physical theory in terms of

extra fields, the BRST ghosts, is performed, one obtains an action of the form

SBRSTNSR =
1

2πα′

∫
Σ

d2z∂Xµ∂̄Xµ + ψµ∂̄ψµ + ψ̃µ∂ψ̃µ + b∂̄c︸︷︷︸
D

+B∂̄C︸ ︷︷ ︸
E

+ B̃∂C̃︸ ︷︷ ︸
F

where the first three summands are as in (2.6), D is the bosonic ghosts, a bc−CFT with

λ = 2 and E and F encode the superconformal ghosts and anti-ghosts, which each comprise

a BC−CFT with λ = 2.
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The superstring action presented above is worldsheet supersymmetric, meaning it is in-

variant under particular transformations switching the bosonic and fermionic fields. We will

take the currents as given and calculate the corresponding supersymmetry transformations.

[11, Equation 10.1.8] states the worldsheet supercurrents, which will, up to a (noncommut-

ing) parameter, end up corresponding with the sought-after symmetries. The holomorphic

and antiholomorphic worldsheet supercurrents are

TF (z) = i

(
2

α′

) 1
2

ψµ(z)∂Xµ(z)

TF̃ (z̄) = i

(
2

α′

) 1
2

ψ̃µ(z̄)∂̄Xµ(z̄).

The currents under inspection here are then [11, Equation 10.1.9]

jµ(z) = ν(z)TF (z)

and

j̃µ(z̄) = ν(z̄)∗T̃F̃ (z̄).

By calculating the OPE of these currents with each field, one may find out how each field

transforms under the symmetry corresponding to the chosen current. With this in mind,

TF (z)X
µ(0) = i

(
2

α′

) 1
2

: ψµ(z)∂Xµ(z) :: X
ν(0) :

= i

(
2

α′

) 1
2
(
ψµ(z)Xν(0) : ∂Xµ(0) : + ∂Xµ(z)X

ν(0) : ψµ(z) :

)
where the brackets above the fields indicate that they are being contracted (i.e. as above, all

of the fields outside of the normal ordering symbols are pairwise contracted: due to this, the

extra notation is not necessary unless there are more than two fields outside of the colons).

We will calculate out this OPE in some detail to give an example of the above-introduced

procedure.

The Green’s functions associated to the contractions Xµ(z1, z̄1)X
ν(z2, z̄2) are

Xµ(z1, z̄1)X
ν(0, 0) ∼ −α

′

2
ηµνln|z1|2

for ηµν the worldsheet metric, and where ∼ denotes “the singular part of the left-hand side

is proportional to”.
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The third step in the above procedure is to calculate the OPEs from this. Recall that

they will be of the form of Equation 2.3. Then,

TF (z)X
µ(0) ∼ i

(
2

α′

) 1
2 2ln(z)

z
ψµ(z).

Similarly,

TF̃ (z̄)X
µ(0) ∼ i

(
2

α′

) 1
2 2ln(z̄)

z̄
ψµ(z̄).

Next looking at the OPEs with the fermionic fields,

TF (z)ψ
µ(0) = i

(
2

α′

) 1
2
(

: ψµ(z)∂Xµ(z) :: ψ
µ(0) :

)

= i

(
2

α′

) 1
2
(
ψµ(z)ψµ(0) : ∂Xµ(z) : +∂Xµ(z)ψ

µ(0) : ψµ(0) :

)

∼ i

(
2

α′

) 1
2 ∂Xµ(0)

z
.

The anti-holomorphic fermion-to-boson transformation has the same form, i.e.

TF̃ (z̄)ψ̃
µ(0) ∼ i

(
2

α′

) 1
2 ∂Xµ(0)

z̄
ψ̃µ(z̄).

Also, the holomorphic and anti-holomorphic fields do not switch, which is evidenced by that

TF (z)ψ̃
µ(0) = TF̃ (z̄)ψ

µ(0) = 0.

The residues, i.e. the coefficients of the 1
z
term of each OPE, describe how the field with

which the worldsheet supercurrent OPE (energy-momentum tensor) was taken (here these

fields are Xµ, ψµ, and ψ̃mu) transforms . Thus,

Xµ(z, z̄) 7→ i

(
2

α′

) 1
2
(
2ln(z)ψµ(z) + 2ln(z̄)ψµ(z̄)

)
,

ψµ(z) 7→ i

(
2

α′

) 1
2

∂Xµ(0),

and

ψ̃µ(z̄) 7→ i

(
2

α′

) 1
2

∂̄Xµ(0),

which are in accord with transformations [11, 10.1.10a-10.1.10c].
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Besides this supersymmetry, the NSR worldsheet superstring is conformally invariant.

The generators of conformal transformations on the worldsheet can be shown to correspond

to the “bosonic” energy-momentum tensor, which is itself often referred to as a “generator

of the conformal algebra”. The currents TB and TF together generate the superconformal

algebra of the superstring, encoding the previously-discussed worldsheet supersymmetry as

well as conformal invariance. Since this algebra encapsulates the symmetries of the theory, it

characterizes the physical states: they are the states that are annihilated by this algebra. As

we saw earlier in this chapter, Noether’s theorem allows us to calculate the conserved current

associated with a symmetry of an action or vice versa, so we will hereby use this technique

to calculate TB. As per usual, T̃B, which is generated by a conformal transformation on z̄,

could be computed analogously.

TB will correspond to worldsheet translations on the bosonic variables Xµ and conformal

transformations on the fermionic variables, which we note is the same symmetry that was

used to calculate the bc−CFT energy-momentum tensor above. Here, TB turns out to be

the energy-momentum tensors for each summand in the worldsheet NSR superstring action

pasted together. To make this expressly clear, we will calculate each term separately.

For A of (2.6), we let δXµ = −ϵ∂Xµ parametrize worldsheet translations. Varying this

term in the action with respect to this, one obtains

δA =
1

4πα′

∫
d2z(δ(∂Xµ)∂̄Xµ + ∂Xµδ∂̄Xµ)

=
1

4πα′

∫
d2z(∂(−ϵ∂Xµ)∂̄Xµ︸ ︷︷ ︸

A′

+ ∂Xµ∂̄(−ϵ∂Xµ)︸ ︷︷ ︸
A′′

)

Working with each term individually, we may re-write A′ as

A′ =
1

4πα′

∫
Σ

d2z(−∂ϵ∂Xµ∂̄Xµ︸ ︷︷ ︸
A′

1

− ϵ∂∂Xµ∂̄Xµ︸ ︷︷ ︸
A′

2

)

Integrating A′
1 by parts with respect to ∂, we find

A′
1 =

1

4πα′

(∫
∂Σ

d2z(−∂Xµ∂̄Xµϵ) +

∫
Σ

d2z∂((∂Xµ)∂̄Xµ

)
ϵ

=
1

4πα′

(∫
Σ

d2z(∂∂Xµ∂̄Xµ + ∂Xµ∂∂̄Xmu

)
ϵ

=
1

4πα′

∫
Σ

d2z∂∂Xµ∂̄Xµϵ
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where in this integration by parts and the subsequent ones of this calculation, all integrals

over the boundary ∂Σ of Σ vanish, since Σ is taken to be without boundary. The second

line here also used the equation of motion for Xµ, namely ∂∂̄Xµ = 0. Now integrating A′
1

by parts with respect to ∂̄:

A′
1 =

1

4πα′

(∫
∂Σ

d2z∂∂XµϵXµ −
∫
Σ

d2zXµ∂̄(∂∂Xµϵ)

)
= − 1

4πα′

∫
Σ

(d2zXµ∂̄∂∂Xµϵ+Xµ∂∂Xµ∂̄ϵ)

= − 1

4πα′

∫
Σ

d2zXµ∂∂Xµ∂̄ϵ

where again the Xµ equation of motion was used. The term multiplying ∂̄ϵ will be A1’s

contribution to the energy-momentum tensor here.

Integrating A′
2 by parts with respect to ∂̄ we obtain

A′
2 = − 1

4πα′

(∫
∂Σ

d2zϵ∂∂XµXµ −
∫
Σ

d2zXµ∂̄(ϵ∂∂Xµ)

)
=

1

4πα′

∫
Σ

d2z(Xµ∂̄ϵ∂∂X
µ +Xµϵ∂̄∂∂Xµ)

=
1

4πα′

∫
Σ

d2zXµ∂̄ϵ∂∂X
µ.

Since all the fields in A commute, the contributions to the current from A′
1 and A′

2 cancel.

Now looking at A′′, calculate

A′′ = − 1

4πα′

∫
Σ

(∂Xµ∂̄ϵ∂Xµ + ∂Xµϵ∂̄∂Xµ)

= − 1

4πα′

∫
Σ

∂Xµ∂̄ϵ∂Xµ.

This indicates that the entirety of the contribution to TB from the bosonic part of the NSR

worldsheet superstring is 1
4πα′∂X

µ∂Xµ and comes from A′′.

Term B contributes to TB, but C will not, since though it is formally the same as B,

the anti-fields ψ̃µ are present in lieu of the fields ψµ. This means that the only remaining

contribution to TB should come from B. We have, however, already calculated the world-

sheet energy-momentum tensor for the bc−CFT, and according to [10, Chapter 2.5] and [11,

Chapter 10.1], the ψ, ψ̄ CFT present in (2.6) is a bc−CFT with λ = 1
2
, and ψ playing the

role of b and ψ̃ that of c. This CFT can be split into two pieces preserving the conformal
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invariance such that [10, Equation 2.5.18a]

ψ =
1√
2
(ψ1 + iψ2)

ψ̃ =
1√
2
(ψ1 − iψ2).

Starting from (2.5), we may, using the substitutions just suggested, obtain the energy-

momentum tensor for the ψµ, and analogously, for the ψ̃µ summands in worldsheet NSR

superstring action. Rewriting T (z) in terms of this substitution data, we obtain

T (z) = (1− λ)∂ψµ∂ψ̃µ − λψµψ̃µ

=
1

2

(
∂ψµψ̃µ︸ ︷︷ ︸

A

−ψµ∂ψ̃µ︸ ︷︷ ︸
B

)
Treating A and B separately, we proceed.

A =
1

2

(
∂

(
1√
2
(ψ1 + iψ2)

)
1√
2
(ψ1 − iψ2)

)
=

1

4
(∂ψ1 + i∂ψ2)(ψ1 − iψ2)

=
1

4
(∂ψ1ψ1 − i∂ψ2ψ2 + i∂ψ2ψ1 + ∂ψ2ψ2).

Similarly, for B,

B = −1

4
(ψ1 + iψ2)∂(ψ1 − iψ2)

= −1

4
(ψ1 + iψ2)(∂ψ1 − i∂ψ2)

= −1

4
(ψ1∂ψ1 − iψ1∂ψ2 + iψ2∂ψ1 + ψ2∂ψ2).

Summing these terms and noting that the fields ψ1 and ψ2 anticommute, we obtain

A+B =
1

4
(∂ψ1ψ1 − i∂ψ2ψ2 + i∂ψ2ψ1 + ∂ψ2ψ2)− (ψ1∂ψ1 − iψ1∂ψ2 + iψ2∂ψ1 + ψ2∂ψ2)

=
1

4
(−ψ1∂ψ1 + iψ2∂ψ2 − iψ1∂ψ2 − ψ2∂ψ2 − ψ1∂ψ1 + iψ1∂ψ2 − iψ2∂ψ1 − ψ2∂ψ2)

=
1

4
(−2ψ1∂ψ1 − 2ψ2∂ψ2)

= −1

2
(ψ1∂ψ1 + ψ2∂ψ2)

= −1

2
(ψµ∂ψµ) = Tψ(z, z̄)
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agreeing with [10, Equation 2.5.18c] as expected. The contribution of term C, encoding the

role of the fermions in the theory, to the antiholomorphic energy-momentum tensor of the

worldsheet NSR superstring is calculated analogously from the standard bc−CFT energy-

momentum tensor and is

Tψ̃ = −1

2
(ψ̃µ∂ψ̃µ).

Thus, since TB = TX + Tψ,

TB =
1

4πα′ (∂X
µ∂Xµ)− 1

2
(ψµ∂ψµ),

and, in the same manner, since T̃B = TX + Tψ̃,

T̃B =
1

4πα′ (∂X
µ∂Xµ)− 1

2
(ψ̃µ∂ψ̃µ).

One may, using the Noether procedure with the appropriate symmetries, calculate any

currents corresponding to symmetries, including the BRST current.
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Chapter 3

The BV-BRST Formalism

3.1 Introduction

In the previous chapter, we saw a sketch of how the BRST procedure, a method of viewing

the symmetries of a theory by adding terms replete with symmetry-encoding ghost fields

to the action, can be implemented. We also assumed that all of the fermionic fields in the

theories we were examining had anti-holomorphic partners, the antifields, which arise from

the Batalin–Vilkovisky (henceforth BV) procedure. In this chapter, we will outline a math-

ematical formalism for the combined BV-BRST procedure.

Frequently when presented with a gauge theory or any physical theory with some col-

lection of symmetries, it is informative to analyze the behavior of the fields (and hence ob-

servables) modulo the action of these symmetries. An example to keep in mind is spacetime

translation and rotation invariance (invariance under the action of the restricted Lorentz

group): essentially the behavior of a theory invariant under these symmetries will be the

same no matter when and where it is located in spacetime. In order to look at the fields

up to gauge invariance, mathematically one needs to take a quotient of the field space by

the symmetry group(oid), or infinitesimally, its corresponding Lie algebra(/oid). Doing this

directly amounts to taking a homotopy quotient of the space of fields by the action Lie alge-

broid, which is the entity encoding the infinitesimal versions of the symmetries of the theory,

but the BRST formalism allows us work in the algebraic dual: instead of quotienting out by

the gauge symmetries, we can construct a differential graded algebra describing dually the
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algebra of functions on the quotient, such that the zeroth cohomology group of the complex

this forms is the space of functions invariant under the action of the gauge symmetries.

The BV formalism introduces antifields into the action to accommodate a mathematical

nuance: it is possible that the intersection between the submanifolds comprising the critical

locus of the action are not transverse. To see how the non-transversality could arise, let us

consider the physical fields. In a given Lagrangian field theory, the physical fields will be

the ones that satisfy the equations of motion (the Euler–Lagrange equations). Viewing the

action S of such a field theory as a function on the space of fields, this set of physical fields is

the critical locus of S, i.e. the vanishing locus of the differential dS. Let X denote the field

space, so that its cotangent bundle is written as T ∗X with zero section identifiable with a

copy of X, and gr(dS), the graph of the one-form dS. Then, the critical locus is

Scrit := gr(dS) ∩X.

In some situations, this will not be transverse, and to track this lack of transversality, it will

be useful to consider a “dual” of this derived intersection, its ring of functions, which is a

differential graded (dg) algebra denoted by

O(SCrit) = O(gr(dS))⊗L
O(T ∗X) O(X) (3.1)

where L designates the derived tensor product. The lack of transversality is there chronicled

by the Tor groups of the derived tensor product. The dg algebra O(SCrit) can be described

using the tools of homological algebra: this module is quasi-isomorphic to the cochain com-

plex coming from resolving the zero-section of the cotangent bundle with a Koszul-Tate

resolution. This by construction provides another chain complex (this one with differential

provided by contraction of vector fields), and we will show that this form of BV complex in

tandem with the aforementioned BRST complex form a double complex, encoding all of the

fields, antifields, ghosts, and anti-ghosts of the theory, the cohomology of which represents

that theory’s observables.

In this chapter, we shall construct the BV and BRST complexes and the double complex

they form. This will be done in a way general enough to be suitable to describe any sigma-

model physical theory with a collection of symmetries (such that its corresponding Lie algebra
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is finite dimensional1). This machinery may be applied to any thus-quantified field theory,

including the superstring.

3.2 The BRST Complex

Let us consider a field theory with symmetries and denote its space of fields by X and

symmetry group by G (we are avoiding the use of the terminology gauge theory, similarly

gauge group, since though all the theories we look at have symmetries, they are not all called

“gauge theories”, with the notable instance of this being the type-II superstring). We will

also assume that G is a finite-dimensional Lie group with corresponding Lie algebra g. The

action of g on X produces a cochain complex

C∞(X)⊗ g∗ C∞(X)⊗
∧2 g∗ C∞(X)⊗

∧3 g∗ · · ·dBRST dBRST dBRST (3.2)

where the differential on Lie algebra elements comes from the dual Lie bracket and on

elements of C∞(X) is the map

dBRST

∣∣∣∣
C∞(X)

= ρ(−)⊗ zα (3.3)

for zα ∈ g∗ basis elements of g∗, with

ρ : C∞(X)⊗ g → C∞(X)

zα(−) 7→ ρiα
∂(−)

∂xi
,

taking as input elements of C∞(X), where the xi are coordinates on X.

This complex is an example of a Chevalley–Eilenberg complex of a Lie algebra.

Definition 3.2.1. [17, Section 7.1] Let g be a Lie algebra over a field K, and Ug its universal

enveloping algebra. The Chevalley–Eilenberg chain complex of g is the chain complex

CE∗(g) = Ug⊗K ∧pg = ∧•g∗ (3.4)

1It is possible to work with the case of infinite-dimensional Lie algebras, similarly algebroids, but one

must take technical care when dualizing twice: it is not a given that in these cases that the bi-dual space is

equal or isomorphic to the original space. There are some ways to work around this, so in general this is not

at all an insurmountable problem.
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with, for u ∈ Ug and x1 ∧ · · · ∧ xk ∈ ∧kg, kth differential

d(u⊗ x1 ∧ · · · ∧ xk) =
k∑
i=1

(−1)i+1uxi ⊗ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xk

+
∑
i<j

(−1)i+ju⊗ [xi, xj] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xk

One may show that the following alternative description of the Chevalley–Eilenberg com-

plex corresponding to a particular Lie algebra g in terms of a cochain complex is dual to the

previous definition. This is seen by applying HomUg(−,K) to the previous chain complex.

Definition 3.2.2. Let g be a Lie algebra and M a g−module. Then, the corresponding

Chevalley–Eilenberg cochain complex is defined by

CE∗(g,M) = HomK(∧•g,M)

with differential

(dCEω)(x1, · · · , xk) =
k∑
i=1

(−1)i+1xi · ω(x1, · · · , x̂i, · · · , xk)

+
∑
i<j

(−1)i+1ω([xi, xj], x1, · · · , x̂i, · · · , x̂j, · · ·xk)

for x1, · · · , xk ∈ g and ω ∈ ∧kg∗ ⊗M , for any g−module M .

One may show that Chevalley–Eilenberg complexes are functorial with respect to module

morphisms.

Note that in the cases that g is, as we have assumed here, finitely generated, due to

Hom−tensor adjunction,

CE∗(g,M) = HomK(∧•g,M) = ∧•g⊗K M.

If M is the ground field K, the previous definition simplifies to

CE∗(g) = Sym(g∗[−1])

with differential on dual Lie algebra elements zα

d := [, ]∗ : g∗ → g∗ ∧ g∗
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the dual Lie bracket. The shift here puts g∗ in degree one, which leaves HomUg(K,K) = K,

the ground field, in degree zero.

In the case of the BRST complex, we are looking at the Chevalley–Eilenberg cochain

complex of g, the finite-dimensional Lie algebra corresponding to the symmetry group of

whichever classical field theory is being considered, tensored with C∞(X), the ring of func-

tions over the field space encoding the physical fields. Concretely, choosing {zα}α∈J as the

basis elements of g∗ and {f i}i∈I as generating elements of C∞(X), with J and I as indexing

sets, one may compute in coordinates that (3.2) is a cochain complex with dBRST as the dif-

ferential. Using the dual Lie bracket and (3.3) one obtains that on dual Lie algebra elements

such as zα,

dBRST z
α = cαβγz

β ∧ zγ

for cαβγ the structure constants of g∗, and for fi ∈ C∞(X),

dBRST (fi) = ρiα
∂f

∂xi
zα

for ρ as in (3.3).

Remark 3.2.1. The Chevalley–Eilenberg cochain complex of g computes its Lie algebra

cohomology, so the second cohomology group determines equivalence classes of extensions

of g by the module M . Hearkening back to the central charge introduced in Chapter 2,

this indicates that the central charge will be the same for any representative of a particular

equivalence class of central extensions by a given M (any representative of the cohomology

class H2
CE(g,M)), but that it is possible that there will be central extensions by M that do

not have equal central charges. In these cases, one must specify both the module M and the

equivalence class of central extensions under consideration.

3.3 The BV Complex

The BV complex is formed by choosing a projective resolution of O(SCrit) as an O(T ∗X)-

module, so as to compute the derived tensor product (3.1). We use here the Koszul–Tate

resolution, which provides a way of describing a quotient ring consisting of a local complete

intersection in terms of a differential graded algebra (see [15] for this construction).
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In the case that gr(dS)∩S is transverse, i.e. the codimension of the intersection is equal to

the sum of the codimension of each of gr(dS) andX, the Tor groups, Tor
O(T ∗X)
• (O(X),O(gr(dS)),

will be trivial for all non-zero cohomological degrees, but if it is not, these Tor groups will

track the lack of transversality of the intersection.

The complex arising from the Koszul-Tate resolution is of the form

Γ

(∧•
n∈N TX

)
= C∞(X) Γ(TX) Γ

∧2(TX) · · ·dBV dBV dBV

with differential as the contraction of differential forms with the one-form dS, i.e.

dBV = ιdS.

Definition 3.3.1. The interior product or contraction of polyvector fields is a map

ια : Γ(∧nTM) → Γ(∧n−1TM)

for α ∈ Γ(T ∗M) := Ω1(M) a one-form. Let X ∈ Γ(∧nTM). Then,

ιαX(α1, · · · , αn−1) := X(α, α1, · · · , αn−1)

where for 1 ≤ i ≤ n− 1, αi ∈ Γ(T ∗M) are arbitrary one-forms.

In other words, ια contracts the polyvector field of order (n + 1) with one one-form to

make an n−polyvector field. Note that an n−polyvector field is dual to an n-form field. The

contraction operator satisfies the identity that

ιαιβX = −ιβιαX (3.5)

for any polyvector X and any one-forms α and β, and it is this property that shows that

ι squares to zero. The contraction operator is by definition a degree −1 derivation on

Γ(
∧• TM), which makes Γ(

∧• TM) a dg algebra. To show that ια squares to zero, making

Γ(
∧• TM) into a complex with ια as the differential, we use its skew-symmetry property 3.5.

Along those lines,

ιαιαX(α1, · · ·αn−2) = ιαX(α, α1, · · · , αn−2)

= X(α, α, α1, · · · , αn−2)

= 0
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with the last equality following from the antisymmetry of X under the switching of α (in

slot 1) with α (in slot 2).

3.4 The BV-BRST Double Complex

It is possible to describe the derived critical locus and higher gauge symmetries all in one,

since the BRST and BV complexes can be shown to unite into a single double complex, the

following, where C∞(X) is situated by design in bidegree (degBV , degBRST ) = (0, 0) and an

application of dBRST increases degBRST by one, leaving fixed degBV whereas applying dBV

increases degBV by one and leaves degBRST fixed.

C∞(X) C∞(X)⊗ g∗ C∞(X)⊗ g∗ ∧ g∗ C∞(X)⊗ g∗ ∧ g∗ ∧ g∗ · · ·

Γ(TX) Γ(TX)⊗ g∗ Γ(TX)⊗ g∗ ∧ g∗ Γ(TX)⊗ g∗ ∧ g∗ ∧ g∗ · · ·

Γ(
∧2 TX) Γ(

∧2 TX)⊗ g∗ Γ(
∧2 TX)⊗ g∗ ∧ g∗ Γ(

∧2 TX)⊗ g∗ ∧ g∗ ∧ g∗ · · ·

· · · · · · · · · · · ·

dBRST dBRST dBRST dBRST

dBV

dBRST

dBV

dBRST

dBV

dBRST

dBV

dBRST

dBV

dBRST

dBV

dBRST

dBV

dBRST

dBV

dBRST

dBV dBV dBV dBV

with differentials

dBV = ιdS ⊗ id∧•g∗

and dBRST as the Chevalley–Eilenberg differential for the g−module. The total complex of

this complex gives an algebraic model of the quotient Scrit/g tracking (in the BV-direction)

the lack of transversality of the intersection gr(dS)∩X and (in the BRST-direction) the ext

groups limning the sheaf cohomology on X/g. The zeroth cohomology of this complex is the

space of invariant functions on the field space, i.e. the space of physical fields.

In order to show that this is indeed a double complex, we must show that the differential

squares to zero, i.e. (dBRST + dBV )
2 = 0. Expanded out, this is

(dBRST + dBV )
2 = d2BRST + dBRSTdBV + dBV dBRST + d2BV .

It follows from the two sections just prior to this one that d2BRST = 0 since dBRST here is

still a Chevalley–Eilenberg differential, and that d2BV = 0 since in this double complex, dBV
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is modified only by tensoring the contraction operator with the identity. What remains then

is to show that the other two terms contribute nothing: they will sum to zero. This arises

since the action S is invariant under the action of g by design, which makes the interior

product a map of g−modules so that ιdS ⊗ id∧•g∗ gives a morphism between the correspond-

ing Chevalley–Eilenberg complexes by functoriality of Chevalley–Eilenberg complexes with

respect to module morphisms. A similar computation will be demonstrated in the next

section for a Chevalley–Eilenberg complex isomorphic to the one presented here.

3.5 The Cotangent Action Lie Algebroid

In a field theory, the fields are not some arbitrary collection of sections, rather they are the

solutions to the (here derived) equations of motion for that theory. In order to incorporate

that into a description of the BV-BRST complex, it suffices to look at the cotangent Lie

algebroid, which besides the original BV-BRST generators, also has vector field generators

corresponding to “taking derivatives” of the usual BV-BRST generators. Since this also

describes a double complex, it has differentials. The BV-differentials are still contraction of

vector fields, but the BRST differentials, while each still a derivation on some Chevalley–

Eilenberg complex, are “one-order higher” than those of the original BV-BRST complex:

they come from bracketing the original differentials with the action. The algebraic structure

used here to formulate these infinitesimals is that of action Lie algebroids.

Definition 3.5.1. [12] Let M be a manifold. A Lie algebroid consists of E
π−→ M a vector

bundle over M equipped with

• A vector bundle homomorphism E
ρ−→ TM , the anchor map of the Lie algebroid.

• A Lie bracket on Γ(E)

satisfying the following axioms:

1. Let α, β ∈ Γ(E). Then,

ρ([α, β]) = [ρ(α), ρ(β)],

where the bracket on the left is the Lie bracket on E and that on the right is the Lie

bracket on vector fields, i.e. ρ gives a homomorphism on sections of E.
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2. ρ(α) ∈ Γ(TM) is a vector field satisfying the Leibniz rule

[α, f · β] = ρ(α)(f) · β + f [α, β]

for f ∈ C∞(M).

Definition 3.5.2. An action Lie algebroid is a Lie algebroid such that the base manifold M

comes equipped with the action of a Lie algebra, g and

• E = g×M is the vector bundle over M .

• ρ : g×M → TM is the Lie algebra homomorphism induced by the infinitesimal action

of g on M by sending each constant section of g×M to the vector field encoding that

action.

• The Lie bracket comes from the Lie bracket on g and extends from constant sections

to all sections by the Leibniz rule.

One may dually describe a Lie algebroid in terms of its Chevalley–Eilenberg algebra.

Definition 3.5.3. The Chevalley–Eilenberg algebra CE(A) corresponding to a given Lie

algebroid A is the complex

CE(A) := (∧C∞(M)Γ(E)
∗, d)

where the differential in degree zero is given by

(dCEf)(X) = ρ(X)(f)

and in degree one is

dCE = ρ(X1)ω(X2)− ρ(X2)ω(X1) + ω([X1, X2])

for ρ the anchor map of A, ω ∈ Γ(E∗), and X1, X2 ∈ Γ(E), and is extended to other degrees

by the Leibniz rule.

Notice that this dual description of a Lie algebroid in terms of a Chevalley–Eilenberg

algebra is just the first row of what was used to form the rows of the BV-BRST complex as

introduced earlier, and that over a point, i.e. with M = ∗, this CE algebra returns that of

an ordinary Lie algebra.
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Definition 3.5.4. [16, Definition 10.22] A connected Lie-∞ algebroid over a manifold X

with algebra of smooth functions C∞(X) consists of the following data:

• A graded module a• = (ak)k∈N where each of the ak is a free C∞(X)−module of finite

rank.

• A degree 1 differential dCE such that(
SymC∞(X)(a

∗
•), dCE

)
=: CE(a),

is a cochain differential graded commutative R−algebra, the Chevalley–Eilenberg alge-

bra of a.

A connected Lie∞−algebroid is called a derived connected Lie∞−algebroid if a• has

nonzero modules in negative as well as non-negative degrees.

To describe the entire BV-BRST complex as seen before, which incorporates the in-

finitesimal perturbations of the solutions to the Euler–Lagrange equations used to explore

the critical locus of a perturbative field theory in the BV-BRST perspective, we will require

a sort of cotangent space to the action Lie algebroid, the the corresponding infinitesimal

cotangent action Lie algebroid.

Definition 3.5.5. [16, Definition 11.2] Let a be a connected Lie−∞ algebroid. The corre-

sponding infinitesimal cotangent Lie algebroid (T ∗
infa)

∗
· consists of the following data:

• The graded module (T ∗
infa)

∗
· = a∗⊕Der(CE(a)) where Der(CE(a)) denotes the graded

derivations of the graded algebra upon which CE(a) is based.

• The degree-one differential making(
SymC∞(X)((T

∗
infa)

∗), dCE(T ∗
inf )

)
=

(
SymC∞(X)(a

∗ ⊕Der(CE(a)), dCE(T ∗
inf )

)
into the Chevalley–Eilenberg algebra of (T ∗

infa)∗ where on each component this differ-

ential acts as follows:

dCE(T ∗
infa)

∣∣∣∣
a∗

= dCE(a)

dCE(T ∗
infa)

∣∣∣∣
Der(CE(a))

= [dCE(a),−]
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Note the parallel with the usual cotangent bundle T ∗M of a manifold M : the zero

section of T ∗M is identifiable with a copy of M itself. Somewhat dually, the first term of

the Chevalley–Eilenberg algebra corresponding to the infinitesimal cotangent Lie algebroid

is the Chevalley–Eilenberg algebra of the underlying Lie-∞ algebroid a.

To specify the infinitesimal cotangent Lie algebroid of an action Lie algebroid, in light of

the above defintion, requires determining the generators of the derivations on the Chevalley–

Eilenberg algebra dual to X/g, the Lie algebroid encoding the action of the infinitesimal sym-

metries of the symmetry group G on the field space X. The generators of the first summand

are the same as those in the underlying Lie−∞ algebroid. In an arbitrary theory, we will have

vector field generators in two degrees, corresponding to the cohomological-degree zero gener-

ators of the physical fields in the Chevalley–Eilenberg algebra, and the cohomological-degree

one generators of the ghosts (elements of the Lie algebra of symmetries). If we represent a

ghost element by zα and field by f(xi), then the associated coordinate-basis elements will be

denoted respectively by ∂
∂zα

in cohomological degree negative-one and ∂
∂xi

in cohomological

degree zero, where this construction can be done for any α ∈ J , i ∈ I respectively, with as

prior, the zα providing a basis for the dual Lie algebra g∗ of the gauge group G, and the

{xi}i∈I a coordinate basis on the worldsheet of the theory. The differential is also defined

here to be the Schouten bracket of the element with the action S:

dBV = [S,−] = ιdSY

for Y ∈
∧n TX a (poly)vector field. Note that since the Schouten bracket satisfies the Jacobi

identity, the differential it defines squares to zero (this is analogous to how dBRST on Lie

algebra elements vanishes).

In the case, such as here, that we are working with a field theory described by an action

functional S, the BV-BRST complex as we have noted dually describes the combined derived

intersection gr(S)∩X and homotopy quotient X/g. As seen in [16] and from the definitions

of this section, the Chevalley–Eilenberg complex of the infinitesimal cotangent Lie algebroid

of the action Lie algebroid corresponding to the theory has the same generators as those

needed to describe the BV-BRST complex. We inspect this in terms of coordinate bases.

Let {zα}α∈I and {f(xj)}x∈J respectively describe the generators of g∗ and X of the action
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Lie algebroid. By construction, the associated BV-BRST complex has these two sets of

generators, as well as the corresponding vector fields. Of these vector fields, there are also

two sets:
{

∂
∂zα

}
α∈I , which will be in cohomological degree negative-one since the zα have

been set to be in cohomological degree one, and
{

∂
∂xj

}
j∈J in cohomological degree zero. In

the perspective of the infinitesimal cotangent Lie algebroid, the vector field generators fulfill

the roles of the generators of the derivations over X/g, up to a shift in degree, which can

be viewed as follows: the differential on the Chevalley–Eilenberg complex on the derivation

factor of the infinitesimal cotangent Lie algebroid comes from the bracket of the Chevalley–

Eilenberg differential, here on CE(X/g) with each generator, the degree of each of the vector

fields (the derivation-generators) will be lowered by one for consistency. Since up to the shift

in degree, the generators of the BV-BRST complex of a theory and those of its infinitesimal

cotangent Lie algebroid are the same, those two constructions are isomorphic.

Slightly more explicitly, since the BV-BRST complex as defined in the previous section

has rows defined by the Chevalley–Eilenberg algebra of some module and columns coming

from the Koszul–Tate resolution, it directly encompasses the structure provided by the in-

finitesimal cotangent Lie algebroid: the rows are still of the form of a Chevalley–Eilenberg

algebra, but now incorporating the extra vector field generators and the columns are as

before, so that the total complex is CE(T ∗
inf (X/g)

∗). Since each term CE(T ∗
inf (X/g)

∗) has

two factors, the differentials will be written correspondingly. In this case,

dBV

∣∣∣∣
T ∗
inf(X/g)∗

= dBV ⊗ 1

dBRST

∣∣∣∣
T ∗
inf (X/g)

∗
= dCE

∣∣∣∣
T ∗
inf (X/g)

∗
.

In this setting, as well, (dBV )
2 = 0, since the only modification to it is tensoring by the

identity, and because the first component of dBV , the Schouten bracket with the action,

satisfies a Jacobi identity and thus squares to zero, the entire tensor product does too.

dBRST squares to zero since it is still a Chevalley–Eilenberg differential. What remains,

then, to show is that

dBV

∣∣∣∣
T ∗
inf(X/g)∗

◦ dBRST
∣∣∣∣
T ∗
inf (X/g)

∗
= −dBRST

∣∣∣∣
T ∗
inf (X/g)

∗
◦ dBV

∣∣∣∣
T ∗
inf(X/g)∗

.
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To that end, recall that Γ(TX) has a Lie bracket and define for z ∈ g and Y ∈ Γ(TX) a

Lie algebra homomorphism

ρ : g → Γ(TX)

acting on a (poly)vector field Y ∈ Γ(∧nTX) as

z · Y = [ρ(z), Y ]Sch

where the bracket on the right side is the Schouten bracket, and ρ(z) encodes the Lie algebra

action of z. In our setup, the action will be represented by a function S ∈ Γ(∧0TX) invariant

under the action of the symmetries of G, or the action of g.

z · ιdSY = ιdS · z(Y ).

The left side of this equation may be re-written using the Jacobi identity on the Schouten

bracket as

z · ιdSY = [ρ(z), [S, Y ]Sch]Sch

= [S, [Y, ρ(z)]Sch]Sch + [Y, [ρ(z), S]Sch]Sch

= −[S, [ρ(z), Y ]Sch]Sch + [Y, [ρ(z), S]Sch]Sch

= −[S, [ρ(z), Y ]Sch]Sch

where the last equivalence comes from that the action S was assumed to be invariant under

the action of the Lie algebra elements. Thus, since the right side is equal to −ιdS · z(Y ),

Equation 3.5 holds.

To interpret the cohomology of the BV-BRST complex considering the physical action

S, notice that the underlying structure is as before: the BV columns still track the lack

of transversality of the intersection defining the derived critical locus, and the rows are the

Chevalley–Eilenberg complexes, with the first, as previously, encoding the on-shell behavior

as the Chevalley–Eilenberg complex of the infinitesimal cotangent action Lie algebroid.
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Chapter 4

Factorization Algebras

4.1 Introduction

Thus far, we have seen that the fields of a physical theory can be organized into a double

complex, the BV-BRST complex (explained in Chapter 3), and by taking the cohomology

of the total complex thereof, one obtains the classical observables of the theory. It is upon

these that there is the structure of a factorization algebra. This is only one side of the story,

however. The BV-BRST complex itself consists of the symmetric algebra of some differential

graded Lie algebra, which, under an equivalence of infinity-categories (to be addressed later)

itself is associated to a formal moduli problem. In this chapter we will introduce the notions

and associations needed to gain some understanding of these correspondences.

4.2 Prefactorization Algebras and Factorization Alge-

bras

A prefactorization algebra is in rough analogy with a precosheaf, except for with the direct

sum replaced by the direct product. There are multiple ways of describing such entities more

formally, and we shall include two here. Before presenting these definitions, though, we will

introduce some additional underlying machinery.
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Definition 4.2.1. [9, Definition 1.1] An operad, O over a symmetric monoidal category

C, is a collection of objects J(n) indexed by the natural numbers, with the following extra

structure:

1. Composition morphisms

γ : J(k)× J(m1)× · · · × J(mk) → J(m)

where m =
∑k

i=0mi fulfill the following associativity relation: for all c ∈ J(k), di ∈

J(mi), et ∈ J(lt),

γ(γ(c; d1, · · · dk); e1, · · · , em) = γ(c; f1, · · · , fk)

where fi = γ(di; e∑m−1
i=0 i+1, · · · ej∑m

i=0
ji
).

2. An identity element, e ∈ J(1), such that

• for d ∈ J(m), γ(1; d) = d and

• for c ∈ J(k) and 1k = (1, · · · , 1) ∈ J(1)k, γ(c, 1k) = c.

3. A right operation of the symmetric group Sm on J(m) for each m such that for all

c ∈ J(k), di ∈ J(mi), σ ∈ Sk, and τi ∈ Smi
, such that:

• γ(cσ; d1, · · · , dk) = γ(c, dσ−1(1), · · · , dσ−1(k))σ(m1, · · ·mk) for σ(m1, · · · ,mk) the

permutation of m letters permuting the k blocks of letters given by the particular

partition of m as σ permutes k letters, and

• γ(c; d1τ1, · · · , dkτk) = γ(c; d1, · · · dk)(τ1 ⊕ · · · ⊕ τk) for τ1 ⊕ · · · ⊕ τk the image of

the tuple (τ1, · · · , τk) under the inclusion Sm1 × · · · × Smk
↪→ Sm.

Definition 4.2.2. Let V be a symmetric monoidal category. A colored operad or multicate-

gory M , over a symmetric monoidal category (C,⊠), is a symmetric multicategory enriched

over V .

One may view a colored operad in a rough sense as the horizontal categorification of an

operad, an operadoid, meaning the generalization of the idea of an operad to a situation with

multiple objects (in analogy to groups and groupoids).
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In the construction of Costello and Gwilliam in [2], a particular colored operad, DisjM ,

is fundamental.

Definition 4.2.3. [2, Definition 3.7.2.1] Let M be a topological space. DisjM is a colored

operad consisting of the following structure.

1. The objects of DisjM , Ob(DisjM), are all connected open subsets of M .

2. A set of maps, denoted DisjM({Uα}α∈A|V ) from each finite collection of open sets

{Uα}α∈A ∈ M to each open set V ∈ M . If the Uα are pairwise-disjoint and Uα ∈ V ,

∀α ∈ A, the set of maps is a single point. The set of maps is empty in any other case.

3. Composition of maps corresponds to operadic composition.

Property 2 in the above definition tells us that the set of maps between two disjoint Uαi
,

i ∈ {1, 2} is empty.

The definition of a prefactorization algebra is then as follows:

Definition 4.2.4. [2, Section 3.1.2] A prefactorization algebra on M , a topological space,

valued in C, a multicategory, is a functor

P : DisjM → C.

One may construct a prefactorization algebra more explicitly, in a sort of analog to a

pre-cosheaf, but with respect to the tensor product versus the direct sum. This gives the

following alternative definition.

Definition 4.2.5. [2, Section 3.1.1]A prefactorization algebra on a topological space M

taking values in some linear multicategory C is a rule that assigns an object in F (U) ∈ C to

each open set U ∈M along with, corresponding to each finite set of pairwise disjoint subsets

Ui ∈ V a linear map

mU1,··· ,Un

V : F (U1)⊗ · · · ⊗ F (Un) → F (V ).

This inclusion rule satisfies the property that for Ui,1⊔· · ·⊔Ui,ni
⊆ Vi and V1⊔· · ·⊔Vk ⊆ W ,⊗k

i=1

⊗ni

j=1 F (Uj)
⊗k

j=1 F (Vi)

F (W )
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commutes.

Usually C in practice is a linear multicategory such as that of vector spaces or cochain

complexes (taking values in an additive category). This allows for a notion of addition of

the values of the outputs, and also a linear version of composition.

The generalization from prefactorization algebra to factorization algebra requires gluing

conditions preserving the multiplicative structure as the (co)sheaf axiom does the additive

structure of a pre(co)sheaf. To achieve this, one may look at a particularly generous sort of

cover of M .

Definition 4.2.6. A Weiss cover of an open set U ⊂ M is a collection of open sets, U =

{Ui|i ∈ I} such that for any finite collection of points {x1, . . . , xk} ⊂ U there exists an open

set Ui ∈ U such that {x1, . . . , xk} ⊂ Ui.

A trivial example is the case that I = {1} and U = Ui = U, but one sees that rapidly

this sort of covering has no dearth of open sets: in fact, for a space with point-separation,

it is like a superset of all coverings, in that it contains all possible ones, from the coarsest

through the finest. As noted in [2], a Weiss cover defines a Grothendieck topology (see [1]

for this and related notions) on the set of open sets of a topological space M , Opens(M).

Now we have all of the ingredients necessary to define a factorization algebra from a

prefactorization algebra.

Definition 4.2.7. (Like [2, Definition 6.1.3.1].) Let M be a topological space and let C be

a linear multicategory. A factorization algebra on M with values in C is a prefactorization

algebra on M with values in C that is a cosheaf with respect to the Weiss topology. In other

words: a factorization algebra is a prefactorization algebra with the additional property that

for every open subset U ∈M and every Weiss cover {Ui}I∈I , the following sequence is exact:⊕
i,j

F (Ui ∩ Uj) →
⊕

F (Uk) → F (U) → 0.

Definition 4.2.8. [2, Section 6.3.1] A multiplicative factorization algebra is a factorization

algebra such that for all pairs of disjoint open subsets (V,W ) in M , the structure map

mV,W
V ⊔W : F (V )⊗ F (W ) → F (V ⊔W )

is an isomorphism.
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The target category here will usually be CCh, the category of cochain complexes. CCh

can actually be equipped with (actually several different choices of) a model structure, which

means that its morphisms will be divided into three classes: fibrations, cofibrations, and weak

equivalences. In the setting of factorization algebras, however, only the existence of a notion

of weak equivalence plays a role: this indicates that a more nuanced version of equivalence

would have a place in the context of factorization algebras. In order to build up a such

variant of factorization algebras, where the analog of the precosheaf axiom holds only up to

weak equivalence (in the CCh, one may consider weak equivalences as quasi-isomorphisms

of chain complexes), we require some more concepts.

Construction 4.2.1. [2, Section 7.1.4] Let M be a topological space and U = {Ui}i∈I be a

cover of some open subset Uof M (where U can be any open subset, the importance being

that one is chosen). Define Φ to be a precosheaf on M valued in cochain complexes in an

additive category C.

One may construct a precosheaf valued in double cochain complexes where the degree (k, •)

term looks like ⊕
J

Φ(Ujo ∩ · · · ∩ Ujk)

where the sum is over tuples J = (j0, · · · , jk) with j0, . . . , jk ∈ J pairwise distinct. One

differential of these double complexes is the differential on the complex Φ and the other is

the alternating sum of the structure maps of Φ coming from the inclusion of one term in the

internal sum into the next.

One may build a Čech complex out of the totalization of the double complex these terms

comprise. To this end, define the Čech complex of U with values in Φ as

Č(U,Φ) =
∞⊕
k=0

(⊕
J

Φ(Uj0 ∩ · · · ∩ Ujk)[k]
)
.

where [k] is a shift in degree of k in the positive direction.

For any term in this sum that is of the form Φ(Uji), one may show that the structure

map from that Φ is a precosheaf provides the natural map

H : Č(U,Φ) → Φ(U).
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This can be constructed for any such term, and any U , so long as Uji ⊆ U , and thus gives a

map from the Čech complex on any smaller open to the precosheaf on a larger one containing

it.

Definition 4.2.9. [2, Section 6.1.4] Φ as defined above is a homotopy cosheaf if H is a

quasi-isomorphism for U any open set of M and {Ui}i∈I any open cover of U .

Now enough information has been presented to understand the aforementioned general-

ization of factorization algebras.

Let C be a multicategory over a Grothendieck abelian category, and M a topological

space. Let CCh(C) denote the category formed by cochain complexes taking values in

C. One may form a multicategory over CCh(C), where the higher-arity operations are

multilinear maps between these cochain complexes. Note that since CCh(C) consists of

cochain complexes, it comes with a notion of weak equivalence: quasi-isomorphism of cochain

complexes.

Definition 4.2.10. [2, Definition 6.1.4.1] Let F be a prefactorization algebra on M valued

in CCh(C). F is called a homotopy factorization algebra if for every U ∈ M an open set,

and every Weiß cover U of U , the map H from Construction 4.2.1 is a quasi-isomorphism.

As stated in [2], and seen from Construction 4.2.1, this indicates that if F is a homotopy

factorization algebra, it is by definition a homotopy cosheaf on the topology on U defined

by U , and, in particular, on M itself.

It is also worth mentioning that not only does a notion of weak equivalence in the target

category allow for the generalization to homotopy factorization algebras, but it also provides

a way of recognizing different homotopy factorization algebras themselves as weakly equiv-

alent. One may show (as can be found in [2, Section 6.1.5.1]), that for F and G homotopy

factorization algebras, if for each open set U , F (U) → G(U) is a weak equivalence in the

target category, then F and G are themselves weakly equivalent as factorization algebras.

This may be checked explicitly by looking at particular refinements of U .

52



4.3 Formal Moduli Problems

Historically, that which became referred to as ”formal moduli problems” was explored as

a way to encode order-wise deformations. In the context of partial differential equations

(PDEs), which is particularly relevant to field theories governed by action functionals since

the Euler–Lagrange equations are PDEs, this means taking a perturbation expansion of the

equation under inspection and trying to find order-wise solutions. The space of all solutions

at all orders, as well as the relationships between those deformations, forms the formal

moduli problem associated with that equation. Now there is a way to phrase formal moduli

problems (FMPs) in terms of infinity categories, and we will hop between the two, first

introducing FMPs in that generality, but referencing the importance of order-wise solutions

to the equations of motion in a given field theory to the understanding of the structure of

its space of solutions.

We will here introduce the notion of FMPs in some generality, as found in [7], and then

specialize to the case seen in [3] and most relevant to factorization algebras. Before stating

these main definitions, however, we require some background.

Definition 4.3.1. Let K be a field of characteristic zero and A a commutative K−algebra.

A is local Artinian if it satisfies the following two conditions.

1. A is a finite-dimensional K vector space.

2. A has a unique maximal ideal mA, and moreover mN
A = 0 for some N ∈ N large enough.

Similarly in the differential-graded setting,

Definition 4.3.2. (Similar to [3, Definition 3.1.0.1].) Let K be a field of characteristic zero

and A a commutative differential graded K−algebra only in degrees ≤ 0. A is an Artinian

dg algebra if it fulfills the following two conditions.

1. With respect to the N−grading on A, each graded component Ai is finite-dimensional,

and there exists a minimal i, i.e. for i small enough, Ai = 0.

2. A has a unique maximal (differential) ideal mA where mN
A = 0 for some N ∈ R large

enough, and A/mA = K.
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Definition 4.3.3. [7, Definition 0.0.6] Let C be an ∞−category and N(RingartK ) the nerve of

the category of local Artinian K−algebras. A C−valued formal moduli problem is a functor

FMP : N(RingartK ) → C .

The case explored in [3] is a specification on this theme.

Definition 4.3.4. [3, Definition 3.1.0.2] Let K be a field of characteristic zero. A formal

pointed moduli problem over K is a functor of simplicially enriched categories

F : ArtdgK → sSets,

where sSets denotes the category of simplicial sets and ArtdgK differential graded Artinian

algebras over a characteristic-zero field K, satisfying the following properties.

1. F (K) is contractible.

2. F takes surjective maps of dg Artinian algebras to fibrations of simplicial sets.

3. For B A
f

, C B
g ∈ ArtdgK , and B ×A C the fiber product of B and C,

the natural induced map

F (B ×A C) → F (B)×F (A) F (C)

is a weak homotopy equivalence.

The objective here is to, in defining a formal moduli problem, construct a functor from

one of these categories to an arbitrary infinity category, and one way to do this practically

is to pass to simplicial sets on both the source and the target of the functor. Recall that

Definition 4.3.5. An (∞, 1)−category is a simplicial set satisfying the Kan condition, i.e.

such that each horn has a filler under Kan extension.

We know that Joyal’s quasi-categories ((∞, 1)−categories as in the previous definition)

provide a model for any infinity category, essentially breaking it down into simplicial sets,

and will choose to look in terms of this model here. It follows that for the target we will

have no problem. For the source, one must show how a simplicial structure arises on the

category of local Artinian algebras or Artinian dg algebras.
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In the former case, notice that the source of the formal moduli problem functor is the

nerve of RingartK , and by construction, this interprets a category in terms of the data of

simplicial sets. This works as follows:

Construction 4.3.1. (The Nerve of a Category) Let C be a category. We will show how

this construction works for C and mention how it specifies to the case of interest here, that

of RingartK . The construction in any setting can be accomplished in three stages:

1. Associate to each n−morphism in C a n−simplex. Since C is an ordinary category,

this means that we associate a point to each object, a 1−simplex to each morphism,

and a 2−simplex to every composition of morphisms.

2. Form the degeneracy maps

dk : ∆k → ∆k−1

by deleting the ith entry in a sequence of k objects, to obtain a sequence of k − 1

objects. Viewed in terms of simplicial sets, this entails deleting a single 0−simplex,

and connecting the two 1−simplices that would have joined it to the neighboring two

0−simplicies. This connection can itself be seen, as a composition of morphisms, as a

2−simplex.

3. Establish the face maps,

sk : ∆k → ∆k+1,

by adding an identity morphism from one k−morphism to itself. In terms of simplicial

sets, this “adds a side” to the simplices, making them simplices of one dimension

higher.

In general, the nerve offers a way to view any ordinary category as an (∞, 1)−category.

In the case of RingartK , the 0−morphisms are the locally Artinian algebras, and the

1−morphisms the structure-preserving algebra homomorphisms between them. The simplicial

sets are then constructed by these in the same manner as above.

Since the target category C in the context of formal moduli problems is already an

∞−category (meaning here and everywhere else in this document, (∞, 1)− category) in the
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general case, it can be realized in terms of simplicial sets, and a formal moduli problem can

be viewed as mapping between simplicial sets.

In the case of ArtdgK , since it is a small category, we may take its nerve, and by construction

this describes (at least up to isomorphism) the contents of that category. Thus, in order to

get a map of infinity categories in this case as well, we may pass to the nerve and look at,

as in the above case, the corresponding map of simplicial sets.

Construction 4.3.2. (Simplicial enrichment of ArtdgK , similar to [3, Section 3.1]). It is

possible to describe a simplicial enrichment of ArtdgK (providing a model of that category as

an (∞, 1)−category) in terms of differential forms on simplices.

Differential forms on a simplex can be constructed in rough analogy to differential forms

over a coordinate chart {U, xI} on a topological space M : locally, on a coordinate chart, a

differential form α ∈ Ω∗(U) can be written as

α =
∑
I

fI ∧ dxI

where each f is a function on U and I is a multi-index encoding lists of integers of increasing

length. For the analogy, one may view a simplex as a particular choice of chart (they locally

do look like subsets of Rn), as

Ωn(∆n) ≃ R[x1, · · · , xn, dxi, · · · , dxn]∑n
i=1 xi = 1,

∑n
i=1 dx

i = 0
,

with the relations in the denominator those coming from the rules of simplices. This defines

a commutative algebra of differential forms over each k−simplex. This construction for all k

produces a cochain complex of differential forms, with differential the de Rham differential.

Now, let us consider the setting of dg−Artin algebras. Let mA be the maximal ideal of

A ∈ ArtdgK , and mB the maximal ideal of B ∈ ArtdgK . A morphism in ArtdgK ,

f : A→ B,

must be such that f(mA) = mB (since the morphisms are structure-preserving). The simpli-

cial structure on ArtdgK then is built as follows:

For any level n = k, the k−simplices are maximal-ideal-preserving maps

mA → mB ⊗ Ω∗(∆k)
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where Ω∗(∆k) is essentially the de Rham complex of differential forms on the k−simplex as

prior within this construction.

This construction gives us a more concrete way of seeing how the formal moduli problem

functor is indeed between ∞−categories, and hints at how one might explicitly compute the

correspondence.

Remark 4.3.1. There is a classical version of this theory, wherein the functor constructed is

from Artinian algebras to sets. This means that one should have the following commutative

diagram:

ArtdgK SSet

ArtK Set

H0 π0

The top row describes a formal pointed moduli problem, and the bottom row a classical moduli

problem. To get from the dg case to the classical case, as indicated on the downward arrows,

one takes the connected components of SSet and zeroth homology group of ArtdgK . It is also

possible to get back from the bottow row to the top row. On the right, that amounts to taking

the constant simplicial set, and on the left, that is inclusion of regular Artinian algbras into

the degree-zero part of dg Artinian algebras. Note that this does not really capture the graded

nature of ArtdgK , since all information is concentrated in degree zero.

In the setting of Definition 4.3.4, and in this exposition, we would like to be able to

explain the formal moduli problem associated to a classical field theory described by an

action functional. For intuition into this, one may consider again the historical motivation

of formal moduli problems in the context of differential equations: to find and describe

the order-wise solutions thereto. As we will later see, the solutions to the Euler–Lagrange

equations to our theories will describe a local L∞−algebra, the Maurer-Cartan equations of

which will correspond directly to those equations of motion. To see how this contributes to

the structure of a formal moduli problem defined at the beginning of this subsection, we will

examine the connection between these and L∞−algebras.
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4.3.1 Connection of Formal Moduli Problems to L∞ Algebras

It is possible to construct a formal moduli problem given an L∞ algebra. The formal moduli

problem will consist of solutions to the Maurer–Cartan equations of that algebra. This is

explained in great detail in [6] and [5], and referenced and partially elaborated upon in,

respectively, [7] and [3]. Here most of the time it will be adequate to work with differential

graded Lie algebras rather than L∞−algebras, so to begin we will make the relationship

between the two explicit.

Definition 4.3.6. A differential graded Lie algebra is a graded vector space V =
⊕

i Vi (over

a field of characteristic zero) equipped with two maps:

1. A bilinear bracket:

[·, ·] : Vi × Vj → Vi+j

fulfilling

* skew-anti-symmetry: for x, y ∈ V homogeneous

[x, y] = (−1)|x||y|+1[y, x]

and

* The graded Jacobi identity: for x, y, z ∈ V homogeneous:

(−1)|x||z|[x, [y, z]] + (−1)|y||x|[y, [z, x]] + (−1)|z||y|[z, [x, y]] = 0

2. A differential of homological grading

d : Vi → Vi−1

or cohomological grading:

d : V i → V i+1

(where in the latter case, the notation of the grading in superscripts instead of subscripts

is to emphasize that the differential raises the degree) that is a derivation of the bracket,

i.e. for homogeneous x, y ∈ V ,

d[x, y] = [dx, y] + (−1)|x|[x, dy].
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Note that the choice of homological versus cohomological grading on a vector space is easy

to switch: starting with homological grading, set Vi = V −i for all i to obtain cohomological

grading.

There is a direct generalization of the contents of this definition into that of the next.

Definition 4.3.7. An L∞−algebra or homotopy Lie algebra is a graded vector space V =⊕
i Vi (over a field of characteristic zero) equipped with level-wise bracket operations: for

each n ∈ N there is a degree n− 2 multilinear map, the n-ary bracket,

bn := [·, · · · , ·]n : V × · · · × V → V

from n copies of V to V such that these maps fulfill

1. graded skew-symmetry: for (v1, · · · vn), a n-tuple of homogeneous elements in V , σ ∈ Sn

any permutation, and χ the graded signature of the permutation,

bn(vσ(1), · · · , vσ(n)) = χ(σ, v1, · · · , vn)bn(v1, · · · vn)

and

2. the strong homotopy Jacobi identity: for n ∈ N and any nuple v1, · · · , vn of homoge-

neous elements in V (i.e. all in a single Vi),∑
i,j∈N

i+j=n+1

∑
σ∈US(i,j−1)

χ(σ, v1, · · · , vn)(−1)i(j−1)bj(bi(vσ(1), · · · , vσ(i)), vσ(i+1), · · · , vσ(n)) = 0

where US stands for the unshuffle permutations.

Definition 4.3.8. A permutation σ ∈ Sn is called an (k, n−k) unshuffle if σ(1) < · · · < σ(k)

and σ(k + 1) < · · · < σ(n).

Observe that for n ≤ 2, the definition of an L∞−algebra corresponds with that of a

dg-Lie algebra, so the latter can in a sense be viewed as a truncation of the former. This

can be seen in that the strong homotopy Jacobi identity in this case simplifies to the graded

Jacobi identity and that the unary bracket, b1, acts as d, and is Leibniz-compatible with the

bracket, or b2.
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As mentioned at the end of the previous section and explained in [3, Chapter 3.1.1], the

Maurer-Cartan elements of a L∞−algebra can be associated with a formal moduli problem.

This works as follows.

Construction 4.3.3. (Formal moduli problems from Maurer–Cartan elements of L∞−algebras)

Let g be an L∞−algebra. It then has levelwise brackets, and correspondingly its Maurer–

Cartan equation on elements of cohomological degree 1 is defined to be

d+
∑
n>1

1

n!
bn(−, · · · ,−) = 0 (4.1)

where the bn terms stand for the nth−order Lie brackets, and take n inputs. The Maurer–

Cartan functor, for g a L∞−algebra, and A ∈ ArtdgK ,

MCg : Art
dg
K → sSet

MCg(A) =MC(g⊗mA ⊗ Ω(∆n)),

takes as input a dg Artin algebra and returns the Maurer-Cartan elements of the L∞−algebra

formed by L⊗mA (one may show that the tensor product of a L∞−algebra with a commutative

dga is again an L∞−algebra). In Construction 4.3.4, we saw that the form of the simplicial

sets associated to a dg Artinian algebra are of the form

mA ⊗ Ω∗(∆n)

where Ω∗(∆n) is again the de Rham complex of differential forms on the simplicial set ∆n.

To determine the entire simplicial structure, one looks at all values of n. This time, however,

we are looking at the simplicial structure of the elements of the tensor algebra, so elements

of the form

α ∈ g⊗mA ⊗ Ω∗(∆n).

As was the case in Construction 4.3.2, these are associated to a formal moduli problem.

To make contact with [3], the formal moduli problem associated to g in this way is in that

source known as Bg.

This association provides one very direct way of working with formal moduli problems:

via the manipulations of the corresponding L∞−algebra. The next subsection will state an

underlying form of this connection.
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4.3.2 Fundamental Equivalence

One motivation for introducing formal moduli problems here at all is so that they can be used

to encode the “physical fields” of a classical field theory; the solutions to the equations of

motion. Since the formalism of factorization algebras works predominantly with L∞ algebras

(or frequently the special case of dg−Lie algebras), one needs to establish a way to navigate

between these and formal moduli problems, and that is encoded in the following theorem

seen in [7] (not stated in its most general version, but instead rather colloquially).

Theorem 4.3.1. Let K be a field of characteristic zero. Then there is an equivalence of

∞−categories between formal moduli problems and dg Lie algebras over this field.

We will not prove this here, and shall only note that it holds for the case relevant to

factorization algebras, i.e. when looking at formal pointed moduli problems, as well as more

generally.

To give some intuition into this equivalence, we will peek at the functors of which this

equivalence of categories is comprised.

Let FMP denote the (∞)−category of formal moduli problems and dgLa that of differ-

ential graded Lie algebras, both with the morphisms as structure-preserving maps. Recall

that since there is a classical 1−categorical formulation of this relation, it makes sense to

consider both equivalence of classical categories, and that of (∞, 1)−categories.

As we saw above, the functor from dgLa to FMP is the Maurer–Cartan functor. This

functor has an inverse, coming from taking the tangent complex of FMP, which we are not

discussing here, and the two together form an equivalence of ∞−categories.

4.4 From Formal Moduli Problems to Factorization Al-

gebras

Now we have all the content necessary in place to at least trace a route from a given formal

moduli problem to the structure of a factorization algebra on the cohomology groups of the

corresponding BV-BRST complex (the observables of the associated physical theory).
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From the correspondence in Theorem 4.3.1, any given formal moduli problem may be

described as the Maurer–Cartan functor of a corresponding dgLa. In the case of a field theory,

one may, over each open neighborhood U on the worldsheet, examine the solutions to the

Euler–Lagrange equations. This collection of fields forms the field space of the theory over

each U . If one picks some solution in this field space and expands around it, this chosen field

may serve as a “basepoint” for the formal moduli problem associated to this moduli space.

The data of this FMP is determined, as previously discussed, by the order-wise (with respect

to this perturbation expansion) solutions to the equations of motion. Taking the Chevalley–

Eilenberg complex of this will produce the BV–BRST complex of the theory (with respect to

this choice of basepoint), and the cohomology groups of this Chevalley–Eilenberg complex

describe the observables of the theory. One may show that these cohomomlogy groups have

the structure of a factorization algebra.

Schematically, this chain of relationships looks like the following:

FMPs dgLas BV −BRST PreFAs FAs.
MCs

Sym H• Gluing

where the maps are from left to right the Maurer–Cartan equations, taking the symmetric

algebra, calculating cohomology of the total complex of the BV-BRST double complex, and

a gluing condition analogous to the pre-sheaf-to-sheaf gluing axiom. In this section, we will

further explain these correspondences.

4.4.1 Between Maurer–Cartan Equations and Physical Fields

In this subsection, we present how to construct a pointed formal moduli problem of fields

given a classical field theory. An essential point here is, as illustrated in [3], that the moduli

of the solutions to the equations of motion of a specified theory can be described by based

formal moduli problems.

All of the field theories we work with here are perturbative, so to probe the space of

solutions to the equations of motion, one may expand about some particular such solution,

ϕ0, to search for others in some small ϕ0−surrounding neighborhood. Following the notation

of [3], one may construct an expansion around ϕ0 in terms of some small parameter ϵ. This
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returns

ϕϵ = ϕ0 + ϵϕ1 + ϵ2ϕ2 + · · · ,

and one may check if such an expansion is in the space of physical fields by applying relevant

equations of motion to it orderwise, with the answer affirmative if this expansion satisfies

the Euler–Lagrange equation. In the case here, ϵ is taken to be nilpotent, meaning that for

some n, ϵn = 0.

One will note the similarity between the previous statement and the condition that a

(dg) Artinian algebra have a maximal ideal. This is not an accidental formal analog, rather

an integral piece of the formalism in use: in the language of formal deformation theory, in

this search for physical fields described by terminating expansions as written above, we may

look for deformations parametrized by the Artin ring [ϵ]/ϵn.

Consider the space of fields as a derived stack (recall that this is actually what X/g

is, it is just computationally direct to deal with it in terms of its BV-BRST complex, so

that is what is done, then without explanation, in the previous chapters). To every open

neighborhood U ∈ X, assign a formal moduli problem, denoted here by M(U), containing

some solution, ϕ0, as introduced above. Again as above, check for other solutions in the

region by perturbing this ϕ0. The space containing (here terminating) expansions around

some particular solution is some completion M̂(U) of M(U). Recall as well that a formal

moduli problem is defined to be a functor

F : ArtdgK → Sset

satisfying several properties listed above. Let A be a dg Artin algebra with maximal ideal

mA. Since by definition, A/mA is K and contractible, it may be viewed as a point. Then, the

formal moduli problem functor can be viewed as mapping this point to the solution around

which the perturbative expansion takes place.

Using the aforestated equivalence of ∞−categories between formal moduli problems and

dgLas, it is possible, under the Maurer-Cartan functor and its counterpart (from FMPs

to dgLas) in the equivalence of categories, to consider this formal moduli problem data in

terms of a specific dgLa. The Maurer-Cartan elements corresponding to the nested ideals of

the chain condition on Artinian algebras correspond to the coefficients of the higher-order
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terms in the expansion of ϕ0. The value of N capping the chain of ideals is the same as the

exponent of the highest-order term in the perturbation expansion of ϕ0.

Note that while this chain of viewpoints is a nice way of obtaining some information

about the original derived stack of fields, it does not offer a complete picture of that entity,

for this sequence causes a significant loss of data: we go from describing the entirety of

the field space to just looking at locally at solutions near one particular fixed one (the

basepoint of the formal moduli problem, which is chosen). This is an acceptable setting for

perturbative quantum field theory, but to understand other field theories, one may require

the preservation of more information from the derived stack itself.

We shall now sketch out how the solutions to these “levels” of equations of motion

correspond to the Maurer–Cartan elements of some dgLa, and hence to a formal moduli

problem.

Recall that the Maurer–Cartan equations of an L∞−algebra are of the form of Equation

4.1. For n = 1, the Maurer–Cartan bracket is defined in terms of the “one bracket”, or

differential, so that for ϕ an element of the L∞−algebra, the equation

dϕ = 0

means that ϕ is a level one Maurer–Cartan element. Similarly, the level-two Maurer–Cartan

equation spelled out is

d(−) +
1

2
[−,−] = 0,

the level-three one is

d(−) +
1

2
[−,−] +

1

6
l3(−,−,−) = 0,

et cetera. In Chapter 2 when we calculated the Euler–Lagrange equations of the bc−CFT,

we suggestively saw that they were of the form

∂b = ∂c = 0.

This inspection of the bc−CFT reveals a lack of higher bracket terms arising from the equa-

tions of motion, terminating the analogy rather early. Note that in an interacting theory,

such as that of the holomorphic bosonic string in [4], one will obtain terms containing bn for

n ≥ 2.
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It is possible to find solutions to the Euler–Lagrange equations on any open submanifold

of Σ a differentiable manifold (the worldsheet of the theory), and those restricted Euler–

Lagrange equations also trace out the elements of a dgLa and hence a formal moduli problem.

This gives a formal moduli problem, EL(U), corresponding to each open set U ⊂ M . The

relationships between these formal moduli problems will induce the prefactorization algebra

structure on the observables.

4.4.2 The Prefactorization Algebra Structure on Physical Observ-

ables

As is described in the first section of [3], the formal moduli problems EL(U) can be patched

together so that the O(EL(U)) satisfy the axioms of a prefactorization algebra. As men-

tioned there and earlier in this text, there is a direct parallel with sheaf-like structures: a

prefactorization algebra is axiomatically the same as a precosheaf.

4.4.3 The Factorization Algebra Structure on Physical Observ-

ables

The factorization algebra structure on the observables can be induced by the sheaf structure

of EL. This is roughly because showing that EL is a sheaf indicates that the space of formal

moduli problems corresponding to the theory, one associated to each U ⊂ X forms a sheaf,

and a “dual” of that gives a cosheaf consisting of the algebras of functions O(EL(U)) for

all U ⊂ M open. A factorization algebra is, recall, essentially a cosheaf with respect to the

tensor product, rather than the direct sum. This tells us that since for two disjoint open

sets U and V of X, EL(U ⊔ V ) = EL(U) × EL(V ), if we take the factorization algebra F

to be O(EL(U ⊔ V )), it follows that this is equal to O(EL(U))⊗ O(EL(V )).
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