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Abstract

This thesis describes a system to enable responsive user guided control of a physically sim-
ulated human character. The control system is meant to be robust to disturbances while also
producing movements that are of a similar quality to the visuals produced by more high quality
kinematic animation systems used in modern video games. This task is difficult because human
characters must dynamically retain balance through contacts with an environment, and walking
requires control of an underactuated dynamic system. Simulation also does not guarantee a char-
acter will move in a natural manner, so care has to be taken to ensure visually unusual behaviours
do not occur as a result of control. Work in the field of reinforcement learning has demonstrated
the possibility of generating physical character control policies that imitate human motions with
a high degree of success. Many methods have focused selectively on generating controllers that
produce high quality motion, while important factors such as responsiveness, user controllability,
motion diversity, and runtime costs have been somewhat overlooked. The approach presented
here focuses on improving performance with respect to all these factors. A data-driven kinematic
character controller sequences and blends motion capture data in order to generate medium-term
kinematic motion plans which fit user controlled high-level goals. This allows movement direc-
tion, heading direction, speed, and style of motion to be responsively altered in a real-time user
controlled manner, while also capturing subtleties of human behaviour in the data. Reinforce-
ment learning is then used to train a simulated character controller that is capable of imitating
the motion of the kinematic character controlled by a user. This necessitates a training scheme
that captures the full distribution of behaviours that a human is likely to use, and which enforces
the learned behaviour to retain the stylistic characteristics of the generated motion while making
it physically feasible. The design of this system is also made with runtime cost in mind, ensuring
that the result is useful in the context of real world application in video games where performance
budgets are strict.
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Résumé

Cette thèse presente un système de contrôle responsif pour un personnage humain physique-
ment simulé. Le système de contrôle est conçu pour être résistant aux perturbations et à la même
fois pour produire des mouvements d’une qualité similaire aux visuels produits par des systèmes
d’animation cinématique de haute qualité utilisée dans les jeux vidéo modernes. Cette tâche est
difficile car les personnages humains doivent maintenir dynamiquement l’équilibre grâce à des
contacts avec un environnement, et la marche nécessite le contrôle d’un système dynamique
qui est instable. La simulation ne garantit pas non plus qu’un personnage se déplacera d’une
manière naturelle, il faut prendre soin d’éviter un comportement étrange. Les méthodes utilisant
l’apprentissage par renforcement ont démontré la possibilité de générer des contrôleurs de car-
actères physiques qui imitent les mouvements humains avec un haut degré de succès. Mais, la
réactivité, la contrôlabilité par l’utilisateur, la variété des mouvements et les coûts d’exécution
ont été quelque peu négligés. L’approche présentée ici se concentre sur l’amélioration de tous
ces facteurs. Un contrôleur de personnage pour l’animation basé sur mocap séquence et mélange
les données afin de générer des plans de mouvement à moyen terme qui correspondent aux objec-
tifs contrôlés par l’utilisateur. Cela permet de modifier en réponse la direction du mouvement, la
direction du regard, la vitesse et le style de mouvement d’une manière contrôlée par l’utilisateur
en temps réel, tout en capturant les subtilités du comportement humain. L’apprentissage par
renforcement est ensuite utilisé pour entraı̂ner un contrôleur de personnage simulé qui est ca-
pable d’imiter l’animation du personnage contrôlé par l’utilisateur. Cela nécessite un système
d’entraı̂nement qui capture la distribution complète des comportements qu’un humain est suscep-
tible d’utiliser, et qui impose au contrôleur de personnage simulé de conserver les caractéristiques
stylistiques du mouvement généré. La conception de ce système est faite avec le coût d’exécution
à l’esprit, garantissant que le résultat est utile dans le contexte d’une application réelle, comme
les jeux vidéo car ils ont des budgets de performance serrés.
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Preface

The contributions of this thesis that are original to the author’s knowledge are as follows,

• Chapter 3

– An improved and simplified formulation of inertialization blending that uses lerp and
slerp. An associated proof of relevant position, orientation, velocity, and angular ve-
locity behaviour is given.

• Chapter 4

– A method of optimizing geometry in order to fit the surface of a skinned mesh and
emulate the mass properties of an isotropic deformable character using multiple rigid-
bodies.

– A method of anisotropically reducing compressive constraint drift in a maximal coor-
dinate simulation using internal forces. This is done to model pressure like forces in
the body, as well as to allow for more realistic compliant joints.

• Chapter 5

– A method of using an artificial user in order to train policies using reinforcement
learning that are robust to the conditions generated by worst case human users.

– The method and details of combining motion matching with reinforcement learning
such that medium-term planning is achieved in kinematic space using a database of
trajectories. This enables training of a simulated character control policy which can
robustly track kinematically planned motion, achieving high-level control objectives.

All text and illustrations in this thesis are produced by Kevin Bergamin. Plots as well as nu-
merical and experimental results are produced by Kevin Bergamin and Simon Clavet. Some con-
tent and results presented here are material from the author’s publication in ACM Transactions
on Graphics November 2019 titled “DReCon: data-driven responsive control of physics-based
characters” [1]. This Thesis serves as a more complete presentation of the content of that work,
including various additions and improvements.
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Chapter 1

Introduction

The field of computer graphics can have its origin traced to computer programs that aimed
to create interesting interactive visuals of engineered physical systems. It has been a goal of
graphics researchers over time to generate visuals that are indistinguishable from reality, and one
of the primary ways this has been pursued is by accurately reproducing the dynamics of physical
processes that give rise to visual phenomena. There has been great success in this regard, with
physically inspired light transport methods like path-tracing allowing the generation of photo-
realistic images. Likewise, realistic animation of physical objects and substances has advanced
through modeling of physical processes like fluid dynamics, deformable-body mechanics, and
rigid-body dynamics.

While these progresses have allowed for phenomenal improvements in visuals, a large portion
of computer animation remains largely driven by artistic decisions. This is particularly true in the
case of the animation of characters. Artists generally have full kinematic control over character
movements and interactions with the environment and as such, they perform a role similar to
classical 2D animators. This can be desirable as it allows for animators to significantly stylize
the animations they create, but can in other cases be problematic when the goal is to create
physically accurate character movements. One possible remedy is for animation to be recorded
by using motion capture technology, which utilizes spatial recordings of actors in the real world
to create physically plausible character motions [2]. However, motion capture is not necessarily
physically accurate if the target character and environment significantly differ from the motion-
capture actor and the recording environment. Ultimately, to achieve physically accurate character
motion an accurate physical simulation of a character and its environment are necessary.

Using simulation to animate characters and accurately model movement and interaction has
been a topic of great interest and has given rise the study of physically-based animation. There is
an underlying hope that methods can be found to produce character simulations indistinguishable
from recordings of real humans and animals. Progress has been made towards this goal, but many
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issues remain unsolved. Research progress in the field has been slow and difficult in no small part
because of the necessity of solving complex nonlinear control problems, in particular the control
of under-actuated multibody systems. Interestingly, this also means there is a large degree of
overlap with the problems faced by those researching the control of legged robotic systems.

A key target application driving computer graphics has been video games. Characters must
adapt continuously to their environment, user input, and unforeseen events. Current games in
general animate characters using a set of animations that are chosen at runtime using heuristics.
Character interaction with the environment and movement are faked using a proxy rigid-body
with a simple shape such as a vertically aligned capsule. All interaction with the environment
occurs through the proxy. Character movement is faked by applying forces to the proxy, and the
visual character animation is purely kinematic with minimal or nonexistent interactions with the
environment. Proxy based methods do not allow for realistic coupling between characters and
the simulated environment, which can lead to implausible visuals. Proxy based methods do not
generate novel behaviours since all animation is picked from a provided set. Proxy geometry fails
to model accurate changes in center of mass position, inertia, and responses to perturbation, and
proxy collision geometry is all around a poor fit for the character.

The motivation for this research has been to find a method that brings physically simulated
characters closer to a state where their motion is indistinguishable from real human motion.
The desire to find such a method is largely driven by the fact it could significantly improve the
quality of many systems that must interact with complex physical environments, like characters
in video games or legged robots. In particular, this research has focused on the goal of discovering
a method that will be of practical use in current generation video games. Based on this goal, three
main objectives were determined to be important aspects for the success of this research:

1. Create a method of controlling simulated characters that does not degrade stylistic qual-
ities of character motion when compared to current state-of-the-art kinematically driven
animation systems.

2. Ensure that the method retains a high degree of user directability and can respond to user
control demands responsively.

3. Guarantee that the runtime performance cost of using the method is small enough to keep
it practical in the context of a realistic video game performance budget.

The importance of these objectives is clarified by analyzing the limitations of prior work,
and investigating why previous methods have not yet seen significant industrial adoption. These
objectives are designed to ensure the results of this research meet demands that are realistically
required of any system meant to replace those currently in use.

2



1.1 Related Work

The field of 3D kinematic character animation has a long history. For the sake of completeness,
an overview of simple to complex character animation techniques will be given. Lasseter [3] gives
a good summary of how traditional 2D animation techniques can be adapted to 3D animation.
The classic method of an artist creating individual keys pose-to-pose and then filling in the gaps
with in-betweens, or in the case of 3D animation spline interpolated poses, still sees significant
use today for character animation [4].

In the context of video games, simply creating animations as standalone entities is insuffi-
cient. Interactivity necessitates that characters be able to transition between animations, for ex-
ample a character that is walking may suddenly be required to jump or perform a different action.
The most straight forward way is to simply end playback of the animation associated with the
current action and begin playback of an animation associated with the next, however this intro-
duces abrupt popping. A basic solution is to interpolate between multiple animations over a set
blending time [2]. Blend trees can be used to combine motions, multiple simultaneously playing
animations are interpolated to form mixtures of multiple similar behaviours [5]. The issue with
such a method is that naive interpolations can easily lead to low quality results [2]. Large state
machines must be constructed with many heuristics to prevent bad blends, limiting the generality
and maintainability of techniques that rely on simple rule based blending operations [6].

A large amount of research has been devoted to the invention of new techniques to improve
the quality of kinematic animations which meet user input requirements. A subset of these are
procedural animation techniques. A commonly used method is inverse kinematics (IK), where a
control rig is created and allows a character skeleton to be manipulated by solving for the kine-
matic configuration that fits constraints imposed by the rig [2]. This is used to modify animations
in order to position end effectors, such as making a character hold an object or position its feet
to prevent sliding and ground penetration [7]. Warping is another procedural method, and can
be used to generate new animations from existing ones [7, 8].

Methods exist to generate animations which fit specified contexts. These methods usually re-
quire large amounts of data in order to produce high quality results, so they tend to rely on motion
capture data rather than artist generated content. Motion capture is attractive because it provides
large quantities of high quality physically plausible animation [2]. Kernel based methods are a
simple way to allow new animations to be generated from data. For example Rose et al. [9] utilize
radial basis functions (RBFs) to create a parameterization which allows the generation of anima-
tions which mix existing motion classes in the data. This is somewhat like an “intelligent” blend
tree. However, this method has limitations. The source animations must not differ to significantly
and require careful alignment. The alignment process can also be automated using classification

3



heuristics as shown by Kovar et al. [10]. More robust automation can be achieved by using Gaus-
sian processes (GPs) instead of RBFs [11]. Similarly, animations can be parameterized into useful
low dimensional embeddings using GPs, for example generation can be guided using end effector
positions similar to IK, or through a low-dimensional vector [12, 13]. These simple kernel based
methods nonetheless remain prone to issues either with noise and variance, or with memory and
computational costs growing unfavourable as the number of examples increases. This limits their
scalability, as mentioned by Holden et al. [14].

Newer deep learning based generative models allow for significant improvements in scalabil-
ity when compared to kernel based methods. Holden et al. [14] demonstrate that a deep neural
network can learn to encode a high-level control parameterization such as character trajectory
or IK targets utilizing training data. This can be used to generate animations that fit control
requirements. This method however can produce undesirable “averaged” behaviour if the high-
level parameterization has ambiguity, for example if multiple motions in data are encoded to the
same parameters. Solving the issue of ambiguity can be done by carefully augmenting data with
information about motion phase, and parameterizing the generative network using the phase
[15]. This has limitations for behaviours where phase is ill defined due to non-periodicity or
multi-modal behaviours. Starke et al. [16] show this issue can be resolved if similar high-level
features are disambiguated using a second network to parameterize the generative network into
unambiguous weighted modes. The generality of deep learning has also allowed for unstructured
contextual information about the surrounding environment to be added to the input, which en-
ables generation of animations that have realistic interactions with environmental objects [17]
or interactions with other characters in a goal oriented way [18].

Deep learning promises a high degree of generality, but it is not a panacea. There is a signifi-
cant tendency for generative models to only generate interpolations of the data used for training.
A common trick is to perform data augmentation to generate more varied animations for train-
ing from a base data set [15, 16, 17, 18]. Even with data augmentation, artifacts like foot sliding
or improper contacts are common and must be corrected through post-processes like IK on the
output of the network [15, 16, 17]. In addition, computational cost tends to be much higher than
traditional animation strategies as large and complicated neural network designs are required to
produce high quality results. Training neural networks also takes a significant amount of time
and data, making iteration and fine tuning slow processes. The strength in deep learning based
methods seems to be their potential to compress large amounts of animation data and learn com-
plex encodings that facilitate choreography of existing animations.

There are also data-driven approaches to animation generation that do not use deep learning.
Motion graphs [19] are directed graphs modeling connections between segments of compatible
seamlessly transitioning animation in a database. Standard or modified graph traversal algo-
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rithms can then be used to generate animations that follow along certain paths and complete
different tasks at different times by visiting edges of the directed graph in particular orders. Mo-
tion graphs provide a high-level and explainable data driven method for animation synthesis,
but can be unwieldy to use because they strictly enforce that animations and transitions must be
part of a pre-computed graph. High degrees of connectivity can also make the graph searches
computationally expensive.

Motion matching is a technique where database search is used for animation synthesis [6, 20,
21, 22, 23, 24, 25]. Animations and user input requirements are parameterized using manually
designed encodings. The currently playing animation and user input form are encoded into a
query and distances to encodings for all frames in a database are used to determine which data
best matches the query. Best matches are blended with the currently playing animation, allowing
the generation to be directed through query manipulation. Motion matching is one of the few
generative methods that has seen widespread adoption in videogame production. It allows for
generation of highly realistic and directable animations, similar to many of the other techniques
mentioned, but with other attractive characteristics. Search over the database can be optimized
to have a low and fixed performance cost, and the lack of long training times makes iteration by
manipulation of the data set or design variables instant. The simplicity of the design also makes it
straightforward to debug. The primary limitation is that performance and memory requirements
scale with the size of the dataset.

1.1.1 Physically-Based Character Animation

Dynamic processes tend to govern all time varying phenomena. Scientists and engineers
model the movements of objects using mathematics, capturing the rich behaviours of physical
systems. In animation, characters and objects are usually made to move in a manner consistent
with our physical expectations because large discrepancies are easily noticed by the viewer [2].
Even in stylistic workflows animators are encouraged to follow well known guidelines so that
their animations look at least somewhat physically plausible [3].

Simulation-based methods of character animation are used to generate physically-based an-
imation, that is, animation generated by respecting physical principles. These methods have
sometimes directly been adapted from robotic control research, replacing the robot with a sim-
ulated one, and at other times been developed expressly for computer graphics. An overview of
the most relevant strategies is covered here, the primary focus being on work related to character
controllers for simulated bipeds or quadrupeds.

A large body of work is focused on the manual design of physical character controllers.
Legged locomotion control is extremely complex, but simple heuristics have been discovered
that perform quite well. Raibert and Hodgins [26] developed a straightforward technique of an-
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imating legged characters using methods from robotics. Leg stiffness is modulated to control
hopping oscillations and an inverted pendulum model is used to determine desirable foot place-
ments and provide feedback. A simple state machine is utilized to coordinate timing of actions
based on gait phase. SIMBICON [27] is a method that utilizes a pose based finite state machine.
States determine angles for joints to target using PD control. Center of mass position and veloc-
ity is used as feedback to alter the targets in such a way that they help to achieve a balancing
effect. A large portion of the control can be achieved by the innate stability of a feed forward
component. Coros et al. [28] show this can be further improved by performing gravity compen-
sation and predicting favorable foot placements using an inverted pendulum model. The Jacobian
transpose is used to transform desired control forces in global space to joint space. Finite state
machines have also been used to control more complicated characters with actuation provided by
individual muscles [29]. Manually designed controllers such as these can often have quite robust
performance but have the downside that they often do not have behaviour that will generalize
to edge cases. The manual tuning process is also time consuming, and motion style is difficult to
control. Some computer graphics research has focused on allowing for better stylistic control by
using external forces to stabilize the character. One method is to artificially increase stance foot
traction and support size to prevent toppling [30], allowing a controlled character to act simi-
lar to a fixed base robot. Another technique is to simply apply external forces to provide direct
control of a character’s center of mass, correcting for the potential failures of a manual designed
controller [31]. The issue with external forces is that they create unnatural reactions, sometimes
allowing characters to recover from unrealistic states and perturbations.

A popular alternative approach to heuristic based controllers are those based on online op-
timization. Each control action can be carefully selected through an optimization process, such
that it attempts to maximizes some measure of performance. The high dimensionality of legged
locomotion dynamics make long timescale exhaustive optimizations prohibitively slow in real-
time applications. Model Predictive Control (MPC) is one of the methods of choice, as it still allows
controller design to be underpinned by a high-level performance measure specification, but can
be computationally efficient since control actions are only determined optimal over a short local
time window. High quality, robust, and generalized controllers for bipedal characters can be gen-
erated, allowing recovery from complete falls, and stable dynamic tracking of locomotion by the
optimization of per timestep joint torques [32, 33]. MPC has also been applied with great success
for control of quadrupedal robots, such as the MIT Cheetah 3 [34]. Control of properties such
as angular momentum, linear momentum, and center of pressure can also be achieved through
online optimization by specifying tracking costs, allowing for robust balancing behaviours with
high visual fidelity to be achieved [35]. In contrast to MPC, long horizon online optimization
can also be performed if simplified models are used [36]. While online optimization is incredibly
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powerful since it allows for realtime tuning of cost functions and very general controllers, it still
tends to be impractically costly on current hardware.

Offline optimization discovers control actions or controller parameters which can be optimal
over long time horizons through pre-computation, enabling much lower computational costs at
runtime. One method is to optimize open-loop control actions that enable tracking of a trajec-
tory [37, 38], however this does not allow for robust reactions to perturbations due to the lack of
feedback. Various strategies can be used to improve controller robustness. Feedback corrections
to perturbations can be combined with optimized open-loop trajectories [39, 40]. Linear feedback
strategies can also be optimized offline which are associated with each time step of a trajectory
[41]. Offline optimization has also been applied to learn feedback and behaviour transitions si-
multaneously [42, 43], allowing for choreographing of behaviours and higher robustness. Offline
optimization is attractive because pre-computation complexity has no impact on runtime com-
plexity. This makes it practical in performance constrained applications but time consuming to
work with and difficult to tweak.

Recently, there has been a large surge in the popularity of control methods based on Rein-
forcement Learning (RL). RL can roughly be characterized as a method of optimal control, where
controllers learn which actions are optimal (in the sense of maximizing sums of rewards) through
sampling and exploration. The strength in RL lies in the ability to learn complex control be-
haviours across a variety of tasks using simple rewards, but currently this requires a significant
number of samples which makes it difficult to apply in real world robotics applications [44].
Nonetheless, impressive robotic controllers with state-of-the-art performance on complex tasks
such as dexterous manipulation with a human-like hand [45] or legged locomotion [46, 47] have
been enabled using RL. Although the target platform of these controllers are real robots, a sim-to-
real approach is common where controllers are first trained to optimize performance with respect
to a simulation. The strengths of RL can be exploited most effectively in simulations since a large
number of samples can be gathered for learning purposes in a short amount of time.

Control of physically-based characters fits well within the framework of RL, so there has been
a strong focus on this research area in recent years. Physically-based characters can be trained
to learn locomotion abilities from scratch using simple rewards for forward motion and stability
[48, 49, 50]. However learning behaviours from scratch commonly leads to strange behavioural
artifacts since global optimization is in general impossible, or otherwise requires careful initializa-
tion to guide behaviour. Another approach is to use RL to schedule transitions between multiple
more traditionally optimized or manually designed controllers with associated motion fragments
[51, 52], enabling higher level control and robustness by planning motion through the different
stability regions. This scheduling approach requires complex architecture and reward design to
handle the hierarchy of behaviours and ensure appropriate fragment ordering during transitions.
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Discrete choices must also be made for planning, which can be problematic. Motion imitation
allows for more natural looking behaviours to be learned, by rewarding controllers for imitating
a target behaviour while preventing loss of balance. Such an approach is similar to the trajec-
tory optimization approach, however RL enables simultaneous learning of non-linear feedback
control, and additional rewards beyond those required for motion imitation make integration
of tasks other than trajectory tracking straightforward. For example, basic locomotion control
and navigation can be achieved while following a small set of reference motions [53], or basket-
ball dribbling can be maintained through hand contacts while controlling overall movement [54].
DeepMimic [55] achieves impressive motion imitation results on a variety of complex tasks such
as jump-kicks and back-flips, while also allowing specification of simple goals like a kick posi-
tion. Multiple of these high-level controllers can be combined to create a selectable repertoire of
robust control skills. The methods presented in DeepMimic can be expanded to imitate a large
database of motion-capture skills by carefully designing the state and training procedure [56].

This thesis presents work which builds on the concept of RL for motion imitation, but max-
imizes responsiveness to user control changes for a variety of locomotion tasks through use of
a kinematic character controller combined with a specialized training procedure. This method
achieves high robustness, good motion quality, and low computational cost. The results of this
work were published in ACM Transactions on Graphics in November 2019 and are currently
considered state-of-the-art [1].
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Chapter 2

Preliminaries

The following chapter gives an overview of methods used in character animation, kinemat-
ics, physical simulation, function approximation, and reinforcement learning which are relevant
to this work. This chapter serves to both familiarize the reader with the necessary topics, and
present the notation adopted throughout this work. For this reason it is suggested even those
with experience in these various topics at least skim this section to familiarize themselves with
the notation used in later chapters.

2.1 Quaternions & Rotations

Quaternions are an extension of complex numbers to a higher number of complex dimensions.
Quaternions are defined using three imaginary values with the relationship,

ĩ2 = j̃2 = k̃2 = ĩj̃k̃ = −1.

This has the consequence that multiplication of the different imaginary values is non-commutative,
that is,

ĩj̃ = −j̃ ĩ = k̃

j̃k̃ = −k̃j̃ = ĩ

k̃ĩ = −ĩk̃ = j̃.

A quaternion qa is the hypercomplex number,

qa = ηa + qax ĩ+ qay j̃ + qaz k̃.
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The superscript position will commonly be used for variable identifiers or indexes in this work in a
manner similar to the typical usage of subscripts, and should not be confused for exponentiation.
Exponents will always be contrasted from identifiers by context or by using brackets, for example,
(qa)x or for quaternion valued functions qa(t)x. This rule will be followed throughout this work,
and is necessary due to the large number of variables needed.

The imaginary components associated with qa can be written as a column matrix. This allows
the quaternion to be written in the following more convenient form,

ϵa =

q
a
x

qay

qaz


qa = ηa +

[̃
i j̃ k̃

]
ϵa.

Multiplying two quaternions results in another quaternion and is in general non-commutative
[57],

qaqb =
(
ηa +

[̃
i j̃ k̃

]
ϵa
)(

ηb +
[̃
i j̃ k̃

]
ϵb
)

= ηaηb − (ϵa)Tϵb +
[̃
i j̃ k̃

] (
ηaϵb + ηbϵa + ϵa × ϵb

)
.

Notably, the identity quaternion is simply the real number 1, that is qI = 1,

qIqa = qaqI = qa.

The multiplicative inverse of a quaternion is its conjugate quaternion,

(qa)−1 = ηa −
[̃
i j̃ k̃

]
ϵa

(qa)−1qa = qa(qa)−1 = 1.

The norm of a quaternion is defined as follows,

∥qa∥ =
√
ηaηa + ϵa · ϵa.

The quaternions with unit norm are of primary interest as they can be used to represent rotations.
Each unit quaternion qa and its sign flipped form −qa are related to a rotation Ra (both unit

10



quaternions map to the same rotation),

Ra =

1− 2(qay)
2 − 2(qaz )

2 2qaxq
a
y − 2qazη

a 2qaxq
a
z + 2qayη

a

2qaxq
a
y + 2qazη

a 1− 2(qax)
2 − 2(qaz )

2 2qayq
a
z − 2qaxη

a

2qaxq
a
z − 2qayη

a 2qayq
a
z + 2qaxη

a 1− 2(qax)
2 − 2(qay)

2


= (1− (ϵa)Tϵa)1 + 2ϵa(ϵa)T + 2ηa(ϵa)×,

where the cross operator (·)× : R3 → so(3), so(3) =
{

A ∈ R3×3 | A = −AT
}

generates a
skew symmetric matrix from a column matrix such that matrix multiplication is equivalent to
taking a cross product, a×b = a× b. The symbol 1 represent the identity matrix.

A unit quaternion can be used to rotate an arbitrary vector, x ∈ R3 directly using quaternion
algebra by converting x into a “pure quaternion” first,[̃

i j̃ k̃
]

Rax = (qa)−1
([̃
i j̃ k̃

]
x
)

qa.

This is a well known result. The ◦ operator is defined in this work to rotate vectors by the rotation
associated with a unit quaternion,

Rax = qa ◦ x.

Composing unit quaternions is equivalent to composing rotations,

RaRbx = qaqb ◦ x.

Because all rotations can be represented as a rotation with an angle of θ ∈ R around some unit
axis û ∈ S2 all unit quaternions can be put in the following form,

q(û, θ) = cos
θ

2
+
[̃
i j̃ k̃

]
û sin

θ

2
.

Just as complex numbers are related to rotations in the plane, quaternions are related to 3D rota-
tions. Euler’s formula generalizes to quaternions, giving an equation for the exponential function
of pure quaternions,

exp

([̃
i j̃ k̃

]
û
θ

2

)
= cos

θ

2
+
[̃
i j̃ k̃

]
û sin

θ

2
.
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The inverse operation defines the natural logarithm of a unit quaternion

log

(
cos

θ

2
+
[̃
i j̃ k̃

]
û sin

θ

2

)
=
[̃
i j̃ k̃

]
û
θ

2
.

Exponentiation of a unit quaternion can also be defined by the generalization of de Moivre’s
formula,

q(û, θ)x = exp

([̃
i j̃ k̃

]
û
θ

2
x

)
.

The derivative of exponentiation for a unit quaternion can also be defined [58],

d
dx(q

a)x = (qa)x log(qa).

Up to now the promotion of a column matrix x ∈ R3 to a pure quaternion has been shown using
a pre-multiplication by a matrix in order to keep things clear. A tilde accent will be considered to
represent the pure quaternion representation of a 3 element column matrix in order to simplify
equations,

x̃ =
[̃
i j̃ k̃

]
x.

The exponential function of a pure quaternion can then be written in a compact form,

ex̃ = cos ∥x∥+ x̃
∥x∥

sin ∥x∥.

Division by zero may seem concerning, but using the small-angle approximation the exponential
function for a pure quaternion with zero length can still be considered defined given the above
definition, and will return identity,

lim
∥x∥→0

ex̃ = lim
∥x∥→0

cos ∥x∥+ x̃
∥x∥

sin ∥x∥.

= lim
∥x∥→0

1 +
x̃
∥x∥
∥x∥

= 1 +
[̃
i j̃ k̃

]
0

= 1.
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Alternatively (and more rigorously) this can be shown using the fact 0̃ = 0,

lim
∥x∥→0

ex̃ = e0̃ = e0 = 1.

In this work a slightly overloaded notation will be used where quaternions are written as
column matrices to allow for both matrix and quaternion algebra without introducing too many
new symbols,

qa =

[
ϵa

ηa

]
.

This is somewhat of an abuse of notation, especially since quaternion multiplication is written
as qaqb. Nonetheless an operator symbol for quaternion multiplication (for example qa ∗ qb) will
not be used, multiplication of quaternions will instead be very obvious from the fact quaternions
are adjacent as they will always be represented by bold letter q. Quaternion operations like
exponentiation, inversion, logarithm, etc. will also be implied by use of a quaternion argument.

Where legal matrix operations apply they will be allowed, for example multiplication with
a matrix Aqa, transposing (qa)T, or dot products qa · qb will treat the quaternion like a normal
column matrix. A unit quaternion in this notation is considered an element of the 3 sphere,
q ∈ S3 = {x ∈ R4 : ∥x∥ = 1}.

As unit quaternions represent rotations, it is possible to obtain angular velocities from time
varying unit quaternion functions such as qa(t) ∈ S3. The angular velocity function resolved
in the parent frame, ωa(t) ∈ R3, can be obtained from the quaternion time derivative through
pre-multiplication with a specially constructed matrix [57],

qa(t) =

[
ϵa(t)

ηa(t)

]
ωa(t) = 2

[
(ηa(t)1 + ϵa(t)×) −ϵa(t)

]
q̇a(t).

The quaternion time derivative can be obtained from the parent frame angular velocity if needed,

q̇a(t) =
1

2

[
ηa(t)1− ϵa(t)×

−ϵa(t)T

]
ωa(t).

13



A time varying unit quaternion with constant angular velocity ω ∈ R3 can be created using
the exponential function,

qa(t) = e
1
2
ω̃t

= cos

(
∥ω∥ t
2

)
+

ω̃

∥ω∥
sin

(
∥ω∥ t
2

)

=

 ω
∥ω∥ sin

(
∥ω∥t
2

)
cos
(

∥ω∥t
2

)  .
Proving this is a bit involved,

q̇a(t) =
d
dte

1
2
ω̃t

= e
1
2
ω̃t log(e

1
2
ω̃) = e

1
2
ω̃t1

2
ω̃

=
1

2
e

1
2
ω̃tω̃

=
1

2

((
− ω

∥ω∥
sin

(
∥ω∥ t
2

)
· ω
)

+
[̃
i j̃ k̃

](
cos

(
∥ω∥ t
2

)
ω +

ω

∥ω∥
sin

(
∥ω∥ t
2

)
× ω

))
=

1

2

(
−∥ω∥ sin

(
∥ω∥ t
2

)
+
[̃
i j̃ k̃

]
cos

(
∥ω∥ t
2

)
ω

)

=
1

2

 ω cos
(

∥ω∥t
2

)
−∥ω∥ sin

(
∥ω∥t
2

)
θ =

∥ω∥ t
2

ωa(t) = 2
[
(ηa(t)1 + ϵa(t)×) −ϵa(t)

]
q̇a(t)

= 2
[
cos θ1 + ω×

∥ω∥ sin θ −
ω

∥ω∥ sin θ
] 1
2

[
ω cos θ

−∥ω∥ sin θ

]

=
[
cos θ1 + ω×

∥ω∥ sin θ −
ω

∥ω∥ sin θ
] [ ω cos θ

−∥ω∥ sin θ

]

=

(
cos θ1 +

ω×

∥ω∥
sin θ

)
ω cos θ +

(
ω

∥ω∥
sin θ

)
∥ω∥ sin θ

= ω
(
cos2 θ + sin2 θ

)
= ω .
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Figure 2.1: Finite difference using samples (blue and orange points) of a unit quaternion
function will not produce an approximation of q̇a(t0) that lies in the proper tangent space.

When performing finite difference to obtain angular velocities from unit quaternion samples of
a time varying function, it is common to assume that the signal has constant angular velocity
between samples. This allows for more robust calculation of angular velocities since finite differ-
ence using q̇a(t0) ≈ (qa(t0 +∆t))− qa(t0)/∆t is likely to produce values which are not tangent
to S3, that is not in the same space as true unit quaternion time derivatives would be, this is
visualized in Figure 2.1 for a 2D cross section.

Instead a delta quaternion can be obtained using quaternion algebra, and the angular velocity
can be estimated by assuming this quaternion is the result of applying a constant angular velocity
over the timestep ∆t. Forward difference can be performed,

∆qa
t0+∆t = qa(t0)

−1qa(t0 +∆t)

assume :

log(∆qa
t0+∆t) =

1

2
ω̃a(t0)∆t

ωa(t0) =
2

∆t
l̃og(∆qa

t0+∆t),

as well as backward difference,

∆qa
t0−∆t = qa(t0)

−1qa(t0 −∆t)

assume :

log(∆qa
t0−∆t) = −

1

2
ω̃a(t0)∆t

ωa(t0) = −
2

∆t
l̃og(∆qa

t0−∆t),

where l̃og(ex̃) = x is defined for convenience to indicate converting the “pure quaternion” output
of the unit quaternion logarithm to a normal column matrix.
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2.2 Kinematic Character Animation

Animations consist of a set of poses that vary over time. Animations are generally represented
by time varying bone position and orientation tracks. For most characters, a position track is
only needed for the root bone, with other local bone positions being constant for all time and all
animations.

The notation used in this work to describe character poses will now be explained. The column
matrix pa

i ∈ R3 represents the local position of bone i ∈ Z+ relative to its parent, in a pose given
identifier a. The column matrix pa

i,k ∈ R3 represents the local position of bone i ∈ Z+ relative
to its parent at frame index k ∈ Z+ in an animation given identifier a. The quaternion qa

i ∈ S3

represents the local orientation of bone i ∈ Z+ relative to its parent, in a pose given identifier a.
The quaternion qa

i,k ∈ S3 represents the local orientation of bone i ∈ Z+ relative to its parent at
frame index k ∈ Z+, in an animation given identifier a. Letters in a superscript position should
be understood to be either pose or animation identifiers, unless otherwise stated.

The pose of a character can be represented as an ordered set of its bone positions and orien-
tations. For the purposes of this work the pose configurations of a character with N rigid bones
will be represented by ordered sets Pa, where a is the identifier for the pose,

Pa = (pa
1,q

a
1, . . . ,q

a
N) .

The character root is the only bone with a defined position in the set. The value of pa
1 controls the

rigid translation of the character. The characters defined in this work have non-root bones which
only have rotational degrees of freedom, so the ordered sets representing poses will always take
the above form. A particular frame k ∈ Z+ of an animation with identifier a will be represented
by using a numbered subscript which denotes which frame the pose is referring to,

Pa
k =

(
pa
1,k,q

a
1,k, . . . ,q

a
N,k

)
,

The ordered set Pa
k should be understood to represent the character pose at frame k of animation

with identifier a.
Animations made of discrete frames are assumed samples of a continuous signal. Interpola-

tion is used to convert the discrete values back to continuous signals. In this work, frames per
second is denoted by FPS ∈ R+. To convert continuous time values to discrete time, the greatest
integer function (commonly known as floor) is required,

⌊·⌋ : R→ Z, ⌊x⌋ ≤ x < ⌊x⌋+ 1.
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Animations generally have dense enough time sampling that simple interpolation methods are
appropriate. A piece-wise continuous function of time for positions can be defined using linear
interpolation,

lerp(pa,pb, t) =pa + (pb − pa)t,

pi(t) = lerp(pi,⌊t·FPS⌋,pi,⌊t·FPS⌋+1, t · FPS−⌊t · FPS⌋).

For orientation spherical linear interpolation along the shortest geodesic can be used to obtain a
piece-wise continuous function of time,

slerp(qa,qb, t) =

qa(q−1
a qb)

t, if qa · qb ≥ 0

qa(q−1
a (−qb))

t, otherwise

qj(t) = slerp(qj,⌊t·FPS⌋,qj,⌊t·FPS⌋+1, t · FPS−⌊t · FPS⌋).

The poses of a character associated with animation a at time t can be defined by a time-valued
pose function,

Pa(t) = (pa
1(t),q

a
1(t), . . . ,q

a
N(t)) ,

where the previous definitions for time interpolated position and orientation tracks are used.
Interpolation between two poses will be defined as follows,

interp(Pa,Pb, t) =
(
lerp(pa

1,p
b
1, t), slerp(q

a
1,q

b
1, t), . . . , slerp(q

a
N ,q

b
N , t)

)
.

The various positions and orientations of the bones are interpolated independently using the ap-
propriate interpolation type. Note that using this definition Pa(t) can also be defined as follows,

Pa(t) = interp(Pa
⌊t·FPS⌋,Pa

⌊t·FPS⌋+1, t · FPS−⌊t · FPS⌋).

The notationPa(·) ∈P will be used to refer to the animation with identifier a as a mathematical
object. This will be necessary when a function requires an animation itself as an input argument
rather than a pose. The symbol P denotes the set of all time valued pose functions.
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Pose-velocity Va(t) is associated with the poses of a particular pose function Pa(t), and will
be defined as,

Va(t) = (ṗa
1(t),ω

a
1(t), . . . ,ω

a
N(t)) .

For elements of the ordered set Pa(t) which are quaternions, the pose-velocity Va(t) contains
corresponding angular velocities rather than time derivatives of quaternions.

Since the animation pose functions are usually constructed using linear interpolation they are
only piece-wise continuous. In such cases the pose velocity is calculated using finite difference. A
pose of the form described thus far is adequate to fully describe the state of a character, however
it will also be necessary to calculate global positions and orientations of bones for a given pose.
It will also be necessary to calculate global velocities and angular velocities for a given pose-
function or animation.

The notation that will be adopted is as follows, for a posePa(t), the corresponding global pose
will be denoted by an ordered setPa

(t)which contains the global positions pa
i (t) and orientations

qa
i (t) of each bone,

Pa
(t) = (pa

1(t), . . . ,p
a
N(t),q

a
1(t), . . . ,q

a
N(t)) .

Overbars are used to clearly indicated a variable represents the associated object with components
given in reference to the global inertial reference frame. Similarly, the global pose-velocity will
be denoted by Va

(t) which contains the global velocities ṗa
i (t) and angular velocities ωa

i (t) of
each bone,

Va
(t) =

(
ṗa
1(t), . . . , ṗ

a
N(t),ω

a
1(t), . . . ,ω

a
N(t)

)
.

It should be noted that because the root bone has no bone as a parent, it is considered a “child”
of the global frame, and thus,

pa
1(t) = pa

1(t)

qa
1(t) = qa

1(t)

ṗa
1(t) = ṗa

1(t)

ωa
1(t) = ω

a
1(t).

The overbar free form will be used in most cases to indicate this can be copied directly from the
pose.
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To calculate the global pose from a pose it is first necessary to define the bone offsets. Each
non root bone has an offset ℓi ∈ R3, i ∈ {2, . . . , N} in its parent frame from the parent. In this
work the bone offsets are considered constants associated with the character definition. For a
non-root bone i ∈ {2, . . . , N} the parent index k ∈ {1, . . . , N} , k ̸= i can also be defined. The
notation p(i) will be defined to return the parent bone index k of bone i, that is k = p(i). To
reduce clutter, additional functions that return the parent’s parent, and so forth, will be given
by repeating p the appropriate number of times, for example pp(i) = p(p(i)) and ppp(i) =

p(p(p(i))). Additionally the set of bone indexes corresponding to the children of bone index i
will be denoted c(i) ⊂ {2, . . . , N}. If j ∈ c(i), then it must be true p(j) = i.

As the characters in this work are assumed to be structured as a connected acyclic graph of
bones (each non-root bone has only one parent), global values can be found through forward
kinematics in a single well ordered pass starting from the root and using the results of previous
calculations. Assuming the indexes have been arranged in an order such that p(i) < i ∀ i ∈
{2, . . . , N}, then the global pose elements can be computed from Pa(t) using the following re-
currence relations,

pa
1(t) = pa

1(t)

qa
1(t) = qa

1(t)

ℓ
a

i (t) = qa
p(i)(t) ◦ ℓi

pa
i (t) = pa

p(i)(t) + ℓ
a

i (t)

qa
i (t) = qa

p(i)(t)q
a
i (t).

Using the transport theorem the global pose-velocity elements can be computed from Pa
(t) and

Va(t) using another recurrence relation,

ṗa
1(t) = ṗa

1(t)

ωa
1(t) = ω

a
1(t)

ṗa
i (t) = ṗa

p(i)(t) + ω
a
p(i)(t)×

(
qa
p(i)(t) ◦ ℓi

)
ωa

i (t) = ω
a
p(i)(t) + qa

p(i)(t) ◦ ωa
i (t).

2.2.1 Crossfade Blending

Interpolating poses is the basis of the simplest animation blending strategy, called crossfade
blending [59]. Crossfade blending blending involves transitioning between source animation
poses PS(tS) and target animation poses PT (tT ) over a fixed period of time, while both anima-
tions play. The source and target animations progress through playback independently, hence the
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use of associated time indexes tS and tT . The blend itself is parameterized by a third parameter tB
which can either be controlled by time in the case of transitions or may be an independently con-
trolled parameter in the case of blend-tree like applications. When a transition begins, tB starts
at tB = 0, and the target animation begins playback. The transition is completed when it reaches
a value of tB = 1, at which point the target animation assumes full control of the character and
blending is no longer needed. The character pose during blending PB is given by,

PB(tB) = interp(PS(tS),PT (tT ), tB).

It is also straightforward to blend between multiple animations simultaneously using crossfade
blending by performing bilinear or higher interpolation. This can commonly occur if a transition
begins before another has finished. In these cases the source for the second blend is the result
of the first. Herein lies one of the major shortcomings of crossfade blending, blending becomes
increasingly expensive as more animations must be simultaneously evaluated and transitioned
the more frequently transitions overlap.

2.3 Physics Simulation

It is very common for the movement of inanimate objects in computer graphics to be com-
pletely simulation driven. The behaviour of objects with high stiffness can be accurately simulated
if it is modeled as a rigid-body.

Definition 2.1. A rigid-body B is a solid object that cannot undergo deformation. Rigid bodies
are composed of a collection of rigidly constrained point masses such that the distance between
any two points forming the body is constant across time, and the collection has a total of 6 degrees
of freedom.

The following sections give an overview of the parameters and notation used in this work for
features of rigid-bodies and describes the basics of multibody simulation.

2.3.1 Rigid-Body Simulation

Rigid bodies must contain at least three rigidly connected point masses, any fewer and it is
not possible to assign a unique rotation which rotates the rigid-body from one orientation to
another due to lacking degrees of freedom. In general a continuous set of points with variable
infinitesimal mass form a volume VB ⊂ R3 describing the solid geometry of the rigid-body. The
total mass of the rigid-body can be calculated through integration of infinitesimal mass elements
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dB with positions rdB ∈ VB,

mB =

ˆ
VB

ρ(rdB)dV,

where ρ(rdB) gives the mass density at the position rdB associated with an infinitesimal volume
dV .

Given a point rc ∈ R3, it is possible to calculate the mass-moment of inertia IcB ∈ R3×3 for
the rigid-body relative to the point with resepect to the global frame,

IcB =

ˆ
VB

(∥∥rdB − rc
∥∥2 1−

(
rdB − rc

) (
rdB − rc

)T)
ρ(rdB)dV.

The usual choice for this point is the center of mass rc = pB ∈ R3,

pB =
1

mB

ˆ
VB

rdBρ(rdB)dV.

Since a rigid-body is expected to rotate and translate freely, the choice of reference frame and the
point c used to derive IcB are of particular importance. If a body-fixed frame which rotates with B
is used and if c is a point which moves rigidly with the body, such as the center of mass, then IcB
will be constant, and much more convenient to work with. The center of mass is the best choice
as it simplifies the equations of motion that follow. Due to the nature of its construction as a sum
of scaled symmetric tensors, the body-fixed frame can be chosen such that IB is diagonal with
entries equal to the principal mass-moments of inertia. For any arbitrary global mass-moment
of inertia matrix, eigendecomposition can be used to find an orientation in terms of a rotation
matrix RB giving the frame defined by the principle axes of B, and also to find the principal axis
aligned body frame moment of inertia matrix IB itself,

RB = RBIBRT

B.

With this form the equations of motion of a rigid-body influenced by arbitrary forces and mo-
ments are greatly simplified and given by the well known Newton-Euler equations. In an inertial
frame these are written in terms of position, rotation, velocity, and angular velocity of B, as well
as external forces fB and torques mB acting on B, as follows,

mBp̈B = fB

RBIBRT

Bω̇B + ω×
BRBIBRT

BωB = mB.
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Poisson’s equation is needed to relate angular velocities to the rotation matrices,

ṘB = ω×
BRB.

Unit quaternions are usually preferred as a rotation parameterization in graphics due to ease
of re-normalization, easy extraction of rotation axis/angle, and potential to minimize floating
point operations [60]. Rotation RB can be represented by unit quaternion qB ∈ S3. A matrix
can be associated to the quaternion which will be needed later to relate angular velocities to
orientation quaternions in a manner analogous to Poisson’s equation,

qB =

[
ϵB

ηB

]

QB =
1

2

[
ηB1− ϵ×B
−ϵTB

]
=

1

2

[
ηB1 + ϵ×B
−ϵTB

]
RT

B.

Equations of motion can be rewritten in a form which makes integration more straightforward
[61]. First some relevant terms are defined to keep things neat. Some of these terms have a
dependence on the state of the rigid-body indicated through parentheses in their definition,

sB =

[
pB

qB

]
(2.1)

uB =

[
ṗB

ωB

]
(2.2)

MB(sB) =

[
mB1 0

0 RBIBRT

B

]
(2.3)

FB(sB,uB) =

[
fB

mB − ω×
BRBIBRT

BωB

]
(2.4)

GB(sB) =

[
1 0
0 QB

]
. (2.5)

These are used to write the equations of motion for a rigid-body concisely as,

MB(sB)u̇B = FB(sB,uB) (2.6)

ṡB = GB(sB)uB. (2.7)
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2.3.2 Multibody Simulation

The strength of simulation driven methods is that complicated chaotic interactions can be
generated based on physical principles. In the preceding section methods for accurately simu-
lating the physical behaviour of a rigid-body in isolation were shown. A multibody simulation
simulates multiple objects. Constraints can be used to simulate many physical elements and ef-
fects, the most relevant being: sliding and rotating joints connecting bodies, friction between
bodies, non-penetration, and motors connecting bodies.

The equations of motion for individual bodies can be grouped into a single expression. Given
N bodies B1, . . . ,BN equations (2.1)-(2.7) can be generalized as follows,

sM =


sB1

...
sBN



uM =


uB1

...
uBN



MM(sM) =


MB1(sB1)

. . .
MBN

(sBN
)



FM(sM,uM) =


FB1(sB1 ,uB1)

...
FBN

(sBN
,uBN

)



GM(sM) =


GB1(sB1)

. . .
GBN

(sBN
)

 .
Then the equations of motion for the system of bodies are given by,

MM(sM)u̇M = FM(sM,uM)

ṡM = GM(sM)uM.

Constraints between bodies can be supported through the method of Lagrange multipliers [62].
Friction and contact constraints can be implemented by solving linear complementarity problems
[61]. Refer to other work for details on these methods, they are outside the scope of this work.
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2.4 Function Approximation

Machine learning has been become increasingly prevalent in modern computer graphics re-
search. Neural networks are well known for their advantages in approximating high-dimensional
functions, but simpler methods are also relevant depending on the type of data and the desired
application. In general the goal is to approximate some real matrix valued function with matrix
valued inputs,

f(x) = y

x ∈ Rm

y ∈ Rn.

Function approximation itself has a few important applications. Functions can sometimes be
prohibitively expensive to evaluate so function approximation is applied to reduce the need for
expensive computations. Another key application is to approximate functions that can be sam-
pled but have no known closed form which can be determined and evaluated. Typically a set of
N input and output data pairs are sampled from the function as training data, and approximating
a function from such input-output data is commonly referred to as supervised learning,

X = (x1, . . . , xN)

Y = (y1, . . . , yN) .

One of the absolute simplest methods of approximating a function is to store a lookup table.
A lookup table stores a mapping of known function inputs to known function outputs. Approxi-
mating the function for a given input x then consists of searchingX to find the index i of the best
matching data element xi, then returning yi. A lookup table is usually used for simple datasets
where a “search” for the best matching input can be replaced with a simple mapping of inputs to
indexes i(x) in a data structure. For example if xi = i then,

clamp(x, a, b) = max(min(x, b), a)

i(x) = clamp(⌊x + 0.5⌋, 1, N) ≈ argmin
i
∥x− xi∥

f(x) ≈ yi(x).

In such a case it is trivial to determine the optimal output in the range covered by the data. For
more complicated sets of input-output data the indexing function i(x) will necessarily have to be
more complicated, and also some sacrifices to accuracy will probably be made.
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2.4.1 Nearest Neighbor Search

If input-ouput data is sparsely distributed and/or models higher dimensional data, nearest
neighbor search can be used to find the best matching data index for a given input and error
metric. Typically the squared Euclidean distance between the data and the input is a good error
choice,

i(x) = argmin
i
∥x− xi∥2

f(x) ≈ yi(x).

Unlike the lookup table example, no special structure or ordering is required in the input data.
The optimization can be performed by brute force search over all indexes, or accelerated through
efficient nearest neighbor search optimizations like a kd-tree [63].

2.4.2 Deep Neural Networks

Figure 2.2: Typical nomenclature used to describe deep neural networks.

Deep Neural Networks (DNN) are computational graphs that can be used for function approx-
imation. Nodes in the graph represent functions and directed connections define input-output
relationships between nodes. The computation graphs are equivalent to a set of nested function
compositions, where at least some portion of these functions are non-polynomial, and typically
multiple parameters are available to modify the result of a computation in a non-linear manner.
This is a very general definition but a wide variety of neural network architectures exist, most
sharing this description.
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While many complicated DNN architectures exist, a common and simple form is that of the
feed-forward network as shown in Figure 2.2. The computational graph for feed-forward networks
consist of multiple distinct layers of nodes with indexes ℓ ∈ {0, . . . , h}. All nodes in layers where
ℓ < h are connected to all nodes in the subsequent layer ℓ + 1. The first layer ℓ = 0 is the input
layer and has no incoming connections, while the final layer ℓ = h is the output layer and has no
outgoing connections. Nodes represent functions which take multi-dimensional input and have
single dimensional output,

α(ℓ,k)(·) : Rm(ℓ−1) → R.

where α(ℓ,k)(·) refers to the function associated with the node in layer ℓ at index k ∈ {1, . . . ,mℓ},
and α(ℓ,k) will be used to refer to the node itself. The layer-indexed values mℓ refer to the width
of the associated layers ℓ ∈ {0, . . . , h}. The directed edges connecting nodes can be said to each
have an associated weight value, w(ℓ,j,k) ∈ R, referring to the weight of the edge connecting
α(ℓ−1,j) to α(ℓ,k). Nodes α(ℓ,k) also have an associated bias value b(ℓ,k) ∈ R.

In the context of function approximation, input nodes are used to represent the elements
xk ∈ R, k ∈ {1, . . . ,m0} of a function input value x ∈ Rm0 ,

x =


x1

x2
...

xm0


α(0,k)(x) = xk.

The values in non-input nodes are usually calculated using some continuous non-linear activation
function which is non-polynomial,

ψ(·) : R→ R.

Multi-layer feed-forward neural networks are proven to be capable of approximating any con-
tinuous function to any degree of accuracy desired on a compact subset of Rn if and only if
the activation functions used are non locally bounded piecewise continuous and non-polynomial
[64]. This is referred to as the Universal Approximation Theorem. For this reason there are many
reasonable activation function choices, each having properties which may in practice alter ap-
proximation performance but are theoretically capable of achieving similar degrees of accuracy.
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Two common activation function choices are [65],

ψReLU(x) = max(x, 0)

ψtanh(x) = tanh x.

The ouput of non-input nodes ℓ′ ∈ {1, . . . , h} are calculated in the same way regardless of
activation function choice,

w(ℓ′,k) =


w(ℓ′,1,k)

...
w(ℓ′,m(ℓ′−1),k)


α(ℓ′,k)(a) = ψ(wT

(ℓ′,k)a + b(ℓ′,k)).

Each layer has an associated activation aℓ(x) which can be defined through a recurrence relation,

a0(x) = x

aℓ′(x) =


α(ℓ′,1)(a(ℓ′−1)(x))

...
α(ℓ′,m(ℓ′−1))

(a(ℓ′−1)(x))

 .
The output vector of the network is given by the output of the final layer ah(x). Output is de-
pendent on the input x ∈ Rm0 and parameters θ =

{
w(1,1), · · · ,w(h,mh), b(1,1), · · · , b(h,mh)

}
, so

a function F(x,θ) = ah(x) is defined. Model hyperparameters like the activation function type,
layer count h, and layer widths m0, . . . ,mh are considered fixed choices made by the model de-
signer, and not included as arguments to the output function.

The feed-forward neural network can be trained to be a predictive model of some function
f(x) = y given a set of input-output data (X, Y ) by optimizing the model parameters. This
process is similar to that of non-linear regression. A minimization objective function, commonly
called a loss function, is defined to measure the prediction error of the network on data samples.
Loss functions can take many forms, but for continuous function approximation Mean Squared
Error (MSE) is a common choice. MSE is nearly identical to the sum of squared residuals used in
least squares regression, with the sole modification being a normalization factor 1

N
that makes

evaluated losses more easily compared between different size datasets.
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The MSE loss function given an input dataset X with corresponding output data Y and size
N is given by,

LMSE(θ, X, Y ) =
1

N

N∑
i=1

∥yi −F(xi,θ)∥2 .

Optimal neural network weights and biases are found to try and minimize the loss with respect
to the training data,

θ∗ = argmin
θ

L(θ, X, Y ).

The non-linearity of the loss necessitates that this optimization be carried out using a numer-
ical method such as gradient descent. The directed graph structure of neural networks allows
gradients to be efficiently computed using backpropagation, a method which takes advantage of
the chain rule of calculus to calculate derivatives through iterations that efficiently reuse previ-
ous computation. Refer to an introductory text [65] on machine learning for the details of the
back-propagation algorithm.

Memory use can become an issue with large datasets and models, so mini-batch stochastic
gradient descent is usually preferred over standard gradient descent. Typical loss functions (such
as LMSE) over a set of data can be expressed as a sum of individual sample losses,

L(θ, X, Y ) =
N∑
i=1

L(θ, xi, yi).

In such cases the gradient with respect to the loss can then be expressed as sum of the gradients
of individual sample losses,

∂

∂θ
L(θ, X, Y ) =

N∑
i=1

∂

∂θ
L(θ, xi, yi).

For large datasets [65] it is typical that the direction of the gradient of the loss for the entire
dataset is approximated by the average direction of the gradient from randomized subsets of the
data,

∂

∂θ
L(θ, X, Y ) ≈ EDk

[∑
i∈Dk

∂

∂θ
L(θ, xi, yi)

]
.
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Where EDk
[·] refers to the expected value of the argument with respect to randomly chosen

ordered sets of indices Dk ⊂ {1, . . . , N}. The size of the subsets |Dk| = ND can be arbitrarily
chosen, and the ordering of indices can be varied as well. If the loss is normalized by the number
the data inputs, such as LMSE , then the magnitudes of the gradients remain similar regardless
of the subset size. Mini-batch stochastic gradient descent takes advantage of this approximation
to optimize neural network parameters with increased performance. This also makes training on
large data-sets which would otherwise not fit in memory possible. Given a learning rate ϵ, initial
set of parameters θ0, and mini-batch size ND, iterations are carried out as follows,

θk+1 ← θk + ϵ
∑
i∈Dk

∂

∂θ
L(θ, xi, yi)

∣∣∣∣
θ=θk

θ∗ ≈ lim
k→∞

θk,

in general a new Dk is generated each iteration. The indices in Dk refer to a subset of data in
X and Y and are referred to as a mini-batch. Iterations are carried out until losses reach an
acceptably low level, eventually yielding the optimized set of parameters θ∗. The function used
to sample data can then be approximated by the trained neural network,

f(x) ≈ F(x,θ∗).

Algorithms which improve on mini-batch stochastic gradient descent are typically used over the
standard formulation presented here. The Adam algorithm is a common choice, it automatically
tunes per parameter learning rates as well as running averages of gradients to help overcome
local variations in the optimization landscape that would cause convergence to unfavorable local
minima [65]. This is somewhat analogous to treating the optimization problem like a simulation
of the dynamics of a ball that will roll downhill and jump over small obstacles due to its inertia,
while scaling the friction in various directions of travel.

2.5 Reinforcement Learning

Broadly speaking, a control system is a function that takes the state of a dynamic system as
input, and generates a control action that can effect the dynamic system as output. Reinforcement
learning (RL) is an area of machine learning concerned with training control systems to improve
by rewarding desired behaviour and learning from interactions with the dynamic system being
controlled. RL can be likened to formalizing the process of learning through trial and error [66]
to maximize rewards. Trained controllers are capable of taking actions that are part of long time
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horizon plans into account, with the implication that the controller may take an action which
looks unfavorable in the short term if it has the ultimate effect of resulting in a more favorable
outcome later on. The following section covers some preliminary topics about RL, and borrows
notations, definitions, and conventions from “Reinforcement Learning: An Introduction” [66]
which the reader is encouraged to read for further details.

A common framework to represent RL problems is that the agent-environment interface, which
is shown in Figure 2.3. The agent represents a learner/decision maker, and everything which the

Figure 2.3: A Markov Decision Process can be represented by an agent interacting with an
environment which responds to its actions.

agent interacts with at discrete time-steps t = 0, 1, 2, . . . comprises the environment. Each time-
step, the agent receives information from the environment about its current state St ∈ S , and
takes some action At ∈ A based on this information. As time advances one step, the action
as well as the internal dynamics of the environment result in the environment returning a new
state for the agent St+1 ∈ S and an associated reward Rt+1 ∈ R ⊂ R. These are both forwarded
to the agent, and the cycle continues indefinitely or until some termination condition is met.
The resulting sequence of states, actions, and rewards form an ordered set commonly called a
trajectory,

(S0, A0, R1, S1, R2, A1, S2, A2, . . .),

Typically, the agent-environment interface is assumed to be a stochastic process which possesses
the Markov Property,

Definition 2.2. If the conditional probability distribution of future states for a stochastic process
depend only on the present state, the process is said to possess the Markov Property [66].
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If the Markov property holds true the system is a Markov Decision Process (MDP), where the
outcome resulting from the agent’s decision making can be in part random and in part due to
the influence of the agent. An MDP can be represented as a directed graph where some nodes
represent states an agent can take in the environment, edges leaving state nodes connect to nodes
representing actions which can be taken from the connected states, and edges connecting actions
to new states represent the probabilistic transitions possible in the environment for the connected
action. Transitions have associated probabilities and rewards. A simple two state MDP with two
available action choices per state is shown in Figure 2.4 as an example. The dynamics of the MDP

Figure 2.4: A simple markov decision process with two states, two action choices per state,
transition probabilities, and transition associated rewards.

can be summarized by writing the conditional probability distributions of receiving all specifiable
future states and rewards from the environment given all possible present states and actions,

St, Rt ∼ p(St−1, At−1)

p(s′, r | s, a) = Pr {St = s′, Rt = r | St−1 = s, At−1 = a}∑
s′∈S

∑
r∈R

p(s′, r | s, a) = 1, ∀ s ∈ S, a ∈ A(s),

where the notation Pr {Y = y|X = x} defines the probability of random variable Y taking on
value y if random variable X takes on value x.
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The following are also defined for convenience to assign symbols to the conditional probability
of a future state, irrespective of reward, and to the distribution and probability of starting in a
state,

p(s′ | s, a) = Pr {St = s′ | St−1 = s, At−1 = a}∑
s′∈S

p(s′ | s, a) = 1, ∀ s ∈ S, a ∈ A(s)

S0 ∼ S0

p(s) = Pr {S0 = s}∑
s∈S

p(s) = 1.

The agent has a control system that outputs action choices which is commonly referred to
as a policy. The policy is typically a stochastic function of the state, giving rise to a conditional
probability for actions,

At ∼ π(St)

π(a | s) = Pr {At = a | St = s}∑
a∈A(s)

π(a | s) = 1, ∀ s ∈ S.

In most RL applications the policy is optimized such that the probability of taking actions which
maximize long term sums of rewards along trajectories is increased relative to actions which offer
low rewards. Long term sums of rewards are referred to as returns, and a random variable Gt is
defined to represent the return associated with each time step,

Gt =
T∑

k=t+1

γk−t−1Rk,

where T ∈ [0,∞) is a random variable determined by the stopping condition of the problem
and γ ∈ [0, 1] represents a discount factor which can be used to adjust the weighting of present
rewards compared to future rewards. The state-value function for any specified policy π is the
expected return from starting in a specified state and following the policy,

vπ(s) = Eπ [Gt | St = s] .
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The state-value function can also be defined using a recursive relationship [66],

vπ(s) =
∑

a∈A(s)

π(a | s)
∑
s′∈S

∑
r∈R

p(s′, r | s, a)(r + γvπ(s
′)).

An action-value function can also be defined, which is the expected return of taking a specified
action in a specified state and then following an associated policy thereafter,

qπ(s, a) = Eπ [Gt | St = s, At = a]

= Eπ [Rt+1 + γvπ(St+1) | St = s, At = a] .

Loosely speaking, optimal policies π∗ are defined as the policies which maximize the state-value
function in a given RL problem,

π∗ = argmax
π

vπ(s), ∀ s ∈ S.

In practice it is virtually impossible to perform this optimization except in the most contrived
examples. Numerical methods and approximation procedures must be employed to yield useful
results.

2.5.1 Tabular Methods

In a limited class of problems where number of states and actions are small finite sets, RL
methods can be straightforward. Understanding these builds useful intuition about more complex
problems. One of the major difficulties in finding an optimal policy is that the value functions
do not have a form which can be easily evaluated, making the optimization of a policy difficult.
In general this is solved by using function approximation to approximate value functions. For
simple problems where the number of possible states and actions are small, a lookup table can be
improved iteratively by sampling trajectories, then used to converge on optimal policies.

The approximations maintained in the lookup tables are termed value function estimates
Vπ(s), each entry in the table is associated uniquely to a state in S . The lookup table can have all
entries initialized arbitrarily, so in general the estimate will begin completely wrong. Likewise, a
table can be used to represent the policy associated conditional probability distributions π(a | s),
with entries in the table for each state in S representing the probability of taking each of the
actions in A(s). In general, π(a | s) can also be initialized arbitrarily, but usually the probability
of actions is set to make all actions have at least some non-zero level of probability.

Policy iteration is a method which can be used to improve the performance of the policy as
well as the accuracy of the value function estimate [66]. The estimate will be improved such that
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Algorithm 2.1 τ sampling procedure
1: s0 ⇝S0

2: while t < T do
3: at ⇝π(· | st)
4: st+1, rt+1 ⇝p(st, at)
5: if st+1 ∈ S+ then
6: T = t+ 1
7: end if
8: t← t+ 1
9: end while

10: then define
11: τ = (s0, a0, r1, s1, a1, . . . , rT , sT )
12: gt =

∑T
t′=t γ

t′−trt′ , ∀ t ∈ {0, . . . , T}

it approximates the true value function of the current policy, and then the policy is improved
such that it has a larger state-value in all states compared to the previous iteration’s policy. These
improvement iterations are carried out until there is convergence on an optimal policy.

In each iteration, multiple trajectories τ are sampled from the MDP. Trajectories are termi-
nated after a fixed number of steps T or when a terminal state in S+ ⊂ S is reached. Sampling a
trajectory from the MDP, τ ⇝MDP, is defined using Algorithm 2.1. The symbol ⇝is used to rep-
resent a sampling operation and the notation will be somewhat abused to indicate sampling from
more abstract objects, for example τ ⇝MDP. It is advisable that π and p allow for exploration
such that all visitable states have a non-zero probability of being sampled along a trajectory.

Algorithm 2.2 n-step TD
1: repeat
2: τ ⇝MDP
3: for t = 0, 1, . . . , T do
4: t̂← t− n+ 1

5: if t̂ ≥ 0 then
6: g ←

∑min(t̂+n,T )

i=t̂+1
γi−t̂−1ri, ri ∈ τ

7: if t̂+ n < T then
8: g ← g + γnVπ(st̂+n), st̂+n ∈ τ
9: end if

10: Vπ(st̂)← Vπ(st̂) + alpha (g − Vπ(st̂)) , st̂ ∈ τ
11: end if
12: end for
13: until satisfactorily converged
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The state value function estimate can be improved at each time-step sampled using an algo-
rithm called the n-step temporal-difference method, which has n ∈ {1, . . . , T} and α ∈ (0, 1] as
tunable parameters, see Algorithm 2.2.

The n-step TD method improves the state-value estimate by averaging sampled returns g
for each associated state at all sampled steps along trajectories. When a state has been visited
many times the averaged returns eventually converge on the expected value of the return for
the state, which is by definition the state-value function. Sampled returns are generated for each
step from the rewards experienced in the next n steps and added with the state-value estimate
at the state which occurs n steps later. Using the value estimate in calculation of g is referred to
as bootstrapping and increases sample efficiency by approximating multiple branching outcomes.
The parameter n controls the influence of bootstrapping.

When the state-value estimate has converged to an acceptable threshold the policy can be
modified to act greedily and prefer the estimated optimal actions a∗ which lead to the highest
average returns. In order to maintain some level of exploration in future trajectories, action
selection can be ε-greedy, taking the estimated optimal action with a probability 1−ε, ε ∈ (0, 1),
and a completely random action otherwise.

Algorithm 2.3 ε-greedy policy optimization
1: for each s ∈ S do
2: a∗ ← argmaxa

∑
s′∈S, r∈R p(s

′, r | s, a) (r + γVπ(s
′))

3: π(a∗ | s)← 1− ε
4: for each â ∈ A(s)− {a∗} do
5: π(â | s)← ε/|A(s)− {a∗}|
6: end for
7: end for

In the Algorithm 2.3, a∗ is found by exhaustively searching all possible outcomes of every
possible action in every state, and finding the actions which maximize the probability weighted
sum of estimated returns for all outcomes. The table representing the conditional probabilities of
each action are then appropriately modified to make the a∗ associated with each state the most
probable action in that state. During each iteration, Algorithm 2.2 then Algorithm 2.3 are ran
in sequence and the policy performance improves. By performing many iterations the policy
converges on something akin to a fixed point representing the locally optimal policy [66]. The
value of ε can also be reduced to smaller and smaller values as iterations progress. This forces the
policy to converge on optimal deterministic behaviour which focuses on exploitation of locally
optimal actions rather than exploration of new strategies, improving performance further if a
plateau has been reached.
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This method works well enough in discrete state and action spaces where it is feasible to
store everything in lookup tables and exhaustively search every possible outcome to optimize
the policy. While not directly applicable to cases with continuous or infinitely large state and
action spaces, policy iteration is similar to policy gradient methods which are designed to handle
these more complicated cases.

2.5.2 Policy Gradient Methods

Function approximation in the form of lookup tables played a clear role in the policy iteration
method described in the previous section. Policy gradient methods share similarities with the
policy iteration method shown, but allow for more elaborate function approximation techniques
to be used. Typically the state-value function estimate and policy probability distribution function
are modeled using deep neural networks, which necessitates that states s ∈ RnS and actions
a ∈ RnA be real valued matrices rather than elements of a small set,

µθ(s) = Fπ(s,θ)

πθ(s) = N (µθ(s),Σθ)

Vθ(s) = FV (s,ϕθ),

this allows continuous state and action sets to be used. Note that the probability density function
forming the policy in a given state is defined by a multivariate normal distribution N (·, ·) with
mean controlled by the output of a neural network µθ(·) : RnS → RnA with parameters θ. The
covariance matrixΣθ ∈ RnA×nA is usually independent of the state and used to control the degree
of exploration during sampling, similar to ε in Algorithm 2.3. The elements of Σθ could also be
parameters in θ if optimization of variances is desirable. The neural network controlling the mean
is used to modulate normal distributions rather than directly model a custom distribution because
this greatly simplifies random sampling and alleviates the complexity of ensuring the probability
density over all actions integrates to one, however this is not a prerequisite for policy gradient
methods to function [66]. The state-value function for any given policy πθ is approximated by a
different neural network Vθ(·) : RnS → R, with its own set of parameters ϕθ.

In policy gradient methods the goal remains the same: find an optimal policy which maxi-
mizes the returns in all states. Policy gradient methods achieve this by finding optimal policy
parameters, θ∗. This requires numerically solving the following optimization,

θ∗ = argmax
θ

vπθ
(s), ∀ s ∈ RnS .
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This is usually written in terms of an expected return with respect to random trajectories from
the distribution created by the policy, dynamics, and initialization,

r(τ) = g0

θ∗ = argmax
θ

Eτ∼MDP [r(τ)]

= argmax
θ

J(θ).

Of course computing this is in general not possible, the true state-value function is never known.
Also only local optima can be guaranteed from numerical methods. This is the source of the name
policy gradient, as gradient based numerical optimization is applied to find θ∗.

As in policy iteration methods, it is first necessary to obtain a state-value function estimate
through sampling of trajectories. A large number of trajectories are sampled and combined into
an experience buffer which is used to train the various neural networks, defined here as,

T = (τ 1, τ 2, . . . , τNT ).

For a given set of experiences, the loss used to optimize the state-value function network is the
mean squared error of all time-steps along all trajectories in the experience buffer,

LVθ
(ϕθ, T ) =

1

NT

NT∑
i=1

 1

T i

T i−1∑
t=0

∥∥git −FV (sit,ϕθ)
∥∥2 .

Superscript i are used to indicate that states, actions, rewards, returns, and terminal time-step
indexes T correspond to particular trajectories τ i, since subscripts are already used to denote
time-steps. The algorithm for learning the state-value approximation can then be defined as
sampling a set of trajectories and then performing gradient descent (or some variation described
in section 2.4.2) to improve the approximation.

Algorithm 2.4 gather T , optimize Vθ
1: for i = 1, 2, . . . , NT do
2: τ i ⇝MDP
3: end for
4: T ← (τ 1, τ 2, . . . , τNT )

5: for NV iterations do
6: ϕθ ← ϕθ + ϵ ∂

∂ϕopt
θ

LVθ
(ϕopt

θ , T )
∣∣∣
ϕopt

θ =ϕθ

7: end for
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While a gradient with respect to the value function estimate could be used directly to improve
the policy, this tends to be unstable [67] so it is not the preferred method. Better methods exist,
many of which make use of an estimated advantage. The advantage function for an arbitrary
policy π is defined as,

aπ(s, a) = qπ(s, a)− vπ(s).

Advantage gives the difference for any given state between the expected return which would
have been achieved by taking the specified action then following the policy, and, the return
which would have been achieved by following the policy all along. Advantage values make it
straightforward to determine the improvements particular actions have over those taken by the
policy in a quantifiable manner. Optimal policies will always take the most advantageous action
(this was leveraged in Algorithm 2.3), and a loss can be created with this in mind.

Algorithm 2.5 Generalized Advantage Estimator
1: for t = 0, 1, . . . , (T − 1) do
2: δt ← rt + γVθ(st+1)− Vθ(st)
3: end for
4: for t = 0, 1, . . . , (T − 1) do
5: dt ←

∑T−1
t′=t (γλ)

t′−tδt′
6: end for

Advantages, denoted here dt, can be estimated at each step along a sampled trajectory except
the terminal states where there are no associated actions. The common method is to use a Gener-
alized Advantage Estimator (GAE) [68] where a parameter λ ∈ [0, 1] controls the level of bias vs.
variance in the advantage estimates by influencing the amount of bootstrapping which occurs
using the state-value estimates.

Proximal Policy Optimization (PPO) [67] offers a method of utilizing advantage estimates to
create a loss function which ensures more stable policy improvements. The PPO loss prevents
large policy changes from occurring during a single iteration, ensuring optimized policy parame-
ters remain within a small trusted region around the previous iteration’s policy. This is necessary
because the state-value estimate, advantages, etc. used for the optimization are functions of the
policy parameters which are actively being optimized. It is assumed these are approximating the
new policy well enough to be useful even though they were sampled using the old one. PPO
requires the old policy parameters from the beginning of the iteration to be stored in θold.
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A PPO like clipped loss can then be defined,

LCLIP (θ, τ) =
1

T

T−1∑
t=0

min

(
πθ(at | st)
πθold(at | st)

dt, clamp

(
πθ(at | st)
πθold(at | st)

, 1− ρ, 1 + ρ

)
dt

)
.

The factor ρ is usually some small positive number, ρ = 0.2 being cited in the original paper
[67]. This parameter is proportional to how large the trusted region around the old policy should
be. The PPO loss usually includes an additional term which acts as a constraint on the Kull-
back–Leibler (KL) divergence between the old and new policy. KL divergence measures the dif-
ference between probability distributions, and can give an indication of when the policy has
changed significantly. The constraint can be replaced with an early stopping criteria triggered
by the KL divergence surpassing a threshold εKL ≈ 0.015 [69]. This ends the iteration and initi-
ates the next, preventing the KL divergence from growing too large. A PPO like reinforcement
learning algorithm combining everything so far can be defined as follows,

Algorithm 2.6 PPO
1: Initialize elements of θ,ϕθ as desired
2: for Nepoch iterations do
3: Gather T , optimize Vθ
4: GAE on trajectories in T
5: θold ← θ

6: while k < Nπ do
7: k ← k + 1

8: ∆KL ← 0 ▷ initialize KL divergence accumulator
9: for each τ ∈ T do

10: θ ← θ + ϵ
NT

∂
∂θopt

LCLIP (θ
opt, τ)

∣∣
θopt=θ

11: for t = 0, 1, . . . , (T − 1) do ▷ average KL divergences over all samples
12: ∆KL ← ∆KL +

1
T ·NT

KL [πθold(st), πθ(st)]
13: end for
14: end for
15: if ∆KL > εKL then ▷ trigger early stopping if threshold exceeded
16: k ← Nπ

17: end if
18: end while
19: end for
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Algorithm 2.6 was based on the design of the PPO implementation in OpenAI’s open source
“Spinning Up” project [69], but omits some of the details about synchronizing multiple parallel
learning processes. It should also be noted that a better performing optimizer like Adam [65] is
usually used instead of vanilla gradient descent to improve training times.

After many samples have been gathered and the system has performed many iterations, a
locally optimal policy is obtained with parameters θ∗. A deterministic policy can be created
by setting Σθ∗ = 0, which will usually improve average performance and make actions vary
smoothly rather than erratically (this is equivalent to always picking the mean of the distribution
as an action). The algorithm can also be modified to decrease the variance matrix values slowly
as training progresses to obtain a better converged deterministic policy.
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Chapter 3

Motion Matching

Finite state machines (FSMs) have seen pervasive use throughout the history of computer
graphics in controlling animations for games and interactive applications. Use of FSMs can be
effective and straightforward, but the shortcomings become apparent when realistic animation
systems must be designed [6]. Realistic animation requires use of many animations with subtle
differences, for example walking forward and turning 10 degrees mid-step versus turning 15
degrees at the end of a step will require different animations which vary only slightly in foot
placement and timing. This poses an issue for FSMs since the number of states that must be tuned
and maintained by the FSM designers grows quickly when many subtly different animations are
desired.

Data-driven generative approaches to animation provide excellent scalability compared to
FSMs and have recently begun to have more widespread usage in industry [6, 21, 22, 23, 24, 25].
Motion matching seems to be the most popular method in industry, probably due to its potential
for high performance, ease of maintainability, and proven high quality results [6, 23]. This chapter
provides an in-depth overview of the design and inner workings of the motion matching system
utilized by this work.

Motion Matching generates animation through frequent animation database searches and
continuous animation blending. Animation databases generally consist of a large number of
varied animations. Animations are selected through this search process in a sequence that best
achieves high-level goals. For example, the high-level goals for locomotion can be obtaining a de-
sired movement speed, heading direction, turning radius, and style. When goals change, a search
is triggered and a new animation that better meets the updated goals is selected. If the old ani-
mation and the new animation differ significantly enough there will be jumps in the animation
that are undesirable. The solution to this is to blend the animations to hide inconsistencies, but
also to also provide goals that will minimize the magnitude of discontinuities. With enough data
and an appropriately designed set of goals it is possible to generate realistic and easily controlled
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animations by piecing together disjointed segments from the database. A properly designed sys-
tem will gracefully transition from old goals to new goals, while providing a visual result which
is often indistinguishable from raw motion capture.

At its core motion matching is a database search with cleverly constructed queries. It should
therefore be unsurprising that the data itself is an extremely important aspect of the design of a
motion matching system and can significantly influence the quality of the output. While motion
matching can be referred to as a “generative” approach to animation, it is a bit more accurate to
consider it as a system that can automate the scheduling and stitching of animation clips in a
manner that maintains high-level consistency. A motion matching system will not extrapolate
to create novel animations which are not present in the manifold of animations formed by the
database, so the expressiveness of the output will be directly related to the coverage of behaviours
in the database.

While the straightforward solution may seem to be capturing as much data as possible, there
are usually practical limitations such as cost and time constraints which prevent this. It is all
too easy to capture a lot of data of the wrong type unless a well made plan is put in place to
understand what coverage is desired beforehand. If a system is being designed with locomotion
in mind, it is important to consider a few key elements.

• How will different motion styles be differentiated from one another after capture? Will it
be manually or automatically?

• What motions are the target character likely to make, and what are the most significant
motion parameters? For example they could be movement speed, stride length, turn radius,
facing direction, movement direction, etc.

• How similar are different motion styles, and how do transitions occur?

• What can be generated without extra takes by mirroring/transforming existing takes?

Significant thought should be put into answering these questions in order to come up with a
motion capture plan and associated dance cards. The plan should contain a scheduled breakdown
of takes required to capture all desired motion styles and transitions. The dance cards are a
set of actor movement patterns designed to get an adequately dense sampling of animations by
continuously varying motion parameters. Some example dance cards are shows in Figure 3.1. The
primary concern during data acquisition should be to optimize use of time. There is little utility
in capturing the exact same motion twice because a motion matching system cannot and will not
differentiate between virtually identical animations. Symmetric behaviours can be produced by
mirroring a single animation, for example a left turn can be produced from a right turn, so there
is low utility in capturing both. Similarly capturing rigid transformations of behaviours in the
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Figure 3.1: Various maneuvers that are useful for motion matching dance cards.

horizontal plane is unnecessary. For example walking north on a flat plane can be produced by
rigidly transforming an animation with westward walking. A variety of numbered dance cards
are shown in Figure 3.1. Referencing the number labels in the figure these have the following
useful attributes for locomotion,

1. Straight line motion and right hand sharp turns at 45◦, 90◦, 135◦, and 180◦. Mirroring gives
left hand turn versions of these.

2. Varying radius of curvature 180◦ turns from straight line motion.

3. Varying radius of curvature right hand turns. mirroring gives left hand turns.

4. Random unstructured meandering motion, if performed appropriately gives good coverage
of different sequences of varied radius turns.

5. Random unstructured abrupt turns, if performed appropriately gives good coverage of dif-
ferent sequences of varied angle sharp turns.

It is a good idea to mix structured takes and unstructured takes for each style. Structured takes
ensure there is good coverage of commonly encountered motions (circular arcs, 8 directional
steering, plants, pivots, etc.) and ensures a set of animations in common between different styles,
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while unstructured takes help fill gaps like missing turning angles, radii, and transitions between
these, all of which are difficult to choreograph and describe to actors. The same dance card can be
used for different styles, and for each style and each dance card pattern multiple takes at differ-
ent walk and run speeds, and different facing directions relative to the tangent of the path should
be performed. The number of combinations can be quite large. Capturing transitions between
motion parameters is also important for behaviours like turning facing direction independent
of motion direction, starting and stopping at different speeds, changes in speeds, etc. It is easi-
est to ask actors to perform transitional behaviours at random in unstructured takes so natural
behaviour patterns are captured.

Post-processing data involves style tagging, retargeting, and mirroring. Styles can be matched
to sets of time ranges, allowing the style(s) at a particular frame to be easily identified. This
process is usually manual and time consuming, however simple heuristics can be developed to
tag things like running, or stopped behaviours based on speed and other animation features.
retargeting and mirroring of animations can usually be performed using professional software
which is part of a typical motion capture production pipeline, in the case of this work Autodesk
MotionBuilder [70] was used.

3.1 Motion Matching Queries

Search queries are the heart of motion matching. They provide the primary mechanism of
setting and controlling high-level goals. In this section an overview of the design of the queries
which were utilized for the generation of locomotion animation using motion matching are de-
scribed.

The search process in motion matching functions by finding a mapping of data and queries
to points in a high dimensional space. This mapping is constructed such that nearest neighbor
search is appropriate to find the frame of animation in the database which is closest to meeting
the high-level goals associated with the query. Ultimately, motion matching consists of searching
points associated with each frame to find the one closest to the point associated with a query.

Each dimension of the space is associated with a feature. Feature values are matrices of real
numbers which can be generated for each frame of animation. Features come in two forms, hard
features and soft features. Hard features are used for binary classification, such as specifying
if a particular frame is or is not a particular style, and only take on two possible values which
are so far apart we consider them to have a distance of infinity in feature space. Soft features
are for continuously variable properties, for example the individual velocity components of the
character for the frame. Hard features are handled specially due to their unique properties, but
for now they are considered numeric values without loss of generality.
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Queries consist of the desired feature values the end user wants the resulting animation to
take on. For example a query could specify which styles the end user wants as well as the desired
velocity components of the character motion. Performing a query will find which data point is
most similar to the query point, generating an animation which has the right style and the closest
velocity. By stringing together queries which ask for different velocities as time progresses this
example motion matching system will generate animation following a user specified path.

Because of their nature, hard feature queries result in exact feature matches, but soft features
only give a match with accuracy dependent on the sampling density. A rejection threshold can be
set to prevent a transition if the closest matching point is unacceptably far away from the query,
allowing the current animation to continue playing as if no search occurred.

3.1.1 Query design

If queries are too strict it is likely matches will be of poor quality. A strict query is one which
specifies features which are too specific or too numerous. If there are too many features the search
will be in a space with so many dimensions that the chances of a point being nearby becomes
low. Features can be too specific if they separate the data too sparsely, for example if the feature
takes on different values walking in a straight line north versus walking in a straight line east.
The goal is to make queries as simple as possible, and as general as possible.

One of the best ways to increase generality of features is to make them translation and rotation
invariant. All 2D rigid transformations of an animation should produce identical features. The
invariance should be 2D rather than 3D so that for example lying face down in a T-pose remains
different to standing upright in a T-pose. For spatial features this can be achieved by creating a
character reference frame. A character reference frame can be generated from the facing direction
of the character and the direction opposite of gravity. Facing direction is estimated from the
pointing direction of the root. Components of positions, orientations, velocities, and angular
velocities are translation and rotation invariant features if they are taken with respect to the
character reference frame relative to a character reference point.

To find the character reference frame (CRF) for a time varying pose Pa(t), a unit vector f̂
resolved in the root frame which faces forward while standing is first picked. The vector f̂ is
usually associated with the character definition and does not change. A unit vector in global space
aligned opposite gravity −ĝ is also needed. The orientation Ra

CRF(t) of the character reference
frame and the position of associated character reference point pa

CRF(t) are defined as follows,

Ra

CRF(t) =
[
ĝ× (qa

1(t)◦f̂)×ĝ
∥(qa

1(t)◦f̂)×ĝ∥
(qa

1(t)◦f̂)×ĝ
∥(qa

1(t)◦f̂)×ĝ∥ −ĝ
]
→ qa

CRF(t)

pa
CRF(t) =

(
I− ĝĝT

)
pa
1(t).

45



Rotations are given relative to the global frame. The rotation matrix Ra

CRF(t) has the associated
unit quaternion representation qa

CRF(t). The character reference point pa
CRF(t) is found by project-

ing the root position on the ground which is assumed flat. If a pose or animation involves more
complex terrain it should be projected vertically onto the terrain surface instead of a flat plane.

Queries should be composed of features which are useful for steering animations, but also
features which are useful for ensuring consistency during transitions. For example, take the
case of a character running in a straight line then turning. If features which control velocity
are the only aspect of the query the resulting animation may perform the maneuver, but at the
transition from straight line motion to turning motion pick animations where the stance foot
has instantaneously changed. This will result in an instant unrealistic stance foot change. The
better alternative is to provide features which ensure the feet which are currently planted remain
planted, limiting the turning animations to those with the correct foot on the ground. The features
and query need to be designed with the implications of various physical effects in mind,

• Inertia =⇒ Fast velocity changes are unrealistic.

• Friction =⇒ Sliding looks unnatural.

• Gravity =⇒ Support contacts cannot change arbitrarily.

3.1.2 Locomotion Features

Motion Matching is well suited to the task of generating animations for locomotion. Loco-
motion can be controlled primarily through choice of appropriate features derived from spatial
characteristics. Figure 3.2 summarizes the spatial features which were found to be most appro-
priate for locomotion.

Figure 3.2.a. shows 3D character root velocity. The global 3D velocity of the character root can
be used to create an inertia like constraint on the generated motion. Features can be generated
from the components of this velocity resolved in the current character frame. These features are
primarily used to enforce consistency between animations during transitions, preventing instan-
taneous velocity changes.

Figure 3.2.b. shows foot positions and global velocities. Maintaining consistency of foot place-
ment and motion is important to prevent sliding during transitions and unrealistic changes in
contact state. The components of foot positions and global velocities resolved in the character
reference frame are used as a set of features which are rotation and translation invariant, but
simultaneously can be used to enforce consistency during transitions.

Figure 3.2.c. shows 2D future character positions and headings. Steering and velocity control
can be achieved simultaneously by creating features which give the position of the character cen-
ter of mass projected on the floor at points in the future relative to the current projected center
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Figure 3.2: Diagram of spatial features used for applying motion matching to generation of
locomotion.

of mass position. These are provided for positions 0.33 seconds, 0.66 seconds, and 1 second in
the future. The relative placements of points allow both trajectory shape and velocity along a
trajectory to be matched. The components of these positions resolved in the character reference
frame at the current time provide rotation and translation invariant features which differentiate
turns of different curvatures and transitions between velocities. It is also desirable to control
character heading independently of motion to allow for behaviours like side-stepping and walk-
ing backwards. This is achieved by providing components of normalized vectors representing the
heading direction of the character at 0.33 seconds, 0.66 seconds, and 1 second in the future. These
vector components are also resolved in the character reference frame at the current time, pro-
viding rotation and translation invariant features which allow transitions in heading direction to
be captured and controlled. All quantities are projected onto the ground, so vertical components
can be omitted from the set of features.

3.2 Methods & Optimizations

Motion matching relies heavily on nearest neighbor searches. Nearest neighbor search allows
for many performance optimizations to be applied in order to create a computationally efficient
algorithm [63]. Soft features typically vary in a smooth manner during any particular animation,
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which has the implication that an animation’s frames form curves through the high dimensional
feature space. The data being searched can therefore be thought of as a bundle of curves rather
than a completely unstructured cloud of points, as shown in Figure 3.3a. The underlying regular-
ity of this structure can be leveraged for optimization. A reasonable assumption is that subsequent
frames of animation will be close together in feature space, which is visualized in Figure 3.3b. as
an example. The first step in optimizing performance is to precompute the feature space repre-

Figure 3.3: Motion matching finds the frame of animation in feature space closest to a supplied
query point. Animation frames are mapped to feature space and form discretized curves.

sentation of the data. Precomputation is possible because the database contents do not typically
change at runtime. Using the notation from section 2.2, a database will be described as containing
a set of m animations a1, a2, . . . , am with associated frame counts T1, T2, . . . , Tm ∈ Z+. Arrays
of boolean values ba1 , . . . ,bam ∈ Bh are associated with each animation to represent whether or
not each particular tag applies, with h representing the number of tags being used.

For every frame of animation in the database the features must be calculated using whatever
feature mapping has been defined by the system designer. The mapping of an animation at a
particular time to feature space will be given by the following function,

P(·, ·, ·) : (P,Z+,Bh)→ Rn,
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That is P maps a specified animation, an integer representing a frame in that animation, and a
matrix of boolean values representing tags associated with the animation to a point in the feature
space Rn. Using this operator a large data matrix is constructed,

ΣT =
m∑
i=1

Ti

Dk = [P(Pak(·), 0,bak) P(Pak(·), 1,bak) · · · P(Pak(·), Tk − 1,bak)] ∈ Rn×Tk

D = [D1 D2 · · · Dm]

=
[
d1 d2 · · · dΣT

]
=


d1,1 · · · d1,ΣT

... . . . ...
dn,1 · · · dn,ΣT

 ∈ Rn×ΣT .

Each row in D corresponds to a different feature. The mean and standard deviation for each row
k ∈ {1, . . . , n} is calculated from the data,

µD
k =

1

ΣT

ΣT∑
i=1

dk,i

σD
k =

√√√√ 1

ΣT

ΣT∑
i=1

(dk,i − µD
k )

2.

The standard deviation is used to normalize the features, making their relative importance more
evenly distributed during matching. Features are given unique weights wk ∈ R+ to adjust their
importance. Hard Features are considered to have an infinitely large weighting. This normaliza-
tion and weighting produces a data matrix D which is defined as,

D = [D1 D2 · · · Dm]

= [d1 d2 · · · dΣT
]

=


w1d1,1/σ

D
1 · · · w1d1,ΣT

/σD
1

... . . . ...
wndn,1/σ

D
n · · · wndn,ΣT

/σD
n

 =


d1,1 · · · d1,ΣT

... . . . ...
dn,1 · · · dn,ΣT

 ∈ Rn×ΣT .

The columns di ∈ Rn, i ∈ [1,ΣT ] of D correspond to the feature mapping of each animation
frame in the database to a point in the weighted feature space.
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Given a query Q ∈ Rn, a normalized and weighted query point Q is produced for matching
against data in D,

Q =


Q

1...
Q

n



Q =


w1Q1/σ

D
1

...
wnQn/σ

D
n

 =


Q1

...
Qn

 .
A matching cost for the query point, Ci, can be calculated for each frame as the squared distance
between the query point Q and the point representing the frame di,

ci =


c1,i

c2,i
...
cn,i

 = di −Q

Ci = ∥ci∥2 = c21,i + c22,i + . . .+ c2n,i.

The best matching frame index i∗ is that which has minimum cost,

i∗ = argmin
i

Ci.

Finding the minimum cost can be done in a multitude of ways. The simplest is a brute force search
of every index as in Algorithm 3.7. This is unfavorable as it requires every cost to be calculated.

Algorithm 3.7 brute force matching
1: given Q
2: C∗ ← ∥c1∥2
3: i∗ ← 1
4: for i = 2, 3, . . . ,ΣT do
5: Ctest ← ∥ci∥2
6: if Ctest < C∗ then
7: C∗ ← Ctest

8: i∗ ← i
9: end if

10: end for
11: return i∗
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Reducing the number of cost computations will improve performance. To find i∗ every frame cost
is checked against the currently known lowest value, Ctest < C∗. The calculation of a cost Ci

requires the summing of the squared components of ci. Since these values are squared the sums
can only grow or remain the same size as the terms are added together,

c21,i ≤
2∑

k=1

c2k,i ≤
3∑

k=1

c2k,i ≤ . . . ≤
n−1∑
k=1

c2k,i ≤
n∑

k=1

c2k,i = Ci. (3.1)

This can be leveraged to create an early stopping criteria. If one of the partial sums of squares is
greater than the currently known lowest value, there is no sense in performing more calculations
for this data point. This gives Algorithm 3.8, which will perform fewer computations than a brute
force search. Even better performance can be achieved by rearranging the order of the features so
that those with higher variances appear earlier in the sum, speeding up the triggering of early outs
by adding larger terms earlier in the summation. Further calculations can be eliminated by group-

Algorithm 3.8 early out matching
1: given Q
2: C∗ ← ∥c0∥2
3: i∗ ← 0
4: for i = 1, 2, . . . ,ΣT do
5: Ctest ← 0
6: for k = 0, 1, . . . , n do
7: Ctest ← Ctest + (dk,i −Qk)

2 ▷ note: ck,i = dk,i −Qk

8: if Ctest ≥ C∗ then
9: skip to next i iteration

10: end if
11: end for
12: if Ctest < C∗ then
13: C∗ ← Ctest

14: i∗ ← i
15: end if
16: end for
17: return i∗

ing points in the feature space into a bounding volume hierarchy. Distances to bounding volumes
containing specific points give a minimum bound on distances to contained points. While any
bounding volume shape can be used, axis aligned n dimensional bounding boxes (AABBs) are
chosen here due to their simplicity. Bounding boxes are given identifier Bj ⊂ Rn, with indexes j
used to differentiate between different boxes. Each box has associated range Zj of indexes, com-
posed of the indexes of points contained in the box such that dz ∈ Bj,∀z ∈ Zj, Zj ⊂ {1, . . . ,ΣT}.
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The minimum bounds for each feature index k, Bmin
k,j , and maximum bounds, Bmax

k,j , describe Bj ,

Bmin
k,j = min

z∈Zj

dk,z

Bmax
k,j = max

z∈Zj

dk,z.

These values can be precomputed. The minimum bound on cost for points contained in the axis
aligned bounding box can be calculated as follows,

cBj =


c
Bj

1
...
c
Bj
n

 =


clamp(Q1, B

min
1,j , B

max
1,j )−Q1

...
clamp(Qn, B

min
n,j , B

max
n,j )−Qn


CBj =

∥∥cBj
∥∥2 = (c

Bj

1 )2 + (c
Bj

2 )2 + . . .+ (cBj
n )2.

The rule for partial sums in inequality (3.1) also applies for the calculation of CBj , allowing an
early out on the bounding box lower cost bound calculation. The bounding volume itself provides
a lower bound on the cost of points it contains. This can be described by the following inequality,

(c
Bj

1 )2 ≤
2∑

k=1

(c
Bj

k )2 ≤ . . . ≤
n∑

k=1

(c
Bj

k )2 = CBj ≤ Cz, ∀z ∈ Zj

Using this inequality and a set of bounding boxes, Algorithm 3.9 can be created and has the
potential of skipping all calculations for points in a particular box if a calculated lower bound
surpasses the currently known lowest cost. It is up to the system designer to decide how many
bounding boxes to create, and which points to associate with them. If boxes are too large because
they contain too many points the lower bound will almost always be useless, while if they are
too small because they contain too few points they may result in a slowdown versus a brute force
search since extra computations will be needed. Attention should be paid to the memory locality
of points in the boxes. If any point can be contained in a box it is likely that Zj will not be a
contiguous range of indexes and memory access will be random, leading to cache misses which
incur a significant performance penalty. Because of the fact each animation is a curve through
space and frames are likely to be stored contiguously, a good option is to only allow Zj to be a
contiguous range of indexes. This makes the generation of bounding boxes simple as the range
{1, . . . ,ΣT} can be broken up into a predetermined number of boxes containing an equal number
of points. The points associated with contiguous ranges of indexes will also be close together if
they are from the same animation, since soft feature variations are generally smooth (as visualized
in Figure 3.3). The range size can be tweaked to find a value which results in optimal performance.
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Algorithm 3.9 AABB matching
1: given Q
2: C∗ ←∞ ▷ initialize with worst case
3: i∗ ← −1 ▷ dummy index
4: for j = 1, 2, 3, . . . do ▷ loop over all AABBs in order
5: CB ← 0
6: for k = 1, 2, . . . , n do
7: CB ← CB + (clamp(Qk, B

min
k,j , B

max
k,j )−Qk)

2

8: if CB ≥ C∗ then
9: skip to next j iteration

10: end if
11: end for
12: for each z ∈ Zj do
13: Ctest ← 0
14: for k = 1, 2, . . . , n do
15: Ctest ← Ctest + (dk,z −Qk)

2 ▷ note: ck,z = dk,z −Qk

16: if Ctest ≥ C∗ then
17: skip to next z iteration
18: end if
19: end for
20: if Ctest < C∗ then
21: C∗ ← Ctest

22: i∗ ← z
23: end if
24: end for
25: end for
26: return i∗

Hierarchies of boxes can also be used to recursively obtain lower bound calculations. An outer
box can compute lower bounds on the costs associated with the boxes it contains, and those on the
boxes they contain, and so forth. This may or may not reduce the required number of calculations
to perform a search depending on the data distribution. Larger boxes tend to be pretty ineffective
at causing an early out to trigger, and the box size will grow with each additional hierarchy of
boxes.

3.2.1 Hard Feature Searches

Up to now hard features have been treated the same as soft features in all derivations. While
this is not wrong, it adds needless inefficiency to algorithms since the cost component associated
with these features will only ever take on one of two values, 0 or∞. If the query is asking for a
particular set of hard feature values alongside the soft feature values, then for the cost to be non-
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infinite it must come from a data point which has the exact same hard feature values as the query.
From an implementation perspective it is also tricky to make hard feature values represented by
numbers take on these infinitely distant positions, so a different representation is superior. Hard
features make it so that only the data ranges associated with matching hard features need to be
searched. There is no need to actually calculate the distances to hard features to find the best
match. Matrices D and Q can omit the rows associated with hard features if ranges of data points
are filtered from searching by using a comparison of hard features against the query. The binary
valued tag matrices b1, . . . ,bm for each animation or frame range can be tested for equivalence
with the binary valued hard features in the query. Only those ranges of data associated with
the hard features in the query need to be searched using one of the mentioned algorithms. If
bounding volumes are used then they should only contain points with the same hard feature
values so that they too can be filtered from the search based on the query.

3.2.2 Improved Inertialization

Motion matching systems search continuously to produce a continuous stream of animation.
Each search finds a new animation segment to start playing, however this cannot be done instan-
taneously or else a visible pop between poses will occur. Simple strategies for animation blending
like crossfade blending could be applied to smooth out this popping, however transitions occur
so frequently that blends are very likely to stack up with one starting before another has ended.
Stacking blends require multiple animations to be evaluated simultaneously and can have an un-
favorable performance impact. A more favorable strategy is to use a blending method which is
better equipped to handle frequent transitions. One method that does not require simultaneous
playback of multiple animation clips is called inertialization [59]. An alternative method derived
from the design principles of inertialization but with a simplified implementation is derived here.

The basis of inertialization is that blending can be considered as a post-process which occurs
after a transition. At the time of transition t0, the pose PS(t0) and pose-velocity VS(t0) of the
source animation are stored. The goal is to then initialize a dynamic system which defines the
blend pose PB(t) and pose-velocity VB(t) in a state which ensures,

PB(t0) = PS(t0)

VB(t0) = VS(t0).

This is meant to mimic the velocity preserving effects of inertia. The dynamic system controlling
the blend is defined in such a manner that it will ultimately stabilize the pose and pose-velocity
to those of the target animation at an offset time tT = t+∆tT for the transition.
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Stabilization can either occur after a fixed time tf ≥ t0 or asymptotically if tf →∞,

PB(t) = PT (tT ) ∀ t ≥ tf

VB(t) = VT (tT ) ∀ t ≥ tf .

Inertialization as described in the original presentation of the method [59] uses pose-velocity
and acceleration related information with the goal of finding coeffecients of a quintic polynomial
which approximate the solution of a dynamic system. However, this was found to be needlessly
complex so an improved simplified method is proposed here. The choice of dynamic system is
arbitrary so long as it is stable and has the desired blending properties. It is preferable if the
pose and pose-velocity can be easily controlled at transition start and end. A single dimension
critically damped spring damper system provides good inspiration for an asymptotically stable
dynamic system,

ẍ(t) + 2αẋ(t) + α2x(t) = 0

x(t) = (c1 + c2t)e
−αt

ẋ(t) = (c2(1− αt)− αc1)e−αt.

Specifying initial conditions on position and velocity allows the constants to be solved for,

x(0) = (c1 + c2 · 0)e−α·0 → c1 = x(0)

ẋ(0) = (c2(1− α · 0)− αc1)e−α·0 → c2 = ẋ(0) + αx(0).

However it is not so straightforward to obtain an analogous solution for a spring damper con-
trolling 3D orientation. Instead of doing this, a method with similar dynamics which is built from
interpolation functions was devised using specifically designed interpolation factor controlling
functions. The following equations blend animations with a result similar to inertialization,

pB
1 (t) = lerp

(
pT
1 (tT ),p

S
1 (t0) + ṗS

1 (t0)b(t), a(t)
)

qB
i (t) = slerp

(
qT
i (tT ), e

1
2
ω̃S

i (t0)b(t)qS
i (t0), a(t)

)
, i = 1, 2, . . . , N

The interpolation factors are designed to allow pose-velocity derivatives during the blend to be
easily controlled,

a(t) = (1 + α(t− t0))e−α(t−t0)

b(t) =
1

β

(
1− e−β(t−t0)

)
.
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Exponential decay constants controlling the duration of the blend, α ∈ R+, and factors control-
ling decay of initial velocity, β ∈ R+, are chosen. Values are picked by a designer to achieve
different looks based on needs. It is advisable to at least select different values for blending rota-
tion vs. blending position since they behave differently. For now these are assumed to be shared
for all tracks to keep the derivations which follow simple, but per track values can be used and
all derivations here will not be affected. Using the animation poses PB(t) resulting from a blend,
a pose-function is defined to concisely describe blending between two animations through time,

inertialize(PS(t0),PT (tT ),VS(t0),VT (tT ), t) = PB(t).

The inertialize function ensures that pose and pose-velocity have continuity with the source an-
imation at the start of the transition, and asymptotically approach target animation values. This
is guaranteed because of the design of a(t) and b(t). In particular note that,

a(t0) = 1 (3.2)

ȧ(t0) = 0 (3.3)

lim
t→∞

a(t) = 0 (3.4)

lim
t→∞

ȧ(t) = 0 (3.5)

b(t0) = 0 (3.6)

ḃ(t0) = 1 (3.7)

lim
t→∞

ḃ(t) = 0. (3.8)

The start of the blend has pose continuity with the source animation. The remainder of this
section is devoted to proving this method has the desired behaviour. Pose continuity with the
source is shown by proving PB(t0) = PS(t0) with tT0 = t0 +∆tT defined to reduce clutter,

pB
1 (t0) = lerp

(
pT
1 (tT0),pS

1 (t0) + ṗS
1 (t0)b(t0), a(t0)

)
= pT

1 (tT0) +
(
pS
1 (t0) + ṗS

1 (t0)b(t0)− pT
1 (tT0)

)
a(t0)

= pT
1 (tT0) +

(
pS
1 (t0) + (0)− pT

1 (tT0)
)
(1)

= pS
1 (t0)

qB
i (t0) = slerp

(
qT
i (tT0), e

1
2
ω̃S

i (t0)b(t0)qS
i (t0), a(t0)

)
, i = 1, 2, . . . , N

= qT
i (tT0)

(
(qT

i (tT0))
−1e

1
2
ω̃S

i (t0)b(t0)qS
i (t0)

)a(t0)
= qT

i (tT0)
(
(qT

i (tT0))
−1e(0)qS

i (t0)
)(1)

= qS
i (t0).
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Similarly it can be shown as the blend progresses that the blended pose asymptotically approaches
the target animation. This is done by proving limt→∞PB(t) = limt→∞PT (t),

lim
t→∞

pB
1 (t) = lim

t→∞
lerp

(
pT
1 (tT ),p

S
1 (t) + ṗS

1 (t)b(t), a(t)
)

= lim
t→∞

pT
1 (tT ) +

(
pS
1 (t) + ṗS

1 (t)b(t)− pT
1 (tT )

)
a(t)

= lim
t→∞

pT
1 (tT ) + (0)

= lim
t→∞

pT
1 (tT )

lim
t→∞

qB
i (t) = lim

t→∞
slerp

(
qT
i (tT ), e

1
2
ω̃S

i (t0)b(t)qS
i (t0), a(t)

)
, i = 1, 2, . . . , N

= lim
t→∞

qT
i (tT )

(
(qT

i (tT ))
−1e

1
2
ω̃S

i (t0)b(t)qS
i (t0)

)a(t)
= lim

t→∞
qT
i (tT )

(
(qT

i (tT ))
−1e

1
2
ω̃S

i (t0)(1)qS
i (t0)

)(0)
= lim

t→∞
qT
i (tT ).

Showing VB(t0) = VS(t0) and limt→∞ VB(t) = limt→∞ VT (t) is more involved and requires
some derivatives to be calculated first,

ṗB
1 (t) =

d
dt lerp

(
pT
1 (tT ),p

S
1 (t0) + ṗS

1 (t0)b(t), a(t)
)

=
d
dt
(
pT
1 (tT ) +

(
pS
1 (t0) + ṗS

1 (t0)b(t)− pT
1 (tT )

)
a(t)

)
= ṗT

1 (tT ) +
(

ṗS
1 (t0)ḃ(t)− ṗT

1 (tT )
)
a(t) +

(
pS
1 (t0) + ṗS

1 (t0)b(t)− pT
1 (tT )

)
ȧ(t).

The proof for orientation related continuity contains derivatives which quickly become unwieldy
so the chain rule is applied to slerp with arbitrary parameters first,

f (qa,qb, c) = slerp (qa,qb, c) = qa(q−1
a qb)

c

ḟ (qa,qb, c) =
∂f
∂qa

q̇a +
∂f
∂qb

q̇b +
∂f
∂c
ċ

=
(
(q−1

a qb)
c + qac(q−1

a qb)
c−1(−q−2

a qb)
)

q̇a

+
(
qac(q−1

a qb)
c−1q−1

a

)
q̇b

+
(
qa(q−1

a qb)
c log (q−1

a qb)
)
ċ.

57



It is then helpful to evaluate what occurs if c(tf ) = 0 and c(t0) = 1,

ḟ (qa,qb, 0) = q̇a +
(
qa log (q−1

a qb)
)
ċ

ḟ (qa,qb, 1) = q̇b +
(
qb log (q−1

a qb)
)
ċ.

The pose-velocity behaviour can now be shown at t0,

ṗB
1 (t0) = ṗT

1 (tT0) +
(

ṗS
1 (t0)ḃ(t0)− ṗT

1 (tT0)
)
a(t0)

+
(
pS
1 (t0) + ṗS

1 (t0)b(t0)− pT
1 (tT0)

)
ȧ(t0)

= ṗT
1 (tT0) +

(
ṗS
1 (t0)(1)− ṗT

1 (tT0)
)
(1) + (0)

= ṗS
1 (t0)

q̇B
i (t0) = ḟ

(
qT
i (tT0),

(
e

1
2
ω̃S

i (t0)b(t)qS
i (t0)

)
t=t0

, a(t0)

)
, i = 1, 2, . . . , N

= ḟ
(

qT
i (tT0),

(
e

1
2
ω̃S

i (t0)b(t)qS
i (t0)

)
t=t0

, (1)

)
=

d
dt

(
e

1
2
ω̃S

i (t0)b(t)qS
i (t0)

)
t=t0

+
(
e

1
2
ω̃S

i (t0)b(t0)qS
i (t0) log (. . .)

)
ȧ(t0)

=
d
dt

(
e

1
2
ω̃S

i (t0)b(t)qS
i (t0)

)
t=t0

+ (0)

= ḃ(t0)e
1
2
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i (t0)b(t0) log
(
e

1
2
ω̃S
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)

qS
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= (1)e(0) log
(
e

1
2
ω̃S
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)

qS
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= log
(
e

1
2
ω̃S

i (t0)
)

qS
i (t0)

=
d
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(
e

1
2
ω̃S

i (t0)(t−t0)qS
i (t0)

)
t=t0

=⇒ ωB
i (t0) = ω

S
i (t0).

The quaternion derivatives at t0 imply that the angular velocity terms of the blend ωB
i (t0) are

identical to those of quaternion functions with constant angular velocity ωS
i (t0).
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A similar approach follows for the case of the limiting pose-velocity,

lim
t→∞

ṗB
1 (t) = lim

t→∞
ṗT
1 (tT ) +

(
ṗS
1 (t0)ḃ(t)− ṗT

1 (tT )
)
a(t)

+
(
pS
1 (t0) + ṗS

1 (t0)b(t)− pT
1 (tT )

)
ȧ(t)

= lim
t→∞

ṗT
1 (tT ) + (0) + (0)

= lim
t→∞

ṗT
1 (tT )

lim
t→∞

q̇B
i (t) = lim

t→∞
ḟ
(

qT
i (tT ), e

1
2
ω̃S

i (t0)b(t)qS
i (t0), a(t)

)
, i = 1, 2, . . . , N

= lim
t→∞

ḟ
(

qT
i (tT ), e

1
2
ω̃S

i (t0)b(t)qS
i (t0), (0)

)
= lim

t→∞
q̇T
i (tT ) +

(
qT
i (tT ) log (. . .)

)
ȧ(t)

= lim
t→∞

q̇T
i (tT ) + (0)

= lim
t→∞

q̇T
i (tT ) =⇒ lim

t→∞
ωB

i (t) = lim
t→∞

ωT
i (tT ).

Since the quaternion derivatives of the blend pose approach those of the target animation, the
angular velocities must also be equal in the limit.

Asymptotic behaviour has the implication that any blend effectively never ends. However it
is possible to define a(t) and b(t) with a fixed blend time tf in mind, so long as (3.2) to (3.8) are
respected. This requires the additional constraints,

a(t) = 0 ∀ t ≥ tf

ȧ(t) = 0 ∀ t ≥ tf

ḃ(t) = 0 ∀ t ≥ tf .

The main motivation behind inertialization is however to efficiently trigger transitions before
previous blends have completed, so asymptotic stability is usually sufficient and does not pose
any issues. When a transition is triggered, the current blend immediately ends and requires no
further evaluation. The new blend source animation states are simply set using the pose and
pose-velocity at the last evaluated time,

PS(t0)← PB(t0)

VS(t0)← VB(t0).

Pose-velocity can be determined using finite difference with values from the previous time-step.
Inertialization only requires updating PS(t0), VS(t0), and blend start time t0 whenever a new

59



transition occurs. The function inertialize(PS(t0),PT (tT ),VS(t0),VT (tT ), t) can be continu-
ously evaluated every time step to generate animation, without regard to when or how transitions
are being triggered.

3.2.3 Motion Matching Algorithm

Because motion matching functions by generating poses at discrete timesteps, output will be
considered in terms of a sequence poses sequence rather than as a pose-function. The current
timestep’s pose and previous timestep’s pose will be denoted PMM and PMM− respectively. The
length of time between these poses is some fixed value ∆twhich is dependent on the target fram-
erate of the application. At startup the previous pose and current pose are considered initialized
in some way usually based on some animation in the database.

The pose-velocity at the current time is calculated using backward difference of the two pose
samples and given the identifier VMM,

VMM =

(
pMM
1 − pMM−

1

∆t
,− 2

∆t
l̃og
(
(qMM

1 )−1qMM−
1

)
, . . . ,− 2

∆t
l̃og
(
(qMM

N )−1qMM−
N

))
=
(
ṗMM
1 ,ωMM

1 , . . . ,ωMM
N

)
.

When an animation is selected through the motion matching search process, it is important to
consider how it should be played back to introduce the minimal amount of popping possible.
First, the best matching index i∗ returned by the search must be converted into an appropriate
animation reference and playback time. An operation is defined which takes the matched index
i∗ in the data matrix D and returns the animation Pa∗(·) and time in that animation t∗ which it
is uniquely associated to,

Pa∗(·), t∗ ← index to anim(i∗).

However, this output usually requires processing before it can be used. If the character reference
frame is used the animations in the database that are matched will not necessarily have the correct
transformation due to the rotation and translation invariance of the features. The animation
from the database must first be aligned through an appropriate transformation so that it begins
playback in a sensible place which minimizes popping. This is done by ensuring the character
reference frame of the current pose and the matched pose Pa∗(t∗) are aligned first.
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The identifier PMM0 is given to the pose when the match occurred. The best matching ani-
mation a∗ is rigidly transformed in the horizontal plane to have the proper alignment at time t∗

with the character reference frame of PMM0 ,

∆qalign* = qMM0
CRF (qa∗

CRF(t
∗))−1

VMM0:a∗(t) =
(
∆qalign* ◦ ṗa∗

1 (t),∆qalign*ω
a∗

1 (t),ωa∗

2 (t), . . . ,ωa∗

N (t)
)

PMM0:a∗(t) =
(
pMM0

CRF +∆qalign* ◦
(
pa∗

1 (t)− pa∗

CRF(t
∗)
)
,∆qalign*qa∗

1 (t),qa∗

2 (t), . . . ,qa∗

N (t)
)
.

Algorithm 3.10 gives an overview of the motion matching algorithm used in this work, defined
with methods described throughout this chapter. Searches can be triggered either by a timer
or some event like an abrupt control request from a user. The search interval is usually quite
short (≈ 10 timesteps) to maintain responsiveness, although this can vary depending on the type
of character being animated or the type of animations being used. Longer timescale effects in
motion will necessitate a longer interval.

Algorithm 3.10 motion matching
1: initialize Pa∗(·), t∗
2: PMM− ← Pa∗(t∗ −∆t)
3: PMM ← Pa∗(t∗)
4: VMM ← Va∗(t∗)
5: PMM0 ← PMM

6: VMM0 ← VMM

7: t← 0
8: for each timestep do
9: t← t+∆t

10: PMM− ← PMM

11: PMM ← inertialize(PMM0 ,PMM0:a∗(t∗ + t),VMM0 ,VMM0:a∗(t∗ + t), t)
12: compute VMM using PMM,PMM−

13: if (t ≥ search timer) or search triggered then
14: construct query Q
15: search for i∗ of frame best matching Q ▷ Algorithm 3.9
16: Pa∗(·), t∗ ← index to anim(i∗)
17: PMM0 ← PMM

18: VMM0 ← VMM

19: t← 0
20: end if
21: output PMM

22: end for
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3.3 Procedural Animation Touch-ups

The output of the motion matching algorithm is usually of an appreciable quality, but in some
cases transitions may lead to a small amount of noticeable sliding at contacts. Because the sliding
is usually over a short distance, a simple procedure using inverse kinematics can be used to
eliminate it.

The details of this correction will be dependent on the character definition and the type of
contacts which are expected in the animations. For the purposes of this work human characters in
locomotion are considered. Given an animation Pa(t), a function returning the states of contacts
is needed. This function will take the form of an ordered set Ca(t),

Ca(t) =
(
ba1(t), . . . , b

a
NC

(t)
)
.

These contact sets contain time varying indexed boolean tracks bak(t) ∈ B, k ∈ {1, . . . , NC}
denoting the binary state of each contact. A state is considered active when a contact without
any slipping is occurring, and inactive otherwise. The number of tracked contact states is NC ,
and is considered fixed across all animations. Contact states can be gathered from sensors during
the capture, or estimated using a heuristic.

The heuristic used in this work to estimate contacts was to check the position and velocity of
points of interest such as the feet and hands. A good indicator for contact being active was found
to be when the point associated with it is near a known terrain feature (indicating touching) in
the motion capture volume and its velocity is near zero (indicating lack of slip). The amount of
contacts to track and fix is up to choice. For the purposes of locomotion tracking the contact state
of the feet and hands was found to work well.

Blends may cause slipping during transitions, so a two bone inverse kinematic solutions can
be used to prevent this. Two bone IK works well if the contacts are near end-effectors, as is
the case for feet and hands. Each contact index k ∈ {1, . . . , NC} has associated bones for the
two bone IK. The tip bone index is given by ςk ∈ {3, . . . , N}, the hinge bone index is that of
the tip’s parent, p(ςk), and the pivot bone index is that of the hinge bone’s parent pp(ςk). These
should be picked so that no bones are associated with two IK solvers simultaneously. In this work
NC = 4, and the indexes ς1, ς2, ς3, ς4 are associated with the feet and hand bones. The IK system
then prevents slipping by by bending the knees and elbows, and rotating chains at the hip and
shoulder joints. The rotation axis of the hinge joint connecting bone p(ςk) to bone pp(ςk) resolved
in the frame of pp(ςk) is given by unit vector ûk ∈ S2.
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The axis direction in global space for pose Pa is then given by,

ûa

k = qa
pp(ςk)

◦ ûk.

A target position in global space p⊕
k is also specified. The goal of two bone IK is to find the joint

configuration which touches the tip to target, or gets as close as possible. Achieving this is broken
into three tasks which are performed in order to obtain a solution:

1. Save the line which intersects the positions of the base and tip.

2. Rotate the hinged bone so that the distance between the base and tip of the IK chain is equal
to the distance between the base and target.

3. Rotate the entire system rigidly at the base so that the line formed by the base and tip lies
on the same axis it started on.

4. Rotate the entire system rigidly using the minimal rotation which moves the tip as close to
the target as possible.

Items 1 and 3 are not always necessary, but can be useful to reduce some artifacts. The notation
that will be adopted is that the initial pose isPa and the IK adjusted pose isPa′ . For the remainder
of this section index kwill always refer to the index of one of the IK chains. The line which initially
exists between base and tip is defined as follows,

rak = pa
ςk
− pa

pp(ςk)

r̂ak =


rak

∥rak∥
if ∥rak∥ > 0

0 otherwise
.

The displacement of the target from the base is similarly defined,

r⊕k = p⊕
k − pa

pp(ςk)

r̂⊕k =


r⊕k

∥r⊕k ∥
if
∥∥r⊕k ∥∥ > 0

0 otherwise
.
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The projection operator and the orthogonal complement of the projection are also defined for
later use,

projuv =
v · u
∥u∥2

u

proj⊥u v = v− projuvv

v = projuv + proj⊥u v.

The rotation of the hinge bone which puts the tip at the right distance from the base is found by
considering the intersection of a sphere with a circular arc. The sphere is centered at the base and
represents the distance to the target. To be general the case where the hinge bone is not perfectly
orthogonal to the hinge axis is considered. The circular arc is created by all the positions of the
tip rotating the hinge bone around the hinge axis through the the allowable range of motion.
The various important geometric relationships, vectors, and lengths for the general two bone
IK problem are summarized in Figure 3.4. With reference to the figure, various terms have the
following relationships which allow them to be computed directly using constants as well as
values from a global pose Pa,

lc1k =
∥∥∥proj⊥ûa

k
(ℓ

a

ςk
)
∥∥∥

lc2k =
∥∥∥proj⊥ûa

k
(ℓ

a

p(ςk)
)
∥∥∥

lmin
k =

∥∥∥∥∥projûa
k
(ℓ

a

ςk
)−

proj⊥ûa
k
(ℓ

a

p(ςk)
)

lc2k
lc1k

∥∥∥∥∥
lmax
k =

∥∥∥∥∥projûa
k
(ℓ

a

ςk
) +

proj⊥ûa
k
(ℓ

a

p(ςk)
)

lc2k
lc1k

∥∥∥∥∥
ldk = clamp

(∥∥r⊕k ∥∥ , lmin
k , lmax

k

)
lc0k =

√
(ldk)

2 −
∥∥∥projûa

k
(ℓ

a

ςk
) + projûa

k
(ℓ

a

p(ςk)
)
∥∥∥2

ϕς
k = arccos

(
proj⊥ûa

k
(ℓ

a

ςk
)

lc1k
·

proj⊥ûa
k
(ℓ

a

p(ςk)
)

lc2k

)

ϕc1
k = arccos

(
(lc0k )2 − (lc1k )2 − (lc2k )2

−2lc1k l
c2
k

)
.

One issue is that it may not always be feasible to find a configuration where the tip aligns
with the target. In these cases the next best thing is to find the configuration which puts the tip
as close as possible. This can be done by clamping the reaching distance ldk to stay within the
distance limits which are achievable. The value lmin

k is the smallest distance achievable, and lmax
k
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the largest distance achievable. In the calculation of these quantities it has been assumed that the
joint can only rotate within a range of 180◦. This is typical for knees and elbows which can only
take on a straight or fully bent positions. This range of motion also simplifies the problem so that
the number of solutions is one rather than two. The “side” of range limit is determined by choice
of ûk and be flipped by multiplying it by −1.

The local rotation of the hinge bone which brings the tip to the proper distance from the base
is given by,

qa′

p(ςk)
= e

1
2
˜̂uk(ϕ

ς
k−ϕ

c1
k )qa

p(ςk)
.

Finding the adjusted position of the tip relative to the base da
k then only requires forward kine-

matics with the adjusted values,

da
k = pa

p(ςk)
+ qa

pp(ςk)
qa′

p(ςk)
◦ ℓaςk .

The final steps require two separate rigid rotations pivoting at the base. Both are operations
which involve finding the shortest rotations which align vectors. Given two vectors u and v a
quaternion with favorable properties for this task can be constructed,

q[v∢u] =



qI =
[
0 0 0 1

]T
if u = 0 or v = 0 or û · v̂ = 1,

1√
2(1+û·v̂)

 û× v̂

1 + û · v̂

 else if |û · v̂| < 1,

[
1 0 0 0

]T
else if

∣∣∣∣û · [1 0 0
]T∣∣∣∣ < 1,

[
0 1 0 0

]T
otherwise.

The proof this works as intended in the second case is not immediately obvious, but can be shown
by proving the resulting quaternion is equivalent to that representing a rotation of the angle θ
between the vectors around the axis orthogonal to the vectors â,
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ˆ
sin θ√

2(1 + cos θ)
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dθ = 2 cos
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√
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2 cos
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2
− 2

√
cos2

θ

2
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=⇒ sin θ√
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= sin
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2
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1 + cos θ√
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− cos
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2
dθ = −2 sin θ

2
+ 2

√
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2
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2
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2
+ 2

√
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θ

2
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θ

2
= 0 if − π < θ < π

=⇒ 1 + cos θ√
2(1 + cos θ)

= cos
θ

2
if − π < θ < π

θ = arccos û · v̂

â =
û× v̂
∥û× v̂∥

1√
2(1 + û · v̂)

[
û× v̂

1 + û · v̂

]
=

1√
2(1 + cos θ)

[
â sin θ

1 + cos θ

]

=

â sin θ√
2(1+cos θ)

1+cos θ√
2(1+cos θ)


=

[
â sin θ

2

cos θ
2

]
if − π < θ < π

= e
˜̂a θ
2 if − π < θ < π

= e
˜̂a θ
2 if |û · v̂| < 1 .

These vector alignment rotations either perform no rotation if there is no possible way to align
the vectors, the unique shortest rotation if it exists, and a rotation around an arbitrary axis in
cases where the vectors point opposite directions. The result is that,

q[v∢u] ◦ û =

v̂ if (∥u∥ > 0 and ∥v∥ > 0) or (∥u∥ = 0 and ∥v∥ = 0)

û if ∥u∥ = 0 or ∥v∥ = 0.
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This can then be applied to complete the two bone IK correction by finding the new local and
global quaternions related to the base and hinge bones,

qa′

pp(ςk)
= q[r⊕k ∢r

a
k ]q[rak∢d

a
k]qa

pp(ςk)

qa′

pp(ςk)
= (qa′

ppp(ςk)
)−1qa′

pp(ςk)

qa′

p(ςk)
= qa′

pp(ςk)
qa′

p(ςk)
.

Optionally the tip bone orientation can also be adjusted to align with some specified global target
orientation q⊕

k ,

qa′

ςk
= q⊕

k

qa′

ςk
= (qa′

p(ςk)
)−1q⊕

k .

All remaining bones retain their original local orientations and positions,

qa′

i = qa
i ∀ i ∈ {1, . . . , N} − {ς1, . . . , ςNC}

pa′

i = pa
i .

Given a set of targets for all IK chains, the IK adjusted pose is then given by Pa′ . This process
will be defined as a pose function which assigns the adjusted values to a new pose variable,

Pb ← TwoBoneIK(Pa,p⊕
1 , . . . ,p

⊕
NC
,q⊕

1 , . . . ,q
⊕
NC

) = Pa′ .

It is assumed the details of the hinge axis choice, number of IK groups, etc. are part of the character
definition and need not be supplied as arguments.

3.3.1 Motion Matching With Foot Sliding Corrections

Contact sliding can be fixed by tracking contact state changes and using two bone IK to make
adjustments gradually. The motion matching algorithm can be modified for this purpose as in
Algorithm 3.11. Global IK tip positions and orientations are inertialized to and from the locked
contact position after contact change events to smooth out adjustments over time. The inertial-
ization parameters for IK need to be adjusted to achieve a blend which minimizes slipping but
does not introduce significant discontinuity by occurring too quickly. This process usually re-
quires character and style dependent adjustments. The algorithm presented also naively chooses
the contact locations by projecting tip positions on planar terrain.
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Algorithm 3.11 motion matching with IK
1: initialize Pa∗(·), t∗
2: t← 0
3: PMM− ← Pa∗(t∗ −∆t)
4: PMM ← Pa∗(t∗)
5: VMM ← Va∗(t∗)
6: PMM0 ← PMM

7: VMM0 ← VMM

8: for each k ∈ {1, . . . , NC} do
9: bCk ← ba

∗

k (t∗) ▷ save initial contact states
10: tCk ← 0
11: pC

k ← (1− ĝĝT)pMM
ςk

▷ project on terrain (plane assumed)
12: qC

k ← qMM
ςk

13: end for
14: for each timestep do
15: t← t+∆t
16: PMM− ← PMM

17: PMM ← inertialize(PMM0 ,PMM0:a∗(t∗ + t),VMM0 ,VMM0:a∗(t∗ + t), t)
18: compute VMM using PMM,PMM−

19: for each k ∈ {1, . . . , NC} do
20: if !bCk and ba∗k (t∗ + t) then ▷ prevent slipping on new contact
21: bCk ← true
22: tCk ← 0
23: pC

k ← (1− ĝĝT)pMM
ςk

▷ project on terrain (plane assumed)
24: qC

k ← qMM
ςk

25: end if
26: if bCk and ba∗k (t∗ + t) then ▷ blend/maintain contact adjustment
27: tCk ← tCk +∆t
28: p⊕

k ← inertialize(pMM
ςk
,pC

k , ṗ
MM
ςk
, 0, tCk)

29: q⊕
k ← inertialize(qMM

ςk
,qC

k ,ω
MM
ςk
, 0, tCk)

30: end if
31: if bCk and !ba

∗

k (t∗ + t) then ▷ contact broken
32: tCk ← 0
33: bCk ← false
34: end if
35: if !bCk and !ba

∗

k (t∗ + t) then ▷ blend away contact adjustment
36: tCk ← tCk +∆t
37: p⊕

k ← inertialize(pC
k ,p

MM
ςk
, 0, ṗMM

ςk
, tCk)

38: q⊕
k ← inertialize(qC

k ,q
MM
ςk
, 0,ωMM

ςk
, tCk)

39: end if
40: end for
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41: PMM′ ← TwoBoneIK(PMM,p⊕
0 , . . . ,p

⊕
NC
,q⊕

0 , . . . ,q
⊕
NC

)
42: if (t ≥ search timer) or search triggered then
43: construct query Q
44: search for i∗ of frame best matching Q ▷ Algorithm 3.9
45: Pa∗(·), t∗ ← index to anim(i∗)
46: PMM0 ← PMM

47: VMM0 ← VMM

48: t← 0
49: end if
50: output PMM′

51: end for

Figure 3.4: Orthographic view of geometric relationships involved in two bone IK.
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Chapter 4

Physical System Modeling

Approximations are inevitable when modeling a complicated physical system. Real world
physical phenomena can seldom be perfectly reproduced through computation. To make matters
worse, increased accuracy usually comes at the cost of increased computational requirements.
For offline simulation computational requirements are not of primary importance, but in realtime
applications where computation budgets are razor thin, a delicate balance between accuracy and
performance always exists. This section is devoted to developing a physical simulation of a human
for use in real time simulation. The goal is to make the best use out of finite resources, making
approximations where necessary.

The first big approximation made in this work is the assumption that a human can be rep-
resented by connected rigid-bodies. Humans are of course made of many interconnected stiff
elements like bones, but most structure comes from deformable interconnected anisotropic soft
tissues. Accurately modeling the musculoskeletal system generally requires finite element mod-
els, but these are usually far too slow for real time applications and generally reserved for scien-
tific calculations [71]. Rigid-body physics simulations are already a well optimized and common
feature of many game engines used for real time computer graphics applications, with multiple
high performance open source libraries available such as NVIDIA’s PhysX [72] and Bullet Physics
[73]. Using an existing well maintained rigid-body physics library to model a human is the path of
least resistance and prevents “reinventing the wheel” unnecessarily, so it is the approach adopted
in this work.

Interconnected rigid-bodies are commonly used to model unconscious characters in video
games as a “ragdoll”. However, ragdolls are rarely created with the intention of accurately mod-
eling the dynamics of a human, and designed instead with the intent of creating interesting an-
imations [74]. This work aims to develop a rigid-body approximation of a human which more
accurately reflects the dynamics of a real person, with the intent of reducing modeling error as
much as possible for the purposes of recreating real human motions.
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The objectives that were considered most important in modeling a human using rigid bodies
and led to the methods contained in this chapter are the following,

• Reproduce the mass properties of an average human in a rigid-body model.

• Reproduce the surface geometry of a human which will affect behaviour during contacts.

• Develop actuation and passive dynamics of the system in a reasonable way which will allow
a full body motion control.

• Use methods which are computationally efficient.

4.1 Modeling Humans

Measuring accuracy of a model always reduces to making some comparison between a model
and some source of real world data. In the case of this work, the only real world data available
is considered to be motion capture, and some associated character definition. Motion capture
data provides basic information about geometry of a character’s skeletal structure, but this does
not really provide information about the physical volume occupied by an actor. Even worse, the
skeletal structure is really only optimized for animating a skinned mesh, and not for accurately
modeling the bones and articulations of a human skeleton. A typical video game character ani-
mation skeleton from motion capture contains a small number of bones, 68 bones being cited in
[75]. This is in contrast to the 206 bones [76] of a human skeleton. Video game character skele-
tons also assume all bones are connected with spherical joints, and maintain a fixed distance from
a single parent. While this is convenient from the standpoint of character animation, many real
bones such as the shoulders are connected to a large assortment of other bones through complex
structures of soft tissue, and are not generally constrained to rotate around around a fixed center
of rotation. Real human joints even in “simple” structures like a knee with relatively few degrees
of freedom often have eccentric sliding motions between complex joint surfaces. Nonetheless a
simplifying assumption will be made that the motion capture skeleton provides centers of rota-
tion which are at least somewhat representative of a real human. Improving the skeleton in the
motion capture character to more accurately represent a human will improve the accuracy of the
methods developed here.

For the purposes of this chapter a pose Pb will be assumed to contain a symmetric T-pose
character as shown in Figure 4.1. Surface geometry of a character is generally provided through
a skinned mesh with associated linear blend skinning weights [75]. It is assumed that this mesh
has been calibrated to represent the geometry of the motion capture actor’s body somewhat ac-
curately. Improving the accuracy of the mesh will improve the accuracy of the resulting physical
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Figure 4.1: A skinned mesh is used to optimize a set of body geometries to approximate a
human motion capture actor.

model being developed. A skinned mesh consists of a list of nV vertex positions V ∈ RnV ×3, a
list of skinning weights W ∈ RnV ×N giving the influence of each of the N character definition’s
bones on the vertices, and a list of triangles which are considered irrelevant for the purposes of
this work. The weights for all bones corresponding to each vertex in W add to one,

W =
[
w1 . . . wnV

]

wi =


w1,i

...
wN,i


N∑
k=1

wk,i = 1 ∀ i ∈ {1, . . . , nV } .

The undeformed vertex positions in V are given for some bind pose which will be considered to
be Pb. The process of linear blend skinning allows different poses to modify the vertex positions
in a way which smoothly deforms the mesh, sharing the different deformations of the skeleton
at each point in a manner dependent on the weights associated to each bone. The new vertex
positions vnew

i given an input pose Pnew are determined using the bind pose,

V =
[
v1 · · · vnV

]
=


v1,1 . . . v1,nV

... . . . ...
v3,1 · · · v3,nV


vnew
i =

N∑
k=0

wk,i

(
pnew
k + qnew

k (qb
k)

−1 ◦ (vi − pb
k)
)
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This consists of the weighted average of the rigid transformations associated with each bone.
Because the weights are normalized, if an index k associated with a particular vertex i iswk,i = 1,
then bone k uniquely controls the vertex as if it were rigidly attached to it. The magnitude of the
weights associated with each bone directly influence the amount that bone controls the defining
surface geometry.

4.1.1 Collision Shape Optimization

Collision detection is one of the most performance heavy aspects of a physics simulation,
with more complex geometry usually requiring more computation time [77]. Collision detection
performance can be improved by using simple primitives such as spheres, capsules, and boxes to
represent rigid-body surfaces. Skinning weights and vertices can be used to find primitive shapes
which best approximate the geometry of the character.

Each bone has a simple primitive associated to it, either a box or a capsule. Choice of primitive
was made manually. Boxes are used to represent feet because they provide a flat surface, and all
other bones are represented by capsules. A process was developed in this work to find optimal
primitive geometry parameters for each bone by using the skinned vertexes associated to them.
Parameters defining the capsules are their relative position to their bone, their axial direction and
length, and their radius. Parameters defining the boxes are their relative position and orientation
to their bone, and their side lengths. Optimal geometry is found by performing an optimization

Figure 4.2: Simplified overview of the geometry optimization problem being solved.

which minimizes the distance of the primitive surface to the skinned vertexes associated to it,
these distances are visualized as red and green arrows in Figure 4.2. It is also necessary to provide
an additional low weight objective function term for minimizing the primitive volumes. The
volume objective is necessary to obtain tightly fitting primitives, as surface distance alone will
not achieve this goal in all cases.
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A loss term can be formulated for each primitive by summing the weighted squared signed
distance of the primitive to each skinned vertex, and adding a small regularization term for the
volume minimization. For a capsule associated with bone index k the signed distance to some
point vi given a set of capsule defining parameters θcap

k can be calculated as follows,

θ
cap
k =

[
pcap
k

T ucap
k

T
rcap
k

]T
dcap
k (vi) = vi − pcap

k

SignDistcap(vi,θ
cap
k ) =

∥∥∥∥∥dcap
k (vi)− clamp

(
dcap
k (vi) ·

ucap
k

∥ucap
k ∥

2 ,−1, 1

)
ucap
k

∥∥∥∥∥− rcap
k .

The loss terms used for optimization are then straightforward to define. Surface proximity can be
optimized using a weighted sum of squared signed distances over skinned vertexes, and volume
can be minimized through a loss directly proportional to the capsule volume,

Lcap
surf(V,θ

cap
k ) =

nV∑
i=1

wk,i

nV

(
SignDistcap(vi,θ

cap
k )
)2

Lcap
vol (θ

cap
k ) = 2π ∥ucap

k ∥ (r
cap
k )2 +

4π

3
(rcap

k )3.

In the previous definitions pcap
k is the position of the center of the capsule, ucap

k is the axis along
which the capsule lies with magnitude equal to the half length, and rcap

k is the radius of the capsule
ends. A similar approach follows for box shaped primitives,

θ
box
k =

[
pbox
k

T ubox
k

T
xbox
k ybox

k zbox
k

]T
dbox
k (vi) = absE.wise

(
e−

1
2

ũbox
k ◦ (vi − pbox

k )− 1

2

[
xbox
k ybox

k zbox
k

]T)
SignDistbox(vi,θ

box
k ) =

∥∥maxE.wise(d
box
k (vi), 0)

∥∥+min(maxElement(dbox
k (vi)), 0)

Lbox
surf(V,θ

box
k ) =

nV∑
i=1

wk,i

nV

(
SignDistbox(vi,θ

box
k )
)2

Lbox
vol (θ

box
k ) = xbox

k ybox
k zbox

k ,

where θbox
k contains the parameters to be optimized defining the box geometry. The position pbox

k

represents the center of the box, ubox
k is the axis-angle parameterization of the box orientation,

and xbox
k , ybox

k , zbox
k are the dimensions of the box edges. The functions absE.wise(·) and maxE.wise(·, ·)

refer to the element-wise absolute value and maximum. The function maxElement(·) returns the
maximum element value of the input matrix.
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A global loss for all bones with a small weightwvol ≈ 0.01 for the volume terms is defined. The
global parameter set for the character geometries θgeom is defined here with shapek ∈ {cap, box}
in the place of each bone k associated shape parameter’s superscript to make it clear that shape
choice can vary per bone. The global loss is thus defined,

θgeom =


θ

shape1
1

...
θ

shapeN
N


Lgeom(V,θgeom) =

N∑
k=1

L
shapek
surf (V,θshapek

k ) + wvolL
shapek
vol (θ

shapek
k ).

Optimal surface fitting geometry parameters θ∗geom are found by solving the following optimiza-
tion problem numerically,

θ
∗
geom = argmax

θgeom

Lgeom(V,θgeom).

Stochastic gradient descent as covered in the previous sections is usually sufficient to obtain a
local optima, but care should be taken to ensure some parameters are initialized to a non-zero
value to prevent divisions by zero. Due to the use of conditional functions, some derivatives may
be poorly defined at certain locations. This is generally handled by considering the derivative to
be zero where it is difficult to define. In this work the optimization was implemented by using
the machine learning library pytorch [78], this allows derivatives for the loss to be efficiently and
accurately computed through automatic differentiation. Use of a machine learning library also
allows the GPU to be utilized to accelerate the optimization significantly through parallelization
since the loss contains many independent calculations which can later be summed together.

It is likely that the optimization will be initialized in such a way that gradient descent con-
verges on solutions which are not close to the global optimal, particularly for the box shapes. The
simplest solution is to use a brute force algorithm optimizing many random initializations of each
shape’s parameters and keeping the best converged solutions, for an example see Algorithm 4.12.
More sophisticated algorithms like covariance matrix adaptation evolutionary strategy (CMA-
ES) [79] could also be used to optimize the parameters. This geometry fitting optimization only
needs to be run once to generate a useful result, so performance is not a primary concern. The
skinned mesh, point cloud, and resulting character model approximated by optimized geometry
primitives is show in Figure 4.1.
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Algorithm 4.12 brute force geometry fitting

1: θ
∗
k ← arbitrary

2: L∗
k ←∞ ▷ initialize “best loss so far” with worst case

3: for many iterations do ▷ repeat until satisfied with result
4: for each k ∈ {1, . . . , N} do
5: for each matrix element j of θshapek

k do
6: θ

shapek
j,k ⇝unif[−ϕj, ϕj] ▷ sample each element from appropriate distribution

7: end for
8: for each k ∈ {1, . . . , N} do
9: ▷ perform SGD till convergence for each shape

10: θ
SGD
k , LSGD

k ← SGD(θ
shapek
k , L

shapek
surf (V,θshapek

k ) + wvolL
shapek
vol (θ

shapek
k ))

11: if LSGD
k < L∗

k then
12: L∗

k ← LSGD
k ▷ LSGD

k contains the loss associated with θSGD
k

13: θ
∗
k ← θSGD

k

14: end if
15: end for
16: end for
17: end for
18: return θ∗k ▷ output the most optimal parameters found during iterations

4.1.2 Mass Property Approximation

After obtaining an optimal set of shape parameters, it is then necessary to determine how
mass is distributed. A straightforward approach is to divide the mass equally among the body
geometries by choosing a single appropriate density and applying it to all shapes when calculating
mass properties. While this approach can be used for a reasonable approximation it neglects
the fact that geometries on different bones are very likely to intersect, leading to areas with
significantly higher mass concentrations due to the overlap.

In this work a method was devised to obtain a more accurate set of mass properties through
a discretized integration. To begin, signed distance functions are adapted to define a function
which can be used to return a mask indicating if global points are located within a shape,

Insideshape(p,θ
shape

) =

1 if SignDistshape(p,θ
shape

) < 0

0 otherwise.

Using this function it is possible to define mass density functions for each bone k,

ρk(r) =

(
Insideshapek(r,θ

shapek
k )

ε+
∑N

i=1 Insideshapei(r,θ
shapei
i )

)
mtotal

Vtotal
.
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Here mtotal represents the desired total mass of the character, Vtotal is the total volume of the
character, and ε is a small non-zero value with the sole purpose of preventing divisions by zero.
These mass density functions are designed to share mass at each point equally among all shapes
intersecting that point.

The density returned is zero where there are no intersections, which is useful when discretiz-
ing the volume integrals for mass properties. If all the character shapes are contained in some
region of volumeV ⊂ R3, Then there is also some axis aligned bounding box volumeB containing
them with minimum positions Bmin

x , Bmin
y , Bmin

z and maximum positions Bmax
x , Bmax

y , Bmax
z . These

positions can be found by finding the min and max values along each dimension for the skinning
vertices in V, and adding some reasonable padding value ∆B ∈ R+ to ensure that V ⊂ B,

Bmin
x = min

i
v0,i −∆B

Bmin
y = min

i
v1,i −∆B

Bmin
z = min

i
v2,i −∆B

Bmax
x = max

i
v0,i +∆B

Bmax
y = max

i
v1,i +∆B

Bmax
z = max

i
v2,i +∆B.

Then integration of density functions over the volume V can be written equivalently over the
volume of the bounding box B,

rV =

xy
z


ˆ ˆ ˆ

V
ρk(rV) dx dy dz =

ˆ Bmax
x

Bmin
x

ˆ Bmax
y

Bmin
y

ˆ Bmax
z

Bmin
z

ρk(rV) dx dy dz.
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The box boundary makes the integral straightforward to evaluate using discretization into a
nG×nG×nG cell regular grid. Each grid cell has a center position given by rGixiyiz where ix, iy, iz
are the cell indexes, and a cell volume VG.

rGixiyiz =

lerp(B
min
x , Bmax

x , ix−0.5
nG

)

lerp(Bmin
y , Bmax

y , iy−0.5

nG
)

lerp(Bmin
z , Bmax

z , iz−0.5
nG

)


VG =

(
Bmax

x −Bmin
x

nG

)(
Bmax

y −Bmin
y

nG

)(
Bmax

z −Bmin
z

nG

)
.

Using discretization the mass mk of the rigid-body associated to bone k is approximated as fol-
lows,

mk =

ˆ Bmax
x

Bmin
x

ˆ Bmax
y

Bmin
y

ˆ Bmax
z

Bmin
z

ρk(rV) dx dy dz

≈
nG∑
ix=1

nG∑
iy=1

nG∑
iz=1

ρk(rGixiyiz)VG.

The center of mass position pb
Bk

for each rigid-body can also be approximated,

pb
Bk

=
1

mk

ˆ Bmax
x

Bmin
x

ˆ Bmax
y

Bmin
y

ˆ Bmax
z

Bmin
z

rVρk(rV) dx dy dz

≈ 1

mk

nG∑
ix=1

nG∑
iy=1

nG∑
iz=1

rGixiyizρk(r
G
ixiyiz)VG.

The mass-moment of inertia for each rigid-body about the center of mass is similarly approxi-
mated,

IbBk
=

ˆ ˆ ˆ
V

(∥∥rV − pb
Bk

∥∥2 1−
(
rV − pb

Bk

) (
rV − pb

Bk

)T)
ρk(rV) dx dy dz

≈
nG∑
ix=1

nG∑
iy=1

nG∑
iz=1

(∥∥∥rGixiyiz − pb
Bk

∥∥∥2 1−
(

rGixiyiz − pb
Bk

)(
rGixiyiz − pb

Bk

)T)
ρk(rGixiyiz)VG.

So long as the grid resolution nG is large enough the mass property approximations will be ac-
curate enough. All quantities are calculated with respect to the global reference frame, with the
character in the bind pose Pb.

It is common that physics libraries represent rigid-body states using their center of mass
position and orientation of their principal axes of inertia with respect to the world frame. If this
is the case it is important for each bone to obtain the reference frame which contains the principal
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moments of inertia and is centered on the center of mass. The collision shapes should then be
represented with resepect to this frame.

The transformations can be carried out by first performing eigendecomposition of IbBk
,

IbBk
= Rb

Bk
IBk

(Rb

Bk
)T.

The matrix IBk
is diagonal with entries equal to the principal moments of inertia. It is the mass

moment of inertia about the center of mass, resolved in the principal axis aligned frame. Rotation
matrix Rb

Bk
represents the orientation of the rigid-body principal axes with respect to the global

frame. The quaternion parameterization qb
Bk

of this rotation can also be defined,

Rb

Bk
x = qb

Bk
◦ x, ∀ x ∈ R3.

Using pb
Bk

and qb
Bk

, the geometry parameters relative to the principal axis aligned frame (from
now on referred to as the principal frame) can be determined. For a capsule the principal frame
θcap
k geometry parameters are,

θcap
k =

pcap
k

ucap
k

rcap
k


pcap
k = (qb

Bk
)−1 ◦ (pcap

k − pb
Bk
)

ucap
k = (qb

Bk
)−1 ◦ ucap

k .

For a box the principal frame θbox
k geometry parameters are,

θbox
k =


pbox
k

ubox
k

xbox
k

ybox
k

zbox
k


pbox
k = (qb

Bk
)−1 ◦ (pbox

k − pb
Bk
)

ubox
k = 2 l̃og((qb

Bk
)−1e

1
2

ũbox
k ).
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All principal frame geometry parameters are then contained in a single parameter list,

θgeom =


θ

shape1
1

...
θ

shapeN
N

 .
Each rigid-body is associated uniquely to a bone k. The rigid-body and bone are assumed to
transform together as a rigid unit. There is a constant transformation between the frame of the
rigid-body and the frame of the bone. This transformation will be defined in terms of a local
positional offset in the bone frame ψBk

∈ R3 and a local rotational offset qψk
. Utilizing bone

information from the global bind pose Pb,

ψBk
= (qb

k)
−1 ◦ (pb

Bk
− pb

k)

qψk
= (qb

k)
−1qb

Bk
.

4.2 Representing Physically Simulated Characters

The concept of a “multibody pose” is now developed. Given the global bind pose Pb, an
associated global multibody bind poseMb is defined,

Mb
=
(
pb
B1
, . . . ,pb

BN
,qb

B1
, . . . ,qb

BN

)
.

Each element of the ordered set corresponds to the position or orientation state of the rigid-body
associated with the bone normally at that index in a pose’s ordered set. Given arbitrary pose Pa,
a pose function which transforms the global pose to it’s corresponding global multibody pose
Ma can also be defined,

Ma
= ToMultiBody(Pa

)

= (pa
1 + qa

1 ◦ψB1 , . . . ,p
a
N + qa

N ◦ψBN
,qa

1qψ1 , . . . ,q
a
NqψN

) .

The inverse operation is also defined,

Pa
= FromMultiBody(Ma

)

=
(
pa
B1
− qa

B1
q−1
ψ1
◦ψB1 , . . . ,p

a
BN
− qa

BN
q−1
ψN
◦ψBN

,qa
B1

q−1
ψ1
, . . . ,qa

BN
q−1
ψN

)
.
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There is thus a bijection between global poses and global multibody poses. Similar to global poses,
global multibody poses can be time dependendent,

Ma
(t) = ToMultiBody(Pa

(t))

Pa
(t) = FromMultiBody(Ma

(t)).

The relationship between rigid-bodies and bones (ψBk
and qψk

) are not time dependent in this
work so the transformation functions work as expected even if time dependent arguments are
used.

Global multibody pose velocitiesWa are also defined,

Wb
=
(
ṗb
B1
, . . . , ṗb

BN
,ωb

B1
, . . . ,ωb

BN

)
,

where ṗb
Bk

gives the velocity of the rigid-body center of mass resolved in the global frame, and
ωb

Bk
gives the angular velocity of the rigid-body principal orientation resolved in the global frame.

There exists a mapping between arbitrary global pose-velocities Va in a given pose and global
multibody pose-velocitiesWa, allowing velocity transformation functions to be defined,

Wa
= ToMultiBodyVel(Pa

,Va
)

=
(
ṗa
1 + ω

a
1 × qa

1 ◦ψB1 , . . . , ṗ
a
N + ωa

N × qa
N ◦ψBN

,ωa
1, . . . ,ω

a
N

)
Va

= FromMultiBodyVel(Ma
,Wa

)

=
(
ṗa
B1
− ωb

B1
× qa

B1
q−1
ψ1
◦ψB1 , . . . , ṗ

a
BN
− ωb

BN
× qa

BN
q−1
ψN
◦ψBN

,ωb
B1
, . . . ,ωb

BN

)
.

These are also unchanged if there is time dependence,

Wa
(t) = ToMultiBodyVel(Pa

(t),Va
(t))

Va
(t) = FromMultiBodyVel(Ma

(t),Wa
(t)).

4.2.1 Joint Constraints

Multi-body simulations of jointed objects generally take one of two common forms, max-
imal coordinate simulations and reduced coordinate simulations [80]. There are advantages and
disadvantages to both methods. Reduced coordinate simulations are formulated such that many
constrained degrees of freedom in the equations of motion being solved are eliminated. Reduced
coordinate simulations allow for high accuracy, joints cannot be stretched by design since the
degrees of freedom which would allow this are non-existent. The major downside is that solving
for forces from external constraints such as contacts can be costly.
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Maximal coordinate simulations involve simulating the equations of motion for the full 6
degrees of freedom of each rigid-body in addition to solving for constraint forces which maintain
the joint and contact relationships. This naturally allows for some compliance in the joints since
constraint forces preventing this may compete in the solution process. The joint drift is also a
result of design choices, the primary one being that numerical solutions of equations of motion
are performed at the velocity level. Drift is generally corrected by applying spring damper like
correction forces [80], but for stability reasons these require multiple steps to eliminate error
since stiffness cannot be too high.

The rigid-bodies forming the character must be constrained together to mimic the joints of
a human. Two different types of joint models are appropriate for this purpose: hinge joints and
spherical joints. Both of these joints limit all translational movement, only allowing rotation be-
tween the bodies they connect. It should be noted using these to model human joints is only an
approximation, human joints are built from soft tissues which are stiff but flexible, and gener-
ally allow for limited amounts of translation. The relative rotation of bones does not occur at a
fixed center of rotation either because joints function through linkages and complex sliding sur-
faces. While these details are not explicitly modeled, they are not altogether ignored if a maximal
coordinate simulation is used.

Allowing for translational shifts in the simulation due to drift can improve model accuracy.
Maximal coordinate simulations allow the elasticity and damping of the drift correction to be
tweaked, which can be used to try and mimic the behaviour of the human joints being modeled.
Hinge joints are used to model the connections of the toe bodies to the foot, the knee joints, and
the elbow joint. All these joints of course are not perfect hinges in reality, so compliance allows
for limited amounts of movement when needed. Spherical joints are used to model all other joints
between rigid-bodies.

Whether the joint is a hinge joint or a spherical joint, an appropriate joint frame must be
selected. All joints form a connection between two bodies. The joint has its own reference frame
and position which must be specified. In this work a character has been derived from animation
data so it is a natural choice to choose joints between the rigid-bodies forming the character
which exactly mirror the structure of the associated bones in the animation skeleton. This makes
the kinematics of the multibody character identical to those of the animated character.
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Each body associated to a non-root bone k ∈ {2, . . . , N} is connected to its parent by a joint.
Global joint positions are defined here as pb

kA:kB
, where the subscript indicates a joint between

body with index kA and body with index kB , and the superscript indicates a pose identifier. Global
joint frame orientations are similarly defined qb

kA:kB
. Then given a global pose Pb the global joint

positions and frame orientations are obtained as follows in the bind pose,

pb
p(k):k = pb

k, ∀ k ∈ {2, . . . , N}

qb
p(k):k = qb

k:p(k) = qb
p(k).

Note that the joint has two frame orientations associated to it since the joints allow for relative
rotation, however in the bind pose these are coincident (the bind pose is used to define the default
configuration of the joints). Joint position and frame orientations with respect to each of the
joined bodies are constants. The local joint position with respect to body kA is given by pkA:kB

and with respect to body kB is given by pkB :kA . The local orientation with respect to body kA is
given by qkA:kB and with respect to body kB is given by qkB :kA ,

pp(k):k = (qb
Bp(k)

)−1 ◦ (pb
p(k):k − pb

Bp(k)
), ∀ k ∈ {2, . . . , N}

pk:p(k) = (qb
Bk
)−1 ◦ (pb

p(k):k − pb
Bk
)

qp(k):k = (qb
Bp(k)

)−1qb
p(k):k

qk:p(k) = (qb
Bk
)−1qb

k:p(k).

Using the local values it is then possible to determine the global joint frame positions and orien-
tations in any arbitrary pose Pa,

pa
p(k):k = qa

Bp(k)
◦ pp(k):k + pa

Bp(k)
, ∀ k ∈ {2, . . . , N}

pa
k:p(k) = qa

Bk
◦ pk:p(k) + pa

Bk

qa
p(k):k = qa

Bp(k)
qp(k):k

qa
k:p(k) = qa

Bk
qk:p(k).
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The following relationship then holds true between the two frames representing the joint
configuration,

(qa
p(k):k)

−1(qa
k:p(k)) =

(
qa
Bp(k)

(qb
Bp(k)

)−1qb
p(k):k

)−1 (
qa
Bk
(qb

Bk
)−1qb

k:p(k)

)
=
(

qa
p(k)qψp(k)

(qb
p(k)qψp(k)

)−1qb
p(k)

)−1 (
qa
kqψk

(qb
kqψk

)−1qb
p(k)

)
=
(
qa
p(k)

)−1 (qa
k(q

b
k)

−1qb
p(k)

)
= (qa

p(k))
−1qa

k(q
b
k)

−1qb
p(k)

= qa
k(q

b
k)

−1

( = qa
k if qb

k is identity).

This means that if the bind pose is chosen such that all orientations are identity (this is a matter of
modifying the character definition and can always be done without any negative consequence)
the relative orientation of the two joint configuration frames for the joint connecting Bp(k) to
body Bk is equal to the local orientation of bone k in the pose. This convention is adopted for
convenience throughout the rest of this work as it greatly simplifies conversion of poses to joint
configurations.

If a hinge joint is used then a hinge axis must be specified. This should be the same as the
axis chosen for two joint IK. ûhinge

k will be used to represent the direction of the rotation axis for
a hinge joint connecting bone k to its parent.

4.3 Efficiently Simulating Physics

In this work the open source library Bullet Physics was used for physics simulation. Bullet
provides a well optimized maximal coordinate rigid-body simulator with support for a variety of
joint constraints. Bullet also handles collision detection and management of contact constraints.
A variety of constraint solvers are available, in this work the projected Gauss-Seidel constraint
solver was used.

A character definition file containing the global bind pose Pb, global multibody bind pose
Mb, hinge axes, principal frame geometry parameters θgeom, and mass properties was created
using the procedures outlined earlier. This file will be referred to as the “sim character file”.

A C++ Program was created to load the sim character file and create a multibody system
in Bullet Physics which has the appropriate collision geometry, mass properties, and joint con-
straints. Gravity is set to 9.81 m/s2 in the negative Z direction. An immovable infinite plane
passing through the origin and normal to gravity is also created to simulate the ground.

The simulation is set up to run using 32 constraint solver iterations, with a simulation fre-
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quency of 60 Hz. These values were chosen based on feedback from developers familiar with
typical physics engine settings in video-game productions in order to capture the simulation
quality expected in a production setting. A proprietary game engine was used to create a system
for rendering graphics and handling user input. Dear ImGui [81] was used to produce a graph-
ical user interface that allowed simulation settings to be tweaked interactively. Features were
implemented to allow for a user with a mouse to move the camera around and interact with the
physics simulation by applying external forces to objects.

4.3.1 Stable Actuation With Large Time-Steps

Without actuation forces the character is only a ragdoll and does not behave very realistically.
Actuation allows for the simulation of muscle like forces, and also allows for the passive dynamics
of the character to be controlled.

One method of providing actuation is to directly apply equal and opposite forces and torques
to jointed pairs of rigid-bodies composing the character. This ensures that the forces and torques
do not change the total linear momentum P or angular momentum L of the character. This can
be shown using the notation of section 2.3.2,

P =
N∑
i=1

mBi
ṗBi

L =
N∑
i=1

Rb

Bk
IBk

(Rb

Bk
)TωBi

.

Taking time derivatives the changes in momentum are shown equivalent to the sum of the forces
and torques acting on the individual bodies,

dP
dt =

N∑
i=1

mBi
p̈Bi

=
N∑
i=1

fBi
=

N∑
i=1

fext
Bi

+
N∑
i=1

fint
Bi

=
N∑
i=1

fext
Bi

+ 0

dL
dt =

N∑
i=1

Rb

Bk
IBk

(Rb

Bk
)Tω̇Bi

+ ω×
Bi

Rb

Bk
IBk

(Rb

Bk
)TωBi

=
N∑
i=1

mBi
=

N∑
i=1

mext
Bi

+
N∑
i=1

mint
Bi

=
N∑
i=1

mext
Bi

+ 0.

Internal forces and torques do not change the total momentum because they sum to zero. Ap-
plying forces and torques in equal and opposite pairs to the bodies is equivalent to generating
internal actuation forces connecting bodies.
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One issue with applying these pairwise forces and torques to simulate muscles is that this can
cause constraint violations in the simulation if large time-steps are used. In Bullet it was found
that using constraints on relative angular velocity between jointed bodies provides more stable
actuation when large timesteps are used. This is conceptually equivalent to applying torques
on the bodies that maintain a specified angular velocity, however the actuation torques are de-
termined by the constraint solver simultaneous to the joint constraints which prevents large
constraint violations.

A desired relative orientation between bodies is achieved by changing the velocity constraint
target each time-step using a simple proportional-derivative (PD) controller which attempts to
track a movable position target. The relative orientation in the case of a hinge joint associated
with a bone k is set by a single angular target position θ⊕k . The desired velocity of the hinge is
then specified to track this position using the PD controller with a proportional gain of βhinge

P

and derivative gain of βhinge
D which controls damping. Each time-step the constraint velocity is

updated as follows,

θ̇
hinge
k ← β

hinge
P (θ⊕k − θ

hinge
k )− βhinge

D θ̇
hinge
k .

Bullet does not implement a proper spherical joint constraint in its maximal coordinate solver so
a 3-axis gimbal joint is used instead. The gimbal joint state is well described using a Euler angle
parameterization. Matrix RX(θ

EulerX
k ) refers to a rotation of magnitude θEulerX

k around the X axis,
RY (θ

EulerY
k ) refers to a rotation of magnitude θEulerY

k around the Y axis, and RZ(θ
EulerZ
k ) refers to a

rotation of magnitude θEulerZ
k around the Z axis. The 3 Euler angles control a rotation matrix REuler

k

which has a related quaternion parameterization qEuler
k ,

REuler
k = RZ(θ

EulerZ
k )RY (θ

EulerY
k )RX(θ

EulerX
k )

qEuler
k ◦ x = REuler

k x ∀ x ∈ R3.

A PD controlled velocity constraint is used to drive each axis of the gimbal and the PD target for
each of these is generated by re-parameterizing a target quaternion into the individual PD targets
for the different axes.
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Given the input quaternion q = [qx qy qz η]
T, the XYZ order Euler angle representation is

given by,

ToEuler(q) =




arctan2(2qxη − 2qyqz, 1− 2q2x − q2y)

arcsin(2qxqz + 2qyη)

arctan2(2qzη − 2qxqy, 1− 2q2y − 2q2z)

 if |2qxqz + 2qyη| < 1


arctan2(2qyqz − 2qxη, 1− 2q2x − q2z)

arcsin(2qxqz + 2qyη)

0

 otherwise.

One solution is to give a target orientation q⊕
k and translate this directly to individual gimbal-

angle tracking velocities using PD control as if the gimbals were a stack of hinges,θ̇
EulerX
k

θ̇EulerY
k

θ̇EulerZ
k

← βEuler
P

ToEuler(q⊕
k )−

θ
Euler
X

θEuler
Y

θEuler
Z


− βEuler

D

θ̇
EulerX
k

θ̇EulerY
k

θ̇EulerZ
k

 .
However updating this way will not take the shortest rotational path. In order to take the shortest
path it is necessary to set the angular velocity which follows the shortest path by taking into
account the kinematics of the system.

Angular velocity of the system is related to the velocity of the individual gimbal angles. For
an XYZ order gimbal (X is the roll axis, Y is the pitch axis, Z is the yaw axis), the local angular
velocity of the gimbals with respect to their parent reference frame are the angular rates in the
directions of the rotation axes,

ωEulerX w.r.t. EulerY
k =

θ̇
EulerX
k

0

0



ωEulerY w.r.t. EulerZ
k =

 0

θ̇EulerY
k

0



ωEulerZ
k =

 0

0

θ̇EulerZ
k

 , (w.r.t. Bp(k) frame).
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where the Z gimbal angular velocity is with respect to the associated bone the gimbal system is
attached to. The angular velocity associated with a time varying Euler angle parameterization of
rotation can be given in terms of the gimbal angle velocities,

ωEuler
k = ωEulerX

k + ωEulerY
k + ωEulerZ

k

= RZ(θ
EulerZ
k )RY (θ

EulerY
k )

θ̇
EulerX
k

0

0

+ RZ(θ
EulerZ
k )

 0

θ̇EulerY
k

0

+

 0

0

θ̇EulerZ
k



=

cos θ
EulerY
k cos θEulerZ

k − sin θEulerZ
k 0

cos θEulerY
k sin θEulerZ

k cos θEulerZ
k 0

− sin θEulerY
k 0 1


θ̇

EulerX
k

θ̇EulerY
k

θ̇EulerZ
k

 .
Taking the inverse is possible in most cases and can be used to set the gimbal rates to achieve a
specified angular velocity. The pseudo-inverse is used in gimbal locked positions where special
case handling is needed. This has the implication that only the closest projection of the input
angular velocity onto a subspace can be achieved in gimbal locked configurations. The following
scheme is used to set gimbal rates based on ω, an arbitrary desired angular velocity,

ToGimbal(ω) =




cos θEulerZ

k sec θEulerY
k sin θEulerZ

k sec θEulerY
k 0

− sin θEulerZ
k cos θEulerZ

k 0

cos θEulerZ
k tan θEulerY

k sin θEulerZ
k tan θEulerY

k 1

ω if
∣∣sin θEulerY

k

∣∣ < 1


0 0 −1/2

− sin θEulerZ
k cos θEulerZ

k 0

0 0 1/2

ω if sin θEulerY
k = 1


0 0 1/2

− sin θEulerZ
k cos θEulerZ

k 0

0 0 1/2

ω otherwise.
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Then a PD controller based update which slerps to qEuler
⊕ rather than treating each axis as a

hinge can be defined,θ̇
EulerX
k

θ̇EulerY
k

θ̇EulerZ
k

← ToGimbal(2βEuler
P l̃og((qEuler

k )−1q⊕
k )− β

Euler
D ωEuler

k ).

4.3.2 Internal Force Adjustments

The runtime cost of a physics engine increases as the time-step size decreases. Runtime cost
also increases as the number of constraint solver iterations are increased. The constraint solver
determines forces which project the system back onto the manifold where all constraints are
satisfied. It is possible to achieve lower runtime costs at a fixed time-step size by reducing the
number of constraint solver iterations, however this has the effect that the system is left in a state
where the constraints are not as completely satisfied each time-step. In a maximal coordinate
simulation of a humanoid this manifests as lowered stiffness in the joints. Joined bodies are
easier to compress together or stretch apart.

If few constraint solver iterations are used, the low constraint stiffness can result in gravity
itself compressing the character. A method of counteracting this effect by applying internal forces
was devised. For each pair of jointed bodies internal forces can be applied which push bodies apart
along the axis formed by their centers of mass. This force can be a constant for all bodies with
magnitude f pressure, acting somewhat like an internal pressure constantly resisting compression
forces. Having the forces pass through the center of mass also means that no internal moments
are generated. Given a character with global multibody poseMa, internal forces are calculated
as follows,

fint
k:p(k) =

pa
Bk
− pa

Bp(k)∥∥∥pa
Bk
− pa

Bp(k)

∥∥∥+ ε
f pressure ∀ k ∈ {2, . . . , N}

fint
p(k):k = −fint

k:p(k)

fint
k = fint

k:p(k) +
∑
i∈c(k)

fint
p(i):i

fint
1 =

∑
i∈c(1)

fint
p(i):i.
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These of course sum to zero, first note that the sum of all sets of children indexes is equivalent
to the set of non-root bones,

c(1) + c(2) + . . .+ c(N) = {2, . . . , N} .

Then internal forces summing to zero can be proven by expansion,

N∑
k=1

fint
k = (fint

1 ) + (fint
2 ) + . . .+ (fint

N )

=

∑
i∈c(1)

fint
p(i):i

+

fint
2:p(2) +

∑
i∈c(2)

fint
p(i):i

+ . . .+

fint
N :p(N) +

∑
i∈c(N)

fint
p(i):i


= fint

2:p(2) + . . .+ fint
N :p(N) +

∑
i∈c(1)+c(2)+...+c(N)

fint
p(i):i

=
N∑
i=2

fint
i:p(i) +

N∑
i=2

fint
p(i):i =

N∑
i=2

fint
i:p(i) −

N∑
i=2

fint
i:p(i) = 0.

where ε ∈ R+ is a small non-zero value to prevent division by zero. These forces are tuned to
counteract any character compression due to gravity in a standing position. Applying the internal
forces does not necessarily decrease the accuracy of the model. In the case of a real human body
intra-abdominal pressure is thought to play a significant role in supporting loads which would
otherwise be managed by spinal muscles [82]. The internal forces described here play a similar
role, preventing the need for the joint actuation to maintain rigidity along certain body axes,
instead providing some passive anisotropic rigidity.
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Chapter 5

Character Control System

The content of the previous chapters describe a wide variety of subjects. This chapter is de-
voted to putting it all together for the purposes of developing a control system which allows a
physically simulated humanoid character to be steered by a user in a realistic manner. Addition-
ally, everything up to this point has been designed with the intent of developing this method to
have a low enough performance cost for its application to fit within realistic design constraints
imposed by application in a video-game. This work attempts to be realistic about these con-
straints, it is assumed that games already maximize use of hardware so new methods must be
extremely conservative in their use of additional resources in order for their application to be
feasible.

Motion 

Matching

Policy

Network
Physics

Corrective

Offsets

Filtered

PD Control

Targets

Simulated Character State

User Control
+

Kinematic State

Figure 5.1: Block diagram of the control system developed in this work.

The control system is designed with the purpose of actuating a physically simulated character
in a manner which tracks the output of a motion matching based kinematic character controller.
A schematic is given in Figure 5.1. Previous work has demonstrated the possibility of tracking
motion capture clips using deep reinforcement learning based methods. The main novel contri-
bution of this work is a method which allows for responsive and natural looking locomotion con-
trol of a user controlled character which mirrors the behaviour of a production quality kinematic
character controller. This method was published for SIGGRAPH Asia 2019 in ACM Transactions
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on Graphics November 2019, titled “DReCon: data-driven responsive control of physics-based
characters” [1] and is considered state-of-the-art.

5.1 Kinematic Character Controller

The kinematic character controller generates reference trajectories which are subsequently
tracked by a simulated character controller. The goal is to synthesize a high quality reference
motion from a motion capture database which follows user input requirements. Video-games
generally require human characters to be able to perform independent control of style, move-
ment direction, movement speed, and facing direction. There is also a requirement that the cur-
rent behaviour a character is performing can abruptly change, for example a character may be
running forward, but then abruptly decide to turn around and run backwards. User intent should
effectively be translated to character behaviours through a simple and familiar interface. Actions
such as these should occur as instantaneously as realistically possible. Additionally, the anima-
tion being generated should not come at an unrealistically high runtime cost. Motion matching
meets all these demands so it was found to be a good fit.

The motion matching system used was designed around the task of locomotion. Crouching
and standing locomotion were chosen as distinct styles which should be supported since they
are common in third person video-games. Styles of low speed and high speed motion were also
found to be important in the case of standing motion, as it is common that a character can move
around at a slow pace and a hurried pace. This meant that two hard features were used (crouch-
ing/standing and walking/running), and the data is split into 3 distinct combinations,

1. Standing-walk.

2. Standing-run.

3. Crouching-walk.

Crouching-run has no data associated to it. Fine grained control of movement speed is also sup-
ported through the soft features, but a brisk walk and a slow run were found to be distinct enough
to merit being classified as separate styles. Walk motions were classified as those without an aerial
phase or hurried pace, and run motions as those where there is some aerial phase. For motion
where the heading and movement directions are not aligned, “walk” classification was used when
motion involved careful sidestepping by crossing one foot over the other, while “run” classifica-
tion was used for fast sideways shuffles, this is shown in Figure 5.2. Hard feature tags were associ-
ated to ranges of frames manually using a purpose built tool. Animations Pa1(·), . . . ,Pam(·) are
processed into a motion matching database. These total to about 10 minutes of motion capture.
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Figure 5.2: Comparison of the sideways character locomotion styles tagged as “walk” and “run”.

Each animation has associated boolean tags ba1 , . . . ,bam ∈ B2 denoting whether the motion is
crouching/standing and walking/running.

The mapping B(·, ·, ·) from data to feature space will now be described. For an arbitrary
animation ai and frame j in that animation, the mapping generates a large column matrix. To
simplify the description of this matrix it is split up into relevant groups of soft features denoted
by an object sai,jname, where “name” can be altered. The superscript indicates a dependence on a
particular animation and frame.

B(Pai(·), j,bai) =



s
ai,j
root-vel

s
ai,j
left-foot-pos

s
ai,j
left-foot-vel

s
ai,j
right-foot-pos

s
ai,j
right-foot-vel

s
ai,j
trajectory

s
ai,j
headings

bai


.
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The time in an animation associated with frame j is dependent on the animation framerate
(FPS) and will be denoted tj ,

tj = j · FPS−1.

The soft feature groupings are constructed as follows, with klf and krf used to refer to the bone
indexes of the left and right feet respectively,

s
ai,j
root-vel = Rai

CRF(tj)
−1ṗai

1 (tj)

s
ai,j
left-foot-pos = Rai

CRF(tj)
−1
(
pai
klf
(tj)− pai

CRF(tj)
)

s
ai,j
left-foot-vel = Rai

CRF(tj)
−1ṗai

klf
(tj)

s
ai,j
right-foot-pos = Rai

CRF(tj)
−1
(
pai
krf
(tj)− pai

CRF(tj)
)

s
ai,j
right-foot-vel = Rai

CRF(tj)
−1ṗai

krf
(tj).

Trajectory and headings are represented in 2D since these features are used to steer horizontal
movement and direction. The convention adopted here for gravity is g =

[
0 0 −9.81m/s2

]T
,

so it is the Z components which are omitted,

s
ai,j
trajectory =



[
1 0 0

0 1 0

]
Rai

CRF(tj)
−1 (pai

1 (tj + 0.33 s)− pai
CRF(tj))

[
1 0 0

0 1 0

]
Rai

CRF(tj)
−1 (pai

1 (tj + 0.66 s)− pai
CRF(tj))

[
1 0 0

0 1 0

]
Rai

CRF(tj)
−1 (pai

1 (tj + 1.00 s)− pai
CRF(tj))



s
ai,j
headings =



[
1 0 0

0 1 0

]
Rai

CRF(tj)
−1Rai

CRF(tj + 0.33 s)

10
0


[
1 0 0

0 1 0

]
Rai

CRF(tj)
−1Rai

CRF(tj + 0.66 s)

10
0


[
1 0 0

0 1 0

]
Rai

CRF(tj)
−1Rai

CRF(tj + 1.00 s)

10
0




.
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Because the future time in the trajectory/headings soft features can overflow past the length
of an animation and give undefined results, data within one second from the animation ending
must be omitted from the database. This prevents data near the end of an animation from being
searched/matched during a query. The features are weighted equally, with the exception of hard
features which are by definition given an infinitely large weighting.

5.1.1 Queries From User Input

Queries are designed to generate points in feature space which allow the kinematic character
to be steered while remaining close to the manifold of animations in the database. This means
that queries must search for animations which are nearby to the feature mapping of the current
kinematic character state but also allow for some manipulation of the query in order to meet
high-level control requirements specified by a user.

Features related to the state of a character at a given frame take on values derived from the
current pose. This allows for the animation to retain consistency. Features related to the future
state of the character can be manipulated in order for a desired future behaviour to be specified
since this does not cause discontinuity. This steers the search to select animations which achieve a
specified future. Nonetheless, it is still important for the desired future behaviour to be realizable
given the current state of the character. Motion matching can generate an animation which
realizes a future outcome only if such an animation exists within the database.

In order to make specification of future outcomes useful, the features related to the future are
made as general as possible. The best choice found was trajectory and heading positions up to 1
second in the future with respect to the current character reference frame. A user can then specify
desired values for these and almost always get a match. This is further enforced by constraining
these query features to be smooth and realistic.

Video-games are usually controlled using a scheme designed to be compatible with a stan-
dard game controller that has dual analog sticks, face buttons, and analog triggers. The left stick
and right stick provide 2D values constrained within the unit circle, which are represented in
this work using gl-stick, gr-stick ∈ {x ∈ R2 | ∥x∥ ≤ 1 }. The left stick is used to control movement
direction, and the right stick is used to control heading direction. A single analog trigger input is
also considered, represented here using gtrigger ∈ [0, 1]. The trigger is used to control movement
speed and transitions between walking and running. A single face button gbutton ∈ B is used to
control whether the character is standing or crouched.
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The unnormalized query Q is constructed in groups of features which correspond to those
previously described for the feature space,

Q =



qroot-vel

qleft-foot-pos

qleft-foot-vel

qright-foot-pos

qright-foot-vel

qtrajectory

qheadings

qstyle


.

Queries for the locomotion controller in this work are constructed from the latest pose PMM out-
put by motion matching and the user input contained in gl-stick, gr-stick, gtrigger, gbutton. The timestep
for motion matching animation updates is assumed to be ∆t. Using these values,

qroot-vel = (RMM
CRF)

−1ṗMM
1

qleft-foot-pos = (RMM
CRF)

−1
(
pMM
klf
− pMM

CRF
)

qleft-foot-vel = (RMM
CRF)

−1ṗMM
klf

qright-foot-pos = (RMM
CRF)

−1
(
pMM
krf
− pMM

CRF
)

qright-foot-vel = (RMM
CRF)

−1ṗMM
krf
.

The trajectory and heading are generated from inputs and the current state by utilizing values
generated by critically damped spring dampers tracking target values. Given a constant control-
ling the natural frequency α and some initial conditions, the following fcrit(·) functions give the
position and velocity of a critically damped system at a specified time t tracking some constant
desired target value xd [83],

x(t) = f 1
crit(x(0), ẋ(0), xd, α, t) = xd + ((x(0)− xd) + (ẋ(0) + α(x(0)− xd))t)e

−αt

ẋ(t) = f 2
crit(x(0), ẋ(0), xd, α, t) = (ẋ(0)− (ẋ(0) + α(x(0)− xd))αt)e

−αt.
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Using a change of variables ẏ = x, the previous equations can be adapted to a closed form
solution of the position of a system using a spring damper to track a constant velocity ẏd = xd,

y(t) = f 0
crit(y(0), ẏ(0), ÿ(0), ẏd, α, t)

= y(0) + ẏdt+ (ẏ(0)− ẏd)
1− e−αt

α
+ (ÿ(0) + α(ẏ(0)− ẏd))

1− (αt+ 1)e−αt

α2

ẏ(t) = f 1
crit(ẏ(0), ÿ(0), ẏd, α, t) = ẏd + ((ẏ(0)− ẏd) + (ÿ(0) + α(ẏ(0)− ẏd))t)e

−αt

ÿ(t) = f 2
crit(ẏ(0), ÿ(0), ẏd, α, t) = (ÿ(0)− (ÿ(0) + α(ẏ(0)− ẏd))αt)e

−αt.

These simple spring damper derived values are used to generate smoothly varying future head-
ings/trajectories for the query. The kinematic character controller has some internal states which
are initialized to reasonable default values (zero or identity) and updated each time-step to pre-
vent rapid changes,

gtraj =

[
1 0 0

0 1 0

]
lerp(vwalk, vrun, gtrigger)(R

MM
CRF)

−1

1 0

0 1

0 0

 gl-stick

[
zMM

traj-vel

zMM
traj-acc

]
←

[
f 1

crit(zMM
traj-vel, zMM

traj-acc, gtraj, αtraj,∆t)

f 2
crit(zMM

traj-vel, zMM
traj-acc, gtraj, αtraj,∆t)

]
,

where vwalk is a value denoting the max walking speed of the character, vrun denotes the max
running speed of the character, and αtraj is a tunable parameter controlling the natural frequency
of the trajectory spring damper tracking the user input velocity gtraj. The variable ghead is defined
to convert the stick inputs to desired heading angles, and αhead is a tunable parameter controlling
the natural frequency of the heading spring damper,

ghead =



if ∥gr-stick∥ > deadzone :

atan2(


0

1

0


T

(RMM
CRF)

−1


1 0

0 1

0 0

 gr-stick
∥gr-stick∥

,


1

0

0


T

(RMM
CRF)

−1


1 0

0 1

0 0

 gr-stick
∥gr-stick∥

)

else if ∥gl-stick∥ > deadzone :

atan2(


0

1

0


T

(RMM
CRF)

−1


1 0

0 1

0 0

 gl-stick
∥gl-stick∥

,


1

0

0


T

(RMM
CRF)

−1


1 0

0 1

0 0

 gl-stick
∥gl-stick∥

)

otherwise : 0.
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Note that ghead takes on a value aligned with the movement direction (the left stick) if the right
stick is not being used. Heading also has related internal state which is updated each timestep,[

zMM
head-dir

zMM
head-vel

]
←

[
f 1

crit(zMM
head-dir, zMM

head-vel, [cos ghead sin ghead]
T, αhead,∆t)

f 2
crit(zMM

head-dir, zMM
head-vel, [cos ghead sin ghead]

T, αhead,∆t)

]
.

The query entries for trajectory and heading are then created by evaluating the spring damper
derived positions at the relevant times in the future,

qtrajectory =

f
0
crit(0, zMM

traj-vel, zMM
traj-acc, gtraj, αtraj, 0.33 s)

f 0
crit(0, zMM

traj-vel, zMM
traj-acc, gtraj, αtraj, 0.66 s)

f 0
crit(0, zMM

traj-vel, zMM
traj-acc, gtraj, αtraj, 1.00 s)



qheading =

f
1
crit([1 0]

T, 0, zMM
head-dir, αhead, 0.33 s)

f 1
crit([1 0]

T, 0, zMM
head-dir, αhead, 0.66 s)

f 1
crit([1 0]

T, 0, zMM
head-dir, αhead, 1.00 s)

 .
The hard feature queries are contained in qstyle. Qualitatively speaking the hard features are set
such that,

qstyle =


crouched + walking if gbutton is down

standing + walking else if gtrigger ≤ 0.5

standing + running otherwise.

Searches are triggered every 0.166 seconds (10 frames) by the motion matching search timer,
but are also triggered by large gamepad changes. The previous time-step’s values of gtraj and
[cos ghead sin ghead]

T are compared against their current value, and if the magnitude of the differ-
ences surpass a large enough threshold a motion matching search is triggered. This allows for a
faster reaction to abrupt input changes.

Numeric values for constants are omitted since these are usually dataset dependent. In gen-
eral any constants should be manually tuned to find which values function best, for example the
natural frequency for the spring dampers used to make trajectory predictions can be tweaked to
obtain higher responsiveness, however they should not be set so responsive that they constantly
query for data which does not exist. Providing a visualization of the query positions for trajec-
tory/heading features and those of the best matching animation frame will make any issues with
the tuning of the constants immediately apparent and very rapid to correct. Queries should rarely
be far from their matches in a properly tuned system.
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5.2 Simulated Character Controller

The kinematic character controller serves to produce a visually realistic and responsive char-
acter, however it does not necessarily produce a physically achievable motion. While data may
come from a physically derived source such as motion capture, motion matching is constantly
blending data and applying post processing effects which have no guarantee of respecting any
realistic dynamics. Techniques like inertialization and IK can be used to improve the plausibil-
ity of the dynamics, but these are ultimately just useful heuristics which produce nice looking
kinematic results.

Previous research has demonstrated that motion capture reference clips can be reproduced
by an actuated simulated character using deep reinforcement learning [53, 55, 56]. Interestingly
it has not even been necessary to faithfully simulate a realistic human. The character imitating
the motion capture can be quite different in proportion, shape, and mass distribution than the
motion capture actor being imitated. Reinforcement learning allows a control policy to be found
that within reasonable limits can correct for modeling error in the simulation when imitating a
motion capture clip.

In this work the robustness of the reinforcement learning is leveraged to correct errors in
the reference motions which are synthesized by the kinematic character controller in addition
to correcting for modeling errors in the simulation. A large effort is made in ensuring plausible
mass properties for the multibody character in order to reduce the modeling error as much as
possible. The kinematic character controller is only expected to generate a motion plan to guide
the physical character in a plausible way based on user inputs. Low level non-linear control details
necessary for balance and actuation are learned by a simulated character control policy. This will
be referred to simply as “the policy”. Use of motion matching and heuristics constrains the motion
plan to remain near the manifold of realistic human motions, minimizing the possibility that the
policy will discover movement strategies with no basis in actual human behaviour.

Qualitatively, the control objective for the policy is easily defined. Get a physically simulated
character to follow a user controlled kinematic reference motion as closely as possible over long
timescales through internally generated actuation forces. It should not be understated that this
is a tall order, the simulated character must track full-body motions involving complex contact
with the environment, and the motion being followed can unexpectedly change in drastic ways
since the user is a completely unpredictable agent. This means the controller must be robust to
the many possible ways behaviour of the reference motion may branch. The character must also
maintain these motions for long periods, falling over into unrecoverable states is not allowed.

The complexity of the control objective is the reason why RL is a good fit for this problem.
Online optimization based methods like model predictive control (MPC) are also a good fit. The
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issue with MPC is that it generally requires expensive computations, making its use unrealistic
for application in a video-game where only a small computation budget is available. The strength
of RL is that control in a variety of states can be optimized to maximize the quality of long term
outcomes, but this necessitates structuring the training process such that trajectories sampling
all useful system states are gathered. The policy will only learn to perform optimally for series
of states which have been sampled a significant number of times, that is the policy will only
be optimal when the system is within the distribution states which have been sampled. The
quality of the policy is directly related to the design of the training procedure used to optimize
its performance, so a great many design choices which follow in this chapter are made with the
intent of manipulating the design of the policy in order to modify characteristics of the training
procedure in a favorable way.

5.2.1 State Design

The state provided to the policy is designed to provide all the necessary information required
to achieve the control objective. The policy must be able to infer information about the system
it is affecting and about the goal it is trying to achieve in order to learn an effective closed-loop
control strategy. For example it would be impossible to steer to a specified location if the policy
was not given that location in some form, or if it was unaware of the position it was steering
from. If critical information is omitted only open-loop control may be possible, and performance
will only be optimal in an average sense with respect to the distribution of samples seen during
training.

In general “information” provided to a policy does not need to be parameterized any particular
way if a neural network is used to process states into actions. However, the goal of this work
is to keep the systems as computationally efficient as possible. This means small, memoryless
feed-forward networks are favored. These networks have a limited capacity, so the simpler the
transformation from input to output is the better. Similar to the logic behind the design of features
in motion matching, it is useful to represent state information in a form which is invariant to rigid
transformations and rotations of the simulated character. This for example allows walking north
vs. east in a straight line to be represented by the same state and minimizes the requirement of
the neural network to learn which states can be considered similar through sampling.

For the purposes of this chapter the pose and pose-velocity of the simulated character at the
current time-step will be given byP sim and V sim. The current time-step kinematic controller char-
acter pose and pose-velocity are, as before, given byPMM andVMM. The state contains information
about various character bones.
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A subset of bone indexes which were found to be critical are used to construct the state,

klf =⇒ left foot bone index

krf =⇒ right foot bone index

ksp =⇒ middle spine bone index

khe =⇒ head bone index

kla =⇒ left forearm bone index

kra =⇒ right forearm bone index.

Providing more than these bones was found to make little difference or in some cases actually be
detrimental to the policy performance, possibly due to the increased dimensionality. The center
of mass position and velocity for the whole character in an arbitrary posePa is defined as follows,

pa
cm =

∑N
k=1mkpa

Bk∑N
k=1mk

ṗa
cm =

∑N
k=1mkṗa

Bk∑N
k=1mk

.

The state s provided to the policy each time-step is constructed by concatenating various state
grouping matrices,

s =



skin-cm-vel

ssim-cm-vel

ssim-cm-vel − skin-cm-vel

scm-desired

scm-diff

ssim

ssim − skin

aprev


.
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These terms are defined as follows,

skin-cm-vel = (RMM
CRF)

−1ṗMM
cm

ssim-cm-vel = (RMM
CRF)

−1ṗsim
cm

scm-desired = gtraj

scm-diff =

[
1 0 0

0 1 0

]
(RMM

CRF)
−1ṗsim

cm − gtraj

ssim =



(RMM
CRF)

−1
(
psim
klf
− psim

cm

)
(RMM

CRF)
−1
(
psim
krf
− psim

cm

)
(RMM

CRF)
−1
(

psim
ksp − psim

cm

)
(RMM

CRF)
−1
(
psim
khe
− psim

cm

)
(RMM

CRF)
−1
(
psim
kla
− psim

cm

)
(RMM

CRF)
−1
(
psim
kra − psim

cm

)
(RMM

CRF)
−1ṗsim

klf

(RMM
CRF)

−1ṗsim
krf

(RMM
CRF)

−1ṗsim
ksp

(RMM
CRF)

−1ṗsim
khe

(RMM
CRF)

−1ṗsim
kla

(RMM
CRF)

−1ṗsim
kra



skin =



(RMM
CRF)

−1
(
pMM
klf
− pMM

cm

)
(RMM

CRF)
−1
(
pMM
krf
− pMM

cm

)
(RMM

CRF)
−1
(

pMM
ksp − pMM

cm

)
(RMM

CRF)
−1
(
pMM
khe
− pMM

cm

)
(RMM

CRF)
−1
(
pMM
kla
− pMM

cm

)
(RMM

CRF)
−1
(
pMM
kra − pMM

cm

)
(RMM

CRF)
−1ṗMM

klf

(RMM
CRF)

−1ṗMM
krf

(RMM
CRF)

−1ṗMM
ksp

(RMM
CRF)

−1ṗMM
khe

(RMM
CRF)

−1ṗMM
kla

(RMM
CRF)

−1ṗMM
kra



.

The exact structure of the state was derived through an iterative design procedure. The state of the
simulated and kinematic character’s body, limbs, and how these relate to the current user control
requirements can for the most part be determined from the state. However, the choice of bones,
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the choice of reference frames, and the choice to provide error terms such as ssim-cm-vel− skin-cm-vel

was made not through particularly careful design decisions, but by comparing various different
designs on the basis of their performance in experiments. This type of iterative design neces-
sitated a framework which facilitated rapid experimentation and qualitative comparison. Many
different state, action, reward and network architectures were tested to produce the somewhat
arbitrary looking design presented here.

5.2.2 Action Design

The policy takes in the state s for the given time-step and produces a control action. The
control action allows the policy to control actuation of the simulated character. The policy is
optimized to learn an actuation strategy which meets the control objective of following the user
controlled kinematic reference motion.

It is possible to just give the policy full control over the actuators, allowing it to completely
manage the internal forces moving the character each frame. In practice this type of full control
seems to be a poor design choice for a variety of reasons. To understand why this is the case it
is important to first consider the manner which the policy is trained. Using PPO as the learning
algorithm, the policy and the estimate of the value function are represented by multi-layer neural
networks. As is standard practice, these neural networks have their weights initialized to small
normally distributed random values centered around zero, and biases initialized to zero [65]. The
output of these untrained networks for any given input is typically some arbitrary small value.
This has the implication that the value function estimate starts off in a state where it supplies
completely inaccurate estimates. The actions taken by the untrained policy are usually useless,
randomly varying around zero due to the exploratory sampling (recall that the policy outputs a
normal distribution which is sampled to select an action). The result of all this is that training
begins by exploring randomly around a ‘zero’ action, and continues for some time until the value
function estimate accuracy improves. The value function estimate only improves in states which
have been sampled, and the sampling is quite arbitrary since the policy has been selecting actions
without any clear intention.

As is the case for any non-convex numeric optimization, the quality of the local optima found
are dependent on where the optimization is initialized. This brings up the question of how the
initialization can be improved. One useful strategy is to modify the training to encourage use-
ful states to be sampled more. This can be done by initializing the simulated character in poses
generated by the kinematic character controller each episode, and reducing the sampling of un-
favorable states such as those where the character has fallen over by prematurely ending the
episode [55]. Biasing the training like this is certainly useful, but another strategy can be used
as well. Imagine the policy could be initialized such that it were already near a well performing

103



optima, then the optimization would be likely to converge on this optima. Equivalently, the out-
put of the policy can be transformed in such a way that even an untrained network is close to
performing the correct action.

In the case of following the kinematic character motion, a naive approach is to set PD control
targets for each actuator on the simulated character that attempt to track the kinematic character
pose by matching joint angles. This makes the simulated character vaguely mime the motions
of the kinematic character, and if their poses are similar enough the tracking will be of decent
quality at least for a small duration. Of course this “open-loop” approach provides no feedback
to correct global differences in the pose, so it is not be able to maintain global alignment of the
kinematic and simulated characters for very long. Nonetheless this open-loop control is close to
performing the correct motion. It turns out that such a simple controller provides a much better
starting point than an untrained neural network providing PD control targets directly.

The strategy used to improve the quality of the initialization is to consider the output of the
policy to be “corrections” to the naive open-loop PD targets. The naive system provides feed-
forward control, and the policy closes the loop by providing feedback control. This means that
the untrained network then outputs values centered around zero that cause actuation nearly
equivalent to the open-loop control. This immediately improves the initial performance of the
policy, and biases the sampling to actions which are already performing basic tracking.

Another factor to consider is the dimension of the actions. A policy which outputs a larger
dimension action will generally be more difficult to train as each action dimension requires extra
exploration to discover what behaviours are optimal in a given state. Larger action dimensions
will need more sampling and will also likely require larger networks to obtain good performance.
For this reason the dimension of the action should be kept as small as possible. An alternative to
having the policy output an action for every actuator is to have it output offsets for only a subset of
the actuators. The remaining actuators can instead be managed completely by open-loop control.
This allows the amount of sampling required to be significantly reduced, and also prevents some
undesirable local optima where actuators compete against each other. The actuators associated
with the following bone indexes are used, the associated bodies are visualized in Figure 5.3.

104



Figure 5.3: Character bodies with parent joints managed purely through open-loop control are
coloured yellow here, while those that have parent joint actuation modified by policy actions

are coloured red.

klu =⇒ left upper leg bone index

kll =⇒ left leg bone index

klf =⇒ left foot bone index

klt =⇒ left toe bone index

kru =⇒ right upper leg bone index

krl =⇒ right leg bone index

krf =⇒ right foot bone index

krt =⇒ right toe bone index

ksp =⇒ middle spine bone index

khe =⇒ head bone index

kle =⇒ left arm bone index

kre =⇒ right arm bone index.

An inherent issue with utilizing reinforcement learning for this control task is that random sam-
pling of actions leads to sampling of trajectories with noisy variations in actuation. This is an
issue because ultimately the policy learns to perform tracking which performs well over long
timescales, so the negative effects of high frequency oscillations during tracking are mostly av-
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eraged away. Over the course of long periods of time both high frequency and low frequency
oscillation around the tracking target result in similar returns, so the optimization will not partic-
ularly favor one over the other. If the policy samples trajectories with high frequency oscillations
the outcome of training will almost invariably be a policy at a local optima which tracks with
high frequency oscillations. An example step response visualizing this issue is shown in Figure
5.4. The solutions to this issue adopted in this work were to constrain the policy to perform
smoother actuation and to limiting the frequency at which the policy operates. Smoothed actua-
tion is performed by filtering the policy output each time-step using an exponentially weighted
moving average filter. The frequency at which the policy operates is limited by only allowing the

Figure 5.4: The step response of high frequency controllers may be better than low frequency
controllers and yield better average rewards, but can easily be much noisier.

policy output to update after a specified number of simulation steps and holding it constant at
the previous value during steps where it has not updated. While this of course introduces some
delay, it also improves the overall performance. Not only are high frequency variations limited,
but action quality also improves because credit assignment is facilitated during training. With
fewer actions in a given interval of time it is less likely that actions with a negative effect are
learned since subsequent actions cannot immediately counteract mistakes. With a lower evalua-
tion frequency trajectories with high returns can only be achieved through action choices with a
meaningful positive effect.

The action output by the policy is a matrix containing terms to set the hinge and spherical
joint target offsets. While hinge target offsets are well represented using a scalar value, spherical
joint target offsets are orientations and as such an appropriate rotation parameterization must be
chosen. A parameterization without algebraic constraints is preferred as then the neural network
will not need to learn how to constrain its output.
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To keep the output unconstrained a 3 component axis-angle parameterization is chosen. The
action is then constructed as follows,

a←
[
aT
klu
akll a

T
klf
aklt a

T
kru akrl a

T
krf
akrt a

T
ksp a

T
khe
aT
kle
aT
kre

]T
.

where all non-scalar values are axis-angle parameterizations representing spherical joint target
offsets, e.g. ak ∈ R3, and all scalar values represent hinge joint target offsets. The components
comprising a are given indices associated with the joints they relate to, for example ak refers to
a spherical joint target offset for the joint connecting Bk to its parent Bp(k). These action values
are output by the policy, filtered, and converted into actuation targets.

The processing of actions into actuation of the simulated character is detailed in Algorithm
5.13. Note that aprev which was included in the state appears in the algorithm. This term is
included in the state s so that the dynamic effects of the filter can be known to the policy. The
value of nupdate controls the policy evaluation frequency. In this work nupdate = 2 was found to be
a good choice, having the policy provide an updated action every other time-step. Models were
trained with various nupdate values to determine which worked best, the results of this comparison
are shown in Figure 5.5a. Lower evaluation frequencies can significantly impact average rewards,
but they also reduce noise and runtime cost. Training at a lowered rate then increasing it later to a
desirable value can also eliminate noise, but then runtime cost savings are lost. The filter constant
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(a) Reducing policy evaluation frequency using
larger nupdate tends to result in lower average

rewards, but less noisy motion and lower
runtime cost.
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average rewards are lower.

Figure 5.5: Effect of filter design variations.

βfilter controls the strength of a recursively calculated exponentially weighted moving average
filter. A setting of βfilter = 0.2 was found to be a good choice which reduces high frequency
noise in trained policies. Models trained with various values of βfilter were compared, with results
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shown in Figure 5.5b. Although lack of filtering is shown to lead to higher average rewards,
a visual comparison of the trained policies reveals that strong filtering produces qualitatively
nicer character motion with less noisy movement. A neural network is used to represent the
mean of the policy probability density function for a given state and has parameters θ, that is
µθ(s) = Fπ(s,θ). The policy takes on the form of a multivariate normal distribution for each
state, πθ(s) = N (µθ(s),Σθ). The covariance matrix Σθ is not state dependent, and has only
diagonal entries (only variances are non-zero). The variances are included as parameters in θ
which can be optimized during training. The neural network used for the policy takes on a simple
form, with 110 input units since s ∈ R110, and 25 output units since a ∈ R25.

The value function estimate associated with policy πθ is represented by a separate neural
network with parameters ϕθ, that is Vθ(s) = FV (s,ϕθ). This network has 110 input units since
s ∈ R110, and a single output unit representing the value function estimate. The value function
estimate network has the same number of hidden layers with the same width as the network used
for the policy.

The activation functions chosen for all units were tanh. ReLU activations are usually favoured
in machine learning because they prevent vanishing and exploding graidents better than other
activation functions [65], but in this work it was observed that tanh activations tended to produce
better visual quality output. Trained policies using tanh gave smoother character movement
compared to trained policies using ReLU, possibly due to the small network sizes. A similar effect
can be found for small neural networks performing binary classification. As shown in Figure 5.6,
the classification boundary for ReLU networks take on a polygonal shape, while tanh networks
produce a smooth boundary. It is likely a similar type of sharp polygonal structure exists when
using ReLU in the output of the trained policy given small variations in state, leading to the
unfavorable jerky movements which were observed in experiments. The hidden layer count and

Figure 5.6: Visualization of the binary classification boundaries produced by small neural
networks (2 hidden layers, 4 units wide) using tanh and ReLU activation functions.
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Algorithm 5.13 action application
1: initialize kinematic character controller & simulation
2: aprev ← 0
3: i← nupdate
4: for each timestep do
5: step kinematic character controller to update PMM,VMM

6: if i ≥ nupdate then ▷ reduce policy evaluation frequency
7: i← 0
8: s← update using latest PMM,VMM,P sim,V sim, aprev

9: a ⇝πθ(s)
10: end if
11: afilter ← βfiltera + (1− βfilter)aprev

12: for each k ∈ {set of hinge joint indexes} do
13: if k ∈

{
klu, kll, klf, klt, kru, krl, krf, krt, ksp, khe, kle, kre

}
then

14: (add filtered offset to kinematic pose targets on policy controlled joints)
15: θ⊕k ← 2 l̃og(qMM

k ) · ûhinge
k + afilter

k

16: else
17: (track kinematic pose directly on open-loop joints)
18: θ⊕k ← 2 l̃og(qMM

k ) · ûhinge
k ▷ dot product to get signed hinge angle

19: end if
20: θ̇

hinge
k ← β

hinge
P (θ⊕k − θ

hinge
k )− βhinge

D θ̇
hinge
k

21: end for
22: for each k ∈ {set of spherical joint indexes} do
23: if k ∈

{
klu, kll, klf, klt, kru, krl, krf, krt, ksp, khe, kle, kre

}
then

24: (filtered offset rotations combined with pose on policy controlled joints)
25: q⊕

k ← qMM
k e

1
2
ãfilter
k

26: else
27: (track kinematic pose directly on open-loop joints)
28: q⊕

k ← qMM
k

29: end if

30:

θ̇EulerX
k

θ̇EulerY
k

θ̇EulerZ
k

← ToGimbal(2βEuler
P l̃og((qEuler

k )−1q⊕
k )− βEuler

D ωEuler
k )

31: end for
32: step simulation forward to update P sim,V sim

33: aprev ← afilter

34: i← i+ 1
35: end for
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width were chosen by comparing different settings in experiments and choosing the design which
produced the best results while minimizing runtime cost. A comparison of different hidden unit
counts is shown in Figure 5.7. Two hidden layers were found to perform equally well to larger
numbers of hidden layers. The width of the individual layers was chosen to be 128 units, as smaller
widths seemed to reduce tracking performance, and larger widths trained too slowly because of
increased runtime costs.
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Figure 5.7: Effect of varying neural network hidden unit count on policy performance.

5.2.3 Reward Design

Up to this point the control objective has been qualitatively described. This section covers the
design of the reward signal which encourages the policy to achieve the objective. In simplified
terms the control objective is to have the simulated character follow a trajectory. In classical con-
trol trajectory tracking problems have been well studied. One useful idea to use for our purposes
is that of a nominal trajectory. An arbitrary second order differential equation representing a
physical system with time varying control forces u(t) can be rewritten in the following first or-
der form,

ẋ(t) = f(x(t),u(t)).

A nominal trajectory consists of a time varying state x(t) and control force u(t) that are a solution
to the differential equation,

ẋ(t) = f(x(t),u(t)),
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also known as the nominal solution. Any arbitrary time varying state and set of control forces
can be written in terms of a nominal trajectory and perturbations δx(t), δu(t) to the nominal
trajectory,

x(t) = x(t) + δx(t)

u(t) = u(t) + δu(t)

ẋ(t) + δẋ(t) = f(x(t) + δx(t),u(t) + δu(t)).

The system can be linearized around the nominal trajectory by neglecting higher order terms of
its Taylor expansion. The nominal solution can be subtracted and this results in a linear time-
varying system,

A(t) =
∂f(x(t),u(t))

∂x(t)

∣∣∣∣
x(t)=x(t),u(t)=u(t)

B(t) =
∂f(x(t),u(t))

∂u(t)

∣∣∣∣
x(t)=x(t),u(t)=u(t)

δx(t) = A(t)δx(t) + B(t)δu(t).

Given that the control objective is to follow a given trajectory, it is useful to think in terms of
nominal trajectories. The reason any of this is of interest to the design of the reward is due to the
important theoretical implications nominal trajectories have. If a physically achievable desired
trajectory is given, it will be possible to find a set of time varying open-loop control values which
together with the desired trajectory form a nominal trajectory. In general this means a set of open-
loop control values exist starting from a certain state on the nominal trajectory that continue
to follow the trajectory without any feedback. Note that not every desired trajectory has an
associated nominal trajectory, for example it is impossible for a pig to fly (a desired trajectory
with no associated nominal trajectory), but it is possible for it to walk around any which way
with its eyes closed (desired trajectories which do have associated nominal trajectories). If a
nominal trajectory exists then for small perturbations the dynamics of the perturbations are well
approximated by the linear time varying differential equation. This means that a course correction
back onto the nominal trajectory can be achieved for small perturbations by finding control forces
which reduce the state perturbation to zero.

In classical control globally optimal controllers for linear time varying systems can be found
if the objective function is convex. For trajectory tracking tasks the typical strategy is to find the
control forces which minimize a cost that is quadratic with respect to the perturbed state and
control magnitude. This defines a linear quadratic regulator (LQR) and under conditions where
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the system is controllable and weighting matrices Q(t),R(t) are specified a globally optimal con-
troller can be found,

Jπ(δx(t)) =
ˆ ∞

0

(
δxT(t)Q(t)δx(t) + δuT(t)R(t)δu(t)

)
dt

argmin
π

Jπ(δx(t)) = π∗(δx(t)) = −K(t)δx(t).

The main takeaway is that for trajectory tracking with small perturbations the optimal controller
will be some form of time varying linear state feedback control. Costs are simply negative rewards
so this is similar to finding the policy which maximizes a value function arising from a quadratic
reward.

In the context of this work the kinematic reference motion is the desired trajectory. The
open-loop controls are ≈ u(t) and the kinematic reference motion poses are ≈ x(t). These can
be considered to form a pseudo nominal trajectory. While the open-loop controls previously
described do not allow the character to follow the reference motion indefinitely they still partially
perform this task. The state of the simulated character can be considered x(t) = x(t)+ δx(t), and
thus the difference between state of the simulated character and the kinematic reference gives
the state perturbation δx(t) = x(t) − x(t). The output of the policy is transformed into a small
perturbation to the open-loop targets, the policy effectively outputs δu(t).

Given this knowledge of trajectory tracking problems in a classical control context the advan-
tage of specifying the actions as offsets from an open-loop controller becomes apparent. With
an appropriately constructed reward small perturbations to the optimal policy should resemble
linear state feedback and the transformation of terms resembling perturbations in the state to
control actions will be a simple relationship which is easy for a neural network to approximate.

The cost in the trajectory tracking LQR formulation involves weighted terms which are quadratic
in the state perturbation and quadratic in the control perturbation. If the weight matrix is identity
then the state perturbations are equivalent to squared distances since xTx = ∥x∥2. The minimum
cost will be zero and will occur when the perturbation is zero. The rewards will be designed with
the same qualitative behaviour in mind taking on a maximum value when the tracking is aligned
with the trajectory. The reward is structured into multiple terms which are combined together,

r = rfall(rpos + rvel + rlocal + rcm-vel).

Each frame the pose and pose-velocity of the simulated character P sim,V sim and kinematic ref-
erence character PMM,VMM are used to calculate the values composing the reward terms. In
order to compare position and orientation information simultaneously multiple reference points
vik, i ∈ {1, . . . , 6} rigidly attached to the each body k ∈ {1, . . . , N} are used. The point locations
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are chosen to represent the face centers of the tightest fitting oriented bounding box around the
geometry. For a capsule shape associated with body k the local positions with respect to the body
frame are constants which are found by using the bind pose Pb and the capsule parameters from
section 4.1,

vcap
k =

ucap
k if ∥ucap

k ∥ > 0[
1 0 0

]T
otherwise

v̂cap⊥
k · v̂cap

k = 0, vcap⊥
k ̸= 0

v1k = (qb
Bk
)−1 ◦

((
pcap
k + (∥ucap

k ∥+ rcap
k )v̂cap

k

)
− pb

Bk

)
v2k = (qb

Bk
)−1 ◦

((
pcap
k − (∥ucap

k ∥+ rcap
k )v̂cap

k

)
− pb

Bk

)
v3k = (qb

Bk
)−1 ◦

((
pcap
k + rcap

k v̂cap⊥
k

)
− pb

Bk

)
v4k = (qb

Bk
)−1 ◦

((
pcap
k − r

cap
k v̂cap⊥

k

)
− pb

Bk

)
v5k = (qb

Bk
)−1 ◦

((
pcap
k + rcap

k v̂cap⊥
k × v̂cap

k

)
− pb

Bk

)
v5k = (qb

Bk
)−1 ◦

((
pcap
k − r

cap
k v̂cap⊥

k × v̂cap
k

)
− pb

Bk

)
.

If the collision geometry is a box then instead the constants are found the following way using
the box parameters,

v1k = (qb
Bk
)−1 ◦

((
pbox
k + e

1
2

ũbox
k ◦ x

box
k

2

[
1 0 0

]T)
− pb

Bk

)
v2k = (qb

Bk
)−1 ◦

((
pbox
k − e

1
2

ũbox
k ◦ x

box
k

2

[
1 0 0

]T)
− pb

Bk

)
v3k = (qb

Bk
)−1 ◦

((
pbox
k + e

1
2

ũbox
k ◦ y

box
k

2

[
0 1 0

]T)
− pb

Bk

)
v4k = (qb

Bk
)−1 ◦

((
pbox
k − e

1
2

ũbox
k ◦ y

box
k

2

[
0 1 0

]T)
− pb

Bk

)
v5k = (qb

Bk
)−1 ◦

((
pbox
k + e

1
2

ũbox
k ◦ z

box
k

2

[
0 0 1

]T)
− pb

Bk

)
v6k = (qb

Bk
)−1 ◦

((
pbox
k − e

1
2

ũbox
k ◦ z

box
k

2

[
0 0 1

]T)
− pb

Bk

)
.
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The rpos term rewards minimization of the local horizontal position errors, global vertical
position errors, and global orientation errors of all bodies between the kinematic reference and
simulated characters,

rpos = exp

(
−10
N

6∑
i=1

N∑
k=1

∥∥(pMM
Bk

+ qMM
Bk
◦ vik − pMM

CRF)− (psim
Bk

+ qsim
Bk
◦ vik − psim

CRF)
∥∥).

Positional alignment rewards are horizontally translation invariant to allow drift between the
characters without penalty. This was found to be necessary to prevent the accumulation of small
positional errors from being considered a catastrophic failure, yielding more robust policies than
global tracking where drift is corrected at all costs even if motion quality must suffer. Because
orientations and vertical positions are globally tracked, the overall style and user controlability
of the motion is still preserved.

The rvel term rewards minimization of the global velocity errors and global angular velocity
errors of all bodies between the kinematic reference and simulated characters,

rvel = exp

(
−1
N

6∑
i=1

N∑
k=1

∥∥(ṗMM
Bk

+ ωMM
Bk
× vik)− (ṗsim

Bk
+ ωsim

Bk
× vik)

∥∥).
The rlocal term encourages the local orientations of each non-root body with respect to its parent
to be the same between the the kinematic reference and simulated characters. In other words,
this term rewards the poses for being similar while ignoring any rigid transformations,

rlocal = exp

(
−10
N

N∑
k=2

2
∥∥∥l̃og

(
(qMM

k )−1qsim
k

)∥∥∥).
The rcm-vel term rewards minimization of the global center of mass velocity error between the
kinematic reference and simulated characters,

rlocal = exp
(
−
∥∥ṗMM

cm − ṗsim
cm

∥∥).
The rfall term is a little different than the others. This term multiplies all the other terms, mod-
ulating the total reward which can be achieved. The value of this term depends on the distance
between the heads (index khe) of the kinematic reference and simulated characters in a complex
way, taking on a value of 1 when the heads are within a threshold distance (≈ 0.2 meters) of each
other and rapidly decreasing to zero when they pass this threshold,

clamp
(
1.3− 1.4

∥∥∥(pMM
Bkhe
− pMM

CRF)− (psim
Bkhe
− psim

CRF)
∥∥∥ , 0, 1) .
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The purpose of having this type of modulation is to severely discourage fallen states. During train-
ing the character will fall over many times and the states on the ground are usually unrecoverable
unless extreme behaviours are learned. In most cases these extreme behaviours are not discov-
ered and the policy instead optimizes for some locally optimal but entirely useless behaviour.
The rfall modulation makes it so that all fallen states outside the threshold head distance have a
reward quickly approaching zero. This means that there is no locally optimal useless behaviour,
the only way to get non-zero rewards is to return to a pose which is within the threshold head
distance. Within the threshold distance all the standard reward terms have a relative weighting
to encourage tracking.

The relative weighting of reward terms was based purely on trial and error experimentation.
Weightings were not found to be particularly sensitive to small variations. Most of the reward

Figure 5.8: Visualization of a simplified reward landscape for two body tracking

terms are structured to be the exponential function of a sum of negative weighted error norm
terms. The reason for this is clarified if a simplified example is used. Consider a reward function
of the form,

exp (−∥x1 − 1∥ − ∥x2 + 3∥) .

The associated rewards for various x1 and x2 are plotted in Figure 5.8. The reward clearly takes
on a maximum value where ∥x1 − 1∥ = 0 and ∥x2 + 3∥ = 0. This means maximum reward is
achieved only when all negative weighted error norms being summed are minimized. The same
logic applies for the terms forming r, the maximum reward will be achieved only when all errors
in the sum are simultaneously minimized, that is only when all bodies are tracking well.
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Using the properties of exponents and the fact norms can never take on a negative value this
can be shown explicitly as an inequality,

exp

(
−

N∑
k=1

∥δxk∥

)
=

N∏
k=1

exp (−∥δxk∥)

exp(−∥δxk∥) ≤ 1 ∀ k ∈ {1, . . . , N}∏
k∈{1,...,N}−{kworst}

exp (−∥δxk∥) ≤ 1

exp (−∥δxkworst∥)
∏

k∈{1,...,N}−{kworst}

exp (−∥δxk∥) ≤ exp (−∥δxkworst∥)

N∏
k=1

exp (−∥δxk∥) ≤ exp (−∥δxkworst∥)

exp

(
−

N∑
k=1

∥δxk∥

)
≤ exp (−max {∥δx1∥ , . . . , ∥δxN∥}) .

With this form the body with the largest error term sets an upper limit on the maximum attainable
reward. even if tracking is perfect for every body except one ∥δxk∥ = 0, k ∈ {1, . . . , N} −
{kworst}, the worst tracked body with index kworst will limit the reward which can be achieved
to exp (−∥δxkworst∥). A reward formed in this way weighs tracking improvements on the bodies
with the worst errors more significantly. This discourages difficult to optimize bodies from being
ignored and leads to tracking which is overall more visually similar to the kinematic reference
motion.

No reward term is associated with the control effort since a maximum allowable torque of 200
Nm is set for the joint actuators. This was found to be necessary because rewards discouraging
control effort had a tendency to cause training to generate policies which exert no control effort
whatsoever unless carefully tuned. Torque limits ensure the policy can use as much control effort
as the actuators allow, enabling bang-bang control behaviours to be learned if they are optimal.
One typical purpose of penalizing actuator effort is to prevent high frequency behaviours. The
filtering on the policy output and the PD control gains on the actuators allow the step response
characteristics to be constrained as desired, meaning high frequency behaviours can still be pre-
vented.
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5.3 Training Control Policies

Policy training is carried out by using PPO as the reinforcement learning algorithm. OpenAI’s
“baselines” project [84] provides a well tested implementations of PPO. The distributed CPU ver-
sion of the algorithm from “baselines” running 8 workers in parallel was used to achieve an
average of 2500 environment steps per second on a single machine. Training is broken down into
various relevant stages,

1. Initialization

2. Trajectory Sampling

3. Episode Resets

4. PPO.

The training follows a specific procedure. First everything is initialized in a manner which will
hopefully help the optimization converge to the best policy possible. Next trajectories are sampled
as training data for the reinforcement learning algorithm. When adequate samples have been
gathered PPO is applied to the set of sampled trajectories to obtain an improved policy and value
function estimate. After an iteration new trajectories are sampled using the improved policy.
The process of sampling and PPO iterations is continued until the policy performance has been
observed to have reached a performance plateau where no significant further improvement seems
achievable. The average reward across all samples in an iteration gives a good indicator of overall
policy performance.

5.3.1 Initialization

Initialization is performed only once at the very start of training. In this stage the neural
networks and optimizer are initialized. All the weights associated with a particular non input
layer ℓ of a neural network are contained in a weight matrix Wℓ. The layer is considered to have
a width of mℓ ∈ Z+. Weight matrices for each layer are initialized as follows,

Wℓ ⇝N (0, 1)

Wℓ ←
Wℓ√

WT
ℓ Wℓ

.

Biases for the various units in each layer are initialized to zero Bℓ ← 0. Because the actions are
designed such that a value of zero will perform the open-loop control derived from the kinematic
reference, it is favorable for the policy network to output very small values when training begins.
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To initialize the policy this way the output layer weights Wℓo
of the neural network used by

the policy are initialized differently. Each weight value is sampled from a uniform distribution
ranging from -0.01 to 0.01,

Wℓo ⇝multivariateUniformDistribution(−0.01, 0.01).

The advantage of this final layer initialization strategy is that it puts the initial policy closer to a
favorable local optima. This was validated by comparing the performance of policies initialized
with the strategy to those initialized with a default weight initialization strategy. This comparison
is given in Figure 5.9.

0.0 0.5 1.0 1.5 2.0 2.5
Environment Steps 1e8

0.2

0.3

0.4

0.5

0.6

M
ea

n 
St

ep
 R

ew
ar

d

Initialize last layer close to zero
Default policy initialization

Figure 5.9: Effect of initializing the weights of the final policy network layer to smaller
magnitude values.

The policy also has associated non neural network related parameters. The covariance matrix
of the action distribution is set to always be diagonal Σθ = 1σθ. The variances are controlled by
σθ and these are all initialized such that Σθ = 1. The parameters for the policy network and the
value function estimate network are then initialized as follows,

θ ←



W1

...
Wℓo

B1

...
Bℓo

σθ


, ϕθ ←



W1

...
Wℓo

B1

...
Bℓo


.
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5.3.2 Trajectory Sampling

The human gamepad user, kinematic character controller, physical simulation of a character,
and control policy together form the agent and environment. This system can still be considered
modeled by a markov decision process even though the complexity may have increased and the
state and actions are part of continuous spaces rather than discrete sets. The number of possible
states and potential actions associated with each state are now enormous so the associated graph
is difficult to conceptualize. Nonetheless sampling an action from the policy and ticking the
system forward in time is equivalent to making a decision which results in a transition to another
state with an associated reward. Sampling actions as time progresses and recording the results
of each action still allows sampling of trajectories from the MDP.

In this work the division between agent and environment is somewhat abstract. The “agent”
consists only of the act of sampling from the policy, and the environment is everything else. The
human gamepad user, kinematic reference motion being controlled by them, the underlying sim-
ulation, and the details of the action to actuation transformation, all these form the environment.
This leads to a particularly pressing problem: how can sampling millions of times from the MDP
be automated for training if a human’s actions are part of the underlying MDP? A change of
perspective is needed. The human user is fundamentally unpredictable, their actions can change
at a whim and their goals are completely external factors which are unknown. It is not necessary
to actually have a human user for training purposes so long as the distribution of behaviours
a human user might have is appropriately sampled. It should however be mentioned that the
statement a human user is unpredictable does not imply they act completely randomly, just that
their intentions are unknown. Humans have definite constraints on their behaviour which need
to be considered. As an example, a human will generally not toggle a button hundreds of times
a second, this is unrealistic given that they have to manipulate a gamepad using their bodies. A
human user will behave unpredictably moment to moment but their behaviours still fit within
a predictable distribution, for example steering a character around they will habitually generate
inputs which result in straight line motion, turning motions to orient toward a location, rapid
direction changes when they make a mistake, and transitions between styles will generally be
infrequent.

To automate training an artificial human user is required. The artificial user generates gamepad
inputs which are then used by the kinematic character controller and the policy. The artificial
inputs should be representative of inputs a human would make. It should sample both worst case
scenarios which make control difficult and more typical trajectories that a human would perform
when trying to move a character around.

User behaviour modifying events were designed to act as an artificial user during training.
The artificial user is described by Algorithm 5.14 which sets the value of gl-stick, gr-stick, gtrigger,
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Figure 5.10: Control behaviour change events which are possible for the artificial user.

gbutton each time-step during training. Every time-step there is a probability of user behaviour
modifying events occurring. The behaviour modifications which can occur are summarized in
Figure 5.10. These are randomly changing the left and right stick direction held, toggling the face
button and trigger states between being held on or off, setting the left and right sticks to their
neutral position, setting a fixed turning rate for the left (ωl-stick) and right (ωr-stick) sticks of up to
1 rotation per second, and setting the turning rate for the left and right sticks to zero. Each time-
step the the turning rates are multiplied with the step duration ∆t to rotate the associated sticks
by the proper amount. This models the behaviour of a user steering a character in various curves.
Each control behaviour modifying event has a probability of occurring in any given time-step of
0.001. This low probability allows both behaviours with reasonably rapid user input changes as
well as with infrequent input changes to be sampled. The probability of the events occurring each
time-step has a significant effect. Selecting a probability which is too high results in a behavioural
distribution dominated by rapid changes which make no long term progress, and setting it too
low results in a behavioural distribution dominated by one or very few behaviours that will not
be robust to successive unexpected user input changes.

5.3.3 Episode Resets

At the beginning of a trajectory the agent and environment must be initialized, the states the
system can start in define the starting state distribution. During the trajectory it is possible that
a termination condition is triggered where the trajectory is considered to end. The termination
of the current trajectory and re-initialization of a new trajectory together form the concept of
an episode reset. The resets are a fundamental aspect of the training procedure since they have
a strong influence on the distribution of states which are sampled. With deep reinforcement
learning, performance is only guaranteed to be optimized with respect to states in the sampling
distribution. The starting state distribution and termination conditions are one of the primary
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Algorithm 5.14 artificial user
1: gl-stick ← 0
2: gr-stick ← 0
3: gtrigger ← 0
4: gbutton ← 0
5: ωl-stick ← 0
6: ωr-stick ← 0
7: for each timestep do
8: with probability (0.001) do
9: ϕ ⇝unif(0, 2π) radians

10: gl-stick ←
[
cosϕ sinϕ

]T
11: with probability (0.001) do
12: ϕ ⇝unif(0, 2π) radians
13: gr-stick ←

[
cosϕ sinϕ

]T
14: with probability (0.001) do
15: ωl-stick ⇝unif(−2π, 2π) radians/second
16: with probability (0.001) do
17: ωr-stick ⇝unif(−2π, 2π) radians/second
18: with probability (0.001) do
19: gtrigger ← 1− gtrigger
20: with probability (0.001) do
21: gbutton ← 1− gbutton
22: with probability (0.001) do
23: gl-stick ← 0
24: with probability (0.001) do
25: gr-stick ← 0
26: with probability (0.001) do
27: ωl-stick ← 0
28: with probability (0.001) do
29: ωr-stick ← 0
30: end
31: gl-stick ←

[
cos (ωl-stick∆t) − sin (ωl-stick∆t)
sin (ωl-stick∆t) cos (ωl-stick∆t)

]
gl-stick

32: gr-stick ←
[
cos (ωr-stick∆t) − sin (ωr-stick∆t)
sin (ωr-stick∆t) cos (ωr-stick∆t)

]
gr-stick

33: end for
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means to manipulate which states policy improvement focuses on. Consequently these should
be chosen in a way that will constrain sampling to regions that are useful.

Properly designed resets can be viewed as a means to do importance sampling, enabling train-
ing to converge with a tractable number of samples. Training is a time consuming process and it
is not feasible to exhaustively sample every possible state due to the large number of dimensions
and continuous state space. Only states that allow the control objective to be achieved and the
policy to be optimized should be sampled in significant quantity. It is wasteful to sample states
that will not be reached in typical operation, for example states where the character is upside
down, fallen over, flying through the air, etc. It is impossible for the character to perform loco-
motion in such scenarios. The controller is focused on achieving locomotion behaviours, and so
sampling should be focused only on cases where locomotion is achievable or has been disturbed
but is still able to recover relatively easily.

The re-initialization scheme using in this work is particularly simple. The kinematic character
controller and artificial user are never reset, producing a continuous stream of generated anima-
tion. Each time-step the updated pose and pose-velocity of the kinematic reference motion are
available in PMM and VMM. When a reset is triggered all forces on the simulated character bodies
are cleared and the bodies are set in a state such that pose and pose-velocity are equivalent to
those of the kinematic character. This means the following holds after a reset,

P sim = PMM

V sim = VMM.

This ensures that the initial simulated character states are close to the actual distribution of kine-
matic character states that can be generated. More importantly this also initializes the simulated
character in the highest possible value states. States with the global maximum reward will always
be sampled during training. This is a significant help during training since the value function es-
timate will quickly be optimized to accurately represent the highest possible value states, and the
policy can then quickly discover which actions take the system towards these high value states.

Various termination conditions are specified. The first is simply a condition which is triggered
to end a trajectory when 40000 samples have been gathered since the previous PPO iteration. The
next iteration of PPO is then triggered. Termination is also triggered if a trajectory is longer than
20 seconds. To prevent this from biasing training the final reward is set such that it is equal to
the value function estimate evaluated at the terminal state. This approximates the sequence of
rewards which would have been gathered had the trajectory run its full course, ensuring that the
value of samples are not negatively impacted due to the arbitrary termination event unrelated to
the quality of the actions taken by the policy.

122



The second termination condition is meant to prevent the gathering of samples in unrecov-
erable states. This is somewhat ill posed as it is impossible to determine which states are unre-
coverable when the policy is attempting to discover strategies to recover in the first place. For
this reason the best that can be done is to define a heuristic which roughly classifies if a state is
unrecoverable. The heuristic which was found to work well in this work was to check the dis-
tance between the heads of the simulated and kinematic reference characters. The reward term
rfall evaluated using the current state is explicitly used to perform this check. If rfall = 0 the
characters are considered to have diverged in such a way that a reset should be triggered. It is
assumed that once this termination criteria has been met the character would not be likely to
exit states which yield rfall = 0 and hence the terminal reward is zero since the return from these
dead-ends is zero.

5.4 Results

After training a set of optimal policy parameters θ∗ are obtained. The quality of the policies
which result from training are difficult to assess if only the rewards are observed. The training of
an optimal policy does not guarantee qualitative objectives desired for a useful system are met.
The system also operates somewhat differently in training compared to in a user facing runtime
application. During training the artificial user acts erratically and actions are sampled from a
distribution in order to explore and discover which are optimal. In a user facing runtime appli-
cation a human user steers the character around and the best known action in a given state is
chosen deterministically by always choosing an action which is the mean of the optimal policy’s
distribution in a given state. Training only optimizes behaviour with respect to an approximation
of the user facing runtime application. To properly evaluate the results simple performance stud-
ies were designed. These measure or demonstrate the capabilities of the final physically-based
character controller in application oriented scenarios.

5.4.1 Robustness Analysis

An impact testing experiment was designed to measure the robustness of the controller to
external perturbations. In order to measure the effect of disturbances a cube shaped rigid-body
was launched every second at the simulated character as it was being controlled. The cube is
launched from a uniformly random sampled position on a hemisphere with a diameter of 4 m
centered at the simulated character’s center of mass, see Figure 5.12a for a visualization of this
setup. Upon launching the cube is given a random orientation and a fixed velocity of 5 m/s
towards a uniformly random sampled target location between psim

CM − 0.5[0 0 1]Tm and psim
CM +

0.5[0 0 1]Tm. This causes the cube to frequently impact the character in various ways, with
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the maximum possible impact energy increasing as the mass of the cube is increased. The cube
remains in the scene at the position it settles in until it is launched again, meaning there is a
potential for the character to run and trip over it or kick it between launches. During the impact
experiment the character is automatically controlled to run at 3 m/s without strafing and changes
direction every 4 seconds. A trained policy with deterministic actions is used.

Figure 5.11: The trained policy is quite robust, recovering even when being pelted by multiple
objects and running over rubble covered terrain. This sequence of snapshots are ordered left to

right. Objects in mid air are flying toward the character.

(a) Measurements related to the impact testing
experiment.
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Figure 5.12: Impact testing setup and results

Impact testing data has been compiled for incrementally increasing cube masses between 0.01
kg and 8 kg. At each cube mass increment 1 million time-steps are computed. The average time
between resets is recorded measuring how frequently the character falls over from the impact test
at the specified cube mass. This data is visualized in Figure 5.12b. An additional line is plotted for
a policy which has been trained in an environment with cube impacts of mass varying between
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Table 5.1: Comparison of responsiveness to other work. The estimated time required to make a
90◦ turn is compared. *values from cited papers are estimated from similar behaviour in published

videos and are inexact.

Method Rise Time
(Ours) 1.2s
Peng et al.[55] - Multi-Clip Reward *2.0s
Liu and Hodgins[54] - Running Skill Graph *5.1s

0.01 kg and 8 kg. The robustness of the policy with respect to impacts can be improved by doing
this, but it causes some loss of tracking quality since a more statically stable style is learned.

Even the policy trained without impact training has good performance. Figure 5.11 shows a
sequence of snapshots of a simulated character in an environment with many objects constantly
being launched toward it as it runs over loose rubble like terrain. The character is significantly
perturbed by an impact to the head in the leftmost frame yet manages to recover balance as shown
in the rightmost frame even while contending with the many objects in the way. Keep in mind the
character has no awareness of these objects but can nonetheless maintain control and balance.

5.4.2 Responsiveness Analysis

Human users are sensitive to delays in control [85]. Delays make control difficult since a
user cannot immediately correct control errors and so they must instead constantly plan ahead.
The responsiveness of a trained physical character control system has been measured to quantify
the delays inherent in the system. The responsiveness of the method developed here is roughly
compared to the results demonstrated by two similar previous works. Both Peng et al. [55] and
Liu and Hodgins [54] have published video results of their methods being used to steer a char-
acter’s motion with abrupt motion direction and heading changes. In order to estimate the time
required to achieve a 90◦ turn, associated videos have been examined to find moments where
steering changes occur abruptly. This was also measured for our method. A comparison of the
rise time is given in Table 5.1. Our method is shown to achieve a level of responsiveness which
is favorable.

Responsiveness is not only dependent on the performance of the policy in tracking the ref-
erence motion, but also on the responsiveness of the the kinematic character controller to an
abrupt control change. The kinematic character controller necessarily takes some time to achieve
a change in direction because real human beings take time to change direction. Because of
this measuring response time purely with respect to the change in user input does not clearly
demonstrate if responsiveness can be further improved. A straightforward method was devised
to compare the responsiveness of the simulated character controller to the responsiveness of the
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Figure 5.13: A human user was instructed to steer their character at walking pace to follow a
reference path (black line) as closely as possible. The path taken by the user controlled

character’s projected center of mass is visualized (red line), indicating that the task can be
completed with a high degree of accuracy. Ground tiles are 0.5 m × 0.5 m.

kinematic character controller. The step response for straight line motion involving a running
character turning around to run the opposite direction is plotted. The plot is shown in Figure
5.14 and clearly shows that the response time of the kinematic character is only negligibly faster
than the response time for the simulated character. The limiting factor for responsiveness seems
to be the responsiveness of the generated animation. Responsiveness can only be significantly
improved by using a dataset with a more agile style of motion or by requesting more unrealistic
motion.

The steerability of a physically simulated character was measured by making a human user
control the simulated character with a standard gamepad. The user was instructed to steer a
walking character to follow a reference path on the ground as closely as possible. The path was
constructed to include various features such as a sinusoidal curve, straight lines, sharp 90◦ turns,
and a gradual turn. The path was visible to the user as a dark black line on the floor. The character
center of mass location projected on the ground was used to draw a red line indicating the path
taken by the user controlled character.
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Figure 5.14: Center of mass velocities for a simulated and kinematic character requested to
change from running -3 m/s to 3 m/s.

A result of this experiment is shown in Figure 5.13. A human user is capable of staying on
course with a high degree of accuracy, never straying more than 0.5 m from the path. The largest
tracking errors are seen where rapid changes in direction are required, such as at corners. This is
a result of the character having inertia but is also attributed to the non-zero control delay which
make abrupt steering changes a bit more difficult.

5.4.3 Self Collision Analysis

In most experiments self collision between bodies composing the character have been dis-
abled. This speeds up training and improves the ability to track the reference motion since blends
may sometimes generate animations with intersections. In most cases the lack of self collision is
not noticeable because self collisions do not frequently occur during locomotion. Turning off all
self collision helps because the collision geometry of the character is designed to accurately rep-
resent the surface of the character and mass properties through intersections. No effort was made
to ensure realistic clearances exist between body parts. Nonetheless, it is possible to support self
collisions between certain bodies. No body should allow collisions with directly attached bodies
that are likely to always be intersecting, but for example the legs can be made to collide with each
other and the upper torso, the arms can be made to collide with each other and the lower torso,
and so forth. When enabling these self collisions care should be taken to set the friction between
body parts as low as reasonably possible to minimize binding when glancing collisions occur.

Successful policies can be trained with self collision enabled, however this has negative con-
sequences. Because self collisions can lead to falls, the policy learns strategies which minimize
intersections as much as possible. This has the effect of altering the locomotion style in ways
which widen the stance to move the legs further apart, as shown in Figure 5.15, ensuring fewer
collisions occur. This tends to look a little unnatural, so if self collisions are desired it is rec-
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ommend to use a second set of smaller collision geometries which offer more clearance, likely
reducing the possibility of stance widening.

Figure 5.15: Training with self collisions causes the resulting policy to widen the character
stance compared to the reference motion. This reduces the incidence of self collisions.

5.4.4 Ablation Studies

The systems described in this work are complex and unpredictable. The design of the state rep-
resentation, action representation, and rewards required many iterations. This necessitated using
intuition and previous work to decide what design choices were worth investigating. However
once design choices began to yield useful results design iterations were performed to decide on
what worked best in terms of producing the best performing policies and meeting the objectives
of the project. The final design of the state, action, and reward are a result of countless design
iterations, weeks of experiments, and a large number of disappointing failures.

The state, action, and reward are structured in ways which might seem quite arbitrary, so
ablation experiments were performed to help build confidence in their design. These involved
both quantitative comparisons of the average reward values obtained by these policies during
training, as well as qualitative comparisons of the resulting policies in the user facing runtime
application.
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In order to perform feedback based tracking the state given to the policy must contain infor-
mation about the physical character as well as the kinematic character being tracked. Policies
without kinematic character information may still function using open-loop control. An ablation
study was designed to determine the effects of omitting information about the kinematic char-
acter from the state, and to compare other parameterizations of the state in order to determine
which worked best. One parameterization tested is of course that which was presented in section
5.2.1, while others omit the “error” terms in the state (ssim-cm-vel − skin-cm-vel) and (ssim − skin), one
instead providing the kinematic state directly through skin-cm-vel and skin, and the other lacking it
altogether. A comparison of policies trained to operate with each of these variations is given in
Figure 5.16a. Surprisingly the policies without information about the kinematic character in the
state still function, albeit with reduced performance. The state parameterization which includes
the error terms outperforms the state parameterization that includes the unmodified kinematic
character terms. The reason why this state design works better is difficult to deduce, but one
possibility is that it makes linear feedback policies easier to learn.

The choices to only provide information about a subset of the character’s bodies in the state
and to make the policy’s actions only capable of affecting a subset of joints were both originally
made to reduce the dimension of the learning problem and speed up training. The expectation
was that these choices would negatively affect the performance since less information would be
available to correct errors. An ablation study was designed to measure the effect of this choice,
comparing the performance of a policy trained to use the state of all bodies and output actions
for all joints to a policy trained to use the subset described in the prior section. The results of
this study are given in Figure 5.16b. Surprisingly, the policy with access to more information and
fuller control of the character yields lower average rewards. This may be because exploration and
credit assignment are much simpler with a smaller action dimension.

The reward is designed with multiple simultaneous goals in mind. These goals are captured in
each of the terms used to construct the reward. An ablation study was designed to determine the
effect of simplifying the reward by utilizing different subsets of the terms. Because the reward
value itself would change, comparing these on the basis of the average reward would be somewhat
meaningless. Instead a comparison in terms of the the average episode length is made to track
policy improvement and ability to prevent falls. This comparison is shown in Figure 5.16c. The
graph demonstrates that all rewards are capable of generating policies which learn to prevent
falls, with a simple reward promoting local tracking doing the best of all. However, the difference
in motion quality between the policies is clear. A policy which was only rewarded for center of
mass tracking learns strange behaviours which cause it to take large strides and fling itself around.
A policy which was only rewarded for local joint angle tracking moves with small steps and does
not make significant progress performing locomotion. A policy which only rewards tracking
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Figure 5.16: Various ablation study results.

of its bodies’ positions and velocities compromises on overall movement speed and local pose
similarity in comparison to the other policies. Providing all the terms produces policies giving
rise to simulated character motion most similar to the kinematic character controller output.

5.4.5 Runtime Cost Analysis

The runtime cost of the final controller was considered one of the most important design
variables in this work. The runtime cost of the final system on a Intel Xeon E5-1650 V3 CPU is
given in Table 5.2. Included in this breakdown are the cost of running the kinematic character
controller, the cost of calculating the state, the cost of evaluating the deterministic policy using
the state, and the cost of stepping the physics simulation. Costs are averaged over 1 second.
The total cost of running the system is surprisingly low considering that the typical target fram-
erate for interactive applications is 60 FPS. Only 340 µs are needed out of the ∆t = 16.67 ms
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Table 5.2: Average per timestep runtime cost breakdown.

Stage Runtime
Kinematic Control 40 µs
State Construction 40 µs
Policy Evaluation 60 µs
Physics Simulation 200 µs
Total 340 µs

Table 5.3: Comparison of performance affecting parameters.

Method Policy Network Size Simulation Frequency
(Ours) 2 hidden layers, 128 units each 60 Hz
Peng et al. [55] 2 hidden layers, 1024 & 512 units 1200 Hz
Chentanez et al. [56] 3-6 hidden layers, 512 units each (not reported)

available each frame. That means only 2% of the computation time available is required each
time-step. Additionally a video-game is likely to have been doing kinematic character animation
and physics simulation already, so the added costs in that case are only for state construction and
policy evaluation and add up to about 100 µs. This means in a typical scenario the addition of
physically-based character with control uses only an additional 0.6% of the available budget. This
is a negligible requirement so it can be said with confidence that the method presented here can
comfortably fit within the performance budget of a real world production on current generation
hardware.

Comparing to other work is difficult due to the lack of similar works with published perfor-
mance statistics. Nonetheless information about the architecture and design of published meth-
ods is typically available, which allow a performance comparison to be made on the basis of
the neural network sizes involved and the physics simulation frequencies. Such a comparison
is shown in Table 5.3. The works chosen are selected based on the fact they are most similar to
this work, and do not have significantly different control objectives. In general the method in
this work functions with a much smaller network than those typically used in other works, and
a physics simulation frequency which is very reasonable for interactive applications. The policy
is also evaluated at a reduced rate, providing further runtime cost savings.
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Chapter 6

Closing Remarks

The methods presented in this thesis achieve low runtime cost, responsive, and robust con-
trol of a physically simulated human character performing locomotion. This work improves upon
previous methods of physically-based animation by allowing for control of style and motion via
a continuously generated realistic trajectory driven by simple user friendly inputs. The resulting
motion of the simulated character is natural looking and captures subtle variations in human
movement. Target trajectories are generated by intelligently blending motion capture data in a
manner which is constrained by user specified high level control goals. By generating feasible
target trajectories in this way a large degree of medium timescale planning for achieving the high
level goals can be handled kinematically. Target trajectories provide weakly unstable open-loop
tracking through simple per-joint PD local pose tracking. Optimization in the form of reinforce-
ment learning is used to fully stabilize trajectory tracking over the long term. Low level feedback
driven adjustments to the open-loop tracking on a subset of the character’s actuated joints are
learned by the policy. The learning process is discouraged from generating behaviours which look
unnatural since motion plans cannot be significantly modified by the controller without penalty.
Feedback control frequency reduction combined with filtering prevents overly aggressive control
strategies from being learned. Combining learned feedback corrections with open-loop control
allows untrained policies to easily be initialized near well performing local optima. When pos-
sible design choices have been validated through comparative experiments, allowing the impact
of the choices on performance to be measured.

Previous work utilizes reinforcement learning to reproduce motion capture derived behaviours
on simulated characters, however the degree of high-level control over the motions and the abil-
ity to transition between them was somewhat limited. Previous methods have also not payed ex-
plicit attention to runtime cost, often having designs which utilize unacceptably high simulation
frequencies or costly architectures that limit application in systems with realistic performance
budgets. The method presented in this work is designed to have a very low runtime cost, requir-
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ing only 340 µs total per time-step on typical hardware, with the majority of this cost coming
from the physics evaluation. The low runtime cost and good quality results with the controller
developed here are achieved without relying on high simulation frequencies. This has the impli-
cation that this method is well suited to real world applications, such as use in video-games. The
trained controllers have good response time compared to methods in previous work and faithfully
reproduce the commands of a user. Experimental results also show a high degree of robustness
to perturbation. The three main research objectives, which were producing a controller that has
high quality, high user directability, and low runtime cost, were all successfully met.

6.1 Future Work

Reinforcement Learning enabled the complex objectives and strict design requirements of this
work to be met. Part of this success is owed to the generality of reinforcement learning, but a
significant effort was also required to design and tune the system to point where results were
satisfactory. The large number of hyperparameters makes optimization of the design difficult
due to the sheer quantity of computations required. Although it may be difficult, improving
performance through optimization driven design would be an interesting topic for future work.

This work has largely focused on bipedal locomotion tasks in simulation. Transfer of a con-
troller trained to imitate a high-level data-driven kinematic plan to a physical robotic platform
could be of great interest. The blending and sequencing of many weakly feasible reference trajec-
tories using motion matching in kinematic space and subsequent use of reinforcement learning to
correct the kinematic motions into achievable physical trajectories has been demonstrated here.
This is a powerful idea which could extend beyond the locomotion tasks solved in this work. Con-
trol of characters other than humanoids has not been attempted, but it is reasonable to believe
that the methods presented here should extend well to other animal or robot body shapes while
they perform locomotion without major changes. Adapting the method presented here to such
problems as well as control of non-walking systems or non-locomotion related tasks should be
possible without major difficulty.

In this work the kinematic character controller does not generally receive constant feedback
from the simulation. This was an explicit choice to prevent training instability, however there is
nothing preventing a design where the policy can exert some control over the kinematic character
motion. This would allow high level control goals to be specified in terms of a reward and could
potentially help improve performance and robustness by giving the policy more agency over long
term planning.

While the quality of the motion produced in this work is good, it can sometimes be dis-
tinguished from the motion capture reference in a side by side comparison. This is usually

133



when unexpected user control events like a direction change occur. These events introduce some
“wobbling” which take time to get damped away. The reasons for this are difficult to pin down
but could be related to modeling inaccuracies, poorly tuned parameters, sub-optimal controller
performance or just other unknown factors. Work still remains in finding methods to control
physically-based characters undergoing perturbations which are visually indistinguishable from
motion capture. Great advances have been made in motion imitation, but methods for synthesis
of believable human motions from scratch still have a long way to go. This is probably a question
of learning to accurately model human movement and behaviour rather than purely imitate it,
and will surely lead to more interesting research in the future. It can be said with confidence that
this work is at least a “step” in the right direction.
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[20] M. Büttner and S. C. Clavet, “Motion matching - the road to next gen animation,” in Proceed-
ings of Nucl.ai 2015.

[21] K. Zadziuk, “Motion matching, the future of games animation… today,” in Proceedings of
GDC 2016.

[22] D. Holden, “Character control with neural networks and machine learning,” in Proceedings
of GDC 2018.

[23] G. Harrower, “Real player motion tech in EA sports UFC 3,” in Proceedings of GDC 2018.
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