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Abstract

Although stochastic volatility (SV) models have many appealing features, estimation and in-

ference on SV models are challenging problems due to the inherent difficulty of evaluating

the likelihood function. The existing methods are either computationally costly and/or ineffi-

cient. This thesis studies and contributes to the SV literature from the estimation, inference,

and volatility forecasting viewpoints. It consists of three essays, which include both theoreti-

cal and empirical contributions. On the whole, the thesis develops easily applicable statistical

methods for stochastic volatility models.

The first essay proposes computationally simple moment-based estimators for the first-

order SV model. In addition to confirming the enormous computational advantage of the

proposed estimators, the results show that the proposed estimators match (or exceed) alterna-

tive estimators in terms of precision – including Bayesian estimators proposed in this context,

which have the best performance among alternative estimators. Using this simple estimator,

we study three crucial test problems (no persistence, no latent specification of volatility, and

no stochastic volatility hypothesis), and evaluate these null hypotheses in three ways: asymp-

totic critical values, a parametric bootstrap procedure, and a maximized Monte Carlo proce-

dure. The proposed methods are applied to daily observations on the returns for three major

stock prices [Coca-Cola, Walmart, Ford], and the Standard and Poor’s Composite Price Index.

The results show the presence of stochastic volatility with strong persistence.

The second essay studies the problem of estimating higher-order stochastic volatility

[SV(p)] models. The estimation of SV(p) models is even more challenging and rarely con-

sidered in the literature. We propose several estimators for higher-order stochastic volatility

models. Among these, the simple winsorized ARMA-based estimator is uniformly superior in

terms of bias and RMSE to other estimators, including the Bayesian MCMC estimator. The
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proposed estimators are applied to stock return data, and the usefulness of the proposed es-

timators is assessed in two ways. First, using daily returns on the S&P 500 index from 1928

to 2016, we find that higher-order SV models – in particular an SV(3) model – are preferable

to an SV(1), from the viewpoints of model fit and both asymptotic and finite-sample tests.

Second, using different volatility proxies (squared return and realized volatility), we find that

higher-order SV models are preferable for out-of-sample volatility forecasting, whether a high

volatility period (such as financial crisis) is included in the estimation sample or the fore-

casted sample. Our results highlight the usefulness of higher-order SV models for volatility

forecasting.

In the final essay, we introduce a novel class of generalized stochastic volatility (GSV) mod-

els which utilize high-frequency (HF) information (realized volatility (RV) measures). GSV

models can accommodate nonstationary volatility process, various distributional assump-

tions, and exogenous regressors in the latent volatility equation. Instrumental variable meth-

ods are employed to provide a unified framework for the analysis (estimation and inference)

of GSV models. We consider the parameter inference problem in GSV models with nonsta-

tionary volatility and develop identification-robust methods for joint hypotheses involving the

volatility persistence parameter and the autocorrelation parameter of the composite error (or

the noise ratio). For distributional theory, three different sets of assumptions are considered.

In simulations, the proposed tests outperform the usual asymptotic test regarding size and

exhibit excellent power. We apply our inference methods to IBM price and option data and

identify several empirical relationships.
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Résumé

Les modèles de volatilité stochastique (SV) ont plusieurs caractéristiques désirables, mais

l’estimation et l’inférence pour ces modèles sont des défis de taille à cause de la difficulté

d’évaluer la fonction de vraisemblance en présence d’une variable latente. Les méthodes ex-

istantes sont intensives en calcul ou inefficaces. Cette thèse contribue à l’application de tels

modèles au niveau de l’estimation, de l’inférence et de la prévision. Elle consiste en trois es-

sais, qui constituent des contributions tant théoriques qu’empiriques au développement de

nouveaux outils statistiques facilement applicables.

Le premier essai propose une méthode de moments qui facilite l’estimation du modèle

SV de premier ordre. En plus de confirmer un énorme avantage de calcul, les résultats dé-

montrent que l’estimateur proposé surpasse en précision les autres estimateurs proposés

précédemment – notamment un estimateur de type bayésien qui semble être le meilleur à

ce jour. Grâce à cet estimateur simple, nous étudions trois problèmes de test importants

dans ce cadre (l’absence de persistance, l’absence de volatilité latente, l’absence de volatil-

ité stochastique). Nous comparons trois manières différentes d’effectuer ces tests: valeurs

critiques asymptotiques, bootstrap paramétrique, et test de Monte Carlo maximisé. Les mé-

thodes sont appliquées à des observations quotidiennes sur les rendements de trois compag-

nies majeures (Coca-Cola, Walmart et Ford), ainsi qu’à l’indice de prix Standard & Poor’s. Les

résultats démontrent une forte persistance de la volatilité stochastique.

Le deuxième essai se penche sur l’estimation de modèles de volatilité stochastique d’ordre

supérieur [SV(p)]. L’estimation de tels modèles comporte des défis additionnels qui font qu’ils

ne sont presque jamais utilisés. Nous proposons plusieurs estimateurs faciles à calculer pour

ce type de modèle. Nous trouvons qu’une méthode de type ARMA est supérieure en termes de

biais et d’erreur quadratique moyenne, incluant un estimateur bayésien basé sur l’algorithme
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MCMC. Les estimateurs proposés sont appliqués à des données de rendement de marché

(S&P 500). Nous démontrons les avantages du modèle SV(p) et des méthodes d’estimation

proposées de deux manières différentes. Premièrement, en utilisant les rendements quotidi-

ens du S&P 500 de 1928 à 2016, ainsi que des tests asymptotiques et exacts, nous trouvons

qu’un modèle SV(3) est préférable au modèle SV(1). Deuxièmement, en utilisant des variables

« proxy » pour la volatilité (rendement au carré et volatilité réalisée), nous obtenons que les

modèles SV(p) sont préférables pour effectuer des prévisions hors échantillon. Ces résultats

sont robustes à l’exclusion de la période de crise financière.

L’essai final introduit une nouvelle classe de modèles de volatilité stochastique général-

isé (GSV) qui utilise des mesures de volatilité réalisée à haute fréquence. Les modèles GSV

peuvent accommoder des processus non stationnaires, des hypothèses distributionnelles va-

riées, et peuvent inclure des variables latentes. Nous proposons des méthodes de variables

instrumentales afin d’obtenir un cadre unifié pour l’analyse du modèle GSV. Nous dévelop-

pons aussi une méthode robuste à la non-identification afin de tester une hypothèse jointe

sur le paramètre de persistance et l’autocorrélation des termes d’erreurs. Au niveau de la

théorie distributionnelle, nous proposons une théorie qui inclut trois ensembles différents

d’hypothèses. Une expérience de simulation démontre que les tests proposés améliorent le

contrôle du niveau des tests par rapport aux méthodes asymptotiques usuelles et possèdent

une bonne puissance. Nous appliquons les méthodes proposées au prix de l’action IBM et à

des données d’options. Plusieurs relations empiriques intéressantes émergent de ces résul-

tats.
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Chapter 1

Introduction

Time-varying volatility of asset returns is a widespread feature of financial markets. This prop-

erty has been known for a long time; early discussions include Mandelbrot (1963) and Fama

(1965). Accurate characterization and prediction of the dynamic volatility are essential in

many areas of financial decision making, such as asset pricing, portfolio selection, option pric-

ing, and risk management. Volatility modelling was started in the early 1980s, when Rob Engle

introduced autoregressive conditional heteroskedastic (ARCH) models. Volatility modeling is

still, and will remain for long, one of the most active research topics of financial econometrics.

To deal with time-varying volatility, two main classes of parametric models have been pro-

posed in the literature to estimate and forecast dynamic volatility: (1) GARCH-type models

[Engle (1982), Bollerslev (1986)]; (2) stochastic volatility (SV) models [Taylor (1982, 1986)]. The

main distinction between GARCH and SV models is that the variance process of the latter

has an additional error term which captures the effect of any new information coming to the

market, so conditional on the information set Ft−1, volatility σ2
t is not known in SV models

but rather an unobserved random variable. Several reviews of GARCH and SV literature are

available; for GARCH, see Bollerslev (2010), and for SV, see Ghysels et al. (1996), Broto and

Ruiz (2004), and Shephard (2005). SV models are also common in macroeconomic modelling;

see Cogley and Sargent (2005), Primiceri (2005), Benati (2008), Koop et al. (2009), Koop and

Korobilis (2013), and Liu and Morley (2014).

SV models may be preferable to GARCH-type models for several reasons. First, SV mod-

els are discrete-time formulations of continuous-time diffusion processes used in theoretical

finance for derivative pricing and portfolio optimization; see Taylor (1994), Shephard and An-
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dersen (2009). Second, SV models do not appear to require various ad hoc adjustments, like

the addition of a random jump component or non-Gaussian innovations. These modifica-

tions improve the performance of the standard GARCH, but these are evidently unnecessary

for SV models; see Carnero et al. (2004), Chan and Grant (2016). Third, SV models often pro-

vide more accurate volatility forecasts than GARCH models, indicating that the time-varying

volatility is better modelled as a latent stochastic process; see Kim et al. (1998), Yu (2002),

Poon and Granger (2003), Koopman et al. (2005). Finally, it is easy to derive the probabilistic

properties (stationarity, ergodicity and mixing) of SV models than GARCH models; see Davis

and Mikosch (2009). In contrast, the stationarity of a GARCH process is difficult to establish;

see Nelson (1990), Bougerol and Picard (1992), Lindner (2009).

Although SV models have many appealing features, the estimation and inference are chal-

lenging due to the inherent problem of evaluating the likelihood function. The existing meth-

ods are either computationally costly and/or inefficient. This thesis studies and contributes

to the SV literature from the estimation, inference, and volatility forecasting viewpoints. It

consists of three essays, which include both theoretical and empirical contributions. On the

whole, the thesis develops easily applicable statistical methods for stochastic volatility mod-

els. Chapter 2 proposes computationally simple and efficient estimators for the first-order SV

model. The proposed class of estimators is based on a small number of moment equations de-

rived from an ARMA representation associated with the SV model, along with the possibility

of using “winsorization” to improve stability and efficiency. We call these ARMA-SV estima-

tors. Closed-form expressions for ARMA-SV estimators are obtained, and no numerical opti-

mization procedure or choice of initial parameter values is required. The asymptotic distribu-

tional theory of the proposed estimators is studied. Due to their computational simplicity, the

ARMA-SV estimators allow one to make reliable – even exact – simulation-based inference,

through the application of Monte Carlo (MC) test or bootstrap methods. We compare them

in a simulation experiment with a wide array of alternative estimation methods, in terms of

bias, root mean square error and computation time. In addition to confirming the enormous

computational advantage of the proposed estimators, the results show that ARMA-SV esti-

mators match (or exceed) alternative estimators in terms of precision – including Bayesian

estimators proposed in this context, which have the best performance among alternative es-
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timators. The proposed methods are applied to daily observations on the returns for three

major stock prices [Coca-Cola, Walmart, Ford] over the period 1980-2015, and to the Standard

and Poor’s Composite Price Index over the 2000-2017 period. The results confirm the presence

of stochastic volatility with strong persistence.

Chapter 3 studies the problem of estimating higher-order stochastic volatility [SV(p)] mod-

els. The estimation of SV(p) models is even more challenging and rarely considered in the

literature. In this paper, we propose simple moment-based estimators for such models – in

particular ARMA-type estimators – which are both computationally inexpensive and remark-

ably accurate. The proposed estimators do not require choosing a sampling algorithm, initial

parameter values, or an auxiliary model. To reduce the risk of getting inadmissible (nonsta-

tionary) solutions, we suggest winsorized versions of the simple ARMA-SV estimators. We also

show that a Durbin-Levinson-type updating algorithm can be applied to recursively estimate

models of increasing order p. The asymptotic distribution of the estimators is established. We

compare by simulation the proposed estimators to a Bayesian MCMC estimator. The results

show that the simple winsorized ARMA-SV estimator is uniformly superior to other estimators

in terms of bias and root mean square error. The proposed estimators are applied to stock re-

turn data, and the usefulness of the proposed estimators is assessed in two ways. First, using

the daily return on the S&P 500 index from 1928 to 2016, we find that higher-order SV mod-

els – in particular an SV(3) model – are preferable to a SV(1), from the viewpoint model fit

and both asymptotic and finite-sample tests. Second, using different volatility proxies (the

squared return of S&P 500 index and the realized volatility of S&P 500, FTSE100, NASDAQ100,

N225, SSMI20 indices), we conduct two out-of-sample forecast experiments: (1) we forecast a

moderately volatile period after the late-2000s financial crisis; (2) we forecast a highly volatile

period, i.e., the core financial crisis. We compare the accuracy of volatility forecasts among

SV(p) models, GARCH models, and Heterogenous Autoregressive model of Realized Volatility

(HAR-RV) models. The results suggest that SV(p) models perform better than other models in

most cases. This finding holds even if a high volatility period (such as financial crisis) is in-

cluded in the estimation sample or the forecasted sample. Formal prediction tests, i.e., model

confidence set procedure, also support these inferences. Our findings highlight the usefulness

of higher-order SV models for volatility forecasting.
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In Chapter 4, we introduce a novel class of generalized stochastic volatility (GSV) models,

which utilize high-frequency (HF) information (realized volatility (RV) measures). GSV mod-

els can accommodate nonstationary volatility, various distributional assumptions, and exoge-

nous regressors in the latent volatility equation. Instrumental variable methods are employed

to provide a unified framework for GSV models’ analysis (estimation and inference). We con-

sider the parameter inference problem in GSV models with nonstationary volatility and de-

velop identification-robust methods for joint hypotheses involving the volatility persistence

parameter and the autocorrelation parameter of the composite error (or the noise ratio). For

inference about the volatility persistence parameter, projection techniques are applied. The

proposed tests include Anderson-Rubin-type (AR) tests, a dynamic version of the split-sample

(SS) procedure, and point-optimal versions of these tests (AR∗ and SS∗). For distributional

theory, three different sets of assumptions are considered: (1) for Gaussian errors, we provide

exact tests and confidence sets; (2) for a wide class of parametric non-Gaussian errors (pos-

sibly heavy-tailed), we establish that exact Monte Carlo procedures can be applied using the

statistics considered; (3) under weaker distributional assumptions, we show these tests are

asymptotically valid. A comprehensive Monte Carlo study indicates that the proposed tests

outperform the usual asymptotic test regarding size and exhibit excellent power in empirically

realistic settings. We apply our inference methods to IBM’s price and option data (2009-2013).

We consider 175 different instruments (IV’s) spanning 22 classes and analyze their ability to

describe the low-frequency volatility. The IV’s are compared based on the average length of

confidence intervals, which are produced by the proposed tests. The superior instrument set

mostly consists of 5-minute HF realized measures, and these IV’s produce confidence sets

where the volatility persistence parameter lies roughly between 0.85 and 1.0. This outcome

suggests that the volatility process is highly persistent and close to unit-root. We find RVs with

higher frequency produce wider confidence intervals compared to RVs with slightly lower fre-

quency, showing that these confidence intervals adjust to absorb market microstructure noise

or discretization error. Further, when we consider irrelevant or weak IV’s (jumps and signed

jumps), the proposed tests produce unbounded confidence intervals. Although jumps contain

little information content regarding the low-frequency volatility, we find evidence that there

may be a nonlinear relationship between jumps and the low-frequency volatility.
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Chapter 2

A simple efficient moment-based estimator
for the stochastic volatility model

Abstract

We study the problem of estimating the parameters of the stochastic volatility (SV) process [Taylor
(1982, 1986)], a model of conditional heteroskedasticity with several attractive features, especially for
financial applications. However, due to the presence of latent variables, likelihood-based methods are
difficult to apply, and statistical inference (estimation and testing) for this model is challenging. The
existing methods are either computationally costly and/or inefficient. In this paper, we propose com-
putationally simple estimators for the SV model, which are at the same time highly efficient. The pro-
posed class of estimators is based on a small number of moment equations derived from an ARMA
representation associated with the SV model, along with the possibility of using “winsorization” to im-
prove stability and efficiency. We call these ARMA-SV estimators. Closed-form expressions for ARMA-
SV estimators are obtained, and no numerical optimization procedure or choice of initial parameter
values is required. The asymptotic distributional theory of the proposed estimators is studied. Due
to their computational simplicity, the ARMA-SV estimators allow one to make reliable – even exact –
simulation-based inference, through the application of Monte Carlo (MC) test or bootstrap methods.
We compare them in a simulation experiment with a wide array of alternative estimation methods, in
terms of bias, root mean square error and computation time. In addition to confirming the enormous
computational advantage of the proposed estimators, the results show that ARMA-SV estimators match
(or exceed) alternative estimators in terms of precision – including Bayesian estimators proposed in
this context, which have the best performance among alternative estimators. The proposed methods
are applied to daily observations on the returns for three major stock prices [Coca-Cola, Walmart, Ford]
over the period 1980-2015, and to the Standard and Poor’s Composite Price Index over the 2000-2017
period. The results confirm the presence of stochastic volatility with strong persistence.

Key words: Stochastic volatility; Latent variable; ARCH; Moment estimator; Generalized
method of moments; Quasi-maximum likelihood; Bayesian estimator; Markov Chain Monte
Carlo; Asymptotic distribution; Monte Carlo test; Maximized Monte Carlo test; Stock returns.

Journal of Economic Literature classification: C11; C13; C15; C22; G1
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2.1 Introduction

Modelling the time-varying variance or conditional heteroskedasticity of asset returns is one

of the major problems of financial econometrics. To deal with such features, two main classes

of parametric models have been proposed: (1) ARCH [Engle (1982)] and GARCH models

[Bollerslev (1986)], where volatility is modelled as a deterministic function of past shocks; (2)

stochastic volatility (SV) models [Taylor (1982, 1986)], where volatility is a latent stochastic

process.

SV models may be preferable to GARCH-type models for several reasons. First, SV models

constitute discrete versions of continuous-time diffusion processes, which are widely used in

the option-pricing literature; see Hull and White (1987), Taylor (1994), Shephard and Ander-

sen (2009). Second, SV models are flexible and relatively robust to model misspecification.

GARCH models often require adding a random jump component or allowing for innovations

with heavy-tailed distributions to tackle these problems. Such modifications substantially im-

prove the performance of the standard GARCH, but do not appear to be required for SV mod-

els; see Carnero et al. (2004), Chan and Grant (2016). Third, the SV model performs better

than GARCH-type models in volatility forecasting, which suggests that time-varying volatil-

ity is better modelled as a latent first-order autoregression; see Kim et al. (1998), Yu (2002),

Poon and Granger (2003), Koopman et al. (2005). Fourth, one can easily derive the statistical

properties (stationarity, ergodicity, mixing) of SV models, while this appears more difficult for

GARCH models; see Davis and Mikosch (2009). In particular, conditions for the stationarity

of GARCH models are relatively difficult to establish; see Nelson (1990), Bougerol and Picard

(1992) and Lindner (2009). Finally, SV models belong to the analytically convenient class of

state-space models [Harvey (1989)].

Several reviews of the literature on SV models are available; see Ghysels et al. (1996), Broto

and Ruiz (2004), and Shephard (2005). SV models are also important in macroeconometric

modelling following the seminal work of Cogley and Sargent (2005) and Primiceri (2005). Re-

cent papers along these lines include Benati (2008), Koop et al. (2009), Koop and Korobilis

(2013), Liu and Morley (2014).

Despite their appealing features, SV models are much less popular than GARCH-type mod-

6



CHAPTER 2. SIMPLE EFFICIENT MOMENT-BASED ESTIMATOR

els in the empirical literature. As pointed out by Bos (2012), this may be explained by two

reasons. First, estimating the parameters of an SV model is much more complex than it is

for a GARCH model, since SV models have no closed-form likelihood function. Second, many

statistical packages (such as EVIEWS, GAUSS, MATLAB, R, S+, SAS, TSP, STATA, PYTHON, OX,

etc.) have options for incorporating GARCH effects, while programs for estimating SV models

appear to be much less widespread (some routines in R and MATLAB are available).

Proposed estimation methods for SV models include:

1. the generalized method of moments (GMM) [Melino and Turnbull (1990), Andersen and

Sørensen (1996)];

2. quasi-maximum likelihood (QML) [Nelson (1988), Harvey et al. (1994), Ruiz (1994)];

3. the simulated method of moments (SMM) [Gallant and Tauchen (1996), Monfardini

(1998), Andersen et al. (1999)];

4. Monte Carlo likelihood (MCL) [Sandmann and Koopman (1998)];

5. simulated maximum likelihood (SML) [Danielsson and Richard (1993), Danielsson

(1994), Durham (2006, 2007), Richard and Zhang (2007)];

6. estimation based on linear representations (LiR) [Francq and Zakoïan (2006)];

7. methods based on Bayesian Markov Chain Monte Carlo (MCMC) [Jacquier et al. (1994),

Kim et al. (1998), Chib et al. (2002), Flury and Shephard (2011)];

8. closed-form moment-based estimators (DV) [Dufour and Valéry (2006, 2009)].

The above estimation procedures are typically based on simulation techniques and/or re-

quire numerical optimization. The only exception is the closed-form estimator of Dufour

and Valéry (2006, 2009). Methods such as SML, MCL, SMM, and Bayesian MCMC [through

the Metropolis-Hastings algorithm or the Gibbs sampler] require the use of simulation tech-

niques. These methods are computationally expensive, inflexible across models, and may

converge quite slowly; see Broto and Ruiz (2004). Furthermore, some of these methods require

one to choose a sampling algorithm, initial parameters, or an auxiliary model. The choice of

7



CHAPTER 2. SIMPLE EFFICIENT MOMENT-BASED ESTIMATOR

initial values for QML, GMM or MCMC plays a vital role in convergence [a large number of

non-converging GMM estimations is reported by Andersen et al. (1999)]. As usual, GMM can

easily be adversely affected by an ill-conditioned weighting matrix.

Among these estimators, only the closed-form estimator of Dufour and Valéry (2006, 2009)

is analytically tractable, computationally simple, and easy to implement. However, it tends

to be less precise than some other estimators. In this paper, we propose improved simple

moment-based estimators for the SV model, which retain the computational advantages of

the method described by Dufour and Valéry (2006) and match (or exceed) the precision of

alternative estimators. To do this, we exploit an ARMA representation which can be associated

with the SV model, along with a “winsorization” technique originally proposed by Kristensen

and Linton (2006) for GARCH models.1 The proposed class of estimators can be viewed as

an ARMA-type extension of the approach used in Dufour and Valéry (2006), which leads to a

small but different set of moments. To be more specific, the contributions of the paper can be

summarized as follows.

First, after spelling out the relevant ARMA-type equations, we show that these yield auto-

covariances which can be solved in closed form for the parameters of the SV model. As the

moments involved can be easily estimated from the data, we obtain in this way computation-

ally simple estimators, without the need to use numerical optimization or initial values. We

call these simple ARMA-SV estimators. In particular, the persistence parameter of the process

is estimated by a simple ratio of easily estimable sample autocovariances.

Second, as the proposed estimator may not satisfy stationarity restrictions and can be sen-

sitive to outliers in small samples, we propose winsorized versions of the simple ARMA-SV

estimators (W-ARMA-SV estimators), where the persistence parameter of the SV model is es-

timated using a combination of several ratios of sample autocovariances [such as weighted

averages, the median, or an OLS-based weighting]. This modification remains computation-

ally simple and improves the stability and precision of the estimators. Indeed, we show in

simulations that W-ARMA-SV estimators improve (or match) alternative estimators in terms

of precision – including Bayesian estimators proposed in this context, which have the best

1By exploiting the ARMA representation of GARCH processes, Kristensen and Linton (2006), Sbrana and Poloni
(2013) and Hafner and Linton (2017) have proposed closed-form moment estimators for GARCH(1,1), multivari-
ate GARCH(1,1) and exponential GARCH(1,1) models, respectively.

8



CHAPTER 2. SIMPLE EFFICIENT MOMENT-BASED ESTIMATOR

performance among alternative estimators. In particular, an OLS-based W-ARMA-SV appears

to have the best performance.

Third, due to their computational simplicity, the proposed ARMA-SV estimators can be use-

ful for several purposes.

1. Since they can be easily be simulated, the proposed estimators constitute ideal candi-

dates for building simulation-based tests, even exact tests through the application of

the Monte Carlo test method [see Dufour (2006)], as opposed to procedures based on

establishing asymptotic distributions. Interestingly, exact tests obtained in this way do

not depend on stationarity assumptions, and so may be especially useful when the la-

tent volatility process has a unit root (or is close to this structure).

2. Methods which involve repeated estimation, such as out-of-sample forecasting based

on a rolling window scheme, become easily applicable.

Fourth, we study the asymptotic properties of the proposed estimators under standard reg-

ularity assumptions. In particular, we show that the estimators are
p

T -consistent and asymp-

totically normal (when the fourth moment of the latent volatility process exists), at least with

linear winsorization.

Fifth, we report Monte Carlo simulations comparing the performance of our simple esti-

mators with alternative available estimators, in terms of bias, standard deviation, and mean

square error. We make four important observations: (1) the OLS-type W-ARMA-SV estima-

tor dominates the other winsorized estimators considered; (2) ARMA-SV estimators have an

excellent overall performance: they clearly dominate other non-Bayesian estimators (QML,

GMM, DV) and match the Bayesian estimator; (3) these results underscore that using too

many moments can be very costly from an efficiency viewpoint: it is preferable to use a small

number of well-chosen moments; (4) the proposed ARMA-SV estimators (simple and win-

sorized) are extremely efficient in terms of computation time, especially when compared with

the Bayesian estimator.

Sixth, we present some simulation evidence on the performance of likelihood-ratio-type

(LR-type) tests based on ARMA-SV estimators, for a number of basic hypotheses in this con-

text (no volatility persistence, no random variation in volatility, fixed volatility). Three ap-
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proaches for controlling the level of the tests are considered: (1) using a standard chi-square

asymptotic approximation; (2) local Monte Carlo tests (or parametric bootstrapping); (3) max-

imized Monte Carlo (MMC) tests. We find that tests based on an asymptotic approximation

can be quite unreliable, but simulation-based tests (bootstrapping, MMC) perform well in

terms of level control and power.

Seventh, we present empirical applications to daily observations on the returns for three

major stock prices [Coca-Cola, Walmart, and Ford] over the period 1980-2015, and to the

Standard and Poor’s Composite Price Index over the 2000-2017 period. In this study, using

the proposed estimation method, we find evidence that the returns on these stocks exhibit

stochastic volatility with strong persistence. We also implemented MC tests to construct more

reliable finite-sample inference since the estimated volatility persistence parameter is close

to the unit circle. Three crucial null hypotheses relevant to this context are considered: (a)

no persistence in latent volatility; (b) no latent specification of the volatility process; (c) no

stochastic volatility. These are tested following three approaches: asymptotic critical values, a

local Monte Carlo (or parametric bootstrap) procedure, and a maximized Monte Carlo (MMC)

procedure. All three hypotheses are decisively rejected, irrespective of the test approach used.

For the S&P composite index, the results of our estimation method are compared with those

obtained by a Bayesian MCMC method. The estimates based on the two methods are remark-

ably close, even though our technique requires much less computation time.

This paper is organized as follows. Section 2.2 specifies the model, assumptions, and moti-

vation. Section 2.3 describes simple estimators for the SV model. Section 2.4 reviews the sta-

tionarity, ergodicity and mixing properties of the SV process. Section 2.5 develops the asymp-

totic distributional theory for the simple estimator. Section 2.6 discusses how finite-sample

Monte Carlo tests can be applied using the proposed simple estimator. Section 2.7 presents

the simulation study. The empirical application is presented in Section 2.8. We conclude in

Section 2.9. The proofs, tables, and figures are available in the Appendix 2.10.

10
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2.2 Framework

We consider a standard discrete-time stochastic volatility (SV) model of the type described by

Taylor (1986) and Ghysels et al. (1996). Specifically, we say that a variable yt follows a discrete-

time SV process if it satisfies the following assumption, where t ∈ N0 and N0 represents the

non-negative integers.

Assumption 2.2.1. STOCHASTIC VOLATILITY MODEL. The process
{

yt : t ∈N0
}

satisfies the

equations

yt =σy exp(
wt

2
)zt , (2.2.1)

wt =ϕwt−1 +σv vt , (2.2.2)

where the vectors (zt , vt )
′

are i.i.d. according to a N[0, I2] distribution, while ϕ, σy and σv are

fixed parameters.

We also make a stationarity assumption as follows.

Assumption 2.2.2. STATIONARITY. The process lt := (yt , wt )
′

is strictly stationary.

The above stationarity condition entails
∣∣ϕ∣∣ < 1 and w0 ∼ N[0,σ2

v /(1−ϕ2)]. The SV model

involves two stochastic processes which describe the dynamics of yt and the latent log-

volatilities wt . When yt is an asset return, the latent process wt in (2.2.2) can be interpreted

as a random flow of uncertainty shocks or new information in financial markets, while ϕ rep-

resents volatility persistence. This type of volatility model naturally fits into the theoretical

framework of modern financial theory.

Let us now transform yt by taking the logarithm of its squared value. We get in this way the

following measurement equation:

log(y2
t ) = log(σ2

y )+wt + log(z2
t ) = {log(σ2

y )+E[log(z2
t )]}+wt + {log(z2

t )−E[log(z2
t )]}

= µ+wt +ϵt (2.2.3)

where

µ := E[log(y2
t )] = log(σ2

y )+E[log(z2
t )] , ϵt := log(z2

t )−E[log(z2
t )] . (2.2.4)

11
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Under the normality assumption for zt , the errors ϵt are i.i.d. according to the distribution of

a centered log(χ2
1) random variable [i.e., ϵt has mean zero and variance E(ϵ2

t )]. The cumulant

generating function of the log(χ2
1) distribution is

M(s) = logE
[

exp
(
s log(χ2

1)
)]= logE

[(
χ2

1

)s ]= log

[
2s Γ

(
(1/2)+ s

)
Γ(1/2)

]
= s log(2)+ log[Γ

(
(1/2)+ s

)
]− log[Γ(1/2)] , for s ≥ 0, (2.2.5)

where Γ(z) := ∫ ∞
0 xz−1e−x d x is the gamma function; see Wishart (1947). The mth moment of a

log(χ2
1) random variable is the mth derivative of M(s) evaluated at s = 0, and the corresponding

cumulants are:

κm =


log(2)+ψ( 1

2 ), if m = 1,

ψ(m−1)( 1
2 ), if m > 1,

(2.2.6)

where

ψ(z) := d

d z
ln[Γ(z)] = Γ′(z)

Γ(z)
(2.2.7)

is the digamma function and

ψ(m)(z) := d m

d zm
ψ(z) = d m+1

d zm+1
ln[Γ(z)] (2.2.8)

is the polygamma function of order m [i.e., the (m +1)-th order derivative of the logarithm of

the gamma function].

Using the relationship between cumulants (κm) and central moments (µ̃m) given by

µ̃m =


0, if m = 1

κm +∑m−2
j=1

(m−1
j

)
κm− j µ̃ j , if m > 1

,

and (2.2.6), we get:

E[log(z2
t )] = κ1 = log(2)+ψ(1/2) ≃−1.2704, (2.2.9)

σ2
ϵ := E(ϵ2

t ) = Var[log(z2
t )] = µ̃2 = κ2 =ψ(1)(1/2) =π2/2, (2.2.10)

E(ϵ3
t ) = µ̃3 = κ3 =ψ(2)(1/2) , E(ϵ4

t ) = µ̃4 = κ4 +3κ2
2 =ψ(3)(1/2)+3σ2

ϵ =π4 +3σ2
ϵ ; (2.2.11)

12
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see Abramowitz and Stegun (1970, Chapter 6). The log(χ2
1) distribution is often approximated

by a normal distribution with mean of −1.2704 and variance of π2/2 [see Broto and Ruiz

(2004)], or by a mixture distribution [Kim et al. (1998)].

On setting

y∗
t := log(y2

t )−µ , (2.2.12)

the SV model (2.2.3) can be written as

y∗
t = wt +ϵt . (2.2.13)

By combining (2.2.2) and (2.2.13), we see that the SV model can be written in state-space form:

wt =ϕwt−1 + vt , (State Transition Equation) (2.2.14)

y∗
t = wt +ϵt , (Measurement Equation) (2.2.15)

where wt is the logarithm of latent daily volatility, y∗
t is the logarithm of the daily squared

return corrected by its mean, where the variables vt are i.i.d. N(0,σ2
v ) and the ϵt ’s are i.i.d.

log(χ2
1); for further discussion of this representation, see Nelson (1988), Harvey et al. (1994),

Ruiz (1994), Shephard (1994), Breidt and Carriquiry (1996), Harvey and Shephard (1996), Kim

et al. (1998), Sandmann and Koopman (1998), Steel (1998), Chib et al. (2002), Knight et al.

(2002), Francq and Zakoïan (2006), Omori et al. (2007).

2.3 Simple ARMA-type estimators

In this section, we propose simple estimators for the SV model by exploiting the autocovari-

ance structure of y∗
t . For this purpose, we consider moments and cross-moments of y∗

t which

differ in a crucial way from those used by Dufour and Valéry (2006). In the latter paper, the

parameters of the SV model are obtained through the following equations based on moments

of y2
t [instead of log(y2

t )]:

ϕ= log[E(y2
t y2

t−1)/(E(y2
t ))2]

log[E(y4
t )/3(E(y2

t ))2]
, σy =

31/4E(y2
t )

[E(y4
t )]1/4

, σv = {(1−ϕ2) log[E(y4
t )/

(
3E(y2

t )
)
]}1/2 . (2.3.1)

13
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In this paper, we derive a closed-form estimator of the SV model based on the ARMA repre-

sentation of y∗
t .

The ARMA representation of the process y∗
t and its autocovariance structure are given in

the following proposition.

Proposition 2.3.1. ARMA REPRESENTATION OF LOG-SV PROCESS. Under the Assumptions

2.2.1 - 2.2.2, the process y∗
t defined in (2.2.12) has the following ARMA(1, 1) representation:

y∗
t =ϕy∗

t−1 +ηt −θηt−1 (2.3.2)

with ηt−θηt−1 = vt+ϵt−ϕϵt−1, where the error processes {vt } and {ϵt } are mutually independent,

the errors vt are i.i.d. N(0,σ2
v ), and the errors ϵt are i.i.d. according to the distribution of a

log(χ2
1) random variable.

The above proposition provides simple expressions for the autocovariances and parameters

of the SV model. For future reference, we state these properties in two corollaries.

Corollary 2.3.2. AUTOCOVARIANCES OF LOG-SV PROCESS. Under the assumptions of Proposi-

tion 2.3.1, the autocovariances of the process y∗
t defined in (2.2.12) satisfy the following equa-

tions:

cov(y∗
t , y∗

t−k ) := γy∗(k) =


ϕγy∗(k −1)+σ2

v +σ2
ϵ , if k = 0,

ϕγy∗(k −1)−ϕσ2
ϵ , if k = 1,

ϕγy∗(k −1) , if k ≥ 2.

(2.3.3)

Corollary 2.3.3. CLOSED-FORM EXPRESSIONS FOR SV PARAMETERS. Under the assumptions of

Proposition 2.3.1, we have:

ϕ =
γy∗(k +1)

γy∗(k)
, for k ≥ 1, (2.3.4)

σ2
y = exp[µ−µ2] , (2.3.5)

σ2
v = (1−ϕ2)[γy∗(0)− (π2/2)], (2.3.6)

where γy∗(k) = cov(y∗
t , y∗

t−k ), with y∗
t and µ defined in (2.2.12), and µ2 := E[log(z2

t )] ≃−1.2704.

14
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From (2.3.4), we see that ϕ can be obtained from several autocovariance ratios, which can

be easily estimated with the corresponding empirical moments:

γ̂y∗(k) = 1

T −k

T−k∑
t=1

[log(y2
t )− µ̂][log(y2

t+k )− µ̂] , µ̂= 1

T

T∑
t=1

log(y2
t ) . (2.3.7)

Of these, the ratio γy∗(2)/γy∗(1) is the one for which we can use the largest number of obser-

vations. This suggests the following parameter estimators:

ϕ̂=
γ̂y∗(2)

γ̂y∗(1)
, σ̂2

y = exp(µ̂+1.2704), σ̂2
v = (1− ϕ̂

2
)[γ̂y∗(0)− (π2/2)] . (2.3.8)

We call these the simple ARMA-SV estimators.

A shortcoming of the above simple ARMA-type estimator is that it can yield inadmissible

parameter values, e.g. with
∣∣ϕ̂∣∣ ≥ 1. This issue can arise especially in small samples or in the

presence of outliers. To deal with a similar problem, Kristensen and Linton (2006) proposed to

use “winsorization” which substantially increases the probability of getting admissible values.

From (2.3.4), it is easy to see that

ϕ=
∞∑

j=1
w j

γy∗( j +1)

γy∗( j )
(2.3.9)

for any sequence w j such that
∑∞

j=1 w j = 1. This suggests a more general class of estimators

for ϕ obtained by averaging several sample analogs of the ratios γy∗( j +1)/γy∗( j ):

ϕ̃=
J∑

j=1
w j

γ̂y∗( j +1)

γ̂y∗( j )
(2.3.10)

where 1 ≤ J ≤ T −2 with
∑J

j=1 w j = 1, and T is the length of the time series. We call such esti-

mators winsorized ARMA-SV estimators (or W-ARMA-SV estimators). Other (possibly nonlin-

ear) averaging methods, such as the median, may also be used.

In the simulation section below, we consider four different winsorized ARMA-SV estima-

tors based on (2.3.10). These estimators are also considered by Hafner and Linton (2017) in

the context of closed-form estimation of the EGARCH(1, 1) model. The first one (ϕ̂M ) is an
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arithmetic mean of sample covariance ratios (equal weights): we set

w j = 1/J , j = 1, . . . , J , (2.3.11)

in (2.3.10). The second one (ϕ̂LD ) has linearly declining weights: we set

w j = (2/J )[1− ( j /(J +1))], j = 1, . . . , J , (2.3.12)

in (2.3.10). The third one (ϕ̂MED ) is the median of J autocovariance ratios:

ϕ̂MED = med{γ̂y∗( j +1)/γ̂y∗( j ) : j = 1, . . . , J }. (2.3.13)

The fourth one (ϕ̂OLS) is based on the OLS regression of γ̂y∗( j +1)w 1/2
j on γ̂y∗( j )w 1/2

j without

intercept: this suggests the estimate

ϕ̂OLS = (
ā ′ā

)−1ā ′ē (2.3.14)

where ā = [γ̂y∗(1)w 1/2
1 , . . . , γ̂y∗(J )w 1/2

J ]′ and ē = [γ̂y∗(2)w 1/2
1 , . . . , γ̂y∗(J + 1)w 1/2

J ]′. Clearly, dif-

ferent OLS-based W-ARMA-SV can be generated by considering different weights w1, . . . , w J .

In our simulations below as well as empirical applications, we focus on the case where the

weights are equal [see (2.3.11)]: in this case,

ϕ̂OLS =
∑J

j=1 γ̂y∗( j ) γ̂y∗( j +1)∑J
j=1 γ̂y∗( j )2

(2.3.15)

All these estimators depend on J . For J = 1, they all yield the simple ARMA-SV estimator

ϕ̂= γ̂y∗(2)/γ̂y∗(1).

2.4 Stationarity, ergodicity and mixing properties

In SV models, the independence between the noise (zt ) and the volatility variable (wt ) allows

for a simpler probabilistic structure than for GARCH processes. This independence is one of
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the attractive features of SV models. Indeed, the problem of finding a necessary and suffi-

cient condition for stationarity of GARCH processes was tackled fairly late [see Nelson (1990)

and Bougerol and Picard (1992)]; for reviews, see Straumann (2005) and Francq and Zakoïan

(2010). To establish the large-sample properties for our estimator, we consider the case where

(wt , yt )′ is strictly stationary and ergodic. The following results ensure the stationarity, ergod-

icity and mixing for the standard SV model; see Carrasco and Chen (2002).

Result 2.4.1. STATIONARITY AND ERGODICITY. Let {zt } and {vt } be two independent processes

such that {zt } is a sequence of i.i.d. real-valued random variables, independent of w0, with

E(zt ) = 0 and E(z2
t ) = 1, and zt has a continuous strictly positive density (with respect to the

Lebesgue measure) on the real line. Suppose also that
∣∣ϕ∣∣< 1 and there is an integer s ≥ 1 such

that

E(|vt |s) <∞ . (2.4.1)

Then the following properties hold.

(i ) E(|wt |s) <∞ and {wt } is Markov geometrically ergodic.

(i i ) If {wt } is initialized from its stationary distribution, the processes {wt } and
{

yt
}

are strictly

stationary and exponential β-mixing, and this property is preserved by any continuous

transformation of {wt }, such as
{
exp(wt /2)

}
.

(i i i ) If E
( |ln(|zt |)|s

)<∞, then E
(∣∣ln(

∣∣yt
∣∣)∣∣s )<∞.

Note that the latter part of the above result follows easily on observing that yt =
exp(wt /2)σy zt entails

ln
∣∣yt

∣∣= wt /2+ ln
∣∣σy

∣∣+ ln |zt | . (2.4.2)

The stochastic volatility process {yt } is a hidden Markov process since it includes a latent

Markov chain {wt }. Further, the process {wt } is independent of the i.i.d. noise process {zt }.

Proposition 2.1 of Genon-Catalot et al. (2000) show that a hidden Markov model yt is ergodic

and strong mixing if the hidden chain {wt } is ergodic and strong mixing. In the context of the

SV model, (2.4.2) and Proposition 4 of Carrasco and Chen (2002) entail the following result.
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Result 2.4.2. BETA MIXING. Let
{

yt
}

be a generalized hidden Markov model with a hidden

chain {wt }.

(i ) If {wt } is geometrically ergodic, the process
{
(wt , ln

∣∣yt
∣∣)} is Markov geometrically ergodic.

(i i ) If {wt } is stationary β-mixing,
{
ln

∣∣yt
∣∣} is stationary β-mixing with a decay rate at least

as fast as that of {wt }.

We thus have the following basic property of the SV process: if {wt } is initialized from its

stationary distribution,
{
ln

∣∣yt
∣∣} is strictly stationary and exponential β-mixing, and so is the

process {(yt , wt )
′
}.

2.5 Asymptotic distributional theory

We will now study the asymptotic distribution of the estimator θ̂ := (ϕ̂, σ̂y , σ̂v )
′

under the fol-

lowing set of assumptions.

Assumption 2.5.1. DISTRIBUTION OF THE ERROR PROCESSES. The error processes zt and vt are

mutually independent and {zt } is a sequence of i.i.d. real-valued random variables, indepen-

dent of w0. The probability distribution of zt has a continuous density with respect to Lebesgue

measure on the real line, and its density is positive on (−∞,+∞). The transformed error ϵt

satisfies E(|ϵt |s) <∞, where s is an integer such that s ≥ 1.

Assumption 2.5.2. STATIONARITY OF THE LATENT PROCESS. The latent process {wt } is strictly

stationary with
∣∣ϕ∣∣< 1, E(|wt |s) <∞, and E(|vt |s) <∞ . where s is a positive integer.

Under the Assumptions 2.5.1 and 2.5.2 with s = 2, the process {y∗
t } is strictly stationarity

and geometrically ergodic with exponential β-mixing (see results 2.4.1 and 2.4.2) with finite

second moments, i.e., E
[
(y∗

t )2
] < ∞. In the following lemma, using ergodicity, we prove the

consistency of the empirical moments in (2.3.7).

Lemma 2.5.1. CONSISTENCY OF EMPIRICAL MOMENTS. Under the Assumptions 2.5.1 and 2.5.2

with s = 2, the estimators Γ̂(m) := [γ̂y∗(0), γ̂y∗(1), . . . , γ̂y∗(m)]′ and µ̂ defined by (2.3.7) satisfy:

for any m ≥ 0,

µ̂
p−→µ and Γ̂(m)

p−→Γ(m) := [γy∗(0), γy∗(1), . . . , γy∗(m)]′ . (2.5.1)
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The Assumptions 2.5.1 and 2.5.2 with s = 4 are sufficient for the SV model to have a strictly

stationary solution with a finite fourth moment of y∗
t , i.e., E

[
(y∗

t )4
]<∞. Note that the fourth

moment of y∗
t translates into the eighth moment of yt . This solution will be β-mixing with

geometrically decreasing mixing coefficients. In the following lemma, using a Central Limit

Theorem for stationary ergodic processes (Lindeberg-Levy theorem for dependent processes),

we give the asymptotic distribution of the empirical moments in (2.3.7).

Lemma 2.5.2. ASYMPTOTIC DISTRIBUTION OF EMPIRICAL MOMENTS. Under the assump-

tions 2.5.1, 2.5.2 with s = 4, the estimators Γ̂(m) = [γ̂y∗(0), γ̂y∗(1), . . . , γ̂y∗(m)]′ and µ̂ defined

by (2.3.7) satisfy:

p
T

 µ̂−µ

Γ̂(m)−Γ(m)

 d−→ N

0,

 Vµ C
′
µ,Γ(m)

Cµ,Γ(m) VΓ(m)


 (2.5.2)

where

Vµ := γy∗(0)+2
∞∑
τ=1

γy∗(τ) , VΓ(m) = Var(Λt )+2
∞∑
τ=1

cov(Λt , Λt+τ) , C = (c̄, 0[1×m])
′ , (2.5.3)

Λt := [Λt ,0, Λt ,1, . . . , Λt ,m]′ , (2.5.4)

Λt ,k := y∗
t y∗

t+k −γy∗(k) = [log(y2
t )−µ][log(y2

t+k )−µ]−γy∗(k) , k = 0, . . . , m , (2.5.5)

c̄ :=Cµ,Γ(0) = 2
∞∑

t=1
E[y∗3

t ] = 2
∞∑

t=1
(E[w 3

t ]+E[ϵ3
t ]) = 2

∞∑
t=1

E[ϵ3
t ] . (2.5.6)

This in turn yields the asymptotic distribution of the simple ARMA-type estimator

(ϕ̂, σ̂y , σ̂v )
′
.

Theorem 2.5.3. ASYMPTOTIC DISTRIBUTION OF SIMPLE ARMA-TYPE ESTIMATOR. Under the

assumptions 2.5.1, 2.5.2 with s = 4, the estimator θ̂ := (ϕ̂, σ̂y , σ̂v )
′

given in (2.3.8) is consistent,

i.e., θ̂
p−→ θ, and

p
T (θ̂−θ)

d→ N[0, V ] (2.5.7)

where θ := (ϕ,σy ,σv )
′
,

V =G(β)

 Vµ C
′
µ,Γ(3)

Cµ,Γ(3) VΓ(3)

 G(β)
′
, (2.5.8)
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G(β) := ∂D

∂β
′ =


0 0 −γy∗(2)/γy∗(1)2 1/γy∗(1)

σy /2 0 0 0

0 1
2

√
κ1
κ2

γy∗ (2)2

γy∗ (1)3

√
κ2
κ1

− γy∗ (2)

γy∗ (1)2

√
κ2
κ1

 , (2.5.9)

D := D(β) = (Dϕ, Dσy , Dσv )
′
, β := [µ, γy∗(0), γy∗(1), γy∗(2)]

′
, (2.5.10)

Dϕ := γy∗(2)/γy∗(1) , Dσy := exp(µ+1.27)1/2 , Dσv = κ1κ2 , (2.5.11)

σy =
√

exp(µ+1.2704), κ1 = [1− (γy∗(2)/γy∗(1))2], κ2 = [γy∗(0)−π2/2] . (2.5.12)

An estimator of the covariance matrix V can be obtained by first estimating Vµ, Cµ,Γ(3) and

VΓ(3) using heteroskedasticity and autocorrelation consistent (HAC) variance estimators [see

Den Haan and Levin (1997) and Robinson and Velasco (1997)] and then substituting β̂ = [µ̂,

γ̂y∗(0), γ̂y∗(1), γ̂y∗(2)]
′

into G(β). In our empirical applications, we use a Bartlett kernel esti-

mator with the bandwidth varying with the sample size; see Newey and West (1994). One can

alternatively use the analytic expressions of γy∗(k) to obtain an estimator of Vµ. The ARMA-

type estimator can be viewed as a GMM-type estimator, so one can also use GMM standard

errors.

Theorem 2.5.3 covers the simplest ARMA-SV estimator. The asymptotic distribution of more

general winsorized estimators can be derived in the same way upon using Lemmas 2.5.1 -

2.5.2.

2.6 Hypothesis testing

In this section, we discuss how to test a hypothesis on an SV model. First, we discuss asymp-

totic tests based on t-type and LR-type test statistics. Second, we show how to construct finite-

sample tests using the Monte Carlo test technique.
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2.6.1 Asymptotic tests

The SV model has three parameters, given by θ = (ϕ,σy ,σv )
′
. To test the values of individual

parameters, we can consider t-type statistics of the form:

T (θ1) = (θ̂1 −θ1)/SE(θ̂1)

where the standard error SE(θ̂1) is calculated from the asymptotic covariance matrix given in

(2.5.7).

For testing a joint hypothesis, we consider GMM-based LR-type statistics, based on the fol-

lowing moment-based objective function:

MT (θ) := gT (θ)′AT gT (θ) (2.6.1)

where θ := (ϕ,σy ,σv )′, gT (θ) is 3×1 vector of moment functions, defined as

gT (θ) =


µ̂+1.2704− log(σ2

y )

γ̂y∗(0)+ γ̂y∗(1)− (π2/2)− [σ2
v /(1−ϕ)]

γ̂y∗(2)−ϕγ̂y∗(1)

 (2.6.2)

and AT is an appropriate weighting matrix. MT (θ) is (up to an asymptotically negligible term)

a GMM objective function.

The first moment function follows from (2.2.4). The second moment function follows from

Corollary 2.3.2 on adding the equations for k = 0 and k = 1 [in (2.3.3)]: this yields

γ̂y∗(0)+ γ̂y∗(1)− (π2/2)− [σ2
v /(1−ϕ)] = 0. (2.6.3)

The third moment condition corresponds to equation (2.3.3) with k = 2.

Since the number of moment functions in (2.6.2) is equal to the number of parameters, we

take AT = I3 and consider the GMM-type objective function

M∗
T (θ) = gT (θ)′gT (θ) . (2.6.4)
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To test hypotheses on θ, the LR-type statistic is the difference between the restricted and un-

restricted optimal values of the objective function:

LRT = T [M∗
T (θ̂0)−M∗

T (θ̂)] (2.6.5)

where θ̂ is the unrestricted estimator and θ̂0 is the constrained estimator under the null hy-

pothesis. Under standard regularity conditions, the asymptotic distribution of LRT is χ2
r where

r is the number of constraints; see Newey and West (1987), Newey and McFadden (1994), Du-

four et al. (2017). Note however that usual regularity conditions may not be satisfied when

some parameters are not identified or the null hypothesis involves the frontier of the param-

eter space.

2.6.2 Simulation-based finite-sample tests

We now discuss simulation-based inference procedures for the SV model. Simulation-based

methods are tractable in the context of this study for two reasons: (1) the SV model is a para-

metric model, and we can easily simulate it; (2) the proposed test statistics for SV parameters

are based on computationally inexpensive estimators and thus can also be easily simulated.

Using our proposed computationally simple estimator, one can construct more reliable finite-

sample inference using Monte Carlo tests.

The technique of Monte Carlo tests was originally proposed by Dwass (1957) for imple-

menting permutation tests and by Barnard (1963) for continuous test statistics; for a review,

see Dufour and Khalaf (2001), and for further generalizations and proofs, see Dufour (2006).

It has the great attraction of providing exact (randomized) tests based on any statistic whose

finite-sample distribution can be simulated, even though it may be analytically intractable.

One can replace the unknown theoretical distribution F (S |θ), where θ = (ϕ,σy ,σv ), by its

sample analogue based on the statistics S1(θ), . . . , SN (θ) simulated under the null hypothesis.

Let us first consider the case of pivotal statistics, i.e. the case where the distribution of the

test statistic under the null hypothesis does not depend on nuisance parameters. We can then

proceed as follows to obtain an exact critical region for testing a null hypothesis H0.

1. Compute the observed test statistic S0 from the available data.
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2. Generate by Monte Carlo methods a vector S(N ) = (S1, . . . , SN ) of N i.i.d. replications of

S under H0.

3. From the simulated samples, compute the MC p-value p̂N [S] := pN [S0; S(N )] where

pN [x, S(N )] := NGN [x; S(N )]+1

N +1
, (2.6.6)

GN [x; S(N )] := 1

N

N∑
i=1

I[0,∞)(Si −x) , I[0,∞)(x) =


1 if x ∈ [0, ∞),

0 if x ∉ [0, ∞).
(2.6.7)

In other words,

pN [S0; S(N )] = NGN [S0; S(N )]+1

N +1
(2.6.8)

where NGN [S0; S(N )] is the number of simulated values greater than or equal to

S0. When S0, S1, . . . , SN are all distinct [an event with probability one when the

vector (S0, S1, . . . , SN )
′

has an absolutely continuous distribution], R̂N (S0) = N + 1 −
NGN [S0; S(N )] is the rank of S0 in the series S0, S1, . . . , SN .

4. The MC critical region for a test of level α (0 <α< 1) is

p̂N [S] ≤α . (2.6.9)

If α(N+1) is an integer and the distribution of S is continuous under the null hypothesis,

then under H0,

P [p̂N [S] ≤α] =α; (2.6.10)

see Dufour (2006).

Consider now the case where the distribution of the test statistic depends on nuisance pa-

rameters. In other words, we consider a model {(Ξ,AΞ, Pθ) : θ ∈Ω} where we assume that the

distribution of S is determined by P θ̄, where θ̄ represents the true parameter vector. To deal

with this complication, the MC test procedure can be modified as follows.

1. To test the null hypothesis

H0 : θ̄ ∈Ω0 (2.6.11)
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where ; ̸=Ω0 ⊂Ω, compute the observed test statistic S0 from the available data.

2. For each θ ∈ Ω0, we can generate by Monte Carlo methods a vector S(N ,θ) =
[(S1(θ), . . . , SN (θ)] of N i.i.d. replications of S.

3. The simulated test statistics define the MC p-value function p̂N [S |θ] := pN [S0; S(N ,θ)]

where

pN [x; S(N , θ)] := NGN [x; S( N , θ)]+1

N +1
. (2.6.12)

4. The p-value function p̂N [S |θ] as a function of θ is maximized over the parameter values

compatible with Ω0, i.e., under the null hypothesis, and H0 is rejected if N

sup{p̂N [S |θ] : θ ∈Ω0} ≤α. (2.6.13)

If the number N of simulated statistics is chosen so that α(N +1) is an integer, then we

have under H0:

P θ̄[sup{p̂N [S |θ] : θ ∈Ω0} ≤α] ≤α . (2.6.14)

Consequently the critical region in (2.6.13) has level α for testing H0; for a proof, see

Dufour (2006).

Because of the maximization in the critical region (2.6.13), the above test is called a max-

imized Monte Carlo (MMC) test. MMC tests provide valid inference under general regularity

conditions such as unidentified models or time series processes involving unit roots. In par-

ticular, even though the moment conditions defining the estimator are derived under the sta-

tionarity assumption, this does not question in any way the validity of maximized MC tests,

unlike the parametric bootstrap whose distributional theory is based on strong regularity con-

ditions. Only the power of MMC tests may be affected. However, the simulated p-value func-

tion is not continuous, so standard gradient-based algorithms and quasi-Newton methods

cannot be used to maximize it. But search methods applicable to non-differentiable functions

are applicable, e.g. simulated annealing or Particle Swarm Optimization.

A simplified approximate version of the MMC procedure can alleviate its computational

load whenever a consistent point or set estimate of θ is available. To do this, we reformulate
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the setup in order to allow for an increasing sample size, i.e., now the test statistic depends on

a sample of size T , S = ST .

1. Compute ST 0 the observed test statistic (based on data). By assumption, the distribution

of S involves nuisance parameters under the null hypothesis H0 in (2.6.11).

2. We suppose we have a consistent set estimator CT of θ̄ (under H0), i.e. CT satisfies

lim
T→∞

P θ̄[θ̄ ∈CT ] = 1 under H0. (2.6.15)

3. For each θ ∈ Ω0, we can generate by Monte Carlo methods a vector S(N ,θ) =
[(S1(θ), . . . , SN (θ)] of N i.i.d. replications of S.

4. he simulated test statistics define the MC p-value function p̂T N [ST |θ] :=
pT N [ST 0; ST (N ,θ)], where

pT N [x; ST (N , θ)] := NGT N [x; ST (N , θ)]+1

N +1
. (2.6.16)

5. The p-value function p̂T N [ST |θ] as a function of θ is maximized with respect to θ in

CT , and H0 is rejected if

sup{p̂T N [ST |θ] : θ ∈CT } ≤α. (2.6.17)

If the number of simulated statistics N is chosen so that α(N + 1) is an integer, then

under H0,

lim
T→∞

P θ̄[sup{p̂T N [ST |θ] : θ ∈CT } ≤α] ≤α . (2.6.18)

The critical region in (2.6.17) has level α asymptotically.

In practice, it is easy to find a consistent set estimate of θ̄, whenever a consistent point

estimate θ̂T of θ̄ is available (e.g., a GMM estimator). For instance, any set of the form

CT = {θ ∈Ω0 :
∥∥θ̂T −θ

∥∥< ε} (2.6.19)
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with ε> 0 a fixed positive constant independent of T , satisfies (2.6.15). The consistent set es-

timate MMC (CSEMMC) method is especially useful when the distribution of the test statistic

is highly sensitive to nuisance parameters. Here, possible discontinuities in the asymptotic

distribution are automatically overcome through a numerical maximization over a set which

contains the true value of the nuisance parameter with probability one asymptotically (while

there is no guarantee for the point estimate to converge sufficiently fast to overcome the dis-

continuity). It is worth noting that there is no need to maximize the p-value function with

respect to unidentified parameters under the null hypothesis. Thus, parameters which are

unidentified under the null hypothesis can be set to any fixed value and the maximization

be performed only over the remaining identified nuisance parameters. When there are sev-

eral nuisance parameters, one can use simulated annealing, an optimization algorithm which

does not require differentiability. Indeed the simulated p-value function is not continuous, so

standard gradient based methods cannot be used to maximize it. For an example where this

is done on a VAR model involving a large number of nuisance parameters, see Dufour and

Jouini (2006).

The test based on simulations using a point nuisance parameter estimate is called a local

Monte Carlo (LMC) test. The term local reflects the fact that the underlying MC p-value is

based on a specific choice for the nuisance parameter. If the set CT in (2.6.17) is reduced to a

single point estimate θ̂T , i.e. CT = {θ̂T }, we get a LMC test

p̂T N [ST | θ̂T ] ≤α (2.6.20)

which can be interpreted as a parametric bootstrap test. Note that no asymptotic argument

on the number N of MC replications is required to obtain this result, a fundamental difference

between the latter procedure and the parametric bootstrap method.

Even if θ̂T is a consistent estimate of θ̄ (under the null hypothesis), the set CT = {θ̂T } does

not generally satisfy condition (2.6.15). Additional assumptions are needed to show that the

parametric bootstrap procedure yields an asymptotically valid test. It is computationally less

costly but clearly less robust to violations of regularity conditions than the MMC procedure;

for further discussion, see Dufour (2006). Furthermore, the LMC non-rejections are exactly
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conclusive in the following sense: if p̂N [S | θ̂0] > α, then the exact MMC test is clearly not

significant at level α.

2.6.3 Implicit standard error

In this subsection, we show that implicit standard errors (ISE) for the components of a pa-

rameter vector θ = (θ1, . . . , θm)′ can be derived from simulation-based confidence intervals.

The asymptotic standard error proposed in Section 2.5 can be markedly different and may be

quite unreliable in finite samples. To construct a more reliable standard error, we derive the

ISE in the following way.

1. Calculate the (typically restricted) estimate θ̂0 = (θ̂10, . . . , θ̂m0)′ from observed data (Y0).

2. Using θ̂0 as parameter value, generate N i.i.d. replications Y(N ) = (Y1, . . . ,YN ) of Y, by

Monte Carlo methods.

3. From Y(N ) = (Y1, . . . ,YN ), compute the corresponding parameter estimates.

4. For each component θi of θ, the confidence interval [Ci (αL), Ci (αH )], with coverage α=
αL −αH , is constructed using the empirical αi L quantile and the empirical αi H quantile

of θ̂i (N ) = (θ̂i 0, θ̂i 1, . . . , θ̂i N ).

5. By analogy with usual Gaussian-based confidence intervals, we set Ci (αL) = θ̂i 0 −
z(α/2) σ̂i L and Ci (αH ) = θ̂i 0 + z(α/2) σ̂i H , where z(α/2) satisfies P [Z ≥ z(α/2)] = α/2

and Z ∼ N(0, 1). This suggests that two numbers could play the role of “standard errors”

here:

σ̂i L = θ̂i 0 −Ci (αL)

z(α/2)
:= I SEi L , σ̂iU = Ci (αH )− θ̂i 0

z(α/2)
:= I SEi H . (2.6.21)

6. Finally, a conservative ISE for θi is given by min{I SEi L , I SEi H } and a liberal ISE is given

by the average or max{I SEi L , I SEi H }.
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2.7 Simulation study

In this section, we study by simulation the properties of our proposed estimators in terms of

bias and root mean square error (RMSE). We also present some simulation evidence on the

finite-sample properties of the LR-type test described in Section 2.6.

2.7.1 Estimation

We first investigate the finite-sample properties of the proposed winsorized ARMA-SV estima-

tors for the persistence parameter ϕ, namely ϕ̂M , ϕ̂LD , ϕ̂MED , and ϕ̂OLS (with equal weights).

We generate SV processes with (ϕ,σy ,σv ) = (0.95, 0.2, 0.9), which represent typical estimates of

a financial time series. These values are also representative of those obtained in our empirical

study. We consider four different sample sizes (T = 200, 500, 1000, 10000) and use 1000 repli-

cations. All four winsorized estimators depend on the truncation parameter J , so we consider

different values of the truncation parameter (J = 1, 5, 10, 20, 30, 40, 50, 100). Note J = 1 repre-

sents the simple ARMA-SV estimator. The simulation results are reported in Table 2.1, where

the average values of the parameter estimates are reported under the different parameter es-

timates (ϕ̂M , ϕ̂LD , ϕ̂MED , ϕ̂OLS), along with the estimated standard errors of the estimators

(SD), and the frequencies of inadmissible parameter estimates (NIV).

Clearly, the different estimators perform best with values of J in the range of 5 to 10; low

and large values of J produce inferior results. As expected, the performance improves with

the sample size T . But the estimators based on relatively simple weighted averages produce

inadmissible parameter values even in large samples for higher J . However, the number of

unacceptable parameter values decline as the sample size increases. This fact also tells us that

the variability of estimated ACF is also going down as the sample size increases. Median and

OLS estimates are better than the weighted estimator while OLS based estimates are superior.

OLS estimates outperformed other three estimators in terms of bias and standard error, across

different sample sizes particularly in small samples. Further, it is also robust to different values

of J . From the reported results, there may be a bias-variance trade-off for higher values of J .

Finally, we suggest to use OLS for winsorizing and use small values of J for large samples or
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vice versa.

Second, we compare the statistical performance of the proposed estimators (ARMA-SV and

W-ARMA-SV) with alternative estimators (QML, GMM, Bayesian-MCMC, DV). The W-ARMA-

SV estimator considered is the OLS-based one with J = 10. Bayesian estimates are computed

using the R package stochvol [Kastner (2016)]. We consider two SV models where parameter

values of (ϕ,σy ,σv ) are M1 = (0.95, 0.2, 0.9) and M2 = (0.98, 0.025, 1). The parameters were

selected to represent values often found in empirical applications of hourly or daily returns,

where it is observed that ϕ is very close or exactly one and the estimated value of σ2
v between

0.01 and 2.77; see Ruiz (1994). The simulations use 1000 replications and we present results

for two different sample sizes (T = 500, 2000).

In our simulations, we encountered frequent non-convergence problems with GMM esti-

mation. These simulated samples had to be discarded. The DV and simple ARMA-SV estima-

tors of ϕ also occasionally produced values outside the stationary region. These samples were

also discarded. So the bias and RMSE obtained are thus conditional on the non-occurrence of

non-convergence or inadmissible values. Such problems are practically non-existent with the

OLS-based W-ARMA-SV estimator.

Table 2.2 reports the estimation results for model M1. From this table, we see that the GMM

estimator performs poorly in terms of bias and RMSE. The W-ARMA-SV and Bayesian estima-

tors are almost unbiased. For the estimation of ϕ, the DV method yields the biggest RMSE, and

the Bayesian method produces the smallest RMSE. The W-ARMA-SV method yields the small-

est RMSE for σy and the Bayesian estimation yields the smallest RMSE for σv . The results

for the two sample sizes are qualitatively similar (T = 500, 2000) and indicate that estimator

precision increases with the sample size.

The results for the M2 model are reported in Table 2.3. These are very similar to the results

of the M1 model. In this setting, compared to M1, all methods (except the GMM estimator)

have smaller bias and RMSE. These results may be because in this setting the ϕ is nearly unit

root. Again the W-ARMA-SV estimator exhibits good statistical properties regarding bias and

RMSE than several computationally expensive estimators. Furthermore, from Table 2.4, the

winsorized estimator is highly time-efficient and the margin of this time efficiency is enor-

mous compared to other estimators except for the DV estimator.
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2.7.2 Testing

We now investigate the finite-sample level and power of the LR-type tests based on the statistic

defined in equation (2.6.5). This LR-type test statistic corresponds to the difference between

the restricted and the unrestricted optimal values of the objective function; see Section 2.6 for

further details.

We consider the following three null hypotheses, which are of fundamental in our setup.

1. No persistence (no clustering) in volatility in the SV model [ϕ= 0]. In this case, volatility

is random but not persistent.

2. The volatility process is not a latent stochastic process [σv = 0]. This problem is an

important pre-test before one tries to include a latent stochastic process to drive the

dynamics of the log-volatility. If this null hypothesis holds, we have an EGARCH-type

model where, given the past, the logarithm of the variance is modeled as a deterministic

process.

3. No stochastic volatility [ϕ = 0 and σv = 0] This is also a crucial pre-test before allowing

for conditional heteroskedasticity.

Three ways of implementing the tests are considered: asymptotic critical values, paramet-

ric bootstrap, and MMC. Parametric bootstrap (or LMC) tests are performed by replacing the

nuisance parameters by their corresponding point estimates. MMC tests involve maximizing

the p-value function over the nuisance parameter space.

For MMC tests of the no-persistence hypothesis, we have two nuisance parameters (σy ,σv )

and the set CT (ϕ) over which we maximize the simulated p-value is

CT (ϕ) = {(σy , σv ) : |σy − σ̂0
y |≤ 0.3, σy ≥ 0.01, |σv − σ̂0

v |≤ 1.25, σv ≥ 0.01} (2.7.1)

where (σ̂0
y , σ̂0

v ) are the restricted estimates of (σy ,σv ) subject to ϕ = 0. Note that estimate

of ϕ has no influence on the estimate of σy , so the restricted and unrestricted estimates are

the same. The bounds of 0.30 and 1.25 for the scale parameters correspond to more than 10

standard errors for each and we also restrict them to be positive. Note that, any fixed bound
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associated with a consistent estimator will lead to an asymptotically valid test provided that

the probability of covering the true parameter converges to one as the sample size goes to

infinity, see Dufour (2006).

For the second hypothesis (no latent volatility, σv = 0), the nuisance parameters are (ϕ, σy )

and we maximize the p-value over the set

CT (σv ) = {(ϕ, σy ) : |ϕ− ϕ̂
0 |≤ 0.3, |ϕ |≤ 0.99, |σy − σ̂0

y |≤ 0.3, σy ≥ 0.01} (2.7.2)

where (ϕ0, σ̂0
y ) are the restricted estimates of (ϕ,σy ) subject to σv = 0 and they are equivalent

to the unrestricted estimates. The bounds for nuisance parameters satisfy more than 10 stan-

dard errors. Further, we put additional stationarity restriction on ϕ and positivity restriction

on σy .

For the no-stochastic-volatility hypothesis, the nuisance parameter set is

CT (ϕ, σv ) = {σy : |σy − σ̂0
y |≤ 0.3, σy ≥ 0.01} (2.7.3)

where σ̂0
y is the restricted estimate of σy under the null hypothesis.

The number of replications used for the Monte Carlo tests is N = 99. The nominal level is

α = 0.05 and the rejection frequencies are estimated from 1000 simulations. T is the sample

size of the series yt which follows the process defined in equations (2.2.1) - (2.2.2). In the

power study, the asymptotic critical points are locally level-corrected, i.e. the critical points

are modified to ensure that the rejection frequency under the null hypothesis (for the specific

nuisance parameter values considered) is equal to 0.05. Note that we use the term “locally

level-corrected” instead of “size-corrected” because a true size correction would require one to

ensure that the probability of rejecting the null hypothesis under all distributions compatible

with null hypothesis (i.e., for all values of the nuisance parameters) be less than or equal to the

level α. However, finding the appropriate size-corrected critical values requires a numerical

search that was not performed in the experiments. The corrected critical value is obtained by

simulating the test statistic under the null hypothesis with 10000 replications for asymptotic

tests and 1000 replications for MC-type tests. The maximization of MMC tests was done using

grid search method and calculations were performed with the R system [MaxMC package of
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Dufour and Neves (2018)].

Table 2.5 reports the empirical levels of asymptotic, bootstrap and MMC tests based on

LR-type test statistics. In panel A (no-persistence hypothesis), the asymptotic tests severely

over-reject the null hypothesis. Level distortions increase with the sample size, indicating that

standard critical values are not asymptotically valid. In this case, bootstrap tests control the

level very well while MMC tests are conservative. Results on testing that volatility is not a

latent process appear in panel B. In this case, all three types of tests control the level. How-

ever, asymptotic tests are undersized compared to bootstrap and MMC tests. In panel C (no

stochastic volatility hypothesis), the asymptotic tests are not valid (large size distortion) while

bootstrap and MMC tests control the type I error.

We report the empirical powers of asymptotic, bootstrap and MMC tests in Table 2.6. In

panel A, we report empirical powers for tests of H0 : ϕ = 0. We can see from the results that

the bootstrap and MMC tests have more power than the asymptotic tests. The bootstrap tests

have good power properties even when T = 250. Further, although the MMC tests may be

conservative in this case, their power is quite close to the bootstrap tests and even perform

better when T = 1000. For H0 : σv = 0, we can see from panel B that all three tests have similar

power. However, for the no stochastic volatility hypothesis [H0 : σv = 0 (panel C)], the asymp-

totic tests are less powerful compared to other tests. Bootstrap and MMC-based LR-type tests

exhibit excellent power – which increases with the sample size – and are identical to each

other.

2.8 Applications to stock price volatilities

In this section, we estimate the SV model for stock price data. First, we estimate the SV model

using our simple estimators and discuss the fit of this model. We then present more reliable

inference by exploiting MC tests, since our simple estimators are convenient in the context of

simulation-based inference procedures.

The SV model is fitted to daily returns of Coca-Cola (KO), Walmart (WMT), and Ford (F).

The price data come from Wharton Research Data Services (WRDS) and the sample pe-

riod is 02/01/1980 to 31/12/2015, giving us 9081 observations. This period covers the Black
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Monday (1987), the Asian financial crisis (1997), the early 2000s recession (Dot-com bub-

ble), the late-2000s Financial Crisis (Subprime mortgage crisis / United States housing bub-

ble) and the recent Russian financial crisis (2014). The prices pt are transformed into returns

rt = 100[log(pt )−log(pt−1)]. The returns are converted to residual returns by yt = rt −µ̂r where

µ̂r is the sample average of returns 2. Table 2.7 reports the summary statistics.

Table 2.8 shows the parameter estimates of the SV models obtained by our simple ARMA

estimator. To estimate ϕ, we used (2.3.14) with J = 10. For all three stocks, these results show

that there is strong persistence in the volatility process during the period 1980-2015, and this

is statistically significant. Further, we can see that our simple estimator is remarkably time

efficient. In Table 2.9, we report the SV parameter estimates with the implicit standard error

that we discussed in Section 2.6.3. From Tables 2.8 and 2.9, we can see that the asymptotic

standard errors are larger compared to the ISE and this implies that the t-type test based on

these asymptotic standard errors under rejecting the null hypothesis.

However, the p-values tabulated in Table 2.8 are based on the usual large-sample approxi-

mation based on HAC estimator. The variance-covariance V̂ is estimated by a Bartlett kernel

estimator with the bandwidth varying with the sample size, i.e. m = [0.159T 1/3], where [·] de-

notes the integer part of the enclosed number; see Newey and West (1994). Note that for all

three stocks, the empirical estimate of ϕ is close to 1, implying that the volatility processes are

highly persistent.

Now, we consider three important test problems: (1) no persistence (or no clustering) hy-

pothesis in the SV model [ϕ = 0]; (2) volatility process is not a latent stochastic process

[σv = 0]; (3) no stochastic volatility hypothesis [ϕ = 0 and σv = 0]. To construct more reli-

able inference for these tests, we implemented asymptotic, parametric bootstrap and max-

2Note that our simple estimator is based on the log-squared transformation of residual returns minus the
mean, i.e., log(y2

t )−µ, so we do not need to adjust for the inlier problem. When residuals returns, yt , are very
close to zero, the log-squared transformation yields large negative numbers, and this is so called inlier problem.
In the extreme case, if the return is equal to 0, the log-squared transformation is not defined. To solve this
problem, Fuller (1996) proposed the following modification of the log-squared transformation:

log (y2
t ) ∼= log (y2

t + cs2
y )− cs2

y /(y2
t + cs2

y ), t = 1, ...,T,

where s2
y is the sample variance of yt and c is a small constant. The effect of this transformation is to reduce the

kurtosis in the transformed observations by cutting down the long tail made up of the negative values obtained
by taking the logarithms. In other words, it is a form of trimming; see Ghysels et al. (1996).

33



CHAPTER 2. SIMPLE EFFICIENT MOMENT-BASED ESTIMATOR

imized Monte Carlo (MMC) tests based on the GMM-type LR statistic; discussed in Section

2.6.2. Bootstrap and MMC tests are performed using the same procedure described in Section

2.7. However, the maximization was done using Particle Swarm optimization [introduced by

Eberhart and Kennedy (1995) and Shi and Eberhart (1998)]. This algorithm evaluates a set of

candidate solutions (particles) with random initial positions and the particles are set to move

around the search. Compare to simulated annealing or genetic algorithm, it provides a flexible

set of controls and methods. The number of replications used for Monte Carlo tests is N = (19,

99, 999) and results are reported in Table 2.10. We can see from the results, that the three ver-

sions (asymptotic, bootstrap and MMC) of the LR-type test reject all null hypotheses. These

results suggest that the volatility of financial returns is highly persistent, and driven by an ad-

ditional noise process. Further, a latent stochastic process is a more appropriate specification

for the volatility process.

In the above applications, we have a relatively large sample and focus on the OLS-based W-

ARMA-SV estimator with J = 10. We will now study the daily returns on the S&P 500 index over

the period 01/01/2000 – 31/12/2017 (4529 observations). The sample in this case is smaller,

and we address two critical issues: (1) the selection of winsorized estimator of ϕ; (2) the choice

of J . We then compare the four winsorized estimators of ϕ discussed in Section 2.3 along with

different choices of J . In Figure 2.1, we draw the values of the estimated ϕ against the number

of lags J for J = 5, . . . , 150. The weighted estimators are usually outside the stationary bound,

and the median estimator is oscillating around the MCMC estimate, while the no intercept

regression estimator is much closer to the MCMC estimate than the others. We also looked at

higher values of J , and a similar pattern is observed.

In Table 2.11, we compare our simple estimates with the Bayesian MCMC ones. To esti-

mate ϕ, we used (2.3.14) with J = 100. Bayesian estimates are computed using the R package

stochvol with 50000 draws after discarding 50000 burn-ins. From the results, we can see that

the empirical estimates of these two methods are very similar. However, the difference in

elapsed time between these estimations is huge, and the simple estimator is 8214 times faster

than the Bayesian estimator. These results confirm that the simple W-ARMA-SV estimator

not only produces accurate estimates, but is also vastly more efficient from a computational

viewpoint.
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2.9 Conclusion

In this paper, we have proposed computationally simple estimators for the SV model, which

are based on a small number of moment functions and exploit a winsorization technique.

Compared with alternative existing procedures for this model, the proposed class of estima-

tors enjoys a considerable advantage in terms of computation time. Further, it dominates

other non-Bayesian estimators and matches the standard Bayesian estimator, in terms of bias

and RMSE. The asymptotic distribution of the proposed estimators was studied, and testing

procedures based on the new estimators were proposed. Due to its computational simplic-

ity, the proposed class of estimators allow one to build reliable (even exact) simulation-based

tests for the SV model.

The results in this paper also underscore the pitfalls of using too many moments in the

context of moment-based (or GMM) inference, an important side observation made in other

contexts; see Dufour and Taamouti (2003), Dufour and Valéry (2006), and Chao and Swanson

(2007). Using many moments can entail large efficiency losses, just like putting too many

irrelevant regressors in a linear regression can blow up estimator variances and mean square

errors.

We fitted the SV model using our simple estimator to stock return time series. We found

that the volatility process highly persistent and near the unit root. We also implemented

MC tests to construct more reliable finite-sample inference. We considered three important

testing problems (no persistence, latent specification of volatility process, and no stochastic

volatility), which are decisively rejected by both asymptotic and finite-sample tests.

One can exploit computationally simple estimators in the context of out-of-sample fore-

casting. This requires extensive investigation where one may conduct various out-of-sample

experiments using different volatility proxies [the squared return and the realized volatility]

across different models. This is a potential extension of this paper and we investigate this

venture in the following chapter.
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2.10 Appendix

2.10.1 Proofs

PROOF OF PROPOSITION 2.3.1 From (2.2.14) - (2.2.15), we have

y∗
t = wt +ϵt , ϕ(B)wt = vt , (2.10.1)

where ϕ(B) = (1−ϕB), and the error processes vt and ϵt are i.i.d. N(0,σ2
v ) and i.i.d. log(χ2

1)

random variables, respectively. Furthermore, Assumption 2.2.1 implies that vt ’s and ϵt ’s are

independent. Now, applying ϕ(B) to both sides of (2.2.15) yields

ϕ(B)y∗
t =ϕ(B)wt +ϕ(B)ϵt = vt +ϕ(B)ϵt . (2.10.2)

Consider the right hand side of (2.10.2). This is clearly a covariance stationary process. By

the Wold decomposition theorem it must have a moving average representation. Since the

autocovariance function cuts off for lags k > 1 it must be an M A(1) process, say θ(B)ηt =
(1−θB)ηt . Hence, y∗

t must be an ARM A(1, 1) process; see Granger and Morris (1976). The

moving average parameter θ and the white noise variance σ2
η of this ARM A(1, 1) process can

be found by equating the autocovariance function of the right hand side of (2.10.2) with that

of θ(B)ηt for lags k = 0, 1 and solving the following non-linear equations

(1+θ2)σ2
η =σ2

v + (1+ϕ2)σ2
ϵ , −θσ2

η =−ϕσ2
ϵ . (2.10.3)

Note that there may be multiple solutions, only some of which result in an invertible process.

PROOF OF COROLLARY 2.3.2 From Proposition 2.3.1, the process y∗
t satisfies the following

equation:

y∗
t =ϕy∗

t−1 + vt +ϵt −ϕϵt−1. (2.10.4)
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On multiplying both sides of (2.10.4) by y∗
t−k and taking expectation, we have:

γy∗(k) =ϕγy∗(k −1)+E[vt y∗
t−k ]+E[ϵt y∗

t−k ]−ϕE[ϵt−1 y∗
t−k ]. (2.10.5)

We then get:

γy∗(0) = ϕγy∗(1)+E[vt y∗
t ]+E[ϵt y∗

t ]−ϕE[ϵt−1 y∗
t ]

= ϕγy∗(1)+σ2
v +σ2

ϵ −ϕE[ϵt−1(ϕy∗
t−1 −ϕϵt−1)]

= ϕγy∗(1)+σ2
v +σ2

ϵ +ϕ2σ2
ϵ −ϕ2σ2

ϵ

= ϕγy∗(1)+σ2
v +σ2

ϵ , (2.10.6)

γy∗(1) = ϕγy∗(0)+E[vt y∗
t−1]+E[ϵt y∗

t−1]−ϕE[ϵt−1 y∗
t−1]

= ϕγy∗(0)+0+0−ϕσ2
ϵ =ϕγy∗(0)−ϕσ2

ϵ , (2.10.7)

and, for k ≥ 2,

γy∗(k) = ϕγy∗(k −1)+E[vt y∗
t−k ]+E[ϵt y∗

t−k ]−ϕE[ϵt−1 y∗
t−k ]

= ϕγy∗(k −1)+0+0−0 =ϕγy∗(k −1) . (2.10.8)

Combining (2.10.6), (2.10.7), and (2.10.8), we obtain the autocovariance structure of the pro-

cess y∗
t stated in the Corollary.

PROOF OF COROLLARY 2.3.3 The estimator of ϕ is based on the autocovariance structure of

the process y∗
t . By (2.3.3), we have for k ≥ 2:

ϕ=
γy∗(k)

γy∗(k −1)
(2.10.9)

which yields (2.3.4). From (2.3.3) with k = 1 we get

γy∗(1) =ϕγy∗(0)−ϕσ2
ϵ (2.10.10)
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and, substituting γy∗(1) into (2.3.3) with k = 0,

γy∗(0) =ϕ[ϕγy∗(0)−ϕσ2
ϵ]+σ2

v +σ2
ϵ . (2.10.11)

hence, using σ2
ϵ =π2/2 [see (2.2.10)],

σ2
v = (1−ϕ2)[γy∗(0)−σ2

ϵ] = (1−ϕ2)[γy∗(0)−π2/2] . (2.10.12)

Finally, by definition,

µ= E[log(y2
t )] = log(σ2

y )+E[log(z2
t )] = log(σ2

y )−1.2704 (2.10.13)

or, equivalently

σ2
y = exp(µ+1.2704) . (2.10.14)

PROOF OF LEMMA 2.5.1 Under the assumptions 2.5.1 and 2.5.2 with s = 2, the process {y∗
t }

is strictly stationarity and geometrically ergodic with E[y∗
t ] < ∞ and E[y∗

t y∗
t+k ] < ∞. So the

consistency property follows by the application of the Law of Large Numbers for stationary

ergodic processes (i.e., the Ergodic Theorem); see Davidson (1994, Theorem 13.12 and Corol-

lary 13.14).

PROOF OF LEMMA 2.5.2 To establish the asymptotic normality of empirical moments, we

shall use a central limit theorem (CLT) for dependent processes [see Davidson (1994, Theorem

24.5, p. 385)]. For that purpose, we first check the conditions under which this CLT holds. Set

X t :=
 Ψt

Λt

 , Ψt := log(y2
t )−µ , Λt := [Λt ,0, Λt ,1, . . . , Λt ,m]′ , (2.10.15)

Λt ,k := y∗
t y∗

t+k −γy∗(k) = [log(y2
t )−µ][log(y2

t+k )−µ]−γy∗(k) , k = 0, 1, . . . , m , (2.10.16)
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ST :=
T∑

t=1
X t =

 ∑T
t=1Ψt∑T
t=1Λt

 , (2.10.17)

and consider the subfields Ft =σ(st , st−1, . . .) where st = (yt , wt )
′
. We will now show that

T −1/2 ST
d−→ N

0,

 Vµ C
′
µ,Γ(m)

Cµ,Γ(m) VΓ(m)


 , (2.10.18)

which in turn yields (2.5.2). To do this, we will check the following conditions:

(i ) {X t , Ft } is stationary and ergodic;

(i i ) {X t , Ft } is a L1-mixingale of size -1;

(i i i ) limsup
T→∞

T −1/2E∥ST ∥ <∞ , where ∥·∥ is the Euclidean norm.

(i) The fact that {X t , Ft } is stationary and ergodic follows from results 2.4.1 and 2.4.2.

(ii) - (1) A mixing zero-mean process is an adapted L1-mixingale with respect to the sub-fields

Ft provided it is bounded in the L1-norm [see Davidson (1994, Theorem 14.2, p. 211)]. To see

that {X t } is bounded in the L1-norm, we note that:

E| log(y2
t )−µ| = E|y∗

t | ≤ (E|y∗
t |2)1/2 = (E[y∗2

t ])1/2 =
√

γy∗(0) <∞, (2.10.19)

E|y∗
t y∗

t+k −γy∗(k)| = E|y∗
t y∗

t+k |− |γy∗(k)|
≤ E|y∗

t y∗
t+k |

≤ (E|y∗
t |2)1/2(E|y∗

t+k |2)1/2

= (E[y∗2
t ])1/2(E[y∗2

t+k ])1/2

= E[y∗2
t ] = γy∗(0) <∞, for k = 0, 1, . . . , m, (2.10.20)

where the inequality in (2.10.19) is the application of Lyapunov’s inequality and the second

inequality in (2.10.20) follows from the Hölder’s inequality.

(ii) - (2) We now show that {X t , Ft } is a L1−mixingale of size −1. From the discussion in

Section 2.4, we know that X t is β-mixing, so it has mixing coefficients of the type βT =ψρT ,
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ψ> 0, 0 < ρ < 1. To show that {X t } is of size -1, its mixing coefficients βT must be O(T −φ), with

φ> 1 [see Davidson (1994, Definition 16.1, p. 247)]. Indeed,

ρT

T −φ = T φexp(T logρ) = exp(φ logT )exp(T logρ) = exp[φ(logT )+T (logρ)]. (2.10.21)

Since lim
T→∞

[φ(logT )+T (logρ)] =−∞, we get

lim
T→∞

exp[φ(logT )+T (logρ)] = 0. (2.10.22)

This holds in particular for φ> 1; see Rudin (1976, Theorem 3.20(d), p. 57).

(iii) To show that limsup
T→∞

T −1/2E∥ST ∥ < ∞, we first observe that E(ST ) = 0 and, using the

Cauchy-Schwarz inequality,

(T −1/2E∥ST ∥)2 ≤ 1

T
E(∥ST ∥2) = 1

T
E(S′

T ST ) = 1

T
tr[E(ST S′

T )] = 1

T
tr[Var(ST )]

= tr[Var(T −1/2ST )]. (2.10.23)

It is thus sufficient to show that

limsup
T→∞

tr[Var(T −1/2ST )] <∞ . (2.10.24)

We now consider separately the components Ψt and Λt of X t .

(iii) - (1) Set

ST 1 :=
T∑

t=1
Ψt , ζΨ(τ) := cov(Ψt , Ψt+τ) . (2.10.25)

Then

ζΨ(τ) = E[(log(y2
t )−µ)(log(y2

t+τ)−µ)] = E[y∗
t y∗

t+τ] = γy∗(τ) , (2.10.26)

Var(T −1/2ST 1) = 1

T

[
T∑

t=1
Var(Ψt )+∑

t ̸=s
cov(Ψt , Ψs)

]
= 1

T

[
T ζΨ(0)+2

T∑
τ=1

(T −τ)ζΨ(τ)

]

= ζΨ(0)+2
T∑

τ=1
(1− τ

T
)ζΨ(τ) = γy∗(0)+2

T∑
τ=1

(1− τ

T
)γy∗(τ), (2.10.27)
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hence

limsup
T→∞

Var(T −1/2ST 1) = limsup
T→∞

[γy∗(0)+2
T∑

τ=1
(1− τ

T
)γy∗(τ)]

= γy∗(0)+2
∞∑
τ=1

γy∗(τ) =
∞∑

τ=−∞
γy∗(τ)

≤
∞∑

τ=−∞
|γy∗(τ)| <∞. (2.10.28)

This convergence is due to the fact that y∗
t follows an ARMA(1, 1) process with |ϕ| < 1. So

y∗
t can be viewed as an MA(∞) process with absolutely summable coefficients, which implies

the absolute summability of autocovariances [see Hamilton (1994, chapter 3, page 52)]. This

entails

limsup
T→∞

T −1/2E |ST 1| <∞ . (2.10.29)

(iii) - (2) Set

ST 2 :=
T∑

t=1
Λt = [ST 2,0, ST 2,1, . . . ,ST 2,m]′ , (2.10.30)

ST 2,k :=
T∑

t=1
Λt ,k , ζΛk

(τ) := cov(Λt ,k , Λt+τ,k ) , k = 0, 1, . . . , m . (2.10.31)

Then, for k = 0, 1, . . . , m ,

ζΛk
(τ) = E[

(
y∗

t y∗
t+k −γy∗(k)

)(
y∗

t+τy∗
t+τ+k −γy∗(k)

)
] = E[y∗

t y∗
t+k y∗

t+τy∗
t+τ+k ]−γy∗(k)2

= E[y∗
t y∗

t+k ]E[y∗
t+τy∗

t+τ+k ]+cov(y∗
t , y∗

t+τ)cov(y∗
t+k , y∗

t+τ+k )

+cov(y∗
t , y∗

t+τ+k )cov(y∗
t+k , y∗

t+τ)−γy∗(k)2

= γy∗(k)2 +γy∗(τ)2 +γy∗(τ+k)γy∗(τ−k)−γy∗(k)2

= γy∗(τ)2 +γy∗(τ+k)γy∗(τ−k) , (2.10.32)

hence

Var(T −1/2ST 2,k ) = 1

T

[
T∑

t=1
Var(Λt ,k )+∑

t ̸=s
cov(Λt ,k , Λs,k )

]
= 1

T

[
T ζΛk

(0)+2
T∑

τ=1
(T −τ)ζΛk

(τ)

]
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= ζΛk
(0)+2

T∑
τ=1

(1− τ

T
)ζΛk

(τ)

= γy∗(0)2 +γy∗(k)γy∗(−k)

+2
T∑

τ=1
(1− τ

T
)[γy∗(τ)2 +γy∗(τ+k)γy∗(τ−k)] , (2.10.33)

and

limsup
T→∞

Var(T −1/2ST 2,k ) = γy∗(0)2 +γy∗(k)γy∗(−k)

+ limsup
T→∞

[2
T∑

τ=1
(1− τ

T
)[γy∗(τ)2 +γy∗(τ+k)γy∗(τ−k)]]

=
∞∑

τ=−∞
[γy∗(τ)2 +γy∗(τ+k)γy∗(τ−k)]

=
∞∑

τ=−∞
γy∗(τ)2 +

∞∑
τ=−∞

γy∗(τ+k)γy∗(τ−k)

=
∞∑

τ=−∞
γy∗(τ)2 +

∞∑
τ=−∞

γ2
y∗(τ+k) <∞ . (2.10.34)

This convergence is due to the fact that absolute summability implies square-summability.

We deduce that

limsup
T→∞

T −1/2E
∣∣ST 2,k

∣∣<∞ , k = 0, 1, . . . , m . (2.10.35)

Combining (2.10.29) and (2.10.35), we get, for any (m +2)×1 fixed real vector a ̸= 0,

limsup
T→∞

T −1/2E
∣∣a′ST

∣∣<∞ . (2.10.36)

It is also clear properties (i) and (ii) also hold if we replace ST by a′ST . Thus we can apply

Theorem 24.5 of Davidson (1994) to a′ST to state that T −1/2(a′ST ) is asymptotically normal.

Since this holds for any a ̸= 0, it follows from the Cramér-Wold theorem that T −1/2 ∑T
t=1 X t is

asymptotically multinormal:

T −1/2ST = T −1/2
T∑

t=1
X t =

p
T

 µ̂−µ

Γ̂(m)−Γ(m)

 d−→ N[0, V ], (2.10.37)
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where

V = lim
T→∞

E{[T −1/2ST ][T −1/2ST ]
′
} , (2.10.38)

V =

 Vµ C
′
µ,Γ(m)

Cµ,Γ(m) VΓ(m)

 . (2.10.39)

Using (2.10.28) and (2.10.33), we have:

Vµ = γy∗(0)+2
∞∑
τ=1

γy∗(τ) , (2.10.40)

VΓ(m) = Var(Λt )+2
∞∑
τ=1

cov(Λt , Λt+τ) , (2.10.41)

Cµ,Γ(m) = [Cµ0, Cµ1, . . . , Cµm]′ , (2.10.42)

Cµk = ∑
t

cov(Ψt , Λt ,k ) = 2
∞∑

t=1
E[Ψt

(
y∗

t y∗
t+k −γy∗(k)

)
]

= 2
∞∑

t=1
E[y∗

t

(
y∗

t y∗
t+k −γy∗(k)

)
] = 2

∞∑
t=1

[E(y∗2
t y∗

t+k )−E(y∗
t )γy∗(k)]

= 2
∞∑

t=1
E(y∗2

t y∗
t+k ) , k = 0, 1, 2, . . . , m. (2.10.43)

Further, for k = 0, we substitute y∗
t = wt +ϵt to get

c̄ :=Cµ0 = 2
∞∑

t=1
E(y∗3

t ) = 2
∞∑

t=1
[E(w 3

t )+E(ϵ3
t )] = 2

∞∑
t=1

E(ϵ3
t ). (2.10.44)

Since {zt } is a sequence of i.i.d. N[0, 1] random variables, we have E(ϵ3
t ) =ψ(2)( 1

2 ) [see (2.2.11)],

which is equal to −14Z(3) where Z(·) is Riemann’s Zeta function with Z(3) = 1.20205.3 For

k = 1, . . . , m, it is easily seen that Cµk = 0 from the MA(∞) representation of wt . So Cµ,Γ(m) is a

(m +1)×1 vector given by (c̄, 0[m×1])′, with c̄ is defined in (2.10.44). Finally, (2.5.2) follows on

observing that

p
T

 µ̂−µ

Γ̂(m)−Γ(m)

−T −1/2ST
p−→

T→∞
0. (2.10.45)

3The Riemann Zeta function for s ∈C with Re(s) > 1 is defined as Z(s) =∑∞
n=1

1
ns .
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PROOF OF THEOREM 2.5.3 It is easily seen that D is a continuously differentiable mapping

of (µ,γy∗(0),γy∗(1),γy∗(2)). The convergence result stated in (2.5.7) follows from the standard

result for differentiable transformations of asymptotically normally distributed variables to-

gether with the application of multivariate delta method.

2.10.2 Figures
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Figure 2.1. S&P 500: Four W-ARMA-SV estimators of ϕ as a function of the number of lags.

The solid reference line is the Bayesian estimator based on the MCMC method.
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2.10.3 Tables

Table 2.1. Comparison of different winsorized ARMA-SV estimators (W-ARMA-SV)
SV model with parameters: (ϕ, σy , σv ) = (0.95, 0.2, 0.9)

J ϕ̂M SD NIV ϕ̂LD SD NIV ϕ̂MED SD NIV ϕ̂OLS SD NIV

T = 200

1 0.89 0.083 218 0.89 0.083 218 0.89 0.083 218 0.89 0.083 218
5 0.93 0.051 36 0.93 0.045 33 0.91 0.064 73 0.91 0.055 0
10 0.91 0.122 64 0.93 0.064 35 0.91 0.074 29 0.91 0.058 0
20 0.82 0.310 237 0.89 0.179 146 0.89 0.094 13 0.90 0.064 0
30 0.74 0.359 375 0.81 0.290 261 0.89 0.105 15 0.89 0.068 0
40 0.66 0.410 447 0.75 0.348 350 0.89 0.110 13 0.89 0.072 0
50 0.61 0.409 492 0.71 0.370 406 0.89 0.107 19 0.89 0.075 0
100 0.61 0.421 520 0.63 0.401 485 0.90 0.109 25 0.90 0.081 0

T = 500

1 0.93 0.042 123 0.93 0.042 123 0.93 0.042 123 0.93 0.042 123
5 0.94 0.023 1 0.94 0.023 1 0.94 0.028 13 0.94 0.023 0
10 0.94 0.024 0 0.94 0.021 0 0.94 0.026 1 0.94 0.023 0
20 0.93 0.119 33 0.94 0.053 7 0.94 0.034 0 0.94 0.024 0
30 0.89 0.199 134 0.92 0.140 67 0.93 0.036 0 0.94 0.025 0
40 0.85 0.252 254 0.89 0.190 150 0.93 0.039 2 0.94 0.025 0
50 0.81 0.307 335 0.87 0.235 232 0.93 0.042 3 0.94 0.025 0
100 0.72 0.355 478 0.78 0.308 407 0.94 0.044 5 0.94 0.026 0

T = 1000

1 0.94 0.030 61 0.94 0.030 61 0.94 0.030 61 0.94 0.030 61
5 0.95 0.015 0 0.95 0.015 0 0.95 0.019 2 0.95 0.015 0
10 0.95 0.015 0 0.95 0.014 0 0.95 0.017 0 0.95 0.014 0
20 0.94 0.027 1 0.95 0.016 0 0.94 0.019 0 0.94 0.015 0
30 0.93 0.076 47 0.94 0.065 11 0.94 0.022 0 0.94 0.015 0
40 0.89 0.216 146 0.92 0.145 65 0.94 0.023 0 0.94 0.015 0
50 0.87 0.232 244 0.90 0.170 132 0.94 0.024 1 0.94 0.015 0
100 0.74 0.359 458 0.82 0.278 352 0.95 0.027 1 0.95 0.016 0

T = 10000

1 0.95 0.009 0 0.95 0.009 0 0.95 0.009 0 0.95 0.009 0
5 0.95 0.004 0 0.95 0.004 0 0.95 0.005 0 0.95 0.004 0
10 0.95 0.004 0 0.95 0.004 0 0.95 0.005 0 0.95 0.004 0
20 0.95 0.005 0 0.95 0.004 0 0.95 0.005 0 0.95 0.004 0
30 0.95 0.007 0 0.95 0.005 0 0.95 0.006 0 0.95 0.005 0
40 0.95 0.010 1 0.95 0.020 0 0.95 0.007 0 0.95 0.005 0
50 0.94 0.086 18 0.95 0.035 4 0.95 0.007 0 0.95 0.005 0
100 0.84 0.279 314 0.89 0.185 170 0.95 0.009 0 0.95 0.005 0

Note – The estimators compared are the simple and winsorized estimators defined in Section 2.3. The estimated
means of the different estimators are reported below the corresponding columns (ϕ̂M , ϕ̂LD , ϕ̂MED , ϕ̂OLS ). For
J = 1, all the estimators reduce to the simple ARMA-SV estimator. SD is the estimated standard error based on
the simulation. NIV stands for the number of inadmissible parameter values produced by the estimators (over
1000).
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Table 2.2. Comparison of different estimation methods for the SV model: bias and RMSE
Model: M1 = (0.95, 0.2, 0.9)

T = 500 T = 2000

ϕ σy σv ϕ σy σv

True value 0.95 0.2 0.9 0.95 0.2 0.9

Bias

QML -0.0135 0.0174 0.0285 -0.0031 0.0053 0.0070
GMM 0.1392 0.0367 -0.5435 0.0923 0.0487 -0.1032
Bayesian-MCMC -0.0097 0.0167 0.0221 -0.0025 0.0052 0.0065
DV* -0.1764 0.3804 0.0160 -0.1143 0.3379 0.0334
ARMA-SV** -0.0152 0.0138 0.0148 -0.0037 0.0014 -0.0070
W-ARMA-SV(J = 10) -0.0109 0.0135 0.0257 -0.0027 0.0016 0.0027

RMSE

QML 0.0279 0.0957 0.1312 0.0104 0.0441 0.0609
GMM 0.2470 0.0861 0.6381 0.1308 0.0682 0.3802
Bayesian-MCMC 0.0211 0.0882 0.0828 0.0088 0.0428 0.0411
DV* 0.2526 0.5214 0.4032 0.1727 0.3860 0.4284
ARMA-SV** 0.0450 0.0842 0.2934 0.0222 0.0415 0.1822
W-ARMA-SV(J = 10) 0.0254 0.0838 0.1213 0.0103 0.0415 0.0602

Notes:

1. GMM is the generalized method of moment estimator of Andersen and Sørensen (1996) with 24 moments.

2. QML is the quasi-maximum likelihood estimator of Ruiz (1994).

3. Bayesian-MCMC is the Bayesian estimator based on Markov Chain Monte Carlo methods proposed by Jacquier

et al. (1994).

4. We used R package stochvol of Kastner (2016) for the Bayesian estimation.

5. DV is the simple moment estimator of Dufour and Valéry (2006).

6. ARMA-SV is the simple ARMA based estimator proposed in Section 2.3 with no winsorizing.

7. W-ARMA-SV is the winsorized ARMA estimator based on OLS with J = 10 that proposed in Section 2.3.

8. *DV produces 356 and 362 inadmissible values, out of 1000 simulations, of ϕ when T = 500 and T = 2000,

respectively.

9. **ARMA-SV produces 123 and 14 inadmissible values, out of 1000 simulations, of ϕ when T = 500 and T =
2000, respectively.

10. Bias and RMSE of DV/ARMA-SV method are calculated from the acceptable values of ϕ̂ only. These RMSEs

are not comparable to other rows.
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Table 2.3. Comparison of different estimation methods for the SV model: bias and RMSE
Model: M2 = (0.98, 0.025, 1)

T = 500 T = 2000

ϕ σy σv ϕ σy σv

True value 0.98 0.025 1 0.98 0.025 1

Bias

QML -0.0109 0.0224 0.0231 -0.0024 0.0048 0.0054
GMM -0.1429 -0.0830 -0.3149 -0.0754 -0.0739 -0.1009
Bayesian-MCMC -0.0089 0.0188 0.0207 -0.0020 0.0047 0.0058
DV* -0.2016 0.7273 -0.0135 -0.1334 0.8745 -0.0091
ARMA-SV** -0.0096 0.0149 -0.0066 -0.0024 0.0031 -0.0065
W-ARMA-SV(J = 10) -0.0093 0.0152 0.0315 -0.0022 0.0032 0.0018

RMSE

QML 0.0185 0.1294 0.1199 0.0061 0.0193 0.0555
GMM 0.6571 0.1306 0.6899 0.5415 0.0952 0.6842
Bayesian-MCMC 0.0155 0.0644 0.0817 0.0056 0.0192 0.0409
DV* 0.2725 2.0592 0.4407 0.1823 1.7896 0.4524
ARMA-SV** 0.0228 0.0511 0.3103 0.0093 0.0178 0.1757
W-ARMA-SV(J = 10) 0.0167 0.0514 0.1264 0.0060 0.0178 0.0593

Notes:

1. GMM is the generalized method of moment estimator of Andersen and Sørensen (1996) with 24 moments.

2. QML is the quasi-maximum likelihood estimator of Ruiz (1994).

3. Bayesian-MCMC is the Bayesian estimator based on Markov Chain Monte Carlo methods proposed by Jacquier

et al. (1994).

4. We used R package stochvol of Kastner (2016) for the Bayesian estimation.

5. DV is the simple moment estimator of Dufour and Valéry (2006).

6. ARMA-SV is the simple ARMA based estimator proposed in Section 2.3 with no winsorizing.

7. W-ARMA-SV is the winsorized ARMA estimator based on OLS with J = 10 that proposed in Section 2.3.

8. *DV produces 365 and 361 inadmissible values, out of 1000 simulations, of ϕ when T = 500 and T = 2000,

respectively.

9. **ARMA-SV produces 70 and 5 inadmissible values, out of 1000 simulations, of ϕ when T = 500 and T = 2000,

respectively.

10. Bias and RMSE of DV/ARMA-SV method are calculated from the acceptable values of ϕ̂ only. These RMSEs

are not comparable to other rows.
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Table 2.4. Comparison of different estimation methods with respect to relative time for the
SV model using simulated data

Relative computing time with respect to W-ARMA-SV estimator

T = 500 T = 1000 T = 2000

QML 67.21 76.14 86.14
GMM 225.23 234.22 245.57
Bayesian-MCMC 1055.92 1099.87 1133.98
DV 1.03 1.03 1.06
W-ARMA-SV(J = 10) 1.00 1.00 1.00

Table 2.5. Empirical levels of asymptotic, bootstrap and MMC tests based on LR-type statistic,
(nominal size: α = 5%).

(A) No persistence (B) No latent process (C) No stochastic volatility
H0 : ϕ= 0 H0 : σv = 0 H0 : ϕ=σv = 0

σy = 1, σv = 2 ϕ= 0.5, σy = 1 σy = 1
T Asy Bootstrap MMC Asy Bootstrap MMC Asy Bootstrap MMC

250 23.8 5.7 1.2 2.2 4.7 4.6 27.1 4.2 4.2
500 22.0 4.4 0.4 2.7 4.9 4.9 25.5 5.7 5.7
750 24.3 4.5 1.3 2.9 5.2 5.2 25.1 5.0 5.0

1000 24.5 5.9 1.3 2.1 5.4 5.4 24.2 6.3 6.3

Notes: Rejection frequencies are reported in percentages. Simulations are computed on 1000 replications.

Table 2.6. Empirical powers of asymptotic, bootstrap and MMC tests based on LR-type
statistic

(nominal size: α = 5%).

(A) No persistence (B) No latent process (C) No stochastic volatility
H0 : ϕ= 0 H0 : σv = 0 H0 : ϕ=σv = 0

H1 : ϕ= 0.5 H1 : σv = 1 H1 : ϕ= 0.95, σv = 2
σy = 1, σv = 2 ϕ= 0.5, σy = 1 σy = 1

T Asy Bootstrap MMC Asy Bootstrap MMC Asy Bootstrap MMC

250 64.5 80.1 66.4 24.4 24.4 24.4 16.7 39.4 39.4
500 74.7 93.4 88.4 50.3 50.1 50.1 47.3 67.8 67.8
750 78.9 97.7 96.0 71.6 71.7 71.7 61.6 82.2 82.2

1000 80.2 98.2 98.7 82.4 81.6 81.6 69.4 88.7 88.7

Notes: Rejection frequencies are reported in percentages. Simulations are computed on 1000 replications.

Asymptotic tests and MC tests are locally level-corrected when the probability of type I error exceeds 0.05.
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Table 2.7. Summary Statistics

Series Mean SD Kurtosis SK Range Max Min LB(10)

Coca Cola (KO) yt 0.00 1.04 762.73 -20.69 54.57 7.80 -46.77 16.72
y2

t 1.07 29.57 3645.53 56.29 2187.61 2187.61 0.00 0.07
y∗

t 0.00 3.05 7.59 -1.91 21.22 10.48 -10.74 423.11

Walmart (WMT) yt 0.00 1.15 353.76 -13.93 35.41 5.09 -30.32 25.95
y2

t 1.33 24.93 1156.64 33.83 919.59 919.59 0.00 0.27
y∗

t 0.00 2.96 5.97 -1.60 18.77 9.26 -9.52 523.48

Ford (F) yt 0.00 1.18 128.97 -5.28 41.68 11.24 -30.44 19.31
y2

t 1.40 15.84 2575.61 47.31 926.74 926.74 0.00 15.88
y∗

t 0.00 2.86 6.32 -1.65 17.93 8.72 -9.21 507.36

Notes:

1. yt = rt − µ̂r is the residual return, y2
t is the square of residual return and y∗

t is the residual of log square of

residual return.

2. LB(10) is the heteroskedasticity-corrected Ljung - Box statistics with 10 lags. The critical values for LB(10) are:

15.99 (10%), 18.31 (5%), and 23.21 (1%).

Table 2.8. ARMA-type estimates of the SV model

Coca Cola (KO) Walmart (WMT) Ford (F)

ϕ 0.9119 (0.0353) 0.9218 (0.0339) 0.9402 (0.0356)
σy 0.4668 (0.0054) 0.5589 (0.0065) 0.7347 (0.0090)
σv 0.8589 (0.1269) 0.7570 (0.1209) 0.6137 (0.1344)
Time (in seconds) 0.03
Sample Size 9081

Notes:

1. Standard errors are in parenthesis.

2. ARMA estimates are based on OLS with J = 10 that proposed in Section 2.3.
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Table 2.9. ARMA-type estimates of the SV model with ISE

Coca Cola (KO) Walmart (WMT) Ford (F)

ϕ 0.9119 (0.0065) 0.9218 (0.0063) 0.9402 (0.0054)
σy 0.4668 (0.0200) 0.5589 (0.0237) 0.7347 (0.0333)
σv 0.8589 (0.0231) 0.7570 (0.0223) 0.6137 (0.0197)
Time (in seconds) 0.61
Sample Size 9081

Notes:

1. Implicit standard errors are in parenthesis and calculated at α= 0.05 with N=99.

2. ARMA estimates are based on OLS with J = 10 that proposed in Section 2.3.

Table 2.10. Exact and asymptotic tests based on ARMA-type estimators

(A) Test of no-persistence – H0 : ϕ= 0

Asymptotic tests Bootstrap tests MMC tests

S0 p-value N = 19 N = 99 N = 999 N = 19 N = 99 N = 999

KO 2153.66 0 0.05 0.01 0.001 0.05 0.01 0.001
WMT 1521.80 0 0.05 0.01 0.001 0.05 0.01 0.001
F 3296.17 0 0.05 0.01 0.001 0.05 0.01 0.001

(B) Test of volatility is not a latent process – H0 : σv = 0

Asymptotic tests Bootstrap tests MMC tests

S0 p-value N = 19 N = 99 N = 999 N = 19 N = 99 N = 999

KO 245901 0 0.05 0.01 0.001 0.05 0.01 0.001
WMT 193164 0 0.05 0.01 0.001 0.05 0.01 0.001
F 143214 0 0.05 0.01 0.001 0.05 0.01 0.001

(C) Test of no stochastic volatility – H0 : ϕ=σv = 0

Asymptotic tests Bootstrap tests MMC tests

S0 p-value N = 19 N = 99 N = 999 N = 19 N = 99 N = 999

KO 248055 0 0.05 0.01 0.001 0.05 0.01 0.001
WMT 194685 0 0.05 0.01 0.001 0.05 0.01 0.001
F 146510 0 0.05 0.01 0.001 0.05 0.01 0.001

Notes:

1. Null hypotheses are tested against right-sided alternatives.

2. ARMA estimates are based on OLS with J = 10 that proposed in Section 2.3.

3. S0 is the GMM based LR statistic.
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Table 2.11. Empirical estimates of S&P 500 index

2000 - 2017, Number of observations: 4529

ϕ σy σv Time (in seconds)

Bayesian-MCMC 0.9850 (0.0035) 0.3863 (0.0369) 0.1808 (0.0152) 354.3
W-ARMA-SV 0.9856 (0.0069) 0.3590 (0.0364) 0.2185 (0.0175) 0.043

Relative Time Efficiency: 8214

Notes:

1. Implicit standard errors are in parenthesis (calculated from 99 simulations).

2. Bayesian-MCMC estimates are computed using R package stochvol with 50000 draws and 50000 burn-in.
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Chapter 3

Simple estimators for higher-order
stochastic volatility models and forecasting

Abstract

We study the problem of estimating higher-order stochastic volatility [SV(p)] models. Due to the in-
herent difficulty of evaluating the likelihood function – a general feature of non-linear latent variable
models – estimation and inference for SV models constitute challenging problems. Most of the exist-
ing estimation methods are confined to the SV(1) model and are computationally expensive, inflexible
[not easy to generalize for SV(p) models], difficult to implement, and typically inefficient. The estima-
tion of SV(p) models is even more challenging and rarely considered in the literature. In this paper,
we propose simple moment-based estimators for such models – in particular ARMA-type estimators
– which are both computationally inexpensive and remarkably accurate. The proposed estimators do
not require choosing a sampling algorithm, initial parameter values, or an auxiliary model. To reduce
the risk of getting inadmissible (nonstationary) solutions, we suggest winsorized versions of the simple
ARMA-SV estimators. We also show that a Durbin-Levinson-type updating algorithm can be applied
to recursively estimate models of increasing order p. The asymptotic distribution of the estimators is
established. Due to their computational simplicity, the proposed estimators allow one to make finite-
sample inference through the technique of Monte Carlo (MC) tests. We compare by simulation the
proposed estimators to a Bayesian MCMC estimator. The results show that the simple winsorized
ARMA-SV estimator is uniformly superior to other estimators in terms of bias and root mean square
error. The proposed estimators are applied to stock return data, and the usefulness of the proposed
estimators is assessed in two ways. First, using the daily return on the S&P 500 index from 1928 to
2016, we find that higher-order SV models – in particular an SV(3) model – are preferable to an SV(1),
from the viewpoints model fit and both asymptotic and finite-sample tests. Second, using different
volatility proxies (the squared return of S&P 500 index and the realized volatility of S&P 500, FTSE100,
NASDAQ100, N225, SSMI20 indices), we conduct two out-of-sample forecast experiments: (1) we fore-
cast a moderately volatile period after the late-2000s financial crisis; (2) we forecast a highly volatile
period, i.e., the core financial crisis. We compare the accuracy of volatility forecasts among SV(p) mod-
els, GARCH models, and Heterogenous Autoregressive model of Realized Volatility (HAR-RV) models.
The results suggest that SV(p) models perform better than other models in most cases. This finding
holds even if a high volatility period (such as financial crisis) is included in the estimation sample or
the forecasted sample. Formal prediction tests, i.e., model confidence set procedure, also support these
inferences. Our findings highlight the usefulness of higher-order SV models for volatility forecasting.
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3.1 Introduction

Time-varying volatility of asset returns is a widespread feature of financial markets. This

property has been known for a long time; early discussions include Mandelbrot (1963) and

Fama (1965). Two main classes of parametric models have been proposed in the literature

to estimate and forecast dynamic volatility: (1) GARCH-type models [Engle (1982), Bollerslev

(1986)]; (2) stochastic volatility (SV) models [Taylor (1982, 1986)]. The main distinction be-

tween GARCH and SV models is that the variance process of the latter has an additional error

term which captures the effect of any new information coming to the market, so conditional

on the information set Ft−1, volatility σ2
t is not known in SV models but rather an unobserved

random variable. Several reviews of GARCH and SV literature are available; for GARCH, see

Bollerslev (2010), and for SV, see Ghysels et al. (1996), Broto and Ruiz (2004), and Shephard

(2005). SV models are also common in macroeconomic modelling; see Cogley and Sargent

(2005), Primiceri (2005), Benati (2008), Koop et al. (2009), Koop and Korobilis (2013), and Liu

and Morley (2014).

SV models may be preferable to GARCH-type models for several reasons. First, SV mod-

els are discrete-time formulations of continuous-time diffusion processes used in theoretical

finance for derivative pricing and portfolio optimization; see Taylor (1994), Shephard and An-

dersen (2009). Second, SV models do not appear to require various ad hoc adjustments, like

the addition of a random jump component or non-Gaussian innovations. These modifica-

tions improve the performance of the standard GARCH, but these are evidently unnecessary

for SV models; see Carnero et al. (2004), Chan and Grant (2016). Third, SV models often pro-

vide more accurate volatility forecasts than GARCH models, indicating that the time-varying

volatility is better modelled as a latent stochastic process; see Kim et al. (1998), Yu (2002),

Poon and Granger (2003), Koopman et al. (2005). Finally, it is easy to derive the probabilistic

properties (stationarity, ergodicity and mixing) of SV models than GARCH models; see Davis
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and Mikosch (2009). In contrast, the stationarity of a GARCH process is difficult to establish;

see Nelson (1990), Bougerol and Picard (1992), Lindner (2009).

Despite these attractive features, SV models are clearly less popular than GARCH models.

The main reasons for this appear to be the following. First, the estimation of SV models is

much more complicated than it is for GARCH-type models. In particular, due to the pres-

ence of latent variables, likelihood-based methods are difficult to apply, and statistical infer-

ence (estimation and testing) for SV models is quite challenging. Consequently, a variety of

methods have been proposed to estimate SV models. The vast majority of these are either

computer-intensive and/or inefficient. Second, many statistical packages (such as EVIEWS,

GAUSS, MATLAB, R, S+, SAS, TSP, STATA, PYTHON, OX, etc.) have many options for incorpo-

rating GARCH effects, whereas SV models lack statistical packages. Nevertheless, some rou-

tines in R and MATLAB for SV models are available.

Earlier work on the estimation of SV models has focused on the first-order SV model, where

the latent volatility process is modelled as a first-order autoregression. These include: quasi-

maximum likelihood (QML) [Nelson (1988), Harvey et al. (1994), Ruiz (1994)], the generalized

method of moments (GMM) [Melino and Turnbull (1990), Andersen and Sørensen (1996)], the

simulated method of moments (SMM) [Gallant and Tauchen (1996), Monfardini (1998), An-

dersen et al. (1999)], Monte Carlo likelihood (MCL) [Sandmann and Koopman (1998)], simu-

lated maximum likelihood (SML) [Danielsson and Richard (1993), Danielsson (1994), Durham

(2006, 2007), Richard and Zhang (2007)], the method based on linear representation [Francq

and Zakoïan (2006)], closed-form moment-based estimators [Dufour and Valéry (2006, 2009),

Ahsan and Dufour (2019)], and Bayesian techniques based on Markov Chain Monte Carlo

(MCMC) methods [Jacquier et al. (1994), Kim et al. (1998), Chib et al. (2002), Fiorentini et al.

(2004), Flury and Shephard (2011)].

Apart from the closed-form estimators, the above estimation methods are based on simu-

lation techniques and/or numerical optimization. Simulation-based methods such as SML,

MCL, SMM, and Bayesian MCMC methods [via the Metropolis-Hastings algorithm or the

Gibbs sampler] are computer-intensive, inflexible across models, hard to implement in prac-

tice, and may converge very slowly; see Broto and Ruiz (2004). Implementing these meth-

ods requires one to choose a sampling scheme, initial parameters, and an auxiliary model
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(which is largely conventional). The choice of initial parameter values for QML, GMM or

MCMC plays a pivotal role in convergence. In particular, a poorly assigned prior may lead

to a fragile Bayesian inference. In the context of GMM estimation, Broto and Ruiz (2004)

pointed out that the criterion surface is highly irregular, so optimization often fails to con-

verge in small samples [Andersen and Sørensen (1996) documented a large number of non-

converging GMM estimations]. Further, GMM usually produces imprecise estimates due to an

ill-conditioned weighting matrix. By contrast, the closed-form moment-based estimators are

analytically tractable, computationally simple, and very easy to implement.

In this paper, we study higher-order stochastic volatility [SV(p)] models where the under-

lying volatility process follows an autoregressive process of order p. In particular, we focus

on the estimation and forecasting issues of SV(p) models. The estimation of SV(p) models is

even more challenging than it is for an SV(1) model. Consequently, SV(p) models are rarely

estimated in financial econometrics literature; exceptions are SMM of Gallant et al. (1997),

MCL of Asai (2008), Bayesian MCMC of Chan and Grant (2016). However, in line with these

studies, motivations for SV(p) models are as follows:

1. It is a natural extension of the basic SV(1) model, which can only generate geometri-

cally decaying autocovariance function, whereas volatility process generically features

persistent memory.

2. As pointed out by Asai (2008) and Meddahi (2003), the latent volatility process of a

multi-factor stochastic volatility (MFSV) model can be interpreted as a linear combi-

nation of latent and independent AR(1) processes which aggregate to an ARMA(p, q)

process. So, the higher-order autoregressive terms in SV models naturally emerge from

the aggregation process.

3. The empirical results of these studies suggest that higher-order models provide more

flexibility to represent volatility persistence, heavy tails and may capture the effects of

jumps as well.

4. Empirical evidence in this paper suggests that higher-order SV models may be prefer-

able for both in-sample model fitting and out-of-sample volatility forecasting.
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In this paper, we study the problem of estimating the parameters of an SV(p) model. Due

to its intrinsic complexity, the work on this problem remains scarce, and the proposed ones

are inflexible, computationally costly, and limited to low orders [see Gallant et al. (1997), Asai

(2008), Chan and Grant (2016)]. Instead, we propose here two simple moment-based estima-

tion methods for SV(p) models.

1. We extend the closed-form estimators of Dufour and Valéry (2009) and develop a class

of simple estimators for SV(p) models based on the moment structure of returns. We

call this approach, the simple EDV method.

2. We exploit the non-Gaussian ARMA representation of SV(p) models and derive an esti-

mator which we call the simple ARMA-SV estimators.1 The ARMA-SV method uses the

moment structure of the logarithm of squared residual returns.

These estimators are analytically tractable and computationally inexpensive. In particular,

they can be readily implemented without using any numerical optimization, and they do not

require one to choose an arbitrary initial parameter or an auxiliary model. Further, we also

suggest GMM-type estimators for SV(p) models. These GMM estimators are extensions of

Andersen and Sørensen (1996).

The proposed moment-based estimators (simple estimators and GMM estimators) may vio-

late stationarity conditions in the presence of outliers or in small samples. To circumvent this

problem, we suggest restricted estimation where the estimates are restrained on the space of

acceptable parameter solutions by adjusting the eigenvalues that lie on or outside the unit

circle.

Further, in the case of ARMA-SV method, we suggest winsorized versions of the ARMA-SV

estimator (W-ARMA-SV estimators), which substantially increases the probability of getting

acceptable values and also improves efficiency [Hafner and Linton (2017)]. In proposing win-

sorized methods, autoregressive parameters of the latent volatility process [these parameters

capture the volatility clustering of a financial time series] are estimated using a combination

of several ratios of sample autocovariance matrices, including weighted averages, the median,

1In the context of continuous-time stochastic volatility models, Meddahi (2003) derives the ARMA representa-
tion of integrated and realized variances when the spot variance depends linearly on two autoregressive factors.
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or an OLS-based weighting. This computationally simple adjustment improves the stability

and accuracy of the estimators. Indeed, we show in simulations that W-ARMA-SV estima-

tors improve the precision. Especially, an OLS-based W-ARMA-SV estimator uniformly out-

performs all other estimators in terms of bias and RMSE by a significant margin — including

the Bayesian estimator proposed in this context.

Using these simple estimators, we develop recursive estimation procedures for SV(p) mod-

els by exploiting Durbin-Levinson-type (DL) algorithms. We discuss two algorithms, which

allow recursive-in-order calculation of the parameters of higher-order SV processes. The pro-

posed procedures generalize the recursion of Durbin (1960) [which pertains to pure autore-

gressive models] and of Tsay and Tiao (1984) [which applies to autoregressive-moving average

models].

The proposed computationally inexpensive estimators can be useful in several contexts.

Since SV models are parametric models involving only a finite number of unknown param-

eters, using these proposed estimators, one can construct simulation-based tests, even exact

tests based on the Monte Carlo (MC) test technique [see Dufour (2006)], as opposed to pro-

cedures based on establishing asymptotic distributions. In particular, exact tests obtained in

this way do not depend on stationarity assumptions, and consequently are useful when the

latent volatility process has a unit root (or is close to this structure). Furthermore, proposed

estimators are helpful for estimation schemes which require repeated estimation based on a

rolling window method, for example, Backtesting of risk measures (such as Value-at-Risk or

Expected Shortfall) in the context of risk management.

We derive the asymptotic properties of the proposed simple estimators under standard reg-

ularity assumptions, showing consistency and asymptotic normality when the fourth moment

of the latent volatility process exists. Due to the
p

T -consistency, our simple estimators can

be effortlessly applied to very large samples, which are not rare in empirical finance. In these

situations, estimators based on simulation technique and/or numerical optimization often

require substantial computational effort to achieve convergence. So instead of using compu-

tationally costly estimators, one may prefer to use estimators that are available in analytical

form.

Using Monte Carlo simulations, we study the statistical properties of our estimators and
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compare them with the Bayesian MCMC method. The simulation results confirm that the

W-ARMA-SV estimator that based on OLS (W-ARMA-SV-OLS) has excellent statistical proper-

ties in terms of bias and RMSE. It uniformly outperforms all other estimators, including the

Bayesian estimator regarding bias and RMSE. This result holds across different simulation de-

signs and for all individual parameters. Furthermore, the simple estimators are highly efficient

in terms of computation time, compared to other estimators.

We present empirical applications related to SV(p) models and the ARMA-SV estimator.

First, using the daily return on the S&P 500 index from 1928 to 2016, we find that an SV(3)

model is the best one from the viewpoint of in-sample fit, using both asymptotic and finite-

sample tests. Second, using different volatility proxies [the squared return of S&P 500 index

and the realized volatility of S&P 500, FTSE100, NASDAQ100, N225, SSMI20 indices], we con-

duct two out-of-sample forecast experiments: (1) a moderately volatile period after the late-

2000s financial crisis; (2) a highly volatile period, i.e., the core financial crisis. We compare

the accuracy of volatility forecasts among SV(p) models, GARCH models, and Heterogenous

Autoregressive model of Realized Volatility (HAR-RV) models. The results suggest that SV(p)

models perform better than other models in most cases. This finding holds even if a high

volatility period (such as financial crisis) is included in the estimation sample or the forecasted

sample. These inferences are not only based on a standard forecasting precision assessment

[such as using MSE and MAE statistics] but also on formal prediction tests, using the MCS

procedure of Hansen et al. (2011). Our findings highlight the usefulness of higher-order SV

models for volatility forecasting.

The W-ARMA-SV-OLS estimator proposed in this paper can be interpreted as a parsimo-

nious moment-based estimator where only a few (well chosen) moments are used. In a

moment-based (or GMM) inference, using too many moments can be very costly from an

estimation efficiency viewpoint as well as forecasting. Indeed, we show in our simulations

and empirical applications that the W-ARMA-SV-OLS estimator exhibits the best performance

in both estimation and forecasting, as well as numerical efficiency.

The paper proceeds as follows. Section 3.2 specifies the model and its assumptions. Section

3.4 discusses the stationarity, ergodicity and mixing properties of SV(p) models. Section 3.5

proposes simple estimators and their recursive prediction algorithms. Section 3.6 proposes
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GMM type estimators for SV(p) models, and Section 3.8 discusses the MC test technique. Sec-

tion 3.7 develops asymptotic theories for simple estimators. Section 3.9 presents the simula-

tion study, and Section 3.10 presents the empirical applications. We conclude in Section 3.11.

The proofs, tables, and figures are provided in the Appendix 3.12.

3.2 Framework

We consider a standard discrete-time SV process of order p, which is described below follow-

ing Taylor (1986), Ghysels et al. (1996) and Gallant et al. (1997). Specifically, we say that a

variable yt follows a discrete-time SV(p) process if it satisfies the following assumption, where

t ∈N0, and N0 represents the non-negative integers.

Assumption 3.2.1. STOCHASTIC VOLATILITY OF ORDER p. The process
{

yt : t ∈N0
}

satisfies the

equations

yt =σy exp(wt /2)zt , (3.2.1)

wt =
p∑

j=1
ϕ j wt− j +σv vt , (3.2.2)

where the vectors (zt , vt )
′

are i.i.d. according to a N[0, I2] distribution, while

(ϕ1, . . . , ϕp , σy , σv )
′

are fixed parameters.

We also make a stationarity assumption as follows.

Assumption 3.2.2. STATIONARITY. The process lt = (yt , wt )
′

is strictly stationary.

The last assumption entails that all the roots of the characteristic equation of the volatility

process [ϕ(B) = 0] lie outside the unit circle [i.e., ϕ(z) ̸= 0 for |z| ≤ 1], and w0 ∼N [0,σ2
v /(1−∑p

j=1ϕ
2
j )].

The SV(p) model consists of two stochastic processes, where yt describes the dynamics of

asset returns and wt := log(σ2
t ) captures the dynamics of latent log volatilities. Usually the yt ’s

are residual returns, such that

yt := rt −µr , rt := 100[log(pt )− log(pt−1)] ,
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where µr is the mean of returns (rt ) and pt is the raw prices of an asset.2 The latent process

wt can be interpreted as a random flow of uncertainty shocks or new information in financial

markets, while ϕ j ’s capture the volatility persistence. This type of volatility model naturally

fits into the theoretical framework of modern financial theory.

Let us now transform yt by taking the logarithm of its squared value. We get in this way the

following measurement equation:

log(y2
t ) = log(σ2

y )+wt + log(z2
t ) = {log(σ2

y )+E[log(z2
t )]}+wt + {log(z2

t )−E[log(z2
t )]}

= µ+wt +ϵt (3.2.3)

where

µ := E[log(y2
t )] = log(σ2

y )+E[log(z2
t )] , ϵt := log(z2

t )−E[log(z2
t )] . (3.2.4)

Note that this logarithmic transformation entails no information loss since the distribution of

zt is symmetric (see Remark 1 of Francq and Zakoïan (2006)). Furthermore, even if vt and zt

are not mutually independent, they are uncorrelated if the joint distribution of vt and zt is

symmetric, that is f (vt , zt ) = f (−vt ,−zt ); see Harvey et al. (1994).

Under the normality assumption for zt , the errors ϵt are i.i.d. according to the distribution

of a centered log(χ2
1) random variable [i.e., ϵt has mean zero and variance E(ϵ2

t )]. The cumulant

generating function of log(χ2
1) distribution is:

M(s) = logE
[

exp
(
s log(χ2

1)
)]= log

[
E
(
χ2

1

)s
]
= log

[
2s Γ

(
(1/2)+ s

)
Γ(1/2)

]
= s log(2)+ log[Γ

(
(1/2)+ s

)
]− log[Γ(1/2)] , for s ≥ 0, (3.2.5)

where Γ(z) := ∫ ∞
0 xz−1e−x d x is the gamma function; see Wishart (1947). The mth cumulant

of the log(χ2
1) random variable is the mth derivative of M(s) evaluated at s = 0. Thus, the

2It is noteworthy to mention that yt is ordinarily the error term of any time series regression model, see for
example Jurado et al. (2015).
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corresponding cumulants (κm) and central moments (µ̃m) are:

κm =


log(2)+ψ

(1
2

)
, if m = 1

ψ(m−1)
(1

2

)
, if m > 1

, µ̃m =


0, if m = 1

κm +∑m−2
j=1

(m−1
j

)
κm− j µ̃ j , if m > 1

, (3.2.6)

where

ψ(z) := d

d z
log[Γ(z)] = Γ′(z)

Γ(z)
(3.2.7)

is the digamma function and

ψ(m)(z) := d m

d zm
ψ(z) = d m+1

d zm+1
log[Γ(z)] (3.2.8)

is the polygamma function of order m [i.e., the (m +1)-th order derivative of the logarithm of

the gamma function].

From (3.2.6), we get:

E[log(z2
t )] = κ1 = log(2)+ψ(1/2) ≃−1.2704, (3.2.9)

σ2
ϵ := E(ϵ2

t ) = Var[log(z2
t )] = µ̃2 = κ2 =ψ(1)(1/2) =π2/2, (3.2.10)

E(ϵ3
t ) = µ̃3 = κ3 =ψ(2)(1/2) , E(ϵ4

t ) = µ̃4 = κ4 +3κ2
2 =ψ(3)(1/2)+3σ2

ϵ =π4 +3σ2
ϵ ; (3.2.11)

see Abramowitz and Stegun (1970, Chapter 6). The log(χ2
1) distribution is often approximated

by a normal distribution with mean of −1.2704 and variance of π2/2 [see Broto and Ruiz

(2004)], or by a mixture distribution [Kim et al. (1998)].

On setting

y∗
t := log(y2

t )−µ , (3.2.12)

the SV model (3.2.3) can be written as

y∗
t = wt +ϵt . (3.2.13)

By combining (3.2.2) and (3.2.13), we see that the SV(p) model can be written in state-space
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form:

State Transition Equation: wt =
p∑

j=1
ϕ j wt− j + vt , (3.2.14)

Measurement Equation: y∗
t = wt +ϵt , (3.2.15)

where wt is a logarithm of latent daily volatility, y∗
t is a logarithm of the daily squared re-

turn corrected by its mean, where the variables vt are i.i.d. N(0,σ2
v ), and the ϵt ’s are i.i.d.

log(χ2
1); for further discussion of this representation, see Nelson (1988), Harvey et al. (1994),

Ruiz (1994), Shephard (1994), Breidt and Carriquiry (1996), Harvey and Shephard (1996), Kim

et al. (1998), Sandmann and Koopman (1998), Steel (1998), Chib et al. (2002), Knight et al.

(2002), Francq and Zakoïan (2006), Omori et al. (2007).

3.3 Higher-order stochastic volatility

In this section, we discuss the econometric motivation for SV(p) models. It has been well

documented that the volatility process is driven by at least two factors: one factor captures

the salient properties of volatility, such as randomness and persistence, and a second one to

deal with the shape of the conditional distribution of financial returns such as fat-tails; ex-

amples of these studies include Gallant et al. (1999), Meddahi (2001), Alizadeh et al. (2002),

Barndorff-Nielsen et al. (2002), Bollerslev and Zhou (2002), Chernov et al. (2003), and Durham

(2006, 2007). Some of these studies also considered more than two factors and tried to fit the

volatility process of asset returns. This type of factor model is important for capturing non-

linearities in financial returns and improves the fit dramatically. However, these proposed

models need highly complex numerical optimization techniques, and they are not tractable

analytically. It is worth noting that we can always transform MFSV models to SV models which

have ARMA representation in the log volatility process [SV(p, q)]. This transformation is per-

fectly acceptable, since we can recuperate the MFSV parameters form the estimates of the

transformed model parameters. Further, instead of an SV(p, q) model, we can estimate an

SV(p) model and recuperate the SV(p, q) parameters from there.

Assumption 3.3.1. MULTI-FACTOR STOCHASTIC VOLATILITY MODEL OF ORDER M. The process
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{
yt : t ∈N0

}
satisfies the equations

yt =σy exp(
m∑

i=1

wi t

2
)zt ,

wi t =ϕi f wi t−1 +σi v vi t ,
∣∣∣ϕi f

∣∣∣< 1, i = 1, . . . , m,

where θMF SV
m := (σy , (ϕi f )m

i=1, (σi v )m
i=1)

′
are fixed parameters, and (zt , vi t )

′
are i.i.d. Gaussian

such that zt is N[0, 1] and vi t ’s are N[0, Im] and E[vi t zt ] = 0 ∀i .

Lemma 3.3.1. SV(p, q) REPRESENTATION OF MFSV MODEL. The model MFSV(m) defined by

Assumption 3.3.1 has the following SV(m,m −1) representation:

yt =σy exp(
wt

2
)zt , (3.3.1)

wt =
m∑

j=1
α j wt− j +σv vt −σv

m−1∑
j=1

β j vt− j , (3.3.2)

where θm,m−1 := (σy , (α j )m
j=1, (β j )m−1

j=1 ,σv )
′

are fixed parameters and (zt , vt )
′
, t ∈ N0, are i.i.d.

according to a N[0, I2] distribution. All the roots of characteristic equations [(1−α1B − ·· · −
αmB m) = 0 and (1−β1B −·· ·−βm−1B m−1) = 0] lie outside the unit circle.

To understand the Lemma 3.3.1, we consider the following example.

Example 1. SV(2,1) REPRESENTATION OF THE MFSV(2) MODEL. Under Assumption 3.3.1, the

volatility process of an MFSV(2) model, which is driven by the sum of two independent AR(1)

process, i.e., wt = w1t +w2t , where

w1t −ϕ1 f w1t−1 = (1−ϕ1 f B)w1t =σ1v v1t ,

w2t −ϕ2 f w2t−1 = (1−ϕ2 f B)w2t =σ2v v2t .

Using the aggregation principle of autoregressive processes [see Granger and Morris (1976)],

we know that AR(p) + AR(q) = ARMA(p + q, max(p, q)) and in particular, if we add two in-

dependent AR(1) processes, then we can get an ARMA(2, 1) process. This could be achieved as

follows.
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Since wt = w1t +w2t , and v1t and v2t are two independent white noise, it follows that

(1−ϕ1 f B)(1−ϕ2 f B)wt = (1−ϕ2 f B)σ1v v1t + (1−ϕ1 f B)σ2v v2t ,

or

(1−α1B −α2B 2)wt = (1−β1B)σv vt . (3.3.3)

This is an ARMA(2, 1) process with AR parameters, α1 =ϕ1 f +ϕ2 f and α2 =−ϕ1 f ϕ2 f , hence

ϕ1 f =
α1 −

√
α2

1 +4α2

2
, ϕ2 f =

α1 +
√
α2

1 +4α2

2
. (3.3.4)

The RHS of 3.3.3 is an invertible M A(1) process with variance [(1+ϕ2
2 f )σ2

1v + (1+ϕ2
1 f )σ2

2v ] and

autocovariance at lag 1 [−(ϕ2 f σ
2
1v +ϕ1 f σ

2
2v )]. Thus we get an SV(2, 1) with

α1 =ϕ1 f +ϕ2 f ,α2 =−ϕ1 f ϕ2 f , (3.3.5)

[(1+ϕ2
2 f )σ2

1v + (1+ϕ2
1 f )σ2

2v ] = (1+β2
1)σ2

v , (3.3.6)

[−(ϕ2 f σ
2
1v +ϕ1 f σ

2
2v )] =−β1σ

2
v . (3.3.7)

SV(p, q) models are more parsimonious but difficult to estimate, whereas SV(p) models are

not parsimonious but easy to estimate and use. We can estimate an SV(p) model instead of an

SV(p, q) model and recuperate the parameters of SV(p, q) model from the estimates of SV(p)

parameters. This process is based on the AR approximation of ARMA-type latent volatility pro-

cess. Some estimators, based on autoregressive approximation, have been proposed for gen-

eral ARMA models. These methods derive ARMA estimates from an approximate AR process,

where a linear regression or other technique is used to extract information from the full set of

AR coefficients; see for example Hannan and Rissanen (1982), Saikkonen (1986), Koreisha and

Pukkila (1990) and Galbraith and Zinde-Walsh (1997). In the context of VARMA models, this

type of method is used by Dufour and Pelletier (2005) and Dufour and Jouini (2014).

Lemma 3.3.2. INFINITE-ORDER SV REPRESENTATION OF SV(P,Q) PROCESS. The model SV(p, q)
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defined by lemma 3.3.1 [where p = m and q = m −1] has the following SV(∞) representation:

yt =σy exp(
wt

2
)zt , (3.3.8)

∞∑
j=0

(−ϕ j )wt− j =σv vt , (3.3.9)

where θSV
∞ := (σy ,

{
ϕ j

}∞
j=1

,σv ) are fixed parameters and (zt , vt )
′
, t ∈N0, are i.i.d. according to a

N[0, I2] distribution.

The SV(∞) model, given in Lemma 3.3.2, can be replaced by a truncated SV(p) model and

we can recuperate the SV(p, q) parameters from it. Using standard results on the represen-

tation of an ARMA(p, q) process [see Fuller (1996), Ch. 2, page 74], we have the following

expression that relate the parameters of SV(∞) and SV(p, q) model:

∞∑
j=0

(−ϕ j )wt− j =σv vt , (3.3.10)

where

ϕ0 =−1,

ϕ1 =−β1 +α1,

ϕ2 =−β1ϕ1 +β2 +α2,
...

ϕ j =−
mi n( j ,q)∑

i=1
βiϕ j−i +α j , ( j ≤ p)

ϕl =−
mi n(l ,q)∑

i=1
βiϕl−i , (l > p).

Given the above equations, we can identify the parameters of an SV(p, q) model from the

parameters of an SV(k) model. The identification requires k ≥ p +q . To understand the whole

identification process, we illustrate the following example.

Example 2. SV(2,1) PARAMETERS FROM AN SV(3) MODEL PARAMETERS. Under the lemma

3.3.1, we have SV(2,1) model where the volatility process is driven by an ARMA(2, 1) process. To

identify an SV(2,1) model from an SV(3) model, we use the following equations:

ϕ1 =−β1 +α1 , ϕ2 =−β1ϕ1 +α2 , ϕ3 =−β1ϕ2.
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Solving the above equations yields the parameters of SV(2, 1) model in terms of SV(3) parameter:

α1 =ϕ1 +
ϕ3

ϕ2
, α2 =ϕ2 +

ϕ1ϕ3

ϕ2
, β1 =−ϕ3

ϕ2
.

The whole identification process is as follows:

1. The MFSV(2) model, where the volatility process is driven by two independent AR(1) pro-

cess, has an SV(2, 1) representation by aggregation.

2. The SV(∞) representation follows from the invertibility of the MA part of the SV(2, 1)

model.

3. Estimate an SV(3) model [instead of an SV(∞)] and recuperate the SV(2, 1) parameters.

4. Further, from the SV(2, 1) parameters, we can identify the AR factor polynomials of the

MFSV(2) model by using (3.3.4).

From most of the empirical studies, it is prominent that researchers try to fit a distribution

that provides best fits for the volatility of asset return. In this section, we point out that an

SV(p) model may be served better in that respect since it is not only a natural extension SV(1)

model but also an approximated representation of the MFSV or the SV(p, q) model.

3.4 Stationarity, ergodicity and mixing properties

The mutual independence of the noise (zt ) and the volatility sequence (wt ) is one of the at-

tractive probabilistic features of SV models. This statistical property of SV models allows for a

much simpler probabilistic structure than that of GARCH-type models. It is difficult to estab-

lish a necessary and sufficient condition for stationarity of a GARCH process. Nelson (1990)

established a solution for the GARCH(1, 1) case and Bougerol and Picard (1992) for the gen-

eral GARCH(p, q) case. For a review of the stationarity of GARCH processes, one may refer

to Straumann (2005) or Francq and Zakoïan (2010). From Carrasco and Chen (2002), the fol-

lowing results ensure the stationarity, ergodicity and mixing condition of SV(p) models. These
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probabilistic conditions are useful in order to establish the large sample properties of the esti-

mators of SV(p) models. Indeed, we need {(yt , wt )
′
} to be strictly stationary and ergodic with

appropriate mixing condition.

Result 3.4.1. STATIONARITY AND ERGODICITY. Let {zt } and {vt } be two independent processes

such that {zt } is a sequence of i.i.d. real-valued random variables, independent of w0, with

E(zt ) = 0 and E(z2
t ) = 1, and zt has a continuous positive density with respect to Lebesgue mea-

sure on real line. Also, assume that all the roots of the characteristic equation of the volatility

process [ϕ(z) := 1−ϕ1z −·· ·−ϕp zp = 0] lie outside the unit circle [i.e., ϕ(z) ̸= 0 for |z| ≤ 1] and

there is an integer s ≥ 1 such that

E
( |vt |s

)<∞. (3.4.1)

Then the following properties hold.

(i) E[|wt |s] <∞ and {wt } is Markov geometrically ergodic.

(ii) If {wt } is initialized from its stationary distribution, then {wt } and
{

yt
}

are strictly station-

ary and exponential β - mixing and this property is preserved by any continuous transfor-

mation of {wt }, such as exp(wt /2).

(iii) If E
(∣∣log(|zt |)

∣∣s )<∞, then E
(∣∣log(|yt |)

∣∣s )<∞.

Note that the latter part of the above result follows from yt = exp(wt /2)σy zt , which implies

log |yt | = (wt /2)+ log |σy |+ log |zt | . (3.4.2)

The stochastic volatility model
{

yt
}

is a hidden Markov model since it includes a latent Markov

chain {wt } and {wt } is independent of the i.i.d. noise process {zt }. Proposition 2.1 of Genon-

Catalot et al. (2000) show that a hidden Markov model
{

yt
}

is ergodic and strong mixing if the

hidden chain {wt } is ergodic and strong mixing. We can get a similar result in the context of

SV models by using the Proposition 4 of Carrasco and Chen (2002) and (3.4.2).

Result 3.4.2. BETA MIXING. Let
{

yt
}

be a generalized hidden Markov model with a hidden

chain {wt }. Then,

67



CHAPTER 3. HIGHER-ORDER STOCHASTIC VOLATILITY MODELS AND FORECASTING

(i) if {wt } is geometrically ergodic, then the process
{
(wt , log |yt |)

}
is Markov geometrically

ergodic;

(ii) if {wt } is stationary β-mixing, then
{
log |yt |

}
is stationary β-mixing with a decay rate at

least as fast as that of {wt }.

We thus have the following basic property of the SV(p) process: if {wt } is initialized from

its stationary distribution, log|yt | is strictly stationary and exponential β-mixing, and so is the

process (yt , wt )
′
.

3.5 Simple estimation methods

In this section, we propose simple estimators for SV(p) models, including the corresponding

recursive procedures. Besides, we also suggest alternative methods to improve the perfor-

mance of these simple estimators.

3.5.1 Simple moment-based estimation

This moment-based estimator is the extension of Dufour and Valéry (2006, 2009) and it is

based on the moments of the following identity that can be obtained from substituting (3.2.2)

into (3.2.1):

yt :=σy exp
[( p∑

j=1
ϕ j wt− j +σv vt

)
/2

]
zt , ∀t . (3.5.1)

The moments and cross-moments of yt [yt := yt (θ) where θ := (ϕ1, . . . , ϕp ,σy ,σv )
′
] are given

in the following Lemma which is a generalization of Lemma 3.1 of Dufour and Valéry (2006).

Lemma 3.5.1. MOMENTS AND CROSS-MOMENTS OF THE VOLATILITY PROCESS. Under the as-

sumptions 3.2.1 - 3.2.2, and if U ∼N[0, 1], then E(U 2p+1) = 0, ∀p ∈N and E(U 2p ) = 2p !
2p p ! , ∀p ∈

N; then the moments and cross-moments of yt =σy exp((
∑p

j=1ϕ j wt− j +σv vt )/2)zt are given by
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the following formulas: For k, l and m ∈N, we have:

µk (θ) := E(yk
t ) =


σk

y
k !

2k/2(k/2)!
exp

[
k2

8
σ2

v

1−∑p
j=1ϕ jρ j

]
if k is even,

0 if k is odd,

(3.5.2)

µk,l (m |θ ) := E(yk
t y l

t+m) =


σk+l

y
k !

2k/2(k/2)!
l !

2l/2(l/2)!
exp

[
1
8
σ2

v (k2+l 2+2klρm )

1−∑p
j=1ϕ jρ j

]
if k and l are even

0 otherwise

(3.5.3)

where ρ j := corr(wt , wt+ j ).

Dufour and Valéry (2006) derived a closed-form solution for an SV(1) model by exploiting

Lemma 3.5.1. We now derive a closed-form solution for the higher-order SV process by using

Lemma 3.5.1. In following Lemma, we show it for an SV(p) model where p = 2:

Lemma 3.5.2. CLOSED-FORM MOMENT EQUATIONS SOLUTION FOR THE SV(2) MODEL. Using

Lemma 3.5.1, we have following moment equations solution:

ϕ1 =
−[

log
(
µ2,2(1)/µ2

2

)][
log

(
3µ2,2(2)/µ4

)]
[

log
(
µ4/(3µ2

2)
)]2 − [

log
(
µ2,2(1)/µ2

2

)]2 , (3.5.4)

ϕ2 =
−[

log
(
µ2,2(1)/µ2

2

)]2 + [
log

(
µ2,2(2)/µ2

2

)][
log

(
µ4/(3µ2

2)
)]

[
log

(
µ4/(3µ2

2)
)]2 − [

log
(
µ2,2(1)/µ2

2

)]2 , (3.5.5)

σy = 31/4µ2/µ1/4
4 , (3.5.6)

σv = [
log

(
µ4/(3µ2

2)
)−ϕ1 log

(
µ2,2(1)/µ2

2

)−ϕ2 log
(
µ2,2(2)/µ2

2

)]1/2 . (3.5.7)

where µk :=µk (θ) and µk,l (m) :=µk,l (m |θ ).

Using Lemma 3.5.1, we derive higher-order autocovariance functions of y2
t , y4

t , y2
t y2

t−1 and

y2
t y2

t−2 given in the following Lemma. These autocovariance functions are useful for the

derivation of asymptotic properties of the SV(2) estimator defined in Lemma 3.5.2.

Lemma 3.5.3. HIGHER-ORDER AUTOCOVARIANCE FUNCTIONS. Under the assumptions of
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Lemma 3.5.1, let X t = (X1t , X2t , X3t , X4t )
′

with

X1t = y2
t −µ2(θ) , X2t = y4

t −µ4(θ) , X3t = y2
t y2

t−1 −µ2,2(1 |θ ) , X4t = y2
t y2

t−2 −µ2,2(2 |θ ) .

Then the auto-covariances ζi (τ) := cov(Xi ,t , Xi ,t+τ), i = 1,2,3,4 are given by:

ζ1(τ) =µ2
2(θ)[exp(γτ)−1] , (3.5.8)

ζ2(τ) =µ2
4(θ)[exp(4γτ)−1] , ∀τ≥ 1, (3.5.9)

ζ3(τ) =µ2
2,2(1 |θ )[exp(γτ−1 +2γτ+γτ+1)−1] , ∀τ≥ 2, (3.5.10)

ζ4(τ) =µ2
2,2(2 |θ )[exp(γτ−2 +2γτ+γτ+2)−1] , ∀τ≥ 3, (3.5.11)

where γ j := cov(wt , wt+ j ).

Now it is natural to estimate µ2(θ), µ4(θ), µ2,2(1 |θ ) , and µ2,2(2 |θ ) by the corresponding

empirical moments:

µ̂2 =
1

T

T∑
t=1

y2
t , µ̂4 =

1

T

T∑
t=1

y4
t , µ̂2,2(1) = 1

T

T∑
t=1

y2
t y2

t−1 , µ̂2,2(2) = 1

T

T∑
t=1

y2
t y2

t−2. (3.5.12)

This yields the following estimators of the SV coefficients:

ϕ̂1 =
−[

log
(
µ̂2,2(1)/µ̂2

2

)][
log

(
3µ̂2,2(2)/µ̂4

)]
[

log
(
µ̂4/(3µ̂2

2)
)]2 − [

log
(
µ̂2,2(1)/µ̂2

2

)]2 , (3.5.13)

ϕ̂2 =
−[

log
(
µ̂2,2(1)/µ̂2

2

)]2 + [
log

(
µ̂2,2(2)/µ̂2

2

)][
log

(
µ̂4/(3µ̂2

2)
)]

[
log

(
µ̂4/(3µ2

2)
)]2 − [

log
(
µ̂2,2(1)/µ̂2

2

)]2 , (3.5.14)

σ̂y = 31/4µ̂2/µ̂1/4
4 , (3.5.15)

σ̂v = [
log

(
µ̂4/(3µ̂2

2)
)− ϕ̂1 log

(
µ̂2,2(1)/µ̂2

2

)− ϕ̂2 log
(
µ̂2,2(2)/µ̂2

2

)]1/2 . (3.5.16)

From the above analysis, it is clear that the procedure of Dufour and Valéry (2006) can be

easily extended to an SV(2) process. We refer this method as the simple EDV estimator. This

estimator is computationally much simpler than those based on numerical optimization tech-
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niques. Similarly, one can compute other higher-order SV models. The expressions of SV(3)

or SV(4) estimators are lengthier, so we do not include those equations in the text. However,

using this moment-based estimator, we propose a recursive estimation algorithm for SV(p)

models in Section 3.5.5.

3.5.2 ARMA-based estimation

In this subsection, we propose another simple estimator for SV(p) models by exploiting the

autocovariance structure of y∗
t . We consider a set of moments which are based on y∗

t =
(log(y2

t )−µ). The ARMA representation of the observed process {y∗
t } is given in the follow-

ing proposition.

Proposition 3.5.4. ARMA REPRESENTATION OF SV(P) MODELS. Under the assumptions 3.2.1

- 3.2.2, the process y∗
t defined in (3.2.12) has the following ARMA(p, p) representation:

y∗
t =

p∑
j=1

ϕ j y∗
t− j +ηt −

p∑
j=1

θ jηt− j (3.5.17)

with ηt −
∑p

j=1θ jηt− j = vt + ϵt −∑p
j=1ϕ j ϵt− j , where the error processes {vt } and {ϵt } are mutu-

ally independent, the errors vt are i.i.d. N (0,σ2
v ), and the errors ϵt are i.i.d. according to the

distribution of a log(χ2
1) random variable.

From the above proposition, we have simple expressions for the autocovariances and pa-

rameters of the SV(p) model, and these are given in following corollaries.

Corollary 3.5.5. AUTOCOVARIANCES OF THE OBSERVED PROCESS. Under the assumptions of

Proposition 3.5.4, the autocovariances of the observed process y∗
t defined in (3.2.12) satisfy the

following equations:

cov(y∗
t , y∗

t−k ) := γy∗(k) =


ϕ1γy∗(k −1)+·· ·+ϕpγy∗(k −p)+σ2

v +σ2
ϵ ; if k = 0,

ϕ1γy∗(k −1)+·· ·+ϕpγy∗(k −p)−ϕkσ
2
ϵ ; if 1 ≤ k ≤ p,

ϕ1γy∗(k −1)+·· ·+ϕpγy∗(k −p); if k > p.

(3.5.18)
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Corollary 3.5.6. CLOSED-FORM EXPRESSIONS FOR SV(P) PARAMETERS. Under the assumptions

of Proposition 3.5.4, we have:

ϕp =Γ −1
(p+j−1)γ(p+j), j ≥ 1 (3.5.19)

σy = [exp(µ+1.27)]1/2, (3.5.20)

σv = [γy∗(0)−ϕ
′
pγ(1) −π2/2]1/2, (3.5.21)

where ϕp := (ϕ1, . . . , ϕp )
′
, γ(p+j) := [γy∗(p + j ), . . . , γy∗(2p + j −1)]

′
are vectors and Γ(p+j−1) is a

p-dimensional Toeplitz matrices such that

Γ(p+j−1) :=



γy∗(p + j −1) γy∗(p + j −2) · · · γy∗( j )

γy∗(p + j ) γy∗(p + j −1) · · · γy∗( j +1)
...

...
...

γy∗(2p + j −2) γy∗(2p + j −3) · · · γy∗(p + j −1)

 .

where p is the SV order, γy∗(k) = cov(y∗
t , y∗

t−k ), with y∗
t and µ defined in (3.2.12).

Now, it is natural to estimate γy∗(k) and µ by the corresponding empirical moments:

γ̂y∗(k) = 1

T −k

T−k∑
t=1

y∗
t y∗

t+k , µ̂= 1

T

T∑
t=1

log(y2
t ) , (3.5.22)

where by construction y∗
t is a mean corrected process. Setting j = 1 in (3.5.19) and replacing

theoretical moments by their corresponding empirical moments yield the following simple

ARMA-SV estimator of the SV(p) coefficients:

ϕ̂p = Γ̂ −1
(k,p)γ̂(k,p), (3.5.23)

σ̂y = [exp(µ̂+1.27)]1/2, (3.5.24)

σ̂v = [γ̂y∗(0)− ϕ̂
′
pγ̂(k,p) −π2/2]1/2. (3.5.25)
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3.5.3 Restricted estimation

These simple estimators may yield a solution outside the admissible area, i.e., some of the

eigenvalues of the latent volatility process [it is an AR(p) process] may lie outside the unit cir-

cle or equal to unity. This issue can arise especially in small samples or in the presence of

outliers. When this happens, a simple fix is projecting the estimate on the space of acceptable

parameter solutions by altering the eigenvalues that lie on or outside the unit circle. The char-

acteristic equation of the latent AR(p) process is given by C (λ) =λp −ϕ1λ
p−1−·· ·−ϕp = 0, and

the stationary condition requires all roots lie inside the unit circle, i.e., |λi | < 1, i = 1, · · · , p. If

the estimated parameters fail to satisfy this condition, then the restricted estimation can be

done in the following two steps:

1. Given the estimated unstable parameters, we calculate the roots of the characteristic

equation and restrict their absolute values to less than unity.

2. Given these restricted roots, we calculate the constrained parameters which ensure sta-

tionarity.

For example, in case of an SV(2) model, the characteristic equation of the latent volatility

process is C (λ) = λ2 −ϕ1λ−ϕ2 = 0. It may have two types of roots: (i) if ϕ2
1 + 4ϕ2 ≥ 0, then

C (λ) has two real roots, and these are given by λ1,2 =
ϕ1±

√
ϕ2

1+4ϕ2

2 and (ii) if ϕ2
1 +4ϕ2 < 0 then

C (λ) has two complex roots, and these are given by λ1,2 = ϕ1
2 ± i

√
−(ϕ2

1+4ϕ2)

2 . When the es-

timated polynomial coefficients produce an unstable solution, then we restrict the absolute

value of the roots less than unity, i.e. |λ1,2| < 1 or |λ1,2| = 1−∆ where ∆ is a very small number.

Given these restricted roots, we solve for restricted parameters which ensure the stationarity

condition. These steps can be done very easily in MATLAB. In MATLAB, the roots function cal-

culates the roots given the parameters, and the poly function calculates the parameters given

the roots.

3.5.4 ARMA-based winsorized estimation

We can achieve better stability and efficiency of ARMA-SV estimator by using “winsorization”

which exploits (3.5.19). Winsorization (censoring) substantially increases the probability of
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getting admissible values. From (3.5.19), it is easy to see that:

ϕp =
∞∑

j=1
ω jΓ

−1
(p+j−1)γ(p+j) (3.5.26)

for any ω j sequence with
∑∞

j=1ω j = 1. Using (3.5.26), we can define a more general class

of estimators for ϕp by taking a weighted average of several sample analogs of the ratio

Γ −1
(p+j−1)γ(p+j):

ϕ̃p =
J∑

j=1
ω j Γ̂

−1
(p+j−1)γ̂(p+j), (3.5.27)

where 1 ≤ J ≤ T −p with
∑J

j=1ω j = 1 and T is the length of time series. We can expect that a

sufficiently general class of weights may improve the efficiency of the ARMA-SV estimators.

Using (3.5.27), we can propose alternative estimators of ϕp and we call these estimators

winsorized ARMA-SV estimators (or W-ARMA-SV estimators). Other (possibly nonlinear) av-

eraging methods, such as the median, may also be used. We consider four types of winsorized

estimators based on the expression given by (3.5.27) in the simulation section. These estima-

tors are also considered by Hafner and Linton (2017) in the context of closed-form estimation

of the EGARCH(1, 1) model.

1. The first, ϕ̂
m
p , is an arithmetic mean of sample ratios (equal weights) where we set

ω j = 1/J , j = 1, . . . , J , (3.5.28)

in (3.5.27). This type of winsorization is also considered by Kristensen and Linton (2006)

in the context of the GARCH(1, 1) model estimation.

2. The second, ϕ̂
ld
p , is a mean of ratios with linearly declining weights, i.e., it is the estima-

tor in

ω j = (2/J )[1− ( j /(J +1))], j = 1, . . . , J . (3.5.29)

3. The third is the median: ϕ̂
med
p = med{Γ̂ −1

(p+j−1)γ̂(p+j)} j = 1, . . . , J , where

ϕ̂
med
i =

(
med{Γ̂ −1

(p+j−1)γ̂(p+j)}
)

(i ,1)
. (3.5.30)
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4. The fourth is the OLS without intercept regression estimator, given by

ϕ̂
ol s
p = (ā′ā)−1ā′ē, (3.5.31)

where ā = (Γ̂(p)ω
1/2
1 , . . . , Γ̂(p+J−1)ω

1/2
J )′ and ē = (γ̂(p+1)ω

1/2
1 , . . . , γ̂(p+J )ω

1/2
J )′. Clearly,

different OLS-based W-ARMA-SV can be generated by considering different weights

w1, . . . , w J . In our simulations below as well as empirical applications, we focus on the

case where the weights are equal [see (3.5.28)]. Note that, in case of an SV(2), the W-

ARMA-SV-OLS (with equal weights) yields:

ϕ̂
ol s
1 =

∑J
j=1[γ̂y∗( j +1)γ̂y∗( j +2)− γ̂y∗( j )γ̂y∗( j +3)][γ̂y∗( j +1)2 − γ̂y∗( j )γ̂y∗( j +2)]∑J

j=1[γ̂y∗( j +1)2 − γ̂y∗( j )γ̂y∗( j +2)]2

(3.5.32)

ϕ̂
ol s
2 =

∑J
j=1[γ̂y∗( j +1)γ̂y∗( j +3)− γ̂y∗( j +2)2][γ̂y∗( j +1)2 − γ̂y∗( j )γ̂y∗( j +2)]∑J

j=1[γ̂y∗( j +1)2 − γ̂y∗( j )γ̂y∗( j +2)]2
. (3.5.33)

The above simplification [simple regressions] follows from (3.5.19) with p = 2, which can

be written as following:

 ϕ1

ϕ2

=
 γy∗( j +1) γy∗( j )

γy∗( j +2) γy∗( j +1)

−1  γy∗( j +2)

γy∗( j +3)

=


γy∗ ( j+1)γy∗ ( j+2)−γy∗ ( j )γy∗ ( j+3)

γy∗ ( j+1)2−γy∗ ( j )γy∗ ( j+2)
γy∗ ( j+1)γy∗ ( j+3)−γy∗ ( j+2)2

γy∗ ( j+1)2−γy∗ ( j )γy∗ ( j+2)

 .

(3.5.34)

All these estimators are depend on J and for J = 1, they are equivalent to the simple ARMA-

SV estimator which is given by (3.5.23).

3.5.5 Recursive estimation for SV(p) models

Previously we had shown that it is possible to derive higher-order closed-form solution for

SV(p) models. In this section, we propose recursive estimation algorithms for SV(p) models.

We use an alternative method provided by Durbin (1960) that avoids the matrix inversion in

the Yule-Walker equations. This method is called the Durbin-Levinson (DL) Algorithm, and

it is a prediction algorithm. One central feature of DL Algorithm is that we will automatically
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get partial autocorrelations and mean-squared errors associated with our predictions. For no-

tational convenience, we use a different indexation for the autoregressive parameters of the

volatility process [only for this section]. For example, the SV(p) parameters are now denoted

by ΘSV
p := (

{
ϕp, j

}p

j=1
,σpv ,σy )

′
.

Under the assumptions 3.2.1-3.2.2, the latent volatility process is a stationary AR(p) process

that satisfies the Yule-Walker equations. Thus we can apply DL algorithm that is designed for a

pure autoregressive process, and we obtain parameters of higher-order SV models recursively.

We obtain the extension of the Dufour and Valéry (2006) estimator for SV(p) models by using

the following recursive formulae:

ϕp,p =
ρp −∑p−1

j=1 ϕp−1, j ρp− j

1−∑p−1
j=1 ap−1, j ρ j

, (3.5.35)

ϕp, j =ϕp−1, j −ϕp,pϕp−1,p− j , ∀ j = 1,2, . . . , p −1, (3.5.36)

where ρ j is the auto-correlation of the autoregressive process at lag j . Using the following

Lemma, we can get the solution of an SV(p) model from an SV(p −1) model:

Lemma 3.5.7. RECURSIVE MOMENT EQUATION SOLUTION. Under the assumptions 3.2.1 -

3.2.2, the parameters of the SV(p) model, i.e., ΘSV
p := (

{
ϕp, j

}p

j=1
,σpv ,σy )

′
, can be recursively

estimated from the SV(p −1) model by the following algorithm:

σ̂y =
31/4µ̂2

µ̂1/4
4

, (3.5.37)

ϕ̂p,p =
ρ̂p −∑p−1

j=1 ϕ̂p−1, j ρ̂p− j

1−∑p−1
j=1 ϕ̂p−1, j ρ̂ j

, (3.5.38)

ϕ̂p, j = ϕ̂p−1, j − ϕ̂p,pϕ̂p−1,p− j , j = 1,2, . . . , p −1, (3.5.39)

σ̂v = [
(1−

k∑
j=1

ϕ̂p−1, j ρ̂ j ) log
(
µ̂4/(3µ̂2

2)
)]1/2, (3.5.40)

where

ρ̂ j := log
(
µ̂2,2( j )/µ̂2

2

)
log

(
µ̂4/(3µ̂2

2)
) . (3.5.41)

Note that after calculating the sample auto-correlations, we can estimate the parameters of
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the model in the second stage with the help of a DL algorithm. The recursive estimation of the

ARMA-SV estimator exploits extended Yule-Walker (EYW) equations of the observed process.

When the MA order is fixed, the system of the EYW equations constitutes a nested Toeplitz

system. A Generalized Durbin-Levinson algorithm for the ARMA-SV estimator for SV(p) model

is useful when neither the AR order nor the MA order is known. We consider the case i = p,

i.e., the MA order is p, which also implies that the AR order is p.

For i = 0, use the Durbin-Levinson algorithm to calculate

{ϕ̂
(0)
p, j | p ≥ 1, j = 1, . . . , p}.

For i ≥ 1, calculate

ϕ̂
(i−1)
p,0 =−1,

and

ϕ̂
(i )
p, j = ϕ̂

(i−1)
p+1, j −

ϕ̂
(i−1)
p+1,p+1

ϕ̂
(i−1)
p,p

ϕ̂
(i−1)
p, j−1, where p ≥ 1, j = 1, . . . , p,

σ̂y = [exp(µ̂+1.27)]1/2,

σ̂pv = [γ̂y∗(0)−
p∑

j=1
ϕ̂p, j γ̂y∗( j )−π2/2]1/2.

This algorithm is the same as Tsay and Tiao (1984) algorithm [except for equations involving

σ̂y and σ̂pv ] for calculating the extended sample autocorrelation function under the station-

arity assumption.

3.6 Andersen-Sørensen type GMM estimation

The simple estimators proposed in the previous section can be viewed as specific cases of

GMM estimators where we used a few number of moments. In this section, we propose GMM

estimators for SV(p) models with many moments in line with Andersen and Sørensen (1996).

In literature, Andersen and Sørensen (1996) proposed GMM estimators for the SV(1) model

but the GMM estimator for SV(p) models remains to be discussed. The GMM estimation was

formalized by Hansen (1982), and since then it has become one of the most popular methods
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of estimation for many models in economics and finance. Unlike the MLE, GMM does not

require complete knowledge of the distribution of the data. The GMM estimator of SV(p)

model is a natural extension of our simple closed-form moment-based estimator. Following

the general methodology of GMM, our goal is to minimize the quadratic form with respect to

the parameter vector:

MT = [ḡT (YT )−µ(θ)]
′
Ω̂T [ḡT (YT )−µ(θ)] (3.6.1)

where µ(θ) is a vector of moments, ḡT (YT ) the corresponding vector of empirical moments

based on the vector YT = (y1, . . . , yT )
′
, and Ω̂T a positive-definite (possibly random) matrix.

We compute the corresponding sample averages such that

gT (θ) := ḡT (YT )−µ(θ) =
T∑

t=1
[ḡ t (Yt )−µ(θ)].

Now under the standard regularity assumptions,

p
T [θ̂T (Ω)−θ0]

d−→ N [0,V (θ0 |Ω )], (3.6.2)

where

V (θ0 |Ω ) = [J (θ)ΩJ (θ)
′
]−1 J (θ)ΩΩ∗ΩJ (θ)

′
[J (θ)ΩJ (θ)

′
]−1, (3.6.3)

and J (θ) = ∂µ
′

∂θ . Furthermore, if (i) J (θ) is a square matrix, or (ii) Ω∗ is non-singular and Ω =
Ω−1∗ , then

V (θ0 |Ω ) = [J (θ)Ω−1
∗ J (θ)

′
]−1 :=V∗(θ). (3.6.4)

The V∗(θ0) is the smallest possible asymptotic covariance matrix for a method-of-moments

estimator based on MT (θ). The latter, in particular, is reached when the dimensions of µ and

θ are the same, in which case the estimator is obtained by solving the equation

ḡT (YT ) =µ(θ̂T )

Consistent estimators V (θ0 |Ω ) and V0(θ0) can be obtained by replacing θ0 and Ω∗ with their
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consistent estimators. The sample analog of Ω∗ is given by

Ω̂∗ = Ŝ0 +
∞∑

i=1
(Ŝi + Ŝ

′
i ). (3.6.5)

Given this structure, it is natural to estimate Ω̂∗ by truncating this infinite sum and using the

sample auto-covariances, where

Ŝ j = 1

T

T∑
t= j+1

[g t− j (ŷ)−µ(θ)][g t− j (ŷ)−µ(θ)]
′

with θ replaced by a consistent estimator of it.3 However for Ω∗, we need to use the het-

eroskedasticity and autocorrelation covariance (HAC) matrices to avoid any potential incon-

sistency caused by inappropriate assumptions about the dynamic specification of [g t (ŷ) −
µ(θ)]. This estimator is consistent under relatively weak assumptions on the dependence

structure of the process, and this class consists of estimators of the form:

Ω̂∗,H AC = Ŝ0 +
T−1∑
i=1

ωi ,T (Ŝi + Ŝ
′
i ) (3.6.6)

where ωi ,T is known as the kernel (or weight), and it must be chosen to ensure: (i) consistency

and (ii) positive semi-definiteness of Ω̂∗. In the literature, there have been few proposed ker-

nel functions that can fit into the above equation.4 Thus a consistent estimator of V̂∗(θ0) is

given by

V̂∗ = [J (θ̂T )Ω̂−1
∗ J (θ̂T )

′
]−1.

Andersen and Sørensen (1996), based on a Monte Carlo simulations study, address several

issues related to GMM estimation of SV(1) model. One issue of GMM estimation is the choice

of the number of moment conditions. If weighted appropriately, by increasing the number

of moment conditions (using additional information), one cannot make the parameter esti-

mates worse. However, the weighting matrix, Ω, must itself be estimated, and with q moment

conditions, we need to estimate q(q + 1)/2 elements of Ω, and a larger number of moment

3The truncation parameter lT is allowed to grow with the sample size such that: lT →∞ as T →∞ and lT =
0(T 1/3) see White and Domowitz (1984).

4(i) Bartlett kernel by Newey and West (1987), (ii) Parzen kernel by Gallant (1987), and (iii) Quadratic spectral
kernel by Andrews (1991).
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conditions could lead to poorer estimates of Ω and worse estimates of the parameters. An-

other issue with GMM is that there is not much guidance on which moment conditions to

use. For SV models, one can construct moment conditions based on infinitely many func-

tions of returns; see Melino and Turnbull (1990).

3.7 Asymptotic distributional theory

In this section, we derive asymptotic properties for our simple estimators. For the asymptotic

distribution of GMM-type estimators; see Hansen (1982).

3.7.1 Moment-based estimators

Dufour and Valéry (2006) derived an asymptotic distributional theory for the SV(1) estima-

tor. In line with that we establish the asymptotic distributional theory for the moment-

based SV(p) estimators. Our approach for constructing an MM estimator is to minimize the

quadratic form:

MT = [ḡT (YT )−µ(θ)]
′
Ω̂T [ḡT (YT )−µ(θ)] (3.7.1)

where µ(θ) is a vector of moments, ḡT (yT ) the corresponding vector of empirical moments

based on the vector YT = (y1, . . . , yT )
′
, and Ω̂T a positive-definite (possibly random) matrix.

Of course, this estimator belongs to the general family of moment estimators, for which a

number of general asymptotic results do exist; see Hansen (1982), Gouriéroux and Monfort

(1995) (Volume 1, Chapter 9) and Newey and McFadden (1994).

It is worth noting at this stage that Andersen and Sørensen (1996) did refer to the asymptotic

distribution of the usual GMM estimator as derived in Hansen (1982) for the SV(1) model, but

without checking the suitable regularity conditions. We want to find the estimator θ̂T (Ω̂T ) by

minimizing MT (θ), and for that we will consider the following assumptions, where θ0 denotes

the “true" value of the parameter vector θ.

Assumption 3.7.1. ASYMPTOTIC NORMALITY OF EMPIRICAL MOMENTS.

p
T [ḡT (YT )−µ(θ0)]

d−→ N [0,Ω∗]
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where YT := (y1, . . . , yT )
′

and

Ω∗ = lim
T→∞

E{T [ḡT (YT )−µ(θ0)][ḡT (YT )−µ(θ0)]
′
}

Assumption 3.7.2. ASYMPTOTIC NON-SINGULARITY OF WEIGHT MATRIX.

plim
T→∞

(Ω̂T ) =Ω,

where det (Ω) ̸= 0.

Assumption 3.7.3. DIFFERENTIABILITY OF WEIGHT MATRIX. µ(θ0) is twice continuously dif-

ferentiable in an open neighborhood of θ0 and the Jacobian matrix J (θ0) has full rank, where

J (θ) = ∂µ
′

∂θ .

Given these assumptions, the asymptotic distribution of θ̂T is determined by a standard

argument on method-of-moments estimation.

Lemma 3.7.1. ASYMPTOTIC DISTRIBUTION OF METHOD-OF-MOMENTS ESTIMATOR. Under the

assumptions 3.2.1 - 3.2.2 and 3.7.1 - 3.7.3,

p
T [θ̂T −θ0]

d−→ N [0,V (θ0 |Ω )] (3.7.2)

where

V (θ0 |Ω ) = [J (θ)ΩJ (θ)
′
]−1 J (θ)ΩΩ∗ΩJ (θ)

′
[J (θ)ΩJ (θ)

′
]−1 (3.7.3)

where J (θ) = ∂µ
′

∂θ . If, furthermore, (i) J (θ) is a square matrix, or (ii) Ω∗ is non-singular and

Ω=Ω−1∗ , then

V (θ0 |Ω ) = [J (θ)Ω−1
∗ J (θ)

′
]−1 :=V∗(θ). (3.7.4)

Here, V∗(θ0) is the smallest possible asymptotic covariance matrix for a method-of-

moments estimator based on MT (θ), and a consistent estimator of V̂∗(θ0) is given by

V̂∗ = [J (θ̂T )Ω̂−1
∗ J (θ̂T )

′
]−1.

Since we are using a number of moments equal to the number of parameters, the moment
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estimator can be obtained by taking Ω̂T equal to an identity matrix so that Assumption 3.7.2

automatically holds. Thus we only need to show that the Assumption 3.7.1 holds.

Lemma 3.7.2. ASYMPTOTIC DISTRIBUTION FOR EMPIRICAL MOMENTS. Under the assumptions

3.2.1 - 3.2.2 with p > 1, we have:

p
T [ḡT (YT )−µ(θ0)]

d−→ N [0,Ω∗] (3.7.5)

where ḡT (YT ) =∑T
t=1 g t , g t = [y2

t , y4
t , y2

t y2
t−1, . . . , y2

t y2
t−p ]

′
, and

Ω∗ =V [g t ] = E[g t g
′
t ]−µ(θ0)µ(θ0)

′
.

3.7.2 ARMA-based estimators

We derive the asymptotic properties of the ARMA-SV estimator θ̂ := (ϕ̂1, . . . , ϕ̂p , σ̂y , σ̂v )
′

under

the following set of assumptions.

Assumption 3.7.4. DISTRIBUTION OF THE ERROR PROCESSES. The error processes zt and vt are

mutually independent and {zt } is a sequence of i.i.d. real-valued random variables, indepen-

dent of w0. The probability distribution of zt has a continuous density with respect to Lebesgue

measure on real line, and its density is positive on (−∞, +∞). The transformed error ϵt satisfies

E(|ϵt |)s <∞, where s is an positive integer.

Assumption 3.7.5. STATIONARITY OF THE LATENT PROCESS. The latent process {wt } is strictly

stationary with E(|wt |)s <∞ and there is an integer s ≥ 1 such that

E(|vt |)s <∞,
∞∑

j=1

∣∣∣ψ j

∣∣∣s <∞, (3.7.6)

where wt =ϕ−1(B)vt =ψ(B)vt which follows from ϕ(z) ̸= 0 for |z| ≤ 1] where the characteristic

equation of the volatility process ϕ(z) := 1−ϕ1z −·· ·−ϕp zp = 0.

Under the assumptions 3.7.4 and 3.7.5 with s = 2, the observed process {y∗
t } is strictly sta-

tionarity and geometrically ergodic with exponential β-mixing (see results 3.4.1 and 3.4.2) with
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finite second moment, i.e., E
[
(y∗

t )2
]<∞. In the following Lemma, using Ergodic theorem, we

prove the consistency of the empirical moments in (3.5.22).

Lemma 3.7.3. CONSISTENCY OF EMPIRICAL MOMENTS. Under the assumptions 3.7.4 and 3.7.5

with s = 2, the estimators Γ̂(m) := [γ̂y∗(0), γ̂y∗(1), . . . , γ̂y∗(m)]′ and µ̂ defined by (3.5.22) satisfy:

µ̂
p−→µ and Γ̂(m)

p−→Γ(m) := [γy∗(0), γy∗(1), . . . , γy∗(m)]′ . (3.7.7)

The assumptions 3.7.4 and 3.7.5 with s = 4 are sufficient for the SV model to have a strictly

stationary solution with a finite fourth moment of y∗
t , i.e., E

[
(y∗

t )4
]<∞. Note that the fourth

moment of y∗
t translates into the eighth moment of yt . This solution will be β-mixing with

geometrically decreasing mixing coefficients. In the following Lemma, using a Central Limit

theorem for the stationary and ergodic process (Lindeberg-Levy theorem for the dependent

process), we present the asymptotic distribution of the empirical moments in (3.5.22).

Lemma 3.7.4. ASYMPTOTIC DISTRIBUTION OF EMPIRICAL MOMENTS. Under the assumptions

3.7.4 and 3.7.5 with s = 4, the estimators Γ̂(m) = [γ̂y∗(0), γ̂y∗(1), . . . , γ̂y∗(m)]′ and µ̂ defined by

(3.5.22) satisfy:

p
T

 µ̂−µ

Γ̂(m)−Γ(m)

 d−→ N

0,

 Vµ C
′
µ,Γ(m)

Cµ,Γ(m) VΓ(m)


 , (3.7.8)

where

Vµ = γy∗(0)+2
∞∑
τ=1

γy∗(τ) , VΓ(m) = Var(Λt )+2
∞∑
τ=1

cov(Λt ,Λt+τ) , Cµ,Γ(m) = (c̄, 0[1×m])
′ , (3.7.9)

Λt := [Λt ,0, Λt ,1, . . . , Λt ,m]′ , (3.7.10)

Λt ,k := y∗
t y∗

t+k −γy∗(k) = [log(y2
t )−µ][log(y2

t+k )−µ]−γy∗(k) , k = 0, . . . , m , (3.7.11)

c̄ :=Cµ,Γ(0) = 2
∞∑

t=1
E[y∗3

t ] = 2
∞∑

t=1
(E[w 3

t ]+E[ϵ3
t ]) = 2

∞∑
t=1

E[ϵ3
t ] . (3.7.12)

This in turn yields the asymptotic distribution of the simple ARMA-type estimator

(ϕ̂1, . . . , ϕ̂p , σ̂y , σ̂v )
′
.
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Theorem 3.7.5. ASYMPTOTIC DISTRIBUTION OF SIMPLE ARMA-SV ESTIMATOR. Under the

assumptions 3.7.4 and 3.7.5 with s = 4, the estimator θ̂ := (ϕ̂1, . . . , ϕ̂p , σ̂y , σ̂v )
′

given in (3.5.23) -

(3.5.25) is consistent, i.e., θ̂
p−→ θ, and

p
T (θ̂−θ)

d−→ N[0,V ], (3.7.13)

where θ := (ϕ1, . . . , ϕp ,σy ,σv )
′

and

V =G(β)

 Vµ C
′
µ,Γ(2p)

Cµ,Γ(2p) VΓ(2p)

 G(β)
′
, (3.7.14)

G(β) := ∂Dp

∂β
′ , Dp := Dp (β) = (Dϕp

, Dσy , Dσv )
′
, β := [µ,γy∗(0),γy∗(1), . . . , γy∗(2p)]

′
,

(3.7.15)

Dϕp
:=Γ(p)

−1γ(p+1) , Dσy := exp(µ+1.27)1/2 , Dσv = [γy∗(0)−ϕ
′
pγ(1) −π2/2]1/2 , (3.7.16)

ϕp := (ϕ1, . . . , ϕp )
′
, γ(p+1) = [γy∗(p +1), . . . , γy∗(2p)]

′
, (3.7.17)

Γ(p)[p×p]
=



γy∗(p) γy∗(p −1) · · · γy∗(1)

γy∗(p +1) γy∗(p) · · · γy∗(2)
...

...
...

γy∗(2p −1) γy∗(2p −2) · · · γy∗(p)

 , (3.7.18)

γy∗(k) = cov(y∗
t , y∗

t−k ) , y∗
t = (log y2

t −µ) , µ := E[log(y2
t )]. (3.7.19)

The explicit form of the analytical moment derivative, G(β), is given in the proof. An estima-

tor of the covariance matrix V can be obtained by first estimating Vµ, Cµ,Γ(p) and VΓ(2p) using

heteroskedasticity and autocorrelation consistent (HAC) variance estimators [see Den Haan

and Levin (1997) and Robinson and Velasco (1997)] and then substituting β̂ = [µ̂, γ̂y∗(0),

γ̂y∗(1), γ̂y∗(2), . . . , γ̂y∗(2p)]
′

into G(β). In our empirical applications, we use a Bartlett ker-

nel estimator with the bandwidth varying with the sample size; see Newey and West (1994).

One can alternatively use the analytic expressions of γy∗(k) to obtain an estimator of Vµ. The

ARMA-type estimator can be viewed as a GMM-type estimator, so one can also use GMM

standard errors.
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Theorem 3.7.5 covers the simplest ARMA-SV estimator. It is easy to see that the asymptotic

distribution of more general winsorized estimators can be derived in the same way upon using

Lemmas 3.7.3 - 3.7.4.

3.8 Monte Carlo tests

In this section, we discuss simulation-based inference procedures for SV(p) models. The

simulation-based methods are more attainable in the context of this study for two reasons:

1. the SV(p) model is a parametric model with a finite number of parameters, and we can

effortlessly simulate this model;

2. we can simulate the test statistic of SV(p) parameters, which is based on a computation-

ally inexpensive estimator. So, using our proposed computationally simple estimators,

one can easily construct more reliable finite-sample inference.

It should be noted that the simulation-based procedure may not be attainable when the

estimator is computationally expensive, so that we cannot simulate the test statistic easily.

We now examine the usefulness of our simple estimators in the context of simulation-based

inference, i.e., Monte Carlo test technique. The technique of Monte Carlo tests was originally

proposed by Dwass (1957) for implementing permutation tests and did not involve nuisance

parameters. This technique was also independently proposed by Barnard (1963); for a review,

see Dufour and Khalaf (2001) and for a general discussion and proofs, see Dufour (2006). It has

the great attraction of providing exact (randomized) tests based on any statistic whose finite-

sample distribution may be intractable but can be simulated. One can replace the unknown or

intractable theoretical distribution F (S|θ), where θ := (ϕ1, . . . , ϕp ,σy ,σv )
′
, by its sample analog

based on the statistics S1(θ), . . . ,SN (θ) simulated under the null hypothesis.

Let us first consider the pivotal statistics case, i.e., the case where the distribution of the

test statistic under the null hypothesis does not depend on nuisance parameters. We can then

proceed as follows to obtain an exact critical region.

1. Let S0 be the observed test statistic (calculated from data).
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2. By Monte Carlo methods, draw N i.i.d. replications of S, denoted by S(N ) = (S1, . . . ,SN )

under H0.

3. From the simulated samples compute the MC p-value p̂N [S] := pN [S0;S(N )], where

pN [x,S(N )] := NGN [x;S(N )]+1

N +1
(3.8.1)

GN [x;S(N )] := 1

N

N∑
i=1

I[0,∞)(Si −x), I[0,∞)(x) =


1 if x ∈ [0,∞),

0 if x ∉ [0,∞).
(3.8.2)

In other words, pN [S0;S(N )] = (NGN [S0;S(N )]+ 1)/(N + 1) where NGN [S0;S(N )] is the

number of simulated values which are greater than or equal to S0 . When S0,S1, . . . ,SN

are all distinct [an event with probability one when the vector (S0,S1, . . . ,SN )
′

has an

absolutely continuous distribution], R̂N (S0) = N +1−NGN [S0;S(N )] is the rank of S0 in

the series S0,S1, . . . ,SN .

4. The MC critical region is: p̂N [S] ≤ α, 0 < α < 1 . If α(N +1) is an integer and the distri-

bution of S is continuous under the null hypothesis, then under null,

P [p̂N [S] ≤α] =α; (3.8.3)

see Dufour (2006).

We will now study the case where the distribution of the test statistic depends on nuisance

parameters. In other words, we consider a model {(Ξ,AΞ,Pθ) : θ ∈Ω} where we assume that

the distribution of S is determined by Pθ̄, where θ̄ represents the true parameter vector. To

deal with this complication, the MC test procedure can be modified as follows.

1. To test the null hypothesis

H0 : θ̄ ∈Ω0,

where Ω0 ⊂Ω, we calculate the relevant test statisticS0 based on data.

2. For each θ ∈ θ0, by Monte Carlo methods, we generate N i.i.d. replications of S :

S(N ,θ) = [(S1(θ), . . . ,SN (θ)].
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3. Using these simulated test statistics, we compute the MC p-value p̂N [S|θ] :=
pN [S0;S(N ,θ)], where

pN [x;S(N ,θ)] := NGN [x;S(N ,θ)]+1

N +1
. (3.8.4)

4. The p-value function p̂N [S|θ] as a function of θ is maximized over the parameter values

compatible with the Ω0, i.e., the null hypothesis, and H0 is rejected if

sup
θ∈Ω0

p̂N [S|θ] ≤α. (3.8.5)

If the number of simulated statistics N is chosen so that α(N +1) is an integer, then we

have under H0:

P [sup
θ∈Ω0

{p̂N [S|θ]} ≤α] ≤α. (3.8.6)

The test defined by p̂N [S|θ] ≤ α has size α for known θ . Treating θ as a nuisance pa-

rameter and Ω0 is a nuisance parameter set consistent with null, the test is exact at level

α; for a proof, see Dufour (2006).

Because of the maximization in the critical region (3.8.5) the test is called a maximized

Monte Carlo (MMC) test. MMC tests provide valid inference under general regularity con-

ditions such as almost-unidentified models or time series processes involving unit roots. In

particular, even though the moment conditions defining the estimator are derived under the

stationarity assumption, this does not question in any way the validity of maximized MC tests,

unlike the parametric bootstrap whose distributional theory is based on strong regularity con-

ditions. Only the power of MMC tests may be affected. However, the simulated p-value func-

tion is not continuous, so standard gradient-based methods cannot be used to maximize it.

But search methods applicable to non-differentiable functions are applicable, e.g. simulated

annealing [see Goffe et al. (1994)].

A simplified approximate version of the MMC procedure can alleviate its computational

load whenever a consistent point or set estimate of θ is available. To do this, we reformulate

the setup in order to allow for an increasing sample size, i.e., now the test statistic depends on
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a sample of size T , S = ST .

1. Let ST 0 be the observed test statistic (based on data) and the distribution of S involves

nuisance parameters under the null and θ̄ ∈Ω0 with Ω0 ⊂Ω and Ω0 ̸= ;.

2. we have a consistent set estimator CT of θ (under H0) such that

lim
T→∞

P [θ̄ ∈CT ] = 1 under H0. (3.8.7)

3. For each θ ∈ CT , by Monte Carlo methods, we generate N i.i.d. replications of S :

ST (N ,θ) = [(ST 1(θ), . . . ,ST N (θ)].

4. Using these simulations we compute the MC p-value p̂T N [ST |θ] := pT N [ST 0;ST (N ,θ)],

where

pT N [x;ST (N ,θ)] := NGT N [x;ST (N ,θ)]+1

N +1
. (3.8.8)

5. The p-value function p̂T N [ST |θ] as a function of θ is maximized with respect to θ in CT ,

and H0 is rejected if

sup{p̂T N [ST |θ] : θ ∈CT } ≤α. (3.8.9)

If the number of simulated statistics N is chosen so that α(N +1) is an integer, then we

have under H0:

lim
T→∞

P [sup{p̂T N [ST |θ] : θ ∈CT } ≤α] ≤α, (3.8.10)

i.e., we control for the level asymptotically.

In practice, it is easy to find a consistent set estimate of θ̄, whenever a consistent point

estimate θ̂T of θ̄ available (e.g. a GMM estimator). For instance, any set of the form

CT = {θ :
∥∥θ̂T −θ

∥∥< d} (3.8.11)

with d a fixed positive constant independent of T , satisfies (3.8.7). The consistent set esti-

mate MMC (CSEMMC) method is especially useful when the distribution of the test statistic

is highly sensitive to nuisance parameters. Here, possible discontinuities in the asymptotic
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distribution are automatically overcome through a numerical maximization over a set that

contains the true value of the nuisance parameter with probability one asymptotically (while

there is no guarantee for the point estimate to converge sufficiently fast to overcome the dis-

continuity). It is worth noting that there is no need to maximize the p-value function with

respect to unidentified parameters under the null hypothesis. Thus, parameters which are

unidentified under the null hypothesis can be set to any fixed value and the maximization

be performed only over the remaining identified nuisance parameters. When there are sev-

eral nuisance parameters, one can use simulated annealing, an optimization algorithm which

does not require differentiability. Indeed, the simulated p-value function is not continuous,

so standard gradient based methods cannot be used to maximize it. An example where this is

done on a VAR model involving a large number of nuisance parameters, see Dufour and Jouini

(2006).

In Dufour and Khalaf (2002), they call the test based on simulations using a point nuisance

parameter estimate a local MC (LMC) test. The term local reflects the fact that the underlying

MC p-value is based on a specific choice for the nuisance parameter. Here if the set CT in

(3.8.9) is reduced to a single point estimate θ̂T , i.e. CT = {θ̂T }, we get a LMC test

p̂T N [ST |θ̂T ] ≤α, (3.8.12)

which can be interpreted as a parametric bootstrap test. Note that no asymptotic argument

on the number N of MC replications is required to obtain this result; this is the fundamental

difference between the latter procedure and the parametric bootstrap method.

Even if θ̂T is a consistent estimate of θ (under the null hypothesis), the condition (3.8.7) is

not usually satisfied in this case, so additional assumptions are needed to show that the para-

metric bootstrap procedure yields an asymptotically valid test. It is computationally less costly

but clearly less robust to violations of regularity conditions than the MMC procedure; for fur-

ther discussion, see Dufour (2006). Furthermore, the LMC non-rejections are exactly conclu-

sive in the following sense: if p̂N [S|θ̂0] >α, then the exact Maximized Monte Carlo (MMC) test

is clearly not significant at level α.
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3.9 Simulation study

In this section, we investigate the properties of the proposed estimators in terms of bias and

root mean square error (RMSE) through simulation.

First, we study the finite-sample properties of the winsorized ARMA-SV estimators

discussed in Section 3.5.4. We generate an SV(2) processes with (ϕ1,ϕ2,σy ,σv ) =
(0.30, 0.60, 0.025, 2.5). We consider different sample sizes T = (500,1000,2000) and use 1000

replications. All four censored estimators depend on the truncation parameter J , so we use

different values of J = (1, 5, 10, 20, 30, 40, 50, 100). Simulation results are reported in Table 3.1.

It is striking that weighted [equal weights and linearly declining weights] and median estima-

tors perform very poorly. These estimators produce a large number of inadmissible values

(NIV) for the parameter estimates. Their inferior performance may be due to the high vari-

ability of estimated ACF. Further, these estimators give inadmissible parameter values even in

large samples and also in different values of J . On the other hand, the simple ARMA-SV es-

timator outperforms these above mention estimators and produces few inadmissible param-

eter values. However, the number of impermissible parameter values decline as the sample

size increases, and it should be emphasized that the ARMA-SV estimator did not produce any

unbound solutions when T = 2000. This fact also implies that the variability of estimated ACF

goes down as the sample size increases.

However, it is remarkable that the OLS estimates are highly robust, and it outperforms the

other three winsorized estimators as well as the ARMA-SV estimator in terms of bias and

RMSE, across different sample sizes, particularly in small samples. Further, it is also robust

to different values of J . From the reported results; there may be a bias-variance trade-off for

higher values of J . Finally, we suggest to use OLS for winsorizing and use small values of J for

large samples (or the other way round).

Now we explore the statistical performance of our proposed estimators, these include the

moment estimator, the simple ARMA-SV estimator, the winsorized ARMA-SV (W-ARMA-SV)

estimator [it is the no intercept regression with J = 10] and GMM estimators, in terms of bias

and RMSE. Globally, there is no uniform ranking between the different estimators, but the

performance of the Bayesian estimator remains superior among the competing methods in
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the context of SV(1) model. Under the following simulation designs, we compare our proposed

estimators to the Bayesian estimator. We use the MATLAB code of Chan and Grant (2016) for

the Bayesian estimation with their specified prior.

We simulate four SV(2) models where parameter values of (ϕ1,ϕ2,σy ,σv ) are M1 =
(0.30, 0.60, 0.025, 2.5), M2 = (0.95,−0.85, 0.5, 2.5), M3 = (0.45, 0.45, 0.25, 2.5) and M4 =
(0.0, 0.90, 0.025, 2.5). The parameters have been selected arbitrarily since empirical applica-

tions of SV(p) models are rare in the literature. The variance of the returns process determined

by σy and the magnitude of σy tends to vary depending on the measurement frequency [in-

traday, daily, or monthly]. The estimation of σy will typically not have much of an effect on

the estimation of the other parameters (ϕ1,ϕ2,σv ). The simulations use 1000 replications,

and we consider two different sample sizes, T = (500, 2000). These sample sizes are adequate

in the sense that in case of low-frequency financial data, the sample size of T = 1200 ob-

servations corresponds with roughly five years of daily returns, whereas for high-frequency

financial data, the sample size of T = 1200 observations corresponds with fifteen days of five-

minute intraday returns [one trading day is equal to 78 five-minute intraday returns].

In our GMM setting, we consider two sets of moments. One set contains the 24 moment

conditions similar to the set of moments that are consider by Andersen and Sørensen (1996)

in the context of SV(1) estimation. They recommend using moment conditions for GMM es-

timation based on lower-order moments, since higher-order moments tend to exhibit erratic

finite-sample behavior. The other set considers 6 moment conditions. The large and small

sets are denoted by ML and MS and given by

ML =


|yt | j −µ j (θ) for j = 1, . . . , 4

|yt ||yt− j |−µ1,1( j |θ ) for j = 1, . . . , 10

y2
t y2

t− j −µ2,2( j |θ ) for j = 1, . . . , 10

 and MS =
 |yt | j −µ j (θ) for j = 1, . . . , 4

y2
t y2

t− j −µ2,2( j |θ ) for j = 1,2

 ,

where

µ1(θ) := E(|yt |) =σy (2/π)1/2exp
[
γ0/8

]
, µ2(θ) := E(y2

t ) =σ2
y exp

[
γ0/2

]
,

µ3(θ) := E(|yt |3) = 2σ3
y (2/π)1/2exp

[
9γ0/8

]
, µ4(θ) := E(y4

t ) = 3σ4
y exp

[
2γ0

]
,

µ1,1( j |θ ) := E(|yt ||yt− j |) =σ2
y (2/π)exp

[
γ0(1+ρ j )/4

]
, j = 1, . . . , 10,
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µ2,2( j |θ ) := E(y2
t y2

t− j ) =σ4
y exp

[
γ0(1+ρ j )

]
, j = 1, . . . , 10, γ0 =σ2

v /(1−ϕ1ρ1 −ϕ2ρ2) .

Also, we employ two types of GMM estimators based on the choice of weighting matrix (in-

verse of the asymptotic covariance matrix and HAC covariance matrix using Bartlett Kernel).

Tables 3.2 - 3.5 report the estimation results for model M1 −M4. These Tables also include

the corresponding restricted estimation. In case of an unstable solution, we employ the re-

stricted estimation [as discussed in Section 3.5.3] where the absolute values of the roots are

adjusted to less than unity , i.e., |λi | = 1−∆ with ∆ = 0.0001. We also report the number of

inadmissible values (over 1000) for each model in Table 3.6.

From Table 3.6, we can see that GMM, EDV, and ARMA-SV estimators produce several un-

acceptable parameter values, and NIV goes down as sample size increases. We have similar

results for all simulated models. In these cases, we discard those simulations from the calcu-

lation. The simple ARMA-SV provides few NIV, and it gives impermissible values in only 0.1%

of all simulations when T = 2000. The EDV method and the efficient GMM with 24 moments

produce a substantial NIV while other GMM estimators produce several NIV. The W-ARMA-SV

estimator and Bayesian estimator give no NIV. It should be noted that the Bayesian algorithm

draws values under stationarity restriction.

We report the results of M1 in Table 3.2. The results suggest that W-ARMA-SV estimates

are superior, while GMM, EDV and MCMC estimators are inferior in terms of bias and RMSE.

For each parameter, the W-ARMA-SV and ARMA-SV estimators produce the smallest and the

second smallest bias and RMSE, respectively. The ARMA-SV produces 17 inadmissible values

when T = 500 and none when T = 2000. RMSE associated with the restricted ARMA-SV (R-

ARMA-SV) estimates are close to ARMA-SV estimates. In most cases, restricted estimation

corresponding to other methods [EDV, GMM] improves the RMSE but produces more bias,

showing that it reduces the variance of the estimates. We also find that GMM, EDV and MCMC

methods are biased, and the size of these biases is substantial. For the larger samples, T =
2000, we have almost identical results for all the parameter estimates as with T = 500. Again

W-ARMA-SV outperforms all other estimators in terms of bias and RMSE. The RMSE of ARMA-

SV and W-ARMA-SV estimates decreases as the sample size increases, shows the consistency

of these estimators.
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The results of M2, M3 and M4 models are reported in Tables 3.3-3.5, and results are compa-

rable to the ones reported in Table 3.2. Again, in these designs, the performance of ARMA-SV

and W-ARMA-SV estimators stands out. However, there are some important findings. In M2,

EDV and 24 moments efficient GMM produce numerous inadmissible parameter values, al-

most 95% when T = 500 and 99% when T = 2000. In M3, we find that some of GMM, EDV

and MCMC estimates are exploded with substantial bias and RMSE and this problem persists

even when T = 2000. All the GMM estimators perform very badly and this is also true for

the Bayesian estimator. The performance of GMM estimators cast doubt on the advice that

one should use many moments, thereby the chance of including irrelevant ones goes up. This

assertion is documented in the literature on asymptotic theory; see Buse (1992), Chao and

Swanson (2007), and Dufour and Valéry (2006). Note that, overidentification leads to biased

GMM estimators in finite-samples. Concurring evidence, based on finite-sample optimality

results and Monte Carlo simulations, is also available in Dufour and Taamouti (2003).

We also encounter the non-convergence problem with the Bayesian estimation. The EDV

estimator of σ2
v sometimes produces a negative value. Note that in each simulation, the W-

ARMA-SV estimator yields a solution. We can draw several conclusions from these simula-

tion results for the W-ARMA-SV and ARMA-SV estimator. First, when T = 500, these estima-

tors provide accurate estimates since it outperforms all other estimators in terms of bias and

RMSE. Second, the W-ARMA-SV is more efficient than other estimators in terms of RMSE for

all simulation design. These results show that W-ARMA-SV not only improves stability but

also increases efficiency. From Table 3.7, the simple estimators are highly time efficient, and

the margin of time efficiency is huge compared to other estimators.

Simulation results also show that the Bayesian method is very fragile, and the convergence

of this method depends on the choice of the prior distribution. The specified prior [for the

SV(2) model] of Chan and Grant (2016) produces a substantial bias for all four parameter

estimates, indicating that their choice of the prior distribution is terrible. A better chosen

prior could conceivably have a better performance, but the result will always depend on the

true (unknown) parameter values whose domain gets larger as the order of the process in-

creases. The Bayesian method requires different prior distributions as the order of SV(p)

model changes, and the computational cost increases as well with p.
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3.10 Empirical applications

In this section, we demonstrate two empirical applications of SV(p) models. First, we examine

the fit of SV(p) models with real data to see the empirical evidence of this type of parametric

models. Second, we further extend our analysis and compare the forecast performance of

three typical volatility models in out-of-sample forecasting experiments, models include the

GARCH-type, SV-type and high-frequency realized volatility based models.

3.10.1 Empirical evidence

The SV(p) models are fitted to daily observations of the Standard and Poor’s (S&P) Com-

posite Price Index. The raw series pt is converted to returns by the transformation rt :=
100[log(pt )−log(pt−1)] and the returns are converted to residual returns by yt := rt −µ̂r , where

µ̂r is the sample average of returns. The sample period is from January 3, 1928 to September

27, 2016 and the number of observations is T = 23,372. This data is obtained from Whar-

ton Research Data Services (WRDS). The sample includes many volatile periods that cover the

Great Depression (1929), the Second World War (1937-45), the OPEC oil price shock (1973),

the Black Monday (1987), the Asian financial crisis (1997), the early 2000s recession (Dot-com

bubble), the late-2000s financial crisis (subprime mortgage crisis / United States housing bub-

ble) and the recent Russian financial crisis (2014).

Table 3.8 reports summary statistics of the daily residual returns (yt ) and its several trans-

formed series (y2
t , log |yt |, y∗

t ). We observe that the skewness and kurtosis of yt and y2
t show

the evidence of non-normal distribution, while the distributions of log-transformed residual

returns are close to normal. This result is consistent with most empirical studies. Table 3.9

shows the parameter estimates of the SV(p) models (where p = 1,2,3,4) using our W-ARMA-

SV estimator. We use (3.5.31) with J = 7 with equal weights to estimate ϕp. Since we have a

long financial time series, small values of J ∈ (1 : 10) is more appropriate (according to simu-

lation results), and J = 7 provides us stable solutions across the estimated models, i.e., roots

of the estimated autoregressive parameters of the latent volatility process are inside the unit

circle.
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Our results show that there is some persistence in the volatility process during the period

1928-2016, and this is statistically significant. We have also found that parameters of SV(p)

models, where p = 1,2,3, are statistically significant. This finding suggests that the latent

volatility process can be treated as an autoregressive process of order more than one. It is

also in line with Asai (2008). However, the estimated SV(4) model is insignificant. Again from

Table 3.9, we can see that the W-ARMA-SV estimator is extremely efficient from the viewpoint

of computation time.

Table 3.9 reports p-values based on the usual large-sample approximation, i.e., the HAC co-

variance estimator. The variance-covariance V̂ is estimated by a Bartlett kernel estimator with

the bandwidth varying with the sample size, i.e. m = [1.14T 1/3], where [·] denotes the integer

part of the enclosed number; see Newey and West (1994). Note that the asymptotic standard

error can be markedly different and may be quite unreliable in finite-samples. To construct a

more reliable finite-sample inference, we can compute the Monte Carlo tests (discussed thor-

oughly in section 3.8) since our estimator is convenient for use in the context of computa-

tionally costly inference techniques. We implemented parametric Bootstrap or LMC tests as

discussed in section 3.8 where we replace the nuisance parameters by corresponding point

estimates and simulate the test statistic under the null hypothesis. Except for ϕ1 and ϕ2 pa-

rameters of the SV(3) model and σy in all models, we test each coefficient equals zero against

a right-sided alternative employing a t-type test statistic. Note that, we cannot test ϕ1 = 0 and

ϕ2 = 0 in the SV(3) model because each of these restrictions leads to the latent volatility pro-

cess non-stationary. In this situation, we cannot have a stationary SV(3) model, which makes

ARMA-based estimation is infeasible. Thus we test ϕ1 = 0.2 and ϕ2 =−0.4 against a right-sided

and a left-sided alternative, respectively. Further, we test σy = 0.01 against a right-sided alter-

native since when σy = 0, SV models are unidentified. Results of LMC tests are also reported

in Table 3.9. From the results, we can see that the SV(4) model is not statistically significant in

both asymptotic and finite-sample parametric Bootstrap tests, and this entails that an SV(3)

model could be more suitable for the volatility dynamics of this sample periods. Note that,

one can easily exploit these simple estimators and construct exact tests based on MMC pro-

cedure as discussed in Section 3.8. To summarize, the results presented in Table 3.9 indicate

that SV models with additional lag terms in the volatility process may be appropriate to model
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the S&P 500 index.

The choice of J plays a very crucial role in ARMA-SV estimation; therefore, we scrutinize the

possible choices of J with small samples. We consider three sample periods:

1. The first sample period is from January 2, 1996 to September 27, 2016. This is roughly

20 years and the number of daily observations T = 5222.

2. In the second sample, we consider approximately 10 years of daily observations from

January 3, 2006 to September 27, 2016, where T = 2703.

3. The third sample includes the 2008 financial crisis, from January 3, 2006 to December

31, 2010, which gives T = 1259.

For each of these samples, we consider SV(p) models with p = [1, . . . , 4] and plot the W-

ARMA-SV-OLS estimates of the volatility persistence parameters for J = [1, . . . , 100]. We also

report the corresponding SV(p) estimates for J = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] in Table

3.10.

From Figure 3.1-3.3 and Table 3.10, we can see the evolution of ϕ’s as a function of J . At

J = 25, almost all models provide stationary solutions while when J = 50, we get very stable

solutions across different samples and models. It should be noted that the truncation pa-

rameter J plays a smoothing role and simulation results suggest that there is a bias-variance

trade-off for ϕ estimators as J increases. Therefore, we desire a moderate level of winsorizing,

and in the volatility forecasting application below we consider J = 50.

3.10.2 Volatility forecast performance

We evaluate the volatility forecast performance amongst GARCH, SV, and realized volatil-

ity based models.5 Volatility has long been modeled and forecasted using GARCH models

because of the earlier discussed complexity of SV models. We considered several popular

GARCH-type models in our experiments, these include: GARCH models of Bollerslev (1986),

5Realized volatility (RV), is a model free volatility, received much attention among the financial economists
and econometricians as an accurate measure of the true latent volatility under the ideal market assumption
[Andersen and Bollerslev (1998), Barndorff-Nielsen and Shephard (2001)] and it can be used as a proxy for true
latent volatility (for details about RV and related measure, see Section 4.7.2).
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Exponential GARCH (EGARCH) models of Nelson (1991) and GJR models of Glosten et al.

(1993). For the details of these models and their forecast equations, see appendix 3.12.5.

We also consider high-frequency based Heterogenous Autoregressive model of Realized

Volatility (HAR-RV) models of Corsi (2009). In this study, we use a logarithmic version of

HAR-RV model since the logarithmic transformation of RV appears approximately Gaussian;

see Andersen, Bollerslev, Diebold and Ebens (2001), Andersen, Bollerslev, Diebold and Labys

(2001). The HAR-RV model takes into account the long memory feature of realized volatil-

ity, and among the models proposed to forecast realized volatility, it stands out because of its

simplicity (for details, see appendix 3.12.6).

For SV(p) models, we exploit the state-space representation in (3.2.14-3.2.15) and calculate

forecasts based on the Kalman filter. The SV(p) parameters are computed using our simple

method, where we used (3.5.31) with J = 50 and fixed the value of J before any estimations.

Given the simple estimates, we calculate the forecasts of SV(p) models through the Kalman

filter. For the details of this forecasting procedure and out-of-sample forecasting equations,

see appendix 3.12.4.

We use three loss measures to evaluate the forecast accuracy. These include MSE, MAE,

and R2LOG. MSE and MAE are the mean squared error and mean absolute error, respectively,

and R2LOG is the logarithmic loss function proposed by Pagan and Schwert (1990a) and can

penalize volatility forecast asymmetry in high and low level of volatility. These loss measures

are defined as follows:

MSE : lt = (σ̂2
t −h2

t |t−k )2 , M AE : lt =| σ̂2
t −h2

t |t−k | , R2LOG : lt = (log σ̂2
t − loght |t−k )2 ,

where σ̂2
t is an unbiased ex-post proxy of conditional variance (such as squared return or re-

alized volatility) and ht |t−k is a volatility forecast based on t −k information set where k > 0.

Using the above loss functions, we also compute the model confidence set (MCS) procedure

proposed by Hansen et al. (2011). The model confidence set involves a sequence of tests for

equal predictive ability (EPA) hypothesis. Given a model set M0, which contains m competing

forecast models, the null hypothesis is that all models in M0 have equal predictive accuracy. If

the null hypothesis is rejected at a given confidence level α, then the worst performing model

97



CHAPTER 3. HIGHER-ORDER STOCHASTIC VOLATILITY MODELS AND FORECASTING

in M0 is eliminated. After that, the EPA test is repeated until the null hypothesis is accepted.

When the null hypothesis is accepted, the remainder composes 1−α confidence set, M̂∗
1−α.

We now briefly discuss how it is implemented. Define the relative loss differential between

models by

di , j ,t = li ,t − l j ,t , for all i , j ∈M, t = 1, . . . , T ,

be the simple loss of model i relative to any other model j at time t . Using the loss differential

between competing models, the MCS procedure tests the EPA hypothesis in two alternative

ways.

H0 : µi j = 0 for all i , j ∈M and HA : µi j ̸= 0 for some i , j ∈M (3.10.1)

or

H0 : µi ,· = 0 for all i ∈M and HA : µi ,· ̸= 0 for some i ∈M (3.10.2)

where µi j = E(di , j ) and µi ,· = E(di ,·). The two statistics, used in the model confidence set test,

are expressed as follows:

MC S_TR,M = max
i , j∈M

| ti , j | and MC S_Tmax,M = max
i∈M

ti ,·, (3.10.3)

where

ti , j =
d̄i , j√

V̂ar(d̄i , j )
, ti ,· =

d̄i ,·√
V̂ar(d̄i ,·)

,

d̄i ,· = m−1
∑

j∈M
d̄i , j , d̄i , j = T −1

T∑
t=1

di , j ,t for i , j ∈M ,

while V̂ar(d̄i ,·) and V̂ar(d̄i , j ) are bootstrap estimates of Var(d̄i ,·) and Var(d̄i , j ), respectively. In

our calculations, we perform a block-bootstrap using a block length of 12 days and 10000

bootstrap replications. The first statistic, ti , j , is used in the well-known test for comparing

two forecasts; see Diebold and Mariano (2002) and West (1996), while the second one, ti ,·, is

used in Hansen et al. (2003), Hansen (2005), and Hansen et al. (2011).

We conduct two out-of-sample forecast experiments using different volatility proxy:
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1. Design 1 (Moderate volatility regimes): In this setting, we consider a sample period

from September 01, 2005 to August 31, 2010. The in-sample is from September 01, 2005

to August 31, 2008 and the out-of-sample is from September 01, 2008 to August 31, 2010.

We forecast a moderately volatile period but the in-sample contains the most volatile

part of the late-2000s financial crisis.

2. Design 2 (High volatility regimes): In this design, we consider a sample period, from

January 01, 2005 to December 31, 2009. The in-sample is from January 01, 2005 to De-

cember 31, 2007 and the out-of-sample is from January 01, 2008 to December 31, 2009.

The out-of-sample includes a highly volatile period, i.e., the late-2000s financial crisis

(Subprime mortgage crisis / United States housing bubble).

In both designs, we consider a sample of five years that split into three years span of in-

sample and two years span of out-of-sample. Three years span for the in-sample window is

adequate for finding the most accurate volatility forecasts; see Kambouroudis and McMillan

(2015).

Within the SV and GARCH framework, the key element is the specification for conditional

variance. Parametric SV and GARCH models utilize daily returns (typically squared returns) to

extract information about the current level of volatility, and this information is used to form

expectations about the next period’s volatility. Although the squared return is a noisy measure,

it is a conditionally unbiased estimator of the daily conditional variance. In contrast, Andersen

and Bollerslev (1998) suggest that realized volatility (which is based on cumulative intraday

squared returns) is a more accurate proxy for true latent volatility. Therefore, we examine out-

of-sample volatility forecasts across competing models using different loss functions as well

as the MCS procedure with squared return and realized volatility proxies.

We computed out-of-sample forecasts using rolling (moving) window method and com-

puted for a range of forecast horizons which are 1-day, 2-day, 1-week, 2-week, 3-week and

1-month. In this rolling forecasts setup, an initial sample using data from t = 1, . . . , T is used

to determine a window width T , to estimate the models, and to form h−step ahead out-of-

sample forecasts starting at time T . Then the window is moved ahead one time period, the

models are re-estimated using data from t = 2, . . . , T +1, and h−step ahead out-of-sample fore-
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casts are produced starting at time T +1. This process is repeated until no more h−step ahead

forecasts can be computed.

3.10.2.1 Forecasting squared return

Now we consider the daily squared return as volatility proxy and evaluate the volatility fore-

cast performance among GARCH, SV and HAR-RV models using the S&P 500 index. The high-

frequency RV estimates and prices of S&P 500 index are obtained from the Oxford-Man Insti-

tute’s Realized Library; see Heber et al. (2009). The raw prices pt are converted to returns by

the transformation rt = 100[log(pt )− log(pt−1)]. The returns are converted to residual returns

by yt = rt − µ̂r where µ̂r is the sample average of returns. Note that, y2
t is the volatility proxy

at time t .

We consider a modified version of the HAR-RV model [that defined in (3.12.100)], where

the daily squared return is the dependent variable and realized volatilities are independent

variables. We are using additional information from the high-frequency data to forecast the

squared return. However, there is a problem in measuring the realized volatility from high-

frequency data. The high-frequency estimate of realized volatility may be very unstable be-

cause of the market microstructure noise, which captures a mixture of frictions inherent in the

trading mechanism: bid-ask bounces, discreteness of price changes, different price impacts

due to differences in trade sizes, slow response of prices to a block trade, strategic component

of the order flow, inventory control effects, etc. The choice of RV estimator is important. We

consider other RV estimates, including: realized bi-power variation (BV) [Barndorff-Nielsen

and Shephard (2006)], realized semi-variance (RSV) [Barndorff-Nielsen et al. (2010)], realized

kernel (RK) [Barndorff-Nielsen et al. (2008, 2011)], median realized volatility (MedRV) [An-

dersen et al. (2012)], two-scale realized kernels (TSRK) [Ikeda (2013)]. We also consider sub-

sampled RV, BV, and RSV. Subsampling, introduced by Zhang et al. (2005), is a simple way to

improve the efficiency of sparse-sampled estimators.6

For each forecast experiment, we compute forecasts from three SV models, eleven

6Subsampling involves using a variety of “grids”of prices sampled at a given frequency to obtain a collection
of realized measures, which are then averaged to yield the “subsampled”version of the estimator. For example,
5-minute RV can be computed using prices sampled at 10:30, 10:35, etc. and can also be computed using prices
sampled at 10:31, 10:36, etc.
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GARCH-type models, and nine HAR-RV type models. The eight GARCH-type models

are: GARCH(1, 1), GARCH(1, 2), GARCH(2, 1), GARCH(2, 2), GARCH(3, 3), EGARCH(1, 1),

EGARCH(2, 2), EGARCH(3, 3), GJR(1, 1), GJR(2, 2) and GJR(3, 3).

For S&P 500, in design 1, the sample period is from September 01, 2005 to August 31, 2010

and the number of observations is T = 1258. The in-sample is from September 01, 2005 to

August 31, 2008 (T = 753) and the out-of-sample is from September 01, 2008 to August 31,

2010 (T = 505). In design 2, the sample period is from January 01, 2005 to December 31,

2009 and the number of observations is T = 1259. The in-sample is from January 01, 2005 to

December 31, 2007 (T = 754) and the out-of-sample is from January 01, 2008 to December 31,

2009 (T = 505).

Tables 3.11-3.12 report summary statistics of daily variables, high-frequency RV estimates,

and their logarithms. Using our out-of-sample forecasts, we calculate forecast evaluation

measures, i.e., MSE, MAE and R2LOG. Tables 3.13-3.18 presents the main results of our fore-

casting experiments. For easy comparison, we report the relative MSE, the relative MAE and

the relative R2LOG of forecast error. These are relative to the reference model HAR-RV5,

and hence, values smaller than unity indicate better forecast performance than the HAR-RV5

model. We also report the MCS p-value for the corresponding model.

We check the stationarity of SV(p) estimates and find that the W-ARMA-SV-OLS (J = 50)

estimator produces a few unstable solutions for the SV(3) model. In these cases, the unstable

estimates are modified by applying the restricted estimation (proposed in Section 3.5.3). We

report both the unrestricted and restricted SV(3) forecasts in Table 3.13-3.18. However, these

forecasts are qualitatively similar. Note that, in the realized volatility forecasting application

below, we do not find any unstable parameter estimates of SV models.

In design 1, Tables 3.13-3.15, when we forecast a moderately unstable period after the core

financial crisis, the forecasting performance of higher-order SV models [especially, the SV(3)

model (unrestricted or restricted)] are superior to all other volatility models. This result holds

across different forecast horizons, different evaluation measures and based on MCS. Accord-

ing to MCS, the SV(3) model dominates all other competing models, except for 1- and 2-weeks

horizon as per MSE loss function. Several HAR-RV models performed well according to MSE,

but these results are undermined by their performance in terms of MAE and R2LOG. Except
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for one- and two-day horizons, the forecasting performance of GARCH-type models is poor

for all models, according to all loss measures and across different forecast horizons.

In design 2, Tables 3.16-3.18, when we forecast a highly volatile period, i.e., the core fi-

nancial crisis, SV(p) models perform better than other competing models in most cases (this

holds across different forecast horizons and different evaluation measure) while HAR-RV mod-

els perform better than GARCH models. The SV(3) model produces the superior forecast in

terms of MSE criteria in horizon 1-day, 2-day, 3-weeks, and 1-month. SV(p) models [SV(3) or

SV(2)] are the top forecasting models based on MCS p-value when using MAE and R2LOG.

Performances of GARCH and HAR-RV models are poor according to R2LOG. These models

may produce asymmetric forecast errors because R2LOG heavily penalized asymmetry in a

high and low level of volatility. However, HAR-RV models perform better than GARCH models

according to RMSE, while GARCH models outperform HAR-RV models according to MAE and

R2LOG. This implies that GARCH models produce large forecast errors because MSE heavily

penalized any outlier.

In both settings, among HAR models, those that based on the subsampled version of RV

estimators produces identical forecasts, implies that subsampling is not improving any fore-

cast performance. Further, the performance of HAR models is inferior among all models in

long-horizon. Note that in both designs, the financial crisis is included either in-sample or

out-of-sample. During this time, the financial market is unstable, and the high-frequency RV

estimators are affected by large market microstructure noise. The forecasting performance of

HAR-RV models may be affected by these noisy RV estimators.

From Tables 3.13-3.18, we can see that except for a few instances, higher-order SV models

perform better than GARCH-type and HAR-RV type models not only in all evaluation mea-

sures but also across different volatility regimes and horizons. In both of our out-of-sample

experiments, higher-order SV models also outperform the first-order SV model. This finding

suggests that additional lag terms in the latent volatility equation are essential for forecasting

volatility.

102



CHAPTER 3. HIGHER-ORDER STOCHASTIC VOLATILITY MODELS AND FORECASTING

3.10.2.2 Forecasting realized volatility

In previous forecast experiments, we forecast the daily squared return, which is a noisy proxy

for the true latent volatility. Now, we consider realized volatility as a volatility proxy since

it is an accurate measure of the true latent volatility; see Andersen and Bollerslev (1998),

Barndorff-Nielsen and Shephard (2001). In this section, we compare the performance of three

SV models to the HAR-RV model. Several estimators have been proposed in realized volatil-

ity literature, but following the results of Liu et al. (2015), we use the 5-minute RV which is

constructed from five-minute intraday returns. In the case of SV(p) models, we replace the

squared return by realized volatility (squared return is considered as the observed process in

SV models) and then estimate the models by our W-ARMA-SV estimator.

We consider five assets: S&P 500, FTSE100, NASDAQ100, N225, SSMI20 indices. Their 5-

minute realized volatilities are sourced from the Oxford-Man Institute’s Realized Library. The

main results of these forecast experiments are reported in Tables 3.19-3.24. For easy compar-

ison, we report the relative MSE, the relative MAE, and the relative R2LOG of forecast error.

These are relative to the HAR-RV model, and hence, values smaller than unity indicate bet-

ter forecast performance than the HAR-RV model. We also report the MCS p-value for the

corresponding model and highlight the best model by boldface color font.

In design 1, Tables 3.19-3.21, when we forecast a moderately volatile period after the finan-

cial crisis, in most cases, higher-order SV models [SV(2) or SV(3)] provide superior forecasts.

This finding is consistent across different evaluation measures. Out of 30 cases (across five

assets and six forecast horizons), SV models delivered the best forecast performance in al-

most all cases (according to MSE, MAE, R2LOG), except for the 1-week ahead forecasting of

SSMI20 volatility in terms of MSE. The forecasting performances of higher-order SV models

are ranked top in 80%, 97%, and 97% of cases according to MSE, MAE, R2LOG, respectively.

If we consider only longer horizons (2-week, 3-week, 1-month) then these winning percent-

ages of SV(p) models are increased to 87%, 100% and 100%, while for short horizons (1-day,

2-day, 1-week) these percentages are 73%, 93%, and 93%. One out of ninety cases (across five

assets, six forecast horizons, and three loss measures), the HAR-RV model produces the best

forecasting performance.
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Between the SV(2) and SV(3) model, the performance of the SV(2) model is better in short

forecast horizons but SV(3) is better in long horizons. This finding tells us that additional

lag term is essential for forecasting realized volatility in long horizons. Compared to all other

models, the forecasting performance of the SV(3) model is getting better as the forecast hori-

zon increases. Note that the MCS p-values of other competing models declined significantly

in long horizons. The performance of HAR-RV is clearly poor compared to SV(p) models in

long horizons since the relative loss measures of SV(p) models are now lower.

In design 2, Tables 3.22-3.24, when we forecast highly volatile periods such as a crisis or ex-

pansion, the ranking of models are similar to design 1. Out of ninety cases (across five assets,

six forecast horizons, and three loss measures), HAR-RV model produced the best forecasts in

3% of cases, whereas SV(p) models delivered best forecasts in 86% of cases.

In both designs, our findings suggest that SV(p) models are better in forecasting realized

volatility. So fitting non-parametric volatility measures in traditional parametric models can

provide better forecasting performance. This also tells us that the HAR-RV model is not cap-

turing the proper mean dynamics that comes from the moving average part of the market

microstructure noise during the financial crisis. As pointed out by Meddahi (2003), if several

factors influence the dynamics of RV, then RV follows an ARMA-type process. In this study,

within a parametric SV framework, we model realized volatility as a non-Gaussian ARMA pro-

cess [see Lemma 3.5.4].

3.11 Conclusion

In this paper, we propose several estimators for higher-order SV models, and these include

computationally simple estimators and GMM-type estimators. The motivation, as well as the

stationarity, ergodicity and mixing properties of SV(p) models, are thoroughly discussed. This

study also develops recursive estimation procedures for SV(p) models using simple estimators

and derives asymptotic distributions of these simple estimators. We show that simple estima-

tors are especially convenient for use in the context of simulation-based inference techniques,

i.e., Bootstrap or Monte Carlo tests.

In simulations, we compare our proposed estimators to the Bayesian estimator. The simple
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winsorized ARMA-SV estimator uniformly outperforms all other estimators in terms of bias

and statistical efficiency. This conclusion holds across different simulation designs. Further-

more, proposed simple estimators are highly time efficient compared to other estimators.

Our results cast doubt on the use of a large number of moments. In this respect, one should

not include too many instruments since it can increase the chance of including irrelevant ones

in the estimation procedure. In particular, over-identification increases the bias of GMM esti-

mators in finite-samples. Concurring evidence based on finite-sample optimality results and

Monte Carlo simulations is also available in Dufour and Taamouti (2003). In an optimal GMM

setting, the number of moment equations should be equal to the number of parameters, pro-

vided that these moments are well selected. These types of GMM estimators are efficient and

good at forecasting. In that sense, the ARMA-SV estimator, based on a few moments, is a

nearly optimal and parsimonious moment-based (or GMM) estimator.

In empirical illustrations, we find that asset returns can be better modeled as an SV(p)

model, an observation confirmed by both asymptotic and finite-sample tests. We also find

that the forecasting performance of higher-order SV models is superior to the one of GARCH

and HAR-RV models. This finding holds even if a high volatility period (such as financial cri-

sis) is included in the estimation sample or the forecasted sample. These inferences are not

only based on a standard forecasting precision assessment but also on formal prediction tests.

These findings highlight the usefulness of higher-order SV models for volatility forecasting.
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3.12 Appendix

3.12.1 Proofs

PROOF OF LEMMA 3.3.1 Under the assumption 3.3.1, we have an MFSV model where the

volatility process is driven by the sum of m independent AR(1) process. Granger and Morris

(1976) shown that the sum of m independent AR(1) processes is an ARMA(m,m −1) process.

The proof follows from there. Note that Meddahi (2003) derived ARMA representation of inte-

grated and realized variances when the spot variance depends linearly on two autoregressive

factors. This class of processes includes affine, GARCH diffusion, as well as the eigenfunction

stochastic volatility and the positive Ornstein-Uhlenbeck models.

PROOF OF LEMMA 3.3.2 We consider an SV(p, q) model defined by Lemma 3.3.1 with the

latent volatility process driven by an ARMA(p, q) such that

α(B)wt =β(B)σv vt

where

α(B) = 1−α1B −α2B 2 − . . .−αp B p , β(B) = 1−β1B −β2B 2 − . . .−βq B q

and where the innovations {vt } form a stationary, ergodic sequence such that, for the

σ−algebra Ft−1 generated by {vτ,τ ≤ t − 1}, E(vt |Ft−1 ) = 0 almost surely, E(v2
t |Ft−1 ) = 1 al-

most surely, and E(v4
t ) <∞. Since the roots of the moving average polynomial lie outside the

unit circle [the model is invertible], and there exists an infinite-order autoregressive represen-

tation of the latent volatility process such that

∞∑
j=0

(−ϕ j )wt− j =σv vt . (3.12.1)

PROOF OF LEMMA 3.5.1 Under the assumptions 3.2.1 - 3.2.2, and if U ∼ N[0, 1], then
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E(U 2p+1) = 0, ∀p ∈ N and E(U 2p ) = 2p !
2p p ! , ∀p ∈ N. Set µk (θ) := E(yk

t ) and µk,l (m |θ ) :=
E(yk

t y l
t+m). Then, if k is even,

µk (θ) = E(yk
t ) =σk

yE(zk
t )E

[
exp(

kwt

2
)

]
=σk

y
k !

2k/2(k/2)!
exp

[
k2

8
Var(wt )

]
= σk

y
k !

2k/2(k/2)!
exp

[
k2

8

σ2
v

1−∑p
j=1ϕ jρ j

]
(3.12.2)

and µk (θ) = 0, if k is odd, where ρ j := corr(wt , wt+ j ). For the cross-moments, we have: if k

and l are even,

µk,l (m |θ ) = E(yk
t y l

t+m) =σk+l
y E(zk

t )E(z l
t+m)E

[
exp(

kwt

2
+ l wt+m

2
)

]
= σk+l

y
k !

2k/2(k/2)!

l !

2l/2(l/2)!

[
exp(

k2

8
Var(wt )+ l 2

8
Var(wt+m)+ 2kl

8
cov(wt , wt+m))

]
= σk+l

y
k !

2k/2(k/2)!

l !

2l/2(l/2)!

[
exp(

k2

8
γ0 +

l 2

8
γ0 +

2kl

8
γ0ρm)

]
= σk+l

y
k !

2k/2(k/2)!

l !

2l/2(l/2)!
exp

[
1

8
γ0(k2 + l 2 +2klρm)

]
= σk+l

y
k !

2k/2(k/2)!

l !

2l/2(l/2)!
exp

[
1

8

σ2
v

1−∑p
j=1ϕ jρ j

(k2 + l 2 +2klρm)

]
, (3.12.3)

and µk,l (m |θ ) = 0, otherwise.

PROOF OF LEMMA 3.5.2 Using Lemma 3.5.1 and considering k = 2, k = 4, k = l = 2 & m = 1

and k = l = 2 & m = 2, we get:

µ2(θ) := E(y2
t ) =σ2

y exp

[
1

2
γ0

]
(3.12.4)

µ4(θ) := E(y4
t ) = 3σ4

y exp
[
2γ0

]
(3.12.5)

µ2,2(1 |θ ) := E(y2
t y2

t−1) =σ4
y exp

[
γ0(1+ρ1)

]
(3.12.6)

µ2,2(2 |θ ) := E(y2
t y2

t−2) =σ4
y exp

[
γ0(1+ρ2)

]
(3.12.7)
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where γ0 =σ2
v /(1−∑2

j=1ϕ jρ j ). From (3.12.4) and (3.12.5), we get:

E(y4
t )[

E(y2
t )

]2 = 3exp(γ0),

hence

γ0 = log

(
E(y4

t )

3
[
E(y2

t )
]2

)
.

From (3.12.4), we can write

σ2
y =

E(y2
t )

exp(γ0/2)

or,

σy =
[
E(y2

t )
]1/2(

E(y4
t )

3
[
E(y2

t )
]2

)1/4
= 31/4E(y2

t )[
E(y4

t )
]1/4

. (3.12.8)

From (3.12.4) and (3.12.6), we get:

γ0ρ1 = log

(
E(y2

t y2
t−1)[

E(y2
t )

]2

)

or,

γ1 = log

(
E(y2

t y2
t−1)[

E(y2
t )

]2

)
= log

(
E(y2

t y2
t−1)

)−2log
(
E(y2

t )
)
.

Similarly from (3.12.4) and (3.12.7), we get:

γ2 = log

(
E(y2

t y2
t−2)[

E(y2
t )

]2

)
= log

(
E(y2

t y2
t−2)

)−2log
(
E(y2

t )
)
.

Now under the assumptions 3.2.2, the latent volatility process satisfy the Yule-Walker equa-

tions, see Fuller (1996). Thus, autocovariances of the volatility process satisfy the following

equations:

γ0 =ϕ1γ1 +ϕ2γ2 + (σv )2 , γ1 =ϕ1γ0 +ϕ2γ1 , γ2 =ϕ1γ1 +ϕ2γ0 .

Solving for ϕ1 and ϕ2 as functions of autocovariances, we get:

ϕ1 =
−γ1(γ2 −γ0)

(γ0)2 − (γ1)2
, ϕ2 =

−(γ1)2 +γ2γ0

(γ0)2 − (γ1)2
.
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Substitute the values of γ0, γ1, and γ2 into the Yule-Walker equations together with (3.12.8),

we have following moment equations solution for the SV(2) parameters:

ϕ1 =
−[

log
(
µ2,2(1)/µ2

2

)][
log

(
3µ2,2(2)/µ4

)]
[

log
(
µ4/(3µ2

2)
)]2 − [

log
(
µ2,2(1)/µ2

2

)]2 , (3.12.9)

ϕ2 =
−[

log
(
µ2,2(1)/µ2

2

)]2 + [
log

(
µ2,2(2)/µ2

2

)][
log

(
µ4/(3µ2

2)
)]

[
log

(
µ4/(3µ2

2)
)]2 − [

log
(
µ2,2(1)/µ2

2

)]2 , (3.12.10)

σy = 31/4µ2/µ1/4
4 , (3.12.11)

σv = [
log

(
µ4/(3µ2

2)
)−ϕ1 log

(
µ2,2(1)/µ2

2

)−ϕ2 log
(
µ2,2(2)/µ2

2

)]1/2 . (3.12.12)

where µk :=µk (θ) = E(yk
t ) and µk,l (m) :=µk,l (m |θ ) = E(yk

t y l
t−m).

PROOF OF LEMMA 3.5.3 The autocovariance function of the first component of X t is given

by

ζ1(τ) := cov(X1,t , X1,t+τ) = E([y2
t −µ2(θ)][y2

t+τ−µ2(θ)])

= E(y2
t y2

t+τ)−µ2
2(θ) =σ4

y exp[γ0(1+ρτ)]−µ2
2(θ) =µ2

2(θ)[exp(γτ)−1] ,
(3.12.13)

where γ j := cov(wt , wt+ j ). Similarly,

ζ2(τ) := cov(X2,t , X2,t+τ) = E[y4
t −µ4(θ)][y4

t+τ−µ4(θ)] = E(y4
t y4

t+τ)−µ2
4(θ)

= 9σ8
y exp[4γ0(1+ρτ)]−µ2

4(θ) =µ2
4(θ)[exp(4γτ)−1], ∀τ≥ 1.

(3.12.14)

ζ3(τ) := cov(X3,t , X3,t+τ) = E([y2
t y2

t−1 −µ2,2(1 |θ )][y2
t+τy2

t+τ−1 −µ2,2(1 |θ )])

= E[y2
t y2

t−1 y2
t+τy2

t+τ−1]−µ2
2,2(1 |θ )

=σ8
yE[exp(wt−1 +wt+τ+wt +wt+τ−1)]−µ2

2,2(1 |θ )

=σ8
y exp[2(γ0 +γ1)+γτ−1 +2γτ+γτ+1]−µ2

2,2(1 |θ )

=σ8
y exp[2(γ0 +γ1)]exp[γτ−1 +2γτ+γτ+1]−µ2

2,2(1 |θ )

=µ2
2,2(1 |θ )[exp(γτ−1 +2γτ+γτ+1)−1], ∀τ≥ 2.

(3.12.15)
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ζ4(τ) = cov(X4,t , X4,t+τ) = E([y2
t y2

t−2 −µ2,2(2 |θ )][y2
t+τy2

t+τ−2 −µ2,2(2 |θ )])

= E[y2
t y2

t−2 y2
t+τy2

t+τ−2]−µ2
2,2(2 |θ )

=σ8
yE[exp(wt−2 +wt+τ+wt +wt+τ−2)]−µ2

2,2(2 |θ )

=σ8
y exp[2(γ0 +γ2)+γτ−2 +2γτ+γτ+2]−µ2

2,2(2 |θ )

=σ8
y exp[2(γ0 +γ2)]exp[γτ−2 +2γτ+γτ+2]−µ2

2,2(2 |θ )

=µ2
2,2(2 |θ )[exp(γτ−2 +2γτ+γτ+2)−1], ∀τ≥ 3.

(3.12.16)

PROOF OF PROPOSITION 3.5.4 From (3.2.14) - (3.2.15), we have

ϕ(B)wt = vt ,

and

y∗
t = wt +ϵt ,

where ϕ(B) = (1−ϕ1B − ·· · −ϕp B p ). The error processes vt ’s and ϵt ’s are i.i.d. N[0, σ2
v ] and

i.i.d. log(χ2
1) random variables, respectively. Furthermore, assumption 3.2.1 implies that vt ’s

and ϵt ’s are independent. on applying ϕ(B) to both sides of (3.2.15) yields

ϕ(B)y∗
t =ϕ(B)wt +ϕ(B)ϵt = vt +ϕ(B)ϵt . (3.12.17)

The right hand side of (3.12.17) is clearly a covariance stationary process. By the Wold decom-

position theorem it must have a moving average representation. Since the autocovariance

function cuts off for lags k > p it must be an M A(p) process, say θ(B)ηt = (1 − θ1B − ·· · −
θp B p )ηt . Hence, y∗

t must be an ARMA(p, p) process [see equation (2.1) of Granger and Morris

(1976)].

The moving average parameters θ1,θ2, . . . ,θp and the white noise variance σ2
η of this

ARMA(p, p) process can be found by equating the autocovariance function of the right hand

side of (3.12.17) with that of θ(B)ηt for lags k = 0,1, . . . , p and solving the p +1 resulting non-
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linear equations

(1+θ2
1 +·· ·+θ2

p )σ2
η =σ2

v + (1+ϕ2
1 +·· ·+ϕ2

p )σ2
ϵ ,

(−θ1 +θ1θ2 +·· ·+θp−1θp )σ2
η = (−ϕ1 +ϕ1ϕ2 +·· ·+ϕp−1ϕp )σ2

ϵ ,

...

(−θp−1 +θ1θp )σ2
η = (−ϕp−1 +ϕ1ϕp )σ2

ϵ ,

−θpσ
2
η =−ϕpσ

2
ϵ .

Note that there may be multiple solutions, only some of which result in an invertible process.

PROOF OF COROLLARY 3.5.5 From Proposition 3.5.4, the observed process y∗
t satisfies the

following equation:

y∗
t =

p∑
j=1

ϕ j y∗
t− j +ηt −

p∑
j=1

θ jηt− j (3.12.18)

or

y∗
t =

p∑
j=1

ϕ j y∗
t− j + vt +ϵt −

p∑
j=1

ϕ j ϵt− j . (3.12.19)

Multiply both sides of (3.12.19) by y∗
t−k , and taking expectation, we get:

γy∗(k) =
p∑

j=1
ϕ jγy∗(k −1)+E[vt y∗

t−k ]+E[ϵt y∗
t−k ]−

p∑
j=1

ϕ jE[ϵt− j y∗
t−k ].
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For k = 0, we get

γy∗(k) =
p∑

j=1
ϕ jγy∗(k − j )+E[vt y∗

t ]+E[ϵt y∗
t ]−

p∑
j=1

ϕ jE[ϵt− j y∗
t ]

=
p∑

j=1
ϕ jγy∗(k − j )+σ2

v +σ2
ϵ −

p∑
j=1

ϕ jE[ϵt− j (ϕ j y∗
t− j −ϕ j ϵt− j )]

=
p∑

j=1
ϕ jγy∗(k − j )+σ2

v +σ2
ϵ −

p∑
j=1

ϕ2
jE[ϵt− j y∗

t− j −ϵ2
t− j ]

=
p∑

j=1
ϕ jγy∗(k − j )+σ2

v +σ2
ϵ −

p∑
j=1

ϕ2
j [σ2

ϵ −σ2
ϵ]

=
p∑

j=1
ϕ jγy∗(k − j )+σ2

v +σ2
ϵ .

(3.12.20)

Setting 1 ≤ k ≤ p, we get

γy∗(k) =
p∑

j=1
ϕ jγy∗(k − j )+E[vt y∗

t−k ]+E[ϵt y∗
t−k ]−

p∑
j=1

ϕ jE[ϵt− j y∗
t−k ]

=
p∑

j=1
ϕ jγy∗(k − j )+0+0−ϕkE[ϵt−k y∗

t−k ] =
p∑

j=1
ϕ jγy∗(k − j )−ϕkσ

2
ϵ .

(3.12.21)

Setting k > p, we get

γy∗(k) =
p∑

j=1
ϕ jγy∗(k − j )+E[vt y∗

t−k ]+E[ϵt y∗
t−k ]−

p∑
j=1

ϕ jE[ϵt−1 y∗
t−k ]

=
p∑

j=1
ϕ jγy∗(k − j )+0+0−0 =

p∑
j=1

ϕ jγy∗(k − j ).

(3.12.22)

Combining (3.12.20), (3.12.21), and (3.12.22), we get the autocovariance structure of the ob-

served process that stated in the Corollary.

PROOF OF COROLLARY 3.5.6 The estimator of ϕp is based on the autocovariance structure

of the process y∗
t . This is the solution of p-system of equations from (3.5.18) with k = p +

112



CHAPTER 3. HIGHER-ORDER STOCHASTIC VOLATILITY MODELS AND FORECASTING

1, . . . , 2p. So



γy∗(p) γy∗(p −1) · · · γy∗(1)

γy∗(p +1) γy∗(p) · · · γy∗(2)
...

...
...

γy∗(2p −1) γy∗(2p −2) · · · γy∗(p)

 .



ϕ1

ϕ2
...

ϕp

=



γy∗(p +1)

γy∗(p +2)
...

γy∗(2p)

 ,

or

Γ(p)ϕp = γ(p+1)

hence

ϕp =Γ −1
(p) γ(p+1), (3.12.23)

where ϕp := (ϕ1, . . . , ϕp )
′
, γ(p+1) = [γy∗(p + 1), . . . , γy∗(2p)]

′
are vectors and Γ(p) is a p-

dimensional Toeplitz matrices such that

Γ(p) :=



γy∗(p) γy∗(p −1) · · · γy∗(1)

γy∗(p +1) γy∗(p) · · · γy∗(2)
...

...
...

γy∗(2p −1) γy∗(2p −2) · · · γy∗(p)

 .

Note that (3.12.23) is also valid for any j ≥ 1 such that

ϕp =Γ −1
(p+j−1)γ(p+j), (3.12.24)

where γ(p+j) := [γy∗(p + j ), . . . , γy∗(2p + j −1)]
′

and Γ(p+j−1) is a p-dimensional Toeplitz matri-

ces such that

Γ(p+j−1) :=



γy∗(p + j −1) γy∗(p + j −2) · · · γy∗( j )

γy∗(p + j ) γy∗(p + j −1) · · · γy∗( j +1)
...

...
...

γy∗(2p + j −2) γy∗(2p + j −3) · · · γy∗(p + j −1)

 .
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Now from (3.5.18) with k = 0 we have:

γy∗(0) =ϕ1γy∗(1)+·· ·+ϕpγy∗(p)+σ2
v +σ2

ϵ ,

hence

σv = [γy∗(0)−
p∑

j=1
ϕ jγy∗( j )−π2/2]1/2 = [γy∗(0)−ϕ

′
pγ(1) −π2/2]1/2, (3.12.25)

where ϕp := (ϕ1, . . . , ϕp )
′
, γ(1) := [γy∗(1), . . . , γy∗(p)]

′
and σ2

ϵ = ψ(1)(1/2) = π2/2. Now by con-

struction,

µ= E[log(y2
t )] = log(σ2

y )+E[log(z2
t )] = log(σ2

y )−1.27, (3.12.26)

or, equivalently

σ2
y = exp(µ+1.27). (3.12.27)

PROOF OF LEMMA 3.5.7 We are using an alternative method provided by Durbin (1960) that

avoids the matrix inversion in the Yule-Walker equations. We derive the solution set of SV(2)

parameters recursively from the solution set of SV(1) parameters, thus the results of Lemma

3.5.7 can easily identify from there.

We wish to find closed-form moment equations solution for ΘSV
1 := (ϕ11,σ1v ,σy )

′
. Using

Lemma 3.5.1, and considering k = 2, k = 4, k = l = 2 & m = 1 , we get:

µ2(θ) := E(y2
t ) =σ2

y exp

[
1

2
γ0

]
(3.12.28)

µ4(θ) := E(y4
t ) = 3σ4

y exp
[
2γ0

]
(3.12.29)

µ2,2(1 |θ ) := E(y2
t y2

t−1) =σ4
y exp

[
γ0(1+ρ1)

]
(3.12.30)

where γ0 =σ2
1v /(1−ϕ11ρ1). Solving the above equations yields:

γ0 = log

(
E(y4

t )

3
[
E(y2

t )
]2

)
, (3.12.31)
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σy =
[
E(y2

t )
]1/2(

E(y4
t )

3
[
E(y2

t )
]2

)1/4
= 31/4E(y2

t )[
E(y4

t )
]1/4

, (3.12.32)

γ0ρ1 = log

(
E(y2

t y2
t−1)[

E(y2
t )

]2

)
, (3.12.33)

or,

ρ1 = log

(
E(y2

t y2
t−1)[

E(y2
t )

]2

)
/log

(
E(y4

t )

3
[
E(y2

t )
]2

)
. (3.12.34)

As a result, we have:

ϕ11 = γ1/γ0 = ρ1 = log

(
E(y2

t y2
t−1)[

E(y2
t )

]2

)
/log

(
E(y4

t )

3
[
E(y2

t )
]2

)
. (3.12.35)

Now using the Yule-Walker equations, we get:

γ0 =ϕ11γ1 +σ2
v ⇔ 1 =ϕ11ρ1 +σ2

v /γ0 =ϕ2
11 +σ2

v /γ0 . (3.12.36)

Hence

σv = [
(1−ϕ2

11)γ0

]1/2 =
[(

1−
[

log

(
E(y2

t y2
t−1)[

E(y2
t )

]2

)
/log

(
E(y4

t )

3
[
E(y2

t )
]2

)]2)
log

(
E(y4

t )

3
[
E(y2

t )
]2

)]1/2

. (3.12.37)

Thus, closed-form SV(1) parameter solutions are given in (3.12.32), (3.12.35) and (3.12.37).

Let us now consider the SV(2) model. We wish to find closed-form estimator for ΘSV
2 :=

(ϕ21, ϕ22, σ2v , σy )
′
. Using Lemma 3.5.1, and considering k = 2, k = 4, k = l = 2 & m = 1 and

k = l = 2 & m = 2, we get:

µ2(θ) := E(y2
t ) =σ2

y exp

[
1

2
γ0

]
(3.12.38)

µ4(θ) := E(y4
t ) = 3σ4

y exp
[
2γ0

]
(3.12.39)

µ2,2(1 |θ ) := E(y2
t y2

t−1) =σ4
y exp

[
γ0(1+ρ1)

]
(3.12.40)

µ2,2(2 |θ ) := E(y2
t y2

t−2) =σ4
y exp

[
γ0(1+ρ2)

]
(3.12.41)
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where γ0 =σ2
2v /(1−∑2

j=1ϕ2 jρ j ). Solving the above equations yields:

γ0 = log

(
E(y4

t )

3
[
E(y2

t )
]2

)
, (3.12.42)

σy =
[
E(y2

t )
]1/2(

E(y4
t )

3
[
E(y2

t )
]2

)1/4
= 31/4E(y2

t )[
E(y4

t )
]1/4

, (3.12.43)

ρ1 = log

(
E(y2

t y2
t−1)[

E(y2
t )

]2

)
/log

(
E(y4

t )

3
[
E(y2

t )
]2

)
, (3.12.44)

ρ2 = log

(
E(y2

t y2
t−2)[

E(y2
t )

]2

)
/log

(
E(y4

t )

3
[
E(y2

t )
]2

)
. (3.12.45)

From (3.12.44) and (3.12.45), we observe that:

ρ j = log

(E(y2
t y2

t− j )[
E(y2

t )
]2

)
/log

(
E(y4

t )

3
[
E(y2

t )
]2

)
, where j = 1,2. (3.12.46)

Now from Durbin-Levinson recurrence formula, we have:

ϕ22 =
ρ2 −ϕ11ρ1

1−ϕ11ρ1
= ρ2 −ρ2

1

1−ρ2
1

= ρ2 −ϕ2
11

1−ϕ2
11

(3.12.47)

and

ϕ21 =ϕ11 −ϕ22ϕ11 =
ρ1 −ρ1ρ2

1−ρ2
1

. (3.12.48)

On substituting ϕ11,ρ1,ρ2 [given in (3.12.35), (3.12.44), (3.12.45)], we get:

ϕ22 =

[
log

(
E(y2

t y2
t−2)[

E(y2
t )
]2

)
/log

(
E(y4

t )

3
[
E(y2

t )
]2

)]
−

[
log

(
E(y2

t y2
t−1)[

E(y2
t )
]2

)
/log

(
E(y4

t )

3
[
E(y2

t )
]2

)]2

1−
[

log

(
E(y2

t y2
t−1)[

E(y2
t )
]2

)
/log

(
E(y4

t )

3
[
E(y2

t )
]2

)]2

= −[
log

(
µ2,2(1)/µ2

2

)]2 + [
log

(
µ2,2(2)/µ2

2

)][
log

(
µ4/(3µ2

2)
)]

[
log

(
µ4/(3µ2

2)
)]2 − [

log
(
µ2,2(1)/µ2

2

)]2 , (3.12.49)
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ϕ21 =

[
log

(
E(y2

t y2
t−1)[

E(y2
t )
]2

)
/log

(
E(y4

t )

3
[
E(y2

t )
]2

)]
−

[
log

(
E(y2

t y2
t−1)[

E(y2
t )
]2

)
/log

(
E(y4

t )

3
[
E(y2

t )
]2

)][
log

(
E(y2

t y2
t−2)[

E(y2
t )
]2

)
/log

(
E(y4

t )

3
[
E(y2

t )
]2

)]

1−
[

log

(
E(y2

t y2
t−1)[

E(y2
t )
]2

)
/log

(
E(y4

t )

3
[
E(y2

t )
]2

)]2

= −[
log

(
µ2,2(1)/µ2

2

)][
log

(
3µ2,2(2)/µ4

)]
[

log
(
µ4/(3µ2

2)
)]2 − [

log
(
µ2,2(1)/µ2

2

)]2 , (3.12.50)

and

σ2v = [(1−ϕ21ρ1 −ϕ22ρ2)γ0]1/2

= [
log

(
µ4/(3µ2

2)
)−ϕ1 log

(
µ2,2(1)/µ2

2

)−ϕ2 log
(
µ2,2(2)/µ2

2

)]1/2 , (3.12.51)

where µk := µk (θ) = E(yk
t ) and µk,l (m) := µk,l (m |θ ) = E(yk

t y l
t−m). Thus, using the Durbin-

Levinson algorithm, we obtain the same results which require a matrix inversion.

PROOF OF LEMMA 3.7.1 The method-of-moments estimator θ̂T is solution of the following

optimization problem:

min
θ

MT = [ḡT (YT )−µ(θ)]
′
Ω̂T [ḡT (YT )−µ(θ)].

Under the assumption 3.7.2, the score condition associated with this problem is:

J (θ)Ω̂T [µ(θ)− ḡT (YT )] = 0.

A Taylor series expansion of the score condition around the true value of θ yields

0 = J (θ)Ω̂T [µ(θ)− ḡT (YT )] = J (θ)Ω̂T [µ(θ)− ḡT (YT )]+ J (θ)Ω̂T J (θ)
′
(θ̂T −θ) =Op (T −1).

After rearranging the equation and using assumption 3.7.2, we have

p
T [θ̂T −θ] = [J (θ)ΩJ (θ)

′
]−1 J (θ)Ω

p
T [ḡT (YT )−µ(θ)]+Op (T −1/2).
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Now using assumptions 3.7.1, we get the asymptotic normality of θ̂T (Ω) with asymptotic co-

variance matrix V (Ω) as specified in the Lemma.

PROOF OF LEMMA 3.7.2 To establish the asymptotic normality of [ḡT (YT )−µ(θ)]; we need

to use a central limit theorem (CLT) for dependent processes (see Davidson (1994), Theorem

24.5, p. 385). For that purpose, we first check the conditions under which this CLT holds. We

workout this proof where p = 2. Setting

X t :=



y2
t −µ2(θ)

y4
t −µ4(θ)

y2
t y2

t−1 −µ2,2(1 |θ )

y2
t y2

t−2 −µ2,2(2 |θ )

= g t (θ)−µ(θ)

ST =
T∑

t=1
X t =

T∑
t=1

[g t (θ)−µ(θ)]

and the subfields Ft = σ(st , st−1, . . .) where st = (yt , wt )
′
, we need to check the following con-

ditions in order to get that T −1/2ST =p
T [ḡT (YT )−µ(θ0)]

d−→ N[0, Ω∗].

(i) {X t ,Ft } is stationary and ergodic,

(ii) {X t ,Ft } is a L1-mixingale of size -1, and

(iii) limsup
T→∞

T −1/2E |ST | <∞.

(i) This follows from results 3.4.1 and 3.4.2.

(ii)-(1) A mixing zero-mean process is an adapted L1− mixingale with respect to the sub-fields

Ft provided it is bounded in the L1-norm. To see that {X t } is bounded in the L1-norm, using

Theorem 14.2 of Davidson (1994), we have

E
∣∣∣y2k

t −µ2k (θ)
∣∣∣≤ E(

∣∣∣y2k
t

∣∣∣+ ∣∣µ2k (θ)
∣∣) = 2µ2k (θ) <∞, f or k = 1,2, . . . ,

E
∣∣y2

t y2
t−k −µ2,2(k |θ )

∣∣≤ E(
∣∣y2

t y2
t−k

∣∣+ ∣∣µ2,2(k |θ )
∣∣) = 2µ2,2(k |θ ) <∞, f or k = 1,2, . . . .
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(ii)-(2) We now need to show that the {X t ,Ft } is a L1−mixingale of size −1. From the dis-

cussion in section 3.4, we know that X t is β-mixing, so it has mixing coefficients of the type

βT =ψρT , ψ > 0, 0 < ρ < 1. To show that {X t } is of size -1, its mixing coefficients βT must be

O(T −φ), with φ> 1 (see Davidson (1994), Definition 16.1, p. 247). To see that

lim
T→∞

ρT

T −φ = lim
T→∞

T φexp(T logρ) = lim
T→∞

exp(φ logT )exp(T logρ) = lim
T→∞

exp(φ logT +T logρ) = 0.

This holds in particular for φ> 1; see Rudin (1976) [Theorem 3.20(d), page 57].

(iii) We need to show that limsup
T→∞

T −1/2E |ST | < ∞ and using Cauchy-Schwarz inequality, we

have E
∣∣T −1/2ST

∣∣≤ T −1/2 ∥ST ∥2. Now we can prove it by showing that

limsup
T→∞

T −1E(ST S
′
T ) <∞⇔ limsup

T→∞
Var(T −1/2ST ) <∞

(iii)-(1) First and second components of ST . Define ST 1 = ∑T
t=1 X1,t where X1,t := y2

t −µ2(θ)

and compute:

Var(T −1/2ST 1) = 1

T

[
T∑

t=1
Var(X1,t )+∑

t ̸=s
cov(X1,s , X1,t )

]
= 1

T

[
T ζ1(0)+2

T∑
τ=1

(T −τ)ζ1(τ)

]

=ζ1(0)+2
T∑

τ=1
(1− τ

T
)ζ1(τ).

(3.12.52)

Now we must prove that
∑T

τ=1(1− τ
T )ζ1(τ) converges as T →∞. By Lemma 3.1.5 in Fuller (1976,

p. 112), it is sufficient to show that
∑∞

τ=1 ζ1(τ) converge. Using Lemma 3.5.3, we have

ζ1(τ) =µ2
2(θ)[exp(γτ)−1] =µ2

2(θ)

[
1+

∞∑
k=1

γk
τ

k !
−1

]
=µ2

2(θ)

[
γτ

∞∑
k=1

γk−1
τ

k !

]

=µ2
2(θ)

[
γτ

∞∑
k=0

γk
τ

(k +1)!

]
≤µ2

2(θ)

[
γτ

∞∑
k=0

γk
τ

(k)!

]
=µ2

2(θ)γτexp(γτ).

(3.12.53)

Therefore, the series

∞∑
τ=1

ζ1(τ) ≤µ2
2(θ)

∞∑
τ=1

γτexp(γτ) ≤µ2
2(θ)exp(γ1)

∞∑
τ=1

γτ ≤µ2
2(θ)exp(γ1)

∞∑
τ=1

∣∣γτ

∣∣︸ ︷︷ ︸
<∞

<∞ (3.12.54)
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converges and by the Cauchy-Schwarz inequality we deduce that limsup
T→∞

T −1/2E |ST 1| <∞. The

proof is very similar for ST 2.

(iii)-(2) Third and fourth components of ST . we just have to show that
∑∞

τ=1 ζ3(τ) < ∞. By

Lemma 3.5.3, we have for all τ≥ 2 :

ζ3(τ) = µ2
2,2(1 |θ )[exp(γτ−1 +2γτ+γτ+1)−1] =µ2

2,2(1 |θ )

[
1+

∞∑
k=1

(γτ−1 +2γτ+γτ+1)k

k !
−1

]

= µ2
2,2(1 |θ )

[
(γτ−1 +2γτ+γτ+1)

∞∑
k=1

(γτ−1 +2γτ+γτ+1)k−1

k !

]

= µ2
2,2(1 |θ )

[
(γτ−1 +2γτ+γτ+1)

∞∑
k=0

(γτ−1 +2γτ+γτ+1)k

(k +1)!

]

≤ µ2
2,2(1 |θ )

[
(γτ−1 +2γτ+γτ+1)

∞∑
k=0

(γτ−1 +2γτ+γτ+1)k

(k)!

]

= µ2
2,2(1 |θ )(γτ−1 +2γτ+γτ+1)exp(γτ−1 +2γτ+γτ+1).

(3.12.55)

Therefore, the series

∞∑
τ=1

ζ3(τ) ≤ ζ3(1)+µ2
2,2(1 |θ )

∞∑
τ=2

(γτ−1 +2γτ+γτ+1)exp(γτ−1 +2γτ+γτ+1)

≤ ζ3(1)+µ2
2,2(1 |θ )exp(γ1 +2γ2 +γ3)

∞∑
τ=2

(γτ−1 +2γτ+γτ+1)

≤ ζ3(1)+µ2
2,2(1 |θ )exp(γ1 +2γ2 +γ3)

 ∞∑
τ=2

∣∣γτ−1

∣∣︸ ︷︷ ︸
<∞

+2
∞∑
τ=2

∣∣γτ

∣∣︸ ︷︷ ︸
<∞

+
∞∑
τ=2

∣∣γτ+1

∣∣︸ ︷︷ ︸
<∞

<∞

(3.12.56)

converges and by the Cauchy-Schwarz inequality we deduce that limsup
T→∞

T −1/2E |ST 3| <∞. The

proof for ST 4 is similar. Thus we can apply Theorem 24.5 of Davidson (1994) to each com-

ponent ST i , i = 1,2,3,4 of ST to state that: T −1/2ST i
d−→ N[0, λi ] and then by Cramér-Wold

theorem we can establish the limiting result that stated in Lemma 3.7.2 .

PROOF OF LEMMA 3.7.3 Under the assumptions 3.7.4 and 3.7.5 with s = 2, the observed

process {y∗
t } is strictly stationarity and geometrically ergodic with E[y∗

t ] <∞ and E[y∗
t y∗

t+k ] <
∞. So the consistency is a simple application of the Law of Large Numbers for stationary
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and ergodic processes, i.e., the Ergodic theorem; see Theorem 13.12 and Corollary 13.14 of

Davidson (1994).

PROOF OF LEMMA 3.7.4 To establish the asymptotic normality of empirical moments; we

shall use a CLT for dependent processes (see Davidson (1994), Theorem 24.5, p. 385). For that

purpose, we first check the conditions under which this CLT holds. We set

X t :=
 Ψt

Λt

 , Ψt := log(y2
t )−µ , Λt := [Λt ,0, Λt ,1, . . . , Λt ,m]′ , (3.12.57)

Λt ,k := y∗
t y∗

t+k −γy∗(k) = [log(y2
t )−µ][log(y2

t+k )−µ]−γy∗(k) , k = 0, 1, . . . , m , (3.12.58)

ST :=
T∑

t=1
X t =

 ∑T
t=1Ψt∑T
t=1Λt

 , (3.12.59)

and consider the subfields Ft =σ(st , st−1, . . .) where st = (yt , wt )
′
. We will now show that

T −1/2 ST
d−→ N

0,

 Vµ C
′
µ,Γ(m)

Cµ,Γ(m) VΓ(m)


 , (3.12.60)

which in turn yields (3.7.8). To do this, we will check the following conditions:

(i) {X t , Ft } is stationary and ergodic;

(ii) {X t , Ft } is a L1-mixingale of size -1;

(iii) limsup
T→∞

T −1/2E∥ST ∥ <∞ , where ∥·∥ is the Euclidean norm.

(i) The fact that {X t , Ft } is stationary and ergodic follows from results 3.4.1 and 3.4.2.

(ii) - (1) A mixing zero-mean process is an adapted L1-mixingale with respect to the sub-fields

Ft provided it is bounded in the L1-norm [see Davidson (1994, Theorem 14.2, p. 211)]. To see

that {X t } is bounded in the L1-norm, we note that:

E| log(y2
t )−µ| = E|y∗

t | ≤ (E|y∗
t |2)1/2 = (E[y∗2

t ])1/2 =
√

γy∗(0) <∞, (3.12.61)
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E|y∗
t y∗

t+k −γy∗(k)| = E|y∗
t y∗

t+k |− |γy∗(k)|
≤ E|y∗

t y∗
t+k |

≤ (E|y∗
t |2)1/2(E|y∗

t+k |2)1/2

= (E[y∗2
t ])1/2(E[y∗2

t+k ])1/2

= E[y∗2
t ] = γy∗(0) <∞, for k = 0, 1, . . . , m, (3.12.62)

where the inequality in (3.12.61) is the application of Lyapunov’s inequality and the second

inequality in (3.12.62) follows from the Hölder’s inequality.

(ii) - (2) We now show that {X t , Ft } is a L1−mixingale of size −1. From the discussion in

Section 3.4 , we know that X t is β-mixing, so it has mixing coefficients of the type βT =ψρT ,

ψ> 0, 0 < ρ < 1. To show that {X t } is of size -1, its mixing coefficients βT must be O(T −φ), with

φ> 1 [see Davidson (1994, Definition 16.1, p. 247)]. Indeed,

ρT

T −φ = T φexp(T logρ) = exp(φ logT )exp(T logρ) = exp[φ(logT )+T (logρ)]. (3.12.63)

Since lim
T→∞

[φ(logT )+T (logρ)] =−∞, we get

lim
T→∞

exp[φ(logT )+T (logρ)] = 0. (3.12.64)

This holds in particular for φ> 1; see Rudin (1976, Theorem 3.20(d), p. 57).

(iii) To show that limsup
T→∞

T −1/2E∥ST ∥ < ∞, we first observe that E(ST ) = 0 and, using the

Cauchy-Schwarz inequality,

(T −1/2E∥ST ∥)2 ≤ 1

T
E(∥ST ∥2) = 1

T
E(S′

T ST ) = 1

T
tr[E(ST S′

T )] = 1

T
tr[Var(ST )]

= tr[Var(T −1/2ST )]. (3.12.65)

It is thus sufficient to show that

limsup
T→∞

tr[Var(T −1/2ST )] <∞ . (3.12.66)

We now consider separately the components Ψt and Λt of X t .
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(iii) - (1) Set

ST 1 :=
T∑

t=1
Ψt , ζΨ(τ) := cov(Ψt , Ψt+τ) . (3.12.67)

Then

ζΨ(τ) = E[(log(y2
t )−µ)(log(y2

t+τ)−µ)] = E[y∗
t y∗

t+τ] = γy∗(τ) , (3.12.68)

Var(T −1/2ST 1) = 1

T

[
T∑

t=1
Var(Ψt )+∑

t ̸=s
cov(Ψt , Ψs)

]
= 1

T

[
T ζΨ(0)+2

T∑
τ=1

(T −τ)ζΨ(τ)

]

= ζΨ(0)+2
T∑

τ=1
(1− τ

T
)ζΨ(τ) = γy∗(0)+2

T∑
τ=1

(1− τ

T
)γy∗(τ) (3.12.69)

hence

limsup
T→∞

Var(T −1/2ST 1) = limsup
T→∞

[γy∗(0)+2
T∑

τ=1
(1− τ

T
)γy∗(τ)]

= γy∗(0)+2
∞∑
τ=1

γy∗(τ) =
∞∑

τ=−∞
γy∗(τ)

≤
∞∑

τ=−∞
|γy∗(τ)| <∞. (3.12.70)

This convergence is due to the fact that y∗
t follows a stationary ARMA(p, p) process. So y∗

t

can be viewed as an MA(∞) process with absolutely summable coefficients, which implies the

absolute summability of autocovariances [see Hamilton (1994, chapter 3, page 52)]. By the

Cauchy-Schwarz inequality this entails

limsup
T→∞

T −1/2E |ST 1| <∞ . (3.12.71)

(iii) - (2) Set

ST 2 :=
T∑

t=1
Λt = [ST 2,0, ST 2,1, . . . , ST 2,m]′ , (3.12.72)

ST 2,k :=
T∑

t=1
Λt ,k , ζΛk

(τ) := cov(Λt ,k , Λt+τ,k ) , k = 0, 1, . . . , m . (3.12.73)
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Then, for k = 0, 1, . . . , m ,

ζΛk
(τ) = E[

(
y∗

t y∗
t+k −γy∗(k)

)(
y∗

t+τy∗
t+τ+k −γy∗(k)

)
] = E[y∗

t y∗
t+k y∗

t+τy∗
t+τ+k ]−γy∗(k)2

= E[y∗
t y∗

t+k ]E[y∗
t+τy∗

t+τ+k ]+cov(y∗
t , y∗

t+τ)cov(y∗
t+k , y∗

t+τ+k )

+ cov(y∗
t , y∗

t+τ+k )cov(y∗
t+k , y∗

t+τ)−γy∗(k)2

= γy∗(k)2 +γy∗(τ)2 +γy∗(τ+k)γy∗(τ−k)−γy∗(k)2

= γy∗(τ)2 +γy∗(τ+k)γy∗(τ−k) , (3.12.74)

hence

Var(T −1/2ST 2,k ) = 1

T

[
T∑

t=1
Var(Λt ,k )+∑

t ̸=s
cov(Λt ,k , Λs,k )

]
= 1

T

[
T ζΛk

(0)+2
T∑

τ=1
(T −τ)ζΛk

(τ)

]

= ζΛk
(0)+2

T∑
τ=1

(1− τ

T
)ζΛk

(τ)

= γy∗(0)2 +γy∗(k)γy∗(−k)+2
T∑

τ=1
(1− τ

T
)[γy∗(τ)2

+γy∗(τ+k)γy∗(τ−k)] , (3.12.75)

and

limsup
T→∞

Var(T −1/2ST 2,k ) = γy∗(0)2 +γy∗(k)γy∗(−k)

+ limsup
T→∞

[2
T∑

τ=1
(1− τ

T
)[γy∗(τ)2 +γy∗(τ+k)γy∗(τ−k)]]

=
∞∑

τ=−∞
[γy∗(τ)2 +γy∗(τ+k)γy∗(τ−k)]

=
∞∑

τ=−∞
γy∗(τ)2 +

∞∑
τ=−∞

γy∗(τ+k)γy∗(τ−k)

=
∞∑

τ=−∞
γy∗(τ)2 +

∞∑
τ=−∞

γ2
y∗(τ+k) <∞ . (3.12.76)

This convergence is due to the fact that absolute summability implies square-summability.

We deduce that

limsup
T→∞

T −1/2E
∣∣ST 2,k

∣∣<∞ , k = 0, 1, . . . , m . (3.12.77)
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Combining (3.12.71) and (3.12.77), we get, for any (m +2)×1 fixed real vector a ̸= 0,

limsup
T→∞

T −1/2E
∣∣a′ST

∣∣<∞ . (3.12.78)

It is also clear properties (i) and (ii) also hold if we replace ST by a′ST . Thus we can apply

Theorem 24.5 of Davidson (1994) to a′ST to state that T −1/2(a′ST ) is asymptotically normal.

Since this holds for any a ̸= 0, it follows from the Cramér-Wold theorem that T −1/2 ∑T
t=1 X t is

asymptotically multinormal:

T −1/2ST = T −1/2
T∑

t=1
X t =

p
T

 µ̂−µ

Γ̂(m)−Γ(m)

 d−→ N[0, V ], (3.12.79)

where

V = lim
T→∞

E{[T −1/2ST ][T −1/2ST ]
′
} =

 Vµ C
′
µ,Γ(m)

Cµ,Γ(m) VΓ(m)

 . (3.12.80)

Using (3.12.70) and (3.12.75), we have:

Vµ = γy∗(0)+2
∞∑
τ=1

γy∗(τ) , (3.12.81)

VΓ(m) = Var(Λt )+2
∞∑
τ=1

cov(Λt , Λt+τ) , (3.12.82)

Cµ,Γ(m) = [Cµ0, Cµ1, . . . , Cµm]′ , (3.12.83)

Cµk = ∑
t

cov(Ψt , Λt ,k ) = 2
∞∑

t=1
E[Ψt

(
y∗

t y∗
t+k −γy∗(k)

)
]

= 2
∞∑

t=1
E[y∗

t

(
y∗

t y∗
t+k −γy∗(k)

)
] = 2

∞∑
t=1

[E(y∗2
t y∗

t+k )−E(y∗
t )γy∗(k)]

= 2
∞∑

t=1
E(y∗2

t y∗
t+k ) , k = 0, 1, 2, . . . , m. (3.12.84)

Further, for k = 0, we substitute y∗
t = wt +ϵt to get

c̄ :=Cµ0 = 2
∞∑

t=1
E(y∗3

t ) = 2
∞∑

t=1
[E(w 3

t )+E(ϵ3
t )] = 2

∞∑
t=1

E(ϵ3
t ). (3.12.85)
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Since {zt } is a sequence of i.i.d. N[0, 1] random variables, we have E(ϵ3
t ) =ψ(2)( 1

2 ) [see (3.2.6)],

which is equal to −14Z(3) where Z(·) is Riemann’s Zeta function with Z(3) = 1.20205.7 For

k = 1, . . . , m, it is easily seen that Cµk = 0 from the MA(∞) representation of wt . So Cµ,Γ(m) is a

(m +1)×1 vector given by (c̄, 0[m×1])′, with c̄ is defined in (3.12.85). Finally, (3.7.8) follows on

observing that

p
T

 µ̂−µ

Γ̂(m)−Γ(m)

−T −1/2ST
p−→

T→∞
0. (3.12.86)

PROOF OF THEOREM 3.7.5 It is easily seen that Dp is a continuously differentiable map-

ping of [µ,γy∗(0),γy∗(1), . . . , γy∗(2p)]
′
. The convergence result stated in (3.7.13) follows from

the standard result for differentiable transformations of asymptotically normally distributed

variables together with the application of the multivariate delta method.

In case of an SV(1) model,

D1 := D1(β) = (Dϕ1
, Dσy , Dσv )

′
, β := [µ,γy∗(0),γy∗(1),γy∗(2)]

′
, (3.12.87)

Dϕ1
= γy∗(2)/γy∗(1) , Dσy = exp(µ+1.27)1/2 , Dσv = κ̄1κ̄2, (3.12.88)

G(β) := ∂D1

∂β
′ =


0 0 −γy∗(2)/γy∗(1)2 1/γy∗(1)

σy /2 0 0 0

0 1
2

√
κ̄1
κ̄2

γy∗ (2)2

γy∗ (1)3

√
κ̄2
κ̄1

− γy∗ (2)

γy∗ (1)2

√
κ̄2
κ̄1

 (3.12.89)

where σy :=√
exp(µ+1.27), κ̄1 := [1− (γy∗(2)/γy∗(1))2], κ̄2 := [γy∗(0)−π2/2].

Similarly, for an SV(2) model, we have

D2 := D2(β) = (Dϕ2
, Dσy , Dσv )

′
, β := [µ,γy∗(0),γy∗(1), . . .γy∗(4)]

′
, Dϕ2

= [Dϕ1
Dϕ2

]
′
,

(3.12.90)

Dϕ1
:=

γy∗(2)γy∗(3)−γy∗(1)γy∗(4)

γ2
y∗(2)−γy∗(1)γy∗(3)

, Dϕ2
:=

γy∗(2)γy∗(4)−γ2
y∗(3)

γ2
y∗(2)−γy∗(1)γy∗(3)

, (3.12.91)

Dσy = exp(µ+1.27)1/2 , Dσv = [γy∗(0)−π2/2−ϕ1γy∗(1)−ϕ2γy∗(2)]1/2, (3.12.92)

7The Riemann Zeta function for s ∈C with Re(s) > 1 is defined as Z(s) =∑∞
n=1

1
ns .
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G(β) := ∂D2

∂β
′ =



0 0 κ̄3(γy∗ (4)−ϕ1γy∗ (3)) κ̄3(2ϕ1γy∗ (2)−γy∗ (3)) −κ̄3(ϕ1γy∗ (1)+γy∗ (2)) κ̄3γy∗ (1)

0 0 κ̄3ϕ2γy∗ (3) −κ̄3(2ϕ2γy∗ (2)+γy∗ (4)) −κ̄3(ϕ2γy∗ (1)−2γy∗ (3)) −κ̄3γy∗ (2)
σy
2 0 0 0 0 0

0 1
2σv

κ̄3κ̄4−ϕ1
2σv

κ̄3κ̄5−ϕ2
2σv

κ̄3κ̄6
2σv

κ̄3(γ2
y∗ (2)−γ2

y∗ (1))

2σv


where

ϕ1 = Dϕ1
, ϕ2 = Dϕ2

, σy = Dσy , σv = Dσv ,

κ̄3 := [γ2
y∗(2)−γy∗(1)γy∗(3)]−1 ,

κ̄4 := [ϕ1γy∗(1)γy∗(3)+ϕ2γy∗(2)γy∗(3)−γy∗(1)γy∗(4)] ,

κ̄5 := [γy∗(1)γy∗(2)+γy∗(2)γy∗(4)−2ϕ1γy∗(1)γy∗(2)−2ϕ2γ
2
y∗(2)] ,

κ̄6 := [ϕ1γ
2
y∗(1)+ (1+ϕ2)γy∗(1)γy∗(2)−2γy∗(2)γy∗(3)] .

3.12.2 Tables
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CHAPTER 3. HIGHER-ORDER STOCHASTIC VOLATILITY MODELS AND FORECASTING

Table 3.2. Comparison of different estimation methods for an SV(2) model: bias and RMSE
Model: M1 = (0.30, 0.60, 0.025, 2.5)

T = 500 T = 2000

ϕ1 ϕ2 σy σv ϕ1 ϕ2 σy σv

True value 0.30 0.60 0.025 2.5 0.30 0.60 0.025 2.5

Bias

GMM-6M-E -0.248 -0.761 0.049 2.625 -0.281 -0.799 0.060 2.234
GMM-6M-E-R -0.252 -0.773 0.049 2.625 -0.279 -0.807 0.060 2.234
GMM-6M-NW -0.526 -0.482 1.586 0.060 -0.551 -0.604 2.201 -0.407
GMM-6M-NW-R -0.456 -0.538 1.586 0.060 -0.541 -0.612 2.201 -0.407
GMM-24M-E 0.149 -0.413 0.049 3.108 0.202 -0.491 0.055 3.051
GMM-24M-E-R 0.123 -0.432 0.049 3.108 0.144 -0.538 0.055 3.051
GMM-24M-NW -0.528 -0.612 1.961 0.608 -0.574 -0.747 2.851 -0.030
GMM-24M-NW-R -0.486 -0.648 1.961 0.608 -0.568 -0.752 2.851 -0.030
Bayesian-MCMC 0.772 -0.825 0.314 -2.269 0.731 -0.737 0.349 -2.298
EDV -0.081 -0.250 0.650 -1.096 -0.048 -0.146 0.680 -0.981
EDV-R -0.024 -0.244 0.678 -1.340 -0.017 -0.135 0.724 -1.181
ARMA-SV 0.016 -0.032 0.004 0.001 0.004 -0.008 0.001 0.002
R-ARMA-SV 0.009 -0.025 0.004 0.001 0.004 -0.008 0.001 0.002
W-ARMA-SV(J = 10) -0.006 -0.012 0.004 0.004 0.000 -0.005 0.001 0.002

RMSE

GMM-6M-E 1.042 0.901 0.089 4.198 1.011 0.938 0.095 3.979
GMM-6M-E-R 1.027 0.895 0.089 4.198 0.997 0.935 0.095 3.979
GMM-6M-NW 0.883 0.737 2.401 2.139 0.770 0.697 3.016 1.284
GMM-6M-NW-R 0.798 0.702 2.401 2.139 0.754 0.690 3.016 1.284
GMM-24M-E 0.544 0.587 0.071 4.237 0.690 0.731 0.063 4.424
GMM-24M-E-R 0.518 0.570 0.071 4.237 0.638 0.697 0.063 4.424
GMM-24M-NW 0.993 0.866 3.039 2.982 0.962 0.870 3.805 2.214
GMM-24M-NW-R 0.963 0.844 3.039 2.982 0.957 0.866 3.805 2.214
Bayesian-MCMC 0.883 0.847 0.515 2.272 0.804 0.740 0.470 2.299
EDV 0.356 0.399 1.377 0.446 0.301 0.343 0.840 0.508
EDV-R 0.542 0.546 1.310 0.664 0.431 0.457 0.980 0.688
ARMA-SV 0.186 0.179 0.017 0.179 0.084 0.080 0.008 0.090
R-ARMA-SV 0.191 0.184 0.017 0.178 0.084 0.080 0.008 0.090
W-ARMA-SV(J = 10) 0.143 0.139 0.017 0.177 0.075 0.072 0.008 0.089

Notes:

1. GMM-6M and GMM-24M are the generalized method of moment estimators with six moments and 24
moments, respectively.

2. E stands for the efficient GMM estimation where we used the inverse of the covariance matrix as the
weighting matrix.

3. R stands for the restricted estimation proposed in Section 3.5.3 where the estimates are restrained on the
space of acceptable parameter solutions.

4. NW stands for the GMM estimation where we used the inverse of Newey West covariance matrix as the
weighting matrix.

5. Bayesian-MCMC is the Bayesian estimator based on Markov Chain Monte Carlo methods.
6. EDV is the extension of Dufour and Valéry (2006) method proposed in Section 3.5.1.
7. ARMA-SV is the simple ARMA-based estimator proposed in Section 3.5.2.
8. W-ARMA-SV is the winsorized ARMA-SV estimator based on OLS proposed in Section 3.5.4.
9. Number of inadmissible values for each estimator are reported in Table 3.6.
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CHAPTER 3. HIGHER-ORDER STOCHASTIC VOLATILITY MODELS AND FORECASTING

Table 3.3. Comparison of different estimation methods for an SV(2) model: bias and RMSE
Model: M2 = (0.95,−0.85, 0.025, 2.5)

T = 500 T = 2000

ϕ1 ϕ2 σy σv ϕ1 ϕ2 σy σv

True value 0.95 -0.85 0.025 2.5 0.95 -0.85 0.025 2.5

Bias

GMM-6M-E -0.452 0.291 0.105 -1.058 -0.455 0.315 0.139 -1.080
GMM-6M-E-R -0.442 0.275 0.105 -1.058 -0.445 0.302 0.139 -1.080
GMM-6M-NW -1.102 0.802 1.569 -0.444 -0.971 0.719 1.571 -0.387
GMM-6M-NW-R -1.101 0.802 1.569 -0.444 -0.971 0.719 1.571 -0.387
GMM-24M-E -0.027 1.130 0.254 6.401 -0.053 1.496 0.420 5.953
GMM-24M-E-R -0.225 0.988 0.254 6.401 -0.386 1.274 0.420 5.953
GMM-24M-NW -1.119 0.737 2.610 -0.355 -0.953 0.685 2.708 -0.324
GMM-24M-NW-R -1.117 0.734 2.610 -0.355 -0.953 0.685 2.708 -0.324
Bayesian-MCMC 0.312 0.489 1.323 -2.202 0.163 0.697 26.80 -2.282
EDV -0.717 0.175 0.693 -1.175 -0.600 0.035 1.035 -1.454
EDV-R -0.725 -0.094 2.437 -2.389 -0.513 -0.129 3.309 -2.451
ARMA-SV -0.001 0.004 0.000 -0.017 0.000 0.001 0.000 0.001
R-ARMA-SV -0.001 0.004 0.000 -0.017 0.000 0.001 0.000 0.001
W-ARMA-SV(J = 10) -0.001 0.002 0.000 -0.023 -0.001 0.001 0.000 0.001

RMSE

GMM-6M-E 0.892 0.617 0.122 2.196 0.839 0.589 0.151 1.866
GMM-6M-E-R 0.866 0.565 0.122 2.196 0.813 0.543 0.151 1.866
GMM-6M-NW 1.152 0.830 2.240 0.883 1.041 0.736 2.243 0.673
GMM-6M-NW-R 1.152 0.829 2.240 0.883 1.041 0.736 2.243 0.673
GMM-24M-E 0.672 1.373 0.409 6.795 0.417 1.637 0.615 6.536
GMM-24M-E-R 0.789 1.160 0.409 6.795 0.642 1.368 0.615 6.536
GMM-24M-NW 1.262 0.805 3.703 1.555 1.101 0.727 3.809 1.216
GMM-24M-NW-R 1.258 0.797 3.703 1.555 1.101 0.727 3.809 1.216
Bayesian-MCMC 0.437 0.545 2.138 2.208 0.256 0.699 32.51 2.282
EDV 0.426 0.155 0.320 0.323 0.274 0.221 0.338 0.587
EDV-R 1.005 0.313 3.654 0.602 0.877 0.194 6.545 0.427
ARMA-SV 0.035 0.041 0.002 0.187 0.017 0.019 0.001 0.089
R-ARMA-SV 0.035 0.041 0.002 0.187 0.017 0.019 0.001 0.089
W-ARMA-SV(J = 10) 0.035 0.032 0.002 0.201 0.017 0.015 0.001 0.094

Notes:

1. GMM-6M and GMM-24M are the generalized method of moment estimators with six moments and 24
moments, respectively.

2. E stands for the efficient GMM estimation where we used the inverse of the covariance matrix as the
weighting matrix.

3. R stands for the restricted estimation proposed in Section 3.5.3 where the estimates are restrained on the
space of acceptable parameter solutions.

4. NW stands for the GMM estimation where we used the inverse of Newey West covariance matrix as the
weighting matrix.

5. Bayesian-MCMC is the Bayesian estimator based on Markov Chain Monte Carlo methods.
6. EDV is the extension of Dufour and Valéry (2006) method proposed in Section 3.5.1.
7. ARMA-SV is the simple ARMA-based estimator proposed in Section 3.5.2.
8. W-ARMA-SV is the winsorized ARMA-SV estimator based on OLS proposed in Section 3.5.4.
9. Number of inadmissible values for each estimator are reported in Table 3.6.
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CHAPTER 3. HIGHER-ORDER STOCHASTIC VOLATILITY MODELS AND FORECASTING

Table 3.4. Comparison of different estimation methods for an SV(2) model: bias and RMSE
Model: M3 = (0.45, 0.45, 0.25, 2.5)

T = 500 T = 2000

ϕ1 ϕ2 σy σv ϕ1 ϕ2 σy σv

True value 0.45 0.45 0.25 2.5 0.45 0.45 0.25 2.5

Bias

GMM-6M-E -0.526 -0.627 0.556 2.600 -0.755 -0.613 0.687 1.670
GMM-6M-E-R -0.495 -0.656 0.556 2.600 -0.728 -0.635 0.687 1.670
GMM-6M-NW -0.361 -0.610 3.259 -0.229 -0.317 -0.685 3.082 -0.354
GMM-6M-NW-R -0.359 -0.611 3.259 -0.229 -0.317 -0.685 3.082 -0.354
GMM-24M-E -0.221 -0.346 0.610 2.817 -0.519 -0.409 0.811 3.574
GMM-24M-E-R -0.184 -0.375 0.610 2.817 -0.488 -0.434 0.811 3.574
GMM-24M-NW -0.342 -0.739 4.926 0.578 -0.275 -0.764 4.894 0.189
GMM-24M-NW-R -0.342 -0.739 4.926 0.578 -0.275 -0.764 4.894 0.189
Bayesian-MCMC 0.615 -0.670 3.552 -2.274 0.560 -0.588 3.414 -2.303
EDV -0.098 -0.208 7.498 -1.130 -0.077 -0.110 8.394 -1.006
EDV-R -0.034 -0.198 8.274 -1.379 -0.029 -0.108 8.973 -1.218
ARMA-SV 0.083 -0.096 0.035 -0.015 0.026 -0.029 0.013 -0.003
R-ARMA-SV 0.072 -0.084 0.040 -0.022 0.025 -0.029 0.014 -0.003
W-ARMA-SV(J = 10) -0.077 0.053 0.040 0.031 -0.018 0.011 0.014 0.009

RMSE

GMM-6M-E 1.143 0.839 0.843 4.379 1.088 0.787 0.811 3.534
GMM-6M-E-R 1.114 0.814 0.843 4.379 1.062 0.769 0.811 3.534
GMM-6M-NW 0.784 0.677 4.481 1.267 0.715 0.729 4.278 1.029
GMM-6M-NW-R 0.780 0.676 4.481 1.267 0.715 0.729 4.278 1.029
GMM-24M-E 0.795 0.608 0.919 4.200 0.995 0.659 1.017 4.897
GMM-24M-E-R 0.741 0.572 0.919 4.200 0.960 0.630 1.017 4.897
GMM-24M-NW 1.013 0.846 5.986 2.766 0.887 0.850 6.040 2.166
GMM-24M-NW-R 1.012 0.846 5.986 2.766 0.887 0.850 6.040 2.166
Bayesian-MCMC 0.750 0.695 7.950 2.277 0.672 0.592 4.395 2.304
EDV 0.399 0.456 13.432 0.461 0.343 0.392 10.642 0.513
EDV-R 0.580 0.604 13.893 0.662 0.507 0.530 12.179 0.687
ARMA-SV 0.383 0.363 0.171 0.204 0.211 0.200 0.077 0.100
R-ARMA-SV 0.488 0.460 0.173 0.247 0.218 0.207 0.077 0.102
W-ARMA-SV(J = 10) 0.203 0.195 0.173 0.187 0.155 0.148 0.077 0.094

Notes:

1. GMM-6M and GMM-24M are the generalized method of moment estimators with six moments and 24
moments, respectively.

2. E stands for the efficient GMM estimation where we used the inverse of the covariance matrix as the
weighting matrix.

3. R stands for the restricted estimation proposed in Section 3.5.3 where the estimates are restrained on the
space of acceptable parameter solutions.

4. NW stands for the GMM estimation where we used the inverse of Newey West covariance matrix as the
weighting matrix.

5. Bayesian-MCMC is the Bayesian estimator based on Markov Chain Monte Carlo methods.
6. EDV is the extension of Dufour and Valéry (2006) method proposed in Section 3.5.1.
7. ARMA-SV is the simple ARMA-based estimator proposed in Section 3.5.2.
8. W-ARMA-SV is the winsorized ARMA-SV estimator based on OLS proposed in Section 3.5.4.
9. Number of inadmissible values for each estimator are reported in Table 3.6.
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CHAPTER 3. HIGHER-ORDER STOCHASTIC VOLATILITY MODELS AND FORECASTING

Table 3.5. Comparison of different estimation methods for an SV(2) model: bias and RMSE
Model: M4 = (0.00, 0.90, 0.025, 2.5)

T = 500 T = 2000

ϕ1 ϕ2 σy σv ϕ1 ϕ2 σy σv

True value 0.00 0.90 0.025 2.5 0.00 0.90 0.025 2.5

Bias

GMM-6M-E -0.426 -1.078 0.134 2.337 -0.280 -1.010 0.176 1.997
GMM-6M-E-R -0.419 -1.087 0.134 2.337 -0.272 -1.021 0.176 1.997
GMM-6M-NW -0.284 -0.884 2.927 -0.028 -0.145 -0.997 3.359 -0.055
GMM-6M-NW-R -0.266 -0.898 2.927 -0.028 -0.145 -0.997 3.359 -0.055
GMM-24M-E 0.317 -0.817 0.153 4.405 -0.039 -0.816 0.181 4.296
GMM-24M-E-R 0.296 -0.831 0.153 4.405 -0.046 -0.826 0.181 4.296
GMM-24M-NW -0.355 -1.013 3.753 0.599 -0.169 -1.094 4.831 0.673
GMM-24M-NW-R -0.344 -1.023 3.753 0.599 -0.169 -1.094 4.831 0.673
Bayesian-MCMC 1.001 -1.099 1.246 -2.289 0.951 -1.020 1.241 -2.313
EDV -0.248 -0.467 1.212 -1.281 -0.358 -0.455 1.719 -1.293
EDV-R -0.103 -0.149 3.423 -1.471 -0.205 -0.209 4.119 -1.510
ARMA-SV -0.005 -0.013 0.004 -0.002 -0.001 -0.004 0.001 0.001
R-ARMA-SV -0.005 -0.013 0.004 -0.002 -0.001 -0.004 0.001 0.001
W-ARMA-SV(J = 10) -0.006 -0.016 0.004 0.012 -0.002 -0.004 0.001 0.003

RMSE

GMM-6M-E 0.937 1.180 0.218 3.958 0.786 1.101 0.270 3.517
GMM-6M-E-R 0.932 1.178 0.218 3.958 0.774 1.100 0.270 3.517
GMM-6M-NW 0.655 0.956 4.103 1.558 0.603 1.031 4.552 1.261
GMM-6M-NW-R 0.637 0.954 4.103 1.558 0.603 1.031 4.552 1.261
GMM-24M-E 0.863 0.942 0.494 5.491 0.724 0.925 0.244 5.510
GMM-24M-E-R 0.846 0.938 0.494 5.491 0.715 0.922 0.244 5.510
GMM-24M-NW 0.847 1.116 4.948 2.750 0.845 1.151 5.944 2.490
GMM-24M-NW-R 0.843 1.114 4.948 2.750 0.845 1.151 5.944 2.490
Bayesian-MCMC 1.108 1.114 4.054 2.292 1.038 1.023 1.849 2.315
EDV 0.401 0.443 1.421 0.412 0.447 0.479 1.413 0.478
EDV-R 0.425 0.464 9.023 0.750 0.495 0.522 8.593 0.705
ARMA-SV 0.031 0.030 0.017 0.183 0.014 0.014 0.008 0.091
R-ARMA-SV 0.031 0.030 0.017 0.183 0.014 0.014 0.008 0.091
W-ARMA-SV(J = 10) 0.030 0.028 0.017 0.176 0.013 0.013 0.008 0.088

Notes:

1. GMM-6M and GMM-24M are the generalized method of moment estimators with six moments and 24
moments, respectively.

2. E stands for the efficient GMM estimation where we used the inverse of the covariance matrix as the
weighting matrix.

3. R stands for the restricted estimation proposed in Section 3.5.3 where the estimates are restrained on the
space of acceptable parameter solutions.

4. NW stands for the GMM estimation where we used the inverse of Newey West covariance matrix as the
weighting matrix.

5. Bayesian-MCMC is the Bayesian estimator based on Markov Chain Monte Carlo methods.
6. EDV is the extension of Dufour and Valéry (2006) method proposed in Section 3.5.1.
7. ARMA-SV is the simple ARMA-based estimator proposed in Section 3.5.2.
8. W-ARMA-SV is the winsorized ARMA-SV estimator based on OLS proposed in Section 3.5.4.
9. Number of inadmissible values for each estimator are reported in Table 3.6.
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Table 3.6. Comparison of different estimation methods for an SV(2) model: Number of
inadmissible values

T = 500 T = 2000

M1 M2 M3 M4 M1 M2 M3 M4

GMM-6M-E 40 26 59 17 44 24 43 25
GMM-6M-NW 142 6 5 35 26 0 0 0
GMM-24M-E 29 947 84 193 64 994 120 94
GMM-24M-NW 141 14 6 47 36 0 0 2
Bayesian-MCMC 0 0 0 0 0 0 0 0
EDV 213 988 245 766 156 992 189 660
ARMA-SV 17 0 140 0 0 0 4 0
W-ARMA-SV-OLS(J = 10) 0 0 0 0 0 0 0 0

Notes:

1. GMM-6M and GMM-24M are the generalized method of moment estimators with six moments and 24
moments, respectively.

2. E stands for the efficient GMM estimation where we used the inverse of the covariance matrix as the
weighting matrix.

3. NW stands for the GMM estimation where we used the inverse of Newey West covariance matrix as the
weighting matrix.

4. Bayesian-MCMC is the Bayesian estimator based on Markov Chain Monte Carlo methods.
5. EDV is the extension of Dufour and Valéry (2006) method proposed in Section 3.5.1.
6. ARMA-SV is the simple ARMA-based estimator proposed in Section 3.5.2.
7. W-ARMA-SV-OLS is the winsorized ARMA-SV estimator based on OLS proposed in Section 3.5.4.

Table 3.7. Comparison of different estimation methods with respect to relative time for an
SV(2) model using simulated data

Relative computing time with respect to ARMA-SV estimator

T = 500 T = 2000

GMM-6M-E 734.81 717.67
GMM-6M-NW 1019.49 1467.50
GMM-24M-E 1752.19 1785.62
GMM-24M-NW 3091.74 4059.37
Bayesian-MCMC 55750.12 127080.14
EDV 0.99 0.99
ARMA-SV 1.00 1.00
W-ARMA-SV-OLS(J = 10) 1.38 1.36

Notes:

1. GMM-6M and GMM-24M are the generalized method of moment estimators with six moments and 24
moments, respectively.

2. E stands for the efficient GMM estimation where we used the inverse of the covariance matrix as the
weighting matrix.

3. NW stands for the GMM estimation where we used the inverse of Newey West covariance matrix as the
weighting matrix.

4. Bayesian-MCMC is the Bayesian estimator based on Markov Chain Monte Carlo methods.
5. EDV is the extension of Dufour and Valéry (2006) method proposed in Section 3.5.1.
6. ARMA-SV is the simple ARMA-based estimator proposed in Section 3.5.2.
7. W-ARMA-SV-OLS is the winsorized ARMA-SV estimator based on OLS proposed in Section 3.5.4.
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Table 3.8. Summary statistics

S&P 500 index, 1928 - 2016, number of observations: 23372

Series Mean Std. Dev. Kurtosis Skewness Range Max Min LB(10)

yt 0.00 0.50 21.98 -0.43 16.62 6.66 -9.95 104.4
y2

t 0.25 1.14 2647.09 37.17 99.08 99.08 0.00 7338.5
log(|yt |) -1.73 1.25 5.07 -0.96 13.60 2.30 -11.30 5180.9
y∗

t = log(y2
t )−µ 0.00 2.49 5.07 -0.96 27.20 8.05 -19.15 5180.9

Notes:

1. yt = rt − µ̂r is the residual return, y2
t is the squared of residual return and y∗

t is the residual of log square
of residual return.

2. LB(10) is the heteroskedasticity-corrected Ljung - Box statistics with 10 lags. The critical values for LB(10)
are: 15.99 (10%), 18.31 (5%), and 23.21 (1%).
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Table 3.9. Asymptotic and finite sample inference for SV(p) models based on ARMA-type
estimators

S&P 500 index, 1928 - 2016, number of observations: 23372

p = 1

Coefficient Std. error t-stat Asymptotic tests Local Monte Carlo tests

N = 19 N = 99 N = 999

ϕ1 0.9938 (0.0357) 27.84 0.00 0.05 0.01 0.001
σy 0.3356 (0.0167) 20.06 0.00 0.05 0.01 0.001
σv 0.6533 (0.0623) 10.48 0.00 0.05 0.01 0.001
Time (in seconds) 0.69 1.5 4.5 38.2

p = 2

Coefficient Std. error t-stat Asymptotic tests Local Monte Carlo tests

N = 19 N = 99 N = 999

ϕ1 0.6887 (0.0719) 9.58 0.00 0.05 0.01 0.001
ϕ2 0.2863 (0.0734) 3.90 0.00 0.05 0.01 0.001
σy 0.3356 (0.0167) 20.06 0.00 0.05 0.01 0.001
σv 0.6166 (0.3204) 1.92 0.03 0.10 0.06 0.075
Time (in seconds) 0.70 2.6 10.3 95.1

p = 3

Coefficient Std. error t-stat Asymptotic tests Local Monte Carlo tests

N = 19 N = 99 N = 999

ϕ1 0.5477 (0.1204) 4.55 0.00 0.05 0.01 0.001
ϕ2 -0.4264 (0.0936) -4.55 0.00 0.05 0.01 0.001
ϕ3 0.8489 (0.0122) 69.67 0.00 0.05 0.01 0.001
σy 0.3356 (0.0167) 20.06 0.00 0.05 0.01 0.001
σv 0.6211 (0.3993) 1.56 0.06 0.10 0.09 0.082
Time (in seconds) 0.79 12.2 60.2 622.1

p = 4

Coefficient Std. error t-stat Asymptotic tests Local Monte Carlo tests

N = 19 N = 99 N = 999

ϕ1 0.3633 (0.2153) 1.69 0.05 0.05 0.01 0.001
ϕ2 -0.0251 (0.2117) -0.12 0.45 0.85 0.88 0.865
ϕ3 0.6305 (0.0167) 37.68 0.00 0.05 0.01 0.001
ϕ4 0.0005 (0.0162) 0.03 0.49 0.70 0.65 0.623
σy 0.3356 (0.0167) 20.06 0.00 0.05 0.01 0.001
σv 0.6133 (0.9210) 0.67 0.25 0.20 0.15 0.185
Time (in seconds) 0.97 20.7 105.0 1237.2

Notes:

1. Except for ϕ1 and ϕ2 parameters of SV(3) model and σy in all models, we test each coefficient is zero
against a right-sided alternative.

2. We cannot test ϕ1 = 0 and ϕ2 = 0 in SV(3) model since putting each of these restrictions leads to some
of the eigenvalues of the latent AR(3) model are outside the unit circle, hence non-stationarity. In these
cases, the ARMA-based estimation is infeasible. So we test ϕ1 = 0.2 and ϕ2 =−0.4 against a right-sided and
a left-sided alternative, respectively.

3. We test σy = 0.01 against a right-sided alternative since when σy = 0, SV models are unidentified.
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Table 3.10. W-ARMA-SV-OLS estimates with different level of winsorization

S&P 500 index: 1996 - 2016, number of observations: 5222

J 10 20 30 40 50 60 70 80 90 100

SV(1) ϕ̂1 1.0119 0.9897 0.9930 0.9885 0.9835 0.9853 0.9835 0.9802 0.9777 0.9765
σ̂y 0.3894 0.3894 0.3894 0.3894 0.3894 0.3894 0.3894 0.3894 0.3894 0.3894
σ̂v 0.6109 0.8051 0.7455 0.8329 0.7702 0.8803 0.8361 0.8371 0.9014 0.9257

SV(2) ϕ̂1 0.7586 0.5736 0.5322 0.4797 0.3333 0.3447 0.3165 0.3342 0.3433 0.3315
ϕ̂2 0.1646 0.3541 0.4239 0.4808 0.6483 0.6341 0.6655 0.6490 0.6393 0.6514
σ̂y 0.3894 0.3894 0.3894 0.3894 0.3894 0.3894 0.3894 0.3894 0.3894 0.3894
σ̂v 0.7422 0.6961 0.6659 0.6492 0.5933 0.5988 0.5883 0.5923 0.5954 0.5917

SV(3) ϕ̂1 0.0440 0.0571 0.0983 0.0688 0.1407 0.1241 0.1004 0.1112 0.1281 0.1234
ϕ̂2 0.6099 0.5507 0.5341 0.5150 0.4115 0.2656 0.2886 0.2664 0.2451 0.2510
ϕ̂3 0.3212 0.3821 0.3558 0.4010 0.4176 0.5772 0.5839 0.5930 0.5972 0.5967
σ̂y 0.3894 0.3894 0.3894 0.3894 0.3894 0.3894 0.3894 0.3894 0.3894 0.3894
σ̂v 0.5181 0.5098 0.5242 0.5188 0.5550 0.5557 0.5433 0.5488 0.5543 0.5522

SV(4) ϕ̂1 0.5241 0.2733 0.2659 0.1763 0.0435 0.0235 0.0224 0.0244 0.0254 0.0243
ϕ̂2 -0.4048 0.5450 0.5395 0.5184 -0.2331 -0.1759 -0.1734 -0.1778 -0.1750 -0.1731
ϕ̂3 0.2491 0.1954 0.1867 0.2025 0.2863 0.3270 0.3297 0.3323 0.3301 0.3332
ϕ̂4 0.5563 0.0131 0.0329 0.1147 0.8431 0.7699 0.7661 0.7649 0.7638 0.7608
σ̂y 0.3894 0.3894 0.3894 0.3894 0.3894 0.3894 0.3894 0.3894 0.3894 0.3894
σ̂v 0.7420 0.5426 0.5441 0.5386 0.6434 0.6275 0.6268 0.6279 0.6277 0.6264

S&P 500 index: 2006 - 2016, number of observations: 2703

J 10 20 30 40 50 60 70 80 90 100

SV(1) ϕ̂1 1.0039 0.9888 0.9877 0.9863 0.9788 0.9758 0.9743 0.9697 0.9672 0.9666
σ̂y 0.3548 0.3548 0.3548 0.3548 0.3548 0.3548 0.3548 0.3548 0.3548 0.3548
σ̂v 1.0975 1.2290 1.1250 1.2759 1.2356 1.3744 1.3282 1.2798 1.3584 1.3879

SV(2) ϕ̂1 0.3869 0.2879 0.3418 0.2698 0.3030 0.3266 0.2916 0.2948 0.2980 0.2994
ϕ̂2 0.5298 0.6301 0.6144 0.6710 0.6550 0.6399 0.6708 0.6609 0.6577 0.6567
σ̂y 0.3548 0.3548 0.3548 0.3548 0.3548 0.3548 0.3548 0.3548 0.3548 0.3548
σ̂v 1.1228 1.1081 1.0958 1.0936 1.0892 1.0882 1.0853 1.0893 1.0898 1.0897

SV(3) ϕ̂1 0.1565 0.0551 0.1940 0.1381 0.1423 0.0972 0.0586 0.0649 0.0666 0.0672
ϕ̂2 0.6473 0.4297 0.3155 0.2576 0.2048 0.2277 0.2456 0.2421 0.2398 0.2378
ϕ̂3 0.1448 0.4745 0.4404 0.5396 0.6006 0.6568 0.6801 0.6705 0.6714 0.6725
σ̂y 0.3548 0.3548 0.3548 0.3548 0.3548 0.3548 0.3548 0.3548 0.3548 0.3548
σ̂v 1.0657 1.0279 1.0558 1.0505 1.0412 1.0123 1.0034 1.0089 1.0089 1.0091

SV(4) ϕ̂1 -0.2498 0.0402 0.0791 0.0767 -0.0319 0.0180 0.0492 0.0281 0.0283 0.0279
ϕ̂2 0.3377 0.2618 0.3093 0.2324 -0.0692 0.0571 0.0724 0.0887 0.0886 0.0875
ϕ̂3 0.2763 0.4629 0.3971 0.5099 0.4766 0.5435 0.5419 0.4830 0.4827 0.4832
ϕ̂4 0.5648 0.1741 0.1604 0.1381 0.5549 0.3215 0.2782 0.3387 0.3388 0.3399
σ̂y 0.3548 0.3548 0.3548 0.3548 0.3548 0.3548 0.3548 0.3548 0.3548 0.3548
σ̂v 1.0316 1.0447 1.0495 1.0363 1.0532 1.0425 1.0448 1.0488 1.0488 1.0488

S&P 500 index: 2006 - 2010, number of observations: 1259

J 10 20 30 40 50 60 70 80 90 100

SV(1) ϕ̂1 1.0107 0.9828 0.9912 0.9872 0.9852 0.9818 0.9795 0.9787 0.9773 0.9733
σ̂y 0.4194 0.4194 0.4194 0.4194 0.4194 0.4194 0.4194 0.4194 0.4194 0.4194
σ̂v 0.8886 1.1144 0.9922 1.1888 1.0528 1.2163 1.1949 1.1547 1.2106 1.3133

SV(2) ϕ̂1 0.2461 0.3429 0.3335 0.3157 0.3672 0.3654 0.3596 0.3937 0.3980 0.3739
ϕ̂2 0.7337 0.6123 0.6223 0.6543 0.6007 0.6218 0.6240 0.5877 0.5857 0.5810
σ̂y 0.4194 0.4194 0.4194 0.4194 0.4194 0.4194 0.4194 0.4194 0.4194 0.4194
σ̂v 0.9250 0.9550 0.9533 0.9409 0.9488 0.9346 0.9365 0.9424 0.9413 0.9589

SV(3) ϕ̂1 0.0058 0.4596 0.4604 0.4468 0.4845 0.4056 0.4055 0.4471 0.4352 0.2878
ϕ̂2 0.6765 -0.0689 -0.0420 -0.0255 -0.1603 -0.0541 -0.0559 -0.1146 -0.1798 -0.0495
ϕ̂3 0.3245 0.5134 0.4910 0.4958 0.5957 0.5986 0.6012 0.6210 0.7196 0.6936
σ̂y 0.4194 0.4194 0.4194 0.4194 0.4194 0.4194 0.4194 0.4194 0.4194 0.4194
σ̂v 0.8345 0.9509 0.9497 0.9419 0.9339 0.9009 0.9001 0.9013 0.8718 0.8885

SV(4) ϕ̂1 1.4611 0.5749 0.5764 0.5647 0.4380 0.4352 0.4402 0.4280 0.2058 0.2008
ϕ̂2 0.1345 -0.4170 -0.3963 -0.3766 -0.2509 -0.1999 -0.2068 -0.1842 -0.0734 -0.0629
ϕ̂3 -0.5136 0.3481 0.3195 0.3226 0.2848 0.3012 0.3017 0.2819 0.3499 0.3494
ϕ̂4 -0.1333 0.3796 0.3904 0.3809 0.4413 0.3799 0.3822 0.3936 0.4400 0.4332
σ̂y 0.4194 0.4194 0.4194 0.4194 0.4194 0.4194 0.4194 0.4194 0.4194 0.4194
σ̂v 1.1298 1.0109 1.0115 1.0083 0.9849 0.9780 0.9781 0.9778 0.9434 0.9437
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Table 3.11. Summary statistics of full sample of experiment - 1

S&P 500 index, September 01, 2005 to August 31, 2010, T = 1258

Series Mean Std. Dev. Kurtosis Skewness Range Max Min LB(10)

y 0.00 0.67 11.39 -0.17 8.83 4.63 -4.20 46.9
y2 0.45 1.44 99.59 8.58 21.41 21.41 0.00 1117.5
y∗ 0.00 2.67 4.80 -0.93 19.56 6.11 -13.45 473.3
RV5 0.00 0.00 108.51 8.05 0.01 0.01 0.00 4275.8
RV5-SS 0.00 0.00 108.51 8.05 0.01 0.01 0.00 4275.8
BV5 0.00 0.00 91.24 7.73 0.01 0.01 0.00 4362.1
BV5-SS 0.00 0.00 91.24 7.73 0.01 0.01 0.00 4362.1
MedRV 0.00 0.00 76.43 7.43 0.00 0.00 0.00 4457.5
TSRK 0.00 0.00 152.67 9.47 0.01 0.01 0.00 3729.8
RK 0.00 0.00 54.33 6.35 0.01 0.01 0.00 4273.5
RSV5 0.00 0.00 79.42 7.12 0.00 0.00 0.00 3706.0
RSV5-SS 0.00 0.00 79.42 7.12 0.00 0.00 0.00 3706.0
Log-RV5 -4.12 0.52 3.18 0.60 3.17 -2.11 -5.28 7569.5
Log-RV5-SS -4.12 0.52 3.18 0.60 3.17 -2.11 -5.28 7569.5
Log-BV5 -4.21 0.52 3.23 0.62 3.35 -2.22 -5.57 7831.3
Log-BV5-SS -4.21 0.52 3.23 0.62 3.35 -2.22 -5.57 7831.3
Log-MedRV -4.51 0.56 3.22 0.54 3.45 -2.54 -5.99 7470.3
Log-TSRK -4.14 0.51 3.31 0.67 3.19 -2.08 -5.27 8126.4
Log-RK -4.20 0.57 3.09 0.40 3.44 -2.29 -5.73 5562.8
Log-RSV5 -4.47 0.57 3.02 0.48 3.48 -2.45 -5.93 6017.0
Log-RSV5-SS -4.47 0.57 3.02 0.48 3.48 -2.45 -5.93 6017.0

Notes:

1. yt = rt − µ̂r is the residual return, y2
t is the squared of residual return and y∗

t is the residual of log squared
of residual return.

2. RV5 is the 5-minute realized variance, BV5 is the 5-minute bi-power variation, RSV5 is the 5-minute re-
alized semi-variance, RK is the realized kernel, TSRK is the two-scale realized kernels, and MedRV is the
median realized volatility.

3. SS denotes the use of 1-minute subsamples in the calculation of realized volatility estimators.
4. LB(10) is the heteroskedasticity-corrected Ljung-Box statistics with 10 lags. The critical values for LB(10)

are: 15.99 (10%), 18.31 (5%), and 23.21 (1%).
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Table 3.12. Summary statistics of full sample of experiment - 2

S&P 500 index, January 01, 2005 to December 31, 2009, T = 1259

Series Mean Std. Dev. Kurtosis Skewness Range Max Min LB(10)

y 0.00 0.65 12.78 -0.18 8.83 4.62 -4.20 53.7
y2 0.42 1.43 102.64 8.78 21.39 21.39 0.00 1181.7
y∗ 0.00 2.69 6.45 -1.14 24.16 6.22 -17.94 466.2
RV5 0.00 0.00 111.55 8.21 0.01 0.01 0.00 4483.6
RV5-SS 0.00 0.00 111.55 8.21 0.01 0.01 0.00 4483.6
BV5 0.00 0.00 93.70 7.88 0.01 0.01 0.00 4547.5
BV5-SS 0.00 0.00 93.70 7.88 0.01 0.01 0.00 4547.5
MedRV 0.00 0.00 77.39 7.50 0.00 0.00 0.00 4571.3
TSRK 0.00 0.00 160.47 9.74 0.01 0.01 0.00 4028.3
RK 0.00 0.00 55.33 6.44 0.01 0.01 0.00 4425.0
RSV5 0.00 0.00 82.90 7.32 0.00 0.00 0.00 3957.9
RSV5-SS 0.00 0.00 82.90 7.32 0.00 0.00 0.00 3957.9
Log-RV5 -4.18 0.53 3.34 0.77 3.17 -2.11 -5.28 8036.3
Log-RV5-SS -4.18 0.53 3.34 0.77 3.17 -2.11 -5.28 8036.3
Log-BV5 -4.27 0.53 3.40 0.80 3.35 -2.22 -5.57 8215.8
Log-BV5-SS -4.27 0.53 3.40 0.80 3.35 -2.22 -5.57 8215.8
Log-MedRV -4.57 0.56 3.37 0.71 3.45 -2.54 -5.99 7726.2
Log-TSRK -4.20 0.51 3.46 0.85 3.19 -2.08 -5.27 8598.9
Log-RK -4.25 0.57 3.28 0.53 3.53 -2.29 -5.82 5826.7
Log-RSV5 -4.53 0.57 3.17 0.65 3.48 -2.45 -5.93 6520.8
Log-RSV5-SS -4.53 0.57 3.17 0.65 3.48 -2.45 -5.93 6520.8

Notes:

1. yt = rt − µ̂r is the residual return, y2
t is the squared of residual return and y∗

t is the residual of log squared
of residual return.

2. RV5 is the 5-minute realized variance, BV5 is the 5-minute bi-power variation, RSV5 is the 5-minute re-
alized semi-variance, RK is the realized kernel, TSRK is the two-scale realized kernels, and MedRV is the
median realized volatility.

3. SS denotes the use of 1-minute subsamples in the calculation of realized volatility estimators.
4. LB(10) is the heteroskedasticity-corrected Ljung-Box statistics with 10 lags. The critical values for LB(10)

are: 15.99 (10%), 18.31 (5%), and 23.21 (1%).
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3.12.3 Figures
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Figure 3.1. S&P 500: 1996-2016. W-ARMA-SV-OLS estimators of volatility persistence
parameters (ϕ’s) as a function of the number of lags (J ). Four SV models are considered.
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Figure 3.2. S&P 500: 2006-2016. W-ARMA-SV-OLS estimators of volatility persistence
parameters (ϕ’s) as a function of the number of lags (J ). Four SV models are considered.
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Figure 3.3. S&P 500: 2006-2010. W-ARMA-SV-OLS estimators of volatility persistence
parameters (ϕ’s) as a function of the number of lags (J ). Four SV models are considered.

3.12.4 Forecasting with SV(p) models

As discussed earlier, SV(p) models can be written as a linear state-space model without losing

any information. The state-space representation of SV(p) models is given by

y∗
t = wt +ϵt ,

wt =
p∑

j=1
ϕ j wt− j + vt ,

(3.12.93)

where the distribution ϵt is approximated by a normal distribution with mean 0 and variance

π2/2. Using the standard notations of Hamilton (1994), the model defined in (3.12.93) can be

rewritten as following:

yt = A′xt +H ′ξt +wt ,

ξt+1 = Fξt +νt+1 ,
(3.12.94)
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with yt = y∗
t , A′ = 0, xt = 1, H ′ = (1,0, . . . , 0) is a 1×p vector, wt = ϵt , R = E(wt w ′

t ) =π2/2,

ξt =



wt

wt−1

wt−2

...

wt−p−1


, F =



ϕ1 ϕ2 · · · ϕp−1 ϕp

1 0 · · · 0 0

0 1 · · · 0 0

...
... · · · ...

...

0 0 · · · 1 0


, νt+1 =



vt+1

0

0

...

0


,

Q = E(νtν
′
t ) =



σ2
v 0 · · · 0

0 0 · · · 0

0 0 · · · 0

...
... · · · ...

0 0 · · · 0


,

where F and Q are p ×p matrices, and ξt are νt+1 are p ×1 vectors. Now using (3.12.94), the

Kalman filter can be applied as follows:

• Initialization:

ξ̂1|0 = E(ξ1) = 0(p×1) ,

P1|0 = E([(ξ1 −E(ξ1)][(ξ1 −E(ξ1)]′) = di ag [σ2
v , . . . , σ2

v ](p×p) ,
(3.12.95)

where P1|0 is the MSE associated with ξ̂1|0.

• Sequential updating:

ξ̂t |t = ξ̂t |t−1 +Pt |t−1H(H ′Pt |t−1H +R)−1 × (yt −H ′ξ̂t |t−1) ,

Pt |t = Pt |t−1 −Pt |t−1H(H ′Pt |t−1H +R)−1Pt |t−1H ′ .
(3.12.96)
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• In-sample prediction:

ξ̂t+1|t = F ξ̂t |t−1 +F Pt |t−1H(H ′Pt |t−1H +R)−1 × (yt −H ′ξ̂t |t−1) ,

Pt+1|t = F Pt |t F ′+Q .
(3.12.97)

Given (3.12.97), the forecast of yt+1 and the MSE of forecast error are given by

ŷt+1|t = H ′ξ̂t+1|t ,

E([yt+1 − ŷt+1|t ][yt+1 − ŷt+1|t ]′) = H ′Pt+1|t H +R .
(3.12.98)

• Out-of-sample h-step-ahead forecasting:

ξ̂T+h|T = F h ξ̂T |T ,

ŷT+h|T = H ′ξ̂T+h|T = H ′F h ξ̂T |T .
(3.12.99)

The h-step-ahead forecast is computed by (3.12.99) with the simple estimates plugged in.

3.12.5 Forecasting with GARCH models

GARCH Model: The generalized autoregressive conditional heteroskedastic (GARCH) model is

an extension of the ARCH model by Engle (1982). If a series exhibits volatility clustering, this

suggests that past variances might be predictive of the current variance. The GARCH(p, q)

model is an autoregressive moving average model for conditional variances, with p GARCH

coefficients associated with lagged variances, and q ARCH coefficients associated with lagged

squared innovations or lagged squared residual returns. The GARCH(p, q) model of residual

return is

yt =σt zt , zt ∼ i .i .d N (0,1),

σ2
t =ω+β1σ

2
t−1 + . . .+βpσ

2
t−p +α1 y2

t−1 + . . .+αq y2
t−q ,

where yt is the residual return observed at time t and σt is the corresponding volatility. For

stationarity and positivity, the GARCH model has the following constraints:

• ω> 0,
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• βi ≥ 0, α j ≥ 0

•
∑p

i=1βi +
∑q

j=1α j < 1.

The h-step-ahead forecast of the GARCH(1, 1) model is computed according to:

σ̂2
t+h|t = ω̂+ β̂1σ̂

2
t+h−1|t + α̂1 ŷ2

t+h−1|t ,

ŷ2
t+h|t = σ̂2

t+h|t i f h > 0,

ŷ2
t+h|t = y2

t+h σ̂2
t+h|t =σ2

t+h i f h ≤ 0.

EGARCH Model: The exponential GARCH (EGARCH) model was developed by Nelson (1991).

It is a GARCH variant that models the logarithm of the conditional variance process. In addi-

tion to modeling the logarithm, the EGARCH model has additional leverage terms to capture

asymmetry in volatility clustering. The EGARCH(p, q) model has p GARCH coefficients asso-

ciated with lagged log variance terms, q ARCH coefficients associated with the magnitude of

lagged standardized innovations, and q leverage coefficients associated with signed, lagged

standardized innovations. The form of the EGARCH(p, q) model is

yt =σt zt , zt ∼ i .i .d N (0,1),

logσ2
t =ω+

p∑
i=1

βi logσ2
t−i +

q∑
j=1

α j
(|zt− j |−E

(|zt− j |
))+ q∑

j=1
γ j zt− j ,

where zt := ytσ
−1
t and to ensure stationarity, all roots of the GARCH coefficient polyno-

mial, (1−β1L − . . .−βp Lp ), must lie outside the unit circle. The h-step-ahead forecast of the

EGARCH(1, 1) model is computed according to:

log σ̂2
t+h|t = ω̂+ β̂1 log σ̂2

t+h−1|t + α̂1
(|ẑt+h−1|t |−E

(|ẑt+h−1|t |
))+γ1ẑt+h−1|t .

GJR Model: The GJR-GARCH, or just GJR, model of Glosten et al. (1993) allows the conditional

variance to respond differently to the past negative and positive innovations. The GJR(p, q)

model has p GARCH coefficients associated with lagged variances, q ARCH coefficients asso-

ciated with lagged squared innovations, and q leverage coefficients associated with the square
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of negative lagged innovations. The GJR(p, q) model may be expressed as:

yt =σt zt , zt ∼ i .i .d N (0,1),

logσ2
t =ω+

p∑
i=1

βiσ
2
t−i +

q∑
j=1

(α j +γ j I[yt− j<0])y2
t− j ,

where the indicator function I [yt− j < 0] equals 1 if yt− j < 0, and 0 otherwise. Thus, the

leverage coefficients are applied to negative innovations, giving negative changes additional

weight. For stationarity and positivity, the GJR model has the following constraints:

• ω> 0

• βi ≥ 0, α j ≥ 0

• α j +γ j ≥ 0

•
∑p

i=1βi +
∑q

j=1(α j + 1
2γ j ) < 1

The GARCH model is nested in the GJR model. If all leverage coefficients are zero, then the

GJR model reduces to the GARCH model. The recursive formula for the h-step-ahead forecast

of the GJR-GARCH(1, 1) model is calculated as:

σ̂2
t+h|t = ω̂+

(
α̂1 +

γ̂1

2
+ β̂1

)
σ̂2

t+h−1|t .

3.12.6 Heterogenous Autoregressive model of Realized Volatility

Heterogenous Autoregressive model of Realized Volatility (HAR-RV) model proposed by Corsi

(2009). In financial markets, either traders are perceived to be heterogeneous in the sense of a

different horizon of investments [Müller et al. (1997)] or information arrival is heterogeneous

[Andersen and Bollerslev (1998)]. HAR-RV model takes into account the long memory feature,

and among the models proposed to forecast volatility, it stands out in terms of performance

and simplicity.

A generalized version of HAR-RV model that we used here is as follows:

logRV (d)
t+1 = c +β(d) logRV (d)

t +β(w) logRV (w)
t +β(m) logRV (m)

t +ud
t+1 (3.12.100)
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where

logRV (w)
t = 1

5

4∑
j=0

logRV (d)
t− j ,

logRV (m)
t = 1

22

21∑
j=0

logRV (d)
t− j .

This class of models can be estimated with ordinary least squares. For the details of forecast-

ing in HAR-RV model, see Corsi (2009).
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Chapter 4

High-frequency instruments and
identification-robust inference for
stochastic volatility models

Abstract

We introduce a novel class of generalized stochastic volatility (GSV) models, which utilize high-
frequency (HF) information (realized volatility (RV) measures). GSV models can accommodate nonsta-
tionary volatility, various distributional assumptions, and exogenous regressors in the latent volatility
equation. Instrumental variable methods are employed to provide a unified framework for GSV models’
analysis (estimation and inference). We consider the parameter inference problem in GSV models with
nonstationary volatility and develop identification-robust methods for joint hypotheses involving the
volatility persistence parameter and the autocorrelation parameter of the composite error (or the noise
ratio). For inference about the volatility persistence parameter, projection techniques are applied. The
proposed tests include Anderson-Rubin-type (AR) tests, a dynamic version of the split-sample (SS)
procedure, and point-optimal versions of these tests (AR∗ and SS∗). For distributional theory, three
different sets of assumptions are considered: (1) for Gaussian errors, we provide exact tests and confi-
dence sets; (2) for a wide class of parametric non-Gaussian errors (possibly heavy-tailed), we establish
that exact Monte Carlo procedures can be applied using the statistics considered; (3) under weaker dis-
tributional assumptions, we show these tests are asymptotically valid. A comprehensive Monte Carlo
study indicates that the proposed tests outperform the usual asymptotic test regarding size and exhibit
excellent power in empirically realistic settings. We apply our inference methods to IBM’s price and
option data (2009-2013). We consider 175 different instruments (IV’s) spanning 22 classes and analyze
their ability to describe the low-frequency volatility. The IV’s are compared based on the average length
of confidence intervals, which are produced by the proposed tests. The superior instrument set mostly
consists of 5-minute HF realized measures, and these IV’s produce confidence sets where the volatil-
ity persistence parameter lies roughly between 0.85 and 1.0. This outcome suggests that the volatility
process is highly persistent and close to unit-root. We find RVs with higher frequency produce wider
confidence intervals compared to RVs with slightly lower frequency, showing that these confidence in-
tervals adjust to absorb market microstructure noise or discretization error. Further, when we consider
irrelevant or weak IV’s (jumps and signed jumps), the proposed tests produce unbounded confidence
intervals. Although jumps contain little information content regarding the low-frequency volatility, we
find evidence that there may be a nonlinear relationship between jumps and the low-frequency volatil-
ity.
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Key words: Stochastic volatility, Realized variance, High frequency data, Identification robust
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4.1 Introduction

In stochastic volatility (SV) models [proposed by Taylor (1982, 1986)], the return variation dy-

namics is modelled as a latent autocorrelated stochastic process. Estimation and inference are

challenging in SV models due to the inherent problem of evaluating the likelihood function.1

As a result, a variety of alternative methods have been proposed to estimate SV models.2 For

a review of the SV literature; see Ghysels et al. (1996), Broto and Ruiz (2004), Shephard (2005),

Ahsan and Dufour (2018).

This paper proposes generalized stochastic volatility models (GSV), where volatility is mod-

elled as a latent stochastic process. Instrumental-variable methods can be used to estimate

GSV models, where a standard solution is to replace the unobserved volatility by a proxy.

Hence, we need valid instruments (IV’s) for the latent volatility. The choice of instruments

plays a crucial role. As a result, we consider broad classes of IV’s for the latent log volatility; we

use high-frequency (HF) realized measures as instruments. To the best of our knowledge, this

paper is the first to propose instrumental-variable (IV) regression in the context of SV models.

GSV models can accommodate nonstationary volatility, various distributional assumptions,

and exogenous regressors in the latent volatility equation.

This study considers the problem of testing hypotheses and building confidence sets for the

volatility persistence parameter, which captures the volatility clustering. This parameter plays

1The marginal likelihood of SV models is given by a high dimensional integral, which makes the estimation
by conventional maximum likelihood (ML) infeasible. This is a general feature of most nonlinear latent vari-
able models because the latent variables must be integrated out of the joint density for the observed and latent
processes, leading to an integral of high dimensionality.

2Major references include: the Quasi-Maximum Likelihood (QML) [Harvey et al. (1994); Ruiz (1994)], the
Generalized Method of Moments (GMM) [Melino and Turnbull (1990); Andersen and Sørensen (1996)], the Effi-
cient Method of Moments (EMM) [Gallant and Tauchen (1996); Andersen et al. (1999)], the Maximum Likelihood
Monte Carlo (MLMC) [Sandmann and Koopman (1998)], the Simulated Maximum Likelihood (SML) [Danielsson
and Richard (1993); Danielsson (1994); Durham (2006); Liesenfeld and Jung (2000); Richard and Zhang (2007)],
method base on linear-representation (LiR) [Francq and Zakoïan (2006)], the closed-form moment-based esti-
mator (DV) [Dufour and Valéry (2006)], the ARMA-based winsorized estimator (W-ARMA-SV) [Ahsan and Dufour
(2019)] and Bayesian methods based on Markov Chain Monte Carlo (MCMC) methods [Jacquier et al. (1994), Kim
et al. (1998), Chib et al. (2002), Flury and Shephard (2011)].
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a crucial role in many areas of financial economics. First, asset allocation theories have shown

that this parameter can reflect the persistence in the risk premium, e.g., when there is a high

persistence in volatility, a rational investor should frequently and permanently change the

weighting of assets whenever a volatility shock arrives. Second, the volatility persistence pa-

rameter’s confidence set determines the conditional volatility forecast interval given the cur-

rent volatility, which is important for risk management, option pricing, and asset pricing:

• Accurate estimation of the tails of the return distribution are of particular importance

for risk management tools (Value at Risk and Expected Shortfall); see Taylor (1999).

• The volatility forecast interval is important for option pricing; see Hansen (1994).

• The accurate confidence interval estimation of volatility has consequences for the fore-

casts of the conditional mean (the prediction interval of returns) through projection

techniques; see Baillie and Bollerslev (1992).

We are interested in testing some general restrictions on the volatility persistence parameter

(including non-stationarity of the volatility process by testing for a unit root) in log-squared

low-frequency returns in a model setup, which utilizes high-frequency information (realized

volatility (RV) measures). Indeed, we let the latent volatility process’s autoregressive root be

close or equal to one. Nonstationarity in the volatility process has been well documented for

macroeconomic and financial time series data; see Pagan and Schwert (1990a, 1990b), Loretan

and Phillips (1994), McConnell and Perez-Quiros (2000), Blanchard and Simon (2001), Busetti

and Taylor (2003), Sensier and Dijk (2004), Cavaliere and Taylor (2007). For instance, non-

stationary volatility arises when the variance is trending (upward or downward) or undergoes

structural breaks. Several studies note that the empirical estimate of the dominant root of

the SV-type process is close to unit circle; see Harvey et al. (1994), Hansen (1995), Broto and

Ruiz (2004). Hansen (1995) is the only study that proposed robust regressions in the mean

equation under nonstationary stochastic volatility, whereas Harvey et al. (1994) estimated SV

models imposing a unit root in the variance equation. Besides, we want to build a valid con-

fidence set of the persistence parameter that can be used to determine the volatility forecast

interval and/or the distribution of the volatility forecasts in our proposed model setup.
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Previous attempts on hypothesis testing for the volatility persistence parameter are limited,

these include: Harvey et al. (1994), Wright (1999), Dufour and Valéry (2009) and Ahsan and

Dufour (2019). Harvey et al. (1994) considered a classical unit root test in a QML setup, which

suffers from large size distortions. Wright (1999) proposed to use the unit root test of Per-

ron and Ng (1996) that is based on large-sample approximations and is not reliable in finite

samples (requires extremely large samples) and different parameter settings. These inference

procedures are based on large-sample approximations (asymptotic standard errors), and it is

known that when a time series is nearly nonstationary, the asymptotic standard error can be

markedly different, and asymptotic approximations are very unreliable in finite samples. In

the context of a standard SV model, simulation results (in this paper, see Table 4.2) show that

tests based on asymptotic standard errors fail to control the type I errors when the volatil-

ity persistence parameter approaches to the unit circle. This assertion is also supported by

Harvey et al. (1994)) and Wright (1999).

Dufour and Valéry (2009) and Ahsan and Dufour (2019) developed both exact and asymp-

totic tests for no persistence (or no clustering) hypothesis, which are primarily based on sta-

tionarity (requires time invariance of unconditional variances and autocovariances) and nor-

mality assumptions. Applying these procedures in real data may be problematic since the la-

tent log volatility process can be highly persistent. The formal hypothesis testing problem for

the persistence parameter (concerning size and power) in the latent nonstationary stochas-

tic volatility equation with additional measurements for volatility has not been studied in the

literature, i.e., all these previous studies did not exploit high-frequency information.

To be more specific, the other contributions of the paper can be summarized as follows.

First, we consider a variety of IV’s for the latent log volatility, including: realized volatility

(RV) measures at a different sampling frequency (e.g., 1-second or 5-minute sampling), sam-

pling scheme (calendar time or tick time), and functional form (e.g., jumps or kernel). We

also consider subsampled versions of some of these HF IV’s; these include realized semivari-

ance, realized range RV, nearest neighbor truncated RV, and HF principal component factors.

Realized volatility measures (non-parametric volatility estimates from HF data) have received

much attention among practitioners as an accurate measure of the true latent volatility under

ideal market assumptions [see Andersen and Bollerslev (1998), Barndorff-Nielsen and Shep-
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hard (2001)]. Hence, we use RV measures as IV’s for the daily latent volatility, in contrast with

recent studies, where RV has been incorporated in traditional volatility models (GARCH or SV)

by adding a measurement equation that connects the daily volatility measure and the realized

volatility. It is worthwhile to note that several studies in the SV literature, such as those by

Takahashi et al. (2009) and Koopman and Scharth (2012), model realized volatility and daily

returns simultaneously, assuming that the realized volatility includes the market microstruc-

ture noise but still contains a great deal of information regarding the latent volatility. On the

other hand, daily returns contain less noise but may not have sufficient information about

the latent volatility. In GARCH-type framework, examples of such models are the Multiplica-

tive Error Model (MEM) model [Engle and Gallo (2006)], the HEAVY (High-frEquency-bAsed

VolatilitY) model [Shephard and Sheppard (2010), Noureldin et al. (2012)] and the Realized

GARCH model [Hansen et al. (2012)].

Second, we propose inference methods which are robust to weak instruments since poten-

tial HF IV’s may be weak due to discretization errors or market microstructure noise.3 The

discretization error is present in the estimates of the volatility since we only observe prices at

intermittent and discrete points in time. The market microstructure noise is due to bid/ask

bounces, the different price impact of different types of trades, limited liquidity, or other types

of market frictions. These noises may lead to a divergence between the observed price process

and the true or latent “frictionless equilibrium” price process. The literature on constructing

consistent volatility proxy using HF data is considerable. These include maximum likelihood

estimation [Aït-Sahalia et al. (2005)], quasi-maximum likelihood estimation [Xiu (2010)], Two

Scales Realized Volatility [Zhang et al. (2005)], Multi-Scale Realized Volatility [Zhang (2006)],

Realized Kernels [Hansen and Lunde (2006), Barndorff-Nielsen et al. (2008, 2011)], and Pre-

Averaging volatility estimation [Jacod et al. (2009)]. Other relevant references include Bandi

and Russell (2006), Fan and Wang (2007), Gatheral and Oomen (2010), Kalnina and Linton

(2008), Li and Mykland (2007), and Aït-Sahalia et al. (2011). Thus incorporating noisy RV es-

3In IV regressions, when IV’s are not valid (the identification conditions are not satisfied), the standard asymp-
totic theory for estimators and test statistics typically collapses. Further, when IV’s are weak, the limiting distri-
butions of standard test statistics - like Student, Wald, likelihood ratio and Lagrange multiplier criteria - have
non-standard distributions and often depend heavily on nuisance parameters; see Phillips (1989), Bekker (1994),
Dufour (1997), Staiger and Stock (1997), and Wang and Zivot (1998). In particular, standard Wald-type procedures
based on the use of asymptotic standard errors are very unreliable in the presence of weak identification.
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timates may lead to weak identification. As a result, standard inference procedures may pro-

duce invalid confidence tests and sets.

As pointed out by Dufour (1997), the statistical inference should be based on proper pivots,

especially when a model involves locally almost unidentified parameters, i.e., in the presence

of weak IV’s. The proposed inference methods include Anderson-Rubin-type (AR) tests, dy-

namic versions of split-sample (SS) procedure [Dufour and Jasiak (2001)], and point-optimal

versions of these tests (AR∗ and SS∗). The AR test is considered robust to weak IV’s because

the test has the correct size in cases where IV’s are weak and/or strong. The SS procedure is

an alternative to the AR test, where one can estimate the optimal IV’s as well as any nuisance

parameter. Further, appropriately splitting the sample into two parts, one for estimation of

optimal IV’s and nuisance parameters and the other for testing, also ensures exogeneity of

the constructed IV’s and the validity of the tests. Point-optimal versions of these tests gain

power by exploiting the differences in the error covariance matrices under the null and the

alternative; see King (1980), Dufour and King (1991), and Andrews et al. (2006).

Third, we consider a joint testing problem where we make an inference jointly on both

the volatility persistence parameter and the autocorrelation parameter of the composite er-

ror (or the noise ratio). Hence, for inference on general (possibly nonlinear) transformations

of model parameters [single parameter or a subvector], projection techniques can be applied

[see Dufour (1989), Dufour (1990), Dufour and Jasiak (2001), Dufour and Taamouti (2005,

2007)].

Fourth, the proposed inference procedures are also robust to dynamics, i.e., nonstationar-

ity. Under the null hypothesis (even with nonstationary stochastic volatility) and appropriate

assumptions on IV’s, these tests can become pivotal functions with the possibility of exact

inference.

Fifth, we employ three different sets of assumptions for the error distribution:

1. Assuming Gaussian errors, we provide confidence sets and tests based on standard

Fisher critical values for the AR and SS test statistics. For point-optimal versions, we

propose to use the Monte Carlo test (MCT) method [see Dwass (1957), Barnard (1963)

and Dufour (2006)].

163



CHAPTER 4. HIGH-FREQUENCY INSTRUMENTS AND IDENTIFICATION-ROBUST INFERENCE

2. We assume that the conditional distribution of scale transformed error is completely

specified up to an unknown scale factor, under which the Monte Carlo tests (MCT)

method can apply for exact statistical inference. This assumption enables us to deal

with non-standard error distributions. For example, even when errors have a heavy-

tailed distribution, such as Cauchy distribution or more generally the family of stable

distributions, which may not have moments and thus makes statistical inference com-

plicated, our procedures provide exact solutions.

3. We show that the asymptotic validity of these procedures under quite general distribu-

tional assumptions.

Sixth, we study the statistical properties of the proposed inference procedures by simulation

experiments. We find that the usual asymptotic t-tests fail to control the level, whereas the

proposed tests control the level and show excellent power. These findings hold for several

empirically realistic simulation setups, where the simulated DGPs are incorrectly specified due

to the violation of independence assumption and/or misspecification of error distributions

together with either weak, low- or high-frequency instruments.

Finally, we apply the proposed procedures to IBM’s price and option data (2009-2013). We

consider 175 different instruments spanning 22 different classes and look at their ability to

describe the low-frequency volatility. The average length of confidence intervals produced by

the proposed tests is used to examine the strength of the IV’s. The superior instrument set

constitutes of 1-, 5- and 10-minute high-frequency realized measures and call option implied

volatilities. These IV’s produce confidence sets where the persistence parameter lies roughly

between 0.85 and 1.0. This result shows that the latent volatility process of IBM is highly per-

sistent and close to unit-root.

Further, we find RVs with higher frequency produce wider confidence intervals than RVs

with slightly lower frequency, pointing out that these confidence intervals adjust to incorpo-

rate the microstructure noise or discretization error. We also find jumps and signed jumps

have no or little information content regarding the low-frequency volatility, whereas their log

squared versions have a strong identification strength. When we consider irrelevant or weak

instruments, such as jumps and signed jumps, the proposed procedures produce unbounded
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(valid) confidence sets with a non-zero probability.

This paper proceeds as follows. Section 4.2 specifies models and assumptions. Section 4.3

proposes finite-sample identification-robust inference procedures, whereas Section 4.4 ex-

tends finite-sample procedures with non-standard error distributions. Section 4.5 develops

the asymptotic validity of the proposed tests. Section 4.6 presents the simulation study, and

Section 4.7 presents the empirical applications. Section 4.8 offers conclusions. Proofs, Figures,

and Tables are reported in the Appendix.

4.2 Framework

This paper presents extensions of the standard log-normal autoregressive SV model, which is

described below following Taylor (1986), Shephard (1996), and Ghysels et al. (1996). N0 refers

to the non-negative integers.

Assumption 4.2.1. LOG-NORMAL STOCHASTIC VOLATILITY MODEL. The process {st : t ∈N0}

follows an SV model of the type:

st =σt zt , (4.2.1)

log(σ2
t ) =µ+ϕ log(σ2

t−1)+ vt , (4.2.2)

where st is the return observed at time t , and σt is the corresponding volatility. The zt ’s and

vt ’s, are i.i.d. N(0,1) and N(0,σ2
v ) random variables, respectively and ϕ, µ, σv are the fixed

parameters of the model.

Assumption 4.2.2. STATIONARITY. The process lt =
(
st , log(σ2

t )
)′

is strictly stationary.

The above assumption implies that the log-volatility follows a stationary AR(1) process with∣∣ϕ∣∣ < 1 and the process is initialized with log(σ2
0) ∼N [µ/(1−ϕ),σ2

v /(1−ϕ2)]. The SV model

consists of two stochastic processes, where st [st := rt −µr is residual return of an asset with

µr is the mean of return (rt )] describes the dynamics of returns and log(σ2
t ) captures the dy-

namics of latent log volatilities. The latent process log(σ2
t ) in (4.2.2) can be interpreted as the

random and uneven flow of new information in financial markets, while ϕ is the persistence

in the volatility.
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Now transforming st by taking logarithms of the squares, we can write the measurement

equation of the model as following:

log(s2
t ) = log(σ2

t )+ log(z2
t ) = E

[
log(z2

t )
]+ log(σ2

t )+{
log(z2

t )−E
[
log(z2

t )
]}

= E
[
log(z2

t )
]+ log(σ2

t )+ϵt (4.2.3)

where

ϵt := log(z2
t )−E

[
log(z2

t )
]

. (4.2.4)

This transformation entails no information loss since the distribution of zt is symmetric [see

Remark 1 of Francq and Zakoïan (2006)]. Under the standard normality assumption for zt ,

the transformed errors ϵt are i.i.d. according to the distribution of a centered log(χ2
(1)) random

variable with E
[
log(z2

t )
] ≃ −1.2704, σ2

ϵ := E[ϵ2
t ] = Var

(
log(z2

t )
) = π2/2 and E[ϵ4

t ] = π4 +3σ2
ϵ [see

Abramowitz and Stegun (1970)]. Notice that the model expressed by (4.2.3) can be written as

yt = wt +ϵt (4.2.5)

where

yt := log(s2
t )−E

[
log(z2

t )
]

, wt := log(σ2
t ) . (4.2.6)

Combining (4.2.2) and (4.2.5), we have a linear state space representation for the SV model.

Given initial condition of the variables, the SV model [in Assumption 4.2.1] can be written as

following

State Transition Equation: wt = µ+ϕwt−1 + vt (4.2.7)

Measurement Equation: yt = wt +ϵt (4.2.8)

where wt is the logarithm of latent daily volatility, yt is a logarithm of daily squared returns,

the matrix X t is a set of exogenous variables which may predict the latent volatility as well as

capture the leverage effect [X t also includes the constant term in the model], while v and ϵ

are the disturbances.

It is evident from (4.2.7)-(4.2.8) that using any proxy for latent volatility (e.g., replacing wt by
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yt ) will induce a measurement error problem. Further, the latent volatility process introduces

a moving average of measurement errors. We could alleviate this type of problem by using an

IV regression where we replace the unobserved variables by their proxies.

In the following assumption, we introduce generalized stochastic volatility models, where

we incorporate valid IV’s Z̄t−2 which are related to wt−1 and uncorrelated to ϵt−1.

Assumption 4.2.3. GENERALIZED STOCHASTIC VOLATILITY MODEL. The process
{

yt : t ∈N0
}

satisfies the following equations:

State Transition Equation: w = ϕw−1 +Xβ+ v (4.2.9)

Measurement Equation: y = w +ϵ (4.2.10)

Instrument Equation: w−1 = Z̄−2π̄+u−1 (4.2.11)

where w = (w1, . . . , wT )′, w−1 = (w0, . . . , wT−1)′, y = (y1, . . . , yT )′ are T ×1 vector, X = [X ′
1, . . . , X ′

T ]′

is a T × k matrix of exogenous explanatory variables which may predict the latent volatility

as well as capture the leverage effect, Z̄−2 = [Z̄ ′
−1, . . . , Z̄ ′

T−2]′ is a T ×m matrix of of variables

related to w−1, while ϵ = (ϵ1, . . . ,ϵT )′, v = (v1, . . . , vT )′, u−1 = (u0, . . . ,uT−1)′ are T × 1 vector of

disturbances. The matrices of unknown coefficients ϕ, β , and π̄ have dimensions respectively

1×1, k ×1, and m ×1.

We do not impose any stationary restriction on the latent volatility process. The assumption

that the latent autoregressive volatility process is first-order is not essential to the analysis.

Indeed, higher-level dynamics could be allowed, but in this paper we focus on the first-order

case.

To derive finite distributional theory for test statistics (proposed in Section 4.3), we employ

the following assumptions.

Assumption 4.2.4. INDEPENDENCE. The T×k matrix X and T×m matrix Z̄−2 are independent

of T ×1 vectors v and ϵ.

Assumption 4.2.5. FULL RANK. rank(X ) = k, 1 ≤ rank(Z̄−2) = m < T , 1 ≤ rank[Z−2, X1, X2] =
l+k < T , where Z−2, X1, and X2 are T×l , T×k1, and T×k2 matrices, respectively with k = k1+k2

and m = l +k2.
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Assumption 4.2.6. GAUSSIAN NOISE. The ϵt ’s and vt ’s are i.i.d. N(0,σ2
ϵ) and N(0,σ2

v ) random

variables, respectively.

In order to handle common variables (e.g., the constant term) in equations (4.2.9) and

(4.2.11), Assumption 4.2.5 allows for the presence of common columns in the matrices Z̄−2

and X . If Z̄−2 and X have k2 columns in common (0 ≤ k2 < m) then the other k1 columns of X

are linearly independent of Z̄−2. It is important to note that no restriction is imposed on the

distribution of u and it may follow any distribution (heteroskedastic or autocorrelated) since

no statistical property of u has effects on the validity of the tests proposed in this paper.

Note that we change the distributional assumption of ϵt by an i.i.d. N(0,σ2
ϵ) distribution.

This is consistent with several previous studies where the distribution of ϵt is approximated

by a normal distribution characterized by a mean of zero and a variance of π2/2 [see Harvey

et al. (1994), Ruiz (1994), Breidt and Carriquiry (1996), Harvey and Shephard (1996), Kim et al.

(1998), Chib et al. (2002), Knight et al. (2002), Broto and Ruiz (2004), Omori et al. (2007)]. We

relax the above assumptions in Sections 4.4 and 4.5.

The IV regression requires valid IV’s for the observable volatility proxy yt , which is typically

the low-frequency (LF) daily squared return. As a result, IV’s are also connected to the log-

arithm of latent daily volatility [see equation (4.2.11)]. To find valid IV’s, we first look at the

properties of the observed volatility proxy yt . If yt is autocorrelated with a sufficiently long

lag and the ϵt ’s are uncorrelated, then the lag values of observed proxy (yt−2, yt−3, yt−4, . . .) are

potential clean IV’s for yt−1. It is important to not introduce y ’s with too high lags as IV’s,

because this requires truncating the sample in order to observe IV’s for each date used in the

estimation, and the good statistical properties of the IV method begins to break down. We

can also use realized volatility as IV’s (Z̄t−2 contains past realized volatilities) since HF price

data contain valuable information regarding the latent volatility. In the Section 4.7 below, we

consider not only daily and HF IV’s but also consider option implied volatility as IV’s.

4.3 Finite-sample procedures

In this section, we consider the problem of testing the volatility persistence parameter in a

GSV model given in Assumption 4.2.3, i.e., testing restriction about volatility clustering. We
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propose four finite-sample procedures, which are valid under Assumptions 4.2.4-4.2.6. Let us

now consider the null hypothesis:

H0 : ϕ=ϕ0 . (4.3.1)

We consider an instrument substitution method, which is based on replacing unobserved

variables with a set of IV’s. First, we substitute (4.2.10) into (4.2.9):

y =ϕy−1 +Xβ+ v +ϵ−ϕϵ−1 . (4.3.2)

Subtracting ϕ0 y−1 on both sides of (4.3.2), we then get:

y −ϕ0 y−1 = (ϕ−ϕ0)y−1 +Xβ+ v +ϵ−ϕϵ−1 . (4.3.3)

Since E[yt−1ϵt−1] ̸= 0, we need to find IV’s for w−1 to solve this endogeneity problem. Substi-

tuting (4.2.10) into (4.2.11), we have

y−1 = Z̄−2π̄+η−1 , (4.3.4)

where η−1 := ϵ−1+u−1. From Assumption 4.2.4, we can see that Z̄−2 is independent of ϵ−1. We

substitute (4.3.4) into (4.3.3):

y −ϕ0 y−1 = Z̄−2π̄(ϕ−ϕ0)+Xβ+ (ϕ−ϕ0)η−1 + v +ϵ−ϕϵ−1

= Z̄−2π̄(ϕ−ϕ0)+Xβ+ (ϕ−ϕ0)[ϵ−1 +u−1]+ v +ϵ−ϕϵ−1

= Z̄−2π̄(ϕ−ϕ0)+Xβ+ (ϕ−ϕ0)u−1 + v +ϵ−ϕ0ϵ−1

or equivalently,

y −ϕ0 y−1 = Z̄−2π̄(ϕ−ϕ0)+Xβ+ξ (4.3.5)

where

ξ := (ϕ−ϕ0)u−1 + v +ϵ−ϕ0ϵ−1 . (4.3.6)
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Using Assumption 4.2.5, we can write (4.3.5) as

y −ϕ0 y−1 = Z−2δ+Xβ∗+ξ (4.3.7)

where

δ := π̄1(ϕ−ϕ0) , β∗ := (β′
1,β′

2∗)′ , β2∗ :=β2 + π̄2(ϕ−ϕ0) , π̄ := (π̄′
1, π̄′

2)′ , (4.3.8)

and π̄i is a ki ×1 vector.

4.3.1 Anderson-Rubin-type procedure

Since ϵt−ϕ0ϵt−1 is an MA(1) process, thus ξ’s are serially correlated. However, when ϕ=ϕ0 = 0,

ξ is distributed N(0,σ2
ξ

IT ) where σ2
ξ
=σ2

v+σ2
ϵ . As a result, the model in equation (4.3.7) satisfies

all the assumptions of the classical linear model when ϕ0 = 0. Furthermore, since δ= 0 when

ϕ=ϕ0, we can test H0 by a standard F-test of the following null hypothesis:

H∗
0 : δ= 0. (4.3.9)

This F-statistic has the form

AR(ϕ0) = (y −ϕ0 y−1)′(M [X ]−M [X , Z−2])(y −ϕ0 y−1)/l

(y −ϕ0 y−1)′M [X , Z−2](y −ϕ0 y−1)/(T − l −k)
(4.3.10)

where M(A) = I − A(A′A)−1 A′.

AR(ϕ0) can be interpret as an Anderson-Rubin-type statistic. When the normality assump-

tion holds
[
ξ∼ N(0,σ2

ξ
IT )

]
, and X and Z−2 are exogenous, we have AR(ϕ0) ∼ F (l ,T − l −k),

and H0(ϕ0) can be tested by using a critical region of the form
{

AR(ϕ0) > f (α)
}

where f (α) =
Fα(l ,T − l −k) is the (1−α)-quantile of the F (l ,T − l −k) distribution. A confidence set with

level 1−α for ϕ is then given by

Cϕ(α) = {
ϕ0 : AR(ϕ0) ≤ Fα(l ,T − l −k)

}= {
ϕ : Q(ϕ) ≤ 0

}
(4.3.11)

where Q(ϕ) =ϕ′Aϕ+b′ϕ+c, A = y ′
−1H y−1 , b =−2y ′

−1H y , c = y ′H y, H = M [X ]−[1+ f (α)(l/T −
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l −k)]M [X , Z−2], and f (α) = Fα(l ,T − l −k); see Dufour and Taamouti (2005).4

Unfortunately, this property does not extend to a more general AR(ϕ0) statistic where ϕ0 ̸= 0

because in this case under the H0, the composite error ξt is not i.i.d.. When ϕ0 ̸= 0, it is easy to

see that the model (4.3.7) under H0 does not satisfy all the assumptions of the classical linear

model. In this case, under the null hypothesis, ξ = v + ϵ−ϕ0ϵ−1 is an MA(1) process which

makes the standard t-tests and F-tests are invalid because the standard errors are wrong. We

could correct the standard errors by a Generalized Least Squares (GLS) type transformation.

The model defined by equation (4.3.7) can be transformed under the H0 to a model such

that the AR-type tests will be valid, and the distribution of the test statistic will follow the

F-distribution. Now, under H0,

ξ= v +ϵ−ϕ0ϵ−1

is an MA(1) process. Under Assumption 4.2.6, ξ∼ N
[
0,σ2

ξ
Σ(ρ)

]
where

Σ(ρ) :=



1 −ρ 0 · · · · · · · · · · · · 0

−ρ 1 −ρ 0
...

0 −ρ 1 −ρ . . .
...

... 0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

...
. . . −ρ 1 −ρ 0

... 0 −ρ 1 −ρ
0 · · · · · · · · · · · · 0 −ρ 1



, (4.3.12)

σ2
ξ := (1+ϕ2

0)σ2
ϵ +σ2

v , (4.3.13)

ρ := −Cov(ξtξt−1)

Var(ξt )
= ϕ0σ

2
ϵ

(1+ϕ2
0)σ2

ϵ +σ2
v

. (4.3.14)

Clearly, ρ is a function of ϕ0, σ2
v , and σ2

ϵ . Σ(ρ) is a Toeplitz matrix (or diagonal-constant ma-

trix) with dimension T ×T . Because Σ(ρ) is a symmetric positive-definite matrix, there exists a

4When the disturbances are i.i.d with finite fourth-order moments, the AR-statistic converges under H0 to a
χ2 distributed random variable when the sample size gets large. This large sample distribution of the AR-statistic
does not depend on the value of π̄ which makes it a more reliable statistic for practical purposes than the Wald
statistic.
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T ×T matrix C , such that CΣ(ρ)C ′ = IT . If the Σ(ρ) matrix is known, then we can propose the

following transformation. Multiply equation (4.3.7) by C to make the error covariance matrix

to an identity matrix. However, ρ is not known. On setting the noise ratio

λ :=σ2
ϵ/σ2

v ∈ [0 , ∞) , (4.3.15)

we can write ρ as

ρ(ϕ0,λ) = ϕ0λ

(1+ϕ2
0)λ+1

. (4.3.16)

We can do a joint test such that under the null ρ is known. In any economic model, the dis-

turbances contain important information, and particularly in the context of serially correlated

models, researchers may be interested in joint inference. Consider the following null hypoth-

esis:

H0(ϕ0 ,λ0) : ϕ=ϕ0 , λ=λ0 . (4.3.17)

Under H0(ϕ0 ,λ0), we can write

ρ0 := ϕ0λ0

(1+ϕ2
0)λ0 +1

∈ [−1/2,1/2] , (4.3.18)

and the joint null hypothesis [in (4.3.17)] becomes

H̄0(ϕ0 ,ρ0) : ϕ=ϕ0 , ρ = ρ0 . (4.3.19)

Under H̄0(ϕ0 ,ρ0), we have:

λ0 =
ρ0

ϕ0 −ρ0(1+ϕ0)2
∈ [0 , ∞) . (4.3.20)

See Table 4.1 for the corresponding values of λ0.

Since ρ0 is known under H0(ϕ0 ,λ0) or H̄0(ϕ0 ,ρ0), we can consider the following trans-

formed model:

C0(y −ϕ0 y−1) =C0Z−2δ+C0Xβ∗+C0ξ (4.3.21)

where C0 =C (ρ0) is a T ×T matrix such that C0Σ(ρ0)C ′
0 = IT . The variance-covariance matrix
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of ξ∗ :=C0(ξ) is now an i.i.d. N(0,σ2
ξ

IT ) distribution. The F-statistic for testing δ= 0 (or ϕ=ϕ0)

in (4.3.21) is:

AR(ϕ0,ρ0) = y(ϕ0,ρ0)′(MC0 [X ]−MC0 [X , Z−2])y(ϕ0,ρ0)/l

y(ϕ0,ρ0)′MC0 [X , Z−2]y(ϕ0,ρ0)/(T − l −k)
(4.3.22)

where y(ϕ0,ρ0) = C0(y −ϕ0 y−1), MC0 [A] = I − A[A′Σ(ρ0)−1 A]−1 A′Σ(ρ0)−1. A central feature of

most situations where IV methods are required come from the fact that IV’s may be used to

solve an endogeneity or an errors-in-variables problem. It is very rare that one can or should

use all the possible valid IV’s. A drawback of the AR method is that it loses power when too

many IV’s are used. However, the AR procedure is robust to missing IV’s (or instrument ex-

clusion) [see Dufour and Taamouti (2007)]. Alternative methods of inference aimed at being

robust to weak identification [Wang and Zivot (1998), Kleibergen (2002), Moreira (2003)] do

not enjoy this type of robustness. In the case of feasible GLS-type transformations, where ρ

is replace by an estimate ρ̂, the test statistic is no longer F-distributed, but it converges under

H̄0(ϕ0 ,ρ0) to a χ2 distribution in large samples. The tests and confidence sets obtained by the

instrument substitution method can be interpreted as likelihood ratio (LR) procedures (based

on appropriately chosen reduced form alternatives), or equivalently as profile likelihood tech-

niques [for further discussion of such techniques, see Bates and Watts (1988), Meeker and

Escobar (1995) and Chen and Jennrich (1996)].

4.3.2 Anderson-Rubin-type point-optimal procedure (AR∗)

In this section, we propose a point-optimal (PO) version of AR-type tests. PO tests provide

simple and effective methods for creating exact small sample tests with excellent power prop-

erties in a wide variety of problems in linear regression. The empirical evidence in the liter-

ature indicates that in general, PO tests often outperform other testing methods in terms of

power. Besides, exact small-sample critical values for PO tests can be computed in most cases.

Thus, one does not have to rely on the asymptotic properties of the test statistic to make in-

ferences. For a general review of PO tests, the reader may consult King (1980), King (1987) and

Dufour and King (1991).

Following Dufour and King (1991), a PO test of ρ = ρ0 against ρ = ρ1 under Gaussian as-
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sumptions given as

S(ρ0,ρ1) = ξ̂
′
Σ(ρ0)−1ξ̂

ξ̃
′
Σ(ρ1)−1ξ̃

, (4.3.23)

where |ρ0| ≤ 1/2, |ρ1| ≤ 1/2, and ξ̂ and ξ̃ are the GLS residual vectors corresponding to co-

variance matrices Σ(ρ0) and Σ(ρ1), respectively. The test rejects the null for large values of

S(ρ0,ρ1). However, the choice of ρ1 is important. To obtain a test of ρ = ρ0 against ρ > ρ0, we

select a value of ρ1, such that ρ0 < ρ1 ≤ 1/2 and apply the test based on S(ρ0,ρ1). Similarly,

testing ρ = ρ0 against ρ < ρ0, we select ρ1, such that −1/2 ≤ ρ1 < ρ0. For example, we may

choose ρ1 such that ρ1 = ρ0 − ∆̄ where 0 < ∆̄ < 1. The test based on (4.3.23) is point-optimal,

and it gains power by exploiting the differences in the error covariance matrices under the

null and the alternative.

As pointed out by King (1987), a PO test can be viewed as a partition of the sample space

into two regions, a rejection region and a non-rejection region. If the observed sample falls in

the rejection region, the null is rejected. Otherwise, the null is not rejected. Consider an AR-

type PO test statistic AR(ϕ0,ρ0,ρ1) similar to (4.3.23) for ρ = ρ0 against ρ = ρ1 (under ϕ=ϕ0):

AR(ϕ0,ρ0,ρ1) = y(ϕ0,ρ0)′MC0 [X ]y(ϕ0,ρ0)

y(ϕ0,ρ1)′MC1 [X , Z−2]y(ϕ0,ρ1)
(4.3.24)

where

y(ϕ0,ρ0) =C0(y−ϕ0 y−1) , y(ϕ0,ρ1) =C1(y−ϕ0 y−1) , MCi [A] = I−A
[

A′Σ(ρi )−1 A
]−1 A′Σ(ρi )−1 , i = 0,1.

Note that it is difficult to derive the analytical null distribution of (4.3.24) even under the Gaus-

sian assumption, while the MCT method described in Section 4.4 can be implemented and

confidence set for ϕ and ρ with level (1−α) is obtained by inverting the tests.

It is worth noting that AR(ϕ0,ρ0,ρ1) can become degenerate in the limit. Thus we consider

a monotonic transformation of AR(ϕ0,ρ0,ρ1), which is given as:

AR∗(ϕ0,ρ0,ρ1) = T
[

AR(ϕ0,ρ0,ρ1)−1
]
. (4.3.25)

For finite-sample inference, both AR(ϕ0,ρ0,ρ1) and AR∗(ϕ0,ρ0,ρ1) lead to identical results

174



CHAPTER 4. HIGH-FREQUENCY INSTRUMENTS AND IDENTIFICATION-ROBUST INFERENCE

since a monotonic transformation does not change the rank of the statistic in the MCT

method. On the other hand, AR∗(ϕ0,ρ0,ρ1) is more appropriate for proving the asymptotic

validity.

4.3.3 Split-sample-type procedure

Finite-sample inferences similar to the previous section may alternatively be obtained by ap-

plying a split-sample technique. If ρ (or λ) can be estimated from data, then the estimated ρ

tends to be closer to the true one than those that are arbitrarily selected, and thus the power

of the test can be improved. However, if we re-use the data (which is used to estimate ρ)

then the test statistic is no longer F-distributed. Thus, we employ the split-sample technique,

which splits the sample into two parts. The first subsample is used to construct IV’s and an

estimate of ρ, and the second subsample is used to implement the test. Note that we can es-

timate ρ as well as the optimal IV’s using the first subsample. As a result, the number of IV’s

can be reduced to the number of endogenous variables.

It is a natural thing to replace Z̄−2π̄ by Z̄−2π̂, where π̂ is an estimator of π̄. One could use

π̂= (Z̄−2
′Z̄−2)−1Z̄−2

′y−1, the least squares estimate of π̄ based on (4.2.11). Then we have:

y −ϕ0 y−1 = Z̄−2π̂(ϕ−ϕ0)+Xβ+ [ξ+ Z̄−2(π̄− π̂)(ϕ−ϕ0)] = ŷ−1δ∗+Xβ+ ξ̄ (4.3.26)

where

δ∗ := (ϕ−ϕ0) , ŷ−1 := Z̄−2π̂ , ξ̄ := v +ϵ−ϕ0ϵ−1 + [u−1 + Z̄−2(π̄− π̂)](ϕ−ϕ0) .

Again, the null hypothesis (ϕ=ϕ0) may be assessed by testing H∗∗
0 : δ∗ = 0 in (4.3.26). Here

the standard AR-statistic for H∗∗
0 is obtained by replacing Z−2 by ŷ−1 in (4.3.10):

AR(ϕ0; ŷ−1) = (y −ϕ0 y−1)′(M [X ]−M [X , ŷ−1])(y −ϕ0 y−1)/l

(y −ϕ0 y−1)′M [X , ŷ−1](y −ϕ0 y−1)/(T − l −k)
. (4.3.27)

This test statistic is valid only when ϕ = ϕ0 = 0, since in this case, ŷ−1 and ξ̄ are indepen-

dent, and conditional on ŷ−1, the equation (4.3.26) satisfies all the assumptions of the clas-

sical linear model. Thus, the null distribution of the statistic AR(0; ŷ−1) for testing ϕ0 = 0

175



CHAPTER 4. HIGH-FREQUENCY INSTRUMENTS AND IDENTIFICATION-ROBUST INFERENCE

is F (l ,T − l − k). Unfortunately, this property does not extend to a more general statistic

AR(ϕ0; ŷ−1) where ϕ0 ̸= 0 because ŷ−1 and ξ̄ are not independent in this case. In order to

deal with more general hypotheses, we need to take care of two things:

1. get an estimate π̃ of π̄ such that ŷ−1 (= Z̄−2π̃) and ξ̄ are independent;

2. since under the null ξ̄ is an MA(1) process, we need an estimate of ρ(ϕ0) =
Cov(ξ̄t ξ̄t−1)/Var(ξ̄t ) for the GLS-type transformation.

In particular, the split-sample procedure is as follows. Split the sample into subsample (1)

with sample size T1: y (1), X (1), Z̄ (1) and subsample (2) with sample size T2: y (2), X (2), Z̄ (2) where

y =
 y (1)

y (2)

 , X =
 X (1)

X (2)

 , Z =
 Z̄ (1)

Z̄ (2)

 . (4.3.28)

we use the first subsample to estimate π̄ using

π̃(1) = (
Z̄ (1)′
−2 Z̄ (1)

−2

)−1Z̄ (1)′
−2 y (1)

−1

and second subsample to construct the following regression:

y (2) −ϕ0 y (2)
−1 = Z̄ (2)

−2 π̃
(1)(ϕ−ϕ0)+X (2)β+ ξ̄

(2) = ŷ (2)
−1δ∗+X (2)β+ ξ̄

(2)
(4.3.29)

where

δ∗ := (ϕ−ϕ0) , ŷ (2)
−1 := Z̄ (2)

−2 π̃
(1) , ξ̄

(2)
:= v (2) +ϵ(2) −ϕ0ϵ

(2)
−1 +

[
u(2)
−1 + Z̄ (2)

−2 (π̄− π̂)
]
(ϕ−ϕ0) .

In equation (4.3.29), ŷ (2)
−1 and ξ̄

(2)
are independent. Now under the null hypothesis (ϕ = ϕ0),

ξ̄
(2) = v (2)+ϵ(2)−ϕ0ϵ

(2)
−1 is an MA(1) process and the variance covariance matrix of ξ̄

(2)
is σ2

ξ̄
(2)Σξ̄

(2)

where σ2

ξ̄
(2) = (1+ϕ2

0)σ2
ϵ(2) +σ2

v (2) and Σ
ξ̄

(2) is a Toeplitz matrix [similar to equation (4.3.12)] with

ρ(2) = Cov(ξ̄
(2)
t ξ̄

(2)
t−1)/Var(ξ̄

(2)
t ). Since Σ

ξ̄
(2) is a T2 ×T2 symmetric positive-definite matrix, there

exists a T2 ×T2 matrix C
(
ρ(2)

)
, such that C

(
ρ(2)

)
Σ
ξ̄

(2)C
(
ρ(2)

)′ = IT2 . If the ρ(2) is known then we

can multiply equation (4.3.29) by C (ρ(2)) to make the error covariance matrix as an identity

matrix. If we use an estimates of ρ(2) from second subsample then the test statistic is no longer
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F-distributed, it is converges under H0 to a χ2 distributed random variable in large sample. In

order to solve this problem, we use an estimate of ρ(2) from the first subsample that is ρ̂(1).

This transformation gives us the following test statistic:

SS
(
ϕ0; ŷ (2)

−1, ρ̂(1))= y (2)
(
ϕ0, ρ̂(1)

)′(MC (ρ̂(1))

[
X (2)

]−MC (ρ̂(1))

[
X (2), ŷ (2)

−1

])
y (2)

(
ϕ0, ρ̂(1)

)
/l

y (2)
(
ϕ0, ρ̂(1)

)′MC (ρ̂(1))

[
X (2), ŷ (2)

−1

]
y (2)

(
ϕ0, ρ̂(1)

)
/(T2 − l −k)

(4.3.30)

where

y (2)(ϕ0, ρ̂(1))=C
(
ρ̂(1))(y (2) −ϕ0 y (2)

−1

)
, MC (ρ̂(1))

[
A

]= I − A
[

A′Σ(ρ̂(1))−1 A
]−1 A′Σ(ρ̂(1))−1.

This test statistic follows a F (l ,T2 − l −k) distribution when ϕ=ϕ0. Consequently, the critical

region

SS
(
ϕ0; ŷ (2)

−1, ρ̂(1))> Fα(l ,T2 − l −k)

has size α. Furthermore,

C̄ϕ(α) =
{
ϕ0 : SS

(
ϕ0; ŷ (2)

−1, ρ̂(1))≤ Fα(l ,T2 − l −k)
}

is a confidence set for ϕ with size 1−α and this confidence set takes a form similar to (4.3.11).

A test statistic for H0: ϕ=ϕ0 and ρ = ρ0 is:

SS
(
ϕ0,ρ0; ŷ (2)

−1

)= y (2)
(
ϕ0,ρ0

)′(MC0

[
X (2)

]−MC0

[
X (2), ŷ (2)

−1

])
y (2)

(
ϕ0,ρ0

)
/l

y (2)
(
ϕ0,ρ0

)′MC0

[
X (2), ŷ (2)

−1

]
y (2)

(
ϕ0,ρ0

)
/(T2 − l −k)

(4.3.31)

where

y (2)(ϕ0,ρ0

)=C0
(
y (2) −ϕ0 y (2)

−1

)
, MC0

[
A

]= I − A
[

A′Σ(ρ0)−1 A
]−1 A′Σ(ρ0)−1.

It is noteworthy that we should be careful about the order of the subsamples (1) and (2).

The order does not matter in a static model but it does in a dynamic model. If we use the

second subsample to estimate parameters, then the estimators include y (2) and y (2)
−1, which

have past errors inside. As a result, ŷ (1)
−1 = Z̄ (1)

−2 π̃
(2) and ξ̄

(1)
are not independent and the infer-

177



CHAPTER 4. HIGH-FREQUENCY INSTRUMENTS AND IDENTIFICATION-ROBUST INFERENCE

ence procedure does not control its level correctly. Therefore we should use the first part of

the sample to get the estimates. A crucial issue in the split-sample tests is how to determine a

splitting ratio, τ= T1/T . SS-type tests are depend on the choice of split ratio, τ and power of

these tests are inversely related with τ; see Dufour and Jasiak (2001). However this ratio does

not affect the validity of the test.

4.3.4 Split-sample-type point-optimal procedure (SS∗)

We now propose a split-sample version of the point-optimal procedure. The split-sample

methods gives us additional flexibility for inference since we can estimate the nuisance pa-

rameter from the first sample and use it with the second sample to do the inference. Now

consider a split-sample version of test statistic similar to (4.3.23) for ρ = ρ0 against ρ = ρ1

(under ϕ=ϕ0):

SS
(
ϕ0,ρ0,ρ1; ŷ (2)

−1

)= y (2)
(
ϕ0,ρ0

)′MC0

[
X

]
y (2)

(
ϕ0,ρ0

)
y (2)

(
ϕ0,ρ1

)′MC1

[
X , ŷ (2)

−1

]
y (2)

(
ϕ0,ρ1

) (4.3.32)

where

y (2)(ϕ0,ρi

)=Ci
(
y (2) −ϕ0 y (2)

−1

)
, MCi

[
A

]= I − A
[

A′Σ(ρi )−1 A
]−1 A′Σ(ρi )−1 , i = 0,1.

We can also replace ρ1 by ρ̂(1) to construct test that controls the level:

SS∗(
ϕ0,ρ0; ŷ (2)

−1, ρ̂(1))= y (2)
(
ϕ0,ρ0

)′MC0

[
X

]
y (2)

(
ϕ0,ρ0

)
y (2)

(
ϕ0, ρ̂(1)

)′MC (ρ̂(1))

[
X , ŷ (2)

−1

]
y (2)

(
ϕ0, ρ̂(1)

) (4.3.33)

or, for testing ϕ=ϕ0,

SS∗(
ϕ0; ŷ (2)

−1, ρ̂(1))= y (2)
(
ϕ0, ρ̂(1)

)′MC (ρ̂(1))

[
X

]
y (2)

(
ϕ0, ρ̂(1)

)
y (2)

(
ϕ0, ρ̂(1)

)′MC (ρ̂(1))

[
X , ŷ (2)

−1

]
y (2)

(
ϕ0, ρ̂(1)

) (4.3.34)

where

y (2)(ϕ0,ρ0

)=C (ρ0)
(
y (2) −ϕ0 y (2)

−1

)
, y (2)(ϕ0, ρ̂(1))=C

(
ρ̂(1))(y (2) −ϕ0 y (2)

−1

)
,

MC (ρ̂(1))

[
A

]= I − A
[

A′Σ(ρ̂(1))−1 A
]−1 A′Σ(ρ̂(1))−1 .
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Again it is difficult to derive the analytical null distribution of (4.3.32) or (4.3.33) under the

Gaussian assumption, while the MCT method described in Section 4.4 can be implemented

and a confidence set for ϕ and ρ with level (1−α) is obtained by inverting the tests.

Further, note that SS
(
ϕ0,ρ0,ρ1; ŷ (2)

−1

)
can become degenerate in the limit whereas a mono-

tonic transformation of SS
(
ϕ0,ρ0,ρ1; ŷ (2)

−1

)
, given by

SS∗(
ϕ0,ρ0,ρ1; ŷ (2)

−1

)= T2
[
SS∗(ϕ0,ρ0,ρ1; ŷ (2)

−1)−1
]
. (4.3.35)

is more for asymptotic theory.

Again, for finite-sample inference, both SS
(
ϕ0,ρ0,ρ1; ŷ (2)

−1

)
and SS∗(

ϕ0,ρ0,ρ1; ŷ (2)
−1

)
lead to

identical results since a monotonic transformation does not change the rank of the statistic in

the MCT method.

4.3.5 Inference on general transformations

In Sections 4.3.1-4.3.4, we make joint inference on (ϕ ,ρ)′. These tests are based on extensions

of Anderson-Rubin statistics and designed to test hypotheses fixing the entire vector of the

endogenous (or unobserved) regressor coefficients. When one is interested in its subsets, or

more generally in any functions of the parameters, projection technique can be applied; see

Dufour (1989), Dufour and Jasiak (2001), Dufour and Taamouti (2005, 2007).

Let θ := (ϕ ,ρ)′ for notational convenience. A confidence set associated with one of the tests

for H0(θ0) : θ = θ0 in the previous subsections can be written as

Cα(θ) = {
θ0 | H0(θ0) is not rejected

}
. (4.3.36)

If the test has level α, the confidence set Cα(θ) has level 1−α. Note that all the four tests are

based on pivotal functions and have size α. Thus, the confidence sets in (4.3.36) from these

tests have size 1−α.

Now consider an arbitrary (possibly nonlinear) transformation δ = g (θ) of θ, then a confi-
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dence set of δ, with the level at least 1−α, can be constructed as

Cα(δ) = {
δ0 | δ0 = g (θ) for some θ ∈Cα(θ)

}
. (4.3.37)

Since θ ∈Cα(θ) implies δ= g (θ) ∈Cα(δ), and further,

Pr
[
δ ∈Cα(δ)

]≥ Pr
[
θ ∈Cα(θ)

]≥ 1−α,

so that Cα(δ) has level 1−α. We reject H0(δ0) : δ= δ0 when δ0 ̸∈Cα(δ) and get a test of level α.

One can use numerical optimization technique or grid search over economically or statisti-

cally plausible parameter space to implement the projection method. However, if the param-

eter transformation of interest is a linear scalar function, an analytical expression for Cα(δ) is

available in Dufour and Taamouti (2005).

If δ = ϕ where θ = (ϕ,ρ)′, the projection method can be implemented more efficiently. Let

F (θ0) and cα denote a test statistic used in confidence set in (4.3.36) and a corresponding

critical value, respectively. Then, the confidence set in (4.3.37) is rewritten as

Cα(ϕ) =
{
ϕ0 | inf

ρ∈ρ̄
F (ϕ0,ρ) ≤ cα

}
(4.3.38)

where ρ̄ is the parameter space for ρ. An alternative projection technique improves efficiency

by restricting ρ. The procedure can be described as follows.

1. Construct Cα1 (ρ |ϕ0), a confidence set for ρ under H0 : ϕ=ϕ0 with level (1−α1).

2. Reject H0 : ϕ=ϕ0 if Cα1 (ρ |ϕ0) =;, or

inf
ρ∈Cα1 (ρ|ϕ0)

F (ϕ0,ρ) > cα2 ,

where α= α1 +α2 and cα2 is a critical value chosen in the same manner as cα but with

α2 instead of α. By Bonferroni inequality, the test has level α, and it can be inverted to

get confidence set for ϕ with level 1−α.

Since the infimum is computed over Cα1 (ρ |ϕ0), this procedure is expected to be more effi-
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cient. Furthermore, it is worthwhile noting that, even though the simultaneous confidence set

Cα(θ) for θ may be interpreted as a confidence set based on inverting LR-type tests for θ = θ0

[see Meeker and Escobar (1995) or Chen and Jennrich (1996)], projection-based confidence

sets, such as Cα(δ), are not (strictly speaking) LR confidence sets. For more details and further

discussion about the projection technique; see Dufour (1989, 1990), Chaudhuri et al. (2010),

Chaudhuri and Zivot (2011).

4.4 Finite-sample procedures with possibly non-Gaussian er-

rors

In this section, we extend the exact tests proposed in the previous section, by allowing non-

Gaussian distributions. The use of Gaussian assumptions, when the volatility distributions

are not normal, can be hazardous; such a practice could lead us to invalid inferences, a wrong

choice of portfolio, the underestimation of extreme losses, and hugely mispriced derivative

products. An apparent reason is that Gaussian errors are not flexible enough to capture the

fat tail commonly observed in financial return distributions. In the past, many researchers

used non-Gaussian distributions to get better model fits; see Liesenfeld and Jung (2000) and

Chib et al. (2002) in the context of SV models, and Bollerslev (1987) in the context of GARCH-

type models.

Under the non-Gaussian assumptions, we can build an exact test based on the MCT tech-

nique. We can take the observed test statistic (derived under Gaussian assumptions) and per-

form simulations to obtain an exact test. In order to do that, we need the null distribution of

the test statistic under non-Gaussian errors. Under the Assumption 4.2.6, the GLS transformed

composite error ξ∗ ∼ N(0,σ2
ξ

IT ), where σ2
ξ
= (1+ϕ2

0)σ2
ϵ+σ2

v . We need the following assumption

about the transformed composite error to get the exact inference under non-Gaussian errors.

Assumption 4.4.1. CONDITIONAL SCALE MODEL OF TRANSFORMED COMPOSITE ERROR.

ξ∗ =σξϑ , (4.4.1)

where σξ is a (possibly random) scalar such that P [σξ ̸= 0] = 1, and the conditional distribution

181



CHAPTER 4. HIGH-FREQUENCY INSTRUMENTS AND IDENTIFICATION-ROBUST INFERENCE

of ϑ is completely or incompletely specified such that

ϑ | X := (ϑ1, . . . ,ϑT ) ∼ F (υ), (4.4.2)

where F (·) represents a known distribution function and X = [X , Z−2].

We consider both the case where the error distribution does not involve nuisance parame-

ters,

ϑ | X ∼ F (υ0) , where υ0 is specified (4.4.3)

and the one where it does,

ϑ | X ∼ F (υ) , where υ is unknown. (4.4.4)

The above assumption includes the Gaussian distribution, all elliptically symmetric distribu-

tions, such as the multivariate t , and cases where ϑ1, . . . ,ϑT are i.i.d. according to any given

distribution.

In the following proposition, we characterize the null distribution of AR(ϕ0,ρ0) given in

(4.3.22) under the above assumption.

Proposition 4.4.1. NULL DISTRIBUTION OF AR-TEST STATISTIC UNDER NON-GAUSSIAN ER-

RORS. Suppose equation (4.3.21) and Assumption 4.4.1 hold. If ϕ=ϕ0 and ρ = ρ0, we have

AR(ϕ0,ρ0) = κ
ϑ′(MC0 [X ]−MC0 [X , Z−2])ϑ

ϑ′MC0 [X , Z−2]ϑ
, (4.4.5)

where κ= (T − l −k)/l , ϑ= y(ϕ0,ρ0) =C0(y −ϕ0 y−1), MC0 [A] = I − A[A′Σ(ρ0)−1 A]−1 A′Σ(ρ0)−1,

and the conditional distribution of ϑ is given in Assumption 4.4.1.

Proposition 4.4.1 covers the null distribution of AR(ϕ0,ρ0). It is easy to see that the null dis-

tribution of the other proposed test statistic under non-Gaussian errors can be derived in the

same way upon employing Assumption 4.4.1. Proposition 4.4.1 means that the conditional

null distribution of AR(ϕ0,ρ0) given X , only depends on the distribution of ϑ. If the distri-

bution of ϑ | X can be simulated, one can get exact tests based on AR(ϕ0,ρ0,ϑ | X ) through

the MCT method [see Dufour (2006)], even if this distribution is non-Gaussian. Furthermore,
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the exact test obtained in this way is robust to weak IV’s as well as if the distribution does not

have moments (e.g., the Cauchy distribution).

The MCT technique was originally proposed by Dwass (1957) for implementing permuta-

tion tests and did not involve nuisance parameters. This technique was also independently

proposed by Barnard (1963); for a review, see Dufour and Khalaf (2001), and for a general

discussion and proofs, see Dufour (2006). It has the great attraction of providing exact (ran-

domized) tests based on any statistic whose finite-sample distribution may be intractable but

can be simulated. Here we have briefly summarized the procedure.

Let S(Y , X ) be a test statistic which can be rewritten in the form

S(Y , X ) = S̄(ϑ, X ) (4.4.6)

under the null hypothesis, where ϑ is defined by (4.4.2) and the distribution of ϑ is known.

For example, S(Y , X ) could be the AR-type statistic considered in Proposition 4.4.1. Then the

conditional distribution of S(Y , X ), given X , is completely determined by the matrix X and the

conditional distribution of ϑ given X , i.e., S(Y , X ) is pivotal. We can then proceed as follows

to obtain an exact critical region.

1. Compute the statistic S(0) (based on data), where S(0) = AR (0)
(
ϕ0,ρ0

)
.

2. By Monte Carlo methods, draw N i.i.d. replications of ϑ : ϑ( j ) = [ϑ( j )
1 , . . . ,ϑ( j )

T ], j = 1, . . . , N .

3. From each simulated error matrix ϑ( j ), compute the statistics, S( j ) = S̄(ϑ( j ), X ), j =
1, . . . , N , according to the fully specified distribution of ϑ | X . For instance, in the case of

the AR statistic underlying Proposition 4.4.1, calculate

AR ( j ) := AR(ϑ( j )) =
ϑ′

( j )

(
MC0 [X ]−MC0 [X , Z−2]

)
ϑ( j )

ϑ′
( j )MC0 [X , Z−2]ϑ( j )

, 1, . . . , N . (4.4.7)

4. Compute the MC p-value p̂N [S] := pN (S(0);S), where

pN (x,S) := NGN (x;S)+1

N +1
, (4.4.8)
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GN (x;S) := 1

N

N∑
j=1

I[0,∞)(S( j ) −x) , I[0,∞)(x) =


1 if x ∈ [0,∞)

0 if x ∉ [0,∞)
. (4.4.9)

In other words, pN (S(0);S) = [NGN (S(0);S)+1]/(N +1) where NGN (S(0);S) is the number

of simulated values which are greater than or equal to S(0) . When S(0),S(1), . . . ,S(N ) are

all distinct [an event with probability one when the vector (S(0),S(1), . . . ,S(N ))′ has an ab-

solutely continuous distribution], R̂N (S(0)) = N +1−NGN (S(0);S) is the rank of S(0) in the

series S(0),S(1), . . . ,S(N ).

5. The MC critical region is: p̂N [S] ≤ α, 0 < α < 1 . If α∗ and N such that α(N + 1) is an

integer and the distribution of S is continuous under the null hypothesis, then under

null,

P [p̂N [S] ≤α] =α (4.4.10)

The above algorithm is valid for any fully specified distribution of ϑ and we reject the null

hypothesis H0(ϕ0,ρ0) at level α when p̂N [AR (0)(ϕ0,ρ0)] ≤α.

Under the null hypothesis Hϕ(ϕ0,ρ0), P
[
p̂N [AR (0)(ϕ0,ρ0)] ≤ α

] = α, so that we have a test

with level α. If the distribution of the test statistic is not continuous, the MC test procedure

can easily be adapted by using “tie-breaking” method described in Dufour (2006).5 Corre-

spondingly, a confidence set with level 1−α for (ϕ,ρ) is given by the set of all values (ϕ0,ρ0)

which are not rejected by the above MC test. More precisely, the set

C(ϕ,ρ)(α) = {
(ϕ0,ρ0) : p̂N [AR (0)(ϕ0,ρ0)] >α

}
(4.4.11)

is a confidence set with level 1−α for (ϕ0,ρ0).

Consider now the case where the distribution of ϑ involves a nuisance parameter υ and

υ ∈Φ0.

1. Let S(0) be the observed test statistic (based on data).

5Without the correction for continuity, the algorithm proposed for statistics with continuous distributions
yields a conservative test, i.e., the probability of rejection under the null hypothesis is not larger than the nominal
level.

184



CHAPTER 4. HIGH-FREQUENCY INSTRUMENTS AND IDENTIFICATION-ROBUST INFERENCE

2. For each υ ∈ Φ0, by Monte Carlo methods, draw N i.i.d. replications of ϑ : ϑ( j ) =[
ϑ

( j )
1 , . . . ,ϑ( j )

T

]
, j = 1, . . . , N and compute the statistics, S( j )(υ) = S̄(ϑ( j )(υ), X ), j = 1, . . . , N .

3. Using these simulations we compute the MC p-value p̂N [S] := pN (S(0);S), where

p̂N
[
x;S | υ]

:= NĜN
[
x;S | υ]+1

N +1
. (4.4.12)

4. The p-value function p̂N [S | υ] as a function of υ is maximized over the parameter values

compatible with the Φ0, and H0 is rejected if

sup
υ∈Φ0

p̂N [S | υ] ≤α. (4.4.13)

If the number of simulated statistics N is chosen such that α(N +1) is an integer, then

we have under H0:

P
[

sup
υ∈Φ0

{
p̂N [S | υ]

}≤α
]≤α, (4.4.14)

The test defined by p̂N [S | υ] ≤ α has size α for known υ . Treating υ as a nuisance

parameter and Φ0 is a nuisance parameter set consistent with null, the test is exact at

level α; for a proof, see Dufour (2006).

Because of the maximization in the critical region (4.4.13) the test is called a maximized

Monte Carlo (MMC) test. MMC tests provide valid inference under general regularity con-

ditions such as almost-unidentified models or time series processes involving unit-roots. In

particular, even though the moment conditions defining the estimator are derived under the

stationarity assumption, this does not question in any way the validity of maximized MC tests,

unlike the parametric bootstrap whose distributional theory is based on strong regularity con-

ditions. Only the power of MMC tests may be affected. However, the simulated p-value func-

tion is not continuous, thus standard gradient-based methods cannot be used to maximize it.

But search methods applicable to non-differentiable functions are applicable, e.g., simulated

annealing [see Goffe et al. (1994)]. A simplified approximate version of the MMC procedure

can alleviate its computational load whenever a consistent point or set estimate of υ is avail-

able; for further discussion, see Dufour (2006).
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4.5 Asymptotic distributional theory

In this section, we relax the Assumptions 4.2.4-4.2.6 and 4.4.1, and show that under weaker

distributional assumptions on X , Z−2 and ξ, the proposed procedures remain “asymptotically

valid”. More precisely, we wish to show that if Assumption 4.2.4-4.2.6 hold jointly with a spe-

cific distributional assumption on ξ∗/σξ [e.g., ξ∗/σξ ∼ N(0, IT )] yields tests whose probability

of type I error converges to the nominal level of the test as T →∞ under any parameter con-

figuration compatible with the null hypothesis (pointwise asymptotic validity).

All our results up to now have been established for a given sample size of T . To formulate

asymptotic properties, we need to consider a sequence of tests indexed by T . Consider the

following sequence

{
S(T ) := [y(T ), y−1(T ), X (T ), Z−2(T ),ξ(T )],T ≥ T0

}
, (4.5.1)

and rewrite the test statistic (4.3.10) in the following form:

ART (ϕ0) = κ(T )
y ′

T

(
M [Q1T ]−M [QT ]

)
yT

y ′
T M [QT ]yT /T

, (4.5.2)

where yT = (
y(T )−ϕ0 y−1(T )

)
, QT = [Q1T ,Q2T ], Q1T = X (T ), Q2T = Z−2(T ), κ(T ) = (T −l−k)/lT ,

and k and l are the number of columns in Q1T and Q2T , respectively.

We examine the asymptotic distribution of ART (ϕ0) under the following assumptions

(where =⇒ refers to weak convergence as the sample size tends to infinity).

Assumption 4.5.1. The sequence
(
S(T ),T ≥ T0

)
given in (4.5.1) belongs to a class Z of stochastic

processes such that for each process in Z the following limits hold:

1. ξ′(T )ξ(T )
T

p−→
T−→∞

σ2
ξ
> 0, where σ2

ξ
is the same for all processes in Z ;

2. There exists a sequence of m ×m, nonsingular matrices DT such that:

(A) D ′
T Q ′

T QT DT
p−→

T−→∞
ΣQQ =

 ΣQ1Q1 ΣQ1Q2

ΣQ2Q1 ΣQ2Q2

 ,

where ΣQQ and ΣQ1Q1 are m ×m and k ×k nonsingular matrices, respectively;
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(B) D ′
T Q ′

T ξ(T ) =⇒ q ∼ N
(
0,σ2

ξ
ΣQQ

)
,

where q = (
q ′

1, q ′
2

)′, q1 and q2 are k ×1 and l ×1 random vectors, respectively.

It should be emphasized that Assumption 4.5.1 satisfies the condition

q2 | q1 ∼ N
(
ΣQ2Q1Σ

−1
Q1Q1

q1,σ2
ξΣq2|q1

)
where Σq2|q1 = ΣQ2Q2 −ΣQ2Q1Σ

−1
Q1Q1

ΣQ2Q2 . Thus the asymptotic distribution of
(
q ′Σ−1

QQ q −
q ′

1Σ
−1
Q1Q1

q1
)
/σ2

ξ
is a χ2

(l ) distributed random variable. Note that the normality of the sub-vector

of q1 is not required, the conditional normality of q2 given q1 is sufficient.

Further, in the above Assumption 4.5.1(2), we allow both stationary and nonstation-

ary regressors by adjusting the scaling matrix DT , which is typical of the form, DT =
di ag

[
T −d1 , . . . ,T −dm

]
, where di > 0 for i = 1, . . . ,m relying on the degree of nonstationarity

of the regressors. For example, if X (T ) and Z−2(T ) are stationary then di = 0.5 for i = 1, . . . ,m.

However, if X (T ) and Z−2(T ) are nonstationary and are integrated of order one, then the cor-

responding di should be one. The following proposition establishes the asymptotic validity of

the AR procedure.

Proposition 4.5.1. ASYMPTOTIC VALIDITY OF AR-TYPE TEST. Under the Assumption 4.5.1 and

the null hypothesis in (4.3.1), the statistic ART (ϕ0) in (4.5.2) has the same limiting distribution

for all processes in Z , i.e., ART (ϕ0) =⇒χ2
(l )/l .

Similarly, one can show that the joint test defined in (4.3.22) has the null distribution of

ART (ϕ0,ρ0) =⇒ χ2
(l )/l . Now we consider the test statistic of the AR-type PO procedure, which

is rewritten in the following form:

AR∗
T (ϕ0,ρ0,ρ1) = T

[
yT (ϕ0,ρ0)′M [Q̂1T ]yT (ϕ0,ρ0)

yT (ϕ0,ρ1)′M [Q̃T ]yT (ϕ0,ρ1)
−1

]
, (4.5.3)

where yT (ϕ0,ρ0) = C (ρ0)
(
y(T ) − ϕ0 y−1(T )

)
, yT (ϕ0,ρ1) = C (ρ1)

(
y(T ) − ϕ0 y−1(T )

)
, Q̂1T =

C (ρ0)X (T ), Q̃T = [Q̃1T ,Q̃2T ], Q̃1T = C (ρ1)X (T ), Q̃2T = C (ρ1)Z−2(T ), k is the number of

columns in Q̂1T or Q̃2T , l is the number of columns in Q̃2T and m = l +k. In order to prove the

asymptotic validity of the AR∗
T (ϕ0,ρ0,ρ1) that defined in (4.3.25), we need following assump-

tion:
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Assumption 4.5.2. The sequence (S(T ),T ≥ T0) given in (4.5.1) belongs to a class Z of stochastic

processes such that for each process in Z the following limits hold:

1. ξ̂
′
(T )ξ̂(T )

T

p−→
T−→∞

σ2
ξ
> 0, where σ2

ξ
is the same for all processes in Z ;

2. ξ̃
′
(T )ξ̃(T )

T

p−→
T−→∞

σ2
ξ
> 0, where σ2

ξ
is the same for all processes in Z ;

3. There exists a sequence of m ×m, nonsingular matrices DT such that:

(A) D ′
T Q̃ ′

T Q̃T DT
p−→

T−→∞
ΣQ̃Q̃ =

 ΣQ̃1Q̃1
ΣQ̃1Q̃2

ΣQ̃2Q̃1
ΣQ̃2Q̃2

 ,

where ΣQ̃Q̃ and ΣQ̃1Q̃1
are m ×m and k ×k nonsingular matrices, respectively;

(B) D ′
T 1Q̂ ′

T 1Q̂T 1DT 1
p−→

T−→∞
ΣQ̂1Q̂1

,

where ΣQ̂1Q̂1
is a k ×k nonsingular matrix;

(C) D ′
T Q̃ ′

T ξ̃(T ) =⇒ q̃ ∼ N
(
0,σ2

ξ
ΣQ̃Q̃

)
,

where q̃ = (q̃ ′
1, q̃ ′

2)′, q̃1 and q̃2 are k ×1 and l ×1 random vectors, respectively.

(D) D ′
T Q̂ ′

1T ξ̂(T ) =⇒ q̂1 ∼ N
(
0,σ2

ξ
ΣQ̂1Q̂1

)
,

where q̂1 is a k ×1 random vector.

The following proposition establishes the asymptotic validity of the AR∗ optimal procedure.

Proposition 4.5.2. ASYMPTOTIC VALIDITY OF AR-TYPE POINT-OPTIMAL TEST. Under the

Assumption 4.5.2 and the null hypothesis in (4.3.19) against a fixed alternative ρ = ρ1, the

statistic AR∗
T (ϕ0,ρ0,ρ1) in (4.5.3) has the same limiting distribution for all processes in Z , i.e.,

AR∗
T (ϕ0,ρ0,ρ1) =⇒χ2

(l ).

We consider the following sequences for the split-sample methods, where each element of

the sequence (4.5.1) is split into the first and second subsamples with size T1 and T2 (T =
T1 +T2), respectively:

{
S(1)(T ) := [y (1)(T ), y (1)

−1(T ), X (1)(T ), Z (1)
−2 (T ), ξ̄

(1)
(T )],

S(2)(T ) := [y (2)(T ), y (2)
−1(T ), X (2)(T ), Z (2)

−2 (T ), ξ̄
(2)

(T )],T > T0
}
. (4.5.4)
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The split-sample test statistic in (4.3.31) can be constructed from (4.5.4) as follows:

SST (ϕ0,ρ0) = κ(T2)
y∗

T
′(M [Q∗

1T ]−M [Q̂∗
T ]

)
y∗

T

y∗
T
′M [Q̂∗

T ]y∗
T /T2

, (4.5.5)

where y∗
T =C (ρ0)

(
y (2)(T )−ϕ0 y (2)

−1(T )
)
, Q̂∗

T = [Q∗
1T ,Q̂∗

2T ], Q∗
1T =C (ρ0)X (2)(T ), Q̂∗

2T =C (ρ0)ŷ (2)
−1(T ),

ŷ (2)
−1 = Z̄ (2)

−2 π̃
(1), π̃(1) = (

Z̄ (1)′
−2 Z̄ (1)

−2

)−1Z̄ (1)′
−2 y (1)

−1, κ(T2) = (T2 − l −k)/lT2, and k and l are the num-

ber of columns in Q∗
1T and Q̂∗

2T , respectively. We will examine the asymptotic distribution of

SST (ϕ0,ρ0) under the following assumptions.

Assumption 4.5.3. T1/T −→ τ ∈ (0,1) as T −→∞.

Assumption 4.5.4. The sequence (S(1)(T ),S(2)(T ),T > T0) given in (4.5.4) belongs to a class Z of

stochastic processes such that for each process in Z the following limits hold:

1. ξ̄
∗(2)′
T ξ̄

∗(2)
T

T2

p−→
T2−→∞

σ2
ξ
> 0, where ξ̄

∗(2)
T := C (ρ0)ξ̄

(2)
(T ), and σ2

ξ
is the same for all processes in

Z ;

2. Conditional on the first subsample, there exists a sequence of m×m, nonsingular matrices

DT such that:

(A) D ′
T Q̂∗

T
′
Q̂∗

T DT
p−→

T2−→∞
ΣQ̂∗Q̂∗ =

 ΣQ∗
1 Q∗

1
ΣQ∗

1 Q̂∗
2

ΣQ̂∗
2 Q∗

1
ΣQ̂∗

2 Q̂∗
2

 ,

where ΣQ̂∗Q̂∗ and ΣQ∗
1 Q∗

1
are m ×m and k ×k nonsingular matrices, respectively;

(B) D ′
T Q̂∗

T
′
ξ̄
∗(2)
T =⇒ q̂∗ ∼ N

(
0,σ2

ξ
ΣQ̂∗Q̂∗

)
,

where q̂∗ = (q∗
1
′, q̂∗

2
′)′, q∗

1 and q̂∗
2 are k×1 and l×1 random vectors, respectively, such

that q̃∗ := q̂∗′Σ−1
Q̂∗Q̂∗ q̂∗−q∗

1
′Σ−1

Q∗
1 Q∗

1
q∗

1 has an absolutely continuous (non-degenerate)

distribution on R, which is the same for all processes in Z .

It should be noted that Q̂∗
2T depends on π̃(1), which is estimated from the first subsample.

However, conditioning on the first subsample, we can get rid of this unnecessary randomness.

Assumption 4.5.4(2B) implies that ΣQ̂∗Q̂∗ and q̂∗ are depend on S(1)(T ), while q̃∗ is not depend

on S(1)(T ). To see this, we consider an example where DT = T −1/2
2 IT2 and q̂∗ = q

(
π̃(1)

)
follows
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a normal distribution. Thus, given π̃(1),

plim
T2→∞

QT
(
π̃(1)

)′QT
(
π̃(1)

)
T2

=ΣQQ
(
π̃(1))=ΣQ̂∗Q̂∗ ,

QT
(
π̃(1)

)′QT
(
π̃(1)

)
p

T2
=⇒ q

(
π̃(1))= q̂∗ ∼ N

(
0, σ2

ξΣQ̂∗Q̂∗
)

,

then,
(
q̂∗′

Σ−1
Q̂∗Q̂∗ q̂∗)

/σ2
ξ
∼χ2

m , where χ2
m is the χ2 distribution with m degrees of freedom. As a

result, even though ΣQ̂∗Q̂∗ and q̂∗ rely on π̃(1), q̂∗′
Σ−1

Q̂∗Q̂∗ q̂∗ does not depend on π̃(1).

In the finite-sample distributional theory of split-sample procedures, independence of ξ̄
∗
t =

C (ρ0)ξ̄t over t = 1, . . . ,T is assumed. In asymptotic theory, however, a similar restriction on

dependence of ξ̄
∗
t (e.g., α-mixing assumption) is implicitly imposed by Assumption 4.5.4(2B);

if dependence between ξ̄
∗(1)
t in the estimates and ξ̄

∗(2)
t is too strong, then the limiting distri-

bution q̂∗ would rely on nuisance parameters governing the dependence, and as a result the

assumption cannot be satisfied. The following proposition proves the asymptotic validity of

SS procedure.

Proposition 4.5.3. ASYMPTOTIC VALIDITY OF SS-TYPE TEST. Under the Assumptions 4.5.3-

4.5.4 and the null hypothesis in (4.3.19), the statistic SST (ϕ0,ρ0) in (4.5.5) has the same limiting

distribution for all processes in Z , i.e., SST (ϕ0,ρ0) =⇒χ2
(l )/l .

Similarly, one can also prove the asymptotic validity of SS∗ procedure.

4.6 Simulation study

In this section, we compare the performance of our proposed tests to the asymptotic t-type

test. The standard SV model [given in (4.2.1)-(4.2.2)] has the following state-space representa-

tion:

wt =µ+ϕwt−1 + vt , yt = wt +ϵt , yt := log(s2
t )−E

[
log(z2

t )
]

, (4.6.1)

where wt := log(σ2
t ), and the vt ’s and ϵt ’s are i.i.d. N(0,σ2

v ) and log(χ2
(1)) random variables,

respectively and they are orthogonal to each other. With an instrument equation, the DGP in
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(4.6.1) is:

yt =µ+ϕyt−1 +ξt , ξt := vt +ϵt −ϕϵt−1 , vt ∼ i.i.d. N (0,σ2
v ) , ϵt ∼ i.i.d. log(χ2

(1))(4.6.2)

yt−1 = Z ′
t−2π̄1 +ηt−1 , ηt−1 := ϵt−1 +ut−1 , ut ∼ i.i.d. N (0,σ2

u) , (4.6.3)

where π̄1 is an l-vector of first-stage coefficients, Zt−2 is an l-vector of independent N(0,1)

variables, and the vector (ξt ,ηt−1) has zero mean,

Var(ξt ) = (1+ϕ2)σ2
ϵ +σ2

v , Var(ηt−1) =σ2
ϵ +σ2

u , and Cov(ξt ,ηt−1) =−ϕσ2
ϵ .

We construct π̄1 as:

π̄1 =
||λ̄||

√
(σ2

ϵ +σ2
u)

p
T l


1
...

1

 , (4.6.4)

so that ||λ̄2|| = T π̄′
1π̄1

σ2
ϵ+σ2

u
. Since Var(Zt−2) = Il and Var(η) = σ2

ϵ +σ2
u , ||λ̄2|| is the concentration

parameter in this model.

Note that the DGP given by (4.6.2)-(4.6.3) is a GSV model with no exogenous explanatory

variable. This DGP is designed to broadly mimic the features of financial returns used in our

empirical application. From (4.6.3), it is evident that this DGP violates the independence as-

sumption. However, the instrument set Zt−2 is uncorrelated with ηt−1.

Except for the Section 4.6.2.4, in all experiments, we set: σ2
ϵ =π2/2, so that µ, ϕ and σv , are

the only parameters that will vary. We use 10,000 replication to compute the empirical level

and powers and employ 99 replications for PO tests based on the MCT procedure. For all tests,

the nominal level is fixed at 5%. Thus, under the null hypothesis, the rejection rates should

be less than (or close to) 5% for tests to be valid. Except for the analysis of asymptotic tests

(Section 4.6.1), the sample sizes are T = 100, 200. For the split-sample tests, we employ the

split ratio τ= 0.2 and use OLS to construct the instrument set. Note that SS-type tests depend

on the choice of τ, and the power of these tests is inversely related to τ [see Dufour and Jasiak

(2001)]. Therefore, we set τ= 0.2 to gain relatively more power.
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4.6.1 Test size of asymptotic t-test

In this section, we evaluate the performance the asymptotic t-type test of H0 : ϕ = ϕ0. The

simulated DGP is (4.6.2) with |ϕ| < 1 and ϵt ∼ i.i.d. log(χ2
(1)) [it is the log-normal SV model].

We set µ= 0, σv = 2 and ϕ ∈ [0, 1]. For sample sizes, T = {100, 200, 300, 400, 500, 1000, 2000}

are used.

Table 4.2 reports the size of asymptotic t-type tests for H0(ϕ) : ϕ = ϕ0. The test statistic is

calculated using the simple winsorized estimator of Ahsan and Dufour (2019) [equations (3.8)-

(3.9) with J = 10]. This estimator is more efficient compared to conventional methods (QMLE,

GMM) and as efficient as the Bayesian procedure. In addition to that, it is extremely time-

efficient and it produces empirical estimates which are similar to the Bayesian estimates. For

the details of this asymptotic t-test, see Section 6.1 of Ahsan and Dufour (2019).

We can see from the results that the t-test (which is based on the asymptotic standard error)

fails to control the level when ϕ−→ 1. Size distortions are severe and equal upto 37.2% when

ϕ= 1. These size distortions do not go away even in larger samples (T = 1000, 2000), especially

when ϕ> 0.999, i.e., ϕ is close to the unit circle.

4.6.2 Performance of the proposed tests

We will now examine the performance of the tests proposed in Sections 4.3.1-4.3.4. To simplify

the exposition, we focus on four misspecified model setups (these are empirically motivated).

M1. The DGP is given in (4.6.2)-(4.6.3) with ϵt ∼ i.i.d. N (0,π2/2). The instrument set Zt−2

includes weak IV’s, which are related to past lags of the LF volatility proxy.

M2. The DGP is given in (4.6.2)-(4.6.3) and the instrument set Zt−2 includes weak IV’s, which

are related to past lags of the LF volatility proxy.

M3. The DGP is given in (4.6.2) and the instrument set Zt−2 includes past lags of the LF

volatility proxy. It is the standard log-normal SV model, where we use past lags of ob-

served volatility proxy (yt−1) as IV’s.

M4. The DGP is given in (4.6.2) with |ϕ| < 1 and ϵt ∼ i.i.d. N (0,σ2
ϵ). The instrument set Zt−2

includes HF IV’s, i.e., realized volatility.
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From the above setups, it is easy to see that the model M1 violates the Assumption 4.2.4,

whereas M2-M4 are misspecified under the Assumptions 4.2.4 and 4.2.6.

For models M1-M3, we consider the joint tests [H0 : (ϕ, ρ) = (ϕ0, ρ0)]. The test statistics

(AR, AR∗, SS, SS∗) are given in equations (4.3.22), (4.3.25), (4.3.31) and (4.3.35). For the model

M4, we use a plug-in estimator for ρ and consider the single restriction tests [H0 : ϕ=ϕ0]. The

considered test statistics (AR, AR∗, SS, SS∗) are given in equations (4.3.22) and (4.3.25) with

ρ0 = ρ1 = ρ̂, and equations (4.3.30) and (4.3.34).

For the weak IV’s robustness check (in Sections 4.6.2.1 and 4.6.2.2), we simulate model M1

and M2 with µ = 2. We consider the concentration parameter λ̄
2 ∈ {0,0.1,10} with σ2

ϵ = π2/2

and σ2
u = 0.1. Thus, given λ̄

2 ∈ {0,0.1,10}, the corresponding values of the first stage coeffi-

cients π̄1[1, i ] = {0,0.05,0.50}, i = {1, · · · , l } for T = 100 and π̄1[1, l ] = {0,0.04,0.35}, i = {1, · · · , l }

for T = 200. The simulated models use different values of ϕ and ρ. These values are ϕ =
{0.50,0.75,0.90,1.00} and ρ = {0.1,0.2,0.3}. Thus, given ρ = 0.1 and ϕ = {0.50,0.75,0.90,1.00},

the corresponding values of λ [= ρ/(ϕ− ρ(1 +ϕ)2)] are {0.27,0.17,0.14,0.13}. Since we fix

σ2
ϵ = π2/2, given λ = {0.27,0.17,0.14,0.13} the corresponding values of σv [= σϵ/

p
λ] are

{4.30,5.41,5.96,6.28}. Similarly, for ρ = {0.2,0.3}, we have different set of values for λ and

σv . As a result, a restriction on ρ implies a restriction on λ or σv . For example, a joint null

(ϕ0,ρ0) = (0.5,0.1) is same as (ϕ0,λ0) = (0.5,0.27) or (ϕ0,σv0) = (0.5,4.30). For PO tests, we set

the alternative to ρ1 = 0.30 in Sections 4.6.2.1 and 4.6.2.2 (power comparison experiments).

4.6.2.1 Test performance under M1 with weak instruments

We simulate the model M1. The generated instrument set Z−2 is related to past lags of the

LF volatility proxy y−1, so it is not independent of the error distributions of v and ϵ. The

simulated DGP is incorrectly specified under the Assumption 4.2.4. The results are presented

in Tables 4.3-4.4 and confirm the theoretical contributions of Sections 4.3.1-4.3.4 even with

model misspecification. Our findings can be summarized as follows.

First, from Table 4.3, the levels of the proposed tests (AR, AR∗, SS, SS∗) are well controlled:

rejection frequencies are less than (or close to) 5%. This result holds whether the identification

is completely failed [λ̄
2 = 0], weak [λ̄

2 ∈ {0,0.1}], partial [λ̄
2 ∈ {0.1,10}], or strong [λ̄

2 = 10]. This

represents a substantial improvement over the asymptotic test. However, the AR test exhibits
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minor size distortion, possibly due to model misspecification. Further, the SS controls the

level correctly, but in most cases this test is undersized and it increases with the number of

IV’s. The optimal tests perfectly control the level.

Second, from Table 4.4, all tests exhibit excellent power as long as identification is not very

weak. Note that, in our joint tests, we have an additional restriction under the null hypothesis

on the parameter of the error distribution. This restriction works as an additional source of

power. We also see that in all cases [weak or strong IV’s], the AR∗ and SS∗ tests have more

power compared to the AR and SS tests. As expected, these tests’ power increases with the

sample size and the concentration parameter and decreases as the number of IV’s increases.

4.6.2.2 Test performance under M2 with weak instruments

The model M2 is considered. The generated instrument set Z−2 is related to past lags of the LF

volatility proxy y−1, so it is not independent of the error distributions of v and ϵ. This violates

the Assumption 4.2.4. Further, since ϵt ∼ i.i.d. log(χ2
(1)), the simulated DGP is also misspecified

under the Assumption 4.2.6. This DGP represents an SV model with an instrument equation.

The results are presented in Tables 4.5-4.6. The results confirm that the tests proposed in

Sections 4.3.1-4.3.4 are valid and robust to these misspecifications. The main findings are the

following.

First, from Table 4.5, the empirical levels of the proposed tests are almost identical to those

obtained when the model is only misspecified under Assumption 4.2.4 [compare Table 4.3

with 4.5]: rejection frequencies are less than (or close to) 5%, whether identification is com-

pletely failed [λ̄
2 = 0], weak [λ̄

2 ∈ {0,0.1}], partial [λ̄
2 ∈ {0.1,10}], or strong [λ̄

2 = 10], for all

sample sizes considered. The optimal tests based on MCT method have better level control.

Second, from Table 4.6, the misspecification of the error distribution does not affect the

power of these tests [compare Table 4.6 with Table 4.4].

Third, as the sample size increases, the rejection frequencies of these tests increase and in

many cases, reach 100%. Overall, these tests appear to be reasonably robust to a misspecifi-

cation of the error distribution, even with small samples.

194



CHAPTER 4. HIGH-FREQUENCY INSTRUMENTS AND IDENTIFICATION-ROBUST INFERENCE

4.6.2.3 Test performance under M3 with low-frequency instruments

We simulate model M3 with µ = 2, ϕ ∈ (0.5, 1] and σv ∈ (0.94, 3.14). This DGP corresponds

to the standard log-normal SV model. We use past lags of yt−1 as IV’s, so the instrument set

Zt−2 is not independent of the error distributions of v and ϵ. As a result, the simulated DGP

is incorrectly specified under the Assumptions 4.2.4 and 4.2.6. In this setting, for PO tests, we

set the alternative to ρ1 = 0.35. The results are appear in Table 4.7 and the main findings are

the following.

First, in both samples (T = 100,200), the levels of the proposed tests (AR, AR∗, SS , SS∗) are

well controlled, even when ϕ = 1. As the number of IV’s increases, the SS test under rejects

(when l = 10).

Second, all these tests exhibit excellent power (see from the second part of Table 4.7). Since,

we set the alternative hypothesis to (ϕ, ρ) = (0.5, 0.35), as a result PO tests can gain power

from the differences in covariance structure, i.e., when ρ = 0.25,0.30. From the results, in all

cases, AR and SS tests have more power compare to their counterpart AR∗ and SS∗ when

l = 1. Again, as expected, these tests’ power increases with the sample size and decreases as

the number of IV’s increases.

Third, we also simulate the same DGP with ϵt ∼ i.i.d. N (0,π2/2) and results are almost iden-

tical [compare Table 4.8 with Table 4.7]: rejection frequencies are similar.

4.6.2.4 Test performance under M4 with high-frequency instruments

In this experiment, we simulate the model M4 [DGP:(4.6.2) with |ϕ| < 1 and ϵt ∼ i.i.d. N (0,σ2
ϵ)]

at a higher frequency and use these HF observations to construct RV estimates, which are em-

ployed as IV’s. We consider the parameter inference for the LF model. Note that the HF model

parameters are different from the LF model parameters. Therefore, making an inference about

ϕ or ρ (or both) in the LF model requires functional relationships between HF and LF param-

eters under temporal aggregation, e.g., ϕl f = f (ϕh f ), where ϕh f and ϕl f are the HF and LF

parameter, receptively. It should be noted that the log-normal SV model [DGP: (4.6.2) with

|ϕ| < 1 and ϵt ∼ i.i.d. log(χ2
(1))] is not closed under temporal aggregation [see Meddahi and

Renault (2004)], whereas the M4 model is closed under temporal aggregation.
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Since we assume stationarity of the latent HF volatility process (|ϕh f | < 1), the HF process

yt given in model M4 admits an ARMA(1, 1) representation [see Proposition 3.1 of Ahsan and

Dufour (2019)], which is given by

yt =µh f +ϕh f yt−1 + η̄t −θh f η̄t−1 , (4.6.5)

with η̄t −θh f η̄t−1 = vt + ϵt −ϕh f ϵt−1. The moving average parameter θh f and the white noise

variance σ2
h f ,η̄ are related to ϕh f , σ2

h f ,v and σ2
h f ,ϵ through non-linear equations:

(1+θ2
h f )σ2

h f ,η̄ =σ2
h f ,v + (1+ϕ2

h f )σ2
h f ,ϵ , −θh f σ

2
h f ,η̄ =−ϕh f σ

2
h f ,ϵ . (4.6.6)

Note that there are multiple solutions for θh f and σ2
h f ,η̄ and some of which result in an in-

vertible process.6 Thus for temporal aggregation of model M4, we can exploit the well-known

results for ARMA process.

An m-period nonoverlapping aggregates of yt [given in (4.6.5)] is defined by

YT =
mT∑

t=m(T−1)+1
yt = (1+B +·· ·+B m−1)ymT =

m−1∑
j=0

B j ymT , (4.6.7)

where m is the fixed order of aggregation and T is the aggregate time unit. The time series

yt and YT will be called the basic HF and the aggregate LF time series, respectively [m = 1

implies no aggregation]. If the HF time series yt follows an ARMA(1, 1) model, then the LF

series YT in (4.6.7) follows an ARMA(1, 1) model but the relationship between the parameters

of both models is complicated; see Ahsanullah and Wei (1984). If yt follows the ARMA(1, 1)

model

(1−ϕh f B)yt =µh f + (1−θh f B)η̄t , (4.6.8)

6Equating coefficients and making substitutions leads to σ2
h f ,η̄ = σ2

h f ,ϵϕh f /θh f and θh f is a solution to the

quadratic equation

θ2
h f −θh f k̃ +1 = 0, where k̃ = (σ2

h f ,v +σ2
h f ,ϵ(1+ϕ2

h f ))/(σ2
h f ,ϵϕh f ).

It can be shown that k̃2 −4 = (k̃ −2)(k̃ +2) is positive since k̃ > 2 is equivalent to σ2
h f ,v +σ2

h f ,ϵ(1−ϕh f )2 > 0. The

induced model is invertible if |θh f | < 1 which after some algebra is shown to be true for the root (k̃+(k̃2−4)1/2)/2
when 0 <ϕh f < 1 and for the root (k̃ − (k̃2 −4)1/2)/2 when −1 <ϕh f < 0.
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then YT follows the ARMA(1, 1) model

(1−ϕl f B)YT =µl f + (1−θl f B)ζT (4.6.9)

with

ϕl f =ϕm
h f , µl f = m

((
1−ϕm

h f

)(
1−ϕh f

))
µh f , (4.6.10)

and θl f is the root of the quadratic equation:

θ2
l f +ψ1θl f +1 = 0 (4.6.11)

where

ψ1 =ψ2/ψ3 ,

ψ2 =
m−1∑
i=0

(
1+ (ϕh f −θh f )

i−1∑
j=0

ϕ
j
h f

)2
+

2(m−1)∑
i=m

(
(ϕh f −θh f )

m−2∑
j=i−m

ϕ
j
h f −θh f ϕ

m−1
h f

)2
+

(
θh f ϕ

m−1
h f

)2
,

ψ3 =
m−2∑
i=0

(
1+ (ϕh f −θh f )

i−1∑
j=0

ϕ
j
h f

)(
(ϕh f −θh f )

m−2∑
j=i

ϕ
j
h f −θh f ϕ

m−1
h f

)
−

(
1+ (ϕh f −θh f )

m−2∑
j=0

ϕ
j
h f

)
θh f ϕ

m−1
h f ,

and θl f = (−ψ1 ±
√
ψ2

1 −4)/2 such that |θl f | < 1 to ensure invertibility of the LF model. Fur-

ther, σ2
l f ,ζ = ψ2σ

2
h f ,η̄/(1+θ2

l f ). LF ARMA parameters (θl f , σ2
l f ,ζ) are related to LF state-space

parameters (ϕl f , σ2
l f ,v , σ2

l f ,ϵ) through non-linear equations [similar to (4.6.6)].

It is easy to see that the LF parameter ρl f = −Cov(ζT ζT−1)
Var(ζT ) has multiple solutions in terms of

HF parameters. Thus, we use a plug-in estimator for ρl f and consider the test ϕl f =ϕ0. Using

LF observations, we can estimate ρl f by using equations (3.8)-(3.9) with J = 10 of Ahsan and

Dufour (2019).7 Note that using a plug-in estimator for ρl f may lead to some inconsequential

size distortion.

We consider several LF values of ϕl f ∈ (0,0.999). Equal-spaced HF intraday data are con-

sidered with frequency = {30s, 1m, 5m, 10m}, where s and m stand for second and minute.

Therefore, within a day (trading hours = 6.5) the number of HF observations are N∆t =
{780,390,78,39}. For each frequency, we generate data from model M4, which is the HF model

with parameters µh f = 10−6, σh f ,ϵ = 3.5, ϕh f =ϕN∆t
l f and σh f ,v =σv /

p
N∆t with σv = 0.15. The

7The simple estimation method of Ahsan and Dufour (2019) is not only applicable for the M4 model but also
applicable for a variety of state-space models.
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HF sample size Th f is equal to T ×N∆t , where T is LF sample size. For example, for 1m fre-

quency, HF values of ϕh f are related to LF parameter by ϕl f =ϕ390
h f . Thus, in order to generate

nearly nonstationary LF volatility process, we use large values of ϕh f , e.g., in case of 30s fre-

quency, ϕh f = 0.999999 is corresponds to ϕl f = 0.999.

The simulation results for tests ϕl f = ϕ0 are displayed in Tables 4.9-4.10. The following

conclusions emerge from these tables.

First, we see from Table 4.9 that in all cases of HF IV’s (these are the logarithms of RVs), the

proposed tests (AR, AR∗, SS, SS∗) controls the levels very well: rejection frequencies are less

than (or close to) 5%. This results holds whether sample sizes are different (T = 100,200), or

the instrument set contains different number of IV’s (l = 1,5,10). However, as the number of

IV’s increases, the SS test under rejects (when l = 10).

Second, from Table 4.10, in all cases of HF IV’s (30s, 1m, 5m, 10m), the proposed tests (AR,

AR∗, SS, SS∗) have excellent power against alternative (where null is ϕl f = 0): up to 100%,

100%, 99.7%, and 99.7%, respectively and the power of these tests increases with the sample

size, and decreases as the number of IV’s increases.

Third, all these tests have excellent power across different sampling frequency, e.g., 1-

minute or 5-minute. However, SS-type tests have less power compared to AR-type tests. In

particular, as the number of IV’s increases, SS tests have less power than other tests.

4.7 Application to stock prices

In this section, we consider various types of financial data, discuss a large number of IV’s, and

examine the strength of these IV’s. The proposed tests are implemented with various IV’s and

confidence intervals for the volatility persistence parameter ϕ are constructed by inverting the

tests.

4.7.1 Data description

The LF daily prices are obtained from the CRSP database. The raw series pt is converted to

returns by the transformation rt := 100[log(pt )− log(pt−1)] and the returns are converted to

residual returns by st := rt − µ̂r , where µ̂r is the sample average of returns. The sample period
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is from January 1, 2009, to December 31, 2013 (1258 trading days). The daily volatility proxy is

constructed by the transformation yt = log(s2
t )+1.2704. Initially, we consider daily IV’s of nine

stocks: General Electric Company (GE), IBM Common Stock (IBM), JPMorgan Chase & Co.

(JPM), The Coca-Cola Co (KO), Pfizer Inc. (PFE), Exxon Mobil Corporation (XOM) and (2) The

Procter and Gamble Company (PG), AT&T Inc. (T) and Walmart Inc. (WMT). After examining

the strength of daily IV’s (in Section 4.7.4.1), we proceed with IBM stock and consider realized

measures and option implied volatilities as IV’s.

IBM’s tick price data are taken from the TAQ (Trade and Quote) database and option (Amer-

ican) data are sourced from the OptionMetrics database. The access to these databases (CRSP,

TAQ, OptionMetrics) is done through the Wharton Research Data Services. Using the tick data,

we construct a large number of HF IV’s. Details of these HF IV’s are given in the following sec-

tion and computations are carried out using the MATLAB Oxford MFE Toolbox developed by

Sheppard (2013).8 From IBM American options, three classes of implied volatility (ImV) are

considered: (1) call options; (2) put options; (3) both call and put options. For each class, we

use all implied volatilities available at a given date to construct six ImV subclasses, which are

mean, minimum, maximum, and three quantiles (q1, q2, q3).

4.7.2 High-frequency instruments of asset price variability

We consider the HF volatility measures as the choice of IV’s for daily volatility. Depending on

the sampling frequency and estimation techniques, we can build different HF realized mea-

sures of volatility. Realized volatility was introduced by Andersen and Bollerslev (1998), who

documented that the sum of squared intraday returns, known as the realized variance, pro-

vides an accurate measure of daily volatility. For the theoretical foundation of RV; see Ander-

sen, Bollerslev, Diebold and Labys (2001), Barndorff-Nielsen et al. (2002).

Let pt = log(St ) denote the logarithmic price, where St is the observed price (at time t ) and

rt = pt −pt−1 denote the continuously compounded return from time t −1 to t . Assume that

the logarithmic price process, pt , may exhibit both stochastic volatility and jumps, so that, it

8The Oxford MFE Toolbox can be downloaded from the GitHub: https://github.com/bashtage/
mfe-toolbox.
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could belong to the class of continuous-time jump diffusion processes:

d pt =µt dt +σt dWt +κt d qt , 0 ≤ t ≤ T, (4.7.1)

where µt is a continuous and locally bounded variation process, σt is a stochastic volatility

process, Wt is the standard Brownian motion, d qt is a counting process such that d qt = 1

represents a jump at time t (and d qt = 0 if no jump) with jump intensity λ̃t . If pt− denotes

the price immediately prior to the jump at time t , then the magnitude of the random jump

κt = ∆pt = pt − pt−. The process pt consists of a continuous component and a pure jump

component. The quadratic variation (QV) of this process is defined by

[r,r ]t =
∫ t

0
σ2

s dWs +
∑

0<s≤t
κ2

s (4.7.2)

where the first component, called integrated volatility (IVol), comes from the continuous com-

ponent of (4.7.1), and the second term is the contribution from discrete jumps. In the absence

of jumps, the second term on the right-hand side disappears, and the QV is simply equal to

the IVol. Here we consider several classes of HF IV’s, which can be categorized as follows.

4.7.2.1 Classes of realized measures not robust to jumps

These classes of realized measures have been proposed to provide robustness to various types

of market microstructure effects (bid-ask bounce, stale quotes, mis-reported prices) and im-

prove the efficiency of volatility estimates. We consider five broad classes of realized measures,

which are consistent estimators of the QV in the absence of jumps.

1. Realized volatility (RV): RV is defined as the sum of squared intraday returns. By divid-

ing an interval of time, e.g., [T0,T1], into n subintervals, T0 = t0,n < t1,n < ·· · < tn,n = T1,

we can define intraday returns, ri ,n = pti ,n −pti−1,n , and then RVt = ∑n
i=1 r 2

i ,n . Andersen,

Bollerslev, Diebold and Labys (2001) showed that the RV is a consistent estimator for the

QV:

RVt
p−→ IV olt =

∫ t

0
σ2

s dWs .

2. RV with optimal sampling (RVbr): A standard RV estimator with optimal sampling is
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proposed by Bandi and Russell (2008), where the optimal sampling frequency is calcu-

lated using estimates of integrated quarticity and variance of the microstructure noise.

This bias-corrected estimator removes the estimated impact of market microstructure

noise. In the empirical applications below, we compute RVbr with an estimated optimal

sampling frequency, which is the key feature of this estimator.

3. Multi-scales RV (MSRV): The multi-scales RV by Zhang (2006) uses a combination of

several high and lower frequencies to remove the noise and estimate the volatility. It is

a generalization of two-scales RV [Zhang et al. (2005)] and can be defined as:

MSRVt = [r,r ](K )
t − n̄K

n̄ J
[r,r ](J )

t
p−→ IV olt , 1 ≤ J < K ≤ n ,

where J and K are the time scales and n̄i = (n − i +1)/i with i = J ,K .

4. Realized kernels (RK): The realized kernel by Barndorff-Nielsen et al. (2008) is a robust

measure of volatility, which ensures consistency and positive semi-definiteness. Several

generalizations to handle more lags and various shapes of autocorrelation function are

derived in Barndorff-Nielsen et al. (2011). In this paper, we use the latter variant, which

is given by

RK =
H∑

h=−H
k

(
h

H +1

)
γh

where k(x) is the kernel function and γh = ∑n
i=|h|+1 ri ,nri−h,n . We consider four types

of kernel functions: (1) Bartlett kernel [RKbart: k(x) = 1− x, flat-top, n1/6 rate]; (2) Cu-

bic kernel [RKcub: k(x) = 1− 3x2 + 2x3, flat-top, n1/4 rate]; (3) Parzen kernel [RKnfp:

k(x) = {
1−6x2 +6x3 if 0 ≤ x ≤ 1/2 ,2(1−x)3 if 1/2 ≤ x ≤ 1

}
, non-flat-top, n1/5 rate]; (4)

Tukey-Hanning kernel with power 2 [RKth2: k(x) = sin2{π/2(1−x)2}, flat-top, n1/4 rate].

5. Realized range RV (RRV): The realized range RV [Christensen and Podolskij (2007)] uses

sums of normalized squared high-low ranges for intra-daily periods rather than sums of

squared returns. As a result, it is based on extremes from the entire price path and

provides more information than returns sampled at fixed time intervals. Decomposing

the daily time interval into K non-overlapping intervals of size mK , the estimator is given

201



CHAPTER 4. HIGH-FREQUENCY INSTRUMENTS AND IDENTIFICATION-ROBUST INFERENCE

by:

RRV (mK ,K ) = 1

λ2,mK

K∑
i=1

s(mK )2

i

p−→ IV ol

where the range of the price process over the i th interval is given by s(mK )
i =

max 0≤h,l≤mK

(
p i−1+h/mK

K
− p i−1+l/mK

K

)
, i = 1, . . . ,K , and λ2,mK = E [max 0≤h,l≤mK (Wh/mK −

Wl/mK )2] is the second moment of the range of a standard Brownian motion over the

unit interval with mK observed increments.

4.7.2.2 Classes of realized measures robust to jumps

In the presence of jumps, the RV is a consistent estimator of the QV [see Andersen and Boller-

slev (1998), Andersen, Bollerslev, Diebold and Labys (2001), Barndorff-Nielsen et al. (2002)],

which is a combination of IVol and jump variation (JV):

RVt
p−→

∫ t

0
σ2

s dWs︸ ︷︷ ︸
IV olt

+ ∑
0<s≤t

κ2
s︸ ︷︷ ︸

JVt

. (4.7.3)

We consider two classes of jump-robust realized measures:

1. Bipower variation (BV): The most widely used estimator of IVol in the presence of

jumps is the Bipower variation of Barndorff-Nielsen and Shephard (2004). It is the sum

of adjacent absolute returns:

BVt := π

2

n∑
i=2

|ri−1,n ||ri ,n | p−→ IV olt =
∫ t

0
σ2

s dWs . (4.7.4)

2. Nearest neighbor truncated RV: Andersen et al. (2012) used nearest neighbor trunca-

tion approach to estimate the integrated volatility, where the median RV (MedRV) and

minimum RV (MinRV) estimators use min or median of blocks of returns (MinRV with

blocks of two returns and MedRV with blocks of three returns). The proposed estimators

are:

Mi nRVn = π

π−2

(
n

n −1

)n−1∑
i=1

[min(|ri ,n |, |ri+1,n |)]2,
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MedRVn = π

6−4
p

3+π

(
n

n −2

)n−2∑
i=2

[med(|ri−1,n |, |ri ,n |, |ri+1,n |)]2.

4.7.2.3 Additional HF measures and jump variations

We also consider realized semivariance (RSV), JV, and signed JV (SJV) and squared logarithms

of the latter (JV, SJV):

1. Jump variation Combining the results in equations (4.7.3) and (4.7.4), the contribution

of the JV in the QV can be consistently estimated by

JVt := RVt −BVt
p−→ ∑

0<s≤t
κ2

s ; (4.7.5)

see Barndorff-Nielsen and Shephard (2006).

2. Realized semivariance Barndorff-Nielsen et al. (2010) proposed RSV estimators that can

capture the variation only due to negative or positive returns. These estimators are de-

fined as:

RSV +
t :=

n∑
j=1

r 2
t j

1{rt j >0}
p−→ 1

2

∫ t

0
σ2

s dWs +
∑

0≤s≤t
κ2

s 1{κs>0}, (4.7.6)

RSV −
t :=

n∑
j=1

r 2
t j

1{rt j <0}
p−→ 1

2

∫ t

0
σ2

s dWs +
∑

0≤s≤t
κ2

s 1{κs<0}, (4.7.7)

where the first term in the limit of both RSV + and RSV − is one-half of the integrated

variance. These estimators provide a complete decomposition of RV, in the sense that

RV = RSV ++RSV −.

3. Signed jump variation The variation due to the continuous component can be removed

by subtracting one RSV from the other without estimating it separately. The remaining

part is defined as the signed jump variation:

S JVt := lim
n→∞(RSV +

t −RSV −
t ) = ∑

0≤s≤t
κ2

s 1{κs>0} −
∑

0≤s≤t
κ2

s 1{κs<0}. (4.7.8)
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4.7.3 Final instrument set, econometric model and test statistics

The final instrument set also includes principal component factors (PCF) and daily log volatil-

ity of yt . The three largest principal component factors are extracted from HF IV’s; see Table

4.11 for details. Formally, PCF-based identification-robust inference in the context of IV re-

gressions was considered by Kapetanios et al. (2016) to deal with the problem of many IV’s.

Note that we use logarithms of RV-RSVP and PCF classes of IV’s; see Table 4.11.

We consider one hundred and seventy-five IVs, which can be divided into 22 classes. The

description of these IV’s are given in Table 4.11. The HF subclass includes different sampling

frequencies [tick, second and minute], sampling scheme [tick or business], and sub-sampling.

We use 1-minute sub-sampling [ss] in the calculation of several HF measures.

For empirical analysis, we consider the following GSV model:

wt =µ+ϕwt−1 + vt , yt = wt +ϵt , vt ∼ i.i.d. N (0,σ2
v ) , ϵt ∼ i.i.d. log(χ2

(1)) ,(4.7.9)

yt−1 = π̄0 +Z ′
t−2π̄1 +ηt−1 , ηt−1 := ϵt−1 +ut−1 , ut ∼ i.i.d. N (0,σ2

u) , (4.7.10)

where wt = log(σ2
t ), yt = log(s2

t )+1.2704 with st := rt −µr is residual return of an asset with µr

is the mean of return rt = 100[log(pt )− log(pt−1)] and Zt−2 is the set of IV’s.

For inference, we consider joint tests (ϕ, ρ) = (ϕ0, ρ0). The inference procedures AR, AR∗,

SS, and SS∗ are proposed in Sections 4.3.1-4.3.4 and corresponding test statistics are given in

equations (4.3.22), (4.3.25), (4.3.31) and (4.3.35). We use τ= 0.2 for SS-type tests and employ

99 Monte Carlo replications for PO type procedures.

4.7.4 Results

In this section, we examine the strength of IV’s; after that, we build projection-based confi-

dence sets for the volatility persistence parameter of IBM stock by employing numerous types

of instruments. Using the lengths of these identification-robust confidence sets, we identify

several crucial empirical stylized facts.
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4.7.4.1 Strength of IV’s

We investigate the strength of daily IV’s since a pressing concern with an IV approach is the

possible use of weak IV’s, which can produce biased estimators [bias towards OLS estimates]

and hypothesis tests with large size distortion. The existing econometric literature defines

weak IV’s based on the strength of the first-stage equation [Bekker (1994), Dufour (2003),

Staiger and Stock (1997), and Stock and Yogo (2005)]. Following Stock and Yogo (2005), we

employ the first-stage F-statistic to detect whether IV’s are weak or not.

Tests based on F-statistics that whether daily IV’s [past lags of the endogenous variable]

all have zero coefficients are reported in Table 4.12 with corresponding critical values asso-

ciated with the desired maximum level of size distortion. From the table, we can see that

many F-statistics are less than the corresponding critical value associated with the maximum

asymptotic size of a Wald test [these critical values are obtained using weak-IV asymptotic dis-

tributions]. These results suggest that IV estimates are biased towards OLS estimates, and we

need to use weak instrument robust inference methods: see Dufour (1997) for more details

about the Wald test.

Now, we wish to check if the HF and other IV’s are weak or not. We consider IBM stock

and different classes of IV’s. Results with other stocks are qualitatively similar and omitted to

conserve space. Table 4.13 reports the first-stage F-statistics of all IV’s. From the results, we

can draw several conclusions: (1) most of the HF IV’s are strong for IBM, but exceptions are JV

and SJV HF classes, ImV-mean subclass, and daily IV’s; (2) if we consider multiple IV’s, then

Wald-type tests fail to control the level in many cases; (3) in most cases, the value of F-statistic

(that measures the strength of IV’s) is maximum, when we consider only one instrument irre-

spective of it is weak or strong.

4.7.4.2 Projection-based confidence sets

To construct a projection-based confidence interval for the volatility persistence parameter

ϕ, we first construct a confidence interval for λ with level (1−α1), denoted as Cα1 (λ). We

parametrize the noise ratio λ rather than ρ since this is the more natural choice. We set

α1 = 0.05, and compute λ using the simple winsorized method proposed by Ahsan and Du-
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four (2019). We use equations (3.8)-(3.9) with J = 10 of Ahsan and Dufour (2019) to estimate

σ2
v and the corresponding standard error (SE). By setting σ2

ϵ = π2/2, the SE of λ̂ = σ2
ϵ/σ̂v

2 is

computed using the delta method. The estimated 95% confidence interval for the nuisance

parameter λ is C0.05(λ) = [33.943, 61.154] with λ̂= 47.548 and SE(λ̂) = 6.935. For each value of

λ in the confidence interval Cα1 (λ), we then construct (1−α2) confidence intervals for ϕ given

λ [denoted by Cα2 (ϕ|λ)] by inverting a test robust to weak IV’s proposed in Sections 4.3.1-4.3.4.

By Bonferroni’s inequality, this confidence interval has coverage of at least 100(1−α)%, where

α=α1+α2. If we use α2 = 0.05, then a 90% confidence interval for ϕ that does not depend on

λ can be obtained by

C0.10(ϕ) = ∪
λ∈C0.05(λ)

C0.05(ϕ|λ).

The projection method is thoroughly discussed in Section 4.3.5. Note that we employ grid test-

ing during the test inversion, in which a series of tests [H0 : ϕ= ϕ0, λ = λ0, where ϕ0 ∈ [0, 1],

λ0 ∈ Cα1 (λ)] performed. Note that we restrict ϕ0 in the most relevant part of the parameter

space, i.e., ϕ0 ∈ [0, 1].

We use α1 = α2, which is the rule typically employed in the literature on simultaneous in-

ference (e.g., in Bonferroni-type procedures) and test combination; see Miller (1981), Savin

(1984). Cavanagh et al. (1995) suggest a refinement of the Bonferroni method that makes it

less conservative than the basic approach. The idea is to shrink the confidence interval for λ

so that the refined interval is a subset of the original (unrefined) interval. This consequently

shrinks the Bonferroni confidence interval for ϕ, achieving an exact test of the desired signif-

icance level. However, it is important to note that α should be selected a priori, not on the

basis of the results yielded by different choices of α1 for a given sample.

As pointed out by Dufour (1997), when IV’s are arbitrary weak, then confidence sets with

correct coverage probability must have an infinite length with positive probability.9 As a result,

the length of a weak instrument robust confidence interval can summarize the corresponding

instrument’s identification strength. Since we restrict ϕ0 ∈ [0, 1], then an irrelevant (no identi-

9Dufour (1997) showed that if the IV’s are not correlated with the regressor [irrelevant IV’s], then the corre-
sponding parameter is not identified, and any value of the parameter is consistent with data. A valid confidence
set in such a case must be infinite, at least with probability equal to the coverage. Most empirical applications
use the conventional Wald confidence interval, which is always finite. As a result, the Wald confidence interval
has a low coverage probability and should not be used when IV’s are weak.
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fication) instrument for the regressor should produce a confidence interval with length equal

to 1.

From an identification-robust confidence interval, we define the precision (or informational

efficiency) of an instrument set i as follows:

di := 1− (ubi − lbi ) (4.7.11)

where ub and lb are the upper and lower bound of the confidence set, and ub − lb is the

length of the confidence set. The definition di implies that if i is a weak instrument then

it will produce di close to 0 and if i is a strong instrument then it will produce di close to

1. For example, a large value of di implies that the corresponding instrument set is highly

informative about the parameter ϕ.

Figure 4.1 shows the precision measure di of different classes of IV’s, where the instrument

set consists of a constant and a lag of the corresponding instrument. For each class, we con-

sider average, median, minimum, and maximum precision measures across the proposed in-

ference methods. The following inferences emerge from Figure 4.1. First, except for JV and SJV

classes, all HF classes are considered as strong instruments, i.e., these classes produce very

high di values. These results hold in all precision measures and across four inference meth-

ods. Second, JV and SJV classes have many weak and irrelevant (no identification) IV’s because

average and median precision measures of these classes are low and zero, respectively. These

results suggest that JV and SJV classes have no or little predictive power regarding the latent

daily volatility. However, log squared JV and SJV IV’s are informative about the volatility clus-

tering. This finding suggests that the second moment of jumps or signed jumps is correlated

with the latent daily volatility proxy. Third, both PCF and ImV classes have some relevant IV’s.

However, all ImV classes include some weak IV’s. Fourth, according to SS-type tests, the daily

instrument is uninformative regarding the latent daily volatility proxy. That is, SS and SS∗

produce di equal to 0.047 and 0, indicating weak and no identification, respectively.

Figure 4.2 shows the precision measure of different subclasses of HF IV’s. On average, all HF

subclasses produce confidence intervals with similar lengths, e.g., on average, both 1s and 5m

produce almost similar identification-robust confidence intervals. Note that the instrument
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equation (4.7.10) connects the daily volatility proxy to the instrument set. With an instrument

set containing a constant and a lag of HF instrument, (4.7.10) yields:

yt−1 = π̄0 + π̄1Zt−2 +ηt−1

where yt−1 is the daily volatility proxy and Zt−2 is the selected RV instrument. The constant

term π̄0 captures the bias in the RV estimate due to the non-trading hours and microstruc-

ture noise. If the bias-correction term π̄0 is negative, RV has an upward bias that may be

due to the market microstructure noise, and if π̄0 is positive, it has a downward bias due to

the non-trading hours; see Takahashi et al. (2009). Due to this bias-correction term, the pro-

posed inference methods produce confidence intervals robust to the non-trading hours and

microstructure noise even with a very high sampling frequency.

To formalize, we define the notion of the average precision of an instrument set i over the

proposed inference methods by

d̄i ,s := 1

S

S∑
i=1

di (4.7.12)

where s ∈ S and S is the set of identification-robust inference methods. We use this measure

to rank the information content of instruments. Table 4.14 reports the projection-based 90%

confidence intervals for ϕ using strong IV’s, i.e., based on d̄i ,s . Panel A includes superior IV’s

while panel B and C include IV’s which produce slightly larger confidence sets compared to

the IV’s in panel A. Panel A mostly includes HF IV’s, and 70% of these are 5m subclass. This

finding proves that HF RV does provide an additional gain in predicting the LF volatility proxy.

The best instrument is RSVN-5m-ss. The average implied volatility that extracts from IBM

call options is also a strong instrument. This finding is in line with Christensen and Prabhala

(1998), who find that implied volatility has large explanatory power regarding past volatility.

We also find that confidence sets with 30s RVs [Panel C: RSVN-30s, RV-30s, BV-30s, MSRV-30s]

are spacious than confidence sets with 5m RVs [Panel A and B] and conclude that the effect

of market microstructure noise leads to slightly wider confidence sets. It is well-known that

the market microstructure noise becomes progressively more dominant as the sampling fre-

quency increases; see Zhang et al. (2005), Bandi and Russell (2008), and Hansen and Lunde

(2006). Thus, our result suggests that the proposed inference methods produce valid confi-
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dence sets even with noisy RVs at a higher frequency. Further, 85% of the time, Panel A and B

include IV’s with frequency 1m, 5m, and 10m. These confidence sets are less sensitive to the

market microstructure noise.

Table 4.14 also gives several other conclusions. First, we can infer from these confidence

sets that the persistence parameter lies roughly between 0.85 and 1.0 for IBM. This outcome

indicates that the volatility process is highly persistent, close to unit-root, consistent with the

empirical literature. These confidence sets include ϕ = 1, implying that these sets are also

robust to nonstationarity. Second, in all cases, simulation-based point-optimal confidence

sets [AR∗ and SS∗] are conservative compared to the corresponding AR-type confidence sets

[AR and SS].

Table 4.15 presents the projection-based 90% confidence intervals for ϕ using weak IV’s, i.e.,

based on d̄i ,s . Panel A of Table 4.15 contains IV’s with no identification. As a result, these IV’s

produce unbounded confidence intervals. These confidence intervals cover the entire set of

ϕ ∈ [0, 1]. Panel A comprises mostly by JV and SJV HF classes and ImV-max subclass. Note

that under no identification, all values of ϕ are observationally equivalent, which implies that

the proposed test statistics yield valid confidence sets that are unbounded with a non-zero

probability. Consequently, the proposed tests are robust to weak identification. From Panel

C, we find that the LF daily instrument produces a valid confidence set. However, the length

of this set is larger compared to HF confidence sets given in Table 4.14. We also see that in

some cases, SS-type tests produce confidence intervals that are entirely different from those

that are provided by AR-type tests. This finding could be because SS-type tests are computed

from the second part of the sample and may be affected by an unmodeled structural change.

In Table 4.16, we report the estimated confidence intervals, where the instrument set in-

cludes a constant and several lags of an instrument, l = 1, 3, 5. In this setup, we use the first

set of strong IV’s [Table 4.14 - Panel A], ImV-C-q3, and 1-day. In most cases, we find that all

confidence intervals for ϕ (AR, AR∗, SS, SS∗) are getting wider as l increases. The average

length of these confidence intervals when l = 3, 5 are larger than the confidence intervals

were when l = 1. Therefore, we do not see any apparent gains by adding more lags in the

instrument set. The only exception is the LF daily instrument, where the average length of

confidence intervals is shorter than before. This result implies that we should use more daily
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lags as IV’s to get a smaller confidence set. We also construct several confidence sets where

the instrument set includes a constant and various combinations of strong IV’s. We report

these confidence sets in Table 4.17. The conclusion is similar to Table 4.16, i.e., no apparent

gains from combining strong IV’s.

Finally, these confidence sets can be extended to allow for non-Gaussian error distributions

[where the conditional distribution of scale transformed error has a non-Gaussian error dis-

tribution] using the MCT procedure described in Section 4.4. Furthermore, these confidence

intervals formed from a range of accepted values due to grid testing; thus, it is easy to get a

nonparametric estimate of ϕ by applying the Hodges-Lehmann principal.

4.8 Conclusion

This paper has introduced a novel class of GSV models, which can use high-frequency infor-

mation content and accommodate nonstationary volatility. We employ IV methods to provide

a unified framework for the analysis of GSV models.

In the framework of GSV class models, we have studied the problem of testing hypotheses

and building confidence sets for the volatility persistence parameter. This parameter has an

intrinsic interest because it measures the latent volatility process’s persistence, i.e., “volatil-

ity clustering of asset returns”. We proposed more reliable identification-robust finite-sample

procedures, which are robust to weak IV’s and/or nonstationary latent volatility. We also

showed that these finite-sample procedures (based on a Gaussian assumption on the errors)

remain asymptotically valid under weaker distributional assumptions. We then study the sta-

tistical properties of the proposed tests in simulation experiments. These tests outperform the

asymptotic t-type test in terms of size and exhibit excellent power.

We applied these methods to IBM’s price and option data and observed several empirical

facts. The superior instrument set constitutes of HF realized measures and call option implied

volatilities. These IV’s produce confidence sets, which show that the latent volatility process of

IBM is close to unit-root. We find RVs at higher frequency produce spacious confidence inter-

vals than RVs at slightly lower frequencies, pointing out that these confidence intervals adjust

to incorporate the microstructure noise. We also find jumps and signed jumps have no or little
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information content regarding the low-frequency volatility, whereas their log squared versions

have a strong identification strength. When we consider irrelevant or weak instruments, the

proposed procedures give unbounded confidence intervals.

Finally, it is easy to see that the inference methods used in this paper can be adapted to

other situations, e.g., measurement error in ARMA-type models, or noisy realized measures in

HAR volatility modeling. The extension to multivariate models and parameter estimation in

the GSV framework are topics of ongoing research.
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4.9 Appendix

4.9.1 Proofs

PROOF OF PROPOSITION 4.4.1 When ϕ = ϕ0 and ρ = ρ0, on multiplying the two sides of

(4.3.21) by MC0 [X ]−MC0 [X , Z−2] and MC0 [X ], we see that:

(MC0 [X ]−MC0 [X , Z−2])C0(y −ϕ0 y−1) = σξ(MC0 [X ]−MC0 [X , Z−2])ϑ ,

MC0 [X ]C0(y −ϕ0 y−1) = σξMC0 [X ]ϑ . (4.9.1)

Thus, the AR-statistic in (4.3.22) can be rewritten as:

AR(ϕ0,ρ0) =
σ2
ξ
ϑ′(MC0 [X ]−MC0 [X , Z−2])ϑ/l

σ2
ξ
ϑ′MC0 [X ]ϑ/(T − l −k)

= ϑ′(MC0 [X ]−MC0 [X , Z−2])ϑ/l

ϑ′MC0 [X ]ϑ/(T − l −k)
.

Hence, the null conditional distribution of AR(ϕ0,ρ0), given X , only depends on distribu-

tion of ϑ. If normality holds conditional on X , i.e., ϑ | X ∼ N(0, IT ),we have ϑ′(MC0 [X ] −
MC0 [X , Z−2])ϑ ∼ χ2

(l ) and ϑ′MC0 [X ]ϑ ∼ χ2
(T−l−k). Since MC0 [X , Z−2](MC0 [X ]−MC0 [X , Z−2]) = 0,

hence ϑ′(MC0 [X ]−MC0 [X , Z−2])ϑ and ϑ′MC0 [X ]ϑ are independent conditional on X . Conse-

quently, AR(ϕ0,ρ0) ∼ F (l ,T − l −k).

PROOF OF PROPOSITION 4.5.1 Under the null hypothesis ϕ=ϕ0,

ART (ϕ0) = κ(T )
Λ1T −Λ2T

Λ2T /T
, (4.9.2)

where

Λ1T := ξ(T )′M [Q1T ]ξ(T ) , Λ2T := ξ(T )′M [QT ]ξ(T ) , κ(T ) := T − l −k

lT
.

Under the Assumption (4.5.1), we have

κ(T ) −→
T−→∞

1

l
, (4.9.3)

q2 | q1 ∼ N(ΣQ2Q1Σ
−1
Q1Q1

q1,σ2
ξΣq2|q1 ), (4.9.4)
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where Σq2|q1 =ΣQ2Q2 −ΣQ2Q1Σ
−1
Q1Q1

ΣQ1Q2 . Then

(q2 −ΣQ2Q1Σ
−1
Q1Q1

q1)′Σ−1
q2|q1

(q2 −ΣQ2Q1Σ
−1
Q1Q1

q1) ∼σ2
ξχ

2
(l ). (4.9.5)

Λ1T −Λ2T = ξ(T )′M [Q1T ]ξ(T )−ξ(T )′M [QT ]ξ(T )

= ξ(T )′(I −P [Q1T ])ξ(T )−ξ(T )′(I −P [QT ])ξ(T )

= ξ(T )′QT (Q ′
T QT )−1Q ′

T ξ(T )−ξ(T )′Q1T (Q ′
1T Q1T )−1Q ′

1T ξ(T )

= ξ(T )′QT DT (D ′
T Q ′

T QT DT )−1D ′
T Q ′

T ξ(T )−ξ(T )′D1T Q1T (D ′
1T Q ′

1T Q1T D1T )−1D ′
1T Q ′

1T ξ(T )

=⇒ q ′Σ−1
QQ q −q ′

1Σ
−1
Q1Q1

q1. (4.9.6)

Now using standard formulas of a partitioned matrix inverse for ΣQQ and setting S = q ′Σ−1
QQ q−

q ′
1Σ

−1
Q1Q1

q1 [see Gentle (2007), Section 3.4.1], we have

S = q ′Σ−1
QQ q −q ′

1Σ
−1
Q1Q1

q1

= (q ′
1, q ′

2)′
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ΣQ1Q2Σ

−1
q2|q1
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Q1Q1
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q2|q1
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q1 +q ′
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q1 −2q ′
2Σ
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Q1Q1

ΣQ1Q2Σ
−1
q2|q1

q2 +q ′
2Σ

−1
q2|q1

q2

−q ′
1Σ

−1
Q1Q1

q1

= q ′
1Σ

−1
Q1Q1

ΣQ1Q2Σ
−1
q2|q1

ΣQ2Q1Σ
−1
Q1Q1

q1 −2q ′
2Σ

−1
Q1Q1

ΣQ1Q2Σ
−1
q2|q1

q2 +q ′
2Σ

−1
q2|q1

q2

= (q2 −ΣQ2Q1Σ
−1
Q1Q1

q1)′Σ−1
q2|q1

(q2 −ΣQ2Q1Σ
−1
Q1Q1

q1). (4.9.7)

Thus, from (4.9.5), (4.9.6), and (4.9.7), we have

Λ1T −Λ2T =⇒σ2
ξχ

2
(l ) , and

Λ2T

T

p−→
T−→∞

σ2
ξ , hence ART (ϕ0) =⇒

χ2
(l )

l
.
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PROOF OF PROPOSITION 4.5.2 Under the null hypothesis (ϕ=ϕ0 ,ρ = ρ0),

AR∗
T (ϕ0,ρ0,ρ1) = Λ1T −Λ2T

Λ2T /T
, (4.9.8)

where

Λ1T := ξ̂(T )′M [Q̂1T ]ξ̂(T ) , Λ2T = ξ̃(T )′M [Q̃T ]ξ̃(T ) .

Under the Assumption 4.5.2, we have

Λ2T /T = ξ̃(T )′ξ̃(T )/T − ξ̃(T )′P [Q̃T ]ξ̃(T )/T

= ξ̃(T )′ξ̃(T )/T − ξ̃(T )′Q̃T DT (D ′
T Q̃ ′

T Q̃T DT )−1D ′
T Q̃ ′

T ξ̃(T )/T

= ξ̃(T )′ξ̃(T )/T − ξ̃(T )′Q̃T DT (D ′
T Q̃ ′

T Q̃T DT )−1D ′
T Q̃ ′

T ξ̃(T )/T

p−→
T−→∞

σ2
ξ, (4.9.9)

where the last equality follows from

ξ̃(T )′ξ̃(T )/T
p−→

T−→∞
σ2
ξ , ξ̃(T )′Q̃T DT (D ′

T Q̃ ′
T Q̃T DT )−1D ′

T Q̃ ′
T ξ̃(T )/T =⇒

σ2
ξ
χ2

(l+k)

T
−→

T−→∞
0.

Now using restrictions under the null and alternative that ξ̂(T ) = ξ̃(T ) := ξ∗T ∼ N (0, IT ), we have

Λ1T −Λ2T = ξ̂(T )′M [Q̂1T ]ξ̂(T )− ξ̃(T )′M [Q̃T ]ξ̃(T )

= ξ∗T
′M [Q̂1T ]ξ∗T −ξ∗T

′M [Q̃T ]ξ∗T

= [
ξ∗T

′
ξ∗T −ξ∗T

′
ξ∗T

]+ [
ξ∗T

′P [Q̃T ]ξ∗T −ξ∗T
′P [Q̂1T ]ξ∗T

]
= ξ∗T

′P [Q̃T ]ξ∗T −ξ∗T
′P [Q̂1T ]ξ∗T

= ξ∗T
′Q̃T (Q̃ ′

T Q̃T )−1Q̃ ′
T ξ

∗
T −ξ∗T

′Q̂1T (Q̂ ′
1T Q̂1T )−1Q̂ ′

1T ξ
∗
T

= ξ∗T
′QT [Q ′

TΣ(ρ1)−1QT ]−1Q ′
TΣ(ρ1)−1ξ∗T −ξ∗T

′Q1T [Q ′
1TΣ(ρ0)−1Q1T ]−1Q ′

1TΣ(ρ0)−1ξ∗T

= ξ∗T
′QT DT [D ′

T Q ′
TΣ(ρ1)−1QT DT ]−1D ′

T Q ′
TΣ(ρ1)−1ξ∗T

−ξ∗T
′Q1T D1T [D ′

1T Q ′
1TΣ(ρ0)−1Q1T D1T ]−1D ′

1T Q ′
1TΣ(ρ0)−1ξ∗T

= ξ∗T
′
Λ1ξ

∗
T −ξ∗T

′
Λ0ξ

∗
T

=Λ1 −Λ0, (4.9.10)
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where QT = [Q1T
... Q2T ], Q1T = X (T ), Q2T = Z−2(T ), and

Λ1 :=QT DT [D ′
T Q ′

TΣ(ρ1)−1QT DT ]−1D ′
T Q ′

TΣ(ρ1)−1 ,

Λ0 :=Q1T D1T [D ′
1T Q ′

1TΣ(ρ0)−1Q1T D1T ]−1D ′
1T Q ′

1TΣ(ρ0)−1 ,

Λ1 := ξ∗T
′
Λ1ξ

∗
T , Λ0 := ξ∗T

′
Λ0ξ

∗
T .

Under the Assumption 4.5.2, we have

Λ1 = ξ∗T
′
Λ1ξ

∗
T =⇒σ2

ξχ
2
(l+k) ,

Λ0 = ξ∗T
′
Λ0ξ

∗
T =⇒σ2

ξχ
2
(k) .

Further, from the properties of quadratic forms [see Hogg and Craig (1958)], if Λ1 −Λ0 ≥ 0,

then

Λ1 −Λ0 =⇒σ2
ξχ

2
(l ) . (4.9.11)

Since Λ1 is a projection onto [D1T X (T ), D2T Z−2(T )] plane and Λ0 is a projection onto

D1T X (T ), Λ1 −Λ0 is a projection onto D2T Z−2(T ), i.e., it is a projection onto the orthogonal

complement of D1T X (T ) within [D1T X (T ), D2T Z−2(T )]. As a result, Λ1 −Λ0 is an idempotent

and positive-semidefinite matrix. This implies

Λ1 −Λ0 = ξ∗T
′(Λ1 −Λ0)ξ∗T ≥ 0, (4.9.12)

and therefore

Λ1 −Λ0 =⇒σ2
ξχ

2
(l ). (4.9.13)

Hence from (4.9.9) and (4.9.13), we have

AR∗
T (ϕ0,ρ0,ρ1) =⇒χ2

(l ).
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PROOF OF PROPOSITION 4.5.3 Under the null ϕ=ϕ0, ρ = ρ0,

SST (ϕ0,ρ0) = κ(T2)
Λ∗

1T −Λ∗
2T

Λ∗
2T /T2

,

where Λ∗
1T = ξ̄

∗(2)′
T M [Q∗

1T ]ξ̄
∗(2)
T and Λ∗

2T = ξ̄
∗(2)′
T M [Q̂∗

T ]ξ̄
∗(2)
T . Under the Assumptions 4.5.3-4.5.4,

κ(T2) −→
T−→∞

1

l
, (4.9.14)

q̂∗
2 | q∗

1 ∼ N(ΣQ̂∗
2 Q∗

1
Σ−1

Q∗
1 Q∗

1
q∗

1 ,σ2
ξΣq̂∗

2 |q∗
1

), (4.9.15)

where Σq̂∗
2 |q∗

1
=ΣQ̂∗

2 Q̂∗
2
−ΣQ̂∗

2 Q∗
1
Σ−1

Q∗
1 Q∗

1
ΣQ∗

1 Q̂∗
2

. Then

(q̂∗
2 −ΣQ̂∗

2 Q∗
1
Σ−1

Q∗
1 Q∗

1
q∗

1 )′Σ−1
q̂∗

2 |q∗
1

(q̂∗
2 −ΣQ̂∗

2 Q∗
1
Σ−1

Q∗
1 Q∗

1
q∗

1 ) ∼σ2
ξχ

2
(l ). (4.9.16)

Λ∗
1T −Λ∗

2T = ξ̄
∗(2)′
T M [Q∗

1T ]ξ̄
∗(2)
T − ξ̄

∗(2)′
T M [Q̂∗

T ]ξ̄
∗(2)
T

= ξ̄
∗(2)′
T (I −P [Q∗

1T ])ξ̄
∗(2)
T − ξ̄

∗(2)′
T (I −P [Q̂∗

T ])ξ̄
∗(2)
T

= ξ̄
∗(2)′
T Q̂∗

T (Q̂∗
T
′
Q̂∗

T )−1Q̂∗
T
′
ξ̄
∗(2)
T − ξ̄
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T Q∗

1T (Q∗
1T

′Q∗
1T )−1Q∗

1T
′
ξ̄
∗(2)
T

= ξ̄
∗(2)′
T Q̂∗

T DT (D ′
T Q̂∗

T
′
Q̂∗

T DT )−1D ′
T Q̂∗

T
′
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T − ξ̄
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T D1T Q∗
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1T Q∗
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=⇒ q̂∗′Σ−1
Q̂∗Q̂∗ q̂∗−q∗

1
′
Σ−1

Q∗
1 Q∗

1
q∗

1 . (4.9.17)

Now using standard formulas of a partitioned matrix inverse for ΣQ̂∗Q̂∗ and setting q̃∗ :=
q̂∗′Σ−1

Q̂∗Q̂∗ q̂∗−q∗
1
′Σ−1

Q∗
1 Q∗

1
q∗

1 [see Gentle (2007), Section 3.4.1], we have

q̃∗ = q̂∗′Σ−1
Q̂∗Q̂∗ q̂∗−q∗

1
′
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Q∗
1 Q∗

1
q∗

1
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1 ). (4.9.18)

Thus, from (4.9.16), (4.9.17), and (4.9.18), we have

Λ∗
1T −Λ∗

2T =⇒σ2
ξχ

2
(l ) , and

Λ∗
2T

T2

p−→
T2−→∞

σ2
ξ , hence SST (ϕ0,ρ0) =⇒

χ2
(l )

l
.
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Figure 4.1. IBM: 2009-2013: Precision of different classes of instruments.

Note: The instrument set consists of a constant and a lag of instrument, l = 1. We use log-
arithms of RV-RSVP and PCF classes of instruments given in Table 4.11. The precision of an
instrument set i is defined as di = 1− (ubi − lbi ). For each class, we consider the average,
median, minimum, and maximum precision measure across the proposed inference methods
[AR, AR∗, SS and SS∗]. These inference procedures are proposed in Sections 4.3.1-4.3.4 and
corresponding test statistics are given in equations (4.3.22), (4.3.25), (4.3.31) and (4.3.35). We
use τ = 0.2 for SS-type tests and employ 99 Monte Carlo replications for point-optimal type
procedures.
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Figure 4.2. IBM: 2009-2013: Precision of different subclasses of HF instruments.

Note: The instrument set consists of a constant and a lag of instrument, l = 1. We use log-
arithms of RV-RSVP and PCF classes of instruments given in Table 4.11. The precision of an
instrument set i is defined as di = 1− (ubi − lbi ). For each class, we consider the average,
median, minimum, and maximum precision measure across the proposed inference methods
[AR, AR∗, SS and SS∗]. These inference procedures are proposed in Sections 4.3.1-4.3.4 and
corresponding test statistics are given in equations (4.3.22), (4.3.25), (4.3.31) and (4.3.35). We
use τ = 0.2 for SS-type tests and employ 99 Monte Carlo replications for point-optimal type
procedures.
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4.9.3 Tables

Table 4.1. Corresponding values of λ0

ϕ0

ρ0 -0.5 -0.4999 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.4999 0.5

-1 - 2499.50 4.50 2.00 1.17 0.75 0.50 0.33 0.21 0.13 0.06 0.00 - - - - - - - - - - -
-0.9999 - 2499.81 4.50 2.00 1.17 0.75 0.50 0.33 0.21 0.13 0.06 0.00 - - - - - - - - - - -

-0.95 - - 4.79 2.12 1.23 0.79 0.53 0.35 0.23 0.13 0.06 0.00 - - - - - - - - - - -
-0.9 - - 5.26 2.27 1.31 0.84 0.56 0.37 0.24 0.14 0.06 0.00 - - - - - - - - - - -
-0.8 - - 7.26 2.78 1.55 0.97 0.64 0.42 0.27 0.16 0.07 0.00 - - - - - - - - - - -
-0.7 - - 15.25 3.85 1.96 1.19 0.76 0.50 0.31 0.18 0.08 0.00 - - - - - - - - - - -
-0.6 - - - 7.14 2.82 1.56 0.96 0.61 0.38 0.22 0.09 0.00 - - - - - - - - - - -
-0.5 - - - - 5.60 2.40 1.33 0.80 0.48 0.27 0.11 0.00 - - - - - - - - - - -
-0.4 - - - - - 5.77 2.27 1.19 0.66 0.35 0.15 0.00 - - - - - - - - - - -
-0.3 - - - - - - 9.09 2.44 1.10 0.52 0.20 0.00 - - - - - - - - - - -
-0.2 - - - - - - - - 3.41 1.04 0.34 0.00 - - - - - - - - - - -
-0.1 - - - - - - - - - - 1.01 0.00 - - - - - - - - - - -

0 - - - - - - - - - - - - - - - - - - - - - - -
0.1 - - - - - - - - - - - 0.00 1.01 - - - - - - - - - -
0.2 - - - - - - - - - - - 0.00 0.34 1.04 3.41 - - - - - - - -
0.3 - - - - - - - - - - - 0.00 0.20 0.52 1.10 2.44 9.09 - - - - - -
0.4 - - - - - - - - - - - 0.00 0.15 0.35 0.66 1.19 2.27 5.77 - - - - -
0.5 - - - - - - - - - - - 0.00 0.11 0.27 0.48 0.80 1.33 2.40 5.60 ∞ - - -
0.6 - - - - - - - - - - - 0.00 0.09 0.22 0.38 0.61 0.96 1.56 2.82 7.14 - - -
0.7 - - - - - - - - - - - 0.00 0.08 0.18 0.31 0.50 0.76 1.19 1.96 3.85 15.25 - -
0.8 - - - - - - - - - - - 0.00 0.07 0.16 0.27 0.42 0.64 0.97 1.55 2.78 7.26 - -
0.9 - - - - - - - - - - - 0.00 0.06 0.14 0.24 0.37 0.56 0.84 1.31 2.27 5.26 - -

0.95 - - - - - - - - - - - 0.00 0.06 0.13 0.23 0.35 0.53 0.79 1.23 2.12 4.79 - -
0.9999 - - - - - - - - - - - 0.00 0.06 0.13 0.21 0.33 0.50 0.75 1.17 2.00 4.50 2499.81 -

1 - - - - - - - - - - - 0.00 0.06 0.13 0.21 0.33 0.50 0.75 1.17 2.00 4.50 2499.50 ∞

Table 4.2: Size of asymptotic t-type test for H0 : ϕ=ϕ0 (nominal level: 5%)

ϕ T = 100 T = 200 T = 300 T = 400 T = 500 T = 1000 T = 2000

0.0000 0.2 0.1 0.0 0.0 0.0 0.0 0.0
0.1000 0.2 0.1 0.0 0.0 0.0 0.0 0.0
0.2000 0.2 0.1 0.0 0.0 0.1 0.2 0.4
0.3000 0.2 0.1 0.0 0.1 0.2 1.0 1.7
0.4000 0.2 0.3 0.4 0.7 1.0 2.2 2.4
0.5000 0.3 0.9 1.3 1.6 1.9 2.4 2.3
0.6000 0.9 1.7 2.0 2.2 2.4 2.2 2.0
0.7000 1.7 2.3 2.4 2.4 2.3 1.8 1.7
0.8000 2.6 2.4 2.6 2.3 2.3 2.0 1.9
0.9000 4.5 3.4 3.7 3.6 3.2 2.8 2.9
0.9500 7.6 5.5 5.1 4.7 4.4 3.4 3.3
0.9800 13.8 9.1 7.1 6.3 6.0 4.5 3.8
0.9850 15.2 10.3 8.1 7.3 6.9 5.1 4.2
0.9900 18.0 12.5 10.3 9.0 8.6 6.3 5.1
0.9950 20.9 16.4 14.6 12.9 12.4 9.0 7.0
0.9990 24.1 21.5 21.9 22.0 22.7 20.5 17.6
0.9995 24.7 22.2 23.4 24.0 25.5 24.9 23.6
0.9999 25.3 23.0 24.8 25.9 27.9 29.9 32.4
1.0000 30.5 29.2 29.9 30.1 31.4 34.3 37.2
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CHAPTER 4. HIGH-FREQUENCY INSTRUMENTS AND IDENTIFICATION-ROBUST INFERENCE
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CHAPTER 4. HIGH-FREQUENCY INSTRUMENTS AND IDENTIFICATION-ROBUST INFERENCE
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CHAPTER 4. HIGH-FREQUENCY INSTRUMENTS AND IDENTIFICATION-ROBUST INFERENCE
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CHAPTER 4. HIGH-FREQUENCY INSTRUMENTS AND IDENTIFICATION-ROBUST INFERENCE
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CHAPTER 4. HIGH-FREQUENCY INSTRUMENTS AND IDENTIFICATION-ROBUST INFERENCE

Table 4.11. Description of instruments

No Classes of instruments Subclasses

HF realized measures not robust to jumps

1-13 RV Realized volatility 1s, 5s, 30s, 1m, 5m, 10m, 1t, 5t, 10t, 20t, 50t, 5m-ss, 10m-ss
14-24 RVbr Realized volatility with optimal sampling 1s, 5s, 30s, 1m, 5m, 10m, 1t, 5t, 10t, 20t, 50t
25-35 MSRV Multi-scales realized volatility 1s, 5s, 30s, 1m, 5m, 10m, 1t, 5t, 10t, 20t, 50t
36-40 Rkcub Realized Kernel with fat-top cubic kernel 1t, 5t, 10t, 20t, 50t
41-45 Rkbart Realized Kernel with fat-top Bartlett kernel 1t, 5t, 10t, 20t, 50t
46-50 RKth2 Realized Kernel with fat-top Tukey-Hanning kernel (power 2) 1t, 5t, 10t, 20t, 50t
51-55 RKnfp Realized Kernel with non-fat-top Parzen kernel 1t, 5t, 10t, 20t, 50t
56-58 RRV Realized range volatility 1m, 5m, 10m

HF realized measures robust to jumps

59-71 BV Bipower variation 1s, 5s, 30s, 1m, 5m, 10m, 1t, 5t, 10t, 20t, 50t, 5m-ss, 10m-ss
72-77 MedRV Nearest neighbor truncated median RV 1s, 5s, 30s, 1m, 5m, 10m
78-83 MinRV Nearest neighbor truncated minimum RV 1s, 5s, 30s, 1m, 5m, 10m

Aditional HF measures and jump variations

84-96 RSVN Realized semivariance due to negative returns 1s, 5s, 30s, 1m, 5m, 10m, 1t, 5t, 10t, 20t, 50t, 5m-ss, 10m-ss
97-109 RSVP Realized semivariance due to positive returns 1s, 5s, 30s, 1m, 5m, 10m, 1t, 5t, 10t, 20t, 50t, 5m-ss, 10m-ss
110-120 JV Jump variation 1s, 5s, 30s, 1m, 5m, 10m, 1t, 5t, 10t, 20t, 50t
121-131 SJV Signed jump variation 1s, 5s, 30s, 1m, 5m, 10m, 1t, 5t, 10t, 20t, 50t
132-142 LJV Log squared jump variation 1s, 5s, 30s, 1m, 5m, 10m, 1t, 5t, 10t, 20t, 50t
143-153 LSJV Log squared signed jump variation 1s, 5s, 30s, 1m, 5m, 10m, 1t, 5t, 10t, 20t, 50t
154-156 PCF HF principal component factor 1, 2, 3

Other instruments

157-162 ImV-C Implied volatility (call option) mean, min, max, q1, q2, q3
163-168 ImV-P Implied volatility (put option) mean, min, max, q1, q2, q3
169-174 ImV-A Implied volatility (both call and put option) mean, min, max, q1, q2, q3
175 1-day Daily realized volatility

Notes:

1. Sampling frequencies are tick, second and minute, e.g., 1t stands for 1-tick, 1s stands for 1-second and
1m stands for 1-minute.

2. The use of 1-minute subsamples in the calculation of realized measures is denoted by ss.
3. Three principal component factors are extracted from HF instruments (1-109). PCF-1 stands for the

largest factor.
4. Implied volatilities (ImV) are calculated from American options. We consider three classes: (1) only call

options, (2) only put options, and (3) both call and put options. For each class, we use all implied volatil-
ities at a given date to construct six ImV subclasses, which are mean, min, max, and three quantiles (q1,
q2, q3).
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CHAPTER 4. HIGH-FREQUENCY INSTRUMENTS AND IDENTIFICATION-ROBUST INFERENCE

Table 4.12. Strength comparison with daily past lags as instruments
(F-statistics from first-stage regression)

January 2009 - December 2013, T = 1258

# of instruments

Ticker 1 2 3 4 5 6 7

GE 23.64 25.00 21.10 20.73 18.46 16.85 14.81
IBM 9.22 10.08 10.08 9.72 8.63 7.73 6.87
JPM 41.08 38.42 34.99 28.34 24.71 23.22 20.79
KO 6.19 10.24 8.82 9.00 8.31 7.08 7.00
PFE 14.99 11.17 7.53 7.43 7.41 7.45 7.06
PG 3.57 4.28 5.38 4.88 5.76 5.14 6.56
T 5.36 13.65 9.62 7.04 6.76 6.07 5.37
WMT 15.24 11.01 7.71 6.10 5.45 5.36 5.63
XOM 9.48 7.80 7.87 6.97 5.86 6.08 5.69

CV _Si ze(0.10) 16.38 19.93 22.30 24.58 26.87 29.18 31.50

Notes:

1. The critical value (CV) is a function of one endogenous regressor, the number of instrumental variables,
and the desired 10% maximal size of a 5% Wald test of ϕ = ϕ0, for further details, see Table 5.2 of Stock
and Yogo (2005).

2. Instruments are deemed weak if the first-stage F-statistic is less than the CV associated with the corre-
sponding column.
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CHAPTER 4. HIGH-FREQUENCY INSTRUMENTS AND IDENTIFICATION-ROBUST INFERENCE

Table 4.13. Strength comparison of all IV’s
(F-statistics from first-stage regression)

Ticker: IBM, January 2009 - December 2013, T = 1258

No Instruments l = 1 l = 3 l = 5 No Instruments l = 1 l = 3 l = 5 No Instruments l = 1 l = 3 l = 5 No Instruments l = 1 l = 3 l = 5

1 RV-1s 70.4 29.2 17.5 45 RKbart-50t 139.0 46.3 27.7 89 RSVN-10m 79.3 31.7 19.3 133 LJV-5s 46.2 23.4 13.9
2 RV-5s 69.3 29.9 17.7 46 RKth2-1t 132.5 46.6 27.9 90 RSVN-1t 99.3 34.2 20.7 134 LJV-30s 9.4 8.3 6.0
3 RV-30s 95.7 34.1 20.5 47 RKth2-5t 139.7 46.3 27.9 91 RSVN-5t 103.6 34.9 21.4 135 LJV-1m 24.2 13.4 9.0
4 RV-1m 99.4 35.0 21.1 48 RKth2-10t 142.7 47.3 28.3 92 RSVN-10t 106.1 37.2 22.7 136 LJV-5m 16.2 12.5 8.3
5 RV-5m 96.8 34.5 21.6 49 RKth2-20t 143.5 47.7 28.6 93 RSVN-20t 122.0 42.4 26.3 137 LJV-10m 23.2 11.8 8.8
6 RV-10m 92.0 33.0 20.4 50 RKth2-50t 138.8 46.1 27.7 94 RSVN-50t 110.3 40.0 24.1 138 LJV-1t 92.5 32.1 19.2
7 RV-1t 99.9 34.5 20.8 51 RKnfp-1t 142.3 47.4 28.3 95 RSVN-5m-ss 93.6 35.2 21.2 139 LJV-5t 62.8 22.0 13.8
8 RV-5t 106.3 35.6 21.9 52 RKnfp-5t 139.7 47.0 28.0 96 RSVN-10m-ss 89.6 34.3 20.6 140 LJV-10t 71.8 27.5 17.7
9 RV-10t 110.7 38.5 23.5 53 RKnfp-10t 136.7 46.0 27.4 97 RSVP-1s 70.0 28.9 17.3 141 LJV-20t 44.1 19.6 14.4

10 RV-20t 128.3 43.6 27.3 54 RKnfp-20t 139.6 46.4 27.7 98 RSVP-5s 68.7 29.3 17.4 142 LJV-50t 90.1 30.6 19.9
11 RV-50t 117.5 40.9 24.7 55 RKnfp-50t 135.4 45.1 27.0 99 RSVP-30s 93.4 33.0 19.8 143 LSJV-1s 24.0 13.8 11.6
12 RV-5m-ss 104.8 36.4 22.0 56 RRV-1m 96.6 34.4 20.7 100 RSVP-1m 95.4 33.2 19.9 144 LSJV-5s 10.4 16.2 11.7
13 RV-10m-ss 101.4 35.4 21.3 57 RRV-5m 85.3 33.5 20.5 101 RSVP-5m 81.5 29.8 18.6 145 LSJV-30s 19.7 17.7 13.7
14 RVbr-1s 84.5 31.0 19.1 58 RRV-10m 80.5 32.6 20.1 102 RSVP-10m 69.1 26.4 16.6 146 LSJV-1m 16.5 13.7 9.4
15 RVbr-5s 81.0 29.8 18.5 59 BV-1s 80.2 30.2 18.3 103 RSVP-1t 99.7 34.6 20.8 147 LSJV-5m 22.6 14.3 10.1
16 RVbr-30s 71.5 27.4 17.5 60 BV-5s 71.6 29.2 17.8 104 RSVP-5t 106.1 35.6 22.0 148 LSJV-10m 13.4 12.3 9.7
17 RVbr-1m 76.5 29.5 18.4 61 BV-30s 97.6 34.5 20.8 105 RSVP-10t 109.6 38.2 23.4 149 LSJV-1t 40.1 17.0 11.8
18 RVbr-5m 87.7 35.1 21.9 62 BV-1m 100.5 35.1 21.1 106 RSVP-20t 125.3 42.5 26.9 150 LSJV-5t 35.4 14.6 10.1
19 RVbr-10m 61.8 27.7 17.3 63 BV-5m 95.5 34.5 21.2 107 RSVP-50t 111.9 38.6 23.5 151 LSJV-10t 38.1 20.6 13.6
20 RVbr-1t 99.4 36.4 21.7 64 BV-10m 87.6 31.3 19.3 108 RSVP-5m-ss 94.2 33.5 20.3 152 LSJV-20t 33.5 12.7 8.3
21 RVbr-5t 93.0 33.8 20.2 65 BV-1t 99.8 34.4 20.9 109 RSVP-10m-ss 82.5 30.6 18.5 153 LSJV-50t 37.3 16.5 10.9
22 RVbr-10t 93.8 34.2 21.5 66 BV-5t 106.8 35.8 22.1 110 JV-1s 0.6 0.5 0.8 154 PCF-1 102.7 35.3 21.4
23 RVbr-20t 95.0 34.1 20.6 67 BV-10t 105.3 36.9 22.4 111 JV-5s 0.7 0.5 0.7 155 PCF-2 98.5 34.1 20.6
24 RVbr-50t 92.3 33.2 20.7 68 BV-20t 129.0 43.8 27.4 112 JV-30s 0.0 2.3 2.2 156 PCF-3 67.4 24.8 15.8
25 MSRV-1s 99.6 34.6 21.2 69 BV-50t 120.6 42.1 25.6 113 JV-1m 2.9 5.7 4.2 157 ImV-C-mean 23.4 18.3 12.3
26 MSRV-5s 92.9 32.3 20.4 70 BV-5m-ss 95.5 34.5 21.2 114 JV-5m 9.1 9.0 7.2 158 ImV-C-min 84.8 29.3 17.4
27 MSRV-30s 94.1 34.2 21.7 71 BV-10m-ss 95.5 34.5 21.2 115 JV-10m 15.4 10.8 6.9 159 ImV-C-max 1.3 1.3 0.9
28 MSRV-1m 98.0 36.1 22.4 72 MedRV-1s 72.5 29.6 17.9 116 JV-1t 0.5 0.9 1.2 160 ImV-C-q1 87.5 29.2 17.8
29 MSRV-5m 83.2 33.2 20.9 73 MedRV-5s 62.9 28.4 16.9 117 JV-5t 0.6 1.2 1.3 161 ImV-C-q2 80.5 29.6 17.6
30 MSRV-10m 81.4 30.6 18.6 74 MedRV-30s 94.0 33.6 20.2 118 JV-10t 0.3 0.7 1.0 162 ImV-C-q3 25.1 18.1 12.1
31 MSRV-1t 123.9 43.2 25.9 75 MedRV-1m 97.6 34.3 20.8 119 JV-20t 0.1 3.6 2.5 163 ImV-P-mean 27.5 12.4 9.2
32 MSRV-5t 123.2 43.7 26.0 76 MedRV-5m 95.9 34.6 21.1 120 JV-50t 0.6 1.3 1.3 164 ImV-P-min 63.1 21.1 13.1
33 MSRV-10t 128.3 44.1 26.3 77 MedRV-10m 91.3 32.5 20.1 121 SJV-1s 0.9 1.3 0.8 165 ImV-P-max 0.2 1.0 1.0
34 MSRV-20t 126.0 42.8 26.3 78 MinRV-1s 74.3 29.1 17.8 122 SJV-5s 0.2 0.7 1.4 166 ImV-P-q1 72.4 27.4 16.6
35 MSRV-50t 142.3 47.3 28.9 79 MinRV-5s 62.1 26.8 16.3 123 SJV-30s 0.8 1.6 3.4 167 ImV-P-q2 71.4 25.4 15.4
36 RKcub-1t 102.8 40.2 24.4 80 MinRV-30s 93.9 33.6 20.2 124 SJV-1m 0.5 2.0 2.5 168 ImV-P-q3 44.0 15.9 10.6
37 RKcub-5t 127.7 42.7 25.6 81 MinRV-1m 97.2 34.1 20.6 125 SJV-5m 0.2 1.9 2.8 169 ImV-A-mean 35.1 17.9 12.0
38 RKcub-10t 145.2 48.2 28.9 82 MinRV-5m 92.1 34.2 20.9 126 SJV-10m 0.4 1.8 2.0 170 ImV-A-min 68.8 22.7 13.7
39 RKcub-20t 136.4 45.5 27.2 83 MinRV-10m 79.7 29.2 18.0 127 SJV-1t 0.7 11.6 7.1 171 ImV-A-max 1.1 1.6 1.1
40 RKcub-50t 134.3 44.8 26.8 84 RSVN-1s 70.5 29.5 17.6 128 SJV-5t 0.0 1.4 1.3 172 ImV-A-q1 83.8 31.3 19.1
41 RKbart-1t 133.9 45.2 27.0 85 RSVN-5s 69.3 30.3 18.0 129 SJV-10t 0.4 0.7 0.9 173 ImV-A-q2 82.3 28.0 17.0
42 RKbart-5t 139.9 46.3 27.9 86 RSVN-30s 92.9 34.2 20.5 130 SJV-20t 0.0 0.7 0.7 174 ImV-A-q3 51.7 21.8 13.5
43 RKbart-10t 141.9 47.0 28.2 87 RSVN-1m 95.0 35.2 21.2 131 SJV-50t 0.0 0.5 0.6 175 1-day 9.2 10.1 8.6

44 RKbart-20t 143.8 47.8 28.6 88 RSVN-5m 88.1 35.1 21.6 132 LJV-1s 56.7 26.6 15.9 CVSi ze,0.10 16.4 22.3 26.9

Notes:

1. The critical value (CV) is a function of one endogenous regressor, the number of instrumental variables,
and the desired 10% maximal size of a 5% Wald test of ϕ = ϕ0, for further details, see Table 5.2 of Stock
and Yogo (2005).

2. We use logarithms of RV-RSVP and PCF classes of instruments given in Table 4.11.
3. Instruments are deemed weak if the first-stage F-statistic is less than the CV associated with the corre-

sponding column.
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Table 4.14. Projection-based 90% confidence intervals for the volatility persistence parameter
ϕ ( Strong instruments)

Ticker: IBM, January 2009 - December 2013, T = 1258

Panel A

No Instruments d̄i ,s AR AR∗ SS SS∗

1 RSVN-5m-ss 0.8860 [0.950, 1.000] [0.866, 1.000] [0.932, 1.000] [0.796, 1.000]
2 RSVN-5m 0.8855 [0.948, 1.000] [0.864, 1.000] [0.931, 1.000] [0.799, 1.000]
3 RSVN-1m 0.8848 [0.947, 1.000] [0.856, 1.000] [0.929, 1.000] [0.807, 1.000]
4 ImV-C-mean 0.8830 [0.964, 1.000] [0.852, 1.000] [0.937, 1.000] [0.779, 1.000]
5 MinRV-5m 0.8828 [0.945, 1.000] [0.867, 1.000] [0.925, 1.000] [0.794, 1.000]
6 RV-5m-ss 0.8825 [0.946, 1.000] [0.863, 1.000] [0.926, 1.000] [0.795, 1.000]
7 BV-5m 0.8823 [0.945, 1.000] [0.865, 1.000] [0.926, 1.000] [0.793, 1.000]
8 BV-5m-ss 0.8823 [0.945, 1.000] [0.865, 1.000] [0.926, 1.000] [0.793, 1.000]
9 BV-10m-ss 0.8823 [0.945, 1.000] [0.865, 1.000] [0.926, 1.000] [0.793, 1.000]

10 MedRV-5m 0.8823 [0.945, 1.000] [0.866, 1.000] [0.925, 1.000] [0.793, 1.000]

Panel B

No Instruments d̄i ,s AR AR∗ SS SS∗

11 ImV-C-q3 0.8805 [0.964, 1.000] [0.843, 1.000] [0.940, 1.000] [0.775, 1.000]
12 RV-1m 0.8800 [0.944, 1.000] [0.857, 1.000] [0.925, 1.000] [0.794, 1.000]
13 ImV-C-q2 0.8795 [0.958, 1.000] [0.860, 1.000] [0.940, 1.000] [0.760, 1.000]
14 RRV-1m 0.8790 [0.945, 1.000] [0.858, 1.000] [0.926, 1.000] [0.787, 1.000]
15 MedRV-1m 0.8785 [0.944, 1.000] [0.857, 1.000] [0.926, 1.000] [0.787, 1.000]
16 RV-5m 0.8783 [0.943, 1.000] [0.858, 1.000] [0.923, 1.000] [0.789, 1.000]
17 BV-1m 0.8775 [0.944, 1.000] [0.857, 1.000] [0.925, 1.000] [0.784, 1.000]
18 RSVN-10m-ss 0.8775 [0.949, 1.000] [0.858, 1.000] [0.931, 1.000] [0.772, 1.000]
19 RSVN-10m 0.8760 [0.946, 1.000] [0.861, 1.000] [0.927, 1.000] [0.770, 1.000]
20 RV-10m-ss 0.8758 [0.944, 1.000] [0.857, 1.000] [0.924, 1.000] [0.778, 1.000]

Panel C

No Instruments d̄i ,s AR AR∗ SS SS∗

21 RSVN-30s 0.8753 [0.944, 1.000] [0.848, 1.000] [0.924, 1.000] [0.785, 1.000]
22 RRV-5m 0.8750 [0.946, 1.000] [0.855, 1.000] [0.927, 1.000] [0.772, 1.000]
23 MinRV-1m 0.8745 [0.943, 1.000] [0.855, 1.000] [0.924, 1.000] [0.776, 1.000]
24 ImV-C-min 0.8743 [0.952, 1.000] [0.834, 1.000] [0.930, 1.000] [0.781, 1.000]
25 MSRV-1m 0.8723 [0.939, 1.000] [0.862, 1.000] [0.920, 1.000] [0.768, 1.000]
26 RSVP-1m 0.8715 [0.942, 1.000] [0.852, 1.000] [0.921, 1.000] [0.771, 1.000]
27 RV-30s 0.8713 [0.942, 1.000] [0.847, 1.000] [0.922, 1.000] [0.774, 1.000]
28 BV-30s 0.8713 [0.943, 1.000] [0.847, 1.000] [0.923, 1.000] [0.772, 1.000]
29 ImV-C-q1 0.8710 [0.952, 1.000] [0.840, 1.000] [0.931, 1.000] [0.761, 1.000]
30 MSRV-30s 0.8698 [0.935, 1.000] [0.858, 1.000] [0.917, 1.000] [0.769, 1.000]

Notes:

1. The instrument set consists of a constant and a lag of an instrument, l = 1.
2. We use logarithms of RV-RSVP and PCF classes of instruments given in Table 4.11.
3. The inference procedures [AR, AR∗, SS, SS∗] are proposed in Sections 4.3.1-4.3.4 and corresponding test

statistics are given in equations (4.3.22), (4.3.25), (4.3.31) and (4.3.35).
4. The confidence intervals are constructed by projection technique described in Section 4.3.5. The corre-

sponding 95% confidence interval for the nuisance parameter λ is [33.943, 61.154] with λ̂ = 47.548 and
SE(λ̂) = 6.935.

5. We use τ = 0.2 for SS-type tests and employ 99 Monte Carlo replications for point-optimal type proce-
dures.

6. The average precision of an instrument set i over the proposed inference methods is measured by d̄i ,s :=
S−1 ∑S

i=1 di , where s ∈ S and S is the set of identification-robust inference methods.
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Table 4.15. Projection-based 90% confidence intervals for the volatility persistence parameter
ϕ (Weak instruments)

Ticker: IBM, January 2009 - December 2013, T = 1258

Panel A

No Instruments d̄i ,s AR AR∗ SS SS∗

1 JV-1s 0.0000 [0.000, 1.000] [0.000, 1.000] [0.000, 1.000] [0.000, 1.000]
2 JV-5s 0.0000 [0.000, 1.000] [0.000, 1.000] [0.000, 1.000] [0.000, 1.000]
3 JV-30s 0.0000 [0.000, 1.000] [0.000, 1.000] [0.000, 1.000] [0.000, 1.000]
4 JV-1t 0.0000 [0.000, 1.000] [0.000, 1.000] [0.000, 1.000] [0.000, 1.000]
5 SJV-1s 0.0000 [0.000, 1.000] [0.000, 1.000] [0.000, 1.000] [0.000, 1.000]
6 SJV-5s 0.0000 [0.000, 1.000] [0.000, 1.000] [0.000, 1.000] [0.000, 1.000]
7 SJV-10t 0.0000 [0.000, 1.000] [0.000, 1.000] [0.000, 1.000] [0.000, 1.000]
8 SJV-20t 0.0000 [0.000, 1.000] [0.000, 1.000] [0.000, 1.000] [0.000, 1.000]
9 SJV-50t 0.0000 [0.000, 1.000] [0.000, 1.000] [0.000, 1.000] [0.000, 1.000]

10 ImV-C-max 0.0000 [0.000, 1.000] [0.000, 1.000] [0.000, 1.000] [0.000, 1.000]
11 ImV-P-max 0.0000 [0.000, 1.000] [0.000, 1.000] [0.000, 1.000] [0.000, 1.000]
12 ImV-A-max 0.0000 [0.000, 1.000] [0.000, 1.000] [0.000, 1.000] [0.000, 1.000]

Panel B

No Instruments d̄i ,s AR AR∗ SS SS∗

13 JV-20t 0.0038 [0.000, 1.000] [0.000, 1.000] [0.000, 0.985] [0.000, 1.000]
14 SJV-5t 0.1875 [0.500, 1.000] [0.250, 1.000] [0.000, 1.000] [0.000, 1.000]

Panel C

No Instruments d̄i ,s AR AR∗ SS SS∗

15 JV-10t 0.3130 [0.000, 1.000] [0.000, 1.000] [0.745, 0.993] [0.500, 1.000]
16 JV-50t 0.3283 [0.000, 1.000] [0.000, 1.000] [0.763, 1.000] [0.550, 1.000]
17 JV-5t 0.3308 [0.000, 1.000] [0.000, 1.000] [0.753, 1.000] [0.570, 1.000]
18 SJV-30s 0.3400 [0.000, 1.000] [0.000, 1.000] [0.860, 1.000] [0.500, 1.000]
19 SJV-1m 0.3845 [0.000, 1.000] [0.000, 1.000] [0.898, 1.000] [0.640, 1.000]
20 SJV-10m 0.3975 [0.000, 1.000] [0.000, 1.000] [0.930, 1.000] [0.660, 1.000]
21 SJV-5m 0.3998 [0.000, 1.000] [0.000, 1.000] [0.919, 1.000] [0.680, 1.000]
22 JV-1m 0.4028 [0.911, 1.000] [0.700, 1.000] [0.000, 1.000] [0.000, 1.000]
23 JV-10m 0.4075 [0.890, 1.000] [0.740, 1.000] [0.000, 1.000] [0.000, 1.000]
24 LSJV-20t 0.4108 [0.883, 0.992] [0.750, 1.000] [0.000, 0.998] [0.000, 1.000]
25 LSJV-5t 0.4208 [0.913, 1.000] [0.770, 1.000] [0.000, 1.000] [0.000, 1.000]
26 1-day 0.4255 [0.870, 0.965] [0.750, 1.000] [0.000, 0.953] [0.000, 1.000]
27 LJV-30s 0.4268 [0.927, 1.000] [0.780, 1.000] [0.000, 1.000] [0.000, 1.000]
28 LJV-1m 0.4373 [0.933, 1.000] [0.816, 1.000] [0.000, 1.000] [0.000, 1.000]
29 SJV-1t 0.6795 [0.810, 0.992] [0.700, 1.000] [0.700, 1.000] [0.500, 1.000]
30 LJV-10m 0.7465 [0.905, 0.998] [0.750, 1.000] [0.829, 1.000] [0.500, 1.000]

Notes:

1. The instrument set consists of a constant and a lag of an instrument, l = 1.
2. We use logarithms of RV-RSVP and PCF classes of instruments given in Table 4.11.
3. The inference procedures [AR, AR∗, SS, SS∗] are proposed in Sections 4.3.1-4.3.4 and corresponding test

statistics are given in equations (4.3.22), (4.3.25), (4.3.31) and (4.3.35).
4. The confidence intervals are constructed by projection technique described in Section 4.3.5. The corre-

sponding 95% confidence interval for the nuisance parameter λ is [33.943, 61.154] with λ̂ = 47.548 and
SE(λ̂) = 6.935.

5. We use τ = 0.2 for SS-type tests and employ 99 Monte Carlo replications for point-optimal type proce-
dures.

6. The average precision of an instrument set i over the proposed inference methods is measured by d̄i ,s :=
S−1 ∑S

i=1 di , where s ∈ S and S is the set of identification-robust inference methods.
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CHAPTER 4. HIGH-FREQUENCY INSTRUMENTS AND IDENTIFICATION-ROBUST INFERENCE
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Chapter 5

Conclusion and future work

This thesis studied and contributed to the SV literature from the estimation, inference, and

volatility forecasting viewpoints. On the whole, the thesis developed easily applicable statis-

tical methods for stochastic volatility models. We conclude our study with suggestions for

future work.

The simple estimation methods, which are developed in chapters 2-3, can be extended for

several SV specifications: SV with conditional heavy-tailed distributions (especially Student’s

t-distribution and the generalized error distribution), multivariate SV models (higher-order,

cross leverage, non-Gaussian distributions), asymmetric SV specification (which allows for

leverage effects), and multi-factor SV models. These are the objects of ongoing research.

The inference methods proposed in chapter 4 can be adapted to other situations, e.g., mea-

surement error in ARMA-type models, or noisy realized measures in HAR volatility modeling.

The extension to multivariate models and parameter estimation in GSV framework are topics

of ongoing research.
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