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Abstract 

Early identification and prediction of plant abiotic stress are required to ensure sustainable 

agricultural management. Traditional plant and soil-based methods of estimating plant stress are 

destructive, labour intensive, and time-consuming. These methods often do not represent the 

heterogeneity of soil and crop parameters at large spatial scales. Spectral reflectance data provide 

near real-time and non-destructive estimates of plant stress, and account for spatial and temporal 

variability of crops and soil. This research focused on the use of spectral reflectance data to 

estimate plant water and nitrogen requirements to improve field management of high-value 

vegetable crops.  

 

The first study in this thesis investigated the potential of crop reflectance indices for detecting 

water stress, in order to improve the irrigation of greenhouse-grown vegetable crops. Two widely 

grown vegetable crops (tomato plants: Solanum Lycopersicum L. and bell pepper: Capsicum 

annuum L.) were chosen due to their canopy architecture and sensitivity to water stress. Spectral 

data and plant stress parameters (stomatal conductance, leaf temperature, relative water content, 

and crop yield) were concurrently acquired from plants subjected to different irrigation treatments 

(100, 80, 60, 40, and 20% of plant available water). Various reflectance indices were obtained 

from the spectral data. The relationships between crop reflectance indices and water stress 

indicators were statistically examined to evaluate the most useful indices for detecting water stress. 

The results indicate that the photochemical reflectance indices (PRI) centered at 553 nm (PRI553) 

was the most useful index for detecting water stress in bell pepper plants, while the PRI centered 

at 550 nm (PRI550) was suitable for tomato crops. These results contrast the findings of previous 

studies, which recommended the use of PRI570 for monitoring water stress in most field crops.  
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Given that the spectral vegetation indices for monitoring plant water status are affected by 

microclimatic conditions, it was hypothesized that the findings of the greenhouse studies will not 

be applicable to open field conditions. The second study in this thesis assessed the use of 

reflectance indices for monitoring water and nitrogen stresses in field-grown tomato crops. 

Spectral reflectance data and plant stress indicators (leaf temperature, relative water content, crop 

yield, and leaf chlorophyll content) were measured from tomato plants subjected to three irrigation 

water treatments (100, 70, and 30% of field capacity) and three nitrogen treatments (100, 70, and 

30% of crop nutrient requirement). The results showed that the PRI550 and water index (R900/R970) 

were the most sensitive indices for distinguishing crop water stress, while renormalized difference 

vegetation index and Transformed Chlorophyll Absorption in Reflectance Index had the best 

correlation with nitrogen stress indicators. Normalized PRI was the most sensitive index for 

detecting the combined effect of water and nitrogen stress.  

 

The last study in this thesis compared the suitability of multispectral images acquired from 

unmanned aerial vehicles, PlanetScope, and Sentinel-2 satellite platforms for estimating crop 

coefficient and evapotranspiration.  Sentinel-2 data were used to predict crop evapotranspiration 

(ETc) and the results were compared with ETc estimated from the FAO 56 Penman-Monteith 

module of the AquaCrop model. ETc data were coupled with time domain reflectometry soil 

moisture measurements to estimate irrigation water requirements (IWR). The estimated seasonal 

IWR was less than the actual amount of water applied by the grower, indicating that the field was 

over irrigated by 17% and 20% in the 2017 and 2018 growing seasons, respectively. This thesis 

concludes that leaf spectral data are advantageous over conventional methods of crop stress 

assessment for improving irrigation water management.  
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Résumé 

L'identification précoce et la prévision du stress abiotique des cultures s’avèrent nécessaires à une 

gestion agricole durable. Fondées sur l’état des plantes et du sol, les méthodes d’antan pour estimer 

le stress subi par une culture s’avérèrent destructrices et intenses en temps et travail, en plus de ne 

pas tenir compte de l'hétérogénéité des cultures et du sol. Les données de réflectance spectrale 

fournissent des estimations non destructives et en temps quasi-réel du stress subi par les plantes, 

tout en tenant compte de la variabilité spatiotemporelle des cultures et du sol. Visant à améliorer 

la gestion des besoins en eau et en azote des cultures maraîchères à l’échelle du champ, par l'emploi 

des données de réflectance spectrale, une première étude, axée sur l'amélioration de l'irrigation des 

cultures maraîchères en serre, s’attarda à l’étude du potentiel des indices de réflectance des cultures 

à détecter le stress hydrique. Deux cultures maraîchères (tomate - Solanum lycopersicum L. et 

poivron — Capsicum annuum L.) furent choisies pour l’architecture de leur canopée et leur 

sensibilité au stress hydrique. Le recueil simultané auprès de plantes soumises à différents régimes 

d'irrigation (100, 80, 60, 40 et 20% de l'eau disponible aux plantes), des données spectrales et 

paramètres de stress (conductance stomatique, température des feuilles, teneur en eau relative, 

rendement des cultures), permit de calculer divers indices de réflectance et d’évaluer 

statistiquement leurs relations aux indicateurs de stress hydrique, afin d'identifier les indices les 

plus utiles à la détection du stress hydrique. En contraste aux résultats d’études précédentes 

recommandant l'utilisation du PRI570 pour surveiller le stress hydrique, dna sla présente étude les 

indices de réflectance photochimique (PRI) centrés à 553 nm (PRI553) se révélèrent les plus utiles 

à la détection du stress hydrique des poivrons, tandis qu'un PRI centré à 550 nm (PRI550) fut le 

plus utile pour les tomates.  
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Les indices de végétation spectrale utilisés pour surveiller the stress hydrique des plantes étant 

affectés par les conditions microclimatiques, nous émîmes l'hypothèse que les résultats d’une 

culture en serre n’aurait pas leur application en plein champ. La deuxième partie de l'étude évalua 

donc l'utilisation d'indices de réflectance pour surveiller les stress hydriques et azotés des tomates 

cultivées en plein champ. La réflectance spectrale et les indicateurs de stress des plantes 

(température des feuilles, teneur en eau relative, rendement et teneur en chlorophylle des feuilles) 

furent mesurés pour des plants de tomates soumis à trois traitements d'irrigation (100, 70 et 30% 

de la capacité au champ) combinés de manière factorielle à trois niveaux de fertilisation azotée 

(100, 70 et 30% des besoins). L'indice PRI550 et l'indice d'eau (R900/R970) permirent la meilleure 

discrimination entre niveaux de stress hydrique, tandis que l'indice de végétation par différence 

renormalisée et l'indice d'absorption de chlorophylle transformée en réflectance furent le plus 

fortement corrélés aux indicateurs de stress azoté. Le PRI normalisé s’avéra l'indice le plus sensible 

à l'effet combiné du stress hydrique et azoté. 

 

La dernière étude présentée dans cette thèse compara l’aptitude des images multispectrales 

acquises à partir de véhicules aériens sans pilote, de PlanetScope et de plateformes satellites 

Sentinel-2 pour estimer le facteur culture et l'évapotranspiration. Ces dernières données ont permi 

à prédire l'évapotranspiration des cultures (ETc) et de comparer ces résultats à l'ETc estimé par la 

méthode Penman-Monteith. Les données ETc furent couplées à des mesures d'humidité du sol 

acquises par réflectométrie temporelle afin d’estimer les besoins en eau d'irrigation (IWR). L’IWR 

saisonnier s’avéra inférieur à la quantité d'eau appliquée par le producteur, indiquant une 

surirrigation du champ de 17% et de 20% lors des saisons 2017 et 2018, respectivement. Pour 

améliorer la gestion de l''irrigation, les données spectrales foliaires offrent une meilleure évaluation 

du stress des cultures que les méthodes conventionnelles. 
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CHAPTER I 

General Introduction 

1.1. Background of the study 

Vegetable crop production is an essential component of Canada’s agricultural industry and is 

largely dependent on irrigation for its viability. The major vegetables grown in Canada include 

tomato, bell pepper, cucumber, and sweet corn, and they are highly sensitive to water stress 

(Ferrara et al., 2011, Yildirim et al., 2012). The crops require supplemental irrigation to offset the 

deficiencies in rainfall and high evaporative demand during the growing season, to sustain high 

production levels. However, irrigated agriculture faces tremendous uncertainty in water supply 

due to prolonged drought associated with climate change, as well as increased competition from 

environmental, municipal and industrial water needs (DeJonge et al., 2015). Within the past few 

years, nearly a third of the Canadian communities have faced threats to the security of the quantity 

or quality of their water supply (Aladenola and Madramootoo, 2014). Some important agricultural 

regions in Canada are already water-stressed, and there are growing concerns about water quality 

in agricultural lands (Stewart et al., 2011). Previous studies have shown that water stress adversely 

affects physiological and nutritional development, and yield of vegetable crops (Kirnak et al., 

2003). Therefore, regular assessment of plant water status is required to properly manage irrigation 

and optimize agricultural water use. 

1.2. Problem statement 

Conventional irrigation applications rely mostly on soil moisture measurements and estimates of 

meteorological variables to assess water loss from the plant-soil-continuum (Ihuoma and 

Madramootoo, 2017). These measurements are invasive, laborious, and time-consuming, and are 

affected by spatial heterogeneity of soil and crop parameters. Irrigation scheduling can be 
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improved by monitoring the plant water status directly, rather than depending only on soil water 

content measurements (Jones, 2007). Water stress induces stomatal closure, which reduces the 

transpiration rate, thus decreasing evaporative cooling and increasing leaf temperature. The 

increase in leaf temperatures as a result of water deficit was measured using thermal infrared 

thermometers (Idso et al., 1981, Jackson and Center, 1981). 

 

The Photochemical Reflectance Index (PRI), an index sensitive to the epoxidation state of the 

xanthophyll cycle pigments and to photosynthetic efficiency, has been identified as a pre-visual 

indicator of water stress and serves as a proxy for water stress detection (Gamon et al., 1992). The 

functional basis of the PRI is related to its sensitivity to rapid changes in carotenoids through the 

de-epoxidation of the xanthophyll pigments (Gamon et al., 1992, Magney et al., 2016) and to heat 

dissipation increasing under water stress conditions (Panigada et al., 2014). Several other 

reflectance indices, such as Normalized Difference Vegetation Index (NDVI), Normalised PRI 

(PRInorm), Water index (WI), etc., obtained from UAVs have been suggested for detecting water 

stress in various crops (Ihuoma and Madramootoo, 2017).  

 

Presently, only a few studies have focused on the use of vegetation indices (VIs) from remote 

sensing imagery to detect early stages of water stress for improving irrigation scheduling (Suárez 

et al., 2010, Zarco-Tejada et al., 2012, Rossini et al., 2013, Panigada et al., 2014, Magney et al., 

2016). Although the VIs threshold for water stress detection is crop-specific, most of the recent 

studies only focused on different species of tree and cereal crops. The use of narrow-band optical 

indices for detecting crop abiotic stress in greenhouse and field-grown vegetables has not been 

extensively investigated in water-stressed regions and environments. Monitoring plant stress from 
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vegetation indices, acquired from proximal and remote sensing platforms, presents an opportunity 

to better assess crop health status on a near real-time basis to improve agricultural productivity. 

1.3. Research Objectives 

The overall objective of this research was to develop an approach to crop stress management based 

on spectral reflectance data for precision irrigation of vegetable crops. The study focused on the 

use of spectral vegetation indices to provide a better estimate of plant stress for improving 

agricultural water management. 

 

The overall objective was achieved through the following specific objectives:  

i. Evaluate various spectral reflectance indices for detecting crop water stress in high-value 

vegetable crops. 

ii. Identify suitable vegetation indices for mapping the combined effects of water and nitrogen 

stress in vegetable crops at different growth stages.  

iii. Assess the suitability of Unmanned Aerial Vehicles, PlanetScope and Sentinel-2A & 2B 

imagery for estimating crop coefficient, evapotranspiration, and irrigation water 

requirements of high-value vegetable crops. 
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Connecting text 

Chapter II contains an extensive literature review, which reviewed the concept of spectral 

reflectance indices for assessing plant abiotic stress. The review outlined recent developments in 

monitoring crop stress and the constraints experienced. It concluded with the future research needs 

and perspectives that formed the core of this research.  

A version of this literature review titled, “Recent advances in crop water stress detection”, has 

been published as a review paper in Computers and Electronics in Agriculture. The manuscript is 

co-authored by Dr. Chandra A. Madramootoo, my supervisor. In order to ensure consistency with 

the thesis format, the original draft has been modified, and the cited references are listed in the 

reference section. 
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Chapter II 

Literature Review 

 Recent advances in crop water stress detection 

2.1. Abstract 

In order to meet the demand for increased global food production under limited water resources, 

the implementation of suitable irrigation scheduling technique is crucial, particularly in irrigated 

basins experiencing water stress. Optimizing water use in agriculture requires innovations in 

detection of plant water stress, at various stages of the growing season to minimize crop 

physiological damage, and yield loss. Remotely sensed plant stress indicators, based on the visible 

and near-infrared spectral regions, have the advantage of high spatial and spectral resolutions, low 

cost, and quick turnaround time. This paper outlines recent developments in monitoring crop water 

stress, for scheduling irrigation, some of the constraints experienced, and future research needs. 

Keywords: Plant water stress, irrigation scheduling, remotely sensed, spatial resolution, spectral 

region. 

2.2. Introduction 

Irrigated agriculture is essential to global food production, utilizing only 20% of cultivated land to 

provide 40% of the world’s food supply (Garces-Restrepo et al., 2007). However, climate change, 

increasing worldwide shortages of water, frequent droughts, and global warming (Hirich et al., 

2016) are threatening the reliability of irrigation water supplies. While the human population and 

demands for freshwater resources are increasing, drought and regular water scarcity can put global 

food security at risk (Lei et al., 2016), by severely disrupting agricultural production. The 

challenge is to meet rising productivity demands by improving methods of crop management 
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(Behmann et al., 2014), and this requires a deeper understanding of plant response to abiotic 

stresses.  

Conventional methods for monitoring crop water stress rely on in situ soil moisture measurements 

and meteorological variables to estimate the amount of water lost from the plant-soil system during 

a given period (González-Dugo et al., 2006). Regular sampling of soil to assess water depletion 

from the plant root zone assumes that the water holding capacity of the entire soil is uniform, so 

only a few point measurements are used to represent water retention characteristics (Clarke, 1997). 

The method is time consuming, assumes uniform plant density, and the same rate of transpiration, 

over an entire field, which is rarely the case. Similarly, evapotranspiration models assume a freely 

transpiring reference crop with uniform cover and soil type within a field. These methods are time 

consuming and produce point information that give poor indications of the overall status of the 

field. Other methods of detecting plant water status involve soil water balance calculations, direct 

and indirect measurement of plant water status, via stomatal conductance and leaf water potential. 

These approaches, though reliable, are labour intensive, destructive, and unsuitable for automation, 

due to heterogeneity of soil and crop canopy. 

 

In order to increase water savings and enhance agricultural sustainability, implementation of 

suitable irrigation scheduling methods is essential (Osroosh et al., 2015), and requires early 

detection of water stress in crops, before it causes irreversible damage and yield loss. Recently, 

studies have focused on the use of remotely sensed data as an alternative to traditional field 

measurements of plant stress parameters, as this provides information about the spatial and 

temporal variability of crops (Dangwal et al., 2015; Leroux et al., 2016; Panigada et al., 2014; 

Rossini et al., 2013; Suárez et al., 2010; Zarco-Tejada et al., 2013; Zhao et al., 2015). Spectral 



7 
 

reflectance indices obtained from high resolution hyperspectral sensors, onboard small Unmanned 

Aircraft Systems (sUAS), can be used in precision agriculture for monitoring crop water status and 

scheduling irrigation (Berni et al., 2009a, 2009b; Gago et al., 2015). However, due to several 

confounding factors affecting the vegetation indices (VIs) at the canopy and landscape scales, and 

that the threshold for water stress detection is crop specific, a general agreement for their use as a 

pre-visual indicator of water stress is yet to be achieved. This paper reviews the recent advances 

in crop water stress detection that can potentially be applicable to improve irrigation scheduling of 

vegetable crops and aims to identify the most promising approach for large-scale application. 

 

2.3. Plant response to water stress 

Crop water stress is a deficiency in water supply, detected as a reduction in soil water content or 

from the physiological responses of the plant to water deficit. Plants absorb root zone soil water to 

meet their evapotranspiration needs, and this depletes soil available water. Under limiting soil 

moisture conditions, chemical and hydraulic signals are transmitted to the plant leaf through xylem 

pathways (Limpus, 2009), which leads to physiological responses such as stomatal closure and 

reductions in photosynthesis rate. Wang et al. (2015) indicated that water stressed crops have 

reduced evapotranspiration, and manifest other symptoms such as leaf wilting, stunted growth, and 

leaf area reduction. Also, water stress adversely affects the physiological and nutritional 

development of crops, leading to reduced biomass, yield, and quality of crops (Aladenola and 

Madramootoo, 2014; Rossini et al., 2013; Zhang et al., 2017a, 2017b). Plant water status measures 

the response of a plant to the combined effects of soil moisture availability, evaporative demand, 

internal hydraulic resistance, and uptake capacity of the plant-root interface. It is a more sensitive 

indicator of stress than soil moisture (Jones, 2010). Plant response to water stress depends on 
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environmental conditions and crop evapotranspiration needs, as irrigation must replenish soil 

moisture deficit from evapotranspiration losses. FAO-56 defines the irrigation water requirement 

for a well-watered crop as water loss through evapotranspiration of a disease-free crop under 

nonlimiting soil conditions (Allen et al., 1998). Measures of plant water status are required to better 

understand the mechanisms of plant response and adaptation to water stress, and for the 

optimisation of crop production (Osakabe et al., 2014), through precision irrigation. 

 

Similarly, evapotranspiration (ET) models are used to predict how changes in weather parameters 

can affect plant water status (Osroosh et al., 2016). The frequently used ET models are the Penman-

Monteith (PM) (Allen et al., 1998) and Hargreaves (Hargreaves and Samani, 1985) equations. The 

Hargreaves model needs fewer data than the PM model and can estimate ET using air temperature 

as only input. Other researchers have used the CROPWAT-8, which is based on the Penman-

Monteith method, to assess reference evapotranspiration (ETo), crop evapotranspiration (ETc), 

and irrigation water requirements (Bouraima et al., 2015; Patel et al., 2017; Surendran et al., 2017). 

The most common and practical approach widely used for estimating crop water requirement, and 

the operational monitoring of soil-plant water balance is the FAO-56 method. In the FAO-56 

approach, crop evapotranspiration is estimated by the combination of ETo and crop coefficients. 

There are two different FAO-56 approaches: single and dual crop coefficients. The single crop 

coefficient approach is used to express both plant transpiration and soil evaporation combined into 

a single crop coefficient (Kc). The dual crop coefficient approach uses two coefficients to separate 

the respective contribution of plant transpiration (Kcb) and soil evaporation (Ke), each by 

individual values (Allen et al., 2005). Kcb is multiplied by water stress coefficient (Ks) (range 0 -
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1) to account for the reduction of ET due to soil moisture depletion. It has been shown that Ks is 

related to crop water stress index (CWSI) according to Eq. (2.1). 

𝐾𝑠 = 1 − 𝐶𝑊𝑆𝐼 ………………………………………………  (2.1) 

Several researchers have evaluated the accuracy of water stress coefficient methods for estimating 

crop ETc under different levels of deficit irrigation. For instance, Bausch et al. (2011) successfully 

used a ratio of canopy temperature (Tc) as a substitute for the soil moisture-based Ks. Kullberg et 

al. (2017) observed that using appropriate Ks method has the potential to improve irrigation 

scheduling to properly manage stress and ensure optimum crop yield under limited irrigation water 

supply. The main methods that are used for monitoring plant water stress have been summarized 

in Table 2.1 and are discussed below. 

 

2.4. Plant-based approach 

Stress quantification from plant-based approaches include the direct measurement of leaf water 

potential with a pressure chamber (Scholander et al., 1965). Leaf water potential is assumed to 

represent the mean soil water potential next to the plant roots (Ameglio et al., 1999), and provides 

good indication of leaf water status. It is widely adopted for scheduling irrigation in various crops 

(Alchanatis et al., 2010; Ameglio et al., 1999; Bellvert et al., 2016; Zarco-Tejada et al., 2012). 

However, the approach is slow and destructive, with limited temporal and spatial resolution, and 

is not suitable for strongly isohydric crops, which maintain a stable leaf water status over a wide 

range of evaporative demand or soil water supplies (Limpus, 2009). The amount of water in plant 

leaves can be measured by laboratory analysis, using Relative Water Content (RWC) and 

Equivalent Water Thickness (EWT) (Colombo et al., 2011). The EWT is the hypothetical thickness 

of a single layer of water averaged over the whole leaf area and can be computed in laboratory by 
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measuring Fresh Weights (FW) and Dry weights (DW) and the one-sided leaf Area (A), as shown 

in Eq. (2.2). 

𝐸𝑇𝑊 =
𝐹𝑊−𝐷𝑊

𝐴
 ……………………………..  (2.2) 

At the canopy level, Equivalent Water Thickness (EWTcanopy) (shown in Eq. (2.3)) can be obtained 

by scaling the EWC with Leaf Area Index (LAI), defined as the one-sided green leaf area per unit 

ground surface area (LAI = leaf area/ground area, cm2/cm2). 

 

𝐸𝑊𝑇𝑐𝑎𝑛𝑜𝑝𝑦 = 𝐿𝐴𝐼 ∗ 𝐸𝑊𝑇 ……………………………………….. (2.3) 

The RWC compares the water content of a leaf with the maximum water content at full turgor and 

can be considered as an indicator of vegetation status. It can be obtained from laboratory 

measurements of leaf weight and leaf Turgid Weight (TW) according to the following expression: 

𝑅𝑊𝐶 =
𝐹𝑊−𝐷𝑊

𝑇𝑊−𝐷𝑊
∗ 100(%)……………………………… (2.4) 

 

The RWC reflects the balance between water supplied to the leaf tissue and transpiration ratio, and 

indicates the amount of water present at the time of sampling relative to the amount of water in a 

saturated leaf. Both RWC and EWC are good indicators of plant water status and have been 

successfully used for scheduling irrigation in various crops (Danson et al., 1992; Jones, 2004; 

Panigada et al., 2014; Wang et al., 2015). The approaches require less sophisticated equipment but 

are also destructive and time consuming.
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Table 2. 1. A summary of the methods for monitoring plant water stress, indicating their main advantages and disadvantages. 

Methods Description Advantages Disadvantages 

1. Soil water measurement   
(a) Gravimetric method Sampling of soil, which is weighed, 

oven-dried and reweighed to 

estimate the amount of water lost 

from the plant-soil system. 

It is reliable and serves as a 

guide on the amount of water to 

apply during irrigation. 

The method is labour intensive, 

destructive, and time 

consuming. 

(b) Soil moisture sensors    
(I) Neutron probe Based on the emission of high 

energy neutrons by a radioactive 

source into the soil. 

Fast, non-destructive, and 

repetitive. 

Requires adequate operator 

training, storage, licencing, and 

inspection, due to its 

radioactive source. 

(II) TDR and FDR Based on the difference between the 

dielectric constant of water and soil. 

Precise and easy to apply in 

practice. Estimates soil water 

levels at different depths along 

the soil profile. Readings can be 

logged automatically. 

Several sensors are required for 

an entire field. High cost of 

installation of sensors. 

 

(III) Tensiometers 

 

Measures soil water potential 

 

Easy to use for irrigation 

scheduling. 

 

Useful in coarse textured soils 

or in high frequency irrigation 

only. Used for a narrow range 

of available soil water.   
  

2. Soil water balance 

approach 

Indirect estimate of soil moisture 

status based on soil water balance 

calculations. 

Good indicator of the amount of 

irrigation water and easy to 

apply. 

Not very accurate and requires 

calibration with actual soil 

measurements. Requires 

estimate of evaporation, 

rainfall, and irrigation events. 
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3. Plant-based approaches   
(a) Stomatal conductance Indirect indicator of plant water 

stress by measuring the stomata 

opening. 

Good measure of plant water 

status. Used as benchmark for 

most research studies. 

Labour intensive and unsuitable 

for automation and commercial 

application. Not very accurate 

for anisohydric crops. 

(b) Leaf water potential Direct measurement of leaf water 

content. 

Widely accepted reference 

technique. 

Slow, destructive, and 

unsuitable for isohydric crops. 

    
(c) Relative water content  Direct measurement of leaf water 

status. 

Good indicator plant water 

status, requiring less 

sophisticated equipment. 

Destructive and time 

consuming. 

    
(d) Sap flow 

measurement 

Measures the rate of transpiration 

through heat pulse. 

Sensitive to stomatal closure and 

water deficits. Adapted for 

automated recording and control 

of irrigation systems. 

Needs calibration for each tree 

and is difficult to replicate. 

Requires complex 

instrumentation and expertise. 

(e) Stem and fruit 

diameter 

Measures fluctuation in stem and 

fruit diameters in response to 

changes in water content. 

Sensitive measure of plant water 

stress. 

Not useful for the control of 

high-frequency irrigation 

systems. 

 

4. Remote sensing methods 

  

(a) Infrared thermometry Measures canopy temperature, 

which increases as a result of water 

stress. 

Reliable and non-destructive. Based on only a few point 

measurements. Does not 

account for soil and crop 

heterogeneity. 

(I) CWSI Uses the difference between canopy 

and air temperatures to quantify crop 

water stress. 

Sensitive to stomatal closure and 

crop water deficit. 

Influenced by cloud cover, 

requires different baselines for 

different crops. 
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(II) DANS, DACT, and  

Tc ratio 

Measure single canopy temperature 

for quantifying water stress. 

Require less data than CWSI for 

detecting water stress. Tc ratio 

gives quantitative water stress 

coefficient (Ks) for calculating 

crop ET. 

Difficult to scale up to large 

cropped fields.  

(b) Spectral vegetation indices   
(i) Structural indices Measures reflectance indices within 

the VIS and NIR spectral range 

(NDVI, RDVI, OSAVI, TCARI) to 

indicate canopy changes due to 

water stress. 

Non-destructive with high 

temporal and spectral resolution. 

Requisite image analysis is still 

a challenging task. Precision 

reduces from leaf scale to 

canopy scale. 

(ii) Xanthophyll indices Measures PRI and PRInorm, which 

are sensitive to the epoxidation state 

of the xanthophyll cycle pigments. 

Account for physiological 

changes in photosynthetic 

pigment changes due to water 

stress. 

More work is needed to convert 

raw imagery to user-friendly 

irrigation application. 

(iii) Water indices Measures the reflectance trough in 

the near-infrared region (WI, SRWI, 

and NDWI) used to represent 

canopy moisture content. 

Rapid and non-destructive 

measure of leaf water content. 

Problem of scaling up to 

canopy level. 
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Several other approaches are available that give indirect indications of stress such as measurement 

of stomatal conductance (Agam et al., 2013; Ballester et al., 2013; Lorenzo-Minguez et al., 1985; 

Maes et al., 2011), measurement of fruit and stem diameter (Gallardo et al., 2006; Huguet et al., 

1992), and sap-flow measurement (Giorio and Giorio, 2003; Granier, 1987; Singh et al., 2010). 

Most plants exercise some measure of control over their leaf water status, by minimizing changes 

in leaf water status as the soil dries, through stomatal closure. Therefore, stomatal conductance is 

a very sensitive plant response to soil water deficit (Jones, 2004), except for some anisohydric 

species, which have less effective control of leaf water status under declining soil moisture 

conditions. The recognition that water stressed plants tend to close their stomata, which leads to 

increase in leaf temperature, has been used to develop thermal sensing methods, for the detection 

of plant stress (Idso et al., 1981). The approach provides a good indication of irrigation needs in 

many crops. However, measurements of stomatal conductance are tedious, and large leaf-to-leaf 

variation of the plant canopy requires much replication to obtain reliable data for irrigation 

scheduling. 

 

The sap flow technique is used to assess transpiration rates of plants, by measuring the rate at 

which sap ascends stems using heat pulse. In this approach, short pulses of heat are applied in the 

stem, and the mass flow of sap is determined from the velocity of the heat pulses moving along 

the stem. The changes in transpiration rate indicated by sap flow are mainly determined by changes 

in stomatal opening. Singh et al. (2010) used sap flow sensors to schedule irrigation in corn field, 

but noted that the approach only gives indirect estimates of changes in conductance, as flow is also 

dependent on atmospheric conditions such as humidity. Therefore, changes in sap flow can occur 

without changes in stomatal aperture. Several other studies used sap-flow measurement for 

irrigation scheduling and control in a diverse range of crops, including grapevine (Eastham and 
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Gray, 1998), fruit and olive trees (Ameglio et al., 1999; Giorio and Giorio, 2003) and even 

greenhouse crops (Ehre et al., 2001), with varying degrees of success. However, Jones (2004) 

stated that sap flow method requires a heat source, complex instrumentation, technical expertise, 

and needs calibration for each crop and for definition of irrigation control thresholds. 

 

The use of plant-based indicators for irrigation scheduling requires the definition of threshold 

values, beyond which irrigation is essential. Therefore, it is important to regularly check the plant 

water status to avoid exceeding the reference values (Ballester et al., 2013). The threshold values, 

which are determined for plants growing under a well-watered condition, are difficult to obtain in 

a changing environment (Fereres and Goldhamer, 2003). Another limitation of plant-based 

approaches is that they do not usually provide information on the quantity of irrigation water to 

apply at any time, but only indicates that irrigation is required. This implies that soil moisture 

measurements or other estimation procedures are needed to determine the quantity of water to 

apply to optimize crop water use (Stockle and Dugas, 1992). A general drawback of both direct 

measurements of soil water status and plant-based approaches is the costs of installation of sensors 

or the difficulty with obtaining representative measurements, with single point sampling that 

would adequately account for soil and crop heterogeneity (Ballester et al., 2013; Jones, 2012). 

 

2.4.1. Environmental canopy sensing 

Infrared thermometry and thermal imagery, along with additional environmental measurements, 

have been acknowledged as an alternative approach to soil moisture-based methods of plant water 

stress detection (Berni et al., 2009a; Cohen et al., 2005; Jones, 2010; Osroosh et al., 2015). Water 

stress detection based on canopy temperature measurements is probably the most widely used 

plant-based approach for remote sensing that is applicable to irrigation scheduling of several crops. 
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As plants absorb solar radiation, canopy temperature increases, but is cooled when that energy is 

used for evapotranspiration.  

 

Water stressed plants have reduced transpiration and higher leaf temperature compared to non-

stressed crops. González-Dugo et al. (2006) used variability of canopy temperature to indicate 

water stress, and emphasised the need to quantify the complex relationship between canopy 

temperature, water stress, and spatial water availability. Collaizzi et al. (2012) revealed that canopy 

temperature-based algorithms are strongly correlated to crop outputs such as yield, water use 

efficiency, irrigation rates, seasonal evapotranspiration, and midday leaf water potential. Many 

indices have been established for evaluating water stress using infrared canopy temperature (Idso 

et al., 1981; Jones, 2004; Nielsen and Gardner, 1988; Osroosh et al., 2015; O’Shaughnessy et al., 

2012; Payero and Irmak, 2006). Most of the indices use crop canopy temperature as a main driver 

for evaluation, typically as a single daily measurement at an assumed peak stress time, or by 

evaluating time above a temperature threshold. The approach is sensitive to small stresses, and 

relies on stomatal closure as an early indicator of water deficits. 

 

2.4.2. Canopy temperature-based crop water stress index (CWSI) 

The CWSI derived from canopy temperature has been largely adopted as a tool to indicate plant 

water status and schedule irrigation in many crops (Aladenola and Madramootoo, 2014; Alchanatis 

et al., 2010; Bellvert et al., 2016; Yildirim et al., 2012). CWSI theory is based on the principle that 

transpiration cools the leaf surface and as root zone soil moisture is depleted, stomatal conductance 

and transpiration decrease and leaf temperature increases. The concept of using CWSI for 

improving irrigation scheduling gained popularity when Idso et al. (1981) observed a linear 

relationship between canopy temperatures measured using infrared thermometry and air 
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temperature and vapour pressure deficit, and developed an empirical method of quantifying crop 

water stress. The empirical CWSI (Eq. (2.5)) uses two baselines. The lower baseline represents 

canopy Temperature (Tc) minus air Temperature (Ta) of a well-watered crop transpiring at 

maximum potential rate and the upper baselines represents (Tc–Ta) of a non-transpiring crop. 

𝐶𝑊𝑆𝐼 =
[(𝑇𝑐−𝑇𝑎)−(𝑇𝑛𝑤𝑠−𝑇𝑎)]

[(𝑇𝑑𝑟𝑦−𝑇𝑎)−(𝑇𝑛𝑤𝑠−𝑇𝑎)]
 ……………………………… (2.5) 

where, Tc: canopy Temperature (°C), Ta: air Temperature (°C), Tnws: non-water stressed canopy 

Temperature (°C), and Tdry: water-stressed canopy Temperature (°C). 

 

Within the past few years, there have been improvements in the use of CWSI for monitoring water 

stress and scheduling irrigation in different crops (Berni et al., 2009a, 2009b; Gonzalez-Dugo et 

al., 2014; O’shaughnessy et al., 2011; Paltineanu et al., 2013). O’Shaughnessy et al. (2012) 

incorporated a Time-Temperature Threshold (TTT) into a theoretical index (CWSI-TTT), and used 

it to successfully automate irrigations of grain sorghum. The study however, reported an under-

irrigation problem during the growing season, caused by cloud cover and the influence of changing 

crop aspect on infrared thermometer measurements. Osroosh et al. (2015) developed an adaptive 

irrigation scheduling algorithm relying on a theoretical CWSI. This, unlike the traditional CWSI 

algorithm where the threshold is a constant value, uses a dynamic threshold determined by 

following the CWSI trend. However, large discrepancies in their thermal readings, attributed to 

infrared thermal and microclimatic measurements, resulted in dissimilar values of measured 

temperature and midday CWSI. 

 

Recent studies have evaluated additional indices based on infrared thermometry that require less 

information than CWSI for detecting crop water stress. Bausch et al. (2011) investigated the use 
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of a ratio of canopy temperature (Tc ratio) measured over fully irrigated and water-stressed corn 

as a substitute for the Ks presently used in the reference ET-crop coefficient. The result indicated 

that the Tc ratio is a reasonable quantitative estimate of Ks for calculating crop ET under water 

stress conditions and that the ratio allows application of the crop coefficient method for scheduling 

deficit irrigation. Taghvaeiana et al. (2014) indicated that the Degrees Above Non-Stressed 

(DANS), which is based solely on canopy temperature, was effective in monitoring water stress 

and scheduling irrigations in deficit-irrigated sunflower in arid/semi-arid regions. DeJonge et al. 

(2015) recommended the Degrees Above Canopy Threshold (DACT) as a suitable index that 

requires a single canopy temperature measurement for quantifying water stress in maize. Kullberg 

et al. (2017) compared four thermal remote sensing indices based methods for estimating crop 

evapotranspiration coefficients: CWSI, DANS, DACT, Tc ratio, and observed that thermal indices 

DANS and DACT are responsive to crop water stress, comparable to more data intensive methods 

such as CWSI. 

 

While canopy temperature measurements by infrared thermometers are reliable and non-invasive 

(Cohen et al., 2005), they are usually based on only a few point measurements. Therefore, 

uniformity of soil water content and of plant canopy for large areas is assumed. Most researchers, 

however, assume that weather conditions are constant if the measurements required to locally 

calibrate the baselines are made close to solar noon and under clear sky conditions. This 

assumption is problematic because weather conditions change with location, time of day and day 

of the year, and the baselines for the same crop will consequently change with weather conditions 

(Payero and Irmak, 2006). Researchers from different places have, therefore, reported different 

baselines for the same crop (Idso et al., 1981; Irmak et al., 2000; Nielsen and Gardner, 1988; 
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Payero and Irmak, 2006; Steele et al., 1994; Yazar et al., 1999). The lack of transferability of the 

baselines, together with the restriction of having to make required measurements close to solar 

noon and under clear sky conditions, are major drawbacks of using the empirical CWSI method 

for irrigation scheduling (Alves and Pereira, 2000). 

 

2.5. Remote sensing methods 

Even though the usefulness of canopy temperature, measured from infrared thermometry, has been 

established in several studies for monitoring plant water stress, there are physiological and 

operational concerns that support the development of alternative narrow-band indices, based on 

the visible and red edge spectral region for detecting water stress in crops (Berni et al., 2009b; 

Dangwal et al., 2015; Panigada et al., 2014; Rossini et al., 2013; Wang et al., 2015; Zarco-Tejada 

et al., 2013; Zhao et al., 2015). In some plants, the diurnal fluctuations in stomatal conductance 

are such that the relationships between canopy temperature and stress levels are not clear-cut. An 

increase in evaporative demand due to high vapor pressure deficits induces a constant decline in 

leaf conductance, even when the crops are well watered (Zarco-Tejada et al., 2012). Again, 

monitoring of large cropped fields requires appropriate imagery at high spatial and spectral 

resolutions, as well as short revisit periods (Berni et al., 2009b). Although the use of remote sensing 

in agriculture was proposed few decades ago, it has not been widely adopted until recently, mainly 

because of the widespread adoption of emerging technologies that integrate high-resolution 

thermal cameras on board UAS (Berni et al., 2009a; Elston, 2016; Suárez et al., 2010; Zarco-

Tejada et al., 2013). The potential applications of UAS in agriculture include; crop scouting, 

mapping canopy coverage, determining plant stresses, measuring soil moisture, managing 

variable-rate irrigation, and crop yield estimation (Ehsani et al., 2016). 
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Recent researchers have proposed the integration of remotely sensed data with soil water balance 

method to improve irrigation water management. For instance, Campos et al. (2016) estimated 

total available water in soil by integrating evapotranspiration data and multispectral imagery. 

Filion et al. (2016) used remotely sensed image to map soil moisture in the Mediterranean regions 

to support water management and agricultural practice. Zhang et al. (2017a, 2017b) integrated 

airborne imagery data into a soil water balance model to improve the estimation of soil water 

deficit for maize and sunflower grown under full and deficit irrigation treatments. Therefore, UAS 

will be a vital tool for growers soon, because they can cover large areas, and take advantage of 

new sensing, mapping and data analytic technologies. Image resolution is improving, and costs are 

also decreasing with time. Real time mapping and rapid image analysis also provide for early 

detection of plant water stress for timely irrigation scheduling, due to the potential to scale up 

information from the leaf to canopy/field levels (Gago et al., 2015). 

 

2.5.1. Spectral reflectance indices 

The focus on indicators other than thermal infrared indices for monitoring water stress is because 

leaf temperature, though a direct indicator of plant transpiration, does not directly account for other 

physiological changes such as photosynthetic pigment changes or non-stomatal reductions of 

photosynthesis under water stress conditions (Zarco-Tejada et al., 2013). The spectral vegetation 

indices that have been correlated to plant water stress are given in Table 2.2. These indices are 

classified into three; the xanthophyll, structural/greenness, and water indices. 

 

2.5.1.1. Xanthophyll indices 

The Photochemical Reflectance Index (PRI) (Gamon et al., 1992), and solar-induced chlorophyll 

fluorescence emission (Flexas et al., 2002; Moya et al., 2004), are pre-visual indicators of water 
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stress which serve as an indirect means for water stress detection (Berni et al., 2009b; Suárez et 

al., 2010). The PRI is sensitive to the epoxidation state of the xanthophyll cycle pigments and to 

photosynthetic efficiency (Gamon et al., 1992; Suárez et al., 2010). The functional basis of the PRI 

is based on its sensitivity to rapid changes in carotenoids through the deepoxidation of the 

xanthophyll pigments (Magney et al., 2016), and to heat dissipation increasing under water stress 

conditions (Panigada et al., 2014). When the light absorbed by plants exceeds their photosynthetic 

demand, energy dissipation occurs to avoid damage to the tissues (Rossini et al., 2013). The plants 

dissipate this excess energy non-destructively through re-emission of photons as fluorescence 

(radiative dissipation), and by conversion of light energy into heat in the pigment bed (thermal 

dissipation). Previous studies have demonstrated that the interconversion of the xanthophyll cycle 

pigments can be detected in leaves as subtle changes in reflectance at 531 nm (Gamon et al., 1992, 

1997). 

 

Recently, researchers have shown the sensitivity of PRI for crop water stress detection over short 

time scales (Gamon et al., 1997; Suárez et al., 2009, 2010; Zarco-Tejada et al., 2012, 2013), 

whereas studies conducted over longer time scales reported contrasting results, at the leaf and 

canopy scales (Gamon, 2015; Magney et al., 2016; Rahimzadeh-Bajgiran et al., 2012). The studies 

generally observed that there are certain issues with the index, such as leaf biomass, background 

reflectance, sensor spectral responses, and viewing-illumination geometry effects. Therefore, 

different researchers proposed new formulations for the index, using alternative reference bands 

(Hernández-Clemente et al., 2011). Zarco- Tejada et al. (2012) obtained higher correlations in a 

citrus orchard with PRI515 for stomatal conductance (gs) and leaf water potential (W). 
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Table 2. 2. Spectral vegetation indices that has been correlated to plant water stress 

  
Reflectance Indices Formula References Plant Water Stress Indicators 

Names Abbreviations 
   

Xanthophyll indices 
 

  
Photochemical 

Reflectance Index 

PRI 
 

Gamon et al., 1992 Chlorophyll flourescence and 

Stomatal conductance. 

Normalized 

Photochemical 

Reflectance Index 

PRInorm 
 

Berni et al., 2009 
Chlorophyll flourescence and  

Stomatal conductance. 

Structural indices  
 

  

Normalized 

Difference 

Vegetation Index 

NDVI 
 

Rouse et al., 1974 
Stomatal Conductance, Leaf 

water potential 

Renormalized 

Difference 

Vegetation Index 

RDVI 
 

Rougean and Breon, 

1995 
Stomatal Conductance, Leaf 

water potential 

Transformed 

Chlorophyll 

Absorption in 

Reflectance Index 

TCARI 

 

Haboudane et al., 

2002 Stomatal Conductance, Leaf 

water potential 

(𝑅570 −  𝑅531)

(𝑅570 +  𝑅531)
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Where R represents the reflectances at the respective wavelengths, nm. 

 

 

Optimized Soil 

Adjusted Vegetation 

Index 

OSAVI  

  

Haboudane et al., 

2002 Stomatal Conductance, Leaf 

water potential 

 

TCARI/OSAVI 

 

Haboudane et al., 

2002 

Stomatal Conductance, Leaf 

water potential 

Water indices  
 

  

Normalized 

Difference Water 

Index 

NDWI 
 

Gao et al., 1996 

Leaf water potential 

Simple Ratio Water 

Index 

SRWI 
 

Zarco-Tejada et al., 

2003 
Leaf water potential 

Water Index WI 
 

Zarco-Tejada et al., 

2003 
Leaf water potential 

(1 + 0.16)(𝑅800 −  𝑅670)

(𝑅800 +  𝑅670) + 0.16
 

(𝑅860 − 𝑅1240)

𝑅860 + 𝑅1240
 

𝑅860

𝑅1240
 

𝑅900

𝑅970
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Panigada et al. (2014) showed a high correlation between PRI586 and EWTcanopy, for cereal 

crops. Berni et al. (2009a, 2009b) normalized the standard PRI using the Renormalized Difference 

Vegetation Index (RDVI), an index that is sensitive to canopy structure, and a red edge index that 

is sensitive to chlorophyll content (R700=R670). The new index (PRInorm) not only detects 

xanthophyll pigment changes as a function of water stress, but also normalizes for the chlorophyll 

content level and canopy leaf area reduction induced by stress. The PRInorm, showed an improved 

capacity for water stress detection (correlated with leaf stomatal conductance, gs and leaf water 

potential, Ψ) in comparison with other greenness and structural indices (Gago et al., 2015). Several 

other researchers have used the PRI and PRInorm for water stress detection as an alternative to 

thermal measurements, with varying degrees of success (Behmann et al., 2014; Cheng and Wang, 

2014; Colombo et al., 2008; Dangwal et al., 2015; Meroni et al., 2008, 2009; Panigada et al., 2014; 

Peñuelas et al., 2011; Rossini et al., 2013; Suárez et al., 2009, 2010; Wang et al., 2015; Zarco-

Tejada et al., 2009, 2013). Rossini et al. (2013) revealed the feasibility of mapping water stress 

using spectral vegetation indices, taking advantage of the high spatial resolution capabilities that 

are more difficult in the thermal region. The studies revealed the potential applicability of remote 

sensing data in precision agriculture for improving irrigation scheduling. Nevertheless, the 

sensitivity of PRI measured at the crop canopy level requires further investigation, including an 

assessment for a new index formulation for high value vegetable crops, in order to optimise yield 

and productivity. 

 

2.5.1.2. Structural indices 

Structural indices are based on the reflectance of leaves in the visible and near-infrared bands of 

the electromagnetic spectrum. The Normalized Difference Vegetation Index (NDVI) is the best 

known vegetation index, used as a numerical indicator of vegetation greenness (Leroux et al., 



25 
 

2016; Zhao et al., 2015). The NDVI is an indication of the amount of chlorophyll and fraction of 

green cover. It is used in irrigation studies for mapping of crop cover as a means for estimating 

crop coefficients (Kc) for use in the conventional FAO-56 method (Allen et al., 1998), and for 

irrigation scheduling (Jones, 2012). Previous studies have also shown that NDVI has a linear 

relationship with the basal crop coefficient for ET (Kcb), because Kcb primarily depends on the 

dynamics of plant canopies (cover fraction, LAI, greenness). Based on this, several researchers 

have used NDVI to predict Kcb for various agricultural crops (Allen et al., 2005; Choudhury et 

al., 1994; Irmak et al., 2011; Kamble et al., 2013; Kullberg et al., 2017; Jayanthi et al., 2000). 

 

Roujean and Breon (1995) and Haboudane et al. (2002) showed that empirically derived NDVI 

products are unstable, because they are affected by soil reflectance and sun view geometry. In an 

attempt to improve NDVI, the Renormalized Difference Vegetation Index (RDVI), Optimised Soil 

Adjusted Vegetation Index (OSAVI), and Transformed Chlorophyll Absorption in Reflectance 

Index (TCARI), were developed to minimize soil brightness influences from spectral vegetation 

indices involving red and Near-Infrared (NIR) wavelengths and to reduce the variability of the 

photosynthetically active radiation due to the presence of diverse non-photosynthetic materials. 

Subsequently, TCARI/OSAVI was established (Haboudane et al., 2002) to make accurate 

predictions of crop chlorophyll content from hyperspectral remote sensing imagery. The ratio has 

been shown to be relatively insensitive to canopy cover variations, even for very low LAI values. 

Apart from their use in yield estimation, structural indices (NDVI, RDVI, OSAVI, TCARI, and 

TCARI/OSAVI) are useful in plant stress monitoring to capture the changes in canopy structures 

caused by water stress (Haboudane et al., 2002; Roujean and Breon, 1995; Zarco-Tejada et al., 

2012), and this is due to their positive correlations with stomatal conductance and leaf water 
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potential (Gago et al., 2015). For instance, NDVI and TCARI/OSAVI were clearly related to the 

stem water potential (Ψstem) and gs in vineyards cv. Tempranillo (Baluja et al., 2012). However, in 

Citrus orchards the indices were less correlated with gs (Zarco-Tejada et al., 2012). Usually, most 

structural indices are more related to plant vigor than the plant physiological status, and might 

correlate well in crops where the biomass proportionally increases in parallel to photosynthesis. 

While the studies demonstrated the feasibility of narrow-band indices obtained from hyperspectral 

sensors onboard UAVs for monitoring plant water stress, the results indicate that the sensitivity of 

the indices at the plant canopy level needs further study, before they could be adopted for precision 

irrigation water management. 

 

2.5.1.3. Water indices 

Typically, the water-absorption bands in the 1300–2500 nm region show the highest sensitivity to 

leaf water concentration in most crops (Carter, 1991). However, the absorption by water in this 

region is very strong, so that infrared bands are inadequate for measuring the water concentration 

of the plant canopies (Peñuelas and Filella, 1998). Therefore, a reflectance trough in the near-

infrared region at 950–970 nm, corresponding to a weaker water absorption band has been shown 

to be effective for representing the total plant or canopy moisture content (Peñuelas et al., 1997). 

When plants are water stressed, the 970 nm trough of the reflectance spectrum tends to disappear 

and to shift towards lower wavelengths (Peñuelas and Filella, 1998), and this concept was used to 

develop a reflectance water index (WI) and simple ration water index (SRWI) (Zarco-Tejada et 

al., 2003). The reflectance at 900 nm is used as a reference because there is no absorption by water 

at this wavelength, but it is subjected to the same changes in sample structure as the reading at 970 

nm. This water index has been found to be highly correlated with plant water content in several 

crops (Peñuelas et al., 1997; Dawson et al., 1999; Wang et al., 2015). Peñuelas et al. (1997) 
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observed a strong correlation between greenness and moisture content, and proposed the WI: 

NDVI ratio as a better indicator of canopy water content than the water index itself. 

 

Gao (1996) used the Normalized Difference Water Index (NDWI) to monitor changes in water 

content of leaves using NIR (Near Infrared) and SWIF (Short Wave Infrared) at a wavelength of 

approximately 860 nm, and the other at 1240 nm, respectively. The SWIR reflectance reflects 

changes in both the vegetation water content and the spongy mesophyll structure in vegetation 

canopies, while the NIR reflectance is affected by leaf internal structure and leaf dry matter content 

but not by water content. The combination of the NIR with the SWIR removes variations induced 

by leaf internal structure and leaf dry matter content, thereby, improving the accuracy in retrieving 

the vegetation water content (Wang et al., 2015). However, Gao (1996) noted that NDWI is 

responsive to changes in water content of plant canopies, but is less sensitive to atmospheric 

aerosol scattering effects than NDVI. It is therefore, complementary to, not a substitute for NDVI. 

Nevertheless, previous studies have shown the relevance of water indices (WI; SRWI, NDWI, and 

WI/NDVI) for monitoring plant water stress in wheat and maize crops. For instance, Panigada et 

al. (2014) obtained a significant correlation between WI and EWTcanopy; Rossini et al. (2013) 

showed a high correlation between WI/NDVI and RWC; while Wang et al. (2015) obtained a good 

relationship between NDWI and leaf water content, and concluded that the narrow bands at 780 

and 1750 nm are sensitive to the water parameters of spring wheat. The interest in reflectance 

indices is to use them to scale-up to satellite imagery since the use of thermal imagery is unreliable 

due to its poor resolution, which obtains mixed information from the plant and the soil background. 

The researchers showed the possibility of mapping plant water stress using hyperspectral indices, 
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but observed that the translation of this finding in accurate irrigation scheduling requires further 

investigations. 

 

2.5.2. Satellite imagery for assessing plant stress  

Researchers highlighted the use of VIs (such as NDVI) derived from satellite imagery for assessing 

plant stress and for estimating crop evapotranspiration (ETc) and irrigation requirements (Calera 

et al., 2017; Vanino et al., 2018). This method relies on the relationship between VIs and crop 

coefficient (Kc), because Kc depends on dynamics of plant canopy cover. The major limitation on 

the use of this method for estimating actual crop evapotranspiration is the compromise between 

the revisit time and the spatial resolution of satellite sensors. Satellite images such as the Moderate-

resolution Imaging Spectroradiometer (MODIS), with daily coverage have coarse spatial 

resolution (>250m), while the Landsat series, with medium spatial resolution (30 m) have long 

revisit times (16 days) (Rozenstein et al., 2018). Also, earth observation data are affected by cloud 

covers (Al Zayed et al., 2016), which further limits the use satellite imagery for operational 

applications in agriculture. Nevertheless, Sentinel-2A and 2B satellite platforms offer a combined 

spatial resolution of 10 m and revisit time of 5 days, which is suitable for routine crop stress 

assessment (Vanino et al., 2018). Investigating the spectral consistency of these Sentinel-2 data 

with field measurements, and assessing their suitability for estimating crop water requirements 

would be useful for developing operational tools to support agricultural water management. 

 

2.5.2.1. Surface energy balance algorithms 

Recent studies have highlighted the need for reliable estimates of crop water status from spectral 

remote sensing data at the field level with high spatial and temporal resolutions (Calera et al., 2017; 

Samuel et al., 2018; Rozenstein et al., 2018; Vanino et al., 2018). The surface energy balance 
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(SEB) algorithms have been recommended for estimating actual crop ET.  The most common SEB 

algorithms include Surface Energy Balance Algorithm for Land (SEBAL) (Bastiaanssen et al., 

1998), Surface Energy Balance System (SEBS) (Su, 2002), Simplified Surface Energy Balance 

Index (S-SEBI) (Roerink et al., 2000), Two Source Energy Balance (TSEB) (Norman et al., 1995), 

Mapping EvapoTranspiration at High Resolution with Internalized Calibration (METRIC) (Allen 

et al., 2007), ETLook (Pelgrum et al., 2010), and operational Simplified Surface Energy Balance 

(SSEBop) (Senay et al., 2013). These algorithms utilize satellite observations in the thermal range 

to estimate latent heat flux as a residual of surface energy balance, hence the actual 

evapotranspiration. The SEB method is highly accurate for capturing actual crop status and does 

not need information on specific crop type or various stages of crop growth (Allen et al., 2011).     

Previous studies have documented the merits and demerits of each SEB models for estimating 

actual crop ET (Bhattarai et al., 2016; Numuta et al., 2017; Zayed et al., 2016). The SEB algorithms 

are generally suitable for estimating crop ET and scheduling irrigation, but are limited by cloud 

covers (Al Zayed et al., 2016) and poor spatial and temporal resolution of satellite observations 

(Bisquert et al., 2016). 

 

2.6. Crop growth simulation models 

Crop growth models are tools for estimating yields as a function of weather, soil conditions, and 

field management practices (Siad et al., 2019). Models range from empirical to physical based, 

which describe mechanisms causing a response to climate and management practices. Empirical 

models are generally based on regression equations to estimate crop yields. These models have no 

information on the mechanisms that control the outputs. In contrast, mechanistic models explain 

the relationships between weather parameters and crop yields, and the mechanisms that control 

these relationships (Foster et al., 2017). Mechanistic crop growth models, eg.  AquaCrop, DSSAT, 

https://www.sciencedirect.com/science/article/pii/S0378377416302323#bib0410
https://www.sciencedirect.com/science/article/pii/S0378377416302323#bib0365
https://www.sciencedirect.com/science/article/pii/S0022169418300672#b0135
https://www.sciencedirect.com/science/article/pii/S0378377416302323#bib0335
https://www.sciencedirect.com/science/article/pii/S0378377416302323#bib0395
https://www.sciencedirect.com/science/article/pii/S0378377416302323#bib0080
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CropSyst, and APSIM (Vanuytrecht et al., 2014), use climate and soil moisture inputs to assess 

irrigation strategies to maximize yield.  

 

2.6.1. AquaCrop simulation model 

The AquaCrop is a crop growth model, developed by the Land and Water Division of FAO, to 

address food security and assess the effect of the environment on crop production (Steduto et al., 

2009, Hsiao et al., 2009). AquaCrop is a multi-crop model that simulates water-limited yield under 

different biophysical and management conditions (Foster et al., 2009), and simulates soil 

evaporation and crop transpiration separately. Transpiration is used to estimate daily biomass 

accumulation, using a crop-specific water productivity parameter that is normalized for reference 

evapotranspiration, making it highly applicable to irrigation studies (Foster et al., 2017). The 

model relates its soil-crop-atmosphere components through its soil and water balance (Araya et 

al., 2010). It uses several input files for simulation, including the climatic data, ETo, crop canopy 

cover, and soil water conditions. The ETa values are obtained based on the determination of the 

appropriate values of Kc using maximum soil evaporation and crop transpiration coefficients. The 

basic concepts and calculation procedures of AquaCrop model are summarized in Steduto et al. 

(2009). Several studies have highlighted the usefulness of AquaCrop model for estimating ETa 

(Araya et al., 2010; Hsiao et al., 2009; Toumi et al., 2016).  

 

2.7. Concluding remarks and future perspectives 

Conventional irrigation scheduling techniques rely on soil moisture measurements, climatic data, 

and physiological measures of plant response to assess water stress. The approach is inadequate 

due to the high costs of sensors and their installation, and the difficulty with obtaining 
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measurements, especially for heterogeneous soil and crop canopies. Plant indicators commonly 

used to determine crop water status are leaf water potential and stomatal conductance, but their 

measurements are either destructive, labour intensive or unsuitable for automation, which make it 

difficult for irrigators to adopt. Thus, automated techniques for monitoring crop water status that 

would provide non-destructive, rapid, and reliable estimates of plant water status are needed. 

 

Spectral remote sensing data acquired from UAVs and satellite platforms have been identified as 

a valuable tool for monitoring plant abiotic stress to improve water and nitrogen management. 

Generally, most physiological studies on plant stress report low correlation (with R2 values of 0.5 

or less) between a remotely sensed parameter such as NDVI or PRI and measures of plant stress 

parameters such as leaf area index, stomatal conductance, and leaf water potential. This sort of 

precision is inadequate to allow the use of single measurements of the parameters (e.g., NDVI or 

PRI) for estimation of plant stress. Therefore, innovative data management techniques that would 

integrate data from soil-based and plant-based approaches are needed to widen the scientific 

knowledge on the use of crop stress parameters to schedule irrigation, and provide irrigators with 

advanced tools for decision making. 

 

Even though spectral reflectance indices have been proposed for water stress detection in various 

crops, most of these studies focused on different species of tree and cereal crops. To our 

knowledge, the use of narrow-band optical indices for detecting water stress and scheduling 

irrigation has not been extensively investigated for high value vegetable crops in water stressed 

regions and environments, and growing conditions. Furthermore, since VIs for water stress 

detection are crop and climate specific, it is imperative to investigate the spectral VIs needed to 
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improve the productivity and yields of vegetable crops. This potential is enormous based on recent 

advances in sensor technologies, image analysis and processing, computer based decision making, 

and in the measurement of hyperspectral indices from UAS. 

 

Leaf spectral properties are not solely dependent on plant water status. Factors such as soil 

background, canopy structure, leaf thickness, leaf age, differences in surface properties of leaves, 

and variations in leaf angle could influence the correlation between spectral response of leaves and 

plant water status. Future research should focus on the integration of thermal and narrow-band 

hyperspectral imagery to provide more precise information about plant water status, and the real-

time data analysis and detection of plant water stress using advanced data analysis techniques that 

would be cost-effective and commercially available to farmers. 
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Connecting text 

The literature review in Chapter II showed spectral reflectance indices as a valuable tool for 

monitoring plant water status and improving irrigation water management. It is advantageous over 

conventional soil measurements because it takes into account the crop physiological status. 

However, the use of these indices for detecting water stress and scheduling irrigation has not been 

extensively investigated for high value vegetable crops in water stressed regions and environments, 

and growing conditions. Most of the studies on this concept only focused on different species of 

tree and cereal crops. Therefore, it was imperative to investigate the spectral reflectance indices 

needed to improve the productivity and yields of high-value vegetable crops. In this study, bell 

pepper crop, which is a widely cultivated greenhouse vegetable crop, was used as a test crop, due 

to its sturdy architecture. Chapter III of this thesis investigated the sensitivity of crop reflectance 

indices for mapping water stress in bell pepper crops grown under greenhouse conditions.  

 

This study was published in Agricultural Water Management. The paper was co-authored by Dr. 

Chandra A. Madramootoo, my supervisor. In order to ensure consistency with the thesis format, 

the original draft has been modified, and the cited references are listed in the reference section. All 

the funding used for this study was provided by my supervisor, Dr. Chandra A. Madramootoo. 
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Chapter III 

Crop reflectance indices for mapping water stress in greenhouse grown bell pepper 

3.1. Abstract 

Early detection of plant water status is essential to optimize crop water use, and to implement water 

savings methods such as precision irrigation. This study investigated the potential of using crop 

reflectance indices to detect water stress, in order to improve irrigation of bell pepper (Capsicum 

annuum L.), grown under greenhouse conditions. Spectral reflectance data were acquired from 

bell pepper plants, with five different irrigation regimes namely 100, 80, 60, 40, and 20% of plant 

available water, in a completely randomized design. Plant stress parameters including stomatal 

conductance (Gs), canopy temperature (Tc), relative water content (RWC), yield, and volumetric 

soil moisture content (SMC) were concurrently measured with spectral data acquisition from the 

plants throughout the growing season. Various reflectance indices including Normalized 

Difference Vegetation Index (NDVI), Renormalized Difference Vegetation Index (RDVI), 

Optimized Soil Adjusted Vegetation Index (OSAVI), Photochemical Reflectance Index centered 

at 570 nm (PRI570), Photochemical Reflectance Index centered at 553 nm (PRI553), normalized PRI 

(PRInorm), Water Index (WI), and WI/NDVI were obtained from the spectral data. The relationships 

between these crop reflectance indices and the water stress indicators were statistically examined 

at the five irrigation levels. The results revealed that PRI553, WI, RDVI, PRInorm, and WI/NDVI were 

the most useful indices for detecting water stress in bell pepper plants.  The findings of this study 

show promise of using a proximal method for assessing water stress and to improve water 

management of high value vegetable crops grown under greenhouse conditions.  

 

Keywords: Crop water stress; irrigation scheduling; bell pepper plants; spectral reflectance indices; 

water management. 
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3.2. Introduction 

Conventional methods of scheduling irrigation such as soil moisture monitoring are laborious, time 

consuming, and require large number of soil moisture sensors to account for spatial heterogeneity 

of soil properties (Ihuoma and Madramootoo, 2016). An alternative method of irrigation 

scheduling is to directly monitor the plant water status through the physiological responses of 

plants to water stress. Water stressed plants absorb more radiant energy than is required for their 

photosynthetic activities, thereby exceeding their photosynthetic demand. The plants dissipate this 

excess energy as chlorophyll fluorescence and heat to avoid damage to the photosynthetic pigment 

(Rossini et al., 2013). Also, plants undergoing water stress close their stomata to conserve water, 

which closes the pathway for the exchange of oxygen, water, and carbon dioxide. As a result, water 

stress causes a drop in photosynthetic activities, which reduces growth and development of crops 

(Dangwal et al., 2015). Stomatal closure also results in decreases in the transpiration rate and 

evaporative cooling, thereby increasing the leaf temperature. This concept was used by (Idso et 

al., 1981, Jackson and Center, 1981) to develop the crop water stress index (CWSI) for tracking 

water stress in crops, with the aid of infrared thermometers. 

 

Recently, researchers have utilized high-resolution airborne thermal sensors to detect differences 

in canopy temperature for monitoring water stress in plants (Berni et al., 2009, Gonzalez-Dugo et 

al., 2013, Osroosh et al., 2015; O'Shaughnessy et al., 2012), as leaf temperature is a direct indicator 

of plant transpiration. However, leaf temperature does not account for changes in photosynthetic 

pigments in water stressed crops (Zarco-Tejada et al. 2013) and is limited in estimating plant water 

status due to variations in environmental temperature and humidity (Chung et al., 2018). Within 

the past few years, studies have investigated alternative narrow-band hyperspectral indices for 

detecting crop water stress (Panigada et al., 2014, Rossini et al., 2013, Wang et al., 2015, Zhao et 
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al., 2015). This approach relies on the absorption and scattering of light, which controls the spectral 

features of plant leaves, to provide reliable, quantitative, and timely information on crop stress in 

a cost-effective manner.  

 

Previous studies have investigated several spectral vegetation indices such as Normalized 

Difference Vegetation Index (NDVI), Renormalized Difference Vegetation Index (RDVI), 

Optimized Soil Adjusted Vegetation Index (OSAVI), Photochemical Reflectance Index (PRI570), 

normalized PRI (PRInorm), Water Index (WI), WI/NDVI, and Normalized Water Index (NWI), for 

monitoring water stress in crops. A comprehensive review of reflectance indices for assessing plant 

water status and scheduling irrigation has been outlined in Ihuoma and Madramootoo (2017). 

However, most of the studies focused on various species of tree and cereal crops (Dangwal et al., 

2015; Magney et al., 2016, Panigada et al., 2014, Rossini et al., 2013), and their findings cannot 

be adopted for estimating water status in vegetable crops, due to differences in their physiological 

characteristics. While crop reflectance measurements have been widely investigated for crops 

grown under open field conditions, the same cannot be said for high value vegetable crops grown 

under greenhouse conditions. Meanwhile, reflectance indices for open field production may not 

be suitable for the greenhouse since plant water stress is influenced by a combination of 

environmental conditions, microclimate, root conditions, and plant genetic traits (Katsoulas et al., 

2016). Therefore, there is need to investigate crop reflectance indices that can be applied for early 

assessment of plant water stress, to improve the productivity and yields of high value vegetable 

crops grown under greenhouses. 

 

Most vegetable crops such as bell pepper have high water demand and are susceptible to water 

stress. Kirnak et al. (2003) showed that water stress adversely affects the physiological and 

nutritional development of bell pepper. To achieve optimal bell pepper production, supplemental 
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irrigation is required to ensure adequate water supply during their growth cycle (Ferrara et al., 

2011, Yildirim et al., 2012). However, climate change, drought, and rising water demands from 

non-agricultural sectors are limiting the availability of freshwater resources for irrigation. 

Therefore, precise irrigation scheduling is essential to optimize irrigation water use, improve crop 

yield, and avoid excessive irrigation that may result in yield or water loss (Afzal et al., 2017), or 

leaching of agricultural nutrients that would degrade soil and water. Implementation of this 

strategy requires information on plant water status (Ali, 2011).  

 

The objective of this study was to investigate the feasibility of spectral vegetation indices (VIs) 

for detecting water stress for optimizing irrigation water management in greenhouse grown bell 

pepper plants. Specifically, the objectives were to: (i) evaluate and compare various spectral VIs 

for monitoring water stress in bell pepper plants; (ii) test different PRI formulations for detecting 

water stress in bell pepper plants, by changing the normalization bands from 530 nm to 570 nm; 

(iii) determine the relationship between VIs and water stress of bell pepper. 

3.3. Materials and methods 

3.3.1 Experimental design and irrigation treatments  

This research was conducted in the greenhouse at Macdonald Campus of McGill University, Ste 

Anne De Bellevue, Quebec, Canada. The study area lies between latitude 45° 26’ 17” N and 

longitude 73° 56’ 17” W with an elevation of 36 m. The greenhouse with a dimension of 8 m x 7 

m x 5 m, was covered with single pane tempered glass that allows 95% of light transmission. The 

greenhouse roof was inclined at an angle of 37° to the horizontal. Bell pepper (cultivar Red Knight) 

seedlings were transplanted on August 26, 2016, into 25 pots (18-L each and one plant per pot) 

using soil from the Horticultural Research Centre of McGill University. Each pot had a depth of 
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32 cm and diameter of 27 cm. The soil was a sand clay loam with sand, silt, and clay content of 

48%, 22%, and 30% respectively (USDA-NRCS, 2000); field capacity of 33% and permanent 

wilting point of 17% by volume. The pots were placed on 330 × 150 × 150 mm bricks, which were 

randomly positioned in the greenhouse at a spacing of 0.6 m by 0.6 m. A water tap was affixed to 

the bottom of the pots so that excess water could be drained and measured with a volumetric flask.  

The pots were saturated and allowed to drain out for 24 hours so that the soil water content was at 

field capacity before the plants were transplanted.  

 

The experiment was arranged in a completely randomised design with five (5) irrigation water 

treatment levels of 100, 80, 60, 40, and 20% of plant available water as treatments, because weather 

variables were not expected to vary significantly within the greenhouse. Irrigation applications 

were based on the soil’s plant available water (AWC), defined as as the difference between the 

field capacity and permanent wilting point of the soil and soil moisture content (SMC) in each pot 

was continuously measured with soil moisture sensors. The water treatment levels for each 

treatment (100, 80, 60, 40, and 20% AWC) were used as the upper irrigation threshold while the 

lower irrigation threshold was set at 10% depletion of AWC for each treatment. Irrigation was 

initiated when the SMC in the pots depleted to its requisite moisture treatment threshold value and 

was terminated when the upper trigger (100, 80, 60, 40, and 20% AWC) moisture content was 

attained.  The volume of water applied to each pot during irrigation was determined as the product 

of the irrigation duration and the flow rate per pot, while the equivalent irrigation depth applied at 

each irrigation event for each pot was determined as the product of the volumetric water content 

and the plant rooting depth. High quality irrigation water was applied through a drip system, with 

emitters placed in each pot. The drip system consisted of pressure compensating emitters, with a 

discharge of 2 L h-1, and the flow rates were calibrated in the greenhouse. Irrigation was uniformly 
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applied to all treatments at the beginning of transplanting, based on 100% replenishment of water 

in the plant root zone to field capacity for plants to be well established; thereafter, the various 

irrigation treatments were implemented until harvest. 

 

Replenishment of soil water at the five water application levels was done using continuous Time 

Domain Reflectometers (TDR) (CS625 water content reflectometer, Campbell Scientific Inc., UT, 

USA) installed vertically at a depth of 30 cm in the middle of each pot, to correspond with the 

plant rooting depth (Jaria and Madramootoo, 2013). TDR readings were calibrated with 

gravimetric soil moisture measurements, and the sensors were installed with the aid of an insertion 

guide following the procedures articulated in the Sentek manual (Sentek Sensor Technologies, 

2003). The soil moisture sensors were connected to data loggers (model CR205/6, Campbell 

Scientific Inc., UT, USA). The data were scanned every 5 minutes and recorded every 15 minutes. 

Hourly and daily data were retrieved from the TDR using a laptop computer and LoggerNet 

software from Campbell Scientific Inc. Fertilizer applications, pest and weed control were based 

on guidelines for greenhouse production provided by the technicians in the Horticulture Research 

Centre. Agrochemical applications were the same for all the treatments to ensure that physiological 

stress detected were only due to water stress and not from nutrient stress or disease attacks. The 

plants were fertilized biweekly with 20-20- 20 N-P-K water-soluble fertilizer, at a rate of 4 kg of 

N per hectare. This was changed to calcium nitrate after the first fruits were noticed and later 

changed to potassium nitrate when the fruits were approaching maturity. 

 

3.3.2. Measurements 

Daily air temperature, relative humidity, and vapor pressure deficit were measured using a 

Campbell scientific psychrometer (Campbell Scientific, Logan, UT, USA) installed in the 
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greenhouse. Evapotranspiration (ET) in the greenhouse was estimated during the growing season 

based on the soil moisture approach as shown in Eq. 3.1: 

𝑆𝑊𝐶𝑡 =  𝑆𝑊𝐶𝑡−1 +  𝐼 − 𝐷 − 𝐸𝑇 … … … … … … … … . (3.1) 

where, 𝑆𝑊𝐶𝑡: Soil water content today (mm), 𝑆𝑊𝐶𝑡−1: Antecedent soil water content (mm), 𝐼: 

Irrigation depth since yesterday (mm), 𝐷: Drained water from the soil column (mm), 𝐸𝑇: Crop 

evapotranspiration (mm), 𝑆𝑊𝐶𝑡 − 𝑆𝑊𝐶𝑡−1: Soil water storage (S). 

 

3.3.2.1. Measurement of plant stress indicators 

Leaf temperature was measured with handheld infrared thermometry set at an emissivity of 0.95 

W m-² (Evett et al., 2000) (Fluke 572 model, Fluke Corporation, Everett, WA). The instrument 

was held 30 cm above the plant canopy and directed at the leaf of the bell pepper plant with a laser 

point of the instrument set at an angle of 90° to the horizontal (Orta et al., 2002). Four infrared 

thermometer measurements were made when the plant canopy covered about 80% of the pot area. 

The temperature of the stressed and non-stressed plants was determined from canopy temperature 

data; four (north, south, east and west) viewing directions were considered and average 

temperatures obtained. Measurements were made between 11:00 and 15:00 hours to ensure 

maximum solar intensity when the sun was shining directly on the plants, as adopted by Aladenola 

and Madramootoo (2014). Stomatal conductance was measured during the growing period using 

a Li-6400 Portable Photosynthesis System (LI-COR Ltd., Lincoln, NE). Three (3) healthy, fully 

sunlit leaves were selected, and stomatal conductance was measured on the leaves using the Li-

6400, and the averages calculated.  Leaf relative water content (RWC) was measured at each stage 

of plant growth by selecting the youngest fully expanded leaves from one representative crop in 

each treatment. The leaf samples were enclosed in a sealed plastic bag and kept in a cooler at 5 °C 

until they reached the laboratory. Fresh weight (FW) was recorded using an analytical balance, 
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and the samples were immersed in distilled water for 72 h, blotted and weighed to obtain the turgid 

weight (TW). Finally, leaf samples were dried at 72 °C in an oven, until constant dry weight (DW) 

was achieved. The RWC was calculated according to Eq. 3.2, as adopted in previous studies on 

crop water stress (Colombo et al., 2008, Wang et al., 2015). Bell pepper plants were harvested 

about 4 (four) times, after maturity, and the total and marketable yield were measured and 

recorded. 

 

𝑅𝑊𝐶 =
𝐹𝑊 − 𝐷𝑊

𝑇𝑊 − 𝐷𝑊
100 (%) … … … … … … … . . (3.2) 

 

3.3.2.2. Spectral data acquisition and processing 

A miniature fiber optic spectrometer (Stellar Net Inc. USA), which measures reflectance in the 

200–1150 nm spectral range, was used to measure canopy reflectance. The spectrum is 

characterized by a 0.5 nm spectral resolution and was calibrated before each reading was taken. 

The calibration process involved holding the probe at 45° to a white standard (reference), at a 

distance of about 60 mm, to optimize the integration time (typically set at 50 ms), recording dark 

current, and then obtaining target reflectance. All canopy spectral measurements were taken under 

clear sky conditions between 11:00 and 15:00 hours to ensure maximum solar intensity when the 

sun was shining directly on the plants, as conducted in similar studies (Zhao et al., 2017). The 

spectrometer was positioned at a height of 30 cm from the plant canopy so that it viewed only the 

plant leaves. Five leaves were measured in every pot and four scans were averaged in every 

measurement, considering four (north, south, east and west) viewing directions. The measurements 

were carried out five times (16 and 21 September; 10, 18, and 25 October 2016), during the 

flowering and maturity stages of the crops, when the crops are more susceptible to water stress. 
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Due to the absorption of atmospheric water, signal background, and light scattering effects, the 

spectral reflectance contains substantial interference noise (Zhao et al., 2017), which must be 

eliminated as it affects the smoothness of the spectral curve. The most commonly used smoothing 

algorithms include the moving average method, fitting polynomial method, wavelet transform and 

various regression smoothing methods. Based on the recommendations of previous research (Zhao 

et al., 2017), the 7-point weighted moving average method was used to smooth the spectral curve 

in this research. This algorithm enhances the smoothness of the spectral curve while keeping all 

the spectral details intact, to ensure the extraction of suitable wavelengths. The spectral indices 

used in this study were obtained from the optical reflectance measurements from each treatment 

and are presented in Table 3.1. The reflectance indices were divided into three (3); the xanthophyll 

pigment indices related to photosynthetic pigment changes, the structural/greenness indices related 

to the canopy structure and biomass, and the water indices related to the water content of the plant 

canopy. 

 

3.3.3. Statistical analysis 

The Pearson correlation ratio was used to describe the effects of irrigation levels on the stress 

indicators (Tc, RWC, Gs). Given that the correlation ratio 2 is defined as: 

2 =
𝜎2

𝜎𝑦
2 , 𝑤ℎ𝑒𝑟𝑒 𝜎2 =

∑ 𝑛𝑥( 𝑥− )2
𝑥

∑ 𝑛𝑥𝑥
 𝑎𝑛𝑑 𝜎𝑦

2 =
∑ 𝑛𝑥(𝑦𝑥𝑖− )2

𝑥,𝑖

𝑛
 …………………………  (3.3) 

Where each observation is yxi (x indicates the five irrigation levels, and i indicates an observation). 

nx is the number of observations in category x, x is the mean of the category x and  is the mean 

of the whole population. The correlation ratio assumes values in the interval (0, 1) and indicates 

how the data variance is explained by the factor irrigation. A correlation ratio close to 1 implies 

that all the data variance is explained by the factor irrigation. 
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One-way Analysis of variance (ANOVA) was conducted on the vegetation indices and field data 

using PROC/GLM (General Linear Model) procedure of SAS software (version 9.3, SAS Institute, 

Inc. Cary, NC, USA), and significance of differences among treatments were separated using 

Fisher’s Least Significant Difference (LSD) at a 5% probability level. The relationship between 

the vegetation indices (NDVI, OSAVI, RDVI, PRI570, PRI553, PRInorm, WI, WI/NDVI) and stress 

indicators (Tc, RWC, Gs), total marketable yield, Irrigation Water Use Efficiency (IWUE), and 

soil moisture content were evaluated by Ordinary Least Square (OLS) regression analysis. 

 

Table 3. 1. Optical indices used in this study, their formulations and references. 

Names Index Formulation Reference 

Xanthophyll pigments    

Photochemical Reflectance 

Index 
PRI570 (R570 - R531)/(R570 + R531) Gamon et al (1992) 

 PRI553 (R553 - R531)/(R553 + R531) Gamon et al (1992) 

Normalized Photochemical 

Reflectance Index 
PRInorm PRI/(RDVI * (R700/R670)) Berni et al (2009) 

Greenness Indices    

Normalized Difference 

Vegetation Index 
NDVI (R800 - R670)/(R800 + R670) Rouse et al (1974) 

Renormalized Difference 

Vegetation Index 
RDVI (R800 - R670)/(R800 + R670)

1/2 
Rougean and Breon 

(1995) 

Optimized Soil Adjusted 

Vegetation Index 
OSAVI 

(1 + 0.16)(R800 - R670)/(R800 + R670 + 

0.16) 

Haboudane et al 

(2002) 

Water content Indices    

Water Index WI R900/R970 Penuelas et al (1997) 

Normalized Water Index NWI (R970 - R900)/(R970 + R900) 
Bandyopadhyay et al 

(2014) 

 WI/NDVI WI/NDVI Penuelas et al (1997) 

Where R represents the reflectance values at the indicated wavelengths in nm.  
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3.4. Results 

3.4.1. Crop evapotranspiration and soil water content 

Daily mean temperature, relative humidity, and vapor pressure deficit in the greenhouse ranged 

from 19 to 28 °C, 60 to 86%, and 0.31 to 1.51 kPa, respectively, during the plant growing season.  

The total seasonal ETc was approximately 135 to 222 mm, and the total water applied for each 

treatment ranged from 45 to 168 mm, as shown in Table 2. The difference between the ETc and 

total water applied represents water storage in the pot. The ETc increased generally with irrigation 

water amount and was higher during the flowering and maturity stages of plant growth, as these 

corresponded to the periods when the crops required more water for their physiological 

development. Daily volumetric soil water content for various irrigation treatments are shown in 

Fig. 3.1. The soil water content generally decreased with decreasing water application, with 100 

and 20% AWC resulting in the highest and lowest values of soil water content, respectively. Soil 

water contents for 20, 40, and 60% AWC were relatively low throughout the growing season. The 

80% AWC was not statistically different from full irrigation treatment (100% AWC) but was 

significantly different from other treatments.  

 

3.4.2. Effects of irrigation on marketable yield  

The effects of irrigation treatments on marketable yield of the plants are shown in Fig. 3.2. The 

total marketable yield ranged from 0.40 to 0.59 kg plant-1, for 20 and 100% AWC treatments, 

respectively. The highest mean marketable yield was obtained from 100% AWC treatment (0.59 

kg plant-1), while the least marketable yield was obtained from 40% AWC treatment (0.40 kg plant-

1). The average yield from the full irrigation treatment (100% AWC) was statistically different 

from the yield obtained from the 40 and 20% AWC, but not significantly different from the yield 
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obtained from 80 and 60% AWC, which implies that water stress below 60% AWC treatment 

caused an evident decrease in crop yield.  

 

Table 3. 2. Water applied (mm) for bell pepper plants per growth stage for different treatments. 

Treatments (% of AWC) Days  100 80 60 40 20 

Initial stage 20 24 22 20 18 16 

Flowering stage 30 48 38 29 19 10 

Maturity stage 30 60 48 36 24 12 

Senescence stage 25 36 29 22 14 7 

Total 105 168 137 107 76 45 

 

 
Fig. 3. 1. Variation of soil moisture content during the growing season 
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3.4.3. Water stress indicators 

The mean of all the measured stress indicators generally decreased as irrigation water application 

decreased (Table 3.3). The leaf temperature showed the highest correlation ratio ( = 0.93), which 

implies that irrigation treatments explained most of the Tc variance. The results show that 100 and 

20% AWC had the average lowest and highest leaf temperatures. The 100% AWC was not 

statistically different from the 80% AWC but was significantly different from the 60, 40, and 20% 

AWC. This indicates that water stress affected the leaf temperature of the plants. The stomatal 

conductance had a high value of correlation ratio ( = ), indicating that the variance in Gs was 

explained by the irrigation treatments administered in the study. Leaf relative water content was 

weakly affected by the irrigation levels ( = ), compared to the Tc and Gs. There is a linear 

relationship between the leaf temperature and stomatal conductance, with R2 = 0.86 (p < 0.0001). 

This indicates that stomatal conductance increased linearly with decreases in leaf temperature. 

Also, the RWC is linearly correlated with Tc, having an R2 = 0.51 (p < 0.01). 

 

3.4.4. Crop spectral reflectance 

The spectral signatures of the plant leaves obtained from the spectrometer from various treatments 

are shown in Fig. 3.3(a). The plant canopy reflectance varied among various water treatment 

regimes and displayed similar trends throughout the entire growing season. The spectral signature 

follows a similar pattern for each of the treatments, with the 100 AWC and 20% AWC recording 

the highest and lowest reflectance values in the visible spectral range (400 – 700 nm), respectively. 

The spectral reflectance curves show peaks near 550 and 668 nm, and trough near 680 nm. The 

stressed crops exhibited higher reflectance values within the visible spectral range as shown in Fig. 
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3(b). The measured values of canopy reflectance were used to calculate the spectral vegetation 

indices shown in Table 3.1.  

 
Fig. 3. 2. Effects of irrigation treatments on marketable yield (kg plant-1) of bell pepper 

 

Table 3. 3. Descriptive statistics (mean, standard deviation, and correlation ratio (2) of bell 

pepper grouped by the irrigation treatment levels (100, 80, 60, 40, and 20% AWC). Where Tc: 

leaf temperature (°C), Gs: stomatal conductance (mmol m2 s-1), RWC (%); leaf relative water 

content. 

Stress 

indicators 100% AWC 80% AWC 60% AWC 40% AWC 20% AWC  

Tc 16.08 ± 0.18d 16.17 ± 0.34cd 17.32 ± 0.17bc 17.95 ± 0.23ab 18.32 ± 0.28a 0.93 

Gs 0.41 ±  0.06a 0.31 ±  0.07ab    0.21 ±  0.01bc 0.17 ± 0.01bc  0.16 ±  0.03c 0.82 

RWC 61.99 ±  6.73a 61.69 ±  6.83a 59.67 ±  7.55ab 53.52 ±  2.81bc 49.67 ±  2.56c 0.42 

a-c Means followed by the same letter within a column are not significantly different at p = 0.05. 

Reported values are averages of five replicates. 

0

0.2

0.4

0.6

0.8

100 80 60 40 20

M
ar

k
et

ab
le

 y
ie

ld
 (

k
g
 p

la
n
t-1

)

Treatment (% AWC)

c bc 

abc 

ab a 



48 
 

 

Fig. 3. 3. (a) Examples of spectral signatures of the plant canopy for different treatments          

(b) Spectral reflectance curves in the visible spectral range. 
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3.4.5. Crop reflectance indices 

The reflectance indices identified for monitoring water stress in this study were distinctly 

correlated with canopy temperature, stomatal conductance, relative water content, yield, and 

volumetric soil water content. The relationship between various reflectance indices and canopy 

temperature (Tc) obtained from the different water treatment levels is shown in Fig. 3.4. Analysis 

of the results revealed that all the crop reflectance indices considered in this experiment were 

significantly correlated with Tc. However, the PRI553, WI/NDVI, and PRInorm showed the most 

significant correlation with Tc, (R2 = 0.82, p < 0.001; 0.80, p < 0.001; and 0.73, p < 0.001; 

respectively). The greenness indices, NDVI, RDVI, and OSAVI were significantly related to Tc, 

(R2 = 0.5, p < 0.01; 0.62, p < 0.001; and 0.63, p < 0.01; respectively).  

 

Fig. 3.5 shows the relationship between various vegetation indices and stomatal conductance (Gs) 

of the plants. The result showed the correlation between Gs and WI, NDVI, and RDVI (R2 = 0.52, 

p < 0.01; 0.51, p < 0.01; and 0.73, p < 0.001; respectively). The OSAVI and WI/NDVI were weakly 

correlated with Gs (R2 = 0.32, p < 0.05; and 0.42, p < 0.05; respectively). Similarly, PRInorm and 

PRI553 showed significant correlations with Gs (R2 = 0.70, p < 0.001; and 0.62, p < 0.001; 

respectively), and PRI570 was correlated with Gs (R2 = 0.42, p < 0.01).  

 

The coefficient of determination of the linear relationships between all the reflectance indices and 

stress parameters are summarized in Table 3.4. The results show that the water indices (WI/NDVI 

and WI) showed the strongest correlation with crop yield (R2 = 0.76, p < 0.001; and 0.69, p < 

0.001; respectively). Also, there were significant correlations between the greenness indices and 

crop yield (R2 = 0.53, p < 0.01; 0.62, p < 0.001; and 0.62, p < 0.01; for NDVI, RDVI, and OSAVI, 

respectively). The PRI553 and PRI570 showed weak correlations with crop yield (R2 = 0.41, p < 0.01; 
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and 0.30, p < 0.05; respectively), while the PRInorm showed a strong correlation with crop yield (R2 

= 0.62, p < 0.01). The structural indices showed no significant correlation with the RWC of bell 

pepper.  

 

 

 

 

 

Fig. 3. 4. Relationship between (a) NDVI (b) PRInorm (c) PRI550 (d) PRI553 and canopy 

temperature (Tc) obtained from the various treatments. 
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Fig. 3. 5. Relationship between (a) NDVI, (b) OSAVI, (c) WI, and (d) PRInorm and stomatal 

conductance.  
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0.80, p < 0.001; 0.76, p < 0.001; respectively. NDVI, RDVI, OSAVI, and PRInorm were not 

significantly correlated with RWC, while the PRI570, PRI550, PRI553, WI, and WI/NDVI were 

correlated with the RWC, with R2 = 0.44, p < 0.05; 0.30, p < 0.01; 0.72, p < 0.05; 0.89, p < 0.01; 

and 0.69 p < 0.05, respectively. Table 4 also showed that the NDVI, RDVI, OSAVI, PRI570, PRI550, 

PRInorm, PRI553, WI, and WI/NDVI were correlated with crop ET, with R2 = 0.47, p < 0.001; 0.62, 

p < 0.001; 0.43, p < 0.5; 0.61, p < 0.01; 0.56, p < 0.01; 0.73, p < 0.001; 0.63, p < 0.01; 0.61, p < 

0.01; and 0.77, p < 0.001, respectively. 

 

There was no significant difference between 100 and 80% AWC for most of the indices. However, 

all the reflectance indices showed significant differences when the soil moisture content depletes 

below 40% AWC, which implies that the indices detected changes in plant water status. Table 3.5 

shows the correlations between various indices. Indices of the same group tend to show higher 

statistical significance with each other. Apart from NDVI, other structural indices, RDVI and 

OSAVI, were significantly correlated with each other, while NDVI was only correlated with 

PRInorm. The xanthophyll pigment indices all showed significant correlations with each other, and 

with the xanthophyll and water indices. Based on the results shown in Table 3.4, the PRI553 showed 

the best potential for detecting water stress in greenhouse-grown bell pepper plants with R2 = 0.82 

(P < 0.001). 
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Table 3. 4. Coefficient of determination (R2) of the linear relationship RWC (%), Gs (mmol m2 s-

1), ETc (mm day-1), Tc (°C), and Yield (kg plant-1), and vegetation indices computed from the 

hyperspectral sensor. 

 

RWC (%) Gs (mmol m2s-1) Tc (°C) ETc (mm day-1) Yield (kg plant-1) 

NDVI N.S 0.51** 0.50** 0.47*** 0.53** 

RDVI N.S 0.73*** 0.62*** 0.62*** 0.62*** 

OSAVI N.S 0.32* 0.63** 0.43* 0.62*** 

PRI570 0.44* 0.42** 0.72*** 0.61** 0.32* 

PRI550 0.30** 0.58** 0.63** 0.56** 0.56* 

PRInorm N.S 0.70*** 0.73*** 0.73*** 0.62** 

PRI553 0.72* 0.62*** 0.82*** 0.63** 0.41** 

WI 0.89** 0.52** 0.66** 0.61** 0.69*** 

WI/NDVI 0.69* 0.43* 0.80*** 0.77*** 0.76*** 

* P < 0.05; ** p < 0.01; *** p < 0.001; N.S = Not significant. 

 

3.5. Discussions 

3.5.1. Effects of water stress on yield 

The irrigation treatments implemented in this experiment caused moderate to severe water stress 

on the plants, and this caused a reduction in photosynthetic efficiency of the leaf pigments, as 

reflected in reduced yields of the stressed plants. The lowest crop yield was obtained from the 40% 

AWC and resulted in a yield loss of 32% compared to the optimum yield. This indicates that the 

depletion of soil water content to 40% AWC caused severe water stress that adversely affected the 

crop yield. Water application at 60% AWC resulted in a yield loss of 17% compared to the 

optimum yield, and this justifies the need for supplemental irrigation.  
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3.5.2. Effects of irrigation treatment on crop reflectance 

The stressed plants exhibited high reflectance values within the visible spectrum. Usually, plant 

pigments absorb radiance in the visible spectral range but reflect most radiance in the near-infrared 

(NIR) range. This spectral reflectance pattern is affected by plant stress due to reduced efficiency 

of the photosynthetic pigments, leading to increased reflectance in the visible band and decreased 

reflectance in the NIR band. Based on this concept, structural indices (such as NDVI) were 

calculated, and have been used by researchers to estimate biomass, leaf area index, and yield of 

various crop species (Jones et al., 2004, 2007, Rossini et al., 2013, Panadiga et al., 2014, Huang et 

al., 2014, Leroux et al., 2016). Recent studies utilize NDVI to map crop cover for estimation of 

crop coefficients (Kc) used in the conventional FAO-56 Penman-Monteith equation (Allen et al., 

1998), and for irrigation scheduling (Jones, 2012). NDVI has also shown a linear relationship with 

the basal crop coefficient for ET (Kcb) because Kcb mainly depends on the dynamics of plant 

canopies (greenness, biomass, and LAI). Several other researchers have used NDVI to predict Kcb 

for several other crops (Allen et al., 2005, Irmak et al., 2011, Kamble et al., 2013, Kullberg et al., 

2017), which makes it useful for estimating crop water requirements and scheduling irrigation. 

 

3.5.3. Effects of water stress on crop reflectance indices 

An evaluation of the reflectance indices for detecting water stress in bell pepper revealed that the 

PRI553 had the best correlation with leaf temperature and stomatal conductance, making the index 

a valuable tool for monitoring water stress in bell pepper plants. Basically, water-stressed plants 

close their stomatal leading to increased leaf temperature, to dissipate excess excitation energy, 

detected as changes in leaf xanthophyll pigment. Eq. 3.4 showed an inverse relationship between 

plant water stress levels and PRI553, a xanthophyll pigment index, with water stress decreasing as 

the PRI index plant increases. This result agrees with previous studies that used the xanthophyll 
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pigment indices to detect water stress (Berni et al., 2009, Dangwal et al., 2015, Leroux et al., 2016, 

Panigada et al., 2014, Rossini et al., 2013, Suárez et al., 2010, Zarco-Tejada et al., 2013, Zhao et 

al., 2015). The relationship between PRI and water stress can be explained by the role of the 

xanthophyll pigments in dissipating excess heat that occurs when plants are stressed and the 

functional interaction between eco-physiological indicators of water stress in plants. At the 

beginning of water stress, RWC decreases, stomata close, and Tc increases concurrently with a 

reduction in photosynthesis pigment activities (Prasad et al., 2008), which is detected by variations 

in PRI. The PRI570, proposed in previous studies to minimize structural effects (Hernández-

Clemente et al., 2011, Zarco-Tejada et al., 2012) showed weak correlations with RWC and Gs in 

this study, and therefore not suitable for monitoring water status in bell pepper plants. The strong 

correlation between the PRInorm and Gs implies that water stress-induced changes in 

 

Table 3. 5. Relationship between various vegetation indices obtained from the spectrometer. 

Correlation coefficients are significant at p < 0.05. 

  NDVI RDVI OSAVI PRInorm PRI550 PRI553 PRI570 WI NWI WI/NDVI 

NDVI 1 
         

RDVI -0.15 1 
        

OSAVI 0.18 0.68 1 
       

PRInorm  0.40 0.31 0.61 1 
      

PRI550 -0.30 0.48 0.69 0.31 1 
     

PRI553 0.12 0.62 0.61 0.26 0.55 1 
    

PRI570 0.05 -0.45 -0.74 -0.56 -0.80 -0.54 1 
   

WI -0.18 0.30 0.48 -0.01 0.45 0.39 -0.61 1 
  

NWI 0.14 0.37 0.78 0.69 0.69 0.25 -0.80 0.27 1 
 

WI/NDVI -0.13 0.71 0.63 0.49 0.53 0.57 -0.75 0.41 0.46 1 
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xanthophyll pigment. Previous studies showed the improved capacity of PRInorm to detect water 

stress because it is more sensitive to dynamic changes in vegetation compared to other greenness 

indices (Evain et al., 2004, Garbulsky et al., 2011, Zarco-Tejada et al., 2013).  

 

Again, the physiological processes of bell pepper plants were differently affected by water stress 

during the plant’s growth stages. The diurnal course of Tc is strongly related to the regulation of 

the stomatal opening and other aspects of crop physiology (Gonzalez- Dugo et al., 2014). In non-

stressed plants, Tc reduced as the day progressed due to the increased evaporative demand causing 

the transpiration rate to also increase.  In this experiment, water stress significantly affected leaf 

temperature with the non-stressed and fully-stressed treatments recording the least and highest Tc 

values, respectively. This affirms the assertion that water stress leads to a reduction in 

transpiration, thereby causing an increase in leaf temperature compared to non-stressed plants 

(Idso et al., 1982).  This concept has been adopted by several researchers who used crop water 

stress index (CWSI) to evaluate water stress in various crops (Aladenola and Madramootoo, 2014, 

Jones, 2010, Nielson and Gardner, 1988, Osroosh et al., 2015, O'Shaughnessy et al., 2012, Payero 

and Irmak, 2006, Sezen et al., 2014). Their studies demonstrated that Tc is sensitive to water stress 

and relies on stomatal closure as an early indicator of water deficits. 

 

The irrigation treatments resulted in changes in canopy structure, detected by the variations in the 

structural indices with different water treatment levels. The significant relationship between the 

greenness indices and Gs shows that water stress adversely affected the leaf pigment structures, 

leading to variations in NDVI and RDVI among various treatments. This may be the effect of 

accumulated water stress on plant physiology, and the structural indices detected these changes in 

plant leaves. Rinaldi et al. (2014) obtained a significant correlation between NDVI and plant 

biomass and yield, which is consistent with this study. Other studies obtained a good correlation 
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between NDVI and plant water content (Genc et al., 2011, Kim et al., 2010, Marino et al., 2014). 

Koksal (2011) attributed these findings to the effects of water stress on the crop canopy that may 

have caused changes in leaf structure and composition. Gago et al. (2015) demonstrated that the 

greenness indices are more related to the plant biomass than its dynamic physiological status. In 

this study, good correlations between plant water status and structural indices were obtained during 

the late maturity stage of the plants.  By then the effects of water stress on the plants were already 

established. This presents a limitation on the use of structural indices for monitoring plant water 

stress and scheduling irrigation.  

Most of the indices investigated in this study showed a strong correlation with crop yield, apart 

from PRI570 and PRI533, as shown in Table 3.4. Previous researchers reported a high correlation 

between NDVI and biomass, chlorophyll, leaf area, and yield (Jones et al., 2007, Koksal, 2011, 

Liu et al., 2004). 

 

Fig. 3. 6. Relationship between stomatal conductance (mmol m2s-1), RWC (%) and leaf 

temperature (°C) of the bell pepper plants. 

Gs = -0.086Tc + 1.72

R² = 0.86 (p < 0.0001)

RWC = -4.94Tc + 141.9

R² = 0.51 (p < 0.01)
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Jones et al. (2004) explained that although NDVI may be a good indicator of nitrogen content and 

biomass, it provides a medium estimate of plant water content. Usually, NDVI is not significantly 

correlated with stomatal conductance, which is affected by variations in environmental conditions 

such as vapor pressure deficit and air temperature, but it is strongly correlated to leaf area index 

(LAI) (Aguilar et al., 2012, Magney et al., 2016). The relationship between NDVI and LAI could 

be explored to monitor the effects of water stress on crop yield and provide appropriate information 

on the spatial and temporal variations in water stress levels and plant water requirements for 

precise irrigation water management. The significant correlation between PRInorm and crop yield 

indicates that the index (PRInorm) captured the effect of water stress on the photosynthetic pigment 

of the plant, which could have been responsible for the reduced crop yield of the stressed plants. 

The index generates a normalization that considers the chlorophyll content using the red edge 

index (R700/R670), which is sensitive to chlorophyll content and canopy leaf area reduction (RDVI) 

induced by stress. Also, the significant correlation between most of the reflectance indices and 

crop ET is indicative of the potential usefulness of the indices for improving agricultural water 

management, as crop ET is one of the best indicators of water stress.  

The correlation between WI/NDVI and Tc indicates that the index detected changes in plant 

canopy structure induced by water stress. In most plants, the water index reflects water absorption 

in the mesophyll pigment and tends to increase as leaf RWC increases. Previous studies had 

observed significant relationships between WI and RWC (Amatya et al., 2012, Genc et al., 2011, 

Jones et al., 2004, Kittas et al., 2016), and this supports the use of water index for predicting plant 

water status. In this study, the crop reflectance indices and RWC were not significantly correlated. 

This is because bell pepper, like most isotropic crops, tends to maintain a stable leaf water status 

under a declining soil moisture condition and changing evaporative demand. However, the strong 
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correlation between Tc and Gs showed in Fig. 3.6, indicates that Gs is a better indicator of water 

status in bell peppers than RWC. 

3.6. Conclusions 

The present study evaluated the sensitivity of spectral vegetation indices for monitoring water 

stress in greenhouse-grown bell pepper plants. The results indicated that water stress adversely 

affected crop yield, with the yield decreasing as irrigation water decreases. Generally, irrigation 

applications below 80% available water content caused a significant decrease in crop yield. The 

spectral vegetation indices were sensitive to different water stress levels in bell pepper plants. The 

results of this study indicate that the photochemical reflectance indices centered at 553 nm 

(PRI553), water index (WI), renormalized difference vegetation index (RDVI), normalized 

photochemical reflectance index (PRInorm), and the ratio of water index to normalized difference 

vegetation index (WI/NDVI) were the most useful indices for detecting water stress in bell pepper 

plants. Though it was challenging to select a single index as the best indicator of water status, the 

PRI553 showed strong correlations with all stress indicators. Previous studies suggested the use of 

photochemical reflectance indices centered at 570 nm (PRI570) for monitoring water status of 

various plant species cultivated under open field conditions, but the findings of this experiment 

demonstrated that the PRI553 was better than the PRI570 when correlated to all water stress 

indicators in the greenhouse. Nevertheless, it is important to note that leaf biophysical and 

biochemical effects on the physiochemical reflectance index during the growing season could 

affect the use of the index for detecting water stress. Therefore, the integration of several crop 

reflectance indices using advanced data management tools are required to improve crop water 

stress monitoring and optimize irrigation water management.  
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It is recommended that future research should focus on the integration of thermal and spectral 

vegetation indices to precisely estimate plant water status. Real-time analysis of these data, which 

could be integrated into a crop water stress model, would provide a vital tool for greenhouse crop 

growers to aid in decision making and optimization of agricultural water use. It is further 

recommended that prospective irrigation scheduling models test and validate the above-mentioned 

spectral indices for irrigation management. 
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Connecting text 

Following the literature review in Chapter II, it was imperative to investigate the feasibility of 

spectral reflectance indices in a wide range of vegetable crops. In this study, tomato crop, which 

is another widely cultivated high-value vegetable crop, was used as a test crop because tomatoes 

are highly sensitive to water stress. Thus, Chapter IV of this thesis examined the feasibility of 

spectral vegetation indices for monitoring water stress in greenhouse-grown tomato crops.  

 

This study was published in Computers and Electronics in Agriculture. The paper was co-authored 

by Dr. Chandra A. Madramootoo, my supervisor. The original draft of this paper has been modified 

to ensure consistency with the thesis format. All the cited references are listed in the reference 

section. The funding used for this study was provided by my supervisor, Dr. Chandra A. 

Madramootoo. 
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CHAPTER IV 

Sensitivity of spectral vegetation indices for monitoring water stress in tomato plants 

4.1. Abstract 

Innovations in irrigation water management are required to optimize agricultural water use in 

water-stressed regions of the world, and the physiological response of plants to water stress is an 

important criterion.  Remotely sensed plant stress indicators, based on the visible and near-infrared 

spectral regions, provide an alternative to traditional field measurements of plant stress parameters, 

as this provides information about the spatial and temporal variability of crops and soil. The present 

study is a proof of concept on the feasibility of using narrow-band hyperspectral derived indices 

for monitoring water stress in tomato plants (Solanum Lycopersicum L.). Spectral reflectance data 

were acquired from tomato plants, with five different irrigation regimes namely 100, 80, 60, 40, 

and 20% of plant available water, in a completely randomized design. Also, plant water stress 

indicators including canopy temperature (Tc) and relative leaf water content (RWC), as well as 

volumetric soil moisture content (SMC) were concurrently measured with spectral data 

acquisition. Normalized Difference Vegetation Index (NDVI), Renormalized Difference 

Vegetation Index (RDVI), Optimized Soil Adjusted Vegetation Index (OSAVI), Photochemical 

Reflectance Index centered at 570 nm (PRI570), normalized PRI (PRInorm), Water Index (WI), and 

Normalized Water Index (NWI) were computed from the spectral data. The relationships between 

canopy reflectance and water stress indicators were analyzed at different water stress levels. The 

result showed that the PRI centered at 550 nm wavelength (PRI550), WI, OSAVI, and WI/NDVI 

were the most sensitive indices to distinguish water stress levels in tomato plants. This study 

provides an insight into the feasibility of using spectral vegetation indices to monitor water stress 

in tomato crops for precision irrigation water management. 
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Keywords: Crop water stress; precision irrigation; tomato plants; spectral vegetation indices; 

hyperspectral data. 

4.2. Introduction 

Current irrigation scheduling techniques depend mainly on in-situ soil moisture measurements, 

weather-related variables, and physiological measurements of plant response to crop water stress 

(Ihuoma and Madramootoo, 2017). However, these methods are time-consuming, labor-intensive, 

and are limited in accounting for variability in soil and crop canopy conditions. Idso et al. (1978) 

stated that irrigation scheduling can be improved by monitoring the plant water status directly, 

rather than depending solely on soil water content measurements or estimates of 

evapotranspiration.  Water stress induces stomatal closure, which reduces the transpiration rate, 

thus decreasing evaporative cooling and increasing leaf temperature. The increase in leaf 

temperature was earlier suggested (Idso et al., 1981, Jackson and Center, 1981) as a method of 

tracking water stress using infrared thermometers. More recently, high-resolution airborne thermal 

sensors flown over orchard crops detected differences in canopy temperature linked to water stress 

levels (Zarco-Tejada et al., 2012). The concept has been used in practice to monitor crop water 

stress and schedule irrigation of crops with great success as shown by Gonzalez-Dugo et al. (2014) 

and O’Shaughnessy et al. (2012). 

 

However, various physiological concerns necessitated the investigation of alternative narrow-band 

hyperspectral indices for detecting crop water stress (Dangwal et al., 2015). For instance, an 

increase in evaporative demands as a result of high vapor pressure deficits may induce a continuous 

decline in stomatal conductance, even when the plants were well watered (Zarco-Tejada et al., 

2012). Again, leaf temperature, though a direct indicator of plant transpiration, did not directly 
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account for other physiological changes such as photosynthetic pigment changes or non-stomatal 

reductions of photosynthesis under water stress conditions (Zarco-Tejada et al., 2013). Therefore, 

remotely sensed stress indicators that are based on visible and near-infrared spectral regions, which 

have high spatial and spectral resolutions that are difficult to obtain in the thermal regions, are of 

interest. The interest in reflectance indices is to use them to scale-up to satellite imagery since the 

use of thermal imagery may be limited by its poor resolution and mixed information obtained from 

the plant and the soil background (Gago et al., 2015).  

 

Several optical reflectance indices such as Photochemical Reflectance Index (PRI570), Normalized 

Difference Vegetation Index (NDVI), Renormalized Difference Vegetation Index (RDVI), 

normalized PRI (PRInorm), Optimized Soil Adjusted Vegetation Index (OSAVI), Water Index (WI), 

WI/NDVI, and Normalized Water Index (NWI) have been investigated for predicting plant water 

status. A comprehensive review of the reflectance indices for monitoring crop water stress and 

scheduling irrigation has been detailed by Ihuoma and Madramootoo (2017) and Katsoulas et al. 

(2016).  

 

In spite of these studies, a general agreement on the use of spectral vegetation indices (VIs) for 

crop water stress monitoring is yet to be reached due to numerous confounding factors (such as 

canopy structure, soil background, leaf thickness, and leaf surface properties) affecting the VIs at 

plant canopy levels. Narrow-band optical indices for detecting water stress and scheduling 

irrigation has been extensively investigated for tree and cereal crops grown under open field 

conditions (Dangwal et al., 2015; Elvanidi et al., 2017; Magney et al., 2016; Panigada et al., 2014; 

Rossini et al., 2013). However, there is little reported work on high-value vegetable crops grown 

under greenhouse conditions (Ihuoma and Madramootoo, 2019). The findings of the open field 

studies are not applicable for irrigation scheduling in greenhouse-grown vegetables (Katsoulas et 
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al., 2016), because the VIs threshold for monitoring plant water status is crop and climate-specific. 

Therefore, it is essential to assess spectral VIs for supporting precision irrigation to improve yields 

of greenhouse-grown vegetable crops. 

 

The objective of this study was to investigate the possibility of using VIs to detect water stress for 

optimizing irrigation water use efficiency in tomato crops grown under greenhouse conditions. 

Specifically, the objectives were to: (i) evaluate and compare various spectral VIs for monitoring 

water stress in tomato plants; (ii) test different PRI formulations for detecting water stress in 

tomato plants, by changing the normalization bands from 530 nm to 570 nm; and (iii) determine 

the relationship between VIs and tomato water stress. 

4.3. Materials and methods 

4.3.1. Experimental design and irrigation treatments  

This study was carried out in the greenhouse at the Macdonald Campus of McGill University, Ste 

Anne De Bellevue, Quebec, Canada. The study area lies at latitude 45.438 °N and longitude 73.938 

°W with an elevation of 36 m. The greenhouse has a dimension of 32 x 7 x 5 m and was covered 

with single pane tempered glass, which allows about 95% of light transmission. The greenhouse 

roof was inclined at an angle of 37° to the horizontal. The cover material is not expected to 

influence the leaf spectral measurements and results, due to its high transmissivity. According to 

Shamshiri et al. (2018), change in a light quality of about 10% would have no influence on plant 

biochemistry and photosynthetic activities. Ventilation in the greenhouse was regulated through 

automatically controlled vents (Argos Electronics, Athens, Greece), two side roll‐up windows, and 

a flap roof window. Heating was provided via aboveground PVC pipes and a fan coil located at a 

height of 2.6 m. Climate set points were;  24/14°C for temperature (day/night), a relative humidity 

of 78%, and CO2 partial pressure 500 μbar. 
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Picus tomato (Solanum Lycopersicum L.) seedlings, 42-days old, were transplanted on August 6, 

2016, into 25 pots (18-L each and one plant per pot) using soil from the Horticultural research 

center of McGill University; the plants were harvested on December 24, 2016. Each of the pots 

has a depth of 32 cm and a diameter of 27 cm. The soil was a sandy clay loam with sand, silt, and 

clay content of 48, 22, and 30% respectively (USDA-NRCS, 2000); field capacity of 33% and 

permanent wilting point of 17% by volume. The pots were placed on 330 × 150 × 150 mm bricks, 

which were randomly positioned at the center of the greenhouse at a spacing of 0.6 m by 0.6 m, to 

minimize variabilities from the greenhouse materials (such as doors, ceiling, light source or walls). 

A tap was fixed to each of the pots so that excess water can drain out. The pots were saturated and 

allowed to drain out for 24 hours so that the soil water content can be at field capacity before crops 

were transplanted. Drained water was collected by means of a measuring cylinder placed under 

each tap. 

 

The experiment was arranged in a completely randomized design with five (5) water treatment 

levels of 100, 80, 60, 40, and 20% of plant-available water. Irrigation applications were based on 

the plant available water (AWC), and the soil moisture content in each pot was continuously 

measured with soil moisture sensors. The upper irrigation threshold was set as the water treatment 

level in each treatment (100, 80, 60, 40, and 20% AWC) and a lower irrigation threshold was at 

10% AWC depletion for each treatment. Irrigation events commenced when soil moisture content 

for each pot depleted to its lower moisture threshold (10% AWC) and was terminated when the 

upper threshold was reached, as shown by the soil moisture sensors. The irrigation scheduling 

process for each plot was done throughout the growing season. The volume of water applied during 

each irrigation event to each pot was determined as the product of the irrigation duration and the 

flow rate per pot, while the equivalent irrigation depth applied at each irrigation event for each pot 
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was determined as the product of the volumetric water content and the plant rooting depth. 

Irrigation water was applied through a drip system, with emitters placed in each pot. The drip 

system consists of pressure compensating emitters, with a discharge of 2 L/h, and the flow rates 

were calibrated in the greenhouse. The water application in each pot was regulated using a water 

control valve attached to each dripper. When the required moisture content for each pot was 

achieved, irrigation was terminated for that pot by turning off the valve. Irrigation was uniformly 

applied to all treatments at the beginning of transplanting, based on 100% replenishment of water 

in the plant root zone to field capacity for plants to be well established; thereafter, variable rate 

irrigation was applied until harvest. 

 

Soil water contents at the five water treatment levels were replenished using continuous Time 

Domain Reflectometers (TDR) (CS625 water content reflectometer, Campbell Scientific Inc., UT) 

installed vertically at a depth of 30 cm in each pot, to correspond with the plant rooting depth (Jaria 

and Madramootoo, 2013). TDR readings were calibrated in the greenhouse with gravimetric soil 

moisture measurements, and the sensors were installed with the aid of an insertion guide following 

the procedures articulated in the Sentek manual (Sentek Sensor Technologies, 2003). The soil 

moisture sensors were connected to solar-powered data loggers (model CR205/6, Campbell 

Scientific Inc.). The data was scanned every 5 minutes and recorded every 15 minutes  ̧hourly and 

daily and was retrieved from the CR205/6 using a computer and Campbell Scientific Inc. 

LoggerNet software. Fertilizer applications were based on guidelines for greenhouse-grown 

tomatoes at the Macdonald campus of McGill University. The plants were fertilized biweekly with 

20-20- 20 N-P-K water-soluble fertilizer, at a rate of 4 kg of N hectare-1. This was changed to 

calcium nitrate after the first fruits were noticed and were later changed to potassium nitrate when 
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the fruits were approaching maturity. Fertilizer application was the same for all the treatments to 

avoid nutrient stress. 

 

4.3.2. Measurements 

Daily air temperature, relative humidity, and vapor pressure deficit were measured in the 

greenhouse using a Campbell scientific psychrometer (Campbell Scientific, Logan, UT) installed 

about 1 m above the plant canopy. Evapotranspiration (ET) in the greenhouse was estimated during 

the growing season based on the soil moisture approach as shown in Eq. 4.1: 

𝑆𝑊𝐶𝑡 =  𝑆𝑊𝐶𝑡−1 +  𝐼 − 𝐷 − 𝐸𝑇 … … … … … … … … . (4.1) 

 

where, 𝑆𝑊𝐶𝑡: Soil water content today (mm), 𝑆𝑊𝐶𝑡−1: Antecedent soil water content (mm), 𝐼: 

Irrigation depth since yesterday (mm), 𝐷: Drained water from the soil column (mm), 𝐸𝑇: Crop 

evapotranspiration (mm), 𝑆𝑊𝐶𝑡 − 𝑆𝑊𝐶𝑡−1: Soil water storage (S). 

 

4.3.2.1. Spectral data acquisition and processing 

A miniature fiber optic spectrometer (Blue-wave, Stellar Net Inc., FL, USA), which measures 

reflectance in the 200–1150 nm spectral range, was used to measure canopy reflectance. The 

spectrum is characterized by a 0.5 nm spectral resolution and was calibrated before each reading 

was taken. The calibration process involved holding the probe at 45° to a white standard 

(reference), at a distance of about 64 mm, to optimize the integration time (typically set at 50 ms), 

recording dark current, and then obtaining target reflectance. All canopy spectral measurements 

were taken under clear sky conditions between 10:00 and 15:00 hours to ensure maximum solar 

intensity when the sun was shining directly on the plants, as adopted in a similar study (Zhao et 

al., 2017). The spectrometer was positioned at a height of 30 cm from the plant canopy so that it 

viewed only the plant canopy. Five leaves were measured in every pot and four scans were 

averaged in every measurement, considering four (north, south, east and west) viewing directions. 
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The spectral data acquisition was conducted five times (16 and 21 September; 10, 18, and 25 

October 2016), during the plant growing season and the data were used for spectral data calculation 

and estimation of vegetation indices. 

 

Due to the absorption of atmospheric water, signal background, and light scattering effects, the 

spectral reflectance contains substantial interference noise (Zhao et al., 2017), which must be 

eliminated as it affects the smoothness of the spectral curve. The most commonly used smoothing 

algorithms include the moving average method, fitting polynomial method, wavelet transform and 

various regression smoothing methods. The 7-point weighted moving average method was used to 

smooth the spectral curve in this research, as adopted by Zhao et al. (2017).  

 

The spectral indices used in this study were obtained from the optical reflectance measurements 

from each treatment and are presented in Table 4.1. The reflectance indices used in this study were 

divided into three (3); the xanthophyll pigment indices related to photosynthetic pigment changes, 

the structural/greenness indices related to the canopy structure and biomass, and the water indices 

related to the water content of the plant. 

 

4.3.2.2. Measurement of plant stress indicators 

Leaf temperature was measured with handheld infrared thermometry set at an emissivity of 0.95 

W m-² (Fluke 572 model, Fluke Corporation, Everett, WA). The instrument was held about 1.5 m 

above ground level and directed at the leaf of the tomato plant with a laser point of the instrument 

set at an angle about 30° to the horizontal (Orta et al., 2002). Four infrared thermometer 

measurements were made when the plant canopy covered about 80% of the pot area. The 

temperature of the stressed and non-stressed plants was determined from canopy temperature data; 

four (north, south, east and west) viewing directions were considered and average temperature 
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values obtained. Measurements were made between 11:30 h and 14:00 h to ensure maximum solar 

intensity when the sun was shining directly on the plants. Relative water content (RWC) compares 

the water content of a leaf with the maximum water content at full turgor and was considered as 

an indicator of water status (Colombo et al., 2011). Leaf sampling was conducted on each 

treatment with the collection of the youngest fully expanded leaf from each plant. The leaf samples 

were enclosed in a sealed plastic bag and kept in a cooler at 5 °C until they reached the laboratory. 

Fresh weight (FW) was recorded using an analytical balance, and the samples were immersed in 

distilled water for 72 h, blotted and weighed to obtain the turgid weight (TW). Finally, leaf samples 

were dried at 72 °C in an oven, until constant dry weight (DW) was reached. The RWC was 

calculated according to Eq. 4.2, as adopted by similar studies on crop water stress (Wang et al., 

2015). 

 

𝑅𝑊𝐶 =
𝐹𝑊 − 𝐷𝑊

𝑇𝑊 − 𝐷𝑊
100 (%) … … … … … … … . . (4.2) 

 

4.3.3. Statistical analysis 

Statistical analyses were carried out on vegetation indices (NDVI, OSAVI, RDVI, PRI570, PRI550, 

PRInorm, WI, and NWI), stress indicators (Tc, RWC, and SMC), total marketable yield, Irrigation 

Water Use Efficiency (IWUE) and water applied for each treatment using a regression analysis 

and PROC/GLM (General Linear Model) procedure of SAS software (version 9.3, SAS Institute, 

Inc., Cary, NC, USA). One-way analysis of variance (ANOVA) was conducted, and the 

significance of differences among treatments was separated using Fisher’s Least Significant 

Difference (LSD) at a 5% probability level. The values of vegetation indices were related to values 

of RWC, Tc, SMC, and yield of each of the treatments using linear regression. 
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Table 4. 1. Optical indices used in this study, their formulations and references 

Names Index Formulation Reference 

Xanthophyll pigments    

Photochemical Reflectance 

Index 
PRI570 (R570 - R531)/(R570 + R531) Gamon et al (1992) 

 PRI550 (R550 - R531)/(R550 + R531) Gamon et al (1992) 

Normalized Photochemical 

Reflectance Index 
PRInorm PRI/(RDVI * (R700/R670)) Berni et al (2009) 

Greenness Indices    

Normalized Difference 

Vegetation Index 
NDVI (R800 - R670)/(R800 + R670) Rouse et al (1974) 

Renormalized Difference 

Vegetation Index 
RDVI (R800 - R670)/(R800 + R670)

1/2 
Rougean and Breon 

(1995) 

Optimized Soil Adjusted 

Vegetation Index 
OSAVI 

(1 + 0.16)(R800 - R670)/(R800 + R670 + 

0.16) 

Haboudane et al 

(2002) 

Water content Indices    

Water Index WI R900/R970 Penuelas et al (1997) 

Normalized Water Index NWI (R970 - R900)/(R970 + R900) 
Bandyopadhyay et al 

(2014) 

 WI/NDVI WI/NDVI Penuelas et al (1997) 

where R represents the reflectance values at the indicated wavelengths in nm.  

4.4. Results 

4.4.1. Crop evapotranspiration and applied irrigation water 

Mean daily air temperature, humidity, and vapor pressure deficit in the greenhouse ranged from 

19 to 28 °C, 60 to 86%, and 0.31 to 1.51 kPa, respectively, during the growth period. The crop 

evapotranspiration was higher during the flowering and maturity stages of plant growth, as these 

correspond to the periods when the crops need more water for their physiological development. 

The ETc increased generally with irrigation water amount and the total seasonal ETc ranged from 



72 
 

approximately 197 to 321 mm. The total water applied for each treatment ranged from 73 to 230 

mm during the growth period, as shown in Table 4.2. The difference between the ETc and total 

water applied represents water storage in the pot.  

 

4.4.2. Soil water content 

Volumetric soil water content for the various water treatment levels are presented in Fig. 4.1. A 

comparison of different water stress conditions showed that soil water content was low in high 

stressed conditions. Soil water content generally decreased with decreasing water application, with 

100 and 20% AWC resulting in the highest and lowest values of soil water content, respectively. 

Soil water content remained relatively low for 20, 40, and 60% AWC treatments due to insufficient 

supplementary irrigation, while the soil water content for 100% AWC treatment was kept at a high 

level during the growing season. The 100% AWC treatment was not significantly different from 

the 80% AWC treatment but reached the highest yield. 

 

Table 4. 2. Water applied (mm) for tomato plants per growth stage for different treatments 

  Treatments (% of AWC) 

Growth stages  Days 100% 80% 60% 40% 20% 

Initial  30 48.00 45.12 42.24 39.36 36.48 

Flowering  40 62.40 49.92 37.44 24.96 12.48 

Maturity  45 72.00 57.60 43.20 28.80 14.40 

Senescence 30 48.00 38.40 28.80 19.20 9.60 

Total 145 230.40 191.04 151.68 112.30 72.90 
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Fig. 4. 1. The volumetric soil moisture content at various treatment levels during the growing 

season. 

 

4.4.3. Yield and irrigation water use efficiency  

The effects of the irrigation treatments on marketable yields and Irrigation Water Use Efficiency 

(IWUE) are shown in Table 4.3. The total marketable yield ranged from 0.46 to 2.28 kg plant-1, 

for 20 and 100% AWC treatments, respectively. The highest mean marketable yield was obtained 

from 100% AWC treatment (1.83 kg plant-1) while the least mean marketable yield was obtained 

from 20% AWC treatment (0.40 kg plant-1). The average yield from the full irrigation treatment 

(100% AWC) was statistically different from the yields obtained from the 60, 40, and 20% AWC 

treatments, but not significantly different from the yield obtained from 80% AWC. This indicates 

that water stress caused significant declines in crop yield, at p < 0.05.   
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Table 4. 3. Effects of irrigation treatments on Marketable yield (kg plant-1) and Irrigation Water 

Use Efficiency (kg m-3) 

Treatments 

(% AWC) 

Marketable yield 

(kg plant-1) 

Depth of Irrigation 

water applied (m-3 m-2) 

IWUE (kg 

m-3) 

100 1.83a 0.23 17.72ab 

80 1.52ab 0.19 17.83a 

60 1.06bc 0.15 15.63bc 

40 0.68cd 0.11 13.57cd 

20 0.40d 0.07 12.18d 

a-dMeans followed by the same letter within a column are not significantly different at p = 0.05. 

Reported values are averages of five replicates. 

 
 

 
The IWUE was calculated as the ratio between marketable yield (kg plant-1) and the total volume 

of water applied (m3). The highest IWUE value (17.83 kg m-3) was recorded with 80% AWC, as 

shown in Table 4.3, but this is not statistically different from the IWUE value obtained from 100% 

AWC. Both the 100% and 80% AWC values were different from the other water treatments.  Water 

stress less than 80% AWC treatment caused an evident decrease in crop yield, as shown in Table 

4.3. The IWUE is important for most crops as it indicates the optimal use of water in agriculture 

(Rinaldi et al., 2015). 

 

4.4.4. Crop reflectance 

Examples of the spectral signature of the plant canopy obtained from the crop reflectance values, 

which was measured with a portable spectrometer, are presented in Fig. 4.2(a). The leaf reflectance 

in the five water treatments showed similar trends during the entire growth stage and varied among 

irrigation treatments. However, the spectral response for water stress was more evident in the  
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Fig. 4. 2. Examples of the spectral signature of tomato plants under different water stress 

conditions (a) 450 – 900 nm; (b) 450 – 700 nm. 

 

(b) 
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flowering and early maturity stages, because the plants are more sensitive to water stress at these 

stages. Thus, hyperspectral reflectance in the flowering and early maturity stages was used to 

identify the water stress levels. The spectral reflectance curves show peaks near 550 nm and 668 

nm, and trough near 680 nm, and follow a similar pattern for each of the treatments, with the 100% 

AWC and 20% AWC recording the lowest and highest reflectance values in the visible spectral 

range (400 – 700 nm), respectively, as shown in Fig. 4.2(b). 

  

The measured values of leaf reflectance were used for the calculation of spectral vegetation indices 

presented in Table 4.1. The response of various vegetation indices to water stress in tomato plants 

is shown in Fig. 4.3. Statistical analysis of the indices revealed that PRI550, WI, OSAVI, WI/NDVI 

were significantly related to water stress in tomato plants, while NDVI, RDVI, and PRInorm showed 

no significant differences among various water stress levels. There is no significant difference 

between 100% AWC and 80% AWC for most of the indices, as shown in Fig. 4.3. However, there 

was a significance difference when the AWC depletes below 20%, in all the reflectance indices. 

This shows that the identified indices successfully detected high water stress in the plants.  

 

4.4.5. Testing spectral vegetation indices 

Plant water stress detection using optical reflectance indices were tested using the reflectance 

indices specified in Table 4.1. The selected indices were separately correlated to canopy 

temperature, relative water content, yield, and soil water content, which were concurrently 

measured at the time of spectral data acquisition. From the results, the structural indices (NDVI, 

OSAVI, RDVI) were significantly correlated with Tc (R2 = 0.51, p < 0.01; 0.40, p < 0.05; 0.59, p 

< 0.05; respectively), and with RWC (R2 = 0.41, p < 0.05; 0.48, p < 0.05; 0.61, p < 0.01; 

respectively).  
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Fig. 4. 3. Responses of various vegetation indices (a) PRI550, (b) RDVI, (c) OSAVI, and (d) 

WI/NDVI) to water treatments in tomato plants. a-d Means followed by the same letter are not 

significantly different at p = 0.05. Reported values are averages of five replicates. 
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Table 4.4 summarized the coefficient of determination of the linear relationship between 

vegetation indices and plant stress parameters, under different water stress levels. The results 

indicate that the correlations between structural indices and crop yield were significant (R2 = 0.65, 

p < 0.001; and 0.60, p < 0.001; for OSAVI and RDVI, respectively). The results of the relationships 

between spectral vegetation indices and volumetric water content indicated that NDVI, OSAVI, 

and RDVI were significantly related to volumetric soil moisture content (R2 = 0.89, p < 0.05; 0.88, 

p < 0.01; and 0.86, p < 0.05; respectively). 

 

The xanthophyll pigment indices correlated differently with the various stress parameters. Fig. 4.4 

shows the relationship between vegetation indices and canopy temperature obtained from the 

various treatments. The PRI550 showed significant correlation with all the measured plant stress 

indicators, with R2 = 0.66, p < 0.01; 0.69, p < 0.001; 0.81, p < 0.05; and 0.67, p < 0.0001; for the 

RWC, Tc, SWC, and yield, respectively. The PRI570 was weakly correlated to all the measured 

stress parameters, with R2 = 0.21, 0.38, 0.47, and 0.39 for the RWC, Tc, SWC, and yield, 

respectively. However, the correlation between PRI570 and the measured water stress indicators 

were not statistically significant at p < 0.05, as shown in Table 4.4.  The PRI550 showed the highest 

correlation with crop yield (R2 = 0.67, p < 0.0001), which indicates that water stress adversely 

affected the photosynthetic activities of the plants, leading to reduced crop yield. The PRInorm 

showed high correlation with relative water content (R2 = 0.86, p < 0.0001), as shown in Fig. 4.5, 

which indicates high sensitivity to plant water stress and implies that water stress-induced changes 

in xanthophyll pigment. The index generates a normalization that considers the chlorophyll content 

using the red edge index (R700/R670), which is sensitive to chlorophyll content, and canopy leaf 

area reduction (RDVI) induced by stress. Also, the index showed a good correlation with soil 



80 
 

moisture content (R2 = 0.82, p < 0.05), but was less correlated with Tc (R2 = 0.31, p < 0.05) and 

yield (R2 = 0.35, p < 0.05).  

 

 

 

 

R2=0.58 
(p < 0.001) 

(b) 

(a) 
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Fig. 4. 4. Relationship between (a) PRI550 (b) WI/NDVI (c) RDVI (d) WI and canopy 

temperature (°C) obtained from the various treatments. 

 

 

 

 

 

R2=0.42 
(p < 0.001) 

R2=0.59 
(p < 0.001) 

(c) 

(d) 
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Table 4. 4. Coefficient of determination (R2) of the linear relationship RWC (%), Tc (°C), Yield 

(kg/plant), and SMC (%), and vegetation indices (VIs) computed from the hyperspectral sensor. 

The highest significant index for each variable is in bold print. 

VIs RWC (%) Tc (°C) SMC (%) Yield (kg/plant) 

NDVI 0.41* 0.51** 0.89* 0.44** 

RDVI 0.61** 0.59** 0.86* 0.6*** 

OSAVI 

PRI570 

0.48* 

0.21* 

0.41* 

0.38* 

0.88** 

0.47* 

0.65*** 

0.39* 

PRI550 0.66** 0.69*** 0.79* 0.67**** 

PRInorm 0.86**** 0.31* 0.82* 0.35* 

WI 0.69** 0.42* 0.51* 0.39* 

WI/NDVI 

NWI 

0.55* 

0.43* 

0.58*** 

0.59*** 

0.39* 

0.82* 

N. S 

0.64*** 

Where * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, and N. S = not significant. 

 

The water index was correlated to RWC and yield, with R2 = 0.69 and 0.59 respectively, at p < 

0.05; but was weakly correlated to Tc, with R2 = 0.42, p < 0.05 (Table 4). The WI/NDVI showed 

significant correlation with RWC (R2 = 0.54, p < 0.05), Tc (R2 = 0.58, p < 0.001), but was not 

significantly related to SMC and crop yield (Table 4).  

 

Fig. 4.6 showed that the various treatment levels had significant differences in Tc, with the non-

stress and fully-stressed treatments recording the least and highest Tc values. Consequently, the 

magnitude of Tc was greater in non-irrigated plants. RDVI showed a significant correlation with 

Tc (R2 = 0.59, p < 0.01), and this could imply that changes in canopy structure occurred as a result 
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of water stress. Fig. 4.6 also revealed that the RWC was significantly different among the various 

water treatment levels. The non-stressed and fully-stressed treatments recorded the highest and 

lowest RWC. Again, the PRI550 had a significant positive correlation with RWC (R2 = 0.67, p < 

0.01). However, the renormalized PRI (PRInorm) showed the best correlation with RWC (R2 = 0.86, 

p < 0.0001), indicating a correlation with xanthophyll pigments and the carotenoid content. The 

correlation between the leaf relative water content and canopy temperature was analyzed, and the 

result is shown in Fig. 4.7. The analysis showed a strong correlation between the leaf relative water 

content and canopy temperature, with R2 = 0.93 (p < 0.0001). The graph revealed that leaf relative 

water content increased linearly with decreasing leaf temperature. 

 

 

 

 

(a) 
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R2=0.61 
(p < 0.01) 

R2=0.86 
(p < 0.0001) 
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Fig. 4. 5. Relationship between (a) PRI550 (b) RDVI (c) PRInorm (d) WI, and relative water content 

(%) obtained from the various treatments. 

 

4.5. Discussions 

4.5.1. Effects of water stress on yield and IWUE 

The analysis of the results showed that there were no significant differences in yield and IWUE 

for 80% and 100% AWC treatments. Though the 100% AWC treatment reached the highest yield, 

the 80% AWC treatment recorded the highest IWUE. The study implies that the 80% AWC is best 

suited for optimizing water use of tomato plants, and could be adopted in water-scarce regions, 

where optimization of water is paramount. The result is consistent with the findings of Hartz et al. 

(2005), which indicated that tomatoes can tolerate a moderate degree of stress, with about 20-30% 

depletion in available soil moisture in the plant root zone without significant yield loss. Soil 

moisture depletion levels during the entire growth periods of tomato plants should remain below 

30% of available soil moisture content to avoid yield loss. The most severe water stress (20% 

AWC) resulted in a yield loss of 61%, compared to the highest yield. Water application at 60% 

R2=0.69 

(p < 0.01) 

(d) 
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AWC resulted in a yield loss of 30% compared to the highest yield, and this justifies the application 

of supplementary irrigation to water-stressed plants. Again, prolonged water stress may alter the 

plant physiological and biochemical processes leading to nutrients deficiency to the crop (Silva et 

al., 2011). However, the soil nutrient content was regularly replenished during the experiment to 

ensure that the results of this study are the single effect of water stress and not the combined effect 

of nutrients and water stress. The findings of this study are in tandem with the findings of similar 

studies (Jaria and Madramootoo, 2013; Petropoulos et al., 2019) that water stress adversely 

affected physiological and photosynthetic activities of tomato plants.  

 

4.5.2. Effects water treatment on spectral reflectance 

The stressed plants showed increased reflectance values within the visible range, and this is 

consistent with the fact that healthy plants absorb more visible light for photosynthesis, thereby 

having lower reflectance values. The reflectance in the blue and red regions of the VIS region, 

shown in Fig. 4.2 (b), were significantly high at high water stress levels, which suggests that the 

leaf water deficit reduces photosynthetic pigment concentration. The result indicates that the 

reflectance in the VIS region is largely influenced by primary photosynthetic pigments. 
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Fig. 4. 6. Effects of water treatments on the canopy temperature, Tc (°C), and leaf relative water 

content, RWC (%) in tomato plants. 

a-d Means followed by the same letter are not significantly different at p = 0.05. Reported values 

are averages of five replicates. 

 

 

Fig. 4. 7. Regression of relative water content (%) on canopy temperature (°C) of tomato plants 
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The results of this study indicated that the irrigation treatments implemented in this experiment 

triggered a moderate to severe water stress on the plants, as reflected in the yields of the stressed 

and non-stressed plants. Plants irrigated with reduced amounts of water responded with stomatal 

closure, detected by an increase in Tc. When plants are water-stressed, osmotic adjustment may 

prevent dehydration of leaf cells for some time, thus not instantly affecting the plant turgor 

pressure. However, if plants can no longer cope with water stress, they will become dehydrated 

leading to a decrease in leaf cell turgor detected as a reduction of leaf RWC (Rossini et al., 2013). 

Generally, water-stressed plants have increased leaf temperature (Idso et al., 1981) and reduced 

leaf water content compared to non-stressed plants. Therefore, leaf relative water content has been 

used to indicate plant water stress and schedule irrigation (Colombo et al., 2011; Wang et al., 

2015), especially for strongly isohydric crops (such as tomatoes), which maintain a constant leaf 

water status over a wide range of evaporative demand (Limpus, 2009). 

 

4.5.3. Effects of water stress on vegetation indices 

An evaluation of various VIs for detecting water stress in tomato based on Tc revealed that the 

PRI550 had the best correlation with canopy temperature. This result agrees with previous studies, 

which confirmed the sensitivity of PRI to water stress (Berni et al., 2009, Zarco-Tejada et al., 

2013). Generally, water treatments affected leaf physiological processes in a different way during 

the growing season. The results reveal that the PRI550 was best related to all the indicators of water 

stress measured in this study (RWC, Tc, and yield). This can be explained by the functional 

relationship between these eco-physiological indicators of water stress. At the beginning of water 

stress, RWC decreases, stomata close and Tc increases concurrently with a decline of 

photosynthesis (Prasad et al., 2008). The PRI570, proposed in a previous study (Zarco-Tejada et 
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al., 2012), showed weaker correlations with all the leaf physiological indicators tested in this study. 

This indicates that the index is not suitable for detecting water stress in greenhouse-grown tomato 

plants.  

 

Although some recent studies demonstrated that PRI can also be related to water potential and 

stomatal conductance, canopy temperature generally showed the highest correlations. The link 

between PRI and Tc is likely due to the role of the xanthophyll pigments in dissipating excess heat 

arising under stressed conditions. Specifically, PRI with reference wavelength of 550 nm (PRI550) 

showed the best correlation with water stress indicators and performed better than PRI570 (reference 

wavelength of 570 nm), which has been used by several researchers, for estimating xanthophyll 

pigment changes under water stress conditions (Gamon et al., 1997; Suarez et al., 2009; Wang et 

al., 2015). However, the results by these researchers showed the sensitivity of PRI570 for detecting 

crop water stress over short time scales, whereas studies conducted over longer time scales 

reported contrasting results, at the leaf and canopy scales (Gamon, 2015; Magney et al., 2016). 

The result of this research is consistent with the original study on photochemical reflectance 

indices by Gamon et al (1992), which reported a reference wavelength of 550 nm for monitoring 

crop water stress. 

 

The irrigation treatments executed in this experiment might have induced structural and 

morphological changes (e.g. changes in canopy structure, shape, leaf thickness) in the plants, 

detected by the variations in the structural indices with different water treatment levels. This could 

be the effect of prolonged water stress on the plants that affected the plant structure and 

physiological parameters. Previous researchers reported a high correlation between the structural 

indices and biomass, chlorophyll, leaf area index, and yield (Koksal, 2011; Rinaldi et al., 2014). 

Jones (2004) explained that although NDVI may be a good indicator of nitrogen content and 
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biomass, and it provided an approximate estimate of plant water status. Several studies showed 

that NDVI obtained a good correlation with plant water content (Genc et al., 2011; Kim et al., 

2010), but this was not the case in this study. In their study, Kittas et al. (2016) explained that 

NDVI had a better correlation with soil moisture content in greenhouse tomatoes, which is 

consistent with the findings of this study. Amatya et al. (2012) showed that NDVI in potato had a 

high correlation with soil water content, as obtained in this experiment. Variations in soil moisture 

content affect the vegetation vigor, yield, and biomass production of plants, hence the highly 

significant correlations between the structural indices and soil moisture content. Usually, NDVI is 

not related to variations in environmental conditions such as VPD and air temperature, but it is 

strongly correlated to LAI and weakly correlated to stomatal conductance (Magney et al., 2016).  

 

The good correlation between water indices and RWC indicates that the indices increase with 

increasing RWC. This implies that water stress affected water absorption in the mesophyll pigment 

of the plants. Typically, the reflectance trough in the near-infrared region at 900 – 970 nm 

corresponds to the water absorption band, but the 970 nm trough disappears and shifts towards 

lower wavelengths when the plants are water-stressed (Penuelas et al., 1997). The findings of this 

study are consistent with previous studies (Genc et al., 2011; Katsoulas et al., 2016), which 

observed significant correlations between water indices and plant water content in several crops. 

This shows the possibility of mapping plant water status using reflectance indices for improving 

irrigation management. In all the reflectance indices that showed a significant correlation with 

water stress indicators, there was a significant difference in these indices whenever the AWC 

depletes below 20%, which indicates that this method can be used for crop water stress detection 

under normal and extreme water stress conditions. 
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4.6. Conclusion 

The work presented in this paper assessed the feasibility of using spectral vegetation indices to 

detect water stress in tomato plants. Water deficit induced in this experiment adversely affected 

crop yield, with yield decreasing as irrigation water decreased. Irrigation application below 80% 

AWC treatment caused significant yield loss of 30 – 60%.  This study showed that PRI550, WI, 

OSAVI, and WI/NDVI were the most sensitive indices to distinguish water stress levels in 

greenhouse-grown tomato plants.  

 

Though previous studies suggested the use of PRI570 for monitoring water status of various field 

crops, the results found in this experiment have shown that PRI550 was better than PRI570 for 

detecting water stress in the greenhouse-grown tomatoes. It is important to note that leaf 

biophysical and biochemical effects on PRI during the growing season would affect the use of the 

index for measuring crop water stress. Nevertheless, monitoring crops using hyperspectral sensors 

may provide automated techniques for rapid, non-destructive, and reliable estimates of plant water 

status. Analyzing these features in real-time and providing qualitative and quantitative information 

to the growers can help them optimize agricultural water use for increased crop yield.  

 

Based on the findings of this study, it was difficult to select a single index for precise estimation 

of plant water status. Therefore, innovative data management techniques that would integrate 

various vegetation indices are needed to widen the scientific knowledge on crop stress monitoring 

and provide irrigators with precise indices for scheduling irrigation. Also, future research efforts 

should be geared towards the integration of thermal and narrow-band hyperspectral indices to 
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provide more precise information about plant water status, and advanced data analysis techniques 

that would provide irrigators with an easily accessible and cost-effective tool for decision making. 
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Connecting text 

The previous two chapters demonstrated the feasibility of spectral vegetation indices for 

monitoring water stress in greenhouse-grown vegetable crops. However, the findings of the 

greenhouse studies might not be suitable for open field conditions because these indices are 

affected by microclimatic conditions. Also, most growers are confronted with both water and 

nitrogen stress management, and it is important to assess vegetation indices for monitoring both 

water and nitrogen stress under field conditions. Chapter V of this thesis evaluated narrow-band 

reflectance indices for detecting the combined effects of water and nitrogen stress in field tomato 

crops. Tomato was used as a test crop in the field study because the greenhouse experiment 

revealed that tomatoes are more sensitive to abiotic stress than bell peppers.  

 

The manuscript from this study, narrow-band reflectance indices for mapping the combined effects 

of water and nitrogen stress in field-grown tomato crops, has been published in Biosystems 

Engineering. The manuscript was co-authored by Dr. Chandra A. Madramootoo, my supervisor. 

The cited references are listed in the reference section. All the funding used for this study was 

provided by my supervisor, Dr. Chandra A. Madramootoo. 
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CHAPTER V 

Narrow-band reflectance indices for mapping the combined effects of water and nitrogen 

stress in high-value vegetable crops 

5.1. Abstract 

This study assessed the use of reflectance indices for detecting the combined effects of water and 

nitrogen stress in tomatoes (Solanum Lycopersicum L.). Spectral reflectance data were acquired 

from tomato plants, subjected to three water and three nitrogen treatments. Irrigation water was 

applied in amounts of 100, 70, and 30% of full replenishment of root zone soil water to field 

capacity.  Nitrogen application was 100, 70, and 30% of crop nutrient requirement.  The treatments 

were replicated five times in a randomized complete block design.  Plant stress indicators, 

including leaf temperature (Tc), relative water content (RWC), yield, and leaf chlorophyll content 

(LCC) were measured at the same time of leaf reflectance data, during the growing season. 

Reflectance indices including Normalized Difference Vegetation Index (NDVI), Renormalized 

Difference Vegetation Index (RDVI), Optimized Soil Adjusted Vegetation Index (OSAVI), 

Photochemical Reflectance Index centered at 550 nm (PRI550), normalized PRI (PRInorm), 

Transformed Chlorophyll Absorption in Reflectance Index (TCARI), Water Index (WI), and 

WI/NDVI were obtained from the reflectance data. The results showed that the PRI550, PRInorm, 

and WI were the most sensitive indices for distinguishing crop water stress, while RDVI, PRInorm, 

and TCARI had the best correlation with nitrogen stress indicators. PRInorm was the most sensitive 

index for detecting the combined effect of water and nitrogen stress. This study provided more 

insights into the usefulness of leaf spectral features for assessing crop abiotic stress. Measuring 

these indices with hyperspectral sensors provides a rapid, non-destructive, and reliable approach 

for estimating crop stress. 

Keywords: Plant stress; leaf reflectance indices; high-value vegetable crops; irrigation; crop stress. 
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5.2. Introduction 

Early identification and prediction of plant nitrogen and water stress are required to ensure 

sustainable agricultural management. Traditional plant and soil-based methods of estimating plant 

nitrogen and water status, which involves the augering of soil and removal of plant leaves, are 

invasive and destructive. These methods often do not represent the heterogeneity of soil and crop 

parameters at large spatial scales (Ihuoma and Madramootoo, 2019a). Monitoring crop abiotic 

stress can be improved using plant-based methods, which are considered better stress indicators 

because they integrate soil properties, climatic conditions, and crop management factors 

(Tremblay et al., 2012).  

 

Spectral reflectance data provide near real-time and non-destructive methods for monitoring crop 

health status (Liang et al., 2013; Lohr et al., 2016; Steidle Neto et al., 2017; Zhao et al., 2010). 

This approach combines available ground and remotely sensed data to provide relevant 

information to support decision-making. The use of remote sensing in agriculture is based on the 

interaction between specific plant traits with electromagnetic radiation (Ihuoma and 

Madramootoo, 2017). Other researchers (Bandyopadhyay et al., 2014; Katsoulas et al., 2016) 

associated reflectance in the green and red bands with water and nutrient stress due to the link 

between leaf spectral reflectance and leaf chlorophyll concentration.  

 

Water stressed plants experience stomata closure, leading to decreased CO2 assimilation and 

reduced photosynthetic rate. Thus, absorbed light energy cannot be used for electron transport to 

drive the photosynthetic process, and part of the absorbed light energy is reflected, dissipated as 

heat, or re-emitted as chlorophyll fluorescence (Katsoulas et al., 2016). Similarly, nutrient stress 

affects the rate of photosynthesis as well as leaf spectral reflectance, since the nutrient is a major 
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component of chlorophyll and photosynthetic enzymes. Vegetation indices are mostly derivatives 

of reflectance bands from visible, infrared and other regions of the reflectance spectrum. These 

reflectance bands can be measured using multispectral and hyperspectral sensors (Gago et al., 

2015), and have been utilized to monitor plant physiological status. Therefore, a better 

understanding of various reflectance indices is required to improve the detection of plant stress 

and optimize water and fertilizer management in agriculture.  

 

Reflectance indices for assessing crop stress can be classified into three major categories (Table 

5.1); xanthophyll pigment, structural, and water indices (Gago et al., 2015; Ihuoma and 

Madramootoo, 2017). The xanthophyll pigments include the Photochemical Reflectance Index 

centered at 550 nm (PRI550) and 570 nm (PRI570) and the normalized PRI (PRInorm). These indices 

are sensitive to changes in carotenoids through the de-epoxidation of the xanthophyll pigments 

(Magney et al., 2016), and are useful for indicating plant water and nutrient stresses (Panigada et 

al., 2014). The structural indices include the Normalized Difference Vegetation Index (NDVI), 

Renormalized Difference Vegetation Index (RDVI), Optimized Soil Adjusted Vegetation Index 

(OSAVI), and Transformed Chlorophyll Absorption in reflectance Index (TCARI). These indices 

are related to plant vigor and give a good indication of leaf chlorophyll content and fraction of 

green cover (Leroux et al., 2016). Previous studies also showed the use of other vegetation indices, 

such as normalized difference vegetation index on greenness (GNDVI), green vegetation index 

(GVI = NIR/green), and red vegetation index (RVI = NIR/red) for assessing plant stress 

(Gianquinto et al., 2011 and Padilla, et al., 2015). 
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The water indices, including Water Index (WI), Normalized Water Index (NWI), and WI/NDVI, 

correspond to the water absorption band observed in the near-infrared region (900 – 970 nm). The 

water indices have been utilized to monitor water status in different plants (Ihuoma and 

Madramootoo 2019b; Panigada et al., 2014; Rossini et al., 2013; Wang et al., 2015). A detailed 

review of spectral reflectance indices for assessing crop water and nitrogen stresses has been 

documented in previous studies (Corti et al., 2017; Gago et al., 2015; Ihuoma and Madramootoo, 

2017; Katsoulas et al., 2016).  

 

Most of the studies on spectral vegetation indices focused on either water or nitrogen stress 

detection. However, the use of optical reflectance indices for mapping the combined effects of 

water and nitrogen stress for high-value vegetable crops has not been widely investigated. Since 

most farmers are confronted with both water and nitrogen stress management, it is imperative to 

assess narrow-band reflectance indices for more precise identification and classification of plant 

stress to support precision agriculture. The threshold values of these reflectance indices obtained 

from optical sensors could be used in designing fertigation systems for optimal use of water and 

nitrogen in the field. The objective of this study was to ascertain the best vegetation indices for 

detecting the combined effects of water and nitrogen stress in vegetable crops during their various 

growth stages. Tomato was used as a test crop due to its high sensitivity to water and nitrogen 

stress.  

 



98 
 

5.3. Materials and methods 

5.3.1. Study area and experimental design  

The study was conducted between June and October 2017 at the Horticultural Research Station of 

McGill University, to evaluate the sensitivity of narrow-band vegetation indices to combined 

effects of water and nitrogen stress in field-grown tomato crops. The study area lies at latitude 

 

Table 5. 1. Optical indices used in this study, their formulations and references 

Where R represents the reflectance values at the respective wavelengths, nm. 
 

Names Abbreviations   
Xanthophyll indices   
Photochemical 

Reflectance Index 

PRI570 (R570 - R531)/(R570 + R531) Gamon et al. (1992) 

 PRI550 (R550 - R531)/(R550 + R531) Gamon et al. (1997) 

Normalized 

Photochemical 

Reflectance Index 

PRInorm PRI550/(RDVI * (R700/R670)) Berni et al. ( 2009) 

Structural indices  
 

 

Normalized 

Difference 

Vegetation Index 

NDVI (R800 - R670)/(R800 + R670) Rouse et al. (1974) 

Renormalized 

Difference 

Vegetation Index 

RDVI (R800 - R670)/(R800 + R670)
1/2 Rougean and Breon 

(1995) 

Transformed 

Chlorophyll 

Absorption in 

Reflectance Index 

TCARI 3[(R700 – R670) – 0.2(R700 – 

R550)*(R700/R670)] 

Haboudane et al. 

(2002) 

Optimized Soil 

Adjusted Vegetation 

Index 

OSAVI (1 + 0.16)(R800 - R670)/(R800 + R670 + 

0.16) 

Haboudane et al. 

(2002) 

 

TCARI/OSAVI TCARI/OSAVI Haboudane et al. 

(2002) 

Water content 

indices 

   

Water Index WI   R900/R970 Penuelas et al (1997) 

 WI/NDVI WI/NDVI Penuelas et al (1997) 
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45°43’80’’ N and longitude 73° 93’80’’ W with an elevation of 36 m. The experimental plot was 

a 6 x 10 m2 field and the experimental design involved three water treatments and three nitrogen 

treatments. External sources of variabilities are not expected to be significant within this small 

plot, thus; the study was designed as a randomized complete block with a 3 x 3 factorial 

arrangement of treatments. The nine treatment combinations were replicated five times to give a 

total of 45 tomato plants (9 treatments with 5 replicates each). Irrigation water was applied in 

amounts of 100, 70, and 30% of full replenishment of soil water in the root zone to field capacity. 

Fertilizer was dissolved in water and manually applied to each plant based on guidelines for field-

grown tomatoes at the horticultural research station of McGill University. The plants were 

fertilized biweekly with 20-20-20 N-P-K water-soluble fertilizer, at a rate of 4 kg of N ha−1, as 

adopted in our previous study (Ihuoma and Madramootoo, 2019b). Applying N at this rate 

throughout the growing season will amount to a total rate of 54 kg of N ha-1, which represents the 

crop seasonal N requirement. Studies have demonstrated that N deficiency had a significant 

adverse effect on tomato marketable yield (Frias-Moreno et al., 2014). Therefore, to induce mild 

to severe nitrogen stress, N applications were 100, 70, and 30% of crop nitrogen requirement, 

corresponding to 54, 38, and 16 kg N ha-1. 100% application rate was the control while the 70% 

and 30% application rates were the N stressed treatments.  

 

Tomato (Solanum Lycopersicum L.) cv. Picus VF/TSWV seedlings, 42-days old, were 

transplanted on June 12, 2017, and harvested on October 3, 2017. Picus variety was chosen because 

it is a popular and widely cultivated fresh market vegetable crop. The plants were transplanted on 

beds, with a row spacing of 1.8 m and plant spacing of 0.6, covered with plastic mulch. The 

planting density was 9260 plants per hectare. Irrigation water was applied through a drip system, 

consisting of pressure compensating emitters with a discharge of 2 L/h, and the flow rates were 
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calibrated in the field.  The soil was composed of clay, silt, and sand with contents of 65, 15, and 

20%, respectively (USDA-NRCS, 2000). Field capacity (FC) was 45% and the permanent wilting 

point was 27% by volume. The water application in each treatment was regulated using a water 

control valve attached to each dripper. The water treatment level for each treatment (100, 70, and 

30% FC) was used as the upper irrigation threshold, while a lower irrigation threshold was set at 

20% depletion of the upper limit for each treatment. The plants were irrigated whenever the soil 

moisture content for each treatment was depleted by 20% of the upper limit. Irrigation was 

terminated when the upper trigger moisture content (100, 70, and 30% FC) was reached, as 

determined by Time Domain Reflectometers (TDR) (CS625 water content reflectometer, 

Campbell Scientific Inc., UT). TDR probes, consisting of 30 cm probes, were installed vertically 

with the aid of an insertion guide to correspond with the plant rooting depth (Jaria and 

Madramootoo, 2013). TDR readings were calibrated in the field with gravimetric soil moisture 

measurements. The soil moisture sensors were connected to solar-powered data loggers (model 

CR205/6, Campbell Scientific Inc.). The data were scanned every 5 minutes and recorded every 

15 minutes, hourly, and daily and was retrieved from the datalogger using a computer and 

Campbell Scientific Inc. LoggerNet software. 

 

The volume of water applied during each irrigation event to each treatment was determined as the 

product of the irrigation duration and the flow rate. The equivalent irrigation depth applied at each 

irrigation event for each treatment was determined as the product of the total available water 

holding capacity of the soil and the management allowable deficit (20% of the upper limit of each 

treatment). Water and fertilizer were uniformly applied to all treatments at the beginning of 

transplanting, based on 100% replenishment of nutrient and water in the plant root zone to field 
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capacity for plants to be well established; thereafter, the water and fertilizer treatments were 

effected until harvest. 

   

5.3.2. Measurements 

Daily weather variables (maximum and minimum air temperature, relative humidity, solar 

radiation, rainfall, and wind speed) were obtained using a Campbell Scientific automatic weather 

station (Campbell Scientific, Logan, UT, USA) installed about two metres above the crop canopy 

in the field. Data from the weather station was scanned every 5 minutes and recorded every 15 

minutes  ̧hourly and daily. These data were used to calculate daily reference evapotranspiration 

(ETo) using the FAO 56-Penman-Monteith equation (Allen et al., 1998). Daily and seasonal crop 

evapotranspiration (ETc) was estimated as the product of ETo and the crop coefficient (Kc). Kc 

varies predominately with specific crop characteristics (Allen et al., 1998). In this study the Kc 

values were obtained from the Ontario Ministry of Agriculture, Food and Rural Affairs 

(OMAFRA, 2016). 

 

5.3.3. Spectral data acquisition and processing 

Spectral data acquisition was conducted using a miniature fiber optic spectrometer (Stellar Net 

Inc. USA), which measures reflectance in the 200–1150 nm spectral range. The spectrometer has 

a 0.5 nm spectral resolution and was calibrated by holding the probe at 45° to a reference white 

standard at a distance of about 60 mm. The integration time was optimized by setting it to 50 ms, 

dark current was recorded, and target spectral reflectance was obtained. The canopy spectral data 

acquisition was undertaken under clear sky conditions between 11:00 and 15:00 hours when the 

sun was shining directly on the plants, to ensure maximum solar intensity, as implemented by 

Ihuoma and Madramootoo (2019b). Measurements were taken from each of the 45 plants by 

placing the spectrometer at a height of about 30 cm above the plant canopy to view only a plant 
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leaf at a time. Four leaves were measured in every plant and averaged to represent the plant, as 

adopted by Ihuoma and Madramootoo (2019b). The values for the five replicates of each treatment 

were averaged to represent each treatment combination. All the reflectance measurements and 

stress indicators were obtained from the same leaf samples to ensure that leaf reflectance 

measurements can be associated with the stress indicators. The measurements were conducted five 

times (18th and 30th July; 9th and 26th August; and 18th September 2017), during the plant growing 

season. The 7-point weighted moving average method was used to enhance the smoothness of the 

spectral curve, eliminating interference noise from signal background and light scattering effects 

(Zhao et al., 2017). The mean of the optical reflectance measurements obtained from each 

treatment was used to calculate the spectral reflectance indices studied (Table 5.1).  

 

5.3.4 Measurement of plant stress indicators 

A portable infrared thermometer set at an emissivity of 0.95 W m-² was used to measure the leaf 

temperature (Fluke 572 model, Fluke Corporation, Everett, WA). The thermometer was held 30 

cm above the plant canopy with its laser pointer directed at the plant leaves at an angle of 90° to 

the horizontal. Four leaf temperature measurements were taken from each plant considering four 

viewing directions (north, south, east, and west) and average temperature values were recorded to 

represent each plant. The values for the five replicates of each treatment were averaged to represent 

each treatment combination. All the measurements were conducted between 11:00 and 15:00 

hours, when the sun was shining directly on the plants, ensuring maximum solar intensity. Leaf 

relative water content (RWC) was measured from each plant following the procedures of Colombo 

et al. (2011) and Wang et al. (2015). Leaf chlorophyll content (LCC) was measured with a 

handheld chlorophyll meter (SPAD-502, Minolta Camera Co., Japan) on four selected leaves from 

each plant, and the average reading was recorded to represent the plant. The values for the five 
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replicates of each treatment were averaged to represent each treatment combination. SPAD 

measurements were converted to LCC (mg g-1) using the tomato-specific model proposed by Jiang 

et al. (2017). ETc is also an indicator of plant stress and was calculated using the FAO 56-Penman-

Monteith equation method as previously explained. Also, the average fruit yield from each 

treatment combination was measured, recorded, and classified into marketable and non-marketable 

yield. 

 

5.3.5 Statistical analysis method 

The effects of water and nitrogen on stress indicators (Tc, RWC, yield, and LCC) were described 

using the Pearson correlation ratio, defined in Eq. 5.1. The correlation ratio indicates how the stress 

factors explain the data variance and assumes values between 0 and 1; a correlation ratio close to 

1 suggests that the stress levels could explain the data variance. 

2 =
𝜎2

𝜎𝑦
2 , 𝑤ℎ𝑒𝑟𝑒 𝜎2 =

∑ 𝑛𝑥( 𝑥− )2
𝑥

∑ 𝑛𝑥𝑥
 𝑎𝑛𝑑 𝜎𝑦

2 =
∑ 𝑛𝑥(𝑦𝑥𝑖− )2

𝑥,𝑖

𝑛
 …………………………. (5.1) 

where 2 is the correlation ratio, yxi represents each observation (x indicates the stress levels, and 

i indicates an observation), nx indicates the number of observations in x, x represents the mean of 

x and  is the population mean.  

 

Statistical analyses were carried out on vegetation indices (NDVI, OSAVI, RDVI,  TCARI, PRI550, 

PRInorm, WI, TCARI/OSAVI, and WI/NDVI), and plant stress indicators (leaf temperature, leaf 

relative water content, crop yield, and leaf chlorophyll content) using the PROC/GLM (General 

Linear Model) procedure of SAS software (version 9.3, SAS Institute, Inc., Cary, NC, USA). Two-

way (factorial) analysis of variance (ANOVA) was conducted on the data, and the significance of 

differences among treatments was separated using Fisher’s Least Significant Difference (LSD) at 
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a 5% probability level. The values of vegetation indices were related to values of RWC, Tc, LCC, 

and yield of each treatment combination using linear regression. 

 

 

Fig. 5. 1 Rainfall (mm) and average volumetric soil moisture content (cm3 cm-3) for various 

treatments during the growing season. 

 

5.4. Results 

5.4.1. Crop evapotranspiration and soil water content 

Daily mean temperature, relative humidity, and vapor pressure deficit in the field ranged from 5 

to 31 °C, 66 to 77%, and 0.30 to 1.03 kPa, respectively, during the plant growing season.  Daily 

volumetric soil water content for various irrigation treatments, as well as rainfall amounts, are 

shown in Fig. 5.1. The soil water content was affected by both rainfall and irrigation events but 

generally decreased with decreasing water application, with 100 and 30% FC resulting in the mean 

highest and lowest values of soil water content, respectively, during the growing season. 
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However, there were significant differences in soil moisture content for the 100, 70, and 30% FC 

treatments, except on days with high rainfall events.  The total seasonal crop evapotranspiration 

(ETc) and irrigation water varied from 79 to 263 mm and 139 to 406 mm for water-stressed and 

non-water stressed treatments, respectively, as shown in Table 5.2. The ETc was higher during the 

flowering and maturity stages of plant growth, which corresponded to the periods when the crop 

required more water for its vegetal growth and physiological development. 

 

5.4.2. Water and nitrogen stress indicators 

The descriptive statistics (mean, standard deviation, and correlation ratio) of tomato plants grouped 

by irrigation and fertilizer treatment levels are presented in Table 5.3. The mean of leaf relative 

water content generally decreased with decreasing irrigation treatment levels, with 100 and 30% 

FC recording the highest and lowest RWC, respectively. The results also show that 100 and 30% 

FC recorded the lowest and highest leaf temperatures, respectively, while the nitrogen treatment 

levels had no effect on the Tc and RWC. The Tc and RWC showed a high correlation ratio, with 

 = 0.85 and 0.94, respectively, which indicates that the irrigation treatments explained most of 

the variance in Tc and RWC. The mean of nitrogen stress indicator (leaf chlorophyll content) also 

decreased with decreasing nitrogen treatment levels. The LCC showed a high correlation ratio, 

with  = 0.79, which indicates that the nitrogen treatments explained most of the variance in LCC. 

The yield was used to assess the interaction effects of the water and nitrogen stress on the plants 

and the result shows that both water and nitrogen stress affected the yield of the tomato plants, 

with a correlation ratio of 0.82. The interaction of 100% water and 100% nitrogen treatments 

recorded the highest yield (66.2 ± 2.6 Mg ha-1), while the 30% water and 30% nitrogen treatments 

had the least yield (31.9± 8.6 Mg ha-1). The tomato yields interact with water and nitrogen 

treatments according to Eq. 5.2.  There is a linear relationship between water stress indicators (Tc 



106 
 

and RWC, with R2 = 0.80 p < 0.0001) and nitrogen stress indicators (Yield and LCC, with R2 = 

0.66 p < 0.0001). 

𝑌 = 1.85 + 0.035(𝑁) + 0.022(𝑊) … … … … … … … … … … . (5.2) 

Where Y = yield, Mg ha-1, N = fertilizer application rate, kg N ha-1, and W = soil water content, % FC.  

 

Table 5. 2. Crop evapotranspiration (mm) and Irrigation water applied (mm) to tomato plants per 

growth stage for different treatments. 

  Irrigation water applied Crop evapotranspiration 

Treatments (% FC) Days 100% 70% 30% 100% 70% 30% 

Initial stage 20 92 74 45 21 15 6 

Flowering stage 30 65 45 19 81 57 24 

Maturity stage 30 166 116 50 113 79 34 

Senescence stage 25 83 58 25 48 34 14 

Total 105 406 293 139 263 185 78 

 

Table 5. 3. Descriptive statistics (mean, standard deviation, and correlation ratio () of tomato 

plants grouped by the irrigation and fertilizer treatments. Where Tc: leaf temperature (°C), RWC 

leaf relative water content (%), LCC: leaf chlorophyll content (mg g-1), and Yield (Mg ha-1). 

Stress 

indicators N1W1 N1W2 N1W3 N2W1 N2W2 N2W3 N3W1 N3W2 N3W3  

Tc 

24.41

± 

0.68d 

26.63

± 

0.82cd 

28.31

± 

0.72a 

24.95± 

0.52d 

26.79± 

0.55bc 

28.55 

0.63a 

25.58± 

0.43cd 

26.79± 

0.39bc 

27.87± 

0.35ab 0.85 

RWC 

56.46

± 

2.68a 

43.11

± 

0.59de 

32.11

± 

0.77f 

55.09± 

1.05ab 

49.93± 

0.91bc 

40.28± 

0.79e 

57.60± 

5.51a 

48.11± 

1.20cd 

37.45± 

0.78ef 0.94 

LCC 

1.61± 

0.21ab

c 

1.67± 

0.23a 

1.65± 

0.28ab 

1.41± 

0.21cd 

1.43± 

0.17cd 

1.46± 

0.21bcd 

1.32± 

0.24d 

1.27± 

0.19d 

1.29± 

0.18d 0.79 

Yield 

66.2± 

2.6a 

51.2± 

3.2bc 

44.9± 

3.0bc 

54.7± 

1.9b 

46.3± 

3.3bc 

41.5± 

4.1cd 

45.6± 

3.8bc 

43.1± 

3.7c 

31.9± 

8.6d 0.82 

Treatments with the same letters are not statistically significant. N represents Nitrogen treatment 

and W represents water treatments. 
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5.4.3. Correlation analysis between vegetation indices and stress indicators 

Table 5.4 shows the coefficient of determination (R2) of the linear relationships between RWC 

(%), Tc (°C), yield (Mg ha-1), and leaf chlorophyll content (mg g-1), and vegetation indices 

computed from the spectrometer. The results show that NDVI, RDVI, PRI550, PRInorm, and 

WI/NDVI were significantly correlated with yield (R2 = 0.72, 0.86, 0.77, 0.74, and 0.71, 

respectively; p < 0.0001). TCARI, PRInorm, WI/NDVI, and TCARI/OSAVI showed the best 

correlation with LCC (R2 = 0.71, 0.78, 0.67, and 0.64, respectively; p < 0.0001). Similarly, PRI550, 

PRInorm, and WI were strongly correlated with RWC (R2 = 0.77, 0.68, and 0.69, respectively; p < 

0.0001), while PRInorm and WI were best correlated with Tc (R2 = 0.65 and 0.83, respectively; p < 

0.0001). While the structural indices showed a strong correlation with yield and LCC, the 

xanthophyll pigment and water indices were best correlated with RWC and Tc. However, the 

PRInorm showed a good correlation with all the measured stress indicators, with R2 = 0.68, 0.65, 

0.74, and 0.78; p < 0.0001, for RWC, Tc, yield, and LCC, respectively.  

 

Table 5.5 shows the statistical tests of the effects of nitrogen and water treatments and their 

interactions on various vegetation indices. The result shows that apart from WI for nitrogen 

treatment, and TCARI and TCARI/OSAVI for water treatment, all the other indices were 

significantly affected by both water and nitrogen treatments. However, further statistical analysis 

in Table 5.4 shows that the structural indices (NDVI, RDVI, TCARI, and TCARI/OSAVI) 

performed better in detecting the effects of nitrogen stress on the plants, while the xanthophyll 

pigments (PRI550 and PRInorm) and water indices (WI and WI/NDVI) were better in detecting the 

effects of water stress on the plants. The PRInorm was the only index subject to the interactive 

effects of nitrogen and water stress in the plants. So PRInorm allows the detection of both water and 

nitrogen stress in tomato crops. 
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Table 5. 4. Coefficient of determination (R2) of the relationships between RWC (%), Tc (°C), 

Yield (Mg ha-1), and leaf chlorophyll content (mg g-1), and vegetation indices computed from the 

spectrometer for tomato plants. 

VIs RWC (%) Tc (°C) Yield (Mg ha-1) LCC (mg g-1) 

NDVI 0.28 0.49 0.72 0.58 

RDVI 0.43 0.58 0.86 0.55 

OSAVI 0.36 0.37 0.45 0.40 

TCARI 0.32 0.46 0.52 0.71 

PRI550 0.77 0.56 0.77 0.30 

PRInorm 0.68 0.65 0.74 0.78 

WI 0.69 0.83 0.42 N.S 

WI/NDVI 0.44 0.38 0.71 0.67 

TCARI/OSAVI 0.51 0.49 0.39 0.64 

P < 0.0001, N.S = not significant 

5.5. Discussion 

5.5.1. Effects of water and nitrogen stress on yield 

The water and nitrogen treatments implemented in this study triggered a moderate to severe stress 

on the plants, which reduced the leaf photosynthetic efficiency and crop yields of stressed plants. 

The lowest crop yield was obtained from the 30% treatment combination (N3W3) and resulted in 

a yield loss of 51% compared to the highest yield obtained from the 100% treatment combination 

(N1W1). Water treatments had more effects on tomato yields in this experiment as indicated by 

the average yield for moderately water-stressed (N1W2) and nitrogen-stressed (N2W1) treatments 

(54.7 and 51.2 Mg ha-1, respectively). This result is in tandem with the findings of previous studies 

(Zhang et al., 2017 and Jaria and Madramootoo, 2013), which observed that depletion of soil water 
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content below 30% FC induced severe water stress that significantly reduced the yield of tomato 

plants. The result justifies the need for adequate application and management of agricultural inputs 

to enhance the productivity of high-value vegetable crops. 

 

Again, interaction effects of prolonged water and nitrogen stress might have induced structural 

and morphological changes in the plants, such as changes in leaf structure, shape, and leaf 

thickness observed towards the end of the growing season. The variations in plant structure and 

physiological parameters may be responsible for the significant differences in structural indices 

(NDVI, RDVI, and OSAVI) observed in the stressed and non-stressed treatments. Rinaldi et al. 

(2014) reported a significant correlation between structural indices and plant yield, biomass, leaf 

area index, and chlorophyll content, which is consistent with the results of this study.  

 

Table 5. 5. Statistical tests of the effects of nitrogen and water treatments and their interactions 

on various vegetation indices. 

VIs Nitrogen Treatment Water Treatment Nitrogen * Water Treatment 

NDVI <0.0001 <0.0001 N.S 

RDVI <0.0001 <0.0001 N.S 

OSAVI 0.0393 <0.0001 N.S 

TCARI <0.0001 N.S N.S 

PRI550 0.0004 <0.0001 N.S 

PRInorm <0.0001 <0.0001 0.0020 

WI N.S <0.0001 N.S 

WI/NDVI <0.0001 0.0152 N.S 

TCARI/OSAVI <0.0001 N.S N.S 

Where N.S = Not significant 
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5.5.2. Effects of water and nitrogen stress on reflectance indices 

The experiment carried out in this study showed that PRI550 and WI had the best correlation with 

water stress indicators (relative water content and leaf temperature, respectively). This result 

agrees with the findings of Suarez et al. (2009), which suggested that leaf xanthophyll pigments 

are sensitive to water stress. The correlation between PRI and water stress indicators can be 

explained by the interactions among the eco-physiological indicators of plant water stress, as 

explained in Ihuoma and Madramootoo (2019b). Previous studies obtained suitable relationship 

between PRI570 and water stress indicators such as leaf temperature, stomatal conductance, and 

xylem water potential (Stagakis et al., 2012; Hernández-Clemente et al., 2011; Zarco-Tejada et al., 

2012, 2013), and proposed the index for early detection of water stress in various crops. 

Conversely, this study has shown that PRI550 is best suitable for water stress detection. A similar 

result was obtained by the same authors (Ihuoma and Madramootoo, 2019b) for greenhouse-grown 

tomatoes. It was expected that the PRI550 threshold for water stress detection will be different for 

greenhouse and field-grown tomatoes, due to the differences in climatic conditions. However, the 

results suggest that the PRI550 is not significantly affected by changes in weather variables. The 

findings of the greenhouse and field experiments conducted over a 2-year period revealed the 

feasibility of PRI550 for monitoring water stress in tomato crops to support agricultural water 

management.  

 

The relationship between WI and RWC indicates that the WI increased as RWC increased, which 

implies that water stress affected the absorption of water in the plant mesophyll pigment. This 

agrees with the findings of Genc et al. (2011) and Katsoulas et al. (2016), which recorded 

significant correlations between water index and leaf water content in various field crops. Water-

stressed plants closed their stomata to reduce the transpiration rate and dehydration of leaf cells, 
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and this led to increased leaf temperature.  Rossini et al. (2013) observed that under extreme water 

stress conditions, the plants will become dehydrated, leading to a decrease in cell turgor pressure 

of the leaves. This explains the reduction of leaf relative water content observed in water-stressed 

treatments compared to non-stressed treatments. Similarly, nitrogen stress affected the leaf 

photosynthetic activities because plants under stress were exposed to a greater amount of radiant 

energy than they required for photosynthesis. In such conditions, the plants dispel the excess 

energy as heat (through the interconversion of light energy in the xanthophyll pigment) and 

chlorophyll fluorescence to avoid damage to their tissues (Rossini et al., 2013). The study further 

shows the potential of vegetation indices for monitoring the water status of field-grown tomato 

crops for optimizing agricultural water use. 

 

Similarly, the results showed that the RDVI, PRInorm, and TCARI had the best correlation with 

nitrogen stress indicators (yield and leaf chlorophyll content). The result is in agreement with 

previous studies (Koksal, 2011; Rinaldi et al., 2014), which reported a strong correlation between 

the structural indices and chlorophyll content and yield. This study detected reduction in leaf 

chlorophyll content in stressed treatments compared to non-stressed treatments, indicating that the 

nitrogen treatments affected the leaf chlorophyll composition, as reported in similar studies (Jiang 

et al., 2017; Evanidi et al., 2018; Padilla et al., 2015; Ronga et al., 2018). The leaf spectral 

reflectance data, which is affected by leaf chlorophyll content, provides useful information for 

timely assessment of crop nitrogen status to ensure optimal management of nitrogen.  

 

Gianquinto et al. (2011) reported a contrasting result and identified NIR/R560 and GNDVI as the 

best indicators of yield and leaf chlorophyll content in processing tomatoes. In this study, NDVI 

and RDVI also showed good correlations with yield and chlorophyll content. Studies have been 

published to show that structural indices are strongly correlated to leaf area index, chlorophyll 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/plum-tomato
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content, and yield (Aguilar et al., 2012; Magney et al., 2016). Thus, proximal sensing of these 

indices may contribute to improving nitrogen management of tomato crops with positive effects 

on productivity. 

 

NDVI is also useful for predicting crop canopy cover for estimating basal crop coefficients (Kcb) 

(Ihuoma and Madramootoo, 2017). The relationship between NDVI and Kcb is possible due to the 

link between crop phenological development and Kcb. Gago et al. (2015) observed that Kcb depends 

mainly on the dynamics of plant canopy parameters. The Kcb is an important parameter used with 

the conventional FAO-56 Penman-Monteith equation (Allen et al., 1998) for estimating crop 

evapotranspiration (ETc). Estimates of ETc enable the assessment of crop water needs used for 

scheduling irrigation (Jones, 2012).  

 

Though NDVI significantly relates to plant vigor when the canopy cover increases proportionally 

to photosynthesis, it saturates at LAI values > 4 (NDVI is not sensitive to variability in LAI above 

4) and is affected by background soil reflectance. The results showed that the TCARI was best 

correlated to LCC, making it a suitable index for the detection of nitrogen status in field-grown 

tomato plants, with the potential for optimizing nitrogen management. 

 

5.5.3. Combined effects of nitrogen and water stress on reflectance indices 

Based on the results found in this study, the PRInorm showed the best correlation with all the water 

and nitrogen stress indicators investigated. The results indicate that PRInorm is highly sensitive to 

both nitrogen and water stress and implies that stress caused changes in xanthophyll pigment and 

the carotenoid content of tomato leaves. This is probably due to the ability of PRInorm to detect the 

changes in xanthophyll pigment as a result of water stress, and also normalizes for the reduction 

in leaf area and leaf chlorophyll content induced by nitrogen stress. Similar studies identified the 
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robustness of PRInorm for early detection of water stress in various crops (Behmann et al., 2014; 

Berni et al., 2009; Dangwal et al., 2015). This study has revealed the feasibility of PRInorm for 

monitoring the combined effects of water and nitrogen stress in tomato crops. Operationalizing 

this concept for practical application in crop stress management requires more data points to 

generate response surface curves of PRInorm versus water and nitrogen application rates.  With the 

PRInorm, more precise estimates of water and nitrogen rates can be obtained from the surface 

response to support decision making in fertigation management.  

5.4. Conclusion 

This study assessed the use of reflectance indices for detecting the combined effects of water and 

nitrogen stress in tomato plants. A comparison of various reflectance indices and their relationship 

with stress parameters showed that the normalized photochemical reflectance index (PRInorm) was 

the most sensitive index for detecting the combined effect of water and nitrogen stress. The 

photochemical reflectance index centered at 550 nm (PRI550), normalized photochemical 

reflectance index (PRInorm), and water index (WI) were the most sensitive indices to crop water 

status, while the renormalized difference vegetation index (RDVI), normalized photochemical 

reflectance index (PRInorm), and the transformed chlorophyll absorption in reflectance index 

(TCARI) had the best correlation with nitrogen stress indicators. This study confirmed the use of 

narrow-band vegetation indices to simultaneously estimate water and nitrogen status in tomato 

crops. Measuring these indices with hyperspectral sensors provides a timely and non-invasive 

technique for assessing plant stress and improving precision agriculture. Future studies should 

assess the proposed indices for estimating other physiological characteristics and stress effects in 

other high-value vegetation crops. The indices could also be evaluated for actual fertigation 

management in the field. 
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Connecting text 

This chapter scaled up the results of the greenhouse and field findings to larger commercial farms 

using the vegetation indices to estimate irrigation water requirements from remotely sensed 

images. The study assessed the suitability of multispectral images acquired from unmanned aerial 

vehicle, Planetscope and Sentinel-2 satellite platforms for assessing crop coefficient and 

evapotranspiration. Sentinel-2 data were used to predict crop evapotranspiration (ETc) and the 

results were compared with ETc estimated from the FAO 56 Penman-Monteith module of the 

AquaCrop model. Then, ETc was coupled with field soil moisture measurements to estimate 

irrigation requirements.  

 

The manuscript from this study, integration of satellite imagery and spatially-variable soil moisture 

data for estimating irrigation water requirements in high value processing crops, is ready for 

submission to Remote Sensing and Environment. The manuscript is co-authored by Dr. Chandra 

A. Madramootoo, my supervisor, and Dr. Margaret Kalacska, Applied Remote Sensing 

Laboratory, Department of Geography, McGill University. All the cited references are listed in the 

reference section and all the funding used for this study was provided by my supervisor, Dr. 

Chandra A. Madramootoo. 
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CHAPTER VI 

Integration of satellite imagery and spatially-variable soil moisture data for estimating 

irrigation water requirements in high value processing crops 

6.1. Abstract 

Remotely sensed plant parameters account for spatio-temporal heterogeneity of crops and are 

advantageous for estimating crop evapotranspiration (ETc) and irrigation water requirements 

(IWR). This study compared the suitability of multispectral images acquired from Unmanned 

Aerial Vehicles (UAV), PlanetScope, and Sentinel-2A & 2B satellite platforms for estimating ETc 

and IWR of processing tomato crops (Lycopersicon esculentum Mill. cultivar Heinz H9553) on a 

farm in southern Canada. The field was divided into three (3) blocks and irrigation scheduling 

consisted of 100, 80, and 60% of full replenishment of water in the root zone to field capacity, 

corresponding to three irrigation regimes for the plants. Plants were selected from each of the three 

sections of the field, using a systematic grid sampling technique, and were georeferenced for 

identification in the acquired images. Normalized difference vegetation indices (NDVI) derived 

from the remote sensing platforms were evaluated for estimating crop coefficient. Sentinel-2 data 

were used to predict crop evapotranspiration (ETc), and the results were compared with ETc 

estimated from the FAO 56 Penman-Monteith module of the AquaCrop model. ETc maps from 

Sentinel-2 were combined with soil moisture data to predict irrigation water requirement. Results 

indicate that ETc values estimated from satellite platform were accurately predicted from 

AquaCrop model. The estimated IWR (165 and 199 mm in 2017 and 2018 growing seasons, 

respectively) were lower than the actual amount of water applied by the farmer (342 and 416 mm 

in 2017 and 2018 growing seasons, respectively), which suggests that the field was over-irrigated. 

The findings of this study have further revealed the usefulness of Sentinel-2 imagery for mapping 
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crop water requirements at field scale and indicates a progress towards the development of 

remotely sensed approach for implementing precision irrigation. 

 

Keywords: Crop evapotranspiration, precision irrigation, remotely sensed images, Sentinel-2 

imagery. 

 

6.2. Introduction 

Reliable estimate of crop evapotranspiration (ETc) at field level is essential to better manage 

irrigation and improve water use efficiency. The crop coefficient (Kc) for estimating ETc, defined 

as the ratio of ETc to the reference evapotranspiration (ETo) (Allen et al., 1998), has been shown 

to vary between growing seasons and sites (Kumar et al., 2015). This variability can be attributed 

to spatial heterogeneity in soil and crop parameters (Rozenstein et al., 2018). Standard FAO 56 

Penman-Monteith Kc values are specific to each crop and reflect the plant canopy development 

due to agronomic practices during the growing season (Vanino et al., 2018). Kc values for various 

crops in different parts of the world have been documented by Allen et al. (1998). However, 

variations in weather conditions affect crop water-use patterns, resulting in inaccurate estimate of 

ETc, when the recommended FAO Kc values are used (Allen et al., 2007; Kumar et al., 2015). 

These limitations affect suitable estimate of ETc and crop irrigation water requirements (IWR), 

for optimizing agricultural water management. 

 

Recent advances in agricultural remote sensing present an opportunity to monitor crop fields and 

provide reliable information about plant biophysical parameters (Gago et al., 2015; Jones and 

Vaughan, 2010) for improved irrigation water management. Multispectral and hyperspectral 

sensors onboard Unmanned Aerial Vehicles (UAV) can provide high resolution images of 

croplands, with short revisit time, for mapping crop physiological status (Turner et al., 2012; Gago 
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et al., 2013). Data from these sensors provide a reliable estimate of Kc, which is possible due to 

the relationship between crop phenological development and Kc. Previous studies showed linear 

relationship between Kc and vegetation indices derived from spectral data in the visible and near-

infrared spectral regions, such as the Normalized Difference Vegetation Index (NDVI), the 

Renormalized Difference Vegetation Index (RDVI), the Optimised Soil Adjusted Vegetation 

Index (OSAVI) (Campos et al., 2016; Gago et al., 2015; Ihuoma and Madramootoo, 2017). 

Monitoring actual crop physiological development, which influences crop evapotranspiration 

fluxes, facilitates the estimation of crop irrigation water requirements. However, the cost of UAVs 

and sensors are typically high, especially when several flights are needed for regular field 

monitoring during the growing season.  

 

Therefore, researchers are shifting interests to the use of satellite imagery for estimating ETc and 

managing irrigation water (Calera et al., 2017; Vanino et al., 2018). The major limitations for 

adoption of satellite imagery for precision agriculture are the poor spatial and temporal resolution 

of satellite sensors (Bisquert et al., 2016). Also, the trade-off between the spatial resolution of the 

image and the satellite revisit time poses a major challenge to the use of the various satellite 

platforms. For example, the Landsat series has a relatively good spatial resolution (30 m) but has 

long revisit time (16 days) making it unsuitable for regular agricultural field assessment. The 

Moderate-resolution Imaging Spectroradiometer (MODIS) with daily coverage cannot be adopted 

for precise crop stress monitoring at field level due to its coarse spatial resolution (> 250 m). 

  

Satellite resolution is further reduced by cloud cover, thus limiting the use of this imagery for 

assessing crop stress parameters. High resolution satellite sensors that are commercially available 

such as the GeoEye, Worldview series, PlanetScope, QuickBird, and RapidEye are too costly for 

routine crop monitoring since their imagery are not open to the public. Thus, despite established 
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relationships between Kc and remotely derived vegetation indices, lack of cheap and high spatial 

and temporal resolution imagery presents a major limitation on the use of remote sensing for 

advancing precision agriculture.  

 

Other researchers described the potential of satellite observations for predicting actual crop 

evapotranspiration over large agricultural fields. This approach is based on estimates of latent heat 

flux (hence, actual crop evapotranspiration) from surface energy balance (SEB) algorithms such 

as Surface Energy Balance Algorithm for Land (SEBAL) (Bastiaanssen et al., 1998) and Mapping 

EvapoTranspiration at High Resolution with Internalized Calibration (METRIC) (Allen et al., 

2007). Again, the use of SEB methods for detecting crop water stress is limited by poor spatial and 

temporal resolution of thermal observations at field levels (Vanino et al., 2018; Bhattarai et al., 

2016; Numuta et al., 2017; Al Zayed et al., 2016). 

 

However, the launching of Sentinel-2A and 2B, which offers a reasonable compromise between 

the spatial resolution and revisit time, has greatly enhanced the prospects of routine monitoring of 

crop parameters. The multispectral sensors onboard Sentinel-2 captures data at 10, 20, and 60 m 

spatial resolution over 13 spectral bands, with a revisit time of five days (Vanino et al., 2018). The 

data provides rich information for describing crop reflectance and crop parameters such as 

biomass, leaf area index, yield, and leaf chlorophyll content (Laurent et al., 2014; Verrelst et al., 

2015). 

  

This study focused on the: (i) comparison of spectral data obtained from satellite platforms 

(Sentinel-2A & 2B and PlanetScope) and unmanned aerial vehicles for estimating crop coefficient 

(Kc); (ii) determination of crop evapotranspiration of processing tomato crop based on Sentinel-2 

imagery; (iii) integration of ETc from Sentinel-2 and spatially-variable soil moisture data to predict 
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irrigation water requirements. The hypothesis is that integration of soil and crop canopy data from 

satellite images would provide a more reliable estimate of crop water requirements. The AquaCrop 

simulation model was used to validate the ETc predicted from sentinel-2 imagery. AquaCrop 

computes Kc using maximum soil evaporation and crop transpiration coefficients, making it a 

reliable method of estimating actual crop evapotranspiration (Steduto et al., 2009; Toumi et al., 

2016). The findings of this study will be useful for developing near real-time method to monitor 

crop water needs for implementing precision irrigation on large vegetable fields. 

 

6.3. Materials and methods 

6.3.1. Study area 

The study area, shown in Fig. 6.1, is in Leamington, Southern  Ontario, Canada, and lies between 

latitude 42° 05’ 08” N and longitude 82° 33’ 05” W, at an average altitude of 187 m above sea 

level. The local climate is classified as humid with hot summers, dry and cold winters. The growing 

season for field processing tomatoes extends from mid-May to September with an average 

maximum and minimum daily temperatures of 25 °C and 15 °C, respectively. The soil is 

predominantly loamy sand with sand, silt, and clay content of 86, 8, and 6%, respectively; average 

bulk density of 1450 kg m-3 and field capacity and permanent wilting point were 0.20 and 0.08 m3 

m-3, respectively (Jaria and Madramootoo, 2013). 
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Fig. 6.1. Map of the experimental field showing various water treatments and georeferenced 

sampling points (A, B, and C represent 100%, 70, and 60% water treatments, respectively). 

 

6.3.2. Experimental design and cropping details 

The study was conducted during the 2017 and 2018 growing seasons (May-September) on a 10-

hectare commercial farm cropped with processing tomatoes (Lycopersicon esculentum Mill. 

cultivar Heinz H9553). 42 days old seedlings were transplanted in soil with water content near 

field capacity in the top 30 cm on 25 May 2017 and 22 May 2018. The seedlings were planted at 

a spacing of 42 cm within rows that were spaced 50 cm apart. The plant density was 31,746 plants 

ha-1. Pest and weeds were controlled in the farm according to conventional farm management 

practices. 

 

The field was divided into three sections (A, B, and C) with areas of 10.5, 6, and 3.8 hectares in 

2018 and 8.8, 5.3, and 3.2 hectares in 2017. Irrigation scheduling consisted of 100, 80, and 60% 

of replenishment of water in the plant root zone to field capacity for sections A, B, and C, 

respectively, in both seasons. Irrigation was applied through a drip system, with drip lines 
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(irrigation tape, Streamline 636 006 F, Netafim Irrigation Inc., Fresno, CA) aligned along the 

surface of the bed. The inline emitters were spaced 30 cm apart, with a flow rate of 0.46 L h-1 @ 

55 kPa, providing a uniform soil wetting pattern. The volume of water applied during each 

irrigation event to each treatment was determined as the product of the irrigation duration and the 

flow rate. Fertigation was applied through the micro drip irrigation system and all the treatments 

received the same amount of fertilizer during the growing season. The tomato plants were 

harvested after 112 days in 2017 (on 14 Sept.) and 121 days in 2018 (on 20 Sept.). 

 

6.3.3. Data collection 

In 2017, twenty (20) sampling points were selected from 100% treatment and ten (10) points were 

selected each from 80 and 60% treatments, while in 2018, forty (40) sampling points were selected 

from the 100% treatment, while twenty (20) points were selected each from the 80 and 60% 

treatments. The systematic grid sampling technique was used and the change in the number of 

sampling points between 2017 and 2018 seasons was to ensure better spatial coverage. All the 

sampling points were georeferenced for identification in the acquired images. The sampling points 

on the ground was a 3 × 3 m2 plot. Measurements were taken from five (5) different plants within 

each plot and the average values were recorded. The coordinates of each plot were recorded with 

a Garmin GPSMAP 60CSx handheld GPS navigator, which has a spatial accuracy of 3 m. 

  

Field measurements including leaf area index (LAI), leaf temperature, and soil moisture content 

were conducted in selected plants from georeferenced locations during the field campaigns at 

major phenological stages in the two growing seasons, as shown in Table 6.1. These measurements 

were taken to coincide with satellite image acquisitions and UAV flight campaigns. Average 

NDVI, defined as the weighted average of all the pixel-level NDVI values, was obtained from the  
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Table 6.1. Date of crop parameter measurements in the experimental site. 

Year DOY DAT Date LAI Tc SMC L8 S2 PS 

2017 178 33 27-Jun x x x x   

 194 49 13-Jul x x x x   

 237 92 25-Aug x x x x   

          

2018 170 28 19-Jun x x x  x x 

 180 38 29-Jun x x x  x x 

 206 64 25-Jul x x x  x x 

 228 86 13-Aug x x x  x x 

 238 96 23-Aug x x x  x x 
 

Where; DOY: Day of the year, DAT: Days after transplanting, LAI: Leaf area index, Tc: Leaf 

temperature, SMC: Volumetric soil moisture content, L8: Landsat 8, S2: Sentinel-2, and PS: 

PlanetScope images. 

 

remotely sensed platforms within each plot. The pixel-level NDVI was computed for the UAV, 

Sentinel-2, and PlanteScope imagery using the conventional formula NDVI = (near-infrared - 

red)/(near-infrared + red) (Rouse, 1972). These NDVI values were compared with each other and 

statistical regression models were established using the field measurements and the average NDVI 

values. 

 

6.3.3.1. In-situ crop measurements 

Leaf temperature was measured with a portable infrared thermometer, with an emissivity of 0.95 

W m-² (Evett et al., 2000) (Fluke 572 model, Fluke Corporation, Everett, WA). The thermal sensor 

was placed 30 cm above the plant leaf with its laser point set at an angle of 90° to the horizontal. 

Measurements were conducted following standard procedures as adopted in Ihuoma and 

Madramootoo (2019a).  

 

A portable canopy digital analyzer (LAI-2000 Plant Canopy Analyzer, LI-COR), was used to take 

non-destructive measurements of the LAI of the geo-referenced crops. An average of three (3) 

https://www.sciencedirect.com/science/article/pii/S0303243417300983?casa_token=RvVW4sLIyn8AAAAA:ggM0w7xG938z3cOyVVvZMf4n_uSxUmfwXl8OQZiqbj7x29UkijpUGhFhY8-zIvmwvVSVm3lFtA#bib0245
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repetitions of eight (8) below canopy readings were taken within a 5 m radius of the georeferenced 

location to obtain the LAI value at each location. A view cap on the optical sensor, which has an 

open wedge of 180°, was used to avoid obstruction, like the operator of the sensor obstacles, as 

highlighted in Li-Cor (1992). 

 

Portable Time Domain Reflectometers (TDR) (FieldScout TDR meters, Spectrum Technologies, 

Inc., IL, USA) was used to measure soil water content from the georeferenced points on days of 

data collection in 2017 and 2018. The TDR probes were inserted vertically into the soil at a depth 

of 30 cm such that it integrates the soil water content within the plant rooting depth. The TDR 

readings were calibrated with gravimetric soil moisture measurements.  

 

6.3.3.2. Data acquisition from UAV 

Two (2) different UAV flight campaigns were conducted on the farm in 2018 (25th July and 22nd 

August), and one UAV flight was conducted on 25th August 2017. The Parrot® Sequoia™ 

multispectral imaging sensor (Parrot Drones S.A.S, Paris, France), which captures the reflected 

light at four spectral bands with a field of view of 73.5° in the green (550 nm; 40 nm bandwidth), 

red (660 nm; 40 nm bandwidth), red-edge (735 nm; 10 nm bandwidth), and near-infrared (790 nm; 

40 nm bandwidth), was mounted on a fixed-wing drone (GL, Hong Kong, China). The UAV was 

equipped with an irradiance sensor for measuring incident light in order to adjust for variation in 

ambient light during the flight. Ground images were acquired from calibration targets (AIRINOV 

Aircalib; AIRINOV, Paris, France), prior to each flight, in order to obtain reliable reflectance 

values. All images were taken under a clear sky condition. The Pixel size was 12 cm for images 

taken at flight altitude of about 70 m at a flight speed of 4 m/s. 
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The flight was conducted over the field through an automated flight pattern designed in the Atlas 

Flight application (MicaSense, Inc., Seattle, USA), ensuring 80% image overlap for both front and 

side laps. The Pix4Dmapper Pro (Pix4D S.A., Lausanne, Switzerland) was used to combine the 

single images to create an orthophoto mosaic in absolute reflectance values. The Pix4D takes both 

the calibration target images and the readings from the irradiance sensor into consideration in an 

automated workflow (Aasen et al., 2018 and Stavrakoudis et al., 2019). The UAV spectral data 

were resampled with Sentinel-2 spectral response to eliminate the mismatch in spectral resolution, 

as adopted in Kalacska et al. (2018).  

 

6.3.3.3. Image acquisition from satellite platforms 

Earth observation data were acquired from Copernicus Sentinel-2A and 2B satellite on five (5) 

different days (29th June, 9th July, 25th July, 13th August, and 23rd August, 2018). Two (2) of these 

data sets were obtained on days closest to the UAVs flight campaigns in 2018. The Sentinel-2 

mission consists of a constellation of two satellites (Sentinel-2A and Sentinel-2B; launched in 

2015 and 2017, respectively) developed by European Space Agency for optimum coverage. The 

multispectral sensor on-board the Sentinnel-2 satellite platform have a combined 10 m spatial 

resolution (at the RGB and NIR wavebands) and a 5-day temporal resolution. The data are free 

and easily accessible and are utilized for understanding land cover, agriculture, and environment. 

The Sentinel-2 product was downloaded from the Copernicus Open Access Hub, which delivers 

orthorectified, georeferenced, and radiometrically calibrated into top-of-atmosphere (ToA) 

reflectance data (Vanino et al., 2018). In 2017, Landsat series (7 & 8) were acquired on three (3) 

different days ( 27th June, 13th July, and 25th August, 2017) from the field. But the data were 

enormously affected by cloud covers making them seemly unsuitable for agricultural studies. 
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Multispectral data were also acquired from PlanetScope satellite missions on days closest to 

Sentinel-2 data sets during the 2018 growing season. The PlanetScope has a daily revisit frequency 

with spatial resolution of 3 m at the RGB and NIR wavebands (Baloloy et al., 2018). The 

PlanetScope product was acquired as an Ortho Scene image, which is orthorectified, surface 

reflectance product, and delivered as analytic 4-band product. Multispectral image processing and 

analysis for obtaining NDVI were conducted with ESRI ArcGIS software (v10.5.1), as adopted in 

Saifuzzaman et al. (2019). NDVI was calculated according to the standard equation from the 

reflectance measurements in the near infrared and red bands. 

 

6.3.4. Determination of actual evapotranspiration and crop coefficient 

The crop evapotranspiration was estimated from Sentinel-2 images based on the empirical 

relationship between NDVI and Kc. The Kc was determined as the ratio of actual 

evapotranspiration (ETa) to the reference evapotranspiration (ETo). Daily ETa was estimated from 

the soil moisture balance approach (Eq. 6.1) based on daily soil moisture data collected in the field. 

Also, daily meteorological data collected from the same field using a portable weather station were 

used to estimate ETo, based on FAO-56 Penman-Monteith equation (Allen et al., 1998). NDVI 

values from georeferenced points were extracted from all the sentinel-2 images processed in the 

2018 growing season. An empirical relationship between NDVI values and Kc values (which 

correspond with days of satellite image acquisition) was derived. Based on the equation of the 

linear relationship between NDVI and Kc, crop evapotranspiration for any day was estimated using 

the NDVI map of the field and daily ETo.  

 

𝐸𝑇𝑎 = P +  𝐼 + 𝐶𝑅 − 𝐷 − 𝑅 + ∆𝑆 … … … … … … … … … … … … (6.1) 
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where, P: precipitation (mm), 𝐼: Irrigation depth since yesterday (mm), CR: Capillary rise from 

the groundwater table (mm), 𝐷: Deep percolation (mm), 𝐸𝑇𝑎: Actual crop evapotranspiration 

(mm), R: surface runoff (mm), S: Soil water storage variation in the root zone (the top 45 cm soil 

layer) (mm). Deep percolation was ignored because there were low rainfall amounts. Efficient 

irrigation scheduling scheme ensured that the water applied did not exceed the field capacity. 

Surface runoff was ignored because the study site is relatively flat, and no runoff was observed 

during the growing season. The capillary rise from the groundwater table was ignored since the 

soil was sandy and the depth to ground water table is greater than 1 m (Jaria and Madramootoo, 

2013).  

 

To validate the ETc values gotten from the NDVI maps, the AquaCrop simulation model was also 

used to calculate ETc based on data collected from the field. The model uses the FAO 56-Penman 

Monteith module to estimate ETo (Steduto et al., 2009; Toumi et al., 2016). The ETc values are 

obtained based on the determination of the appropriate values of Kc using maximum soil 

evaporation and crop transpiration coefficients. Input parameters used by AquaCrop for 

calculation of ETc include climatic data, crop type, and cultivar, crop canopy cover, and soil water 

conditions (Araya et al., 2010). These parameters were measured in the field or estimated from 

experimental data, and input into the model for calculation of ETc. AquaCrop ETc was then 

compared with ETc estimated from NDVI maps. 

 

6.3.4.1 Irrigation prescription maps 

Irrigation prescription maps were generated from the combination of spatially-variable soil 

moisture data with an ETc map obtained from the Sentinel-2 platform. Soil moisture data collected 

from the georeferenced sampling points were used to produce the soil moisture map of the 
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experimental field using ordinary kriging interpolation tool in ESRI ArcGIS software (v10.5.1). 

The ETc map from Sentinel-2 data was combined with soil moisture maps according to the soil 

moisture balance approach (Eq. 6.1) to produce the irrigation depth prescription maps.  

 

6.3.5. Determination of crop irrigation water requirements (IWR) 

The seasonal IWR was then calculated according to Eq. 6.2. 

IWR = 𝐸𝑇𝑐 − 𝑃𝑒 … … … … … … . (6.2) 

where ETc: Total monthly ETc data from AquaCrop model; Pe: is effective rainfall. Losses as a 

result of runoff and deep percolation were considered negligible because of low rainfall amount 

during the growing season. The effective precipitation was estimated using the USDA soil 

conservation service method according to Smith (1992) as follows: 

 

{
𝑃𝑒 = 𝑃𝑡𝑜𝑡 × (125 − 0.2𝑃𝑡𝑜𝑡)/125                                𝑃𝑡𝑜𝑡 < 250 𝑚𝑚  

𝑃𝑒 = 125 + 0.1 × 𝑃𝑡𝑜𝑡                                               𝑃𝑡𝑜𝑡 > 250 𝑚𝑚
  …………………  (6.3) 

 

where  𝑃𝑡𝑜𝑡: measured gross monthly precipitation. 

 

6.3.6. Statistical analysis 

The effects of water treatments on canopy - air temperature difference, LAI, and soil moisture 

content were described using the Pearson correlation ratio, as adopted by Ihuoma and 

Madramootoo (2020). Statistical analyses were carried out on NDVI from UAVs, Sentinel-2 

images, canopy-air temperature difference, and LAI using the PROC/GLM (General Linear 

Model) procedure of SAS software (version 9.3, SAS Institute, Inc., Cary, NC, USA). Analysis of 

variance (ANOVA) was conducted on the data, and the significance of differences among 
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treatments was separated using Fisher’s Least Significant Difference (LSD) at a 5% probability 

level. 

6.4. Results and discussion 

This section focused on the analysis of the reflectance data from Sentinel-2A and 2B, UAVs, and 

PlanetScope and quality of the various sensors for the retrieval of NDVI and estimation of Kc and 

ETc for mapping irrigation water requirements.  

 

6.4.1. Comparison of PlanetScope, UAV, and Sentinel-2 data 

Fig. 6.2 shows the NDVI maps obtained from the UAV and satellite platforms on similar dates. 

The maps show that NDVI values ranged from 0.36 - 0.82 in Sentinel-2 images, 0.01 – 0.96 in 

UAV, and 0.34 – 0.82 in PlanetScope sensing platforms. These results show wide spatial 

variability in NDVI values within the field. Fig. 6.3 shows the average NDVI values acquired on 

25th July 2018 for various platforms. The result indicates significant differences in NDVI from 

different remote sensing platforms, with the UAV recording the highest average NDVI values 

(0.89 ± 0.012) compared to PlanetScope (0.80 ± 0.01) and Sentinel-2 imagery (0.67 ± 0.008). The 

variation may be attributed to the radiometric differences as well as differences in spatial 

resolutions of the various imaging platforms. The UAV has a better resolution (12 cm) compared 

to the PlanetScope (3 m) and Sentinel-2 (10 m) imagery at the red and near infrared spectral 

regions. A further comparison of UAV and Sentinel-2 data is shown in Fig. 6.4. The histograms 

revealed that average NDVI values were centered around 0.9 for the UAV compared to Sentinel-

2 values centered around 0.67.  
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Fig. 6.2. Examples of NDVI maps estimated from (a) Sentinel-2; (b) UAV; (c) PlanetScope 

platforms in 2018. 

 

 

 

Fig. 6.3. Comparison of NDVI from UAV, Sentinel-2, and PlanetScope imagery acquired on 25th 

July 2018. 
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Fig. 6.4. Average NDVI from UAV acquired on July 25th, 2018 compared to Sentinel-2 imagery. 

 

This average NDVI value from the UAV is relatively high because it was obtained in the field with 

about 85% vegetative cover (from site observation). Thus, the significant difference in average 

NDVI values between the UAV and satellite platforms suggests that the UAV overestimated the 

field NDVI. Although several authors have highlighted the suitability of UAV multispectral 

imagery for routine agricultural field assessment (Turner et al., 2012; Zarco-Tejada et al., 2013), 

UAV imagery also have some limitations. These limitations include the need to fly under very 

clear sky conditions, as well as the typically high cost of UAV and sensors, especially when several 

flights are needed during the growing season (Gago et al., 2015). The high value of NDVI from 

UAV in this study may be attributed to the potential calibration errors as well as the prevailing 

wind conditions during the flight campaigns. The limitations present a major drawback on the use 

of UAV to support precision agriculture. 
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Fig. 6.5. Relationship between NDVI from PlanetScope, UAV, and Sentinel-2 data versus LAI 

 

The relationships between LAI and NDVI computed from various imaging platforms are shown 

in Fig. 6.5. The result indicates a good correlation between LAI and NDVI data with R2 = 0.67, p 

< 0.001; R2 = 0.77, p < 0.001; and R2 = 0.80, p < 0.001, for UAVs, Sentinel-2, and PlanetScope 

respectively. The strong correlation between NDVI and LAI observed in this experiment is 

consistent with previous studies (Rinaldi et al., 2014; Magney et al., 2016; Ihuoma and 

Madramootoo, 2017), indicating that water stress caused structural changes in tomato plants. The 

relationship between NDVI and LAI is essential for assessing the effects of water stress on yield. 

Providing suitable information on plant water requirements and spatiotemporal variability in field 

water status is essential for precise irrigation. 

 

The result also shows that the PlanetScope data performed better than the UAV and Sentinel-2 

data. This good correlation is due to the high spatial resolution of the PlanetScope satellite imagery, 

making it suitable for monitoring agricultural fields (Baloloy et al., 2018). Unlike Sentinel-2, 
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PlanetScope data is not freely available to the public, and the relatively high cost of this data 

discourages its use by growers. The good correlation between Sentinel-2 date and LAI highlights 

the importance of Sentinel-2 imagery as a suitable alternative to UAV and other seemly costly 

satellite data. The Sentinel-2 data are easily accessible to the public and provide data to map large 

agricultural fields.   

 

6.4.2. Water stress indicators 

 

Water stress indicators were measured in the field during the plant growing seasons as indicated 

in Table 6.1. The descriptive statistics of tomato canopy grouped by irrigation treatments in 2017 

and 2018 are presented in Table 6.2. The mean of LAI generally decreased with decreasing 

irrigation treatment levels, with 100 and 60% FC recording the highest and lowest LAI, 

respectively, the mean of Tc-Ta increased with decreasing water treatments. This decrease implies 

that water stressed plants have high canopy temperatures compared to non-stressed plants. The Tc-

Ta showed good correlation, with  = 0.88 and 0.62, in 2017 and 2018 respectively, while the 

LAI had correlation ratio,  = 0.86 and 0.82, in 2017 and 2018, respectively. This result indicates 

that the irrigation treatments explained most of the variance in Tc-Ta and LAI during the two 

tomato growing seasons. Soil moisture content (SMC) showed significant variations for the 

various treatments. The SMC has  = 0.60 and 0.73, for 2017 and 2018, respectively, indicating 

that the water treatments explained most of the variance in SMC. Average NDVI were not different 

for various irrigation treatments as shown in the NDVI maps (Fig. 6.2). The effects of irrigation 

treatments were probably not well pronounced in the canopy cover to be detected by NDVI. 

Ihuoma and Madramootoo (2020) observed that NDVI usually detects structural and 

morphological changes in plant canopies when there is a prolonged effect of stress in crops.  
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This concept explains why NDVI is useful for assessing plant yield and biomass, where the 

continued effects of stress would be noticeable (Rinaldi et al., 2014). 

 

Table 6.2. Descriptive statistics (mean, standard deviation, and correlation ratio () of tomato 

plant canopy grouped by the irrigation treatments (100, 80, and 60% FC). Where Tc-Ta: air-canopy 

temperature difference (°C), LAI: Leaf Area Index (m2 m-2), SMC: soil moisture content (%).  

 2017   

Stress 

indicators 100% 80% 60%  100% 80% 60%  

Tc-Ta -3.2± 0.5a -1.8± 0.5b 0.9± 0.6c 0.88 -5.3±1.5a -3.1±0.5b -1.1±1.6c 0.62 

LAI 3.3± 0.3a 2.5± 0.2b 1.8± 0.2c 0.86 3.3±0.3a 2.6±0.2b 1.9±0.3c 0.82 

SMC 16.5± 1.1a 13.3±1.2b 11.4± 0.7c 0.60 17.2±1.2a 14.5±0.8b 11.8±1.3c 0.73 

         

Treatments with the same letters are not statistically significant.  

 

 

Table 6.3. Monthly (May-August) rainfall (mm) and mean temperature (°C) during the 2017 and 

2018 growing seasons in comparison with 10-year (2008-2017) average. 

 
May June July August Mean 

Temperature 2018 (°C) 17.1 20.5 22.6 22.9 20.8 

Temperature 2017 (°C) 13.9 20.7 21.8 20.0 19.1 

Temperature long-term average (°C) 14.7 20.3 22.3 21.6 19.7 

     
 

Precipitation 2018 (mm) 122.1 98.1 30.2 37.6 72.0 

Precipitation 2017 (mm) 108.6 100 50 42.7 75.3 

Precipitation long-term average (mm) 84.9 95.5 56.1 41.1 69.4 
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6.4.3. Reference evapotranspiration and crop coefficient 

Table 6.3 shows the weather conditions in 2017 and 2018 growing seasons compared to a 10-year 

average (2008 – 2017). The mean temperature was similar during the period of the experiment, 

recording a value of 19.1 °C in 2017 and 20.8 °C in 2018, and was similar to the 10-year average 

of 19.7 °C. Similarly, mean precipitation was not different for the two years, with 75.3 and 72.0 

mm in 2017 and 2018, respectively. These values were higher than the long-term average of 69.4 

mm.  

 

Daily meteorological data were used to compute reference evapotranspiration (ETo) based on 

FAO-56 PM for 2017 and 2018. The seasonal variation of ETo for the 2-year period is shown in 

Fig. 6.6. Cumulative seasonal ETo was 486.8 mm (from 25th May – 14th September 2017) and 

511.6 mm (from 22nd May – 20th September 2018). The average daily ETo was 4.31- and 4.19-

mm d-1 in 2017 and 2018 growing seasons, respectively.  
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Fig. 6.6. Reference evapotranspiration (FAO-56 PM ETo, mm d-1) and rainfall (mm) for the 

growing season 2017 (a) and 2018 (b) for the experimental site. 

 

 

 

Fig. 6.7. Relationship between Kc and NDVI derived from sentinel-2 imagery. 
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6.4.4. Remote sensing-based estimates of crop evapotranspiration 

Sentinel-2 imagery was selected for estimation of Kc, ETc, and IWR because of the perceived 

advantages of Sentinel-2 sensors over other sensing platforms considered in this study. NDVI 

values were extracted from georeferenced points in sentinel-2 images and were correlated with Kc 

values (R2 = 0.98, p < 0.001) to establish a relationship between NDVI and Kc values (Fig. 6.7) 

on days of data collection. Kc depends mainly on the dynamics of plant canopy cover (Allen et al., 

1998; Kullberg et al., 2017) and researchers have utilized its relationship with NDVI to map plant 

crop cover.  

 

ETc maps were estimated from sentinel-2 imagery using the linear relationship between NDVI 

and Kc, as presented in Fig. 6.8. ETc derived from Sentinel-2 imagery ranged from 0.1 to 3.9 on 

22nd July 2018 and 0.1 to 6.3 on 23rd August 2018. The spatial variability in ETc recorded in the 

field on both dates indicates the need for more efficient use of water in the field. Typically, the 

grower applies water uniformly in the field during the growing season, which implies that the 

grower either over/or under-irrigates the field. The result has implications on the allocation and 

use of limited water allocation resources in this intensely cultivated agricultural district. ETc 

prescription maps could be easily produced from remotely sensed platforms taking advantage of 

their quick turnaround time and high spatial resolution to optimize water use in these irrigated 

farmlands. 
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Fig. 6.8. Crop evapotranspiration maps estimated from Sentinel-2 imagery in 2018. 

 

6.4.4.1. Verification of crop evapotranspiration using AquaCrop Simulation model 

ETc was estimated from AquaCrop, as shown in Fig. 6.9, to verify the accuracy of remotely sensed 

estimates of ETc. Daily ETc from AquaCrop ranged from 0.6 to 6.2 mm d-1 and 0.7 to 6.2 mm d-1 

in 2017 and 2018 growing seasons, respectively. ETo was generally higher during the flowering 

and maturity growth stages, corresponding to periods when the tomatoes needed more water for 

vegetal development. 

 

Average ETc values estimated from Sentinel-2 imagery correlated with ETc estimated from 

AquaCrop model in 2018, with R2 = 0.92 (p < 0.01), as shown in Fig. 6.10. The good correlation 

between ETc derived from AquaCrop and Sentinel-2 data shows the usefulness of Sentinel-2 

imagery for mapping field ETc for improving precision irrigation. Although satellite platforms 

such as MODIS and Landsat are useful for mapping crop ET using METRIC and SEBAL 

algorithms (Senay et al., 2013), the utility of these satellite platforms and surface energy balance 

methods for assessing crop water stress is limited for field scale applications due to their coarse 

spatial resolution. The Sentinel-2 mission provides an alternative data with its 10 m spatial 

https://www.sciencedirect.com/science/article/pii/S0378377416302323#bib0395
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resolution and 5 days revisit time, an advantage that can be utilized to advance precision water 

management in the field.  

 

 

Fig. 6.9. Daily crop evapotranspiration estimated from Aqua Crop simulation model in 2017 and 

2018 growing seasons. 

 

 

Fig. 6.10. Average ETc results estimated from sentinel-2 imagery (ETc S-2) compared with ETc 

estimated from Aqua Crop model (ETc A) in 2018. 
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6.4.5. Irrigation water requirements 

Fig. 6.11 shows the maps of soil moisture content in the field during the sampling dates in 2018 

while Fig. 6.12 shows the prescription maps of irrigation depths in the field. Irrigation depths 

varied from 4 – 33 mm within the field, during the sampling dates. The 100% treatment level 

requires less irrigation compared to 80 and 60% treatment levels, as seen in the maps.  However, 

the results indicate substantial spatial variability in terms of crop water requirements during the 

growing season, which supports the use of a satellite-based approach for monitoring the growth 

conditions of plants. The result further proves the suitability of Sentinel-2 imagery for assessing 

crop canopy cover and IWR at the field scale. The findings of this study also show the prospect of 

integrating ETc data satellite imagery with spatially-variable soil moisture data for routine 

assessment of crop water status and optimization of water management in agricultural fields. 

Combining crop growth parameters and weather data with satellite imagery would aid growers, 

water resource managers, and policymakers to evaluate irrigation water volume needed at field 

and district scales.  

 

Table 6.4 shows the seasonal IWR estimated from the effective rainfall and ETc in 2017 and 2018 

growing seasons. IWR was highest in the months of July and August, which corresponds to the 

months when the plants require more water for growth. The estimated IWR was about 165 and 

199 mm in 2017 and 2018 growing seasons, respectively. These estimates were lower than the 

actual amount of water applied by the farmer, which amounted to 198 and 247 mm in 2017 and 

2018 growing seasons, respectively. These results indicate that the grower over-irrigated the 

tomato crops by 17% and 20% in 2017 and 2018 growing seasons, respectively. Assessing crop 

water needs from satellite imagery and incorporating this information into irrigation systems 

would essentially optimize crop water use. 
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Fig. 6.11. Maps showing spatial variability of soil moisture content (%) in the field during the 

sampling dates in 2018 (a) July 22 and (b) August 23. 

 

 

 

Fig. 6.12. Prescription maps showing irrigation depths (mm) in the field during the sampling 

dates in 2018 (a) July 22 and (b) August 23. 
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Table 6.4. Effective rainfall (Reff), crop evapotranspiration (ETc), and irrigation water 

requirement (IWR) during the growing seasons in 2017 and 2018. 

 

Year Month  Reff (mm) ETc (mm) IWR (mm) Water applied (mm) 

2017 May 24 27 3 7 

 June 84 88 4 9 

 July 46 121 75 88 

 August 40 114 74 81 

 September 22 31 9 13 

 Total 215 381 165 198 

2018 May 15 28 13 21 

 June 83 87 4 11 

 July 29 124 95 108 

 August 35 116 81 94 

 September 36 42 6 13 

  Total 197 396 199 247 

 

 

6.5. Summary and conclusion 

This study described a methodology for integrating satellite based crop evapotranspiration (ETc) 

with soil moisture data for mapping irrigation application depth of processing tomato crops. We 

also evaluated UAV, Sentinel-2, and PlanetScope imagery for estimating crop coefficient (Kc) and 

ETc. Although PlanetScope data performed better than UAV and Sentinel-2 data, the relatively 

high cost of PlanetScope data limits its use for regular assessment of agricultural fields. However, 

Sentinel-2 satellite platform, with its enhanced spectral, spatial, and temporal resolutions, provides 

a reliable and non-invasive alternative for estimating Kc. Kc influences evapotranspiration fluxes 

and irrigation water requirements, and high correlation between Kc and NDVI reflects the good 
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relationship between crop phenological development and canopy spectral reflectance. This study 

utilized this linear relationship to provide a better estimate of ETc, which was combined with soil 

moisture maps to predict irrigation water requirements. Results indicate a good agreement between 

ETc estimated from remotely sensed images and ETc measured by means of the AquaCrop model.  

 

The findings reveal that the farmer tends to apply water uniformly in the field without recourse to 

the spatial variability of field ETc, thereby over/under-irrigating the crops. Typically, the grower 

over-irrigated the crops by 17-20% during the two growing seasons studied in this experiment. 

Providing timely information about the actual crop development and IWR from freely available 

satellite data allows the implementation of more efficient water applications based on the actual 

crop water requirements. Information and Communication Technologies facilitates timely delivery 

of satellite images using the internet, to provides near-real-time data to support irrigation 

management. This approach will equip farmers and policymakers with robust and qualitative 

information about the spatiotemporal variability of crop water requirements to enhance crop 

productivity. 
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CHAPTER VII 

Summary and Conclusions 

7.1. General summary 

Traditional methods of water and nitrogen management rely on soil tests and sensors for measuring 

plant water and nitrogen requirements. These measurements are invasive and often do not account 

for spatial variability of soil and crop parameters, leading to uniform application of water and 

nitrogen. This in turn leads to over- and/or under-application of agricultural inputs in large fields, 

with its economic and environmental consequences. Spectral reflectance data provide a timely and 

non-destructive alternative to conventional approach of monitoring plant abiotic stress. This thesis 

evaluated reflectance indices for assessing crop stress, and coupled the indices with soil moisture 

data to provide more precise estimate of plant water and nitrogen requirements.  

 

In order to better understand the use of spectral reflectance indices for plant stress assessment, 

intensive greenhouse and field experiments were undertaken using two widely cultivated high-

value vegetable crops (bell pepper and tomato crops). The study evaluated nine reflectance indices  

for assessing plant stress, induced by varying irrigation water applications. The results indicated 

that the photochemical reflectance indices (PRI) centered at 553 nm (PRI553) was the most useful 

index for detecting water stress in greenhouse grown bell pepper plants. The PRI centered at 550 

nm (PRI550) was suitable for assessing water stress in both greenhouse and field grown tomato 

crops. These results are in contrast with previous studies, which suggested the PRI centered at 570 

nm (PRI570) for monitoring water stress in most field crops, indicating that the reflectance indices 

threshold for water stress detection is crop and climate specific. Also, the Transformed Chlorophyll 

Absorption in Reflectance Index and the Renormalized Difference Vegetation Index (RDVI) were 
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best suited for monitoring nitrogen status in tomato crops. The study further showed that the PRI, 

normalized by incorporating the RDVI and the red edge of the reflectance spectrum (wavelengths 

centered 600 and 70nm) was suitable to simultaneously estimate water and nitrogen status. The 

findings of these studies revealed the feasibility of monitoring crops using hyperspectral sensors 

to provide reliable, rapid, and non-invasive estimates of plant abiotic stress. Near-real-time 

analyses of leaf spectral features provides useful information to the growers for optimizing 

agricultural input and enhancing productivity. 

 

The results of the greenhouse and field experiments were then scaled up to assess irrigation water 

requirements of tomato crops on large commercial vegetable fields. With the use of UAV 

technology, a drone outfitted with multispectral cameras, normalized difference vegetation indices 

were acquired and compared with PlanetScope and Sentinel 2A & 2B satellite imagery for 

estimating crop coefficient and evapotranspiration over a 10-hectare processing tomato field. The 

PlanetScope imagery were comparatively better than the UAV and Sentinel-2 data, but the high 

cost of acquiring PlanetScope data limits its use for routine agricultural field assessment. Sentinel-

2 satellite data, with its enhanced resolutions, provide a reliable and non-invasive alternative for 

estimating Kc. AquaCrop simulation model was used to estimate daily crop evapotranspiration in 

the field and the results were compared with results obtained from Sentinel-2 satellite imagery. 

Crop evapotranspiration maps obtained from remotely sensed platforms were combined with soil 

moisture data to estimate and map irrigation depth, thereby accounting for spatial variability of 

soil and crop parameters. 
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The study revealed that uniform water application in the field caused about 17-20% over-

application of irrigation water by the grower during the two growing seasons. The findings of this 

thesis confirm that providing timely information about the actual crop development and irrigation 

water requirements from freely available satellite data would allow the implementation of more 

efficient water applications based on actual crop water needs. Efficient use and management of 

irrigation water saves water and energy costs, minimizes leaching of agrochemicals, and reduces 

contamination of underlying aquifer. This study documented a protocol for utilizing satellite 

technology, especially the freely available Sentinel-2 imagery, to precisely map crop water 

requirements of large agricultural fields. This technique provides a valuable tool to farmers and 

policymakers for supporting precision agriculture. 

 

7.2. Contributions to knowledge 

As a result of these research results, the following are some of the commendable contributions to 

research. 

1. This thesis demonstrated that leaf spectral data provide a non-destructive, reliable, and near 

real-time alternative to conventional methods of crop stress assessment. Suitable 

vegetation indices for monitoring crop abiotic stress in greenhouse and field grown high-

value vegetable crops were identified. Measuring these indices with hyperspectral sensors 

provides timely spatial distribution information on crop conditions for optimizing 

agricultural water and nitrogen use.  

 

2. This research project highlighted the suitability of Sentinel-2 satellite mission for mapping 

evapotranspiration and irrigation water requirements. The use of remotely sensed 
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reflectance data for agricultural applications is often limited by cloud cover and poor 

spectral resolution of satellite images. However, this study has shown that Sentinel-2 data 

have suitable spectral, spatial, and temporal resolutions for routine agricultural field 

assessments. With the high cost of unmanned aerial vehicle technology and other 

commercial satellite data such as PlanetScope imagery, Sentinel-2 imagery, which is freely 

available in the public domain, provides alternative data to regularly monitor agricultural 

fields. 

 

3. This study created irrigation management zones based on crop characteristics, thereby 

advancing the concept of precision agriculture and variable rate irrigation. Previous 

management zones were created based on soil properties but, this research has confirmed 

that plant-based parameters, from remotely sensed images, provide a more reliable estimate 

of crop water needs for optimizing crop yield. This approach facilitates timely detection of 

water stress in crops to minimize yield loss, with the potential to increase water savings 

and enhance agricultural sustainability. 

 

4. This thesis proposes a holistic methodology to precisely map crop irrigation water 

requirement based on the integration of spatially-variable soil moisture and crop 

evapotranspiration data, obtained from remotely sensed images. The integration of crop 

evapotranspiration and soil moisture content leads to a better estimate of irrigation water 

requirements. This approach provides high resolution maps for optimizing agricultural 

water use efficiency, aimed at improving crop yield.  
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7.3. Recommendations for future research 

1. Leaf spectral properties are not solely dependent on plant water status. Factors such as soil 

background, canopy structure, leaf thickness, leaf age, and variations in leaf angle could 

influence the spectral response of leaves. Therefore, future research should focus on the 

integration of thermal and narrow-band hyperspectral imagery to provide more precise 

information about plant water status. 

 

2. Future studies should test the vegetation indices for monitoring water and nitrogen stresses 

in actual fertigation management practices, to fully establish the practicality of this 

approach for improving precision agricultural management. 

 

3. Operationalizing this concept for practical use in crop stress management requires more 

data points to generate response surface curves of the suitable indices versus water and 

nitrogen application rates.  With the indices, more precise estimates of water and nitrogen 

rates can be obtained from the response surface curve to support decision making in 

fertigation management. 

 

4. Further research in crop water stress studies should fuse satellite observations of crop 

evapotranspiration and soil moisture with daily climate data to generate near real-time 

prescription maps for site-specific irrigation applicable to thousands of hectares within 

irrigation/water management districts. 
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