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ABSTRACT

We study lattices arising from ideals in cyclotomic fields. We begin with some

general theory about lattices. We introduce certain important lattices, namely the

root lattices and the Niemeier lattices. We then describe how to obtain lattices using

ideals in number fields and we determine some of their basic properties. We continue

our study by specializing to cyclotomic fields. We determine all the root lattices and

all the Niemeier lattices that are similar to ideals in cyclotomic fields as well as all

the cyclotomic fields in which they can be obtained. We give many examples and

even a few examples of even unimodular lattices in dimension 32. We mainly follow

the work of E. Bayer (see the references).
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RÉSUMÉ

Nous étudions les réseaux qui surviennent d’idéaux dans des corps cyclotomiques.

Nous commençons avec de la théorie générale sur les réseaux. Nous introduisons

certains importants réseaux, les réseaux racines et les réseaux de Niemeier. Nous

décrivons ensuite comment obtenir des réseaux en utilisant des idéaux dans des corps

de nombres et nous déterminons quelques-unes de leurs propriétés. Nous continuons

notre étude en nous spécialisant aux corps cyclotomiques. Nous déterminons tous

les réseaux racines et les réseaux de Niemeier qui sont similaires à des idéaux dans

des corps cyclotomiques ainsi que tous les corps cyclotomiques dans lesquels ils peu-

vent être obtenus. Nous donnons plusieurs exemples et même quelque exemples de

réseaux unimodulaires pairs en dimension 32. Nous suivons principalement certains

travaux de E. Bayer (voir les références).
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CHAPTER 1
Introduction

The study of lattices is of some importance for chemistry and physics. For ex-

ample, 3-dimensional lattices are used to investigate the structure of crystals (see

[OH80]) and the Leech lattice is involved in superstring theory (see [Cha85]). Fur-

thermore, lattices have many connections to different topics within mathematics.

Among other things, they are closely related to coding theory, group theory, the

theory of quadratic forms, the theory of modular forms and algebraic number theory

(see [CS99]). The interest for lattices in all these fields gives a motivation to study

different ways of constructing them. In this thesis, we present a particular way of

constructing lattices via number fields, with an emphasis on examples coming from

cyclotomic fields.

In chapter 2, we give some basic definitions about lattices and introduce some

of their basic invariants like the discriminant and the signature. In particular, the

positive definite lattices, or Euclidean lattices, are particularly interesting since they

are related to the geometrical problems of determining the densest packing of spheres

in space, the thinnest covering of space with balls and the maximal number of spheres

that can be put around a sphere. In the cases where these problems are solved (in

small dimensions), the answer is often obtained from root lattices or their dual.

The root lattices are integral lattices generated by their elements of squared norm 1

and 2. They are all classified: they are given by all the orthogonal direct sums of the

indecomposable root lattices Z, An (n ≥ 1), Dn (n ≥ 3) and En (n = 6, 7, 8). Other

interesting examples of lattices are the unimodular lattices. The theta series of these

lattices satisfies a particular functional equation and in the case of even unimodular
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lattices this equation implies that the theta series is a modular form (for the whole

group SL2(Z)). These modular forms are known and this allows to determine the

theta series of these lattices. This is very useful in classifying the even unimodular

lattices. Such a classification is known in dimensions ≤ 24. Even unimodular lattices

exist in dimensions a multiple of 8. In dimension 8, there is a unique such lattice up

to isomorphism; the root lattice E8. In dimension 16, there are only 2 such lattices;

the root lattice 2E8 and the lattice D+
16. In dimension 24, there are 24 such lattices,

called the Niemeier lattices, one of them being the Leech lattice. The Leech lattice

is the only Niemeier lattice with no roots, all other Niemeier lattices having in fact

a complete root system. In higher dimensions, there are so much even unimodular

lattices that a general classification seems unlikely to ever be achieved. However, in

dimension 32, the even unimodular lattices with complete root systems form a very

small subset of all the even unimodular lattices in this dimension and they are all

classified.

In chapter 3, we describe the connection with algebraic number theory. We

obtain lattices by considering ideals in number fields and the trace pairing. These

lattices are important since, for example, the ring of integers of a number field can be

seen as a lattice and its dual lattice is the codifferent ideal, which tells the ramification

of primes. We determine formulas for the discriminant and the signature of these

lattices. Then we determine when the construction gives a rational lattice, when it

gives an integral lattice and when it gives an unimodular lattice. If one is interested

in euclidean lattices, these can only be obtained when the number field is either

totally real or a CM-field.

In chapter 4, we concentrate our study on cyclotomic fields which are an impor-

tant class of examples of CM-fields. The main question we ask is : Which lattices

can be obtained from ideals in cyclotomic fields? It turns out that these lattices are
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characterized by some properties of their automorphism group (not only by the struc-

ture of the group but also by how it acts on the lattice). This enables us to determine

all the root lattices that arise from ideals in cyclotomic fields and all the cyclotomic

fields in which they can be obtained (our result corrects and completes a theorem

in [Bay99]). We also present the determination due to E. Bayer of all the Niemeier

lattices that arise from cyclotomic fields and of the cyclotomic fields in which they

can be obtained. We conclude with a short discussion on higher dimensions.
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CHAPTER 2
General theory of lattices

2.1 Basic definitions

We will need the following notion of non-degeneracy.

Definition 2.1.1. Let V be a finite dimensional vector space over a field K. A

symmetric bilinear pairing

(−, −) : V × V → K

is said to be non-degenerate if the only x ∈ V such that (x, y) = 0 for all y ∈ V is

x = 0.

Definition 2.1.2. Let L be a free Z-module of finite rank with a symmetric Z-

bilinear pairing

(−, −) : L × L → R.

If the induced bilinear pairing on the real vector space V = L ⊗ZR is non-degenerate

then we say that L (or {L ,(−, −)}) is a lattice.

There is a natural notion of sublattice.

Definition 2.1.3. Let {L ,(−, −)} be a lattice and S be a submodule of L . If S is

a lattice with the pairing obtained from the restriction of (−, −) to S × S then we

say that S is a sublattice of L .

Definition 2.1.4. Let {L ,(−, −)} and {L ′,(−, −)′} be two lattices. A homomor-

phism of Z-module

f : L → L ′

is a morphism of lattices if it satisfies

(f(x), f(y))′ = (x, y) for all x, y ∈ L .
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If f is a bijection then f is an isomorphism of lattices and the lattices L and L ′

are said to be isomorphic, or congruent, and we write L ∼= L ′. An isomorphism

from a lattice to itself is called an automorphism of the lattice. The group of all

automorphisms of L is denoted by Aut(L ).

Next, we relax the notion of congruence of lattices by allowing a scaling factor.

Definition 2.1.5. Let {L ,(−, −)} and {L ′,(−, −)′} be two lattices. Suppose there

exists an isomorphism of Z-module

f : L → L ′

satisfying

(f(x), f(y))′ = α(x, y) for all x, y ∈ L

for some α �= 0 in R. Then we say L and L ′ are equivalent, or similar.

Given a lattice of rank n and a lattice of rank m, we can build a lattice of

rank n + m in the following way.

Definition 2.1.6. Let {L ,(−, −)} and {L ′,(−, −)′} be two lattices. The (external)

orthogonal direct sum L ⊕L ′ of L and L ′ is the free Z-module L ×L ′ with pairing

< −, − > defined by

< (x, x′), (y, y′) >:= (x, y) + (x′, y′)′

for x, y ∈ L and x′, y′ ∈ L ′.

There is a very close notion of internal orthogonal direct sum.

Definition 2.1.7. Let {L ,(−, −)} be a lattice and L1, L2 two sublattices of L .

Suppose that the following two conditions are satisfied:

i) every x ∈ L can be written uniquely as sum y + z of an element y ∈ L1 and

of an element z ∈ L2,

ii) (y, z) = 0 for all y ∈ L1 and for all z ∈ L2.

Then we say that L is the (internal) orthogonal direct sum of its two sublattices

L1, L2 and we write L = L1 ⊕ L2.
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The internal orthogonal direct sum of two sublattices L1 and L2 of a lattice L

is easily identified with their external orthogonal direct sum, and conversely, the

external direct sum of two lattices L1 and L2 is the internal direct sum of the two

sublattices L1 ≡ {(x, 0) | x ∈ L1} and L2 ≡ {(0, x) | x ∈ L2}.

Definition 2.1.8. A lattice L is said to be decomposable if it can be written as an

orthogonal direct sum of two of its sublattices. Otherwise, it is said to be indecom-

posable.

Every lattice L can be written as an orthogonal direct sum of indecomposable

sublattices and there are at most rk(L ) of them in every such decomposition.

Let {α1, . . . , αn} be a Z-basis (or more briefly a basis) for L . The matrix repre-

senting (−, −) in this basis is then A = ((αi, αj))1≤i,j≤n. We call A a Gramm matrix

for the lattice. Also let {β1, . . . , βn} be a basis for L ′ and A′ = ((βi, βj))1≤i,j≤n. It is

easy to show that if L is similar to L ′ with α as in definition 1.1.5 then there exists a

matrix U with integer entries and determinant ±1 such that A′ = αUAU t, where t de-

notes transposition. Thus if L and L ′ are congruent lattices then det (A) = det (A′).

In particular, taking L = L ′ and (−, −) = (−, −)′ with the identity isomorphism,

we see that the determinant of a Gramm Matrix is the same for any choice of basis.

We then define the discriminant of the lattice L by

disc(L ) := | det (A)|.
Remark 2.1.9. The non-degeneracy condition in the definition of a lattice is equiv-

alent to disc(L ) �= 0.

2.2 Quadratic forms and the signature

Given a basis for a lattice L , the corresponding Gramm matrix A is a real

symmetric matrix. Real symmetric matrices are in one-to-one correspondence with

quadratic forms over the real numbers. By a quadratic form over a commutative

ring R, we mean a homogeneous polynomial of degree 2 in a given number of variables
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and with coefficients in R. The correspondence is as follows: starting with a real n×n

symmetric matrix A, we get the quadratic form q(x) = xAxt, where x = (x1, . . . , xn),

and starting with a quadratic form q(x) in n variables, there is a unique symmetric

n×n matrix A such that q(x) = xAxt. When the matrix A is a Gramm matrix for a

lattice, we know that det (A) �= 0 by the non-degeneracy of the pairing. A quadratic

form with matrix A such that det (A) �= 0 is said to be non-degenerate.

If we have two quadratic forms in the same number of variables, one with matrix

A and the other one with matrix A′, and if A and A′ are related by A′ = UAU t

for some invertible real matrix U then we say that the two quadratic forms are R-

equivalent. If we can take the matrix U with integer entries and determinant ±1 then

we say that the two quadratic forms are integrally equivalent. Thus changing basis or

changing the lattice for a congruent one gives integrally equivalent quadratic forms.

In other words, to each congruence class of lattices we can associate an integral

equivalence class of quadratic forms over R. Conversely, given a non-degenerate

quadratic form over R in n variables, the associated symmetric matrix A can be

used to define a lattice by L = Zn and (x, y) = xAyt for x, y ∈ Zn. It is easy to

see that integrally equivalent quadratic forms then define congruent lattices and that

the associations just defined are inverse of each other. Therefore there is a bijective

correspondence between congruence classes of lattices and integral equivalence classes

of non-degenerate quadratic forms over R.

The above correspondence becomes particularly interesting when restricted to

integral lattices and integral quadratic forms. A lattice is said to be integral when

the pairing is integer valued. This is equivalent to say that any Gramm matrix

has entries only in Z. A quadratic form is said to be integral when the associated

matrix has entries in Z. We thus have a bijective correspondence between congruence

classes of integral lattices and integral equivalence classes of non-degenerate integral
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quadratic forms. Classification of integral quadratic forms is a classical subject in

mathematics (see [CS99], chapter 15).

An important invariant for the classification of quadratic forms is the signature.

Given a quadratic form over R, it is R-equivalent to a form

x2
1 + · · · + x2

r − x2
r+1 − · · · − x2

r+s

for some integers r, s ≥ 0 (see [Ser73]). If the quadratic form is non-degenerate in n

variables then r+s = n. The signature of the quadratic form is the couple (r, s). This

is well defined and R-equivalent quadratic forms have the same signature. Therefore

using the correspondence between congruence classes of lattices and integral equiv-

alence classes of non-degenerate quadratic forms, we have a well defined notion of

signature for a lattice L (we denote it by sign(L )), and congruent lattices have

the same signature. More generally, if L is equivalent to L ′ with an α > 0 then

sign(L ) = sign(L ′). When α < 0, if sign(L ) = (r, s) then sign(L ′) = (s, r).

Definition 2.2.1. Let L be a lattice and sign(L ) = (r, s). If r = 0 or s = 0 then

we say that L is definite (positive definite if s = 0 and negative definite if r = 0).

Otherwise, we say that L is indefinite.

Example 2.2.2. Let 0 ≤ r ≤ n be an integer. Define a non-degenerate symmetric

bilinear form on Rn by

(x1, . . . , xn) · (y1, . . . , yn) = x1y1 + · · · + xryr − xr+1yr+1 − · · · − xnyn.

Let {α1, . . . , αn} be a basis of Rn and L = Zα1 + · · · + Zαn. If we restrict to L

the bilinear form on Rn then L is a lattice. The signature of L is (r, n − r). Let’s

show that in fact any lattice is isomorphic to such a lattice. Supppose a lattice L

of rank n with pairing (−, −) is given. Let {α1, . . . , αn} be a basis for L and let

A be the corresponding Gramm matrix. The quadratic form associated to A is R-

equivalent to a form x2
1 +· · ·+x2

r −x2
r+1 −· · ·−x2

r+s. That is, there exists an invertible

matrix U such that UAU t = D where D is a diagonal matrix with diagonal entries
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di = 1 for i ≤ r and di = −1 for i > r. Define now βi ∈ Rn as the ith row of U−1.

Let L ′ = Zβ1 + · · · + Zβn and define an isomorphism of Z-module f : L → L ′ by

f(αi) = βi. Then for any x = ∑n
i=1 xiαi ∈ L and for any y = ∑n

i=1 yiαi ∈ L we

have f(x) · f(y) = (x1, . . . , xn)U−1D(U−1)t(y1, . . . , yn)t and thus f(x) · f(y) = (x, y).

Therefore L and L ′ are isomorphic.

In particular, the preceding example tells us that any positive definite lattice L

can be seen as L = Zα1 + · · · + Zαn ⊆ Rn for some basis {α1, . . . , αn} of Rn and

where Rn is endowed with the usual inner product. For this reason, we shall refer

sometimes to positive definite lattices as Euclidean lattices. From now on, unless

otherwise stated, Rn will always be endowed with the usual inner product and the

induced norm will be denoted || · ||. Also, when we will say that L ⊆ Rn is a lattice,

it will be understood that L is an additive subgroup of Rn and that the pairing is

the restriction to L of the usual inner product (in general, the rank of L could be

smaller than n but sometimes it will be clear from the context that we assume that

the rank of L is n).

2.3 Euclidean lattices

Let L ⊆ Rn be a lattice. If {α1, . . . , αm} is a Z-basis for L then the corre-

sponding Gramm matrix is A = (αi ·αj)1≤i,j≤m. If the vectors α1, . . . , αm are linearly

dependent over R then it is easy to see that det (A) = 0. Thus a Z-basis for a lat-

tice L must be formed by linearly independent vectors. Conversely, if {α1, . . . , αm}
is a set of linearly independent vectors in Rn and if L = Zα1 + · · · + Zαm then L

is a lattice. Indeed, we can see this by completing the set {α1, . . . , αm} to a basis

{α1, . . . , αn} of Rn, where the αj’s for j > m satisfy αi · αj = 0 when i �= j and

αj · αj = 1. Then det ((αi · αj)1≤i,j≤m) = det ((αi · αj)1≤i,j≤n) �= 0.
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Remark 2.3.1. We just saw that m ≤ n linearly independent vectors in Rn generate

a lattice over Z in the positive definite case. In the indefinite case, this is not true

in general. For example, consider R2 with pairing

(x1, x2) · (y1, y2) = x1y1 − x2y2.

Then the restriction of this pairing to Z(1, 1) is trivial. Therefore Z(1, 1) is not a

lattice.

We now give two important results about Euclidean lattices.

Proposition 2.3.2. L = Zα1+· · ·+Zαm for linearly independent vectors α1, . . . , αm

in Rn if and only if L is a discrete additive subgroup of Rn.

Proof. Suppose that L = Zα1 + · · · + Zαm for linearly independent vectors

α1, . . . , αm in Rn. Complete the set {α1, . . . , αm} to a basis {α1, . . . , αn} of Rn if

necessary. Define a norm on Rn by

||
n∑

i=1
xiαi||′ := ||(x1, . . . , xn)||.

Any two norms on Rn are equivalent, that is there exists positive constants C and D

such that C||v||′ ≤ ||v|| ≤ D||v||′ for all v ∈ Rn. Clearly, if v is a non-zero element

in L then ||v||′ ≥ 1. Therefore for any v non-zero element in L we have C ≤ ||v||.
It follows that L is discrete.

Now suppose that L is a discrete additive subgroup of Rn. Let m = dim (RL )R.

So we can choose m linearly independent vectors α1, . . . , αm in L and we have

Zα1 + · · · +Zαm ⊆ L . Let A = Zα1 + · · · +Zαm. Let’s show that the index [L : A]

is finite. If x is any element in L then x = r1α1 + · · · + rmαm for some real numbers

r1, . . . , rm. For each 1 ≤ i ≤ m, we can write ri = mi + r′
i for some mi ∈ Z and some

0 ≤ r′
i < 1. Then

x =
m∑

i=1
miαi +

m∑
i=1

r′
iαi.

It follows that x is congruent to ∑m
i=1 r′

iαi modulo A. We have

||
n∑

i=1
r′

iαi|| ≤ D||
n∑

i=1
r′

iαi||′ = D
√

(r′
1)2 + · · · + (r′

m)2 < D
√

m.
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So each class modulo A contains a representative of norm smaller than D
√

m. But

since L is a discrete subgroup, any bounded set contains only a finite number of

elements. Therefore there is only a finite number of classes modulo A. Thus L is a

torsion free abelian group containing a free subgroup A of rank m and of finite index.

It follows that L is also free of rank m. Hence we have L = Zβ1 +· · ·+Zβm for some

β1, . . . , βm ∈ Rn and the βi’s are linearly independent because dim (RL )R = m. �

Proposition 2.3.3. Let L be a Euclidean lattice. Then L can be written uniquely

as an orthogonal direct sum of indecomposable sublattices L1, L2, . . . , Lk. That is,

if also L = J1 ⊕ J2 ⊕ · · · ⊕ Jt for some indecomposable sublattices J1, J2, . . . ,

Jt of L then t = k and for all 1 ≤ i ≤ t, Ji = Lj for some 1 ≤ j ≤ t.

Proof. Let (−, −) be the pairing on L . We will call an element x ∈ L reducible

if there are non-zero y and z in L with (y, z) = 0 such that x = y + z, and we will

call it irreducible otherwise. We define an equivalence relation on the set of non-zero

irreducible elements of L in the following way: x is equivalent to y if and only if

there is a chain of irreducible elements x = z1, z2, . . . , zq = y such that (zi, zi+1) �= 0

for 1 ≤ i ≤ q − 1. Denote by Ci for i ≥ 1 the classes of equivalence. Also let Ki be

the additive subgroup of L generated by Ci. From the last proposition, each Ki is

a sublattice of L . If i �= j then for all x ∈ Ki and y ∈ Kj we have (x, y) = 0. As

the rank of L is finite, there are only a finite number of Ki’s, say K1, K2, . . . , Kt

(and then also there are only a finite number of Ci’s, C1, C2, . . . , Ct). We then have

K1 ⊕ K2 ⊕ · · · ⊕ Kt ⊆ L . But any x ∈ L is a sum of irreducible elements because

if x = y + z for some non-zero y and z with (y, z) = 0 then (x, x) = (y, y) + (z, z)

and so (y, y) < (x, x) and (z, z) < (x, x). Hence L = K1 ⊕ K2 ⊕ · · · ⊕ Kt.

Now, assume that L = J1⊕J2⊕· · ·⊕Js for some indecomposable sublattices

J1, J2, . . . , Js of L . If x is in Ci then x is in some Jj because x is irreducible.

It then follows that Ci ⊆ Jj and hence also Ki ⊆ Jj. We can conclude from this
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that Jj is equal to the orthogonal direct sum of the Kl’s it contains. But since Jj

is indecomposable, we must have Jj = Ki. �

Remark 2.3.4. The last proposition is not true for indefinite lattices. For example,

consider the lattice L = Z2 with pairing

(x1, x2) · (y1, y2) = x1y1 − 2x2y2.

Then we both have

L = Z(1, 0) ⊕ Z(0, 1)

and

L = Z(2, 1) ⊕ Z(1, 1).

Remark 2.3.5. If f is an automorphism of L and L = L1 ⊕ L2 ⊕ · · · ⊕ Lk for

some indecomposable sublattices L1, L2, . . . , Lk then we have

L = f(L1) ⊕ f(L2) ⊕ · · · ⊕ f(Lk)

and so, from the uniqueness of the decomposition, f permutes the elements of

{L1, L2, . . . , Lk}. We shall make use of this remark later on.

We continue with some basic definitions.

Definition 2.3.6. Let α1 = (α11, α12, . . . , α1n), α2 = (α21, α22, . . . , α2n), . . . , αm =

(αm1, αm2, . . . , αmn) ∈ Rn be a basis for the Euclidean lattice L . The m × n

matrix M = (αij) is called a generator matrix for L (with respect to the basis

{α1, α2, . . . , αm} of L ).

Clearly, if M is a generator matrix with respect to some basis then the Gramm

matrix associated to this basis is MM t. If M is a square matrix then the discriminant

of the lattice is det (M)2.

For two lattices L and L ′ in Rn, we can reformulate the notions of congruence

and equivalence in term of their generator matrices M and M ′. We have that L and

L ′ are equivalent lattices if and only if there exists a nonzero constant c, a matrix U

with integer entries and determinant ±1 and a real orthogonal matrix B such that
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M ′ = cUMB.

Then they are congruent if and only if we can take c = 1.

Definition 2.3.7. Let L be a lattice of rank n in Rn and M a generator matrix.

The columns of M−1 generate a lattice L ∗ called the dual of L .

If {β1, β2, . . . , βn} are the columns of M−1 and {α1, α2, . . . , αn} are the rows of M

then, for all 1 ≤ i, j ≤ n, βi · αj = 0 or 1 and so L ∗ ⊆ {x ∈ Rn | x · u ∈ Z, ∀u ∈ L }.

Also if x ∈ {x ∈ Rn | x · u ∈ Z, ∀u ∈ L } then x · αi = ki ∈ Z for all 1 ≤ i ≤ n and so

xM tr = (k1, k2, . . . , kn). It follows that x = (k1, k2, . . . , kn)(M−1)tr and hence that x

is a Z-linear combination of the columns of M−1. Thus

L ∗ = {x ∈ Rn | x · u ∈ Z, ∀u ∈ L }.

Remark 2.3.8. We have disc(L ∗) = disc(L )−1. Also if L is integral then L ⊆ L ∗

and |L ∗/L | = disc(L ).

Definition 2.3.9. A positive definite lattice L is called unimodular if L = L ∗.

Therefore a positive definite lattice L is unimodular if and only if L is integral

and disc(L ) = 1.

Definition 2.3.10. An integral lattice L with pairing (−, −) is called even if

(x, x) ∈ 2Z for all x ∈ L . Otherwise, it is called odd.

Remark 2.3.11. An integral lattice L is even if and only if the diagonal entries of

any Gramm matrix are even.

We now turn our attention to a particular class of integral lattices: the root

lattices.

2.4 Root lattices

Definition 2.4.1. Let L be a positive definite integral lattice with pairing (−, −).

Every x ∈ L such that (x, x) = 1 or 2 is called a root of L . If L is generated by

its roots, it is called a root lattice.

We now give a list of examples that can be used to classify the root lattices.

13



Example 2.4.2. Let Z ⊆ R. This is an odd root lattice.

Example 2.4.3. Let An := {(x0, x1, . . . , xn) ∈ Zn+1 | x0 +x1 + · · ·+xn = 0} ⊆ Rn+1

for n ≥ 1. For 0 ≤ i ≤ n, let ei ∈ Rn+1 be the vector with 1 in the xi coordinate and

0 elsewhere. Then

An = Z(e1 − e0) + Z(e2 − e1) + · · · + Z(en − en−1).

The generator matrix for An with respect to the basis {e1 −e0, e2 −e1, . . . , en −en−1}
is the n × (n + 1) matrix⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 . . . 0 0
0 −1 1 0 . . . 0 0
0 0 −1 1 . . . ... ...
... ... . . . . . . . . . 0 0
0 0 . . . 0 −1 1 0
0 0 0 . . . 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The Gramm matrix corresponding to this generator matrix is the n × n matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 . . . 0 0
−1 2 −1 0 . . . 0
0 −1 . . . . . . . . . ...
... 0 . . . . . . −1 0
0 ... . . . −1 2 −1
0 0 . . . 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

So An is an n-dimensional even root lattice. We have disc(An) = n + 1.

Example 2.4.4. Let Dn := {(x1, . . . , xn) ∈ Zn | x1 + · · · + xn is even} ⊆ Rn for

n ≥ 3. For 1 ≤ i ≤ n, let ei ∈ Rn be the vector with 1 in the xi coordinate and 0

elsewhere. Then

Dn = Z(e1 + e2) + Z(e2 − e1) + Z(e3 − e2) + · · · + Z(en − en−1).

The generator matrix for Dn with respect to the basis {e1+e2, e2−e1, e3−e2, . . . , en−
en−1} is the n × n matrix

14



⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 . . . 0 0
−1 1 0 0 . . . 0 0
0 −1 1 0 . . . 0 0
0 0 −1 1 . . . ... ...
... ... . . . . . . . . . 0 0
0 0 . . . 0 −1 1 0
0 0 0 . . . 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The Gramm matrix corresponding to this generator matrix is the n × n matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −1 0 . . . 0 0
0 2 −1 0 . . . 0 0

−1 −1 2 −1 0 . . . 0
0 0 −1 . . . . . . . . . ...
... ... 0 . . . . . . −1 0
0 0 ... . . . −1 2 −1
0 0 0 . . . 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

So Dn is an n-dimensional even root lattice. We have disc(Dn) = 4.

Example 2.4.5. Let E8 := {(x1, . . . , x8) | all xi ∈ Z or all xi ∈ Z + 1
2 , x1 + · · · + x8

is even} ⊆ R8. A generator matrix for E8 is then⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 −1 1 0
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The Gramm matrix corresponding to this generator matrix is⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −1 0 0 0 0 1
0 2 −1 0 0 0 0 0

−1 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
1 0 0 0 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We have disc(E8) = 1 and so E8 is an unimodular even root lattice in 8 dimensions.
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Example 2.4.6. Let E7 := {(x1, . . . , x8) ∈ E8 | x1 +· · ·+x8 = 0} ⊆ R8. A generator

matrix for E7 is then⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 −1 1 0
1
2

1
2

1
2

1
2 −1

2 −1
2 −1

2 −1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The Gramm matrix corresponding to this generator matrix is⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 −1
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 0
0 0 0 −1 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

So E7 is a 7-dimensional even root lattice. We have disc(E7) = 2.

Example 2.4.7. Let E6 := {(x1, . . . , x8) ∈ E8 | x1 + x8 = x2 + · · · + x7 = 0} ⊆ R8.

A generator matrix for E6 is then⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 −1 1 0
1
2

1
2

1
2

1
2 −1

2 −1
2 −1

2 −1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The Gramm matrix corresponding to this generator matrix is⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 −1
0 0 −1 2 −1 0
0 0 0 −1 2 0
0 0 −1 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

So E6 is a 6-dimensional even root lattice. We have disc(E6) = 3.
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Theorem 2.4.8. The root lattices Z, An (n ≥ 1), Dn (n ≥ 3), E6, E7 and E8

are indecomposable and any root lattice is isomorphic to an orthogonal direct sum of

them.

Proof. See [Hum72].

The root lattices are often the answers to some interesting geometrical problems

related to lattices. We briefly describe these problems and some of the known results

about them in the next section.

2.5 Some geometrical problems

The reader is referred to [CS99] for a reference. In what follows, m(L ) will

denote the minimal length of a non-zero element of the lattice L .

The sphere packing problem: The classical sphere packing problem asks for the

greatest density of an arrangement of congruent nonoverlapping balls in Rn. When

the centers of the balls form a lattice, we call the packing a lattice packing. Any

lattice L of rank n in Rn induces a packing by centering balls of radius m(L )
2 (the

packing radius) at the points of L . The density of such a lattice packing is then
Vn(m(L )/2)n√

disc(L )
,

where Vn is the volume of a ball of radius 1 in Rn. The general packing problem

is solved only for n = 1, 2 and 3. In dimension 1, the problem is trivial; one can

choose the packing induced from the lattice Z. In dimension 2, the densest packing

is in fact a lattice packing and it is obtained from the hexagonal lattice (∼= A2). In

dimension 3, the densest packing is again a lattice packing and it is obtained from

the face-centered cubic lattice (∼= A3). The proof of this result involves complex

computer calculations (see [LHF11]). The problem is open for n ≥ 4. However, the

problem of finding the densest packing among the lattice packings is solved also in

dimensions 4 to 8. The densest lattice packing in dimension 4 is obtained from the
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lattice D4, in dimension 5 from the lattice D5, in dimension 6 from the lattice E6, in

dimension 7 from the lattice E7 and in dimension 8 from the lattice E8. The problem

is open for n ≥ 9.

The covering problem: The classical covering problem asks for the most efficient

covering of the space Rn by congruent balls. By the most efficient covering we mean

the covering minimizing the average number of balls that contain a point of the space

(the thickness). When the centers of the balls form a lattice, the thickness is given

by
VnRn√
disc(L )

,

where R is the radius of the balls in the covering. The problem is solved only in

dimension 1 and 2. The problem is of course trivial in dimension 1; one can choose the

covering induced from the lattice Z. In dimension 2, the thinnest covering is obtained

from the hexagonal lattice. In dimensions 3 to 5, only the thinnest coverings among

the coverings induced from lattices are known. In dimension 3, the thinnest covering

induced from a lattice is obtained from the body-centered cubic lattice (∼= A∗
3). In

dimension 4, it is obtained from the lattice A∗
4 and in dimension 5, from the lattice A∗

5.

The kissing number problem: The kissing number τ of a sphere in a sphere

packing is the number of spheres that touches it. In a lattice packing, τ is the

same for every sphere and it is equal to the number of elements of minimal non-

zero norm in the lattice. The kissing number problem is to determine the highest

possible τ when looking over all sphere packings in Rn. The problem is solved only

in dimensions 1, 2, 3, 8 and 24. The problem is of course trivial in dimension 1;

one can choose the lattice Z with kissing number 2. In dimension 2, the highest

kissing number is 6 and it is obtained from the hexagonal lattice. In dimension 3,

the highest kissing number is 12 and it is obtained from the face-centered cubic
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lattice. In dimension 8, the highest kissing number is 240 and it is obtained from the

lattice E8. In dimension 24, the highest kissing number is 196560 and it is obtained

from the Leech lattice. The Leech lattice can be constructed in many different ways

(see [CS99], and we will realize it using ideals in cyclotomic fields in chapter 4). It

can be characterized as the only even unimodular lattice with no element of squared

norm 2 (see [CS99], chapter 12). We will say more about even unimodular lattices

in the next section.

In dimension 4, the highest kissing number is not known but it is either 24 or 25.

However, if one looks only among lattice packings then the highest kissing number is

known to be 24 and it is obtained from the lattice D4. The highest kissing number

among lattice packings is also known in dimensions 5 to 7. In dimension 5, it is 40

and it is obtained from the lattice D5. In dimension 6, it is 72 and it is obtained

from the lattice E6. In dimension 7, it is 126 and it is obtained from the lattice E7.

The problem is open in other dimensions.

We give a table of the kissing numbers of the indecomposable root lattices and

their dual for further uses. The kissing number of a lattice is one of the coefficients

of its theta series. We talk about this in the next section.

Table 2–1: Kissing numbers of the indecomposable root lattices and their dual
Lattice Kissing number
An (n ≥ 1) n(n + 1)
A∗

n (n ≥ 1) 2 (n = 1), 2(n + 1) (n ≥ 1)
Dn (n ≥ 3) 2n(n − 1)
D∗

n (n ≥ 3) 8 (n = 3), 24 (n = 4), 2n (n ≥ 5)
E6 72
E∗

6 54
E7 126
E∗

7 56
E8 240
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2.6 Theta series and even unimodular lattices

Definition 2.6.1. Let L ⊆ Rn be a lattice. For z ∈ H = {τ ∈ C | Im(z) > 0}, we

define the theta series of L by

ΘL (z) :=
∑
x∈L

q
1
2 x·x,

where q = e2πiz.

This is a well defined function and it is holomorphic on H (see [Ebe94], Lemma 2.2).

We have

ΘL (z) = 1 + τq2ρ2 + · · · ,

where τ is the kissing number of L and ρ its packing radius. If L is integral and

N(m) = |{x ∈ L | x · x = m}| (the number of elements of L of squared norm m)

then

ΘL (z) =
∞∑

m=0
N(m)q m

2 .

Example 2.6.2. If L = Zn then the coefficient N(m) is the number of ways of

writing m as a sum of n squares.

There is an identity relating the theta series of a lattice to the theta series of its

dual. It can be derived from the Poisson summation formula (see [Ebe94]).

Proposition 2.6.3. Let L ⊆ Rn be a lattice. Then for all z ∈ H we have

ΘL (−1
z
) = ( z

i
)n

2 1√
disc(L )

ΘL ∗(z).

Corollary 2.6.4. Let L ⊆ Rn be an even unimodular lattice. Then n ≡ 0 (mod 8).

Proof. Suppose the contrary. Since L ⊕ L and L ⊕ L ⊕ L ⊕ L are also even

unimodular lattices, we can assume that n ≡ 4 (mod 8). Then the identity for the

dual implies

ΘL (−1
z
) = −z

n
2 ΘL (z).

The group SL2(Z) of 2 × 2 matrices with integral coefficients and determinant 1

acts on H by
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(
a b
c d

)
· z = az+b

cz+d
.

Let

S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)

(these two elements generate SL2(Z)). The theta series ΘL is invariant under T and

thus

ΘL ((TS) · z) = −z
n
2 ΘL (z).

A simple computation then gives

ΘL (z) = ΘL ((TS)3 · z) = −ΘL (z)

and so we have a contradiction. �

Let L ⊆ Rn be an even unimodular lattice. Knowing that we must have

n ≡ 0 (mod 8) and again using the identity for the dual, we get

ΘL (−1
z
) = z

n
2 ΘL (z).

It follows from this that ΘL is a modular form of weight n
2 .

Definition 2.6.5. Let k be an integer. A holomorphic function f : H → C is called

a modular form of weight k if the following two conditions are satisfied :

i) f(az+b
cz+d

) = (cz + d)kf(z) for all
(

a b
c d

)
∈ SL2(Z),

ii) f has a power series expansion in q = e2πiz.

Important examples of modular forms are the (normalized) Eisenstein series Ek

(k an even integer and k > 2). Here we content ourselves by giving the power series

expansion of Ek (for more details see [Ebe94] or [Ser73]):

Ek(z) = 1 − 2k
Bk

∞∑
r=1

σk−1(r)qr,

where σk−1(r) =
∑
d|r

dk−1 and Bk is the kth Bernoulli number. The Bernoulli numbers

are defined by
x

ex−1 =
∞∑

k=0
Bk

xk

k! .
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The Eisenstein series can be used to determine the C-vector spaces Mk of modu-

lar forms of weight k. We denote by M0
k the C-vector space of cusp forms of weight k.

These are defined as the modular forms of weight k with coefficient a0 = 0 in their

power series expansion
∞∑

r=0
arq

r. Hence M0
k is the kernel of a linear functional on Mk

and so dim(Mk/M0
k ) = 0 or 1. If k > 2 and k is even, the expansion for Ek shows

that Ek /∈ M0
k and thus

Mk = M0
k ⊕ CEk.

The following theorem then determines the space Mk for any integer k.

Theorem 2.6.6. ([Ebe94], Theorem 2.4)

i) We have Mk = 0 for k odd, for k < 0 and for k = 2.

ii) We have M0 = C, M0
0 = 0 and, for k = 4, 6, 8, 10, M0

k = 0 and Mk = CEk.

iii) Multiplication by E 3
4 − E 2

6 defines an isomorphism of Mk−12 onto M0
k .

Corollary 2.6.7. ([Ebe94], Proposition 2.5) Let L ⊆ R8 be an even unimodular

lattice. Then L ∼= E8.

Proof. The theta series ΘL of L is a modular form of weight 4 and so ΘL ∈ M4 =

CE4. Since the constant term of ΘL is 1, we have ΘL = E4. We then obtain from

the expansion of E4 that L has 240 roots (B4 = − 1
30). The root sublattice of L must

then be isomorphic to E8 since any other root lattice in dimension ≤ 8 contains less

roots (see Theorem 1.4.8 and Table 2-1, p.19). Then the index of the root sublattice

of L in L is 1 because both are unimodular and of the same rank. We conclude

that L ∼= E8. �

Corollary 2.6.8. Let L ⊆ R16 be an even unimodular lattice. Then L ∼= E8 ⊕ E8

or the root sublattice of L is D16.

Proof. The theta series ΘL of L is a modular form of weight 8 and so ΘL ∈ M8 =

CE8. Since the constant term of ΘL is 1, we have ΘL = E8. We then obtain from the

expansion of E8 that L has 480 roots (B8 = − 1
30). The root sublattice of L must
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then be isomorphic to E8 ⊕ E8 or D16 since any other root lattice in dimension ≤ 16

contains less roots (see Theorem 1.4.8 and Table 2-1, p.19). If the root sublattice is

E8 ⊕ E8 then its index in L is 1 because both are unimodular and of the same rank,

and so L ∼= E8 ⊕ E8. �

There indeed exists an even unimodular lattice of rank 16 and root sublattice D16

(and it is unique up to isomorphism, see [Ebe94], Example 3.1). We can obtain it

by using the technique of gluing.

Definition 2.6.9. Let L1, L2, . . . , Lk be positive definite integral lattices Suppose

the lattice L is generated by L1 ⊕ L2 ⊕ · · · ⊕ Lk and some m vectors y(j) =

y
(j)
1 + y

(j)
2 + · · · + y

(j)
k ∈ L ∗

1 ⊕ L ∗
2 ⊕ · · · ⊕ L ∗

k (1 ≤ j ≤ m) having integral inner

products with each other and being closed under addition modulo L1⊕L2⊕· · ·⊕Lk.

Let [y(j)] be the class of y(j) in the dual quotient L ∗
1 /L1 ⊕ L ∗

2 /L2 ⊕ · · · ⊕ L ∗
k /Lk.

Then we say that the components L1, L2, . . . , Lk have been glued together by

the glue vectors {[y(1)], [y(2)], . . . , [y(m)]} to obtain the lattice L and we write

L = (L1 ⊕ L2 ⊕ · · · ⊕ Lk)+.

Example 2.6.10. Consider the lattice D16 and the vector

y = (1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2) ∈ D∗
16.

Let D+
16 be the lattice obtained by gluing D16 with the glue vector [y]. Then

D+
16 = D16 ∪ (y + D16) and it is an even unimodular lattice with root sublattice D16.

The idea in the proofs of Corollary 2.6.7 and Corollary 2.6.8 is that we could

determine the root sublattice of any even unimodular lattice of rank 8 and 16 and this

enabled us to classify them. The same idea allows also to classify the even unimodular

lattices in rank 24. We now say a bit more about this. We first introduce the notion

of theta series with spherical coefficients.

Definition 2.6.11. Let P ∈ C[x1, . . . , xn] be a complex polynomial in n variables

and L ⊆ Rn be a lattice.
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i) P is called spherical if ΔP = 0, where Δ =
n∑

i=1

∂

∂x2
i

is the Laplace operator.

ii) For z ∈ H = {τ ∈ C | Im(z) > 0}, we define the theta series with spherical

coefficients of L at the spherical polynomial P by

ΘL ,P (z) :=
∑

x∈L

P (x)q 1
2 x·x,

where q = e2πiz.

Proposition 2.6.12. ([Ebe94], Corollary 3.3) Let L ⊆ Rn be an even unimodular

lattice and P be a spherical polynomial in n variables of degree r. Then ΘL ,P is a

modular form of weight n
2 + r and a cusp form if r > 0.

Corollary 2.6.13. Let n = 8, 16 or 24 and let L ⊆ Rn be an even unimodular

lattice. Then for any y ∈ Rn we have∑
x∈R

(x · y)2 = 2|R|
n

(y · y),

where R = {x ∈ L | x · x = 2} is the set of roots in L .

Proof. Let y ∈ Rn (n = 8, 16 or 24). Also, let

fy(x) := (x · y)2 − (x·x)(y·y)
n

for x ∈ Rn.

It is easily verified from the definitions that fy is a spherical polynomial. From the

last proposition, ΘL ,fy is then a cusp form of weight n
2 + 2 (= 6, 10 or 14). This

form is equal to 0 from Theorem 2.6.6. In particular, the coefficient in front of q in

the power series for ΘL ,fy is 0. This coefficient is∑
x∈R

fy(x)

and the result follows. �

Keep assuming that L ⊆ Rn is an even unimodular lattice and n = 8, 16 or 24.

If L has roots then the root sublattice of L has rank n since otherwise there would

exist a non-zero y ∈ Rn orthogonal to every roots of L and this would contradict

the last corollary.

Definition 2.6.14. Let L ⊆ Rn be a lattice. If L has roots and the root sublattice

of L has rank n then we say that L has a complete root system.
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For any indecomposable root lattice L ′ with set of roots R′, it is possible to

show that for any y ∈ RL ′ we have∑
x∈R′

(x · y)2 = 2h(y · y),

where h = |R′|
rk(L ′) is the Coxeter number of L ′ (see [Ebe94], Proposition 1.6). It then

follows from Corollary 2.6.13 that all the indecomposable components of the root

sublattice of L have the same Coxeter number h and h = 1
n
|R|. We therefore have

the following proposition.

Proposition 2.6.15. Let n = 8, 16 or 24 and let L ⊆ Rn be an even unimodular

lattice. Then either L has no roots or has a complete root system. Moreover, if L

has roots then all the indecomposable components of the root sublattice of L have

the same Coxeter number h and h = 1
n
|R|.

This proposition imposes strong restrictions on the possible root sublattices of

an even unimodular lattice in dimension 24. It is then not difficult (see [CS99], chap-

ter 18, Proposition 3) to obtain a list of only 23 possible root sublattices (assuming

the lattice indeed has roots). It turn out that each of these 23 possibilities is indeed

the root sublattice of an even unimodular lattice of rank 24 and this for a unique

lattice up to isomorphism. One can construct them and show their uniqueness using

among other things algebraic coding (see [CS99], chapter 18, sections 3 and 4). We

can also obtain them from the technique of gluing. They are the following (we won’t

give the glue vectors, see [CS99], Table 16.1): D+
24, D+

16 ⊕ E8, 3E8, A+
24, (2D12)+,

(A17 ⊕E7)+, (D10 ⊕2E7)+, (A15 ⊕D9)+, (3D8)+, (2A12)+, (A11 ⊕D7 ⊕E6)+, (4E6)+,

(2A9 ⊕ D6)+, (4D6)+, (3A8)+, (2A7 ⊕ 2D5)+, (4A6)+, (4A5 ⊕ D4)+, (6D4)+, (6A4)+,

(8A3)+, (12A2)+ and (24A1)+.

In each case, the root sublattice is the orthogonal direct sum of the components

of the glue. It remains to talk about the case where an even unimodular lattice of

rank 24 has no roots. It can be shown that there is a unique such lattice : the Leech
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lattice (see [CS99], chapter 12 and 18). Hence there are exactly 24 even unimodular

lattices of rank 24. They are often referred to as the Niemeier lattices.

It is possible to verify that the 24 Niemeier lattices are indeed all the even

unimodular lattices of rank 24 by using the Minkowski-Siegel mass formula (if one

knows the cardinality of the automorphism groups of these lattices).

Theorem 2.6.16. ([CS99], Chapter 16, Theorem 2) Let Ω be the set of all inequiv-

alent even unimodular lattices of dimension n. Then∑
L ∈Ω

1
|Aut(L )| = |Bk|

2k

k−1∏
j=1

|B2j|
4j

,

if n = 2k ≡ 0 (mod 8).

For n = 32, the right-hand side above is greater than 40 million and since

|Aut(L )| ≥ 2 for any lattice ({Id, −Id} ⊆ Aut(L )), it follows that there are more

than 80 million inequivalent even unimodular lattices of rank 32 (In fact, there are

more than 1 billion such lattices (see [Kin03])). No general classification of these

lattices is known. However, the decomposable even unimodular lattices of rank 32

are easily determined from the classification of even unimodular lattices in dimension

8, 16 and 24 since any indecomposable component is then an even unimodular lattice

in dimension 8, 16 or 24. There are 25 of them: 2D+
16 and E8 ⊕ L , where L

is one of the 24 Niemeier lattices. These lattices all have a complete root system

with the exclusion of E8 ⊕ Λ, where Λ is the Leech lattice (note that this example

shows that Proposition 2.6.15 is not true for n = 32). Maybe quite surprisingly, the

even unimodular lattices of rank 32 having a complete root system are all classified

([Ker94]). There are 132 indecomposable even unimodular lattices of rank 32 having

a complete root system (and 119 root sublattices are occurring). We can list them

according to the deficiency of their root sublattice. The deficiency of a root lattice of

rank n is the number n−m, where m is the maximal cardinality of a set of mutually

orthogonal roots in the lattice. The possible deficiencies of an even unimodular
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lattices of rank 32 with complete root system are 0, 8, 12, 14, 15 and 16. There are

75 indecomposable even unimodular lattices of rank 32 with complete root system

and deficiency 0 (and 62 root sublattices are occurring). The indecomposable even

unimodular lattices of rank 32 with complete root system and non-zero deficiencies

are unique having their particular root sublattice and the list of these 57 lattices is

given in [Ker94]. We shall realize three of these lattices as ideals in cyclotomic fields

in chapter 4. But before that, we need to describe how we can see ideals in number

fields as lattices and we need to determine their basic properties. We turn to this

task in chapter 3.
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CHAPTER 3
Lattices from number fields

3.1 Preliminaries and the trace pairing

Let K be a number field with n = [K : Q]. Then K has n embeddings in the

complex numbers C, we will denote them by {σ1, . . . , σn}. When σi(K) ⊆ R, σi is

said to be a real embedding, otherwise it is said to be a complex embedding. If σi is

a complex embedding then the conjugate σi is a distinct embedding. So there is an

even number of complex embeddings. Suppose that there exists r1 real embeddings

and 2r2 complex embeddings (so r1 + 2r2 = n). We will assume that {σ1, . . . , σr1}
are the real embeddings and that σr1+i = σr1+r2+i for i = 1, . . . , r2. We use these

embeddings to define a map φ from K to Rr1 × Cr2 by

φ(x) = (σ1(x), . . . , σr1(x), σr1+1(x), . . . , σr1+r2(x)).

It is clear that φ is a ring embedding.

We identify Rr1 × Cr2 with Rn by

(x1, . . . , xr1, xr1+1, . . . , xr1+r2) ↔
(x1, . . . , xr1 , Re(xr1+1), Im(xr1+1), . . . , Re(xr1+r2), Im(xr1+r2)).

We then have the following:

Proposition 3.1.1. φ(K) spans Rn as a vector space over R.

Proof. Suppose it is not the case. Then there is a non-zero linear functional vanish-

ing on φ(K). That is, there are a1, . . . , ar1, b1, . . . , br2, c1, . . . , cr2 in R, not all zero,

such that for every x ∈ K we have
r1∑

j=1
ajσj(x) +

r2∑
j=1

bjRe(σr1+j(x)) +
r2∑

j=1
cjIm(σr1+j(x)) = 0.

Using that Re(z) = z+z
2 and Im(z) = z−z

2i
and regrouping, we get
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r1∑
j=1

ajσj(x) +
r2∑

j=1
(bj

2 + cj

2i
)σr1+j(x) +

r2∑
j=1

(bj

2 − cj

2i
)σr1+j(x) = 0.

It now follows from the independence of characters that we must have aj = 0 for

j = 1, . . . , r1, bj

2 + cj

2i
= 0 and bj

2 − cj

2i
= 0 for j = 1, . . . , r2. Then also bj = 0 and

cj = 0 for j = 1, . . . , r2. This is a contradiction. �

The preceding proposition says that there exists linearly independent vectors

α1, . . . , αn such that φ(K) = SpanQ{α1, . . . , αn}. The map φ being a ring embedding,

SpanQ{α1, . . . , αn} is a field in Rr1 × Cr2 . The following proposition is a kind of

converse to this.

Proposition 3.1.2. Let α1, . . . , αn ∈ Rr1 ×Cr2 ∼= Rn be linearly independent vectors

over R and suppose that L = SpanQ{α1, . . . , αn} is a field as a subring of Rr1 × Cr2

(with the same 1). Then the projection maps

πi : Rr1 × Cr2 → C, (x1, . . . , xr1+r2) �→ xi,

for i = 1, . . . , r1 + r2, when restricted to L, give the r1 real embeddings of L into C

and r2 complex non-conjugate embeddings of L into C.

Proof. First note that each πi is a ring homomorphism. Suppose that πi(x) = 0 for

some x ∈ L. That is, the ith coordinate of x is 0. But then x is not invertible and it

belongs to a field, so it must be 0. Therefore, πi|L is injective. For each 1 ≤ i ≤ r1,

πi|L is a real embedding of L. They are all distinct because α1, . . . , αn are linearly

independent over R. For the same reason, when r1 +1 ≤ i ≤ r1 +r2, πi|L is a complex

embedding and they are all distinct and non-conjugate. �

We now use the two last propositions to compute the group of automorphisms

of the R-algebra Rr1 × Cr2 .

Proposition 3.1.3. Let Aut(Rr1 × Cr2) be the group of continuous ring automor-

phisms of Rr1 × Cr2. Then Aut(Rr1 × Cr2) ∼= Sr1 × ((Z/2Z)r2 � Sr2), where Sk

is the symmetric group on k elements and Sr2 acts on (Z/2Z)r2 by permuting the

components.
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Proof. Given an element of the set Sr1 × (Z/2Z)r2 × Sr2 , there is a natural auto-

morphism associated to it : the permutation in Sr1 acts by permuting the r1 real

components of Rr1 ×Cr2 , then the element of (Z/2Z)r2 acts by conjugating the com-

plex components where there is a 1 in the corresponding entry and, after that, the

permutation in Sr2 acts by permuting the r2 complex components of Rr1 × Cr2. We

will show that these are all the elements of Aut(Rr1 × Cr2). In particular, since they

are linear over R, it will follow that Aut(Rr1 × Cr2) is also the group of automor-

phisms of Rr1 × Cr2 as an R-algebra.

Let K be a finite field extension of Q with [K : Q] = n and with r1 real

embeddings and 2r2 complex embeddings. By the primitive element theorem, there

exists an algebraic element θ of degree n such that K = Q(θ). Let f be the minimal

polynomial of θ over Q. Let ζ = φ(θ), so that φ(K) = Q(φ(θ)) = Q(ζ). Note that Q

is also seen as the subset SpanQ{(1, . . . , 1)} of Rr1 × Cr2 . Let σ ∈ Aut(Rr1 × Cr2).

Then σ(ζ) determines σ on all Rr1 × Cr2 because φ(K) is dense in Rr1 × Cr2 by

Proposition 3.1.1. Also, σ(Q(ζ)) = Q(σ(ζ)) is dense in Rr1 × Cr2 because σ is

continuous and surjective. Any dense subset of Rn must contain a basis of Rn and

therefore the vectors 1, σ(ζ), . . . , σ(ζ)n−1 are linearly independent over R. Then it

follows from Proposition 3.1.2 and from

f(σ(ζ)) = σ(f(ζ)) = σ(0) = 0

that the real components of σ(ζ) are the r1 real roots of f and that the com-

plex components are r2 non-conjugate complex roots of f . The same is true for

ζ and so σ acts on ζ as an element of Sr1 × (Z/2Z)r2 × Sr2 would do. We conclude

that we can identify Aut(Rr1 × Cr2) with Sr1 × (Z/2Z)r2 × Sr2 as sets. The group

law on Sr1 × (Z/2Z)r2 × Sr2 corresponding to composition of automorphisms in

Aut(Rr1 × Cr2) is then

(σ2, Y, τ2) ◦ (σ1, X, τ1) = (σ2σ1, X + τ−1
1 · Y, τ2τ1),
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where an element of Sr2 acts on (Z/2Z)r2 by permuting the components. Then the

map

Sr1 × ((Z/2Z)r2 � Sr2) → Sr1 × (Z/2Z)r2 × Sr2, (σ, X, τ) �→ (σ, τ−1 · X, τ)

is an isomorphism of groups.�

From now on, we will make no distinction between Aut(Rr1 × Cr2) and Sr1 ×
(Z/2Z)r2 × Sr2 with the group law described in the preceding proof.

Corollary 3.1.4. An element (σ, X, τ) ∈ Aut(Rr1 × Cr2) has order 2 if and only

if it is non-trivial, σ and τ are a product of disjoint transpositions (possibly none)

and, if X = (x1, . . . , xr2) and (i, j) is a transposition in the decomposition of τ then

xi = xj.

Definition 3.1.5. An automorphism of order 1 or 2 is called an involution.

We now consider the R-algebra KR := K ⊗Q R. It contains an isomorphic copy

of the field K in an obvious way: K ∼= {x ⊗ 1 | x ∈ K} ⊆ KR. If σ : K → C is

a field embedding it extends uniquely to an R-algebra homomorphism σ : KR → C

(we still call it σ). Then also the map φ : K → Rr1 × Cr2 extends uniquely to an

R-algebra homomorphism φ : KR → Rr1 × Cr2 (we still call it φ). It is in fact an

isomorphism because it is surjective by Proposition 3.1.1. This isomorphism and the

last proposition give us a concrete description of the group of automorphisms of the

R-algebra KR:

Aut(KR) = {φ−1 ◦ (σ, X, τ) ◦ φ | (σ, X, τ) ∈ Aut(Rr1 × Cr2)}.

Let TrKR/R(x) be the trace of the R-linear map multiplication by x for x ∈ KR.

When x ∈ K, we have TrKR/R(x) = TrK/Q(x). From now on, we will write Tr for

TrKR/R or TrK/Q. For x ∈ KR, we have

Tr(x) =
n∑

i=1
σi(x) =

r1∑
i=1

σi(x) + 2
r1+r2∑

i=r1+1
Re(σi(x)).
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We use this trace map to define an R-bilinear symmetric non-degenerate pairing

on KR × KR. Let − : KR → KR be an involution of KR (the identity is allowed) and

let α ∈ KR be an invertible element such that α = α. The pairing

KR × KR → R, (x, y) �→ Tr(αxy)

is R-bilinear because the trace map is linear and it is symmetric because Tr(x) = Tr(x)

for all x ∈ KR. In fact, for any automorphism f of KR, we have Tr(f(x)) = Tr(x)

for all x ∈ KR (but we won’t use that fact). The non-degeneracy of the pairing

follows from the independence of characters. We will consider this pairing on ideals

of K (fractional ideals). A non-zero ideal is a free Z-module of rank [K : Q] and so

the pairing Tr(αxy) makes it into a lattice.

Definition 3.1.6. An ideal I with pairing Tr(αxy) on I × I will be called an ideal

lattice.

3.2 Discriminant

We first compute the discriminant of ideal lattices.

Proposition 3.2.1. Let I be an ideal of K with pairing Tr(αxy) on I × I. Then

disc(I) = N(I)2|N(α)||DK|,
where N(I) is the norm of the ideal I, N(α) is the norm of α (that is the determinant

of the linear map multiplication by α) and DK is the discriminant of the field K.

Proof. Let OK be the ring of integers of K. There exists an element d ∈ Z such

that dI ⊆ OK . Using that, we can easily reduce to the case where I ⊆ OK . Then by

using N(I) = |OK/I| (the index of I in OK) and the general fact that if L ′ ⊆ L

are free Z-module of the same rank (with a pairing on L restricting to a pairing

on L ′) then disc(L ′) = disc(L )|L /L ′|2, we can reduce to the case where I = OK .

Let x1, . . . , xn be a Z-basis for OK . Then
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disc(OK) = | det (Tr(αxixj))|
= | det ((σj(xi))diag(σi(α))(σi(xj)))|
= |

n∏
i=1

σi(α)|| det (σj(xi))|| det (σi(xj))|

= |N(α)||DK | 1
2 |DK | 1

2 = |N(α)||DK |,

because

det ((σj(xi))(σi(xj))) = det (Tr(xixj)) = DK

and

det ((σj(xi))(σi(xj))) = det (Tr(xixj)) = det (Tr(xixj)) = DK . �

3.3 Signature

We now want to compute the signature of the quadratic form Tr(αxx) (or

equivalently, the signature of an ideal lattice). Suppose that our chosen involu-

tion on KR is equal to φ−1 ◦ (τ, X, ω) ◦ φ, where (τ, X, ω) is as described in Corol-

lary 2.4. Let X = (x1, . . . , xr2) and write τ = (i1, i2)(i3, i4) · · · (ik−1, ik) and ω =

(j1, j2)(j3, j4) · · · (jl−1, jl) as products of disjoint transpositions. Also let

S = {i | τ(i) = i},

E = {i ∈ S | σi(α) < 0},

S ′ = {i | ω(i) = i},

A = {i ∈ S ′ | xi = 1},

F = {i ∈ A | Re(σr1+i(α)) < 0}.

We then have the following result.

Proposition 3.3.1. Let (r, n−r) be the signature of the real quadratic form Tr(αxx).

Also let s = |S|, e = |E|, a = |A| and f = |F |. Then

r = r1+s
2 − e + a − 2f + r2.
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Proof. Let ai = −1 when xi = 1 and ai = 1 when xi = 0. Also let Xi = σi(x) for

1 ≤ i ≤ r1 and Xr1+j = Re(σr1+ j+1
2

(x)) when j is odd and Xr1+j = Im(σr1+ j
2
(x))

when j is even, for 1 ≤ j ≤ 2r2. On one hand, we have that φ(x) is equal to

(σ1(x), . . . , σr1(x), Re(σr1+1(x)), Im(σr1+1(x)), . . . , Re(σr1+r2(x)), Im(σr1+r2(x))).

On the other hand, it is equal to (τ, X, ω) ◦ φ(x) and (τ, X, ω) ◦ φ(x) is equal to

(στ(1)(x), . . . , στ(r1)(x), Re(σr1+ω(1)(x)), a1Im(σr1+ω(1)(x)), . . . , ar2Im(σr1+ω(r2)(x))).

Therefore we have

σi(x) = στ(i)(x) = Xτ(i) for 1 ≤ i ≤ r1,

Re(σr1+i(x)) = Re(σr1+ω(i)(x)) = Xr1+2ω(i)−1 for 1 ≤ i ≤ r2

and

Im(σr1+i(x)) = aiIm(σr1+ω(i)(x)) = aiXr1+2ω(i) for 1 ≤ i ≤ r2.

We will use these relations to express the quadratic form Tr(αxx) in terms of the

Xi’s. We have

r1∑
i=1

σi(α)σi(x)σi(x) + 2
r1+r2∑

i=r1+1
Re(σi(α)σi(x)σi(x))

=
r1∑

i=1
σi(α)σi(x)σi(x) + 2

r1+r2∑
i=r1+1

Re(σi(α))Re(σi(x))Re(σi(x))

− 2
r1+r2∑

i=r1+1
Im(σi(α))Im(σi(x))Re(σi(x)) − 2

r1+r2∑
i=r1+1

Im(σi(α))Re(σi(x))Im(σi(x))

− 2
r1+r2∑

i=r1+1
Re(σi(α))Im(σi(x))Im(σi(x))

=
r1∑

i=1
σi(α)XiXτ(i) + 2

r2∑
j=1

Re(σj+r1(α))Xr1+2j−1Xr1+2ω(j)−1

− 2
r2∑

j=1
Im(σj+r1(α))Xr1+2jXr1+2ω(j)−1 − 2

r2∑
j=1

ajIm(σj+r1(α))Xr1+2j−1Xr1+2ω(j)

− 2
r2∑

j=1
ajRe(σj+r1(α))Xr1+2jXr1+2ω(j)
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and the last expression is equal to

∑
i∈S

σi(α)X2
i + 2

∑
i∈{i2,i4,...,ik}

σi(α)XiXτ(i)

+ 2
∑
j∈A

Re(σj+r1(α))X2
r1+2j−1 + Re(σj+r1(α))X2

r1+2j

+ 2
∑

j∈S′\A

Re(σj+r1(α))X2
r1+2j−1 − 2Im(σj+r1(α))Xr1+2j−1Xr1+2j − Re(σj+r1(α))X2

r1+2j

+ 4
∑

j∈{j2,j4,...,jl}
Re(σj+r1(α))Xr1+2j−1Xr1+2ω(j)−1

− Im(σj+r1(α))Xr1+2jXr1+2ω(j)−1 − ajIm(σj+r1(α))Xr1+2j−1Xr1+2ω(j)

− ajRe(σj+r1(α))Xr1+2jXr1+2ω(j).

For any γ, β ∈ R with γ or β non-zero, the quadratic form γx2
1 + βx1x2 − γx2

2 has

signature (1, 1) and the quadratic form γx1x2 + βx3x2 −βx1x4 + γx3x4 has signature

(2, 2). It is now easy using the expression for Tr(αxx) we have just computed to

obtain the formula we wanted to prove. �

Corollary 3.3.2. The quadratic form Tr(αx2) has signature (r1 + r2 − e, r2 + e).

Definition 3.3.3. The involution φ−1 ◦ (id, (1, 1, . . . , 1), id) ◦ φ of KR is called the

canonical involution.

Corollary 3.3.4. The quadratic form Tr(αxx) is positive definite if and only if the

involution is the canonical involution and α is totally positive (that is, σi(α) is real

and σi(α) > 0 for all 1 ≤ i ≤ n).

We end this section with a result on the minimum of ideal lattices in the positive

definite case. Let m(I) = minx∈I\{0}{Tr(αxx)} be the minimum squared norm of a

non-zero element of the ideal lattice I. We then have the following proposition:

Proposition 3.3.5. Suppose I ⊂ OK (the ring of integers of K). Then

m(I) ≥ nN(α) 1
n .
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Furthermore, when I = OK and α = 1, we have equality and it is attained by x ∈ OK

if and only if x is a root of unity.

Proof. This is a consequence of the inequality between the arithmetic and the

geometric means. For all non-zero x ∈ I, we have

Tr(αxx) =
n∑

i=1
σi(α)|σi(x)|2

≥ n(
n∏

i=1
σi(α)|σi(x)|2) 1

n

= nN(αxx) 1
n

= nN(α) 1
n |N(x)| 2

n

≥ nN(α) 1
n .

Now, suppose that I = OK and α = 1. If x is a root of unity, it is clear that

Tr(xx) = n. Therefore m(I) = n. Conversely, if x ∈ OK satisfies Tr(xx) = m(I) = n

we must have equality everywhere above. But the inequality between the arithmetic

and the geometric means is an equality if and only if every terms are equal. In our

case, this implies that |σi(x)| = 1 for all 1 ≤ i ≤ n. Then x is a unit in OK because

|N(x)| = 1. Consider the set E = {xk | k is an integer}. If u ∈ E then |σi(u)| = 1 for

all 1 ≤ i ≤ n and so Tr(uu) = n. Then by the discreteness property of lattices (see

Proposition 2.3.2), there can be only a finite number of elements in E. We conclude

that x is a root of unity. �

3.4 Rationality and positive definiteness

We would like to know when an ideal lattice is rational, that is, when the pairing

is rational valued on I × I. This happens if and only if the pairing is rational valued

on K × K and we therefore have an underlying rational quadratic form.

Proposition 3.4.1. Let I be an ideal lattice with pairing Tr(αxy). Then I is a

rational lattice if and only if α ∈ K and K = K.
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Proof. If α ∈ K and K = K then it is clear that the pairing is rational valued

on K × K and that I is a rational lattice. Suppose now that I is a rational lattice.

Then Tr(αxy) ∈ Q for all x, y ∈ K.

The pairing Tr(xy) on K ×K is rational valued. Let {e1, e2, . . . , en} ⊆ K ↪→ KR

be an orthogonal basis for K (and so also for KR) with respect to this pairing. Let

ai = Tr(e2
i ) ∈ Q for 1 ≤ i ≤ n. Write α = ∑n

i=1 αiei with αi ∈ R. Then, for all

1 ≤ j ≤ n,

Q � Tr(αej1) = Tr(
n∑

i=1
αieiej)

=
n∑

i=1
αiTr(eiej)

= ajαj .

Thus αj ∈ Q for all 1 ≤ j ≤ n. We conclude that α ∈ K. Choose any y ∈ K and

write y = ∑n
i=1 yiei with yi ∈ R. Then, for all 1 ≤ j ≤ n,

Q � Tr(α(α−1ej)y) = Tr(ej

n∑
i=1

yiei)

=
n∑

i=1
yiTr(eiej)

= ajyj.

Thus yj ∈ Q for all 1 ≤ j ≤ n and y ∈ K. We conclude that K = K. �

Remark 3.4.2. I is similar to a rational lattice if and only if K = K and α is a real

multiple of an element of K.

We now turn our attention to the case where α ∈ K and K = K. We say a

bit more about the signature. Let F be the fixed field of the involution, that is the

set of x ∈ K such that x = x. Suppose the involution is non-trivial. Then K is a

quadratic extension of F and K = F (
√

θ) for some θ ∈ F ×. With the notations of

Proposition 3.3.1, for 1 ≤ i ≤ r1, we have
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στ(i)(
√

θ) = σi(
√

θ) = σi(−
√

θ) = −σi(
√

θ) �= σi(
√

θ).

Thus τ(i) �= i. Now suppose that 1 ≤ i ≤ r2. If σr1+i restricted to F is a complex

embedding of F into C then there exists an x ∈ F such that σr1+i(x) /∈ R. It follows

that

σr1+i(x) = σr1+i(x) �= σr1+i(x).

Also we have

σr1+i(
√

θ) = −σr1+i(
√

θ) �= σr1+i(
√

θ).

So w(i) �= i. If σr1+i restricted to F is a real embedding of F into C then

σr1+i(
√

θ) = ±
√

σr1+i(θ) and σr1+i(θ) < 0.

Therefore

σr1+i(
√

θ) = −σr1+i(
√

θ) = σr1+i(
√

θ).

Also, for all x ∈ F ,

σr1+i(x) = σr1+i(x) = σr1+i(x).

We conclude that w(i) = i and xi = −1. Therefore we have

s = 0,

e = 0,

a = |{real embeddings σ of F such that σ(θ) < 0}| and

f = |{real embeddings σ of F such that σ(θ) < 0 and σ(α) < 0}|.
By Proposition 3.3.1, if the signature of the quadratic form is (r, n − r) then

r = n
2 + a − 2f .

We deduce the following proposition.

Proposition 3.4.3. Suppose that α ∈ K and K = K. Then the quadratic form

Tr(αxx) is positive definite if and only if α is totally positive and either K is totally

real with trivial involution or K is a CM-field with canonical involution.

Recall that a CM-field is a totally imaginary number field that is also a quadratic

extension of a totally real number field. An important class of examples of CM-fields
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are the cyclotomic fields. This is the topic of the next chapter. But before going

into that, we talk about the dual lattice of a rational ideal lattice and we determine

a criterion for unimodularity.

For a positive definite rational ideal lattice I, let’s consider the dual lattice

I∗ = {x ∈ KR | Tr(αxy) ∈ Z for all y ∈ I}.

In fact, we have

I∗ = {x ∈ K | Tr(αxy) ∈ Z for all y ∈ I}.

Let a ∈ OK and x ∈ I∗, then Tr(αaxy) = Tr(αxay) ∈ Z for all y ∈ I and so ax ∈ I∗.

Also, if {b1, b2, . . . , bn} ⊆ K is a Z-basis for I∗, then there exists a γ ∈ Z such that

γbj ∈ OK for all 1 ≤ j ≤ n. For this γ, we have γI∗ ⊆ OK . This shows that I∗ is an

ideal of K.

Definition 3.4.4. Let α = 1. The different ideal of the field K over Q is defined by

DK/Q := (O∗
K)−1.

It is easily seen that N(DK/Q) = |DK |. The different ideal tells us which primes

ramify in OK .

Proposition 3.4.5. The prime ideal factors of DK/Q are the primes in K that ramify

over Q. More precisely, for any prime ideal β ⊆ OK lying over a prime number p,

with ramification index e, the exact power of β in DK/Q is βe−1 if e �≡ 0 (mod p) and

βe|DK/Q if p|e.

Proof. See [Lan94].

Using the different ideal we can get a formula for I∗.

Proposition 3.4.6. Let I be an ideal lattice in K with pairing Tr(αxy). Then

I∗ = D−1
K/QI

−1(α)−1.

Proof. Let x ∈ I∗ and y ∈ I. Then, for all b ∈ OK , Tr(αxyb) ∈ Z because yb ∈ I

and x ∈ I∗. Thus αxy ∈ D−1
K/Q and so (α)I∗I ⊆ D−1

K/Q.
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Let z ∈ D−1
K/Q. For any a ∈ I

−1, we have that for all y ∈ I, Tr(zay) ∈ Z

because ay ∈ OK . Therefore α−1za ∈ I∗ for all a ∈ I
−1. Now, we can write

1 = ∑m
i=1 xiyi for some xi’s in I

−1 and yi’s in I because I
−1

I = OK . Then

z = ∑m
i=1 α(α−1zxi)yi ∈ (α)I∗I. This shows D−1

K/Q ⊆ (α)I∗I. �

Corollary 3.4.7. Let I be an ideal lattice in K with pairing Tr(αxy). Then

i) I is integral if and only if

αII ⊆ D−1
K/Q.

ii) I is unimodular if and only if

αII = D−1
K/Q.
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CHAPTER 4
Lattices from cyclotomic fields

The main references for this chapter are [Bay84] and [Bay99].

4.1 Preliminaries and characterization

A cyclotomic field over the rational numbers is a field Q(ζn), where ζn is a

primitive nth-root of unity. If n = 2m with m odd then Q(ζn) = Q(ζm). Therefore,

without loss of generality, we may assume that n is not congruent to 2 modulo 4.

Proposition 4.1.1. Suppose that n �≡ 2 (mod 4) and let K = Q(ζn), where ζn is

a primitive nth-root of unity. Let φ(n) denote the number of integers k such that

1 ≤ k ≤ n and (k, n) = 1. Then

i) K is a Galois extension of Q with [K : Q] = φ(n) and Galois group Gal(K/Q) ∼=
(Z/nZ)×.

ii) OK = Z[ζn].

iii) DK = (−1)φ(n)
2 nφ(n)∏

p|n p
φ(n)
p−1

.

iv) Suppose p is a prime not dividing n and let f be the smallest positive integer

such that pf ≡ 1 (mod n). Then p splits into g := φ(n)
f

distinct prime ideals in

K each of which has residue class degree f . The ramification index is e = 1.

v) Suppose p is a prime and pa||n and let f be the smallest positive integer such

that pf ≡ 1 (mod n
pa ). Then p splits into g := φ( n

pa )
f

distinct prime ideals in K

each of which has residue class degree f . The ramification index is e = φ(pa).

Proof. See [Was97].

Remark 4.1.2. Let K = Q(ζn) and suppose p is a prime and pa||n. The decompo-

sition group D(β/p) for some prime ideal β over p is defined by
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D(β/p) := {σ ∈ Gal(K/Q) | σ(β) = β}.

The Galois group Gal(K/Q) is isomorphic to (Z/paZ)× × (Z/ n
paZ)×. The decompo-

sition group D(β/p) is then isomorphic to the subgroup

(Z/paZ)×× < p (mod n
pa ) >

of (Z/paZ)× ×(Z/ n
paZ)×. The residue class degree f is then the order of the subgroup

< p (mod n
pa ) > of (Z/ n

paZ)×. The ideal β is fixed by the canonical involution (the

automorphism sending ζn to ζ−1
n ) if and only if

(−1 (mod pa), −1 (mod n
pa )) ∈ (Z/paZ)×× < p (mod n

pa ) >

and this happens if and only if there exists an integer k such that pk ≡ −1 (mod n
pa ).

Before giving examples in the next sections, we show that there is nice charac-

terization of ideal lattices in cyclotomic fields.

Proposition 4.1.3. Let L ⊆ Rn be an euclidean lattice with automorphism group

Aut(L ) ≤ O(n,R) (the group of real orthogonal n×n matrices). Then the following

are equivalent:

i) There exists a cyclotomic field K = Q(ζm), an invertible element α ∈ KR

satisfying α = α and an ideal I in K such that I with pairing TrKR\R(αxy) is

isomorphic to L .

ii) Aut(L ) contains a cyclic subgroup of order m acting freely on L \{0} and

φ(m) = n.

iii) Aut(L ) contains an automorphism of characteristic polynomial Φm (the mth-

cyclotomic polynomial).

Proof. i) ⇒ ii). The element ζm acts as an automorphism of the lattice I. It is then

immediate that the corresponding automorphism of L generates a cyclic subgroup

of order m acting freely on L \{0}.

ii) ⇒ iii). The characteristic polynomial is the same for any choice of basis and so by

choosing a basis in QL , we can assume that the coefficients of every automorphism
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is in Q. Let A be a generator for the cyclic subgroup. It is then enough to show

that the minimal polynomial of the matrix A (over Q) is Φm because the minimal

polynomial divides the characteristic polynomial and the degree of the characteristic

polynomial is n = φ(m).

The matrix A satisfies the polynomial xm − 1 and so the minimal polynomial

of A divides xm − 1. If an mth-root of unity is not primitive then it is a root of a

polynomial xd − 1 for some d|m and d �= m. Then write xm − 1 = (xd − 1)f(x). It

follows that (Ad − 1)f(A) = 0. Now, for any x ∈ L , we have Adf(A)x = f(A)x

and so f(A)x = 0 as the cyclic subgroup generated by A acts freely on x ∈ L \{0}.

Hence f(A) = 0 because L contains a basis of Rn. This means that all the roots of

the minimal polynomial of A must be primitive mth-roots of unity and we conclude

that this minimal polynomial is Φm.

iii) ⇒ i). Let A be an automorphism of characteristic polynomial Φm. We define an

action of K = Q(ζm) on QL by
n−1∑
i=0

qiζ
i
m · x :=

n−1∑
i=0

qiA
ix

for q0, q1, . . . , qn−1 ∈ Q. It then follows from Φm(A) = 0 that this action makes

QL into a K-vector space. Fix a non-zero x ∈ QL . Then x, Ax, . . . , An−1x are

Q-linearly independent and so QL is one dimensional as a K-vector space. We

associate QL with K. As Q-vector spaces, the isomorphism between K and QL is

the one sending ζ i
m to Aix.

Now, let (a0, a1, . . . , an−1)t ∈ Rn be the unique solution to the equation

(Tr(ζ i+j
m ))0≤i,j≤n−1y = ((x, x), (x, Ax), . . . (x, An−1x))t,

in the variable y ∈ Rn (and where (−, −) is the usual inner product on Rn). Let

α = a0 + a1ζm + · · ·+ an−1ζn−1
m ∈ KR. Then, the pairing TrKR\R(αxy) corresponds to

the usual inner product on Rn. Also the lattice L corresponds to an ideal I in K.

�

43



Corollary 4.1.4. Let L be an euclidean lattice similar to an ideal lattice in a cy-

clotomic field Q(ζm). Then m divides all the coefficients (except the first one which

is 1) of the theta series of L .

Proof. This follows from ii) of the last proposition.�

4.2 Root lattices

For our first examples, we realize the root lattices Ap−1 (p a prime number) as

the unique prime ideal over p in the cyclotomic fields Q(ζp).

Example 4.2.1. Let K = Q(ζp), where p is an odd prime. The ideal β = (1 − ζp) is

the only prime ideal containing p. We consider the lattice β with pairing Tr(1
p
xy),

where the involution is the canonical involution. It is a positive definite (p − 1)-

dimensional lattice.

{1 − ζp, ζp − ζ2
p , . . . , ζp−2

p − ζp−1
p } is a Z-basis for the ideal β. Using Tr( ζa

p

p
) = p−1

p

when a ≡ 0 (mod p) and Tr( ζa
p

p
) = −1

p
when a �≡ 0 (mod p), one can compute that

for x = a1(1 − ζp) + a2(ζp − ζ2
p ) + · · · + ap−1(ζp−2

p − ζp−1
p ) we have

Tr(1
p
xx) = 2(a2

1 + a2
2 + · · · + a2

p−1 − a1a2 − a2a3 − · · · − ap−2ap−1).

The matrix corresponding to this quadratic form in p−1 variables is the (p−1)×(p−1)

matrix ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 . . . 0 0
−1 2 −1 0 . . . 0
0 −1 . . . . . . . . . ...
... 0 . . . . . . −1 0
0 ... . . . −1 2 −1
0 0 . . . 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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This is a Gramm matrix for the root lattice Ap−1 and thus β ∼= Ap−1. The different

ideal is DK/Q = βp−2 and (p) = βp−1. Using our formula for the dual, we get

A∗
p−1

∼= (p)D−1
K/Qβ

−1

= βp−1β2−pβ−1

= OK .

These lattices are in fact the only An lattices that are similar to an ideal lattice

in a cyclotomic field.

Proposition 4.2.2. The root lattice An is similar to an ideal lattice in the cyclotomic

field Q(ζm) (m �≡ 2 (mod 4)) if and only if m = p for some prime number p and

n = p − 1 .

Proof. The case of the lattice A1 is trivial. Suppose that An (for some n ≥ 2) is

similar to an ideal lattice in the cyclotomic field Q(ζm). Then also A∗
n is similar to

an ideal lattice in the cyclotomic field Q(ζm) and so m divides the kissing number

2(n + 1) of A∗
n (see Table 2-1 p.19). If m is even (and so divisible by 4 as we assume

that m �≡ 2 (mod 4)) then both n = φ(m) and n+1 are even, which is a contradiction.

Therefore m is odd and then m divides n + 1. But then

n + 1 = φ(m) + 1 ≤ m ≤ n + 1

and so φ(m) = m − 1. It follows that m is a prime p and n = p − 1. This argument

together with the last example concludes the proof. �

Some orthogonal direct sums of lattices isomorphic to Ap−1 can be realized as

ideal lattices in cyclotomic fields. We give an example of this before answering the

question of when an orthogonal direct sum of euclidean lattices is similar to an ideal

lattice in a cyclotomic field.
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Example 4.2.3. Let K = Q(ζ12). We consider the lattice OK with pairing Tr(1
2xy),

where the involution is the canonical involution. It is a positive definite 4-dimensional

lattice.

There is a unique prime ideal β above 2 and a unique prime ideal γ above 3.

We have (2) = β2 and (3) = γ2. The different ideal is DK/Q = β2γ. Our lattice is

integral because
1
2OKOK = β−2 ⊆ β−2γ−1 = D−1

K/Q.

For any integer a, Tr(1
2ζa

12ζ
−a
12 ) = 1

2Tr(1) = 2. This implies that OK is an even root

lattice. The discriminant is 9 and so we conclude from the classification of root

lattices that OK
∼= A2 ⊕ A2. The dual is

A∗
2 ⊕ A∗

2
∼= (2)D−1

K/QOK
−1

= β2β−2γ−1

= γ−1.

Lemma 4.2.4. Let L be an euclidean lattice having an automorphism f with irre-

ducible characteristic polynomial. If L = L1⊕L2⊕· · ·⊕Lk for some indecomposable

sublattices L1, L2, . . . , Lk then f acts cyclically on {L1, L2, . . . , Lk} and thus

L1 ∼= L2 ∼= · · · ∼= Lk.

Proof. We know from Remark 2.3.5 that f permutes the elements of {L1, L2, . . . , Lk}.

Suppose that f(Li1 ⊕ Li2 ⊕ · · · ⊕ Lil
) = Li1 ⊕ Li2 ⊕ · · · ⊕ Lil

for some ij’s with

1 ≤ ij ≤ k for 1 ≤ j ≤ l. Then the characteristic polynomial of f |Li1⊕Li2 ⊕···⊕Lil

divides the characteristic polynomial of f and so is equal to it. Hence rk(L ) =

rk(Li1 ⊕ Li2 ⊕ · · · ⊕ Lil
) and

{Li1, Li2 , . . . , Lil
} = {L1, L2, . . . , Lk}.

We conclude that f acts cyclically on {L1, L2, . . . , Lk}. �
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Proposition 4.2.5. Let L be an euclidean lattice and suppose that L = L1 ⊕L2 ⊕
· · ·⊕Lk for some indecomposable sublattices L1, L2, . . . , Lk. Then L is similar to

an ideal lattice in the cyclotomic field Q(ζm) if and only if L ∼= kL1, k divides m,

k divides φ(m), φ(m)
k

= φ(m
k

) and L1 is similar to an ideal lattice in the cyclotomic

field Q(ζm
k

).

Proof. ⇒): The last lemma implies L ∼= kL1 (and so k divides φ(m)). Let f be an

automorphism of L of characteristic polynomial Φm. Since f acts cyclically on {L1,

L2, . . . , Lk} and fm = id, we conclude that k divides m. The automorphism fk

corresponds to ζk
m ∈ Q(ζm) and so its minimal polynomial is Φm

k
. Hence the minimal

polynomial of the automorphism fk|L1 of L1 is Φm
k

of degree φ(m
k

). But it is always

true that φ(m
k

) ≥ φ(m)
k

and since φ(m)
k

= rk(L1), the characteristic polynomial of

fk|L1 is Φm
k

(and φ(m)
k

= φ(m
k

)). It then follows from Proposition 4.1.3 that L1 is

similar to an ideal lattice in the cyclotomic field Q(ζm
k

).

⇐): Let l = rk(L1) = φ(m
k

) and let A ∈ O(l,R) be an automorphism of L1

of characteristic polynomial Φm
k

. Then L has an automorphism f given by the

φ(m) × φ(m) matrix
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

O O · · · O A

I O
. . . O O

O I
. . . O

...
... . . . . . . O O
O · · · O I O

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(in a basis {α
(1)
1 , . . . , α

(1)
l , α

(2)
1 , . . . , α

(2)
l , . . . , α

(k)
1 , . . . , α

(k)
l }, where {α

(j)
1 , . . . , α

(j)
l } for

1 ≤ j ≤ k is a basis for one of the copies of L1 in the orthogonal direct sum

decomposition), where O is the l × l zero matrix, I is the l × l identity matrix and

there are k2 blocks. The automorphism fk is then given by the matrix
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⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A O · · · O O
O A O · · · O

O O
. . . O

...
... . . . . . . A O
O · · · O O A

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and so it satisfies Φm
k

(fk) = 0. But under the assumption φ(m)
k

= φ(m
k

) we have

Φm
k

(xk) = Φm(x) and thus Φm(f) = 0. We conclude that the characteristic polyno-

mial of f is Φm since rk(L ) = φ(m). The result then follows from Proposition 4.1.3.

�

Remark 4.2.6. Let m be an integer with prime decomposition m = pa1
1 pa2

2 · · · par
r

(r ≥ 1, ai ≥ 1 and pi prime for 1 ≤ i ≤ r). An integer k satisfies the conditions

k divides m, k divides φ(m) and φ(m)
k

= φ(m
k

) if and only if k = pb1
1 pb2

2 · · · pbr
r with

0 ≤ bi < ai for 1 ≤ i ≤ r.

Corollary 4.2.7. If m is square free then every positive definite ideal lattice in the

cyclotomic field Q(ζm) is indecomposable.

We now continue to give some examples of root lattices as ideals in cyclotomic

fields.

Example 4.2.8. Let r ≥ 1 and K = Q(ζ2r+1). We first consider the lattice OK with

pairing Tr( 1
2r xy), where the involution is the canonical involution. It is a positive

definite 2r-dimensional lattice.

There is a unique prime ideal β above 2 and (2) = β2r . The different ideal is

DK/Q = βr2r . This lattice is unimodular because
1
2r OKOK = β−r2r = D−1

K/Q.

For any integer a, Tr( 1
2r ζa

2r+1ζ
−a
2r+1) = 1

2r Tr(1) = 1. This implies that OK is generated

by roots of length 1 and thus OK
∼= Z2r .

We now consider the ideal β with the same pairing. This lattice is integral

because

48



1
2r ββ = D−1

K/Qβ2 ⊆ D−1
K/Q.

For any integer a, Tr( 1
2r ζa

2r+1(1 − ζ2r+1)ζ−a
2r+1(1 − ζ−1

2r+1)) = 2. Thus β is an even

root lattice. We have disc(β) = 4. From the classification of root lattices, β must be

isomorphic to one of the following: E7⊕E7⊕kE8, E7⊕A1⊕kE8, A3⊕kE8 or Dn⊕kE8

(for some k ≥ 0 in each case). From Proposition 4.2.5 and rank consideration, we

get β ∼= D2r . Using our formula for the dual, we get

D∗
2r

∼= (2r)D−1
K/Qβ

−1

= βr2r

β−r2r

β−1

= β−1.

Proposition 4.2.9. The lattice Zn is similar to an ideal lattice in the cyclotomic

field Q(ζm) if and only if n is a power of 2 and m = 2n (and m = 1 if n = 1).

Proof. The case of the lattice Z is trivial, so let’s assume that n ≥ 2. Suppose

that Zn is similar to an ideal lattice in the cyclotomic field Q(ζm). We do a proof

by contradiction. Suppose that m is not a power of 2 and let p be the largest prime

dividing m (say pa||m for some a ≥ 1). Then pa−1||φ(m) = n. However, since m|2n

(the kissing number of Zn), we have pa|n a contradiction. This argument together

with the last example concludes the proof. �

Proposition 4.2.10. The lattice D4 is similar to an ideal lattice in the cyclotomic

field Q(ζm) if and only if m = 8 or m = 12. The lattice Dn for n ≥ 5 is similar

to an ideal lattice in the cyclotomic field Q(ζm) if and only if n is a power of 2 and

m = 2n.

Proof. There are 3 values of m with φ(m) = 4: m = 5, 8 and 12. The kissing number

of D4 is 24 (see Table 2-1 p.19) and so we can eliminate m = 5. We already gave an

example of D4 in Q(ζ8). We show that we can also obtain it as an ideal in the cyclo-

tomic field Q(ζ12) by exhibiting an automorphism of characteristic polynomial Φ12.
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The automorphism group of D4 is isomorphic to the group ((Z/2Z)3 �S4)�S3. The

subgroup (Z/2Z)3 � S4 can be seen as the group generated by all permutations of

coordinates and all the sign changes of evenly many coordinates. The subgroup S3

can be seen as the group generated by the matrices

B =

⎛
⎜⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ and H =

⎛
⎜⎜⎜⎝

−1/2 1/2 1/2 −1/2
−1/2 1/2 −1/2 1/2
−1/2 −1/2 1/2 1/2
1/2 1/2 1/2 1/2

⎞
⎟⎟⎟⎠

(this group is the graph automorphism group of the Dynkin diagram of D4, it con-

sists of all the permutations of the 3 basis elements (−1, −1, 0, 0), (1, −1, 0, 0) and

(0, 0, 1, −1); if we label them 1, 2 and 3 respectively, B corresponds to the transpo-

sition (12) and H to the 3-cycle (123)). Let

A =

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 −1 0
0 0 0 −1
0 1 0 0

⎞
⎟⎟⎟⎠.

Then one can verify that the automorphism AH of D4 has characteristic polynomial

x4 − x2 + 1 = Φ12(x). For n ≥ 5, the result follows immediately from the result for

Zn since in both cases the automorphism group consists of all permutations and sign

changes of the coordinates (see [CS99], chapter 4). �

All the remaining examples of this section will be given in cyclotomic fields

Q(ζm) with m not a power of two. It turns out that, for these fields, any integral

ideal lattice is even and we first proceed to prove this fact.

Proposition 4.2.11. ([Bay99], proposition 2.12) Let K be a number field with a

non-trivial involution and let F be the fixed field of the involution. Suppose that

every prime ideal β ⊆ OF over 2 is unramified in OK. Then every integral ideal

lattice in K is even.

Proof. The condition of the proposition is equivalent to ask that the extension K/F

is tame because [K : F ] = 2. The extension K/F is tame if and only if the trace
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map TrK/F : OK → OF is surjective. This is true if and only if there exists a z ∈ OK

such that z + z = 1. Suppose now that we have such a z ∈ OK . Let I be an ideal

integral lattice in K with pairing Tr(αxy). Then, for all x ∈ I, we have

Tr(αxx) = Tr((z + z)αxx)

= Tr(zαxx) + Tr(zαxx)

= 2Tr(zαxx).

This implies that I is even because αxx ∈ D−1
K/Q and so Tr(zαxx) ∈ Z. �

Proposition 4.2.12. Let Q(ζn)+ be the maximal real subfield of Q(ζn). If n = pm

then Q(ζn)/Q(ζn)+ is ramified at the prime ideals above p and unramified at the other

prime ideals. If n is not a prime power then Q(ζn)/Q(ζn)+ is unramified at every

prime ideal.

Proof. See [Was97].

Corollary 4.2.13. Let K = Q(ζn), where n is not a power of 2, and let I be an ideal

lattice in K with pairing Tr(αxy), where the involution is the canonical involution.

If I is integral then it is even.

Example 4.2.14. Let K = Q(ζ9). There is a unique prime ideal β over 3 and

(3) = β6. The different ideal is DK/Q = β9. We consider the lattice β2 with pairing

Tr(1
9xy), where the involution is the canonical involution. It is a positive definite

6-dimensional lattice. We have
1
9β2β2 = β−12β4 = β−8 ⊆ β−9 = D−1

K/Q

and so it is integral. From Corollary 4.2.13, it is even. The discriminant of this

lattice is 3. Up to isomorphism, there is only one positive definite 6-dimensional

even lattice of discriminant 3 (see Table 15.9 in [CS99]), it is the root lattice E6. Its

dual is easily seen to be isomorphic to the ideal lattice β.

51



There are two values of n (n �≡ 2 (mod 4)) such that φ(n) = 6: n = 9 and 7.

Since the kissing number of E6 is 72 (see Table 2-1 p.19) and 7 does not divide 72,

we can only obtain E6 as an ideal in the cyclotomic field Q(ζ9).

We now want to realize the lattice E8. We know that, up to isomorphism, E8 is

the unique even unimodular lattice of dimension 8 (see Corollary 2.6.7). There are

4 values of n (n �≡ 2 (mod 4)) such that φ(n) = 8 ; n = 16, 20, 24 and 15. We can

obtain E8 easily for n = 20 and n = 24.

Example 4.2.15. Let K = Q(ζ20). There is a unique prime ideal β above 2 and

(2) = β2. There are two prime ideals γ and γ above 5 and (5) = γ4γ4. The different

ideal is DK/Q = β2γ3γ3. Then I = β−1γ−3 is an 8-dimensional even unimodular

lattice and so I ∼= E8.

Example 4.2.16. Let K = Q(ζ24). There is a unique prime ideal β above 2 and

(2) = β4. There are two prime ideals γ and γ above 3 and (3) = γ2γ2. The different

ideal is DK/Q = β8γγ. Then I = β−4γ−1 is an 8-dimensional even unimodular lattice

and so I ∼= E8.

It is also possible to obtain E8 in the cyclotomic field Q(ζ15). This will follow

from Theorem 4.3.1 of the next section. However, E8 is not similar to an ideal lattice

in the cyclotomic field Q(ζ16). This can be obtained as a consequence of the following

result.

Proposition 4.2.17. ([Bay84], Corollary 3.3) Let K = Q(ζm) be a cyclotomic field,

F the fixed field of the involution, CK the ideal class group of K, CF the ideal class

group of F , NK/F : CK → CF the homomorphism induced by the norm of ideals, C−

the kernel of this homomorphism, h− the cardinality of C− (this is equal to the rela-

tive class number) and h the cardinality of C− modulo the Galois group Gal(K/Q).

Assume that h− is odd. Then the number of isometry classes of unimodular lattices

having an automorphism of characteristic polynomial Φm is at most h.
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The relative class number of the cyclotomic field Q(ζ16) is 1 (see [Was97], p. 353).

Since we know that the lattice Z8 has an automorphism of characteristic polynomial

Φ16, the lattice E8 cannot have one.

We now have determined all the indecomposable root lattices that can be ob-

tained as an ideal in a cyclotomic field (and also in which cyclotomic fields they can

be obtained). We are now in a position to determine all the root lattices that are

similar to an ideal in a cyclotomic field (and also to determine all the cyclotomic

fields in which they can be obtained).

Theorem 4.2.18. A root lattice L is similar to an ideal lattice in the cyclotomic

field Q(ζm) (m �≡ 2 (mod 4)) if and only if L is isomorphic to one of the lattices

below and m is as specified.

i) Z2r for r ≥ 0 and then m = 2r+1 if r ≥ 1 and m = 1 if r = 0. 2rA1 for r ≥ 0

and then m = 2r+1 if r ≥ 1 and m = 1 if r = 0.

ii) 2apbAp−1 for some odd prime number p and integers a ≥ 0 and b ≥ 0. Then

m = 2a+1pb+1 if a �= 0 and m = pb+1 if a = 0.

iii) 2a3bD4 for some integers a ≥ 0 and b ≥ 0. Then m = 2a+3 or 2a+23 if b = 0

and m = 2a+23b+1 if b �= 0.

iv) 2aD2r for r ≥ 3 and for some integer a ≥ 0. Then m = 2a+r+1.

v) 2a3bE6 for some integers a ≥ 0 and b ≥ 0. Then m = 2a+13b+2 if a �= 0 and

m = 3b+2 if a = 0.

vi) 2a3b5cE8 for some integers a ≥ 0, b ≥ 0 and c ≥ 0. Then if a = b = c = 0 we

have m = 15, m = 24 or m = 20. If a = b = 0 but c > 0 we have m = 5c+13

or m = 5c+14. If a = c = 0 but b > 0 we have m = 3b+15 or m = 3b+18. If

b = c = 0 but a > 0 we have m = 2a+33, m = 2a+25 or m = 2a+1 · 15. If a = 0

but b > 0 and c > 0 we have m = 3b+15c+1. If b = 0 but a > 0 and c > 0 we

have m = 2a+25c+1 or m = 2a+15c+13. If c = 0 but a > 0 and b > 0 we have
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m = 2a+33b+1 or m = 2a+13b+15. Finally, if a > 0, b > 0 and c > 0 we have

m = 2a+13b+15c+1.

Proof. This theorem is an easy consequence of Proposition 4.2.5 and of what we

already know about the indecomposable root lattices. �

Remark 4.2.19. This theorem corrects and completes Theorem 3.2 of [Bay99].

4.3 Even unimodular lattices in dimensions ≤ 24

The lattices in vi) of the last theorem are all unimodular lattices. It is possible

to determine all the cyclotomic fields in which there exists a unimodular ideal lattice.

Theorem 4.3.1. ([Bay99], proposition 2.8 and [Bay84], theorem 1.1) There exists

a unimodular ideal lattice in the cyclotomic field Q(ζm) (m �≡ 2 (mod 4)) if and only

if m is a power of 2 or m is mixed and φ(m) ≡ 0 (mod 8).

When n is not a power of 2, all unimodular ideal lattices are even. We were

interested in even unimodular lattices in section 2.6. We now want to determine

which of these (in dimensions ≤ 24) can be obtained as ideal lattices in cyclotomic

fields (and in which fields they can be obtained). In dimension 8, we already said

that we can obtain the unique even unimodular lattice E8 as an ideal lattice in the

cyclotomic field Q(ζm) (m �≡ 2 (mod 4)) if and only if m = 15, 20 or 24. This can

also be seen as a corollary to the last theorem (assuming the case m = 16 has been

excluded).

We now turn our attention to even unimodular lattices in dimension 16. There

are only 2 such lattices up to isomorphism : 2E8 and D+
16 (see section 2.6). If the

lattice D+
16 could be realized in a cyclotomic field then also the lattice D16 could be

realized in the same cyclotomic field since any automorphism of a lattice having roots

restricts to an automorphism of its root sublattice. Hence the only possibility for the

cyclotomic field would be Q(ζ32), but the relative class number of this cyclotomic

field is 1 (see [Was97], p.353) and we already realized the lattice Z16 in this field. It
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therefore follows from Proposition 2.6.21 that D+
16 is not similar to an ideal lattice

in a cyclotomic field. The case of the lattice 2E8 is covered by the Theorem 4.2.18.

We can obtain it in the cyclotomic fields Q(ζm) for m = 40, 48 and 60. In the three

cases, we give concrete examples.

Example 4.3.2. Let K = Q(ζ40). There is a unique prime ideal β above 2 and

(2) = β4. There are two prime ideals γ and γ above 5 and (5) = γ4γ4. The different

ideal is DK/Q = β8γ3γ3. Then I = β−4γ−3 is a 16-dimensional even unimodular

lattice isomorphic to E8 ⊕ E8.

Example 4.3.3. Let K = Q(ζ48). There is a unique prime ideal β above 2 and

(2) = β8. There are two prime ideals γ and γ above 3 and (3) = γ2γ2. The different

ideal is DK/Q = β24γγ. Then I = β−12γ−1 is a 16-dimensional even unimodular

lattice isomorphic to E8 ⊕ E8.

Example 4.3.4. Let K = Q(ζ60). There are two prime ideals γ and γ above 5

and (5) = γ4γ4. There are two prime ideals β and β above 2 and (2) = β2β
2.

There are two prime ideals α and α above 3 and (3) = α2α2. The different ideal

is DK/Q = β2β
2
γ3γ3αα. Then I = β−2γ−3α−1 is a 16-dimensional even unimodular

lattice isomorphic to E8 ⊕ E8.

We now turn our attention to even unimodular lattices in dimension 24. The

values of m (m �≡ 2 (mod 4)) such that φ(m) = 24 are 35, 39, 45, 52, 56, 72 and 84.

From the list of the Niemeier lattices given in section 2.6 and from Theorem 4.2.18,

we obtain the following list of candidates for even unimodular lattices of dimension 24

similar to an ideal lattice in a cyclotomic field: (12A2)+ (m = 72), (4A6)+ (m = 56),

(4E6)+ (m = 72), (6D4)+ (m = 72), (2A12)+ (m = 52), 3E8 (m = 45 and 72) and

the Leech lattice. Hence, when m = 35, 39 or 84, the only even unimodular lattice

possible is the Leech lattice (and from Theorem 4.3.1 the Leech lattice can indeed

be realized in these cyclotomic fields). We give an example for m = 39.

55



Example 4.3.5. Let K = Q(ζ39). There are two prime ideals β and β above 13 and

(13) = β12β
12. There are four prime ideals γ, γ, α and α above 3 and (3) = γ2γ2α2α2.

The different ideal is DK/Q = β11β
11

γγαα. Then I = β−11γ−1α−1 is a 24-dimensional

even unimodular lattice isomorphic to the Leech lattice.

For m = 45, the relative class number is 1 and we know that we can obtain 3E8

from Theorem 4.2.18. Hence the only even unimodular lattice similar to an ideal in

the cyclotomic field Q(ζ45) is 3E8.

For m = 52, both the lattice (2A12)+ and the Leech lattice can be obtained.

Example 4.3.6. Let K = Q(ζ52). There is one prime ideal β above 2 and (2) = β2.

There are two prime ideals γ and γ above 13 and (13) = γ12γ12. The different ideal

is DK/Q = β2γ11γ11. We consider the ideal lattice γ with pairing Tr( 1
26xy). This

lattice is unimodular because
1
26γγ = β−2γ−12γ−12γγ = D−1

K/Q.

Let ζ13 = ζ4
52. We have γ ∩ Q(ζ13) = (1 − ζ13)OQ(ζ13) and so in particular γ contains

the element x = 1 − ζ13. The squared norm of this element is

TrK/Q( 1
26xx) = TrQ(ζ13)/Q( 1

13xx) = 2

(see Example 4.2.1). Therefore γ ∼= (2A12)+ since the only other possibility would

be the Leech lattice but it has no roots.

One can verify that the Leech lattice indeed has an automorphism of character-

istic polynomial Φ52 using a software like the MAGMA algebra system.

For m = 56, only the Leech lattice can be realized. This follows from the

next lemma which implies that the Niemeier lattice (4A6)+ has no automorphism of

characteristic polynomial Φ56.

Lemma 4.3.7. The Niemeier lattice (4A6)+ has no automorphism of irreducible

characteristic polynomial.
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Proof. Any automorphism of (4A6)+ restricts to an automorphism of 4A6 and acts

as a permutation of the components. Let G2 be the group of all permutations of the

components that arise from automorphisms of (4A6)+. This group has cardinality 12

(see [CS99], Table 16.1) and so is isomorphic to A4 (the alternating group on 4

elements). The group A4 contains no 4-cycle and so no automorphism of (4A6)+ can

act cyclically on the components of 4A6. �

For m = 72, we already know that we can obtain the lattice 3E8. We give a

concrete example.

Example 4.3.8. Let K = Q(ζ72). There is one prime ideal β above 2 and (2) = β4.

There are two prime ideals γ and γ above 3 and (3) = γ6γ6. The different ideal is

DK/Q = β8γ9γ9. We consider the ideal lattice γ3 with pairing Tr( 1
36xy). This lattice

is unimodular because
1
36γ3γ3 = β−8γ−12γ−12γ3γ3 = D−1

K/Q.

Using MAGMA, we computed that this lattice has 720 roots. It is therefore isomor-

phic to 3E8.

The relative class number of the cyclotomic field K = Q(ζ72) is 3 (see [Was97],

p.353). One can verify that C− (in the notation of Proposition 4.2.17) consists of the

three elements 1, [γ], [γ] ∈ CK (where γ is as in the preceding example). Therefore,

from Proposition 4.2.17, there are at most 2 isometry classes of unimodular lattices

similar to an ideal lattice in K. It turns out that there is a second one. Indeed,

one can verify using MAGMA that the Niemeier lattice (4E6)+ has an automor-

phism of characteristic polynomial Φ72 (one such automorphism is also constructed

in [Bay84]).

We summarize these results about even unimodular lattices of dimension 24 in

a table. The table gives all the Niemeier lattices that can be realized as an ideal in a
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cyclotomic field and all the cyclotomic fields Q(ζm) (m �≡ 2 (mod 4)) in which they

can be realized (see also [Bay84], Proposition 5.1 and [Bay99], Proposition 3.4).

Table 4–1: Niemeier lattices similar to ideals in cyclotomic fields
Lattice m
Leech 35, 39, 52, 56, 84
3E8 45, 72
(2A12)+ 52
(4E6)+ 72

4.4 Higher dimensions

We now talk a little bit about higher dimensions. We first give three examples

of even unimodular lattices in dimension 32.

Example 4.4.1. Let K = Q(ζ68). There are two prime ideals β1 and β2 above 2 and

(2) = β2
1β2

2 (both are fixed by the involution). There are two prime ideals γ and γ

above 17 and (17) = γ16γ16. The different ideal is DK/Q = β2
1β2

2γ15γ15. We consider

the ideal lattice γ with pairing Tr( 1
34xy). This lattice is unimodular because

1
34γγ = β−2

1 β−2
2 γ−16γ−16γγ = D−1

K/Q.

Let ζ17 = ζ4
68. We have γ ∩ Q(ζ17) = (1 − ζ17)OQ(ζ17) and so in particular γ contains

the element x = 1 − ζ17. The squared norm of this element is

TrK/Q( 1
34xx) = TrQ(ζ17)/Q( 1

17xx) = 2

(see Example 4.2.1). Any ideal lattice in a cyclotomic field having roots must have

a complete root system since the root sublattice is also an ideal in the same cyclo-

tomic field. The only root lattice similar to an ideal lattice in Q(ζ68) is 2A16 form

Theorem 4.2.18. There exists a unique even unimodular lattice of dimension 32 with

root sublattice 2A16 (see [Ker94]) and so γ is isomorphic to it.

Example 4.4.2. Let K = Q(ζ80). There is one prime ideal β above 2 and (2) = β8.

There are two prime ideals γ and γ above 5 and (5) = γ4γ4. The different ideal is
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DK/Q = β24γ3γ3. We consider the ideal lattice γ with pairing Tr( 1
40xy). This lattice

is unimodular because
1
40γγ = β−24γ−4γ−4γγ = D−1

K/Q.

There are only two root lattices similar to an ideal lattice in Q(ζ80): 8A4 and 4E8.

We computed using MAGMA that our lattice has 160 roots. It follows that γ is an

even unimodular lattice of rank 32 and root sublattice 8A4. There exists a unique

such lattice up to isomorphism (see [Ker94]).

Example 4.4.3. Let K = Q(ζ96). There is one prime ideal β above 2 and (2) = β16.

There are two prime ideals γ and γ above 3 and (3) = γ2γ2. The different ideal is

DK/Q = β64γγ. We consider the ideal lattice γ with pairing Tr( 1
48xy). This lattice is

unimodular because
1
48γγ = β−64γ−2γ−2γγ = D−1

K/Q.

We computed using MAGMA that our lattice has 960 roots. It follows that γ is

isomorphic to 4E8.

In dimension 48, it is known that there is a unique extremal lattice that is similar

to an ideal in a cyclotomic field.

Definition 4.4.4. An even unimodular lattice of rank n is extremal if its minimum

squared norm is 2(1 +
⌊

n
24

⌋
).

In dimension 24, the only extremal lattice is of course the Leech lattice. In di-

mension 48, only 3 extremal lattices are known: P48p, P48q and P48n. The lattice P48n

is constructed in [Neb98]. It is shown in [Neb12] that P48n is the unique extremal

lattice in dimension 48 that is similar to an ideal lattice in a cyclotomic field. More

precisely, the two following results are obtained.

Proposition 4.4.5. ([Neb12], Corollary 4.13) Let L be an extremal lattice of di-

mension 48 and σ ∈ Aut(L ) of order m. Then Φm divides the minimal polynomial

of σ.
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Theorem 4.4.6. ([Neb12], Theorem 5.3) Let L be an extremal lattice of dimension

48 such that Aut(L ) contains some element σ of order m with φ(m) = 48. Then

m = 65 or m = 104 and L ∼= P48n.
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CHAPTER 5
Conclusion

In this thesis, we studied lattices and a particular way of constructing them in

number fields. We first gave some basic definitions about lattices and explained the

relationship with quadratic forms. We then introduced the signature of lattices as

the signature of the corresponding quadratic forms. We followed by specializing to

the particular case of positive definite lattices, or Euclidean lattices. We gave some

important results about these lattices that are not true for general lattices. We then

introduced some of our main examples of lattices; the root lattices. These lattices are

particularly interesting since they are related to geometrical problems. We surveyed

the known results about these problems and we concluded our chapter on general

facts about lattices by introducing some other of our main examples of lattices; the

even unimodular lattices. These lattices are particularly interesting since their theta

series are modular forms.

In the following chapter, we presented a way to obtain lattices using ideals in

number fields and the trace pairing. These lattices are often referred to as ideal

lattices. We determined formulas for the discriminant and the signature of these

lattices. Then we considered the properties of positive definiteness, rationality, inte-

grality and unimodularity of ideal lattices.

A logical continuation of our study was then to consider the special case of the

cyclotomic fields. Indeed, we know a lot about the ideals in these fields and so we can

use this knowledge to build concrete examples of ideal lattices. It turns out that there

is an interesting theory of ideal lattices in cyclotomic fields as shown by some papers

of E. Bayer. The key fundamental observation to begin with is that a primitive root
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of unity acts on our lattices as an automorphism. This automorphism has for char-

acteristic polynomial a cyclotomic polynomial and having such an automorphism

characterizes the lattices arising from cyclotomic fields. This characterization allows

to determine all the indecomposable root lattices arising from cyclotomic fields and

also all the cyclotomic fields in which they can be obtained. Then, with the help of

Proposition 4.2.5 telling exactly when an orthogonal direct sum of indecomposable

lattices is similar to an ideal lattice in a cyclotomic field, we could obtain Theo-

rem 4.2.18 determining all the root lattices arising from cyclotomic fields and all the

cyclotomic fields in which they can be obtained. This is our contribution to this

theory. We also presented some of the results of E. Bayer about unimodular ideal

lattices in cyclotomic fields. Two of them are given in Proposition 4.2.17 and Theo-

rem 4.3.1. They are very useful tools in determining all the Niemeier lattices arising

from cyclotomic fields and all the cyclotomic fields in which they can be obtained.

Table 4 − 1 summarizes these results about the Niemeier lattices. A question for

further investigations could be : Can one obtain more of the Neimeier lattices if one

does not restrict to cyclotomic fields? In the same spirit, one might also ask: What

are the root lattices that can be obtained in totally real number fields or in arbi-

trary CM-fields? We also talked a bit about higher dimensions in the last section of

chapter 4. Another question that could be investigated is: Is there other interesting

examples of lattices that can be obtained in cyclotomic fields in higher dimensions?
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