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Abstract

Survival analysis is a field of statistics in which the distribution of the time interval

between two well defined events is studied. The distinguishing feature of survival analysis

is that the time of the initial event and the time of the final event may be truncated and/or

censored. By appropriately adjusting for such phenomena, statistical properties of the

underlying distribution of the time interval can be obtained. In certain settings, the true

time of the initial event may be completely unknown or censored. For example, in a

study of a cohort of subjects with prevalent dementia, the initial date of dementia onset

reported by a caregiver or family member can be assumed to be reported with error. The

main purpose of this thesis is to review how uncertainty in the time of the initial event

impacts the classical statistical inference techniques of survival analysis. We suggest new

failure time density estimators under different measurement error models.



Résumé

L’analyse de survie est un domaine de la statistique qui s’intéresse à la distribution

du temps de deux événements définis. Une des caractéristiques est que le temps du pre-

mier événement et le temps de l’événement final peuvent être tronqués et/ou censurés.

En utilisant les méthodes pour ajuster pour ces phénomènes, les propriétés statistiques

de la vraie distribution de l’intervalle de temps peuvent être obtenues. Dans certains

contextes, le temps du premier événement peut être complètement inconnu ou censuré.

Par exemple, dans une étude d’une cohorte prévalente de démence, le première temps du

début de la démence qui est identifé par un soignant ou un membre de la famille peut être

supposé obtenu avec erreur. L’objectif principal de ce mémoire est de réviser comment

l’incertitude avec le temps du premier événement a un impact sur l’inférence statistique

classique d’analyse de survie. Nous suggérons de nouveaux estimateurs sous l’hypothèse

des modèles d’erreur de mesure.
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Preface

Survival analysis is a field of statistics in which the distribution of the time interval

between two well defined events is studied. The distinguishing feature of survival analysis

is that the time of the initial event and the time of the final event may be truncated and/or

censored. By appropriately adjusting for such phenomena, statistical properties of the

underlying distribution of the time interval can be obtained. In certain settings, the true

time of the initial event may be completely unknown or censored. For example, in a

study of a cohort of subjects with prevalent dementia, the initial date of dementia onset

reported by a caregiver or family member can be assumed to be reported with error.

The main purpose of this thesis is to review how uncertainty in the time of the initial

event impacts the classical statistical inference techniques of survival analysis. In Chapter

4, we extend the previously derived likelihood function and we suggest a deconvolution

estimator to include uncertainty in the onset distribution under different measurement

error models.

2



Contents

1 Introduction 5

2 Notation and Terminology 7

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Censoring and Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Incident Cohort Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Prevalent Cohort Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Modelling Uncertainty in Failure Time Data 13

3.1 Measurement Error Models . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Censoring Indicator Assumption with Measurement Error . . . . . . . . . 15

3.3 Effects of Measurement Error in Incident Cohort Studies . . . . . . . . . 15

3.4 Effects of Measurement Error in Prevalent Cohort Studies . . . . . . . . 19

4 Survival Modelling with Uncertainty in the Reported Onset Time 24

4.1 Parametric Maximum Likelihood Estimation . . . . . . . . . . . . . . . . 25

4.2 Non-Parametric Density Estimation . . . . . . . . . . . . . . . . . . . . . 33

4.3 A Non-parametric Discrete Weight Likelihood Method . . . . . . . . . . 38

5 Simulations 45

3



5.1 Prevalent Cohort Data Simulation Procedure . . . . . . . . . . . . . . . . 45

5.2 Impact of Measurement Error on Estimation in a Prevalent Cohort Study 48

5.3 Non-Parametric Deconvolution Estimation . . . . . . . . . . . . . . . . . 51

5.4 Left-Truncated Doubly Interval-Censored Non-Parametric Survival Esti-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Discussion and Conclusions 60

Bibliography 63

4



Chapter 1

Introduction

The Canadian Study of Health and Aging (CSHA-1) began in 1991 when approximately

10,000 Canadians over the age of 65 in community or institutional settings across nine

provinces were screened for various forms of dementia. The objective of the CSHA-1 was

“to determine the prevalence of dementia and its subtypes by sex and age group for five

regions in Canada” [30]. In 1996, the CSHA entered its second phase (CSHA-2). A date

and cause of death were recorded for individuals that died between 1991 and 1996. In

addition, it was noted which participants who had screened positive in 1991 were still

alive in 1996. Thus, the CSHA included two types of cohort: 1) An incident cohort

consisting of those that were deemed disease free in CSHA-1 and then followed until

CSHA-2 unless censored and 2) A prevalent cohort with follow-up consisting of those

prevalent for disease in CSHA-1 who were followed until censoring or death in 1996.

A sub-study using the CSHA-1 and CSHA-2 data was conducted to estimate survival

from onset of dementia and to determine predictors of survival with dementia [45]. For

the sub-study, the importance of the ascertainment of the dates of onset, as opposed

to diagnosis, of dementia (recorded from the CSHA databases) in producing time-to-
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failure/censoring data for the survival analysis, is clear. One complication was the specu-

lative nature of the reported onset times. For example, the dates of onset of Alzheimer’s

disease were determined among participants with prevalent disease through the recollec-

tions of their caregivers. While there is inherent uncertainty in the recollections of the

caregivers, the very meaning of “date of onset” in the setting of dementia is ambiguous.

The recalled date of onset can be used as the true date of onset without further inter-

pretation or can be representative, with error, of the true date of onset of the clinical

symptoms of the disease. It can also be interpreted as approximating the true date of

physiological onset of the disease process.

This thesis is concerned with the survival analysis modelling of failure time data with

measurement error in the reported time of the initial event, allowing for possible censoring

of the failure event time. Chapter 2 introduces the notation of the thesis and elaborates on

the details of incident and prevalent cohort studies. Chapter 3 discusses how uncertainty

in the date of the initial event is incorporated into survival analysis models through

various measurement error models and censoring types. Chapter 4 presents statistical

inference techniques that adjust for the uncertainty in the initial event date and Chapter

5 presents simulation results of the methods discussed in Chapter 4. Chapter 6 concludes

with some suggestions for further research.
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Chapter 2

Notation and Terminology

2.1 Notation

Let T be a non-negative random variable representing the failure time and let S(·)

denote the survivor function of T . That is,

S(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1− F (t) = P (T > t), for 0 ≤ t < ∞

1, for t < 0

(2.1)

where F (t) = P (T ≤ t) is the cumulative distribution function of T . Let f(t) denote

the probability density function or probability mass function, for the continuous or the

discrete cases respectively, of the random variable T. For −∞ < t < ∞, let

λ(t) = lim
Δt→0+

P (t ≤ T < t+Δt|T ≥ t)/Δt. (2.2)

be the hazard function of T . Although the functions above are written in non-parametric

form, they can also be defined parametrically, in which case they are denoted, respectively,

by S(t;θ), f(t;θ) and λ(t;θ) where θ is a p-dimensional vector of parameters [20] [23].
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2.2 Censoring and Truncation

The feature that distinguishes survival analysis is that the failure times Ti, in the

sample, may be incompletely observed. The two main ways in which this occurs is

through censoring and/or truncation. Any statistical inference must take these features

into account. Due to their role in later chapters, we define the various types of censoring

and truncation that arise in survival analysis.

Definition 2.2.1. (Right/Left-Censoring) T is right-censored by the non-negative

random variable C if C < T . The observed quantity is then min(T,C) = C. Equivalently,

it is left-censored if C > T and the observed quantity is max(T,C) = C.

For example, in a study with staggered entry, which terminates on some fixed date, all

failure times that extend beyond this date are right-censored.

Definition 2.2.2. (Interval-Censoring) T is interval-censored by the non-negative

random variables C1,C2 with C1 < C2 if C1 < T < C2. The observed quantity is then the

pair (C1, C2).

For example, if the random variable T represents the onset time of HIV, and C1 and C2

represent the calendar times of the observed negative and positive HIV tests respectively,

then T is interval-censored by (C1, C2) [10].

Definition 2.2.3. (Random Censoring) T is randomly censored by C if the non-

negative random variables T and C are independent.

Random censoring is an assumption that, if appropriate, leads to simplified (although not

necessarily simple) statistical analyses. Let the so-called censoring indicator, δi = 1 if Ti
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is censored by Ci and 0 otherwise. We denote the ith observed sample point by (Xi, δi).

For an extensive discussion of censoring in survival analysis, see [27].

Definition 2.2.4. (Right/Left/Interval-Truncation ) T is right-truncated by the

random variable D if T is observable only if T < D. T is left-truncated by D if T is

observable only if T > D. T is interval-truncated by the random variables D1 and D2

(D1 < D2), if T is observable only if T < D1 or T > D2.

Note that if the random variable T is left/right-censored by the random variable C,

then C is observed and T is unobserved. In contrast, if T is left/right-truncated by the

random variable D, then both T and D are unobserved. Analogously, if T is interval-

censored by the pair (C1, C2), then the pair is observed and T is unobserved and if T is

interval-truncated by the pair (D1, D2), then both the pair and T are unobserved.

2.3 Incident Cohort Study

An incident cohort study can be used to estimate the incidence rate within a popu-

lation or to estimate the survivor function from onset of a given disease or condition. In

the latter case, two events must be defined: an initiating event, and a subsequent event,

failure (onset and death, say). A disease-free cohort is followed for the occurrence of

these two events. All subjects who do not experience onset during follow-up play no role

in the estimation of survival from onset. The dates of those who experience onset (an

initiating event) during follow-up are monitored for the occurrence of failure/censoring;

these dates are also recorded. Figure 2.1 is a graphical representation of incident cohort

data with various failure/censoring times.
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Figure 2.1 – Graphical representation of incident cohort data. The filled circles, crosses and

open circles denote, respectively, disease onset, failure and censoring.

It is usually assumed that the incidence process of onset times is independent of the

corresponding failure/censoring times [23]. Consequently, without loss of generality, the

calendar dates of onset may be translated to a common time origin. The analysis is based

on the time intervals from this origin to failure/censoring. Let Ti and Ci be the respective

translated calendar dates of failure/censoring for individual i with an observed onset.

Then the observed sample points in this study are (Xi, δi) = (min(Ti, Ci), 1Ti≤Ci
); i ∈

{1, 2, ..., n}.

2.4 Prevalent Cohort Study

Imbedded in the CSHA was a prevalent cohort study with follow-up. The data from

this sub-study were used to estimate survival of individuals with dementia from onset

[45]. In such studies, a cohort of individuals with an existing (prevalent) condition is

identified from a sample of subjects drawn from some population. These prevalent cases

are followed from their respective recruitment dates to failure or censoring, which may
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occur at the end of the study. This type of study is typically used for diseases with longer

failure times as individuals entered into the study already have the condition, unlike in

an incident cohort study where all subjects are initially disease-free. With longer failure

times, the incident cohort study would have to follow subjects from their respective

onset dates for a prolonged period of time to observe a sizeable amount of failures. The

prevalent cohort study, which collects subjects already with an existing condition, does

not have to be maintained for the same amount of time as the incident cohort study to

observe failures, as subjects entered into the study may already have had the condition

for an extended period of time.

For simplicity of exposition, it is almost always assumed that all subjects are recruited

and screened on a single calendar date known as prevalence day, which we denote by R.

This is a simplification of what occurs in practice as the dates of recruitment are usually

staggered. If there is no cohort effect (i.e. survival is independent of the calendar date of

recruitment), this assumption does not affect the survival analysis [2].

Each positively screened subject i is followed from R to the minimum of their calendar

date of failure, denoted by T cal
i , and their calendar date of censoring, denoted by Ccal

i .

Note that all T cal
i < R are left-truncated byR and are unobserved [1]. Assuming some well

defined notion of onset for the disease, the onset date for subject i in the prevalent cohort

is obtained retrospectively. We denote this date as U0i. The observed sample points

in this study are (Xi, δi) = (Qi − U0i, δi) = (min(T cal
i , Ccal

i ) − U0i, 1Ti≤Ci
) where Qi =

min(T cal
i , Ccal

i ), ∀i ∈ {1, 2, ..., n}, Xi > R − U0i. Figure 2.2 is a graphical representation

of prevalent cohort data with various failure/censoring times.

Definition 2.4.1. (Forward/Backward Recurrence Times) Let U0i be the onset

date, R be the prevalence date and Qi be the calendar date of failure/censoring for subject
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Figure 2.2 – Graphical representation of prevalent cohort data. The filled circles, crosses and

open circles denote, respectively, disease onset, failure and censoring.

i. Then R−U0i and Qi−R are the forward recurrence time and the backward recurrence

time, respectively corresponding to subject i.

We give a detailed discussion of uncertainty in the ascertainment of the onset date and its

effect on the forward/backward recurrence times in Chapter 3. Note that in a prevalent

cohort study, only the subjects with prevalent disease on date R provide their onset dates.

The onset dates of subjects with truncated failure times are missing and unobserved. We

refer to the full onset process as the stochastic point process which generates the set of all

observed and unobserved onset dates. A stationary onset process is the stochastic point

process for which the set of all onset times arise from a stationary Poisson process. In this

case, as is well known, conditioned on the number of onsets in a pre-specified interval,

the onset times are independently and identically distributed uniform random variables

on this interval.
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Chapter 3

Modelling Uncertainty in Failure Time Data

3.1 Measurement Error Models

In order to quantify the uncertainty between the true (unobserved) and the observed

initial event times, we examine two forms of linear measurement error models. As men-

tioned in the introduction, for a dementia prevalent cohort, the true onset date (i.e. the

true initial event time) may not be known or even defined. We assume in all further dis-

cussions, for mathematical and practical simplicity, that a true date of the initial event

that gives rise to the collected failure time data exists and is clearly defined.

Let Z1 be the observed random variable, Z2 be the true unobserved random variable

and let ε ∼ N(0, σ2) be an unobserved random variable representing some form of error.

When the observed random variable Z1 is expressed as the sum of Z2 and ε:

Z1 = Z2 + ε, (3.1)

we denote this model as the Classical Measurement Error Model. When the unobserved
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random variable Z2 is expressed as the sum of Z1 and ε:

Z2 = Z1 + ε, (3.2)

we denote this model as the Berkson Measurement Error Model. For both equations, the

assumption that the errors are normally distributed about 0 can be relaxed to allow for

skewed error distributions [5] [6]. In the case of an error term that is not symmetrically

distributed about 0, the models 3.1 and 3.2 are not functionally equivalent. In practice,

they represent two different forms of measurement error, which we denote respectively as

controlled and uncontrolled [5] [6]. We examine the difference between these two measure-

ment errors in the context of a chemical experiment as discussed by Berkson [4]. Suppose

some intended amount of chemical A is added to a system and the resulting amount of

chemical B by-product of the system reaction is observed. Under the assumption that

there is error in the measurement of the added chemical A due to the inaccuracy of the

scientific instruments, this form of error would be referred to as controlled. It is controlled

to the extent that the experiementer controls the amount of chemical A that is intended

to be added. In contrast, the amount of chemical B being observed has an uncontrolled

measurement error because the true amount of chemical B resulting from the reaction is

not known a priori [4]. Since there can be debate on which form of measurement error

relates the true and observed dates of the initiating event in survival analysis more ap-

propriately, we examine the implications of both in the context of incident and prevalent

cohort studies.
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3.2 Censoring Indicator Assumption with Measurement Error

For incident and prevalent cohort studies, some of the failure time data may be right-

censored. The data collected from such studies are the pairs (Xi, δi) i ∈ {1, 2, ..., n},

where Xi is the observed failure/censoring time and δi is the right-censoring indicator.

We assume that the measurement error terms in equations 3.1 or 3.2 are independent of

the failure/censoring indicator δi, ∀i ∈ {1, 2, ..., n}. We examine the validity of this as-

sumption through the following example. Suppose a cohort of subjects are followed from

their respective incidence/recruitment dates to their failure/censoring calendar dates. For

each subject, the researcher either observes the death of the subject or the subject’s sur-

vival. The retrospective inclusion of measurement error in the reported incidence/onset

date does not affect the original observation of death or survival made by the researcher.

The inclusion of measurement error only affects the time interval from the reported inci-

dence/onset date to the failure/censoring calendar date. We ignore the possibility of the

observation of death or survival being in error.

3.3 Effects of Measurement Error in Incident Cohort Studies

In the case of an incident cohort study, the failure time data are the differences between

the calendar date of failure/censoring and the recorded calendar date of incidence. When

we assume a measurement error model for the incidence calendar date, depending on the

support of the error term, the error can translate the incidence date to the right or to the

left. Thus, the error term shortens or lengthens the failure/censoring times depending
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on whether it takes a negative or positive value, respectively. Let T ∗
i and C∗

i represent,

respectively, the true failure and censoring times for subject i with an observed onset. For

incident cohort failure time data, the classical measurement error model has the form:

min(Ti, Ci) = min(T ∗
i , C

∗
i ) + εi, i ∈ {1, 2, ..., n} (3.3)

and the random Berkson measurement error model has the form:

min(T ∗
i , C

∗
i ) = min(Ti, Ci) + εi, i ∈ {1, 2, ..., n} (3.4)

We include the subscript i on the error term ε to allow the measurement error to vary

according to each subject. Additionally, we will assume that all observed and unobserved

failure/censoring random variables are independent of εi, ∀i ∈ {1, 2, ..., n} (i.e. the er-

ror does not vary according to the length of the observed/unobserved failure/censoring

times). The two types of measurement error are represented graphically in figure 3.1.

Figure 3.1 – A graphical representation of incident cohort failure times where the incidence

dates are affected by the presence of measurement error (denoted by arrows). In case (a), the

measurement error translates the incident date to the right and in case (b), the measurement

error translates the incident date to the left.
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Figure 3.2 – A three stage transition diagram for subjects in an incident cohort study. Transi-

tions can occur between the pre-incident stage to the incident stage, from the incident stage to

the failure/censoring stage and from the pre-incident stage to the failure/censoring stage.

From figure 3.1, when assuming the classical measurement error model, the upper line,

in cases (a) and (b), represents the true failure time lengths while the line below represents

the observed failure time lengths. When assuming the Berkson measurement error model,

the referencing to each line is exchanged. We examine the statistical implications of cases

(a) and (b) with respect to both measurement error models.

Under the classical measurement error model, if εi is a non-positive random variable

bounded below by −mini(T
∗
i , C

∗
i ), i ∈ {1, 2, ..., n}, then the true incidence date lies to

the left of the observed incidence date. This particular assumption on the support of εi is

thus equivalent to the true incidence date being left-censored by the observed incidence

calendar date. For the Berkson measurement error model, if εi is a non-positive random

variable bounded below by −mini(Ti, Ci), i ∈ {1, 2, ..., n}, then the true unobserved inci-

dence date occurs beween the observed incidence calendar date and the observed calendar

date of failure/censoring (i.e. the true unobserved incidence date is interval-censored by

the observed incidence date and the calendar date of failure/censoring). Similarly, if εi
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is a non-negative random variable, i ∈ {1, 2, ..., n}, then under the classical measurement

error model, the true incidence date occurs between the observed incidence date and the

calendar date of failure/censoring (i.e. the true incidence date is interval-censored by the

observed incidence date and the calendar date of failure/censoring). Under the Berkson

measurement error model with the same error assumption, the true incidence date oc-

curs before the observed incidence date (i.e. the true incidence date is left-censored by

the observed incidence date). In figure 3.2, these error assumptions correspond to the

scenario where a subject transitions from the pre-incident stage to the incident (at risk

of failure) stage and then to the failure/censoring stage. These assumptions on the error

thus imply that no observations are lost in the data collection step of the study.

When εi is negative, without further restrictions, there is positive probability that the

error term will translate the incidence date past the observed failure/censoring calendar

date.

Definition 3.3.1. (Type 1 and Type 2 Misclassification) In the context of inci-

dent/prevalent cohort studies, with the inclusion of measurement error in the initial event

time, a type 1 misclassification error (MC-1) of subject i occurs when the subject is in-

correctly excluded from the study due to the effect of the measurement error. A type 2

misclassification error (MC-2) occurs when the subject is incorrectly included in the study.

For the classical measurement error model, if the observed incidence date is to the right

of the failure/censoring date, even though the true date falls before failure/censoring, a

subject in the initial disease-free cohort would not be included in the cohort of incident

cases. This would result in an MC-1 error. Under the Berkson measurement error model,

if the true incidence date falls to the right of the observed failure date and the observed

incidence date before, then the failure event would be incorrectly associated with “the
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disease”. Likewise, if the true incidence date falls to the right of the censoring date. Both

cases in the Berkson measurement error model are examples of MC-2 errors. In figure 3.2,

this scenario corresponds to a subject transitioning from the pre-incident stage directly

to the post-incident failure/censoring stage (bypassing the second stage).

When the failure time data are both left-truncated and right-censored, the inclusion

of measurement error may affect both the failure/censoring times as well as the observed

truncation times. Due to this added effect, in section 3.4, we examine the scenario where

measurement error is included in left-truncated right-censored failure time data in the

context of a prevalent cohort study.

3.4 Effects of Measurement Error in Prevalent Cohort Studies

In a prevalent cohort study with follow-up, we model the uncertainty in the failure time

data by an additive error term between the observed onset date and the true (unobserved)

onset date. Let V0i, i ∈ {1, 2, ..., n} be the true onset dates for subjects in the prevalent

cohort study.

Then the classical measurement error model has the form:

min(T cal
i , Ccal

i )− U0i = min(T cal
i , Ccal

i )− (V0i + εi), i ∈ {1, 2, ..., n} (3.5)

and the Berkson measurement error model has the form:

min(T cal
i , Ccal

i )− V0i = min(T cal
i , Ccal

i )− (U0i + εi), i ∈ {1, 2, ..., n} (3.6)

where we assume U0i ≤ R, and min(T cal
i , Ccal

i ) − U0i > R, ∀i ∈ {1, 2, ..., n}. Figure 3.3
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represents the ways in which the error term can translate the onset time either positively

or negatively. Under the classical measurement error model, the upper line in 3.3, in cases

(a), (b1) and (b2), represents the true failure time lengths while the line below represents

the observed failure time lengths. Under the Berkson measurement error model, the

referencing is exchanged. As with the incident cohort study, we examine the statistical

implications of various error assumptions on prevalent cohort failure time data.

Figure 3.3 – A graphical representation of prevalent cohort failure times where the onset dates

are affected by the presence of measurement error (denoted by arrows). In case (a), the measure-

ment error translates the onset date to the left. In case (b1), the measurement error translates

the onset date to the right, prior to prevalence day. In case (b2), the measurement error trans-

lates the onset date to the right, past prevalence day.

First, we examine the implications of case (a) where there is a negative translation

and case (b1) where the translated onset date occurs prior to R. We assume in both

cases, for simplicity, that there is no screening error on prevalence day, as the a priori

assumption of the error terms implies that V0i < R for subjects included in the prevalent

cohort. When εi is a non-positive random variable, i ∈ {1, 2, ..., n}, under the classical

measurement error model, V0i > U0i (i.e. the observed onset date occurs prior to the true
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onset date). Since subject i is in the prevalent cohort and it is assumed that V0i < R,

then V0i is interval-censored by (U0i, R). Under the Berkson measurement error model,

this error assumption implies that V0i < U0i (i.e. the true onset date is left-censored by

the observed onset date).

If subject i is in the prevalent cohort and V0i < R, when εi is a non-negative random

variable bounded above by R−V0i, i ∈ {1, 2, ..., n}, then under the classical measurement

error model, V0i is left-censored by U0i. When εi is a non-negative random variable

bounded above by R − U0i, i ∈ {1, 2, ..., n}, then under the Berkson measurement error

model, V0i is interval-censored by (U0i, R). When it is only known that εi is bounded

above by R − U0i, i ∈ {1, 2, ..., n} under the classical measurement error model or that

εi is bounded above by R − V0i, i ∈ {1, 2, ..., n} under the Berkson measurement error

model, it can only be concluded that V0i is left-censored by R. Under these two error

assumptions, it is not possible to further specify the location of V0i as the error term

is unobserved and it is not known whether the error translated the original onset date

forwards or backwards.

For case (b2), in figure 3.3, when the error term translates the onset date past preva-

lence day, we must also consider the result of the screening test conducted on prevalence

day. Suppose εi is a non-negative random variable and bounded below by R − U0i, with

U0i < R and V0i = U0i + εi > R for some i ∈ {1, 2, ..., n}. If the support of the er-

ror term is known a priori, then under the assumption of no possible screening error,

subject i would be excluded from the prevalent cohort as they did not test positive on

date R. Suppose εi is a non-negative random variable bounded below by R − V0i, with

V0i < R and U0i = V0i + εi > R for some i ∈ {1, 2, ..., n}. For subjects included in the

prevalent cohort, we set their backward recurrence times to 0 and their failure/censoring
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Figure 3.4 – A three stage transition diagram for subjects in a prevalent cohort study. Transi-

tions can occur between the unobserved prevalence stage to the observed prevalence stage, from

the prevalence stage to the failure/censoring stage and from the unobserved prevalence stage to

the failure/censoring stage.

times to their respective forward recurrence times.

In the case where εi has unbounded positive and negative support, and it is not

known a priori whether V0i occurs before or after R, we must allow for the possibility of a

screening error on prevalence day. If the test result on date R is positive, and V0i > R, the

recalled onset date and the positive test result would be incorrectly associated with “the

disease”. Subject i should not be included in the prevalent cohort (i.e. an MC-2 error). If

the test result is negative, and V0i < R, subject i would be incorrectly excluded from the

prevalent cohort (i.e. an MC-1 error). We provide a transition diagram in figure 3.4 to

graphically represent how a given subject can transition from the unobserved prevalence

stage to the failure/censoring stage depending on the result of the prevalence day test.

In figure 3.4, when the test result on prevalence day is positive, irrespective of whether

the subject should be included in the prevalent cohort, the subject would transition

from the unobserved prevalence stage to the observed prevalence stage and then to the
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failure/censoring stage. When the test result is negative, the subject is excluded from the

prevalent cohort and would transition directly from the unobserved prevalence stage to

the failure/censoring stage. In Chapter 4, we present different ways in which uncertainty

in the onset date may be included in a survival model and in Chapter 5, we examine the

effect of measurement error on estimated survival under various parametric models in the

prevalent cohort study setting.
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Chapter 4

Survival Modelling with Uncertainty in the

Reported Onset Time

We present three different methods that model the various forms of uncertainty discussed

in Chapter 3. In Section 4.1, we examine the parametric approach of Zhong and Cook for

left-truncated right-censored failure time data under a classical measurement error model

[46]. In Section 4.2, we review the general theory behind convolution/deconvolution

operations. We apply this theory in conjunction with kernel density estimation techniques

to obtain a non-parametric density estimator for the density of the underlying failure time

random variable in a classical measurement error model. In the final section, we present

the numerical density estimation method of Sun which assumes the failure time data is

doubly interval-censored and left-truncated [25] [38].
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4.1 Parametric Maximum Likelihood Estimation

In this section, we review maximum likelihood methods in survival analysis for right-

censored left-truncated failure time data. We carefully examine the approach developed

by Zhong and Cook in [46], in the presence of measurement error for left-truncated right-

censored failure time data.

Let Ti, i ∈ {1, 2, ..., n}, be independently and identically distributed failure times with

parametric probability density function f(t;θ) and survivor function ST (t;θ), where θ

is a p-dimensional vector of parameters. Typical parametric families of failure time

distributions in survival analysis include the exponential, Weibull, log-normal, generalized

gamma, log-logistic or generalized F [23]. When all the Ti are observed and there is no

censoring, the maximum likelihood estimator θ̂ maximizes the likelihood function:

L(θ|(t1, ..., tn)) =
n∏

i=1

f(ti|θ) (4.1)

When a subset of the Ti, i ∈ {1, 2, ..., n}, are right-censored, this classic likelihood must

be modified. Let Ci, i ∈ {1, 2, ..., n} be i.i.d. censoring time random variables with para-

metric density function g(t;ψ) and survivor function SC(t;ψ). We observe the pairs

(Xi = mini(Ti, Ci), δi), i ∈ {1, 2, ..., n}, where δi is the failure/censoring indicator func-

tion. To derive the likelihood function for θ, we consider the contributions to the full

likelihood based on whether the failure time t was observed or censored [23]. For an ob-

served failure time, X = t, δ = 1, the contribution to the likelihood is, essentially, given

by:

P (X ∈ [t, t+Δt), δ = 1) = P (T ∈ [t, t+Δt), C ≥ t)
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which by random censoring, is approximately equal to

f(t;θ)SC(t;ψ)Δt

Similarly, for an observed censored failure time, X = t, δ = 0, the contribution to the

likelihood is essentially given by:

P (X ∈ [t, t+Δt), δ = 0) = P (C ∈ [t, t+Δt), T > t)

which, by random censoring, is approximately equal to

g(t;ψ)ST (t;θ)Δt.

Now divide throughout by Δt and let Δt → 0. Then, under the further assumption of

non-informative censoring (i.e. θ and ψ share no common parameters), the maximum

likelihood estimator θ̂ maximizes the likelihood function:

L(θ|(X, δ)) =
n∏

i=1

f(xi|θ)δiST (xi|θ)1−δi (4.2)

In this parametric setting, by the invariance of MLEs, Ŝ(t|θ) = S(t|θ̂), f̂(t|θ) = f(t|θ̂)

and λ̂(t|θ) = λ(t|θ̂) [23].

In a prevalent cohort study setting, we adjust 4.2 for both left-truncated and right-

censored failure time data. We follow the approach of Wang in [42], in a parametric

setting. This requires virtually no modification of Wang’s non-parametric derivation

of the likelihood. Let Xi be the observed failure time, Ci be the potential censoring

time and Wi be the left-truncation time for subject i, i ∈ {1, 2, ..., n}. Let H(·, ·;ψ) be

the bivariate cumulative distribution function of (Wi, Ci) where ψ is the p-dimensional

vector of parameters indexing the distribution of the random variable Ci. We assume

P (Wi < Ci) = 1 (i.e. subjects that are not yet under follow-up cannot be lost to follow-

up), Xi is left-truncated by Wi and Xi is independent of (Wi, Ci) ∀i ∈ {1, 2, .., n}. We
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construct the full likelihood based on the observed failure/censoring and truncation times.

For an observed failure time y and truncation time w, the contribution to the likelihood

is, essentially, given by:

P (X ∈ [y, y + dy),W ∈ [w,w + dw), δ = 1|X > W ;θ,ψ)

= P (X ∈ [y, y + dy),W ∈ [w,w + dw), C > y|X > W ;θ,ψ)

≈ f(y;θ)
∫∞
y

dH(w, u;ψ)

P (X > W ;θ)
dydwI(δ = 1)I(y > w)

For an observed censored failure time y and truncation time w, the contribution to the

likelihood is, essentially, given by:

P (C ∈ [y, y + dy),Wi ∈ [w,w + dw), δ = 0|X > W ;θ,ψ)

= P (C ∈ [y, y + dy),Wi ∈ [w,w + dw), X > y|X > W ;θ,ψ)

≈ S(y;θ)dH(w, y;ψ)

P (X > W ;θ)
dydwI(δ = 0)I(y > w)

Divide throughout by dydw and let dy → 0 and dw → 0. The maximum likelihood

estimator (θ̂, ψ̂) maximizes the likelihood function:

L(θ,ψ) =
n∏

i=1

1

P (Xi > Wi;θ)
f(yi;θ)

δiS(yi;θ)
1−δidH(wi, yi;ψ)1−δi

(∫ ∞

yi

dH(wi, y;ψ)

)δi

(4.3)

The likelihood in 4.3 can then be decomposed as the product of two functions, denoted

by L1 and L2, by multiplying and dividing by the survivor function evaluated at the

observed truncation time [42]:

L1 =
n∏

i=1

f(yi;θ)
δiS(yi;θ)

1−δi

S(wi;θ)
(4.4)

L2 =
n∏

i=1

1

P (Xi > Wi;θ)
S(wi;θ)dH(wi, yi;ψ)1−δi

(∫ ∞

yi

dH(wi, u;ψ)

)δi

(4.5)
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In [46], Zhong and Cook also stated a parametric likelihood function for left-truncated

right-censored failure time data without the inclusion of measurement error. Without first

writing down the full likelihood, they claimed that 4.4 is proportional to the conditional

likelihood for θ, conditional on the observed onset dates. However, as pointed out by

Wang, 4.4 cannot be interpreted as a conditional likleihood since 4.5 is dependent on

the observed failure times yi. In the nonparametric setting of [42], Wang showed that

the MLE of L1 with respect to S(t) is equivalent to the MLE obtained from the full

likelihood, even though the term S(t) appears in L2. In the “working data” case, in which

all censoring times are observed even for subjects who have failed, 4.4 is a conditional

likelihood. Making use of this observation, Wang justifies maximization of only L1 with

respect to S(t) nonparametrically. The invocation of this so-called working dataset is

not of course necessary for the validity of Wang’s argument. Now in the parametric

setting, without measurement error, the maximization of L1 is not sufficient to obtain

the MLE of θ. This can be seen, since the θ parameters appear in both the prevalent

cohort inclusion probability and survivor function terms of 4.5. Moreover, without the

assumption of joint non-informativeness of the truncation and censoring times, the MLE

of ψ may yield information on the estimation of θ. Zhong and Cook appear to use L1 in

the same context as Wang by supposing maximization of L1, with respect to θ, provides a

maximum likelihood estimator. L1 in this setting is merely some function of θ. Certainly,

the maximizer of L1 with respect to θ is not the maximizer of the full likelihood as is the

case in the non-parametric setting.

We turn now to the measurement error model. The issues raised above remain for this

model. For the sake of completeness, we present the derivation of what Zhong and Cook

call the “correct conditional likelihood” for left-truncated right-censored failure time data
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when there is uncertainty in the onset dates since the derivation, nevertheless, suggests

a possible fruitful approach to the problem of modelling uncertainty in the date of onset.

We then derive what we assert to be the full likelihood in the presence of measurement

error in the onset dates.

Let the observed failure time Ti = V1i − U0i, i ∈ {1, 2, ..., n} where V1i is the calendar

date of failure and U0i is the reported date of onset. Let R be the fixed prevalence

date. Let V0i be the true random onset date with marginal density f0(·) and assume that

A < U0i < R and A < V0i < R for i ∈ {1, 2, ..., n} for some constant lower bound A. As

in Chapter 3, we assume the classical measurement error model for the observed onset

date U0i and the true onset date V0i:

U0i = V0i + εi (4.6)

where εi ∼i.i.d N(0, σ2) is the random measurement error. Since A < U0i < R, this

implies that

A− V0i < εi < R− V0i

and thus the random error term εi has a normal distribution truncated to the right by

R−V0i and to the left by A−V0i. By conditioning on V0i = v0i, it follows that U0i
d
= εi+v0i.

By applying the standard density transformation formula for a single random variable,

the density function of the observed onset time, conditional on V0i = v0i and A ≤ U0i ≤ R,

is derived as follows:

g(u0i|V0i ∈ [v0i, v0i + dv0i), A ≤ U0i ≤ R; σ2)du0idv0i

≈ P(U0i − V0i ∈ [u0i − v0i, u0i − v0i + du0i − dv0i); σ
2)

P(V0i ∈ [v0i, v0i + dv0i), A ≤ U0i ≤ R; σ2)

=
P(εi ∈ [u0i − v0i, u0i − v0i + du0i − dv0i); σ

2)

P(V0 ∈ [v0i, v0i + dv0i), A ≤ U0i ≤ R; σ2)
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≈ fε(u0i − v0i; σ
2)

P(U0i − V0i ≤ R− v0i; σ2)− P(U0i − V0i ≤ A− v0i; σ2)
du0idv0i

Dividing through both sides by du0idv0i and letting them tend to 0, the density of the

observed onset date, conditional on the unobserved true onset date, is given by:

g(u0i|v0i, A ≤ U0i ≤ R; σ2) =
fε(u0i − v0i; σ

2)

Fε(R− v0i; σ2)− Fε(A− v0i; σ2)
(4.7)

where fε and Fε are the pdf and cdf of the normal distribution with mean 0 and variance

σ2.

To obtain the maximum likelihood estimator for θ, Zhong and Cook derived the so-

called “correct conditional likelihood” function based on the calendar date of failure,

conditional on the reported onset date U0i. For subject i observed to fail at v1i, the

contribution to the conditional likelihood is given by:

P(V1i ∈ [v1i, v1i + dv1i), δi = 1|V1i > R,U0i ∈ [u0i, u0i + du0i), A ≤ V0i ≤ R;θ, σ2)

=
P(V1i ∈ [v1i, v1i + dv1i), U0i ∈ [u0i, u0i + du0i), A ≤ V0i ≤ R;θ, σ2)

P(V1i > R,U0i ∈ [u0i, u0i + du0i), A ≤ V0i ≤ R;θ, σ2)
I(δi = 1)I(v1i > R)

=

∫ R

A
P(V1i − V0i ∈ [v1i − v0, v1i − v0 + dv1i), U0i ∈ [u0i, u0i + du0i);θ, σ

2|V0i = v0)f0(v0)dv0∫ R

A
P(V1i − V0i > R− v0, U0i ∈ [u0i, u0i + du0i)|V0i = v0;θ, σ2)f0(v0)dv0

×

I(δi = 1)I(v1i > R)

which reduces to

=

∫ R

A
fT (v1i − v0;θ)g(u0i|v0; σ2)f0(v0)dv0∫ R

A
ST (R− v0;θ)g(u0i|v0; σ2)f0(v0)dv0

dv1idu0iI(δi = 1)I(v1i > R) (4.8)

Similarly, if subject i is censored at v1i, the contribution to the conditional likelihood

follows from the above derivation by replacing the expression V1i ∈ [v1i, v1i + dv1i) with

V1i > v1i. Thus, we obtain:

∫ R

A
ST (v1i − v0;θ)g(u0i|v0; σ2)f0(v0)dv0∫ R

A
ST (R− v0;θ)g(u0i|v0; σ2)f0(v0)dv0

dv1idu0iI(δi = 0)I(v1i > R) (4.9)
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Dividing through 4.8 and 4.9 by dv1i and du0i and letting them tend to 0, the likelihood

for θ based only on the observed failure times, conditional on the observed onset times,

is the following:

LC(θ, σ
2) =

n∏
i=1

(∫ R

A
fT (v1i − v0;θ)g(u0i|v0; σ2)f0(v0)dv0∫ R

A
ST (R− v0;θ)g(u0i|v0; σ2)f0(v0)dv0

)δi

×
(∫ R

A
ST (v1i − v0;θ)g(u0i|v0; σ2)f0(v0)dv0∫ R

A
ST (R− v0;θ)g(u0i|v0; σ2)f0(v0)dv0

)1−δi
(4.10)

Based on the above arguments, as in the case without measurement error, the function

defined in 4.10 cannot be interpreted as a conditional likelihood for θ. Since the “correct”

unconditional full likelihood of Zhong and Cook is a function of 4.10 and also does not

account for the censoring/truncation time random variables, we disregard its derivation.

Therefore, we derive the unconditional full likelihood function based on the observed

failure, censoring and truncation times with the inclusion of measurement error in the

reported onset date.

Let H(·, ·;ψ, σ2) denote the bivariate distribution function of (U0i, Ci) for all i ∈

{1, 2, ..., n} indexed by the parameters ψ and σ2. Let fC(·;ψ) and SC(·;ψ) denote the

respective density and survivor functions of Ci, i ∈ {1, 2, ..., n}. We assume the failure

time Ti = V1i−V0i is independent of (U0i, Ci) for all i ∈ {1, 2, ..., n}. As in the derivation

of 4.3, we consider the probabilistic contributions to the likelihood function based on the

observed failure/censoring and truncation times. For subject i observed to fail at the

calendar date v1i, the contribution to the likelihood is given by:

P(V1i ∈ [v1i, v1i + dv1i), U0i ∈ [u0i, u0i + du0i), Ci > V1i − V0i, δi = 1|V1i > R;θ,ψ, σ2)

=
P(V1i ∈ [v1i, v1i + dv1i), U0i ∈ [u0i, u0i + du0i), Ci > V1i − V0i, V1i > R;θ,ψ, σ2)

P(V1i > R;θ,ψ, σ2)
I(δi = 1)I(v1i > R)
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=

∫ R

A
P(V1i ∈ [v1i, v1i + dv1i), U0i ∈ [u0i, u0i + du0i), Ci > V1i − v0|V0i = v0;θ,ψ, σ2)f0(v0)dv0∫ R

A
P(V1i > R|V0i = v0;θ,ψ, σ2)f0(v0)dv0

×

I(δi = 1)I(v1i > R)

which simplifies to

=

∫ R

A
fT (v1i − v0;θ)

∫∞
v1i−v0

dH(u0i, w;ψ, σ2)dwf0(v0)dv0∫ R

A
ST (R− v0;θ)f0(v0)dv0

dv1idu0iI(δi = 1)I(v1i > R)

Similarly, for subject i censored at v1i, the contribution to the likelihood is given by:

P(V1i > v1i, U0i ∈ [u0i, u0i+ du0i), Ci ∈ [v1i−V0i, v1i−V0i+ dv1i), δi = 0|V1i > R;θ,ψ, σ2)

which reduces to

=

∫ R

A
ST (v1i − v0;θ)dH(u0i, v1 − v0;ψ, σ2)f0(v0)dv0∫ R

A
ST (R− v0;θ)f0(v0)dv0

dv1idu0iI(δi = 0)I(v1i > R)

Dividing through by dv1i and du0i and letting them tend to 0, the likelihood for (θ,ψ),

based on the observed failure/censoring and truncation times, is the following:

LF (θ,ψ) =
n∏

i=1

(∫ R

A
fT (v1i − v0;θ)

∫∞
v1i−v0

dH(u0i, w;ψ, σ2)dwf0(v0)dv0∫ R

A
ST (R− v0;θ)f0(v0)dv0

)δi

×
(∫ R

A
ST (v1i − v0;θ)dH(u0i, v1i − v0;ψ, σ2)f0(v0)dv0∫ R

A
ST (R− v0;θ)f0(v0)dv0

)1−δi
(4.11)

Unlike the case without measurement error, there is no obvious factorization of 4.11

into a product L1L2. Hence, based on this observation, there is no LC(θ, σ
2) function as

proposed by Zhong and Cook. From a preliminary examination of 4.11, it is clear that

analytical maximization is infeasible and numerical procedures are required to obtain an

estimator for the θ parameters. An EM algorithm may provide another approach to
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estimate the true underlying parameters by augmenting the likelihood with the unob-

served exact onset dates as missing data. However, it is not clear how to evaluate the

expectation in this algorithm. Given the complexity of the parametric estimation prob-

lem, obtaining a non-parametric estimator for the survivor function ST from 4.11 appears

even more challenging. Due to the difficulty of this optimization, we examine a simpler

non-parametric modelling approach in the context of a deconvolution problem in section

4.2.

4.2 Non-Parametric Density Estimation

Given the classical measurement error model of 3.1, if the error term ε is assumed

to be independent of the true unobserved random variable Z2, then the following rela-

tionship holds between their respective density functions: fZ1 = fZ2 ∗ fε [31]. In turn,

to estimate fZ2 based on the observed data Z1, and an assumed known error density fε,

this suggests a deconvolution estimation problem [12]. In this section, we examine the

standard deconvolution procedure as presented by Delaigle in [12] and describe how the

procedure can be adapted for left-truncated right-censored failure time data based on the

equations 3.3 and 3.5.

Let Ti, i ∈ {1, 2, ..., n} be independently and identically distributed failure time ran-

dom variables with non-parametric density function fT (·). When there is no censoring

and all Ti are fully observed, the density fT (·) can be estimated using a kernel density es-

timator. The kernel density estimator is an average of smoothing functions (i.e. kernels)
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evaluated at predefined points [35]. The kernel density estimator for fT is given by:

f̂T (x) =
1

nh

n∑
i=1

K

(
x− Ti

h

)
(4.12)

where h is a constant tuning parameter. When the random variable Ti is observed with

error, we consider the following classical measurement error model:

Yi = Ti + εi (4.13)

where the Yis are the observed failure times, Ti ∼i.i.d fT (·) are the true underlying failure

times and the εis are i.i.d with known parametric density fε(·;θ). As shown in [12] and

[31], the authors derived a non-parametric estimator of fT (·) using the properties of the

convolution operator ∗ and the Fourier transform F . Given two independent random

variables X1 and X2 with respective densities f1, f2, the density of X1 + X2 is defined

through the convolution operator between the two density functions [31]:

(f1 ∗ f2)(x) =
∫ ∞

−∞
f1(w)f2(x− w)dw (4.14)

The Fourier transform of a random variable X is the characteristic function of the random

variable [7]. Therefore, as is well known,

F(f1 ∗ f2)(s) = F(f1)(s)×F(f2)(s)

Let f̂Y (x) be the kernel density estimator based on the i.i.d observed failure times Yi,

of 4.13. Through the use of the operations described above, we derive a non-parametric

estimator for the underlying (“true”) p.d.f. fT , based on the measurement error model

4.13. Thus,

f̂Y (x) = fT (x) ∗ fε(x;θ)

implies

F(f̂Y )(s) = F(fT )(s)×F(fε)(s;θ).
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That is,

F(fT )(s) =
F(f̂Y )(s)

F(fε)(s;θ)

leading to the estimator

f̂T (x) = F−1

(
F(f̂Y )(s)

F(fε)(s;θ)

)
. (4.15)

For the estimator in 4.15 to be well defined, we assume that F(fε)(s;θ) = 0 only on a

set of probability 0, for all θ in the parameter space.

When a subset of all the observed failure times Yi is right-censored, we can adjust the

method described above to obtain a non-parametric density estimator for fT . Given that

the Yis are right-censored, we consider the following measurement error model:

Yi = min(Ti, Ci) = min(T ∗
i , C

∗
i ) + εi = min(T ∗

i + εi, C
∗
i + εi) (4.16)

where Ti, Ci are the observed failure/censoring times and T ∗
i , C

∗
i are the true failure/censoring

times, respectively, since as discussed in Chapter 3, the censoring indicator δi is assumed

to be unaffected by measurement error.

From 4.16, when a subset of the observed failure times are right-censored, as in the

non-censored case, we first estimate the density of the contaminated failure time random

variable using the observed contaminated right-censored failure time data and then apply

the deconvolution operation to remove the contamination.

Observe that the estimator 4.12 can be interpreted as a simple weighted average of

kernels with the weight of 1
n
for each observed failure time Ti. When a subset of all Ti

are right-censored, we need to adjust the weights in 4.12 to account for the fact that not

all event times are failure times. Given the observed data Yi = mini(T
∗
i + εi, C

∗
i + εi),

i ∈ {1, 2, ..., n}, a natural approach is to use weights that are dependent on the “jump
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sizes” of the Kaplan-Meier estimator of the survivor function:

Ŝ(t) =
∏
i:ti≤t

(
1− di

ri

)
(4.17)

where t1 < t2 < ... < tm are the observed (with error) distinct failure times, ri is the

number of individuals at risk up to time ti and di are the number of individuals who

fail at time ti. Thus, for ordered right-censored failure time data Yi = mini(Ti, Ci), i ∈

{1, 2, ..., n}, we define the weights of the kernel density estimator as follows:

sj =

⎧⎪⎪⎨
⎪⎪⎩

Ŝ(Yj)− Ŝ(Yj+1), if j = 1, ..., n− 1

Ŝ(Yn), if j = n.

(4.18)

Since the Kaplan-Meier estimator is a non-increasing piecewise constant function, the

weights in 4.18 are non-zero if and only if at least one failure is observed to occur between

the sequential observations of Yj for j ∈ {1, 2, ..., n − 1}. This choice of weights ensures

the kernel density estimator is only fit to the failure time data with a non-zero weight

based on whether a failure was actually observed. Note that if the final observation, Yn, is

censored, the Kaplan-Meier estimator evaluated at that point, Ŝ(Yn), is not defined. To

ensure the weighted kernel density estimator for the contaminated failure time random

variable T ∗
i + εi is well-defined, we assume for simplicity in all further discussion that the

final observation of Yn is a failure time. Using the weights of 4.18, we define the weighted

kernel density estimator for the density of T ∗
i + εi by:

f̂T ∗+ε(x) =
1

h

n∑
j=1

sjK

(
x− Yj

h

)
. (4.19)

where Yj, j ∈ {1, 2, ..., n} are the ordered observed failure/censoring times [3]. For a

discussion on the choice of kernel function and the optimal choice of bandwidth, see [3]

[34]. We do not consider these topics in this thesis as the main focus is the development of

the estimation methodology. Using this estimator for the density of T ∗
i +εi, we substitute
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this expression into equation 4.15 in place of f̂Y to obtain a non-parametric density

estimator for fT ∗ .

In a prevalent cohort study setting, using the model given in 3.5, where the observed

failure times are left-truncated and right-censored, we further adjust the kernel density

estimator given in 4.19 by replacing the weights provided by the Kaplan-Meier estimator

with those of the Lynden-Bell estimator:

Ŝ(t) =
∏

i:t(i)≤t

(
1− γ1i

γ2i

)
(4.20)

where t(1) < t(2) < ... < t(m) are the observed failure times, γ1i is the number of individuals

observed to fail at time t(i) and γ2i = #{j : wj ≤ t(i) ≤ yj} for i ∈ {1, 2, ..., n} where

wj is the truncation time and yj is the observed failure/censoring time (i.e. γ2i is the

number of subjects under follow-up at risk of failing up to time yj) [28]. That is, in

4.18, we exchange the Kaplan-Meier estimator with the Lynden-Bell estimator. As in

the right-censored case, we first estimate the density of the contaminated failure time

random variable Ti + εi using instead the Lynden-Bell-weighted kernel density estimator

and then apply the deconvolution procedure as described in 4.15. Since the underlying

failure time random variable Ti is non-negative, the kernel density estimator must have

non-negative support. In order to accomodate this constraint, we may apply a simple

boundary correction at 0 as given in [22]. Kernel boundary corrections use linear or

quadratic approximations of the given kernel, K, near the boundary while maintaining

the integration to 1 property of the resulting density estimator. An example of a linearly

corrected boundary kernel is the following:

KL(x) =
(a2(p)− a1(p))K(x)

a0(p)a2(p)− a21(p)
(4.21)

where K(·) is the uncorrected kernel and ajl (p) =
∫ p

−1
xlK(j)(x)dx. For a listing of various

boundary corrected kernels and their respective properties, see [22].
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Now, as discussed in Chapter 3 for incident and prevalent cohort studies, assump-

tions on the support of the error distribution relating the observed/unobserved onset

date are equivalent to assumptions on the type of censoring of the observed onset date.

For example, the truncated Normal error distribution assumed by Zhong and Cook im-

plies in a prevalent cohort setting that all observed incidence dates are left-censored by

prevalence day. In Section 4.3, in the setting of a prevalent cohort study, we exam-

ine a non-parametric method used to estimate the cdf of the underlying failure time

random variable when the initial event times and terminating event times may both be

interval-censored. This method suggests an alternative approach to survival analysis with

uncertain initiation dates.

4.3 A Non-parametric Discrete Weight Likelihood Method

In [40], Turnbull developed a non-parametric estimation algorithm for the survivor

function of i.i.d. failure time random variables subject to arbitrary truncation and cen-

soring. That is, he assumed the failure time Ti is truncated by the interval Bi (i.e.

Ti is unobserved if Ti �∈ Bi) and is interval-censored by the interval Ai ⊂ Bi for all

i ∈ {1, 2, ..., n}. He showed that by discretizing the failure time random variables, it

is possible to estimate the survivor function through a so-called “self-consistency” al-

gorithm. As in [40], we define an unknown parameter/function θ as self-consistent if

θ = π(θ) for some function π and we define a self-consistent estimate of θ as any so-

lution to the equation θ = π(θ). A self-consistent algorithm attempts to find the fixed

point by recursively refining the estimate of θ through an iterative updating procedure.

Specifically, if θk is an estimate of θ at the kth iteration, we obtain the updated estimate,
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denoted by θk+1, through π such that θk+1 = π(θk).

Now, for a general estimation problem, the statistical importance of a fixed point

solution for a given function π is unclear. Moreover, the selection of the function π,

such that the resulting fixed point estimator has meaningful statistical properties, is not

obvious. In [40], Turnbull remarked that his self-consistency algorithm can be regarded

as a special example of the well known EM algorithm. Turnbull used the “complete

dataset” principle of the EM algorithm and defined two indicator functions in which

one was observable and the other unobservable such that both their expectations were

observable. Based on the observed expectations, Turnbull derived an update function π.

He subsequently showed that solving the equation θ = π(θ) was equivalent to finding the

maximum likelihood estimator for abitrarily censored and truncated failure time random

variables. Thus, the use of Turnbull’s self-consistency estimation algorithm is justified

as it provides an easily implementable method of obtaining the maximum likelihood

estimator.

The title of Turnbull’s article (“The Empirical distribution Function with Arbitrarily

Grouped, Censored and Truncated Data”) from [40] is perhaps misleading. The proposed

self-consistency algorithm only applies to failure time data in which the terminating event

is interval-censored and interval-truncated. In [10], Lagakos and De Gruttola applied

Turnbull’s self-consistency algorithm to estimate the survivor function for failure time

data that are doubly interval-censored (i.e. the onset and failure dates are both interval-

censored). In [38], Sun adapted Turnbull’s self-consistency algorithm for failure time data

that are both doubly interval-censored and left-truncated. Lagakos and De Gruttola,

and Sun, derived update functions π, for their respective types of failure time data, and

used Turnbull’s self-consistency algorithm to obtain estimates for the unknown survivor
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functions. As in [40], for Lagakos and De Gruttola, and Sun, the choice of π was most

likely motivated by the derivation of the respective likelihood score equations.

In Chapter 3, in a prevalent cohort study setting, we showed that specific error dis-

tribution assumptions on the onset dates in 3.5 and 3.6 are equivalent to the failure time

data being left-truncated and doubly interval-censored. Thus, it follows that Sun’s adap-

tation of Turnbull’s self-consistency algorithm is directly applicable to this specific type

of failure time data. In this section, we review how Sun adapted Turnbull’s estimation

procedure by first presenting the algorithm in full and then validating its use through the

derivation of the likelihood score equations.

Let V0i be the calendar date of disease onset, V1i be the calendar date of the failure

event, Si = V1i − V0i be the survival time of interest, and let F (s) and f(s) and H∗
i (x)

and h∗
i (x) be the cumulative distribution functions and corresponding density functions

of Si and V0i respectively for i ∈ {1, 2, ..., n}. We assume that Si is independent of V0i

(i.e. survival is independent of the date of onset, that is, there is no “cohort effect” on

survival) and that V0i, V1i and Si take discrete values. For left-truncated doubly interval-

censored failure time data, we assume the end event date V1i is truncated on Bi = [B1
i , B

2
i ]

(i.e. if V1i �∈ Bi then the subject is unobserved) where for non-truncated failure times,

we observe V0i in the interval [Ei, Ri] and V1i in the interval Ai = [Li, Ui] ⊂ Bi. Under

this setup, we derive the conditional likelihood (i.e. conditional on the inclusion in the

prevalent cohort) based on the probabilistic contributions of observing V0i in [Ei, Ri] and

V1i in Ai. Let hi(x) =
h∗
i (x)∑

x∈[Ei,Ri]
h∗
i (x)

denote the conditional probability density function

of the onset times, conditional on V0i ∈ [Ei, Ri]. For subject i observed to fail in Ai with

observed onset in [Ei, Ri], the contribution to the conditional likelihood is given by:
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P(V1i ∈ [Li, Ui], V0i ∈ [Ei, Ri]|V1i ∈ [B1
i , B

2
i ])

=
P(V1i ∈ [Li, Ui], V0i ∈ [Ei, Ri], V1i ∈ [B1

i , B
2
i ])

P(V1i ∈ [B1
i , B

2
i ])

=

∑
x∈[Ei,Ri]

P(V1i ∈ [Li, Ui]|V1i = x)hi(x)∑
x∈[Ei,Ri]

P(V1i ∈ [B1
i , B

2
i ]|V1i = x)hi(x)

=

∑
x∈[Ei,Ri]

P(V1i ∈ [Li − x, Ui − x])hi(x)∑
x∈[Ei,Ri]

P(V1i ∈ [B1
i − x,B2

i − x])hi(x)

=

∑
x∈[Ei,Ri]

(F (Ui − x)− F ((Li − x)−))hi(x)∑
x∈[Ei,Ri]

(F (B2
i − x)− F ((B1

i − x)−))hi(x)

Therefore, because of between-subject independence, the conditional likelihood is given

by:

L =
n∏

i=1

∑
x∈[Ei,Ri]

(F (Ui − x)− F ((Li − x)−))hi(x)∑
x∈[Ei,Ri]

(F (B2
i − x)− F ((B1

i − x)−))hi(x)
(4.22)

To apply Turnbull’s self-consistency algorithm, we assume the hi(x) are known a priori

and without loss of generality assume that the failure time data are centered such that

Ei = E for some constant E, ∀i ∈ {1, 2, ..., n}. Under these assumptions, the observed

data have the form: {[E,Ri], Ai = [Li, Ui], Bi = [B1
i , B

2
i ]} for i ∈ {1, 2, ..., n}. To simplify

4.22, let u0 = 0 < u1 < u2 < ... < um denote the distinct finite ordered values of

{0, Li−Ri, Ui−E, ...}, ∀i ∈ {1, 2, ..., n}. These ordered values represent the collection of

all the distinct smallest/largest possible finite failure time intervals for a given dataset.

Figure 4.1 is a graphical representation of the possible values for a particular subject.

Using this discretization, it follows that 4.22 only depends on F evaluated at the uj values

and not on values between them [40]. Since the observation of the discretized values

depends on whether they are observed in particular intervals, let αij be the indicator

function of the event uj ∈ [Li −Ri, Ui −E] and βij be the indicator function of the event

uj ∈ [B1
i −Ri, B

2
i −E] with fj = F (uj)− F (uj−1). Using these functions, the likelihood
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Figure 4.1 – Representation of values (Ui − Ei and Li − Ri) for subject i in Sun’s self-

consistency algorithm. Sun’s algorithm uses the collection of these values over all subjects

as the discrete support of the probability mass function of the underlying failure time

random variable.

in 4.22 simplifies to

L =
n∏

i=1

∑m
j=1 αijα

∗
ijfj∑m

j=1 βijβ∗
ijfj

(4.23)

where

α∗
ij =

⎧⎪⎪⎨
⎪⎪⎩

∑
x:x+uj∈Ai

hi(x), if uj ∈ [Li −Ri, Ui − E]

1, otherwise.

(4.24)

and

β∗
ij =

⎧⎪⎪⎨
⎪⎪⎩

∑
x:x+uj∈Bi

hi(x), if uj ∈ [B1
i −Ri, B

2
i − E]

1, otherwise.

(4.25)

In [13], Efron derived a self-consistent estimator for the survivor function for right-

censored failure time data. He used an average of the observed number of failure times
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and the expected number of failure times from the observed right-censored failure times

up to predefined time points to estimate S(t). In [40], Turnbull followed a similar ap-

proach as Efron by using the expected number of observed failure times (denoted by

μij) and the expected number of unobserved failure times (denoted by νij) excluded by

left-truncation to derive an update function π. We define the two expectations below:

μij(f) = Ef (I(uj ∈ [Li −Ri, Ui − E]))

and

νij(f) = Ef (#{unobserved uj ∈ [Li −Ri, Ui − E]}).

Note that due to left-truncation in a prevalent cohort study, the event defined in νij(f),

(i.e. #{unobserved uj ∈ [Li − Ri, Ui − E]}) is unobserved. However, the expectation

of the event has a closed form which can be represented using the observed indicator

functions αij and βij and the discretized quantities given in 4.24 and 4.25. As discussed

above, this particular expectation can be interpreted as an “Expectation” step in the EM

algorithm. The expectations μij(f) and νij(f) simplify to the following:

μij(f) =
αijα

∗
ijfj∑m

j=1 αijα∗
ijfj

and νij(f) =
(1− βijβ

∗
ij)fj∑m

j=1 βijβ∗
ijfj

(4.26)

Using the functions in 4.26, we present the self-consistency algorithm from [38]:

1. Start with a given f = (f1, f2, ..., fm) such that 0 ≤ fj ≤ 1 and
∑m

j=1 fj = 1

2. Calculate μij(f) =
αijα

∗
ijfj∑m

j=1 αijα∗
ijfj

and νij(f) =
(1−βijβ

∗
ij)fj∑m

j=1 βijβ∗
ijfj

3. Calculate πj(f) =
1

M(f)

∑n
i=1 (μij(f) + νij(f)) whereM(f) =

∑n
i=1

∑m
j=1 (μij(f) + νij(f))

4. Update f by the following: fk+1
j = πj(f

k) where fk is the value of f at the kth

iteration of the self-consistency algorithm
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5. Iterate through steps 2-4 until convergence:
∑m

j=1 |fk+1
j − fk

j | < ε for some conver-

gence criterion value ε > 0.

6. After convergence F̂ (s) =
∑

j:uj≤s f̂j

As explained by Turnbull in [40] and Sun in [38], the self-consistency algorithm is equiv-

alent to maximum likelihood estimation. The reasoning is as follows. Using 4.23, the

log-likelihood is given by:

log(L) =
n∑

i=1

(
log

(
m∑
j=1

αijα
∗
ijfj

)
− log

(
m∑
j=1

βijβ
∗
ijfj

))
.

By differentiating with respect to the component fj, we obtain:

∂ log(L)

∂fj
= dj(f) =

n∑
i=1

(
αijα

∗
ij∑m

j=1 αijα∗
ijfj

− βijβ
∗
ij∑m

j=1 βijβ∗
ijfj

)

Observe that we can express πj(f) from step 3 of the algorithm above using the function

dj(f) as follows:

πj(f) =
fj

M(f)

(
dj(f) +

n∑
i=1

1∑m
j=1 βijβ∗

ijfj

)

= fj

(
dj(f)

M(f)
+ 1

)

Thus, f is a maximum likelhood estimate if and only if dj(f) = 0 or dj(f) ≤ 0 with

fj = 0 for each j ∈ {1, 2, ...,m}. The former equality implies that πj(f) = fj which

proves the equivalence between the self-consistency algorithm and maximum likelihood

estimation. In Chapter 5, we use simulated prevalent cohort failure time data with

the inclusion of measurement error to examine the performance of the non-parametric

procedures discussed in this chapter.
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Chapter 5

Simulations

In this chapter, we use simulated prevalent cohort failure time data to assess the impact

of measurement error on the standard survival analysis modelling techniques and to

examine the modelling performance of the non-parametric estimation methods discussed

in Chapter 4. In section 5.1, we describe the simulation procedure used to generate left-

truncated right-censored failure time data with the inclusion of measurement error. In

section 5.2, we examine how the standard Lynden-Bell estimator is affected when it is fit

to left-truncated right-censored failure time data with the inclusion of measurement error

in the reported onset date. We evaluate the modelling performance of the deconvolution

density estimation technique and the numerical estimation procedure of Sun in sections

5.3 and 5.4 respectively.

5.1 Prevalent Cohort Data Simulation Procedure

To generate simulated prevalent cohort failure time data with the inclusion of mea-

surement error, we randomly sampled observations from an onset distribution, a fail-
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ure time distribution, a censoring time distribution and an error distribution. For sim-

plicity, in all simulations in sections 5.2 to 5.4, we assumed a fixed prevalence date of

R = 100. To generate a sample of size n of left-truncated right-censored failure times,

we first sampled a single onset date from either a Unif(95, 100) distribution, or from an

χ ∼ Exponential(0.2) distribution such that R − χ is the sampled onset date. The for-

mer choice of onset distribution corresponds to a stationary onset process and the latter

simulates the effect that subjects are more likely to obtain onset of “the disease” closer

to the calendar date R. We provide a diagram of the exponential onset distribution in

Figure 5.1.

Figure 5.1 – Exponential(0.2) onset density to the left of prevalence day (R = 100)

For each sampled onset date, we sampled a failure time from a Weibull(shp, scl)

distribution and added its value to the sampled onset date. If the sum was greater than
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R, the sampled onset date and failure time were kept in the sample, otherwise, they were

both discarded. The action of retaining or discarding a given sample point depending

on whether the sum surpassed the date R, simulates the effect of left-truncation. We

continued this procedure of sampling an onset date and adding a failure time until we

obtained a sample of n observations in our prevalent cohort.

Given the sample of n onset dates and corresponding failure times, we administra-

tively censored the failure times by a constant value of c to allow for approximately 30%

censoring. That is, if the calendar date of failure was greater than c, the sample point was

denoted as censored with corresponding censoring time equal to c − v0i where v0i is the

sampled onset date. After censoring, the simulated sample comprised the observed onset

dates, failure/censoring times and a censoring indicator vector. To simulate the effect of

the measurement error, we added either a Normal(0, σ2) error to the sampled onset date

or we subtracted an Exponential(ψ) error from the sampled onset date. In the case of

the Normal error, if the perturbed onset was greater than R, we set the observed onset

date equal to R as we assume each subject in the simulated prevalent cohort was screened

positive on date R. Unlike in the simulations of Zhong and Cook, the error distribution

is not a truncated Normal distribution but rather a continuous error distribution with a

discrete non-zero probability component at time R. The exponential error simulated the

scenario in which subjects report a date which occurs prior to their true date of onset.

In sections 5.2 to 5.4, we used different combinations of onset, failure, and error distribu-

tion while varying the given parameters to examine the effect of measurement error on

estimation procedures and the performance of the non-parametric estimation techniques.
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5.2 Impact of Measurement Error on Estimation in a Prevalent

Cohort Study

In the parametric model setting of [46], Zhong and Cook used simulated prevalent

cohort failure time data to examine how the inclusion of measurement error affected the

estimates of the unknown parameters. We followed a similar simulation approach by

empirically examining how the fit of the non-parametric Lynden-Bell estimator changed

depending on whether it was fit to data with or without the inclusion of measurement

error. In Figures 5.2 and 5.3, we plotted the Lynden-Bell estimators for 250 simulation

runs for prevalent cohort study sample sizes of 1000 observations with/without error to

examine how the inclusion of measurement error affected the variance and bias of the

estimators.

In Figure 5.2, using a Normal(0, 5) error distribution, the variance of the Lynden-Bell

estimator appeared to be essentially unchanged with the inclusion of measurement error,

however, the estimator appeared biased. Recall that the Normal error distribution for the

onset dates is truncated by the prevalence date R which implies the expected value of the

error term is non-zero. The Lynden-Bell estimator underestimated survival for shorter

failure times as it overadjusted for survival for longer failure times. The adjustment

mechanism of the Lynden-Bell estimator did not correct for the inclusion of measurement

error. Thus, on average, the Lynden-Bell estimator either over/under fitted the true

underlying failure time survivor function. In Figure 5.3, using an Exponential(0.5) error

distribution, the Lynden-Bell estimator fitted to the failure time data with measurement

error appeared both biased and with larger variance as compared to the estimator without
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the inclusion of the measurement error. Since the expectation of the exponential error

is non-negative, the Lynden-Bell estimator over estimated the probability of survival.

The sudden drop in some of the Lynden-Bell estimates in Figure 5.3 is attributed to the

lengthening of the truncation times by the Exponential error distribution. Specifically,

for left-truncated right-censored failure time data, if the backward recurrence times are

very long relative to the forward recurrence times, the Lynden-Bell estimate may drop

near 0 for shorter failure times. Pan and Chappell proposed a solution to account for the

survival estimate drop in [32]. The correction, however, does not account for the effect

of measurement error in the onset dates.

Figure 5.2 – Graphical comparison of the Lynden-Bell estimator fit to failure time data

with/without the inclusion of measurement error (represented by the red curves and blue

curves, respectively) to the true failure time survivor function (black curve). The sim-

ulated prevalent cohort data follow a uniform onset distribution with Weibull(2.0, 2.0)

failure times with the addition of a Normal(0, 5) error distribution to the observed onset

dates. Number of simulation runs = 250. Sample size = 1000.
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Figure 5.3 – Graphical comparison of the Lynden-Bell estimator fit to failure time data

with/without the inclusion of measurement error (represented by the red curves and blue

curves, respectively) to the true failure time survivor function (black curve). The sim-

ulated prevalent cohort data follow a uniform onset distribution with Weibull(2.0, 2.0)

failure times with the addition of an Exponential(0.5) error distribution to the observed

onset dates. Number of simulation runs = 250. Sample size = 1000.

To numerically examine the effect of the measurement error on survival estimation,

we compared the average median values calculated from the Lynden-Bell estimator for

various combinations of onset, error and failure time distributions. We listed the average

median values, calculated over 1000 simulation runs with sample sizes of 500 observa-

tions, in Table 5.1. For the distribution combinations using a Normal error distribution

and either Weibull(1.0,1.0) or Weibull(1.0,2.0) failure time distributions, we did not ob-
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serve large differences in the average estimated medians as compared to the true median

values. This lack of change in the estimated medians may have been attributable to

the underlying shape of the failure time distributions, as shorter failure times were more

likely to be sampled. Thus, as described above, for failure/censoring times with short

backward recurrence times, there was an approximate 0.5 probability that the Normal

error distribution only perturbed the onset dates to R yielding very little difference be-

tween the true and observed failure/censoring times. However, this phenomenon did not

occur for the Weibull(2.0, 2.0) failure time distribution as the underlying distribution

is mound shaped about 1 with a short tail near 0. In these cases, the Normal error

distributions perturbed the onset dates closer to (or exactly to) the date R thus short-

ening the observed failure/censoring times yielding a significant underestimation of the

median. For the exponential error distributions, we found that the average median value

with the inclusion of measurement error tended to overestimate the true median value.

As discussed above, since the exponential error distribution, on average, lengthened the

true underlying failure times, the calculated medians with the inclusion of measurement

error were larger than those calculated without error.

5.3 Non-Parametric Deconvolution Estimation

To examine the modeling performance of the deconvolved kernel-density estimator

from 4.15, we compared it to the true underlying failure time density using the code

of Delaigle from [11]. We also fitted the weighted kernel-density estimator, from 4.19,

to the observed censored/failure times (with the inclusion of measurement error) and

compared its fit to the true underlying failure time density. We denote this estimator
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as the weighted “naive” kernel-density estimator as it does not account for the inclusion

of the random measurement error. The bandwidth was selected using the R “density”

function. To measure the fit of the estimators, we defined a mesh of sample points and

calculated the average absolute differences between the estimators compared to the true

underlying density evaluated at these points. We reported the average absolute error

values for prevalent cohort study sample sizes of 500 observations over 1000 simulation

runs for the naive and deconvolved density estimators in Table 5.2.

From the values listed in Table 5.2, we found that the naive kernel-density estimator

provided a better fit to the underlying true density for the Weibull failure time distri-

butions with shape parameter equal to 1. When the shape and scale parameters of the

Weibull failure time distribution were both chosen to equal 2, the deconvolved kernel-

density estimator outperformed the naive kernel-density estimator. These differences in

performance may be attributable to the behaviour of the underlying failure time density

at the boundary. As the estimated densities appeared to capture the overall shape of

the underlying density function, the non-optimal selection of the bandwidth parameter

has not greatly affected the fit of the estimator. That is, when the shape parameter is

equal to 1, the underlying density function has non-negligible mass near 0 (i.e. there is

no negligible tail for the density of the failure times arbitrarily close to 0) whereas when

the shape parameter is 2, the majority of the density function is defined away from the

boundary. Specifically, when the density of the observed failure/censoring times (with

error) is “mound shaped”, the deconvolution procedure cannot correct for the error such

that the resulting estimate is not mound shaped. Due to this drawback, the deconvolved

kernel-density estimator only outperformed the naive kernel-density estimator when the

underlying failure time density was Weibull(2.0,2.0).
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In addition, to implement the deconvolution procedure, we used discrete Fourier trans-

forms and discrete inverse Fourier transforms to compute the density of the underlying

failure time random variables from the observed sample data through the code in [11].

The discrete transforms are only approximations of the continuous Fourier transforms and

so the resulting estimates were only approximations to the true underlying failure time

densities. This approximation may account for the observed differences in the perfor-

mance of the deconvolved estimator. In figure 5.4, for a sample size of 200000, we plotted

the deconvolved kernel-density estimator against the naive kernel-density estimator and

the underlying true failure time distribution. While the deconvolved estimator appeared

to capture the same shape of the underlying failure time density, it was somewhat skewed

to the right. This skew may be caused by the implementation of the deconvolution pro-

cedure using the discretized versions of the continuous transformations.

5.4 Left-Truncated Doubly Interval-Censored Non-Parametric Sur-

vival Estimation

As described in Section 4.3, there is an equivalence between the support of the error

distribution for the observed dates and the type of censoring of the true unobserved onset

dates. In this section, we examined the performance of the self-consistency estimator of

Sun from [38] for left-truncated doubly-interval censored failure time data. Based on per-

sonal correspondence with Victor De Gruttola and Jianguo Sun, there is no open-source

R code or R package to implement the self-consistency algorithm for (left-truncated)

doubly-censored failure time data. The R package “survival” only allows for data that
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Figure 5.4 – Graphical comparison of the weighted kernel-density estimator fit to failure

time data with the inclusion of measurement error (red curve), the deconvolution kernel-

density estimator (blue curve) to the true failure time survivor function (black curve). The

simulated prevalent cohort data follow a uniform onset distribution with Weibull(2.0, 2.0)

failure times with the addition of an Exponential(0.1) error distribution to the observed

onset dates. Sample size = 200000.

are truncated with one form of censoring (right/left) and the package “dblcens” only

allows for alternatively censored failure time data (i.e. the failure times are either left-

censored or right-censored but not doubly-censored). Neither Sun nor Lagakas and De

Gruttolla carried out simulations to validate their proposed methods.

Using simulated prevalent cohort failure time data with the inclusion of measure-

ment error, we compared the estimator of the survivor function derived using Sun’s self-
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consistency algorithm to the survivor function of the true underlying failure time random

variables. Using a single sample of size 200 with an exponential error term, we empirically

examined the difference between the Lynden-Bell estimator fit to the failure time data

with the inclusion of (exponential) measurement error and the estimator using Sun’s al-

gorithm. Figure 5.5 displays this comparison. As expected, the (“regular”) Lynden-Bell

estimator overestimated the survivor function since the reported failure times were much

longer (on average) than the true underlying failure times. We see that Sun’s algorithm

overestimated survival for shorter failure times (i.e. time lengths between 0 and 2) and

was relatively accurate for longer failure times (i.e. time lengths larger than 2). Due to

the exponential error, the censoring interval of each onset date is defined between the

observed onset date and prevalence date R. From the defined discretized time intervals

of Sun’s algorithm, approximately half of the discretized points are equal to the forward

recurrence times. The overestimation of survival, from Sun’s algorithm, at shorter failure

times was attributed to the large number of small discretized intervals based solely on

the forward recurrence times.

In Table 5.3, we compared the fit of Sun’s estimator of the survivor function and

the Lynden-Bell estimator fit to the failure time data with error, to the true underlying

survivor function. Using a mesh of points, we calculated the average absolute difference

between the estimators and the true survivor function. In Sun’s algorithm, because the

number of parameters is approximately equal to the size of the sample, we used prevalent

cohort study samples of size 15 over 500 simulation runs. It is not surprising therefore,

that Sun’s estimator did not perform better than the Lynden-Bell estimator when fit to

the failure time data with measurement error. Based on the fit of Sun’s estimator in

Figure 5.4, for a single sample size of 200, the self-consistent estimator may provide a
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better fit, on average, than the Lynden-Bell estimator for larger sample sizes.

Figure 5.5 – Graphical comparison of the Lynden-Bell estimator (with point-wise confi-

dence intervals - dotted curves) fit to failure time data with the inclusion of measurement

error (represented by the solid red curve) and Sun’s nonparametric survivor function es-

timator (represented by the black curve) to the true failure time survivor function (blue

curve). The simulated prevalent cohort data follow a uniform onset distribution with

Weibull(2.0, 2.0) failure times with the addition of an Exponential(0.1) error distribu-

tion to the observed onset dates. Sample size = 200.
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Error Distribution L1 error of Sun’s Estimator L1 error of Lynden-Bell Estimator

Exponential(1) 0.222 0.175

Exponential(0.5) 0.212 0.164

Exponential(0.1) 0.177 0.109

Table 5.3 – Average L1 Error of the Lynden-Bell estimator and Sun’s survivor function

estimator compared to true underlying survivor function. The simulated prevalent cohort

data follow a uniform onset distribution with Weibull(2.0, 2.0) failure times, and with the

addition of an Exponential(ψ) error. Sample size = 15. Number of Simulation Runs =

500.
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Chapter 6

Discussion and Conclusions

The goal of this thesis was to present the problem of measurement error in failure

time data and to review/propose various modelling techniques.

In Chapter 1, we provided the motivation for including measurement error in failure

time data by examining the practical data collection problems that arose in the Canadian

Study of Health and Aging. In Chapter 2, we reviewed the standard estimation techniques

used in survival analysis for failure time data without the inclusion of measurement error.

In Chapter 3, we examined the theoretical impact of measurement error in the context of

an incident cohort study and a prevalent cohort study with follow-up. We showed that

depending on the assumptions of the support of the error distribution, subjects can be

incorrectly misclassified and excluded. We also showed, under particular error support

assumptions, an equivalence between observing the true onset date with error and the

true onset date being censored.

In Chapter 4, we examined three distinct modelling methods to incorporate measure-

ment error in failure time data. In section 4.1, we reviewed the parametric estimation
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method of Zhong and Cook. We argued that the proposed parametric likelihoods of Zhong

and Cook appear to be incorrect and derived the correct parametric likelihood functions

for the failure time parameters based on the observed failure/censoring times and the

observed truncation times. In section 4.2, we proposed a new non-parametric density

estimator for the true underlying failure time density with the inclusion of measurement

error. In the framework of a classical measurement error model, we applied a decon-

volution procedure on a weighted kernel-density estimator to obtain a non-parametric

kernel-density estimator for the underlying failure time density. In section 4.3, using the

equivalence between measurement error and censoring from Chapter 3, we reviewed the

numerical procedure of Sun for left-truncated doubly interval-censored failure time data.

Our goal was to investigate the usefulness of viewing the error-in-onset problem through

an interval-censoring lens.

In chapter 5, we used simulated data to examine the effect of measurement error on

the standard non-parametric Lynden-Bell survivor function estimator and to examine

the modelling performance of the non-parametric methods discussed in chapter 4. We

found that under certain parametric error distribution assumptions, the Lynden-Bell

estimator, when fit to the failure time data with the inclusion of measurement error,

has larger variance and is biased as compared to the Lynden-Bell estimator fit to the

failure time data without measurement error. We found that the deconvolution procedure

did not outperform the naive kernel-density estimator in all parametric settings due to

estimation of the underlying density near the boundary as well as the implementation of

the deconvolution procedure being based on the discrete approximation of the continuous

Fourier transform. For the numerical method of Sun, we were only able to test its

performance on simulated datasets with small sample sizes as the computational time
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required for convergence of the self-consistency algorithm is dependent on the size of the

dataset.

While the methods discussed in this thesis each provide possibly reasonable ways to

model failure time data with error in the initiating event, they have their drawbacks.

Zhong and Cook’s approach needs to be revisited using the correct likelihood based on

the observed/censored failure times and truncation times, as discussed in section 4.1.

Additionally, more work is required on improving the implementation of the deconvolu-

tion kernel density estimator. While the method is theoretically sound, computational

adjustments to Delaigle’s deconvolution code from [11] are needed. Similarly, due to the

computational costs of Sun’s numerical estimation procedure, improvements on the im-

plementation of the self-consistency algorithm are required. All discussion in this thesis is

based on modelling procedures without the inclusion of observed covariates. It is an open

question whether the models described in this thesis can be adapted to include covariates

or covariates also observed with some form of measurement error.
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