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ABSTRACT 
 

Active Caspase 6 associates with the neuropathological hallmarks of sporadic Alzheimer 

disease (SAD), indirectly increases amyloid beta (Aβ) and cleaves Tau and other 

cytoskeleton proteins. Given the similar neuropathology of SAD and familial AD (FAD), 

my objective is to assess if FAD-associated amyloid precursor protein (APP) mutations 

activate Caspase 6 in human neurons. Human neurons were transfected with a bigenic 

vector expressing enhanced green florescent protein (EGFP) and either wild type APP, 

the Swedish or London mutations.  Normally diffuse EGFP beads in neurons over-

expressing APP or APP mutants in an Aβ independent manner and appears to co-localize 

with beaded Tau and Ubiquitin.  Additionally, the number of EGFP-positive APP or APP 

mutant-transfected neurons decreases with time in culture and undergoes Aβ dependent 

cell death. Treatment with a caspase 6 inhibitor or dominant negative Caspase 6 

attenuates EGFP beading, EGFP-positive neuronal dropout and cell death. Therefore, 

FAD-mutants and APP over-expression activate Caspase 6 in human neurons resulting in 

morphological changes and Aβ dependent cell death that may contribute to the 

neuropathological features of FAD. 
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RÉSUMÉ 
 

La forme active de la Caspase 6 est impliquée dans les effets neuropathologiques typiques 

de la forme sporadique de la maladie d’Alzheimer (SAD) en augmentant indirectement la 

production du peptide amyloïde-bêta (Aβ) et en clivant Tau ainsi que d’autres protéines 

du cyotoskelette. Compte tenu des neuropathologies similaires de SAD et de la forme 

familiale de la maladie d’Alzheimer (FAD), mon objectif était de déterminer si les 

mutations de la protéine précurseur de l’amyloïde (APP) associées à FAD, activent la 

Caspase 6 dans les neurones humains. Les neurones humains ont été transfectés avec un 

vecteur bigénique exprimant la protéine fluorescente verte (EGFP; Enhanced Green 

Fluorescent Protein) et soit l’APP sauvage ou sa forme mutée associée a FAD soit la 

mutation Suédoise ou la mutation de Londre.  Normalement présente sous forme diffuse 

dan le neurone, l’EGFP forme des agrégats dan les neurites del cellules qui sur 

experiment en présence de l’APP sauvage ou les mutants.  La protein Tau et d’Ubiquitine 

semble se co-localiser avec les agrégations EGFP.  Notons que cette accumulation ne 

dépend pas de la présence de Aβ. De plus, le nombre de neurones exprimant une forme 

ou l’autre d’APP où EGFP est visible diminue et il y a augmentation de la mort cellulaire 

chez ces cellules liée à la présence de Aβ. Le traitement avec l’inhibiteur de la Caspase 6 

ou un mutant dominant négatif de la Caspase 6 atténue la formation d’agrégats d’EGFP, 

la diminution du nombre de neurones positifs à l’EGFP et la mort cellulaire. Par 

conséquent, les mutants FAD activent la caspase 6 dans les neurones humains et mènent à 

des changements de morphologie et à la mort cellulaire liée à la présence Aβ, pouvant 

contribuer au profil neuropathologique de la FAD.  
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INTRODUCTION: RATIONALE & OBJECTIVE 
My objective was to determine whether Caspase 6 (Casp6) is activated by familial 

Alzheimer’s disease (FAD) associated mutations. Alzheimer’s disease (AD) is the most 

prevalent form of dementia in the elderly (Ferri et al, 2005).  Occurring either 

sporadically (late onset) or genetically (early onset), the neuropathological features of 

both forms are similar consisting of plaques containing the amyloid beta (Aβ) peptide, 

hyperphosphorylated Tau in neurofibrillary tangles, synaptic loss and widespread 

neurodegeneration (Selkoe, 2001). More importantly, the etiology of the disease is still 

unclear and a definite diagnosis of AD can only be made post-mortem via the 

identification of the aforementioned pathological hallmarks. 

Caspases, the executioners of apoptosis have been investigated in the pathogenesis of AD. 

Casp6 has been shown to be activated and localized to the neuropathological hallmarks at 

all stages of sporadic AD including Mild Cognitive Impairment (MCI), a transitional zone 

between normal aging and AD (Albrecht et al, 2007; Guo et al, 2004). Even in aged 

brains without cognitive impairment, active Casp6 immunoreactivity is increased with 

decreased global cognitive scores implying an early role for Casp6 in neurodegeneration.   

Since Casp6 is active in sporadic AD, we rationalized that the same may be true of FAD.  

Missense mutations in three genes have been linked to FAD: the amyloid precursor 

protein (APP), Presenilin 1 (PSEN1) and Presenilin 2 (PSEN2) genes.  A partial 

hypothesis of the disease cascade has been garnered from these genes.  The Aβ peptide 

which accumulates in senile plaques is excised from APP (Kang et al, 1987) and missense 

mutations in APP such as the Swedish and London mutations alter amounts and isoforms 

of the Aβ peptide (Citron et al, 1992; De Jonghe et al, 2001).  As well, these mutations 

can cause direct and indirect death by multiple mechanisms making cells more vulnerable 

to age related stresses and triggering caspases (Eckert et al, 2003; Hashimoto et al, 2000; 

Luo et al, 1999; Marques et al, 2003; McPhie et al, 2003; McPhie et al, 2001; Niikura et 

al, 2004; Zhao et al, 1997).   

Casp6 cleaves APP, Presenilin (PS), Tau as well as a number of other cytoskeleton-

associated proteins and interestingly, does not translocate to the nucleus but remains 

neuritic in neurons of severe AD (Gamblin et al, 2003; Horowitz et al, 2004; Klaiman et 
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al, 2008; LeBlanc et al, 1999; Pellegrini et al, 1999; van de Craen et al, 1999; Weidemann 

et al, 1999).  Cytoskeleton defects have been reported in AD (Lampert, 1971; Price et al, 

1986; Rose et al, 2000; Stokin et al, 2005; Terry, 1963).  Compellingly, it was recently 

demonstrated that expression of APP-associated missense mutations can cause axonal 

dysfunction measured by vesicular stalling and abnormal organelle and vesicle filled 

swellings in Drosophila and numerous transgenic murine AD models (Gunawardena & 

Goldstein, 2001; Salehi et al, 2006; Stokin et al, 2008; Stokin & Goldstein, 2006; Stokin 

et al, 2005; Wirths et al, 2007). Since Casp6 can cleave cytoskeleton associated proteins, 

it could be contributing to the FAD mutant induced axonal dysfunction. 

Down’s syndrome (DS) patients who have a duplication of chromosome 21, which 

includes the APP gene, develop clinical and neuropathological features of AD (Burger & 

Vogel, 1973).  Additionally, families with duplications of regions of chromosome 21 that 

include APP have early onset AD without the clinical features of DS (Cabrejo et al, 2006; 

Rovelet-Lecrux et al, 2006; Sleegers et al, 2006).  This has been further supported in 

murine and Drosophila models where over-expression of APP disrupts axonal trafficking 

of  vesicles, synaptic proteins and nerve growth factor (NGF) (Gunawardena & Goldstein, 

2001; Salehi et al, 2006; Torroja et al, 1999) implying that over-expression of APP, like 

APP mutations can cause AD neuropathology. 

We hypothesized that if Casp6 is important to the neuropathology of AD, it would also be 

activated in FAD. Additionally, since FAD-associated missense mutations and APP over-

expression can cause axonal dysfunction and make cells vulnerable to stresses by 

triggering caspases, these same mutations may activate Casp6 initiating a cascade of 

events that lead to neurodegeneration. I investigate this objective in primary human fetal 

neurons. These represent one of the closest in vitro model systems to study AD since the 

disease is restricted to humans. Unlike most cultured cells, human fetal neurons are 

terminally differentiated cells that have not been immortalized, therefore data obtained 

from their gene and protein expression is more relevant. As well, due to the neurons’ 

specific cellular architecture and specialized protein trafficking, neuritic dysfunction and 

degeneration can be more ideally studied. Finally, results from this system have already 

been validated in AD brains. 
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I. LITERATURE REVIEW 

1.1 ALZHEIMER DISEASE: A SHORT HISTORY 
In 1907 Dr. Alois Alzheimer presented the clinical and neuropathological features of ‘An 

unusual illness of the cerebral cortex’ seen in a 55-year old woman he had observed for 

five years at the Frankfurt asylum (Alzheimer et al, 1995).   The disease that now bears 

his name, bestowed by Dr. Emil Kraepelin, has emerged as the most common cause of 

dementia with an exponential increase in incidence over the age of 65 (Blennow et al, 

2006).  AD occurs sporadically or genetically with the key clinical symptom of 

progressive episodic memory loss and two distinct neuropathological features consisting 

of extracellular plaque deposits and neurofibrillary tangles.  Just over one hundred years 

later, while the cause of AD is still debated, a definite diagnosis of AD can still only be 

made post-mortem. 

1.1.1 Clinical Symptoms 
The earliest symptom of AD presents with deteriorating memory loss usually noted in a 

decline in verbal fluency (Petersen, 2000a; Welsh et al, 1991).  As the disease progresses 

impairment manifests itself in other symptoms including: aphasia (language disorder) 

apraxia (inability to articulate thoughts or physically execute learned movement), agnosia 

(inability to recognize objects), deterioration of higher cortical function (confusion, 

disorientation) and behavioural disturbances (depression, agitation, delusion), eventually 

leaving affected individuals unable to care for themselves (Behl, 2000; Blennow et al, 

2006).  However, while the clinical onset of AD occurs after the age of 65 (late-onset 

AD), neurodegeneration is thought to occur significantly earlier in a preclinical phase 

designated as MCI (Petersen, 2000a).  Ten to fifteen percent of patients in this transitional 

zone between normal aging and AD are later diagnosed as AD with clinical dementia 

(Petersen, 2000b).  However, a recent study with more stringent criteria for MCI 

measures in which patients were followed for 2 years found the conversion rate to AD to 

be 41% and 64% after year 1 and 2 respectively, indicating MCI as an accurate predictor 

of AD (Geslani et al, 2005).   
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1.1.2 Cognitive Measures 
Since a definite diagnosis of AD can still only be made post-mortem by neuropathology, 

most of the cognitive measures used today are to eliminate other confounding factors or 

dementias following criteria established by the National Institute of Neurological and 

Communicative Diseases and Stroke and Alzheimer’s Disease and Related Disorders 

Association (NINCDS-ADRDA)(McKhann et al, 1984).  An initial detailed history of the 

patient and a neurologic examination are conducted followed by a Mini Mental State 

Examination (MMSE) which is a brief but accurate examiner of cognitive function 

(Folstein et al, 1975).  Other diagnostic criteria can include examination of changes in 

metabolic activity due to external factors such as drug toxicity which can contribute to 

dementia and neuroimaging to exclude reversible or treatable dementias (Petersen, 

2000a). 

1.2 NEUROPATHOLOGY 

1.2.1 The Plague of the Amyloid Plaques 
A diagnostic brain lesion first noted by Dr. Alzheimer, amyloid plaques are extracellular 

deposits of the Aβ protein in star shaped ‘filamentous fibrils’ (Alzheimer et al, 1995; 

Glenner & Wong, 1984b; Terry et al, 1964), although other proteins including 

proteoglycans, inflammatory molecules, metal ions, proteases, antioxidant defence 

molecules and cholinesterases are also components of the plaques (Atwood et al, 2002). 

The plaques are surrounded by dystrophic neurites and activated microglia usually 

associated with the central core of the plaque while reactive astrocytes are in the 

penumbra (Selkoe, 2001; Selkoe, 2004).  A 4kDa peptide, Aβ is excised from the APP in 

varying amino acid species lengths (Kang et al, 1987; Kang & Muller-Hill, 1990).  The 

amyloid plaques contain a mixture of 40- and 42-amino acid Aβ species (Iwatsubo et al, 

1994) and the 42-residue form is more susceptible to aggregation (Jarrett et al, 1993).  

While it has been claimed that Aβ plaque load is predictive of the degree of cognitive 

impairment, this has recently been contended in favour of the second diagnostic brain 

lesion, neurofibrillary tangles, being a better predictor (Cummings et al, 1996; Lee et al, 

2007).  
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1.2.2 Neurofibrillary Tangles 
The second classic pathological hallmark observed in the first recorded case of AD is now 

termed neurofibrillary tangle.  These tangles are thick bundles of abnormal fibers that 

have accumulated in the perinuclear cytoplasm of neurons in AD affected parts of the 

brain (entorhinal cortex, hippocampus, amygdala, frontal, temporal and parietal cortex) 

(Arnold et al, 1991; Selkoe, 2001). Electron microscopy detailed the fibers as paired 

filaments wound in helices (Kidd, 1963). Tau, a neuronal protein first noted for its 

involvement in microtubule assembly (Weingarten et al, 1975), was subsequently shown 

to be the key constituent of the neurofibrillary tangles (Grundke-Iqbal et al, 1986a; 

Grundke-Iqbal et al, 1986b; Kosik et al, 1986). Site specific phosphorylation regulates 

Tau functionality (Stoothoff & Johnson, 2005) where it has a role in modulating 

microtubule dynamics, neurite outgrowth, axon formation, regulating cell shape and 

mobility via actin cytoskeleton interactions (Shahani & Brandt, 2002).  A normally 

soluble protein, Tau is found to be in an abnormally hyperphosphorylated form in AD 

making it highly insoluble and prone to aggregation (Goedert & Spillantini, 2000; 

Grundke-Iqbal et al, 1986b). While neurofibrillary tangles can be associated with the 

dystrophic neurites surrounding amyloid plaques of AD, they are also seen independent 

of amyloid plaques in several other neurodegenerative diseases (Goedert & Spillantini, 

2000; Selkoe, 2004; Shahani & Brandt, 2002).   

1.2.3 Synaptic and Neuronal Loss 
Neuronal and synaptic loss is an important feature of AD shown to occur predominantly 

in the entorhinal cortex, hippocampus and higher associative cortex, all of which play 

crucial roles in memory.  The entorhinal cortex, often referred to as the ‘gateway’, is the 

site of input from the associative cortex and output of this highly processed information to 

the hippocampus (Morrison & Hof, 1997; Witter et al, 1989).  Rigorous stereological cell 

counts which measure volume and density of 2D sampled sections to extrapolate for the 

3D structure (West & Gundersen, 1990) have demonstrated a significant neuronal loss in 

the entorhinal cortex, which appears to be the first area affected (Gomez-Isla et al, 1996; 

Kordower et al, 2001; Van Hoesen et al, 1991).  In the hippocampus, the CA1 region is 

the most severely affected and atrophied (Hyman et al, 1984; Price et al, 2001; Simic et 
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al, 1997) while the superior temporal sulcus of the higher associative cortex has an almost 

50% neuronal loss in severe AD cases (Gomez-Isla et al, 1997; Masliah et al, 1991). 

There has been debate whether the severity of the disease correlates with the degree of 

neuronal loss in all of these areas.  Recent studies have suggested that neuronal loss and 

atrophy in the entorhinal cortex occurs in MCI or mild AD but does not progress 

significantly further in moderate and severe AD (De Toledo-Morrell et al, 2000; 

Kordower et al, 2001; von Gunten et al, 2005).  This conflict may be because earlier 

studies only compared between severe AD and control cases so that this lack of 

progression was overlooked (von Gunten et al, 2005).  As well, the use of non-stereologic 

techniques and different population groups may further account for this difference.   

1.2.3.1 Cholinergic Neuronal Loss – a Parkinson like specificity? 
Current approved treatments for AD nearly all utilize cholinesterase inhibitors which 

have proven to be only marginally effective.  This was based on the early discovery of 

marked reductions in choline-acetyltransferase (ChAT) and actylcholinesterase (AChE) 

activity in AD affected brains (Davies & Maloney, 1976; Perry et al, 1982) where the 

original source of cortical innervation was discovered to be the nucleus of Meynert 

(Bartus et al, 1982; Mesulam, 2004).  There have been conflicting reports of neuronal 

damage here extending from 75% to as little as 33% loss, yet none of these investigations 

appear to directly examine the neuronal loss, instead basing their assumption of neuronal 

damage on decreases in ChAT or AChE markers (Geula & Mesulam, 1989; Geula & 

Mesulam, 1996; Hyman et al, 1984; Perry et al, 1982; Whitehouse et al, 1982).  

Additionally, during early stage AD the cholinergic fibre decrease is not present (Davies, 

1999) and some groups have noted a paradoxical up regulation in ChAT activity in MCI 

brains, potentially as a compensatory mechanism (DeKosky et al, 2002; Ikonomovic et al, 

2003).  Other areas such as catecholamine innervations to the cortex (Adolfsson et al, 

1979), glutamatergic pre-synaptic density (Bell et al, 2007) and disturbance of 

somatostatinergic and serotonergic neurons (Reinikainen et al, 1990; Rossor & Iversen, 

1986; Rossor et al, 1980; Rossor et al, 1984) are present showing the pathogenesis of AD 

to be more ubiquitous. 
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1.3 FAMILIAL ALZHEIMER’S DISEASE 
Approximately 25% of AD cases are believed to be due to a genetic factor, be it clear 

segregation as an autosomal dominant trait or increased susceptibility via risk genes 

(Bird, 2008; Cruts & Van Broeckhoven, 1998).  The majority of AD cases are of the 

sporadic form developing the disease over the age of 65, while FAD is an autosomal 

dominant condition also termed early onset AD for occurring before the age of 65.  

Pathogenesis and clinical symptoms are conserved between the two forms of AD (without 

patient age it is difficult to distinguish early onset FAD from late stage sporadic cases), 

though post-mortem FAD brains demonstrate increased neuritic plaque and 

neurofibrillary tangle counts and shorter disease duration than sporadic AD (Mullan et al, 

1993; Selkoe, 2001). Prevalence of FAD is low, however significant insight into the 

mechanism and pathogenesis of the disease has been garnered through identification of 

the genes involved (Ertekin-Taner, 2007; Harvey et al, 2003).  The first gene to be 

identified through genetic linkage studies was the APP gene (St George-Hyslop et al, 

1987), followed by the highly homologous PSEN1 and PSEN2 genes (Levy-Lahad et al, 

1995; Rogaev et al, 1995; Sherrington et al, 1995).  Mutations in the PSEN1 gene 

accounts for the majority of the mutations identified, followed by APP and a few families 

that have PSEN2 mutations (Cruts et al, 1998).  Alternatively, two other genes, 

apolipoprotein E (APOE) and the recently identified sortilin-1 related receptor (SORL1) 

gene have been implicated in increasing the risk of developing sporadic AD (Corder et al, 

1993; Poirier et al, 1993; Rogaeva et al, 2007). 

1.3.1 Amyloid Precursor Protein  
Identification of Aβ as the component of senile plaques in AD affected brains led to the 

cloning of its parents protein, APP, located on chromosome 21 (Glenner & Wong, 1984a; 

Kang et al, 1987).  APP is composed of 770 amino acids in its longest form and the gene 

has 19 exons.  A type I transmembrane protein, APP has a large extracellular domain 

(comprising of ~88% of the isoform) and a small cytoplasmic tail and is expressed 

ubiquitously in the body in numerous isoforms due to alternate splicing and post 

translational modifications (Gralle & Ferreira, 2007).  The three major isoforms 

containing the Aβ peptide are the APP 695, 751 and 770 residues (Kitaguchi et al, 1988; 

Ponte et al, 1988; Tanzi et al, 1988), however it is the 695 full length isoform that is 
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predominantly expressed by neurons (Kang & Muller-Hill, 1990; LeBlanc et al, 1991; 

Tanaka et al, 1989).  The importance of APP in mammals is seen by the fact that two 

homologues (APLP1 and APLP2) with relatively redundant function exist (Sprecher et al, 

1993; Wasco et al, 1993), whereas only one APP related gene is found to be expressed in 

Drosophila (Rosen et al, 1989) and Caenorhabditis elegans (Daigle & Li, 1993). 

1.3.1.1 APP Processing 
Most transmembrane proteins are sorted through the secretory or endocytic pathway 

based on the sorting signal they contain (Bonifacino & Traub, 2003).  As a 

transmembrane protein, APP is translocated to the endoplasmic reticulum (ER) and post 

translationally modified via N and O linked glycosylation, phosphorylation and tyrosine 

sulphation as it travels through the secretory pathway (Griffith et al, 1995; Zheng & Koo, 

2006).  During and after its journey along the secretory pathway, APP can be 

proteolytically processed either before, or within the Aβ peptide region, which is located 

in the transmembrane region of APP.  This processing is conducted by three proteases:  α-

secretase, a member of the A Disintegrin And Metalloprotease (ADAM) family; β-

secretase (BACE) and γ-secretase, a unique multimeric complex that can cleave within 

transmembrane regions and is composed of PS 1/2, Nicastrin, Anterior Pharynx Defective 

1 (APH1) and Presenillin Enhancer 2 (PEN2) (Francis et al, 2002; Kaether et al, 2006; 

Kimberly et al, 2003; Lee et al, 2002). 

1.3.1.1.1 Pathway A: Alpha Secretase Pathway 

At the cell suface, α-secretase processes APP within the Aβ domain releasing a large 

soluble extracellular fragment into the lumen/extracellular space while retaining the 

transmembrane C-terminal fragment (Selkoe, 2001).  This transmembrane C83 residue 

fragment is further cleaved by the γ-secretase, resulting in the release of a small secreted 

p3 fragment and free intracellular domain (Fig 1).  α-secretase activity has been shown to 

occur predominantly at the plasma membrane though there is evidence that it can also 

occur within the secretory pathway (De Strooper et al, 1993; Sisodia, 1992).   

1.3.1.1.2 Pathway B: Beta Secretase Pathway 

The second ‘amyloidogenic’ cleavage pathway, so termed for producing the 4 kDa Aβ 

peptide, has generated the most interest.  APP is initially cleaved by BACE after residue 
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596.  The Aβ containing transmembrane 99 residue C-terminal fragment (CTF) is 

subsequently cleaved by γ-secretase to liberate Aβ (Selkoe, 2001) (Fig 1).  It was 

previously believed that Aβ is only generated under pathogenic circumstances however it 

was later discovered that Aβ is in fact also secreted under normal metabolic conditions 

(Haass et al, 1992; Shoji et al, 1992).  Yet, in FAD, missense mutations in APP slightly 

alter the proteolytic processing at the secretase sites causing a significant increase in Aβ 

production believed to then be deposited in the neuritic plaques (Citron et al, 1995).  

Generally, APP proteins not subject to α-secretase cleavage are internalized from the 

plasma membrane into endocytic compartments and cleaved by BACE.  There has been 

some controversy regarding the membranous compartment in which Aβ is produced.  It 

has been demonstrated to occur largely in the endosomes where APP is first internalized 

from the cell surface via clathrin coated pits (Kinoshita et al, 2003; Small & Gandy, 

2006).  This is further supported by the cellular localization of the mature BACE and γ-

secretase activity in the endosome (Fukumori et al, 2006; Huse et al, 2000; Lah & Levey, 

2000).  However, evidence suggests that Aβ production can occur to a lesser extent early 

in the secretase pathway in the ER and the Golgi complex (Greenfield et al, 1999; Huse et 

al, 2002; Selivanova et al, 2007) resulting in an intracellular accumulation that is not 

always fated for secretion (Cook et al, 1997; LaFerla et al, 2007). 

1.3.1.2 APP Function 

1.3.1.2.1 The Receptor APP – Dr. Jekyll Part 1 

The normal functioning of APP is still poorly understood though it appears to play a role 

throughout neuronal development and morphogenesis.  As a type I transmembrane 

protein, the structure of APP has indicated that it could function as a surface receptor 

(Kang et al, 1987).  Since its identification, a number of proteins that interact with APP 

have been described (Reviewed in Neve & McPhie, 2007).  Notably, extracellular APP 

has been shown to interact with F-spondin, an extracellular matrix protein implicated in 

neuronal repair and development (Ho & Sudhof, 2004), and Nogo 66 receptor which 

regulates axonal CNS sprouting (Park et al, 2006).  Both these interactions also alter the 

production of Aβ.  Growing evidence of APP as an adhesion contact receptor has accrued 

from in vitro studies.  Specific regions of APP interact with extracellular matrix proteins  
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Figure 1:  Schematic of APP processing pathways.  APP can be proteolytically 

processed by α-secretase to generate a C83 fragment which when further cleaved by γ-

secretase results in a truncated p3 fragment.  The second APP processing pathway by β-

secretase results in a C99 fragment which when cleaved by γ-secretase liberates the Aβ 

peptide that accumulates in senile plaques of AD. 
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and promote cell adhesion in cell culture (Breen et al, 1991; Ho & Sudhof, 2004; Kibbey 

et al, 1993; Small et al, 1999).  As well, early work showed APP to form a complex with 

the heterotrimeric G protein, G₀, a GTP binding protein that is an important signal 

transducer in the brain (Murayama et al, 1996; Nishimoto et al, 1993; Okamoto et al, 

1995). In fact, it has been postulated that APP may function as a G protein coupled 

receptor and signal through this diverse complex to regulate a number of processes 

including cell growth, adhesion and migration in developing neurons (Brouillet et al, 

1999; Neve & McPhie, 2007; Swanson et al, 2005). Misregulation of this signalling 

pathway is believed to be one way by which FAD-associated mutations cause 

neurotoxicity (Giambarella et al, 1997; McPhie et al, 2003). 

1.3.1.2.2 APP Function in neuritogenesis and synaptogenesis – Dr. Jekyll Part 2 

Parallel to research examining the interacting partners of the receptor APP, mounting 

evidence has identified a role for APP in neuronal and synaptic development.  APP is 

highly expressed in radial glia which direct neurons to their specific layer in the cortex 

during development (Trapp & Hauer, 1994) as well as in developing migratory neurons of 

the moth Maduca sexta via a G protein coupled interaction (Swanson et al, 2005).  The 

presence of APP in neuronal migration supports APP’s role in neuritogenesis.  APP’s 

neuronal growth activity has been amply demonstrated in vitro and in vivo (Masliah et al, 

1992; Milward et al, 1992; Small et al, 1999), further substantiated by loss-of-function 

experiments showing that a reduction of APP causes decreased neuritic growth and 

viability (Allinquant et al, 1995; Perez et al, 1997).  APP’s role in neuritogenesis is 

thought to occur via interaction with actin regulatory proteins Fe65 and Mena which are 

expressed in active remodelling regions such as the growth cone and lamellipodia (Sabo 

et al, 2001; Sabo et al, 2003).  However, the notion of APP enhancing neuritic outgrowth 

has been challenged since it has been demonstrated that APP can also inhibit 

neuritogenesis.  This differential role may depend on neuronal culture, time line of 

assessment and plating substrate (LeBlanc et al, 1992; Young-Pearse et al, 2008).  

Finally, APP has been implicated in synaptogenesis.  Demonstrated in vivo, APP and 

APLP2 double knockout mice have motor-neuron axons that do not form functional 

synapses at the right sites and circumvent their target muscle fibers (Wang et al, 2005).  

As well, injection of secreted APP into the brain of amnesic mice and normal rats 
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increase memory retention and synaptic density (Meziane et al, 1998; Roch et al, 1994).  

APP’s role in synaptic formation has been substantiated in vitro (Akaaboune et al, 2000; 

Allinquant et al, 1995; Herard et al, 2006; Perez et al, 1997).   

1.3.1.2.3 APP Function and Cell Death – Mr. Hyde 

In addition to many of APP’s beneficial functions, APP has had an equal history in cell 

death. While there have been some reports that over-expression of APP protects certain 

cells against specific forms of cell death (Kogel et al, 2003; Masliah et al, 1997; 

Nishimura et al, 2003), APP over-expression also causes toxicity, particularly certain 

fragments of the APP protein (Chen et al, 2000b; Copanaki et al, 2007; Lu et al, 2000; 

Yankner et al, 1989; Yoshikawa et al, 1992).  The β-cleaved CTF of APP (C99 or C100) 

has been shown to cause neurotoxicity and apoptosis in cell culture (Lu et al, 2000; 

McPhie et al, 2001; Sopher et al, 1994; Yankner et al, 1989).  In vivo, transgenic mice 

expressing this β-cleaved CTF have increased neurodegeneration and impaired memory 

(Berger-Sweeney et al, 1999; Nalbantoglu et al, 1997; Neve et al, 1996; Oster-Granite et 

al, 1996), however the pathway by which this neurotoxicity occurs is still unclear.  It has 

been proposed that a second fragment, C31 which is released from the β-cleaved C-

terminal region by caspase cleavage, may be involved (Gervais et al, 1999; Lu et al, 

2000).  When this caspase site was mutated in the β-cleaved CTF, it abolished the CTF 

dependent cell death and dysfunction (Galvan et al, 2006; Lu et al, 2000).  Indeed, the 

C31 fragment alone causes cell death (Bertrand et al, 2001; Gervais et al, 1999; Lu et al, 

2000; McPhie et al, 2001; Nishimura et al, 2002).  Recently it was shown that C31 signals 

through an APP binding protein, APP-BP1, a cell cycle protein to cause neuronal 

apoptosis (Chen et al, 2003). 

1.3.1.3 APP Mutations 
The dawn of research on the APP gene resulted from the realization that Down’s 

syndrome (DS) patients have similar clinical, neuropathological and biochemical features 

as AD patients (Glenner & Wong, 1984a; Masters et al, 1985; Menendez, 2005).  The AD 

pathology in DS patients was thought to be due to the partial duplication of chromosome 

21, drawing focus to this chromosome until the eventual identification of APP as an AD 

susceptibility gene (St George-Hyslop et al, 1987).  The first FAD mutation in the APP 

gene was linked to a single missense mutation at codon 642, causing a valine-to-
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isoleucine change in a London family (London mutation – Fig 2) (Goate et al, 1991).  

Many more have since been discovered.  The Alzheimer Disease and Frontotemporal 

Dementia Mutation Database currently records 33 mutations in the APP gene in 80 

families, 4 of which are non-pathogenic (http://www.molgen.ua.ac.be/ADMutations).  

These mutations include deletions, duplications and numerous missense mutations most 

of which are located close to the APP cleavage sites and therefore functionally affect APP 

processing (Selkoe & Podlisny, 2002).  One of the more well studied mutations is the 

Swedish mutation which occurs at the BACE cleavage site.  This double mutation at 

codon 595 and 596 results in a lysine, methionine change to an asparganine and leucine 

(Mullan et al, 1992) and is especially interesting because of its effects on Aβ production 

(Fig 2).  In addition to APP mutations, duplication of the APP gene has been shown to 

cause early onset AD without the clinical features of DS (Cabrejo et al, 2006; Rovelet-

Lecrux et al, 2006; Sleegers et al, 2006). This implies that excess APP, like DS and APP 

mutants, can also be inherited to cause AD neuropathology. 

1.3.1.3.1 APP Mutations Effect on Amyloid Beta 

Many of the missense mutations in the APP gene occur around or within the α, β or γ-

secretase regions, which has supported the hypothesis that the FAD pathology is mainly 

due to alterations in Aβ production (Selkoe & Podlisny, 2002).   The Swedish double 

missense mutation occurring at the beginning of the BACE cleavage site results in a new 

site that is more efficiently cleaved by BACE and subsequently has an eight to fifteen 

fold increase in Aβ40 and Aβ42 (Citron et al, 1992; Citron et al, 1995).  This increase in Aβ 

is mirrored in other mutations occurring near the BACE cleavage site.  The London 

mutation however which occurs near the γ-secretase cleavage region results in a shift in 

the ratio of Aβ toward the longer Aβ42 species (De Jonghe et al, 2001), which is more 

prone to aggregation (Jarrett et al, 1993).  Again, similar results were noted with other 

pathogenic mutations proximal to the γ-secretase cleavage region (De Jonghe et al, 2001).   

Studies of animal models containing APP mutations, particularly murine transgenic 

models, have been important in furthering our understanding of AD neuropathology.  

Several transgenic mouse models have been generated (Reviewed in Gotz & Ittner, 2008), 

including one that contains the Swedish mutation and has been demonstrated to develop  



Page | 25 
 

Figure 2:  Schematic of APP695 with mutations.  Schematic diagram of the APP695 

protein with the Aβ peptide in the shaded domain.  The APP sequence containing the Aβ 

1-42 region is indicated by shading within the single letter amino acid code.  Letters 

below the code indicate the Swedish and London FAD-linked mutations and the MV 

mutation.  βACE, α-secretase and γ-secretase sites that generate Aβ40 and Aβ42 

respectively are also shown. 
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Aβ plaques and memory impairments, but not neurofibrillary tangles or significant 

neuronal loss with age (Hsiao et al, 1996; Irizarry et al, 1997).  While some studies 

suggested a correlation between increased Aβ production and memory deficits (Chen et 

al, 2000a; Hsiao et al, 1996), there has been debate regarding these findings (Routtenberg, 

1997; Westerman et al, 2002).  These transgenic mice develop a modest memory decline 

at six months, but then remain relatively stable for a few more months prior to further 

decline (Lesne et al, 2006) and it has been argued that the onset of learning deficits does 

not correlate with Aβ plaque formation (Routtenberg, 1997; Westerman et al, 2002).  One 

group has recently proposed a solution to this conundrum in the form of extracellular 

soluble dodecameric Aβ42 formation (Cheng et al, 2007; Lesne et al, 2006).  This 56kDa 

assembly is proposed to be multiple trimeric Aβ oligomers whose accumulation correlates 

with the pattern of memory decline noted in the Swedish transgenic mice.  As well, 

infusion of this oligomer into young non-impaired mice transiently disrupted spatial 

memory only.  This however was only a transient effect in a specific memory task and it 

remains to be seen if it correlates with human Aβ formation.  While modulation of Aβ is 

compelling evidence for the amyloid hypothesis (which postulates that overproduction of 

Aβ is the initial neurotoxic insult that leads to AD pathology) (Selkoe, 2000), the FAD-

associated mutations have a number of other effects including axonal dysfunction and cell 

death which can also contribute to AD. 

1.3.1.3.2 APP Mutations Effect on Cell Death 

Extensive work on the FAD-associated mutations of the APP gene has demonstrated that 

these mutants can cause direct or indirect cell death as well as activate caspases.  

Expression of FAD-linked APP mutations cause neurotoxicity in a number of cell lines 

including differentiated rat pheochromocytoma (PC 12), hybrid rat dorsal root ganglion 

and mouse neuroblastoma (F 11), T lymphocytes (T Jurkat) and kidney cells (COS clone 

NK1) (Eckert et al, 2001; Giambarella et al, 1997; Hashimoto et al, 2000; Luo et al, 1999; 

Marques et al, 2003; Niikura et al, 2000; Pellegrini et al, 1999; Yamatsuji et al, 1996a; 

Yamatsuji et al, 1996b; Zhao et al, 1997).  These APP mutations also induce cell death or 

elevate cell vulnerability to age related stresses in primary neurons by multiple 

mechanisms (Luo et al, 1999; McPhie et al, 2003; McPhie et al, 2001; Niikura et al, 

2004).  Because these mutations increase the level of Aβ, it has been hypothesized that 
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their induced cell death is due to Aβ toxicity.  However, using β–secretase inhibitors and 

mutations in APP that prevent the production of Aβ, a number of groups have 

demonstrated that FAD-associated mutants can cause an Aβ independent cell death 

(McPhie et al, 2001; Niikura et al, 2004; Yamatsuji et al, 1996a; Yamatsuji et al, 1996b).   

G protein activation has been implicated in APP mutant cell death.  G protein interfering 

mutants and Pertussis toxin, which inhibits G protein activation, have been shown to 

decrease or abolish APP mutant induced cell death in a number of cell lines (Giambarella 

et al, 1997; McPhie et al, 2003; Niikura et al, 2000; Niikura et al, 2004; Yamatsuji et al, 

1996a).  Since G proteins have a number of downstream signalling pathways, this 

mechanism is still unclear, but there is evidence that activation of JNK, leading to 

NADPH oxidase activity and the caspase cascade, may be the mechanism of APP mutant 

toxicity (Niikura et al, 2004).  This has been supported by a number of reports implicating 

APP mutant dependent oxidative stress (Eckert et al, 2001; Hashimoto et al, 2000; 

Niikura et al, 2000; Niikura et al, 2004; Reis et al, 2007) and caspase activation (Eckert et 

al, 2001; Gervais et al, 1999; Hashimoto et al, 2000; Luo et al, 2002; Marques et al, 2003; 

McPhie et al, 2001; Niikura et al, 2000; Niikura et al, 2004).  

1.3.1.3.3 APP Mutations Effect on Axonal Transport 

1.3.1.3.3.1 An introduction to axonal transport 
The importance of axonal transport in neurons is seen in their unique cellular morphology 

and polarity.  Neurons usually have a long axon and numerous dendrites projecting from 

their cell body which require specialized trafficking of proteins to and from their 

designated compartments and cell body, often travelling very long distances (Stokin & 

Goldstein, 2006).  Synthesis of proteins occur at the cell body or proximal regions of 

dendrites, and processing and modifications occur during transit in axons (Alberts et al, 

2002; Zheng & Koo, 2006).  Two forms of axonal transport exist in the neuron; fast 

transportation of membranous organelles, which includes APP linked vesicles, and slow 

transportation of cytosolic and cytoskeletal proteins.  These processes require two 

families of molecular motors, kinesin and dynein, which travel along microtubule 

filaments in the anterograde (away from the cell body) and retrograde (toward the cell 

body) direction respectively (Hirokawa & Takemura, 2005). 



Page | 29 
 

APP is transported by fast anterograde transport via the kinesin motor protein (Koo et al, 

1990).  These kinesin transport vesicles have been shown to also contain BACE and PS1 

which may explain results demonstrating synaptically released Aβ extracellular 

accumulations in mice (Kamal et al, 2001; Lazarov et al, 2002; Sheng et al, 2002; Sheng 

et al, 2003).  It was initially hypothesized that APP binds directly to the kinesin light 

chain (KLC) subunit acting as a membrane cargo receptor for the kinesin motor (Kamal et 

al, 2000). However subsequent research has demonstrated that this interaction may be 

indirectly mediated via an adaptor protein such as JIP-1, a c-Jun N term kinase (JNK) 

interacting scaffolding protein, which binds both APP and the KLC (Lazarov et al, 2005; 

Matsuda et al, 2001; Scheinfeld et al, 2002; Sisodia, 2002). 

1.3.1.3.3.2 APP over-expression and mutations disrupt axonal transport 
There has been accumulating evidence that a compromise in axonal transport contributes 

to neurodegeneration (Lampert, 1971; Price et al, 1986; Rose et al, 2000; Roy et al, 2005; 

Stokin & Goldstein, 2006; Terry, 1963).  In Drosophila melanogaster, deletion or over-

expression of APP results in organelle congestion and phenotypic axonal transportation 

defects, similar to Drosophila with kinesin and dynein mutations (Gunawardena & 

Goldstein, 2001; Torroja et al, 1999).  The authors hypothesized that this phenotype could 

be a result of APP binding to kinesin, therefore, over-expression of APP could result in its 

excess that then competes for kinesin and titrates it away from other essential pathways 

causing vesicle stalling and axonal transportation defects.  Interestingly, similar axonal 

dysfunctions were noted in Drosophila expressing APP with the Swedish or London 

mutation as well as increased neuronal death in these mutants relative to wild type APP, 

though over-expressing APP itself also caused neuronal death (Gunawardena & 

Goldstein, 2001).  In a mouse model of AD, young APP transgenic mice containing the 

Swedish mutation who had not yet developed AD neuropathology, had axonal defects 

consisting of large and irregularly spaced axonal varicosities (Stokin et al, 2005). This 

supports the proposal that axonal dysfunction is an early event that may be occurring 

before Aβ deposits or abnormally phosphorylated Tau.  As well, these varicosities were 

ChAT immunoreactive and were shown by electron microscopy (EM) to contain 

accumulations of different vesicles, organelles and dense bodies (Stokin et al, 2005).  

Stokin et al. also observed ChAT immunoreactive swellings with comparable 
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morphology and diameter to those seen in the APP transgenic mouse model in FAD 

human brains (Stokin et al, 2005).   

Since Drosophila with kinesin mutations exhibit vesicle stalling, Stokin et al. tested 

whether a reduction in the genetic dosage of KLC I could have a similar effect in their 

APP-Swd transgenic mouse.  They found that a reduction in KLC I not only enhances 

axonal dysfunction seen previously, but also impairs APP trafficking (Stokin et al, 2005).  

In a different APP transgenic mouse model harboring the Swedish and London mutation, 

age dependent axonal swellings and spheroids were also noted (Wirths et al, 2007).  

Finally, in a DS mouse model, over-expression of APP caused abnormal trafficking of 

nerve growth factor (NGF), a neurotrophic factor that increases growth and 

differentiation, indicating potential disrupted trafficking (Salehi et al, 2006).  Recent 

results suggest that these axonopathies are independent of Aβ, which is significantly 

increased in APP mutants (Stokin et al, 2008).  Overall, a mechanism is emerging in 

which APP mutants as well as APP over-expression cause aberrant binding to KLC-I via 

JIP-1, thereby preventing it from transporting other proteins as well as impairing normal 

APP trafficking.  PS mutants appear to have the same phenotype by the opposite 

mechanism as will be discussed later (See Presenilin mutations disrupt axonal transport)   

1.3.2 Presenilin  
The highly homologous PSEN1 and PSEN2 genes, on chromosome 14 and 1 respectively, 

code for proteins that are essential subunits of the transmembrane cleaving multiprotein 

complex, γ-secretase (Wolfe et al, 1999b).  PSEN1 and PSEN2 encode 467 and 448 

amino acid polypeptide proteins that are expressed in the brain and peripheral tissues, 

though PSEN1 is expressed earlier in development than PSEN2.  (Lee et al, 1996).  PS is 

believed to have 8 to 9 transmembrane domains (Spasic et al, 2006; Vetrivel et al, 2006) 

and a hydrophilic loop between domains 6 and 7 which undergoes a highly conserved 

endoproteolytic cleavage and therefore largely exists as a heterodimer (Ratovitski et al, 

1997; Thinakaran et al, 1996).  This processing is thought to be critical for the stability of 

PS (Reviewed in Vetrivel et al, 2006), though some have challenged this (Reviewed in 

Dillen & Annaert, 2006; Steiner et al, 1999).  Within the core of PS are two conserved 

aspartate residues that constitute the catalytic site and therefore PS’s function (Wolfe et 
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al, 1999b).  The homologue of PS, Sel-12, discovered in Caenorhabditis elegans (Levitan 

& Greenwald, 1995) allowed the use of C-elegans as a model system to understand the 

function and interactions of PS (Baumeister et al, 1997; Levitan et al, 1996). 

1.3.2.1 Presenilin Function  

1.3.2.1.1 Presenilin and γ-secretase - Running with scissors 

Linkage of the PSEN genes to FAD was instrumental in elucidating their physiological 

function.  Subsequently, it was shown through yeast 2-hydrid assays that PS binds to and 

is also co-immunoprecipiated with APP (Waragai et al, 1997; Weidemann et al, 1997; 

Xia et al, 1997).  It has now been established that this interaction is due to PS being a 

component of the multimeric γ-secretase complex which participates in the final 

intramembranous cleavage of APP to release the Aβ 40 to 42 residue fragments (De 

Strooper et al, 1998; Wolfe et al, 1999a).  Three other proteins are essential components 

for the stability of the γ-secretase complex, Nicastrin, APH1 and PEN2 while PS provides 

the aspartyl catalytic site (Edbauer et al, 2003; Francis et al, 2002; Yu et al, 2000).  The 

importance of these cofactors is seen by their co-dependence for biogenesis, maturation, 

stability and tight regulation (Reviewed in Vetrivel et al, 2006).   

Lack of a biochemical explanation for an intramembranous protease created an initial 

hesitancy when describing the γ-secretase cleavage of APP.  It was somewhat rescinded 

after the discovery that a similar cleavage occurs in a number of other proteins including 

the ligand activated Notch receptor, whose signalling is essential for cell fate during 

development (De Strooper et al, 1999; Struhl & Greenwald, 1999; Struhl & Greenwald, 

2001) as well as cadherins, a family of structural molecules that play a role in cell 

adhesion (Marambaud et al, 2002).  The relaxed sequence specificity of γ-secretase 

allows it to be promiscuous and to date uses over 30 type I transmembrane proteins as 

substrates including the ones mentioned above (Reviewed in Spasic & Annaert, 2008).  

Structural analysis has recently revealed that a water containing cavity allows for this 

intramembrane cleavage (Lazarov et al, 2006; Steiner et al, 2008).   
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1.3.2.1.2 Alternate Presenilin Functions  

The inference that PS is a member of the γ-secretase complex was not without significant 

debate.  Some investigators were unable to find a direct interaction between PS and APP 

(Thinakaran et al, 1998) giving rise to the hypothesis that PS could be involved in 

regulating the trafficking of membranous proteins that include APP (Selkoe, 2001).  In 

PS1 deficient neurons maturation and trafficking of the tyrosine kinase receptor B (TrkB), 

required for protein growth factors that signal for survival and differentiation, and APP, is 

impaired (Naruse et al, 1998).  As the physiological role of PS is explored, the trafficking 

of many other membrane proteins are being shown to be regulated by PS (Reviewed in 

Uemura et al, 2004; Vetrivel et al, 2006). 

Yeast 2-hybrid assays have identified a number of other proteins that interact with PS 

without necessarily being processed by them.  PS mediates the turnover of a neuron 

specific adhesion molecule, telencephalin, as well as α-synuclein, potentially through 

autophagic degradation (Esselens et al, 2004); modulates capacitative calcium entry to 

replenish internal stores (Green et al, 2008; Yoo et al, 2000); forms passive calcium leak 

channels in the ER (Tu et al, 2006) and modulates Akt/ERK signalling which are 

receptors that have neurotrophic properties as well as affect Tau phosphorylation (Kang et 

al, 2005).  Loss-of-function studies further confirm the importance of PS.   PS knockout 

mice have profound skeletal and CNS defects and do not survive long after birth (Shen et 

al, 1997), while conditional knockout of PS in the adult cerebral cortex mimics 

progressive neurodegeneration along with AD neuropathological hallmarks (Shen & 

Kelleher, 2007). 

1.3.2.2 Presenilin Mutations  
Nearly 90% of identified FAD mutations are due to missense mutations linked to the 

highly homologous PSEN genes (chromosome 14 and 1)(Levy-Lahad et al, 1995; Rogaev 

et al, 1995; Sherrington et al, 1995).  Most of these mutations enhance the generation of 

the Aβ42:Aβ40 peptide ratio, which is more prone to aggregation (Borchelt et al, 1996; 

Murayama et al, 1999b; Scheuner et al, 1996).  Currently, there are two prevailing 

hypotheses regarding the mechanism of action of these mutations: a gain-of-function that 

allows the mutants to modulate γ-secretase’s cleavage location to shift the balance toward 
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longer Aβ species or, a loss-of-function of PS’s physiological functions.  A loss-of-

function hypothesis is supported by conditional PS knockout mice that have 

neurodegeneration measured by memory, neuronal and synaptic loss and Tau 

hyperphosphorylation, mimicking the features of AD (Saura et al, 2004; Shen & Kelleher, 

2007).  This model would suggest that PS mutations that cause early onset AD may also 

function via this mechanism.  PS mutants have been shown to have impaired γ-secretase 

cleavage of Notch, N-cadherin, numerous other substrates as well as reduced 

endoproteolysis (Bentahir et al, 2006; Marambaud et al, 2002; Murayama et al, 1999a; 

Song et al, 1999; Wang et al, 2006).  These mutations also affect other physiological 

functions such as impairing PS’s ability to function as a calcium leak channel in the ER 

(Green et al, 2008; Tu et al, 2006), contributing to the loss-of-function hypothesis.  Over-

expression of PS mutants causes broad spectrum apoptosis and cell death, but will not be 

discussed here (Hashimoto et al, 2004; Janicki & Monteiro, 1997; Weihl et al, 1999).  

The high frequency of PSEN1 mutations, currently 168, while 10 have been found in 

PSEN2, (http://www.molgen.ua.ac.be/ADMutations) indicates a possible differential 

function of the two proteins and therefore an alternate consequence of the respective 

mutations.  

1.3.2.2.1 Presenilin Mutations Disrupt Axonal Transport 

As discussed previously, while PS provides the catalytic site for γ-secretase, its other 

physiological function includes trafficking a number of membrane proteins.  PS interacts 

with glycogen synthase kinase 3β (GSK 3β) (Takashima et al, 1998; Tesco & Tanzi, 

2000) which plays a role in fast axonal transport by promoting the release of kinesin-I 

from membrane bound organelles through phosphorylation  (Morfini et al, 2002).  PS 

mutants have been previously shown to increase PS binding to GSK 3β in cell lines 

(Takashima et al, 1998; Weihl et al, 1999).  In vivo, PS mutant knock-in mice also have 

increased GSK 3β resulting in impaired kinesin-I axonal transportation of membrane 

bound organelles (Pigino et al, 2003).  In different mutant transgenic PS mice, fast axonal 

transportation of APP and the TrkB receptor were impaired, with an accompanying 

reduction in axonal kinesin-I levels.  Clinically these mice also demonstrate motor 

dysfunction (Lazarov et al, 2007).  Recent published results however do not support these 

findings completely.  Stokin et al. crossed a transgenic PS mutant with a transgenic APP 
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mutant mouse harbouring the Swd mutation.  They found that while the PS mutant causes 

decreased APP axonal transportation in the crossed transgenic mouse, it does not alter 

levels of kinesin-I or cause axonal pathology (Stokin et al, 2008).  The reason for this 

conflict is still unclear though the fact that the Stokin et al. mice have a different PS 

mutation from the Pigino et al. mice may contribute to this discrepancy. However, based 

on previously observed axonopathies in PS1 mutant knock-in mice, the mechanism 

appears to involve increased PS binding to GSK 3β resulting in increased 

phosphorylation of kinesin-I.  This promotes the release of kinesin-I from membrane 

organelles, and as discussed previously (See APP mutations disrupt axonal transport), 

since APP is trafficked by indirectly binding to kinesin I, its transportation along with 

other proteins would be impaired resulting in vesicle stalling and the phenotype noted in 

both PS and APP mutant models of AD.  

1.3.3 Apolipoprotein E 
Apolipoprotein E (ApoE), a glycoprotein that carries cholesterol and other lipids in the 

blood, is needed for the normal catabolism of triglyceride rich lipoproteins and is 

particularly high in the brain (Cedazo-Minguez, 2007; Hirsch-Reinshagen & Wellington, 

2007).  The ApoE gene has three expressed alleles, ε2, ε3 and ε4 of which the ε3 allele is 

the most common in the general population (Cedazo-Minguez, 2007; Zannis & Breslow, 

1981).  However, in the early 90’s a group studying lipid changes in AD brains 

demonstrated ApoE immunoreactivity with amyloid plaques and tangles (Namba et al, 

1991).  Shortly after, the ε4 allele was linked as a genetic risk factor for late onset AD 

(Poirier et al, 1993; Strittmatter et al, 1993a) occurring in a dose dependent manner with 

increased risk and decreased age of onset (Corder et al, 1993).  The results were 

confirmed in numerous other population and clinical studies (Ertekin-Taner, 2007).  The 

group that first published the associated of APOE ε4 allele with late-onset AD also 

reported that the purified ε4 isoform binds Aβ with higher avidity in vitro (Strittmatter et 

al, 1993b).  Subsequent research showed that under native conditions using unpurified 

protein, ε4 in fact has lower binding avidity than the other isoforms implying potential 

defective clearance of Aβ (Aleshkov et al, 1997; LaDu et al, 1994; Tokuda et al, 2000).  

The molecular mechanism by which the ε4 allele functions remains to be elucidated, 

though the prevailing hypothesis is that it has a role in Aβ aggregation and/or deposition 
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or deregulated Aβ clearance (Cedazo-Minguez, 2007).  Several other hypotheses have 

been proposed regarding the isoform specific association of ApoE and AD which include: 

ApoE having an isoform specific role in stabilizing microtubule interactions with Tau and 

microtubule associated proteins (Huang et al, 1994; Strittmatter et al, 1994) as well as an 

isoform specific effect on neuritic outgrowth in response to injury (Holtzman et al, 1995; 

Nathan et al, 1995; Poirier, 1994). 

1.3.4 Sortilin 1 
The most recent addition to the list of potential genes that modulate AD is the Sortilin-

related receptor gene, a member of the vacuolar protein sorting family.  Variants in this 

gene have been associated with increased risk of late-onset AD in multiple independent 

data sets from different ethnic groups (Rogaeva et al, 2007).  Unlike ApoE, in the 

preliminary study of SORL1, no single variant was associated with increased risk across 

all the data sets.  However, the authors found an association between late-onset AD and 

two clusters of single nucleotide polymorphisms (SNPs) in two distinct regions of the 

SORL1 gene (Ertekin-Taner, 2007; Rogaeva et al, 2007).  Other groups have 

subsequently confirmed the finding in more ethnic groups including Chinese and Belgium 

populations (Bettens et al, 2008; Meng et al, 2007; Tan et al, 2007) but there is still some 

conflict regarding the significance of this association (Li et al, 2008; Minster et al, 2008).  

Time and larger multiethnic cohorts will be needed to confirm these results.  SORL1 is a 

neuronal protein that associates with APOE (Jacobsen et al, 2001) and is involved in the 

trafficking and recycling of APP within the endocytic pathway (Andersen et al, 2005; 

Schmidt et al, 2007).  It regulates APP processing by binding to it and directing it toward 

the retromer recycling pathway.  It has been proposed that the absence of SORL1 

switches APP toward the late endosomal pathway where it is cleaved by BACE.  This is 

supported by evidence that downregulation of the protein results in increased Aβ 

formation (Andersen et al, 2005; Offe et al, 2006; Schmidt et al, 2007)  as well as a 

decrease in SORL1 expression in post-mortem AD brains (Scherzer et al, 2004). 

1.4 CELL DEATH – MORE THAN A TALE OF TWO? 
While typically thought of as occurring pathologically, cell death is also a necessary 

process for development and cellular homeostasis.  Broadly divided into two 
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mechanisms, apoptosis and necrosis, a possible third type of cell death, autophagy has 

been garnering increasing attention (Degterev & Yuan, 2008).  Apoptosis is characterized 

by an organized dismantling of the cell by caspases resulting in blebbing and apoptotic 

bodies, while necrosis has a swelling and bursting of organelles that trigger inflammation 

upon spilling into the extracellular milieu (Yuan et al, 2003).  Autophagy, a controlled 

cell death similar to apoptosis, occurs at an underlying level under normal conditions and 

is characterized by double membrane enclosed vesicles of the organelles which are 

degraded by lysozomal enzymes (Kelekar, 2005).  In addition to these three broad 

categories, other forms of cell death that do not fit into these morphological criteria are 

starting to emerge such as necroptosis.  However, whether they operate under different 

mechanisms and require categories of their own remains to be seen (Degterev & Yuan, 

2008).   

1.4.1 Apoptosis 
Apoptosis or cellular suicide is a tightly controlled fundamental process required for 

tissue maintenance, organism development and defence against cellular insults (Faleiro et 

al, 1997; Kerr et al, 1972; Zheng et al, 1999).  The phenomena was first described in the 

19th century (Vogt, 1842) but was only brought into the limelight in the early 70’s when 

the term ‘apoptosis’ was coined by Kerr et al (1972).  It is characterized by distinct 

controlled features including: cell shrinkage, condensed chromatin and cytoplasmic 

blebbing into apoptotic bodies that are phagocytosed by surrounding cells (Cohen, 1997; 

Kerr et al, 1972).   

While being stringently controlled by both survival and death signals, apoptosis can occur 

by two major pathways: 1) an extrinsic pathway that involves cell surface death receptors 

or 2) an intrinsic pathway via cytochrome c release from the mitochondria.  Both of these 

paths rely on the main apoptotic perpetrators, caspases. Briefly, in the extrinsic pathway, 

ligands bind to and activate specific cell surface death receptors which recruit a death 

inducing signalling complex to amplify the apoptotic signal via caspases.  The intrinsic 

pathway can be activated both by extracellular (eg. loss of survival factors) and 

intracellular (eg. toxins, DNA damage) stimuli which cause the irreversible release of 

cytochrome c and other apoptogenic factors from the mitochondria.  Cytochrome c then 
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binds adaptor proteins and oligomerizes into a complex that recruits and activates 

caspases to amplify the death signal (Reviewed in Schultz & Harrington, 2003).  In both 

cases, the apoptotic signal is divided into an ‘initiation’ and ‘execution’ phase, however 

once the execution phase has been triggered the cell is fated to die (Reviewed in 

Movassagh & Foo, 2008).  The dysregulation of this programmed cell death is believed to 

contribute to the pathogenesis of neurodegenerative diseases like AD (Engidawork et al, 

2001).   

1.4.1 Caspases 
It was early studies on the nematode Caenorhabditis elegans (C.elegans) that helped 

genetically characterize the key components of apopototic molecular machinery – 

caspases (Ellis & Horvitz, 1986; Horvitz et al, 1994).  Discovery of the C.elegans death 

(CED) genes, required for the activation of apoptosis, led to the identification of their 

mammalian homologues, the cysteine-dependent aspartate specific protease (Caspase) 

family (Black et al, 1989; Cerretti et al, 1992; Thornberry et al, 1992; Yuan et al, 1993). 

They are named for the conserved cysteine side required for catalytic activity and for their 

fastidious specificity to cleave their substrates after an aspartic acid residue (Alnemri et 

al, 1996).  Having this preferred cleavage site is not enough for proteolysis of all 

substrates however, substrate availability is just as essential therefore limiting and 

controlling the vital substrates required to dismantle the apoptotic cell (Fischer et al, 

2003). 

Eleven caspases are encoded by the human genome and can be grouped by three criteria, 

either by their in vivo activity, the length of their prodomain or by their substrate 

specificity (Nicholson, 1999; Salvesen & Abrams, 2004; Thornberry et al, 1997).  

Loosely, Caspase 2, 8, 9, 10 are initiator or long prodomain caspases. The first to be 

recruited during the initiation phase of apoptosis, they activate Caspase 3, 6, 7, the 

effector or short prodomain caspases which go on to cleave cellular proteins. Caspase 1, 

4, 5, 11 are termed the inflammatory caspases for responding to inflammatory stimuli 

(Reviewed in Cohen, 1997; Taylor et al, 2008).   The long prodomain caspases contain a 

CAspase Recruitment Domain (CARD) or Death Effector Domain (DED) not seen in the 

short prodomain caspases.  Alternatively, caspases cleave their substrates after specific 

tetrapeptide recognition motives which has been exploited in caspase activity assays, 
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inhibitors and grouping criteria (Reviewed in Boatright & Salvesen, 2003).  For example, 

Casp6 primarily recognizes VEID while Caspase 3 recognizes and cleaves DEVD after 

the aspartate residue (Degterev et al, 2003).  Based on this, three groups arise: Group I 

consists of Caspase 1, 4, 5; Group II Caspase 2, 3, 7 and Group III Caspase 6, 8, 9, 10 

(Garcia-Calvo et al, 1999; Thornberry et al, 1997). 

1.4.1.1 Caspase Structure and Activation 

Caspases are initially synthesized as proteolytically inactive zymogens consisting of: an 

N-terminal prodomain, a 20kDa subunit (referred to as p20), usually a small linker region, 

and a 10kDa subunit (referred to as p10) (Nicholson, 1999).  Cleavage of the aspartic acid 

residue between the p20 and p10 subunit liberates them to allow the two to make up the 

active heterotetrameric caspase form (Thornberry et al, 1992).  Casp 6 for example can be 

processed by Caspase 1, 2, 3, 8, 9, 10 and the cytotoxic T lymphocyte (CTL) protease 

granzyme B in a number of cell lines and primary human neurons (Cohen, 1997; Guo et 

al, 2006; Orth et al, 1996; Park et al, 2004; Slee et al, 1999; Zheng et al, 2000).  However, 

this cleavage is not always necessary for the initiator caspases.  In vitro results suggest an 

‘induced proximity’ model in which proximity of the unprocessed caspases allows their 

dimerization and activity (Reviewed in Boatright & Salvesen, 2003; Muzio et al, 1998).   

1.5 CASPASE ACTIVITY IN AD 
Prompted by the significant neuronal loss observed in diseased brains, caspases have been 

examined and implicated in AD.  While many of the initiator caspases have been studied, 

Casp6 in particular has been shown to be a strong potential candidate for involvement in 

the pathogenesis of AD, particularly since it shows strong immunoreactivity to all the AD 

pathological hallmarks in severe AD as well as MCI brains (Albrecht et al, 2007; Guo et 

al, 2004).and will be discussed in more detail later (See Caspase 6 activity in AD).  By 

immunoprecipitation and immunohistochemistry, Caspase 9 has been found to be 

activated in postmortem brains of AD patients (Lu et al, 2000; Rohn et al, 2002).   The 

other major initiator caspase, Caspase 8, was strongly immunoreactive in AD affected 

regions of the brain and also detected by western blotting (Rohn et al, 2001; Su et al, 

2002).   A second group however, was unable to confirm these Caspase 8 findings by 

immunoblotting (Lu et al, 2000).  Interestingly, it was shown that active Caspase 8 and 9 
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co-localize, particularly within neurons described as having a ‘flame like’ morphology 

consistent with neurofibrillary tangles.  This supports the authors’ model of a crosslinking 

of death receptors which activate both initiator caspases that subsequently activate 

Caspase 3, though active Caspase 3 was not demonstrated here (Rohn et al, 2002).    

There has been some controversy regarding the activity of the effector Caspase 3 in AD 

(Gervais et al, 1999; LeBlanc, 2005; Stadelmann et al, 1999; Su et al, 2001). By 

immunoprecipitation-mass spectrometry and immunocytochemistry one group found 

active Caspase 3 in the limbic cortex of mild AD, but not severe AD brains (Gastard et al, 

2003), while another found extensive active Caspase 3 immunoreactivity, particularly in a 

subfield of the hippocampus, entorhinal cortex and upper layers of the frontal cortex of 

AD brains (Su et al, 2001).  This is in contrast to a number of groups that found only 

diffuse immunoreactivity of Caspase 3 in some AD cases, and that, mainly localized to 

granulovacuolar degenerating neurons (a degeneration that results in a neuronal 

intracytoplasmic vesicle containing a granuole) (Roth, 2001; Selznick et al, 1999; 

Stadelmann et al, 1999; Su et al, 2002).  Finally, a recent study demonstrated increased 

Caspase 8 and 7 mRNA levels, but not 3 or 9 in AD cases (Matsui et al, 2006).   

Of the inflammatory caspases, there are reports of increased Caspase 1 mRNA and 

protein levels in AD brains (Desjardins & Ledoux, 1998; Zhu et al, 1999) however that 

has been the extent of reports on the involvement of inflammatory caspases in AD. 

1.5.1 Caspases process APP 
APP was first shown to be cleaved at two predicted locations by Caspase 3 in chick 

motor-neurons undergoing cell death, after the authors noticed an upregulation of APP 

mRNA, APP protein and Aβ levels in these dying cells (Barnes et al, 1998).  One site of 

cleavage was confirmed in vitro and in vivo through site directed mutations at aspartate 

664 in the C-terminus of APP where Caspase 3, 6, 8 and 9 also cleaved it resulting in a 

cytotoxic C31 fragment (Gervais et al, 1999; LeBlanc et al, 1999; Lu et al, 2000; 

Pellegrini et al, 1999; Weidemann et al, 1999).  This 3kDa C31 fragment has been shown 

to be toxic or make cells more susceptible to insults in primary neurons and cell lines 

(Dumanchin-Njock et al, 2001; LeBlanc, 2005; Lu et al, 2000; McPhie et al, 2001).  Two 

additional Caspase 3 cleavage sites were identified in vitro at the N-terminus of APP, 
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however, it was the aspartate 664 C-terminus site that was shown to be cleaved in vivo 

and detected within the senile plaques of an AD brain (Gervais et al, 1999).  

1.5.1.1 Caspase Modulation of Aβ 
Dying human neurons that have active Casp6 secrete more Aβ and accumulate more 

intracellular Aβ which is currently believed to make cells more susceptible to cellular 

stress and eventually lead to cell death (LeBlanc, 1995; LeBlanc et al, 1999).   Based on 

this and evidence from cells expressing APP cleaved C31, it was hypothesized that the C-

terminus caspase cleavage modulates increased Aβ in dying cells (Gervais et al, 1999). 

However, a different group attempting to reproduce these results in a different cell line 

did not observe the same results (Soriano et al, 2001).  This same group found that APP 

lacking the C31 fragment had decreased Aβ.  They suggest that loss of the C-terminal 

internalization signal when expressing APP cleaved C31 results in lack of processing of 

APP and decreased Aβ production which explains their results.  A second group that 

mutated the caspase cleavage sites of APP still saw an increase in apoptosis induced Aβ 

production (Tesco et al, 2003).  This conflict is partially explained by a recently 

elucidated pathway by which caspases indirectly influence Aβ production.  Active 

Caspase 3 cleaves the Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) 

(Tesco et al, 2007).  GGA3 trafficks BACE for lysosomal degradation.   Therefore, active 

Caspase 3 indirectly stabilizes the activity of BACE by impairing its degradation, thereby 

contributing to increased Aβ production and providing an explanation for the previous 

discrepancies.  The same group noted that GGA3 levels are decreased in AD brains.  

Since Casp6 is activated in apoptotic neurons that have increased Aβ it would be 

interesting to test if Casp6 also cleaves GGA3.   

1.5.2 Caspases process PS and Tau 
Two other proteins involved in FAD are also caspase substrates: Tau and PS (Canu et al, 

1998; Chung et al, 2001; Fasulo et al, 2000; Gamblin et al, 2003; Grunberg et al, 1998; 

Kim et al, 1997).  Tau is cleaved by caspase 1, 3, 7 and 8 within its C-terminus in vitro 

(Gamblin et al, 2003), confirming previous results demonstrating a Caspase 3 cleavage 

site within Tau (Chung et al, 2001; Fasulo et al, 2000).  This truncated fragment is 

detected in neurofibrillary tangles of an AD brain (Gamblin et al, 2003) and is cytotoxic 

in neuronal cells (Chung et al, 2001; Fasulo et al, 2005). Two other Casp6 cleavage sites 
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in Tau, either at the N terminus (Horowitz et al, 2004) or C terminus (LeBlanc et al, 

1999) were discovered and confirmed to be present in tangles (Horowitz et al, 2004) or in 

the neuropil threads, neurofibrillary tangles and neurites of plaques of AD and MCI 

brains (Albrecht et al, 2007; Guo et al, 2004).  Both PS proteins can be cleaved by a 

multitude of caspases (Grunberg et al, 1998; Kim et al, 1997; van de Craen et al, 1999), 

however the caspase cleaved PS fragments have not yet been confirmed in AD brains.  

Unlike APP, five PS missense mutations examined thus far do not sensitize PS to caspase 

cleavage (van de Craen et al, 1999).  

1.6 CASPASE 6 
Casp6 is a versatile protein that has a key role in a number of different pathways.  First 

described in 1995, the 34 kilodalton (kDa) CED-3 homologue, then termed Mammalian 

Ced-3 Homologue 2 (Mch2), was added to the growing list of cysteine proteases 

(Fernandes-Alnemri et al, 1995) and later mapped to chromosome 4 (Bullrich et al, 1996).  

Casp6 role in apoptosis was solidified by the discovery that it cleaves lamin A, an 

essential nuclear cytoskeleton protein, resulting in the now recognized fragmentation 

synonymous with apoptosis (Orth et al, 1996).  It has however been identified to have a 

number of other substrates throughout the body ranging from nuclear to cytoskeleton or 

cytoskeleton associated proteins.  Casp6 mRNA levels have been examined in the rat 

where the highest expression is seen mainly in the lungs followed by the heart, kidney 

and muscle (Singh et al, 2002).  Casp6 expression levels in humans have yet to be 

published though work is underway in our lab.   

Casp6 knock-out mice have no reported developmental abnormalities, but these mice 

have never been properly characterized, nor has it been published whether other caspases 

are upregulated in compensation making it difficult to conclude on the importance of 

Casp6 in developmental neuronal cell death (Zheng et al, 1999; Zheng et al, 2000).  At 

least in intestinal epithelial cells however, Casp6 plays an essential role in anoikis, or 

detachment induced cell death, which is essential to ensure intestinal epithelium 

homeostasis.  In this rapid apoptotic response, Casp6 activation is detected minutes after 

cell detachment and occurs before Caspase 3 activation (Grossmann et al, 1998).  In a 

pathological role, in a mouse model of Huntington’s disease (HD), cleavage by Casp6 but 



Page | 42 
 

not Caspase 3 of mutant huntingtin, a protein with a polyglutamine expansion that causes 

HD, is required for the development of neuropathological and behavioural features of HD 

(Graham et al, 2006).  The importance of Casp6 in human HD however has not yet been 

shown.  Chemically induced epileptic seizures in rats cause an activation of Casp6 prior 

to Caspase 3 measured by western blotting, caspase activity assays and 

immunohistochemistry in the hippocampus (Henshall et al, 2002).  Finally, ischemic 

injury in rat kidney (Singh et al, 2002) and human brain result in activated Casp6 (Guo et 

al, 2004).  Of note is that ischemia in adult brain demonstrated immunoreactivity via a 

neoepitope antibody of active Casp6 only in the nucleus while fetal ischemic brains had 

active Casp6 in the nucleus, cytosol and neurites. 

1.6.1 Caspase 6 Activity in AD – From cell culture to the brain 
A key initiator caspase, Casp6, is thought to be an important participant in the 

pathogenesis of AD, demonstrated both in vitro and in vivo.  Human neurons have been 

used as a cell model to study the mechanisms of AD.  In culture, apoptotic serum-

deprived human fetal neurons have increased Casp6 but not Caspase 3 activity (Guo et al, 

2006; LeBlanc et al, 1999).  Co-currently, these serum-deprived apoptotic neurons have 

increased production of the Aβ peptide, which is prevented by inhibiting Casp6 (LeBlanc, 

1995; LeBlanc et al, 1999).  In this cell model, Casp6 is activated by Caspase 1 (Guo et 

al, 2006) and microinjection of recombinant active Casp6, but not Caspase 3,7 or 8, 

causes a protracted cell death that can take up to 6 days in the absence of other insults, 

potentially mimicking the slow progressive cell death in AD (Zhang et al, 2000).   

While Casp6 plays a significant role in cell culture, it has been validated in human AD 

brains.  The active Casp6 subunit appeared to be slightly increased in the frontal, 

temporal, pariental and cerebellar areas of one AD brain examined (LeBlanc et al, 1999) 

while a two to three fold increase of active Casp6 was seen in the frontal and temporal 

cortex of other AD brains by western blot (Guo et al, 2004).  In contrast to the first study, 

Guo et al. noted no active Casp6 in the cerebellar tissue, an area unaffected by AD.  This 

discrepancy can be explained since the earlier study only examined one brain by western 

blot and cautiously interpreted their data as simply suggesting that Casp6 is present in 

adult brains while Guo et al. immunoprecipitated proteins from AD and control brains.  
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By immunohistochemistry, active Casp6 is also localized in neurofibrillary tangles, 

neuropil threads and neurites within the Aβ plaques (Guo et al, 2004). Interestingly, the 

authors noted that the degree of staining does not correlate with the severity or duration of 

the disease.  In MCI brains active Casp6 immunoreactivity is detected in the same places 

as AD brains (Albrecht et al, 2007) indicating that Casp6 activation appears to occur early 

in the disease, possibly contributing to neurodegeneration and not neurotoxicity.   

1.6.1.1 Caspase 6 substrates in AD 

While having a number of other substrates unrelated to AD, Casp6 cleaves three 

important neuronal proteins involved in AD: APP (LeBlanc et al, 1999; Pellegrini et al, 

1999), PS (van de Craen et al, 1999) and Tau (Gamblin et al, 2003; Horowitz et al, 2004; 

LeBlanc et al, 1999).  Casp6 cleavage of the C-terminus of APP results in the neurotoxic 

C31 fragment (Dumanchin-Njock et al, 2001; Lu et al, 2000).  As well, the Swd mutation 

of the APP gene has been shown to create a more efficient Casp6 cleavage site (Gervais 

et al, 1999).  The preferential Casp6 site causes an increase in APP proteolysis resulting 

in increased Aβ production.  The cleavage of PS by Casp6 has been demonstrated in vitro 

using purified protein, but its significance has yet to be demonstrated in vivo (van de 

Craen et al, 1999). 

In vitro and in neuronal extracts Casp6 cleaves the cytoskeleton associated protein, Tau 

(Gamblin et al, 2003; Horowitz et al, 2004; LeBlanc et al, 1999). The N-terminus Casp6 

cleavage site of Tau is detected in the tangles of early and late AD brains (Horowitz et al, 

2004).  The C-terminus Casp6 cleaved Tau is richly detected in neurofibrillary tangles, 

neuropil threads and neurites associated with plaques of AD brains (Guo et al, 2004).  In 

MCI brains, the C-terminus Casp6-cleaved-Tau was present in neurofibrillary tangles and 

neuropil threads, but more significantly, also in non-cognitively impaired brains with low 

global cognitive scores (Albrecht et al, 2007).  This inverse correlation of increased Tau 

cleaved by Casp6 immunoreactivity with decreased cognitive scores suggests that Casp6 

may contribute to AD pathology via neurodegeneration early in the disease. 

It was recently demonstrated that Casp6 cleaves a number of cytoskeleton associated 

proteins in human primary neuronal extracts (Klaiman et al, 2008).  Using a proteomics 

approach the Casp6 substrates α-Tubulin, Drebrin, Spinophilin and α-Actinin-4 were 
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identified.  Cleavage by Casp6 of purified or in vitro translated cystoskeleton proteins 

confirmed these results.  Additionally, the authors utilized site directed mutagenesis to 

identify some, but not all, of the predicted Casp6 cleavage sites in Debrin, α-Tubulin, and 

Spinophilin.  Identifying these fragments in AD affected brain samples versus control 

samples can further substantiate the significance of these results in AD.  In vivo, the 

neoepitope antibody to tubulin cleaved by Casp6 was immunoreactive with all the major 

hallmarks of AD including neurofibrillary tangles, neuropil threads and plaques (Klaiman 

et al, 2008).  Since active Casp6 remains neuritic and does not translocate to the nucleus 

of neurons in severe AD brains (Guo et al, 2004), it supports the hypothesis that at least in 

AD, active Casp6 has a new role in neuritic degeneration. 

1.7 HYPOTHESIS AND OBJECTIVE OF STUDY 
The neuropathology of sporadic and FAD are similar.  Based on previous studies, FAD-

associated mutants cause cell death, make cells vulnerable to age related stresses and 

activate caspases (Eckert et al, 2003; Hashimoto et al, 2000; Luo et al, 1999; Marques et 

al, 2003; McPhie et al, 2003; McPhie et al, 2001; Niikura et al, 2004; Zhao et al, 1997).   

Casp6 in particular is activated and localized to the AD neuropathological hallmarks in 

sporadic AD brains (Albrecht et al, 2007; Guo et al, 2004) .  Given these results, we 

hypothesized that Casp6 is also activated in FAD.  To address this, I assessed the activity 

and effects of Casp6 in human fetal neurons transfected with FAD-associated mutations.  

We chose to use these primary neurons to address our objective because they are 

terminally differentiated cells that are the closest in vitro model to AD, a disease 

restricted to humans.  Data obtained from human neuronal cultures have also been 

validated in sporadic AD brains establishing them as a credible system. 
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II. PREFACE 
 

The following chapter contains a manuscript being prepared for submission to the Journal 

of Neuroscience.  It details the work I conducted on Casp6 activity in human neurons 

over-expressing FAD-associated mutations and APP695.   
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2.1 INTRODUCTION 
Caspase 6 (Casp6) is activated in the absence of the other two effector caspases, Caspase 

3 and Caspase 7, in serum-deprived human primary neurons cultures (LeBlanc et al, 

1999). Microinjection of active Casp6, but not Casp3 or 7, induces cell death several days 

later in human neurons (Zhang et al, 2000).  Casp6 is activated early in sporadic AD and 

is present in the three major neuropathological hallmarks of AD: neuropil threads, 

neurofibrillary tangles and neuritic plaques (Albrecht et al, 2007; Guo et al, 2004).  

Active Casp6 cleaves  neuronal proteins associated with AD, such as amyloid precursor 

protein (APP) (Gervais et al, 1999; LeBlanc et al, 1999; Pellegrini et al, 1999; 

Weidemann et al, 1999), Tau (Gamblin et al, 2003; Horowitz et al, 2004; LeBlanc et al, 

1999), and Presenilin 1 and 2 (van de Craen et al, 1999).  Furthermore, Casp6 cleaves 

several cytoskeleton proteins such as α-tubulin and β-actin-regulating post-synaptic 

density proteins, Drebrin, Spinophillin, α-actinin-1 and -4 (Klaiman et al, 2008).  Tau and 

α-tubulin cleaved by Casp6 (Tau∆Casp6 and Tub∆Casp6) are also present in 

neurofibrillary tangles, neuritic plaques and neuropil threads (Albrecht et al, 2007; Guo et 

al, 2004; Klaiman et al, 2008).  Finally, Casp6 is also activated in the entorhinal cortex of 

aged brains that have lower global cognitive scores than their counterparts (Albrecht et al, 

2007).  Since the entorhinal cortex is the area first affected in AD brains (Braak & Braak, 

1991), these results suggest that Casp6 could be an early instigator of AD that disrupts the 

architecture and consequently the function of neurons.  

AD occurs either sporadically or genetically.  The cause of sporadic Alzheimer is 

unknown however the familial forms of AD (FAD) are associated with missense 

mutations in the APP (St George-Hyslop et al, 1987) gene or the two homologous 

Presenilin genes (Levy-Lahad et al, 1995; Rogaev et al, 1995; Sherrington et al, 1995).  

Yet, sporadic AD and FAD show identical pathological profiles (Mullan et al, 1993).  

Because familial mutants increase amyloid beta peptide (Aβ) production (reviewed in 

Selkoe & Podlisny, 2002), Aβ is generally thought to cause AD.  However, cellular stress 

will also overproduce Aβ in an indirect but caspase-dependent manner (Gervais et al, 

1999; LeBlanc, 1995; Tesco et al, 2007; Tesco et al, 2003).  Over-expression of APP 

missense mutations can cause cell death by multiple mechanisms including caspase 

activation (Eckert et al, 2003; Hashimoto et al, 2000; Marques et al, 2003; McPhie et al, 
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2001; Niikura et al, 2004).  Expression of these mutations causes axonal dysfunction in 

Drosophila and numerous transgenic murine AD models (Gunawardena & Goldstein, 

2001; Stokin et al, 2005; Wirths et al, 2007).  This is consistent with reports of axonal 

defects, cytoskeleton abnormalities and neuronal deterioration early in AD (Lampert, 

1971; Price et al, 1986; Stokin et al, 2005). 

 

Interestingly, over-expression of wild type APP also disrupts axonal trafficking of 

vesicles, synaptic proteins and nerve growth factor (Gunawardena & Goldstein, 2001; 

Salehi et al, 2006; Torroja et al, 1999).  Down’s syndrome patients with a duplication of 

chromosome 21 which includes the APP gene, develop clinical and neuropathological 

features of AD (Burger & Vogel, 1973).  Duplication of the APP gene can also cause AD 

in the absence of Down’s syndrome (Cabrejo et al, 2006; Rovelet-Lecrux et al, 2006; 

Sleegers et al, 2006). 

 

Given that sporadic and familial AD neuropathology is identical, we investigated whether 

Casp6 is also activated in over-expressed wild type or FAD APP mutants, and if it could 

contribute to neuronal dysfunction. 
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2.2 MATERIALS AND METHODS 
 

Cell Culture 

Primary human fetal neurons obtained with ethical approval from the McGill University 

Institutional Review Board were cultured as described previously (LeBlanc, 1995). 

Cultures generally contain ~90% neurons and 10% astrocytes.  Mouse neuroblastoma 

Neuro-2a (N2a) cells were obtained from the American Type Culture Collection 

(Manassas, VA) and maintained in MEM (Gibco-Invitrogen, Carlbud, CA) containing 

nutrient supplements and 10% fetal bovine serum (HyClone-Thermo Scientific, Waltham, 

MA). 

 

Cloning Strategy and Site Directed Mutagenesis of human APP 

Full length APP695 cDNA was obtained from Dr. Georges Levesque (Laval University, 

Quebec) and subcloned into the bigenic eukaryotic pBudCE4.1 vector (Invitrogen, 

Burlington, ON) under the human cytomegalovirus (CMV) promoter using the HindIII 

and NotI sites.  Enhanced green fluorescent protein (EGFP) had already been cloned into 

the pBud vector downstream of the human elongation factor 1 alpha (EF-1α) promoter as 

a marker of transfection (Jodoin et al, 2007).  The Swedish (Swd) mutation at amino acid 

codon 595 and 596 (KM-NL) and the London (Lond) mutation at amino acid codon 642 

(V-I) was generated by the Quik change site directed mutagenesis method (Stratagene, La 

Jolla, CA) using the following sense primers (substituted nucleotides indicated in bold) 

Swd, 5’-GATCTCTGAAGTGAATCTGGATGCAGAATTCCG-3’; Lond, 5’-CATAGC 

GACAGTGATCATCATCACCTTGGTG-3’. The histidine tagged dominant negative 

Casp6 C163A (DN Casp6) mutant (Hermel et al, 2004) was cloned by Heather Turnan 

and Guy Klaiman in the pCep4β vector.  The β secretase uncleavable APP (MV) mutant 

was a kind gift from Dr. Jannic Boehm (University of Montreal, Quebec) (Citron et al, 

1995) and was subcloned into the pBudEGFP vector SalI and Xba I restriction sites.  The 

pDs-Red RFP-Tau (RFP-Tau) construct was a kind gift from Dr. Yasuo Ihara (University 
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of Tokyo, Tokyo) (Oyama et al, 2004) and the pRFP-C1 mUbiquitin (RFP-Ubq) construct 

was purchased from AddGene (Cambridge, MA)(Bergink et al, 2006).    All constructs 

were confirmed by sequencing at the McGill University and Genome Quebec Innovation 

Centre.  

 

Transfection 

Neurons were plated on poly-L-lysine coated aclar coverslips (20 µg/mL; Sigma-Aldrich, 

St. Louis, MO) at a density of 3x106 cells/mL and were transfected via the Helios gene 

gun (Bio-Rad, Mississauga, Ontario, Canada) with a pressure pulse of helium (100 psi). 

The cartridges used for transfection were made of 0.033 mg of DNA bound to 4.2 mg of 

gold microcarrier beads prepared in 1 M calcium chloride and 0.1 mL of 0.05 M 

spermidine (Roucou et al, 2005).  Approximately 1 µg DNA coated gold beads/cartridge 

was delivered to three coverslips of neurons per treatment per neuronal preparation.  

When transfecting cells with more than one construct a ratio of 2:1 of pDS-red RFP-Tau 

or pRFP-C1 mUbiquitin to pBudEGFP, pBudEGFP/APP695 (APP695), pBudEGFP/APPSwd 

(Swd), pBudEGFP/APPLond (Lond) and pBudEGFP/APPMV (MV) or 3:1 of pCep4β 

Casp6C163A (DN Casp6) to Lond was used to prepare cartridges. 

 

N2a cells were transfected with 4 µg of pBudEGFP, full length APP695, the Swd, Lond, 

MV and DN Casp6 mutant constructs using Lipofectamine2000 (Invitrogen, Carlsbad, CA) 

for 3hrs according the manufacturer’s instructions.  Transfection efficiency was assessed 

via a Nikon Eclipse TE2000-U fluorescent microscope (Mississauga, ON).  EGFP 

positive cells versus the total number of cells stained with Hoechst 33342 (Sigma-

Aldrich, St. Louis, MO) were counted yielding less than 0.01% transfection efficiency in 

human neurons and 75% efficiency in N2a cells. The gene gun was used to transfect the 

primary human neurons because they resist viral based transfections and lipid based 

transfections are toxic to them. 
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Neuronal Dropout and Cell Death Assays 

The number of EGFP-positive APP695, Swd, Lond, MV or DN Casp6 mutant transfected 

human neurons in culture was assessed live over 72 hours under fluorescent microscopy.  

For this analysis, the total number of transfected fluorescent neurons counted at 24 hours 

was standardized to 100% and subsequent neuronal counts at 48 and 72 hours were 

expressed as a percentage of the total number of neurons counted at 24 hours.  A 

minimum of 50 neurons per experiment in three independent neuron preparations was 

assessed.  Cell death was measured by assessing condensed chromatin.  Twenty minutes 

prior to live assessment 1 µg/mL of Hoescht 33342 was added to media, cells were 

washed twice in PBS pH 7.5 and fresh media was added.  EGFP-positive neurons 

displaying condensed chromatin visualized with Hoescht 33342 were counted at 48 hours.  

N2a cells were also assessed for cell death after being serum-deprived in MEM media for 

24 hours.  An average of 300 cells per experiment were assessed.  Cell death was 

additionally confirmed in human neurons by counterstaining neurons with Terminal 

deoxynucleotidyl transferase-mediated biotinylated UTP nick end labelling (TUNEL)-

Red to determine DNA fragmentation.  Briefly, neurons were fixed for 20 minutes at 

room temperature in 4% paraformaldehyde and 4% sucrose and then permeabilized in 

0.1% Triton X-100 and 0.1% sodium citrate prior to staining with TUNEL using the In 

Situ Cell Detection kit I (Roche, Laval, Quebec).   

 

 

Measurement of Morphological Changes in Human Neurons 

Neurons displaying aberrant neuritic EGFP distribution were expressed as a percent of the 

total number of EGFP positive neurons at each 24 hour time point for up to 72 hours.  

Results were obtained by averaging neuronal counts for at least 50 EGFP positive 

neurons per experiment at the first 24 hour time points in three independent neuron 

preparations.  
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Caspase 6 Activity Assessment in Human Neurons 

To assess Casp6 activity in APP695 and Swd, Lond or MV transfected neurons, neuronal 

preparations were pre-treated in 5 µM of z-VEID-fmk (Biomol, Plymouth meeting, PA). 

The Casp6 inhibitor was diluted in media and added to the cells 2 hours prior to gene gun 

transfection.  Neurons were then assessed for EGFP-positive neuronal dropout, cell death 

and morphological changes as described above on a minimum of 50 cells per construct 

and in three independent neuron preparations.  Media containing the Casp6 inhibitor was 

changed every 24 hours during the live assessment until the 72 hour time point. 

 

Detergent Soluability Assay 

For western blot analysis, N2a cells were plated in 6-well plates at a density of 0.8x106 

cells/well.  Transfected cells were lysed using the non-ionic detergent Nonidet P-40 (NP-

40) buffer (150 mM NaCl, 5 mM EDTA pH 8.0, 50 mM Tris-HCl pH 8.0, 1% NP-40) 

containing a protease cocktail of 38µg/mL 4-(2-aminoethyl) benzenesulfonylfluoride 

(AEBSF), 0.1 µg/mL pepstatin A, 1 µg/mL N -p-tosyl-L-lysine chloromethyl ketone 

(TLCK) and 0.5 µg/mL Leupeptin and harvested on ice.  After micro-centrifugation at 

13,000 rpm at 4°C for 10 minutes, the detergent insoluble protein pellet was frozen 

immediately while soluble proteins were quantified by BCA assay (Pierce, Rockford, IL). 

For caspase fluorogenic activity assays transfected N2a cells were lysed in caspase lysis 

buffer (50 mM Hepes pH7.4, 0.1% CHAPS, 0.1 mM EDTA and 1 mM DTT added fresh) 

containing the same protease cocktail as the NP-40 buffer and harvested on ice. 

 

Western Blot Analyses 

Proteins were separated on a 10% (APP mutant construct expression) or 15% (C163A 

mutant construct expression) sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) and transferred to an Immobilon-P polyvinylidene difluoride (PVDF) 

membrane.  For APP695, Swd, Lond and MV construct protein expression, 2 µg of protein 

was loaded while for the DN Casp6 mutant expression, 50 µg of protein was used.  
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Where indicated, blots were probed with 1:500 22C11 anti-APP (Chemicon, Bedford, 

MA), 1:500 Casp6 Ab4 (Neomarker, Fremont, CA) or 1:1000 anti-β-actin (Clone AC-15, 

Sigma-Aldrich, St. Louis, MO) antibodies.  Immunodetection was conducted with HRP-

conjugated goat anti-mouse (Jackson Immunoresearch, West Grove, PA) or sheep anti-

rabbit (GE Healthcare/Amersham, Piscataway, NJ) secondary antibodies and 

chemiluminescent development with Milipore ECL (Bedford, MA) or Amersham ECL 

Plus (Piscataway, NJ) western blotting detection system. 

 

Caspase Fluorogenic Activity Assay 

For caspase fluorogenic activity assays, N2a cells were incubated 24 hours post-

transfection in serum free MEM media (Gibco-Invitrogen, Carlsbad, CA) for 3 hours 

prior to harvesting.  Transfected N2a soluble protein extracts were assayed for Casp6 and 

Casp3 activity using preferred fluorogenic peptide substrates as previously described. 

Five µg of neuronal protein extract (in triplicates) were incubated with either z-VEID-

AFC for Casp6 activity or z-DEVD-AFC (Biomol, Plymouth meeting, PA) for Casp3 

activity in Stennicke’s reaction buffer (20 mM PIPES, 10 mM DTT, 1 mM EDTA, 30 

mM NaCl, 0.1% CHAPS and 10% sucrose at pH7.2). Cleavage was measured by release 

of the fluorogenic Ac, N-acetyl coumarin (AFC) at 2 minute intervals over an hour at 

37°C by the BioRad (Hercules, CA) Fluoromark apparatus. AFC excitation was at 390 

nm and emission was at 538 nm. A standard curve of 0-50 µM free AFC release was used 

to calculate release of the fluorogenic moiety in the protein preparations.  The rate of 

cleavage was calculated based on the linear phase of the assay.  Specific activity is 

expressed as nanomoles of AFC release per minute per µg of protein.   

 

Statistical Evaluations  

Statistical analysis was performed with a one or two way analysis of variance (ANOVA) 

and Tukey or Bonferroni post-hoc test using the Statview software (SAS Institute Inc, 

Cary, NC) or Graphpad Prism software (La Jolla, CA).  
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2.3 RESULTS 
 

Swedish and London FAD-associated APP mutants have increased Caspase-6-like 

activity in serum-deprived N2a cells 

Both the Swd and Lond mutations are autosomal dominant FAD-associated missense 

mutations in the APP gene (Fig 2).  The Swd is a double mutation resulting in a lysine, 

methionine change to an asparganine and leucine occurring at the BACE cleavage site.  

The Lond is a single missense mutation causing a valine-to-isoleucine change near the γ-

secretase recognition sequence.  To assess if APP695, Swd and Lond mutants activate 

Casp6, their cDNAs were cloned into the pBud bigenic vector.   

 

Exogenous protein expression of the transfected constructs was examined in the mouse 

neuroblastoma N2a cell line.  Western blots were probed with an APP antibody specific 

to amino acid 66 to 81 of the APP N-terminus to ensure that none of the FAD-associated 

point mutations would interfere with detection (Fig 3A).  Although APP was expressed in 

these cells, we loaded a low amount of protein (2 µg/lane) so that endogenous levels did 

not impede detection of exogenous protein expression.  There was no detectable 

expression of APP in mock and EGFP transfected N2a cells at any of the time points.  

APP695, Swd and Lond mutant constructs were all stably expressed at high levels at all the 

time points, but wild typeAPP695 levels were slightly higher than those of the APP 

mutants.  Capitalizing on caspases’ adherence to recognizing and cleaving their substrates 

within specific amino acid residues, caspase activity was measured using synthetic 

fluorogenic peptide substrates.  VEIDase (Casp6 like activity) and DEVDase (Casp3 like 

activity) caspase activity assays in 24 hour post transfected N2a cells did not reveal any 

caspase activity (Fig 3B).  Twenty-four hours post-transfection, cells were serum-

deprived for 3 hours to potentially mimic a cellular stress that could occur in aging brains.  

In this situation the Swd and Lond mutants induced VEIDase, but not DEVDase activity.  

Cell death analysis was conducted by assessing condensed chromatin via Hoechst 

staining in transfected cells serum-deprived for 24 hours (Fig 3C) because more than 3 

hours of stress is needed for a phenotype to develop. While Swd and Lond mutants 
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induced VEIDase activity, they did not induce cell death in serum-deprived N2a cells.  

Collectively, these results show that FAD associated APP mutants elicit Casp6-like 

activity in stressed N2a cells but do not cause cell death. 

Caspase 6 dependent EGFP beading in neurites of APP695, Swedish or London mutant 

transfected primary human neurons  

To assess if wild type APP695 and the Swd or Lond APP mutants activate Casp6 in a 

terminally differentiated cell type, primary human neurons were transfected.  By live 

fluorescent microscopy, EGFP was homogeneously distributed in the cell body and 

neurites of transfected human neurons (Fig 4A inset).  When APP695, the Swd or the Lond 

mutants were co-expressed with EGFP for 48 or 72 hours, EGFP beaded in the neurites of 

transfected neurons (Fig 4B-D).  Morphologically, the beading of this cytosolic protein 

occurred at uneven intervals along the neurites and in varying sizes (Fig 4C inset).  A 

Hoechst stain was used to differentiate the nuclei of the cells from the beads and to 

determine the viability of transfected neuron cell bodies (Fig 4A-D).   

 

Quantitative analysis demonstrated that when APP695, the Swd or Lond mutant was over-

expressed for 48 and 72 hours, approximately 50% of neurons developed a beaded 

morphology while the remaining neurons still had normal EGFP distribution (Fig 4E).  In 

contrast, EGFP expression in the absence of APP or APP mutant over-expression showed 

beading in less than 10% of transfected neurons.  Together, these results indicate that 

APP695 and APP mutant over-expression cause the aggregation of cytosolic EGFP in the 

neurites of human neurons. 

 

To investigate whether neuritic EGFP beading in APP transfected neurons was due to 

Casp6, APP695, Swd and Lond mutant transfected neurons were treated with 5µM of the 

Casp6 inhibitor, z-VEID-fmk.  A cell permeable irreversible inhibitor, z-VEID-fmk uses 

the specific recognition sequence of Casp6 to covalently bind its active site, thereby 

preventing Casp6 access to other substrates.  Treatment with the Casp6 inhibitor 
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abrogated EGFP beading morphology in APP695, Swd and Lond over-expressing neurons 

for up to 72 hours (Fig 4E).  Indeed, treated neurons transfected with APP695 consistently 

had no neuritic beading at the 24 and 48 hour time points as did treated vector transfected 

neurons at the 72 hour time point, hence the lack of visible error bars on the graph.  To 

confirm that the EGFP beading was truly dependent on Casp6, we co-transfected the 

Lond mutant with DN Casp6.  We first assessed endogenous Casp6 and exogenously 

expressed DN Casp6 in transfected N2a cells (Fig 4F).  Endogenous Casp6 was detected 

as a 31 kDa protein in the N2a cells.  DN Casp6 was detected at 36 kDa in N2a cells 

transfected for up to 72 hours.  These results indicate that endogenous Casp6 is present 

mostly as a p20p10 Casp6 lacking the pro-domain in N2a cells and that the DN Casp6 is 

efficiently expressed at all time points.  Co-transfection of the DN Casp6 with the Lond 

mutant in human neurons prevented EGFP beading morphology (Fig 4G) confirming that 

beading is Casp6 dependent.  Therefore, APP695, Swd and Lond mutants induce EGFP 

neuritic beading in a Casp6 dependent manner. 

 

APP695, Swedish and London mutants cause Caspase 6 dependent EGFP positive 

neuron dropout and cell death in human neurons 

Primary human neurons were transfected with APP695, Swd and Lond mutants and 

monitored live by fluorescent microscopy every 24 hours for up to 72 hours during which 

the total number of EGFP expressing neurons at each time point was counted.  Results 

were expressed relative to the 24 hour time point (Fig 5A).  EGFP vector transfected 

neurons maintained almost the same number of fluorescent neurons over the 72 hour 

period; however, neurons over-expressing APP695 had a 50% loss of fluorescent neurons 

after 48 hours in culture (Fig 5A).  Similarly, the number of EGFP-positive Swd and 

Lond mutant transfected neurons decreased by 44% and 36%.  After 72 hours in culture, 

there was an even more significant EGFP positive neuronal dropout.  Only 22% of 

APP695 transfected neurons are EGFP positive while 19% and 22% of Swd and Lond 

mutant transfected neurons are EGFP positive at the 72 hour time point.   
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The loss of EGFP-positive neurons could be due to a decrease in EGFP expression and 

not necessarily due to the death of the neurons, therefore, we observed condensed 

chromatin with the cell permeable dye Hoechst 33342 at 48 hours post-transfection as a 

measure of cell death.  Fifty percent of the neurons over-expressing APP695 had 

condensed chromatin after 48 hours (Fig 5B).  Swd and the Lond mutant transfected 

neurons had 51% and 39% cell death, respectively.  Additionally, a sample of transfected 

neurons from each construct was counter-stained with TUNEL-Red to determine DNA 

fragmentation.  Neurons transfected with APP695, the Swd or Lond mutant that had 

condensed chromatin visualized by Hoechst 33342 also had fragmented DNA (Fig 5C).  

The background level of cell death with the pBud-EGFP vector alone in neurons was 14.2 

+ 1.4%. However, un-transfected cells had cell death of 5.8 + 0.5% (data not shown) 

which is not statistically different from pBud-EGFP vector transfected cells indicating 

that EGFP is not cytotoxic in neurons expressing it for up to 48 hours.     

 

Treatment with 5µM of the Casp6 inhibitor z-VEID-fmk prevented EGFP positive 

neuronal dropout in neurons over-expressing APP695 and the Lond mutant, but not the 

Swd mutant, at the 48 hour time point (Fig 5A).  By 72 hours, the Casp6 inhibitor 

attenuated neuronal dropout levels of APP695, Swd and Lond mutant transfected neurons.  

Quantification of cell death by condensed chromatin demonstrated that the Casp6 

inhibitor also completely prevented cell death in APP695, Swd and Lond mutant 

transfected neurons (Fig 5B).  The DN Casp6 co-expressed with the Lond mutant 

inhibited EGFP positive neuronal dropout (Fig 5D).  Likewise, the 40% cell death 

induced by the Lond mutant was abolished by co-expression of DN Casp6 (Fig 5E).  

Collectively, these results indicate that over-expression of the FAD mutations and APP695 

cause Casp6-dependent loss of EGFP-positive neurons and neuronal cell death.  
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Cell death, but not neuritic beading and EGFP positive neuronal loss is dependent on 

Aß in APP transfected neurons 

To determine whether the observed neuritic beading and cell death through over-

expression of APP695 may be due to Aβ, we over-expressed a mutant form of APP with a 

single methionine to valine mutation (MV mutant) that eliminates cleavage of the β-

secretase site at the +1 position of Aβ (Citron et al, 1995) (Fig 2).  The MV mutant was 

well expressed from 24 to 48hrs post-transfection (Fig 3A).  

 

Cell death in MV mutant transfected neurons, measured by condensed chromatin, was 

equivalent to the EGFP vector transfected neurons and was significantly lower than the 

APP over-expressing neurons at 48 hours post-transfection (Fig 6A).  However, co-

expression of EGFP and the MV mutant resulted in a 19% drop of EGFP-positive neurons 

48 hours post-transfection (Fig 6B).   While this was significantly different from vector 

transfected neurons, the EGFP-positive neuronal dropout in the MV mutant was still less 

than EGFP-positive neuronal dropout in APP695 over-expressing neurons.   

 

Neurons over-expressing the MV mutant also developed EGFP neuritic beading.  

Quantification of the EGFP beading demonstrated that while beading in APP695 

transfected neurons was significantly higher than EGFP transfected neurons, surprisingly, 

30% of neurons expressing the MV mutant displayed EGFP neuritic beading (Fig 

6C&D).  The aberrant EGFP distribution 48 hours after transfection was similar to the 

beading seen in APP695 and APP mutant transfected neurons.  Together, these results 

indicate that the Aβ generated from the APP is responsible for cell death but not EGFP 

beading.     

 

To determine whether the EGFP-positive neuronal dropout in MV mutant transfected 

neurons was due to Casp6, neurons were treated with z-VEID-fmk.  The Casp6 inhibitor 

had no effect on EGFP positive neuronal dropout in MV mutant transfected neurons at the 
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48 hour time point, however the Casp6 inhibitor prevented EGFP positive neuronal 

dropout in APP695 transfected neurons (Fig 6B).     Treatment with the Casp6 inhibitor 

prevented aberrant EGFP beading in the MV mutant and APP695 over-expressing neurons 

at the 48 hour time point (Fig 6C).   Despite this, at the 24 and 48 hour time point, MV 

mutant transfected neurons still had significantly more EGFP neuritic beading than 

APP695 transfected neurons.  These results indicate that cell death in APP695 is Aβ 

dependent, but EGFP positive neuronal dropout and neuritic beading is not.  Additionally, 

neuritic beading in the MV mutant is Casp6 dependent, but EGFP positive neuronal 

dropout is Casp6 independent.   

 

Beading of Tau and Ubiquitin proteins when co-expressed with APP695, Swedish, 

London and MV FAD-associated mutants in neurons  

Tau is a cytoskeleton-associated protein that is abundant in neurons.  To assess whether 

beading of the cytosolic EGFP protein was an indication of neuritic cytoskeletal 

impairment, an RFP-Tau fusion vector was co-transfected with APP695, Swd, Lond or 

MV mutations.  RFP-Tau was normally expressed in the axon of the transfected neuron 

(Fig 7A).  pBud-EGFP and RFP-Tau transfected neurons showed a homogenous 

distribution of Tau and EGFP in the axons and cell body (Fig 7B).  Neurons co-

expressing Tau, APP695 and EGFP had an abnormal beaded distribution of Tau and EGFP 

as early as 24 hours post-transfection (Fig 7C).  Swd, Lond and MV mutant transfected 

neurons co-expressing RFP-Tau and EGFP also had neuritic beaded Tau and EGFP 

morphology (Fig 7D-F).  Merged images of EGFP and RFP-Tau demonstrated a complete 

overlap of the beading in APP695, Swd, Lond and MV mutant transfected neurons (Fig 

7C-F).  Therefore, abnormally distributed EGFP in APP695, Swd, Lond and MV mutant 

transfected neurons appeared to co-localize with beaded Tau.   

 

The Ubiquitin (Ubq) protein is a ubiquitously expressed regulatory protein used to 

facilitate proteasome-meditated degradation of proteins.  To determine whether the EGFP 

neuritic beads contain Ubq or Ubq-tagged proteins, an RFP-Ubq fusion vector was co-
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expressed with the Lond or MV mutations.  Like the RFP-Tau, RFP-Ubq was evenly 

distributed in transfected neurons (Fig 8A).  However, co-expression of RFP-Ubq with 

the Lond or MV mutant caused Ubq to accumulate as beads in the neurites (Fig 8B-C).  

The RFP-Ubq positive beads appeared to co-localize with the EGFP beads.  Together, the 

results indicate that the beads are made of several proteins including EGFP, Tau and Ubq. 

2.4 DISCUSSION 
From our previous work on Casp6 in primary human neurons and sporadic AD brains, we 

proposed the hypothesis that Casp6 is an instigator of the cognitive impairment and 

neuropathological changes of AD (LeBlanc, 2008).  Support for this hypothesis must be 

provided from the genetic forms of AD since both the sporadic and familial AD have 

almost identical clinico-pathological features.  We concluded that both FAD-associated 

mutants and APP695 over-expression result in the activation of Casp6 based on several 

observations.  First, over-expression of the Swd or Lond APP mutants, but not wildtype 

APP695 resulted in VEIDase activation in serum-deprived N2a cells.  Second, in primary 

human neurons, both a low concentration of the Casp6 peptide inhibitor, z-VEID-fmk, 

and co-expression of DN Casp6 abolished neuritic morphological changes and cell death 

induced by overexpression of wildtype APP695 or the Swd or Lond mutants.  Third, active 

Casp6 and Tau∆Casp6 localized to the neuropil threads, neurofibrillary tangles and 

neuritic plaques of an FAD Swd human brain.  Our results are consistent with the Swd 

mutant induced Casp6 activity and cell death in N2a cells and primary rat cortical neurons 

(McPhie et al, 2001; Ramalho et al, 2006).  We previously observed pre-clinical Casp6 

activation in aged individuals with normal but lower cognitive scores than their 

counterparts; and Casp6 dependent cleavage of a number of cytoskeleton proteins in 

primary human neurons including Tau∆Casp6 and α-Tubulin∆Casp6, which were present 

in the neuropathological hallmarks of sporadic AD (Albrecht et al, 2007; Klaiman et al, 

2008).  As well, there is a Casp6 dependent increase in Aβ in stressed primary human 

neurons (LeBlanc et al, 1999).  The present findings that FAD mutant and APP695 over-

expression induces Casp6 activation provides an etiological link between the familial and 

sporadic forms of AD. 
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Swd or Lond mutants or APP695 over-expression cause Casp6 dependent but Aβ 

independent disruption of protein distribution in the neurites of primary human neurons.  

Indeed, EGFP, Tau and Ubiquitin agglomerated as round beads in the neurites of FAD 

mutant or APP695 transfected neurons, whereas these proteins normally distribute 

homogeneously in the cell soma and neurites in the absence of FAD mutant or APP695 

over-expression.  Apparent co-localization of the Tau and Ubiquitin with EGFP indicated 

that Casp6 activity results transport deficits of these proteins.  Our results are reminiscent 

of several observations made in APP transgenic animal models and in AD. Axonopathy 

and transport deficits due to Swd or Lond mutants or APP695 over-expression have been 

demonstrated in rat hippocampal neurons, AD primary neurons, murine and Drosophila 

neurons (Gunawardena & Goldstein, 2001; Lampert, 1971; Nishimura et al, 1998; Salehi 

et al, 2006; Stokin et al, 2005).  These defects were characterized by swellings containing 

abnormal accumulations of microtubule-associated and molecular motor proteins or 

mitochondria, organelles and vesicles as well as severe degeneration of neurites.  Since 

Casp6 cleaves a number of cytoskeleton proteins (Klaiman et al, 2008), our results 

indicate that aberrant distribution of EGFP, Tau and Ubiquitin may be evidence of 

neuritic defects and transport deficits due to restructuring of the neurites by Casp6.  Our 

findings that Casp6 dependent morphological alternations of neurites are not the result of 

Aβ production, since the Aβ-deficient MV mutant also gives rise to protein neuritic 

beading, is consistent with recent published results that showed that axonal defects 

induced by APP695 over-expression are not dependent on Aβ in an AD murine model 

(Stokin et al, 2008).   

Wildtype and mutant APP695 over-expression in human neurons also induced Casp6 and 

Aβ dependent condensed chromatin.  However, the MV mutant did not result in 

condensed chromatin in transfected cells despite aberrantly altering neuritic morphology.  

The observed cell death is consistent with numerous studies with Swd or Lond mutant 

induced cell death in COS-NK1, PC12, NT2N, rat and mouse primary cortical neurons 

(Luo et al, 1999; McPhie et al, 2001; Niikura et al, 2004; Yamatsuji et al, 1996b; Zhao et 

al, 1997).  Our present results infer that Aβ is downstream of Casp6 activation in human 

neurons and are corroborated by previous studies that showed Casp6 dependent over-

production of Aβ in serum-deprived human neurons (LeBlanc, 1995; LeBlanc et al, 
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1999).  Additionally, Tesco et al. recently demonstrated a mechanism by which active 

caspases indirectly stabilize the activity of BACE by impairing its degradation, thereby 

contributing to increased Aβ production (Tesco et al, 2007).  This same mechanism may 

potentially be utilized by Casp6.  Therefore, these results imply that elimination of Aβ in 

AD brains may not necessarily restore neuronal function if morphological aberrations in 

the neurites that cause neuronal dysfunction occur prior to Aβ accumulations. 

Despite the absence of condensed chromatin, the MV mutant transfected neurons showed 

a slight Casp6 independent, EGFP-positive neuronal dropout suggesting that either, the 

MV mutant has an alternate neurotoxic effect causing a different form of cell death (Yuan 

et al, 2003), or, the EGFP-positive dropout is due to inhibition of EGFP expression.  

Given that the MV mutant induces Casp6 dependent protein beading in neurons, it is 

likely that over-expression of the MV mutant has a detrimental effect on neurons that may 

induce a non-apoptotic or non-necrotic type of cell death.  Morphologically apoptotic 

neurons are not noted in AD brains with abundant active Casp6 and active Casp6 remains 

neuritic in these AD neurons (Guo et al, 2004).  Further evaluation of the sub-cellular 

organization of the Casp6 positive AD neurites and neurons by electron microscopy will 

be required to determine if the cell death observed in primary human neuron cultures is 

replicated in AD. 

Collectively, our results demonstrated that over-expression of the Swd or Lond FAD-

associated mutations or wild type APP695 cause a Casp6 dependent morphological 

neuritic alteration and cell death in primary human neurons, potentially placing Casp6 

upstream of Aβ.  These findings also provides an etiological link between sporadic and 

FAD which would suggest that if Casp6 activity dismantles the cytoskeleton of neurons, 

an inhibitor could be a relevant treatment against AD. 
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Figure 3: Swd and Lond APP mutants induce Casp6 activity in N2a cells. A. Western 

blot analysis from 2µg N2a protein cell extracts transfected with EGFP, APP695, Swd, 

Lond and MV mutants for 24, 48 and 72 hours. B. Fluorogenic caspase VEIDase or 

DEVDase activity assay using 5 µg cytosolic extract from mock, EGFP, APP695, Swd and 

Lond mutant.  Transfected N2a cells were treated with (open bars) or without serum 

(closed bars) for 3 hours.  Data represents mean ± SEM of two independent experiments 

in triplicates *p<0.05, statistically significant difference between EGFP and Swd or Lond 

transfected cells. C. Percentage of cell death measured by condensed chromatin in N2a 

cells transfected with EGFP, APP695, Swd and Lond mutants after 24 hours of serum 

deprivation.  Data represents mean ± SEM of two independent experiments with an 

average of 300 cells counted per experiment. 
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Figure 3 
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Figure 4: APP linked mutations cause Casp6 dependent neuritic beading Fluorescent 

micrograph of human neurons 48hrs post-transfection expressing EGFP alone (A), 

APP695 (B), Swd (C) and Lond (D) mutation.  For A-D Hoechst stain with arrow head 

indicates viability of transfected neuron. A and C inset show higher magnification of 

diffuse and EGFP beaded neurites. Each picture was taken at a 20x magnification E. 

Percentage of EGFP beaded cells transfected with EGFP alone, APP695, Swd and Lond 

constructs 48 and 72 hours post-transfection (open bars) and treated with  Casp6 inhibitor 

z-VEID-fmk (closed bars).  Data represents mean of three independent experiments ± 

SEM *p<0.01, statistically significant difference between EGFP and APP695/ Swd/ Lond.  

#p<0.001 statistically significant difference between APP695 ± VEID, Swd ± VEID, Lond 

± VEID. F. Western blot of Casp6 with the Neomarker antibody from N2a cells 

transfected and expressing for 24, 48 and 72 hours mock, EGFP, Lond and DN Casp6. 

Recombinant active Casp6 (R-Casp6) from bacterial extracts was used as a positive 

control.  G. Percentage of beaded cells in neurons co-transfected with Lond mutation and 

DN Casp6 after 24 and 48 hours of expression (closed bars).  Data represents mean of 

three independent experiments ± SEM *p<0.05, statistically significant difference 

between EGFP and Lond + DN Casp6. 
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Figure 4 
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Figure 5: Casp6 dependent EGFP-positive neuronal dropout and cell death by APP 

linked mutations  A. Percentage of neurons expressing EGFP over 48 and 72 hours 

(open bars) and treated with Csp6 inhibitor z-VEID-fmk (closed bars) in EGFP alone, 

APP695, Swd and Lond transfected neurons.  Quantification normalized to 100% at 24 

hours (solid line).  Data represents mean of three independent experiments ± SEM 

*p<0.001 statistically significant difference between EGFP and APP695/ Swd/ Lond. 

**p<0.01 statistically significant difference between VEID treated EGFP and APP695/ 

Swd/ Lond.  #p<0.05 statistically significant difference between APP695 ± VEID, Swd ± 

VEID, Lond ± VEID.  B. Percentage of cell death after 48 hours of expression measured 

by condensed chromatin in neurons transfected with EGFP, APP695, Swd and Lond 

mutants and treated without (open bars) or with z-VEID-fmk Casp6 inhibitor (closed 

bars).  Data represents mean ± SEM of three independent experiments *p<0.05 

statistically significant difference between EGFP and APP695/ Swd/ Lond.  #p<0.05 

statistically significant difference between APP695 ± VEID, Swd ± VEID, Lond ± VEID. 

C. Lond mutant transfected cells expressing EGFP with and without condensed chromatin 

and counterstained with TUNEL Each picture was taken at a 60x magnification D. 

Percent EGFP neuronal dropout and E. cell death in neurons co-transfected with Lond 

mutation and DN Casp6 after 48 hours of expression (closed bars).  Data represents mean 

of three independent experiments ± SEM *p<0.05 (EGFP dropout) *p<0.001 (cell death), 

statistically significant difference between EGFP and Lond + DN Casp6.  
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Figure 6:  Aβ dependent cell death but not EGFP positive neuronal dropout or 

beading A. Cell death assessed by condensed chromatin in neurons transfected with 

EGFP alone, APP695 and MV mutant for 48hrs. B. EGFP positive neuronal dropout in 

neurons transfected with EGFP alone, APP695 and MV mutant for 48 hours without (open 

bars) and with (closed bars) Casp6 inhibitor z-VEID-fmk.  C. Percentage of EGFP 

beaded cells transfected with EGFP alone, APP695 and MV mutant 24 and 48 hours post-

transfection (open bars) and treated with  Casp6 inhibitor z-VEID-fmk (closed bars).  D. 

MV mutant co-expressing EGFP has neuritic EGFP beading 48 hrs post-transfection.  

Hoechst stain with arrow head indicates viability of transfected neuron.  Each picture was 

taken at a 20x magnification.  For A, data represents mean of three independent 

experiments ± SEM *p<0.05, statistically significant difference between EGFP and 

APP695.  For B and C, data represents mean of three independent experiments ± SEM 

*p<0.01, statistically significant difference between EGFP and APP695/ MV; **p<0.01 

statistically significant difference between VEID treated EGFP and MV; #p<0.01 

statistically significant difference between APP695 and MV; ##p<0.05 statistically 

significant difference between VEID treated APP695 and MV.   
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Figure 6 
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Figure 7: APP linked mutations cause Tau to bead. Fluorescent micrograph of human 

neurons 48 hours post-transfection expressing RFP-Tau alone (A), EGFP + RFP-Tau (B), 

APP695 + RFP-Tau (C), Swd + RFP-Tau (D), Lond + RFP-Tau (E) and MV + RFP-Tau 

(F) mutations.  For A-F Hoechst stain with arrow heads indicate viability of transfected 

neuron cell body and *a – astrocyte, *n – neuron.  Each picture was taken at a 20x 

magnification. 
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Figure 7 
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Figure 8: APP linked mutations cause Ubiquitin to bead. Fluorescent micrograph of 

human neurons 48 hours post-transfection expressing RFP-Ubq alone (A), Lond + RFP-

Ubq (B) and MV + RFP-Ubq (C).  For A-C Hoechst stain with arrow heads indicate 

viability of transfected neuron.  Each picture was taken at a 20x magnification. 
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Figure 8 
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III. GENERAL DISCUSSION 
The neuropathology of sporadic and familial AD are identical in that they both develop 

senile plaques, neurofibrillary tangles, synaptic loss and neurodegeneration (Mullan et al, 

1993).  While missense mutations in three genes have been identified in FAD, a link 

between the etiology of the two forms of AD has still not been established.  It has 

previously been shown that there is an increase in active Casp6 in AD affected parts of 

the brains and that active Casp6 associates with neuropathological hallmarks at all stages 

of sporadic AD (Albrecht et al, 2007; Guo et al, 2004).  This study presents the first 

evidence that FAD-associated mutations as well as APP over-expression activate Casp6 

in primary human neurons resulting in morphological changes assessed by aberrant 

EGFP, Tau and Ubiquitin distribution as well as neuronal cell death.  

3.1 FAD mutations cause potential axonal dysfunction  
Axonal dysfunction has been examined as an early event in AD.  Reports of cytoskeleton 

defects in both sporadic and familial AD (Lampert, 1971; Price et al, 1986; Rose et al, 

2000; Stokin et al, 2005; Terry, 1963) as well as Drosophila and murine AD models 

(Gunawardena & Goldstein, 2001; Lazarov et al, 2007; Minoshima & Cross, 2008; Pigino 

et al, 2003; Pigino et al, 2001; Stokin et al, 2005; Wirths et al, 2007) support the 

hypothesis that axonal disruption may be a key event in the widespread 

neurodegeneration of AD.   

Over-expression of the Swd and/or Lond mutants in Drosophila and transgenic murine 

AD models result in vesicular stalling, varicosities and swellings containing abnormal 

accumulations of organelles and vesicles (Gunawardena & Goldstein, 2001; Stokin et al, 

2005; Wirths et al, 2007).  Our investigation of Swd or Lond mutant over-expression in 

primary human neurons demonstrates similar protein trafficking abnormalities.  EGFP, a 

cytosolic protein, beads in almost 50% of neurons co-expressing either of the FAD 

mutants.  While a cytosolic protein should be diffuse and able to migrate throughout the 

neurites, cytoskeleton degeneration could cause organelle and vesicular stalling.  

Inclusions which form as a result of this effectively serve as roadblocks that prevent the 

normal trafficking of other proteins, including cytosolic ones.  Possible cytoskeleton 

impairment in our model is supported by axonal beading of the cytoskeleton associated 

protein Tau when co-expressed with the FAD mutants.  Tau is not only aberrantly 
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distributed, but an overlaid view of EGFP and Tau demonstrates an apparent co-

localization of the beads which needs to be confirmed by confocal microscopy.   

Cellular stresses can cause the misfolding of proteins which can form toxic protein 

aggregates and cause inactivation of functional proteins (Gao & Hu, 2008).  Ubiquitin, a 

regulatory protein used to tag misfolded proteins for proteosomal-mediated degradation is 

found to accumulate in the plaques and tangles of AD brains (Perry et al, 1987; Tabaton 

et al, 1991; Upadhya & Hegde, 2007).  In our study, we found that monomeric Ubiquitin 

beads when co-expressed with the Swd or Lond mutants and, similar to Tau, these beads 

appear to co-localize with the beaded EGFP.  The Ubiquitin beads therefore can be 

indicative of misfolded proteins marked for degradation which overwhelmed the 

ubiquitin-proteosomal system and formed clusters of aggregates; or, they may indicate 

vesicle bound protein stalling due to cytoskeleton abnormalities in which trafficked 

Ubiquitin incidentally accumulates.  Live assessment of vesicular movement and 

expression of other cytoskeleton proteins such as Neurofilament or Tubulin can help 

clarify this as well as help determine whether the neuritic beading is reversible once the 

stress is prevented.  Regardless, the beading of Ubiquitin we observed in human neurons 

over-expressing FAD mutants parallel observations in human sporadic AD brains, but 

remains to be assessed in human FAD brains.   

3.2 Caspase 6 dependent morphological changes and cell death 
Our study demonstrates that morphological changes and cell death due to FAD mutants or 

APP over-expression is Casp6 dependent in human neurons.  Casp6 activity thus far has 

only been shown in sporadic AD brains (Guo et al, 2004) and indirectly, in FAD mutant 

over-expressing mouse cortical neurons (McPhie et al, 2001) and N2a cells (Ramalho et 

al, 2006).  This is the first direct evidence of Casp6 activity in a human model used to 

study FAD, providing a potential bridge for the etiology of the two disease types.  In 

stressed human neurons, Casp6 activity causes an indirect increase in the Aβ peptide and 

cleaves Tau, proteins which contribute to the neuropathological hallmarks of AD 

(LeBlanc et al, 1999).  Casp6 activation by FAD mutations could result in the same 

phenotype, albeit by different mechanisms. 
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 Our study shows the first morphological implications of Casp6 activation.  Caspases 

have been mainly connected to cell death.  Casp6’s cleavage of lamin A and other nuclear 

matrix proteins established its role in apoptosis (Orth et al, 1996).  However, in neurons 

of sporadic AD, active Casp6 remains neuritic and does not translocate to the nucleus 

(Guo et al, 2004).  As well, it was recently shown that Casp6 cleaves a number of 

cytoskeleton proteins including Tau and Tubulin which are localized at the 

neuropathological hallmarks of sporadic AD (Klaiman et al, 2008).  We propose that the 

downstream repercussions of this cleavage can be manifested in aberrant protein 

trafficking along the affected neurites.   

The mechanism of action by which Casp6 can cause such dysfunction is still unknown.  

Kinases phosphorylate molecular motor subunits and modulate fast axonal transport.  

Caspase 3 proteolytically cleaves and activates an isoform of protein kinase C which 

inhibits kinesin dependent fast axonal transport measured by membrane and synaptic 

trafficking in a squid neurotoxic model of Parkinson’s disease (Morfini et al, 2007).  A 

similar role could be proposed for Casp6 in AD.  For example, inhibition of cyclin 

dependent kinase 5 (CDK5) results in activation of GSK 3 which phosphorylates kinesin I 

thereby promoting detachment of kinesin from the vesicles it is transporting (Morfini et 

al, 2004).  This could be a pathway to examine for Casp6 activity as it has already been 

shown to be impaired by PS mutants (toxic gain-of-function) (Pigino et al, 2003).  

Interestingly, GSK 3 also regulates Tau via site specific phosphorylation and is highly 

immunoreactive in granulovacuolar degeneration in AD neurons (Leroy et al, 2002).  

However, since Casp6 cleaves cytoskeleton proteins, its function could be restricted to 

only dismantling the tracks, such as Tau and Tubulin, along which the cargo vesicles run.  

Meanwhile Caspase 3 attacks the train or the kinesin motor proteins. As well, in primary 

fetal human neurons, it is the inflammatory Caspase 1 that activates Casp6 (Guo et al, 

2006).  Takeuchi et al. showed that activated microglia, which are part of the 

inflammatory cascade, can cause neuritic beading (Takeuchi et al, 2005).  This could be 

another mechanism exploited by Casp6 to cause neurodegeneration in AD, particularly 

since inflammation and activated microglia have been implicated in the disease 

(Reviewed in Eikelenboom et al, 2006). 
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3.3 APP695 over-expression also causes morphological changes and cell death 
In our human neuronal model, over-expressing APP695 caused EGFP neuritic beading and 

cell death equivalent to that of the FAD mutants.  While FAD has been linked to missense 

mutations in APP, a number of families who have duplications of regions of chromosome 

21 that includes the APP gene have early onset AD (Cabrejo et al, 2006; Rovelet-Lecrux 

et al, 2006), and in two patients, only the APP gene was duplicated (Sleegers et al, 2006).  

Further support that specifically APP over-expression can cause AD is seen in a patient 

with a duplication of a region of chromosome 21 that does not contain the APP gene who 

had DS but not AD (Prasher et al, 1998).  Understanding the effects of APP over-

expression in AD is only now being recognized, however it has long been studied via a 

different model, DS.  Patients with DS develop many of the clinical symptoms of early 

onset AD as well as the neuropathological features.  In a murine model of AD, it was 

shown that specifically APP over-expression inhibited the trafficking of a number of 

molecules, while over-expressing APP in Drosophila resulted in vesicular stalling and 

cell death (Gunawardena & Goldstein, 2001; Salehi et al, 2006).  Our results therefore 

corroborate evidence that increased APP amounts can cause axonal dysfunction, which in 

human neurons, is Casp6 dependent.  Unfortunately, due to the limitations of single cell 

analysis, we are unable to assess the level of APP695 over-expression.  

3.4 The MV mutant may not be a suitable model to assess the effects of Aβ 
The MV mutation, first examined by Citron el al. causes a significant reduction, but not 

abolishment of the Aβ peptide (Citron et al, 1995).  It has subsequently been used by a 

number of groups to assess the effect of Aβ in loss-of-function experiments.  In our 

model, the MV mutant inhibited cell death, but not neuritic beading or EGFP-positive 

neuronal loss in comparison to control and APP over-expressing neurons.  Many groups 

have only used cell death as an assessment of Aβ toxicity and using this alone, our results 

would confirm their findings that Aβ is the source of neurotoxicity.  However, neurons 

over-expressing the MV mutant continue to have EGFP-positive neuronal dropout in a 

Casp6 independent manner.  This indicates that either 1) cell death is occurring in an 

apoptotic/necrotic-independent manner not detected by condensed chromatin 2) EGFP-

positive neuronal dropout is not a measure of cell death but of decreased protein 

expression or dysfunction 3) the MV mutant is functioning by a different mechanism, 
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potentially a gain-of-function, not comparable to APP over-expression.  Additionally, our 

assessment of neuronal morphology in the MV mutant is also contrary to results 

demonstrating Aβ dependent toxicity. EGFP neuritic beading continued to occur in a 

Casp6 dependent manner in the MV mutant, equivalent to that of APP over-expressing 

neurons.  Therefore, this suggests that Casp6 may be upstream of Aβ in terms of 

dysfunction and it is equally possible that the MV mutant may not be a suitable model to 

assess the effects of Aβ because of alternate toxic effects.   In the MV mutant, the C31 

toxic fragment is still produced as well as other fragments capable of neurotoxicity (Lu et 

al, 2000; McPhie et al, 2001; Yankner et al, 1989; Yoshikawa et al, 1992).  Our results 

then will have to be confirmed via a different approach.  The literature has amply 

demonstrated an Aβ dependent toxicity in a number of cell lines though it is dependent on 

a numerous factors including length of the Aβ species, oligomerization, solubility, intra 

versus extracellular aggregation and concentration of synthetic Aβ peptides used (Cappai 

& Barnham, 2008; Jarrett et al, 1993; Lesne et al, 2006; Li et al, 2007; Pike et al, 1993; 

Yankner et al, 1990).  These have supported the amyloid hypothesis, however, it is 

starting to emerge that Aβ itself may not necessarily be responsible for neurotoxicity 

(McPhie et al, 2001; Niikura et al, 2004; Yamatsuji et al, 1996a; Yamatsuji et al, 1996b).  

Some groups have proposed that axonal dysfunction also occurs in an Aβ independent 

manner in sporadic AD and a murine AD model (Stokin et al, 2008; Tabaton et al, 1989). 

IV. CONCLUSION 
My results demonstrate that FAD-associated APP mutations and APP over-expression 

cause Casp6 dependent morphological changes and cell death in human neurons.  We 

assessed morphological changes via aberrant distribution of the EGFP, Tau and Ubiquitin 

protein all of which bead when co-expressed with the Swd or Lond mutant or with 

APP695.  As well, over-expression of APP695 or the FAD mutants caused increased cell 

death as assessed by condensed chromatin.  Our observations of morphological changes 

and cell death were shown to occur in a Casp6 dependent manner.  While cell death 

appeared to be Aβ independent, the morphological changes were not, implying that Casp6 

may be upstream of Aβ, but these results need to be confirmed by an alternate 

experiment.    Given that Casp6 is active, cleaves a number of cytoskeleton proteins and 
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is localized at the neuropathological hallmarks of sporadic AD, we provide a potential 

link between the pathophysiology of the two forms of AD and a model system in which to 

study it. 
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