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Abstract

The envelope of an arrangement of lines is the polygon consisting of the finite length seg-
ments that bound the infinite faces of the arrangement. In the first part of this thesis, we
study the gcometry of envelope polygons (simnle polygons which are the envelope of some
arrangement). We show that envelope polygons are L-convex and derive several geometric
properties of envelopes. Also, given an envelope polygon P, we show how to sort by slope
in linear time the lines colinear with the edges of P. Using this result, we give a linear time
procedure to verify if a given polygon is an envelope polygon. In the second part of this
thesis, we introduce a hierarchy of classes of arrangements of lines based on the number of
convex vertices of theirenvelopes. In particular, we look at a class called sail arrangements
which we prove has properties that enable us to solve a number of problems optimally. Giv-
en a sail arrangement consisting of n lines (and O(nz) vertices), we show how the prune and
scarch technique can be used to determine all the convex vertices of its envelope in O(n)
time. This implies that the intersection point with minimum or maximum x-coordinate, the
diameter and the convex hull of sail arrangements (problems that have Q(n log n) complex-
ity for arbitrary arrangements) can also be found in O(n) time. We show, in spite of this,
that the problem of constructing the full envelope of a sail arrangement still has a lower
bound of Q(n log n). Finally, we examine the existence of hamiltonian circuits through the

intersection points of a non-trivial subclass of sail arrungements.




Résumé

L’envelope d’un arrangement de lignes est le polygone formé par I'union des segments
bornés des faces infinies de I’arrangement. Dans la premiére partie de cette thése, nous éu-
dions la géométrie des envelopes simples. Nous démontrons que les envelopes sont L-coun-
vexes et nous en donnons plusieurs propriétés. De plus, donné une envelope P, nous mon-
trons comment trier par ordre de pente les lignes colinéaires aux arltes de P en temps
linéaire. Nous utilisons ce résultat afin de déterminer en temps linéaire si un polygone sim-
ple est une envelope. Dans la seconde partie de cette thése, nous introduisons une hiérar-
chie de classes d’arrangements de lignes tasées sur le nombre de sommets convexes de
leurs envelopes. En particulier, nous étudions les propriétés de la classe d'arrangements
sail. Etant donné les n lignes donc O(n?) points d’intersection) d’*1n arrangement sail, nous
montrons comment Ia technique prune-and-search peut étre utilisée pour trouver tous les
sommets convexes de son envelope en temps O(n). Ceci nous permet de trouver les points
avec les coordonées d’abscisse minimum et maximum, le diamétre et I'envelope convexe
des points d’intersection de 1'arrangement (ces problémes ont une complexité de €2(n log
n) )Jen temps O(n). Nous montrons, en dépit de ce résultat, qu’il faut au moins Q(n log n)
temps pour construire I'envelope d’un arrangement voile. Nous examinons aussi I'ex-
istence de circuits hamiltoniens 2 travers les points d’intersection d’une sous-classe d’ar-

rangements sail.



<

Acknowledgment

Jaimerais d’abord remercier mes parents, sans le support desquels je n’aurais ja-
mais pd compléter cette thése. Mes sinceres remerciements & Sue Whitesides, qui m’a fait
croire en mes capacitésde faire des études graduées et m’a ainsi incité a poursuivre mes
études. A Godfried Toussaint, mon superviseur de thése, pour m’avoir introduit  la
géométrie algorithmique et pour sa patience avec moi. A David Eu, pour avoir partagé avec
moi tous les hauts et les bas de la vie d’étudiants gradués pour les deux dernieres années.
Je remercic David Avis, Prosenjit Bose, Elsa Omafia-Pulido, Clark Verbrugge et Binhai
Zhu en particulier, et tous les autres membres du département, pour leur amitié et pour
avoir fait de McGill un endroit agréable ol travailler. Merci & Franca, Lise et Lorraine pour
le support administratif et pour avoir gardé le sourire en tout temps. Je remercie également

le Fonds FCAR ainsi que SOCS pour leur support financier indispensable.

All the results in this thesis, unless otherwise specified, are original contributions
to knowledge. The results of sections 1.3 and 1.4 were obtained in collaboration with Jack
Snoeyink of the University of British Columbia, They were accepted under the title “Rec-
ognizing an Envelope of Lines in Linear Time” by the Third Annual International Sympo-
sium on Algorithms and Computation in Nagoya, Japan (December 16-18, 1992). Most of
the other results were obtained in collaboration with David Eu and Godfried Toussaint and
presented under the title **On Classes of Arrangements of Lines'to the 4th Canadian Con-
ference in Computational Geometry in St-John's, Newfoundland (August 9-14, 1992). I
would like to extend my appreciation to Pinaki Mitra for his helpful suggestions. The proof

of lemma 1.2.4 is due to Patrice Belleville.

A special thanks to Fang Fang for bringing sunshine to the past ten months of my
life.



Contents

Abstract . . . ...

Résumé .. ..... ...
Acknowledgment . . . ..
Introduction . . ... . ... ..

Chapter 1
Definitions and Preliminaries . . . . .

Envelope Polygons are L.-convex . ... . .

Sorting the Edges of an Envelope Polygon in Linear Time . .

Recognizing an Envelope Polygon in Linear Time . . . ... . ...

Chapter 2

Characterizing Sail Arrangements

Recognition of the Critical Vertices of a Sail Arrangement. . . . .

Constructing the Envelope of a Sail Arrangement of Lines.. . . . .

HamiltonianCircuits. . . . ... . ...

Conclusion. . . ...

References . . . ..

w

10
13
15

. 24

28

.29
. 33

. 46

. 50

.. 52



£

Introduction

The arrangement of a set of n lines in the plane (%) is the partition of the plane
induced by the lines into O(nz) vertices, O(nz) edges and O(nz) faces!. The vertices are the
intersection points of the lines, the edges are the connected components of the lines when
the vertices are removed and the fuces are the connected components of 9t2 when the lines
are removed. The envelope of an arrangement A, denoted as E(A), is the polygon formed
by the union of all the bounded edges of the unbounded faces of A. One can imagine taking
the arrangement A, removing segments that extend to infinity, and tracing around the outer
boundary of the resulting figure to form a polygon in which adjacent segments that belong
to the same line are collapsed into a single edge (see figure 1.1 for an example of an enve-
lope). In 1985, Ching and Lee [CL85] established an Q(n log n) lower bound for the prob-
lem of computing the envelope of an arrangement of n lines under the algebraic tree model
of computation (BO83]. Since then, Suri [Su85], Vegter [Ve87] and Keil [Ke9!] have con-
tributed algorithms that achieve this bound. It is worth noting that Keil’s simple and elegant
algorithm [Ke91] runs in O(n) time if the n lines of the arrangement are given in sorted or-

der of slope.

In this thesis, we are interested in understanding more about the geometry of enve-
lopes. In [To91], Toussaint mentions that the analysis of morphological properties of ar-
rangements of lines (also referred to as line patterns) is of considerable interest to geogra-
phers, nuclear physicists and urban planners among others (see [To91] for references). In
studying envelopes, which contain a great deal of information about arrangements, we

hope to gain a better understanding of the morphology of arrangements and perhaps stim-

1. In this thesis, when there is no ambiguity in the context, we will also use the ex-
pression arrangement of lines (by abuse of notation) to also mean the set of lines
that induces the arrangement.
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Figure 1.1 The envelope of an arrangement of lines

ulate new ideas of research on the subject to the benefit of the aforementioned specialists.
At the same time we contribute to the field of computational geometry by introducing and
studying a very structured — and exciting — new class of polygons; that of envelope poly-
gons (simple polygons which are the envelope of some arrangement). We also show that
properties of envelopes allow us to solve some problems for arrangements of lines of a cer-
tain class (defined by the properties of their envelopes) more efficiently than for arbitrary

arrangements of lines.

More precisely, we begin chapter 1 by proving several interesting and fundamental
properties of envelope polygons. These properties are useful in proving subsequent results.
Then, we examine the relationship between the class of envelope polygons and some other

well-known classes of polygons: convex, star-shaped and L-convex polygons.

In section 1.3, we present an algorithm to sort by slope in O(n) time the n edges of
an envelope polygon (the problem is Q(n log n) ior arbitrary polygons). This algorithm,
together with the above mentioned algorithm of Keil [Ke91] allows us to recognize in lin-
ear time if a given polygon is an envelope or not. Given an arbitrary polygon P of n cdges,
we run our edge sorting algorithm on it (it is guaranteed to always terminate in O(n) time).
If the lines (edges) of the output are not sorted, the input could not have been an envelope
polygon. Otherwise, we run Keil’s algorithm on the sorted set of lines A to construct the
envelope E(A). We can then easily check in linear time that P=E(A), the condition for a

polygon to be an envelope. Our sorting algorithm is closely related to the well-known Gra-
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ham scan [Gr72). This characterization of envelope polygons concludes our first chapter.

In chapter 2, we study envelopes from a different perspective. We show that given
an arrangement of lines of which we know some property of its envelope, we can solve
scme problems more efficiently than for arbitrary arrangements. In fact, we introduce a hi-
erarchy of classes of arrangements of lines based on the number of convex vertices of heir
envelopes. This approach has proven to ve a productive exploratory strategy in the field of
computational geometry as witnessed in [ET89], where much progress was made as a result
of defining a hierarchy of polygons that possess more structure than arbitrary simple poly-
gons. The classification of arrangements that we give helps us in understanding more about
morphological properties of arrangements of lines and about the complexity of problems

concerning arrangements of lines.

We show that a certain class of arrangements, which we call sail arrangements (the
envelope of a sail arrangement has exactly three convex vertices), has properties that allow
us to determine the convex vertices of sail envelopes in O(n) time given a sail arrangement
of n lines. Consequently, we can solve several other problems regarding the O(n?) intersec-
tion points of a sail arrangement in O(n) time. In particular we can find the intersection
point with minimum or maximum x-coordinate as well as the diameter and convex hull of
the intersectior points. These problems were shown, . CSSS89] (in the (ual) and [CL85]
respectively, to have Q(n log n) lower bounds for arbitrary arrangements under the alge-
braic tree computation model [BO83]. We show, in spite of this, that even if we know the
convex vertices of the envelope of a sail arrangement, computing the complete envelope

remains (n log n).

We also show that there are classes of arrangements which have other properties
that do not hold for arbitrary arrangements. In particular, we show that there exists a non-
trivial subclass of sai. arrangements which always admits a hamiltonian cycle, and further-
more, we exhibit a polynomial time algorithm to compute a hamiltonian cycle. It was
shown by Everett [Ev91] that not all arrangements of lines admit a hamiltoniun cycle; refer

to figure 2.4.1 (page 46) for an illustration of a counterexample.

The algorithms presented in this thesis use the Real RAM model of computation.

All numbers computed have infinite precision. They can be stored in O(1) space, compar-
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isons and arithmetic operations on numbers can be accomplished in O(1) time. This im-
plies, for example, that we can compute the intersection of two non-parallel lines in O(1)
time, using O(1) space. For the lower bound prcofs, we use the algebraic tree model of
computation of Ben-Or [BO83]. Throughout the thesis, lines e given as a pair (slope, y-
intercept) and edges as (initial vertex, end vertex). Polyzons and polygonal chains are
stored in doubly-linked lists in clockwise order. Arrangements of lines are given as doubly-

linked lists of lines. All the work in this thesis is done in the Euclidean plane.
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Consider the following definition. We say that a polygon P=[py,...,py-1] is simple if
(i) no two non-consecutive edges of P intersect and if (ii) no three consecutive vertices of
P are colincar. All polygons considered in this thesis are simple. Most of the work on poly-
gons in computational geometry is done with simple polygons. Perhaps the most important
property of simple polygons is that they obey te Jordan Curve Theorem: when a simple
polygon P is removed from %2, there remains a bounded and zn unbounded connected
component (respectively called the interior and the exterior of P). While the formal proof
of the Jordan Curve Theorem is complicated for general curves, the reader is referred to

[CR41], where a simple proof is given for the case of polygonal curves,

In this chapter, we are concerned with the study of geometric properties of a class
of simple polygons, that of envelope polygons. A simple polygon P is an envelope polygon
if chere exists an arrangement of lines A such that P=E(A). It is useful, when discussing
envelope polygons, to use the following notation. The induced arrangement of a simple
polygon P, denoted as IA(P), is the arrangement induced by the set of lines obtained by ex-

tending the edges of P to lines. First we give a characterization of envelope polygons.
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Proposition 1. A simple polygon P is an envelope polygon if and only if P=E(IA(P)).

Proof: (“Only if” implication) Suppose that simple polygon P is an envelope polygon. Let
A denote the arrangement of lines such that E(A)=P. For every edge ¢ of P, there is a line
L of JA(P) colinear to e, hence, since P=E(A), Lisaline of A (i.c. IA(P) < A). Now sup-
pose that there is a line L of A notin IA(P). L is not colinear to any edge of P (=E(A)) and
therefore does not contribute any line segment to E(A). L can be removed from A without
affecting E(A). It follows that E(IA(P)) = E(A), hence that P=E(1A(P)). The “if”* implica-

tion of the proposition is obvious.%

This characterization of envelope polygons will be very useful in determining if a
given polygon is an envelope polygon (section 1.4). We begin the chapter by introducing
some basic terms we will be using throughout this thesis and by uncovering simple and ba-

sic properties of envelope polygons.

1.1.  Definitions and Preliminaries

In this section, we present several basic geometric properties nf envelope polygons.
We start by introducing several definitions and forms of notation about arrangements of

iines that will facilitate subsequent discussion.

Let A ={Lg,L,,...Ly.,} be an arrangement of n lines. We denote by /(I L)) the in-
tersection of two non-parallel lines L, and Lj. We now classify the vertices of arangement
A as follows. Vertex p = I(L;,L) (i, j € [On-1]) is said to be extreme on L, if every vertex
lying on L, lies on one side of p on L,. The vertex p is said to be critical if it is extreme on
both L, and L; itis interior if it is not extreme on either L, or Lj. Two non-parallei lines in
an arrangement are said to be adjacent if they are neighbors in the list of the lines of the
arrangement sorted by slope. We now characterize the convex vertices of envelope poly-

gons with the following lemma.

Lemma 1.1.1. Let P be an envelope polygon. A vertex of Pis convex if and only if itis a
critical vertex of IA(P).

Proof- We first prove the “only if” part of the lemma, Let P = [py,p;,....p,.;] be an envelope
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polygon and let p, be a convex vertex of P. Letedges e; and e;,, be the edges that are incident
on p,. Let L, and L,,, be the lines extended through ¢; and e,,, respectively. If p; is not crit-
ical, then p, is not extreme on at least one of L; and L. Without loss of generality, suppose
that p, is not extreme on L; in IA(P). Then there is a vertex p, of IA(P) on L; such that p; lies
between p,; and pjon L;. The line segment [p,.,,p;] must lie completely inside P, by the def-

inition of an envelope. Thus, p; cannot be convex, a contradiction. Hence p; must be critical.

To see that the “if”" part of the lemma holds, suppose that p; is concave. Let edges
¢; and e, be incident on p.. We extend e; and e, to getL; and L, respectively. The vertex
chain C = [p;, 1.Pss2,--+P;-1] closes P. By the Jordan curve theorem, L; and L;,, must each in-
tersect the boundary of P on C at extreme points say, p, and p, respectively. The colinearity
and orientation of p,_;.p,.p, and p;.,.p..pp imply that p; is not extreme on either L; or L;,;.

Therefore p, is not critical.&

Corollary 1.1.2. If P is an envelope polygon then the convex vertices of P are the intersec-

tion points of adjacent lines in the list of lines of TA(P) given in sorted order of slope.

Proof: Ching and Lee [CL85] and independently Atallah [At36] showed that the critical

vertices of an arrangement are a subset of the intersections of adjacent lines.%

The following basic lemma about env:lope polygons will be useful in section 1.3.

Lemma 1.1.3. Let P be an envelope polygon. At most two distinct lines of IA(P) are par-

allel.

Proof: Suppose that there are three distinct parallel lines L,, Ly, L, in IA(P) and that Ly, is
the middle one. Then there is some edge e of P on L,. The endpoints of e are fcrmed by
intersection with two other lines, which form bounded faces of IA(P) together with L, and
L. on each side of e. This contradicts the fact that e is an edge of envelope polygon P.&

In [Su85), Suri shows that the size of an envelope of an arrangement of n lines is at
most 4n-2. We notice that the recent results of [BEPY91] for the horizon theorem also give
tight bounds on the complexity of a zone, hence of an envelope. Since a formal discussion
on the relation of the horizon theorem to envelopes would be tedious and technical, we pre-

fer to simply highlight the equivalence.
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Lemma 1.1.4. Let P be an envelope polygon such that IA(P) consists of n lines (n 2 3).

Then P has at most 3.5n vertices or edges, and this bound is tight up to a constant.

Proof: Envelopes are projectively equivalent to the well-studicd horizons or zones of lines
in an arrangenment of lines. Specifically, the envelope of a set of lines is the zore or horizon
of the line at infinity. Thus, the recent bound for the horizon theorem [BEPY91] also gives
an upper bound of 3.5n vertices on the complexity of envelope polygons. We present the
following example due to Urrutia [Ur91] (figure 1.1.1) to show that the bound is tight up
to a constant. &

This lemma concludes our presentation of some basic properties of envelope poly-
gons. We will use those properties in the sections to come. Now, we consider an important

characteristic of envelope polygons.

Figure 1.1.1. An arrangement of n lines whose envelope has 3.5n-10 vertices (n even).
Lines 2k-1 and 2k ¢dd 7 new vertices to the envelope (k>2).
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1.2. Envelope Polygons are L-convex

In this section we establish that envelope polygons are L-convex. We strengthen

this result by first showing that non-trivial envelopes are not convex.

Lemma 1.2.1. Let P be an envelope polygon of more than four vertices. Then P is not a

convex polygon.

Proof: Suppose that P = [po.p,,...p,, ] is a simple convex polygon of n (> 4) vertices. We
first show that P has three consecutive edges, no two of which are parallel. Let e, denote
the edge [p;.p;,,] and L; the line colinear with e;. Suppose, for the sake of deriving a con-
tradiction, that for every triple of consecutive edges of P there are two parallel edges. Since
7 is simple, then no two consecutive edges of P are colinear. It follows that (eg,e7,€4.€6,...)
are all parallel and that (e(,e3.€5.€7,...) are parallel. By lemma 1.1.3, at most two distinct
lines of IA(P) are parallel since P is an envelope polygon. It follows that IA(P) consists of
at most 4 lines, contradicting the assumption that P has more than 4 vertices.

P must thus have three consecutive edges, no two of which are parallel. Let e;, ;44
and e;,, be three such edges. By lemma 1.1.1 p;, p;41» Pis2 and p;,3 are critical in IA(P)
since they are convex in P. Then since ¢; and ;5 are not parallel, L; must intersect L; 5 on
e; and on e, ;5. This implies that p; and p;, 5 are the same vertex, contradicting the assump-

tion that P has more than three vertices. P can thus not be convex.

Corollary 1.2.2. The only convex envelope polygons are triangles and parallelograms;

they are the envelope of trivial arrangements,

Given & simple polygon P, we say that two points x and y inside P are visible if th=
line segment [x,y] lies completely inside P. A simple polygon P is star-shaped if there is a
point x inside P such that for every point y in P, x and y are visible. P is a fan polygon if it
is star-shaped from a vertex. P is a convex-fan if it is star-shaped from a convex vertex. In
(Za75], Zaslavsky conjectured that envelope polygons are star-shaped; the class of star-
shaped polygons subsumes the class of convex polygons. We submit the counterexample

below (figure 1.2.1) due to Vegter [ Ve87] to show that this is not the case. We can, however,
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Figure 1.2.1. An envelope polygon which is not star-shaped.

show that envelope polygons are L-convex.

We definc L-convexity as an instance of Ly-convexity as follows. A simple polygon
P is L,-convex (k 2 1) if for every two points x and y that lie inside P, there exists a sct of
k-1 distinct poinis Q = {q;,95,....Gx;} in P such that the k pairs (x,q;), (9,,9)--.(Qx.2.0-
1):(qi.1,y) are all visible. Note that for k = 1, the set Q is empty and we obtain the classical
definition of a convex polygon.We can think of Q as 2 polygonal chain of k line segments
that lies in P and has x and y as endpoints. If a sct Q exists, we say that x and y have link
distance k with path Q. We say that x and y have minimal link distance k if k is minimal
over all possible link paths between x and y. We say that a polygon P is L-convex if it is L,-
convex. Before we show that envelope polygons are L-convex, we first recall the following

fact.

Lemma 1.2.3. A simple polygon P is L, -convex if and only if the minimal link distance

between 2very two vertices of P is at mosi k.

Proof: The proof follows directly from lemma D in [LPSSSSTWY88].4%

We can now state the following.
Lemma 1.2.4. If P is an envelope polygon, then P is L-convex.

Proof: By lemma 1.2.3, it is sufficient to show that every tw.o vertices of P have a link dis-
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tance at most 2. Let p, and p,, be two arbitrary vertices of P. If p, and p,, are on the same line
in IA(P), then they are visible and so p, and p,, have a link distance of one. Otherwise, there
is an intersection point q between a line L, supporting p, and a line L,, supporting p, in
IA(P). The path [p,,ql, [q.pp] is interior to P since it is an envelope and so p, and p,, have a

link distance of 2.4

Whereas envelope polygons have not been studied much, L-convex sets have re-
ceived considerable attention [HV49]. Properties ~f L-convex polygons have been exploit-
ed in [EAT83] to obtain efficient algorithms for solving a variety of geometric problems.
Since envelopes are L-convex, properties of L-convex polygons are useful for answering
questions about envelope polygons. In particular, this result implies that there is a simple

O(n) time algorithm to triangulate an envelope polygon of n vertices [EAT83].

1.3.  Sorting the Edges of an Envelope Polygon in Lin-
ear Time

In this section, we consider the problem of sorting by slope the edges of a given
polygon. We will show that this can be done in O(n) time if the input is an envelope poly-
gon of n vertices. We will see in section 1.4 that this result has an interesting application
for the problem of determining if a given simple polygon is an envelope polygon. We start
by showing that the problem of sorting the edges of a polygcn is €(n log n) for monotonic
convex-fan polygons [OR87] (hence for arbitrary polygons); the class of monotonic con-

vex-fan polygons has a non-empty intersection with the class of envelope polygons.

Our proof of this lower bound requires the following definitions. A polygonal chain
C=[ryrys1.--r] is said to be inonotone with respect to a straight line L if the perpendicular
projections of the vertices of C on L are ordered as (r,ry41,....Ty) (note that we do not allow
consecutive vertices of C to be projected on the same point on L). A polygon P is monotone
if it can be split ir two chains monotone with vespect to a common line, Let L be a line in
the piane. Define slope(L) as the smallest angle through which L must be rotated clockwise
about a point on L so that L is parallel to the x-axis. Note that this definition of slope is not

standard and will be used frequently in the sections to come.
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Lemma 1.3.1, Given an arbitrary monotonic convex-faa polygon P of n vertices, it takes
Q(n log 1) time to sort the edges of P in order of slope under the algebraic tree model of

computation.

Proof: (By a reduction from Integer Sorting) Let X = {xg,..., X,.1}, a st of positive inte-
gers, be the input to the Integer Sorting problem. We will first show how to build in lincar
time a comb-like polygonal chain C from X (refer to figure 1.3.1 for an illustration of the
construction). For every x;, produce the two line segments [(0,2i), (1/x;,2i+1)] and [(l/
x;,2i+1), (0,2i+2)] which respectively have slopes x; (# 0) and n-x;, and insert them in C.
At the same time, extend those edges to lines in order to compute the intersection of those
lines furthest from (0,0) with the positive x-axis (suppose that this intersection is (x,0)). To
create a star-shaped polygon P, add vertex (x+1,0) to C. C is monotone with respect to the
y-axis, and since (x+1,0) lies in the region which is the intersection of all the right half-
planes determined by the lines, then it can see all the vertices created and therefore the en-
tire interior of P as well. By this construction the polygon P is simple, monotonic convex-
fan, and produced from X in O(n) time. Getting the edges of this polygon sorted by order

of slope sorts the x;’s, hence takes (n log n) time under the algebraic tree model of com-

putation. s
—
XO = 3
X)) = 2
X2 = 6
] | I ]
] 1 1 |
16 13 112 1

Figure 1.3.1. Constructing the comb-like polygonal chain in the proof of lemma 1.3.1
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Now suppose that we are given an envelope polygon P of n vertices. We show how
the edges of P can be sorted in O(n) time by order of slope. Cur strategy is to represent P
as the intersection of two unbounded regions D and U that we define as follows. Choose an
edge e of P and let L denote the line colinear with e (assume without loss of generality that
L is the x-axis). Then let D be the union of P with the halfplane on and below L and let U

be the union of P with the halfplane on and above L.

In what follows, we concentrate on sorting the edges of the polygonal chain delim-
iting the unbounded region D: [rg=(-00,0),ry,....F.n.1,tm=(22,0)] (r and 1,y are the two ex-
treme vertices of IA(P) on L); sorting the edges of the boundary of U is similar. To sort the
edges of the boundary of D (which are edges of P) we use iwo Graham scans, one clock-
wise (cw) from rg, procedure cwScan (), and one counterclockwise (ccw) from ryy,, pro-
cedure ccwScan (). The edges output by each scan will be stored in order of slope in
linked lists Qy and Q, respectively; they can easily be merged in linear time afterwards. Q,
and Q, together hold almost all the edges of the boundary of D. The only edges that our
algorithm will not detect are those which are parallel to L. However, they can clearly be
detected and inserted in our sorted list of edges in O(n) time once L is known. Henceforth,
we assume that all edges parallel to e are colinear to L to simplify presentation, We now
present procedure cwScan (), that we run clockwise on D, starting from ry; procedure

ccwScan () is similar, and therefore will be omitted.

Procedure cwScan (D, ry) /* in clockwise direction*/

{Input: A polygon D and vertex rg, obtained from an envelope polygon P as described
above}

{Data Structure: A vertex stack with pointers top and next to the top and next to top
elements of the stack.}

{Output: A doubly linked list Q; which is a subset of the edges of D in sorted order of
slope.}

begin
push(rgp);
push(ry);
Teur € I2:

Repeat
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If (next, top, r;,,) form a left turn or are colinear
then push(reye)s Feyr € Feurs1s /¥ move forward */
else /* the 3 points form a right turn */
/* Insert an edge of D in Q| when it is popped from the stack */
if ([next, top] is an edge of D) then insert [next, top] in Qy;
pop(); /* backtrack */
Until (rey, = 1)
end;
end {of Algorithm cwScan}

Before analyzing the running time and the correctness of this algorithm, let us con-
sider figure 1.3.2. It shows an example of the polygon D obtained as described above and
the order that the lines are output by procedures cwScan (1, 2, 3, 4) and ccwScan (a, b,
c, d). We first show that the algorithm works in linear time given an arbitrary polygon as

input.

Figure 1.3.2. The unbounded region D.
cwScan outputs lines 1, 2, 3, 4. ccwScan outputs lines a, b, ¢, d.
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Lemma 1.3.2. The procedure cwScan () performs at most O(m) steps given an arbitrary

polygon of m vertices as input.

Proof: We can determine in O(1) time if [next, top] is an edge of D by checking whether
the indices of the vertices next and top are consecutive. The angle test (left or right turn)
can be performed in a constant number of operations under the Real RAM model of com-
putation. After each test, we either push a vertex (advance the scan) or pop a vertex (back-
track). Clearly, since it is the stopping condition, the scan advances ex~ctly m times (every
vertex is pushed exactly once; they are pushed in clockwise order). Also, since every vertex

can be popped at most once from the stack then the algorithm backtracks at most m times. &

We say that an edge e, = [r;,r;,1] of D is visited by the scan if at one point in the
algorithm r; and r; .y are consecutive on top of the stack. We say that an edge is popped by
the scan if it was visited and one of its endpoints is now popped from the stack. We now
prove the correctness of the algorithm when it is given as input D= [rg,r,...,r,] obtained
from an envelope, as described above, and vertex ry. Let L; denote the line colinear with
edge e;=[r;,r;41] of D and let s denote the segment [ry,f;,.1] on L (the line used to split P in
two). The proof that the scan correctly sorts some of the edges of an envelope polygon is
based on the following property: if P is an envelope and L; is a line of IA(P), then the in-
tersection of P and L; is a unique connected line segment (let s;=[f;,g;] denote that segment
on line L;) i.e. every edge ¢; of D not parallel to L must satisfy the following two properties:
(1) the extension of e; towards L remains in D and (2) the extension of e; away from L
crosses out of D and then intersects no line of D (without loss of generality, suppose f; is

above L; then clearly g; must lie below L—- the x-axis).

A simple polygon P is edge-visible from an edge e of P if for every point x inside
P, there is a point y on e such that x and y are visible. Property (1) above of the unbounded
region D is similar to edge-visibility from a line at infinity. Edge-visibility was introduced
by Toussaint and Avis in [TA82], where they show that a Graham scan gives an easy algo-
rithm to triangulate edge-visible polygons; our algorithm is closely related to theirs. We

will use some of their results in our proof of correctness.

The proof of cormrectness of the sorting procedure will follow from lemmata 1.3.5
and 1.3.9 which establish that every edge of D (not parallel to L) is visited either by the
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r L; Tm-1 n T'm-1
e; lies on the chain fromry to f;. e; lies on the chain from f  tor,,.;.

Figure 1.3.3. Illustrating the statement of lemmata 1.3.3. and 1.3.4.

clockwise or the counterclockwise scan, and that the edges, in both cases, are popped by
the scan in order of slope. The following two technical lemmata, which exploit propertics
(1) and (2) above, are useful in establishing the correctness of the scan. Refer to figure 1.3.3

for an illustration of their statements.

Lemma 1.3.3. Let ¢; be an edge of D not parallel to L. Then no vertex of the clockwise
chain from ry to f; lies to the right of L; and no vertex of the ciockwise chain from f to ry,.

1 lies to the left of L;.

Proof: By properties (1) and (2) above, s;=[f;,g;] is containcd entirely in D (f; lics above L).
The clockwise chain from rj to r;,_; (entirely above or on L) can only cross L; at f,. It fol-
lows that no vertex of the chain from ry to f; can lie to the right of L, and that no vertex of

the chain from f; to r,; lies to the left of L;. %

Lemma 1.3.4. If edge e;=[r;,1;4] (not parallel to L) lies on the clockwise chain fromry to
f;, then r;, lies further from L than r;. If ¢; lies on the clockwise chain from f; to ryy,_;, then

r; lies further from L than r;,;.

Proof: By contradiction. Suppose that edge e;=[r;.r;,] lies on the clockwise chain fromr,
to f; and assume that r; lies further from L than r;,; on L;. By lemma 1.3.3 and by the def-

inition of D, no vertex of the chain fromry to f; lies to the right of L; or below L. In partic-
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ular, it must hold for the chain from ry to r;. That chain together with I(L,L;) forms a closed
polygon containing r;, (on [r;,I(L,Ly)]). Since s, lies entirely inside D (properties (1) and
(2)), then th: chain from r;,} to f; must intersect with the chain from rj to rj, contradicting
the simplicity of the clockwise chain from ry to ry, ). The symmetric statement follows

from the same argument. &

The following lemma uses lemma 1.3.3 and lemma 1.3.4 to establish that the edges
of D not parallel to L are all visited and popped by the clockwise or by the counterclock-
wise scan. These facts establish that Qy and Q together contain all the edges of D (except

those colinear with L).

Lemma 1.3.5. Let e,=[r;r;,] be any edge of D (not parallel to L). Then ¢; is visited and

popped by the scan started clockwise from ry or by the scan started counterclockwise from

-

Proof: Suppose, without loss of generality that ¢; lies on the clockwise chain from r to f;.
We know from lemma 1.3.3 that no vertex of the chain from ry to f; lies to the right of L;,
hence that ¢; lies on the convex hull of the chain from ry to r;,;. Since r;,  lies above r; on
L; (lemma 1.3.4) then when r, is pushed on the stack, (next, top = r;, 1oy, = 1,41) also forms
a left turn (next must be on the chain fromr) to r;.; since the scan progresses in clockwise
order from rp) i.e. ¢ is visited by a clockwise scan from ry. Edge e; will be popped when
roup for the first time, will be on the chain from fj to ry;,_;. If ¢; lies on the clockwise chain
fromry to f,, then by a similar argument it is visited and pupped by a counterclockwise scan

from ry,. &

To complete the proof of correctness, we need to argue that in the scan, the edges

are inserted in Q in order of slope. The following lemma and its corollaries will serve that

purpose.

Lemma 1.3.6. When the scan runs on D, then at every step the content of the stack forms

a simple convex polygonal chain monotone (non-decreasing) with respect to the y-axis.

Proof: By property (1) above, the polygon D is edge-visible from a line at infinity. i.e. every
vertex of D can be joined to the line y = - = by a segment that lies entirely inside D. The
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statement of the lemma follows directly from lemma 1 in [TA82]. Since the proof is quite

long, it will not be reproduced here. &%

Corollary 1.3.7. The content of the stack forms a convex chain of edges sorted in increas-

ing order of slope after each loop.

Proof: Follows directly from the fact that the stack chain is made of left turns and that it is

monotone with respect to the y-axis.&

Corollary 1.3.8. If edge e;=[r,.rj;1] of D lies on the clockwise chain from f; to ryy, then ¢;
is not visited by a cwScan. If ¢; lies on the clockwise chain from ry to f;, then ¢; is not vis-

ited by ccwScan.

Proof: Suppose that edge e,=[r;,r;,1] lies on the clockwise chain from f] to r,;,. By lemma
1.3.4, r; lies further from L than r;,{, hence has greater y-coordinate. If ¢; is visited by a
clockwise scan then rj,; lies above r; on the stack, contradicting lemma 1.3.6. The argu-

nt is the same if e; lies on the clockwise chain from r; to f; (with respect to a counter-

clockwise scan). %

We now complete the proof of correctness with the following.

Lemma 1.3.9, The edges visited by the procedure cwScan are inserted in Q) in decreasing
order of slope. The edges visited by ccwScan are inserted in Q9 in increasing order of

slope.

Proof: Suppose that we run cwScan on D in a clockwise direction, starting from ry (re-
member that our definition of slope is not standard, see page 14). We show that all edges
popped (hence inserted in Q) before a given edge e; is popped have greater slope than ¢;.
First consider the edges popped after e; has be:n visited and before ¢, is popped (hence
while ¢; is on the stack). Such an edge e; is visited after ¢, since it is popped before, hence
it is on top of ¢; in the stack when ¢; is visited. By corollary 1.3.7, ¢; has greater slope than

€.

Now suppose, for the sake of deriving a contradiction, that an edge ¢; popped before

e; is visited has smaller slope. Let ry be the vertex which pops €; (r}, rj, fj,1, T, Tis Fis | I
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 are in clockwise order on D). We use the following three facts to derive a contradiction:
(1) the chain from ry to r;, | cannot lie to the left of L; (ry lies to the right of L; since (a) 1,
lies above rjon Lj (corollary 1.3.8 and lemma 1.3.4) and (b) (next = T}, 10p =Tjy 1o Tour = Tg)
must form a right tumn to pop r;, 1. The fact follows from lemma 1.3.3). (2) the chain from
ry to r,, cannot lie to the right of L; (follows from corollary 1.3.8 and lemma 1.3.3 since

e; is visited). (3) r,,; must lie above r, on L; (follows from corollary 1.3.8 and lemma 1.3.4).

Line L must lie below both e; and e, (it lics below all of the chain from ) to ryp).
Since we assumed that L, has a smaller slope than L;, we conclude from facts (1) and (2)
above that ¢; and ¢, lie below I(L;,L;) (i.e. ¢; lies on [I(L; L), I(L;,L)] and e; must lie on
[I(LJ,L). I(Li,Lj)]). We thus obtain a triangle T= (I(L;,L), I(Lj,L), I(Li,Lj)) lying above L.
Since P is an envelope, no vertex of P can lie inside T and no edge of P (hence of D) can
intersect with the interiur of T. The chain from ry to 1;, | cannot lie inside T and must there-
fore lie on L;, to the right of L;, following facts (1) and (2). But since the clockwise polyg-
onal chain fromry to ry,.; is simple, then r, must lie above ;| on L;, contradicting fact (3).
Hence e; must have greater slope than ¢, The symmetric argument applies for a counter-

clockwise scan. &

Theorem 1.3.1. The edges of an envelope polygon P of n vertices can be sorted in order of

slope in O(n) time.

Proof: The proof of correctness of our algorithm follows from the previous discussion.
Splitting P iu D and U can clearly be done in O(n) time since P is stored in a doubly-linked
list. Running the scan twice on both D and U also takes linear time (Iemma 1.3.2). It follows
from lemma 1.3.5 and lemma 1.3.9 that all the edges of D (U) (except those colinear with
L) are sorted by the scan. Inserting the edges colinear with L and merging four sorted lists

can also be done in O(n) time. %
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Recognizing an Envelope Polygon in Linear Time

1.4. Recognizing an Envelope Pclygon in Linear Time

As mentioned earlier, we show in this section how, given an arbitrary simple poly-
gon of n vertices, we can determine in O(n) time if it is an envelope polygon. For this pur-
pose, we rely both on the algorithm for sorting the edges of envelope polygons given in
section 1.3 and on Keil’s algorithm for computing in O(n) time the envelope of a set of lines
given in sorted order of slope [Ke91]. For the sake of completeness, we now outline Keil’s
algorithm before presenting the general recognition algorithm. The notation we use is dif-
ferent from Keil’s, to account for our different definition of slope (see page 14). The only

special data structure needed to implement the algorithm is a stack.

Let A = {Lq.....L,.1} be aset of n lines in the plane indexed in increasing order of
slope. We show how to construct the upper portion of E(A). For i=0,...,n-1, let B; be the
convex polygonal chain bounding the intersection of the halfplances lying to the left of the
lines Ly,....L; and let A; be the convex polygonal chain bounding the intersection of the
halfplanes lying to the right of the lines L;, ,...,Ly.1. The following lemma is the key result

that allows us to design our algorithm.

Lemma 1.4.1. (Keil [Ke91]) Let F denote the convex polygonal chain of any unbounded
face of A on the upper side of E(A). Then F is the intersection of the convex region to the
left of B; and of the convex region to the right of A; for some i, i=0,...,n-1. The next un-
bounded face of A counterclockwise is the intersection of the convex region to the left of

B,,1 and of the convex region to the right of A;,; (see figure 1.4.1).

To compute the upper envelope of A in linear time using lemma 1.4.1, itis sufficient
to show how to compute the following in constant amortized time: (a) the intersection of
the convex region to the left of B; and of the convex region to the right of A; for a given
value of i, (b) B; from By} and (c) A, from A;_,. Each unbounded face of A consists of a
portion of E(A) and of two segments that extend to infinity. It is thus easy to construct the
upper part of E(A) in linear time, given the unbounded faces of A in counterclockwise or-

der (for consecutive values of ).

We first outline how to compute the boundary of the unbounded face F determined
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Figure 1.4.1. The polygonal chains By and A,

B

by B; and A;. We observe that the lines containing the segments of A; all have slopes at
least as large as the lines containing the segments in B;. Using this fact, we can compute
the boundary of F with an up to down sweepline algorithm. The idea is to start from the
two halflines, on from eacl: chain, that extend infinitely upward; they are the unbounded
segments of F. We then sweep a horizontal line down, comparing the two segments cut by
the sweepline, until the intersection point of the two chains is found. If the segments do not
intersect, they are added to the boundary of F. Since we know by lemma 1.1.3 that the size
of an envelope of n lines is O(n), then the total time spent sweeping is O(n) (i.e. O(1) am-

ortized time).

We now have to show how B; can be obtained from B;_; in constant amortized time.
We represent B;.; as the contents of a stack such that the " entry from the bottom of the
stack consists of the j‘h segment of B;_; in order of slope. We observe that B; is obtained by
intersecting the region to the left of B;_; with the region to the left of L;. We know that the
upward unbounded segment of B, lies on L; since L; has a greater slope than any other line
forming B;. Using these two facts, we can simply pop the vertices of B,y from the stack
while they lie to the right of L;. We can then push the unbounded segment contained in L;,
thereby storing B; on the stack. Because the lines are given in sorted order of slope, then
all the B;’s (i=0.,...,n-1) can be computed in O(n) total time (each line is pushed and popped
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exactly once from the stack).

However, computing the A; from A;_; is “tricky”. We first observe, as we did be-
fore, that A;_; is obtained by intersecting the region to the right of A; with the region to the
right of L;; this is the reverse of the relation between B;_y and B;. Butto compute F, we need
to access A; and B; at the same time, while we cannot afford to store A4, to A, (we are
allowed only O(n) total space). The “trick” is to run the procedure to obtain A, from A;
(like for the B;’s) fori =n-1 downto 1, while recording e very operation performed to obtain
A. The transcript of the operations can be obtained in O(n) total timc and can thus be
stored in O(n) space. Then, we can compute A; from A;_; by reading the recorded opera-
tions in reverse {pushing what was popped and vice versa). With this, we finished outlining
the solutions to problems (a), (b) and (c) above. From those three solutions, we can com-
pate the upper portion of E(A) in O(n) total time, as discusscd above. This concludes our
presentation of Keil’s algorithm. We now present the general algorithm to recognize enve-

lope polygons in linear time.

Algorithm Recognize_Envelope(P)

{Input: An arbitrary simple polygon P stored in a doubly-linked list}
{Output: Whether or not P is an envelope. }

begin

Attempt to sort the edges of P by order of slope:

Choose any edge e of P and find the two vertices of P, ry and ry;,.;, which are extreme
on L (the line colinear to e).

Split P into D and U. /* O(1) since P is stored in a doubly linked list */
For D (similarly for U):

Q; ¢« cwscan (D, ry).

Qy ¢ ccwScan(D, rp).

Verify that the edges of Qj and Q, are sorted by slope.

If not then return(NO) /* P cannot be an envelope */

else merge Q) and Q, and add to them the edges colinear with L (they can be found
in O(n) time).

Q < merge the lists of D and U together.
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A & The lines of IA(P) in sorted order of slope obtained from Q.

Check ‘f P =z 1A(P): /* the edges of P were correctly sorted by slope */
Q « Compute the envelope of A using Keil's algorithm {Ke91].
Compare P and Q to see if they are identical:
Assume that the vertices of P and Q are given in clockwise order.
Pick any vertex of P and find if there is a vertex of Q with which it corresponds.

If yes, scan the vertices of P and Q in clockwise order, checking that each pair of
vertices matches.

Return(Yes) if the vertices of both polygons correspond pairwise.
Return(No) otherwise.,

end {of Algorithm Recognize_Envelope}

Theorem 1.4.1. Algorithm Reccgnize_Envelope correctly determines in O(n) time if a

simple polygon is an envelope.

Proof: Suppose first that the edges of P are correctly sorted in O(n) time (by theorem 1.3.1,
this is always the case if P is an envelope polygon). The correctness of Keil’s algorithm
[Ke91] implies that Q, the envelope of IA(P), is correctly computed in O(n) time. By lem-
ma 1.1.3, Q has O(n) ve:tices and so can clearly be compared with P in O(n) time. By prop-

osition | (page 9), P is an envelope polygon if and only if P = Q.

It can easily be detected from Q; and Q; if the edges of P are not correctly sorted
by the algorithm (by lemma 1.3.2 our sorting procedure is guaranteed to terminate in O(n)
time). &%
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In the previous chapter, we studied geometric properties of envelopes and charac-
terized the class of envelope polygons. In this chapter, we study envelopes from a different
perspective, viewing them as a tool with which to characterize arrangements and classify

them according to properties of their envelopes.

We now introduce the basic notions required in this chapter. We say that a linc of
an arrangement A is exterior if it contributes at least one edge to E(A). More generally, we
say that a line of A is k-exterior if it contributes exactly k distinct edges to E(A). We also
introduce a similar convention for arrangements of lines. We say that an arrangement is ex-
terior if all the lines of the arrangement are exterior. In general, we say an arrangement A
is k-exterior if (i) it is exterior, (ii) each line of A contributes at most k edges to E(A) and
(iii) at least one line is k-exterior. See figure 2.1.2 for an example of a 1-exterior arrange-

ment of lines.

The fact that an arrangement is exterior is very useful when we study arrangements.
Since every line of the arrangement contributes to the envelope, properties of the envelope

can be used to induce an “‘ordering” of the lines of the arrangement. It follows from the def-

On Classes of Arrangements
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inition (of exterior) that an arrangement A is exterior if and only if A = IA(E(A)). This im-

plies that there exists a one-to-one correspondence between exterior arrangements and their
envelopes.

The notion of exteriority is one of two important notions that introduce. The second
one is that of general position. An arrangement of lines A is said to be in general position
if (i) no two lines of A are parallel and (ii) no three lines ar< concurrent. It is quite common
in computational geometry, when it is question of arranger.ents of lines, to assume that the
lines of the arrangement are in general position (e.g. (Ed89]). This, in general, is to cvoid
exceptions on important properties of arrangements, Some authors also use general posi-
tion to simplify presentation. In this chapter, the assumption that we require is that no three
lines of an arrangement A intersect on the boundary of E(A). This is to make sure that the
extreme vertices on the lines of the arrangements are well-defined, as the intersection of

exactly two lines. We will assume general position in order to satisfy this requirement.

We now define E_ as the class of exterior arrangements in general position whose
envelope is a simple polygon containing exactly ¢ convex vertices. In particular, we study
in this chapter the class Ej, which we also call the class of sail arrangements. The name
sail stems from the fact that simple polygons of exactly three vertices are known as sail
polygons. Sail polygons have found applications in the design of efficient algorithms for
intersecting convex polygons and triangulating point sets [To85]. We begin the chapter by

studying sail arrangements.

2.1. Characterizing Sail Arrangements

In this section, we characterize the class of sail arrangements that defined above.
The property that we establish will help us, in the next section, in finding the convex ver-

tices of a sail arrangement in O(n) time.

We now present a property of simple polygons that is useful in characterizing the
class of sail arrangements (please refer to figure 2.1.1 for illustration). Suppose that C =
[p,P,y--Py] 18 a clockwise vertex chain of a simple polygon P. Let the interior of the

polygon be the region to the right of C as we move from p, top, on C. Let R, be the di-
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clockwise

Interior of P

Figure 2.1.1. The walk of directed line R on a simple polygonal chain C.

rected line colinear to [p,,,,p.]- Let R;,, be the directed line obtained by rotating R, coun-
terclockwise about p;,, until it is colinear to [py,2,p;,4}. i € {u,...,v-2}. Let o, | be the angle
induced by the rotation we make to get R;,; from R;. Define Ang(C) =X o, i € {u+l,...,v-
1}.If we let the directed line R become successively colinearto R ,R,,,....R,.; (by rotating
R counterclockwise about successive p;,i € {u+l,...,v-1}) then we say that R travels on C
in clockwise fashion about P. If R travels on C from [p, ;,p,]to [p,.p,, ] in counterclock-
wise fashion, then R should be rotated in clockwise fashion. Noie that the value of Ang(C)

is independent of the direction in which R travels.

Similarly, given a simple polygon P, let Ang(P) be the sum of the angles made by
the directed line R as it travels in clockwise order once around P (as described above) until
it has rotated about every vertex of P. We show that for every simple polygon P, Ang(P) =
(c-2)r, where ¢ is the number of convex vertices of P. We will see later how to use this fact

in characterizing sail arrangements.

We first state a well known result dating back to Euclid but offer an inductive proof
that uses the Two Ears Theorem [Me75]. Our arguments requires the following definition.
A vertex p, of a simple polygon P is said to be an ear if no vertex of P lies in the interior of

the triangle [p;.;.piP,+1] and if the line segment [p,.,,p;,1] lies in P.
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Lemma 2.1.1. For every simple polygon P of n vertices (n 2 3), the sum of its interior an-

gles equals (n-2)m.

Proof: (By induction) For n = 3, we have a triangle, for which a proof is given in Proposi-
tion 32 of Euclid’s Elements (Eu300B.C.]. Assume the claim holds for all simple polygons
of n-1 vertices and suppose that we are given asimple polygon P of n vertices. By Meisters'
theorem [Me75], a polygon with n > 3 vertices has at least two non-overlapping ears. Cut
off an ear. By the inductive hypothesis, the sum of the interior angles of the resulting poly-
gon is (n-3)n. The sum of the interior angles in an ear is 7 since it is just a triangle. These
angles all contribute to the sum of the interior angles of the polygon, hence the sum of the

interior angles of P equals & + (n-3)n = (n-2)m. &

Lemma 2.1.2. Let P be a simple polygon P of n vertices, ¢ of which are convex. Then

Ang(P) =(c-2)r.

Proof: Let B; denote the internal angle induced by vertex p; of simple polygon P. Remem-
ber that we defined o; above as the angle induced by rotating R;.; (colinear to [p;,p;.1])
counterclockwise about p; until it is colinear to R; (colinear to {p;,1,p;]). R;.; can be point-
ing in two possible directions: toward p;_; or towards p;. In both cases, o will be the same.
If p, is a convex vertex of P, then ; is the same as B;. If p; is a reflex vertex (hence the cor-
responding internal angle is strictly greater than ) then o consists of (;-). Thus, for sim-
ple polygon P,
Ang(P) = (n-2)x - (#reflex vertices)n
=(n-#reflex vertices-2)m
=(c-2)m.%

Corollary 2.1.3. Let P be a simple polygon P of n vertices, ¢ of which are convex. Then

the lines of IA(P) can be sorted in O(cn) time.

Proof: By letting a directed line R travel once around P, we can create ¢-2 lists of edges
sorted by slope. The lists have a total of n edges, so merging them can be accomplished in

O(cn) time.#»

This property of simple polygons allows us to characterize sail arrangements as fol-
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lows: We observe that the class of sail arrangements is equivalent to another class of ar-
rangements whic.. we call class A. We define class A to be the set of arrangements A in
general position that have the property that the vertices of A are vertices of E(A)if and only
if it they are determined by adjacent lines. The propenties of arrangements in class A (and
hence, of sail arrangements) are exploited in section 2.2, where we determine in O(n) tir-
all the convex vertices of the envelope of 2 given sail arrangement. The following lemmata,

along with lemma 2.1.2, are used in the proof of theorem 2.1.1.
Lemma2.1.4. Class A < l-exterior arrangements.

Proof: Let arrangement A € class A. It follows from the definition of class A that A must
be exterior. Since no two lines are parallel in A, exactly two lines are adjacent (in the list
of lines sorted by slope) toevery line L in A, and each of those two neighbors of Lintersects
L at exactly one point. Thus, aline in A contributes exactly two vertices, hence, exactly one
edge to E(A). This forces A to be 1-exterior. We can see that class A is a proper subset of
l-exterior arrangements with the example in figure 2.12. Here A =
{LgsLyLyLg.LyLeLg } is a 1-exterior arrangement of seven lines. The indices of the lines
L, (0 i £6) correspond to an increasing order of slope. Consider the points p; = I(Ly.Ly),
p2 = I(LyLs) and py = I(L,,L). They are generated by non-adjacent lines but are vertices

of the envelope. &

P2

P )

Ly ~

— 7 77X ™~ o~

Figure 2.1.2. A |-exterior arrangement of lines which is not in class A.
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Theorem 2.1.1. An arrangement of lines A is in class A if and only if A is a sail arrange-

ment.

Proof: (“If’ implication) Suppose that we are given a sail arrangement A. Since E(A) has
exactly three convex vertices, it follows from lemma 2.1.2 that Ang(E(A)) =r. i.e. as a di-
rected ime R travels around E(A), it will rotate through an angle of exactly = and R be-
comes successively colinear with the lines of A in order of slope. Since A is exterior (be-
cause it is a sail), evei; line of A will be met by R. It follows that the intersection point of
adjacent lines (in order of slope) is a vertex of E(A) and that conversely, a vertex of E(A)

is the intersection of adjacent lines. i.e. A is in class A.

(“Only if” implication, proof by contradiction) Suppose that we are given an ar-
rangement A in class A and that E(A) is a simple polygon of more than three convex ver-
tices. By lemma 2.1.2, Ang(E(A)) > n. Let directed line R travel clockwise around E(A)
starting at edge e,. Lete; be the first edge that causes the angle covered by R to exceed 7.
Then e, has aslope that lies in between that of some edges ¢, and €, 0n the chain from €

toe;, 0 <j<i-1, so ¢ and €;, re not adjacent in the list of lines sorted by slope.

+1

Clearly, the vertex p; that is common to both e and €1 is not the intersection of
adjacent lines of A, contradicting the assumption that A is in class A. We conclude that
E(A) must have exactly three convex vertices. Since by definition arrangements in class A
are in general position and by lemma 2.1.4 they are 1-exterior, we conclude that A must be

a sail arrangement (this also implies that sail arrangements are 1-exterior).&

2.2.  Recognition of the Critical Vertices of a Sail Ar-
rangement

Let X,Y and Z be the three convex vertices of the envelope of a sail arrangement A
(E(A) is a sail polygon). Then combinatorially, we obtain four possible geometric situa-

tions.

(1) [X,Y], [Y,Z) and [X,Z] are all edges of E(A). E(A) is a triangle.
(ii) Two of [X,Y], [Y,Z] and [X,Z] are edges of E(A). E(A) has one concave chain
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of vertices.

(iii) Only one of [ X, Y], [Y,Z] and [X,Z] is an edge of E(A). E(A) has two concave
chains of vertices.

(iv) None of [X,Y], (Y.Z] and [X,Z] are edges of E(A). E{A) has three concave
chains of vertices.

We further classify sail arrangements as k-sail, 0 <k <3, where k indicates the num-
ber of concave chains in the envelope. Thus, case (i) above describes a 0-sail, case (ii)a 1-
sail, case (iii) a 2-sail and case (iv) a 3-sail. Figure 2.2.1 gives examples of the four sub-
classes of sail arrangements. Owing to the trivial nature ot 9-sails, subsequent discussion

shall omit this subclass.

0-sail arrangement 1-sail arrangement

i

2-sail arrangement 3-sail arrangement

Figure 2.2.1. The family of sail arrangements.




Recognition of the Critical Vertices of a Sail Arrangement 35

Now we ask the following question. Given a sail arrangement of n lines A, can the
three convex vertices X, Y and Z of the resulting envelope be found in linear time (i.e. can
we determine which pairs of lines in A realize the three convex vertices of E(A))? It turns
out that we can indeed do this in O(n) time. In what follows, we show howto find X, Y and
Z in O(n) time for each sail subclass. We later show that we can determine in O(n) time the
subclass to which a sail arrangement A belongs. Finding X,Y and Z in linear time allows
us to compute in O(n) time the diameter and the convex hull of the O(nz) points of the ar-
rangements. Furthermore, we can compute the points with minimum or maximum x-coor-
dinate in linear time. All those problems have been shown to have Q(n log n) lower bound
[CL85], [CSSS89].

We first define a few terms. A line segment that joins two critical vertices of ar-
rangement of lines A is said to be a critical edge. We say that a line of A is a critical line
if it is colinear to a critical edge. Thus, a k-sail arrangement A has (3 - k) critical edges (0
<k < 3). Remember that in this thesis we use a non-standard definition of slope, given in

page 14. We shall frequently make use of the following simple procedures.

Procedure Compute_Extreme(A,L)
{Input: A line L of an arrangement A = {L,...,.L__, } in general position}

{Output: The two lines L a and Lb such that I(L,La) and I(L,Lb) are the two extreme vertices
onL.}

Itis clear that the required output of Procedure Compute_Extreme can be obtained in O(n)
time.

Procedure Critical_Line(A,L)
{Input: A line L of an arrangement A = {Lgswly g} in general position }
{Output: Determines whether or not the given line L is critical.}
begin
La,Lb ¢ Compute_Extreme(A,L)
Lc'Ld « Compute_Extreme(A,La)
Le,Lf « Computc_Extremc(A,Lb)
If (one of {L c.Ld} = L and one of {Le,Lf} = L) then return(YES)
else return(NO)
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end {of Procedure Critical_Line}

Proof of correctness: 1f L is a critical line, then I(L,L,) and I(L,Ly) are both critical verti-
ces, so one of {Lc’[‘d} =L and one of {Le,Lf} = L. If L is not a critical line, then at least
one of I(L,La) or I(L,Lb) is not a critical vertex. It follows that L & {LC.L N and/or L ¢
{Lg.L}. Since procedure Compute_Extreme has O(n) time complexity, procedure Chiti-

cal _Line exhibits O(n) time complexity. &

We present the following lemma which applies to all sail arrangements and will be

useful for subsequent proofs.

All the vertices of A must lie on one side of L since [X,Y] is an edge of the convex

hull therefore the n-1 vertices of A on L are extreme. &

Lemma 2.2.1. The order of the vertices of A on a critical line L define a slope ordering of

the re:naining n-1 lines of A.

Proof: Let X,Y and Z be the three critical vertices of A. The convex hull of the vertices of
A is the triangle AXYZ. Since L is critical, two of the three critical vertices of A lic on L,
say X and Y. [X,Y] is a critical edge of E(A). Also, assume that {X,Y] lics on the x-axis, X
is to the left of Y on L and Z lies above the x-axis. Suppose that there exists lines Ljand L,
such that slope(L;) < slope(Lj) but I(L,Lj) lies to the left of I(L,L,) on L. Then I(Li,Lj) is
forced to lie below the x-axis and thus, outside of the convex hull of the vertices of A.

Hence, a contradiction. &

We can apply the above results to find the three convex vertices X,Y and Zof a |-

sail arrangement A in O(n) time with the following algorithm:

Algorithm One_Sail(A)

{Input: A 1-sail arrangement A of n lines. }

{Output: The three pairs of lines that determine the three convex vertices X,Y and Z.}
begin
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L & Any lineof A

Ln,Lb ¢« Compute_Extreme(A,L)
Lc.L 4 € Compute_Extreme(A,La)
Le,Lf « Compute__Extremc(A,Lb)

We now have the following intersection points: I(La,Lc), I(La,L ), I(Lb’Le) and I(L.-
b9Lf)‘

If (Critical_Line(A,L)) then determine which three of the four points are colinear and
dclete the point that is not critical.

else determine which two of the four points are identical and delete one of them.

Return the three pairs of lines that determine the three remaining intersection points.

end {of Algorithm One_Sail}

Proof of correcess: By definition, a 1-sail envelope has two critical edges which have as
endpoints the three convex vertices X,Y and Z. Without loss of generality, let the two crit-
ical edges be E,,, = [X,Y] and E,, = [Y,Z]. Note that the intersection points of E,, (E,,)
with every other line in A are extreme (lemma 2.2.1). Now, two cases arise when a line L
is chosen. Either (i) the chosen line L is colinear to neither E,, nor E,, or (ii) the chosen

line L is colinear to either Exv or EYZ.

Suppose that the first case is true. Then it follows that lines L, and L, are colinear
to E,, and E,,. Computing lines Lc and Ly for La gives I(La,Lc) and I(La,L d), which must
be critical vertices. Similarly, computing lines L,and L, forL, givesI(Ly,L ) and ILLY,
which also must be critical vertices. But since Y is common to both E,,, and E, ,, two of
the points I(La,Lc), I(La, L d), I(Lb,L e) and I(Lb,Lf) must identify vertex Y, meaning that one

of the four computed vertices is redundant.

If the second case is true, then without loss of generality, assume that L is colinear
to E,,. Theneither L_or L, is colinear to E,,. Again without loss of generality, suppose
that L is colinear to E;. L will identify the two critical vertices Y and Z. When we com-
pute the extreme vertices for L, we get one vertex whichis X (= I(L.L})) and the other
which is a non-critical vertex on E,,, say p. The vertex p lies in between Y and Z on E,,

and hence, is non-critical. It is easy to delete p from the list of the four intersection points.
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The algorithm uses procedures Compute_Extreme and Critical_Line which have O(n) time
complexity. The deletion of the redundant or non-critical vertex can be done in constant

time. &

inding X.Y and Z when A is 2-Sai

We can apply the above results, along with the technique of prune and search to find
the three convex vertices X, Y and Z of a 2-sail arrangement of lines. We find X,Y and Z
in O(n) time with procedure Find_Sail_Tip and algorithm Two_Sail By definition, a 2-sail
arrangement A has at exactly one critical edge. Procedure Find_Sail_Tip accepts the sole
critical line L and finds the convex vertex that does not lic on L. This is done by applying
the prune and search technique. Algorithm Two_Sail finds the sole critical line L (and the
two convex vertices that make L critical) and then applies the recursive procedure Find_-

Sail_Tip, with L as input, to find the third convex vertex of E(A).

Procedure Find_Sail_Tip(A,L,n)
{Input: A critical line L in a 2-sail arrangement A = {LO,LI,...,Ln_l} of n lines.}

{Output: The two lines that intersect to give the convex vertex of E(A) that does not lic on
L.}

{ Assume that L lies on the x-axis and that n is even}
begin
L, «thelineL, € A - {L} such that (n-2)/2 intersection points lie on cither side of
I( L,Li) on L {This is done using the k-selection algorithm of Blum et al. [BFPRT73]}
L, ¢ Extreme line on L, other than L
If (La is extreme on L) then retum(Laand Lb)
else begin
A’ ¢« {all lines L,eA such that I(L,Li) lies
in between IL.L)) and (L,L,) on L}ulL L, L.}

return Find_Sail_Tip(A",L,lIA’l)
end
end {of Procedure Find_Sail_Tip}
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Proof of correctness: Let L, be anyline € A - {L}. Then we can determine the line L, other
than L such that (L ,L) isextremeon L, using procedure Compute_Extreme(). If I(L,Ly)
is also extreme on L, then by definition I(L,,L,) is critical, in which case we are done. Oth-
erwise, remember from theorem 2.1.1 that as we walk around E(A), we meet the lines of A
in sorted order of slope (since A is a sail arrangement). By lemma 2.2.1, the order of the
intersection points on L also define a slope ordering of the lines of A, the same as E(A).
Now note that L, and L, are exterior on different concave chains of E(A). It follows from
the previous three statements that the two lines that we seck have corresponding i.tersec-

tion points that lie in between I(L,L ) and I(L,L,) on L.

Suppose now that we choose L such that there are (n-2)/2 intersection points on
either side of I(La,L) on L. We can do this in O(n) time using the k-selection algorithm of
Blumetal. [BFPRT73]. Lb lies on one of these sides and so we can “throw away” ((n-2)/2
+ c) lines at each call to procedure Find_Sail_Tip (¢ depends on the relaiive position of
I(L,L)yonL). So we obtain the following recurrence relation:

T(n) = T(n - (n-2)/2 +¢)) + O(n)
=T(n/2) + O(n)
=0(n)

Therefore procedure Find_Sail_Tip runs in O(n) time.%

Algorithm Two_Sail(A)
{Input: A 2-sail arrangement A of n lines. }
{Output: The three pairs of lines that determine the three convex vertices X,Y and Z.}
begin
L« Anylinee A

{Find the sole critical line of A and callit L}
If (not Critical_Line(A,L))
begin
L a,Lb < Compute_Extreme(A,L)
If (Critical_Line(A.La)) then L « I.,a
elseLeL,

end
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L, L, « Compute_Extreme(A,L) { Determine the critical vertices on L}
Lc’l‘d &« Find_Sail_Tip(A,L,n) {Find the third convex vertex Z}
Return {(L,L ),(L,L)J(L_Ly}

end {of Algorithm Two_Sail}

Proof of correctness: We only need to show that the first two convex vertices X and Y that
define a critical edge of A are correctly determined. Suppose that the line L that we choose
is critical. Then procedure Critical_Line will correctly detect this. Otherwise, one of the
two lines L or L, which give extreme vertices on L, must be critical. Procedure Criti-
cal_Line is applied to L, to determine if it is critical. If L_ is not critical then L must be
critical. All procedures used have linear time complexity so algorithm Two_Sail has O(n)

time complexity.&

indin Y an when A is 3-Sai

We can apply the previous results for 2 sails to obtain a divide and conquer algo-
rithm for 3-sails. Given a 3-sail arrangement of lines, we first select an arbitrary line L.
From this line, we obtain the two lines L_ and L, that determine the extreme vertices on L.
We will show that L, and L, define two slope ranges that separate the given arrangement
of lines into two or three 2-sail arrangemcnts. We first present the divide and conquer algo-

rithm and then give the proof of correctness.

Algorithm Three_Sail(A)
{Input: A 3-sail arrangement A of n lines. }
{Output: The three pairs of lines that determine the three convex vertices X,Y and Z.}
begin
L « Any line of A /* without loss of generality, assume that slope(L) = 0 */
La’Lb ¢ Compute_Extreme(4,,L)
Re-label La and Lb (if necessry) so that slope(La) > slopc(Lb)

If (I(L.La) or I(L,Lb) is critical) then
{The chosen line L passes through a convex vertex. A is split into two 2-sails. }
begin
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Split the lines of A into two subsets A, and A, where
A= {linesL € A such that slope(Li) < slope(Lb)}
A, = {lines LeA such that slope (L,) < slope(L,) < slope(La)} v (L}
If I(L,L a) is critical then LCrit «— La
else L, < Ly
L.Ly « Find_Sail_Tip(A ,L,IA 1)
LoLs & Find_Sail_Tip(A,,L.IIA, 1)
Return {(L,Lo, (Lo L)L, Lp)
end
else begin { A is split into three 2-sails.}
Split the lines of A into three subsets A}, A, and A, where
A ={linesL € A such that slope (L,) < slope(Lb)}
A2 = (lines LeA such that slope (Lb) < slope(Li) < slope(La)} v {L}
A3 = {lines LeA such that slope(Li) 2 slope(La)] v {L}
L L, ¢ Find_Sail_Tip(A,L.lIAlf)
L,.L; ¢ Find_Sail_Tip(A,,L,lIA,l)
Lg\Lh - Find_Sail_Tip(A;,L,lIA,l)

Return {(L Ly (L L)L, Ly}
end
end {of Algorithm Three_Sail}

Proof of correctness: Let L be any line in A. There are two cases: (i) L passes through a
convex vertex of E(A) or (i) L does not pass through a convex vertex of E(A). We test for
these two cases by first applying procedure Compute_Extreme to L to obtain L, and Lb
The first case is true if and only if L is returned for either Computc_Extreme(A,La) or Com-
pute__Extreme(A.Lb). We assume that L is parallel to the x-axis (if not we can rotate the
lines of A appropriately). Thus, we can think of L as having slope(L) = 0 or 7. Assume
slope(La) > slope(Lb). Also, let Q be the list of lines of A sorted on increasing slope starting
from slope 0. Let X, Y and Z, the three critical vertices of A, appear in clockwise order on
E(A).
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Suppose that the first case is true and that the convex vertex identified is X =
I(L,La). Notethat L, L . and Lb are exterior on different concave chains of E(A). Since E(A)
has exactly three concave chains, this implies that there exist two lines L L between L
(slope 0) and Lb in Q that determine a second convex vertex of E(A) (Y = l(Lc.L d)) and two
lines L':,Lf between L, and L, in Q that determine a third convex vertex of E(A) (Z =
I(Le,Lf)). Let A, be as defined in the algorithm. Let C, be the vertex chain [X,....Y,...,
l(L,Lb)] on E(A). A line Li € Aisin Al if and only if it is exterior on Cl. This is because
A isin class A (theorem 2.1.1). Hence, Cl is a portion of E(Al). Now we will show that L
is critical in A, and hence, A | is a 2-sail arrangement. L passes through the endpoints of C,
so C, lies completely to one side of L, say above L. We claim that all of the vertices of A,
on L are extreme. Suppose not. Then there exists a vertex p of A below L. E(A,) must con-
tain p. So there exists a critical vertex of A, below L. This critical vertex is the intersection
of adjacent lines in A (corollary 2.1.3). But then these two lines are not exterior on Cl. a
contradiction to the assumption that they are in A,. Hence, all of the vertices of A onLare
extreme. Thus, by lemma 2.2.1, L is critical. Therefore, A, is 2 2-sail arrangement. By sim-
ilar argument, A, is 2-sail. So we can apply algorithm Find_Sail_Tipto A, and A, with L
as the sole critical line to obtain Y= I(LC.L d) andZ= I(Lc,Lf).

In the second case, L, L_and L, are also exterior on different concave chains of
E(A). Thus, there exists two lines between L (slope 0) and Lb in Q that determine a convex
vertex of E(A), two lines between Lb and La in Q that determine a second convex vertex of
E(A) and two lines between La and L (slope T) in Q that determine a third convex vertex
of E(A). We split A into three subsets A, A, and A, asin the algorithm. With arguments
similar to that in case (i), A, A, and A, are all 2-sail arrangements with L. as the sole crit-
ical line. Hence, we can apply algorithm Find_Sail_Tip thrice to A}, A, and A, with L to
obtain X, Y and Z.

All of the operations have O(n) time complexity, so algorithm Three_Sail() has
O(n) time complexity.&

Now that we are able to find X, Y and Z given that A is k-sail (0 Sk < 3), we observe
that we can remove the condition that the value of k be known a priori. The following the-

orem shows that we need only know that A is a sail arrangement.
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Theorem 2.2.1.Given A= {Lolev--'Ln-l }, ak-sail arrangement of n lines (0 £k £ 3), we
can determine the value of k and the three convex vertices of A in O(n) time.

Proof: Let L be any line in A and L, and L, be the lines in A such that I(L,L,) and I(L,Ly)
are the extreme vertices on L (L, and L, are computed via procedure Compute_Extreme).
We can use procedure Critical_Line to determine whether or not L, L, and L,, are critical.
The number of critical lines tell us the number of convex vertices in E(A) and hence, by
definition of sail arrangements, the value of k. These tests are sufficient since all critical
lines in A (if they exist) are identified by computing the extreme vertices of any line in A,
For example, if L wns found to be non-critical, then A can be only be 1, 2 or 3 -sail and
L, and Ly, can be the only candidates for critical lines since they are the extreme lines on L.
Once we know the value of k, we can invoke the appropriate algorithm to find the three

critical vertices of A in O(n) time. &

Corollary 2.2.2, The diameter, the convex hull and the points with minimum or maximum
x-coordinate of the O(n?) vertices of a sail arrangement of n lines can be computed in O(n)

time.

2.3. Constructing the Envelope of a Sail Arrangement
of Lines.

In [CL85], Ching and Lee showed a lower bound of €2(n log n) for the problems of
computing the diameter, convex hull and envelope of an arbitrary arrangement of lines. We
have introduced and studied sail arrangements with the hopes that definite characteriza-
tions of a non-trivial class of arrangements would allow us to beat these lower bounds. the-
orem 2.2.1 implies that given a sail arrangement of n lines, the convex vertices can be de-
termined in O(n) time. This allows us to compute the diameter and convex hull of the ar-
rangement in O(n) time even though there are O(n?) intersection points. We show here that
the Q(n log n) lower bound, however, still applies to the envelope construction problem for
sail arrangements. This implies that the additional information and structure derived from
sail arrangements is insufficient for solving the envelope construction problem for sail ar-

rangements in o(n log n) and ultimately, improves on Ching and Lee’s result for arbitrary
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arrangements. Remember, for this proof, that our definition of slope is not standard (see
page 14).

Theorem 2.3.1. Given a 1-sail arrangement A of n lines, the complexity of computing E(A)

is Q(n log n) under the algebraic tree model of computation.

Proof: (By reduction from Integer Sorting) Let S = {X;,..., X} € RY U {x5= 0, X,y = o0}
be the input to the Integer Sorting problem; assume that the x,’s are distinct and refer to fig-
ure 2.3.1 for illustration. Let C be the quarter circle defined by the set of points on the unit
circle (centered at the origin) with positive x-coordinate and negative y-coordinate. For ev-
C is an arc of a circle, trigonometric operations are required to compute L;; however they

are allowed in the algebraic tree computation model [BO83].

We now show that A thus constructed is a 1-sail arrangement of lines. Without loss
of generality, assume that slope(L) < slope (L,) < slope(L;)) < slope(L,)) Sslope (L,,), 1 =
2,...n-1. Let X=1(L, L, ), Y = I(Ly,L;) and Z=1(L,,L,,,). Notice the following two facts:

Lye1= Ls

Figure 2.3.1. Constructing a 1-sail arrangement of lines from a set of integers.
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(i) C is monotone increasing with respect to both L, and L,; (by naturally extending the
definition of monotone from a polygonal chain to a smooth curve) and (ii) the order of the
intersection points of the lines of A with C on C define a slope ordering of the lines of A.
From these two facts, it follows that the order of the intersection points on Ly(andon L, ;)
also define a slope ordering of the lines of A; the same ordering as on C. Therefore no two
lines of A intersect below Lg or to the right of L. i.e. X, Y and Z are all critical vertices.
It also follo. s that no critical vertex can lie on L;, i= 2,...,n-1 (the extreme vertex of L; on
Ly (or L,,,) is 1ot extreme on L (or L,,,) because of the slope ordering). We can thus con-

clude that E(A) has only three convex vertices, X, Y and Z.

To show that A is a 1-sail, we still have to demonstrate that A is exterior and that
the lines of A are in general position. First consider the region R to the left of L,,;, above
L, and to the left of C. Because the lines of A are tangent to C, it follows that (a) R lies to
the left of every line of A and that (b) every line of A has a point (the tangent) on the bound-

ary of R. From this, we conclude that A is exterior.

No two lines of A are parallel since we assumed that the x;'s are distinct. Let L; and
Lj be any two distinct lines of A and assume that slope(L;) > slope(Lj). They both intersect
Cin a unique point, so clearly 1(";,L;) does not lieon C. Let L be any line through I(L;L;).
If slope(L) > slope(L;) or slope(L) < slope(L;), then L intersects C properly and so is not
tangent to C. If slope(L;) > slope(L) > slope(L;), then L does nc t intersect C. In both cases,
L is notin A. Therefore, no three lines of A can intersect in a common point, establishing
that the lines of A are in general position. We have thus shown that A, constructed in O(n)
time from S, is a 1-sail arrangement of lines. Following theorem 2.1.1, in traversing E(A)
in clockwise order, the lines of A are met in sorted order of slope, which is the order of the
X;'s.

Hence we can solve the Integer Sorting problem by reducing it in linear time to the
problem of constructing the envelope of a 1-sail arrangement. Since Integer Sorting is Q(n
log n) under the algebraic tree model of computation, it follows that computing the enve-

lope of a 1-sail arrangement has a lower bound of Q(n log n). &
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2.4. Hamiltonian Circuits

An arrangement of lines A is said to be hamiltonian or admit a hamiltonian circuit
if there exists a closed path through some of the bounded segments of A which visits every
vertex of A exactly once. Everett showed with the example illustrated in figure 2.4.1 that
there exists an arrangement of six lines that is not hamiltonian. One can observe that the
critical vertices of A, adjacent to only two bounded segments, force any hamiltonian path
to follow those two bounded segments. We can then see that there is no way for any path
to reach the vertex p without visiting vertices which have already been forced to be visited.
We must conclude that this arrangement does not admit any hamiltonian circuit. It is easy
to construct, for any odd value of n (n > 6), an arrangement of n lines which do not admit
any hamiltonian circuit; this is done by maximizing the number of critical vertices in the
arrangement— the envelope has the shape of a “star”. This shows that there is an infinite

number of arrangements which are not hamiltonian.

We now ask if there are classes of arrangements which always admit a hamiltonian
circuit. We show in this section that every 1-sail arrangement of lines is hamiltonian. We
also give an O(n log n) time procedure to produce a hamiltonian circuit from a !-sail ar-
rangement of n lines. Our argument exploits a property of 1-sail arrangements that we es-

tablish with the following lemma.

Figure 2.4.1 Example of an arrangement of 6 lines that is not hamiltonian.
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Lemma 2.4.1. Let A = {L L,,...L; ;} be a 1-sail arrangement of n lines. Then for each
line L of A, the ordering of the n-1 vertices on L corresponds to a slope ordering of the lines

in A.

Proof: (By induction) First note that for every arrangement of four lines (only one combi-
natorial possibility) the vertices are ordered as required. As our inductive hypothesis, as-
sume that the statement of the lemma holds for every 1-sail arrangement of n-1 lines, and
suppose that we are given a 1-sail arrangement A of n lines. Let X, Y and Z be the three
convex vertices of E(A), such that [X,Y] and [Y,Z] are the two critical edges of E(A). Let
Ly (L,.,) be the critical line through Y and Z (X and Y). L, and L, are adjacent in the list
of lines of A sorted by slope since Y is a critical vertex. To simplify presentation, assume
without loss of generality (by rotating A) that Ly (L,,.,) has the smallest (largest) slope of
A, and that the indices of the other lines give their order of slope. Thus X =I(Ly, L;) and Z
= I(L,.1,Lq2)-

Let A” be the arrangement of n-1 lines obtained by removing line L,., from A. We
will show by contradiction that A’ is a 1-sail arrangement. Suppose that A’ is not 1-sail.
Then in the arrangement A, there must be a vertex of A inside the triangle A= (Y, X, i(L,,L,.
o). If this is not true then all of the vertices of A’ on L., are extreme and hence, L, , is
critical and A’ is 1-sail. Let p= I(L;,L)) be the first vertex inside A met by L, as we rotate
it clockwise about X. Then the triangle (p,I(L,.;,L;).I(L,.;,L;)) is empty. Since the order of
the vertices of A on L} define a slope ordering for the lines of A (lemma 2.1.1), it follows
that L; and L; are adjacent lines in A. But since p lies inside E(A), its existence contradicts
the fact that A € class A. Therefore A" must be a 1-sail arrangement of n-1 lines for which

the statement of the lemma holds by the inductive hypothesis.

Line L, has the greatest slope in A and I(L;,L,,,) is extreme on L, (fori € {0,...,n-
2}) so the position of I(L;,L,.,) on L; corresponds to the position of L., in the order of the
lines of A sorted on slope. The statement of the lemma therefore holds for A, a 1-sail ar-
rangement of n lines.#

The following algorithm uses the above property of 1-sail arrangements to trace a
hamiltonian circuit through the vertices of A. See fig. 2.4.2 for an illustration of the result-

ing hamiltonian circuit. The vertices of A at which left or right turns are made are indicated
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by the dots. The direction of the traced hamiltonian circuit is indicated with arrows.

Algorithm One_Sail_Hamiltonian(A)
{Input: A 1-sail arraigement A = {LO,L],...,Ln_l} of n lines.}
{Output: A hamiltonian circuit denoted as a list H of vertices of A.}
begin
Sort the lines on increasing slope. Relabel the lines appropriately.
Use algorithm One_Sail to find the three convex vertices X, Y and Z of E(A).
Suppose that X =I(Lo, L), Y = I(L,,L,.)) and Z=I(L,;,L,.2)
HeY
He X
fori=n-2 downto2by2
begin
H « I(L;,L;) {Circuit passes through vertices
on L, in decreasing order of slope}
if(i-122)thenH «I(L,,L; ;) {Move toadjacent line with smaller slope}
if (1 - 1 >2) then H « K(L;_,,L; ;) {Circuit passes through vertices

on L; , in increasing order of slope}

end

HeZ

{Z to Y is a critical edge and so the hamiltonian circuit returns to Y}
Return H °

end {of Algorithm Orne_Sail_Hamiltonian}

Proof of correctness: Map the vertices of A to an nxn integer matrix M in the following
manner. Map each vertex I(Li,LJ-) of A, 1 <j, to the entry of M with row i and column j (refer
to figure 2.4.2). Two vertices that are row or column neighbors in M share an edge in M
and this edge corresponds to the line segment that is bounded by the two corresponding ver-
tices of A and lies on a line of A. Note that each line segment [I(L;.L;, |).I(L;, | ,L;,,)] (i €
{0,...,n-3}) on the concave chain of E(A) corresponds to the two connected edges in M
[(,i+1),(i+1,i+1)] and [(i+1,i+1),(i+1,i+2)] (these connected edges in M are indicated with
dashed lines). Note also that the line L, corresponds to the row 0 in M while the line L,
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T (5.6)(Z)
opmss, quumegmennm |iNE L |
(3.,6)
(2,6) L,
(1,6)
0,1»— 0,6)(Y)
(X) L

Figure 2.4.2. Tracing a hamiltonian circuit through the vertices of A of a 1-sail.

corresponds to the column n-1in M. Aline L, € A -L;-L,_; corresponds to the pathin M

from {0,i) to (1,i) to (i,n-1) (see figure 2.4.2 for an example).

On each line representation in M, the order of coordinate points of M corresponds
to the slope ordering of the lines in A. Ciearly, the property of 1-sails shown in lemma 2.4.1
allows us to define this mapping. Tracing a hamiltonian circuit through the vertices of A is
then transformable to tracing a hamiltonian circuit through the mapped coordinates in M.
Algorithm One_Sail_Hamiltonian outputs a hamiltonian circuit in M and thus, a hamilto-
nian circuit through the vertices of A as required. Even though there are O(n2) vertices in
A (and hence, O(n?) mapped coordinates in M), we need only specify the vertices of A
(mapped coordinates in M) at which the circuit makes a left or right turn. Since there are n
lines in A, there are (n-1) + (n-2)/2 vertices in our hamiltonian circuit. We know at which
vertices these turns must be made if the lines are sorted. There are n lines so we can perform
the traversal in O(n) time. The complexity of our algorithm is bounded, however, by the
fact that we first sort the lines. Thus, we can find a hamiltonian circuit for a 1-sail arrange-

ment of n lines in O(n log n) time.%



Conclusion

In chapter 1, we studied the geometry of envelope polygons. We showed that enve-
lope polygons are L-convex and hence that properties of L-convex polygons are useful in
studying envelopes. By combining the results of sections 1.3 and 1.4, we showed that it can

be determined in O(n) time if a given simple polygon of n vertices is an envelope.

From this, we can ask whether problems which have superlinear lower bounds or
no known tight upper bound for general polygons can be solved in linear time for envelope
polygons. A few examples of such problems include finding the longest or shortest diago-
nal of an envelope, or computing the geodesic diameter and the geodesic center of an en-

velope.

In chapter 2, we introduced a hierarchy of classes of arrangements of lines based
on the number of convex vertices of their envelopes. In particular, we looked at a class
called sail arrangements: given a sail arrangement A, we can find the three convex vertices
of E(A) and therefore the convex hull, the diameter and the points with minimum or max-
imum x-coordinate of the arrangement in O(n) time. It is Q(n log n), however, to construct
the remainder of the envelope of a sail arrangement. We also showed that 1-sail arrange-

ments admit hamiltonian circuits.

It remains, however, an open problem as to whether or not 2 and 3 -sail arrangement
graphs admit hamiltonian circuits. Owing to the well defined geometrical structure of sail
arrangements, we conjecture that 2 and 3 -sail arrangements are hamiltonian. Another open
problem is to see if we can determine in O(n) time if a given arrangement of lines is a sail
or not. It would be also of interest to study further the hierarchy E, especially for values
of ¢ greater than 3, or to define new classes of arrargements for which interesting results

can be obtained.

-50-
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In general, for any problem on arrangements of lines for which a known lower
bound is known or for which optimal upper bound is not known, it is interesting to deter-

mine if there is a class of arrangements for which the problem can be solved optimally.
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