
ParaUd Processing in Intermediate-Level Computer
Vision

PIerre P. Tremblay

b. Eng. (Hons.), McGiIJ UnIversity, 1989

Department of Electrical Et .gineering

McGill University

Montréal

July, 1992

A thesls submltted to th,' Faculty of Graduate Studies and Research

ll\ partial fulfillment of the requirements for the degree of

Master of Engineering

© Pierre P. 'fremblay, 1992

J

T • l

Abstrad

The problem mvestigated In th1S theslS is that of glving mtl'Tmedlate-l('"cI vbion Tl'M'.lrl'ht""'.

adequate parallel processmg tools for thelr work, where data and computational 1-otructurt'S do nut

fit the SIMD cxcOlbon model, but rcquif(~ a MIMD cxecutlOn model mstt.'ild. Thl' contnbuholl

of tlus thesis is a comparison of 3 general-purpose MIMD paraUel proœ'i&mg sy~tl'm!-> ,\S t(lob tor

int~rmedtat(l-levcl vhion, by evaluahng them agamst cnt~ria winch capture the c1-> .. t·ntial ... slIl· ... In

programming mtennediatt'-Ievel visIon algorithms on such machmes Accordmg 10 my (11Icrtd, tilt'

best-suited ofthe 3 system~ 11-0 composed ofthe Id functtonallanguagc runnmg on tilt' M" ... sachll1>M'tt~

Institute of Terlmology's Tllgged-Token Dataflow Architecture (M.I.T. ïfDA).

Soenhfic programmcr~ will usu~lly he rehrung the ab~tract models and algonthlll'o which tht'Ir

programs Implement, and 1->hould not be expected to be parallel architecturt' cxperh.. TIlen'lore, tlwn

tools should be adaptcd to theu plOblem domam, for felst codmg, and should proVldl' loglCal md('­

pendence from solVll1g the four cruoal MIMD Issues of parallel proccssmg, partitiolllng, Sdlcduhng,

synchronizabon, and mem(lTY latency. Current tools, such as Unifonn Sy~tcm programmUlg on the

BBN Butterfly and C-Linda programmmg on the Sequent Balance, do not

Functi.onallanguages, on the other ha d, as exemplified by the Id language running on the TrUA

arclùtecture, are a more appropria te solution. They are close to the sdenhfic probh'm domain,

because they are based on the function and un expresslOns. They are amenable to comptll>r soluhons

of the partibonmg, schcdulmg, synchronization and memory latency problems, bec,llIsc they do not

allowa programmer tospeoiy restrictive commands, or to arttfiodlly J'estrtd the order of execut/On.

This allows a compiler to extract all the parallelism present in a program, which 1& nl·ce~.,ary to

ob tain good performance on highly parallel mac1ùnes, such as the TInA

1

Résumé

Le problèm(' t1bonJe dan'l cc mémoire est ceiUl de founlir aux chercheurs en vISion numérique

de niveau ÎnterméJiiure le .. outIl .. de traItement parallèle nécessaires pour leur recherche. Leurs

a 19orithmes comportent sou vent de!. ~tructures de données ct de calcul qui se prêtent mal au modèle

d'~xéCllbon SJ/v1D (mstructlOll wllque, données multIple!:» et beaucoup plus au modèle MIMD

(mstnlcbon mulhpll'S, donnéc" mulb:Jles) La contnbutif'n de ce mémoire est la comparaison de

tmi .. sy.,t(-me~ d" rra 1 tl'ment paraUde M1MD en tant qu'outIls pour la VIsIOn numénque de niveau

mh.'rmédlau"t" en IL'" évalu.lllt selon des critères qui font re~sorhr l'essenhl'l des éléments requis

dan!> la progr.lmmatlOn d'algonthmes dl"' V1~lon de niveau mtermédiaIre sur ces machInes. Selon

(et> cntèJ"(>~, le s)'!.tcme le plus apprupné est composé du lall~age fonctIonnel Id éxécutant sur

l'archltectun' Tri >A du M.LT.

L('s programmeurs-l'hercheun. &ont habituellement intéressés a amélIorer leurs modèles et al­

gorithmes, et non pdS il devenu experts en arclutectures parallèles. Conséquemment, leurs outils

devraient êtn' adapté..; à leur domame de recherche, pour faciliter le codage, et devraient créer une

démarcalloll logique qui sépare Il' programmeur des quatre consldérahons cruciales propres aux

systèmt's MIMD, le découpage, l'ordonnancement, la synchrorusation et le temps de latence de la

mémoltl.'. Le~ oubls dIsporubles présentement, tels que la programmahon avec le Unifonn System

'lur Il' BRN BlIlfaJly et la programmation en C-Linda sur le SeqllL'nt Balance, ne le font pas.

Par contre, les langages fonctionnels, comme le langage Id éxécutant sur l'architecture 'l'rD A,

n-présl'ntent une soluhon plus appropnée. 1)., sont plus près du domame saentifique, étant basés

&ur la fonction et sur les expressiOns mathématiques. Ils se prêtent beaucoup mieux à des solutions

par compIlateur des quatres problèmes mentionnés plus tôt, parce qu'Ils ne pennettent pas au

programmeur de splî.cifll'r SOlt des commandes ou un ordre d'éxécution restrictifs. Ceci pennet à un

compilateur d'l,\trarre tout le parallélisme présent dans un programme, ce qui est nécessaire pour

obtemr une bonne performance sur des machmes hautement parallèles, telles que le TIDA.

"

Acknowledgements

Even though a smgle n.lme appears on the front page of a Mastcr's t1ll'Sl~, that Pl'l"SOIl kn(lw~

very weIl that ht>/she cotùd not have maù~ it wlthout cl grcilt dl'.tl of hdp, aC.ldl'llllcally, h.'dmll-'ll1y,

moraIly, and of course fmandally

1 must hrst thank my thesl~ supervisor, Frank F('me, who~l' enthu~lil~m and (1rplUles-;1 .lppn'll­

ated throughout. 1 also have to thank him for his eH't.'llent sug~l'stion., Ihat fl':.lntllUI"l'd Ini~ Ihl·:'I'.

into a far clearer paper than it origlllally \VilS.

1 am also deeply indebted to Dr Guang G.lO, who ~tunulatcd m y inh'rl".,l in pM.lIll'. pro('('S~IIl~

through courses and discussions He also provided acCl's", to two ni thl' t1Ul'C par,lUpI prorl'!>~IIlg

systems used in this theslS, the BBN Buttertly ,md Id World. Wlthout the!>e, th1" tlll'~l" would ~lIl1ply

not have been possIble, and 1 oifer my ~mccre thanks

Thanks are .1lso due to Jose! Fritscher, of the Computer Cl·nh.'r 01 11ll' T .. dullcal U1l1Vl'Nty of

Vienna, Austna. He arrangcd for me to u!>e C-Lmda on t1ll'lT Sequent B.ll.mn· multlprorl,.,.,or

through the global Internet Tt is one tlung to know that It lb lechnologlt.llIy cOlnmon-pldCl' III h,lVl'

a program run across the Atlantic ocean and dJspIay resuIts Jl1 North Amenca, hui lfllltt' .motht>r (0

expenence tt!

Locally, 1 must thank Lee Iverson, Peter Whaite and Andre FOl~y, for tt·rhfllCillc.,upp"rt and .ldvlt.:t.',

espeàally during my early days atMcROM. The extent to wluch theycontributeJ to my knowledgt'

cannot he understated

Je dois aussi remercier le Fonds FCAR pour leur appui fm.macr au COUT!> de ln!'!> (;Iudl·s.

Enfin, je voudrais dIre mera à ceux qlÙ me sont chers, Mane-Gaude, ma mère, mon père, mil

soeur, mon frère, et le reste de ma famille. Votre amour et votre encourageml'nt m'ont tO\ljour., ét«"

préàeux.

1

TABLE OF CONTENTS

Chapter 1 Introduction 8

1 1 \VIMt 1" the ProbJem? 9

(
11.1 F.mr Parallel Computing belles 10

1.1 2 A D(lfuùtioTl ofIntermediate-IeveJ vision 11

1 1 J The Parallelizahon Charaetenstic;; of Intennediate-Level Vision 12

1 2 Shorh:oming!> of Current Tools 16

1.2.1 J mplica !tons for Intermeàiatt'-LeveI Vision Paralle} Programmers 20

1 3 FUllchonal Languages. A Better Solution? . 23

1.4 Key Poin t~ 25

Chaptel' 2 Three Approac:hes to the Pl'Oblem .. 27

(2

1

2.1 Uniform System Programming on the BBN Butll'rOy

2.1.1 The BBN Butterfly ArclutcctuTl'

2 1.2 'TIle BBN Umfonn Sy'>tem Progrdmmlllg Mode! 2R

2.2 C-Linda Progrilmmmg on the Sequent BabnC'l'

2.2.1 TIll' St.'quent Balance ArclutectuTC 12

2.2.2 TIle C-Linda Programming Model XI

2.3 Id Programming on the TIDA Smmlator 37

23 1 An IntroductIon Ta Dataflow Architl.'l.,tllll'''' .37

2 3.2 TIll' MlT Tagged-Token Da taflaw ArchItecture

2.3.3 The Id Funchonal Language 4()

2.3.4 Id World, CITA, and Id SoftwaTl' Devclopmcnt 41

2.4 Reasons for Experimental System Choices 44

2.5 Key Pornts 45

Chapter 3 A Comparison in the Context of Intermediate-LeveJ Vision 46

3.1 An IntennedIate-Level Vlblon Example: Parallel Cooperative Fltt1ng 46

3

TABLE OF CONTENTS , ___ .:.c.-~..:

3.1 1 The par.IUcl cooperabvc hthng algorithm 46

3.1 2 Rt'lev.ll1ce of tlle L 'pcnmcntal Algorithm 51

3 2 Commcnb on BAN US Prugr<lmmmg 51

33 BBN US Expcrinlt'lltal RCS\llts 57

3.4 Commcnts on Seqllcnt Bal<lnCl' C-Lmda Programming 61

3.5 Sl'qucnt flal<lll(,(! C-Lmd.! Expcnmental Results 66

36 Commenih on Id Pmgrammmg

37 Potcntl.lll'roblems wlth Id Approach 72

3.B Id Expenmcntal Rcsults 74

3.9 Kcy Poml~ 81

Chapter 4 Lessons To Be Drawn 83

4 1 A Comparison of TInce Parallcl Proœssing Systems 83

42 Kcy Pomt~ 86

Chapter 5 Conclusions 88

Appendix A A U niform System Plngram Example 90

4

1
TAm EOFCl'N1ENI~

Appendix B Parallei Funchonal Progr.lmming

B.l Funchonal ProgrammlOg

8.2 Charactenc;tll's ot Modern FUllchc,nill L.mguagc!>

B 3 Suitabll1ty of Funchonal Program<; for Parallcl EXl'l.'1.lhon

Appendix C Side Effeds in Imperative Languages '19

Appendix 0 Data Dependroce Types 102

Bibliography 105

5

LIST OF FIGURES

1 1 Computl'r VÎ<;lOn k'vcls of processmg 13

t 2 5<.wnttfk programmm~' tlansformations 17

1 J ('ntcn •• ot the companson mcmc. 22

21 BBN Rutterfly interconneL'bon network 29

22 Umform System address !>paœ. 31

2;\ A I.mda example. 35

24 A tupl(' ~pace d.lta structure. 36

25 A "'Imple dataflow program 38

2 Il E'\..lmpll· functlOnal program 41

J t Addlhonal mformatIon for volumetrie fitting 49

(6

1
LIST OF Ftî.URES

3.2 Speedup and effioency for the BBN Butterfly

3.3 Speedup surface tor the BBN Butterfly.

3.4 Ideahzed specdup curve for V.S. code. hO

3.5 Ophmal granularity on the BBN. 611

3.6 Speedup and efficiency for C-Linda on the Se'1ucnt Balanec. fi7

3.7 Pardl1elIsm profIle for \ 2 merit function

3.R Execution ti.me under varying latenoes, l' =- 30. 77

3.9 Execution b.me under varying latencies, l' = 50 .. 78

3.10 Execution time under varying latencies, JI = 100. 7'1

3.11 Execution tuneunder varying latencies, l' = 200. 80

3.12 Speedup and efficiency for the Tm!.. H2

A.I BBN Uniform Systeln matrixmultiplicahon code. <.II

D.1 Data dependence types 103

7

(

(

1. INTRODUCTION

Among the challenges of computer vision IS the tremendous amount of proœssing that must be

donc to extract de&ired information. Current computer vision research IS ofteJl hampered by the

long tumaround in cxperiments callsed by large processing requircments. This has quite naturaUy

mobvatcd VISIon researchers h) explore parallel proœssing as a tool for making certain problems

111 romputer viSIOn research tractable. TIle contnbution of tbis thesis is a companson of 3 general­

purpose parallel proœssing systems as tools for intennediate-Ievel vision. 1 will show that the best­

sUlted of these is composed of the Id funChonallanguélge running on the MassachusseUs Inshtute of

Technology's Tagged-Token Oataflow Architecture (M.I.T. TTDA)

Saentific programmers in general, and computer vision programmers in particular, will usually

be refining the abstract models and algorithms which their programs implement, and should not

be expected to be parallel architecture experts. Therefore, their tools should he adapted to their

problem domain, for fast coding, and should provide logical independence from solving the four

crucial MlMD issues of parallel processmg, partitioning, scheduling, synchroruzanon, and memory

l.ltem.)' lt9J. Current tools, sllch as Uruform System programming on the Butterfly and C-Lmda

programming on the Balance (the other two systems we examine), do not, in spite of the lact cach

is avmlable commercially and ID general use as a general-purpose MIMD scientific problem-solving

too1.

Functionallanguages, on the other had, as exemplifled by the Id language running on the TI'DA

arclùtecture, are a more appropriate solution. They aTe close to the scientific problem domain,

because they are based on the lunChon and on expressions. They are amenable to compiler solutions

of the pctrtltioning, scheduling, synchronization and memory latency problems, because they do not

8

1

•

1. INTKO()UCTION ------------------ - --- - - ----- --- - - -

allowa programmer to spccfy restrictive commands, or to arttftClal1y restnct, he oroer of ('Xl 'cu lion

This allows a compiler to cxtract all the parallelism present in a progrdtn.

1 will first discuss in this chapter what the current problcms are wlth mlellncùl.lte-Icvd Vision

parallel programmmg, then propose cntcna by wlùch 1 feel paraUd proœ~ ... m~ ~ystem~ used for

intermediate-level vision sholÙd be judged. 1 then propose fun .lionallangllage& as .1 solution which

matches the criteria. ln chapter 2, 1 describe the 3 sy&tcms ! have çho~en to l''Camllle. Umfonn

System programming on the BBN Butterfly, C-Lmda programming on tilt' Sclluent Balance, and Id

programming on the M.I.T. TInA. In chapter 3, 1 mnstnlct a plausible mtt'mll'ruatc-Il'vcl \'1sion

problem, implement it on aH 3 systems, then discuss how cach performed un"il'r my t'valuation. In

chapter 4,1 show sorne of the lessons that should he drawn from tIus cxerdsc Conduàing remarks

are given in chapter 5.

1.1. What is the ProbleDI?

Computer vision rcsearch, and the development of new algorithms and techmqul's for imagl' analy­

sis, is typically an Iterative process, where an algorithm is proposed to lmplerncnt an abstract model,

and, in tum, the algorithm is implemented with a computer program. In basic research, the in~erest

is mainly in refinmg the abstract model or the algorithm, and lcs~ often thc program itself. Thm, fast

program execution (performance) is n~eded to improve experiment tumaround, but programma­

bility is aIso essential, as code is likely to evolve rapldly, in sorne m~tanœs bClllg rcplaced cntin'ly

hecause of changes in the abstract mode!. Code development 15 less bkely to be arnorhzed over long

program life spans, and must therefore be relatively inexpensivc.

Tools for handling the one-to-one mapping of input pixel to output data in low-lcvel vlSion are

well understood. Partitioning, scheduling and synchronizahon of tasks on proccssmg clements 1S

sttaightforwardly and effectively performed on SIMD (Single Instruction Multiple Data) nt a chinl'S.

Parallelizing oth(>r levels of computer vision is less obvious. Wc will look at the ntany-to-o!.e (or

iconie to aggregate) mappings typical of many vision algorithms, which wc wiJl collectively refer

to as intermediate-Ievel vision. In such cases, the non-uniform distribuhon of output features and

9

1

1. INTRODUCI10N ______________________________________ --=..:.--=='-=~=::.:.c.

obviously data- ("feahtte" -) dependent nature of processmg tenders L:'e SIMD approach inetfective.

lnstead, we requirc more general partitioning, scheduhng, and synchronization, which are found in

the MJMO (Multiple Instruction Multiple Data) processing model. None of these issues are s1I1lple

one~ for the sClentiftc programmer to deal with, as we shaH see next.

1.1.1. Four Parallel Computing Issues

The four llosues of greatest Importance in the parallel execubon of a program are [19, p. 26] partition·

ing, I>cheduling, synchromzatiOlt, and memory latency. TIlese are essential, because they are concerned

with both th!.' performance of the program and the sc.enbhc user's view of the computing process,

lno;teaù of the engmeering Vlew of the hardware machlne. Partit/o1ting means specifying the sequen­

hal umts of computation in a program, to find the partibon SIZC which strikes a balance between

low overhead and high paraHebsm, and thus minimizes mn-tune. Scheduling is assigning tasks to

proc('ssors to mmimize run-time by optimuing processor ublization a:,d inter-processor commu­

IUcation. ~lfnchrontzatron is Cl mechanism for coordinating the actiYity of processes; tasks working

t Jgcther must synchwnize to coordinate producer-consumer relatiol\ships, forks and joins, and mu­

ruaI exclusIOn. Mar/on} latellcy is defined as the time between a memory request and the answer to

that request. 1 discuss the problems ansmg from each lssue in tum.

The parbbomng problem can be understood in the following way. For high performance, we

want '"g" parallelism with low overlread. Howevel; tncreasing paral1elism brings increased penalty for

synchronizing and scheduling additional tasks, and on the other hand, reducing overhead is done by

mergrng or {/lsi/lg tasks, wluch decreases the penalty for svnchroruzing and scheduling tasks, at the

l"Ost of wasled parallelism. The consequences of the partitioning/parallelism tradeoff [35, p. 15] are

that the presenl"'e of overhead can make it impossible to achieve ideal speedup, and the real parallel

cxccution bme is mirunuzed at an optimal intermediate granularity. The partitioning problem is to

fi",i tire corrcsponding optimal intennedrate partition.

Scheduhng alsoinvolves tradeoffs 135, pp. 15--16}, between parallelism andoverhead. Parallelism

dicta tes that tasks should bc assigned to diffe;-ent processors as rnuch as possible, but communication

overhead is rL>duced when task~' are assigned to the same processor.

10

1

SynchrolÙZation will he detrimental to efficiency bel'ause of improper granularity 135, p. 71, li

the synchroruzabon granularity in the program IS too fine for the targt't multiproccssorl

Memory latency becomes a big problem if the m ultiprocessor sy~tcm lS bU1lt out ofvon Neumann

proœssors, wluch must elther wait for the memory ret>ponsc, or do an expensive l.xmlext ~\vit('h. nle

memory latency problem often appears under the gwse ot the "data partitiomng" problt>m, as data

must be "partitioned" and plaœd on diffcrent mt'mories t>o a~ to mimmlZe memory latency.

These are the cruoal issues that must be solved on a MIMD syt>tcm for a paralIel program to

aclueve good perfonnance However, 1 strongly belteve that plaong the respollSlbility for solving

these issues into the hands of the scientihc programmer IS countl·r-produrnvc. 11le scientific pro­

grammer should not he expected to be a paralIel archItecture expert, and instead should be given a

tool to do research. Freedom from deahng with tht' undcrlying architecture bccause of these lSSU('S

is called logical independence, and tlus is what we scck to give to the l"Omputer vision programmer.

Current parallcl processing solutions rarely provlde thlS indepcndence, as we shall sec later on.

1.1.2. A Definition of Intermediate-Ievel vision

We can define intennediate-level vision as the category m which the mput lS a set of values ~till

associated with each pixel (z.e. when an Il , 1/ pixel image has produccd an Il -" 1/ array of values,

or pixellabels) and the output is a structure that is not a two-dlmensional array CI' g. a list of

fcatures [37]2).

A more feneral defirutlûn, perhaps better suited to the large variety of possible algorithms dnd

tasks, is to view intermediate-level Vlsion as a many-to-one mapping, or an iconic-to-aggregatcs

transformation [171. IntennedIate-level vision 15 that part of the vision process that performs a

reduction in the amount of mformation handled, abstracting out desired fcatures. 'Ibi~ phase of

processing is present in all so-caHed image understanding systems.

1 As of this writing, most mulbprocessors cannot effidently support more than 1 synchroru7.ation in 100 instruc.tions (per
processor).

2nus definibon must lv.J shghtly extended, of course, for truly three-dunensional imagl.!S, 8uch as those obtained from
computed tomography

11

(

1. INTRODUCTION

Intcrmcruate-lev(') visIOn can also he descnbed In tem:s of its data and control structures [22,

p. 7431. Data structures at mput and oûtput go !rom images to feahL-es (a many-tCHJne mapping).

Computlltiollal stmc/ures during processin can mciude sorne or aIl of the following:

- numeric proccssmg

- non ncar-nelghbor commurucahon (regional pro cesses, a priori non diameter limited)

- potcntial1y lrregtÙar commurucations (in destInation and volume) e.g. feature extraction, image

segmentahon

Examples of mtermediate-Ievel processes inciude those for chain encoding, Hough transfonns,

hhdpC measurement and de~cripbon (such as convex hulls and others), building region-adjacency

graphs 1371, or aggregabon (partitioning or hnking) and model fitting [181.

Th us, a completl' charactenzation of vision algonthms can be seen in figure 1 1 (adapted

from 122]). Of cour~e, this rigid categorization schcme showd not be unplied to fit aIl algorithms

exadly; neverthele~s, lt i1, a useftù tool to asscss the needs of programmers implementing algorithms

that should for the most part ftt into it.

1.1.3. The Parallelization Characteristics of Intermediate-Level Vision

ln this section wc look at how the different levels of computer vision can be parallelized. One of the

most important pomts of thlS thesis is the following: an mtuitive, explidt intennediate-level visIon

parhtioning scheme [37, p. 91 15 not as straightforward as for low-level vision tasks, where image

partitioning is the natural choiœ. Let us examine the reasons why.

Wc begin by lookmg at low-level vision algorithms, with respect to expliat partitioning (granu­

lanty), pnx:co;smg type, and algonthm type [22, p. 745] . Partitzoning is typically image partitioning

(i L·. one proœssmg element for a regular group of pixels), usually at a fine granwarity (e.g. one pro­

œssmg e1ement per pixel). Proces~mg proceeds in a data parallel and synchronous fashion: the same

12

1

••

__________ !,_ !~..!N.ODUCTION

- - ----~------ -- -
HIGH-LEVEL

1
IN11!RPRETA110N~' '-1 l'ROCESSING

, ,
SYMBOLIC ,

SYM_~
, I·ROC •• ~SlNC; Ile NEW : DESCR l'TION OFSt'IlJP'l'UN

:- -- r DESCRIPTION ~ .. .1
---..J , ,

NEW:
n'Al RES PRIMnllVES

: , ,

t
,
'- - PRIMITIVE

1!XTR.AC110N ", ~.rJ INTERMEDIATE-
, , PRO,CESSINll I.EVEI.. , ,
, , , ,

NEW ,
lM GI! CIlARAcrl-lI.\Sl\(S , , ,

,
LOW-LEVEL

1

, .
NUMERlC l'ROCESSING PREPROCESSING . -'
l'ROCESSlNC;

----- -----
l

IMAGE

Figure 1.1: The diHerent leveIs of computer vision processing, thelr inputs/outputs and
characteristics

13

(

1. INTRoDUcnON

Illstn.cbon 1" exccutcd on paralld data, in lock-5tep across aIl processmg elements. The algorithms

cmployed an' typically detenninlshc, and entirely numeric.

Currcnt low-Ievel VISion architecture c."aracteristla. typically mdude [37, p 3] one processing

clement per pixel, .md proccssing elements conneeted ID a 20 mesh, executing synchronously in

SIMD fashlOn Pub tiomng i5 straightforward, each task being dSSlgncd processmg for a fixed region

of the Image, theT(' is no data-dependcnt task LTCation, so a hxed partiborung 15 possIble. Schedulmg

IS also str.ughtforward, as the mterconnection of proccssors in the 2D mesh usually correspond qUlte

weIl to the stmcture of commurucation III the algorithm, which is ncar-nclghbor. Synchronization

i~ impllc.t III the architecture model aIl proccssors execute synchTonou~ly, in lock-step. MeIllory

latency 1" ~olved because cach processor de ab wIth data clther in its local memory, or communicates

wlth proces~orc; n(,<lchy to obtain the data It needs. Global. arbltrary '.:ommunicahon patterns do not

fit thl~ exccllhon mndel very wcll, but are not ncedcd in low-level visIon algorithms.

Interrnedldte-levt'l VI!>lon [3i, p. 9] 15 u!>ually computationally mtenslve, as algonthms have

to e"'ilmme largl' l1\unber.:. of input pIxels, or data in one-to-one correspondence wlth pixels. The

algonthms can alsu be looked at in terms of parallel characterishcs bUch a& partihoning (granularity),

proccssmg, and algonthm type [n, p 74~746J Parhtionmg IS in terms of lm age and function

partitionmg; ('Itlll'f a regular group of pixels per processmg dement (image partitioning), or a (set ot)

functlOn(s} per processing element (function partihorung). Processl1lg proceeds in a control parallel

(mulhprocessmg) fasruon (eadl proee~ ng dement deodes of Ils own change of state and instruction

exeOltion), and IS asynchronous ({mm one proeessmg element to the other; explicit synchronization

instnlchons are lleeded) Algorttl,,,,S,:l1'e primanly numenc

For sorne mtennediate-Ievel vl!>ion algorithms, smee the mput data consists of pix~l labels as­

signed to each point, we can use Image parallelism and partition the plXellabel data equally among

the processors TIùs is the same scheme as in low-level vision, where output reslùts are spatially

distributed m the same manner as the input, and the amount of processing over an image area will

not dlffer significantly from one area to the ncxt. In int('rmediate-level VIsion however, objects being

computed as output are dlstributed over the image, but seldom in a urufonn way. Therefore, a

~imple parhtioning and scheduling scheme where each task gets an identical-sized piece of the input

image and is scheduled on a single processor willlead to load imbalances in a multiprocessor [37, p.

91, as features (the result of mtennediate-level processing) in image are not uruformly distributed,

14

1

and vary in size and in bme n'quired to compute them; note l'Sp<'ci.llly how mappropriatc the SlMD

execution model would be It might also he the case that t.\sks an' created dynamically (.lt run hme),

as a result of proœssmg. Addltionally, there 15 US\t.llly slgniftcant paralldlsm U/,tlli/l tilt' a/soritl,ms

used to compute these features. ThIs reqwres evcn more flexibllily III dcalmg with tlw partitioning

and Schff r.lulmg problems

Expbcit synchronization [37, p. 9] therefon' becomes an lmportant Issue If spah.tl partihoning

(spahal parallehsm) is I.lsed, rurves or reglon<; may cxtend across image to fall into zones of bcveral

tasks, which must then coordinate and synchronize, to work on the same ob)ect slmultanco\lsly.

AIl these concerns anse because of the faet that parbt10mng (whlrn 1l\('ludes pmeess l.'J'cabon),

schedulmg (mappmg) and data placement to avoid memory Idtency arc, m intermedlatl'-Icv('l visIon,

data-dependent and many-to-cne, not fixed and on(\-Io-onc, as In low-lcvcl VIsion TIus will make

it difficult for a programmer using an explicitly parallcl programming langu.lge, who must match

these requirements to the underlying architecture, to obtain good performance: It is dilficu 1t to know

in advance whether good performance will hl' ohta\lled by program execution on a partIcular data

set.

Let me then summarize the issues m parallehzmg intermeœate-Icvel visIOn algonthms Affccting

partitioning and schedWing dre spatially non-uniform fcature dIstribution, variabons in Ecature

computation time, possible dynamlc (data-dependent) task creation, and the need to exploit fincr­

grained paralleIism Wlthin the feature computahon. Synchromzanon mu~t h.mdle the fact that lasks

must coopera te to compute features, and to handle the interactions bctw(!en fcatures. Memory

latency considerations are that a large amount of iconic input data must he dJStIibuted to a large

memory and shared by multiple processes.

Faœd wlth these consIderations, scientific programmers in gelleral, and mtcrmediate-Icvel Vlblon

programmers in particular, must consider available ophoru. that will allow case of cocling and yet

obtain good performance. These options are in tenns of MIMD parallei hardware architecture!> and

programming languages.

15

1

1

1

-- -- - - -~-~~~~~

1. INTRoDucrloN

1.2. Shortcomings of Current Tools

Most paral1el pro~ramming &yl>tems proposed todate for sdennfic needs use explidt parallelism (i.e.

rl'qUlre the programmer to !>peClfy parbbomng, scheduling and synchronization). There are three

mechanism!> WhlCh have be('n u&ed to include parallehsm in explidtly parallel programs [321:

concurrent languages: mcorporate parallel features as integral parts of a language's design.

language extensions: addmg paraUd extensions to an eX1sting sequentiallanguage.

parallel runtime libraries: providlllg hirh-Icvel interfaces to parallel rouhnes stored in a system

library

The !>denbhc problem solving proCC&S for parallel programming is typically composed of rnul­

tipll' rcstrllcturmgs [32, p. 161. from abstract model, to algorithmic solution, (manually) to program

code, (,lutomattcally by compiler) to cxecutable code. Each restrucml'ing complicates rrogram de­

velopment, as lt is a sOUJ'C(' of potennal error and distortion, in addition to imposing development

overhead. Th\! hrst and tlurd transformahon:> pose no special problems to the scientific programmer:

the ellllœptuai to a/gor/tllm,e transformation IS most comfortable and best understood by the scientific

programmer, whlle the implementat/OII to phys/cal transfonnation 15 performed by compiler technol­

ogy n,e second transformation (algor;tll", to Implementatioll) is the one that poses special difficulties

tor the saentific programmer ln this transfonnahon, the most critical factor is the programmmg lan­

guage, WhlCh proVlde~ the framcwork for descnbing how the problem's solution will be aclùeved [6,

p. 4741. A language de&lgn has the most slgruficant Impact Ol! how easilyan algorithm can he

transfonned mto workable code. These transfonnations are shown in figure 1.2.

Scit.'ntific programmcrs cu.rrently rcly on [32, p 18] language extensions and run time libraries,

mstead of learning new parallel languages. The reasons are thal extensions to familiar sequential

languages - through parallel constructs or high-level interfaces tQ libraries - are more likely to

_'ppe_lI to sdentiflc programmcrs than are new concurrent languages [21, pp. 356-357], [32, p. 181.

Thcrc is also an apparent case ID parallelizing sequenbal programs using extensions or libraries, as

there is mirumal rewrinng. A further reason is the availability of production-level compüers for

parallcl maclunes.

16

1

ftnJgr.,ftV'1l"" ... hlhty
h' dcu·.nlf)('''-O
nlCJC:lclln'o
lc,'rnponent .a-:hnna

4iullabllll)' uf I.ns ... ~r
10 exprep; lt1lorl1hnl
fIn'Kr.'nn '. under­
sll1ndmg of bnguIlSc •
.... .onl"Ulahon.1 n.eIl .. Jd.I

Aa.UI.,CY n'
langu_ge/nlachlnr
In ... trucbon I,wpp'ng

Pfficlcnc)' ot
gt"I1f'1'.lt,1 oodr

Figuff' 1.2: Scientific programming transtormatIons From 132, p 17]

We first examme parallel hbraries, or system hbranl'<; wlth rouhncs for parallcl (·X('('UtiOIl. Why

bother with parallel languages when operatmg system ~crviœs or bbranl?~ can be provldcd to

allow concurrent proccsses to coordinatc? Because they an' too crude il mcthod for exprebblllg

parallelism [21, p. 3551. They show a syntachc crwleness, with messy, poorly IIltcgratl?d "yntax,

often Wlth long parameter lists, because they exist ID Isolation from a llser's program, ému have

no compile-bme checking or optir.\1Zahons. They also show st'''JiIntic crudI'IIt'ss: It I~ harder fur

the programmer to provide operations that pcrform complex or bophlbticatcd functiom, cfflclently,

hecause of the fixed nature of the mechanisms proVlded

Other explicitly parallel approaches, such as new pd "allellanguages and extensIOns to scquential

languages (aIso called annotations) suifer hom problems as weIl. Message passmg programrnmg ha~

heen criticized as diffiCl.Ùt and non-intuitive [21, p. 3541. For parallelizahon of sClenhfk cod('') u!>ing

both sequentia1language extensions [32, pp. 1S-20J and libranes, the diffirulties are typlcdlly the

same. Parallelization ofloops is the mostcommon fonn of parallelizahon, and lt i .. the programm('r'.,

responsibility to find solutions to data dependencies by parhtioning data among Iterahons, il ~our('('

of problems for programmers. The programmer is aIso re~pollbible for cxphdt schcduhng and

synchronization, when global variables are altered by a task, which lS tedlOus and error-prOll('

In fact, the wrong annotations (for synchronization or commurucation) will make program non­

deterministic (time- and machine configurabon-dependent), a nightmare for dcbugging. M.my

scoping and storage management nohons, such as local and remote memories, are countl'r-intuihve

17

r

1. INTRODUCTION

to saentifu:" programmers. The rcsulhng code is often machine-speafic and obscure [35, p. Il.

Restricbonc; on parallel constructs may rcqwre the reformu)ahon of sequenhal control structures as

weU, producing more re.,tructunngs, more error possibihhes, dnd less readability. In addition, the

ex tend cd source lan~uages (e.g Fortran, C) often suffer from lack of expressiVlty to begm with [6, p.

461J

The currcnt ~nd appears to he towards languages with l'xpliàt parhhons 135, p 111, or, in

other words, language~ ba~ed on the expliat tasks model, in both new languages and those based on

sequenhallanguages Compared to therr predecessors, these languages offer portability but still force

the programmer to expliatly decompose the program mto tasks and control their synchroruzahon

and commumcahon Languages wlth exphat partihons are easier to lIDplcment oruy at a large cost

to the programmer. The programmer now has to worry about [35, p 1] J

conectness: the programmer must avoid dead10ck and race condihons (I.e cnsure determmacy),

which occur bccauc;e of crron. ID mtcr-task synchronization and communication. TIlt!se do

not anse In ~equcntiaj programs Errors based on race condJ.tions are notonously dIfticu1t to

debug, or evcn n'produce [35, p. 11l.

performance: the problem wlth cxphcit parhhons ln task-based languages 15 that the performance

of a glven partihoned program may vary dramatically over different multiprocessors, thus

rendering the program non-portablt: in practice.

ln tenns of correctne~s, unstructured tasks are analogous to the GOTO's of sequential program­

ming. In tenns of performance, granularity considerations can dutter up the code and become an

extra burden to the programmer. Compiler partitioning [35, p. 121 ensures portability to future

mulhprocessors, and a uniform programming model for programmers.

The consequenœ~ of choosmg sequentiallanguage extensions and parallellibranes (32, p. 18]

currcntly produœ compromlsed program structural integrity: parallelism IS added aiter the fact, in

ad /roc fashion, adding yet anotl ~r restructuring to program development. Additionally, the use of

vendor-specific programming libraries or extensIons means machine-dependent programs in their

final form.

18

l
INTRODUC.TION

nus is paltly becausc of the ddincnoes L,lITent paraUd programmmg sy~tcm~ support. Pm­

grammcrs are forœd to }Uggle potenbally dangerous operations, olS ln m.my ça~e!> lomplll'l"S ùlll tind

and report only the most blatant erro~ The primitIve" used tospc\..'lfy par"lIl'h~m .ut' lI~u.llly do~dy

tied to underlymg machine The m,magement of architectural conflgur,ltion 1<; tlll' lulll"..'spOlll-Ablbty

of the programmer, now concemed wIth solvmg II/l,cr pnlsram tl\(' tour l~Slll'S nt parollll'1l'M'L'lItwn

we have been menbonmg, opbmal partlhomng, schrduhng, c'<pliat ~ynchrolllZ,ltlon, and the dis­

tribution of data to memory locations to 501\'(' the memory lah-'llcy problemAIl of the~l' determmc

the efficiency, effechvene"'~ and reholbility of the parallel/mplemt'ntation ln ~,Il\lrt, p.lralll·j ~y~tt'm~

lack the buffenng effE'ct of log/cal II/dependolcc parallehsm should bt' mcorpllrated at a n'.lMmablt'

level of abstraction, ratller tl/an s/mply provldillg a notafJonally (01lPCIIII,,,t ll'Qlf "' :'I!t'nllflrlg wllat are 1/1

fact machine-speCIfie opcratwI1S Instead, "paral1l'llanguagl.'S refleet a l(lw-ll'vel VIC\\' of concurn'nt ex­

ecution that reinforces user mu.conœptlons wIuch mlTea~cs l'xpl'l\:.e of progr.t1l1 devdopment, ilnd

raises questions about rebability ot paraUel programs, ln tolct, the prt!~cnt ll'vel of language support

for parallel progl"ammmg reqwTC!:> that the user expend morc eJftlrt ", mQI/lig/llg tilt' JlroMt'",-~()h''''g

resource than ln actually solmllg tilt' problclI/" (32, p 211

Sorne of the problems arise {rom ml~con('eptJons by socntific prograOlml.'r., who uftl.'n Ignon'

the effects of nondetermlmbm [32, p 20J. The fact that il par.llll'l program hlllctlon~ l'orrectly onœ,

or even one hWldred broes, wlth sorne particular set of ~nputs, 15 no guar.tnlt'l' th.lt It Will not fall

tomorrow with the same mputs

Faced with these problems, what can be sa id about the need .. of !:>ot!nhflc paraUd programmcrs?

Certain lessons can bi' drawn from ~equential programmmg [32, p 171 Flr.t, moV(' 1Ill' algo­

ritrumc solution doser to the irnplementation, shtit transfonnahon respon!'>lblhbe~ .IW.ly lrom the

programmer to the compller and the parallel architecture, and finally proVlde [oglClll ,mft'pend/'ncc, a

c1ear delineation between the two levels of lransfonnabon (<1lgorithm to program and program to

physica1), which represents a commltment to maintalmng a separation between mad-.me-dependent

and machine-mdependent factors.

The lessons of Hrree decades of sequenhal program development arc clear programm('r cffccbvc­

ness improves when language structures are movcd away from physlcal I!'>Slles and tow.trd loglcal

models. Wnile computing professlonals !Jhould be able to apply conflguratlon-~pec:lfJc expertise, It

is counter-productive to expect the same of the genera] user commllmty Socnhflc programmers

19

..,
,

J. INTRODUCTION

cannot be (>xpected to 1:>olve ISSU(><' of parbbonmg, schedulmg, synduonizabon and memory latency

l'very bme tlley wnte a program tn lmplement an algonthm, or move to a new architecture; it is

"'imply too t(·JlOlIS. For rellability, determmate 11lgh-Ievel constructs are needed, and wc must move

aWdy from the madequdt(> expres~lOn of <,oentUlc applIcations in terms of a parncular machme

or m('mory model Even If ~cienbftc programme~ do code a determmate program, there is no

guarantpe thelr programmmg (>xperh~e and knowledge of il glVen system wlll produce an efficient

ImplementatIOn Sequenbal programmmg has evolved to slucld programmers from physical de­

taih and mamtam loglCal mJependenC<', whlch has become a great strength; parallel programming

would bl' weIJ-advlsed to do the samc 132, p 23J, (2] In short, parallel computers must be made

.H œ1>~lbll' tn do 1>oence Rcsl'archers must he free to concentratt' on their Te1>earch, not struggle with

mJdunp-dl'pendent quukc; and minute detmb 132, p 231.

1.2.1. Implications for Intermediate-Level Vision ParaUel programmers

What do the intermcdiate-level wion charactenshcs given in section 1.1 mean for a scientific pro­

gramm(>r who wants to code her algorithm on a paraUd machine? What do the above general

comment .. of M~cbons 1.J and 1.2 mean 10 the context of intermeruate-Ievel Vlsion? We develop a

p.trtl.tl framl'work to answer these qu(>shons ln tlus section.

Wt' flrst examme what the charactenshcs of mtennediate-level vision algorithms imply in tenns

ot rcquircment1> for parallel processmg, wlth respect to parallel programmmg system support How

do the dldractl'nsttcs of mtermediate-level VlSlOll algorithms affect the type of paraUel programming

languagl' wluch 1>holùd be used ln unplemenhng these algonthms? Specifically, we outline a number

of mtl'na to evaluate parallel processmg systems' appropnateness for intennediate-Ievel vision

p.ualll'1 programmmg

Thl'n' tlre two uuna1 requrrements that are uruversally agreed upon:

ease of programming: for experimental algorithm design. lncludes general applicability but

with doseness to problem domam, detennmacy of results, logical independence, etc .

20

1

1

2. performance: execution speed on a g1Vcn ardutel.ture.

In our case, as we fayoT algonthm expcnmcntation and quick prototyping of algorithms, programma­

bIlity will be the most important of the two

TIte followmg charactensbcs in a programrnmg systpm will parti y sah~fy thesl' reqmremL'nts.

Each contributes to performance or prograrnmabtlity to varying degree~ A mmparison metric thal

inc1udes ail of the&e cnteria 15 difficult to crcate, because the relative weighmg of the critC'ria is not

easy. It 15 obvioU5 from the hsl below that there 1S conSIderable overlap 10 sorne ot the l'ritena

for example, load balancmg IS a funchon of parbtionmg and schedulmg, and O('xible handling of

large data structures is a funcbon ofwhether or not lt I~ the programmer's n'~ponsibllity to solve the

mernory la tency problem. Addibonally, the fm,t two critena are sornew ha t orthogonalto parallelibm;

however, we feel they are important, as sorne par~Ilcl processmg sy&tem& are not a~ Wl'Il sUlted for

the task as others. Figure 13 shows the relatioll::.hIps between thl'se cntena and the four Issues we

have identified il::' crucial to paralle1 proce::.~ing The tnteria are'

doseness to problem domain: for fast prototypmg; ln our case, wc have numencal proœssmg and

rnathematical algonthrns, expressed m thl' mathemahcal notahon of functions.

general applicability: Wlthin the intermedIate-leveJ VIsIOn problern dornam, reasonable pro­

grarnmability for an problems, irre&pcctive of commurocatlOn patterns, task creation require­

ments, etc.

ease and tlexibility in task creation: because of data-dnven control flow in intermediate-levcl VI­

sion algoritluns, task creation should be easy to code.

lightweight task creation: because of the maSSIve parallehsm present in intermcdiate-lcvcl vision

algorithms, we don't want the creation of a task to be an cxpensive operation.

determinacy of results: invaluable for dcbugging.

easy load balandng: necessary because of the spahally non-unifonn distribution of output feature&

in the input data.

21

(

(

rth al

[

Closeness 10 problem domall o ogon
to parallellsm ProgrMlmablllly ----

~ General appIlcabIIlty

Central to
parallellsm

Partilloning

Synchromation

Memory lateno::y

Ease and flelabllity ln lask creation

Ughtweighttask creation.

Delermlnacy

Easy Ioad baJanccng

__ ---- Easy Intertask commllllcation

1. INTRODUcnON

Handllng of large. shared data structures.

Important lasues
Intermedl.te-Itvel vision
programmer concems

Figure 1.3: This figure shows the criteria for mtermediate-level vision programming we have
laid out, on the right, and their relationship to the more general issues of programmability,
partitJoning, scheduling, synchronizati\ln, and memory latency.

22

1
1. INTR(lI)UCTION

easy intertask communication: because communications can he irregular in destin.ltion and in vol­

ume. In particular, communication requirements will diffcr from low-lewl vision, in thilt W('

will not necessarily have near-neighbor commurucatIon.

handling of large, shared data structures: the system must pennit fle>.lble and tr.msp.U'Cnt ilcœ!.>s

to large, shared data structures (e.g. the input image).

ln faet, many of these criteria are sunply diffcn'nt ways of stating the need for logical indl'pen­

dence, to simplify program development and avoid exphdt partitioning, scheduling, synchromza­

tion, and memory latency conœms, and therr problcms. In the sections below, Wl' examine how

three given systems fulfill these criteria, through the programming of a sam pIe algonthm.

1.3. Functional Languages: A Better Solution?

1 feel that languages of the future will he successful becausc they will fealure implidt partitions

and schedules, and will not have the problems of expliClt partitioning, or the problems of automahe

parallelisation of today's imperative parallellanguages. The mam obstacle to wldespread use of

such languages on current multiprocessors is the problem of compiler partitionmg and schcduling;

see [35, p. 121 for a functionallanguage solution

Functionallanguages offer a different path to parallel execuhon. If the goal of paraUd program­

ming is to have real-world problems mapped to parallel hardware seamlessly and automatically 132,

p. 20], then two options are pOSSible, parallelism detechon in sequentiallmpcrativc languages, or

parallelism detection in declarative languages. However, for reasons menhoned in appendlceb B, C,

and D, parallelism detection in sequentialunperative languages, while very deblrable from user

standpoint, will fail to detect most of the parallelism present [6, p. 461] in a program.

Functionallanguages offer relief for both [6, p. 460] hrgll-level encodrng and generation of efficient

code for the following reasons. Higher-order functions raise the level of programmmg, as weil as

encouraging the use of small funcHons that directly relate to the mathematicai and physlcal concepts

23

,
l ..

..,
1

1 ÜI..'TRODUCI10N

of the problem. In the second case, the straightforward operational semantics of functional languages

proVlde tremendous oppo.-tunities for parallel execution.

More SpeciflcaUy, funchonal language advantages are that their [6, p. 460]

- dedarative :.ùture elImmates overspecificahon of order of evaluation,

- their operational semantics automatically expose parallelism present in a program,

- their higher-order functions elevate level of programming so that abstractions can he built

doser to the concepts in the problem domain,

- they produce determinate output, and

- they allow clear, concise, easy to understand code.

ln contras t, [6, p. 490-491] imperah ve languages sucb as Fortran have a num ber of shortcomings

for 5dentific paraDe) programming. Fortran is not very good for expressing high-level abstractions,

such as abstracting behavior into a funchon (higher-ol'der functions). Fortran's imperative nature

forces the user to overspecify execution order, making it very difficult to comptle good code for

a parallel machine. Most importantly, Fortran relies 011 the user for detenninate programs, instead of

guaranteeing the determmacy of programs, as functionallanguages do.

Many of these crihosms can al50 be applied to other imperative languages as weIl. In fact, we can

make a strong argument about the (21, p. 332] suitabihty of functional aIld imperative languages:

functionallanguages: are suitable to express equation solving, not for expressing non-determinism

and mutable objects

imperative languages: are appropria te when non-determinism and mutable objects are important

in the problem domain (e.g. in airline reservation systems, operating systems, etc.)

ln the context of scientific paraUel programming, functionallanguages have the advantage of ex­

pressiveness, as sClentific programming is mainly about implementing algorithms, and not about

24

1

'.

dealing with mutable objects. In effect, functional programming has given the neccssary .. bstrac­

tions to move the programmer closer to her problem dornain, and has providl'li logical indl'pendenœ

by removing responsibihty for the issues of parbtioning, sclleduling, synchromzation .md nu'mory

latency &om the programmer.

1.4. Key Points

Let me summarize the key points 1 have made in this chapter.

The problem to be solved is finding parallel programmmg languages and parallcl archltedurl'~

to allow scientiflc users to apply parallel proœssing to intermedJate-ll'vel vision resl'arch TIte

contribution of the thesis will he the comparison and evaluation of three generaJ-purpo~e <;ystl'ms

<both architectures and languages) for parallel mtennediate-level Vlblon. 1 bl'hcve th!' best SUlh.·d

is the Id functionallanguage on the M.I.T. Taggcd-Token D.\taflow Architectun', because of il!>

mathematical flavor, generaI applicabihty, lightweight task creation, dett'nninacy, and the Jogical

independence it provides the programmer

1 define a number of parallel proœssing system evaluation mtena, to evaluatc the mdtch bctwl'en

parallel processing systems and intermediate-Ievel vision parallel programming nel'ds Thcse cri­

teria include closeness of the parallel programming language to the problem dom am, J(·termmacy

of results, logical independence, .md lightweight task creation, among other... These critena cval­

uate how each system solves the four crucial issues in parallel exccution, partihomng, scheduling,

synchronization, and memory latency, which influence a para]]el program's performance and how

the parallel programmer sees the parallel architectur .. ~. The considerations ansmg from these js~ues

in intennediate-level vision are more difficult for the programmer to handle because of the fad that

processing is data dependent, whereas in low-level visiL'l proccs!>ing Itis fixed IntUlhve partitioning

schemes also ignore large amo\U\ts of parallelism present in !utermedIate-level VlSion algorithms.

TItus, scientific parallel programmers, and intermedIate-level VISion programmers in pamcular,

cannot be expected to apply machlne-speci.fic expertise about parbtioning, scheduling, synchroniza-

25

(

(

(

1. INTRODUcnON

tion and memory latency and croate programs that are detenninate, let alone efficient; there must be

more logieal intfepem'e/lce in parallel programming systems, so that these conœms be moved away

from the programmer, to compilers and to the parallel architecture itself. This logical independence

is providcd by funcbonal programming systems, but is 'lot found in current imperative parallel

programmmg systems.

26

1

2. THREE ApPROACHES TO THE PROBLEM

In this chapter, 1 will describe the three dIfferent parallel programmmg systems whose suitability for

intermediate-Ievel visIon parallel programmmg 1 will examine in this thesis:

- IJll?erati're programming in C wIth the Urufoml System bbrary of parallel routines on the BBN

Butterfly mulhprocessor.

- Imperative programming ID C-Linda on the Sequent Balance multiprocessor.

- Functional programming in Id on the Id World sunulation of the MIT Tagged-Token Dataflow

Architecture (ITOA).

1 will also descnbe the reasons for my choice of systems.

This chapter provides three answers to the vision programmer's question, "What kind of system

is available for parallel processing ,'lf VIsion algonthms?" Because of our foeus on intermedIate­

level vision, the systems we have selected are general-purpose MlMD systems. In chapter 3, 1 will

show how each system performs as an intennediate-Ievel vision parallei processing research tool

by programming a simple test algorithm on earn, then looking at the evaluation criteria I~ven in

section 1.2.1. The purpose of the present chapter is to get familIar with the essentials of earn system.

27

(

(

2. THREE ApPROACHES 10 mE PROBLEM

2.1. Uniform System Programming on the BBN Butterfly

ln this &cctlOll wc look al programming on the BBN Butterfly multiproœssor. We will give a brief

desmphon of the BBN arclùtecture, then examme the programmmg environment offered by the

vendor, and most Importantly the parallel programming model, the Uniform System (U.S.).

2.1.1. The BBN Butterfly Architecture

The BBN Butterfly's architecture is a shared lIu'monJ MIMD mulbproœssor computer [101. Each

node 15 a Motorola 68020 proœssor with local memory. Up to 256 nodes can be connected trJough

a butterfly sWltchmg network, shown for 16 processors in figure 2.1. Taken together, the local

memones on aU nodes form a global memory space: any processor can access any memory through

the network An N processor 1>ystem uses (,\ !O!l4 ,\') /4 switches; thus, a remote memory reference

is l'"I.,\' switch hops away. This is an import.mt point' a rcmote memory access takes about 41'5,5

times as long a!:t a local memory reference. This llon-ulllform memory architecture is canied through

into the Umfonn System programming system.

2.1.2. The BON Uniform System Programming Model

TIte programming system supphcd by BBN is the Uniform System (U.S,). The Uniform System is

a library of C/FORTRAN roubnes which proVlde memory arId processor management for parallel

p":gramming on the BBN Butterfly. The reader mterested in more detail is directed to [111. In this

thcsis, wc wJ..11 discuss exclusivcly Unifonn System C programmmg for the Buttertly, although other

parallel programmmg systems eXlst [301, because lt is the system supported by the vendor, and thus

.m examplc of the state of commercial paraDel programming support.

The Uniform System's memory management features are the following. The programmer can

set up a shared memory spaœ across aU processor /memory nodes (collectively, all memories of

tht' proccssor nodes form the shared memory). The programmer can scatter léU-ge data structures

28

1

(a)

Inputs

o

Inputs 1

2

3

o

1 Outputs

2

3

o 1 2 3

Outputs

(b)

Figure 2.1: In figure (a), the BBN's butterfly interconnection network for a 16-node madune
Each switching node is a 4;(4 crossbar, as shown in (b) (two views of an identical cnlSl.bar)
Processing elements (PE's) and memories with the same number are actually part of the
samenode.

29

(

(

(

2. THREE ApPROACHES 1'0 mE PROBLEM

acrOSs ail memories, to make use of the full switclung network (memory) bandwldth and thus avoid

contention for a smgle memory Atomic memory operations and sImple spin locks1 are provided.

There are also proces~or management features provided. Routines eXlst to set up task generators

to generale tasb for the proc~sors: each task is a (C/FORTRAN) function (subrouhne), and will

he dynamlcally scheduJed to a processor at run-time. Load balancing is thus dynamic, which can

Tl'Sult in betterproces~or utillZation, dcpendmg on program partitionmg. Each processorunder V.S.

management runs a ~mgle task, to aVOId costly context swaps.

As mentioned cartier, the Umfonn System is 1; ,j on libraries of parallel routines for C-language

programs. the compiler used for Uniform System programs IS a standard C compiler wluch genera tes

sequenhal code. The task generators provided by BBN are based on the model of applying a fullctJOn

10 each ,tem of a data structllre Ce.g.list, vedor or array) i" paraUe!. Parhtiomng can be based elther on

the output data structure (e g one task to compute earn element of a matrix multiplication result),

or the input data structure kg summation of the elements of il malnx, with each task asslgned a

row). U.s. pw);ramming lS imperative: tasks do notretum values, so the mode} is one of applying

.1 lunction 10 an input data ~tructure to side-effect results to an output data structure, ID paraUel.

TItis assume~ mdep"ndence between each task execution, and thcrefore forces the user to worry

about data dependencies: for example, programming a malT.x algonthm that proceeds along a

wavcfront would reqUlre sorne restructurmg to Ht the U.s. mechanism and ensure independence of

th" tasks. However, the generator mechanism is well-structured. For example, there are generators

that opera te on data structures wlth one and two indices (typically vectors or matrices). Used in this

way, the g"nerator mechanism IS semantically close to iteration, with aIl iterations done in paraIlel.

Generators can he synchronous or asynchronous, respectively returnint~ CI 'ntrol to the caller at the

end of aIl tasks, or immediately. In its most general form, which IS tu s·_ .. erate tasks from a hst of

tasks, and us"d synchronously, the generatormechamsm is like the parbegln parend construct

found in some paralIellanguages. 1his kmd of structure simplifies synchronization in a large num ber

of cases, although at the l.'Ost of loosing fleXlbility in the task creation mechanism. Il is more difficult

to spawn arbitrary tasks, and far casier to fit the gen('rator model of parallelism over a data structure:

"The easiest way to achleve parallel operation is to structure the program to fit the mold of one of

these task generators" [11 J. We sha~l see that the problem with this approach is that htting the mold

often mvolves restructuring the algorithm to fit the available mechanisms.

---- - -
lShal't.1d variables that are n.'ad repeatcdly and who~e change of value signal a synchroruzation event

30

1
1
(

1
2. THREE ApPROACllES 10 THE PR08LEM -----------------------_--:::: ---- - --- -- - - - - - -

Proc:e.. 1 Procees 2 Proce.. n-l Proc... n

Privat .. T::"..."
(1* ptoc.s) He.

Unfform
Syatem
Pif!

Shared Unllotm System Aloc.table
(via U S allocalOl") _

Slack S'.ck

Figure 2.2: The Uniform System address space, showmg the mapping (lf C vJri"bk'S and
storage to actual physlcal storage Adapted from 1111.

A very important point for the programmer to kel'p in mind is the machine's ruerarchlc.ll mcmory

model Physically, each node ln the machine is composed of a processor and local memory; the

memories at each node collectively form a sharcd memory, through the butterfly intercOImcchon

network mentioned ln section 2.1. Acœss to local memory is {ive limes faster than acces:, through

the network to remote memory2. In terms of Uniform Systl'm C programming, the dlstinlllons

between the vanous types of storage are shown in figure 2.2. Notice espenally that C global<; iln'

proœss pnvate; m fa ct, whùe such variables are stored at the same addrc~s on aIl Hodes, changing

these variables on one proœssor will only malce the change on that proœssor, and on no other 1f.1

programmer wants the change to a variable to he secn on aIl proœssors, the variable must be storcd

in Unifonn System shared storage. These distmctions are of extreme importance (.md a source of

programmer dlfficulties) in Uniform System programming.

A summary of how Uniform System C programming solves the four pioblems of sechon 1 IS

theretore the following. Explicit partitioning is needed; for ease of programmmg, the programmer

should partition to fit the model of parallelism over data structures offered by the Uruform Sys­

tem. The match of parbtioning granularity to architecture granulanty is uncertain. The model for

scheduling is implidt, dynamic self-scheduling. Synch.ronization is explicit, through the low-Ievel

mechanisms provided in the V.S. Sorne synch.ronization is simplified becaUSl' synchronous task gen­

erators are proVlded. It is up to the programmer to speClfy the placement of data to solve the memory

latency problem, as memory is either fast, contenhon-free, but priva te, or slow, contention-prone,

butshared.

2Note that sorne shared rnemory ls allocated locally on a processor node (1/ p of the total shan.>d ml'tllory, ln a I1-node
system) A programmer can choose to place data specifically in local shared memory (on any node, ln fad). 1I0weVl'r, of
course, placing data shared by many processors on a single node will ca use memory contenhon.

31

(

(

(

2. THREE ApPROACHES 10 nIE PROBLEM

An example of U.s. programming for matrix multiplication is glVen in appendJ). A.

2.2. C-Linda Programming on the Sequent Balance

ln this section wc look at programming with the C-Lmda parallellanguage, running on a Sequent

Balance multiproœssor. We will give a brief description of both the Sequent Balance architecture

and of the C-Linda language. The reader interested in more detail on either topie is referred to [38]

and [21, respectively.

2.2.1. The Sequent Balance Architecture

The Sequent Balance is a bus-based, shared-memory multiprocessor. Each processor has cache

memory (wnte-through, with bus snooping logic;:3), but no local memory for user processes. Instead,

there is a single global memory, and only frequently accessed, read-only kemel data is kept in a

small local memory. The memory system is pipelined and asynchronous, to maxi .nize the use

of the bus. A SUC chip (System Lmk and Interrupt Controller) at each processor take5 care of

me!tsage-passing interrupts between processors on a separate bus, and each SUC holds copies of

synchronizahon gates4 • The Balance runs Dyrux, a multiprocessor UNIX with a single process queue

for all processors. As there 15 only one main memory, proCes5 distribution and mIgration is trivillJ, but

of course at the oost of bus traffic and cache updating. Good performance 15 obtained on multiuser

or mulhtask loads.

1 A write-through cache immediately copies writen data to main memory over the bus; bus snooping l081c listens on the
bus 10 Chl'Ck if dala ln a processor's cache has not become Invalid because of a memory write.

·Equivall.'1lt to binary semaphores.

32

1

2.2.2. The C-Linda Programming Model

We first start by explaining the core of the C-Lmda languagl', the Lmda ('(lOrdinatÎon langu.lge 1211.

Explicitly-parallt'l programming has two components, compu tahon and coonimation Coordln.lhon

is composed of commurucation and synchroruzation, thercfon', adding .1 coordination l.lngtJ.lgl' "'Ul h

as Linda to a base language like C will result m al parallel dia lect of the b.IS!' languagl', 1Il tlll~ l.Il'ol"

C-Linda.

Linda itself is a set of 6 opera tors that can be added to any base languag(' Ltnd.1 r.lf.lncl
tasks communicate through a shared dataspace called tuple spaœ, regardless of whether or not tlu.'

machine on which Linda 15 implemented has physlcally shan'd memory. The tupll' ~paCl' l1ll'mory

model is central in LInda: the storage unit 15 not the byte, but the tuplc, or orderl'd set of vilhll'~

Tuples in tuple space are accessed assooabvely, through a loglcal name, whcre the loglCaJ n.lI1U' l!'t

any selection of the tupIe's values.

There are three operahons on tuples m tuple space. read, add, (md rem ove .- there is no modl f y.

This atomicity makes it possible fOl many processes to share tuple space and use It as a "\l'.ms of

synchronization and communication. Data ID a Linda program IS never exchangcd directl y betwcl'n

two proœsses; instead, a proœss with data to share adds if uS a tuple to tuple space A pron'~ ..

wanting to receive data can either remove a tuple from tuple spaœ, or &imply rcad in a ('opy of the

tuple in tuple space. Communication between processes IS therefore uncoupled, in ~pac(' and hml'

a process does not have to k..,ow where the data is going, as it slmply placc~ lt m tllpk' ~pacc for an
to access (anonyrnous communiciltion), and does not have to synchromze wlth the prllcc~s reC(llvin~

the data, which can sim ply read or rem ove the data from tuple space at any later !tme Modlfymg

data in a tuple means removing the tuple from tuple space, changmg th,! data value, thcn plaang

the tuple back into tuple space. Thus, the semanhcs of 'he operations on tuple spacc allow for casy

synchronization and communication.

To summarize then, the Linda coordination language is a set of 6language-mdependent op('rators

that allow parallel tasks to commurucate and synchroruze atomically and anonymously through a

shared, associative dataspaœ, called Tuple Space.

33

2. THREE Al'PROACHES 1'0 THE PROBLEM

A tuplc in C-Lmda couJd be, for example, (fi a string", 15, 17.543, "string 2"), or

(0, l, " f 00") , or any other senes of typed fields, the allowable types being dependent on the

ba1>clanguage The namC1> of theoperahonson tuple spa ce are out (/), in(b), rd (,) and eval (f).

out l'> cause1> tuple 1 to be added to tuple spacc. in (.,) causes a tuple f that matches anti-tuple

, tu be removed from tuple ~pace; If no matrhmg tuple IS found, the process executing the in (b)

will block. An anh-tuple is structurally the same as a tupIe, except that sorne or alI of its fields

may he formaI parameteTh, whlch get bound to corresponding actuals m the matched tuple when

it i~ removed from tuple ~pace. For examplc, the anti-tuple ("bar", ?i, ?f) matches the tuple

("bar", 2, 7.89) (Jf i and f are an ~nt and a float, respectiveIy), since they have the same

numbcr of field." the same actual ln the first field, and matching types in the la st two fields. After

domg in ("bar", ? 1, ?f), ~ and f would be bOWld to 2 and 7.89, respectively. If more than

Ont' tuple matches an anh-tuple, an arbltrary (non-deterministic) choice is made for the tuple to be

removcd 101& hlple r('moval and formaI asslgnment mechanism is shown in figure 2.3. rd (,) is

sim Ilar to 1 n (,) , exc..!pt that a copy of a matchmg tuple tuple is retumed; the tuple is not removed

from hlple space. eval (1) is the same as out (1) , except that the tuple is evaluated after being

pldced mto tuple space rather thdn beforc eval (1) 15 thus the mechanism for task creation in

Linda It places an a\.'tive tuple mto tuple space, instead of a passive tupIe, as does out (1) • When

('valudhon of the achve tuplc 15 firushed, It tums mto a passive data tupIe, identicai to those placed

In tuple space by out (1) •

ft is important to rcahze that tuples exist independently of the processes that created them, and

may collccbvely form data structures in tuple space. For example, as shown in figure 2.4, a tuple

space matrix could be d collecbon of element tuples. It couId aIso have been a collection of row

or column tuples, or a collection of sub-matnx tuples; the choiœ of representations depends on

programmabùity and èffiClency consIderations, as we shall see.

A summary of how C-Lmda programming solves the four problems of section 1 is therefore

the following. Explicit parhhoning into potentially arbitrary tasks is necessary. The match of

pamtiomng granuJanty toarchitecture granularity IS unœrtain. Themodelforschedulingisimplicit,

dynamic st'lf-schedulmg. SynchronizabOn IS explicit; however, the anonymity and atomicity of tuple

spaœ opera bons create a powerful and flexible mechanism for synchronization. Memory Iatency

conslderahons are partIy up to the programmer to solve, as data placement is out of programmer

control, but tuple space data structure granuIarity IS. A finer partitioning inaeases parallelism, but

34

1

Tuplc Spacc
~-~

("data", 4) CProcess®

Tuple Space ---
("data", 4) (process ®

in("daIa", ? 1)

---~
Tuple Space

/* At Ihls
point, i == 4 */

Figure 2.3: A Linda example. Processes 1 and 2 were previously created uSlng eva] ().
The anti-tuple ~n ("data", ?i) in process 2 matches the tuple plaœd ln tuple space by
process 1, and formaI i gets bound to value 4.

35

(

(

2. THREE APPRoAcHES 1'0 nIE PROBLEM

'fuple Space

("Natrix Ali, 2, 1, 3g.5)

("Natrix A", 3, 3, 93.65)

(trMatrix Ali, 1, 3, -14.4)

("lfatrix A", 2, 2, -18.6)
(..... trix A", 1, 2, 1.5.)

("Matrix A", 3, 1, 2.81)

(trlfatrix Ali, 1, l, 6.2)

("Natrix Ali, 2, 3, 3.0)

(..... trix Ali, 3, 2, 67.8)

Figure 2.4: A tuple space data structure. Matrix Ais stored in a collection of single-element
hJples.

36

1

increases acœss latency, while coarser partitioning dccreases Iatency but increases contentions. This

issue is very architecture dependent.

2.3. Id Programming on the ITDA Simulator

In this section, we glVe a brief introduchon to dataflow architectures, brietly describe the MIT TIDA

arclùtecture and the Id functional programming language, and ex.mlinl' the system on which Id

code was run, a software simulation of the Massachusetts Institlltc of Technology's Tagged-Token

Oataflow Arclùtecture ('ITDA) called GITA, part of a software development environment calh.·d Id

World.

2.3.1. An Introduction To Dau80w Architectures

We will provide a brief introduction to dataflow architectures; our description follows [41, which the

interested reader is urged to consult for greater depth.

The dataflow concept is quite simple: a dataflow program IS a directcd graph where nodes are

operations and arcs denote data dependencies between operahons. Data values are carried on tokens,

which f1owalong the arcs. Anode may execute (or {ire) when a token IS avmlable on each input arc.

When it !ires, a data token is removed from each input arc, a result is computed using thC!le data

values, and a token containing the result is produced on each outpu t arc For exam pIe, the foUowing

program is easily converted into the dataflow graph of figure 2.5

let x a*b;

y 4*c

in (x + y)/c.

5Which, in tum, inamses latency!

37

(

(

(

2. THREE ApPROACHES 1'0 mE PROBLEM

Figure 2.S: A simple dataflow program.

Note how the result of an operahon is purely a function of the input values; there are no interactions

between nodes via si de effects, for example, through shared memory. TIle example shows the two

key propertie~ of datatlow architectures: pllrllllellsm, as nodes can exerute in parallel unless there is

an explicit data dcpendenœ between them, and determil1llCY, as results are completely independent

of the order ID whtch potentially parallel nodes lire. More general programs (such as those with

loops and condttionals) can he created with boolean tokens and s10Itch and merge opera tors.

How does a real data.tlow machine execute such a program? Dataflow graphs such as the one in

figure 2.5 can be viewed as a machine language for a cl1taflow machine, where a node in the graph

is a machine instruction. Each instruction contains an op-code and a list of destination instruction

addresses (for the result token). The basic instruction cycle for any dataflow machine is thus:

1. detect when an operation is enabled;

2. determine the operation to he performed (i.e. which op-code);

3. compute the result;

4. generate result tokens.

Note how the fust stage of the instruction cycle allows us to avoid performance degradahon he­

cause of memory latency (delays through network to memory): if a result hasn't arrived yet, the

38

1
2. l'BREE ApPROACUES TO THE rKOBLEM - -----------------------

operation won't be enabled, but we can simply select another one wluch IS enabled. von Neumann

architectures, with their sequenhal program counter, must block until the data amves. The dataflow

architecture therefore uses parallelrsm (more than one operation to bl' selected from) to ,,,Je lat,."cy.

What are the problems with dataflow archItectures? Sunr1y that the h.miwarc cost of a single

dataflow processor IS much higher than that of a tradIbonal von Ne\un.ltUl proœ~s(}r: for example,

selecting the instruction to execute in a dataflow arc1utecture is more complcx than sim ply incrcment­

ing a program counter in a von Neumann machine. The gams to be made 11\ adoptmg the dataflow

architecture arise in a multiprocessor setting: because dat.tflow machmes lude memory latency by

using parallehsm and SW1tching to an enabled instruction if necl'!>!>ary, their proœssors can he busy

a larger percentage of the time than von Neumann proceM.Ors ln a parallel machine, whlch can only

idly wait for their operands to arive from memory after network delays or contention.

Notice now how nUlctJon ... llanguages and clataflow arclùtectures are a good match for parallel

processing. Both work on the prinople of producmg results from expressions and not on sicle ef(ed&

to memory. Addihonally, to be effioent, datatlow architectures need the high parallelism (lu be

able to switch to another instruction to hide latency) present in funcbonal programs, whkh impose

the minimal restrictions on parallelism (only those that arise from data dependendes). On the

other hand, multiprocessors built from von Neumann proccssing clement& and programmed wlth

explicitly parallellanguages derived from sequentiallanguages suifer from serious problems. They

impose on the programmer the need to specify synchronizabons to aVOld read/write races (whlch

cause non-determinacy), and subtle timing bugs arise. Functionallanguagcs complctcly aVOId these

synchronization problems by disallowing "updatable vanables" (1.(. side effects to mcmory).

2.3.2. The MIT Tagged-Token Dataflow Atthitecture

In this section we will take a very brief look at the MIT Taggcd-Tokcn Da ta flow Architecture (ITDA).

Our treatment will fQlio\\' that of (71.

The TI'DA COl\SlSts of a number of identical processing elements (PE's) and I-structure storage

elements (described in section 2.3.3), cormected through a packet-swltched nctwork. The I-structure

39

«

(

__________ .:::2~. -.::Tc:.:H:.:.R=E=-Ec:.:A=Pc:.:P:.:.RO=-A:.:C.:::HES 10 THE PROBLEM

clements colJectively implement a global shared memory. A single PE-I-structure storage pair is,

in itself, a complete dataflow machine [71. In the mulnprocessor confIguration of the 1TDA, aU

memories are globally acces~lble. Code can he distributed. and executed over many PEs (proœssing

clements) (a smgle code block executing simultaneously over many PEs, or even part of a single code

block executing on dlfferent PEs). However, mapping over multiple proœssors does not increase

overhead: the number of instructions t;:xecuted in a TfDA program is mdependent of the number of

PEs it IS run on (71.

As m other dataflow machmes, the TI'DA has fast context switching and split-phase memory

transactions (i.e. switching to another instruction If a memory transaction has not completed, as

described prevJOusly), to ensure that synchroIÙZation occurs at the finest lt:>vel possible and that

memory laten<:y effects are reduœd.

Wc obviously cannot look at the MIT TI'DA m great detail here; the interestcd reader is directed

to r71. The Important pomt to remember is that the MIT 1TDA executes dataflow graphs, obtaining

maximal p.uallelism up to data dependcncies and machine constraints. Fine-grained synchroIÙZa­

tion is supported through I-structure storage,and itsmechanism of PRESENT / ABSENT/WAITING

indicators (sec page 42).

2.3.3. The Id Functional Language

As described in appendJx B, the class 'Jf applicative, or functional, programming languages is one in

which computation is carried out enbre~y through the evaluation of expressions (i.e. the application

of funchons to arguments, thus producing results) [24], and completely without side effectsj these

characteristics are found in Id. For a complete descnption of the Id language, see [27]. Additiona1ly, Id

fully supports hlgher-order functions, data abstraction, pattern matching and array comprehensions.

Wc present a very simple (and, for the moment, also very meffident) functional program for

matrix mulhplication (figure 2.6), wntten in the functtonallanguage Id [271. We rely heavïly on the

mtUltion of the reader to understand program syntax.

40

1
________________________ -=2. THREE ApPR~AC!~~~~ !I!E P~!'-!t.-!

5

10

15

20

25

30

def ip C D =
{

C, n) = bounds C

SUffi (l,n) {fun i
} ;

def row i E
{

C, _) ,(,n) 20 bounds E
in

{vector (l, n)

1 [j] =E[~,j] Il J <-
} ;

def col j F

{

(,n) , (-'-) = 20 bounds F -
in

{vector (l, n)

1 [~J =F[i,J] Il i <-
} ;

jef matmult A B
{

(,m) , (, n) 20 bounds A; - -
(-'-) , (,1) 20 bounds B -

in
{matrix (1, m) , (1, 1)

1

1

1 ri, j] = ip (row i A) (col

Il i <- 1 to m
& j <- 1 to Il

} ;

to nI

to nI

j B)

Figure 2.6: Example functional program' matrix multiplication

41

2. THREE APPRoACHES TO TIlE PRoBLEM

Four functions, ~p, row, col and matmul t are defined. Respectively, these functions retum.

an inner product, a row of a matrix, a matrix column, and a matrix produet. In the code, _ is a

pattern-matching character, and matches any actual value, Parentheses are used onIy for grouping,

and can otherwlSe he omitted.

Certain characterisbcs of the program are nota ble In line 5, the s um function (defined elsewhere)

takes two arguments:

- the fin.t is a 2-tuple which descrihes the summation bounds

- the second argument to s umis itself a function of one argument; this argument is the summation

index ~.

Note how close tlus dcfmition of s um is to the mathema tical notation for summation,

(2 1)

We have abstracted out the summation behaVlor and put lt in a function, which expects another

function (the summand, here C [i] *D [J..]) as an argument. Thus, higher-order functions raise the

level of programming by making it possible to crea te functions thatoperate on other functions. Note

also the an'ay comprehensIOn syntax for declanng and filling arrays in the same code fragment (see

appendix B).

Id IS thcrefore a functionallanguage, but augmented with non-functional data structures calIed

1-structures [71. I-structurer. can be dec1ared in one place and filled in at another; their name is

derivcd from the faet that they can he fùled incrementally [41. However, to prevent the possibility

of read/writt> races, I-structure slots have PRESENT/ABSENT /WAITING indicators, and cannot

be written to more than once, thus preservtng the functional nature of a program. I-structure slols

wlth WAITING indicators have had a read attempt performed on them while the slot was empty;

those read requests are deferred and stored m a part of I-structure storage specially reserved for

that purpose, in the MIT Tagged-Token Dataflow Architecture [41. As stated in [4], the main reason

for introduring I-structures to Id was to obtam non-strict data structures that couId later be filled

m a demand-driven way, which cannot be done with array comprehensions, which, as seen above,

42

1

-..

_______ . ________________ --=2:.;,.. _Tl=-:.;:.-I=REE APPR0A.~I-J~_~ !I~E ~R~").!l~~

are declared and filled m one place. For situations in which this can be a limitatioll (.md thus

where I-structures provide a solution), see [241. In effect, I-structures allow for V<'ry fml~-gr,lille"i

synchronization, at the array element level. The underlying arclutecture must he abIl' tu efflClcnt1y

support this.

Perhaps the most important aspect of Id is that it 15 determmate, as for aIl other functlOn,ll

languages. That is, given identical inputs, the outputs of a computation will always be the samc,

regardless of the order in wluch computations occur. TItis frees the programmer from tIlt' dctilils

of scheduling and from having to synchroruze paraUel activities; an Id program wIll be determiniltc,

irrespective of the Id code il contains.

As mentioned earber, Id's operational semantics also free the programmer from havmg tn ldentify

parallelism: parallelism in Id is impliat and compùer-detected.

To summarize then, the Id funchonal language provides detenninacy, hlgher-order 111nctlOlll>,

array comprehensions and pattern matching for expressiveness, data abstraction for modulctnty,

and I-structure arrays for fine-grained synchronization.

2.3.4. Id World, GITA, and Id Software Development

The experimental algorithm implementation described in sectJon 3.1 was done on a SparcStation

running Ludd Common Lisp, on which is implemented the Id software developmcnt envmmment

and MIT TInA software simulator. Id World and GITA, respectively.

Id World is an integrated software environment that fealures an editor, a software emuJator of the

1TDA called GITA (wlth debugging sU}Jport), and extensive perfonnanœ and momtonng toob 129J.

Code execution, debugging, and statistics monitoring oCCUl'l; in CITA, the Graph Int<'rpretcr for the

Tagged-token Architecture.

Statistics collection allows the user to coUect statistics about the parallelism profile of an algorithm,

the mix of instructions executed, various I-structure storage operations, etc. Different cmulation

43

"

2. THREE APPRoAcHES TO THE PR0'lLEM

modes allow the user to change the number of proœssors from infinite to finite, and communication

latency (exp}dmed in section 3.6) from 0 to a non-zero value.

A ~ummary of how Id programming on the TI'DA solves the four p'Oblems of section 115 therefore

the following. Partitioning is Imphcit <Compiler-determined) Each mstruction is a task. Scheduling

is also Imphat, performed at run-time on the TI'DA. Synchronization is implicit and fine-grained,

either through the lmplicit ordering of the execution ofindividual instructions, or through accesses to

htr..l'tllrcs. The memory latency problem 15 solved by the architecture through split-phase memory

tr,lnsachons.

2.4. Reasons for Experimental System Choices

A" menhoned in chapter l, our goal for the research was to investigate general purposc ~ystems for

the vision reseaJ"C'h envrronrnent, appropria te forintennediate-level vision. We felt tha t trus excluded

systems which only support message passing programmmg models, as their lack of support for

globally-shared data objects (e.g. mput iconie data, in the ease of intermediate-Ievel vision) IS a heavy

burdcn on the programmer for placement and movement of data and tasks.

An mtercstmg issue that we wanted to investigate was that of imperative parallel programming

versus dedarative parallel programming, which are two camps in parallel programming community.

Imperative parallel programming advocates emphasize the ease of learning parallel constructs for a

well-knowJ\ sequentiallanguage, giving explidt programmer control for presumably better perfor­

mance, or the convenience of automatically parallellzing sequenhallanguage programs. Declarative

parallel programmmg researchers emphasize the importance of determinacy, the high degree of par­

allehsm exposed by functionallanguages, the programming expressiveness provided, and the logical

ind~pendençe from machine-dependent issues. ln fact, we can see that the parallel programming

systems cho!.cn support different levels of logical independence:

Id: lmphdt partihoning, synchronization, scheduling

C-Unda: explidt partitioning, simplified (but explicit) synchronization, implicit scheduling

44

1
2. THREE ApPROA('HES 1'0 TI lE PROOLEM

--~

BBN Uniform System: explicit partitioning, explicit synchronizatton, implicit scheduImg

2.5. Key Points

Let me summanze the key points 1 have made in this chapter.

The BUN Butterfly is a shared memory multiprocessor wlth a high-bandwidth, non-um(oml

memory architecture; the BBN UnifOml System (U.s.) parallelism model is ba1>ed on side cîfects tu

data structures. Programmers must structure their program accordingly, and worry about synchro­

nlZahon between tasks.

The Sequent Balance is a single-bus, shared memory multtproœssor. The C-Linda paraI­

lelism modells based on arbitrary task creation and anonymous, atomlC operahon:-. on il I>han.·d,

associabvely-accessed dataspaœ.

The MIT Tagged-Token Dataflow Architecture (TfDA) is a dcttaflow multiproccs!>or that!>upports

fast context switching and I-structures for fine-grained synchronizahon and split phase memory

transactions to reduce memory latency effects. It is sImulated by the heavily-mstrumcnted GITA, the

Graph Interpreter for the Tagged-token Architecture. Id 15 a modem functionallanguage augmented

with I-structures to allow for very fine-grained synchroruzation.

The above three parallel processing systems were chosen because of general apphcabllity, and

contrast between explidtly parallel imperative languag~s and implidtly parallel functional lan­

guages.

45

(

(

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL

VISION

3.1. An Intermediate-Levei Vision Example: Parallel Cooperative Fitting

ln this section we will describe an expenmental int~rmediate-Ievel vision algorithm we will use to

cvaluate our three parallel proœssing systems. It is a parallel cooperative fitting algonthm: multiple

fitting proœsses coopera te and exchange infonnation to change the result of each fitting process.

Our work on thls algnrithm is incomplete; indeed, the algonthm itself may need a great deal of

refinement. However, this is typical of research work and will be useful m evaluating parallel

processing systems. We will describe t~.? algonthm in sorne detail, explain why it fits the criteria

detailed in section 1.1.2, and what makes its implementahon interesting.

3.1.1. The parallel ~ooperative 6Hing algorithm

The idea lx>hind thls demonstration experimental algorithm is to use additional infonnation present

in a data set with multiple components to constrain a fitting procedure applied to each component.

These constraints are communicated between fitting processes while the fitting takes place. In

essence, the goal is to perfonn, in parallel, model fithng of 11 volumetnc primitives and ln surface

l.'Urves (l'lther bounding contours or inter-penetration cllrves) to a segmented (range) image. Each

fitting proœss is iterative: a proœss moves one step toward what it believes is the correct fit, given

46

1
3. A COMPARISON IN THE CONTEXT OF 1:'JTERMEDlATE-LEVEL VISION

thE: infonnation it possesses. It then exchanges infonnahon with its neighbol'S,and take~ another sb.'p,

which presumably is an unprovement upon the previous one. This iterative procedure contulUt'S

until sorne measure of convergence is reached.

The vision processrng task of rnterest in tbis case is the fitting of volumetnc pnmihves to (thret. ...

dimensional) range data, so as to rnfer volumetrie models from dense threc-dlmenslon"l input [391.

However, previous approaches use only part of the information present m the input data, naml'ly the

range rnfonnabon. The rationale forusing parallel eooperahve fitting is to u!>e addihon,ll mformahon

present in the range image in the fitting process, such as bounding contours and inter-penetration

curves. An inibal estima te must be done for these and for the volumetrie models before startill~ tht'

fitting algonthm (e.g. by perfonning a least-squares nt for the volumes).

The 3D boundmg contour of the range data could be determmed by first removing bal'kground

points, then consldenng only those data pomts whose surface normal faUs b.:yond a spt'cihed

threshold (. Addltionally, given a segmentation of an object composed of mtÙtiple parts, adJacclll')'

(spatial) relationshlps between volumes fitted to each part can aIso be uscd as a further l.'Onstraint, ln

the form of inter-pellet ration curves, fonned at the intersection of two volumetnc pnmihves. A part

cOtÙd therefore have, ID theory, any numher of inter-penetrahon curves defined between It and Its

neighbor(s).

For example, after scaruung a 3-D object to obtain range data, having segmented it into two parts,

and having detelmmed its bounding contour, we could run the parallel cooperative fithng algorithm

on the data to obtain a volumetrie description of the scene. A number of Iterative flthng proce1>se!>

wotÙd he active, and communieating constraints on each other's fit.

- l'wo fitting processes to fit the 2 volumetrie primitivt'S to the surfaces.

- Two fitting processes to fit the bounding contours of the actual data to the boundmg contours

of the volumetrie primitives.

- One fitting process to fit the mtersection curve formed by the two volumetrie pnmihve!' to the

curve in the actual data, formed by finding points of extremal negative curvature, for example.

47

(

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

TIl(~ desired result of running the algonthm in [39J on a segmented image of a toy wooden doll is

shown in figure 3.1, with the additional mformahon that could have been used, such as the bounding

contour and the inter-penetration curve.

Therefore, the constraints used in this case are that the volumetrie primItives should be close to

the surface data, bounding contours should he close to those in the data, and curves of intersection

should he close to those in ihe data. During the iterative fItting (mmimization), fithng processes

will commurucate between each other, to try to satisfy these constraints. The way in which these

con~traints are mcorporated into the iterative minimization is through a distance meaSllre: the

dlst,mce between parameter vectors m parameter !:pace IS blended mto the fitting error metric. We

will examine this further on.

To summanzc then, range image parallel cooperative fitting can be understood in terms of the

following input and output data structures. The input is a segmented range image, which mcludes

point!> on the object surface (for each part), points on the boundmg contours of each part, and

posslbly, points on an inter-penetration curve(s) a part shares wlth its neighbor(s). The output is a

hst of volumetrie primihve parameter vectors (and possibly vectors describing boundmg contours

and interpcnetration curves), one veetor per segmented part (or curve).

To Stmplify the experimental algonthm, It was decided to solve the problem for the simple case

of an elltp~01d, centered at the origin, Wlth a known orientahon, and with its bounding contour m

the '''-,1/ plane. Thus, we have a very simple case of the parallel cooperative fithng algorithm, a single

part and Its boundmg contour, and we will have only two fIthng processes: a surface data ellipsoid

nthng proccss, and a bounding contour (of surface data) ellIpse fitting process. The fact that we don't

determinc pose or position (i.e. assume ellipsoid centered at origin, no translation and rotation) is not

restrictive, as it oruy implies an extra 6 parameters to detennine. We will assume that the bounding

contour lIes in the J !I plane, which is obviously not necessarily true These assumptions do simplify

the mterachons hetween the fitting processes a great deal.

ln fal'i, the algorithm described below is oruy one possible implementation. The assumptions

Wl' h.wc made leave many unanswered questions as to the performance or even the applicability

ot the algonthm on real data, but the important point is that t1us could be a plausible first step in

the dcvelopment of a worl~ing algorithm. The worth of the approach, in terms of providing good

48

!

l

J

Figure 3.1: Results of running the lithng a!gorithm in (39) on range data from the arm of a
wooden dol!. The original data is shown as darkervertical bars. The grey volumes are fitted
superquadric models, which are seen to overlap ana exceed the bounds of the input range.
The additional information that could have been used, namely the bounding contours and
the inter-penetration curve, are shown in white.

49

(

3 A COMPARISON IN ruE CONTEXT OF INTERMEDIATE-LEVEL VISION

computer vision results, will not he commented on further. Our interest is that the computation

patterns of the algonthm fealure sorne of the characteristics to he expected ln intermediate-Ievel

VISion algorithms

The full algorithm for the case of a single ellipsoid could he the following. It is based on that

desmbed in 1391. There is an iterabve fitbng process for the surface, and one for the bounding

contour. Independently, each would produce a parameter vector. 80th should be describing the

samc obJect, but becausc of nOISe ln data acquisition, thcy will differ slightly. Correspondingly,

at cach itcrahon step, wc try to minimize the dtfference between the parameter vectors produced

by fIttmg to the surface and by fittmg to the boundmg contour. We do this by defining a \ 2 merit

ftmction to he minunizcd that incorpora tes a function of the distance between the 2 parameter vectors

in p.lramcter !lpacc. Iterative minJmizahon is necessary because of the non-linear dependence of the

\ 2 ment ftmction on parameters. The algonthm we use is Levenberg-Marquardt iterativeminimization

(33) (which continuously ch.mgcs from gradient descent far from the minimum to an inverse Hessian

"Jump" whcll clo~er to the mInimum).

Any fittmg process IS obviously dcper.dent on the error metric used. The error metric for the

cllipsoid can be denved from the equation of the ellipsoid. Wc can consider the left-hand side of

tlùs equatton a~ an inside-outside function (w.r.t. the RHS, which is 1). Thus, the difference between

J(x, a) (x is data, a is theparametervector) and 1 is anerror metridthe Dl metrid39, p. 691]). Thus,

for the ellipsoid,

.t·, lI.- ::. ()2 ()2 ()2 IJdx~,a!')=J(x!,.Hl\)-l= ;;: + b, + r, -1 (3.1)

where x!, = (J'",I/ •• =.) IS a surface pomt, and as = (li" b" c.) is the surface parametervector.

To be able to combine the two parameter vectors in this error rneasure, we will add in their

diffcrenœ in the error measure, as follows:

(3.2)

where X(' and 11(' are the bounding contour equivalents to x!, and as, and use that in the iterative fit.

Notice that this introduces an adjustment "knob" .\, and leaves (', specified only by the surface data,

50

1
3 A COMPARISON IN TI-IE CONTEXT OF INTERMEDIATE-LEVEL VISION

as as = (a,. b •. r.) hasthree components (a surface parametervector), and êl(' = (1/,. il,) hasonly two

(a curve parameter vector).

3.1.2. Relevance of the Experimental Algorithm

The algorithm is intereshng in many ways. It requires a large amount of iconic input data' l'ach

fitting process will fit to a large number of Cartesian data points (each of which has tJU'ee com­

ponents). The output is a list of features, in this case ellipsoids and ellipses dcscribmg surfaœs

and curves, respectively, and each feature is described by a vector of parameters. The algorithm is

numerical, involving a large number of summations (to compute the merit funchon \ 2, for cxample).

Communication between tasks can be data dependent, as it depends on how many inter-pcnetration

curves exist for a given volume. In our simplified example, however, communication IS fixed, and

only takes plaœ between the fitting proœss for the surface and the fitting process for the bounding

contour curve. Synchroruzation is falrly simple and data-independent in our simphficd example.

each iteration of the fitting procedure is performed in step.

The most interesting charactenshcs, however, are that the input data sets vary 10 size, and

thus the feature computation times can be vastly different. Thus, a simple one task per feature

partitioning scheme would he ineffective. Additionally, there is significant parallelism within cach

fealure computation, as summations (the most important operation in our algorithm) can he dont'

in parallel. Memory latency eonsiderahons are the second important characteristic. the large mput

data sets must be easily aecessed and manipulated by parallel tasks.

3.2. Comments on BBN U.S. PlOgramming

How doef, u.s. programmmg on the BBN Butterfly fare? It suff,:!IS !rom a lack of expres~iveness

and from a lack of logieal independenœ, partly because of the C language on whlch the US. IS

based, but also beeause of its parallellibrary type of design. TIte C language, in sorne re!opccts,

dues not even provide logical independenœ to the sequential programmer; for example, cxpliàt

51

1

(

(

3. A COMPARJSON IN THE CONTEXT OF INTERMEOIATE-LEVEL VISION

memory allocation can be tedious and error prone (e.g. writing to a data structure for which no

memory was allocated) The U.S. programmer naturally inherits these concems. Uniform System

BBN programmmg suffers from the same lack of logica1 independenœ exhibited by other explicitly

parallel programming systems (in terms of explicit synchronization, for example), but four problems

in partirular stand out

Fust is ,1 lack of h'ghcr-order functions, which are crucial for expressive scientific programming

(a problem inhl'nted &om the C language). Second, an inexpressIve parallelism mecl/anlsm: task

generdtors based on library routines are awkward to use, and their parallelism model of side effects

on data structures is not aI ways appropria te. Third, explicit partitioning is also a weakness: il is unc1ear

a priorI whrthcr or not the partitioning chosen by the programmer is correct for the arclùtectu.re, or

is too hne, or too coarse. Fmally, the IUt.>rarchical memory model shown by the Uniform System relies

on the progrdmmer to solve the memory latency problem by placing data in either local storage

or rcmote storage TIus is a burden to the programmer for program performance and especially

correctm.'Ss.

The system also has certain strengths. Frrst is comparatively small grain size, which helps to extract

more of the paral1elism present in an algorithm. Second, if tasks are small enough, and there are

enough of them, I('ad balancing will occur dynamically. Third, the system offers large balldlVidth to

sl,ared ""'t/llIry, as the mterconnection network to the shared memory will aUow for high transfer

rates, if data and acccss patterns to memory are both well distributed. Finally, a single address space

for shared data sImplifies programming, and especially inter~task communicahon.

Let us ~)(amine U S programming on the BBN Butterfly with respect to our evaluation criteria.

One Important consIderahon is that there are no l-.J.gher-order functions in Uniform System C

pmgramming, whid\ of course is inherited &om the C language. This forces the use of clumsy

hmcbon pointer and argumer.t list pointer passing, and also pIohibits function composition. For

example, wc often nccd t':.l pass 2 functions A () and B () to a function C (), and inside function

r (), crcatc a new function f (A, B), which would then he used in yet another function. The

absence of tlus feahln' m u.s. C programming means one can't aeate arbitrary combinations of the

functions A () and B (). Any such combination, such as f () in the example above, must he defined

in advanœ. Funchons are the at the core of mathematical programming; any system that supports

52

1

1

3. A COMPARISON IN TIIE CONTEXT OF INTERMEDIATE-LEVEL VISION
------------------------~~~

scientlfic programming must simplify the creation and handling of functions; the Unifom\ System,

being based on the C language, does not.

Of course, given enough work, U.S. programming on the Butterfly can he ubed for aoy scientific

problem, becausc of its MIMD architecture and general-purpose pro\."essors It is not I\'stncted to

near-neighbor communication algorithms, as commUnIcation lS through sharcd ml'mory, whkh is

entirely accessible to all proœssors. Nor to is lt restricted to aIgonthmb wlth wry lar~e gram ~izl'S:

once a Uruform System task generator is set up (which can he expenslVd, tht.' oVl'rhl'ad for task

creation is approximately equivalent to that for a function calI.

One of the mam problems with Umfonn System paraUel programmmg 15 the incxpn'~slve par­

allelism mechanism. Wlth the U.S. generator mechanism, code must he restntctured tn fit the

mechanism, wlùch allows you to pass as parameters to the newly creatcd task only a single pomh.'r

(and posslbly one or two indices to indicate the task's n&mbcr). Ttus is what [32) refen. to a'i sy"tuctrc

crudeness. Generators arc like the Lisp map function, in that they are meant to apply a function

aver an mput data structure (such as an array or a vector), ln paralleI, and perform slde effed on .1

reswt data structure. This is quite usehù for a number of problems, but not for aU. The gcnerator

mechanism can be made to handle any case, but with sorne restructuring of a user's codt.' n1ls 15

what Pancake [32] refers to as semant;c crudeness.

The Unifonn System's model of explicit partitioning of tasks and data (hierarchical memory

model) and explicit synchronization are an added programmer conœm. Scheduling, howeveT, 15

implicit (dynamic self-scheduling).

Task partitioning is difficult on the BBN Buttertly, because of granularity considerations. It is

difficult to find optimal grain size for tasks: the grain size must he small, to do dynamic load

balancing and avoid idling, but must he large enough to avoid excessive overhead. If the proper

grain size is not chosen, the risks are

task starvation: granularity too coarse, too few tasks, and many processors Id le at the end.

excessive overhead: granularity too fine, too many tasks, and the computation/overhead ratio too

low.

53

f ,.

3 A COMPARJSON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

ln fact, the approach suggested by BBN is of restructuring code after trial and error hl, pp. 3-4]:

If neœssary, it is usually relabvely easy to combine small tasks at a later stage into larger,

more manageable sizes; it is olten more difficult to dIvide a task at a later stage into

smaller ones.

ln our paraUd cooperabve fitting code, there is one smgle kind of task that is used throughout the

code, a parulle] summation task, 50 that it was fairly easy to contain granularity <'Onsiderations into

a ~ingle variable. This will not neœssarily be the case for all codes, of course, so that restructuring

to .tchieve proper granularity will probably be far more difficuit.

Large, shared data structures inevitably produce the memory latency problem, which, in the U.S.,

is partIy the programmer's respollSlbility to solve. This show~ up as tedious data partitioning. For

~ood performance, the programmer must know about the machlne's memory model, the C storage

model, and strul.1ure the program accordingly. This is because parallel programming on the BBN is

fundamentally dIfferent from sequential programming: the programmer must a/ways keep in mind

the particular storage details of each variable, which is obviously difficult to do, because there are

1/ d,//eren' address spaces for Il processors. To the programmer, memory latency appears in two

ditferent guises:

memory contention: Data m the same memory node will cause contention.

remote memory accesses: 5inœ local accesses are faster, one must always determine If a variable

should he stored Iocally or remotely. Remote acœsses are slower and increase contention, but

lf somt> data will he needed by all proœssors, then it must he plaœd in shared memory, which

is n'mote to aIl processors but one.

1 t is important to reahze that code which affects these two considerations is distributed throughout the

entin'I'rogram, and 15 entirely the responsibility of the programmer, who must be constantly attentive to

the storage model. There is no syntactic difference between pointers to shared data and pointers to

priva te data, thus creating a nm,-homogeneous namespace.

54

1

,
\

•

3. A COMPARJSON IN THE CONTEXT OF INTERMEDIATE-LEVEI. VISION
---------------'---'-"---'-'-'-'--"~"-'-::...::...::..:;..::.:=-=~- -- - ---- - - - - - - -- --- - - - .

Because of the relative speed of local and remote memory, the pro~rammcr mu!>t oftt'n makc

copies of frequently-used data in local memory. The Uniform System proVldt.·s a nll'chamsm to

automatically make local copies of specified data mto each node's loral mcmory hefore the node

starts working on tasks from a generator- this IS the Share () mcchanism. Explkit SharE' () '5 ,ln' a

programmer-friendly way of making expliat local copIes; the pro~ramm('r mu~t kc('p ln mmd that

this meJlanism must he reserved for read-only data, as any mOdlh(\lbon to local delta IS Sl'cn unly

10cally and is unknown to the Share () mechanism. Aside from the Share () mechanism, ,Iata II/llst

often be explicitly moved from remote memory to local memory if good l'er{omllmœ IS t/l /1t' atla",,',1 10c.11

copies for data that vary are best hand1ed explicitly by the programmer, which unfortunatdy is an

extra worry.

Memory contention is another programmer concem. Effiaency considerations (avOlding hot

spots1) impose data structures on the programmer. For examplc, C vectors are !tlon'd 10 a ~inglc

memory node, to have vector elements in a contiguous address space (as required by C). To aVOId

contention for a single memory, programs which deal with long vectOTh mmt have a ~pccii11 veetor

data allocator and access mecharusm, to scattervcctor clemcntstorage aLTOS., dll ml'morit's and .l('('lU·,S

them as such. Other data structures can similarly be partttioned and scattcl'('d, but not wlth stand,mj

US. functions, which only provide functions to scatter matnces. Ali allocator a"d ac(.'t'Sl> "'t'chanis",

must be constructed for each new data structure.

The hierarchical memory model of the machine also reduces modulant y A module I~ ,1 ~clf­

contained and discrete part of a larger program, whtch accepts input that is weB defim'd as tu

content and structure, carries out a well-defmed set of processing acbon!t, and produC(.-s output

that is wel1 defined as to content and structure. Modularlty 1S achlCved whcn mtcracl10ns betw('('n

parts of a program or system can be ngidly restncted to the mteractions between modules, whlch

greatly simplifies the understanding of how a program works [34, p. 9961. In the Uniform System,

constraints are now not only content ar.d structure, but also locabon ln mcmory a funcbon a ()

whtch creates parallel tasks to operate on its arguments must reqmre that its arguments ('xistlll

shared memory. This constraint of location in memory propagates upward to all fundlOn~ who cali

a (), and 50 forth. One would want to define a funcbon solely in tcrms of mput data and output

results, but tlùs ignores the added consideration of location in mcmory: a funLilon which works in

1 R~'gions of shared memory Wlth high acœss frequency, and thus rugh contention

55

c

(

(

3. A COMPARl50N IN mE CONTEXT OF INTERMEDJATE-LEVEL VISION

parallel will produœ correct results only for arguments in shared memory

The non-homogeneous Butterfly narne~pace is a cor.stant source of programmer conœm. Any

parameter passed by referenœ (i.e pointers) is a potenbal problem - does the pointer point to

proœss-private on the local processor, or to shared (most probably remote) memory? If the pointer

points to process-pnvate memory, only the local proœssor will see the results of modifying that

memory locabon, which somebmes isn't the intended behavlOr. TIus 15 a very important problem,

as passmg arguments by referenœ and retuming altered values is a common programming mode1

in C, especiaUy for large data structures for which copying would be wastehtl If the data is written

to by many proœssors, it must he m shared memory, so that a pointer to it will he valid on all

processors. If it is read-only data and is frequently used, performance considerabons dicta te that a

local copy he made. In short, in a system Wlth hierarchical memory unàer programmer control, the

programmf!r must always be concemed about the quesbons' ''Will tlus data he written to by many

processors'!" and "Where docs this data reslde in physical memory?" The latter consideration is not

unlike message passing, except the situabon is much sunpler m shared memory environment.

Because of the shared/pnvate dishnction, Vlewing parallel programmmg with the U.S. as ex­

tended sequential programming is very misleading. A routine that was developed sequenticllly

often will not work when nm m paraUel, because of side effeds. Side effects to local memory will

cause incorrect behavior when run in paraUel, as the slde effects will only be seen by one processor,

not by aU proœssors, which is usuaUy the intended behavior. Thus, determinacy in the U.S. 15

entirely up to the programmer. It is fairly easy to write a non-detenninisbc program: for example,

a program which crea tes tasks that slde-effect C global variables will nID correctIy on one processor,

but will not work on 2 or more processors, as each processor will side-effect its own copIes of the C

globals.

Because communication IS done through the shared memory, and aU proœssors are equidistant

from the shared memory, communication is unUorm. Synchronization, when necessary, must be

done through low-level primitives such as atomic operations or spin locks, although lugher-Ievel

constructs such as semaphores and monitors can he built from these. Unfortunately, a single,

frequcntly-changing, and frequently acœssed variable will he a problem for program efficiency on

an archih.'CtUre not tolerant of latency such as the Butterfly, as it is stored in a smgle memory (wllich

causes memory contention and thus latency), and processors must synchronize to change it (which

56

l

causes synchronization latency).

3.3. BBN V.S. Experimental Results

The parallel cooperative fitting code on the BBN Butterfly was parallelized sim ply by dl'composmg

the summation function into a parallel one, since summatton over an index range 15 by tar the most

important type of operation in the fitting code, and the easiest to parallchze. If the summ<ltion r.mge

is /l, our code allows the measurement for various summahon task granuJanhe~ by dlvldmg up the

work into /II-sized chunks.

The experiments we ran were the fol1owing. 6173 pomts were samplcd on an arttfioaU y-gl'nl'ra h·d

ellipsoid, with added gaussian noise. Tests were made on a single Iterahon of the iterattVl' Levcnbt.-rg­

Marquardt fitting procedure. Tests were run for gramùarittes of 10,20,30,40, SO, 75, 100,1211, 150,

175, and 200-point summation sub-ranges.

Speedup and utilization results for this test setup are shown m hgures 3.2 and 3.3.

As can be seen !rom figure 3.2, the best speedup was obtained for a granularity of 175, which b

rather coarse for the BBN Butterfly. However, the reader has œrtainly also notiœd the "sawtooth"

pattern of the speedup curve for the granularity of 175, in figure 3.2 These MO obscrvahonl>

arise because of a granulanty mismatch of the program to the architecture. In the first Œse, better

performance is obtained through coarser granulanty by increasing the computahon to overhead

ratio.

ln the second case, task starvation [11] shows up as a sawtooth pattern superimpo!>cd on a

generally monotonically inaeasing speedup curve. This can easily he secn by remembering thal

there are 6173 data points in the data set. A summation over 6173 data pomts, dlvided mlo rang~

of 175 summation index values per task, glVes r6173/1751 = 36 tasks. TherefofC, we must divldc

this number of tasks by the numher of proœssors available. However, tasks arc dlScrete oblect~, so

tllat if we have l' processors available, JI - 1 of them will reœive l36/ il J tasks, and 1 proct.'s!>or will

57

«

(

", ,./
, ..
,.!

l n[
j ,u

.1
1 .'

'1
l~
ft •

1

'Ir--..,:. ...
.. ,
n71

1 ::1
1

lU

n/l
J

",l
)

/~
/

/

//
~

./

6 ,. Il " .. . ~ ...
(a) S~'t->dlll', j,'I'lIInulanty" 10

lU ., 1. 16

·P···

..

Il

j
1
JO

J

J
JO

3 A COMPARlSON IN mE CONTEXT OF INTERMEDIATE-LEVEL VISION

r Il

".
l 'lt r ,.
l 'f

"t
1

'i .-
01

•

M
...

, o.,
,ul
lur

0..1

n'f
ol

-

1

-~---~I

~_/

1
i

i
1

i
1

1
1

.. ~·;-·_-'~~I.-j'i- -,'0"--1 . _ .
(h) Speedup, granuJarity = 75.

1
1
J
J
!
" 1

i - .. -- _-- .. --.&_~--~ - -_ ~
" 6 1 10 Il '4 .6 l' 20

, ..
1 ::~ j i '01 ~---

:; /­
IV
oL~_-- -- _~ - - • __ • __ . ____ ._._
2'" toU 1.1611

.,.. .
(c) Speedup, granularity = 175.

Q;~=--~-- .--~--~ ----~--~--

:t '~
i 1

~ Q'r
ul

1

::r
G..L
ol~ _____ ._ ~_~~~~_

2 .. • œ 10 12 l' ., Il .,...
(d) lItib.rA'\tllln, granulant y = \0 (e) Utihzation,granularity = 75. (t) Utillzation, granularity = 175.

Figure 3.2: Speedup ,md efficiency (utilization) for the BBN Buttertly, at different granular­
ihes

58

1

.,

etftctlve' otproces<ors

Figure 3.3: Speedup surface for the BBN Butterfly. The speedup surface shows hpeedUP
results for granularihesof 10, 20, 30, 40, 50, 75, 100,125, 150,175, and 200, from front to bnck.
Notite how performance Improves for hlgher (coarser) granlllaritIe!o, but only for certain
numbers of processors. See the text for cxplanations.

reœive r36/I'l tasks, so that the critical path length is f36/ 'il. A~suming complete paralleltzation (r.e.

ignoring sequential components of the code), &peedup will therefore be 36/ [36//'1. This 1S plotted 10

figure 3.4, wlùch the reader can see compares qui te weIl to the graph ln figure 3.2, for a granularity

of 175. Of course, the Jdealized model ignores the sequenbal componl'nt of th" code. This includes

sequential elements in both the user code, and sequential region& through the task generators.

Thus, the optimal granularity is the one which JS the largest possible, to aVOld overhead,

while avoiding task starvation effects, to keep aIl proœssors fully ulÙized. TIus J'('presents a slice

through the speedup surface shown in figure 3.3: for a gJven number of processors (shown as

t of processors in the graph), there corresponds an optimal granlliarity (granulal.l.ty) at

wlùch the speedup (effective f of processors in the graph) is maximlzed Such a slice, for

JI = 10,12,14,16, is shown in figure 3.5.

In general, a user will not have such a trivially simple way of changing the parhtion size of his or

her tasks. In the vision context, dynamically generated tasks, varymg data set& and proœssing time

will play havoc with this endeavor. TIùs will usually mean tedJou& restructunng for the programmer,

59

r

3 A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

201 -'-""--r -- r""--'-~'-""'-

16,

14·

"'1 .' 1

6; /
41 /'
21/

r
o---~--~~--~----~--~~--~~ o fi lU 12 14 16 .. 20

Figure 3.4: Idealized speedup curve for a granularity of 175. Note the close agreement Wlth
the curve IR fi~;ure3 2

Il

1

lit '.

91
1

IL/-
1

7~1 __ ~~ __ ~~~: __ ~~~~_~~~.
1

Figure 3.S: The optimal granularity for the BBN processor, for p = 10,12.14.16. The x-axis
corresponds to which of the Il granularities we measured, from 1 to Il respectively 10,20,
30,40, SO, 75, 100, 125, 150, 175, and 200. For the four cases, the best granularity is 125 (8th
value), 75 or 175 (6th or lOth value), 150 (9th value), and 200 (llth value), respectively.

60

1

.,

after much trial and error.

The final, and CTUClal, aspect of performanC<' on the BBN Butterfly is memory contention For tht'

test algoritlun we used, data ior htting IS mo~t convenifmtly structured ID the torm of a vector, to he

able to index through the data during summation. Unfortunately, the US. stores C v('ctors in a sm~ll'

memory, which causes senal acCL'SS to data. Theretore, a substitute data !>tnlcture (il ""hstributt'd

veetor", distributed across the memones of tilt' machine) had to he build for tlus apphcahon, which

syntacbcally allows the programmer to acces!> the ddta through a single mdex, but which is actually

built out of the matrix scattenng rouhnes provided by BBN. This was fairly simple to do, but

illustra tes the point that to proVlde paraUd access to data on the BBN, when usmg data stnlftUI'e!>

other tllan simple matriœs, new data stmeture allocation and acœss routines must he built by the

programmer to properly scatter data across memones and obtain good pcrfonnance.

3.4. Comments on Sequent Balance C-Linda Programming

C-Linda's great strength as a parallel programming system is derived from the anonymlty and

atomicity of the operations on tuple spa ce. lhe interactions with tuple space are also a source

of weakness, in some respects. The most Important problems are the following. Flrst, a lack of

higher-order functio11S, cruCIal for exprcsslv(, sdentific programming (a pl~"lem inherited from the

C language). Second, exphclt partrtlO/lmg is agam a problem, as it is unclear a prwrr whether or

not the partitioning chosen by the programmer is correct for the drchitecture, or 15 too fine, or tou

coarse. Third, explicit data partltroning is nece!>sary To remove contenhon for a single data obJect

(e.g. a matrix), the programmer must choose a granulanty with which to decompo!>!! these obje~t&

into sm aller pieœs, running the same risks as for task partitioning. Fourth, there is a 1055 of progl'am

nwdularity, as the flatness of tuple spaœ makes possible the anonymous synchronizahon mechani&m

of C-Linda, but aIso introduces the posslbllity of ;ï •• lntrary interactions between program moduler...

Finally, there is mandatory, explicit copying of 5hared data. The tuple space storage model neœssarily

involves copying shared data from tuple space before it can he processed This can be expenslve for

large data objects .

61

l

r

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

The C-Linda system aIso has sorne great strengths. First, Linda offer.:. uncouplcd, atomie operations,

as the semdnhcs of thl' Linda opera bons on shétred data guarantee a tomicity, and allow an uncoupled

1>tyle of programming Second, the Linda eval () operation can he used to crea te arbitrary tasks,

givmg flexIble task creation. FinaUy, ü ta~ks are small enough, and there are enough of them, load

balllncing Will occur dynamically.

Let us again compare with our evaluahon criteria.

As for the other C language-based system we have investigated, the need for explirit memory

allocahon and the lack of higher-order funcbons in C is a serious deficiency; the same arguments as

ln sechon 3 2 apply

An evell more senous handicap anses from the following. As the reader may recall!rom sec­

tion 3.2, C).mguage function pointers, although they cannot be used to create new functions at

run-hme, al least allow the programmer to pas') functions as arguments to other functions. How­

ever, only data values are allowed in tuple spacc, pointers to objects are not. TIus IS logical, as Linda

must be implementable on dlsjoint-memory machines, where pointers are meaningless !rom one

machmc to the other; shared pointers to obJects oruy make sense in the case of a physically-shared

memory. The consequences of trus are obviously that you cannot share pointers to data structures;

10 any case, tlus runs contrary to the Linda tuple spaœ model of associative storage. A more serious

consequence 15 that you cannot pdSS pointers to functions in Tuple Space. Unfortunately, in C, a

function 1& less of a name than a memory locabon (the value of a pointer), whlch. of course, in a dis­

JOint mcmory enVlronment, is completely mealùngless. The same functionality can be implemented

differently ln C-Linda, but it IS clumsy and involves more restructuring [261. Supporting function

pointt'rs would probably involve sorne modiftcation to the C-Linda implementation.

The sam~ comment.; as those for the BBN Uniform System apply for C-Linda programming:

C-Linda can be used on asynchronous parallel machines to program virtually any task, including

1Otermediate-level vision algorithms.

C-Unda IS not constrained by a hbrary-based parallelism mechanism: the eval () operation can

he used to create parallel tasks in an arbitrary way. In this sense, it is Jess disciplined than the U.S.

62

1

l

1

3. A COMPARISON lN THE CONTEXT OF INTERMEDIATE-LEVliL VISION

generator mechanism, but Le; more flexible.

The Linda model of parallelism belongs to the un perative family of side effects on data stnlcntre ...

eval () never retums a value its defmition says it becomes a passive data tuple in tuple sp,wc upon

completion, in effect "returning" a value through a side-effect into nlple spaœ This is a good lIiea

for creating distnbuted data structures [141, but if only a smgle return value is needcd, It cœatl'~

unnecessary access to tuple space (e.g an in () IS needed afterwards to get the value produ(\'d

by eval (). TIus is bccause eval () combines the hmctions of task creation and nlple !>pal'C Sidt'

effecting into one.

C-Linda requires exphcit parhtionillg of tasks and exphcit synchronization; howev~r, sdu'duhng

is impliClt (done at run-time). Explicit partitioning is still a burden on the programmer, in lcmlS

of finding the correct granulanty, as we shan see below. Synchroruzation is abo exphdt, ~o thal

the burden for detenninacy is agam on the programmer; however, C-Linda's tuple spacc operahol\s

faolitate exphat synchronizahon.

Explidt task partitioning wlth C-Lmda is difficult, and is compounded by the fact that C-Linda

is portable; as C-Linda supports both shared memory machines and disjomt memory machines, a

granularity that is appropria te for one architecture will not necessarily be appropnate for another

For any given architecture, it is difficult to find the optimal grain size: the grain size mUbt be sma)), to

do dynamlc load balancing and avoid idlmg, but must be large enough to avoid exccsbive overhe.ld.

TIns optimal granularity will vary from one Linda implementation to the other. The same problem~

of task starvation or excessive overhead will appear, if task granularity 15 too coarse or too fille,

respectively.

ln fact, [14] presents three parallel programming methods, applicable to othcr parallcl program­

ming languages than C-Linda, but well-supported by C-Linda, and show well-defined relation. ... hlP&

between the three. Their soluhon to granularity problems is similar to that suggested by (11 J for the

Unifonn System: ifneœssary, restructure the code to fit the architecture's granularity [14, p. 231:

We start with an elegant and easily-discovered but potentially inefficient solution using

live data structures, move on via abstraction to a more efficient distnbuted data struc-

63

1

'.t. 3. A COMPARISON IN nIE CONTEXT OF INTERMEDIATE-LEVEL VISION - -- --- -- - - - -- - -- -_.....=..:-=..::....=.====.:..::-=..:..:..:..:=-.::=:..:.::..::=-=:....=-=====-==-:-==....::...::=:...:.

turc soluhon, and finally end up via specialization at a low-overhead message-passing

program

For examplc, the goal for C-Lmda parallel cooperative fitting code was to have a single summation

funct10n to do ~ummatlOn of any summand function in parallel. In theory, this could be done by

doing an eval (f) for each invocation of the summand funchon, but that would be exce5sively

fine-grained TIlcrefofC, wc restructured our pro gram because of partihonmg consideratIons: because

the mltial granulant y wa~ too fine, wc.> created functions to calI the summand funcbon a speohed

numb('r of tlmes. Following tbis restructuring, as for the BBN Unifonn System rode, granularity

considerations III the parallel cooperahve fitting code were fairly easy to restrict to a single variable,

because of the !.tructure of our demonstration problem.

As for the U.S., a single, frequently-changing, and frequently accessed variable will greatly

affect program effiClency on a latency-intolerant architecture, as it must be stored m tuple spaœ

(causmg tuple cont('ntlon and thus liltency), and proœssors must synchromze to change it (causing

synchromz.llÏon latency)

TIll' mcmory Illodcl ln C-Linda IS very different: associative tuple spa ce shared storage CoeXlSts

with privatt', addn'ss-based storage. In some sense, we are still faœd with a hierarchical memory

model III Lmda - fast, local memory (private) and 'fuple Space (shared), except that any shared

data must be copl('d into local memory before being used, including potenlially large data structures

such as matnct's. The programmer is helped by tbis clear distinction between shared storage and

local storagc, but mandatory copying of shared data also bothers the programmer and hinders

performante, although only those parts of the shared data structures that must he used need to be

coplt'd. Matrices, Images, etc.must he cut up into chunks when placed into tuples, eIse access to the

wholc structure Will be seriahzed if plaœd in a single tuple. This is a data partitiorung problem:

what is the "ppropnate numher of chunks? If the data partitioning too coarse, each tuple holds

too largt' a part of a data structure. Excessive serialization results because of contention for a single

tuple. If the data parhhoning too fine, there is more overhead bec.'\use of more frequent access to 1'5.

For example, parhtioning an iconic image data into tuple chunks is not obvious. Should the

tuples be m.lde al'cordmg to spatial distribution (e.g. one row of the image per tuple)? Or should

64

1
3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

they he accordmg to image properties kg. one tuple per region)? Of coursl', this IS dependent on tlU'

algorithm, but also on the Tuple Spaœ implementation. Additlon.llly, a smgIc hlpll' mdy ~()Illl'timt'S

be more convenient for programmmg, as there are fewer 1n () and out () opt'rdtion~ to pcrlorm.

The advantage Ul C-Linda is that becau'3e of the semantics of TS, operations on shall'd nWlllory (l'S)

are atomic.

Synchromzation in Linda is explicit, but is much ~unplihed, bcCilU!>l' of tilt' 1I1ll'ollphng and

anonymity proVlded by associative tuple matching, which remows tIlt' n.lmmg probll'm bl'hvCl'll

communicating processes, and the atomicity of tuple sp"\œ operations Howl'ver, bl'l'.lUSl' synd\nl­

nization is still explicit, lt is still easy to create a non-detenmnistic program by forgl'ttmg "ynchro­

ruzation statements. The programmer must still determinc wherc to seriahze l'xeClltioll (mlltual

exclusion), although the mechanism to do so is quite simple.

Explicit synchronization in C-Lmda is problematic in other respl'ds. For l'xample, programml'r

mustoften ask whetheran 1n () ora rd () 15 the appropriatc operatlon,oT, III otht'rwords, wht'thl'r

the data theyare dealmg with lS read-only or not. If a task modIfies the datd It obtain!:> from tupll'

spaœ, an in () 15 neœ!>sary, to rem ove the old data from shared memory (tuple !>pacc). Doing il

rd () instead of an 1n (), followed by an out () , will Ieave the old data ID tuple spare, and place tht'

new data in tuple space as weIl. Tasks retrieve tuples of Identical SlZe and type non-detl'nmmshccllly,

50 that this unintended sequence of operations would Iead to a non-detl'm\1nlstlc program

The very nature of tuple spaœ is a problem for program modularity For (!Xclmple, If two copi<' ..

of a function read from tuple spaœ, we must synchronize their acœsse~ to tuple !>pacl' .. 0 th.lt one

invocation does not acœss the tuples that were destined to the other Simllary, two COpte~ of a

function writing to tuple spaœ must plaœ a marker in t! 'eir output hl pies to dl1>hngui .. h them

These problems arise because Linda TS is fiat [201: any module can intNael wlth any other module,

anonymously, through tuple spaœ, which is obviously an impedJment to program modllianty. Tuple

spaœ's great strength for synchronrzation is a great handicap when stoTÎng data ln shared m('mory,

as any module can side effect another. Modular program construchon wouJd reqmre that one

invocation of a function not interfere with another; however, ID the example abov(', thl'i would be

the case, as the Linda model is based on side effects (to Tuple Spa ce), and tuple spacc J~ flat, not

partitioned, to allow for arbitrary synchronization. The above examples show how ea!'y It i!> to forget

synchronization statements that will make a program non-determinishc The way to synchronize

65

-(

1 .,

3 A COMPARISON IN mE CONTEXT OF INTERMEDIATE-LEVEL VISION

betw('Cn sunultaneous mvocabons of the same funchon is usually to have a single counter tuple in

tuple spa ce, read by tasks and atomically mcremented to provide a UIÙque Idenhficabon starnp for

output tuples pIa<:ed m tupIl' space. This way, each mvocation of a function can uniquely stamp the

tuples It produces.

A minor programmability rustrachon is caused by the nature of the associative access to tuple

"pace Convenhonal memory is accessed through its adclress (pomters), 1'.Jple Space memory

through ils contents (values), so that whl'n moong the two m the form of C-Lmda, sorne duplication

of names for a smgle entity IS unfortunately needed. A common way of doing this is by inserting

a .. tnng identIfier m a data tupll' to be able to associatively match to thIs tuple in tuple space. This

~tnng idenbfier becomes the "name" of the data structure. For example, a typical tuple mlght be

("vector ail, 2, 15.0), where "vector ail is thenameoftheoverall data structure, whereas

when It is read mto a pl'O<."ess' memory, vector a's name becomes float *a. We now have two

nam('!> for vector a depending on where It is stored, float *a in a process' local memory, and a

character string, Il vector ail, m tuple spaœ In fact, identifiers are the orny way to pass tuple space

dat.l stru,-iucc!> as arguments to funcbons: they are used as a "handle" to the data structure in tuple

spacl'

3.5. Sequent Balance C-Linda Experimental Results

11\e experimental procedure carried out was identical to that described in section 3.2 However,

the nature of the C-Linda implementation on the Sequent Balance is quite different from that on

the U S. on the BBN Butterfly. In C-Linda on the Balance, each task (eval ()) is unplemented as a

UNIX fork operation; if a proœssor is free on the machine, the iorked task will be scheduled there.

If not, the task will he scheduled en an already-busy processor, and context SWlt '1ring will result.

Adillbonally, there IS no way for a user to l'eStrict the number of processors available for use, for

testing purposes Instead, the programmer must restrict the number of tasks created. This coupling

of nurnber of pro<:essors and task granularities is undesirable for testing purposes. Such a scheme

I~ Mmply stalle load baillneing, or the adjustment of task size to match proœssor numbers to obtam

lugh utilization, rather than dynllmie load balancing, where the number of tasks is unrelated to the

n\lm ber of proœssors, and high utilization is obtained by having short tasks such that task starvation

66

1

1

.~.

(a)Speedup

0'-
o

1

'~"I

(b) Utlhzallun

Figure 3.6: Speedup and efficiency for C-Lmda on th!.' S~'<Ju('nt 8alanœ

effects of l' - 1 proœssors waiting for a single processor to finish a longer ta!:>k arc mimnnzcd ln

tenns of intermediate-level vision proccssmg, dynamic load bal.lnclIlg lS far pn'f~·r.lble, a~ the :-.iZl'

of tasks generated by the algorithm will vary accordmg to the data .,et~ Wlth C-l.md.1 on Ill('

Sequent Balance, dynamic load balancing reqwres too fme a task Slze to bl' practil'dJ t1w UNIX

fork caU is expensive because it involves making a duplicatc of the calling proCl'~~' aJdn':-.~ .,P,ll'(·

AdditionaUy, creating more tasks than there are avaIlable processors Will slmply proJUCl' UNIX

process-Ievel context switching, under Sequent Balance C-Lmda, wluch I!:> a sourn' of unde~,r.lble

overhead. Therefore, creating srnan tasks is not possIble, and stahc load balancmg Wd!:> tlll' prclt·rn·d

choice to avoid overhead.

Speedup and utilization results are shown in figure 3.6. Note that now, bccausc of .. talle Joad

balancir.g, granularity and processor numbers are coupled: a particu1ar granulant y correspond!. tn

a particular number of proœssors. Tests were therefore performed for surnmation gr,muldnhl'~ of

6200,3100, 2075, 1550, 1250, 1050, and 775, whlch correspond to l, 2, 3, 4, 5, 6, and H pron·sM)r!.,

respectively, for a 6173-point data set, as the reader can veriiy.

The poor speedup and utilization curves sunply reflect the coarse granuJanty supportl'd by th!!.

irnplementation of C-Linda on the Sequent Balance, not of the C-Lmda model itself, wlllch can be as

fine-grained as the programmer chooses to make Il. However, these resultc; do indicate that dynamic

67

«

{

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

task creation on the Sequ<,nt Balance should he carefully examined by the programmer and compared

to the minimal task size supported by the arclutecture. Once more, the programmer might have to

n'structure his or her code to suit the hardware.

3.6. Comments on Id Programming

Id on the MIT TrDA IS a v{'ry powerful programmmg tool for intermediate-Ievel vision prograrnmers

m parhcu1ar, and ~cientiflc paralk! programmers ln general. Its strengths are qUlte elear. First, Id

provides loglcal mdependence. The programmer is freed from the details of parallelism, as Id parallel

programmmg is lmpücit. Second, Id pro~des closeness to pTOble", doma;n Through the use of rugher­

order functions and deelarative programming, an Id program is close to the algorithn\lcspeaficabons

for the problem. A third strength is finr; :,;raIIIed parallelism: Id imposes no artificial sequennality onto

a program. AU the paralleüsm present will be exposed, down to the mstruction level. Finally,

detenninacy is one of the most important strengths. Id programs are guaranteed to be de termina te,

producing the same results regardle!>s of run-time configuration.

However, Id on .:t dataflow architecture is no panacea. There are indeed several areas where a

programmermighthavesomedifflculty. First,Iddoesnotprovideanywayofcontrollingoperational

hehavior in cases where it would be deslfable to do so. There is thus absence of control over operational

beJlQvior Second, it 15 easy to code 3n algorithm that generates enough parallehsm ta ovenv}rel", fillite

machine resources. Next, there can he excessive dependence on compIler. A ftmctionallanguage does not

remove the neœssity for the user to provide adequate algorithms and data structures, although it is

tempting for the user to forget. Fmally, there is the rarity of real implementations. Id is implemented

on very few machines, whlch arc not presently generally available.

Let us once again retum to our evaluation criteria.

Arguments for the eloseness to problem domain of functionallangu'iges, including Id, have

been made elsewhcre (see appendix B), and will not he repeated. Functionallanguage programs

can easily he l.'Onsidered as executable specifications, anu eUe doser to mathematical descriptions of

68

J

sàentific problems than any imperative language descriphon bec;> 'se of thelr compll'tl' n'hant'-' on

expressions. 'This naturally applies ta intennediate-Ievd vIsIon a' 60nthms a~ wl'11

Id is well-suited to scientific appltcations in generaI. In tenns ot intemwdlate-ll'vel VISIOn pm­

gramming, because there 15 no nohon of partitioning, nor dL<;tanCt.' m commullll',lhon, .1Ily low-Il'wl

and intenneœate-level Vlsion algorithm can easdy be IDlplement('d TIll' ,uclutccttm.' Wl' éll\' l'X­

amining to support these programs is a general-purpose dataflow maclunf.', tht' TIDA It support~

very fine-grained parallehsm, which could be used to exploit the ftnl'-gramcd paralll'lIMl' potcnh'llly

present in intennediate-Ievel vision algonthms. The effccttveness of Id on other arclutcrtun's would

obviously vary dependmg on the arclutecture, the comptler, .lnd the l'Ode Ih,elf.

The task creation mechanism in Id IS beyond programmer control, and thcreforc detennmcd by

the compùer. In some sense, this lack of mechanism proVldes the mo~t mnvenient tdsk creatIon

mechanism of ail. In the case of the 1TDA dataflow arclutccrure, t'a ch in~truchon 15.1 ta~k

Paradoxically, this source of great strcngth for the Id programmmg ,lppro.ld\ (',ln also he a ,>Ourl"t'

of great problems. In a dataflow architecture, parhtiorung a code mto thread~ of sequenhal execution

has no meaning. However, on a more conventional arclutecture, such i~sucs, as weil as ... dwduling

issues, would probably have a great deal of importance. On such archltecrul'l'!>, Id pnJVldc!> no way

of defining operahonal behavior if an optimal parallel algonthm is known, or refmmg ItS lwhavlOr If

performance requirements demand it. Para-functional programmmg (25J provldes antlotatums that

allow for finer control over operational behavior, without completely restruchmng the program,

while keeping ils functional nature. Even if such annotations are provtded, Hudak 1251 behevl'''' there

still will be cases where complete restructuring of code for performance WIll be neccs~ary InJ('ed, it

is shown in [35] that optimal compile-time sclleduling IS an NP-complete problem, although efflncnt

approximations can be found. The Id compiler used for this thesis ~ tallored to extract paraJJeli~m

on a particular arcIùtecture - although this portablhty questIon may be le~., Mgniflcant If it C,In bt·

shown that the dataflow architecture 15 the proper one for ~oenhfic parallel proces~ing

These questions are all related to the ISSUes of cxpresslveness, effioency, and paraIJehsm, d('­

saibed by sorne as a tri-polar relationship of mutual repulsion [161 For example, If .111 parallelbm

is explicitly written in the program, it will become cumbersome (an example of mexprc~~lv('ne~~).

Other examples include memory usage, higher-order functIons, and deahng wlth fanih' machane

69

(

(

(

3. A COMPARISON IN mE CONTEXT OF INTERMEDIATE-LEVEL VISION

resources

memory u~ge' a central issue is the extravagance in memory usage that results from the con­

ceptually cIean functional model that deals wlth values rather than storage œlls; imperative

languages dcnve effioency from bemg able to optimize the storage and movement of data.

higher-order functions: at the current level of compilahon technology, these abstractions result in

decreased effioency, dependmg, of course, on the arclutecture chosen.

finite machine resources: ld bnngs expresslveness and parallehsm together without degrading ei­

ther; the fine .. t level of parallelli.m IS exposed, such that aIl possible operations are as asyn­

chronous as possible. TIùs approach requlIes a run-lime mecllamsm to c"eek and de/er arbilrary­

SIucI actrv,ftes unld the" precollditrons are salistified (e.g. a dataflow architecture). For example,

u~ing recuJ'SJOn to set up parallel fur.chon execution can genera te a lot of potenhal parallelism.

However, m most architectures, a straightforward implementation that spawns each function

cali ,IS a ta5k will ineur large overhead that will offset much of the gain that parallcl execution

bnng!>. Sim ply lookmg at speedup curws might be misleading, as it may lead the user to

a5Slll.1C tha t he / she has found a good algorithm w hen in fact a ~ "rial algonthm would take less

time. 'Illl' dataflow challenge IS to manage this explosion of adivities under finite resources.

TIle more convenhonal solution 15 to have sequential processors execute short sequf'T\œs of

operations This approach ralses the queshons of how efficiently sequenhal architectures can

sWltch short tasks, and of the effechveness of compilers in partitiorung to create the appropria te

taskgrams

If hmctionallanguages need unconventional apparatus to achieve thelT efficiency (e.g. dataflow),

their use wùl he curtailed. Thus in the tn-polar relationship discussed above, in many cases sorne

compromise must be made m expressiveness and parallehsm in order to demonstrate a decisive

advantagc ln effioency.

Id paralll'l programmmg IS entirely implicit. There are no parallel annotations, no partitioning,

scheduling, synchromzahon, nor memory latency to worry about. The latter two considerations

are solved by the TfDA ardutecture. Synchronization is provided at the finest grain possible [71.

I-strudures are proVlded to exploit the highest degree of parallelio;rn present, through fine-grained

70

1

&

synchronization causing premature reads to he queued unhl the data .\rrives. Opt.'rands to an

mstruction in the di\taflow architecture must aIl be present for the mstnldlon to fire, thus creating

synchronization at the instrucbon levcl. Task s\Vltching OCClUS at the lI\<;m.dion lt.'vcl; a~ aU mem'lry

reads are split-phase, the memory latcncy problem is solved by l'xecuhng an arbltrary numbcr of

instructions unhl the memory n'quest is completed, lrrcspeChYl' of whe'tht'r the Wdlt for data b

because of contenbon for d particular memory or 1S sim ply bCCaU~l\ of the rt.'moteness of the' memory.

The issues oflightwelghttask crcabon and e.lsy load balanCln~ Ml' .llso solVl'd by the architecture.

The finest grain parallehsm possIble IS exposed by the funchonal natun' of Id, and tasks are eqUlvalt'nt

to instructions on the TfDA Load balandng among proces~OTh of .1 multl-proCt'ssor TIDA machine'

is done by chsmbutmg copies of the code to cach processor, and applymg ,\ hash function on token

tags to detennine wh.lch processor will handle the cxecution 17J

Memory latel\()' problems are solvcd in the ,Irchih~liul'(', whlch make's h.mdhng largt', shared

data structures transparent to the programmer, and efficient on eX(I\:\lhon. In t ... rms of the 'IïDA

arclutecture, aIl memories are globally addressable Good performancl' lhl'refore dOt.'~ not depend

on a programmer carefully mapping the data to memory ,md being lamtliar wlth the stor.lge model

of the arclùtechIre.

Determinacy is another strong point of the 1:>ystcm, and lS guaranteed by Id'!; functional nature.

The importance of this fact has been dlscussed extensivc\y cl&ewhere 11\ this thesis, and will not be

discussed further here.

Communication between tasks does not have much mearung ID the domam of lmphcit parallelism,

being out of the programmer's control. In the TfDA, the produchon of result1:> necded by other ta!lh.

(i.e. instructions) produces synchronization at the mstrucbon levcl

71

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEvEL VISION

3.7. Potential Problems with Id Approach

We have already menhoned the problems with the Iack of control over operational behavior. Anno­

tations to ~pelÎfy partitionmg and scheduling would be useful to programmers who know optimal

algorithms or want to refine the perfonnance of existing code on many conventional MIMD architec­

tures, although the relevance of these on a dataflow machme IS unclear. However, the importance of

being able to control exœs~ paralleill,m IS dear. In faet, the TTDA proVldes, at the architecture level,

a mecham~m for throttling the concurrcn<.y of loop iterahons, allowmg only ~ iterations at once [71.

l1ln>ttlmg of hanction invocations IS not performed, so overloadmg of machine resourœs is therefore

&hll possible

ExceSMve programmer dependence on the funchonallaH3uage compiler 15 also a subtle, but real,

problem. If tIlt' n'ader refers to the samFle functional program an section 2.3.3, he or she will notice

that the funchons row and col do not perform any useful work - they only produce copies of a

m.ltrix' rows ,md columm" which 15 qUlte meffiaent It is very tempting for a programmer to code

the mdtnx muIhphcahon algonthm in that way, however ln fact, programming details can he put

intofive categoriesl16J

1. Algorltl",,,c dt'la"s: detaIls describmg a method of the solution.

2. Data structures' detdils specifymg an orgamzahon of the program's data.

3. Control detalls: detaùs defining an order of the program's operatIons.

4. Type' n'latrd ddails. dl'taIls speClfymg types of the program's variables.

5. Storage related detads: detail& des01bing representations of the program's variables.

6 Resource rl'1ated dC'tuIls. dctails that specify changes ID allocahon of a prograrn's resourœs.

Functionallanguages wlth imphcit paraUel15m rem ove all detaùs except the fust two. The respon­

slblhty for adequate algonthms and data structures IS ID no way lessened by the use of a functional

lan~u,'ge. Here IS a more efficient version of matnx multiplication [28] than the program shown in

section 2.3.3. TIll' matmult function is kept mtact; only the support functions are changed.

72

1

..

def row i X k Xli, k];

def col j X k X[k, J];

def ~p rowC colD = {
(,n) = bounds rowC;

~n

sum (l, n) {fun ~ (rowC ~)*(coID ~»)

) ;

In tlùs way, rowand col do notcopy a row ora column. matmult invokes ro., ~ A and col J B,

which causes partial applicahons of row and col to be made, creatmg two new functions of a !omgle

argument each. In tum, these new functions are passed to lP, the inner product fundlon, which

invokes them as rowC i and colD l, wlth the smgle rcmaming argument llt'mg the index 1 ln thls

way, lugher-order funchOIlS (those created by tIlt.' parhal applicahon of row and col, and passed as

arguments to lp) remove the necd for copymg and tncrease efftcicncy A programmer mu~t be able

to take advantage of these posslbilihes.

The final dlSadvantage ofId is the rarity of lmplementationson real machmes, which dramatkaUy

curtails is usefulness as an intermediate-level vIsion re!oearch tool. Indeed, the expcrimental code

used to demonstra te Id's usefulness has been lmplcmented on a software SlUlII/atlOn of the TfDA, caUl'd

GITA, the Graph Interpreter for the Tagged-tokcn Archited1.lre, descnbed earlter m th~ chapter.

Unfortunately, this is of limited use as a tool (or intermedlate-Ievel VISIon re!>earch, because of the

obvious slowness of a software simulation of a hardware ardutecturc.

These arguments may he made obsolete by the commercial mtroduction of the Monsoon dataflow

architecture, developed at MIT [151. Monsoon is a slgnificant modification of the ITDA to rem ove

the associative rnatching of input tokens to an mstructlon. A smgle procC!osor prototype has becn

operational at MIT smœ Octoher 1988, and Motorola Corporabon IS collaborating with MIT in

building multiproœssor versions. These machines are a11 programmable III Id

73

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

3.8. Id Experimental Results

lronically, the fleXlblhty and hl'avy mstrurnentation of the Id World TI'DA arclutecture simulation,

combmerl wJth the very nature of the expenmental problem, prevents us from presenting complete

mcasuremenb of cooperahve fitting on the 1TDA, except for extremely small data sets (:5 10 data

pomts). ThIS IS becau~(' of the cnormous memory requirements of any simulahon on the 1TDA,

mmbmed with the explo~jon of parallehsm present m the fittIng problem Itself.

Howl'ver, what wc will show IS a part of the fitting process typical of the rest of the algorithm: the

computahon of the \ 2 merit function. 1hÏs l~ slmply a summation over aIl data points of (a function

of) a chosen error metnc. ThIs type of summation is repeated throughout the fitting procedure,

with the summand funchon being various functions of the error metnc, or of its derivatives. This

therefore exlublts il considerable degree of parallelism.

Wl' mcasured various system parameters for different machine configurations. Id World allows

the USl'r to set the simulation to

idealized mode: an mfinite number of proœssors are avatlable, and the lime taken for the result

of one instruction to reach the next mstruction (communication latency) is zero. This mode

is uscful to obtain the parallellsm profile of the program, the maximal parallelism obtainable at

each time step. ln a pdrallelism profile in ldeahzed mode, the number of instructions e",ecuted

at each hme step is constramed only by data dependenaes.

fini te pnKessor mode: in this mode, both the number of proœssors and communication latency are

adjustable. CommunIcation latency can he ? O.

The expcrimen~ we ran were the following. 1521 pomts were sampled on an artifidally·generated

l'llipsoid, wlth addl'd gallsslan nOIse. The \ 2 merlt function was then applied, with the error metric

dcscnbed in section 3.1 If /1 IS tbe number of processors and 1 is the communication latency,

ml'asurements were taken for the foUowing machme configurabons: l' :::. x,.l = 0, JI = 30.1 =
0.1. 5.10, /' = 50./ == 0.1 5.10, /' == 100./ = 0.1 5.10, and Ji = 200./ = 0,1,5.10. The first

m('i\Sllrement l'OTrCsponds to idealized mode; thereafter, mcreasing processor numbers demonstrate

74

l

f ,
•

l

fI2

8
'::1 e
8-
0
0

=II:

7000 ,.-------,.-----,------'--- -----,---- -.,' -' ,

6000

5000

4000

3000

2000

1000

,

" \ " " l,

" " " 1,
l, l,

'1 " Il l, _

,,', \ '1 'I
l, "

~', : 1 i "
l, r .'1
Il l ,l, l
I, l III l,

• , :-:: :::I{ "~
:. '1 l " l' 1 ~'"

0)\ " l " ," '1"'1 \ '--__ ~~C_"'.._...:_'__"_~,~, --".L.I ____ ,_--L. J.!.l.!....!..1fLu. __ -~'= __ _

0 50 100 150 200

Tlmc Sleps

250

Figure 3.7: P.m~llelism profile for \ 2 mert function, for 1521-pomt surface data Thl' !>ohd
1ine is the number of ALU operations, the dashed line IS the number of f1oaIJn~-p()lJlt
operations, and the dotted line is the n'.'lHber of function invocations, at each hmt· stt·p

the scalability of the results, whùe increasing communication latency shows how perfonnanœ IS

affected by latency.

We fust show the extended parallelism profile for the program, ln figure 3 7.

The parallelism profilE' corresponds, in the TIDA, to the number of ALU 0Jierahons performeù

at each time step. The numberof floating-point mstructions is aIso quite intercsting 'n'le summabon

function employed recursively decomposes the surnmabon range mto two halves, to explOIt tilt'

maximal amount of parallelism available through summabon. This creates an exponentJally-nsmg

number of new functions (as shown by the function invocation profile), and a large numlx.·r of

75

3 A COMPARISON IN THE CONTEXT OF lNTERMEDIATE-LEVEL VISION ---------------- ----

floating-point operations once the leaves of the summation "tree" have becn reached, which forces

l'valuation of the summand function (seen in the function mvocation profile), and soon thereafter

the large number of floating point operations.

Nobce how many nl'w funchons are created by the recursive summation function - thousands

of new function call~ TIns couJd conœ1Vably swamp the resources of a real machine. In such a

case, the recurslVe ~ummahon function would have to be recoded to {oree evaluation when the

summabon range b les~ than sorne epstlon (<'" 4, for example). This would corresponds to changing

the granularity of the program to suit the arcJutecture.

Figures 3.8,3.9,3.10, and 3.11 show parallehsm profiles for p=30, 50, 100, 200 uI\der dlfferent

latenoes. Note how httll' executton time changes when latency changes from 0 to 10. For example,

for l' :.. JO, execution time changes from 10293 to 11394 hme steps, a 10.7% mcrease, when latency

increases from 0 to 10. ThIs IS quite smaIl, consldering the increase ID commurucation latency, and

o~ bt.>cduse exœss parallehsm masks latency. Because of split-phase rransactions, the dataflow

proœssors are frCè to work on oUler instructions mstcad of wruting for other results. Of course,

it stands to reason that when less excess paral1elism 15 present, latency is not as weIl masked: for

example, for " = 200, execubon bme changes from 1628 hme steps to 3206, a 96.9% mcrease, when

latency mcreases from 0 to 10. TItis IS sttll an impressive result. mcreasmg latency from 0 to 10

produces only a doublmg of mn hme.

Speedup and efflciency (or utilizanon) CUl'ves are shown in figure 3.12. NaturaIly, increasing

latency dimirushes the speedup (or the effecttve number of processors), and correspondingly de­

creases the average effiocncy, or ubhzahon of each processor. If 'Ii is the time taken by one processor

(equivalently, the total number of mstructions executed), and t(/,. l) the time taken for a machine

configura bon wlth " processors and 1 communication latency, then [5)

and

Tl
speedup(p./) = -(1)

t Ji,

T
utilization(I'.1) = 1 /)

[1 X t(p.

As can bt.> seen from the figure, latency is responsible for flatterong the speedup curves and for dimin-

76

1

..

.,

3. A COMPARISON lN THE CONTEXT OF INTERMEDIATE-LEVEL VISION ----------- -~ - ._- -

35,..------· ... ------,.-·------,--------,·--- -- -- -\- ---- ---

30~==~~--------------------------------------~,--,
1
1
\
1
1
1
1
1
1
1
1

1
1
1

1
1
1
1

25

20

15

10

5

o o

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

LL.....:_--'-_--L ______ --L ______ --L _________ L __ •. _______ J -

2000 4000 6000 8000 10000

Time steps

Figure 3.8: Execution time for \ 2 for JI == 30, under latencies of 1 = 0, 1,5.10 (in solid,
dashed, dotted, and dash-dot lines, respectively). The maximum number of operations
(30, as JI = 30) is sustainable for m08t of the execuhon time, for alllatencies (from approx.
t = 1400 to 1 = 10200). InitiaUy, however (1 < 1400), there is not enough work to keep ail 30
processors busy, the numberof operations per time step osci\lates between maximum and
a lower value. ObVlOusly, the run for 1 = 0 finishes firat, al 1 = 10293, then 1 = 1, 1 = 5,
and finally 1 = 10 al 1 = 11394, but notice how little exp.cution time changeb as latency III

increased, because excess parallelism in the algorithm 15 used to mask latency.

77

III
C
0 -~
4)

0.
0
~

~ 0
1 ~ ...

50

40

30

20

10

o o

3 A COMPARISON lN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

- - T - - --~ ---,---------, ----.-------,-.---.-.,.------r--..,

1000 2000 3000 4000

Time steps

5000 6000

1

"

Figure 3.9: Ext'cution timt' for \ 2 for JI :=: SO, under latencles of 1 = 0.1. 5,10 (in solid,
dashl'd, dotted, and dash-dot Unes, respechvely). See comments for figure 3.8. Again,
notIct' how huit' ext'CutÎon time changes as latency IS increased, because excess parallelism
11\ the algonthm is usoo to mask latency.

78

.
-"

1

" ~
:~
1

1

-

e
1

:);
'~If·' ..

7000

1

100

80

r;,}

C
0
.~

60 e
Q)

§-
<+-0
0

=#:
40

1

20

0
0

J--- -,------J- - ,-

---- - - ----~-- - ---,
~ "J,' ", " ~" " ~" '1 '",J,'I", I~I

." " ~ 'j,llooo
,u ,

ft" 'r ,"
ft" Ir ~, ,JI", · A" ~. ,1.JIIII I~I ," Ir ~ ,f,I"" I~I ," Ir ," ,II !, ~ Il,~I'' • ,U c Ali ;. ~ ,/,,(.,. · 1~1I , ' '1

~'t'f
," ,C I~" Ir · 1." " ~ .i, " ," ,C

1 • 1.' , Il ~ ./; ,; ," ,1 1
I~'

; " ~IM" Il: ,1 , 1'/: ,"
! "~ ~I/, ~" · ,t)

l' l' ,C)
l' l "~ ~,t. " 1

l' 1 l, ~,t. 1 .. ,"
" ~ 1

l' ! I,~ ~It; ~,; l'
" ~ 1 ," ,c ' .,. '~t. l, Il ..,1 _ i ,,~r ~~ (, ,
... ' i "., ~Z 1:

i t't' Z~' > ," roi ~ . • 1. 2!~ , ,
! i : ,t'I2I l, l' '1; I! n :I~: ~~~~' 'r ," '\' .. l '~~ 1

,
~ i ,'" ' ,"

, } 'fh?!ri ",
!. !: 1 i:~ 1\
. • ~: ~ ~I ': ':.
:!.:I!el~ 1,': ','

, I! l ,,, 1_ ,~

~:;! !~i~ 1: ,~

, '-1 ~'!~ ,. \'
~. f ~ •

(~., ·I,I.!~ ,.
: .!'I!' e ~ ~ I~

: 1 " !.! i e Î ~.. ,~
:' i' ! d I~~~IC~ ,\ " ' , .
:: ~ ., '1 • e;,!o\O: ,~ ,
• 1 ~ •• ~ i ~ ;. "IC.. ,~ ~.::

, \ i: i ~.; i ~ ;. "IC~ I~
,I.~:'i., .. ~;.!&~" Il ,',,'
~ \ l:! • '1 d;~'.1:~ Il " . Il., "): . =- (1 .. __ J.. ____ .L- .L __ .J.

500 1000 1500 2000 2500 3000 3500 4000

Time steps

Figure :UO: Execution time for \ 2 for JI == 100, under latencies of 1 = 0,1,5,10 (in !lolid,
dashed, dotted, and dash-dot lines, respectively) Set> camment& for figure 38, Again, nohce
how little execution time changes as latency is mcreased, becau!>e excess parallelism ln thl'
algorithm is used ta mask latency.

79

"" ~. j .i

4500

ol 3. A COMPARISON IN ruE CONTEXT OF INTERMEDIATE-LEVEL VISION

('

200

150

100

50

o o

r- --- ----1- - ---

500 1000

" , .
" , .
• 1\
.1',
l'~
,' . . ' .,
t'~
,'.

,,' "
, t . ' , , , ' , , , . . " . ,

1500

•
t • t

Time steps

"
"

" .'
"

2000

l' 1'1

· , 't
• , 'It
• , 'It

'It · , ';.
1 1 \~

1 1'"
1 1 1'1 , ,

,
:t-:
"
• ..,"

""1,

2500

Figure 3.11: Execution bme for \ 2 for Jl = 200, under latencles of 1 == 0,1. 5 10 (in solid,
dashed, dottcd, and dash-dot Imes, rnspecnvely). Recall that since parallelism is used to
mask latency (by ktoepmg procc!>sors busy mstead of waiting), wc would expect that less
eXCCbS parallehsm (because of an mcrease m the number of available processors (JI = 2(0»
would cause the effects of latency to he more apparent. Execution time increases (rom
1 - 0 1628 (for 1 =: 0, sohd l1Oe) to l "- 3206 (for 1 -= 10, dash-dot line), nonetheless an
lD\preSSIVe l'esult for such a mdSSlVe increase in latency. The effects of high latency (1 =- 10)
arel'spet'ldlly apparent at startup (1 < 1000), whcnhttle parallelism is present. This shows up
as oscillations 10 the number of instructions executed during that time frame, as processors
dre busy, then Idle while waihng for results, then are busy, etc ..

80

3000

J

l

..

3 A COMPARISON IN THE CONTEXT OF INTERMEDlATE-LEVEl. VISION
---------~-- -

ishing average effioency. In fad, effiaency drops to below 50% for a latency of 10, mm pron\1<;m~ tilt'

cost-effectiveness of the machine Howevt'r, less severe latenoes produ,-'l' more .Il"Ct'ptabll' n'l-ults

3.9. Key Points

Let me summanze the key points 1 have made m this chapter.

Our test algonthm to compare parallel processmg systt.'ms 15 a simpltfied Vl'rsl0n (lI p.lr.lllt.'1

cooperative hthng, where difft.'rent iteratlve fitbng processes exchange mformation about .\Ill'Ilhly

in order to obtam a better fmal fit. Parallel cooperatIve htting 15 an intercsting t ~I caM', .11-0 Il 11-0

an iconic 10 aggregate transformahon wlth large Input data sets, data-depend('nl parhbonmg, and

potentially hlgh paralldism.

BBNU S strengthsan'a compdrativelysmall grainsize, dynamlcloadbalancmg, larg(·b.Inllwldtll

to shared mcmory, and a smgle address space for shaf(~d data. Weaknes!ocs arc a Jack of lugher-order

functIons, an mexpressive parallelism mechanism, mal and error exphot ta !ok p.lrhtlOl\lng, and

10cal/remotc, pnvate/shared consIderations for every data obJect.

C-Linda strengths arc uncoupled, atomic operations, fleXIble task creahon, .md load baJancmg.

Weaknesses are a lack of lugher-order funchons, tnal and error explicit task parhtIollmg, ('xphot

data partitioning, 10ss of program modulanty, and mandatory, explicit copying of !ohared data

Id strengths are logical mdependence, closeness to the mtermediate-level vision problem domain,

fine-grained parallehsm, and determmacy Its weaknesses are the absence of control over operahollal

behavior, the possibilities it gives to overwhelm finite machine resources, the increa1:>cd compIler

reliance sorne users mlght feel, and the rarity of implementations on real hardware

81

(

2011

1110· ,

140·

!t
1.. 101»
<Il

20
1

0'" ~_---i---___ ~ ___ ~~_L--.- _J.-.~_~.L..--J.-

20 40 fiO Ml 100 120 I~O 11>0 180 200

• O(pru.e.50R

(a) Spl"->UUp

(
l, --I __ ~ -7 --_____ ~ _______ ~

09-

OR,

07'

06~
8
" . o-~r ..
"il
~

04l
03

02~
1

O~L
20 40 bD 110 100 120 140 160 180 200

• of proceuon

(b) Utilization

Figure 3.12: Speedup and efficiency for the TfDA, in the presence of latency.

{ 82

1

4. LESSONS To BE DRAWN

4.1. A Comparison of Three Parallei Processing Systems

ln this section wc will compare and contrast our tluee lest sy~t('m!>, agilinsl (',wh utlll'r but .Il!>o

against our evaluahon criteria.

A criticism of funroonallanguages such as Id IS l.'XCt'SSlve u!>c ot storage beC,IUS(' of l'upymg

However, reusing storage IS often possible Gnly becausI! of &equentldl cxel..'Uhon For \.'X.\mplc, .l!>

for functionallanguages, the V.S. uses extra storage to allow for more paralll'h!>m. the Share ()

mechanism (and other local copies to aIl processor&) ensure that all proccssors can pTOCl.'ed \Jl parant'}

and don't have to waJt for a senalized access to a single memory module.

C-Linda on the Sequent Balance, ID sorne rc!>pects, IS il better-adapted !>ystcm than thl' BDN

Vnifonn System for parallel programmmg of intermedlate-level vl!>ion algonthms, but lcs!:> so ln

others. It does not suifer from the syntactic crudeness a parallel hbrary-bascd de!->Ign, nor doc!> it

suifer from the semantic crudeness of a single, dommant parallchsm model (of parallelism OV<>T data

structures). The V.S. proœss generabon mecharusm is very mflexible wlth re!>pect to the C-Lmda

model. With C-Linda's eval () , a task can be created out of any arùltrary funchon

The presence of what amounts to a memory hicrarchy m C-Lindd crea tes Jncon!>lstency problcms,

just as in the Unifonn System. Modifications to shared memory may be atomic, but this does not

prevent another process from using an old copy of data it obtained using a rd () operation. This is

83

(

(

(

4. LESSONS To BE DRAWN

an examplc of the synchroruzation problem synchroruzation of multIple copies of a single plcœ of

data

The data parhbomng problcm 15 entirely analogous to that in the BBN Butterfly US: both

C-Linda and tll(' U S force the programmer to expliotly cut up data structures in order to avoid

1>cnahzed ac('es~. In the latter case, data pamtiorung was determined both by the memory model

and by the C language programmmg model (/, S C vectors on a ~ingle memory) The diifel\'nce 15

that US d"til ~tructurc~ don't neœ~sanly have to be copled mto local memory to be used (although

for performance n'a~o~ il programmer may want to), but C-Linda data structures always have to

be exphl'ltly ln () , ed or rd () 't'd fust

Tuple &pacc 15 ail excellent medtum for synchronization. because it un couples the synchroniz­

ing proœsses and ensures atomlcity As a mcan!:. ot inter-proce5~ commUJÙcabon, it keeps thcse

attributes, but breal/SC of tilt' mrcllolllsms (~n (). out (), rd ()), the programmer l~ forœd to make

explicit copie& of datd, Whlcll is il burden on perfomldllcc. The BBN US model is sometimcs more

convement and more dfloent, but alway~ more dangerous: local and shared (remotc) memory are

acct$st'd m cxactly the samt' way 'nus can even be done wlthout cutbng up the shared data structures

into chunk", nor domg explu:lt copies, lf performance is not affccted. For example, a U S scattt'red

rnatrix IS a lot more converuent to use for a task than a Linda matnx stored III tuple space. The latter

must he 1. n () , ed exphotly by any task that wants to use il. nlese lùndrances, cé'used by the need

to mamtam atomioty ln the face of changeable 5torage, are made irrelevant in a single-asslgnment

system such a& Id

As mcnhoned above, one advantagc ot C-Linda 15 its dear dlstmction between shared data

and non-shaœd data. ln the U.S., any pointer can point to shared memory or local memory, and

the syntachc ml'charusms to use a pomter to shared memory and a pointer to local memory are

cxactly the sarne' It is up to the programmer to remember which area of memory is pointed to,

for corrcctness and perfomlanœ reasons. This 1S extremely tedious in practiœ. In contrast, the

distUlctlon between shared and non-shared data ln C-Linda is quite explicit, sim ply because of the

fact that the mt'Charusms used for shared memory access are explicit and unavoidable. in () 's and

rd ()'s for shared array acœsses are separa te fro n the pointer indirection and dereferencing used in

local aTray acccsscs, for example.

84

,
.~

1
4. LESSONS '1'0 BE DRAWN
- - - - --

Let us conclude by corn panng aU three systems \VIth thl' ('valua tion mtena W(' propose

In tenns of doseness to problem domain, Id IS most appropnate, a~ hl1H."honallangu,,~(·s dcal

best with funliÎOns, th(' rore of mathematical programoung. Intemwdidtl'-ll'vd V1~I()n progr.lmn\lng

is no exœpbon

General applicabÙlty 15 il fealur(' ot al1 thn'c systems, whlch can Lw u ... cd lor .lIly mh.'TInedl.ltl'­

level vision task, but of COUThe wlth varymg dcgrces of effort ln adaphng i1nd n'~trllrtunnJ!. n'Jc t(l

obtain good efficiency

Id is the most fleX1ble system Ùl tenn~ of task creabon: ta~ks are Imphnt Cl'.lfh I\1strul1Îon i~ il

task) and arc not a programmer concem. For expliatly-pdrtitioneù langlJ.l~e1'>, C-Llllda'c; ev,Jl () Il'>

more flexible than the U.s. ta~k generatoTh. the parallcl hbr<1ry dl'~lgn of tilt' 1.ltter ml'an~ !->yntiKl1c

and semantic crudeness FleXible task creation is a desirablc rharddcnshc for il probll'fIl Jomaan

such as intermcdiate-levd VlMon, whcre partitiorung 15 data-dcpendf>nl ,md wherc '''0;1-." wdl ofll'n

be dynamically created

The overhead in task creabon 15 the most archllecture-dt'pcndl'nt of .111 l'nll'rltl Ilowl'vl'r, thl'

programming model also has a part to play. For example, Id Impo~l'~ no arhfK1al rl'~tnctHlIl!-> on

parallelism; maclùne resourCf>S and data dependl'naes are the only con~tra1l\l,> Thl<, •• 11ow'> for

maximal parallelism on a very fint>-grained machine, ~uch as the lTOA drrhJtectur(', wll1ch makc~

1 task per instruction possible The BBN Butterfly supports fauly hghtwelght la~k .. , ,,~ compdn'd

to the Sequent Balance, which again 15 a desirable charactenshc for a problem dom.un ~lIch a~

intermediate-level vision, where fme-gramed parallehsm wùl often hl· pre~ent Howev(.·r, lack of

lightweight task creation 15 not a restncbon of C-Linda, but rather of ihe tmplemt'ntahon on the

Sequent Balance architecture.

Detenninacy is only guaranteed by programming in Id. 80th U.S. and C-Lmda programming

rely on the programmer for program correctness, which in some case can be extremely difhcult to

achieve.

Load balandng is again very architecture dependent. For intcnncdiate-lcvel vision, wherc large

85

(

(

,{ ..

_______ 4-=.;=LESSONS TD BE DRAWN

run time varia bons are pm.sible, because of the non-uruform na ture of the processmg mvolved, load

balancing is important to achlcve good performance. Load balanong on the TIDA IS aclueved by

havmg a task ~Izccqua] to an Instruction, and by the exccution of code blocks across processors. On

the Buttcrfl y, fine granuJanty allow& fUi d ynamlc load balanong, given enough tasks. On the Sequent

Balan{'{', load balanang must be stabc. Gl'I/en thedata-dependentnature ofintermediate-Ievel vic;lon

task size." thls could be a performance problem.

Intcrta~k commUnicatIOn WIll ObvlOusly he casiest ID the presence of unpltat paJ'bhorung' im­

pliat task& produCl' imphcit commurucation ami synchroruzation, Whlch m the 1TDA architecture

are ~upported by thl' dataflow executlon model and I-structures. C-Linda supports uncoupled syn­

chromzahon and commumcation, but thesc are stùl expiait, and thus tedtous to incorpora te into

codt' and error prone, a~ oml&<;lons wIll often produce non-det~nntmshc bch.lVlor.

Handling of largl', shared l.~ata &tructure& 15 again easlest when out of programmer control.

Wlth Id, exphC1t d.lta moveml'nt for l'ffiClcncy IS not needed, and the TTOA arçmtccture solves the

memory latcm-y probll'm wlth ~p1it-phasc memory traru.actions. With the V.S on the BBN Butterfly,

hlgh bandwidth to memory proVlded by the butterfly network IS an excellent charactl'ristic, but

haVlng the programmer exphatly dlstribute data to take advantage of thls IS tedloUS, as allocators

and acœss mechdm~ms must be bUIlt for cach new data structure. The programmer must also be

aware that If a part of a data stru,.'turc on one memory node IS acces!.ed more frequently, contention

will rcsult In C-Lmda, If data is shared, it must he copied to local memory befoTe being used,

which IS not neœssary wlth the BBN US. For large data structures, copymg to and from tuple space

may bt.>come a performance problem As for the V.s., data partiboning is aJso a C-Lmda problem.

Parallehsm can he increased by decreasmg tuple size, but tIus will increase data access overhead. For

intermediate-Ievel vislon, w here proœssmg 15 data-dependent, data partihoning will not be easy.

4.2. Key Points

Of the three systems we examined, the best suited to intermediate-Ievel vision programming was

Id on the TfDA, because of its mathematical flavor, general applicability, lightweight task creation,

86

1

..

detenninacy, and the logical independenœ it providt>s the programml'r. US. programmmg on thc

BBN Butterfly and C-Linda programmmg on the SeqUl't\t Balance do Ilot havl"' tlw mathematkal

expressiveness of functional programming, .md ottl'n force the prugrammer 10 rl'stmctufl' her or lm.

code through trial and error l'xpliàt partihonÎng

The BBN Urufonn System also lm poses the burden of managing the systl'm'!.luer.lrchll'.ll nWl1\ory

on the programmer, has an inexpn.'Sslvl', hbrary-b.lsl"'d paralll"'lism modl'l, and doe!'t not gu,u,lntt'e

detenninacy, but supports fauly hghtwelght ta&k crcahon and Mmphfu's programmlllg through il

single, shared memory spaœ.

C-Linda create~ a data parbhorung problem 10 tu pie spaCt' for th(.' lN'r, dOt.'!'t Ilot gUi.r.mlt·c

detenninacy, and the Sequent Balance can only handle very coarse-gramed t .. sk~ 1 1 ow'.!v l'r, (' -I.imla

parallel progTammmg, wlûle cxpIiClt, 15 uncoupled and alomlC

87

(

5. CONCLUSIONS

Tht, problem mvc~hgatcd by thlS thesls was that of giving mtennediate-Ievel vision researchers

adequdte parallcl proccssing too)s for their work, where data and computahona) structures do not

ht thl' SIMD cxecutIon model, but require il MIMD exccunon model mstead.

SoentifIl programmer u~u.\lly rcfm~ the ilbstract models and algonthms whIch their programs

implemcnt, and ~hollid not be l'xpccled 10 be parallel architecture experts. Thereforc, their tools

should be Jd"ptcd to the;r problem domam, for fa~t codmg, and should provide logical indepen­

dcnc(' from ~olvlJlg the four lTUcldl MJMD l~sues of parallel processing, partinoning, scheduling,

synchronll:ahon, and rncmory !atency Current tooIs, such as Unifonn System programming on the

Buttcrfly .Ind C-Lmda programmmg on the Balance, do not.

FunctIonal languages, on the other h.ld, as exemplificd by the Id language running on the TIDA

ardutecture, ilrc a more appropnate ~olution. They are dose to the scientific problem domain,

bl'CilUSC they ar"l' based on the funchon and on expresslOns. They are amenable to compUer solutions

10 the ciled problems, because they do not allow a programmer to specify restrictive commands,

or to arhfloally restnct the order of execution. TIns allows a compiler to extra ct aIl the parallelism

present In a program.

Our dt'monstration about Id on the TfDA secms to rely strongly on the dataflow architecture to

&olve the memory latency problem (through split-phase memory transactions). But it is precisely the

hlgh parallcbsm avaUable in a funChonal program that allows the use of tbis architectural feature.

More generally, it is obvious from tbis thesls Ulat it is irnF ussible at the present time to completely

88

1

---------- --------------------------------------

5 CONCLUSIONS

decouple paraHel architectures and parallellanguages - in l'fft'd, impossible to pnlVidt' rompll'tl'

logical independenœ However, funrnonallanguage systems come doses t, and of ter by f.lf thl' bl'st

opportunities for parallel eX{'l"Uhon.

Why then aren' t such systems commonly avallable? l11l'rl' arc a fcw reason~, wInch Wl' ml'nt1olll'd

in chapter 1. ExtensIOns to famùlar scquentiallanguage<; - thmugh paralIcI co,,"tml"ts or hi~h-Il'\'l'I

interfaces to libraries - are more hkely to appeal to sl'Îenllhc programml'J"S than an' Ill'W l"OI\l'UITl'nt

languages. There also IS an apparent ease ln paralld.lZlIlg scquenhal progr.llns lISlll~ l' ... tl'I\SIOI\~

or libraries, OlS there is minimal rewntIng. A further rt'a~on IS the availablhty ot produl"llOn-ll'vl'l

compilers for parallel machines. Most scienhfic programml·n.' programmmg l'"<perll'IKI'S .ln' wllh

imperative languages such as C and Fortran, and the ovcrwhelmmg maJunty of l'uITt'nl '.l"ll'utifk

codes were wriUen m Fortran. Parallel ardutecture vend ors arc thcretorc llkely to l"OnIUl\ll' work

on parallelIzing compilers for Fortran, mstead of compllcn. for funchol\all.m~1I.1gc~ AddlholMlly,

functionallanguage research l~ quitc a young fIeld, applymg It to parallehzmg <'uenhtic pro~film~

will inevitably requin: sorne time. It ~ hoped, howcvl'r, thal tlus thl'slS hal> demul\~tr.ltl'd Ihl'If dC<lr

advantages over imperative language systems for the <;Clenlific programnH'1

89

r

A. A UNIFORM SYSTEM PRŒRAM EXAMPLE

Wc present a very simple U,ùform System program for matri>.. mllitipIication in bgure A 1. Notice

espco.tlly:

- 'Ille memory allocahon caIls UsAllocScatterMatrix () and ShareScatterMatnx ().

UsA] locScat terMat 1: lX () allocates shared memory for a C pointer-to-pointer matrix, so

thal matrix rows are spread across the memory nodes of the machine. A nonnal C matnx

would he !>tored in a single memory, and would he a source of contenhon if access by mcltiple

processors ShareScatterMatrl.x () rnakcs local copIes of the row pointers ofsuch a "scat­

tered" matrix. The vector of row pomters IS accessed for every clement access in the matrix.

This vector IS kept in a smgle memory locahon, wluch 15 a source of contenhon if the matrix is

3Cl'essed by many processors simultaneously. ShareScatterMatrJ.x () makes a local copy

of this vectùr of row pomters on each proœssor. Thcse two funchon calls are examples of

how the programmer has to keep in mmd and adapt her program to the memory model of the

machine, to obtain good performance

- n,e ta&k generator cali GenOnI (). In this case, the tasks to execute are the function

forEachRow (). Each invocation is passed an argument index by GenOnI (), which in this

case rom, from 0 to NROWs.11us funchon 15 an example of the somewhatrestnctive task creation

mechanism in the Uniform System. Each identkal task is passed a single argument, an integer

index in tlùs case. Additionally, as in every system where partitioning 15 exphcit, it is unclear

whether or not the size of the generated task is appropria te for the granlliarity of the macltine.

Any change in the granularity of the tasks would involve sorne restnlcturing of the code.

90

l

•
-.

------------- --

_________ ~. A UNIFORM SYSTEM PROGRA~ ~A.M!'~~

JuI17l99ll41l5 49 matmuh.c Pagel Jul17199ll4 05 49 melmull.c Page 2

• 7

• ,
10
11
12
13
14
13
U
17
11
1t ,.
21
2'
2J
2. ..
2.
27
21
2t

'0 n

" Sl
st
15
li

" .. ,.
.0
41 .,
o
" " •• n
'0
u
.2 .,
•• •• .. ,7
• 0
Il
C2
n
•• 15

" -.w.t c ._- l fil. _itb pionnel .. tria JIIulUpliC:IUOD

by Pierre' .. TT..,l., "
/' $ " 1@I.oliroot/h~/pl.rm/ICl/ .. t. .. lt G,. 1 1 lUI/OOl/0. :n J' t, plu
ft bp"/

"'LoQ _bmlt c," •
.. ... rhioD 1 1 1 UI/OUOt 21 38 ct pi.rre
.. laithl 1.9ri.ion
"/

'ct.fin. no. 10
tdetiD. ID'JLI 10
,-til. Iaf_nre nUit

WaUae hiUltt C_trh. r... 001. !nltrnl ,
for (row • Ci co- < tiPI, rQtl++) "

tor tcol • 0, ccl < HroLl, cnl++1 \
_trh(row){colj • luth.

" Glob.t Ntru "'1"1Ible. Iynk') "'olt Itored iD At c "'ored in " '1 tean .. _ far.. '/

/ .. ,
for~ch'o. - •• or~.r t uhctioa th.t "alb th_ dot pl"t),luct for

Arv-nt.

• puti~Jl~1' %~ of r ... alt m.tris ct. ~IN dyo a.llr
part.it 1t"~1., .110119 t't'W_I [)ot.'t caU ,j"t '-aot.ia"
"r.cUy fra geBer.torr ." • ., .ut •
9HeraU,.IpPUeable dot proclJ:t funetbll, anJ the
per&I'Btar H.te ofte'Ced by tt.o ~r.\on ln! Ilot
.. i table fot' tbb

Il,,llAl'9 • dw..t I.tq~nt ~dr..s by [JI 8
i t" ~ irÔII

letllrMl

.atb.illllJ , .. " ...•................•.•.•. ,
90Jd fo~obID.CiDt UllA!:9' int. i) ,

for Cj - 0; j < .alt .. , h+'
A'II/ll - dot '"'11. ClJn •

/ ... ,
dot •• fu;thn te c~. th. dgt prad.ct _t .
.. ec:tl· fini: .. tor ta the dot pz:~t.. l.rqth .1IOIf.
net2 2Dd W'eGtor la th. dot prod'llot. INqth .:0101

lot

" " ..
" 10

" 12

" " 7!

" 77
71
71

"' el
.a
Il ..
e.
1. .,
••
Il

••
il .,
il ..
" ..
" ..

ft. dol pt Cllhot.

, , .. ,
~r_n .. dotc.t_"tI·...,tl t."n '_t2)

Mt_nu: doUrod • 0

for 0 - 0 J < IUILI, }HI
doUrod t- ... otlljl·YeCtt2IJ).

return dottrod.

.. hl 1 1
1

ht i j,

frdtldheo,O

.. _ a.aJ.loo'olt.t.,1IIahbt_llOIl, IOJL •••• ..,f".' rUIII.
1 - DaA.lltlU.c.U.t .. tril' lœu. dMOllllAT TUtl'
C - D.alloolo.t.tertllubC.1k." ln)) •••• ll-.oIIIllT rUII'

,har.'o.U.tiIIIlrlt!ü ••, ••)
l"'r"o.tt.ttIItlll!U. llOW-II1
n.naSO.U.rIIIltlljiC IlIU_JI,

hit .. tU. t. 1. Ii-jl f) 0 OOlj
hit"QC. 1, j. 10 • j • 11

Figure A.l: BBN Unifonn System matnx multiplication code

91

1

..

B. PARALLEL FUNCTIONAL PROGRAMMING

In tlus section wc will look at parallel functional programming. The issues prcsentcd WIll be:

- what functionai prograrnming is,

- the parallel programming problems it solves, and how it solves them.

We will also look at an example paralld functional prograrn and show, undcr idealized mndltlonb,

how much parallelism it hoids.

B.l. Functional Programming

'This section will give a brief summary of what functional programming is. It will not be an exhaustive

look at the history of functionallanguages, nor will it be a thorough overview of aU ch<lractensh~

of functionallanguages: we will only touch on those characteristics that arc import.mt tu computer

vision programmers. The mterested reader lS directed to [24] for an exœllent survcy article on

hu,ctionallanguages.

We start by charactenzing programming languages as either imperahve or declartltlve .

92

'. B PARALLEL F'lII':CI10NAL PROGRAMMING

imperative languages: charactenzed as havmg an implicit 5tate that 15 modified (1 e. slde effected)

by constructs (! e. commands) in the source language

dec1arative languages: have no impbat state, emphasis placed entirely on programming with ex­

pœ'lsJOns.

Imperative languages mclude the most used languages today, such as Pascal and the C language

ln the~c languages, programming is splIt [9, p. 639] into

- an urderly wo,ld ofexpresslOllS (e.g. f (atb) + c (f (d)))

- a disorderly world of statements, with few useful mathemancal propemes

11\(.' world of statements l~ represented primanly by the asslgnment statement [24, p. 361], whose

{'/f('lct is tn alter the underlymg imphdt store li e. the computer's memory) so as to yield a different

bmding for .1 parhcular van,lble. TIus !las important consequences for parallel programming, as we

s ha II Sl'P la ter.

DeclaratIve [21, p. 305J languages allow the programmer merely to state what should hold true

wlth re~pcct to a computation, without bothering to say preasely how the computation should be

donc. FunctIonallanguages [24, p. 360] are decIarative languages whose underlymg model of

computahon is the function t

Wc bncfl y dcscnbc the characteristics of functionallanguages. Again, the reader is referred to [24,

9,21 J for more detatl. Pure functionallanguage characteristics include:

- Complete tteeJom from side effects· codmg is merely defining expressions and functions.

Nol/mlg is t'Ver modrfied or reassigned, as there is no assignment statelT'ent to give same variable

a dlffercnt binding.

lin ~"Ontra~t to the relation that forms the basis for logtc programming languages.

93

l

"

- Functions are basIc program bwlding blod<s, and l'an be passed arnund .\5 ,Ilgument"l> (higllt'r­

order functions)

- The order of l'valuation of expressIOns IS ununportant (the Churl'h-Ro~~('r property),

We will examine the consequenœ of these characterishcs n latH sechons. TIll' intercsted l'Cader can

examine a simple functional program m appe1\dix 2.3.3

B.2. Characteristics of Modern Functional Languages

Even though they are somewhatorthogonal to paralleùsm, sorne of the featurc~ of modem funchonal

programming languages will be discus!>ed below, becaubc of their importance for ('xpressJVene~s,

The reader lS referred to Hudak [24] for a much more thorough tn'atm('nl of the matter. 1 will follcw

[24J in this exposition.

As stated by Hudak, a functIon IS an absb'actIon of &omc common behavlOT (/.t'. the produchon

of results) over values (i.e. the arguments). If a languagc allows funchons lo be &torcd In data

structures, passed as arguments and returned as resul~, then the language I~ said to allow lIi8",'r­

order functions. Higher-order funchons elre a charactenstic of funchonal languages that grcatly

enhances the expressiveness of the language. In appcndlx 2.3 3, wc .• how how the behavlOr of

summation is abstI'acted :Jver any pOSSIble arguments.

Non-strict evaluatIon of expressions can take two forms, l'lther lazy l''val uation, or l'oger evaluatron.

Lazy evaluation is also referred to as call-l1y-need; an expressIOn wIll not bl' l'valuated unlcss it lS

needed in a computation. TIus frees ct programmer from effiacncy concems a bout not evaluating an

expression unless absolutely necessary; for further dl'taùs, sec [241.

Eager semantIcs imply that in a function applicatIon such as (f x), the body of f and the eval­

uation of x will proceed in paraUel [81. WhIle thls will potl'ntially rncreas(' the available parallehsm

obtainable ID a program, there also exists the possibllity of wastIng re&ources on unneœssary com-

94

i
B. PARALLEL FuNcnONAL PROGRAMMING

putation, thus the usefulness of explicrtly specifyi.ng evaluahon of expressions in a delay~d manner,

a~ explamed abovc.

Us('r defined data types, rcpresentatlon and implementation abstraction dnd lu\.~ing are another

unportant ...harclctenshc of modem functional languages, enhancing modularity, coae clarity, and

faohtahng debuggmg through bctter type-checkmg

Pattern tnatrllmg aÙows the programmer to wnte severa) equations when defimng the same

lunction, (lnIy one of wlùch il.> applicable in a given situation [241. For example, in Id, the factorial

funchon mlght be dcscnbed in thlS way, usmg pattern matdung.

de-f fac a 1

1 •• fac n = n*fac(n-1);

Note how intwtive tlu~ definitlon of the factorial function is.

Array comprehensions are non-strict data structures that treat the array as d single entity defined

declarahYl'ly, rather than as a global object holding values, updated incrementally [241. Anay

comprchcnslOns thus spedfy the shape and the contents of an array simultaneously [271 Array

comprchenslOns arc c&pecrally expressive. for example, we can express anay elements constructed

from recurrence relahons quite easùy, as the followmg Id code suggests [271:

A {matrJ..x (l,n),(l,n)

[1,1] 1

[J.., 1] 1 Il i <- 2 te n

[1, J] 1 Il J <- 2 te n

[i, J] A[J..-l,j]+

A[J..-1, j-1] +
A[i,j-1] Il J.. <- 2 te n

& J <- 2 to n} ;

95

T

i

The programmer is thus frced from worrymg about the order ln which the e}cnll'ntb should b('

evaluated.

B.3. Suitability of Functional Programs for Parallel Execution

Functional programs are well-suited for paralle! execution beci'use ot thœe (rdated) charactcnstics

[29, p. 2]

- parallelism is nnplIcit in theIr operahonal semanhcs The programmer docs not cxphdtly

break up a task into parallel components (no expliot parrinoning>, and so does not worry

about synchronizahon.

- Funchonal programs are defml/innte, i (' , the re&ult of il funchonal program depl'nds only on

ItS mputs, and never on the machine conngurahon or the runtune sclll'dtùmg pOllcy. TIus is d

major sImplIftcahon ln debugging.

- Most importantly, the ollly limifs 011 paral/e/rsm are from data-depe1ldl'llcil's and timte J""Iitchinc

rl'sources

Thesl' charactensbcs deserve sorne comment.

Imphcit parallelism [21, pr. 338-339] ID declarahve languages means that declarahve language

programs may be executed on a parallel machine--but they don't allow programmers to state

explicitly how parallehsm 15 to be created and controlled, that !s, how pr rtitioning, ~cheduling and

synchronization are to be performed [3, p. 1251 Instcad, m functionallanguages the parallelibm jb

implicit and supported by the underlying semantIcs [23, p 61 J. There IS no necd for speoall11cssagl'o

passmg constructs or other comm unicabons pnml ti ves, no need for bynchronizabon prim lti ve&, and

no need for special "parallel" constructs such a "parhegm parend", all of which are needed in

expliàt1y parallel schemes. The compiler detects the parallehsm and generates calls to nm time

software that takes advantage of the parallehsm and manages lt This allows the user to concem

herself only wlth the expression of the algonthm and not wlth the expression of parallelism or the

96

{

B PARALLEL FUNC110NAL PROGRAMMING

Implementation of it, which IS rcqwred in expllcitly parallel schemes. Expliot parallehsm reqmres

the user to explicitly manage the parallehsm and synchroruzahon, which can be a tune consummg

nnd <,rror prone actlVJty Functional proglammmg allows the programmer to Ignore thet.e matters.

A detmmnate program It. one whcrc a g1Vcn set of inputs always produces the same set of

outputs, rcgardlet.s of machine configurahon, machine load, schedulmg pohcy, and 50 on. A [21,

P 3051 language is determinate if 1t sabsfies thr Church-Rosser property, In which the value of

an expressIOn 15 mdependent of the order in wluch Its subexpresslOns are evaluated (i e. the order

of evaluation to amve at the result IS unimportant) This property guarantees the detennmacy of

funchonal programs (24, 71. The inverse, non-determmIsm [21, p. 331J is program behavior that

can't he preŒcted from the source text alone, but de pends on crrcumstances at nmtiIne. 2

The reasons for determinacy in funcbonal languages is because of their sing!c-asslgnment con­

vention and lack of slde effeds [23, p 61J A s,de effect is anythir.g that perslsts after the evaluation

of an expressIon produces a rcsult [34] Examples ot how slde effects occur in Impcrahvc languages

<lTC given In appendIX C

Detenninacy can be ,>xtremely important in parallel programmi.'g. It imphes [21, p. 328] that

the meaning of a program docs not depend on the underlying madrine unplementing It This is

mvaluable ln parallel systems [23, p. 61J It means, for example, that programs can be wntten

and debllgged ln a funroonallanguage on a sequenbal machine, and then the sa",e programs can be

cxt'cuted on a parallel machIne for unproved performance. TIus facihtates debuggmg tremendously:

when left to the programmer, as man imperahve paralle1 programmins language, detennmacy is not

guaranteed. The programmer is rcsponsible for msertmg the appropnate synchronization statements

to prodllce detennmate behavior Any omission, however mmor, can produce non-dctermu .te

results [29, pl] :

fI.eaving detcnninate behavior up to the programmer] makes debuggmg extremely

dtfficult-for a glVen input, the program may produce dtfferent outputs for different

2Note that dett'munate IrehaVlOr does not neœssanly mean detemnnlsht executwn [7, p. 2] (although 1t can) In\phot
p.uaUehsDl Ln the language, varymg machine configurdbons and madune load can cause the partlcularcholce of schechùe for
parallel ac:tlVllles in a prograDl to be non-dete.-nunistic. However, the 7'l!Sult CODlputed should not vary Wlth the schedule, for
dl'tl'munate behaVlor.

97

..

B. PARALLK FUNCfIONAL PRl)(;RAMMING _____ 4_ __

macilÎ!le configuratIons and/or scheduhng pohol's, and thlb bl'lléiVlOT m,lY nol mmH'­

diately b~ obvious. Such hmmg-dependcnt elTor.. moly not c,,{'n 1l(' n'prodUl'lhlc 11\ <l

debugger ibecause st~'ements lIlSt.'rted ln dt'bug ma)' "dlsturb tlll' e"pl'nInt'nt" J

The lastcommcntls important using a debuggt'T on" parallt'l program ma~' t.1\I5l' hnllll~-dl'pt'ndl'nl

errors responsible for non-determinale bchavlOr 10 dlS.lrrcar A funchonill progr.ml, bl'r.\lI~l' II lb

detenninate, will avoid these pitfalls. Removmg <;Idt.' cftl'ct~ 1 .. il nUClal faflor 123, phIl IllI'

importance of mirunuzmg side effects 11\ a paraUd ~y~tl'm I~ intenMfIed ~1~mfJc.Hltly, dut.' 10 Iht·

careful synchroruzation requrred to ensurc correct bdlavlor whl'n '>Idl' l'ffed5 arl' pn..'~t·nl

The final characteristic ml portant for parallcl exccuhon of hu.:-h,lnal lilngllagl.'~ I~ tht'IT Il, Il

15] equivalence of instruction schcduling constramts wllh Jatil depl'nâ\'nl1l's 'nus ml',m" th,llno

artificial data dependenoes are mtroduced. Art1flOdl d.lta depl'ndt.'nClcs 1Il Inlperilt1Vl' I.mglhlgl'b

are a c:msequence of being able to reass gn new valut.'~ to prevlOusly-ddmt'd Viln.lblt.· ... '1'111'" l', Ilt

COf.ll"Se prohibited m functionallanguagcs. Thus, [1, p. 171trcl'dom trom "'lde l'Ilccts IS rwCt".!:>.Iry fil

('nsUIe that the data dependenClcs are the sa me as the sequencmg com,tramb, imd t}lI., 1 ... the C,IS,· III

functionallanguages, A review of data dcpendence type& IS pre~cnted in appl'ndlx D

Thus, the key concepts introduced m thlS section arc thal fundlOllal programmmg langll.lgt.'''' .trl'

Good for

high-Ievel programming: becau..c;e of Ihey 3upport h1o!1Cr-'Jl'ÙCr fllnchons and.1 programmlll~ ~tyl('

close to the mathematical speciftcahons for algorithms

det,erminate results: because of the Chl1rch-Ros&er property, f mchonal programb arc gllar,lIltt.·t,·d tu

give the same outputs, glvcn ~hc same inputs, IlTeSpectIve of run-lime condlhon&

parallel execution: because of the smglc assjt;nment feature of functional Idngua~e~ thilt n'moV<'

side effects with unknown consequences (which prec1ude parallel execuhon), (md prohlbll

artifical data dependencies such as antidependencies and mltput depcndenaes .

98

(

(

,(

C. 5IDE EFFECTS IN IMPERATNE LANGUAGES

A simple example of a fUllcbon with a slde effect IS the foUowing'

cc"nter := 0;

function SquareAndCount (A: ~nteger) i

begin

counter := counter + 1;

return A-2;

end;

(1) b := SquareAndCount (2) ;

Function SquareAndCount slde effects the variable counter, while returnmg the square of its

argument In Imperative languages, the most common cause of side effeets 15 the aS3ignment

st.lternell!, whose effcct is to alter thC' tmderlytng impliàt store on which the unperabve language IS

based so as to yicld a dlfferent binding for a pamC1.Ùar vanable [24, p. 3611. However, functional

languages prohtblt the rcasstgnment r{ a previously declared expressIOll. no side effeets (such as

thosc ('aused by an assignment stat .!ment) are permitted. Wlthout side effects, there is no way for

l'Oncum'nt portions of a program to affect one another adversely-trus ;s sun ply another way of

sta ting the OlUrch-Rosser property [23, p 61] 1.

1 Tht'I't' is a large body of compiler work devoled 10 the analysis of mltrprocedur/d suie effecls ln lD\perahve languages, which
allow rompllers to be Dlore aggn'5slve ln scheduhng differenl subrouhnes ln paralle1. See, for exaDlple, [131.

99

l
---------_. -- C .SIDI: EFFECTS IN IMI'ERA' IVF LANl,IIA(,~

The most unportant area of conCl'rn lor soenhfK rar;~l!eJ rro~ramnll'n. ln dl'.llmh \\'Ith "Idl'

effects IS the way they mfluence the parallehzahon of 0rerlhlln~ \m .lrr.lV~ .• 1 dat.1 ~tructun' lll',\\'ily

used in scienhfic programmmg Problems arise bl'cau~~ of the W.1Y Impt'r.ltIvl' l'lI1gllagC., tn'.lt d.lt.1

structures, as modlfiablt> ennhe-- The funct1(.nal ~oluhon 15 ln mampul.lll' d.lt.l .. tnlcl\ln'~ III tlH'

same way scalars are treated, that IS, as unml1dûy.lble value~, not ,,~ modlhablt, .lnW- of llll'lnllTV,

which 15 just a reflection of the VOII Neumann archItecture on wluch 1ml)('f.lll\,l' 1.H1gll.l~t'''' Ml' hllllt

[Il. For example [Il,

procedure SORT2(var~ableA: array[l .. lOl of real; J: lntegt"r);

var T: real;

beg~Il ~f A [J] > A [J+1] beg~n

T :=A[J];

end;

A[J] := A[J+1];

~[J+11 := T;

end

(1) SORT2 (AA, J) ;

(2) SORT2 (AA, K) ;

(3) P := AA[L];

since the values of J, K and L are Ilot known at compue hme, It mUbt be a~~uml·<.Ilhilt ~tatemt'nt1>

(1), (2) and (3) will conflict If executed ln parallel, and thll~ Ihey mU1->t be l'xeClltl·d sl'ljuentlrllly,

in the order speofied. Another lmportant problem is allasmg , where two dlffprent vanabll' naml'~

refer to, in es&ence, the same menlory location<s) [121. TIns can occur when pOInter-. to vanables

are used, or by using cail by reference argument passmg schemes ln funchon cali." !-tueh d'> ln t!w

following L 11:

procedure REVERSE (var A, B: array[l .. 10] of real);

begin for J := 1 to 10 do

B[J] := A[11-J];

end;

100

..
\

On fl~t glancc It would ~e('m that all 10 aS~lgnments could he done concurrently, however, cali

by refercnce dllow~ for the pc,,,sibùlty of an mvocabon suc..~ as REVERSE (Z, Z), ID which case

concum'nt cxemhon would destroy the :,emanbcs of the ab')ve detinition. Even If procedures and

pomter.. arc not lIsed, the sImple possibl1ity of redsslgnmcnt of an imperahve array element makcs

pa rallchza tlon unccrtalll.

(1) A(J] := 3;

(2) X := A(K];

Both statcments can proceed III paraUd, unless J=K. Thereforc, r 11

If array!:> exist a~ global obJects in memory and arc mampulnted by statements and

pa~sed ao.; pOInters or procedure parameteIb, It 15 vlrtually unpossible to ten, at the time

an array clement 15 modifted, what effern that modificahon may have elsewhere in the

program,

or, in other word~, what slde effect:> that array modification will produce .

101

'1

li.

,
Jo

D. DATA DEPENDENCE TYPES

Let us examme what type~~ of dcpendenL"Je~ can o(cur. Rcf~r tn flgllTl' D 1. Dat.! Jt'pl'Ildt'Iln' n'Id ti()n~

~le used to determme when two operab0ns, :,tatcment!>, or two 1 tl'ratlOns 0/ il loop c.m hl' l'XCCllh.'d

11l parallel [3] 1 . In Imperahvc languages (l,lllguilge~ wlth sJ(le l'ffect~), thfl'l' typl'~ ot ol'pt'ndl'nCIl'l'>

are found.

teue or .fIow dependence: when two 1>tûteml'nts (~uch as :';1 ~nd ,"'2, al left m figure 0 1) f.mnot he

executed at the same bme sinet' , 1 u.,es the v.tlue of A compuled by 1.

antidependence: (m the center, III figure D 1) smce 1 1., to use the "old" valu(' of B, It mu~t bl'

executed before --.'2, and thus can't be executed ln parallel.

output dependence: (at left, m figure D 1) If 1 lb l'xccut('d after '\, tllen A will contam the wrong

value after thls program segment TIley must ther!.'fore be eXl'cuted III !>cquen('e,

As mentioned above [31, p. 11931, output dependcnacs and anbdependenaes arc, III .,ome 1>en1>l',

false dependencies. They anse not becausl' data are bemg pa':>bcd {rom one stat('mcnt to another,

but beciluse the same memory locabon 15 wntten to m more than one place FunctlOnal l.mguagl'1>

prolubit tlus sort of behavior Imperahve languages, howev{'r, [24, p 3611:11> a re~ult of havmg

llllphClt state that is modIfied (side effected) by ('Qmm<md~ gencrally have a Ilohon of scquennng (of

the commands) to permIt preCISe and det<>rmllllshc control ovt'r the statl' ln funchonallanguage1>,

sequencing is theorehcally constramed only by truc dependenoc1>, WhlCh b the muumum po,:>.,lble

102

81: A = B + C
82: D = A .~ 2
83: 1 = A * 3

True (data)

B = 5
SI: A = B + C
S2: B = 0 1 2

Anti

--_. __ ... _---_._----------

o DATA DEPENDENCE TYPES

81: A = B + C
82: D = A + 2
83: A = 1 + F

Output

Cannot happen in a
functional programl

Figure 0.1: Data dependence types in an Lnperative language.

103

l

,

D DATA nEI'LNDENCF 'Il'pES

constramt on parallel ('xecuttOn l,

IThere are compile-tlDleanal}'!>Ï5 techniques that can often remove output and antl-dcpendl'llCu .. '5, Ruth as varIable relfammg
and node spllttmg; see [31 J.

104

BIBLIOGRAPHY

(1) Wt1ham!3 Ackennan Data flow languages. IEEE Computer, pages 15-23, February 1982.

12J SudJur AhuJa, NIcholas Camero, and David Gelemter. Lmda andfnends. IEEE Computer, pages

26-34, August 1986.

(3) Stephen J Allan and R R. Oldchoeft. Hep sIsal: Parallel functional programming. In Parallel

MIMD com/",tafum: Tire HEP supelcoml'uler and ils applicatiolls(?), pages 123-150. MIT Press(?),

1985(?).

(4) Arvind and DaVId E. Culler. Dataflow arclutectures. Annual ReVlews ln Computer Science, 1:225-

253, 1986.

151 Arvind, David E Culler, and Gino K. Maa. Assessing the benefits of fine-gram parallelism in

dataflow programs. In Proceedmgs Supercomputillg '88, pages 60--69. IEEE Computer Society and

ACM SIG ARCH, IEEE Computer Society Press, 1988

(6) Arvmd and Kattamun Ekanadham. Future soenh.hcprogramming on parallel machines. Journal

of Paralle! and Distributed Computmg, 5:460-493, 1988.

(7) Arvrnd and RlSluyur S Nikhil. Executmg a program on the mit tagged-token dataflow archi­

tecture. Computation Structures Group Memo 271, Laboratory for Computer Science of the

Massachuscth. Institute of Technology, March 1987.

(8) Arvmd, RlShiyur S. Nikhil, and Keshav K. Pingali. Id Nouveau Reference Manual Part Il: Opera­

lional Semantlcs. Laboratory for Computf>r Science of the Massachusetts Institute of Teclmology,

July 1988.

(9) John Backus. Can programming be liberated from the von neumann style? a functional style

and lts algebra of programs. Communications of tltt' ACM, 21 (8):613-641, August 1978.

105

1
i.

BmU(X;RAPIIY

[10] BBN Advaneed Computers Ine., 10 Fawœtt St., Cambndge, 1\ tA 02238. Inslde tilt' GP-l 000. 1988

[Il] BBN Advanced Computers Inc., 10 Fawcett St., Cambridge WiA 02238, V.S A. Pmgra",,,,m...: 1/1

C Wltlr tire Unifor", System, 1.0 edition, Octobcr 1988.

[12] MIcah Beek and Keshav Pingah. From conttol flow to dataflow. Technieal Report TR 89-1050,

Department of Computer Scenee, Comell Uruvcrsity, Ithaca, NY 14853-7501, Octobcr 1989

[13] David Callahan and Ken Kennedy Analysls of mterprocednral si de eff('cts III a pamlll'l pro­

gramming environment Journal of ParaUel and Dlstributed Computms' 5.517-550,1988

[14J Nicholas Camero and David Gelemter. How to wnte parallel pJOgrams. A guide 10 tht'

perplexed. ACM Computmg SUTVL'YS, December 1989.

[15] David E. Culler and Gregory M. Papadopoulos. The expliàt token store. Journal of l'aralld ami

Distrrbutcd Compl/ti"g, 10289-308,1990.

[16] Boleslaw S2.ymanski et al. Condusion. In Szymanski (361, chapter 9, pages 393-409

[17J Frank P. Fcrne and Peter Whaite, 1991. Personal communic?Hon.

[18] Marhn A. Fischler and Oscar Firschem. Re3dmgs m computer visIOn. Issues, problem~, pnnd­

pIes, and paradigms. In Martin A. Fischler and Oscar Firschein, editors, Reatfmgl> in CO/II/Jult'r

Vision: Issues, Problems, Prmciples, and Paradigms. Morgan Kaufmann PublisncrJ, Ille., 1987.

[19] Daniel D. GaJskl and 'ih-Kwon Peir. Essl.'ntiahssucs m mulbprocessorsystems./EEE COII/l'lIlt'r,

pages 9-27, J\me 1985.

[201 G.R. Gao, 1991. Personal communication.

[21] David Gelernter and Suresh Jagannathan. Programming Linguistics. The MIT Pres!>,)990

[22] A. Giordano, E.I Noviello, C. Sanges, and R. Vaccaro. A multigranularity ma~slvcly pdralld

ardutecture for unage understandmg. In V. Cantoni, L.P. CordeUa, S. Lcvia \di, and G. San",h dl

Baja, editors, Progress ln Image Analysis and Processmg, pages 742-750. World SoeJ~hfic,)989

[23] Paul Hudak. Para-functional programmmg. IEEE Computer, pages 60-69, Augu~t 1986

[24] Paul Hudak. Conception, evolution, and application of functional programmmg language".

ACM Computing Surveys, 21(3):359-411, September 1989.

106

r
,
'1 ..

f

BmLlOGRAPHY ----------------------------------

(25] Paul Hudak. Para-funchonal programming in haskell. In Szymanski [36], chapt?r 5, pages

159-196

1261 Jamcl> E Narern Jr., 199] Personal commurucation.

127) RIshlyur 5 Nlkhil. Id (ve~JOn 830) referenœ manual. Computation Structures Group Memo

284, La bora tory for Corn pu ter Saence of the Massachusetts Inshtute of Technology, March 1988.

128) Ri~hiyur S Nlkhll and Arv:mg. Programming ln Id: A Paralle' Programming Language. Mas­

sachusetts Institute of Tcchnology, August 1990. Draft of a book in preparation.

[29] Rlshiyur S. N1khJ1 ,md P R. Fenstennacher. Id World Reference Manual (for Lisp Machines).

Laboratory for Computer Saence of the Massachusetts Inshtute of Technology, July 1988.

1301 'Thomas J. OIson, LlUdVlkas Buky!>, and Christopher M. Brown. Low-l<,vel image analysis on

an rnlmd architecture ln Proceedmgs Frrst International Conference on Computer ViSIOn, pages

468-475 The Computer Society of the IEEE, IEEE Computer Society Press, June 8-111987.

[311 David A Padlhl and Michael J. Wolfe. Advanced compiler ophmlZations for supercomputers.

COIII/llunicatio/ls of tlIC ACM, 29(2):1184-1201, December 1986.

1321 Chcm M. Pancakl' and Donna Bergmark. Do parallellanguages respond to the needs of scienti.&c

programmcrs? IEEE Computer, pages 1~23, December 1990.

1331 William H. PrcbS, Brian P Flanncry, Saul A. Teukolsky, and William T. Vetterling. Numerical

Rmpes III C: 7111' Art of Scœnt/fic C,mputing. Cambridge University Press, 1988.

1341 Anthony Ralston dnd EdWIn D. Reilly, Jr., editors. Encyclopedia of Computer Science a"d Engineer­

mg Van Nostrand Rcmhold Co., second edition, 1983.

(351 Vivck Sarkar PartituI/IlIlg and Sclleduling Paralle! Programs for Mult'processors. The MIT Press,

1989

1361 B. Szymanskl, erotor Para11eT functlonal1anguages and compilers. ACM Press, 1991.

[371 S L. Tanimoto Ard\itcctural issues for intermediate-level vision. In M. J. B. Duff, editor,

l"tmm"f,afl' Lcvd Image Pn'Ct?ssmg, charter One, pages 3-17. Academlc Press, London, 1986.

(38) Shl'l'Ckant Thakar, Palù Glfford, and Gary Fielland. The balance multiproc(',,~sor system. IEEE

Micro, 8:57-69, February 1988.

107

l

[:39J P. Whalte and EP. Ferrie. From uncertainty tOVlsual exploration. In Proct:L·timgs 17",,[Illfl'mat/lmal

Conference on Computer VIsion, pages 69~97, Los Alamitos, Califomia, Dccl'mbcr 1990. IEEE

Computer SoClety, IEEE Computer Society Press.

108

INDEX

\ 1,50

a b&tr.ll'o ons, 16

ahabiug, 100

BBN Butterfly, 28

.udutechlll',28

intercOIIDcchon network, 28

O1l'mOI"'\' archttecture, 28

boundmg contour, 47

C-Lmda, 33

coordInation languages, 33

data depend('nce

defmttion,102

types, 102

data partttlOning, 54

dataflow

archlh'ctull's, 37

determmacy and, 38

fuu\..'Ôonallanguages and, 39

key propclties, 38

memory 1aft'ucy and, 39

p.uallelism and, 38

potenttal problems, 39

program,37

dd1uggmg

etfect of determinacy on, 97

dl'd.tr,ltive languages

109

definition of,93

imphcit parallehsm in, 96

depth data, 47

determmacy, 97

and debugging, 97

definition,97

Ltnplications of, 97

importance in parallel programming, 97

in functlonallanguages, 97

non-determinism, 97

determinate behavlor, 97

deterministtc behavior, 97

error metric, 50

evaluation

parallel processing systems, 20

evaluation of parallel processing systems, 20

fitting,47

Fortran, 24

functionallanguages

characteristics, 93, 98

characteristics for parallel programming,

96

Olurch-Rosser property, 97

data dependenCles, 98

definition of, 93

determinaçy of, 97

finite machine resources, 70

1

lugher-order functions, 70

Id, see Id

memory usage, 70, 83

para-functional programmmg, 69

parallel programming advantages, 24

parallel prognmmmg and, 44

smtability, 24

functional programming

parallel, 92

GITA, 43, 73

granularity

ana partitioning, 10

and synchronization, Il

programmer burden, 18

hierarchical memory model, 31

I-structures, 42

Id and, 43

Id, 40

determinacy, 68, 85

fine grained parallelism, 68

implementations,68

intertask communication, 86

load balancinb, 86

logical independenee, 70

logical independence and, 68

machine resourees and, 68

memory latency and, 70

operational behavlOr control, 68

parallel programmmg problems, 68

parallel programming strengthc.;, 68

partitioning and, 69, 70

problem domain closeness, 68

110

sdleduling and, 70

shared d,lta structures, 86

INDEX

soluhons tu paraUd proCt.'s~ing problell\~

on1TDA, 44

synchroruzahon and, 70

task creation

flcxibility,85

oVl'rhead, 85

vs Umform System, 83

vs. Lmda, 83

Id World, 43, 74

Imperabve languages

assignment statement

ef{cct of, 93,99

defirui"ion of, 92

expressions and statcments, 93

par.lllel programming and, 44

parallel programmmg sUltabihty, 24

sequencing in, 102

side effects

and parallel programming, 98, 99

definihon,97

suitabùlty,24

mSlde-outside function, 50

mter-penetration curves, 47

intermedlah.l..levpl VIsion, Il

algorithm characteristics, 14

mfluence on parallel programming, 20

chc:racteristiŒ,]2

computational structures, IL

data partitioning, 12

data stmctures, 12

load balancing, 14

parallcl charactenshcs, 14

parallel processmg

I11'Iplementation issues, 12

parallel processing requlI'Cments, 20

parallel processmg system evaluation cri­

teria,20

parhtJOrung,12

synchromzatlon,15

iterative mirumlzation, 50

L('venberg-Marquardt, 50

Lmda,33

eval (1),34

eval (), 63

~n(b),34

out (1), 34

rd (...),34

anti-tuple, 34

code restructuring and, 63

communicahon,33

data parhtionhg, 61,64,84

detennmacy, 8~:

determmacy and, l.S

general applicablhty, 62

hlgher-order function absence, 61, 62

intertask commurucation, 86

Ioad balanong, 62, 86

memory latency and, 64

memory model, 64

synchroruzation and, 84

modularity and, 61, 65

opera tors, 33

parallel programming problerns, 61

parallel programming strengths, 62

111

parallelisrn model, 63

partihoning and, 61, 63

scheduling and, 63

shared data copying and, 61

shared data structures, 86

INDEX

solutions to parallel processing problems,

34

synchroruzation

and rnernory model, 84

synchronization and, 63, 65

task creation, 62,83

flexibility, 85

overhead, 85

tuple,33

tuple spaee, 33

flatness of, 65

uncoupled operations, 62

vs. Id,83

vs. Uniforrn System, 83

load balanàng

dynarnic, 66

static,66

10gleal independence, 53

10w-Ievel vision

parallel characteristics, 12

proœssor characteristics, 14

memory contention, 54

memory latency

definition, 10

merit function, 50

message passing, 44

minimization,50

MITTIDA

&

..

archItecture, 39

modularity, 55, 65

Monsoon,73

D ,ultiprocessors

i'5sues

user importance, 10

namespace

llon-homogcneol.ls, 56

non-dl'temllllism, 19

and debl.lggmg, 18

para-functional programming, 69

parallel coopt:rative fithng, 46

BBN Butterfly experiment, 57

parallel cooperahve fitbng, algorithrn,50

parallellanguages

as extensions to sequenballanguagcs, 16

current,18

cxphcit parhbons, 18

extensions to sequentiallanguages, 16

future, 23

impact of, 16

message passing, 17

needed features, 20

new vs. extenslOns, 16

s\ùtability,24

task model, 18

programmer burdens, 18

parallelp~cessing

4 issues of importance, 10

parallel p~gramming

and functionallanguages, 24

and parallellibraries, 17

112

currcnt languages, 18

funcbonal, 44

advantages, 96

functlondi advantages, 24

goal,23

lm pact of languages, 16

imperahve,44

INDEX
-~ - -- - -- -

Imperative language shortcomings, 24

imphcit parallebsm, 96

message passing, 17

parallel bbranes, 16

process,17

program to procl'ss, 16

restructurings In, 16

programmer needs, 20

scientfic

ana functionallanguages, 23

consequences of current choiccb, 1 X

current p~blems, 18, 19

OllTCnt support, 19

needs,20

user choices, 16

usermisconceptions,19

sequential programmmg lessons, 19

parallelism

explidt

mechanisms,16

partitioning tradeoff, 10

parallehsm profile, 74

partitioning

by compùer, 18

consequences, 10

definition,10

!'
1

(

exphot

programmer burden, 18

mtennedlate-Icvel VlSlon algorithms, 12

ovcrhcad m, 53

paraI!. 'hl>m tradeoff, 10

problcm ot, JO

programmabihty,20

programmmg details, 72

r.l/lgl' data, 47

",..hcduhng

defuu hon, 10

tradc-offs, 10

wmanhc crudcness, 53

ScqU(lnt B .. lance

archltedme,32

sequcnhal progr.lmmmg

lcssons for parallel programmmg, 19

~Ide effect~, ~t'(' ImperatIve languages, side ef­

fcds

and arrayl>, 100

spl't'dup, 76

surface data, 47

synchromza hon

and granulanty, 11

defimtion, 10

mtermediate-level Vision algonthms, 15

syntachc crudeness, 53

Tagged-Token Dataflow Arclutecture, see MIT

TTDA

task starvatIon, 5~, 57

tasks

GOro's of parallel programming, 18

113

INDEX -------------------

TIDA, see MIT TI'DA

tupIe,33

tuple space, 33

Unifonn System, 28

Share () mechanism,55

code restructuring and, 54

data partihoning, 54, 84

determmacy, 85

determinacy and, 56

general applicabihty, 53

generator mechanism, 53

granularity, 52

hicrarchical memory model, 52

higher-order function absence, 52

intermed..iate-Ievel visIOn programming

and,51

intertask c,)mmurucation, 86

load balandng, 52, 86

logical indE:pendence and, 53

memory contentIon, 54, 55

memory latency and, 54

memory management, 28

memory model, 31,52,54

modularity and, 55

namespaœ,56

parallel programming problems, 52

parallel programming strengths, 52

partitioning and, 52,53

processor management, 30

programming model, 30, 52

remotememoryaccess,54

scheduling and, 53

shared data structures, 86

•

,.

--- --------- -- - -- - - - - - --

shared memory bandwidth, 52

sIde effects and, 56

bolutions to parallel pnlcebsmg problems,

31

synchroruzation and, 53

task crea bon, 83

fleX1bili~ 85

overhead, 85

vs Id, 83

vs. Lmda,83

uhlization, 76

vohm1etnc fitting, 47

114

INDEX

