R 4

Parallel Processing in Intermediate-Level Computer
Vision

Pierre P. Tremblay

b. Eng. (Hons.), McGill Umversity, 1989

Department of Electrical Er.gineering
McGill University
Montréal
July, 1992

A thesis submatted to the Faculty of Graduate Studies and Research
1 partial fulfillment of the requirements for the degree of
Master of Engineering

© Pierre P. Tremblay, 1992

- i

Abstract

The problem investigated 1n this thesis is that of giving mtermediate-level vision researchers
adequate parallel processing tools for their work, where data and computational structures do not
fit the SIMD execution model, but require a MIMD execution model instead. The contnbution
of tlus thesis is a comparison of 3 general-purpose MIMD parallel processing systems as tools tor
intermedhate-level vision, by evaluating them against cnteria wlich capture the essential 1ssues in
programming intermediate-level vision algorithms on such machines According to my critena, the
best-suited of the 3 systemsis composed of the [d funchional language runming on the Massachussetts
Institute of Technology’s Togged-Token Dataflow Architecture (M.LT. TTDA).

Saentific programmers will usually be refining the abstract models and algonthms which their
programs implement, and should not be expected to be parallel architecture experts. Theretore, theu
tools should be adapted to their problem domain, for fast coding, and should provide logical inde-
pendence from solving the four cruaal MIMD 1ssues of parallel processing, partitioming, scheduhing,
synchronization, and memeory latency. Current tools, such as Uniform System programmung on the

BBN Butterfly and C-Linda programmung on the Sequent Balance, do not

Functional languages, on the other had, as exemplified by the Id language running on the TTDA
architecture, are a more appropriate solution. They are close to the scientific problem domain,
because they are based on the function and on expressions. They are amenable to compiler solutions
of the partitoning, scheduling, synchronization and memory latency problems, because they do not
allow a programmer to speaty restrictive commands, or to artificially restnct the order of execution.
This allows a compiler to extract all the parallelism present in a program, which 15 necessary to
obtain good performance on highly parallel machines, such as the TTDA

PaRE Y

Résumé

Le probléme aborde dans ce mémoire est ceiws de tournir aux chercheurs en vision numérique
de niveau intermédiaire les outils de traitement parallele nécessaires pour leur recherche. Leurs
algorithmes comportent souvent des structures de données et de calcul qui se prétent mal au modele
d’éxécution SIMD (nstruction umque, données multiples) et beaucoup plus au modele MIMD
(nstruchon multiples, données multivles) La contnibutirn de ce mémoire est la comparaison de
trois systemes de trartement parallele MIMD en tant qu’outils pour 1a vision numénque de niveau
intermédiaire, en les évaluant selon des critéres qui font ressortir I'essentiel des éléments requis
dans la programmation d’algonthmes de vision de niveau intermédiaire sur ces machines. Selon
wes cniteres, le systeme le plus appropné est composé du langage fonctionnel Id éxécutant sur

I’architecture TITDA du M.LT.

Les programmeurs-chercheurs sont habituellement intéressés a améhorer leurs modeles et al-
gorithmes, et non pas & devenn experts en archutectures paralleles. Conséquemment, leurs outils
devraent étre adaptcés a leur domaine de recherche, pour faciliter le codage, et devraient créer une
démarcation logique qui sépare le programmeur des quatre considérations cruciales propres aux
systemes MIMD, le découpage, 1'ordonnancement, la synchromsacion et le temps de latence de la
mémowre. Les outls disporubles présentement, tels que la programmation avec le Uniform System

sur le BBN Butterfly et la programmation en C-Linda sur le Sequent Balance, ne le font pas.

Par contre, les langages fonctionnels, comme le langage Id éxécutant sur 'architecture TTDA,
représentent une solution plus appropriée. I's sont plus prés du domaine saentifique, étant basés
sur la fonction et sur les expressions mathématiques. Ils se prétent beaucoup mieux a des solutions
par compilateur des quatres problémes mentionnés plus tdt, parce quls ne permettent pas au
programmeur de spécifier soit des commandes ou un ordre d’éxécution restrictifs. Ceci permet a un
compilateur d’extraire tout le paralléhisme présent dans un programme, ce qui est nécessaire pour
obtenir une bonne performance sur des machines hautement paralleles, telles que le TTDA.

Acknowledgements

Even though a single name appears on the front page of a Master's thesis, that person knows
very well that he/she could not have maae it without a great deal of help, acadenucally, techmcally,

morally, and of course finandially

Imust first thank my thesis supervisor, Frank Ferne, whose enthusiasm and openness L appreci-
ated throughout. I also have to thank him for his excellent suggestions that restructured tnis thesis

into a far clearer paper than it originally was.

Iam also deeply indebted to Dr Guang Gao, who stimulated my interest in parallel processing
through courses and discussions He also provided access to two of the thiee parallel processing,
systems used in this thesis, the BBN Butterfly und 1d World. Without these, this thesis would simply
not have been possible, and I offer my sincere thanks

Thanks are also due to Joset Fritscher, of the Computer Center of the Technical Unuveraty of
Vienna, Austna. He arranged for me to use C-Linda on their Sequent Balance multiprocessor
through the global Internet It is one thing to know that 1t 15 technologically common-place to have
a program run across the Atlantic ocean and display results in North America, but quate another to

expenence 1t!

Locally, I must thank Lee Iverson, Peter Whaite and Andre Fosy, for techmcal support and advice,
espedally during my early days at MCRCIM. The extent to which they contributed to my knowledge

cannot be understated
Je dois aussi remerder le Fonds FCAR pour leur appui finanaer au cours de mes études.
Enfin, je voudrais dire mera a ceux qui me sont chers, Mane-Claude, ma mére, mon pere, ma

soeur, mon frére, et le reste de ma famille. Votre amour et votre encouragement m’ont toujours été

précieux.

TABLE OF CONTENTS

Chapter1 Introduction

11 What1s the Problem?

111 Four Parallel Computing Iscues

112 A Definition of Intermediate-level vision

113 The Parallclization Charactenstics of Intermediate-Level Vision
12 Shortcomings of Current Tools

121 Implications for Intermediate-Level Vision Parallel Programmers
13 Funchonal Languages. A Better Solution? .

1.4 Key Points

Chapter 2 Three Approaches to the Problem

10

11

12

16

20

25

27

21 Uniform System Programming ont the BBN Butterfly
2.1.1 The BBN Butterfly Archutecture
21.2 The BBN Uniform System Programmuiny Model
22 C-Linda Programming on the Sequent Balance
22.1 The Sequent Balance Archutecture
22.2 The C-Linda Programming Model
2.3 Id Programming on the TTDA Simulator
231 AnlIntroduction To Dataflow Architectuies
23.2 The MIT Tagged-Token Dataflow Architecture
23.3 The Id Funchonal Language
234 1d World, GITA, and Id Software Development
2.4 Reasons for Experimental System Choices
2.5 Key Points
Chapter3 A Comparison in the Context of Intermediate-Level Vision

3.1 AnIntermediate-Level Vision Example: Parallel Cooperative Fitting

__ TABLE OF CON'IENTS

a2

32

33

37

37

3¢

40

43

44

45

46

46

o

TABLE OF CONTENTS

311 The parallel cooperative itting algorithm

312 Relevance of tne w “penimental Algorithm

W
8

Comments on BBN US Programming

33 BBN US Experimental Results

3.4 Comments on Sequent Balance C-Linda Programming
3.5 Sequent RBalance C-Lindu Experimental Results

36 Commentson ld Programming

37 Potential Problems with 1d Approach

3.8 Id Experimental Results

39 Key Points

Chapter4 Lessons To Be Drawn
41 A Comparison of Three Parallel Processing Systems

42 Key Points

Chapter5 Conclusions

Appendix A A Uniform System Program Example

46

51

51

61

66

6%

72

74

81

83

86

88

Appendix B Parallel Functional Programming

B.1 Functional Programming,

B.2 Charactenistics of Modern Funchenal Languages

B3 Suitability of Funchonal Programs for Parallel Execution

Appendix C Side Effects in Imperative Languages

Appendix D Data Dependence Types

Bibliography

TABI E OF CONTENTS

92

04

()t’

9 Y

102

105

B

ﬁ}ﬂg‘

LisT OF FIGURES

26

J1

Computer vision levels of processing

Sacentific programming transformations

Critena of the companison metric.

BBN Butterfly interconnection network

Unmform System address space.

A Landa example.

A tuple space data structure.

A <simple dataflow program

Example functional program

Additional information for volumetric fitting

13

17

3

35

36

38

41

49

36

37

3.8

39

310

an

3.2

Al

D1

Speedup and effiaency for the BBN Butterfly

Speedup surface tor the BBN Butterfly.

Ideahzed speedup curve for U.S. code.

Optimal granularity on the BBN.

Speedup and efficiency for C-Linda on the Sequent Balance.
Parallelism profile for \? merit function

Execution time under varying latenaes, ;» = 30.

Execution time under varying latendes, p = 50. .

Execution time under varying latencies, p = 100.

Execution ime under varying latendies, ;» = 200.

Speedup and efficdiency for the TTDA.

BBN Uniform System matrix multiplication code.

Data dependence types

~

LIST OF FIGURES

-

o0

ol

67

7%

78

79

80

9]

&2

1. INTRODUCTION

Among the challenges of computer vision is the tremendous amount of processing that must be
done to extract desired information. Current computer vision research 1s often hampered by the
long tumaround in experiments caused by large processing requirements. This has quite naturally
motivated vision researchers to explore parallel processing as a tool for making certain problems
i computer vision research tractable. The contnbution of this thesis is a companson of 3 general-
purpose parallel processing systems as tools for intermediate-level vision. I will show that the best-
smted of these is composed of the Id functional language running on the Massachussetts Institute of
Technology’s Tagged-Token Dataflow Architecture (M.LT. TTDA)

Scientific programmers in general, and computer vision programmers in particular, will usually
be refining the abstract models and algorithms which their programs implement, and should not
be expected to be parallel architecture experts. Therefore, their tools should be adapted to their
problem domain, for fast coding, and should provide logical independence from solving the four
crucial MIMD issues of parallel processing, partitioning, scheduling, synchroruzation, and memory
latency [19]. Current tools, such as Unuform System programming on the Butterfly and C-Linda
programming on the Balance (the other two systems we examine), do not, in spite of the fact each
is available commerdially and 1n general use as a general-purpose MIMD scientific problem-solving

tool.

Functional languages, on the other had, as exemplified by the Id language running on the TTDA
architecture, are a more appropriate solution. They are dose to the sdientific problem domain,
because they are based on the funchon and on expressions. They are amenable to compiler solutions
of the partitioning, scheduling, synchronization and memory latency problems, because they do not

_ L. INTRODUCTION

allow a programmer to speafy restrictive commands, or to artihoally restnct 1he order of execution
This allows a compiler to extract all the parallelism present in a program.

I will first discuss in this chapter what the current problems are with mtermediate-level vision
parallel programming, then propose cntena by which I feel parallel processing systems used for
intermediate-level vision should be judged. I then propose fun iional languages as a solution which
matches the criteria. In chapter 2, I describe the 3 systems I bave chosen to examine. Umform
System programming on the BBN Butterfly, C-Linda programming on the Sequent Balance, and 1d
programming on the MLT. TTDA. In chapter 3, I construct a plausible intermediate-level vision
problem, implement it on all 3 systems, then discuss how cach performed under my ¢valuation. In
chapter 4, I show some of the lessons that should be drawn from tlus exercise Concluding remarks

are given in chapter 5.

1.1. What is the Problem?

Computer vision research, and the development of new algorithms and techmques forimage analy-
sis, is typically aniterative process, where an algorithm is proposed to implement an abstract model,
and, in turn, the a'gorithm is implemented with a computer program. In basic research, the interest
is mainly in refiring the abstract model or the algorithm, and less often the program itself. Thus, fast
program execution (performance) is needed to improve experiment turnaround, but programma-
bility is also essential, as code is likely to evolve rapidly, in some instances being replaced entirely
because of changes in the abstract model. Code development 1s less hikely to be amortized over long

program life spans, and must therefore be relatively inexpensive.

Tools for handling the one-to-one mapping of input pixel to output data in low-level vision are
well understood. Partitioning, scheduling and synchronization of tasks on processing elements 1s
straightforwardly and effectively performed on SIMD (Single Instruction Multiple Data) machines.
Parallelizing other levels of computer vision is less obvious. We will look at the many-to-o:.e (or
iconic to aggregate) mappings typical of many vision algorithms, which we will collectively refer
to as intermediate-level vision. In such cases, the non-uniform distribution of output features and

1. INTRODUCTION

obviously data- (“feature”-) dependent nature of processing renders the SIMD approach inetfective.
Instead, we require more general partitioning, scheduling, and synchronization, which are found in
the MIMD (Multiple Instruction Multiple Data) processing model. None of these issues are simple

ones for the saientific programmer to deal with, as we shall see next.

1.1.1. Four Parallel Computing Issues

The four 15sues of greatest importance in the parallel execution of a program are (19, p. 26] partition-
ing, scheduling, synchromzation, and memory latency. These are essential, because they are concerned
with both the performance of the program and the sc.entific user’s view of the computing process,
instead of the engineering view of the hardware machine. Partitioning means specifying the sequen-
tial units of computation in a program, to find the partition size which strikes a balance between
low overhead and high parallehism, and thus minimizes run-time. Scheduling is assigning tasks to
processors to minimize run-time by optimizing processor utilization and inter-processor commu-
nication. Synchronization is a mechanism for coordinating the activity of processes; tasks working
together must synchrenize to coordinate producer-consumer relationships, forks and joins, and mu-
wal exclusion. Memory latency is defined as the time between a memory request and the answer to

that request. 1 discuss the problems ansing from each issue in turn.

The partitoning problem can be understood in the following way. For high performance, we
want fugh parallelism with low overhead. However, increasing parallelism brings increased penalty for
synchronizing and scheduling additicnal tasks, and on the other hand, reducing overhead is done by
inergmng or fusing tasks, which decreases the penalty for svnchronizing and scheduling tasks, at the
cost of wasted parallelisi. The consequences of the partitioning/parallelism tradeoff [35, p. 15] are
that the presence of overhead can make it impossible to achieve ideal speedup, and the real parallel
execution tume is mimimized at an optimal intermediate granularity. The partitioning problem is to

find the corresponding optimal intermedate partition.
Scheduling also involves tradeoffs [35, pp. 15-16}, between parallelism and overhead. Parallelism

dictates that tasks should be assigned to different processors as much as possible, but communicatior

overhead is reduced when taske are assigned to the same processor.

10

- 1. INTRODUCTION

Synchronization will be detrimental to efficiency because of improper granularity 135, p. 7], 1t
the synchroruzation granularity in the program 1s too fine for the target multiprocessor!

Memory latency becomes a big problem if the multiprocessor system 1s built out of von Neumann
processors, which must either wait for the memory response, or do an expensive context switch. The
memory latency problem often appears under the guse ot the “data partitioning” problem, as data
must be “partitioned” and placed on different memories so as to minimize memory latency.

These are the cruaal issues that must be solved on a MIMD system for a parallel program to
achieve good performance However, 1 strongly believe that plaang the responsibility for solving
these issues into the hands of the sdentific programmer 1s counter-productive. The scientific pro-
grammer should not be expected to be a parallel architecture expert, and instead should be given a
tool to do research. Freedom from dealing with the underlying architecture because of these 1ssues
is called logical independence, and this is what we seck to give to the computer vision programmer.
Current parallel processing solutions rarely provide this independence, as we shall see later on.

1.1.2. A Definition of Intermediate-level vision

We can define intermediate-level vision as the category in which the mput 1s a set of values still
associated with each pixeil (1.e. when an » - n pixel image has produced an » ~ » array of values,
or pixel labels) and the output is a structure that is not a two-dimensional array (¢ g. a list of
features [371%).

A more general defimtion, perhaps better suited to the large variety of possible algorithms and
tasks, is to view intermed:ate-level vision as a many-to-one mapping, or an iconic-to-aggregates
transformation [17]. Intermediate-level vision 1s that part of the vision process that performs a
reduction in the amount of information handled, abstracting out desired features. This phase of
processing is present in all so-called image understanding systems.

1As of this writing, most multiprocessors cannot efficiently support more than 1 synchronization in 100 instructions (per

Pprocessor).
2This definition must b2 shightly extended, of course, for truly three-dimensional images, such as those obtained from

computed tomography

11

1. INTRODUCTION

Intermediate-level vision can also be descnbed 1n terms of its data and control structures (22,
p. 743l. Data structures at mput and output go from images to featuses (a many-to-one mapping).
Computational structures during processin can include some or all of the following:

~ numeric processing
~ non near-neighbor commurucation (regional processes, a priori non diameter limited)

- potentially irregular communications (in destination and volume) e.g. feature extraction, image

segmentation

Examples of intermediate-level processes include those for chain encoding, Hough transforms,
shape measurement and description (such as convex hulls and others), building region-adjacency
graphs (37, or aggregation (partitioning or linking) and model fitting [18].

Thus, a complete characterization of vision algorithms can be seen in figure 11 (adapted
from [22]). Of course, this rigid categorization scheme should not be implied to fit all algorithms
exactly; nevertheless, 1t is a useful tool to assess the needs of programmers implementing algorittuns

that should for the most part fit into it.

1.1.3. The Parallelization Characteristics of Intermediate-Level Vision

In this section we look at how the different levels of computer vision can be parallelized. One of the
most important points of this thesis is the following: an intuitive, explicit intermediate-level vision
partitioning scheme [37, p. 9] 1s not as straightforward as for low-level vision tasks, where image

partitioning is the natural choice. Let us examine the reasons why.

We begin by looking at low-level vision algorithms, with respect to explicit partitioning (granu-
lanity), processing type, and algorithm type [22, p. 745] . Partitioning is typically image partitioning
(i e. one processing element for a regular group of pixels), usually at a fine granularity (e.g. one pro-
cessing element per pixel). Processing proceeds in a data parallel and synchronous fashion: the same

12

A

-;,.'".,

%

1. INTRODUCTION

HYPOTHESIS
HIGH ~-LEVEL
PROCESSING INTERPRETATION T
:
H SYMBOLIC
SYMMY IC NEW | PROCRESKSING
DESCRIPTION DESCRIPTION
H
H
——- l DESCRIPFION Lot
:
|
?Elmnilvns FEATURES
:
‘- - PRIMITIVE
EXTRACTION -
INTERMEDIATE— : Nll‘l(l\)l‘gét!{‘mu
LEVEL, . & S8
| el H
NEW :
IMAGE CHARACTERISTIC S
;
1
LOW-LEVEL .
IMAGE

Figure 1.1: The ditferent levels of computer vision processing, their inputs/outputs and

characteristics

13

#o

1. INTRODUCTION

instri.chion 15 executed on parallel data, in lock-step across all processing elements. The algorithms

employed are typically determimstic, and entirely numeric.

Current low-level vision architecture characteristics typically include [37, p 3] one processing
element per pixel, and processing elements connected 1n a 2I) mesh, executing synchronously in
SIMD fashion Partitionung is straightforward, each task being assigned processing for a fixed region
of the imagge, there is no data-dependent task creation, so a fixed partitioning 1s possible. Scheduling
15 also straightforward, as the interconnection of processors in the 2D mesh usually correspond quite
well to the structure of commurucation 1n the algorithm, which is near-neighbor. Synchronization
is implicat in the archutecture model all processors execute synchronously, in lock-step. Memory
latency 1s solved because cach processor deals with data erther inits local memory, or communicates
with processors nearby to obtain the data it needs. Global. arbitrary ~ommunication patterns do not

fit this executicn model very well, but are not needed in low-level vision algorithms.

Intermeduate-level vision [37, p. 9] 1s usuvally computationallv intensive, as algonthms have
to examine large nunbers of input pixels, or data in one-to-one correspondence with pixels. The
algonthms can also be looked at in terms of parallel characteristics such as partitioning (granularity),
processing, and algonthm tvpe (22, p 745-746] Partitioning 1s in terms of image and function
partitiorung; either a regular group of pixels per processing element (image partitioning), or a (set of)
function(s) per processing element (function partitiorung). Processing proceeds in a control parallel
(multiprocessing) fashion (each proces ng element deades of 1ts own change of state and instruction
execution), and 1s asynchronous (from one processing element to the other; explicit synchronization

instruchions are needed) Algorithms are primanly numenc

For some intermediate-level vision algorithms, since the mput data consists of pixel labels as-
signed to each point, we can use 1image parallelism and partition the pixel label data equally among
the processors This is the same scheme as in low-level vision, where output results are spatially
distributed 1n the same manner as the input, and the amount of processing over an image area will
not differ significantly from one area to the next. In intermediate-level vision however, objects being
computed as output are distributed over the image, but seldom in a uruform way. Therefore, a
simple partitioning and scheduling scheme where each task gets anidentical-sized piece of the input
image and is scheduled on a single processor will lead to load imbalances in a multiprocessor [37, p.
91, as features (the result of intermediate-level processing) in image are not uniformly distributed,

14

1._INTRODUCTION

and vary in size and in ime required to compute them; note espedally how mappropriate the SIMD
execution model would be It might also be the case that tasks are areated dynamically (at run hme),
as a result of processing. Additionally, there 1s usually significant parallelism within the algorithms
used to compute these features. This requires even more flexibility in dealing with the partitioning
and sche¢ duling problems

Exphicit synchronization [37, p. 9] therefore becomes an important issue If spahal partitioning
(spatal parallelsm) is used, curves or regions may cxtend across image to fall into zones of several

tasks, which must then coordinate and synchronize, to work on the same object simultaneously.

All these concerns anse because of the fact that partitiorang (which includes process creation),
scheduling (mapping) and data placement to avoid memory latency are, inintermediate-level vision,
data-dependent and many-to-cne, not fixed and one-to-one, as in low-level vision This will make
it difficult for a programmer using an explicitly parallel programming language, who must match
these requirements to the underlying architecture, to obtain good performance: 1t is ditficult to know
in advance whether good performance will be obtained by program execution on a particular data

set.

Let me then summarize the issues in parallehizing intermediate-level vision algonthms Affecting
partitioning and scheduling are spatially non-uniform feature distribution, variations in feature
computation time, possible dynamic (data-dependent) task creation, and the need to exploit finer-
grained parallelism within the feature computation. Synchroruzation must handle the fact that tasks
must cooperate to compute features, and to handle the interactions between features. Memory
latency considerations are that a large amount of iconic input data must be distributed to a large

memory and shared by multiple processes.

Faced with these considerations, scientific programmers in general, and intermediate-level vision
programmers in particular, must consider available options that will allow ease of coding and yet
obtain good performance. These options are in terms of MIMD parallel hardware architectures and

programming languages.

15

1. INTRODUCTION

1.2. Shortcomings of Current Tools

Most parallel programming systems proposed to date for scientific needs use explicit parallelism (i.e.
require the programmer to specify partitioning, scheduling and synchronization). There are three
mechanisms which have been used to include parallelism in explicitly parallel programs [32]:

concurrent languages: mncorporate parallel features as integral parts of a language’s design.
language extensions: adding parallel extensions to an cxasting sequential language.

parallel runtime libraries: providing high-level interfaces to parallel routines stored in a system

library

The scientific problem solving process for parallel programming is typically composed of mul-
tiple restructurings 132, p. 16]. from abstract model, to algorithmic solution, (manually) to program
code, (automatically by compiler) to executable code. Each restructuring complicates program de-
velopment, as 1t is a source of potential error and distortion, in addition to imposing development
overhead. The first and third transformations pose no spedal problems to the scientific programmer:
the conceptual to algonthmuc transformation s most comfortable and best understood by the scientific
programmer, winle the implementation to physical transformation is performed by compiler technol-
ogy The second transformation (algorithm to unplementation) is the one that poses spedal difficulties
tor the saentific programmer In this transformation, the most critical factor is the programming lan-
guage, which provides the framework for descnbing how the problem'’s solution will be achieved [6,
p- 474l. A language design has the most significant impact or: how easily an algorithm can be

transformed into workable code. These transformations are shown in figure 1.2.

Scientific programmers currently rely on [32, p 18] language extensions and run time libraries,
instead of learning new parallel languages. The reasons are that extensions to familiar sequential
languages — through parallel constructs or high-level interfaces to libraries — are more likely to
appeal to scientific programmers than are new concurrent languages [21, pp. 356-357), (32, p. 18].
There is also an apparent ease n parallelizing sequential programs using extensions or libraries, as
there is minimal rewriting. A further reason is the availability of production-level compilers for

parallel machines.

16

_ 1. INTRODUCTION

Transformations DifMicultics
Programuncr's atlity
1 decompose

| Model
model into
component actions
| Algorithm l

Surtabalsiy of languagc
to express algonthm
Programnws's ander—
standing ot languange,

U onal methiods
I Program |

Acturacy of
language/machine
INstruchon tspeing

Ffficiency ot

generated code
I Process I

Figure 1.2: Scientific programming transtormations From (32, p 17]

We first examune parallel libraries, or system hbranes with routines for parallel execution. Why
bother with parallel languages when operating system services or hibrarnies can be provided to
allow concurrent processes to coordinate? Because they are too crude a method for expressing
parallelism [21, p. 355]. They show a syntactic crudeness, with messy, poorly integrated <yntax,
often with long parameter lists, because they exist 1n 1solation from a user’s program, and have
no compile-ime checking or optirnizations. They also show semantic crudeness: 1t 1s harder for
the programmer to provide operations that perform complex or sophisticated functions efficiently,
because of the fixed nature of the mechanisms provided

Other explicitly parallel approaches, such as new pa-allel languages and extensions to sequential
languages (also called annotations) suffer from problems as well. Message passing programrning has
been criticized as difficult and non-intuitive [21, p. 354]. For parallelization of scientific codes using
both sequential language extensions [32, pp. 18-20] and libranes, the difficulties are typically the
same. Parallelization of loops is the most common form of parallelization, and 1t is the programmer’s
responsibility to find solutions to data dependencies by partitioning data among 1terations, a source
of problems for programmers. The programmer is also responsible for explicit scheduling and
synchronization, when global variables are altered by a task, which 1s tedious and error-prone
In fact, the wrong annotations (for synchronization or commumncation) will make program non-
deterministic (time- and machine configuraton-dependent), a nightmare for debugging. Many
scoping and storage management notions, such as local and remote memories, are counter-intuitive

17

sy

o g

1. INTRODUCTION

to saentific programmers. The resulting code is often machine-speafic and obscure (35, p. 1.
Restrictions on parallel constructs may requure the reformulation of sequential control structures as
well, producing more restructunngs, more error possibilities, and less readability. In addition, the
extended source lanzuages (e.g Fortran, C) often suffer from lack of expressivity to begin with [6, p.

461)

The current trend appears to be towards languages with explicit partitions [35, p 11], o7, in
other words, languages based on the expliat tasks model, in both new languages and those based on
sequential languages Compared to their predecessors, these languages offer portability but still force
the programmer to expliatly decompose the program nto tasks and control their synchroruzation
and communication Languages with exphat partihons are easier to implement only at a large cost

to the programmer. The programmer now has to worry about [35, p 11]

correctness: the programmer must avoid deadlock and race conditions (1.e ensure determinacy),
which occur because of errors 1n inter-task synchronization and communication. These do
not anse 1n sequential programs Errors based on race conditions are notoriously difticult to

debug, or even reproduce (35, p. 11].

performance: the problem with explicit partihons in task-based languages 1s that the performance
of a given partitioned program may vary dramatically over different multiprocessors, thus

rendering the program non-portable in practice.

In terms of correctness, unstructured tasks are analogous to the GOTO'’s of sequential program-
ming. In terms of performance, granularity considerations can clutter up the code and become an
extra burden to the programmer. Compiler partitioning (35, p. 12] ensures portability to future

multiprocessors, and a uniform programming model for programmers.

The consequences of choosing sequential language extensions and parallel libraries [32, p. 18]
currently produce compromised program structural integrity: parallelisr 1s added after the fact, in
ad hec fashion, adding yet anoti ¢r restructuring to program development. Additionally, the use of
vendor-specific programming libraries or extensions means machine-dependent programs in their

final form.

18

1 INTRODUCTION

Thus is paitly because of the defiaenaes current parallel programming systems support. Pro-
grammiocrs are forced to juggle potentially dangerous operations, as in many cases compilers can tind
and report only the most blatanterrors The primitives used tospeafy parallehsm are usually closely
tied to underlying machine The management of architectural configuration 1s the tull responsibility
of the programmer, now concerned with solving i her prugram the tour issues ot parallel execution
we have been mentioning, optimal partihoning, scheduling, explicit synchromization, and the dis-
tribution of data to memory locations to solve the memory latency problem Al of these determine
the effidiency, effectiveness and rehability of the parallel implementation In short, parallel systems
lack the buffering effect of logical mdependence parallelism should be incorporated at a reasonable
level of abstraction, rather than sunply providing a notatwnally convenent way of spectfymg what are m
fact machine-specific operations Instead, “parallel languages reflect a low-level view of concurrent ex-
ecution that reinforces user misconceptions which increases expense of program development, and
raises questions about rehability ot parallel programs. In tact, the present level of language support
for parallel programming requires that the user expend miore effort in managing the problem-<olving

resource than in actually solving the problen” [32, p 21]

Some of the problems arise from misconceptions by saentific programmers, who often ignore
the effects of nondetermumsm [32, p 201. The fact that a parallel program tunctions correctly once,
or even one hundred times, with some particular set of inputs, 1s no guarantee that it wall not fail

tomorrow with the same inputs

Faced with these problems, what can be said about the needs of saentific parallel programmers?
Certain lessons can bz drawn from sequential programmung (32, p 17] First, move the algo-
rithmic solution closer to the implementation, shift transformation responsibiliies away from the
programmer to the compiler and the parallel architecture, and finally prowvide logical mdependence, a
clear delineation between the two levels of transformation (algorithm to program and program to
physical), which represents a commitment to maintaining a separation between mackune-dependent

and machine-independent factors.

The lessons of three decades of sequential program development are clear programmer effective-
ness improves when language structures are moved away from physical 1ssues and toward logical
models. While computing professionals should be able to apply configuration-speafic expertise, it
is counter-productive to expect the same of the general user commumnity Saentific programmers

19

1. INTRODUCTION

cannot be expected to solve issuces of partitioning, scheduling, synchronization and memory latency
cvery time they wnte a program to implement an algonithm, or move to a new architecture; it is
simply too tedious. For reliability, determinate high-level constructs are nceded, and we must move
away from the inadequate expression of saentific apphcations in terms of a particular machine
or memory model Even if scientific programmers do code a determinate program, there is no
guarantee therr programming expertise and knowledge of a given system will produce an efficient
implementation Sequential programming has evolved to shield programmers from physical de-
tails and maintain logical independence, which has become a great strength; parallel programming
would be well-advised to do the same [32, p 23], [2] In short, parallel computers must be made
accessible to do saence Researchers must be free to concentrate on their research, not struggle with

machine-dependent quirks and minute details {32, p 23],

1.2.1. Implications for Intermediate-Level Vision Parallel Programmers

What do the intermediate-level vision charactenstics given in section 1.1 mean for a scientific pro-
grammer who wants to code her algorithm on a parallel machine? What do the above general
comments of sections 1.1 and 1.2 mean 1n the context of intermediate-level vision? We develop a

partial framework to answer these questions 1n thus section.

We first examine what the charactenstics of intermediate-level vision algorithms imply in terms
ot requirements for parallel processing, with respect to parallel programming system support How
do the charactenstics of intermediate-level vision algorithms affect the type of parallel programming
language which should be used in implementing these algonthms? Specifically, we outline a number

of cntena to evaluate parallel processing systems’ appropniateness for intermediate-level vision

parallel programming

There are two mutial requirements that are uruversally agreed upon:

1 ease of programming: for experimental algorithm design. Includes general applicability but
with closeness to problem domain, determinacy of results, logical independence, efc.

20

1._ INTRODUCTION

2. performance: execution speed on a given architecture.

Inour case, as we favor algorithm expennmentation and quick prototyping of algorithms, programma-
blity will be the most important of the two

The following characterishes in a programming system will partly sahsfy these requirements.
Each contributes to performance or programmability to varying degrees A comparison metric that
includes all of these criteria 1s difficult to create, because the relative weighing of the criteria is not
easy. It 1s obvious from the hst below that therc 1s considerable overlap in some ot the critena
for example, load balanang 1s a function of parhitioning and scheduling, and flexible handling of
large data structures is a function of whether or notit 1s the programmer’s responsibility to solve the
memory latency problem. Additionally, the first two critera are somewhat orthogonal to parallelism;
however, we feel they are important, as some parallel processing systems are not as well suited for
the task as others. Figure 13 shows the relationships between these crnitena and the four 1ssues we

have identified as crucial to parallel processing The cnteria are

closeness to problem domain: for fast prototyping; 1n our case, we have numencal processing and

mathematical algonthms, expressed in the mathematical notation of functions.

general applicability: within the intermediate-level wvision problem domain, reasonable pro-
grammability for all problems, irrespective of communication patterns, task creation require-

ments, efc.

ease and flexibility in task creation: because of data-dniven control flow in intermediate-level vi-

sion algorithms, task creation should be casy to code.

lightweight task creation: because of the massive paralichsm present in intermediate-level vision
algorithms, we don’t want the creation of a task to be an expensive operation.

determinacy of results: invaluable for debugging.

easy load balancing: necessary because of the spatially non-uniform distribution of output features

in the input data.

21

1. INTRODUCTION

-

Orthogonal
to parailelism

Central to
parallelism

Programmability <

Partitioning
Scheduling
Synchronization

Memory latency

important issues

Closeness to problem domam

General apphcability

Ease and flexibility in task creation
Lightweight task creation,
Determinacy

Easy load balancing

Easy intertask communication

Handling of large, shared data structures.

Intermediate-level vision
programmer concerns

Figure 1.3: This figure shows the criteria for intermediate-level vision programming we have
laid out, on the right, and their relationship to the more general issues of programmability,
partitioning, scheduling, synchronization, and memory latency.

1. INTRODUCTION

easy intertask communication: because communications can be irregular in destination and in vol-
ume. In particular, communication requirements will differ from low-level vision, in that we

will not necessarily have near-neighbor communcation.

handling of large, shared data structures: the system must permit fleable and transparent access
to large, shared data structures (e.g. the input image).

In fact, many of these criteria are simply different ways of stating the need for logical indepen-
dence, to simplify program development and avoid explicit partitioning, scheduling, synchromiza-
tion, and memory latency concerns, and their problems. In the sections below, we examine how
three given systems fulfill these criteria, through the programming of a sample algonthm.

1.3. Functional Languages: A Better Solution?

I feel that languages of the future will be successful because they will feature implicit partitions
and schedules, and will not have the problems of expliat partitioning, or the problems of automatic
parallelisation of today’s imperative parallel languages. The mamn obstacle to widespread use of
such languages on current multiprocessors is the problem of compiler partitioning and scheduling;
see [35, p. 12] for a functional language solution

Functional languages offer a different path to parallel execution. If the goal of parallel program-
ming is to have real-world problems mapped to parallel hardware seamlessly and automatically {32,
p- 20, then two options are possible, parallelism detection in sequential imperative languages, or
parallelism detection in declarative languages. However, for reasons mentioned in appendices B, C,
and D, parallelism detection in sequential imperative languages, while very desirable from user
standpoint, will fail to detect most of the parallelism present {6, p. 461]in a program.

Functional languages offer relief for both [6, p. 460] high-level encoding and gencration of efficient
code for the following reasons. Higher-order functions raise the level of programming, as well as
encouraging the use of small functions that directly relate to the mathematical and physical concepts

23

piien

oy

1 INTRODUCTION

of the problem. In the second case, the straightforward operational semantics of functional languages

provide tremendous oppo.-tumities for parallel execution.

More specifically, functional language advantages are that their [6, p. 460)

- declarative ..ature eliminates overspecification of order of evaluation,
- their operational semantics automatically expose parallelism presentin a program,

- their higher-order functions clevate level of programming so that abstractions can be built

closer to the concepts in the problem domain,
~ they produce determinate output, and

~ they allow clear, concise, easy to understand code.

In contrast, [6, p. 490-491] imperative languages such as Fortran have a number of shortcomings
for sdentific parallel programming. Fortran is not very good for expressing high-level abstractions,
such as abstracting behavior into a function (higher-order functions). Fortran’s imperative nature
forces the user to overspecify execution order, making it very difficult to compile good code for
a parallel machine. Most importantly, Fortran relies on the user for determinate programs, instead of
guaranteeing the determinacy of programs, as functional languages do.

Many of these criiasms can alsobe applied to otherimperative languages as well. In fact, we can
make a strong argument about the (21, p. 332] suitability of functional and imperative languages:

functional languages: are suitable to express equation solving, not for expressing non-determinism
and mutable objects

impeiative languages: are appropriate when non-determinism and mutable objects are important
in the problem domain (e.g. in airline reservation systems, operating systems, efc.)

In the context of scientific parallel programming, functional languages have the advantage of ex-
pressiveness, as saentific programming is mainly about implementing algorithms, and not about

24

1._ INTRODUCTION

dealing with mutable objects. In effect, functional programming has given the necessary abstrac-
tions tomove the programmer closer to her problem domain, and has provided logical independence
by removing responsibility for the issues of partitioning, scheduling, synchromization and memory
latency from the programmer.

1.4. Key Points

Let me summarize the key points I have made in this chapter.

The problem to be solved is finding parallel programming languages and parallel architectures
to allow scientific users to apply parallel processing to intermediate-level vision research The
contribution of the thesis will be the comparison and evaluation of three general-purpose systems
(both architectures and languages) for parallel intermediate-level vision. I believe the best suited
is the Id functional language on the M.LT. Tagged-Token Dataflow Architecture, because of its
mathematical flavor, general applicabihty, lightweight task creation, determinacy, and the logical

independence it provides the programmer

I define a number of parallel processing system evaluation critena, to evaluate the match between
parallel processing systems and intermediate-level vision parallel programming needs These cri-
teria include closeness of the parallel programming language to the problem domain, determinacy
of results, logical independence, and lightweight task creation, among others. These critena eval-
uate how each system solves the four crucial issues in parallel execution, partihorming, scheduling,
synchronization, and memory latency, which influence a parallel program’s performance and how
the parallel programmer sees the parallel architecture. The considerations ansing from these issues
in intermediate-level vision are more difficult for the programmer to handle because of the fact that
processing is data dependent, whereas in low-level visicn processing it is fixed Intuntive partitioning
schemes also ignore large amounts of parallelism present in intermediate-level vision algorithms.

Thus, scientific parallel programmers, and intermediate-level visior: programmers in particular,
cannot be expected to apply machine-specific expertise about partitioning, scheduling, synchroniza-

25

1. INTRODUCTION

tion and memory Jatency and create programs that are determinate, let alone efficient; there must be
more logical indepenc'ence in parallel programming systems, so that these concerns be moved away
from the programmer, to compilers and to the parallel architecture itself. This logical independence
is provided by functonal programming systems, but is mot found in current imperative parallel

programming systems.

26

2. THREE APPROACHES TO THE PROBLEM

In this chapter, I will describe the three different parallel programming systems whose suitability for
intermediate-level vision parallel programming I will examine in this thesis:

~ Imperatise programming in C with the Uniform System hbrary of parallel routines on the BBN
Butterfly multiprocessor.

~ Imperative programming in C-Linda on the Sequent Balance multiprocessor.

- Functional programming in Id on the Id World simulation of the MIT Tagged-Token Dataflow
Architecture (TTDA).

I will also describe the reasons for my choice of systems.

This chapter provides three answers to the vision programmer’s question, “What kind of system
is available for parallel processing ~f vision algonthms?” Because of our focus on intermediate-
level vision, the systems we have selected are general-purpose MIMD systems. In chapter 3, I will
show how each system performs as an intermediate-level vision parallei processing research tool
by programming a simple test aigorithm on each, then looking at the evaluation criteria yiven in
section 1.2.1. The purpose of the present chapter is to get famihiar with the essentials of each system.

27

2. THREE APPROACHES TO THE PROBLEM

2.1. Uniform System Programming on the BBN Butterfly

In this section we look at programming on the BBN Butterfly multiprocessor. We will give a brief
description of the BBN architecture, then examine the programming environment offered by the
vendor, and most importantly the parallel programming model, the Uniform System (U.S.).

2.1.1. The BBN Butterfly Architecture

The BBN Butterfly’s architecture is a shared mentory MIMD multiprocessor computer [10). Each
node 1s a Motorola 68020 processor with local memory. Up to 256 nodes can be connected through
a butterfly switching network, shown for 16 processors in figure 2.1. Taken together, the local
memores on all nodes form a global memory space: any processor can access any memory through
the network An N processor system uses (.\ loys \') /4 switches; thus, a remote memory reference
is loygy N switch hops away. This is an important point- a remote memory access takes about 4,15, 5
times as long as a local memory reference. This non-uniform memory architecture is carried through

into the Uniform System programming system.

2.1.2. The BBN Uniform System Programming Model

The programming system supphied by BBN is the Uniform System (U.S.). The Uniform System is
a library of C/FORTRAN routines which provide memory and processor management for parallel
pr-gramming on the BBN Butterfly. The reader interested in more detail is directed to [11]. In this
thesis, we will discuss exclusively Uniform System C programmuing for the Butterfly, although other
parallel programming systems exist [30], because1t is the system supported by the vendor, and thus

an example of the state of commercial parallel programming support.

The Uniform System’s memory management features are the following. The programmer can
set up a shared memory space across all processor/memory nodes (collectively, all memories of
the processor nodes form the shared memory). The programmer can scatter large data structures

28

kg

_ 2. THREF APPROACHES T0 THE PROBLEM

Inputs

ﬂ Inputs

Ed 1
]2 2
PR 3 \ 3
L4 \
\
5 5
6 6
PRI 7 1
Pl 8
519 9
10 10
11 11
12 12
(22 13 / 13
Jprl 14 14
pp i 15 15
16 16

(a)

w N = O

w N = o

Outputs

W N = O

o] 1 2 3

Cutputs

(b)

Figure 2.1: In figure (a), the BBN's butterfly interconnection network for a 16-node machine
Each switching node is a 4 <4 crossbar, as shown in (b) (two views of an identical crossbar)
Processing elements (PE’s) and memories with the same number are actually part of the
same node.

29

2. THREE APPROACHES TO THE PROBLEM

across all memories, to make use of the full switching network (memory) bandwidth and thus avoid
contention for a single memory Atomic memory operations and simple spin locks’ are provided.
There are also processor management features provided. Routines exist to set up task generators
to generate tasks for the processors: each task is a (C/FORTRAN) function (subroutine), and will
be dynamically scheduled to a processor at run-time. Load balancing is thus dynamic, which can
result in better processor utilization, depending on program partitioning. Each processor under U.S.

management runs a single task, to avoid costly context swaps.

As mentioned earlier, the Uniform Systemist on libraries of parallel routines for C-language
programs. the compiler used for Uniform System programs s a standard C compiler whach generates
sequential code. The task generators provided by BBN are based on the model of applying a function
to each 1tem of a data structure (eg. list, vector or array) in parallel. Partitioning can be based either on
the output data structure (e g one task to compute each element of a matrix multiplication result),
or the input data structure (¢.g summation of the elements of a matnx, with each task assigned a
row). U.S. programming 1s imperative: tasks do not return values, so the model is one of applying
o function to an input data structure to side-effect results to an output data structure, in parallel.
This assumes independence between each task execution, and therefore forces the user to worry
about data dependencies: for example, programming a matrix algonthm that proceeds along a
wavefront would require some restructunng to fit the U.S. mechanism and ensure independence of
the tasks. However, the generator mechanism is well-structured. For example, there are generators
that operate on data structures with one and two indices (typically vectors or matrices). Used in this
way, the generator mechanism 1s semantically close to iteration, with all iterations done in parallel.
Generators can be synchronous or asynchronous, respectively returniry ¢ 'ntrol to the caller at the
end of all tasks, or immediately. In its most general form, which 1s to g-..erate tasks from a list of
tasks, and used synchronously, the generator mecharnusm is like the parbegin parend construct
found in some parallel languages. This kind of structure simplifies synchronization in a large number
of cases, although at the cost of loosing flexibility in the task creation mechanism. It is more difficult
tospawn arbitrary tasks, and far easier tofit the generator model of paralielism over a data structure:
“The easiest way to achieve parallel operation is to structure the program to fit the mold of one of
these task generators” [11]. We shal! see that the problem with this approach is that fitting the mold
often involves restructuring the algorithm to fit the available mechanisms.

'Shared variables that are read repeatedly and whose change of value signal a synchromzation event

30

© TMnnem® aer amt o

[N

2. THREE APPROACHES TO THE PROBLEM

Process 1 Process 2 Process n-1 Process n
Text Text Text Text
Private Hiprogram) | | (program) orogram}{ | {orogram) C olobals. C |
(per process) Heap Hesp Hesp Heap C allocatabie (via malioc)
Uniform Unitorm Uniform Uniform 3
Shared po— Uniform System Allocatable
g::tcm Psz:’"‘ gg"“ gz‘h"'" (MaUS allocators)
Stack | Stack Stack Stack

Figure 2.2: The Uniform System address space, showing the mapping of C variables and
storage to actual physical storage Adapted from [11].

A very important point for the programmer to keep in mind is the machine’s hierarchical memory
model Physically, each node in the machine is composed of a processor and local memory; the
memories at each node collectively form a shared memory, through the butterfly interconnection
network mentioned in section 2.1. Access to local memory is five times faster than access through
the network to remote memory?. In terms of Uniform System C programming, the distincions
between the vanous types of storage are shown in figure 2.2. Notice espeaally that C globals are
process private; 1n fact, while such variables are stored at the same address on all nodes, changing,
these variables on one processor will only make the change on that processor, and on no other If a
programmer wants the change to a variable to be seen on all processors, the variable must be stored
in Uniform System shared storage. These distinctions are of extreme importance (and a source of

programmer difficulties) in Uniform System programming.

A summary of how Uniform System C programming solves the four problems of section 1 1s
theretore the following. Explicit partitioning is needed; for ease of programming, the programmer
should partition to fit the model of parallelism over data structures offered by the Uruform Sys-
tem. The match of partitioning granularity to architecture granulanty is uncertain. The model for
scheduling is implicit, dynamic self-scheduling. Synchronization is explicit, through the low-level
mechanisms provided in the U.S. Some synchronization is simplified because synchronous task gen-
erators are provided. Itis up to the programmes to speafy the placement of data to solve the memory
latency problem, as memory is either fast, contention-free, but private, or slow, contention-prone,
but shared.

Note that some shared memory is aliocated locally on a processor node (1/p of the total shared memory, in a ;-node
system) A programmer can choose to place data specifically in local shared memory (on any node, in fact). However, of
course, placing data shared by many processors on a single node will cause memory contention.

31

2. THREE APPROACHES TO THE PROBLEM

An example of U.S. programming for matrix multiplication is given in appendu A.

2.2. C-Linda Programming on the Sequent Balance

In this section we look at programming with the C-Linda parallel language, running on a Sequent
Balance multiprocessor. We will give a brief description of both the Sequent Balance architecture
and of the C-Linda language. The reader interested in more detail on either topic is referred to [38]

and (2], respectively.

2.2.1. The Sequent Balance Architecture

The Sequent Balance is a bus-based, shared-memory multiprocessor. Each processor has cache
memory (wnte-through, with bus snooping logic®), but no local memory for user processes. Instead,
there is a single global memory, and only frequently accessed, read-only kernel data is kept in a
small local memory. The memory system is pipelined and asynchronous, to maxinize the use
of the bus. A SLIC chip (System Link and Interrupt Controller) at each processor takes care of
message-passing interrupts between processors on a separate bus, and each SLIC holds copies of
synchronization gates®. The Balance runs Dymx, a multiprocessor UNIX with a single process queue
for all processors. As thereis only one main memory, process distribution and migration is trivial, but
of course at the cost of bus traffic and cache updating. Good performance 1s obtained on multiuser

or multitask loads.

A write-through cache immediately copies writen data to main memory over the bus; bus snooping logic listens on the
bus to check if data in a processor’s cache has not become invalid because of a memory write.
‘Equivalent to binary semaphores.

32

2 THREE APPROACHES TO THE PROBLEM

2.2.2. The C-Linda Programming Model

We first start by explaining the core of the C-Linda language, the Linda coordination language 1211.
Explicitly-parallel programming has two components, computatior: and coordination Coordination
is composed of commurncation and synchromzation, therefore, adding a coordination language such
as Linda to a base language like C will result in a parallel dialect of the base language, in this case,
C-Linda.

Linda itself is a set of 6 operators that can be added to any base language Linda parallel
tasks communicate through a shared dataspace called tuple space, regardless of whether or not the
machine on which Linda 1s implemented has physically shared memory. The tuple space memory
model is central in Linda: the storage unit 1s not the byte, but the fuple, or ordered set of values
Tuples in tuple space are accessed associatively, through a logical name, where the logical name 1s

any selection of the tuple’s values.

There are three operations on tuples in tuple space. read, add, and remove -— there is no modify.
This atomicity makes it possible for many processes to share tuple space and use 1t as a means of
synchronization and communication. Datain a Linda program 1s never exchanged directly between
two processes; instead, a process with data to share adds it as a tuple to tuple space A process
wanting to receive data can either remove a tuple from tuple space, or simply read in a copy of the
tuple in tuple space. Communication between processes 1s therefore uncoupled, in space and time
a process does not have to know where the data is going, as it simply places 1t 1n tuple space for all
to access (anonymous communication), and does not have to synchronize with the process receiving,
the data, which can simply read or remove the data from tuple space at any later time Modifying
data in a tuple means removing the tuple from tuple space, changing the data value, then plaang
the tuple back into tuple space. Thus, the semantics of ‘he operations on tuple space allow for casy
synchronization and communication.

To summarize then, the Linda coordination language is a set of 6 language-independent operators

that allow parallel tasks to communicate and synchronize atomically and anonymously through a

shared, assocdiative dataspace, called Tuple Space.

33

2. THREE AFPROACHES TO THE PROBLEM

A tuple in C-Linda could be, for example, ("a string", 15, 17.543, "string 2"),or
(0, 1, "foo"), or any other senes of typed fields, the allowable types being dependent on the
baselanguage The names of the operahons on tuple space are out ({),, in(s), rd (+) and eval (¢).
out (/) causes tuple ! to be added to tuple space. in(s) causes a tuple ¢ that matches anti-tuple
s to be removed from tuple space; if no matching tuple 1s found, the process executing the in(s)
will block. An anti-tuple is structurally the same as a tuple, except that some or all of its fields
may be formal parameters, which get bound to corresponding actuals 1n the matched tuple when
it is removed from tuple space. For example, the anti-tuple ("bar", ?2i, 2f) matches the tuple
("bar", 2, 7.89) Gfiand £ are an ant and a float, respectively), since they have the same
number of fields, the same actual in the first field, and matching types in the last two fields. After
domg in("bar", 2?1, ?f), 1 and £ would be bound to 2 and 7.89, respectively. If more than
one tuple matches an anti-tuple, an arbitrary (non-deterministic) choice is made for the tuple to be
removed This tuple removal and formal assignment mechanism is shown in figure 2.3. rd(s) is
similar to 1n (+), excopt that a copy of a matching tuple tuple is returned; the tuple is not removed
from tuple space. eval (/) is the same as out ({), except that the tuple is evaluated after being
placed into tuple space rather than before eval (/) 1s thus the mechanism for task creation in
Linda 1t places an active tuple into tuple space, instead of a passive tuple, as does out (!) . When
evaluation of the active tuple 1s finished, 1t turns into a passive data tuple, identical to those placed

in tuple space by out (/).

It is important to realize that tuples exist independently of the processes that created them, and
may collectively form data structures in tuple space. For example, as shown in figure 2.4, a tuple
space matrix could be a collection of element tuples. It could also have been a collection of row
or column tuples, or a collection of sub-matnx tuples; the choice of representations depends on

programmabulity and éffiaency considerations, as we shall see.

A summary of how C-Linda programming solves the four problems of section 1 is therefore
the following. Explicit parhtioning into potentially arbitrary tasks is necessary. The match of
partitioning granulanty to architecture granularity 1s uncertain. The model forscheduling is implicit,
dynamic self-scheduling. Synchronization 1s explicit; however, the anonymity and atomicity of tuple
space operations create a powerful and flexible mechanism for synchronization. Memory latency
considerations are partly up to the programmer to solve, as data placement is out of programmer
control, but tuple space data structure granularity 1s. A finer partitioning increases parallelism, but

34

2._THREE APPROACHES TO TIIE PROBLIM

Tuple Space

Process 1 -
[] ("data", 4) l Process 2|
out('data’, 4)

(4.06, "other stuff", 8)

Tuple Space

in("daw", 7 1)

("data”, 4)

(4.06, "other stuff”, 8)

\—n_/_____,_,___—-

Tuple Space

Process 2

/* Atthis
point,i==4 */

(4.06, "other stuff™, 8)

Figure 2.3: A Linda example. Processes 1 and 2 were previously created using eval ().
The anti-tuple 1n ("data", ?i) in process 2 matches the tuple placed in tuple space by
process 1, and formal i gets bound to value 4.

35

2. THREE APPROACHES TO THE PROBLEM

Tuple Space

1, 39.5)
("Matrix A", 3, 3, 93.65)

("Matrix A",

2,

("Matrix A", 1, 3, -14.4)

("Matrix A", 2, 2, -18.6)

("Matrix A", 1, 2, 1.54)
("Matzix A", 3, 1, 2.81)

("Matzix A", 1, 1, 6.2)
("Matxrix A", 2, 3, 3.0)

("Matrix A", 3, 2, 6€7.8)

Figure 2.4: A tuple space data structure. Matrix A is stored in a collection of single-element
tuples.

2. THREE APPROACHES TO THE PROBLEM

increases access latency, while coarser partitioning decreases latency but increases contention®. This
issue is very architecture dependent.

23. 1d Programming on the TTDA Simulator

In this section, we give a brief introduction to dataflow archutectures, briefly describe the MIT TTDA
architecture and the Id functional programming language, and examine the system on which Id
code was run, a software simulation of the Massachusetts Institute of Technology’s Tagged-Token
Dataflow Architecture (TTDA) called GITA, part of a software development environment called 1d
World.

2.3.1. An Introduction To Dataflow Architectures

We will provide a brief introduction to dataflow architectures; our description follows [4], which the
interested reader is urged to consult for greater depth.

The dataflow concept is quite simple: a dataflow program 1s a directed graph where nodes are
operations and arcs denote data dependencies between operations. Data values are carried on tokens,
which flow along the arcs. A node may execute (or fire) when a token 1s available on each input arc.
When it fires, a data token is removed from each input arc, a result is computed using these data
values, and a token containing the result is produced on each output arc For example, the following
program is easily converted into the dataflow graph of figure 2.5

let x a*b;
y = 4*c

in (x + y)/c.

5Which, in tum, increases latency!

37

2. THREE APPROACHES TO THE PROBLEM

—

/

r

Figure 2.5: A simple dataflow program.

Note how the result of an operation is purely a function of the input values; there are no interactions
between nodes via side effects, for example, through shared memory. The example shows the two
key properties of dataflow architectures: parallelism, as nodes can execute in parallel unless there is
an explicit data dependence between them, and determinacy, as results are completely independent
of the order in which potentially parallel nodes fire. More general programs (such as those with
loops and condationals) can be created with boolean tokens and switch and merge operators.

How does a real dataflow machine execute such a program? Dataflow graphs such as the one in
figure 2.5 can be viewed as a machine language for a dtaflow machine, where a node in the graph
is a machine instruction. Each instruction contains an op-code and a list of destination instruction
addresses (for the result token). The basic instruction cycle for any dataflow machine is thus:

1. detect when an operation is enabled;
2. determine the operation to be performed (i.e. which op-code);
3. compute the result;

4. generate result tokens.

Note how the first stage of the instruction cycle allows us to avoid performance degradation be-
cause of memory latency (delays through network to memory): if a result hasn’t arrived yet, the

38

2. THREE APPROACHES TO THE TROBLEM

operation won’t be enabled, but we can simply select another one which 1s enabled. von Neumann
architectures, with their sequential program counter, mustblock until the data arnves. The dataflow
architecture therefore uses parallelism (more than one operation to be selected from) to hude latency.

What are the problems with dataflow architectures? Simply that the hardware cost of a single
dataflow processor 1s much higher than that of a traditional von Neumann processor: for example,
selecting the instruction to execute in a dataflow archutecture is more complex than simply increment-
ing a program counter in a von Neumann machine. The gains to be made in adopting the dataflow
architecture arise in a multiprocessor setting: because dataflow machines lude memory latency by
using parallelism and switching to an enabled instruction if necessary, their processors can be busy
a larger percentage of the time than von Neumann processors i a parallel machine, which can only
idly wait for their operands to arive from memory after network delays or contention.

Notice now how function.l languages and dataflow architectures are a good match for parallel
processing. Both work on the prinaple of producing results from expressions and not on side effects
to memory. Additionally, to be effiaent, dataflow architectures need the high parallelism (to be
able to switch to another instruction to hide latency) present in funchonal programs, which impose
the minimal restrictions on parallelism (only those that arise from data dependencies). On the
other hand, multiprocessors built from von Neumann processing elements and programmed with
explicitly parallel languages derived from sequential languages suffer from serious problems. They
impose on the programmer the need to specify synchronizations to avoid read/write races (which
cause non-determinacy), and subtle timing bugs arise. Functional languages completely avoid these
synchronization problems by disallowing “updatable vanables” (1.e. side effects to memory).

2.3.2. The MIT Tagged-Token Dataflow Architecture

In this section we will take a very brief look at the MIT Tagged-Token Dataflow Architecture (TTDA).
Our treatment will follow that of 17].

The TTDA consists of a number of identical processing elements (PE’s) and I-structure storage
elements (described in section 2.3.3), cornected through a packet-switched network. The I-structure

39

2. THREE APPROACHES TO THE PROBLEM

elements collectively implement a global shared memory. A single PE-I-structure storage pair is,
in itself, a complete dataflow machine [7). In the multiprocessor configuration of the TTDA, all
memories are globally accessible. Code can be distributed and executed over many PEs (processing
clements) (a single code block executing simultaneously over many PEs, or even part of a single code
block executing on different PEs). However, mapping over multiple processors does not increase
overhead: the number of instructions executed in a TTDA program is independent of the number of

PEs itis runon 7).

As 1n other dataflow machines, the TTDA has fast context switching and split-phase memory
transactions (i.e. switching to another instruction if a memory transaction has not completed, as
described previously), to ensure that synchronization occurs at the finest level possible and that

memory latency effects are reduced.

We obviously cannot look at the MIT TTDA 1n great detail here; the interested reader is directed
to[7]. The important point to remember is that the MIT TTDA executes dataflow graphs, obtaining
maximal parallelism up to data dependencies and machine constraints. Fine-grained synchroniza-
tion is supported through I-structure storage, and its mechanism of PRESENT / ABSENT / WAITING

indicators (see page 42).

23.3. The 1d Functional Language

As described in appendix B, the class of applicative, or functional, programming languages is one in
which computation is carried out entirely through the evaluation of expressions (i.e. the application
of functions to arguments, thus producing results) [24], and completely without side effects; these
characteristics are foundinld. Foracomplete description of theldlanguage, see [27]. Additionally, Id
fully supports lugher-order functions, data abstraction, pattern matching and array comprehensions.

We present a very simple (and, for the moment, also very mefficient) functional program for
matrix multiplication (figure 2.6), wntten in the functional language Id [27]. We rely heavily on the

mtwtion of the reader to understand program syntax.

40

2. THREE APPROACHES TO THE PROBLEM

def ip C D =
{
{_,n) = bounds C
ain
5 sum (1l,n) {fun i = C[1]1*D([a])}
}i

def row i E =
{
(.,).,{,n) = 2D_bounds E
10 in
{vector (1,n)
] {31 = E{2,3] Il 3 <-1 ton}

Y

def col § F =
15 {
(__l n), (_I_) = ZD_bounds F
in
{vector (1,n)
] [1) =F[i,3] 1|
20)

i <~ 1 to n}

def matmult A B
{
(_Im) » (_,n)
(.)1
25 in
{matrix (1,m), (1,1)
| [i,3] = ip (row i A) (col j B)
]l i <-1¢tom
& j<—-1tol}

= 2D_bounds A;
2D_bounds B

Figure 2.6: Example functional program- matrix multiplication

- ™

2. THREE APPROACHES TO THE PROBLEM

Four functions, 1p, row, col and matmult are defined. Respectively, these functions return
an inner product, a row of a matrix, a matrix column, and a matrix product. In the code, -is a
pattern-matching character, and matches any actual value. Parentheses are used only for grouping,

and can otherwise be omitted.

Certain characteristics of the program are notable In line 5, the sum function (defined elsewhere)

takes two arguments:

- the first is a 2-tuple which describes the summation bounds

~ the second argument to s umis itself a function of one argument; this argument is the summation

index 1.
Note how close thus definition of sum is to the mathematical notation for summation,
Y ., (21)
=1

We have abstracted out the summation behavior and put 1t in a function, which expects another
function (the summand, here C[i]#*D[1]) as an argument. Thus, higher-order functions raise the
level of programming by making it possible to create functions that operate on other functions. Note
also the array comprehension syntax for declanng and filling arrays in the same code fragment (see

appendix B).

Id 1s therefore a functional language, but augmented with non-functional data structures called
I-structures [7). I-structures can be declared in one place and filled in at another; their name is
derived from the fact that they can be filled incrementally [4]. However, to prevent the possibility
of read/write races, I-structure slots have PRESENT/ABSENT/WAITING indicators, and cannot
be written to more than once, thus preserving the functional nature of a program. I-structure slots
with WAITING indicators have had a read attempt performed on them while the slot was empty;
those read requests are deferred and stored in a part of I-structure storage specially reserved for
that purpose, in the MIT Tagged-Token Dataflow Architecture [4). As stated in [4], the main reason
for introducing I-structures to Id was to obtain non-strict data structures that could later be filled
in a demand-driven way, which cannot be done with array comprehensions, which, as seen above,

4?2

2. THREE APPROACHES IO THE PROBLEM

are declared and filled in one place. For situations in which this can be a limitation (and thus
where I-structures provide a solution), see (24]. In effect, I-structures allow for very fine-grained
synchronization, at the array element level. The underlying architecture must be able to efficiently
support this.

Perhaps the most important aspect of Id is that it 1s determunate, as for all other functional
languages. That is, given identical inputs, the outputs of a computation will always be the same,
regardless of the order in which computations occur. This frees the programmer from the details
of scheduling and from having to synchroruze parallel activities; an Id program wull be determinate,
irrespective of the Id code it contains.

As mentioned earher, Id’s operational semantics also free the programmer from having toidentify

parallelism: parallelism inId is impliat and compiler-detected.

To summarize then, the Id funchonal language provides determinacy, higher-order functions,
array comprehensions and pattern matching for expressiveness, data abstraction for modulanty,

and I-structure arrays for fine-grained synchronization.

2.3.4.1d World, GITA, and Id Software Development

The experimental algorithm implementation described in section 3.1 was done on a SparcStation
running Lucid Common Lisp, on which is implemented the Id software development environment
and MIT TTDA software simulator, Id World and GITA, respectively.

Id World is an integrated software environment that features an editor, a software emulator of the
TTDA called GITA (with debugging support), and extensive performance and momtonng tools [29).
Code execution, debugging, and statistics monitoring occurs in GITA, the Graph Interpreter for the
Tagged-token Architecture.

Statistics collection allows the user to collect statistics about the parallelism profile of an algorithm,
the mix of instructions executed, various I-structure storage operations, etc. Different emulation

43

P

e &

2. THREE APPROACHES TO THE PROILEM

modes allow the user to change the number of processors from infinite to finite, and communication
latency (explaned in section 3.6) from 0 to a non-zero value.

A summary of how Id programming on the TTDA solves the four problems of section 11s therefore
the following. Partitioning is imphcit (compiler-determined) Each instruction is a task. Scheduling
is also imphat, performed at run-time on the TTDA. Synchronization is implicit and fine-grained,
cither through the implicit ordering of the execution of individual instructions, or through accesses to
I-structures. The memory latency problem is solved by the architecture through split-phase memory

transactions.

2.4. Reasons for Experimental System Choices

As mentioned in chapter 1, our goal for the research was to investigate general purpose systems for
the vision research environment, appropriate for intermediate-level vision. We felt that this excluded
systems which only support message passing programming models, as their lack of support for
globally-shared data objects (e.g. input iconic data, in the case of intermediate-level vision) s a heavy

burden on the programmer for placement and movement of data and tasks.

An nteresting issue that we wanted to investigate was that of imperative parallel programming
versus declarative parallel programming, which are two camps in parallel programming community.
Imperative parallel programming advocates emphasize the ease of learning parallel constructs for a
well-known sequential language, giving explicit programmer control for presumably better perfor-
mance, or the convenience of automatically parallelizing sequential language programs. Declarative
parallel programming researchers emphasize the importance of determinacy, the high degree of par-
allelism exposed by functional languages, the programming expressiveness provided, and thelogical
independence from machine-dependent issues. In fact, we can see that the parallel programming
systems chosen support different levels of logical independence:

Id: imphcit partiboning, synchronization, scheduling

C-Linda: explicit partitioning, simplified (but explicit) synchronization, implicit scheduling

4

i

T

2. THREE APPROACHES TO THE PROBLEM

BBN Uniform System: explicit partitioning, explicit synchronization, implicit scheduling

2.5. Key Points

Let me summarize the key points I have made in this chapter.

The BBN Butterfly is a shared memory multiprocessor with a high-bandwidth, non-uniform
memory architecture; the BBN Uniform System (U.S.) parallelism model is based on side effects to
data structures. Programmers must structure their program accordingly, and worry about synchro-

nizahion between tasks.

The Sequent Balance is a single-bus, shared memory multiprocessor. The C-Linda paral-
lelism model 1s based on arbitrary task creation and anonymous, atomic operations on a shared,

assocdatively-accessed dataspace.

The MIT Tagged-Token Dataflow Architecture (TTDA) is a dataflow multiprocessor thatsupports
fast context switching and I-structures for fine-grained synchronization and split phase memory
transactions to reduce memory latency effects. It is simulated by the heavily-instrumented GITA, the
Graph Interpreter for the Tagged-token Architecture. Id 1s a modern functional language augmented
with I-structures to allow for very fine-grained synchroruzation.

The above three parallel processing systems were chosen because of general apphcability, and

contrast between explicitly parallel imperative languages and implicitly parallel functional lan-
guages.

45

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL

VISION

3.1. An Intermediate-Level Vision Example: Parallel Cooperative Fitting

In this secthon we will describe an expermmental intermediate-level vision algorithm we will use to
evaluate our three parallel processing systems. It is a parallel cooperative fitting algonthm: multiple
fitting processes cooperate and exchange information to change the result of each fitting process.
Our work on this algnrithm is incomplete; indeed, the algonthm itself may need a great deal of
refinement. However, this is typical of research work and will be useful 1n evaluating parallel
processing systems. We will describe the2 algonithm in some detail, explain why it fits the criteria
detailed in section 1.1.2; and what makes its implementation interesting.

3.1.1. The parallel cooperative fitting algorithm

The idea behind this demonstration experimental algorithm is to use additional information present
in a data set with multiple components to constrain a fitting procedure applied to each component.
These constraints are communicated between fitting processes while the fitting takes place. In
essence, the goal is to perform, in parallel, model fitting of n volumetnc primitives and m surface
curves (either bounding contours or inter-penetration curves) to a segmented (range) image. Each
fitting process is iterative: a process moves one step toward what it believes is the correct fit, given

46

3. A COMPARISON IN THE CONTEXT OF I:JTERMEDIATE-LEVEL VISION

the information it possesses. It then exchanges information with its neighbors,and takes another step,
which presumably is an improvement upon the previous one. This iterative procedure continues

until some measure of convergence is reached.

The vision processing task of interest in this case is the fitting of volumetnc primitives to (three-
dimensional) range data, so as to infer volumetric models from dense threc-dimensional input (391
However, previous approaches use only part of the information present in the input data, namely the
range mformation. The rationale for using parallel cooperative fitting is to use additional information
present in the range image in the fitting process, such as bounding contours and inter-penetration
curves. An initial estimate must be done for these and for the volumetric models before starting the
fitting algonthm (e.g. by performing a least-squares fit for the volumes).

The 3D bounding contour of the range data could be determined by first removing background
points, then considering only those data points whose surface normal falls 5eyond a specihed
threshold ¢. Additionally, given a segmentation of an object composed of multiple parts, adjacency
(spatial) relationships between volumes fitted to each part can also be used as a further constraint, in
the form of inter-penetration curves, formed at the intersection of two volumetnic pnmitives. A part
could therefore have, 1n theory, any number of inter-penetration curves defined between 1t and 1its
neighbor(s).

For example, after scannung a 3-D object to obtain range data, having segmented it into two parts,
and having determined its bounding contour, we could run the parallel cooperative fitting algorithm
on the data to obtain a volumetric description of the scene. A number of iterative fithng processes

would be active, and communicating constraints on each other’s fit.

- Two fitting processes to fit the 2 volumetric primitives to the surfaces.

- Two fitting processes to fit the bounding contours of the actual data to the bounding contours

of the volumetric primitives.

— One fitting process to fit the intersection curve formed by the two volumetric pnmitives to the
curve in the actual data, formed by finding points of extremal negative curvature, for example.

47

%

»

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

The desired result of running the algonthm in [39] on a segmented image of a toy wooden doll is
shown in figure 3.1, with the additional information that could have been used, such as the bounding

contour and the inter-penetration curve.

Therefore, the constraints used in this case are that the volumetric primitives should be close to
the surface data, bounding contours should be close to those in the data, and curves of intersection
should be dlose to those in ihe data. During the iterative fitting (mmnimization), fithng processes
will communicate between each other, to try to satisfy these constraints. The way in which these
constraints are incorporated into the iterative minimization is through a distance measure: the
distance between parameter vectors in parameter space 1s blended into the fitting error metric. We

will examine this further on.

To summanze then, range image parallel cooperative fitting can be understood in terms of the
following input and output data structures. The input is a segmented range image, which includes
points on the object surface (for each part), points on the bounding contours of each part, and
possibly, points on an inter-penetration curve(s) a part shares with its neighbor(s). The outputisa
list of volumetric primitive parameter vectors (and possibly vectors describing bounding contours

and interpenetration curves), one vector per segmented part (or curve).

To simplify the experimental algonthm, it was decided to solve the problem for the simple case
of an elhipsoid, centered at the origin, with a known orientahion, and with its bounding contour in
the s~y plane. Thus, we have a very simple case of the parallel cooperative fitting algorithm, a single
part and 1ts bounding contour, and we will have only two fiting processes: a surface data ellipsoid
fAtting process, and a bounding contour (of surface data) ellipse fitting process. The fact that we don't
determine pose or position (i.e. assume ellipsoid centered at origin, no translation and rotation) is not
restrictive, as it only implies an extra 6 parameters to determine. We will assume that the bounding
contour hes in the 1 y plane, which is obviously not necessarily true These assumptions do simplify

the interachons between the fitting processes a great deal.

In fact, the algorithm described below is only one possible implementation. The assumptions
we have made leave many unanswered questions as to the performance or even the applicability
ot the algonthm on real data, but the important point is that this could be a plausible first step in
the development of a working algorithm. The worth of the approach, in terms of providing good

48

e

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

Surface

Boumding contour

“Surface

Figure 3.1: Results of running the fitting algorithm in [39] on range data from the arm of a
wooden doll. The original data is shown as darker vertical bars. The grey volumes are fitted
superquadric models, which are seen to overlap ana exceed the bounds of the input range.
The additional information that could have been used, namely the bounding contours and
the inter-penetration curve, are shown in white.

49

3 A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

computer vision results, will not be commented on further. Our interest is that the computation
patterns of the algonthm feature some of the characteristics to be expected in intermediate-level

vision algorithms

The full algorithm for the case of a single ellipsoid could be the following. Itis based on that
descnibed in [39). There is an iterative fithng process for the surface, and one for the bounding
contour. Independently, each would produce a parameter vector. Both should be describing the
same object, but because of nowse in data acquisition, they will differ slightly. Correspondingly,
at each iteration step, we try to minimize the difference between the parameter vectors produced
by fiting to the surface and by fiting to the bounding contour. We do this by defining a \? merit
function to be mirumized that incorporates a function of the distance between the 2 parameter vectors
in parameter space. Iterative minimization is necessary because of the non-linear dependence of the
\2 ment function on parameters. The algonithm we use is Levenberg-Marquardt iterative minimization
[33] (which continuously changes from gradient descent far from the minimum to an inverse Hessian

“jamp” when closer to the mimimum).

Any fitting process 1s obviously deperdent on the error metric used. The error metric for the
ellipsoid can be denved from the equation of the ellipsoid. We can consider the left-hand side of
this equation as an inside-outside function (w.r.t. the RHS, which is 1). Thus, the difference between
J{x.a) (xis data, a is the parameter vector) and 1 is an error metric (the [); metric [39, p- 691 . Thus,

for the ellipsoid,

N2 2 \2
D(xy. 008) = J{xg.88) - 1= (i) + (_1/_‘) + (:) -1 (3.1)
a, b, Cs

where xs = (r., ¥.. 2.) 1sa surface point, and as = (a,,b.,c,) is the surface parameter vector.

To be able to combine the two parameter vectors in this error measure, we will add in their

difference in the error measure, as follows:

\2 2 N2
(i:) +(LL> +(;.> 1 M(ar = ag P A+ (be — by)2, (3:2)

iy b, .

where x¢ and a¢ are the bounding contour equivalents to xs and as, and use that in the iterative fit.
Notice that this introduces an adjustment “knob” J, and leaves c, specified only by the surface data,

50

3 A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

as as = (u..b,.) has three components (asurface parameter vector), and a¢ = («..b,) has only two
(a curve parameter vector).

3.1.2. Relevance of the Experimental Algorithm

The algorithm is interesting in many ways. It requires a large amount of iconic input data- each
fitting process will fit to a large number of Cartesian data points (each of which has three com-
ponents). The output is a list of features, in this case ellipsoids and ellipses describing surfaces
and curves, respectively, and each feature is described by a vector of parameters. The algorithm is
numerical, involving alarge number of summations (to compute the merit function \2, for example).
Communication between tasks can be data dependent, as it depends on how many inter-penctration
curves exist for a given volume. In our simplified example, however, communication 1s fixed, and
only takes place between the fitting process for the surface and the fitting process for the bounding
contour curve. Synchromzation is faurly simple and data-independent in our simphfied example.
each iteration of the fitting procedure is performed in step.

The most interesting charactenstics, however, are that the input data sets vary 1n size, and
thus the feature computation times can be vastly different. Thus, a simple one task per feature
partitioning scheme would be ineffective. Additionally, there is significant parallelism within each
feature computation, as summations (the most important operation in our algorithm) can be done
in parallel. Memory latency considerations are the second important characteristic. the large input
data sets must be easily accessed and manipulated by parallel tasks.

3.2. Comments on BBN U.S. Programming

How does, US. programming on the BBN Butterfly fare? It suffers from a lack of expressiveness
and from a lack of logical independence, partly because of the C language on which the US. 1s
based, but also because of its parallel library type of design. The C language, in some respects,
does not even provide logical independence to the sequential programmer; for example, explicit

51

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

memory allocation can be tedious and error prone (e.g. writing to a data structure for which no
memory was allocated) The U.S. programmer naturally inherits these concerns. Uniform System
BBN programmung suffers from the same lack of logical independence exhibited by other explicitly
parallel programming systems {in terms of explicit synchronization, for example), but four problems

in particular stand out

Farst is a lack of mgher-order functions, which are crudial for expressive scientific programming
(a problem inhented from the C language). Second, an inexpressive parallelism mechamsm: task
generators based on library routines are awkward to use, and their parallelism model of side effects
ondatastructures is not always appropriate. Third, explicit partitioning is also a weakness: itis unclear
a priort whether or not the partitioning chosen by the programmer is correct for the architecture, or
is too fine, or too coarse. Finally, the Iucrarchical memory model shown by the Uniform System relies
on the programmer to solve the memory latency problem by placing data in either local storage
or remote storage This is a burden to the programmer for program performance and especially

correctness,

The system also has certain strengths. First is comparatively small grain size, which helps to extract
more of the parallelism present in an algorithm. Second, if tasks are small enough, and there are
enough of them, load balancing will occur dynamically. Third, the system offers large bandwidth to
shared memory, as the imnterconnection network to the shared memory will allow for high transfer
rates, if data and access patterns to memory are both well distributed. Finally, a single address space

for shared data simplifies programming, and especially inter-task communication.
Let us examine US programming on the BBN Butterfly with respect to our evaluation criteria.

One important consideration is that there are no higher-order functions in Uniform System C
programming, which of course is inherited from the C language. This forces the use of clumsy
function pointer and argumen list pointer passing, and also prohibits function composition. For
example, we often need tu pass 2 functions A () and B() to a function C (), and inside function
C(), create a new function £(A, B), which would then be used in yet another function. The
absence of thus feature in U.S. C programming means one can’t create arbitrary combinations of the
functions A() and B(). Any such combination, such as £ () in the example above, must be defined
in advance. Functions are the at the core of mathematical programming; any system that supports

52

%

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

scientific programming must simplify the creation and handling of functions; the Uniform System,
being based on the C language, does not.

Of course, given enough work, U.S. programming on the Butterfly can be used for any scientific
problem, because of its MIMD architecture and general-purpose processors It is not restricted to
near-neighbor communication algorithms, as communication 1s through shared memory, which is
entirely accessible to all processors. Nor to is 1t restricted to algonthms with very large grain sizes:
once a Uniform System task generator is set up (which can be expensive), the overhead for task
creation is approximately equivalent to that for a function call.

One of the main problems with Unform System parallel programming 1s the inexpressive par-
allelism mechanism. With the U.S. generator mechanism, code must be restructured to fit the
mechanism, which allows you to pass as parameters to the newly created task only a single pointer
(and possibly one or two indices to indicate the task’s nuumber). This is what [32] refers to as syntactic
crudeness. Generators are like the Lisp map function, in that they are meant to apply a function
over an mput data structure (such as an array or a vector), in parallel, and perform side effect on a
resuit data structure. This is quite useful for a number of problems, but not for all. The generator
mechanism can be made to handle any case, but with some restructuring of a user’s code This 15

what Pancake [32] refers to as semantic crudeness.

The Uniform System’s model of explicit partitioning of tasks and data (hierarchical memory
model) and explicit synchronization are an added programmer concern. Scheduling, however, 15
implicit (dynamic self-scheduling).

Task partitioning is difficult on the BBN Butterfly, because of granularity considerations. It is
difficult to find optimal grain size for tasks: the grain size must be small, to do dynamic load
balancing and avoid idling, but must be large enough to avoid excessive overhead. If the proper

grain size is not chosen, the risks are

task starvation: granularity too coarse, too few tasks, and many processors 1dle at the end.

excessive overhead: granularity too fine, too many tasks, and the computation/overhead ratio too

low.

53

3 A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

In fact, the approach suggested by BBN is of restructuring code after trial and error [11, pp. 3-4I:

If necessary, it is usually relatively easy to combine small tasks at a later stage into larger,
more manageable sizes; it is often more difficult to divide a task at a later stage into

smaller ones.

In our parallel cooperative fitting code, there is one single kind of task that is used throughout the
code, a paralle]l summation task, so that it was fairly easy to contain granularity considerations into
a single variable. This will not necessarily be the case for all codes, of course, so that restructuring
to achieve proper granularity will probably be far more difficult.

Large, shared data structures inevitably produce the memory latency problem, which, in the U.S.,
is partly the programmer’s responsibility to solve. This shows up as tedious data partitioning. For
good performance, the programmer must know about the machine’s memory model, the C storage
model, and structure the program accordingly. This is because parallel programming on the BBN is
fundamentally different from sequential programming: the programmer must always keep in mind
the particular storage details of each variable, which is obviously difficult to do, because there are
n different address spaces for n processors. To the programmer, memory latency appears in two

ditferent guises:

memory contention: Data in the same memory node will cause contention.

remote memory accesses: Since local accesses are faster, one must always determine 1f a variable
should be stored locally or remotely. Remote accesses are slower and increase contention, but
if some data will be needed by all processors, then it must be placed in shared memory, which

is remote to all processors but one.

It is important to realize that code which affects these two considerations is distributed throughout the
entire program, and 1s entirely the responsibility of the programmer, who must be constantly attentive to
the storage model. There is no syntactic difference between pointers to shared data and pointers to

private data, thus creating a non-homogeneous namespace.

54

o

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

Because of the relative speed of local and remote memory, the programmer must often make
copies of frequently-used data in local memory. The Uniform System pronides a mechamism to
automatically make local copies of specified data into each node’s local memory before the node
starts working on tasks from a generator- thisis the Share () mechanism. Explicit Share ()‘sare a
programmer-friendly way of making expliat local copies; the programmer must keep in mand that
this mechanism must be reserved for read-only data, as any modification to local data 1s scen only
locally and is unknown to the Share () mechanism. Aside from the Share () mechanism, data must
often be explicitly moved from remote memory to local memory if good perfornunce 1s to be attamned local
copies for data that vary are best handled explicitly by the programmer, which unfortunately is an
extra worry.

Memory contention is another programmer concem. Effiaency considerations (avording hot
spots!) impose data structures on the programmer. For example, C vectors are stored 1n a single
memory node, to have vector elements in a contiguous address space (as required by C). To avoid
contention for a single memory, programs which deal with long vectors must have a special vector
dataallocator and access mecharusm, to scatter vector elementstorage across all memories and accews
them as such. Other data structures can similarly be partitioned and scattered, but not with standard
US. functions, which only provide functions to scatter matnices. An allocator and access mechanism

must be constructed for each new data structure.

The hierarchical memory model of the machine also reduces modulanty A module 15 a self-
contained and discrete part of a larger program, which accepts input that is well defined as to
content and structure, carries out a well-defined set of processing actions, and produces output
that is well defined as to content and structure. Modular:ty 1s achieved when interactions between
parts of a program or system can be ngidly restnicted to the interactions between modules, which
greatly simplifies the understanding of how a program works [34, p. 996l. In the Uniform System,
constraints are now not only content and structure, but also location iIn memory a function a ()
which creates parallel tasks to operate on its arguments must require that its arguments exist'1n
shared memory. This constraint of location in memory propagates upward to all functions who call
a (), and so forth. One would want to define a function solely in terms of input data and output
results, but this ignores the added consideration of location in memory: a function which works in

!Regions of shared memory wath high access frequency, and thus huigh contention

55

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

parallel will produce correct results only for arguments in shared memory

The non-homogeneous Butterfly namespace is a corstant source of programmer concern. Any
parameter passed by reference (i.e pointers) is a potential problem — does the pointer point to
process-private on the local processor, or to shared (most probably remote) memory? If the pointer
points to process-pnivate memory, only the local processor will see the results of modifying that
memory location, which sometimes isn’t the intended behavior. Thus 1s a very important problem,
as passing arguments by reference and returning altered values is a common programming model
in C, espedally for large data structures for which copying would be wasteful If the data is written
to by many processors, it must be in shared memory, so that a pointer to it will be valid on all
processors. If it is read-only data and is frequently used, performance considerations dictate thata
local copy be made. In short, in a system with hierarchical memory under programmer control, the
programmer must always be concerned about the questions: “Will this data be written to by many
processors?” and “Where docs this data reside in physical memory?” The latter consideration is not

unlike message passing, except the situation is much simpler in shared memory environment.

Because of the shared/pnvate distinction, viewing parallel programming with the US. as ex-
tended sequential programming is very misleading. A routine that was developed sequentially
often will not work when run in parallel, because of side effects. Side effects to local memory will
cause incorrect behavior when run in parallel, as the side effects will only be seen by one processor,
not by all processors, which is usually the intended behavior. Thus, determinacy in the U.S. 1s
entirely up to the programmer. It is fairly easy to write a non-deterministic program: for example,
a program which creates tasks that side-effect CC global variables will run correctly on one processor,
but will not work on 2 or more processors, as each processor will side-effect its own copues of the C

globals.

Because communication 1s done through the shared memory, and all processors are equidistant
from the shared memory, communication is uniform. Synchronization, when necessary, must be
done through low-level primitives such as atomic operations or spin locks, although higher-level
constructs such as semaphores and monitors can be built from these. Unfortunately, a single,
frequently-changing, and frequently accessed variable will be a problem for program efficdency on
an architecture not tolerant of latency such as the Butterfly, as it is stored in a single memory (which
causes memory contention and thus latency), and processors must synchronize to change it (which

56

t 4

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

causes synchronization latency).

3.3. BBN U.S. Experimental Results

The parallel cooperative fitting code on the BBN Butterfly was parallelized simply by decomposing
the summation function into a parallel one, since sunmmation over an index range 1s by tar the most
important type of operation in the fitting code, and the easiest to parallelize. If the summation range
is n, our code allows the measurement for various summation task granulanties by dividing up the
work into m-sized chunks.

The experiments we ran were the following. 6173 points were sampled onanartifictally-generated
ellipsoid, withadded gaussiannoise. Tests were made on a single iteration of theiterahve Levenberg-
Marquardt fitting procedure. Tests were run for granularities of 10, 20, 30, 40, 50, 75, 100, 125, 150,
175, and 200-point summation sub-ranges.

Speedup and utilization results for this test sctup are shown in figures 3.2 and 3.3.

As can be seen from figure 3.2, the best speedup was obtained for a granularity of 175, which is
rather coarse for the BBN Butterfly. However, the reader has certainly also noticed the “sawtooth”
pattern of the speedup curve for the granularity of 175, in figure 3.2 These two observations
arise because of a granulanty mismatch of the program to the architecture. In the first case, better
performance is obtained through coarser granulanty by increasing the computation to overhead

ratio.

In the second case, task starvation [11] shows up as a sawtooth pattern superimposed on a
generally monotonically increasing speedup curve. This can easily be seen by remembering that
there are 6173 data points in the data set. A summation over 6173 data points, divided 1nto ranges
of 175 summation index values per task, gives [6173/175] = 36 tasks. Therefore, we must divade
this number of tasks by the number of processors available. However, tasks are discrete objects, so
that if we have p processors available, p — 1 of them will receive {36/p| tasks, and 1 processor will

57

3 A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

BWp- o m o e e s

—-— —_
s =
&_& =
‘
-

Effective procs

- ¢!
-~ /)

j ;

T S S S T S S T St 1‘0 o 1TV YTV e T W e W e T e s

Ipas ® prexo

() Speedup, granulanty = 10 (b) Speedup, granularity = 75. (c) Speedup, granularity = 175,
| I v E S - IR v = mm = e g e = ey
l ay \\~~. —.. ‘] G’I[\\—-—\

T ~ : orr \‘_‘—/\/\/ 1 as} \‘V/\/\/
- ~ N I
~.. i LY a7
! é 0.8 X ! Q,![
‘ m' 5 nt;
1: ﬁ.!r - 03
! u,‘ lu[
| al 4 k-
A s SRR S D
4 L]] 1w i >4 " 1% " » 2 4 [[] 10 12 [1] 16 it 20 2 4 L} 3 10 12 " 16 1]
e # progs o’ proce
(d) Utilization, granularnty = 10 (e) Utilization, granularity = 75. (f) Utilization, granularity = 175.

Figure 3.2: Speedup and efficiency (utilization) for the BBN Butterfly, at different granular-
ihes

58

3. _A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

effectve # of processors i

A8 \
{ AR S S
AN
[S A
AN I N
e T I’ \‘. Nt ! ! “w
T, \ P \\""’»M ~ N,
[N D el NN
e N O
Fofprocessors <=\, e S ST T T e
o TN e T A i
N T S NN .‘}, |
ST e o T
4 oIS pT . ~ LS
y ~ ~ ~ ~ ~ 1 .1’, i
~ - ~ . A > A { Du
-~ re N ‘4 N [} 3
<7 . < ~ \(’ P i: .}: ‘
s < N S N SRR
(Ll S e ~ N ~ . o 14 H
< 00 "~ ~ >, < < N . I % !
178 . SN KN . .
~. 150 5 NN,
B |
PV RRTORN \
N 0™ <74
< s . 4
™ N~ 2
granulanity 10!

Figure 3.3: Speedup surface for the BBN Butterfly. The speedup surface shows speedup
results for granularities of 10, 20, 30, 40, 50, 75, 100, 125, 150, 175, and 200, from front to back.
Notice how performance improves for higher (coarser) granularities, but only for certain
numbers of processors. See the text for explanations.

receive [36/)] tasks, so that the critical path length s [36/p]. Assuming complete parallehization (r.e.
ignoring sequential components of the code), speedup will therefore be 36/[36/):|. This 1s plotted 1n
figure 3.4, which the reader can see compares quite well to the graph in figure 3.2, for a granularity
of 175. Of course, theidealized model ignores the sequential component of the code. This includes
sequential elements in both the user code, and sequential regions through the task generators.

Thus, the optimal granularity is the one which 1s the largest possible, to avoid overhead,
while avoiding task starvation effects, to keep all processors fully utilized. This represents a slice
through the speedup surface shown in figure 3.3: for a given number of processors (shown as
of processors in the graph), there corresponds an optimal granularity (granularity) at
which the speedup (effective # of processorsin the graph) is maximized Such a slice, for
» =10,12, 14,16, is shown in figure 3.5.

In general, a user will not have such a trivially simple way of changing the partition size of his or
her tasks. In the vision context, dynamically generated tasks, varying data sets and processing time
will play havoc with this endeavor. This will usually mean tedious restructuring for the programmer,

59

By,

o wy

3 A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

Figure 3.4: Idcalized speedup curve for a granularity of 175. Note the close agreement wath
the curve in figure 3 2

Figure 3.5: The optimal granularity for the BBN processor, for p = 10,12.14,16. The r-axis
corresponds to which of the 11 granularities we measured, from 1 to 11 respectively 10, 20,
30, 40, 50, 75, 100, 125, 150, 175, and 200. For the four cases, the best granularity is 125 (8th
value), 75 or 175 (6th or 10th value), 150 (9th value), and 200 (11th value), respectively.

i

3 _A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

after much trial and error.

The final, and cruaal, aspect of performance on the BBN Butterfly is memory contention For the
test algorithm we used, data for fitting 1s most conveniently structured in the torm of a vector, to be
able to index through the data during summation. Unfortunately, the U S. stores C vectors in asingle
memory, which causes senal access to data. Theretore, a substitute data structure (2 “distributed
vector”, distributed across the memories of the machine) had to be build for thus application, which
syntactically allows the programmer to access the data through a single index, but which is actually
built out of the matrix scatterning routines provided by BBN. This was fairly simple to do, but
illustrates the point that to provide parallel access to data on the BBN, when using data structures
other than simple matrices, new data structure allocation and access routines must be built by the
programmer to properly scatter data across memones and obtain good performance.

3.4. Comments on Sequent Balance C-Linda Programming

C-Linda’s great strength as a parallel programming system is derived from the anonymaty and
atomicity of the operations on tuple space. The interactions with tuple space are also a source
of weakness, in some respects. The most important problems are the following. First, a lack of
higher-order functions, cruaal for expressive scientific programming (a pichlem inherited from the
C language). Second, explictt partitioning is again a problem, as it is unclear a priori whether or
not the partitioning chosen by the programmer is correct for the architecture, or 1s too fine, or too
coarse. Third, explicit data partitioning is necessary To remove contention for a single data object
(e.g. a matrix), the programmer must choosc a granulanty with which to decompose these objects
into smaller pieces, running the same risks as for task partitioning. Fourth, there is a loss of program
modularity, as the flatness of tuple space makes possible the anonymous synchronization mechanism
of C-Linda, but also introduces the possibility of arhitrary interactions between program modules.
Finally, there is mandatory, explicit copying of shared data. The tuple space storage model necessarily
involves copying shared data from tuple space before it can be processed This can be expensive for
large data objects.

61

f)

-

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

The C-Linda system also has some great strengths. First, Linda offers uncoupled, atomic operations,
as the semantics of the Linda operations on shared data guarantee atomicity, and allow anuncoupled
style of programming Second, the Linda eval () operation can be used to create arbitrary tasks,
giving flexible task creation. Finally, if tasks are small enough, and there are enough of them, load

balancing will occur dynamically.
Let us again compare with our evaluation criteria,

As for the other C language-based system we have investigated, the need for explicit memory
allocation and the lack of higher-order functions in C is a serious deficdency; the same arguments as

insection 32 apply

An even more serious handicap anses from the following. As the reader may recall from sec-
tion 3.2, C language function pointers, although they cannot be used to create new functions at
run-time, at least allow the programmer to pass functions as arguments to other functions. How-
ever, only data values are allowed in tuple space, pointers to objects are not. Thus 1s logical, as Linda
must be implementable on disjoint-memory machines, where pointers are meaningless from one
machine to the other; shared pointers to objects only make sense in the case of a physically-shared
memory. The consequences of this are obviously that you cannot share pointers to data structures;
n any case, this runs contrary to the Linda tuple space model of associative storage. A more serious
consequence 1s that you cannot pass pointers to functions in Tuple Space. Unfortunately, in C, a
function is less of a name than a memory location (the value of a pointer), which, of course, in a dis-
joint memory environment, is completely meaningless. The same functionality can be implemented
differently in C-Linda, but it 1s dumsy and involves more restructuring [26). Supporting function

pointers would probably involve some modification to the C-Linda implementation.
The same comments as those for the BBN Uniform System apply for C-Linda programming:
C-Linda can be used on asynchronous parallel machines to program virtually any task, including

intermediate-level vision algorithms.

C-Linda 1s not constrained by a hibrary-based parallelism mechanism: the eval () operation can
be used to create parallel tasks in an arbitrary way. In this sense, it is Jess disciplined than the U.S.

62

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

generator mechanism, but is more flexible.

The Linda model of parallelism belongs to the imperative family of side effects on data structures.,
eval () never retums a value its definition says it becomes a passive data tuple in tuple space upon
completion, in effect “returning” a value through a side-effect into tuple space This is a good 1dea
for creating distnibuted data structures [14], but if only a single return value is needed, 1t creates
unnecessary access to tuple space (e.g an in () 1s needed afterwards to get the value produced
by eval()). This is because eval () combines the functions of task creation and tuple space side

effecting into one.

C-Linda requires explicit partitioning of tasks and exphcit synchronization; however, scheduling
is impliat (done at run-time). Explicit partitioning is still a burden on the programmer, in terms
of finding the correct granulanty, as we shall see below. Synchromzation is also explcit, so that
the burden for determinacy is again on the programmer; however, C-Linda’s tuple space operations

facilitate exphat synchronization.

Explicit task partitioning with C-Linda is difficult, and is compounded by the fact that C-Linda
is portable; as C-Linda supports both shared memory machines and disjoint memory machines, a
granularity that is appropriate for one architecture will not necessarily be appropnate for another
For any given architecture, itis difficult tofind the optimal grain size: the grain size must besmall, to
do dynamicload balancing and avoid idling, but must be large enough to avoid excessive overhead.
This optimal granularity will vary from one Linda implementation to the other. The same problems
of task starvation or excessive overhead will appear, if task granularity 1s too coarse or too fine,

respectively.

In fact, [14] presents three parallel programming methods, applicable to other parallel program-
ming languages than C-Linda, but well-supported by C-Linda, and show well-defined relationshaps
between the three. Their solution to granularity problems is similar to that suggested by [11] for the
Uniform System: if necessary, restructure the code to fit the architecture’s granularity {14, p. 231:

We start with an elegant and easily-discovered but potentially inefficient solution using
live data structures, move on via abstraction to a more efficient distnbuted data struc-

63

PrESY

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

ture solution, and finally end up via specialization at a low-overhead message-passing

program

For example, the goal for C-Linda parallel cooperative fitting code was to have a single summation
function to do summation of any summand function in parallel. In theory, this could be done by
doing an eval (/) for each invocation of the summand funchon, but that would be excessively
fine-grained Therefore, we restructured our program because of partitionmg considerations: because
the mntial granulanty was too fine, we created functions to call the summand function a speafied
number of times. Following this restructuring, as for the BBN Uniform System code, granularity
considerations in the parallel cooperative fitting code were fairly easy to restrict to a single variable,

because of the structure of our demonstration problem.

As for the U.S., a single, frequently-changing, and frequently accessed variable will greatly
affect program efficiency on a latency-intolerant architecture, as it must be stored in tuple space
(causing tuple contention and thus latency), and processors must synchronize to change it (causing

synchronzation latency)

The memory model in C-Linda 1s very different: associative tuple space shared storage coexists
with private, address-based storage. In some sense, we are still faced with a hierarchical memory
model in Linda — fast, local memory (private) and Tuple Space (shared), except that any shared
data must be copred into local memory before being used, including potentially large data structures
such as matnces. The programmer is helped by this clear distinction between shared storage and
local storage, but mandatory copying of shared data also bothers the programmer and hinders
performance, although only those parts of the shared data structures that must be used need to be
copied. Matrices, images, efc.must be cut up into chunks when placed into tuples, else access to the
whole structure will be serialized if placed in a single tuple. This is a data partitiorung problem:
what is the appropnate number of chunks? If the data partitioning too coarse, each tuple holds
too large a part of a data structure. Excessive serialization results because of contention for a single
tuple. If the data partitioning too fine, there is more overhead because of more frequent access to TS.

For example, partitioning an iconic image data into tuple chunks is not obvious. Should the
tuples be made according to spatial distribution (e.g. one row of the image per tuple)? Or should

64

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

they be according to image properties (e.g. one tuple per region)? Of course, this 1s dependent on the
algorithm, but also on the Tuple Space implementation. Additionally, a single tuple may sometimes
be more convenient for programming, as there are fewer 1n() and out () operations to pertorm.
The advantage m C-Linda is that because of the semantics of TS, operations on shared memory (TS)

are atomic.

Synchronization in Linda is explicit, but is much simplified, because of the uncouphng and
anonymity provided by assodiative tuple matching, which removes the naming problem between
communicating processes, and the atomicity of tuple space operations However, because synchro-
nization is still explicit, 1t is still casy to create a non-determunistic program by forgetting synchro-
ruzation statements. The programmer must still determine where to scrialize execution (mutual

exclusion), although the mechanism to do so is quite simple.

Explicit synchronization in C-Linda is problematic in other respects. For example, programmer
must often ask whetheran 1n () ora rd () 1s the appropriate operation, or, in other words, whether
the data they are dealing with s read-only or not. If a task modifies the data 1t obtains from tuple
space, an in() 1s necessary, to remove the old data from shared memory (tuple space). Doing a
rd() insteadofan 1n (), followed by an out () , will leave the old data in tuple space, and place the
new data in tuple space as well. Tasks retrieve tuples of identical size and type non-determinustically,
so that this unintended sequence of operations would lead to a non-determimstic program

The very nature of tuple space is a problem for program modularity For example, if two copics
of a function read from tuple space, we must synchronize their accesses to tuple space <o that one
invocation does not access the tuples that were destined to the other Similary, two copies of a
function writing to tuple space must place a marker in t!'eir output tuples to distinguish them
These problems arise because Linda TS is flat [20): any module can interact with any other module,
anonymously, through tuple space, which is obviously an impediment to program modulanty. Tuple
space’s great strength for synchromzation is a great handicap when storing data 1n shared memory,
as any module can side effect another. Modular program construction would require that one
invocation of a function not interfere with another; however, in the example above, this would be
the case, as the Linda model is based on side effects (to Tuple Space), and tuple space 15 flat, not
partitioned, to allow for arbitrary synchronization. The above examples show how easy 1t is toforget
synchronization statements that will make a program non-deterministic The way to synchronize

65

ety

E3

3 A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

between simultaneous invocations of the same function is usually to have a single counter tuple in
tuple space, read by tasks and atomically mncremented to provide a unique 1dentification stamp for

output tuples placed in tuple space. This way, each invocation of a function can uniquely stamp the

tuples 1t produces.

A minor programmability distraction is caused by the nature of the assodative access to tuple
space Conventional memory is accessed through its address (pointers), Taple Space memory
through its contents (values), so that when muang the two in the form of C-Linda, some duplication
of names for a single entity 1s unfortunately needed. A common way of doing this is by inserting
a string identifier 1n a data tuple to be able to associatively match to this tuple in tuple space. This
string identifier becomes the “name” of the data structure. For example, a typical tuple might be
("vector a", 2, 15.0),where"vector a"isthe name of the overall data structure, whereas
when 1t is read nto a process’ memory, vector a’s name becomes float *a. We now have two
names for vector a depending on where 1t is stored, £loat *a in a process’ local memory, and a
character string, "vector a",1n tuplespace In fact, identifiers are the only way to pass tuple space
data structures as arguments to functions: they are used as a “handle” to the data structure in tuple

space

3.5. Sequent Balance C-Linda Experimental Results

The experimental procedure carried out was identical to that described in section 3.2 However,
the nature of the C-Linda implementation on the Sequent Balance is quite different from that on
the US. on the BBN Butterfly. In C-Linda on the Balance, each task (eval ()) is implemented as a
UNIX fork operation; if a processor is free on the machine, the forked task will be scheduled there.
If not, the task will be scheduled cn an already-busy processor, and context swit-hing will result.
Additionally, there 1s no way for a user to restrict the number of processors available for use, for
testing purposes Instead, the programmer must restrict the number of tasks created. This coupling
of number of processors and task granularities is undesirable for testing purposes. Such a scheme
15 simply static load balancing, or the adjustment of task size to match processor numbers to obtan
high utilization, rather than dynamic load balancing, where the number of tasks is unrelated to the
number of processors, and high utilization is obtained by having short tasks such that task starvation

66

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

. T~ . 1

1} \\ o AN

i oo N .

as ~

>
Effcuncy

Brtective prucs

| as -~
vl

i opl

o pecs smas

(a) Speedup (b) Utihzation

Figure 3.6: Speedup and efficiency for C-Linda on the Sequent Balance

effects of »» — 1 processors waiting for a single processor to finish a longer task are minmmuzed In
terms of intermediate-level vision processing, dynamic load balanang 1s tar preferable, as the size
of tasks generated by the algorithm will vary according to the data sets With C-Linda on the
Sequent Balance, dynamic load balancing requires too fine a task size to be practical the UNIX
fork call is expensive because it involves making a duplicate of the calling process’” address space
Additionally, creating more tasks than there are available processors will ssmply produce UNIX
process-level context switching, under Sequent Balance C-Linda, which 15 a source of undesirable
overhead. Therefore, creating small tasks is not possible, and staticload balancing was the preterred

choice to avoid overhead.

Speedup and utilization results are shown in figure 3.6. Note that now, because of static load
balancirg, granularity and processor numbers are coupled: a particular granularity corresponds to
a particular number of processors. Tests were therefore performed for summation granulanties of
6200, 3100, 2075, 1550, 1250, 1050, and 775, which correspond to 1, 2, 3, 4, 5, 6, and 8 processors,
respectively, for a 6173-point data set, as the reader can verify.

The poor speedup and utilization curves sumply reflect the coarse granulanty supported by this
implementation of C-Linda on the Sequent Balance, not of the C-Linda model itself, which can be as
fine-grained as the programmer chooses to make 1t. However, these results do indicate that dynamic

67

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

task creation on the Sequent Balance should be carefully examined by the programmer and compared
to the minimal task size supported by the architecture. Once more, the programmer might have to

restructure his or her code to suit the hardware.

3.6. Comments on Id Programming

Id on the MIT TTDA 1s a very powerful programming tool for intermediate-level vision programmers
in particular, and scientific paralle! programmers 1n general. Its strengths are quite clear. First, Id
provides logical independence. The programmer is freed from the details of parallelism, as 1d parallel
programmung is implicit. Second, Id prov:des closeness to problem domain Through the use of hugher-
order functions and dedarative programming, an Id program is close to the algorithmicspeaficahons
for the problem. A third strength s fine ;ramed parallelism: 1d imposes no artificial sequentiality onto
a program. All the parallelism present will be exposed, down to the instruction level. Finally,
determinacy is one of the most important strengths. 1d programs are guaranteed to be determinate,

producing the same results regardless of run-time configuration.

However, Id on a dataflow architecture is no panacea. There are indeed several areas where a
programmer might have some difficulty. First,Id doesnot provideany way of controlling operational
behavior in cases where it would be desirable to do so. There is thus absence of control over operational
behavior Second, it 1s easy to code an algorithm that generates enough parallelism to overwhelm finite
machine resources. Next, there can be excessive dependence on compiler. A functional language does not
remove the necessity for the user to provide adequate algorithms and data structures, althoughit is
tempting for the user to forget. Finally, there is the rarity of real implementations. 1d is implemented

on very few machines, which are not presently generally available.
Let us once again return to our evaluation criteria.

Arguments for the closeness to problem domain of functional languages, including Id, have
been made elsewhere (see appendix B), and will not be repeated. Functional language programs
can easily be considered as executable specifications, anu aie closer to mathematical descriptions of

68

o

#

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

scientific problems than any imperative language desaiption beca 'se of their complete rehance on

expressions. This naturally applies to intermediate-level vision a'gonthms as well

Id is well-suited to scientific apphcations in general. In terms ot intermediate-level vision pro-
gramming, because there 1s no notion of partitioning, nor distance 1n communcation, any low-level
and intermediate-level wvision algorithm can easily be implemented The architecture we are ex-
amining to support these programs is a general-purpose dataflow machune, the TTDA 1t supports
very fine-grained parallehsm, which could be used to exploit the fine-grained parallelisie potentially
present in intermediate-level vision algorithms. The effeciveness of Id on other architectures would

obviously vary depending on the archutecture, the compiler, and the code itself.

The task creation mechanism in Id 1s beyond programmer control, and therefore determined by
the compiler. In some sense, this lack of mechanism provides the most convenient task creation
mechanism of all. In the case of the TTDA dataflow arclutecture, cach instructions a task

Paradoxically, this source of great strength for the Id programming approach can also be a source
of great problems. In a dataflow architecture, partitioning a code into threads of sequential execution
has no meaning. However, on a more conventional architecture, such issues, as well as scheduling
issues, would probably have a great deal of importance. On such architectures, Id provides no way
of defining operational behavior if an optimal parallel algorithm is known, or refining its behavior if
performance requirements demand it. Para-functional programmiung [25] provides annotations that
allow for finer control over operational behavior, without completely restructuning the program,
while keeping its functional nature. Even if such annotations are provided, Hudak [25] beheves there
still will be cases where complete restructuring of code for performance will be necessary Indeed, it
is shownin [35] that optimal compile-time scheduling 1s an NP-complete problem, although efficient
approximations can be found. The Id compiler used for this thesis is tailored to extract parallelism
on a particular architecture — although this portabihity question may be less significant if it can be
shown that the dataflow architecture 1s the proper one for saentific parallel processing

These questions are all related to the 1ssues of expressiveness, effiaency, and parallehsm, de-
scribed by some as a tri-polar relationship of mutual repulsion [16] For example, if all parallelism
is explicitly written in the program, it will become cumbersome (an example of inexpressiveness).
Other examples include memory usage, higher-order functions, and deahing with finite machine

69

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

resources

memory usage- a central issue is the extravagance in memory usage that results from the con-
ceptually clean functional model that deals with values rather than storage cells; imperative
languages denve efficency from being able to optimize the storage and movement of data.

higher-order functions: at the current level of compilation technology, these abstractions result in
decreased effiacncy, depending, of course, on the architecture chosen.

finite machine resources: 1d brnings expressiveness and parallelism together without degrading ei-
ther; the finest level of parallelism 1s exposed, such that all possible operations are as asyn-
chronous as possible. This approach requires a run-time mechanism to check and defer arbitrary-
s1zed activtties until ther preconditions are satistified (e.g. a dataflow architecture). For example,
using recursion to set up parallel fur.ction execution can generate a lot of potential parallelism.
However, in most architectures, a straightforward implementation that spawns each function
call as a task will incur large overhead that will offset much of the gain that parallel execution
brings. Simply looking at speedup curves might be misleading, as it may lead the user to
assurae that he/she has found a good algorithm whenin fact a s=rial algonthm would take less
time. The dataflow challenge 1s to manage this explosion of activities under finite resources.
The more conventional solution 1s to have sequential processors execute short sequences of
operations This approach raises the questions of how efficiently sequental architectures can
switchshort tasks, and of the effectiveness of compilers in partitioning to create the appropriate

task grains

If functional languages need unconventional apparatus to achieve therr efficiency (e.g. dataflow),
their use will be curtailed. Thus in the in-polar relationship discussed above, in many cases some
compromise must be made 1n expressiveness and parallehsm in order to demonstrate a dedisive

advantage in effiaency.

Id parallel programming 1s entirely implicit. There are no parallel annotations, no partitioning,
scheduling, synchromzation, nor memory latency to worry about. The latter two considerations
are solved by the TTDA archutecture. Synchronization is provided at the finest grain possible (7).
[-structures are provided to exploit the highest degree of parallelism present, through fine-grained

70

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

synchronization causing premature reads to be queued until the data arrives. Operands to an
mstruction in the dataflow architecture must all be present for the wstruction to fire, thus creating
synchronization at the instruction level. Task switching occurs at the instructionlevel; as all memory
reads are split-phase, the memory latency problem is solved by executing an arbatrary number of
instructions untll the memory request is completed, wrespective of whether the wait for data is

because of contention for a particular memory or is simply because of the remoteness of the memory.

The issues of lightweight task areation and easy load balancing, ace also solved by the architecture.
The finest grain parallelism possible 1s exposed by the funchional nature of Id, and tasks are equivalent
to instructions on the TTDA Load balancing among processors of a multi-processor TTDA machine
is done by distnbuting copies of the code to each processor, and applying a hash function on token
tags to determine which processor will handle the execution 7]

Memory latency problems are solved in the architecture, which makes handling large, shared
data structures transparent to the programmer, and efficient on execition. In terms of the TTDA
archutecture, all memories are globally addressable Good performance therefore does not depend
on a programmer carefully mapping the data to memory and being familiar with the storage model
of the architecture.

Determinacy is another strong point of the system, and 1s guaranteed by Id’s functional nature.
The importance of this fact has been discussed extensively elsewhere 1n this thesis, and will not be
discussed further here.

Communication between tasks does not have much meaning in the domain of imphcit parallelism,
being out of the programmer’s control. In the TTDA, the production of results needed by other tasks
(i.e. instructions) produces synchronization at the instruction level

71

PRty

_3._A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

3.7. Potential Problems with Id Approach

We have already mentioned the problems with the lack of control over operational behavior. Anno-
tations to speafy partitioning and scheduling would be useful to programmers who know optimal
algorithms or want to refine the performance of existing code on many conventional MIMD architec-
tures, although the relevance of these on a dataflow machine 1s unclear. However, the importance of
being able to control excess parallehsm 1s clear. In fact, the TTDA provides, at the architecture level,
a mecharusm for throttling the concurrency of loop iterations, allowing only 4 iterations at once [7].
Throtthing of function invocations 1s not performed, so overloading of machine resources is therefore

still possible

Excessive programmer dependence on the functional lar: guage compiler 1s also a subtle, but real,
problem. If the reader refers to the sample functional program in section 2.3.3, he or she will notice
that the functions row and col do not perform any useful work — they only produce copies of a
matrix’ rows and columns, which 1s quite meffiaent Itis very tempting for a programmer to code
the matrix multiphcation algonthm in that way, however In fact, programming details can be put

into five categoriesl16]

—

. Algorithmuc details: details describing a method of the solution.

N

. Data structures details specifying an organization of the program’s data.

. Control detmls: details defining an order of the program’s operations.

()

=

. Type related details. details speafying types of the program’s variables.

n

. Storage related details: details descnbing representations of the program’s variables.

>

Resource related detals. details that specify changes 1n allocation of a program’s resources.

Functional languages with imphdit parallehsm remove all details except the first two. The respon-
sibility for adequate algonthms and data structures 1s 1n no way lessened by the use of a functional
language. Here 1s a more efficient version of matrix multiplication [28] than the program shown in
section 2.3.3. The matmult function is kept intact; only the support functions are changed.

72

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

def row i X k = X[i, k};

it

def col j X k Xik, 3);
def 1p rowC colD = ({

(_,n) = bounds rowC;

in
sum (1,n) {(fun 1 = (rowC 1)*(colD 1)}

)2

In this way, row and col do not copy a row or a column. matmult invokesrov 1 A andcol j B,
which causes partial applications of row and co1l to be made, creating two new functions of a single
argument each. In tum, these new functions are passed to 1p, the inner product function, which
invokes them as rowC iand colD 1, withthe single remaming argument being theindex 1 In this
way, lugher-order functions (those created by the partial application of row and col, and passed as
arguments to 1p) remove the need for copying and increase efficiency A programmer must be able

to take advantage of these possibilities.

The final disadvantage of Id is the rarity of implementations on real machines, which dramatically
curtails is usefulness as an intermediate-level vision research tool. Indeed, the experimental code
used to demonstrate Id’s usefulness has been implemented on a software simulation of the TTDA, called
GITA, the Graph Interpreter for the Tagged-token Architecture, described earlier in this chapter.
Unfortunately, this is of limited use as a tool for intermediate-level vision research, because of the

obvious slowness of a software simulation of a hardware architecture.

These arguments may be made obsolete by the commercial introduction of the Monsoon dataflow
architecture, developed at MIT [15]. Monsoon is a significant modification of the TTDA to remove
the associative matching of input tokens to an instruction. A single processor prototype has been
operational at MIT since October 1988, and Motorola Corporation 1s collaborating with MIT in
building multiprocessor versions. These machines are all programmable 1n Id

73

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

3.8. Id Experimental Results

Ironically, the flexability and heavy mnstrumentation of the 1d World TTDA archutecture simulation,
combined with the very nature of the expenmental problem, prevents us from presenting complete
measurements of cooperative fitting on the TTDA, except for extremely small data sets (< 10 data
ponts). This 15 because of the enormous memory requirements of any simulation on the TTDA,
combined with the explosion of parallehsm present in the fithing problem itself.

However, what we will show 15 a part of the fitting process typical of the rest of the algorithm: the
computation of the \2 merit function. This 1s stmply a summation over all data points of (a function
of) a chosen error metric. This type of summation is repeated throughout the fitting procedure,
with the summand funchion being various functions of the error metric, or of its derivatives. This

therefore exhubits a considerable degree of parallelism.

We measured various system parameters for different machine configurations. Id World allows

the user to set the simulation to

idealized mode: an infinite number of processors are available, and the time taken for the result
of one instruction to reach the next instruction (communication latency) is zero. This mode
is useful to obtain the parallelisin profile of the program, the maximal parallelism obtainable at
cach time step. In a parallelism profile in 1dealized mode, the number of instructions executed
at each tme step is constrained only by data dependenaes.

finite processor mode: in this mode, both the number of processors and communication latency are

adjustable. Commurucation latency can be > 0.

The experiments we ran were the following. 1521 points were sampled on an artificially-generated
ellipsoid, with added gaussian noise. The \? merit function was then applied, with the error metric
descnbed in section 3.1 If p 1s the number of processors and / is the communication latency,
measurements were taken for the following machine configurations: p = x.{ =0, p = 30,! =
0.1.5.10, p = 50./ = 0.15.10, p = 100.{ = 0.1 5.10, and p = 200./ = 0,1,5.10. The first

measurement corresponds to idealized mode; thereafter, increasing processor numbers demonstrate

74

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

5000

of operations

1 |

2000 n

1000 -

Time steps

Figure 3.7; Parallelism profile for \2 meri function, for 1521-point surface data The solid
line is the number of ALU operations, thie dashed line 1s the number of floating-pomt
operations, and the dotted line is the naber of function invocations, at each ime step

the scalability of the results, while increasing communication latency shows how performance 1s
affected by latency.

We first show the extended parallelism profile for the program, in figure 3 7.

The parallelism profile corresponds, in the TTDA, to the number of ALU operations performed
at each time step. The number of floating-point instructions is also quite interesting The summation
function employed recursively decomposes the summation range into two halves, to exploit the
maximal amount of parallelism available through summation. This creates an exponentially-nsing
number of new functions (as shown by the function invocation profile), and a large number of

75

Pa

oy

3 A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

floating-point operations once the leaves of the summation “tree” have been reached, which forces
evaluation of the summand function (seen in the function mvocation profile), and soon thereafter

the large number of floating point operations.

Notice how many new functions are created by the recursive summation function — thousands
of new function calls This could conceivably swamp the resources of a real machine. In such a
case, the recursive summation function would have to be recoded to {orce evaluation when the
summation range is less than some epsilon (-~ 4, for example). This would corresponds to changing

the granularity of the program to suit the archatecture.

Figures 3.8, 3.9, 3.10, and 3.11 show parallehsm profiles for p=30, 50, 100, 200 under different
latenczes. Note how little execution time changes when latency changes from 0 to 10. For example,
for p = 30, execution time changes from 10293 to 11394 time steps, a 10.7% increase, when latency
increases from 0 to 10. This 1s quite small, considering the increase 1n communucation latency, and
occurs because excess parallehsm masks latency. Because of split-phase transactions, the dataflow
processors are free to work on other instructions instead of waiting for other results. Of course,
it stands to reason that when less excess parallelism 1s present, latency is not as well masked: for
example, for ;» = 200, execution ime changes from 1628 time steps to 3206, a 96.9% increase, when
latency increases from 0 to 10. This 1s still an impressive result. increasing latency from 0 to 10

produces only a doubling of run time.

Speedup and efficiency (or utilizahon) curves are shown in figure 3.12. Naturally, increasing
latency dimirushes the speedup (or the effecive number of processors), and correspondingly de-
creases the average effiaency, or utiization of each processor. If 7; is the time taken by one processor
(equivalently, the total number of instructions executed), and t(p./) the time taken for a machine

configuration with p processors and ! communication latency, then [5]

T
A=
speedup(p.!) D)
and
utilization(p.!) = Lk
TN

As canbe seen from thefigure, latency is responsible for flattening the speedup curves and for dimin-

76

of operations

3._A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

35 T T L T
30
. :igt’t} i
Higl %
".»1 h ¥
\‘; ‘;" (]
53y N
X };E' :.]
254 el v
¥ DabEs
A
gl o
i A ;
it %
U 4
20 L j
B K
5 ;
i
#
i

BOLBIPII TP WIS

o Ts)
Bl b} el e e w eeald

e T e e R e R e w e RS S P BIBIBS BB ND P PP SIS B PP

1 (|

6000 8000

2000 4000

Time steps

Figure 3.8: Execution time for \? for p = 30, under latencies of ! == 0,1,5,10 (in solid,
dashed, dotted, and dash-dot lines, respectively). The maximum number of operations
(30, as p = 30) is sustainable for most of the execution time, for all latencies (from approx.
1 = 1400 to ¢ = 10200). Initially, however (! < 1400), there is not enough work to keep all 30
processors busy, the number of operations per time step oscillates between maximum and
a lower value. Obviously, the run for | = 0 finishes first, at { = 10293, then { = 1,{ = 5,
and finally / = 10 at / = 11394, but notice how little execution time changes as latency 1=
increased, because excess parallelism in the algorithm 1s used to mask latency.

s

of operations

40)

10

v ———— ey

3 A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

X

- n Ao 4 b o BN s

-

P neter drdneba-Cadenrpd yo¢

>

s s 4 St A e e Fonw pen e, Ch e e

A

- = = = = e o BFEF
[

_—

:”. un'}l 9

2000 3000 4000 5000 6000
Time steps

Figure 3.9: Execution time for \? for p = 50, under latencies of / = 0.1,5,10 (in solid,
dashed, dotted, and dash-dot lines, respectively). See comments for figure 3.8. Again,
notice how little execution time changes as latency 1s increased, because excess parallelism
m the algonthm is used to mask latency.

78

7000

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

L R N T L e
B N e N N e -

A e

||||||||||| -

|

3000

llllllllll A A St B Sen et et e St A B T e T N e U

[P T T . I3 R S RIS SRy T e e e T T T e T T ST ST TS T T e T e T T e T
o St e e Do S e T S AN NN N N N e et e s A IAZ
e A AARAASAAA R AN AN A S
lllllllllllll et S A b AL A A AT AN A A

o e e e e e e e e e e e e e e e L = e A A T AT T AT AT A A At AT Y
Bl Bt Al B Al A Dy A S AL B e

Bhv A AN e SN M e Sl e S e BB W B WS

ST, IR IR T NS e ivpn e M o

it et g AL 2L S 2L N T
‘.:: \f-i:i?r!!‘.q.»ni...:i
.. :.....

suonjerado jo #

4000 4500

3500

1000 1500 2000 2500

500

Time steps

how little execution time changes as latency is ancreased, because excess parallelism in the

dashed, dotted, and dash-dot lines, respectively) Seecomments for figure3 8. Again, notice
algorithm is used to mask latency.

Figure 3.10: Execution time for \2 for p = 100, under latencies of | = 0,1,5.10 (in solid,

79

sy

of operations

200

150

100

50

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

E—

0
0

- - e T T — T T T
ABLBAATAAN AN N L B
R e " Vo
TN) A T)V
4t e "a‘ . P A 2O ' , lh
Vd “l".,c:l, . ,1» I |‘ ' ! A
HE I TN A DA o A
RTINS IIN < M L] "
RIS N oy N
] ““,::n,‘ s ‘: H ': :' : " [’fv
::’”“,;::I' W AN " vy
RO T Yoyl " "y,
R BTN IREA : o
LTI W ' Il , '
R R . *
v':, In‘;“n“\ M v I) "n',“
b it volp ? N
AT PR | o
i b : !
[oy e !] H 4 e
M S TR ¢) [e
Acﬁun\ ") s Y
by :: e 'v‘.l-“-j\ KT oo ! \ !
P/ A s N ' \ + \ '
Lojaaiann Lo S
v ' PR " D N]] ‘
AREREE Lo . Yoo
{ | : 4 : % 'lE\l"u‘\ " 'l:' . : : : '
CUlivaiina e e Voo
I 1 Y ﬂ,'«‘a\xﬁr;‘\ Ya ', (] A | '
H : {4 4 'asn:n."| Yoot . ! ' w
Phypysioii e v oo
LA I [' t N
SN e ;)]
L 1Y Y A ! Vo o
[t VRO H) H ' !
(] : :',.:l.v:-.'w:-;‘\ oo ' ' ' ""'r:
P ! N L B !] .
H ¢ > \" '.'y.'i' A“'A.' W' H ! ! '
! NI W h iy ."'.'ﬁ ! H f 'I ,
AERSRER 2 H N 2
l L] \ " .‘,mlp.u 5' vnl'; I|l \] 1 vy
a 1 R g W N '|'4A‘='|lullll:| . ; ! 'l !
oY S et H ' \ .
ﬂ' ' " NN o ’l '|"|' |‘|~| "nlll' v, H , v '
. AN . "
PRI W _{Jiﬂuﬂm:i.._,l_,_ L . . i Yrenia

500 1000 1500

Time steps

Figure 3.11: Execution time for \? for p = 200, under latencies of ! = 0,1.5 10 (in solid,
dashed, dotted, and dash-dot lines, respectively). Recall that since paralielism is used to
mask latency (by keeping processors busy instead of waiting), we would expect that less
excess parallelism (because of an increase in the number of available processors (» = 200))
would cause the effects of latency to be more apparent. Execution time increases from
t -: 1628 (for | = 0, sohd hne) to ¢ = 3206 (for | = 10, dash-dot line), nonetheless an
impressive result for sucha massive increase in latency. The effects of high latency ([= 10)
are especially apparent at startup (¢ << 1000), whenhittle parallelism is present. Thisshows up
as oscillations in the number of instructions executed during that time frame, as processors
are busy, then 1dle while waiting for results, then are busy, efc..

80

[T

3 A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

ishing average effiaency. In fact, efficency drops to below 50% for a latency of 10, compronusing, the

cost-effectiveness of the machine However, less severe latenaes produce more acceptable results

39. Key Points

Let me summanze the key points I have made 1n this chapter.

Our test algonthm to compare parallel processing systems 1s a simphified version of parallel
cooperative fittng, where different iterative fitting processes exchange information about an entity
in order to obtain a better final fit. Parallel cooperative fitting 15 an interesting t st case, as 1t 15
an iconic to aggregate transformation with large input data sets, data-dependent partitioning, and

potentially high parallelism.

BBN US strengths are a comparatively small grainsize, dynamicload balancing, large bandwidth
toshared memory, and a single address space for shared data. Weaknesses are a lack of higher-order
functions, an wnexpressive parallelism mechanism, tnal and error exphat task partitiomng, and

local/remote, pnivate/shared considerations for every data object.

C-Linda strengths are uncoupled, atomic operations, flexible task creation, and load balancing,
Weaknesses are a lack of lugher-order functions, tnal and error explicit task pariiornung, exphaeit
data partitioning, loss of program modulanty, and mandatory, explicit copying of shared data

Id strengths are logical independence, closeness to the intermediate-level vision problem domain,
fine-grained parallehsm, and determinacy Its weaknesses are the absence of control over operational
behavior, the possibilities it gives to overwhelm finite machine resources, the increased compiler

reliance some users might feel, and the rarity of implementations on real hardware

81

3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION

120~ E

100+ e

Speedup
AN

'
o)

w 4

201

(1 L — e —— e

20 40 60 L\ 100 120 130 160 180 200

¥ of processors

(@) Speedup

Uthzagon
<
A
—7

04
03 E
o1l 7
0 ’2‘0 40 60 80 100 1;0 l;’ 160 léO 200
of processors
(b) Utilization

Figure 3.12: Speedup and efficiency for the TTDA, in the presence of latency.

82

4. LESSONS TO BE DRAWN

4.1. A Comparison of Three Parallel Processing Systems

In this section we will compare and contrast our three test systems, against cach other but also

against our evaluation criteria.

A critidism of functional languages such as Id 15 excessive use ot storage because of copying
However, reusing storage 1s often possible only because of sequential execution For example, as
for functional languages, the U.S. uses extra storage to allow for more parallehsm. the Share ()
mechanism (and other local copies to all processors) ensure that all processors can proceed in parallel

and don’t have to wait for a senalized access to a single memory module.

C-Linda on the Sequent Balance, 1n some respects, 1s a better-adapted system than the BBN
Uniform System for parallel programming of intermediate-level vision algonthms, but less so 1n
others. It does not suffer from the syntactic crudeness a parallel hbrary-based design, nor does it
suffer from the semantic crudeness of a single, dominant parallelism model (of parallelism over data
structures). The U.S. process generation mecharusm is very inflexible with respect to the C-Linda
model. With C-Linda’s eval (), a task can be created out of any arbitrary function

The presence of what amounts to amemory hierarchy in C-Linda creates inconsistency problems,
just as in the Uniform System. Modifications to shared memory may be atomic, but this does not
prevent another process from using an old copy of data it obtained using a rd () operation. This is

83

4. LESsONs TO BE DRAWN

an example of the synchroruzation problem synchronization of multiple copies of a single picce of

data

The data partiioring problem 1s entirely analogous to that in the BBN Butterfly US: both
C-Linda and the U S force the programmer to expliatly cut up data structures in order to avoid
senalized access. In the latter case, data partitionuing was determined both by the memory model
and by the C language programming model (¢ g C vectors on a single memory) The difference 1s
that US data structures don’t necessanly have to be copied nto local memory to be used (although

for performance reasons a programmer may want to), but C-Linda data structures always have to

be exphartly 1n () “edor rd () ‘ed first

Tuple space 15 an excellent medium for synchronization, because it uncouples the synchroniz-
ing processes and ensures atomicity As a means ot inter-process communication, it keeps these
attributes, but because of the mechamsius (1n (), out(), rd()),the programmer s forced to make
explicit copies of data, which is a burden on performance. The BBN U § model is sometimes more
converuent and more cfftcient, but always more dangerous: local and shared (remote) memory are
accessed in exactly the same way Tlus can evenbe done without cuthing up the shared data structures
into chunks, nor doing exphat copies, if performance is not affected. For example,aUS scattered
matrix 1s a lot more converuent to use for a task than a Linda matrnx stored in tuple space. The latter
must be 1n ()'ed expliatly by any task that wants to use it. These hindrances, ceused by the need
to maintain atomiaity in the face of changeable storage, are made irrelevant in a single-assignment

system such as Id

As mentioned above, one advantage ot C-Linda 15 its clear distinction between shared data
and non-shared data. In the U5, any pointer can point to shared memory or local memory, and
the syntactic mechanisms to use a pointer to shared memory and a pointer to local memory are
exactly the same: 1t is up to the programmer to remember which area of memory is pointed to,
for correctness and performance reasons. This 1s extremely tedious in practice. In contrast, the
distinchon between shared and non-shared data in C-Linda is quite explicit, simply because of the
fact that the mechanisms used for shared memory access are explicit and unavoidable. in ()’s and
xd ()’s for shared array accesses are separate from the pointer indirection and dereferencing used in

local array accesses, for example.

S e s e

[SRR

_ 4 LESSONS TO BE DRAWN

Let us conclude by companng all three systems with the evaluation cntena we propose

In terms of closeness to problem domain, 1d 1s most appropnate, as functional languages deal
best with functions, the core of mathematical programming. Intermediate-level vision programming

is no exception

General applicability 1s a feature of all three systems, which can be used tor any intermediate-
level vision task, but of course with varying degrees of effort in adapting and restructunng code to

obtain good efficiency

Id is the most flexible system in terms of task creatton: tasks are imphiat (each instruction is a
task) and are not a programmer concern. For expliatly-partitioned languages, C-Linda’s eval () 1s
more flexible than the U.S. task generators. the parallel ibrary design of the latter means syntactic
and semantic crudeness Flexible task creation is a desirable charactenstic for a problem domain
such as intermediate-level vision, where partitionung 1s data-dependent and where tasks will often

be dynamically created

The overhead in task creation 1s the most archutecture-dependent of all entera However, the
programming model also has a part to play. For example, Id imposes no arhfiaal restnictions on
parallelism; machine resources and data dependenaes are the only constraints Thie allows for
maximal parallelism on a very fine-grained machine, such as the TTDA architecture, which makes
1 task per instruction possible The BBN Butterfly supports farrly hightweight tasks, as compared
to the Sequent Balance, which again 1s a desirable charactenshc for a problem domain such as
intermediate-level vision, where fine-grained parallehsm will often be present However, lack of
lightweight task creation 1s not a restriction of C-Linda, but rather of ihe implementation on the
Sequent Balance architecture.

Determinacy is only guaranteed by programming in Id. Both U.S. and C-Linda programming
rely on the programmer for program correctness, which in some case can be extremely difficult to

achieve.

Load balancing is again very architecture dependent. For intermediate-level vision, where large

85

»

4. LESSONS To BE DRAWN

run time variations are possible, because of the non-uniform nature of the processing involved, load
balancing is important to achueve good performance. Load balanang on the TTDA 1s achueved by
having a task size equal to an instruction, and by the execution of code blocks across processors. On
the Butterfly, fine granulanty allows fos dynamicload balanang, given enough tasks. On the Sequent
Balance, load balanang must be static. Given the data-dependent nature of intermediate-level vision

task sizes, thus could be a performance problem.

Intertask communication will obviously be easiest 1n tiie presence of imphat partiiorung: im-
pliat tasks produce implicit communication and synchronization, which in the TTDA architecture
are supported by the dataflow execution model and I-structures. C-Linda supports uncoupled syn-
chronization and commumication, but these are still exphat, and thus tedious to incorporate into

code and error prone, as omissions will often produce non-determimistic behavior.

Handling of large, shared cata structures 1s again easiest when out of programmer control.
With Id, exphat data movement for efficiency 1s not needed, and the TTDA architecture solves the
memory latency problem with split-phase memory transactions. With the U.S on the BBN Butterfly,
high bandwidth to memory provided by the butterfly network 1s an excellent characteristic, but
having the programmer exphatly distribute data to take advantage of thisis tedious, as allocators
and access mechani.ms must be built for each new data structure. The programmer must also be
aware that if a part of a data structure on one memory node 15 accessed more frequently, contention
will result In C-Linda, if data is shared, it must be copied to local memory before being used,
which 15 not necessary with the BBN U S. For large data structures, copying to and from tuple space
may become a performance problem As for the U.S., data partitioning is alsc a C-Linda problem.
Parallelism can be increased by decreasing tuple size, but this will increase data access overhead. For

intermediate-level vision, where processing 1s data-dependent, data partitioning will not be easy.

4.2. Key Points

Of the three systems we examined, the best suited to intermediate-level vision programming was
Id on the TTDA, because of its mathematical flavor, general applicability, lightweight task creation,

86

L

4. LESSONS To BE DRAWN

determinacy, and the logical independence it provides the programmer. US. programming on the
BBN Butterfly and C-Linda programming on the Sequent Balance do not have the mathematical
expressiveness of functional programming, and otten force the programmer to restructure her or s
code through trial and error explicit partitioning,

The BBN Uniform System also imposes the burden of managing the system’s hnerarchical memory
on the programmer, has an inexpressive, hbrary-based parallelism model, and does not guarantee
determinacy, but supports fairly hghtweight tack creation and simplifies programming through a
single, shared memory space.

C-Linda creates a data partihorung problem 1n tuple space for the user, does not guirantee
determinacy, and the Sequent Balance can only handle very coarse-grained tasks However, C-Linda
parallel programming, while expliat, is uncoupled and atomic

87

Fw

5. CONCLUSIONS

The problem investigated by this thesis was that of giving intermediate-level vision researchers
adequate parallel processing tools for their work, where data and computational structures do not

fit the SIMD execution model, but require a MIMD execution model instead.

Saentific programmers usually refine the abstract models and algonthms which their programs
implement, and should not be expected to be parallel architecture experts. Therefore, their tools
should be adapted to their problem doman, for fast coding, and should provide logical indepen-
dence from solving the four cruaal MIMD 1ssues of parallel processing, partitioning, scheduling,
synchroization, and memory latericy Current tools, such as Uniform System programming on the

Butterfly and C-Linda programming on the Balance, do not.

Functional languages, on the other had, as exemplified by the Id language running on the TTDA
architecture, are a more appropnate solution. They are close to the scientific problem domain,
because they are based on the function and on expressions. They are amenable to compiler solutions
to the cited problems, because they do not allow a programmer to specify restrictive commands,
or to artifically restnct the order of execution. This allows a compiler to extract all the parallelism

present in a program.
Our demonstration about Id on the TTDA seems to rely strongly on the dataflow architecture to

solve the memory latency problem (through split-phase memory transactions). Butit is precisely the
high parallelism available in a functional program that allows the use of this architectural feature.

More generally, it is obvious from this thesis thatitis imp ussible at the present time to completely

88

_ 5 CONCLUSIONS

decouple parallel architectures and parallel languages — in effect, impossible to provide complete
logical independence However, funchonal language systems come dosest, and ofter by far the best

opportunities for parallel execution.

Why then aren’t such systems commonly available? There are a few reasons, which we mentioned
in chapter 1. Extensions to famihar sequential languages — through parallel constructs or high-level
interfaces to libraries — are more likely to appeal to scienvific programmers than are new concurrent
languages. There also 1s an apparent ease 1n parallehzing sequential programs using extensions
or libraries, as there is minimal rewnting. A further reason 1s the availability ot production-level
compilers for parallel machines. Most scientific programmers’ programming expenences are with
imperative languages such as C and Fortran, and the overwhelming majonty of current scientific
codes were written in Fortran. Parallel archutecture vendors are theretore hikely to continue work
on parallelizing compilers for Fortran, instead of compalers for functional languages Additionally,
functional language research 15 quite a young field, applying 1t to parallehizing suentitic programs
will inevitably require some time. Itis hoped, however, that this thesis has demonstrated their clear

advantages over imperative language systems for the scientific programmet

89

Ll

e

A. A UNIFORM SYSTEM PROGRAM EXAMPLE

We present a very simple Uniform System program for matrix multiplication in figure A 1. Notice

espeaally:

~ The memory allocation calls UsAllocScatterMatrix () and ShareScatterMatrix().
UsAl locScatterMatrax () allocates shared memory for a C pointer-to-pointer matrix, so
that matrix rows are spread across the memory nodes of the machine. A normal C matrix
would be stored in a single memory, and would be a source of contention if access by multiple
processors ShareScatterMatrax () makes local copies of the row pointers of such a “scat-
tered” matrix. The vector of row pointers 15 accessed for every element access in the matrix.
This vector 1s kept in a single memiory location, which 1s a source of contention if the matrix is
accessed by many processors simultaneously. ShareScatterMat rix() makes a local copy
of this vector of row pointers on each processor. These two function calls are examples of
how the programmer has to keep in mind and adapt her program to the memory model of the

machine, to ebtain good performance

~ The task generator call GenonI(). In this case, the tasks to execute are the function
forEachRow (). Each invocation is passed an argument index by GenOn1I (), which in this
case runs from 0 to NROWS. Thus function is an example of the somewhatrestrictive task creation
mechanism in the Uniform System. Each identical task is passed a single argument, an integer
index in this case. Additionally, as in every system where partitioning 1s explicit, it is undear
whether or not the size of the generated task is appropriate for the granularity of the machine.
Any change in the granularity of the tasks would involve some restructuring of the code.

90

|]

A. A UNIFORM SYSTEM PROGRAM EXAMP'LE

Jul 17 1991 14°05 49 matmult.c Page 1 Jul 171991 14 05 49 matmult.c Page 2

1 /* matmalt ¢ -~~~ A f{le vith parallel matrix multiplicetion L1 The dot ptodect

2 o7

3 by tierre #. Tresbley ¢/ @4\ . [TYTITTYY

4 (3]

5 7% Smeader /3/s0l/tact/homs/prerTe/ACs/matmlt o, v 1 1 1991/02/08 21 38 49 pier TO MAT_TYPR dot (WAT_TYIE *mwotl, MAT_TYPR ‘vect2)
re bp $ ¢/ no

1] 72 WAT_TYPE dotProd = O

7 /¢ Slog matmlt c,v § 73 -

[* pevision 1 1 1931/02/08 21 38 43 plerre N for {(J=0 j< MU, }e)

» v taitial revision s dotirad += weatl|jl®vect2 (i},

10 .8 7

11 n return dotfrod,

12 #include <oa h> 7 }

13 kil

14 fdefine MOWS 10 L mainf)

13 $define WOOLS 10 8

14 $detine MAT_TYPR float [] int § 3,

17 LX)

i tdefion nitMet (mtriz, row ool, initPa) \ .1 Taitiall setg()

14 for {rov @ G rew < NIOWS, rowdd) N L]

20 for {col = 0, col < NCOLA, col#d) \ 8 A = UshllocfiostterMatriz (NRONE, NCULE, »iawof (AT TTYE)),

21 matrix(row]{col] = initPn, 87 8 = UaAll etMatris (WROWS, NOULH, sisewol (AT TYFE))

22 L1 C = UsAllocBostterfetris (WRCWE, HOOLE, oluwwof (MAT TYPE))

23 /* Global matrix weriables (yuk') Meecl: stored in A, C stored in */ 8

24 /% transposs form */ 80 EharsBosttsrtatris (LA, NROWS)

25 " AhareSostterMatriz(eB, WRONWS)

2% I _TIIE *°A,* 8 *°C, 2 Fharsdostterietrix{iC NWRUWS),

27 12

bl / \ " initet (s, 1, §, (H==§) 2 3 ¢ 00);

29 95 initmet(c, 4, }, 10* ¢+ 1)

30 forRachrow - & worker tunctiom that calls the dot profuct for 9%

n @ patticilag zow of result mtrix (1 @ we're dynamically " Gennl{forRachhow, NAUNE)

32 partiticning allong cows) Doa’t call dit faaction n o

3 directly from geperator, as vo want s

k1] Qunerally-applizabla dot prodizt functdon, and the

38 pararster lists offeced by tie gamsTators are ot

kL auitabla for this

37

38 Arquemnts

s

40 6ullArg s dummy arqumnt required by 08

41 i the row irdes

°

49 Returna

“"

45 Hothing

L1

47 \ /

L

13 woid forachlow {int sullArg, int 1}

50

5 for {3 = 0; J < WOULS, 1+4)

32 A4} = dotisit), cl3D).

33)

54

85 / \

56

87 dot - » fuaction to compute the dot product

58

59 Argumnts

&0

1 vectl* first wecter ia the dot prodoat, length RROWE

2 vect? 2nd vegtor ia the dot product, length ECOOLS

43

(1] isturne

(1]

Figure A.1: BBN Uniform System matrix multiplication code

91

B. PARALLEL FUNCTIONAL PROGRAMMING

In this section we will look at parallel functional programming. The issues presented will be:

- what functional programming is,

- the parallel programming problems it solves, and how it solves them.

We will also look at an example parallel functional program and show, under idealized conditions,

how much parallelism it holds.

B.1. Functional Programming

This section will give a brief summary of what functional programming is. It will notbe an exhaustive
look at the history of functional languages, nor will it be a thorough overview of all charactenstics
of functional languages: we will only touch on those characteristics that are important to computer
vision programmers. The interested reader 1s directed to [24) for an excellent survey article on

fuuctional languages.

We start by characterizing programming languages as either imperative or declarative.

92

B PARALLEL FUNCTIONAL IPROGRAMMING

imperative languages: characterized as having an implicit state that s modified (2 e. side effected)

by constructs (1 e. commands) in the source language

declarative languages: have no implat state, emphasis placed entirely on programming with ex-

pressions.

Imperative languages include the most used languages today, such as Pascal and the Clanguage

In these languages, programming is spht [9, p. 639] into

— an orderly world of expressions (e.g. £ (a+b) + c(f(d)))

— adisorderly world of statements, with few useful mathematical properties

The world of statements 15 represented primarily by the assignment statement (24, p. 3¢1), whose
eifect is to alter the underlying implicit store /i c. the computer’s memory) so as to yield a different
binding for a particular varable. Thus has important consequences for paralle]l programming, as we

shall see later.

Declarative [21, p. 305] languages allow the programmer merely to state what should hold true
with respect to a computation, without bothering to say preasely how the computation should be
done. Functional languages [24, p. 360] are declarative languages whose underlying model of

computaton is the function!

We bnefly describe the characteristics of functional languages. Again, the reader is referred to {24,
9. 21} for more detal. Pure functional language characteristics include:

~ Complete freedom from side effects’ coding is merely defining expressions and functions.
Nothing is ever modified or reassigned, as there is no assignment statement to give same variable

a different binding.

'in mnlmat'to the relation that forms the basis for logic programming languages.

93

B. PARALLEL FUNCTIONAL PROGRAMMING

— Functions are basic program buwulding blocks, and can be passed around as aguments (higher-

order functions)

— The order of evaliration of expressions 1s umimpertant (the Church-Rosser property).

We will examine the consequence of these characteristics n later sections. The interested reader can

examine a simple functional program in appendix 2.3.3

B.2. Characteristics of Modern Functional Languages

Even though they are somewhat orthogonal to parallelism, some of the features of modern functional
programming languages will be discussed below, because of their importance for expressiveness.
The reader 1s referred to Hudak {241 for a much more thorough treatment of the matter. I will follew

[24] in this exposition.

As stated by Hudak, a function 1s an abstrachon of some common behavior (1. the production
of results) over values (i.c. the arguments). If a language allows functions to be stored in data
structures, passed as arguments and returned as results, then the language 15 said to allow higher-
order functions. Higher-order functions are a charactenstic of functional languages that greatly
enhances the expressiveness of the language. In appendix 2.3 3, we show how the behavior of

summation is abstracted over any possible arguments.

Non-strict evaluation of expressions can take two forms, either lazy evaluation, or rager evaluation.
Lazy evaluation is also referred to as call-by-need; an expression will not be evaluated unless it 15
needed in a computation. Thus frees a programmer from efficiency concerns about not evaluating an

expression unless absolutely necessary; for further details, see [24].

Eager semantics imply thatin a function application such as (£ x), the body of £ and the eval-
uation of x will proceed in parallel [8]. While this will potentially increase the available parallehsm

obtainable in a program, there also exists the possibility of wasting resources on unnecessary com-

94

B. PARALLEL FUNCTIONAL PROGRAMMING

putation, thus the usefulness of expliatly specifying evaluation of expressions in a delay~d manner,

as explained above.

User defined data types, representation and implementation abstraction and huding are another
unportant _haractenstic of modern functional languages, enhancing modularity, coae clarity, and

faalitating debugging through better type-checking

Pattern matching allows the programmer to write several equations when defining the same
function, only one of which is applicable in a given situation [24]. For example, in Id, the factorial

function might be described in this way, using pattern matching.

def fac 0 =1

|.. fac n = n*fac(n-1);

Note how intuitive this definition of the factorial function is.

Array comprehensions are non-strict data structures that treat the array as a single entity defined
declaratively, rather than as a global object holding values, updated incrementally [24]. Array
comprehensions thus specify the shape and the contents of an array simultaneously [27). Array
comprehensions are espeaally expressive. for example, we can express array elements constructed

from recurrence relations quite easily, as the following Id code suggests [27]:

A = {matrax (1,n), (1,n)

I [1,1] =1
| [2,1]1 = 1 |} 1 <- 2 ton
| [1,3] =1 Il 3 <-2 ton
I {i,3] = A[1-1,31+

Alx-1,5-1]+

A[i, j-1] || 1 <~ 2 ton

& 73 <~ 2 to n};

95

_B. PARALLEL FUNCTION AL PROGRAMMING

The programmer is thus freed from worrying about the order in which the elements should be

evaluated.

B.3. Suitability of Functional Programs for Parallel Execution

Functional programs are well-suited for parallel execution beceuse of three (related) charactenstics
[29,p. 2]

- parallelism is implcit in their operational semantics The programmer does not explcitly
break up a task into parallel components (no expliat pardtioning), and so does not worry

about synchronization.

— Functional programs are determinate, i ¢ , the result of a funchonal program depends only on
its inputs, and never on the machine configuration or the runtime scheduling policy. This is a

major simplification in debugging.

- Most importantly, the only limits on parallelism are from data-dependencies and timte machine

resources

These charactenistics deserve some comment.

Imphcit parallelism [21, pp. 338-339] 1in dedarative languages means that declarative language
programs may be executed on a parallel machine—but they don’t allow programmers to state
explicitly how parallehism 1s to be created and controlled, that 1s, how p: rtitioning, scheduling and
synchronization are to be performed [3, p. 125] Instead, in functional languages the paralielism is
implidt and supported by the underlying semantics (23, p 61]. There 1s no need for speaal message-
passing constructs or other communications primitives, no need for synchronization primitives, and
no need for special “parallel” constructs such a “parhegin parend”, all of which are needed in
explicitly parallel schemes. The compiler detects the parallelism and generates calls to run time
software that takes advantage of the parallelism and manages it This allows the user to concern

herself only with the expression of the algorithm and not with the expression of parallelism or the

96

B PARALLEL FUNCTIONAL PROGRAMMING

implementation of it, which 1s requured in exphcitly parallel schemes. Expliat parallelism requures
the user to explicitly manage the parallehism and synchronuization, which can be a tume consuming,

and error prone achvity Functional progrtammung allows the programmer to ignore these matters.

A determinate program 15 one where a given set of inputs always produces the same set of
outputs, regardless of machine configuration, machine load, scheduling policy, and so on. A (21,
p 305l language is determinate if 1t satisfies the Church-Rosser property, m which the value of
an expression 15 imndependent of the order in whuch 1ts subexpressions are cvaluated (ie. the order
of evaluation to amve at the result 1s unimportant}) This property guarantees the determmacy of
functional programs [24, 71. The inverse, non-determirusm [21, p. 331! is program behavior that
can’t be predicted from the source text alone, but depends on arcumstances at runtime. 2

The reasons for determinacy in functional languages is because of their single-assignment con-
vention and lack of side effects [23, p 611 A siude effect is anythirg that persists after the evaluation
of an expression produces a result [34] Exam ples ot how side effects occur in imperative languages

are given m appendix C

Determinacy can be extremely important in parallel programming. It imples [21, p. 328] that
the meaning of a program does not depend on the underlying machine implementing it This is
mvaluable in parallel systems (23, p. 611 It means, for example, that programs can be written
and debugged in a functional language on a sequential machine, and then the same programs can be
executed on a parallel machine for improved performance. Thus facilitates debugging tremendously:
when left to the programmer, asin an imperative parallel programming language, determinacy is not
guaranteed. The programmer is responsible for insering the appropnate synchronization statements

to produce determinate behavior Any omission, however minor, can produce non-determar te

results [29,p 1):

[Leaving determinate behavior up to the programmer] makes debugging extremely
dafficult—for a given input, the program may produce different outputs for different

!Note that determminate behavior does not necessanly mean determumstic executon [7, p. 2] (although 1t can) mphat
parallelism in the language, varying machine configurations and machine load can cause the particular choice of schedule for
parallel activities in a program to be non-detesmunistic. However, the result computed should not vary with the schedule, for
determuanate behavior.

97

__B. PARALLEL FUNCTIONAL PROGRAMMING

machine configurations and/or scheduling policies, and this behavior may not imme-
diately be obvious. Such timing-dependent errors may not even be reproducible in a

debugger [because statements inserted to debug may “disturb the expenment”|

The lastcommentisimportant usingadebugger on a parallel program may cause iming-dependent
errors responsible for non-determinate behawvior to disappear A funchional program, because it s
determinate, will avoid these pitfalls. Removing side eftects 15 a cruaial factor |23, P oll the
importance of minimizing side effects n a parallel system 15 intensified significantly, due to the

careful synchronization required to ensure correct behavior when side effects are present

The final characteristic mportant for parallel execution of tw.ctonal languages 1s thewr [1, p
15] equivalence of instruction scheduling constraints with data dependences Thas means that no
artificial data dependencies are introduced. Artifical data dependencies i imperative languages
are a consequence of being able to reass gn new values to previously-defined vanables This s of
coarse prohibited in functional languages. Thus, [1, p. 17] treedom trom s1de eflects 1s necessary to
ensure that the data dependenaies are the same as the sequencing constraints, and this 1s the case in

tunctional languages. A review of data dependence types s presented in appendix D

Thus, the key concepts introduced in this section are that functional programming languages are

good for

high-level programming: because of they support hugiier-order functions and a programming style

close to the mathematical specificahons for algorithms

determinate results: because of the Church-Rosser property, f inctional programs are guaranteed to

give the same outputs, given ‘hesame inputs, irrespective of run-time conditions

parallel execution: because of the single assignment feature of functional languages that remove
side effects with unknown consequences (which preclude parallel execution), and prohibit

artifical data dependencies such as antidependencies and output dependencies.

98

C. SIDE EFFECTS IN IMPERATIVE LANGUAGES

A simple example of a funchion with a side effect1s the following'

cenrnter := 0;

function SquareAndCount (A: integer);
begin

counter := counter + 1;

return A°2;

end;

(1) b := SquareAndCount (2});

Function SquareAndCount side effects the variable counter, while returning the square of its
argument In imperative languages, the most common cause of side effects 15 the assignment
statement, whose effect is to alter the underlying implicit store on which the imperative language 1s
based so as to yield a different binding for a particular vanable [24, p. 361]. However, functional
languages prohubit the reassignment ~{ a previously declared expression. no side effects (such as
those caused by an assignment stat:ment) are permitted. Without side effects, there is no way for
concurrent portions of a pregram to affect one another adversely—this is simply another way of

stating the Church-Rosser property [23,p 61]1.

"Thereisa large body of compiler work devoted to the analysis of interprocedural side effects in imperative languages, which
allow compilers to be more aggressive in scheduling different subroutines in parallel. See, for example, [13].

9

o

C SIDE EFFECTS IN IMIPERATIVE LLANGUAGES

The most important area ot concern tor saentfic parallel programmers in deahng with <ide
effects 1s the way they influence the parallelization of operatiuns on arrays, a data structure heavily
used in sdentific programmang Problems arise because of the way imperative languages treat data
structures, as modifiable entihes The functicnal solution 1s to mampulate data structures i the
same way scalars are treated, that s, as unmoditvable values, not as moditiable arcas of memory,
which 1s just a reflection of the von Neumann architecture on which imperative languages are nnlt

[1). For example (1],

procedure SORTZ2(variable A: array(l..10] of real; J: integer);
var T: real;
begin 2f A{J] > A[3+1] begin

T := A[J];

A[J)] = A[J+1];

A[J+1] = T;

ena

end;

(1) SORTZ2(AA,J);
(2) SORTZ2(AA,K);
(3) P := AA[L];

since the values of J, X and L are not known at compile time, it must be assumed that statements
(1), (2) and (3) will conflict if executed in parallel, and thus they must be executed sequentially,
in the order speafied. Another important problem is aluasing , where two different vanable names
refer to, in essence, the same memory location(s) [12]. Thus can occur when pointers to vanables
are used, or by using call by reference argument passing schemes in function calls, such as in the

following [1):

procedure REVERSE(var A, B: array{l..10] of real);
begin for J := 1 to 10 do
B[J] := A[11-J}:

end;

100

_ C._SIDE EFFECTS IN IMPERATIVE LANGUAGES

On firct glance 1t would seem that all 10 assignments could be done concurrently, however, call
by reference allows for the possibihity of an mvocaton such as REVERSE (2, 2), in which case
concurrent execution would destroy the semantics of the above definition. Even 1f procedures and
pointers are not used, the simple possibility of reassignment of an imperative array element makes

parallehzation uncertain.

(1) A[J] == 3;
(2) X := A[K];

Both statements can proceed in parallel, unless J=K. Therefore, [1]

If arrays exist as global objects in memory and are mampulated by statements and
passed as pointers or procedure parameters, 1t 1s virtually impossible to tell, at the time
an array clement 1s modificd, what effects that modification may have elsewhere in the

program,

or, in other words, what side effects that array modification will produce.

101

D. DATA DEPENDENCE TYPES

Let us examine what type: of dependenaies canoccur. Refer to figure D 1. Data dependence relations
«te used to determine when two operations, statements, or two iterations ot a loop can be executed
in parallel [31] . In imperative languages (languages with side effects), three types of dependenaes

are found.

true or flow dependence: when two statements (such as 5 and 5, at leftin figure D 1) cannot be

executed at the same time since ~; uses the value of A computed by Sy,

antidependence: (in the center, 1n figure D 1) since 5 15 to use the “old” value of B, 1t must be

executed before -2, and thus can’t be executed 1n parallel.

output dependence: (atleft, in figure D 1) 1f 5 15 executed after Sy, then a will contain the wrong

value after this program segment They must therefore be executed n sequence.

As mentioned above [31, p. 1193], output dependenaes and antidependenaes are, in some sense,
false dependendes. They anse not because data are being passed from one statement to another,
but because the same memory location 1s wntten to 1n more than one place Funchonal languages
prohubit this sort of behavior Imperative languages, however, (24, p 3611 as a result of having
imphiat state that is modified (side effected) by commands generally have a notion of sequencing (of
the commands) to permit prease and determimistic control over the state In functional languages,

sequencing is theoretically constrained only by true dependenaes, which is the minumum possible

102

___ D DATA DEPENDENCE TYPES

Sl: A=B+C B=5 S1: A=B + C

S2: b =A+2 Sl1: A=B+C $2: D=A+ 2

83: R=A*3 82: B=D/ 2 $3: A=E+F
True (data) Anti Output

Cannot happenin a
functional program!

Figure D.1: Data dependence types in an Lnperative language.

103

D DATA DEPLNDENCF TYPES

constraint on parallel execution L.

1There are compile-tumeanalysis techniques that can often remove output and anti-dependencies, such as variable renamng
and node splitting; see [31].

104

i

Py

P

BIBLIOGRAPHY

(1
2]

131

[4]

(51

(6]

(7]

(8]

(9l

Wilham B Ackerman Data flow languages. IEEE Computer, pages 15-23, February 1982.

Sudhir Ahuja, Nicholas Carnero, and David Gelernter. Linda and friends. IEEE Computer, pages
26-34, August 1986.

Stephen] Allan and R R. Oldehoeft. Hep sisal: Parallel functional programming. In Parallel
MIMD computation: The HEP supercomputer and its applications(?), pages 123~150. MIT Press(?),
1985(?).

Arvind and David E. Culler. Dataflow archutectures. Annual Reviews in Computer Science, 1:225-
253, 1986.

Arvind, David E Culler, and Gino K. Maa. Assessing the benefits of fine-grain parallelism in
dataflow programs. In Proceedings Supercomputing '88, pages 60-69. IEEE Computer Society and
ACM SIGARCH, IEEE Computer Sodiety Press, 1988

Arvind and Kattamuri Ekanadham. Future saentific programming on parallel machines. Journal
of Parallel and Distributed Computing, 5:460-493, 1988.

Arvind and Rishaiyur S Nikhil. Executing a program on the mit tagged-token dataflow archi-
tecture. Computation Structures Group Memo 271, Laboratory for Computer Science of the
Massachusetts Institute of Technology, March 1987.

Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. Id Nouveau Reference Manual Part II: Opera-
tional Semantics. Laboratory for Computer Science of the Massachusetts Institute of Technology,

July 1988.

John Backus. Can programming be liberated from the von neumann style? a functional style
and 1its algebra of programs. Communications of the ACM, 21(8):613-641, August 1978.

105

4

______ BIBLIOGRAPHY

[10] BBN Advanced ComputersInc., 10 Fawcett St., Cambndge, MA 02238. Inside the GP-1000, 1988

[11] BBN Advanced Computers Inc., 10 Fawcett St,, Cambridge MA 02238, U.S A. Programmmng m
C with the Uniform System, 1.0 edition, October 1988.

[12] Micah Beck and Keshav Pingali. From contrs! flow to dataflow. Technical Report TR 89-1050,
Department of Computer Saence, Cornell University, Ithaca, NY 14853-7501, October 1989

{13] David Callahan and Ken Kennedy Analys:s of interprocedural side effects mn a parallel pro-
gramming environment Journal of Parallel and Distributed Computing 5.517-550, 1988

[14] Nicholas Carriero and David Gelernter. How to wnte parallel programs. A guide to the

perplexed. ACM Computing Surveys, December 1989,

[15] David E. Culler and Gregory M. Papadopoulos. The explicit token store. Journal of Parallel and
Distributed Computing, 10 289-308, 1990.

(16} Boleslaw Szymanski et al. Conclusion. In Szymanski [36] chapter 9, pages 393409
[17]) Frank P. Ferne and Peter Whaite, 1991. Personal communicztion.

[18] Martin A. Fischler and Oscar Firschein. Readings in computer vision. Issues, problems, princi-
ples, and paradigms. In Martin A. Fischler and Oscar Firschein, editors, Readings in Computer
Vision: Issues, Problems, Principles, and Paradigms. Morgan Kaufmann Publishers, Inc., 1987.

[19] Daniel D. Gajski and Jih-Kwon Peir. Essential 1ssucs in multiprocessor systems. IEEE Computer,

pages 9-27, June 1985.
{20] G.R. Gao, 1991. Personal communication.
[21] David Gelernter and Suresh Jagannathan. Programming Linguistics. The MIT Press, 1990

[22] A. Giordano, EI Noviello, C. Sanges, and R. Vaccaro. A multigranularity massively parallel
architecture for image understanding. In V. Cantoni, L.P. Cordella, S. Levialdi, and G. Sanmiti di
Baja, editors, Progress in Image Analysis and Processing, pages 742-750. World Saentific, 1989

(23] Paul Hudak. Para-functional programmng. IEEE Computer, pages 60-69, August 1986

[24] Paul Hudak. Conception, evolution, and application of functional programming languages.
ACM Computing Surveys, 21(3):359-411, September 1989.

106

Ty

BIBLIOGRAPHY

[25] Paul Hudak. Para-functional programming in haskell. In Szymanski [36], chaptzr 5, pages
159-196

|26] James E Narem]r., 1991 Personal commurncation.

{27]) Rishuyur S Nikhil. 1d (version 83 0) reference manual. Computation Structures Group Memo
284, Laboratory for Computer Saence of the Massachusetts Institute of Technology, March 1988.

[28) Rishiyur S Nikhil and Arving. Programming in Id: A Parallel Programming Language. Mas-
sachusetts Institute of Technology, August 1990. Draft of a book in preparation.

[29] Rishiyur S. Nikhil and P R. Fenstermacher. Id World Reference Manual (for Lisp Machines).
Laboratory for Computer Science of the Massachusetts Institute of Technology, July 1988.

[30} Thomas J. Olson, Liudvikas Bukys, and Christopher M. Brown. Low-level image analysis on
an mimd architecture In Proceedings First International Conference on Computer Vision, pages
468475 The Computer Society of the IEEE, IEEE Computer Society Press, June 8-11 1987.

[31] David A Padua and Michacl J. Wolfe. Advanced compiler optimizations for supercomputers.
Communications of the ACM, 29(12):1184-1201, December 1986.

[32] Chern M. Pancake and Donna Bergmark. Do parallel languages respond to the needs of scientific
programmers? [EEE Computer, pages 13-23, December 1990.

(33] William H. Press, Brian P Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical
Recipes i C: The Art of Scientific Computing. Cambridge University Press, 1988.

(34] Anthony Ralston and Edwin D. Reilly, Jr,, editors. Encyclopedia of Computer Science and Engineer-
mg Van Nostrand Remhold Co., second edition, 1983.

[35] Vivek Sarkar Partitiomng and Scheduling Parallel Programs for Multiprocessors. The MIT Press,
1989

[36] B. Szymanski, edator Parallel functional languages and compilers. ACM Press, 1991.

[37] SL. Tanimoto Architectural issues for intermediate-level vision. In M. J. B. Duff, editor,
Intermediate Level Iniage Precessing, chapter One, pages 3-17. Academic Press, London, 1986.

[38) Shreckant Thakar, Paul Gifford, and Gary Fielland. The balance multiprocessor system. IEEE
Micro, 8:57-69, February 1988.

107

iy

T

- INerx

{39] P. Whaite and EP.Ferrie. From uncertainty to visual exploration. In Proceedimgs Third International
Conference on Computer Vision, pages 690-697, Los Alamitos, California, December 1990. IEEE
Computer Soaety, IEEE Computer Society Press.

108

F

FEY

INDEX

\7, 50

abstractions, 16

aliasing, 100

BBN Butterfly, 28
architecture, 28
interconnechon network, 28
memory architecture, 28

bounding contour, 47

C-landa, 33
coordination languages, 33

data dependence
definition, 102
types, 102

data partitioning, 54

dataflow
archatectures, 37
determinacy and, 38
functional languages and, 39
key properties, 38
memory latency and, 39
parallelism and, 38
potential problems, 39
program, 37

debugging
etfect of determinacy on, 97

declarative languages

109

definition of, 93
implcit parallelism in, 96
depth data, 47
determinacy, 97
and debugging, 97
definition, 97
implications of, 97
importance in parallel programming, 97
in functional languages, 97
non-determinism, 97
determinate behawvior, 97

deterministic behavior, 97

error metric, 50
evaluation

parallel processing systems, 20
evaluation of parallel processing systems, 20

fitting, 47

Fortran, 24

functional languages
characteristics, 93, 98
characteristics for parallel programming,

96

Church-Rosser property, 97
data dependenaes, 98
definition of, 93
determinacy of, ¢7
finite machine resources, 70

... INDEX

higher-order functions, 70
1d, see 1d
memory usage, 70, 83
para-functional programming, 69
parallel programming advantages, 24
parallel programming and, 44
switabality, 24

functional programming
parallel, 92

GITA, 43,73

granularity
ana partitioning, 10
and synchronization, 11
programmer burden, 18

hierarchical memory model, 31

I-structures, 42
Id and, 43

Id, 40
determinacy, 68, 85
fine grained parallelism, 68
implementations, 68
intertask communication, 86
load balanciny;, 86
logical independence, 70
logical independence and, 68
machine resources and, 68
memory latency and, 70
operational behavior control, 68
parallel programming problems, 68
parallel programming strengths, 68
partitioning and, 69, 70
problem domain closeness, 68

110

scheduling and, 70
shared data structures, 86
solutions to parallel processing problems
on TTDA, 44
synchromzation and, 70
task creation
flexibility, 85
overhead, 85
vs Uniform System, 83
vs. Linda, 83
1d World, 43, 74
imperative languages
assignment statement
eflect of, 93,99
definution of, 92
expressions and statements, 93
parallel programming and, 44
parallel programming switability, 24
sequencing in, 102
side effects
and parallel programming, 98, 99
definition, 97
suitability, 24
mside-outside function, 50
mter-penetration curves, 47
intermediate-level vision, 11
algorithm characteristics, 14
influence on parallel programming, 20
cheracteristics, 12
computational structures, 12
data partitioning, 12
data structures, 12
load balancing, 14

ey

- R _— IINDEX
parallel charactenistics, 14 parallelism model, 63
parallel processing partibhoning and, 61, 63

implementation issues, 12 scheduling and, 63
parallel processing requirements, 20 shared data copying and, 61
parallel processing system evaluation cri- shared data structures, 86
teria, 20 solutions to parallel processing problems,
partiiorung, 12 34
synchronization, 15 synchromzation
iterative mintmization, 50 and memory model, 84
synchronization and, 63, 65

Levenberg-Marquardt, 50 task creation, 62, 83

Linda, 33 flexibility, 85
eval(l),34 overhead, 85
eval (), 63 tuple, 33
n(s),34 tuple space, 33
out (1), 34 flatness of, 65
rd(s), 34 uncoupled operations, 62
anti-tuple, 34 vs. 1d, 83
code restructuring and, 63 vs. Uniform System, 83
communication, 33 load balancing
data parhtioning, 61, 64, 84 dynamic, 66
determinacy, 8¢ static, 66

determinacy and, $5

general applicability, 62

higher-order function absence, 61, 62

intertask commumcation, 86

load balanang, 62, 86

memory latency and, 64

memory model, 64
synchronzation and, 84

modularity and, 61, 65

operators, 33

parallel programming problems, 61

parallel programming strengths, 62

111

logical independence, 53
low-level vision
parallel characteristics, 12
processor characteristics, 14

memory contention, 54

memory latency
definition, 10

merit function, 50

message passing, 44

minimization, 50

MIT TTDA

P

_ INpEx

archutecture, 39
modularity, 55, 65
Monsoon, 73
rraltiprocessors

issues

user importance, 10

namespace
non-homogeneous, 56
non-determirusm, 19

and debugging, 18

para-functional programming, 69
parallel cooperative fitting, 46

BBN Butterfly experiment, 57
parallel cooperative fitting, algorithm, 50
parallel languages

as extensions to sequental languages, 16

current, 18

explicit partitions, 18

extensions to sequential languages, 16

future, 23

impact of, 16

message passing, 17

needed features, 20

new vs. extensions, 16

suitability, 24

task model, 18

programmer burdens, 18

parallel processing

4 issues of importance, 10
parallel programming

and functional languages, 24

and parallel libraries, 17

current languages, 18
functional, 44
advantages, 96
functional advantages, 24
goal, 23
impact of languages, 16
imperative, 44
imperative language shortcomings, 24
implicit parallelism, 96
message passing, 17
parallel libranes, 16
process, 17
program to process, 16
restructurings i, 16
programmer needs, 20
sdentific
and functional languages, 23
consequences of current choices, 18
current problems, 18, 19
current support, 19
needs, 20
user choices, 16
user misconceptions, 19
sequential programming lessons, 19
parallelism
explicit
mechanisms, 16
partitioning tradeoff, 10
parallelism profile, 74
partitioning
by compiler, 18
consequences, 10
definition, 10

s,

Y

exphat
programmer burden, 18
intermediate-level vision algorithms, 12
overhead in, 53
parall.-hsm tradeoff, 10
problem of, 10
programmability, 20

programmung details, 72
range data, 47

s.heduling
defirntion, 10
trade-offs, 10
semantic crudeness, 53
Sequent Balance
archutecture, 32
sequential programming
lessons for parallel programming, 19
side effects, see imperative languages, side ef-
fects
and arrays, 100
speedup, 76
surface data, 47
synchronization
and granulanty, 11
defirution, 10
intermediate-level vision algonthms, 15

syntactic crudeness, 53

Tagged-Token Dataflow Archutecture, see MIT
TTDA
task starvation, 53, 57
tasks
GOTO’s of parallel programming, 18

INDEX

113

TTDA, see MIT TTDA
tuple, 33
tuple space, 33

Uniform System, 28
Share () mechanism, 55
code restructuring and, 54
data partitioning, 54, 84
determinacy, 85
determinacy and, 56
general applicability, 53
generator mechanism, 53
granularity, 52
hierarchical memory model, 52
higher-order function absence, 52
intermediate-level vision programming

and, 51

intertask commurncation, 86
load balanding, 52, 86
logical independence and, 53
memory contention, 54, 55
memory latency and, 54
memory management, 28
memory mode), 31, 52, 54
modularity and, 55
namespace, 56
parallel programming problems, 52
parallel programming strengths, 52
partitioning and, 52, 53
processor management, 30
programming model, 30, 52
remote memory access, 54
scheduling and, 53
shared data structures, 86

shared memory bandwidth, 52
side effects and, 56
solutions to parallel processing problems,
31
synchroruzation and, 53
task creation, 83
flexability, 85
overhead, 85
vs Id, 83
vs. Linda, 83
utlization, 76

volumetnic fitting, 47

114

