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Abstrad 

The problem mvestigated In th1S theslS is that of glving mtl'Tmedlate-l('"cI vbion Tl'M'.lrl'ht""'. 

adequate parallel processmg tools for thelr work, where data and computational 1-otructurt'S do nut 

fit the SIMD cxcOlbon model, but rcquif(~ a MIMD cxecutlOn model mstt.'ild. Thl' contnbuholl 

of tlus thesis is a comparison of 3 general-purpose MIMD paraUel proœ'i&mg sy~tl'm!-> ,\S t(lob tor 

int~rmedtat(l-levcl vhion, by evaluahng them agamst cnt~ria winch capture the c1-> .. t·ntial ... slIl· ... In 

programming mtennediatt'-Ievel visIon algorithms on such machmes Accordmg 10 my (11Icrtd, tilt' 

best-suited ofthe 3 system~ 11-0 composed ofthe Id functtonallanguagc runnmg on tilt' M" ... sachll1>M'tt~ 

Institute of Terlmology's Tllgged-Token Dataflow Architecture (M.I.T. ïfDA). 

Soenhfic programmcr~ will usu~lly he rehrung the ab~tract models and algonthlll'o which tht'Ir 

programs Implement, and 1->hould not be expected to be parallel architecturt' cxperh.. TIlen'lore, tlwn 

tools should be adaptcd to theu plOblem domam, for felst codmg, and should proVldl' loglCal md('­

pendence from solVll1g the four cruoal MIMD Issues of parallel proccssmg, partitiolllng, Sdlcduhng, 

synchronizabon, and mem(lTY latency. Current tools, such as Unifonn Sy~tcm programmUlg on the 

BBN Butterfly and C-Linda programmmg on the Sequent Balance, do not 

Functi.onallanguages, on the other ha d, as exemplified by the Id language running on the TrUA 

arclùtecture, are a more appropria te solution. They are close to the sdenhfic probh'm domain, 

because they are based on the function and un expresslOns. They are amenable to comptll>r soluhons 

of the partibonmg, schcdulmg, synchronization and memory latency problems, bec,llIsc they do not 

allowa programmer tospeoiy restrictive commands, or to arttfiodlly J'estrtd the order of execut/On. 

This allows a compiler to extract all the parallelism present in a program, which 1& nl·ce~.,ary to 

ob tain good performance on highly parallel mac1ùnes, such as the TInA 
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Résumé 

Le problèm(' t1bonJe dan'l cc mémoire est ceiUl de founlir aux chercheurs en vISion numérique 

de niveau ÎnterméJiiure le .. outIl .. de traItement parallèle nécessaires pour leur recherche. Leurs 

a 19orithmes comportent sou vent de!. ~tructures de données ct de calcul qui se prêtent mal au modèle 

d'~xéCllbon SJ/v1D (mstructlOll wllque, données multIple!:» et beaucoup plus au modèle MIMD 

(mstnlcbon mulhpll'S, donnéc" mulb:Jles) La contnbutif'n de ce mémoire est la comparaison de 

tmi .. sy.,t(-me~ d" rra 1 tl'ment paraUde M1MD en tant qu'outIls pour la VIsIOn numénque de niveau 

mh.'rmédlau"t" en IL'" évalu.lllt selon des critères qui font re~sorhr l'essenhl'l des éléments requis 

dan!> la progr.lmmatlOn d'algonthmes dl"' V1~lon de niveau mtermédiaIre sur ces machInes. Selon 

(et> cntèJ"(>~, le s)'!.tcme le plus apprupné est composé du lall~age fonctIonnel Id éxécutant sur 

l'archltectun' Tri >A du M.LT. 

L('s programmeurs-l'hercheun. &ont habituellement intéressés a amélIorer leurs modèles et al­

gorithmes, et non pdS il devenu experts en arclutectures parallèles. Conséquemment, leurs outils 

devraient êtn' adapté..; à leur domame de recherche, pour faciliter le codage, et devraient créer une 

démarcalloll logique qui sépare Il' programmeur des quatre consldérahons cruciales propres aux 

systèmt's MIMD, le découpage, l'ordonnancement, la synchrorusation et le temps de latence de la 

mémoltl.'. Le~ oubls dIsporubles présentement, tels que la programmahon avec le Unifonn System 

'lur Il' BRN BlIlfaJly et la programmation en C-Linda sur le SeqllL'nt Balance, ne le font pas. 

Par contre, les langages fonctionnels, comme le langage Id éxécutant sur l'architecture 'l'rD A, 

n-présl'ntent une soluhon plus appropnée. 1)., sont plus près du domame saentifique, étant basés 

&ur la fonction et sur les expressiOns mathématiques. Ils se prêtent beaucoup mieux à des solutions 

par compIlateur des quatres problèmes mentionnés plus tôt, parce qu'Ils ne pennettent pas au 

programmeur de splî.cifll'r SOlt des commandes ou un ordre d'éxécution restrictifs. Ceci pennet à un 

compilateur d'l,\trarre tout le parallélisme présent dans un programme, ce qui est nécessaire pour 

obtemr une bonne performance sur des machmes hautement parallèles, telles que le TIDA. 
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1. INTRODUCTION 

Among the challenges of computer vision IS the tremendous amount of proœssing that must be 

donc to extract de&ired information. Current computer vision research IS ofteJl hampered by the 

long tumaround in cxperiments callsed by large processing requircments. This has quite naturaUy 

mobvatcd VISIon researchers h) explore parallel proœssing as a tool for making certain problems 

111 romputer viSIOn research tractable. TIle contnbution of tbis thesis is a companson of 3 general­

purpose parallel proœssing systems as tools for intennediate-Ievel vision. 1 will show that the best­

sUlted of these is composed of the Id funChonallanguélge running on the MassachusseUs Inshtute of 

Technology's Tagged-Token Oataflow Architecture (M.I.T. TTDA) 

Saentific programmers in general, and computer vision programmers in particular, will usually 

be refining the abstract models and algorithms which their programs implement, and should not 

be expected to be parallel architecture experts. Therefore, their tools should he adapted to their 

problem domain, for fast coding, and should provide logical independence from solving the four 

crucial MlMD issues of parallel processmg, partitioning, scheduling, synchroruzanon, and memory 

l.ltem.)' lt9J. Current tools, sllch as Uruform System programming on the Butterfly and C-Lmda 

programming on the Balance (the other two systems we examine), do not, in spite of the lact cach 

is avmlable commercially and ID general use as a general-purpose MIMD scientific problem-solving 

too1. 

Functionallanguages, on the other had, as exemplifled by the Id language running on the TI'DA 

arclùtecture, are a more appropriate solution. They aTe close to the scientific problem domain, 

because they are based on the lunChon and on expressions. They are amenable to compiler solutions 

of the pctrtltioning, scheduling, synchronization and memory latency problems, because they do not 

8 
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1. INTKO()UCTION ------------------ - --- - - ----- --- - - -

allowa programmer to spccfy restrictive commands, or to arttftClal1y restnct, he oroer of ('Xl 'cu lion 

This allows a compiler to cxtract all the parallelism present in a progrdtn. 

1 will first discuss in this chapter what the current problcms are wlth mlellncùl.lte-Icvd Vision 

parallel programmmg, then propose cntcna by wlùch 1 feel paraUd proœ~ ... m~ ~ystem~ used for 

intermediate-level vision sholÙd be judged. 1 then propose fun .lionallangllage& as .1 solution which 

matches the criteria. ln chapter 2, 1 describe the 3 sy&tcms ! have çho~en to l''Camllle. Umfonn 

System programming on the BBN Butterfly, C-Lmda programming on tilt' Sclluent Balance, and Id 

programming on the M.I.T. TInA. In chapter 3, 1 mnstnlct a plausible mtt'mll'ruatc-Il'vcl \'1sion 

problem, implement it on aH 3 systems, then discuss how cach performed un"il'r my t'valuation. In 

chapter 4,1 show sorne of the lessons that should he drawn from tIus cxerdsc Conduàing remarks 

are given in chapter 5. 

1.1. What is the ProbleDI? 

Computer vision rcsearch, and the development of new algorithms and techmqul's for imagl' analy­

sis, is typically an Iterative process, where an algorithm is proposed to lmplerncnt an abstract model, 

and, in tum, the algorithm is implemented with a computer program. In basic research, the in~erest 

is mainly in refinmg the abstract model or the algorithm, and lcs~ often thc program itself. Thm, fast 

program execution (performance) is n~eded to improve experiment tumaround, but programma­

bility is aIso essential, as code is likely to evolve rapldly, in sorne m~tanœs bClllg rcplaced cntin'ly 

hecause of changes in the abstract mode!. Code development 15 less bkely to be arnorhzed over long 

program life spans, and must therefore be relatively inexpensivc. 

Tools for handling the one-to-one mapping of input pixel to output data in low-lcvel vlSion are 

well understood. Partitioning, scheduling and synchronizahon of tasks on proccssmg clements 1S 

sttaightforwardly and effectively performed on SIMD (Single Instruction Multiple Data) nt a chinl'S. 

Parallelizing oth(>r levels of computer vision is less obvious. Wc will look at the ntany-to-o!.e (or 

iconie to aggregate) mappings typical of many vision algorithms, which wc wiJl collectively refer 

to as intermediate-Ievel vision. In such cases, the non-uniform distribuhon of output features and 

9 



1 

1. INTRODUCI10N ______________________________________ --=..:.--=='-=~=::.:.c. 

obviously data- ("feahtte" -) dependent nature of processmg tenders L:'e SIMD approach inetfective. 

lnstead, we requirc more general partitioning, scheduhng, and synchronization, which are found in 

the MJMO (Multiple Instruction Multiple Data) processing model. None of these issues are s1I1lple 

one~ for the sClentiftc programmer to deal with, as we shaH see next. 

1.1.1. Four Parallel Computing Issues 

The four llosues of greatest Importance in the parallel execubon of a program are [19, p. 26] partition· 

ing, I>cheduling, synchromzatiOlt, and memory latency. TIlese are essential, because they are concerned 

with both th!.' performance of the program and the sc.enbhc user's view of the computing process, 

lno;teaù of the engmeering Vlew of the hardware machlne. Partit/o1ting means specifying the sequen­

hal umts of computation in a program, to find the partibon SIZC which strikes a balance between 

low overhead and high paraHebsm, and thus minimizes mn-tune. Scheduling is assigning tasks to 

proc('ssors to mmimize run-time by optimuing processor ublization a:,d inter-processor commu­

IUcation. ~lfnchrontzatron is Cl mechanism for coordinating the actiYity of processes; tasks working 

t Jgcther must synchwnize to coordinate producer-consumer relatiol\ships, forks and joins, and mu­

ruaI exclusIOn. Mar/on} latellcy is defined as the time between a memory request and the answer to 

that request. 1 discuss the problems ansmg from each lssue in tum. 

The parbbomng problem can be understood in the following way. For high performance, we 

want '"g" parallelism with low overlread. Howevel; tncreasing paral1elism brings increased penalty for 

synchronizing and scheduling additional tasks, and on the other hand, reducing overhead is done by 

mergrng or {/lsi/lg tasks, wluch decreases the penalty for svnchroruzing and scheduling tasks, at the 

l"Ost of wasled parallelism. The consequences of the partitioning/parallelism tradeoff [35, p. 15] are 

that the presenl"'e of overhead can make it impossible to achieve ideal speedup, and the real parallel 

cxccution bme is mirunuzed at an optimal intermediate granularity. The partitioning problem is to 

fi",i tire corrcsponding optimal intennedrate partition. 

Scheduhng alsoinvolves tradeoffs 135, pp. 15--16}, between parallelism andoverhead. Parallelism 

dicta tes that tasks should bc assigned to diffe;-ent processors as rnuch as possible, but communication 

overhead is rL>duced when task~' are assigned to the same processor. 

10 
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SynchrolÙZation will he detrimental to efficiency bel'ause of improper granularity 135, p. 71, li 

the synchroruzabon granularity in the program IS too fine for the targt't multiproccssorl 

Memory latency becomes a big problem if the m ultiprocessor sy~tcm lS bU1lt out ofvon Neumann 

proœssors, wluch must elther wait for the memory ret>ponsc, or do an expensive l.xmlext ~\vit('h. nle 

memory latency problem often appears under the gwse ot the "data partitiomng" problt>m, as data 

must be "partitioned" and plaœd on diffcrent mt'mories t>o a~ to mimmlZe memory latency. 

These are the cruoal issues that must be solved on a MIMD syt>tcm for a paralIel program to 

aclueve good perfonnance However, 1 strongly belteve that plaong the respollSlbility for solving 

these issues into the hands of the scientihc programmer IS countl·r-produrnvc. 11le scientific pro­

grammer should not he expected to be a paralIel archItecture expert, and instead should be given a 

tool to do research. Freedom from deahng with tht' undcrlying architecture bccause of these lSSU('S 

is called logical independence, and tlus is what we scck to give to the l"Omputer vision programmer. 

Current parallcl processing solutions rarely provlde thlS indepcndence, as we shall sec later on. 

1.1.2. A Definition of Intermediate-Ievel vision 

We can define intennediate-level vision as the category m which the mput lS a set of values ~till 

associated with each pixel (z.e. when an Il , 1/ pixel image has produccd an Il -" 1/ array of values, 

or pixellabels) and the output is a structure that is not a two-dlmensional array CI' g. a list of 

fcatures [37]2). 

A more feneral defirutlûn, perhaps better suited to the large variety of possible algorithms dnd 

tasks, is to view intermediate-level Vlsion as a many-to-one mapping, or an iconic-to-aggregatcs 

transformation [171. IntennedIate-level vision 15 that part of the vision process that performs a 

reduction in the amount of mformation handled, abstracting out desired fcatures. 'Ibi~ phase of 

processing is present in all so-caHed image understanding systems. 

1 As of this writing, most mulbprocessors cannot effidently support more than 1 synchroru7.ation in 100 instruc.tions (per 
processor). 

2nus definibon must lv.J shghtly extended, of course, for truly three-dunensional imagl.!S, 8uch as those obtained from 
computed tomography 

11 
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Intcrmcruate-lev(') visIOn can also he descnbed In tem:s of its data and control structures [22, 

p. 7431. Data structures at mput and oûtput go !rom images to feahL-es (a many-tCHJne mapping). 

Computlltiollal stmc/ures during processin can mciude sorne or aIl of the following: 

- numeric proccssmg 

- non ncar-nelghbor commurucahon (regional pro cesses, a priori non diameter limited) 

- potcntial1y lrregtÙar commurucations (in destInation and volume) e.g. feature extraction, image 

segmentahon 

Examples of mtermediate-Ievel processes inciude those for chain encoding, Hough transfonns, 

hhdpC measurement and de~cripbon (such as convex hulls and others), building region-adjacency 

graphs 1371, or aggregabon (partitioning or hnking) and model fitting [181. 

Th us, a completl' charactenzation of vision algonthms can be seen in figure 1 1 (adapted 

from 122]). Of cour~e, this rigid categorization schcme showd not be unplied to fit aIl algorithms 

exadly; neverthele~s, lt i1, a useftù tool to asscss the needs of programmers implementing algorithms 

that should for the most part ftt into it. 

1.1.3. The Parallelization Characteristics of Intermediate-Level Vision 

ln this section wc look at how the different levels of computer vision can be parallelized. One of the 

most important pomts of thlS thesis is the following: an mtuitive, explidt intennediate-level visIon 

parhtioning scheme [37, p. 91 15 not as straightforward as for low-level vision tasks, where image 

partitioning is the natural choiœ. Let us examine the reasons why. 

Wc begin by lookmg at low-level vision algorithms, with respect to expliat partitioning (granu­

lanty), pnx:co;smg type, and algonthm type [22, p. 745] . Partitzoning is typically image partitioning 

(i L·. one proœssmg element for a regular group of pixels), usually at a fine granwarity (e.g. one pro­

œssmg e1ement per pixel). Proces~mg proceeds in a data parallel and synchronous fashion: the same 

12 
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1. INTRoDUcnON 

Illstn.cbon 1" exccutcd on paralld data, in lock-5tep across aIl processmg elements. The algorithms 

cmployed an' typically detenninlshc, and entirely numeric. 

Currcnt low-Ievel VISion architecture c."aracteristla. typically mdude [37, p 3] one processing 

clement per pixel, .md proccssing elements conneeted ID a 20 mesh, executing synchronously in 

SIMD fashlOn Pub tiomng i5 straightforward, each task being dSSlgncd processmg for a fixed region 

of the Image, theT(' is no data-dependcnt task LTCation, so a hxed partiborung 15 possIble. Schedulmg 

IS also str.ughtforward, as the mterconnection of proccssors in the 2D mesh usually correspond qUlte 

weIl to the stmcture of commurucation III the algorithm, which is ncar-nclghbor. Synchronization 

i~ impllc.t III the architecture model aIl proccssors execute synchTonou~ly, in lock-step. MeIllory 

latency 1" ~olved because cach processor de ab wIth data clther in its local memory, or communicates 

wlth proces~orc; n(,<lchy to obtain the data It needs. Global. arbltrary '.:ommunicahon patterns do not 

fit thl~ exccllhon mndel very wcll, but are not ncedcd in low-level visIon algorithms. 

Interrnedldte-levt'l VI!>lon [3i, p. 9] 15 u!>ually computationally mtenslve, as algonthms have 

to e"'ilmme largl' l1\unber.:. of input pIxels, or data in one-to-one correspondence wlth pixels. The 

algonthms can alsu be looked at in terms of parallel characterishcs bUch a& partihoning (granularity), 

proccssmg, and algonthm type [n, p 74~746J Parhtionmg IS in terms of lm age and function 

partitionmg; ('Itlll'f a regular group of pixels per processmg dement (image partitioning), or a (set ot) 

functlOn(s} per processing element (function partihorung). Processl1lg proceeds in a control parallel 

(mulhprocessmg) fasruon (eadl proee~ ng dement deodes of Ils own change of state and instruction 

exeOltion), and IS asynchronous ({mm one proeessmg element to the other; explicit synchronization 

instnlchons are lleeded) Algorttl,,,,S,:l1'e primanly numenc 

For sorne mtennediate-Ievel vl!>ion algorithms, smee the mput data consists of pix~l labels as­

signed to each point, we can use Image parallelism and partition the plXellabel data equally among 

the processors TIùs is the same scheme as in low-level vision, where output reslùts are spatially 

distributed m the same manner as the input, and the amount of processing over an image area will 

not dlffer significantly from one area to the ncxt. In int('rmediate-level VIsion however, objects being 

computed as output are dlstributed over the image, but seldom in a urufonn way. Therefore, a 

~imple parhtioning and scheduling scheme where each task gets an identical-sized piece of the input 

image and is scheduled on a single processor willlead to load imbalances in a multiprocessor [37, p. 

91, as features (the result of mtennediate-level processing) in image are not uruformly distributed, 
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and vary in size and in bme n'quired to compute them; note l'Sp<'ci.llly how mappropriatc the SlMD 

execution model would be It might also he the case that t.\sks an' created dynamically (.lt run hme), 

as a result of proœssmg. Addltionally, there 15 US\t.llly slgniftcant paralldlsm U/,tlli/l tilt' a/soritl,ms 

used to compute these features. ThIs reqwres evcn more flexibllily III dcalmg with tlw partitioning 

and Schff r.lulmg problems 

Expbcit synchronization [37, p. 9] therefon' becomes an lmportant Issue If spah.tl partihoning 

(spahal parallehsm) is I.lsed, rurves or reglon<; may cxtend across image to fall into zones of bcveral 

tasks, which must then coordinate and synchronize, to work on the same ob)ect slmultanco\lsly. 

AIl these concerns anse because of the faet that parbt10mng (whlrn 1l\('ludes pmeess l.'J'cabon), 

schedulmg (mappmg) and data placement to avoid memory Idtency arc, m intermedlatl'-Icv('l visIon, 

data-dependent and many-to-cne, not fixed and on(\-Io-onc, as In low-lcvcl VIsion TIus will make 

it difficult for a programmer using an explicitly parallcl programming langu.lge, who must match 

these requirements to the underlying architecture, to obtain good performance: It is dilficu 1t to know 

in advance whether good performance will hl' ohta\lled by program execution on a partIcular data 

set. 

Let me then summarize the issues m parallehzmg intermeœate-Icvel visIOn algonthms Affccting 

partitioning and schedWing dre spatially non-uniform fcature dIstribution, variabons in Ecature 

computation time, possible dynamlc (data-dependent) task creation, and the need to exploit fincr­

grained paralleIism Wlthin the feature computahon. Synchromzanon mu~t h.mdle the fact that lasks 

must coopera te to compute features, and to handle the interactions bctw(!en fcatures. Memory 

latency considerations are that a large amount of iconic input data must he dJStIibuted to a large 

memory and shared by multiple processes. 

Faœd wlth these consIderations, scientific programmers in gelleral, and mtcrmediate-Icvel Vlblon 

programmers in particular, must consider available ophoru. that will allow case of cocling and yet 

obtain good performance. These options are in tenns of MIMD parallei hardware architecture!> and 

programming languages. 
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1. INTRoDucrloN 

1.2. Shortcomings of Current Tools 

Most paral1el pro~ramming &yl>tems proposed todate for sdennfic needs use explidt parallelism (i.e. 

rl'qUlre the programmer to !>peClfy parbbomng, scheduling and synchronization). There are three 

mechanism!> WhlCh have be('n u&ed to include parallehsm in explidtly parallel programs [321: 

concurrent languages: mcorporate parallel features as integral parts of a language's design. 

language extensions: addmg paraUd extensions to an eX1sting sequentiallanguage. 

parallel runtime libraries: providlllg hirh-Icvel interfaces to parallel rouhnes stored in a system 

library 

The !>denbhc problem solving proCC&S for parallel programming is typically composed of rnul­

tipll' rcstrllcturmgs [32, p. 161. from abstract model, to algorithmic solution, (manually) to program 

code, (,lutomattcally by compiler) to cxecutable code. Each restrucml'ing complicates rrogram de­

velopment, as lt is a sOUJ'C(' of potennal error and distortion, in addition to imposing development 

overhead. Th\! hrst and tlurd transformahon:> pose no special problems to the scientific programmer: 

the ellllœptuai to a/gor/tllm,e transformation IS most comfortable and best understood by the scientific 

programmer, whlle the implementat/OII to phys/cal transfonnation 15 performed by compiler technol­

ogy n,e second transformation (algor;tll", to Implementatioll) is the one that poses special difficulties 

tor the saentific programmer ln this transfonnahon, the most critical factor is the programmmg lan­

guage, WhlCh proVlde~ the framcwork for descnbing how the problem's solution will be aclùeved [6, 

p. 4741. A language de&lgn has the most slgruficant Impact Ol! how easilyan algorithm can he 

transfonned mto workable code. These transfonnations are shown in figure 1.2. 

Scit.'ntific programmcrs cu.rrently rcly on [32, p 18] language extensions and run time libraries, 

mstead of learning new parallel languages. The reasons are thal extensions to familiar sequential 

languages - through parallel constructs or high-level interfaces tQ libraries - are more likely to 

_'ppe_lI to sdentiflc programmcrs than are new concurrent languages [21, pp. 356-357], [32, p. 181. 

Thcrc is also an apparent case ID parallelizing sequenbal programs using extensions or libraries, as 

there is mirumal rewrinng. A further reason is the availability of production-level compüers for 

parallcl maclunes. 
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Figuff' 1.2: Scientific programming transtormatIons From 132, p 17] 

We first examme parallel hbraries, or system hbranl'<; wlth rouhncs for parallcl (·X('('UtiOIl. Why 

bother with parallel languages when operatmg system ~crviœs or bbranl?~ can be provldcd to 

allow concurrent proccsses to coordinatc? Because they an' too crude il mcthod for exprebblllg 

parallelism [21, p. 3551. They show a syntachc crwleness, with messy, poorly IIltcgratl?d "yntax, 

often Wlth long parameter lists, because they exist ID Isolation from a llser's program, ému have 

no compile-bme checking or optir.\1Zahons. They also show st'''JiIntic crudI'IIt'ss: It I~ harder fur 

the programmer to provide operations that pcrform complex or bophlbticatcd functiom, cfflclently, 

hecause of the fixed nature of the mechanisms proVlded 

Other explicitly parallel approaches, such as new pd "allellanguages and extensIOns to scquential 

languages (aIso called annotations) suifer hom problems as weIl. Message passmg programrnmg ha~ 

heen criticized as diffiCl.Ùt and non-intuitive [21, p. 3541. For parallelizahon of sClenhfk cod('') u!>ing 

both sequentia1language extensions [32, pp. 1S-20J and libranes, the diffirulties are typlcdlly the 

same. Parallelization ofloops is the mostcommon fonn of parallelizahon, and lt i .. the programm('r'., 

responsibility to find solutions to data dependencies by parhtioning data among Iterahons, il ~our('(' 

of problems for programmers. The programmer is aIso re~pollbible for cxphdt schcduhng and 

synchronization, when global variables are altered by a task, which lS tedlOus and error-prOll(' 

In fact, the wrong annotations (for synchronization or commurucation) will make program non­

deterministic (time- and machine configurabon-dependent), a nightmare for dcbugging. M.my 

scoping and storage management nohons, such as local and remote memories, are countl'r-intuihve 
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to saentifu:" programmers. The rcsulhng code is often machine-speafic and obscure [35, p. Il. 

Restricbonc; on parallel constructs may rcqwre the reformu)ahon of sequenhal control structures as 

weU, producing more re.,tructunngs, more error possibihhes, dnd less readability. In addition, the 

ex tend cd source lan~uages (e.g Fortran, C) often suffer from lack of expressiVlty to begm with [6, p. 

461J 

The currcnt ~nd appears to he towards languages with l'xpliàt parhhons 135, p 111, or, in 

other words, language~ ba~ed on the expliat tasks model, in both new languages and those based on 

sequenhallanguages Compared to therr predecessors, these languages offer portability but still force 

the programmer to expliatly decompose the program mto tasks and control their synchroruzahon 

and commumcahon Languages wlth exphat partihons are easier to lIDplcment oruy at a large cost 

to the programmer. The programmer now has to worry about [35, p 1] J 

conectness: the programmer must avoid dead10ck and race condihons (I.e cnsure determmacy), 

which occur bccauc;e of crron. ID mtcr-task synchronization and communication. TIlt!se do 

not anse In ~equcntiaj programs Errors based on race condJ.tions are notonously dIfticu1t to 

debug, or evcn n'produce [35, p. 11l. 

performance: the problem wlth cxphcit parhhons ln task-based languages 15 that the performance 

of a glven partihoned program may vary dramatically over different multiprocessors, thus 

rendering the program non-portablt: in practice. 

ln tenns of correctne~s, unstructured tasks are analogous to the GOTO's of sequential program­

ming. In tenns of performance, granularity considerations can dutter up the code and become an 

extra burden to the programmer. Compiler partitioning [35, p. 121 ensures portability to future 

mulhprocessors, and a uniform programming model for programmers. 

The consequenœ~ of choosmg sequentiallanguage extensions and parallellibranes (32, p. 18] 

currcntly produœ compromlsed program structural integrity: parallelism IS added aiter the fact, in 

ad /roc fashion, adding yet anotl ~r restructuring to program development. Additionally, the use of 

vendor-specific programming libraries or extensIons means machine-dependent programs in their 

final form. 
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nus is paltly becausc of the ddincnoes L,lITent paraUd programmmg sy~tcm~ support. Pm­

grammcrs are forœd to }Uggle potenbally dangerous operations, olS ln m.my ça~e!> lomplll'l"S ùlll tind 

and report only the most blatant erro~ The primitIve" used tospc\..'lfy par"lIl'h~m .ut' lI~u.llly do~dy 

tied to underlymg machine The m,magement of architectural conflgur,ltion 1<; tlll' lulll"..'spOlll-Ablbty 

of the programmer, now concemed wIth solvmg II/l,cr pnlsram tl\(' tour l~Slll'S nt parollll'1l'M'L'lItwn 

we have been menbonmg, opbmal partlhomng, schrduhng, c'<pliat ~ynchrolllZ,ltlon, and the dis­

tribution of data to memory locations to 501\'(' the memory lah-'llcy problemAIl of the~l' determmc 

the efficiency, effechvene"'~ and reholbility of the parallel/mplemt'ntation ln ~,Il\lrt, p.lralll·j ~y~tt'm~ 

lack the buffenng effE'ct of log/cal II/dependolcc parallehsm should bt' mcorpllrated at a n'.lMmablt' 

level of abstraction, ratller tl/an s/mply provldillg a notafJonally (01lPCIIII,,,t ll'Qlf "' :'I!t'nllflrlg wllat are 1/1 

fact machine-speCIfie opcratwI1S Instead, "paral1l'llanguagl.'S refleet a l(lw-ll'vel VIC\\' of concurn'nt ex­

ecution that reinforces user mu.conœptlons wIuch mlTea~cs l'xpl'l\:.e of progr.t1l1 devdopment, ilnd 

raises questions about rebability ot paraUel programs, ln tolct, the prt!~cnt ll'vel of language support 

for parallel progl"ammmg reqwTC!:> that the user expend morc eJftlrt ", mQI/lig/llg tilt' JlroMt'",-~()h''''g 

resource than ln actually solmllg tilt' problclI/" (32, p 211 

Sorne of the problems arise {rom ml~con('eptJons by socntific prograOlml.'r., who uftl.'n Ignon' 

the effects of nondetermlmbm [32, p 20J. The fact that il par.llll'l program hlllctlon~ l'orrectly onœ, 

or even one hWldred broes, wlth sorne particular set of ~nputs, 15 no guar.tnlt'l' th.lt It Will not fall 

tomorrow with the same mputs 

Faced with these problems, what can be sa id about the need .. of !:>ot!nhflc paraUd programmcrs? 

Certain lessons can bi' drawn from ~equential programmmg [32, p 171 Flr.t, moV(' 1Ill' algo­

ritrumc solution doser to the irnplementation, shtit transfonnahon respon!'>lblhbe~ .IW.ly lrom the 

programmer to the compller and the parallel architecture, and finally proVlde [oglClll ,mft'pend/'ncc, a 

c1ear delineation between the two levels of lransfonnabon (<1lgorithm to program and program to 

physica1), which represents a commltment to maintalmng a separation between mad-.me-dependent 

and machine-mdependent factors. 

The lessons of Hrree decades of sequenhal program development arc clear programm('r cffccbvc­

ness improves when language structures are movcd away from physlcal I!'>Slles and tow.trd loglcal 

models. Wnile computing professlonals !Jhould be able to apply conflguratlon-~pec:lfJc expertise, It 

is counter-productive to expect the same of the genera] user commllmty Socnhflc programmers 
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cannot be (>xpected to 1:>olve ISSU(><' of parbbonmg, schedulmg, synduonizabon and memory latency 

l'very bme tlley wnte a program tn lmplement an algonthm, or move to a new architecture; it is 

"'imply too t(·JlOlIS. For rellability, determmate 11lgh-Ievel constructs are needed, and wc must move 

aWdy from the madequdt(> expres~lOn of <,oentUlc applIcations in terms of a parncular machme 

or m('mory model Even If ~cienbftc programme~ do code a determmate program, there is no 

guarantpe thelr programmmg (>xperh~e and knowledge of il glVen system wlll produce an efficient 

ImplementatIOn Sequenbal programmmg has evolved to slucld programmers from physical de­

taih and mamtam loglCal mJependenC<', whlch has become a great strength; parallel programming 

would bl' weIJ-advlsed to do the samc 132, p 23J, (2] In short, parallel computers must be made 

.H œ1>~lbll' tn do 1>oence Rcsl'archers must he free to concentratt' on their Te1>earch, not struggle with 

mJdunp-dl'pendent quukc; and minute detmb 132, p 231. 

1.2.1. Implications for Intermediate-Level Vision ParaUel programmers 

What do the intermcdiate-level wion charactenshcs given in section 1.1 mean for a scientific pro­

gramm(>r who wants to code her algorithm on a paraUd machine? What do the above general 

comment .. of M~cbons 1.J and 1.2 mean 10 the context of intermeruate-Ievel Vlsion? We develop a 

p.trtl.tl framl'work to answer these qu(>shons ln tlus section. 

Wt' flrst examme what the charactenshcs of mtennediate-level vision algorithms imply in tenns 

ot rcquircment1> for parallel processmg, wlth respect to parallel programmmg system support How 

do the dldractl'nsttcs of mtermediate-level VlSlOll algorithms affect the type of paraUel programming 

languagl' wluch 1>holùd be used ln unplemenhng these algonthms? Specifically, we outline a number 

of mtl'na to evaluate parallel processmg systems' appropnateness for intennediate-Ievel vision 

p.ualll'1 programmmg 

Thl'n' tlre two uuna1 requrrements that are uruversally agreed upon: 

ease of programming: for experimental algorithm design. lncludes general applicability but 

with doseness to problem domam, detennmacy of results, logical independence, etc . 
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2. performance: execution speed on a g1Vcn ardutel.ture. 

In our case, as we fayoT algonthm expcnmcntation and quick prototyping of algorithms, programma­

bIlity will be the most important of the two 

TIte followmg charactensbcs in a programrnmg systpm will parti y sah~fy thesl' reqmremL'nts. 

Each contributes to performance or prograrnmabtlity to varying degree~ A mmparison metric thal 

inc1udes ail of the&e cnteria 15 difficult to crcate, because the relative weighmg of the critC'ria is not 

easy. It 15 obvioU5 from the hsl below that there 1S conSIderable overlap 10 sorne ot the l'ritena 

for example, load balancmg IS a funchon of parbtionmg and schedulmg, and O('xible handling of 

large data structures is a funcbon ofwhether or not lt I~ the programmer's n'~ponsibllity to solve the 

mernory la tency problem. Addibonally, the fm,t two critena are sornew ha t orthogonalto parallelibm; 

however, we feel they are important, as sorne par~Ilcl processmg sy&tem& are not a~ Wl'Il sUlted for 

the task as others. Figure 13 shows the relatioll::.hIps between thl'se cntena and the four Issues we 

have identified il::' crucial to paralle1 proce::.~ing The tnteria are' 

doseness to problem domain: for fast prototypmg; ln our case, wc have numencal proœssmg and 

rnathematical algonthrns, expressed m thl' mathemahcal notahon of functions. 

general applicability: Wlthin the intermedIate-leveJ VIsIOn problern dornam, reasonable pro­

grarnmability for an problems, irre&pcctive of commurocatlOn patterns, task creation require­

ments, etc. 

ease and tlexibility in task creation: because of data-dnven control flow in intermediate-levcl VI­

sion algoritluns, task creation should be easy to code. 

lightweight task creation: because of the maSSIve parallehsm present in intermcdiate-lcvcl vision 

algorithms, we don't want the creation of a task to be an cxpensive operation. 

determinacy of results: invaluable for dcbugging. 

easy load balandng: necessary because of the spahally non-unifonn distribution of output feature& 

in the input data. 
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Figure 1.3: This figure shows the criteria for mtermediate-level vision programming we have 
laid out, on the right, and their relationship to the more general issues of programmability, 
partitJoning, scheduling, synchronizati\ln, and memory latency. 
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easy intertask communication: because communications can he irregular in destin.ltion and in vol­

ume. In particular, communication requirements will diffcr from low-lewl vision, in thilt W(' 

will not necessarily have near-neighbor commurucatIon. 

handling of large, shared data structures: the system must pennit fle>.lble and tr.msp.U'Cnt ilcœ!.>s 

to large, shared data structures (e.g. the input image). 

ln faet, many of these criteria are sunply diffcn'nt ways of stating the need for logical indl'pen­

dence, to simplify program development and avoid exphdt partitioning, scheduling, synchromza­

tion, and memory latency conœms, and therr problcms. In the sections below, Wl' examine how 

three given systems fulfill these criteria, through the programming of a sam pIe algonthm. 

1.3. Functional Languages: A Better Solution? 

1 feel that languages of the future will he successful becausc they will fealure implidt partitions 

and schedules, and will not have the problems of expliClt partitioning, or the problems of automahe 

parallelisation of today's imperative parallellanguages. The mam obstacle to wldespread use of 

such languages on current multiprocessors is the problem of compiler partitionmg and schcduling; 

see [35, p. 121 for a functionallanguage solution 

Functionallanguages offer a different path to parallel execuhon. If the goal of paraUd program­

ming is to have real-world problems mapped to parallel hardware seamlessly and automatically 132, 

p. 20], then two options are pOSSible, parallelism detechon in sequentiallmpcrativc languages, or 

parallelism detection in declarative languages. However, for reasons menhoned in appendlceb B, C, 

and D, parallelism detection in sequentialunperative languages, while very deblrable from user 

standpoint, will fail to detect most of the parallelism present [6, p. 461] in a program. 

Functionallanguages offer relief for both [6, p. 460] hrgll-level encodrng and generation of efficient 

code for the following reasons. Higher-order functions raise the level of programmmg, as weil as 

encouraging the use of small funcHons that directly relate to the mathematicai and physlcal concepts 
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of the problem. In the second case, the straightforward operational semantics of functional languages 

proVlde tremendous oppo.-tunities for parallel execution. 

More SpeciflcaUy, funchonal language advantages are that their [6, p. 460] 

- dedarative :.ùture elImmates overspecificahon of order of evaluation, 

- their operational semantics automatically expose parallelism present in a program, 

- their higher-order functions elevate level of programming so that abstractions can he built 

doser to the concepts in the problem domain, 

- they produce determinate output, and 

- they allow clear, concise, easy to understand code. 

ln contras t, [6, p. 490-491] imperah ve languages sucb as Fortran have a num ber of shortcomings 

for 5dentific paraDe) programming. Fortran is not very good for expressing high-level abstractions, 

such as abstracting behavior into a funchon (higher-ol'der functions). Fortran's imperative nature 

forces the user to overspecify execution order, making it very difficult to comptle good code for 

a parallel machine. Most importantly, Fortran relies 011 the user for detenninate programs, instead of 

guaranteeing the determmacy of programs, as functionallanguages do. 

Many of these crihosms can al50 be applied to other imperative languages as weIl. In fact, we can 

make a strong argument about the (21, p. 332] suitabihty of functional aIld imperative languages: 

functionallanguages: are suitable to express equation solving, not for expressing non-determinism 

and mutable objects 

imperative languages: are appropria te when non-determinism and mutable objects are important 

in the problem domain (e.g. in airline reservation systems, operating systems, etc.) 

ln the context of scientific paraUel programming, functionallanguages have the advantage of ex­

pressiveness, as sClentific programming is mainly about implementing algorithms, and not about 
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dealing with mutable objects. In effect, functional programming has given the neccssary .. bstrac­

tions to move the programmer closer to her problem dornain, and has providl'li logical indl'pendenœ 

by removing responsibihty for the issues of parbtioning, sclleduling, synchromzation .md nu'mory 

latency &om the programmer. 

1.4. Key Points 

Let me summarize the key points 1 have made in this chapter. 

The problem to be solved is finding parallel programmmg languages and parallcl archltedurl'~ 

to allow scientiflc users to apply parallel proœssing to intermedJate-ll'vel vision resl'arch TIte 

contribution of the thesis will he the comparison and evaluation of three generaJ-purpo~e <;ystl'ms 

<both architectures and languages) for parallel mtennediate-level Vlblon. 1 bl'hcve th!' best SUlh.·d 

is the Id functionallanguage on the M.I.T. Taggcd-Token D.\taflow Architectun', because of il!> 

mathematical flavor, generaI applicabihty, lightweight task creation, dett'nninacy, and the Jogical 

independence it provides the programmer 

1 define a number of parallel proœssing system evaluation mtena, to evaluatc the mdtch bctwl'en 

parallel processing systems and intermediate-Ievel vision parallel programming nel'ds Thcse cri­

teria include closeness of the parallel programming language to the problem dom am, J(·termmacy 

of results, logical independence, .md lightweight task creation, among other... These critena cval­

uate how each system solves the four crucial issues in parallel exccution, partihomng, scheduling, 

synchronization, and memory latency, which influence a para]]el program's performance and how 

the parallel programmer sees the parallel architectur .. ~. The considerations ansmg from these js~ues 

in intennediate-level vision are more difficult for the programmer to handle because of the fad that 

processing is data dependent, whereas in low-level visiL'l proccs!>ing Itis fixed IntUlhve partitioning 

schemes also ignore large amo\U\ts of parallelism present in !utermedIate-level VlSion algorithms. 

TItus, scientific parallel programmers, and intermedIate-level VISion programmers in pamcular, 

cannot be expected to apply machlne-speci.fic expertise about parbtioning, scheduling, synchroniza-
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tion and memory latency and croate programs that are detenninate, let alone efficient; there must be 

more logieal intfepem'e/lce in parallel programming systems, so that these conœms be moved away 

from the programmer, to compilers and to the parallel architecture itself. This logical independence 

is providcd by funcbonal programming systems, but is 'lot found in current imperative parallel 

programmmg systems. 
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2. THREE ApPROACHES TO THE PROBLEM 

In this chapter, 1 will describe the three dIfferent parallel programmmg systems whose suitability for 

intermediate-Ievel visIon parallel programmmg 1 will examine in this thesis: 

- IJll?erati're programming in C wIth the Urufoml System bbrary of parallel routines on the BBN 

Butterfly mulhprocessor. 

- Imperative programming ID C-Linda on the Sequent Balance multiprocessor. 

- Functional programming in Id on the Id World sunulation of the MIT Tagged-Token Dataflow 

Architecture (ITOA). 

1 will also descnbe the reasons for my choice of systems. 

This chapter provides three answers to the vision programmer's question, "What kind of system 

is available for parallel processing ,'lf VIsion algonthms?" Because of our foeus on intermedIate­

level vision, the systems we have selected are general-purpose MlMD systems. In chapter 3, 1 will 

show how each system performs as an intennediate-Ievel vision parallei processing research tool 

by programming a simple test algorithm on earn, then looking at the evaluation criteria I~ven in 

section 1.2.1. The purpose of the present chapter is to get familIar with the essentials of earn system. 
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2.1. Uniform System Programming on the BBN Butterfly 

ln this &cctlOll wc look al programming on the BBN Butterfly multiproœssor. We will give a brief 

desmphon of the BBN arclùtecture, then examme the programmmg environment offered by the 

vendor, and most Importantly the parallel programming model, the Uniform System (U.S.). 

2.1.1. The BBN Butterfly Architecture 

The BBN Butterfly's architecture is a shared lIu'monJ MIMD mulbproœssor computer [101. Each 

node 15 a Motorola 68020 proœssor with local memory. Up to 256 nodes can be connected trJough 

a butterfly sWltchmg network, shown for 16 processors in figure 2.1. Taken together, the local 

memones on aU nodes form a global memory space: any processor can access any memory through 

the network An N processor 1>ystem uses (,\ !O!l4 ,\') /4 switches; thus, a remote memory reference 

is l'"I.,\' switch hops away. This is an import.mt point' a rcmote memory access takes about 41'5,5 

times as long a!:t a local memory reference. This llon-ulllform memory architecture is canied through 

into the Umfonn System programming system. 

2.1.2. The BON Uniform System Programming Model 

TIte programming system supphcd by BBN is the Uniform System (U.S,). The Uniform System is 

a library of C/FORTRAN roubnes which proVlde memory arId processor management for parallel 

p":gramming on the BBN Butterfly. The reader mterested in more detail is directed to [111. In this 

thcsis, wc wJ..11 discuss exclusivcly Unifonn System C programmmg for the Buttertly, although other 

parallel programmmg systems eXlst [301, because lt is the system supported by the vendor, and thus 

.m examplc of the state of commercial paraDel programming support. 

The Uniform System's memory management features are the following. The programmer can 

set up a shared memory spaœ across aU processor /memory nodes (collectively, all memories of 

tht' proccssor nodes form the shared memory). The programmer can scatter léU-ge data structures 
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(a) 

Inputs 

o 

Inputs 1 

2 

3 

o 

1 Outputs 

2 

3 

o 1 2 3 

Outputs 

(b) 

Figure 2.1: In figure (a), the BBN's butterfly interconnection network for a 16-node madune 
Each switching node is a 4;(4 crossbar, as shown in (b) (two views of an identical cnlSl.bar) 
Processing elements (PE's) and memories with the same number are actually part of the 
samenode. 
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acrOSs ail memories, to make use of the full switclung network (memory) bandwldth and thus avoid 

contention for a smgle memory Atomic memory operations and sImple spin locks1 are provided. 

There are also proces~or management features provided. Routines eXlst to set up task generators 

to generale tasb for the proc~sors: each task is a (C/FORTRAN) function (subrouhne), and will 

he dynamlcally scheduJed to a processor at run-time. Load balancing is thus dynamic, which can 

Tl'Sult in betterproces~or utillZation, dcpendmg on program partitionmg. Each processorunder V.S. 

management runs a ~mgle task, to aVOId costly context swaps. 

As mentioned cartier, the Umfonn System is 1; ,j on libraries of parallel routines for C-language 

programs. the compiler used for Uniform System programs IS a standard C compiler wluch genera tes 

sequenhal code. The task generators provided by BBN are based on the model of applying a fullctJOn 

10 each ,tem of a data structllre Ce.g.list, vedor or array) i" paraUe!. Parhtiomng can be based elther on 

the output data structure (e g one task to compute earn element of a matrix multiplication result), 

or the input data structure kg summation of the elements of il malnx, with each task asslgned a 

row). U.s. pw);ramming lS imperative: tasks do notretum values, so the mode} is one of applying 

.1 lunction 10 an input data ~tructure to side-effect results to an output data structure, ID paraUel. 

TItis assume~ mdep"ndence between each task execution, and thcrefore forces the user to worry 

about data dependencies: for example, programming a malT.x algonthm that proceeds along a 

wavcfront would reqUlre sorne restructurmg to Ht the U.s. mechanism and ensure independence of 

th" tasks. However, the generator mechanism is well-structured. For example, there are generators 

that opera te on data structures wlth one and two indices (typically vectors or matrices). Used in this 

way, the g"nerator mechanism IS semantically close to iteration, with aIl iterations done in paraIlel. 

Generators can he synchronous or asynchronous, respectively returnint~ CI 'ntrol to the caller at the 

end of aIl tasks, or immediately. In its most general form, which IS tu s·_ .. erate tasks from a hst of 

tasks, and us"d synchronously, the generatormechamsm is like the parbegln parend construct 

found in some paralIellanguages. 1his kmd of structure simplifies synchronization in a large num ber 

of cases, although at the l.'Ost of loosing fleXlbility in the task creation mechanism. Il is more difficult 

to spawn arbitrary tasks, and far casier to fit the gen('rator model of parallelism over a data structure: 

"The easiest way to achleve parallel operation is to structure the program to fit the mold of one of 

these task generators" [11 J. We sha~l see that the problem with this approach is that htting the mold 

often mvolves restructuring the algorithm to fit the available mechanisms. 

---- - -
lShal't.1d variables that are n.'ad repeatcdly and who~e change of value signal a synchroruzation event 
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Proc:e.. 1 Procees 2 Proce.. n-l Proc... n 

Privat .. T::"..." 
(1* ptoc.s) He. 

Unfform 
Syatem 
Pif! 

Shared Unllotm System Aloc.table 
(via U S allocalOl") _ 

Slack S'.ck 

Figure 2.2: The Uniform System address space, showmg the mapping (lf C vJri"bk'S and 
storage to actual physlcal storage Adapted from 1111. 

A very important point for the programmer to kel'p in mind is the machine's ruerarchlc.ll mcmory 

model Physically, each node ln the machine is composed of a processor and local memory; the 

memories at each node collectively form a sharcd memory, through the butterfly intercOImcchon 

network mentioned ln section 2.1. Acœss to local memory is {ive limes faster than acces:, through 

the network to remote memory2. In terms of Uniform Systl'm C programming, the dlstinlllons 

between the vanous types of storage are shown in figure 2.2. Notice espenally that C global<; iln' 

proœss pnvate; m fa ct, whùe such variables are stored at the same addrc~s on aIl Hodes, changing 

these variables on one proœssor will only malce the change on that proœssor, and on no other 1f.1 

programmer wants the change to a variable to he secn on aIl proœssors, the variable must be storcd 

in Unifonn System shared storage. These distmctions are of extreme importance (.md a source of 

programmer dlfficulties) in Uniform System programming. 

A summary of how Uniform System C programming solves the four pioblems of sechon 1 IS 

theretore the following. Explicit partitioning is needed; for ease of programmmg, the programmer 

should partition to fit the model of parallelism over data structures offered by the Uruform Sys­

tem. The match of parbtioning granularity to architecture granulanty is uncertain. The model for 

scheduling is implidt, dynamic self-scheduling. Synch.ronization is explicit, through the low-Ievel 

mechanisms provided in the V.S. Sorne synch.ronization is simplified becaUSl' synchronous task gen­

erators are proVlded. It is up to the programmer to speClfy the placement of data to solve the memory 

latency problem, as memory is either fast, contenhon-free, but priva te, or slow, contention-prone, 

butshared. 

2Note that sorne shared rnemory ls allocated locally on a processor node (1/ p of the total shan.>d ml'tllory, ln a I1-node 
system) A programmer can choose to place data specifically in local shared memory (on any node, ln fad). 1I0weVl'r, of 
course, placing data shared by many processors on a single node will ca use memory contenhon. 
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An example of U.s. programming for matrix multiplication is glVen in appendJ). A. 

2.2. C-Linda Programming on the Sequent Balance 

ln this section wc look at programming with the C-Lmda parallellanguage, running on a Sequent 

Balance multiproœssor. We will give a brief description of both the Sequent Balance architecture 

and of the C-Linda language. The reader interested in more detail on either topie is referred to [38] 

and [21, respectively. 

2.2.1. The Sequent Balance Architecture 

The Sequent Balance is a bus-based, shared-memory multiprocessor. Each processor has cache 

memory (wnte-through, with bus snooping logic;:3), but no local memory for user processes. Instead, 

there is a single global memory, and only frequently accessed, read-only kemel data is kept in a 

small local memory. The memory system is pipelined and asynchronous, to maxi .nize the use 

of the bus. A SUC chip (System Lmk and Interrupt Controller) at each processor take5 care of 

me!tsage-passing interrupts between processors on a separate bus, and each SUC holds copies of 

synchronizahon gates4 • The Balance runs Dyrux, a multiprocessor UNIX with a single process queue 

for all processors. As there 15 only one main memory, proCes5 distribution and mIgration is trivillJ, but 

of course at the oost of bus traffic and cache updating. Good performance 15 obtained on multiuser 

or mulhtask loads. 

1 A write-through cache immediately copies writen data to main memory over the bus; bus snooping l081c listens on the 
bus 10 Chl'Ck if dala ln a processor's cache has not become Invalid because of a memory write. 

·Equivall.'1lt to binary semaphores. 
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2.2.2. The C-Linda Programming Model 

We first start by explaining the core of the C-Lmda languagl', the Lmda ('(lOrdinatÎon langu.lge 1211. 

Explicitly-parallt'l programming has two components, compu tahon and coonimation Coordln.lhon 

is composed of commurucation and synchroruzation, thercfon', adding .1 coordination l.lngtJ.lgl' "'Ul h 

as Linda to a base language like C will result m al parallel dia lect of the b.IS!' languagl', 1Il tlll~ l.Il'ol" 

C-Linda. 

Linda itself is a set of 6 opera tors that can be added to any base languag(' Ltnd.1 r.lf.lncl 
tasks communicate through a shared dataspace called tuple spaœ, regardless of whether or not tlu.' 

machine on which Linda 15 implemented has physlcally shan'd memory. The tupll' ~paCl' l1ll'mory 

model is central in LInda: the storage unit 15 not the byte, but the tuplc, or orderl'd set of vilhll'~ 

Tuples in tuple space are accessed assooabvely, through a loglcal name, whcre the loglCaJ n.lI1U' l!'t 

any selection of the tupIe's values. 

There are three operahons on tuples m tuple space. read, add, (md rem ove .- there is no modl f y. 

This atomicity makes it possible fOl many processes to share tuple space and use It as a "\l'.ms of 

synchronization and communication. Data ID a Linda program IS never exchangcd directl y betwcl'n 

two proœsses; instead, a proœss with data to share adds if uS a tuple to tuple space A pron'~ .. 

wanting to receive data can either remove a tuple from tuple spaœ, or &imply rcad in a ('opy of the 

tuple in tuple space. Communication between processes IS therefore uncoupled, in ~pac(' and hml' 

a process does not have to k..,ow where the data is going, as it slmply placc~ lt m tllpk' ~pacc for an 
to access (anonyrnous communiciltion), and does not have to synchromze wlth the prllcc~s reC(llvin~ 

the data, which can sim ply read or rem ove the data from tuple space at any later !tme Modlfymg 

data in a tuple means removing the tuple from tuple space, changmg th,! data value, thcn plaang 

the tuple back into tuple space. Thus, the semanhcs of 'he operations on tuple spacc allow for casy 

synchronization and communication. 

To summarize then, the Linda coordination language is a set of 6language-mdependent op('rators 

that allow parallel tasks to commurucate and synchroruze atomically and anonymously through a 

shared, associative dataspaœ, called Tuple Space. 
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A tuplc in C-Lmda couJd be, for example, (fi a string", 15, 17.543, "string 2"), or 

( 0, l, " f 00" ) , or any other senes of typed fields, the allowable types being dependent on the 

ba1>clanguage The namC1> of theoperahonson tuple spa ce are out (/), in(b), rd (,) and eval (f). 

out l'> cause1> tuple 1 to be added to tuple spacc. in (.,) causes a tuple f that matches anti-tuple 

, tu be removed from tuple ~pace; If no matrhmg tuple IS found, the process executing the in (b) 

will block. An anh-tuple is structurally the same as a tupIe, except that sorne or alI of its fields 

may he formaI parameteTh, whlch get bound to corresponding actuals m the matched tuple when 

it i~ removed from tuple ~pace. For examplc, the anti-tuple ("bar", ?i, ?f) matches the tuple 

("bar", 2, 7.89) (Jf i and f are an ~nt and a float, respectiveIy), since they have the same 

numbcr of field." the same actual ln the first field, and matching types in the la st two fields. After 

domg in ( "bar", ? 1, ?f), ~ and f would be bOWld to 2 and 7.89, respectively. If more than 

Ont' tuple matches an anh-tuple, an arbltrary (non-deterministic) choice is made for the tuple to be 

removcd 101& hlple r('moval and formaI asslgnment mechanism is shown in figure 2.3. rd ( ,) is 

sim Ilar to 1 n ( ,) , exc..!pt that a copy of a matchmg tuple tuple is retumed; the tuple is not removed 

from hlple space. eval (1) is the same as out (1) , except that the tuple is evaluated after being 

pldced mto tuple space rather thdn beforc eval (1) 15 thus the mechanism for task creation in 

Linda It places an a\.'tive tuple mto tuple space, instead of a passive tupIe, as does out (1) • When 

('valudhon of the achve tuplc 15 firushed, It tums mto a passive data tupIe, identicai to those placed 

In tuple space by out (1 ) • 

ft is important to rcahze that tuples exist independently of the processes that created them, and 

may collccbvely form data structures in tuple space. For example, as shown in figure 2.4, a tuple 

space matrix could be d collecbon of element tuples. It couId aIso have been a collection of row 

or column tuples, or a collection of sub-matnx tuples; the choiœ of representations depends on 

programmabùity and èffiClency consIderations, as we shall see. 

A summary of how C-Lmda programming solves the four problems of section 1 is therefore 

the following. Explicit parhhoning into potentially arbitrary tasks is necessary. The match of 

pamtiomng granuJanty toarchitecture granularity IS unœrtain. Themodelforschedulingisimplicit, 

dynamic st'lf-schedulmg. SynchronizabOn IS explicit; however, the anonymity and atomicity of tuple 

spaœ opera bons create a powerful and flexible mechanism for synchronization. Memory Iatency 

conslderahons are partIy up to the programmer to solve, as data placement is out of programmer 

control, but tuple space data structure granuIarity IS. A finer partitioning inaeases parallelism, but 
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Tuplc Spacc 
~-~ 

("data", 4) CProcess® 

Tuple Space ---
("data", 4) (process ® 

in("daIa", ? 1) 

---~ 
Tuple Space 

/* At Ihls 
point, i == 4 */ 

Figure 2.3: A Linda example. Processes 1 and 2 were previously created uSlng eva] (). 
The anti-tuple ~n ("data", ?i) in process 2 matches the tuple plaœd ln tuple space by 
process 1, and formaI i gets bound to value 4. 
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'fuple Space 

("Natrix Ali, 2, 1, 3g.5) 

("Natrix A", 3, 3, 93.65) 

(trMatrix Ali, 1, 3, -14.4) 

("lfatrix A", 2, 2, -18.6) 
( ..... trix A", 1, 2, 1.5.) 

("Matrix A", 3, 1, 2.81) 

(trlfatrix Ali, 1, l, 6.2) 

("Natrix Ali, 2, 3, 3.0) 

( ..... trix Ali, 3, 2, 67.8) 

Figure 2.4: A tuple space data structure. Matrix Ais stored in a collection of single-element 
hJples. 
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increases acœss latency, while coarser partitioning dccreases Iatency but increases contentions. This 

issue is very architecture dependent. 

2.3. Id Programming on the ITDA Simulator 

In this section, we glVe a brief introduchon to dataflow architectures, brietly describe the MIT TIDA 

arclùtecture and the Id functional programming language, and ex.mlinl' the system on which Id 

code was run, a software simulation of the Massachusetts Institlltc of Technology's Tagged-Token 

Oataflow Arclùtecture ('ITDA) called GITA, part of a software development environment calh.·d Id 

World. 

2.3.1. An Introduction To Dau80w Architectures 

We will provide a brief introduction to dataflow architectures; our description follows [41, which the 

interested reader is urged to consult for greater depth. 

The dataflow concept is quite simple: a dataflow program IS a directcd graph where nodes are 

operations and arcs denote data dependencies between operahons. Data values are carried on tokens, 

which f1owalong the arcs. Anode may execute (or {ire) when a token IS avmlable on each input arc. 

When it !ires, a data token is removed from each input arc, a result is computed using thC!le data 

values, and a token containing the result is produced on each outpu t arc For exam pIe, the foUowing 

program is easily converted into the dataflow graph of figure 2.5 

let x a*b; 

y 4*c 

in (x + y)/c. 

5Which, in tum, inamses latency! 
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Figure 2.S: A simple dataflow program. 

Note how the result of an operahon is purely a function of the input values; there are no interactions 

between nodes via si de effects, for example, through shared memory. TIle example shows the two 

key propertie~ of datatlow architectures: pllrllllellsm, as nodes can exerute in parallel unless there is 

an explicit data dcpendenœ between them, and determil1llCY, as results are completely independent 

of the order ID whtch potentially parallel nodes lire. More general programs (such as those with 

loops and condttionals) can he created with boolean tokens and s10Itch and merge opera tors. 

How does a real data.tlow machine execute such a program? Dataflow graphs such as the one in 

figure 2.5 can be viewed as a machine language for a cl1taflow machine, where a node in the graph 

is a machine instruction. Each instruction contains an op-code and a list of destination instruction 

addresses (for the result token). The basic instruction cycle for any dataflow machine is thus: 

1. detect when an operation is enabled; 

2. determine the operation to he performed (i.e. which op-code); 

3. compute the result; 

4. generate result tokens. 

Note how the fust stage of the instruction cycle allows us to avoid performance degradahon he­

cause of memory latency (delays through network to memory): if a result hasn't arrived yet, the 
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operation won't be enabled, but we can simply select another one wluch IS enabled. von Neumann 

architectures, with their sequenhal program counter, must block until the data amves. The dataflow 

architecture therefore uses parallelrsm (more than one operation to bl' selected from) to ,,,Je lat,."cy. 

What are the problems with dataflow archItectures? Sunr1y that the h.miwarc cost of a single 

dataflow processor IS much higher than that of a tradIbonal von Ne\un.ltUl proœ~s(}r: for example, 

selecting the instruction to execute in a dataflow arc1utecture is more complcx than sim ply incrcment­

ing a program counter in a von Neumann machine. The gams to be made 11\ adoptmg the dataflow 

architecture arise in a multiprocessor setting: because dat.tflow machmes lude memory latency by 

using parallehsm and SW1tching to an enabled instruction if necl'!>!>ary, their proœssors can he busy 

a larger percentage of the time than von Neumann proceM.Ors ln a parallel machine, whlch can only 

idly wait for their operands to arive from memory after network delays or contention. 

Notice now how nUlctJon ... llanguages and clataflow arclùtectures are a good match for parallel 

processing. Both work on the prinople of producmg results from expressions and not on sicle ef(ed& 

to memory. Addihonally, to be effioent, datatlow architectures need the high parallelism (lu be 

able to switch to another instruction to hide latency) present in funcbonal programs, whkh impose 

the minimal restrictions on parallelism (only those that arise from data dependendes). On the 

other hand, multiprocessors built from von Neumann proccssing clement& and programmed wlth 

explicitly parallellanguages derived from sequentiallanguages suifer from serious problems. They 

impose on the programmer the need to specify synchronizabons to aVOld read/write races (whlch 

cause non-determinacy), and subtle timing bugs arise. Functionallanguagcs complctcly aVOId these 

synchronization problems by disallowing "updatable vanables" (1.(. side effects to mcmory). 

2.3.2. The MIT Tagged-Token Dataflow Atthitecture 

In this section we will take a very brief look at the MIT Taggcd-Tokcn Da ta flow Architecture (ITDA). 

Our treatment will fQlio\\' that of (71. 

The TI'DA COl\SlSts of a number of identical processing elements (PE's) and I-structure storage 

elements (described in section 2.3.3), cormected through a packet-swltched nctwork. The I-structure 
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clements colJectively implement a global shared memory. A single PE-I-structure storage pair is, 

in itself, a complete dataflow machine [71. In the mulnprocessor confIguration of the 1TDA, aU 

memories are globally acces~lble. Code can he distributed. and executed over many PEs (proœssing 

clements) (a smgle code block executing simultaneously over many PEs, or even part of a single code 

block executing on dlfferent PEs). However, mapping over multiple proœssors does not increase 

overhead: the number of instructions t;:xecuted in a TfDA program is mdependent of the number of 

PEs it IS run on (71. 

As m other dataflow machmes, the TI'DA has fast context switching and split-phase memory 

transactions (i.e. switching to another instruction If a memory transaction has not completed, as 

described prevJOusly), to ensure that synchroIÙZation occurs at the finest lt:>vel possible and that 

memory laten<:y effects are reduœd. 

Wc obviously cannot look at the MIT TI'DA m great detail here; the interestcd reader is directed 

to r71. The Important pomt to remember is that the MIT 1TDA executes dataflow graphs, obtaining 

maximal p.uallelism up to data dependcncies and machine constraints. Fine-grained synchroIÙZa­

tion is supported through I-structure storage,and itsmechanism of PRESENT / ABSENT/WAITING 

indicators (sec page 42). 

2.3.3. The Id Functional Language 

As described in appendJx B, the class 'Jf applicative, or functional, programming languages is one in 

which computation is carried out enbre~y through the evaluation of expressions (i.e. the application 

of funchons to arguments, thus producing results) [24], and completely without side effectsj these 

characteristics are found in Id. For a complete descnption of the Id language, see [27]. Additiona1ly, Id 

fully supports hlgher-order functions, data abstraction, pattern matching and array comprehensions. 

Wc present a very simple (and, for the moment, also very meffident) functional program for 

matrix mulhplication (figure 2.6), wntten in the functtonallanguage Id [271. We rely heavïly on the 

mtUltion of the reader to understand program syntax. 
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def ip C D = 
{ 

C, n) = bounds C 

SUffi (l,n) {fun i 
} ; 

def row i E 
{ 

C, _) ,( ,n) 20 bounds E 
in 

{vector (l, n) 

1 [j] =E[~,j] Il J <-
} ; 

def col j F 

{ 

( ,n) , ( -'-) = 20 bounds F -
in 

{vector (l, n) 

1 [~J =F[i,J] Il i <-
} ; 

jef matmult A B 
{ 

( ,m) , ( , n) 20 bounds A; - -
( -'-) , ( ,1) 20 bounds B -

in 
{matrix (1, m) , (1, 1 ) 

1 

1 

1 ri, j] = ip (row i A) (col 

Il i <- 1 to m 
& j <- 1 to Il 

} ; 

to nI 

to nI 

j B) 

Figure 2.6: Example functional program' matrix multiplication 
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Four functions, ~p, row, col and matmul t are defined. Respectively, these functions retum. 

an inner product, a row of a matrix, a matrix column, and a matrix produet. In the code, _ is a 

pattern-matching character, and matches any actual value, Parentheses are used onIy for grouping, 

and can otherwlSe he omitted. 

Certain characterisbcs of the program are nota ble In line 5, the s um function (defined elsewhere) 

takes two arguments: 

- the fin.t is a 2-tuple which descrihes the summation bounds 

- the second argument to s umis itself a function of one argument; this argument is the summation 

index ~. 

Note how close tlus dcfmition of s um is to the mathema tical notation for summation, 

(2 1) 

We have abstracted out the summation behaVlor and put lt in a function, which expects another 

function (the summand, here C [i] *D [ J..] ) as an argument. Thus, higher-order functions raise the 

level of programming by making it possible to crea te functions thatoperate on other functions. Note 

also the an'ay comprehensIOn syntax for declanng and filling arrays in the same code fragment (see 

appendix B). 

Id IS thcrefore a functionallanguage, but augmented with non-functional data structures calIed 

1-structures [71. I-structurer. can be dec1ared in one place and filled in at another; their name is 

derivcd from the faet that they can he fùled incrementally [41. However, to prevent the possibility 

of read/writt> races, I-structure slots have PRESENT/ABSENT /WAITING indicators, and cannot 

be written to more than once, thus preservtng the functional nature of a program. I-structure slols 

wlth WAITING indicators have had a read attempt performed on them while the slot was empty; 

those read requests are deferred and stored m a part of I-structure storage specially reserved for 

that purpose, in the MIT Tagged-Token Dataflow Architecture [41. As stated in [4], the main reason 

for introduring I-structures to Id was to obtam non-strict data structures that couId later be filled 

m a demand-driven way, which cannot be done with array comprehensions, which, as seen above, 
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are declared and filled m one place. For situations in which this can be a limitatioll (.md thus 

where I-structures provide a solution), see [241. In effect, I-structures allow for V<'ry fml~-gr,lille"i 

synchronization, at the array element level. The underlying arclutecture must he abIl' tu efflClcnt1y 

support this. 

Perhaps the most important aspect of Id is that it 15 determmate, as for aIl other functlOn,ll 

languages. That is, given identical inputs, the outputs of a computation will always be the samc, 

regardless of the order in wluch computations occur. TItis frees the programmer from tIlt' dctilils 

of scheduling and from having to synchroruze paraUel activities; an Id program wIll be determiniltc, 

irrespective of the Id code il contains. 

As mentioned earber, Id's operational semantics also free the programmer from havmg tn ldentify 

parallelism: parallelism in Id is impliat and compùer-detected. 

To summarize then, the Id funchonal language provides detenninacy, hlgher-order 111nctlOlll>, 

array comprehensions and pattern matching for expressiveness, data abstraction for modulctnty, 

and I-structure arrays for fine-grained synchronization. 

2.3.4. Id World, GITA, and Id Software Development 

The experimental algorithm implementation described in sectJon 3.1 was done on a SparcStation 

running Ludd Common Lisp, on which is implemented the Id software developmcnt envmmment 

and MIT TInA software simulator. Id World and GITA, respectively. 

Id World is an integrated software environment that fealures an editor, a software emuJator of the 

1TDA called GITA (wlth debugging sU}Jport), and extensive perfonnanœ and momtonng toob 129J. 

Code execution, debugging, and statistics monitoring oCCUl'l; in CITA, the Graph Int<'rpretcr for the 

Tagged-token Architecture. 

Statistics collection allows the user to coUect statistics about the parallelism profile of an algorithm, 

the mix of instructions executed, various I-structure storage operations, etc. Different cmulation 
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modes allow the user to change the number of proœssors from infinite to finite, and communication 

latency (exp}dmed in section 3.6) from 0 to a non-zero value. 

A ~ummary of how Id programming on the TI'DA solves the four p'Oblems of section 115 therefore 

the following. Partitioning is Imphcit <Compiler-determined) Each mstruction is a task. Scheduling 

is also Imphat, performed at run-time on the TI'DA. Synchronization is implicit and fine-grained, 

either through the lmplicit ordering of the execution ofindividual instructions, or through accesses to 

htr..l'tllrcs. The memory latency problem 15 solved by the architecture through split-phase memory 

tr,lnsachons. 

2.4. Reasons for Experimental System Choices 

A" menhoned in chapter l, our goal for the research was to investigate general purposc ~ystems for 

the vision reseaJ"C'h envrronrnent, appropria te forintennediate-level vision. We felt tha t trus excluded 

systems which only support message passing programmmg models, as their lack of support for 

globally-shared data objects (e.g. mput iconie data, in the ease of intermediate-Ievel vision) IS a heavy 

burdcn on the programmer for placement and movement of data and tasks. 

An mtercstmg issue that we wanted to investigate was that of imperative parallel programming 

versus dedarative parallel programming, which are two camps in parallel programming community. 

Imperative parallel programming advocates emphasize the ease of learning parallel constructs for a 

well-knowJ\ sequentiallanguage, giving explidt programmer control for presumably better perfor­

mance, or the convenience of automatically parallellzing sequenhallanguage programs. Declarative 

parallel programmmg researchers emphasize the importance of determinacy, the high degree of par­

allehsm exposed by functionallanguages, the programming expressiveness provided, and the logical 

ind~pendençe from machine-dependent issues. ln fact, we can see that the parallel programming 

systems cho!.cn support different levels of logical independence: 

Id: lmphdt partihoning, synchronization, scheduling 

C-Unda: explidt partitioning, simplified (but explicit) synchronization, implicit scheduling 
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BBN Uniform System: explicit partitioning, explicit synchronizatton, implicit scheduImg 

2.5. Key Points 

Let me summanze the key points 1 have made in this chapter. 

The BUN Butterfly is a shared memory multiprocessor wlth a high-bandwidth, non-um(oml 

memory architecture; the BBN UnifOml System (U.s.) parallelism model is ba1>ed on side cîfects tu 

data structures. Programmers must structure their program accordingly, and worry about synchro­

nlZahon between tasks. 

The Sequent Balance is a single-bus, shared memory multtproœssor. The C-Linda paraI­

lelism modells based on arbitrary task creation and anonymous, atomlC operahon:-. on il I>han.·d, 

associabvely-accessed dataspaœ. 

The MIT Tagged-Token Dataflow Architecture (TfDA) is a dcttaflow multiproccs!>or that!>upports 

fast context switching and I-structures for fine-grained synchronizahon and split phase memory 

transactions to reduce memory latency effects. It is sImulated by the heavily-mstrumcnted GITA, the 

Graph Interpreter for the Tagged-token Architecture. Id 15 a modem functionallanguage augmented 

with I-structures to allow for very fine-grained synchroruzation. 

The above three parallel processing systems were chosen because of general apphcabllity, and 

contrast between explidtly parallel imperative languag~s and implidtly parallel functional lan­

guages. 
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3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL 

VISION 

3.1. An Intermediate-Levei Vision Example: Parallel Cooperative Fitting 

ln this section we will describe an expenmental int~rmediate-Ievel vision algorithm we will use to 

cvaluate our three parallel proœssing systems. It is a parallel cooperative fitting algonthm: multiple 

fitting proœsses coopera te and exchange infonnation to change the result of each fitting process. 

Our work on thls algnrithm is incomplete; indeed, the algonthm itself may need a great deal of 

refinement. However, this is typical of research work and will be useful m evaluating parallel 

processing systems. We will describe t~.? algonthm in sorne detail, explain why it fits the criteria 

detailed in section 1.1.2, and what makes its implementahon interesting. 

3.1.1. The parallel ~ooperative 6Hing algorithm 

The idea lx>hind thls demonstration experimental algorithm is to use additional infonnation present 

in a data set with multiple components to constrain a fitting procedure applied to each component. 

These constraints are communicated between fitting processes while the fitting takes place. In 

essence, the goal is to perfonn, in parallel, model fithng of 11 volumetnc primitives and ln surface 

l.'Urves (l'lther bounding contours or inter-penetration cllrves) to a segmented (range) image. Each 

fitting proœss is iterative: a proœss moves one step toward what it believes is the correct fit, given 
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thE: infonnation it possesses. It then exchanges infonnahon with its neighbol'S,and take~ another sb.'p, 

which presumably is an unprovement upon the previous one. This iterative procedure contulUt'S 

until sorne measure of convergence is reached. 

The vision processrng task of rnterest in tbis case is the fitting of volumetnc pnmihves to (thret. ... 

dimensional) range data, so as to rnfer volumetrie models from dense threc-dlmenslon"l input [391. 

However, previous approaches use only part of the information present m the input data, naml'ly the 

range rnfonnabon. The rationale forusing parallel eooperahve fitting is to u!>e addihon,ll mformahon 

present in the range image in the fitting process, such as bounding contours and inter-penetration 

curves. An inibal estima te must be done for these and for the volumetrie models before startill~ tht' 

fitting algonthm (e.g. by perfonning a least-squares nt for the volumes). 

The 3D boundmg contour of the range data could be determmed by first removing bal'kground 

points, then consldenng only those data pomts whose surface normal faUs b.:yond a spt'cihed 

threshold (. Addltionally, given a segmentation of an object composed of mtÙtiple parts, adJacclll')' 

(spatial) relationshlps between volumes fitted to each part can aIso be uscd as a further l.'Onstraint, ln 

the form of inter-pellet ration curves, fonned at the intersection of two volumetnc pnmihves. A part 

cOtÙd therefore have, ID theory, any numher of inter-penetrahon curves defined between It and Its 

neighbor(s). 

For example, after scaruung a 3-D object to obtain range data, having segmented it into two parts, 

and having detelmmed its bounding contour, we could run the parallel cooperative fithng algorithm 

on the data to obtain a volumetrie description of the scene. A number of Iterative flthng proce1>se!> 

wotÙd he active, and communieating constraints on each other's fit. 

- l'wo fitting processes to fit the 2 volumetrie primitivt'S to the surfaces. 

- Two fitting processes to fit the bounding contours of the actual data to the boundmg contours 

of the volumetrie primitives. 

- One fitting process to fit the mtersection curve formed by the two volumetrie pnmihve!' to the 

curve in the actual data, formed by finding points of extremal negative curvature, for example. 
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TIl(~ desired result of running the algonthm in [39J on a segmented image of a toy wooden doll is 

shown in figure 3.1, with the additional mformahon that could have been used, such as the bounding 

contour and the inter-penetration curve. 

Therefore, the constraints used in this case are that the volumetrie primItives should be close to 

the surface data, bounding contours should he close to those in the data, and curves of intersection 

should he close to those in ihe data. During the iterative fItting (mmimization), fithng processes 

will commurucate between each other, to try to satisfy these constraints. The way in which these 

con~traints are mcorporated into the iterative minimization is through a distance meaSllre: the 

dlst,mce between parameter vectors m parameter !:pace IS blended mto the fitting error metric. We 

will examine this further on. 

To summanzc then, range image parallel cooperative fitting can be understood in terms of the 

following input and output data structures. The input is a segmented range image, which mcludes 

point!> on the object surface (for each part), points on the boundmg contours of each part, and 

posslbly, points on an inter-penetration curve(s) a part shares wlth its neighbor(s). The output is a 

hst of volumetrie primihve parameter vectors (and possibly vectors describing boundmg contours 

and interpcnetration curves), one veetor per segmented part (or curve). 

To Stmplify the experimental algonthm, It was decided to solve the problem for the simple case 

of an elltp~01d, centered at the origin, Wlth a known orientahon, and with its bounding contour m 

the '''-,1/ plane. Thus, we have a very simple case of the parallel cooperative fithng algorithm, a single 

part and Its boundmg contour, and we will have only two fIthng processes: a surface data ellipsoid 

nthng proccss, and a bounding contour (of surface data) ellIpse fitting process. The fact that we don't 

determinc pose or position (i.e. assume ellipsoid centered at origin, no translation and rotation) is not 

restrictive, as it oruy implies an extra 6 parameters to detennine. We will assume that the bounding 

contour lIes in the J !I plane, which is obviously not necessarily true These assumptions do simplify 

the mterachons hetween the fitting processes a great deal. 

ln fal'i, the algorithm described below is oruy one possible implementation. The assumptions 

Wl' h.wc made leave many unanswered questions as to the performance or even the applicability 

ot the algonthm on real data, but the important point is that t1us could be a plausible first step in 

the dcvelopment of a worl~ing algorithm. The worth of the approach, in terms of providing good 
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Figure 3.1: Results of running the lithng a!gorithm in (39) on range data from the arm of a 
wooden dol!. The original data is shown as darkervertical bars. The grey volumes are fitted 
superquadric models, which are seen to overlap ana exceed the bounds of the input range. 
The additional information that could have been used, namely the bounding contours and 
the inter-penetration curve, are shown in white. 
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computer vision results, will not he commented on further. Our interest is that the computation 

patterns of the algonthm fealure sorne of the characteristics to he expected ln intermediate-Ievel 

VISion algorithms 

The full algorithm for the case of a single ellipsoid could he the following. It is based on that 

desmbed in 1391. There is an iterabve fitbng process for the surface, and one for the bounding 

contour. Independently, each would produce a parameter vector. 80th should be describing the 

samc obJect, but becausc of nOISe ln data acquisition, thcy will differ slightly. Correspondingly, 

at cach itcrahon step, wc try to minimize the dtfference between the parameter vectors produced 

by fIttmg to the surface and by fittmg to the boundmg contour. We do this by defining a \ 2 merit 

ftmction to he minunizcd that incorpora tes a function of the distance between the 2 parameter vectors 

in p.lramcter !lpacc. Iterative minJmizahon is necessary because of the non-linear dependence of the 

\ 2 ment ftmction on parameters. The algonthm we use is Levenberg-Marquardt iterativeminimization 

(33) (which continuously ch.mgcs from gradient descent far from the minimum to an inverse Hessian 

"Jump" whcll clo~er to the mInimum). 

Any fittmg process IS obviously dcper.dent on the error metric used. The error metric for the 

cllipsoid can be denved from the equation of the ellipsoid. Wc can consider the left-hand side of 

tlùs equatton a~ an inside-outside function (w.r.t. the RHS, which is 1). Thus, the difference between 

J(x, a) (x is data, a is theparametervector) and 1 is anerror metridthe Dl metrid39, p. 691]). Thus, 

for the ellipsoid, 

.t·, lI.- ::. ( )2 ( )2 ( )2 IJdx~,a!')=J(x!,.Hl\)-l= ;;: + b, + r, -1 (3.1) 

where x!, = (J'",I/ •• =.) IS a surface pomt, and as = (li" b" c.) is the surface parametervector. 

To be able to combine the two parameter vectors in this error rneasure, we will add in their 

diffcrenœ in the error measure, as follows: 

(3.2) 

where X(' and 11(' are the bounding contour equivalents to x!, and as, and use that in the iterative fit. 

Notice that this introduces an adjustment "knob" .\, and leaves (', specified only by the surface data, 
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as as = (a,. b •. r.) hasthree components (a surface parametervector), and êl(' = (1/,. il, ) hasonly two 

(a curve parameter vector). 

3.1.2. Relevance of the Experimental Algorithm 

The algorithm is intereshng in many ways. It requires a large amount of iconic input data' l'ach 

fitting process will fit to a large number of Cartesian data points (each of which has tJU'ee com­

ponents). The output is a list of features, in this case ellipsoids and ellipses dcscribmg surfaœs 

and curves, respectively, and each feature is described by a vector of parameters. The algorithm is 

numerical, involving a large number of summations (to compute the merit funchon \ 2, for cxample). 

Communication between tasks can be data dependent, as it depends on how many inter-pcnetration 

curves exist for a given volume. In our simplified example, however, communication IS fixed, and 

only takes plaœ between the fitting proœss for the surface and the fitting process for the bounding 

contour curve. Synchroruzation is falrly simple and data-independent in our simphficd example. 

each iteration of the fitting procedure is performed in step. 

The most interesting charactenshcs, however, are that the input data sets vary 10 size, and 

thus the feature computation times can be vastly different. Thus, a simple one task per feature 

partitioning scheme would he ineffective. Additionally, there is significant parallelism within cach 

fealure computation, as summations (the most important operation in our algorithm) can he dont' 

in parallel. Memory latency eonsiderahons are the second important characteristic. the large mput 

data sets must be easily aecessed and manipulated by parallel tasks. 

3.2. Comments on BBN U.S. PlOgramming 

How doef, u.s. programmmg on the BBN Butterfly fare? It suff,:!IS !rom a lack of expres~iveness 

and from a lack of logieal independenœ, partly because of the C language on whlch the US. IS 

based, but also beeause of its parallellibrary type of design. TIte C language, in sorne re!opccts, 

dues not even provide logical independenœ to the sequential programmer; for example, cxpliàt 
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memory allocation can be tedious and error prone (e.g. writing to a data structure for which no 

memory was allocated) The U.S. programmer naturally inherits these concems. Uniform System 

BBN programmmg suffers from the same lack of logica1 independenœ exhibited by other explicitly 

parallel programming systems (in terms of explicit synchronization, for example), but four problems 

in partirular stand out 

Fust is ,1 lack of h'ghcr-order functions, which are crucial for expressive scientific programming 

(a problem inhl'nted &om the C language). Second, an inexpressIve parallelism mecl/anlsm: task 

generdtors based on library routines are awkward to use, and their parallelism model of side effects 

on data structures is not aI ways appropria te. Third, explicit partitioning is also a weakness: il is unc1ear 

a priorI whrthcr or not the partitioning chosen by the programmer is correct for the arclùtectu.re, or 

is too hne, or too coarse. Fmally, the IUt.>rarchical memory model shown by the Uniform System relies 

on the progrdmmer to solve the memory latency problem by placing data in either local storage 

or rcmote storage TIus is a burden to the programmer for program performance and especially 

correctm.'Ss. 

The system also has certain strengths. Frrst is comparatively small grain size, which helps to extract 

more of the paral1elism present in an algorithm. Second, if tasks are small enough, and there are 

enough of them, I('ad balancing will occur dynamically. Third, the system offers large balldlVidth to 

sl,ared ""'t/llIry, as the mterconnection network to the shared memory will aUow for high transfer 

rates, if data and acccss patterns to memory are both well distributed. Finally, a single address space 

for shared data sImplifies programming, and especially inter~task communicahon. 

Let us ~)(amine U S programming on the BBN Butterfly with respect to our evaluation criteria. 

One Important consIderahon is that there are no l-.J.gher-order functions in Uniform System C 

pmgramming, whid\ of course is inherited &om the C language. This forces the use of clumsy 

hmcbon pointer and argumer.t list pointer passing, and also pIohibits function composition. For 

example, wc often nccd t':.l pass 2 functions A () and B () to a function C ( ), and inside function 

r ( ), crcatc a new function f (A, B), which would then he used in yet another function. The 

absence of tlus feahln' m u.s. C programming means one can't aeate arbitrary combinations of the 

functions A () and B ( ). Any such combination, such as f () in the example above, must he defined 

in advanœ. Funchons are the at the core of mathematical programming; any system that supports 
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scientlfic programming must simplify the creation and handling of functions; the Unifom\ System, 

being based on the C language, does not. 

Of course, given enough work, U.S. programming on the Butterfly can he ubed for aoy scientific 

problem, becausc of its MIMD architecture and general-purpose pro\."essors It is not I\'stncted to 

near-neighbor communication algorithms, as commUnIcation lS through sharcd ml'mory, whkh is 

entirely accessible to all proœssors. Nor to is lt restricted to aIgonthmb wlth wry lar~e gram ~izl'S: 

once a Uruform System task generator is set up (which can he expenslVd, tht.' oVl'rhl'ad for task 

creation is approximately equivalent to that for a function calI. 

One of the mam problems with Umfonn System paraUel programmmg 15 the incxpn'~slve par­

allelism mechanism. Wlth the U.S. generator mechanism, code must he restntctured tn fit the 

mechanism, wlùch allows you to pass as parameters to the newly creatcd task only a single pomh.'r 

(and posslbly one or two indices to indicate the task's n&mbcr). Ttus is what [32) refen. to a'i sy"tuctrc 

crudeness. Generators arc like the Lisp map function, in that they are meant to apply a function 

aver an mput data structure (such as an array or a vector), ln paralleI, and perform slde effed on .1 

reswt data structure. This is quite usehù for a number of problems, but not for aU. The gcnerator 

mechanism can be made to handle any case, but with sorne restructuring of a user's codt.' n1ls 15 

what Pancake [32] refers to as semant;c crudeness. 

The Unifonn System's model of explicit partitioning of tasks and data (hierarchical memory 

model) and explicit synchronization are an added programmer conœm. Scheduling, howeveT, 15 

implicit (dynamic self-scheduling). 

Task partitioning is difficult on the BBN Buttertly, because of granularity considerations. It is 

difficult to find optimal grain size for tasks: the grain size must he small, to do dynamic load 

balancing and avoid idling, but must he large enough to avoid excessive overhead. If the proper 

grain size is not chosen, the risks are 

task starvation: granularity too coarse, too few tasks, and many processors Id le at the end. 

excessive overhead: granularity too fine, too many tasks, and the computation/overhead ratio too 

low. 
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ln fact, the approach suggested by BBN is of restructuring code after trial and error hl, pp. 3-4]: 

If neœssary, it is usually relabvely easy to combine small tasks at a later stage into larger, 

more manageable sizes; it is olten more difficult to dIvide a task at a later stage into 

smaller ones. 

ln our paraUd cooperabve fitting code, there is one smgle kind of task that is used throughout the 

code, a parulle] summation task, 50 that it was fairly easy to contain granularity <'Onsiderations into 

a ~ingle variable. This will not neœssarily be the case for all codes, of course, so that restructuring 

to .tchieve proper granularity will probably be far more difficuit. 

Large, shared data structures inevitably produce the memory latency problem, which, in the U.S., 

is partIy the programmer's respollSlbility to solve. This show~ up as tedious data partitioning. For 

~ood performance, the programmer must know about the machlne's memory model, the C storage 

model, and strul.1ure the program accordingly. This is because parallel programming on the BBN is 

fundamentally dIfferent from sequential programming: the programmer must a/ways keep in mind 

the particular storage details of each variable, which is obviously difficult to do, because there are 

1/ d,//eren' address spaces for Il processors. To the programmer, memory latency appears in two 

ditferent guises: 

memory contention: Data m the same memory node will cause contention. 

remote memory accesses: 5inœ local accesses are faster, one must always determine If a variable 

should he stored Iocally or remotely. Remote acœsses are slower and increase contention, but 

lf somt> data will he needed by all proœssors, then it must he plaœd in shared memory, which 

is n'mote to aIl processors but one. 

1 t is important to reahze that code which affects these two considerations is distributed throughout the 

entin'I'rogram, and 15 entirely the responsibility of the programmer, who must be constantly attentive to 

the storage model. There is no syntactic difference between pointers to shared data and pointers to 

priva te data, thus creating a nm,-homogeneous namespace. 
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Because of the relative speed of local and remote memory, the pro~rammcr mu!>t oftt'n makc 

copies of frequently-used data in local memory. The Uniform System proVldt.·s a nll'chamsm to 

automatically make local copies of specified data mto each node's loral mcmory hefore the node 

starts working on tasks from a generator- this IS the Share () mcchanism. Explkit SharE' () '5 ,ln' a 

programmer-friendly way of making expliat local copIes; the pro~ramm('r mu~t kc('p ln mmd that 

this meJlanism must he reserved for read-only data, as any mOdlh(\lbon to local delta IS Sl'cn unly 

10cally and is unknown to the Share () mechanism. Aside from the Share () mechanism, ,Iata II/llst 

often be explicitly moved from remote memory to local memory if good l'er{omllmœ IS t/l /1t' atla",,',1 10c.11 

copies for data that vary are best hand1ed explicitly by the programmer, which unfortunatdy is an 

extra worry. 

Memory contention is another programmer concem. Effiaency considerations (avOlding hot 

spots1) impose data structures on the programmer. For examplc, C vectors are !tlon'd 10 a ~inglc 

memory node, to have vector elements in a contiguous address space (as required by C). To aVOId 

contention for a single memory, programs which deal with long vectOTh mmt have a ~pccii11 veetor 

data allocator and access mecharusm, to scattervcctor clemcntstorage aLTOS., dll ml'morit's and .l('('lU·,S 

them as such. Other data structures can similarly be partttioned and scattcl'('d, but not wlth stand,mj 

US. functions, which only provide functions to scatter matnces. Ali allocator a"d ac(.'t'Sl> "'t'chanis", 

must be constructed for each new data structure. 

The hierarchical memory model of the machine also reduces modulant y A module I~ ,1 ~clf­

contained and discrete part of a larger program, whtch accepts input that is weB defim'd as tu 

content and structure, carries out a well-defmed set of processing acbon!t, and produC(.-s output 

that is wel1 defined as to content and structure. Modularlty 1S achlCved whcn mtcracl10ns betw('('n 

parts of a program or system can be ngidly restncted to the mteractions between modules, whlch 

greatly simplifies the understanding of how a program works [34, p. 9961. In the Uniform System, 

constraints are now not only content ar.d structure, but also locabon ln mcmory a funcbon a ( ) 

whtch creates parallel tasks to operate on its arguments must reqmre that its arguments ('xistlll 

shared memory. This constraint of location in memory propagates upward to all fundlOn~ who cali 

a (), and 50 forth. One would want to define a funcbon solely in tcrms of mput data and output 

results, but tlùs ignores the added consideration of location in mcmory: a funLilon which works in 

1 R~'gions of shared memory Wlth high acœss frequency, and thus rugh contention 
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parallel will produœ correct results only for arguments in shared memory 

The non-homogeneous Butterfly narne~pace is a cor.stant source of programmer conœm. Any 

parameter passed by referenœ (i.e pointers) is a potenbal problem - does the pointer point to 

proœss-private on the local processor, or to shared (most probably remote) memory? If the pointer 

points to process-pnvate memory, only the local proœssor will see the results of modifying that 

memory locabon, which somebmes isn't the intended behavlOr. TIus 15 a very important problem, 

as passmg arguments by referenœ and retuming altered values is a common programming mode1 

in C, especiaUy for large data structures for which copying would be wastehtl If the data is written 

to by many proœssors, it must he m shared memory, so that a pointer to it will he valid on all 

processors. If it is read-only data and is frequently used, performance considerabons dicta te that a 

local copy he made. In short, in a system Wlth hierarchical memory unàer programmer control, the 

programmf!r must always be concemed about the quesbons' ''Will tlus data he written to by many 

processors'!" and "Where docs this data reslde in physical memory?" The latter consideration is not 

unlike message passing, except the situabon is much sunpler m shared memory environment. 

Because of the shared/pnvate dishnction, Vlewing parallel programmmg with the U.S. as ex­

tended sequential programming is very misleading. A routine that was developed sequenticllly 

often will not work when nm m paraUel, because of side effeds. Side effects to local memory will 

cause incorrect behavior when run in paraUel, as the slde effects will only be seen by one processor, 

not by aU proœssors, which is usuaUy the intended behavior. Thus, determinacy in the U.S. 15 

entirely up to the programmer. It is fairly easy to write a non-detenninisbc program: for example, 

a program which crea tes tasks that slde-effect C global variables will nID correctIy on one processor, 

but will not work on 2 or more processors, as each processor will side-effect its own copIes of the C 

globals. 

Because communication IS done through the shared memory, and aU proœssors are equidistant 

from the shared memory, communication is unUorm. Synchronization, when necessary, must be 

done through low-level primitives such as atomic operations or spin locks, although lugher-Ievel 

constructs such as semaphores and monitors can he built from these. Unfortunately, a single, 

frequcntly-changing, and frequently acœssed variable will he a problem for program efficiency on 

an archih.'CtUre not tolerant of latency such as the Butterfly, as it is stored in a smgle memory (wllich 

causes memory contention and thus latency), and processors must synchronize to change it (which 
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causes synchronization latency). 

3.3. BBN V.S. Experimental Results 

The parallel cooperative fitting code on the BBN Butterfly was parallelized sim ply by dl'composmg 

the summation function into a parallel one, since summatton over an index range 15 by tar the most 

important type of operation in the fitting code, and the easiest to parallchze. If the summ<ltion r.mge 

is /l, our code allows the measurement for various summahon task granuJanhe~ by dlvldmg up the 

work into /II-sized chunks. 

The experiments we ran were the fol1owing. 6173 pomts were samplcd on an arttfioaU y-gl'nl'ra h·d 

ellipsoid, with added gaussian noise. Tests were made on a single Iterahon of the iterattVl' Levcnbt.-rg­

Marquardt fitting procedure. Tests were run for gramùarittes of 10,20,30,40, SO, 75, 100,1211, 150, 

175, and 200-point summation sub-ranges. 

Speedup and utilization results for this test setup are shown m hgures 3.2 and 3.3. 

As can be seen !rom figure 3.2, the best speedup was obtained for a granularity of 175, which b 

rather coarse for the BBN Butterfly. However, the reader has œrtainly also notiœd the "sawtooth" 

pattern of the speedup curve for the granularity of 175, in figure 3.2 These MO obscrvahonl> 

arise because of a granulanty mismatch of the program to the architecture. In the first Œse, better 

performance is obtained through coarser granulanty by increasing the computahon to overhead 

ratio. 

ln the second case, task starvation [11] shows up as a sawtooth pattern superimpo!>cd on a 

generally monotonically inaeasing speedup curve. This can easily he secn by remembering thal 

there are 6173 data points in the data set. A summation over 6173 data pomts, dlvided mlo rang~ 

of 175 summation index values per task, glVes r6173/1751 = 36 tasks. TherefofC, we must divldc 

this number of tasks by the numher of proœssors available. However, tasks arc dlScrete oblect~, so 

tllat if we have l' processors available, JI - 1 of them will reœive l36/ il J tasks, and 1 proct.'s!>or will 
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etftctlve' otproces<ors 

Figure 3.3: Speedup surface for the BBN Butterfly. The speedup surface shows hpeedUP 
results for granularihesof 10, 20, 30, 40, 50, 75, 100,125, 150,175, and 200, from front to bnck. 
Notite how performance Improves for hlgher (coarser) granlllaritIe!o, but only for certain 
numbers of processors. See the text for cxplanations. 

reœive r36/I'l tasks, so that the critical path length is f36/ 'il. A~suming complete paralleltzation (r.e. 

ignoring sequential components of the code), &peedup will therefore be 36/ [36//'1. This 1S plotted 10 

figure 3.4, wlùch the reader can see compares qui te weIl to the graph ln figure 3.2, for a granularity 

of 175. Of course, the Jdealized model ignores the sequenbal componl'nt of th" code. This includes 

sequential elements in both the user code, and sequential region& through the task generators. 

Thus, the optimal granularity is the one which JS the largest possible, to aVOld overhead, 

while avoiding task starvation effects, to keep aIl proœssors fully ulÙized. TIus J'('presents a slice 

through the speedup surface shown in figure 3.3: for a gJven number of processors (shown as 

t of processors in the graph), there corresponds an optimal granlliarity (granulal.l.ty) at 

wlùch the speedup (effective f of processors in the graph) is maximlzed Such a slice, for 

JI = 10,12,14,16, is shown in figure 3.5. 

In general, a user will not have such a trivially simple way of changing the parhtion size of his or 

her tasks. In the vision context, dynamically generated tasks, varymg data set& and proœssing time 

will play havoc with this endeavor. TIùs will usually mean tedJou& restructunng for the programmer, 
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Figure 3.S: The optimal granularity for the BBN processor, for p = 10,12.14.16. The x-axis 
corresponds to which of the Il granularities we measured, from 1 to Il respectively 10,20, 
30,40, SO, 75, 100, 125, 150, 175, and 200. For the four cases, the best granularity is 125 (8th 
value), 75 or 175 (6th or lOth value), 150 (9th value), and 200 (llth value), respectively. 
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after much trial and error. 

The final, and CTUClal, aspect of performanC<' on the BBN Butterfly is memory contention For tht' 

test algoritlun we used, data ior htting IS mo~t convenifmtly structured ID the torm of a vector, to he 

able to index through the data during summation. Unfortunately, the US. stores C v('ctors in a sm~ll' 

memory, which causes senal acCL'SS to data. Theretore, a substitute data !>tnlcture (il ""hstributt'd 

veetor", distributed across the memones of tilt' machine) had to he build for tlus apphcahon, which 

syntacbcally allows the programmer to acces!> the ddta through a single mdex, but which is actually 

built out of the matrix scattenng rouhnes provided by BBN. This was fairly simple to do, but 

illustra tes the point that to proVlde paraUd access to data on the BBN, when usmg data stnlftUI'e!> 

other tllan simple matriœs, new data stmeture allocation and acœss routines must he built by the 

programmer to properly scatter data across memones and obtain good pcrfonnance. 

3.4. Comments on Sequent Balance C-Linda Programming 

C-Linda's great strength as a parallel programming system is derived from the anonymlty and 

atomicity of the operations on tuple spa ce. lhe interactions with tuple space are also a source 

of weakness, in some respects. The most Important problems are the following. Flrst, a lack of 

higher-order functio11S, cruCIal for exprcsslv(, sdentific programming (a pl~"lem inherited from the 

C language). Second, exphclt partrtlO/lmg is agam a problem, as it is unclear a prwrr whether or 

not the partitioning chosen by the programmer is correct for the drchitecture, or 15 too fine, or tou 

coarse. Third, explicit data partltroning is nece!>sary To remove contenhon for a single data obJect 

(e.g. a matrix), the programmer must choose a granulanty with which to decompo!>!! these obje~t& 

into sm aller pieœs, running the same risks as for task partitioning. Fourth, there is a 1055 of progl'am 

nwdularity, as the flatness of tuple spaœ makes possible the anonymous synchronizahon mechani&m 

of C-Linda, but aIso introduces the posslbllity of ;ï •• lntrary interactions between program moduler... 

Finally, there is mandatory, explicit copying of 5hared data. The tuple space storage model neœssarily 

involves copying shared data from tuple space before it can he processed This can be expenslve for 

large data objects . 
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The C-Linda system aIso has sorne great strengths. First, Linda offer.:. uncouplcd, atomie operations, 

as the semdnhcs of thl' Linda opera bons on shétred data guarantee a tomicity, and allow an uncoupled 

1>tyle of programming Second, the Linda eval () operation can he used to crea te arbitrary tasks, 

givmg flexIble task creation. FinaUy, ü ta~ks are small enough, and there are enough of them, load 

balllncing Will occur dynamically. 

Let us again compare with our evaluahon criteria. 

As for the other C language-based system we have investigated, the need for explirit memory 

allocahon and the lack of higher-order funcbons in C is a serious deficiency; the same arguments as 

ln sechon 3 2 apply 

An evell more senous handicap anses from the following. As the reader may recall!rom sec­

tion 3.2, C ).mguage function pointers, although they cannot be used to create new functions at 

run-hme, al least allow the programmer to pas') functions as arguments to other functions. How­

ever, only data values are allowed in tuple spacc, pointers to objects are not. TIus IS logical, as Linda 

must be implementable on dlsjoint-memory machines, where pointers are meaningless !rom one 

machmc to the other; shared pointers to obJects oruy make sense in the case of a physically-shared 

memory. The consequences of trus are obviously that you cannot share pointers to data structures; 

10 any case, tlus runs contrary to the Linda tuple spaœ model of associative storage. A more serious 

consequence 15 that you cannot pdSS pointers to functions in Tuple Space. Unfortunately, in C, a 

function 1& less of a name than a memory locabon (the value of a pointer), whlch. of course, in a dis­

JOint mcmory enVlronment, is completely mealùngless. The same functionality can be implemented 

differently ln C-Linda, but it IS clumsy and involves more restructuring [261. Supporting function 

pointt'rs would probably involve sorne modiftcation to the C-Linda implementation. 

The sam~ comment.; as those for the BBN Uniform System apply for C-Linda programming: 

C-Linda can be used on asynchronous parallel machines to program virtually any task, including 

1Otermediate-level vision algorithms. 

C-Unda IS not constrained by a hbrary-based parallelism mechanism: the eval () operation can 

he used to create parallel tasks in an arbitrary way. In this sense, it is Jess disciplined than the U.S. 
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generator mechanism, but Le; more flexible. 

The Linda model of parallelism belongs to the un perative family of side effects on data stnlcntre ... 

eval () never retums a value its defmition says it becomes a passive data tuple in tuple sp,wc upon 

completion, in effect "returning" a value through a side-effect into nlple spaœ This is a good lIiea 

for creating distnbuted data structures [141, but if only a smgle return value is needcd, It cœatl'~ 

unnecessary access to tuple space (e.g an in () IS needed afterwards to get the value produ(\'d 

by eval (). TIus is bccause eval () combines the hmctions of task creation and nlple !>pal'C Sidt' 

effecting into one. 

C-Linda requires exphcit parhtionillg of tasks and exphcit synchronization; howev~r, sdu'duhng 

is impliClt (done at run-time). Explicit partitioning is still a burden on the programmer, in lcmlS 

of finding the correct granulanty, as we shan see below. Synchroruzation is abo exphdt, ~o thal 

the burden for detenninacy is agam on the programmer; however, C-Linda's tuple spacc operahol\s 

faolitate exphat synchronizahon. 

Explidt task partitioning wlth C-Lmda is difficult, and is compounded by the fact that C-Linda 

is portable; as C-Linda supports both shared memory machines and disjomt memory machines, a 

granularity that is appropria te for one architecture will not necessarily be appropnate for another 

For any given architecture, it is difficult to find the optimal grain size: the grain size mUbt be sma)), to 

do dynamlc load balancing and avoid idlmg, but must be large enough to avoid exccsbive overhe.ld. 

TIns optimal granularity will vary from one Linda implementation to the other. The same problem~ 

of task starvation or excessive overhead will appear, if task granularity 15 too coarse or too fille, 

respectively. 

ln fact, [14] presents three parallel programming methods, applicable to othcr parallcl program­

ming languages than C-Linda, but well-supported by C-Linda, and show well-defined relation. ... hlP& 

between the three. Their soluhon to granularity problems is similar to that suggested by (11 J for the 

Unifonn System: ifneœssary, restructure the code to fit the architecture's granularity [14, p. 231: 

We start with an elegant and easily-discovered but potentially inefficient solution using 

live data structures, move on via abstraction to a more efficient distnbuted data struc-
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turc soluhon, and finally end up via specialization at a low-overhead message-passing 

program 

For examplc, the goal for C-Lmda parallel cooperative fitting code was to have a single summation 

funct10n to do ~ummatlOn of any summand function in parallel. In theory, this could be done by 

doing an eval (f) for each invocation of the summand funchon, but that would be exce5sively 

fine-grained TIlcrefofC, wc restructured our pro gram because of partihonmg consideratIons: because 

the mltial granulant y wa~ too fine, wc.> created functions to calI the summand funcbon a speohed 

numb('r of tlmes. Following tbis restructuring, as for the BBN Unifonn System rode, granularity 

considerations III the parallel cooperahve fitting code were fairly easy to restrict to a single variable, 

because of the !.tructure of our demonstration problem. 

As for the U.S., a single, frequently-changing, and frequently accessed variable will greatly 

affect program effiClency on a latency-intolerant architecture, as it must be stored m tuple spaœ 

(causmg tuple cont('ntlon and thus liltency), and proœssors must synchromze to change it (causing 

synchromz.llÏon latency) 

TIll' mcmory Illodcl ln C-Linda IS very different: associative tuple spa ce shared storage CoeXlSts 

with privatt', addn'ss-based storage. In some sense, we are still faœd with a hierarchical memory 

model III Lmda - fast, local memory (private) and 'fuple Space (shared), except that any shared 

data must be copl('d into local memory before being used, including potenlially large data structures 

such as matnct's. The programmer is helped by tbis clear distinction between shared storage and 

local storagc, but mandatory copying of shared data also bothers the programmer and hinders 

performante, although only those parts of the shared data structures that must he used need to be 

coplt'd. Matrices, Images, etc.must he cut up into chunks when placed into tuples, eIse access to the 

wholc structure Will be seriahzed if plaœd in a single tuple. This is a data partitiorung problem: 

what is the "ppropnate numher of chunks? If the data partitioning too coarse, each tuple holds 

too largt' a part of a data structure. Excessive serialization results because of contention for a single 

tuple. If the data parhhoning too fine, there is more overhead bec.'\use of more frequent access to 1'5. 

For example, parhtioning an iconic image data into tuple chunks is not obvious. Should the 

tuples be m.lde al'cordmg to spatial distribution (e.g. one row of the image per tuple)? Or should 
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they he accordmg to image properties kg. one tuple per region)? Of coursl', this IS dependent on tlU' 

algorithm, but also on the Tuple Spaœ implementation. Additlon.llly, a smgIc hlpll' mdy ~()Illl'timt'S 

be more convenient for programmmg, as there are fewer 1n () and out () opt'rdtion~ to pcrlorm. 

The advantage Ul C-Linda is that becau'3e of the semantics of TS, operations on shall'd nWlllory (l'S) 

are atomic. 

Synchromzation in Linda is explicit, but is much ~unplihed, bcCilU!>l' of tilt' 1I1ll'ollphng and 

anonymity proVlded by associative tuple matching, which remows tIlt' n.lmmg probll'm bl'hvCl'll 

communicating processes, and the atomicity of tuple sp"\œ operations Howl'ver, bl'l'.lUSl' synd\nl­

nization is still explicit, lt is still easy to create a non-detenmnistic program by forgl'ttmg "ynchro­

ruzation statements. The programmer must still determinc wherc to seriahze l'xeClltioll (mlltual 

exclusion), although the mechanism to do so is quite simple. 

Explicit synchronization in C-Lmda is problematic in other respl'ds. For l'xample, programml'r 

mustoften ask whetheran 1n () ora rd () 15 the appropriatc operatlon,oT, III otht'rwords, wht'thl'r 

the data theyare dealmg with lS read-only or not. If a task modIfies the datd It obtain!:> from tupll' 

spaœ, an in () 15 neœ!>sary, to rem ove the old data from shared memory (tuple !>pacc). Doing il 

rd () instead of an 1n (), followed by an out () , will Ieave the old data ID tuple spare, and place tht' 

new data in tuple space as weIl. Tasks retrieve tuples of Identical SlZe and type non-detl'nmmshccllly, 

50 that this unintended sequence of operations would Iead to a non-detl'm\1nlstlc program 

The very nature of tuple spaœ is a problem for program modularity For (!Xclmple, If two copi<' .. 

of a function read from tuple spaœ, we must synchronize their acœsse~ to tuple !>pacl' .. 0 th.lt one 

invocation does not acœss the tuples that were destined to the other Simllary, two COpte~ of a 

function writing to tuple spaœ must plaœ a marker in t! 'eir output hl pies to dl1>hngui .. h them 

These problems arise because Linda TS is fiat [201: any module can intNael wlth any other module, 

anonymously, through tuple spaœ, which is obviously an impedJment to program modllianty. Tuple 

spaœ's great strength for synchronrzation is a great handicap when stoTÎng data ln shared m('mory, 

as any module can side effect another. Modular program construchon wouJd reqmre that one 

invocation of a function not interfere with another; however, ID the example abov(', thl'i would be 

the case, as the Linda model is based on side effects (to Tuple Spa ce), and tuple spacc J~ flat, not 

partitioned, to allow for arbitrary synchronization. The above examples show how ea!'y It i!> to forget 

synchronization statements that will make a program non-determinishc The way to synchronize 
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betw('Cn sunultaneous mvocabons of the same funchon is usually to have a single counter tuple in 

tuple spa ce, read by tasks and atomically mcremented to provide a UIÙque Idenhficabon starnp for 

output tuples pIa<:ed m tupIl' space. This way, each mvocation of a function can uniquely stamp the 

tuples It produces. 

A minor programmability rustrachon is caused by the nature of the associative access to tuple 

"pace Convenhonal memory is accessed through its adclress (pomters), 1'.Jple Space memory 

through ils contents (values), so that whl'n moong the two m the form of C-Lmda, sorne duplication 

of names for a smgle entity IS unfortunately needed. A common way of doing this is by inserting 

a .. tnng identIfier m a data tupll' to be able to associatively match to thIs tuple in tuple space. This 

~tnng idenbfier becomes the "name" of the data structure. For example, a typical tuple mlght be 

("vector ail, 2, 15.0), where "vector ail is thenameoftheoverall data structure, whereas 

when It is read mto a pl'O<."ess' memory, vector a's name becomes float *a. We now have two 

nam('!> for vector a depending on where It is stored, float *a in a process' local memory, and a 

character string, Il vector ail, m tuple spaœ In fact, identifiers are the orny way to pass tuple space 

dat.l stru,-iucc!> as arguments to funcbons: they are used as a "handle" to the data structure in tuple 

spacl' 

3.5. Sequent Balance C-Linda Experimental Results 

11\e experimental procedure carried out was identical to that described in section 3.2 However, 

the nature of the C-Linda implementation on the Sequent Balance is quite different from that on 

the U S. on the BBN Butterfly. In C-Linda on the Balance, each task (eval ( ) ) is unplemented as a 

UNIX fork operation; if a proœssor is free on the machine, the iorked task will be scheduled there. 

If not, the task will he scheduled en an already-busy processor, and context SWlt '1ring will result. 

Adillbonally, there IS no way for a user to l'eStrict the number of processors available for use, for 

testing purposes Instead, the programmer must restrict the number of tasks created. This coupling 

of nurnber of pro<:essors and task granularities is undesirable for testing purposes. Such a scheme 

I~ Mmply stalle load baillneing, or the adjustment of task size to match proœssor numbers to obtam 

lugh utilization, rather than dynllmie load balancing, where the number of tasks is unrelated to the 

n\lm ber of proœssors, and high utilization is obtained by having short tasks such that task starvation 
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Figure 3.6: Speedup and efficiency for C-Lmda on th!.' S~'<Ju('nt 8alanœ 

effects of l' - 1 proœssors waiting for a single processor to finish a longer ta!:>k arc mimnnzcd ln 

tenns of intermediate-level vision proccssmg, dynamic load bal.lnclIlg lS far pn'f~·r.lble, a~ the :-.iZl' 

of tasks generated by the algorithm will vary accordmg to the data .,et~ Wlth C-l.md.1 on Ill(' 

Sequent Balance, dynamic load balancing reqwres too fme a task Slze to bl' practil'dJ t1w UNIX 

fork caU is expensive because it involves making a duplicatc of the calling proCl'~~' aJdn':-.~ .,P,ll'(· 

AdditionaUy, creating more tasks than there are avaIlable processors Will slmply proJUCl' UNIX 

process-Ievel context switching, under Sequent Balance C-Lmda, wluch I!:> a sourn' of unde~,r.lble 

overhead. Therefore, creating srnan tasks is not possIble, and stahc load balancmg Wd!:> tlll' prclt·rn·d 

choice to avoid overhead. 

Speedup and utilization results are shown in figure 3.6. Note that now, bccausc of .. talle Joad 

balancir.g, granularity and processor numbers are coupled: a particu1ar granulant y correspond!. tn 

a particular number of proœssors. Tests were therefore performed for surnmation gr,muldnhl'~ of 

6200,3100, 2075, 1550, 1250, 1050, and 775, whlch correspond to l, 2, 3, 4, 5, 6, and H pron·sM)r!., 

respectively, for a 6173-point data set, as the reader can veriiy. 

The poor speedup and utilization curves sunply reflect the coarse granuJanty supportl'd by th!!. 

irnplementation of C-Linda on the Sequent Balance, not of the C-Lmda model itself, wlllch can be as 

fine-grained as the programmer chooses to make Il. However, these resultc; do indicate that dynamic 
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task creation on the Sequ<,nt Balance should he carefully examined by the programmer and compared 

to the minimal task size supported by the arclutecture. Once more, the programmer might have to 

n'structure his or her code to suit the hardware. 

3.6. Comments on Id Programming 

Id on the MIT TrDA IS a v{'ry powerful programmmg tool for intermediate-Ievel vision prograrnmers 

m parhcu1ar, and ~cientiflc paralk! programmers ln general. Its strengths are qUlte elear. First, Id 

provides loglcal mdependence. The programmer is freed from the details of parallelism, as Id parallel 

programmmg is lmpücit. Second, Id pro~des closeness to pTOble", doma;n Through the use of rugher­

order functions and deelarative programming, an Id program is close to the algorithn\lcspeaficabons 

for the problem. A third strength is finr; :,;raIIIed parallelism: Id imposes no artificial sequennality onto 

a program. AU the paralleüsm present will be exposed, down to the mstruction level. Finally, 

detenninacy is one of the most important strengths. Id programs are guaranteed to be de termina te, 

producing the same results regardle!>s of run-time configuration. 

However, Id on .:t dataflow architecture is no panacea. There are indeed several areas where a 

programmermighthavesomedifflculty. First,Iddoesnotprovideanywayofcontrollingoperational 

hehavior in cases where it would be deslfable to do so. There is thus absence of control over operational 

beJlQvior Second, it 15 easy to code 3n algorithm that generates enough parallehsm ta ovenv}rel", fillite 

machine resources. Next, there can he excessive dependence on compIler. A ftmctionallanguage does not 

remove the neœssity for the user to provide adequate algorithms and data structures, although it is 

tempting for the user to forget. Fmally, there is the rarity of real implementations. Id is implemented 

on very few machines, whlch arc not presently generally available. 

Let us once again retum to our evaluation criteria. 

Arguments for the eloseness to problem domain of functionallangu'iges, including Id, have 

been made elsewhcre (see appendix B), and will not he repeated. Functionallanguage programs 

can easily he l.'Onsidered as executable specifications, anu eUe doser to mathematical descriptions of 
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sàentific problems than any imperative language descriphon bec;> 'se of thelr compll'tl' n'hant'-' on 

expressions. 'This naturally applies ta intennediate-Ievd vIsIon a' 60nthms a~ wl'11 

Id is well-suited to scientific appltcations in generaI. In tenns ot intemwdlate-ll'vel VISIOn pm­

gramming, because there 15 no nohon of partitioning, nor dL<;tanCt.' m commullll',lhon, .1Ily low-Il'wl 

and intenneœate-level Vlsion algorithm can easdy be IDlplement('d TIll' ,uclutccttm.' Wl' éll\' l'X­

amining to support these programs is a general-purpose dataflow maclunf.', tht' TIDA It support~ 

very fine-grained parallehsm, which could be used to exploit the ftnl'-gramcd paralll'lIMl' potcnh'llly 

present in intennediate-Ievel vision algonthms. The effccttveness of Id on other arclutcrtun's would 

obviously vary dependmg on the arclutecture, the comptler, .lnd the l'Ode Ih,elf. 

The task creation mechanism in Id IS beyond programmer control, and thcreforc detennmcd by 

the compùer. In some sense, this lack of mechanism proVldes the mo~t mnvenient tdsk creatIon 

mechanism of ail. In the case of the 1TDA dataflow arclutccrure, t'a ch in~truchon 15.1 ta~k 

Paradoxically, this source of great strcngth for the Id programmmg ,lppro.ld\ (',ln also he a ,>Ourl"t' 

of great problems. In a dataflow architecture, parhtiorung a code mto thread~ of sequenhal execution 

has no meaning. However, on a more conventional arclutecture, such i~sucs, as weil as ... dwduling 

issues, would probably have a great deal of importance. On such archltecrul'l'!>, Id pnJVldc!> no way 

of defining operahonal behavior if an optimal parallel algonthm is known, or refmmg ItS lwhavlOr If 

performance requirements demand it. Para-functional programmmg (25J provldes antlotatums that 

allow for finer control over operational behavior, without completely restruchmng the program, 

while keeping ils functional nature. Even if such annotations are provtded, Hudak 1251 behevl'''' there 

still will be cases where complete restructuring of code for performance WIll be neccs~ary InJ('ed, it 

is shown in [35] that optimal compile-time sclleduling IS an NP-complete problem, although efflncnt 

approximations can be found. The Id compiler used for this thesis ~ tallored to extract paraJJeli~m 

on a particular arcIùtecture - although this portablhty questIon may be le~., Mgniflcant If it C,In bt· 

shown that the dataflow architecture 15 the proper one for ~oenhfic parallel proces~ing 

These questions are all related to the ISSUes of cxpresslveness, effioency, and paraIJehsm, d('­

saibed by sorne as a tri-polar relationship of mutual repulsion [161 For example, If .111 parallelbm 

is explicitly written in the program, it will become cumbersome (an example of mexprc~~lv('ne~~). 

Other examples include memory usage, higher-order functIons, and deahng wlth fanih' machane 
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3. A COMPARISON IN mE CONTEXT OF INTERMEDIATE-LEVEL VISION 

resources 

memory u~ge' a central issue is the extravagance in memory usage that results from the con­

ceptually cIean functional model that deals wlth values rather than storage œlls; imperative 

languages dcnve effioency from bemg able to optimize the storage and movement of data. 

higher-order functions: at the current level of compilahon technology, these abstractions result in 

decreased effioency, dependmg, of course, on the arclutecture chosen. 

finite machine resources: ld bnngs expresslveness and parallehsm together without degrading ei­

ther; the fine .. t level of parallelli.m IS exposed, such that aIl possible operations are as asyn­

chronous as possible. TIùs approach requlIes a run-lime mecllamsm to c"eek and de/er arbilrary­

SIucI actrv,ftes unld the" precollditrons are salistified (e.g. a dataflow architecture). For example, 

u~ing recuJ'SJOn to set up parallel fur.chon execution can genera te a lot of potenhal parallelism. 

However, m most architectures, a straightforward implementation that spawns each function 

cali ,IS a ta5k will ineur large overhead that will offset much of the gain that parallcl execution 

bnng!>. Sim ply lookmg at speedup curws might be misleading, as it may lead the user to 

a5Slll.1C tha t he / she has found a good algorithm w hen in fact a ~ "rial algonthm would take less 

time. 'Illl' dataflow challenge IS to manage this explosion of adivities under finite resources. 

TIle more convenhonal solution 15 to have sequential processors execute short sequf'T\œs of 

operations This approach ralses the queshons of how efficiently sequenhal architectures can 

sWltch short tasks, and of the effechveness of compilers in partitiorung to create the appropria te 

taskgrams 

If hmctionallanguages need unconventional apparatus to achieve thelT efficiency (e.g. dataflow), 

their use wùl he curtailed. Thus in the tn-polar relationship discussed above, in many cases sorne 

compromise must be made m expressiveness and parallehsm in order to demonstrate a decisive 

advantagc ln effioency. 

Id paralll'l programmmg IS entirely implicit. There are no parallel annotations, no partitioning, 

scheduling, synchromzahon, nor memory latency to worry about. The latter two considerations 

are solved by the TfDA ardutecture. Synchronization is provided at the finest grain possible [71. 

I-strudures are proVlded to exploit the highest degree of parallelio;rn present, through fine-grained 
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synchronization causing premature reads to he queued unhl the data .\rrives. Opt.'rands to an 

mstruction in the di\taflow architecture must aIl be present for the mstnldlon to fire, thus creating 

synchronization at the instrucbon levcl. Task s\Vltching OCClUS at the lI\<;m.dion lt.'vcl; a~ aU mem'lry 

reads are split-phase, the memory latcncy problem is solved by l'xecuhng an arbltrary numbcr of 

instructions unhl the memory n'quest is completed, lrrcspeChYl' of whe'tht'r the Wdlt for data b 

because of contenbon for d particular memory or 1S sim ply bCCaU~l\ of the rt.'moteness of the' memory. 

The issues oflightwelghttask crcabon and e.lsy load balanCln~ Ml' .llso solVl'd by the architecture. 

The finest grain parallehsm possIble IS exposed by the funchonal natun' of Id, and tasks are eqUlvalt'nt 

to instructions on the TfDA Load balandng among proces~OTh of .1 multl-proCt'ssor TIDA machine' 

is done by chsmbutmg copies of the code to cach processor, and applymg ,\ hash function on token 

tags to detennine wh.lch processor will handle the cxecution 17J 

Memory latel\()' problems are solvcd in the ,Irchih~liul'(', whlch make's h.mdhng largt', shared 

data structures transparent to the programmer, and efficient on eX(I\:\lhon. In t ... rms of the 'IïDA 

arclutecture, aIl memories are globally addressable Good performancl' lhl'refore dOt.'~ not depend 

on a programmer carefully mapping the data to memory ,md being lamtliar wlth the stor.lge model 

of the arclùtechIre. 

Determinacy is another strong point of the 1:>ystcm, and lS guaranteed by Id'!; functional nature. 

The importance of this fact has been dlscussed extensivc\y cl&ewhere 11\ this thesis, and will not be 

discussed further here. 

Communication between tasks does not have much mearung ID the domam of lmphcit parallelism, 

being out of the programmer's control. In the TfDA, the produchon of result1:> necded by other ta!lh. 

(i.e. instructions) produces synchronization at the mstrucbon levcl 
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3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEvEL VISION 

3.7. Potential Problems with Id Approach 

We have already menhoned the problems with the Iack of control over operational behavior. Anno­

tations to ~pelÎfy partitionmg and scheduling would be useful to programmers who know optimal 

algorithms or want to refine the perfonnance of existing code on many conventional MIMD architec­

tures, although the relevance of these on a dataflow machme IS unclear. However, the importance of 

being able to control exœs~ paralleill,m IS dear. In faet, the TTDA proVldes, at the architecture level, 

a mecham~m for throttling the concurrcn<.y of loop iterahons, allowmg only ~ iterations at once [71. 

l1ln>ttlmg of hanction invocations IS not performed, so overloadmg of machine resourœs is therefore 

&hll possible 

ExceSMve programmer dependence on the funchonallaH3uage compiler 15 also a subtle, but real, 

problem. If tIlt' n'ader refers to the samFle functional program an section 2.3.3, he or she will notice 

that the funchons row and col do not perform any useful work - they only produce copies of a 

m.ltrix' rows ,md columm" which 15 qUlte meffiaent It is very tempting for a programmer to code 

the mdtnx muIhphcahon algonthm in that way, however ln fact, programming details can he put 

intofive categoriesl16J 

1. Algorltl",,,c dt'la"s: detaIls describmg a method of the solution. 

2. Data structures' detdils specifymg an orgamzahon of the program's data. 

3. Control detalls: detaùs defining an order of the program's operatIons. 

4. Type' n'latrd ddails. dl'taIls speClfymg types of the program's variables. 

5. Storage related detads: detail& des01bing representations of the program's variables. 

6 Resource rl'1ated dC'tuIls. dctails that specify changes ID allocahon of a prograrn's resourœs. 

Functionallanguages wlth imphcit paraUel15m rem ove all detaùs except the fust two. The respon­

slblhty for adequate algonthms and data structures IS ID no way lessened by the use of a functional 

lan~u,'ge. Here IS a more efficient version of matnx multiplication [28] than the program shown in 

section 2.3.3. TIll' matmult function is kept mtact; only the support functions are changed. 
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def row i X k Xli, k]; 

def col j X k X[k, J]; 

def ~p rowC colD = { 
( ,n) = bounds rowC; 

~n 

sum (l, n) {fun ~ (rowC ~)*(coID ~») 

) ; 

In tlùs way, rowand col do notcopy a row ora column. matmult invokes ro., ~ A and col J B, 

which causes partial applicahons of row and col to be made, creatmg two new functions of a !omgle 

argument each. In tum, these new functions are passed to lP, the inner product fundlon, which 

invokes them as rowC i and colD l, wlth the smgle rcmaming argument llt'mg the index 1 ln thls 

way, lugher-order funchOIlS (those created by tIlt.' parhal applicahon of row and col, and passed as 

arguments to lp) remove the necd for copymg and tncrease efftcicncy A programmer mu~t be able 

to take advantage of these posslbilihes. 

The final dlSadvantage ofId is the rarity of lmplementationson real machmes, which dramatkaUy 

curtails is usefulness as an intermediate-level vIsion re!oearch tool. Indeed, the expcrimental code 

used to demonstra te Id's usefulness has been lmplcmented on a software SlUlII/atlOn of the TfDA, caUl'd 

GITA, the Graph Interpreter for the Tagged-tokcn Archited1.lre, descnbed earlter m th~ chapter. 

Unfortunately, this is of limited use as a tool (or intermedlate-Ievel VISIon re!>earch, because of the 

obvious slowness of a software simulation of a hardware ardutecturc. 

These arguments may he made obsolete by the commercial mtroduction of the Monsoon dataflow 

architecture, developed at MIT [151. Monsoon is a slgnificant modification of the ITDA to rem ove 

the associative rnatching of input tokens to an mstructlon. A smgle procC!osor prototype has becn 

operational at MIT smœ Octoher 1988, and Motorola Corporabon IS collaborating with MIT in 

building multiproœssor versions. These machines are a11 programmable III Id 
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3. A COMPARISON IN THE CONTEXT OF INTERMEDIATE-LEVEL VISION 

3.8. Id Experimental Results 

lronically, the fleXlblhty and hl'avy mstrurnentation of the Id World TI'DA arclutecture simulation, 

combmerl wJth the very nature of the expenmental problem, prevents us from presenting complete 

mcasuremenb of cooperahve fitting on the 1TDA, except for extremely small data sets (:5 10 data 

pomts). ThIS IS becau~(' of the cnormous memory requirements of any simulahon on the 1TDA, 

mmbmed with the explo~jon of parallehsm present m the fittIng problem Itself. 

Howl'ver, what wc will show IS a part of the fitting process typical of the rest of the algorithm: the 

computahon of the \ 2 merit function. 1hÏs l~ slmply a summation over aIl data points of (a function 

of) a chosen error metnc. ThIs type of summation is repeated throughout the fitting procedure, 

with the summand funchon being various functions of the error metnc, or of its derivatives. This 

therefore exlublts il considerable degree of parallelism. 

Wl' mcasured various system parameters for different machine configurations. Id World allows 

the USl'r to set the simulation to 

idealized mode: an mfinite number of proœssors are avatlable, and the lime taken for the result 

of one instruction to reach the next mstruction (communication latency) is zero. This mode 

is uscful to obtain the parallellsm profile of the program, the maximal parallelism obtainable at 

each time step. ln a pdrallelism profile in ldeahzed mode, the number of instructions e",ecuted 

at each hme step is constramed only by data dependenaes. 

fini te pnKessor mode: in this mode, both the number of proœssors and communication latency are 

adjustable. CommunIcation latency can he ? O. 

The expcrimen~ we ran were the following. 1521 pomts were sampled on an artifidally·generated 

l'llipsoid, wlth addl'd gallsslan nOIse. The \ 2 merlt function was then applied, with the error metric 

dcscnbed in section 3.1 If /1 IS tbe number of processors and 1 is the communication latency, 

ml'asurements were taken for the foUowing machme configurabons: l' :::. x,.l = 0, JI = 30.1 = 
0.1. 5.10, /' = 50./ == 0.1 5.10, /' == 100./ = 0.1 5.10, and Ji = 200./ = 0,1,5.10. The first 

m('i\Sllrement l'OTrCsponds to idealized mode; thereafter, mcreasing processor numbers demonstrate 
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Figure 3.7: P.m~llelism profile for \ 2 mert function, for 1521-pomt surface data Thl' !>ohd 
1ine is the number of ALU operations, the dashed line IS the number of f1oaIJn~-p()lJlt 
operations, and the dotted line is the n'.'lHber of function invocations, at each hmt· stt·p 

the scalability of the results, whùe increasing communication latency shows how perfonnanœ IS 

affected by latency. 

We fust show the extended parallelism profile for the program, ln figure 3 7. 

The parallelism profilE' corresponds, in the TIDA, to the number of ALU 0Jierahons performeù 

at each time step. The numberof floating-point mstructions is aIso quite intercsting 'n'le summabon 

function employed recursively decomposes the surnmabon range mto two halves, to explOIt tilt' 

maximal amount of parallelism available through summabon. This creates an exponentJally-nsmg 

number of new functions (as shown by the function invocation profile), and a large numlx.·r of 
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floating-point operations once the leaves of the summation "tree" have becn reached, which forces 

l'valuation of the summand function (seen in the function mvocation profile), and soon thereafter 

the large number of floating point operations. 

Nobce how many nl'w funchons are created by the recursive summation function - thousands 

of new function call~ TIns couJd conœ1Vably swamp the resources of a real machine. In such a 

case, the recurslVe ~ummahon function would have to be recoded to {oree evaluation when the 

summabon range b les~ than sorne epstlon (<'" 4, for example). This would corresponds to changing 

the granularity of the program to suit the arcJutecture. 

Figures 3.8,3.9,3.10, and 3.11 show parallehsm profiles for p=30, 50, 100, 200 uI\der dlfferent 

latenoes. Note how httll' executton time changes when latency changes from 0 to 10. For example, 

for l' :.. JO, execution time changes from 10293 to 11394 hme steps, a 10.7% mcrease, when latency 

increases from 0 to 10. ThIs IS quite smaIl, consldering the increase ID commurucation latency, and 

o~ bt.>cduse exœss parallehsm masks latency. Because of split-phase rransactions, the dataflow 

proœssors are frCè to work on oUler instructions mstcad of wruting for other results. Of course, 

it stands to reason that when less excess paral1elism 15 present, latency is not as weIl masked: for 

example, for " = 200, execubon bme changes from 1628 hme steps to 3206, a 96.9% mcrease, when 

latency mcreases from 0 to 10. TItis IS sttll an impressive result. mcreasmg latency from 0 to 10 

produces only a doublmg of mn hme. 

Speedup and efflciency (or utilizanon) CUl'ves are shown in figure 3.12. NaturaIly, increasing 

latency dimirushes the speedup (or the effecttve number of processors), and correspondingly de­

creases the average effiocncy, or ubhzahon of each processor. If 'Ii is the time taken by one processor 

(equivalently, the total number of mstructions executed), and t(/,. l) the time taken for a machine 

configura bon wlth " processors and 1 communication latency, then [5) 

and 

Tl 
speedup(p./) = -( 1) 

t Ji, 

T 
utilization(I'.1) = 1 /) 

[1 X t(p. 

As can bt.> seen from the figure, latency is responsible for flatterong the speedup curves and for dimin-
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Figure 3.8: Execution time for \ 2 for JI == 30, under latencies of 1 = 0, 1,5.10 (in solid, 
dashed, dotted, and dash-dot lines, respectively). The maximum number of operations 
(30, as JI = 30) is sustainable for m08t of the execuhon time, for alllatencies (from approx. 
t = 1400 to 1 = 10200). InitiaUy, however (1 < 1400), there is not enough work to keep ail 30 
processors busy, the numberof operations per time step osci\lates between maximum and 
a lower value. ObVlOusly, the run for 1 = 0 finishes firat, al 1 = 10293, then 1 = 1, 1 = 5, 
and finally 1 = 10 al 1 = 11394, but notice how little exp.cution time changeb as latency III 

increased, because excess parallelism in the algorithm 15 used to mask latency. 
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Figure 3.9: Ext'cution timt' for \ 2 for JI :=: SO, under latencles of 1 = 0.1. 5,10 (in solid, 
dashl'd, dotted, and dash-dot Unes, respechvely). See comments for figure 3.8. Again, 
notIct' how huit' ext'CutÎon time changes as latency IS increased, because excess parallelism 
11\ the algonthm is usoo to mask latency. 
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Figure :UO: Execution time for \ 2 for JI == 100, under latencies of 1 = 0,1,5,10 (in !lolid, 
dashed, dotted, and dash-dot lines, respectively) Set> camment& for figure 38, Again, nohce 
how little execution time changes as latency is mcreased, becau!>e excess parallelism ln thl' 
algorithm is used ta mask latency. 
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Figure 3.11: Execution bme for \ 2 for Jl = 200, under latencles of 1 == 0,1. 5 10 (in solid, 
dashed, dottcd, and dash-dot Imes, rnspecnvely). Recall that since parallelism is used to 
mask latency (by ktoepmg procc!>sors busy mstead of waiting), wc would expect that less 
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would cause the effects of latency to he more apparent. Execution time increases (rom 
1 - 0 1628 (for 1 =: 0, sohd l1Oe) to l "- 3206 (for 1 -= 10, dash-dot line), nonetheless an 
lD\preSSIVe l'esult for such a mdSSlVe increase in latency. The effects of high latency (1 =- 10) 
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as oscillations 10 the number of instructions executed during that time frame, as processors 
dre busy, then Idle while waihng for results, then are busy, etc .. 

80 

3000 



J 

l 

.. 

3 A COMPARISON IN THE CONTEXT OF INTERMEDlATE-LEVEl. VISION 
---------~-- -

ishing average effioency. In fad, effiaency drops to below 50% for a latency of 10, mm pron\1<;m~ tilt' 

cost-effectiveness of the machine Howevt'r, less severe latenoes produ,-'l' more .Il"Ct'ptabll' n'l-ults 

3.9. Key Points 

Let me summanze the key points 1 have made m this chapter. 

Our test algonthm to compare parallel processmg systt.'ms 15 a simpltfied Vl'rsl0n (lI p.lr.lllt.'1 

cooperative hthng, where difft.'rent iteratlve fitbng processes exchange mformation about .\Ill'Ilhly 

in order to obtam a better fmal fit. Parallel cooperatIve htting 15 an intercsting t ~I caM', .11-0 Il 11-0 

an iconic 10 aggregate transformahon wlth large Input data sets, data-depend('nl parhbonmg, and 

potentially hlgh paralldism. 

BBNU S strengthsan'a compdrativelysmall grainsize, dynamlcloadbalancmg, larg(·b.Inllwldtll 

to shared mcmory, and a smgle address space for shaf(~d data. Weaknes!ocs arc a Jack of lugher-order 

functIons, an mexpressive parallelism mechanism, mal and error exphot ta !ok p.lrhtlOl\lng, and 

10cal/remotc, pnvate/shared consIderations for every data obJect. 

C-Linda strengths arc uncoupled, atomic operations, fleXIble task creahon, .md load baJancmg. 

Weaknesses are a lack of lugher-order funchons, tnal and error explicit task parhtIollmg, ('xphot 

data partitioning, 10ss of program modulanty, and mandatory, explicit copying of !ohared data 

Id strengths are logical mdependence, closeness to the mtermediate-level vision problem domain, 

fine-grained parallehsm, and determmacy Its weaknesses are the absence of control over operahollal 

behavior, the possibilities it gives to overwhelm finite machine resources, the increa1:>cd compIler 

reliance sorne users mlght feel, and the rarity of implementations on real hardware 
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Figure 3.12: Speedup and efficiency for the TfDA, in the presence of latency. 
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4. LESSONS To BE DRAWN 

4.1. A Comparison of Three Parallei Processing Systems 

ln this section wc will compare and contrast our tluee lest sy~t('m!>, agilinsl (',wh utlll'r but .Il!>o 

against our evaluahon criteria. 

A criticism of funroonallanguages such as Id IS l.'XCt'SSlve u!>c ot storage beC,IUS(' of l'upymg 

However, reusing storage IS often possible Gnly becausI! of &equentldl cxel..'Uhon For \.'X.\mplc, .l!> 

for functionallanguages, the V.S. uses extra storage to allow for more paralll'h!>m. the Share () 

mechanism (and other local copies to aIl processor&) ensure that all proccssors can pTOCl.'ed \Jl parant'} 

and don't have to waJt for a senalized access to a single memory module. 

C-Linda on the Sequent Balance, ID sorne rc!>pects, IS il better-adapted !>ystcm than thl' BDN 

Vnifonn System for parallel programmmg of intermedlate-level vl!>ion algonthms, but lcs!:> so ln 

others. It does not suifer from the syntactic crudeness a parallel hbrary-bascd de!->Ign, nor doc!> it 

suifer from the semantic crudeness of a single, dommant parallchsm model (of parallelism OV<>T data 

structures). The V.S. proœss generabon mecharusm is very mflexible wlth re!>pect to the C-Lmda 

model. With C-Linda's eval () , a task can be created out of any arùltrary funchon 

The presence of what amounts to a memory hicrarchy m C-Lindd crea tes Jncon!>lstency problcms, 

just as in the Unifonn System. Modifications to shared memory may be atomic, but this does not 

prevent another process from using an old copy of data it obtained using a rd () operation. This is 
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an examplc of the synchroruzation problem synchroruzation of multIple copies of a single plcœ of 

data 

The data parhbomng problcm 15 entirely analogous to that in the BBN Butterfly US: both 

C-Linda and tll(' U S force the programmer to expliotly cut up data structures in order to avoid 

1>cnahzed ac('es~. In the latter case, data pamtiorung was determined both by the memory model 

and by the C language programmmg model (/, S C vectors on a ~ingle memory) The diifel\'nce 15 

that US d"til ~tructurc~ don't neœ~sanly have to be copled mto local memory to be used (although 

for performance n'a~o~ il programmer may want to), but C-Linda data structures always have to 

be exphl'ltly ln ( ) , ed or rd ( ) 't'd fust 

Tuple &pacc 15 ail excellent medtum for synchronization. because it un couples the synchroniz­

ing proœsses and ensures atomlcity As a mcan!:. ot inter-proce5~ commUJÙcabon, it keeps thcse 

attributes, but breal/SC of tilt' mrcllolllsms (~n (). out (), rd () ), the programmer l~ forœd to make 

explicit copie& of datd, Whlcll is il burden on perfomldllcc. The BBN US model is sometimcs more 

convement and more dfloent, but alway~ more dangerous: local and shared (remotc) memory are 

acct$st'd m cxactly the samt' way 'nus can even be done wlthout cutbng up the shared data structures 

into chunk", nor domg explu:lt copies, lf performance is not affccted. For example, a U S scattt'red 

rnatrix IS a lot more converuent to use for a task than a Linda matnx stored III tuple space. The latter 

must he 1. n ( ) , ed exphotly by any task that wants to use il. nlese lùndrances, cé'used by the need 

to mamtam atomioty ln the face of changeable 5torage, are made irrelevant in a single-asslgnment 

system such a& Id 

As mcnhoned above, one advantagc ot C-Linda 15 its dear dlstmction between shared data 

and non-shaœd data. ln the U.S., any pointer can point to shared memory or local memory, and 

the syntachc ml'charusms to use a pomter to shared memory and a pointer to local memory are 

cxactly the sarne' It is up to the programmer to remember which area of memory is pointed to, 

for corrcctness and perfomlanœ reasons. This 1S extremely tedious in practiœ. In contrast, the 

distUlctlon between shared and non-shared data ln C-Linda is quite explicit, sim ply because of the 

fact that the mt'Charusms used for shared memory access are explicit and unavoidable. in ( ) 's and 

rd ()'s for shared array acœsses are separa te fro n the pointer indirection and dereferencing used in 

local aTray acccsscs, for example. 
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Let us conclude by corn panng aU three systems \VIth thl' ('valua tion mtena W(' propose 

In tenns of doseness to problem domain, Id IS most appropnate, a~ hl1H."honallangu,,~(·s dcal 

best with funliÎOns, th(' rore of mathematical programoung. Intemwdidtl'-ll'vd V1~I()n progr.lmn\lng 

is no exœpbon 

General applicabÙlty 15 il fealur(' ot al1 thn'c systems, whlch can Lw u ... cd lor .lIly mh.'TInedl.ltl'­

level vision task, but of COUThe wlth varymg dcgrces of effort ln adaphng i1nd n'~trllrtunnJ!. n'Jc t(l 

obtain good efficiency 

Id is the most fleX1ble system Ùl tenn~ of task creabon: ta~ks are Imphnt Cl'.lfh I\1strul1Îon i~ il 

task) and arc not a programmer concem. For expliatly-pdrtitioneù langlJ.l~e1'>, C-Llllda'c; ev,Jl () Il'> 

more flexible than the U.s. ta~k generatoTh. the parallcl hbr<1ry dl'~lgn of tilt' 1.ltter ml'an~ !->yntiKl1c 

and semantic crudeness FleXible task creation is a desirablc rharddcnshc for il probll'fIl Jomaan 

such as intermcdiate-levd VlMon, whcre partitiorung 15 data-dcpendf>nl ,md wherc '''0;1-." wdl ofll'n 

be dynamically created 

The overhead in task creabon 15 the most archllecture-dt'pcndl'nt of .111 l'nll'rltl Ilowl'vl'r, thl' 

programming model also has a part to play. For example, Id Impo~l'~ no arhfK1al rl'~tnctHlIl!-> on 

parallelism; maclùne resourCf>S and data dependl'naes are the only con~tra1l\l,> Thl<, •• 11ow'> for 

maximal parallelism on a very fint>-grained machine, ~uch as the lTOA drrhJtectur(', wll1ch makc~ 

1 task per instruction possible The BBN Butterfly supports fauly hghtwelght la~k .. , ,,~ compdn'd 

to the Sequent Balance, which again 15 a desirable charactenshc for a problem dom.un ~lIch a~ 

intermediate-level vision, where fme-gramed parallehsm wùl often hl· pre~ent Howev(.·r, lack of 

lightweight task creation 15 not a restncbon of C-Linda, but rather of ihe tmplemt'ntahon on the 

Sequent Balance architecture. 

Detenninacy is only guaranteed by programming in Id. 80th U.S. and C-Lmda programming 

rely on the programmer for program correctness, which in some case can be extremely difhcult to 

achieve. 

Load balandng is again very architecture dependent. For intcnncdiate-lcvel vision, wherc large 
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run time varia bons are pm.sible, because of the non-uruform na ture of the processmg mvolved, load 

balancing is important to achlcve good performance. Load balanong on the TIDA IS aclueved by 

havmg a task ~Izccqua] to an Instruction, and by the exccution of code blocks across processors. On 

the Buttcrfl y, fine granuJanty allow& fUi d ynamlc load balanong, given enough tasks. On the Sequent 

Balan{'{', load balanang must be stabc. Gl'I/en thedata-dependentnature ofintermediate-Ievel vic;lon 

task size." thls could be a performance problem. 

Intcrta~k commUnicatIOn WIll ObvlOusly he casiest ID the presence of unpltat paJ'bhorung' im­

pliat task& produCl' imphcit commurucation ami synchroruzation, Whlch m the 1TDA architecture 

are ~upported by thl' dataflow executlon model and I-structures. C-Linda supports uncoupled syn­

chromzahon and commumcation, but thesc are stùl expiait, and thus tedtous to incorpora te into 

codt' and error prone, a~ oml&<;lons wIll often produce non-det~nntmshc bch.lVlor. 

Handling of largl', shared l.~ata &tructure& 15 again easlest when out of programmer control. 

Wlth Id, exphC1t d.lta moveml'nt for l'ffiClcncy IS not needed, and the TTOA arçmtccture solves the 

memory latcm-y probll'm wlth ~p1it-phasc memory traru.actions. With the V.S on the BBN Butterfly, 

hlgh bandwidth to memory proVlded by the butterfly network IS an excellent charactl'ristic, but 

haVlng the programmer exphatly dlstribute data to take advantage of thls IS tedloUS, as allocators 

and acœss mechdm~ms must be bUIlt for cach new data structure. The programmer must also be 

aware that If a part of a data stru,.'turc on one memory node IS acces!.ed more frequently, contention 

will rcsult In C-Lmda, If data is shared, it must he copied to local memory befoTe being used, 

which IS not neœssary wlth the BBN US. For large data structures, copymg to and from tuple space 

may bt.>come a performance problem As for the V.s., data partiboning is aJso a C-Lmda problem. 

Parallehsm can he increased by decreasmg tuple size, but tIus will increase data access overhead. For 

intermediate-Ievel vislon, w here proœssmg 15 data-dependent, data partihoning will not be easy. 

4.2. Key Points 

Of the three systems we examined, the best suited to intermediate-Ievel vision programming was 

Id on the TfDA, because of its mathematical flavor, general applicability, lightweight task creation, 
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detenninacy, and the logical independenœ it providt>s the programml'r. US. programmmg on thc 

BBN Butterfly and C-Linda programmmg on the SeqUl't\t Balance do Ilot havl"' tlw mathematkal 

expressiveness of functional programming, .md ottl'n force the prugrammer 10 rl'stmctufl' her or lm. 

code through trial and error l'xpliàt partihonÎng 

The BBN Urufonn System also lm poses the burden of managing the systl'm'!.luer.lrchll'.ll nWl1\ory 

on the programmer, has an inexpn.'Sslvl', hbrary-b.lsl"'d paralll"'lism modl'l, and doe!'t not gu,u,lntt'e 

detenninacy, but supports fauly hghtwelght ta&k crcahon and Mmphfu's programmlllg through il 

single, shared memory spaœ. 

C-Linda create~ a data parbhorung problem 10 tu pie spaCt' for th(.' lN'r, dOt.'!'t Ilot gUi.r.mlt·c 

detenninacy, and the Sequent Balance can only handle very coarse-gramed t .. sk~ 1 1 ow'.!v l'r, (' -I.imla 

parallel progTammmg, wlûle cxpIiClt, 15 uncoupled and alomlC 
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Tht, problem mvc~hgatcd by thlS thesls was that of giving mtennediate-Ievel vision researchers 

adequdte parallcl proccssing too)s for their work, where data and computahona) structures do not 

ht thl' SIMD cxecutIon model, but require il MIMD exccunon model mstead. 

SoentifIl programmer .... u~u.\lly rcfm~ the ilbstract models and algonthms whIch their programs 

implemcnt, and ~hollid not be l'xpccled 10 be parallel architecture experts. Thereforc, their tools 

should be Jd"ptcd to the;r problem domam, for fa~t codmg, and should provide logical indepen­

dcnc(' from ~olvlJlg the four lTUcldl MJMD l~sues of parallel processing, partinoning, scheduling, 

synchronll:ahon, and rncmory !atency Current tooIs, such as Unifonn System programming on the 

Buttcrfly .Ind C-Lmda programmmg on the Balance, do not. 

FunctIonal languages, on the other h.ld, as exemplificd by the Id language running on the TIDA 

ardutecture, ilrc a more appropnate ~olution. They are dose to the scientific problem domain, 

bl'CilUSC they ar"l' based on the funchon and on expresslOns. They are amenable to compUer solutions 

10 the ciled problems, because they do not allow a programmer to specify restrictive commands, 

or to arhfloally restnct the order of execution. TIns allows a compiler to extra ct aIl the parallelism 

present In a program. 

Our dt'monstration about Id on the TfDA secms to rely strongly on the dataflow architecture to 

&olve the memory latency problem (through split-phase memory transactions). But it is precisely the 

hlgh parallcbsm avaUable in a funChonal program that allows the use of tbis architectural feature. 

More generally, it is obvious from tbis thesls Ulat it is irnF ussible at the present time to completely 
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decouple paraHel architectures and parallellanguages - in l'fft'd, impossible to pnlVidt' rompll'tl' 

logical independenœ However, funrnonallanguage systems come doses t, and of ter by f.lf thl' bl'st 

opportunities for parallel eX{'l"Uhon. 

Why then aren' t such systems commonly avallable? l11l'rl' arc a fcw reason~, wInch Wl' ml'nt1olll'd 

in chapter 1. ExtensIOns to famùlar scquentiallanguage<; - thmugh paralIcI co,,"tml"ts or hi~h-Il'\'l'I 

interfaces to libraries - are more hkely to appeal to sl'Îenllhc programml'J"S than an' Ill'W l"OI\l'UITl'nt 

languages. There also IS an apparent ease ln paralld.lZlIlg scquenhal progr.llns lISlll~ l' ... tl'I\SIOI\~ 

or libraries, OlS there is minimal rewntIng. A further rt'a~on IS the availablhty ot produl"llOn-ll'vl'l 

compilers for parallel machines. Most scienhfic programml·n.' programmmg l'"<perll'IKI'S .ln' wllh 

imperative languages such as C and Fortran, and the ovcrwhelmmg maJunty of l'uITt'nl '.l"ll'utifk 

codes were wriUen m Fortran. Parallel ardutecture vend ors arc thcretorc llkely to l"OnIUl\ll' work 

on parallelIzing compilers for Fortran, mstead of compllcn. for funchol\all.m~1I.1gc~ AddlholMlly, 

functionallanguage research l~ quitc a young fIeld, applymg It to parallehzmg <'uenhtic pro~film~ 

will inevitably requin: sorne time. It ~ hoped, howcvl'r, thal tlus thl'slS hal> demul\~tr.ltl'd Ihl'If dC<lr 

advantages over imperative language systems for the <;Clenlific programnH'1 
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A. A UNIFORM SYSTEM PRŒRAM EXAMPLE 

Wc present a very simple U,ùform System program for matri>.. mllitipIication in bgure A 1. Notice 

espco.tlly: 

- 'Ille memory allocahon caIls UsAllocScatterMatrix () and ShareScatterMatnx (). 

UsA] locScat terMat 1: lX () allocates shared memory for a C pointer-to-pointer matrix, so 

thal matrix rows are spread across the memory nodes of the machine. A nonnal C matnx 

would he !>tored in a single memory, and would he a source of contenhon if access by mcltiple 

processors ShareScatterMatrl.x () rnakcs local copIes of the row pointers ofsuch a "scat­

tered" matrix. The vector of row pomters IS accessed for every clement access in the matrix. 

This vector IS kept in a smgle memory locahon, wluch 15 a source of contenhon if the matrix is 

3Cl'essed by many processors simultaneously. ShareScatterMatrJ.x () makes a local copy 

of this vectùr of row pomters on each proœssor. Thcse two funchon calls are examples of 

how the programmer has to keep in mmd and adapt her program to the memory model of the 

machine, to obtain good performance 

- n,e ta&k generator cali GenOnI ( ). In this case, the tasks to execute are the function 

forEachRow (). Each invocation is passed an argument index by GenOnI (), which in this 

case rom, from 0 to NROWs.11us funchon 15 an example of the somewhatrestnctive task creation 

mechanism in the Uniform System. Each identkal task is passed a single argument, an integer 

index in tlùs case. Additionally, as in every system where partitioning 15 exphcit, it is unclear 

whether or not the size of the generated task is appropria te for the granlliarity of the macltine. 

Any change in the granularity of the tasks would involve sorne restnlcturing of the code. 
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B. PARALLEL FUNCTIONAL PROGRAMMING 

In tlus section wc will look at parallel functional programming. The issues prcsentcd WIll be: 

- what functionai prograrnming is, 

- the parallel programming problems it solves, and how it solves them. 

We will also look at an example paralld functional prograrn and show, undcr idealized mndltlonb, 

how much parallelism it hoids. 

B.l. Functional Programming 

'This section will give a brief summary of what functional programming is. It will not be an exhaustive 

look at the history of functionallanguages, nor will it be a thorough overview of aU ch<lractensh~ 

of functionallanguages: we will only touch on those characteristics that arc import.mt tu computer 

vision programmers. The mterested reader lS directed to [24] for an exœllent survcy article on 

hu,ctionallanguages. 

We start by charactenzing programming languages as either imperahve or declartltlve . 
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imperative languages: charactenzed as havmg an implicit 5tate that 15 modified (1 e. slde effected) 

by constructs (! e. commands) in the source language 

dec1arative languages: have no impbat state, emphasis placed entirely on programming with ex­

pœ'lsJOns. 

Imperative languages mclude the most used languages today, such as Pascal and the C language 

ln the~c languages, programming is splIt [9, p. 639] into 

- an urderly wo,ld ofexpresslOllS (e.g. f (atb) + c (f (d))) 

- a disorderly world of statements, with few useful mathemancal propemes 

11\(.' world of statements l~ represented primanly by the asslgnment statement [24, p. 361], whose 

{'/f('lct is tn alter the underlymg imphdt store li e. the computer's memory) so as to yield a different 

bmding for .1 parhcular van,lble. TIus !las important consequences for parallel programming, as we 

s ha II Sl'P la ter. 

DeclaratIve [21, p. 305J languages allow the programmer merely to state what should hold true 

wlth re~pcct to a computation, without bothering to say preasely how the computation should be 

donc. FunctIonallanguages [24, p. 360] are decIarative languages whose underlymg model of 

computahon is the function t 

Wc bncfl y dcscnbc the characteristics of functionallanguages. Again, the reader is referred to [24, 

9,21 J for more detatl. Pure functionallanguage characteristics include: 

- Complete tteeJom from side effects· codmg is merely defining expressions and functions. 

Nol/mlg is t'Ver modrfied or reassigned, as there is no assignment statelT'ent to give same variable 

a dlffercnt binding. 

lin ~"Ontra~t to the relation that forms the basis for logtc programming languages. 
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- Functions are basIc program bwlding blod<s, and l'an be passed arnund .\5 ,Ilgument"l> (higllt'r­

order functions) 

- The order of l'valuation of expressIOns IS ununportant (the Churl'h-Ro~~('r property), 

We will examine the consequenœ of these characterishcs n latH sechons. TIll' intercsted l'Cader can 

examine a simple functional program m appe1\dix 2.3.3 

B.2. Characteristics of Modern Functional Languages 

Even though they are somewhatorthogonal to paralleùsm, sorne of the featurc~ of modem funchonal 

programming languages will be discus!>ed below, becaubc of their importance for ('xpressJVene~s, 

The reader lS referred to Hudak [24] for a much more thorough tn'atm('nl of the matter. 1 will follcw 

[24J in this exposition. 

As stated by Hudak, a functIon IS an absb'actIon of &omc common behavlOT (/.t'. the produchon 

of results) over values (i.e. the arguments). If a languagc allows funchons lo be &torcd In data 

structures, passed as arguments and returned as resul~, then the language I~ said to allow lIi8",'r­

order functions. Higher-order funchons elre a charactenstic of funchonal languages that grcatly 

enhances the expressiveness of the language. In appcndlx 2.3 3, wc .• how how the behavlOr of 

summation is abstI'acted :Jver any pOSSIble arguments. 

Non-strict evaluatIon of expressions can take two forms, l'lther lazy l''val uation, or l'oger evaluatron. 

Lazy evaluation is also referred to as call-l1y-need; an expressIOn wIll not bl' l'valuated unlcss it lS 

needed in a computation. TIus frees ct programmer from effiacncy concems a bout not evaluating an 

expression unless absolutely necessary; for further dl'taùs, sec [241. 

Eager semantIcs imply that in a function applicatIon such as (f x), the body of f and the eval­

uation of x will proceed in paraUel [81. WhIle thls will potl'ntially rncreas(' the available parallehsm 

obtainable ID a program, there also exists the possibllity of wastIng re&ources on unneœssary com-
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putation, thus the usefulness of explicrtly specifyi.ng evaluahon of expressions in a delay~d manner, 

a~ explamed abovc. 

Us('r defined data types, rcpresentatlon and implementation abstraction dnd lu\.~ing are another 

unportant ...harclctenshc of modem functional languages, enhancing modularity, coae clarity, and 

faohtahng debuggmg through bctter type-checkmg 

Pattern tnatrllmg aÙows the programmer to wnte severa) equations when defimng the same 

lunction, (lnIy one of wlùch il.> applicable in a given situation [241. For example, in Id, the factorial 

funchon mlght be dcscnbed in thlS way, usmg pattern matdung. 

de-f fac a 1 

1 •• fac n = n*fac(n-1); 

Note how intwtive tlu~ definitlon of the factorial function is. 

Array comprehensions are non-strict data structures that treat the array as d single entity defined 

declarahYl'ly, rather than as a global object holding values, updated incrementally [241. Anay 

comprchcnslOns thus spedfy the shape and the contents of an array simultaneously [271 Array 

comprchenslOns arc c&pecrally expressive. for example, we can express anay elements constructed 

from recurrence relahons quite easùy, as the followmg Id code suggests [271: 

A {matrJ..x (l,n),(l,n) 

[1,1] 1 

[J.., 1] 1 Il i <- 2 te n 

[1, J] 1 Il J <- 2 te n 

[i, J] A[J..-l,j]+ 

A[J..-1, j-1] + 
A[i,j-1] Il J.. <- 2 te n 

& J <- 2 to n} ; 
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The programmer is thus frced from worrymg about the order ln which the e}cnll'ntb should b(' 

evaluated. 

B.3. Suitability of Functional Programs for Parallel Execution 

Functional programs are well-suited for paralle! execution beci'use ot thœe (rdated) charactcnstics 

[29, p. 2] 

- parallelism is nnplIcit in theIr operahonal semanhcs The programmer docs not cxphdtly 

break up a task into parallel components (no expliot parrinoning>, and so does not worry 

about synchronizahon. 

- Funchonal programs are defml/innte, i (' , the re&ult of il funchonal program depl'nds only on 

ItS mputs, and never on the machine conngurahon or the runtune sclll'dtùmg pOllcy. TIus is d 

major sImplIftcahon ln debugging. 

- Most importantly, the ollly limifs 011 paral/e/rsm are from data-depe1ldl'llcil's and timte J""Iitchinc 

rl'sources 

Thesl' charactensbcs deserve sorne comment. 

Imphcit parallelism [21, pr. 338-339] ID declarahve languages means that declarahve language 

programs may be executed on a parallel machine--but they don't allow programmers to state 

explicitly how parallehsm 15 to be created and controlled, that !s, how pr rtitioning, ~cheduling and 

synchronization are to be performed [3, p. 1251 Instcad, m functionallanguages the parallelibm jb 

implicit and supported by the underlying semantIcs [23, p 61 J. There IS no necd for speoall11cssagl'o 

passmg constructs or other comm unicabons pnml ti ves, no need for bynchronizabon prim lti ve&, and 

no need for special "parallel" constructs such a "parhegm parend", all of which are needed in 

expliàt1y parallel schemes. The compiler detects the parallehsm and generates calls to nm time 

software that takes advantage of the parallehsm and manages lt This allows the user to concem 

herself only wlth the expression of the algonthm and not wlth the expression of parallelism or the 
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Implementation of it, which IS rcqwred in expllcitly parallel schemes. Expliot parallehsm reqmres 

the user to explicitly manage the parallehsm and synchroruzahon, which can be a tune consummg 

nnd <,rror prone actlVJty Functional proglammmg allows the programmer to Ignore thet.e matters. 

A detmmnate program It. one whcrc a g1Vcn set of inputs always produces the same set of 

outputs, rcgardlet.s of machine configurahon, machine load, schedulmg pohcy, and 50 on. A [21, 

P 3051 language is determinate if 1t sabsfies thr Church-Rosser property, In which the value of 

an expressIOn 15 mdependent of the order in wluch Its subexpresslOns are evaluated (i e. the order 

of evaluation to amve at the result IS unimportant) This property guarantees the detennmacy of 

funchonal programs (24, 71. The inverse, non-determmIsm [21, p. 331J is program behavior that 

can't he preŒcted from the source text alone, but de pends on crrcumstances at nmtiIne. 2 

The reasons for determinacy in funcbonal languages is because of their sing!c-asslgnment con­

vention and lack of slde effeds [23, p 61J A s,de effect is anythir.g that perslsts after the evaluation 

of an expressIon produces a rcsult [34] Examples ot how slde effects occur in Impcrahvc languages 

<lTC given In appendIX C 

Detenninacy can be ,>xtremely important in parallel programmi.'g. It imphes [21, p. 328] that 

the meaning of a program docs not depend on the underlying madrine unplementing It This is 

mvaluable ln parallel systems [23, p. 61J It means, for example, that programs can be wntten 

and debllgged ln a funroonallanguage on a sequenbal machine, and then the sa",e programs can be 

cxt'cuted on a parallel machIne for unproved performance. TIus facihtates debuggmg tremendously: 

when left to the programmer, as man imperahve paralle1 programmins language, detennmacy is not 

guaranteed. The programmer is rcsponsible for msertmg the appropnate synchronization statements 

to prodllce detennmate behavior Any omission, however mmor, can produce non-dctermu .te 

results [29, pl] : 

fI.eaving detcnninate behavior up to the programmer] makes debuggmg extremely 

dtfficult-for a glVen input, the program may produce dtfferent outputs for different 

2Note that dett'munate IrehaVlOr does not neœssanly mean detemnnlsht executwn [7, p. 2] (although 1t can) In\phot 
p.uaUehsDl Ln the language, varymg machine configurdbons and madune load can cause the partlcularcholce of schechùe for 
parallel ac:tlVllles in a prograDl to be non-dete.-nunistic. However, the 7'l!Sult CODlputed should not vary Wlth the schedule, for 
dl'tl'munate behaVlor. 
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macilÎ!le configuratIons and/or scheduhng pohol's, and thlb bl'lléiVlOT m,lY nol mmH'­

diately b~ obvious. Such hmmg-dependcnt elTor.. moly not c,,{'n 1l(' n'prodUl'lhlc 11\ <l 

debugger ibecause st~'ements lIlSt.'rted ln dt'bug ma)' "dlsturb tlll' e"pl'nInt'nt" J 

The lastcommcntls important using a debuggt'T on" parallt'l program ma~' t.1\I5l' hnllll~-dl'pt'ndl'nl 

errors responsible for non-determinale bchavlOr 10 dlS.lrrcar A funchonill progr.ml, bl'r.\lI~l' II lb 

detenninate, will avoid these pitfalls. Removmg <;Idt.' cftl'ct~ 1 .. il nUClal faflor 123, phIl IllI' 

importance of mirunuzmg side effects 11\ a paraUd ~y~tl'm I~ intenMfIed ~1~mfJc.Hltly, dut.' 10 Iht· 

careful synchroruzation requrred to ensurc correct bdlavlor whl'n '>Idl' l'ffed5 arl' pn..'~t·nl 

The final characteristic ml portant for parallcl exccuhon of hu.:-h,lnal lilngllagl.'~ I~ tht'IT Il, Il 

15] equivalence of instruction schcduling constramts wllh Jatil depl'nâ\'nl1l's 'nus ml',m" th,llno 

artificial data dependenoes are mtroduced. Art1flOdl d.lta depl'ndt.'nClcs 1Il Inlperilt1Vl' I.mglhlgl'b 

are a c:msequence of being able to reass gn new valut.'~ to prevlOusly-ddmt'd Viln.lblt.· ... '1'111'" l', Ilt 

COf.ll"Se prohibited m functionallanguagcs. Thus, [1, p. 171trcl'dom trom "'lde l'Ilccts IS rwCt".!:>.Iry fil 

('nsUIe that the data dependenClcs are the sa me as the sequencmg com,tramb, imd t}lI., 1 ... the C,IS,· III 

functionallanguages, A review of data dcpendence type& IS pre~cnted in appl'ndlx D 

Thus, the key concepts introduced m thlS section arc thal fundlOllal programmmg langll.lgt.'''' .trl' 

Good for 

high-Ievel programming: becau..c;e of Ihey 3upport h1o!1Cr-'Jl'ÙCr fllnchons and.1 programmlll~ ~tyl(' 

close to the mathematical speciftcahons for algorithms 

det,erminate results: because of the Chl1rch-Ros&er property, f mchonal programb arc gllar,lIltt.·t,·d tu 

give the same outputs, glvcn ~hc same inputs, IlTeSpectIve of run-lime condlhon& 

parallel execution: because of the smglc assjt;nment feature of functional Idngua~e~ thilt n'moV<' 

side effects with unknown consequences (which prec1ude parallel execuhon), (md prohlbll 

artifical data dependencies such as antidependencies and mltput depcndenaes . 
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C. 5IDE EFFECTS IN IMPERATNE LANGUAGES 

A simple example of a fUllcbon with a slde effect IS the foUowing' 

cc"nter := 0; 

function SquareAndCount (A: ~nteger) i 

begin 

counter := counter + 1; 

return A-2; 

end; 

(1) b := SquareAndCount (2) ; 

Function SquareAndCount slde effects the variable counter, while returnmg the square of its 

argument In Imperative languages, the most common cause of side effeets 15 the aS3ignment 

st.lternell!, whose effcct is to alter thC' tmderlytng impliàt store on which the unperabve language IS 

based so as to yicld a dlfferent binding for a pamC1.Ùar vanable [24, p. 3611. However, functional 

languages prohtblt the rcasstgnment r{ a previously declared expressIOll. no side effeets (such as 

thosc ('aused by an assignment stat .!ment) are permitted. Wlthout side effects, there is no way for 

l'Oncum'nt portions of a program to affect one another adversely-trus ;s sun ply another way of 

sta ting the OlUrch-Rosser property [23, p 61] 1. 

1 Tht'I't' is a large body of compiler work devoled 10 the analysis of mltrprocedur/d suie effecls ln lD\perahve languages, which 
allow rompllers to be Dlore aggn'5slve ln scheduhng differenl subrouhnes ln paralle1. See, for exaDlple, [131. 

99 



l 
---------_. -- C .SIDI: EFFECTS IN IMI'ERA' IVF LANl,IIA(,~ 

The most unportant area of conCl'rn lor soenhfK rar;~l!eJ rro~ramnll'n. ln dl'.llmh \\'Ith "Idl' 

effects IS the way they mfluence the parallehzahon of 0rerlhlln~ \m .lrr.lV~ .• 1 dat.1 ~tructun' lll',\\'ily 

used in scienhfic programmmg Problems arise bl'cau~~ of the W.1Y Impt'r.ltIvl' l'lI1gllagC., tn'.lt d.lt.1 

structures, as modlfiablt> ennhe-- The funct1(.nal ~oluhon 15 ln mampul.lll' d.lt.l .. tnlcl\ln'~ III tlH' 

same way scalars are treated, that IS, as unml1dûy.lble value~, not ,,~ modlhablt, .lnW- of llll'lnllTV, 

which 15 just a reflection of the VOII Neumann archItecture on wluch 1ml)('f.lll\,l' 1.H1gll.l~t'''' Ml' hllllt 

[Il. For example [Il, 

procedure SORT2(var~ableA: array[l .. lOl of real; J: lntegt"r); 

var T: real; 

beg~Il ~f A [J] > A [J+1] beg~n 

T :=A[J]; 

end; 

A[J] := A[J+1]; 

~[J+11 := T; 

end 

(1) SORT2 (AA, J) ; 

(2) SORT2 (AA, K) ; 

(3) P := AA[L]; 

since the values of J, K and L are Ilot known at compue hme, It mUbt be a~~uml·<.Ilhilt ~tatemt'nt1> 

(1), (2) and (3) will conflict If executed ln parallel, and thll~ Ihey mU1->t be l'xeClltl·d sl'ljuentlrllly, 

in the order speofied. Another lmportant problem is allasmg , where two dlffprent vanabll' naml'~ 

refer to, in es&ence, the same menlory location<s) [121. TIns can occur when pOInter-. to vanables 

are used, or by using cail by reference argument passmg schemes ln funchon cali." !-tueh d'> ln t!w 

following L 11: 

procedure REVERSE (var A, B: array[l .. 10] of real); 

begin for J := 1 to 10 do 

B[J] := A[11-J]; 

end; 

100 



.. 
\ 

On fl~t glancc It would ~e('m that all 10 aS~lgnments could he done concurrently, however, cali 

by refercnce dllow~ for the pc,,,sibùlty of an mvocabon suc..~ as REVERSE (Z, Z), ID which case 

concum'nt cxemhon would destroy the :,emanbcs of the ab')ve detinition. Even If procedures and 

pomter.. arc not lIsed, the sImple possibl1ity of redsslgnmcnt of an imperahve array element makcs 

pa rallchza tlon unccrtalll. 

(1) A(J] := 3; 

(2) X := A(K]; 

Both statcments can proceed III paraUd, unless J=K. Thereforc, r 11 

If array!:> exist a~ global obJects in memory and arc mampulnted by statements and 

pa~sed ao.; pOInters or procedure parameteIb, It 15 vlrtually unpossible to ten, at the time 

an array clement 15 modifted, what effern that modificahon may have elsewhere in the 

program, 

or, in other word~, what slde effect:> that array modification will produce . 
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D. DATA DEPENDENCE TYPES 

Let us examme what type~~ of dcpendenL"Je~ can o(cur. Rcf~r tn flgllTl' D 1. Dat.! Jt'pl'Ildt'Iln' n'Id ti()n~ 

~le used to determme when two operab0ns, :,tatcment!>, or two 1 tl'ratlOns 0/ il loop c.m hl' l'XCCllh.'d 

11l parallel [3] 1 . In Imperahvc languages (l,lllguilge~ wlth sJ(le l'ffect~), thfl'l' typl'~ ot ol'pt'ndl'nCIl'l'> 

are found. 

teue or .fIow dependence: when two 1>tûteml'nts (~uch as :';1 ~nd ,"'2, al left m figure 0 1) f.mnot he 

executed at the same bme sinet' , .... 1 u.,es the v.tlue of A compuled by .... 1. 

antidependence: (m the center, III figure D 1) smce ..... 1 1., to use the "old" valu(' of B, It mu~t bl' 

executed before --.'2, and thus can't be executed ln parallel. 

output dependence: (at left, m figure D 1) If .... 1 lb l'xccut('d after .... '\, tllen A will contam the wrong 

value after thls program segment TIley must ther!.'fore be eXl'cuted III !>cquen('e, 

As mentioned above [31, p. 11931, output dependcnacs and anbdependenaes arc, III .,ome 1>en1>l', 

false dependencies. They anse not becausl' data are bemg pa':>bcd {rom one stat('mcnt to another, 

but beciluse the same memory locabon 15 wntten to m more than one place FunctlOnal l.mguagl'1> 

prolubit tlus sort of behavior Imperahve languages, howev{'r, [24, p 3611:11> a re~ult of havmg 

llllphClt state that is modIfied (side effected) by ('Qmm<md~ gencrally have a Ilohon of scquennng (of 

the commands) to permIt preCISe and det<>rmllllshc control ovt'r the statl' ln funchonallanguage1>, 

sequencing is theorehcally constramed only by truc dependenoc1>, WhlCh b the muumum po,:>.,lble 
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81: A = B + C 
82: D = A .~ 2 
83: 1 = A * 3 

True (data) 

B = 5 
SI: A = B + C 
S2: B = 0 1 2 

Anti 

--_. __ ... _---_._----------

o DATA DEPENDENCE TYPES 

81: A = B + C 
82: D = A + 2 
83: A = 1 + F 

Output 

Cannot happen in a 
functional programl 

Figure 0.1: Data dependence types in an Lnperative language. 
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D DATA nEI'LNDENCF 'Il'pES 

constramt on parallel ('xecuttOn l, 

IThere are compile-tlDleanal}'!>Ï5 techniques that can often remove output and antl-dcpendl'llCu .. '5, Ruth as varIable relfammg 
and node spllttmg; see [31 J. 
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