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Abstract 

Most current applications and uses of liquid crystalline materials involve surfaces and in­

terfaces. Prominent examples are high performance carbonaceous mesophase fibers, liquid 

crystal polymer fibers, and thermoplastiejliquid crystal polymer in-situ composites. Funda­

mental surface science and engineering principles are needed to optimize and design fibers and 

composites derived from liquid crystalline precursors. Currently non-equilibrium liquid crystal 

surface phenomena are not weIl understood. Force balance equations describing statie and dy­

namical interfacial phenomena are available but have not been adequately used to describe the 

mechanics of fiber and film microstructures. 

This thesis explores the mechanies and stability of nematie liquid crystalline fibers embed­

ded in inviscid and vis cous matrices. A new theoretieal framework for liquid crystal surface 

mechanics is formulated and used to model pattern formation and instability driven pro cesses 

in fibers and fibrillar composites and blends. The liquid crystal Herring's formula and Laplace 

equation are derived and the role of liquid crystallinity is elucidated. In order to systematieally 

analyze the role of the fundamental processes, linear stability analyses of capillary instabilities in 

nematic liquid crystalline fibers are performed by formulating and solving the governing nemato­

capillary equations. An essential characteristie of liquid crystals, in contrast to isotropie liquids, 

is their mechanieal anisotropy. Thus, the main parameters affecting the capillary instabilities 

are the isotropie and anisotropie surface tensions, the anisotropie viscosities, the bulk orienta­

tional elasticity, the isotropie viscosity of the matrix, and the surface bending modulus. Two 

asymptotie regimes are investigated: (a) the thin-fiber regime characterized by homogeneous 

bulk orientation and storage of surface elasticity, and (b) the thiek-fiber regime characterized 

by bulk orientation distortions without surface elastic storage. Novel capillary instability mech­

anis ms and symmetries of the instability modes for a nematie fiber embedded in a matrix are 

characterized. The predicted ability of capillary instabilities in nematie fibers to produce sur­

face structures of weIl-defined symmetry and length scales, as weIl as chiral mierostructures, 

is an important result that augments the pathways for targeted pattern formation. Deviations 

from classieal Rayleigh capillary instabilities are identified and quantified in terms of liquid 

crystalline or der . 
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Résumé 
La plupart des applications et utilisations courantes des matériaux cristallins liquides im­

pliquent des surfaces et des interfaces. D'importants exemples sont les fibres carbonées à hautes 

performances issues de mésophase, les fibres en polymère cristallin liquide, et les composés de 

polymère thermoplastique/cristallin liquide in-situ. Les principes fondamentaux de la science 

et de l'ingénierie des surfaces sont nécessaires pour optimiser et concevoir des fibres et des com­

posés dérivés de précurseurs cristallins liquides. Actuellement les phénomènes surfaciques des 

cristaux liquides en déséquilibre ne sont pas bien compris. Les équations d'équilibre de force 

décrivant les phénomènes statiques et dynamiques sont disponibles mais n'ont pas été jusque 

ici employées de façon appropriée pour décrire la mécanique de microstructure des films et des 

fibres. 

Cette thèse explore les mécanismes et la stabilité des fibres cristallines liquides nématiques 

incorporées dans les matrices non visqueuses et visqueuses. Un nouveau cadre théorique pour la 

mécanique de surface des cristaux liquides est formulé et employé pour modéliser les patterns de 

formation et les procédés conduits par les instabilités dans les fibres, les composés fibrillaires et 

les mélanges. La formule d 'Herring pour cristaux liquides et l'équation de Laplace sont dérivées 

et le rôle de la cristallinité liquide est élucidé. Afin d'analyser systématiquement le rôle des 

procédés fondamentaux, des analyses linéaires de stabilité des instabilités capillaires, dans les 

fibres cristallines liquides nématiques, sont effectuées en formulant et en résolvant les équations 

de nemato-capillarité. Une caractéristique essentielle des cristaux liquides, contrairement aux 

liquides isotropes, est leur anisotropie mécanique. Ainsi, les principaux paramètres affectant 

les instabilités capillaires sont les tensions superficielles isotropes et anisotropes, les viscosités 

anisotropes, l'élasticité orientationelle intérieure, la viscosité isotrope de la matrice, et le module 

de recourbement surfacique. Deux régimes asymptotiques sont étudiés: (a) le régime de fibre 

mince caractérisé par une orientation interne homogène et un stockage d'élasticité surfacique, 

et (b) le régime de fibre épaisse caractérisé par des déformations de l'orientation interne sans 

stockage élastique de surface. De nouveaux mécanismes d'instabilité capillaires pour une fibre 

nématique incorporée dans une matrice sont caractérisés. La capacité prévue des instabilités 

capillaires dans les fibres nématiques de produire des structures surfaciques de symétrie et de 

dimensions bien définies, ainsi que des microstructures chirales, est un résultat important qui 
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augmente les voies pour la génération visée de pattern de formation. Des déviations depuis les 

instabilités capillaires classiques de Rayleigh sont identifiées et mesurées en termes de l'ordre 

cristallin liquide. 
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Chapter 1 

General Introduction 

1.1 Thesis Motivation 

Surfaces and interfaces involving liquid crystalline materials play a fundamental role in a wide 

variety of applieations, and hence understanding liquid crystal surface physies is crucial. An es­

sential characteristie of liquid crystals (Les), in contrast to isotropie liquids, is their mechanieal 

anisotropy [1]. Thus, this thesis explores the effects of the anisotropie characteristie of liquid 

crystals on interfacial phenomena, specifically on capillary instabilities of liquid crystalline fibers 

and fibrillar composites. 

1.1.1 Anisotropie properties of liquid erystals 

Les flow like a liquid but possess orientational order like a solid. The orientational or der at least 

in one dimension causes sorne degree of anisotropy in the mechanieal and symmetry properties of 

Les. Hence, the anisotropie viscosity and elasticity of Les are measured for relative molecular 

orientations. The anisotropies in the viscoelastie bulk properties of Les are weIl understood 

theoretieally [2, 3] and experimentally [1], and the anisotropies in the surface elastie properties 

of Les are also well-characterized [4, 5]. It is known that the surface tension of Les contains 

anisotropie contributions [6, 7, 8] known as ordering and anchoring energies [1, 4, 5] as weIl as 

an isotropie contribution. 
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1.1.2 Surfaces and interfaces in liquid crystal applications 

The current wide use of liquid crystal thin fibers, films, foams and multiphase material systems 

demands a fundamental understanding of capillary hydrodynamics, interfacial thermodynamics, 

and interfacial transport phenomena [9, 10, 11]. In addition, many new LC applications which 

have dominant interfacial effects, such as mesophase fiber spinning [12] and the formation of 

in-situ liquid crystalline polymer (LCP) composites [13], likewise require a fundamental under­

standing of capillary hydrodynamics. The following examples are LC applications where sur­

faces/interfaces are important because of the large surface to volume ratio: polymer-dispersed 

LCs and liquid crystal displays (LCDs), LC fibers and films, and LC lubricants and surfactants. 

Electro-optic applications of liquid crystals 

Electro-optic applications of LCs are based on the fact that low voltages can orient LCs [14, 

15, 16]. For example, the twisted nematic display (TND) takes advantage of the Frederiks 

transition of a confined nematic LC cell between crossed polarizers [15, 16]. In the absence of 

an electric field, a parallel alignment of the LC on the cell plates causes LC to twist 90° from 

one plate to another, which results in incoming polarized light to travel through the 90° twisted 

LC and to get through the second polarizer. The presence of an electric field with its voltage 

above the threshold Frederiks transition value changes the alignment of the LC to be parallel 

to the applied electric field rather than the cell plates, so that the polarized light is blocked by 

the second polarizer. When the alignment of the LC with the plates relies on surface treatment, 

designing surfaces is important as it leads to many new LC applications. Another example of an 

electro-optic LC application is the polymer-dispersed liquid crystal (PDLC) display, in which 

micron- or submicron-size LC drop lets are dispersed in a rigid polymer matrix [14, 15]. Without 

the external electric field, the bipolar texture inside the drop lets scatters light intensely due to 

lack of LC alignment. By applying an electric field across the PDLC film, using an LC with a 

refractive index that matches that of the polymer matrix, the film becomes transparent because 

the bipolar texture inside the droplets is replaced by a fully aligned LC. Again, since the PDLC 

system has a large surface to volume ratio, the surface boundary effects of the droplets are 

inevitably important. 
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Liquid crystalline fibers 

Fiber spinning and in-situ composites are involved in forming LC fibrillar structures. For LCP 

solutions, fibers with high mechanical properties, such as Kevlar, are spun by wet or dry spinning 

[17]. Carbon fibers can be produced by melt spinning of mesophase pitch since molecules inside 

the pitch filaments are well aligned through the melt spinning pro cess [18]. A processing window 

depending on spinning conditions exists to form unbroken filaments. For instance, by controlling 

spinning temperature, the filaments at a high temperature may break up into droplets in the 

spinneret while fractures of the filaments occur at a low temperature due to high tensile strength 

in the threadiine. In natural systems, spider silk is a focus of current interest because of not 

only its out standing mechanical properties but also ambient spinning conditions [19]. The silk 

proteins solution to be spun is liquid crystalline, and the formation of the fibrillar structure of 

the proteins during silk processing is essential to obtain high-performance silk [20]. Meanwhile, 

in-situ composites consist of a thermoplastic (polymer) matrix and LC reinforcing fibers that 

are formed from LCP drop lets during processing [21]. Since the mechanical properties of the 

composites, such as polypropylenejVectra, strongly depend on the fibrillar morphology of LCP 

[21], a fundamental understanding of the mechanism of LCP fiber instability in a polymer 

matrix during processing is required. 

Liquid crystalline foams and films 

Carbonaceous mesophase foams are suit able for foam-core sandwich structures in thermal man­

agement applications owing to their high thermal conductivity and low weight [22]. The carbon 

foams provide an interconnected network of graphitic ligaments which are highly oriented dur­

ing a foam forming process, and hence result in a specific conductivity up to six times greater 

than that of copper [22]. Freely suspended liquid crystalline (FSLC) films also show pronounced 

surface effects because of the long-range orientational molecular order in thin films with a thick­

ness ranging from several hundred A to several tens of /Lm [23]. The problems of film stability 

are important, e.g., for production ofvarious foams and emulsions in the chemical and cosmetics 

industries [23]. 
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Liquid crystalline lubricants and biomembranes 

LCs are also used as lubricants and lubricant additives in petroleum-based and synthetic oils, 

e.g., siloxanes, and a simulating lubricant of a natural synovial fluid of living joints [24]. Addi­

tion of LCs considerably increases the lubricity of lubricants due to the formation of LC layers 

on friction surfaces [24]. In living cells, surfaces are dominating and consist of self-assembled 

lipid bilayers to which proteins and other components are bound [16, 25]. The bilayer biomem­

branes in the LC state, due to their fluidity, are permeable to water-soluble molecules while 

the membranes are not permeable in the gel state that is solid-like [25]. Therefore, controlling 

gel-to-LC phase transition is important to determine the properties of biomembranes. 

Among the ex amples given ab ove , this thesis focuses on LC fibers and fibrillar composites. 

1.2 Classification of Liquid Crystals 

Most materials exhibit three distinct phases according to the surrounding temperature and 

pressure: (i) solid crystalline, (ii) liquid, and (iii) gaseous. The degree of order in the mate­

rial distinguishes one state of matter from another. Certain organic materials possess more 

condensed phases intermediate between the solid and liquid states called mesophases. These 

mesophases can be orientationally or conformationally disordered crystals, plastic crystals, or 

liquid crystalline phases [26]. If LC phases are formed in pure materials by heating from their 

solid states or by cooling from their isotropic liquid states, the materials are referred to as ther­

motropic LCs. If LC phases are induced by a solvent and hence by changes in concentration in 

a certain temperature interval, the materials are referred to as lyotropic LCs [15, 16, 27, 28]. 

Materials which can exist in LC phases are called mesogens. They are composed of rod­

like, disc-shaped, or banana-shaped molecules, and are called calamitic, discotic, and ba­

nana LCs, respectively [26]. Figure 1-1 shows examples of calamitic (a-c) , banana (d), and 

discotic (e) mesogens: (a) 4-n-4'-pentyl-4-cyanobiphenyl (5CB), (b) p-azoxyanisole (PAA) , 

(c) N-(p-methoxybenzylidene)-p-butylaniline (MBBA), (d) 2-nitro-1-3-phenylene bis[4-(4-n­

alkyloxyphenyliminomethyl)benzoates] and (e) hexa-heptyloxybenzoate. 

Thermotropic LCs are usually formed by calamitic and discotic mesogens. Figure 1-2 shows 

a schematic of the crystal, liquid crystal, and liquid phases. Solid crystals possess long-range, 
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Figure 1-1: Examples of calamitie (a-c), banana (d), and discotic (e) mesogens. 

three-dimensional, positional order, whereas isotropie liquids possess neither position al nor 

orientational order. For rod-like molecules, a preferred orientation of molecules, called the 

director, is shown as n for the LC phase. Exhibiting order intermediate between crystalline 

and liquid phases, thermotropie LCs are further classified into three main types: nematies, 

cholesteries, and smecties. Figure 1-3 shows schematie diagrams of calamitie nematie (a), 

cholesteric (b), and smectie-A and -C (c), and discotie nematie (d) and columnar (e) LC phases 

[15,17]. As seen in figure 1-3(a), nematies are least ordered since they have orientational order 

but no positional order, i.e., molecules are only aligned in a preferred direction known as the 

director. Twisted nematic devices are used extensively in liquid crystal displays (LCDs) for 

watches, pocket calculators, car dashboards, and mobile phones. Figure 1-3(b) shows that 

cholesterics, often called chiral nematics, are similar to nematies on a local seale, but here the 

average molecular orientation (director) denoted by small arrows in the figure tends to form 

a helix in space, with a well-defined pitch. This helical distortion is due to the presence of 

a chiral centre in the molecule, and thus exhibits left- or right-handedness. The pitch of the 
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Crystal Liquid Crystal Isotropie 
(nematic) 

Figure 1-2: Schematic of the crystal, liquid crystal, and liquid phases. For rod-like molecules, 
a preferred orientation of molecules is shown as n in the liquid crystalline phase. 

(b) 

(d) (e) 

Figure 1-3: Schematic diagrams of calamitic (a-c) and discotic (d-e) liquid crystals: (a, d) 
nematic, (b) cholesteric, (c) smectic-A and -C, and (e) columnar phases. 

6 



(a) (b) (c) 

Figure 1-4: Lyotropic liquid crystalline phases: (a) cubic, (b) hexagonal, and (c) lamellar. 

helix is often of the same order as the wavelength of light, which allows for the cholesterics' 

striking optical display effects. Unlike nematics, smectics possess long-range one-dimensional 

positional order as weIl as long-range orientational order. As seen in figure 1-3(c), the molecules 

are segregated into layers, and the layer spacing is of the same order as the molecular length. 

Two common types of smectics are smectics A, in which the direct or is parallel to the layer 

normal, and smectics e, in which the direct or is tilted away from the layer normal. Figure 

1-3(d) shows that discotic Les also form a nematic phase in which the direct or is perpendicular 

to the molecular plane. As shown in figure 1-3(e), when discotic molecules are stacked on top 

of one another to form columns, a columnar phase possessing two-dimensional position al order 

as weIl as orientational order is formed. 

Lyotropic Les are formed in solutions of amphiphilic molecules such as soaps, detergents, 

and phospholipids. Soap molecules in aqueous solution, for instance, tend to self-assemble to 

form spherical or cylindrical micelles, bilayers, and vesicles. As the concentration of amphiphile 

increases, a cubic phase formed by spherical micelles, a hexagonal phase formed by cylindrical 

micelles, and a lamellar phase formed by bilayers can be obtained sequentially [16]. Figure 1-4 

shows lyotropic Le phases: cubic (a), hexagonal (b), and lamellar (c) [16]. 

This thesis focuses on Les of nematic rod-like molecules since this simplest and least ordered 

Le phase shows aH of the interesting effects that are due to its anisotropie properties. In the 

following section, the anisotropie mechanical properties of nematics are explained. 
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Figure 1-5: A rod-like molecule makes an angle () with the director ll. 

1.3 Mechanical Properties of Nematic Liquid Crystals 

1.3.1 Scalar order parameter 

For nematie LCs of rod-like molecules, the average molecular orientation denoted by direct or II 

do es not represent the degree of alignment of LC molecules. Instead, the degree of alignment 

can be measured by introducing a distribution function f (()) by whieh the angular distribution 

of the rod-like molecules around the preferred direction II is expressed. Figure 1-5 shows a rod­

like molecule making an angle () with the director ll. More conveniently, since the directions II 

and -ll are indistinguishable, the degree of alignment is defined by the scalar order parameter 

S, whieh was first introdueed by Tsvetkov, as [29, 30] 

1 rI 
S = "2 (3cos2 

() -1; = 27f Jo "2 (3cos2 
() -1) f (()) sin()d() , (1.1) 

where () is the angle between the long molecular axis and the director, and the angular brackets 

denote a statistieal average over aIl molecular orientations. In an isotropie liquid, S = 0 due to 

random orientations of molecules, while S = 1 for a perfect crystal sinee () = O. In the nematie 

phase, S has an intermediate value whieh is strongly dependent on temperature because of 

kinetie molecular motion; typically 0.3 < S < 0.9 [15]. Figure 1-6 shows the order parameter S 

as a function of temperature [15]. There is a weak first-order phase transition at the nematie­

isotropie point TN1 above whieh the long-range orientational order vanishes. 
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Figure 1-6: Order parameter S as a function of temperature. Above the nematie-isotropie point 
TNI, the long-range orientational order vanishes. 

1.3.2 Bulk anisotropy 

Frank orientational distortion elasticity 

When a stress is applied to a nematie Le, the long-range order of the Le can be distorted, 

whieh causes an increase in the elastic energy of the Le. However, if the long-range order of 

the Le is not distorted by the stress, e.g., un der a simple shear, there is no increase in elastie 

energy but flow occurs [16]. Therefore, a mechanieal characteristie of nematie Les is their 

viscoelasticity, whieh is anisotropie. 

Long-range orientational distortions can be described using a tensor or der parameter Q that 

is symmetric and traceless [1]. In a weakly distorted system, nematie Les are considered as 

uniaxial in whieh the degree of molecular alignment S remains unchanged while the orientation 

of the direct or n gradually changes. The tensor or der parameter is given in the uniaxial nematic 

state by 

(1.2) 

where 1 is the unit tensor. The distortion is then described in terms of the space gradients of 

n, and the elastie distortion free-energy density is expressed with three elastie constants: 

(1.3) 

where Fd is the Frank distortion free energy density and {Kd, i = 1,2,3, are the Frank elastie 
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Figure 1-7: Three types of distortion in nematie liquid crystals. The direct or distortion is in 
the x-direction as (a) splay, (b) twist, and (c) bend. 

constants corresponding to splay, twist, and bend distortions, respectively. Figure 1-7 shows 

the three types of distortion in nematie LCs. The director distortion is in the x-direction as (a) 

splay, (onx/ox); (b) twist, (onx/oy); and (c) bend, (onx/oz) [17]. For typicallow molecular­

weight rod-like LCs such as PAA, MBBA, and 5CB (see figure 1-1), the elastie constants are 

of order 10-7 
rv 1O-6dyne, and the bending constant K3 is normally larger than the other two 

[1,31]. It is also noticed that as temperature increases, the magnitude of each elastic constant 

decreases but the ratio K3/ KI is independent of temperature. Meanwhile, nematic liquid 

crystalline polymers can have elastie constants with orders of magnitude up to 1O-3dyne [32]. 

For mesophase carbon pitches, elastie constants were estimated to be on the order of 1O-3dyne 

[33]. Finally, near the nematic/smectie-A transition, the bend elastic constant diverges [1,34]. 

Miesowicz viscosities 

The anisotropie viscosity of nematic LCs was first determined by Miesowiez who measured 

effective viscosities for relative director orientations to the flow direction [29, 30]. Figure 1-8 

shows three Miesowiez geometries in whieh nematic LCs with the director n fixed by a strong 

magnetie field are confined between a stationary bottom plate and a top plate moving with 

a constant velo city v: (a) n parallel to the velo city gradient, (b) n parallel to the velocity, 

and (c) n parallel to the vorticity direction, which are corresponding to Miesowicz viscosity 

coefficients, rh, 7]2' and 7]3' respectively [35]. For rod-like nematies, the relative magnitude 

of the three Miesowiez viscosities is 7]1 > 7]3 > 7]2' The viscosity 7]3 corresponds to the case 

where the nematie behaves as an isotropie fluid. For low molecular nematies, the ratio 7]2/7Jl is 
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Figure 1-8: Three Miesowicz geometries: (a) n parallel to the velocity gradient, (b) n parallel to 
the velo city, and (c) n parallel to the vorticity direction, whieh are corresponding to Miesowiez 
viscosity coefficients, "71' "72' and "73' respectively. 

approximately 0.18 for 5CB and MBBA and approximately 0.26 for PAA [29, 30]. 

1.3.3 Surface anisotropy 

Surface free energy 

When a nematic LC is in contact with another solid or liquid phase, the LC molecular orientation 

at the surface is generally different from the bulk nematie orientation. At the surface, the 

direct or has a preferred orientation, and the macros copie orientation of the LC, imposed by the 

surface, is called anchoring [36]. If the surface is assumed to be uniaxial, as given in Eq. (1.2), 

the surface free energy density "f can be written as [5, 7] 

(1.4) 

where "fis is the isotropie surface tension, {Wi(S)}, i = 0,2,4, represent the anisotropie contri­

bution due to the nematie ordering S, defined in Eq. (1.1), and () is the tilt angle between the 

surface direct or and the surface unit normal vector. The free energy associated with changes 

in tilt angle, the third and fourth terms on the right-hand side, is known as the anchoring en­

ergy. Depending on the signs and values of W2 and W4, planar, conieal, or homeotropie surface 

orientation may occur [7]. For strong anchoring, the surface direct or orientation, e.g., planar 
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Figure 1-9: Interfaces can be classified into two groups: isotropie and anisotropie interfaces. L 
represents liquid, G gas, LC liquid crystal, and S solid. 

or homeotropie, is fixed as a function of temperature and do es not change due to bulk direct or 

fields since changes to the surface energy due to surface direct or orientation requires large sur­

face torques. For weak anchoring, on the other hand, the surface direct or orientation is easily 

subjected to changes in temperature and to bulk direct or fields [7, 37, 38]. 

Unlike isotropie liquids, the anisotropies both in the viscoelastie bulk and at the surface are 

essential characteristics of LCs and are, therefore, crucial to understanding the real behaviors 

of LCs. 

1.3.4 Classification of interfaces 

Figure 1-9 shows two classes of interfaces: isotropie and anisotropie. In the figure, L represents 

liquid, G gas, LC liquid crystal, and S solid. When one of the contact phases is an anisotropie 

phase such as liquid crystal or solid, the interfaces generated are anisotropie. The easy axis of 

the nematie surface, whieh is the preferred direct or orientation at the surface since it minimizes 

the surface free energy, depends on the nature of the contact phase [1]. 

For the interface of nematic LC-solid substrate, the anchoring mechanism depends on 

three main classes of substrate [36]: smooth surfaces, interpenetrable layers, and topographies. 

Smooth substrates include crystal, glasses, and polymer films. The effect of these substrates 

on the LC is limited to the surface layer through the short-range interaction of LC mole cules 

at the surface. Planar degenerate, in which more than one easy axis in the plane of the surface 
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exists, is often observed. Substrates with interpenetrable layers are prepared by grafting polar 

molecules with a long tail, such as surfactants. LC molecules penetrate into the layer and 

adopt a homeotropie or conieal (degenerate tilted) anchoring depending on the orientation of 

the chains in the layer. Specifie topography for a surface can be obtained by rubbing the surface 

with a hard material, such as rubbed glass or surfactant-coated glass, or by anisotropie vapor 

deposition, such as an evaporated SiO film. The topography of a surface introduces distortions 

along the plane of the surface, and the LC adopts an anchoring direction that minimizes these 

distortions. Grooved surfaces, for instance, induce an anchoring direction paraUel to the grooves 

for PAA. 

The interface of nematie LC-isotropic liquid or -gas involves no interaction with a substrate. 

For the free surface of PAA, a planar degenerate orientation, in whieh aU directions in the plane 

of the surface are the easy axes, is observed. A conie al anchoring occurs along the free surface 

for MBBA, whereas the anchoring is homeotropie for nCB. At the LC-liquid interface, the 

surface director is tilted, with the surface tilt angle ranging from 500 to 800
• 

Among the interfaces shown ab ove , this thesis treats soft anisotropie (LC-L, LC-G) inter­

faces. 

1.3.5 Experimental measurements of capillary and interfacial properties 

Anchoring energy 

The most commonly used analytieal approximation for the surface free energy of a nematie LC 

is given by Rapini-Papoular form [4, 37, 38]: 

W(T) 2 
"f = "fis + -2- cos e, (1.5) 

where the term accounting for changes in tilt angle e is the anchoring energy, and W(T) is the 

surface anchoring strength. The tilt angle e is an angle between the surface direct or and the easy 

axis that is an energetically preferable direction for the surface orientation. Figure 1-10 shows 

temperature dependences for the anchoring strength in nematie and isotropie phases of 5CB 

with planar anchoring, for different ceU thieknesses d: d = 14.7f-lm (curve 1), 30.2f-lm (curve 

2), 24.0f-lm (curve 3) [4]. In the nematic phase, T < TNI, the anchoring strength decreases 
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Figure 1-10: Temperature dependences of the anchoring strength in nematie and isotropie 
phases of 5CB with pl anar anchoring condition for different cell thieknesses d: d =14.7J.lm 
(curve 1), 30.2J.lm (curve 2), 24.0J.lm (curve 3) [4]. 

with increasing temperature. At the nematie-isotropie transition TN l, the anchoring strength 

is close to zero. In the isotropie phase, T > TNI, the anchoring strength is about two orders 

of magnitude lower than in the nematic phase. Therefore, the nematie ordering is preserved in 

the surface layer of molecular thickness, several nm, even in the isotropie phase. 

Surface tension Figure 1-11 shows temperature dependences of the surface tension in ne­

matie and isotropie phases of three different LCs: (a) PAA, (b) p-anisaldazine, and (c) 5CB 

[29]. It is weIl known that the temperature gradient of the surface tension is directly related to 

the surface excess entropy per unit area, Sexcess, by [29, 30] 

d, 
Sexcess = - dT' (1.6) 

If the molecular interactions of LCs near the surface become weaker, a positive surface excess 

entropy, Sexcess > 0, is expected. Thus, the surface tension 1 decreases with temperature T, 

which is observed for many systems. However, in sorne cases the very presence of the interface 

indu ces an additional order. Then, Sexcess < 0 and 1 increases with T. Inversions of the slope 

d, / dT are often observed near phase transitions in LCs. It has been suggested that there are 

two competing effects on the orientational order near the surface [29, 30]: (1) the disordering 
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Figure 1-11: Temperature dependences of the surface tension in nematie and isotropie phases 
of three different LCs: ( a) PAA, (b) p-anisaldazine, and (c) 5CB [29]. 

effect of the spatial delocalization across the liquid-gas transition zone, whieh is assumed to be 

proportional to the density profile across the interface; (2) the ordering effect of a surface torque 

field, whieh is assumed to be proportional to the density gradient profile across the interface. 

The relative strengths of these two opposing effects and their temperature dependence may 

result in variations of the surface tension with temperature for different LCs, as seen in Fig. 

1-11. 

Surface order parameter 

The surface arder parameter strongly depends on the char acter of the solid substrate and can 

remain, to sorne degree, in the isotropie phase near the nematie-isotropie transition temperature. 

Figure 1-12 shows typieal temperature dependences of the bulk (Sb) and surface (S8) order 

parameters for 7CB [4]. At the nematie-isotropic transition temperature TNI, the bulk order 

parameter undergoes an abrupt jump to zero through the first-order phase transition while the 

surface order parameter gradually decreases to about 0.15 and remains constant even in the 

isotropie phase. 

Capillary rise 

Capillary rise is a measure of the surface tension of a liquid. The height of the liquid rise in 

a capillary above the level of the fiat surface of the liquid in a large dish is measured. For 
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Figure 1-12: Typical temperature dependences of the bulk (Sb) and surface (S8) order parame­
ters for 7CB [4]. 

isotropie liquids, the height of the liquid rise, h, is related to the surface tension, by equating 

the hydrostatie pressure obtained from the capillary rise to the Young-Laplace equation whieh 

describes the pressure jump due to the curved surface at the meniscus [39]: 

.6. h _ 2, _ 2, cos e 
pg - R - Re ' (1.7) 

where .6.p is the density difference between the liquid and the ambient gas, 9 is the gravitational 

acceleration, R is the radius of the meniscus curvature, Re is the capillary radius, and e is the 

contact angle measured at the junction of the liquid-gas interface and the solid wall. However, 

since the surface tension of LCs is anisotropie, the effect of orienting surfaces at the capillary 

wall must be measured di fferently. Experiments on MBBA found that, by imposing strong 

anchoring at the capillary surface, the height of the LC rise for planar anchoring is much 

larger than that for homeotropic anchoring [40]. When using a capillary with thickness of 

100f.tm, planar wall orientation resulted in a 75mm capillary rise while homeotropie orientation 

only 65mm. These experimental observations have been theoretically explained [41]. Three 

anisotropie contributions of LCs to the capillary rise are identified: surface anchoring strength 

and two long-range elasticities due to orientation gradients, respectively, in the bulk and at the 

contact line that forms at the intersection of three phases (capillary wall-LC-gas). The third 

contribution appears to be the most significant. 
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Disjoining pressure 

When the thiekness of a liquid film is very small, Le., in the mesoscopie range (submieron and 

nanometer), the molecular interactions between the two interfaciallayers can overlap and some 

long-range forces become relevant. This leads to excess pressure II, called disjoining pressure, 

acting normal to the film. The disjoining pressure II can be either positive due to repulsive 

forces, tending to thieken the film, or negative due to attractive forces, tending to thin the film 

[30]. For isotropie liquid films, there are two main components of II: the electrostatie disjoining 

pressure originating in repulsive electrostatic forces acting between the double ion layers at the 

film surface, and the van der Waals disjoining pressure due to attractive van der Waals forces. 

For LG films, there exist anisotropie contributions to II: the elastic disjoining pressure due to 

the elastie torques caused by deformations of the direct or field inside the film, and the structural 

disjoining pressure caused by the layered molecular ordering inside the film. For instance, the 

elastie disjoining pressures of nGB and MBBA films, respectively, between a solid substrate and 

air were experimentally measured by imposing strong planar anchoring on the solid substrate 

and homeotropie anchoring for the nGB free surface, with tilted anchoring for the MBBA free 

surface. The disjoining pressures of nGB and MBBA were about 200", 500Nm-2 , at the film 

thickness of the order of 100nm [42], where the isotropie components of II can be neglected 

[23]. 

Partial wetting 

Spreading of a liquid drop over a solid surface results in two types of wetting [43]. In cases of 

complete wetting, the liquid spreads freely over the solid surface and forms a very thin film. The 

disjoining pressure is of crucial importance to describe the mesoscopie interactions involved in 

the thin film. In cases of partial wetting, the liquid does not spread completely and remains as 

a drop on the solid. A contact line forms where three phases intersect, and thus three interfacial 

tensions are involved: Î'LC, Î'SL, and Î'sc, whieh are the liquid-gas (L-G), solid-liquid (S-L) , and 

solid-gas (S-G) interfacial tensions, respectively. A contact angle is defined as an angle between 

the L-G and S-L interfaces. For isotropie liquid, the salient features of the partial wetting, e.g., 

the shape of the liquid drop and the contact angle, can be described by the so-called classical 

capillarity such as the Young-Laplace equation and the Young's law that gives a relation of 
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the contact angle to the three interfacial tensions. Classical capillarity predicts that liquids 

completely wet solid substrat es when 18G ~ 18L + ILG' Hence, solid surfaces with very high 

surface tension, such as mica, give rise to complete wetting by aU organic liquids [44]. However, 

recent experiments found that nematic MBBA does not completely wet mica but forms a liquid 

drop with the contact angle 14° at 23°C [45]. Both the long-range elasticity due to orientation 

gradients in the bulk and the discontinuity in the direct or orientation at the contact line appear 

to influence wettability of Les. 

As described by the experimental observations ab ove , the presence of anisotropy in Les is 

evident and important to: (i) Surface anchoring energy and surface orientational order contri­

butions to surface tension; (ii) Long-range elasticity contribution due to bulk orientational gra­

dients to disjoining pressure; (iii) Long-range el asti city contributions due to bulk orientational 

gradients and due to contact-line orientational gradients to partial wetting; (iv) Long-range 

elasticity and surface anchoring contributions to capillary rise. Thus, we know that interfa­

cial phenomena in Les are highly anisotropic, strongly cou pIed with bulk properties through 

the Frank orientational distortion elasticity and with surface properties affected by the surface 

anchoring and surface orientational or der. Therefore, classical interfacial theories are inappro­

priate to describe liquid crystal phenomena and new theories and formalisms are necessary. 

1.3.6 Liquid jet instabilities 

Stability and break-up of capillary jets are important in a wide variety of engineering applica­

tions such as mixing, spraying, fuel injection, ink-jet printing, fiber spinning, and silicon chip 

technology. A liquid jet emanating from a nozzle is subjected to a hydrodynamic instability 

that leads to break-up of the liquid jet. There are two main regimes of the break-up caused by 

interfacial instability: drop formation and spray formation, which are controUed by different 

physical mechanisms [46]. When a liquid jet becomes unstable to peristaltic (axisymmetric) 

surface disturbances, the break-up of the jet results in a trail of drops comparable in size to 

the jet diameter, known as the Rayleigh or capillary instability. When atomization, in which 

much smaUer droplets than the jet diameter are stripped off from the jet surface, occurs due to 

a high velo city of the jet, the instability is referred as the Taylor mode. 
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Axisymmetric modes 

When a thin liquid jet slowly moves in a medium, e.g., a surrounding gas or another liquid, 

the surface tension of the jet overcomes inertia and tends to minimize the surface area. As a 

result, axisymmetrie disturbances dominate the jet, and thus jet break-up forms a trail of drops. 

This low-speed jet is also known as a capillary jet because the capillary force is predominant in 

jet instability. The Rayleigh instability is widely observed in low- and high-viscosity isotropie 

liquids and in viscoelastic liquids. A highly extended fluid filament, often suspended in another 

fluid, at rest is also subject to the Rayleigh mode since the surface are a can be reduced by in­

finitesimal surface disturbances: break-up of an isotropie Newtonian thread [47] and a lyotropic 

LC thread [48] immersed in an isotropie viscoelastie liquid. Linear stability the ory describes 

the onset of break-up and was first developed by Rayleigh, demonstrating that there is a certain 

wavelength at whieh surface disturbances grow fastest, resulting in a specific size of drops after 

the jet break-up. Although the dynamies near break-up, e.g., pinching and formation of satel­

lite drops, is highly non-linear, cylindrical symmetry is still preserved because any azimuthal 

disturbances give rise to a relative increase in surface area and are thus stable [49]. During the 

break-up of a Vectra (thermotropic LCP) fiber in a polypropylene (thermoplastic) matrix, for 

example, calculated shape changes from fiber to drop, based on the Rayleigh mechanism, closely 

predieted actual shapes [50]. The linear approach is also applieable to anisotropie systems such 

as pinched tubular vesicles, where not only surface tension but also entropie forces due to the 

curvature of membranes exist [51]. 

The Rayleigh instability can be modified by the Marangoni effect induced by non-uniformity 

of surface tension in the presence of temperature or chemieal gradients across the jet surface. 

Surface convection across these gradients perturbs the interfacial temperature or concentration, 

and thus creates a non-uniform surface tension, resulting in surface tractions whieh induce bulk 

fluid motions. For example, in the case of surface-tension reducing solutes, e.g., surfactants, the 

Marangoni effect associated with the non-uniform surface tension is destabilizing by increasing 

solute concentration at the troughs whiIe decreasing solute concentration at the crests [52]. 

On the other hand, surface convection gives rise to a stabilizing Marangoni effect, Le., the 

surface contracts at the crests and dilates at the troughs. Therefore, the Rayleigh instability 

of the jet is modified by the two competing Marangoni effects. Break-up of a molten solder 
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(liquid metal) jet shows a drastic effect of surface tension in the Rayleigh mode. In a nitrogen 

environment, a solder jet breaks up into a series of uniform drops, whereas the jet becomes 

stable by changing the ambient gas to air [53]. Oxide formation on the surface of the liquid 

metal decreases the surface tension significantly by at least an order of magnitude. Meanwhile, 

morphological stability of a solid metal-solid met al interface under interfacial diffusion control 

shows that an interfacial perturbation grows when the wavelength of the perturbation is smaller 

than the me an diffusion distance of solute in the matrix [54]. AIso, an interesting observation on 

jet branching was reported that a liquid jet bifurcates into a two-, three-, and multi-pronged jet 

by oscillating the nozzle along its long axis at a successively higher frequency [55, 56]. The two­

pronged jet, for instance, breaks up and two streams of drops form, placing drops alternatively 

in each stream every half-cycle of the jet oscillation [55]. 

Non-axisymmetric modes 

Unlike low-speed jets, high-speed jets may result in chiral (non-axisymmetric) instabilities with 

a quantized azimuthal wavenumber m different than zero. In a liquid jet moving in an ambient 

gas, for instance, sinuous (helical) disturbances (m = 1) may develop due to aerodynamic form 

drag. The gas pressure difference between lower pressure at convex sections of the jet surface 

and the higher pressure at concave sections gives rise to a distributed lift force, promoting the 

sinuous instability [57]. When the Weber (We) number, or the ratio of surface force to the 

inertial force, is lower than a critical value, non-axisymmetric modes become unstable [58]. The 

critical We depends on the wavelength of the disturbance and the density ratio between the 

liquid and the gas. As the jet speed further increases, droplets are stripped off from the jet 

surface due to local atomization [59], and then a diverging spray is observed with a higher jet 

speed due to complete atomization of the jet [46]. Aerodynamic forces caused by the velocity 

difference between the liquid and the gas are attributed to non-axisymmetric modes with high 

values of m, which are unstable for sufficiently low We [58]. As a result, catastrophic instabilities 

appear as short wavelength disturbances [60]. 

Non-axïsymmetric modes are also observed in a smectic mesophase that grows in helical 

filament shapes: in a lyotropic smectic phase of chiral amphiphilic molecules or of achiral 

mole cules [61, 62]; in a thermotropic smectic phase of achiral banana-shaped molecules [63]. 
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The formation of helical filaments at the isotropic-smectic transition is due to chiral smectic 

structures. For achiral molecules, chiral smectic phases are induced by symmetry breaking 

instabilities, e.g., polar molecular packing and molecular tilt in achiral banana-shaped molecules 

[63]. Meanwhile, cylindrical tubules and helical ribbons are the most interesting self-assembled 

morphologies of chiral amphiphilic molecules. Tubules are bilayer or multilayer membranes of 

amphiphilic molecules in a cylindrical shape and observed in lipids [64,65], biles [66], surfactants 

[67], and glutamates [68]. Tubules in these systems often exhibit a twisted ripple pattern on the 

surface of the cylinder [69], which is similar to non-axisymmetric modes with m ;::: 2. Helical 

ribbons consist of long strips of membranes. If a helical ribbon keeps an optimum width but 

grows longer, the ribbon is stable. If the ribbon grows wider over its optimum size, the helical 

ribbon becomes unstable and forms a tubule. An interesting observation on mixtures of rod-like 

virus es and polymers was recently reported that a smectic ribbon of 1J.Lm width corresponding 

to one smectic layer is formed and grows into a helical shape out of a nematic ellipsoid which 

for ms initially in the isotropic-smectic transition [70]. 

1.3.7 Surface extrapolation length 

The equilibrium of a bounded Le is found by minimizing the total energy that includes bulk 

elastic and surface anchoring terms. On the other hand, approximations based on a qualitative 

comparison of the different terms are often useful to obtain an important physical parameter for 

the system. For a nematic Le fiber of a characteristic size R embedded in a matrix, for example, 

representative physical properties of the Le fiber are the bulk elastic constant K and the surface 

anchoring strength W. The surface extrapolation length l is defined as l == K /W. For strong 

anchoring, the surface extrapolation length l is comparable with the coherence length that is 

associated with the nematic-isotropic transition, whereas l is much larger than the coherence 

length for weak anchoring [1, 4, 14]. The bulk direct or orientation of the nematic Le fiber is also 

different in two regimes [30]. A thin fiber for R« l prefers a uniform director orientation, Le., 

n =eonstant, sinee the bulk elastie energy involving the variation of the bulk orientation is even 

more costly compared with the surface anchoring energy driven by surface direct or deviation 

from the easy axis under the weak anchoring condition in this regime. A thick fiber for R» l, 

on the other hand, prefers direct or variation in the bulk sin ce strong anchoring is imposed at 
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the surface and hence any direct or deviation from the surface easy axis is costly. It is noted 

that using the data for K and W, given in the previous sections, l ranges from an order of nm 

to an order of mm, and hence both weak and strong anchoring conditions are applicable. For 

a nematie fiber of an order of f.Lm in radius, for example, both thin- and thiek-fiber regimes are 

accessible. 

1.4 Thesis Objectives 

The objectives of this thesis are to formulate a new theoretieal framework for liquid crystal 

surface mechanies and to use it to model pattern formation and instability driven pro cesses in 

individual liquid crystalline fibers in contact with a vis cous matrix, as in fibrillar composites 

and blends, or air (free surfaces). The partieular objectives of this thesis can be summarized 

as foUows: 

1. To develop a new thermodynamie formalism for anisotropie liquid crystal surfaces and 

interfaces, whieh takes into account the essential elastic anisotropies. 

2. To use the new thermodynamie formalism to derive rigorous capillary pressure equations 

at liquid crystal interfaces. 

3. To use the formulated theory to model capillary instabilities in nematie liquid crystaUine 

fibers embedded in viscid and inviscid matrices, and to characterize the contributions of isotropie 

surface tension, surface anchoring energy, surface ordering energy, bulk orientational elasticity, 

anisotropie viscosities, and matrix viscosity for composites, respectively. 

4. To characterize aU possible resulting morphologies and fiber surface patterns in capillary 

instabilities of nematie liquid crystalline fibers: drops, surface fibrillation, and helical or chiral 

fibers with twisted ri pp le patterns on the surface. 

5. To formulate fundamental processing principles to control the formation of drops, fibrils, 

and chiral mierostructures. 

1.5 Methodology and Thesis Organization 

To properly analyze interfacial pro cesses in liquid crystals, the governing equations should 

consist of the bulk and interfacial linear momentum balances, internaI angular momentum 
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Figure 1-13: Three surface (isotropie, anchoring, and ordering) energies and bulk distortion 
energy in nematic LCs are taken into account in the thesis. The LC viscosity is considered 
orientation-dependent while the matrix viscosity is isotropie. The effect of the bending surface 
elastie modulus is also studied. 

balance (director torque balance), and constitutive equations for the stresses and for viscous 

and elastie torques, whieh take into account the full viscoelastie anisotropies of the system. For 

embedded liquid crystalline fibers in vis cous fluids, the role of dissipation in the viscous matrix 

has to be incorporated. Such a program is unfeasible due to a multitude of length scales and time 

scales, and a number of coupling processes. Moreover, the development of computational codes 

for the calculation of free-surface flows from first principles has technieal difficulties involved 

in implementing both moving boundaries and surface tension. Therefore, modeling nonlinear 

pro cesses is beyond the scope of this thesis. Instead, the methodology used in the thesis is to 

analyze systematieally the role of the fundamental processes by adopting linear stability theory 

whieh governs the early stage of capillary instabilities but still captures essential features of 

capillary instabilities such as instability mode selection and resulting morphologies. Figure 

1-13 shows all the components to be considered in the fundamental processes: four energies, 

Le., lis' ln' IS, and Fd, associated with capillary instability of nematie LCs; the anisotropie 

viscosity 'f] (n) for the liquid crystalline fiber and the isotropie viscosity f1, for the matrix; and 

the bending surface elastie modulus kc from the interface curvature effects. 

The procedure of analyzing the fundamental pro cesses is presented in the thesis organization 

as follows (see Figure 1-14): 

Chapter 1 presents a general background of the thesis including thesis motivation, anisotropie 
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Figure 1-14: Schematic of the thesis organization. 

properties and surface phenomena of nematic liquid crystals, and a comprehensive introduction 

to liquid jet instabilities. It also presents the thesis objectives. 

Chapter 2 focuses on formulation of a new thermodynamic formalism for curved anisotropic 

liquid crystal surfaces and interfaces, which takes into account the essential elastic anisotropies. 

This formalism is derived and expressed in terms of nematic surface energies, and used to derive 

a capillary pressure equation at liquid crystal interfaces. The application of the fundamental 

theory to the capillary instability in thin nematic liquid crystalline fibers is also presented. 

Two asymptotic regimes are investigated independently: in chapt ers 3 and 4, thin-fiber 

regime where the bulk orientation is uniform and all elastic storage cornes from the surface; in 

chapter 5, thick-fiber regime where strong anchoring is imposed and all elastic storage cornes 

from the bulk. Chapt ers 3 and 4 present the modeling of capillary instabilities in nematic liquid 

crystalline fibers embedded in viscid and inviscid matrices as main applications of the theory 

presented in chapter 2. 

In chapter 3, nemato-capillary equations implementing a nemato-capillary pressure are for­

mulated. The capillary pressure equation at the liquid crystal surface accounts for the surface 

anchoring energy contribution as well as the isotropic surface tension. The viscosity of the liq­

uid crystalline fiber is considered orientation-dependent. Capillary instability mechanisms and 

symmetry of instability modes in a thin nematic fiber are characterized. The presented study 

is then extended to the liquid crystalline fiber embedded in an immiscible viscous matrix for 

which the nemato-capillary equations are reformulated to take into account the vis cous stress 

at the interface due to the presence of the viscous matrix. The contribution of the viscosity 
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ratio, i.e., matrix viscosity jfiber viscosity, to the capillary instabilities is investigated. 

In chapter 4, the nemato-capillary equations formulated in chapter 3 are used in conjunction 

with a newly formulated capillary pressure equation whieh accounts for the surface ordering 

energy, as a function of temperature, and anchoring energy contributions as weIl as the isotropie 

surface tension. The critieal role of the surface ordering energy in the instability mode selection 

is fully characterized. It is also discovered that the non-axisymmetrie instability mechanism is 

regulated by taking account of the surface bending moment, implemented through the surface 

stress tensor. 

In chapter 5, comprehensive analysis of bulk distortion elasticity effects on axisymmetrie 

capillary instabilities in textured liquid crystalline fibers is presented using the equations of 

nemato-statics and inviscid nemato-dynamies. Instability mechanisms explaining deviations 

from the classical Rayleigh instability are characterized. 

Chapter 6 presents the conclusions and the contributions to original knowledge. 
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Chapter 2 

Cahn-Hoffman Capillarity Vector 

Thermodynamics for Curved Liquid 

Crystal Interfaces with Applications 

to Fiber Instabilities 

2.1 Summary 

The classieal Cahn-Hoffman capillarity vector formalism for anisotropie interfaces, widely used 

to analyze capillary and surface patterning processes in met allie systems, is applied to nematie 

liquid crystalline surfaces. 

Firstly, the nematic capillarity vector is derived and expressed in terms of nematie surface 

energies. Expressions for surface tension forces on surface li ne elements are derived and shown to 

include the usual tangential forces as weIl as normal forces driven by surface tension anisotropy. 

The connection between interfacial rotational effects, surface tension anisotropy, and bending 

stresses is established. The vector formalism is shown to be a tractable and simple method to 

analyze capillarity processes in nematie liquid crystals. 

Secondly, the Cahn-Hoffman capillarity vector thermodynamies for curved anisotropie in­

terfaces is adapted to soft liquid crystaIline interfaces. The formalism is used to derive the 
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Herring's capillary pressure equation for liquid crystal interfaces, where the role of anchoring 

energy of liquid crystals is made explicitly. It is shown in detail that liquid crystal interfaces 

have three distinct contributions to capillary pressure: (i) area reduction, (ii) area rotation, and 

(iii) orientation curvature. General expressions representing these three mechanisms in terms of 

isotropie and anisotropie surface tensions are derived and used to analyze the Rayleigh capillary 

instability in thin fibers. It is shown that liquid crystal fibers and filaments are unstable to 

peristaltic and chiral surface ripple modes. The peristaltie mode leads to droplet formation, 

whereas chiral modes pro duce ripples in the curvature of the fiber. The role of liquid crystal 

orientation and anchoring energy on mode selection is elucidated and quantified. 

2.2 Introduction 

The surface physies of nematie liquid crystals is currently an active area of research [1, 2, 3, 4, 

5, 6] since many applieations of liquid crystalline materials involve multiphase systems, where 

interfaces play significant roles. Interfacial orientation phenomena and orientational transitions 

in well-defined geometries are weIl characterized experimentally [1, 2, 3] and theoretieally [4, 

5, 6, 7, 8]. On the other hand, deforming interphases and shape characterization are less 

characterized. The first part of this chapter deals with capillarity models of interfacial forces 

that drive shape determination in anisotropie nematic liquid crystalline materials. Examples of 

applications of the capillarity models include determination of contact angles, drop let shapes, 

and triple line phenomena. Although statie and dynamieal interfacial models for nematie liquid 

crystals (NLCs) have been presented [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], still there is a need to 

formulate simple and more tractable models. The first part of this chapter presents a capillarity 

model based on the widely used Cahn-Hoffman formalism of capillarity vector for anisotropie 

surfaces [14]. Since the Cahn-Hoffman formalism was developed for anisotropie surfaces, it 

follows that the formalism is also applicable to anisotropie NLCs. The main objectives of the 

first part are to: (1) adapt the widely used Cahn-Hoffman formalism to NLCs surfaces and 

interfaces, and (2) establish the correspondence between the nematie Cahn-Hoffman equations 

and the classieal interfacial mechanics of NLCs presented in Refs. [12, 13]. 

Meanwhile, liquid crystals exhibit anisotropy in both their bulk and interfacial properties 
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[15]. It is well-known that anisotropie interfacial properties play a significant role in metallurgi­

cal systems, where contact angles, grain boundaries, triple lines, and capillary instabilities are 

affected by surface tension anisotropy [16]. A capillarity vector thermodynamics for anisotropie 

materials was developed by Cahn-Hoffman, and the formalism is now part of classical inter­

facial material science [14, 16, 17]. The capillarity vector , is the fundamental quantity in 

this formalism and takes into account the orientation dependence of the surface tension ,: 

, = , (N), where N is the surface unit normal. The surface tension force as weIl as the cap­

illary pressure is shown to depend on the orientation of the surface since surface energy can 

be reduced by reducing the surface area or by rotation of the surface. This effect is captured 

in the weIl-known Herring's equation [16, 17, 18]. Since liquid crystals are anisotropie materi­

aIs, the Cahn-Hoffman capillarity vector thermodynamic formalism is also applicable to these 

soft but anisotropie materials. In addition, the Cahn-Hoffman formalism provides a direct and 

transparent way to elucidate the role of anisotropy in capillary pressure and its role in particle 

shape determination. 

The stability of fibers and filaments arises in a variety of multiphase material systems, 

such as met al [16, 18], polymer [19], and ceramic [20] composites, and polymer gels [21], as 

weIl as in the fiber forming pro cess [19]. Most of the analysis for fiber stability is based on 

extensions of the Rayleigh capillary instability, which is driven by the area reduction when 

a fiber breaks into an array of droplets. The instability modes are always axisymmetric and 

known as peristaltie modes [21]. This result is based on the assumption of isotropie interfacial 

tension, and since non-axisymmetric instabilities always increase surface area, they are never 

observed. Exceptions are jet instabilities un der strong inertia [22], where the disintegration 

process is analyzed in terms of chiral modes. Since anisotropie systems can decrease energy 

by surface contraction or by surface rotation, materials with orientational order such as liquid 

crystals are likely to exhibit chiral instabilities. Figure 2-1 shows schematies of characteristie 

peristaltie and chiral instability modes. Chiral instabilities of tubules driven by anisotropie 

surface energies have been studied in the literature and apparently explain geometric features 

of certain biomaterials [23, 24, 25]. In this chapter, we use the liquid crystal Cahn-Hoffman 

formalism [14, 17] to analyze peristaltic and chiral capillary instabilities of thin liquid crystalline 

fibers. 
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Figure 2-1: Schematic of capillary instability modes in nematic liquid crystalline fibers. Top 
figure: peristaltic (axisymmetric) mode, m = O. Bottom figures: chiral (non-axisymmetric) 
modes, m = ±1, ±2, .... 

The organization of this chapter is as follows. The first part consists of sections 2.3 - 2.5: 

Section 2.3 presents the main derivations and results of the Cahn-Hoffman equations; Section 

2.4 presents the derivation of the nematic Cahn-Hoffman equations; Section 2.5 presents the 

correspondence between the nematic Cahn-Hoffman equation and the surface stress tensor 

equation presented in [12, 13]. The second part consists of sections 2.6 and 2.7: Section 2.6 

presents the Cahn-Hoffman capillarity vector thermodynamics for curved anisotropic interfaces 

following Refs. [14, 17], and for curved nematic liquid crystal interfaces; Section 2.7 presents 

the application of the Cahn-Hoffman formalism to Rayleigh instabilities in thin nematic liquid 

crystalline fibers. Section 2.8 presents the conclusions. 

2.3 Cahn-Hoffman Capillarity Veetor for Anisotropie Surfaces 

This section summarizes the Cahn-Hoffman formalism as given in [14, 16, 17, 18]. For anisotropie 

systems, the surface free energy density 'Y is a function of the surface unit normal N: 'Y (N). 

34 



The capillarity vector ((N) is defined by the gradient of the scalar field Tf: 

((N) = \7 [r')' (N)] , r=rN, (2.1) 

where r is the distance from the origin in a fixed reference frame and is denoted by the magnitude 

of the surface position vector r. Noticing that ((N), the gradient of Tf, yields 

d(Tf) = \7 (Tf)· dr, rd')' + ')'dr = ( . d (r N) = r( ·dN + ( . N dr , (2.2) 

and therefore 

d')' = (·dN, ')'= (. N. (2.3) 

Since the surface free energy density ')' is a function of surface orientation, Le., of the angles 

describing the orientation of N in a fixed reference frame, using Eq. (2.3), it follows that 

(2.4) 

where dN represents a change in orientation by the small rotation angle de = IdNI. Since the 

unit tangent vector is given by t =dN / de, then (II = ( . t = d')' / de. The selected tangential 

component of ( is the one that maximizes the increase of surface energy with rotation, and 

hence 

(II = (. 18= (~~) ta, 
max 

(2.5) 

where 18 is the 2 x 2 unit surface dyadie and ta is the unit tangent vector along whieh d')' / de 

has the maximum rate of increase. For anisotropie surfaces there is a principal orthogonal 

coordinate frame (ta, co), and rotation of N around Co produces the maximum increase in 

surface energy. The principal frame is selected by the main anisotropie axes of the surface. 

Anisotropie surfaces can change surface energy by dilation and by rotation. Figure 2-2 shows 

an element of area A = A· N and surface unit normal N that undergoes expansion and rotation. 

Since ')' is a function of N, the surface energy ')' can increase by expansion and by rotation of 

N. Figure 2-3 shows the components of ( and their magnitudes in the principal frame (ta, co). 

Figure 2-4 shows a schematie of the capillarity vectors ( and -(, and the normal -(..l and 
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Figure 2-2: Schematic of a surface patch indicating the two modes of surface energy increase: 
(a) Dilation increases the surface are a A; (b) Rotation tilts the area vector A. Adapted from 
Ref. [14]. 

Ç(N) 

Figure 2-3: Schematic of the capillarity vector (, and its normal (..L and tangential (II compo­
nents in the principal surface coordinate frame (ta, co). Adapted from Ref. [14]. 
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Figure 2-4: Schematie of the effect of the capillarity vector -C and its components on the 
surface area vector A. The normal component -Cl. tends to shrink the area, while the tangential 
component -Cil tends to rotate the area vector to reduce surface energy. Adapted from Ref. [14]. 

tangential -Cil components of -(. The vector -C represents the surface force acting on the 

area vector A, tending to shrink (-Cl.) and rotate (-Cil) the surface. For isotropie surface, 

Cil = 0 and no rotational effects appear. 

The capillarity vector C is needed to compute the surface tension force density u. The 

surface tension force per unit length, u, acting on a line element oriented along a unit tangent 

vector 1 is u = C x 1, from whieh the following tangential and normal components are obtained: 

Cl. X 1 ="( (N x 1) ="(v, 

Cil xl = (~;) (taxI) . 
max 

v = N x 1, (2.6) 

(2.7) 

Since V = N . 1 for any 1, the magnitude of the tangential surface force U II is always T On the 

other hand, the normal surface force u 1. depends on the vector ta x 1. Thus u 1. = 0 for ta Il 1 

and u 1. = (u 1.) max for ta ..11. 

2.4 Cahn-Hoffrnan Capillarity Vector for Nernatic Surfaces 

For a nematie liquid crystal surface the nematic ordering is defined by the three-component 

orientation vector known as the director, n = n (r), where n· n =1, r = rN is the surface 

position vector, and N is the surface unit normal, as before. A useful decomposition of the 
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surface director field into tangential and normal components is n ll = Is . n and n..1 = NN . n, 

where Is = 1 - NN is the 2 x 2 unit surface dyadie, and 1 is the 3 x 3 volumetrie unit tensor. 

To develop the Cahn-Hoffman capillarity vector for nematic surfaces, we use the well-known 

Rapini-Papoular surface free energy density , given by [26] 

,(n· N, T) = 'is (T) + 'an (n· N, T) , 
w(T) 2 

'an (n . N, T) = -2 - (n . N) , (2.8) 

where 'is is the isotropie contribution, 'an is the anisotropie contribution due to anchoring en­

ergy, and w is the anchoring energy coefficient. Higher-order expansions are easily incorporated 

into Eq. (2.8) [4], but the present expression suffices for the scope of this chapter. To find the 

nematic capillarity vector (, we use definition (2.1): 

«(n, N) = \7 [rt (N)] , (2.9) 

where the director n in the surface energy is kept constant: ,(n, N) = ,(N). Computing the 

gradient of rt using r = r (r (N)) and N = N (r) gives 

8r 8, d, 
«(n, N) = \7 [rt (N)] =, 8r + r 8r = ,N + Is . dN' 

where the following results have been used: 

8r =N 
8r ' 

8, _ 1 . d, . 8N _ 1 . d, ~ 
8r- sdN 8r- s dNr' 

Thus the components of capillarity vector for nematie surfaces and interfaces are 

(..1 (n, N) = ( . NN =,N, 
d, d, , 

(II (n, N) = Is' dN = d (n. N) (Is . n) =, n ll , 

(2.10) 

(2.11) 

(2.12) 

where,' = d,/d(n· N). To put (II in the Cahn-Hoffman form, Eq. (2.5), we let e be the angle 

between the unit normal N and the direct or n in Eq. (2.12) and get 

, (d,) 
(II = , n ll = de ta ; 

max 

(2.13) 
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Figure 2-5: Schematie of the main vectors in the nematie Cahn-Hoffman vector thermodynamies 
for (a) planar easy axis (-d'Y/de > 0), and (b) homeotropie easy axis (-d'Y/de < 0). The 
principal surface frame (to, co) is selected by the director orientation. 

Thus the selected tangential vector to is the tangential unit vector along the surface projection 

of the direct or n ll , and the maximum rate of increase of 'Y is just -d'Y/de (see Figure 2-5 below). 

In nematie interfaces the principal frame (to, co) is defined by the intersection of the N-n plane 

and the surface. Therefore, nematie surfaces may decrease the surface energy by contraction 

or by rotation of the surface unit normal around an axis (parallel to co) that is perpendieular 

to the surface projection of the director. The nematie surface behavior is isotropie only if 

d'Y 
(II = n ll d (n . N) = 0 , (2.14) 

whieh is possible when n ll = 0 or when d'Y/d(n· N) = O. When n ll = 0, Le., n Il N, the surface 

is isotropic as when n ll = 1, Le., n..l N. The direct or n* corresponding to the stable extrema 

of 'Y is known as the easy axis, and is (i) planarj W > 0, nl~ = 1, or (ii) homeotropicj W < 0, 

n~ = 0 [4]. The two cases are shown in Figure 2-5: n, N, to, co, (, -(II vectors for a planar 

easy axis (a) and for a homeotropic easy axis (b). Rotation of N around Co in the direction 

imposed by -(II gives the fastest rate of decrease in anchoring energy: (a) -d'Y/dB> 0 and (b) 

-d'Y/de < O. 

For a nematic surface, the components of the surface tension force per unit length, 0', acting 
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on a line element oriented along a unit tangent vector 1, in Eqs. (2.6) and (2.7), are rewritten 

as 

0'11 = C.1 X 1 =, (N x 1) =,v , 
d, 

d(n. N) (nll xl) . (2.15) 

Thus the normal surface tension force per unit length acting on a line oriented along 1 is zero 

only if Cil = 0 or if n Ill. Barring these possibilities, a line on a nematie surface is subjected 

to a normal force, 0'.1, unlike isotropie surfaces. This normal force plays a role in the balance 

of forces at contact lines and triple lines, where if one of the intersecting surfaces is nematie, 

the classical Neumann tangential capillarity vector equation must be augmented to include the 

normal vector force 0'.1 [12]. 

2.5 Correspondence between Cahn-Hoffman Capillarity Vector 

and Surface Elastic Stress Tensor 

The previous model of interfacial nemato-statics [12, 13] is based on the surface elastie stress 

tensor t se • This fundamental quantity defines the capillary pressure Pc, Pc = - (\7 s . t se ). N, and 

the surface tension force 0' on a surface line along 1, 0' = V . t se , where v ..11. The expression of 

the surface elastie stress tensor t se is found basieally by noting that , = , (N) and by using the 

identity t se = Is . t se . The surface elastie stress tensor t se is given by the usual 2 x 2 symmetric 

interfacial tension contribution tiV (normal stresses) and the 2 x 3 anisotropie contribution tË 

(bending stresses): 

(2.16) 

Comparing Eqs. (2.12), (2.13), and (2.16) we find that the correspondence between the surface 

elastie stress tensor t se and the Cahn-Hoffman capillarity vector C is 

tiV (1- . NIs , 
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(2.18) 



The bending coefficient &y / de is the fastest rate of decrease in anchoring energy, and tË has 

only one component in the principal frame. Figure 2-6(a) shows the bending stress cylinder, 

presenting ll, N, to, Co vectors and Id'Y/del. The arraws denote the direction and magnitude 

of the bending stresses acting on a surface patch where the orthogonal frame is any arbitrary 

orthogonal (t, c). The magnitude of the bending stress at any point on the circle is 

(2.19) 

where <p is the angle between to and t. Figure 2-6(b) shows that for the principal frame (to, co) 

there is only one component, i.e., principal bending stress of magnitude 1 d'Y / dei, acting on the 

surface direction normal to to. Figure 2-6(c) shows that for any other frame (t, c) there are 

two bending stress components whose magnitudes depend on the rotation angle <p between the 

principal frame (to, co) and the (t, c) frame. 

2.6 Herring's Formula for Capillary Pressure Derived from Cahn­

Hoffman Capillarity Vector 

In this section, the Cahn-Hoffman capillarity vector thermodynamies for curved anisotropie 

interfaces is adapted to soft liquid crystal interfaces. The formalism is used to derive the 

Herring's capillary pressure equation for liquid crystal interfaces, where the raIe of anchoring 

energy of liquid crystals is made explicitly. It is shown in detail that liquid crystal interfaces 

have three distinct contributions to capillary pressure: (i) area reduction, (ii) area rotation, 

and (iii) direct or curvature. 

To derive the Herring's equation for curved anisotropie interfaces, it is necessary to introduce 

surface curvature as follows. The mean curvature H and the surface curvature tensor b of curved 

interfaces are given by 

(2.20) 

(2.21) 

where 'Vs = Is . 'V is the surface gradient , Is is the 2 x 2 unit surface dyadic, b is a 2 x 2 
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(a) 

l:~l 
.i 

(b) cp = 0 

............. ,#,,,' 

··0. 
Figure 2-6: (a) Schematic of the bending stress cylinder t~ in relation to the main surface 
vectors and main frame (to, co). (b) Schematic of the single principal bending stress on a 
surface element oriented along the principal frame (to, co). (c) Schematic of the two bending 
stresses on a surface element oriented along the principal frame (to, co). 
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symmetric tensor, and where {/'i;d and {ei}, i = 1,2, are the eigenvalues and eigenvectors of 

b. The surface divergence of Is is a normal vector: \7s' Is = 2HN. Using Eq. (2.3) the total 

surface free energy Fs is 

L,dA = L ( . NdA. (2.22) 

The variation of the total surface free energy 8Fs due to a displacement 8u normal to the 

interface is 

(2.23) 

where Pc is the capillary pressure and Je is the component of the edge force along the contour 

C. As shown in Ref. [17], 8Fs is given by 

8Fs = L (\7s ' () 8udA - f c (N x (II) . ",8udl, (2.24) 

where", is the unit tangent to C. Thus the capillary pressure is Pc = \78 • (. The divergence of 

the capillarity vector follows the rule 

(2.25) 

The contribution from the normal component (.1 is the classical term 

(2.26) 

According to Eq. (2.5), 

(2.27) 

Using Eqs. (2.5), (2.21), and (2.27) the contribution to Pc from the tangential component is 

(2.28) 

(2.29) 
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Collecting results in Eqs. (2.26), (2.28), and (2.29), the following well-known Herring's equation 

[16, 17] is obtained from Eq. (2.25): 

The area size change is driven by geometric curvature. The rotation effect creates capillary 

pressure only on curved surfaces. The curvatures fj2"( / aB: renormalize the surface tension, and 

since their sign is unrestricted, negative effective surface tension can arise. 

To derive the liquid crystal Herring's formula for the capillary pressure, we use the definition 

(2.25) and find 

(2.31) 

where the addition al contribution to the capillary pressure arises from director curvature since 

the nematic capillarity vector is a function ofboth the direct or and the normal, Le., ( = ((n, N). 

Flat planar liquid crystal interfaces generate capillary pressure by direct or curvature [11, 12, 13]. 

The contribution from the area size change is the classical term (2.26). Using Eq. (2.12) 

(II = "(' (Is . n) = "(' [n - N (n . N)] , (2.32) 

the area rotation contribution becomes 

~~ : b = "(" [nn - (n· N)2 1] : b ="(" {[(n. e1)2 - (n· N)2] "'1 + [(n. e2)2 - (n· N)2] "'2}' 

(2.33) 

The direct or curvature contribution is found using the equality "(' = "(" (n . N) to obtain 

(2.34) 

Collecting terms (2.26), (2.33), and (2.34)and using "(" = w, we finally obtain the liquid crystal 
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Herring equation for capillary pressure from Eq. (2.31): 

-Pc {1+W [(n.el)2 - (n'N)2]}KI + {1+W [(n.e2)2 - (n.N)2]}K2 

-w [tr (Nn) tr (Y'sn) + tr (NnY'sn)] , (2.35) 

where the contributions due to area change, area rotation, and direct or curvature are 

-w [(N· n) (Y's' n) + Nn :Y'sn]. 
, j 

V' 

(2.36) 

direct or curvature 

In the absence of director curvature, the classieal expression of the Herring equation, Eq. (2.30), 

is obtained since 

i = 1,2. (2.37) 

For fiat planar interfaces the capillary pressure is driven by director curvature: 

-Pc = -w [(N· n) (Y's . n) + Nn :Y'sn] . (2.38) 

For curved surfaces and orientation along the principal axis, say n = el, the capillary pressure 

Pc is 

(2.39) 

whieh shows that the effective surface tension corresponding to curvature KI is renormalized 

from 1is to 1is + w. Since the sign of w is undetermined [4], competition or cooperation may 

result. In addition, planar orientation on curved interfaces results in capillary pressure. For 

curved interfaces and orientation along the unit normal, n = N, 

(2.40) 

and the classieal form of Laplace equation for isotropie interfaces results since the surface it-
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self is isotropie beeause the anisotropie axis is along the normal. Clearly, capillary pressure 

in anisotropie liquid crystal interfaces includes a number of novel interfacial effects: (a) cap­

illary pressure even for fiat surfaces, (b) orientation-dependent renormalization of the surface 

tension coefficients due to anchoring energy, (c) orientation-driven transitions between classieal 

(Laplace pressure) and non-classical behaviors, and (d) Laplace-type capillary pressure due to 

orientation curvature. We next analyze the stability of thin nematic liquid crystal fibers, where 

the manifestations of these novel phenomena clearly emerge. 

2.7 Application of Cahn-Hoffman Capillarity Vector Thermo­

dynamics to the Rayleigh Fiber Instability 

The classical Rayleigh liquid fiber instability is driven by area reduction. Consider a liquid 

cylinder of length L with axis along the z-direction of constant radius a. Axisymmetric pertur­

bations of infinitesimal amplitude and axial wave number k of the type 

(2.41 ) 

conserve the volume and change the original total surface area Ai = 27raL to 

(2.42) 

and when ka < 1, the area is reduced, and the liquid fiber undergoes a peristaltic instability that 

eventually leads to the formation of spherical droplets (see Fig. 2-1). Since nematie interfaces 

change the surface energy through area reduction, area rotation, and direct or curvature, new 

non-axisymmetric (chiral) instability modes beyond the classical peristaltic mode are expected 

(see Fig. 2-1). We must therefore consider the following volume-conserving non-axisymmetric 

perturbations of infinitesimal amplitude ço: 

R(8, z) = Ro + ç(8, z) , H,6 ( Ç6) Ro=a 1--~a 1--
2a2 4a2 ' 
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ç(8, z) = ço cos (kz + m8) , 

(2.43) 



where m = ±1, ±2, ... is the quantized azimuthal wave number that gives rise to chiral surface 

patterns. For these non-axisymmetric perturbations we next show that the surface area always 

increases, and hence these instability modes are not observed in isotropie systems. The surface 

position vector P(B, z) is 

P ( B, z) = (R cos B, R sin B, z) . (2.44) 

To compute the total surface area Afm of a deformed cylinder of length L we use cylindrical 

coordinates (u = RoB, v = z) and integrate, 

{L {27r 
A fm = Jo Jo J EG - F 2dudv , (2.45) 

F = L 8PJ)Pi = 8ç 8ç 
. 8v 8u 8v8u' 

(2.46) 
~ 

(2.47) 

EG - F' (1 + ~)' [1+ (~~)' + (l~r),l ~ (1 + ~)' [1+ (~~)' + (~:)'l ' 
VEG-F2 ~ (1+ ~) [1+H (~~)\ (~~nl· (2.48) 

Computing the derivatives the final area A fm is found to be 

(2.49) 

where the calculation is valid to second order in ç. Thus for m ~ 1 the area increases quadrati­

cally with m. Next we show how chiral instabilities emerge driven by area rotation and direct or 

curvature modes. 

The capillary pressure Pc is the variation of the surface energy density under a small per­

turbation of the orientation, surface area, and surface rotation. Introducing an infinitesimal 
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Axial Texture (AT) 

nA = (0,1,0) 

Onion Texture (OT) 

nO = (1,0,0) 

Radial Texture (RT) 

n R =(O,O,l) 

Figure 2-7: Schematic of the three fiber textures: (a) axial (nz = 1), (b) on ion (no = 1), (c) 
radial (nr = 1) textures. 

perturbation I;,(e, z) of the type (2.43) creates a capillary pressure given by 

(2.50) 

where D is a perturbation-independent constant and does not contribute to the growth rate 

equation for the perturbation (see Chapter 3 for details) while ~ (1;,) contains an the perturbation­

dependent terms. A perturbation I;,(e, z) decreases the surface energy when 

~ (1;,) > O. (2.51) 

Next we analyze aIl the possible instability modes of thin nematic fibers by establishing the 

conditions that lead to positive values of the perturbation-dependent contribution to -PC' 

We consider the three characteristic orientation states in a nematic fiber of initial constant 

radius a subjected to infinitesimal perturbation I;,(e, z), as given in Eq. (2.43). Figure 2-7 shows 

the schematic of the three fiber textures: (a) axial (nz = 1), (b) on ion (no = 1), and (c) radial 

(n r = 1) textures. The phenomena are described in a cylindrical coordinate system (e, z, r), 

and the direct or field n is specified by n(e,z,r) = (no,nz,nr ). The principal surface frame is 

given by the unit vectors: el = 8o, e2 = 8z , the unit surface normal N by 

(2.52) 
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and the principal curvatures XOr and Xzr by 

Thus Eq. (2.35) is rewritten as 

(2.54) 

where the curvatures of the surface energy are 

{P, [ 2 2] -2 =w (n'do) -(n·N) , 
{Jeo 

(2.55) 

Substituting Eq. (2.53) into Eqs. (2.54) yields the general Rayleigh instability condition: 

The four mechanisms that operate in the Rayleigh instabilities in nematic fibers are explicitly 

shown below: 

, [(1- m2) - (ka)2] + 
, 1 

V 

{J2, (1 _ m2) 
{Je~ 
'-v--' 

{J2, (ka)2 
{Je2 

z 
'-,.--' 

are a reduction (AR) area rotation around â z (Rz ) area rotation around âe (Re) 

wa2 

-T [(N· n) (\7 s ' n) + Nn :\7sn] >0 
, 1 

v 
direct or curvature (De) 

(2.57) 

denoted as area reduction (AR), area rotation around dz (Rz ), area rotation around do (Ro), 

and direct or curvature (DC). Whether a mechanism drives or quenches the instability depends 

on its sign. The AR mechanism is stabilizing for m ~ 1, and destabilizing for m = 0 and 

ka < 1. The rotation and DC mechanisms can drive or quench the instabilities since the sign of 

anchoring energy coefficient w is not fixed. The emergence of chiral modes (m ~ 1) is possible 

only if 

{J2, [ 2 2] 
-2 =w (n'do) -(n·N) 
{Jeo 
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Table 2.1: Anisotropie contributions to the Rayleigh instabilities according to Eq.(2.60). 

Texture 
Œ Rz: rotation ŒRo: rotation ŒDC: 

around Oz around 00 direct or curvature 
Axial n= Oz 0 +1 0 
Onion n= 00 +1 0 +1 
Radial n=Or -~ -~ -1 

and the two characteristic cases are 

(i) n = N, w> 0; (ii) n = 00, w < 0 ; (2.59) 

Chiral modes arise (i) when the direct or is homeotropic (n = N) and the easy axis is planar 

(w > 0), and (ii) when the director is along the azimuthal direction (n = 00) but the easy axis 

is homeotropic (w < 0). For the three characteristic direct or textures, Le., axial (n = oz), onion 

(n = 00), and radial (n = N = or), the general Rayleigh instability condition (2.57) simplifies 

to 

(2.60) 

and in dimensionless form, by setting T == w / lis' 

(2.61) 

where the coefficients {Œi}, i = ŒRz' ŒRo, ŒDC are equal to 0, -1/2, or ±1, depending on the 

direct or orientation, as shown in Table 2.1. For the axial texture n = Oz, the direct or has no 

curvature: ŒRz = 0, ŒRo = 1, ŒDC = O. For the onion texture n = 00, the direct or has bending 

curvature: ŒRz = 1, ŒRo = 0, ŒDC = 1. For the radial texture n = or, the direct or has splay 

curvature: ŒRz = -1/2, ŒRo = -1/2, ŒDC = -1. Clearly a rotation mechanism is activated 

when the direct or has a projection normal to a given rotation axis. For radial textures, two 

orthogonal rotations are equally likely and thus ŒRz = ŒRo = -1/2. We next discuss the 

thresholds and parametric dependence of the Rayleigh instabilities for each texture. We will 

consider peristaltic (axisymmetric) and chiral (non-axisymmetric) modes, as weIl as bounded 

(D> ka> 0; Dis finite) and unbounded modes (ka> 0). Unbounded modes denote Hadamard 

catastrophic instabilities that are regularized, for instance, by viscoelastic modes not included 
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here but further investigated in the following chapters. Chiral bounded modes arise sequentially 

since m is quantized, and are denoted as chiral sequential modes. It is interesting to note that 

unbounded instabilities in anisotropie systems were already discussed by Cahn [18]. In what 

follows we use the following nomenclature for instability modes: peristaltie bounded (PB), 

peristaltic unbounded (PU), chiral sequential (CS), and chiral unbounded (CU). The azimuthal 

wave numbers for these modes are peristaltie bounded modes, mpB = 0; peristaltic unbounded 

modes, mpu = 0; chiral bounded modes, meB ~ 1; and chiral unbounded modes, meu ~ 1. 

A summary of aIl the instability modes, their parametric dependence, and main driving forces 

for the three characteristie fiber textures are given in Tables 2.2-2.4, and discussed in detail 

in the following: 

(1) Axial textures (Table 2.2). When n = tSz , the instability equation (2.61) is 

(2.62) 

and leads to the two following axisymmetric (peristaltie) and non-axisymmetrie (chiral) insta­

bility modes: 

(a) Peristaltie bounded mode (PB) 

T> -1; 1 - m~B (k)2 a 
1 

> a > , +T 
(2.63) 

where the driving force is the area reduction (AR). 

(b) Peristaltie and chiral unbounded modes (PU, CU) 

-2 < T < -1; (ka)2>O form=O,l, 2 m~u-1 
(ka) > Il + TI for m ~ 2, (2.64) 

where the driving forces are the area reduction (AR) and rotations (Re) for m = 0, and only 

rotations (Re) for m ~ 1. Since the area reduction mechanism is weaker as m increases, 

higher-order modes arise at shorter wavelengths (lager wavenumbers). 

(2) Onion textures (Table 2.3). When n = tSe, the instability equation (2.61) is 

(2.65) 

51 



Table 2.2: Axial texture (AT). 
Instability Rotation around 6() Area reduction Director curvature 

mechanisms (Ro) (AR) (DC) 

~.L =yN 

_______ (Lt ____ --;, z - --- -

/ \, ,./ 0 
, /~ 

. , 

Schematics Be/ 

of instability J].. il il 
mechanisms 

! ~.L 
l ~ 

; e, d3l - -
~ 

n -------- ---~ z 
-' ~II ~ 0 

,/8 a 

82 2 "f (XOr + Xzr) = 
-Pc ~Xzr = -w (ka) 

"fis r (1 - m2) - (ka)2] 
None 

z 

Driving force w < 0; - w (ka)'1, m=O; "fis None 
Instability 

(1 - m2) - (1 + T) (ka)2 > 0 
condition 

Instability -2 < T < -1; mpu = 0, mcu ~ 1 T> -1; mpB =0 
type Peristaltic and Chiral Unbounded Peristaltic Bounded 

Schematics , ........ .... of unstable . . . 
fibers 

m pu =0 mcu =1 m pB =0 
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Table 2.3: Onion texture (OT). 
Instability Rotation around Oz Area reduction Director curvature 

mechanisms (Rz) (AR) (DC) 

~.l =yN 

hon'!'--;'Ô! 
... 

_._._._._.GJ>_._.-7 Z ... 

® ,r.jll 

Schematics 
of instability D D D mechanisms 

;.l i 
'\ i 

~ 

IJ' / 
., 

~ ~ :9 6 

~, ! --------? 8, _._._._. _._._~ z ® ~ ,QI 

~II/ 

5â - ( 2) "f (XOr + Xzr) = 
-Pc 80 XOr - -w 1 - m 

"fis f(l - m2) - (ka)21 
-w 

e 

Driving 
m=O }w 
w>ü 

m=O; w < 0; force m 2:: 1 } w (1 _ m2) 
"fis -w 

w < 0 
Instability 

(1 + T) (1 - m2) - (ka)2 - T > 0 
condition 

Instability -2 < T < 0; 
T2::0; mpB =0 Peristaltic Bounded , mpB =0 type 

Chiral Sequential , mes> 1 
Peristaltic Bounded 

Schematics ..... " ... .... of unstable 
fibers 

mpB =0 mes =1 mes =2 mpB =0 
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and leads to the following axisymmetric (peristaltic) and non-axisymmetric (chiral) bounded 

modes: 

(a) Peristaltic bounded modes (PB) 

T> -2; 0 < (ka)2 < (1 + T) (1 - m~B) - T = 1, (2.66) 

where the driving force is the area reduction (AR), for T < 0 also director curvature (DC), and 

for T > 0 also rotation (Rz). 

(b) Chiral sequential bounded modes (CS) 

mes ~ 1, T::; T cm < 0 ; 
-1 1 - m~sl 

T - --'-;----.:::~ 

cm - 1 + Il - m~S l ' 
(2.67) 

where T cm is the upper critical value of emergence for the mode m. For m = 1 the instability 

is driven by direct or curvature. For m > 1, the instability driving force is the Rz rotation and 

director curvature. When T < 0 the easy axis is homeotropic and a surface rotation around 8z 

can lower the energy. The m = 2 mode is ignited when T ::; T c2 = -3/4, the m = 3 mode when 

T ::; Tc3 = -8/9, and so on. As m ---t 00, T coo ---t -1, and hence when T < -1 aU modes 

(m ~ 0) are unstable (see Figure 2-8 and discussion below). 

(3) Radial textures (Table 2.4). When n = 8r , the instability equation (2.61) is 

(2.68) 

and leads to the foUowing axisymmetric (peristaltic) and non-axisymmetric (chiral) bounded 

modes: 

(a) Peristaltic bounded modes (PB) 

-2 2· 0 (k)2 (2-T)(1-m~B)+2T _ T+2 
< T <, < a < IT _ 21 - IT - 21 ' (2.69) 

where the driving forces are the area reduction (AR), for T > 0 also direct or curvature (DC) 

and rotation mode (RB), and for T < 0 also rotation mode (Rz). 
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Table 2.4: Radial texture (RT). 

Instability Rotation Rotation Area reduction 
Director 
curvature 

mechanisms (Re) (Rz) (AR) 
(De) 

l 

~=~.L =rN ~=~.L =r N 
Il Il 1 1 1 1 / :~ .... a,/ / : ~ .... 6,/ j i i Il! ( 1 

_._._ . .Il.!P._.-;,. Z 

® 68/ 68:, 

Schematics 

..0.. of D D D 
instability 

mechanisms ~ ~ 

~z 
~ 

~b 
~.L ~ 1-UJ..li.lU "\ nil/ 

/ N~/L.5,/ ~ ® IL~ ,:68 

yerro + Zrz) = 
a2y 2 a2y 2 y[(1- m 2) - (ka) - Pc -2 Zrz = w(ka) ae2 Z rO = -w(1- m ) w aez (} (y = Yis + w/2) 

Driving 
{m=o}_w 

w<O 
force w> 0 ; w(ka)2 

t~l} 2 

m=O; y w>O;w 
-w(1-m ) 

w>O 

Instability 
( 1-~ )[(1- m 2) - (ka) 2] + r >0 

condition 

Instability -2<r~O 0<r<2 r~2 

type mpB =0 mpB = 0, mes ~ 1 mpu = 0, meu ~ 1 

Schematics ......" ..... , .... " ofunstable 
fibers 

mpB =0 mpB =0 mes =1 mes =2 mpu =0 meu =1 
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Figure 2-8: Azimuthal wavenumber m as a function of dimensionless anchoring energy T for 
(a) axial, (b) onion, and (c) radial textures. The captions (PB, PB/CS, PU/CU) refer to the 
instability types of Tables 2.2-2.4, and the instability regions are divided by thick dashed lines. 
In (b) and (c), the dashed curves indicate either the upper or the lower critical value, T em , for 
the emergence of each instability mode m. 

(b) Peristaltic and chiral unbounded modes (PU, CU) 

(2.70) 

where the driving forces are the area reduction (AR), direct or curvature (DC), and rotation 

mode (Re). 

(c) Chiral sequential bounded modes (CS) 

mes 2: 1 , 0 < T ::; T cm < 2 ; 2 2T 1 2 1 21 1 - m~S 1 (ka) < (2 _ T) - 1 - mes , Tcm = 1 2 l' (2.71) 
2 + 1- mes 

where the driving forces are rotation (Rz , Re) and director curvature (DC). As T becomes 

positive and increases, the m = 1 mode arises at T cl = 0, then the m = 2 mode at T e2 = 6/5, 

and then the m = 3 mode at T e3 = 16/10, and as m ~ 00, T eoo ~ 2 (see Figure 2-8 and 

discussion below). 

Figure 2-8 shows the azimuthal wavenumber m as a function of dimensionless anchoring 

energy T for (a) axial, (b) onion, and (c) radial textures. The captions (PB, PB/CS, PU/CU) 

refer to the instability types of Tables 2.2-2.4, and the instability regions are divided by thick 

dashed lines. In Figs.2-8(b) and 2-8(c), the dashed curves indicate either the upper or the 
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lower critical value, T em , for the emergence of each instability mode m. Figure 2-8(a) shows the 

transition of instability mechanisms from PB to PU/CU at T = -1 in the axial texture. Figure 

2-8(b) shows that for the onion texture CS modes emerge when T < 0, and the instability 

creation curve diverges as T ---+ -1+, indieating that in this limit, represented by the vertieal 

dashed line at T = -1, an m modes are unstable. For the radial texture CS modes emerge when 

T > 0, and the instability creation curve diverges as T ---+ 2-, indieating that an m modes are 

unstable in this limit and even become unbounded. 

2.8 Conclusions 

The Cahn-Hoffman capillarity vector thermodynamies formalism for anisotropie surfaces has 

been adapted to nematie liquid crystal surfaces, and its connection with the classieal stress 

tensor model has been established. The Cahn-Hoffman capillarity vector formalism offers a clear 

and tractable methodology to analyze capillarity forces in nematie surfaces. The existence of 

rotational forces and their connection to gradients of anchoring energy and bending stresses has 

been established. The potential minimization of anchoring energy leads to surface rotations and 

bending stresses. The nematie Cahn-Hoffman capillarity vector is an efficient tool to analyze 

shape selection and surface patterning processes in liquid crystals. 

The Cahn-Hoffman capillarity vector thermodynamies on curved anisotropie interfaces can 

be adapted to liquid crystal interfaces since the interfacial tension of liquid crystals is orientation 

dependent. The anchoring energy of liquid crystals appears as the property that renormalizes 

the isotropie component of the interfacial tension and promotes the rotation of the interface. 

Since the orientational order of liquid crystals on curved interfaces can exhibit gradients, the 

classieal Herring's formula for capillary pressure contains four contributions: surface area re­

duction, two surface area rotations, and director curvature. Rayleigh capillary instabilities in 

isotropie materials display only peristaltie mode, since they are driven by area reduction. Other 

anisotropie systems such as liquid crystals also exhibit chiral capillary instabilities that lead to 

an increase of the surface area. The chiral modes produce twisted mierostructures driven by 

area rotation and director curvature mechanisms. Chiral modes emerge whenever orientation 

along the azimuthal direction tends to rotate the surface or when splay or bend orientation 
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eurvature is too eostly to produce. The chiral modes are eapillary instabilities that lead to 

novel structuring and patterning of anisotropie fibers. 

58 



Bibliography 

[1] A. A. Sonin, The Surface Physics of Liquid Crystals (Gordon and Breach Publishers, Am­

sterdan, 1995). 

[2] B. Jerome, in Handbook of Liquid Crystals, edited by D. Demus, J. Goodby, G. W. Gray, 

H.-W. Spiess, and V. Vill ( Wiley-VCH, Weinheim, 1998). 

[3] H. Yokoyama, in Handbook of Liquid Crystal Research, edited by P. J. Collins and J. S. 

Patel (Oxford University Press, New York, 1997). 

[4] T. J. Sluckin and A. Poniewierski, in Fluid lnterfacial Phenomena, edited by C. A. Croxton 

(Wiley, Chichester, 1986). 

[5] S. Faetti, in Physics of Liquid Crystalline Materials, edited by I-C Khoo and F. Simoni 

(Gordon and Breach, Philadelphia, 1991). 

[6] E. G. Virga, Variational Theories for Liquid Crystals (Chapman Hall, London, 1994). 

[7] A. K. Sen and D. E. Sullivan, Phys. Rev A. 35, 1391 (1987). 

[8] G. Barbero and G. Durand, in Liquid Crystals in Complex Geometries, edited by G. P. 

Crawford and S. Zumer (Taylor and Francis, London, 1996). 

[9] J. T. Jenkins and P. J. Barrat, Quart. J. Mech. Appl. Math. 27,111 (1974). 

[10] J. L. Ericksen, in Advances in Liquid Crystals, edited by G. H. Brown (Academic, New 

York, 1979), vol.4. 

[11] C. Papenfuss and W. Muschik, Mol. Mater. 2, 1 (1992). 

59 



[12J A. D. Rey, J. Chem. Phys. 113, 10820 (2000). 

[13J A. D. Rey, Phys. Rev. E 61, 1540 (2000). 

[14J D. W. Hoffman and J. W. Cahn, Surf. Sci. 31, 368 (1972). 

[15J P. G. de Gennes and J. Prost, The Physics of Liqid Crystals (Oxford University Press, 

London, 1993). 

[16J A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials (Oxford Science Claren­

don Press, New York, 1995). 

[17J J. W. Cahn and D. W. Hoffman, Acta Metall. 22, 1205 (1974). 

[18J J. W. Cahn, Scr. Metall. 13, 1069 (1979). 

[19J S. Middleman, Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops (Aca­

demie Press, San Diego, 1995). 

[20J A. M. Glaeser, Interface Sci. 9, 65 (2001). 

[21J B. Barriere, K. Sekimoto, and L. Leibler, J. Chem. Phys. 105, 1735 (1996). 

[22J X. Li, Atomization and Sprays 5, 89 (1995). 

[23J J. V. Selinger, F. C. MacKintosh, and J. M. Schnur, Phys. Rev. E 53, 3804 (1996). 

[24J A. Tardieu, V. Luzzati, and F. C. Reman, J. Mol. Biol. 75, 711 (1973). 

[25J J. A. N. Zasadzinski, J. Schneir, J. Gurley, V. Elings, and P. K. Hansma, Science 239, 

1013 (1988). 

[26J A. Rapini and M. Papoular, J. Phys. (Paris), Colloq. C4, 30, 54 (1969). 

60 



Chapter 3 

Capillary Instabilities in a Thin 

Nematic Liquid Crystalline Fiber 

Embedded in Viscid and Inviscid 

Matrices 

3.1 Summary 

A complete identification and characterization of three distinct capillary instabilities in nematie 

liquid crystalline fibers is presented. Linear stability analysis of capillary instabilities in a thin 

nematic liquid crystalline cylindrieal fiber embedded in immiscible viscid and inviscid matrices 

is performed by formulating and solving the governing nemato-capillary equations. In the case 

of a viscous matrix, the governing nemato-capillary equations include the effect of interfacial 

viscous shear forces due to flow in the viscous matrix. A representative axial nematie orienta­

tion texture is studied. The surface disturbance is expressed in normal modes, whieh include 

the azimuthal wavenumber m to take into account non-axisymmetrie modes of the disturbance. 

Capillary instabilities in nematic fibers reflect the anisotropie nature of liquid crystals, such as 

the orientation contribution to the surface elasticity and surface bending stresses. Surface gra­

dients of bending stresses provide additional anisotropie contributions to the capillary pressure 
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that may renormalize the classical displacement and curvature forces that exist in any fluid 

fiber. The exact nature (stabilizing and destabilizing) and magnitude of the renormalization of 

the displacement and curvature forces depend on the nematie orientation and the anisotropie 

contribution to the surface energy. Accordingly, capillary instabilities may be axisymmetrie or 

non-axisymmetric, with finite or unbounded wavelengths. Thus, the classieal fiber-to-droplet 

transformation is one of several possible instability pathways while others include surface fib­

rillation. The contribution of the viscosity ratio to the capillary instabilities of a thin nematie 

fiber in a vis cous matrix is analyzed by two parameters, the fiber and matrix Ohnesorge num­

bers, whieh represent the ratio between vis cous and surface forces in each phase. The capillary 

instabilities of a thin nematic fiber in a viscous matrix are suppressed by increasing either fiber 

or matrix Ohnesorge number, but estimated drop let sizes after fiber break-up in axisymmetric 

instabilities decrease with increasing matrix Ohnesorge number. 

3.2 Introduction 

This chapter is concerned with the mechanies and stability of a thin nematie liquid crystalline 

fiber embedded in vis cid and inviscid matriees. In the first part of this chapter, capillary 

instabilities in a liquid crystalline fiber in an inviscid matrix are analyzed, and we extend this 

work in the second part of this chapter to include viscous matrix effects. 

A question of fundamental importance in capillary instabilities of thin fibers is the nature 

of the modes that arise as driven by surface tension forces. In isotropie fluid fibers, the fiber­

to-droplet transformation is well understood and known as the Rayleigh instability [1, 2, 3]. 

In this case, displacement capillary forces drive the fiber break-up, while curvature dependent 

forces resist the instability thus setting a lower cutoff in the resulting drop let sizes. Since 

in these materials surface tension is isotropie, only axisymmetrie mode emerges, eventually 

generating spherical droplets. On the other hand, an essential characteristie of nematie liquid 

crystals is mechanieal anisotropy [4]. The anisotropies in the viscoelastie bulk properties of 

nematic liquid crystals are well understood theoretically [5, 6] and experimentally [4], and the 

anisotropies in the surface elastie properties of nematies are also well-characterized [7, 8]. It 

is well-known that the surface tension of nematics contains an isotropie contribution as well 

62 



as an anisotropie contribution, known as the anchoring energy [7, 8, 4]. The role of anchoring 

energy on capillary instabilities has been partially studied [9, la] with simplified versions of the 

governing interfacial linear momentum balance equations. The study of capillary instabilities 

is based on analysis of macroscopie flow produced by gradients in capillary pressure [1, la]. 

The capillary pressure is found by projecting the surface gradient of the surface stress tensor 

along the unit surface normal vector. Thus, the nature of surface stress tensor is at the center of 

capillary instabilities. For isotropie fluids, the surface stress tensor is a diagonal 2 x 2 tensor, the 

capillary pressure is isotropie, and non-axisymmetrie modes of thin cylindrieal fibers are thus 

stable because curvature dampens such costly deformation [2] (Isotropie jets, on the other hand, 

may develop non-axisymmetric disturbances but only through inertia effects [11, 12, 13]). For 

nematie liquid crystals, the surface stress tensor is a 2 x 3 tensor, exhibiting both normal and 

bending stresses [14]. Bending stresses arise because the surface energy depends on the nematie 

orientation at the surface. The bending stresses attempt to deform the surface if the surface 

energy can be lowered in doing so. In the first part of this chapter, we show that gradients 

in bending stresses renormalize the capillary pressure effects, creating new axisymmetrie and 

non-axisymmetric capillary instabilities. 

Tomotika [15] has analyzed capillary fiber instabilities of isotropie viscous fluids in an 

isotropie viscous matrix, and in partieular its dependence on the fiber-to-matrix viscosity ra­

tio. It was shown that the fastest growing wavelength of the instability, Le., the wavelength 

corresponding to the maximum (fastest) growth rate of the instability, as a function of the 

viscosity ratio had a local maximum, implying that smallest droplets after fiber break-up were 

expected at a finite viscosity ratio. Meanwhile, the fastest growing wavelength increased to 

infinity as the viscosity ratio approached zero, e.g., inviscid fiberjviscous matrix, or infinity, 

e.g., viscous fiberjinviscid matrix as in earlier Rayleigh's study [16]. Kinoshita [17] recently 

extended Tomotika's work by enlarging the parameter space, taking into account the fiber 

Ohnesorge number and the matrix-to-fiber viscosity ratio. Good agreement among several 

studies [15, 17, 18] were reported. In the classical Tomotika's work [15], the only parameter is 

the viscosity ratio sin ce different groups of parameters are chosen in the process of derivation 

and non-dimensionalization of the growth rate equation. In the other studies [17, 18] and in 

the present work, the model contains two parameters, the matrix-to-fiber viscosity ratio and 
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the fiber Ohnesorge number. According to Ref. [17], Tomotika's results underestimate the max­

imum dimensionless wavenumber for a given viscosity ratio because the Ohnesorge number is 

not included in the model. In this work, we include the Ohnesorge number and find results 

in qualitative agreement with Refs. [17, 18]. In the second part of this chapter, we adopt the 

nemato-capillary equation for the fiber whieh further contains the vis cous stress force at the 

interface, and thus show the effect of the viscosity ratio on the capillary instabilities using the 

natural fiber and the matrix Ohnesorge numbers. It is also shown with this novel approach 

that a possible path in our parametric plane yields results in good agreement with other com­

putational models found in the literature for Newtonian fluids [15, 17, 18]. 

The specific objectives of this chapter are to: (1) derive a general equation that describes 

capillary instabilities in a thin nematie liquid crystal fiber embedded in viscid and inviscid 

matriees; (2) characterize aU the possible capillary instability modes and elucidate the physieal 

mechanisms that drive and quench the instabilities; (3) characterize the fundamental role of 

anisotropie surface elasticity and bending stresses in capillary instabilities; (4) establish para­

met rie conditions that lead to axisymmetrie and non-axisymmetrie capillary instabilities; and 

(5) characterize the contribution of the matrix-to-fiber viscosity ratio and the fiber Ohnesorge 

number to capillary instabilities. 

The organization of this chapter is as foIlows. In Section 3.3, we present the governing 

nemato-capillary equations and derive the instability criteria for a representative nematie tex­

ture. In Section 3.4, we characterize aIl possible instability modes and the geometry of the 

evolving unstable fiber. The instability mechanisms are clearly identified and discussed in 

terms of capillary forces. AlI results are summarized in compact tabular form and discussed 

in detail, emphasizing the physieal as weIl as mathematical aspects. Representative computed 

visualizations of unstable fibers are included to complement the tabulated and graphie al infor­

mation. In Section 3.5, we further investigate the stabilizing effects of the viscous matrix when 

the contribution of the stress tensor in the vis cous matrix evaluated at the surface is included. 

Section 3.6 presents conclusions. 
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Figure 3-1: (a) Unperturbed fiber with radius a is aligned in the z-axis of cylindrieal coordinates 
(r, (), z). Cross-sectional view in Cartesian coordinates (x, y) shows the unit vectors i r and ie in 
azimuthal angle (). (b) Unit surface normal N and direct or field n (nz = 1) of the axial nematie 
fiber with surface disturbances. Fiber radius R and unit surface normal N change along the 
z- and ()-directions. In the cross-section, the direct or field n is shown as dots and ()-directional 
surface disturbances as small-amplitude wrinkles at the surface. 

3.3 Governing Equations 

3.3.1 Geometry and texture of nematic liquid crystalline fibers 

To completely define the state of a nematie liquid crystalline fiber, both the geometry of the 

fiber and the spatial orientational order of the nematie liquid crystal must be specified. More 

specifically, Nematie Liquid Crystalline Fiber == {n, R, N}, where n is the nematie direct or field 

[4], R is the fiber radius, and N is the unit surface normal vector. For an isotropie material 

fiber, only the geometry is necessary, i.e., {R, N}. 

Figure 3-1 shows definitions of the fiber geometry and nematie texture. Figure 3-1(a) shows 

that the fiber is initially a uniform cylinder with radius a, and the fiber axis is collinear with the 

z-axis of a cylindrical coordinate system. The fiber nematie texture is expressed by the direct or 

field using unit vectors i r , ie, and iz in the direction of the r-, ()-, and z-axes, respectively. In 

this chapter, we restrict our analysis to a nematie texture with a fixed direct or field, denoted as 

axial texture, and the nematie fiber with the axial texture is called 'axial fiber'. Figure 3-1 (b ) 

shows the axial fiber with surface disturbances. In the cross-section al view of Fig. 3-1(b), the 

direct or field n is shown as dots and the ()-directional surface disturbances as small-amplitude 

wrinkles at the surface, although in real the surface noise is too small to be visually detected. 

The fiber radius R and the unit surface normal N change along the z- and ()-directions. In the 
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axial texture, the direct or is oriented along the fiber axis and it is given by 

n = iz . (3.1) 

The fiber shape at any time t and position z and () is given by 

R(z, (), t) = a + ç(z, (), t) . (3.2) 

The surface disturbance ç is expressed by taking normal modes of the form [19, 20] 

ç(z, (), t) = ço exp [at + i (kz + m())] , (3.3) 

where Ço is the initial amplitude of the disturbance, a the growth rate for real and positive 

values, k the axial wavenumber, and m the azimuthal wavenumber. The wave vector (k, m) is 

composed of two wave numbers. Due to rotational periodicity, the azimuthal wavenumber m 

is an integer and specifies the disturbance mode in the azimuthal (()-) direction. Axisymmetric 

modes correspond to m = 0, while non-axisymmetric modes correspond to m =1= 0, i.e., m = 

±1, ±2, .. '. During a capillary instability the fiber geometry evolution is captured by the fiber's 

radius (R), the principal radii of curvature (R,.o, R,.z), and its unit surface normal (N). To 

discuss capillary instabilities it is also useful to introduce the following expression for the mean 

curvature H in cylindrical coordinates: 

H 

(3.4) 

where Vs is the surface gradient operator, R,o = âR/â(), R,z = âR/âz, R,oo = â2R/â()2, 

R,zz = â2R/âz2, and R,oz = â2R/ (â()âz). A linearized expression for His given below (see 

Eq. (3.24)). 
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3.3.2 Linear bulk and surface momentum balance equations 

We consider the stability of a thin, initially axisymmetric, cylindrieal nematie fiber surrounded 

by an inviscid matrix. The nematie liquid crystal is assumed to be incompressible, and its ori­

entation is homogeneous and constant. Linear stability analysis is used to analyze the complete 

set ofaxisymmetric and non-axisymmetric capillary instabilities in nematie liquid crystal fibers. 

Since the direct or is fixed, only the surface and bulk linear momentum balance equations define 

the evolution of the fiber's shape. In this work, the mechanieal response of the nematie fluid is 

that of an anisotropie viscoelastie material [21, 4], where the bulk is viscous and the surface is 

elastic. 

The bulk linear momentum balance equation for this system is given by 

av 
POt =\7·t, (3.5) 

where P is the density, v the velocity vector, t the total stress tensor. Inertia is neglected. The 

total stress tensor t is defined as 

t = -pI+tV
, (3.6) 

where p is the pressure, 1 the unit tensor, and t V the viscous stress tensor. Although nematie 

liquid crystals have bulk Frank elasticity due to orientation gradients, in this chapter no elastie 

stresses arise because n is held constant. Thus, the viscous stress tensor t V is expressed by 

Ericksen's Transversely Isotropie Fluid (TIF) constitutive equation [6]: 

(3.7) 

where rh, rb and 'Tl3 are viscosity coefficients, and A is the rate of deformation tensor given by 

(3.8) 

where the superscript T denotes the transpose. When 'Tll = 'Tl2 and 'Tl3 = 0, the constitutive 

equation for Newtonian fluids is recovered. The TIF equation thus describes an anisotropie 

viscous material, whose viscosity depends on the director orientation. The continuity equation 
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for this system is written as 

(3.9) 

Since the fiber's shape is evolving, a kinematie boundary condition is applied through the radial 

velocity of the free surface: 

which is used when deriving Eq. (3.33). 

BR 
V r IR = Dt' (3.10) 

In addition to the bulk linear momentum balance equation, the presence of an evolving free 

surface involves the action of surface forces, and thus the surface linear momentum balance 

equation enters the description. The surface linear momentum balance equation is given by 

[1,22] 

(3.11) 

where t se is the surface elastie stress tensor. On the right hand side of Eq. (3.11), the surface 

vis cous stresses are ignored since they are insignificant in relation to the surface elastie stresses. 

The shape of the evolving fiber depends only on the normal component of the surface linear 

momentum balance equation, and thus the shape equation is 

(3.12) 

To make further progress, an expression for the surface elastic stress tensor, t se , is required. 

Since nematic liquid crystals are anisotropie viscoelastic materials, anisotropy is an essential 

feature of t se . Moreover, surface elastie stresses are defined by constrained variations of the 

surface energy, which we now discuss. 

The simplest expression for the surface free energy of the nematie liquid crystal is given by 

the Rapini-Papoular constitutive equation [23, 22, 4]: 

W 2 [T 2] "1 = "lis + "Ian = "lis + '2 (n . N) = "lis 1 + "2 (n . N) , (3.13) 

where "lis is the isotropie surface tension, "1 an is the anchoring energy due to the nematie 

orientation at the surface, w is the anchoring energy coefficient, and T = w/"Iis is the ratio of 
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the anchoring energy to isotropie surface tension. Since the surface free energy and the isotropie 

surface tension are always positive, T is restricted to a value greater than -2. If T = 0, the 

surface anisotropy vanishes. Depending on the signs of T, different surface orientations are 

energetieally favorable [24]. For T > 0, the surface "easy axis" , that whieh minimizes the surface 

free energy, is parallel to the surface (planar anchoring) and perpendicular to the surface normal 

vector. For T < 0, the surface easy axis is perpendicular to the surface (homeotropic anchoring) 

and parallel to the surface normal vector. Extensions of the Rapini-Papoular formula are used 

in the literature, specifically to describe thermally-induced surface orientation transitions [25], 

but these thermal effects are beyond the scope of this chapter. 

The expression for the surface elastic stress tensor t se is obtained by considering the energetic 

penalty of constrained variations in 1 and is given by the sum of the normal (tension) tN and 

the bending tË contributions [14, 22]: 

(3.14) 

Parametrizing the interface with orthonormal unit surface base vectors (h, i 2 ), the normal and 

bending surface elastic stresses become 

se [ W ( N)2] (.. ..) t N = lis + '2 n· 1111 + 1212 , t se BNI. N B NI • N B = 13 11 + 23 12 , (3.15) 

where the superscript NI denotes the interface between the nematie liquid crystal (N) and 

isotropie fiuid (1), whieh is inviscid in this study, and where the bending coefficients {Brl, Brl} 

are given by 

Brl = -w (n· N)(n· h) , Brl=-w(n.N)(n·i2) . (3.16) 

The bending coefficients are proportional to the anchoring energy and to the director's projec­

tions along the unit normal and along the surface base vectors. The largest magnitudes of the 

bending coefficients, for given w, arise at 7r / 4 angles from the interface, and they vanish at the 

planar and homeotropic orientations. In matrix form, the 2 x 3 surface elastic stress tensor t se 

is 

(3.17) 
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Clearly the surface stress tensor is asymmetric. Moreover, such bending stresses are intrinsie to 

nematie interfaces and result in forces normal to the interface, even in the absence of curvature, 

for a direct or field not parallel or perpendieular to the interface. The bending stresses play 

a crucial role in the capillary instability of nematie fibers. Isotropie surface tension leads to 

axisymmetric capillary instabilities, but anisotropie surface tension leads, through the genera­

tion of bending stresses, to non-axisymmetric modes. The reason behind this statement is that 

forces normal to the interface depend on surface orientation and exist even in the absence of 

curvature [26, 14]. 

Using the expression for the surface elastie stress tensor t se , we find the following expression 

for the interfacial elastie force fe [14]: 

= {[(~:) . (Vsn)T] .Is+(2H1)N}+{[-2H(g~ .N) -Vs' (g~)] N}3.18) 
" l " .1 V v 

normal stress contribution bending stress contribution 

Eq. (3.18) shows that surface gradients in the normal (tension) surface stress t N give rise to 

tangential (perpendieular to N) and normal forces (parallel to N), while surface gradients of 

bending stress tË give rise only to normal forces. It is shown in Eq. (3.18) that normal forces 

from surface gradients of bending stress persist even in the absence of curvature (H = 0). 

Meanwhile, tangential forces have been shown to drive Marangoni nematic flows [14]. 

The normal component of Eq. (3.18) is known as the generalized Laplace equation [1]: 

(3.19) 

where the superscript M denotes the matrix fluid, and Pc is the magnitude of the interfacial 

normal force originating from the surface gradients of the normal and bending stresses, called 

as the capillary pressure. According to Eq. (3.18) the capillary pressure Pc is given by 

(3.20) 
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Thus, the normal and bending stress contributions to the capillary forces are 

Pclnormal stresses = -2H" Pclbending stresses = 2H (g~ . N) + \l s . (g~) (3.21) 

Thus, the anchoring energy 'an contributes to the capillary pressure through both the normal 

and bending stresses. Nevertheless, when considering the linear regime of capillary instability of 

a nematic liquid crystal fiber, second order terms involving H (n . N)2 cancel out and the only 

remaining anisotropic contribution to the capillary pressure is that from the bending stresses. 

Thus, any model that attempts to capture the linear regime of capillary instability in a nematic 

liquid crystal fiber must include an contributions arising from the bending stress tensor. 

3.3.3 Simplifying assumptions 

The assumptions made to describe the linear regime of the capillary instability in incompressible, 

isothermal nematic fibers are: 

(a) For sufficiently thin fibers, the surface elastic energy is insignificant with respect to the 

bulk Frank elasticity [4]. Thus, the orientational elasticity originates not from direct or variation 

in the bulk but from surface director deviation from the easy axis; the direct or field do es not 

change even if the fiber shape evolves through the linear instability process. 

(b) In the long wavelength approximation, the wavelength of a dominant surface disturbance 

is assumed to be much longer than the fiber radius, and the axial velo city is considerably larger 

than the other velo city components. In the present case, an order of magnitude calculation 

obtained using the continuity equation yields V z » Vr , V() [2]. Thus, only the axial velocity V z 

is significant. 

(c) In the absence of surrounding matrix effects and in the long wavelength approximation, 

the radial dependence of axial velocity is ignored so that the axial velo city is considered as a 

function only of the axial coordinate and time: V z (z, t) [2]. 

(d) The analysis is restricted to the linear regime of the capillary instability. This restriction 

is obeyed when ~ « l. 

In the next section, we develop the governing equations for the capillary instabilities of 

nematic fibers when the director is aligned along the fiber axis (nz = 1). 
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3.3.4 Governing equations for an axial nematic fiber 

In this section, the governing equation of the surface disturbance ç(z, e, t), Eq. (3.3), is derived 

for the axial fiber by combining the linear momentum balance equation, Eq. (3.5), and the 

normal stress boundary condition, Eq. (3.19). 

During non-axisymmetric capillary instability, the principal radii of the curvature (R,.o, R,.z) 

and the unit surface normal vector N are obtained in the linear regime using the assumptions 

stated in the previous section: 

(3.22) 

(3.23) 

Note that the radii of curvature are e-dependent: R,.o = R,.o(z, e, t) , R,.z = R,.z(z, e, t). Thus, 

the mean curvature H in Eq. (3.4) is expressed as [3] 

H = _~ (_1 + _1 ) = _~ [~_ ~ (Ô2R) _ Ô2R] 
2 R,.o R,.z 2 R R2 ôe2 ôz2 (3.24) 

Un der the assumed kinematical conditions, the only non-zero component of A is 

(3.25) 

The vis cous stress tensor, obtained by substituting Eqs. (3.1) and (3.25) into Eq. (3.7), is 

v _ 2 ôVz 
tzz - TI ôz ' (3.26) 

where TI = Tl2 + Tl3/2 + 2 (Til - Tl2)' Substituting Eq. (3.26) into Eq. (3.6), the total stress tensor 

becomes 

(3.27) 

Using Eqs. (3.23) and (3.24) in Eq. (3.20), the capillary pressure Pc becomes 

(3.28) 
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whieh properly reduces to the Newtonian capillary pressure when T = 0, i.e., wh en surface 

tension is isotropie. Importantly, when the bending stress contributes to the capillary pressure 

of an axial fiber, a force Pc lb! appears to be 

(3.29) 

whieh can compete or cooperate with the usual isotropic contribution since the sign of T is not 

fixed. Thus, T in Eq. (3.28) can be positive, negative, or zero. 

The pressure in Eq. (3.27) can be expressed in terms of the capillary pressure [2]: 

(3.30) 

where following boundary conditions are applied: trr = -Pc, tee = trr at r = a. Substituting 

Eq. (3.30) into Eq. (3.27), the total stress tensor is rewritten as [2] 

(3.31) 

Using Eq. (3.31), the axial momentum balance equation, Eq. (3.5), is found to be [2] 

(3.32) 
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By integrating the continuity equation, Eq. (3.9), across the cross section of the fiber, we obtain1 

oR Rovz _ 0 
ot + 2 oz - . 

Thus, using Eq. (3.2) the axial velo city can be expressed in terms of ç [2, 27]: 

20ç 
a ot' 

(3.33) 

(3.34) 

Combining Eqs. (3.32) and (3.34) in conjunction with Eq. (3.28) gives the differential equation 

for ç: 
02ç 3", 03ç risa 02 [ç (02ç 1 02ç) 02ç] 
ot2 - P oz20t + ---:xp oz2 a2 + oz2 + a2 oe2 + T oz2 = O. (3.35) 

By substituting Eq. (3.3) into Eq. (3.35), a quadratic equation for the dimensionless growth 

rate, a* = av' pa3 Iris, is obtained: 

(3.36) 

lWe derive Eq. (3.33) using Eq. (3.9). Integrating the continuity equation, Eq. (3.9), across the cross-section 
of the fiber gives 

l
R(Z,t) 8vz 1 8 (rvr ) 

[-+---]rdr 
o 8z r 8r 

o 

l R 
~:rdr+ l R 

8 (rvr ) o 

81
R 

8R 8z 0 vzrdr - R 8z Vz IR + R Vr IR o 

8 (R2 ) 8R 
8z 2 Vz IR - R 8z Vz IR + R Vr IR o 

R
2

8(Vz IR) +R 1 

2 8z V r R o 

by using the assumption (c) in section 3.3.3 and the Leibniz ruie as follows 

8 l R (Z,t) 
-8 vzrdr 

z 0 l
R (Z,t) 8 8R 

o 8z [vzr] dr + 8z [vzr]IR 

l
R 8vz 8R 

o ""Eh rdr + R 8z V z IR . 

Applying the kinematic boundary condition in the linear regime of the capillary instability, Eq. (3.10), i.e. 
V r IR = ~~, we finally obtain Eq. (3.33): 

!!:,8vz + 8R = O. 
2 8z 8t 
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where ka is the dimensionless wavenumber and Oh = Tl/ Jpa'is is the Ohnesorge number, or the 

ratio ofthe viscous force to the surface force. Solving the quadratic equation for a*, Eq. (3.36), 

we find 

(3.37) 

Thus, the axial fibers are unstable when the following inequality is satisfied: 

(3.38) 

The maximum growth rate a~ax and the corresponding wavenumber kamax , obtained by solving 

Eq. (3.36), are 

]

-1 
1 + T 60h 

(1 - m2)2 + (1 - m2) , 

-1 

1 +T 1 
(1 - m 2 )2 ' 

(3.39) 

which reduce to the results for Newtonian fluids if the viscoelastic anisotropy and the non­

axisymmetric dependence vanish; i.e., Tl1 = Tl2' Tl3 = 0, T = 0, and m = 0: for the highly viscous 

fiber, a~ax = 1/ (60h) and kamax = 1/ V3...;20h; for the inviscid fiber, a~ax = 1/ (2...;2) 

and kamax = 1/...;2. In particular, when only axisymmetric disturbances become unstable, 

i.e., m = 0, the results from Eq. (3.39) predict the axial fiber break-up into droplets with a 

characteristic size of 27r / (kamax ) [10]. 

The physics of capillary instabilities in axial nematic fibers can be elucidated by rewriting 

Eq. (3.28) as 

1 
f, - --C(, ç - C(, ç e - a2 00 00 zz zz' 

(3.40) 

C(,zz = lis (1 + T) . 

(3.41 ) 

The capillary pressure contains two (Ç-dependent) deformation effects: a dis placement force, 

id, and a curvature force, ie. Capillary instabilities occur because a spatially periodic pressure 
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gradient develops, inducing macroscopic fiow. The driving force for creating a pressure gradient 

is denoted as a destabilizing force, while a force resisting it is denoted as a stabilizing force. 

The nature of the two capillary forces depends only on the sign of their coefficients, Cç, Cçoo ' 

and Ct: , whieh are the effective surface tensions for both forces. Thus the displacement <"zz 

force is destabilizing (stabilizing) for Cç > 0 (Cç < 0), while the curvature force is stabilizing 

(destabilizing) for Cçoo > 0 and CÇzz > 0 (Cçoo < 0 and Cçzz < 0). In isotropie fibers (7 = 0), 

the displacement force is always destabilizing and the curvature force is always stabilizing, thus 

explaining the existence of lower cutoff in the instability wavelength, as in the classieal Rayleigh 

fiber instability (see Figure 3-3 and discussion below). This occurs because the stabilizing 

curvature force for sufficiently short wavelengths overpowers the driving displacement force. 

Since for axial fibers Cç > 0, the displacement force is always destabilizing. On the other hand, 

since 7 ~ -2, the curvature force from ';zz can be destabilizing if 7 < -1 because CÇzz < 0 

or stabilizing if 7 > -1 because CÇzz > 0, although the curvature force from ';ee is always 

stabilizing. Thus, when the curvature force from ';zz is destabilizing (7 < -1), a lower cutoff 

wavelength does not exist and the instability must be of the Hadamard type (see Figure 3-2 

and discussion below). Since 7 is the bending force coefficient (see Eq. (3.29)), the described 

phenomenology of capillary instabilities in axial fibers is attributed to anisotropie effects arising 

from surface gradients of bending stresses. 

3.4 Results and Discussion 

The characterization of capillary instabilities in nematie fibers requires the specification of two 

features: (i) Instability mechanism; (ii) Symmetry of deformation modes. These two features 

are embedded in Eq. (3.37) and must be considered separately. 

(i) Instability mechanism 

The capillary instabilities in nematie liquid crystalline fibers are found to follow two different 

routes: Modified Rayleigh and Catastrophie instability mechanisms. 

(a) Modified Rayleigh (MR) instability mechanism 

The modified Rayleigh instability is characterized by a single m = 0 mode. Setting in 
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Eqs. (3.37) and (3.39), we find that the nematic fibers are MR-unstable whenever 

2a* (m = 0) = -30h (ka)2 + [30h (ka)2f + 2 (ka)2 [1 - (1 + T) (ka)2] > 0, (3.42) 

a~ax (m = 0) = [2v'2VT+T + 60h] -1 > 0, (3.43) 

0< kamax(m=O) = [V2(1+T)+3v'20hJ1+T]-1 < kacutoff, (3.44) 

where kacutoff is an upper cutoff wavenumber above which disturbances do not grow. The axial 

fibers have no azimuthal dependence and thus axisymmetric. 

(b) Catastrophic (C) simultaneous instability mechanism 

In the catastrophic simultaneous instability mechanism, unstable modes follow the classical 

short wave (small wavelength) instability [28], which is characterized by simultaneous occurrence 

of aIl azimuthal modes m with unbounded growth rate. Using Eq. (3.37), we find that the 

nematic fibers are C-unstable whenever 

2a* = -30h (ka)2 + J [30h (ka)2] 2 + 2 (ka)2 [1 - m 2 - (1 + T) (ka)2] > 0, 
da* 

d(ka) > 0, 
(3.45) 

where ka > 0 for a catastrophic instability without upper kacutoff' Under this instability 

mechanism, the following ordering in growth rates is found: 

where a* (mn ) == a*n while m n represents m = n mode hereafter. 

(ii) Symmetry of deformation modes 

(3.46) 

The symmetry of the deformation in this chapter is restricted to axisymmetric and non­

axisymmetric modes, axisymmetric modes being rotationally invariant. It is noted that for 

axial fibers the m = 0 mode is, as usual, an axisymmetric mode. 

Based on this general discussion, the criteria required to classify the capillary instability are 

given by specification of: Instability mechanismjSymmetry. The following three cases emerge: 

(a) Modified Rayleighj Axisymmetric (MRj A) 

(b) Catastrophicj Axisymmetric (Cj A) 
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Table 3.1: Capillary instabilities in axial fibers according to Eqs.(3.38) and (3.62). 
Instability Region l Criticality Region II 

type (T> -1) (T = -1) (-1> T ~ -2) 

MRjA t0 No No 
a / \ / 

ka 

CjA cl' / cr: 
. 

m=O No 
1 

2 
3 

ka 
.1 

ka 

CjNA No No (a*O > a*l > a*2 > ... ) 

(c) CatastrophicjNon-axisymmetric (CjNA). 

In what foHows we discuss these three different capillary instabilities in axial fibers, and deter­

mine the parametric dependence of the deformation and growth rates. 

3.4.1 Capillary instabilities in axial fibers 

Table 3.12 summarizes the complete phenomenology of the three capillary instabilities in axial 

fibers, as computed from Eqs. (3.42)-(3.45). There are three regimes according to the values 

of T. The first column shows the instability type, and the entries show characteristic growth 

rate curves for each instability mechanism. For the MR instability in the second column, the 

growth rate curve is bounded, and an upper kacutoff exists. For the C instabilities of aH modes 

in the fourth column, the growth rate curves are unbounded, and lower modes grow faster than 

higher modes. We next discuss in detail the physical and mathematical aspects of the tabulated 

information. 

2 MR/ A: Modified Rayleigh/ Axisymmetric instability 
C/ A: Catastrophic/ Axisymmetric instability 
C/NA: Catastrophic/Non-axisymmetric instability 
a*i: Growth rate of ith mode for C instabilities 
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't> -1 
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possible II (CI A, CINA) 

Figure 3-2: Instability phase diagram in terms of the displacement force coefficient, Cf" and 
the curvature force coefficients, Cf,1J1J and Cf,zz' Roman numerals (1, II) refer to the two regions 
of Table 3.1, and the captions (MRI A, CI A, C/NA) to the instability types of Table 3.1. On 
the axes St and D denote stabilizing and destabilizing, respectively. 

Instability characterization in axial fibers 

As explained above the physics of capillary instabilities in axial fibers, as summarized in Table 

3.1, is elucidated by considering the sign of the displacement and curvature force coefficients 

or effective surface tensions (see Eqs. (3.41)). Figure 3-2 presents an instability phase diagram 

spanned by the displacement force coefficient, Cf" and the curvature force coefficients, Cf,1J1J 

and Cf,zz' The roman numerals (1, II) refer to the two regions of Table 3.1, and the captions 

(MRI A, CI A, C/NA) to the instability types of Table 3.1. The figure captures the nature of 

the driving forces and identifies when and why an instability occurs. For the axial fiber, since 

Cf, (Cf,IJIJ) is always positive and thus destabilizing (stabilizing), the sign of Cf,zz determines 

instability mechanisms: The first quadrant corresponds to instabilities with an upper kacutoff 

since the curvature forces are stabilizing; in the fourth quadrant, curvature from ç destabilizes zz 

and catastrophic instabilities occur; the second and third quadrants are thermodynamically 

inaccessible since Cf, and Cf, are always positive. By crossing the boundary between the first 
IJIJ 

and fourth quadrants (T = -1), the fiber un der MR instability in Region l becomes susceptible 

to catastrophic instability for mode m = O. And then, in Region II the fiber is C-unstable 
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Figure 3-3: Representative schematie of the displacement (Jd) and curvature (Je ç ,f:;;'O , 
, zz ,':tee 

fmè ) forces as a function of the dimensionless anchoring energy T, where feç represents the 
c'''''OB ' zz 

curvature forces from'; ,fen;,° the curvature force from ';00 for m = 0 mode, and f:;;' for 
zz '''00 '''00 

m 2:: 1 modes. In the figure, fàso represents the displacement force, and f~s~ and f~s~ the 
,~oo ,~zz 

curvature forces for isotropie fibers (T = 0). The figure provides the reasons of the existence 
of the two regions (1 and II), and observation of the relative magnitudes of the stabilizing and 
destabilizing forces explains the phenomenology of Table 3.1. 

for modes m 2:: 1 as well as m = O. Figure 3-3 shows a representative schematie of the 

displacement (Jd) and curvature (Je ç ,f:;;'O ,f:;;' ) forces as a function of the dimensionless 
, zz '''''oe '''''eB 

anchoring energy T, where feç represents the curvature forces from'; ,f:;;'o the curvature 
, zz zz '''''eo 

force from ';Og for m = 0 mode, and f:;;' for m 2:: 1 modes. The figure again provides the 
'''00 

reasons of the existence of the two regions (1 and II), and observation of the sign and relative 

magnitudes of the stabilizing and destabilizing forces explains the phenomenology of Table 3.1. 

In short, the displacement forces (Jd) are always destabilizing, while the curvature forces from 

';00 (J:;;'o ,f:;;' ) always stabilizing, showing the smaller curvature force for m = 0 than for 
'''00 '''00 

m 2:: 1. Meanwhile, the curvature forces from Çzz (Jc,çzJ are stabilizing only for T > -1. In 

Fig. 3-3, the stabilizing forces for the non-axisymmetric modes (J;:;' ) are sufficiently strong 
'''00 

to quench the instability if T > -1, and thus only m = 0 is unstable. In other words, it 

is energetieally costly to cause instability modes m 2:: 1 for T > -1 as seen by comparing 

the magnitude of stabilizing forces with that of destabilizing forces. For T = -1, since the 
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destabilizing fd cannot overcome the stabilizing f:0: and fe ~ is no longer stabilizing, only 
,Çoo ' zz 

m = 0 undergoes catastrophie instability. The figure also shows that for isotropie fibers (T = 0) 

the curvature forces f~s~ and f~s~ are always stabilizing while the displacement force fàso is 
, 90 ,~zz 

always destabilizing, and thus the upper kacutoff exists since the magnitude of the destabilizing 

force is relatively greater than that of the total stabilizing curvature forces. 

The nature of non-axisymmetrie instabilities is explained as follows. For the cylindrical axial 

fiber, the surface orientation of the nematie texture is planar anchoring. Since for T > 0 the 

easy axis of the surface is planar anchoring, the misalignment between the surface orientation 

and the easy axis is not high enough to cause the non-axisymmetrie instability by bending 

stresses. On the other hand, for T < 0 the misalignment between the actual direct or and 

the easy axis (homeotropie) is large, and if the anchoring energy (T) is strong enough (large 

negative value), the bending stresses may even cause non-axisymmetrie deformation in order 

to relieve the high misalignment and align the director with the easy axis by means of surface 

deformations and rotations. These observations on the symmetry of the unstable modes can 

be made quantitative, as follows. When the growth rate a* is real and positive, the surface 

disturbances become unstable and grow with time. In the Newtonian fiber (T = 0) the positive 

real a* is obtained only for the axisymmetrie disturbances (m = 0), from Eq. (3.37). For the 

axial fiber, by solving Eq. (3.37) positive real a* solutions are obtained when the following 

condition is satisfied: 

(3.47) 

For isotropie fibers, T = 0 and inequality Eq. (3.47) is never fulfilled for m 2: 1, but for nematie 

fibers it can be. Inequality Eq. (3.47) is satisfied when T < -1, where the following condition 

is also satisfied: 
I-m2 

0< < (ka)2 . 
I+T 

(3.48) 

In other words, wh en the magnitude of the stabilizing curvature force fc,~zz is sufficiently reduced 

by bending forces, and eventually fc,l;zz becomes destabilizing because the effective surface 

tension is negative, non-axisymmetric modes emerge under catastrophie Hadamard instabilities. 

Since curvature from Çzz is destabilizing, there is no upper cutoff but lower cutoff wavenumber 

for m 2: 2 from Eq. (3.48). 
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For axial fibers we then have two instability regions: 

(a) MR/A: T> -1, Region l 

This case corresponds to the second column of Table 3.1. When T > -1 only the modified 

Rayleigh instability with a single unstable mo mode is present. The mode is axisymmetric. 

In this case, the effective surface tensions are positive and the instability follows the classical 

Rayleigh mode. 

(b) C/NA and C/A: -2 ~ T < -1, Region II 

This case corresponds to the fourth column of Table 3.1. There are two possible instabilities: 

C/NA and CI A. The catastrophic instability mechanism controls the fiber: AU modes are 

unstable, and the short wave instability is dominant. The lower modes grow faster than the 

higher modes at constant T, which means lower mode disturbances with short wavelengths are 

more likely to cause the fiber instability. In this regime destabilizing forces dominate, and the 

negative effective surface tension of curvature force fc,çzz aUows for surface fibrillation. 

(c) Criticality: T = -1 

The third column in Table 3.1 shows that when T = -1 there is a critical state involving CI A 

instability. In the limit T = -1+ the growth rate of the MRI A instability becomes maximized. 

On the other hand, in the limit T = -1- the CI A and C IN A instabilities shrink to the only 

CI A instability with a smaller slope of growth rate. Thus, decreasing T through the value of 

-1 denotes the extinction of the bounded MR instability, and the birth of the unbounded C 

instabilities. 

Symmetry of deformation modes in axial fibers 

In this study, surface disturbances are classified by the mode m in the azimuthal direction 

given in Eq. (3.3). Because m is an integer, positive and negative signs are equally possible 

for each value of m. In axial fibers, the sign selects the handedness of the shape deformation 

but do es not affect the growth rate curves due to the m2 dependence of the growth rate in 

Eq. (3.37). A positive sign imprints a left-handed rotation to the surface pattern and thus these 

are chiral modes. The mode mo, which is a so-caUed varicose mode, represents the well-known 

axisymmetric disturbance. Likewise, the ml mode is caUed the sinuous mode, and modes with 

m 2: 2, fluted modes. Under the mode ml instability, the center of the fiber moves along a 
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Figure 3-4: Azimuthal wavenumber m as a fun ct ion of the dimensionless anchoring energy T. At 
T = -1, the figure shows the transition of instability mechanisms from MR to C. Only the mû 
mode is unstable in the whole range of T. The instability creation curve diverges as T -t -1+, 
and thus the mû mode undergoes from MR for T > -1 to C for T ::; -1. Non-axisymmetric 
catastrophie instabilities also emerge when T < -1. 

spiral trajectory around the z-axis. For m 2: 2, the cross-section al shape has a regular pattern 

identified by m axes of rotational symmetry, and the shape rotates along the z-axis. The axial 

rotation of the anisotropie cross-sectional shape for m 2: 2, pro duces chiral surface ripple modes. 

It is noted that while values Oh > 0 change the maximum growth rate and the corresponding 

wavenumber, they have no effect on the surface deformation pattern. For the classieal mû mode, 

.À = 27f / (ka) is the dimensionless wavelength of the varieose shape in the z-direction. The fiber 

cross-section is always circular but periodieaUy expands and contracts when traversing the axial 

fiber direction. Thus, for the ma mode the formation of droplets with a characteristie size .À is 

predieted. 

Parametric effects on capillary instabilities in axial fibers 

Figure 3-4 shows the azimuthal wavenumber m as a function of the dimensionless surface 

anchoring energy T. At T = -1, the figure shows the transition of instability mechanisms from 

MR to C. Only the MR mode ma persists for T > -1 because the stabilizing curvature forces 

f:;);oo for modes m 2: 1 are sufficiently strong, while if T < -1 aU C modes arise simultaneously 

since curvature forces fc,çzz are destabilizing and thus total destabilizing forces are greater than 

total stabilizing forces for aU modes (see Fig. 3-3). The instability creation curve diverges as 
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Figure 3-5: Dimensionless growth rate curves a* as a function of dimensionless wavenumber ka, 
for ma at T = -0.5,0,2, for (a) Oh = 0 and (b) Oh = 1. This figure corresponds to Region 1 
in Table 3.1 and the only ma mode is MR-unstable. 

T -+ -1+, indicating that in this T = -1 limit, the ma mode becomes C-unstable. 

Figure 3-5 shows the dimensionless growth rate curves a* as a function of dimensionless 

wavenumber ka, for ma at T = -0.5,0,2, for (a) Oh = 0 and (b) Oh = 1. This figure 

corresponds to Region 1 in Table 3.1. According to Eq. (3.42), at three values of T, T = -0.5,0,2, 

the only unstable mode is ma. It is seen in Fig. 3-5 that the cutoff wavenumber, which is given 

as kacutoff = 1/ JI"'+'T, is not a function of Oh. In addition to decreasing the maximum growth 

rate, the effect of increasing Oh is to shift horizontally the maximum growth rate to lower ka 

values, meaning that viscosity increases the length scales of the unstable mode. 

Figure 3-6(a) shows the maximum growth rate a;;'ax' and Fig.3-6(b) the corresponding 

maximum dimensionless wavenumber kamax as a function of dimensionless anchoring energy T, 

for ma and Oh = 0,1,10. This figure corresponds to Region 1 in Table 3.1, and to the MR/ A 

instability. The suppressing effect of the viscosity is again evident in both figures. The figure 

shows that as T increases a;;'ax and kamax decrease sharply until T = 0, and then they decrease 

at a much slower rate. The sensitivity of the instability with respect to T has already been 

explained in the previous section in terms of the misalignment between the surface orientation 

and the easy axis. 

Figure 3-7 shows the dimensionless cutoff wavenumber kacutoff as a function of the di men­

sionless anchoring energy T, for ma. This figure corresponds to Region 1 in Table 3.1, and to the 
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Figure 3-6: (a) Maximum growth rate Œ~ax and (b) the corresponding maximum dimensionless 
wavenumber kamax as a function of dimensionless anchoring energy T, for ma and Oh = 0,1,10. 
This figure corresponds to Region 1 in Table 3.1, and to the MR/ A instability. 
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Figure 3-7: Dimensionless cutoff wavenumber kacutoff as a function of the dimensionless an­
choring energy T, for ma. This figure corresponds to Region 1 in Table 3.1, and to the MR/ A 
instability. 

85 



(a) m = O. 1: =-1 (b) m = O. Oh=O 
0.3 -~--~- 50 

0.25 40 

0.2 Oh=O 

* * 
30 

ex 0.15 ex 
0.1 

20 

0.05 10 
10 

0 0
0 

.................... ~ ........... ' ••••• h ...... .......... 
0 0.1 0.2 0.3 0.4 0.5 2 4 6 8 10 12 

ka ka 

Figure 3-8: Dimensionless growth rate curves a* as a function of dimensionless wavenumber 
ka, for mo, and (a) Oh = 0,1,10, and T = -1, and (b) T = T = -2, -1.5, -1, and Oh = O. 
(a) corresponds to the transition (CI A instability) between Regions l and II, and (b) to the 
transition and Region II in Table 3.1. 

MRI A instability. The kacutoff decreases with T in the same pattern as in Fig. 3-6(b). Similar 

to the viscous effect, if T > -1, the surface elasticity T tends to stabilize the fiber, as explained 

above. 

Figure 3-8 shows the dimensionless growth rate curves a* as a function of dimensionless 

wavenumber ka, for mo, and (a) Oh = 0,1,10, and T = -1, and (b) T = -2, -1.5, -1, and 

Oh = o. Fig.3-8(a) corresponds to the transition (CI A instability) between Regions land 

II in Table 3.1. According to Eq. (3.45), for T = -1 the only unstable mode is mo, and 

the growth rate increases with wavenumber ka without kacutoff, signaling that axisymmetrie 

catastrophie instability occurs but increasing Oh suppresses the slope of growth rate by means 

of the stabilization effect of viscosity. Fig. 3-8(b) corresponds to the transition and Region II 

in Table 3.1. According to Eq. (3.45), as T decreases from T = -1, the growth rate of mode mo 

increases faster with wavenumber ka under the catastrophie instability. 

Figure 3-9 shows the dimensionless growth rate curves a* as a fun ct ion of dimensionless 

wavenumber ka, for mo at T = -0.99, -1, -1.01, and (a) Oh = 0, and (b) Oh = 1, dramatically 

revealing the critical point at T = -1. The dimensionless anisotropie elasticity values are close 

to T = -1 (transition between Regions l and II in Table 3.1), when controlled by the MR 
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Figure 3-9: Dimensionless growth rate curves a* as a function of dimensionless wavenumber 
ka, for mû at T = -0.99, -1, -1.01, and (a) Oh = 0, and (b) Oh = 1, dramatieally revealing 
the critieal point at T = -1. The dimensionless anisotropie elasticity values are close to T = -1 
(transition between Regions l and II in Table 3.1), when controlled by the MR (T = -0.99; 
Region l in Table 3.1) and C (T = -1.01; Region II in Table 3.1) instability mechanisms, 
respectively. 

(T = -0.99; Region l in Table 3.1) and C (T = -1.01; Region II in Table 3.1) instability 

mechanisms, respectively. The growth rate curves are bounded at kacutoff for T = -0.99 while 

the short wave instabilities are seen for T = -1 and -1.01. Although, considering that the MR 

instability is maximized as T -t -1+ while the catastrophic instability is minimized as T -t -1-, 

the latter is always more unstable in the whole range of ka. The phenomena mentioned above 

hold qualitatively for any range of viscosity, although the shapes of the growth rate curves look 

different in Fig.3-9(a) and (b) as higher viscosity shifts a~ax and kamax toward significantly 

smaller values, Le., a quantitative effect. When Oh > 0, for T = -1 the growth rate increases 

with wavenumber but, after leveling off, it is almost bounded without kacutoff (see also Fig. 3-

8(a)). 

Figure 3-10 shows the dimensionless growth rate curves a* as a function of dimensionless 

wavenumber ka, for mû to m5, when Oh = 0, for (a) T = -1.01 and (b) T = -2. The 

dimensionless anisotropie elasticity range corresponds to C instability mechanism (Region II in 

Table 3.1). The short wave instabilities are seen for all modes, but only six among all C modes 

are presented in the figure, clearly showing that lower modes grow faster than higher modes. In 
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Figure 3-10: Dimensionless growth rate curves a* as a function of dimensionless wavenumber 
ka, for mo ta m5, when Oh = 0, for (a) T = -1.01 and (b) T = -2. The dimensionless 
anisotropie elasticity range corresponds to C instability mechanism (Region II in Table 3.1): 
T = -1.01 (just below the criticality T = -1) and T = -2 (the thermodynamic limit). 

Fig.3-l0(a) and (b), the growth rate curves for mo to m5 show the same pattern for T = -1.01 

(just below the criticality T = -1) and T = -2 (the thermodynamic limit), showing that the C 

instability for T = -2 grows much faster than that for T = -1.01 (see also Fig. 3-8(b)). Further, 

it is shown that for T < -1 the "lower" kaeutoff exist for the C modes only when m 2:: 2, as 

explained in Eq. 3.48). 

Figure 3-11 shows representative structures that summarize capillary instabilities in axial 

fibers (see Table 3.1). Axial fibers display three types of linear instabilities, whose symmetry 

and existence are controlled by the magnitude and sign of the dimensionless surface anchoring 

energy T. Large negative values of T (Region II) ignite catastrophic axisymmetric and non­

axisymmetric Hadamard instabilities, leading to fibrillation phenomena, as the effective surface 

tension coefficient, Cf: ,for curvature forces, Je C ,is negative. Intermediate negative values 
':!,zz ,~zz 

close to zero and positive values of T (Region 1) le ad to the axisymmetric Rayleigh instability, 

and to an eventual fiber break-up into droplets, because destabilizing displacement forces Jd 
overcome stabilizing curvature forces Je ç and J;:'c0 ,but J;:'c . At the critical state of T = -l, 

, zz '~(}8 ,r..,.08 

the fiber instability is of catastrophic axisymmetric type. The only effect of viscosity is to slow 

the growth rate and increase the wavelength of the unstable modes. 
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Figure 3-11: Representative structures that summarize capillary instabilities in axial fibers (see 
Table 3.1). Axial fibers display three types oflinear instabilities, whose symmetry and existence 
are controlled by the magnitude and sign of the dimensionless surface anchoring energy T. 

Varicose deformations emerge at positive and Intermediate negative values of T (Region 1), and 
surface fibrillation at large negative values of T (Region II). 

3.5 Viscous Matrix Effects on Capillary Instabilities 

3.5.1 Modified governing equations 

In this section we further investigate the stabilizing effects of the vis cous matrix when the 

contribution of the stress tensor in the viscous matrix evaluated at the surface is included. The 

governing nemato-capillary equation is modified by the fact that the surface force due to the 

presence of the viscous matrix only exists at the interface. 

The linear momentum balance equation for the system, where a thin axial fiber is embedded 

in an immiscible vis cous matrix, is given as 

(3.49) 

where t is the total stress tensor for the fiber, and Ft! is the volume force density due to 

vis cous matrix. Nonlinear inertia is neglected. At the interface, the surface force density from 

the viscous stress acting on the fiber is given as 

(3.50) 
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where t M IR is the stress tensor in the viscous matrix evaluated at the surface. To find Ft1 we 

use the following equality: 

Iv Ft1dV = L F~dA, 
where dA = Rd()dz and dV = rdrd()dz. Then it follows that 

Ft1 = F~ c5 (r - R) , 

(3.51) 

(3.52) 

where c5(r) is the Dirac delta function, and thus the surface force only exists at the interface, 

r = R. Using Eq. (3.50) we finally find 

(3.53) 

Thus, Eq. (3.49) is rewritten as 

Iv (p~: -\1' t - Ft1) rdrd()dz = O. (3.54) 

Since the viscous matrix effect exists only at the interface, Eq. (3.54) can be rewritten by 

substituting Eq. (3.53) into Eq. (3.54) as 

{L {2-rr [( âv ) R
2 

] 
Jo Jo P et - \1 . t 2" - N . t

M IR R d()dz = 0, (3.55) 

where L is the fiber length and the definite integration of the Dirac delta function, Le., 

foR c5 (r - R) rdr = R, is used. Then, the momentum balance equation for this system becomes 

âv 2( M) Pat = \1 . t + RN. t IR . (3.56) 

Using Eq. (3.31), the axial momentum balance equation, Eq. (3.56), is found to be [2] 

(3.57) 

By assuming that the surface shear due to the existence of the matrix does not affect the 

macros copie bulk flow in the fiber, the only remaining surface shear component for the slightly 
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disturbed surface is given by [29] 

(3.58) 

Combining Eqs. (3.57), (3.34), (3.58) and in conjunction with Eq. (3.28) gives the differential 

equation for ç: 

(3.59) 

Eq. (3.59) properly reduces to the Newtonian fiber embedded in a Newtonian matrix, already 

derived in Ref. [29]. By substituting Eq. (3.3) into Eq. (3.59), a quadratic equation for the 

dimensionless growth rate, a* = av pa3 l'Yis' is obtained: 

(3.60) 

where ka is the dimensionless wavenumber, Oh = rJl VPa'Yis the fiber Ohnesorge number, and 

Ohm = /-LI VPa'Yis the matrix Ohnesorge number. These two Ohnesorge numbers are the ratios 

of the viscous to surface forces. Solving the quadratic equation for a*, Eq. (3.60), we find 

,,' = H -[30h (ka)' + 20hm ] + V [30h (ka)' + 20hml' + 2 (ka)' [)- mL (1+ T) (ka)'] } . 

(3.61) 

Thus, the axial fibers are unstable when the following inequality is satisfied: 

- [30h(ka)2+ 20hm] +V[30h(ka)2+ 20 hmf +2(ka)2 [1-m2 -(1+T)(ka)2] >0. 

(3.62) 

The maximum growth rate a~ax and the corresponding wavenumber kamax are obtained by solv­

ing Eq. (3.60), which properly reduce to the well-known results for Newtonian fluids surrounded 

by an inviscid matrix when the viscoelastic anisotropy and the non-axisymmetric dependence 

vanish; Le., /-L = 0, rJ1 = rJ2' rJ3 = 0, T = 0, and m = O. In more detail, the asymptotic results 

for the highly viscous fiber are a~ax = II (60h) and kamax = 1/V3V2,Oh, whereas the asymp­

totic results for the inviscid fiber are a~ax = II (2v'2) and kamax = 1/v'2. Moreover, when 

only axisymmetric disturbances become unstable, Le., m = 0, the results predict the axial fiber 

91 



break-up into drop lets with a characteristic size of 21r/ (kamax ) [la]. 

3.5.2 Parametric effects on capillary instabilities in axial fibers 

Table 3.1 again summarizes the complete phenomenology of the three capillary instabilities in 

axial fibers, as computed from Eq. (3.61). 

It is noted that while different values of Oh and Ohm change the maximum growth rate and 

the corresponding wavenumber, they have no effect on the surface deformation pattern. 

The contribution of the viscosity ratio to the capillary instabilities of a thin nematie fiber 

in a viscous matrix is analyzed by two parameters, the fiber and matrix Ohnesorge numbers, 

where viscosity ratio is defined as 

(3.63) 

FoIlowing convention, either Ohm or VR is used to display the results of the effect of viscosities 

on the capillary instabilities when setting Oh equal to a constant value. 

Figure 3-12 shows the dimensionless growth rate curves a* as a function of dimensionless 

wavenumber ka, for ma at T = 0, for (a) Oh = 0,0.1,1,10 when Ohm = 0, (b) Ohm = 0,0.1,1,10 

when Oh = 0 (VR-t 00), and (c) VR= 0,1,10 when Oh = 0.1. The dashed curve in Fig. 3-

12(c) denotes the growth rate for Oh = 0 and Ohm = O. Fig. 3-12 corresponds to Region 1 

in Table 3.1, and to the MR/A instability. It is seen in Fig.3-12(a) and (b) that increasing 

Oh decreases the maximum growth rate and shifts it to lower ka values, meaning that fiber 

viscosity increases the length scales of the unstable mode, while increasing Ohm decreases the 

maximum growth rate but does not affect the corresponding wavenumber for an inviscid fiber 

(Oh = 0). Fig.3-12(c) shows that for a viscous fiber (Oh = 0.1), increasing VR (increasing 

Ohm) decreases the maximum growth rate and shifts it to higher ka values, meaning that 

matrix viscosity decreases the length sc ales of the unstable mode. 

Figure 3-13 shows the dimensionless growth rate curves a* as a function of dimensionless 

wavenumber ka, for ma to m4, for Ohm = 0 (solid curves) and Ohm = 1 (dashed curves), 

when (a, b) Oh = 0 and (c, d) Oh = 0.1, for (a, c) T = -1.01 and (b, d) T = -2. The 

dimensionless anisotropie elastieity range corresponds to C instability mechanism (Region II in 

Table 3.1). The short wave instabilities are seen for aIl modes, but only five among aIl C modes 

are presented in the figure, clearly showing that lower modes grow faster than higher modes. 
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Figure 3-12: Dimensionless growth rate curves a* as a function of dimensionless wavenumber 
ka, for mo at T = 0, for (a) Oh = 0,0.1,1,10 when Ohm = 0, (b) Ohm = 0,0.1,1,10 when 
Oh = 0 (VR ---t 00), and (c) VR= 0,1,10 when Oh = 0.1. The dashed curve in (c) denotes the 
growth rate for Oh = 0 and Ohm = O. The figure corresponds to Region 1 in Table 3.1, and to 
the MR/ A instability. 
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Figure 3-13: Dimensionless growth rate curves a* as a function of dimensionless wavenumber 
ka, for ma to m4, for Ohm = 0 (solid curves) and Ohm = 1 (dashed curves), when (a, b) Oh = 0 
and (c, d) Oh = 0.1, for (a, c) T = -1.01 and (b, d) T = -2. The figure corresponds to Region 
II in Table 3.1, and to the CI A and CINA instabilities. 
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In the figure the growth rate curves for ma to m4 show the same pattern for T = -1.01 (just 

below the critieality ) and T = -2 (the thermodynamic limit), showing that the C instability 

for T = -2 grows much faster than that for T = -1.01 (see also Fig.3-14(b, d)). Further, it is 

shown that for T < -1 the "lower" kacutofI exist for the C modes only when m ~ 2, as explained 

in Eq. (3.48). For each unstable mode the growth rate decreases as Ohm increases, and the Ohm 

effect is more clearly se en for long wavelengths (small wavenumbers), and thus in lower modes, 

because the instability grows much faster at short wavelengths (large wavenumbers) under the 

C instability mechanism. When comparing Fig. 3-13(c, d) with Fig. 3-13(a, b), the growth rate 

decreases with increasing Oh as well as increasing Ohm. The suppressing effect of the fiber 

viscosity Oh is even more evident at T = -1.01 than at T = -2, showing that instabilities with 

slower growth rates can be dampened more easily. 

Figure 3-14 shows the dimensionless growth rate curves a* as a function of dimension­

less wavenumber ka, for ma and Ohm = 0 (solid curves), 0.1 (dash-dot curves), 1 (dashed 

curves), when (a, b) Oh = 0 and (c, d) Oh = 0.1, for (a, c) T = -0.5,0,2, and (b, d) 

T = -2, -1.01, -1, -0.99. Fig.3-14(a, c) corresponds to Region 1 in Table 3.1. According 

to Eq. (3.61), at three values of T, T = -0.5, 0, and 2, the only unstable mode is ma. The 

eut off wavenumber kacutofI, whieh is given as kacutofI = 1/J1 + T, is a function of neither Oh 

nor Ohm. It is clearly shown that as Ohm increases the maximum growth rate decreases but 

the corresponding wavenumber does not change for an inviscid fiber, Oh = 0 (see also Fig. 3-

15(a)). It is also noted that the growth rate curves for T = 0 in Fig.3-14(a) correspond to 

those in Fig.3-12(b). Fig.3-14(b, d) dramatieally reveals the critical point at T = -1. The 

dimensionless anisotropie elasticity values are close to T = -1 (transition between Regions 1 

and II in Table 3.1), when controlled by the MR ( T = -0.99; Region 1 in Table 3.1) and C 

( T = -1.01; Region II in Table 3.1) instability mechanisms, respectively. The growth rate 

curves are bounded at kacutofI for T = -0.99 while the short wave instabilities are seen for 

T = -1 and below. Although, considering that the MR instability is maximized as T -+ -1+ 

while the catastrophic instability is minimized as T -+ -1-, the latter is always more unstable 

in the whole range of ka. The phenomena mentioned above ho Id qualitatively for any range of 

viscosity. It is also shown that the Ohm effect is more clearly seen for smaller negative values of 

T since instabilities with slower growth rates can be more easily dampened as explained above. 
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Figure 3-14: Dimensionless growth rate curves a* as a function of dimensionless wavenumber 
ka, for ma and Ohm = 0 (solid curves), 0.1 (dash-dot curves), 1 (dashed curves), when (a, b) 
Oh = 0 and (c, d) Oh = 0.1, for (a, c) T = -0.5,0,2, and (b, d) T = -2, -1.01, -1, -0.99. (a, c) 
corresponds to Region 1 in Table 3.1, and to the MR/ A instability. In (b, d) the dimensionless 
anisotropie elasticity values are close to T = -1 (C / A instability at the transition between 
Regions 1 and II), when controlled by the MR ( T = -0.99; Region 1) and C ( T = -1.01; 
Region II) instability mechanisms, respectively. 

96 



0.4 
(a) m = 0, Oh = 0 

--~--~--'-----., 

0.1 

0 

0.8 
"1:=0 

0.6 
kamax 2 

0.4 

0.2 

0 
0 2 3 4 5 

Ohm 

0:':, 
0.25 

ex• 0.2 
max 

0.15 

0.1 

0.05 

(b) m= 0, Oh= 0.1 
-' ------, 

OL--,.-----~-----~----.--~----.-.-.----~ 

0.8 

0.6 
kamax 

0.4L----~-----____I 

0.2 

2 3 4 5 
W? 

Figure 3-15: Maximum growth rate a~ax' and the corresponding maximum dimensionless 
wavenumber kamax (a) as a function of matrix Ohnesorge number Ohm, for ma and Oh = 0, 
for T = 0 and 2, and (b) as a function of viscosity ratio VR, for ma and Oh = 0.1, for T = 0 
and 2. The figure corresponds to Region 1 in Table 3.1, and to the MR/ A instability. 

When comparing Fig. 3-14(c, d) with Fig. 3-14(a, b), the growth rate decreases with increasing 

Oh as well as increasing Ohm. For the MR/ A instabilities, besides decreasing the maximum 

growth rate, the effect of increasing Oh is to shift horizontally the maximum growth rate to 

lower ka values as shown in Fig. 3-12(a). Meanwhile, increasing Ohm (increasing VR) shifts the 

maximum growth rate to higher ka values for a viscous fiber (Oh = 0.1) as shown in Fig. 3-12(c) 

(see also Fig.3-15(b)). When Oh > 0, for T = -1 the growth rate increases with wavenumber 

but, after leveling off, it is almost bounded without kacutoff' 

Figure 3-15 shows the maximum growth rate a~ax' and the corresponding maximum di­

mensionless wavenumber kamax (a) as a function of matrix Ohnesorge number Ohm, for ma 

and Oh = 0, for T = 0 and 2, and (b) as a function of viscosity ratio VR, for ma and Oh = 0.1, 

for T = 0 and 2. This figure corresponds to Region 1 in Table 3.1, and to the MR/ A instability. 

The suppressing effect of the matrix viscosity is evident that as Ohm (or VR) increases a~ax 
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Figure 3-16: Maximum growth rate Œ~ax' and the corresponding maximum dimensionless 
wavenumber kamax as a fun ct ion of fiber Ohnesorge number Oh, for mo and VR = 0, 0.1, 1, la, 
for (a) T = a and (b) T = 2. Small in-boxes in the figure for kamax at VR= la magnifies the 
original curve to clearly show the initial sharp decreasing of kamax with increasing Oh. This 
figure corresponds to Region 1 in Table 3.1, and to the MR/ A instability. 

decreases sharply and then decreases at a much slower rate. However, it is shown in Fig. 3-15(a) 

that kamax do es not change with increasing Ohm for either isotropie (T = 0) or nematie (T = 2) 

fiber when the fiber is inviscid (Oh = 0), while increasing VR (or Ohm) shifts the maximum 

growth rate to higher ka values for a viscous fiber (Oh = 0.1). It is also clearly seen that 

increasing surface elasticity T tends to stabilize the fiber. 

Figure 3-16 shows the maximum growth rate Œ~ax, and the corresponding maximum di­

mensionless wavenumber kamax as a function of fiber Ohnesorge number Oh, for mo and 

VR= 0,0.1,1, la, for (a) T = a and (b) T = 2. Small in-boxes in the figure for kamax at 

VR = la magnifies the original curve to clearly show the initial sharp decreasing of kamax with 

increasing Oh. This figure corresponds to Region 1 in Table 3.1, and to the MR/ A instability. 

Similar to the matrix viscosity, the suppressing effect of the fiber viscosity is evident that as Oh 
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Figure 3-17: Dependence of the maximum dimensionless wavenumber kamax on the fiber and 
matrix viscosities, for mo and T = O. The lines correspond to VR= 0.1,1,10. The values 
in parentheses represent kamax at crossing points of Oh and Ohm (or VR). The dashed curve 
represents a path on which kamax as a function of VR has a local maximum. 

increases a~ax decreases sharply and then decreases at a much slower rate. The combined effect 

of the fiber and matrix viscosities (increasing VR) further decreases a~ax' On the other hand, 

it is shown that kamax decreases with increasing Oh but rather increases with increasing VR 

when the fiber is viscous (Oh -=1= 0), meaning that the fiber viscosity increases the length scales 

of the unstable mode while the matrix viscosity decreases the length scales. When comparing 

Fig. 3-16(b) with Fig. 3-16( a), it is also seen that increasing surface elasticity T tends to dampen 

the fiber instability. 

Figure 3-17 shows the dependence of the maximum dimensionless wavenumber kamax on 

the fiber and matrix viscosities, for mo and T = 0, and establishes the consistency of the 

present results for nematic fibers with previous studies on viscous Newtonian fibers [15, 17, 18]. 

The lines correspond to VR= 0.1,1,10. On the axis of Oh, where VR= 0, the maximum 

dimensionless wavenumber kamax decreases with increasing Oh. On the axis of Ohm, where 

VR ~ 00, the maximum dimensionless wavenumber kamax has a constant value, kamax = 

1/J'2 ~ 0.7071. As VR increases from 0 to 00, the maximum dimensionless wavenumber kamax 

increases along either a constant Oh line or a constant Ohm line. The dashed curve in the 

figure represents a path on which kamax as a function of VR has a local maximum, as reported 
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Table 3 2· Dependence of the maximum dimensionless wavenumber on the viscosity ratio . . . 

VR 
Tomotika Ref. [18] Ref. [17] This study 
Ref. [15] (0.002 < Oh < 0.01) (0.002 < Oh < 0.01) (0.04:::; Oh :::; 0.1) 

0.06 0.353 0.611 0.623 0.643 
0.1 0.409 0.643 0.688 0.679 
0.66 0.53 0.659 0.682 0.681 
1.15 0.568 0.643 0.682 0.682 
2.56 0.583 0.666 0.702 0.686 
4.33 0.581 0.651 0.693 0.683 

in other studies [15, 17, 18]. The path shown in Fig. 3-17 covers a certain range of Oh, which 

was not considered as a parameter in Tomotika's results [15J. The change of kamax on the 

path is qualitatively consistent with the results of previous studies [15, 17, 18], as shown in the 

comparative study summarized in Table 3.2. Table 3.2 shows the dependence of the maximum 

dimensionless wavenumber kamax on the viscosity ratio VR calculated in Ref. [15, 17, 18] and 

in the present work. Except for Tomotika's results, aU other studies considered Oh as weU as 

VR as parameters. In our study the path shown as a dashed curve in Fig. 3-17 demonstrates 

the characteristie behavior of kamax as a function of VR in the range 0.04 < Oh < 0.1. The 

tabulated results from aU the studies clearly show that kamax as a function of VR has a local 

maximum. In partial summary, our model of bounded axisymmetric capillary instability of a 

nematie liquid crystalline fiber embedded in a viscous matrix prediets a dependence of maximum 

wavenumber on the matrix-to-fiber viscosity ratio that is in qualitative agreement with other 

computational models found in the literature for Newtonian fluids. 

3.6 Conclusions 

Capillary instabilities in nematie fibers reflect the anisotropie nature of liquid crystals. The 

surface elasticity of nematies contains orientation contributions that aUow for the existence of 

bending stresses. Surface gradients of bending stresses provide addition al anisotropie contribu-

tions to the capillary pressure of fibers that renormalize the classical displacement and curvature 

forces that exist in any fluid fiber. The exact nature and magnitude of the renormalization of 

the displacement and curvature forces depend on the nematie liquid crystal orientation and 

the anisotropie contribution to the surface energy. If the orientation is along the fiber axis, 

100 



capillary instabilities may be axisymmetric or non-axisymmetric, and if the anchoring energy 

strongly promotes normal (homeotropic) orientation to the surface, the usually stabilizing cur­

vature forces become destabilizing and capillary instabilities with fibrillation phenomena arise. 

We have been pursuing experimental verification of non-axisymmetric capillary instability using 

rheological microscopy methods [30]. The phenomenology predicted in this chapter is accessi­

ble, in principle, by changes in temperature, since the anchoring energy of a given interface is 

temperature dependent [7]. Thus, the classical fiber-to-droplet transformation is one of several 

possible instability pathways while others include surface fibrillation. 

The effect of the viscous shear force at the fiber surface due to the viscous matrix on the 

bounded axisymmetric capillary instability was also taken into account, and characterized in 

terms of the Ohnesorge numbers and the matrix-to-fiber viscosity ratio. The capillary instabil­

ities of a thin fiber in a viscous matrix are suppressed by increasing either the fiber or matrix 

Ohnesorge number, but estimated drop let sizes after fiber break-up in axisymmetric instabili­

ties substantially decrease with increasing matrix Ohnesorge number. In a certain range of the 

fiber Ohnesorge number, the dependence of the wavenumber corresponding to the maximum 

growth rate on the viscosity ratio is in qualitative agreement with previous studies on models 

for Newtonian fiuids. 
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Chapter 4 

Temperature Effects on Capillary 

Instabilities in a Thin N ematic 

Liquid Crystalline Fiber Embedded 

in a Viscous Matrix 

4.1 Summary 

Linear stability analysis of capillary instabilities in a thin nematie liquid crystalline cylindrical 

fiber embedded in an immiscible viscous matrix is performed by formulating and solving the 

governing nemato-capillary equations, that include the effect of temperature on the nematie 

ordering as weIl as the effect of the nematie orientation. A representative axial nematie orien­

tation texture with the planar easy axis at the fiber surface is studied. The surface disturbance 

is expressed in normal modes, which include the azimuthal wavenumber m to take into account 

non-axisymmetric modes. Capillary instabilities in nematic fibers reflect the anisotropie nature 

of liquid crystals, such as the ordering and orientation contributions to the surface elasticity 

and surface normal and bending stresses. Surface gradients of normal and bending stresses 

provide additional anisotropie contributions to the capillary pressure that may renormalize the 

classieal displacement and curvature forces that exist in any fluid fiber. The exact nature 
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(stabilizing and destabilizing) and magnitude of the renormalization of the displacement and 

curvature forces depend on the nematic ordering and orientation, i.e., the anisotropie contri­

bution to the surface energy, and accordingly capillary instabilities may be axisymmetric or 

non-axisymmetric. In addition, when the interface curvature effects are considered as contri­

butions of the work of interfacial bending and torsion to the total energy of the system, the 

higher order bending moment contribution to the surface stress tensor is critical in stabilizing 

the fiber instabilities. For the planar easy axis, the nematic ordering contribution to the sur­

face energy, which renormalizes the effect of the fiber shape, plays a crucial role to determine 

the instability mechanisms. Moreover, the unstable modes, which are most likely observed, 

can be driven by the dependence of surface energy on the surface area. Low ordering fibers 

display the classical axisymmetric mode since the surface energy decreases by decreasing the 

surface area. Decreasing temperature gives rise to the encounter with a local maximum or to 

monotonic increase of the characteristic length of the axisymmetric mode. Meanwhile, in the 

presence of high surface ordering, non-axisymmetric finite wavelength instabilities emerge, with 

higher modes growing faster since the surface energy decreases by increasing the surface area. 

As temperature decreases, the pitches of the chiral microstructures become smaller. However, 

this non-axisymmetric instability mechanism can be regulated by taking account of the surface 

bending moment, which contains higher or der variations in the interface curvatures. More and 

more non-axisymmetric modes emerge as temperature decreases, but, at constant temperature, 

only a finite number of non-axisymmetric modes are unstable and a single fastest growing mode 

emerges with lower and higher unstable modes growing slower. For nematic fibers, the classi­

cal fiber-to-droplet transformation is one of several possible instability pathways while others 

include chiral microstructures. The capillary instabilities' growth rate of a thin nematic fiber 

in a vis cous matrix is suppressed by increasing either the fiber or matrix viscosity, but esti­

mated droplet sizes after fiber break-up in axisymmetric instabilities decrease with increasing 

the matrix viscosity. 
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(a) Area 

(b) Area + Ordering q Ys 

(c) Rotation + Orientation 

Figure 4-1: Three contributions to the surface free energy density of a nematie interface: "fis 
is the isotropie contribution, "fs is the nematie ordering contribution, and "fn is the anchoring 
contribution. The total surface energy can decrease by area reduction ("(is) , by area dilation 
("(s), and by area rotation ("(n). 

4.2 Introduction 

A question of fundamental importance in capillary instabilities of thin fibers is the nature of 

the modes that arise when driven by surface tension forces. For isotropie fiuid fibers, surface 

tension is isotropic, and thus only surface area reduction plays a role to select an unstable mode 

since the surface energy decreases by decreasing the surface area [1]. In addition, it is known 

that when surface curvature effects are important in isotropie fiuids, the contribution of the 

work of surface bending and torsion to the total energy of the system can be included since 

the bending and torsion deformation is related to variations in the two principal curvatures 

of the interface [2, 3, 4, 5]. On the other hand, the surface tension of nematie liquid crystals 

contains anisotropie contributions [7, 8, 9] known as nematie ordering and anchoring energies 

[10, 11, 6] as well as an isotropie contribution. Figure 4-1 shows the three contributions to the 

surface free energy density of a nematie interface: "fis is the isotropie contribution, "fs is the 

nematie ordering contribution, and "fn is the anchoring contribution. The figure shows that the 

total surface energy can decrease by area reduction ("(is) , by area dilation ("(s), and by area 

rotation ("(n). Since chiral non-axisymmetric fiber instability modes increase the surface area, 
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and for that reason are never observed in isotropie material interfaces, nematic interfaces can, 

as shown in this chapter, promote the instability through the nematic ordering and anchoring 

energy mechanisms. 

Capillary instabilities in liquid crystal fibers have been analyzed with and without viscous 

matrix effects in Chapter 3 [12, 13], and in this chapter we extend the previous work and ana­

lyze the temperature dependence of the instability mechanisms and thresholds. We adopt the 

nemato-capillary equation for the fiber which contains the viscous stress force at the interface, 

and thus show the effect of the viscosity ratio on the capillary instabilities using the fiber and 

the matrix Ohnesorge numbers (Le. ratio of vis cous to surface forces). 

The specifie objectives of this chapter are to: (1) present a general equation that describes 

capillary instabilities in a thin nematie liquid crystal fiber embedded in a viscous matrixj (2) 

characterize aIl the possible capillary instability modes and elucidate the physical mechanisms 

that drive and quench the instabilitiesj (3) establish parametric conditions that lead to ax­

isymmetric and non-axisymmetric capillary instabilitiesj (4) characterize the nematic ordering 

and anchoring energy contributions to capillary instabilitiesj and (5) characterize the surface 

bending and torsion moment contributions to capillary instabilities. 

The organization of this chapter is as foIlows. In Section 4.3, we present the governing 

nemato-capillary equations and derive the instability criteria for a representative nematic tex­

ture. In Section 4.4, we characterize aIl possible instability modes and the geometry of the 

evolving unstable fiber. The instability mechanisms are clearly identified and discussed in terms 

of capillary forces. AIl results are summarized in compact tabular form and discussed in detail, 

emphasizing the physical as weIl as mathematical aspects. Representative computed visualiza­

tions of unstable fibers are included to complement the tabulated and graphical information. 

In Section 4.5, we further investigate the stabilizing mechanism when the contributions of the 

work of surface bending and torsion to the total energy of the system are included. Section 4.6 

presents conclusions. 
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4.3 Governing Equations 

We consider the stability of a thin, initially axisymmetric, cylindrical nematie fiber embedded 

in an immiscible viscous matrix. The nematie liquid crystal is assumed to be incompressible, 

and its orientation is homogeneous and constant. Linear stability analysis is used to analyze 

the complete set ofaxisymmetrie and non-axisymmetrie capillary instabilities in nematie liquid 

crystalline fibers. 

In this chapter, we use the same geometry and texture of a liquid crystalline fiber with a 

fixed direct or field, as shown in Chapter 3 (see Figure 3-1). The fixed direct or assumption holds 

when the fiber radius is sm aller than the extrapolation length e. The extrapolation length is the 

ratio of characteristie bulk elastie energy to surface anchoring energy [6]. When a < e, it is less 

costly to store surface energy than bulk energy, and hence under this condition the direct or is 

spatially homogeneous (see Chapter 1 section 1.3.7). Since the direct or is fixed, only the linear 

momentum balance equation for the bulk and surface defines the evolution of the fiber's shape. 

In this work, the mechanieal response of the nematie fluid is that of an anisotropie viscoelastie 

material [14, 6], where the bulk is vis cous and the surface is elastie. 

4.3.1 Constitutive equations 

While the viscous stress tensor t V is described by Erieksen's Transversely Isotropie Fluid (TIF) 

constitutive equation (3.7), the surface elastie stress tensor t se is expressed by one of extensions 

of the Rapini-Papoular constitutive equation. Extensions of the Rapini-Papoular constitutive 

equation are used in the literature, specifically to describe thermally-induced surface orientation 

transitions [15]. A well-known phenomenological expression for the surface free energy density 

of the nematie liquid crystal was proposed by Sluckin and Poniewierski [8] where the surface 

free energy was expanded to the second order in terms of the symmetric, traceless, 3 x 3 tensor 

or der parameter Q [7, 8, 9] and is given by 

1 lis + lan(N, Q, Q . N) 

= lis + ,8n N . Q . N + ,820Q : Q + ,821 N . Q . Q . N + ,822 (N . Q . N)2 , (4.1) 
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where "Yis is the isotropie surface tension, "Yan is the anisotropie surface energy, and {8ij } , 

ij = 11, 20,21,22, are the phenomenological parameters that are independent of temperature. 

For instance, 1311 represents the effects due to the Van der Waals interaction between the nematie 

and isotropie (matrix) phases. The anisotropie (nematic) contribution "Yan arises whenever the 

surface tensor order parameter deviates from the surface 'easy tensor order parameter', whieh 

minimizes the surface free energy. In the uni axial nematie state, the tensor order parameter is 

given by 

(4.2) 

where 8 is the scalar order parameter. Since the anisotropie surface energy "Yan is a function of 

N and Q, there are two mechanisms for storing surface elastie energy, one is through nematie 

ordering (8) and the other through nematie orientation (n). Then, the surface free energy 

density, Eq. (4.1), is rewritten by making use of Eq. (4.2) as [9] 

"Y = "Yis + "Ys (8) + "Yn(8, (n· N)2), (4.3) 

where 

( 4.4) 

(4.5) 

where "Ys (8) represents the anisotropie contribution due to the nematie ordering, and "Yn(8, (n . N)2) 

the anisotropie contribution due to the nematie orientation at the surface as weIl as due to the 

nematie ordering. 

The surface 'easy axis', the direct or orientation whieh minimizes the surface free energy, 

may be parallel to the surface (planar anchoring), perpendieular to the surface (homeotropie 

anchoring), or tilted according to the signs and magnitudes of the phenomenologie al parameters 

f3ij' In this chapter, we consider the planar easy axis since the direct or field is fixed along the 

fiber axis, which is close to the planar anchoring condition. It is assumed that 1320 = 0, Le., the 

nematic-nematic interaction is negligible with respect to the nematic-isotropic phase interaction. 

The signs of the phenomenologie al parameters f3ij' which satisfy conditions that minimize the 
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surface free energy in terms of the surface nematic orientation, are given as [9] 

f311 > 0, (4.6) 

and further restrictions are obtained as 

(4.7) 

From Eq. (4.6), the planar surface orientation is stable when 

(4.8) 

where Sp is the scalar or der parameter for the planar easy axis and is expressed as 

(4.9) 

The planar surface orientation is stable when T > Tp , where Tp is the temperature which 

corresponds to Sp. By assuming that the scalar order parameter is uniform across the fiber but 

a function of temperature, the surface free energy depends only on temperature and the surface 

nematic orientation. Then, the scalar order parameter is assumed as [9] 

S(T) = cJTo~ T, ( 4.10) 

where To is a few degrees lager than the nematic-isotropic transition temperature and c is 

a constant. By using Eq. (4.6) and Eq. (4.10), the surface free energy is derived for a small 

distortion from the planar easy axis and finally given as 

1 = lis + 18 (T) + In(T, (n· N)2), (4.11) 
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where 

1s (T) III S JTO-T [1 (1 3,822) ~ 
-3 11 p To - Tp + - 1,8211 + 2,822 V ~J 
-~,811Spv' ~T* [1 + (1 - b) v' ~T*] , 

= IlnSpJTO-T (I-JTO-T) (n.N)2 
To -Tp To -Tp 

,811Spv' ~T* (1 - v' ~T*) (n· N)2 , 

b = 3,822 , 
1,8211 + 2,822 

~T* _ To -T 
- To -Tp ' 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

where IS (T) represents the anisotropic contribution due to the nematic ordering, 1n(T, (n· N)2) 

represents the anisotropie contribution due to the anchoring (nematic orientation at the surface) 

energy, b is the ratio of two anchoring phenomenological parameters, i.e., 1~2J l, and ~T* is the 
1-'22 

dimensionless nematic temperature. Using Eqs. (4.6) and (4.7) and the range restriction of S(T) 

in Eq. (4.8), we obtain that 

1 
0< b < 2' o < ~T* < 1. (4.16) 

It is noted that, as ~T* increases from 0 to 1, the temperature T actually decreases from To 

to Tp- Finally, Eq. (4.11) can be rewritten as 

using 

1is + C (~T*) + Wp (~T*) (n· N)2 

1is [1 + C (~T*) + Wp (~T*) (n. N)2] 
1 is 1 is 

C (~T*) = -~,811Spv' ~T* [1 + (1 - b) v' ~T*] , 

Wp (~T*) = ,811Spv' ~T* (1 - v' ~T*) , 
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where C is the nematic ordering coefficient, and Wp the anchoring strength of the anisotropie 

surface energy in the Rapini-Papoular form. It is noted that the nematie ordering coefficient C 

is negative while the anchoring strength Wp is positive. 

It is noted that since the two contributions to the capillary pressure are expressed by 

Eq. (3.21), the nematie ordering coefficient C and the anchoring strength Wp contribute to 

the capillary pressure through both the normal and bending stresses. Nevertheless, when con­

sidering the linear regime of capillary instability of a nematie liquid crystal fiber, second order 

terms involving H (n . N)2 cancel out and the only remaining anchoring (surface orientation) 

contribution to the capillary pressure is that from the bending stresses. Thus, any model that 

attempts to capture the linear regime of capillary instability in a nematic liquid crystal fiber 

must include all contributions arising from the bending stress tensor as well as the normal stress 

tensor. 

4.3.2 Governing equations for an axial nematic fiber 

In this section, the governing equation of the surface disturbance ç(z, e, t), Eq. (3.3), is derived 

for the axial fiber in the vis cous matrix by combining the linear momentum balance equation, 

Eq. (3.56), and the normal stress boundary condition, Eq. (3.19). 

Using Eqs. (3.23) and (3.24) in Eq. (3.20), the capillary pressure Pc becomes 

Pc 

( 4.20) 

where 

(4.21) 

(4.22) 

* Sp f3 n a = ---, 
3 "fis 

( 4.23) 

where a* is the ratio of nematie ordering energy to isotropie surface energy. Table 4.1 sum-
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Table 4.1: Parametric definitions. 
1 Parameters 1 Equations 1 Definitions 

C (flT*) (4.18) nematie ordering coefficient 
Wp (flT*) (4.19) anchoring strength 

a* ( 4.23) ratio of nematie ordering energy to isotropie surface energy 

b (4.14) ratio of two anchoring phenomenologie al parameters, Le., ~ 
flT* (4.15) dimensionless nematie temperature 

marizes aU parameters, whieh appear in Eqs. (4.21) and (4.22), and their definitions for easy 

reference. 

Since the total surface free energy and the isotropie surface tension are always positive in 

Eq. (4.17), we deduce that Sn can be either positive or negative but Snb is always positive. 

Eq. (4.20) properly reduces to the Newtonian capillary pressure when flT* = 0, Le., when 

surface tension is isotropie. Importantly, when the normal and bending stresses contribute to 

the capillary pressure of an axial fiber, forces appear that are given respectively by 

[ 
C (flT*)] (1 1 1 (Pt;, 8

2t;,) 
Pc ln! = "fis 1 + "fis ~ - a2t;, - a28rJ2 - 8z2 ' (4.24) 

( 4.25) 

where Pc ln! can compete or cooperate with the usual isotropie contribution since the sign 

of the normal force coefficient [1 + C(~~')] is not fixed, whereas Pc lb! cooperates with the 

usual isotropie contribution as seen in Eq. (4.20) since the sign of the anchoring strength Wp is 

positive. 

Combining Eqs. (3.57), (3.34), and (3.58) in conjunction with Eq. (4.20) gives the differential 

equation for ç: 

(4.26) 

Eq. (4.26) properly reduces to the Newtonian fiber embedded in a Newtonian matrix when 

flT* = 0, i.e., when surface tension is isotropie. By substituting Eq. (3.3) into Eq. (4.26), a 
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quadratic equation for the dimensionless growth rate, a* = aJ pa3 /tis, is obtained: 

( 4.27) 

where ka is the dimensionless wavenumber, Oh = '1]1 VPatis the fiber Ohnesorge number, and 

Ohm = !-lI VPatis the matrix Ohnesorge number. These two Ohnesorge numbers are the ratios 

of the viscous to surface forces. Solving the quadratic equation for a*, Eq. (4.27), we find 

[30h (ka)' + 20hm]' + 2 (ka)' [Sn(l - m') - Snb (ka)'] } . 

( 4.28) 

Thus, the axial fibers are unstable when the following inequality is satisfied: 

- [30h (ka)2 + 20hm] + [30h (ka)2 + 20hm] 2 + 2 (ka)2 [Sn(l - m 2) - Snb (ka)2] > O. 

( 4.29) 

The maximum growth rate a~ax and the corresponding wavenumber kamax are obtained by solv­

ing Eq. (4.27), which properly reduce to the well-known results for Newtonian fluids surrounded 

by an inviscid matrix when the viscoelastic anisotropy and the non-axisymmetric dependence 

vanish; i.e., !-l = 0, '1]1 = '1]2' '1]3 = 0, !:1T* = 0, and m = O. In more detail, the asymptotic 

results for the highly vis cous fiber are a~ax = II (60h) and kamax = 1/J3/20h, while the 

asymptotic results for the inviscid fiber are a~ax = 1/ (2/2) and kamax = 1//2. Moreover, 

when only axisymmetric disturbances become unstable, i.e., m = 0, the results predict the axial 

fiber break-up into drop lets with a characteristic size of 21f 1 (kamax ) [16]. For the axisymmetric 

disturbances in the nematic inviscid fiber with the inviscid matrix, i.e., Oh = Ohm = ° and 

m = 0, Eq. (4.27) reduces to 

( 4.30) 

and the maximum growth rate a~ax and the corresponding wavenumber kamax are given by 

1rs;: 
kamax = /2V ~. (4.31) 

The physics of capillary instabilities in axial nematic fibers can be elucidated by rewriting 
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Eq. (4.20) as 

( 4.32) 

1 
f - --C~ ç - C~ ç 

e - a2 "(J(J "'(J(J "zz"'zz' C~ = lisSnb. (4.33) 
"zz 

The capillary pressure contains two (ç-dependent) deformation effects: a displacement force, 

Jd, and a curvature force, Je. Capillary instabilities occur because a spatially periodic pressure 

gradient develops, inducing macroscopic fiow. The driving force for creating a pressure gradient 

is denoted as a destabilizing force, while a force resisting it is denoted as a stabilizing force. 

The nature of the two capillary forces depends only on the sign of their coefficients, Cç, Cç , 
00 

and CÇzz ' which are the effective surface tensions for bath forces. Thus the displacement 

force is destabilizing (stabilizing) for Cç > 0 (Cç < 0), while the curvature force is stabilizing 

(destabilizing) for Cç > 0 and Cç > 0 (Cç < 0 and Cç < 0). In isotropie fibers (!:l.T* = 0 
00 zz 00 zz 

), the displacement force is always destabilizing and the curvature force is always stabilizing, 

thus explaining the existence of lower cutoff in the instability wavelength, as in the classieal 

Rayleigh fiber instability. This occurs because the stabilizing curvature force for sufficiently 

short wavelengths overpowers the driving displacement force. Since for axial fibers Snb > 0 

as explained below Eq. (4.20), the curvature force from Çzz is always stabilizing. On the other 

hand, since Sn can be either positive or negative depending on magnitudes of a*, b, and !:l.T* 

(see Eq. (4.21)), the displacement force and the curvature force from Ç()() can be stabilizing or 

destabilizing. If Sn > 0 (Sn < 0), the curvature force from Ç()() is stabilizing (destabilizing) 

while the displacement force is destabilizing (stabilizing). 

4.4 Results and Discussion 

The characterization of capillary instabilities in nematic fibers requires the specification of two 

features: (i) instability mechanism; (ii) symmetry of deformation modes. These two features 

are embedded in Eq. (4.28) and must be considered separately. 

(i) Instability mechanism 
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The capillary instabilities in nematic liquid crystalline fibers are found to follow two different 

routes: 

(a) Modified Rayleigh (MR) instability mechanism 

The modified Rayleigh instability is characterized by a single m = 0 mode. There is an upper 

cutoff wavenumber kacutoff above which disturbances do not grow. The axial fibers have no 

azimuthal dependence and thus axisymmetric. 

(b) Bounded Simultaneous (BS) instability mechanism 

The bounded simultaneous instability is characterized by simultaneous occurrence of azimuthal 

modes m 2:: 2 with bounded growth rate. The following ordering in growth rates is found: 

( 4.34) 

where a~ax(mn) == a~ax while m n represents m = n mode hereafter. 

(ii) Symmetry of deformation modes 

The symmetry of the deformation in this chapter is restricted to axisymmetric and non­

axisymmetric modes, axisymmetric modes being rotationally invariant. It is noted that for 

axial fibers the mode m = 0 is, as usual, an axisymmetric mode. 

Based on this general discussion, the criteria required to classify the capillary instability are 

given by specification of: Instability mechanismjSymmetry. The following two cases emerge: 

(a) Modified Rayleighj Axisymmetric (MRj A) 

(b) Bounded SimultaneousjNon-Axisymmetric (BSjNA). 

In what follows we discuss these two different capillary instabilities in axial fibers, and determine 

the parametric dependence of the deformation and growth rates. 

4.4.1 Capillary instabilities in axial fibers 

To further analyze our results, we define a critical value of a* as: 

* 1 
ac = 2 - b' (4.35) 

which satisfies Sn = Snb = 0 at !1T* = 1 and Snb > Sn > 0 for 0 < !1T* < 1. 
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Table 4.2: Capillary instabilities in axial fibers according to Eq. (4.29). 

a* 
Instability Region 1 

type 0< i::l.T* < 1 

/r~ 

a* < a* MR/A d / \ - c / 
/ 

ka 

a* 
Instability Region II 

i::l.TSn=o 
Region III 

type o < i::l.T* < i::l.Ts -0 i::l.TSn=o < i::l.T* < i::l.Ts =0 

MR/A 
/~ 

No No ci / \ 
/ \ / 

'" a* > a~ ka 

~ 
a." 

BS/NA No No 
=} 

ka 

*2 < *3 < *4 < Œmax Œmax Œmax ... 

Table 4.21 summarizes the complete phenomenology of the two capillary instabilities in axial 

fibers, as computed from Eq. (4.28). If a* :::; a~, there is only one regime, where i::l.T* ranges 

from 0 to 1. If a* > a~, there are two regimes according to the signs of Sn (the values of 

i::l.T*: see Table 4.3 and discussion below). The first column shows the regions of a*, the second 

column shows the instability type, and the entries show characteristic growth rate curves for 

each instability mechanism. For the MR instability in the second row (Regime 1) and the third 

column (Regime II), the growth rate curve is bounded, and an upper kacutoff exists. For the 

BS instability in the fifth column (Regime III), the growth rate curves are bounded with upper 

kacutoff, and higher modes grow faster than lower modes. 

Table 4.32 summarizes the fundamental features of the two types of capillary instabilities 

1 MR/ A: Modified Rayleigh/ Axisymmetric instability 
BS/NA: Bounded Simultaneous/Non-Axisymmetric instability 
Œ~ax: Maximum growth rate of ith mode for BS instabilities 

2Three contributions to the surface free energy density in Eq. (4.11): 
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Table 4 3' Fundamental features of capillary instabilities in axial fibers. · . 
Instability Region l, II Region III 
regime in a* < a* 0 < t::..T* < 1 - e' a* > a~, t::..TSn=o < t::..T* < t::..TSnb=o Table 4.2 a* > a~, 0 < t::..T* < t::..Ts -0 

Snb + + 
Cê. + + 
fe,f" , Stabilizing Stabilizing 

Sn + -

Cf.~~, Cf. + -

fe,f,RR / fd Stabilizing / Destabilizing Destabilizing / Stabilizing 
Instability 

MR/A (m = 0) BS/NA (m 2: 2) type 
'Ys with Sn (+) : cooperating Sn (-) : competing 

relation to 'Yis 
Instability 

'Y l as surface area i 
mode 'Y l as surface area l 

(*2 < *3 < *4 < ) 
selection Œmax Œmax Œmax ... 

in Table 4.2, as deduced from Eqs. (4.32) and (4.33). The first column shows properties we 

investigate, the first row shows instability regimes in Table II, and the entries show features of 

the properties for each instability type. For long cylindrical fibers, as long as the curvature force 

from ';zz, fe,f.zz' is stabilizing (Cf.zz > 0), both axisymmetric and non-axisymmetric disturbances 

are always bounded with an upper cutoff wavenumber (lower cutoff wavelength), meaning that 

fibers are stable for sufficiently short wavelengths. Otherwise, the instability must be of the 

Hadamard type, where a lower cutoff wavelength does not exist and short wavelengths lead 

to catastrophie instability [12, 13]. For nematie fibers, the surface energy is dependent of the 

surface shape through, in partieular, the effects of the nematie ordering contribution as weIl as 

the isotropie surface tension, and of the surface nematie orientation (anchoring). As seen in the 

table, for axial fibers, Snb > 0 (Cf.zz > 0) and thus fe,f.zz is always stabilizing by means of its 

contribution of the anchoring energy, which arises from surface gradients of bending stresses, 

due to the positive anchoring strength Wp . Meanwhile, similar to the isotropie fiber, when the 

nematic ordering is small (second column for Regime l, II), the axial fiber is unstable to the 

axisymmetric mo mode, which is least stabilized by the curvature force from ';(}(j, fe,f.ee' and 

1 = liB + IS (8) + ln (8, (n· N)2) 
'-v-" '-v-' '"-...-" 

isotropie nematic ordering nematic orientation 
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thus most likely destabilized by the displacement force, since the surface energy is decreased 

by decreasing surface are a (last row). When the nematie ordering is large (third column for 

Regime III), higher non-axisymmetrie modes, which are more destabilized by fe,ç99 ' grow faster 

than lower modes and m ::; 1 modes even do not emerge since the surface energy decreases by 

increasing the surface area (last row). Since Sn appears as the normal force coefficient while Snb 

consists of bath normal and bending force coefficients (see Eqs. (4.24) and (4.25)), the described 

phenomenal ogy of capillary instabilities in axial fibers is attributed ta anisotropie effects arising 

from surface gradients of normal and bending stresses. More importantly, the nematie ordering 

contribution ta the surface energy, whieh renormalizes the effect of the fiber shape, plays a 

crucial raIe ta determine the instability mechanisms (last two rows). 

We next discuss in detail the physical and mathematieal aspects of the tabulated informa-

tian. 

Instability characterization in axial fibers 

As explained above the physies of capillary instabilities in axial fibers, as summarized in Table 

4.2, is elucidated by considering the sign and magnitudes of the displacement and curvature 

forces. Figure 4-2 shows a representative schematie of the displacement Ud) and curvature 

Ue,çzz' f:1~9' f:1 09 ) forces as a function of the dimensionless nematie temperature tlT*, for 

(a) a* ::; a~ and (b) a* > a~, where fe,çzz represents the curvature forces from Çzz, f:1~9 the 

curvature force from Ç()() for mode m = 1, and f::},99 for m 2: 2 modes. The roman numerals (l, 

II, III) refer ta the three regimes of Table 4.2. Since the cross-section of the axisymmetric mode 

is circular and centered on the z-axis, there is no curvature force from Ç()() for mode m = O. 

The figure provides the reasons for the existence of the only regime (1) for a* ::; a~ and of the 

two regimes (II, III) for a* > a~, and observation of the sign and relative magnitudes of the 

stabilizing and destabilizing forces explains the phenomenology of Table 4.2. As summarized 

in Table 4.3, Fig.4-2(a) shows that in Regime 1 the displacement forces fd are destabilizing 

while the curvature forces Je" ,fen;,l , and fen;, stabilizing, showing smallcr curvature force 
,":"zz ,":.(J9 ,"':,(J() 

for m = 1 U;;} ) than for m 2: 2 U;:t: ). It is seen that the stabilizing forces for the non-
,'>99 ,'>99 

axisymmetric modes are sufficiently st rang ta quench the instability, and thus only m = 0 is 

unstable. In other words, it is energetieally costly ta cause instability modes m 2: 1 as seen 
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Figure 4-2: Representative schematic of the displacement (fd) and curvature (fc,~zz' f:1~o' 
f:1oo) forces as a function of the dimensionless nematic temperature b..T*, for (a) a* ~ a~ and 

(b) a* > a~, where fc,~zz represents the curvature forces from Çzz, f:1;o the curvature force 
from çee for mode m = 1, and f:1 0 for m 2: 2 modes. The roman numerals (l, II, III) refer 
to the three regimes of Table 4.2. Since the cross-section of the axisymmetric mode is circular 
and centered on the z-axis, there is no curvature force from çee for mode m = O. The figure 
provides the reasons for the existence of the only regime (1) for a* ~ a~ and of the two regimes 
(II, III) for a* > a~, and observation of the sign and relative magnitudes of the stabilizing and 
destabilizing forces explains the phenomenology of Table 4.2. 
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by comparing the magnitude of stabilizing forces with that of destabilizing forces. Fig. 4-2(b) 

shows that in Regime II Jd is destabilizing while Je C ,fe~l ,and fe~ are aH stabilizing. The 
,~zz ,~(}B ,<.,,()(J 

stabilizing forces for the non-axisymmetrie modes are again sufficiently strong to quench the 

instability, and thus only m = 0 is unstable. In Regime III, Jd becomes stabilizing as well as 

Je C while f~l and f~ become destabilizing, showing smaller destabilizing curvature forces 
,<."zz C,r.."oo c,<.,,(}(J 

for m = 1 than for m ~ 2. Since only for m ~ 2 the magnitude of the destabilizing forces is 

relatively greater than that of the total stabilizing forces and Je,çzz is stabilizing, the bounded 

simultaneous instability occurs for m ~ 2. Moreover, higher mode shows larger destabilizing 

forces, resulting in Eq. (4.34). It is noted that since Snb > 0, the region of !lTSnb=o ~ !lT* < 1, 

where Sn < Snb < 0, is thermodynamieally inaccessible. 

The nature of non-axisymmetric instabilities can be explained by referring to the summary 

of last two rows in Table 4.3. For the cylindrical axial fiber, the surface orientation of the 

nematie texture is along the fiber axis. Since the planar easy axis of the surface is considered, the 

misalignment between the actual direct or and the easy axis is small enough not to cause the non­

axisymmetrie instability by means of bending stresses. Moreover, the anchoring contribution 

through surface gradients of bending stresses tends to stabilize the capillary instability due to 

the positive anchoring strength Wp . On the other hand, since the nematie ordering coefficient C 

is negative, the nematic ordering contribution to the surface free energy, 'Ys, competes with the 

usual isotropie and the anchoring contri butions (see Eq. (4.17)). For the sufficiently large ratio of 

nematie ordering energy to isotropie surface energy (a* > a~), if the nematie temperature, whieh 

satisfies Eq. (4.8), is low enough (close to Tp ), the high degree of nematie ordering gives rise 

to a large negative value of C and may even cause non-axisymmetrie deformation by allowing 

for surface deformations and rotations in order to decrease the surface energy by increasing 

the surface area. These observations on the symmetry of the unstable modes can be made 

quantitative, as follows. When the growth rate a* is real and positive, the surface disturbances 

become unstable and grow with time. For the axial fiber, by solving Eq. (4.28) positive real a* 

solutions are obtained when the following condition is satisfied: 

( 4.36) 
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Figure 4-3: Computed visualization of 3D views of unstable fibers (left), and the cross-sectional 
fiber geometry (right), for a* > a~, and the following azimuthal wavenumbers: m = 0,2,3,9. 
For m ~ 2 capillary instabilities result in chiral structures. 

which reduces ta 

O (k )
2 Sn(1 - m 2) 

< a < S . 
nb 

(4.37) 

Eq. (4.37) gives the upper kacutoff for the axisymmetric mode m = 0 when Sn > 0 (Regime l, II 

in Table 4.2,4.3) and for the non-axisymmetric modes m ~ 2 when Sn < 0 (Regime III in Table 

4.2, 4.3). In the Newtonian fiber (Snb = Sn = 1 since ~T* = 0) inequality Eq. (4.36) is never 

fulfilled for m ~ 1, and the positive real a* is obtained only for the axisymmetric disturbances 

(m = 0), from Eq. (4.28). 

Symmetry of deformation modes in axial fibers 

In this study, surface disturbances are classified by the mode m in the azimuthal direction 

given in Eq. (3.3). Because m is an integer, positive and negative signs are equally possible 

for each value of m. In axial fibers, the sign selects the handedness of the shape deformation 

but does not affect the growth rate curves due ta the m2 dependence of the growth rate in 

Eq. (4.28). A positive sign imprints a left-handed rotation ta the surface pattern and thus these 

are chiral modes. The mode mo, which is a so-called varicose mode, represents the well-known 

axisymmetric disturbance. Likewise, the ml mode is called the sinuous mode, and modes with 

m ~ 2, fiuted modes. 

Figure 4-3 shows computed visualization of the cross-sections and 3D views of four instability 

modes, using Eqs. (3.2), (3.3), and (4.28), for a* > a~. In Regime II (see Table 4.2) the 

122 



only axisymmetric mode m = 0 is unstable while the bounded simultaneous non-axisymmetric 

instabilities for m ~ 2 occur in Regime III, among which m2, m3, and mg modes are seen in this 

figure. Fig. 4-3 shows that the cross-sectional shape and position of the fibers are periodic in the 

z-direction. For m ~ 2 the spatial period of the chiral microstructure, called the pitch and given 

by À = 27r / (ka), defines the degree of twisting per unit length. For m2, the fiber has a constant 

elliptic cross-section, which rotates along the fiber axis, while for m 2: 3 the cross-sectional 

shape has a regular pattern identified by m axes of rotational symmetry and rotates along 

the fiber axis. The axial rotation of the anisotropic cross-sectional shape for m ~ 2, pro duces 

twisted ridged microstructures. For the classical ma mode, À = 27r / ka is the dimensionless 

wavelength of the varicose shape in the z-direction. The fiber cross-section is always circular 

but periodically expands and contracts when traversing the axial fiber direction. Thus, for 

the ma mode the formation of droplets with a characteristic size À is predicted. It is noted 

that, while changing Oh and Ohm change the maximum growth rate and the corresponding 

wavenumber, they have no effect on the surface deformation pattern. 

Parametric effects on capillary instabilities in axial fibers 

The contribution of the viscosity ratio to the capillary instabilities of a thin nematic fiber in a 

viscous matrix is analyzed by two parameters, the fiber and matrix Ohnesorge numbers, where 

viscosity ratio is defined as 

( 4.38) 

Following convention, either Ohm or VR is used to display the results of the effect of viscosities 

on the capillary instabilities when setting Oh equal to a constant value. 

Since, for the ma mode (Regime l, II in Table 4.2), the formation of drop lets after fiber break­

up is predicted due to the axisymmetric instability while the pitch of the chiral microstructures 

for m ~ 2 (Regime III in Table 4.2) is calculated from kamax , we introduce the relative droplet 

size r* for m = 0 and the dimensionless pitch À * for m ~ 2 to analyze the nematic temperature 

effect on the characteristic size of the surface microstructures in capillary instabilities, given by 

* r r =-
rref 

3 kamax, ref 

kamax ' 
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À* = ~ = kamax, ref 
Àref kamax ' 

( 4.39) 
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Figure 4-4: Azimuthal wavenumber m as a function of dimensionless nematie temperature ,6,.T* 
for (a) a* :s a~ and (b) a* > a~. (a) corresponds to Regime 1 (MR/A instability), and (b) to 
Regime II and III (MR/ A and BS/NA instabilities) in Table 4.2. For a* :S a~, only the MR 
mode mo persists over the whole range of ,6,.T* while, for a* > a~, the transition of instability 
mechanisms from MR to BS is seen. The region of ,6,.TSnb=o :S ,6,.T* < 1 is thermodynamieally 
inaccessible. 

where kamax = 1/-/2, whieh corresponds to an isotropie fiber (,6,.T* = 0) and inviscid system 

(Oh = Ohm = 0). 

Figure 4-4 shows the azimuthal wavenumber m as a function of dimensionless nematie 

temperature ,6,.T* for (a) a* :S a~ and (b) a* > a~. Fig.4-4(a) corresponds to Regime 1 

(MR/ A instability) , and Fig. 4-4(b) to Regime II and III (MR/ A and BS/NA instabilities) 

in Table 4.2. In Fig. 4-4(a), for a* :S a~, only the MR mode mo persists over the who le range 

of ,6,.T* because the stabilizing curvature forces for modes m 2:: 1 are sufficiently strong. In 

Fig.4-4(b), for a* > a~, the transition of instability mechanisms from MR to BS is seen. The 

MR mode mo persists for 0 < ,6,.T* < ,6,.TSn=o, while m 2:: 2 modes arise simultaneously for 

,6,.TSn=o < ,6,.T* < ,6,.TSnb=o since the curvature forces from Ç(}(} are destabilizing and total 

destabilizing forces for m 2:: 2 modes are greater than total stabilizing forces. Both types of 

instabilities are bounded with upper kacutoff since the curvature forces from Çzz are always 

stabilizing. At ,6,.T* = ,6,.Tsn=o, aH displacement and curvature forces become equal to 0 (see 

also Fig.4-2(b)) and thus instabilities do not occur. Through this temperature the transition 

of instability mechanisms from MR to BS occurs and is regarded as a transition of a more 

complieated instability regime (Regime III in Table 4.2). The region of ,6,.TSnb=o :S ,6,.T* < 1 is 
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Figure 4-5: Dimensionless growth rate curves a* as a function of dimensionless wavenumber 
ka, for mo at t::.T* = 0, for VR = 0,1,10 when Oh = O.l(solid curves), and Oh = Ohm = 0 
(dashed curve). The figure shows the vis cous effects offiber (Oh) and matrix (Ohm) on capillary 
instabilities for the isotropie fiber (t::.T* = 0). 

thermodynamieally inaccessible. 

Figure 4-5 shows the dimensionless growth rate curves a* as a fun ct ion of the dimensionless 

wavenumber ka, for mo at t::.T* = 0, for VR = 0,1,10 when Oh = O.l(solid curves), and 

Oh = Ohm = 0 (dashed curve). This figure shows the viscous effects of fiber (Oh) and matrix 

(Ohm) on capillary instabilities for the isotropie fiber (t::.T* = 0). From the dashed curve and 

the solid curve for Oh = 0.1 and VR = 0, it is seen that increasing Oh decreases the maximum 

growth rate and shifts it to lower ka values, meaning that fiber viscosity increases the length 

scales of the unstable mode. Meanwhile, solid curves show that increasing VR (increasing 

Ohm) decreases the maximum growth rate and shifts it to higher ka values, meaning that 

matrix viscosity decreases the length sc ales of the unstable mode. In summary, the capillary 

instabilities of a thin nematie fiber in a viscous matrix are suppressed by increasing either 

the fiber or matrix Ohnesorge number, but the estimated drop let sizes after fiber break-up in 

axisymmetrie instabilities substantially decrease with increasing the matrix Ohnesorge number. 

Figure 4-6 shows the dimensionless growth rate curves a* as a function of the dimensionless 

wavenumber ka, for mo at b = 0.25 (a~ = 0.5714), for (a) Oh = Ohm = 0 when a* = 0.3 

and t::.T* = 0 (dash) , 0.3505 (solid), 0.7092 (dash-dot), 1 (dash), (b) Oh = Ohm = 0 when 

a* = 1 and t::.T* = 0 (dash), 0.01, 0.1, 0.3, 0.4, (c) Oh = 0.1 and VR = 1 wh en a* = 0.3 

and t::.T* = 0 (dash), 0.3611 (solid), 0.7995 (dash-dot), 1 (dash), and (d) Oh = 0.1 and VR = 1 
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when a* = 1 and I:1T* = 0 (dash), 0.01, 0.1, 0.3, 0.4. This figure shows the effects of I:1T* 

on the ma instability in two different regions of a* at a constant b. Fig. 4-6 corresponds to 

the MR/ A instability: Fig.4-6(a, c) to Regime l (a* ~ a~), and Fig.4-6(b, d) to Regime II 

(a* > a~) in Table 4.2. In Fig.4-6(a, c), according to Eq. (4.28), the only unstable mode is ma 

over the whole range of f1T*. For a* = 0.3 and Oh = Ohm = 0 (Oh = 0.1 and VR = 1), at 

f1T* = 0.3505 (0.3611) kamax reaches the local minimum while a~ax reaches the local minimum 

at f1T* = 0.7092 (0.7995). Thus, increasing I:1T* suppresses the capillary instability until kamax 

and a~ax reach separately the local minima, and then releases the instability fully in kamax but 

incompletely in a~ax as f1T* -+ 1 (see Fig. 4-7 and discussion below). Besides decreasing the 

maximum growth rate, the effect of increasing Oh and Ohm is to increase slightly the nematic 

temperatures I:1T* of the local minima of kamax and a~ax' In Fig.4-6(b, d), according to 

Eq. (4.28), the mode ma is unstable for 0 < f1T* < f1TSn=a, where f1TSn=a = 0.4444 at a* = 1. 

As f1T* increases, the maximum growth rate a~ax and the corresponding wavenumber kamax 

decrease and finally the growth rate becomes 0 at f1T* = f1TSn=a' The cutoff wavenumber 

kacutoff is also decreasing with f1T* but a function of neither Oh nor Ohm. It is also noted that 

the growth rate curves for I:1T* = 0 when Oh = Ohm = 0 and when Oh = 0.1 and VR = 1 

in Fig. 4-6 (dashed curves) correspond to those in Fig. 4-5, respectively. It is seen in Fig. 4-6 

that the suppressing effect of the fiber and matrix viscosities is evident, showing that the values 

Oh > 0 and Ohm> 0 change the maximum growth rate and the corresponding wavenumber. 

In what follows, we discuss our results only for Oh = Ohm = O. 

Figure 4-7 shows the maximum growth rate a~ax, and the corresponding maximum dimen­

sionless wavenumber kamax as a function of dimensionless nematic temperature f1T*, for ma 

when Oh = Ohm = 0, for (a) a* = 0.1 (solid), 0.3 (solid), 0.5 (solid), 0.5714 (dash), 0.6 (dash­

dot), 1 (dash-dot) at b = 0.25 and (b) a* = 0.1, 0.3, 0.5, a~, 1, at b = 0.01 (dash) , 0.25 (solid), 

0.49 (dash-dot). Fig. 4-7 corresponds to Regime l and II in Table 4.2, and to the MR/ A insta­

bility. Fig.4-7(a) shows the effects of f1T* on a~ax and kamax of the ma instability in three 

different regions of a* at a constant b. Referring ta the nematic temperature effect on the 

growth rate shown in Fig.4-6(a), for a* < a~ (solid curves), a~ax and kamax as a function of 

f1T* have local minima. As a* increases, the local minima for a~ax and kamax approach as­

ymptotically the values of a~ax and kamax , respectively, at f1T* = 1 and a* = a~ = 0.5714. 
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Figure 4-6: Dimensionless growth rate curves a* as a function of dimensionless wavenumber ka, 
for ma at b = 0.25 (a~ = 0.5714), for (a) Oh = Ohm = 0 when a* = 0.3 and ~T* = 0 (dash) , 
0.3505 (solid), 0.7092 (dash-dot), 1 (dash), (b) Oh = Ohm = 0 when a* = 1 and ~T* = 0 (dash) , 
0.01,0.1,0.3,0.4, (c) Oh = 0.1 and VR = 1 when a* = 0.3 and ~T* = 0 (dash), 0.3611 (solid), 
0.7995 (dash-dot), 1 (dash), and (d) Oh = 0.1 and VR = 1 when a* = 1 and ~T* = 0 (dash) , 
0.01, 0.1, 0.3, 0.4. The figure shows the effects of ~T* on the ma instability in two different 
regions of a* at a constant b. The figure corresponds to the MR/ A instability: (a, c) to Regime 
1 (a* ::; a~), and (b, d) to Regime II (a* > a~) in Table 4.2. 
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Figure 4-7: Maximum growth rate a;;'ax, and the corresponding maximum dimensionless 
wavenumber kamax as a function of dimensionless nematic temperature tlT*, for ma when 
Oh = Ohm = 0, for (a) a* = 0.1 (solid), 0.3 (solid), 0.5 (solid), 0.5714 (dash), 0.6 (dash-dot), 
1 (dash-dot) at b = 0.25 and (b) a* = 0.1, 0.3, 0.5, a~, 1, at b = 0.01 (dash) , 0.25 (solid), 
0.49 (dash-dot). The figure corresponds to Regime l and II in Table 4.2, and to the MR/ A in­
stability. (a) shows the effects of tlT* on a;;'ax and kamax of the ma instability in three different 
regions of a* at a constant b. (b) shows the effect of b on the dependence of a;;'ax and kamax of 
the ma instability on tlT* in three different regions of a*. 
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Table 4.4: Maximum growth rate, and the corresponding maximum dimensionless wavenumber 
as a function of dimensionless nematic temperature for constant b. 

b = constant : 
At t::..T* = 0, Sn = Snb = 1 

Sn(a*, t::..T*), Snb( a*, t::..T*) 
For t::..T* > 0, Snb> Sn > 0 

Sn 1, Snb il as t::..T* i 

a* * /82 

Œmax ex: ~ kamax ex: Jè 
a* < a~ : l (local minimum) i l (local minimum) i 

At t::..T* = 1, Sn = Snb > 0 
a* = a~ : 

l to 0 l to finite 
At t::..T* = 1, Sn = Snb = 0 

a* > a~ : 
l to 0 at t::..TSn=o l to 0 at t::..TSn=o 

At t::..Ts -0' Sn = 0, Snb > 0 

Accordingly, the drop let size after fiber break-up is predicted to change from small to large to 

small by increasing t::..T*, and at a constant t::..T* the relative droplet size in Eq. (4.39) is bigger 

for larger a* in this regime (see Fig.4-lO(a) and discussion below). When a* = a~ (dashed 

curve) , Œ~ax and kamax gradually decrease with t::..T*. At t::..T* = 1, the growth rate becomes 

o while kamax a finite value. Referring to Fig.4-6(b), for a* > a~ (dash-dot curves), Œ~ax and 

kamax monotonically decrease with t::..T* and become 0 at t::..T* = t::..TSn=o (t::..TSn=o = 0.9338 

for a* = 0.6, and t::..TSn=o = 0.4444 for a* = 1). Tables 4.4 and 4.5 summarize how and why 

the Œ~ax and kamax dependence on t::..T* is different for (a) three different regions of a* at 

constant b (Tables 4.4) and for (b) two different regions of a* at changing b (Tables 4.5). In 

Table 4.4, the first row shows general conditions which are always satisfied that Sn = Snb = 1 

at b..T* = 0 and Snb > Sn > 0 for t::..T* > 0, and which are obtained from Eqs. (4.21, 4.22) at a 

constant b that Sn decreases while Snb increases and then decreases with t::..T*. The Œ~ax and 

kamax dependence on Sn and Snb is evaluated using Eq. (4.31). The first column shows three 

different regions of a* and the corresponding conditions found. The entries show the Œ~ax and 

kamax dependence, either increasing or decreasing, on t::..T*. In summary, although the general 

conditions in the first row are equally applied, the characteristic condition at each region of a* 

eventually controls the Œ~ax and kamax dependence. As a* increases, the combined effects of 

the nematic ordering and the anchoring tend to quench the mo instability by decreasing Œ~ax 

and kamax and even by shifting b..TSn=o to lower values for a* > a~. Fig. 4-7(b) shows the effect 

of b on the dependence of Œ~ax and kamax of the mo instability on t::..T* in three different regions 
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Table 4.5: Maximum growth rate, and the corresponding maximum dimensionless wavenumber 
as a function of dimensionless nematic temperature for changing b. 

b =1= constant : At t::.T* = 0, Sn = Snb = 1 
Sn(a*, b, t::.T*), Snb(a*, b, t::.T*) For t::.T* > 0, Snb > Sn > 0 

a* * -/S2 kamax ex 1~ Œmax ex ~ nb 

a* =1= a~ : 
l l b l =? Sn(t::.T*) 1, Snb(t::.T*) l 

b l =? a~ l (Sn = Snb = 0 at t::.T* = 1) 
renormalization of Sn(t::.T*) and Snb(t::.T*) is 

more effective at larger t::.T* and a* 
a* = a~ : 

i i b l =? a~ l =? Sn(t::.T*) j, Snb(t::.T*) l 

of a*. Decreasing b decreases Œ~ax and kamax for any value of a*, exeept for a~. The effect of 

changing b is even more evident for larger a* and t::.T*, and thus smaller a* less sensitive to 

the effect of b so that differenees in Œ~ax and kamax are hardly recognizable for a* = 0.1 in the 

figure. It is also noted that the effect of b is opposite when a* = a~, Le., decreasing b increases 

Œ~ax and kamax but not by a large amount. The reason for the above effects of b is now ex­

plained. In Table 4.5, the first column shows two different regions of a* and the corresponding 

conditions found by decreasing b. The entries show the Œ~ax and kamax dependenee on t::.T*. 

In summary, decreasing b decreases a~ (see Eq. (4.35)) and tends to decrease Œ~ax and kamax 

for any value of a*, exeept for a~, by decreasing Sn by a larger amount than decreasing Snb (see 

Eq. (4.31)) sin ce only the nematic ordering coefficient C in both Sn and Snb is a function of b 

(see Eqs. (4.21, 4.22)). In addition, the renormalization effects of Sn and Snb due to changing 

a~ are taken into account sinee changing b aIt ers a~, which is obtained in the condition that 

Sn = Snb = 0 at t::.T* = 1. Since the condition, Sn = Snb = 1 at t::.T* = 0, holds for any 

values of a* and b, the renormalization effect on Sn and Snb is more clearly seen far from the 

fixed point t::.T* = 0, Le., near t::.T* = 1, or at larger a*. On the other hand, when a* = a~, 

the renormalization of Sn and Snb with decreasing b results in small amount increase of Sn but 

decrease of Snb, and thus allows for increasing Œ~ax and kamax . Since changing b has a much 

smaller effect than changing a*, b is set at 0.25 in most of our results. 

Figure 4-8 shows the maximum growth rate Œ~ax, and the corresponding maximum di­

mensionless wavenumber kamax as a function of dimensionless nematic temperature t::.T*, for 

a* = 1 and b = 0.25 (a~ = 0.5714) when Oh = Ohm = O. Since a* > a~, Fig. 4-8 corresponds to 
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Figure 4-8: Maximum growth rate Œ~ax, and the corresponding maximum dimensionless 
wavenumber kamax as a function of dimensionless nematic temperature 6.T*, for a* = 1 and 
b = 0.25 (a~ = 0.5714) when Oh = Ohm = O. This figure corresponds to Regime II (MR/ A 
instability) and Regime III (BS/NA instability) in Table 4.2. 

Regime II (MR/ A instability) in Table 4.2 for 0 < 6.T* < 6.TSn=o (= 0.4444) and to Regime III 

(BS/NA instability) in Table 4.2 for 6.TBn=o < 6.T* < 6.TSnb=o (= 0.8182). Referring to Table 

4.3, the mo mode emerges in Regime II, which grows slower as 6.T* ---+ 6.TSn=o and becomes 

stable at 6.T* = 0.4444. In this regime, the surface energy decreases by decreasing the surface 

area (last row in Table 4.3). In Regime III, the bounded simultaneous instabilities are seen 

for modes m ~ 2, but only four modes are presented in the figure, clearly showing that higher 

modes grow faster than lower modes since the surface energy decreases by increasing the surface 

area (last row in Table 4.3) and the modes grow even faster near 6.T* = 0.8182. Referring to 

Fig.4-2(b), since at 6.T* = 6.TSn=o all displacement and curvature forces become equal to 0, 

and thus instabilities do not occur. Considering that nematic temperatures of the transition, 

6.TSn=o and 6.TSnb=o, totally change with changing a*, it seems impossible to analyze the a* 

effects on the BS/NA instabilities. 

Figure 4-9 shows the dimensionless cutoff wavenumber kacutoff as a function of dimensionless 

nematic temperature 6.T* at b = 0.25, for (a) a* = 0.3, 0.5714(a~), 1, for mo, and (b) a* = 1, 

for m2 to m5. Figure 4-9( c) shows the dimensionless cutoff wavenumber kacutoff as a function of 

mode number m at 6.T* = 0.6 for a* = 1. Fig.4-9(a) corresponds to Regime 1 and II in Table 

4.2, and to the MR/ A instability. kacutoff shows the same pattern as kamax in Fig. 4-7(a) that for 
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Figure 4-9: Dimensionless eut off wavenumber kacutoff as a function of dimensionless nematic 
temperature D.T* at b = 0.25, for (a) a* = 0.3, 0.5714 (a~), 1, for mo, and (b) a* = 1, for 
m2 ta m5. (c) Dimensionless cutoff wavenumber kacutoff as a function of mode number m at 
D.T* = 0.6 for a* = 1. (a) corresponds ta Regime 1 and II for MR/ A instability, (b) ta Regime 
II for MR/ A instability and Regime III for BS/NA instability, (c) ta Regime III for BS/NA 
instability in Table 4.2. 

a* < a~ kacutoff has a local minimum. Fig. 4-9(b) corresponds ta Regime II (MR/ A instability) 

in Table 4.2 for 0 < D.T* < D.TSn=o (= 0.4444) and ta Regime III (BS/NA instability) in Table 

4.2 for D.TSn=o < D.T* < D.TSnb=o (= 0.8182). kacutoff shows the same pattern as kamax in 

Fig. 4-8, Le., in Regime III higher modes range ta larger wavenumbers than lower modes and 

thus are less stable. Fig. 4-9(c) corresponds ta Regime III (BS/NA instability) in Table 4.2. The 

kacutoff dependence on m is clearly shawn as linear, meaning that higher modes are unstable for 

larger wavenumbers (smaller wavelength). It is reminded that the cutoff wavenumber kacutoff 

is a function of neither Oh nor Ohm (see also Fig. 4-6). 

Figure 4-10 shows the relative droplet size predicted after fiber break-up, r*, for m = 0 

and the dimensionless pitch >. * of the chiral microstructures for m ~ 2 as a function of D.T*, 

when Oh = Ohm = 0, at b = 0.25 (a~ = 0.5714), for (a) mo and a* = 0.3, 0.5, 0.5714, and 

(b) a* = 1 and m = 0,2,3,5,9. Fig.4-10(a) corresponds ta Regime 1 (MR/A instability), 

and Fig.4-10(b) ta Regime II (MR/ A instability) and III (BS/NA instability) in Table 4.2. 

The droplet size r* and the pitch À * are calculated by using Eq. (4.39). Fig.4-10(a) shows that, 

referring ta the nematic temperature effect on kamax for a* ~ a~ shawn in Fig. 4-7(a) , the 

droplet size r* for a* < a~ increases, reaches a local maximum, and then decreases as the 

nematic temperature D.T* increases while r* monotonically increases for a* = a~ = 0.5714. 
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Figure 4-10: Relative droplet size predicted after fiber break-up, r*, for m = 0 and the di­
mensionless pitch À * of the chiral microstructures for m ~ 2 as a function of I:l.T*, when 
Oh = Ohm = 0, at b = 0.25 (a~ = 0.5714), for (a) mo and a* = 0.3,0.5,0.5714, and (b) a* = 1 
and m = 0,2,3,5,9. (a) corresponds to Regime 1 (MR/A instability), and (b) to Regime II 
(MR/ A instability) and III (BS/NA instability) in Table 4.2. The droplet size r* and the pitch 
À* are calculated by using Eq. (4.39). 

In Fig. 4-10(b), the drop let size r* for a* > a~ increases and diverges as I:l.T* approaches the 

transition temperature I:l.TSn=o. As I:l.T* further increases, large pitch microstructures at the 

fiber surface emerge for non-axisymmetric m ~ 2 modes, and then the pitches become shorter 

and shorter. Although only four modes are presented in Regime III, it is clearly seen that higher 

modes are patterned by much sm aller pitches than lower modes, meaning that higher modes 

grow faster and are more likely observed. Considering that, as I:l.T* increases from 0 to 1, the 

temperature T actually decreases from To to Tp (see Eq. (4.15)), decreasing temperature T gives 

rise to the encounter with a local maximum of the characteristic length of the axisymmetric 

instability for a* < a~ but to monotonie increase of the characteristic length for a* ~ a~. 

For a* > a~, further decreasing T shortens the characteristic length of the non-axisymmetric 

instabilities and thus the instabilities become stronger. 

Figure 4-11 shows representative structures that summarize capillary instabilities in axial 

fibers. Fig. 4-11 ( a) corresponds to Regime l (MR/ A instability) while Fig. 4-11 (b) to Regime 

II and III (MR/ A and BS/NA instabilities) in Table 4.2. Axial fibers display two types of 

instabilities, whose symmetry and existence are controlled by the sign and magnitude of Sn in 

Eq. (4.28). It is seen in Fig. 4-11 (a) that small values of a* lead to the axisymmetric modified 
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Figure 4-11: Representative structures that summarize capillary instabilities in axial fibers. (a) 
corresponds to Regime 1 (MR/ A instability) while (b) to Regime II and III (MR/ A and BS /N A 
instabilities) in Table 4.2. Axial fibers display two types of instabilities, whose symmetry and 
existence are controlled by the sign and magnitude of Sn in Eq. (4.28). Small values of a* 
lead to the axisymmetric modified Rayleigh (MR/ A) instability over the whole range of ~T*, 
and to an eventual fiber break-up into droplets. Intermediate or large values of a* lead to 
the MR instability for small ~T* but ignite non-axisymmetric bounded simultaneous (BS/NA) 
instabilities for intermediate ~T*, leading to the distortion of the fiber into lower-symmetry 
cylindrical fibers. 
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Rayleigh (MRj A) instability over the whole range of 6.T*, and to an eventual fiber break-up 

into droplets. In Fig. 4-11(b), intermediate or large values of a* lead to the MR instability 

for small !:::..T* but ignite non-axisymmetric bounded simultaneous (BSjNA) instabilities for 

intermediate!:::..T* , leading to the distortion of the fiber into lower-symmetry fibers. 

4.5 Bending and Torsion Effects on Capillary Instabilities 

4.5.1 Modified governing equations 

In this section we further investigate the stabilizing mechanism of simultaneous instabilities 

in Regime III of Table 4.2, in which growth rates infinitely grow with increasing azimuthal 

wavenumber m. The governing nemato-capillary equation is modified by the fact that the 

interface curvature effects can be accounted for as contributions of the work of interfacial 

bending and torsion to the total energy of the system since the bending and torsion deformation 

is related to variations in the two principal curvatures of the interface [2, 3, 4, 5]. The coefficients 

of the work of deformation are the interfacial bending and torsion moments, defined below. 

The surface stress tensor taking into account the surface moments, in general, consists of 

the tangential (perpendicular to N) and transversal (parallel to N) contribution [2, 4]: 

Cl! = 1,2, (4.40) 

where ia is the orthonormal unit surface base vector. At the fluid interface, the tangential part 

of the surface stress tensor 0' is given as 

(4.41 ) 

where (Tl and (T2 are the eigenvalues of 0' s' The transversal component (TaN is given by 

(TaN = -ia' ('Vs' M). (4.42) 
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The bending moment tensor M in Eq. (4.42) is defined as 

M 
1 1 
2"(MI + M2)Is + 2"(MI - M2)q 

1 1 
2" BIs + 2"8q, (4.43) 

where Ml and M2 are the eigenvalues of M, and Band 8 are the surface bending and torsion 

moments, respectively. The curvature deviatoric tensor q in Eq. (4.43) is defined as 

b = -\7sN, (4.44) 

where b is the curvature tensor, and D denotes the deviatoric curvature expressed as 

( 4.45) 

In conjunction with Eq. (3.14), the total surface elastic stress tensor for the nematic fiber can 

be rewritten as 

ee = 0' + tË. (4.46) 

As derived in Eq. (3.19), the normal component of the surface gradient of t se gives rise to the 

generalized Laplace equation: 

(4.47) 

The first term of Eq. (4.47) is obtained by making use of the expressions for (JaN and b, 

Eqs. (4.42, 4.44), and the given relationship between the mechanical and thermodynamical 

surface tensions and moments [2, 3, 4, 5]: 

0': b - V;M 

2H(0"1 + 0"2) - V'~M 

1 1 2 
2Hb - 2"BH - 2"8D) - VsM. ( 4.48) 

The Helfrich model for the work of flexural deformation is employed and hence gives the ex-
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pressions of the bending and torsion moments [2, 3, 4, 5]: 

B Ba + (4kc + 2kc)H ; Ba = - 4kcHa, 

e (4.49) 

where kc and kc are the bending and torsion elastie moduli, respectively, Ha is the spontaneous 

curvature, and Ba represents the bending moment of a fiat interface. By substituting Eq. (4.49) 

for Eq. (4.43), we obtain 

( 4.50) 

Replacing Eqs. (4.49, 4.50) into Eq. (4.48) yields 

(4.51) 

where K is the Gaussian curvature, Le., K = H 2 - D 2 • Using Eq. (4.51) and the expression in 

Eq. (3.20) for the second term of Eq. (4.47), the capillary pressure becomes 

By using Eq. (3.22), the capillary pressure Pc is derived as 

"lis [Sn (-1 + i + Ç,(J(J) + SnbaÇ + Msc (_! + i + Ç,(J(J + aç ) - MTaç a a a ,zz 2 2 a a ,zz ,zz 

MB ( ç Ç,(J(J Ç,(J(J(J(J 3)] --2- -1 + 3- + 5- + 5aç zz + 2-- + 4aç zz(J(J + 2a ç zzzz' (4.53) 
a a ' a ' , 

where 

Msc 
Ba bending moment of fiat interface 

'Yis a isotropie surface tension 

MT 
kc torsion surface elastic modulus 

--2 
isotropie surface energy 'Yis a 

M B 
kc bending surface elastic modulus 

'Yis a2 isotropie surface energy 

82 t:. 
Ç,(J(J = 7!fO!' Ç,zz 

82 t:. 84 t:. 84 t:. a4t:. 
Fz!' Ç,(J(J(J(J - aet' Ç,zzzz = az4' and Ç,zz(J(J = ~. Taking the same 
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procedure as shown previously, the growth rate equation for the instabilities is finally obtained: 

( 4.54) 

where 

p 
( 

Msc) 2 ( Msc ) 2 Sn+-
2
- (1-m)- Snb+-2--MT (ka) 

- ~B [3 + 2m4 - 5m2 + 4m2 (ka)2 - 5 (ka)2 + 2 (ka)4] ( 4.55) 

4.5.2 Results and discussion 

By solving Eq. (4.54), positive real a* solutions are obtained wh en the following condition is 

satisfied: 

p>o. ( 4.56) 

In comparison with Eq. (4.36) there are three new parameters, Le., Msc, MT, and MB' in 

Eq. (4.56). Although, in the literature, data of the three parameters for liquid crystals are not 

available, data for other material systems en able us to assume that the orders of magnitude 

for the parameters are similar and to further assume that Msc and M B are positive while 

MT is negative [2, 3]. To analyze the new effects, we use the same parameters as in section 

4.4. Therefore, the parameter b in Sn and Snb is set at 0.25. Since we already discussed the 

effect of viscosities on the instabilities in section 4.4, the results in this section are given only 

for Oh = Ohm = O. As representative results, we show calculations for Msc = MB = -

MT = 0.01. As seen in Table 4.2, there are three instability regimes according to choices 

of a* and b..T*. Table 4.63 summarizes the complete phenomenology of the two capillary 

instabilities in axial fibers, as computed from Eq. (4.54). If a* ::; a~, there is only one regime, 

where b..T* ranges from 0 to 1. If a* > a~, there are two regimes according to the signs of 

(Sn + M~ç ), Le., the values of b..T*, in Eq. (4.56). When (Sn + M~ç) is positive, only the 

Modified Rayleigh (MR) instability occurs while, when (Sn + M~ç) is negative, the Bounded 

3MR/ A: Modified Rayleigh/ Axisymmetric instability 
BSq/NA: Bounded Sequential/Non-Axisymmetric instability 
mi: ith mode of the azimuthal wavenumber m for BSq instabilities 
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a* 

a* < a* - c 

a* 

a* > a~ 

Table 4.6: Capillary instabilities in axial fibers according to Eq.(4.54). 
Instability Region 1 

type 0 < f:lT* < 1 

MR/A 

0.4[ 
0.31 

cx' CJ.21 

a' = 0.3 

0.11 

°O~~~~0.4~~O~.6~~~ 
ka 

Instability 
type 

MR/A 

BSq/NA 

Region II 
o < f:lT* < f:lTj] 

0.4 a' = 1 
_6T'=O 

/ - " 
,1/ 0.01 \ 

0.3 

No 
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\ 
\ 

Stable 
regime 

No 

No 

Region III 
f:lTj]] :S f:lT* < f:lT!; =0 

No 

3.5 a': 1,6T'=O.81 
3 

2.5 

rl 2 
1.5 



Sequential (BSq) instability emerges. The first column shows the regions of a*, the second 

column shows the instability type, and the entries show characteristic growth rate curves for 

each instability mechanism. For the MR instability in the second row (Regime I) and the third 

column (Regime II), the growth rate curve is bounded, and an upper kacutoff exists. Under the 

bounded sequential (BSq) mechanism in the fifth column (Regime III), unstable modes appear 

sequentially with I::..T*, and the growth rate curves are bounded with upper kacutoff. For the 

BSq instability, a fastest growing mode exists at constant I::..T*, which is faster than growth 

rates of any other lower or higher unstable modes. 

(a) Regime I: a* ::; a~ and 0 < I::..T* < 1 

The critical value of a*, a~ = 0.5657, is obtained when a* satisfies P = 0 for mo at I::..T* = 1 

since only the MR mode mo is unstable over the whole range of I::..T*. Similar to the results in 

Fig.4-6(a) and Fig.4-7(a) for a* = 0.3, the growth rate curves for mo in Table 4.6 show that 

Œ~ax and kamax as a function of I::..T* have local minima. Accordingly, the drop let size after 

fiber break-up is predicted to change from small to large to small by increasing I::..T*. 

(b) Regime II: a* > a~ and 0 < I::..T* < I::..Tj] 

The upper temperature limit of Regime II, I::..TÎ! = 0.4378, is obtained for positive (Sn + M~c ) 
and satisfies P = 0 for mo since, in this regime, only the MR mode mo occurs, Le., P > 0 for 

mo: 

(S Msc) _ 3MB 0 n+ 2 2 > . ( 4.57) 

Similar to the results in Fig.4-6(b) and Fig.4-7(a) for a* = 1, the growth rate curves for mo in 

Table 4.6 show that, as I::..T* increases, the maximum growth rate Œ~ax and the corresponding 

wavenumber kamax decrease and finally the growth rate becomes 0 at I::..T* = I::..TÎ!. The cutoff 

wavenumber kacutoff is also decreasing with I::..T*. 

(c) Regime III: a* > a~ and I::..Tjn ::; I::..T* < I::..TSnb=o 

The lower temperature limit of Regime III, I::..Tjn = 0.4646, is obtained for negative (Sn + Mfc) 
and satisfies P = 0 for m2 since the BSq instability emerges, Le., P> 0 for m ~ 2: 

( Msc) 2 MB ( 4 2) Sn + -2- (1 - m ) - 2 3 + 2m - 5m > 0, ( 4.58) 

while the upper temperature limit is I::..TSnb=o( = 0.8182). In comparison with Fig. 4-8 and 
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Fig.4-9(b), the growth rate curves for m 2:: 2 in Table 4.6 show the most striking result that 

emerging higher azimuthal modes are suppressed by means of the bending moment contribution 

to the surface elastic stress tensor. As !:::.T* increases, more and more azimuthal modes emerge, 

but a fastest growing mode exists at constant !:::.T* and thus lower and higher unstable modes 

only grow slower than the fastest growing mode (see Fig. 4-12 and discussion below). At a* = 1 

and !:::.T* = 0.81, five azimuthal modes are unstable from m2 to m7, among which growth rates 

become faster up to m4 and then decline toward m7. 

It is noted that there is also a stable regime, i.e., a* > a~ and !:::.Tj[ ~ !:::.T* < !:::.Tj[[, where 

no instability occurs sinee both conditions of Eq.(4.57) and Eq. (4.58) are not satisfied. 

Figure 4-12 shows the dimensionless cutoff wavenumber kacutoff as a function of dimension­

less nematic temperature !:::.T* at b = 0.25, a* = 1, and Msc = MB = - MT = 0.01. The 

figure corresponds to Regime II (MR/ A instability) for 0 < !:::.T* < !:::.TÎI (= 0.4378) and to 

Regime III (BSq/NA instability) for !:::.Tj[[ (= 0.4646) ~ !:::.T* < !:::.TSnb=o (= 0.8182) in Table 

4.6. In Regime II, the growth rate of mo decreases with !:::.T* and becomes 0 at !:::.Tj[, so does 

kacutoff. In Regime III, unstable modes appear from m2 sequentially in ascending order of the 

azimuthal wavenumber m with increasing temperature !:::.T*. Hence, at constant !:::.T* only a 

finite number of azimuthal modes are unstable and a fastest growing mode exists. At the upper 

temperature limit !:::.TSnb=o, for instance, m2 to m7 modes arise, among which the m4 mode 

grows faster than other unstable modes. Meanwhile, between the two vertical dashed Hnes, i.e., 

!:::.TÎI ~ !:::.T* < !:::.Tj[[, no instability arises. 

4.5.3 Analysis of bending moment effects 

In this section, we focus on the specifie effects of the bending moment (see Eq. (4.50)). The 

physics behind the noticeable stabilizing mechanism in Regime III of the sequential instabilities 

of Table 4.6 compared with the simultaneous instabilities of Table 4.2 can be elucidated by 

analyzing the role ofthree new parameters, Msc, MT, and MB' in Eq. (4.55). Since it is assumed 

that Msc and MB are positive while MT is negative, the positive terms M~ç and M~ç - MT 

added to Sn and Snb, respectively, tend to cooperate with the usual isotropic contribution (see 

Eqs. (4.24, 4.25) and discussion below). Meanwhile, by comparing Eq. (4.56) with Eq. (4.36), 

the third term in Eq. (4.55), which is combined with higher orders of curvature gradients, plays 
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Figure 4-12: Dimensionless cutoff wavenumber kacutoff as a function of dimensionless nematic 
temperature t::.T* at b = 0.25, a* = 1, and Msc = MB = - MT = 0.01. The figure corresponds 
to Regime II (MR/ A instability) for 0 < t::.T* < t::.TÎI (= 0.4378) and to Regime III (BSq/NA 
instability) for t::.TÎn (= 0.4646) ~ t::.T* < t::.TBnb=o (= 0.8182) in Table 4.6. Between the two 
vertical dashed lines, i.e. t::.TÎI ~ t::.T* < t::.TÎn, no instability arises. 
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Figure 4-13: Upper limit of the azimuthal wavenumber m as a function of the dimensionless 
bending surface elastic modulus MB at b = 0.25, a* = 1, and l:!.T* = 0.81, for the cutoff 
wavenumber kacutoff' The figure corresponds to Regime III (BSq/NA instabilities) in Table 4.6. 

a crucial role in stabilizing the nematic fiber since the coefficient yt is positive. Hence, to 

focus on the role of the higher or der terms, we consider a special case in which only the bending 

moment contribution is taken into account through the transversal component of the surface 

stress tensor given by Eq. (4.42), and thus the capillary pressure in Eqs. (4.47,4.52) reduces to 

2H,- V;M + (Vs' tE)· N 

2Hrv - 2k V H - 2H -. N - V . -2 (8,) (8,) 
1 C s 8N s 8N (4.59) 

Using the same procedure, the following instability criterion is obtained: 

Figure 4-13 shows the upper limit of the azimuthal wavenumber m as a function of the 

dimensionless bending surface elastic modulus MB at b = 0.25, a* = 1, and l:!.T* = 0.81, for the 

cutoff wavenumber kacut.off. This figure corresponds to Regime III (BSq/NA instabilities) in 

Table 4.6. It is clearly seen that more and more azimuthal modes can emerge as M B decreases, 

and infinite m modes are unstable as MB -t 0 (see Table 4.2 and Fig. 4-9(b)). The li mit value of 

MB for m7 is 0.0103, and thus m2 to m7 modes are unstable at MB = 0.01, which is consistent 
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with the result in Fig. 4-12. 

Finally it is noticed that a dramatie change is observed when MB is negative that in all 

three regimes (Regime I-III) catastrophie instability emerges, and we deduce that the sign 

of the bending modulus kc as well as its magnitude are most critieal in implementing the 

curvature effects through the bending and torsion deformation although kc , kc , and Ho are 

system-dependent properties. 

4.6 Conclusions 

Capillary instabilities in nematie fibers reflect the anisotropie nature of liquid crystals. The 

surface elasticity of nematies contains both ordering and orientation contributions. The nematie 

ordering contribution allows for the existence of normal stresses while the nematie orientation 

contribution allows for the existence of bending stresses as well as normal stresses. Thus, 

surface gradients of normal and bending stresses provide additional anisotropie contributions 

to the capillary pressure of fibers that renormalize the classieal displacement and curvature 

forces that exist in any fluid fiber. The exact nature and magnitude of the renormalization of 

the dis placement and curvature forces depend on the nematie ordering and orientation, and thus 

on the anisotropie contribution to the surface energy. In addition, when the interface curvature 

effects are accounted for as contributions of the work of interfacial bending and torsion to the 

total energy of the system, the higher order bending moment contribution to the surface stress 

tensor through the transversal component in the generalized form is proved to be critieal in 

stabilizing higher order non-axisymmetric fiber instabilities. 

For the planar easy axis, if the nematie orientation is along the fiber axis, capillary instabili­

ties may be axisymmetric or non-axisymmetric depending on the nematie ordering contribution 

since the misalignment between the actual director and the easy axis is small so that the bending 

stresses alone cannot cause non-axisymmetrie instabilities. In other words, the nematie order­

ing contribution to the surface energy, which renormalizes the effect of the fiber shape, plays 

a crucial role to determine the instability mechanisms. Low ordering fibers display the classi­

cal axisymmetric mode (m = 0) since the surface energy decreases by decreasing the surface 

area. Decreasing temperature T for this mode gives rise to a local maximum or to a monotonie 
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increase of the characteristic length of the axisymmetric mode. Thus, the phenomenology dis­

cussed above is accessible by changes in temperature since the anisotropic surface energy is 

temperature dependent. For the ma mode, the characteristic size of droplets formed after fiber 

break-up may be controlled by tuning the temperature under the small or moderate nematic 

ordering effects. Meanwhile, in the presence of high surface ordering, non-axisymmetric (m 2': 2) 

finite wavelength instabilities emerge, with higher modes growing faster since the surface energy 

decreases by increasing the surface area. As the temperature T decreases, the pitches of the 

chiral microstructures become smaller. However, this non-axisymmetric instability mechanism 

due to high surface ordering can be regulated by taking account of the surface bending mo­

ment, which contains higher order variations in the curvatures of the interface. More and more 

azimuthal modes emerge as the temperature T decreases, but, at constant temperature, only 

a finite number of azimuthal modes are unstable and a fastest growing mode exists with lower 

and higher unstable modes growing at a slower rate. 

The predicted ability of capillary instabilities in nematic fibers to pro duce surface structures 

of well-defined symmetry and length scales, as weIl as chiral microstructures is an important 

result that augments the pathways for targeted pattern formation. 

The effect of the viscous shear force at the fiber surface due to the viscous matrix on the 

bounded axisymmetric capillary instability was also taken into account, and characterized in 

terms of the Ohnesorge numbers and the matrix-to-fiber viscosity ratio. The capillary instabil­

ities of a thin fiber in a viscous matrix are suppressed by increasing either the fiber or matrix 

Ohnesorge number, but estimated droplet sizes after fiber break-up in axisymmetric instabilities 

substantially decrease with increasing matrix Ohnesorge number. 
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Chapter 5 

Texture Dependence of Capillary 

Instabilities in N ematic Liquid 

Crystalline Fibers 

5.1 Summary 

Static and dynamic linear analyses ofaxisymmetric capillary instabilities in textured nematic 

liquid crystalline fibers are performed using the equations of nemato-statics and inviscid nemato­

dynamics. Three representative textures, i.e., axial, onion, and radial, are analyzed to show 

aU possible effects of Frank gradient elasticity on the wavelength selection and growth rate 

of peristaltic modes driven by surface area reduction. It is found that Frank elasticity may 

tend to stabilize or destabilize the fiber, depending on the initial fiber texture. Axial textures 

tend to stabilize the fiber through the direct or splay-bend distortions driven by surface tilting. 

Onion textures are destabilized by decreasing azimuthal bend elastic energy caused by surface 

displacement. Radial textures exhibit a stabilizing tilt mechanism due to bend modes and 

a destabilizing displacement mechanism due to splay modes, but the former is predicted to 

be dominant. The static analysis provides good estimates of the instability thresholds while 

the transient energy balance provides information on the fastest growing modes. The static 

and dynamic results are compared and shown to be fuUy consistent. The couplings between 
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splay and/or bend distortions, surface tilting, and surface displacement in nematie fibers are 

characterized and used to explain the deviations from the classical Rayleigh instability. 

5.2 Introduction 

A question of fundamental importance in capillary instabilities of liquid crystalline fibers is 

to identify possible mechanisms that promote stability and hence widen the processing win­

dows for these materials. In isotropie fluid fibers, the surface tension driven fiber-to-droplet 

transformation is well understood and known as the Rayleigh instability [1, 2, 3]. In the static 

thermodynamical analysis, the Rayleigh threshold shows that the isotropie fiber is unstable for 

the wavelength of the surface disturbance exceeding the perimeter of the fiber. Meanwhile, 

Rayleigh also predicted a fastest growing wavelength that governs the capillary instability of 

an isotropie fluid fiber and thus makes the fiber break up into a trail of droplets with a specifie 

size in the linear regime using a transient analysis. For isotropie fluid fibers, only surface area 

reduction plays a role to promote instability since the surface energy decreases by decreasing 

the surface are a [4]. On the other hand, an essential characteristie of nematic liquid crystals is 

mechanical anisotropy and bulk gradient elasticity [5]. Bulk gradient elasticity, also known as 

Frank elasticity, in nematie liquid crystals is due to orientation gradients and hence is known 

as curvature elasticity. Capillary instabilities in liquid crystalline fibers have been analyzed 

in terms of surface anisotropies [6, 7, 8], and in this chapter we analyze the bulk anisotropy 

effects on the instability mechanisms and thresholds. For clarification, we note that anisotropy 

in this chapter refers to the unique direction imposed by the average molecular orientation, 

known as the nematie direct or , and hence different direct or fields correspond to different types 

of anisotropy. Thermodynamie stability analyses of nematie LC fibers have been performed for 

different nematie textures [4, 9]. In this chapter we extend the previous work by considering the 

time evolution of unstable modes in axial, onion, and radial textures (see figure 5-2 below), as 

well as by establishing the correspondence between instability criteria found using thermody­

namieal and dynamical analyses. The fiber is assumed to have nematie orientation, where the 

rod-like molecules are more or less parallel to each other but otherwise free to translate past 

each other [5]. As mentioned above the theories and analyses are based on transient integral 
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energy balances as weIl as free-energy calculations so that we capture growth rate patterns of 

instabilities as weIl as static instability thresholds. 

The specific objectives of this chapter are to: (1) formulate a thermodynamic model for 

the static analysis and present an integral energy balance equation for the transient analysis 

that describes and identifies the bulk elastic energy contributions to capillary instabilities of 

nematic liquid crystalline fibersj (2) derive instability criteria for static and transient analyses in 

three characteristic nematic textures and elucidate the physical mechanisms that promote and 

suppress the instabilitiesj (3) establish parametric conditions that lead to capillary instabilitiesj 

(4) characterize the nematic orientation contributions to capillary instabilitiesj and (5) relate 

the Frank distortion energy contribution in the static analysis to that in the transient analysis. 

The organization of this chapter is as follows. In Section 5.3, we present the thermodynamic 

model for static analysis, the integral energy balance equation for transient analysis, and the 

equilibrium condition for distorted direct or fields. In Section 5.4, we derive the instability 

criteria for static and transient energy analyses in three characteristic nematic textures. The 

instability mechanisms for static and transient analyses are clearly identified and discussed in 

terms of Frank distortion elastic energy. Section 5.5 presents conclusions. 

5.3 Governing Equations 

5.3.1 Geometry and texture of ne matie liquid erystalline fibers 

Figure 5-1 shows definitions of the fiber geometry. Figure 5-1(a) shows that the fiber is initially 

a uniform cylinder with radius a, with its axis collinear with the z-axis of a cylindrical coor­

dinate system. In the cross-sectional view, unit vectors ir and io are shown in the direction of 

the T- and e-axes, respectively. Figure5-1(b) shows the periodically deformed fiber with unit 

surface normal N, radius Rand wavelength À. The fiber radius R and unit surface normal N 

periodically change with a wavelength À along the z-direction. In this chapter, we apply our 

analysis to three characteristic nematic textures of initially constant direct or fields, denoted 

as axial, onion, and radial textures, and accordingly the nematic fiber with each texture is 

called axial fiber, onion fiber, and radial fiber, respectively. Figure 5-2 shows the schematic of 

undeformed fibers with (a) axial, (b) onion and (c) radial textures. In the cross-sectional view, 
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(a) 

r... ~a L+ ..................... H ......................................... . 

z 

Figure 5-1: (a) Unperturbed fiber with radius a is aligned in the z-axis of a cylindrical coordinate 
system (r, e, z). Cross-sectional view in Cartesian coordinates (x, y) shows the unit vectors i r 

and io and azimuthal angle e. (b) Periodically deformed axisymmetric fiber with unit surface 
normal vector N, radius Rand wavelength À. Fiber radius R and unit surface normal N 
periodically change with a wavelength À along the z-direction. The figure is representative of 
the peristaltic (axisymmetric) mode. 

(a) 
(E-- ~I~D A • 

Do = lz 

(b) () :(I~~ 
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Figure 5-2: Schematic ofundeformed fibers with (a) axial, (b) on ion and (c) radial textures. In 
the cross-sectional view, the direct or field n is shown as dots, curves, or Hnes in each texture. 
Defect cores are seen at the centre of onion and radial textures. The corresponding direct or 
field is shown on the right side. 
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the direct or field n is shown as dots, curves, or Hnes in each texture. The fiber nematic texture 

is expressed by the director field using unit vectors iz , io, and ir in the direction of the Z-, e-, 
and r-axes, respectively. Defect cores are seen at the centre of on ion and radial textures. In 

this chapter, we assume that these defects have already nucleated. 

It is noted that escaped radial textures in cylindrical cavities are well understood experi­

mentally and theoretically. The escaped radial texture where the direct or escapes into the third 

dimension along the cylinder axis has been shown to be more stable than the radial texture 

with a line defect at the center [5, 10, 11], and was observed for MBBA in cylindrical cavities 

[11, 12]. The escaped radial textures with singular point defects along the cylinder axis were 

also observed in cylindrical cavities of 20 '" 200J.Lm in radius by optical studies [12, 13] and of 

as small as 0.3J.Lm in radius by deuteron NMR, where the density of singular point defects was 

obtained in the strong-anchoring limit [14]. Meanwhile, the radial texture with a li ne defect at 

the centre of the fiber can also be stable, for instance, in the vicinity of a nematic/smectic-A 

transition [5] or when the fiber radius is small enough [5, 10, 11]. 

Linear stability analysis is used to describe peristaltic axisymmetric capillary instabilities 

in nematic liquid crystalline fibers for the three textures. Static energy analysis based on 

thermodynamic stability is presented to obtain a critical wavelength for the capillary instability 

while transient energy analysis to construct a growth rate curve and thus obtain the fastest 

growing wavelength as well as to establish the consistency of the results. Twist distortions are 

beyond the scope of this chapter, and only splay and/or bend modes are taken into account. 

Likewise, chiral non-axisymmetric distortion modes are not taken into account in this chapter. 

5.3.2 Statie energy analysis 

We consider the thermodynamic stability of an infinitely long cylindrical nematic Le fiber 

subjected to infinitesimal periodic surface disturbances. The nematic liquid crystal is assumed 

to be incompressible, and its initial orientation is homogeneous and constant in each of three 

characteristic textures: axial, onion, and radial. Then, the constant direct or fields evolve as the 

shape of nematic fibers changes. 

As seen in figure5-1(b), the fiber radius R and the unit surface normal N change along the 

z-direction. In the static analysis, the fiber shape with a periodic surface disturbance is given 

152 



at any position z by 

R(z) =Ra+ç(z). (5.1) 

The periodic surface disturbance ç is expressed as 

(5.2) 

where Ça is the initial amplitude of the disturbance and k the axial wavenumber. The average 

fiber radius Ra in Eq. (5.1) is required, for a fixed volume, to be 

n ô ( ÇÔ) Ra=a l--:::::::ia 1-- , 
2a2 4a2 (5.3) 

where the approximation is valid in the linear regime of the capillary instability, Le., wh en 

i«l. 
a 

(5.4) 

The unit surface normal N is given in the linear regime by 

N 
. oR. 

= Ir - Oz Iz· (5.5) 

During the capillary instability, the fiber geometry evolution is captured by the principal radii 

of curvature (Rr(), Rrz) as well as the fiber's radius Rand its unit surface normal N. In the 

linear regime, the principal radii of the curvature are expressed as [3] 

1 1 

Rre R' 
(5.6) 

To discuss capillary instabilities, it is also useful to introduce the following expression for the 

mean curvature H in cylindrical coordinates: 

H (5.7) 

(5.8) 

153 



where \l s is the surface gradient operator. 

Distorted director fields 

As seen in Fig. 5-2(a), in the axial texture, the direct or is initially oriented along the fiber axis 

and it is given by 

n~ = I z , (5.9) 

where the superscript A denotes the axial texture and the subscript a the initial direct or field. 

Likewise, in Fig.5-2(b), the director is initially along the azimuthal direction in the onion 

texture: 
o . 

no = le, 

and, in Fig. 5-2( c), along the fiber radius in the radial texture: 

n~=ir, 

(5.10) 

(5.11) 

where the superscripts 0 and R denote the onion and radial textures, respectively. The direct or 

field in each texture is expected to evolve as the nematic fibers are subjected to infinitesimal 

surface disturbances. Since the surface disturbances are very small, only a slight distortion 

from the initial director field is assumed [5]: 

n=no+€, (5.12) 

where no is the initial direct or field and € is the slight distortion normal to no. 

To find the distorted direct or field in each texture, we apply conditions for equilibrium in 

the nematic bulk by introducing the distortion free energy. The distortion free energy density, 

known as Frank distortion energy, stored in a nematic Le fiber is simplified using one constant 

approximation to [5] 

(5.13) 

where Fd is the Frank distortion free energy density and K the Frank elastic constant in the 

154 



one constant approximation. In equilibrium, the following condition is satisfied: 

nxh=O, (5.14) 

where h is the molecular field expressed as [5] 

h _ [âFd -\7. âFd ] 
ân â(\7n) 

K\72n. (5.15) 

Eq. (5.14) means that the direct or is parallel to the molecular field in equilibrium. 

Free energy of nematic liquid crystalline fibers 

The total free energy density for a nematic Le fiber with distorted direct or orientation is given 

by [5] 

(5.16) 

where Fs is the surface free energy density for the surface direct or orientation along the easy 

axis, 'Y the surface free energy density, and 8 the Dirac delta function. Since the strong anchoring 

condition is assumed at the fiber surface, the surface free energy density 'Y only represents the 

isotropie surface tension. Thus, the surface free energy contribution to the total free energy does 

not contain any elastie distortion effect and remains unchanged in the three nematie textures. 

Meanwhile, the Frank distortion energy contribution differs in one texture from another since 

the director variation in the bulk of the fiber is the origin of the elastie distortion energy. 

5.3.3 Transient energy analysis 

We consider the transient stability of an infinitely long cylindrical nematic LC fiber subjected 

to infinitesimal periodie surface disturbances. The geometry of the LC fiber and the direct or 

field are a function of time as well as of space. In this section, the general equation of the 

transient integral energy balance is derived. 

155 



In the transient analysis, the fiber shape at any time t and position z is given by 

R (z, t) = Ro + ç (z, t) . (5.17) 

The surface disturbance ç is expressed by assuming its exponential growth as 

ç (z, t) = Ço cos [kz] eOd 
, (5.18) 

where 0: is the growth rate for real and positive values. 

Transient integral energy balance equation 

The conservation of energy under isothermal condition, and under the absence of body forces, 

direct or inertia and direct or surface force is given by [15] 

(5.19) 

where ft and the superposed dot denote material time derivatives, p is the density, v the 

velocity, T the temperature, S the entropy per unit volume, t the stress tensor, V the volume, 

and A the surface area. If the only entropy source is the vis cous dissipation, the second integral 

in Eq. (5.19) becomes [5] 

(5.20) 

The rate of deformation tensor A is expressed as 

(5.21) 

where the superscript T denotes the transpose. The viscous stress tensor t V is given as 

(5.22) 

where J-l is the viscosity. It is noted that in the linear regime distortions are insignificant and 

the rheology is Newtonian [5]. By making use of Eqs. (5.21) and (5.22) in Eqs. (5.20) and (5.19) 

156 



can be rewritten in the linear regime such that 

j~ [%t (~pv. v) + Fd] dV + i ~IL [(\7v) + (\7v)T] : [(\7v) + (\7v)T] dV = LN. t· vdA. 

(5.23) 

Because strong anchoring condition is imposed at the fiber surface, the surface behaves like an 

isotropie material and only the contribution of Fd refiects the anisotropie elasticity of the Le 

fiber. Using Eq. (5.13), the contribution of Fd in Eq. (5.23) is expressed in terms of \7n: 

. 8Fd d T [ T] 
Fd = 8(\7n) : dt (\7n) = K (\7. n) (trD) + \7n : D - \7n : D , (5.24) 

where trD denotes the trace of tensor D and 

D == :!:.- (\7n)T = 8 (\7n)T + (v. \7) (\7n? . 
dt 8t 

(5.25) 

The contribution of D to Fd appears to be different in the three nematie textures, which allows 

for identifying the contributions to elastic st orage due to bulk orientation distortions. In this 

chapter, we investigate the effect of anisotropie elasticity through the Frank distortion energy 

on the capillary instability of the Le fibers displaying the axial, onion, and radial textures. The 

Le fibers are assumed inviscid so that the viscous dissipation term in Eq. (5.23) drops out and 

the transient integral energy balance equation becomes 

(5.26) 

The role of viscosity on the capillary instability of Le fibers has been studied with the governing 

nemato-capillary equations [6]. 

5.4 Results and discussion 

The characterization of linear capillary instabilities in nematic fibers is based on the observation 

that there are two mechanisms associated with the coupling between director, and hence the 

Frank distortion (gradient) elasticity, and the geometrical changes in the fiber: (i) surface 

tilting and (ii) surface dis placement mechanisms. These two mechanisms are embedded in total 
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distortion energy equations for statics: 

and for dynamics: 

and are activated for specifie textures, as follows. 

(i) Surface tilting mechanism (MT) 

(5.27) 

(5.28) 

The surface tilting mechanism is activated when surface tilting (undulation) changes the 

director orientation. When splay and/or bend distortions arise due to the surface tilting driven 

by the re-orientation of the fiber surface, they tend to stabilize the fibers by increasing the 

Frank distortion energy. Hence, the MT mechanism always promotes stability. 

(ii) Surface displacement mechanism (MD) 

The surface displacement mechanism is characterized by decreasing the Frank distortion 

energy and thus destabilizing the nematic fibers. When splay and/or bend distortions are 

uncoupled from the surface orientation, the surface displacement due to a decrease in average 

radius may destabilize the fibers by decreasing the Frank distortion energy. 

In what follows we discuss these two different instability mechanisms in axial, onion, and 

radial fibers for statics and dynamics, respectively, and determine the parametric dependence 

of the nematic capillary instabilities on each mechanism of the Frank distortion el asti city. 

5.4.1 Static energy analysis 

In this section we present the thermodynamic analysis of the nematic fiber capillary instability 

for the axial, onion, and radial textures and establish the parametric conditions that lead to 

the Rayleigh instability. 

Using Eqs. (5.1), (5.2), and (5.3), the surface free energy of the deformed Le fiber, Fs,f, is 

obtained by integrating the second term in Eq. (5.16) over the surface with a unit wavelength, 
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À = 2;:, to order ';6: 

(5.29) 

Renee, the surface free energy change, ~s, is given as 

(5.30) 

where Fs,i is the initial surfaee free energy of the cylindrical fiber: 

(5.31) 

Axial fibers 

The distorted director field for each texture is obtained by solving Eq. (5.14) with Eq. (5.15). 

Using Eqs. (5.9) and (5.12), the distorted director field of the initially axial texture can be 

written as 

(5.32) 

where nr is the slight splay-bend direct or distortion as a function of rand z. Substituting 

Eqs. (5.32) and (5.15) into Eq. (5.14) results in 

(5.33) 

where ('\72n)r is the r-component of the vector \72n. By solving Eq. (5.33) and using periodic 

and finite boundary conditions in the z and r-directions, respectively, the splay-bend distortion 

is found to be 
. h [kr] 

nr(r,z) = -çoksm[kz] h [ka]' (5.34) 
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where the strong anchoring condition that the direct or field is parallel to the planar easy axis 

(perpendicular to the unit surface normal) at the surface is applied. Thus, the distorted direct or 

field for the axial texture is 

A( ) . t k . [k] h [kr]. 
n r, Z = lz - ':.0 sm Z h [ka] Ir . (5.35) 

The elastic energy for the axial fiber is initially zero because no director gradients initially 

exist, and only arises with the distorted director field due to surface tilting. Using Eq. (5.35), 

the elastic distortion free energy, :Fd,!, is obtained by integrating the first term in Eq. (5.16), 

Eq. (5.27), over the volume with a unit wavelength, À = 2;, to or der Ç6: 

J
2; [R(z) K 

211" 0 Jo "2 [(\7 . n)2 + (\7 x n)2] rdrdz 

2t2Kk22Io[ka] 
11" ':.0-; a h [ka] . (5.36) 

The distortion free energy change, f).d, is given as 

(5.37) 

From Eq. (5.30) and Eq. (5.37), the net change in the total free energy, f)., for the axial fiber is 

given by 

(5.38) 

By setting 

(5.39) 

meaning that no total free energy change occurs, the dimensionless critical wavenumber (ka)c 

and the critical wavelength Àc are found as 

211"a 1 

Àc JI + 2!!a ' 
211"a, 
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'"Ya 

(5.40) 
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where ÀR is the eritical wavelength for isotropie liquid fibers, known as Rayleigh eapillary 

instability threshold. From Eq. (5.40), the net effect of Frank elasticity is to stabilize the fiber 

by splay-bend distortions in the rz-plane. In other words, the surface tilting mechanism, MT, 

acting through splay-bend modes due to nr(r, z) created on the rz-plane tends to stabilize the 

fiber by increasing the Frank distortion energy: 

MT: n~ = (0,0,1) ==} nA = (nr(r, z), 0,1) . (5.42) 

Onion fibers 

In the onion texture, axial (z-directional) periodic surface disturbances do not affect the az­

imuthal (e-directional) direct or field because the fiber shape and the direct or field are uncoupled. 

Thus, the director field remains unchanged by changes in the geometry: 

o 0 • 
n =nO =18· (5.43) 

The Frank elasticity for the on ion texture is pure bend and arises because the molecules 

bend azimuthally (see figure 5-2(b)), then the initial elastie distortion energy fd,i is obtained 

as 

(5.44) 

where ro is the defect core radius [5]. Because of the existence of the defect core at the centre 

of the onion fiber (see figure 5-2(b)), the lower integration li mit in the r-direction is ro. It is 

known that the defect core radius ro is in the order of nanometers [5]. Although the direct or 

field remains unchanged during the fiber deformation, the elastic distortion energy fd,J changes 

due to the fiber displacements and is obtained to order ç'6: 

J 2;: i'R(Z) K 21l' [ a e ] 
fd,J = 21l' -2 ('V X n)2rdrdz = 1l'K-

k 
ln- - ~ 

o ra ro 2a 
(5.45) 

The distortion free energy change b.d is given as 

(5.46) 
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From Eqs. (5.30) and (5.46), the net change in the total free energy ~ for the onion fiber is 

given by 

(5.47) 

Using Eq. (5.39), the dimensionless critical wavenumber and the critical wavelength are found 

as 

21ra R (ka)c = ~ = 1 + - , 
Ac ,a (5.48) 

From Eq. (5.48), it is found that the net effect of Frank elasticity is to destabilize the fiber by 

reducing azimuthal bend energy. In other words, the surface displacement mechanism, MD, 

acting on the azimuthal bend modes tends to destabilize the fiber by decreasing the Frank 

distortion energy: 

(5.49) 

where V* is the fiber volume with surface disturbances. 

Radial fibers 

Using Eqs. (5.11) and (5.12), the distorted director field of the initially radial texture can be 

written as 

(5.50) 

where nz is the slight bend distortion as a function of rand z. Substituting Eqs. (5.50) and 

(5.15) into Eq. (5.14) results in 

(n2 ) _ (n2) _ â
2
nz ~ ânz â

2
nz nz _ 0 

v n nz v n - â 2 + â + â 2 + 2 - , z r r rr zr (5.51) 

where (V2nt is the z-component of the vector V2n. Since the second partial derivative of nz 

with respect to z in Eq. (5.51) is much sm aller than the other terms when estimating the order 

of magnitude, adopting the long wavelength approximation, Le., 

À -» 1, 
a 
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enables us to solve a quasi-one dimensional ordinary differential equation: 

(5.53) 

By using boundary conditions that the director field is perpendicular to the fiber axis at the 

defect core and periodic and parallel to the unit normal at the surface, the bend distortion is 

found to be 
sin [ln..!:...] 

nAr,z) =çaksin[kz] [ra] 
sin In.Q. ra 

(5.54) 

Thus, the distorted director field for the radial texture is 

sin [ln..!:...] 
nR(r, z) = ir + çaksin [kz] [ra] iz . 

sin In.Q. ra 
(5.55) 

Therefore, in the long wavelength approximation, bend distortions on the rz-plane are taken 

into account. The Frank elasticity for the initially radial texture is pure splay and arises because 

the molecules splay radially (see figure 5-2(c)), then the initial elastic distortion energy Fd,i is 

obtained as 

/ 
2;; la K 2 27r ( a ) 

Fd,i = 27r 2(\7· n) rdrdz = 7rK k ln - . 
a ~ ~ 

(5.56) 

It is also noticed that the lower integration limit in the r-direction is ra because of the existence 

of the defect core at the centre of the radial fiber. Using Eq. (5.55), the elastic distortion free 

energy Fd,J is obtained for the deformed fiber to or der ç6: 

/
2;; lR(Z) K 

27r - [(\7 . n? + (\7 x n)2] rdrdz 
a ra 2 

+ cos [ln 7%] }] 
sin [ln r~] 

(5.57) 

The distortion free energy change t:::.d is given as 

-1 + _k2a2 ra + ra 
[ 

1 { In.Q. cos [ln.Q.] }] 

2 sin2 [ln r:] sin [ln r:] 
(5.58) 
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From Eqs. (5.30) and (5.58), the net change in the total free energy ~ for the radial fiber is 

given by 

(5.59) 

Using Eq. (5.39), the dimensionless critical wavenumber and the critical wavelength are found 

as 

(k ) = 21ra = JI + S 
a c Àc 1 + B ' 

(5.60) 

(5.61) 

From Eq. (5.60), the radial texture contains two competing elastic modes: the destabilizing 

splay Frank elasticity mode, S, causing a decrease in the critical wavelength and the stabilizing 

bend Frank elasticity mode, B, causing an increase in the critical wavelength. 

Using Eq. (5.13), the splay elastic energy scales with l/r2 and the surface displacement plays 

a role to redistribute the nematic Le away from the high energy core while the bend elasticity 

arises due to the direct or variation along the fiber axis driven by surface shape undulation and 

thus increases the Frank elastic energy by direct or distortions. In other words, the surface 

dis placement mechanism, MD, acting on the splay modes on the re-plane tends to destabilize 

the fiber by decreasing the Frank distortion energy: 

(5.62) 

while the surface tilting mechanism, MT, acting through bend modes due to nz(r, z) created on 

the rz-plane tends to stabilize the fiber by increasing the Frank distortion energy: 

MT: n~ = (1,0,0) => n R = (1,0, nz(r, z)) . (5.63) 

For micrometer-size fibers, we assume that a = lü-5m and ro = lü-9m [1]. Using these values, 

the splay mode S is approximately one hundred times smaller than the bend mode B sa that 

the net effect of Frank elasticity on the capillary instability is to increase the critical wavelength 
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Figure 5-3: (a) Scaled critieal wavelength t- as a function of the dimensionless energy ratio 

K " the dimensionless number K is the ratio of the bulk elastie energy to the isotropie surface a, a, 
energy, for the three nematie textures. In both plots, the reference horizontal line corresponds 
to the Rayleigh instability threshold for isotropie materials. The symbol )..R is the critieal 
Rayleigh wavelength given in Eq. (5.41). Frank elasticity stabilizes the axial and radial fibers, 
but destabilizes the onion texture. (b) Same as (a) but 0 < ::, < 1. For this parametrie window, 
Frank elasticity has the strongest impact on stability of the radial texture. 

above the Rayleigh threshold. 

Figure 5-3 shows the scaled critieal wavelength t- as a function of the dimensionless energy 

ratio ::,; the dimensionless number ::, is the ratio of the bulk elastie energy to the isotropie 

surface energy, for the three nematie textures. In both plots, the reference horizontal li ne 

corresponds to the Rayleigh instability threshold for isotropie materials. Figure 5-3( a) shows 

the global features of the effect of texture on the instability. The axial and radial textures tend 

to stabilize the fiber while the onion texture tends to destabilize the fiber. Thus, the effect of 

the energy ratio ::, on the instability is texture dependent. The strongest effect is for the axial 

texture, where no saturation is observed. This is due to the fact that the stabilizing surface 

tilting mechanism, MT, increases monotonieally. On the other hand, for the radial texture, 

as the energy ratio increases above a value of approximately ten, the stabilizing surface tilting 

mechanism, MT, and destabilizing surface displacement mechanism, MD, described above cancel 

each other, and the dimensionless critieal threshold saturates at a value of 9.97. The threshold 

of the on ion texture decreases to zero, since only the purely destabilizing surface displacement 

mechanism, MD, is present. For nematie liquid crystals and micrometer-size fibers, it is expected 
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that !r ~ 1. For typical low molecular-weight nematic Le fibers at temperatures sufficiently 

far from the smectic A transition (if any), using'Y = 1O-2Nm-1 [16], K = 1O-11 Jm-1 [17] 

and a = 1O-5m, we find !r = 10-4 . Meanwhile, nematic liquid crystalline polymers can 

have elastic constants of orders of magnitude up to 1O-8 Jm-1 [18]. For mesophase carbon 

pitches, elastic constants were estimated to be of the order of 10-8 Jm- 1 [19]. In addition, 

near the nematicjsmectic-A transition, the bend elastic constant diverges [5, 20]. Therefore, 

with K = 10-8 Jm- 1 , the dimensionless parameter !r reaches up to one for micrometer-radius 

fibers, and hence Figure 5-3(b) focuses on the small ~ regime. This figure shows that in this 

parametric window the strongest effect of Frank elasticity is on the stabilization of the radial 

texture. 

5.4.2 Transient energy analysis 

Figure 5-4 summarizes the complete phenomenology of the two Frank elasticity instability 

mechanisms in the transient energy analysis. The stabilizing surface tilting mechanism, MT, 

contributes to the distortion energy through the local time derivative and acts in the axial 

fiber by splay-bend modes and in the radial fiber by bend modes, respectively, created on the 

rz-plane. The destabilizing surface displacement mechanism, MD, contributes to the distortion 

energy through the convective change and acts in the onion fiber by constant-azimuthal bend 

modes and in the radial fiber by constant-radial splay modes, respectively, in the rB-plane. 

We next present the transient integral energy balance equation for the nematic fiber, derive 

the instability criteria for the three representative nematic textures (see figure 5-2), and discuss 

in detail the physical and mathematical aspects of the process. 

For the inviscid liquid fiber, the velo city field can be obtained by introducing the velo city 

potential and solving Laplace's equation of the velocity potential, which satisfies the continuity 

equation [2, 21, 22]: 

() 
at [] II [kr] 

vr r, z, t = çoo:e cos kz II [ka] , () 
at . [ ] ID [kr] 

V z r, z, t = -çoo:e sm kz II [ka] . (5.64) 

Using this velocity field in Eq. (5.64), the rate of change of kinetic energy in Eq. (5.26) lS 
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Surface Tilting Surface Displacement 

( stabilizing) ( destabilizing) 

------------------------------

Axial Radial Onion Radial 

~ ~ ~ ~ 
Splay-bend Bend Bend Splay 

nA =(nr(r,z,t), 0, 1) nR =(1,0, nz(r,z,t») na =(0,1,0) nR =(1,0,0) 

Figure 5-4: Frank elasticity instability mechanisms in the transient energy analysis. The sta­
bilizing surface tilting mechanism, MT, arises through the local time derivative and acts in 
the axial fiber by splay-bend modes and in the radial fiber by bend modes, respectively. The 
destabilizing surface displacement mechanism, MD, arises through the convective change and 
acts in the onion fiber (constant azimuthal bend modes) and in the radial fiber (constant radial 
splay modes), respectively. 
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calculated in a unit wavelength À = 2;: to order ç6 as 

r ~(~ . )dV-C2 32at 27l"2pa Io[ka] 
Jv 8t 2PV v - '>oa e k2 h[ka]· (5.65) 

By assuming no surface shear, the surface integral term in Eq. (5.26) is rewritten as [6] 

(5.66) 

where t se is the surface elastic stress tensor and Pc is the capillary pressure that is the magnitude 

of the surface normal force and is given using Eqs. (5.8) and (5.17): 

(5.67) 

By substituting Eqs. (5.64) and (5.67) into Eq. (5.66), the surface integral term is obtained in 

a unit wavelength À = 2; to order ç6 as 

(5.68) 

Capillary instabilities in axial fibers 

Referring to Eq. (5.35), the distorted direct or field in the transient analysis can be written by 

assuming an exponential change in time: 

A( )' C k at . [k] h [kr]. n r, z, t = lz - '>0 e sm z h [ka] Ir . (5.69) 

It is noted that the fiow driven by the capillary instability is so weak that the director field is 

not affected by the fiow [5]. 

As expected from the previous section, the rate of change of Frank distortion energy, Fd, is 

different in the three nematic textures. For the distorted axial texture, Eq. (5.69), the convective 

term in Eq. (5.25) is of higher order and drops out in the linear regime of the capillary instability 
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while the local time derivative term contributes to Fd, which by using Eq. (5.24) is given by: 

(5.70) 

Thus, using Eq. (5.70), Eq. (5.28) is obtained in a unit wavelength À = 2: to order ç6: 

(5.71) 

Substituting Eqs. (5.65), (5.68), and (5.71) into Eq. (5.26) gives a quadratic equation for the 

dimensionless growth rate, a* = aJ pa3 l'Y: 

(5.72) 

where ka is the dimensionless wavenumber. Solving the quadratic equation for a*, Eq. (5.72), 

we find 

a* = (ka) 
1- (2~ + 1) (ka)2 

2 

Thus, the axial fibers are unstable when the following inequality is satisfied: 

(5.73) 

(5.74) 

The maximum growth rate a~ax and the corresponding wavenumber kamax are obtained by 

solving Eq. (5.72): 

1 
(5.75) 

1 1 
-
2 

which predict the axial fiber break-up into droplets with a characteristic size of 27flkamax [23J. 

Eq. (5.75) properly reduces to the well-known results [21J when the bulk elastic anisotropy 

vanishes, Le., K = 0, and the asymptotic results for the inviscid fiber are 

1 

2J2' 
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kamax = J2' (5.76) 
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Figure 5-5: Dimensionless growth rate curves a* as a function of the dimensionless wavenumber 
ka for ~ = 0.1, 1, 5 for the axial fiber. Frank elasticity decreases the growth rate and increases 
the wavelength of the fastest growing mode. 

Solving Eq. (5.73) by setting a* = 0 gives the cutoff wavenumber: 

(5.77) 

which is consistent with the critical wavenumber in the static energy analysis, Eq. (5.40). 

Figure 5-5 shows the dimensionless growth rate curves a* as a function of dimensionless 

wavenumber ka at ~ = 0.1, 1, 5 for the axial fiber. Not only kacutoff but a~ax and kamax 

decrease as ~ increases, meaning that the bulk elasticity suppresses the axial fiber instability 

by increasing the length scale of the capillary instability as weIl as slowing down its growth 

rate. 

Consistent with the static energy analysis, the effect of Frank distortion energy change Fd 
on the capillary instability for the transient energy analysis is now explained in detail (see 

figure 5-4). From Eq. (5.71), it is seen that the net effect of Frank elasticity is to stabilize the 

fiber by increasing splay-bend elastic energy. The distorted axial texture contributes to Fd only 

through the local time derivative term in Eq. (5.25). The stabilization mechanism MT through 

splay-bend distortions in the rz-plane is generated by changes in the surface orientation, and 

hence no contribution arises from the convective term which is related to changes in surface 

displacement. 
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Capillary instabilities in onion fibers 

For the on ion texture, the direct or field remains constant and the local time derivative term in 

Eq. (5.25) is zero while the convective term contributes to the Frank distortion energy change 

Pd' In order to simplify the calculation of Pd, we adopt standard approximations for the velo city 

field used previously in the literature [22]. From Eq. (5.64), it is evident that V z is only weakly 

dependent on rand is assumed to be only a function of z while V r is approximated linearly 

dependent on r. These approximations are considerably accurate when ka < 1. Then, the 

velocity field for the inviscid liquid is given as [22] 

(5.78) 

which satisfies the continuity equation. Using Eqs. (5.24) and (5.78), it is found that 

D = _KçoaeŒt cos [kz] 
rd 2 • a r 

(5.79) 

Thus, using Eq. (5.79), Eq. (5.28) is obtained in a unit wavelength À = 2,: to order ç6 by 

(5.80) 

Substituting Eqs. (5.65), (5.68), and (5.80) into Eq. (5.26) gives a quadratic equation for the 

dimensionless growth rate: 

a*2 _ (ka)2 [1 + K _ (ka)2] = O. 
2 œ-y 

Solving the quadratic equation for a*, Eq. (5.81), we find 

a* = (ka) 
1 + ~ - (ka)2 

2 

Thus, the on ion fibers are unstable when the following inequality is satisfied: 

K 
1 + - - (ka)2 > O. 

œ-y 
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Figure 5-6: Dimensionless growth rate curves Œ* as a function of the dimensionless wavenumber 
ka at !r = 0.1, 1, 5 for the onion fiber. Frank elasticity increases the growth rate and decreases 
the wavelength of the fastest growing mode. 

The maximum growth rate Œ~ax and the corresponding wavenumber kamax are obtained by 

solving Eq. (5.81): 

* _ 1+~ 
Œmax - 2V2 ' (5.84) 

which predict the onion fiber break-up into drop lets with a characteristic size of 21f / kamax 

[23]. Eq. (5.84) properly reduces to the weIl-known results, Eq. (5.76), when the bulk elastic 

anisotropy dependence vanishes, Le., K = O. Solving Eq. (5.82) by setting Œ* = 0 gives the 

cutoff wavenumber: 

ka,.,." = Vi + K , 
la 

(5.85) 

which is consistent with the critical wavenumber in the static energy analysis, Eq. (5.48). 

Figure 5-6 shows the dimensionless growth rate curves Œ* as a function of dimensionless 

wavenumber ka at !r = 0.1, 1, 5 for the onion fiber. Not only kacutoff but Œ~ax and kamax 

increase as !r increases, meaning that the bulk elasticity promotes the onion fiber instability 

by decreasing the length scale of the capillary instability as weIl as increasing its growth rate. 

From Eq. (5.80), it is seen that the net effect of Frank elasticity is to destabilize the fiber by 

decreasing the azimuthal bend Frank elastic energy. The surface displacement that leads to a 

decrease in the azimuthal bend energy contributes to Fd only through the convective term in 

Eq. (5.25). Under the destabilization mechanism MD, the destabilizing azimuthal bend modes 
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arise from changes in the location of the surface, and hence no contribution from local time 

derivatives appears. The local time derivative contribution is, as noted above (see figure 5-4), 

only ignited by couplings between surface orientation and the direct or field. Since the director 

is uncoupled from surface orientation, only positional effects promote the instability. 

Capillary instabilities in radial fibers 

Referring to Eq. (5.55), the distorted direct or field in the transient analysis can be written by 

assuming an exponential change in time: 

sin [ln 2:...] 
R ( ). C k at . [k] ro • n r, z, t = Ir + <"0 e sm z [ ] Iz . 

sin ln l!. 
ro 

(5.86) 

It is also noted that the flow driven by the capillary instability is so weak that the direct or field 

is not affected by the flow. 

For the radial texture, Eq. (5.86), both the convective and the local time derivative terms 

in Eq. (5.25) remain and contribute to the Frank distortion energy change Pd, which is given 

using Eqs. (5.24) and (5.78): 

. (ç 1 e k 2 cos
2 

[ln :a] ) 
Fd = K _aeat~ cos [kz] 2" + ae2at 0 sin2 [kz] 2 . 

a r sin2 [ln ~] r 
(5.87) 

Thus, using Eq. (5.87), Eq. (5.28) is obtained in a unit wavelength À = 21: to order ';6 by 

(5.88) 

Substituting Eqs. (5.65), (5.68), and (5.88) into Eq. (5.26) gives a quadratic equation for the 

dirnensionless growth rate: 

1 + - - (ka)2 1 + __ ro + ro = O. [ ( K) {1 K ( ln l!. cos [ln l!.] ) }] 
a-y 2 a-y sin2 [ln r~] sin [ln r~] 

(5.89) 
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Solving the quadratic equation for a*, Eq. (5.89), we find 

* ka a =-
V2 ( K) 2 { 1 K ( ln r: cos [ln r:] ) } 1 + - - (ka) 1 + - - + . 

œy 2 œy sin2 [ln r:] sin [ln r:] 

Thus, the radial fibers are unstable when the following inequality is satisfied: 

1 + - - (ka) 2 1 + _ _ ro + ro > 0 . 
( 

K ) {1 K ( ln 2:... cos [ln 2:...] ) } 

a"'f 2 œy sin2 [ln r:] sin [ln r:] 

(5.90) 

(5.91) 

Meanwhile, Eq. (5.90) properly reduces to the well-known result of Rayleigh when the bulk 

elastic anisotropy dependence vanishes, Le., K = 0: 

(5.92) 

and thus Eq. (5.76) is also obtained for K = O. Solving Eq. (5.90) by setting a* = 0 gives the 

eut off wavenumber: 

kacutoff = 
1+ ~ 

(5.93) 

which is consistent with the critical wavenumber in the static energy analysis, Eq. (5.60). 

Figure 5-7 shows the dimensionless growth rate curves a* as a function of dimensionless 

wavenumber ka , for ~ = 0.323, 1, 5 for the radial fiber. As ~ increases, kacutoff and kamax 

decrease while a~ax decreases until ~ rv 1 and then increases, meaning that the bulk elastieity 

contains two competing effects on the radial fiber instability: (i) the suppressing effect shown 

by increasing the length scales of the capillary instability and (ii) the non-monotonie maximum 

growth rate. Surface tilting on the radial fiber ignites stabilizing bend modes on the rz-plane. 

These bending distortions under the MT mechanism increase the energy and are thus stabilizing. 

On the other hand, the initial splay distortion is destabilizing un der the MD mechanism and 

promotes the instability. The stabilizing bend modes are driven by the orientation of the 

fiber surface (surface tilting), while the destabilizing splay modes act through changes in the 

position of the surface (surface displacement). The destabilizing splay modes in the radial 
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Figure 5-7: Dimensionless growth rate curves a* as a function of the dimensionless wavenumber 
ka at :!:r = 0.323,1,5 for the radial fiber. Frank elasticity increases the wavelength of the fastest 
growing mode. On the other hand, the maximum growth rate is non-monotonie, first decreases 
and then increases with increasing :!:r. 

textures are equivalent to the destabilizing azimuthal bend modes in the on ion texture sinee 

they are eontrolled by the MD mechanism (see figure 5-4). On the other hand, the stabilizing 

bend modes in the radial texture are equivalent to the stabilizing splay-bend modes in the axial 

texture since they are controlled by the MT mechanism (see figure 5-4). 

In partial summary, when splay and/or bend distortions are created by surface tilting they 

tend to stabilize the fiber by increasing the energy, and when splay and/or bend distortions are 

uncoupled from the surface orientation, the surface displacement may destabilize the fibers by 

decreasing the Frank distortion energy. In the transient integral energy analysis, surface tilting 

effects enter through local time derivatives (see Eq. (5.25)) while surface displacement effects 

through convective terms (see Eq. (5.25)). 

5.4.3 Bulk elastic energy contributions to capillary instabilities 

This section briefly compares the Frank distortion energy contribution for each texture in the 

statie energy analysis to that in the transient energy analysis, with the objective of elucidating 

the dual nature of orientation gradients in growing peristaltie modes, as discussed in the previous 

section. 

By making use of the divergence theorem and Eqs. (5.24) and (5.25), Eq. (5.28) is rewritten 
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as 

dFd = f âFd : â(\ln? dV + f N· VFddA. 
dt Jv â (\ln) ât s 

(5.94) 

In statics, the change of the distortion free energy corresponding to Eq. (5.94) can be expressed 

using the variational symbol 8: 

f âFd T f 8Fd = Jv â (\ln) : 8 (\ln) dV + sN. 8sFddA. (5.95) 

where 8s is the variation of the position vector at the surface. 

From Eqs. (5.94) and (5.95), it is clearly seen that in the linear regime considered here, the 

first integral represents the surface tilting contribution to the Frank distortion energy in the 

presence of direct or distortions while the second represents the surface displacement contribu­

tion. The difference between the static and the transient analyses cornes from time dependence 

of the system. Without time dependence, the free energy change is obtained for the system 

before and after surface disturbances as shown in the statics results. In both staties and dy­

namics, the stabilizing MT mechanism is included in the first integral while the destabilizing 

MD mechanism in the second integral. The correspondence between the staties and dynam­

ies is shown by the consistency between results in Eqs. (5.37), (5.46), and (5.58), and results 

in Eqs. (5.71), (5.80), and (5.88). In aU textures, the statie thresholds, shown in Eqs. (5.40), 

(5.48), and (5.60), are consistent with the corresponding cutoff results from the transient analy­

sis, shown in Eqs. (5.77), (5.85), and (5.93). This consistency establishes the correctness of the 

two distinct approaches. 

5.5 Conclusions 

Capillary instabilities in nematie fibers refiect the anisotropie nature of liquid crystals. Classieal 

theories of liquid crystaUine materials are used to develop static and transient thermodynamic 

models of linear axisymmetric capillary instabilities driven by surface area reduction. Since the 

bulk gradient elasticity of nematics contains orientation gradient contributions that couple with 

surface distortions, the thermodynamic models on three representative nematic fiber textures 

identify the most likely effects. The axial texture tends to stabilize the fiber by increasing 
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splay-bend elastic energy ereated by the surface tilting meehanism. The on ion texture tends 

to destabilize the fiber by deereasing azimuthal bend elastic energy ereated by the surface 

displacement mechanism. The peristaltic distortion in the radial texture creates two competing 

splay and bend elastic modes driven by surface displacement and surface tilting, respectively. By 

estimating the model parameters using published data for typicallow molecular-weight nematic 

Le fibers, it is found that the net effeet of Frank elasticity is to increase the length se ales of 

the capillary instability in the radial fiber. The use of static and dynamic formulations gives 

mutually consistent results, and shows that the role of Frank elasticity in capillary instabilities 

is a function of the initial fiber texture. Splay and/or bend modes on the Tz-plane stabilize 

the fiber by the surface tilting mechanism while splay and/or bend modes on the TB-plane 

destabilizes it by the surface displacement mechanism. Gradient elasticity offers another tool 

to control soft evolving surfaces. 
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Chapter 6 

Conclusions and Contributions to 

Original Knowledge 

6.1 Conclusions 

A demand to understand surface physics of nematic liquid erystals has been rapidly grow­

ing, due to its importance in many praetical applications. Interfacial thermodynamics and 

transport phenomena of liquid erystals are an emerging area of researeh sinee not many liquid 

erystalline materials have been eharaeterized. The most well-eharaeterized liquid erystals are 

low-moleeular-weight ealamitic (rod-like) nematies sueh as 5CB, PAA, and MBBA. However, 

non-equilibrium surface phenomena are not well understood. In addition, force balance equa­

tions deseribing statie and dynamical interfacial phenomena are available but have not been 

widely used to deseribe the meehanics of fiber and film microstructures. Therefore, this the­

sis explores the meehanics and stability of nematic liquid erystalline fibers. The motivation 

for this thesis is to ereate new knowledge and principles that eonform to the restrictions of 

thermodynamics, and thus the parametrie studies performed in the thesis are restricted by 

thermodynamics. 

In this thesis, linear stability analysis of eapillary instabilities in a nematic liquid erystalline 

fiber was performed by formulating and solving the governing nemato-eapillary equations. The 

main parameters affeeting the eapillary instabilities are the isotropie and anisotropie surface 

tensions, the anisotropie viseosities, the bulk orientational elasticity, the isotropic viseosity of 
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the matrix, and the surface bending modulus. 

6.1.1 Cahn-Hoffman capillarity vector thermodynamics for curved liquid 

crystal interfaces 

The Cahn-Hoffman capillarity vector thermodynamies for curved anisotropie interfaces was 

adapted to liquid crystal interfaces. The thermodynamie formalism was derived and expressed 

in terms of nematic surface energies. The connection between interfacial rotational effects, 

surface tension anisotropy, and bending stresses is established. The thermodynamie formalism 

was used to derive the capillary pressure equation for liquid crystal interfaces that have three 

distinct contributions: (i) surface area reduction, (ii) surface area rotations, and (iii) direct or 

curvature. The classical Rayleigh instability in isotropie liquid fibers is of the peristaltie (ax­

isymmetric) mode since the instability is only driven by the are a reduction mechanism. For 

liquid crystalline fibers, chiral (non-axisymmetrie) instabilities, whieh cause an increase in the 

surface area, may occur wh en driven by the area rotation and direct or curvature mechanisms. 

The chiral modes pro duce twisted mierostructure and lead to novel structuring and patterning 

of liquid crystalline fibers. The capillarity vector formalism was shown to be a tractable and 

simple method to analyze capillarity processes in nematie liquid crystals. 

6.1.2 Surface orientation effect on capillary instabilities in a thin nematic 

fiber 

Capillary instabilities in the nematie fiber with the fixed direct or field along the fiber axis (axial 

texture) refiect the anisotropie nature of liquid crystals through the orientation contribution to 

the surface elasticity that gives rise to surface bending stresses. Surface gradients of bending 

stresses provide the orientation contribution to the capillary pressure that renormalize the clas­

sical displacement and curvature forces whieh exist in any liquid fibers. If the pl anar easy axis 

or weak homeotropie anchoring is imposed on the surface, the peristaltie mode is unstable and 

the classical fiber-to-drop transformation is predicted. If the anchoring energy strongly pro­

motes homeotropie orientation at the surface, the surface orientation contribution due to the 

misalignment between the actual director and the easy axis becomes so large that the bending 

stresses can cause non-axisymmetrie instabilities, and capillary instabilities with fibrillar phe-
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nomena arise. Meanwhile, the suppressing effect of the fiber viscosity on capillary instabilities 

shifts the fastest growing wavenumber and its growth rate towards significantly smaller values 

for the bounded peristaltie mode, or decreases the growth rate for the unbounded (catastrophie) 

instabilities. 

6.1.3 Viscous matrix effect on capillary instabilities in a thin nematic fiber 

The effect of the vis cous shear force at the fiber surface due to the vis cous matrix on the 

capillary instability is characterized in terms of the fiber and matrix Ohnesorge numbers, whieh 

represent the ratio between viscous and interface forces in each phase, and the matrix-to-fiber 

viscosity ratio. The capillary instabilities are suppressed by increasing either the fiber or matrix 

Ohnesorge number, but estimated drop sizes after fiber break-up in the peristaltie instability 

substantially decrease with increasing matrix Ohnesorge number. For the peristaltic instability 

of the isotropie case, in a certain range of the fiber Ohnesorge number, the dependence of the 

wavenumber corresponding to the fastest growth rate on the viscosity ratio is in qualitative 

agreement with other computational models found in the literature for Newtonian fiuids. 

6.1.4 Surface ordering effect on capillary instabilities in a thin nematic fiber 

When the surface el asti city of nematies contains both ordering and orientation contributions, 

the nematie ordering contribution allows for the existence of normal stresses while the nematic 

orientation contribution allows for the existence of bending stresses as weIl as normal stresses. 

Thus, surface gradients of normal and bending stresses provide additional anisotropie contribu­

tions to the capillary pressure of the nematie fiber, which renormalize the classical displacement 

and curvature forces that exist in any liquid fibers. In addition, wh en the interface curvature 

effects are taken into account, the higher order bending moment contribution to the surface 

stress is proved to be critical in stabilizing higher order non-axisymmetrie fiber instabilities. 

For the planar easy axis, if the nematic orientation is fixed along the fiber axis, capillary 

instabilities depend on the surface ordering contribution since the surface orientation contri­

bution due to the misalignment between the actual direct or and the easy axis is so small that 

the bending stresses alone cannot cause non-axisymmetric instabilities. Low ordering fibers 

display the classical peristaltic (axisymmetric) mode since the area reduction mechanism is 
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dominant. Decreasing temperature for this axisymmetric mode gives rise to a local maximum 

or a monotonie increase of the characteristie length. Therefore, the characteristic size of drops 

formed after fiber break-up can be controlled by tuning temperature under small or moderate 

nematic ordering effects. In the presence of high surface ordering, chiral (non-axisymmetric) 

finite wavelength (bounded) instabilities emerge, with higher modes growing faster since the 

area dilation mechanism dominates: The surface ordering increases as temperature decreases, 

which results in decreasing the surface energy to meet the requirement of negative surface ex­

cess entropy, and the surface energy decreases with increasing the surface area in this instability 

regime. The pitches of the chiral microstructure become smaller with decreasing temperature. 

However, this chiral instability mechanism due to high surface ordering can be regulated by 

considering the surface bending moment which contains higher or der variations in the interface 

curvatures. As temperature decreases, more and more chiral modes emerge but, at a constant 

temperature, there are only a finite number of unstable chiral modes among which a fastest 

growing mode exists. 

6.1.5 Bulk gradient elasticity effeet on eapillary instabilities in a thick ne­

matie fiber 

Classical theories of liquid crystals were used to develop static and transient thermodynamic 

models of linear peristaltic capillary instabilities driven by surface area reduction: The strong 

anchoring condition is imposed on the fiber surface, and hence only the isotropie surface tension 

plays a role. The direct or variation in the bulk of the fiber is the origin of the elastic distortion 

energy that differs from one texture to another. Since the bulk distortion elasticity contains 

orientation gradient contributions that couple with surface deformations, the thermodynamic 

models on three representative nematic textures identify the most likely effects. The axial 

texture tends to stabilize the fiber by increasing splay-bend elastic energy created by the surface 

tilting mechanism. The onion texture tends to destabilize the fiber by decreasing azimuthal 

bend elastic energy created by the surface displacement mechanism. The radial texture exhibits 

a stabilizing surface-tilting-mechanism due to bend elastie modes and a destabilizing surface­

displacement-mechanism due to splay elastic modes, but the former is predicted to be dominant. 

The use of static and dynamie formulations gives mutually consistent results, and shows that 
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the role of Frank distortion elasticity in capillary instabilities is a function of the initial fiber 

texture. Splay and/or bend modes on the axial plane stabilize the fiber by the surface tilting 

mechanism, whereas splay and/or bend modes on the cross-section al plane destabilizes it by 

the surface displacement mechanism. Therefore, bulk gradient elasticity offers another tool to 

control soft evolving surfaces. 

6.2 Contributions to Original Knowledge 

1. A new capillarity vector thermodynamic formalism for anisotropie liquid crystal interfaces, 

whieh takes into account the essential elastie anisotropies, is developed. 

2. Rigorous capillary pressure equations at liquid crystal interfaces are derived using the 

capillarity vector formalism. 

3. Linear stability analysis of capillary instabilities in a nematie liquid crystalline fiber is 

performed by formulating and solving the governing nemato-capillary equations. The results are 

analyzed in terms of instability mechanisms/modes whieh are affected by the main parameters: 

the isotropie and anisotropie surface tensions, the anisotropie viscosities, the bulk orientational 

elasticity, the isotropie viscosity of the matrix, and the surface bending modulus. 

4. All possible resulting morphologies and fiber surface patterns in capillary instabilities 

of nematic liquid crystalline fibers are characterized: drops, surface fibrillation, and helical or 

chiral fibers with twisted ripple patterns on the surface. 

5. The predicted ability of capillary instabilities in nematic fibers to produce surface struc­

tures of well-defined symmetry and length scales, as well as chiral microstructures is an impor­

tant result that augments the pathways for targeted pattern formation. 
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